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Preface by the General Chair

Welcome to EMNLP 2018 in Brussels, Belgium! I hope that EMNLP 2018 will be a memorable
experience filled with exciting research presentations, outstanding keynote speakers, and many
stimulating conversations with colleagues and friends, both old and new. In the evenings, I hope that
you will explore the wonderful city of Brussels! Admire the historic buildings, visit great museums, and
enjoy the Belgian cuisine.

EMNLP 2018 will have an extensive technical program that includes 14 workshops, 6 tutorials, 3 invited
speakers, 351 long paper presentations, 198 short paper presentations, 10 TACL paper presentations, and
29 demos. I want to give special thanks to the Program Co-Chairs: David Chiang, Julia Hockenmaier, and
Jun’ichi Tsujii. EMNLP 2018 received a record-breaking 2,231 valid submissions, a 48% increase over
EMNLP 2017! Despite the massive volume of submissions, the PC chairs put tremendous care into every
decision, big and small, and gracefully handled numerous inquiries and requests. Their commitment to a
high-quality program was inspiring. Of course, the PC Chairs did not handle the workload alone: we all
owe an enormous debt of gratitude to the 60 Area Chairs and 1,436 reviewers (yes, 1,400+ reviewers!)
who took on the critical responsibilities of reviewing paper submissions and providing feedback to the
program chairs. Thank you all!

The Demo Co-Chairs, Eduardo Blanco and Wei Lu, also had to handle an usually high workload.
EMNLP 2018 received 77 demo submissions, which was a 40% increase over EMNLP 2017. They
recruited an additional 150+ reviewers to assess the demo submissions, and managed the review process
seamlessly. Thank you, Eduardo and Wei!

The EMNLP 2018 Workshop Co-Chairs, Marieke van Erp and Vincent Ng, and the EMNLP 2018
Tutorial Co-Chairs, Mausam and Lu Wang, oversaw the selection of workshops and tutorials and
coordinated planning with the organizers. Many thanks to Marieke, Vincent, Mausam, and Lu for
orchestrating terrific workshop and tutorial programs! And I am thrilled to have three exceptional NLP
researchers as our keynote speakers: Johan Bos, Julia Hirschberg, and Gideon Mann.

For EMNLP 2018, we added two new initiatives to provide financial support to conference participants.
We introduced childcare grants that offer financial support for childcare expenses incurred to participate
in the conference. These childcare grants give families broad flexibility to utilize many different types
of childcare services and arrangements. A giant thank you to Swapna Somasundaran for navigating this
new terrain and drafting the policy guidelines, and to both Swapna and Aoife Cahill for overseeing the
application and decision processes.

EMNLP 2018 also introduced travel scholarships for non-students to attend the conference. The non-
student travel scholarships provide support to people with financial need who might otherwise not be able
to participate in the conference. We created this initiative with an eye toward supporting researchers from
historically under-representated regions and young researchers or others with limited financial means.
I want to thank Anna Rumshisky and Hugo Van hamme for managing these new non-student travel
scholarships, along with the student travel scholarship and volunteer applications.

Nitin Madnani deserves special thanks for taking charge of both the EMNLP 2018 web site and
conference app, and doing a fantastic job. Nitin was a pleasure to work with, and incredibly responsive,
answering emails impossibly fast and accommodating every request. Thanks also to our Publicity Chair,
Mohit Iyyer, for advertising the conference on social media and elsewhere, and our Video Chair, Bonan
Min, for handling the video recordings.

Managing the conference proceedings and compiling the handbook are extremely time-consuming and
tedious jobs, but less visible to conference attendees, who only see the final products. Enormousvi



thanks to the Publication Chairs, Micha Elsner (junior chair) and Preethi Raghavan (senior chair),
the Conference Handbook Chair, Kai-Wei Chang, the Handbook Advisor, Joachim Bingel, and the
Handbook Proofreader, He He. They were truly a fantastic team!

And a huge thanks to the Local Organization Committee from KU Leuven: Marie-Francine Moens
(chair), Dominique De Brabanter, Frieda Steurs, and Hugo Van hamme, as well as the Local Sponsorship
Chair, Katrien Beuls from Vrije Universiteit Brussel. Their hard work and enthusiasm were key to
making EMNLP 2018 a success! In addition, a large conference like EMNLP depends heavily on
sponsorship, and I want to sincerely thank all of the EMNLP 2018 sponsors for their generous support!

I must also thank SIGDAT for their support throughout this past year. With extra thanks to Noah Smith,
the SIGDAT Secretary-Treasurer and EMNLP liaison, for his support of our new initiatives, valuable
feedback, and quick responses. Finally, I owe a huge debt of gratitude to Priscilla Rasmussen, who
managed so many aspects of the conference that I can’t even begin to name them. A heartfelt thanks to
Priscilla for her hard work, sage advice, and for patiently answering an endless stream of questions from
me, and many others.

And thanks to all of YOU for participating in EMNLP 2018! I hope you enjoy the conference and your
time in Brussels!

EMNLP 2018 General Chair

Ellen Riloff, University of Utah, USA
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Preface by the Program Committee Co-Chairs

Welcome to EMNLP 2018! This year’s technical program consists of three invited talks, 224 oral
presentations (including three papers appearing in the Transactions of the ACL), and 335 poster
presentations (including seven papers appearing in TACL). To our knowledge, it’s the largest NLP
conference ever, and it would not have been possible without the help of our program committee
members.
This year, we organized the program committee into eight broad areas. For each area, one of our amazing
senior area chairs (Jordan Boyd-Graber, Xavier Carreras, Yejin Choi, Philipp Koehn, Alessandro
Moschitti, Slav Petrov, Massimo Poesio, and Kam-Fai Wong) headed a team of several other area chairs
(totaling 52 across all areas) and an army of reviewers (totaling 1,436 across all areas). We’d like to
especially thank those reviewers who agreed to review a full load of papers, which turned out to be a bit
heavier than expected!
2018 appears to have been the year of experimentation with new review forms, and EMNLP was
no exception. We eliminated many of the traditional numerical ratings and divided up the free-form
comments into a small number of separate free-response questions. We tried to make this new structure
mirror the structure of a typical review, while encouraging more comprehensive reviewing.
Extrapolating exponentially from the past two years, we expected to receive about 1,800 submissions, but
the eventual number exceeded our expectations at 2,231 (excluding empty and duplicate submissions).
After removal of invalid submissions and some withdrawals, we sent 2,116 papers out for review. Despite
the growing number of submissions, we tried to keep acceptance rates at the same level as past years.
The acceptance statistics are shown below.

Long Short Total TACL
Submitted 1,376 855 2,231 –

Accepted as talk 140 (10.2%) 81 (9.5%) 221 (9.9%) 3
Accepted as poster 211 (15.3%) 117 (13.7%) 328 (14.7%) 7

Accepted (total) 351 (25.5%) 198 (23.2%) 549 (24.6%) 10

As in past years, three awards will be given for Best Long Paper, Best Short Paper, and Best Resource
Paper. We solicited recommendations for awards from reviewers and area chairs. Following these
recommendations, we sent 7 long papers, 5 short papers, and 5 resource papers to three committees
chosen from among the area chairs. In the end, we selected two winners for Best Long Paper and one
each for Best Short Paper and Best Resource Paper, all of which will be presented in a final plenary
session.
We are delighted to have keynote addresses from three giants of our field: Johan Bos, on the future of
computational semantics; Julia Hirschberg, on deception detection in speech; and Gideon Mann, on the
use of NLP in finance.
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In addition to our entire program committee, we would also like to give thanks to:

• Our general chair, Ellen Riloff,

• Priscilla Rasmussen,

• Last year’s program chairs, Rebecca Hwa and Sebastian Riedel,

• Our local chair, Marie-Francine Moens, and the local organizing committee,

• Our web and publicity chairs, Nitin Madnani and Mohit Iyyer,

• Our publications chairs, Micha Elsner and Preethi Raghavan,

• Our handbook chair, Kai-Wei Chang,

• Rich Gerber and the technical support team at SoftConf.

Again, welcome! We hope that you enjoy this year’s conference, and return home with new insights,
ideas, and opportunities!

EMNLP 2018 Program Co-Chairs

David Chiang, University of Notre Dame, USA
Julia Hockenmaier, University of Illinois Urbana-Champaign, USA
Jun’ichi Tsujii, Artificial Intelligence Research Center, Japan
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Organizing Committee

General Chair
Ellen Riloff, University of Utah, USA

Program Committee Co-chairs
David Chiang, University of Notre Dame, USA
Julia Hockenmaier, University of Illinois Urbana-Champaign, USA
Junichi Tsujii, Artificial Intelligence Research Center, Japan

Local Arrangements Committee
Marie-Francine Moens, KU Leuven, Belgium (chair)
Dominique De Brabanter, KU Leuven, Belgium
Frieda Steurs, KU Leuven, Belgium
Hugo Van hamme, KU Leuven, Belgium

Local Sponsorship Chair
Katrien Beuls, Vrije Universiteit Brussel, Belgium

Workshop Co-chairs
Marieke van Erp, KNAW Humanities Cluster, Netherlands
Vincent Ng, University of Texas at Dallas, USA

Tutorial Co-chairs
Mausam, Indian Institute of Technology Delhi, India
Lu Wang, Northeastern University, USA

Demos Co-chairs
Eduardo Blanco, University of North Texas, USA
Wei Lu, Singapore University of Technology and Design, Singapore

Publications Sr Chair
Preethi Raghavan, IBM, USA

Publications Jr Chair
Micha Elsner, Ohio State University, USA

Publicity Chair
Mohit Iyyer, University of Massachusetts at Amherst, USA

Video Chair
Bonan Min, BBN Technologies, USA

Website and Conference App Chair
Nitin Madnani, Educational Testing Service, USA

Conference Handbook Chair
Kai-Wei Chang, University of California at Los Angeles, USA
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Conference Handbook Advisor
Joachim Bingel, University of Copenhagen, Denmark

Handbook Proofreader
He He, Stanford University, USA

Student Scholarship Co-chair and Student Volunteer Coordinator
Anna Rumshisky, University of Massachusetts at Lowell, USA
Hugo Van hamme, KU Leuven, Belgium

Childcare Policy and Grant Coordinator
Swapna Somasundaran, Educational Testing Service, USA
Aoife Cahill, Educational Testing Service, USA
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Program Committee

Program Committee Co-chairs
David Chiang, University of Notre Dame, USA
Julia Hockenmaier, University of Illinois Urbana-Champaign, USA
Junichi Tsujii, Artificial Intelligence Research Center, Japan

Area Chairs
Information Extraction, Information Retrieval, and Question Answering

Jordan Boyd-Graber, University of Maryland, USA (senior chair)
Isabelle Augenstein, University of Copenhagen, Denmark
Ming-Wei Chang, Google, USA
Doug Downey, Northwestern University, USA
Ruihong Huang, Texas A&M University, USA
Mausam, IIT Delhi, India
Makoto Miwa, Toyota Technological Institute, Japan
William Wang, University of California at Santa Barbara, USA
Scott Yih, Allen Institute for Artificial Intelligence, USA

Text Mining and Information Retrieval
Alessandro Moschitti, University of Trento, Italy (senior chair)
Sophia Ananiadou, University of Manchester, United Kingdom
Hsin-Hsi Chen, National Taiwan University
Marius Pasca, Google, USA
Xiang Ren, University of Southern California, USA
Alan Ritter, Ohio State University, USA
David Smith, Northeastern University, USA

Social Media, Computational Social Science, and Sentiment/Opinion Analysis
Kam-Fai Wong, Chinese University of Hong Kong (senior chair)
Eiji Aramaki, Nara Institute of Science and Technology, Japan
Mona Diab, George Washington University, USA
Yulan He, Aston University, United Kingdom
Dirk Hovy, Bocconi University, Italy
Rada Mihalcea, University of Michigan, USA
Alice Oh, KAIST, Korea
Wei Xu, Ohio State University, USA

Morphology, Syntax, and Psycholinguistics
Slav Petrov, Google, USA (senior chair)
Liang Huang, Oregon State University, USA
Roger Levy, Massachusetts Institute of Technology, USA
Stephan Oepen, University of Oslo, Norway
Emily Pitler, Google, USA
Reut Tsarfaty, Open University of Isra
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Semantics
Massimo Poesio, Queen Mary University of London, United Kingdom (senior chair)
Omri Abend, Hebrew University of Jerusalem, Israel
Raffaella Bernardi, University of Trento, Italy
Michael Lewis, Facebook, USA
Yulia Tsvetkov, Carnegie Mellon University, USA
Benjamin Van Durme, Johns Hopkins University, USA
Nianwen Xue, Brandeis University, USA

Discourse, Dialogue, Summarization, Generation, and Multimodal NLP
Yejin Choi, University of Washington, USA (senior chair)
Mohit Bansal, University of North Carolina, USA
Michel Galley, Microsoft, USA
Grzegorz Chrupała, Tilburg University, Netherlands
Haizhou Li, National University of Singapore
Fei Liu, University of Central Florida, USA
Karen Livescu, Toyota Technological Institute - Chicago, USA
Meg Mitchell, Google, USA
Rashmi Prasad, Interactions, USA
Xiaojun Wan, Peking University, China
Zhou Yu, University of California at Davis, USA

Machine Translation and Multilinguality
Philipp Koehn, Johns Hopkins University, USA (senior chair)
Arianna Bisazza, Leiden University, Netherlands
Qun Liu, Dublin City University, Ireland
Yang Liu, Tsinghua University, China
Zhaopeng Tu, Tencent, China
Taro Watanabe, Google, Japan

Machine Learning
Xavier Carreras, dMetrics, USA (senior chair)
Shay Cohen, University of Edinburgh, United Kingdom
Kevin Gimpel, Toyota Technological Institute - Chicago, USA
Stefan Riezler, Heidelberg University, Germany
Karl Stratos, Toyota Technological Institute - Chicago, USA
Jun Suzuki, Tohoku University, Japan

Reviewers
We would like to recognize the following 100 reviewers with the Best Reviewer Award.

Natalie Ahn, Emilia Apostolova, Miguel Ballesteros, Daniel Bauer, Yonatan Belinkov, Darina Benikova,
Luciana Benotti, Robert Berwick, Chloé Braud, Hendrik Buschmeier, Jan Buys, Dallas Card, Asli Ce-
likyilmaz, Arun Chaganty, Kai-Wei Chang, Colin Cherry, Maximin Coavoux, Zeyu Dai, Cedric De
Boom, Miryam de Lhoneux, Mark Dredze, Greg Durrett, Ondrej Dusek, Jason Eisner, Michael Elhadad,
M. Amin Farajian, Shi Feng, Simone Filice, Stefan L. Frank, Lea Frermann, Matthias Gallé, Ekaterina
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Garmash, Michaela Geierhos, Lieke Gelderloos, Kallirroi Georgila, Alborz Geramifard, Matthew R.
Gormley, Yvette Graham, Jiatao Gu, Bo Han, Shuguang Han, Abram Handler, Hua He, Lisa Anne
Hendricks, Daniel Hershcovich, Jack Hessel, Gerold Hintz, Ari Holtzman, Peter Jansen, Ȧkos Kádár,
Sarvnaz Karimi, Ekaterina Kochmar, Parisa Kordjamshidi, Gaurav Kumar, Adhiguna Kuncoro, Yan-
ran Li, Jing Li, Chen Li, Lucelene Lopes, Adam Lopez, Kate Loveys, Chandler May, Nafise Sadat
Moosavi, Andrea Moro, Philippe Muller, Shashi Narayan, Dong Nguyen, Hitoshi Nishikawa, Peyman
Passban, Laura Perez-Beltrachini, Ana-Maria Popescu, Piotr Przybyla, Peng Qi, Will Radford, Roi Re-
ichart, Anna Rohrbach, Shigehiko Schamoni, Yves Scherrer, Sebastian Schuster, Matthew Shardlow,
Tianze Shi, Carina Silberer, Kevin Small, Luca Soldaini, Gabriel Stanovsky, Kristina Striegnitz, Jannik
Strötgen, Liling Tan, Hao Tang, Yi Tay, Mariët Theune, Yuen-Hsien Tseng, Subhashini Venugopalan,
Henning Wachsmuth, Eric Wallace, Bonnie Webber, Michael White, Shuly Wintner, Andrew Yates,
Justine Zhang.

We also thank the remaining reviewers for their hard work.

Mourad Abbas, Muhammad Abdul-Mageed, Amjad Abu-Jbara, Oliver Adams, Heike Adel, Stergos
Afantenos, Apoorv Agarwal, Željko Agić, Roee Aharoni, Chaitanya Ahuja, Zeynep Akata, Alan Akbik,
Ahmet Aker, Cem Akkaya, Chris Alberti, Hanan Aldarmaki, Nikolaos Aletras, Afra Alishahi, Alexan-
dre Allauzen, Tim Althoff, Bharat Ram Ambati, Waleed Ammar, Antonios Anastasopoulos, Jesse An-
derton, Nicholas Andrews, Anietie Andy, Gabor Angeli, Marianna Apidianaki, Jun Araki, Kenji Araki,
Yuki Arase, Ehsaneddin Asgari, Ramón Astudillo, Giuseppe Attardi, Eleftherios Avramidis, Amittai
Axelrod, Wilker Aziz, Yoram Bachrach, Hessam Bagherinezhad, Fan Bai, Simon Baker, Mithun Bal-
akrishna, Niranjan Balasubramanian, Tyler Baldwin, David Bamman, Rafael E. Banchs, Siddhartha
Banerjee, Trapit Bansal, Roy Bar-Haim, Libby Barak, Alistair Baron, Marco Baroni, Alberto Barrón-
Cedeño, Guntis Barzdins, Pierpaolo Basile, Valerio Basile, Joost Bastings, Riza Theresa Batista-Navarro,
Vishwash Batra, Timo Baumann, Rachel Bawden, Frederic Bechet, Daniel Beck, Srikanta Bedathur,
Núria Bel, Eric Bell, Kedar Bellare, Iz Beltagy, Anja Belz, Farah Benamara, Jonathan Berant, Taylor
Berg-Kirkpatrick, Raffaella Bernardi, Nicola Bertoldi, Laurent Besacier, Steven Bethard, Chandra Bha-
gavatula, Suma Bhat, Archna Bhatia, Sumit Bhatia, Pushpak Bhattacharyya, Chris Biemann, Lidong
Bing, Alexandra Birch, Yonatan Bisk, Johannes Bjerva, Jari Björne, Frédéric Blain, Eduardo Blanco,
Su Lin Blodgett, Michael Bloodgood, Reihane Boghrati, Nikolay Bogoychev, Bernd Bohnet, Danushka
Bollegala, Daniele Bonadiman, Francesca Bonin, Kalina Bontcheva, Georgeta Bordea, Alexey Borisov,
Johan Bos, Antoine Bosselut, Jan A. Botha, Houda Bouamor, Fethi Bougares, Samuel Bowman, Ryan
Boyd, Matko Bošnjak, Jonathan Brennan, Chris Brew, Chris Brockett, Austin Brockmeier, Thomas
Brovelli (Meyer), Caroline Brun, Dominique Brunato, Paul Buitelaar, Florin Bulgarov, Stephan Buse-
mann, Bill Byrne, Donna Byron, Benjamin Börschinger, José G. C. de Souza, Elena Cabrio, Aoife
Cahill, Iacer Calixto, Jose Camacho-Collados, Erik Cambria, Nicola Cancedda, Marie Candito, Hai-
long Cao, Yuan Cao, Ziqiang Cao, Giuseppe Carenini, Francisco Casacuberta, Thiago Castro Fer-
reira, Daniel Cer, Mauro Cettolo, Soumen Chakrabarti, Yllias Chali, Yee Seng Chan, Muthu Ku-
mar Chandrasekaran, Baobao Chang, Chia-Hui Chang, Yin-Wen Chang, Rajen Chatterjee, Snigdha
Chaturvedi, Stergios Chatzikyriakidis, Wanxiang Che, Ciprian Chelba, Bin Chen, Boxing Chen, Chen
Chen, Chung-Chi Chen, Danqi Chen, Huan-Yuan Chen, John Chen, Kaiping Chen, Kehai Chen, Muhao
Chen, Tao Chen, Tongfei Chen, Wenhu Chen, Wenliang Chen, Xilun Chen, Yidong Chen, Yubo Chen,
Yun-Nung Chen, Zhiyuan Chen, Jianpeng Cheng, Pu-Jen Cheng, Yong Cheng, Jackie Chi Kit Che-
ung, Jen-Tzung Chien, Hai Leong Chieu, Laura Chiticariu, Kyunghyun Cho, Eunsol Choi, Heeyoul
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Choi, Leshem Choshen, Prafulla Kumar Choubey, Christos Christodoulopoulos, Chenhui Chu, Tagy-
oung Chung, Kenneth Church, Philipp Cimiano, Volkan Cirik, Alexander Clark, Kevin Clark, Ann
Clifton, Arman Cohan, Daniel Cohen, Raphael Cohen, Nigel Collier, Michael Collins, John Conroy,
Matthieu Constant, Danish Contractor, Bonaventura Coppola, Gregory F. Coppola, Caio Corro, Marta
R. Costa-jussà, Ryan Cotterell, Benoit Crabbé, Danilo Croce, James Cross, Montse Cuadros, Heriberto
Cuayahuitl, Yiming Cui, Aron Culotta, Anna Currey, Iria da Cunha, Özlem Çetinoğlu, Ido Dagan, An-
drew Dai, Zihang Dai, Joachim Daiber, Jeff Dalton, Bhavana Dalvi, Falavigna Daniele, Lena Dankin,
Kareem Darwish, Amitava Das, Dipanjan Das, Rajarshi Das, Pradeep Dasigi, Gaël de Chalendar, Adrià
de Gispert, Daniël de Kok, Eric De La Clergerie, Renato de Mori, Luciano Del Corro, Claudio Delli
Bovi, Louise Deléger, Thomas Demeester, David Demeter, Dina Demner-Fushman, Steve DeNeefe,
Lingjia Deng, Pascal Denis, Michael Denkowski, Matthew Denny, Tejaswini Deoskar, Valeria de Paiva,
Nina Dethlefs, Chris Develder, Jacob Devlin, Bhuwan Dhingra, Luigi Di Caro, Giuseppe Di Fabbrizio,
Jana Diesner, Shuoyang Ding, Simon Dobnik, Ellen Dodge, Jesse Dodge, Tobias Domhan, Li Dong,
MeiXing Dong, Shichao Dong, A. Seza Doğruöz, Eduard Dragut, Mark Dras, Markus Dreyer, Lan
Du, Xiangyu Duan, Haim Dubossarsky, Pablo Duboue, Kevin Duh, Nadir Durrani, Chris Dyer, Marc
Dymetman, Valery Dzutsati, Hiroshi Echizen’ya, Richard Eckart de Castilho, Thomas Effland, Stef-
fen Eger, Markus Egg, Patrick Ehlen, Maud Ehrmann, Vladimir Eidelman, Andreas Eisele, Jacob
Eisenstein, Asif Ekbal, Layla El Asri, Heba Elfardy, Ahmed Elgohary, Mihail Eric, Hugo Jair Es-
calante, Cristina España-Bonet, Kurt Junshean Espinosa, Luis Espinosa Anke, Allyson Ettinger, Kee-
lan Evanini, James Fan, Hao Fang, Hui Fang, Licheng Fang, Manaal Faruqui, Benoit Favre, Maryam
Fazel-Zarandi, Marcello Federico, Christian Federmann, Geli Fei, Anna Feldman, Yang Feng, Yansong
Feng, Raquel Fernández, Daniel Fernández-González, Francis Ferraro, Elena Filatova, Katja Filip-
pova, Mark Finlayson, Orhan Firat, Mark Fishel, Nicholas FitzGerald, Jeffrey Flanigan, Dan Flickinger,
Michael Flor, Radu Florian, Antske Fokkens, José A. R. Fonollosa, Maxwell Forbes, Tommaso Forna-
ciari, George Foster, Samuel Fraiberger, Anette Frank, Dayne Freitag, Markus Freitag, André Freitas,
Jesse Freitas, Daniel Fried, Xiao Fu, Hagen Fuerstenau, Atsushi Fujii, Fumiyo Fukumoto, Richard
Futrell, Alona Fyshe, Michael Gamon, Zhe Gan, Kuzman Ganchev, Octavian-Eugen Ganea, Juri Gan-
itkevitch, Mercedes García-Martínez, Claire Gardent, Dan Garrette, Milica Gasic, Albert Gatt, Tao
Ge, Ulrich Germann, Mehdi Ghanimifard, Debanjan Ghosh, Sucheta Ghosh, George Giannakopoulos,
Daniel Gildea, Dimitra Gkatzia, Goran Glavaš, Alfio Gliozzo, Koldo Gojenola, Yoav Goldberg, Dan
Goldwasser, Sharon Goldwater, Juan Carlos Gomez, Graciela Gonzalez-Hernandez, Jesús González-
Rubio, Hugo Gonçalo Oliveira, Jonathan Gordon, Kyle Gorman, Cyril Goutte, Kartik Goyal, Pawan
Goyal, Natalia Grabar, Roger Granada, Mark Granroth-Wilding, Eleni Gregoromichelaki, Scott Grimm,
Ralph Grishman, Cyril Grouin, Adam Grycner, Anupam Guha, Lin Gui, Tao Gui, Camille Guin-
audeau, Hongyu Guo, Jiafeng Guo, Jiang Guo, Weiwei Guo, Nitish Gupta, Sonal Gupta, Francisco
Guzmán, Jeremy Gwinnup, Carlos Gómez-Rodríguez, Nizar Habash, Maryam Habibi, Gholamreza
Haffari, Masato Hagiwara, Udo Hahn, Jan Hajic, Hannaneh Hajishirzi, Dilek Hakkani-Tur, John Hale,
Keith Hall, William L. Hamilton, Thierry Hamon, Jialong Han, Na-Rae Han, Oul Han, Xianpei Han,
Sanda Harabagiu, Christian Hardmeier, Daniel Hardt, Orin Hargraves, David Harwath, Kazi Saidul
Hasan, Sadid A. Hasan, Mark Hasegawa-Johnson, Homa Hashemi, Kazuma Hashimoto, Eva Hasler,
Katsuhiko Hayashi, Devamanyu Hazarika, He He, Luheng He, Shizhu He, Xiangnan He, Yifan He,
Zhongjun He, Kenneth Heafield, Carmen Heger, Michael Heilman, Benjamin Heinzerling, James Hen-
derson, John Henderson, Matthew Henderson, Aron Henriksson, Aurélie Herbelot, Ulf Hermjakob,
Raquel Hervas, Jonathan Herzig, John Hewitt, Ryuichiro Higashinaka, Derrick Higgins, Tsutomu Hi-
rao, Graeme Hirst, Julian Hitschler, Hieu Hoang, Vu Cong Duy Hoang, Nathan Hodas, Chris Hokamp,
Kristy Hollingshead, Chester Holtz, Yu Hong, Joseph Hoover, Ales Horak, Mohammad Javad Hos-
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seini, Yufang Hou, Eduard Hovy, Estevam Hruschka, Baotian Hu, Yuheng Hu, Zhiting Hu, Bo Huang,
Guoping Huang, Haoran Huang, Hen-Hsen Huang, Lifu Huang, Minlie Huang, Po-Sen Huang, Rui-
hong Huang, Shujian Huang, Xiaojiang Huang, Xuanjing Huang, Zhongqiang Huang, Matthias Huck,
Samar Husain, Rebecca Hwa, Jena D. Hwang, Seung-won Hwang, Ignacio Iacobacci, Adrian Iftene,
Gonzalo Iglesias, Ryu Iida, Loring Ingraham, Naoya Inoue, Kentaro Inui, Takashi Inui, Radu Tudor
Ionescu, Molly Ireland, Aminul Islam, Alexei V. Ivanov, Srinivasan Iyer, Mohit Iyyer, Kokil Jaidka,
Prachi Jain, Adam Jatowt, Sujay Kumar Jauhar, Sébastien Jean, Laura Jehl, Yacine Jernite, Rahul Jha,
Heng Ji, Yangfeng Ji, Robin Jia, Ping Jian, Hui Jiang, Jing Jiang, Jingtian Jiang, Meng Jiang, Wenbin
Jiang, Antonio Jimeno Yepes, Yohan Jo, Anders Johannsen, Richard Johansson, Kristen Johnson, Kris-
tiina Jokinen, Gareth Jones, Kenneth Joseph, Mandar Joshi, Shafiq Joty, Meizhi Ju, Marcin Junczys-
Dowmunt, Preethi Jyothi, Gerhard Jäger, Nobuhiro Kaji, Herman Kamper, Pallika Kanani, Hiroshi
Kanayama, Dongyeop Kang, Dimitri Kartsaklis, Arzoo Katiyar, Makoto P. Kato, Daisuke Kawahara,
Hideto Kazawa, Chris Kedzie, Aniruddha Kembhavi, Casey Kennington, Mitesh M. Khapra, Huda
Khayrallah, Douwe Kiela, Yuta Kikuchi, Halil Kilicoglu, Jin-Dong Kim, Jooyeon Kim, Najoung Kim,
Seokhwan Kim, Suin Kim, Sun Kim, Sunghwan Mac Kim, Yoon Kim, Young-Bum Kim, Irwin King,
Eliyahu Kiperwasser, Svetlana Kiritchenko, Nikita Kitaev, Judith Klavans, Alexandre Klementiev, Ro-
man Klinger, Alistair Knott, Rebecca Knowles, Sosuke Kobayashi, Thomas Kober, Simon Kocbek,
Kazunori Komatani, Rik Koncel-Kedziorski, Grzegorz Kondrak, Xiang Kong, Ioannis Konstas, Yannis
Korkontzelos, Leila Kosseim, Lili Kotlerman, Zornitsa Kozareva, Mikhail Kozhevnikov, Julia Kreutzer,
Jayant Krishnamurthy, Kriste Krstovski, Canasai Kruengkrai, Udo Kruschwitz, Germán Kruszewski,
Lun-Wei Ku, Marco Kuhlmann, Roland Kuhn, Vivek Kulkarni, Shankar Kumar, Jonathan K. Kum-
merfeld, Gourab Kundu, Tsung-Ting Kuo, Sadao Kurohashi, Polina Kuznetsova, Maximilian Köper,
Sandra Kübler, Majid Laali, Gorka Labaka, Wai Lam, Mathias Lambert, Patrik Lambert, Vasileios
Lampos, Gerasimos Lampouras, Wuwei Lan, Ni Lao, Mirella Lapata, Romain Laroche, Jey Han Lau,
Alon Lavie, Carolin Lawrence, Angeliki Lazaridou, Phong Le, Joseph Le Roux, Robert Leaman, Chia-
ying Lee, Hung-yi Lee, John Lee, Lin-shan Lee, Sungjin Lee, Yoong Keok Lee, Young-Suk Lee, Els
Lefever, Tao Lei, Gaël Lejeune, Alessandro Lenci, Piroska Lendvai, Chee Wee (Ben) Leong, James
Lester, Gregor Leusch, Effi Levi, Roger Levy, Baoli Li, Binyang Li, Cheng-Te Li, Chenliang Li, Haibo
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Invited Speaker: Johan Bos, University of Groningen
The Moment of Meaning and the Future of Computational Semantics

Abstract: There are many recent advances in semantic parsing: we see a rising number of semantically
annotated corpora and there is exciting technology (such as neural networks) to be explored. In this
talk I will discuss what role computational semantics could play in future natural language processing
applications (including fact checking and machine translation). I will argue that we should not just
look at semantic parsing, but that things can get really interesting when we can use language-neutral
meaning representations to draw (transparent) inferences. The main ideas will be exemplified by the
parallel meaning bank, a new corpus comprising texts annotated with formal meaning representations
for English, Dutch, German and Italian.

Bio: Johan Bos is Professor of Computational Semantics at the University of Groningen (Netherlands).
He received his doctorate from the Computational Linguistics Department at the University of the Saar-
land (Germany) and held post-doc positions at the University of Edinburgh (UK) and the La Sapienza
University in Rome (Italy). In 2010, he moved to his current position in Groningen, leading the com-
putational semantics group. Bos is the developer of Boxer, a state-of-the-art wide-coverage semantic
parser for English, initiator of the Groningen Meaning Bank, a large semantically-annotated corpus of
texts, and inventor of Wordrobe, a game with a purpose for semantic annotation. Bos received a $1.5-
million Vici grant from NWO (Netherlands Organisation for Scientific Research) in 2015 to investigate
the role of meaning in human and machine translation. A concrete outcome of this project is the Paral-
lel Meaning Bank containing detailed meaning representations for English, German, Dutch and Italian
sentences.
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Invited Speaker: Julia Hirschberg, Columbia University
Truth or Lie? Spoken Indicators of Deception in Speech

Abstract: Detecting deception from various forms of human behavior is a longstanding research goal
which is of considerable interest to the military, law enforcement, corporate security, social services
and mental health workers. However, both humans and polygraphs are very poor at this task. We
describe more accurate methods we have developed to detect deception automatically from spoken lan-
guage. Our classifiers are trained on the largest cleanly recorded corpus of within-subject deceptive and
non-deceptive speech that has been collected. To distinguish truth from lie we make use of acoustic-
prosodic, lexical, demographic, and personality features. We further examine differences in deceptive
behavior based upon gender, personality, and native language (Mandarin Chinese vs. English), com-
paring our systems to human performance. We extend our studies to identify cues in trusted speech vs.
mistrusted speech and how these features differ by speaker and by listener. Why does a listener believe
a lie?

Bio: Julia Hirschberg is Percy K. and Vida L. W. Hudson Professor and Chair of Computer Science at
Columbia University. She previously worked at Bell Laboratories and AT&T Labs where she created
the HCI Research Department. She has been editor of Computational Linguistics and Speech Commu-
nication, is a fellow of AAAI, ISCA, ACL, ACM, and IEEE, and a member of the National Academy
of Engineering. She received the IEEE James L. Flanagan Speech and Audio Processing Award and
the ISCA Medal for Scientific Achievement. She currently serves on the IEEE Speech and Language
Processing Technical Committee, is co-chair of the CRA-W Board, and has worked for diversity for
many years at AT&T and Columbia. She works on spoken language processing and NLP, studying
text-to-speech synthesis, spoken dialogue systems, entrainment in conversation, detection of deceptive
and emotional speech, hedging behavior, and linguistic code-switching (language mixing).
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Invited Speaker: Gideon Mann, Bloomberg L.P.
Understanding the News that Moves Markets

Abstract: Since the dawn of human civilization, finance and language technology have been connected.
However, only recently have advances in statistical language understanding, and an ever-increasing
thirst for market advantage, led to the widespread application of natural language technology across the
global capital markets. This talk will review the ways in which language technology is enabling market
participants to quickly understand and respond to major world events and breaking business news. It
will outline the state of the art in applications of NLP to finance and highlight open problems that are
being addressed by emerging research.

Bio: Gideon Mann is the Head of Data Science at Bloomberg L.P., where he guides the strategic
direction for machine learning, natural language processing (NLP) and search across the company. He
is part of the leadership team for the Office of the CTO. He served as a founding member of both the
Data for Good Exchange (D4GX), an annual conference on data science applications for social good,
and the Shift Commission on Work, Workers and Technology. He has also been active in academic
research in fact extraction, weakly-supervised learning, and distributed optimization. Recently, he has
also been interested in applications of machine learning to problems in software engineering. From
2007 to 2014, he worked at Google Research in New York City, and his team built core machine
learning libraries, released the Google Prediction API, and developed Colaboratory. Mann graduated
Brown University in 1999 and received a Ph.D. from The Johns Hopkins University in 2006.
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Recovering Missing Characters in Old Hawaiian Writing
Brendan Shillingford and Oiwi Parker Jones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4929

When data permutations are pathological: the case of neural natural language inference
Natalie Schluter and Daniel Varab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4935

Bridging Knowledge Gaps in Neural Entailment via Symbolic Models
Dongyeop Kang, Tushar Khot, Ashish Sabharwal and Peter Clark . . . . . . . . . . . . . . . . . . . . . . . . . 4940

The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence
Identification

Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu and Buzhou Tang . . . . . . . . . . . . . . 4946

Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Infer-
ence

Reza Ghaeini, Xiaoli Fern and Prasad Tadepalli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4952

Towards Semi-Supervised Learning for Deep Semantic Role Labeling
Sanket Vaibhav Mehta, Jay Yoon Lee and Jaime Carbonell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4958

Identifying Domain Adjacent Instances for Semantic Parsers
James Ferguson, Janara Christensen, Edward Li and Edgar Gonzàlez . . . . . . . . . . . . . . . . . . . . . . 4964

Mapping natural language commands to web elements
Panupong Pasupat, Tian-Shun Jiang, Evan Liu, Kelvin Guu and Percy Liang . . . . . . . . . . . . . . . 4970

Wronging a Right: Generating Better Errors to Improve Grammatical Error Detection
Sudhanshu Kasewa, Pontus Stenetorp and Sebastian Riedel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4977

Modeling Input Uncertainty in Neural Network Dependency Parsing
Rob van der Goot and Gertjan van Noord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4984

Parameter sharing between dependency parsers for related languages
Miryam de Lhoneux, Johannes Bjerva, Isabelle Augenstein and Anders Søgaard . . . . . . . . . . . . 4992

Grammar Induction with Neural Language Models: An Unusual Replication
Phu Mon Htut, Kyunghyun Cho and Samuel Bowman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4998

Data Augmentation via Dependency Tree Morphing for Low-Resource Languages
Gozde Gul Sahin and Mark Steedman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5004

lv



How Much Reading Does Reading Comprehension Require? A Critical Investigation of Popular Bench-
marks

Divyansh Kaushik and Zachary C. Lipton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5010

MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman

Ramadan and Milica Gasic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5016

Linguistically-Informed Self-Attention for Semantic Role Labeling
Emma Strubell, Patrick Verga, Daniel Andor, David Weiss and Andrew McCallum . . . . . . . . . . 5027

Phrase-Based & Neural Unsupervised Machine Translation
Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer and Marc’Aurelio Ranzato .5039

lvi



Conference Program

Friday, November 2, 2018

09:00–09:30 Opening remarks (Gold Hall)

09:30–10:30 Keynote I: Julia Hirschberg "Truth or Lie? Spoken Indicators of Deception in
Speech" (Gold Hall)

10:30–11:00 Coffee Break

11:00–12:30 Long Papers and Demos (Orals and Posters) I

Session 1A: Social Applications I (Gold Hall)

11:00–11:18 Privacy-preserving Neural Representations of Text
Maximin Coavoux, Shashi Narayan and Shay B. Cohen

11:18–11:36 Adversarial Removal of Demographic Attributes from Text Data
Yanai Elazar and Yoav Goldberg

11:36–11:54 DeClarE: Debunking Fake News and False Claims using Evidence-Aware Deep
Learning
Kashyap Popat, Subhabrata Mukherjee, Andrew Yates and Gerhard Weikum

11:54–12:12 It’s going to be okay: Measuring Access to Support in Online Communities
Zijian Wang and David Jurgens

12:12–12:30 Detecting Gang-Involved Escalation on Social Media Using Context
Serina Chang, Ruiqi Zhong, Ethan Adams, Fei-Tzin Lee, Siddharth Varia, Desmond
Patton, William Frey, Chris Kedzie and Kathy McKeown

lvii



Friday, November 2, 2018 (continued)

Session 1B: Semantics I (Copper Hall)

11:00–11:18 Reasoning about Actions and State Changes by Injecting Commonsense Knowledge
Niket Tandon, Bhavana Dalvi, Joel Grus, Wen-tau Yih, Antoine Bosselut and Peter
Clark

11:18–11:36 Collecting Diverse Natural Language Inference Problems for Sentence Representa-
tion Evaluation
Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Edward Hu, Ellie Pavlick,
Aaron Steven White and Benjamin Van Durme

11:36–11:54 Textual Analogy Parsing: What’s Shared and What’s Compared among Analogous
Facts
Matthew Lamm, Arun Chaganty, Christopher D. Manning, Dan Jurafsky and Percy
Liang

11:54–12:12 SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference
Rowan Zellers, Yonatan Bisk, Roy Schwartz and Yejin Choi

12:12–12:30 TwoWingOS: A Two-Wing Optimization Strategy for Evidential Claim Verification
Wenpeng Yin and Dan Roth

Session 1C: Vision (Silver Hall)

11:00–11:18 Associative Multichannel Autoencoder for Multimodal Word Representation
Shaonan Wang, Jiajun Zhang and Chengqing Zong

11:18–11:36 Game-Based Video-Context Dialogue
Ramakanth Pasunuru and Mohit Bansal

11:36–11:54 simNet: Stepwise Image-Topic Merging Network for Generating Detailed and Com-
prehensive Image Captions
Fenglin Liu, Xuancheng Ren, Yuanxin Liu, Houfeng Wang and Xu Sun

11:54–12:12 Multimodal Language Analysis with Recurrent Multistage Fusion
Paul Pu Liang, Ziyin Liu, AmirAli Bagher Zadeh and Louis-Philippe Morency

12:12–12:30 Temporally Grounding Natural Sentence in Video
Jingyuan Chen, Xinpeng Chen, Lin Ma, Zequn Jie and Tat-Seng Chua

lviii



Friday, November 2, 2018 (continued)

Session 1D: Entities and Coreference (Hall 100)

11:00–11:18 PreCo: A Large-scale Dataset in Preschool Vocabulary for Coreference Resolution
Hong Chen, Zhenhua Fan, Hao Lu, Alan Yuille and Shu Rong

11:18–11:36 Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-
Attention Mechanism
Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao and Shengping Liu

11:36–11:54 Using Linguistic Features to Improve the Generalization Capability of Neural
Coreference Resolvers
Nafise Sadat Moosavi and Michael Strube

11:54–12:12 Neural Segmental Hypergraphs for Overlapping Mention Recognition
Bailin Wang and Wei Lu

12:12–12:30 Variational Sequential Labelers for Semi-Supervised Learning
Mingda Chen, Qingming Tang, Karen Livescu and Kevin Gimpel

Session 1E: Machine Translation and Multilingual Methods (Posters and De-
mos, Grand Hall 2)

Joint Representation Learning of Cross-lingual Words and Entities via Attentive
Distant Supervision
Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Chengjiang Li, Xu Chen and Tiansi
Dong

Deep Pivot-Based Modeling for Cross-language Cross-domain Transfer with Mini-
mal Guidance
Yftah Ziser and Roi Reichart

Multi-lingual Common Semantic Space Construction via Cluster-consistent Word
Embedding
Lifu Huang, Kyunghyun Cho, Boliang Zhang, Heng Ji and Kevin Knight

Unsupervised Multilingual Word Embeddings
Xilun Chen and Claire Cardie

CLUSE: Cross-Lingual Unsupervised Sense Embeddings
Ta Chung Chi and Yun-Nung Chen
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Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Spe-
cialization
Edoardo Maria Ponti, Ivan Vulić, Goran Glavaš, Nikola Mrkšić and Anna Korhonen

Improving Cross-Lingual Word Embeddings by Meeting in the Middle
Yerai Doval, Jose Camacho-Collados, Luis Espinosa Anke and Steven Schockaert

WikiAtomicEdits: A Multilingual Corpus of Wikipedia Edits for Modeling Language
and Discourse
Manaal Faruqui, Ellie Pavlick, Ian Tenney and Dipanjan Das

On the Relation between Linguistic Typology and (Limitations of) Multilingual Lan-
guage Modeling
Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi Reichart and Anna Korhonen

A Fast, Compact, Accurate Model for Language Identification of Codemixed Text
Yuan Zhang, Jason Riesa, Daniel Gillick, Anton Bakalov, Jason Baldridge and
David Weiss

Personalized Microblog Sentiment Classification via Adversarial Cross-lingual
Multi-task Learning
Weichao Wang, Shi Feng, Wei Gao, Daling Wang and Yifei Zhang

Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks
Zhichun Wang, Qingsong Lv, Xiaohan Lan and Yu Zhang

Cross-lingual Lexical Sememe Prediction
Fanchao Qi, Yankai Lin, Maosong Sun, Hao Zhu, Ruobing Xie and Zhiyuan Liu

Neural Cross-Lingual Named Entity Recognition with Minimal Resources
Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A. Smith and Jaime Carbonell

A Stable and Effective Learning Strategy for Trainable Greedy Decoding
Yun Chen, Victor O.K. Li, Kyunghyun Cho and Samuel Bowman

Addressing Troublesome Words in Neural Machine Translation
Yang Zhao, Jiajun Zhang, Zhongjun He, Chengqing Zong and Hua Wu

Top-down Tree Structured Decoding with Syntactic Connections for Neural Ma-
chine Translation and Parsing
Jetic Gū, Hassan S. Shavarani and Anoop Sarkar
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XL-NBT: A Cross-lingual Neural Belief Tracking Framework
Wenhu Chen, Jianshu Chen, Yu Su, Xin Wang, Dong Yu, Xifeng Yan and William
Yang Wang

Contextual Parameter Generation for Universal Neural Machine Translation
Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig and Tom
Mitchell

Back-Translation Sampling by Targeting Difficult Words in Neural Machine Trans-
lation
Marzieh Fadaee and Christof Monz

Multi-Domain Neural Machine Translation with Word-Level Domain Context Dis-
crimination
Jiali Zeng, Jinsong Su, Huating Wen, Yang Liu, Jun Xie, Yongjing Yin and Jian-
qiang Zhao

A Discriminative Latent-Variable Model for Bilingual Lexicon Induction
Sebastian Ruder, Ryan Cotterell, Yova Kementchedjhieva and Anders Søgaard

Non-Adversarial Unsupervised Word Translation
Yedid Hoshen and Lior Wolf

Semi-Autoregressive Neural Machine Translation
Chunqi Wang, Ji Zhang and Haiqing Chen

Understanding Back-Translation at Scale
Sergey Edunov, Myle Ott, Michael Auli and David Grangier

Bootstrapping Transliteration with Constrained Discovery for Low-Resource Lan-
guages
Shyam Upadhyay, Jordan Kodner and Dan Roth

NORMA: Neighborhood Sensitive Maps for Multilingual Word Embeddings
Ndapa Nakashole

Adaptive Multi-pass Decoder for Neural Machine Translation
Xinwei Geng, Xiaocheng Feng, Bing Qin and Ting Liu

Improving the Transformer Translation Model with Document-Level Context
Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min Zhang
and Yang Liu
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MTNT: A Testbed for Machine Translation of Noisy Text
Paul Michel and Graham Neubig

Demo: CytonMT: an Efficient Neural Machine Translation Open-source Toolkit
Implemented in C++
Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita

Demo: SentencePiece: A simple and language independent subword tokenizer and
detokenizer for Neural Text Processing
Taku Kudo and John Richardson

12:30–13:45 Lunch

13:45–14:45 Short Papers (Orals and Posters) I

Session 2A: Question Answering I (Gold Hall)

13:45–13:57 SimpleQuestions Nearly Solved: A New Upperbound and Baseline Approach
Michael Petrochuk and Luke Zettlemoyer

13:57–14:09 Phrase-Indexed Question Answering: A New Challenge for Scalable Document
Comprehension
Minjoon Seo, Tom Kwiatkowski, Ankur Parikh, Ali Farhadi and Hannaneh Ha-
jishirzi

14:09–14:21 Ranking Paragraphs for Improving Answer Recall in Open-Domain Question An-
swering
Jinhyuk Lee, Seongjun Yun, Hyunjae Kim, Miyoung Ko and Jaewoo Kang

14:21–14:33 Cut to the Chase: A Context Zoom-in Network for Reading Comprehension
Sathish Reddy Indurthi, Seunghak Yu, Seohyun Back and Heriberto Cuayahuitl

14:33–14:45 Adaptive Document Retrieval for Deep Question Answering
Bernhard Kratzwald and Stefan Feuerriegel
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Session 2B: Semantics II (Copper Hall)

13:45–13:57 Why is unsupervised alignment of English embeddings from different algorithms so
hard?
Mareike Hartmann, Yova Kementchedjhieva and Anders Søgaard

13:57–14:09 Quantifying Context Overlap for Training Word Embeddings
Yimeng Zhuang, Jinghui Xie, Yinhe Zheng and Xuan Zhu

14:09–14:21 Neural Latent Relational Analysis to Capture Lexical Semantic Relations in a Vector
Space
Koki Washio and Tsuneaki Kato

14:21–14:33 Generalizing Word Embeddings using Bag of Subwords
Jinman Zhao, Sidharth Mudgal and Yingyu Liang

14:33–14:45 Neural Metaphor Detection in Context
Ge Gao, Eunsol Choi, Yejin Choi and Luke Zettlemoyer

Session 2C: Multilingual Methods I (Silver Hall)

13:45–13:57 Distant Supervision from Disparate Sources for Low-Resource Part-of-Speech Tag-
ging
Barbara Plank and Željko Agić

13:57–14:09 Unsupervised Bilingual Lexicon Induction via Latent Variable Models
Zi-Yi Dou, Zhi-Hao Zhou and Shujian Huang

14:09–14:21 Learning Unsupervised Word Translations Without Adversaries
Tanmoy Mukherjee, Makoto Yamada and Timothy Hospedales

14:21–14:33 Adversarial Training for Multi-task and Multi-lingual Joint Modeling of Utterance
Intent Classification
Ryo Masumura, Yusuke Shinohara, Ryuichiro Higashinaka and Yushi Aono

14:33–14:45 Surprisingly Easy Hard-Attention for Sequence to Sequence Learning
Shiv Shankar, Siddhant Garg and Sunita Sarawagi
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Session 2D: Social Media (Hall 100)

13:45–13:57 Joint Learning for Emotion Classification and Emotion Cause Detection
Ying Chen, Wenjun Hou, Xiyao Cheng and Shoushan Li

13:57–14:09 Exploring Optimism and Pessimism in Twitter Using Deep Learning
Cornelia Caragea, Liviu P. Dinu and Bogdan Dumitru

14:09–14:21 Predicting News Headline Popularity with Syntactic and Semantic Knowledge Us-
ing Multi-Task Learning
Sotiris Lamprinidis, Daniel Hardt and Dirk Hovy

14:21–14:33 Hybrid Neural Attention for Agreement/Disagreement Inference in Online Debates
Di Chen, Jiachen Du, Lidong Bing and Ruifeng Xu

14:33–14:45 Increasing In-Class Similarity by Retrofitting Embeddings with Demographic Infor-
mation
Dirk Hovy and Tommaso Fornaciari

Session 2E: Short Posters I (Grand Hall 2)

A Syntactically Constrained Bidirectional-Asynchronous Approach for Emotional
Conversation Generation
Jingyuan Li and Xiao Sun

Auto-Dialabel: Labeling Dialogue Data with Unsupervised Learning
Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun, Houfeng Wang and Lintao Zhang

Extending Neural Generative Conversational Model using External Knowledge
Sources
Prasanna Parthasarathi and Joelle Pineau

Modeling Temporality of Human Intentions by Domain Adaptation
Xiaolei Huang, Lixing Liu, Kate Carey, Joshua Woolley, Stefan Scherer and Brian
Borsari

An Auto-Encoder Matching Model for Learning Utterance-Level Semantic Depen-
dency in Dialogue Generation
Liangchen Luo, Jingjing Xu, Junyang Lin, Qi Zeng and Xu Sun

lxiv
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A Dataset for Document Grounded Conversations
Kangyan Zhou, Shrimai Prabhumoye and Alan W Black

Out-of-domain Detection based on Generative Adversarial Network
Seonghan Ryu, Sangjun Koo, Hwanjo Yu and Gary Geunbae Lee

Listening Comprehension over Argumentative Content
Shachar Mirkin, Guy Moshkowich, Matan Orbach, Lili Kotlerman, Yoav Kantor,
Tamar Lavee, Michal Jacovi, Yonatan Bilu, Ranit Aharonov and Noam Slonim

Using active learning to expand training data for implicit discourse relation recog-
nition
Yang Xu, Yu Hong, Huibin Ruan, Jianmin Yao, Min Zhang and Guodong Zhou

Learning To Split and Rephrase From Wikipedia Edit History
Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge and Dipanjan Das

BLEU is Not Suitable for the Evaluation of Text Simplification
Elior Sulem, Omri Abend and Ari Rappoport

S2SPMN: A Simple and Effective Framework for Response Generation with Rele-
vant Information
Jiaxin Pei and Chenliang Li

Improving Reinforcement Learning Based Image Captioning with Natural Lan-
guage Prior
Tszhang Guo, Shiyu Chang, Mo Yu and Kun Bai

Training for Diversity in Image Paragraph Captioning
Luke Melas-Kyriazi, Alexander Rush and George Han

A Graph-theoretic Summary Evaluation for ROUGE
Elaheh ShafieiBavani, Mohammad Ebrahimi, Raymond Wong and Fang Chen

Guided Neural Language Generation for Abstractive Summarization using Abstract
Meaning Representation
Hardy Hardy and Andreas Vlachos

Evaluating Multiple System Summary Lengths: A Case Study
Ori Shapira, David Gabay, Hadar Ronen, Judit Bar-Ilan, Yael Amsterdamer, Ani
Nenkova and Ido Dagan
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Neural Latent Extractive Document Summarization
Xingxing Zhang, Mirella Lapata, Furu Wei and Ming Zhou

On the Abstractiveness of Neural Document Summarization
Fangfang Zhang, Jin-ge Yao and Rui Yan

Automatic Essay Scoring Incorporating Rating Schema via Reinforcement Learning
Yucheng Wang, Zhongyu Wei, Yaqian Zhou and Xuanjing Huang

Identifying Well-formed Natural Language Questions
Manaal Faruqui and Dipanjan Das

15:00–15:12 Self-Governing Neural Networks for On-Device Short Text Classification
Sujith Ravi and Zornitsa Kozareva

HFT-CNN: Learning Hierarchical Category Structure for Multi-label Short Text
Categorization
Kazuya Shimura, Jiyi Li and Fumiyo Fukumoto

A Hierarchical Neural Attention-based Text Classifier
Koustuv Sinha, Yue Dong, Jackie Chi Kit Cheung and Derek Ruths

Labeled Anchors and a Scalable, Transparent, and Interactive Classifier
Jeffrey Lund, Stephen Cowley, Wilson Fearn, Emily Hales and Kevin Seppi

Coherence-Aware Neural Topic Modeling
Ran Ding, Ramesh Nallapati and Bing Xiang

Utilizing Character and Word Embeddings for Text Normalization with Sequence-
to-Sequence Models
Daniel Watson, Nasser Zalmout and Nizar Habash

Topic Intrusion for Automatic Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin

Supervised and Unsupervised Methods for Robust Separation of Section Titles and
Prose Text in Web Documents
Abhijith Athreya Mysore Gopinath, Shomir Wilson and Norman Sadeh
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14:45–15:00 Mini-Break

15:00–16:00 Short Papers (Orals and Posters) II

Session 3A: Machine Translation I (Gold Hall)

15:00–15:12 SwitchOut: an Efficient Data Augmentation Algorithm for Neural Machine Trans-
lation
Xinyi Wang, Hieu Pham, Zihang Dai and Graham Neubig

15:12–15:24 Improving Unsupervised Word-by-Word Translation with Language Model and De-
noising Autoencoder
Yunsu Kim, Jiahui Geng and Hermann Ney

15:24–15:36 Decipherment of Substitution Ciphers with Neural Language Models
Nishant Kambhatla, Anahita Mansouri Bigvand and Anoop Sarkar

15:36–15:48 Rapid Adaptation of Neural Machine Translation to New Languages
Graham Neubig and Junjie Hu

15:48–16:00 Compact Personalized Models for Neural Machine Translation
Joern Wuebker, Patrick Simianer and John DeNero

Session 3B: Machine Learning I (Copper Hall)

15:00–15:12 Self-Governing Neural Networks for On-Device Short Text Classification
Sujith Ravi and Zornitsa Kozareva

15:12–15:24 Supervised Domain Enablement Attention for Personalized Domain Classification
Joo-Kyung Kim and Young-Bum Kim

15:24–15:36 A Deep Neural Network Sentence Level Classification Method with Context Infor-
mation
Xingyi Song, Johann Petrak and Angus Roberts
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15:36–15:48 Towards Dynamic Computation Graphs via Sparse Latent Structure
Vlad Niculae, André F. T. Martins and Claire Cardie

15:48–16:00 Convolutional Neural Networks with Recurrent Neural Filters
Yi Yang

Session 3C: Semantic Parsing / Generation (Silver Hall)

15:00–15:12 Exploiting Rich Syntactic Information for Semantic Parsing with Graph-to-
Sequence Model
Kun Xu, Lingfei Wu, Zhiguo Wang, Mo Yu, Liwei Chen and Vadim Sheinin

15:12–15:24 Retrieval-Based Neural Code Generation
Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, An-
thony Tomasic and Graham Neubig

15:24–15:36 SQL-to-Text Generation with Graph-to-Sequence Model
Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng and Vadim Sheinin

15:36–15:48 Generating Syntactic Paraphrases
Emilie Colin and Claire Gardent

15:48–16:00 Neural-Davidsonian Semantic Proto-role Labeling
Rachel Rudinger, Adam Teichert, Ryan Culkin, Sheng Zhang and Benjamin Van
Durme
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Session 3D: Vision / Discourse (Hall 100)

15:00–15:12 Conversational Decision-Making Model for Predicting the King’s Decision in the
Annals of the Joseon Dynasty
JinYeong Bak and Alice Oh

15:12–15:24 Toward Fast and Accurate Neural Discourse Segmentation
Yizhong Wang, Sujian Li and Jingfeng Yang

15:24–15:36 A Dataset for Telling the Stories of Social Media Videos
Spandana Gella, Mike Lewis and Marcus Rohrbach

15:36–15:48 Cascaded Mutual Modulation for Visual Reasoning
Yiqun Yao, Jiaming Xu, Feng Wang and Bo Xu

15:48–16:00 How agents see things: On visual representations in an emergent language game
Diane Bouchacourt and Marco Baroni

Session 3E: Short Posters II (Grand Hall 2)

Attention-Based Capsule Networks with Dynamic Routing for Relation Extraction
Ningyu Zhang, Shumin Deng, Zhanling Sun, Xi Chen, Wei Zhang and Huajun Chen

Put It Back: Entity Typing with Language Model Enhancement
Ji Xin, Hao Zhu, Xu Han, Zhiyuan Liu and Maosong Sun

Event Detection with Neural Networks: A Rigorous Empirical Evaluation
Walker Orr, Prasad Tadepalli and Xiaoli Fern

PubSE: A Hierarchical Model for Publication Extraction from Academic Home-
pages
Yiqing Zhang, Jianzhong Qi, Rui Zhang and Chuandong Yin

A Neural Transition-based Model for Nested Mention Recognition
Bailin Wang, Wei Lu, Yu Wang and Hongxia Jin
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Genre Separation Network with Adversarial Training for Cross-genre Relation Ex-
traction
Ge Shi, Chong Feng, Lifu Huang, Boliang Zhang, Heng Ji, Lejian Liao and Heyan
Huang

Effective Use of Context in Noisy Entity Linking
David Mueller and Greg Durrett

Exploiting Contextual Information via Dynamic Memory Network for Event Detec-
tion
Shaobo Liu, Rui Cheng, Xiaoming Yu and Xueqi Cheng

Do explanations make VQA models more predictable to a human?
Arjun Chandrasekaran, Viraj Prabhu, Deshraj Yadav, Prithvijit Chattopadhyay and
Devi Parikh

Facts That Matter
Marco Ponza, Luciano Del Corro and Gerhard Weikum

Entity Tracking Improves Cloze-style Reading Comprehension
Luong Hoang, Sam Wiseman and Alexander Rush

Adversarial Domain Adaptation for Duplicate Question Detection
Darsh Shah, Tao Lei, Alessandro Moschitti, Salvatore Romeo and Preslav Nakov

Translating a Math Word Problem to a Expression Tree
Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang and Xiaojiang Liu

Semantic Linking in Convolutional Neural Networks for Answer Sentence Selection
Massimo Nicosia and Alessandro Moschitti

A dataset and baselines for sequential open-domain question answering
Ahmed Elgohary, Chen Zhao and Jordan Boyd-Graber

Improving the results of string kernels in sentiment analysis and Arabic dialect iden-
tification by adapting them to your test set
Radu Tudor Ionescu and Andrei M. Butnaru

Parameterized Convolutional Neural Networks for Aspect Level Sentiment Classifi-
cation
Binxuan Huang and Kathleen Carley
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Improving Multi-label Emotion Classification via Sentiment Classification with
Dual Attention Transfer Network
Jianfei Yu, Luis Marujo, Jing Jiang, Pradeep Karuturi and William Brendel

Learning Sentiment Memories for Sentiment Modification without Parallel Data
Yi Zhang, Jingjing Xu, Pengcheng Yang and Xu Sun

Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with
End-to-End Neural Networks
Martin Schmitt, Simon Steinheber, Konrad Schreiber and Benjamin Roth

Representing Social Media Users for Sarcasm Detection
Y. Alex Kolchinski and Christopher Potts

Syntactical Analysis of the Weaknesses of Sentiment Analyzers
Rohil Verma, Samuel Kim and David Walter

Is Nike female? Exploring the role of sound symbolism in predicting brand name
gender
Sridhar Moorthy, Ruth Pogacar, Samin Khan and Yang Xu

Improving Large-Scale Fact-Checking using Decomposable Attention Models and
Lexical Tagging
Nayeon Lee, Chien-Sheng Wu and Pascale Fung

Harnessing Popularity in Social Media for Extractive Summarization of Online
Conversations
Ryuji Kano, Yasuhide Miura, Motoki Taniguchi, Yan-Ying Chen, Francine Chen
and Tomoko Ohkuma

Identifying Locus of Control in Social Media Language
Masoud Rouhizadeh, Kokil Jaidka, Laura Smith, H. Andrew Schwartz, Anneke
Buffone and Lyle Ungar

Somm: Into the Model
Shengli Hu

Fine-Grained Emotion Detection in Health-Related Online Posts
Hamed Khanpour and Cornelia Caragea

The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-
Level Predictions
Salvatore Giorgi, Daniel Preoţiuc-Pietro, Anneke Buffone, Daniel Rieman, Lyle
Ungar and H. Andrew Schwartz
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16:00–16:30 Coffee Break

16:30–18:00 Long Papers and Demos (Orals and Posters) II

Session 4A: Language Models (Gold Hall)

16:30–16:48 Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refine-
ment
Jason Lee, Elman Mansimov and Kyunghyun Cho

16:48–17:06 Large Margin Neural Language Model
Jiaji Huang, Yi Li, Wei Ping and Liang Huang

17:06–17:24 Targeted Syntactic Evaluation of Language Models
Rebecca Marvin and Tal Linzen

17:24–17:42 Rational Recurrences
Hao Peng, Roy Schwartz, Sam Thomson and Noah A. Smith

17:42–18:00 Efficient Contextualized Representation: Language Model Pruning for Sequence
Labeling
Liyuan Liu, Xiang Ren, Jingbo Shang, Xiaotao Gu, Jian Peng and Jiawei Han

Session 4B: Information Extraction (Copper Hall)

16:30–16:48 Automatic Event Salience Identification
Zhengzhong Liu, Chenyan Xiong, Teruko Mitamura and Eduard Hovy

16:48–17:06 Temporal Information Extraction by Predicting Relative Time-lines
Artuur Leeuwenberg and Marie-Francine Moens

17:06–17:24 Jointly Multiple Events Extraction via Attention-based Graph Information Aggre-
gation
Xiao Liu, Zhunchen Luo and Heyan Huang
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17:24–17:42 RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side
Information
Shikhar Vashishth, Rishabh Joshi, Sai Suman Prayaga, Chiranjib Bhattacharyya and
Partha Talukdar

17:42–18:00 Collective Event Detection via a Hierarchical and Bias Tagging Networks with
Gated Multi-level Attention Mechanisms
Yubo Chen, Hang Yang, Kang Liu, Jun Zhao and Yantao Jia

Session 4C: Syntactic Parsing (Silver Hall)

16:30–16:48 Valency-Augmented Dependency Parsing
Tianze Shi and Lillian Lee

16:48–17:06 Unsupervised Learning of Syntactic Structure with Invertible Neural Projections
Junxian He, Graham Neubig and Taylor Berg-Kirkpatrick

17:06–17:24 Dynamic Oracles for Top-Down and In-Order Shift-Reduce Constituent Parsing
Daniel Fernández-González and Carlos Gómez-Rodríguez

17:24–17:42 Constituent Parsing as Sequence Labeling
Carlos Gómez-Rodríguez and David Vilares

17:42–18:00 Synthetic Data Made to Order: The Case of Parsing
Dingquan Wang and Jason Eisner
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Session 4D: Visual QA (Hall 100)

16:30–16:48 Tell-and-Answer: Towards Explainable Visual Question Answering using Attributes
and Captions
Qing Li, Jianlong Fu, Dongfei Yu, Tao Mei and Jiebo Luo

16:48–17:06 Learning a Policy for Opportunistic Active Learning
Aishwarya Padmakumar, Peter Stone and Raymond Mooney

17:06–17:24 RecipeQA: A Challenge Dataset for Multimodal Comprehension of Cooking
Recipes
Semih Yagcioglu, Aykut Erdem, Erkut Erdem and Nazli Ikizler-Cinbis

17:24–17:42 TVQA: Localized, Compositional Video Question Answering
Jie Lei, Licheng Yu, Mohit Bansal and Tamara Berg

17:42–18:00 Localizing Moments in Video with Temporal Language
Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell and
Bryan Russell

Session 4E: Semantics III (Posters and Demos, Grand Hall 2)

Card-660: Cambridge Rare Word Dataset - a Reliable Benchmark for Infrequent
Word Representation Models
Mohammad Taher Pilehvar, Dimitri Kartsaklis, Victor Prokhorov and Nigel Collier

Leveraging Gloss Knowledge in Neural Word Sense Disambiguation by Hierarchi-
cal Co-Attention
Fuli Luo, Tianyu Liu, Zexue He, Qiaolin Xia, Zhifang Sui and Baobao Chang

Weeding out Conventionalized Metaphors: A Corpus of Novel Metaphor Annota-
tions
Erik-Lân Do Dinh, Hannah Wieland and Iryna Gurevych

Streaming word similarity mining on the cheap
Olof Görnerup and Daniel Gillblad

Memory, Show the Way: Memory Based Few Shot Word Representation Learning
Jingyuan Sun, Shaonan Wang and Chengqing Zong
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Disambiguated skip-gram model
Karol Grzegorczyk and Marcin Kurdziel

Picking Apart Story Salads
Su Wang, Eric Holgate, Greg Durrett and Katrin Erk

Dynamic Meta-Embeddings for Improved Sentence Representations
Douwe Kiela, Changhan Wang and Kyunghyun Cho

A Probabilistic Model for Joint Learning of Word Embeddings from Texts and Im-
ages
Melissa Ailem, Bowen Zhang, Aurélien Bellet, Pascal Denis and Fei Sha

Transfer and Multi-Task Learning for Noun–Noun Compound Interpretation
Murhaf Fares, Stephan Oepen and Erik Velldal

Dissecting Contextual Word Embeddings: Architecture and Representation
Matthew Peters, Mark Neumann, Luke Zettlemoyer and Wen-tau Yih

Preposition Sense Disambiguation and Representation
Hongyu Gong, Jiaqi Mu, Suma Bhat and Pramod Viswanath

Auto-Encoding Dictionary Definitions into Consistent Word Embeddings
Tom Bosc and Pascal Vincent

Spot the Odd Man Out: Exploring the Associative Power of Lexical Resources
Gabriel Stanovsky and Mark Hopkins

lxxv
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(TACL) Linear Algebraic Structure of Word Senses, with Applications to Polysemy
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski

Neural Multitask Learning for Simile Recognition
Lizhen Liu, Xiao Hu, Wei Song, Ruiji Fu, Ting Liu and Guoping Hu

Structured Alignment Networks for Matching Sentences
Yang Liu, Matt Gardner and Mirella Lapata

Compare, Compress and Propagate: Enhancing Neural Architectures with Align-
ment Factorization for Natural Language Inference
Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Convolutional Interaction Network for Natural Language Inference
Jingjing Gong, Xipeng Qiu, Xinchi Chen, Dong Liang and Xuanjing Huang

Lessons from Natural Language Inference in the Clinical Domain
Alexey Romanov and Chaitanya Shivade

Question Generation from SQL Queries Improves Neural Semantic Parsing
Daya Guo, Yibo Sun, Duyu Tang, Nan Duan, Jian Yin, Hong Chi, James Cao, Peng
Chen and Ming Zhou

SemRegex: A Semantics-Based Approach for Generating Regular Expressions from
Natural Language Specifications
Zexuan Zhong, Jiaqi Guo, Wei Yang, Jian Peng, Tao Xie, Jian-Guang Lou, Ting Liu
and Dongmei Zhang

Decoupling Structure and Lexicon for Zero-Shot Semantic Parsing
Jonathan Herzig and Jonathan Berant

A Span Selection Model for Semantic Role Labeling
Hiroki Ouchi, Hiroyuki Shindo and Yuji Matsumoto

Mapping Language to Code in Programmatic Context
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung and Luke Zettlemoyer

SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-Domain Text-to-SQL
Task
Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li and
Dragomir Radev
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Cross-lingual Decompositional Semantic Parsing
Sheng Zhang, Xutai Ma, Rachel Rudinger, Kevin Duh and Benjamin Van Durme

Learning to Learn Semantic Parsers from Natural Language Supervision
Igor Labutov, Bishan Yang and Tom Mitchell

DeepCx: A transition-based approach for shallow semantic parsing with complex
constructional triggers
Jesse Dunietz, Jaime Carbonell and Lori Levin

What It Takes to Achieve 100% Condition Accuracy on WikiSQL
Semih Yavuz, Izzeddin Gur, Yu Su and Xifeng Yan

Better Transition-Based AMR Parsing with a Refined Search Space
Zhijiang Guo and Wei Lu

Demo: TRANX: A Transition-based Neural Abstract Syntax Parser for Semantic
Parsing and Code Generation
Xiaolin Wang, Masao Utiyama, and Eiichiro Sumita

Demo: Visual Interrogation of Attention-Based Models for Natural Language In-
ference and Machine Comprehension
Shusen Liu, Tao Li, Zhimin Liu, Vivek Srikumar, Valerio Pascucci, and Peer-Timo
Bremer

Demo: Magnitude: A Fast, Efficient Universal Vector Embedding Utility Package
Ajay Patel, Alexander Sands, Chris Callison-Burch, and Marianna Apidianaki

Demo: Universal Sentence Encoder for English
Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian
Strope, and Ray Kurzweil
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09:00–10:30 Long Papers and Demos (Orals and Posters) III

Session 5A: Semantics IV (Gold Hall)

09:00–09:18 Heuristically Informed Unsupervised Idiom Usage Recognition
Changsheng Liu and Rebecca Hwa

09:18–09:36 Coming to Your Senses: on Controls and Evaluation Sets in Polysemy Research
Haim Dubossarsky, Eitan Grossman and Daphna Weinshall

09:36–09:54 Predicting Semantic Relations using Global Graph Properties
Yuval Pinter and Jacob Eisenstein

09:54–10:12 Learning Scalar Adjective Intensity from Paraphrases
Anne Cocos, Veronica Wharton, Ellie Pavlick, Marianna Apidianaki and Chris
Callison-Burch

10:12–10:30 Pointwise HSIC: A Linear-Time Kernelized Co-occurrence Norm for Sparse Lin-
guistic Expressions
Sho Yokoi, Sosuke Kobayashi, Kenji Fukumizu, Jun Suzuki and Kentaro Inui

Session 5B: Summarization (Copper Hall)

09:00–09:18 Neural Related Work Summarization with a Joint Context-driven Attention Mecha-
nism
Yongzhen Wang, Xiaozhong Liu and Zheng Gao

09:18–09:36 Improving Neural Abstractive Document Summarization with Explicit Information
Selection Modeling
Wei Li, Xinyan Xiao, Yajuan Lyu and Yuanzhuo Wang

09:36–09:54 Don’t Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural
Networks for Extreme Summarization
Shashi Narayan, Shay B. Cohen and Mirella Lapata

09:54–10:12 Improving Abstraction in Text Summarization
Wojciech Kryściński, Romain Paulus, Caiming Xiong and Richard Socher
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10:12–10:30 Content Selection in Deep Learning Models of Summarization
Chris Kedzie, Kathleen McKeown and Hal Daume III

Session 5C: IR / Text Mining (Silver Hall)

09:00–09:18 Improved Semantic-Aware Network Embedding with Fine-Grained Word Alignment
Dinghan Shen, Xinyuan Zhang, Ricardo Henao and Lawrence Carin

09:18–09:36 Learning Context-Sensitive Convolutional Filters for Text Processing
Dinghan Shen, Martin Renqiang Min, Yitong Li and Lawrence Carin

09:36–09:54 Deep Relevance Ranking Using Enhanced Document-Query Interactions
Ryan McDonald, George Brokos and Ion Androutsopoulos

09:54–10:12 Learning Neural Representation for CLIR with Adversarial Framework
Bo Li and Ping Cheng

10:12–10:30 AD3: Attentive Deep Document Dater
Swayambhu Nath Ray, Shib Sankar Dasgupta and Partha Talukdar

Session 5D: Machine Learning II (Hall 100)

09:00–09:18 Gromov-Wasserstein Alignment of Word Embedding Spaces
David Alvarez-Melis and Tommi Jaakkola

09:18–09:36 Deep Probabilistic Logic: A Unifying Framework for Indirect Supervision
Hai Wang and Hoifung Poon

09:36–09:54 Deriving Machine Attention from Human Rationales
Yujia Bao, Shiyu Chang, Mo Yu and Regina Barzilay

09:54–10:12 Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark, Minh-Thang Luong, Christopher D. Manning and Quoc Le
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10:12–10:30 (TACL) Comparing Bayesian Models of Annotation
Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz, and
Massimo Poesio

Session 5E: Information Extraction, Question Answering (Posters and Demos,
Grand Hall 2)

A Probabilistic Annotation Model for Crowdsourcing Coreference
Silviu Paun, Jon Chamberlain, Udo Kruschwitz, Juntao Yu and Massimo Poesio

A Deterministic Algorithm for Bridging Anaphora Resolution
Yufang Hou

A Knowledge Hunting Framework for Common Sense Reasoning
Ali Emami, Noelia De La Cruz, Adam Trischler, Kaheer Suleman and Jackie Chi
Kit Cheung

Mapping Text to Knowledge Graph Entities using Multi-Sense LSTMs
Dimitri Kartsaklis, Mohammad Taher Pilehvar and Nigel Collier

Differentiating Concepts and Instances for Knowledge Graph Embedding
Xin Lv, Lei Hou, Juanzi Li and Zhiyuan Liu

One-Shot Relational Learning for Knowledge Graphs
Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo and William Yang Wang

Regular Expression Guided Entity Mention Mining from Noisy Web Data
Shanshan Zhang, Lihong He, Slobodan Vucetic and Eduard Dragut

HyTE: Hyperplane-based Temporally aware Knowledge Graph Embedding
Shib Sankar Dasgupta, Swayambhu Nath Ray and Partha Talukdar

Neural Adaptation Layers for Cross-domain Named Entity Recognition
Bill Yuchen Lin and Wei Lu

Entity Linking within a Social Media Platform: A Case Study on Yelp
Hongliang Dai, Yangqiu Song, Liwei Qiu and Rijia Liu
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Annotation of a Large Clinical Entity Corpus
Pinal Patel, Disha Davey, Vishal Panchal and Parth Pathak

Visual Supervision in Bootstrapped Information Extraction
Matthew Berger, Ajay Nagesh, Joshua Levine, Mihai Surdeanu and Helen Zhang

Learning Named Entity Tagger using Domain-Specific Dictionary
Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren, Teng Ren and Jiawei Han

Zero-Shot Open Entity Typing as Type-Compatible Grounding
Ben Zhou, Daniel Khashabi, Chen-Tse Tsai and Dan Roth

Attention-Guided Answer Distillation for Machine Reading Comprehension
Minghao Hu, Yuxing Peng, Furu Wei, Zhen Huang, Dongsheng Li, Nan Yang and
Ming Zhou

Interpretation of Natural Language Rules in Conversational Machine Reading
Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer Singh, Tim Rocktäschel, Mike
Sheldon, Guillaume Bouchard and Sebastian Riedel

A State-transition Framework to Answer Complex Questions over Knowledge Base
Sen Hu, Lei Zou and Xinbo Zhang

A Multi-answer Multi-task Framework for Real-world Machine Reading Compre-
hension
Jiahua Liu, Wan Wei, Maosong Sun, Hao Chen, Yantao Du and Dekang Lin

Logician and Orator: Learning from the Duality between Language and Knowledge
in Open Domain
Mingming Sun, Xu Li and Ping Li

MemoReader: Large-Scale Reading Comprehension through Neural Memory Con-
troller
Seohyun Back, Seunghak Yu, Sathish Reddy Indurthi, Jihie Kim and Jaegul Choo

Multi-Granular Sequence Encoding via Dilated Compositional Units for Reading
Comprehension
Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Neural Compositional Denotational Semantics for Question Answering
Nitish Gupta and Mike Lewis

lxxxi



Saturday, November 3, 2018 (continued)

Cross-Pair Text Representations for Answer Sentence Selection
Kateryna Tymoshenko and Alessandro Moschitti

QuAC: Question Answering in Context
Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy
Liang and Luke Zettlemoyer

Knowledge Base Question Answering via Encoding of Complex Query Graphs
Kangqi Luo, Fengli Lin, Xusheng Luo and Kenny Zhu

Neural Relation Extraction via Inner-Sentence Noise Reduction and Transfer Learn-
ing
Tianyi Liu, Xinsong Zhang, Wanhao Zhou and Weijia Jia

Graph Convolution over Pruned Dependency Trees Improves Relation Extraction
Yuhao Zhang, Peng Qi and Christopher D. Manning

Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction
Jinhua Du, Jingguang Han, Andy Way and Dadong Wan

N-ary Relation Extraction using Graph-State LSTM
Linfeng Song, Yue Zhang, Zhiguo Wang and Daniel Gildea

Hierarchical Relation Extraction with Coarse-to-Fine Grained Attention
Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun and Peng Li

Label-Free Distant Supervision for Relation Extraction via Knowledge Graph Em-
bedding
Guanying Wang, Wen Zhang, Ruoxu Wang, Yalin Zhou, Xi Chen, Wei Zhang, Hai
Zhu and Huajun Chen

Extracting Entities and Relations with Joint Minimum Risk Training
Changzhi Sun, Yuanbin Wu, Man Lan, Shiliang Sun, Wenting Wang, Kuang-Chih
Lee and Kewen Wu

Large-scale Exploration of Neural Relation Classification Architectures
Hoang-Quynh Le, Duy-Cat Can, Sinh T. Vu, Thanh Hai Dang, Mohammad Taher
Pilehvar and Nigel Collier

Possessors Change Over Time: A Case Study with Artworks
Dhivya Chinnappa and Eduardo Blanco
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Demo: CogCompTime: A Tool for Understanding Time in Natural Language
Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and Dan Roth

Demo: DERE: A Task and Domain-Independent Slot Filling Framework for Declar-
ative Relation Extraction
Heike Adel, Laura Ana Maria Bostan, Sean Papay, Sebastian Padó, and Roman
Klinger

Demo: Integrating Knowledge-Supported Search into the INCEpTION Annotation
Platform
Beto Boullosa, Richard Eckart de Castilho, Naveen Kumar, Jan-Christoph Klie, and
Iryna Gurevych

Demo: OpenKE: An Open Toolkit for Knowledge Embedding
Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi
Li

Demo: An Interactive Web-Interface for Visualizing the Inner Workings of the
Question Answering LSTM
Ekaterina Loginova and Günter Neumann

Demo: An Interface for Annotating Science Questions
Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Ra-
jarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue, Pavan Kapanipathi,
Nicholas Mattei, Ryan Musa, Kartik Talamadupula, and Michael Witbrock

Demo: Interactive Instance-based Evaluation of Knowledge Base Question Answer-
ing
Daniil Sorokin and Iryna Gurevych

10:30–11:00 Coffee Break

11:00–12:30 Long Papers and Demos (Orals and Posters) IV
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Session 6A: Dialogue I (Gold Hall)

11:00–11:18 Using Lexical Alignment and Referring Ability to Address Data Sparsity in Situated
Dialog Reference Resolution
Todd Shore and Gabriel Skantze

11:18–11:36 Subgoal Discovery for Hierarchical Dialogue Policy Learning
Da Tang, Xiujun Li, Jianfeng Gao, Chong Wang, Lihong Li and Tony Jebara

11:36–11:54 Supervised Clustering of Questions into Intents for Dialog System Applications
Iryna Haponchyk, Antonio Uva, Seunghak Yu, Olga Uryupina and Alessandro Mos-
chitti

11:54–12:12 Towards Exploiting Background Knowledge for Building Conversation Systems
Nikita Moghe, Siddhartha Arora, Suman Banerjee and Mitesh M. Khapra

12:12–12:30 Decoupling Strategy and Generation in Negotiation Dialogues
He He, Derek Chen, Anusha Balakrishnan and Percy Liang

Session 6B: Question Answering II (Copper Hall)

11:00–11:18 Large-scale Cloze Test Dataset Created by Teachers
Qizhe Xie, Guokun Lai, Zihang Dai and Eduard Hovy

11:18–11:36 emrQA: A Large Corpus for Question Answering on Electronic Medical Records
Anusri Pampari, Preethi Raghavan, Jennifer Liang and Jian Peng

11:36–11:54 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering
Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov and Christopher D. Manning

11:54–12:12 Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question
Answering
Todor Mihaylov, Peter Clark, Tushar Khot and Ashish Sabharwal

12:12–12:30 Evaluating Theory of Mind in Question Answering
Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison Gopnik and Tom Griffiths
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Session 6C: Semantics V (Silver Hall)

11:00–11:18 A Unified Syntax-aware Framework for Semantic Role Labeling
Zuchao Li, Shexia He, Jiaxun Cai, Zhuosheng Zhang, Hai Zhao, Gongshen Liu,
Linlin Li and Luo Si

11:18–11:36 Semantics as a Foreign Language
Gabriel Stanovsky and Ido Dagan

11:36–11:54 An AMR Aligner Tuned by Transition-based Parser
Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin and Ting Liu

11:54–12:12 Dependency-based Hybrid Trees for Semantic Parsing
Zhanming Jie and Wei Lu

12:12–12:30 Policy Shaping and Generalized Update Equations for Semantic Parsing from De-
notations
Dipendra Misra, Ming-Wei Chang, Xiaodong He and Wen-tau Yih

Session 6D: Multilingual Methods II (Hall 100)

11:00–11:18 Sentence Compression for Arbitrary Languages via Multilingual Pivoting
Jonathan Mallinson, Rico Sennrich and Mirella Lapata

11:18–11:36 Unsupervised Cross-lingual Transfer of Word Embedding Spaces
Ruochen Xu, Yiming Yang, Naoki Otani and Yuexin Wu

11:36–11:54 XNLI: Evaluating Cross-lingual Sentence Representations
Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bow-
man, Holger Schwenk and Veselin Stoyanov

11:54–12:12 Joint Multilingual Supervision for Cross-lingual Entity Linking
Shyam Upadhyay, Nitish Gupta and Dan Roth

12:12–12:30 Fine-grained Coordinated Cross-lingual Text Stream Alignment for Endless Lan-
guage Knowledge Acquisition
Tao Ge, Qing Dou, Heng Ji, Lei Cui, Baobao Chang, Zhifang Sui, Furu Wei and
Ming Zhou
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Session 6E: Syntax, Morphology, Vision and Language I (Posters and Demos,
Grand Hall 2)

WECA:A WordNet-Encoded Collocation-Attention Network for Homographic Pun
Recognition
Yufeng Diao, Hongfei Lin, Di Wu, Liang Yang, Kan Xu, Zhihao Yang, Jian Wang,
Shaowu Zhang, Bo Xu and Dongyu Zhang

A Hybrid Approach to Automatic Corpus Generation for Chinese Spelling Check
Dingmin Wang, Yan Song, Jing Li, Jialong Han and Haisong Zhang

Neural Quality Estimation of Grammatical Error Correction
Shamil Chollampatt and Hwee Tou Ng

Transferring from Formal Newswire Domain with Hypernet for Twitter POS Tag-
ging
Tao Gui, Qi Zhang, Jingjing Gong, Minlong Peng, di liang, Keyu Ding and Xuan-
jing Huang

Free as in Free Word Order: An Energy Based Model for Word Segmentation and
Morphological Tagging in Sanskrit
Amrith Krishna, Bishal Santra, Sasi Prasanth Bandaru, Gaurav Sahu, Vishnu Dutt
Sharma, Pavankumar Satuluri and Pawan Goyal

A Challenge Set and Methods for Noun-Verb Ambiguity
Ali Elkahky, Kellie Webster, Daniel Andor and Emily Pitler

What do character-level models learn about morphology? The case of dependency
parsing
Clara Vania, Andreas Grivas and Adam Lopez

Learning Better Internal Structure of Words for Sequence Labeling
Yingwei Xin, Ethan Hart, Vibhuti Mahajan and Jean David Ruvini

ICON: Interactive Conversational Memory Network for Multimodal Emotion De-
tection
Devamanyu Hazarika, Soujanya Poria, Rada Mihalcea, Erik Cambria and Roger
Zimmermann

Discriminative Learning of Open-Vocabulary Object Retrieval and Localization by
Negative Phrase Augmentation
Ryota Hinami and Shin’ichi Satoh

Grounding Semantic Roles in Images
Carina Silberer and Manfred Pinkal
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Commonsense Justification for Action Explanation
Shaohua Yang, Qiaozi Gao, Sari Sadiya and Joyce Chai

Learning Personas from Dialogue with Attentive Memory Networks
Eric Chu, Prashanth Vijayaraghavan and Deb Roy

Grounding language acquisition by training semantic parsers using captioned
videos
Candace Ross, Andrei Barbu, Yevgeni Berzak, Battushig Myanganbayar and Boris
Katz

Translating Navigation Instructions in Natural Language to a High-Level Plan for
Behavioral Robot Navigation
Xiaoxue Zang, Ashwini Pokle, Marynel Vázquez, Kevin Chen, Juan Carlos Niebles,
Alvaro Soto and Silvio Savarese

Mapping Instructions to Actions in 3D Environments with Visual Goal Prediction
Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin
and Yoav Artzi

Deconvolutional Time Series Regression: A Technique for Modeling Temporally
Diffuse Effects
Cory Shain and William Schuler

Is this Sentence Difficult? Do you Agree?
Dominique Brunato, Lorenzo De Mattei, Felice Dell’Orletta, Benedetta Iavarone
and Giulia Venturi

Neural Transition Based Parsing of Web Queries: An Entity Based Approach
Rivka Malca and Roi Reichart

An Investigation of the Interactions Between Pre-Trained Word Embeddings, Char-
acter Models and POS Tags in Dependency Parsing
Aaron Smith, Miryam de Lhoneux, Sara Stymne and Joakim Nivre

Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG
induction
Lifeng Jin, Finale Doshi-Velez, Timothy Miller, William Schuler and Lane
Schwartz
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(TACL) In-Order Transition-based Constituent Parsing
Jiangming Liu and Yue Zhang

(TACL) Surface Statistics of an Unknown Language Indicate How to Parse It
Dingquan Wang and Jason Eisner

Incremental Computation of Infix Probabilities for Probabilistic Finite Automata
Marco Cognetta, Yo-Sub Han and Soon Chan Kwon

Syntax Encoding with Application in Authorship Attribution
Richong Zhang, Zhiyuan Hu, Hongyu Guo and Yongyi Mao

Sanskrit Word Segmentation Using Character-level Recurrent and Convolutional
Neural Networks
Oliver Hellwig and Sebastian Nehrdich

(TACL) Universal Word Segmentation: Implementation and Interpretation
Yan Shao, Christian Hardmeier, and Joakim Nivre

Demo: MorAz: an Open-source Morphological Analyzer for Azerbaijani Turkish
Berke Özenç, Razieh Ehsani, and Ercan Solak

Demo: Juman++: A Morphological Analysis Toolkit for Scriptio Continua
Arseny Tolmachev, Daisuke Kawahara, and Sadao Kurohashi

12:30–13:45 Lunch

13:45–14:45 Short Papers (Orals and Posters) III
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Session 7A: Dialogue II (Gold Hall)

13:45–13:57 Session-level Language Modeling for Conversational Speech
Wayne Xiong, Lingfeng Wu, Jun Zhang and Andreas Stolcke

13:57–14:09 Towards Less Generic Responses in Neural Conversation Models: A Statistical Re-
weighting Method
Yahui Liu, Wei Bi, Jun Gao, Xiaojiang Liu, Jian Yao and Shuming Shi

14:09–14:21 Training Millions of Personalized Dialogue Agents
Pierre-Emmanuel Mazare, Samuel Humeau, Martin Raison and Antoine Bordes

14:21–14:33 Towards Universal Dialogue State Tracking
Liliang Ren, Kaige Xie, Lu Chen and Kai Yu

14:33–14:45 Semantic Parsing for Task Oriented Dialog using Hierarchical Representations
Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar and Mike Lewis

Session 7B: Social Applications II (Copper Hall)

13:45–13:57 The glass ceiling in NLP
Natalie Schluter

13:57–14:09 Reducing Gender Bias in Abusive Language Detection
Ji Ho Park, Jamin Shin and Pascale Fung

14:09–14:21 SafeCity: Understanding Diverse Forms of Sexual Harassment Personal Stories
Sweta Karlekar and Mohit Bansal

14:21–14:33 Learning multiview embeddings for assessing dementia
Chloé Pou-Prom and Frank Rudzicz

14:33–14:45 WikiConv: A Corpus of the Complete Conversational History of a Large Online
Collaborative Community
Yiqing Hua, Cristian Danescu-Niculescu-Mizil, Dario Taraborelli, Nithum Thain,
Jeffery Sorensen and Lucas Dixon
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Session 7C: NER (Silver Hall)

13:45–13:57 Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recog-
nition from Disjoint Label Sets
Nathan Greenberg, Trapit Bansal, Patrick Verga and Andrew McCallum

13:57–14:09 Adversarial training for multi-context joint entity and relation extraction
Giannis Bekoulis, Johannes Deleu, Thomas Demeester and Chris Develder

14:09–14:21 Structured Multi-Label Biomedical Text Tagging via Attentive Neural Tree Decoding
Gaurav Singh, James Thomas, Iain Marshall, John Shawe-Taylor and Byron C. Wal-
lace

14:21–14:33 Deep Exhaustive Model for Nested Named Entity Recognition
Mohammad Golam Sohrab and Makoto Miwa

14:33–14:45 Evaluating the Utility of Hand-crafted Features in Sequence Labelling
Minghao Wu, Fei Liu and Trevor Cohn

Session 7D: Morphology / Parsing (Hall 100)

13:45–13:57 Improved Dependency Parsing using Implicit Word Connections Learned from Un-
labeled Data
Wenhui Wang, Baobao Chang and Mairgup Mansur

13:57–14:09 A Framework for Understanding the Role of Morphology in Universal Dependency
Parsing
Mathieu Dehouck and Pascal Denis

14:09–14:21 The Lazy Encoder: A Fine-Grained Analysis of the Role of Morphology in Neural
Machine Translation
Arianna Bisazza and Clara Tump

14:21–14:33 Imitation Learning for Neural Morphological String Transduction
Peter Makarov and Simon Clematide

14:33–14:45 An Encoder-Decoder Approach to the Paradigm Cell Filling Problem
Miikka Silfverberg and Mans Hulden

xc



Saturday, November 3, 2018 (continued)

Session 7E: Short Posters III (Grand Hall 2)

Generating Natural Language Adversarial Examples
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava
and Kai-Wei Chang

Multi-Head Attention with Disagreement Regularization
Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu and Tong Zhang

Deep Bayesian Active Learning for Natural Language Processing: Results of a
Large-Scale Empirical Study
Aditya Siddhant and Zachary C. Lipton

Bayesian Compression for Natural Language Processing
Nadezhda Chirkova, Ekaterina Lobacheva and Dmitry Vetrov

Multimodal neural pronunciation modeling for spoken languages with logographic
origin
Minh Nguyen, Gia H Ngo and Nancy Chen

Chinese Pinyin Aided IME, Input What You Have Not Keystroked Yet
Yafang Huang and Hai Zhao

Estimating Marginal Probabilities of n-grams for Recurrent Neural Language Mod-
els
Thanapon Noraset, Doug Downey and Lidong Bing

How to represent a word and predict it, too: Improving tied architectures for lan-
guage modelling
Kristina Gulordava, Laura Aina and Gemma Boleda

The Importance of Generation Order in Language Modeling
Nicolas Ford, Daniel Duckworth, Mohammad Norouzi and George Dahl

Document-Level Neural Machine Translation with Hierarchical Attention Networks
Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas and James Henderson

Three Strategies to Improve One-to-Many Multilingual Translation
Yining Wang, Jiajun Zhang, Feifei Zhai, Jingfang Xu and Chengqing Zong
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Multi-Source Syntactic Neural Machine Translation
Anna Currey and Kenneth Heafield

Fixing Translation Divergences in Parallel Corpora for Neural MT
Minh Quang Pham, Josep Crego, Jean Senellart and François Yvon

Adversarial Evaluation of Multimodal Machine Translation
Desmond Elliott

Loss in Translation: Learning Bilingual Word Mapping with a Retrieval Criterion
Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou and Edouard Grave

Learning When to Concentrate or Divert Attention: Self-Adaptive Attention Tem-
perature for Neural Machine Translation
Junyang Lin, Xu Sun, Xuancheng Ren, Muyu Li and Qi Su

Accelerating Asynchronous Stochastic Gradient Descent for Neural Machine Trans-
lation
Nikolay Bogoychev, Kenneth Heafield, Alham Fikri Aji and Marcin Junczys-
Dowmunt

Learning to Jointly Translate and Predict Dropped Pronouns with a Shared Recon-
struction Mechanism
Longyue Wang, Zhaopeng Tu, Andy Way and Qun Liu

Getting Gender Right in Neural Machine Translation
Eva Vanmassenhove, Christian Hardmeier and Andy Way

Towards Two-Dimensional Sequence to Sequence Model in Neural Machine Trans-
lation
Parnia Bahar, Christopher Brix and Hermann Ney

End-to-End Non-Autoregressive Neural Machine Translation with Connectionist
Temporal Classification
Jindřich Libovický and Jindřich Helcl

Prediction Improves Simultaneous Neural Machine Translation
Ashkan Alinejad, Maryam Siahbani and Anoop Sarkar

Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna, Mia Chen, Orhan Firat, Yuan Cao and Yonghui Wu
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Context and Copying in Neural Machine Translation
Rebecca Knowles and Philipp Koehn

Encoding Gated Translation Memory into Neural Machine Translation
Qian Cao and Deyi Xiong

Automatic Post-Editing of Machine Translation: A Neural Programmer-Interpreter
Approach
Thuy-Trang Vu and Gholamreza Haffari

Breaking the Beam Search Curse: A Study of (Re-)Scoring Methods and Stopping
Criteria for Neural Machine Translation
Yilin Yang, Liang Huang and Mingbo Ma

Multi-Multi-View Learning: Multilingual and Multi-Representation Entity Typing
Yadollah Yaghoobzadeh and Hinrich Schütze

Word Embeddings for Code-Mixed Language Processing
Adithya Pratapa, Monojit Choudhury and Sunayana Sitaram

On the Strength of Character Language Models for Multilingual Named Entity
Recognition
Xiaodong Yu, Stephen Mayhew, Mark Sammons and Dan Roth

Code-switched Language Models Using Dual RNNs and Same-Source Pretraining
Saurabh Garg, Tanmay Parekh and Preethi Jyothi

Part-of-Speech Tagging for Code-Switched, Transliterated Texts without Explicit
Language Identification
Kelsey Ball and Dan Garrette

14:45–15:00 Mini-Break

15:00–16:00 Keynote II: Gideon Mann "Understanding the News that Moves Markets" (Gold
Hall)

16:00–16:30 Coffee Break
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16:30–18:00 Long Papers and Demos (Orals and Posters) V

Session 8A: Text Categorization (Gold Hall)

16:30–16:48 Zero-shot User Intent Detection via Capsule Neural Networks
Congying Xia, Chenwei Zhang, Xiaohui Yan, Yi Chang and Philip Yu

16:48–17:06 Hierarchical Neural Networks for Sequential Sentence Classification in Medical
Scientific Abstracts
Di Jin and Peter Szolovits

17:06–17:24 Investigating Capsule Networks with Dynamic Routing for Text Classification
Min Yang, Wei Zhao, Jianbo Ye, Zeyang Lei, Zhou Zhao and Soufei Zhang

17:24–17:42 Topic Memory Networks for Short Text Classification
Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao, Michael R. Lyu and Irwin King

17:42–18:00 Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces
Anthony Rios and Ramakanth Kavuluru

Session 8B: Generation (Copper Hall)

16:30–16:48 Automatic Poetry Generation with Mutual Reinforcement Learning
Xiaoyuan Yi, Maosong Sun, Ruoyu Li and Wenhao Li

16:48–17:06 Variational Autoregressive Decoder for Neural Response Generation
Jiachen Du, Wenjie Li, Yulan He, Ruifeng Xu, Lidong Bing and Xuan Wang

17:06–17:24 Integrating Transformer and Paraphrase Rules for Sentence Simplification
Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono and Bambang Parmanto

17:24–17:42 Learning Neural Templates for Text Generation
Sam Wiseman, Stuart Shieber and Alexander Rush
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17:42–18:00 Multi-Reference Training with Pseudo-References for Neural Translation and Text
Generation
Renjie Zheng, Mingbo Ma and Liang Huang

Session 8C: Knowledge Graphs (Silver Hall)

16:30–16:48 Knowledge Graph Embedding with Hierarchical Relation Structure
Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin and Qing He

16:48–17:06 Embedding Multimodal Relational Data for Knowledge Base Completion
Pouya Pezeshkpour, Liyan Chen and Sameer Singh

17:06–17:24 Multi-Task Identification of Entities, Relations, and Coreference for Scientific
Knowledge Graph Construction
Yi Luan, Luheng He, Mari Ostendorf and Hannaneh Hajishirzi

17:24–17:42 Playing 20 Question Game with Policy-Based Reinforcement Learning
Huang Hu, Xianchao Wu, Bingfeng Luo, Chongyang Tao, Can Xu, wei wu and
Zhan Chen

17:42–18:00 Multi-Hop Knowledge Graph Reasoning with Reward Shaping
Xi Victoria Lin, Richard Socher and Caiming Xiong

Session 8D: Morphology / Phonology (Hall 100)

16:30–16:48 Neural Transductive Learning and Beyond: Morphological Generation in the
Minimal-Resource Setting
Katharina Kann and Hinrich Schütze

16:48–17:06 Implicational Universals in Stochastic Constraint-Based Phonology
Giorgio Magri

17:06–17:24 Explaining Character-Aware Neural Networks for Word-Level Prediction: Do They
Discover Linguistic Rules?
Fréderic Godin, Kris Demuynck, Joni Dambre, Wesley De Neve and Thomas De-
meester

17:24–17:42 Adapting Word Embeddings to New Languages with Morphological and Phonolog-
ical Subword Representations
Aditi Chaudhary, Chunting Zhou, Lori Levin, Graham Neubig, David R. Mortensen
and Jaime Carbonell

xcv
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17:42–18:00 (TACL) Recurrent Neural Networks in Linguistic Theory: Revisiting Pinker and
Prince (1988) and the Past Tense Debate
Christo Kirov and Ryan Cotterell

Session 8E: Sentiment, Social Applications, Multimodal Semantics, Discourse
(Posters and Demos, Grand Hall 2)

A Computational Exploration of Exaggeration
Enrica Troiano, Carlo Strapparava, Gözde Özbal and Serra Sinem Tekiroglu

Building Context-aware Clause Representations for Situation Entity Type Classifi-
cation
Zeyu Dai and Ruihong Huang

Hierarchical Dirichlet Gaussian Marked Hawkes Process for Narrative Reconstruc-
tion in Continuous Time Domain
Yeon Seonwoo, Alice Oh and Sungjoon Park

Investigating the Role of Argumentation in the Rhetorical Analysis of Scientific Pub-
lications with Neural Multi-Task Learning Models
Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto and Kai Eckert

Neural Ranking Models for Temporal Dependency Structure Parsing
Yuchen Zhang and Nianwen Xue

Causal Explanation Analysis on Social Media
Youngseo Son, Nipun Bayas and H. Andrew Schwartz

LRMM: Learning to Recommend with Missing Modalities
Cheng Wang, Mathias Niepert and Hui Li

Content Explorer: Recommending Novel Entities for a Document Writer
Michal Lukasik and Richard Zens

A Genre-Aware Attention Model to Improve the Likability Prediction of Books
Suraj Maharjan, Manuel Montes, Fabio A. González and Thamar Solorio

Thread Popularity Prediction and Tracking with a Permutation-invariant Model
Hou Pong Chan and Irwin King

xcvi



Saturday, November 3, 2018 (continued)

IARM: Inter-Aspect Relation Modeling with Memory Networks in Aspect-Based
Sentiment Analysis
Navonil Majumder, Soujanya Poria, Alexander Gelbukh, Md Shad Akhtar, Erik
Cambria and Asif Ekbal

Limbic: Author-Based Sentiment Aspect Modeling Regularized with Word Embed-
dings and Discourse Relations
Zhe Zhang and Munindar Singh

An Interpretable Neural Network with Topical Information for Relevant Emotion
Ranking
Yang Yang, Deyu ZHOU and Yulan He

Multi-grained Attention Network for Aspect-Level Sentiment Classification
Feifan Fan, Yansong Feng and Dongyan Zhao

Attentive Gated Lexicon Reader with Contrastive Contextual Co-Attention for Sen-
timent Classification
Yi Tay, Anh Tuan Luu, Siu Cheung Hui and Jian Su

Contextual Inter-modal Attention for Multi-modal Sentiment Analysis
Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif
Ekbal and Pushpak Bhattacharyya

Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification
Ruidan He, Wee Sun Lee, Hwee Tou Ng and Daniel Dahlmeier

ExtRA: Extracting Prominent Review Aspects from Customer Feedback
Zhiyi Luo, Shanshan Huang, Frank F. Xu, Bill Yuchen Lin, Hanyuan Shi and Kenny
Zhu

Cross-Lingual Cross-Platform Rumor Verification Pivoting on Multimedia Content
Weiming Wen, Songwen Su and Zhou Yu

Extractive Adversarial Networks: High-Recall Explanations for Identifying Per-
sonal Attacks in Social Media Posts
Samuel Carton, Qiaozhu Mei and Paul Resnick

Automatic Detection of Vague Words and Sentences in Privacy Policies
Logan Lebanoff and Fei Liu

Multi-view Models for Political Ideology Detection of News Articles
Vivek Kulkarni, Junting Ye, Steve Skiena and William Yang Wang

xcvii



Saturday, November 3, 2018 (continued)

Predicting Factuality of Reporting and Bias of News Media Sources
Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov, James Glass and Preslav
Nakov

Legal Judgment Prediction via Topological Learning
Haoxi Zhong, Guo Zhipeng, Cunchao Tu, Chaojun Xiao, Zhiyuan Liu and Maosong
Sun

Hierarchical CVAE for Fine-Grained Hate Speech Classification
Jing Qian, Mai ElSherief, Elizabeth Belding and William Yang Wang

Residualized Factor Adaptation for Community Social Media Prediction Tasks
Mohammadzaman Zamani, H. Andrew Schwartz, Veronica Lynn, Salvatore Giorgi
and Niranjan Balasubramanian

Framing and Agenda-setting in Russian News: a Computational Analysis of Intri-
cate Political Strategies
Anjalie Field, Doron Kliger, Shuly Wintner, Jennifer Pan, Dan Jurafsky and Yulia
Tsvetkov

Identifying the sentiment styles of YouTube’s vloggers
Bennett Kleinberg, Maximilian Mozes and Isabelle van der Vegt

Native Language Identification with User Generated Content
Gili Goldin, Ella Rabinovich and Shuly Wintner

Demo: Visualization of the Topic Space of Argument Search Results in args.me
Yamen Ajjour, Henning Wachsmuth, Dora Kiesel, Patrick Riehmann, Fan Fan, Giu-
liano Castiglia, Rosemary Adejoh, Bernd Fröhlich, and Benno Stein

xcviii



Saturday, November 3, 2018 (continued)

Demo: A Multilingual Information Extraction Pipeline for Investigative Journalism
Gregor Wiedemann, Seid Muhie Yimam, and Chris Biemann

Demo: When science journalism meets artificial intelligence : An interactive
demonstration
Raghuram Vadapalli, Bakhtiyar Syed, Nishant Prabhu, Balaji Vasan Srinivasan, and
Vasudeva Varma

19:00–22:00 Social Event (Royal Museums of Fine Arts of Belgium)

Sunday, November 4, 2018

09:00–10:30 Long Papers and Demos (Orals and Posters) VI

Session 9A: Machine Translation II (Gold Hall)

09:00–09:18 Beyond Error Propagation in Neural Machine Translation: Characteristics of Lan-
guage Also Matter
Lijun Wu, Xu Tan, Di He, Fei Tian, Tao Qin, Jianhuang Lai and Tie-Yan Liu

09:18–09:36 A Study of Reinforcement Learning for Neural Machine Translation
Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai and Tie-Yan Liu

09:36–09:54 Meta-Learning for Low-Resource Neural Machine Translation
Jiatao Gu, Yong Wang, Yun Chen, Victor O. K. Li and Kyunghyun Cho

09:54–10:12 Unsupervised Statistical Machine Translation
Mikel Artetxe, Gorka Labaka and Eneko Agirre

10:12–10:30 A Visual Attention Grounding Neural Model for Multimodal Machine Translation
Mingyang Zhou, Runxiang Cheng, Yong Jae Lee and Zhou Yu

xcix



Sunday, November 4, 2018 (continued)

Session 9B: Sentiment I (Copper Hall)

09:00–09:18 Sentiment Classification towards Question-Answering with Hierarchical Matching
Network
Chenlin Shen, Changlong Sun, Jingjing Wang, Yangyang Kang, Shoushan Li, Xi-
aozhong Liu, Luo Si, Min Zhang and Guodong Zhou

09:18–09:36 Cross-topic Argument Mining from Heterogeneous Sources
Christian Stab, Tristan Miller, Benjamin Schiller, Pranav Rai and Iryna Gurevych

09:36–09:54 Summarizing Opinions: Aspect Extraction Meets Sentiment Prediction and They
Are Both Weakly Supervised
Stefanos Angelidis and Mirella Lapata

09:54–10:12 CARER: Contextualized Affect Representations for Emotion Recognition
Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu and Yi-Shin Chen

10:12–10:30 (TACL) Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Clas-
sification
Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger

Session 9C: Machine Learning III (Silver Hall)

09:00–09:18 Noise Contrastive Estimation and Negative Sampling for Conditional Models: Con-
sistency and Statistical Efficiency
Zhuang Ma and Michael Collins

09:18–09:36 CaLcs: Continuously Approximating Longest Common Subsequence for Sequence
Level Optimization
Semih Yavuz, Chung-Cheng Chiu, Patrick Nguyen and Yonghui Wu

09:36–09:54 Pathologies of Neural Models Make Interpretations Difficult
Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez and Jordan
Boyd-Graber

09:54–10:12 Phrase-level Self-Attention Networks for Universal Sentence Encoding
Wei Wu, Houfeng Wang, Tianyu Liu and Shuming Ma

10:12–10:30 BanditSum: Extractive Summarization as a Contextual Bandit
Yue Dong, Yikang Shen, Eric Crawford, Herke van Hoof and Jackie Chi Kit Cheung

c



Sunday, November 4, 2018 (continued)

Session 9D: Semantics VI (Hall 100)

09:00–09:18 A Word-Complexity Lexicon and A Neural Readability Ranking Model for Lexical
Simplification
Mounica Maddela and Wei Xu

09:18–09:36 Learning Latent Semantic Annotations for Grounding Natural Language to Struc-
tured Data
Guanghui Qin, Jin-Ge Yao, Xuening Wang, Jinpeng Wang and Chin-Yew Lin

09:36–09:54 Syntactic Scaffolds for Semantic Structures
Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer
and Noah A. Smith

09:54–10:12 Hierarchical Quantized Representations for Script Generation
Noah Weber, Leena Shekhar, Niranjan Balasubramanian and Nate Chambers

10:12–10:30 Semantic Role Labeling for Learner Chinese: the Importance of Syntactic Parsing
and L2-L1 Parallel Data
Zi Lin, Yuguang Duan, Yuanyuan Zhao, Weiwei Sun and Xiaojun Wan

Session 9E: Generation, Dialog, Summarization; Vision and Language II
(Posters and Demos, Grand Hall 2)

A Teacher-Student Framework for Maintainable Dialog Manager
Weikang Wang, Jiajun Zhang, Han Zhang, Mei-Yuh Hwang, Chengqing Zong and
Zhifei Li

Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning
Shang-Yu Su, Xiujun Li, Jianfeng Gao, Jingjing Liu and Yun-Nung Chen

A Self-Attentive Model with Gate Mechanism for Spoken Language Understanding
Changliang Li, Liang Li and Ji Qi

Learning End-to-End Goal-Oriented Dialog with Multiple Answers
Janarthanan Rajendran, Jatin Ganhotra, Satinder Singh and Lazaros Polymenakos

AirDialogue: An Environment for Goal-Oriented Dialogue Research
Wei Wei, Quoc Le, Andrew Dai and Jia Li

ci



Sunday, November 4, 2018 (continued)

(TACL) Polite Dialogue Generation Without Parallel Data
Tong Niu and Mohit Bansal

QuaSE: Sequence Editing under Quantifiable Guidance
Yi Liao, Lidong Bing, Piji Li, Shuming Shi, Wai Lam and Tong Zhang

Paraphrase Generation with Deep Reinforcement Learning
Zichao Li, Xin Jiang, Lifeng Shang and Hang Li

Operation-guided Neural Networks for High Fidelity Data-To-Text Generation
Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan and Chin-Yew Lin

Generating Classical Chinese Poems via Conditional Variational Autoencoder and
Adversarial Training
Juntao Li, Yan Song, Haisong Zhang, Dongmin Chen, Shuming Shi, Dongyan Zhao
and Rui Yan

Paragraph-level Neural Question Generation with Maxout Pointer and Gated Self-
attention Networks
Yao Zhao, Xiaochuan Ni, Yuanyuan Ding and Qifa Ke

Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task
Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang and Dragomir Radev

Unsupervised Natural Language Generation with Denoising Autoencoders
Markus Freitag and Scott Roy

Answer-focused and Position-aware Neural Question Generation
Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma and Shi Wang

Diversity-Promoting GAN: A Cross-Entropy Based Generative Adversarial Net-
work for Diversified Text Generation
Jingjing Xu, Xuancheng Ren, Junyang Lin and Xu Sun

Towards a Better Metric for Evaluating Question Generation Systems
Preksha Nema and Mitesh M. Khapra

Stylistic Chinese Poetry Generation via Unsupervised Style Disentanglement
Cheng Yang, Maosong Sun, Xiaoyuan Yi and Wenhao Li

cii



Sunday, November 4, 2018 (continued)

Generating More Interesting Responses in Neural Conversation Models with Dis-
tributional Constraints
Ashutosh Baheti, Alan Ritter, Jiwei Li and Bill Dolan

Better Conversations by Modeling, Filtering, and Optimizing for Coherence and
Diversity
Xinnuo Xu, Ondřej Dušek, Ioannis Konstas and Verena Rieser

Incorporating Background Knowledge into Video Description Generation
Spencer Whitehead, Heng Ji, Mohit Bansal, Shih-Fu Chang and Clare Voss

Multimodal Differential Network for Visual Question Generation
Badri Narayana Patro, Sandeep Kumar, Vinod Kumar Kurmi and Vinay Namboodiri

Entity-aware Image Caption Generation
Di Lu, Spencer Whitehead, Lifu Huang, Heng Ji and Shih-Fu Chang

Learning to Describe Differences Between Pairs of Similar Images
Harsh Jhamtani and Taylor Berg-Kirkpatrick

Object Hallucination in Image Captioning
Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell and Kate
Saenko

Abstractive Text-Image Summarization Using Multi-Modal Attentional Hierarchical
RNN
Jingqiang Chen and Hai Zhuge

Keyphrase Generation with Correlation Constraints
Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan and Zhoujun Li

Closed-Book Training to Improve Summarization Encoder Memory
Yichen Jiang and Mohit Bansal

Improving Neural Abstractive Document Summarization with Structural Regular-
ization
Wei Li, Xinyan Xiao, Yajuan Lyu and Yuanzhuo Wang

Iterative Document Representation Learning Towards Summarization with Polish-
ing
Xiuying Chen, Shen Gao, Chongyang Tao, Yan Song, Dongyan Zhao and Rui Yan

ciii



Sunday, November 4, 2018 (continued)

Bottom-Up Abstractive Summarization
Sebastian Gehrmann, Yuntian Deng and Alexander Rush

Controlling Length in Abstractive Summarization Using a Convolutional Neural
Network
Yizhu Liu, Zhiyi Luo and Kenny Zhu

APRIL: Interactively Learning to Summarise by Combining Active Preference
Learning and Reinforcement Learning
Yang Gao, Christian M. Meyer and Iryna Gurevych

Adapting the Neural Encoder-Decoder Framework from Single to Multi-Document
Summarization
Logan Lebanoff, Kaiqiang Song and Fei Liu

Semi-Supervised Learning for Neural Keyphrase Generation
Hai Ye and Lu Wang

MSMO: Multimodal Summarization with Multimodal Output
Junnan Zhu, Haoran Li, Tianshang Liu, Yu Zhou, Jiajun Zhang and Chengqing
Zong

Frustratingly Easy Model Ensemble for Abstractive Summarization
Hayato Kobayashi

Automatic Pyramid Evaluation Exploiting EDU-based Extractive Reference Sum-
maries
Tsutomu Hirao, Hidetaka Kamigaito and Masaaki Nagata

Learning to Encode Text as Human-Readable Summaries using Generative Adver-
sarial Networks
Yaushian Wang and Hung-yi Lee

civ
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Demo: Visualizing Group Dynamics based on Multiparty Meeting Understanding
Ni Zhang, Tongtao Zhang, Indrani Bhattacharya, Heng Ji, and Rich Radke

Demo: PizzaPal: Conversational Pizza Ordering using a High-Density Conversa-
tional AI Platform
Antoine Raux, Yi Ma, Paul Yang, and Felicia Wong

Demo: Developing Production-Level Conversational Interfaces with Shallow Se-
mantic Parsing
Arushi Raghuvanshi, Lucien Carroll, and Karthik Raghunathan

Demo: SyntaViz: Visualizing Voice Queries through a Syntax-Driven Hierarchical
Ontology
Md Iftekhar Tanveer and Ferhan Ture

Demo: LIA: A Natural Language Programmable Personal Assistant
Igor Labutov, Shashank Srivastava, and Tom Mitchell

Demo: Data2Text Studio: Automated Text Generation from Structured Data
Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge Yao, and Chin-Yew Lin

Demo: Demonstrating Par4Sem - A Semantic Writing Aid with Adaptive Para-
phrasing
Seid Muhie Yimam and Chris Biemann

10:30–11:00 Coffee Break

11:00–12:30 Long Papers and Demos (Orals and Posters) VII

cv



Sunday, November 4, 2018 (continued)

Session 10A: Question Answering III (Gold Hall)

11:00–11:18 Joint Multitask Learning for Community Question Answering Using Task-Specific
Embeddings
Shafiq Joty, Lluís Màrquez and Preslav Nakov

11:18–11:36 What Makes Reading Comprehension Questions Easier?
Saku Sugawara, Kentaro Inui, Satoshi Sekine and Akiko Aizawa

11:36–11:54 Commonsense for Generative Multi-Hop Question Answering Tasks
Lisa Bauer, Yicheng Wang and Mohit Bansal

11:54–12:12 Open Domain Question Answering Using Early Fusion of Knowledge Bases and
Text
Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhut-
dinov and William Cohen

12:12–12:30 A Nil-Aware Answer Extraction Framework for Question Answering
Souvik Kundu and Hwee Tou Ng

Session 10B: Machine Translation III (Copper Hall)

11:00–11:18 Exploiting Deep Representations for Neural Machine Translation
Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi and Tong Zhang

11:18–11:36 Why Self-Attention? A Targeted Evaluation of Neural Machine Translation Archi-
tectures
Gongbo Tang, Mathias Müller, Annette Rios and Rico Sennrich

11:36–11:54 Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Re-
current Networks
Biao Zhang, Deyi Xiong, jinsong su, Qian Lin and Huiji Zhang

11:54–12:12 Speeding Up Neural Machine Translation Decoding by Cube Pruning
Wen Zhang, Liang Huang, Yang Feng, Lei Shen and Qun Liu

12:12–12:30 Revisiting Character-Based Neural Machine Translation with Capacity and Com-
pression
Colin Cherry, George Foster, Ankur Bapna, Orhan Firat and Wolfgang Macherey

cvi



Sunday, November 4, 2018 (continued)

Session 10C: Discourse (Silver Hall)

11:00–11:18 A Skeleton-Based Model for Promoting Coherence Among Sentences in Narrative
Story Generation
Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xiaoyan Cai and Xu Sun

11:18–11:36 NEXUS Network: Connecting the Preceding and the Following in Dialogue Gener-
ation
Xiaoyu Shen, Hui Su, Wenjie Li and Dietrich Klakow

11:36–11:54 A Neural Local Coherence Model for Text Quality Assessment
Mohsen Mesgar and Michael Strube

11:54–12:12 Deep Attentive Sentence Ordering Network
Baiyun Cui, Yingming Li, Ming Chen and Zhongfei Zhang

12:12–12:30 Getting to "Hearer-old": Charting Referring Expressions Across Time
Ieva Staliūnaitė, Hannah Rohde, Bonnie Webber and Annie Louis

Session 10D: Evolution / Sociolinguistics (Hall 100)

11:00–11:18 Making "fetch" happen: The influence of social and linguistic context on nonstan-
dard word growth and decline
Ian Stewart and Jacob Eisenstein

11:18–11:36 Analyzing Correlated Evolution of Multiple Features Using Latent Representations
Yugo Murawaki

11:36–11:54 Capturing Regional Variation with Distributed Place Representations and Geo-
graphic Retrofitting
Dirk Hovy and Christoph Purschke

11:54–12:12 Characterizing Interactions and Relationships between People
Farzana Rashid and Eduardo Blanco

12:12–12:30 Why Swear? Analyzing and Inferring the Intentions of Vulgar Expressions
Eric Holgate, Isabel Cachola, Daniel Preoţiuc-Pietro and Junyi Jessy Li

cvii



Sunday, November 4, 2018 (continued)

Session 10E: Machine Learning (Posters and Demos, Grand Hall 2)

Is it Time to Swish? Comparing Deep Learning Activation Functions Across NLP
tasks
Steffen Eger, Paul Youssef and Iryna Gurevych

Hard Non-Monotonic Attention for Character-Level Transduction
Shijie Wu, Pamela Shapiro and Ryan Cotterell

Speed Reading: Learning to Read ForBackward via Shuttle
Tsu-Jui Fu and Wei-Yun Ma

Modeling Localness for Self-Attention Networks
Baosong Yang, Zhaopeng Tu, Derek F. Wong, Fandong Meng, Lidia S. Chao and
Tong Zhang

Chargrid: Towards Understanding 2D Documents
Anoop R Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda, Steffen
Bickel, Johannes Höhne and Jean Baptiste Faddoul

Simple Recurrent Units for Highly Parallelizable Recurrence
Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai and Yoav Artzi

NPRF: A Neural Pseudo Relevance Feedback Framework for Ad-hoc Information
Retrieval
Canjia Li, Yingfei Sun, Ben He, Le Wang, Kai Hui, Andrew Yates, Le Sun and
Jungang Xu

Co-Stack Residual Affinity Networks with Multi-level Attention Refinement for
Matching Text Sequences
Yi Tay, Anh Tuan Luu and Siu Cheung Hui

Spherical Latent Spaces for Stable Variational Autoencoders
Jiacheng Xu and Greg Durrett

Learning Universal Sentence Representations with Mean-Max Attention Autoen-
coder
Minghua Zhang, Yunfang Wu, Weikang Li and Wei Li

Word Mover’s Embedding: From Word2Vec to Document Embedding
Lingfei Wu, Ian En-Hsu Yen, Kun Xu, Fangli Xu, Avinash Balakrishnan, Pin-Yu
Chen, Pradeep Ravikumar and Michael J. Witbrock

cviii
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Multilingual Clustering of Streaming News
Sebastião Miranda, Arturs Znotins, Shay B. Cohen and Guntis Barzdins

Multi-Task Label Embedding for Text Classification
Honglun Zhang, Liqiang Xiao, Wenqing Chen, Yongkun Wang and Yaohui Jin

Semantic-Unit-Based Dilated Convolution for Multi-Label Text Classification
Junyang Lin, Qi Su, Pengcheng Yang, Shuming Ma and Xu Sun

MCapsNet: Capsule Network for Text with Multi-Task Learning
Liqiang Xiao, Honglun Zhang, Wenqing Chen, Yongkun Wang and Yaohui Jin

Uncertainty-aware generative models for inferring document class prevalence
Katherine Keith and Brendan O’Connor

Challenges of Using Text Classifiers for Causal Inference
Zach Wood-Doughty, Ilya Shpitser and Mark Dredze

Direct Output Connection for a High-Rank Language Model
Sho Takase, Jun Suzuki and Masaaki Nagata

Disfluency Detection using Auto-Correlational Neural Networks
Paria Jamshid Lou, Peter Anderson and Mark Johnson

Pyramidal Recurrent Unit for Language Modeling
Sachin Mehta, Rik Koncel-Kedziorski, Mohammad Rastegari and Hannaneh Ha-
jishirzi

On Tree-Based Neural Sentence Modeling
Haoyue Shi, Hao Zhou, Jiaze Chen and Lei Li

Language Modeling with Sparse Product of Sememe Experts
Yihong Gu, Jun Yan, Hao Zhu, Zhiyuan Liu, Ruobing Xie, Maosong Sun, Fen Lin
and Leyu Lin

cix
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(TACL) Language Modeling for Morphologically Rich Languages: Character-
Aware Modeling for Word-Level Prediction
Daniela Gerz, Ivan Vulic, Edoardo Maria, Jason Naradowsky, Roi Reichart, and
Anna Korhonen

(TACL) Low-rank RNN Adaptation for Context-Aware Language Modeling
Aaron Jaech and Mari Ostendorf

Siamese Network-Based Supervised Topic Modeling
Minghui Huang, Yanghui Rao, Yuwei Liu, Haoran Xie and Fu Lee Wang

GraphBTM: Graph Enhanced Autoencoded Variational Inference for Biterm Topic
Model
Qile Zhu, Zheng Feng and Xiaolin Li

Modeling Online Discourse with Coupled Distributed Topics
Akshay Srivatsan, Zachary Wojtowicz and Taylor Berg-Kirkpatrick

Learning Disentangled Representations of Texts with Application to Biomedical Ab-
stracts
Sarthak Jain, Edward Banner, Jan-Willem van de Meent, Iain J Marshall and Byron
C. Wallace

Multi-Source Domain Adaptation with Mixture of Experts
Jiang Guo, Darsh Shah and Regina Barzilay

Demo: Sisyphus, a Workflow Manager Designed for Machine Translation and Au-
tomatic Speech Recognition
Jan-Thorsten Peter, Eugen Beck, and Hermann Ney

Demo: APLenty: annotation tool for creating high-quality datasets using active and
proactive learning
Minh-Quoc Nghiem and Sophia Ananiadou

cx



Sunday, November 4, 2018 (continued)

Demo: KT-Speech-Crawler: Automatic Dataset Construction for Speech Recogni-
tion from YouTube Videos
Egor Lakomkin, Sven Magg, Cornelius Weber, and Stefan Wermter

Demo: Term Set Expansion based NLP Architect by Intel AI Lab
Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon Eirew, Yael Green, Shira
Guskin, Peter Izsak, and Daniel Korat

12:30–13:45 Lunch

13:00–13:45 Business Meeting

13:45–14:45 Short Papers (Orals and Posters) IV

Session 11A: Analyzing Models (Gold Hall)

13:45–13:57 A Neural Model of Adaptation in Reading
Marten van Schijndel and Tal Linzen

13:57–14:09 Understanding Deep Learning Performance through an Examination of Test Set
Difficulty: A Psychometric Case Study
John Lalor, Hao Wu, Tsendsuren Munkhdalai and Hong Yu

14:09–14:21 Lexicosyntactic Inference in Neural Models
Aaron Steven White, Rachel Rudinger, Kyle Rawlins and Benjamin Van Durme

14:21–14:33 Dual Fixed-Size Ordinally Forgetting Encoding (FOFE) for Competitive Neural
Language Models
Sedtawut Watcharawittayakul, Mingbin Xu and Hui Jiang

14:33–14:45 The Importance of Being Recurrent for Modeling Hierarchical Structure
Ke Tran, Arianna Bisazza and Christof Monz

cxi
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Session 11B: Sentiment II (Copper Hall)

13:45–13:57 Joint Learning for Targeted Sentiment Analysis
Dehong Ma, Sujian Li and Houfeng Wang

13:57–14:09 Revisiting the Importance of Encoding Logic Rules in Sentiment Classification
Kalpesh Krishna, Preethi Jyothi and Mohit Iyyer

14:09–14:21 A Co-Attention Neural Network Model for Emotion Cause Analysis with Emotional
Context Awareness
Xiangju Li, Kaisong Song, Shi Feng, Daling Wang and Yifei Zhang

14:21–14:33 Modeling Empathy and Distress in Reaction to News Stories
Sven Buechel, Anneke Buffone, Barry Slaff, Lyle Ungar and Joao Sedoc

14:33–14:45 Interpretable Emoji Prediction via Label-Wise Attention LSTMs
Francesco Barbieri, Luis Espinosa Anke, Jose Camacho-Collados, Steven Schock-
aert and Horacio Saggion

Session 11C: Machine Translation IV (Silver Hall)

13:45–13:57 A Tree-based Decoder for Neural Machine Translation
Xinyi Wang, Hieu Pham, Pengcheng Yin and Graham Neubig

13:57–14:09 Greedy Search with Probabilistic N-gram Matching for Neural Machine Translation
Chenze Shao, Xilin Chen and Yang Feng

14:09–14:21 Exploring Recombination for Efficient Decoding of Neural Machine Translation
Zhisong Zhang, Rui Wang, Masao Utiyama, Eiichiro Sumita and Hai Zhao

14:21–14:33 Has Machine Translation Achieved Human Parity? A Case for Document-level
Evaluation
Samuel Läubli, Rico Sennrich and Martin Volk

14:33–14:45 Automatic Reference-Based Evaluation of Pronoun Translation Misses the Point
Liane Guillou and Christian Hardmeier

cxii



Sunday, November 4, 2018 (continued)

Session 11D: QA / Knowledge Graphs (Hall 100)

13:45–13:57 FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with
State-of-the-Art Evaluation
Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu and Maosong
Sun

13:57–14:09 A strong baseline for question relevancy ranking
Ana Gonzalez, Isabelle Augenstein and Anders Søgaard
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Abstract
This article deals with adversarial attacks to-
wards deep learning systems for Natural Lan-
guage Processing (NLP), in the context of pri-
vacy protection. We study a specific type of at-
tack: an attacker eavesdrops on the hidden rep-
resentations of a neural text classifier and tries
to recover information about the input text.
Such scenario may arise in situations when
the computation of a neural network is shared
across multiple devices, e.g. some hidden rep-
resentation is computed by a user’s device and
sent to a cloud-based model. We measure the
privacy of a hidden representation by the abil-
ity of an attacker to predict accurately specific
private information from it and characterize
the tradeoff between the privacy and the util-
ity of neural representations. Finally, we pro-
pose several defense methods based on modi-
fied training objectives and show that they im-
prove the privacy of neural representations.

1 Introduction
This article presents an adversarial scenario meant
at characterizing the privacy of neural representa-
tions for NLP tasks, as well as defense methods
designed to improve the privacy of those represen-
tations. A deep neural network constructs inter-
mediate hidden representations to extract features
from its input. Such representations are trained to
predict a label, and therefore should contain use-
ful features for the final prediction. However, they
might also encode information about the input that
a user wants to keep private (e.g. personal data)
and can be exploited for adversarial usages.

We study a specific type of attack on neural rep-
resentations: an attacker eavesdrops on the hidden
representations of novel input examples (that are
not in the training set) and tries to recover informa-
tion about the content of the input text (Figure 1).
A typical scenario where such attacks would oc-
cur is when the computation of a deep neural net

Latent representation,
sent over a channel

z

Attacker

y

x

Private input

Desired 
Output

Figure 1: General setting illustration. The main classi-
fier predicts a label y from a text x, the attacker tries to
recover some private information z contained in x from
the latent representation used by the main classifier.

is shared between several devices (Li et al., 2017).
For example, a user’s device computes a represen-
tation of a textual input, and sends it a to cloud-
based neural network to obtain, e.g. the topic of
the text or its sentiment. The scenario is illustrated
in Figure 1.

Private information can take the form of key
phrases explicitly contained in the text. However,
it can also be implicit. For example, demographic
information about the author of a text can be pre-
dicted with above chance accuracy from linguistic
cues in the text itself (Rosenthal and McKeown,
2011; Preoţiuc-Pietro et al., 2015).

Independently of its explicitness, some of this
private information correlates with the output la-
bels, and therefore will be learned by the network.
In such a case, there is a tradeoff between the util-
ity of the representation (measured by the accu-
racy of the network) and its privacy. It might be
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necessary to sacrifice some accuracy in order to
satisfy privacy requirements.

However, this is not the case of all private in-
formation, since some of it is not relevant for the
prediction of the text label. Still, private infor-
mation might be learned incidentally. This non-
intentional and incidental learning also raises pri-
vacy concerns, since an attacker with an access to
the hidden representations, may exploit them to re-
cover information about the input.

In this paper we explore the following situation:
(i) a main classifier uses a deep network to predict
a label from textual data; (ii) an attacker eaves-
drops on the hidden layers of the network and tries
to recover information about the input text of un-
seen examples. In contrast to previous work about
neural networks and privacy (Papernot et al., 2016;
Carlini et al., 2018) we do not protect the privacy
of examples from the training set, but the privacy
of unseen examples provided, e.g., by a user.

An example of a potential application would be
a spam detection service with the following con-
straints: the service provider does not access ver-
batim emails sent to users, only their vector repre-
sentations. Theses vector representations should
not be usable to gather information about the
user’s contacts or correspondents, i.e. protect the
user from profiling.

This paper makes the following contributions:1

• We propose a metric to measure the privacy
of the neural representation of an input for
Natural Language Processing tasks. The met-
ric is based on the ability of an attacker to
recover information about the input from the
latent representation only.

• We present defense methods designed against
this type of attack. The methods are based
on modified training objectives and lead to an
improved privacy-accuracy tradeoff.

2 Adversarial Scenario

In the scenario we propose, each example consists
of a triple (x, y, z), where x is a natural language
text, y is a single label (e.g. topic or sentiment),
and z is a vector of private information contained
in x. Our base setting has two entities: (i) a main
classifier whose role is to learn to predict y from
x, (ii) an attacker who learns to predict z from the

1The source code used for the experiments described
in this paper is available at https://github.com/
mcoavoux/pnet.

latent representation of x used by the main classi-
fier. We illustrate this setting in Figure 1.

In order to evaluate the utility and privacy of a
specific model, we proceed in three phases:

Phase 1. Training of the main classifier on
(x, y) pairs and evaluation of its accuracy;

Phase 2. Generation of a dataset of pairs
(r(x), z) for the attacker, r is the representation
function of the main classifier (r is defined in Sec-
tion 2.1);

Phase 3. Training of the attacker’s network and
evaluation of its performance for measuring pri-
vacy.

In the remainder of this section, we describe the
main classifier (Section 2.1), and the attacker’s
model (Section 2.2).

2.1 Text Classifier
As our base model, we chose a standard LSTM
architecture (Hochreiter and Schmidhuber, 1997)
for sequence classification. LSTM-based archi-
tectures have been applied to many NLP tasks,
including sentiment classification (Wang et al.,
2016) and text classification (Zhou et al., 2016).

First, an LSTM encoder computes a fixed-size
representation r(x) from a sequence of tokens
x = (x1, x2, . . . , xn) projected to an embedding
space. We use ✓r to denote the parameters used
to construct r. They include the parameters of the
LSTM, as well as the word embeddings. Then, the
encoder output r(x) is fed as input to a feedfor-
ward network with parameters ✓p that predicts the
label y of the text, with a softmax output activa-
tion. In the standard setting, the model is trained to
minimize the negative log-likelihood of y labels:

Lm(✓r, ✓p) =
NX

i=1

� log P (y(i)|x(i); ✓r, ✓p),

where N is the number of training examples.

2.2 Attacker’s Classifier
Once the main model has been trained, we assume
that its parameters ✓r and ✓p are fixed. We gen-
erate a new dataset made of pairs (r(x), z(x)),
where r(x) is the hidden representation used by
the main model and z(x) is a vector of private cat-
egorical variables. In practice, z is a vector of bi-
nary variables, (representing e.g. demographic in-
formation about the author). In our experiments,
we use the same training examples x for the main
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classifier and the classifier of the attacker. How-
ever, since the attacker has access to the repre-
sentation function r parameterized by ✓r, they can
generate a dataset from any corpus containing the
private variables they want to recover. In other
words, it is not necessary that they have access to
the original training corpus to train their classifier.

The attacker trains a second feedforward net-
work on the new dataset {(r(x(i)), z(i))}iN . This
classifier uses a sigmoid output activation to com-
pute the probabilities of each binary variable in z:

P (z|r(x); ✓a) = �(FeedForward(r(x))).

It is trained to minimize the negative log-
likelihood of z:

La(✓a) =
NX

i=1

� log P (z(i)|r(x(i)); ✓a)

=
NX

i=1

KX

j=1

� log P (z(i)
j |r(x(i)); ✓a),

assuming that the K variables in z are indepen-
dent. Since the parameters used to construct r are
fixed, the attacker only acts upon its own parame-
ters ✓a to optimize this loss.

We use the performance of the attacker’s clas-
sifier as a proxy for privacy. If its accuracy is
high, then an eavesdropper can easily recover in-
formation about the input document. In contrast,
if its accuracy is low (i.e. close to that of a most-
frequent label baseline), then we may reasonably
conclude that r does not encode enough informa-
tion to reconstruct x, and mainly contains infor-
mation that is useful to predict y.

In general, the performance of a single attacker
does not provide sufficient evidence to conclude
that the input representation r is robust to an at-
tack. It should be robust to any type of reconstruc-
tion method. In the scope of this paper though,
we only experiment with a feedforward network
reconstructor, i.e. a powerful learner.

In the following sections, we propose several
training method modifications aimed at obfuscat-
ing private information from the hidden represen-
tation r(x). Intuitively, the aim of these modifica-
tions is to minimize some measure of information
between r and z to make the prediction of z hard.
An obvious choice for that measure would be the
Mutual Information (MI) between r and z. How-
ever, MI is hard to compute due to the continuous
distribution of r and does not lend itself well to
stochastic optimization.

3 Defenses Against Adversarial Attacks

In this section, we present three training methods
designed as defenses against the type of attack we
described in Section 2.2. The first two methods are
based on two neural networks with rival objective
functions (Section 3.1). The last method is meant
at discouraging the model to cluster together train-
ing examples with similar private variables z (Sec-
tion 3.2).

3.1 Adversarial Training
First, we propose to frame the training of the main
classifier as a two-agent process: the main agent
and an adversarial generator, exploiting a set-
ting similar to Generative Adversarial Networks
(GAN, Goodfellow et al., 2014). The generator
learns to reconstruct examples from the hidden
representation, whereas the main agent learns (i)
to perform its main task (ii) to make the task of
the generator difficult.

We experiment with two types of generators: a
classifier that predicts the binary attributes z(x)
used as a proxy for the reconstruction of x (Sec-
tion 3.1.1) and a character-based language model
that directly optimizes the likelihood of the train-
ing examples (Section 3.1.2).

3.1.1 Adversarial Classification:
Multidetasking

In order not to make r(x) a good representation
for reconstructing z, we make two modifications
to the training setup of the main model (Phase 1):

• We use a duplicate adversarial classifier,
with parameters ✓

0
a, that tries to predict z

from r(x). It is trained simultaneously with
the main classifier. Its training examples are
generated on the fly, and change overtime as
the main classifier updates its own parame-
ters. This classifier simulates an attack dur-
ing training.

• We modify the objective function of the main
classifier to incorporate a penalty when the
adversarial classifier is good at reconstruct-
ing z. In other words, the main classifier tries
to update its parameters so as to confuse the
duplicate attacker.

Formally, for a single data point (x, y, z), the
adversarial classifier optimizes:

La0(x, y, z; ✓0
a)= � log P (z|r(x); ✓0

a),
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whereas the main classifier optimizes:

Lm(x, y, z; ✓r, ✓p)= � ↵ log P (y|x; ✓r, ✓p)

� � log P (¬z|r(x); ✓0
a).

The first term of this equation is the log-likelihood
of the y labels. The second term is designed to de-
ceive the adversary. The hyperparameters ↵ > 0
and � > 0 control the relative importance of both
terms.

As in a GAN, the losses of both classifiers are
interdependent, but their parameters are distinct:
the adversary can only update ✓

0
a and the main

classifier can only update ✓r and ✓p.
The duplicate adversarial classifier is identical

to the classifier used to evaluate privacy after the
main model has been trained and its parameters
are fixed. However, both classifiers are completely
distinct: the former is used during the training of
the main model (Phase 1) to take privacy into ac-
count whereas the latter is used to evaluate the pri-
vacy of the final model (Phase 3), as is described
in Section 2.

3.1.2 Adversarial Generation
The second type of generator we use is a character-
based LSTM language model that is trained to re-
construct full training examples. For a single ex-
ample (x; y), the hidden state of the LSTM is ini-
tialized with r(x), computed by the main model.
The generator optimizes:

Lg(x, y; ✓`; ✓r) = � log P (x|r(x); ✓`)

= �
CX

i=1

log P (xi|xi�1
1 , r(x); ✓`),

where ✓` is the set of parameters of the LSTM
generator, xi is the ith character in the document,
and C is the length of the document in number
of characters. The generator has no control over
r(x), and optimizes the objective only by updat-
ing its own parameters ✓`.

Conversely, the loss of the main model is modi-
fied as follows:

Lm(x, y; ✓r, ✓p)= � ↵ log P (y|x; ✓r, ✓p)

� �Lg(x, y; ✓`, ✓r).

The first term maximizes the likelihood of the y
labels whereas the second term is meant at mak-
ing the reconstruction difficult by maximizing the
loss of the generator. As in the loss function de-
scribed in the previous section, ↵ and � control

the relative importance of both terms. Once again,
the main classifier can optimize the second term
only by updating ✓r, since it has no control over
the parameters of the adversarial generator.

A key property of this defense method is that it
has no awareness of what the private variables z
are. Therefore, it has the potential to protect the
neural representation against an attack on any pri-
vate information. From a broader perspective, the
goal of this defense method is to specialize the hid-
den representation r(x) to the task at hand (sen-
timent or topic prediction) and to avoid learning
anything not relevant to it.

3.2 Declustering
The last strategy we employ to make the task of the
attacker harder is based on the intuition that pri-
vate variables z are easier to predict from r when
the main model learns implicitly to cluster exam-
ples with similar z in the same regions of the rep-
resentation space.

In order to avoid such implicit clustering, we
add a term to the training objective of the main
model that penalizes pairs of examples (x, x0) that
(i) have similar reconstructions z(x) ⇡ z(x0) (ii)
have hidden representations r(x) and r(x0) in the
same region of space. We use the following modi-
fied loss for a single example:

Lm(x, y, z; ✓r, ✓p) = � log P (y|x; ✓r, ✓p)

+↵(0.5 � `(z, z0))||r(x) � r(x0)||22,

where (x0, z0) is another example sampled uni-
formly from the training set, ↵ is a hyperparame-
ter controlling the importance of the second term,
and `(·, ·) 2 [0, 1] is the normalized Hamming dis-
tance.

4 Experiments

Our experiments are meant to characterize the
privacy-utility tradeoff of neural representations
on text classification tasks, and evaluating if the
proposed defense methods have a positive im-
pact on it. We first describe the datasets we
used (Section 4.1) and the experimental protocol
(Section 4.2), then we discuss the results (Sec-
tion 4.3). We found that in the normal train-
ing regime, where no defense is taken into ac-
count, the adversary can recover private informa-
tion with higher accuracy than a most frequent
class baseline. Furthermore, we found that the de-

4



Dataset Train Dev Test

TP US 22142 2767 2767
TP Germany 12596 1574 1574
TP Denmark 82193 10274 10274
TP France 9136 1141 1141
TP UK 48647 6080 6080

AG news 11657 1457 1457
DW corpus 5435 1772 1830
Blog posts 5144 642 642

Table 1: Sizes of datasets in number of examples.

fenses we implemented have a positive effect on
the accuracy-privacy tradeoff.

4.1 Datasets
We experiment with two text classification tasks:
sentiment analysis (Section 4.1.1) and topic clas-
sification (Section 4.1.2). The sizes of each dataset
are summarized in Table 1.

4.1.1 Sentiment Analysis
We use the Trustpilot dataset (Hovy et al., 2015)
for sentiment analysis. This corpus contains re-
views associated with a sentiment score on a five
point scale, and self-reported information about
the users. We use the five subcorpora correspond-
ing to five areas (Denmark, France, Germany,
United Kingdom, United States).

We filter examples containing both the birth
year and gender of the author of the review and use
these variables as the private information. As in
previous work on this dataset (Hovy, 2015; Hovy
and Søgaard, 2015), we bin the age of the author
into two categories (‘under 35’ and ‘over 45’). Fi-
nally, we randomly split each subcorpus into a
training set (80%), a development set (10%) and
a test (10%).

As an additional experimental setting, we use
both demographic variables (gender and age) as
input to the main model. We do so by adding two
additional tokens at the beginning of the input text,
one for each variable. It has been shown that those
variables can be used to improve text classifica-
tion (Hovy, 2015). Also, we would like to evalu-
ate whether the attacker’s task is easier when the
variables to predict are explicitly in the input, com-
pared to when these information are only poten-
tially and implicitly in the input. In other words,
this setting simulates the case where private in-

formation may be used by the model to improve
classification, but should not be exposed too obvi-
ously. In the rest of this section, we use RAW to
denote the setting where only the raw text is used
as input and +DEMO, the setting where the demo-
graphic variables are also used as input.

4.1.2 Topic Classification
We perform topic classification on two genres of
documents: news articles and blog posts.

News article For topic classification of news ar-
ticle, we use two datasets: the AG news corpus2

(Del Corso et al., 2005) and the English part of the
Deutsche Welle (DW) news corpus (Pappas and
Popescu-Belis, 2017).

For the AG corpus, following Zhang et al.
(2015), we construct the dataset by extracting doc-
uments belonging to the four most frequent topics,
and use the concatenation of the ‘title’ and ‘de-
scription’ fields as the input to the classifier. We
randomly split the corpus into a training set (80%),
a development set (10%) and a test set (10%). For
the DW dataset, we use the ‘text’ field as input,
and the standard split. We kept only documents
belonging to the 20 most frequent topics.

The attacker tries to detect which named enti-
ties appear in the input text (each coefficient in
z(x) indicates whether a specific named entity oc-
curs in the text). For both datasets, we used the
named entity recognition system from the NLTK
package (Bird et al., 2009) to associate each ex-
ample with the list of named entities that occur in
it. We select the five most frequent named entities
with type ‘person’, and only keep examples con-
taining at least one of these named entities. This
filtering is necessary to avoid a very unbalanced
dataset (since each selected named entity appears
usually in very few articles).

Blog posts We used the blog authorship corpus
presented by Schler et al. (2006), a collection of
blog posts associated with the age and gender of
the authors, as provided by the authors themselves.
Since the blog posts have no topic annotation, we
ran the LDA algorithm (Blei et al., 2003) on the
whole collection (with 10 topics). The LDA out-
puts a distribution on topics for each blog post.
We selected posts with a single dominating topic
(> 80%) and discarded the other posts. We binned
age into two category (under 20 and over 30). We

2http://www.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html
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Baselines Best adversaries
Lower bound (most Upper bound

frequent class) (trained) +DEMO RAW
Gender Age Gender Age Gender Age Gender Age

TP (Denmark) 61.6 58.4 70.5 78.0 68.5 75.3 62.0 63.4
TP (France) 61.0 50.1 69.0 63.4 61.0 57.1 61.0 60.6
TP (Germany) 75.2 50.9 75.2 75.2 75.2 60.4 75.2 58.6
TP (UK) 58.8 56.7 70.0 76.3 66.4 63.5 59.9 61.8
TP (US) 63.5 63.7 74.1 74.8 81.3 74.9 64.7 63.9
Blogs 50.0 50.3 65.7 56.1 - - 63.9 55.8

Table 2: Comparisons between baselines and best adversaries. All metrics reported in this table are accuracies.

used the age and gender of the author as the private
variables. These variables have a very unbalanced
distribution in the dataset, we randomly select ex-
amples to obtain uniform distributions of private
variables. Finally, we split the corpus into a train-
ing set (80%), a validation set and a test set (10%
each).

4.2 Protocol
Evaluation For the main task, we report a single
accuracy measure. For measuring the privacy of a
representation, we compute the following metrics:

• For demographic variables (sentiment analy-
sis and blog post topic classification): 1�X ,
where X is the average of the accuracy of the
attacker on the prediction of gender and age;

• For named entities (news topic classifica-
tion): 1�F , where F is an F-score computed
over the set of binary variables in z that in-
dicate the presence of named entities in the
input example.

Training protocol We implemented our model
using Dynet (Neubig et al., 2017). The feedfor-
ward components (both of the main model and of
the attacker) have a single hidden layer of 64 units
with a ReLU activation. Word embeddings have
32 units. The LSTM encoder has a single layer of
varying sizes, since it is expected that the amount
of information that can be learned depends on the
size of these representations. We used the Adam
optimizer (Kingma and Ba, 2014) with the default
learning rate, and 0.2 dropout rate for the LSTM.
We used ↵ = 0.1 for the declustering method,
based on preliminary experiments. For the other
defense methods, we used ↵ = � = 1 and did not
experiment with other values.

For each dataset, and each LSTM state di-
mension ({8, 16, 32, 64, 128}), we train the main
model for 8 epochs (sentiment classification) or
16 epochs (topic classification), and select the
model with the best accuracy on the development
set. Then, we generate the dataset for the attacker,
train the adversarial model for 16 epochs and se-
lect the model with the worst privacy on the devel-
opment set (i.e. the most successful attacker).

It has to be noted that we select the models that
implement defenses on their accuracy, rather than
their privacy or a combination thereof. In prac-
tice, we could also base the selection strategy on a
privacy budget: selecting the most accurate model
with privacy above a certain threshold.

4.3 Results
This section discusses results for the sentiment
analysis task (Section 4.3.1) and the topic classi-
fication task (Section 4.3.2).

4.3.1 Sentiment Analysis
How private are neural representations? Be-
fore discussing the effect of proposed defense
methods, we motivate empirically our approach by
showing that adversarial models can recover pri-
vate information with reasonable accuracy when
the attack is targeted towards a model that imple-
ments none of the presented defense methods.

To do so, we compare the accuracy of adversar-
ial models to two types of baselines:

• As a lower bound, we use the most frequent
class baseline.

• As an upper bound, we trained a classi-
fier that can optimize the hidden represen-
tations (r) for the attacker’s tasks. In other
words, this baseline is trained to predict de-
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Corpus Standard M-Detask. A-Gener. Decl. ↵ = 0.1
Main Priv. Main Priv. Main Priv. Main Priv.

Germany 85.1 32.2 -0.6 -0.3 -1.3 +0.6 -0.8 +1.9
baseline 78.6 36.9

Denmark 82.6 28.1 -0.2 +4.4 -0.1 +6.0 -0.3 +7.6
baseline 70.4 40.0

France 75.1 41.1 -0.8 +0.7 -1.4 -6.4 -1.5 -18.2
baseline 69.2 44.4

UK 87.0 39.3 -0.5 +0.9 -0.2 +0.2 -0.1 +0.3
baseline 77.1 42.2

US 85.0 33.9 -0.1 +2.6 -0.2 +1.8 +0.7 +2.2
baseline 79.4 36.4

Table 3: Results on the test sets of the Trustpilot
dataset, +DEMO setting. Main is the accuracy on senti-
ment analysis. Priv. is the privacy measure (i.e. the in-
verse accuracy of the attacker: higher is better, see Sec-
tion 4.2). The baselines are most-frequent class clas-
sifiers. The values reported for the defense methods
indicate absolute differences with the standard training
regime (no defense implemented) for both metrics.

mographic variables from x, as if it were the
main task.

In Table 2, we compare both baselines to the
best adversary in the two settings (RAW and
+DEMO) among the models trained with no de-
fenses. First of all, we observe that apart from
gender on the German dataset, the trained baseline
outperforms the most frequent class baseline by a
wide margin (8 to 25 absolute difference). Sec-
ond of all, the attacker is able to outperform the
most frequent class baseline overall, even in the
RAW setting. In more details, for age, the adver-
sary is well over the baseline in all cases except
US. On the other hand, gender seems harder to
predict: the adversary outperforms the most fre-
quent class baseline only in the +DEMO setting.

The same pattern is visible for the blog post
dataset, also presented in the last line of Table 2:
the best adversaries are 14 points over the base-
line for gender and 5 points for age, i.e. almost
as good as a model that can fine tune the hidden
representations.

These results justify our approach, since they
demonstrate that hidden representations learn pri-
vate information about the input, and can be ex-
ploited to recover this information with reasonable
accuracy.

Effect of defenses We report results for the main
task accuracy and the representation privacy in Ta-
ble 3 for the +DEMO setting and in Table 4 for
the RAW setting. Recall that the privacy measure

Corpus Standard M-Detask. A-Gener. Decl. ↵ = 0.1
Main Priv. Main Priv. Main Priv. Main Priv.

Germany 85.5 32.1 +0.3 +0.5 -0.8 +0.9 -1.7 +2.2
baseline 78.6 36.9

Denmark 82.3 37.3 -0.6 +0.6 -0.1 -0.3 -0.2 -0.1
baseline 70.4 40.0

France 72.7 40.6 +1.8 -0.1 +1.9 -0.4 -0.3 -0.1
baseline 69.2 44.4

UK 86.9 40.1 -0.2 +1.0 -0.0 +1.2 -0.0 0.0
baseline 77.1 42.2

US 84.5 36.1 -1.1 +0.2 +0.5 +0.1 +0.3 +0.5
baseline 79.4 36.4

Table 4: Results on the test sets of the Trustpilot
dataset, RAW setting. See Section 4.2 and caption of
Table 3 for details about the metrics.

Corpus Standard M-Detask. A-Gener. Decl. ↵ = 0.1
Main Priv. Main Priv. Main Priv. Main Priv.

AG news 76.5 33.7 -14.5 +14.5 +0.2 -7.8 -2.5 +8.6
baseline 57.8

DW news 44.3 78.3 -5.7 +21.7 +5.9 +13.1 -5.4 +18.4
baseline 22.1

Blogs 58.3 40.8 -0.8 +3.4 +1.1 +0.9 -0.2 +1.2
baseline 47.8 49.8

Table 5: Results for topic classification (test sets). See
Section 4.2 and caption of Table 3 for details about the
metrics.

(Priv.) is computed by 1 � X where X is the av-
erage accuracy of the attacker on gender and age
predictions. When this privacy metric is higher,
it is more difficult to exploit the hidden repre-
sentation of the network to recover information
about x. The ‘Standard’ columns contain the ac-
curacy and privacy of the base model described
in Section 2. The next columns present the abso-
lute variation in accuracy and privacy for the three
defense methods presented in Section 3: Multi-
detasking, Adversarial Generation, and Decluster-
ing. We also report for each corpus the most fre-
quent class baseline for the main task accuracy,
and the privacy of the most frequent class base-
lines on private variables (i.e. the upper bound for
privacy).

The three modified training methods designed
as defenses have a positive effect on privacy. De-
spite a model selection based on accuracy, they
lead to an improvement in privacy on all datasets,
except on the France subcorpus. In most cases, we
observe only a small decrease in accuracy, or even
an improvement at times (e.g. multidetasking on
the Germany dataset, RAW setting), thus improv-
ing the tradeoff between the utility and the privacy
of the text representations.
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4.3.2 Topic Classification
We report results on topic classification in Table 5.

News articles For the news corpora, the privacy
metric is based on the F-score on the binary vari-
ables z indicating the presence or absence of a
named entity in the text. First of all, we ob-
serve that defense methods that explicitly use z
(i.e. multidetasking and declustering), have a very
positive effect on privacy, but also a detrimental
effect on the main task. We hypothesize that this
is due to the strong correlations between the main
task labels y and the private information z. As a
result, improving the privacy of the neural repre-
sentations comes at a cost in accuracy.

In contrast, the adversarial generation defense
method lead to an improvement in accuracy, that
is quite substantial for the DW corpus. We specu-
late that this is due to the secondary term in the ob-
jective function of the main model (Section 3.1.2)
that helps avoiding overfitting the main task or
learning spurious features.

Blog posts On the blog post dataset, the effects
are smaller, which we attribute to the nature of the
task of the attacker. The defense methods con-
sistently improve privacy and, in one case, accu-
racy. The best effects on the tradeoff are achieved
with the multidetasking and adversarial generation
methods.

5 Discussion

The main result of our experiments is that the de-
fenses we propose improve privacy with usually a
small effect, either positive or negative, on accu-
racy, thus improving the tradeoff between the util-
ity and the privacy of neural representations.

An important direction for future work is the
choice of a strategy for model selection. The
tradeoff between utility and privacy can be con-
trolled in many ways. For example, the impor-
tance of both terms in the loss functions in Sec-
tion 3.1 can be controlled to favor either privacy
or utility. In the scope of this paper, we did not
perform thorough hyperparameter tuning, but be-
lieve that doing so is important for achieving better
results, since the effects of defense method can be
more drastic than desired in some cases, as exem-
plified on the news corpora (Table 5).

Overall, we found that the multidetasking ap-
proach lead to the more stable improvements and
should be preferred in most cases, since it is also

the less computationnally expensive defense. On
the other hand, the adversarial generation method
does not require the specification of private vari-
ables, and thus is a more general approach.

6 Related Work

The deployment of machine learning in both
academic and industrial contexts raises concerns
about adversarial uses of machine learning, as well
as concerns about attacks specifically targeted at
these algorithms that often rely on large amounts
of data, including personal data.

More generally, the framework of differential
privacy (Dwork, 2006) provides privacy guaran-
tees for the problem of releasing information with-
out compromising confidential data, and usually
involves adding noise in the released information.
It has been applied to the training of deep learning
models (Abadi et al., 2016; Papernot et al., 2016;
Papernot et al., 2018), and Bayesian topic models
(Schein et al., 2018).

The notion of privacy is particularly crucial to
NLP, since it deals with textual data, oftentimes
user-generated data, that contain a lot of private in-
formation. For example, textual data contain a lot
of signal about authors (Hovy and Spruit, 2016).
and can be leveraged to predict demographic vari-
ables (Rosenthal and McKeown, 2011; Preoţiuc-
Pietro et al., 2015). Oftentimes, this information
is not explicit in the text but latent and related to
the usage of various linguistic traits. Our work is
based on a stronger hypothesis: this latent infor-
mation is still present in vectorial representations
of texts, even if the representations have not been
supervised by these latent variables.

Li et al. (2017) study the privacy of unsuper-
vised representations of images, and measures
their privacy with the peak signal to noise ratio
between an original image and its reconstruction
by an attacker. They find a tradeoff between the
privacy of the learned representations and the ac-
curacy of an image classification model that uses
these representations as inputs. Our setting is
complementary since it is applied to NLP tasks,
but explores a similar problem in the case of rep-
resentations learned with a task supervision.

A related problem is the unintended memoriza-
tion of private data from the training set and has
been addressed by Carlini et al. (2018). They
tackle this problem in the context of text gener-
ation (machine translation, language modelling).
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If an attacker has access to e.g. a trained language
model, they are likely to be able to generate sen-
tences from the training set, since the language
model is trained to assign high probabilities to
those sentences. Such memorization is problem-
atic when the training data contains private infor-
mation and personal data. The experimental set-
ting we explore is different from these works: we
assume that the attacker has access to a hidden
layer of the network and tries to recover informa-
tion about an input example that is not in the train-
ing set.

In a recent study, Li et al. (2018) proposed a
method based on GAN designed to improve the
robustness and privacy of neural representations,
applied to part-of-speech tagging and sentiment
analysis. They use a training scheme with two
agents similar to our multidetasking strategy (Sec-
tion 3.1.1), and found that it made neural represen-
tations more robust and accurate. However, they
only use a single adversary to alter the training
of the main model and to evaluate the privacy of
the representations, with the risk of overestimat-
ing privacy. In contrast, once the parameters of
our main model are fixed, we train a new classifier
from scratch to evaluate privacy.

7 Conclusion

We have presented an adversarial scenario and
used it to measure the privacy of hidden repre-
sentations in the context of two NLP tasks: senti-
ment analysis and topic classification of news arti-
cle and blog posts. We have shown that in general,
it is possible for an attacker to recover private vari-
ables with higher than chance accuracy, using only
hidden representations. In order to improve the
privacy of hidden representations, we have pro-
posed defense methods based on modifications of
the training objective of the main model. Empiri-
cally, the proposed defenses lead to models with a
better privacy.
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Abstract

Recent advances in Representation Learning
and Adversarial Training seem to succeed in
removing unwanted features from the learned
representation. We show that demographic in-
formation of authors is encoded in—and can
be recovered from—the intermediate repre-
sentations learned by text-based neural classi-
fiers. The implication is that decisions of clas-
sifiers trained on textual data are not agnostic
to—and likely condition on—demographic at-
tributes. When attempting to remove such de-
mographic information using adversarial train-
ing, we find that while the adversarial com-
ponent achieves chance-level development-set
accuracy during training, a post-hoc classi-
fier, trained on the encoded sentences from the
first part, still manages to reach substantially
higher classification accuracies on the same
data. This behavior is consistent across several
tasks, demographic properties and datasets.
We explore several techniques to improve the
effectiveness of the adversarial component.
Our main conclusion is a cautionary one: do
not rely on the adversarial training to achieve
invariant representation to sensitive features.

1 Introduction

Consider automated systems that are used for de-
termining credit ratings, setting insurance policy
rates, or helping in hiring decisions about individ-
uals. We would like such decisions to not take
into account factors such as the gender or the race
of the individual, or any other factor which we
deem to be irrelevant to the decision. We refer to
such irrelevant factors as protected attributes. The
naive solution of not including protected attributes
in the features to a Machine Learning system is
insufficient: other features may be highly corre-
lated with—and thus predictive of—the protected
attributes (Pedreshi et al., 2008). For example, in
Credit Score modeling, text might help in credit

score decisions (Ghailan et al., 2016). By using
the raw text as is, a discrimination issue might
arise, as textual information can be predictive of
some demographic factors (Hovy et al., 2015) and
author’s attributes might correlate with target vari-
ables (Zhao et al., 2017).

In this paper we are interested in language-
based features. It is well established that textual
information can be predictive of age, race, gender,
and many other social factors of the author (Kop-
pel et al., 2002; Burger et al., 2011; Nguyen et al.,
2013; Weren et al., 2014; Verhoeven and Daele-
mans, 2014; Rangel et al., 2016; Verhoeven et al.,
2016; Blodgett et al., 2016), or even the audience
of the text (Voigt et al., 2018).

Thus, any system that incorporates raw text into
its decision process is at risk of indirectly condi-
tioning on such signals. Recent advances in repre-
sentation learning suggest adversarial training as
a mean to hide the protected attributes from the de-
cision function (Section 2). We perform a series of
experiments and show that: (1) Information about
race, gender and age is indeed encoded into inter-
mediate representations of neural networks, even
when training for seemingly unrelated tasks and
the training data is balanced in terms of the pro-
tected attributes (Section 4); (2) The adversarial
training method is indeed effective for reducing
the amount of protected encoded information... (3)
...but in some cases even though the adversarial
component seems to be doing a perfect job, a fair
amount of protected information still remains, and
can be extracted from the encoded representations
(Section 5.1).

This suggests that when working with text data
it is very easy to condition on sensitive properties
by mistake. Even when explicitly using the adver-
sarial training method to remove such properties,
one should not blindly trust the adversary, and be
careful to ensure the protected attributes are in-
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deed fully removed. We explore means for im-
proving the effectiveness of the adversarial train-
ing procedure (section 5.2).1

However, while successful to some extent, none
of the methods fully succeed in removing all de-
mographic information. Our main message, then,
remains cautionary: if the goal is to ensure fair-
ness or invariant representation, do not trust
adversarial removal of features from text in-
puts for achieving it.

2 Learning Setup

We follow a setup in which we have some la-
beled data D composed of documents x1, ..., xn

and task labels y1, ..., yn. We wish to train a clas-
sifier f that accurately predicts the main task la-
bels yi. Each data point xi is also associated with
a protected attribute zi, and we want the decision
yi = f(xi) to be oblivious to zi. Following (Ganin
and Lempitsky, 2015; Xie et al., 2017), we struc-
ture f as an encoder h(x) that maps x into a rep-
resentation vector hx, and a classifier c(h(x)) that
is used for predicting y based on hx. If hxi is
not predictive of zi, then the main task prediction
f(xi) = c(h(xi)) does not depend on zi.

We say that a protected attribute z has leaked if
we can train a classifier c0(hxi) to predict zi with
an accuracy beyond chance level, and that the pro-
tected attribute is guarded if we cannot train such a
classifier. We say that a classifier f(x) = c(h(x))
is guarded if z is guarded, and that it is leaky with
respect to z if z leaked.

Adversarial Training In order to make f obliv-
ious to z, we follow the adversarial training setup
(Goodfellow et al., 2014; Ganin and Lempitsky,
2015; Beutel et al., 2017; Xie et al., 2017). Dur-
ing training, an adversarial classifier adv(hx) is
trained to predict z, while the encoder h is trained
to make adv fail. Concretely, the training proce-
dure tries to jointly optimize both quantities:

arg min
adv

L(adv(h(xi)), zi)

arg min
h,c

L(c(h(xi)), yi) � L(adv(h(xi)), zi)

where L(y0, y) is the loss function (in our case,
cross entropy). This objective results in creating
the representation hx s.t. it’s maximally infor-
mative for the main task, while at the same time

1The code and data acquisition are available in: https:
//github.com/yanaiela/demog-text-removal

minimally informative of the protected attribute.
The optimization is performed in practice using
the gradient-reversal layer (GRL) method (Ganin
and Lempitsky, 2015). The GRL is a layer g� that
is inserted between the encoded vector hx and the
adversarial classifier adv. During the forward pass
the layer acts as the identity, while during back-
propagation it scales the gradients passed through
it by ��, causing the encoder to receive the op-
posite gradients from the adversary. The meta-
parameter � controls the intensity of the reversal
layer. This results in the objective:

arg min
h,c,adv

L(c(h(xi)), yi)+L(adv(g�(h(xi))), zi)

Attacker Network To test the effectiveness of
the adversarial training, we use an attacker net-
work att(hx). After the classifier c(h(x)) is fully
trained, we use the encoder to obtain representa-
tions h, and train the attacker network to predict
z based on h, without access to the encoder or to
the original inputs x that resulted in h. If, after
training, the attacker can predict z on unseen ex-
amples with an accuracy of beyond chance level,
then the attribute z leaked to the representation,
and the classifier is not guarded.
Network Architecture In our setup, an example
xi is a sequence of tokens w1, ..., wmi and the en-
coder is a one layer LSTM network that reads in
the associated embedding vectors and returns the
final state: h = LSTM(w1:m). The classifier c
and the adversarial adv are both multi-layer per-
ceptrons with one hidden layer, sharing the same
hidden layer size and activation function (tanh).2

3 Data, Tasks, and Protected Attributes

To perform our experiments, we need a reasonably
large dataset in which the data-points x contain
textual information, and for which we have both
main-task labels y and protected attribute labels
z. While our motivating example used prediction
tasks for credit rating, insurance rates or hiring
decisions, to the best of our knowledge there are
no publicly available datasets for these sensitive
tasks that meet our criteria. We thus opted to use
much less sensitive main-tasks, for which we can
obtain the needed data. We focus on Twitter mes-
sages, and our protected attributes are binary-race
(non-hispanic Whites vs. non-hispanic Blacks),

2Further details regarding the architecture and training pa-
rameters can be found in the supplementary materials.
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binary-gender (Male vs. Female)3 and binary-
age (18-34 vs. 35+). As main tasks we chose
binary emoji-based sentiment prediction and bi-
nary tweet-mention prediction. Both the sentiment
and the mention prediction tasks are not inher-
ently correlated with race, gender or age. Pro-
tected attributes leakage in these seemingly benign
main-tasks is a strong indicator that such leakage
is likely to occur also in more sensitive tasks.

Main Tasks: Sentiment and Mention-detection
Both tasks can be derived automatically from twit-
ter data. We construct a binary “sentiment” task by
identifying a subset of emojis which are associated
with positive and negative sentiment,4 identify-
ing tweets containing these emojis, assigning them
with the corresponding sentiment and removing
the emojis. Tweets containing emojis from both
sentiment lists are discarded. The binary men-
tion task is to determine if a tweet mentions an-
other user, i.e, classifying conversational vs. non-
conversational tweets. We derive this dataset by
identifying tweets that include @mentions tokens,
and removing all such tokens from the tweets.

Protected: Race The race annotation is based
on the dialectal tweets (DIAL) corpus from (Blod-
gett et al., 2016), consisting of 59.2 million tweets
by 2.8 million users. Each tweet is associated with
predicted “race” information which was predicted
using a technique that takes into account the geo-
location of the author and the words in the tweet.
We focus on the AAE (African-American English)
and SAE (Standard American English) categories,
which we use as proxies for non-Hispanic blacks
and non-Hispanic whites.

We chose only annotations with confidence (the
probability of the authors’ race) of above 80%.
Due to its construction, the race annotations in this
dataset are highly correlated with the language be-
ing used. As such, the data reflects an extreme
case in which the underlying language is very pre-
dictive of the protected attribute.

Protected: Age and Gender We use data from
the PAN16 dataset (Rangel et al., 2016), contain-
ing manually annotated Age and Gender informa-
tion of 436 Twitter users, along with up to 1k

3While gender is a non-binary construct, many decisions
in the real-world are unfortunately still influenced by hard
binary gender categories. We thus consider binary-gender to
be a useful approximation in our context.

4Complete list is available in Appendix C

tweets for each user. User annotation was per-
formed by consulting the user’s LinkedIn profile.
Gender was determined by considering the user’s
name and photograph, discarding unclear cases.
Age range was determined by birth-date which
was published on the user’s profile, or by mapping
their degree starting date.

Data-splits From the DIAL corpus we extracted
166K and 10K tweets for training and develop-
ment purpose respectively (after cleaning and ex-
tracting relevant tweets), whereas for the PAN16
dataset we collected 160K tweets for training and
10K for development. The train/development split
in both phases of the training (task-training and
attacker-training) is the same. This is the worst
possible scenario for the attacker, as it is train-
ing on the exact representations the adversary at-
tempted to remove the protected attribute from.
Each split is balanced with respect to both the
main and the protected labels: a random prediction
of each variable is likely to result in 50% accuracy.

Metrics Throughout this paper, we measure
leakage using accuracy. We say that the protected
attribute has leaked if an attacker manages to pre-
dict the protected attribute with better than 50%
accuracy, which is always the probability of that
attribute (P (Z) = 0.5). In Appendix A we relate
our metric to more standard fairness metrics, and
prove that in our setup a guarded predictor guar-
antees demographic parity, equality of odds, and
equality of opportunity. Note however that we also
show empirically that such guarded predictors are
very hard to attain in practice.

4 Baselines and Data Leakage

In-dataset Accuracy Upper-bounds We begin
by examining how well can we perform on each
task (both main-tasks and protected attributes)
when training the encoder and classifier directly
on that task, without any adversarial component.
This provides an upper bound on the protected at-
tribute leakage for the main tasks results. The re-
sults in Table 1 indicate that the classifiers achieve
reasonable accuracies for the main tasks.5 For

5While the sentiment score may seem low, we manually
verified the erroneous predictions and found out that many
of them are indeed ambiguous with respect to sentiment, e.g.
sentences like “I can’t take Amanda seriously ” and “You
make me so angry, yet you make me so happy. ” which
were predicted negative and positive respectively, but their
gold label was the opposite.
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Figure 1: Balanced (a) vs. Unbalanced (b)
dataset. Red(M+)/Blue(M-): Main Task.
Light(P+)/Dark(P-): Protected attribute. Each
class is globally balanced, but in (b) the propor-
tion of the protected attribute within each main
task split is unbalanced.

the protected attributes, race is highly predictable
(83.9%) while age and gender can also be recov-
ered at above 64% accuracy.

Data Task Accuracy
DIAL Sentiment 67.4

Mention 81.2
Race 83.9

PAN16 Mention 77.5
Gender 67.7
Age 64.8

Table 1: Accuracies when training directly towards
a single task.

Leakage When training directly for the protected
attributes, we can recover them with relatively
high accuracies. But is information about them
being encoded when we train on the main tasks?
In this set of experiments, we encode the train-
ing and validation sets using the encoder trained
on the main task, and train the attacker network
to predict the protected attributes based on these
vectors. This experiment suggests an upper bound
on the amount of leakage of protected attributes
when we do not actively attempt to prevent it.
The Balanced section in Table 2 summarizes the
validation-set accuracies. While the numbers are
lower than when training directly (Table 1), they
are still high enough to extract meaningful and
possibly highly sensitive information (e.g. DIAL
Race direct prediction is 83.9% while DIAL Race
leakage on the balanced Sentiment task is 64.5%).

Leakage: Unbalanced Data The datasets we
considered were perfectly balanced with respect to
both main task and protected attribute labels (Fig-
ure 1a). Such extreme case is not representative
of real-world datasets, in which a dataset may be

well balanced w.r.t. the main task labels but not
the protected attribute. For example, when train-
ing a classifier to predict a fit for managerial po-
sition based on Curriculum Vitae (CV) of candi-
dates, the CV dataset may be perfectly balanced
according to the managerial / non-managerial vari-
able, but, because of existing social biases, CVs of
females might be under-represented in the man-
agerial category and over-represented in the non-
managerial one. In such a situation, the classi-
fier may perpetuate the bias by learning to favor
males over females for managerial positions. We
simulate this more realistic scenario by construct-
ing unbalanced datasets in which the main tasks
(sentiment/mention) remain balanced but the pro-
tected class proportions within each main class are
not, as demonstrated in Figure 1b. For example,
in the sentiment/gender case, we set the positive-
sentiment class to contain 80% male and 20% fe-
male tweets, while the negative-sentiment class
contains 20% male and 80% female tweets. We
then follow the leakage experiment on the unbal-
anced datasets. The attacker is trained and tested
on a balanced dataset. Otherwise, the attacker can
perform quite well on the male/female task simply
by learning to predict sentiment, which does not
reflect leakage of gender data to the representa-
tion. When training the attacker on balanced data,
its decisions cannot rely on the sentiment informa-
tion encoded in the vectors, and must look for en-
coded information about the protected attributes.
The results in Table 2 indicate that both task accu-
racy and attribute leakage are stronger in the un-
balanced case.

Leakage: Real-world Example The above ex-
periments used artificially constructed datasets.
Here, we demonstrate leakage using a popular en-
coder trained for emotion detection: the Deep-
Moji encoder (Felbo et al., 2017) trained to predict
the most suitable emoji usage for a sentence (one
of 64 in total), based on 1.2 billion tweets. The
model is advertised as a good encoder for encod-
ing sentences into a representation that is highly
predictive of sentiment, mood, emotion and sar-
casm. Does it also capture protected attributes?
We encode the sentences of the different protected
attributes using the DeepMoji encoder and train
three different attackers to predict race, gender
and age. The best scores on the development set
are 84.7%, 67.2% and 67.1% respectively. This
should not come as a surprise, as indeed some
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Balanced Unbalanced
Data Task Protected Attribute Task Acc Leakage Task Acc Leakage
DIAL Sentiment Race 67.4 64.5 79.5 73.5

Mention Race 81.2 71.5 86.0 73.8
PAN16 Mention Gender 77.5 60.1 76.8 64.0

Age 74.7 59.4 77.5 59.7

Table 2: Protected attribute leakage: balanced & unbalanced data splits.

emoji usage is highly correlated with these prop-
erties.

5 Mitigating Data Leakage

Leakage of protected attributes information into
the internal representation of the network when
training on seemingly unrelated tasks is very com-
mon. We explore the means of mitigating such
leakage.

5.1 Adversarial Training
We repeat the experiments in Table 2 with an ad-
versarial component (Ganin and Lempitsky, 2015)
as described in Section 2, in order to actively re-
move the protected attribute information from the
encoded representation during training. Note that
the adversarial objective is in odds with the main-
task one: by removing the protected attribute in-
formation from the encoder, we may also hurt its
ability to encode information about the main task.

Figure 2 shows the main task and adversary pre-
diction accuracies on the development set as train-
ing progresses, for the Sentiment/Race pair.

Figure 2: Main task and Adversary accuracy curves
for Sentiment/Race.

After an initial peak in task prediction accuracy,
the adversary prediction drops and starts to fluctu-
ate around chance level (50%), as desired, along
with a drop in main task accuracy as well. The
adversary’s accuracy remain around chance level

throughout the entire training process, suggesting
that the adversarial training is indeed effective for
removing the protected attribute information from
the encoded representation. These trends are per-
sistent for all main-task/protected-attribute pairs
we tried.

However, training the attacker network on the
resulting encoder vectors reveals a different story.
For example, when considering the encoder after
50 training epochs (adversary accuracy of 49.0%),
the attacker reaches 56.0% accuracy: substantially
higher than the adversarial’s success rate, despite
sharing the exact same architecture, and being
trained and tested on the exact same dataset.

Table 3 summarizes the attacker’s recovery rate
on the adversarialy-trained encoders for the differ-
ent settings. In all cases, the adversarial’s success
rate is around 50%, while the attacker’s rate is sub-
stantially higher. The attacker’s rates are lower
than in Table 1, indicating the adversarial train-
ing is effective in removing some of the protected
attribute. However, a substantial amount of in-
formation managed to leak past the adversary,
despite its seemingly perfect performance.

Data Task Protected
Attribute

Task
Acc Leakage �

DIAL Sentiment Race 64.7 56.0 5.0
Mention Race 81.5 63.1 9.2

PAN16 Mention Gender 75.6 58.5 8.0
Mention Age 72.5 57.3 6.9

Table 3: Performances on different datasets with
an adversarial training. � is the difference be-
tween the attacker score and the corresponding ad-
versary’s accuracy.

Attacker’s Accuracy on Unseen Data We ver-
ify that the attacker’s recovery accuracy persists
also on the more realistic scenario in which the
attacker is applied to encoded sentences that did
not participate in the adversarial training. We con-
structed an additional dataset of 166K completely
unseen samples from the Sentiment/Race case. As
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expected, the attacker works even better in this
case, reaching an accuracy of 59.7% Vs. 56.0%
on the original development set.

5.2 Strengthening the Adversarial
Component

We explore means of strengthening the adversarial
component, by tuning its capacity and its weight,
as well as by using a novel adversarial-ensemble
configuration.

Capacity We increase the capacity of the adver-
sarial component by increasing its hidden dimen-
sion, while keeping the attacker’s hidden dimen-
sion constant at 300 dimensions. We try hidden di-
mensions of size 500, 1000, 2000, 5000 and 8000.

Weight We experiment with different weighting
of the adversarial component during training by
tuning the � parameter, trying the values 0.5, 1.0
(default), 1.5, 2, 3, 5 (with values above 5 the main
task training became extremely unstable, not rais-
ing above 50%).

Ensemble An alternative to using larger � val-
ues is to introduce several adversaries. The po-
tential benefit of this approach is that rather than
focusing harder on removing a single feature, here
the different adversaries could each focus on a dif-
ferent aspect of the representation. This approach
is potentially better suited to deal with language
variability. Concretely, we suggest the following
adaptation to the adversarial loss to incorporate k
adversaries with different random initializations:

Ly(c(h(x)), y) +
kX

j=1

Lz(advj(g�(h(x))), z)

Other Attempts We also experienced with sev-
eral other techniques: reinitializing the adversar-
ial weights every t epochs; training the adver-
sary without propagating the error to the encoder
components for t epochs and only then starting
to propagate; using adversaries with more hidden
layers; adding dropout on the encoded vectors and
within the encoder. None of these yielded im-
provements over the above methods.

Results All methods are effective to some ex-
tent, Table 4 summarizes the results.

Increasing the capacity of the adversarial net-
work helped reduce the protected attribute’s leak-
age, though different capacities work best on each

setup. On the Sentiment/Race task, none of the
higher dimensional adversaries worked better than
the 300-dim one, on the PAN16 dataset it did.
On PAN16/Gender the 8000-dim adversary per-
formed best, and on PAN16/Age, the 500-dim one.

Increasing the weight of the adversary through
the � parameter also has a positive effect on the
result (except on the Sentiment/Race pair). How-
ever, too large � values make training unstable,
and require many more epochs for the main-task
to stabilize around a satisfying accuracy.

The adversarial ensemble method with 2 adver-
saries achieves 57.4% on Sentiment/Race, as op-
posed to 56.0% with a single one, but when using
5 different adversaries, we achieve 54.8%. On the
PAN16 dataset larger ensembles are more effec-
tive. However, a potential issue with the ensemble
method is that larger ensembles reduces training
stability, similar to increasing the � value. For ex-
ample, with 5 adversaries, the main-task accuracy
remained at random for 5 epochs, and only begun
rising at the 6th epoch. Using 10 adversaries, the
main task could not be trained.

To summarize, while all methods are effective
to some extent, it appears that (a) no method and
parameter setting performs equally well across the
different setups; and (b) no method succeeds in
completely preventing the leakage of the protected
attributes. Combining the different methods (en-
sembles of larger networks, larger networks with
larger �, etc.) did not improve the results.

Unbalanced Data Results We repeated the
same set of experiments on the unbalanced Sen-
timent/Race corpus (Table 5). In this setup, the
results are somewhat similar: increasing the ad-
versarial capacity and � is ineffective, and even
increases the attacker’s recovery rate. However,
using an ensemble of 5 adversaries does manage
to reduce the leakage, but it is still far from a sat-
isfying result.

6 Analysis

The gap between the adversary’s dev-set accu-
racy and the after-the-fact attacker accuracy on the
same data is surprising. To better understand the
phenomenon, we perform further analysis on the
Sentiment/Race pair with the default single adver-
sary.

Embedding Vs. RNN Recall that the attacker
network tries to extract as much information from
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DIAL PAN16
Method Parameter Sentiment Race � Mention Gender � Mention Age �

No Adversary Baseline - 67.4 14.5 - 77.5 10.1 - 74.7 9.4 -
Standard Adversary (300/1.0/1) 64.7 6.0 5.0 75.6 8.5 8.0 72.5 7.3 6.9
Adv-Capacity 500 64.1 6.7 5.2 73.8 8.1 6.7 71.4 4.3 4.1

1000 63.4 7.1 4.9 75.2 8.9 7.0 71.6 6.3 4.0
2000 65.2 8.1 6.9 76.1 6.7 6.4 71.9 6.0 5.7
5000 63.9 6.2 3.7 74.5 5.6 1.6 73.0 10.2 9.6
8000 65.0 7.1 4.8 75.7 5.4 4.2 71.9 9.8 7.3

� 0.5 63.9 6.8 6.2 75.6 7.8 6.8 73.1 4.8 3.4
1.5 64.9 7.4 5.4 75.6 4.9 2.4 72.5 6.8 5.8
2.0 64.2 7.3 5.9 76.0 -7.2 6.7 72.1 8.5 7.7
3.0 65.8 10.2 10.1 73.7 6.4 6.1 72.5 -6.3 5.2
5.0 50.0 - - 73.6 6.5 5.7 69.0 3.2 2.9

Ensemble 2 62.4 7.4 5.4 74.8 6.4 5.0 72.8 8.8 8.3
3 66.5 6.5 5.0 75.3 4.9 3.1 72.1 6.7 6.0
5 63.8 4.8 2.6 74.3 4.1 3.0 70.1 5.7 5.4

Table 4: Results of different adversarial configurations. Sentiment/Mention: main task accuracy.
Race/Gender/Age: protected attribute recovery difference from 50% rate by the attacker (values be-
low 50% are as informative as those above it). �: the difference between the attacker score and the
corresponding adversary’s accuracy. The bold numbers are the best oblivious classifiers within each
configuration.

Method Param Sentiment Race
No Adversary Baseline - 79.5 23.5
Standard Adversary 1.0 76.8 10.6
Adv-Capacity 500 74.8 13.8

1000 70.5 18.4
2000 73.9 18.5
5000 71.5 19.4
8000 73.6 18.7

Lambda 0.5 75.0 15.5
1.5 71.2 18.2
2.0 73.0 12.1
3.0 71.5 12.0
5.0 50.0 -

Ensemble 2 70.6 20.8
3 73.6 17.9
5 71.5 8.6

Table 5: Unbalanced Sentiment/Race with the dif-
ferent methods. Sentiment: task accuracy. Race:
Attacker’s recovery accuracy beyond 50%.

the encoder’s output as possible. The encoder con-
sists of two components: (1) Embedding Matrix
and (2) an RNN. Therefore, the leakage can be
caused due to one of them (or due to their com-
bination).

We conduct the following experiment to deter-
mine which part affects the leakage more: we cre-
ate a new encoder by composing 2 existing en-
coders: an encoder with high leakage (Leaky, us-
ing the baseline encoder) and an encoder with low
leakage (Guarded, using the 5-Ensemble adver-
sary). We fuse the two encoders by combining
the embedding matrix of the Leaky encoder with

the RNN module of the Guarded encoder, and
vice versa. This yields two new encoders: an en-
coder with a “leaky” Embedding Matrix module
and a “strong” RNN module (Leaky-EMB), and an
encoder with a “strong” Embedding Matrix mod-
ule and a “leaky” RNN module (Leaky-RNN). We
compare encoders Leaky-EMB and Leaky-RNN to
gauge which module has a greater contribution to
the data leakage. We train attacker-networks over
the encoders’ output to predict the protected at-
tributes.

Embedding

Leaky Guarded

R
N

N Leaky 64.5 67.8
Guarded 59.3 54.8

Table 6: Accuracies of the protected attribute with
different encoders.

Table 6 summarize the results, implying that the
leakage is caused mainly by the RNN, and less by
the Embedding Matrix.6

6A discrepancy exists to some extent in the new en-
coders, as their parts originate from different models that
were trained separately. To test if the fusion is valid, we
train a different classifier on top of the new encoders to pre-
dict the main task. The combination of the leaked RNN with
the guarded embeddings results in 65.4% on the sentiment
task and the other combination results in 60.9% as opposed
to 67.5% and 63.8% on the leaked and guarded models, re-
spectively. As the new models are on par with the original
ones, we conclude that the new encoders are valid.
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Consistent Leakage: Examples Inspection
We are interested in tweets whose protected at-
tribute (race) is correctly predicted by the adver-
sary. However, at accuracy rates below 60%, many
of the correct predictions could be attributed to
chance. To identify the relevant examples, we re-
peated the Sentiment/Race default adversary ex-
periment 10 times with different random seeds.
We then trained 10 attacker networks, and used
each of them to label all examples in the devel-
opment set. We then looked for tweets which are
consistently and correctly classified by at least 9
attackers.7 Table 7 shows some of these cases.
Many of them include tokens (Naw, Bestfrand,
tan) and syntactic structures (Going over Bae
house) which are indeed predictive, though not the
most salient features.

Leakage via Embeddings Even though we
found out the RNN is much more responsible
to the leakage then the Embedding, those still
contribute to the leakage and are easier to in-
spect. Therefore, we turn to inspect the en-
coders’ Embedding. We hypothesize that a pos-
sible reason for the adversarial network’s inabil-
ity to completely remove the protected race infor-
mation is word frequency. Namely, rare words,
which might be strongly identified with one group,
didn’t get enough updates during training and
therefore remained predictive towards one of the
groups. To quantify this, we compared two vo-
cabularies: words appearing in tweets where the
predictions were consistently predicted (9 or 10
out of 10 times) by the different attackers, and
words appearing in tweets that were randomly dis-
tributed (50%) between the attackers. If our hy-
pothesis is correct, we expect words from the sec-
ond group to be more frequent than words in the
first group. We discard words appearing in both
groups, and associate each word with its training
set frequency. One-tailed Mann-Whitney U test
(Mann and Whitney, 1947) showed the effect is
highly significant with p < e�12.

Data Overfitting? Standard ML setups often
suffer from overfitting on the training data, es-
pecially when using neural-networks which tend
to memorize the data they encounter. In the ad-
versarial setup, the overfitting could result in the
encoder-adversary pair working together to per-
fectly clean the attributes from the training data,

7776 correct and 946 consistent examples in total

without generalization. Such overfitting could ex-
plain the attacker success. Is this what happened?
We test this hypothesis by using the same at-
tacker networks experiments solely on the train-
ing data. We train the attackers on 90% of the
training data while using the rest 10% as held-
out. If overfitting has occurred, the accuracy is
likely to result in 50% accuracy. Alas, this is not
the case. Table 8 summarize the training accura-
cies of the attacker network. The Mention/Race
task achieves the highest score of 64.3% whereas
the Mention/Gender task achieves the lowest -
58.1%. Even though when trained directly to pre-
dict these attributes without the adversarial setup,
the training accuracies are much higher, a substan-
tial amount of signal is still left, even in the train-
ing data.

7 Related Work

The fact that intermediary vector representa-
tions that are trained for one task are predic-
tive of another is not surprising: it is at the
core of the success of NLP methods for deriv-
ing “generic” word and sentence representations
(e.g. Word2vec (Mikolov et al., 2013), Skip-
thought vectors (Kiros et al., 2015), Contextual-
ized Word Representations (Melamud et al., 2016;
Peters et al., 2018) etc.). While usually consid-
ered a positive feature, it can often have unde-
sired consequences one should be aware of and po-
tentially control for. Several works document bi-
ases and stereotypes that are captured by unsuper-
vised word embeddings (Bolukbasi et al., 2016;
Caliskan et al., 2017) and ways of mitigating them
(Bolukbasi et al., 2016; Zhang et al., 2018). Bias
and stereotyping were also documented on a com-
mon NLP dataset (Rudinger et al., 2017). While
these work are concerned with the learned rep-
resentations encoding unwanted biases about the
world, our concern is with capturing potentially
sensitive demographic information about individ-
ual authors of the text.

Removing sensitive attributes (demographic or
otherwise) from intermediate representations in
order to achieve fair classification has been ex-
plored by solving an optimization problem (Zemel
et al., 2013), as well as by employing adversar-
ial training (Edwards and Storkey, 2015; Louizos
et al., 2015; Xie et al., 2017; Zhang et al., 2018),
focusing on structured features. Adversarial train-
ing was also applied for Image anonymization
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AAE (“non-hispanic blacks”) SAE (“non-hispanic whites”)
My Brew Eattin I want to be tan again

Naw im cool Why is it so hot in the house ?!
Tonoght was cool Been doing Spanish homework for 2 hours .
My momma Bestfrand died I wish I was still in Spain
Enoy yall day Ahhhhh so much homework .
Going over Bae house TWITTER-ENTITY I miss you too !
She not texting or calling ? Ok I want to move to california
Real relationships go thru real shit Lol , I don’t even go here .
About to spend my entire check IDGAF Ahhhhh so much homework .
Getting ready for school I’m so tired .

Table 7: Examples for correct dialectal/race predictions, which were predicted consistently by at least 9
different attacker-classifiers.

Data Task Protected
Attribute �

DIAL Sentiment Race 12.2
Mention Race 14.3

PAN16 Mention Gender 8.1
Mention Age 9.7

Table 8: Attacker’s performance on different
datasets. Results are on a training set 10% held-
out. � is the difference between the attacker score
and the corresponding adversary’s accuracy.

(Edwards and Storkey, 2015; Feutry et al., 2018).
In contrast, we consider features that are based on
short user-authored text.

Several works apply adversarial training to tex-
tual data, in order to learn encoders that are in-
variant to some properties of the text (Chen et al.,
2016; Conneau et al., 2017; Zhang et al., 2017; Xie
et al., 2017). As their main motivation is to remove
information about domain or language in order to
improve transfer learning, domain adaptation, or
end task accuracy, they were less concerned with
the ability to recover information from the result-
ing representation, and did not evaluate it directly
as we do here.

Recent work on creating private representation
in the text domain (Li et al., 2018) share our mo-
tivation of removing unintended demographic at-
tributes from the learned representation using ad-
versarial training. However, they report only the
discrimination accuracies of the adversarial com-
ponent, and do not train another classifier to verify
that the representations are indeed clear of the pro-
tected attribute. As our work shows, trusting the
adversary is insufficient, and external verification
is crucial.

Finally, our work is motivated by the desire for
fairness. We use a definition in which a fair classi-
fication is one that does not condition on a certain

attribute (fairness by blindness), and evaluate the
ability to achieve text-derived representations that
are blind to a property we wish to protect. Many
other definitions of fairness exist, including demo-
graphic parity, equality of odds and equality of
opportunity (see e.g. discussion in (Hardt et al.,
2016; Beutel et al., 2017)). Under our setup, blind-
ness guarantees these metrics (Appendix A).

8 Conclusions

We show that demographic information leaks into
intermediate representations of neural networks
trained on text data. Systems that train on text data
and do not want to condition on demographic in-
formation must take active steps against accidental
conditioning. Our experiments suggest that:
(1) Adversarial training is effective for mitigating
protected attribute leakage, but, when dealing with
text data, may fail to remove it completely.
(2) When using the adversarial training method,
the adversary score during training cannot be
trusted, and must be verified with an externally-
trained attacker, preferably on unseen data.
(3) Tuning the capacity and weight of the adver-
sary, as well as using an ensemble of several ad-
versaries, can improve the results. However, no
single method is the most effective in all cases.
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Abstract

Misinformation such as fake news is one of
the big challenges of our society. Research on
automated fact-checking has proposed meth-
ods based on supervised learning, but these
approaches do not consider external evidence
apart from labeled training instances. Recent
approaches counter this deficit by considering
external sources related to a claim. However,
these methods require substantial feature mod-
eling and rich lexicons. This paper overcomes
these limitations of prior work with an end-to-
end model for evidence-aware credibility as-
sessment of arbitrary textual claims, without
any human intervention. It presents a neural
network model that judiciously aggregates sig-
nals from external evidence articles, the lan-
guage of these articles and the trustworthiness
of their sources. It also derives informative
features for generating user-comprehensible
explanations that makes the neural network
predictions transparent to the end-user. Exper-
iments with four datasets and ablation studies
show the strength of our method.

1 Introduction

Motivation: Modern media (e.g., news feeds, mi-
croblogs, etc.) exhibit an increasing fraction of
misleading and manipulative content, from ques-
tionable claims and “alternative facts” to com-
pletely faked news. The media landscape is be-
coming a twilight zone and battleground. This so-
cietal challenge has led to the rise of fact-checking
and debunking websites, such as Snopes.com
and PolitiFact.com, where people research claims,
manually assess their credibility, and present their
verdict along with evidence (e.g., background ar-
ticles, quotations, etc.). However, this manual ver-
ification is time-consuming. To keep up with the
scale and speed at which misinformation spreads,
we need tools to automate this debunking process.

State of the Art and Limitations: Prior work on
“truth discovery” (see Li et al. (2016) for survey)1

largely focused on structured facts, typically in
the form of subject-predicate-object triples, or on
social media platforms like Twitter, Sina Weibo,
etc. Recently, methods have been proposed to as-
sess the credibility of claims in natural language
form (Popat et al., 2017; Rashkin et al., 2017;
Wang, 2017), such as news headlines, quotes from
speeches, blog posts, etc.

The methods geared for general text input ad-
dress the problem in different ways. On the one
hand, methods like Rashkin et al. (2017); Wang
(2017) train neural networks on labeled claims
from sites like PolitiFact.com, providing credibil-
ity assessments without any explicit feature mod-
eling. However, they use only the text of ques-
tionable claims and no external evidence or inter-
actions that provide limited context for credibil-
ity analysis. These approaches also do not offer
any explanation of their verdicts. On the other
hand, Popat et al. (2017) considers external evi-
dence in the form of other articles (retrieved from
the Web) that confirm or refute a claim, and jointly
assesses the language style (using subjectivity lex-
icons), the trustworthiness of the sources, and the
credibility of the claim. This is achieved via a
pipeline of supervised classifiers. On the upside,
this method generates user-interpretable explana-
tions by pointing to informative snippets of evi-
dence articles. On the downside, it requires sub-
stantial feature modeling and rich lexicons to de-
tect bias and subjectivity in the language style.
Approach and Contribution: To overcome the
limitations of the prior works, we present De-
ClarE2, an end-to-end neural network model for
assessing and explaining the credibility of arbi-

1As fully objective and unarguable truth is often elusive
or ill-defined, we use the term credibility rather than “truth”.

2Debunking Claims with Interpretable Evidence
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trary claims in natural-language text form. Our
approach combines the best of both families of
prior methods. Similar to Popat et al. (2017), De-
ClarE incorporates external evidence or counter-
evidence from the Web as well as signals from the
language style and the trustworthiness of the un-
derlying sources. However, our method does not
require any feature engineering, lexicons, or other
manual intervention. Rashkin et al. (2017); Wang
(2017) also develop an end-to-end model, but De-
ClarE goes far beyond in terms of considering ex-
ternal evidence and joint interactions between sev-
eral factors, and also in its ability to generate user-
interpretable explanations in addition to highly
accurate assessments. For example, given the
natural-language input claim “the gun epidemic
is the leading cause of death of young African-
American men, more than the next nine causes put
together” by Hillary Clinton, DeClarE draws on
evidence from the Web to arrive at its verdict cred-
ible, and returns annotated snippets like the one
in Table 6 as explanation. These snippets, which
contain evidence in the form of statistics and as-
sertions, are automatically extracted from web ar-
ticles from sources of varying credibility.

Given an input claim, DeClarE searches for web
articles related to the claim. It considers the con-
text of the claim via word embeddings and the
(language of) web articles captured via a bidirec-
tional LSTM (biLSTM), while using an attention
mechanism to focus on parts of the articles accord-
ing to their relevance to the claim. DeClarE then
aggregates all the information about claim source,
web article contexts, attention weights, and trust-
worthiness of the underlying sources to assess the
claim. It also derives informative features for in-
terpretability, like source embeddings that capture
trustworthiness and salient words captured via at-
tention. Key contributions of this paper are:

• Model: An end-to-end neural network model
which automatically assesses the credibility
of natural-language claims, without any hand-
crafted features or lexicons.

• Interpretability: An attention mechanism in
our model that generates user-comprehensible
explanations, making credibility verdicts
transparent and interpretable.

• Experiments: Extensive experiments on four
datasets and ablation studies, demonstrating
effectiveness of our method over state-of-the-
art baselines.

2 End-to-end Framework for Credibility
Analysis

Consider a set of N claims hCni from the respec-
tive origins/sources hCSni, where n 2 [1, N ].
Each claim Cn is reported by a set of M arti-
cles hAm,ni along with their respective sources
hASm,ni, where m 2 [1, M ]. Each corresponding
tuple of claim and its origin, reporting articles and
article sources – hCn, CSn, Am,n, ASm,ni forms
a training instance in our setting, along with the
credibility label of the claim used as ground-truth
during network training. Figure 1 gives a pictorial
overview of our model. In the following sections,
we provide a detailed description of our approach.

2.1 Input Representations
The input claim Cn of length l is represented as
[c1, c2, ..., cl] where cl 2 <d is the d-dimensional
word embedding of the l-th word in the input
claim. The source/origin of the claim CSn is rep-
resented by a ds-dimensional embedding vector
csn 2 <ds .

A reporting article Am,n consisting of k to-
kens is represented by [am,n,1, am,n,2, ..., am,n,k],
where am,n,k 2 <d is the d-dimensional word
embedding vector for the k-th word in the report-
ing article Am,n. The claim and article word em-
beddings have shared parameters. The source of
the reporting article ASm,n is represented as a ds-
dimensional vector, asm,n 2 <ds . For the sake
of brevity, we drop the notation subscripts n and
m in the following sections by considering only a
single training instance – the input claim Cn from
source CSn, the corresponding article Am,n and
its sources ASm,n given by: hC, CS, A, ASi.

2.2 Article Representation
To create a representation of an article, which may
capture task-specific features such as whether it
contains objective language, we use a bidirectional
Long Short-Term Memory (LSTM) network as
proposed by Graves et al. (2005). A basic LSTM
cell consists of various gates to control the flow of
information through timesteps in a sequence, mak-
ing LSTMs suitable for capturing long and short
range dependencies in text that may be difficult
to capture with standard recurrent neural networks
(RNNs). Given an input word embedding of to-
kens haki, an LSTM cell performs various non-
linear transformations to generate a hidden vector
state hk for each token at each timestep k.
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Figure 1: Framework for credibility assessment. Upper part of the pipeline combines the article and
claim embeddings to get the claim specific attention weights. Lower part of the pipeline captures the
article representation through biLSTM. Attention focused article representation along with the source
embeddings are passed through dense layers to predict the credibility score of the claim.

We use bidirectional LSTMs in place of stan-
dard LSTMs. Bidirectional LSTMs capture both
the previous timesteps (past features) and the fu-
ture timesteps (future features) via forward and
backward states respectively. Correspondingly,
there are two hidden states that capture past and
future information that are concatenated to form
the final output as: hk = [

�!
hk,
 �
hk].

2.3 Claim Specific Attention

As we previously discussed, it is important to con-
sider the relevance of an article with respect to the
claim; specifically, focusing or attending to parts
of the article that discuss the claim. This is in con-
trast to prior works (Popat et al., 2017; Rashkin
et al., 2017; Wang, 2017) that ignore either the ar-
ticle or the claim, and therefore miss out on this
important interaction.

We propose an attention mechanism to help our
model focus on salient words in the article with
respect to the claim. To this end, we compute
the importance of each term in an article with
respect to an overall representation of the corre-
sponding claim. Additionally, incorporating atten-
tion helps in making our model transparent and in-
terpretable, because it provides a way to generate
the most salient words in an article as evidence of
our model’s verdict.

Following Wieting et al. (2015), the overall rep-
resentation of an input claim is generated by tak-
ing an average of the word embeddings of all the

words therein:

c̄ =
1

l

X

l

cl

We combine this overall representation of the
claim with each article term:

âk = ak � c̄

where, âk 2 <d+d and � denotes the concatenate
operation. We then perform a transformation to
obtain claim-specific representations of each arti-
cle term:

a0
k = f(Waâk + ba)

where Wa and ba are the corresponding weight
matrix and bias terms, and f is an activation func-
tion3, such as ReLU , tanh, or the identity func-
tion. Following this, we use a softmax activation
to calculate an attention score ↵k for each word
in the article capturing its relevance to the claim
context:

↵k =
exp(a0

k)P
k exp(a0

k)
(1)

2.4 Per-Article Credibility Score of Claim
Now that we have article term representations
given by hhki and their relevance to the claim
given by h↵ki, we need to combine them to pre-
dict the claim’s credibility. In order to create an

3In our model, the tanh activation function gives best re-
sults.
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attention-focused representation of the article con-
sidering both the claim and the article’s language,
we calculate a weighted average of the hidden
state representations for all article tokens based on
their corresponding attention scores:

g =
1

k

X

k

↵k · hk (2)

We then combine all the different feature repre-
sentations: the claim source embedding (cs), the
attention-focused article representation (g), and
the article source embedding (as). In order to
merge the different representations and capture
their joint interactions, we process them with two
fully connected layers with non-linear activations.

d1 = relu(Wc(g � cs� as) + bc)

d2 = relu(Wdd1 + bd)

where, W and b are the corresponding weight ma-
trix and bias terms.

Finally, to generate the overall credibility label
of the article for classification tasks, or credibil-
ity score for regression tasks, we process the final
representation with a final fully connected layer:

Classification: s = sigmoid(d2) (3)
Regression: s = linear(d2) (4)

2.5 Credibility Aggregation
The credibility score in the above step is obtained
considering a single reporting article. As previ-
ously discussed, we have M reporting articles per
claim. Therefore, once we have the per-article
credibility scores from our model, we take an av-
erage of these scores to generate the overall credi-
bility score for the claim:

cred(C) =
1

M

X

m

sm (5)

This aggregation is done after the model is
trained.

3 Datasets

We evaluate our approach and demonstrate its gen-
erality by performing experiments on four differ-
ent datasets: a general fact-checking website, a po-
litical fact-checking website, a news review com-
munity, and a SemEval Twitter rumour dataset.

3.1 Snopes
Snopes (www.snopes.com) is a general fact-
checking website where editors manually investi-
gate various kinds of rumors reported on the In-
ternet. We used the Snopes dataset provided by
Popat et al. (2017). This dataset consists of ru-
mors analyzed on the Snopes website along with
their credibility labels (true or false), sets of re-
porting articles, and their respective web sources.

3.2 PolitiFact
PolitiFact is a political fact-checking website
(www.politifact.com) in which editors rate
the credibility of claims made by various politi-
cal figures in US politics. We extract all articles
from PolitiFact published before December 2017.
Each article includes a claim, the speaker (polit-
ical figure) who made the claim, and the claim’s
credibility rating provided by the editors.

PolitiFact assigns each claim to one of six pos-
sible ratings: true, mostly true, half true, mostly
false, false and pants-on-fire. Following Rashkin
et al. (2017), we combine true, mostly true and
half true ratings into the class label true and the
rest as false – hence considering only binary cred-
ibility labels. To retrieve the reporting articles for
each claim (similar to Popat et al. (2017)), we is-
sue each claim as a query to a search engine4 and
retrieve the top 30 search results with their respec-
tive web sources.

3.3 NewsTrust
NewsTrust is a news review community in which
members review the credibility of news articles.
We use the NewsTrust dataset made available by
Mukherjee and Weikum (2015). This dataset con-
tains NewsTrust stories from May 2006 to May
2014. Each story consists of a news article along
with its source, and a set of reviews and ratings by
community members. NewsTrust aggregates these
ratings and assigns an overall credibility score (on
a scale of 1 to 5) to the posted article. We map the
attributes in this data to the inputs expected by De-
ClarE as follows: the title and the web source of
the posted (news) article are mapped to the input
claim and claim source, respectively. Reviews and
their corresponding user identities are mapped to
reporting articles and article sources, respectively.
We use this dataset for the regression task of pre-
dicting the credibility score of the posted article.

4We use the Bing search API.
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Dataset SN PF NT SE

Total claims 4341 3568 5344 272
True claims 1164 1867 - 127
False claims 3177 1701 - 50
Unverified claims - - - 95

Claim sources - 95 161 10

Articles 29242 29556 25128 3717
Article sources 336 336 251 89

Table 1: Data statistics (SN: Snopes, PF: Politi-
Fact, NT: NewsTrust, SE: SemEval).

3.4 SemEval-2017 Task 8
As the fourth dataset, we consider the benchmark
dataset released by SemEval-2017 for the task of
determining credibility and stance of social media
content (Twitter) (Derczynski et al., 2017). The
objective of this task is to predict the credibility
of a questionable tweet (true, false or unverified)
along with a confidence score from the model. It
has two sub-tasks: (i) a closed variant in which
models only consider the questionable tweet, and
(ii) an open variant in which models consider both
the questionable tweet and additional context con-
sisting of snapshots of relevant sources retrieved
immediately before the rumor was reported, a
snapshot of an associated Wikipedia article, news
articles from digital news outlets, and preceding
tweets about the same event. Testing and devel-
opment datasets provided by organizers have 28
tweets (1021 reply tweets) and 25 tweets (256 re-
ply tweets), respectively.

3.5 Data Processing
In order to have a minimum support for training,
claim sources with less than 5 claims in the dataset
are grouped into a single dummy claim source,
and article sources with less than 10 articles are
grouped similarly (5 articles for SemEval as it is a
smaller dataset).

For Snopes and PolitiFact, we need to extract
relevant snippets from the reporting articles for
a claim. Therefore, we extract snippets of 100
words from each reporting article having the maxi-
mum relevance score: sim = simbow⇥simsemantic
where simbow is the fraction of claim words that
are present in the snippet, and simsemantic repre-
sents the cosine similarity between the average
of claim word embeddings and snippet word em-
beddings. We also enforce a constraint that the
sim score is at least �. We varied � from 0.2
to 0.8 and found 0.5 to give the optimal perfor-

Parameter SN PF NT SE

Word embedding length 100 100 300 100
Claim source embedding length - 4 8 4
Article source embedding length 8 4 8 4
LSTM size (for each pass) 64 64 64 16
Size of fully connected layers 32 32 64 8
Dropout 0.5 0.5 0.3 0.3

Table 2: Model parameters used for each dataset
(SN: Snopes, PF: PolitiFact, NT: NewsTrust, SE:
SemEval).

mance on a withheld dataset. We discard all arti-
cles related to Snopes and PolitiFact websites from
our datasets to have an unbiased model. Statis-
tics of the datasets after pre-processing is pro-
vided in Table 1. All the datasets are made pub-
licly available at https://www.mpi-inf.
mpg.de/dl-cred-analysis/.

4 Experiments

We evaluate our approach by conducting experi-
ments on four datasets, as described in the previ-
ous section. We describe our experimental setup
and report our results in the following sections.

4.1 Experimental Setup
When using the Snopes, PolitiFact and NewsTrust
datasets, we reserve 10% of the data as valida-
tion data for parameter tuning. We report 10-fold
cross validation results on the remaining 90% of
the data; the model is trained on 9-folds and the
remaining fold is used as test data. When us-
ing the SemEval dataset, we use the data splits
provided by the task’s organizers. The objective
for Snopes, PolitiFact and SemEval experiments is
binary (credibility) classification, while for New-
sTrust the objective is to predict the credibility
score of the input claim on a scale of 1 to 5 (i.e.,
credibility regression). We represent terms us-
ing pre-trained GloVe Wikipedia 6B word embed-
dings (Pennington et al., 2014). Since our train-
ing datasets are not very large, we do not tune the
word embeddings during training. The remaining
model parameters are tuned on the validation data;
the parameters chosen are reported in Table 2. We
use Keras with a Tensorflow backend to imple-
ment our system. All the models are trained using
Adam optimizer (Kingma and Ba, 2014) (learn-
ing rate: 0.002) with categorical cross-entropy loss
for classification and mean squared error loss for
regression task. We use L2-regularizers with the
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Dataset Configuration True Claims
Accuracy (%)

False Claims
Accuracy (%)

Macro
F1-Score AUC

Snopes

LSTM-text 64.65 64.21 0.66 0.70
CNN-text 67.15 63.14 0.66 0.72
Distant Supervision 83.21 80.78 0.82 0.88

DeClarE (Plain) 74.37 78.57 0.78 0.83
DeClarE (Plain+Attn) 78.34 78.91 0.79 0.85
DeClarE (Plain+SrEmb) 77.43 79.80 0.79 0.85
DeClarE (Full) 78.96 78.32 0.79 0.86

PolitiFact

LSTM-text 63.19 61.96 0.63 0.66
CNN-text 63.67 63.31 0.64 0.67
Distant Supervision 62.53 62.08 0.62 0.68

DeClarE (Plain) 62.67 69.05 0.66 0.70
DeClarE (Plain+Attn) 65.53 68.49 0.66 0.72
DeClarE (Plain+SrEmb) 66.71 69.28 0.67 0.74
DeClarE (Full) 67.32 69.62 0.68 0.75

Table 3: Comparison of various approaches for credibility classification on Snopes and PolitiFact datasets.

fully connected layers as well as dropout. For all
the datasets, the model is trained using each claim-
article pair as a separate training instance.

To evaluate and compare the performance of
DeClarE with other state-of-the-art methods, we
report the following measures:
• Credibility Classification (Snopes, PolitiFact

and SemEval): accuracy of the models in clas-
sifying true and false claims separately, macro
F1-score and Area-Under-Curve (AUC) for
the ROC (Receiver Operating Characteristic)
curve.

• Credibility Regression (NewsTrust): Mean
Square Error (MSE) between the predicted and
true credibility scores.

4.2 Results: Snopes and Politifact
We compare our approach with the following
state-of-the-art models: (i) LSTM-text, a recent
approach proposed by Rashkin et al. (2017). (ii)
CNN-text: a CNN based approach proposed by
Wang (2017). (iii) Distant Supervision: state-
of-the-art distant supervision based approach pro-
posed by Popat et al. (2017). (iv) DeClare
(Plain): our approach with only biLSTM (no at-
tention and source embeddings). (v) DeClarE
(Plain+Attn): our approach with only biLSTM
and attention (no source embeddings). (vi) De-
ClarE (Plain+SrEmb): our approach with only
biLSTM and source embeddings (no attention).
(vii) DeClarE (Full): end-to-end system with biL-
STM, attention and source embeddings.

The results when performing credibility classi-
fication on the Snopes and PolitiFact datasets are

shown in Table 3. DeClarE outperforms LSTM-
text and CNN-text models by a large margin on
both datasets. On the other hand, for the Snopes
dataset, performance of DeClarE (Full) is slightly
lower than the Distant Supervision configuration
(p-value of 0.04 with a pairwise t-test). How-
ever, the advantage of DeClarE over Distant Su-
pervision approach is that it does not rely on hand
crafted features and lexicons, and can generalize
well to arbitrary domains without requiring any
seed vocabulary. It is also to be noted that both of
these approaches use external evidence in the form
of reporting articles discussing the claim, which
are not available to the LSTM-text and CNN-text
baselines. This demonstrates the value of external
evidence for credibility assessment.

On the PolitiFact dataset, DeClarE outperforms
all the baseline models by a margin of 7-9%
AUC (p-value of 9.12e�05 with a pairwise t-test)
with similar improvements in terms of Macro F1.
A performance comparison of DeClarE’s various
configurations indicates the contribution of each
component of our model, i.e, biLSTM capturing
article representations, attention mechanism and
source embeddings. The additions of both the
attention mechanism and source embeddings im-
prove performance over the plain configuration in
all cases when measured by Macro F1 or AUC.

4.3 Results: NewsTrust

When performing credibility regression on the
NewsTrust dataset, we evaluate the models in
terms of mean squared error (MSE; lower is bet-
ter) for credibility rating prediction. We use the
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Configuration MSE

CNN-text 0.53
CCRF+SVR 0.36
LSTM-text 0.35
DistantSup 0.35
DeClarE (Plain) 0.34
DeClarE (Full) 0.29

Table 4: Comparison of various approaches for
credibility regression on NewsTrust dataset.

first three models described in Section 4.2 as base-
lines. For CNN-text and LSTM-text, we add a lin-
ear fully connected layer as the final layer of the
model to support regression. Additionally, we also
consider the state-of-the-art CCRF+SVR model
based on Continuous Conditional Random Field
(CCRF) and Support Vector Regression (SVR)
proposed by Mukherjee and Weikum (2015). The
results are shown in Table 4. We observe that De-
ClarE (Full) outperforms all four baselines, with
a 17% decrease in MSE compared to the best-
performing baselines (i.e., LSTM-text and Dis-
tant Supervision). The DeClarE (Plain) model
performs substantially worse than the full model,
illustrating the value of including attention and
source embeddings. CNN-text performs substan-
tially worse than the other baselines.

4.4 Results: SemEval

On the SemEval dataset, the objective is to per-
form credibility classification of a tweet while also
producing a classification confidence score. We
compare the following approaches and consider
both variants of the SemEval task: (i) NileTMRG
(Enayet and El-Beltagy, 2017): the best perform-
ing approach for the close variant of the task, (ii)
IITP (Singh et al., 2017): the best performing ap-
proach for the open variant of the task, (iii) De-
Clare (Plain): our approach with only biLSTM
(no attention and source embeddings), and (iv)
DeClarE (Full): our end-to-end system with biL-
STM, attention and source embeddings.

We use the evaluation measure proposed by the
task’s organizers: macro F1-score for overall clas-
sification and Root-Mean-Square Error (RMSE)
over confidence scores. Results are shown in Ta-
ble 5. We observe that DeClarE (Full) outperforms
all the other approaches — thereby, re-affirming
its power in harnessing external evidence.

Configuration Macro
Accuracy RMSE

IITP (Open) 0.39 0.746
NileTMRG (Close) 0.54 0.673
DeClarE (Plain) 0.46 0.687
DeClarE (Full) 0.57 0.604

Table 5: Comparison of various approaches for
credibility classification on SemEval dataset.

5 Discussion

5.1 Analyzing Article Representations
In order to assess how our model separates articles
reporting false claims from those reporting true
ones, we employ dimensionality reduction using
Principal Component Analysis (PCA) to project
the article representations (g in Equation 2) from
a high dimensional space to a 2d plane. The pro-
jections are shown in Figure 2a. We observe that
DeClarE obtains clear separability between credi-
ble versus non-credible articles in Snopes dataset.

5.2 Analyzing Source Embeddings
Similar to the treatment of article representations,
we perform an analysis with the claim and arti-
cle source embeddings by employing PCA and
plotting the projections. We sample a few popu-
lar news sources from Snopes and claim sources
from PolitiFact. These news sources and claim
sources are displayed in Figure 2b and Figure 2c,
respectively. From Figure 2b we observe that
DeClarE clearly separates fake news sources like
nationalreport, empirenews, huzlers, etc. from
mainstream news sources like nytimes, cnn, wsj,
foxnews, washingtonpost, etc. Similarly, from Fig-
ure 2c we observe that DeClarE locates politicians
with similar ideologies and opinions close to each
other in the embedding space.

5.3 Analyzing Attention Weights
Attention weights help understand what DeClarE
focuses on during learning and how it affects its
decisions – thereby, making our model transparent
to the end-users. Table 6 illustrates some interest-
ing claims and salient words (highlighted) that De-
ClarE focused on during learning. Darker shades
indicate higher weights given to the corresponding
words. As illustrated in the table, DeClarE gives
more attention to important words in the report-
ing article that are relevant to the claim and also
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(a) Projections of article representations
using PCA; DeClarE obtains clear sep-
aration between representations of non-
credible articles (red) vs. true ones
(green).

(b) Projections of article source repre-
sentations using PCA; DeClarE clearly
separates fake news sources from au-
thentic ones.

(c) Projections of claim source repre-
sentations using PCA; DeClarE clusters
politicians of similar ideologies close to
each other in the embedding space.

Figure 2: Dissecting the article, article source and claim source representations learned by DeClarE.

Table 6: Interpretation via attention (weights) ([True]/[False] indicates the verdict from DeClarE).

play a major role in deciding the corresponding
claim’s credibility. In the first example on Table 6,
highlighted words such as “..barely true...” and
“..sketchy evidence...” help our system to identify
the claim as not credible. On the other hand, high-
lighted words in the last example, like, “..reveal...”
and “..documenting reports...” help our system to
assess the claim as credible.

6 Related Work

Our work is closely related to the following areas:
Credibility analysis of Web claims: Our work
builds upon approaches for performing credibility
analysis of natural language claims in an open-
domain Web setting. The approach proposed in
Popat et al. (2016, 2017) employs stylistic lan-

guage features and the stance of articles to as-
sess the credibility of the natural language claims.
However, their model heavily relies on hand-
crafted language features. Rashkin et al. (2017);
Wang (2017) propose neural network based ap-
proaches for determining the credibility of a tex-
tual claim, but it does not consider external
sources like web evidence and claim sources.
These can be important evidence sources for cred-
ibility analysis. The method proposed by Samadi
et al. (2016) uses the Probabilistic Soft Logic
(PSL) framework to estimate source reliability and
claim correctness. Vydiswaran et al. (2011) pro-
poses an iterative algorithm which jointly learns
the veracity of textual claims and trustworthiness
of the sources. These approaches do not consider
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the deeper semantic aspects of language, however.
Wiebe and Riloff (2005); Lin et al. (2011); Re-
casens et al. (2013) study the problem of detecting
bias in language, but do not consider credibility.
Truth discovery: Prior approaches for truth dis-
covery (Yin et al., 2008; Dong et al., 2009, 2015;
Li et al., 2011, 2014, 2015; Pasternack and Roth,
2011, 2013; Ma et al., 2015; Zhi et al., 2015;
Gao et al., 2015; Lyu et al., 2017) have focused
on structured data with the goal of addressing
the problem of conflict resolution amongst multi-
source data. Nakashole and Mitchell (2014) pro-
posed a method to extract conflicting values from
the Web in the form of Subject-Predicate-Object
(SPO) triplets and uses language objectivity analy-
sis to determine the true value. Like the other truth
discovery approaches, however, this approach is
mainly suitable for use with structured data.
Credibility analysis in social media: Mukher-
jee et al. (2014); Mukherjee and Weikum (2015)
propose PGM based approaches to jointly in-
fer a statement’s credibility and the reliability of
sources using language specific features. Ap-
proaches like (Castillo et al., 2011; Qazvinian
et al., 2011; Yang et al., 2012; Xu and Zhao, 2012;
Gupta et al., 2013; Zhao et al., 2015; Volkova
et al., 2017) propose supervised methods for de-
tecting deceptive content in social media plat-
forms like Twitter, Sina Weibo, etc. Similarly, ap-
proaches like Ma et al. (2016); Ruchansky et al.
(2017) use neural network methods to identify
fake news and rumors on social media. Ku-
mar et al. (2016) studies the problem of detect-
ing hoax articles on Wikipedia. All these rely on
domain-specific and community-specific features
like retweets, likes, upvotes, etc.

7 Conclusion

In this work, we propose a completely automated
end-to-end neural network model, DeClarE, for
evidence-aware credibility assessment of natural
language claims without requiring hand-crafted
features or lexicons. DeClarE captures signals
from external evidence articles and models joint
interactions between various factors like the con-
text of a claim, the language of reporting articles,
and trustworthiness of their sources. Extensive ex-
periments on real world datasets demonstrate our
effectiveness over state-of-the-art baselines.
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Abstract

People use online platforms to seek out sup-
port for their informational and emotional
needs. Here, we ask what effect does reveal-
ing one’s gender have on receiving support. To
answer this, we create (i) a new dataset and
method for identifying supportive replies and
(ii) new methods for inferring gender from text
and name. We apply these methods to create a
new massive corpus of 102M online interac-
tions with gender-labeled users, each rated by
degree of supportiveness. Our analysis shows
wide-spread and consistent disparity in sup-
port: identifying as a woman is associated with
higher rates of support—but also higher rates
of disparagement.

1 Introduction
Despite substantial efforts to reduce gender dis-
parities in online social contexts, gender gaps per-
sist and, increasingly, negatively affect women
through online harassment (Duggan, 2017). On-
line social platforms still serve a critical role for
individuals as they seek to fill informational and
emotional needs, frequently by interacting with
others (Goswami et al., 2010; Chuang and Yang,
2012; Hether et al., 2016). The supportive replies
of others help promote personal well-being (Mac-
George et al., 2011), yet unsupportive replies can
not only lead to distress but discourage online en-
gagement altogether. Given gender disparity in
the receipt of anti-social behavior, to what degree
does this disparity persist in individuals’ receipt
of support? We answer this question, illustrated in
Figure 1, by examining supportive and unsupport-
ive message rates across millions of online inter-
actions, using a new computational model of sup-
port. Our work is motivated by an agenda of pro-
moting supportive online platforms where people
can participate equally.

This work connects with the growing body of

Comment: KatieZ22: I’m nervous about my differential
calculus exam next week. My current idea is work through
problems on previous exams. But yiiiikes.
x Reply: PizzaMagic: You can ace that test! Your plan

seems smart and you have plenty of time to prepare. :)

Figure 1: In this fictitious example, KatieZ22
receives a supportive reply from PizzaMagic. In
choosing their names, each user has chosen a partic-
ular gender performance, signaling female and gender-
anonymity, respectively. In online settings, such gender
performances evoke stereotypes that affect how others
interact and provide access to online resources. Our
study asks what effect does this gender signaling have
on individuals receiving support and disparagement?

computational studies of gender disparity in online
behavior (e.g., Lam et al., 2011; Magno and We-
ber, 2014; Garimella and Mihalcea, 2016; Li et al.,
2018); our work here examines this disparity along
a new dimension, support, and unlike prior work,
examines disparity along the full spectrum of both
pro-social (supportive) and anti-social (unsupport-
ive) behaviors. Prior works have also examined
the language of support in online support forums
for health-related issues (Biyani et al., 2014; Wang
et al., 2012; De Choudhury and De, 2014; Althoff
et al., 2016; De Choudhury and Kiciman, 2017),
often with the aim of improving people’s access.
Here, we aim to study support in general, everyday
interactions, drawing upon theories of how sup-
port is expressed in language (Cutrona and Suhr,
1992; Wright et al., 2003).

Our investigation provides four main contribu-
tions. First, we introduce a new task of rating
the supportiveness of a message and provide an
accompanying dataset of 9,032 post-reply pairs
with annotations (§2). Second, using this data,
we develop a new computational model for au-
tomatically identifying supportive and unsupport-
ive replies (§3), using theory-based features that
operationalize linguistic strategies for giving sup-
port. Third, we develop a new state-of-the-art sys-
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tem for classifying the gender of a username (§4)
and construct a massive dataset of over 102M post-
reply pairs from three online platforms (§5), where
participants are labeled by gender. Further, the text
of each post is rated for its gender predictiveness,
enabling studying gender performance at the name
and textual levels. Finally, we apply our support
classifier to our social interaction dataset to re-
veal wide-spread disparity on the basis of gender
(§6). Our results show that when gender is per-
formed, female performances are associated both
with higher rates of supportive comments and with
higher rates of unsupportive comments, highlight-
ing that gender disparity is not just for negative
behaviors online.

2 The Language of Support

Individuals engage in online platforms for a va-
riety of reasons and supportive responses to this
engagement can take many forms (Shumaker and
Brownell, 1984; Vaux, 1985), from informational
support like advice to emotional support like ex-
pressions of sympathy. Responders may choose
from different linguistic support strategies de-
pending on the speaker and context (Cutrona and
Suhr, 1992). For example, given an individ-
ual commenting on a Wikipedia talk page about
their idea for adding new content, a responder
may point to an additional resource they can use,
whereas given an individual posting to Reddit for
relationship advice, a responder may express sym-
pathy. Our goal is to study the language and be-
havior of everyday supportive or unsupportive in-
teractions as they occur on three large social plat-
forms: Reddit, StackExchange, and Wikipedia.
These platforms represent common settings peo-
ple seek out to engage in discussions and ask for
help. Therefore, we annotate a dataset by degrees
of support and analyze how linguistic expectations
of support manifest in online interactions.
Data and Annotation Post and reply pairs were
selected from the three platforms. Many of these
interactions are short and therefore to increase di-
versity, annotated pairs were sampled by balanc-
ing by platform and the lengths of posts and replies
seen in each.

As a social activity, support is often expressed
by drawing upon other social strategies such as
politeness (Feng et al., 2013). To help focus
annotators’ attention on support specifically and
disentangle related social cues, we pair our sup-

Figure 2: Annotators’ rating distributions.

Rating Example Reply
1.33 see your arse mate, stop talking out of it.
2.0 We dont like your kind.
3.0 I was referring to <link>
3.33 thanks chief.
3.66 Not many people, apparently, but I’m listening!
4.0 Im in as well! Meet up at the Tavern?!
4.33 I like your style!
4.66 Love this. Thank you, more please.

Table 1: Examples of annotator ratings of Support from
1 to 5. Additional examples are in Supplemental §2.

port annotation with contrastive annotation ques-
tions for three other related phenomena: agree-
ment (with the post’s message), politeness, and of-
fensiveness. Annotators were asked to rate support
on a five-point Likert scale from very unsupport-
ive and very supportive, with analogous questions
each for agreement and politeness; offensiveness
was rated on a five point scale from inoffensive to
very offensive.

All data was annotated using CrowdFlower with
detailed instructions and example replies for each
level of the Likert scale. Each task presented five
post-reply pairs and with detailed instructions that
ask annotators to focus on rating each reply along
these four dimensions. Annotators were required
to pass a training phase where they had at least
70% agreement with a gold standard annotation
on 10 items. After training, each task included one
control question, which was used to remove anno-
tators whose agreement with the gold standard fell
below 70%.

In total, 9,032 instances were annotated by three
annotators, who had a Krippendorff’s ↵ of 0.766,
indicating substantial agreement on the data (Art-
stein and Poesio, 2008). Figure 2 shows the distri-
bution of ratings. Support is positively correlated
with agreement (r=0.71) and politeness (r=0.51),
though annotators rated replies as having more po-
liteness than support on average. Support annota-
tion examples are shown in Table 1. Offensiveness
was negatively correlated (r=-0.38) with support.
Analysis Supportive replies can use a variety of
strategies for offering support, depending on need
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Strategy Support In Top-25% Example

IN
FO

R
M

A
T

IO
N

A
L Suggestion advice 0.043 16.3% You might try...

Referral 0.091 1.3% Please see [URL]
Situational appraisal �0.071⇤⇤ 1.5% Your situation sounds like...
Teaching �0.065⇤⇤⇤ 2.7% The reason that’s happening...

TA
N

G
IB

L
E Direct offer to do something �0.020 0.04% Do you want me to?

Willingness 0.266⇤⇤⇤ 1.6% I could help you...

E
ST

E
E

M

Compliment 0.337⇤⇤⇤ 23.8% Great idea!
Validation 0.248⇤⇤⇤ 27.2% You’re right about...
Relief of blame 0.490⇤⇤⇤ 1.2% It’s not your fault that...
Companionship Reminder �0.089⇤ 0.7% Your friends and family still...

E
M

O
T

IO
N

A
L

Sympathy 0.041 0.1% Sorry to hear that
Listening �0.104⇤⇤⇤ 3.1% Why did you feel...
Empathy 0.067 0.08% I know how you feel...
Encouragement 0.423⇤⇤⇤ 1.6% Go for it
Accommodation 0.035 74.7%
Emotion 0.081⇤⇤⇤ 27.2%

Table 2: Support strategies and their presence in our data, as shown through the mean supportiveness rating (-2
to 2) for replies using that strategy and the percentage of posts in the top 25% of the most-supportive that employ
the strategy. For supportiveness, posts are compared with all others not employing that strategy, with significance
measured using the Mann-Whitney U test. Throughout the paper, *** denotes p<0.001, ** p<0.01, and * p<0.05.

and context. Cutrona and Suhr (1992) proposed a
broad taxonomy of support strategies based on in-
person interactions, such as offering an appraisal
of the current situation or seeking to relieve the
other person of blame. We examine to what degree
are these strategies employed in online, relatively-
anonymous settings and whether their usage on-
line is associated with higher perceived support.
To test this, support strategies were automatically
identified using a combination of regular expres-
sions for lexical patterns and dependency-parsed
trees, together with specialized lexicons matching
each strategy and rules for detecting negation. For
example, suggestions were detected by identifying
a second-person subject with a modal verb indicat-
ing possibility (Quirk et al., 1985, p. 219).

Many of the strategies suggested by Cutrona
and Suhr (1992) for expressing support in per-
son were also observed online; Table 2 shows the
average supportiveness rating for replies contain-
ing each strategy, where supportiveness is cen-
tered to [�2, 2]. Further, their effect on perception
of supportiveness, while small, is significant and
positive for many. However, we do observe two
notable negative trends. First informational sup-
port strategies of aiding a person by reassessing
their situation (e.g., offering a new perspective)
and by teaching were considered less supportive.
We observed that in several cases these strategies

were employed when an individual was not seek-
ing support, in which case unrequested new infor-
mation can appear condescending. Indeed, replies
employing these two support strategies were still
rated polite, 0.30 and 0.31 mean politeness respec-
tively, suggesting the context in which new infor-
mation is given weighs heavily on whether it is
treated as supporting the individual.

Support can also be conveyed implicitly
through unconscious stylistic choices. Rains
(2016) notes linguistic accommodation is fre-
quently observed in supportive responses, where
individuals match the function word frequency
of the original communication (Bucholtz and
Hall, 2005; Danescu-Niculescu-Mizil et al., 2011).
Shown in the bottom of Table 2, we observe only a
weak non-significant positive association between
support and accommodation (as measured using
Danescu-Niculescu-Mizil et al. (2011)), though
the single post-reply unit of analysis limits our
ability to detect long-term accommodation across
multiple dialog turns. Liviatan et al. (2008)
and Li and Feng (2014) found that supportive
replies often to contain more emotional language,
which evokes a personal connection and intensity
(Spottswood et al., 2013; Braithwaite et al., 1999).
Shown in the bottom of Table 2, we find a signifi-
cant and positive association where more emotive
posts are viewed as more supportive.
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Finally, we note that a few strategies suggested
by Cutrona and Suhr (1992) were not seen in our
annotated dataset. Strategies of offering to partici-
pate, using physical affection, assurances of confi-
dentiality, material and financial loans, and prayer
were not seen; a broader scan of our unannotated
data did find these attested but rare in practice. We
attribute this rareness to the public, online nature
of the interactions, in contrast to the interpersonal
setting studied by Cutrona and Suhr (1992).

3 Computational Model of Support

Our primary objective is to measure the relation-
ship between identity and support in online social
systems. Therefore, we next develop a classifier to
automatically label replies with support.
Features As a social activity, the language of sup-
port draws upon multiple lexical and stylistic cues.
We base on classifier on theory-inspired and data-
driven features. The first set consists of the opera-
tionalized linguistic strategies for expressing sup-
port, shown in Table 2. Further, in constructing
our feature set, we build upon past linguistic anal-
yses of related social-situated language. Wellman
and Wortley (1990) note that the availability of
support is related to social distance, which is in
part expressed linguistically through the degree of
formality (Hovy, 1987; Sigley, 1997). Therefore,
we include features from Pavlick and Tetreault
(2016), which examined linguistic markers of for-
mality. Advice giving is a core component of
many theories of support (MacGeorge et al., 2011)
and such advice is frequently wrapped in polite-
ness language (Feng et al., 2013), e.g., hedging
suggestions rather than imposing direction, which
provides face-saving opportunities for the per-
son receiving support (Clark and Schunk, 1980).
Therefore, we include the feature set of Danescu-
Niculescu-Mizil et al. (2013), which though fo-
cused on requests, provides many general lexical
patterns for politeness.

Beyond these, we include features motivated by
observational studies of support. In analyzing on-
line support groups, Alpers et al. (2005) found that
LIWC (Pennebaker and Stone, 2003) was valid
as a construct for analyzing messages and com-
pared similarly human judgments about the cat-
egories. To capture emotional language (Li and
Feng, 2014; Liviatan et al., 2008), we include the
NRC emotion lexicons of Mohammad and Turney
(2013). Given the informational support strategy,

we include lexicons from argumentation for cap-
turing explanatory replies (Teufel, 2000).

Support may be given in response to stressors,
which change in nature throughout a person’s life-
time (Vaux, 1985; Segrin, 2003). To potentially
capture variation in the language of support based
on the posting individuals, we include features
known to be associated with age such as elon-
gation and capitalization (Goswami et al., 2009;
Barbieri, 2008), grammatical differences in sen-
tence construction and length (Hovy and Søgaard,
2015), and a lexicon for age of acquisition (Kuper-
man et al., 2012).

Data-driven features include (1) lexical fea-
tures capturing the presence of n-grams, their rel-
ative frequency, (2) grammatical features from
dependency-parsed triples, which are also backed
off to parts of speech, (3) word lexicons for for-
mality, sentiment, and subjectivity, (4) style fea-
tures such as word and sentence length, complex-
ity, and use of contractions, and (5) the average
word vector for the sentence.

In total, our model includes 23,903 features, the
bulk of which are n-grams and dependency triples.
A detailed listing of all features is provided in Sup-
plemental §1.

One notable feature that we did not include was
the presence of self-disclosure in a reply, which
has been linked to high-social support as a way
of conveying connection and empathy (Wright
et al., 2003). While computational models for self-
disclosure have been proposed (Bak et al., 2014;
De Choudhury and De, 2014), we were unable to
scale these methods to the size of our analysis.
Task Setup Support ratings are discretized to
create a ternary classification task with labels
{�1, 0, 1}, denoting unsupportive, neutral, and
supportive comments. Ratings were discretized by
treating all those ratings -0.67 as negative and
those with a rating �0.67 as positive.

A Random Forest classifier was trained on all
23,903 features; random forests are robust to over-
fitting even with large numbers of features, mak-
ing them suitable for this high-dimensional fea-
ture space (Fernández-Delgado et al., 2014). Fur-
thermore, random forests are able to learn con-
junctive features, allowing us to learn how com-
binations of strategies are employed to yield sup-
port. As the majority of posts are neutral, we mit-
igate the class imbalance using SMOTE (Chawla
et al., 2002) to generate synthetic examples in the
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Model Macro-F1
Our Model 0.52

Bigram Features 0.43
Unigram Features 0.42

Support Features (Table 2) 0.40
Majority 0.29
Random 0.26

Table 3: Support classification performance

training fold using the 5 nearest neighbors, taking
care to avoid contamination of the test set. The
classifier is implemented using Scikit-learn (Pe-
dregosa et al., 2011) and syntactic processing was
done using spaCy (Honnibal and Johnson, 2015).
Word vectors are the publicly released Google-
News word2vec vectors (Mikolov et al., 2013).

Three works have examined related tasks where
Biyani et al. (2014) and Khanpour et al. (2018)
classify posts in online cancer support groups as
providing informational or emotional support and
Wang et al. (2012) classify the degree of support
along these dimensions. Here, we solve a more
general task that includes unsupportive comments
and is in the general domain.
Evaluation We compare our full model for pre-
dicting support against three models: our 14 fea-
tures for detecting support strategies from Table
2, a model trained on the subset of unigram fea-
tures (4,352), and a model trained on bigram fea-
tures (8,897), the latter of which is known to
be a strong lexical baseline (Wang and Manning,
2012). All models were tested using five-fold
cross-validation with Macro-F1 for evaluation and
including baselines for labeling instances at ran-
dom or choosing the most frequent.

Our full model obtains substantial improve-
ments over all baselines and models, as shown in
Table 3. Further, the simple support strategy fea-
tures provide a large and statically-significant im-
provement over the two baselines. The model us-
ing support strategy features performs similarity
to the unigram model, despite having two orders
of magnitude fewer features. A follow-up analysis
on cross-platform performance, described in Sup-
plemental §1.2, showed that while within-platform
performance was relatively high (0.54 Macro F1
for Reddit and 0.53 for Wikipedia), performance
for the more technical StackExchange site was
lower both within (0.44) and across (0.40 when
trained on Reddit and 0.42 when on Wikipedia).

Examining our full model’s most important fea-
tures showed that the two support strategies for
validation and compliments (cf. Table 2) were

the most important features, followed closely by
lexicons for emotion: Anger in LIWC, Disgust
in NRC, and the positive sentiment in Liu et al.
(2005), all of which were motivated by theory.
These results confirm that our theory-inspired fea-
tures are both salient for supportiveness and effec-
tive as features.

4 Inferring Gender

As a part of interacting, individuals present a view
of themselves as an interlocutor, revealing aspects
about themselves such as gender through explicit
means (Marwick, 2013; Allen and Wiles, 2016),
e.g., profile pictures, or through implicit—and
potentially unconscious—cues such as stylistic
choices in language (e.g., Eckert and McConnell-
Ginet, 2003; Bamman et al., 2014). In the rela-
tively anonymous and deindividuated online set-
ting, these identity cues can have a profound im-
pact on how other perceive and interact with them
(e.g., Mickelson et al., 1995; Herring, 2003; Am-
mari et al., 2014; Megarry, 2014) and these min-
imal gender cues give rise to full-fledged social
stereotypes and, potentially, the negative behav-
ior that comes when treating someone as a stereo-
type (Kiesler et al., 1984; Lea and Spears, 1991;
Postmes et al., 1998; Wang et al., 2009). Here,
we develop methods for inferring gender from two
signals: (1) names that users chose; and (2) im-
plicit cues conveyed by linguistic features.

4.1 Gender from Names

Prior work has developed models for inferring
gender from username alone (e.g., Tang et al.,
2011; Liu and Ruths, 2013; Jaech and Osten-
dorf, 2015; Knowles et al., 2016). Here, we de-
velop a new character-based neural model that
incorporates rich gender-labeled username infor-
mation for identifying additional gender-salience
cues in usernames from roles and attributes, e.g.,
SuperDad1 or AspiringActress99.
Data Individuals convey their gender in multi-
ple ways beyond using gender-associated names.
Therefore, to capture this variety, we collect user-
names from two online platforms where users have
self-declared their perceived gender. First, Twit-
ter usernames and screen names were collected
from a 10% sample from 2014 to 2017. Here,
we identify usernames whose biography contains
an explicit mention of their gender, e.g., by stat-
ing a gendered role “mom to two kids” or spec-
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ifying pronoun preferences “he/him/his.” Gen-
dered profiles were collected for 4,900,250 indi-
viduals using a selection of lexical patterns with
aggressive filtering to remove false positives. Sec-
ond, we collect 283,427 usernames from Reddit
identified through self-declarations of gender in
/R/RELATIONSHIPS, e.g., “I [23F] need to talk
to my boyfriend [27M]”, and 84,068 usernames
where the user has chosen a gender-indicating
flair (a visual icon displayed within the subreddit).
These two sources provide much-needed variation
for gender in usernames beyond those mirroring
full names.
Model Given a username, we infer gender us-
ing a character-based encoder consisting of three
stacked LSTM networks (Hochreiter and Schmid-
huber, 1997). Following platform restrictions on
usernames, character sequences are restricted to
being in ascii range and are embedded into 16 di-
mensional vectors as input. Adopting best prac-
tices (Ioffe and Szegedy, 2015), batch normaliza-
tion is applied prior to the dense layer used to com-
pute the gender prediction. LSTMs were sized at
256 after limited hyperparameter tuning on devel-
opment data. We optimize with Adam (Kingma
and Ba, 2014) with a learning rate of 0.002.
Training and Evaluation All data is partitioned
into 80% train, 10% development, and 10% test
splits. As some usernames are repeated in dif-
ferent communities, we keep only one unique in-
stance prior to partitioning to avoid leakage be-
tween partitions.

Training mini-batches were balanced for both
genders, which yielded better performance in tests
on the development data. We compare the perfor-
mance of our model on the test set against two cur-
rent state-of-art systems available off the shelf for
inferring gender from usernames, demographer
(Knowles et al., 2016) and Jaech and Ostendorf
(2015). Demographer is trained on names from
the Social Security Administration and the method
of Jaech and Ostendorf (2015) is trained on user-
names from OkCupid and uses 3.5M Snapchat
usernames for self-learning to improve accuracy.

As shown in Table 4, our model outperforms
both systems by substantial margins for both Twit-
ter and Reddit data. In tests on data from both pa-
pers reported in Supplemental §3, our model also
outperforms their systems. High accuracy is not
expected for these models in most domains, as
many usernames do not signal gender.

Method Twitter Reddit
Our Model 0.7785 0.6299

Jaech and Ostendorf (2015) 0.7028 0.5935
Knowles et al. (2016) 0.6520 0.5216

Table 4: Gender inference (Macro-F1)

4.2 Gender from Text
Gender can also manifest through more subtle,
stylistic cues (e.g., Schnoebelen, 2012; Flekova
and Gurevych, 2013; Bamman et al., 2014;
Volkova et al., 2015; Garimella and Mihalcea,
2016; Carpenter et al., 2016). Thus, even when a
person chooses a neutral username, their linguis-
tic style may reveal their gender. Therefore, we
construct a regression model to infer the degree to
which either gender is expressed through text.
Data and Model Gender-labeled post data was
constructed using held-out data from our three
platforms where posts were authored by a user
with a high-confidence gender prediction. Posts
were randomly sampled across forums (e.g., sub-
reddits) from the held-out data to achieve gender
parity with 555K posts for Wikipedia, and 58K
for StackExchange; Reddit was subsampled to 1M
posts total due to its size.

Features were selected by drawing upon prior
work: (i) stylistic features like punctuation and
number frequencies, casing, word length and (ii)
content features including n-grams, sentiment,
and specialized lexicons like LIWC. A full listing
of features is reported in Supplemental §1.

Following prior work (Bamman et al., 2014),
a logistic regression model was trained for each
platform using L2 regression; we adopt separate
models for each to better adapt to any platform-
specific gender variation.
Evaluation Models were evaluated using AUC
with five-fold cross validation, with 0.661 AUC
for StackExchange, 0.700 for Wikipedia, and
0.661 for Reddit. The models perform substan-
tially better than random choice (0.5) for the chal-
lenging task of inferring gender from a single post,
as many posts contain no signal of gender. Addi-
tional analyses are reported in Supplemental §1.2.

5 Gender-Salient Interaction Data

To quantify the social support people receive on-
line, we examine communications from three ma-
jor online communities: Reddit, StackExchange,
and Wikipedia. We refer to a communication be-
tween individuals as a post with a reply, defining
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Male Female Neutral
Reddit 1,017,455 213,849 1,211,813

SE 2,431,234 289,864 836,531
Wiki. 80,876 14,073 46,954

Table 5: Users with high-confidence or neutral gender

Gender: Female Gender: Male Gender: Neutral
Shanakitty AdamMcAdamson kazkeb
cassycas ChipCarlson11 xuebin671
kelseylenae BaBa Dad ConfigurationalYes
Mrs BruceWayne BarryCA67 thelizardof Oz
madelaine00x BenJewish oibird
norma-gaspard dojoguy Merpageddon

Table 6: High-confidence and neutral name examples.

these for each platform next.
Reddit Reddit data was selected using a longitu-
dinal sample of one month (July) per year, from
2006 to 2017, and a continuous sample of one full
year’s data in 2017. Our initial data consists of the
top 10,000 subreddits ordered by the total num-
ber of posts in the data. From these communi-
ties we restrict our analysis to a comment and its
first reply, which reduces confounds from multi-
party communication. These post-reply pairs were
further filtered to remove non-English posts us-
ing Google CLD2 (McCandless, 2010), yielding
434.29M candidate communications.
StackExchange StackExchange (SE) contains
substantial social interaction in the comment to
posts and replies (Ahn et al., 2013; Danescu-
Niculescu-Mizil et al., 2013). These communi-
cations often expand beyond the immediate topic.
Directed communication within these comments
is frequently signaled using an explicit mention
starting with an “@,” which we use to identify
pairs. In total, we collected post-reply pairs from
the full history of all StackExchange, yielding
3.16M pairs across 162 sites.
Wikipedia Wikipedia features an active social
component in its talk pages, with more per-
sonal communication–or even personal attacks–
during debates around appropriateness or sug-
gested changes (Bender et al., 2011). Similar to
Reddit, we construct post-reply pairs by identify-
ing each comment and its first response on a talk
page, yielding 26.7M pairs from 387K talk pages.
Assigning Gender All post-reply pairs were la-
beled using our post classifier (§4.1). Posts
with high-confidence gender predictions (softmax
probability > 0.9 or < 0.1) were labeled with the
predicted gender. To contrast the effects of having

a gendered name, we construct a complementary
dataset where the posting user’s username is effec-
tively gender neutral, e.g., user1209; these neu-
tral names are chosen from those with near-chance
probability in the output softmax 0.45 < p <
0.55. The relative counts of high-confidence and
neutral gender names in each platform are shown
in Table 5, along with examples in Table 6.

Restricting the dataset to pairs where we have a
salient identity, our final dataset for analysis con-
sists of 49.58M, 0.72M, and 3.69M pairs for gen-
der in Reddit, StackExchange, and Wikipedia; and
46.19M, 201.7K, and 1.60M for neutral in each,
respectively. Where possible, we also record any
high-salience identities for replying users.

6 Gender and Support

The gender cues provided through computer medi-
ated communication provide enough information
that a person will fill in the result with a stereotype
(Lea and Spears, 1991; Spears and Lea, 1992).
What effect might this stereotyping have for ac-
cess to support? While establishing full causality
for an answer is infeasible in our current observa-
tional study, we take the first step by quantifying
whether disparity in support exists and examine
what contextual factors may affect support giving.
Using our classifier, we label the 102M post-reply
pairs from our dataset (§5), which includes both
high-confidence and gender-neutral users.
Model To quantify access to support, we construct
separate mixed-effect logistic regression models
for predicting the dependent variable of whether
a post will receive a supportive reply and for
whether it will receive an unsupportive reply. Ran-
dom effects are added for each community within
a platform, which capture the variance in sup-
port rates between communities, e.g., due to dif-
ferences in community norms, topic, or size. As
fixed effects, we include a categorical variable for
name-inferred gender, always using the gender-
neutral condition as the reference coding, which,
critically, allows us to examine the changes of sup-
port for revealing gender relative to users whose
identity is effectively anonymous. We include the
predicted probability of a user’s gender from their
writing (§4.2), centered to [�0.5, 0.5] such that 0
denotes a gender-neutral writing style. Finally, we
include interaction terms for writing and names to
capture effects of joint gender performance.
Results Three main results are observed. First,
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SUPPORTIVE UNSUPPORTIVE
Reddit StackExchange Wikipedia Reddit StackExchange Wikipedia

intercept �2.3775⇤⇤⇤ �2.4729⇤⇤⇤ �2.9298⇤⇤⇤ �3.0232⇤⇤⇤ �4.3734⇤⇤⇤ �2.9787⇤⇤⇤

♀name 0.5480⇤⇤⇤ 0.5409⇤⇤⇤ 0.7376⇤⇤⇤ 0.2927⇤⇤⇤ 0.6071⇤⇤⇤ 0.3543⇤⇤⇤

�name 0.4652⇤⇤⇤ 0.6639⇤⇤⇤ 0.6422⇤⇤⇤ 0.3230⇤⇤⇤ 0.6445⇤⇤⇤ 0.3313⇤⇤⇤

♀� 1.1174⇤⇤⇤ �1.0778⇤⇤⇤ 0.5261⇤⇤⇤ 0.2520⇤ 0.7398⇤⇤⇤ �0.1451⇤⇤

♀name ^ ♀� 0.8802⇤⇤⇤ 1.2751⇤⇤⇤ 0.1155 0.2662⇤ 0.0537 0.1695
�name ^ ♀� 0.0535 0.8119⇤⇤⇤ �0.2070⇤⇤⇤ 0.2016 0.3556⇤ 0.4750⇤⇤⇤

Table 7: Logistic regression coefficients for predicting whether a post will receive a supportive reply (left) or
unsupportive reply (right) on the basis of a gendered name and writing (denoted �), with coefficients for name
and writing interactions. Name gender is categorical with the reference coding is neutral. The writing coefficient
is center at 0 (neutral) with positive values being more female.

the use of a gender-conveying name is associated
with both higher rates of supportive comments
and unsupportive comments. Our results agree
with those from the small scale study of Feng
et al. (2013) who found that accounts with hu-
man pictures and person-sounding usernames re-
ceive higher social support. Indeed, while several
studies have touted the benefits of anonymity on-
line for discussing sensitive topics (Campbell and
Wright, 2002; Wright, 2002a,b), our results sug-
gest that selecting a gender neutral name may lead
to lower support overall. Our findings also rein-
force the observation that the personal-anonymity
online does not lead to equal support due to cues
about identity (Postmes and Spears, 2002).

Second, the rates of supportive and unsupport-
ive comments are significantly associated with
both kinds of gender performances (i.e., names
and writing style). These results suggest that on-
line audiences are sensitive to both kinds of overt
and implicit gender displays and that even innocu-
ous choices such as gendered usernames can shape
our online interactions.

Third, when gender is performed in together
name and writing, female performances are con-
sistently associated across all three platforms with
higher rates of receiving supportive replies and un-
supportive replies. Note that this trend is seen
in the cumulative effect on support after combin-
ing coefficients for the interactions term with the
coefficients for writing and name. We illustrate
this cumulative effect for two types of gender per-
formances in Reddit, shown as separate axes in
Figure 3. Indeed, when a user has a gendered
username, the cumulative effect of male writing
performance is consistently associated with fewer
supportive replies. In small-scale interpersonal
studies, Abbey et al. (1991) and Barbee et al.
(1993) note men are more likely to receive unsup-
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Figure 3: Cumulative effect of name and writing per-
formances on the log-odds coefficients for receiving
comments of each type in Reddit when the gender is
maximally performed (cf. Table 7), excluding the inter-
cept effect for clarity (? denotes neutral performance).
Positive values (red) denote increased comment fre-
quency and negative values (blue) show decreased fre-
quency. This plot shows that as female performance
becomes more salient (shown bottom to top visually),
such users receive increasingly-higher rates of support-
ive and unsupportive replies in Reddit.

portive comments; however, we did not observe
this disparity in our online setting.
Does the replier’s gender matter? Mickelson
et al. (1995) note that men and women differ in
how they receive support, with the gender com-
position of the interacting pair driving the kind of
supportive behavior. Here, we examine whether
men and women differ in the rates they give sup-
port to one another, using gendered names as a
proxy for identity. Because only Reddit has suffi-
cient data, we construct a mixed-effect regression
model for Reddit using the 4.5M post-reply pairs
where the replier has a high-confidence or neutral
gender and include the replier’s gender as a factor
with interactions for the poster. The results shown
in Table 8 reveal two main conclusions. First, men
and women give supportive comments at different
rates, with women being far more likely to leave
supportive replies and less likely to leave unsup-
portive replies. Second, the interaction terms show
that there is minimal dyadic interaction between
the gender identities of the poster and replier with
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SUP. UNSUP.
intercept �2.391⇤⇤⇤ �3.107⇤⇤⇤

P:♀name 0.561⇤⇤⇤ 0.288⇤⇤⇤

P:�name 0.450⇤⇤⇤ 0.330⇤⇤⇤

P:♀� 1.263⇤⇤⇤ 0.290⇤⇤⇤

R:♀name 0.249⇤⇤⇤ �0.153⇤⇤⇤

R:�name �0.057⇤⇤⇤ �0.036⇤⇤

P:♀name ^P:♀� 0.914⇤⇤⇤ 0.212⇤⇤

P:�name^P:♀� 0.082 0.131
P:♀name ^R:♀name �0.103⇤⇤⇤ �0.037
P:�name^R:♀name �0.033 0.026
P:♀name ^R:�name �0.004 0.036⇤

P:�name^R:�name 0.031⇤ �0.003
P:♀� ^R:♀name 0.209 �0.202
P:♀� ^R:�name �0.331⇤⇤ �0.228⇤

P:♀name^P:♀� ^R:♀name �0.343 0.376
P:♀name^P:♀� ^R:�name 0.329 0.312
P:�name^P:♀� ^R:♀name 0.067 0.178
P:�name^P:♀� ^R:�name 0.024 0.203

Table 8: Regression coefficients for Reddit when the
gender identity of the replier is known. The post au-
thor’s identity is denoted with a P and replier’s with R.

respect to rates of giving supportive or unsupport-
ive comments. We only observe significant inter-
actions indicating (1) replying users with female
names are less likely to leave supportive replies to
posting users with female names and (2) replying
users with male names are i) more likely to leave
supportive replies to other users with male names,
ii) less likely to leave supportive comments if the
writing appears more female, iii) more likely to
leave unsupportive comments if the posters name
is female, and iv) less likely to leave unsupportive
comments if the writing appears more female.
Limitations The observations of our study should
still be viewed within its practical limitations, of
which we note two. First, in examining the content
of replies, we do not control for potential direct
or indirect requests for help in text that may ulti-
mately affect the rates of support. This issue could
be a potential confound, as the cultural norms
for masculinity often promote self reliance (Ad-
dis and Mahalik, 2003), ultimately leading to gen-
dered differences in requests. Second, this obser-
vational study cannot establish causality between
gender displays and support; while the disparity is
real, exogenous factors could potentially explain
the disparity without finding gender displays as a
cause, though the mixed effects still control for
some contextual variability in the different sup-
port frequencies across communities. In spite of
these limitations, we view this work as an impor-
tant first step for demonstrating gender disparity in
support—both positive and negative—and inviting
future work to establish a causal explanation.

7 Ethical Considerations

The use of gender as a variable in NLP requires
that we also discuss ethical considerations result-
ing from this work, as it directly relates to identity
and the dignity of persons being studied. Follow-
ing the guidelines of Larson (2017) for using gen-
der in NLP, our use of gender is intentional and
central to this study on gender disparities in re-
ceived support. We base our notion of gender as
one of linguistic performance (DeFrancisco et al.,
2013), in which individuals adapt their style and
name to emphasize or de-emphasize certain as-
pects of their gender identity (Eckert, 2008). Ac-
cordingly, we have opted represent gender per-
formance along a graded scale, though we recog-
nize that this representation does not capture non-
binary gender identities.

The gender inference methods introduced here
raise ethical considerations as they ultimately en-
able automatic identification of gender for any
person on the basis of name or writing (Hamidi
et al., 2018). Such technology could be used to
unfairly identify and target persons of either gen-
der for malicious behavior or may harm through
misgendering individuals. Ultimately, we decided
that such risk was acceptable given the positive
impact of our study on revealing gender dispar-
ity. We hope to also use our method to bet-
ter support privacy-preserving behavior (Allen and
Wiles, 2016; Reddy and Knight, 2016) by help-
ing individuals identify and change names or state-
ments that would indicate a particular gender. Fur-
ther, we hope that when used in combination with
our support classifier and a larger context of gen-
dered interactions (Voigt et al., 2018), these tech-
nologies can identify healthy communities that are
supportive of all people.

8 Conclusion

Individuals use social media to support their in-
formational and emotional needs. Our study has
shown wide-spread disparity in the levels of sup-
port individuals receive on the basis of their per-
ceived gender. Our results were made possible
through the development of a new massive 102M
post-reply dataset tagged with high-salience and
neutral gender and the introduction of a new task,
annotated dataset, and model for classifying sup-
portive messages. All data, code, and annota-
tion guidelines are publicly released at https:

//github.com/davidjurgens/support.
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Abstract
Gang-involved youth in cities such as Chicago
have increasingly turned to social media to
post about their experiences and intents online.
In some situations, when they experience the
loss of a loved one, their online expression of
emotion may evolve into aggression towards
rival gangs and ultimately into real-world vio-
lence. In this paper, we present a novel system
for detecting Aggression and Loss in social
media. Our system features the use of domain-
specific resources automatically derived from
a large unlabeled corpus, and contextual repre-
sentations of the emotional and semantic con-
tent of the user’s recent tweets as well as their
interactions with other users. Incorporating
context in our Convolutional Neural Network
(CNN) leads to a significant improvement.

1 Introduction
In cities such as Chicago, gang-involved youth
have increasingly turned to social media to post
about their experience, often expressing grief when
friends or family members are shot and killed. As
grief turns to anger, their posts turn to retribution
and ultimately to plans for revenge (Patton et al.,
2018b). Research in this space has shown that on-
line posts often affect life in the real world (Moule
et al., 2013; Patton et al., 2013; Pyrooz et al., 2015;
Patton et al., 2016, 2017a). In some communities,
violence outreach workers manually scour online
spaces to identify such possibilities and intervene
to diffuse situations. A tool that identifies Aggres-
sion or Loss posts could help them filter irrelevant
posts, but resources to develop a tool like this are
scarce.

In this paper, we present automatic approaches
for constructing resources and context features in
this domain, and apply them to detecting Aggres-
sion and Loss in the social media posts of gang-
involved youth in Chicago. We exploit both a small

labeled dataset (4,936 posts) and a much larger
unlabeled dataset (approximately 1 million posts),
which we constructed using a method that enabled
us to gather Twitter posts representative of the com-
munity we study. We incorporate our approaches
into a CNN system, as well as a Support Vector
Machine (SVM) to match the architecture of prior
work, thus enabling analysis of the impact in differ-
ent frameworks1.

Key features of our system are the use of domain-
specific word embeddings and a lexicon automat-
ically induced from our unlabeled dataset. When
classifying an individual tweet, our system consid-
ers the content and emotional impact of the tweets
in the author’s recent history. If applicable, our sys-
tem additionally takes into account a model of the
pairwise interactions between the author and other
users in the tweet referenced via either retweet or
mention.

We compare our approaches with previous work
that used a smaller dataset (800 tweets) and hand-
curated resources with an SVM (Blevins et al.,
2016). By integrating our induced domain-specific
and context information in a CNN, we achieve a
significant increase over their reported results.

Our contributions include:

• A new labeled dataset, six times larger than
that of prior work;

• Domain-specific resources, automatically in-
duced from our constructed unlabeled dataset;

• Context features that capture semantic and
emotion content in the user’s recent posts as

1We will make tweet IDs for the data available to re-
searchers who sign an MOU specifying their intended use
of the data and their agreement with our ethical guidelines.
Contact Serina Chang (sc3003@columbia.edu) or Kathleen
McKeown (kathy@cs.columbia.edu). Our code is available at
https://github.com/serinachang5/contextifier.
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well as their interactions with other users in
the dataset.

Our approach brings us one step closer to build-
ing a useful tool that can help reduce gang violence
in urban neighborhoods. In the remainder of the
paper, we present related work, the dataset that we
used, and our methodology. We conclude with an
error analysis and a discussion of the impact of our
contributions.

2 Related Work

Researchers have begun to explore how online data
can be used to help prevent gun violence. Pavlick
et al. 2016 are creating the Gun Violence Data
Base by crowdsourcing annotations on newspaper
articles that report on gun violence, labeling the
sections of text that report on incidents, the shooter,
and the victim. Researchers have also explored
identifying deaths from police shootings with semi-
supervised methods for both CNNs and logistic
regression (Keith et al., 2017) and found that logis-
tic regression using a soft-labeling approach gave
the best results. Researchers studying gun control
issues analyzed social media for posts related to any
issue around guns in the year following the Sandy
Hook elementary school shooting (Benton et al.,
2016) and argued that online media can be used to
understand trends in gun violence and gun-related
behaviors (Ayers et al., 2016).

Closely related research aims to automatically
identify gang members’ Twitter profiles (Bala-
suriya et al., 2016). After collecting profiles using
bootstrapping, they trained different classifiers on
the tweets and meta-information about the authors.
Further research analyzes the social networks of
gangs (Radil et al., 2010) and predicts gang affil-
iation based on the analysis of graffiti style fea-
tures (Piergallini et al., 2014).

The most relevant work in automatically analyz-
ing social media posts by gang-involved youth is
that of Blevins et al. 2016. The labeled dataset
that Blevins and collaborators used is extremely
challenging, in part due to its size, but also because
it contains text in a particular dialect of English –
African American English (AAE) – which has very
little core NLP tool support. Other research investi-
gating the development of tools for understanding
AAE in social media (Blodgett et al., 2016) shows
that existing tools (e.g., dependency parsers) per-
form poorly on this language. Previous work by
Patton on a subset of our dataset notes that due

to the linguistic style, tweets from gang-involved
youth in Chicago can be challenging for outsiders
to interpret and thus are often open to misinterpre-
tation and potential criminalization (Patton et al.,
2017b).

The challenges of interpreting our data are fur-
ther compounded by the usual difficulties with Twit-
ter data. Twitter data is sometimes handled by
translating it to Standard American English (SAE)
through the use of a phrasebook. The NoSlang
Slang Translator (NoSlang, 2018b), and the accom-
panying NoSlang Drug Slang Translator (NoSlang,
2018a), have been used in other tasks to translate
social media communication (Sarker et al., 2016),
(Han and Baldwin, 2011).

To engineer features for an SVM classifier,
Blevins et al. 2016 learned a part-of-speech (POS)
tagger for their data and constructed a word level
translation phrasebook to map emojis and slang
to the Dictionary of Affect in Language (DAL) in
order to identify their emotion.

In contrast to Blevins’ translation approach,
we leverage our large unlabeled dataset to auto-
matically induce resources, such as word embed-
dings, that function well within the domain of our
task. Previous research on domain-specific word
embeddings includes work in cybersecurity (Roy
et al., 2017), disease surveillance (Ghosh et al.,
2016), and construction (Tixier et al., 2016). These
domain-specific word embeddings tend to improve
performance on tasks within that domain.

Context has been used in previous research on
detecting hate speech in social media. Qian et al.
2018 found significant improvements by collecting
the entire history of a user’s tweets and feeding
them to a encoder to create an intra-user represen-
tation, which was used as input to a Bidirectional
LSTM. They also used a representation of tweets
similar to the tweet being classified. While their ap-
proach captures a user profile based on everything
the user has posted, in our approach we investigate
how the recent history of tweets and interactions
with others can improve classification. Others also
make use of a user profile, though not one learned
from unlabeled data (Dadvar et al., 2013).

3 Data

Our dataset consists of two parts: first, a collection
of 4,936 tweets authored or retweeted by Gakirah
Barnes, a powerful female Chicago gang mem-
ber, and her top communicators, as well as ad-
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ditional Twitter users in the same demographic,
annotated by social work researchers who have
been studying Gakirah and the associated Chicago
gangs. Second, we use a much larger collection of
approximately one million unlabeled tweets auto-
matically scraped from 279 users in the same so-
cial network. This social network is comprised of
214 users snowball-sampled from Gakirah Barnes’
top 14 communicators. Traditionally, snowball
sampling has been used to recruit hard-to-reach
research subjects (Atkinson and Flint, 2001) and
we have adapted it for social media. The remaining
65 users were added to this network by retaining
those with the highest IQI score 2 from the full list
of Gakirah’s Twitter followers. Our tweets thus
form a representative sample of Twitter dialogue
between youth from Chicago neighborhoods with
high levels of gang activity during that time period.

The social work researchers performed a de-
tailed, qualitative analysis of a subset of the dataset,
with a focus on analyzing how context influences
determination of a label. For example, they note
that an aggressive tweet may reference a previous
event, and will often use coded language to do
so. Since much of the language used in our data
differs significantly from standard American En-
glish, local youth active in similar environments
served as consultants to answer questions about the
language, as they were able to interpret the slang
terms present in these tweets. The social work re-
searchers conducted a fine-grained analysis using
an online tool for annotation, identifying insults,
threats, bragging, hypervigilance and challenges to
authority, all of which were collapsed into a sin-
gle category, Aggression. Posts including distress,
sadness, loneliness and death were collapsed into
the category Loss. The Other category includes
discussion of other aspects of their life, such as
friendships, relationships, drugs, general conver-
sations, and happiness. We developed our system
(as did Blevins et al. 2016) on the collapsed la-
bels, as the task is difficult even with three-way
categorization.

Each tweet in a subset of the entire dataset con-
sisting of 3,000 tweets was reviewed by two differ-
ent annotators. Inter-rater reliability between raters
was tracked, with dissimilar annotations flagged
for further review. Flagged tweets were further
analyzed by the social work researchers, which in-

2https://www.brookings.edu/wp-content/
uploads/2016/06/isis_twitter_census_
berger_morgan.pdf

Table 1: Example tweets
No. Tweet Text Label
1 #FreeDaDommmmm [URL] Loss

2

Damn juss peeped shorty on
tha news out here
@USER ..smh..
crazyy.. #RIPShorty

Loss

3 I’m smokin on Dat DMoney
man Im high as fuck Aggress

4

Lost Ty to Sum Fuck Shit dont
Fuck around wit Fuck rounds n
u a type of Niggas Ion fuck wit Loss

5 My bro Mooki thirsty he jus
wana sum Aggress

cluded youth from Chicago who currently live in
the same community as, or an adjacent one to, that
in which the deceased Gakirah Barnes resided, to
adjudicate disagreement. Among the set of tweets
coded by two annotators, inter-annotator agreement
on the Aggression class was high even before adju-
dication, with a Cohen’s kappa coefficient of .94;
agreement on the Loss class was somewhat lower,
with a Cohen’s kappa of .83. Examples of labeled
Twitter posts from Gakirah and her followers are
shown in Table 1 3.

In order to mitigate potential issues with training
and test data being drawn from different time peri-
ods or having different distributions of labels, we
shuffled our data and drew stratified samples with
equal distribution across classes for our training,
validation, and test sets for each of the cross vali-
dation folds, using 64%, 16%, and 20% of our data
for each respectively. The Aggression and Loss
classes are relatively small, reflecting their low dis-
tribution in real life: we have only 329 Aggression
tweets and 734 Loss tweets, with the Other class
comprising the remaining 3,873 tweets.

4 Methods

We approach this classification task using a stan-
dard CNN classifier architecture (Kim, 2014; Col-
lobert et al., 2011) as our starting point. We initially
experimented with both character and word level
CNNs but found the word level to be 1.6 macro-F1

3Our data was scraped from publicly available posts and
was determined exempt by our organization’s IRB. User names
are replaced with USER in the table, and text has been modi-
fied to render tweets unsearchable.
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points better than the character level, so we only
include the word level here. We leveraged the
unlabeled corpora by constructing domain-specific
embeddings and a lexicon that better fit our unique
and low-resource domain. We then integrated our
domain-specific resources into the CNN to repre-
sent the given tweet as well as to represent context
features. Our context features represent a window
of the user’s recent tweets as well as the interac-
tions of the author with other users via references
in their tweets.

4.1 Domain-Specific Resources
We exploited the large unlabeled corpus to build
two domain-specific resources for this task: word
embeddings and a task-specific lexicon.

4.1.1 Word Embeddings
Word embeddings have proven useful in represent-
ing the semantic content of sentences. The seman-
tic representation of a word by its associated em-
bedding, however, depends on its usage in the cor-
pus the embedding was trained on, and so off-the-
shelf word embeddings do not always adapt well
to tasks with a unique domain (Roy et al., 2017),
(Ghosh et al., 2016), (Tixier et al., 2016). Thus,
we were motivated to use our unlabeled corpus
to create domain-specific word embeddings. We
used the Word2Vec (Mikolov et al., 2013) CBOW
model to train the embeddings which is the default
training algorithm available in Gensim 4. We used
a window size of 5 words with a minimum word
count of 5 to train w 2 R

300. The CBOW model
was trained for 20 epochs.

4.1.2 Computing a Lexicon of Aggression
and Loss

Given the domain-specific nature of our users’ lan-
guage, we could not rely on standard NLP lexicons
to represent emotion in their tweets. For our task,
the two emotions of interest are Aggression and
Loss. Previous work (Blevins et al., 2016) used a
phrasebook to translate the domain-specific words
of their corpus to Standard American English so
that they could access emotion in the Dictionary of
Affect in Language (DAL) (Whissell, 2009), but
this approach does not generalize to capture new
words.

We therefore adapted the SENTPROP algorithm
(Hamilton et al., 2016) to automatically induce a

4https://radimrehurek.com/gensim/
models/word2vec.html

lexicon of Aggression and Loss from our unlabeled
corpus. The SENTPROP algorithm constructs a
lexical graph out of the word embeddings, then
propagates labels from the seed sets over the un-
labeled nodes via a random walk method. The
resulting output for each word indicates the proba-
bility of a random walk from the seed set landing
on that node. We chose SENTPROP as an induc-
tion method because it performs especially well for
domain-specific corpora, and it is resource-light
and interpretable.

We created word embeddings by employing an
SVD-based method that was reported by the SENT-
PROP authors to perform optimally with their algo-
rithm. We first constructed the positive point-wise
mutual information matrix, MPPMI , over the unla-
beled corpus, then computed singular value decom-
position (SVD) to derive MPPMI = U⌃V |. The
word embedding for word wi was thus given by Ui,
truncated to a standard length of dimension 300.
To construct our seed sets, we asked our annotators
to consider words for Loss and Aggression which
they associated most strongly with each class. They
generated a set of 29 words for Aggression and a
set of 40 words for Loss, which we include in our
appendix.

We ran SENTPROP with our SVD-based em-
beddings and the seed sets from our annotators.
We used the output probabilities from the random
walks to map words to their association with Ag-
gression and Loss, thus forming our lexicon of
Aggression and Loss. Finally, we scaled the proba-
bilities per class to mean 0 and variance 1.

4.2 Context Features
Our context features utilize the domain-specific re-
sources that we induced from the unlabeled corpora.
To capture context, we first considered the author’s
recent history, separately exploring representations
by our domain-specific word embeddings and by
the SENTPROP lexicon (SPLex). If applicable, we
also considered the interactions between the author
and other users who were referenced in the tweet,
either via retweet or mention.

4.2.1 User History
To obtain the user’s recent history, we ordered all
the tweets chronologically and bucketed them by
author. Thus, for any given tweet occurring at
time t, at, we were able to retrieve previous tweets
at�1, at�2, . . . by that user. We treated recent his-
tory as a sliding window and fetched tweets within
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the past d days from when the current tweet was
tweeted, such that recent history tweets would be
the set {at�1, . . . , at�k}, where t � k < d.

To represent the tweets within the context of
recent history, we first combined word level rep-
resentations into tweet level, then tweet level rep-
resentations into context level. At each stage of
combination, we tried both summing and averag-
ing. Thus, our recent history representations were
built by aggregating either word embeddings or
SPLex scores, which maintained their dimensional-
ity of 300 or 2, respectively.

We also considered three types of tweets that
would be relevant to a user. The user’s own
tweets (SELF) would always be relevant; we ex-
perimented with also including tweets where the
user was retweeted (RETWEET) and tweets where
the user was mentioned (MENTION). We included
these parameters as additional sources of context
because a user’s tweet may be a response to a recent
mention or retweet from another user.

We also experimented with weighting the most
recent tweets more heavily than further tweets
within the recent history window. This became
especially important when we experimented with
larger windows of a month or more, since tweets
from a few days ago are more likely to be related
to the current tweet than tweets from a few weeks
ago. To model this diminishing relevance, we intro-
duced a weighting protocol with a variable half-life
where weights decay exponentially over time. The
parameter we tuned was the half-life ratio r, which
is the proportion of the window size d that cor-
responds to the window’s half-life. Then, before
combining tweet level representations into context
level, we multiplied each tweet representation bi

by its weight, 2��t
f , where �t = t � i is the dis-

tance in days between the context tweet ai and the
current tweet at, and f = d ⇤ r is the half life.

4.2.2 User Interactions
As an additional context feature, we modeled the
pairwise interactions between users. To identify
interactions, we iterated through our unlabeled and
labeled corpora and checked which users were in-
volved in each tweet. We counted a user as in-
volved in a tweet if they posted the tweet or were
referenced via retweet or mention. For each pair
of users, we aggregated all their tweets of mutual
involvement into one document and averaged the
document’s word embeddings to create a represen-
tation of their pairwise interactions in R

300.

5 Experiments

We experimented with the efficacy of our domain-
specific resources, the impact of different context
parameters, and the contribution of context to pre-
dicting Aggression and Loss.

5.1 Corpus pre-processing
For word level models, we preprocess each tweet
by: i) lowercasing every character, ii) replacing ev-
ery user mention and url with special tokens “user”
and “url”, iii) considering each emoji an individual
token, whether space separated or not, and iv) re-
moving emoji modifiers to reduce sparsity, just as
we used lowercasing. We select the top 40K to-
kens based on frequency, replacing the remaining
tokens with “UNKNOWN”. We zero-pad or trim
tweets so that tweet length will be 50 when passed
to our CNN model. Similarly, we only consider
users who occur (as author, source of retweet, or
in mention) in the labeled and unlabeled corpus at
least twice, resulting in 35,656 users in total.

We extract the author of the tweets from meta-
data, and user mentions and original posters of
retweets from the Twitter text, based on their Twit-
ter display name. We used Twitter display name
rather than user ID because we cannot collect user
ID for interaction features.

5.2 CNN Architecture
For this 3-way classification task, we train two
models; the first model predicts whether a tweet
has the Aggression label and the second predicts
for Loss. Each model maps a sequence of tokens
to a probability value for a class. Here we define
the architecture of our CNN model. Our input c is
a token index sequence of length 50. We map each
token index to a vector 2 R

300 with a trainable
embedding matrix, followed by dropout 0.5. We
apply a 1D Convolutional layer with kernel sizes 1
and 2, filter size 200 each, to the embedded token
sequence, followed by ReLU activation, max pool-
ing and dropout 0.5. We concatenate the output of
max pooling for kernel sizes 1 and 2, stack another
dense layer h with dimension 256, and connect
the output of h to the final single output unit with
sigmoid activation.

In the prediction phase, for each data point, we
classify it as Aggression if the the first model pro-
duces the probability score above threshold tA. If
it is not predicted as Aggression, then we classify it
as Loss if the second model produces a score above
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a threshold tL. The remaining tweets are classified
as Other. tA and tL are tuned on the validation set.

We incorporate context information into the neu-
ral network in the following way. Each type of
context feature takes the form of a real vector: both
word embedding user history and word embedding
user interaction features are in R

300, and SPLex
user history features are in R

2. We concatenate
these feature vectors with the last layer h before
the final classification output.

5.3 SVM Baseline

We used as our baseline method a linear-kernel
SVM classifier as used by Blevins et al. 2016. We
obtained code from the authors and trained on our
larger dataset. In this method, after basic pre-
processing is performed to replace urls and user
mentions with special tokens, unigram, bigram,
part-of-speech tag, and emotion features are ex-
tracted. Feature selection is performed to prune
the feature space. The part-of-speech tagger used
in Blevins et al. 2016 was developed for use on
this domain; emotion features are computed using
scores for each tweet word taken from the Dictio-
nary of Affect in Language (DAL). We performed
gridsearch to re-tune the loss function, the regu-
larization penalty type, and the penalty parameter
C, but found that the original settings for these
parameters still performed best even on our new
development set. We also tuned the class weights
used: while the model performed best on the orig-
inal data with balanced class weights, we found
that less extreme balancing performed better here
(weights 2, 1, and 0.12 for Aggression, Loss, and
Other, respectively).

While we retrained the SVM on our new training
set, we did not modify the additional components
used for feature selection such as the phrase table or
the specialized part-of-speech tagger, as we had no
additional data available for this. This indicates the
difficulty of generalizing to new data with unseen
vocabulary, and is one of the disadvantages of using
manually-created specialized feature sets such as
these.

5.4 Domain Experiments

In order to test the efficacy of our domain-specific
word embeddings, we compared them with a num-
ber of other embedding types. Our baseline method
was Pennington et al. 2014’s GloVe embeddings
pretrained on a general Twitter dataset, available

from their website5. We trained a parallel set of
word embeddings on the African American En-
glish (AAE) corpus of around 1.1 million tweets
provided by Blodgett et al. 2016, and another set on
a corpus of a location-specific set of tweets that we
scraped, drawn from users who posted from a spe-
cific area within the South Side of Chicago where
the gangs we study are based. We also compared
performance with a randomly initialized word em-
bedding matrix.

5.5 Context Experiments
We first explored the impact of the user history
parameters, tuning them separately for represen-
tations by our domain-specific word embeddings
and by SPLex. We kept these representations sepa-
rate because we expected them to capture different
types of context: word embeddings should capture
the semantic content of the user’s history, while
SPLex scores should capture something closer to
the user’s emotional state leading up to the tweet.

With each representation, we experimented with
summing versus averaging word embeddings to
yield a tweet level representation, and similarly
experimented with summing and averaging from
tweet embeddings to context level representations.
We varied the size of the context window, d, trying
2 days, 1 week, 1 month, 2 months, and 3 months.
We also varied the half-life ratio, r = .25, .5, .75, or
no weighting. Lastly, we tried including different
types of posts in the user history.

Once we tuned the user history parameters, we
experimented with adding our context features
(user history and user interactions) to the best tweet
level model we could achieve without context. For
our CNN, our best tweet level model used our
domain-specific word embeddings as pretrained
weights for the embedding layer (CNN-DS in Ta-
ble 3). To evaluate the impact of our resources
in different frameworks, we additionally experi-
mented with the contribution of context in an SVM.
The best tweet level SVM included the averaged
domain-specific word embeddings and summed
SPLex scores of the tokens in the tweet (SVM-DS).

6 Results and Discussion

We report results comparing different embeddings
and comparing parameters for context. We use the
best results from these experiments to produce our

5https://nlp.stanford.edu/projects/
glove/
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Figure 1: Diagram of our steps to generate domain-specific and context features for our neural net system.

final systems in the SVM and CNN frameworks.
The best resulting architecture for the CNN frame-
work is illustrated in Fig. 1.

6.1 Comparison of Embeddings

Experiments were performed using five-fold cross-
validation over the labeled data and were repeated
five times for each fold to account for variance
between runs. Reported F-scores, shown in Table
2, are averaged across runs and across folds.

Word embeddings trained on our unlabeled cor-
pus outperformed other embeddings by over 4
points. Related datasets such as the location-
specific or AAE corpus did not provide helpful
semantic information, as their embeddings did not
even beat random initialization. This was not an
effect of corpus size, since these corpora contained
800,000 and 1.1 million tweets, respectively, com-
pared to the 1 million in our unlabeled corpus.
Thus, we attribute the difference to the importance
of deriving embeddings directly from our commu-
nity of interest, demonstrating that the language
of our community is more specific than AAE in
general and that our snowballing method was able
to capture a better representation of user language
than a location driven method.

6.2 User History Parameters

Experiments were performed using five-fold cross-
validation and F-scores computed as in the word
embedding experiments. We found that user history

Table 2: Results comparing different embeddings with
CNN. GN refers to Google News, LS to location spe-
cific embeddings, GT to Glove Twitter embeddings,
and DS to our domain specific embeddings. A, L and
O refer to Aggression, Loss, and Other respectively.

Embeddings
Type F1 Macro

F1
A L O

GN 27.9 66.6 86.9 60.5
AAE 27.3 69.8 86.5 61.2
LS 31.3 68.3 87.9 62.5
Random Init. 29.3 70.5 88.9 62.9
GT 29.0 71.1 89.0 63.0
DS 37.9 73.4 90.3 67.20

represented by domain-specific word embeddings
performed optimally when we averaged from word
to tweet level and from tweet to context level. The
best window size was d = 90 days, including only
SELF posts, and using a half-life ratio of r = 0.25.
For user history represented by SPLex, we found
the best method of combination to be summing, at
both the word and tweet level. We hypothesize this
is because summing captures not only the presence
but also the number or density of highly indicative
Aggression or Loss words posted by the user over
the context window. The best window size was
d = 2 days, including both SELF and RETWEET
posts, without half-life weighting.

Our approach was designed to implement and
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Table 3: Comparison of different models. The below pairs of algorithms achieve statistical significance p < 0.002
for each class (the higher performing algorithm comes first): i) CNN-Context vs. CNN-DS; ii) CNN-DS vs. SVM-
Retrained; iii) SVM-Context vs. SVM-DS. SVM-Context outperforms SVM-Retrained in the Aggression class by
a robust margin (5 points).

Model Aggression Loss Other Macro F1
P R F P R F P R F

SVM-Retrained(baseline) 36.4 31.3 33.7 73.7 68.8 71.2 89.8 92.0 90.9 65.3
SVM-DS 32.4 38.9 35.4 66.9 72.9 69.8 90.8 87.7 89.2 64.8
SVM-Context 35.0 43.7 38.8 68.6 74.0 71.2 91.6 88.2 89.9 66.6
CNN-DS 35.7 41.1 38.2 78.9 70.3 74.3 90.7 91.4 91.0 67.9
CNN-Context 38.3 46.4 42.0 78.8 73.2 75.9 91.3 91.7 91.5 69.8

test previous insights about the domain, particu-
larly that context plays a role in the interpretation
of posts. The short time frame for SPLex user
history corresponds with the 2 day window found
in Patton et al. 2018b’s research and reflects the
fact that emotional states may fluctuate often and
within a certain number of days. In contrast, word
embeddings improved consistently as we extended
the context window from 2 days to 90 days. Since
word embedding user history is meant to capture
the user’s semantics, a larger window size means
the representation can be drawn from more tweets,
and thus reflects a more representative sample of
the user’s semantics around this time period.

6.3 Comparison of Best Systems
To develop a more stable measurement of com-
parison between different systems, we create four
independent sets of 5-fold cross validation splits
on our data set (altogether 20 folds); to account for
randomness in neural net training, we train each
neural net model 5 times and take the majority vote
of the predictions. For each class, we calculate
the statistical significance of F-score based on the
predictions on the concatenated test sets of all 20
folds using the Approximate Randomization Test
(Riezler and Maxwell 2005) with the Bonferroni
correction for multiple comparisons. Results are
shown in Table 3.

Adding context contributed to a significant im-
provement in both the CNN and SVM frameworks,
demonstrating the independent value of our con-
text features over domain-specific resources. For
contrast, we also compared our context features
with user profiles built from averaging the word
embeddings in all of the user’s tweets. Our pair-
wise and user history features outperformed user
profiles by .7 points, demonstrating that it is valu-
able to provide dynamic representations of users

that can adjust to their recent posts or their interac-
tions with other users, as opposed to stereotyping
their overall behavior.

Additionally, we compare the impact of our
domain-specific resources to those used by Blevins
et al. (2016). In particular, we expect that their emo-
tion scores will not generalize to the new vocabu-
lary in our large unlabeled corpus (see Section 4.1).
Our domain-specific resources alone without con-
text raise our SVM to comparable performance
with the Blevins et al. retrained baseline, and the
resources push our CNN without context over this
baseline. This demonstrates that our automatic
methods can do as well as if not better than phrase-
book methods, and they are significantly more effi-
cient to generate.

7 Error Analysis

In this section we provide an analysis of the trade-
offs of each classifier by analyzing some of the
examples in Table 1.

Context vs non-context CNN. Our best CNN
- a system which incorporated context - was able
to correctly predict tweets 3 and 4, whereas our
baseline using only our pretrained Word2Vec em-
beddings was not. Correctly classifying tweet 4
relies on the knowledge that the referenced user,
DMoney, is a deceased member of a rival gang of
the poster. In tweet 3, the poster is saying that he
has seen Gakirah’s death on the news; this is an
expression of loss.

Domain-specific vocabulary. Our CNN trained
on domain-specific word embeddings is able to
correctly classify tweet 5, while the one trained
on Twitter word embeddings did not pick up the
aggressive content. This user is talking about how
their friend is ready to kill someone. This tweet
contains the word thirsty but in this domain-specific
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context it means being ready and having an urge
(although it would not always refer to killing).

Hashtags and character sequences. Despite
their strengths, both our best CNN and our best
SVM classifiers were still unable to correctly clas-
sify some of the trickier cases. There were certain
types of tweets they were categorically unable to
recognize: tweet 1 features a hashtag that refers
to an incarcerated acquaintance of the poster, but
as both our CNN and SVM models operate at the
word level, this tag would have appeared simply as
a rare or unknown token to them.

Anger miscategorized as Aggression. At
times, the classifier categorized posts that express
anger as Aggression. For example, in tweet 4 the
author uses profanity to express grief related to the
loss of a friend. In addition, the devil face emoji,
which is sometimes used to express aggression, is
also used in the context of anger. While the best
CNN model managed to correctly predict this as
Loss, the SVM miscategorized it as Aggression.

8 Ethics

Our ethics guidelines include just treatment of the
users who provide our data, removal of identifying
information for publication, and the inclusion of
Chicago-based community members as domain ex-
perts in the analysis and validation of our findings.

There are risks involved with detecting Aggres-
sion and Loss in social media data using automatic
detection systems. These risks include possible
misidentifications of tweets, increased police in-
volvement, and loss of privacy, which all have the
potential to harm marginalized communities and
people. Our mitigation strategies begin by part-
nering with violence prevention organizations and
incorporating domain experts (Frey et al., 2018) to
ensure the highest ethical standards for interpret-
ing social media posts and for the dissemination
and use of our research for violence prevention.
Through insights gained from these partnerships,
we developed our own risk mitigation strategies:
de-identifying each tweet and rendering it unsearch-
able through textual modification without altering
meaning; encrypting our social media corpus to
protect user identities; and relying on violence pre-
vention organizations’ expertise in deciding if and
when to involve law enforcement to prevent the
unethical use of our data (e.g., hyper-surveillance
of communities of color).

9 Conclusion and Future Work

Our approach shows that integrating emotions and
semantic content of a user’s recent posts is an
important component for the task of predicting
Aggression and Loss in social media posts of
gang-involved youth. Furthermore, using domain-
specific embeddings and an Aggression-Loss lexi-
con induced from a corpus of language constructed
to represent our specific community of users is
also critical to success. Our experiments reveal
that our snowballing technique is more effective
than a location based approach and that fitting our
community is more complex than resorting to their
demographic, as captured in the AAE corpus of
Blodgett et al. (2016).

Our work has real life implications for the use of
machine learning to identify unique characteristics
in social media data that may indicate the process
by which gun violence may occur (Patton et al.,
2018a). Our partnership between computer scien-
tists, social work researchers and practitioners has
advanced plans to create applications to help out-
reach workers in Chicago identify factors related
to potential violence, potentially allowing them to
prevent and intervene in aggressive online activity.
The tool, which would be co-created with commu-
nity stakeholders, would enable quick scanning of
large quantities of social media posts that outreach
workers would be unable to perform manually.

We expect our methods to be generalizable be-
cause we compute embeddings and lexicons from
neighborhood-specific data and do not rely on large,
hand-crafted resources such as dictionaries. How-
ever, we hope to test generalizability in future work
by applying our methods to other gang-related cor-
pora, because there is variation in language, local
concepts, and behavior across gangs. In the future,
we are also interested in further experimenting with
the context features introduced in this work; for
instance, by extending our pairwise interaction fea-
tures to take into account direction between users.
Finally, we intend to explore other types of context,
such as reference to specific events that may trigger
the emotions of either Aggression or Loss.
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Abstract

Comprehending procedural text, e.g., a para-
graph describing photosynthesis, requires
modeling actions and the state changes they
produce, so that questions about entities at dif-
ferent timepoints can be answered. Although
several recent systems have shown impressive
progress in this task, their predictions can be
globally inconsistent or highly improbable. In
this paper, we show how the predicted e↵ects
of actions in the context of a paragraph can
be improved in two ways: (1) by incorporat-
ing global, commonsense constraints (e.g., a
non-existent entity cannot be destroyed), and
(2) by biasing reading with preferences from
large-scale corpora (e.g., trees rarely move).
Unlike earlier methods, we treat the problem
as a neural structured prediction task, allow-
ing hard and soft constraints to steer the model
away from unlikely predictions. We show that
the new model significantly outperforms ear-
lier systems on a benchmark dataset for proce-
dural text comprehension (+8% relative gain),
and that it also avoids some of the nonsensical
predictions that earlier systems make.

1 Introduction

Procedural text is ubiquitous (e.g., scientific proto-
cols, news articles, how-to guides, recipes), but is
challenging to comprehend because of the dynamic
nature of the world being described. Comprehend-
ing such text requires a model of the actions de-
scribed in the text and the state changes they pro-
duce, so that questions about the states of entities
at di↵erent timepoints can be answered (Bosselut
et al., 2018).

Despite these challenges, substantial progress
has been made recently in this task. Recent work
– such as EntNet (Hena↵ et al., 2017), QRN (Seo
et al., 2017b), ProLocal/ProGlobal (Dalvi et al.,

⇤*Niket Tandon and Bhavana Dalvi Mishra contributed
equally to this work.

Procedural Text:
How hydroelectric electricity is generated:
1 Water flows downwards thanks to gravity.
2 The moving water spins the turbines in the
power plant.
3 The turbines turn the generators.
4 The generators spin, and produce electricity.

Prior Neural Model’s Predictions:

Figure 1: Poor predictions (in red) made by a prior neu-
ral model (ProGlobal) applied to an (abbreviated) para-
graph from the ProPara dataset. ProGlobal predicts en-
tity locations at each sentence, but the implied move-
ments violate commonsense constraints (e.g., an object
cannot move from itself (1)) and corpus-based prefer-
ences (e.g., it is rare to see turbines move (2)).

2018), and NPN (Bosselut et al., 2018) – has fo-
cused on learning to predict individual entity states
at various points in the text, thereby approximating
the underlying dynamics of the world. However,
while these models can learn to make local pre-
dictions with fair accuracy, their results are often
globally unlikely or inconsistent. For example, in
Figure 1, the neural ProGlobal model from Dalvi
et al. (2018) learns to predict the impossible ac-
tion of an object moving from itself (1), and the
unlikely action of a turbine changing location (2).
We observe similar mistakes in other neural mod-
els, indicating that these models have little notion
of global consistency. Unsurprisingly, mistakes
in local predictions compound as the process be-
comes longer, further reducing the plausibility of
the overall result.
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To address this challenge, we treat process com-
prehension as a structured prediction task and ap-
ply hard and soft constraints during reading. Dur-
ing training, our model, called ProStruct, learns
to search for the most likely action sequence that
is consistent with global constraints (e.g., entities
cannot be destroyed after they have already been
destroyed) and priors from background knowledge
(e.g., turbines rarely change location). The model is
trained end-to-end, with gradients backpropagating
through the search path. We find that this approach
significantly outperforms existing approaches on
a benchmark dataset for process comprehension,
mainly by avoiding the nonsensical predictions that
earlier systems make.

Our contributions are twofold. First, we reformu-
late procedural text comprehension in a novel way:
as a (neural) structured prediction task. This lets
hard and soft constraints steer the model away from
unlikely and nonsensical predictions. Second, we
present a novel, end-to-end model that integrates
these constraints and achieves state-of-the-art per-
formance on an existing process comprehension
dataset (Dalvi et al., 2018).

2 Related Work

Our work builds o↵ a recent body of work that fo-
cuses on using neural networks to explicitly track
the states of entities while reading long texts. These
works have focused on answering simple common-
sense questions (Hena↵ et al., 2017), tracking en-
tity states in scientific processes (Dalvi et al., 2018;
Clark et al., 2018), tracking ingredients in cooking
recipes (Bosselut et al., 2018), and tracking the
emotional reactions and motivations of characters
in simple stories (Rashkin et al., 2018). Our work
extends these methods and addresses their most
common issues by using background knowledge
about entities to prune the set of state changes they
can experience as the model reads new text.

Prior to these neural approaches, some earlier
systems for process comprehension did make use
of world knowledge, and motivated this work. Like
us, the system ProRead (Berant et al., 2014; Scaria
et al., 2013) also treated process comprehension as
structure prediction, using an Integer Linear Pro-
gramming (ILP) formalism to enforce global con-
straints (e.g., if the result of event1 is the agent of
event2, then event1 must enable event2). Similarly,
Kiddon et al. (2015) used corpus-based priors to
guide extraction of an “action graph” from recipes.

Our work here can viewed as incorporating these
approaches within the neural paradigm.

Neural methods for structure prediction have
been used extensively in other areas of NLP, and we
leverage these methods here. In particular we use
a neural encoder-decoder architecture with beam
search decoding, representative of several current
state-of-the-art systems (Bahdanau et al., 2014;
Wiseman and Rush, 2016; Vinyals et al., 2015). As
our model’s only supervision signal comes from
the final prediction (of state changes), our work is
similar to previous work in semantic parsing that
extracts structured outputs from text with no inter-
mediate supervision (Krishnamurthy et al., 2017).

State tracking also appears in other areas of AI,
such as dialog. A typical dialog state tracking task
(e.g., the DSTC competitions) involves gradually
uncovering the user’s state (e.g., their constraints,
preferences, and goals for booking a restaurant),
until an answer can be provided. Although this
context is somewhat di↵erent (the primary goal
being state discovery from weak dialog evidence),
state tracking techniques originally designed for
procedural text have been successfully applied in
this context also (Liu and Perez, 2017).

Finally, our model learns to search over the best
candidate structures using hard constraints and soft
KB priors. Previous work in Neural Machine Trans-
lation (NMT) has used sets of example-specific lex-
ical constraints in beam search decoding to only
produce translations that satisfy every constraint in
the set (Hokamp and Liu, 2017). In contrast, our
work uses a set of global example-free constraints
to prune the set of possible paths the search algo-
rithm can explore. Simultaneously, a recent body
of work has explored encoding soft constraints as
an additional loss term in the training objective for
dialogue (Wen et al., 2015), machine translation
(Tu et al., 2016), and recipe generation (Kiddon
et al., 2016). Our work instead uses soft constraints
to re-rank candidate structures and is not directly
encoded in the loss function.

3 Problem Definition

We first define the general task that we are ad-
dressing, before presenting our approach.

3.1 General Formulation
We define the task as follows. Given:

• A paragraph of procedural text S = an or-
dered set of sentences {s1, ..., sT } describing
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Figure 2: How the (simplified) paragraph in Figure 1
is annotated in ProPara. Each filled row shows the lo-
cation of entities between each step (“?” denotes “un-
known”, “-” denotes “does not exist”). For example, in
the last line (state4), the water is at the turbine.

a sequence of actions1 about a given topic (a
word or phrase).
• A set of entities E = {e j} representing the en-

tities mentioned in the procedure or process.
Each entity e j is denoted by the set of its men-
tions in the paragraph, e.g., {leaf, leaves}
• A set of properties P = {pk} of entities to be

tracked (e.g., location, existence)

predict:

• The state of each entity e j after each sentence
sk, where an entity’s state is the values of all
its properties {pk}. For example, in Figure 2,
the state of the water after step 2 is {loca-
tion(water) = turbine; exists(water) = true}.

This task definition covers the tasks used in earlier
procedural text comprehension datasets. In bAbI
tasks 1-3, a single propert (location) was tracked
for a single entity throughout a paragraph (Weston
et al., 2015). In the state tracking task of Bosselut
et al. (2018), six properties (temperature, shape,
etc.) were tracked for each ingredient in the recipe.

3.2 Data
In our work, we use the ProPara dataset (Dalvi
et al., 2018) for both illustration and evalution.
ProPara contains 488 paragraphs (3100 sentences)
of a particular genre of procedural text, namely sci-
ence processes (e.g., how hydroelectricity is gen-
erated). The dataset tracks two entity properties,
existence and location, for all entities involved in
each process, resulting in 81,000 annotations in the

1We use a broad definition of action to mean any event that
changes the state of the world (including non-volitional events
such as roots absorbing water).

dataset. Figure 2 gives a (simplified) example of
the data, visualized as an (entity x sentence) grid,
where each column tracks a di↵erent entity (time
progressing vertically downwards), and each row
denotes the entities’ state (existence and location)
after each sentence. To evaluate the predictions,
a set of templated questions whose answers can
be computed from the predictions is posed (e.g.,
“What was destroyed, when and where?”).

4 Model

We now describe our model, called ProStruct.

4.1 Overview

We approach the task by predicting the state
changes that occur at each step of the text, us-
ing a vocabulary (size K) of the possible state
change types that can occur given the domain and
properties being modeled. For example, for the
ProPara dataset, we model K = 4 types of state
change: move, create, destroy, and none.
move changes an entity’s location from one place to
another, create from non-existence to a location,
and destroy from a location to non-existence.
State changes can be parameterized by text spans
in the paragraph, e.g., move takes a before and after
location parameter. If a parameterized state change
is predicted, then the model also must predict its
parameter values from the paragraph.

Previous models for process comprehension
make a sequence of local predictions about the
entities’ states, one sentence at a time, maintaining
a (typically neural) state at each sentence. However,
none have the ability to reverse earlier predictions
should an inconsistency arise later in the sequence.
ProStruct overcomes this limitation by reformu-
lating the task as structured prediction. To do this,
it uses a neural encoder-decoder from the semantic
parsing literature (Krishnamurthy et al., 2017; Yin
and Neubig, 2017) combined with a search proce-
dure that integrates soft and hard constraints for
finding the best candidate structure.

For each sentence and entity, the encoder first
uses a bidirectional LSTM to encode the sentence
and indicator variables identifying which entity is
currently being considered (Figure 3). It then pro-
duces a (distributed) representation of the action
that the sentence describes as being applied to that
entity. During decoding, the model decodes each
action embedding into a distribution over possi-
ble state changes that might result, then performs
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Figure 3: The encoder, illustrated for the ProPara do-
main with the paragraph from Figure 1. During encod-
ing, ProStruct creates an action embedding ct j repre-
senting the action at step t on entity ek, for all entities
at all steps. The overall action sequence (right-hand
box) is the collection of these embeddings, for each en-
tity (listed horizontally) and each step (listed vertically
downwards).

a search over the space of possible state change
sequences. Each node in the space is a partial se-
quence of state changes, and each edge is a predic-
tion of the next state changes to add to the sequence
(Figure 4).

During training, the model only follows the path
along the gold sequence, and optimizes a loss func-
tion that drives up the likelihood of predictions
along that path (thus driving down the probabilities
for alternative, incorrect paths). At test time, the
model does not have access to the gold path, and
instead performs a beam search of the space to find
the best candidate sequence.

Most importantly, by mapping the state change
prediction problem to structured prediction, we can
perform a search over the set of candidate paths
that allows us to introduce hard and soft constraints
that capture commonsense knowledge. Hard con-
straints are used to prune the search space (Equa-
tion 4 later), and soft constraints bias the search
away from unlikely state changes via an additional
term in the scoring function (Equations 5 and 6).

4.2 Encoder

The encoder operates over every (st, e j) 2 S ⇥ E
pair to create an encoded representation ct j of the
action described by sentence st, as applied to entity
e j. In other words, we can consider the overall

action to be represented by |E| embeddings, one
for each of the entities in E, encoding the action’s
e↵ects on each. This novel feature allows us to
model di↵erent e↵ects on di↵erent entities by the
same action. For example, a conversion action
may simultaneously destroy one entity and create
another. Figure 3 shows the encoder operating on
s4: “The generator spins, and produces electricity”
and e3: electricity from Figure 1.

Without loss of generality, we define an arbitrary
sentence in S as st = {w0, ...,wI}. Each word wi in
the input sentence is encoded as a vector xi = [vw :
ve : vv], which is the concatenation of a pre-trained
word embedding vw for wi, an indicator variable
ve for whether wi is a reference to the specified
entity e j, and an indicator variable vv for whether
wi is a verb. We use GloVe vectors as pre-trained
embeddings (Pennington et al., 2014) and a POS
tagger to extract verbs (Spacy, 2018).

Then, a BiLSTM is used to encode the word
representations extracted above, yielding a contex-
tualized vector hi for each embedded word xi that
is the concatenated output of the backward and for-
ward hidden states produced by the BiLSTM for
word wi. An attention over the contextualized em-
beddings hi is performed to predict a distribution
of weights over the sentence:

ai = hi ⇤ B ⇤ hev + b (1)

ct j =

IX

i=1

ai ⇤ hi (2)

where ai is the attention weight for each contex-
tualized embedding, ct j is the vector encoding the
action for the sentence-entity pair (st, e j), B and b
are learned parameters, and hev is the concatenation
of the contextual embeddings of the hidden states
where the entity he and verb hv are mentioned:

hev = [µ({hi : xi[ve] = 1}); µ({hi : xi[vv] = 1}]
(3)

where µ is an average function, and xi[ve] and xi[vv]
correspond to the entity indicator and verb indicator
variables defined above for any word wi, respec-
tively. The output vector ct j encodes the action at
step st on entity e j. This vector is computed for all
steps and entities, populating a grid of the actions
on each entity at each step (Figure 3).

4.3 Decoder
To decode the action vectors ct j into their resulting
state changes they imply, each is passed through a
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feedforward layer to generate logit(⇡ j
t ), a set of lo-

gistic activations over the K possible state changes
⇡ j

t for entity e j in sentence st. (For ProPara, there
are K = 4 possible state changes: move, create,
destroy, none). These logits denote how likely
each state change ⇡ j

t is for entity e j at sentence
st. The decoder then explores the search space of
possible state change sequences for the whole para-
graph (Figure 4), using these likelihoods to score
each visited sequence (Equation 6).

Let ⇡t be the set of state changes for all entities
at time t, i.e., ⇡t = {⇡ j

t } j=1..|E|, and let ⇧t be the
sequence of state changes from time 1 to t, i.e.,
⇧t = [⇡1, ..., ⇡t]. Each node in the search space
is a ⇧t, and each edge adds a ⇡t+1 to it so that it
becomes ⇧t+1:

⇧t
⇡t+1���! ⇧t+1

Given there are K possible values for ⇡ j
t , the num-

ber of possible configurations for ⇡t at time t (i.e.,
the branching factor during search) is exponential:
K |E|, where |E| is the number of entities in the para-
graph.

To explore this exponential number of paths, af-
ter every sentence st, we prune branches⇧t ! ⇧t+1
where ⇧t+1 is impossible according to background
knowledge (described in Section 5.1). We define
the boolean function over state change sequences:

allowable(⇧) = 1 if hard constraints satisfied
= 0 otherwise (4)

and prune paths ⇧t+1 where allowable(⇧t+1) = 0.
For example for ProPara, a state transition such
as DESTROY ! MOVE is not allowed because a
hard constraint prohibits non-existent entities from
being moved (Section 5.1).

While hard constraints remove impossible state
change predictions, there may also be other state
changes that are implausible with respect to back-
ground knowledge. For example, commonsense
dictates that it is unlikely (but not impossible) for
plants to be destroyed during photosynthesis. Ac-
cordingly, our inference procedure should discour-
age (but not prohibit) predicting plant destruction
when reading about photosynthesis. To discourage
unlikely state changes, we make use of soft con-
straints that estimate the likelihood of a particular
state change associated with an entity, denoted as:

P(⇡ j|e j, topic) (5)
In Section 5.2, we describe how these likelihoods
can be estimated from large-scale corpora. We add
this bias as an additional term (the second term
below) when scoring the addition of ⇡t+1 to the

Figure 4: The decoder, illustrated for the ProPara do-
main. Each action embedding ct j is first passed through
a feedforward layer to generate a distribution over the
(here K = 4) possible state changes that could result,
for each entity (listed horizontally) at each step (listed
vertically downwards). The decoder then explores the
space of state-change sequences, using these distribu-
tions to guide the search. During end-to-end train-
ing, ProStruct follows the correct (green) path, and
backpropagates to drive up probabilities along this path.
During testing, the system performs a beam search to
find the most globally plausible sequence.

sequence so far ⇧t:

�0(⇡t+1) =
|E|X

j=1

⇣
� logit(⇡ j

t+1)

+ (1 � �) log P(⇡ j
t+1|e j, topic)

⌘
(6)

where � is a learned parameter controlling the de-
gree of bias.

During search, when making a transition along
a path from ⇧t to a valid ⇧t+1, ⇧t+1 is scored by
accumulating normalized scores along the path:

�(⇧t+1) = �(⇧t) +
�0(⇡t+1)

P
⇡0t+12⇧t+1 �

0(⇡0t+1)
(7)

Continuing state transitions in this manner, when
we reach the finished state (i.e., last sentence), our
objective is to maximize the score of the state
changes produced when reading each sentence.
During training, we only materialize a valid node
when ⇧t 2 ⇧⇤t where ⇧⇤t is the set of nodes along
the gold path.

We use this constrained decoding to predict the
state change sequence. For state changes that take
additional parameters, e.g., in the ProPara model
a move is parameterized by the before and after
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locations, we also predict those parameter values
during decoding. This is done using standard span
prediction layers (inspired by BiDAF, Seo et al.
(2017a)) on top of the encoded input.

The model is trained to minimize the joint loss
of predicting the correct state changes and correct
state change parameters for every sentence in the
paragraph:

L = �
TX

t=1

⇣
log P(⇡t)+

|E|X

j=1

X

p2param(⇡ j
t )

log P(vp jt|⇡ j
t )
⌘

(8)
where param(⇡ j

t ) are the parameters of state change
⇡ j

t , and vp jt are the values of those parameters. For
example, move is parameterized by before/after lo-
cations, and the 2nd loss term refers to the predicted
values of those locations.

At test time, instead of following the gold state
change path, we use beam search. After reading
any sentence, we explore the top-k states sorted by
the score �0(⇡t) that satisfy hard constraints. This
way, we predict a sequence of state changes that
have maximum score while being sensible w.r.t.
hard constraints.

5 Incorporating Commonsense
Knowledge

By formulating procedural text comprehension as
a structured prediction task, we can introduce com-
monsense knowledge as hard and soft constraints
into the model, allowing nonsensical and unlikely
predictions to be avoided, and allowing the system
to recover from early mistakes.

5.1 Hard Constraints
Hard constraints are introduced by defining the
(boolean) function over a candidate sequence of
state changes:

allowable(⇧)
used in Equation 4.

While this function can be defined in any way,
for the ProPara application we use six constraints.
The first three below are based on basic “laws of
physics” or commonsense (CS) and are universally
applicable:

CS-1: An entity must exist before it can be moved
or destroyed

CS-2: An entity cannot be created if it already exists
CS-3: An entity cannot change until it is mentioned

in the paragraph

The next three constraints are observed in the
training data:

D-1: Maximum number of toggles for an entity be-
tween Exists and not Exist  fmax_toggles

D-2: Max fraction of entities that are changed per
sentence  fentities_per_sentence

D-3: Max fraction of sentences in which an entity
changes  fsentences_per_entity

The thresholds used in D-1, D-2 and D-3 are hyper-
parameters that can be tuned on the dev set.

5.2 Soft Constraints
Soft constraints are introduced by defining the prior
probabilities used in Equation 6:

P(⇡ j|e j, topic)
that entity e j undergoes state change ⇡ j in a sen-
tence of text about topic. These probabilities are
used to re-rank the candidate event sequences dur-
ing decoding (see Equation 6).

While any method can be used to estimate these
probabilities, we describe our corpus-based ap-
proach here. Although it was designed for ProPara,
it generalizes easily to other domains, and is it-
self a contribution of this work. For a given state
change ⇡ j, entity e j, and topic, we first gather a
corpus of Web sentences mentioning that topic (us-
ing Bing search APIs), then count the number of
times x that the entity is described as undergoing
that state change (e.g., that water is said to MOVE).
To determine this frequency, we first convert the
sentences into a set of SRL frames (verb + role-
argument pairs) using an o↵-the-shelf SRL labeler.
We then use an existing rulebase, derived from
VerbNet, that contains rules that map SRL frames
to state changes, e.g., e1/ARG0 “absorbs”/VERB
e2/ARG1 =) e2 MOVES (Clark et al., 2018). Al-
though the rules and SRL labels are incomplete
and noisy, redundancy in the corpus provides some
robustness when estimating the frequency x. Fi-
nally, the observed frequency x is converted to a
likelihood using a logistic transformation:

P(⇡ j|e j, topic) =
1

1 + exp�(x�x0) (9)

where, x0 is a hyperparameter tuned on the dev set.

5.3 Commonsense Constraints for New
Domains

The commonsense constraints we have used for
ProPara are general, covering the large variety of
topics contain in ProPara (e.g., electricity, photo-
synthesis, earthquakes). However, if one wants to
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apply ProStruct to other genres of procedural text
(e.g., fictional text, newswire articles), or broaden
the state change vocabulary, di↵erent common-
sense constraints may be needed. Note that our
model architecture itself is agnostic to the source
and quantity of hard and soft constraints. For
example, one might leverage commonsense rules
from existing ontologies such as SUMO (Niles and
Pease, 2001) or Cyc (Lenat et al., 1985) to identify
new hard constraints; and our corpus-based method
could be extended to cover new state change types
should the state change vocabulary be extended.

6 Evaluation

We evaluate our model using the ProPara dataset,
and compare against several strong baselines pub-
lished with the original dataset (Dalvi et al., 2018).

6.1 Evaluation setup

Given a paragraph and set of entities as input, the
task is to answer four templated questions, whose
answers are deterministically computed from the
state change sequence:
Q1. What are the inputs to the process?
Q2. What are the outputs of the process?
Q3. What conversions occur, when and where?
Q4. What movements occur, when and where?
Inputs are defined as entities that existed at the
start of the process, but not at the end. Outputs
are entities that did not exist at the start, but did at
the end. A conversion is when some entities are
destroyed and others created. Finally, a movement
is an event where an entity changes location.

For each process, as every question can have
multiple answers, we compute a separate F1 score
for each question by comparing the gold and pre-
dicted answers. For Q1 and Q2, this is straightfor-
ward as answers are atomic (i.e., individual names
of entities). For Q3, as each answer is a 4-tuple
(convert-from, convert-to, location, sentence-id),
some answers may only be partially correct. To
score partial correctness, we pair gold and pre-
dicted answers by requiring the sentence-id in each
to be the same, and then score each pair by the Ham-
ming distance of their tuples. For Q4, each answer
is also a 4-tuple (entity, from-location, to-location,
sentence-id), and the same procedure is applied.
The four F1 scores are then macro-averaged. The
total number of items to predict in the train/dev/test
partitions is 7043/913/1095.

6.2 Baselines

We compare results using the following process
comprehension models:
Recurrent Entity Networks (EntNet) (Hena↵
et al., 2017) are a state-of-the-art model for the
bAbI tasks (Weston et al., 2015). The model uses a
dynamic memory to maintain a representation of
the world state as sentences are read, with a gated
update at each step. These states are decoded to
answer questions after each sentence is read.
Query Reduction Networks (QRN) (Seo et al.,
2017b) perform a gated propagation of their hidden
state across each time-step. Given a question, the
hidden state is used to modify the query to keep
pointing to the answer at each step.
ProLocal (Dalvi et al., 2018) predicts the state
changes described in individual sentences, and then
uses commonsense rules of inertia to propagate
state values forwards and backwards in time.
ProGlobal (Dalvi et al., 2018) predicts states of an
entity across all time steps. It considers the entire
paragraph while predicting states for an entity, and
learns to predict location spans at time-step t + 1
based on location span predictions at t.

7 Results

7.1 Comparison with Baselines

We compare our model (which make use of world
knowledge) with the four baseline systems on the
ProPara dataset. All models were trained on the
training partition, and the best model picked based
on prediction accuracy on the dev partition. Table 1
shows the precision, recall, and F1 for all models
on the the test partition. ProStruct significantly
outperforms the baselines, suggesting that world
knowledge helps ProStruct avoid spurious pre-
dictions. This hypothesis is supported by the fact
that the ProGlobal model has the highest recall and
worst precision, indicating that it is over-generating
state change predictions. Conversely, the ProLocal
model has the highest precision, but its recall is
much lower, likely because it makes predictions
for individual sentences, and thus has no access
to information in surrounding sentences that may
suggest a state change is occurring.

We also examined the role of the constraint rules
(both hard and soft) on e�ciency. With all rules
disabled, the training does not complete even one
epoch in more than three hours. Because the num-
ber of valid states is exponential in the number of
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Precision Recall F1
ProLocal 77.4 22.9 35.3
QRN 55.5 31.3 40.0
EntNet 50.2 33.5 40.2
ProGlobal 46.7 52.4 49.4
ProStruct 74.2 42.1 53.7

Table 1: Results on the prediction task (test set).

Precision Recall F1
ProStruct 70.4 47.8 56.9

- Soft constraints 61.9 47.4 53.7
- Hard constraints† 69.6 47.0 56.1

† Partial ablation, ablated at test only (training without these
is computationally infeasible).

Table 2: Ablating world knowledge on the dev set.

entities, the training is particularly slow on para-
graphs with many entities. In contrast, with all
rules enabled, training takes less than 10 minutes
per epoch. This illustrates that the constraints are
not only contributing to the model scores, but also
helping make the search e�cient.

7.2 Ablations and Analysis

To explore the impact of world knowledge, we
also performed two ablations on the dev set: Re-
moving soft constraints (at both training and test
time), and a partial ablation of removing hard con-
straints at test time only - note that hard constraints
cannot be removed during training because model
training time becomes prohibitively large without
them, thus qualifying this second ablation. Table 4
shows that F1 drops when each type of knowledge
is removed, illustrating that they are helping. The
smaller drop for hard constraints suggests that they
have primarily been incorporated into the network
during training due to this ablation being partial.

Qualitatively, we compared dev set examples
where the predicted event sequence changed, com-
paring predictions made without world knowledge
to those made with world knowledge. For read-
ability, we only show the event type predictions
(M ,C,D, and N (shown as "-")) and not their from-
location/to-location arguments. If a prediction
changes from X (without knowledge) to Y (with
knowledge), we write this “X ! Y”. For cases
where the prediction changed, we show incorrect
predictions in red, and correct predictions in green.

We first compare predictions made with and
without the BK (corpus-based background knowl-
edge, the soft constraints). Table 3 shows a para-
graph about the process of nuclear-powered elec-

tricity generation, in the problematic prediction of
the generator moving (M) was predicted in the sec-
ond to last sentence. However, the background
knowledge contains no examples of generators be-
ing moved. As a result, it drives the probability
mass away from the move (M) prediction, resulting
in a no state change (N) prediction instead.

Table 4 shows a second example where, with-
out knowledge, no event was predicted for the
spark entity. However, BK contains many exam-
ples of sparks being created (reflecting text about
this topic), shifting the probability mass towards
this prediction, resulting in the correct C (create).

Finally, Table 5 shows an example of a hard con-
straint preventing a nonsensical prediction (namely,
electricity is created after it already exists).

7.3 Error Analysis
There are also many cases where incorrect predic-
tions are made. The main causes are summarized
below, and o↵er opportunities for future work.

Implicit reference is a challenge for ProStruct,
where an entity a↵ected by an event is not men-
tioned until a later sentence in the paragraph. For
example, in the following ProPara paragraph snip-
pet about combustion engines:

"...(3) A spark ignites fuel...(4) The pres-
sure pushes the piston down...."

both spark and pressure are created in sentence
3, even though pressure is not mentioned until
the subsequent sentence. Recognizing this type of
implicit mention is very hard. It is possible that
BK could help in such situations, particularly if
ignite were often associated with creating pres-
sure in the context of a combustion engines, but we
did not see such examples in practice.

A second challenge is coreference, in particular
when di↵erent entities have similar names. For
example, again for combustion, a snippet looks:

...(2) the fuel is injected... (6) the spent

Without vs. with BK
Fuel Heat Turbine Generator Elec.

Fuel produces heat. D C - - -
... Steam spins turbine. - - - - -
Generator is turned. - - - M! N -
Makes electricity. - - - - C

Table 3: BK improves precision. In a nuclear powered
electricity generation scenario, BK drives the probabil-
ity mass away from the generator movement, as a gen-
erator does not generally change location.
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Without vs. with BK
Fuel Air Spark

Fuels burns in the chamber. D - -
The burning fuel creates energy. - - -
The upward motion cause air ... - M -
The piston compresses the air. - - -
A spark ignites the fuel and air ... - - N! C
... ... ... ...

Table 4: BK improves coverage. BK has a strong signal
that a spark is usually created in combustion engines,
shifting the probability mass towards spark-creation.

Without and with constraints
Electricity Signals ...

Electricity enters supply unit. M - -
The supply gives electricity to transistors. C! D -
... ... ... ...
The energy is used to complete ... - -

Table 5: Hard constraints avoid nonsensical predictions.
In this example without CS-2, the electricity is pre-
dicted to be created after it already exists (impossible).
This mistake is avoided using the constraints.

fuel is ejected. (7) new fuel is injected....

Here fuel and spent fuel are the same entity,
while new fuel is a di↵erent entity. Correctly
tracking these references is challenging (in this
case, ProStruct misidentifies (7) as describing an
event on the original fuel/spent fuel).

A third, related problem is pronoun resolution.
For example, in:

The sound continues to bounce o↵ of
things and produce echoes until it is to-
tally absorbed or dissipated.

the word it confuses ProStruct, and it predicts
that the echo (rather than the sound) is destroyed.
We observe several such failure cases.

Finally, we observed BK retrieval failures
when there was appropriate background knowl-
edge that was expressed in a lexically di↵erent
way. Consider the example in Table 6 about oil for-
mation. Without BK, the model correctly predicts
that sediment is destroyed (D). However, BK has
few examples of sediment being destroyed, and
so biases the prediction away from this (correct)
choice to an incorrect choice. Further examination
of BK shows that it does in fact have knowledge
about this destruction, but that is expressed using
the word deposit instead (e.g., "deposits break
down"). A soft (neural) means of accessing BK
would help alleviate this problem.

8 Conclusions

Answering questions about procedural text remains
challenging, requiring models of actions and the

Without BK vs. with BK
Algae Plankton Sediment

Algae and plankton die. D D -
The dead algae and plankton ... - - -
The sediment breaks down. - - D!M

Table 6: BK lookup limitation: though BK knows that
deposits can be destroyed (broken down), it does not
equate this with (synonymous) sediments being de-
stroyed, hence biases model away from correct answer.

state changes they produce. Predictions made lo-
cally throughout the text may together be globally
inconsistent or improbable. We have shown how
the predicted e↵ects of actions can be improved by
treating the task as a structured prediction problem,
allowing commonsense knowledge to be injected
to avoid an overall inconsistent or improbable set
of predictions. In particular, we have shown how
two kinds of knowledge can be exploited: hard
constraints to exclude impossible and nonsensical
state changes, and soft constraints to encourage
likely state changes. The resulting system signif-
icantly outperforms previous state-of-the-art sys-
tems on a challenging dataset, and our ablations
and analysis suggest that the knowledge is play-
ing an important role. Our code is available at
https://github.com/allenai/propara.
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Abstract

We present a large scale collection of diverse
natural language inference (NLI) datasets that
help provide insight into how well a sentence
representation captures distinct types of rea-
soning. The collection results from recasting
13 existing datasets from 7 semantic phenom-
ena into a common NLI structure, resulting in
over half a million labeled context-hypothesis
pairs in total. We refer to our collection as
the DNC: Diverse Natural Language Inference
Collection. The DNC is available online at
http://www.decomp.net, and will grow
over time as additional resources are recast and
added from novel sources.

1 Introduction

A plethora of new natural language inference
(NLI)1 datasets has been created in recent
years (Bowman et al., 2015; Williams et al., 2017;
Lai et al., 2017; Khot et al., 2018). However, these
datasets do not provide clear insight into what type
of reasoning or inference a model may be perform-
ing. For example, these datasets cannot be used
to evaluate whether competitive NLI models can
determine if an event occurred, correctly differ-
entiate between figurative and literal language, or
accurately identify and categorize named entities.
Consequently, these datasets cannot answer how
well sentence representation learning models cap-
ture distinct semantic phenomena necessary for
general natural language understanding (NLU).

To answer these questions, we introduce the
Diverse NLI Collection (DNC), a large-scale NLI
dataset that tests a model’s ability to perform di-
verse types of reasoning. DNC is a collection of
NLI problems, each requiring a model to perform

1The task of determining if a hypothesis would likely be
inferred from a context, or premise; also known as Recogniz-
ing Textual Entailment (RTE) (Dagan et al., 2006, 2013).

I Find him before he finds the dog food
Event The finding did not happen

3

Factuality I I’ll need to ponder
The pondering happened

7

I Ward joined Tom in their native Perth
Relation Ward was born in Perth

3

Extraction I Stefan had visited his son in Bulgaria
Stefan was born in Bulgaria

7

I Kim heard masks have no face value
Kim heard a pun

3

I Tod heard that thrift is better than annuity
Puns

Tod heard a pun
7

Table 1: Example sentence pairs for different semantic phe-
nomena. I indicates the line is a context and the following
line is its corresponding hypothesis. 3 and 7 respectively in-
dicate that the context entails, or does not entail the hypothe-
sis. Appendix A includes more recast examples.

a unique type of reasoning. Each NLI dataset con-
tains labeled context-hypothesis pairs that we re-
cast from semantic annotations for specific struc-
tured prediction tasks. We extend various prior
works on challenge NLI datasets (Zhang et al.,
2017), and define recasting as leveraging existing
datasets to create NLI examples (Glickman, 2006;
White et al., 2017). We recast annotations from a
total of 13 datasets across 7 NLP tasks into labeled
NLI examples. The tasks include event factual-
ity, named entity recognition, gendered anaphora
resolution, sentiment analysis, relationship extrac-
tion, pun detection, and lexicosyntactic inference.
Currently, the DNC contains over half a million
labeled examples. Table 1 includes NLI pairs that
test specific types of reasoning.

Using a hypothesis-only NLI model, with ac-
cess to just hypothesis sentences, as a strong base-
line (Tsuchiya, 2018; Gururangan et al., 2018; Po-
liak et al., 2018b), our experiments demonstrate
how DNC can be used to probe a model’s ability
to capture different types of semantic reasoning
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necessary for general NLU. In short, this work
answers a recent plea to the community to test
“more kinds of inference” than in previous chal-
lenge sets (Chatzikyriakidis et al., 2017).

2 Motivation & Background

Compared to eliciting NLI datasets directly, i.e.
asking humans to author contexts and/or hypoth-
esis sentences, recasting can 1) help determine
whether an NLU model performs distinct types of
reasoning; 2) limit types of biases observed in pre-
vious NLI data; and 3) generate examples cheaply,
potentially at large scales.

NLU Insights Popular NLI datasets, e.g. Stan-
ford Natural Language Inference (SNLI) (Bow-
man et al., 2015) and its successor Multi-
NLI (Williams et al., 2017), were created by elic-
iting hypotheses from humans. Crowd-source
workers were tasked with writing one sentence
each that is entailed, neutral, and contradicted
by a caption extracted from the Flickr30k cor-
pus (Young et al., 2014). Although these datasets
are widely used to train and evaluate sentence
representations, a high accuracy is not indicative
of what types of reasoning NLI models perform.
Workers were free to create any type of hypothe-
sis for each context and label. Such datasets can-
not be used to determine how well an NLI model
captures many desired capabilities of language un-
derstanding systems, e.g. paraphrastic inference,
complex anaphora resolution (White et al., 2017),
or compositionality (Pavlick and Callison-Burch,
2016; Dasgupta et al., 2018). By converting prior
annotation of a specific phenomenon into NLI ex-
amples, recasting allows us to create a diverse NLI
benchmark that tests a model’s ability to perform
distinct types of reasoning.

Limit Biases Studies indicate that many NLI
datasets contain significant biases. Examples in
the early Pascal RTE datasets could be correctly
predicted based on syntax alone (Vanderwende
and Dolan, 2006; Vanderwende et al., 2006).
Statistical irregularities, and annotation artifacts,
within class labels allow a hypothesis-only model
to significantly outperform the majority baseline
on at least six recent NLI datasets (Poliak et al.,
2018b). Class label biases may be attributed to
the human-elicited protocol. Moreover, examples
in such NLI datasets may contain racial and gen-
dered stereotypes (Rudinger et al., 2017).

We limit some biases by not relying on hu-
mans to generate hypotheses. Recast NLI datasets
may still contain some biases, e.g. non-uniform
distributions over NLI labels caused by the dis-
tribution of labels in the original dataset that we
recast.2 Experimental results using Poliak et al.
(2018b)’s hypothesis-only model indicate to what
degree the recast datasets retain some biases that
may be present in the original semantic datasets.

NLI Examples at Large-scale Generating NLI
datasets from scratch is costly. Humans must be
paid to generate or label natural language text.
This linearly scales costs as the amount of gen-
erated NLI-pairs increases. Existing annotations
for a wide array of semantic NLP tasks are freely
available. By leveraging existing semantic annota-
tions already invested in by the community we can
generate and label NLI pairs at little cost and cre-
ate large NLI datasets to train data hungry models.

Why These Semantic Phenomena? A long
term goal is to develop NLU systems that can
achieve human levels of understanding and rea-
soning. Investigating how different architectures
and training corpora can help a system perform
human-level general NLU is an important step in
this direction. DNC contains recast NLI pairs that
are easily understandable by humans and can be
used to evaluate different sentence encoders and
NLU systems. These semantic phenomena cover
distinct types of reasoning that an NLU system
may often encounter in the wild. While higher per-
formance on these benchmarks might not be con-
clusive proof of a system achieving human-level
reasoning, a system that does poorly should not be
viewed as performing human-level NLU. We ar-
gue that these semantic phenomena play integral
roles in NLU. There exist more semantic phenom-
ena integral to NLU (Allen, 1995) and we plan to
include them in future versions of the DNC.

Previous Recast NLI Example sentences in
RTE1 (Dagan et al., 2006) were extracted from
MT, IE, and QA datasets, with the process re-
ferred to as ‘recasting’ in the thesis by Glickman
(2006). NLU problems were reframed under the
NLI framework and candidate sentence pairs were
extracted from existing NLP datasets and then la-
beled under NLI (Dagan et al., 2006). Years later,
this term was independently used by White et al.

2In a corpus with part-of-speech tags, the distribution of
labels for the word “the” will likely peak at the Det tag.
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(2017), who proposed to “leverage existing large-
scale semantic annotation collections as a source
of targeted textual inference examples.” The term
‘recasting’ was limited to automatically convert-
ing existing semantic annotations into labeled NLI
examples without manual intervention. We adopt
the broader definition of ‘recasting’ since our NLI
examples were automatically or manually gener-
ated from prior NLU datasets.

Applied Framework versus Inference Probing
Traditionally, NLI has not been viewed as a down-
stream, applied NLP task.3 Instead, the com-
munity has often used it as “a generic evaluation
framework” to compare models for distinct down-
stream tasks (Dagan et al., 2006) or to determine
whether a model performs distinct types of rea-
soning (Cooper et al., 1996). These two different
evaluation goals may affect which datasets are re-
cast. We target both goals as we recast applied
tasks and linguistically focused phenomena.

3 Recasting Semantic Phenomena

We describe efforts to recast 7 semantic phenom-
ena from a total of 13 datasets into labeled NLI
examples. Many of the recasting methods rely on
simple templates that do not include nuances and
variances typical of natural language. This allows
us to specifically test how sentence representations
capture distinct types of reasoning. When recast-
ing, we preserve each dataset’s train/dev/test split.
If a dataset does not contain such a split, we cre-
ate a random split with roughly a 80:10:10 ratio.
Table 2 reports statistics about each recast dataset.

Event Factuality (EF) Event factuality pre-
diction is the task of determining whether an
event described in text occurred. Determining
whether an event occurred enables accurate infer-
ences, e.g. monotonic inferences, based on the
event (Rudinger et al., 2018b).4 Incorporating
factuality has been shown to improve NLI (Sauri
and Pustejovsky, 2007).

We recast event factuality annotations from
UW (Lee et al., 2015), MEANTIME (Minard
et al., 2016), and Decomp (Rudinger et al., 2018b).
We use sentences from original datasets as con-
texts and templates (1a) and (1b) as hypotheses.5

3This changed as large NLI datasets have recently been
used to train, or pre-train, models to perform NLI, or other
tasks (Conneau et al., 2017; Pasunuru and Bansal, 2017).

4Appendix B.1 provides an example.
5We replace Event with the event described in the context.

(1) a. The Event happened
b. The Event did not happen

If the predicate denoting the Event was annotated
as having happened in the factuality dataset, the
context paired with (1a) is labeled as ENTAILED
and the same context paired with (1b) is labeled as
NOT-ENTAILED. Otherwise, we swap the labels.

Named Entity Recognition (NER) Distinct
types of entities have different properties and re-
lational objects (Prince, 1978) that can help infer
facts from a given context. For example, if a sys-
tem can detect that an entity is a name of a nation,
then that entity likely has a leader, a language, and
a culture (Prince, 1978; Van Durme, 2010). When
classifying NLI pairs, a model can determine if an
object mentioned in the hypothesis can be a re-
lational object typically associated with the type
of entity described in the context. NER tags can
also be directly used to determine if a hypothesis is
likely to not be entailed by a context, such as when
entities in contexts and hypotheses do not share
NER tags (Castillo and Alemany, 2008; Sammons
et al., 2009; Pakray et al., 2010).

Given a sentence annotated with NER tags, we
recast the annotations by preserving the original
sentences as contexts and creating hypotheses us-
ing the template “NP is a Label.”6 For ENTAILED
hypotheses we replace Label with the correct NER
label of the NP; for NOT-ENTAILED hypotheses,
we choose an incorrect label from the prior dis-
tribution of NER tags for the given phrase. This
prevents us from adding additional biases besides
any class-label statistical irregularities present in
the original data. We apply this procedure on the
Gronigen Meaning Bank (Bos et al., 2017) and the
ConLL-2003 Shared Task (Tjong Kim Sang and
De Meulder, 2003).

Gendered Anaphora Resolution (GAR) The
ability to perform pronoun resolution is essen-
tial to language understanding, in many cases
requiring common-sense reasoning about the
world (Levesque et al., 2012). White et al. (2017)
show that this task can be directly recast as an NLI
problem by transforming Winograd schemas into
NLI sentence pairs.

Using a similar formula Rudinger et al. (2018a)
introduce Winogender schemas, minimal sentence
pairs that differ only by pronoun gender. With this

6We ensure grammatical hypotheses by appropriately
conjugating “is a” when needed.
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Sem. Phenomena Dataset # pairs Automated
Decomp (Rudinger et al., 2018b) 42K (41,888) 3

UW (Lee et al., 2015) 5K (5,094) 3Event Factuality
MeanTime (Minard et al., 2016) .7K (738) 3

Groningen (Bos et al., 2017) 260K (261,406) 3Named Entity Recognition CoNLL (Tjong Kim Sang and De Meulder, 2003) 60K (59,970) 3

Gendered Anaphora Winogender (Rudinger et al., 2018a) .4K (464) 7

VerbCorner (Hartshorne et al., 2013) 135K (138, 648) 3
MegaVeridicality (White and Rawlins, 2018) 11K (11,814) 3Lexicosyntactic Inference

VerbNet (Schuler, 2005) 2K (1, 759) 37

(Yang et al., 2015) 9K (9,492) 3Puns SemEval 2017 Task 7 (Miller et al., 2017) 8K (8, 054) 3

Relationship Extraction FACC1 (Gabrilovich et al., 2013) 25K (25,132) 37

Sentiment Analysis (Kotzias et al., 2015) 6K (6,000) 3

Combined Diverse NLI Collection (DNC) 570K (570,459)

— SNLI (Bowman et al., 2015) 570K
— Multi-NLI (Williams et al., 2017) 433K

Table 2: Statistics summarizing the recast datasets. The first column refers to the original annotation that was recast, the
‘Combined‘ row refers to the combination of our recast datasets. The second column indicates the datasets that were recast, and
the 3rd column reports how many labeled NLI pairs were extracted from the corresponding dataset. The last column indicates
whether the recasting method was fully-automatic without human involvement (3), manual (7), or used a semi-automatic
method that included human intervention (37). The Multi-NLI and SNLI numbers contextualize the scale of our dataset.

adapted pronoun resolution task, they demonstrate
the presence of systematic gender bias in corefer-
ence resolution systems. We recast Winogender
schemas as an NLI task, introducing a potential
method of detecting gender bias in NLI systems or
sentence embeddings. In recasting, the context is
the original, unmodified Winogender sentence; the
hypothesis is a short, manually constructed sen-
tence having a correct (ENTAILED) or incorrect
(NOT-ENTAILED) pronoun resolution.

Lexicosyntactic Inference (Lex) While many
inferences in natural language are triggered by lex-
ical items alone, there exist pervasive inferences
that arise from interactions between lexical items
and their syntactic contexts. This is particularly
apparent among propositional attitude verbs – e.g.
think, want, know – which display complex distri-
butional profiles (White and Rawlins, 2016). For
instance, the verb remember can take both finite
clausal complements and infinitival clausal com-
plements.

(2) a. Jo didn’t remember that she ate
b. Jo didn’t remember to eat

This small change in the syntactic structure gives
rise to large changes in the inferences that are li-
censed: (2a) presupposes that Jo ate while (2b)
entails that Jo didn’t eat. We recast data from
three datasets that are relevant to these sorts of lex-
icosyntactic interactions.

Lex #1: MegaVeridicality (MV) White and
Rawlins (2018) build the MegaVeridicality dataset
by selecting verbs from the MegaAttitude dataset
(White and Rawlins, 2016) based on their gram-
matical acceptability in the [NP _ that S] and [NP
was _ed that S] frames.7 They then asked anno-
tators to answer questions of the form in (3) us-
ing three possible responses: yes, maybe or maybe
not, and no (Karttunen et al., 2014).

(3) a. Someone {knew, didn’t know} that a par-
ticular thing happened.

b. Did that thing happen?

We use the same procedure to annotate sentences
containing verbs that take various types of infini-
tival complement: [NP _ for NP to VP], [NP _ to
VP], [NP _ NP to VP], and [NP was _ed to VP].8

To recast these annotations, we assign the con-
text sentences like (3a) to the majority class – yes,
maybe or maybe not, no – across 10 different an-
notators, after applying an ordinal model-based
normalization to their responses. We then pair
each context sentence with three hypotheses.

(4) a. That thing happened
b. That thing may or may not have happened
c. That thing didn’t happen

7NP is always instantiated by someone; and S is always
instantiated by a particular thing happened.

8NP is always instantiated by either someone, a particular
person, or a particular thing; and VP is always instantiated
by happen, do a particular thing, or have a particular thing.
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If annotated yes, maybe or maybe not, or no, the
pair (3a)-(4a), (3a)-(4b), or (3a)-(4c) is respec-
tively assigned ENTAILED and the other pairings
are assigned NOT-ENTAILED; train/dev/test split
labels are randomly assigned to every pair that
context sentence appears in.

Lex #2: Recasting VerbNet (VN) We create ad-
ditional lexicosyntactic NLI examples from Verb-
Net (Schuler, 2005). VerbNet contains classes of
verbs that each can have multiple frames. Each
frame contains a mapping from syntactic argu-
ments to thematic roles, which are used as argu-
ments in Neo-Davidsonian first-order logical pred-
icates (5b) that describe the frame’s semantics.
Each frame additionally contains an example sen-
tence (5a) that we use as our NLI context and we
create templates (5c) from the most frequent se-
mantic predicates to generate hypotheses (5d).

(5) a. Michael swatted the fly
b. cause(E, Agent)
c. Agent caused the E
d. Michael caused the swatting

We use the Berkeley Parser (Petrov et al., 2006)
to match tokens in an example sentence with the
thematic roles and then fill in the templates with
the matched tokens (5d). We also decompose
multi-argument predicates into unary predicates to
increase the number of hypotheses we generate.
On average, each context is paired with 4.5 hy-
potheses. We generate NOT-ENTAILED hypothe-
ses by filling in templates with incorrect thematic
roles. 9 We partition the recast NLI examples into
train/development/test splits such that all example
sentences from a VerbNet class (which we use a
NLI hypothesis) appear in only one partition of
our dataset. In turn, the recast VerbNet dataset’s
partition is not exactly 80:10:10.

Lex #3: Recasting VerbCorner (VC) The third
dataset testing lexicosyntactic inference that we
recast is VerbCorner (VC) (Hartshorne et al.,
2013). VC decomposes VerbNet predicates into
simple semantic properties and “elicit[s] reliable
semantic judgments corresponding to VerbNet
predicates” via crowd-sourcing. The semantic
judgments focus on movement, physical contact,
application of force, change of physical or men-
tal state, and valence, all of which “may be central

9This is similar to Aharon et al. (2010)’s template match-
ing to generate entailment rules from FrameNet (Baker et al.,
1998).

organizing principles for a human’s . . . conceptu-
alization of the world.” (Hartshorne et al., 2013).

Each sentence in VC is judged based on the de-
composed semantic properties. We convert each
semantic property into declarative statements10 to
create hypotheses and pair them with the original
sentences which we preserve as contexts. The NLI
pair is ENTAILED or NOT-ENTAILED depending on
the given sentence’s semantic judgment.

Figurative Language (Puns) Figurative lan-
guage demonstrates natural language’s expressive-
ness and wide variations. Understanding and rec-
ognizing figurative language “entail[s] cognitive
capabilities to abstract and meta-represent mean-
ings beyond physical words” (Reyes et al., 2012).
Puns are prime examples of figurative language
that may perplex general NLU systems as they are
one of the more regular uses of linguistic ambi-
guity (Binsted, 1996) and rely on a wide-range of
phonetic, morphological, syntactic, and semantic
ambiguity (Pepicello and Green, 1984; Binsted,
1996; Bekinschtein et al., 2011).

We recast puns from Yang et al. (2015) and
Miller et al. (2017) using templates to generate
contexts (6a) and hypotheses (6b), (6c). We re-
place Name with names sampled from a distribu-
tion based on US census data,11 and Pun with the
original sentence. If the original sentence was la-
beled as containing a pun, the (6a)-(6b) pair is
labeled as ENTAILED and (6a)-(6c) is labeled as
NOT-ENTAILED, otherwise we swap the labels.

(6) a. Name heard that Pun
b. Name heard a pun
c. Name did not hear a pun

Relation Extraction (RE) The goal of the rela-
tion extraction (RE) task is to infer the real-world
relationships between pairs of entities from natu-
ral language text. The task is “grounded” in the
sense that the input is natural language text and
the output is hentity1,relation,entity2i
tuples defined in the schema of some knowledge
base. RE requires a system to understand the many
different surface forms which may entail the same
underlying relation, and to distinguish those from
surface forms which involve the same entities but
do not entail the relation of interest. For example,
(7a) is entailed by (7b) and (7c) but not by (7d).

10We list the declarative statements in Appendix B.2.1.
11http://www.ssa.gov/oact/babynames/

names.zip
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(7) a. Name was born in Place
b. Name is from Place
c. Name, a Place native, . . .
d. Name visited Place

Natural language surface forms are often used in
RE in a weak-supervision setting (Mintz et al.,
2009; Hoffmann et al., 2011; Riedel et al., 2013).
That is, if entity1 and entity2 are known
to be related by relation, it is assumed that
every sentence observed which mentions both
entity1 and entity2 is assumed to be a real-
ization of relation: i.e. (7d) would (falsely) be
taken as evidence of the birthPlace relation.

Here we first generate hypotheses and
then corresponding contexts. To generate
hypotheses, we begin with entity-relation
triples extracted from DBPedia infoboxes: e.g.
hBarack Obama, birthPlace, Hawaiii.
These relation predicates were extracted directly
from Wikipedia infoboxes and are not cleaned.
As a result, many relations are redundant with
one another (birthPlace, hometown) and
some relations do not correspond to obvious
natural language glosses based on the name alone
(demographics1Info). Thus, we construct
a template for each predicate p by manually in-
specting 1) a sample of entities which are related
by p 2) a sample of sentences in which those
entities co-occur and 3) the most frequent natural
language strings which join entities related by p
according to a OpenIE triple database (Schmitz
et al., 2012; Fader et al., 2011) extracted from
a large text corpus. We then manually write a
simple template (e.g. Mention1 was born in
Mention2) for p, ignoring any unclear relations.
In total, we end up with 574 unique relations,
expressed by 354 unique templates.

For each such hypothesis generated, we cre-
ate a number of contexts. We begin with
the FACC1 corpus (Gabrilovich et al., 2013)
which contains natural language sentences from
ClueWeb in which entities have been auto-
matically linked to disambiguated Freebase en-
tities, when possible. Then, given a tuple
hentity1,relation,entity2i, we find ev-
ery sentence which contains both entity1 and
entity2. Since many of these sentences are
false positives (7d), we have human annotators vet
each context/hypothesis pair, using the ordinal en-
tailment scale described in Zhang et al. (2017).
We include optional binary labels by converting

pairs labeled as 1 � 4 and 5 to ENTAILED and
NOT-ENTAILED respectively.12 We apply pruning
methods (described in Appendix B.4) to combat
issues related to noisy, ungrammatical hypotheses
and disagreement between multiple annotators.

Subjectivity (Sentiment) Some of the previ-
ously discussed semantic phenomena deal with
objective information – did an event occur or what
type of entities does a specific name represent.
Subjective information is often expressed differ-
ently (Wiebe et al., 2005), making it important
to use other tests to probe whether an NLU sys-
tem understands language that expresses subjec-
tive information. We are interested in determining
whether general NLU models capture ‘subjective
clues’ that can help identify and understand emo-
tions, opinions, and sentiment within a subjective
text (Wilson et al., 2006).

We recast a sentiment analysis dataset since the
task is the “expression of subjectivity as either a
positive or negative opinion” (Taboada, 2016). We
extract sentences from product, movie, and restau-
rant reviews labeled as containing positive or neg-
ative sentiment (Kotzias et al., 2015). Contexts
(8a) and hypotheses (8b), (8c) are generated using
the following templates:

(8) a. When asked about Item, Name said Review
b. Name liked the Item
c. Name did not like the Item

Item is replaced with either “product”, “movie”,
or “restaurant”, and the Name is sampled as previ-
ously discussed. If the original sentence contained
positive (negative) sentiment, the (8a)-(8b) pair is
labeled as ENTAILED (NOT-ENTAILED) and (8a)-
(8c) is labeled as NOT-ENTAILED (ENTAILED).

3.1 Noise in Recast Data

Recasting can create noisy NLI examples that may
potentially enable a model to achieve a high ac-
curacy by learning dataset specific characteristics
that are unrelated to NLU. For example, Poliak
et al. (2018a,b) previously noted the association
between ungrammaticality and NOT-ENTAILED
examples based on how White et al. (2017) recast
the FrameNet+ dataset (Pavlick et al., 2015).

12Following the label set in SNLI, Zhang et al. (2017) con-
verted pairs labeled with 1 as CONTRADICTION, 2 � 4 as
NEUTRAL and 5 to ENTAILMENT. Since here we are gen-
erally interested in binary classification, we merge the CON-
TRADICTION and NEUTRAL examples as NOT-ENTAILED.
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Model
Recast Data NER EF RE Puns Sentiment GAR VC MV VN

Majority (MAJ) 50.00 50.00 59.53 50.00 50.00 50.00 50.00 66.67 53.66
No Pre-training

InferSent 92.50 83.07 61.89 60.36 50.00 – 88.60 85.96 46.34
Hyp-only 91.48 69.14 64.78 60.36 50.00 – 76.82 77.83 46.34

Pre-trained DNC
InferSent (update) 92.47 83.86 74.38 93.17 81.00 – 89.00 85.62 76.83
InferSent (fixed) 92.20 81.07 74.11 87.76 77.33 50.65 88.59 83.84 67.68
Hyp-only (update) 91.60 71.07 70.57 60.02 46.83 – 76.78 77.83 68.90
Hyp-only (fixed) 91.37 69.74 65.97 56.44 48.17 50.00 76.78 77.83 59.15

Pre-trained Multi-NLI
InferSent (update) 92.37 83.03 76.08 92.48 83.50 – 88.45 85.11 78.05
InferSent (fixed) 52.99 54.88 66.75 56.04 56.50 50.65 45.33 55.92 45.73
Hyp-only (update) 91.62 70.64 69.91 60.36 49.33 – 76.82 77.83 68.29
Hyp-only (fixed) 52.55 66.33 52.96 60.59 50.00 50.43 41.31 46.28 48.78

Table 3: NLI accuracies on test data. Columns correspond to each semantic phenomena and rows correspond to the model
used. Columns are ordered from larger to smaller in size, but the last three (VC, MV, VN) are separated since they fall under
lexicosyntactic inference. (update) refers to a model that was initialized with pre-trained parameters and then re-trained on the
corresponding recast data. (fixed) refers to a model that was trained and then evaluated on these data sets. Bold numbers in
each column indicate which settings were responsible for the highest accuracy on the specific recast dataset.

In the DNC, most of the noisy examples are in
the recast VerbNet and Relation Extraction por-
tions. In recast VerbNet, some examples are noisy
because of incorrect subject-verb agreement.13

Since more noisy examples appeared in the Rela-
tion Extraction set, we relied on Amazon Mechan-
ical Turk workers to flag ungrammatical hypothe-
ses in the recast dataset, and we remove NLI pairs
with ungrammatical hypotheses.14

4 Experiments
Our experiments demonstrate how these recast
datasets may be used to evaluate how well mod-
els capture different types of semantic reasoning
necessary for general language understanding. We
also include results from a hypothesis-only model
as a strong baseline. This may reveal whether the
recast datasets retain statistical irregularities from
the original, task-specific annotations.

4.1 Models
For demonstrating how well an NLI model
performs these fine-grained types of reasoning,
we use InferSent (Conneau et al., 2017).
InferSent independently encodes a context
and hypothesis with a bi-directional LSTM and
combines the sentence representations by con-
catenating the individual sentence representations,

13“Her teeth was cared for” or “Floss were used”.
14See Appendix B.4 for details.

their element-wise subtraction and product. The
combined representation is then fed into a MLP
with a single hidden layer. The hypothesis-only
model is a modified version of InferSent that
only accesses hypotheses (Poliak et al., 2018b).
We report experimental details in Appendix C.

4.2 Results
Table 3 reports the models’ accuracies across the
recast NLI datasets. Even though we catego-
rize VerbNet, MegaVeridicality, and VerbCorner
as lexicosyntatic inference, we train and evaluate
models separately on these three datasets because
we use different strategies to individually recast
them. When evaluating NLI models, our base-
line is the maximum between the accuracies of
the hypothesis-only model and the majority class
label (MAJ). In six of the eight recast datasets
that we use to train our models the hypothesis-
only model outperforms MAJ. The two datasets
where the hypothesis-only model does not outper-
form MAJ are Sentiment and VN, each of which
contain less than 10K examples.15 We do not train
on GAR because of its small size.

Our results suggest that InferSent, when not
pre-trained on any other data, might capture spe-
cific semantic phenomena better than other seman-

15This is similar to Poliak et al. (2018b)’s results where a
hypothesis-only model did not outperform MAJ on datasets
with  10K examples.
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tic phenomena. InferSent seems to learn the
most about determining if an event occurred, since
the difference between its accuracy and that of the
hypothesis-only baseline (+13.93) is largest on the
recast EF dataset compared to the other recast an-
notations. The model seems to similarly learn to
perform (or detect) the type of lexicosyntactic in-
ference present in VC and MV. Interestingly, the
hypothesis-only model outperforms InferSent
on the recast RE.

Hypothesis Only Baseline The hypothesis-only
model can demonstrate how likely it is that an
NLI label applies to a hypothesis, regardless of
its context and indicates how well each recast
dataset tests a model’s ability to perform each spe-
cific type of reasoning when performing NLI. The
high hypothesis-only accuracy on the recast NER
dataset may demonstrate that the hypothesis-only
model is able to detect that the distribution of class
labels for a given word may be peaky. For ex-
ample, Hong Kong appears 130 times in the train-
ing set and is always labeled as a location. Based
on this, in future work we may consider different
methods to recast NER annotations into labeled
NLI examples, or limit the dataset’s training size.

Pre-training models on DNC We would like to
know whether initializing models with pre-trained
parameters improves scores. We notice that when
we pre-train our models on DNC, for the larger
datasets, a pre-trained model does not seem to
significantly outperform randomly initializing the
parameters. For the smaller datasets, specifically
Puns, Sentiment and VN, a pre-trained model sig-
nificantly outperforms random initialization.16

We are also interested to know whether fine-
tuning these pre-trained models on each cate-
gory (update) improves a model’s ability to per-
form well on the category compared to keeping
the pre-trained models’ parameters static (fixed).
Across all of the recast datasets, updating the pre-
trained model’s parameters during training im-
proves InferSent’s accuracies more than keep-
ing the model’s parameters fixed. When updating
a model pre-trained on the entire DNC, we see the
largest improvements on VN (+9.15).

Models trained on Multi-NLI Williams et al.
(2017) argue that Multi-NLI “[makes] it possible
to evaluate systems on nearly the full complexity

16By 32.81, 31.00, and 30.83 points respectively.

of the language.” However, how well does Multi-
NLI test a model’s capability to understand the di-
verse semantic phenomena captured in DNC? We
posit that if a model, trained on and performing
well on Multi-NLI, does not perform well on our
recast datasets, then Multi-NLI might not evaluate
a model’s ability to understand the “full complex-
ity” of language as argued.17

When trained on Multi-NLI, our InferSent
model achieves an accuracy of 70.22% on
(matched) Multi-NLI.18 When we test the model
on the recast datasets (without updating the param-
eters), we see significant drops.19 On the datasets
testing a model’s lexicosyntactic inference capa-
bilities, the model performs below the majority
class baseline. On the NER, EF, and Puns datasets
its performs below the hypothesis-only baseline.
We also notice that on three of the datasets (EF,
Puns, and VN), the fixed hypothesis-only model
outperforms the fixed InferSent model.

These results might suggest that Multi-NLI
does not evaluate whether sentence representa-
tions capture these distinct semantic phenomena.
This is a bit surprising for some of the recast phe-
nomena. We would expect Multi-NLI’s fiction
section (especially its humor subset) in the training
set to contain some figurative language that might
be similar to puns, and the travel guides (and pos-
sibly telephone conversations) to contain text re-
lated to sentiment.

Pre-training on DNC or Multi-NLI? Initializ-
ing a model with parameters pre-trained on DNC
or Multi-NLI often outperforms random initial-
ization.20 Is it better to pre-train on DNC or
Multi-NLI? On five of the recast datasets, using
a model pre-trained on DNC outperforms a model
pre-trained on Multi-NLI. The results are flipped
on the two datasets focused on downstream tasks
(Sentiment and RE) and MV. However, the differ-
ences between pre-training on the DNC or Multi-
NLI are small. From this, it is unclear whether
pre-training on DNC is better than Multi-NLI.

Size of Pre-trained DNC Data We randomly
sample 10K and 20K examples from each

17We treat Multi-NLI’s NEUTRAL and CONTRADICTION
labels as equivalent to the DNC’s NOT-ENTAILED label.

18Although this is about 10 points below SoTA, we believe
that the pre-trained model performs well enough to evaluate
whether Multi-NLI tests a model’s capability to understand
the diverse semantic phenomena in the DNC.

19InferSent (pre-trained, fixed) in Table 3.
20Pre-training does not improve accuracies on NER or MV.
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datasets’ training set to investigate what happens if
we train our models on a subsample of each train-
ing set instead of the entire DNC. Although we no-
ticed a slight decrease across each recast test set,
the decrease was not significant. We leave this in-
vestigating for a future thorough study.

5 Related Work
Exploring what linguistic phenomena neural
models learn Many tests have been used to
probe how well neural models learn different lin-
guistic phenomena. Linzen et al. (2016) use “num-
ber agreement in English subject-verb dependen-
cies” to show that LSTMs learn about syntax-
sensitive dependencies. In addition to syntax (Shi
et al., 2016), researchers have used other label-
ing tasks to investigate whether neural machine
translation (NMT) models learn different linguis-
tic phenomena (Belinkov et al., 2017a,b; Dalvi
et al., 2017; Marvin and Koehn, 2018). Recently,
Poliak et al. (2018a) used recast NLI datasets to
investigate semantics captured by NMT encoders.

Targeted Tests for Natural Language Under-
standing We follow a long line of work focused
on building datasets to test how well NLU sys-
tems perform distinct types of semantic reason-
ing. FraCaS uses a limited number of sentence-
pairs to test whether systems understand seman-
tic phenomena, e.g. generalized quantifiers, tem-
poral references, and (nominal) anaphora (Cooper
et al., 1996). FraCas cannot be used to train neu-
ral models – it includes just roughly 300 high-
quality instances manually created by linguists.
MacCartney (2009) created the FraCaS textual in-
ference test suite by automatically “convert[ing]
each FraCaS question into a declarative hypoth-
esis.” Levesque et al. (2012)’s Winograd Schema
Challenge forces a model to choose between two
possible answers for a question based on a sen-
tence describing an event.

Recent benchmarks test whether NLI models
handle adjective-noun composition (Pavlick and
Callison-Burch, 2016), other types of composi-
tion (Dasgupta et al., 2018), paraphrastic infer-
ence, anaphora resolution, and semantic proto-
roles (White et al., 2017). Concurrently, Con-
neau et al. (2018)’s benchmark can be used to
probe whether sentence representations capture
many linguistic properties. It includes syntactic
and surface form tests but does not focus on as a
wide range of semantic phenomena as in the DNC.

Glockner et al. (2018) introduce a modified ver-
sion of SNLI to test how well NLI models perform
when requiring lexical and world knowledge.

Wang et al. (2018)’s GLUE dataset is intended
to evaluate and potentially train a sentence rep-
resentation to perform well across different NLP
tasks. This continues an aspect of the initial RTE
collection, designed to be representative of down-
stream tasks like QA, MT, and IR (Dagan et al.,
2010). While GLUE is therefore concerned with
applied tasks, DNC, as well as Naik et al. (2018)’s
NLI stress tests, is concerned with probing the ca-
pabilities of NLU models to capture explicitly dis-
tinguished aspects of meaning. While one may
conjecture that the latter is needed to be “solved”
to eventually “solve” the former, it may be that
these goals only partially overlap. Some NLP
researchers might focus on probing for semantic
phenomena in sentence representations while oth-
ers may be more interested in developing single
sentence representations that can help models per-
form well on a wide array of downstream tasks.

6 Conclusion
We described how we recast a wide range of se-
mantic phenomena from many NLP datasets into
labeled NLI sentence pairs. These examples serve
as a diverse NLI framework that may help di-
agnose whether NLU models capture and per-
form distinct types of reasoning. Our experiments
demonstrate how to use this framework as an NLU
benchmark. The DNC is actively growing as we
continue recasting more datasets into labeled NLI
examples. We encourage dataset creators to re-
cast their datasets in NLI and invite them to add
their recast datasets into the DNC. The collection,
along with baselines and trained models are avail-
able online at http://www.decomp.net.
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A More Recast NLI Examples

Table 4 includes examples from all of the recast
NLI datasets. We include one ENTAILED and one
NOT-ENTAILED example from each dataset that
tests a distinct type of reasoning.

B Recasting Semantic Phenomena

Here we add secondary information about the
original datasets and our recasting efforts.

B.1 Event Factuality

We demonstrate how determining whether an
event occurred can enable accurate inferences
based on the event. Consider the following sen-
tences:

(9) a. She walked a beagle
b. She walked a dog
c. She walked a brown beagle

If the walking occurred, (9a) entails (9b) but not
(9c). If we negate the action in sentences (9a),
(9b), and (9c) to respectively become:

(10) a. She did not walk a beagle
b. She did not walk a dog
c. She did not walk a brown beagle

The new hypothesis (10c) is now entailed by the
context (10a) while (10b) is not.

B.2 Lexicosyntactic Inference

B.2.1 VerbCorner

When recasting VerbCorner, we use the following
templates for hypotheses, assigning them as EN-
TAILED and NOT-ENTAILED based on the positive
or negative answers to the annotation task ques-
tions about the context sentence.

(11) a. Someone {moved/did not move} from
their location

b. Something touched another thing / Noth-
ing touched anything else

c. Someone or something {applied/did not
apply} force onto something

d. Someone or something {changed/did not
change} physically

e. Someone {changed/did not change} their
thoughts, feelings, or beliefs

f. Something {good/neutral/bad} happened

B.3 Figurative Language

Puns in Yang et al. (2015) were originally ex-
tracted from punsoftheday.com, and sen-
tences without puns came from newswire and
proverbs. The sentences are labeled as contain-
ing a pun or not. Puns in Miller et al. (2017) were
sampled from prior pun detection datasets (Miller
and Gurevych, 2015; Miller and Turković, 2016)
and includes new examples generated from scratch
for the shared task; the original labels denote
whether the sentences contain homographic, het-
erographic, or no pun at all. Here, we are only
interested in whether a sentence contains a pun
or not instead of discriminating between homo-
graphic and heterographic puns.

B.4 Relation Extraction

Since hypotheses were automatically generated
from Wikipedia infoboxes, many examples are
noisy and ungrammatical. We presented hypothe-
ses (independent of their corresponding contexts)
to Mechanical Turk workers and asked them to la-
bel each sentence as containing no grammatical
error, minor grammatical issues, or major gram-
matical issues. We removed the 2, 056 NLI exam-
ples with hypothesis containing major grammati-
cal issues, resulting in 28, 041 labeled pairs. In-
terestingly, almost 70% of those examples where
labeled between 1 � 4, which we view as NOT-
ENTAILED. We release the ungrammatical NLI
examples as supplementary data.

A second source of noise in the recast relation
extraction dataset can be caused by disagreement
amongst multiple annotators. Examples in our
training and development sets are annotated by a
single annotator while we use 3- to 5-way redun-
dancy to annotate the test examples. To guaran-
tee high-quality test examples, we only include
examples with 100% inner-annotator agreement.
Additionally, we remove the 16 examples labeled
with 4 from our NOT-ENTAILED examples in this
pruned test set since some of these examples are
arguably entailments. Consequently, the test set
contains 761 examples, out of the original 3, 670
test examples. Nevertheless, we separately release
all 3, 670 test examples and include the original
annotations as well, enabling others to consider
other methods to collapse the multi-way annota-
tions.
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Semantic Phenomena 3 7

I would like to learn how I’ll not say anything
Event Factuality

The learning did not happen The saying happened

Ms. Rice said the United States must work
intensively

Afghan officials are welcoming the Nether-
lands’ decisionNamed Entity Recognition

Ms. is a person ’s title The Netherlands is an event

The student met with the architect to view
her blueprints for inspiration

The appraiser told the buyer that he had paid
too much for the paintingGendered Anaphora

The architect has blueprints The appraiser had purchased a painting

Someone assumed that a particular thing
happened

A particular person craved to do a particular
thingMegaVeridicality

That thing might or might not have happened That person did that thing

The Romans destroyed the city Andre presented the plaque
VerbNet

The Romans caused the destroying Andre was transferred

Molly wheeled Lisa to Rachel Kyle bewildered Mark
VerbCorner

Someone moved from their location Someone or something changed physically

At least 100,000 Chinese live in Lhasa, out-
numbering Tibetans two to one

Tropical storm Humberto is expected to
reach the Texas coast tonightRelation Extraction

Tibetans live in Lhasa Humberto hit Texas

Jorden heard that my skiing skills are really
going downhill

Caiden heard that fretting cares make grey
hairsPuns

Jorden heared a pun Caiden heared a pun

When asked about the product, Liam said,
“Don’t waste your money”

When asked about the movie, Angel said, “A
bit predictable”Sentiment Analysis

Liam did not like the product Angel liked the movie

Table 4: Example sentence pairs for different semantic phenomena. The 3 and 7 columns respectively indicate that the context
entails, or does not entail the hypothesis. Each cell’s first and second line respectively represent a context and hypothesis.

B.5 Sentiment
Kotzias et al. (2015) compiled examples from pre-
vious sources. The movie dataset came from Maas
et al. (2011), the Amazon product reviews were
released by McAuley and Leskovec (2013) add
the restaurant reviews were sourced from the Yelp
dataset challenge.21

C Experimental Details

In all our experiments, we use pre-computed
GloVe embeddings (Pennington et al., 2014) and
use the OOV vector for words that do not have
a defined embedding. We follow Conneau et al.
(2017)’s procedure to train our models. During
training, our models are optimized with SGD. Our
initial learning rate is 0.1 with a decay rate of 0.99.
Our models train for at most 20 epochs and can
optionally terminate early when the learning rate
is less than 10�5. If the accuracy deceases on the
development set in any epoch, the learning rate is

21http://www.yelp.com/dataset_challenge

divided by 5. As described in Poliak et al. (2018b),
our hypothesis-only model feeds the hypotheses’
encoded representation directly into the MLP.
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Abstract

To understand a sentence like “whereas
only 10% of White Americans live at or
below the poverty line, 28% of African
Americans do” it is important not only to
identify individual facts, e.g., poverty rates
of distinct demographic groups, but also the
higher-order relations between them, e.g., the
disparity between them. In this paper, we
propose the task of Textual Analogy Parsing
(TAP) to model this higher-order meaning.
The output of TAP is a frame-style meaning
representation which explicitly specifies what
is shared (e.g., poverty rates) and what is
compared (e.g., White Americans vs. African
Americans, 10% vs. 28%) between its com-
ponent facts. Such a meaning representation
can enable new applications that rely on
discourse understanding such as automated
chart generation from quantitative text. We
present a new dataset for TAP, baselines, and a
model that successfully uses an ILP to enforce
the structural constraints of the problem.

1 Introduction

The task of information extraction by and large
seeks to populate a knowledge base with individ-
uated facts extracted from text (Sarawagi, 2008).
For example, given the sentence:

(E1) [According to the U.S. Census, whereas
only 10% of White Americans live at or
below the poverty line today]C1, [28%
of African Americans do.]C2

1

one would extract two independent facts about
voter registration, about the two distinct demo-
graphic groups. On the other hand, the theory
of discourse maintains that part of the above sen-
tence’s meaning inheres in the fact that clauses C1

⇤Author contributed significantly.
1Data in E1 and the figure sentence from Morris (2014).
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Figure 1: In textual analogy parsing (TAP), one
maps analogous facts to semantic role represen-
tations and identifies analogical relations between
them. Automated chart generation from text is a
motivating application of TAP.

and C2 are juxtaposed (Kehler, 2002). Thus the
author intends that we consider them in relation to
each other, inviting us to note, for example, a dis-
parity of wealth distribution between demographic
groups. To fail to capture this is to miss out on an
important aspect of text understanding.

We propose the task of Textual Analogy Parsing
(TAP) to explicitly capture such relational mean-
ing between analogous facts in text. Concretely,
TAP first maps a set of analogous facts to semantic
role (SRL) representations, and then identifies the
roles along which they are similar (the shared con-
tent) and along which they are distinct (the com-
pared content)—see Figure 1. The resulting rep-
resentation, the TAP frame, is a deeper represen-
tation than the one output by shallow discourse
parsers (Taboada and Mann, 2006; Prasad et al.,
2007; Pitler et al., 2009; Prasad et al., 2010; Sur-
deanu et al., 2015). Given (E1) above, a shallow
discourse parser would classify the relation of con-
trast between C1 and C2—indicating that some
salient differences exist in the meanings of the jux-
taposed phrases—but without identifying the na-
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Figure 2: The mapping from utterance to TAP frame. Vertices in the graph are labeled with abbreviated
semantic roles. Single lines represent edges between a VALUE and other roles in its associated fact. Dou-
ble lines represent coreference and synonymy. Springs represent analogy. Note that vertices connected
by equivalence arcs, or any span which connects to both V1 and V2 via fact relations (i.e., scope), map
to the shared content of the TAP frame. Analogous spans map to the compared content.

ture of those differences.
We focus on applying TAP to quantitative facts,

because TAP frames can be used to create graphi-
cal plots from sentences with numbers, as in Fig-
ure 1. This new application could help to sim-
plify complex quantitative text on the web (Bar-
rio et al., 2016; Leonhardt et al., 2017). We thus
created an expert-annotated dataset of TAP frames
over quantitative facts in the Wall Street Journal
corpus (Marcus et al., 1999).

We model TAP by jointly predicting SRL rep-
resentations of facts in a sentence, and higher-
order semantic relations between them. Our main
findings are that a neural architecture outperforms
a log-linear baseline, well-chosen linguistic fea-
tures help performance, and so does the use of an
integer-linear programming (ILP) decoder that en-
forces the structural constraints of the task. Nev-
ertheless, both quantitative and qualitative evalua-
tion reveal room for improvement on TAP.

In sum, our main contributions are (1) a new
task, Textual Analogy Parsing (TAP), that com-
bines shallow semantic parsing with discourse
meaning, (2) a dataset of TAP frames from quan-
titative newswire, and (3) a preliminary study of a
new application, automated chart generation from
text. All data and code, including standardized
evaluation scripts, are made freely available.

2 A Semantic Representation of Analogy

Let us revisit the example sentence from the previ-
ous section (E1), where a pair of analogous quan-
titative facts about poverty rates of different demo-
graphic groups are presented in contrast. Individ-
ually, these can be represented using the semantic
role structures in Figure 3, but representing them
separately in this way fails to capture the fact that

2
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time today
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value 10%

3

777777775

2
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3
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frame 1 frame 2

Figure 3: Two analogous quantitative facts
represented independently, using the QSRL
schema (Lamm et al., 2018).

they are analogous, i.e., structurally and semanti-
cally similar but distinct.

Instead, we can explicitly show points of sim-
ilarity and difference between them in the two-
tiered frame structure in Figure 2, which we call
a TAP frame. The outer tier of the TAP frame con-
tains shared content, or information pertinent to
all of the facts in question, and the inner tier con-
tains compared content, the information that varies
across the set of facts.

Mapping from an utterance to a TAP frame re-
quires three types of relational reasoning. Firstly,
one must decompose the utterance into a set of
facts, where a fact is represented as a set of se-
mantic roles. Then, one must identify the shared
content across facts by aligning roles that are se-
mantically equivalent, in the sense that they are ei-
ther the same span, are coreferent, or are synony-
mous. For example, in Figure 2 the phrase ‘U.S.
Census’ occurs as the SOURCE of both facts be-
cause it scopes over the entire sentence in which
they appear. Additionally, one must identify the
compared content by aligning roles that are analo-
gous, in the sense that they are semantically sim-
ilar but nevertheless distinct. For example, the
phrases ‘White Americans’ and ‘African Ameri-
cans’ are analogous in our running sentence, play-
ing the same role in their respective facts, while
signifying distinct demographic groups.
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(a)
⇥
New England Electric

⇤
A1 had

⇥
offered

⇤
Q1

⇥
$2 billion

⇤
V1 to acquire

�
PS of New Hampshire

�
TH123 , well

below the
⇥
$2.29 billion

⇤
V2 value

⇥
United Illuminating

⇤
A2 places on its

�
bid

�
Q2 and the

⇥
$2.25 billion

⇤
V3⇥

Northeast
⇤

A3 says its
�
bid

�
Q3 is worth.

(b)
�
First Boston

�
S12 estimated that

�
UAL

�
TH12 was

�
worth

�
Q12

⇥
$ 250 to $ 344 a share

⇤
V1 based on

⇥
UAL’s

results for the 12 months ending last June 30
⇤

C1 , but only
⇥
$ 235 to $ 266

⇤
V2 based on

⇥
a management estimate

of results for 1989
⇤

C2

Table 1: Representative sentences from the Quantitative TAP dataset. Co-indexing (e.g., A1/Q1) indi-
cates when spans are part of the same QSRL fact. Parentheses indicate shared content spans and brackets
indicate compared content spans. To parse (a), one must recognize that ‘to acquire PS of New Hamp-
shire’ is elided but nevertheless an implied TH(eme) in two of the clauses, and that ‘offered’ and ‘bid’
are contextually synonymous Q(uantities). Moreover, one must note that the A(gents) are analogous, and
hence part of the compared content. In (b), ‘First Boston’, ‘UAL’ and ‘worth’, contribute a S(ource),
TH(eme), and Q(uantity) to the shared content respectively. Here, C(ause) roles are compared content.

Train (n = 1000) Test (n = 100)
av. max tot. av. max tot.

Count 1.4 3 1383 1.4 3 133
Length 2.6 16 – 2.6 7 –

Table 2: Dataset statistics (average per sentence,
max per sentence, and total over the dataset) for
the number of analogy frames (Count) and the
number of values compared within each frame
(Length).

3 The Quantitative TAP Dataset

Motivated by the application of automated graph-
ical plot generation from text, we annotated a
dataset of quantitative TAP frames from the Penn
Treebank WSJ corpus (Marcus et al., 1999).

As our SRL representation of quantitative facts,
we employ the Quantitative Semantic Role Label-
ing (QSRL) framework we previously defined in
Lamm et al. (2018). Having identified a numerical
VALUE in text (e.g., 10%), QSRL asks, “what does
this number measure?” to determine its associ-
ated QUANTITY (e.g., a poverty rate). It might also
identify, for example, the WHOLE out of which this
percentage is measured (e.g., the set of African
Americans), and the TIME at which the quantity
took on the value (e.g., today), etc. We employ all
fifteen QSRL roles in our annotations.

Our annotations not only capture the relation
between a quantitative predicate and its argu-
ments, but also the higher-order analogy relations
between them. The distinction is reflected in the
sentences in Table 1 from the dataset: Colored
spans are co-indexed when they participate in the
same quantitative fact; spans with like roles sur-
rounded by parentheses are shared content, mean-
ing that they are either synonymous or co-referent;

spans with like roles surrounded by brackets are
compared content, meaning that they are analo-
gous but semantically distinct.

To identify instances of quantitative analogy
in the WSJ corpus, we first prune out any sen-
tence having fewer than three numerical mentions,
where a numerical mention is defined as a con-
tiguous sequence of CD POS tags. Of those left,
we manually identify those containing one or more
quantitative analogies, i.e., ones in which numeri-
cal values are compared content. We estimate the
incidence of these to be around 20%. A linguist
then annotated 1,100 of these for analogy relation-
ships. See Table 2 for a summary.

Using an independent set of expert annotations
on 100 of these sentences, we measured a signifi-
cant per-token label agreement of 0.882 and edge
label agreement of 0.991 using Krippendorf’s ↵.2

Table 1 highlights some of the challenging lin-
guistic phenomena in the data. With respect to
identifying the shared content of a TAP frame,
these can be coarsely divided into two sets. Firstly,
in scope, ellipsis, and gapping, a single syntac-
tic element serves as a role in multiple QSRL
frames. This is exemplified by the phrase ‘PS of
New Hampshire’ in Table 1(a): It is mentioned ex-
plicitly as a THEME of the first fact, and only im-
plied in the second two. Based on a random sam-
ple of 100 train sentences, we estimate that 86% of
frames in the data exhibit these phenomena. Sec-
ondly, in synonymy and coreference, multiple ele-
ments appear in a sentence but contribute the same
role to the shared content, e.g., ‘offered’ and ‘bid’
in Table 1(a). We estimate that 31% of frames in

2High edge agreement should be expected because edges
are type-constrained and thus easy to identify. Additionally,
we computed agreement after matching overlapping spans.
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the data exhibit these phenomena.
One must learn to identify analogy relationships

over a diverse set of compared content roles, with
distinct semantic properties: in Table 1(a), AGENT
is a compared content role, whereas in Table 1(b),
CAUSE is.

4 Modeling TAP in the Quantitative

Setting

We model TAP by generating a typed analogy
graph over spans of an input text that is isomor-
phic to the set of TAP frames in that text, e.g.,
Figure 2. Each vertex in the graph corresponds to
a role-labeled span, and edges represent semantic
relations between them.

In this graph, each fact is uniquely identified
by a VALUE vertex, which is connected via a
FACT edge to all of its associated roles. Any two
shared content vertices across facts are connected
by an EQUIVALENCE edge, indicating that they
are coreferent or synonymous. A single vertex
can also be shared across facts by linking via a
FACT edge to more than one VALUE vertex, sug-
gesting a scopal relationship. Finally, any two ver-
tices which are compared content in the graph are
linked via an ANALOGY edge.

More formally, given an utterance x with to-
kens x1, . . . , xn, let G be a graph with vertices
V and edges E. For a vertex v = (i, j, l) 2 V ,
1  i < j  n are the start and end token
indices of a span in x with role l 2 LQ

def
=

{VALUE, . . . , QUANT}, the set of QSRL roles. For
an edge e = (v, v0, l) 2 E, v, v0 2 V and
l 2 LR

def
= {FACT, EQUIVALENCE, ANALOGY}.

For G so defined to encode a set of valid TAP
frames, it must satisfy certain constraints:

1. Well-formedness constraints. For any two
vertices v, v0 2 V , their associated spans
must not overlap. Furthermore, every vertex
must participate in at least one FACT edge,
i.e., no disconnected vertices.

2. Typing constraints. FACT relations are al-
ways drawn from a VALUE vertex to a non-
VALUE vertex. ANALOGY and EQUIVA-
LENCE are only ever drawn between two ver-
tices of the same role.

3. Unique facts. If a VALUE vertex v is con-
nected to two distinct vertices v0 and v00

of the same role via a FACT edge, then
EQUIVALENCE(v0, v00) exists.

4. Transitivity constraints. ANALOGY
and EQUIVALENCE edges are transi-
tive: if EQUIVALENCE(v, v0) 2 E
and EQUIVALENCE(v0, v00) 2 E then
EQUIVALENCE(v, v00) 2 E also. This also
holds for ANALOGY edges, but only when
v, v0 and v00 are VALUE vertices.

5. Analogy. There must be at least one pair
of analogous VALUE vertices, and for each
such pair, there must be a pair of analo-
gous facts connected to them: if v, v0 are
two VALUE vertices with ANALOGY(v, v0) 2
E, then there must also exist w,w0 as two
non-VALUE vertices with FACT(v, w) 2 E,
FACT(v0, w0) 2 E, ANALOGY(w,w0) 2 E.

Note that while these constraints rely on the choice
of VALUE as the role that grounds quantitative
facts, they reflect the general idea that analogy is
a structured mapping between meaning represen-
tations.

5 A Neural and ILP Model for TAP

We now present a neural and ILP model that
predicts analogy graphs as defined in Section 4.
Given a sentence, the neural model predicts a dis-
tribution over role-labeled spans with edges denot-
ing semantic relations between them. Then, we
use an ILP to decode while enforcing the TAP con-
straints defined in Section 4. Figure 4 presents an
overview of the architecture.

Context-sensitive word embeddings. We first
encode the words in a sentence by embedding
each token using fixed word embeddings. We
also concatenate a few linguistic features to the
word embeddings, such as named entity tags and
dependency relations. These features are gen-
erated using CoreNLP (Manning et al., 2014)
and represented by randomly-initialized, learned
embeddings for symbols together with the fixed
word embedding of each token’s dependency head
and the dependency path length between adja-
cent tokens. The token embeddings are then
passed through several stacked convolutional lay-
ers (Kim, 2014). While the first convolutional
layer can only capture local information, subse-
quent layers allow for longer-distance reasoning.

Span prediction. Next, we feed the outputs of
a single fully-connected hidden layer to a condi-
tional random field (CRF) (Lafferty et al., 2001),
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Figure 4: An overview of the proposed neural
model: The sentence embedding represents fea-
tures across the entire sentence using multiple con-
volutional layers. We then use a conditional ran-
dom field (CRF) layer to predict labeled spans pm
and to generate span and edge embeddings. We
use a feedforward (FF) layer on the edge embed-
dings to predict edge labels pmn. Together, pm and
pmn form a distribution over edges and labels that
we decode into TAP frames.

which defines a joint distribution over per-token
role labels. We thus obtain spans from this distri-
bution corresponding to vertices of the graph de-
scribed in Section 4 by merging contiguous role-
labels in the maximum likelihood label sequence
predicted by the CRF.

Edge prediction with PATHMAX features. For
edge prediction, we use the spans identified above
to construct span and edge embeddings: for every
span (i, j) that was predicted, we construct a span
vector sm =

Pj
k=i x̂k. We also construct a role-

label score vector for the span, pm by summing the
role-label probability vectors of its constituent to-
kens. Then, for every vertex pair (m,n), we con-
struct an edge representation emn. The basis of
this representation is simply the concatenation of
the span representations, the sum of the span rep-
resentations, their respective role-label score vec-
tors pm and pn, and relative token distances.

To capture long-distance phenomena like scope,
we also incorporate features into emn from the de-
pendency paths between the two spans by max-
pooling the (learned) dependency relation embed-
dings along the path between the tokens.3 When
computing the representation between two spans,
we take the average of the path embedding be-
tween each pair of tokens within them. We call

3The dependency paths are directed but unlexicalized.

this extension PATHMAX.
The resulting edge representation emn is passed

through a single fully-connected hidden layer and
an output layer to predict a distribution over edge
labels pmn, for each pair of spans.

Training. The supervised data described in Sec-
tion 3 provides gold spans and edges between
them. Thus we define a loss function with two
terms: one for the log-likelihood of the span labels
output by the CRF model, and one for the cross-
entropy loss on the edge labels. We train the span
and edge components of the model jointly.

Decoding. We consider two methods for decod-
ing the span-level and edge-level label distribu-
tions pm and pm,n into a labeled graph respecting
the constraints described in Section 4.

As a simple greedy method to enforce these
constraints, we begin by picking the most likely
role for each span and edge and then discard-
ing any edges and spans that violate the well-
formedness (1) and typing constraints (2). We then
enforce transitivity constraints (4) by incremen-
tally building a cluster of analogous and equivalent
spans. We then resolve the unique facts constraint
(3) by keeping only the span with highest FACT
edge score. Finally, for every cluster of analogous
VALUE spans, we check that the analogy constraint
(5) holds and if not, discard the cluster.

We also implement an optimal decoder that en-
codes the TAP constraints as an ILP (Roth and
Yih, 2004; Do et al., 2012). The ILP tries to find an
optimal decoding according to the model, subject
to hard constraints imposed on the solution space.
For example, we require that solutions satisfy the
‘connected spans’ constraint:

8s9s0 : e(s, s0, FACT)

In plain English, this says that every span s in a so-
lution must be connected via a FACT edge to some
other span s0. See the supplementary material for
the full list of constraints we employ. We solve
the ILPs with Gurobi (Gurobi Optimization, Inc.,
2018).

6 Experiments

We now describe the experimental setup of our
neural model (Section 5) on the dataset of TAP
frames we created (Section 3). Results and dis-
cussion are reported in Section 7.
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Evaluation metrics. The primary metric we use
to measure the accuracy of a system on frame pre-
diction is the precision, recall and F1 between the
labeled vertex-edge-vertex triples predicted by the
model and those in the gold parse. If there are
multiple predicted spans that overlap with a sin-
gle gold span or vice versa, we find a matching of
predicted and gold spans that maximizes overlap.

In addition to the primary metric, we also report
precision, recall and F1 when predicting labeled
(non-VALUE) spans and predicting labeled edges
before performing any decoding.4 We also use the
matching process described above for both these
sets of metrics. Standardized evaluation code is
provided with the dataset.

Experimental setup. We compare the neural
models presented in Section 5 in addition to a log-
linear baseline. The log-linear baseline uses the
same fixed word embeddings as the neural model
in addition to the named entity and dependency
parse features described in Section 5. The key
difference is that instead of learning a sentence
embedding or hidden layers, the log-linear model
simply uses a CRF to predict span labels directly
from fixed input features, and then uses a single
sigmoid layer to predict edge labels from deter-
ministic edge embeddings, emn.

For the neural models, we used three convolu-
tional layers for sentence embedding with a fil-
ter size of 3. Every layer other than the in-
put layer used a hidden dimension of 50 with
ReLU nonlinearities. We introduced a single
dropout layer (p = 0.5) between every two
layers in the network (including at the input).
We used 50-dimensional GloVe embeddings (Pen-
nington et al., 2014) learned from Wikipedia 2014
and Gigaword 5 as pre-trained word embeddings,
and initialized the embeddings for the features
randomly. We chose relatively low input- and
hidden-vector dimension because of the size of
our data. The network was trained for 15 epochs
using ADADELTA (Zeiler, 2012) with a learn-
ing rate of 1.0. All models were implemented in
PyTorch (Paszke et al., 2017).

7 Results and Discussion

Frame prediction results on the test set are sum-
marized in Table 3. Our three main findings are
that (i) the neural network model far outperforms

4We exclude VALUE spans from span scores because they
are easy to predict and thus inflate model performance.

Frame prediction

Model Feats. Dec. P R F1

Log-linear X gr. 46.3 21.8 29.7
Log-linear X opt. 37.1 27.5 31.6
Neural ⇥ gr. 50.7 38.4 43.7
Neural ⇥ opt. 52.8 48.6 50.6
Neural X gr. 54.9 57.4 56.1
Neural X opt. 56.4 68.8 62.0

Table 3: Performance of models on the test data.
Combining the neural model with linguistic fea-
tures and using an optimal decoder to enforce se-
mantic constraints led to the best performance.

Span prediction

Model P R F1

Log-linear (all feats.) 42.8 82.3 56.3

Neural (no feats.) 41.7 79.1 54.6
Neural (all feats.) 41.5 79.2 54.4

w/o NER 41.6 79.1 54.5
w/o dep. 41.2 77.5 53.8
w/o CRF 36.1 73.1 48.3

Table 4: Performance of models on labeled (non-
VALUE) span prediction during cross-validation
prior to decoding. We found using a CRF to be the
most important aspect: simply using fixed word
vectors with a CRF (i.e., the log-linear model) was
sufficient to predict spans.

the log-linear model on our frame metric, (ii) in-
cluding linguistic features further increases perfor-
mance, and (iii) so does using an optimal decoder
over a greedy method.

Quantitative error analysis. To better under-
stand which aspects of our model contribute to the
task, we perform an ablation study on the span and
edge predictions of our model prior to decoding.

With respect to span prediction (Table 4), we
found that the fixed word vectors, along with a
CRF, were able to capture the information needed
to identify QSRL role-spans. Indeed, the log-
linear baseline, which directly uses these word
vectors as features for a CRF, did the best at span
prediction. We believe that the drop in perfor-
mance from introducing hidden layers with the
neural models is a result of the model updating its
span representations to do better edge prediction.5

5In a separate experiment, the neural model outperformed
the log-linear model when they were trained only to do span
prediction.
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Edge prediction

Model P R F1

Log-linear (all feats.) 33.6 15.7 18.9
Neural (no feats.) 73.7 65.8 68.7
Neural (all feats.) 74.4 75.6 74.7

w/o NER 74.8 72.2 73.1
w/o dep. 73.4 65.0 68.2
w/o PATHMAX. 72.8 64.0 67.2

Table 5: Performance of models on labeled edge
prediction during cross-validation prior to decod-
ing. We found that both dependency label (dep.)
and path features (PATHMAX) help significantly.

While the log-linear model did well at predict-
ing spans, it did a poor job predicting edges, in-
dicating that learning to extract higher-order fea-
tures from learned span embeddings is necessary
for identifying semantic relations between them
(Table 5). We also found that linguistic fea-
tures were important: in particular, we found that
syntactic features – the dependency path features
(PATHMAX) and dependency labels – played a big
role in edge prediction, followed by type informa-
tion from NER tags.

Qualitative error analysis. Our model is tasked
with jointly identifying QSRL parses of analogous
facts in a sentence, and ANALOGY and EQUIV-
ALENCE relations among them. As described
in Section 4, these pieces interact in mutually con-
straining ways, and thus it is possible for local er-
rors to have global effects on predicted frames.

In Figure 5, for example, the model correctly
identifies the gold TIME spans as part of a TAP
frame, but mistakenly predicts that they are linked
by EQUIVALENCE, and thus modify the same
VALUE span. In the gold parse, they are linked by
ANALOGY, and modify distinct VALUE spans. As
a result of this misclassification, the model leaves
out an entire QSRL fact from the resulting parse.

In many cases, the model successfully identi-
fies compared content roles between QSRL facts.
In Figure 6, we show an example where it does
not manage to do so. Here, unable to identify
the ANALOGY relation between the phrases ‘Those
with a bullish view’ and ‘the dollar bears’, the
model instead chooses two identical sequences
‘the dollar’ as the non-VALUE compared content.
Inspecting edge probability scores from the model
before decoding reveals that the neural model
thinks that the first instance of ‘the dollar’ in the
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Figure 5: TAP frames for the sentence, ‘This year
. . . daily contracts traded totaled 9,118, up from
4,645 a year earlier and from 917 in 1984.’ The
model not only misclassifies the QSRL role of
‘daily contracts traded’, but also mistakenly iden-
tifies an EQUIVALENCE between ‘this year’ and
‘the year earlier’. As a result, the VALUE 9,118
is left without a compared content role, and is
dropped.
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Figure 6: TAP frames for the sentence ‘Those
with a bullish view see [the dollar]1 trading up
near 1.900 marks. . . while [the dollar]2 bears see
the U.S. currency trading around 1.7600 marks’.
Among other errors, the model failed to identify
analogous SOURCE spans and instead predicts that
the two instances of the phrase ‘the dollar’ (in-
dicated with indexing) in the sentence contribute
non-VALUE compared content.

sentence is semantically analogous to the second;
it can be confused by surface similarity into clas-
sifying ANALOGY relations.

Application to plot generation. As we have
seen, textual analogy is frequently used to com-
pare quantities along some axis of differentiation.
For example, one might compare the stock prices
of different companies, or describe the change in
some quantity’s value over time. Such analogy
relationships can alternately be expressed in the
form of a plot.

Indeed, there is a natural correspondence be-
tween charts and TAP frames over quantitative
facts: VALUES of a quantitative TAP frame are
plotted against other compared content roles, and
elements of the shared content correspond with
scopal chart elements, such as titles. This mapping
is well-defined provided analogous values share
units. We present some initial results exploring
this direction.

In Figure 7, we deterministically plot TAP
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Figure 7: Charts generated from TAP frames. Charts (a) and (b) are generated from the sentence ‘Vicker’s
PLC . . . raised its stake in the company Friday to 15.02% from about 14.6% Thursday and from 13.6%
the previous week.’ Before imposing constraints, the neural model assigns multiple values to the TIME
arguments ‘Thursday’ and ‘Friday’, over-extending their scope. Imposing structural constraints ensures
the correct assignment of TIMES to VALUES. Charts (c) and (d) are generated from the sentence ‘In the
auto sector, Bayerische Motoren Werke plunged 14.5 marks to 529 marks, Daimler-Benz dropped 10.5
to 700, and Volkswagen slumped 9 to 435.5.’ Here, the model fails to associate an absolute (blue) and
relative (red) VALUE pair with a THEME role. The imposition of global constraints corrects this, linking
them to the THEME ‘Diamler-Benz’.

frames generated by our system both before and
after the imposition of global analogy constraints,
for two sentences in the data. In the first sentence,
VALUE spans are plotted against the TIME spans
the model associates with their respective facts.
In the second sentence, two analogy frames are
plotted together, one reflecting the absolute val-
ues of the stock prices mentioned (blue) and the
other reflecting the changes in prices mentioned
(red). Units are extracted from VALUE spans using
simple pattern matching. Chart titles are only il-
lustrative and were generated by stitching together
shared content identified by our system.

Note that with the imposition of global con-
straints reflecting the structure of analogy, the sys-
tem yields well-formed charts. Without these con-
straints, generated charts either have multiple y-
axis values assigned to the same x-axis value, or
have floating y-axis values with no grounding on
the x-axis.

8 Related Work

Analogy. In the cognitive science literature,
analogy is a general form of relational reason-
ing unique to human cognition (Tversky and Gati,
1978; Holyoak and Thagard, 1996; Goldstone and
Son, 2005; Penn et al., 2008; Holyoak, 2012). Our
model of textual analogy is particularly influenced
by Structure Mapping Theory (Falkenhainer et al.,
1989; Gentner and Markman, 1997), an influen-
tial cognitive model of analogy as a structure-
preserving map between concepts.

Within the NLP community, there has been

much work focused on inferring lexical analogies
between generic concepts, e.g., tennis:racket::
baseball:bat (Mikolov et al., 2013; Turney, 2013),
from global distributional statistics. Such analo-
gies are generic, type-level patterns whose struc-
ture exists in the nature of the language; here, we
are interested in specific analogies whose structure
is conveyed by a particular sentence.

Discourse and Information Extraction. TAP
is an information extraction task that synthesizes
ideas from semantic role labeling on the one hand
and discourse parsing on the other. The former
produces predicate-argument representations of
individual facts in a text (Baker et al., 1998; Gildea
and Jurafsky, 2002; Palmer et al., 2005); the lat-
ter identifies discourse relations between syntactic
clauses (Taboada and Mann, 2006; Prasad et al.,
2007; Pitler et al., 2009; Prasad et al., 2010; Sur-
deanu et al., 2015).

TAP first maps from syntax to a set of SRL-style
representations, and then identifies structurally-
constrained, higher-order relations among them. It
is in this sense reminiscent of, but distinct from,
work on causal processes by Berant et al. (2014).

Numbers in NLP. There has been some work
on understanding numbers in text. This includes
quantitative reasoning (Kushman et al., 2014; Roy
et al., 2015), numerical information extraction
(Madaan et al., 2016), and techniques for making
numbers more easily interpretable in text (Cha-
ganty and Liang, 2016; Kim et al., 2016).

If pursued further, the application of plotting
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quantitative text that we discuss in this paper could
help to clarify quantitative text on the web (Larkin
and Simon, 1987; Barrio et al., 2016).

Neural modeling. Recent work has shown the
promise of sophisticated neural models on seman-
tic role labeling (He et al., 2017). Similar to other
such sequence prediction models, e.g., those for
named entity recognition (Lample et al., 2016)
or semantic role labeling (Zhou and Xu, 2015),
our span prediction utilizes a neural CRF. Our
model also has an edge-prediction component,
which benefits from a simplified version of the
PathLSTM model of Roth and Lapata (2016). Our
edge-prediction model also uses an embedding
concatenation component, which was inspired by
recent work on neural coreference resolution (Lee
et al., 2017). He et al. (2017) also impose seman-
tic constraints during prediction, but use A⇤ search
instead of an ILP.

9 Conclusion

In this paper we have presented a new task, textual
analogy parsing, or TAP. Given a sentence about
a set of analogous facts, TAP outputs a frame rep-
resentation that expresses the points of similarity
and difference in their meanings.

We note that in the particular case of quantita-
tive text, TAP frames correspond with charts. We
develop a new dataset of TAP frames from quan-
titative newswire, and compare a variety models
for TAP. Our best model employs a globally opti-
mal decoder to enforce the structural constraints of
analogy; its outputs can be mapped to well-formed
charts of quantitative information extracted from
text.

We view this work to be an exciting step in the
direction of deeper discourse modeling. Future
work might further extend the recovery of anal-
ogy as part of information extraction. This might
include TAP outside of the quantitative domain, or
TAP at the paragraph level.
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Abstract

Given a partial description like “she opened
the hood of the car,” humans can reason about
the situation and anticipate what might come
next (“then, she examined the engine”). In this
paper, we introduce the task of grounded com-
monsense inference, unifying natural language
inference and commonsense reasoning.

We present Swag, a new dataset with 113k
multiple choice questions about a rich spec-
trum of grounded situations. To address the
recurring challenges of the annotation arti-
facts and human biases found in many exist-
ing datasets, we propose Adversarial Filter-
ing (AF), a novel procedure that constructs a
de-biased dataset by iteratively training an en-
semble of stylistic classifiers, and using them
to filter the data. To account for the aggres-
sive adversarial filtering, we use state-of-the-
art language models to massively oversam-
ple a diverse set of potential counterfactuals.
Empirical results demonstrate that while hu-
mans can solve the resulting inference prob-
lems with high accuracy (88%), various com-
petitive models struggle on our task. We pro-
vide comprehensive analysis that indicates sig-
nificant opportunities for future research.

1 Introduction

When we read a story, we bring to it a large body
of implicit knowledge about the physical world.
For instance, given the context “on stage, a woman
takes a seat at the piano,” shown in Table 1, we
can easily infer what the situation might look like:
a woman is giving a piano performance, with a
crowd watching her. We can furthermore infer her
likely next action: she will most likely set her fin-
gers on the piano keys and start playing.

This type of natural language inference requires
commonsense reasoning, substantially broadening
the scope of prior work that focused primarily on

On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

A girl is going across a set of monkey bars. She
a) jumps up across the monkey bars.
b) struggles onto the monkey bars to grab her head.
c) gets to the end and stands on a wooden plank.
d) jumps up and does a back flip.

The woman is now blow drying the dog. The dog
a) is placed in the kennel next to a woman’s feet.
b) washes her face with the shampoo.
c) walks into frame and walks towards the dog.
d) tried to cut her face, so she is trying to do something
very close to her face.

Table 1: Examples from Swag; the correct an-
swer is bolded. Adversarial Filtering ensures that
stylistic models find all options equally appealing.

linguistic entailment (Chierchia and McConnell-
Ginet, 2000). Whereas the dominant entailment
paradigm asks if two natural language sentences
(the ‘premise’ and the ‘hypothesis’) describe the
same set of possible worlds (Dagan et al., 2006;
Bowman et al., 2015), here we focus on whether a
(multiple-choice) ending describes a possible (fu-
ture) world that can be anticipated from the situa-
tion described in the premise, even when it is not
strictly entailed. Making such inference necessi-
tates a rich understanding about everyday physical
situations, including object affordances (Gibson,
1979) and frame semantics (Baker et al., 1998).

A first step toward grounded commonsense in-
ference with today’s deep learning machinery is to
create a large-scale dataset. However, recent work
has shown that human-written datasets are suscep-
tible to annotation artifacts: unintended stylistic
patterns that give out clues for the gold labels (Gu-
rurangan et al., 2018; Poliak et al., 2018). As a
result, models trained on such datasets with hu-
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man biases run the risk of over-estimating the ac-
tual performance on the underlying task, and are
vulnerable to adversarial or out-of-domain exam-
ples (Wang et al., 2018; Glockner et al., 2018).

In this paper, we introduce Adversarial Filtering
(AF), a new method to automatically detect and
reduce stylistic artifacts. We use this method to
construct Swag: an adversarial dataset with 113k
multiple-choice questions. We start with pairs of
temporally adjacent video captions, each with a
context and a follow-up event that we know is
physically possible. We then use a state-of-the-
art language model fine-tuned on this data to mas-
sively oversample a diverse set of possible nega-
tive sentence endings (or counterfactuals). Next,
we filter these candidate endings aggressively and
adversarially using a committee of trained mod-
els to obtain a population of de-biased endings
with similar stylistic features to the real ones. Fi-
nally, these filtered counterfactuals are validated
by crowd workers to further ensure data quality.

Extensive empirical results demonstrate unique
contributions of our dataset, complementing exist-
ing datasets for natural langauge inference (NLI)
(Bowman et al., 2015; Williams et al., 2018)
and commonsense reasoning (Roemmele et al.,
2011; Mostafazadeh et al., 2016; Zhang et al.,
2017). First, our dataset poses a new challenge
of grounded commonsense inference that is easy
for humans (88%) while hard for current state-of-
the-art NLI models (<60%). Second, our pro-
posed adversarial filtering methodology allows for
cost-effective construction of a large-scale dataset
while substantially reducing known annotation ar-
tifacts. The generality of adversarial filtering al-
lows it to be applied to build future datasets, en-
suring that they serve as reliable benchmarks.

2 Swag: Our new dataset

We introduce a new dataset for studying physically
grounded commonsense inference, called Swag.1

Our task is to predict which event is most likely to
occur next in a video. More formally, a model is
given a context c = (s, n): a complete sentence
s and a noun phrase n that begins a second sen-
tence, as well as a list of possible verb phrase sen-
tence endings V = {v1, . . . , v4}. See Figure 1 for
an example triple (s, n, vi). The model must then
select the most appropriate verb phrase vî 2 V .

1Short for Situations With Adversarial Generations.

is	put	on	top	of	the	
				vegetables.				
is	putting	vegetable	fruits.
is	using	a	red	sponge	to	add	
				eggs	and	parsley.

⋮
is	placed	in	the	oven.

The	mixer	creams	the	butter.	Sugar…

Adversarially select 
generations

Annotators filter endings
 to ensure agreement

Oversample 
endings from 
context+NP

Sugar is added to the mixing bowl.The mixer creams the butter.

LSMDC

NP VPcontext

Using video captions from

t
<latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit><latexit sha1_base64="0v+hFBOfvFXt34ta2NDUvy3djxg="></latexit>

t + 1
<latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit><latexit sha1_base64="FxZlrqRSpQ2+cqdlv/9iysHNvsc="></latexit>

(the videos are never used)

Figure 1: Overview of the data collection process.
For a pair of sequential video captions, the second
caption is split into noun and verb phrases. A lan-
guage model generates many negative endings, of
which a difficult subset are human-annotated.

Overview Our corpus consists of 113k multi-
ple choice questions (73k training, 20k valida-
tion, 20k test) and is derived from pairs of con-
secutive video captions from ActivityNet Cap-
tions (Krishna et al., 2017; Heilbron et al., 2015)
and the Large Scale Movie Description Chal-
lenge (LSMDC; Rohrbach et al., 2017). The two
datasets are slightly different in nature and allow
us to achieve broader coverage: ActivityNet con-
tains 20k YouTube clips containing one of 203 ac-
tivity types (such as doing gymnastics or playing
guitar); LSMDC consists of 128k movie captions
(audio descriptions and scripts). For each pair
of captions, we use a constituency parser (Stern
et al., 2017) to split the second sentence into noun
and verb phrases (Figure 1).2 Each question has a
human-verified gold ending and 3 distractors.

3 A solution to annotation artifacts

In this section, we outline the construction of
Swag. We seek dataset diversity while minimizing
annotation artifacts, conditional stylistic patterns
such as length and word-preference biases. For
many NLI datasets, these biases have been shown
to allow shallow models (e.g. bag-of-words) ob-
tain artificially high performance.

To avoid introducing easily “gamed” patterns,
we present Adversarial Filtering (AF), a generally-
applicable treatment involving the iterative refine-
ment of a set of assignments to increase the en-
tropy under a chosen model family. We then dis-
cuss how we generate counterfactual endings, and

2We filter out sentences with rare tokens (3 occur-
rences), that are short (l  5), or that lack a verb phrase.
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Algorithm 1 Adversarial filtering (AF) of negative sam-
ples. During our experiments, we set Neasy = 2 for refining
a population of N� = 1023 negative examples to k = 9, and
used a 80%/20% train/test split.

while convergence not reached do
• Split the dataset D randomly up into train-
ing and testing portions Dtr and Dte.
• Optimize a model f✓ on Dtr.
for index i in Dte do

• Identify easy indices:
Aeasy

i = {j 2 Ai : f✓(x
+
i ) > f✓(x

�
i,j)}

• Replace N easy easy indices j 2 Aeasy
i

with adversarial indices k 62 Ai satisfying
f✓(x

�
i,k) > f✓(x

�
i,j).

end for
end while

finally, the models used for filtering.

3.1 Formal definition
In this section, we formalize what it means for
a dataset to be adversarial. Intuitively, we say
that an adversarial dataset for a model f is one
on which f will not generalize, even if evaluated
on test data from the same distribution. More for-
mally, let our input space be X and the label space
be Y . Our trainable classifier f , taking parameters
✓ is defined as f✓ : X ! R

|Y|. Let our dataset
of size N be defined as D = {(xi, yi)}1iN , and
let the loss function over the dataset be L(f✓, D).
We say that a dataset is adversarial with respect
to f if we expect high empirical error I over all
leave-one-out train/test splits (Vapnik, 2000):

I(D, f) =
1

N

NX

i=1

L(f✓?
i
, {(xi, yi)}), (1)

where ✓?
i = argmin

✓
L(f✓, D \ {(xi, yi)}), (2)

with regularization terms omitted for simplicity.

3.2 Adversarial filtering (AF) algorithm
In this section, we outline an approach for gen-
erating an adversarial dataset D, effectively max-
imizing empirical error I with respect to a fam-
ily of trainable classifiers f . Without loss of
generality, we consider the situation where we
have N contexts, each associated with a single
positive example (x+

i , 1) 2 X ⇥ Y , and a large
population of context-specific negative examples
(x�

i,j , 0) 2 X ⇥ Y , where 1jN� for each i. For
instance, the negative examples could be incorrect
relations in knowledge-base completion (Socher
et al., 2013), or all words in a dictionary for a

single-word cloze task (Zweig and Burges, 2011).
Our goal will be to filter the population of neg-

ative examples for each instance i to a size of
k⌧N�. This will be captured by returning a set
of assignments A, where for each instance the as-
signment will be a k-subset Ai = [1 . . . N�]k.
The filtered dataset will then be:

DAF = {(xi, 1), {(x�
i,j , 0)}j2Ai}1iN (3)

Unfortunately, optimizing I(DAF , f) is difficult
as A is global and non-differentiable. To address
this, we present Algorithm 1. On each iteration,
we split the data into dummy ‘train’ and ‘test’
splits. We train a model f on the training portion
and obtain parameters ✓, then use the remaining
test portion to reassign the indices of A. For each
context, we replace some number of ‘easy’ nega-
tives in A that f✓ classifies correctly with ‘adver-
sarial’ negatives outside of A that f✓ misclassifies.

This process can be thought of as increasing
the overall entropy of the dataset: given a strong
model f✓ that is compatible with a random subset
of the data, we aim to ensure it cannot generalize
to the held-out set. We repeat this for several it-
erations to reduce the generalization ability of the
model family f over arbitrary train/test splits.

3.3 Generating candidate endings

To generate counterfactuals for Swag, we use an
LSTM (Hochreiter and Schmidhuber, 1997) lan-
guage model (LM), conditioned on contexts from
video captions. We first pretrain on BookCorpus
(Zhu et al., 2015), then finetune on the video cap-
tion datasets. The architecture uses standard best
practices and was validated on held-out perplex-
ity of the video caption datasets; details are in the
appendix. We use the LM to sample N�=1023
unique endings for a partial caption.3

Importantly, we greedily sample the endings,
since beam search decoding biases the generated
endings to be of lower perplexity (and thus easily
distinguishable from found endings). We find this
process gives good counterfactuals: the generated
endings tend to use topical words, but often make
little sense physically, making them perfect for our
task. Further, the generated endings are marked
as “gibberish” by humans only 9.1% of the time
(Sec 3.5); in that case the ending is filtered out.

3To ensure that the LM generates unique endings, we split
the data into five validation folds and train five separate LMs,
one for each set of training folds. This means that each LM
never sees the found endings during training.
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Figure 2: Test accuracy by AF iteration, under the
negatives given by A. The accuracy drops from
around 60% to close to random chance. For effi-
ciency, the first 100 iterations only use the MLP.

3.4 Stylistic models for adversarial filtering

In creating Swag, we designed the model family
f to pick up on low-level stylistic features that we
posit should not be predictive of whether an event
happens next in a video. These stylistic features
are an obvious case of annotation artifacts (Cai
et al., 2017; Schwartz et al., 2017).4 Our final clas-
sifier is an ensemble of four stylistic models:
1. A multilayer perceptron (MLP) given LM per-
plexity features and context/ending lengths.
2. A bag-of-words model that averages the word
embeddings of the second sentence as features.
3. A one-layer CNN, with filter sizes ranging from
2-5, over the second sentence.
4. A bidirectional LSTM over the 100 most com-
mon words in the second sentence; uncommon
words are replaced by their POS tags.
We ensemble the models by concatenating their fi-
nal representations and passing it through an MLP.
On every adversarial iteration, the ensemble is
trained jointly to minimize cross-entropy.

The accuracies of these models (at each itera-
tion, evaluated on a 20% split of the test dataset
before indices of A get remapped) are shown in
Figure 2. Performance decreases from 60% to
close to random chance; moreover, confusing the
perplexity-based MLP is not sufficient to lower
performance of the ensemble. Only once the other
stylistic models are added does the ensemble ac-
curacy drop substantially, suggesting that our ap-
proach is effective at reducing stylistic artifacts.

4A broad definition of annotation artifacts might include
aspects besides lexical/stylistic features: for instance, certain
events are less likely semantically regardless of the context
(e.g. riding a horse using a hose). For this work, we erred
more conservatively and only filtered based on style.

Imagine that you are watching a video clip. The clip has
a caption, but it is missing the final phrase. Please choose
the best 2 caption endings, and classify each as:
• likely, if it completes the caption in a reasonable way;
• unlikely, if it sounds ridiculous or impossible;
• gibberish if it has such serious errors that it doesn’t
feel like a valid English sentence.
Example: Someone is shown sitting on a fence and talking
to the camera while pointing out horses. Someone
• stands in front of a podium. (likely, second best)
• rides a horse using a hose. (unlikely)
• is shown riding a horse. (likely, best)
• , the horse in a plaza field. (gibberish)

Figure 3: Mechanical Turk instructions (abridged).

3.5 Human verification
The final data-collection step is to have humans
verify the data. Workers on Amazon Mechani-
cal Turk were given the caption context, as well
as six candidate endings: one found ending and
five adversarially-sampled endings. The task was
twofold: Turkers ranked the endings indepen-
dently as likely, unlikely, or gibberish, and se-
lected the best and second best endings (Fig 3).

We obtained the correct answers to each con-
text in two ways. If a Turker ranks the found end-
ing as either best or second best (73.7% of the
time), we add the found ending as a gold exam-
ple, with negatives from the generations not la-
belled best or gibberish. Further, if a Turker ranks
a generated ending as best, and the found ending
as second best, then we have reason to believe that
the generation is good. This lets us add an addi-
tional training example, consisting of the gener-
ated best ending as the gold, and remaining gen-
erations as negatives.5 Examples with 3 non-
gibberish endings were filtered out.6

We found after 1000 examples that the annota-
tors tended to have high agreement, also generally
choosing found endings over generations (see Ta-
ble 2). Thus, we collected the remaining 112k ex-
amples with one annotator each, periodically veri-
fying that annotators preferred the found endings.

4 Experiments

In this section, we evaluate the performance of
various NLI models on Swag. Recall that models

5These two examples share contexts. To prevent biasing
the test and validation sets, we didn’t perform this procedure
on answers from the evaluation sets’ context.

6To be data-efficient, we reannotated filtered-out exam-
ples by replacing gibberish endings, as well as generations
that outranked the found ending, with candidates from A.
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Label distribution by
ending type

Inter-annotator
agreement

Labels Found end Gen. end ↵ ppa
Best 53.5% 9.3%

0.43 72%Second Best 20.2% 15.9%
Neither 26.3% 74.8%
Likely 80.3% 33.3%

0.39 64%Unlikely 19.0% 57.5%
Gibberish 0.7% 9.1%

Table 2: Annotators tend to label the found ending
as likely and within the top 2 (column 2), in other
cases the example is filtered out. Both label groups
have high inter-annotator agreement, in terms of
Krippendorff’s ↵ and pairwise percent agreement.

for our dataset take the following form: given a
sentence and a noun phrase as context c = (s, n),
as well as a list of possible verb phrase endings
V = {v1, . . . , v4}, a model f✓ must select a verb
î that hopefully matches igold:

î = argmax
i

f✓(s, n, vi) (4)

To study the amount of bias in our dataset, we
also consider models that take as input just the
ending verb phrase vi, or the entire second sen-
tence (n, vi). For our learned models, we train
f by minimizing multi-class cross-entropy. We
consider three different types of word representa-
tions: 300d GloVe vectors from Common Crawl
(Pennington et al., 2014), 300d Numberbatch vec-
tors retrofitted using ConceptNet relations (Speer
et al., 2017), and 1024d ELMo contextual repre-
sentations that show improvement on a variety of
NLP tasks, including standard NLI (Peters et al.,
2018). We follow the final dataset split (see Sec-
tion 2) using two training approaches: training on
the found data, and the found and highly-ranked
generated data. See the appendix for more details.

4.1 Unary models
The following models predict labels from a single
span of text as input; this could be the ending only,
the second sentence only, or the full passage.
a. fastText (Joulin et al., 2017): This library mod-
els a single span of text as a bag of n-grams, and
tries to predict the probability of an ending being
correct or incorrect independently.7

b. Pretrained sentence encoders We consider
two types of pretrained RNN sentence encoders,
SkipThoughts (Kiros et al., 2015) and InferSent

7The fastText model is trained using binary cross-entropy;
at test time we extract the prediction by selecting the ending
with the highest positive likelihood under the model.

(Conneau et al., 2017). SkipThoughts was trained
by predicting adjacent sentences in book data,
whereas InferSent was trained on supervised NLI
data. For each second sentence (or just the end-
ing), we feed the encoding into an MLP.
c. LSTM sentence encoder Given an arbitrary
span of text, we run a two-layer BiLSTM over it.
The final hidden states are then max-pooled to ob-
tain a fixed-size representation, which is then used
to predict the potential for that ending.

4.2 Binary models
The following models predict labels from two
spans of text. We consider two possibilties for
these models: using just the second sentence,
where the two text spans are n, vi, or using the
context and the second sentence, in which case the
spans are s, (n, vi). The latter case includes many
models developed for the NLI task.
d. Dual Bag-of-Words For this baseline, we treat
each sentence as a bag-of-embeddings (c,vi). We
model the probability of picking an ending i using
a bilinear model: softmaxi(cWvT

i ).8

e. Dual pretrained sentence encoders Here, we
obtain representations from SkipThoughts or In-
ferSent for each span, and compute their pairwise
compatibility using either 1) a bilinear model or 2)
an MLP from their concatenated representations.
f. SNLI inference Here, we consider two mod-
els that do well on SNLI (Bowman et al., 2015):
Decomposable Attention (Parikh et al., 2016) and
ESIM (Chen et al., 2017). We use pretrained ver-
sions of these models (with ELMo embeddings)
on SNLI to obtain 3-way entailment, neutral, and
contradiction probabilities for each example. We
then train a log-linear model using these 3-way
probabilities as features.
g. SNLI models (retrained) Here, we train ESIM
and Decomposable Attention on our dataset: we
simply change the output layer size to 1 (the po-
tential of an ending vi) with a softmax over i.

4.3 Other models
We also considered the following models:
h. Length: Although length was used by the ad-
versarial classifier, we want to verify that human
validation didn’t reintroduce a length bias. For this
baseline, we always choose the shortest ending.
i. ConceptNet As our task requires world knowl-
edge, we tried a rule-based system on top of the

8We also tried using an MLP, but got worse results.
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Ending only 2nd sentence only Context+2nd sentence
found only found+gen found only found+gen found only found+gen

Model Val Test Val Test Val Test Val Test Val Test Val Test

misc
Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Length 26.7 27.0 26.7 27.0
ConceptNet 26.0 26.0 26.0 26.0

U
na

ry
m

od
el

s fastText 27.5 26.9 29.9 29.0 29.2 27.8 29.8 29.0 29.4 28.0 30.3 29.8
Sentence
encoders

SkipThoughts 32.4 32.1 32.2 31.8 33.0 32.4 32.8 32.3
InferSent 30.6 30.2 32.0 31.9 33.2 32.0 34.0 32.6

LSTM
sequence
model

LSTM+GloVe 31.9 31.8 32.9 32.4 32.7 32.4 34.3 33.5 43.1 43.6 45.6 45.7
LSTM+Numberbatch 32.4 32.6 32.3 31.9 31.9 31.9 34.1 32.8 39.9 40.2 41.2 40.5
LSTM+ELMo 43.6 42.9 43.3 42.3 47.4 46.7 46.3 46.0 51.4 50.6 51.3 50.4

B
in

ar
y

m
od

el
s

DualBoW
DualBoW+GloVe 31.3 31.3 31.9 31.2 34.5 34.7 32.9 33.1
DualBoW+Numberbatch 31.9 31.4 31.6 31.3 35.1 35.1 34.2 34.1

Dual
sentence
encoders

SkipThoughts-MLP 34.6 33.9 36.2 35.5 33.4 32.3 37.4 36.4
SkipThoughts-Bilinear 36.0 35.7 34.7 34.5 36.5 35.6 35.3 34.9
InferSent-MLP 32.9 32.1 32.8 32.7 35.9 36.2 39.5 39.4
InferSent-Bilinear 32.0 31.3 31.6 31.3 40.5 40.3 39.0 38.4

SNLI
inference

SNLI-ESIM 36.4 36.1 36.2 36.0
SNLI-DecompAttn 35.8 35.8 35.8 35.7

SNLI
models
(retrained)

DecompAttn+GloVe 29.8 30.3 31.1 31.7 47.4 47.6 48.5 48.6
DecompAttn+Numberbatch 32.4 31.7 32.5 31.9 47.4 48.0 48.0 48.3
DecompAttn+ELMo 43.4 43.4 40.6 40.3 47.7 47.3 46.0 45.4
ESIM+GloVe 34.8 35.1 36.3 36.7 51.9 52.7 52.5 52.5
ESIM+Numberbatch 33.1 32.6 33.0 32.4 46.5 46.4 44.0 44.6
ESIM+ELMo 46.0 45.7 45.9 44.8 59.1 59.2 58.7 58.5

Human

1 turker 82.8
3 turkers 85.1
5 turkers 88.0
Expert 85.0

Table 3: Performance of all models in accuracy (%). All models substantially underperform humans,
although performance increases as more context is provided (left to right). We optionally train on found
endings only, or found and human-validated generated endings (found+gen).

ConceptNet knowledge base (Speer et al., 2017).
For an ending sentence, we use the spaCy depen-
dency parser to extract the head verb and its de-
pendent object. The ending score is given by the
number of ConceptNet causal relations9 between
synonyms of the verb and synonyms of the object.
j. Human performance To benchmark human
performance, five Mechanical Turk workers were
asked to answer 100 dataset questions, as did an
‘expert’ annotator (the first author of this paper).
Predictions were combined using a majority vote.

4.4 Results
We present our results in Table 3. The best model
that only uses the ending is the LSTM sequence
model with ELMo embeddings, which obtains
43.6%. This model, as with most models stud-
ied, greatly improves with more context: by 3.1%
when given the initial noun phrase, and by an ad-

9We used the relations ‘Causes’, ‘CapableOf’, ‘Re-
ceivesAction’, ‘UsedFor’, and ‘HasSubevent’. Though their
coverage is low (30.4% of questions have an answer with �1
causal relation), the more frequent relations in ConceptNet,
such as ‘IsA’, at best only indirectly relate to our task.

ditional 4% when also given the first sentence.
Further improvement is gained from models

that compute pairwise representations of the in-
puts. While the simplest such model, Dual-
BoW, obtains only 35.1% accuracy, combining In-
ferSent sentence representations gives 40.5% ac-
curacy (InferSent-Bilinear). The best results come
from pairwise NLI models: when fully trained on
Swag, ESIM+ELMo obtains 59.2% accuracy.

When comparing machine results to human re-
sults, we see there exists a lot of headroom.
Though there likely is some noise in the task, our
results suggest that humans (even untrained) con-
verge to a consensus. Our in-house “expert” an-
notator is outperformed by an ensemble of 5 Turk
workers (with 88% accuracy); thus, the effective
upper bound on our dataset is likely even higher.

5 Analysis

5.1 Swag versus existing NLI datasets
The past few years have yielded great advances in
NLI and representation learning, due to the avail-
ability of large datasets like SNLI and MultiNLI
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Figure 4: Top: Distribution of the 40 top verbs in the union of SNLI and Swag. Our dataset shows a
greater variety of dynamic verbs, such as “move”, as well as temporal verbs such as “start” and “come.”
“Continue” is cut off for SNLI (it has frequency 6 · 10�5). Bottom: CDF for verbs in SNLI and Swag.

(Bowman et al., 2015; Williams et al., 2018). With
the release of Swag, we hope to continue this
trend, particularly as our dataset largely has the
same input/output format as other NLI datasets.
We observe three key differences between our
dataset and others in this space:

First, as noted in Section 1, Swag requires a
unique type of temporal reasoning. A state-of-the-
art NLI model such as ESIM, when bottlenecked
through the SNLI notion of entailment (SNLI-
ESIM), only obtains 36.1% accuracy.10 This im-
plies that these datasets necessitate different (and
complementary) forms of reasoning.

Second, our use of videos results in wide cover-
age of dynamic and temporal situations Compared
with SNLI, with contexts from Flickr30K (Plum-
mer et al., 2017) image captions, Swag has more
active verbs like ‘pull’ and ‘hit,’ and fewer static
verbs like ‘sit’ and ‘wear’ (Figure 4).11

Third, our dataset suffers from few lexical bi-
ases. Whereas fastText, a bag of n-gram model,
obtains 67.0% accuracy on SNLI versus a 34.3%
baseline (Gururangan et al., 2018), fastText ob-
tains only 29.0% accuracy on Swag.12

5.2 Error analysis
We sought to quantify how human judgments dif-
fer from the best studied model, ESIM+ELMo.
We randomly sampled 100 validation questions

10The weights of SNLI-ESIM pick up primarily on entail-
ment probability (0.59), as with neutral (0.46), while contra-
diction is negatively correlated (-.42).

11Video data has other language differences; notably, char-
acter names in LSMDC were replaced by ‘someone’

12The most predictive individual words on SWAG are in-
frequent in number: ‘dotted‘ with P(+|dotted) = 77% with
10.3 counts, and P(�|similar) = 81% with 16.3 counts.
(Counts from negative endings were discounted 3x, as there
are 3 times as many negative endings as positive endings).

Reason Explanation Freq.

Situational The good ending is better in context. 53.7%
Plausibility The bad ending is implausible regard-

less of context.
14.4%

Novelty The bad ending seems redundant; it is
entailed by the context.

1.8%

Weirdness The bad ending is semantically or
grammatically malformed, e.g. ‘the
man is getting out of the horse.’

18.1%

Ambiguous Both endings seem equally likely. 12.0%

Table 4: Justifications for ranking the gold answer
over a wrong answer chosen by ESIM+ELMo.

that ESIM+ELMo answered incorrectly, for each
extracting both the gold ending and the model’s
preferred ending. We asked 5 Amazon Mechanical
Turk workers to pick the better ending (of which
they preferred the gold endings 94% of the time)
and to select one (or more) multiple choice reasons
explaining why the chosen answer was better.

The options, and the frequencies, are outlined in
Table 4. The most common reason for the turkers
preferring the correct answer is situational (52.3%
of the time), followed by weirdness (17.5%)
and plausibility (14.4%). This suggests that
ESIM+ELMo already does a good job at filtering
out weird and implausible answers, with the main
bottleneck being grounded physical understand-
ing. The ambiguous percentage is also relatively
low (12.0%), implying significant headroom.

5.3 Qualitative examples
Last, we show several qualitative examples in Ta-
ble 5. Though models can do decently well by
identifying complex alignment patterns between
the two sentences (e.g. being “up a tree” im-
plies that “tree” is the end phrase), the incorrect
model predictions suggest this strategy is insuffi-
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A waiter brings a fork. The waiter
a) starts to step away. (74.76%)
b) adds spaghetti to the table. (21.57%)
c) brings a bunch of pie to the food (2.67%)
d) drinks from the mug in the bowl. (0.98%)

He is up a tree. Someone
a) stands underneath the tree. (97.44%)
b) is at a pool table holding a cup. (1.14%)
c) grabs a flower from a paper. (0.96%)
d) is eating some cereal. (0.45%)

An old man rides a small bumper car. Several people
a) get in the parking lot. (76.58%)
b) wait in the car. (15.28%)
c) get stuck with other bumper cars. (6.75%)
d) are running down the road. (1.39%)

He pours the raw egg batter into the pan. He
a) drops the tiny pan onto a plate. (93.48%)
b) lifts the pan and moves it around to shuffle the
eggs. (4.94%)
c) stirs the dough into a kite. (1.53%)
d) swirls the stir under the adhesive. (0.05%)

Table 5: Example questions answered by the best model, ESIM+Elmo, sorted by model probability.
Correct model predictions are in blue, incorrect model predictions are red. The right answers are bolded.

cient. For instance, answering “An old man rides
a small bumper car” requires knowledge about
bumper cars and how they differ from regular cars:
bumper cars are tiny, don’t drive on roads, and
don’t work in parking lots, eliminating the alterna-
tives. However, this knowledge is difficult to ex-
tract from existing corpora: for instance, the Con-
ceptNet entry for Bumper Car has only a single
relation: bumper cars are a type of vehicle. Other
questions require intuitive physical reasoning: e.g,
for “he pours the raw egg batter into the pan,”
about what happens next in making an omelet.

5.4 Where to go next?
Our results suggest that Swag is a challenging
testbed for NLI models. However, the adversarial
models used to filter the dataset are purely stylis-
tic and focus on the second sentence; thus, subtle
artifacts still likely remain in our dataset. These
patterns are ostensibly picked up by the NLI mod-
els (particularly when using ELMo features), but
the large gap between machine and human perfor-
mance suggests that more is required to solve the
dataset. As models are developed for common-
sense inference, and more broadly as the field of
NLP advances, we note that AF can be used again
to create a more adversarial version of Swag using
better language models and AF models.

6 Related Work

Entailment NLI There has been a long his-
tory of NLI benchmarks focusing on linguistic
entailment (Cooper et al., 1996; Dagan et al.,
2006; Marelli et al., 2014; Bowman et al., 2015;
Lai et al., 2017; Williams et al., 2018). Re-
cent NLI datasets in particular have supported
learning broadly-applicable sentence representa-
tions (Conneau et al., 2017); moreover, models
trained on these datasets were used as components

for performing better video captioning (Pasunuru
and Bansal, 2017), summarization (Pasunuru and
Bansal, 2018), and generation (Holtzman et al.,
2018), confirming the importance of NLI research.
The NLI task requires a variety of commonsense
knowledge (LoBue and Yates, 2011), which our
work complements. However, previous datasets
for NLI have been challenged by unwanted an-
notation artifacts, (Gururangan et al., 2018; Po-
liak et al., 2018) or scale issues. Our work ad-
dresses these challenges by constructing a new
NLI benchmark focused on grounded common-
sense reasoning, and by introducing an adversar-
ial filtering mechanism that substantially reduces
known and easily detectable annotation artifacts.

Commonsense NLI Several datasets have been
introduced to study NLI beyond linguistic entail-
ment: for inferring likely causes and endings given
a sentence (COPA; Roemmele et al., 2011), for
choosing the most sensible ending to a short story
(RocStories; Mostafazadeh et al., 2016; Sharma
et al., 2018), and for predicting likelihood of a hy-
pothesis by regressing to an ordinal label (JOCI;
(Zhang et al., 2017)). These datasets are relatively
small: 1k examples for COPA and 10k cloze ex-
amples for RocStories.13 JOCI increases the scale
by generating the hypotheses using a knowledge
graph or a neural model. In contrast to JOCI where
the task was formulated as a regression task on the
degree of plausibility of the hypothesis, we frame
commonsense inference as a multiple choice ques-
tion to reduce the potential ambiguity in the labels
and to allow for direct comparison between ma-
chines and humans. In addition, Swag’s use of ad-
versarial filtering increases diversity of situations
and counterfactual generation quality.

13For RocStories, this was by design to encourage learning
from the larger corpus of 98k sensible stories.
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Last, another related task formulation is sen-
tence completion or cloze, where the task is to pre-
dict a single word that is removed from a given
context (Zweig and Burges, 2011; Paperno et al.,
2016).14 Our work in contrast requires longer tex-
tual descriptions to reason about.

Vision datasets Several resources have been in-
troduced to study temporal inference in vision.
The Visual Madlibs dataset has 20k image cap-
tions about hypothetical next/previous events (Yu
et al., 2015); similar to our work, the test portion
is multiple-choice, with counterfactual answers re-
trieved from similar images and verified by hu-
mans. The question of ‘what will happen next?’
has also been studied in photo albums (Huang
et al., 2016), videos of team sports, (Felsen et al.,
2017) and egocentric dog videos (Ehsani et al.,
2018). Last, annotation artifacts are also a re-
curring problem for vision datasets such as Vi-
sual Genome (Zellers et al., 2018) and Visual QA
(Jabri et al., 2016); recent work was done to cre-
ate a more challenging VQA dataset by annotating
complementary image pairs (Goyal et al., 2016).

Reducing gender/racial bias Prior work has
sought to reduce demographic biases in word em-
beddings (Zhang et al., 2018) as well as in image
recognition models (Zhao et al., 2017). Our work
has focused on producing a dataset with minimal
annotation artifacts, which in turn helps to avoid
some gender and racial biases that stem from elic-
itation (Rudinger et al., 2017). However, it is not
perfect in this regard, particularly due to biases
in movies (Schofield and Mehr, 2016; Sap et al.,
2017). Our methodology could potentially be ex-
tended to construct datasets free of (possibly inter-
sectional) gender or racial bias.

Physical knowledge Prior work has studied
learning grounded knowledge about objects and
verbs: from knowledge bases (Li et al., 2016), syn-
tax parses (Forbes and Choi, 2017), word embed-
dings (Lucy and Gauthier, 2017), and images and
dictionary definitions (Zellers and Choi, 2017).
An alternate thread of work has been to learn
scripts: high-level representations of event chains
(Schank and Abelson, 1975; Chambers and Juraf-
sky, 2009). Swag evaluates both of these strands.

14Prior work on sentence completion filtered negatives
with heuristics based on LM perplexities. We initially tried
something similar, but found the result to still be gameable.

7 Conclusion

We propose a new challenge of physically situated
commonsense inference that broadens the scope
of natural language inference (NLI) with com-
monsense reasoning. To support research toward
commonsense NLI, we create a large-scale dataset
Swag with 113k multiple-choice questions. Our
dataset is constructed using Adversarial Filtering
(AF), a new paradigm for robust and cost-effective
dataset construction that allows datasets to be con-
structed at scale while automatically reducing an-
notation artifacts that can be easily detected by a
committee of strong baseline models. Our adver-
sarial filtering paradigm is general, allowing po-
tential applications to other datasets that require
human composition of question answer pairs.
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Abstract

Determining whether a given claim is sup-
ported by evidence is a fundamental NLP
problem that is best modeled as Textual En-
tailment. However, given a large collection of
text, finding evidence that could support or re-
fute a given claim is a challenge in itself, am-
plified by the fact that different evidence might
be needed to support or refute a claim. Nev-
ertheless, most prior work decouples evidence
identification from determining the truth value
of the claim given the evidence.

We propose to consider these two aspects
jointly. We develop TWOWINGOS (two-
wing optimization strategy), a system that,
while identifying appropriate evidence for a
claim, also determines whether or not the
claim is supported by the evidence. Given
the claim, TWOWINGOS attempts to iden-
tify a subset of the evidence candidates; given
the predicted evidence, it then attempts to
determine the truth value of the correspond-
ing claim. We treat this challenge as cou-
pled optimization problems, training a joint
model for it. TWOWINGOS offers two ad-
vantages: (i) Unlike pipeline systems, it facil-
itates flexible-size evidence set, and (ii) Joint
training improves both the claim verification
and the evidence identification. Experiments
on a benchmark dataset show state-of-the-art
performance.1

1 Introduction

A claim, e.g., “Marilyn Monroe worked with
Warner Brothers”, is an assertive sentence that
may be true or false. While the task of claim
verification will not tell us the absolute truth of
this claim, it is expected to determine whether the
claim is supported by evidence in a given text col-
lection. Specifically, given a claim and a text cor-
pus, evidential claim verification, demonstrated in

1cogcomp.org/page/publication_view/847
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Figure 1: Illustration of evidential claim verification
task. For a claim, we determine its truth value by evi-
dence identified from a text corpus.

Figure 1, aims at identifying text snippets in the
corpus that act as evidence that supports or refutes
the claim.

This problem has broad applications. For exam-
ple, knowledge bases (KB), such as Freebase (Bol-
lacker et al., 2008), YAGO (Suchanek et al., 2007),
can be augmented with a new relational statement
such as “(Afghanistan, is source of, Kushan Dy-
nasty)”. This needs to be first verified by a claim
verification process and supported by evidence
(Roth et al., 2009; Chaganty et al., 2017). More
broadly, claim verification is a key component in
any technical solution addressing recent concerns
about the trustworthiness of online content (Vy-
diswaran et al., 2011; Pasternack and Roth, 2013;
Hovy et al., 2013). In both scenarios, we care
about whether or not a claim holds, and seek re-
liable evidence in support of this decision.

Evidential claim verification requires that we
address three challenges. First, to locate text snip-
pets in the given corpus that can potentially be
used to determine the truth value of the given
claim. This differs from the conventional textual
entailment (TE) problem (Dagan et al., 2013) as
here we first look for the premises given a hypoth-
esis. Clearly, the evidence one seeks depends on
the claim, as well as on the eventual entailment
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Figure 2: TWOWINGOS, a generic two-wing optimiza-
tion framework. A subset of the evidence candidates
Se = {s1, . . . , sm�1, sm} is chosen via a binary vector
(left), and an n-valued entailment decision yi 2 Y is
chosen (right), with respect to the claim x.

decision – the same claim would require different
supporting than refuting evidence. This motivates
us to develop an approach that can transfer knowl-
edge from claim verification to evidence identifi-
cation. Second, the evidence for a claim might re-
quire aggregating information from multiple sen-
tences and even multiple documents (rf. #3 in Ta-
ble 4). Therefore, a set, rather than a collection of
independent text snippets, should be chosen to act
as evidence. And, finally, in difference from TE,
given a set of evidence sentences as a premise, the
truth value of the claim should depend on all of the
evidence, rather than on a single sentence there.

The discussion above suggests that claim verifi-
cation and evidence identification are tightly cou-
pled. Claim should influence the identification of
appropriate evidence, and “trusted evidence boosts
the claim’s veracity” (Vydiswaran et al., 2011).
Consequently, we propose TWOWINGOS, a two-
wing optimization strategy2, to support this pro-
cess. As shown in Figure 2, we consider a set
of sentences S as the candidate evidence space, a
claim x, and a decision space Y for the claim veri-
fication. In the optimal condition, a one-hot vector
over Y indicates which decision to make towards
the claim, and a binary vector over S indicates a
subset of sentences Se (in blue in Figure 2) to act
as evidence.

Prior work mostly approached this problem as
a pipeline procedure – first, given a claim x, de-
termine Se by some similarity matching; then,
conduct textual entailment over (Se, x) pairs.
Our framework, TWOWINGOS, optimizes the two

2By “two-wing optimization”, we mean that the same ob-
ject, i.e., the claim, is mapped into two target spaces in a joint
optimization scheme.

subtasks jointly, so that both claim verification and
evidence identification can enhance each other.
TWOWINGOS is a generic framework making
use of a shared representation of the claim to co-
train evidence identification and claim verifica-
tion.

TWOWINGOS is tested on the FEVER bench-
mark (Thorne et al., 2018), showing ⇡30% F1 im-
provement for evidence identification, and ⇡23%
accuracy increase in claim verification. Our analy-
sis shows that (i) entity mentions in claims provide
a strong clue for retrieving relevant passages; (ii)
composition of evidence clues across sentences
helps claim verification; and that (iii) the joint
training scheme provides significant benefits of a
pipeline architecture.

2 Related Work

Most work focuses on the dataset construction
while lacking advanced models to handle the prob-
lem. Vlachos and Riedel (2014) propose and de-
fine the “fact checking” problem, without a con-
crete solution. Ferreira and Vlachos (2016) re-
lease the dataset “Emergent” for rumor debunking.
Each claim is accompanied by an article headline
as evidence. Then a three-way logistic regression
model is used over some rule-based features. No
need to search for evidence. Wang (2017) release a
larger dataset for fake news detection, and propose
a hybrid neural network to integrate the statement
and the speaker’s meta data to do classification.
However, the presentation of evidences is ignored.
Kobayashi et al. (2017) release a similar dataset to
(Thorne et al., 2018), but they do not consider the
evaluation of evidence reasoning.

Some work mainly pays attention to determin-
ing whether the claim is true or false, assuming ev-
idence facts are provided or neglecting presenting
evidence totally, e.g., (Angeli and Manning, 2014)
– given a database of true facts as premises, pre-
dicting whether an unseen fact is true and should
belong to the database by natural logic inference.
Open-domain question answering (QA) against a
text corpus (Yin et al., 2016; Chen et al., 2017;
Wang et al., 2018) can also be treated as claim ver-
ification problem, if we treat (question, correct an-
swer) as a claim. However, little work has studied
how well a QA system can identify all the answer
evidence.

Only a few works considered improving the evi-
dence presentation in claim verification problems.
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Roth et al. (2009) introduce the task of Entailed
Relation Recognition – given a set of short para-
graphs and a relational fact in the triple form of
(argument1, relation, argument2), finding the para-
graphs that can entail this fact. They first use Ex-
panded Lexical Retrieval to rank and keep the top-
k paragraphs as candidates, then build a TE clas-
sifier over each (candidate, statement) pair. The
work directly related to us is by Thorne et al.
(2018). Given claims and a set of Wikipages,
Thorne et al. (2018) use a retrieval model based on
TF-IDF to locate top-5 sentences in top-5 pages as
evidence, then utilize a neural entailment model to
classify (evidence, claim) pairs.

In contrast, our work tries to optimize the claim
verification as well as the evidence identification
in a joint training scheme, which is more than just
supporting or refuting the claims.

3 The TWOWINGOS Model

Figure 2 illustrates the two-wing optimization
problem addressed in this work: given a collec-
tion of evidence candidates S={s1, s2, · · · , si, · · · ,
sm}, a claim x and a decision set Y = {y1 · · · , yn},
the model TWOWINGOS predicts a binary vector
p over S and a one-hot vector o over Y against the
ground truth, a binary vector q and a one-hot vec-
tor z, respectively. A binary vector over S means
a subset of sentences (Se) act as evidence, and the
one-hot vector indicates a single decision (yi) to
be made towards the claim x given the evidence
Se. Next, we use two separate subsections to elab-
orate the process of evidence identification (i.e.,
optimize p to q) and the claim verification (i.e.,
optimize o to z).

3.1 Evidence identification

A simple approach to identifying evidence is to de-
tect the top-k sentences that are lexically similar to
the claim, as some pipeline systems (Roth et al.,
2009; Thorne et al., 2018) do. However, a claim-
unaware fixed k is less optimal, adding noise or
missing key supporting factors, consequently lim-
iting the performance.

In this work, we approach the evidence by mod-
eling sentences S={s1, · · · , si, · · · , sm} with
the claim x as context in a supervised learning
scheme. For each si, the problem turns out to be
learning a probability: how likely si can entail the
claim conditioned on other candidates as context,
as shown by the blue items in Figure 2.

To start, a piece of text t (t 2 S [ {x}) is repre-
sented as a sequence of l hidden states, forming a
feature map T 2 R

d⇥l, where d is the dimension-
ality of hidden states. We first stack a vanilla CNN
(convolution & max-pooling) (LeCun et al., 1998)
over T to get a representation for t. As a result,
each evidence candidate si has a representation si,
and the claim x has a representation x. To get a
probability for each si, we need first to build its
claim-aware representation ri.

Coarse-grained representation. We directly
concatenate the representation of si and x, gen-
erated by the vanilla CNN, as:

ri = [si,x, si · xT ] (1)

This coarse-grained approach makes use of merely
the sentence-level representations while neglect-
ing more fine-grained interactions between the
sentences and the claim.

Fine-grained representation. Instead of di-
rectly employing the sentence-level representa-
tions, here we explore claim-aware representations
for each word in sentence si, then compose them
as the sentence representation ri, inspired by the
Attentive Convolution (Yin and Schütze, 2017).

For each word sj
i in si, we first calculate its

matching score towards each word xz in x, by dot
product over their hidden states. Then the repre-
sentation of the claim, as the context for the word
sj
i , is formed as:

cj
i =

X

z

softmax(sj
i · (xz)T ) · xz (2)

Now, word sj
i has left context sj�1

i , right con-
text sj+1

i in si, and the claim-aware context cj
i

from x. A convolution encoder generates its
claim-aware representation iji :

iji = tanh(W · [sj�1
i , sj

i , s
j+1
i , cj

i ] + b) (3)

where parameters W 2 R
d⇥4d, b 2 R

d.
To compose those claim-aware word represen-

tations as the representation for sentence si, we
use a max-pooling over {iji} along with j, gener-
ating ii.

We use term fint(si, x) to denote this whole
process, so that:

ii = fint(si, x) (4)

At this point, the fine-grained representation for
evidence candidate si is:

ri = [si,x, si · xT , ii] (5)
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Loss function. With a claim-aware representa-
tion ri, the sentence si subsequently gets a prob-
ability, acting as the evidence, ↵i 2 (0, 1) via a
non-linear sigmoid function:

↵i = sigmoid(v · rT
i ) (6)

where parameter vector v has the same dimension-
ality as ri.

In the end, all evidence candidates in S have
a ground-truth binary vector q and the predicted
probability vector ↵; then loss lev (“ev”: evidence)
is implemented as a binary cross-entropy:

lev =
mX

i=1

�(qi log(↵i)+(1�qi) log(1�↵i)) (7)

As the output of this evidence identification
module, we binarize the probability vector ↵ by
pi = [↵i > 0.5] (“[x]” is 1 if x is true or 0 other-
wise). pi indicates si is evidence or not. All {si}
with pi = 1 act as evidence set Se.

3.2 Claim verification
As shown in Figure 2, to figure out an entailment
decision yi for the claim x, the evidence Se pos-
sibly consists of more than one sentence. Further-
more, those evidence sentences are not necessar-
ily in textual order nor from the same passage.
So, we need a mechanism that enables each evi-
dence or even each word inside to be aware of the
content from other evidence sentences. Similar to
the aforementioned approach to evidence identifi-
cation, we come up with three methods, with dif-
ferent representation granularity, to learn a repre-
sentation for (Se, x), i.e., the input for claim veri-
fication, shown in Figure 3.

Coarse-grained representation. In this case,
we treat Se as a whole, constructing its represen-
tation e by summing up the representations of all
sentences in Se in a weighted way:

e =
mX

i=1

↵i · pi · si (8)

where ↵i, from Equation 6, is the probability of si

being the evidence.
Then the (Se, x) pair gets a coarse-grained con-

catenated representation: [e,x]. It does not model
the interactions within the evidence nor the in-
teractions between the evidence and the claim.
Based on our experience in evidence identification

weighted
sum up

(a) Coarse-grained representations

weighted
max-pooling

weighted
max-pooling

attentive 
convolution 

(b) Single-channel fine-grained representations

updated

weighted
max-pooling

weighted
max-pooling

attentive 
convolution 

(c) Two-channel fine-grained representations

Figure 3: Three representation learning methods in
claim verification. Green arrows act as context in at-
tentive convolution.

module, the representation of a sentence is better
learned by composing context-aware word-level
representations. Next, we introduce how to learn
fine-grained representation for the (Se, x) pair.

Single-channel fine-grained representation.
By “single-channel,” we mean each sentence si is
aware of the claim x as its single context.

For a single pair (si, x), we utilize the func-
tion fint() in Equation 4 to build the fine-grained
representations for both si and x, obtaining ii =
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fint(si, x) for si and xi = fint(x, si) for x.
For (Se, x), we compose all the {ii} and all the

{xi} along with i, via a weighted max-pooling:

e = maxpooli(↵i · pi · ii) (9)
x = maxpooli(↵i · pi · xi) (10)

This weighted max-pooling ensures that the
sentences with higher probabilities of being evi-
dence have a higher chance to present their fea-
tures. As a result, (Se, x) gets a concatenated rep-
resentation: [e, x]

Two-channel fine-grained representation. By
“two-channel,” we mean that each evidence si is
aware of two kinds of context, one from the claim
x, the other from the remaining evidences.

Our first step is to accumulate evidence clues
within Se. To start, we concatenate all sentences in
Se as a fake long sentence Ŝ consisting of hidden
states {ŝ}. Similar to Equation 2, for each word
sj
i in sentence si, we accumulate all of its related

clues (cj
i ) from Ŝ as follows:

cj
i =

X

z

softmax(sj
i · (ŝz)T ) · ŝz (11)

Then we update sj
i , the representation of word

sj
i , by element-wise addition:

sj
i = sj

i � cj
i (12)

This step enables the word sj
i to “see” all related

clues from Se. The reason we add sj
i and cj

i is mo-
tivated by a simple experience: Assume the claim
“Lily lives in the biggest city in Canada”, and one
sentence contains a clue “· · · Lily lives in Toronto
· · · ” and another sentence contains a clue “· · ·
Toronto is Canada’s largest city· · · ”. The most
simple yet effective approach to aggregating the
two clues is to sum up their representation vectors
(Blacoe and Lapata, 2012) (we do not concatenate
them, as those clues have no consistent textual or-
der across different sj

i ).
After updating the representation of each word

in si, we perform the aforementioned “single-
channel fine-grained representation” between the
updated si and the claim x, generating [e, x].

Loss function. For the claim verification input
(Se, x), we forward its representation [e, x] to a

#SUPPORTED #REFUTED #NEI
train 80,035 29,775 35,639
dev 3,333 3,333 3,333
test 3,333 3,333 3,333

Table 1: Statistics of claims in FEVER dataset

logistic regression layer in order to infer a proba-
bility distribution o over the label space Y :

o = softmax(W · [e,x] + b) (13)

where W 2 R
n⇥2d, b 2 R

n

The loss lcv (“cv”: claim verification) is imple-
mented as negative log-likelihood:

lcv = � log(o · zT ) (14)

where z is the ground truth one-hot label vector
for the claim x on the space Y .

3.3 Joint optimization
Given the loss lev in evidence identification and
the loss lcv in claim verification, the overall train-
ing loss is represented by:

l = lev + lcv (15)

To ensure that we jointly train the two coupled
subtasks with intensive knowledge communica-
tion instead of simply putting two pipeline neural
networks together, our TWOWINGOS has follow-
ing configurations:

• Both subsystems share the same set of word
embeddings as parameters; the vanilla CNNs for
learning sentence and claim representations share
parameters as well.

• The output binary vector p by the evidence
identification module is forwarded to the module
of claim verification, as shown in Equations 8-10.

• Though the representation of a claim’s deci-
sion yi is not put explicitly into the module of ev-
idence identification, the claim’s representation x
will be fine-tuned by the yi, so that the evidence
candidates can get adjustment from the decision
yi, since the claims are shared by two modules.

4 Experiments

4.1 Setup
Dataset. In this work, we use FEVER (Thorne
et al., 2018). The claims in FEVER were gen-
erated from the introductory parts of about 50K

109



Figure 4: Distribution of #sentence and #pages in
FEVER evidence

Wikipedia pages of a June 2017 dump. Anno-
tators construct claims about a single fact of the
title entity with arbitrarily complex expressions
and entity forms. To increase the claim com-
plexity so that claims would not be trivially ver-
ified, annotators adopt two routes: (i) Provid-
ing additional knowledge: Annotators can explore
a dictionary of terms that were (hyper-)linked,
along with their pages; (ii) Mutate claims in six
ways: negation, paraphrasing, substitution of a
relation/entity with a similar/dissimilar one, and
making the claims more general/specific. All re-
sulting claims have 9.4 tokens in average. Apart
from claims, FEVER also provides a Wikipedia
corpus in size of about 5.4 million.

Each claim is labeled as SUPPORTED, RE-
FUTED or NOTENOUGHINFO (NEI). In addition,
evidence sentences, from any wiki page, are re-
quired to be provided for SUPPORTED and RE-
FUTED. Table 1 lists the data statistics. Figure 4
shows the distributions of sentence sizes and page
sizes in FEVER’s evidence set. We can see that
roughly 28% of the evidence covers more than
one sentence, and approximately 16.3% of the ev-
idence covers more than one wiki page.

This task has three evaluations: (i)
NOSCOREEV – accuracy of claim verifica-
tion, neglecting the validity of evidence; (ii)
SCOREEV – accuracy of claim verification with
a requirement that the predicted evidence fully
covers the gold evidence for SUPPORTED and RE-
FUTED; (iii) F1 – between the predicted evidence
sentences and the ones chosen by annotators. We
use the officially released evaluation scorer 3.

3https://github.com/sheffieldnlp/fever-scorer

Wiki page retrieval4. For each claim, we search
in the given dictionary of wiki pages in the form of
{title: sentence list}, and keep the top-5 ranked
pages for fair comparison with Thorne et al.
(2018). Algorithm 1 briefly shows the steps of
wiki page retrieval. To speed up, we first build
an inverted index from words to titles, then for
each claim, we only search in the titles that cover
at least one claim word.

Input: A claim, wiki={title: page vocab}

Output: A ranked top-k wiki titles
Generate entity mentions from the claim;
while each title do

if claim.vocab\title.vocab is empty then
discard this title

else
title score = the max recall value of title.vocab

in claim and in entity mentions of the claim;
if title score = 1.0 then

title.score = title score
else

page score = recall of claim in
page vocab;

title.score = title score + page score
end

end
end
Sort titles by title.score in descending order

Algorithm 1: Algorithm description of wiki
page retrieval for FEVER claims.

All sentences of the top-5 retrieved wiki pages
are kept as evidence candidates for claims in train,
dev and test. It is worth mentioning that this page
retrieval step is a reasonable preprocessing which
controls the complexity of evidence searching in
real-world, such as the big space – 5.4 million – in
this work.

Training setup. All words are initialized by
300D Word2Vec (Mikolov et al., 2013) embed-
dings, and are fine-tuned during training. The
whole system is trained by AdaGrad (Duchi et al.,
2011). Other hyperparameter values include:
learning rate 0.02, hidden size 300, mini-batch
size 50, filter width 3.

Baselines. In this work, we first consider the two
systems reported by Thorne et al. (2018): (i) MLP:
A multi-layer perceptron with one hidden layer,
based on TF-IDF cosine similarity between the
claim and the evidence (all evidence sentences are
concatenated as a longer text piece) (Riedel et al.,
2017); (ii) Decomp-Att (Parikh et al., 2016): A
decomposable attention model that develops atten-

4Our retrieval results are released as well.
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k (Thorne et al., 2018) ours
rate acc ceiling rate acc ceiling

1 25.31 50.21 76.58 84.38
5 55.30 70.20 89.63 93.08
10 65.86 77.24 91.19 94.12
25 75.92 83.95 92.81 95.20
50 82.49 90.13 93.36 95.57
100 86.59 91.06 94.19 96.12

Table 2: Wikipage retrieval evaluation on dev. “rate”:
claim proportion, e.g., x%, if its gold passages are
fully retrieved (for “SUPPORT” and “REFUTE” only);
“acc ceiling”: x%·(#S+#R)+#N

#S+#R+#N , the upper bound of
accuracy for three classes if the coverage x% satisfies.

tion mechanisms to decompose the problem into
subproblems to solve in parallel. Note that both
systems first employed an IR system to keep top-
5 relevant sentences from the retrieved top-5 wiki
pages as static evidence for claims.

We further consider the following variants of
our own system TWOWINGOS:

• Coarse-coarse: Both evidence identification
and claim verification adopt coarse-grained repre-
sentations.

To further study our system, we test this
“coarse-coarse” in three setups: (i) “pipeline” –
train the two modules independently. Forward the
predicted evidence to do entailment for claims; (ii)
“diff-CNN” – joint training with separate CNN pa-
rameters to learn sentence/claim representations;
(iii) “share-CNN” – joint training with shared
CNN parameters.

The following variants are in joint training.
• Fine&sentence-wise: Given the evidence

with multiple sentences, a natural baseline is to do
entailment reasoning for each (sentence, claim),
then compose. We do entailment reasoning be-
tween each predicted evidence sentence and the
claim, generating a probability distribution over
the label space Y . Then we sum up all the distribu-
tion vectors element-wise, as an ensemble system,
to predict the label;

• Four combinations of different grained rep-
resentation learning: “coarse&fine(single)”,
“coarse&fine(two)”, “fine&coarse” and
“fine&fine(two)”. “Single” and “two” refer
to the single/two-channel cases respectively.

4.2 Results
Performance of passage retrieval. Table 2
compares our wikipage retriever with the one in

(Thorne et al., 2018), which used a document re-
triever5 from DrQA (Chen et al., 2017).

Our document retrieval module surpasses the
competitor by a big margin in terms of the cover-
age of gold passages: 89.63% vs. 55.30% (k = 5
in all experiments). Its powerfulness should be
attributed to: (i) Entity mention detection in the
claims. (ii) As wiki titles are entities, we have a
bi-channel way to match the claim with the wiki
page: one with the title, the other with the page
body, as shown in Algorithm 1.

Performance on FEVER Table 3 lists the
performances of baselines and the TWOWIN-
GOS variants on FEVER (dev&test). From the
dev block, we observe that:

• TWOWINGOS (from “share-CNN”) sur-
passes prior systems in big margins. Overall,
fine-grained schemes in each subtask contribute
more than the coarse-grained counterparts;

• In the three setups – “pipeline”, “diff-CNN”
and “share-CNN” – of coarse-coarse, “pipeline”
gets better scores than (Thorne et al., 2018) in
terms of evidence identification. “Share-CNN”
has comparable F1 as “diff-CNN” while gaining
a lot on NOSCOREEV (72.32 vs. 39.22) and
SCOREEV (50.12 vs. 21.04). This clearly shows
that the claim verification gains much knowledge
transferred from the evidence identification mod-
ule. Both “diff-CNN” and “share-CNN” perform
better than “pipeline” (except for the slight inferi-
ority at SCOREEV: 21.04 vs. 22.26).

• Two-channel fine-grained representations
show more effective than the single-channel
counterpart in claim verification (NOSCOREEV:
78.77 vs. 75.65, SCOREEV: 53.64 vs. 52.65).
As we expected, evidence sentences should
collaborate in inferring the truth value of the
claims. Two-channel setup enables an evidence
candidate aware of other candidates as well as the
claim.

• In the last three rows of dev, there is no
clear difference among their evidence identifica-
tion scores. Recall that “sent-wise” is essentially
an ensemble system over each (sentence, claim)
entailment result. “Coarse-grained”, instead, first
sums up all sentence representation, then performs
(
P

(sentence), claim) reasoning. We can also
treat this “sum up” as an ensemble. Their com-
parison shows that these two kinds of tricks do not

5It compares passages and claims as TF-IDF weighted
bag-of-bigrams.
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claim verification evidence identification
system NOSCOREEV SCOREEV recall precision F1

de
v

MLP 41.86 19.04 44.22 10.44 16.89
Decomp-Att 52.09 32.57 44.22 10.44 16.89

T
W

O
W

IN
G

O
S

coarse&coarse
pipeline 35.72 22.26 53.75 29.42 33.80
diff-CNN 39.22 21.04 46.88 43.01 44.86
share-CNN 72.32 50.12 45.55 40.77 43.03

coarse&fine(single) 75.65 52.65 45.81 42.53 44.11
coarse&fine(two) 78.77 53.64 45.78 39.23 42.25
fine&sent-wise 71.02 53.43 52.70 48.31 50.40
fine&coarse 71.48 53.17 52.75 47.30 49.87
fine&fine(two) 78.90 56.16 53.81 47.73 50.59

te
st (Thorne et al., 2018) 50.91 31.87 45.89 10.79 17.47

TWOWINGOS 75.99 54.33 49.91 44.68 47.15

Table 3: Performance on dev and test of FEVER. TWOWINGOS outperforms prior systems if vanilla CNN
parameters are shared by evidence identification and claim verification subsystems. It gains more if fine-grained
representations are adopted in both subtasks.

Figure 5: Performance vs. #sentence in evidence. Our
system has robust precisions. The overall performance
NOSCOREEV is not influenced by the decreasing re-
call; this verifies the fact that the truth value of most
claims can be determined by a single identified evi-
dence sentence.

make much difference.
If we adopt “two-channel fine-grained repre-

sentation” in claim verification, big improvements
are observed in both NOSCOREEV (+7.42%) and
SCOREEV (+3%).

In the test block, our system (fine&fine(two))
beats the prior top system across all measurements
by big margins – F1: 47.15 vs. 17.47; SCOREEV:
54.33 vs. 31.87; NOSCOREEV: 75.99 vs. 50.91.

In both dev and test blocks, we can observe that
our evidence identification module consistently

obtains balanced recall and precision. In con-
trast, the pipeline system by Thorne et al. (2018)
has much higher recall than precision (45.89 vs.
10.79). It is worth mentioning that the SCOREEV
metric is highly influenced by the recall value,
since SCOREEV is computed on the claim in-
stances whose evidences are fully retrieved, re-
gardless of the precision. So, ideally, a system can
set all sentences as evidence, so that SCOREEV
can be promoted to be equal to NOSCOREEV. Our
system is more reliable in this perspective.

Performance vs. #sent. in evidence. Figure 5
shows the results of the five evaluation measures
against different sizes of gold evidence sentences
in test set. We observe that: (i) Our system has
robust precisions across #sentence; however, the
recall decreases. This is not that surprising, since
the more ground-truth sentences in evidence, the
harder it is to retrieve all of them; (ii) Due to the
decrease in recall, the SCOREEV also gets influ-
enced for bigger #sentence. Interestingly, high
precision and worse recall in evidence with more
sentences still make consistently strong overall
performance, i.e., NOSCOREEV. This should be
due to the fact that the majority (83.18% (Thorne
et al., 2018)) of claims can be correctly entailed by
a single ground truth sentence, even if any remain-
ing ground truth sentences are unavailable.

Error analysis. The case #1 in Table 4 shows
that our system identifies two pieces of evidence
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# G/P claim gold evidence predicted evidence

1 0/1 Telemundo is an English-language
television network.

(Telemundo, 0) (Telemundo, 0)
(Telemundo, 1) (Telemundo, 4)
(Telemundo, 4) (Fourth television network, 0)
(Telemundo, 5) (Fourth television network, 4)

(Hispanic and Latino Americans, 0)

2 1/2 Home for the Holidays stars a famous
American actor.

(Anne Bancroft, 0)

;
(Charles Durning, 0)

(Holly Hunter, 0)
(Home for the Holidays (1995 film), 5)

3 0/2 Both hosts of Weekly Idol were born in
1983.

(Weekly Idol, 0)
(Weekly Idol, 1)(Weekly Idol, 1)

(Defconn, 0)

Table 4: Error cases of TWOWINGOS in FEVER. “G/P”: gold/predicted label (“0”: refute; “1”: support; “2”: not
enough information). To save space, we use “(title, i)” to denote the ith sentence in the corresponding wiki page.

(i.e., (Telemundo, 0) and (Telemundo, 4)) cor-
rectly; however, it falsely predicts the claim la-
bel. (Telemundo, 0): Telemundo is an Amer-
ican Spanish-language terrestrial television · · · .
We can easily find that the keyword “Spanish-
language” should refute the claim. However,
both “Spanish-language” in this evidence and the
“English-language” in the claim are unknown to-
kens with randomly initialized embeddings. This
hints that a more careful data preprocessing may
be helpful. In addition, to refute the claim, an-
other clue comes from the combination of (Tele-
mundo, 4) and (Hispanic and Latino Americans,
0). (Telemundo, 4): “The channel · · · aimed
at Hispanic and Latino American audiences”;
(Hispanic and Latino Americans, 0): “Hispanic
Americans and Latino Americans · · · are descen-
dants of people from countries of Latin America
and Spain.”. Our system only retrieved (Telemu-
ndo, 4). And this clue is hard to grasp as it re-
quires some background knowledge – people from
Latin America and Spain usually are not treated as
English-speaking.

In the case #2, our system fails to iden-
tify any evidence. This is due to the failure
of our passage retrieval module: it detects
entity mentions “Home”, “Holidays” and
“American”, and the top-5 retrieved pas-
sages are “Home”, “Home for the Holidays”,
“American Home”, “American” and
“Home for the Holidays (song)”, which un-
fortunately cover none of the four ground truth
passages. Interestingly, (i) given the falsely re-
trieved passages, our system predicts “no sentence
is valid evidence” (denoted as ; in Table 4); (ii)
given the empty evidence, our system predicts
“NoEnoughInfo” for this claim. Both make sense.

In the case #3, a successful classification of the

claim requires information aggregation over the
three gold evidence sentences: (Weekly Idol, 0):
“Weekly Idol is a South Korean variety show · · · ”;
(Weekly Idol, 1): “The show is hosted by come-
dian Jeong Hyeong-don and rapper Defconn.”;
(Defconn, 0): “Defconn (born Yoo Dae-joon; Jan-
uary 6 , 1977 ) is a · · · ”. To successfully retrieve
the three sentences as a whole set of evidence is
challenging in evidence identification. Addition-
ally, this example relies on the recognition and
matching of digital numbers (1983 vs. 1977),
which is beyond the expressivity of word embed-
dings, and is expected to be handled by rules more
easily.

5 Summary

In this work, we build TWOWINGOS, a two-wing
optimization framework to address the claim veri-
fication problem by presenting precise evidence.
Differing from a pipeline system, TWOWIN-
GOS ensures the evidence identification mod-
ule and the claim verification module are trained
jointly, in an end-to-end scheme. Experiments
show the superiority of TWOWINGOS in the
FEVER benchmark.
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Abstract

In this paper we address the problem of learn-
ing multimodal word representations by in-
tegrating textual, visual and auditory inputs.
Inspired by the re-constructive and associa-
tive nature of human memory, we propose
a novel associative multichannel autoencoder
(AMA). Our model first learns the associa-
tions between textual and perceptual modali-
ties, so as to predict the missing perceptual in-
formation of concepts. Then the textual and
predicted perceptual representations are fused
through reconstructing their original and asso-
ciated embeddings. Using a gating mechanism
our model assigns different weights to each
modality according to the different concepts.
Results on six benchmark concept similarity
tests show that the proposed method signifi-
cantly outperforms strong unimodal baselines
and state-of-the-art multimodal models.

1 Introduction

Representing the meaning of a word is a prereq-
uisite to solve many linguistic and non-linguistic
problems, such as retrieving words with the same
meaning, finding the most relevant images or
sounds of a word and so on. In recent years we
have seen a surge of interest in building computa-
tional models that represent word meanings from
patterns of word co-occurrence in corpora (Turney
and Pantel, 2010; Mikolov et al., 2013; Penning-
ton et al., 2014; Clark, 2015; Wang et al., 2018b).
However, word meaning is also tied to the phys-
ical world. Many behavioral studies suggest that
human semantic representation is grounded in the
external environment and sensorimotor experience
(Landau et al., 1998; Barsalou, 2008). This has
led to the development of multimodal representa-
tion models that utilize both textual and perceptual
information (e.g., images, sounds).

As evidenced by a range of evaluations (An-
drews et al., 2009; Bruni et al., 2014; Silberer

et al., 2016), multimodal models can learn bet-
ter semantic word representations (a.k.a. embed-
dings) than text-based models. However, most ex-
isting models still have a number of drawbacks.
First, they ignore the associations between modal-
ities, and thus lack the ability of information trans-
ferring between modalities. Consequently they
cannot handle words without perceptual informa-
tion. Second, they integrate textual and perceptual
representations with simple concatenation, which
is insufficient to effectively fuse information from
various modalities. Third, they typically treat the
representations from different modalities equally.
This is inconsistent with many psychological find-
ings that information from different modalities
contributes differently to the meaning of words
(Paivio, 1990; Anderson et al., 2017).

In this work, we introduce the associative multi-
channel autoencoder (AMA), a novel multimodal
word representation model that addresses all the
above issues. Our model is built upon the stacked
autoencoder (Bengio et al., 2007) to learn seman-
tic representations by integrating textual and per-
ceptual inputs. Inspired by the re-constructive
and associative nature of human memory, we pro-
pose two associative memory modules as exten-
sions. One is to learn associations between modal-
ities (e.g., associations between textual and visual
features), so as to reconstruct corresponding per-
ceptual information of concepts. The other is to
learn associations between related concepts, by re-
constructing embeddings of both target words and
their associated words. Furthermore, we propose a
gating mechanism to learn the importance weights
of different modalities to each word.

To summarize, our main contributions in this
work are two-fold:

• We present a novel associative multichannel
autoencoder for multimodal word represen-
tation, which is capable of utilizing associa-
tions between different modalities and related
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concepts, and assigning different importance
weights to each modality according to differ-
ent words. Results on six standard bench-
marks demonstrate that our methods outper-
form strong unimodal baselines and state-of-
the-art multimodal models.

• Our model successfully integrates cognitive
insights of the re-constructive and associative
nature of semantic memory in humans, sug-
gesting that rich information contained in hu-
man cognitive processing can be used to en-
hance NLP models. Furthermore, our results
shed light on the fundamental questions of
how to learn semantic representations, such
as the plausibility of reconstructing percep-
tual information, associating related concepts
and grounding word symbols to external en-
vironment.

2 Background and Related Work

2.1 Cognitive Grounding

A large body of research evidences that human se-
mantic memory is inherently re-constructive and
associative (Collins and Loftus, 1975; Anderson
and Bower, 2014). That is, memories are not exact
static copies of reality, but are rather reconstructed
from their stimuli and associated concepts each
time they are retrieved. For example, when we see
a dog, not only the concept itself, but also the cor-
responding perceptual information and associated
words will be jointly activated and reconstructed.
Moreover, various theories state that the different
sources of information contribute differently to the
semantic representation of a concept (Wang et al.,
2010; Ralph et al., 2017). For instance, Dual Cod-
ing Theory (Hiscock, 1974) posits that concrete
words are represented in the brain in terms of a
perceptual and linguistic code, whereas abstract
words are encoded only in the linguistic modality.

In these respects, our method employs a re-
trieval and representation process analogous to
that of humans, in which the retrieval of percep-
tual information and associated words is triggered
and mediated by a linguistic input. The learned
cross-modality mapping and reconstruction of as-
sociated words are inspired by the human mental
model of associations between different modali-
ties and related concepts. Moreover, word mean-
ing is tied to both linguistic and physical environ-
ment, and relies differently on each modality in-

puts (Wang et al., 2018a). These are also captured
by our multimodal representation model.

2.2 Multimodal Models
The existing multimodal representation models
can be generally classified into two groups: 1)
Jointly training models build multimodal repre-
sentations with raw inputs of textual and percep-
tual resources. 2) Separate training models inde-
pendently learn textual and perceptual representa-
tions and integrate them afterwards.

2.2.1 Jointly training models
A class of models extends Latent Dirichlet Alloca-
tion (Blei et al., 2003) to jointly learn topic distri-
butions from words and perceptual units (Andrews
et al., 2009; Silberer and Lapata, 2012; Roller and
Schulte im Walde, 2013). Recently introduced
work is an extension of the Skip-gram model
(Mikolov et al., 2013). For instance, Hill and
Korhonen (2014) propose a corpus fusion method
that inserts the perceptual features of concepts in
the training corpus, which is then used to train the
Skip-gram model. Lazaridou et al. (2015) propose
MMSkip model, which injects visual information
in the process of learning textual representations
by adding a max-margin objective to minimize the
distance between textual and visual vectors. Kiela
and Clark (2015) adopt the MMSkip to learn mul-
timodal vectors with auditory perceptual inputs.

These methods can implicitly propagate percep-
tual information to word representations and at
the same time learn multimodal representations.
However, they utilize raw text corpus in which
words having perceptual information account for a
small portion. This weakens the effect of introduc-
ing perceptual information and consequently leads
to the slight improvement of textual vectors.

2.2.2 Separate training models
The simplest approach is concatenation which
fuses textual and visual vectors by concatenat-
ing them. It has been proven to be effective in
learning multimodal representations (Bruni et al.,
2014; Hill et al., 2014; Collell et al., 2017). Vari-
ations of this method employ transformation and
dimension reduction on the concatenation result,
including application of singular value decom-
position (SVD) (Bruni et al., 2014) or canoni-
cal correlation analysis (CCA) (Hill et al., 2014).
There is also work using deep learning methods to
project different modality inputs into a common
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space, including restricted Boltzman machines
(Ngiam et al., 2011; Srivastava and Salakhutdinov,
2012), autoencoders (Silberer and Lapata, 2014;
Silberer et al., 2016), and recursive neural net-
works (Socher et al., 2013). However, the above
methods can only generate multimodal vectors of
those words that have perceptual information, thus
reducing multimodal vocabulary drastically.

An empirically superior model addresses this
problem by predicting missing perceptual infor-
mation firstly. This includes Hill et al. (2014) who
utilize the ridge regression method to learn a map-
ping matrix from textual modality to visual modal-
ity, and Collell et al. (2017) who employ a feed-
forward neural network to learn the mapping re-
lation between textual vectors and visual vectors.
Applying the mapping function on textual repre-
sentations, they obtain the predicted visual vectors
for all words in textual vocabulary. Then they cal-
culate multimodal representations by concatenat-
ing textual and predicted visual vectors. However,
the above methods learn separate mapping func-
tions and fusion models, which are somewhat in-
elegant. In this paper we employ a neural-network
mapping function to integrate these two processes
into a unified multimodal models.

According to this classification, our method
falls into the second group. However, exist-
ing models ignore either the associative relations
among modalities, associative relations among rel-
ative words, or the different contributions of each
modality. This paper aims to integrate more per-
ceptual information and the human-like associa-
tive memory into a unified multimodal model to
learn better word representations.

3 Associative Multichannel Autoencoder

We first provide a brief description of the basic
multichannel autoencoder for learning multimodal
word representations (Figure 1). Then we extend
the model with two associative memory modules
and a gating mechanism (Figure 2) in the next sec-
tions.

3.1 Basic Mutichannel Autoencoder

An autoencoder is an unsupervised neural net-
work which is trained to reconstruct a given in-
put from its latent representation (Bengio, 2009).
In this work, we propose a variant of autoen-
coder called multichannel autoencoder, which
maps multimodal inputs into a common space.

image2vec

...

word2vec sound2vec
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...Multimodal 
representations

dog

...
... ......

.........
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There's 
nothing that 
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fast as a cute 
dog doing 
something 
peculiar.

Figure 1: Architecture of the multichannel autoen-
coder with inputs of textual, visual and auditory
sources.

Our model extends the unimodal and bimodal au-
toencoder (Ngiam et al., 2011; Silberer and Lap-
ata, 2014) to induce semantic representations in-
tegrating textual, visual and auditory information.
As shown in Figure 1, our model first transforms
input textual vector xt, visual vector xv and audi-
tory vector xa to hidden representations:

ht = g(Wtxt + bt)

hv = g(Wvxv + bv)

ha = g(Waxa + ba).

(1)

Then the hidden representations are concatenated
together and mapped to a common space:

hm = g(Wm[ht; hv; ha] + bm). (2)

The model is trained to reconstruct the hidden
representations of the three modalities from the
multimodal representation hm:

[ĥt; ĥv; ĥa] = g(W 0
mhm + bm̂), (3)

and finally to reconstruct the original embeddings
of textual, visual and auditory inputs:

x̂t = g(W 0
t ĥt + bt̂)

x̂v = g(W 0
vĥv + bv̂)

x̂a = g(W 0
aĥa + bâ),

(4)

where x̂t, x̂v, x̂a are the reconstruction of
input vectors xt, xv, xa, and ĥt, ĥv, ĥa
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are the reconstruction of hidden representa-
tions ht, hv, ha. The learning parameters
{Wt, Wv, Wa, W 0

t , W
0
v, W

0
a, Wm, W 0

m} are weight
matrices, {bt, bv, ba, bt̂, bv̂, bâ, bm, bm̂} are bias
vectors. Here [· ; ·] denotes the vector concatena-
tion, and g denotes the non-linear function which
we use tanh(·).

Training a single-layer autoencoder corre-
sponds to optimizing the learning parameters to
minimize the overall loss between inputs and their
reconstructions. Following (Vincent et al., 2010),
we use squared loss:

min
✓1

nX

i=1

(||xi
t � x̂i

t||2 + ||xi
v � x̂i

v||2 + ||xi
a � x̂i

a||2),

(5)
where i denotes the ith word, and the model pa-
rameters are ✓1 = {Wt, Wv, Wa, Wm, W 0

t , W
0
v,

W 0
a, W

0
m, bt, bv, ba, bm, bt̂, bv̂, bâ, bm̂}.

Autoencoders can be stacked to create deep net-
works. To enhance the quality of semantic repre-
sentations, we employ a stacked multichannel au-
toencoder, which is composed of multiple hidden
layers that are stacked together.

3.2 Integrating Modality Associations
In reality, the words that have corresponding im-
ages or sounds are only a small subset of the tex-
tual vocabulary. To obtain the perceptual vec-
tors for each word, we need associations between
modalities (i.e., text-to-vision and text-to-audition
mapping functions), that transform the textual vec-
tors into visual and auditory ones. Previous meth-
ods learn separate mapping functions and fusion
models, which are somewhat inelegant. Here we
employ a neural-network mapping function to in-
corporate this modality association module into
multimodal models.

Take text-to-vision mapping as an example.
Suppose that T 2 R

mt⇥nt is the textual repre-
sentation containing mt words, V 2 R

mv⇥nv is
the visual representation containing mv (⌧ mt)
words, where nt and nv are dimensions of the tex-
tual and visual representations respectively. The
textual and visual representations of the ith con-
cept are denoted as Ti and Vi respectively. Our
goal is to learn a mapping function f : g(WpT +
bp) from textual to visual space such that the pre-
diction f(Ti) is similar to the actual visual vec-
tor Vi. The set of visual representations along
with their corresponding textual representations
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Figure 2: Architecture of the proposed associative
multichannel autoencoder.

are used to learn the mapping function. To train
the model, we employ a square loss:

min
✓2

mvX

i=1

||f(Ti) � Vi||2, (6)

where the training parameters are ✓2 = {Wp, bp}.
We adopt the same method to learn the text-to-
audition mapping function.

3.3 Integrating Word Associations
Word associations are a proxy for an aspect of
human semantic memory that is not sufficiently
captured by the usual training objectives of multi-
modal models. Therefore we assume that incorpo-
rating the objective of word associations helps to
learn better semantic representations. To achieve
this, we propose to reconstruct the vector of as-
sociated word from the corresponding multimodal
semantic representation. Specifically, in the de-
coding process we change the equation (3) to:

[ĥt, ĥv, ĥa, ĥasc] = g(W 0
mhm + bm̂), (7)

and equation (4) to:

x̂t = g(W 0
t ĥt + bt̂)

x̂v = g(W 0
vĥv + bv̂)

x̂a = g(W 0
aĥa + bâ)

x̂asc = g(Wascĥasc + basc).

(8)

To train the model, we add an additional ob-
jective function, which is the mean square error
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between the embeddings of the associated word y
and their re-constructive embeddings x̂asc:

min
✓3

nX

i=1

||yi � x̂i
asc||2, (9)

where yi and xi are the embeddings of a pair of
associated words. Here, y is the concatenation
of three unimodal vectors [yt; yv; ya]. The pa-
rameters of word association module are ✓3 =
{Wt, Wv, Wa, Wm, Ŵm, Wasc, bt, bv, ba, bm, bm̂,
basc}. This additional criterion drives the learn-
ing towards a semantic representation capable of
reconstructing its associated representation.

3.4 Integrating a Gating Mechanism
Considering that the meaning of each word has
different dependencies on textual and perceptual
information, we propose the sample-specific gate
to assign different weights to each modality ac-
cording to different words. The weight parame-
ters are calculated by the following feed-forward
neural networks:

gt = g(Wgtxt + bgt)

gv = g(Wgvxv + bgv)

ga = g(Wgaxa + bga),

(10)

where gt, gv and ga are value or vector gate of tex-
tual, visual and auditory representations respec-
tively. For the value gate, Wgt, Wgv and Wga are
vectors, and bgt, bgv and bga are value parameters.
For the vector gate, the parameters Wgt, Wgv and
Wga are matrices, bgt, bgv and bga are vectors. The
value gate controls the importance weights of dif-
ferent input representations as a whole, whereas
the vector gate can adjust the importance weights
of each dimension of input representations.

Finally, we compute element-wise multiplica-
tion of the textual, visual and auditory represen-
tations with their corresponding gates:

xgt = xt � gt

xgv = xv � gv

xga = xa � ga.

(11)

The xgt, xgv and xga can be seen as the weighted
textual, visual and auditory representations. The
parameters of our gating mechanism is trained to-
gether with that of the proposed model.

3.5 Model Training

To train the AMA model, we use overall objec-
tive function of equation (5) + (6) + (9). In the
training phase, model inputs are textual vectors,
the corresponding visual vectors, auditory vectors,
and association words (Figure 2). In the testing
phase, we only need textual inputs to generate
multimodal word representations.

4 Experimental Setup

4.1 Datasets

Textual vectors. We use 300-dimensional GloVe
vectors1 which are trained on the Common Crawl
corpus consisting of 840B tokens and a vocabulary
of 2.2M words2.

Visual vectors. Our source of visual vectors
are collected from ImageNet (Russakovsky et al.,
2015) which covers a total of 21,841 WordNet
synsets (Fellbaum, 1998) that have 14,197,122 im-
ages. For our experiments, we delete words with
fewer than 50 images or words not in the Glove
vectors, and sample at most 100 images for each
word. To generate a visual vector for each word,
we use the forward pass of a pre-trained VGG-
net model3 and extract the hidden representation
of the last layer as the feature vector. Then we
use averaged feature vectors of the multiple im-
ages corresponding to the same word. Finally, we
get 8,048 visual vectors of 128 dimensions.

Auditory vectors. For auditory data, we gather
audio files from Freesound4, in which we select
words with more than 10 audio files and sample at
most 50 sounds for one word. To extract auditory
features, we use the VGG-net model which is pre-
trained on Audioset5. The final auditory vectors
are averaged feature vectors of multiple audios of
the same word, which contains 9,988 words of 128
dimensions6.

Word associations. We use the word associ-
ation data collected by (De Deyne et al., 2016),
in which each word pair is generated by at least

1http://nlp.stanford.edu/projects/
glove

2We have tried skip-gram vectors and get the same con-
clusions.

3http://www.vlfeat.org/matconvnet/
4http://www.freesound.org/
5https://research.google.com/audioset
6We build auditory vectors with the released code

at: https://github.com/tensorflow/models/
tree/master/research/audioset
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one subject7. This dataset includes mostly words
with similar meaning (e.g., occasionally & some-
times, adored & loved, supervisor & boss) and re-
lated words (e.g., eruption & volcano, cortex &
brain, umbrella & rain). We calculate the associ-
ation score for each word pair (cue word + target
word) as: the number of person who generated the
word pair divided by the total number of people
who were presented with the cue word. For train-
ing, we select pairs of associated words above a
threshold of 0.15 and delete those that are not in
the Glove vocabulary, which results in 7,674 word
association data sets8. For the development set,
we randomly sample 5,000 word association col-
lections together with their association scores.

4.2 Model Settings

Our models are implemented with PyTorch
(Paszke et al., 2017), optimized with Adam
(Kingma and Ba, 2014). We set the initial learn-
ing rate to 0.05, and batch size to 64. We tune the
number of layers over 1, 2, 3, the size of multi-
modal vectors over 100, 200, 300, and the size of
each layer in textual channel over 300, 250, 200,
150, 100 and in visual/auditory channel over 128,
120, 90, 60. We train the model for 500 epochs
and select the best parameters on the development
set. All models are trained for 3 times and the av-
erage results are reported in Table 1.

To test the effect of each module, we sep-
arately train the following models: multichan-
nel autoencoder with modality association (AMA-
M), with modality and word associations (AMA-
MW), with modality and word associations plus
value/vector gate (AMA-MW-Gval/vec).

For AMA-M model, we initialize the text-to-
vision and text-to-audition mapping functions
with pre-trained mapping matrices, which are
parameters of one-layer feed-forward neural
networks. The network uses input of the textual
vectors, output of visual or auditory vectors,
and is trained with SGD for 100 epochs. We
initialize the network biases as zeros and network
weights with He-initialisation (He et al., 2015).
The best parameters of AMA-M model are 2
hidden layers, with textual channel size of 300,
250 and 150, visual/auditory channel size of 128,

7The dataset can be found at: https://
simondedeyne.me/data.

8We have done experiments with Synonyms (which are
extracted from WordNet and PPDB corpora), and the results
are not as good as using word associations.

90, 60. For AMA-MW model, we use the best
AMA-M model parameters as initialization, and
train the model with word association data. The
optimal parameter of association channel size is
300, 350, 556 (or 428 for bimodal inputs). For
AMA-MW-Gval and AMA-MW-Gvec, we adopt
the same training strategy as AMA-MW model.
The code for training and evaluation can be found
at: https://github.com/wangshaonan/
Associative-multichannel-autoencoder.

5 Experiments

5.1 Evaluation Tasks
We test the baseline and proposed models on six
standard evaluation benchmarks, covering two dif-
ferent tasks: (i) Semantic relatedness: Men-3000
(Bruni et al., 2014) and Wordrel-252 (Agirre et al.,
2009); (ii) Semantic similarity: Simlex-999 (Hill
et al., 2016), Semsim-7576 (Silberer and Lap-
ata, 2014), Wordsim-203 and Simverb-3500 (Gerz
et al., 2016). All test sets contain a list of word
pairs along with their subject ratings.

We employ Spearman’s correlation method to
evaluate the performance of our models. This
method calculates the correlation coefficients be-
tween model predictions and subject ratings, in
which the model prediction is the cosine similarity
between semantic representations of two words.

5.2 Baseline Multimodal Models
Most of existing multimodal models only utilize
textual and visual modalities. For fair compari-
son, we re-implement several representative sys-
tems with our own textual and visual vectors. The
Concatenation (CONC) model (Kiela and Bot-
tou, 2014) is simple concatenation of normalized
textual and visual vectors. The Mapping (Collell
et al., 2017) and Ridge (Hill et al., 2014) mod-
els first learn a mapping matrix from textual to vi-
sual modality using feed-forward neural network
and ridge regression respectively. After applying
the mapping function on the textual vectors, they
obtain the predicted visual vectors for all words
in textual vocabulary. Then they concatenate the
normalized textual and predicted visual vectors to
get multimodal word representations. The SVD
(Bruni et al., 2014) and CCA (Hill et al., 2014)
models first concatenate normalized textual and
visual vectors, and then conduct SVD or CCA
transformations on the concatenated vectors.

For multimodal models with textual, visual and
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Table 1: Spearman’s correlations between model predictions and human ratings on six evaluation datasets.
Here T, V, A denote textual, visual and auditory. TV denotes bimodal inputs of textual and visual. TVA
denotes trimodal inputs of textual, visual and auditory. The bold scores are the best results per column
in bimodal models and trimodal models respectively. For each test, ALL corresponds to the whole
testing set, V/A to those word pairs for which we have textual&visual vectors in bimodal models or
textual&visual&auditory in trimodal models, and ZS (zero-shot) denotes word pairs for which we have
only textual vectors. The #inst. denotes the number of word pairs.

 MEN SIMLEX SEMSIM SIMVERB WORDSIMM WORDREL 
 ALL V/A ZS ALL V/A ZS ALL V/A ZS ALLL V/A ZS ALL V/A ZS ALL V/A ZS 

Kiela & Bottou 2014 - 0.72 - - -  - - - - - - - - - - - - 

Silberer & Lapata 2014 - - - - - - 0.70 - - - - - - - - - - - 

Lazaridou et al., 2015 0.75 0.76 - 0.40 0.53 - 0.72 0.72 - - - - - - - - - - 

Collell et al., 2017 0.811 0.819 0.802 0.410 0.388 0.422 0785 0.791 0.764 0.286 0.371 0.285 0.781 0.698 0.766 0.629 0.797 0.601 

Glove-textual (V) 0.802 0.799 0.788 0.408 0.371 0.429 0.744 0.751 0.716 0.283 0.320 0.282 0.798 0.688 0.779 0.682 0.759 0.661 

Glove-textual (A) 0.802 0.801 0.830 0.408 0.399 0.456 0.744 0.715 0.762 0.283 0.129 0.397 0.798 0.805 0.785 0.682 0.708 0.652 

CNN-visual - 0.566 - - 0.406 - - 0.502 - - 0.235 - - 0.526 - - 0.422 - 

Predicted-visual 0.698 0.757 0.656 0.372 0.458 0.347 0.702 0.700 0.709 0.212 0.194 0.211 0.596 0.621 0.557 0.412 0.604 0.384 

CNN-auditory - 0.266 - - 0.053 - - 0.159 - - 0 - - 0.231 - - 0.088 - 

Predicted-auditory 0.558 0.555 0.597 0.270 0.251 0.296 0.547 0.531 0.559 0.157 0.074 0.227 0.515 0.496 0.544 0.388 0.400 0.372 

CONC (TV) - 0.786 - - 0.442 - - 0.709 - - 0.437 - - 0.665 - - 0.666 - 

Mapping (TV) 0.806 0.815 0.782 0.408 0.407 0.410 0.769 0.771 0.709 0.282 0.358 0.272 0.781 0.696 0.768 0.650 0.751 0.594 

Ridge (TV) 0.806 0.816 0.786 0.418 0.405 0.429 0.764 0.766 0.756 0.287 0.329 0.285 0.786 0.689 0.771 0.660 0.765 0.640 

SVD (TV) 0.806 0.816 0.786 0.418 0.405 0.429 0.764 0.766 0.756 0.287 0.330 0.286 0.786 0.689 0.771 0.660 0.764 0.640 

CCA (TV) 0.816 0.833 0.798 0.478 0.507 0.493 0.656 0.666 0.619 0.333 0.276 0.334 0.757 0.754 0.704 0.626 0.733 0.599 

AMA-M (TV) 0.836 0.822 0.834 0.445 0.460 0.471 0.781 0.784 0.769 0.324 0.403 0.323 0.807 0.754 0.769 0.681 0.814 0.648 

AMA-MW (TV) 0.838 0.824 0.822 0.471 0.446 0.509 0.757 0.738 0.723 0.343 0.421 0.340 0.814 0.780 0.737 0.707 0.744 0.659 

AMA-MW-Gval (TV) 0.845 0.835 0.841 0.476 0.472 0.506 0.776 0.778 0.767 0.352 0.396 0.352 0.808 0.758 0.763 0.726 0.796 0.705 

AMA-MW-Gvec (TV) 0.840 0.831 0.835 0.485 0.486 0.505 0.766 0.769 0.778 0.343 0.523 0.342 0.811 0.769 0.778 0.694 0.846 0.661 

CONC (TVA) - 0.778 - - 0.451 - - 0.661 - - 0.503 - - 0.687 - - 0.593 - 

Ridge (TVA) 0.805 0.812 0.791 0.417 0.428 0.420 0.764 0.725 0.781 0.286 0.557 0.285 0.785 0.733 0.762 0.659 0.716 0.646 

 AMA-M (TVA) 0.831 0.814 0.832 0.452 0.488 0.472 0.778 0.741 0.793 0.333 0.531 0.332 0.805 0.751 0.784 0.685 0.703 0.670 

AMA-MW (TVA) 0.838 0.826 0.838 0.481 0.508 0.508 0.762 0.726 0.777 0.358 0.605 0.357 0.814 0.821 0.787 0.734 0.819 0.711 

AMA-MW-Gval (TVA) 

(TVA) (TVA) (TVA) 

(TVA) 

0.849 0.832 0.851 0.488 0.500 0.509 0.772 0.729 0.790 0.347 0.598 0.347 0.810 0.806 0.782 0.730 0.761 0.710 

AMA-MW-Gvec (TVA) 

(TVA) (TVA) 

0.843 0.815 0.843 0.477 0.505 0.497 0.767 0.733 0.781 0.346 0.564 0.346 0.812 0.779 0.788 0.723 0.729 0.705 

#inst.-visual 3000 1065 1935 999 261 738 7546 5757 1789 3500 41 3459 201 45 158 245 28 224 

#inst.-auditory 3000 2732 268 999 741 258 7546 2816 4730 3500 1362 2138 201 129 72 245 153 92 

#inst.-visual-auditory 3000 964 2036 999 238 761 7546 2322 5224 3500 22 3478 201 30 171 245 25 220 
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auditory inputs, we implement CONC and Ridge
as baseline models. The trimodal CONC model
simply concatenates normalized textual, visual
and auditory vectors. The trimodal Ridge model
first learns text-to-vision and text-to-audition map-
ping matrices with ridge regression method. Then
it applies the mapping functions on the textual vec-
tors to get the predicted visual and auditory vec-
tors. Finally, the normalized textual, predicted-
visual and predicted-auditory vectors are concate-
nated to get the multimodal representations.

All above baseline models are implemented
with Sklearn9. Same as the proposed AMA model,

9http://scikit-learn.org/

the hyper-parameters of baseline models are tuned
on the development set using Spearman’s correla-
tion method. In Ridge model, the optimal regular-
ization parameter is 0.6. The Mapping model is
trained with SGD for maximum 100 epochs with
early stopping, and the optimal learning rate is
0.001. The output dimension of SVD and CCA
models are 300.

5.3 Results and Discussion

As shown in Table 1, we divide all models into
six groups: (1) existing multimodal models (with
textual and visual inputs) in which results are
reprinted from Collell et al. (2017). (2) Unimodal
models with textual, (predicted) visual or (pre-

121



dicted) auditory inputs. (3) Our re-implementation
of baseline bimodal models with textual and vi-
sual inputs (TV). (4) Our AMA models with tex-
tual and visual inputs. (5) Our implementation of
trimodal baseline models with textual, visual and
auditory inputs (TVA). (6) Our AMA model with
textual, visual and auditory inputs.
Overall performance Our AMA models (in
group 4 and 6) clearly outperform their baseline
unimodal and multimodal models (in group 2, 3
and 5). We use Wilcoxon signed-rank test to check
if significant difference exists between two mod-
els. Results show that our multimodal models per-
form significantly better (p < 0.05) than all base-
line models.

As shown clearly, our bimodal and trimodal
AMA models achieve better performance than
baselines in both V/A (visual or auditory, the test-
ing data that have associated visual or auditory
vectors) and ZS (zero-shot, the testing data that do
not have associated visual or auditory vectors) re-
gion. In other words, our models outperform base-
line models on words with or without perceptual
information. The good results in ZS region also
indicate that our models have good generalization
capacity.
Unimodal baselines As shown in group 2,
the Glove vectors are much better than CNN-
visual and CNN-auditory vectors, in which CNN-
auditory has the worst performance on capturing
concept similarities. Comparing with visual and
auditory vectors, the predicted visual and auditory
vectors achieve much better performance. This in-
dicates that the predicted vectors contain richer in-
formation than purely perceptual representations
and are more useful for building semantic repre-
sentations.
Multimodal baselines For bimodal models
(group 3), the CONC model that combines Glove
and visual vectors performs worse than Glove on
four out of six datasets, suggesting that simple
concatenation might be suboptimal. The Mapping
and Ridge models, which combine Glove and pre-
dicted visual vectors, improve over Glove on five
out of six datasets in ALL regions. This reinforces
the conclusion that the predicted visual vectors are
more useful in building multimodal models. The
SVD model gets similar results as Ridge model.
The CCA model maps different modality inputs
into a common space, achieving better results on
some datasets and worse results on the others.

The improvement on three benchmark tests shows
the potential of mapping multimodal inputs into a
common space.

The above results can also be observed in the tri-
modal CONC and Ridge models (group 5). Over-
all, the trimodal models, which utilize additional
auditory inputs, get slightly worse performance
than bimodal models. This is partly caused by
the fusion method of concatenation. Note that our
proposed AMA models are more effective with tri-
modal inputs as shown in group 6.
Our multimodal models With either bimodal or
trimodal inputs, the proposed AMA-M model out-
performs all baseline models by a large margin.
Specifically our AMA-M model achieves an rela-
tive improvement of 4.1% on average (4.5% with
trimodal inputs) over the state-of-the-art Ridge
model. This illustrates that our AMA models can
productively combine textual and perceptual rep-
resentations. Moreover, our AMA-MW model,
which employs word associations, achieves an av-
erage improvement of 1.5% (2.7% with trimodal
inputs) over the AMA-M model. That is to say,
the representation ability of multimodal models
can be clearly improved by learning associative
relations between words. Furthermore, the AMA-
MW-Gval model improves the AMA-MW model
by 1.3% (0.3% with trimodal inputs) on average,
illustrating that the gating mechanism (especially
the value gate) helps to learn better semantic rep-
resentations.

In addition, we explore the effect of word asso-
ciation data size. We find that the decrease of as-
sociation data has no discernible effect on model
performance: when using 100%, 80%, 60%, 40%,
20% of the data, the average results are 0.6479,
0.6409, 0.6361, 0.6430, 0.6458 in bimodal model.
The same trend is observed in trimodal models.

6 Conclusions and Future Work

We have proposed a cognitively-inspired multi-
modal model — associative multichannel autoen-
coder — which utilizes the associations between
modalities and related words to learn multimodal
word representations. Performance improvement
on six benchmark tests shows that our models can
efficiently fuse different modality inputs and build
better semantic representations.

Ultimately, the present paper sheds light on the
fundamental questions of how to learn word mean-
ings, such as the plausibility of reconstructing per-
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ceptual information, associating related concepts
and grounding word symbols to external environ-
ment. We believe that one of the promising fu-
ture directions is to learn from how humans learn
and store semantic word representations to build a
more effective computational model.
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Abstract

Current dialogue systems focus more on tex-
tual and speech context knowledge and are
usually based on two speakers. Some re-
cent work has investigated static image-based
dialogue. However, several real-world hu-
man interactions also involve dynamic visual
context (similar to videos) as well as dia-
logue exchanges among multiple speakers. To
move closer towards such multimodal con-
versational skills and visually-situated appli-
cations, we introduce a new video-context,
many-speaker dialogue dataset based on live-
broadcast soccer game videos and chats from
Twitch.tv. This challenging testbed allows us
to develop visually-grounded dialogue mod-
els that should generate relevant temporal and
spatial event language from the live video,
while also being relevant to the chat his-
tory. For strong baselines, we also present
several discriminative and generative mod-
els, e.g., based on tridirectional attention
flow (TriDAF). We evaluate these models
via retrieval ranking-recall, automatic phrase-
matching metrics, as well as human evalua-
tion studies. We also present dataset analyses,
model ablations, and visualizations to under-
stand the contribution of different modalities
and model components.

1 Introduction

Dialogue systems or conversational agents which
are able to hold natural, relevant, and coherent in-
teractions with humans have been a long-standing
goal of artificial intelligence and machine learn-
ing. There has been a lot of important previ-
ous work in this field for decades (Weizenbaum,
1966; Isbell et al., 2000; Rambow et al., 2001;
Rieser et al., 2005; Georgila et al., 2006; Rieser
and Lemon, 2008; Ritter et al., 2011), includ-

We release all data, code, and models at: https://

github.com/ramakanth-pasunuru/video-dialogue

S1: what an offside trap 
OMEGALUL
 

S2: Lol that finish bro
 

S3: suprised you didn't 
do the extra pass
 

S4: @S10 a drunk bet? 
 

S5: @S11 thanks mate
 

S6: could have passed 
one more
 

S7: Pass that
 

S1: record now!
 

S8: !record 

S9: done a nother pass there

Figure 1: Sample example from our many-speaker,
video-context dialogue dataset, based on live soccer
game chat. The task is to predict the response (bottom-
right) using the video context (left) and the chat context
(top-right).

ing recent work on introduction of large textual-
dialogue datasets (e.g., Lowe et al. (2015); Ser-
ban et al. (2016)) and end-to-end neural network
based models (Sordoni et al., 2015; Vinyals and
Le, 2015; Su et al., 2016; Luan et al., 2016; Li
et al., 2016; Serban et al., 2017a,b).

Current dialogue tasks are usually focused on
the textual or verbal context (conversation his-
tory). In terms of multimodal dialogue, speech-
based spoken dialogue systems have been widely
explored (Eckert et al., 1997; Singh et al., 2000;
Young, 2000; Janin et al., 2003; Celikyilmaz et al.,
2017; Wen et al., 2015; Su et al., 2016; Mrkšić
et al., 2016), as well as work on gesture and hap-
tics based dialogue (Johnston et al., 2002; Cassell,
1999; Foster et al., 2008). In order to address the
additional advantage of using visually-grounded
context knowledge in dialogue, recent work intro-
duced the visual dialogue task (Das et al., 2017;
de Vries et al., 2017; Mostafazadeh et al., 2017).
However, the visual context in these tasks is lim-
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ited to one static image. Moreover, the interac-
tions are between two speakers with fixed roles
(one asks questions and the other answers).

Several situations of real-world dialogue among
humans involve more ‘dynamic’ visual context,
i.e., video-style information of the world moving
around us (both spatially and temporally). Fur-
ther, several human conversations involve more
than two speakers, with changing roles. In order
to develop such dynamically-visual multimodal
dialogue models, we introduce a new ‘many-
speaker, video-context chat’ testbed, along with
a new dataset and models for the same. Our
dataset is based on live-broadcast soccer (FIFA-
18) game videos from the ‘Twitch.tv’ live video
streaming platform, along with the spontaneous,
many-speaker live chats about the game. This
challenging testbed allows us to develop dialogue
models where the generated response is required
to be relevant to the temporal and spatial events
in the live video, as well as be relevant to the
chat history (with potential impact towards video-
grounded applications such as personal assistants,
intelligent tutors, and human-robot collaboration).

We also present several strong discriminative
and generative baselines that learn to retrieve and
generate bimodal-relevant responses. We first
present a triple-encoder discriminative model to
encode the video, chat history, and response, and
then classify the relevance label of the response.
We then improve over this model via tridirec-
tional attention flow (TriDAF). For the generative
models, we model bidirectional attention flow be-
tween the video and textual chat context encoders,
which then decodes the response. We evaluate
these models via retrieval ranking-recall, phrase-
matching metrics, as well as human evaluation
studies. We also present dataset analysis as well
as model ablations and attention visualizations to
understand the contribution of the video vs. chat
modalities and the model components.

2 Related Work

Early dialogue systems had components of nat-
ural language (NL) understanding unit, dia-
logue manager, and NL generation unit (Bates,
1995). Statistical learning methods were used
for automatic feature extraction (Dowding et al.,
1993; Mikolov et al., 2013), dialogue managers
incorporated reward-driven reinforcement learn-
ing (Young et al., 2013; Shah et al., 2016), and the

generation units have been extended with seq2seq
neural network models (Vinyals and Le, 2015;
Serban et al., 2016; Luan et al., 2016).

In addition to the focus on textual dialogue con-
text, using multimodal context brings more poten-
tial for having real-world grounded conversations.
For example, spoken dialogue systems have been
widely explored (Singh et al., 2000; Gurevych and
Strube, 2004; Georgila et al., 2006; Eckert et al.,
1997; Young, 2000; Janin et al., 2003; De Mori,
2007; Wen et al., 2015; Su et al., 2016; Mrkšić
et al., 2016; Hori et al., 2016; Celikyilmaz et al.,
2015, 2017), as well as gesture and haptics based
dialogue (Johnston et al., 2002; Cassell, 1999;
Foster et al., 2008). Additionally, dialogue sys-
tems for digital personal assistants are also well
explored (Myers et al., 2007; Sarikaya et al., 2016;
Damacharla et al., 2018). In the visual modal-
ity direction, some important recent attempts have
been made to use static image based context in di-
alogue systems (Das et al., 2017; de Vries et al.,
2017; Mostafazadeh et al., 2017), who proposed
the ‘visual dialog’ task, where the human can ask
questions on a static image, and an agent interacts
by answering these questions based on the previ-
ous chat context and the image’s visual features.
Also, Celikyilmaz et al. (2014) used visual display
information for on-screen item resolution in utter-
ances for improving personal digital assistants.

In contrast, we propose to employ dynamic
video-based information as visual context knowl-
edge in dialogue models, so as to move to-
wards video-grounded intelligent assistant appli-
cations. In the video+language direction, previ-
ous work has looked at video captioning (Venu-
gopalan et al., 2015) as well as Q&A and fill-in-
the-blank tasks on videos (Tapaswi et al., 2016;
Jang et al., 2017; Maharaj et al., 2017) and
interactive 3D environments (Das et al., 2018;
Yan et al., 2018; Gordon et al., 2017; Ander-
son et al., 2017). There has also been early
related work on generating sportscast commen-
taries from simulation (RoboCup) soccer videos
represented as non-visual state information (Chen
and Mooney, 2008). Also, Liu et al. (2016a)
presented some initial ideas on robots learning
grounded task representations by watching and in-
teracting with humans performing the task (i.e.,
by converting human demonstration videos to
Causal And-Or graphs). On the other hand,
we propose a new video-chat dataset where the
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Figure 2: Sample page of live broadcast of FIFA-18
game on twitch.tv with concurrent user chat.

dialogue models need to generate the next re-
sponse in the sequence of chats, conditioned both
on the raw video features as well as the pre-
vious textual chat history. Moreover, our new
dataset presents a many-speaker conversation set-
ting, similar to previous work on meeting un-
derstanding and Computer Supported Cooperative
Work (CSCW) (Janin et al., 2003; Waibel et al.,
2001; Schmidt and Bannon, 1992). In the live
video stream direction, Fu et al. (2017) and Ping
and Chen (2017) used real-time comments to pre-
dict the frame highlights in a video, and Barbieri
et al. (2017) presented emotes and troll prediction.

3 Twitch-FIFA Dataset

3.1 Dataset Collection and Processing

For our new video-context dialogue task, we used
the publicly accessible Twitch.tv live broadcast
platform, and collected videos of soccer (FIFA-
18) games along with the users’ live chat conver-
sations about the game. This dataset has videos in-
volving various realistic human actions and events
in a complex sports environment and hence serves
as a good testbed and first step towards multimodal
video-based dialogue data. An example is shown
in Fig. 1 (and an original screenshot example in
Fig. 2), where the users perform a complex ‘many-
speaker’, ‘multimodal’ dialogue. Overall, we col-
lected 49 FIFA-18 game videos along with their
users’ chat, and divided them into 33 videos for
training, 8 videos for validation, and 8 videos for
testing. Each such video is several hours long, pro-
viding a good amount of data (Table 2).

To extract triples (instances) of video context,
chat context, and response from this data, we di-
vide these videos based on the fixed time frames
instead of fixed number of utterances in order to
maintain conversation topic clusters (because of
the sparse nature of chat utterances count over
the time). First, we use 20-sec context windows
to extract the video clips and users utterances in

Relevance to Video+Chat
filtered response wins 34%
1st response wins 3%
Non-distinguishable 63% (56 both-good, 7 both-bad)

Table 1: Human evaluation of our dataset, comparing
our filtered responses versus the first response in the
window (for relevance w.r.t. video and chat contexts).

this time frame, and use it as our video and chat
contexts, resp. Next, the chat utterances in the
immediately-following 10-sec window (response
window) that do not overlap with the next in-
stance’s context window are considered as poten-
tial responses.1 Hence, there are only two in-
stances (triples) in a 60-sec long video, i.e., 20-sec
video+chat context window and 10-sec response
window, and there is no overlap between the in-
stances. Now, out of these potential responses, to
only allow the response that has at least some good
coherence and relevance with the chat context’s
topic, we choose the first (earliest) response that
has high similarity with some other utterance in
this response window (using 0.5 BLEU-4 thresh-
old, based on manual inspection).2

Human Quality Evaluation of Data Filtering
Process: To evaluate the quality of the responses
that result from our filtering process described
above, we performed an anonymous (randomly
shuffled w/o identity) human comparison between
the response selected by our filtering process vs.
the first response from the response window with-
out any filtering, based on relevance w.r.t. video
and chat context. Table 1 presents the results on
100 sample size, showing that humans in a blind-
test found 90% (34+56) of our filtered responses
as valid responses, verifying that our response se-
lection procedure is reasonable. Furthermore, out
of these 90% valid responses, we found that 55%
are chat-only relevant, 11% are video-only rele-
vant, and 24% are both video+chat relevant.

In order to make the above procedure safe and
to make the dataset more challenging, we also dis-
courage frequent responses (top-20 most-frequent

1We use non-overlapping windows because: (1) the ut-
terances are non-uniformly distributed in time and hence if
we have a shifting window, sometimes a particular data in-
stance/chunk becomes very sparse and contains almost zero
utterances; (2) we do not want overlap between response of
one window with the context of the next window, so as to
avoid the encoder already having seen the response (as part
of context) that the decoder needs to generate for the other
window.

2Based on intuition that if multiple speakers are saying the
same response in that 10-second window, then this response
should be more meaningful/relevant w.r.t. chat context.
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Statistics Train Val Test
#Videos 33 8 8
Total Hours 58.4 11.9 15.4
Final Filtered #Instances 10,150 2,153 2,780
Avg. Chat Context Length 69.0 63.5 71.2
Avg. Response Length 6.5 6.5 6.1

Table 2: Twitch-FIFA dataset’s chat statistics (lengths
are defined in terms of number of words).

generic utterances) unless no other response satis-
fies the similarity condition, hence suppressing the
frequent responses.3 If we couldn’t find any utter-
ance based on the multi-response matching pro-
cedure described above, then we just consider the
first utterance in the 10-second window as the re-
sponse.4 We also make sure that the chat context
window has at least 4 utterances, otherwise we
exclude that context window and also the corre-
sponding response window from the dataset. After
all this processing, our final resulting dataset con-
tains 10, 510 samples in training, 2, 153 samples
in validation, and 2, 780 samples in test.5

3.2 Dataset Analysis
Dataset Statistics Table 2 presents the full statis-
tics on train, validation, and test sets of our
Twitch-FIFA dataset, after the filtering process de-
scribed in Sec. 3.1. As shown, the average chat
context length in the dataset is around 68 words,
and the average response length is 6.3 words.
Chat Context Size Fig. 3 presents the study of
number of utterances in the chat context vs. the
number of such training samples. As we limit the
minimum number of utterances to 4, chat context
with less than 4 utterances is not present in the
dataset. From the Fig. 3, it is clear that as the num-
ber of utterances in the chat context increases, the
number of such training samples decrease.
Frequent Words Fig. 4 presents the top-20 fre-
quent words (excluding stop words) and their cor-
responding frequency in our Twitch-FIFA dataset.
Most of these frequent words are related to soccer
vocabulary. Also, some of these frequent words
are twitch emotes (e.g. ‘kappa’, ‘inceptionlove’).

3Note that this filtering suppresses the performance of
simple frequent-response baseline described in Sec. 4.1.

4Other preprocessing steps include: omit the utterances
in the response window which refer to a speaker name out
of the current chat context; remove non-representative utter-
ances, e.g., those with hyperlinks; replace (anonymize) all
the user identities mentioned in the utterances with a com-
mon tag (i.e., anonymizing due to similar intuitions from the
Q&A community (Hermann et al., 2015)).

5Note that this is substantially larger than or comparable
to most current video captioning datasets. We plan to further
extend our dataset based on diverse games and video types.

Figure 3: Distribution of #utterances in chat context
(w.r.t. the #training examples for each case).

Figure 4: Frequent words in our Twitch-FIFA dataset.

4 Models

Let v = {v1, v2, .., vm} be the video context
frames, u = {u1, u2, .., un} be the textual chat
(utterance) context tokens, and r = {r1, r2, .., rk}
be response tokens generated (or retrieved).

4.1 Baselines
Our simple non-trained baselines are Most-
Frequent-Response (re-rank the candidate re-
sponses based on their frequency in the training
set), Chat-Response-Cosine (re-rank the candidate
responses based on their similarity score w.r.t. the
chat context), and Nearest-Neighbor (find the K-
best similar chat contexts in the training set, take
their corresponding responses, and then re-rank
the candidate responses based on mean similar-
ity score w.r.t. this K-best response set). For
trained baselines, we use logistic regression and
Naive Bayes methods. We use the final state of a
Twitch-trained RNN Language Model to represent
the chat context and response. Please see supple-
mentary for full details.

4.2 Discriminative Models
4.2.1 Triple Encoder
For our simpler discriminative model, we use a
‘triple encoder’ to encode the video context, chat
context, and response (see Fig. 5), as an exten-
sion of the dual encoder model in Lowe et al.
(2015). The task here is to predict the given train-
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Figure 5: Overview of our ‘triple encoder’ discrimi-
native model, with bidirectional-LSTM-RNN encoders
for video, chat context, and response.

ing triple (v, u, r) as positive or negative. Let hv
f ,

hu
f , and hr

f be the final state information of the
video, chat, and response LSTM-RNN (bidirec-
tional) encoders respectively; then the probability
of a positive training triple is defined as follows:

p(v, u, r; ✓) = �([hv
f ; hu

f ]T Whr
f + b) (1)

where W and b are trainable parameters. Here, W
can be viewed as a similarity matrix which will
bring the context [hv

f ; hu
f ] into the same space as

the response hr
f , and get a suitable similarity score.

For optimizing our discriminative model, we
use max-margin loss function similar to Mao et al.
(2016) and Yu et al. (2017). Given a positive
training triple (v, u, r), let the corresponding neg-
ative training triples be (v0, u, r), (v, u0, r), and
(v, u, r0), i.e., one modality is wrong at a time in
each of these three (see Sec. 5 for the negative ex-
ample selection). The max-margin loss is:

L(✓) =
X

[max(0, M + log p(v0, u, r) � log p(v, u, r))

+ max(0, M + log p(v, u0, r) � log p(v, u, r))

+ max(0, M + log p(v, u, r0) � log p(v, u, r))]
(2)

where the summation is over all the training triples
in the dataset. M is a tunable margin hyperparam-
eter between positive and negative training triples.

4.2.2 Tridirectional Attention Flow (TriDAF)
Our tridirectional attention flow model learns
stronger joint spaces between the three modalities
in a mutual-information way. We use bidirectional
attention flow mechanisms (Seo et al., 2017) be-
tween the video and chat contexts, between the
video context and the response, as well as between
the chat context and the response, hence enabling
attention flow across all three modalities, as shown
in Fig. 6. We name this model Tridirectional At-
tention Flow or TriDAF. We will next discuss the
bidirectional attention flow mechanism between
video and chat contexts, but the same formula-
tion holds true for bidirectional attention between
video context and response, and between chat con-
text and response. Given the video context hidden

...... ......

response-to-video
 attention

chat-to-video
 attention

......

video-to-chat
 attention

response-to-chat
 attention

video-to-response
 attention

chat-to-response
 attention

Figure 6: Overview of our tridirectional attention flow
(TriDAF) model with all pairwise modality attention
modules, as well as self-attention on video context,
chat context, and response as inputs.

state hv
i and chat context hidden state hu

j at time
steps i and j respectively, the bidirectional atten-
tion mechanism is based on the similarity score:

S(v,u)
i,j = wT

S(v,u) [h
v
i ; h

u
j ; hv

i � hu
j ] (3)

where S(v,u)
i,j is a scalar, wS(v,u) is a trainable

parameter, and � denote element-wise multi-
plication. The attention distribution from chat
context to video context is defined as ↵i: =
softmax(Si:), hence the chat-to-video context
vector cv u

i =
P

j ↵i,jhu
j . Similarly, the attention

distribution from video context to chat context is
defined as �j: = softmax(S:j), hence the video-
to-chat context vector cu v

j =
P

i �j,ihv
i .

We then compute similar bidirectional attention
flow mechanisms between the video context and
response, and between the chat context and re-
sponse. Then, we concatenate each hidden state
and its corresponding context vector from other
two modalities, e.g., ĥv

i = [hv
i ; c

v u
i ; cv r

i ] for the
ith timestep of the video context. Finally, we add
self-attention mechanism (Lin et al., 2017) across
the concatenated hidden states of each of the three
modules.6 If ĥv

i is the final concatenated vector
of the video context at time step i, then the self-
attention weights ↵s for this video context are the
softmax of es:

es
i = V v

a tanh(W v
a ĥv

i + bv
a) (4)

where V v
a , W v

a , and bv
a are trainable self-attention

parameters. The final representation vector of
the full video context after self-attention is ĉv =P

i ↵
s
i ĥ

v
i . Similarly, the final representation vec-

tors of the chat context and the response are ĉu

and ĉr, respectively. Finally, the probability that
6In our preliminary experiments, we found that adding

self-attention is 0.92% better in recall@1 and faster than
passing the hidden states through another layer of RNN, as
done in Seo et al. (2017).
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the given training triple (v, u, r) is positive is:

p(v, u, r; ✓) = �([ĉv; ĉu]T Wĉr + b) (5)

Again, here also we use max-margin loss (Eqn. 2).

4.3 Generative Models
4.3.1 Seq2seq with Attention
Our simpler generative model is a sequence-to-
sequence model with bilinear attention mechanism
(similar to Luong et al. (2015)). We have two en-
coders, one for encoding the video context and
another for encoding the chat context, as shown
in Fig. 7. We combine the final state informa-
tion from both encoders and give it as initial state
to the response generation decoder. The two en-
coders and the decoder are all two-layer LSTM-
RNNs. Let hv

i and hu
j be the hidden states of

video and chat encoders at time step i and j re-
spectively. At each time step t of the decoder with
hidden state hr

t , the decoder attends to parts of
video and chat encoders and uses the combined
information to generate the next token. Let ↵t and
�t be the attention weight distributions for video
and chat encoders respectively with video context
vector cv

t =
P

i ↵t,ihv
i and chat context vector

cu
t =

P
j �t,jhu

j . The attention distribution for
video encoder is defined as (and the same holds
for chat encoder):

et,i = hr
t
T W v

a hv
i ; ↵t = softmax(et) (6)

where W v
a is a trainable parameter. Next, we con-

catenate the attention-based context information
(cv

t and cu
t ) and decoder hidden state (hr

t ), and do
a non-linear transformation to get the final hidden
state ĥr

t as follows:

ĥr
t = tanh(Wc[c

v
t ; c

u
t ; hr

t ]) (7)

where Wc is again a trainable parameter. Fi-
nally, we project the final hidden state informa-
tion to vocabulary size and give it as input to a
softmax layer to get the vocabulary distribution
p(rt|r1:t�1, v, u; ✓). During training, we minimize
the cross-entropy loss defined as follows:

LXE(✓) = �
X X

t

log p(rt|r1:t�1, v, u; ✓) (8)

where the final summation is over all the training
triples in the dataset.

Further, to train a stronger generative model
with negative training examples (which teaches

chat-to-video
 attention

video-to-chat
 attention

Figure 7: Overview of our generative model with bidi-
rectional attention flow between video context and chat
context during response generation.

the model to give higher generative decoder prob-
ability to the positive response as compared to all
the negative ones), we use a max-margin loss (sim-
ilar to Eqn. 2 in Sec. 4.2.1):

LMM(✓) =
X

[max(0, M + log p(r|v0, u) � log p(r|v, u))

+ max(0, M + log p(r|v, u0) � log p(r|v, u))

+ max(0, M + log p(r0
|v, u) � log p(r|v, u))]

(9)
where the summation is over all the training triples
in the dataset. Overall, the final joint loss func-
tion is a weighted combination of cross-entropy
loss and max-margin loss: L(✓) = LXE(✓) +
�LMM(✓), where � is a tunable hyperparameter.

4.3.2 Bidirectional Attention Flow (BiDAF)
The stronger version of our generative model
extends the two-encoder-attention-decoder model
above to add bidirectional attention flow (BiDAF)
mechanism (Seo et al., 2017) between video and
chat encoders, as shown in Fig. 7. Given the hid-
den states hv

i and hu
j of video and chat encoders at

time step i and j, the final hidden states after the
BiDAF are ĥv

i = [hv
i ; c

v u
i ] and ĥu

j = [hu
i ; cu v

j ]
(similar to as described in Sec. 4.2.2), respectively.
Now, the decoder attends over these final hidden
states, and the rest of the decoder process is simi-
lar to Sec 4.3.1 above, including the weighted joint
cross-entropy and max-margin loss.

5 Experimental Setup

Evaluation We first evaluate both our discrimi-
native and generative models using retrieval-based
recall@k scores, which is a concrete metric for
such dialogue generation tasks (Lowe et al., 2015).
For our discriminative models, we simply rerank
the given responses (in a candidate list of size 10,
based on 9 negative examples; more details below)
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Models r@1 r@2 r@5
BASELINES

Most-Frequent-Response 10.0 16.0 20.9
Naive Bayes 9.6 20.9 51.5
Logistic Regression 10.8 21.8 52.5
Nearest Neighbor 11.4 22.6 53.2
Chat-Response-Cosine 11.4 22.0 53.2

DISCRIMINATIVE MODEL
Dual Encoder (C) 17.1 30.3 61.9
Dual Encoder (V) 16.3 30.5 61.1
Triple Encoder (C+V) 18.1 33.6 68.5
TriDAF+Self Attn (C+V) 20.7 35.3 69.4

GENERATIVE MODEL
Seq2seq +Attn (C) 14.8 27.3 56.6
Seq2seq +Attn (V) 14.8 27.2 56.7
Seq2seq + Attn (C+V) 15.7 28.0 57.0
Seq2seq + Attn + BiDAF (C+V) 16.5 28.5 57.7

Table 3: Performance of our baselines, discriminative
models, and generative models for recall@k metrics on
our Twitch-FIFA test set. C and V represent chat and
video context, respectively.

in the order of the probability score each response
gets from the model. If the positive response is
within the top-k list, then the recall@k score is 1,
otherwise 0, following previous Ubuntu-dialogue
work (Lowe et al., 2015). For the generative mod-
els, we follow a similar approach, but the rerank-
ing score for a candidate response is based on
the log probability score given by the generative
models’ decoder for that response, following the
setup of previous visual-dialog work (Das et al.,
2017). In our experiments, we use recall@1,
recall@2, and recall@5 scores. For complete-
ness, we also report the phrase-matching metric
scores: METEOR (Denkowski and Lavie, 2014)
and ROUGE (Lin, 2004) for our generative mod-
els. We also present human evaluation.

Training Details For negative samples, during
training, for every positive triple (video, chat,
response) in the training set, we sample 3 ran-
dom negative triples. For validation/test, we sam-
ple 9 random negative responses elsewhere from
the validation/test set. Also, the negative sam-
ples don’t come from the video corresponding to
the positive response. More details of negative
samples and other training details (e.g., dimen-
sion/vocab sizes, visual feature details, validation-
based hyperparamater tuning and model selec-
tion), are discussed in the supplementary.

6 Results and Analysis

6.1 Human Evaluation of Dataset
First, the overall human quality evaluation of our
dataset (shown in Table 1) demonstrates that it

contains 90% responses relevant to video and/or
chat context. Next, we also do a blind hu-
man study on the recall-based setup (on a set
of 100 samples from the validation set), where
we anonymize the positive response by randomly
mixing it with 9 tricky negative responses in the
retrieval list, and ask the user to select the most
relevant response for the given video and/or chat
context. We found that human performance on
this task is around 55% recall@1, demonstrating
that this 10-way-discriminative recall-based task
setup is reasonably challenging for humans,7 but
also that there is a lot of scope for future model
improvements because the chance baseline is only
10% and the best-performing model so far (see
Sec. 6.3) achieves only 22% recall@1 (on dev set),
and hence there is a large 33% gap.

6.2 Baseline Results
Table 3 displays all our primary results. We
first discuss results of our simple non-trained and
trained baselines (see Sec. 4.1). The ‘Most-
Frequent-Response’ baseline, which just ranks the
10-sized response retrieval list based on their fre-
quency in the training data, gets only around
10% recall@1.8 Our other non-trained baselines:
‘Chat-Response-Cosine’ and ‘Nearest Neighbor’,
which ranks the candidate responses based on
(Twitch-trained RNN encoder’s vector) cosine
similarity with chat-context and K-best training
contexts’ response vectors, respectively, achieves
slightly better scores. We also show that our sim-
ple trained baselines (logistic regression and near-
est neighbor) also achieve relatively low scores,
indicating that a simple, shallow model will not
work on this challenging dataset.

6.3 Discriminative Model Results
Next, we present the recall@k retrieval perfor-
mance of our various discriminative models in Ta-

7This relatively low human recall@1 performance is be-
cause this is a challenging, 10-way-discriminative evaluation,
i.e., the choice comes w.r.t. 9 tricky negative examples along
with just 1 positive example (hence chance-baseline is only
10%). Note that these negative examples are an artifact of
specifically recall-based evaluation only, and will not affect
the more important real-world task of response generation
(for which our dataset’s response quality is 90%, as shown
in Table 1). Moreover, our dataset filtering (see Sec. 3.1) also
‘suppresses’ simple baselines and makes the task even harder.

8Note that the performance of this baseline is worse than
the random choice baseline (recall@1:10%, recall@2:20%,
recall@5:50%) because our dataset filtering process already
suppresses frequent responses (see Sec. 3.1), in order to pro-
vide a challenging dataset for the community.
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Models METEOR ROUGE-L
MULTIPLE REFERENCES

Seq2seq + Atten. (C) 2.59 8.44
Seq2seq + Atten. (V) 2.66 8.34
Seq2seq + Atten. (C+V) ⌦ 3.03 8.84
⌦ + BiDAF (C+V) 3.70 9.82

Table 4: Performance of our generative models on
phrase matching metrics.

Models Relevance
Seq2seq + Atten. (C+V) wins 41.0 %
BiDAF wins 34.0 %
Non-distinguishable 25.0 %

Table 5: Human evaluation comparing the baseline and
BiDAF generative models.

ble 3: dual encoder (chat context only), dual en-
coder (video context only), triple encoder, and
TriDAF model with self-attention. Our dual en-
coder models are significantly better than random
choice and all our simple baselines above, and
further show that they have complementary in-
formation because using both of them together
(in ‘Triple Encoder’) improves the overall perfor-
mance of the model. Finally, we show that our
novel TriDAF model with self-attention performs
significantly better than the triple encoder model.9

6.4 Generative Model Results
Next, we evaluate the performance of our gener-
ative models with both retrieval-based recall@k
scores and phrase matching-based metrics as dis-
cussed in Sec. 5 (as well as human evaluation).
We first discuss the retrieval-based recall@k re-
sults in Table 3. Starting with a simple sequence-
to-sequence attention model with video only, chat
only, and both video and chat encoders, the re-
call@k scores are better than all the simple base-
lines. Moreover, using both video+chat context is
again better than using only one context modal-
ity. Finally, we show that the addition of the bidi-
rectional attention flow mechanism improves the
performance in all recall@k scores.10 Note that
generative model scores are lower than the dis-
criminative models on retrieval recall@k metric,
which is expected (see discussion in previous vi-
sual dialogue work (Das et al., 2017)), because
discriminative models can tune to the biases in the
response candidate options, but generative mod-
els are more useful for real-world tasks such as

9Statistical significance of p < 0.01 for recall@1, based
on the bootstrap test (Noreen, 1989; Efron and Tibshirani,
1994) with 100K samples.

10Stat. signif. p < 0.05 for recall@1 w.r.t. Seq2seq+Atten
(video+chat); p < 0.01 w.r.t. chat- and video-only models.

Models recall@1 recall@2 recall@5
1 neg. 18.21 32.19 64.05
3 neg. 22.20 35.90 68.09

Table 6: Ablation (dev) of one vs. three negative exam-
ples for TriDAF self-attention discriminative model.

generation of novel responses word-by-word from
scratch in Siri/Alexa/Cortana style applications
(whereas discriminative models can only rank the
pre-given list of responses).

We also evaluate our generative models with
phrase-level matching metrics: METEOR and
ROUGE-L, as shown in Table 4. Again, our
BiDAF model is stat. significantly better than non-
BiDAF model on both METEOR (p < 0.01) and
ROUGE-L (p < 0.02) metrics. Since dialogue
systems can have several diverse, non-overlapping
valid responses, we consider a multi-reference
setup where all the utterances in the 10-sec re-
sponse window are treated as valid responses.11

6.5 Human Evaluation of Models
Finally, we also perform human evaluation to
compare our top two generative models, i.e., the
video+chat seq2seq with attention and its exten-
sion with BiDAF (Sec. 4.3), based on a 100-sized
sample. We take the generated response from both
these models, and randomly shuffle these pairs to
anonymize model identity. We then ask two an-
notators (for 50 task instances each) to score the
responses of these two models based on relevance.
Note that the human evaluators were familiar with
Twitch FIFA-18 video games and also the Twitch’s
unique set of chat mannerisms and emotes. As
shown in Table 5, our BiDAF based generative
model performs better than the non-BiDAF one,
which is already quite a strong video+chat encoder
model with attention.

7 Ablations and Analysis

7.1 Negative Training Pairs
We also compare the effect of different negative
training triples that we discussed in Sec. 5. Ta-
ble 6 shows the comparison between one negative

11Liu et al. (2016b) discussed that BLEU and most phrase
matching metrics are not good for evaluating dialogue sys-
tems. Also, generative models have very low phrase-
matching metric scores because the generated response can
be valid but still very different from the ground truth ref-
erence (Lowe et al., 2015; Liu et al., 2016b; Li et al.,
2016). We present results for the relatively better metrics like
paraphrase-enabled METEOR for completeness, but still fo-
cus on retrieval recall@k and human evaluation.
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bloodtrail bloodtrail bloodtrail bloodtrail bloodtrail || 
yoooo || kappapride || xxuxx skillzzzz , favourite player
you have used this year ? || pl3ad aa9love || are you 
playin with ksi ? ? kappa xxuxx || bought okocha cuz of 
you ant . first game 2 goals 3 assists ! game changer
thank you m8 || play || ! pause || resume || twerkchoke 
twerkchoke twerkchoke || lul

1) good pass jebaited

2) shawn mendez kreygasm 
kreygasm

3) can say that i am american

4) ! camera

5) can you notice me

6) do you have a main squad

7) otw nelson for 47k imma buy 
right now on xbox

8) do *

9) inceptionderp inceptionlove

10) bpl is over priced

chat is aids || where has all thr challenges gone aswell ? || 
did mat yet messi ? || hellllllllllllllllllllllllllllllllllllllllllo || put messi 
on get in behind if u can || chris is getting ronaldo and messi
|| no one wants jamies coctail sausage haha || free kick with 
messi

Ground-truth: play it to messi he makes 
                      good runs

Generated: get messi for the other team

Figure 8: Output retrieval (left) and generative (right) examples from TriDAF and BiDAF models, resp.

Chat Context: xxuxx haha 19 is not bad brotha . i didnt even qualify lol feelbad ||

pogchamp || siiiii pogchamp || boooooooooooooo lul || you guys think i

should get dembele or if alessandrini

Response: comeback goal

Figure 9: Attention visualization: generated word ‘goal’ in response is intuitively aligning to goal-related video
frames (top-3-weight frames highlighted) and context words (top-10-weight words highlighted).

training triple (with just a negative response) vs.
three negative training triples (one with negative
video context, one with negative chat context, and
another with negative response), showing that us-
ing the 3-negative examples setup is substantially
better.

7.2 Discriminative Loss Functions
Table 7 shows the performance comparison be-
tween the classification loss and max-margin loss
on our TriDAF with self-attention discriminative
model (Sec. 4.2.2). We observe that max-margin
loss performs better than the classification loss,
which is intuitive because max-margin loss tries to
differentiate between positive and negative train-
ing example triples.

Models recall@1 recall@2 recall@5
Classification loss 19.32 33.72 66.60
Max-margin loss 22.20 35.90 68.09

Table 7: Ablation of classification vs. max-margin loss
on our TriDAF discriminative model (on dev set).

7.3 Generative Loss Functions
For our best generative model (BiDAF), Table 8
shows that using a joint loss of cross-entropy
and max-margin is better than just using only
cross-entropy loss optimization (Sec. 4.3.1). Max-
margin loss provides knowledge about the nega-
tive samples for the generative model, hence im-
proves the retrieval-based recall@k scores.

7.4 Attention Visualization and Examples
Finally, we show some interesting output exam-
ples from both our discriminative and generative
models as shown in Fig. 8. Additionally, Fig. 9

Models recall@1 recall@2 recall@5
Cross-entropy (XE) 13.12 23.45 54.78
XE+Max-margin 15.61 27.39 57.02

Table 8: Ablation of cross-entropy loss vs. cross-
entropy+maxmargin loss for our BiDAF-based gener-
ative model (on dev set).

visualizes that our models can learn some cor-
rect attention alignments from the generated out-
put response word to the appropriate (goal-related)
video frames as well as chat context words.

8 Conclusion
We presented a new game-chat based video-
context, many-speaker dialogue task and dataset.
We also presented several baselines and state-of-
the-art discriminative and generative models on
this task. We hope that this testbed will be a
good starting point to encourage future work on
the challenging video-context dialogue paradigm.
In future work, we plan to investigate the effects of
multiple users, i.e., the multi-party aspect of this
dataset. We also plan to explore advanced video
features such as activity recognition, person iden-
tification, etc.
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Abstract

The encode-decoder framework has shown re-
cent success in image captioning. Visual atten-
tion, which is good at detailedness, and seman-
tic attention, which is good at comprehensive-
ness, have been separately proposed to ground
the caption on the image. In this paper, we
propose the Stepwise Image-Topic Merging
Network (simNet) that makes use of the two
kinds of attention at the same time. At each
time step when generating the caption, the de-
coder adaptively merges the attentive informa-
tion in the extracted topics and the image ac-
cording to the generated context, so that the vi-
sual information and the semantic information
can be effectively combined. The proposed ap-
proach is evaluated on two benchmark datasets
and reaches the state-of-the-art performances.1

1 Introduction

Image captioning attracts considerable attention in
both natural language processing and computer vi-
sion. The task aims to generate a description in
natural language grounded on the input image. It
is a very challenging yet interesting task. On the
one hand, it has to identify the objects in the im-
age, associate the objects, and express them in a
fluent sentence, each of which is a difficult sub-
task. On the other hand, it combines two impor-
tant fields in artificial intelligence, namely, natural
language processing and computer vision. More
importantly, it has a wide range of applications,
including text-based image retrieval, helping visu-
ally impaired people see (Wu et al., 2017), human-
robot interaction (Das et al., 2017), etc.

Models based on the encoder-decoder frame-
work have shown success in image captioning.
According to the pivot representation, they can be

⇤Equal Contributions
1 The code is available at https://github.com/

lancopku/simNet

Soft-Attention: a open laptop
computer sitting on top of a ta-
ble
ATT-FCN: a dog sitting on a
desk with a laptop computer
and mouse
simNet: a open laptop com-
puter and mouse sitting on a ta-
ble with a dog nearby

Figure 1: Examples of using different attention mecha-
nisms. Soft-Attention (Xu et al., 2015) is based on vi-
sual attention. The generated caption is detailed in that
it knows the visual attributes well (e.g. open). How-
ever, it omits many objects (e.g. mouse and dog). ATT-
FCN (You et al., 2016) is based on semantic attention.
The generated caption is more comprehensive in that
it includes more objects. However, it is bad at associ-
ating details with the objects (e.g. missing open and
mislocating dog). simNet is our proposal that effec-
tively merges the two kinds of attention and generates
a detailed and comprehensive caption.

roughly categorized into models based on visual
information (Vinyals et al., 2015; Chen and Zit-
nick, 2015; Mao et al., 2014; Karpathy and Li,
2015, 2017), and models based on conceptual in-
formation (Fang et al., 2015; You et al., 2016; Wu
et al., 2016). The later explicitly provides the vi-
sual words (e.g. dog, sit, red) to the decoder in-
stead of the image features, and is more effective
in image captioning according to the evaluation on
benchmark datasets. However, the models based
on conceptual information have a major drawback
that it is hard for the model to associate the details
with the specific objects in the image, because the
visual words are inherently unordered in seman-
tics. Figure 1 shows an example. For semantic
attention, although open is provided as a visual
word, due to the insufficient use of visual infor-
mation, the model gets confused about what ob-
jects open should be associated with and thus dis-
cards open in the caption. The model may even
associate the details incorrectly, which is the case
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Figure 2: Illustration of the main idea. The visual in-
formation captured by CNN and the conceptual infor-
mation in the extracted topics are first condensed by
attention mechanisms respectively. The merging gate
then adaptively adjusts the weight between the visual
information and the conceptual information for gener-
ating the caption.

for the position of the dog. In contrast, models
based on the visual information often are accurate
in details but have difficulty in describing the im-
age comprehensively and tend to only describe a
subregion.

In this work, we get the best of both worlds and
integrate visual attention and semantic attention
for generating captions that are both detailed and
comprehensive. We propose a Stepwise Image-
Topic Merging Network as the decoder to guide
the information flow between the image and the
extracted topics. At each time step, the decoder
first extracts focal information from the image.
Then, it decides which topics are most probable
for the time step. Finally, it attends differently to
the visual information and the conceptual informa-
tion to generate the output word. Hence, the model
can efficiently merge the two kinds of information,
leading to outstanding results in image captioning.

Overall, the main contributions of this work are:

• We propose a novel approach that can effec-
tively merge the information in the image and
the topics to generate cohesive captions that
are both detailed and comprehensive. We re-
fine and combine two previous competing at-
tention mechanisms, namely visual attention
and semantic attention, with an importance-
based merging gate that effectively combines

and balances the two kinds of information.

• The proposed approach outperforms the
state-of-the-art methods substantially on two
benchmark datasets, Flickr30k and COCO,
in terms of SPICE, which correlates the best
with human judgments. Systematic analysis
shows that the merging gate contributes the
most to the overall improvement.

2 Related Work

A large number of systems have been proposed
for image captioning. Neural models based on
the encoder-decoder framework have been attract-
ing increased attention in the last few years in
several multi-discipline tasks, such as neural im-
age/video captioning (NIC) and visual question
answering (VQA) (Vinyals et al., 2015; Karpa-
thy and Li, 2015; Venugopalan et al., 2015; Zhao
et al., 2016; Zhang et al., 2017). State-of-the-
art neural approaches (Anderson et al., 2018; Liu
et al., 2018; Lu et al., 2018) incorporate the atten-
tion mechanism in machine translation (Bahdanau
et al., 2014) to generate grounded image captions.
Based on what they attend to, the models can be
categorized into visual attention models and se-
mantic attention models.

Visual attention models pay attention to the im-
age features generated by CNNs. CNNs are typ-
ically pre-trained on the image recognition task
to extract general visual signals (Xu et al., 2015;
Chen et al., 2017; Lu et al., 2017). The visual at-
tention is expected to find the most relevant image
regions in generating the caption. Most recently,
image features based on predicted bounding boxes
are used (Anderson et al., 2018; Lu et al., 2018).
The advantages are that the attention no longer
needs to find the relevant generic regions by itself
but instead find relevant bounding boxes that are
object orientated and can serve as semantic guides.
However, the drawback is that predicting bound-
ing boxes is difficult, which requires large datasets
(Krishna et al., 2017) and complex models (Ren
et al., 2015, 2017a).

Semantic attention models pay attention to a
predicted set of semantic concepts (Fang et al.,
2015; You et al., 2016; Wu et al., 2016). The se-
mantic concepts are the most frequent words in
the captions, and the extractor can be trained us-
ing various methods but typically is only trained
on the given image captioning dataset. This kind
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Figure 3: Illustration of the proposed approach. In the right plot, we use �, ,� to denote input attention, output
attention, and topic attention, respectively.

of approach can be seen as the extension of the
earlier template-based slotting-filling approaches
(Farhadi et al., 2010; Kulkarni et al., 2013).

However, few work studies how to combine the
two kinds of attention models to take advantage of
both of them. On the one hand, due to the lim-
ited number of visual features, it is hard to provide
comprehensive information to the decoder. On the
other hand, the extracted semantic concepts are
unordered, making it hard for the decoder to por-
tray the details of the objects correctly.

This work focuses on combining the visual at-
tention and the semantic attention efficiently to ad-
dress their drawbacks and make use of their mer-
its. The visual attention is designed to focus on
the attributes and the relationships of the objects,
while the semantic attention only includes words
that are objects so that the extracted topics could
be more accurate. The combination is controlled
by the importance-based merging mechanism that
decides at each time step which kind of informa-
tion should be relied on. The goal is to generate
image captions that are both detailed and compre-
hensive.

3 Approach

Our proposed model consists of an image encoder,
a topic extractor, and a stepwise merging decoder.
Figure 3 shows a sketch. We first briefly introduce
the image encoder and the topic extractor. Then,
we introduce the proposed stepwise image-topic
merging decoder in detail.

3.1 Image Encoder
For an input image, the image encoder expresses
the image as a series of visual feature vectors
V = {v1, v2, . . . , vk}, vi 2 R

g. Each feature cor-
responds to a different perspective of the image.
The visual features serve as descriptive guides of
the objects in the image for the decoder. We use a

ResNet152 (He et al., 2016), which is commonly
used in image captioning, to generate the visual
features. The output of the last convolutional layer
is used as the visual information:

V = W
V,ICNN(I) (1)

where I is the input image, and W
V,I shrinks the

last dimension of the output.2

3.2 Topic Extractor

Typically, identifying an object requires a com-
bination of visual features, and considering the
limited capacity of the visual features, it is hard
for the conventional decoder to describe the ob-
jects in the image comprehensively. An advance
in image captioning is to provide the decoder with
the semantic concepts in the image directly so
that the decoder is equipped with an overall per-
spective of the image. The semantic concepts
can be objects (e.g. person, car), attributes (e.g.
off, electric), and relationships (e.g. using, sit-
ting). We only use the words that are objects
in this work, the reason of which is explained
later. We call such words topics. The topic ex-
tractor concludes a list of candidate topic embed-
dings T = {w1, w2, . . . , wm}, wi 2 R

e from
the image, where e is the dimension of the topic
word embeddings. Following common practice
(Fang et al., 2015; You et al., 2016), we adopt the
weakly-supervised approach of Multiple Instance
Learning (Zhang et al., 2006) to build a topic ex-
tractor. Due to limited space, please refer to Fang
et al. (2015) for detailed explanation.

Different from existing work that uses all the
most frequent words in the captions as valid se-
mantic concepts or visual words, we only include
the object words (nouns) in the topic word list.
Existing work relies on attribute words and rela-

2For conciseness, all the bias terms of linear transforma-
tions in this paper are omitted.
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tionship words to provide visual information to the
decoder. However, it not only complicates the ex-
tracting procedure but also contributes little to the
generation. For an image containing many objects,
the decoder is likely to combine the attributes with
the objects arbitrarily, as such words are specific
to certain objects but are provided to the decoder
unordered. In contrast, our model has visual infor-
mation as additional input and we expect that the
decoder should refer to the image for such kind of
information instead of the extracted concepts.

3.3 Stepwise Image-Topic Merging Decoder

The essential component of the decoder is the pro-
posed stepwise image-topic merging network. The
decoder is based on an LSTM (Hochreiter and
Schmidhuber, 1997). At each time step, it com-
bines the textual caption, the attentive visual in-
formation, and the attentive conceptual informa-
tion as the context for generating an output word.
The goal is achieved by three modules, the visual
attention, the topic attention, and the merging gate.

Visual Attention as Output The visual atten-
tion attends to attracting parts of the image based
on the state of the LSTM decoder. In existing work
(Xu et al., 2015), only the previous hidden state
ht�1 2 R

d of the LSTM is used in computation of
the visual attention:

Zt = tanh(W Z,V
V � W

Z,h
ht�1) (2)

↵t = softmax(Ztw
↵,Z) (3)

where W
Z,V 2 R

k⇥g, W Z,h 2 R
k⇥d, w↵,Z 2

R
k are the learnable parameters. We denote the

matrix-vector addition as �, which is calculated
by adding the vector to each column of the matrix.
↵t 2 R

k is the attentive weights of V and the
attentive visual input zt 2 R

g is calculated as
zt = V ↵t (4)

The visual input zt and the embedding of the pre-
vious output word yt�1 are the input of the LSTM.

ht = LSTM(


zt

yt�1

�
, ht�1) (5)

However, there is a noticeable drawback that the
previous output word yt�1, which is a much
stronger indicator than the previous hidden state
ht�1, is not used in the attention. As zt is used
as the input, we call it input attention. To over-
come that drawback, we add another attention that
incorporates the current hidden state ht, which is

based on the last generated word yt�1:
eZt = tanh(fW Z,V

V � fW Z,h
ht) (6)

e↵t = softmax( eZt ew↵,Z) (7)
ezt = V e↵t (8)

The procedure resembles the input attention, and
we call it output attention. It is worth mention-
ing that the output attention is essentially the same
with the spatial visual attention proposed by Lu
et al. (2017). However, they did not see it from the
input-output point of view nor combine it with the
input attention.

The attentive visual output is further trans-
formed to rt = tanh(W s,z ezt), W s,z 2 R

e⇥g,
which is of the same dimension as the topic word
embedding to simplify the following procedure.

Topic Attention In an image caption, different
parts concern different topics. In the existing work
(You et al., 2016), the conceptual information is
attended based on the previous output word:

�t = softmax(T T
Uyt�1) (9)

where U 2 R
e⇥e, �t 2 R

m. The profound issue is
that this approach neglects the visual information.
It should be beneficial to provide the attentive vi-
sual information when selecting topics. The hid-
den state of the LSTM contains both the informa-
tion of previous words and the attentive input vi-
sual information. Therefore, the model attends to
the topics based on the hidden state of the LSTM:

Qt = tanh(W Q,T
T � W

Q,h
ht) (10)

�t = softmax(Qtw
�,Q) (11)

where W
Q,T 2 R

m⇥e, W Q,h 2 R
m⇥d, w�,Q 2

R
m are the parameters to be learned. �t 2 R

m is
the weight of the topics, from which the attentive
conceptual output qt 2 R

e is calculated:
qt = T�t (12)

The topic attention qt and the hidden state ht are
combined as the contextual information st:

st = tanh(W s,q
qt + W

s,h
ht) (13)

where W
s,q 2 R

e⇥e, W s,h 2 R
e⇥d are learnable

parameters.

Merging Gate We have prepared both the visual
information rt and the contextual information st.
It is not reasonable to treat the two kinds of in-
formation equally when the decoder generates dif-
ferent types of words. For example, when generat-
ing descriptive words (e.g., behind, red), rt should
matter more than st. However, when generating
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object words (e.g., people, table), st is more im-
portant. We introduce a novel score-based merg-
ing mechanism to make the model adaptively learn
to adjust the balance:

�t = �(S(st) � S(rt)) (14)
ct = �tst + (1 � �t)rt (15)

where � is the sigmoid function, �t 2 [0, 1] in-
dicates how important the topic attention is com-
pared to the visual attention, and S is the scoring
function. The scoring function needs to evaluate
the importance of the topic attention. Noticing that
Eq. (10) and Eq. (11) have a similar purpose, we
define S similarly:

S(st) = tanh(W S,h
ht + W

S,s
st) · w

S (16)

S(rt) = tanh(W S,h
ht + W

S,r
rt) · w

S (17)
where · denotes dot product of vectors, W

S,s 2
R

m⇥e, W S,r 2 R
m⇥e are the parameters to

be learned, and W
S,h, ws share the weights of

W
Q,h, w�,Q from Eq. (10) and Eq. (11), respec-

tively.
Finally, the output word is generated by:

yt ⇠ pt = softmax(W p,c
ct) (18)

where each value of pt 2 R
|D| is a probability in-

dicating how likely the corresponding word in vo-
cabulary D is the current output word. The whole
model is trained using maximum log likelihood
and the loss function is the cross entropy loss.

In all, our proposed approach encourages the
model to take advantage of all the available infor-
mation. The adaptive merging mechanism makes
the model weigh the information elaborately.

4 Experiment

We describe the datasets and the metrics used for
evaluation, followed by the training details and the
evaluation of the proposed approach.

4.1 Datasets and Metrics

There are several datasets containing images and
their captions. We report results on the popular
Microsoft COCO (Chen et al., 2015) dataset and
the Flickr30k (Young et al., 2014) dataset. They
contain 123,287 images and 31,000 images, re-
spectively, and each image is annotated with 5 sen-
tences. We report results using the widely-used
publicly-available splits in the work of Karpathy
and Li (2015). There are 5,000 images each in the
validation set and the test set for COCO, 1,000 im-
ages for Flickr30k.

We report results using the COCO captioning
evaluation toolkit (Chen et al., 2015) that reports
the widely-used automatic evaluation metrics
SPICE, CIDEr, BLEU, METEOR, and ROUGE.
SPICE (Anderson et al., 2016), which is based
on scene graph matching, and CIDEr (Vedantam
et al., 2015), which is based on n-gram match-
ing, are specifically proposed for evaluating im-
age captioning systems. They both incorporate the
consensus of a set of references for an example.
BLEU (Papineni et al., 2002) and METOR (Baner-
jee and Lavie, 2005) are originally proposed for
machine translation evaluation. ROUGE (Lin and
Hovy, 2003; Lin, 2004) is designed for automatic
evaluation of extractive text summarization. In the
related studies, it is concluded that SPICE corre-
lates the best with human judgments with a re-
markable margin over the other metrics, and is
expert in judging detailedness, where the other
metrics show negative correlations, surprisingly;
CIDEr and METEOR follows with no particular
precedence, followed by ROUGE-L, and BLEU-
4, in that order (Anderson et al., 2016; Vedantam
et al., 2015).

4.2 Settings

Following common practice, the CNN used is the
ResNet152 model (He et al., 2016) pre-trained on
ImageNet.3 There are 2048 7 ⇥ 7 feature maps,
and we project them into 512 feature maps, i.e. g
is 512. The word embedding size e is 256 and the
hidden size d of the LSTM is 512. We only keep
caption words that occur at least 5 times in the
training set, resulting in 10,132 words for COCO
and 7,544 for Flickr30k. We use the topic ex-
tractor pre-trained by Fang et al. (2015) for 1,000
concepts on COCO. We only use 568 manually-
annotated object words as topics. For an image,
only the top 5 topics are selected, which means
m is 5. The same topic extractor is used for
Flickr30k, as COCO provides adequate general-
ity. The caption words and the topic words share
the same embeddings. In training, we first train the
model without visual attention (freezing the CNN
parameters) for 20 epochs with the batch size of
80. The learning rate for the LSTM is 0.0004.
Then, we switch to jointly train the full model
with a learning rate of 0.00001, which exponen-
tially decays with the number of epochs so that it
is halved every 50 epochs. We also use momen-

3We use the pre-trained model from torchvision.
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Flickr30k SPICE CIDEr METEOR ROUGE-L BLEU-4

HardAtt (Xu et al., 2015) - - 0.185 - 0.199
SCA-CNN (Chen et al., 2017) - - 0.195 - 0.223
ATT-FCN (You et al., 2016) - - 0.189 - 0.230
SCN-LSTM (Gan et al., 2017) - - 0.210 - 0.257
AdaAtt (Lu et al., 2017) 0.145 0.531 0.204 0.467 0.251
NBT (Lu et al., 2018) 0.156 0.575 0.217 - 0.271

SR-PL (Liu et al., 2018)⇤† 0.158 0.650 0.218 0.499 0.293

simNet 0.160 0.585 0.221 0.489 0.251

Table 1: Performance on the Flickr30k Karpathy test split. The symbol ⇤ denotes directly optimizing CIDEr. The
symbol † denotes using extra data for training, thus not directly comparable. Nonetheless, our model supersedes
all existing models in SPICE, which correlates the best with human judgments.

COCO SPICE CIDEr METEOR ROUGE-L BLEU-4

HardAtt (Xu et al., 2015) - - 0.230 - 0.250
ATT-FCN (You et al., 2016) - - 0.243 - 0.304
SCA-CNN (Chen et al., 2017) - 0.952 0.250 0.531 0.311
LSTM-A (Yao et al., 2017) 0.186 1.002 0.254 0.540 0.326
SCN-LSTM (Gan et al., 2017) - 1.012 0.257 - 0.330
Skeleton (Wang et al., 2017) - 1.069 0.268 0.552 0.336
AdaAtt (Lu et al., 2017) 0.195 1.085 0.266 0.549 0.332
NBT (Lu et al., 2018) 0.201 1.072 0.271 - 0.347

DRL (Ren et al., 2017b)⇤ - 0.937 0.251 0.525 0.304
TD-M-ATT (Chen et al., 2018)⇤ - 1.116 0.268 0.555 0.336
SCST (Rennie et al., 2017)⇤ - 1.140 0.267 0.557 0.342
SR-PL (Liu et al., 2018)⇤† 0.210 1.171 0.274 0.570 0.358
Up-Down (Anderson et al., 2018)⇤† 0.214 1.201 0.277 0.569 0.363

simNet 0.220 1.135 0.283 0.564 0.332

Table 2: Performance on the COCO Karpathy test split. Symbols, ⇤ and †, are defined similarly. Our model
outperforms the current state-of-the-art Up-Down substantially in terms of SPICE.

tum of 0.8 and weight decay of 0.999. We use
Adam (Kingma and Ba, 2014) for parameter opti-
mization. For fair comparison, we adopt early stop
based on CIDEr within maximum 50 epochs.

4.3 Results

We compare our approach with various represen-
tative systems on Flickr30k and COCO, including
the recently proposed NBT that is the state-of-the-
art on the two datasets in comparable settings. Ta-
ble 1 shows the result on Flickr30k. As we can
see, our model outperforms the comparable sys-
tems in terms of all of the metrics except BLEU-4.
Moreover, our model overpasses the state-of-the-
art with a comfortable margin in terms of SPICE,
which is shown to correlate the best with human
judgments (Anderson et al., 2016).

Table 2 shows the results on COCO. Among the
directly comparable models, our model is arguably
the best and outperforms the existing models ex-
cept in terms of BLEU-4. Most encouragingly, our
model is also competitive with Up-Down (Ander-

son et al., 2018), which uses much larger dataset,
Visual Genome (Krishna et al., 2017), with dense
annotations to train the object detector, and di-
rectly optimizes CIDEr. Especially, our model
outperforms the state-of-the-art substantially in
SPICE and METEOR. Breakdown of SPICE F-
scores over various subcategories (see Table 3)
shows that our model is in dominant lead in almost
all subcategories. It proves the effectiveness of our
approach and indicates that our model is quite data
efficient.

For the methods that directly optimize CIDEr,
it is intuitive that CIDEr can improve signifi-
cantly. The similar improvement of BLEU-4 is
evidence that optimizing CIDEr leads to more n-
gram matching. However, it comes to our notice
that the improvements of SPICE, METEOR, and
ROUGE-L are far less significant, which suggests
there may be a gaming situation where the n-gram
matching is wrongfully exploited by the model in
reinforcement learning. As shown by Liu et al.
(2017), it is most reasonable to jointly optimize
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Methods
SPICE

CIDEr METEOR ROUGE-L BLEU-4
All Objects Attributes Relations Color Count Size

Baseline (Plain Encoder-Decoder Network) 0.150 0.295 0.048 0.039 0.022 0.004 0.023 0.762 0.220 0.495 0.251
Up-Down (Anderson et al., 2018)⇤† 0.214 0.391 0.100 0.065 0.114 0.184 0.032 1.201 0.277 0.569 0.363

Baseline + Input Att. 0.164 0.316 0.060 0.044 0.030 0.038 0.024 0.840 0.233 0.512 0.273
Baseline + Output Att. 0.181 0.329 0.094 0.053 0.089 0.184 0.044 0.968 0.253 0.534 0.301
Baseline + Input Att. + Output Att. 0.187 0.338 0.101 0.055 0.115 0.161 0.048 1.038 0.259 0.542 0.311

Baseline + Topic Att. 0.184 0.348 0.074 0.051 0.047 0.064 0.037 0.915 0.250 0.517 0.260
Baseline + Topic Att. + MGate 0.189 0.355 0.080 0.051 0.055 0.090 0.033 0.959 0.256 0.527 0.281

Baseline + Input Att. + Output Att. + Topic Att. 0.206 0.381 0.091 0.060 0.075 0.094 0.045 1.068 0.273 0.556 0.320

simNet (Full Model) 0.220 0.394 0.109 0.070 0.088 0.202 0.045 1.135 0.283 0.564 0.332

Table 3: Results of incremental analysis. For a better understanding of the differences, we further list the break-
down of SPICE F-scores. Objects indicates comprehensiveness, and the others indicate detailedness. Additionally,
we report the performance of the current state-of-the-art Up-Down for further comparison, which uses extra dense-
annotated data for pre-training and directly optimizes CIDEr.

Method Precision Recall F1

Topics (m=5) 49.95 38.91 42.48

All words (m=5) 84.01 17.99 29.49
All words (m=10) 70.90 30.18 42.05
All words (m=20) 52.51 44.53 47.80

Table 4: Performance of visual word extraction.

Method S C M R B

Topics (m=5) 0.220 1.135 0.283 0.564 0.332

All words (m=5) 0.197 1.047 0.264 0.550 0.314
All words (m=10) 0.201 1.076 0.256 0.528 0.293
All words (m=20) 0.209 1.117 0.276 0.561 0.329

Table 5: Effect of using different visual words.

all the metrics at the same time.
We also evaluate the proposed model on the

COCO evaluation server, the results of which are
shown in Appendix A.1, due to limited space.

5 Analysis

In this section, we analyze the contribution of each
component in the proposed approach, and give ex-
amples to show the strength and the potential im-
provements of the model. The analysis is con-
ducted on the test set of COCO.

Topic Extraction The motivation of using ob-
jects as topics is that they are easier to identify
so that the generation suffers less from erroneous
predictions. This can be proved by the F-score of
the identified topics in the test set, which is shown
in Table 4. Using top-5 object words is at least
as good as using top-10 all words. However, us-
ing top-10 all words introduces more erroneous
visual words to the generation. As shown in Ta-

Figure 4: Average merging gate values according to
word types. As we can see, object words (noun) dom-
inate the high value range, while attribute and relation
words are assigned lower values, indicating the merg-
ing gate learns to efficiently combine the information.

ble 5, when extracting all words, providing more
words to the model indeed increases the caption-
ing performance. However, even when top-20 all
words are used, the performance is still far behind
using only top-5 object words and seems to reach
the performance ceiling. It proves that for seman-
tic attention, it is also important to limit the abso-
lute number of incorrect visual words instead of
merely the precision or the recall. It is also inter-
esting to check whether using other kind of words
can reach the same effect. Unfortunately, in our
experiments, only using verbs or adjectives as se-
mantic concepts works poorly.

To examine the contributions of the sub-
modules in our model, we conduct a series of ex-
periments. The results are summarized in Table 3.
To help with the understanding of the differences,
we also report the breakdown of SPICE F-scores.

Visual Attention Our input attention achieves
similar results to previous work (Xu et al., 2015),
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Figure 5: Examples of the generated captions. The left plot compares simNet with visual attention and topic
attention. Visual attention is good at portraying the relations but is less specific in objects. Topic attention includes
more objects but lacks details, such as material, color, and number. The proposed model achieves a very good
balance. The right plot shows the error analysis of the proposed simNet.

if not better. Using only the output attention
is much more effective than using only the in-
put attention, with substantial improvements in all
metrics, showing the impact of information gap
caused by delayed input in attention. Combining
the input attention and the output attention can fur-
ther improve the results, especially in color and
size descriptions.

Topic Attention As expected, compared with
visual attention, the topic attention is better at
identifying objects but worse at identifying at-
tributes. We also apply the merging gate to the
topic attention, but it now merges qt and ht in-
stead of st and rt. With the merging gate, the
model can balance the information in caption text
and extracted topics, resulting in better overall
scores. While it overpasses the conventional vi-
sual attention, it lags behind the output attention.

Merging Gate Combing the visual attention and
the topic attention directly indeed results in a huge
boost in performance, which confirms our moti-
vation. However, directly combining them also
causes lower scores in attributes, color, count, and
size, showing that the advantages are not fully
made use of. The most dramatic improvements
come from applying the merging gate to the com-
bined attention, showing that the proposed balance
mechanism can adaptively combine the two kinds
of information and is essential to the overall per-
formance. The average merging gate value sum-
marized in Figure 4 suggests the same.

We give some examples in the left plot of Fig-
ure 5 to illustrate the differences between the mod-
els more intuitively. From the examples, it is clear
that the proposed simNet generates the best cap-
tions in that more objects are described and many
informative and detailed attributes are included,
such as the quantity and the color.

Visualization Figure 6 shows the visualization
of the topic attention and the visual attention with
running examples. As we can see, the topic atten-
tion is active when generating a phrase containing
the related topic. For example, bathroom is always
most attended when generating a bathroom. The
merging gate learns to direct the information flow
efficiently. When generating words such as on and
a, it gives lower weight to the topic attention and
prefers the visual attention. As to the visual at-
tention, the output attention is much more focused
than the input attention. As we hypothesized, the
conventional input attention lacks the information
of the last generated word and does not know what
to look for exactly. For example, when generating
bathroom, the input attention does not know the
previous generated word is a, and it loses its fo-
cus, while the output attention is relatively more
concentrated. Moreover, the merging gate learns
to overcome the erroneous topics, as shown in the
second example. When generating chair, the topic
attention is focused on a wrong object bed, while
the visual attention attends correctly to the chair,
and especially the output attention attends to the
armrest. The merging gate effectively remedies
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Figure 6: Visualization. Please view in color. Here, we give two running examples. The upper part of each example
shows the attention weights of each of 5 extracted topics. Deeper color means larger in value. The middle part
shows the value of the merging gate that determines the importance of the topic attention. The lower part shows
the visualization of visual attention. The attended region is covered with color. The blue shade indicates the output
attention. The red shade indicates the input attention.

the misleading information from the topic atten-
tion and outputs a lower weight, resulting in the
model correctly generating the word chair.

Error Analysis We conduct error analysis using
the proposed (full) model on the test set to pro-
vide insights on how the model may be improved.
We find 123 out of 1000 generated captions that
are not satisfactory. There are mainly three types
of errors, i.e. distance (32, 26%), movement (22,
18%), and object (60, 49%), with 9 (7%) other er-
rors. Distance error takes place when there is a
lot of objects and the model cannot grasp the fore-
ground and the background relationship. Move-
ment error means that the model fails to describe
whether the objects are moving. Those two kinds
of errors are hard to eliminate, as they are funda-
mental problems of computer vision waiting to be
resolved. Object error happens when there are in-
correct extracted topics, and the merging gate re-
gards the topic as grounded in the image. In the
given example, the incorrect topic is garden. The
tricky part is that the topic is seemingly correct
according to the image features or otherwise the
proposed model will choose other topics. A more
powerful topic extractor may help with the prob-
lem but it is unlikely to be completely avoided.

6 Conclusions

We propose the stepwise image-topic merging net-
work to sequentially and adaptively merge the vi-
sual and the conceptual information for improved
image captioning. To our knowledge, we are the
first to combine the visual and the semantic atten-
tion to achieve substantial improvements. We in-
troduce the stepwise merging mechanism to effi-
ciently guide the two kinds of information when
generating the caption. The experimental results
demonstrate the effectiveness of the proposed ap-
proach, which substantially outperforms the state-
of-the-art image captioning methods in terms of
SPICE on COCO and Flickr30k datasets. Quanti-
tative and qualitative analysis show that the gener-
ated captions are both detailed and comprehensive
in comparison with the existing methods.
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COCO BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

HardAtt (Xu et al., 2015) 0.705 0.881 0.528 0.779 0.383 0.658 0.277 0.537 0.241 0.322 0.516 0.654 0.865 0.893
ATT-FCN (You et al., 2016) 0.731 0.900 0.565 0.815 0.424 0.709 0.316 0.599 0.250 0.335 0.535 0.682 0.943 0.958
SCA-CNN (Chen et al., 2017) 0.712 0.894 0.542 0.802 0.404 0.691 0.302 0.579 0.244 0.331 0.524 0.674 0.912 0.921
LSTM-A (Yao et al., 2017) 0.739 0.919 0.575 0.842 0.436 0.740 0.330 0.632 0.256 0.350 0.542 0.700 0.984 1.003
SCN-LSTM (Gan et al., 2017) 0.740 0.917 0.575 0.839 0.436 0.739 0.331 0.631 0.257 0.348 0.543 0.696 1.003 1.013
AdaAtt (Lu et al., 2017)† 0.748 0.920 0.584 0.845 0.444 0.744 0.336 0.637 0.264 0.359 0.550 0.705 1.042 1.059

TD-M-ATT (Chen et al., 2018)⇤† 0.757 0.913 0.591 0.836 0.441 0.726 0.324 0.609 0.259 0.342 0.547 0.689 1.059 1.090
SCST (Rennie et al., 2017)⇤† 0.781 0.937 0.619 0.860 0.470 0.759 0.352 0.645 0.270 0.355 0.563 0.707 1.147 1.167
Up-Down (Anderson et al., 2018)⇤†‡ 0.802 0.952 0.641 0.888 0.491 0.794 0.369 0.685 0.276 0.367 0.571 0.724 1.179 1.205

simNet 0.766 0.941 0.605 0.874 0.462 0.778 0.350 0.671 0.267 0.362 0.558 0.716 1.087 1.111

Table 6: Performance on the online COCO evaluation server. The SPICE metric is unavailable for our model,
thus not reported. c5 means evaluating against 5 references, and c40 means evaluating against 40 references.
The symbol ⇤ denotes directly optimizing CIDEr. The symbol † denotes model ensemble. The symbol ‡ denotes
using extra data for training, thus not directly comparable. Our submission does not use the three aforementioned
techniques. Nonetheless, our model is second only to Up-Down and surpasses almost all the other models in
published work, especially when 40 references are considered.

A Supplementary Material

A.1 Results on COCO Evaluation Server
Table 6 shows the performance on the online
COCO evaluation server4. We put it in the ap-
pendix because the results are incomplete and the
SPICE metric is not available for our submission,
which correlates the best with human evaluation.
The SPICE metrics are only available at the leader-
board on the COCO dataset website5, which, un-
fortunately, has not been updated for more than a
year. Our submission does not directly optimize
CIDEr, use model ensemble, or use extra training
data. The three techniques typically result in or-
thogonal improvements (Lu et al., 2017; Rennie
et al., 2017; Anderson et al., 2018). Moreover,
the SPICE results are missing, in which the pro-
posed model has the most advantage. Nonethe-
less, our model is second only to Up-Down (An-
derson et al., 2018) and surpasses almost all the
other models in published work, especially when
40 references are considered.

4https://competitions.codalab.org/
competitions/3221

5http://cocodataset.org/
#captions-leaderboard
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Abstract
Computational modeling of human multi-
modal language is an emerging research
area in natural language processing spanning
the language, visual and acoustic modalities.
Comprehending multimodal language requires
modeling not only the interactions within each
modality (intra-modal interactions) but more
importantly the interactions between modal-
ities (cross-modal interactions). In this pa-
per, we propose the Recurrent Multistage Fu-
sion Network (RMFN) which decomposes the
fusion problem into multiple stages, each of
them focused on a subset of multimodal sig-
nals for specialized, effective fusion. Cross-
modal interactions are modeled using this mul-
tistage fusion approach which builds upon in-
termediate representations of previous stages.
Temporal and intra-modal interactions are
modeled by integrating our proposed fusion
approach with a system of recurrent neural net-
works. The RMFN displays state-of-the-art
performance in modeling human multimodal
language across three public datasets relat-
ing to multimodal sentiment analysis, emotion
recognition, and speaker traits recognition. We
provide visualizations to show that each stage
of fusion focuses on a different subset of mul-
timodal signals, learning increasingly discrim-
inative multimodal representations.

1 Introduction
Computational modeling of human multimodal
language is an upcoming research area in natu-
ral language processing. This research area fo-
cuses on modeling tasks such as multimodal sen-
timent analysis (Morency et al., 2011), emotion
recognition (Busso et al., 2008), and personality
traits recognition (Park et al., 2014). The multi-
modal temporal signals include the language (spo-
ken words), visual (facial expressions, gestures)
and acoustic modalities (prosody, vocal expres-
sions). At its core, these multimodal signals are
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Figure 1: An illustrative example for Recurrent Mul-
tistage Fusion. At each recursive stage, a subset of
multimodal signals is highlighted and then fused
with previous fusion representations. The first fu-
sion stage selects the neutral word and frowning
behaviors which create an intermediate represen-
tation reflecting negative emotion when fused to-
gether. The second stage selects the loud voice
behavior which is locally interpreted as empha-
sis before being fused with previous stages into a
strongly negative representation. Finally, the third
stage selects the shrugging and speech elongation
behaviors that reflect ambivalence and when fused
with previous stages is interpreted as a representa-
tion for the disappointed emotion.

highly structured with two prime forms of in-
teractions: intra-modal and cross-modal interac-
tions (Rajagopalan et al., 2016). Intra-modal inter-
actions refer to information within a specific modal-
ity, independent of other modalities. For example,
the arrangement of words in a sentence according
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to the generative grammar of a language (Chomsky,
1957) or the sequence of facial muscle activations
for the presentation of a frown. Cross-modal in-
teractions refer to interactions between modalities.
For example, the simultaneous co-occurrence of a
smile with a positive sentence or the delayed oc-
currence of a laughter after the end of a sentence.
Modeling these interactions lie at the heart of hu-
man multimodal language analysis and has recently
become a centric research direction in multimodal
natural language processing (Liu et al., 2018; Pham
et al., 2018; Chen et al., 2017), multimodal speech
recognition (Sun et al., 2016; Gupta et al., 2017;
Harwath and Glass, 2017; Kamper et al., 2017), as
well as multimodal machine learning (Tsai et al.,
2018; Srivastava and Salakhutdinov, 2012; Ngiam
et al., 2011).

Recent advances in cognitive neuroscience have
demonstrated the existence of multistage aggre-
gation across human cortical networks and func-
tions (Taylor et al., 2015), particularly during the in-
tegration of multisensory information (Parisi et al.,
2017). At later stages of cognitive processing,
higher level semantic meaning is extracted from
phrases, facial expressions, and tone of voice, even-
tually leading to the formation of higher level cross-
modal concepts (Parisi et al., 2017; Taylor et al.,
2015). Inspired by these discoveries, we hypoth-
esize that the computational modeling of cross-
modal interactions also requires a multistage fusion
process. In this process, cross-modal representa-
tions can build upon the representations learned
during earlier stages. This decreases the burden on
each stage of multimodal fusion and allows each
stage of fusion to be performed in a more special-
ized and effective manner.

In this paper, we propose the Recurrent Multi-
stage Fusion Network (RMFN) which automati-
cally decomposes the multimodal fusion problem
into multiple recursive stages. At each stage, a sub-
set of multimodal signals is highlighted and fused
with previous fusion representations (see Figure 1).
This divide-and-conquer approach decreases the
burden on each fusion stage, allowing each stage
to be performed in a more specialized and effective
way. This is in contrast with conventional fusion
approaches which usually model interactions over
multimodal signals altogether in one iteration (e.g.,
early fusion (Baltrušaitis et al., 2017)). In RMFN,
temporal and intra-modal interactions are modeled
by integrating our new multistage fusion process

with a system of recurrent neural networks. Overall,
RMFN jointly models intra-modal and cross-modal
interactions for multimodal language analysis and
is differentiable end-to-end.

We evaluate RMFN on three different tasks re-
lated to human multimodal language: sentiment
analysis, emotion recognition, and speaker traits
recognition across three public multimodal datasets.
RMFN achieves state-of-the-art performance in all
three tasks. Through a comprehensive set of ab-
lation experiments and visualizations, we demon-
strate the advantages of explicitly defining multiple
recursive stages for multimodal fusion.

2 Related Work

Previous approaches in human multimodal lan-
guage modeling can be categorized as follows:
Non-temporal Models: These models simplify
the problem by using feature-summarizing tempo-
ral observations (Poria et al., 2017). Each modality
is represented by averaging temporal information
through time, as shown for language-based senti-
ment analysis (Iyyer et al., 2015; Chen et al., 2016)
and multimodal sentiment analysis (Abburi et al.,
2016; Nojavanasghari et al., 2016; Zadeh et al.,
2016; Morency et al., 2011). Conventional su-
pervised learning methods are utilized to discover
intra-modal and cross-modal interactions without
specific model design (Wang et al., 2016; Poria
et al., 2016). These approaches have trouble mod-
eling long sequences since the average statistics do
not properly capture the temporal intra-modal and
cross-modal dynamics (Xu et al., 2013).
Multimodal Temporal Graphical Models: The
application of graphical models in sequence mod-
eling has been an important research problem. Hid-
den Markov Models (HMMs) (Baum and Petrie,
1966), Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001), and Hidden Conditional Random
Fields (HCRFs) (Quattoni et al., 2007) were shown
to work well on modeling sequential data from the
language (Misawa et al., 2017; Ma and Hovy, 2016;
Huang et al., 2015) and acoustic (Yuan and Liber-
man, 2008) modalities. These temporal graphical
models have also been extended for modeling mul-
timodal data. Several methods have been proposed
including multi-view HCRFs where the potentials
of the HCRF are designed to model data from
multiple views (Song et al., 2012), multi-layered
CRFs with latent variables to learn hidden spatio-
temporal dynamics from multi-view data (Song
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et al., 2012), and multi-view Hierarchical Sequence
Summarization models that recursively build up hi-
erarchical representations (Song et al., 2013).
Multimodal Temporal Neural Networks: More
recently, with the advent of deep learning, Re-
current Neural Networks (Elman, 1990; Jain and
Medsker, 1999) have been used extensively for lan-
guage and speech based sequence modeling (Zilly
et al., 2016; Soltau et al., 2016), sentiment analy-
sis (Socher et al., 2013; dos Santos and Gatti, 2014;
Glorot et al., 2011; Cambria, 2016), and emotion
recognition (Han et al., 2014; Bertero et al., 2016;
Lakomkin et al., 2018). Long-short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997a) have also been extended for multimodal set-
tings (Rajagopalan et al., 2016) and by learning
binary gating mechanisms to remove noisy modali-
ties (Chen et al., 2017). Recently, more advanced
models were proposed to model both intra-modal
and cross-modal interactions. These use Bayesian
ranking algorithms (Herbrich et al., 2007) to model
both person-independent and person-dependent fea-
tures (Liang et al., 2018), generative-discriminative
objectives to learn either joint (Pham et al., 2018) or
factorized multimodal representations (Tsai et al.,
2018), external memory mechanisms to synchro-
nize multimodal data (Zadeh et al., 2018a), or low-
rank tensors to approximate expensive tensor prod-
ucts (Liu et al., 2018). All these methods assume
that cross-modal interactions should be discovered
all at once rather than across multiple stages, where
each stage solves a simpler fusion problem. Our
empirical evaluations show the advantages of the
multistage fusion approach.

3 Recurrent Multistage Fusion Network

In this section we describe the Recurrent Multi-
stage Fusion Network (RMFN) for multimodal lan-
guage analysis (Figure 2). Given a set of modalities
{l(anguage), v(isual), a(coustic)}, the signal
from each modality m ∈ {l, v, a} is represented as
a temporal sequence Xm = {xm

1 , xm
2 , xm

3 ,�, xm
T },

where xm
t is the input at time t. Each sequence Xm

is modeled with an intra-modal recurrent neural
network (see subsection 3.3 for details). At time t,
each intra-modal recurrent network will output a
unimodal representation hm

t . The Multistage Fu-
sion Process uses a recursive approach to fuse all
unimodal representations hm

t into a cross-modal
representation zt which is then fed back into each
intra-modal recurrent network.

3.1 Multistage Fusion Process

The Multistage Fusion Process (MFP) is a modular
neural approach that performs multistage fusion to
model cross-modal interactions. Multistage fusion
is a divide-and-conquer approach which decreases
the burden on each stage of multimodal fusion,
allowing each stage to be performed in a more spe-
cialized and effective way. The MFP has three main
modules: HIGHLIGHT, FUSE and SUMMARIZE.

Two modules are repeated at each stage:
HIGHLIGHT and FUSE. The HIGHLIGHT mod-
ule identifies a subset of multimodal signals from
[hl

t,h
v
t ,h

a
t ] that will be used for that stage of fu-

sion. The FUSE module then performs two sub-
tasks simultaneously: a local fusion of the high-
lighted features and integration with representa-
tions from previous stages. Both HIGHLIGHT
and FUSE modules are realized using memory-
based neural networks which enable coherence
between stages and storage of previously mod-
eled cross-modal interactions. As a final step, the
SUMMARIZE module takes the multimodal repre-
sentation of the final stage and translates it into a
cross-modal representation zt.

Figure 1 shows an illustrative example for mul-
tistage fusion. The HIGHLIGHT module selects
“neutral words” and “frowning” expression for the
first stage. The local and integrated fusion at this
stage creates a representation reflecting negative
emotion. For stage 2, the HIGHLIGHT module
identifies the acoustic feature “loud voice”. The
local fusion at this stage interprets it as an expres-
sion of emphasis and is fused with the previous
fusion results to represent a strong negative emo-
tion. Finally, the highlighted features of “shrug”
and “speech elongation” are selected and are lo-
cally interpreted as “ambivalence”. The integration
with previous stages then gives a representation
closer to “disappointed”.

3.2 Module Descriptions

In this section, we present the details of the three
multistage fusion modules: HIGHLIGHT, FUSE
and SUMMARIZE. Multistage fusion begins with
the concatenation of intra-modal network outputs
ht =�m∈M hm

t . We use superscript [k] to denote
the indices of each stage k = 1,�,K during K
total stages of multistage fusion. Let ⇥ denote the
neural network parameters across all modules.
HIGHLIGHT: At each stage k, a subset of the

multimodal signals represented in ht will be au-
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Figure 2: The Recurrent Multistage Fusion Network for multimodal language analysis. The Multistage
Fusion Process has three modules: HIGHLIGHT, FUSE and SUMMARIZE. Multistage fusion begins
with the concatenated intra-modal network outputs hl

t,h
v
t ,h

a
t . At each stage, the HIGHLIGHT module

identifies a subset of multimodal signals and the FUSE module performs local fusion before integration
with previous fusion representations. The SUMMARIZE module translates the representation at the final
stage into a cross-modal representation zt to be fed back into the intra-modal recurrent networks.

tomatically highlighted for fusion. Formally, this
module is defined by the process function fH :

a[k]t = fH(ht ; a[1∶k−1]t ,⇥) (1)

where at stage k, a[k]t is a set of attention weights
which are inferred based on the previously as-
signed attention weights a[1∶k−1]t . As a result,
the highlights at a specific stage k will be depen-
dent on previous highlights. To fully encapsu-
late these dependencies, the attention assignment
process is performed in a recurrent manner using
a LSTM which we call the HIGHLIGHT LSTM.
The initial HIGHLIGHT LSTM memory at stage
0, cHIGHLIGHT[0]t , is initialized using a networkM
that maps ht into LSTM memory space:

cHIGHLIGHT[0]t =M(ht ; ⇥) (2)

This allows the memory mechanism of the
HIGHLIGHT LSTM to dynamically adjust to the
intra-modal representations ht. The output of the
HIGHLIGHT LSTM hHIGHLIGHT[k]t is softmax ac-
tivated to produce attention weights a[k]t at every
stage k of the multistage fusion process:

a[k]t j =
exp (hHIGHLIGHT[k]t j)

∑�h
HIGHLIGHT[k]
t �

d=1 exp (hHIGHLIGHT[k]t d)
(3)

and a[k]t is fed as input into the HIGHLIGHT
LSTM at stage k + 1. Therefore, the HIGHLIGHT
LSTM functions as a decoder LSTM (Sutskever

et al., 2014; Cho et al., 2014) in order to capture the
dependencies on previous attention assignments.
Highlighting is performed by element-wise multi-
plying the attention weights a[k]t with the concate-
nated intra-modal representations ht:

h̃[k]t = ht ⊙ a[k]t (4)

where ⊙ denotes the Hadamard product and h̃[k]t
are the attended multimodal signals that will be
used for the fusion at stage k.
FUSE: The highlighted multimodal signals are

simultaneously fused in a local fusion and then in-
tegrated with fusion representations from previous
stages. Formally, this module is defined by the
process function fF :

s[k]t = fF (h̃[k]t ; s[1∶k−1]t ,⇥) (5)

where s[k]t denotes the integrated fusion represen-
tations at stage k. We employ a FUSE LSTM to
simultaneously perform the local fusion and the
integration with previous fusion representations.
The FUSE LSTM input gate enables a local fusion
while the FUSE LSTM forget and output gates en-
able integration with previous fusion results. The
initial FUSE LSTM memory at stage 0, cFUSE[0]t , is
initialized using random orthogonal matrices (Ar-
jovsky et al., 2015; Le et al., 2015).
SUMMARIZE: After completing K recur-

sive stages of HIGHLIGHT and FUSE, the
SUMMARIZE operation generates a cross-modal
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representation using all final fusion representations
s[1∶K]t . Formally, this operation is defined as:

zt = S(s[1∶K]t ; ⇥) (6)

where zt is the final output of the multistage fusion
process and represents all cross-modal interactions
discovered at time t. The summarized cross-modal
representation is then fed into the intra-modal re-
current networks as described in the subsection 3.3.

3.3 System of Long Short-term Hybrid
Memories

To integrate the cross-modal representations zt

with the temporal intra-modal representations, we
employ a system of Long Short-term Hybrid Mem-
ories (LSTHMs) (Zadeh et al., 2018b). The
LSTHM extends the LSTM formulation to include
the cross-modal representation zt in a hybrid mem-
ory component:

i
m
t+1 = �(Wm
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where � is the (hard-)sigmoid activation function,
tanh is the tangent hyperbolic activation function,
⊙ denotes the Hadamard product. i, f and o are
the input, forget and output gates respectively. c̄m

t+1
is the proposed update to the hybrid memory cm

t

at time t + 1 and hm
t is the time distributed output

of each modality. The cross-modal representation
zt is modeled by the Multistage Fusion Process as
discussed in subsection 3.2. The hybrid memory
cm

t contains both intra-modal interactions from in-
dividual modalities xm

t as well as the cross-modal
interactions captured in zt.

3.4 Optimization
The multimodal prediction task is performed using
a final representation E which integrate (1) the last
outputs from the LSTHMs and (2) the last cross-
modal representation zT . Formally, E is defined as:

E = (�
m∈M

hm
T )�zT (13)

where� denotes vector concatenation. E can then
be used as a multimodal representation for super-
vised or unsupervised analysis of multimodal lan-
guage. It summarizes all modeled intra-modal

and cross-modal representations from the multi-
modal sequences. RMFN is differentiable end-to-
end which allows the network parameters ⇥ to be
learned using gradient descent approaches.

4 Experimental Setup

To evaluate the performance and generalization of
RMFN, three domains of human multimodal lan-
guage were selected: multimodal sentiment analy-
sis, emotion recognition, and speaker traits recog-
nition.

4.1 Datasets

All datasets consist of monologue videos. The
speaker’s intentions are conveyed through three
modalities: language, visual and acoustic.
Multimodal Sentiment Analysis involves analyz-
ing speaker sentiment based on video content. Mul-
timodal sentiment analysis extends conventional
language-based sentiment analysis to a multimodal
setup where both verbal and non-verbal signals
contribute to the expression of sentiment. We use
CMU-MOSI (Zadeh et al., 2016) which consists
of 2199 opinion segments from online videos each
annotated with sentiment in the range [-3,3].
Multimodal Emotion Recognition involves iden-
tifying speaker emotions based on both verbal and
nonverbal behaviors. We perform experiments on
the IEMOCAP dataset (Busso et al., 2008) which
consists of 7318 segments of recorded dyadic dia-
logues annotated for the presence of human emo-
tions happiness, sadness, anger and neutral.
Multimodal Speaker Traits Recognition in-
volves recognizing speaker traits based on multi-
modal communicative behaviors. POM (Park et al.,
2014) contains 903 movie review videos each an-
notated for 12 speaker traits: confident (con), pas-
sionate (pas), voice pleasant (voi), credible (cre),
vivid (viv), expertise (exp), reserved (res), trusting
(tru), relaxed (rel), thorough (tho), nervous (ner),
persuasive (per) and humorous (hum).

4.2 Multimodal Features and Alignment

GloVe word embeddings (Pennington et al., 2014),
Facet (iMotions, 2017) and COVAREP (Degottex
et al., 2014) are extracted for the language, visual
and acoustic modalities respectively 1. Forced
alignment is performed using P2FA (Yuan and
Liberman, 2008) to obtain the exact utterance times

1Details on feature extraction are in supplementary.
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Dataset CMU-MOSI
Task Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑
SOTA3 76.5◇ 74.5† 33.2# 0.968§ 0.622♭

SOTA2 77.1§ 77.0§ 34.1� 0.965� 0.625§

SOTA1 77.4� 77.3� 34.7§ 0.955◇ 0.632�

RMFN 78.4 78.0 38.3 0.922 0.681
�SOT A ↑ 1.0 ↑ 0.7 ↑ 3.6 ↓ 0.033 ↑ 0.049

Table 1: Sentiment prediction results on CMU-
MOSI. Best results are highlighted in bold and
�SOTA shows improvement over previous state of
the art (SOTA). Symbols denote baseline model
which achieves the reported performance: MFN:
�, MARN: §, GME-LSTM(A): ◇, TFN: †, MV-
LSTM: #, EF-LSTM: ♭. The RMFN outperforms
the current SOTA across all evaluation metrics. Im-
provements are highlighted in green.
Dataset IEMOCAP Emotions
Task Happy Sad Angry Neutral
Metric A2 ↑ F1 ↑ A2 ↑ F1 ↑ A2 ↑ F1 ↑ A2 ↑ F1 ↑
SOTA3 86.1× 83.6§ 83.2● 81.7● 85.0� 84.2§ 68.2♭ 66.7#

SOTA2 86.5� 84.0� 83.4† 82.1� 85.1# 84.3# 68.8♭ 68.5♭

SOTA1 86.7§ 84.2♭ 83.5� 82.8† 85.2♭ 84.5♭ 69.6� 69.2�

RMFN 87.5 85.8 83.8 82.9 85.1 84.6 69.5 69.1
�SOT A ↑ 0.8 ↑ 1.6 ↑ 0.3 ↑ 0.1 – ↑ 0.1 – –

Table 2: Emotion recognition results on IEMOCAP.
Best results are highlighted in bold and �SOTA

shows improvement over previous SOTA. Symbols
denote baseline model which achieves the reported
performance: MFN: �, MARN: §, BC-LSTM: ●,
TFN: †, MV-LSTM: #, EF-LSTM: ♭, SVM: ×.
The RMFN outperforms the current SOTA across
evaluation metrics except �SOTA entries in gray.
Improvements are highlighted in green.

of each word. We obtain the aligned video and au-
dio features by computing the expectation of their
modality feature values over each word utterance
time interval (Tsai et al., 2018).

4.3 Baseline Models

We compare to the following models for mul-
timodal machine learning: MFN (Zadeh et al.,
2018a) synchronizes multimodal sequences using a
multi-view gated memory. It is the current state of
the art on CMU-MOSI and POM. MARN (Zadeh
et al., 2018b) models intra-modal and cross-modal
interactions using multiple attention coefficients
and hybrid LSTM memory components. GME-
LSTM(A) (Chen et al., 2017) learns binary gating
mechanisms to remove noisy modalities that are
contradictory or redundant for prediction. TFN
(Zadeh et al., 2017) models unimodal, bimodal
and trimodal interactions using tensor products.

BC-LSTM (Poria et al., 2017) performs context-
dependent sentiment analysis and emotion recog-
nition, currently state of the art on IEMOCAP. EF-
LSTM concatenates the multimodal inputs and
uses that as input to a single LSTM (Hochreiter
and Schmidhuber, 1997b). We also implement
the Stacked, (EF-SLSTM) (Graves et al., 2013)
Bidirectional (EF-BLSTM) (Schuster and Paliwal,
1997) and Stacked Bidirectional (EF-SBLSTM)
LSTMs. For descriptions of the remaining base-
lines, we refer the reader to EF-HCRF (Quattoni
et al., 2007), EF/MV-LDHCRF (Morency et al.,
2007), MV-HCRF (Song et al., 2012), EF/MV-
HSSHCRF (Song et al., 2013), MV-LSTM (Ra-
jagopalan et al., 2016), DF (Nojavanasghari et al.,
2016), SAL-CNN (Wang et al., 2016), C-MKL
(Poria et al., 2015), THMM (Morency et al., 2011),
SVM (Cortes and Vapnik, 1995; Park et al., 2014)
and RF (Breiman, 2001).

4.4 Evaluation Metrics

For classification, we report accuracy Ac where c
denotes the number of classes and F1 score. For re-
gression, we report Mean Absolute Error MAE and
Pearson’s correlation r. For MAE lower values in-
dicate stronger performance. For all remaining met-
rics, higher values indicate stronger performance.

5 Results and Discussion

5.1 Performance on Multimodal Language

Results on CMU-MOSI, IEMOCAP and POM are
presented in Tables 1, 2 and 3 respectively2. We
achieve state-of-the-art or competitive results for
all domains, highlighting RMFN’s capability in hu-
man multimodal language analysis. We observe
that RMFN does not improve results on IEMO-
CAP neutral emotion and the model outperforming
RMFN is a memory-based fusion baseline (Zadeh
et al., 2018a). We believe that this is because neu-
tral expressions are quite idiosyncratic. Some peo-
ple may always look angry given their facial config-
uration (e.g., natural eyebrow raises of actor Jack
Nicholson). In these situations, it becomes useful
to compare the current image with a memorized
or aggregated representation of the speaker’s face.
Our proposed multistage fusion approach can eas-
ily be extended to memory-based fusion methods.

2Results for all individual baseline models are in supple-
mentary. State-of-the-art (SOTA)1/2/3 represent the three best
performing baseline models on each dataset.
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Dataset POM Speaker Personality Traits
Task Con Pas Voi Cre Viv Exp Res Rel Tho Ner Per Hum
Metric A7 ↑ A7 ↑ A7 ↑ A7 ↑ A7 ↑ A7 ↑ A5 ↑ A5 ↑ A5 ↑ A5 ↑ A7 ↑ A6 ↑
SOTA3 26.6● 31.0† 34.0♭ 29.6♭ 35.0§ 31.0♭ 34.0♡ 50.7# 45.8● 44.8♭ 28.1× 40.4♡

SOTA2 29.1§ 34.0§ 34.5§ 31.5§ 36.5● 31.5§ 36.9§ 52.2§ 46.8§ 47.3§ 31.0§ 44.8§

SOTA1 34.5� 35.5� 37.4� 34.5� 36.9� 36.0� 38.4� 53.2� 47.3� 47.8� 34.0� 47.3�

RMFN 37.4 38.4 37.4 37.4 38.9 38.9 39.4 53.7 48.3 48.3 35.0 46.8
�SOT A ↑ 2.9 ↑ 2.9 0.0 ↑ 2.9 ↑ 2.0 ↑ 3.9 ↑ 1.0 ↑ 0.5 ↑ 1.0 ↑ 0.5 ↑ 1.0 –

Table 3: Results for personality trait recognition on POM. Best results are highlighted in bold and �SOTA

shows improvement over previous SOTA. Symbols denote baseline model which achieves the reported
performance: MFN: �, MARN: §, BC-LSTM: ●, TFN: †, MV-LSTM: #, EF-LSTM: ♭, RF: ♡, SVM:
×. The MFP outperforms the current SOTA across all evaluation metrics except the �SOTA entries
highlighted in gray. Improvements are highlighted in green.

Dataset CMU-MOSI
Task Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑
RMFN-R1 75.5 75.5 35.1 0.997 0.653
RMFN-R2 76.4 76.4 34.5 0.967 0.642
RMFN-R3 78.4 78.0 38.3 0.922 0.681
RMFN-R4 76.0 76.0 36.0 0.999 0.640
RMFN-R5 75.5 75.5 30.9 1.009 0.617
RMFN-R6 70.4 70.5 30.8 1.109 0.560
RMFN 78.4 78.0 38.3 0.922 0.681

Table 4: Effect of varying the number of stages on
CMU-MOSI sentiment analysis performance. Mul-
tistage fusion improves performance as compared
to single stage fusion.
Dataset CMU-MOSI
Task Sentiment
Metric A2 ↑ F1 ↑ A7 ↑ MAE ↓ Corr ↑
MARN 77.1 77.0 34.7 0.968 0.625
RMFN (no MFP) 76.5 76.5 30.8 0.998 0.582
RMFN (no HIGHLIGHT) 77.9 77.9 35.9 0.952 0.666
RMFN 78.4 78.0 38.3 0.922 0.681

Table 5: Comparison studies of RMFN on CMU-
MOSI. Modeling cross-modal interactions using
multistage fusion and attention weights are crucial
in multimodal language analysis.

5.2 Analysis of Multistage Fusion

To achieve a deeper understanding of the multi-
stage fusion process, we study five research ques-
tions. (Q1): whether modeling cross-modal inter-
actions across multiple stages is beneficial. (Q2):
the effect of the number of stages K during multi-
stage fusion on performance. (Q3): the comparison
between multistage and independent modeling of
cross-modal interactions. (Q4): whether modeling
cross-modal interactions are helpful. (Q5): whether
attention weights from the HIGHLIGHT module
are required for modeling cross-modal interactions.
Q1: To study the effectiveness of the multistage fu-
sion process, we test the baseline RMFN-R1 which
performs fusion in only one stage instead of across

multiple stages. This model makes the strong as-
sumption that all cross-modal interactions can be
modeled during only one stage. From Table 4,
RMFN-R1 underperforms as compared to RMFN
which performs multistage fusion.
Q2: We test baselines RMFN-RK which perform
K stages of fusion. From Table 4, we observe
that increasing the number of stages K increases
the model’s capability to model cross-modal in-
teractions up to a certain point (K = 3) in our
experiments. Further increases led to decreases
in performance and we hypothesize this is due to
overfitting on the dataset.
Q3: To compare multistage against independent
modeling of cross-modal interactions, we pay close
attention to the performance comparison with re-
spect to MARN which models multiple cross-
modal interactions all at once (see Table 5). RMFN
shows improved performance, indicating that mul-
tistage fusion is both effective and efficient for hu-
man multimodal language modeling.
Q4: RMFN (no MFP) represents a system of
LSTHMs without the integration of zt from the
MFP to model cross-modal interactions. From Ta-
ble 5, RMFN (no MFP) is outperformed by RMFN,
confirming that modeling cross-modal interactions
is crucial in analyzing human multimodal language.
Q5: RMFN (no HIGHLIGHT) removes the
HIGHLIGHT module from MFP during multistage
fusion. From Table 5, RMFN (no HIGHLIGHT)
underperforms, indicating that highlighting multi-
modal representations using attention weights are
important for modeling cross-modal interactions.

5.3 Visualizations
Using an attention assignment mechanism during
the HIGHLIGHT process gives more interpretabil-
ity to the model since it allows us to visualize
the attended multimodal signals at each stage and
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Figure 3: Visualization of learned attention weights across stages 1,2 and 3 of the multistage fusion process
and across time of the multimodal sequence. We observe that the attention weights are diverse and evolve
across stages and time. In these three examples, the red boxes emphasize specific moments of interest. (a)
Synchronized interactions: the positive word “fun” and the acoustic behaviors of emphasis and elongation
(t = 5) are synchronized in both attention weights for language and acoustic features. (b) Asynchronous
trimodal interactions: the asynchronous presence of a smile (t = 2 ∶ 5) and emphasis (t = 3) help to
disambiguate the language modality. (c) Bimodal interactions: the interactions between the language and
acoustic modalities are highlighted by alternating stages of fusion (t = 4 ∶ 7).

time step (see Figure 3). Using RMFN trained
on the CMU-MOSI dataset, we plot the attention
weights across the multistage fusion process for
three videos in CMU-MOSI. Based on these vi-
sualizations we first draw the following general
observations on multistage fusion:
Across stages: Attention weights change their be-
haviors across the multiple stages of fusion. Some
features are highlighted by earlier stages while
other features are used in later stages. This supports
our hypothesis that RMFN learns to specialize in
different stages of the fusion process.
Across time: Attention weights vary over time and
adapt to the multimodal inputs. We observe that the
attention weights are similar if the input contains
no new information. As soon as new multimodal
information comes in, the highlighting mechanism
in RMFN adapts to these new inputs.
Priors: Based on the distribution of attention
weights, we observe that the language and acoustic
modalities seem the most commonly highlighted.
This represents a prior over the expression of senti-
ment in human multimodal language and is closely
related to the strong connections between language
and speech in human communication (Kuhl, 2000).
Inactivity: Some attention coefficients are not ac-
tive (always orange) throughout time. We hypoth-
esize that these corresponding dimensions carry

only intra-modal dynamics and are not involved in
the formation of cross-modal interactions.

5.4 Qualitative Analysis

In addition to the general observations above, Fig-
ure 3 shows three examples where multistage
fusion learns cross-modal representations across
three different scenarios.
Synchronized Interactions: In Figure 3(a), the
language features are highlighted corresponding
to the utterance of the word “fun” that is highly
indicative of sentiment (t = 5). This sudden change
is also accompanied by a synchronized highlight-
ing of the acoustic features. We also notice that the
highlighting of the acoustic features lasts longer
across the 3 stages since it may take multiple stages
to interpret all the new acoustic behaviors (elon-
gated tone of voice and phonological emphasis).
Asynchronous Trimodal Interactions: In Fig-
ure 3(b), the language modality displays ambigu-
ous sentiment: “delivers a lot of intensity” can be
inferred as both positive or negative. We observe
that the circled attention units in the visual and
acoustic features correspond to the asynchronous
presence of a smile (t = 2 ∶ 5) and phonological
emphasis (t = 3) respectively. These nonverbal be-
haviors resolve ambiguity in language and result in
an overall display of positive sentiment. We further
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note the coupling of attention weights that highlight
the language, visual and acoustic features across
stages (t = 3 ∶ 5), further emphasizing the coordina-
tion of all three modalities during multistage fusion
despite their asynchronous occurrences.
Bimodal Interactions: In Figure 3(c), the lan-
guage modality is better interpreted in the context
of acoustic behaviors. The disappointed tone and
soft voice provide the nonverbal information useful
for sentiment inference. This example highlights
the bimodal interactions (t = 4 ∶ 7) in alternating
stages: the acoustic features are highlighted more
in earlier stages while the language features are
highlighted increasingly in later stages.

6 Conclusion

This paper proposed the Recurrent Multistage Fu-
sion Network (RMFN) which decomposes the mul-
timodal fusion problem into multiple stages, each
focused on a subset of multimodal signals. Ex-
tensive experiments across three publicly-available
datasets reveal that RMFN is highly effective in
modeling human multimodal language. In addi-
tion to achieving state-of-the-art performance on all
datasets, our comparisons and visualizations reveal
that the multiple stages coordinate to capture both
synchronous and asynchronous multimodal inter-
actions. In future work, we are interested in merg-
ing our model with memory-based fusion methods
since they have complementary strengths as dis-
cussed in subsection 5.1.
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Abstract

We introduce an effective and efficient method
that grounds (i.e., localizes) natural sentences
in long, untrimmed video sequences. Specif-
ically, a novel Temporal GroundNet (TGN)1

is proposed to temporally capture the evolv-
ing fine-grained frame-by-word interactions
between video and sentence. TGN sequen-
tially scores a set of temporal candidates ended
at each frame based on the exploited frame-
by-word interactions, and finally grounds the
segment corresponding to the sentence. Un-
like traditional methods treating the overlap-
ping segments separately in a sliding window
fashion, TGN aggregates the historical infor-
mation and generates the final grounding re-
sult in one single pass. We extensively evalu-
ate our proposed TGN on three public datasets
with significant improvements over the state-
of-the-arts. We further show the consistent ef-
fectiveness and efficiency of TGN through an
ablation study and a runtime test.

1 Introduction

We examine the task of Natural Sentence Ground-
ing in Video (NSGV). Given an untrimmed video
and a natural sentence, the goal is to determine
the start and end timestamps of the segment in
the video which corresponds to the given sen-
tence, as shown in Figure 1 (a). Comparing with
the other video researches, such as bidirectional
video-sentence retrieval (Xu et al., 2015b), video
attractiveness prediction (Chen et al., 2018, 2016),
and video captioning (Pasunuru and Bansal, 2017;
Wang et al., 2018a,b), NSGV needs to model not
only the characteristics of sentence and video but
also the fine-grained interactions between the two
modalities, which is even more challenging.

⇤ Work done while Jingyuan Chen and Xinpeng Chen
were Research Interns with Tencent AI Lab.

1 The project homepage is https://
jingyuanchen.github.io/archive/tgn.html.
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Figure 1: (a) The Natural Sentence Grounding in Video
(NSGV) task. (b) A common space based matching
method performs in a sliding window fashion. (c)
Our proposed Temporal GroundNet (TGN) localizes
the candidate video segments at multiple scales in a
single processing pass. The frames in the video and
the words in the sentence interact attentively to perform
fine-grained frame-by-word matchings for grounding
sentence in video.

Recently, several related works (Gao et al.,
2017; Hendricks et al., 2017) leverage one tempo-
ral sliding window approach over video sequences
to generate video segment candidates, which are
then independently combined (Gao et al., 2017) or
compared (Hendricks et al., 2017) with the given
sentence to make the grounding prediction. Al-
though the existing works have achieved promis-
ing performances, they are still suffering from in-
ferior effectiveness and efficiency. First, existing
methods project the video segment and sentence
into one common space, as shown in Figure 1 (b),
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where the two generated embedding vectors are
used to perform the matching between video seg-
ment and sentence. Such a matching is only per-
formed in the global segment and sentence level
and thus not expressive enough, which ignores
the fine-grained matching relations between video
frames and the words in sentences. Second, in or-
der to handle the diverse temporal scales and loca-
tions of the candidate segments, exhaustive match-
ing between the large amount of overlapping seg-
ments and the sentence is required. As such, the
sliding window methods are very computationally
expensive.

In order to tackle the above two limitations,
we introduce a novel Temporal GroundNet (TGN)
model, the first dynamic single-stream deep archi-
tecture for the NSGV task that takes full advantage
of fine-grained interactions between video frames
and words in a sentence, as shown in Figure 1 (c).
TGN sequentially processes video frames, where
at each time step we rely on a novel multimodal in-
teractor to exploit the evolving fine-grained frame-
by-word interactions. Then, TGN works on the
yielded interaction status to simultaneously score
a set of temporal candidates of multiple scales and
finally localize the video segment that corresponds
to the sentence. More importantly, our proposed
TGN is able to analyze an untrimmed video frame
by frame without resorting to handling overlap-
ping temporal video segments.

2 Related Work

2.1 Grounding Natural Language in Image
Grounding natural language in image is also
known as natural language object retrieval. The
task is to localize an image region described by
natural language, which involves comprehend-
ing and modeling different spatial contexts, such
as spatial configurations (Hu et al., 2016), at-
tributes (Yu et al., 2018), and relationships be-
tween objects (Hu et al., 2017). Specifically, the
task is usually formulated as a ranking problem
over a set of candidate regions in a given image,
where candidate spatial locations come from re-
gion proposal methods (Uijlings et al., 2013; Jie
et al., 2016b,a; Ren et al., 2017) such as Edge-
Box (Zitnick and Dollár, 2014). Earlier stud-
ies (Mao et al., 2016; Rohrbach et al., 2016) score
the generated candidate regions according to their
appearances and spatial features along with fea-
tures of the entire image. However, these meth-

ods fail to incorporate the interactions between ob-
jects, because the scoring process of each region
proposal is isolated. More recent studies (Hu et al.,
2017; Nagaraja et al., 2016) improve the perfor-
mance with the aid of modeling relationships be-
tween objects.

2.2 Grounding Natural Language in Video

Analogous to spatial grounding in image, this
work studies a similar problem—temporal natural
language grounding in video. Earlier works (Yu
and Siskind, 2013; Lin et al., 2014) learn the se-
mantics of sentences, which are then matched to
visual concepts via exploiting object appearance,
motion and spatial relationships. However, they
are limited to a small set of objects. Recently,
larger datasets (Gao et al., 2017; Hendricks et al.,
2017) are constructed to support more flexible
groundings. The methods proposed in (Gao et al.,
2017; Hendricks et al., 2017) learn a common
embedding space shared by video segment fea-
tures and sentence representations, in which their
similarities are measured. Specifically, moment
context network (MCN) (Hendricks et al., 2017)
learns a shared embedding for video clip-level fea-
tures and language features. The video features
integrate local video features, global features, and
temporal endpoint features. Cross-modal tempo-
ral regression localizer (CTRL) (Gao et al., 2017)
contains four modules, specifically a visual en-
coder extracting clip-level features with context, a
sentence encoder yielding its embedding through
LSTM, a multimodal processing network generat-
ing the fused representations via element-wise op-
erations, and a temporal regression network pro-
ducing the alignment scores and location offsets.
One limitation of those common space matching
methods is that the video segment generation pro-
cess is computationally expensive, as they carry
out overlapping sliding window matching (Gao
et al., 2017) or exhaustive search (Hendricks et al.,
2017). Another weakness is that they exploit the
relationships between textual and visual modali-
ties by conducting a simple concatenation (Gao
et al., 2017) or measuring a squared distance
loss (Hendricks et al., 2017), which ignores the
evolving fine-grained video-sentence interactions.
In this paper, a novel model TGN is proposed to
deal with the aforementioned limitations for the
task of natural sentence grounding in video.
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3 Approach

Given a long and untrimmed video sequence V
and a natural sentence S, the NSGV task is to lo-
calize a video segment Vs = {ft}te

t=tb
from V , be-

ginning at tb and ending at te, which corresponds
to and expresses the same semantic meaning as the
given sentence S. In order to perform the ground-
ing, each video is represented as V = {ft}T

t=1,
where T is the total number of frames and ft de-
notes the feature representation of the t-th video
frame. Similarly, each sentence is represented as
S = {wn}N

n=1, where wn is the embedding vector
of the n-th word in the sentence and N denotes the
total number of words.

We propose a novel model, namely Temporal
GroundNet (TGN), to tackle the NSGV problem.
As illustrated in Figure 2, TGN consists of three
modules. 1) Encoder: visual and textual encoders
are used to compose the video frame representa-
tions and word embeddings, respectively. 2) Inter-
actor: a multimodal interactor learns the frame-by-
word interactions between the video and sentence.
3) Grounder: a grounder generates the temporal
localization in one single pass. Please note that
these three modules are fully coupled together,
which can thus be trained in an end-to-end fash-
ion.

3.1 Encoder
With the obtained video frame features V =
{ft}T

t=1 and word embeddings of the sentence
S = {wn}N

n=1, we employ two long short-
term memory networks (LSTMs) (Hochreiter and
Schmidhuber, 1997) to sequentially process the
two different modalities, i.e., video and sentence,
independently. Specifically, one LSTM sequen-
tially models the video V , yielding the hidden
states {hv

t }T
t=1, while the other LSTM processes

the sequential words in the sentence S, resulting in
its corresponding hidden states {hs

n}N
n=1. Owing

to natural behaviors and characteristics of LSTMs,
both {hv

t }T
t=1 and {hs

n}N
n=1 can encode and ag-

gregate the contextual evidences (Wang and Jiang,
2016b) from the sequential video frame represen-
tations and word embeddings of the sentence, re-
spectively, meanwhile casting aside the irrelevant
information.

3.2 Interactor
Based on the hidden states of the video and sen-
tence yielded from the leveraged encoders, we de-

i!LSTM i"LSTMi"LSTM i"LSTM

K"grounding"candidates
δ

δ⋅2
δ⋅3

δ⋅K

...... ......

A woman reels a

Encoder

Interactor

Grounder

...

...

...

...

confidence"scores

+

...

...

Figure 2: The architecture of our proposed TGN
model. TGN consists of three modules. The visual and
textural encoders aggregate the contextual evidences
from the sequential video frame representations and
word embeddings of the sentence, respectively. The
multimodal interactor learns the fine-grained frame-by-
word interactions between the video and sentence. The
grounder yields the temporal grounding of the sentence
in the video sequence via one single pass.

sign a multimodal interactor to perform the frame-
by-word interactions between the video and sen-
tence. First, the frame-specific sentence feature is
generated through summarizing the sentence hid-
den states by considering their relationships with
the specific video frame at each time step. Af-
terwards, an interaction LSTM, dubbed i-LSTM,
is performed to aggregate frame-by-word interac-
tions.

3.2.1 Frame-Specific Sentence Feature
Directly operating on the clip-level and sentence-
level features generated by the encoders cannot
well exploit the frame-by-word relationships be-
tween video and sentence that evolve over time.
Inspired by (Wang and Jiang, 2016a; Feng et al.,
2018), we introduce one novel frame-specific sen-
tence feature, which adaptively summarizes the
hidden states of the sentence {hs

n}N
n=1 with re-

spect to the t-th video frame:

Hs
t =

NX

n=1

↵n
t h

s
n, (1)

where Hs
t denotes the summarized sentence rep-

resentation specified by the t-th video frame. At
each time step t, we utilize the hidden state hv

t to
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selectively attend the words and summarize them
accordingly. The attention weight ↵n

t encodes the
degree to which the n-th word in the sentence is
aligned with the t-th video frame. As the pro-
cessing of video frames proceeds, the attention
weights dynamically change regarding to the cur-
rent video frame. As such, the generated frame-
specific sentence features {Hs

t}T
t=1 consider the

frame-by-word relationships between all the video
frames and all the words in the sentence.

As the generation of frame-specific sentence
feature is deeply coupled with the following inter-
action LSTM, we will explain the calculation of
the attention weight ↵n

t later.

3.2.2 Interaction LSTM (i-LSTM)
In order to accurately ground the sentence in a
video, the multimodal interation behaviors be-
tween the video and sentence need to be com-
prehensively modeled. Previous approaches on
multimodal interactions were limited to concate-
nation (Zhu et al., 2016), element-wise product or
sum (Gao et al., 2017), and bilinear pooling (Fukui
et al., 2016). These methods are not expressive
enough since they ignore the evolving fine-grained
interactions across video and sentence, particu-
larly the frame-by-word interactions. In this paper,
we propose a novel multimodal interaction model,
which is realized by LSTM. We term it interaction
LSTM (i-LSTM), which sequentially processes
the video sequence frame by frame, holding deep
interactions with the words in the sentence.

In order to well capture the complicated tempo-
ral interactions between the video and sentence, at
each time step t, the input of the i-LSTM is formed
by concatenating the t-th video hidden state hv

t

and the t-th frame-specific sentence feature Hs
t as:

rt = hv
t k Hs

t . rt is then fed into the i-LSTM unit
to yield the t-th intermediate interaction status be-
tween the video and sentence:

hr
t = i-LSTM(rt,h

r
t�1), (2)

where hr
t is the yielded hidden state, encoding

the fine-grained interactions between the word and
video frame. hr

t will be further used to perform the
grounding process. Due to the inherent properties
and characteristics of LSTMs, important cues re-
garding to grounding up to the current stage will
be “remembered”, while non-essential ones will
be “forgotten”.

Now we go back to the generation of attention
weight ↵n

t in Eq. (1), based on the obtained vi-

sual hidden states hv
t and textual hidden state hs

n

as well as the yielded interaction status hr
t�1 in

the previous step. The widely used soft-attention
mechanism (Xu et al., 2015a; Chen et al., 2017) is
used to generate the attention weights in a frame-
by-word manner. As aforementioned, the i-LSTM
models the evolving frame-by-word interactions
between the sentence and video. Therefore, the at-
tention weight between the n-th word hs

n and the
t-th video frame hv

t is determined by not only the
content of the video and sentence but also their in-
teraction status. Thus, we design one network to
compute the relevance score of one video frame
with respect to each word:

�n
t = w

| tanh(WS
h

s
n+W

V
h

v
t +W

R
h

r
t�1+b)+c, (3)

where vector w, matrices W⇤, bias vector b, and
bias c are the network parameters to be learned.
hr

t�1 is the hidden state of the i-LSTM at t � 1
time step. The final word-level attention weights
are obtained by:

↵n
t =

exp(�n
t )

PN
j=1 exp(�j

t )
. (4)

The obtained attention weight ↵n
t is thereafter to

generate the frame-specific sentence feature as in
Eq. (1).

3.3 Grounder

In this section, we introduce the grounder, which
works on the yielded interaction status hr

t from
i-LSTM, to localize the video segment that cor-
responds to the sentence. Our proposed grounder
works in one single pass without introducing over-
lapping sliding windows, which thus results in
a fast runtime. As shown in Figure 2, at each
time step t, the grounder efficiently scores a set of
K grounding candidates by considering multiple
time scales (Buch et al., 2017) that end at time step
t. Specifically, we use different K for different
datasets, which is determined by the distribution
of the lengths of all ground-truth groundings in a
certain dataset. To simplify the following discus-
sions, the lengths of K time scales are assumed to
be an arithmetic sequence with the common differ-
ence � and all the temporal candidates are sorted
by increasing lengths. In other words, the length
of the k-th candidate is k�. Note that all grounding
candidates considered at time t have a fixed ending
boundary.
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Specifically, at each time step t, the grounder
will classify each temporal candidate in consid-
eration as a positive grounding or a negative one
with respect to the given sentence. Considering
multiple time scales, the grounder will generate
the confidence scores Ct = (c1

t , c
2
t , ..., c

K
t ) that

correspond to the set of K visual grounding can-
didates, all ending at time step t. The hidden
state hr

t generated by i-LSTM at time t, repre-
senting the interaction status between the sentence
and video sequence up to the current position,
is naturally suited to yield the confidence scores
for the different time scales ending at time step
t. In this paper, the confidence scores, indicating
the sentence grounding, are generated by a fully-
connected layer with sigmoid nonlinearity:

Ct = �(WKhr
t + br

t ), (5)

where WK and br
t are the corresponding parame-

ters, and � denotes the nonlinear sigmoid function.

3.4 Training
The training samples collected in X for NSGV are
video-sentence pairs. Specifically, each video V
is temporally associated with a set of sentence an-
notations: A = {(Si, tbi , t

e
i )}M

i=1, where M is the
number of annotated sentences of the video, and
Si is a sentence description of a video clip, with
tbi and tei indicating the beginning and ending time
in the video. Each training sample corresponds to
a ground-truth matrix y 2 R

T⇥K with binary en-
tries. We use yk

t to denote the (t, k)-th entry of the
ground-truth matrix. yk

t is interpreted as whether
the k-th grounding candidate at time step t corre-
sponds to the given natural sentence. Concretely,
the entry yk

t is set as 1, indicating that the corre-
sponding video segment (ends at time step t with
length k�) has a temporal Intersection-over-Union
(IoU) with (tb, te) larger than a threshold ✓. Oth-
erwise yk

t is set as 0.
For a training pair (V, S) 2 X , the objective

at time step t is given by a weighted binary cross
entropy loss L(t, V, S):

�
KX

k=1

wk
0yk

t log ck
t +wk

1(1�yk
t ) log(1� ck

t ), (6)

where the weights wk
0 and wk

1 are calculated ac-
cording to the frequencies of positive and negative
samples in the training set with length k�. yk

t is
the ground-truth value and ck

t denotes the predic-
tion results by our proposed model.

Our TGN backpropagates at every time step t to
learn all the parameters of the fully-coupled three
modules: encoder, interactor, and grounder. The
objective of all training video-sentence pairs X is
defined as:

LX =
X

(V,S)2X

TX

t=1

L(t, V, S). (7)

3.5 Inference
During the inference stage, given a testing video
V and a sentence S, the textual and visual en-
coders first generate hidden states for each word
and video frame, respectively. Then, the interac-
tor sequentially goes through the video frame by
frame to yield the frame-by-word interaction sta-
tus. At each position t, a K-dimensional score
vector Ct is generated by the grounder. There-
fore, after processing the last frame in the video,
a T ⇥ K score matrix is obtained for the whole
video, with the (t, k)-th entry in the matrix indicat-
ing the probability that the video segment ended at
position t with length k� in video V corresponds
to sentence S. Eventually, the evaluation is re-
duced to a ranking problem over all the grounding
candidates based on the generated scores.

4 Experiments

In this section, we evaluate the effectiveness of
our proposed TGN on the NSGV task. We be-
gin by describing the datasets used for evaluation,
followed by the introduction of the experimental
settings including the baselines, configurations, as
well as the evaluation metrics. Afterwards, we
demonstrate the effectiveness of TGN by compar-
ing with the state-of-the-art approaches and effi-
ciency through a runtime test.

4.1 Datasets
We experiment on three publicly accessible
datasets: DiDeMo (Hendricks et al., 2017),
TACoS (Regneri et al., 2013), and ActivityNet
Captions (Fabian Caba Heilbron and Niebles,
2015). These datasets consist of videos as well as
their associated temporally annotated sentences.
DiDeMo2 consists of 10464 25-50 second long
videos. The same split provided by (Hendricks
et al., 2017) is used for a fair comparison, with
33008, 4180, and 4022 video-sentence pairs for
training, validation, and testing, respectively.

2https://goo.gl/JpbAhg.
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TACoS3 consists of 127 videos selected from the
MPII Cooking Composite Activities video cor-
pus (Rohrbach et al., 2012). The same split as
in (Gao et al., 2017) is used, consisting of 10146,
4589, and 4083 video-sentence pairs for training,
validation, and testing, respectively.
ActivityNet Captions4 consists of 19, 209 videos
amounting to 849 hours. The public split is used
for our experiments, which has 37421, 17505, and
17031 video-sentence pairs for training, valida-
tion, and testing, respectively.

4.2 Experimental Settings
4.2.1 Baselines
We compare our proposed TGN against the fol-
lowing two state-of-the-art models, specifically,
the MCN (Hendricks et al., 2017), CTRL (Gao
et al., 2017), visual-semantic alignment with
LSTM (VSA-RNN) (Karpathy and Li, 2015), and
visual-semantic alignment with skip thought vec-
tor (VSA-STV) (Kiros et al., 2015). For fair
comparisons, we compare the results of MCN on
DiDeMo and the results of CTRL, VSA-RNN,
VSA-STV on TACoS reported in their papers.

4.2.2 Evaluation Metrics
A grounding of one natural sentence in a video is
considered as “correct” if its temporal IoU with
the ground-truth boundary is above a threshold
✓. To be consistent with the baselines, we adopt
R@N , IoU=✓, and mean IoU (mIoU) as our eval-
uation metrics. R@N , IoU=✓ represents the per-
centage of testing samples which have at least one
of the top-N results with IoU larger than ✓. mIoU
means the average IoU over all testing samples.

4.2.3 Configurations
Generally, the video frame features are usually ex-
tracted with a time resolution. For the videos in
DiDeMo and TACoS, we sample every 5 second as
done by (Hendricks et al., 2017). As the videos in
DiDeMo are 25-30 second long, the video feature
length is reduced to 6. For videos in ActivityNet
Captions, we sample every second. To extract vi-
sual features, we consider both appearance and
optical flow features. Specifically, we study four
widely-used visual features: VGG16 (Simonyan
and Zisserman, 2014), C3D (Tran et al., 2015),
Inception-V4 (Szegedy et al., 2017), and optical
flow (Wang et al., 2016). Please note that when

3https://goo.gl/ajmsva.
4https://goo.gl/N355bG.

Table 1: Performance comparisons of different meth-
ods on DiDeMo. The best performance for each metric
entry is highlighted in boldface.

Method R@1
IoU=1

R@5
IoU=1 mIoU

MFP 19.40 66.38 26.65
MCN-VGG16 13.10 44.82 25.13
MCN-Flow 18.35 56.25 31.46
MCN-Fusion 19.88 62.39 33.51
MCN-Fusion+TEF 28.10 78.21 41.08
TGN-VGG16 24.28 71.43 38.62
TGN-Flow 27.52 76.94 42.84
TGN-Fusion 28.23 79.26 42.97

comparing with specific baseline methods, we use
the same features as baseline methods, specifi-
cally, VGG16 and optical flow for MCN and C3D
for CTRL, VSA-RNN, and VSA-STV.

For sentences, we tokenize each sentence by
Stanford CoreNLP (Manning et al., 2014) and use
the 300-D word embeddings from GloVe (Pen-
nington et al., 2014) to initialize the models.
The words not found in GloVe are initialized as
zero vectors. The hidden state dimensions of all
LSTMs (including the video, sentence, and in-
teraction LSTMs) are set as 512. We use the
Adam (Kingma and Ba, 2014) optimizer with �1

= 0.5 and �2 = 0.999. The initial learning rate is
set to 0.001. We train the network for 200 iter-
ations, and the learning rate is gradually decayed
over time. The mini-batch size is set to 64.

4.3 Experimental Results and Analysis
4.3.1 Comparisons with State-of-the-Arts
Experiments on DiDeMo. Table 1 illustrates
the performance comparisons on the DiDeMo
dataset. In addition to MCN, we also compare
with the baseline Moment Frequency Prior (MFP)
in (Hendricks et al., 2017), which selects segments
corresponding to the positions of videos in the
training dataset with most annotations. First, TGN
with different features can significantly outper-
forms the “prior baseline” MFP, which retrieves
segments corresponding to the most common start
and end points in the dataset. Second, it can be ob-
served that with the same visual features, specifi-
cally VGG16 and optical flow, TGN significantly
outperforms MCN. And the performance of TGN
with optical flow is better than that with VGG16.
One possible reason is that the videos in DiDeMo
are relatively short, which only contain a single
event. In such a case, the action information plays
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Table 2: Performance comparisons of different meth-
ods on TACoS. The best performance for each metric
entry is highlighted in boldface.

Method R@1
IoU=0.5

R@1
IoU=0.3

R@1
IoU=0.1

R@5
IoU=0.5

R@5
IoU=0.3

R@5
IoU=0.1

VSA-RNN 4.78 6.91 8.84 9.10 13.90 19.05
VSA-STV 7.56 10.77 15.01 15.5 23.92 32.82
CTRL-C3D 13.30 18.32 24.32 25.42 36.39 48.73
TGN-C3D 18.90 21.77 41.87 31.02 39.06 53.40

a more critical role. This finding is also consis-
tent with (Hendricks et al., 2017). By fusing the
results obtained by VGG16 and optical flow to-
gether, the performance can be further boosted, as
demonstrated by TGN-Fusion and MCN-Fusion.
Third, MCN introduces the temporal endpoint fea-
ture (TEF) as prior knowledge, which indicates
when a segment occurs in a video. With TEF,
the performance of MCN can be significantly im-
proved. However, it is still inferior to our proposed
TGN.

MCN is designed as an enumeration-based ap-
proach. Each video in the DiDeMo dataset is split
into six five-second chunks which are considered
as the time unit for localization. Therefore, in total
there are only C2

7 = 7 ⇥ 6/2 = 21 different ways
of localization for DiDeMo videos. Therefore, al-
though MCN can be effectively applied to videos
with several chunks due to the small search space,
it is not practical for untrimmed long videos. In
the Section 4.3.3, we will evaluate and compare
the efficiencies of MCN, CTRL, and our proposed
TGN.

Experiments on TACoS. Table 2 illustrates the
experimental results on TACoS. First, it can be
observed that CTRL performs much better than
VSA-RNN and VSA-STV. The reasons lie in
twofold (Gao et al., 2017). On one hand, CTRL
utilizes a multilayer alignment network to learn
better alignment. On the other hand, VSA-RNN
and VSA-STV do not encode temporal context in-
formation of video. Second, with the same visual
feature, specifically C3D, TGN-C3D significantly
outperforms CTRL-C3D. This is due to the fact
that TGN exploits not only the contextual infor-
mation but also the fine-grained interaction behav-
iors. More concretely, TGN considers the frame-
by-word correlations by introducing an attentive
combinations of the words in the sentence, where
each weight encodes the degree to which the word
is aligned with each specific frame. This mecha-
nism is beneficial to capturing the informative se-

Table 3: Performance comparisons of different visual
features on ActivityNet Captions. The best perfor-
mance for each metric entry is highlighted in boldface.

Feature R@1
IoU=0.5

R@1
IoU=0.3

R@1
IoU=0.1

R@5
IoU=0.5

R@5
IoU=0.3

R@5
IoU=0.1

C3D 27.93 43.81 69.59 44.20 54.56 78.66
VGG16 23.90 42.24 65.76 40.17 51.82 76.21
Inception-V4 28.47 45.51 70.06 43.33 57.32 79.10

Table 4: Ablation studies on TACoS. The best perfor-
mance for each metric entry is highlighted in boldface.

Feature R@1
IoU=0.5

R@1
IoU=0.3

R@1
IoU=0.1

R@5
IoU=0.5

R@5
IoU=0.3

R@5
IoU=0.1

NA 5.53 7.67 24.23 15.20 18.94 41.25

NM 13.89 18.60 41.41 26.60 31.74 47.70
TGN 18.90 21.77 41.87 31.02 39.06 53.40

mantics in the sentences for alignment.

Experiments on ActivityNet Captions. Be-
sides the two benchmarks, we also evaluate our
model on the ActivityNet Captions dataset. Dif-
ferent CNNs are used to encode video visual in-
formation. Specifically, we consider VGG16,
C3D, and Inception-V4. The results are included
in Table 3. First, our proposed TGN can per-
form effectively on long untrimmed videos. Sec-
ond, Inception-V4 performs generally better than
VGG16 and C3D, which is consistent with the
finding in (Canziani et al., 2016). Therefore, more
powerful visual representations of video features
will undoubtedly improve the the performance of
our proposed TGN on the NSGV task.

Some qualitative results of our proposed TGN
on ActiveityNet Captions dataset is illustrated in
Figure 3. It can be observed that with different
visual features, different grounding results are ob-
tained. For the first and second examples, TGN
with VGG16 and Inception-V4 generates more ac-
curate groundings than that with C3D, while TGN
with C3D yields more accurate grounding results
for the third example. More specifically, our pro-
posed TGN with VGG16 and Inception-V4 can
well identify the visual information related with
the sentence, i.e. “A man in a red shirt
claps his hands”.

4.3.2 Effect of Frame-by-Word Attention
We examine the effect of the frame-by-word atten-
tion in interactor. We ablate TGN into two other
methods. 1) NA: There is no attention layer in
this model. After obtaining the sequential hid-
den states of the sentence, mean pooling is used to
generate the representation for the whole sentence.
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Figure 3: The qualitative grounding results of our TGN model on the ActiveityNet Captions dataset with different
visual features.

Then the generated representation is concatenated
with video representation, based on which the
scores for multiple grounding candidates are pre-
dicted. 2) NM: The idea of generating frame-
specific sentence feature is still reserved in the NM
model. The difference between NM and TGN is
that there is no interaction LSTM in NM. Specif-
ically, when calculating the attention weight for
each word as in Eq. (3), the hidden state hr

t�1 in-
dicating the interaction status is not incorporated.

The quantitative results are displayed in Table 4.
First, when the attention mechanism is applied
(NM), the performance is improved as compared
with utilizing mean pooling (NA) for sentence fea-
tures. The better performance demonstrates that
our assumption about the evolving frame-by-word
correlations between two modalities is reasonable.
This also indicates that it is necessary to discrim-
inate the contribution of each word in a sentence

to perform the NSGV task. Second, utilizing the
interaction LSTM module (TGN) achieves better
performance than simply concatenating the video
representation and the attentive sentence represen-
tation (NM). This result indicates that the interac-
tion LSTM yields better interaction status between
these two modalities, which can thereby benefit
the final grounding.

We provide some qualitative examples in Fig-
ure 4 for a better understanding of the frame-by-
word attention. Meanwhile, the grounding results
yielded by TGN-Fusion (considering both VGG16
and optical flow) are also illustrated. This ex-
periment is designed to verify whether the frame-
by-word attention mechanism in interactor is use-
ful to highlight the representative concepts in the
sentence. The attention weights ↵ for two test-
ing samples in DiDeMo are illustrated in Fig-
ure 4, where the darker the color is, the larger
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GroundTruth 0s,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,10s

Prediction 0s,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,10s

(a)

a
person
with
a

blue
shirt
walks
past
the

camera

GroundTruth 15s 20s

Prediction 15s333333333333333320s

(b)

Figure 4: Visualization results on frame-by-word atten-
tion. The darker the color is, the larger its represented
attention value is.

Table 5: Efficiency comparison in terms of frame per
second.

CTRL MCN TGN

FPS 562 286 1,363

the attention weight is. It can be observed that
some words well match the frames. For exam-
ple, in Figure 4 (a), the concept “forest” ap-
pears across all the video frames presenting an
evenly distributed attention weights, while the
other concept “waterfall” only presents in the
first two frames. In addition to nouns, the ad-
jective “blue” in Figure 4 (b) also receives rela-
tively higher attention weights in relevant frames.
Lastly, for stop words like “a”, “the” and “in”,
their attention weights, which are very small, also
present an even distribution.

4.3.3 Efficiency
We evaluate the efficiency of our proposed TGN,
by comparing its runtime with MCN and CTRL
on a Tesla M40 GPU. The efficiency is mea-
sured by frames per second (FPS) as shown in Ta-
ble 5. Please not that the feature extraction time
is excluded. It can be observed that our TGN
model achieves much faster processing speeds,
with 1,363 fps vs. 562 and 286 for CTRL and
MCN, respectively. The reason mainly attributes
to that the proposed TGN only process each video
in one single pass without processing overlapped
sliding windows.

5 Conclusion

In this paper, we focused on the task of natu-
ral sentence grounding in video that is believed
to offer a comprehensive understanding of bridg-
ing computer vision and natural language process-
ing. Towards this task, we proposed an end-to-end
Temporal GroundNet (TGN) by incorporating the
evolving fine-grained frame-by-word interactions
across video-sentence modalities to generate a vi-
sual grounding tailored to each given natural sen-
tence. Moreover, TGN performs efficiently, which
only needs to process the video sequence in one
single pass. Extensive experiments on three real-
world datasets clearly demonstrate the effective-
ness and efficiency of the proposed TGN.
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Abstract

We introduce PreCo, a large-scale English
dataset for coreference resolution. The dataset
is designed to embody the core challenges
in coreference, such as entity representation,
by alleviating the challenge of low over-
lap between training and test sets and en-
abling separated analysis of mention detec-
tion and mention clustering. To strengthen the
training-test overlap, we collect a large corpus
of 38K documents and 12.5M words which
are mostly from the vocabulary of English-
speaking preschoolers. Experiments show
that with higher training-test overlap, error
analysis on PreCo is more efficient than the
one on OntoNotes, a popular existing dataset.
Furthermore, we annotate singleton mentions
making it possible for the first time to quan-
tify the influence that a mention detector
makes on coreference resolution performance.
The dataset is freely available at https://
preschool-lab.github.io/PreCo/.

1 Introduction

Coreference resolution, identifying mentions that
refer to the same entities, is an important NLP
problem. Resolving coreference is critical for
many downstream applications, such as reading
comprehension, translation, and text summariza-
tion. Identifying a mention depends not only on
its lexicons but also its contexts, and requires rep-
resentations of all the entities before the mention.
This is still a challenging task for the approaches
based on the cutting-edge word2vec-like lexical
representation. For example, it is hard to identify
the mention “he” between two entities “Tom” and
“Jerry” because they have almost the same word
embeddings.

A number of datasets have been proposed to
study the coreference resolution problem, such
as MUC (Hirschman and Chinchor, 1997), ACE

(Doddington et al., 2004), and OntoNotes (Prad-
han et al., 2012). The most popular one is
OntoNotes, and recent work on coreference res-
olution (Clark and Manning, 2016a,b; Lee et al.,
2017; Peters et al., 2018) evaluated their models
on it. Other datasets were rarely studied after
OntoNotes was published.

Previous work (Sadat Moosavi and Strube,
2017) suggests that the overlap between train-
ing and test sets makes significant impact on the
performance of current coreference resolvers. In
OntoNotes, which has relatively low training-test
overlap, this impact is mixed together with the
core challenges of coreference resolution. For ex-
ample, consider the failure of referencing “them”
to “the wounded” in “..., the wounded were carried
off so fast and it was difficult to count them”. It is
hard to tell whether the algorithm can succeed if
the currently low-frequency phrase “the wounded”
has not been seen enough times in the training set.
From a machine learning perspective, high over-
lap is needed to ensure that the training and test
datasets have similar statistics.

Another limitation of OntoNotes is that it only
has annotations for non-singleton mentions, while
singleton mentions are not annotated. Most of
the algorithms for coreference resolution have two
steps: mention detection and mention cluster-
ing (Wiseman et al., 2016; Clark and Manning,
2016a,b). The lack of singleton mention anno-
tations makes training and evaluation of mention
detectors more difficult.

To address both limitations of OntoNotes, we
build a new dataset, PreCo. To alleviate the nega-
tive impact of low training-test overlap, we restrict
the data domain and collect a sufficient amount of
data to achieve a relatively high training-test over-
lap. Restricting the data domain is a common way
to enable better studies of unsolved NLP tasks,
such as language modeling (Hill et al., 2015) and
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Figure 1: An Example from PreCo. In the example, mentions are indicated by boxes, and mention
clustering is indicated by the subscripted numbers. If two mentions have the same number, they refer to
the same entity.

visual question answering (Johnson et al., 2017).
We select our data from English reading com-

prehension tests for middle and high school Chi-
nese students, which has several advantages. On
one hand, the vocabulary size is appropriate. The
English vocabulary of a typical Chinese high
school student contains about 3000 commonly
used words. This is similar to the vocabulary
of a preschool English-speaking child (Wikipedia,
2018). Most words from the English tests are in
this limited vocabulary. On the other hand, it is
practical to collect enough data of this type from
the Internet. With 12.5M words, PreCo is about 10
times larger than OntoNotes. Large scale datasets,
e.g. ImageNet (Deng et al., 2009), SQuAD (Ra-
jpurkar et al., 2016), have played an important role
for driving computer vision and NLP forward.

We use the rate of out-of-vocabulary (OOV)
words between training and test sets to measure
their overlap. PreCo shows much higher training-
test overlap than OntoNotes by having an OOV
rate of 0.8%, which is about 1/3 of OntoNotes’s
2.1%. At the same time, PreCo presents a good
challenge for coreference resolution research since
its documents are in the open domain and have
various writing styles. We test a state-of-the-art

system (Peters et al., 2018) on PreCo and get an
F1 score of 81.5. However, a modest human per-
formance (87.9, which will be described in 4.1 ) is
much higher, verifying there remain challenges.

To help training and evaluation of mention de-
tection, we annotate singleton mentions in PreCo.
Besides singleton mentions, we follow most other
annotation rules of OntoNotes to label the new
dataset. We show that in a state-of-the-art corefer-
ence resolution system (Peters et al., 2018), we can
improve the model performance from 77.3 to 81.6
F1 on a training set of 2.5K PreCo documents by
using an oracle mention detector, and the remain-
ing gap of 18.4 F1 to the perfect 100 F1 can only
be reduced by improving mention clustering. This
indicates that future work should concern more
about mention clustering than mention detection.

The advantages of our proposed dataset over ex-
isting ones in coreference resolution can be sum-
marized as follows:

• Its OOV rate is about 1/3 of OntoNotes.

• It has about 10 times larger corpus size than
OntoNotes.

• It has annotated singleton mentions.
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2 Related Work

Existing Datasets. The first two resources for
coreference resolution study were MUC-6 and
MUC-7 (Hirschman and Chinchor, 1997). The
MUC datasets are too small for training and test-
ing, containing a total of 127 documents with 65K
words. The next standard dataset was ACE (Dod-
dington et al., 2004) which has a much larger cor-
pus of 1M words. But its annotations are restricted
to a small subset of entities and are less consistent.
OntoNotes (Pradhan et al., 2012) was presented
to overcome those limitations. Machine learning
based approaches, especially deep learning based,
benefitted from this well annotated and large-scale
(1.3M words) dataset. Continuous research on
OntoNotes over the past 6 years improved perfor-
mance by 10 F1 score (Durrett and Klein, 2013;
Peters et al., 2018). Datasets after OntoNotes,
such as WikiCoref (Ghaddar and Langlais, 2016),
are seldom studied. Therefore, we mainly com-
pare PreCo with OntoNotes in this paper. With a
much larger scale, PreCo builds on the advantages
of OntoNotes. Some of these existing datasets also
have corpus in other languages, but we just focus
on coreference resolution in English.

Out-of-domain Evaluation. (Sadat Moosavi
and Strube, 2017) show that if coreference re-
solvers mainly rely on lexical representation, as
it is the case in state-of-the-art ones, they are
weak at generalizing to unseen domains. Even
in the seen domains, the low degree of overlap
for non-pronominal mentions between the training
and test sets cause serious deterioration of coref-
erence resolution performance. As a conclusion,
(Sadat Moosavi and Strube, 2017) suggested that
out-of-domain evaluation is a must in the litera-
ture. But we think the problem can be relieved
by expanding the training data for the target do-
mains to increase overlap, so that the field can pay
more attention to the other challenges of corefer-
ence resolution.

Data Simplification. Many simplified datasets
were built to enable better study on unsolved tasks.
Such simplifications can guide researchers to the
core problems and make data collection easier. For
example, (Hill et al., 2015) introduced the Chil-
dren’s Book Test to distinguish the task of pre-
dicting syntactic function words from that of pre-
dicting low-frequency words for language model.
The dataset helped them to develop a generaliz-
able model with explicit memory representations.

The reading comprehension dataset SQuAD (Ra-
jpurkar et al., 2016) imposes the constraint that ev-
ery answer is always a segment of the input text.
This constraint benefits both labeling and evalu-
ation of the dataset, which has significant influ-
ences in terms of benchmarks. Similarly, the rein-
forcement learning literature develops algorithms
by studying games instead of the real world envi-
ronment (Mnih et al., 2013). We hope that, with
high training-test overlap, PreCo can serve as a
valuable resource for research on coreference res-
olution.

3 Dataset Creation

We discuss the data collection and annotation in
this section. The overview of the process is shown
in Figure 2.

3.1 Corpus Collection

We crawl English tests from several web sites. The
web pages often contain the full English tests in
a lot of formats. We build an annotation website
and hire annotators to manually extract the rele-
vant contents. We have a total of 80 part-time
Chinese annotators, most of whom are university
students. They are required to have a minimum
score in standard English tests. During annotation
training, the annotators read the annotation rules,
and take several practice tasks, in which they an-
notate sample articles, and their results are com-
pared with ground truth side by side for them to
study. Before formal annotation, the annotators
will need to pass an assessment.

Some data cleaning is done during annotation,
such as unifying paragraph separators, etc. The
questions with answers in these tests are also
extracted for future research. Finally, we use
NLTK’s sentence and word tokenizer (Bird et al.,
2009) to tokenize the crawled text.

In addition to having annotators manually clean
the data, we also use heuristic rules to further clean
the data. For example, in some cases the whites-
paces between two words are missing. We use a
spell checker to identify and correct most of these
cases. We also use heuristic rules to fix some
sentence partition boundaries, e.g., to make sure
opening quotes are placed at the beginning of a
sentence, instead of being wrongly placed at the
end of a previous sentence (closing quotes are han-
dled similarly).

In addition to the crawled data, we include the
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Figure 2: Overview of dataset creation.

documents from the RACE dataset (Lai et al.,
2017). RACE is a reading comprehension dataset
from English tests for middle and high school
Chinese students, which has similar types of data
sources as PreCo. About 2/3 of PreCo documents
are from the RACE dataset.

Since documents are from several data sources,
we want to remove duplicated documents, and
documents that are not exactly the same but have
a high rate of repetitions. The similarity of two
documents D1 and D2 is estimated using the bag-
of-words model. Assume S1 and S2 are bag-of-
words multisets to represent the two documents.
The similarity between D1 and D2 is defined as
max( |S1\S2|

|S1| , |S1\S2|
|S2| ). If the similarity between

two documents are larger than 0.9, we remove the
shorter one. This process is referred as dedupli-
cate in Figure 2.

3.2 Data Partition
The dataset has a total of 38K documents. We use
500 documents for the development set, 500 docu-
ments for the test set, and the rest 37K documents
for the training set. The development and test doc-
uments were randomly selected from RACE’s de-
velopment and test sets.

3.3 Coreference Annotation and Refinement
We manually annotate coreferences on these doc-
uments. The annotation rules are slightly differ-
ent from OntoNotes (Pradhan et al., 2012). We
modify some of the rules to make the definition of
coreference more consistent and easier to be un-
derstood by the annotators. The major differences

are listed in Table 1. Figure 1 shows an example
document in PreCo with annotations.

A B C

final annotation

document

D E F

ensemble

Figure 3: Process of annotation refinement. A doc-
ument is firstly annotated by 3 annotators A, B,
and C, independently. Then another annotator D
merges annotations from A and B. Similarly, an-
notator E merges annotations from A and C, and
annotator F merges annotations from B and C. Fi-
nally, annotations from D, E and F are merged us-
ing an ensemble algorithm.

Good quality control of annotation is essential,
since the rules are complicated and coreference
resolution depends on meticulous reading of the
whole document over and over. We found that
annotators get low recall and insufficient preci-
sion mainly because of negligence, as opposed
to the lack of annotation rules or other ambigui-
ties. For example, two co-referred mentions could
be far apart and require careful searches, and an
annotator may miss it. Therefore we further re-
fine annotations as shown in Figure 3. Annotators
can think about the complicated inconsistent cases
when merging annotations, and the voting process
will fix some errors while preserving the mentions
and coreferences that are found only once by indi-
vidual annotators.

The quality of different annotation processes is
shown in Table 2. OntoNotes took 2 individual
annotations for each document and got an adjudi-
cated version based on them. Taking the adjudi-
cated version as ground truth, the average MUC
score (Vilain et al., 1995) 1 of individual annota-

1MUC score is one of the metrics to evaluate the quality
of coreference resolution.
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Type Example OntoNotes PreCo

verbs Sales [grew] 10%. [The
growth] is exciting. Verbs can be coreferred. Usually, verbs cannot be

coreferred. Certain gerunds can.

generic
mentions

[Parents] are usually busy.
[Parents] should get involved.

Generic mentions can only be
coreferred by pronouns.

Generic mentions can be
coreferred directly.

non-proper
modifiers

[Wheat] is important. [Wheat]
fields are everywhere.

Non-proper modifiers cannot be
coreferred.

Non-proper modifiers can be
coreferred as generic mentions.

copular
structures [John] is [a good teacher]. The referent and the attribute

cannot be coreferred.
The referent and the attribute can
be coreferred.

appositives [[John]a, [a linguist I
know]b]c, ...

Sub-spans are not coreferred with
the whole-span. a and b are not
coreferent with c.

Sub-spans are coreferred with the
whole-span. a and b are coreferred
with c.

misc. The [U.S.] policy ... [Secretary
of State] [Colin Powell] ...

Nationality acronyms and job titles
in appositives cannot be coreferred.

Nationality acronyms and all job
titles can be coreferred.

Table 1: Major differences of annotation rules between PreCo and OntoNotes. The annotation rules of
OntoNotes are described in (OntoNotes Guidelines)

tions is 89.6, and the inter-annotator MUC score
is 83.0. The corresponding numbers for PreCo are
85.3 and 77.5. The actual gap of individual anno-
tation quality between OntoNotes and PreCo is not
as large as it looks like. Note that, OntoNotes’s
two individual coreference annotations of each
document are based on the same syntactic anno-
tations of the document, so they could be more
consistent than PreCo’s which are annotated on
raw text. Therefore, if we want to fairly compare
PreCo with OntoNotes, we should take into ac-
count OntoNotes’s inter-annotator consistency of
syntactic parsing annotations. As it has a rough
upper bound of 98.5 F1 score according to the re-
annotation of English Treebank on OntoNotes by
the principal annotator a year after the original an-
notation (Weischedel et al., 2011), we could infer
that the individual annotation quality of PreCo is
quite close to OntoNotes.

Labeling the whole dataset is costly because
each annotation from scratch or comparison takes
an average of about 10 minutes. Prompts from an
algorithm do not help since they do not speed up
the annotation much but instead introduce biases.
We observed some biases when using an algorithm
to help annotation. We have two models, M1 and
M2, and we have a test set T which is annotated
manually, and a test set T 0 which uses prompts
from model M1 to help annotation. While M1

and M2 have similar performance on T , M1’s per-
formance is much higher than M2’s on T 0, which
shows the biases.

Because of limited annotation resources, we
have only finished the refinements on the devel-

Process Avg. Prec Avg. Rec Avg. F1

Once 87.3 71.7 78.7
ABC-voting 93.5 76.1 83.9
AB-merge 87.5 88.3 87.9
DEF-voting 100.0 100.0 100.0

Table 2: Annotation quality. DEF-voting is taken
as the ground truth to evaluate other annotation
processes. The annotation “AB-merge” is merged
by annotator G, who is different from D, E and F.

opment and test sets with the process shown in
Figure 3. We refine the training set annotations
as follows: for each document, two annotators an-
notate it separately, and a third annotator com-
pares and merges the two annotations. We use a
training set of 2.5K documents to quantify the im-
pact of this annotation refinement to model per-
formance. Table 3 shows the model performances
of the training set that is annotated once, and the
training set of the merged annotation. The per-
formance difference is quite significant. Further-
more, the difference is consistent with Table 2:
the “AB-merge” model has a similar precision as
the “Once” model, but it has a much higher re-
call. It indicates that a further refinement of the
training set such as DEF-voting could be essen-
tial. A more interesting question is: how to make
the definition of coreference more consistent and
executable? We leave it as future work.
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Annotation Avg. Prec Avg. Rec Avg. F1

Once 79.3 69.1 73.9
AB-merge 78.1 76.5 77.3

Table 3: The annotation quality’s impact on model
performance. Each row shows the development
set performance of the EE2E-Coref model (train-
ing details in Section 4.1) trained by data of dif-
ferent annotation quality. Each training set con-
tains 2.5K documents. In the training set “Once”,
each document is annotated by one annotator. In
the training set “AB-merge”, each document is an-
notated by two annotators independently, and the
annotations are compared and merged by a third
annotator.

3.4 Dataset Properties
Table 4 shows some properties of OntoNotes and
PreCo. As intended, PreCo has a lower OOV rate
than OntoNotes. For a training set with vocabulary
V and a test set with n tokens [t1, t2, ..., tn], ignor-
ing the tokens with non-alphabetic characters, the
OOV rate is defined by:

P
i o(ti)

n
, where o(ti) =

(
0 if ti 2 V
1 if ti /2 V

The OOV rate can be extended to the rate of low-
frequency words which also indicates the training-
test overlap, by simply replacing V in the defini-
tion above with the non-low-frequency vocabulary
of the training set. We find that the OOV rate is
consistent to the rates of low-frequency words in
different levels. So we use the OOV rate for con-
venience.

In PreCo, about 50.8% of the mentions are sin-
gleton mentions. Figure 4 shows the distribu-
tion of cluster sizes within non-singleton clusters.
The distribution is similar between OntoNotes and
PreCo.

4 Analysis

To verify our assumption that PreCo embodies
the core challenges of coreference, we evaluate a
strong baseline coreference resolver on it. Specif-
ically, we (i) estimate the room for improvement
of the baseline system to show that the dataset is
challenging, (ii) study the impact of training-test
overlap to model performance and error analysis
to show the advantages of PreCo, and (iii) quan-

Property OntoNotes PreCo

Training documents 2.8K 37K
Training tokens 1.3M 12.2M
Dev-test documents 0.7K 1K
Dev-test tokens 0.3M 0.3M
Tokens per document 467 330
OOV rate 2.1% 0.8%

Non-singleton mentions

Mention length 2.29 2.02
Mention density 0.12 0.16
Cluster size 4.40 4.49
Cluster density 0.027 0.035

Singleton mentions

Mention length N/A 3.32
Mention density N/A 0.16
Singleton mention rate N/A 50.8%

Table 4: Properties of OntoNotes and PreCo. The
mention (cluster) density is defined by: number of
mentions (clusters) / number of tokens.

titatively evaluate the mention detector to under-
stand the bottlenecks of the coreference resolution
system.

4.1 Baseline Performance
We use the end-to-end neural coreference resolver,
E2E-Coref (Lee et al., 2017), enhanced by the
deep contextualized word representations (Peters
et al., 2018) as the baseline system, and we refer
to this system as EE2E-Coref. This is the state-of-
the-art model on OntoNotes, achieving a test aver-
age F1 score of 70.4, which is the main evaluation
metric for coreference resolution. The metric is
computed by averaging the F1 of MUC, B3, and
CEAF�4, which are three metrics of coreference
resolution that have different focuses.

Our implementation EE2E-Coref2 gets 81.5
Avg. F1 score on PreCo. We follow the setting of
most hyperparameters on OntoNotes and do grid-
search for the decay parameter of the learning rate
and the size of the hidden layers on the develop-
ment set, since these two hyperparameters are rel-
atively sensitive to the scale of the training data.
The F1 score increment from OntoNotes to PreCo
is probably due to the higher overlap between the
training and test sets in PreCo.

2It gets an F1 score of 70.0±0.3 on OntoNotes, slightly
lower than the F1 score reported in the original paper.
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Figure 4: Distribution of cluster sizes within non-
singleton clusters. We ignore singleton clusters in
this figure so that it is easier to compare between
OntoNotes and PreCo.

[<His father> and he] get off the car.
[They] find the old man lying near the taxi.
The banana skin is near him.
The old man looks at [them] and says, “Teach [your]
child to throw the banana skin to the right place!”

He gave his last few coins to [a beggar], but then he saw
<another one>, and forgot that he did not have any
money.
He asked <the man> if <he> would like to have lunch
with him, and [the beggar] accepted, so they went into a
small restaurant and had a good meal.

[Holmes] and <Dr. Watson> went on a camping trip.
After a good meal and a bottle of wine, they lay down in
a tent for the night and went to sleep.
Some hours later, Holmes woke up and pushed [his
friend].

Table 5: Error cases of EE2E-Coref on PreCo.
Each bold mention is incorrectly referred to the
entity in []s. The mentions of its gold entity are in
<>s.

We demonstrate three typical error cases made
by EE2E-Coref on PreCo in Table 5. Corefer-
ence resolution in these cases requires good under-
standing of multiple sentences, which is an open
problem in NLP. A capable entity representation
for “them”, “another one” or “Dr. Watson” may
help to resolve these error cases. We also compare
the performance of EE2E-Coref with human per-
formance to estimate the room for improvement
on PreCo. As described in Section 3.4, human an-
notators get low recall mostly due to negligence.
So we use the AB-merge annotation to estimate
human’s ability on coreference resolution. The
gap of performance between model and human is
6.4 F1 score, from 81.5 to 87.9. The actual gap

is larger, since AB-merge still has some missed
coreference annotations due to negligence. This
shows that the dataset is challenging and encour-
ages future research. The error cases show the
challenges as well.

Note that PreCo is not a general purpose dataset.
Our motivation of designing PreCo is to make
it easier to improve coreference resolution algo-
rithms, e.g., to make error analysis easier. It is not
a goal of PreCo to generalize well on corpus from
other domains. Furthermore, we find that there are
a certain amount of annotation errors in the devel-
opment and test sets. We suggest that researchers
working on PreCo should be careful about these
errors, especially after a model gets F1 score be-
yond 90.0.

4.2 Impact of Training-test Overlap
Training-test overlap makes significant impact on
error analysis. Consider an error case of corefer-
ence resolution, if there are low-frequency words
in the related mentions, then it will be hard to tell
whether the algorithm can succeed if the words has
not been seen enough times in the training set. We
call an error case LFW if there are low-frequency
words3 in its related mentions4. Therefore, the
lower LFW rate a training set contains, the more
precisely it may expose the drawbacks of the algo-
rithm.

To study the impact of training-test overlap, ac-
tually, the training-dev overlap, we pick different
subsets from the training data and evaluate the
models trained on them. At first, we control over-
lap by picking different sizes of the training data
randomly. Figure 5(a) shows that, as the training
data size grows, the OOV rate, which is the over-
lap indicator, decreases and the F1 score of EE2E-
Coref increases significantly. Figure 5(b) shows
that when training set size increases, the OOV rate
and the LFW rate drop together. Then, to remove
the impact of data size, we pick training sets which
have a fixed size but different overlaps with the
development set vocabulary. The OOV rates and
F1 scores of these subsets are shown in Figure
5(c). This experiment verifies the positive cor-

3In our experiments, a word is defined as low-frequency
if it appears in the training set less than 10 times.

4There are 3 kinds of error cases of coreference resolu-
tion: false-new, false-link and wrong-link. In our experi-
ments, the related mentions include: the current mention in
all 3 kinds of cases, the nearest gold antecedent in false-new
and wrong-link and the false referred antecedent in false-link
and wrong-link.
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(a) (b)

(c) (d)

Figure 5: Impact of training-dev overlap. (a) and (b) show the impact of training set sizes. (c) and
(d) show the impact of the training-dev OOV rate, when the training sets have the same size of 2.5K
documents. The 8 subsets, s1-s8, consist of documents ranked by their overlaps with the development
set vocabulary.

relation between training-dev overlap and coref-
erence resolution performance suggested by (Sa-
dat Moosavi and Strube, 2017). Figure 5(d) shows
that for training sets with the same size, the OOV
rate and the LFW rate also drop together.

We observe that the training set of 2.5K doc-
uments in Figure 5(a) has a higher model perfor-
mance than all the training sets in Figure 5(c). This
is not expected. One hypothesis is that the lower
performance in Figure 5(c) is due to the smaller
diversity of these training sets, which are selected
to have certain training-dev OOV rates.

The training-dev LFW rate of OntoNotes is
34.8%. As a comparison, the number for PreCo
is 12.3%. A subset of PreCo with a similar to-
ken number to OntoNotes has a LFW rate of
33.0%. This indicates that research of corefer-
ence algorithms on PreCo will be much more ef-
ficient than on OntoNotes. Even if we can ignore
the LFW error cases, there are others related to
low-frequency word senses, phrases and sentence
structures, which are hard to filter out. They will
also obscure the error analysis. It is reasonable to
believe that training-dev overlap impacts the rate

of these error cases in a similar way to impact
LFW rate.

4.3 Mention Detection

Since most coreference systems consist of a men-
tion detection module and a mention clustering
module, an important question is: with a perfect
mention detection module, what is the model per-
formance on coreference resolution? The answer
would help us understand the bottlenecks of the
entire system, by quantifying the impact of the
mention detection module on the final F1 score.
(Lee et al., 2017) gave an answer by taking ground
truth non-singleton mentions as the input of the
coreference resolver for both training and evalu-
ation, assuming that the perfect mention detector
can also make perfect anaphoricity decisions, e.g.,
to decide whether a mention should be linked to
an antecedent. But this assumption can be vio-
lated since mention detectors usually take local in-
formation but anaphoricity decisions usually need
more context, nearly as much as entity identifica-
tion. The anaphoricity decisions should be made
in the mention clustering module.
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Mention OntoNotes PreCo

detected 66.7 77.3
*all N/A 81.6
*non-singleton 85.2 89.2

Table 6: Coreference resolution performances on
development set under different mention detection
qualities. A prefixed * denotes ground truth. The
model trained on OntoNotes is E2E-Coref (Lee
et al., 2017) while the one trained on PreCo is
EE2E-Coref. The PreCo training set contains the
same 2.5K documents as in Table 3.

We argue that a better way to answer the ques-
tion is to take all ground truth mentions (including
singletons) for coreference. This operation is not
feasible in OntoNotes since it does not have an-
notations for singleton mentions. We do this on
PreCo and the results are shown in Table 6. There
is an obvious difference between the F1 scores
achieved with all gold mentions and non-singleton
gold mentions. Therefore, the room for improve-
ment by better mention detection is not as enor-
mous as suggested in (Lee et al., 2017). The ma-
jor challenge remained in coreference resolution is
mention clustering.

5 Conclusion

In this paper, we propose a large-scale coreference
resolution dataset to overcome the limitations of
existing ones. Our dataset, PreCo, features higher
training-test overlap, about 10 times larger scale
than previous datasets, and singleton mention an-
notations. By evaluating a state-of-the-art corefer-
ence resolver, we show that there is a wide gap be-
tween the model and human performance, which
demonstrated challenges of the dataset. We veri-
fied the expectation that PreCo’s higher training-
test overlap helps research on coreference resolu-
tion. For the first time, we quantified the impact
of mention detector to the entire system, thanks to
our singleton mention annotations. We make the
dataset public, and hope it will stimulate further
research on coreference resolution.
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Abstract

Named entity recognition (NER) is an impor-
tant task in natural language processing area,
which needs to determine entities boundaries
and classify them into pre-defined categories.
For Chinese NER task, there is only a very s-
mall amount of annotated data available. Chi-
nese NER task and Chinese word segmen-
tation (CWS) task have many similar word
boundaries. There are also specificities in each
task. However, existing methods for Chinese
NER either do not exploit word boundary in-
formation from CWS or cannot filter the spe-
cific information of CWS. In this paper, we
propose a novel adversarial transfer learning
framework to make full use of task-shared
boundaries information and prevent the task-
specific features of CWS. Besides, since ar-
bitrary character can provide important cues
when predicting entity type, we exploit self-
attention to explicitly capture long range de-
pendencies between two tokens. Experimental
results on two different widely used dataset-
s show that our proposed model significant-
ly and consistently outperforms other state-of-
the-art methods.

1 Introduction

The task of named entity recognition (NER) is to
recognize the named entities in given text. N-
ER is a preliminary and important task in natural
language processing (NLP) area and can be used
in many downstream NLP tasks, such as relation
extraction (Bunescu and Mooney, 2005), even-
t extraction (Chen et al., 2015) and question an-
swering (Yao and Van Durme, 2014). In recent
years, numerous methods have been carefully s-
tudied for NER task, including Hidden Markov
Models (HMMs) (Bikel et al., 1997), Support Vec-
tor Machines (SVMs) (Isozaki and Kazawa, 2002)
and Conditional Random Fields (CRFs) (Laffer-
ty et al., 2001). Currently, with the development

Figure 1: An example of illustrating the similarities
and specificities between Chinese NER and CWS.

of deep learning, neural networks (Lample et al.,
2016; Peng and Dredze, 2016; Luo and Yang,
2016) have been introduced to NER task. All these
methods need to determine entities boundaries
and classify them into pre-defined categories.

Although great improvements have been
achieved by these methods on Chinese NER task,
some issues still have not been well addressed.
One significant drawback is that there is only a
very small amount of annotated data available.
Weibo NER dataset (Peng and Dredze, 2015; He
and Sun, 2017a) and Sighan2006 NER dataset
(Levow, 2006) are two widely used datasets
for Chinese NER task, containing 1.3k and 45k
training examples, respectively. On the two
datasets, the highest F1 scores are 48.41% and
89.21%, respectively. As a basic task in NLP area,
the performance is not satisfactory. Fortunately,
Chinese word segmentation (CWS) task is to
recognize word boundaries and the amount of
supervised training data for CWS is abundant
compared with NER. There are many similarities
between Chinese NER task and CWS task, which
we call task-shared information. As shown in
Figure 1, given a sentence “!!!ª!!Ø!:
: (Hilton leaves Houston Airport)”, the two tasks
have the same boundaries for some words such
as “!!! (Hilton)” and “ª! (leaves)”, while
Chinese NER has more coarse-grained boundaries
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than CWS task for certain word such as “!Ø!
:: (Houston Airport)” in the example of Figure
1, which we call task-specific information. In
order to incorporate word boundary information
from CWS task into NER task, Peng and Dredze
(2016) propose a joint model that performs
Chinese NER with CWS task. However, their
proposed model only focuses on task-shared
information between Chinese NER and CWS,
and ignores filtering the specificities of each
task, which will bring noise for both of the tasks.
For example, the CWS task splits “!Ø!::
(Houston Airport)” into “!Ø! (Houston)” and
“:: (Airport)”, while the NER task takes “!
Ø!:: (Houston Airport)” as a whole entity.
Thus, how to exploit task-shared information and
prevent the noise brought by CWS task to Chinese
NER task is a challenging problem.

Another issue is that most proposed models
cannot explicitly model long range dependencies
when predicting entity type. Though bidirection-
al long short term memory (BiLSTM) can learn
long-distance dependencies, it cannot conduct di-
rect connections between arbitrary two characters.
As shown in Figure 1, if the model only focuses
on the word “!!! (Hilton)”, it can be a person
or organization. However, when the model explic-
itly captures the dependencies between “!!!
(Hilton)” and “ª! (leaves)”, it is easy to classify
“!!! (Hilton)” into “person” category. Con-
text information is very crucial for determining the
entity type. While in the sentence “!"O(!!
! (I will be staying at the Hilton)”, the entity type
of “!!! (Hilton)” is “organization”. Thus, how
to better capture the global dependencies of the w-
hole sentence is another challenging problem.

To address the above problems, we propose an
adversarial transfer learning framework to inte-
grate the task-shared word boundary information
into Chinese NER task in this paper. The adver-
sarial transfer learning is incorporating adversari-
al training into transfer learning. To better capture
long range dependencies and synthesize the infor-
mation of the sentence, we extend self-attention
mechanism into the framework. Specifically, we
try to improve Chinese NER task performance by
incorporating shared boundary information from
CWS task. To prevent the specific information
of CWS task from lowering the performance of
the Chinese NER task, we introduce adversarial
training to ensure that the Chinese NER task on-

ly exploits task-shared word boundary informa-
tion. Then, for tackling the long range dependen-
cy problems, we utilize self-attention to synthe-
size the hidden representation of BiLSTM. Final-
ly, we evaluate our model on two different widely
used Chinese NER datasets. Experimental results
show that our proposed model achieves better per-
formance than other state-of-the-art methods and
gains new benchmarks.

In summary, the contributions of this paper are
as follows:

• We propose an adversarial transfer learning
framework to incorporate task-shared word
boundary information from CWS task into
Chinese NER task. To our best knowledge,
it is the first work to apply adversarial trans-
fer learning method into NER task.

• We introduce self-attention mechanism into
our model, which aims to capture the global
dependencies of the whole sentence and learn
inner structure features of sentence.

• We conduct our experiment on two dif-
ferent widely used Chinese NER datasets,
and the experimental results demonstrate that
our proposed model significantly and consis-
tently outperforms previous state-of-the-art
methods. We release the source code publicly
for further research1.

2 Related Work

NER Many methods have been proposed for N-
ER task. Early studies on NER often exploit
SVMs (Isozaki and Kazawa, 2002), HMMs (Bikel
et al., 1997) and CRFs (Lafferty et al., 2001),
heavily relying on feature engineering. Zhou et al.
(2013) formulate Chinese NER as a joint identi-
fication and categorization task. In recent years,
neural network models have been introduced to N-
ER task (Collobert et al., 2011; Huang et al., 2015;
Peng and Dredze, 2016). Huang et al. (2015) ex-
ploit BiLSTM to extract features and feed them
into CRF decoder. After that, the BiLSTM-CRF
model is usually exploited as the baseline. Lam-
ple et al. (2016) use a character LSTM to represent
spelling characteristics. In addition, Wang et al.
(2017) propose a gated convolutional neural net-
work (GCNN) model for Chinese NER. Peng and
Dredze (2016) propose a joint model for Chinese

1https://github.com/CPF-NLPR/AT4ChineseNER
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Figure 2: The general architecture of our proposed model. The left and right part are Chinese NER space
and CWS private space, respectively, including embedding layer, feature extractor (Private BiLSTM),
self-attention and CRF layer. The middle part is shared space consisting of feature extractor (Shared
BiLSTM), self-attention and task discriminator.

NER, which are jointly trained with CWS task.
However, the specific features brought by CWS
task can lower the performance of the Chinese N-
ER task.

Adversarial Training Adversarial networks
have achieved great success in computer vision
(Goodfellow et al., 2014; Denton et al., 2015).
In NLP area, adversarial training has been intro-
duced for domain adaptation (Ganin and Lempit-
sky, 2014; Zhang et al., 2017; Gui et al., 2017),
cross-lingual transfer learning (Chen et al., 2016;
Kim et al., 2017), multi-task learning (Chen et al.,
2017; Liu et al., 2017) and crowdsourcing learning
(Yang et al., 2018). Bousmalis et al. (2016) pro-
pose shared-private model in domain separation
network. Different from these works, we exploit
adversarial network to jointly train Chinese NER
task and CWS task, aiming to extract task-shared
word boundary information from CWS task. To
our knowledge, it is the first work to apply adver-
sarial transfer learning framework to Chinese NER
task.

Self-Attention Self-attention has been intro-
duced to machine translation by Vaswani et al.
(2017) for capturing global dependencies between
input and output and achieves state-of-the-art per-
formance. For language understanding task, Shen
et al. (2017) exploit self-attention to learn long
range dependencies. Tan et al. (2017) apply
self-attention to semantic role labelling task and
achieve state-of-the-art results. We are the first to

introduce self-attention mechanism to Chinese N-
ER task.

3 Method

In this paper, we propose a novel adversarial trans-
fer learning framework that will learn task-shared
word boundary information from CWS task, filter
specific information of CWS and explicitly cap-
ture the long range dependencies between arbi-
trary two characters in sentence. The architecture
of our proposed model is illustrated in Figure 2.
The model mainly consists of five components:
embedding layer, shared-private feature extractor,
self-attention, task-specific CRF and task discrim-
inator. In the following sections, we will describe
each part of our proposed model in detail.

3.1 Embedding Layer
Similar to other neural network models, the first
step of our proposed model is to map discrete
characters into the distributed representations. For
a given Chinese sentence x = {c1, c2, . . . , cN}
from Chinese NER dataset or CWS dataset, we
lookup embedding vector from pre-trained embed-
ding matrix for each character ci as xi 2 R

de .

3.2 Shared-Private Feature Extractor
Long short term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is a variant of recurrent neu-
ral network (RNN) (Elman, 1990), which enables
to address the gradient vanishing and exploding
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problems in RNN via introducing gate mechanism
and memory cell. The unidirectional LSTM on-
ly leverages information from the past, ignoring
the future information. In order to incorporate in-
formation from both sides of sequence, we adopt
BiLSTM to extract features. Specially, the hidden
state of BiLSTM could be expressed as follows:

�!hi =
����!
LSTM(

�!h i�1, xi) (1)
 �hi =

 ����
LSTM(

 �h i+1, xi) (2)

hi =
�!hi �

 �hi (3)

where
�!hi 2 R

dh and
 �hi 2 R

dh are the hidden
states of the forward and backward LSTM at po-
sition i, respectively. � denotes concatenation op-
eration.

As shown in Figure 2, we propose a shared-
private feature extractor, which assigns a private
BiLSTM layer and shared BiLSTM layer for task
k 2 {NER, CWS}. The private BiLSTM lay-
er is used to extract task-specific features, and the
shared BiLSTM layer is used to learn task-shared
word boundaries. Formally, for any sentence in
dataset of task k, the hidden states of shared and
private BiLSTM layer can be computed as fol-
lows:

sk
i = BiLSTM(xk

i , sk
i�1; ✓s) (4)

hk
i = BiLSTM(xk

i , hk
i�1; ✓k) (5)

where ✓s and ✓k are the shared BiLSTM param-
eters and private BiLSTM parameters of task k,
respectively.

3.3 Self-Attention
Inspired by the self-attention applied to machine
translation (Vaswani et al., 2017) and semantic
role labelling (Tan et al., 2017), we exploit self-
attention to explicitly learn the dependencies be-
tween any two characters in sentence and capture
the inner structure information of sentence. In
this paper, we adopt the multi-head self-attention
mechanism. H = {h1, h2, . . . , hN} denotes the
output of private BiLSTM. Correspondingly, S =
{s1, s2, . . . , sN} is the output of shared BiLSTM.
We will take the self-attention in private space as
example to illustrate how it works. The scaled dot-
product attention can be precisely described as fol-
lows:

Attention(Q, K, V) = softmax(
QKT

p
d

)V (6)

where Q 2 R
N⇥2dh , K 2 R

N⇥2dh and V 2
R

N⇥2dh are query matrix, keys matrix and value
matrix, respectively. In our setting, Q = K =
V = H. d is the dimension of hidden units of BiL-
STM, which equals to 2dh.

Multi-head attention first linearly projects the
queries, keys and values h times by using differ-
ent linear projections. Then h projections perfor-
m the scaled dot-product attention in parallel. Fi-
nally, these results of attention are concatenated
and once again projected to get the new represen-
tation. Formally, the multi-head attention can be
expressed as follows:

headi = Attention(QWQ
i , KWK

i , VWV
i ) (7)

H0

= (headi � . . .� headh)Wo (8)

where WQ
i 2 R

2dh⇥dk , WK
i 2 R

2dh⇥dk and
WV

i 2 R
2dh⇥dk are trainable projection parame-

ters and dk = 2dh/h. Wo 2 R
2dh⇥2dh is also

trainable parameter.

3.4 Task-Specific CRF
For a sentence in dataset of task k, we compute
the final representation via concatenating the rep-
resentations from private space and shared space
after self-attention layer:

H00k = H0k � S0k (9)

where H0k and S0k are the outputs of private self-
attention and shared self-attention of task k, re-
spectively.

Considering the dependencies between succes-
sive labels, we exploit CRF (Lafferty et al., 2001)
to inference tags instead of making tagging de-
cisions using h00

i independently. Due to the d-
ifference of labels, we introduce a specific CR-
F layer for each task. Given a sentence x =
{c1, c2, . . . , cN} with a predicted tag sequence
y = {y1, y2, . . . , yN}, the CRF tagging process
can be formalized as follows:

oi = Wsh00

i + bs (10)

s(x, y) =
NX

i=1

(oi,yi + Tyi�1,yi) (11)

ȳ = arg max
y2Yx

s(x, y) (12)

where Ws 2 R
|T |⇥4dh and bs 2 R

|T | are train-
able parameters. |T | denotes the number of output
labels. oi,yi represents the score of the yi-th tag
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of the character ci. T is a transition score matrix
which defines the scores of two successive label-
s. Yx represents all candidate tag sequences for
given sentence x. In decoding, we use Viterbi al-
gorithm to get the predicted tag sequence ȳ.

For training, we exploit negative log-likelihood
objective as the loss function. The probability of
the ground-truth label sequence is computed by:

p(ŷ|x) =
es(x,ŷ)

P
ey2Yx

es(x,ey) (13)

where ŷ denotes the ground-truth label sequence.
Given T training examples (x(i); ŷ(i)), the loss
function LTask can be defined as follows:

LTask = �
TX

i=1

logp(ŷ(i)|x(i)) (14)

We use gradient back-propagation method to min-
imize the loss function.

3.5 Task Discriminator
Inspired by adversarial networks (Goodfellow
et al., 2014), we incorporate adversarial training
into shared space to guarantee that specific fea-
tures of tasks do not exist in shared space. We pro-
pose a task discriminator to estimate which task
the sentence comes from. Formally, the task dis-
criminator can be expressed as follows:

s0k = Maxpooling(S0k) (15)

D(s0k; ✓d) = softmax(Wds0k + bd) (16)

where ✓d indicates the parameters of task discrim-
inator. Wd 2 R

K⇥2dh and bd 2 R
K are trainable

parameters. K is the number of tasks.
Besides the task loss LTask, we introduce an ad-

versarial loss LAdv to prevent specific features of
CWS task from creeping into shared space. The
adversarial loss trains the shared model to produce
shared features such that the task discriminator
cannot reliably recognize which task the sentence
comes from. The adversarial loss can be computed
as follows:

LAdv = min
✓s

(max
✓d

KX

k=1

TkX

i=1

logD(Es(x(i)
k )))

(17)
where ✓s denotes the trainable parameters of
shared BiLSTM. Es denotes the shared feature ex-
tractor. Tk is the number of training examples of

task k. x(i)
k is the i-th example of task k. There

is a minimax optimization that the shared BiLST-
M generates a representation to mislead the task
discriminator and the discriminator tries its best to
correctly determine the type of task.

We add a gradient reversal layer (Ganin and
Lempitsky, 2014) below the softmax layer to ad-
dress the minimax optimization problem. In the
training phrase, we minimize the task discrimi-
nator errors, and through gradient reversal layer
the gradients will become opposed sign to adver-
sarially encourage the shared feature extractor to
learn task-shared word boundary information. Af-
ter training phrase, the shared feature extractor and
task discriminator reach a point where the discrim-
inator cannot differentiate the tasks according to
the representations learned from shared feature ex-
tractor.

3.6 Training
The final loss function of our proposed model can
be written as follows:

L = LNER · I(x) + LCWS · (1� I(x)) + �LAdv

(18)
where � is a hyper-parameter. LNER and LCWS

can be computed via Eq.14. I(x) is a switching
function to identify which task the input comes
from. It is defined as follows:

I(x) =

(
1, if x 2 DNER

0, if x 2 DCWS
(19)

where DNER and DCWS are Chinese NER train-
ing corpora and CWS training corpora, respective-
ly.

In the training phrase, at each iteration, we first
select a task from {NER, CWS} in turn. Then,
we sample a batch of training instances from the
given task to update the parameters. We use Adam
(Kingma and Ba, 2014) algorithm to optimize the
final loss function. Since Chinese NER task and
CWS task may have different convergence rate, we
repeat the above iterations until early stopping ac-
cording to the Chinese NER task performance.

4 Experiments

4.1 Datasets
To evaluate our proposed model on Chinese N-
ER, we experiment on two different widely used
datasets, including Weibo NER dataset (Wei-
boNER) (Peng and Dredze, 2015; He and Sun,
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Dataset Task # Train sent # Dev sent # Test sent
WeiboNER Chinese NER 1350 270 270
SighanNER Chinese NER 41728 4636 4365

MSR CWS 86924 — 3985

Table 1: Statistics of the datasets.

Models P(%) R(%) F1(%)
CRF (Peng and Dredze, 2015) 56.98 25.26 35.00
CRF+word (Peng and Dredze, 2015) 64.94 25.77 36.90
CRF+character (Peng and Dredze, 2015) 57.89 34.02 42.86
CRF+character+position (Peng and Dredze, 2015) 57.26 34.53 43.09
Joint(cp) (main) (Peng and Dredze, 2015) 57.98 35.57 44.09
Pipeline Seg.Repr.+NER (Peng and Dredze, 2016) 64.22 36.08 46.20
Jointly Train Char.Emb (Peng and Dredze, 2016) 63.16 37.11 46.75
Jointly Train LSTM Hidden (Peng and Dredze, 2016) 63.03 38.66 47.92
Jointly Train LSTM+Emb (main) (Peng and Dredze, 2016) 63.33 39.18 48.41
BiLSTM+CRF+adversarial+self-attention 55.72 50.68 53.08

Table 2: NER results for named entities on the original WeiboNER dataset (Peng and Dredze, 2015).
There are three blocks. The first two blocks contain the main and simplified models proposed by Peng
and Dredze (2015) and Peng and Dredze (2016), respectively. The last block lists the performance of our
proposed model.

2017a) and SIGHAN2006 NER dataset (Sighan-
NER) (Levow, 2006). We use the MSR dataset
(from SIGHAN2005) for CWS task.

The WeiboNER is annotated with four enti-
ty types (person, location, organization and geo-
political entities), including named entities and
nominal mentions. The SighanNER is simplified
Chinese, which contains three entity types (per-
son, location and organization). For WeiboNER,
we use the same training, development and test-
ing splits as Peng and Dredze (2015). Since the
SighanNER does not have development set, we
sample 10% data of training set as development
set. We use MSR dataset to improve the perfor-
mance of the Chinese NER task. Table 1 gives the
details of the three datasets.

4.2 Settings

For evaluation, we use the Precision (P), Recall
(R) and F1 score as metrics in our experiment.

For hyper-parameter configurations, we adjust
them according to the performance on develop-
ment set of Chinese NER task. We set the charac-
ter embedding size de to 100. The dimensionality
of LSTM hidden states dh is 120. The initial learn-
ing rate is set to 0.001. The loss weight coefficient
� is set to 0.06. We set the dropout rate to 0.3.

The number of projections h is 8. We set the batch
size of SighanNER and WeiboNER as 64 and 20,
respectively.

For trainable parameters initialization, we use
xavier initializer (Glorot and Bengio, 2010) to
initialize parameters. The character embeddings
used in our experiment are pre-trained on Baidu
Encyclopedia corpus and Weibo corpus by using
word2vec toolkit (Mikolov et al., 2013).

4.3 Compared with State-of-the-art Methods

In this section, we will give the experimental re-
sults of our proposed model and previous state-
of-the-art methods on WeiboNER dataset and
SighanNER dataset, respectively.

4.3.1 Evaluation on WeiboNER
We compare our proposed model with the latest
models on WeiboNER dataset. Table 2 shows the
experimental results for named entities on the o-
riginal WeiboNER dataset.

In the first block of Table 2, we give the per-
formance of the main model and baselines pro-
posed by Peng and Dredze (2015). They propose a
CRF-based model to jointly train the embeddings
with NER task, which achieves better results than
pipeline models. In addition, they consider the po-
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Models Named Entity Nominal Mention Overall
P(%) R(%) F1(%) P(%) R(%) F1(%) F1(%)

Peng and Dredze (2015) 74.78 39.81 51.96 71.92 53.03 61.05 56.05
Peng and Dredze (2016) 66.67 47.22 55.28 74.48 54.55 62.97 58.99
He and Sun (2017a) 66.93 40.67 50.60 66.46 53.57 59.32 54.82
He and Sun (2017b) 61.68 48.82 54.50 74.13 53.54 62.17 58.23
BiLSTM+CRF+adv+self-attention 59.51 50.00 54.34 71.43 47.90 57.35 58.70

Table 3: Experimental results on the updated WeiboNER dataset (He and Sun, 2017a). There are two
blocks. The first block is the performance of latest models. The second block reports the performance of
our proposed model. With the limited length of the page, we use “adv” to denote “adversarial”.

Models P(%) R(%) F1(%)
Chen et al. (2006) 91.22 81.71 86.20
Zhou et al. (2006) 88.94 84.20 86.51
Luo and Yang (2016) 91.30 87.22 89.21
BiLSTM+CRF+adversarial+self-attention 91.73 89.58 90.64

Table 4: Results on SighanNER dataset. There are two blocks. The first block reports the result of
previous methods. The second block gives the performance of our proposed model.

sition of each character in a word to train character
and position embeddings.

In the second block of Table 2, we report the
performance of the main model and baselines pro-
posed by Peng and Dredze (2016). Aiming to in-
corporate word boundary information into the N-
ER task, they propose an integrated model that can
joint training CWS task, improving the F1 score
from 46.20% to 48.41% as compared with pipeline
model (Pipeline Seg.Repr.+NER).

In the last block of Table 2, we give
the experimental result of our proposed model
(BiLSTM+CRF+adversarial+self-attention). We
can observe that our proposed model significant-
ly outperforms other models. Compared with the
model proposed by Peng and Dredze (2016), our
method gains 4.67% improvement in F1 score. In-
terestingly, WeiboNER dataset and MSR dataset
are different domains. The WeiboNER dataset
is social media domain, while the MSR dataset
can be regard as news domain. The improvement
of performance indicates that our proposed adver-
sarial transfer learning framework may not only
learn task-shared word boundary information from
CWS task but also tackle the domain adaptation
problem.

We also conduct an experiment on the updated
WeiboNER dataset. Table 3 lists the performance
of the latest models and our proposed model on
the updated dataset. In the first block of Table 3,

we report the performance of the latest models.
The model proposed by Peng and Dredze (2015)
achieves F1 score of 56.05% on overall perfor-
mance. He and Sun (2017b) propose an unified
model for Chinese NER task to exploit the data
from out-of-domain corpus and in-domain unla-
belled texts. The unified model improves the F1
score from 54.82% to 58.23% compared with the
model proposed by He and Sun (2017a).

In the second block of Table 3, we give the re-
sult of our proposed model. It can be observed
that our proposed model achieves a very competi-
tive performance. Compared with the latest model
proposed by He and Sun (2017b), our model im-
proves the F1 score from 58.23% to 58.70% on
overall performance. The improvement demon-
strates the effectiveness of our proposed model.

4.3.2 Evaluation on SighanNER
Table 4 lists the comparisons on SighanNER
dataset. We observe that our proposed model
achieves new state-of-the-art performance.

In the first block, we give the performance
of previous methods for Chinese NER task on
SighanNER dataset. Chen et al. (2006) propose
a character-based CRF model for Chinese NER
task. Zhou et al. (2006) introduce a pipeline mod-
el, which first segments the text with character-
level CRF model and then applies word-level CRF
to tag. Luo and Yang (2016) first train a word seg-
menter and then use word segmentation as addi-

188



Models SighanNER WeiboNER
P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM+CRF 89.84 88.42 89.13 58.99 44.93 51.01
BiLSTM+CRF+transfer 90.60 89.19 89.89 60.00 46.03 52.09
BiLSTM+CRF+adversarial 90.52 89.56 90.04 61.94 45.48 52.45
BiLSTM+CRF+self-attention 90.62 88.81 89.71 57.81 47.67 52.25
BiLSTM+CRF+adversarial+self-attention 91.73 89.58 90.64 55.72 50.68 53.08

Table 5: Comparison between our proposed model and simplified models on SighanNER dataset and
original WeiboNER dataset.

(a) Example for the effectiveness of boundary information. (b) Example for the effectiveness of self-attention.

Figure 3: The analysis of Chinese NER cases from WeiboNER dataset.

tional features for sequence tagging. Although the
model achieves competitive performance, giving
the F1 score of 89.21%, it suffers from the error
propagation problem.

In the second block, we report the result of
our proposed model. Compared with the state-of-
the-art model proposed by Luo and Yang (2016),
our method improves the F1 score from 89.21%
to 90.64% without any additional features, which
demonstrates the effectiveness of our proposed
model.

4.4 Effectiveness of Adversarial Transfer
Learning and Self-Attention

Table 5 provides the experimental results of our
proposed model and baseline as well as its simpli-
fied models on SighanNER dataset and WeiboN-
ER dataset. The simplified models are described
as follows:

• BiLSTM+CRF: The model is used as strong
baseline in our work, which is trained using
Chinese NER training data.

• BiLSTM+CRF+transfer: We apply transfer
learning to BiLSTM+CRF model without ad-
versarial loss and self-attention mechanism.

• BiLSTM+CRF+adversarial: Compared with
BiLSTM+CRF+transfer model, the BiLST-

M+CRF+adversarial model incorporates ad-
versarial training.

• BiLSTM+CRF+self-attention: The model
integrates the self-attention mechanism based
on BiLSTM+CRF model.

From the experimental results of Table 5, we
have following observations:

• Effectiveness of transfer learning. BiL-
STM+CRF+transfer improves F1 score from
89.13% to 89.89% as compared with BiLST-
M+CRF on SighanNER dataset and achieves
1.08% improvement on WeiboNER dataset,
which indicates the word boundary informa-
tion from CWS is very effective for Chinese
NER task.

• Effectiveness of adversarial training. By
introducing adversarial training, BiLST-
M+CRF+adversarial boosts the performance
as compared with BiLSTM+CRF+transfer
model, showing 0.15% and 0.36% improve-
ment on SighanNER dataset and WeiboNER
dataset, respectively. It proves that adversar-
ial training can prevent specific features of
CWS task from creeping into shared space.

• Effectiveness of self-attention mechanism.
When compared with BiLSTM+CRF, the
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BiLSTM+CRF+self-attention significantly
improves the performance on the two dif-
ferent datasets with the help of information
learned from self-attention, which verifies
that the self-attention mechanism is effective
for Chinese NER task.

We observe that our proposed adversarial trans-
fer learning framework and self-attention lead to
noticeable improvements over the baseline, im-
proving F1 score from 51.01% to 53.08% on Wei-
boNER dataset and giving 1.51% improvement on
SighanNER dataset.

4.5 Detailed Analysis

4.5.1 Case Study
Word boundary information from CWS task is
very important for Chinese NER task, especially
when different entities appear together, . We take
a sentence in WeiboNER test set as example for
illustrating the effectiveness of our proposed mod-
el. As shown in Figure 4(a), when two “person”
entities appearing together, our proposed method
exploits word segmentation information to deter-
mine the boundary between them and then make
correct taggings. In Figure 4(b), when labelling
the word “!¯ (the boss)”, the self-attention ex-
plicitly learns the dependencies with “#Õ (re-
spect)”, therefore, our model enables to correctly
classify the word into “person” category. It veri-
fies that the self-attention is very effective for Chi-
nese NER task.

4.5.2 Error Analysis
According to the results of Table 2 and Table 4,
our proposed model achieves 4.67% and 1.43%
improvement as compared with previous state-
of-the-art methods on WeiboNER dataset and
SighanNER dataset, respectively. However, the
overall performance on WeiboNER dataset is rel-
atively low. Two reasons can be explained for this
issue. One reason is that the number of training
examples in WeiboNER dataset is very limited as
compared with SighanNER dataset. There are on-
ly 1.3k examples in WeiboNER training corpora,
which is not enough to train deep neural network-
s. Another reason is that the expression is informal
in social media, lowering the performance on Wei-
boNER dataset. While the greater improvement
on WeiboNER dataset proves that our method is
helpful to solve the problem.

5 Conclusions

In this paper, we propose a novel adversarial trans-
fer learning framework for Chinese NER task,
which can exploit task-shared word boundaries
features and prevent the specific information of
CWS task. Besides, we introduce self-attention
mechanism to capture the dependencies of arbi-
trary two characters and learn the inner structure
information of sentence. Experiments on two d-
ifferent widely used datasets demonstrate that our
method significantly and consistently outperforms
previous state-of-the-art models.
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Abstract

Coreference resolution is an intermediate step
for text understanding. It is used in tasks
and domains for which we do not necessarily
have coreference annotated corpora. There-
fore, generalization is of special importance
for coreference resolution. However, while
recent coreference resolvers have notable im-
provements on the CoNLL dataset, they strug-
gle to generalize properly to new domains or
datasets. In this paper, we investigate the role
of linguistic features in building more gen-
eralizable coreference resolvers. We show
that generalization improves only slightly by
merely using a set of additional linguistic fea-
tures. However, employing features and sub-
sets of their values that are informative for
coreference resolution, considerably improves
generalization. Thanks to better generaliza-
tion, our system achieves state-of-the-art re-
sults in out-of-domain evaluations, e.g., on
WikiCoref, our system, which is trained on
CoNLL, achieves on-par performance with a
system designed for this dataset.

1 Introduction

Coreference resolution is the task of recognizing
different expressions that refer to the same en-
tity. The referring expressions are called mentions.
For instance, the sentence “[Susan]1 sent [her]1
daughter to a boarding school” contains two core-
ferring mentions. “her” is an anaphor which refers
to the antecedent “Susan”.

The availability of coreference information ben-
efits various Natural Language Processing (NLP)
tasks including automatic summarization, ques-
tion answering, machine translation and informa-
tion extraction. Current coreference developments
are almost only targeted at improving scores on

⇤ This author is currently employed by the Ubiquitous
Knowledge Processing (UKP) Lab, Technische Universität
Darmstadt, https://www.ukp.tu-darmstadt.de.

the CoNLL official test set. However, the supe-
riority of a coreference resolver on the CoNLL
evaluation sets does not necessarily indicate that it
also performs better on new datasets. For instance,
the ranking model of Clark and Manning (2016a),
the reinforcement learning model of Clark and
Manning (2016b) and the end-to-end model of
Lee et al. (2017) are three recent coreference re-
solvers, among which the model of Lee et al.
(2017) performs the best and that of Clark and
Manning (2016b) performs the second best on the
CoNLL development and test sets. However, if we
evaluate these systems on the WikiCoref dataset
(Ghaddar and Langlais, 2016a), which is consis-
tent with CoNLL with regard to coreference def-
inition and annotation scheme, the performance
ranking would be in a reverse order1.

In Moosavi and Strube (2017a), we investigate
the generalization problem in coreference resolu-
tion and show that there is a large overlap between
the coreferring mentions in the CoNLL training
and evaluation sets. Therefore, higher scores on
the CoNLL evaluation sets do not necessarily in-
dicate a better coreference model. They may be
due to better memorization of the training data. As
a result, despite the remarkable improvements in
coreference resolution, the use of coreference res-
olution in other applications is mainly limited to
the use of simple rule-based systems, e.g. Lapata
and Barzilay (2005),Yu and Ji (2016), and Elsner
and Charniak (2008).

In this paper, we explore the role of linguis-
tic features for improving generalization. The in-
corporation of linguistic features is considered as
a potential solution for building more generaliz-
able NLP systems2. While linguistic features3

1The single model of Lee et al. (2017) is used here.
2E.g. there is a dedicated workshop for this topic https:

//sites.google.com/view/relsnnlp.
3We refer to features that are based on linguistic intu-
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were shown to be important for coreference res-
olution, e.g. Uryupina (2007) and Bengtson and
Roth (2008), state-of-the-art systems no longer
use them and mainly rely on word embeddings
and deep neural networks. Since all recent sys-
tems are using neural networks, we focus on the
effect of linguistic features on a neural coreference
resolver.

The contributions of this paper are as follows:
– We show that linguistic features are more ben-

eficial for a neural coreference resolver if we
incorporate features and subsets of their values
that are informative for discriminating corefer-
ence relations. Otherwise, employing linguis-
tic features with all their values only slightly
affects the performance and generalization.

– We propose an efficient discriminative pattern
mining algorithm, called EPM, for determin-
ing (feature, value) pairs that are informative
for the given task. We show that while the in-
formativeness of EPM mined patterns is on-
par with those of its counterparts, it scales best
to large datasets.4

– By improving generalization, we achieve
state-of-the-art performance on all exam-
ined out-of-domain evaluations. Our out-of-
domain performance on WikiCoref is on-par
with that of Ghaddar and Langlais (2016b)’s
coreference resolver, which is a system specif-
ically designed for WikiCoref and uses its do-
main knowledge.

2 Importance of Features in Coreference

Uryupina (2007)’s thesis is one of the most thor-
ough analyses of linguistically motivated features
for coreference resolution. She examines a large
set of linguistic features, i.e. string match, syntac-
tic knowledge, semantic compatibility, discourse
structure and salience, and investigates their inter-
action with coreference relations. She shows that
even imperfect linguistic features, which are ex-
tracted using error-prone preprocessing modules,
boost the performance and argues that coreference
resolvers could and should benefit from linguistic
theories. Her claims are based on analyses on the
MUC dataset. Ng and Cardie (2002), Yang et al.
(2004), Ponzetto and Strube (2006), Bengtson and

itions, e.g. string match, or are acquired from linguistic pre-
processing modules, e.g. POS tags, as linguistic features.

4The EPM code is available at https://github.
com/ns-moosavi/epm

Roth (2008), and Recasens and Hovy (2009) also
study the importance of features in coreference
resolution.

Apart from the mentioned studies, which are
mainly about the importance of individual fea-
tures, studies like Björkelund and Farkas (2012),
Fernandes et al. (2012), and Uryupina and Mos-
chitti (2015) generate new features by combining
basic features. Björkelund and Farkas (2012) do
not use a systematic approach for combining fea-
tures. Fernandes et al. (2012) use the Entropy
guided Feature Induction (EFI) approach (Fernan-
des and Milidiú, 2012) to automatically generate
discriminative feature combinations. The first step
is to train a decision tree on a dataset in which each
sample consists of features describing a mention
pair. The EFI approach traverses the tree from the
root in a depth-first order and recursively builds
feature combinations. Each pattern that is gener-
ated by EFI starts from the root node. As a result,
EFI tends to generate long patterns. A decision
tree does not represent all patterns of data. There-
fore, it is not possible to explore all feature com-
binations from a decision tree.

Uryupina and Moschitti (2015) propose an al-
ternative approach to EFI. They formulate the
problem of generating feature combinations as
a pattern mining approach. They use the Jac-
card Item Mining (JIM) algorithm5 (Segond and
Borgelt, 2011). They show that the classifier that
uses the JIM features significantly outperforms the
one that employs the EFI features.

3 Baseline Coreference Resolver

deep-coref (Clark and Manning, 2016a) and e2e-
coref (Lee et al., 2017) are among the best per-
forming coreference resolvers from which e2e-
coref performs better on the CoNLL test set. deep-
coref is a pipelined system, i.e. a mention detec-
tion first determines the list of candidate men-
tions with their corresponding features. It con-
tains various coreference models including the
mention-pair, mention-ranking, and entity-based
models. The mention-ranking model of deep-
coref has three variations: (1) “ranking” uses the
slack-rescaled max-margin training objective of
Wiseman et al. (2015), (2) “reinforce” is a varia-
tion of the “ranking” model in which the hyper-
parameters are set in a reinforcement learning
framework (Sutton and Barto, 1998), and (3) “top-

5http://www.borgelt.net/jim.html
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pairs” is a simple variation of the “ranking” model
that uses a probabilistic objective function and is
used for pretraining the “ranking” model.

e2e-coref is an end-to-end system that jointly
models mention detection and coreference reso-
lution. It considers all possible (start, end) word
spans of each sentence as candidate mentions.
Apart from a single model, e2e-coref includes an
ensemble of five models.

We use deep-coref as the baseline in our experi-
ments. The reason is that some of the examined
features require the head of each mention to be
known, e.g. head match, while e2e-coref mentions
do not have specific heads and heads are automat-
ically determined using an attention mechanism.
We also observe that if we limit e2e-coref candi-
date spans to those that correspond to deep-coref’s
detected mentions, the performance of e2e-coref
drops to a level on-par with deep-coref6.

4 Examined Features

The examined linguistic features include string
match, syntactic, shallow semantic and discourse
features. Mention-based features include:

– Mention type: proper, nominal or pronominal
– Fine mention type: proper, definite or indefi-

nite nominal, or the citation form of pronouns
– Gender: female, male, neutral, unknown
– Number: singular, plural, unknown
– Animacy: animate, inanimate, unknown
– Named entity type: person, location, organiza-

tion, date, time, number, etc.
– Dependency relation: enhanced dependency

relation (Schuster and Manning, 2016) of the
head word to its parent

– POS tags of the first, last, head, two words pre-
ceding and following of each mention

Pairwise features include:
– Head match: both mentions have the same

head, e.g. “red hat” and “the hat”
– String of one mention is contained in the other,

e.g. “Mary’s hat” and “Mary”
– Head of one mention is contained in the other,

e.g. “Mary’s hat” and “hat”
– Acronym, e.g. “Heidelberg Institute for Theo-

retical Studies” and “HITS”
6 The CoNLL score of the e2e-coref single model on the

CoNLL development set drops from 67.36 to 65.81, while
that of the deep-coref “ranking” model is 66.09.

– Compatible pre-modifiers: the set of pre-
modifiers of one mention is contained in that
of the other, e.g. “the red hat that she is wear-
ing” and “the red hat”

– Compatible7 gender, e.g. “Mary” and
“women”

– Compatible number, e.g. “Mary” and “John”
– Compatible animacy, e.g. “those hats” and “it”
– Compatible attributes: compatible gender,

number and animacy, e.g. “Mary” and “she”
– Closest antecedent that has the same head and

compatible premodifiers, e.g. “this new book”
and “This book” in “Take a look at this new
book. This book is one of the best sellers.”

– Closest antecedent that has compatible at-
tributes, e.g. the antecedent “Mary” and the
anaphor “she” in the sentence “John saw Mary,
and she was in a hurry”

– Closest antecedent that has compatible at-
tributes and is a subject, e.g. the antecedent
“Mary” and the anaphor “she” in the sentence
“Mary saw John, but she was in a hurry”

– Closest antecedent that has compatible at-
tributes and is an object, e.g. “Mary” and “she”
in “John saw Mary, and she was in a hurry”

The last three features are similar to the discourse-
level features discussed by Uryupina (2007),
which are created by combining proximity, agree-
ment and salience properties. She shows that such
features are useful for resolving pronouns. we esti-
mate proximity by considering the distance of two
mentions. The salience is also incorporated by dis-
criminating subject or object antecedents. We do
not use any gold information. All features are ex-
tracted using Stanford CoreNLP (Manning et al.,
2014).

5 Impact of Linguistic Features

In this section, we examine the effect of employ-
ing all linguistic features described in Section 4
in a neural coreference resolver, i.e. deep-coref.
We use MUC (Vilain et al., 1995), B3 (Bagga
and Baldwin, 1998), CEAFe (Luo, 2005), LEA
(Moosavi and Strube, 2016), and the CoNLL score
(Pradhan et al., 2014), i.e. the average F1 value of
MUC, B3, and CEAFe, for evaluations.

The results of employing those features in deep-
coref’s “ranking” and “top-pairs” models on the

7One value is unknown, or both values are identical.

195



CoNLL development set are reported in Table 1.

MUC B3 CEAFe CoNLL LEA
ranking 74.31 64.23 59.73 66.09 60.47
+linguistic 74.35 63.96 60.19 66.17 60.20
top-pairs 73.95 63.98 59.52 65.82 60.07
+linguistic 74.32 64.45 60.19 66.32 60.62

Table 1: Impact of linguistic features on deep-coref
models on the CoNLL development set.

The rows “ranking” and “top-pairs” show the
base results of deep-coref’s “ranking” and “top-
pairs” models, respectively. “+linguistic” rows
represents the results for each of the mention-
ranking models in which the feature set of Sec-
tion 4 is employed. The gender, number, ani-
macy and mention type features, which have less
than five values, are converted to binary features.
Named entity and POS tags, and dependency rela-
tions are represented as learned embeddings.

We observe that incorporating all the linguistic
features bridges the gap between the performance
of “top-pairs” and “ranking”. However, it does not
improve significantly over “ranking”. Henceforth,
we use the “top-pairs” model of deep-coref as the
baseline model to incorporate linguistic features.

To assess the impact on generalization, we eval-
uate “top-pairs” and “+linguistic”8 models that are
trained on CoNLL, on WikiCoref (see Table 2).
We observe that the impact on generalization is
also not notable, i.e. the CoNLL score improves
only by 0.5pp over “ranking”.

MUC B3 CEAFe CoNLL LEA
ranking 63.10 48.43 47.18 52.90 44.40
top-pairs 63.09 48.42 46.05 52.52 44.21
+linguistic 63.99 49.63 46.60 53.40 45.66

Table 2: Out-of-domain evaluation of deep-coref
models on the WikiCoref dataset.

Based on an ablation study, while our feature
set contains numerous features, the resulting im-
provements of “linguistic” over “top-pairs” mainly
comes from the last four pairwise features in Sec-
tion 4, which are carefully designed features.

6 Better Exploiting Linguistic Features
As discussed by Moosavi and Strube (2017a),
there is a large lexical overlap between the core-
ferring mentions of the CoNLL training and eval-
uation sets. As a result, lexical features provide a

8i.e. “top-pairs+linguistic”

very strong signal for resolving coreference rela-
tions.

For linguistic features to be more effective in
current coreference resolvers, which rely heav-
ily on lexical features, they should also provide a
strong signal for coreference resolution.

Additional linguistic features are not necessar-
ily all informative for coreference resolution, es-
pecially if they are extracted automatically and are
noisy. Besides, for features with multiple values,
e.g. mention-based features, only a small subset of
values may be informative.

To better exploit linguistic features, we only
employ (feature, value) pairs9 that are informative
for coreference resolution. Coreference resolution
is a complex task in which features have complex
interactions (Recasens and Hovy, 2009). As a re-
sult, we cannot determine the informativeness of
feature-values in isolation.

We use a discriminative pattern mining ap-
proach (Cheng et al., 2007, 2008; Batal and
Hauskrecht, 2010) that examines all combinations
of feature-values, up to a certain length, and deter-
mines which feature-values are informative when
they are considered in combination.

Due to the large data size (all mention-pairs of
the CoNLL training data) and the high dimension-
ality of feature-values, compared to common eval-
uation sets of pattern mining methods, the exist-
ing discriminative pattern mining approaches were
not applicable to our data. In this section, we pro-
pose an efficient discriminative pattern mining ap-
proach, called Efficient Pattern Miner (EPM), that
is scalable to large NLP datasets. The most impor-
tant properties of EPM are (1) it examines all fre-
quent feature-values combinations, up to the de-
sired length, (2) it is scalable to large datasets, and
(3) it is only data dependent and independent of
the coreference resolver.

6.1 Notation
We use the following notations and definitions
throughout this section:
– D = {Xi, c(Xi)}n

i=1: set of n training sam-
ples. Xi is the set of feature-values that de-
scribes the ith sample. c(Xi) 2 C is the label
of Xi, e.g. coreferent and non-coreferent.

– A = {a1, . . . , al}: set of all feature-values
present in D. Each ai 2 A is called an item,
e.g. ai =“anaphor type=proper”.

9Henceforth, we refer to them as feature-values.

196



– p: pattern p = {ai1 , . . . , aik} is a set of one or
more items, e.g. p ={“anaphor type=proper”,
“antecedent type=proper”}.

– support(p, ci): the number of samples that
contain pattern p and are labeled with ci.

6.2 Data Structure
For representing the input samples, we use the Fre-
quent Pattern Tree (FP-Tree) structure that is the
data structure of the FP-Growth algorithm (Han
et al., 2004), i.e. one of the most common algo-
rithms for frequent pattern mining. FP-Tree pro-
vides a structure for representing all existing pat-
terns of data in a compressed form. Using the
FP-Tree structure allows an efficient enumeration
of all frequent patterns. In the FP-Tree struc-
ture, items are arranged in descending order of
frequency. Frequency of an item corresponds toP

ci2C support(ai, ci). Except for the root, which
is a null node, each node n contains an item ai 2
A. It also contains the support values of ai in the
subpath of the tree that starts from the root and
ends with n, i.e. supportn(ai, cj).

The FP-Tree construction method (Han et al.,
2004) is as follows: (a) scan D to collect the set
of all items, i.e. A. Compute support(ai, cj) for
each item ai 2 A and label cj 2 C. Sort A’s
members in descending order according to their
frequencies, i.e.

P
ci2C support(ai, ci). (b) cre-

ate a null-labeled node as the root, and (c) scan D
again. For each (Xi, c(Xi)) 2 D:

1. Order all items aj 2 Xi according to the or-
der in A.

2. Set the current node (T ) to the root.

3. Consider Xi = [ak|X̄i], where ak is the first
(ordered) item of xi , and X̄i = Xi � ak.
If T has a child n that contains ak then in-
crement supportn(ak, c(Xi)) by one. Oth-
erwise, create a new node n that contains ak

with supportn(ak, c(Xi)) = 1. Add n to the
tree as a child of T .

4. If X̄i is non-empty, set T to n. Assign Xi =
X̄i and go to step 3.

As an example, assume D contains the follow-
ing two samples:

X1={ana-type=NAM, ant-type=NAM, head-
match=F}, C(X1) = 0

X2={ana-type=NAM, ant-type=NAM, head-
match=T}, C(X2) = 1

Based on these samples A={ana-type=NAM,
ant-type=NAM, head-match=F, head-
match=T}, support(ai, 0)ai2A= {1,1,1,0},
and support(ai, 1)ai2A={1,1,0,1}. If
we sort A based on ai’s frequencies
(support(ai, 0) + support(ai, 1)), the order-
ing of A’s items will remain the same.

The FP-Tree construction steps for the above
samples are demonstrated in Figure 1. ana-type,
ant-type, and head-match features are abbreviated
as ana, ant, and head, respectively.

ROOT

ana=NAM (1,0)

ant=NAM (1,0)

head=F (1,0)

ROOT

ana=NAM (1,1)

ant=NAM (1,1)

head=F (1,0) head=T (0,1)

Figure 1: Left to right: (partially) constructed FP-
Tree for the example in Section 6.2.

From an initial FP-Tree (T ) that represents all
existing patterns, one can easily obtain a new FP-
Tree in which all patterns include a given pattern
p. This can be done by only including sub-paths
of T that contain pattern p. The new tree is called
conditional FP-Tree of p, Tp. An example of con-
ditional FP-Tree is included in the supplementary
materials.

6.3 Informativeness Measures
We use a discriminative power and an informa-
tion novelty measure for determining informative-
ness. We also use a frequency measure which
determines the required minimum frequency of a
pattern in training samples. It helps to avoid over-
fitting to the properties of the training data.
Discriminative power: We use the G2 likelihood
ratio test (Agresti, 2007) in order to choose pat-
terns whose association with the class variable is
statistically significant.10 The G2 test is success-
fully used for text analysis (Dunning, 1993).
Information Novelty: A large number of redun-
dant patterns can be generated by adding irrelevant
items to a base pattern that is discriminative itself.

10A pattern is considered discriminative if the correspond-
ing p-value is less than a fixed threshold (0.01).
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We consider the pattern p as novel if (1) p predicts
the target class label c significantly better than all
of its containing items, and (2) p predicts c signifi-
cantly better than all of its sub-patterns that satisfy
the frequency, discriminative power, and the first
information novelty conditions. Similar to Batal
and Hauskrecht (2010), we employ a binomial dis-
tribution to determine information novelty.

6.4 Mining Algorithm
The EPM algorithm is summarized in Algo-
rithm 1. It takes FP-Tree T , pattern p on which T
is conditioned, and set of items (Aj ⇢ A) whose
combinations with p will be examined. Initially, p
is empty and the FP-Tree is constructed based on
all frequent items of data and Aj = A. Resulting
patterns are collected in P .

For each ai 2 Aj , the algorithm builds new
pattern q by combining ai with p. frequent(q)
checks whether q meets the frequency condition.
If q is frequent, the algorithm continues the search
process. Otherwise, it is not possible to build any
frequent pattern out of a non-frequent one. Dis-
criminative power and the first condition of infor-
mation novelty are then checked for pattern q.

Algorithm EPM(T , p, Aj)
foreach ai 2 Aj do

q = p [ {ai}
if Frequent(q) then

if Discriminative(q) then
if Novel(q) then

P = P [ q
end

end
if |q| >= ⇥l then

continue
end
construct Tq = q’s conditional tree
EPM(Tq, q, ancestors(ai))

end
end
Algorithm 1: The EPM algorithm.

We use a threshold (⇥l) for the maximum length
of mined patterns. ⇥l can be set to large values if
more complex and specific patterns are desirable.

If |q| is smaller than ⇥l, the conditional FP-Tree
Tq is built that represents patterns of T that in-
clude the pattern q. The mining algorithm then
continues to recursively search for more specific

patterns by combining q with the items included
in ancestors(ai), which keeps the list of all an-
cestors of ai in the original FP-Tree. EPM exam-
ines all frequent patterns of up to length ⇥l.

If we use a statistical test multiple times, the
risk of making false discoveries increases (Webb,
2006). To tackle this, we apply the Bonferroni cor-
rection for multiple tests in a post-pruning func-
tion after the mining process. This function also
applies the second information novelty condition
on the resulting patterns.

7 Why Use EPM?

In this section, we explain why EPM is a better
alternative compared to its counterparts for large
NLP datasets. We compare EPM with two ef-
ficient discriminative pattern mining algorithms,
i.e. Minimal Predictive Patterns (MPP) (Batal and
Hauskrecht, 2010) and Direct Discriminative Pat-
tern Mining (DDPMine) (Cheng et al., 2008), on
standard machine learning datasets.

MPP selects patterns that are significantly more
predictive than all their sub-patterns. It measures
significance by the binomial distribution. For each
pattern of length l, MPP checks 2l�1 sub-patterns.
DDPMine is an iterative approach that selects the
most discriminative pattern at each iteration and
reduces the search space of the next iteration by
removing all samples that include the selected pat-
tern. DDPMine uses the FP-Tree structure.

We show that EPM scales best and compares fa-
vorably based on the informativeness of resulting
patterns. Due to its efficiency, EPM can handle
large datasets similar to ones that are commonly
used in various NLP tasks.

7.1 Experimental Setup
We use the same FP-Tree implementation for
DDPMine and EPM. In all algorithms, we con-
sider a pattern as frequent if it occurs in 10% of
the samples of one of the classes. We use ⇥l = 3
for both MPP and EPM.

We perform 5-times repeated 5-fold cross vali-
dation and the results are averaged. In each vali-
dation, all experiments are performed on the same
split. We use a linear SVM, i.e. LIBLINEAR 2.11
(Fan et al., 2008), as the baseline classifier.

We use several datasets from the UCI ma-
chine learning repository (Lichman, 2013) whose
characteristics are presented in the first three
columns of Table 3, i.e. the number of (1)

198



Data characteristics # Patterns Micro-F Macro-F
Dataset #Features #FI n DDP MPP EPM Orig DDP MPP EPM Orig DDP MPP EPM

cmc (0/2/7) 24 1473 4 99 23 77.5 77.4 76.2 77.3 57.3 57.1 57.7 59.4
nursery (0/0/8) 27 12690 4 258 198 97.5 98.2 99.9 99.8 49.4 79.4 99.8 98.8
sick (6/1/22) 36 2800 5 627 89 94.6 94.7 96.1 95.8 62.6 64.8 81.0 75.6
kr-v-k (0/0/16) 40 28056 7 71 63 99.1 99.1 99.6 99.6 49.8 49.8 87.8 88.4
german (0/7/13) 51 1000 8 548 97 70.7 70.9 73.1 72.7 49.6 55.2 65.3 64.2
connect-4 (0/0/42) 75 67557 - - 907 90.5 - - 90.5 47.5 - - 56.6
census (1/12/28) 76 299284 - - 5618 93.8 - - 93.8 48.4 - - 51.6
poker (0/10/0) 85 1025010 - - 14216 23.1 - - 49.6 22.4 - - 44.5

Table 3: Evaluating the informativeness of DDPMine, MPP and EPM patterns on standard datasets.

(real/integer/nominal) features (#Features), (2)
frequent items (#FI), and (3) samples (n). We
use one[the minority class]-vs-all technique for
datasets with more than two classes.

7.2 How Informative are EPM Patterns?
To evaluate the informativeness of mined patterns,
the common practice is to add them as new fea-
tures to the feature set of the baseline classifier;
the more informative the patterns, the greater im-
pact they would have on the overall performance.
All patterns are added as binary features, i.e. the
feature is true for samples that contain all items of
the corresponding pattern.

The effect of the patterns of DDPMine, MPP
and EPM on the overall accuracy is presented in
Table 3. The columns #Patterns show the num-
ber of patterns mined by each of the algorithms.
The Orig columns show the results of the SVM us-
ing the original feature sets. The DDP, MPP, and
EPM columns show the results of the SVM on the
datasets for which the feature set is extended by
the features mined by DDPMine, MPP, and EPM,
respectively. The results of the 5-repeated 5-fold
cross validation are reported if each single valida-
tion takes less than 10 hours.

Based on the results of Table 3 (1) EPM effi-
ciently scales to larger datasets, (2) MPP and EPM
patterns considerably improves the performance,
and (3) EPM has on-par results with MPP while it
mines considerably fewer patterns.

7.3 How Does it Scale?
Figure 2 compares EPM mining time (in seconds)
with those of DDPMine and MPP. The parame-
ter in the parentheses is the pattern size threshold,
e.g. ⇥l = 4 for EPM(4). The experiments that
take more than two days are terminated and are
not included. EPM is notably faster in comparison
to the other two approaches. It is notable that the
examined datasets are considerably smaller than
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Figure 2: Comparison of mining times (seconds).

the coreference data, which includes more than 33
million samples and 200 frequent feature-values.

8 Impact of Informative Feature-values

8.1 Experimental Setup
For determining informative feature-values, we
extract all features for all mention-pairs11 of the
CoNLL training data and then apply EPM on this
data. In order to prevent learning annotation er-
rors and specific properties of the training data,
we consider a pattern as frequent if it occurs in
coreference relations of at least m different core-
ferring anaphors (m = 20). Since the majority of
mention-pairs are non-coreferent and we are not
interested in patterns for non-coreferring relations,
we also consider the coreference probability of
each pattern p, i.e. |{Xi|p2Xi^c(Xi)=coreferent}|

|{Xi|p2Xi}| , in
the post-pruning function. The coreference prob-
ability should be higher than a threshold (60% in
our experiments), so we only mine patterns that
are informative for coreferring mentions.

For the coreference resolution experiments, in-
stead of incorporating informative patterns, we in-
corporate feature-values that are included in the

11Each mention is paired with all the preceding mentions.
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 R P F1

de
ep

-c
or

ef ranking 70.43 79.57 74.72 58.08 69.26 63.18 54.43 64.17 58.90 65.60 54.55 65.68 59.60
reinforce 69.84 79.79 74.48 57.41 70.96 63.47 55.63 63.83 59.45 65.80 53.78 67.23 59.76
top-pairs 69.41 79.90 74.29 57.01 70.80 63.16 54.43 63.74 58.72 65.39 53.31 67.09 59.41
+EPM 71.16 79.35 75.03 59.28 69.70 64.07 56.52 64.02 60.04 66.38 55.63 66.11 60.42
+JIM 69.89 80.45 74.80 57.08 71.58 63.51 55.36 64.20 59.45 65.93 53.46 67.97 59.85

e2
e single 74.02 77.82 75.88 62.58 67.45 64.92 59.16 62.96 61.00 67.27 58.90 63.79 61.25

ensemble 73.73 80.95 77.17 61.83 72.10 66.57 60.11 65.62 62.74 68.83 58.48 68.81 63.23

Table 4: Comparisons on the CoNLL test set. The F1 gains that are statistically significant: (1) “+EPM” compared to “top-
pairs”, “ranking” and “JIM”, (2) “+EPM” compared to “reinforce” based on MUC, B3 and LEA, (3) “single” compared to
“+EPM” based on MUC and B3, and (4) “ensemble” compared to other systems. Significance is measured based on the
approximate randomization test (p < 0.05) (Noreen, 1989).

informative patterns mined by EPM. The reason
is that deep-coref, or any other recent coreference
resolver, uses a deep neural network, which has
a fully automated feature generation process. We
add these feature-values as binary features.

By setting ⇥l to five,12 EPM results in 13 pair-
wise feature-values, 112 POS tags, i.e. 53 POS
for anaphors and 59 for antecedents, 25 depen-
dency relations, 26 mention types (mention types
or fine mention types), and finally, 14 named en-
tity tags.13

Based on the observation in Section 5, we use
the top-pairs model of deep-coref as the baseline
to employ additional features, i.e. “+EPM” is the
top-pairs model in which EPM feature-values are
incorporated.

8.2 Impact on In-domain Performance
The performance of the “+EPM” model compared
to recent state-of-the-art coreference models on
the CoNLL test set is presented in Table 4. The
“single” and “ensemble” rows represent the results
of the single and ensemble models of e2e-coref.

We also compare EPM with the pattern mining
approach used by Uryupina and Moschitti (2015),
i.e. Jaccard Item Mining (JIM). For a fair compar-
ison, while Uryupina and Moschitti (2015) used
mined patterns for extracting feature templates, we
use them for selecting feature-values. We run the
JIM algorithm on the same data and with the same
setup as that of EPM.14 This results in nine pair-

12We observe that using larger ⇥l values will result in
many over-specified patterns.

13Following the previous studies that show different fea-
tures are of different importance for various types of men-
tions, e.g. Denis and Baldridge (2008) and Moosavi and
Strube (2017b), we mine a separate set of patterns for each
type of anaphor. These resulting feature-values are the union
of informative feature-values for all types of anaphora.

14 We set the minimum frequency, maximum pattern
length and score+ threshold parameters of JIM to 20, 5 and

wise features, 260 POS tags, 38 dependency rela-
tions, 32 mention types, and 18 named entity tags.
The “+JIM” row shows the results of deep-coref
top-pairs model in which these feature-values are
incorporated. As we see, EPM feature-values re-
sult in significantly better performance than those
of JIM while the number of EPM feature-values is
considerably less than JIM.

MUC B3 CEAFe CoNLL LEA
+EPM 74.92 65.03 60.88 66.95 61.34
-pairwise 74.37 64.55 60.46 66.46 60.71
-type 74.71 64.87 61.00 66.86 61.07
-dep 74.57 64.79 60.65 66.67 61.01
-NER 74.61 65.05 60.93 66.86 61.27
-POS 74.74 65.04 60.88 66.89 61.30
+pairwise 74.25 64.33 60.02 66.20 60.57

Table 5: Impact of different EPM feature groups
on the CoNLL development set.

Feature Ablation Table 5 shows the effect of
each group of EPM feature-values, i.e. pairwise
features, mention types, dependency relations,
named entity tags and POS tags, on the perfor-
mance of “+EPM”. The performance of “+EPM”
from which each of the above feature groups is
removed, one feature group at a time, is repre-
sented as “-pairwise”, “-types”, “-dep”, “-NER”,
and “-POS”, respectively. The POS and named
entity tags have the least and the pairwise features
have the most significant effect. Since pairwise
features have the most significant effect, we also
perform an experiment in which only pairwise fea-
tures are incorporated in the “top-pairs” model, i.e.
“+pairwise”. The results of “-pairwise” compared
to “+pairwise” show that pairwise feature-values
have a significant impact, but only when they
are considered in combination with other EPM

0.6.
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MUC B3 CEAFe CoNLL LEA
R P F1 R P F1 R P F1 R P F1

de
ep

-c
or

ef ranking 57.72 69.57 63.10 41.42 58.30 48.43 42.20 53.50 47.18 52.90 37.57 54.27 44.40
reinforce 62.12 58.98 60.51 46.98 45.79 46.38 44.28 46.35 45.29 50.73 42.28 41.70 41.98
top-pairs 56.31 71.74 63.09 39.78 61.85 48.42 40.80 52.85 46.05 52.52 35.87 57.58 44.21
+EPM 58.23 74.05 65.20 43.33 63.90 51.64 43.44 56.33 49.05 55.30 39.70 59.81 47.72

e2
e single 60.14 64.46 62.22 45.20 51.75 48.25 38.18 43.50 40.67 50.38 40.70 47.56 43.86

ensemble 59.58 71.60 65.04 44.64 60.91 51.52 40.38 49.17 44.35 53.63 40.73 56.97 47.50
G&L 66.06 62.93 64.46 57.73 48.58 52.76 46.76 49.54 48.11 55.11 - - -

Table 6: Out-of-domain evaluation on the WikiCoref dataset. The highest F1 scores are boldfaced.

feature-values.

in-domain out-of-domain
CoNLL LEA CoNLL LEA

pt (Bible)

deep-coref ranking 75.61 71.00 66.06 57.58
+EPM 76.08 71.13 68.14 60.74

e2e-coref single 77.80 73.73 65.22 58.26
ensemble 78.88 74.88 65.45 59.71

wb (weblog)

deep-coref ranking 61.46 53.75 57.17 48.74
+EPM 61.97 53.93 61.52 53.78

e2e-coref single 62.02 53.09 60.69 52.69
ensemble 64.76 57.54 60.99 52.99

Table 7: In-domain and out-of-domain evaluations
for the pt and wb genres of the CoNLL test set.
The highest scores are boldfaced.

8.3 Impact on Generalization
We use the same setup as that of Moosavi and
Strube (2017a) for evaluating generalization in-
cluding (1) training on the CoNLL data and test-
ing on WikiCoref15 and (2) excluding a genre of
the CoNLL data from training and development
sets and testing on the excluded genre. Similar to
Moosavi and Strube (2017a), we use the pt and wb
genres for the latter evaluation setup.

The results of the first evaluation setup are
shown in Table 6. The best performance on
WikiCoref is achieved by Ghaddar and Langlais
(2016a) (“G&L” in Table 6) who introduced Wi-
kiCoref and design a domain-specific coreference
resolver that makes use of the Wikipedia markups
of a document as well as links to Freebase, which
are annotated in WikiCoref.

Incorporating EPM feature-values improves the
performance by about three points. While
“+EPM” does not use the WikiCoref data dur-
ing training, and unlike “G&L”, it does not em-
ploy any domain-specific features, it achieves on-
par performance with that of “G&L”. This indeed

15WikiCoref only contains 30 documents, which is not
enough for training neural coreference resolvers.

shows the effectiveness of informative feature-
values in improving generalization.

The second set of generalization experiments is
reported in Table 7. “in-domain” columns show
the results when the evaluation genres were in-
cluded in training and development sets while the
“out-of-domain” columns show the results when
the evaluation genres were excluded. As we
can see, “+EPM” generalizes best, and in out-of-
domain evaluations, it considerably outperforms
the ensemble model of e2e-coref, which has the
best performance on the CoNLL test set.

9 Conclusions

In this paper, we show that employing linguistic
features in a neural coreference resolver signifi-
cantly improves generalization. However, the in-
corporated features should be informative enough
to be taken into account in the presence of lexi-
cal features, which are very strong features in the
CoNLL dataset. We propose an efficient algorithm
to determine informative feature-values in large
datasets. As a result of a better generalization, we
achieve state-of-the-art results in all examined out-
of-domain evaluations.
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Abstract

In this work, we propose a novel segmen-
tal hypergraph representation to model over-
lapping entity mentions that are prevalent in
many practical datasets. We show that our
model built on top of such a new represen-
tation is able to capture features and inter-
actions that cannot be captured by previous
models while maintaining a low time com-
plexity for inference. We also present a the-
oretical analysis to formally assess how our
representation is better than alternative repre-
sentations reported in the literature in terms
of representational power. Coupled with neu-
ral networks for feature learning, our model
achieves the state-of-the-art performance in
three benchmark datasets annotated with over-
lapping mentions.1

1 Introduction

One of the most crucial steps towards building a
natural language understanding system is the iden-
tification of basic semantic chunks in text. Such
a task is typically characterized by the named
entity recognition task (Grishman, 1997; Tjong
Kim Sang and De Meulder, 2003), or the more
general mention recognition task, where mentions
are defined as references to entities that could
be named, nominal or pronominal (Florian et al.,
2004). The extracted mentions can be used in var-
ious downstream tasks for performing further se-
mantic related tasks, including question answer-
ing (Abney et al., 2000), relation extraction (Mintz
et al., 2009; Liu et al., 2017), event extraction
(Riedel and McCallum, 2011; Li et al., 2013), and
coreference resolution (Soon et al., 2001; Ng and
Cardie, 2002; Chang et al., 2013).

One popular approach to the task of mention ex-
traction is to regard it as a sequence labeling prob-

1We make our system and code available at: http://
statnlp.org/research/ie

. . . At the Seattle
::::

GPE

zoo

::::::::::
FACILITY

, efforts to artificially . . .

. . . pPEBP2
::::::
PROTEIN

alpha A1
::::::
PROTEIN

:::::::::::::
PROTEIN

, alpha B1
::::::
PROTEIN

, and . . .

Figure 1: Examples of overlapping mentions.

lem, with the underlying primary assumption be-
ing that the mentions are non-overlapping spans
in the text. However, as highlighted in several
prior research efforts (Alex et al., 2007; Finkel
and Manning, 2009; Lu and Roth, 2015), men-
tions may overlap with one another in practice.
Thus, models based on such a simplified assump-
tion may result in sub-optimal performance for a
down-stream task when they are deployed in prac-
tice. For example, consider a phrase “At the Seat-
tle zoo, . . . ” shown in Figure 1, the relation LO-
CATEDIN between the mentions “the Seattle zoo”
(of type FACILITY) and “Seattle” (of type GPE:
Geo-political entities) will not be extracted unless
both of these two overlapping mentions could be
extracted. Similarly, there are 4 mentions of the
same type (PROTEIN) in the text span “. . . PEBP2
alpha A1, alpha B1 . . . ” taken from the biomed-
ical domain. A downstream question answering
system may fail to return the correct answer as de-
sired, if the mention extraction system it relies on
is unable to extract all these valid mentions.

Various approaches to extracting overlapping
mentions have been proposed in the past decade.
The cascaded approach (Alex et al., 2007) builds a
pipeline of sequence labeling models using condi-
tional random fields (CRF) (Lafferty et al., 2001).
However, the model is unable to handle overlap-
ping mentions of the same type. Finkel and Man-
ning (2009) presented a parsing based approach to
nested mention extraction. Due to the chart-based
parsing algorithm involved, the model has a cubic
time complexity in the number of words in the sen-
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tence. A recent approach by Lu and Roth (2015)
introduced a hypergraph representation for captur-
ing overlapping mentions, which was shown fast
and effective. The work was improved by Muis
and Lu (2017), who proposed a sequence labeling
approach that assigns tags to gaps between words.
However, both approaches suffer from the struc-
tural ambiguity issue during inference, as we will
further discuss in this paper.

We summarize our contributions as:
1. We propose a novel segmental hypergraph

representation that is capable of modeling
arbitrary combinations of (potentially over-
lapping) mentions in a given sentence. The
model has a O(cmn) time complexity (m is
the number of mention types, n is the number
of words in a sentence, and c is the maximal
number of words for each mention), and is
able to capture features that cannot be cap-
tured by existing approaches.

2. Theoretically, we show that our approach
based on such a new representation does not
have the limitations associated with some re-
cently proposed state-of-the-art approaches
for overlapping mention extraction.

3. We show through extensive experiments on
standard data that by exploiting both word-
level and span-level features learned from
neural networks, our model is able to achieve
the state-of-the-art performance for recogniz-
ing overlapping mentions.

Our model is also general and robust. Further
experiments show that our model yields competi-
tive results when evaluated on data that does not
have overlapping mentions annotated when com-
paring against other recently proposed state-of-
the-art neural models that are capable of extracting
non-overlapping mentions only.

2 Related Work

Overlapping Mention Recognition

One of the earliest research efforts on handling
overlapping mentions is a rule-based approach
(Zhang et al., 2004; Zhou et al., 2004; Zhou, 2006)
that is evaluated on the GENIA dataset (Kim
et al., 2003). The authors first detected the inner-
most mentions and then relied on rule-based post-
processing methods to identify overlapping men-
tions. McDonald et al. (2005) presented a multil-
abel classification algorithm to model overlapping
segments in a sentence systematically.

Alex et al. (2007) proposed several ways to
combine multiple conditional random fields (CRF)
(Lafferty et al., 2001) for such tasks. Their best
results were obtained by cascading several CRF
models in a specific order while each model is
responsible for detecting mentions of a particu-
lar type. Outputs of one model can also serve as
features to the next model. However, such an ap-
proach cannot model overlapping mentions of the
same type, which frequently appear in practice.

Finkel and Manning (2009) approached this
task from a parsing perspective by constructing a
constituency tree, mapping each mention to a node
in the tree. This approach assumes one mention is
contained by the other when they overlap. While
such an assumption largely holds in practice, it
comes with a cost – the chart-based parser suf-
fers from its cubic time complexity, making it not
scalable to large datasets involving long sentences.
Based on the same idea, Wang et al. (2018) pro-
posed a scalable transition-based approach to con-
struct a constituency forest (a collection of con-
stituency trees).

Instead of relying on structured models, Xu
et al. (2017) proposed a local classifier for each
possible span. However, this local approach is
unable to capture the interactions between spans.
Similar to (Alex et al., 2007), Ju et al. (2018)
dynamically stacked multiple flat layers which
recognize mentions sequentially from innermost
mentions to outermost mentions.

Our work is inspired by the model of Lu and
Roth (2015), who introduced a mention hyper-
graph representation for capturing overlapping
mentions. Their model was shown fast and ef-
fective, and was improved by the mention sepa-
rator model (Muis and Lu, 2017). However, we
note that (as also highlighted in their papers) both
models suffer from the structural ambiguity issue
during inference, which we will discuss later. Our
new representation does not have this limitation.2

Recently, Katiyar and Cardie (2018) also proposed
a hypergraph-based representation based on the
BILOU tagging scheme. Their model is trained
greedily using neural networks by viewing the hy-
pergraph construction procedure as a multi-label
assignment process.

Neural Models for Mention Recognition
Recently, neural network based approaches to en-
tity or mention recognition have received signifi-

2A model comparison can be found later in Table 1.
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Figure 2: An example of partial segmental hypergraph
(hyperedges of different types in different colors).

cant attention. They have been proven effective,
even in the absence of handcrafted features. Col-
lobert et al. (2011) used convolutional neural net-
works (CNN) over word sequences, paired with a
CRF output layer. Huang et al. (2015) replaced the
CNN with a bidirectional long short-term mem-
ory network (LSTM) (Hochreiter and Schmidhu-
ber, 1997). Strubell et al. (2017) proposed an it-
erated dilated CNN to improve computational ef-
ficiency. Beyond word-level compositions, sev-
eral methods incorporated character-level compo-
sitions with character embeddings, either through
CNN (Chiu and Nichols, 2016; Ma and Hovy,
2016) or LSTM (Lample et al., 2016).

3 Segmental Hypergraph

A segmental hypergraph is a representation that
aims at representing all possible combinations of
(potentially overlapping) mentions in a given sen-
tence. It belongs to a class of directed hypergraphs
(Gallo et al., 1993), where each hyperedge e con-
sists of a single designated parent node (head of
e) and an ordered list of child nodes (tail of e).
Specifically, our segmental hypergraph consists of
the following 5 types of nodes:

• Ai encodes all such mentions that start with
the i-th or a later word

• Ei encodes all mentions that start exactly
with the i-th word

• Tk
i represents all mentions of type k starting

with the i-th word
• Iki,j represents all mentions of type k that con-

tain the j-th word and start with the i-th word
• X marks the end of a mention.
Hyperedges connecting these nodes are de-

signed to indicate how the semantics of a par-
ent node can be re-expressed in terms of its child
nodes. Figure 2 gives a partial segmental hyper-
graph representing all combinations of mentions
within the span [i, i + 3] consisting of 4 words.
There are 4 types of hyperedges:
1. A hyperedge {Ai ! (Ai+1,Ei)} from Ai to

its children implies the fact that Ai consists of
those mentions that either “start exactly with
the i-th word” (Ei), or “start with a word that
appears strictly after the i-th word” (Ai+1).

2. A hyperedge {Ei ! (T1
i , . . . ,T

m
i )} from Ei

to its children implies that we should consider
all possible types for the mentions (possibly
of length 0) that start with the i-th word.

3. Two hyperedges {Tk
i ! Iki,i} and {Tk

i ! X}
from Tk

i indicate that either there exists at
least one mention starting with the i-th word
(the former hyperedge), or there does not ex-
ist any such mention (the latter hyperedge).

4. Three hyperedges {Iki,j ! Iki,j+1}, {Iki,j !
X}, and {Iki,j ! (Iki,j+1,X)} from Iki,j indi-
cate the following three cases respectively: 1)
both the j-th and (j + 1)-th words belong
to at least one mention that starts with the
i-th word, 2) there exists one mention that
starts with the i-th word and ends with the
j-th word, and 3) both cases are valid.

Essentially, the complete hypergraph compactly
encodes the whole search space of all possible
mentions that can ever appear within a sentence,
where such mentions may or may not overlap with
one another. When we traverse the complete seg-
mental hypergraph by following the directions as
specified by the hyperedges, selecting only one
outgoing hyperedge at a time at each node, we
arrive at a hyperpath3 – a rooted, directed sub-
structure contained by the original hypergraph.

Figure 3 shows an example. Here, “Israeli UN
Ambassador” of type PERSON is captured by the
following sequence of nodes (along a hyperpath):
“A1, E1, T2

1, I21,1, I21,2, I21,3, X”, while “Israeli
UN Ambassador Danny” of type PERSON corre-
sponds to the following node sequence: “A1, E1,
T2

1, I21,1, I21,2, I21,3, I21,4, X”. Similarly, the follow-
ing sequence “A1, A2, E2, T1

2, I12,2, X” represents
the mention “UN” of type ORGANIZATION. As
we can see, such node sequences together form a
single hyperpath that encodes this specific combi-
nation of mentions that overlap with one another.

3Each hyperpath is a hypertree (Brandstädt et al., 1998).
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Figure 3: A specific hyperpath for encoding three
mentions. For brevity, we only show two types.

More details on segmental hypergraph and hyper-
paths are in the supplementary material.

Theoretical Analysis
Our proposed segmental hypergraph representa-
tion has the following theoretical property:

Theorem 3.1. (Structural Ambiguity Free) For
any sentence and its segmental hypergraph G =
(V, E), let S be the set of all possible mention com-
binations for the given sentence, and P be the set
of all hyperpaths contained by G, there is a one-to-
one correspondence between elements in P and S .

Due to space, we provide a proof sketch and in-
clude more details in the supplementary material.
Proof Sketch We note that each hyperpath is
uniquely characterized by its collection of hy-
peredges that involve X nodes. These hyper-
edges uniquely determine the collection of men-
tions. Conversely, a collection of mentions can be
uniquely characterized by a collection of such hy-
peredges, which yields a unique hyperpath.

Note that such a theorem states that our novel
representation has no structural ambiguity, a nice
property that both mention hypergraph model of
(Lu and Roth, 2015) and mention separator model
of (Muis and Lu, 2017) do not hold. As the au-
thors have mentioned in their papers, for a given
sub-structure in their model, there exist multiple
ways of interpreting the combination of mentions.
Specifically, in both representations, the decisions
on where the beginning and the end of a men-
tion are made locally. Such a design will lead to
the structural ambiguity as there will be multiple
interpretations to the mentions given a particular
collection of positions marked as beginning and

end of mentions. To illustrate, consider a phrase
with 4 words “A B C D” where there are only
two overlapping mentions “B C” and “A B C D”.
In both of the previous approaches, their models
would make local predictions and assign both “A”
and “B” as left boundaries, and both “C” and “D”
as right boundaries. However, based on such lo-
cal predictions one could also interpret “A B C”
as a mention – this is where the ambiguity arises.
In contrast, our model enjoys the structural ambi-
guity free property as it uses our newly defined I
nodes (together with X nodes) to jointly capture
the complete boundary information of mentions.
Table 1 shows a full comparison. 4

4 Learning
We adopt a log-linear approach to model the con-
ditional probability of each hyperpath as follows:

p(y|x) =
exp f(x, y)P
y0 exp f(x, y0)

(1)

where f(x, y) is the score function for any pair
of input sentence x and output mention combina-
tion y, which corresponds to a unique hyperpath
Gy. Our objective is to minimize the negative log-
likelihood of all instances in the training set D:

�

X

(x,y⇤)2D

log p(y⇤
|x) (2)

We define features over each hyperedge within
the hyperpath Gy. The score function can be de-
composed into the following form:

f(x, y) =
X

e2Gy

 (e, x) (3)

where e 2 Gy denotes a hyperedge that appears
within the hyperpath Gy, and  (e, x) is a score
defined over e when the input sentence is x.

Apart from word-level features, the segmental
hypergraph also allows span-level features to be
defined. The node Iki,j corresponds to a particu-
lar span [i, j] over which we can extract our local
features. The hyperedge between I nodes can cap-
ture the interactions between partial mentions and
hyperedge between Iki,j and X precisely represents
the mention [i, j] with type k. We note that such
features and interactions cannot be captured by the
models of (Lu and Roth, 2015) and (Muis and Lu,
2017). Such a unique property makes our segmen-
tal hypergraph model more expressive than theirs.

4The mention hypergraph (Lu and Roth, 2015) also suf-
fers from the spurious structures issue, while we do not. We
refer the readers to (Muis and Lu, 2017) for details.
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Spurious Structural Only Nested Pipeline Different Time
Structures Ambiguity Mentions Approach Types Only Complexity

Alex et al. (2007) NO NO NO YES YES O(mn)
Finkel & Manning (2009) NO NO YES NO NO O(|G|n3)

Lu & Roth (2015) YES YES NO NO NO O(mn)
Muis & Lu (2017) NO YES NO NO NO O(mn)
Wang et al. (2018) NO NO YES NO NO O(mn)

This work NO NO NO NO NO O(cmn)

Table 1: Model comparison. |G| is the number of rules in grammar G.

4.1 Softmax-Margin Training
Inspired by (Mohit et al., 2012), we consider the
softmax-margin (Gimpel and Smith, 2010) in our
model. The function  (e, x) is defined as follows:

 (e, x) = �(e, x) + �(e, Gy⇤) (4)

where �(e, x) is a feature function, and �(e, Gy⇤)
is the cost function that defines the margin:

�(e, Gy⇤) =

(
� TX[e] ^ e /2 Gy⇤

1 TI[e] ^ e /2 Gy⇤

0 otherwise
(5)

Here, y
⇤ is the gold mention combination, and

TX[e] and TI[e] are indicator functions that re-
turn true if e is between T and X and between
T and I respectively, and false otherwise. We set
� � 1 such that the cost function will assign more
penalty to false negatives than to false positives.

4.2 Feature Representation
We use two bidirectional LSTMs to learn word-
level and span-level feature representations that
can be used in our approach, resulting in our neu-
ral segmental hypergraph model. We first map the
i-th word in a sentence to its pre-trained word em-
bedding ei, and its POS tag to its embedding pi if
it exists. The final representation for i-th word is
the concatenation of them: vi = [ei,pi]. Next, we
use the a bidirectional LSTM to capture context-
specific information for each word, resulting in the
word-level features:

h
w
i = [biLSTM1(v0, ...,vn)]i (6)

Such representations are then used as inputs to a
second LSTM to generate span-level features: In-
spired by (Kong et al., 2016), we compute all pos-
sible span embeddings efficiently with time com-
plexity O(cn) using dynamic programming, with
n being the number of words in the input x and c
being the maximal length of a mention.

h
s
i:j = biLSTM2(h

w
i , ...,hw

j ) (7)

Recall that there are 4 types of hyperedges in
our hypergraph, over which we can define the
score functions. Since every valid mention hyper-
path contains the first and second kind of hyper-
edges, defining scores over such hyperedges are
unnecessary as their scores would serve as a con-
stant factor that can be eliminated in the overall
loss function of the log-linear model. Thus we
only need to define the score functions on the lat-
ter two types of hyperedges. For hyperedges that
only involve two nodes, we use a linear layer to
compute their scores:

�({Tk
i ! X}, x) = W

(k)
TX · h

w
i (8)

�({Tk
i ! Iki,j}, x) = W

(k)
TI · h

w
i (9)

�({Iki,j ! Iki,j+1}, x) = W
(k)
II ·[hs

i:j ,h
s
i:j+1] (10)

�({Iki,j ! X}, x) = W
(k)
IX · h

s
i:j (11)

where matrices WTX,WTI 2 R
d1⇥m, WII 2

R
2d2⇥m, WIX 2 R

d2⇥m, with superscript (k) re-
ferring to the k-th column of the matrix, d1 is the
dimension of hw, d2 is the dimension of hs, and
m is the number of mention types.

For the hyperedges that involve more than two
nodes, the score is computed as follows:

�({Iki,j ! (X, Iki,j+1)}, x)

= W
0(k)
II · [hs

i:j ,h
s
i:j+1] + W

0(k)
IX · h

s
i:j (12)

where W0
II 2 R

2d2⇥m, W0
IX 2 R

d2⇥m. Note that
in this work, we set W0

II = WII and W0
IX = WIX

to reduce the number of free parameters.
Learning uses stochastic gradient descent with

the update rule of Adam (Kingma and Ba, 2014)
and a gradient clipping of 3.0. Dropout (Srivastava
et al., 2014) for input vectors v and `2 regulariza-
tion are used to reduce overfitting; both are tuned
during the development process.

4.3 Character-level Representation
To make fair comparisons with recent models (Ju
et al., 2018; Wang et al., 2018) that additionally
incorporate character-level components in captur-
ing orthographic and morphological features of
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words, we follow Lample et al. (2016) to use a
bidirectional LSTM that takes the character em-
beddings as input. Specifically, the character-level
representation chi for each word is obtained by
concatenating the last hidden vectors of the for-
ward and backward LSTMs. When this compo-
nent is activated, the representation of each word
is changed to: vi = [ei,pi, chi].

5 Inference

Inference can be done efficiently using a gener-
alized inside-outside style message-passing algo-
rithm (Baker, 1979). The partition function of (1)
can be computed using the inside algorithm ap-
plied to the complete hypergraph G, where we tra-
verse from leaf nodes X to the root node A1, pass-
ing messages to a parent node p from its child
nodes:

µ[p] log
⇣X

e:h(e)⌘p

exp
�
 (e, x) +

X

c2T (e)

µ[c]
�⌘

(13)

where h(e) is the head of the hyperedge e, and
T (e) is the collection of nodes that form the tail of
e – they are the child nodes of h(e) given e. The
message passing step for the outside algorithm can
be defined analogously. It can be verified that
such a message passing algorithm, that is analo-
gous to the sum-product belief propagation algo-
rithm (Kschischang et al., 2001) used in standard
graphical models, will converge after one forward
and one backward pass.

For decoding, we perform the standard MAP in-
ference on top of the complete hypergraph to find
the most probable hyperpath. The resulting proce-
dure is similar to the max-product message pass-
ing algorithm, where we consider only the feature
function � for constructing the messages:

µ[p] max
e:h(e)⌘p

⇣
�(e, x) +

X

c2T (e)

µ[c]
⌘

(14)

During inference, each node corresponds to a
sum/max computation. Since one node is incident
to 3 hyperedges maximally, the time complexity of
inference algorithm can be implied by the number
of nodes in the graph, which is O(cmn), where c
is the maximal length for any mention. This com-
plexity is the same as that of a zero-th order semi-
Markov CRF model (Sarawagi and Cohen, 2005).
Please refer to the supplementary material for a
detailed explanation of the inference algorithm.

ACE-2004 GENIA
Train (%) Test (%) Train (%) Test (%)

# sentences 6,799 (00) 879(00) 14,836 (00) 1,855 (00)
with o.l. 2,683 (39) 272 (42) 3,199 (22) 448 (24)

# mentions 22,207 (00) 3,031 (00) 46,473 (00) 5,600 (00)
o.l. 10,170 (46) 1,418 (47) 8,337 (18) 1,217 (22)

o.l. (st) 5,431 (24) 780 (26) 4,613 (10) 634 (11)
o.l. (st & slb) 2,188 (10) 307 (10) 2,133 (05) 287 (05)

lengh > 6 1,439 (06) 199 (07) 2,449 (05) 301 (05)
max lengh 57 (00) 43 (00) 28 (00) 19 (00)

Table 2: Statistics (ACE04, GENIA). o.l.: overlapping
mentions, st/slb: same type/left boundary.

6 Experiments

6.1 Datasets
We mainly evaluate our models on the standard
ACE-2004, ACE-2005 (Doddington et al., 2004),
and GENIA (Kim et al., 2003) datasets with the
same splits used by previous works (Lu and Roth,
2015; Muis and Lu, 2017). Sample data statistics
of these datasets are listed in Table 2. 5 We can
see that overlapping mentions frequently appear
in such datasets. For ACE2004, over 46% of the
mentions overlap with one another. GENIA fo-
cuses on biomedical entity recognition6 and over-
lapping mentions are also common in it. Most
mentions (over 93%) are not longer than 6 tokens
which we select as maximal length (c) for the re-
stricted models.

6.2 Baseline Approaches
We consider the following baseline models:

• CRF (LINEAR): a linear-chain CRF model.
Since the linear-chain CRF cannot handle
overlapping structures, we only use the outer-
most mentions for learning. Specifically, ev-
ery outer-most mention is labeled based on
the BILOU tagging scheme, which was em-
pirically shown to be better than the BIO
scheme (Ratinov and Roth, 2009).

• CRF (CASCADED): the cascaded CRF based
approach following (Alex et al., 2007). Note
that this approach cannot model the overlap-
ping mentions of the same type.

• Semi-CRF: the semi-Markov CRF model
(Sarawagi and Cohen, 2005). The semi-CRF
model is also only trained on the outer-most
mentions. It can also capture span-level fea-

5See supplementary material for complete data statistics.
6Following previous works, we used version 3.02p which

comes with annotated POS tags (Tateisi, 2004) . Following
(Finkel and Manning, 2009), we collapse DNA, RNA and pro-
tein subtypes into DNA, RNA and protein respectively, keep
cell line and cell type and remove mentions of other types.
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ACE-2004 ACE-2005 GENIA
P R F1 P R F1 P R F1

Non-Neural

CRF (LINEAR) 71.8 40.8 52.1 69.5 44.5 54.2 77.1 63.3 69.5
CRF (CASCADED) 78.4 46.4 58.3 74.8 49.1 59.3 75.9 66.1 70.6
Semi-CRF (c=6) 76.1 41.4 53.6 72.8 45.0 55.6 74.5 66.0 70.0
Semi-CRF (c=n) 66.7 42.0 51.5 67.5 46.1 54.8 74.2 65.8 69.7
Finkel and Manning (2009) - - - - - - 75.4 65.9 70.3
Lu and Roth (2015) 70.0 56.9 62.8 66.3 59.2 62.5 74.2 66.7 70.3
Muis and Lu (2017) 72.7 58.0 64.5 69.1 58.1 63.1 75.4 66.8 70.8
SH (-NN, c=6) 69.4 57.0 62.0 70.3 55.8 62.2 77.0 66.1 71.1
SH (-NN, c=n) 71.1 60.6 65.4 69.5 60.7 64.8 76.2 67.5 71.6

Neural

FOFE (Xu et al., 2017) (c=6) 68.2 54.3 60.5 67.4 55.1 60.6 71.2 64.3 67.6
FOFE (Xu et al., 2017) (c=n) 57.3 46.8 51.5 56.3 44.6 49.8 63.2 59.3 61.2
Katiyar and Cardie (2018) 73.6 71.8 72.7 70.6 70.4 70.5 79.8 68.2 73.6
Ju et al. (2018) 7 - - - 74.2 70.3 72.2 78.5 71.3 74.7
Wang et al. (2018) 74.9 71.8 73.3 74.5 71.5 73.0 78.0 70.2 73.9
SH (c=6) 79.1 67.3 72.7 75.7 69.6 72.5 76.6 71.0 73.7
SH (c=6) + char 80.1 67.5 73.3 75.9 70.0 72.8 76.8 71.8 74.2
SH (c=n) 77.7 72.1 74.5 76.6 71.9 74.2 76.1 72.9 74.5
SH (c=n) + char 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1

Table 3: Main results. SH: segmental hypergraphs (our approach).

tures defined over a complete segment. Sim-
ilar to our model, semi-CRF typically comes
with a length restriction (c) which indicates
the maximal length of a mention.

• Finkel and Manning (2009): a parsing-based
approach for recognizing nested mentions
that reported results on the GENIA dataset.

• Lu and Roth (2015): the model that makes
use of mention hypergraphs for recognizing
overlapping mentions.

• Muis and Lu (2017): the model that makes
use of mention separators to tag gaps between
words for recognizing overlapping mentions.

• FOFE (Xu et al., 2017): a local classifier
based on neural networks that runs on every
possible span to detect mentions. The maxi-
mal mention length (c) can also be used here.

• Katiyar and Cardie (2018): a hypergraph-
based model that uses LSTM for learning fea-
ture representations.

• Ju et al. (2018): a cascaded model that makes
use of multiple LSTM-CRF layers to recog-
nize mentions in an inside-out manner.

• Wang et al. (2018): a neural transition-based
model that construct nested mentions through
a sequence of actions.

• SH (-NN): a non-neural version of our seg-
mental hypergraph model that excludes the
LSTMs but employs handcrafted features. 8

As discussed earlier, we also evaluate the vari-

7Note that in ACE2005, Ju et al. (2018) did their exper-
iments with a different split than Lu and Roth (2015) which
we follow as our split.

8To make a proper comparison, we use the same hand-
crafted features used by (Lu and Roth, 2015), which were
proven effective in previous approaches.

ACE-2004 ACE-2005 GENIA
(c=6) (c=n) (c=6) (c=n) (c=6) (c=n)

SH 72.7 74.5 72.5 74.2 73.7 74.5
-D 71.5 73.1 71.3 72.9 72.1 72.8
-SM 72.0 73.3 71.8 73.5 72.4 73.3
-P 71.5 72.7 71.2 73.0 72.0 73.2

Table 4: Results of various ablations. D: dropout, SM:
softmax-margin, P: pre-trained embeddings.

ants of our model that takes character-level repre-
sentations (+char).

6.3 Training
Pre-trained embeddings GloVe (Pennington et al.,
2014) of dimension 100 are used to initialize the
trainable word vectors for experiments in ACE
and GENIA datasets.9 The embeddings for POS
tags are initialized randomly with dimension 32.
Early stopping is used based on the performance
of development set. The value � used in softmax-
margin is chosen from [1, 3] with step size 0.5.

6.4 Experimental Results
Main results can be found in Table 3. Using
the same set of handcrafted features, our unre-
stricted non-neural model SH (-NN, c=n) achieves
the best performance compared with other non-
neural models, revealing the effectiveness of our
newly proposed segmental hypergraph represen-
tation. It achieves around 1-2% gain in terms of
F1 compared with mention hypergraph of Lu and
Roth (2015) and mention separator of Muis and Lu
(2017), showing the necessity of eliminating struc-
tural ambiguity. CRF (LINEAR) and Semi-CRF do
not perform well due to incapability of handling

9We also additionally tried using embeddings trained on
PubMed for GENIA but the performance was comparable.
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overlapping mentions. In contrast, the pipeline ap-
proach CRF (CASCADED) performs better.

Our unrestricted neural segmental hypergraph
model SH (c=n) already achieves the best results
among all previous models in ACE datasets, show-
ing the effectiveness of our neural segmental hy-
pergraph. The improvement mainly comes from
its ability to recall more mentions. In GENIA,
even without using external features like Brown
clustering features as all non-neural models do,
our neural models still get significant improve-
ments. Compared with the non-neural SH (-NN)
which has around 4.2M parameters, our neural
model SH only has 1.9M parameters yet it still per-
forms better. We empirically see that the represen-
tations learned by LSTM can better capture com-
plex contextual dependencies in sentences. The
character-level representations (+ char) make both
restricted and unrestricted SH perform even bet-
ter. Particularly, SH (c=n) + char achieves the best
results in all datasets compared with other recent
neural models (Katiyar and Cardie, 2018; Ju et al.,
2018; Wang et al., 2018).

One hypothesis we may have is that, without
length restriction, a model will enjoy the benefit
of recalling more long mentions, but also will be
exposed to more false positives. This poses a chal-
lenge for a model – whether it is capable of balanc-
ing these two factors. Empirically, we find that the
length restriction (c=6) improves the precision of
semi-CRF and SH at the expense of the recall, pro-
viding some evidence to support the hypothesis.
However, in terms of F1, the unrestricted semi-
CRF performs worse while unrestricted SH per-
forms better compared to their restricted counter-
parts. The reason is that the span-level handcrafted
features that the semi-CRF relies on can be very
sparse when mentions are overly long. We empir-
ically found this issue is alleviated in the model
SH (-NN), possibly due to its ability in captur-
ing interactions between neighboring spans. Even
with length restriction, SH still yields competitive
results, making it attractive in processing large-
scale datasets considering its linear time complex-
ity. Furthermore, we find that as c increases, SH
performs better consistently in terms of F1. The
choice of c then becomes a tradeoff between time
complexity and performance. Please refer to the
supplementary material for details.

Compared with the local approach FOFE, our
global approach gives a much better performance,
showing its effectiveness in capturing interactions

Overlapping Non-Overlapping w/s
P R F1 P R F1

Lu and Roth (2015) 68.1 52.6 59.4 64.1 65.1 64.6 503
Muis and Lu (2017) 70.4 55.0 61.8 67.2 63.4 65.2 253
Wang et al. (2018) 77.4 70.5 73.8 76.1 69.6 72.7 1445
SH (c=6) 80.2 68.3 73.8 74.8 70.0 72.3 248
SH (c=n) 80.6 73.6 76.9 75.5 71.5 73.4 157

Table 5: Results on different types of sentences
(ACE05), w/s: # of words decoded per second.

between spans. Moreover, FOFE’s performance
suffers significantly in the absence of the length
restriction. The reason is that it will generate much
more negative training instances under this setting,
which makes its learning more challenging.

6.5 Additional Analyses

To understand our model better, we conduct some
further experiments in this section.

Ablation study
We first conduct an ablation study by removing
dropout, softmax-margin and pre-trained embed-
dings from our model respectively. The results are
shown in Table 4. The dropout and pre-trained
embeddings can improve the performance of our
model significantly and this behavior is consistent
with previous neural models for NER (Chiu and
Nichols, 2016; Lample et al., 2016). Meanwhile,
our new cost function based on softmax margin
training also contributes significantly to the good
performance of our model across these datasets.

How well does it handle overlapping mentions?
To further understand how well our model can
handle overlapping mentions, we split the test data
into two portions: sentences with and without
overlapping mentions. We compare our model
with the two state-of-the-art models and report re-
sults on ACE-05 in Table 5.10 In both portions,
SH achieves significant improvements, especially
in the portion with overlapping mentions. This ob-
servation indicates that our model can better cap-
ture the structure of overlapping mentions than
these two previous models. It also helps explain
why the margin of improvement is larger in ACE
than in GENIA since the former has more overlap-
ping mentions than the latter, as shown in Table 2.
Compared with the model with length restriction
c, the unrestricted model mainly benefits from its
ability to recall more overlapping mentions.

10Full results are listed in the supplementary material.
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Model F1

SH (c=6) 89.6
SH (c=6) + char 90.5
SH (c=n) 89.2
SH (c=n) + char 90.2
Collobert et al. (2011) 88.7
Chiu and Nichols (2016) 90.9
Lample et al. (2016) 90.9
Ma and Hovy (2016) 91.2
Xu et al. (2017) 90.7
Strubell et al. (2017) 90.5

Table 6: Additional results on CoNLL-2003.

Running time
Since other compared models also feature linear
time complexity (see Table 1), we examine the de-
coding speed in terms of the number of words pro-
cessed per second. We re-implement the models of
Lu and Roth (2015) and Muis and Lu (2017) using
the same platform as ours (PyTorch) and run them
on the same machine (CPU: Intel i5 2.7 GHz). The
model of (Wang et al., 2018) is also tested with the
same environment. Results on ACE-05 are listed
in Table 5. The length bound (c=6) makes our
model much faster, resulting in a speed compa-
rable to the model of Muis and Lu (2017). The
transition-based model by (Wang et al., 2018) has
the best scalability partially because of its greedy
strategy for decoding.

What if the data has no overlapping mentions?
To assess the robustness of our model and under-
stand whether it could serve as a general men-
tion extraction model, we additionally evaluate our
model on CoNLL 2003 dataset which is annotated
with non-overlapping mentions only. We com-
pared our model with recent state-of-the-art neu-
ral network based models. For a fair comparison,
we used the Collobert et al. (2011) embeddings
widely used by previous models, and ignored POS
tag features even though they are available. Re-
sults are in Table 6. Only neural models without
using external features are included. 11 By only
relying on word (and character) embeddings, our
model achieves competitive results compared with
other state-of-the-art neural models that also do
not exploit external features, yet these models are
mostly designed to handle only non-overlapping
mentions. The only exception is the FOFE ap-
proach by (Xu et al., 2017) as we discussed earlier.

11See the supplementary material for complete results.

Notes on mention interactions
The dependencies between overlapping mentions
can be very beneficial. SH can capture a specific
kind of interaction between neighboring spans.
Such interactions happen between mentions that
share the same type and the same left boundary.
As we can see from the sentence in Figure 3, one
mention could also serve as a pre-modifier for an-
other mention and both could share the same type.
As shown in Table 2, there are over 8% such men-
tions in ACE and over 4% in GENIA. Specifi-
cally, SH relies on the hyperedges between I nodes
to capture such interactions explicitly. To verify
the effectiveness of this connection, we zero the
weights between I nodes. The ablated model only
achieves around 70.0% in ACEs and 71.4% in GE-
NIA, implying the impact of this dependency con-
nection. On the other hand, it also reveals the
potential direction of improving SH by explicitly
modeling more dependencies between mentions,
such as the dependencies between mentions with
different types. LSTM that serves as feature rep-
resentation may capture such interactions implic-
itly, but building the connections could still be an
important aspect for improvement.

7 Conclusion and Future Work

In this work, we propose a novel neural segmental
hypergraph model that is able to capture overlap-
ping mentions. We show that our model has some
theoretical advantages over previous state-of-the-
art approaches for recognizing overlapping men-
tions. Through extensive experiments, we show
that our model is general and robust in handling
both overlapping and non-overlapping mentions.
The model achieves the state-of-the-art results in
three standard datasets for recognizing overlap-
ping mentions. We anticipate this model could
be leveraged in other similar sequence modeling
tasks that involve predicting overlapping struc-
tures such as recognizing overlapping and discon-
tinuous entities (Muis and Lu, 2016) which fre-
quently exist in the biomedical domain.
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Abstract

We introduce a family of multitask variational
methods for semi-supervised sequence label-
ing. Our model family consists of a latent-
variable generative model and a discrimina-
tive labeler. The generative models use latent
variables to define the conditional probability
of a word given its context, drawing inspi-
ration from word prediction objectives com-
monly used in learning word embeddings. The
labeler helps inject discriminative information
into the latent space. We explore several la-
tent variable configurations, including ones
with hierarchical structure, which enables the
model to account for both label-specific and
word-specific information. Our models con-
sistently outperform standard sequential base-
lines on 8 sequence labeling datasets, and im-
prove further with unlabeled data.

1 Introduction

Sequence labeling tasks in natural language pro-
cessing (NLP) often have limited annotated data
available for model training. In such cases reg-
ularization can be important, and it can be help-
ful to use additional unlabeled data. One approach
for both regularization and semi-supervised train-
ing is to design latent-variable generative mod-
els and then develop neural variational methods
for learning and inference (Kingma and Welling,
2014; Rezende and Mohamed, 2015).

Neural variational methods have been quite suc-
cessful for both generative modeling and repre-
sentation learning, and have recently been ap-
plied to a variety of NLP tasks (Mnih and Gre-
gor, 2014; Bowman et al., 2016; Miao et al., 2016;
Serban et al., 2017; Zhou and Neubig, 2017; Hu
et al., 2017). They are also very popular for semi-
supervised training; when used in such scenarios,
they typically have an additional task-specific pre-
diction loss (Kingma et al., 2014; Maale et al.,

2016; Zhou and Neubig, 2017; Yang et al., 2017b).
However, it is still unclear how to use such meth-
ods in the context of sequence labeling.

In this paper, we apply neural variational meth-
ods to sequence labeling by combining a latent-
variable generative model and a discriminatively-
trained labeler. We refer to this family of pro-
cedures as variational sequential labelers (VSLs).
Learning maximizes the conditional probability of
each word given its context and minimizes the
classification loss given the latent space. We ex-
plore several models within this family that use
different kinds of conditional independence struc-
ture among the latent variables within each time
step. Intuitively, the multiple latent variables
can disentangle information pertaining to label-
oriented and word-specific properties.

We study VSLs in the context of named en-
tity recognition (NER) and several part-of-speech
(POS) tagging tasks, both on English Twitter data
and on data from six additional languages. With-
out unlabeled data, our models consistently show
0.5-0.8% accuracy improvements across tagging
datasets and 0.8 F1 improvement for NER. Adding
unlabeled data further improves the model perfor-
mance by 0.1-0.3% accuracy or 0.2 F1 score. We
obtain the best results with a hierarchical structure
using two latent variables at each time step.

Our models, like generative latent variable mod-
els in general, have the ability to naturally com-
bine labeled and unlabeled data. We obtain
small but consistent performance improvements
by adding unlabeled data. In the absence of un-
labeled data, the variational loss acts as regu-
larizer on the learned representation of the su-
pervised sequence prediction model. Our results
demonstrate that this regularization improves per-
formance even when only labeled data is used. We
also compare different ways of applying the clas-
sification loss when using a latent variable hierar-

215



chy, and find that the most effective structure also
provides the cleanest separation of information in
the latent space.

2 Related Work

There is a growing amount of work applying
neural variational methods to NLP tasks, includ-
ing document modeling (Mnih and Gregor, 2014;
Miao et al., 2016; Serban et al., 2017), ma-
chine translation (Zhang et al., 2016), text genera-
tion (Bowman et al., 2016; Serban et al., 2017; Hu
et al., 2017), language modeling (Bowman et al.,
2016; Yang et al., 2017b), and sequence trans-
duction (Zhou and Neubig, 2017), but we are not
aware of any such work for sequence labeling.
Before the advent of neural variational methods,
there were several efforts in latent variable mod-
eling for sequence labeling (Quattoni et al., 2007;
Sun and Tsujii, 2009).

There has been a great deal of work on using
variational autoencoders in semi-supervised set-
tings (Kingma et al., 2014; Maale et al., 2016;
Zhou and Neubig, 2017; Yang et al., 2017b).
Semi-supervised sequence labeling has a rich his-
tory (Altun et al., 2006; Jiao et al., 2006; Mann
and McCallum, 2008; Subramanya et al., 2010;
Søgaard, 2011). The simplest methods, which are
also popular currently, use representations learned
from large amounts of unlabeled data (Miller et al.,
2004; Owoputi et al., 2013; Peters et al., 2017).
Recently, Zhang et al. (2017) proposed a struc-
tured neural autoencoder that can be jointly trained
on both labeled and unlabeled data.

Our work involves multi-task losses and is
therefore also related to the rich literature on
multi-task learning for sequence labeling (Plank
et al., 2016; Augenstein and Søgaard, 2017; Bin-
gel and Søgaard, 2017; Rei, 2017, inter alia).

Another related thread of work is learning inter-
pretable latent representations. Zhou and Neubig
(2017) factorize an inflected word into lemma and
morphology labels, using continuous and categor-
ical latent variables. Hu et al. (2017) interpret a
sentence as a combination of an unstructured la-
tent code and a structured latent code, which can
represent attributes of the sentence.

There have been several efforts in combin-
ing variational autoencoders and recurrent net-
works (Gregor et al., 2015; Chung et al., 2015;
Fraccaro et al., 2016). While the details vary,
these models typically contain latent variables at

each time step in a sequence. This prior work
mainly focused on ways of parameterizing the
time dependence between the latent variables,
which gives them more power in modeling distri-
butions over observation sequences. In this paper,
we similarly use latent variables at each time step,
but we adopt stronger independence assumptions
which leads to simpler models and inference pro-
cedures. Also, the models cited above were devel-
oped for modeling data distributions, rather than
for supervised or semi-supervised learning, which
is our focus here.

The key novelties in our work compared to the
prior work mentioned above are the proposed se-
quential variational labelers and the investigation
of latent variable hierarchies within these mod-
els. The empirical effectiveness of latent hierar-
chical structure in variational modeling is a key
contribution of this paper and may be applicable
to the other applications discussed above. Re-
cent work, contemporaneous with this submission,
similarly showed the advantages of combining hi-
erarchical latent variables and variational learning
for conversational modeling, in the context of a
non-sequential model (Park et al., 2018).

3 Proposed Methods

We begin by describing variational autoencoders
and the notation we will use in the following sec-
tions. We denote the input word sequence by x1:T ,
the corresponding label sequence by l1:T , the input
words other than the word at position t by x�t, the
generative model by p✓(·), and the posterior infer-
ence model by q�(·).

3.1 Background: Variational Autoencoders

We review variational autoencoders (VAEs) by de-
scribing a VAE for an input sequence x1:T . When
using a VAE, we assume a generative model that
generates an input using a latent variable z, typ-
ically assumed to follow a multivariate Gaussian
distribution. We seek to maximize the marginal
likelihood of inputs x1:T when marginalizing out
the latent variable z. Since this is typically in-
tractable, especially when using continuous latent
variables, we instead maximize a lower bound on
the marginal log-likelihood (Kingma and Welling,
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Figure 1: Variational sequential labelers. The first row
shows the original graphical models of each variant
where shaded circles are observed variables. The sec-
ond row shows how we perform inference and learn-
ing, showing inference models (in dashed lines), gen-
erative models (in solid lines), and classifier (in dotted
lines). All models are trained to maximize p✓(xt|x�t)
and predict the label lt.

2014):

log p✓(x1:T ) �

E
z⇠q�(·|x1:T )


log p✓(x1:T |z)� log

q�(z| x1:T )

p✓(z)

�
=

E
z⇠q�(·|x1:T )

[log p✓(x1:T |z)]

| {z }
Reconstruction Loss

�KL(q�(z|x1:T )kp✓(z))

| {z }
KL divergence

(1)
where we have introduced the variational poste-
rior q parametrized by new parameters �. q is re-
ferred to as an “inference model” as it encodes an
input into the latent space. We also have the gen-
erative model probabilities p parametrized by ✓.
The parameters are trained in a way that reflects
a classical autoencoder framework: encode the in-
put into a latent space, decode the latent space to
reconstruct the input. These models are therefore
referred to as “variational autoencoders”.

The lower bound consists of two terms: recon-
struction loss and KL divergence. The KL diver-
gence term provides a regularizing effect during
learning by ensuring that the learned posterior re-
mains close to the prior over the latent variables.

3.2 Variational Sequential Labelers
We now introduce variational sequential label-
ers (VSLs) and propose several variants for se-
quence labeling tasks. Although the latent struc-

ture varies, a VSL maximizes the conditional
probability of p✓(xt|x�t) and minimizes a classi-
fication loss using the latent variables as the in-
put to the classifier. Unlike VAEs, VSLs do not
autoencode the input, so they are more similar to
recent conditional variational formulations (Sohn
et al., 2015; Miao et al., 2016; Zhou and Neubig,
2017). Intuitively, the VSL variational objective is
to find the information that is useful for predicting
the word xt from its surrounding context, which
has similarities to objectives for learning word em-
beddings (Collobert et al., 2011; Mikolov et al.,
2013). This objective serves as regularization for
the labeled data and as an unsupervised objective
for the unlabeled data.

All of our models use latent variables for each
position in the sequence. These characteristics are
shown in the visual depictions of our models in
Figure 1. We consider variants with multiple latent
variables per time step and attach the classifier to
only particular variables. This causes the different
latent variables to capture different characteristics.

In the following sections, we will describe var-
ious latent variable configurations that we will
evaluate empirically in subsequent sections.

3.3 Single Latent Variable
We begin by defining a basic VSL and correspond-
ing parametrization, which will also be used in
other variants. This first model (which we call
VSL-G and show in Figure 1a) has a Gaussian la-
tent variable at each time step. VSL-G uses two
training objectives; the first is similar to the lower
bound on log-likelihood used by VAEs:

log p✓(xt|x�t) � E
zt⇠q�(·| x1:T ,t)

[log p✓(xt| zt)�

log
q�(zt| x1:T , t)

p✓(zt| x�t)
] = E

zt⇠q�(·| x1:T ,t)
[log p✓(xt| zt)]

�KL(q�(zt| x1:T , t)k p✓(zt| x�t)) = U0(x1:T , t)
(2)

VSL-G additionally uses a classifier f on the la-
tent variable zt which is trained with the following
objective:

C0(x1:T , lt) = E
zt⇠q�(·|x1:T ,t)

[� log f(lt|zt)] (3)

The final loss is

L(x1:T , l1:T ) =
TX

t=1

[C0(x1:T , lt)� ↵U0(x1:T , t)]
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where ↵ is a trade-off hyperparameter. ↵ is set
to zero during supervised training but it is tuned
based on development set performance during
semi-supervised training. The same procedure is
adopted for the other VSL models below.

For the generative model, we parametrize
p✓(xt|zt) as a feedforward neural network with
two hidden layers and ReLU (Nair and Hinton,
2010) as activation function. As reconstruction
loss, we use cross-entropy over the words in the
vocabulary. We defer the descriptions of the
parametrization of p✓(zt| x�t) to Section 3.6.

We now discuss how we parametrize the in-
ference model q�(zt|x1:T , t). We use a bidirec-
tional gated recurrent unit (BiGRU; Chung et al.,
2014) network to produce a hidden vector ht at
position t. The BiGRU is run over the input
x1:T , where each xt is the concatenation of a
word embedding and the concatenated final hid-
den states from a character-level BiGRU. The in-
ference model q�(zt|x1:T , t) is then a single layer
feedforward neural network that uses ht as input.
When parametrizing the posterior over latent vari-
ables in the following models below, we use this
same procedure to produce hidden vectors with a
BiGRU and then use them as input to feedforward
networks. The structure of our inference model
is similar to those used in previous state-of-the-art
models for sequence labeling (Lample et al., 2016;
Yang et al., 2017a).

In order to focus more on the effect of our vari-
ational objective, the classifier we use is always
the same as our baseline model (see Section 4.3),
which is a one layer feedforward neural network
without a hidden layer, and it is also used in test-
time prediction.

3.4 Flat Latent Variables

We next consider ways of factorizing the func-
tionality of the latent variable into label-specific
and other word-specific information. We intro-
duce VSL-GG-Flat (shown in Figure 1b), which
has two conditionally independent Gaussian latent
variables at each time step, denote zt and yt for
time step t. The variational lower bound is derived

as follows:

log p✓(xt|x�t) �
E

zt,yt⇠q�(·|x1:T ,t)
[log p✓(xt| zt, yt)

� log
q�(zt|x1:T , t)

p✓(zt|x�t)
� log

q�(yt|x1:T , t)

p✓(yt|x�t)
]

= E
zt,yt⇠q�(·|x1:T ,t)

[log p✓(xt|zt, yt)]

�KL(q�(zt|x1:T , t)kp✓(zt|x�t))

�KL(q�(yt|x1:T , t)kp✓(yt|x�t))

= U1(x1:T , t)
(4)

The classifier f is on the latent variable yt and its
loss is

C1(x1:T , lt) = E
yt⇠q�(·|x1:T ,t)

[� log f(lt|yt)] (5)

The final loss for the model is

L(x1:T , l1:T ) =
TX

t=1

[C1(x1:T , lt)� ↵U1(x1:T , t)]

(6)
Where ↵ is a trade-off hyperparameter.

Similarly to the VSL-G model, q�(zt|x1:T , t)
and q�(yt|x1:T , t) are parametrized by single layer
feedforward neural networks using the hidden
state ht as input.

3.5 Hierarchical Latent Variables
We also explore hierarchical relationships among
the latent variables. In particular, we introduce
the VSL-GG-Hier model which has two Gaus-
sian latent variables with the hierarchical structure
shown in Figure 1c. This model encodes the in-
tuition that the word-specific latent information zt

may differ depending on the class-specific infor-
mation of yt.

For this model, the derivations are similar to
Equations (4) and (5). The first is:

log p✓(xt|x�t) �
E

zt,yt⇠q�(·|x1:T ,t)
[log p✓(xt|zt)

� log
q�(zt|yt, x1:T , t)

p✓(zt|yt, x�t)
� log

q�(yt|x1:T , t)

p✓(yt|x�t)
]

= E
zt,yt⇠q�(·|x1:T ,t)

[log p✓(xt|zt)]

�KL(q�(zt|yt, x1:T , t)kp✓(zt|yt, x�t))

�KL(q�(yt|x1:T , t)kp✓(yt|x�t))

= U2(x1:T , t)
(7)
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The classifier f uses yt as input and is trained with
the following loss:

C2(x1:T , lt) = E
yt⇠q�(·|x1:T ,t)

[� log f(lt|yt)] (8)

Note that C1 and C2 have the same form. The final
loss is

L(x1:T , l1:T ) =
TX

t=1

[C2(x1:T , lt)� ↵ U2(x1:T , t)]

(9)
Where ↵ is a trade-off hyperparameter.

The hierarchical posterior q�(zt|yt, x1:T , t) is
parametrized by concatenating the hidden vector
ht and the random variable yt and then using them
as input to a single layer feedforward network.

3.6 Parametrization of Priors

Traditional variational models assume extremely
simple priors (e.g., multivariate standard Gaus-
sian distributions). Recently there have been ef-
forts to learn the prior and posterior jointly dur-
ing training (Fraccaro et al., 2016; Serban et al.,
2017; Tomczak and Welling, 2018). In this paper,
we follow this same idea but we do not explic-
itly parametrize the prior p✓(zt|x�t). This is par-
tially due to the lack of computationally-efficient
parametrization options for p✓(zt|x�t). In addi-
tion, since we are not seeking to do generation
with our learned models, we can let part of the
generative model be parametrized implicitly.

More specifically, the approach we use is to
learn the priors by updating them iteratively. Dur-
ing training, we first initialize the priors of all ex-
amples as multivariate standard Gaussian distribu-
tions. As training proceeds, we use the last op-
timized posterior as our current prior based on a
particular “update frequency” (see supplementary
material for more details).

Our learned priors are implicitly modeled as

pk
✓(zt|x�t) ⇡

X

x

qk�1
� (zt|Xt = x, x�t, t)pdata(Xt = x|x�t)

(10)
where pdata is the empirical data distribution, Xt

is a random variable corresponding to the obser-
vation at position t, and k is the prior update time
step. The intuition here is that the prior is obtained
by marginalizing over values for the missing ob-
servation represented by the random variable Xt.

The posterior qk�1
� is as defined in our latent vari-

able models. We assume pdata(Xt = x|x�t) = 0
for x1:T /2 training set. For context x�t that can
pair with multiple values of Xt, its prior is the
data-dependent weighted average posterior. For
simplicity of implementation and efficient compu-
tation, however, if context x�t can pair with mul-
tiple values in our training data, we ignore this
fact and simply use instance-dependent posteriors.
Another way to view this is as conditioning on the
index of the training examples while parametriz-
ing the above. That is

pk,i
✓ (zt|x�t) qk�1,i

� (zt|x1:T , t) (11)

where i is the index of the instance.

3.7 Training
In this subsection, we introduce techniques we
have used to address difficulties during training.

Reparametrization Trick. It is challenging to
use gradient descent for a random variable as
it involves a non-differentiable sampling proce-
dure. Kingma and Welling (2014) introduced a
reparametrization trick to tackle this problem.
They parametrize a Gaussian random variable z
as u'(x) + g (x) � ✏ where ✏ ⇠ N (0, I) and
u'(x), g (x) are deterministic and differentiable
functions, so the gradient can go through u'(·)
and g (·). In our experiments, we use one sample
for each time step during training. For evaluation
at test time, we use the mean value u'(x).

KL Divergence Weight Annealing. Although
the use of prior updating lets us avoid tuning the
weight of the KL divergence, the simple priors
can still hinder learning during the initial stages
of training. To address this, we follow the method
described by Bowman et al. (2016) to add weights
to all KL divergence terms and anneal the weights
from a small value to 1.

4 Experiments
We describe key details of our experimental setup
in the subsections below but defer details about
hyperparameter tuning to the supplementary mate-
rial. Our implementation is available at https:
//github.com/mingdachen/vsl

4.1 Datasets
We evaluate our model on the CoNLL 2003 En-
glish NER dataset (Tjong Kim Sang and De Meul-
der, 2003) and 7 POS tagging datasets: the
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Twitter tagging dataset of Gimpel et al. (2011)
and Owoputi et al. (2013), and 6 languages from
the Universal Dependencies (UD) 1.4 dataset (Mc-
Donald et al., 2013).

Twitter POS Dataset. The Twitter dataset has
25 tags. We use OCT27TRAIN and OCT27DEV as
the training set, OCT27TEST as the development
set, and DAILY547 as the test set. We randomly
sample {1k, 2k, 3k, 4k, 5k, 10k, 20k, 30k, 60k}
tweets from 56 million English tweets as our unla-
beled data and tune the amount of unlabeled data
based on development set accuracy.

UD POS Datasets. The UD datasets have 17
tags. We use French, German, Spanish, Russian,
Indonesian and Croatian. We follow the same
setup as Zhang et al. (2017), randomly sampling
20% of the original training set as our labeled data
and 50% as unlabeled data. There is no overlap be-
tween the labeled and unlabeled data. See Zhang
et al. (2017) for more details about the setup.

NER Dataset. We use the BIOES labeling
scheme and report micro-averaged F1. We prepro-
cessed the text by replacing all digits with 0. We
randomly sample 10% of the original training set
as our labeled data and 50% as unlabeled data. We
also ensure there is no overlap between the labeled
and unlabeled data.

4.2 Pretrained Word Embeddings
For all experiments, we use pretrained 100-
dimensional word embeddings. For Twitter, we
trained skip-gram embeddings (Mikolov et al.,
2013) on a dataset of 56 million English tweets.
For the UD datasets, we trained skip-gram em-
beddings on Wikipedia for each of the six lan-
guages. For NER, we use 100-dimensional pre-
trained GloVe (Pennington et al., 2014) embed-
dings. Our models perform better with word em-
beddings kept fixed during training while for the
baselines the word embeddings are fine tuned as
this improves the baseline performance.

4.3 Baselines
Our primary baseline is a BiGRU tagger where the
input consists of the concatenation of a word em-
bedding and the concatenation of the final hidden
states of a character-level BiGRU. This BiGRU
architecture is identical to that used in the infer-
ence networks in our VSL models. Predictions are
made based on a linear transformation given the

dev. test
acc. UL� acc. UL�

BiGRU baseline 90.8 - 90.6 -
VSL-G 91.1 +0.1 - -
VSL-GG-Flat 91.4 +0.1 - -
VSL-GG-Hier 91.6 +0.3 91.6 +0.3

(a) Twitter tagging accuracies (%)
dev. test

F1 UL� F1 UL�
BiGRU baseline 87.6 - 83.7 -
VSL-G 87.8 +0.1 - -
VSL-GG-Flat 88.0 +0.1 - -
VSL-GG-Hier 88.4 +0.2 84.7 +0.0

(b) NER F1 score (%)

Table 1: For dev and test, we show results when only
using labeled data and the change in performances
(“UL�”) when adding unlabeled data. Bold is highest
in each column. Italic is the best model including un-
labeled data. We only show test results for the baseline
and our best-performing model, which achieves 91.9%
accuracy on the Twitter test set and 84.7% F1 on the
NER test set when using unlabeled data.

current hidden state. The output dimensionality of
the transformation is task-dependent (e.g., 25 for
Twitter tagging). We use the standard per-position
cross entropy loss for training.

We also report results from the best systems
from Zhang et al. (2017), namely the NCRF and
NCRF-AE models. Both use feedforward net-
works as encoders and conditional random field
layers for capturing sequential information. The
NCRF-AE model additionally can benefit from
unlabeled data.

5 Results

Table 1a shows results on the Twitter development
and test sets. All of our VSL models outperform
the baseline and our best VSL models outperform
the BiGRU baseline by 0.8–1% absolute. When
comparing different latent variable configurations,
we find that a hierarchical structure performs best.
Without unlabeled data, our models already out-
perform the BiGRU baseline. Adding unlabeled
data enlarges the gap between the baseline and our
models by up to 0.1–0.3% absolute.

Table 1b shows results on the CoNLL 2003
NER development and test sets. We observe sim-
ilar trends as in the Twitter data, except that the
model does not show improvement on the test set
when adding unlabeled data.
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French German Indonesian Spanish Russian Croatian
acc. UL� acc. UL� acc. UL� acc. UL� acc. UL� acc. UL�

NCRF 93.4 - 90.4 - 88.4 - 91.2 - 86.6 - 86.1 -
NCRF-AE 93.7 +0.2 90.8 +0.2 89.1 +0.3 91.7 +0.5 87.8 +1.1 87.9 +1.2
BiGRU baseline 95.9 - 92.6 - 92.2 - 94.7 - 95.2 - 95.6 -
VSL-G 96.1 +0.0 92.8 +0.0 92.3 +0.0 94.8 +0.1 95.3 +0.0 95.6 +0.1
VSL-GG-Flat 96.1 +0.0 93.0 +0.1 92.4 +0.1 95.0 +0.1 95.5 +0.1 95.8 +0.1
VSL-GG-Hier 96.4 +0.1 93.3 +0.1 92.8 +0.1 95.3 +0.2 95.9 +0.1 96.3 +0.2

Table 2: Tagging accuracies (%) on UD test sets. For each language, we show test accuracy (“acc.”) when only
using labeled data and the change in test accuracy (“UL�”) when adding unlabeled data. Results for NCRF and
NCRF-AE are from Zhang et al. (2017), though results are not strictly comparable because we used pretrained
word embeddings for all languages on Wikipedia. Bold is highest in each column, excluding the NCRF variants.
Italic is the best accuracy including the unlabeled data.

BiGRU

zt yt

xt

xt lt

(a) VSL-GG-Hier with classifi-
cation loss on z

BiGRU

zt yt

xt

xt lt

(b) VSL-GG-Hier

Figure 2: Comparison of attaching classification loss to
different latent variables in VSL-GG-Hier.

Table 2 shows our results on the UD datasets.
The trends are broadly consistent with those of
Table 1a and 1b. The best performing models
use hierarchical structure in the latent variables.
There are some differences across languages. For
French, German, Indonesian and Russian, VSL-
G does not show improvement when using unla-
beled data. This may be resolved with better tun-
ing, since the model actually shows improvement
on the dev set.

Note that results reported by Zhang et al. (2017)
and ours are not strictly comparable as their word
embeddings were only pretrained on the UD train-
ing sets while ours were pretrained on Wikipedia.
Nonetheless, they also mentioned that using em-
beddings pretrained on larger unlabeled data did
not help. We include these results to show that our
baselines are indeed strong compared to prior re-
sults reported in the literature.

Twitter NER UD average
acc. UL� F1 UL� acc. UL�

classifier on y 91.6 +0.3 88.4 +0.2 95.0 +0.1
classifier on z 91.1 +0.2 87.8 +0.1 94.4 +0.0

Table 3: Twitter and NER dev results (%), UD aver-
aged test accuracies (%) for two choices of attaching
the classification loss to latent variables in the VSL-
GG-Hier model. All previous results for VSL-GG-Hier
used the classification loss on y.

6 Discussion

6.1 Effect of Position of Classification Loss

We investigate the effect of attaching the classifier
to different latent variables. In particular, for the
VSL-GG-Hier model, we compare the attachment
of the classifier between z and y. See Figure 2.
The results in Table 3 suggest that attaching the
reconstruction and classification losses to the same
latent variable (z) harms accuracy although attach-
ing the classifier to z effectively gives the classifier
an extra layer. We can observe why this occurs
by looking at the latent variable visualizations in
Figure 3d. Compared with Figure 3e, where the
two variables are more clearly disentangled, the
latent variables in Figure 3d appear to be captur-
ing highly similar information.

6.2 Effect of Latent Hierarchy

To verify our assumption of the latent structure,
we visualize the latent space for Gaussian models
using t-SNE (Maaten and Hinton, 2008) in Fig-
ure 3. The BiGRU baseline (Figure 3a) and the
VSL-G (Figure 3b) do not show significant dif-
ferences. However, when using multiple latent
variables, the different latent variables capture dif-
ferent characteristics. In the VSL-GG-Flat model
(Figure 3c), the y variable (the upper plot) reflects
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(a) BiGRU Baseline

(b) VSL-G
(c) VSL-GG-Flat

(d) VSL-GG-Hier, classifica-
tion loss on z

(e) VSL-GG-Hier

Figure 3: t-SNE visualization of Gaussian latent vari-
ables and baseline hidden states for Twitter develop-
ment set. In plot 3c, 3d, and 3e, the upper subplot is
latent variable y and the lower is z. Each point in the
plot is a token and the color represents the true tag of
the token.

the clustering of the tagging space much more
closely than the z variable (the lower plot). Since
both variables are used to reconstruct the word,
but only the y variable is trained to predict the
tag, it appears that z is capturing other informa-
tion useful for reconstructing the word. However,
since they are both used for reconstruction, the two
spaces show signs of alignment; that is, the “tag”
latent variable y does not show as clean a separa-
tion into tag clusters as the y variable in the VSL-
GG-Hier model in Figure 3e.

In Figure 3e (VSL-GG-Hier), the clustering of
words with respect to the tag is clearest. This may
account for the consistently better performance of
this model relative to the others. The z variable
reflects a space that is conditioned on y but that
diverges from it, presumably in order to better re-
construct the word. The closer the latent variable

Twitter NER
acc. no VR F1 no VR

BiGRU baseline 90.8 - 87.6 -
VSL-G 91.1 90.9 87.8 87.7
VSL-GG-Flat 91.4 90.9 88.0 87.8
VSL-GG-Hier 91.6 91.0 88.4 87.9

Table 4: Results on Twitter and NER dev sets. For
each model, we show supervised results for the models
with variational regularization (“acc.” or F1) and re-
sults when replacing variational components with their
deterministic counterparts (“no VR”).

is to the decoder output, the weaker the tagging
information becomes while other word-specific in-
formation becomes more salient.

Figure 3d shows that VSL-GG-Hier with clas-
sification loss on z, which consistently underper-
forms both the VSL-GG-Flat and VSL-GG-Hier
models in our experiments, appears to be captur-
ing the same latent space in both variables. Since
the z variable is used to both predict the tag and
reconstruct the word, it must capture both the tag
and word reconstruction spaces, and may be lim-
ited by capacity in doing so. The y variable does
not seem to be contributing much modeling power,
as its space is closely aligned to that of z.

6.3 Effect of Variational Regularization

We investigate the beneficial effects of variational
frameworks (“variational regularization”) by re-
placing our variational components in VSLs with
their deterministic counterparts, which do not have
randomness in the latent space and do not use the
KL divergence term during optimization. Note
that these BiGRU encoders share the same archi-
tectures as their variational posterior counterparts
and still use both the classification and reconstruc-
tion losses. While other subsets of losses could be
considered in this comparison, our motivation is
to compare two settings that correspond to well-
known frameworks. The “no VR” setting corre-
sponds roughly to the combination of a classifier
and a traditional autoencoder. We note that these
experiments do not use any unlabeled data.

The results in Table 4 demonstrate that com-
pared to the baseline BiGRU, adding the recon-
struction loss (“VSL-G, no VR”) yields only 0.1
improvement for both Twitter and NER. Although
adding hierarchical structure further improves per-
formance, the improvements are small (+0.1 and
+0.2 for Twitter and NER respectively). For VSL-
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Figure 4: Twitter dev accuracies (%) when varying the
amount of unlabeled data.

GG-Hier, variational regularization accounts for
relatively large differences of 0.6 for Twitter and
0.5 for NER. These results show that the improve-
ments do not come solely from adding a recon-
struction objective to the learning procedure. In
limited preliminary experiments, we did not find a
benefit from adding unlabeled data under the “no
VR” setting.

6.4 Effect of Unlabeled Data

In order to examine the effect of unlabeled data,
we report our Twitter dev accuracies when varying
the unlabeled data size. We choose VSL-GG-Hier
as the model for this experiment since it benefits
the most from unlabeled data. As Figure 4 shows,
gradually adding unlabeled data helps a little at the
beginning. Further adding unlabeled data boosts
the accuracy of the model. The improvements that
come from unlabeled data quickly plateau after
the amount of unlabeled data goes beyond 10,000.
This suggests that with little unlabeled data, the
model is incapable of fully utilizing the informa-
tion in the unlabeled data. However if the amount
of unlabeled data is too large, the supervised train-
ing signal becomes too weak to extract something
useful from the unlabeled data.

We also notice that when there is a large amount
of unlabeled data, it is always better to pretrain the
prior first using a small ↵ (e.g., 0.1) and then use it
as a warm start to train a new model using a larger
↵ (e.g., 1.0). Tuning the weight of the KL diver-
gence could achieve a similar effect, but it may
require tuning the weight for labeled data and un-
labeled data separately. We prefer to pretrain the
prior as it is simpler and involves less hyperparam-
eter tuning.

7 Conclusion

We introduced variational sequential labelers for
semi-supervised sequence labeling. They consist
of latent-variable generative models with flexible
parametrizations for the variational posterior (us-
ing RNNs over the entire input sequence) and a
classifier at each time step. Our best models use
multiple latent variables arranged in a hierarchical
structure. We demonstrate systematic improve-
ments in NER and POS tagging accuracy across 8
datasets over a strong baseline. We also find small,
but consistent, improvements by using unlabeled
data.
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Abstract

Joint representation learning of words and enti-
ties benefits many NLP tasks, but has not been
well explored in cross-lingual settings. In this
paper, we propose a novel method for joint rep-
resentation learning of cross-lingual words and
entities. It captures mutually complementary
knowledge, and enables cross-lingual infer-
ences among knowledge bases and texts. Our
method does not require parallel corpora, and
automatically generates comparable data via
distant supervision using multi-lingual knowl-
edge bases. We utilize two types of regu-
larizers to align cross-lingual words and enti-
ties, and design knowledge attention and cross-
lingual attention to further reduce noises. We
conducted a series of experiments on three
tasks: word translation, entity relatedness, and
cross-lingual entity linking. The results, both
qualitatively and quantitatively, demonstrate
the significance of our method.

1 Introduction

Multi-lingual knowledge bases (KB) storemillions
of entities and facts in various languages, and pro-
vide rich background structural knowledge for un-
derstanding texts. On the other hand, text cor-
pus contains huge amount of statistical information
complementary to KBs. Many researchers lever-
age both types of resources to improve various nat-
ural language processing (NLP) tasks, such as ma-
chine reading (Yang and Mitchell, 2017), question
answering (He et al., 2017; Hao et al., 2017).
Most existing work jointly models KB and text

corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, Wang et al. (2014); Yamada et al. (2016);
Cao et al. (2017) utilize the co-occurrence infor-
mation to align similar words and entities with sim-
ilar embedding vectors. Toutanova et al. (2015);

⇤Corresponding author.

Wu et al. (2016); Han et al. (2016); Weston et al.
(2013a); Wang and Li (2016) represent entities
based on their textual descriptions together with
the structured relations. Thesemethods focused on
mono-lingual settings. However, for cross-lingual
tasks (e.g., cross-lingual entity linking), these ap-
proaches need to introduce additional tools to do
translation, which suffers from extra costs and in-
evitable errors (Ji et al., 2015, 2016).
In this paper, we carry out cross-lingual joint

representation learning, which has not been fully
researched in the literature. We aim at creating a
unified space for words and entities in various lan-
guages, and easing cross-lingual semantic compar-
ison, which will benefit from the complementary
information in different languages. For instance,
two different meanings of word center in English
are expressed by two different words in Chinese:
center as the activity-specific building is expressed
by 中心, center as the basketball player role is 中
锋.
Our main challenge is the limited availability

of parallel corpus, which is usually either expen-
sive to obtain, or only available for certain narrow
domains (Gouws et al., 2015). Many work has
been done to alleviate the problem. One school
of methods uses adversarial technique or domain
adaption to match linguistic distribution (Zhang
et al., 2017b; Barone, 2016; Cao et al., 2016).
These methods do not require parallel corpora.
The weakness is that the training process is un-
stable and that the high complexity restricts the
methods only to small-scale data. Another line
of work uses pre-existing multi-lingual resources
to automatically generate “pseudo bilingual docu-
ments” (Vulic and Moens, 2015, 2016). However,
negative results have been observed due to the oc-
casional poor quality of training data (Vulic and
Moens, 2016). All above methods only focus on
words. We consider both words and entities, which
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makes the parallel data issue more challenging.
In this paper, we propose a novel method

for joint representation learning of cross-lingual
words and entities. The basic idea is to capturemu-
tually complementary knowledge in a shared se-
mantic space, which enables joint inference among
cross-lingual knowledge base and texts without ad-
ditional translations. We achieve it by (1) utilizing
an existing multi-lingual knowledge base to auto-
matically generate cross-lingual supervision data,
(2) learning mono-lingual word and entity rep-
resentations, (3) applying cross-lingual sentence
regularizer and cross-lingual entity regularizer to
align similar words and entities with similar em-
beddings. The entire framework is trained using
a unified objective function, which is efficient and
applicable to arbitrary language pairs that exist in
multi-lingual KBs.
Particularly, we build a bilingual entity network

from inter-language links 1 in KBs for regulariz-
ing cross-lingual entities through a variant of skip-
gram model (Mikolov et al., 2013c). Thus, mono-
lingual structured knowledge of entities are not
only extended to cross-lingual settings, but also
augmented from other languages. On the other
hand, we utilize distant supervision to generate
comparable sentences for cross-lingual sentence
regularizer to model co-occurrence information
across languages. Compared with “pseudo bilin-
gual documents”, comparable sentences achieve
higher quality, because they rely not only on
the shared semantics at document level, but also
on cross-lingual information at sentence level.
We further introduce two attention mechanisms,
knowledge attention and cross-lingual attention, to
select informative data in comparable sentences.
Our contributions can be concluded as follows:

• We proposed a novel method that jointly
learns representations of not only cross-
lingual words but also cross-lingual entities in
a unified vector space, aiming to enhance the
embedding quality from each other via com-
plementary semantics.

• Our proposed model introduces distant su-
pervision coupled with attention mechanisms
to generate comparable data as cross-lingual
supervision, which can benefit many cross-
lingual analysis.

1https://en.wikipedia.org/wiki/Help:
Interlanguage_links

• We did qualitative analysis to have an in-
tuitive impression of our embeddings, and
quantitative analysis in three tasks: word
translation, entity relatedness, and cross-
lingual entity linking. Experiment results
show that our method demonstrates signifi-
cant improvements in all three tasks.

2 Related Work

Jointly representation learning of words and enti-
ties attracts much attention in the fields of Entity
Linking (Zhang et al., 2017a; Cao et al., 2018),
Relation Extraction (Weston et al., 2013b) and so
on, yet little work focuses on cross-lingual set-
tings. Inspiringly, we investigate the task of cross-
lingual word embedding models (Ruder et al.,
2017), and classify them into three groups accord-
ing to parallel corpora used as supervisions: (i)
methods requiring parallel corpus with aligned
words as constraint for bilingual word embed-
ding learning (Klementiev et al., 2012; Zou et al.,
2013; Wu et al., 2014; Luong et al., 2015; Am-
mar et al., 2016; Soricut and Ding, 2016). (ii)
methods using parallel sentences (i.e. translated
sentence pairs) as the semantic composition of
multi-lingual words (Gouws et al., 2015; Kociský
et al., 2014; Hermann and Blunsom, 2014; Chan-
dar et al., 2014; Shi et al., 2015; Mogadala and
Rettinger, 2016). (iii) methods requiring bilingual
lexicon to map words from one language into the
other (Mikolov et al., 2013b; Faruqui and Dyer,
2014; Xiao and Guo, 2014).
Themajor weakness of these methods is the lim-

ited availability of parallel corpora. One remedy is
to use existing multi-lingual resources (i.e. multi-
lingual KB). Camacho-Collados et al. (2015) com-
bines several KBs (Wikipedia, WordNet and Ba-
belNet) and leverages multi-lingual synsets to
learn word embeddings at sense level through an
extra post-processing step. Artetxe et al. (2017)
starts from a small bilingual lexicon and using
a self-learning approach to induce the structural
similarity of embedding spaces. Vulic and Moens
(2015, 2016) collect comparable documents on
same themes from multi-lingual Wikipedia, shuf-
fle and merge them to build “pseudo bilingual doc-
uments” as training corpora. However, the qual-
ity of “pseudo bilingual documents” are difficult
to control, resulting in poor performance in several
cross-lingual tasks (Vulic and Moens, 2016).
Another remedy matches linguistic distribu-
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Figure 1: The overview framework of our method. The inputs and outputs of each step are listed in the three levels.
Particularly, there are three main components of joint representation learning. Red texts with brackets are anchors,
dashed lines denote entity relations, and solid lines are cross-lingual links.

tion via adversarial training (Barone, 2016; Zhang
et al., 2017b; Lample et al., 2018), domain adap-
tion (Cao et al., 2016). However, these methods
suffer from the instability of training process and
the high complexity. This either limits the scala-
bility of vocabulary size or relies on a strong dis-
tribution assumption.
Inspired by Vulic and Moens (2016), we gener-

ate highly qualified comparable sentences via dis-
tant supervision, which is one of the most promis-
ing approaches to addressing the issue of sparse
training data, and performs well in relation extrac-
tion (Lin et al., 2017a; Mintz et al., 2009; Zeng
et al., 2015; Hoffmann et al., 2011; Surdeanu et al.,
2012). Our comparable sentencesmay further ben-
efit many other cross-lingual analysis, such as in-
formation retrieval (Dong et al., 2014).

3 Preliminaries and Framework

3.1 Preliminaries

Given a multi-lingual KB, we take (i) text cor-
pus, (ii) entity and their relations, (iii) a set of an-
chors as inputs, and learn embeddings for each
word and each entity in various languages. For
clarity, we use English and Chinese as sample lan-
guages in the rest of the paper, and use superscript
y 2 {en, zh} to denote language-specific parame-
ters2.

2We choose English and Chinese as example lan-
guages because they are top-ranked according to to-
tal number of speakers, the full list can be found in

We use multi-lingual Wikipedia as KB includ-
ing a set of entities Ey = {ey

i } and their articles.
We concatenate these articles together, and form
text corpus Dy = hwy

1 , . . . , wy
i , . . . , wy

|D|i. Hy-
per links in articles are denoted by Anchors Ay =
{hwy

i , ey
j i}, which indicates that word wy

i refers
to entity ey

j . Gy = (Ey, Ry) is the mono-lingual
Entity Network (EN), where Ry = {hey

i , e
y
j i}

if there is a link between ey
i , e

y
j . We use inter-

language links in Wikipedia as cross-lingual links
Ren�zh = {heen

i , ezh
i0 i}, indicating een

i , ezh
i0 refer

to the same thing in English and Chinese. Cross-
lingual word and entity representation learning
is to map words and entities in different languages
into a unified semantic space. Each word and en-
tity obtain their embedding vectors3 wy

i and e
y
j .

3.2 Framework

To alleviate the heavy burden of limited parallel
corpora and additional translation efforts, we uti-
lize existing multi-lingual resources to distantly
supervise cross-lingual word and entity represen-
tation learning, so that the shared embedding
space supports joint inference among KB and texts
across languages. As shown in Figure 1, our
framework has two steps: (1) Cross-lingual Su-

https://en.wikipedia.org/wiki/Lists_of_
languages_by_number_of_speakers.

3For the cross-lingual linked entities sharing the same
strings (e.g., NBA and NBA (zh)), which is an infrequent situ-
ation between languages, we use separated representations to
keep training objective consistent and avoid confusion.
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pervision Data Generation builds a bilingual en-
tity network and generates comparable sentences
based on cross-lingual links; (2) Joint Represen-
tation Learning learns cross-lingual word and en-
tity embeddings using a unified objective function.
Our assumption throughout the entire framework
is as follows: The more words/entities two contexts
share, the more similar they are.
As shown in Figure 1, we build a bilingual

EN Gen�zh by using Gen, Gzh and cross-lingual
linksRen�zh. Thus, entities in different languages
shall be connected in a unified network to facil-
itate cross-lingual entity alignments. Meanwhile,
fromKB articles, we extract comparable sentences
Sen�zh = {hsen

k , szh
k i} as high qualified parallel

data to align similar words in different languages.
Based on generated cross-lingual data

Gen�zh, Sen�zh and mono-lingual data Dy,
Ay, where y 2 {en, zh}, we jointly learn cross-
lingual word and entity embeddings through three
components: (1) Mono-lingual Representation
Learning, which learns mono-lingual word and
entity embeddings for each language by modeling
co-occurrence information through a variant of
skip-gram model (Mikolov et al., 2013c). (2)
Cross-lingual Entity Regularizer, which aligns
entities that refer to the same thing in different
languages by extending the mono-lingual model
to bilingual EN. For example, entity Foust in
English and entity 福 斯 特 (Foust) in Chinese
are closely embedded in the semantic space
because they share common neighbors in two
languages, All-star and NBA 选秀 (draft), etc..
(3) Cross-lingual Sentence Regularizer, which
models cross-lingual co-occurrence at sentence
level in order to learn translated words to have
most similar embeddings. For example, English
word basketball and the translated Chinese word
篮球 frequently co-occur in a pair of comparable
sentences, therefore, their vector representations
shall be close in the semantic space. The above
components are trained jointly under a unified
objective function.

4 Cross-lingual Supervision Data
Generation

This section introduces how to build a bilingual
entity network Gen�zh and comparable sentences
Sen�zh from a multi-lingual KB.

4.1 Bilingual Entity Network Construction

Entities with cross-lingual links refer to the same
thing, which implies they are equivalent across
languages. Conventional knowledge representa-
tion methods only add edges between een

i and
ezh
i0 indicating a special “equivalent” relation (Zhu
et al., 2017). Instead, we build Gen�zh = (Een [
Ezh, Ren[Rzh[R̃en�zh) by enriching the neigh-
bors of cross-lingual linked entities. That is, we
add edges R̃en�zh between two mono-lingual ENs
by letting all neighbors of een

i be neighbors of ezh
i0 ,

and vice versa, if heen
i , ezh

i0 i 2 Ren�zh.
Gen�zh extends Gen and Gzh to bilingual set-

tings in a natural way. It not only keeps a con-
sistent objective in mono-lingual ENs—entities,
no matter in which language, will be embedded
closely if share common neighbors—but also en-
hances each other with more neighbors in the for-
eign language.
Following the method in Zhu et al. (2017), there

will be no edge between Chinese entity 福斯特
(Foust) and English entity Pistons, which implies
a wrong fact that 福斯特 (Foust) does not belong
to Pistons. Our method enriches the missing rela-
tion between entities 福斯特 (Foust) and 活塞队
(Pistons) in incomplete Chinese KB through cor-
responding English common neighbors, Allstar,
NBA, etc., as illustrated in Figure 1.

4.2 Comparable Sentences Generation

To supervise the cross-lingual representation
learning of words, we automatically generate com-
parable sentences as cross-lingual training data.
Comparable sentences are not translated paired
sentences, but sentences with the same topic in dif-
ferent languages. As shown in the middle layer
(Figure 1), the pair of sentences are comparable
sentences: (1) “Lawrence Michael Foust was an
American basketball player who spent 12 seasons
in NBA”, (2) “拉里·福斯特 (Lawrence Foust) 是
(was)美国 (American) NBA联盟 (association)的
(of) 前 (former) 职业 (professional) 篮球 (basket-
ball) 运动员 (player)”.
Inspired by the distant supervision technique

in relation extraction, we assume that sentence
sen
k in Wikipedia articles of entity een

i explicitly
or implicitly describes een

i (Yamada et al., 2017),
and that sen

k shall express a relation between een
i

and een
j if another entity een

j is in sen
k . Mean-

while, we find a comparable sentence szh
k0 in an-

other language which satisfies szh
k0 containing ezh

j0
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in Wikipedia articles of Chinese entity ezh
i0 , where

heen
i , ezh

i0 i, heen
j , ezh

j0 i 2 Ren�zh. As shown in Fig-
ure 1, the sentences in the second level are compa-
rable due to the similar theme of the relation be-
tween entity Foust and NBA. To find this type of
sentences, we search the anchors in the English
aritcle and Chinese article of cross-lingual entity
Foust, respectively, and extract the sentences in-
cluding another crosslingual entity NBA. Compa-
rable sentences can be regarded as cross-lingual
contexts.
Unfortunately, comparable sentences suffer

from two issues caused by distant supervision:
Wrong labelling. Take English as sample, there
may be several sentences sen

k,l|Ll=1 containing the
same entity een

j in the article of een
i . A straightfor-

ward solution is to concatenate them into a longer
sentence sen

k , but this increases the chance to in-
clude unrelated sentences.
Unbalanced information. Sometimes the pair
of sentences convey unbalanced information, e.g.,
the English sentence in the middle layer (Figure 1)
contains Foust spent 12 seasons in NBA while the
comparable Chinese sentence not.
To address the issues, we propose knowledge at-

tention and cross-lingual attention to filter out un-
related information at sentence level, and at word
level respectively.

5 Joint Representation Learning

As shown in Figure 2, there are three components
in learning cross-lingual word and entity represen-
tations, which are trained jointly. In this section,
we will describe them in detail.

5.1 Mono-lingual Representation Learning

Following Yamada et al. (2016); Cao et al. (2017),
we learn mono-lingual word/entity embeddings
based on corpus Dy, anchors Ay and entity net-
work Gy. Capturing the cooccurrence information
among words and entities, these embeddings serve
as the foundation and will be further extended to
bilingual settings using the proposed cross-lingual
regularizers, which will be detailed in the next sec-
tion. Monolingually, we utilize a variant of Skip-
gram model (Mikolov et al., 2013c) to predict the
contexts given current word/entity:

Lm =
X

y2{en,zh}

X

xy
i 2{Dy ,Ay ,Gy}

logP (C(xy
i )|x

y
i )

where xy
i is either a word or an entity, and C(xy

i )
denotes: (i) contextual words in a pre-defined win-
dow of xy

i if xy
i 2 Dy, (ii) neighbor entities that

linked to xy
i if xy

i 2 Gy, (iii) contextual words of
wy

j if xy
i is entity ey

i in an anchor hwy
j , ey

i i 2 Ay.

5.2 Cross-lingual Entity Regularizer
The bilingual EN Gen�zh merges entities in dif-
ferent languages into a unified network, resulting
in the possibility of using the same objective as
in mono-lingual ENs. Thus, we naturally extend
mono-lingual function to cross-lingual settings:

Le =
X

ey
i 2{Gen�zh}

logP (C0(ey
i )|e

y
i )

where C0(ey
i ) denotes cross-lingual contexts—

neighbor entities in different languages that linked
to ey

i . Thus, by jointly learning mono-lingual rep-
resentation with cross-lingual entity regularizer,
words and entities share more common contexts,
and will have similar embeddings. As shown in
Figure 1, English entityNBA co-occurs with words
basketball and player in texts, so they are embed-
ded closely in the semantic space. Meanwhile,
cross-lingual linked entities NBA and NBA (zh)
have similar representations due to the most com-
mon neighbor entities, e.g., Foust.

5.3 Cross-lingual Sentence Regularizer
Comparable sentences provide cross-lingual co-
occurrence of words, thus, we can use them to
learn similar embeddings for the words that fre-
quently co-occur by minimizing the Euclidean dis-
tance as follows:

Ls =
X

hsen
k ,szh

k0 i2Sen�zh

||senk � szh
k0 ||2

where senk , szh
k0 are sentence embeddings. Take En-

glish as sample language, we define it as the aver-
age sum of word vectors weighted by the combi-
nation of two types of attentions:

senk =
LX

l=1

 (een
m , sen

k,l)
X

wen
i 2sen

k,l

 0(wen
i , wzh

j )wen
i

where sen
k,l|Ll=1 are sentences containing the

same entity (as mentioned in Section 4.2), and
 (een

m , sen
k,l) is knowledge attention that aims
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Cross-lingual
Sentence Regularizer

Cross-lingual Entity RegularizereNBAeAllstar
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QRW UHODWHG WR SDJH HQWLWLHV� 7KXV� ZH DVVLJQ
VPDOOHU ZHLJKW WR VXFK VHQWHQFHV YLD VRIW�DWWHQWLRQ
FRPSXWHG E\ PHDVXULQJ VLPLODULW\�

ψ(ei, sk,l) ∝ sim(ei,
∑

wm∈sk,l

wm) ���

ZKHUH ψ(ei, sk,l) LV NQRZOHGJH DWWHQWLRQ RI WKH lWK
VXE�VHQWHQFH IRU sk� DQG ei LV WKH FRUUHVSRQGLQJ
SDJH HQWLW\� 1RWH WKDW ψ(ei, sk,l) = 1 LI WKHUH LV
RQO\ RQH VXE�VHQWHQFH |sk| = 1�

Cross-lingual Attention

&URVV�OLQJXDO DWWHQWLRQ IRFXVHV RQ SRWHQWLDO LQ�
IRUPDWLRQ IURP FRPSDUDEOH VHQWHQFHV WKHPVHOYHV�
7KLV LV� WR VRPH H[WHQW� VLPLODU ZLWK VHOI�DWWHQWLRQ
PHFKDQLVP� ZKLFK REWDLQV OHDUQLQJ JXLGDQFH IURP
VHQWHQFH LWVHOI� EXW LQ FURVV�OLQJXDO VHWWLQJV� 7KH
LQWXLWLRQ LV WR ÀQG SRVVLEOH ZRUG DOLJQPHQWV DFURVV
ODQJXDJHV E\ SLFNLQJ XS WKH PD[LPXP VLPLODULW\�

ψ′(we
m, wz

n) ∝ PD[
we

m∈sek,wz
n∈szk

sim(we
m, wz

n) ���

7KXV� RQO\ WKH FRPPRQ LQIRUPDWLRQ EHWZHHQ
FRPSDUDEOH VHQWHQFHV DUH PDLQWDLQHG� )RU H[DP�
SOH �)LJXUH ��� ZRUGV American� basketball� player
DUH VHOHFWHG GXH WR WKHLU FRUUHVSRQGLQJ WUDQVODWHG
&KLQHVH ZRUGV美国�篮球�运动员� ZKLOH 12 sea-
sons LQ sek RU前 (former) LQ szk DUH GLVFDUGHG�
)LQDOO\� WKH VHQWHQFH HPEHGGLQJ LV WKH DYHUDJH

VXP RI ZRUG YHFWRUV ZHLJKWHG E\ WKH FRPELQDWLRQ
RI WZR W\SHV RI DWWHQWLRQV�

sek =
∑

sek,l∈s
e
k

ψ(eei , s
e
k,l)

∑

we
m∈sek,l

ψ′(we
m, wz

n)we
m

���

5.4 Training

2XU SURSRVHG PHWKRG NHHSV D FRQVLVWHQW DVVXPS�
WLRQ WKDW ZRUG�HQWLW\ VKDULQJ PRUH FRQWH[WV KDV
VLPLODU UHSUHVHQWDWLRQV� 7KXV� ZH GHÀQH WKH RYHU�
DOO REMHFWLYH IXQFWLRQ DV WKH OLQHDU FRPELQDWLRQ�

L = Lm + Le + γLs ���

ZKHUH γ LV D K\SHU�SDUDPHWHU WR WXQH WKH HIIHFW
RI FURVV�OLQJXDO VHQWHQFH UHJXODUL]HU� DQG VHW WR
� LQ H[SHULPHQWV� :H XVH QHJDWLYH VDPSOLQJ DV
LQ �0LNRORY HW DO�� ����D� IRU HIÀFLHQF\� DQG RS�
WLPL]H LW WKURXJK $GD*UDG 6*'�

6 Experiments

7R YHULI\ GLIIHUHQW DVSHFWV RI RXU PHWKRGV� ZH XVH
VHSDUDWH WDVNV� ZRUG WUDQVODWLRQ DQG HQWLW\ UHODW�
HGQHVV� DJDLQHVW FURVV�OLQJXDO VHQWHQFH UHJXODUL]HU
DQG FURVV�OLQJXDO HQWLW\ UHJXODUL]HU� 7DNLQJ FURVV�
OLQJXDO HQWLW\ OLQNLQJ DV D FDVH VWXG\� ZH WHVWLI\
MRLQW LQIHUHQFH DELOLW\ EHWZHHQ ZRUGV DQG HQWLWLHV
DFURVV ODQJXDJHV EDVHG RQ RXU HPEHGGLQJV�

6.1 Experiment Settings
:H FKRRVH :LNLSHGLD� WKH $SULO ���� GXPS� DV
WKH PXOWL�OLQJXDO NQRZOHGJH EDVH DQG VL[ SRSXODU
ODQJXDJHV IRU HYDOXDWLRQ� :H SUHSURFHVV WKHP E\
ORZHUFDVH� ÀOWHULQJ RXW V\PEROV DQG ORZ IUHTXHQF\
ZRUGV DQG HQWLWLHV �OHVV WKDQ ��� DQG WRNHQL]LQJ
&KLQHVH FRUSXV XVLQJ -LHED� SDFNDJH DQG -DSDQHVH
FRUSXV ZLWK PHFDE�� 7KH VWDWLVWLFV LV VKRZQ LQ 7D�
EOH ���

7DEOH �� 0XOWL�OLQJXDO .% 6WDWLVWLFV�
:RUG (QWLW\

YRFDE WRNHQ YRFDE WRNHQ
(Q �P ���E �P ���E
=K ����P ����E ����P ����E
(V ���P ����E ���P ����E
-D ����P ����E ����P ����E
,W ����P ���E �P ���E
7U ����P ����E ���P ����E

)RU FURVV�OLQJXDO VHWWLQJV� ZH FKRRVH ÀYH ODQ�
JXDJH SDLUV WR FRPSDUH ZLWK VWDWH�RI�WKH�DUW PHWK�
RGV� ZKRVH VWDWLVWLFV LV VKRZQ LQ 7DEOH �� )ROORZ�
LQJ PRVW ZRUN� ZH DGRSW (QJOLVK DV WKH SLYRW ODQ�
JXDJH GXH WR LWV GRPLQDQW UROH� EXW DOVR WHVW =K�-D
IRU RWKHU FDVHV�

7DEOH �� &URVV�OLQJXDO 'DWD 6WDWLVWLFV�
&URVV�OLQJ &RPSDUDEOH %L�(1
XDO /LQNV 6HQWHQFHV E R

(Q�(V ����P ���P ���P ���E
(Q�=K ���P �P ���P ���E
=K�-D ���P �P ����P ����E
(Q�,W ����P ���P �P ���E
(Q�7U ����P ����P ���P ���E

:H VHW WUDLQLQJ HSRFK DV �� ZKLFK FRVWV QHDUO\ ��
KRXUV RQ WKH VHUYHU ZLWK �� FRUH &38 DQG ���*%
PHPRU\� 7KH HPEHGGLQJ GLPHQVLRQ LV VHW DV ���
DQG FRQWH[W ZLQGRZ VL]H DV �� )RU HDFK SRVLWLYH
H[DPSOH� ZH VDPSOH � QHJDWLYH H[DPSOHV��

�KWWSV���JLWKXE�FRP�I[VM\�MLHED
�KWWS���WDNX����JLWKXE�LR�PHFDE�
�)RU EUHYLW\� ZH DGRSW WZR�OHWWHU DEEUHYLDWLRQ (Q� =K� (V�

-D� ,W DQG 7U IRU (QJOLVK� &KLQHVH� 6SDQLVK� -DSDQHVH� ,WDOLDQ
DQG 7XUNLVK� UHVSHFWLYHO\� P IRU PLOOLRQ DQG E IRU ELOOLRQ�

�)RU WKH SXUSRVH RI DQRQ\PLW\� WKH FRGH DQG HPEHGGLQJV
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A straightforward solution is to concatenate them
into a longer sentence senk , but this increases the
chance to include unrelated sentences.
Unbalanced information. Sometimes the pair of
sentences convey different information, e.g., the
English sentence in layer 2 (Figure 1) contains
Foust spent 12 seasons in NBA while the compa-
rable Chinese sentence not.
To address the issues, we propose knowledge at-

tention and cross-lingual attention to filter out un-
related information at sentence level and at word
level, respectively. [[这里感觉改动较大]]

5 Joint Representation Learning

5.1 Mono-lingual Representation Learning
Following (Yamada et al., 2016; Cao et al., 2017),
we learn mono-lingual word/entity embeddings
based on corpus Dy, anchors Ay and entity net-
work Gy. We utilize a variant of Skip-gram
model (Mikolov et al., 2013c) to predict the con-
texts given current word/entity:

Lm =
∑

y∈{en,zh}

∑

xy
i ∈{Dy ,Ay ,Gy}

logP (C(xyi )|x
y
i )

(1)
where xyi is either a word or an entity, and C(xyi )
denotes: (i) contextual words in a pre-defined win-
dow of xyi if x

y
i ∈ Dy, (ii) neighbor entities that

linked to xyi if x
y
i ∈ Gy, (iii) contextual words of

wy
j if x

y
i is entity e

y
i in an anchor 〈w

y
j , e

y
i 〉 ∈ Ay.

5.2 Cross-lingual Entity Regularizer
The bilingual EN Gen−zh merges entities in dif-
ferent languages into a unified network, resulting
in the possibility of using the same objective as
in mono-lingual ENs. Thus, we naturally extend
mono-lingual function to cross-lingual settings:

Le =
∑

eyi ∈{Gen−zh}

logP (C′(eyi )|e
y
i ) (2)

where C′(eyi ) denotes cross-lingual contexts—
neighbor entities in different languages that linked
to eyi . Thus, by jointly learning mono-lingual rep-
resentation with cross-lingual entity regularizer,
words and entities share more common contexts,
and will have similar embeddings. As shown in
Figure 1, English entityNBA co-occurs with words
basketball and player in texts, so they are embed-
ded close in the semantic space. Meanwhile, cross-
lingual linked entitiesNBA andNBA (zh) have sim-
ilar representations due to themost common neigh-
bor entities, e.g., Foust.

5.3 Cross-lingual Sentence Regularizer
Comparable sentences provide cross-lingual co-
occurrence of words, thus, we learn similar em-
beddings for the words that frequently co-occur to-
gether by minimizing the Euclidean distance:

Ls =
∑

〈senk ,szh
k′ 〉∈S

en−zh

||senk − szhk′ ||2 (3)

where senk , szhk′ are sentence embeddings. Take En-
glish as sample language, we define it as the aver-
age sum of word vectors weighted by the combi-
nation of two types of attentions:

senk =
∑

l∈L
ψ(eenm , senk,l)

∑

wen
i ∈senk,l

ψ′(wen
i , wzh

j )wen
i

(4)
where {senk,l|l ∈ L} is a set of sentences con-
taining the same entity (as mentioned in Sec-
tion 4.2), and ψ(eenm , senk,l) is knowledge attention
that aims at filter out wrong labelling sentences,
and ψ′(wen

i , wzh
j ) is cross-lingual attention to deal

with the unbalanced information through possible
aligned words.

Knowledge Attention

Suppose that sentences {senk,l|l ∈ L} contain the
same entities in articles of entity eym, the wrong la-
belling errors increase because some of them are
almost irrelevant to eym. Knowledge attention aims
at filtering out wrong labelled sentences through
smaller weights and related sentences with higher
weights. Thus, we define it proportional to the sim-
ilarity between syk,l and e

y
m:

ψ(eym, syk,l) ∝ sim(eym,
∑

wy
i ∈s

y
k,l

wy
i ) (5)

where sim is similarity measurement, and we
use cosine similarity in the rest of the pa-
per. We normalize knowledge attention such that∑L

l ψ(e
y
m, syk,l) = 1.

Cross-lingual Attention

Inspired by self-attention mechanism (Lin et al.,
2017b), we motivate cross-lingual attention focus-
ing on potential information from comparable sen-
tences themselves. The intuition is to find possible
alignedwords between languages, and filter out the
words without alignments. We define it according
to the maximum similarity:

Mono-lingual Representation Learning

Zh
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
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lations. However, these methods only focus on
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been done in cross-lingual scenarios.
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
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study, the results on benchmark dataset
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text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
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ity between entities and corresponding mentioned
words in different languages.
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
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ity between entities and corresponding mentioned
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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same language or not. On the other hand, cross-
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Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

Ls = ||sen � szh||2
第 5章 跨语⾔的词和实体联合表⽰学习
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QRW UHODWHG WR SDJH HQWLWLHV� 7KXV� ZH DVVLJQ
VPDOOHU ZHLJKW WR VXFK VHQWHQFHV YLD VRIW�DWWHQWLRQ
FRPSXWHG E\ PHDVXULQJ VLPLODULW\�

ψ(ei, sk,l) ∝ sim(ei,
∑

wm∈sk,l

wm) ���

ZKHUH ψ(ei, sk,l) LV NQRZOHGJH DWWHQWLRQ RI WKH lWK
VXE�VHQWHQFH IRU sk� DQG ei LV WKH FRUUHVSRQGLQJ
SDJH HQWLW\� 1RWH WKDW ψ(ei, sk,l) = 1 LI WKHUH LV
RQO\ RQH VXE�VHQWHQFH |sk| = 1�

Cross-lingual Attention

&URVV�OLQJXDO DWWHQWLRQ IRFXVHV RQ SRWHQWLDO LQ�
IRUPDWLRQ IURP FRPSDUDEOH VHQWHQFHV WKHPVHOYHV�
7KLV LV� WR VRPH H[WHQW� VLPLODU ZLWK VHOI�DWWHQWLRQ
PHFKDQLVP� ZKLFK REWDLQV OHDUQLQJ JXLGDQFH IURP
VHQWHQFH LWVHOI� EXW LQ FURVV�OLQJXDO VHWWLQJV� 7KH
LQWXLWLRQ LV WR ÀQG SRVVLEOH ZRUG DOLJQPHQWV DFURVV
ODQJXDJHV E\ SLFNLQJ XS WKH PD[LPXP VLPLODULW\�

ψ′(we
m, wz

n) ∝ PD[
we

m∈sek,wz
n∈szk

sim(we
m, wz

n) ���

7KXV� RQO\ WKH FRPPRQ LQIRUPDWLRQ EHWZHHQ
FRPSDUDEOH VHQWHQFHV DUH PDLQWDLQHG� )RU H[DP�
SOH �)LJXUH ��� ZRUGV American� basketball� player
DUH VHOHFWHG GXH WR WKHLU FRUUHVSRQGLQJ WUDQVODWHG
&KLQHVH ZRUGV美国�篮球�运动员� ZKLOH 12 sea-
sons LQ sek RU前 (former) LQ szk DUH GLVFDUGHG�
)LQDOO\� WKH VHQWHQFH HPEHGGLQJ LV WKH DYHUDJH

VXP RI ZRUG YHFWRUV ZHLJKWHG E\ WKH FRPELQDWLRQ
RI WZR W\SHV RI DWWHQWLRQV�

sek =
∑

sek,l∈s
e
k

ψ(eei , s
e
k,l)

∑

we
m∈sek,l

ψ′(we
m, wz

n)we
m

���

5.4 Training

2XU SURSRVHG PHWKRG NHHSV D FRQVLVWHQW DVVXPS�
WLRQ WKDW ZRUG�HQWLW\ VKDULQJ PRUH FRQWH[WV KDV
VLPLODU UHSUHVHQWDWLRQV� 7KXV� ZH GHÀQH WKH RYHU�
DOO REMHFWLYH IXQFWLRQ DV WKH OLQHDU FRPELQDWLRQ�

L = Lm + Le + γLs ���

ZKHUH γ LV D K\SHU�SDUDPHWHU WR WXQH WKH HIIHFW
RI FURVV�OLQJXDO VHQWHQFH UHJXODUL]HU� DQG VHW WR
� LQ H[SHULPHQWV� :H XVH QHJDWLYH VDPSOLQJ DV
LQ �0LNRORY HW DO�� ����D� IRU HIÀFLHQF\� DQG RS�
WLPL]H LW WKURXJK $GD*UDG 6*'�

6 Experiments

7R YHULI\ GLIIHUHQW DVSHFWV RI RXU PHWKRGV� ZH XVH
VHSDUDWH WDVNV� ZRUG WUDQVODWLRQ DQG HQWLW\ UHODW�
HGQHVV� DJDLQHVW FURVV�OLQJXDO VHQWHQFH UHJXODUL]HU
DQG FURVV�OLQJXDO HQWLW\ UHJXODUL]HU� 7DNLQJ FURVV�
OLQJXDO HQWLW\ OLQNLQJ DV D FDVH VWXG\� ZH WHVWLI\
MRLQW LQIHUHQFH DELOLW\ EHWZHHQ ZRUGV DQG HQWLWLHV
DFURVV ODQJXDJHV EDVHG RQ RXU HPEHGGLQJV�

6.1 Experiment Settings
:H FKRRVH :LNLSHGLD� WKH $SULO ���� GXPS� DV
WKH PXOWL�OLQJXDO NQRZOHGJH EDVH DQG VL[ SRSXODU
ODQJXDJHV IRU HYDOXDWLRQ� :H SUHSURFHVV WKHP E\
ORZHUFDVH� ÀOWHULQJ RXW V\PEROV DQG ORZ IUHTXHQF\
ZRUGV DQG HQWLWLHV �OHVV WKDQ ��� DQG WRNHQL]LQJ
&KLQHVH FRUSXV XVLQJ -LHED� SDFNDJH DQG -DSDQHVH
FRUSXV ZLWK PHFDE�� 7KH VWDWLVWLFV LV VKRZQ LQ 7D�
EOH ���

7DEOH �� 0XOWL�OLQJXDO .% 6WDWLVWLFV�
:RUG (QWLW\

YRFDE WRNHQ YRFDE WRNHQ
(Q �P ���E �P ���E
=K ����P ����E ����P ����E
(V ���P ����E ���P ����E
-D ����P ����E ����P ����E
,W ����P ���E �P ���E
7U ����P ����E ���P ����E

)RU FURVV�OLQJXDO VHWWLQJV� ZH FKRRVH ÀYH ODQ�
JXDJH SDLUV WR FRPSDUH ZLWK VWDWH�RI�WKH�DUW PHWK�
RGV� ZKRVH VWDWLVWLFV LV VKRZQ LQ 7DEOH �� )ROORZ�
LQJ PRVW ZRUN� ZH DGRSW (QJOLVK DV WKH SLYRW ODQ�
JXDJH GXH WR LWV GRPLQDQW UROH� EXW DOVR WHVW =K�-D
IRU RWKHU FDVHV�

7DEOH �� &URVV�OLQJXDO 'DWD 6WDWLVWLFV�
&URVV�OLQJ &RPSDUDEOH %L�(1
XDO /LQNV 6HQWHQFHV E R

(Q�(V ����P ���P ���P ���E
(Q�=K ���P �P ���P ���E
=K�-D ���P �P ����P ����E
(Q�,W ����P ���P �P ���E
(Q�7U ����P ����P ���P ���E

:H VHW WUDLQLQJ HSRFK DV �� ZKLFK FRVWV QHDUO\ ��
KRXUV RQ WKH VHUYHU ZLWK �� FRUH &38 DQG ���*%
PHPRU\� 7KH HPEHGGLQJ GLPHQVLRQ LV VHW DV ���
DQG FRQWH[W ZLQGRZ VL]H DV �� )RU HDFK SRVLWLYH
H[DPSOH� ZH VDPSOH � QHJDWLYH H[DPSOHV��

�KWWSV���JLWKXE�FRP�I[VM\�MLHED
�KWWS���WDNX����JLWKXE�LR�PHFDE�
�)RU EUHYLW\� ZH DGRSW WZR�OHWWHU DEEUHYLDWLRQ (Q� =K� (V�

-D� ,W DQG 7U IRU (QJOLVK� &KLQHVH� 6SDQLVK� -DSDQHVH� ,WDOLDQ
DQG 7XUNLVK� UHVSHFWLYHO\� P IRU PLOOLRQ DQG E IRU ELOOLRQ�

�)RU WKH SXUSRVH RI DQRQ\PLW\� WKH FRGH DQG HPEHGGLQJV
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A straightforward solution is to concatenate them
into a longer sentence senk , but this increases the
chance to include unrelated sentences.
Unbalanced information. Sometimes the pair of
sentences convey different information, e.g., the
English sentence in layer 2 (Figure 1) contains
Foust spent 12 seasons in NBA while the compa-
rable Chinese sentence not.
To address the issues, we propose knowledge at-

tention and cross-lingual attention to filter out un-
related information at sentence level and at word
level, respectively. [[这里感觉改动较大]]

5 Joint Representation Learning

5.1 Mono-lingual Representation Learning
Following (Yamada et al., 2016; Cao et al., 2017),
we learn mono-lingual word/entity embeddings
based on corpus Dy, anchors Ay and entity net-
work Gy. We utilize a variant of Skip-gram
model (Mikolov et al., 2013c) to predict the con-
texts given current word/entity:

Lm =
∑

y∈{en,zh}

∑

xy
i ∈{Dy ,Ay ,Gy}

logP (C(xyi )|x
y
i )

(1)
where xyi is either a word or an entity, and C(xyi )
denotes: (i) contextual words in a pre-defined win-
dow of xyi if x

y
i ∈ Dy, (ii) neighbor entities that

linked to xyi if x
y
i ∈ Gy, (iii) contextual words of

wy
j if x

y
i is entity e

y
i in an anchor 〈w

y
j , e

y
i 〉 ∈ Ay.

5.2 Cross-lingual Entity Regularizer
The bilingual EN Gen−zh merges entities in dif-
ferent languages into a unified network, resulting
in the possibility of using the same objective as
in mono-lingual ENs. Thus, we naturally extend
mono-lingual function to cross-lingual settings:

Le =
∑

eyi ∈{Gen−zh}

logP (C′(eyi )|e
y
i ) (2)

where C′(eyi ) denotes cross-lingual contexts—
neighbor entities in different languages that linked
to eyi . Thus, by jointly learning mono-lingual rep-
resentation with cross-lingual entity regularizer,
words and entities share more common contexts,
and will have similar embeddings. As shown in
Figure 1, English entityNBA co-occurs with words
basketball and player in texts, so they are embed-
ded close in the semantic space. Meanwhile, cross-
lingual linked entitiesNBA andNBA (zh) have sim-
ilar representations due to themost common neigh-
bor entities, e.g., Foust.

5.3 Cross-lingual Sentence Regularizer
Comparable sentences provide cross-lingual co-
occurrence of words, thus, we learn similar em-
beddings for the words that frequently co-occur to-
gether by minimizing the Euclidean distance:

Ls =
∑

〈senk ,szh
k′ 〉∈S

en−zh

||senk − szhk′ ||2 (3)

where senk , szhk′ are sentence embeddings. Take En-
glish as sample language, we define it as the aver-
age sum of word vectors weighted by the combi-
nation of two types of attentions:

senk =
∑

l∈L
ψ(eenm , senk,l)

∑

wen
i ∈senk,l

ψ′(wen
i , wzh

j )wen
i

(4)
where {senk,l|l ∈ L} is a set of sentences con-
taining the same entity (as mentioned in Sec-
tion 4.2), and ψ(eenm , senk,l) is knowledge attention
that aims at filter out wrong labelling sentences,
and ψ′(wen

i , wzh
j ) is cross-lingual attention to deal

with the unbalanced information through possible
aligned words.

Knowledge Attention

Suppose that sentences {senk,l|l ∈ L} contain the
same entities in articles of entity eym, the wrong la-
belling errors increase because some of them are
almost irrelevant to eym. Knowledge attention aims
at filtering out wrong labelled sentences through
smaller weights and related sentences with higher
weights. Thus, we define it proportional to the sim-
ilarity between syk,l and e

y
m:

ψ(eym, syk,l) ∝ sim(eym,
∑

wy
i ∈s

y
k,l

wy
i ) (5)

where sim is similarity measurement, and we
use cosine similarity in the rest of the pa-
per. We normalize knowledge attention such that∑L

l ψ(e
y
m, syk,l) = 1.

Cross-lingual Attention

Inspired by self-attention mechanism (Lin et al.,
2017b), we motivate cross-lingual attention focus-
ing on potential information from comparable sen-
tences themselves. The intuition is to find possible
alignedwords between languages, and filter out the
words without alignments. We define it according
to the maximum similarity:

4
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NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
an American basketball player

who spent 12 seasons in [[NBA]]

NBA (zh)

·
[[ · ]] [[NBA]]

1950 [[NBA ]] 1 5

English KB Chinese KB

RRd
RR3
RRN
Rky
RkR
Rkk
Rkj
Rk9
Rk8
Rke
Rkd
Rk3
RkN
Rjy
RjR
Rjk
Rjj
Rj9
Rj8
Rje
Rjd
Rj3
RjN
R9y
R9R
R9k
R9j
R99
R98
R9e
R9d
R93
R9N
R8y
R8R
R8k
R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

RRd
RR3
RRN
Rky
RkR
Rkk
Rkj
Rk9
Rk8
Rke
Rkd
Rk3
RkN
Rjy
RjR
Rjk
Rjj
Rj9
Rj8
Rje
Rjd
Rj3
RjN
R9y
R9R
R9k
R9j
R99
R98
R9e
R9d
R93
R9N
R8y
R8R
R8k
R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

was

Lawrence
NBA

NBA (zh)

basketball

Semantic Space

Representation
Learning

Cross-lingual
Sentence Regularizer

Cross-lingual
Entity Regularizer

[[ · ]] [[NBA]]

All-star

[[Lawrence Michael Foust]] was an American basketball 
player who spent 12 seasons in [[NBA]]

·

NBA
NBA (zh)

Comparable Sentences

Bi-lingual EN

att
att

att

… …

kjj
kj9
kj8
kje
kjd
kj3
kjN
k9y
k9R
k9k
k9j
k99
k98
k9e
k9d
k93
k9N
k8y
k8R
k8k
k8j
k89
k88
k8e
k8d
k83
k8N
key
keR
kek
kej
ke9
ke8
kee
ked
ke3
keN
kdy
kdR
kdk
kdj
kd9
kd8
kde
kdd
kd3
kdN
k3y
k3R
k3k
k3j
k39
k38
k3e
k3d
k33
k3N
kNy

AMi2;`�iBM; JmHiBHBM;m�H EMQrH2/;2 "�b2 �M/ h2ti pB� �ii2MiBp2 .Bbi�Mi amT2`pBbBQM qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2

kNR
kNk
kNj
kN9
kN8
kNe
kNd
kN3
kNN
jyy
jyR
jyk
jyj
jy9
jy8
jye
jyd
jy3
jyN
jRy
jRR
jRk
jRj
jR9
jR8
jRe
jRd
jR3
jRN
jky
jkR
jkk
jkj
jk9
jk8
jke
jkd
jk3
jkN
jjy
jjR
jjk
jjj
jj9
jj8
jje
jjd
jj3
jjN
j9y
j9R
j9k
j9j
j99
j98
j9e
j9d
j93

6B;m`2 k, qBFBT2/B� S�;2b Q7 *`Qbb@HBM;m�H GBMF2/ 1M;HBb? 1MiBiv �M/ *?BM2b2 1MiBiv �#Qmi ǳEQ#2 "`v�MiǴX

r2HH BM `2H�iBQM 2ti`�+iBQM (N- R8- R3- ky- kj- j9)X AMbi2�/ Q7
`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
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i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
i?2 H�M;m�;2 ;�T 7QHHQrBM; i?2 b�K2 i`�BMBM;

Q#D2+iBp2 �b KQMQ@ELX 6QHHQrBM; i?2 KQMQ@
HBM;m�H rQ`F Uu�K�/� 2i �HX- kyRec *�Q 2i �HX-
kyRdV- r2 2ti2M/ i?2 aFBT@;`�K KQ/2H iQ
KQMQ@HBM;m�H rQ`/b �M/ +`Qbb@HBM;m�H 2MiBiB2b
r?BH2 F22T � +QMbBbi2Mi QTiBKBx�iBQM 7mM+iBQMX
Ai mb2b i?2 +m``2Mi rQ`/f2MiBiv iQ T`2/B+i Bib
+QMi2tim�H rQ`/bf2MiBiB2b ;Bp2M i?2 +Q?2`2M+2
BM7Q`K�iBQM BM i2ti +Q`Tmb D- �M+?Q`bA �M/
KmHiB@EL KN #v K�tBKBxBM; i?2 �p2`�;2 HQ;@
T`Q#�#BHBiv,

Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm

||wki −
∑

Cl(wki)||2

UkV
r?2`2 < skm, slm >∈ Sk,l Bb i?2 mi? b2M@

i2M+2 T�B` BM i?2 ki? �M/ li? H�M;m�;2b- `2@
bT2+iBp2HvX lMHBF2 +QMp2MiBQM�H H2tB+QM #�b2/
K2i?Q/b- r?B+? KBMBKBx2 i?2 /Bbi�M+2 Q7 T�`@
�HH2H rQ`/b- i?2 `2�bQM Q7 bm+? `2;mH�`Bx2` HB2b
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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complementary knowledge. Instead of re-
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ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
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1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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same language or not. On the other hand, cross-
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tations benefits many NLP tasks, while has
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tings. In this paper, we propose a novel
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and entity representation learning to enable
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edge bases. We also propose two types
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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study, the results on benchmark dataset
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation
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Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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may introduce inevitable errors. Our embeddings
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tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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A straightforward solution is to concatenate them
into a longer sentence senk , but this increases the
chance to include unrelated sentences.
Unbalanced information. Sometimes the pair of
sentences convey different information, e.g., the
English sentence in layer 2 (Figure 1) contains
Foust spent 12 seasons in NBA while the compa-
rable Chinese sentence not.
To address the issues, we propose knowledge at-

tention and cross-lingual attention to filter out un-
related information at sentence level and at word
level, respectively. [[这里感觉改动较大]]

5 Joint Representation Learning

5.1 Mono-lingual Representation Learning
Following (Yamada et al., 2016; Cao et al., 2017),
we learn mono-lingual word/entity embeddings
based on corpus Dy, anchors Ay and entity net-
work Gy. We utilize a variant of Skip-gram
model (Mikolov et al., 2013c) to predict the con-
texts given current word/entity:

Lm =
∑

y∈{en,zh}

∑

xy
i ∈{Dy ,Ay ,Gy}

logP (C(xyi )|x
y
i )

(1)
where xyi is either a word or an entity, and C(xyi )
denotes: (i) contextual words in a pre-defined win-
dow of xyi if x

y
i ∈ Dy, (ii) neighbor entities that

linked to xyi if x
y
i ∈ Gy, (iii) contextual words of

wy
j if x

y
i is entity e

y
i in an anchor 〈w

y
j , e

y
i 〉 ∈ Ay.

5.2 Cross-lingual Entity Regularizer
The bilingual EN Gen−zh merges entities in dif-
ferent languages into a unified network, resulting
in the possibility of using the same objective as
in mono-lingual ENs. Thus, we naturally extend
mono-lingual function to cross-lingual settings:

Le =
∑

eyi ∈{Gen−zh}

logP (C′(eyi )|e
y
i ) (2)

where C′(eyi ) denotes cross-lingual contexts—
neighbor entities in different languages that linked
to eyi . Thus, by jointly learning mono-lingual rep-
resentation with cross-lingual entity regularizer,
words and entities share more common contexts,
and will have similar embeddings. As shown in
Figure 1, English entityNBA co-occurs with words
basketball and player in texts, so they are embed-
ded close in the semantic space. Meanwhile, cross-
lingual linked entitiesNBA andNBA (zh) have sim-
ilar representations due to themost common neigh-
bor entities, e.g., Foust.

5.3 Cross-lingual Sentence Regularizer
Comparable sentences provide cross-lingual co-
occurrence of words, thus, we learn similar em-
beddings for the words that frequently co-occur to-
gether by minimizing the Euclidean distance:

Ls =
∑

〈senk ,szh
k′ 〉∈S

en−zh

||senk − szhk′ ||2 (3)

where senk , szhk′ are sentence embeddings. Take En-
glish as sample language, we define it as the aver-
age sum of word vectors weighted by the combi-
nation of two types of attentions:

senk =
∑

l∈L
ψ(eenm , senk,l)

∑

wen
i ∈senk,l

ψ′(wen
i , wzh

j )wen
i

(4)
where {senk,l|l ∈ L} is a set of sentences con-
taining the same entity (as mentioned in Sec-
tion 4.2), and ψ(eenm , senk,l) is knowledge attention
that aims at filter out wrong labelling sentences,
and ψ′(wen

i , wzh
j ) is cross-lingual attention to deal

with the unbalanced information through possible
aligned words.

Knowledge Attention

Suppose that sentences {senk,l|l ∈ L} contain the
same entities in articles of entity eym, the wrong la-
belling errors increase because some of them are
almost irrelevant to eym. Knowledge attention aims
at filtering out wrong labelled sentences through
smaller weights and related sentences with higher
weights. Thus, we define it proportional to the sim-
ilarity between syk,l and e

y
m:

ψ(eym, syk,l) ∝ sim(eym,
∑

wy
i ∈s

y
k,l

wy
i ) (5)

where sim is similarity measurement, and we
use cosine similarity in the rest of the pa-
per. We normalize knowledge attention such that∑L

l ψ(e
y
m, syk,l) = 1.

Cross-lingual Attention

Inspired by self-attention mechanism (Lin et al.,
2017b), we motivate cross-lingual attention focus-
ing on potential information from comparable sen-
tences themselves. The intuition is to find possible
alignedwords between languages, and filter out the
words without alignments. We define it according
to the maximum similarity:

4
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NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
an American basketball player

who spent 12 seasons in [[NBA]]

NBA (zh)

·
[[ · ]] [[NBA]]
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AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
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/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
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/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
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Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
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FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))
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`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X
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r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=

e
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
+�i2M�i2 i?2K BMiQ � HQM;2` b2Mi2M+2- #mi i?Bb
rBHH #`BM; Km+? MQBb2- 2bT2+B�HHv bQK2 Q7 i?2
b2Mi2M+2b �`2 BM+Q``2+iHv 2ti`�+i2/X h?2`2@
7Q`2- r2 /2bB;M irQ ivT2b Q7 �ii2MiBQM iQ b2H2+i
i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
i?2 H�M;m�;2 ;�T 7QHHQrBM; i?2 b�K2 i`�BMBM;

Q#D2+iBp2 �b KQMQ@ELX 6QHHQrBM; i?2 KQMQ@
HBM;m�H rQ`F Uu�K�/� 2i �HX- kyRec *�Q 2i �HX-
kyRdV- r2 2ti2M/ i?2 aFBT@;`�K KQ/2H iQ
KQMQ@HBM;m�H rQ`/b �M/ +`Qbb@HBM;m�H 2MiBiB2b
r?BH2 F22T � +QMbBbi2Mi QTiBKBx�iBQM 7mM+iBQMX
Ai mb2b i?2 +m``2Mi rQ`/f2MiBiv iQ T`2/B+i Bib
+QMi2tim�H rQ`/bf2MiBiB2b ;Bp2M i?2 +Q?2`2M+2
BM7Q`K�iBQM BM i2ti +Q`Tmb D- �M+?Q`bA �M/
KmHiB@EL KN #v K�tBKBxBM; i?2 �p2`�;2 HQ;@
T`Q#�#BHBiv,

Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm

||wki −
∑

Cl(wki)||2

UkV
r?2`2 < skm, slm >∈ Sk,l Bb i?2 mi? b2M@

i2M+2 T�B` BM i?2 ki? �M/ li? H�M;m�;2b- `2@
bT2+iBp2HvX lMHBF2 +QMp2MiBQM�H H2tB+QM #�b2/
K2i?Q/b- r?B+? KBMBKBx2 i?2 /Bbi�M+2 Q7 T�`@
�HH2H rQ`/b- i?2 `2�bQM Q7 bm+? `2;mH�`Bx2` HB2b
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and was an 8-time [[All-star]] … [[ ]] …

NBA

Lawrence Foust

NBA

player

American
NBA

All-star
eLawrence

wbasketballwplayer
… …

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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iments, separate tasks of word translation
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fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
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fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
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study, the results on benchmark dataset
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tasks, such as cross-lingual entity linking, in which
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ity between entities and corresponding mentioned
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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edge bases. We also propose two types
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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derstanding natural language beyond texts. Mean-
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traction (Weston et al., 2013; Lin et al., 2017), and
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2016; Cao et al., 2017; Ji et al., 2016).
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corpus to enhance each other by learning word and
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

eNBAeAllstar

Mono-lingual Representation Learning

Zh

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
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differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
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lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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ther improve the performance. In exper-
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fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
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study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
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KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
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Most existing work jointly models KB and text
corpus to enhance each other by learning word and
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Cao et al., 2017) utilize the coherence informa-
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2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
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been done in cross-lingual scenarios.
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
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The intuition is that, words and entities in
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
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derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
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processing (NLP) related tasks, such as relation ex-
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corpus to enhance each other by learning word and
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Cao et al., 2017) utilize the coherence informa-
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ilar embedding vectors. Another approach in (Han
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textual descriptions together with the structured re-
lations. However, these methods only focus on
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In this paper, we propose to learn cross-lingual
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them
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NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
an American basketball player

who spent 12 seasons in [[NBA]]

NBA (zh)

·
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i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

was

Lawrence
NBA

NBA (zh)

basketball

Semantic Space

Representation
Learning

Cross-lingual
Sentence Regularizer

Cross-lingual
Entity Regularizer

[[ · ]] [[NBA]]

All-star

[[Lawrence Michael Foust]] was an American basketball 
player who spent 12 seasons in [[NBA]]

·

NBA
NBA (zh)

Comparable Sentences

Bi-lingual EN

att
att

att

… …

kjj
kj9
kj8
kje
kjd
kj3
kjN
k9y
k9R
k9k
k9j
k99
k98
k9e
k9d
k93
k9N
k8y
k8R
k8k
k8j
k89
k88
k8e
k8d
k83
k8N
key
keR
kek
kej
ke9
ke8
kee
ked
ke3
keN
kdy
kdR
kdk
kdj
kd9
kd8
kde
kdd
kd3
kdN
k3y
k3R
k3k
k3j
k39
k38
k3e
k3d
k33
k3N
kNy

AMi2;`�iBM; JmHiBHBM;m�H EMQrH2/;2 "�b2 �M/ h2ti pB� �ii2MiBp2 .Bbi�Mi amT2`pBbBQM qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2

kNR
kNk
kNj
kN9
kN8
kNe
kNd
kN3
kNN
jyy
jyR
jyk
jyj
jy9
jy8
jye
jyd
jy3
jyN
jRy
jRR
jRk
jRj
jR9
jR8
jRe
jRd
jR3
jRN
jky
jkR
jkk
jkj
jk9
jk8
jke
jkd
jk3
jkN
jjy
jjR
jjk
jjj
jj9
jj8
jje
jjd
jj3
jjN
j9y
j9R
j9k
j9j
j99
j98
j9e
j9d
j93

6B;m`2 k, qBFBT2/B� S�;2b Q7 *`Qbb@HBM;m�H GBMF2/ 1M;HBb? 1MiBiv �M/ *?BM2b2 1MiBiv �#Qmi ǳEQ#2 "`v�MiǴX

r2HH BM `2H�iBQM 2ti`�+iBQM (N- R8- R3- ky- kj- j9)X AMbi2�/ Q7
`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=

e
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
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complementary knowledge. Instead of re-
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generate cross-lingual training data via dis-
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
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of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
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corpus to enhance each other by learning word and
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Cao et al., 2017) utilize the coherence informa-
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textual descriptions together with the structured re-
lations. However, these methods only focus on
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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same language or not. On the other hand, cross-
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fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
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study, the results on benchmark dataset
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
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may introduce inevitable errors. Our embeddings
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ity between entities and corresponding mentioned
words in different languages.
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differ. On one hand, we utilize their shared seman-
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lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
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guages due to the complementary knowledge. For
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them1
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complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
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7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
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Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

RRd
RR3
RRN
Rky
RkR
Rkk
Rkj
Rk9
Rk8
Rke
Rkd
Rk3
RkN
Rjy
RjR
Rjk
Rjj
Rj9
Rj8
Rje
Rjd
Rj3
RjN
R9y
R9R
R9k
R9j
R99
R98
R9e
R9d
R93
R9N
R8y
R8R
R8k
R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

was

Lawrence
NBA

NBA (zh)

basketball

Semantic Space

Representation
Learning

Cross-lingual
Sentence Regularizer

Cross-lingual
Entity Regularizer

[[ · ]] [[NBA]]

All-star

[[Lawrence Michael Foust]] was an American basketball 
player who spent 12 seasons in [[NBA]]

·

NBA
NBA (zh)

Comparable Sentences

Bi-lingual EN

att
att

att

… …

kjj
kj9
kj8
kje
kjd
kj3
kjN
k9y
k9R
k9k
k9j
k99
k98
k9e
k9d
k93
k9N
k8y
k8R
k8k
k8j
k89
k88
k8e
k8d
k83
k8N
key
keR
kek
kej
ke9
ke8
kee
ked
ke3
keN
kdy
kdR
kdk
kdj
kd9
kd8
kde
kdd
kd3
kdN
k3y
k3R
k3k
k3j
k39
k38
k3e
k3d
k33
k3N
kNy

AMi2;`�iBM; JmHiBHBM;m�H EMQrH2/;2 "�b2 �M/ h2ti pB� �ii2MiBp2 .Bbi�Mi amT2`pBbBQM qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2

kNR
kNk
kNj
kN9
kN8
kNe
kNd
kN3
kNN
jyy
jyR
jyk
jyj
jy9
jy8
jye
jyd
jy3
jyN
jRy
jRR
jRk
jRj
jR9
jR8
jRe
jRd
jR3
jRN
jky
jkR
jkk
jkj
jk9
jk8
jke
jkd
jk3
jkN
jjy
jjR
jjk
jjj
jj9
jj8
jje
jjd
jj3
jjN
j9y
j9R
j9k
j9j
j99
j98
j9e
j9d
j93

6B;m`2 k, qBFBT2/B� S�;2b Q7 *`Qbb@HBM;m�H GBMF2/ 1M;HBb? 1MiBiv �M/ *?BM2b2 1MiBiv �#Qmi ǳEQ#2 "`v�MiǴX

r2HH BM `2H�iBQM 2ti`�+iBQM (N- R8- R3- ky- kj- j9)X AMbi2�/ Q7
`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=

e
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
+�i2M�i2 i?2K BMiQ � HQM;2` b2Mi2M+2- #mi i?Bb
rBHH #`BM; Km+? MQBb2- 2bT2+B�HHv bQK2 Q7 i?2
b2Mi2M+2b �`2 BM+Q``2+iHv 2ti`�+i2/X h?2`2@
7Q`2- r2 /2bB;M irQ ivT2b Q7 �ii2MiBQM iQ b2H2+i
i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
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fectiveness of our method with an average
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spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
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Most existing work jointly models KB and text
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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ther improve the performance. In exper-
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
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KBs. Therefore, researchers leverage both types
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processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
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Most existing work jointly models KB and text
corpus to enhance each other by learning word and
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
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textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
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word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
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tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
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tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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attention to select the most informative
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ther improve the performance. In exper-
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
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study, the results on benchmark dataset
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
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lations. However, these methods only focus on
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differ. On one hand, we utilize their shared seman-
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lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them

eJordan

Ls = ||sen � szh||2

图 5.4 跨语⾔词和实体联合表⽰学习模型

Lm =
∑

y∈{en,zh}

∑
xi ∈D̂y

log P(C(xi)|xi) +
∑
ei ∈Ey

log P(N(ei)|ei) +
∑

<mk,e j>∈Ay

log P(ej |c′mk
)

(5-1)
where xy

i is either a word or an entity, and C(xy
i ) denotes: (i) contextual words in a

pre-defined window of xy
i if xy

i ∈ Dy, (ii) neighbor entities that linked to xy
i if xy

i ∈ Gy,
(iii) contextual words of wy

j if xy
i is entity eyi in an anchor 〈wy

j , e
y
i 〉 ∈ Ay.
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NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
an American basketball player

who spent 12 seasons in [[NBA]]

NBA (zh)

·
[[ · ]] [[NBA]]

1950 [[NBA ]] 1 5
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/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

RRd
RR3
RRN
Rky
RkR
Rkk
Rkj
Rk9
Rk8
Rke
Rkd
Rk3
RkN
Rjy
RjR
Rjk
Rjj
Rj9
Rj8
Rje
Rjd
Rj3
RjN
R9y
R9R
R9k
R9j
R99
R98
R9e
R9d
R93
R9N
R8y
R8R
R8k
R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

was

Lawrence
NBA

NBA (zh)

basketball

Semantic Space

Representation
Learning

Cross-lingual
Sentence Regularizer

Cross-lingual
Entity Regularizer

[[ · ]] [[NBA]]

All-star

[[Lawrence Michael Foust]] was an American basketball 
player who spent 12 seasons in [[NBA]]

·

NBA
NBA (zh)

Comparable Sentences

Bi-lingual EN

att
att

att

… …

kjj
kj9
kj8
kje
kjd
kj3
kjN
k9y
k9R
k9k
k9j
k99
k98
k9e
k9d
k93
k9N
k8y
k8R
k8k
k8j
k89
k88
k8e
k8d
k83
k8N
key
keR
kek
kej
ke9
ke8
kee
ked
ke3
keN
kdy
kdR
kdk
kdj
kd9
kd8
kde
kdd
kd3
kdN
k3y
k3R
k3k
k3j
k39
k38
k3e
k3d
k33
k3N
kNy

AMi2;`�iBM; JmHiBHBM;m�H EMQrH2/;2 "�b2 �M/ h2ti pB� �ii2MiBp2 .Bbi�Mi amT2`pBbBQM qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2

kNR
kNk
kNj
kN9
kN8
kNe
kNd
kN3
kNN
jyy
jyR
jyk
jyj
jy9
jy8
jye
jyd
jy3
jyN
jRy
jRR
jRk
jRj
jR9
jR8
jRe
jRd
jR3
jRN
jky
jkR
jkk
jkj
jk9
jk8
jke
jkd
jk3
jkN
jjy
jjR
jjk
jjj
jj9
jj8
jje
jjd
jj3
jjN
j9y
j9R
j9k
j9j
j99
j98
j9e
j9d
j93

6B;m`2 k, qBFBT2/B� S�;2b Q7 *`Qbb@HBM;m�H GBMF2/ 1M;HBb? 1MiBiv �M/ *?BM2b2 1MiBiv �#Qmi ǳEQ#2 "`v�MiǴX

r2HH BM `2H�iBQM 2ti`�+iBQM (N- R8- R3- ky- kj- j9)X AMbi2�/ Q7
`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX

8

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
+�i2M�i2 i?2K BMiQ � HQM;2` b2Mi2M+2- #mi i?Bb
rBHH #`BM; Km+? MQBb2- 2bT2+B�HHv bQK2 Q7 i?2
b2Mi2M+2b �`2 BM+Q``2+iHv 2ti`�+i2/X h?2`2@
7Q`2- r2 /2bB;M irQ ivT2b Q7 �ii2MiBQM iQ b2H2+i
i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
i?2 H�M;m�;2 ;�T 7QHHQrBM; i?2 b�K2 i`�BMBM;

Q#D2+iBp2 �b KQMQ@ELX 6QHHQrBM; i?2 KQMQ@
HBM;m�H rQ`F Uu�K�/� 2i �HX- kyRec *�Q 2i �HX-
kyRdV- r2 2ti2M/ i?2 aFBT@;`�K KQ/2H iQ
KQMQ@HBM;m�H rQ`/b �M/ +`Qbb@HBM;m�H 2MiBiB2b
r?BH2 F22T � +QMbBbi2Mi QTiBKBx�iBQM 7mM+iBQMX
Ai mb2b i?2 +m``2Mi rQ`/f2MiBiv iQ T`2/B+i Bib
+QMi2tim�H rQ`/bf2MiBiB2b ;Bp2M i?2 +Q?2`2M+2
BM7Q`K�iBQM BM i2ti +Q`Tmb D- �M+?Q`bA �M/
KmHiB@EL KN #v K�tBKBxBM; i?2 �p2`�;2 HQ;@
T`Q#�#BHBiv,

Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm

||wki −
∑

Cl(wki)||2

UkV
r?2`2 < skm, slm >∈ Sk,l Bb i?2 mi? b2M@

i2M+2 T�B` BM i?2 ki? �M/ li? H�M;m�;2b- `2@
bT2+iBp2HvX lMHBF2 +QMp2MiBQM�H H2tB+QM #�b2/
K2i?Q/b- r?B+? KBMBKBx2 i?2 /Bbi�M+2 Q7 T�`@
�HH2H rQ`/b- i?2 `2�bQM Q7 bm+? `2;mH�`Bx2` HB2b
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joint Representation Learning of Cross-lingual Words and Entities via
Attentive Distant Supervision

Anonymous ACL submission

Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
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iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
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textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).
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corpus to enhance each other by learning word and
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
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lations. However, these methods only focus on
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tic space, to enable joint inference among KB and
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lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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textual descriptions together with the structured re-
lations. However, these methods only focus on
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ity between entities and corresponding mentioned
words in different languages.
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-
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gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
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ity between entities and corresponding mentioned
words in different languages.
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).

En

eLawrence

wwas wan

eLawrence

eNBAeAllstarwan wbasketball

wAmerican

Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them
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[[Lawrence Michael Foust]] was
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Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=

e
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
+�i2M�i2 i?2K BMiQ � HQM;2` b2Mi2M+2- #mi i?Bb
rBHH #`BM; Km+? MQBb2- 2bT2+B�HHv bQK2 Q7 i?2
b2Mi2M+2b �`2 BM+Q``2+iHv 2ti`�+i2/X h?2`2@
7Q`2- r2 /2bB;M irQ ivT2b Q7 �ii2MiBQM iQ b2H2+i
i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
i?2 H�M;m�;2 ;�T 7QHHQrBM; i?2 b�K2 i`�BMBM;

Q#D2+iBp2 �b KQMQ@ELX 6QHHQrBM; i?2 KQMQ@
HBM;m�H rQ`F Uu�K�/� 2i �HX- kyRec *�Q 2i �HX-
kyRdV- r2 2ti2M/ i?2 aFBT@;`�K KQ/2H iQ
KQMQ@HBM;m�H rQ`/b �M/ +`Qbb@HBM;m�H 2MiBiB2b
r?BH2 F22T � +QMbBbi2Mi QTiBKBx�iBQM 7mM+iBQMX
Ai mb2b i?2 +m``2Mi rQ`/f2MiBiv iQ T`2/B+i Bib
+QMi2tim�H rQ`/bf2MiBiB2b ;Bp2M i?2 +Q?2`2M+2
BM7Q`K�iBQM BM i2ti +Q`Tmb D- �M+?Q`bA �M/
KmHiB@EL KN #v K�tBKBxBM; i?2 �p2`�;2 HQ;@
T`Q#�#BHBiv,

Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
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fectiveness of our method with an average
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study, the results on benchmark dataset
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-
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fectiveness of our method with an average
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study, the results on benchmark dataset
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lations. However, these methods only focus on
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tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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1Some cross-lingual pioneering work observe that word
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fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
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2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
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method that integrates cross-lingual word
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words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
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KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
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R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei) − C(e j)| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@
HBM;m�H HBMFX

kXk *`Qbb@HBM;m�H 1MiBiv
_2T`2b2Mi�iBQM G2�`MBM;

L =
∑

ei ∈E
HQ; P(N (ei)|ei) +

∑

(ei ,ej )∈Ec
HQ; P(N (e j)|ei)

U9V
r?2`2 N (ei) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2

FMQrH2/;2 M2irQ`FX

kXj *`Qbb@HBM;m�H �HB;MK2Mi
L =

∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei)) +

∑

(ei ,ej )∈Ec
HQ; P(e j |mi ,C(ei))

U8V

was

Lawrence
NBA

NBA (zh)

basketball

Semantic Space

Representation
Learning

Cross-lingual
Sentence Regularizer

Cross-lingual
Entity Regularizer

[[ · ]] [[NBA]]

All-star

[[Lawrence Michael Foust]] was an American basketball 
player who spent 12 seasons in [[NBA]]

·

NBA
NBA (zh)

Comparable Sentences

Bi-lingual EN

att
att

att

… …

kjj
kj9
kj8
kje
kjd
kj3
kjN
k9y
k9R
k9k
k9j
k99
k98
k9e
k9d
k93
k9N
k8y
k8R
k8k
k8j
k89
k88
k8e
k8d
k83
k8N
key
keR
kek
kej
ke9
ke8
kee
ked
ke3
keN
kdy
kdR
kdk
kdj
kd9
kd8
kde
kdd
kd3
kdN
k3y
k3R
k3k
k3j
k39
k38
k3e
k3d
k33
k3N
kNy

AMi2;`�iBM; JmHiBHBM;m�H EMQrH2/;2 "�b2 �M/ h2ti pB� �ii2MiBp2 .Bbi�Mi amT2`pBbBQM qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2

kNR
kNk
kNj
kN9
kN8
kNe
kNd
kN3
kNN
jyy
jyR
jyk
jyj
jy9
jy8
jye
jyd
jy3
jyN
jRy
jRR
jRk
jRj
jR9
jR8
jRe
jRd
jR3
jRN
jky
jkR
jkk
jkj
jk9
jk8
jke
jkd
jk3
jkN
jjy
jjR
jjk
jjj
jj9
jj8
jje
jjd
jj3
jjN
j9y
j9R
j9k
j9j
j99
j98
j9e
j9d
j93

6B;m`2 k, qBFBT2/B� S�;2b Q7 *`Qbb@HBM;m�H GBMF2/ 1M;HBb? 1MiBiv �M/ *?BM2b2 1MiBiv �#Qmi ǳEQ#2 "`v�MiǴX

r2HH BM `2H�iBQM 2ti`�+iBQM (N- R8- R3- ky- kj- j9)X AMbi2�/ Q7
`2HvBM; �MMQi�i2/ i2ti- Bi 2KTHQvb FMQrH2/;2 #�b2b �b bQm`+2
Q7 bmT2`pBbBQM #v �HB;MBM; i?2 ;Bp2M FMQrH2/;2 #�b2 iQ i2ti
7QHHQrBM; i?2 �bbmKTiBQM, ǳA7 irQ 2MiBiB2b T�`iB+BT�i2 BM �
`2H�iBQM- �HH b2Mi2M+2b i?�i K2MiBQM i?2b2 irQ 2MiBiB2b 2tT`2bb
i?�i `2H�iBQMǴ (ky)X

hQ ;2M2`�i2 ?B;?2` [m�HBiv +QKT�`�#H2 /�i� �miQK�iB+�HHv-
r2 T`QTQb2 iQ BM+Q`TQ`�i2 /Bbi�Mi bmT2`pBbBQM i2+?MB[m2 BMiQ
+`Qbb@HBM;m�H `2T`2b2Mi�iBQM H2�`MBM;X aBKBH�`Hv- r2 �bbmK2
i?�i,

A7 irQ +QKT�`�#H2 /Q+mK2Mib K2MiBQM2/ � T�B`
Q7 +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b- i?2 b2Mi2M+2b +QM@
i�BMBM; i?2K 2tT`2bb i?2 b�K2 �bT2+i Q7 i?2 +QK@
KQM i?2K2X

h?Bb ivT2 Q7 b2Mi2M+2b �`2 MQi Kmim�HHv i`�MbH�i2/- #mi
i?2v Q#pBQmbHv ?�p2 bBKBH�` b2K�MiB+b- M�K2Hv +QKT�`�#H2
b2Mi2M+2bX 6B;m`2 k b?Qrb bQK2 +QKT�`�#H2 b2Mi2M+2 T�B`
+QHQ`2/ BM ;`22M �M/ i?2 `2/ `2+i�M;H2b +QMM2+i2/ #v /�b?2/
HBM2b �`2 +`Qbb@HBM;m�H 2MiBiB2b- 2X;X i?2 b2Mi2M+2 T�B` ǳ>2
TH�v2/ ?Bb 2MiB`2 ky@v2�` +�`22` rBi? i?2 GQb �M;2H2b G�F2`b
Q7 L"�Ǵ �M/ ǳ UBMV U?2V U7Q`V UGQb �M;2@
H2b G�F2`bV UrQ`FV UǶbV ky Uky@v2�`V U+�`22`V

UHB72VǴ- r?2`2 i?2 2M;HBb? 2MiBiv ǳGQb �M;2H2b G�F2`bǴ
�M/ *?BM2b2 2MiBiv ǳ Ǵ ?�p2 +`Qbb@HBM;m�H HBMFX

*QKT�`�#H2 b2Mi2M+2b K�v +QMi�BM Km+? MQBb2 �M/ 2p2M
#2 BM+Q``2+iHv 2ti`�+i2/X q2 rBHH /Bb+mbb Bi BM i?2 M2ti b2+@
iBQM- �M/ BMi`Q/m+2 irQ ivT2b Q7 �ii2MiBQM K2+?�MBbK QM
i?2K 7Q` +`Qbb@HBM;m�H bmT2`pBbBQMX

j J1h>P.
jXR 6`�K2rQ`F
jXk AMi2;`�iBM; JQMQ@HBM;m�H qQ`/b �M/ 1MiBiB2b
jXj 6`QK JQMQ@HBM;m�H iQ JmHiB@HBM;m�H

jXjXR *`Qbb@HBM;m�H 1MiBiv �HB;MK2MiX
jXjXk *QKT�`�#H2 a2Mi2M+2b :2M2`�iBQMX

Ls = | |Sen − Szh | |2 URV

jXjXj JQMQ@HBM;m�H �ii2MiBQMX
jXjX9 *`Qbb@HBM;m�H �ii2MiBQMX

jX9 h`�BMBM;
KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
HQ; P(xo |xi ) UkV

+`Qbb@HBM;m�H rQ`/ �HB;MK2Mi

L =
∑

(ei ,ej )∈Ec
| |C(ei ) − C(ej )| |2 UjV

r?2`2 Ec +QMi�BMb 2MiBiv T�B`b +QMM2+i2/ #v � +`Qbb@HBM;m�H
HBMFX

L =
∑

ei ∈E
HQ; P(N (ei )|ei ) +

∑

(ei ,ej )∈Ec
HQ; P(N (ej )|ei ) U9V

r?2`2 N (ei ) /2MQi2b i?2 M2B;?#Q` 2MiBiB2b QM i?2 FMQrH@
2/;2 M2irQ`FX

L =
∑

(ei ,mi )∈A
HQ; P(ei |mi ,C(ei )) +

∑

(ei ,ej )∈Ec
HQ; P(ej |mi ,C(ei ))

U8V

=

e

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
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Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm

||wki −
∑

Cl(wki)||2

UkV
r?2`2 < skm, slm >∈ Sk,l Bb i?2 mi? b2M@

i2M+2 T�B` BM i?2 ki? �M/ li? H�M;m�;2b- `2@
bT2+iBp2HvX lMHBF2 +QMp2MiBQM�H H2tB+QM #�b2/
K2i?Q/b- r?B+? KBMBKBx2 i?2 /Bbi�M+2 Q7 T�`@
�HH2H rQ`/b- i?2 `2�bQM Q7 bm+? `2;mH�`Bx2` HB2b
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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fectiveness of our method with an average
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1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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words in different languages.
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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edge bases. We also propose two types
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words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).
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corpus to enhance each other by learning word and
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example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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joint inference among knowledge base and
text across languages, capturing mutually
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liance on parallel data, we automatically
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tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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tings. In this paper, we propose a novel
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joint inference among knowledge base and
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edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
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of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
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tations benefits many NLP tasks, while has
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tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
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complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
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edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
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KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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while, abundant text corpus contains large amount
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processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them
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NBA

Lawrence Foust

All-star

[[Lawrence Michael Foust]] was
an American basketball player

who spent 12 seasons in [[NBA]]

NBA (zh)

·
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1950 [[NBA ]] 1 5

English KB Chinese KB

RRd
RR3
RRN
Rky
RkR
Rkk
Rkj
Rk9
Rk8
Rke
Rkd
Rk3
RkN
Rjy
RjR
Rjk
Rjj
Rj9
Rj8
Rje
Rjd
Rj3
RjN
R9y
R9R
R9k
R9j
R99
R98
R9e
R9d
R93
R9N
R8y
R8R
R8k
R8j
R89
R88
R8e
R8d
R83
R8N
Rey
ReR
Rek
Rej
Re9
Re8
Ree
Red
Re3
ReN
Rdy
RdR
Rdk
Rdj
Rd9

qqq kyR3- �T`BH kj@kd- kyR3- GvQM- 6`�M+2 �MQMX

Rd8
Rde
Rdd
Rd3
RdN
R3y
R3R
R3k
R3j
R39
R38
R3e
R3d
R33
R3N
RNy
RNR
RNk
RNj
RN9
RN8
RNe
RNd
RN3
RNN
kyy
kyR
kyk
kyj
ky9
ky8
kye
kyd
ky3
kyN
kRy
kRR
kRk
kRj
kR9
kR8
kRe
kRd
kR3
kRN
kky
kkR
kkk
kkj
kk9
kk8
kke
kkd
kk3
kkN
kjy
kjR
kjk

irQ /Bz2`2Mi 2MiBiB2b- "�MF �M/ "�MF U;2Q;`�T?vVX
AM i?2 KmHiBHBM;m�H b2iiBM;b- i?Bb Bbbm2 Q7 �K#B;mBiv
#2+QK2b KQ`2 b2p2`2X

*`Qbb@HBM;m�H qQ`/ �HB;MK2Mi � H�`;2 MmK#2` Q7
K2i?Q/b 7Q+mb QM mbBM; T�`�HH2H +Q`Tmb UBX2X �HB;M2/
rQ`/b- b2Mi2M+2bV �b +`Qbb@HBM;m�H bmT2`pBbBQM bB;M�Hb
iQ �HB;M bBKBH�` rQ`/b BM #Qi? H�M;m�;2b (RĜ9- dĜ
N)X >Qr2p2`- i?2 T�`�HH2H +Q`Tmb Bb 2tT2MbBp2 iQ Q#@
i�BM �M/ mbm�HHv Bb QMHv �p�BH�#H2 7Q` +2`i�BM M�`@
`Qr /QK�BMb r?B+? BMi`Q/m+2b � bi`QM; /QK�BM #B�b
BMiQ i?2 H2�`MBM; T`Q+2bb (R)X hQ �HH2pB�i2 i?2 #m`@
/2M Q7 Q#i�BMBM; T�`�HH2H +Q`Tmb- (RR- Rk) b?m|2 UBX2X
`�M/QKHv Q` H2M;i?@`�iBQV 2�+? T�B` Q7 +QKT�`�#H2
/Q+mK2Mib i?�i b?�`2 � +QKKQM i?2K2 BM /Bz2`2Mi
H�M;m�;2b iQ +QMbi`m+i Tb2m/Q #BHBM;m�H /Q+mK2Mib
/B`2+iHv 7Q` #BHBM;m�H rQ`/ `2T`2b2Mi�iBQM H2�`MBM;X
>Qr2p2`- i?2 b?m|2 bi`�i2;v Bb ?�`/ iQ +QMi`QH i?2
[m�HBiv Q7 Tb2m/Q #BHBM;m�H /Q+mK2Mib- r?B+? bmz2`b
7`QK � bm#@QTiBKBx�iBQM Bbbm2 /m2 iQ �++B/2Mi�HHv ǳ#�/
b?m|2bǴX

hQ �//`2bb i?2b2 +?�HH2M;2b- r2 T`QTQb2 iQ H2�`M
KmHiBTH2 2K#2//BM; p2+iQ`b 7Q` 2�+? 2MiBiv K2MiBQM-
M�K2Hv K2MiBQM b2Mb2- iQ /2�H rBi? i?2 �K#B;mBiv #2@
ir22M K2MiBQMb �M/ 2MiBiB2b U2X;X AM/2T2M/2M+2 .�v
pbX i?2 }HK 2MiBiv Q` i?2 ?QHB/�v 2MiBivV- �M/ 2p2M
?�`/2` �+`Qbb H�M;m�;2b U2X;X AM/2T2M/2M+2 .�v pbX
独立日 Q`美国独立日VX 6Q` +`Qbb@HBM;m�H �HB;MK2Mib-
r2 }`bi BMi`Q/m+2 +`Qbb@HBM;m�H ?vT2`HBMFb 2tBbiBM; BM
KmHiBHBM;m�H EMQrH2/;2 "�b2 U2X;X qBFBT2B/�V �b bm@
T2`pBbBQM- �M/ BMi2;`�i2 i?`22 /Bz2`2Mi ivT2b Q7 �HB;M@
K2Mib, rQ`/b- 2MiBiB2b �M/ #Qi?- BMiQ � mMB}2/ Q#D2+@
iBp2X h?2 #�bB+ B/2� Bb i?2 2MiBiB2b HBMF2/ �+`Qbb H�M@
;m�;2b b?QmH/ ?�p2 bBKBH�` `2T`2b2Mi�iBQMb- �M/ bQ
/Q i?2B` M2B;?#Q` 2MiBiB2b �M/ +QMi2ti rQ`/b BM i2ti
+Q`TmbX

AM i?Bb T�T2`- r2 T`QTQb2 � MQp2H #BHBM;m�H KmHiB@
T`QiQivT2 K2MiBQM 2K#2//BM; KQ/2H i?�i DQBMiHv H2�`Mb

rQ`/- K2MiBQM �M/ 2MiBiv 2K#2//BM;b �+`Qbb H�M;m�;2bX
6QHHQrBM;

K2MiBQM b2Mb2
+QMi2ti

k J1h>P.
kXR *`Qbb@HBM;m�H qQ`/

_2T`2b2Mi�iBQM G2�`MBM;

Sen Szh een ezh URV

KQMQHBM;m�H rQ`/fK2MiBQM 2K#2//BM; H2�`MBM;

L =
∑

xi ∈D

∑

xo ∈C(xi )
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BM irQ TQBMib, UBV F22TBM; � +QMbBbi2Mi Q#@
D2+iBp2 �b KQMQ@HBM;m�H rQ`/ QTiBKBx�iBQMě
i?2 rQ`/b b?�`BM; KQ`2 +QMi2tim�H rQ`/b ?�p2
bBKBH�` 2K#2//BM;b- `�i?2` i?�M i?2 rQ`/b
?�p2 � bT2+B�H ivT2 Q7 2[m�HBiv `2H�iBQMb Ui?2
b�K2 �b 2MiBiB2b BM am#a2+iBQM jXkVc UBBV �H@
H2pB�iBM; i?2 #m`/2M Q7 T�`�HH2H rQ`/b bBM+2
r2 �+im�HHv /QMǶi FMQr r?B+? rQ`/b �`2 2t@
�+iHv K�i+?2/ �+`Qbb H�M;m�;2b BM +QKT�`�@
#H2 b2Mi2M+2bX h?mb- r2 �TT`QtBK�i2Hv QTiB@
KBx2 1[m�iBQM k #v UBV }tBM; i?2 +QMi2ti rBM@
/Qr i?2 b�K2 �b Bib b2Mi2M+2 H2M;i?, skm ≈
wki +

∑
C(wki) �M/ UBBV mT/�iBM; i?2 2MiB`2

b2Mi2M+2 T�B` BM QM2 bi2T,

Ls =
∑

<skm,slm>∈Sk,l

||bFK − bHK||2 UjV

r?2`2 bFK Bb i?2 b2Mi2M+2 2K#2//BM;- r?B+?
rBHH #2 BMi`Q/m+2/ BM i?2 M2ti bm#b2+iBQMX �H@
i?Qm;? 7`QK /Bz2`2Mi T2`bT2+iBp2- r2 Q#i�BM �
bBKBH�` �bbmKTiBQM rBi? U"2M;BQ �M/ *Q``�/Q-
kyR8V, h?2 KQ`2 7`2[m2MiHv irQ rQ`/b Q++m` BM
T�`�HH2Hf+QKT�`�#H2 b2Mi2M+2 T�B`b- i?2 +HQb2`
i?2B` `2T`2b2Mi�iBQM rBHH #2X

*QKT�`2/ iQ T�`�HH2H b2Mi2M+2b- Qm` +QKT�@
`�#H2 b2Mi2M+2b �HH2pB�i2 i?2 T�`�HH2H #m`/2M #v
mbBM; T`2@2tBbiBM; +`Qbb@HBM;m�H `2bQm`+2b- #mi
�HbQ BMi`Q/m+2 Km+? MQBb2- Q` 2p2M BM+Q``2+iHv
;2M2`�i2/X L2ti- r2 BMi`Q/m+2 irQ ivT2b Q7
�ii2MiBQM K2+?�MBbKb iQ �//`2bb i?Bb Bbbm2X

EMQrH2/;2 �ii2MiBQM

EMQrH2/;2 �ii2MiBQM Bb BMi`Q/m+2/ iQ �pQB/
i?2 BM+Q``2+iHv H�#2HH2/ +QKT�`�#H2 b2Mi2M+2bX
AM am#b2+iBQM jXk- r2 bBKTHv +QM+�i2M�i2 b2p@
2`�H b2Mi2M+2b BM i?2 2MiBiv ekm T�;2 �`iB+H2b-
#mi bQK2 b2Mi2M+2b �`2 MQi `2H�i2/ iQ ekmX
h?mb- r2 }Hi2` Qmi bm+? b2Mi2M+2b pB� bQ7i@
�ii2MiBQM +QKTmi2/ #v K2�bm`BM; bBKBH�`Biv
rBi?BM i?2 ki? H�M;m�;2,

αn
km ∝ sim(2FK,

∑

wki∈snkm

rFB) U9V

r?2`2 αn
km Bb i?2 FMQrH2/;2 �ii2MiBQM Q7 i?2

ni? b2Mi2M+2 7Q` skmX LQi2 i?�i B7 i?2`2 Bb QMHv
QM2 b2Mi2M+2 ;2M2`�i2/ 7`QK ekm �`iB+H2b- αn

km
2[m�Hb iQ QM2X

*`Qbb@HBM;m�H �ii2MiBQM

*`Qbb@HBM;m�H �ii2MiBQM 7Q+mb2b QM TQi2MiB�H
BM7Q`K�iBQM 7`QK i?2 +QKT�`�#H2 b2Mi2M+2b

i?2Kb2Hp2bX h?Bb Bb iQ bQK2 2ti2Mi bBKBH�` rBi?
b2H7@�ii2MiBQM K2+?�MBbK- r?B+? Q#i�BM H2�`M@
BM; ;mB/�M+2 7`QK i?2 b2Mi2M+2 Bib2H7- #mi BM
+`Qbb@HBM;m�H b2iiBM;bX h?2 BMimBiBQM Bb iQ }M/
� TQbbB#H2 rQ`/ �HB;MK2Mi �+`Qbb H�M;m�;2b #v
TB+FBM; mT i?2 K�tBKmK bBKBH�`Biv,

αki,lj ∝ �`; K�t
wki∈skm,wlj∈slm

sim(wki, wlj) U8V

6BM�HHv- i?2 b2Mi2M+2 2K#2//BM; Bb i?2 �p2`@
�;2 bmK Q7 rQ`/ p2+iQ`b r2B;?i2/ #v i?2 +QK@
#BM�iBQM Q7 irQ ivT2b Q7 �ii2MiBQMb,

bFK =
∑

snkm∈skm

αn
km

∑

wki∈snkm

αki,ljrFB UeV

jX8 h`�BMBM;
Pmi T`QTQb2/ K2i?Q/ F22Tb � +QMbBbi2Mi �b@
bmKTiBQM i?�i rQ`/f2MiBiv b?�`BM; KQ`2 +QM@
i2tib ?�b bBKBH�` `2T`2b2Mi�iBQMbX h?mb- r2
/2}M2 i?2 Qp2`�HH Q#D2+iBp2 7mM+iBQM �b i?2 HBM@
2�` +QK#BM�iBQM,

L = Lc + γLs UdV

r?2`2 γ Bb � ?vT2`@T�`�K2i2` iQ imM2 i?2 27@
72+i Q7 +`Qbb@HBM;m�H `2;mH�`Bx2`- �M/ Bi +�M #2
QTiBKBx2/ i?`Qm;? �/�:`�/ a:. 2{+B2MiHvX

9 1tT2`BK2Mib
Pm` K�BM +QMi`B#miBQMb HB2 BM i?`22 T�`ib, URV
+QKT�`�#H2 b2Mi2M+2b 7Q` +`Qbb@HBM;m�H rQ`/
`2T`2b2Mi�iBQM H2�`MBM;c UkV i?2 M2r KmHiB@EL
iQ �m;K2Mi i?2 KQMQ@EL 7Q` H2�`MBM; bi`m+@
im`2/ FMQrH2/;2c UjV i?2 mMB}2/ 7`�K2rQ`F
i?�i 2M�#H2b +`Qbb@HBM;m�H i2ti �M/ FMQrH@
2/;2 #�b2 BM72`2M+2X h?2`27Q`2- r2 p2`B7v Qm`
K2i?Q/ QM i�bFb Q7 rQ`/ i`�MbH�iBQM- 2MiBiv `2@
H�i2/M2bb �M/ +`Qbb@HBM;m�H 2MiBiv HBMFBM; 7`QK
i?2 �#Qp2 i?`22 �bT2+ib- `2bT2+iBp2HvX

9XR 1tT2`BK2Mi a2iiBM;b
q2 +?QQb2 qBFBT2/B�- i?2 �T`BH kyRd /mKT- �b
i?2 KmHiB@HBM;m�H FMQrH2/;2 #�b2 �M/ bBt TQT@
mH�` H�M;m�;2b 7Q` 2p�Hm�iBQM- r?Qb2 bi�iBbiB+b
Bb b?QrM BM h�#H2 RX 6Q` #`2pBiv- r2 �/QTi
irQ@H2ii2` �##`2pB�iBQM iQ /2MQi2 H�M;m�;2bjX

j1M- w?- 1b- C�- Ai �M/ h` �`2 b?Q`i 7Q` 1M;HBb?-
*?BM2b2- aT�MBb?- C�T�M2b2- Ai�HB�M �M/ hm`FBb?- `2@
bT2+iBp2HvX
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+QMi`�/B+iBQM rBi? i?2 7�+i i?�i EQ#2 "`v�Mi
Bb i?2 bQM Q7 CQ2 "`v�Mi- MQ K�ii2` BM r?B+?
H�M;m�;2X

h?2`27Q`2- r2 #mBH/ KmHiB@EL #v K�FBM;
+`Qbb@HBM;m�H HBMF2/ 2MiBiB2b BM?2`Bi �HH i?2 `2@
H�iBQMb 7`QK 2�+? Qi?2`- bQ i?�i i?2v rBHH #2
2K#2//2/ +HQb2bi /m2 iQ i?2 KQbi +QKKQM
M2B;?#Q`bX *QM+`2i2Hv- r2 K2`;2 KQMQ@ELb
#v �//BM; 2/;2b 7`QK �HH M2B;?#Q`b Q7 2MiBiv
eki iQ elj B7 < eki, elj >∈ Rc UH�v2` 9VX

*QKT�`�#H2 a2Mi2M+2b

q2 miBHBx2 /Bbi�Mi bmT2`pBbBQM iQ ;2M2`�i2
+QKT�`�#H2 b2Mi2M+2b 7`QK qBFBT2/B� �`iB+H2bX
�b b?QrM BM 6B;m`2 k- i?2 irQ �`iB+H2b �`2
7`QK +`Qbb@HBM;m�H HBMF2/ 2MiBiB2b een,Kobe �M/
ezh,Kobe UH�v2` R� kVX q2 2ti`�+i i?Qb2 b2M@
i2M+2b BM+Hm/BM; �MQi?2` +`Qbb@HBM;m�H HBMF2/
2MiBiB2b een,Joe �M/ ezh,Joe UH�v2` jV �b +QKT�@
`�#H2 b2Mi2M+2bX

h?2 BMimBiBQM Bb i?�i r2 +QMbB/2` 2�+? b2M@
i2M+2 BM � qBFBT2/B� �`iB+H2 ?�b � Tb2m/Q
K2MiBQM Q7 i?2 T�;2 2MiBiv Ui�HFBM; bQK2i?BM;
�#Qmi i?2 2MiBivV Uu�K�/� 2i �HX- kyRdVX h?mb-
B7 � b2Mi2M+2 �HbQ K2MiBQMb �MQi?2` 2MiBiv- Bi
BKTHB+BiHv 2tT`2bb2b i?2B` `2H�iBQMX h?2`27Q`2-
r2 2ti2M/ i?2 �bbmKTiBQM BM `2H�iBQM 2ti`�+@
iBQM K2MiBQM2/ BM a2+iBQM k iQ KmHiB@HBM;m�H
b2iiBM;b, A7 irQ 2MiBiB2b T�`iB+BT�i2 BM � `2@
H�iBQM- �M/ #Qi? Q7 i?2K ?�p2 +`Qbb@HBM;m�H
HBMFb- �HH b2Mi2M+2b i?�i K2MiBQMb i?2b2 irQ
2MiBiB2b UTb2m/Q Q` MQiV �`2 +QKT�`�#H2 #v
2tT`2bbBM; i?�i `2H�iBQMXX 6Q` 2t�KTH2- i?2
+QKT�`�#H2 b2Mi2M+2b BM H�v2` j #Qi? 2tT`2bb
i?2 7�i?2`@bQM `2H�iBQMb?BT #2ir22M i?2 +`Qbb@
HBM;m�H HBMF2/ 2MiBiB2b < een,Kobe, ezh,Kobe >
�M/ < een,Joe, ezh,Joe >X

� +`Qbb@HBM;m�H HBMF2/ 2MiBiv K�v Q++m` b2p@
2`�H iBK2b BM � qBFBT2/B� �`iB+H2- �M/ r2 +QM@
+�i2M�i2 i?2K BMiQ � HQM;2` b2Mi2M+2- #mi i?Bb
rBHH #`BM; Km+? MQBb2- 2bT2+B�HHv bQK2 Q7 i?2
b2Mi2M+2b �`2 BM+Q``2+iHv 2ti`�+i2/X h?2`2@
7Q`2- r2 /2bB;M irQ ivT2b Q7 �ii2MiBQM iQ b2H2+i
i?2 KQbi BM7Q`K�iBp2 rQ`/b �M/ /2�H rBi? i?2
r`QM; H�#2HHBM; T`Q#H2K BM a2+iBQM jX9X

jXj JQMQ@HBM;m�H _2T`2b2Mi�iBQM
G2�`MBM; � JQ/2HBM; �HB;M2/
1MiBiB2b

�b K2MiBQM2/ �#Qp2- i?2 KmHiB@EL #`B/;2b
i?2 H�M;m�;2 ;�T 7QHHQrBM; i?2 b�K2 i`�BMBM;

Q#D2+iBp2 �b KQMQ@ELX 6QHHQrBM; i?2 KQMQ@
HBM;m�H rQ`F Uu�K�/� 2i �HX- kyRec *�Q 2i �HX-
kyRdV- r2 2ti2M/ i?2 aFBT@;`�K KQ/2H iQ
KQMQ@HBM;m�H rQ`/b �M/ +`Qbb@HBM;m�H 2MiBiB2b
r?BH2 F22T � +QMbBbi2Mi QTiBKBx�iBQM 7mM+iBQMX
Ai mb2b i?2 +m``2Mi rQ`/f2MiBiv iQ T`2/B+i Bib
+QMi2tim�H rQ`/bf2MiBiB2b ;Bp2M i?2 +Q?2`2M+2
BM7Q`K�iBQM BM i2ti +Q`Tmb D- �M+?Q`bA �M/
KmHiB@EL KN #v K�tBKBxBM; i?2 �p2`�;2 HQ;@
T`Q#�#BHBiv,

Lc =
∑

xi∈{D,A,KN}

HQ;P (C(xi)|xi) URV

r?2`2 xi Bb 2Bi?2` � rQ`/ Q` �M 2MiBiv-
�M/ C(xi) /2MQi2b i?2 +QMi2tib rBi?BM � T`2@
/2}M2/ rBM/QrX LQi2 i?�i C(xi) /Bz2`b � HBi@
iH2 �HQM; rBi? xi, URV +QMi2tim�H rQ`/b r?2M
xi ∈ Dc UkV M2B;?#Q` 2MiBiB2b i?�i HBMF2/ rBi?
2MiBiv xi ∈ KN c UjV +QMi2tim�H rQ`/b Q7 rQ`/
K2MiBQM wj BM �M �M+?Q` r?2M xi /2MQi2b i?2
2MiBiv BM �M+?Q` < wj , ei >∈ AX

h?mb- rQ`/b �M/ 2MiBiB2b i?�i 7`2[m2MiHv
Q++m` iQ;2i?2` b?�`2 KQ`2 +QKKQM +QMi2tib-
�M/ ?�p2 bBKBH�` 2K#2//BM;bX �b b?QrM
BM 6B;m`2 k- een,Joe Q++m`b rBi? wen,player-
wen,NBA iQ;2i?2` �M/ i?2v b?�`2 i?2 +QKKQM
+QMi2ti rQ`/b- bQ i?2v �`2 +HQb2 BM i?2 b2@
K�MiB+ bT�+2X aBKBH�`Hv- 2MiBiB2b b?�`BM; KQ`2
M2B;?#Q` 2MiBiB2b i2M/ iQ #2 +HQb2- 2X;X- /m2 iQ
i?2 b�K2 M2B;?#Q` 2MiBiv een,LosAngelesLakers-
2MiBiB2b een,Joe- een,Kobe �M/ ezh,Kobe ?�p2 bBK@
BH�` `2T`2b2Mi�iBQMbX

jX9 *`Qbb@HBM;m�H a2Mi2M+2 _2;mH�`Bx2`
*QKT�`�#H2 b2Mi2M+2b �`2 `2;�`/2/ �b +`Qbb@
HBM;m�H +QMi2tib Q7 2�+? Qi?2` �++Q`/BM; iQ
am#a2+iBQM jXkX AMbi2�/ Q7 T`2/B+iBQM KQ/2H-
r2 T`272` iQ KBMBKBx2 i?2 1m+HB/2�M /Bbi�M+2
#2ir22M i?2 i�`;2i rQ`/ wki �M/ Bib +`Qbb@
HBM;m�H +QMi2tim�H rQ`/b Cl(wki) BM i?2 +QK@
T�`�#H2 b2Mi2M+2b,

Ls =
∑

<skm,slm∈Sk,l

∑

wki∈skm

||wki −
∑

Cl(wki)||2

UkV
r?2`2 < skm, slm >∈ Sk,l Bb i?2 mi? b2M@

i2M+2 T�B` BM i?2 ki? �M/ li? H�M;m�;2b- `2@
bT2+iBp2HvX lMHBF2 +QMp2MiBQM�H H2tB+QM #�b2/
K2i?Q/b- r?B+? KBMBKBx2 i?2 /Bbi�M+2 Q7 T�`@
�HH2H rQ`/b- i?2 `2�bQM Q7 bm+? `2;mH�`Bx2` HB2b
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
e , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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fectiveness of our method with an average
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spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.
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ity between entities and corresponding mentioned
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various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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gain of 20% and 3% over baselines, re-
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may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
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the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
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meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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study, the results on benchmark dataset
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lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
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tasks, such as cross-lingual entity linking, in which
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ity between entities and corresponding mentioned
words in different languages.
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The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
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tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA , w , w ,w
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Abstract

Jointly learning word and entity represen-
tations benefits many NLP tasks, while has
not been well explored in cross-lingual set-
tings. In this paper, we propose a novel
method that integrates cross-lingual word
and entity representation learning to enable
joint inference among knowledge base and
text across languages, capturing mutually
complementary knowledge. Instead of re-
liance on parallel data, we automatically
generate cross-lingual training data via dis-
tant supervision over multi-lingual knowl-
edge bases. We also propose two types
of knowledge attention and cross-lingual
attention to select the most informative
words and filter out noise, which will fur-
ther improve the performance. In exper-
iments, separate tasks of word translation
and entity relatedness demonstrate the ef-
fectiveness of our method with an average
gain of 20% and 3% over baselines, re-
spectively. Using entity linking as a case
study, the results on benchmark dataset
verify the quality of our embeddings.

1 Introduction

Multi-lingual knowledge bases (KB), storing mil-
lions of entities and their facts in various lan-
guages, provide rich structured knowledge for un-
derstanding natural language beyond texts. Mean-
while, abundant text corpus contains large amount
of potential knowledge complementary to existing
KBs. Therefore, researchers leverage both types
of resources to improve various natural language
processing (NLP) related tasks, such as relation ex-
traction (Weston et al., 2013; Lin et al., 2017), and
entity linking (Tsai and Roth, 2016; Yamada et al.,
2016; Cao et al., 2017; Ji et al., 2016).

Most existing work jointly models KB and text
corpus to enhance each other by learning word and
entity representations in a unified vector space. For
example, (Wang et al., 2014; Yamada et al., 2016;
Cao et al., 2017) utilize the coherence informa-
tion to align similar words and entities with sim-
ilar embedding vectors. Another approach in (Han
et al., 2016; Toutanova et al., 2015; Wu et al.,
2016) learns to represent entities based on their
textual descriptions together with the structured re-
lations. However, these methods only focus on
mono-lingual settings, and few researches have
been done in cross-lingual scenarios.
In this paper, we propose to learn cross-lingual

word and entity representations in the same seman-
tic space, to enable joint inference among KB and
text across languages without any additional trans-
lation mechanism, which is usually expensive and
may introduce inevitable errors. Our embeddings
are helpful to break down language gaps in many
tasks, such as cross-lingual entity linking, in which
the major challenge lies in measuring the similar-
ity between entities and corresponding mentioned
words in different languages.
eNBA
The intuition is that, words and entities in

various languages share some common semantic
meanings1, but there are also ways in which they
differ. On one hand, we utilize their shared seman-
tics to align similar words and entities with simi-
lar embedding vectors, no matter they are in the
same language or not. On the other hand, cross-
lingual embeddings will benefit from different lan-
guages due to the complementary knowledge. For
instance, textual ambiguity in one language may
disappear in another language, e.g., the two mean-

1Some cross-lingual pioneering work observe that word
embeddings trained separately on monolingual corpora ex-
hibit isomorphic structure across languages (Mikolov et al.,
2013; Zhang et al., 2017).
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Figure 1: The framework of our method. The inputs and outputs of each step are listed in the right
side, and in the left side there are three main components of joint representation learning. Red texts
with brackets are anchors, dashed lines between entities denote relations, and solid lines are cross-lingual
links.

mon neighbors have similar embeddings, no mat-
ter in which language, e.g., English entity Foust
and Chinese entity 福斯特 (Foust) are embed-
ded close in semantic space due to the common
neighborsNBA,All-star andNBA选秀 (draft), etc.
(3) Cross-lingual Sentence Regularizer aims to
learn mutually translated words with similar em-
beddings by pushing their cross-lingual contexts
(i.e. comparable sentences) together. For exam-
ple, English word basketball and the translated
Chinese word 篮球 frequently co-occur in com-
parable sentences, and are close in the semantic
space.
All word/entity embeddings are trained jointly

under a unified optimization objective. Next, we
will introduce how to generate bi-lingual EN and
comparable sentences as well as the three compo-
nents for joint representation learning in turn.

3.3 Cross-lingual Supervision Data
Generation

This section introduces how to extract more cross-
lingual clues from multi-lingual KB in the form of
bi-lingual EN and comparable sentences.

Bi-lingual Entity Network Construction

Conventional knowledge representation meth-
ods normally regard cross-lingual links as a spe-
cial equivalence type of relation between two en-
tities (Zhu et al., 2017). However, we argue that
this may mislead to an inconsistent training ob-

jective since a cross-lingual link actually contains
multiple relations. For example (Figure 1), there
will be no direct relation betweenChinese entity福
斯特 (Foust) and English entity Piston by merely
adding the equivalence relation between Foust and
福斯特, which is in contradiction with the fact that
Foust belongs to Piston, no matter in which lan-
guage.
Therefore, we build bi-lingual entity network by

making cross-lingual linked entities that inherit all
relations from each other. Concretely, we enhance
mono-EN by adding edges from all neighbors of
entity eei to ezj if < eei , e

z
j >∈ Re−z (layer 2).

e

Comparable Sentences Generation

We utilize distant supervision to generate com-
parable sentences from Wikipedia articles. As
shown in Figure 1, from the page articles of cross-
lingual linked entities eeKobe and e

z
Kobe, we extract

those sentences including another cross-lingual
linked entities eeJoe and ezJoe as comparable sen-
tences Se−z = {< sek, s

z
k >}.

The intuition is that we consider each sentence
in a Wikipedia article has a pseudo mention of
the page entity (talking something about the en-
tity) (Yamada et al., 2017). Thus, if a sentence also
mentions another entity, it implicitly expresses
their relation. Therefore, we make a similar as-
sumption as in relation extraction: If two enti-
ties participate in a relation, and both of them

Figure 2: The nerual model for jointly representation learning.

at filtering out wrong labelling sentences, and
 0(wen

i , wzh
j ) is cross-lingual attention to deal

with the unbalanced information through possible
aligned words.
Next, we will introduce the two types of atten-

tions in detail.

Knowledge Attention

Suppose that sentences sen
k,l|Ll=1 contain the same

entities in articles of entity een
m , the wrong labelling

errors increase, because some sen
k,l is almost irrele-

vant to een
m . Knowledge attention assigns smaller

weights to wrong labelled sentences, and higher
weights to related sentences. Thus, we define it
proportional to the similarity between sen

k,l and een
m :

 (een
m , sen

k,l) / sim(een
m ,

X

wen
i 2sen

k,l

wen
i )

where sim is similarity measurement. We
use cosine similarity in the presented work.
Knowledge attention is normalized to satisfyPL

l  (een
m , sen

k,l) = 1.

Cross-lingual Attention

Inspired by self-attention mechanism (Lin et al.,
2017b), we motivate cross-lingual attention focus-
ing on potential information from comparable sen-
tences themselves. The intuition is to find possible
alignedwords between languages, and filter out the
words without alignments. We define it according
to the maximum similarity computed by our cross-
lingual word embeddings:

 0(wen
i , wzh

j ) / max
wen

i 2sen
k ,wzh

j 2szh
k0

sim(wen
i ,wzh

j )

We set a threshold for discarding non-aligned
words if  0(wen

i , wzh
j ) < ✓, and make a normal-

ization for selected words. We set ✓ = 0 in exper-
iments. Thus, unbalanced information is trimmed
to the commonmeanings between sen

k and szh
k0 . For

example (Figure 1), words American, basketball,
player are selected due to their aligned Chinese
words 美国, 篮球, 运动员, while 12 seasons in
sen
k or 前 (former) in szh

k0 are discarded due to low
attentions.
The reason of using such regularizer lies in

two points: (1) the embeddings of cross-lingual
aligned words become closer within the pair of
comparable sentences, and meanwhile (2) the dis-
tance between their contexts is also minimized,
which keeps the same way as used in mono-lingual
word embeddings training—the words sharing
more contexts have similar embeddings. In this
way, our regularizer follows a similar assumption
with (Gouws et al., 2015): The more frequently
two words occur in parallel/comparable sentence
pairs, the closer their representation will be.

5.4 Training

All above components are jointly trained using the
overall objective function as follows:

L = Lm + Le + �Ls

where � is a hyper-parameter to tune the effect of
cross-lingual sentence regularizer, and set to 1 in
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experiments. We use Softmax as probability func-
tion, and negative sampling and SGD for efficient
optimization (Mikolov et al., 2013a).

6 Experiments

In this section, we describe some qualitative
analysis with nearest neighbors and quantita-
tive experiments with the tasks of word trans-
lation, entity relatedness and cross-lingual en-
tity linking to verify the quality of cross-
lingual word embeddings, entity embeddings
and the joint inference among them, respec-
tively. The codes of our proposed model
can be found in https://github.com/
TaoMiner/MultiLingualEmbedding.

6.1 Experiment Settings

Word Entity
vocab (m) token (b) vocab (m) token (b)

En 1.99 1.90 3.94 0.41
Zh 0.55 0.17 0.58 0.06
Es 0.70 0.48 0.70 0.04
Ja 0.46 0.45 0.88 0.08
It 0.67 0.40 1.09 0.12
Tr 0.33 0.05 0.22 0.01

Table 1: Multi-lingual KB Statistics.

We choose Wikipedia, the April 2017 dump, as
multi-lingual KB and six popular languages for
evaluation. The preprocessing consists of follow-
ing steps: converting texts into lower cases, filter-
ing out symbols and low frequency words and en-
tities (less than 5), and tokenizing Chinese corpus
using Jieba4 and Japanese corpus using mecab5.
The statistics is listed in Table 1. For brevity, we
adopt two-letter abbreviations: ‘En’, ‘Zh’, ‘Es’,
‘Ja’, ‘It’ and ‘Tr’ for English, Chinese, Span-
ish, Japanese, Italian and Turkish, respectively.
The token sub-column denotes the total number of
word/entity in the entire training corpus, and we
use ‘m’ to denote million and ‘b’ for billion.
For cross-lingual settings, we choose five lan-

guage pairs to compare with state-of-the-art meth-
ods, whose statistics is listed in Table 2.
We trained our method using the suggested

parameters in Skip-gram model (Mikolov et al.,
2013c) and evaluate the embeddings shared by all
tasks for fairly comparison. We set training epoch
as 2 to ensure convergence, which costs nearly 20

4https://github.com/fxsjy/jieba
5http://taku910.github.io/mecab/

Cross-lingual Comparable Bilingual EN
Links (m) Sentences(m) E(m) R(b)

Es-En 0.82 4.66 4.64 0.58
Zh-En 0.51 2.02 4.52 0.57
Ja-Zh 0.26 1.04 1.46 0.19
It-En 0.74 3.83 5.03 0.68
Tr-En 0.15 0.75 4.16 0.44

Table 2: Cross-lingual Data Statistics.

hours on the server with 64 core CPU and 188GB
memory. The embedding dimension is set to 200
and context window size is 5. For each positive
example, we sample 5 negative examples.

6.2 Qualitative Analysis

Translation words (Chinese)
篮球 (+),篮球队 (basketball team),湖人 (lakers),男子
篮球 (men’s basketball),湖人队 (the lakers),国王队 (the
Kings),美式足球 (American football),中锋 (center)
Nearest entities (Chinese)
NBA,篮球 (Basketball) ,控球后卫 (Point guard), NBA
选秀 (draft), 香港男子甲一组男子篮球联赛 (Hong
Kong men’s top basketball league), 橄榄球 (American
football),东方篮球队 (Eastern basketball team)
Nearest words
nba, wnba, player, twyman, professional, pick, 76ers
Nearest entities
Professional sports, Varsity letter, Sports agent, All-
America, Final four, All-star, College basketball

Table 3: Cross-lingual nearest words and entities of En-
glish word basketball.

We manually checked nearest neighbors to have
a straightforward impression of the quality of our
embeddings. The nearest neighbors of English
word basketball is listed in Table 3.
As Table 3 shows, we find the correct translation

ranked at top 1 (marked by +), and the listed words
as well as English nearest words are all basketball
related, indicating a higher quality of our cross-
lingual word embeddings. Interestingly, we found
that although all nearest entities are sports related,
e.g., NBA or Professional sports, there is an ob-
vious culture divergence between Chinese entities
and English entities, such asHongKong basketball
league v.s. All-America.

6.3 Word Translation

Following (Zhang et al., 2017b), we test our cross-
lingual word embeddings on benchmark dataset
including over 2,000 bilingual word pairs on av-
erage. The ground truth is obtained from Open
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Es-En It-En Ja-Zh Tr-En Zh-En
large small large small large small large small large small

TM - 48.61 - 37.95 - 26.67 - 11.15 4.79 21.79
IA - 60.41 - 46.52 - 36.35 - 17.11 7.08 32.29
Bilbowa 53 65.96 - - - - - - - -
BWESG 48.88 66.38 36.84 51.29 30.93 37.80 21.36 35.59 20.57 29.17
Adversarial - 71.97 - 58.60 - 43.02 - 17.18 7.92 43.31
Ours-noatt 68.34 77.1 62.22 65.90 37.00 42.30 57.47 60.51 35.90 42.80
Ours 70.41 78.50 63.07 67.85 41.30 46.70 54.40 59.31 35.66 44.67

Table 4: Word Translation.

Multilingual WordNet6 or Google translation. We
compare all methods using the same vocabulary,
and analyze the vocabulary size’s impact by set-
ting a nearly 5k small scale and 50k large scale.
We choose several state-of-the-art methods as

baseline, using different level of parallel data: (1)
TM (Mikolov et al., 2013b), IA (Zhang et al.,
2016) are pioneers and popular transformation
based methods using bilingual lexicon. (2) Bil-
bowa (Gouws et al., 2015) is typical work using
parallel sentences and performs quite well. (3)
BWESG (Vulic and Moens, 2016) is similar to
our method and achieves best performance in the
literature of using comparable data. (4) Adver-
sarial model (Zhang et al., 2017b) is the state-of-
the-arts without parallel data. Besides, we re-
move attention from our method to investigate the
impacts from attention mechanisms, marked with
Ours-noatt.
For fair comparison, we report the results in

original paper (Zhang et al., 2017b) except Bil-
bowa and BWESG, which didn’t report their re-
sults on the same benchmark datasets. So, we care-
fully implement them using released codes on the
same training corpus as ours with suggested pa-
rameters. Nevertheless, we do not have perfor-
mance reports of Zh-En, It-En, Tr-En and Ja-Zh
with Bilbowa due to the lack of parallel data used
in the original paper. As shown in Table 4, we can
see:

• Our proposed method significantly outper-
forms all the baseline methods with average
gains of 21% and 9.1% on large and small
vocabulary. This proves the high quality of
our generated cross-lingual data and the ef-
fectiveness of our joint framework.

• The pair of languages have similar culture
achieves better performance (Es-En, It-En,
Tr-En, Ja-Zh) than that have different cultural
origins, e.g., Zh-En.

6http://compling.hss.ntu.edu.sg/omw

• Languages with richer corpus have better
translations because adequate training data
helps to capture more accurate cross-lingual
semantics (Es-En, It-En, Tr-En v.s. Ja-Zh).

• Our method has less performance reduction
between small and large vocabulary than
methods based on parallel word pairs, be-
cause we adopt a consistent objective func-
tion which aligns cross-lingual semantics,
and simultaneously keeps their own mono-
lingual semantics.

• Attention mechanisms further improve the
performance, mainly because they help to
select the most informative words and sen-
tences, filtering out unrelated data.

6.4 Entity Relatedness
With respect to our entity embeddings, we have
conducted experiments to evaluate English entity
relatedness following (Ganea and Hofmann, 2017;
Hoffart et al., 2011), in which the dataset con-
tains 3,314 entities, and each entity has 91 candi-
date entities labeled with 1 or 0, indicating whether
they are semantically related. Given an entity, we
rank candidate entities according to their similarity
based on our embeddings, and evaluate the rank-
ing quality through two standard metrics: normal-
ized discounted cumulative gain (NDCG) (Järvelin
andKekäläinen, 2002) andmean average precision
(MAP) (Manning et al., 2008).
To give a comprehensive fair comparison, we

choose several widely used and state-of-the-art
methods as our baselines, and compare with the
results in the original papers: (1) WLM (Milne
and Witten, 2008), the popular semantic similar-
ity measurement based on Wikipedia anchor links.
(2) ALIGN (Yamada et al., 2016) andMPME (Cao
et al., 2017), state-of-the-arts that jointly learn
word and entity embeddings using mono-lingual
EN. (3) Deep Joint (DJ) model (Ganea and Hof-
mann, 2017), deep neural model that achieves the
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best performance of entity relatedness.

NDCG MAP
@1 @5 @10

WLM .54 .52 .55 .48
ALIGN (d=500) .59 .56 .59 .52
MPME .61 .61 .65 .58
DJ (d=300) .63 .61 .64 .58
Ours (Zh-En) .62 .62 .66 .59
Ours (Es-En) .61 .61 .65 .59
Ours (Tr-En) .62 .62 .65 .59
Ours (It-En) .61 .61 .65 .58
Ours-e (Es-En) .62 .62 .67 .61
Ours-e (Es-En,epoch=5) .64 .64 .68 .62

Table 5: Entity Relatedness.

Table 5 shows the results of baseline methods as
well as our methods based on different languages.
We also test the cases of our method without train-
ing cross-lingual words, marked as Ours-e. We can
see our method outperforms all baseline methods
by introducing cross-lingual information, and all
bilingual ENs lead to similar results. Strangely,
ALIGN and DJ with more embedding dimensions
seemly fails to capture overall relatedness (per-
formance reduction from top@1 to top@5). The
best performance of Ours-e implies that training
cross-lingual word slightly harms the performance
of entity embeddings. We can introduce additional
sense embeddings in future (Cao et al., 2017).
Although favorable improvements has been

achieved by using our English entity embeddings,
it shall be fewer than that of other languages, be-
cause resources of English are already quite rich,
and even richer than many other languages, thus
contributions from other languages will be less sig-
nificant than vice versa. Due to the limitation of
the publication, we neglect to report experiment
results on the vice versa direction.

6.5 Cross-lingual Entity Linking
Entity linking, the task of identifing the language-
specific reference entity for mentions in texts,
raises the key challenges of comparing the rel-
evance between entities and contextual words
around the mentions (Cao et al., 2015; Nguyen
et al., 2016). Recently, the surge of cross-lingual
analysis pushes the entity linking task on cross-
lingual settings (Ji et al., 2015). Therefore, we
comprehensively measure our joint inference abil-
ity among words and entities using the tri-lingual
EL benchmark dataset KBP2015, which consists
of 944 documents and 38,831 mentions, and di-
vides them into 444 and 500 documents for train-
ing and evaluation. Note that the main purpose of

it is not to beat other EL models but to evaluate the
quality of our embeddings, so we adopt a simple
classifier GBRT (Gradient Boost Regression Tree)
basedmethod as in (Cao et al., 2017; Yamada et al.,
2016), replace with our cross-lingual embeddings,
and filter out mentions that are out of our vocabu-
lary.

English Spanish Chinese
Top system 73.7 80.4 83.1
Second system 66.2 71.5 78.1
Ours 73.9 79.1 81.3

Table 6: Tri-lingual Entity Linking.

Table 6 shows the top 1 linking accuracy (%).
We can see our method performs much better than
the second ranked system, and is competitive with
the top ranked system. Considering that the sys-
tems utilize additional translation tools (Ji et al.,
2015), we conclude that our embeddings are high
qualified for joint inference among entities and
words in different languages.

7 Conclusions

In this paper, we propose a novel method to jointly
learn cross-lingual word and entity representa-
tions that enables effective inference among cross-
lingual knowledge bases and texts. Instead of par-
allel data, we use distant supervision over multi-
lingual KB to generate high quality comparable
data as cross-lingual supervision signals for two
types of regularizer. We introduce attention mech-
anism to further improve the training quality. A
series of experiments on several tasks verify the
effectiveness of our methods as well as the quality
of cross-lingual word and entity embeddings.
In the future, we will enrich semantics of low-

resourced languages by cross-lingual linking to
rich-resourced languages, and extend more cross-
lingual words and entities to multi-lingual settings.
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Abstract

While cross-domain and cross-language trans-
fer have long been prominent topics in NLP re-
search, their combination has hardly been ex-
plored. In this work we consider this problem,
and propose a framework that builds on pivot-
based learning, structure-aware Deep Neu-
ral Networks (particularly LSTMs and CNNs)
and bilingual word embeddings, with the goal
of training a model on labeled data from one
(language, domain) pair so that it can be effec-
tively applied to another (language, domain)
pair. We consider two setups, differing with re-
spect to the unlabeled data available for model
training. In the full setup the model has ac-
cess to unlabeled data from both pairs, while
in the lazy setup, which is more realistic for
truly resource-poor languages, unlabeled data
is available for both domains but only for the
source language. We design our model for the
lazy setup so that for a given target domain,
it can train once on the source language and
then be applied to any target language without
re-training. In experiments with nine English-
German and nine English-French domain pairs
our best model substantially outperforms pre-
vious models even when it is trained in the lazy
setup and previous models are trained in the
full setup.1

1 Introduction

The field of Natural Language Processing (NLP)
has made impressive progress in the last two
decades and text processing applications are now
performed in a quality that was beyond imagina-
tion only a few years ago. With this success, it is
only natural that researchers seek ways to apply
NLP algorithms in as many languages and textual
domains as possible. However, the success of NLP

1Our code is publicly available at
https://github.com/yftah89/
PBLM-Cross-language-Cross-domain

algorithms most often relies on the availability of
non-trivial supervision such as corpora annotated
with linguistic classes or structures, and for multi-
lingual applications often also on parallel corpora.
This resource bottleneck seriously challenges the
world-wide accessibility of NLP technology.

To address this problem substantial efforts have
been put into the development of cross-domain
(CD, (Daumé III, 2007; Ben-David et al., 2010))
and cross-language (CL) transfer methods. For
both areas, while a variety of methods have been
developed for many tasks throughout the years
(§ 2), with the prominence of deep neural networks
(DNNs) the focus of modern methods is shift-
ing towards learning data representations that can
serve as a bridge across domains and languages.

For CD, this includes: (a) pre-DNN work
((Blitzer et al., 2006, 2007), known as structural
correspondence learning (SCL)), that models the
connections between pivot features – features that
are frequent in the source and the target domains
and are highly correlated with the task label in
the source domain – and the other, non-pivot, fea-
tures; (b) DNN work (Glorot et al., 2011; Chen
et al., 2012) which employs compress-based noise
reduction to learn cross-domain features; and re-
cently also (c) works that combine the two ap-
proaches (Ziser and Reichart, 2017, 2018) (hence-
forth ZR17 and ZR18). For CL, the picture is sim-
ilar: multilingual representations (usually word
embeddings) are prominent in the transfer of NLP
algorithms from one language to another (e.g.
(Upadhyay et al., 2016)).

In this paper we aim to take CL and CD trans-
fer a significant step forward and design meth-
ods that can adapt NLP algorithms simultane-
ously across languages and domains. We consider
this research problem fundamental to our field as
manually annotated resources are often scarce in
many domains, even for languages that are consid-
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ered resource-rich. With effective cross-language
cross-domain (CLCD) methods it is sufficient to
have training resources in a single domain of one
language in order to solve the task in any other
(language, domain) pair.

As a first step, our focus in this work is on the
task of sentiment classification that has been ex-
tensively researched in the CD literature. Surpris-
ingly, even for this task we are aware of only one
previous work that aims to perform CLCD learn-
ing (Fernández et al., 2016). However, this work
does not employ modern DNN techniques and is
substantially outperformed by our methods.

Our approach to CLCD learning is rooted in
the family of methods that combine the power of
both DNNs and pivot-based ideas, and is based
on two principles. First, we build on the re-
cent progress in learning multilingual word em-
beddings (Ruder et al., 2017). Such embeddings
help close the lexical gap between languages as
they map their different vocabularies to a shared
vector space. Second, we follow (Prettenhofer and
Stein, 2010, 2011; Fernández et al., 2016) and re-
define the concept of pivot features for CLCD se-
tups (§ 5). While these authors already employed
this idea in order to design pivot-based methods
in CL (Prettenhofer and Stein, 2010, 2011) and
CLCD (Fernández et al., 2016) for text classifi-
cation and sentiment analysis, their algorithms do
not employ DNNs and multilingual embeddings.
In this paper we show that it is the combination
of bilingual word embeddings (BEs) and structure
aware DNNs with the re-defined pivots that leads
to high quality CLCD models.

Aiming to facilitate transfer to resource poor
languages and domains, our methods rely on as
little supervision as possible. Particularly, we
explore two scenarios. In the first, full CLCD
setup, models have access to manually annotated
reviews from the source (language, domain) pair,
and unannotated reviews from both the source and
the target (language, domain) pairs. In the sec-
ond, lazy CLCD setup, models have access only to
source language reviews - annotated reviews from
the source domain, and unannotated reviews from
both the source and the target domains.

We consider the lazy setup to be the desired
standard setup of CLCD learning for two reasons.
First, in true resource-poor languages we expect it
to be hard to find a sufficient number of reviews
from many domains, even if they are unannotated

(imagine for example trying to obtain 50K unla-
beled spinner reviews in Swahili). Second, it al-
lows a train once, adapt everywhere mode: instead
of training a separate model for each target lan-
guage, in this setup for each target domain only a
single model is trained on the source language, and
the target language is considered only at test time
through BEs (§ 5). Notice that in order to allow the
lazy setup, the BEs should be trained such that the
source language embeddings have no knowledge
about any particular target language. In § 5 we
discuss the BEs we employ (Smith et al., 2017),
which have this property.

We create CLCD variants of DNN- and pivot-
based methods originally designed to learn ef-
fective representations for CD learning. To the
best of our knowledge, there are three such meth-
ods, which employ two types of DNNs (§ 4):
(a) AE-SCL and AE-SCL-SR (Ziser and Reichart,
2017) that integrate pivot-based ideas (SCL) with
autoencoder-based (AE) noise reduction; and (b)
pivot-based language modeling (PBLM, (Ziser
and Reichart, 2018)) that combines pivot-based
ideas with LSTMs for representation learning, and
integrates this architecture with an LSTM or a
CNN for task classification. In § 5 we discuss how
to employ these methods for CLCD transfer where
the lexical gap between languages is bridged by
pivot translation and BEs, and show that PBLM
allows for more effective transfer.

We address the task of binary sentiment classifi-
cation and experiment with nine English-German
and nine English-French domain pairs (§ 6, 7).
Our PBLM-based models substantially outper-
form all previous models, even when the PBLM
model is trained in the lazy setup and the previous
models are trained in the full setup.

2 Previous Work

We briefly survey work on CL and CD learning
and on multilingual word embeddings. We focus
on aspects that are relevant to our work rather than
on a comprehensive survey of the extensive previ-
ous work on these problems.

Cross-language transfer CL has been explored
extensively in NLP. Example applications include
POS tagging (Täckström et al., 2013), syntactic
parsing (Guo et al., 2015; Ammar et al., 2016),
text classification (Shi et al., 2010; Prettenhofer
and Stein, 2010) and sentiment analysis (Wan,
2009; Zhou et al., 2016) among others.
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Our work is mostly related to two works: (a)
Cross-lingual SCL (CL-SCL, (Prettenhofer and
Stein, 2010, 2011)); and (b) Distributional Cor-
respondence Indexing (DCI, (Fernández et al.,
2016)) – in both cases pivot features were re-
defined to support CL (in (a)) and CLCD (in (b))
with non-DNN models, in order to perform senti-
ment analysis. Below we show how we combine
this idea with modern DNNs and BEs to substan-
tially improve CLCD learning.

Cross-domain transfer In NLP, CD transfer
(a.k.a domain adaptation) has been addressed
for many tasks, including sentiment classification
(Bollegala et al., 2011b), POS tagging (Schnabel
and Schütze, 2013), syntactic parsing (Reichart
and Rappoport, 2007; McClosky et al., 2010; Rush
et al., 2012) and relation extraction (Jiang and
Zhai, 2007; Bollegala et al., 2011a), if to name a
handful of examples.

Several approaches to CD transfer have been
proposed in the ML literature, including instance
reweighting (Huang et al., 2007; Mansour et al.,
2009), sub-sampling from both domains (Chen
et al., 2011) and learning joint target and source
feature representations. Representation learning,
the latter, has become prominent in the DNN era,
and is the approach we take here. As noted in
§ 1 we adopt CD models that integrate pivot-based
learning with DNNs to perform CLCD.

Multilingual word embeddings Multilingual
word embeddings learning is an active field of re-
search. For example, Ruder et al. (2017) compare
49 papers that have addressed the problem since
2011. Such embeddings are of importance as they
provide means of bridging the lexical gap between
languages, which supports CL transfer.

Surveying this extensive literature is well be-
yond our scope. Since our focus is on perform-
ing CLCD with minimal supervision, we quote
Ruder et al. (2017) that categorize multilingual
embedding methods with respect to two criteria
on the data they require for their training: (a) type
of alignment (word, sentence or document); and
(b) comparability (parallel data: exact translation,
vs. comparable data: data that is only similar).
The BEs we use in our work are those of Smith
et al. (2017) that require several thousands trans-
lated words as a supervision signal. That is, except
from BEs induced using comparable word align-
ment signals – words aligned through indirect sig-

nals such as related images or through compara-
bility of their features (e.g. POS tags) – the BEs
we employ belong to the class of the most mini-
mal supervision. In addition, as noted in § 1, in
order to allow the lazy CLCD setup, we would
like BEs where the source language embeddings
are induced with no knowledge of the target lan-
guage, and we indeed choose such BEs (§ 5).

3 Task Definition

The task we address is cross-language cross-
domain (CLCD) learning. Formally, we are given
a set of labeled examples from language Ls and
domain Ds (denoted as the pair (Ls, Ds)). Our
goal is to train an algorithm that will be able to
correctly label examples from language Lt and do-
main Dt (Lt, Dt). The same label set, T , is used
across the participating source and target domains
and languages.

The setup we consider is similar in spirit to
the setup known as unsupervised domain adap-
tation (e.g. (Blitzer et al., 2007; Ziser and Re-
ichart, 2017, 2018)). When taking the represen-
tation learning approach to CLCD learning, the
training pipeline usually consists of two steps. In
the first step, the representation learning model is
trained on unlabeled data from the source and tar-
get languages and domains, with the goal of gener-
ating a joint representation for the source and the
target. Below we describe the unlabeled data in
the full and the lazy CLCD setups. In the second
step, a classifier for the supervised task is trained
on the (Ls, Ds) labeled data. To facilitate lan-
guage and domain transfer, every example that is
fed to the task classifier in this second step is first
represented by the representation model that was
trained with unlabeled data at the first step. This is
true both when the task classifier is trained and at
test time when it is applied to data from (Lt, Dt).

We consider two setups which differ with re-
spect to the unlabeled examples available for the
representation learning model. In the full CLCD
setup, the training algorithm has access to unla-
beled examples from both (Ls, Ds) and (Lt, Dt).
Since for truly resource poor languages it may be
challenging to find a sufficient number of unla-
beled examples from (Lt, Dt), we also consider
the lazy setup where the training algorithm has ac-
cess to unlabeled examples from (Ls, Ds) and (Ls,
Dt) – that is, target domain unlabeled examples
are available only in the source language.
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4 Preliminaries
In this paper we aim to adapt CD models that inte-
grate the power of DNNs and of pivot-based learn-
ing so that they can be applied to CLCD learn-
ing. In this section we hence briefly describe the
works in this line. We start with the concept of do-
main adaptation using pivot-based methods, con-
tinue with works that are based on autoencoders
and end with works that are based on sequence
modeling with LSTMs.

Pivot based domain adaptation This approach
was proposed by Blitzer et al. (2006, 2007),
through their SCL method. Its main idea is to
divide the shared feature space of the source and
the target domains to a set of pivot features that
are: (a) frequent in both domains; and (b) have a
strong correlation with the task label in the source
domain labeled data. The features which do not
comply with at least one of these criteria form a
complementary set of non-pivot features.

In SCL, after the original feature set is divided
into the pivot and non-pivot subsets, this divi-
sion is utilized in order to map the original fea-
ture space of both domains into a shared, low-
dimensional, real-valued feature space. To do so,
a binary classifier is defined for each of the pivot
features. This classifier takes the non-pivot fea-
tures of an input example as its representation,
and is trained on the unlabeled data from both the
source and the target domains, to predict whether
its associated pivot feature appears in the example
or not. Note that no human annotation is required
for the training of these classifiers, the supervision
signal is in the unlabeled data. The matrix whose
columns are the weight vectors of the classifiers is
post-processed with singular value decomposition
(SVD) and the derived matrix maps feature vectors
from the original space to the new.

Since the presentation of SCL, pivot-based
cross-domain learning has been researched exten-
sively (e.g. (Pan et al., 2010; Gouws et al., 2012;
Bollegala et al., 2015; Yu and Jiang, 2016; Yang
et al., 2017)).

4.1 Autoencoder Based Methods
An autoencoder (AE) is comprised of an encoder
function e and a decoder function d, and its output
is a reconstruction of its input x: r(x) = d(e(x)).
The model is trained to minimize a loss between x
and r(x). Over the last decade AEs have become
prominent in CD learning with methods such as

Stacked Denoising Autoencoders (SDA, (Vincent
et al., 2008; Glorot et al., 2011) and marginalized
SDA (MSDA, (Chen et al., 2012)) outperforming
earlier state-of-the-art methods that were based on
the concept of pivots but did not employ DNNs
(Blitzer et al., 2006, 2007). A survey of AE-based
models in CD learning can be found in ZR17.

ZR17 combined AEs and pivot-based modeling
for CD learning. Their basic model (AE-SCL) is a
feed-forward NN where the non-pivot features of
the input example are encoded into a hidden rep-
resentation that is then decoded into the pivot fea-
tures of the example. Their advanced model (AE-
SCL-SR) is identical in structure but its recon-
struction matrix is fixed and consists of pre-trained
embeddings of the pivot features, so that input ex-
amples with similar pivots are biased to have sim-
ilar hidden representations. Since no CL learning
was attempted in that work, the pre-trained em-
beddings used in AE-SCL-SR are monolingual.
Both models are illustrated in Figure 1.

After one of the above representation models is
trained with unlabeled data from the source and
target domains, it is employed when training the
task (sentiment analysis) classifier and when ap-
plying this classifier to test data. ZR17 learned a
standard linear classifier (logistic regression), and
fed it with the hidden representation of AE-SCL
or AE-SCL-SR. They demonstrated the superior-
ity of their models (especially, AE-SCL-SR) over
non-DNN pivot-based methods and a variety of
AE-based methods that do not consider pivots.

4.2 LSTM Based Methods

ZR18 observed that AE-based representation
learning models do not exploit the structure of
their input examples. Obviously, this can nega-
tively impact text classification tasks, such as sen-
timent analysis. They hence proposed a structure-
aware representation learning model, named Pivot
Based Language Modeling (PBLM, Figure 2a).

PBLM is an LSTM fed with the embeddings of
the input example words. As is standard in the
LSTM literature, it is possible to feed the model
with 1-hot word vectors and multiply them by a
(randomly initialized) embeddings matrix (as done
by ZR18) or to feed the model with pre-trained
embeddings. In this paper we consider both op-
tions, taking advantage of the second in order to
feed the model with BEs.

In contrast to standard LSTM-based language
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Figure 1: The AE-SCL and AE-SCL-SR models
(figure imported from ZR17). xnp is a binary vec-
tor indicating whether each of the non-pivot fea-
tures appears in the input example. xp is a similar
vector defined with respect to pivot features. o,
the output vector of the model, provides the prob-
ability that each of the pivot features appears in
the example. The loss function of both models is
the cross-entropy loss between o and xp. While in
AE-SCL both the encoding matrix wh and the re-
construction matrix wr are optimized, in AE-SCL-
SR wr consists of pre-trained word embeddings.

models that predict at each point the most likely
next input word, PBLM predicts the next input un-
igram or bigram if one of these is a pivot (if both
are, it predicts the bigram) and NONE otherwise.
Similarly to AE-SCL and AE-SCL-SR, PBLM is
trained with unlabeled data from both the source
and target domains.

consider the example in Figure 2a, provided in
ZR18 for adaptation of a sentiment classifier be-
tween English book reviews and English reviews
of kitchen appliances. PBLM learns the connec-
tion between witty - an adjective that is often used
to describe books, but not kitchen appliances - and
great - a common positive adjective in both do-
mains, and hence a pivot feature. Another exam-
ple in ZR18 for the same domain pair (see Figure 1
in their paper) is: ”I was at first very excited with
my new Zyliss salad spinner - it is easy to spin
and looks great”, from this sentence PBLM learns
the connection between easy - an adjective that is
often used to describe kitchen appliances, but not
books - and great. That is, PBLM is able to learn
the connection between witty and easy to facilitate
adaptation between the domains.

PBLM can naturally feed a structure-aware task
classifier. Particularly, in the PBLM-CNN ar-

very witty great story not bad overall

NONE
not 
bad NONENONENONEgreat NONE

(a)

very witty great story not bad overall

Text matrix 

Filters 

Max-Pooling  

Sentiment 
class

FCClassification

(b)

Figure 2: The PBLM model (figure imported form
ZR18). (a) The PBLM representation learning
model. (b) Adapting a classifier with PBLM: the
PBLM-CNN model where PBLM representations
are fed into a CNN task classifier.

chitecture that we consider here (Figure 2b),2

the PBLM’s softmax layer (that computes the
probabilities of each pivot to be the next uni-
gram/bigram) is cut and a matrix whose columns
are the PBLM’s ht vectors is fed to the CNN.

ZR18 demonstrated the superiority of PBLM-
CNN over AE-SCL, AE-SCL-SR and a variety
of other previous models, emphasizing the impor-
tance of structure-awareness in CD transfer. We
next discuss the adaptation of these models so that
they can perform CLCD learning.

5 Cross-language Cross-domain Transfer

The models described in the previous section em-
ploy pivot-based learning (all models) and allow
a convenient integration of BEs (AE-SCL-SR and
PBLM). Below we discuss how we adapt these
models so that they can perform CLCD learning.

2ZR18 also considered a PBLM-LSTM architecture
where the PBLM representations feed an LSTM classifier.
We focus on PBLM-CNN which demonstrated superior per-
formance in 13 of 20 of their experimental setups.
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Pivot translation We follow (Prettenhofer and
Stein, 2010, 2011; Fernández et al., 2016) and re-
define pivot features to be features that: (a) are
frequent in (Ls, Ds) and that their translation is
frequent in (Lt, Dt) ; and (b) are highly correlated
with the task label in (Ls, Ds) . Note, that ex-
cept for the translation requirement in (a) this is
the classical definition of pivot features (§ 1).

Translated pivots are integrated into the mod-
els in a way that creates a shared cross-lingual
output space. For both PBLM and the AE-based
models a source language pivot feature and its
translation are considered to be the same pre-
dicted class of the model. Consider, for exam-
ple, a setup where we learn representations in or-
der to adapt a classifier from (English, books)
to (French, music). The pivot feature magnifi-
cent(English)/magnifique(French) will be consid-
ered the same PBLM prediction when trained on
the unlabeled data from both (Ls, Ds) and (Lt,
Dt). Similarly, in AE-SCL and AE-SCL-SR mag-
nificent and magnifique will be assigned the same
coordinate in the xp (gold standard pivot indica-
tors) and o (model output) vectors. In the lazy
setup, where training is done with unlabeled data
from (English, books) and (English, music) pivot
translation is irrelevant as the representation learn-
ing model is trained only in the source language.

Note that when only pivot translation is used
to make the CD methods address CLCD learning,
the input space is not shared across languages. In-
stead, 1-hot vectors are used to encode the vocab-
ularies of both languages, whose overlap is lim-
ited. This mismatch is somewhat reduced when
training on unlabeled data from both (Ls, Ds) and
(Lt, Dt). That is, we rely on the trained parame-
ters of the models to align the input spaces when
trained on unlabeled data from both (Ls, Ds) and
(Lt, Dt).

In § 7 we show that this technique alone leads
to improved CLCD results compared to existing
methods. The lazy setup, however, is not sup-
ported by this technique, as training is not per-
formed on unlabeled data from the target lan-
guage. We next describe how to integrate BEs into
our models, which provides a shared input layer
that is crucial for both full and lazy CLCD.

Multilingual word embeddings Translated
pivot features provide the models with a shared
output layer. But can we use the same mechanism
in order to map the input layers of the models into

a shared cross-lingual space ?
Unfortunately, word-level translation does not

seem like the right solution to this problem, due
to two reasons. First, word-level translation is in-
herently ambiguous – it is very frequent that the
set of senses associated with a given word in one
language, is not identical to the set of senses asso-
ciated with any other word in another given lan-
guage. Moreover, large scale word-level trans-
lation may impose prohibitively high costs – ei-
ther financial or in human time. Hence word-level
translation is feasible mostly when dealing with a
relatively small number of pivot features. The in-
put layers of the models, consisting of words from
the entire vocabulary (PBLM) or of non-pivot un-
igrams and bigrams (AE-SCL and AE-SCL-SR),
require a cheaper and more stable mapping.

Our solution is hence based on BEs which em-
bed words from the source and the target language
in a shared vector space. As discussed in § 2 the
BEs we use are those of Smith et al. (2017) that
require several thousands of translated word pairs
as a supervision signal, which reflects a low super-
vision level (Ruder et al., 2017). While bilingual
word embedding models do not provide accurate
word-level translation (to the level that such trans-
lation is possible), they do embed words from the
two languages that have similar meaning with sim-
ilar vectors, in terms of euclidean distance.

The BEs of Smith et al. (2017) also have the
property required for our lazy setup: they are in-
duced such that the source language embeddings
have no knowledge of any particular target lan-
guage. The embedding algorithm achieves that by
learning two sets of monolingual embeddings and
then aligning them with an SVD-based method.

Once we obtain the BEs, it is straightforward to
integrate them into the PBLM model. We start by
considering the full CLCD setup. When PBLM
is applied to text from (Ls, Ds) – both when it is
trained with unlabeled data (Figure 2a) and when
it is used as part of the task classifier, when this
classifier is trained with labeled data (Figure 2b) –
the BEs of the source language words are fed into
the model. Likewise, when PBLM is applied to
text from (Lt, Dt) – both when it is trained with
unlabeled data and when it is used as part of the
task classifier when this classifier is applied to test
data – it is fed with the bilingual representations
of the target language words. In the lazy setup, the
details are very similar except that PBLM is not
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trained with unlabeled data from (Lt, Dt), only
with unlabeled data from (Ls, Ds) and (Ls, Dt).

Unfortunately, BEs do not provide a sufficient
solution for the AE-based models. In AE-SCL
the input layer consists of a non-pivots indicator
vector, xnp, that cannot be replaced by embedding
vectors in a straight forward manner. In AE-SCL-
SR the input layer is identical to that of AE-SCL,
but this model replaces the reconstruction matrix
wr with a matrix whose rows consist of pre-trained
word embeddings of the pivot features. Hence,
similarly to PBLM we can construct a wr matrix
with the source language BEs when this model is
applied to source language data, and with target
language BEs when this model is applied to target
language data. This construction of wr provides
an additional shared cross-lingual layer, added to
the translated pivot features of the output layer.

Consequently, an inherent limitation of the AE-
based models when it comes to CLCD transfer, is
that they cannot be employed in the lazy setup.
The intersection of their input spaces when ap-
plied to the source and the target languages is lim-
ited to the vectors representing the shared vocab-
ulary items (see above in this section). Hence,
these models have to be trained with unlabeled
data from both languages in order to align the in-
put layers of the two languages with each other.

6 Experiments

Task and data 3 As in our most related pre-
vious work (Prettenhofer and Stein, 2010, 2011;
Fernández et al., 2016) we experiment with the
Websis-CLS-10 dataset (Prettenhofer and Stein,
2010) consisting of Amazon product reviews writ-
ten in 4 languages (English, German, French and
Japanese), from 3 product domains (Books (B),
DVDs (D) and Music (M)). Due to our extensive
experimental setup we leave Japanese for future.4

For each (language, domain) pair the dataset
includes 2000 train and 2000 test documents, la-
beled as positive or negative, and between 9,358
to 50,000 unlabeled documents. As in the afore-
mentioned related works, we consider English as
the source language, as it is likely to have labeled
documents from the largest number of domains.

3The URLs of the code (previous models and standard
packages) and data we used, are in the appendix.

4We add an English domain to our experiments. More-
over, training the models we consider here is substantially
more time consuming as we employ DNNs, as opposed to
previous methods that use linear classifiers.

Following ZR18 we also consider a more chal-
lenging setup where the English source domain
consists of user airline (A) reviews (Nguyen,
2015). We use the dataset of ZR18, consisting of
1000 positive and 1000 negative reviews in the la-
beled set, and 39396 reviews as the unlabeled set.

We employ a 5-fold cross-validation protocol.
In all folds 1600 (English, Ds) train-set examples
are randomly selected for training and 400 for de-
velopment. The German and French test sets are
used in all folds. All sets contain the same number
of positive and negative reviews. For each model
we report averaged performance across the folds.

The BEs were downloaded from the author’s
github. More details are in the appendix.

Models and baselines Our main model is
PBLM+BE that is trained in the full setup and em-
ploys both translated pivots for CL output align-
ment and BEs for CL input alignment (§ 5).
We also experiment with PBLM+BE+Lazy: the
same model employed in the lazy setup, and with
PBLM: a model similar to PBLM+BE except that
BEs are not employed.

We further experiment with AE-SCL that em-
ploys translated pivots for CL output alignment
and AE-SCL-SR that does the same and also in-
tegrates BEs into its fixed reconstruction matrix.
Following ZR17 and ZR18 the linear classifier we
use is logistic regression. To compare to previous
work, we implemented the CL-SCL and the DCI
models, for which we use the cosine kernel that
performs best in (Fernández et al., 2016).

To consider the power of BEs, we experiment
with a classifier fed with the BEs of the input doc-
ument’s words. We consider both a CNN classi-
fier (where the BEs are fed into the columns of the
CNN input matrix) and logistic regression (where
the embeddings of the document’s words are av-
eraged) and report results with CNN as they are
superior. We denote this model with BE+CNN.

For reference, we also compare to a setup where
Ls = Lt, and to a setup where Ls = Lt and
Ds = Dt. For these setups we report results with
a linear classifier with unigram and bigram fea-
tures, as it outperforms both a linear classifier and
a CNN with BE features. The models are denoted
with Linear-IL and Linear-ILID, respectively (IL
stands for in-language and ID for in-domain).

Pivot features For all models we consider un-
igrams and bigrams as features. To divide these
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Product Review Domains (Websis-CLS-10,(Prettenhofer and Stein, 2010)), CLCD
English-German English-French

S-T D-B M-B B-D M-D B-M D-M All D-B M-B B-D M-D B-M D-M All
PBLM Models

P+BE 78.7 78.6 80.6 79.2 81.7 78.5 79.5 81.1 74.7 76.3 75.0 75.1 76.8 76.5
PBLM 70.9 62.9 74.5 66.5 75.0 75.5 71.0 76.0 67.9 70.3 69.9 67.3 70.4 70.3
Lazy 74.8 74.0 75.1 72.8 73.3 73.7 73.9 74.2 73.1 75.3 74.4 74.1 72.4 73.9

Autoencoder+pivot Models
A-S-SR 68.3 62.5 69.4 69.9 70.2 69 67.4 69.3 68.9 70.9 70.7 67 71.4 69.7
A-SCL 67.9 63.7 68.7 63.8 69.0 70.1 67.2 68.6 66.1 69.2 69.4 66.7 68.1 68.0

Pivot-based (no DNN) Models
C-SCL 65.9 62.5 65.1 65.2 71.2 69.8 66.7 70.3 63.8 68.8 66.8 66.0 70.1 67.6
DCI 67.1 60.6 66.9 66.7 68.9 68.2 66.4 71.2 65.4 69.1 67.5 66.7 71.4 68.6

CLCD without CD Learning
CNN 62.8 63.8 65.3 68.7 71.6 72.0 67.3 69.5 59.7 63.7 65.7 65.9 67.0 65.2

Airline (English, (Nguyen, 2015)) to Product Review Domains (German or French), CLCD
English-German English-French

Source-Target A-B A-D A-M All A-B A-D A-M All
PBLM Models

P+BE 67.9 62.5 63.6 64.6 63.5 66.9 64.8 65.1
PBLM 60.9 59.6 60.1 60.2 60.9 61.9 58.9 60.5
Lazy 66.3 65.0 66.6 66.0 65.7 65.6 69.0 66.8

Autoencoder+pivot Models
A-S-SR 55.8 57.5 60.8 58 55.8 52.9 56.3 55.7
A-SCL 55.9 56.2 58.2 56.8 55.8 52.9 56.4 55.0

Pivot-based (no DNN) Models
C-SCL 56.6 52.6 53.7 54.3 52.7 54.5 53.1 53.4
DCI 55.9 52.1 54.5 54.1 53.1 53.7 53.9 53.5

CLCD without CD Learning
CNN 59.4 61.2 61.3 60.6 57.9 55.3 56.2 56.5

Product Review Domains (Websis-CLS-10,(Prettenhofer and Stein, 2010)), Within Language
German-German French-French

S-T D-B M-B B-D M-D B-M D-M All D-B M-B B-D M-D B-M D-M All
In-language cross-domain learning (no CD technique is employed)

IL 81.5 78.9 77.8 76.7 77.6 79.8 78.7 80.2 78.2 79.2 79.7 78.5 79.7 79.3
In-language, In-domain learning

S-T B-B – D-D – M-M – All B-B – D-D – M-M – All
ILID 84.2 – 81.5 – 83.3 – 83 84.1 – 79.2 – 85.8 – 83

Table 1: Sentiment accuracy. Top: CLCD transfer in the product domains. Middle: CLCD transfer from
the English airline domain to the French and German product domains. Bottom: within language learning
for the target languages. ”All” refers to the average over the setups. We shorten some abbreviations:
P+BE stands for PBLM+BE, Lazy for PBLM+BE+Lazy, A-S-SR for AE-SCL-SR, A-SCL for AE-SCL,
C-SCL for CL-SCL, CNN for BE+CNN, IL for Linear-IL and ILID for Linear-ILID.

features into pivots and non-pivots we follow
(Blitzer et al., 2007; Ziser and Reichart, 2017,
2018). Pivots are translated with Google translate.
Pivot features are frequent in the unlabeled data of
both the source and the target (language, domain)
pairs: we require them to appear at least 10 times
in each. Among those frequent features we select
the ones with the highest mutual information with
the task (sentiment) label in the source (language,
domain) labeled data. For non-pivot features we
consider unigrams and bigrams that appear at least
10 times in one of the (language, domain) pairs.

Hyper-parameter tuning For all models we
follow the tuning process described in the original
papers. Details are in the appendix.

7 Results

Our results (Table 1) support the integration of
structure-aware DNNs, translated pivots and BEs
as advocated in this paper. Indeed, PBLM+BE
which integrates all these factors and trained in
the full setup is the best performing model in all
12 product setups (top table) and in 2 of 6 airline-
product setups (middle table). PBLM+BE+lazy,
the same model when trained in the lazy setup in
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which no target language unlabeled data is avail-
able for training, is the second best model in 9 of
12 product-product setups (in the other three se-
tups only PBLM+BE and PBLM perform better)
and is the best performing model in 4 of 6 airline-
product setup and on average across these setups.

To better understand this last surprising result of
the airline-product setups, we consider the pivot
selection process (§ 6): (a) sort the source fea-
tures by their mutual information with the source
domain sentiment label; and (b) iterate over the
pivots and exclude the ones whose translation fre-
quency is not high enough in the target domain.

Let’s examine the number of feature candidates
that should be considered (in step (b)) from the
list of criterion (a) in order to get 100 pivots. In
product to product domain pairs: 182; In airline to
product domain pairs: 304 (numbers are averaged
across setups). In the lazy setup (where no pivot
translation is performed) the corresponding num-
bers are: product to product domain pairs: 148;
airline to product domain pairs: 173.

Hence, for domain pairs that involve airline
and product, in the full setup many good piv-
ots are lost in translation which affects the rep-
resentation learning quality of PBLM+BE. While
PBLM+BE+lazy does not get access to target lan-
guage data, many more of its pivot features are
preserved. We hypothesize that this can be one
reason to the surprising superior performance of
PBLM+BE+lazy when adapting from airline to
product domains.

The success of PBLM+BE+lazy provides a par-
ticularly strong support to the validity of our ap-
proach, as this model lacks a major source of su-
pervision available to the other CLCD models. As
noted in § 1, we believe that the lazy setup is cru-
cial for the future of CLCD learning.

Excluding BEs (PBLM) or changing the model
to not generate a shared cross-lingual input layer
(AE-SCL-SR that is also unaware of the re-
view structure) results in substantial performance
degradation. PBLM is better on average for all
four CLCD setups, which emphasizes the impor-
tance of structure-awareness. Excluding both BEs
and structure-awareness (AE) yields further degra-
dation in most cases and on average. Yet, this
degradation is minor (0.5% - 1.7% in the averages
of the different setups), suggesting that the way
AE-SCL-SR employs BEs, which is useful for CD
transfer (ZR17), is less effective for CLCD.

CL-SCL and DCI, that employ pivot translation
but neither DNNs nor BEs, lag behind the PBLM-
based models and often also the AE-based mod-
els, although they outperform the latter in some
cases. Likewise, BE+CNN, where BEs are em-
ployed but without any other CLCD learning tech-
nique, is also substantially outperformed by the
PBLM-based models, but it does better than the
AE-based models with the airline source domain.

Finally, comparison to the within-language
models of the bottom table allows us to quan-
tify the gap between current CLCD models and
standard models that do not perform CD and/or
CL transfer. The averaged differences between
our best product-product model, PBLM-BE, and
Linear-ILID are 3.5% (English-German) and 6.5%
(English-French). When adapting from the air-
line domain the gap is much larger: averaged
gaps of 17% and 16.2% from the best per-
forming PBLM+BE-lazy, for English-German and
English-French, respectively. This is not a surprise
as ZR18 already demonstrated the challenging na-
ture of within-language airline-product transfer.
We consider our results to be encouraging, espe-
cially given the improvement over previous work,
and the smaller gaps in the product-product setups.

8 Conclusions

We addressed the problem of CLCD transfer in
sentiment analysis and proposed methods based
on pivot-based learning, structure-aware DNNs
and BEs. We considered full and lazy training, and
designed a lazy model that, for a given target do-
main, can be trained with unlabeled data from the
source language only and then be applied to any
target language without re-training. Our models
outperform previous models across 18 CLCD se-
tups, even when ours are trained in the lazy setup
and previous models are trained in the full setup.

In future work we wish to improve our results
for large domain gaps and for more dissimilar lan-
guages, particularly in the important lazy setup.
As our airline-product results indicate, increasing
the domain gap harms our results, and we expect
the same with more diverse language pairs.
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A Hyper-parameter Tuning

As promised in Section 6 of the main paper we
detail here our hyper-parameter tuning process.

For all models, we tune the number of pivot fea-
tures among [100, 200, 300, 400, 500]. For PBLM,
the input embedding size (when no word embed-
dings are used) is tuned among [128, 256], and the
hidden representation dimension is selected from
[128, 256, 512]. The size of the hidden layer of
AE-SCL and AE-SCL-SR is set to 300.

The dimension of our bilingual embeddings is
300, as decided by (Smith et al., 2017). For
all CNN models we use 256 filters of size 3 ⇥
|embedding| and perform max pooling for each of
the 256 vectors to generate a single 1 ⇥ 256 vec-
tor that is fed into the classification layer. In the

SVD step of CL-SCL we tune the output dimen-
sion among [50, 75, 100, 125, 150].

For AE-SCL and AE-SCL-SR, we follow ZR17
and represent each example fed into the sentiment
classifier with its whxnp vector. Unlike ZR17 we
do not concatenate this representation with a bag
of unigrams and bigrams representation of the ex-
ample – due to the cross-lingual nature of our task.
As in the original papers, the input features of AE-
SCL, AE-SCL-SR, CL-SCL and DCI are word un-
igrams and bigrams.

All the algorithms in the paper that involve a
CNN or a LSTM are trained with the ADAM algo-
rithm (Kingma and Ba, 2015). For this algorithm
we follow ZR18 and use the parameters described
in the original ADAM article:

• Learning rate: lr = 0.001.

• Exponential decay rate for the 1st moment es-
timates: �1 = 0.9.

• Exponential decay rate for the 2nd moment
estimates: �2 = 0.999.

• Fuzz factor: ✏ = 1e � 08.

• Learning rate decay over each update:
decay = 0.0.

B Code and Data

Here we provide the URLs of the code and data
we used in this paper:

• The Websis-CLS-10 dataset (Pret-
tenhofer and Stein, 2010) http:
//www.uni-weimar.de/en/media/
chairs/webis/research/corpora/
corpus-webis-cls-10/

• Bilingual word embeddings (Smith et al.,
2017): https://github.com/
Babylonpartners/fastText_
multilingual. The authors employed
their method to monolingual fastText em-
beddings (Bojanowski et al., 2017) – the
embeddings of 78 languages were aligned
with the English embeddings.

• The bilingual embeddings are based
on the fastText Facebook embeddings
(Bojanowski et al., 2017): https:
//github.com/facebookresearch/
fastText/blob/master/
pretrained-vectors.md
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• Logistic regression classifier: http://
scikit-learn.org/stable/

• PBLM: We use the code from
the author’s github: https:
//github.com/yftah89/
PBLM-Domain-Adaptation

• AE-SCL and AE-SCL-SR: We use
the code from the author’s github:
https://github.com/yftah89/
Neural-SCLDomain-Adaptation.

• We reimplemented the CL-SCL (Pret-
tenhofer and Stein, 2011) and the DCI
(Fernández et al., 2016) models.
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Abstract
We construct a multilingual common semantic
space based on distributional semantics, where
words from multiple languages are projected
into a shared space via which all available re-
sources and knowledge can be shared across
multiple languages. Beyond word alignment,
we introduce multiple cluster-level alignments
and enforce the word clusters to be consis-
tently distributed across multiple languages.
We exploit three signals for clustering: (1)
neighbor words in the monolingual word em-
bedding space; (2) character-level informa-
tion; and (3) linguistic properties (e.g., appo-
sition, locative suffix) derived from linguis-
tic structure knowledge bases available for
thousands of languages. We introduce a new
cluster-consistent correlational neural network
to construct the common semantic space by
aligning words as well as clusters. Intrin-
sic evaluation on monolingual and multilin-
gual QVEC tasks shows our approach achieves
significantly higher correlation with linguis-
tic features which are extracted from manually
crafted lexical resources than state-of-the-art
multi-lingual embedding learning methods do.
Using low-resource language name tagging as
a case study for extrinsic evaluation, our ap-
proach achieves up to 14.6% absolute F-score
gain over the state of the art on cross-lingual
direct transfer. Our approach is also shown to
be robust even when the size of bilingual dic-
tionary is small.1

1 Introduction
More than 3,000 languages have electronic record,
e.g., at least a portion of the Christian Bible had
been translated into 2,508 different languages.
However, the training data for mainstream natu-
ral language processing (NLP) tasks such as Infor-
mation Extraction (IE) and Machine Translation

1The resources and programs are available for research
purpose: https://github.com/wilburOne/CommonSpace/

(MT) is only available for dozens of dominant lan-
guages. In this paper we aim to construct a mul-
tilingual common semantic space where words in
multiple languages are mapped into a distributed,
language-agnostic semantic continuous space, so
that resources and knowledge can be shared across
languages.

Previous multilingual embedding methods align
the semantic distributions of words from multi-
ple languages within the common semantic space.
Though several recent attempts (Artetxe et al.,
2017, 2018; Conneau et al., 2017) have shown that
it is possible to extract multilingual word embed-
ding from a pair of potentially unaligned corpora
in multiple languages, we claim that it is necessary
to impose more constraints to preserve linguistic
properties and facilitate downstream NLP tasks,
such as cross-lingual IE, and MT. We find that
words also can be clustered through explicit (e.g.,
sharing affixes of certain linguistic functions) or
implicit clues (e.g., sharing neighbors from mono-
lingual word embedding) and such clusters should
also be consistent across multiple languages. To
do so, we design a new algorithm, called cluster-
consistent multilingual word embedding, that ex-
tracts multilingual word embedding vectors which
preserve the natural clustering structures of words
across multiple languages.

We propose to create clusters through three
kinds of signals as follows, without any extra hu-
man annotation effort. Then we aggregate the em-
bedding vectors of words in each cluster and en-
sure that the clusters (or the words therein) are
consistent across multiple languages.

Neighbor based clustering and alignment.
We build our common space based on correla-
tional neural network (CorrNet) which is an ex-
tension of autoencoder framework by enabling
cross-lingual reconstruction. In contrast to previ-
ous work (Chandar et al., 2016; Rajendran et al.,
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2015), we extend CorrNet to neighbor-consistent
correlation network by using each word’s neigh-
bors (the nearest words within monolingual se-
mantic space) to ensure that the cross-lingual map-
ping from and to the common semantic space is lo-
cally smooth. For instance, the neighboring words
of China in English (Japan, India and Taiwan)
should be close to the neighboring words of Cina
in Italian (Beijing, Korea, Japan) in the common
semantic space. In other words, we encourage the
consistency of neighborhoods across multiple lan-
guages.

Character based clustering and alignment.
Many related languages share very similar char-
acter set, and many words that refer to the same
concept share similar compositional characters or
patterns, e.g., China (English), Kina (Danish), and
Cina (Italian).

Linguistic property based clustering and
alignment. Many languages also share linguistic
properties, e.g., apposition, conjunction, and plu-
ral suffix (English (-s / -es), Turkish (-lar / -ler),
Somali (-o)). Linguists have created a wide variety
of linguistic property knowledge bases, which are
readily available for thousands of languages. For
example, the CLDR (Unicode Common Locale
Data Repository)2 includes closed word classes
and affixes indicating various linguistic properties.
We propose to take advantage of these language-
universal resources to create clusters, where the
words within one cluster share the same linguis-
tic property, and build alignment between clusters
for common semantic space construction.

We evaluate our approach on monolingual and
multilingual QVEC (Tsvetkov et al., 2015) tasks,
which measure the quality of word embeddings
based on the alignment of the embeddings to lin-
guistic feature vectors extracted from manually
crafted linguistic resources, as well as an extrinsic
evaluation on name tagging for low-resource lan-
guages. Experiments demonstrate that our frame-
work is effective at capturing linguistic proper-
ties and significantly outperforms state-of-the-art
multi-lingual embedding learning methods.

2 Related Work

Multilingual word embeddings have advanced
many multilingual NLP tasks, such as machine
translation (Zou et al., 2013; Mikolov et al.,
2013b; Madhyastha and España-Bonet, 2017), de-

2cldr.unicode.org

pendency parsing (Guo et al., 2015; Ammar et al.,
2016a), and name tagging (Zhang et al., 2017a;
Tsai and Roth, 2016; Zhang et al., 2018; Che-
ung et al.; Zhang et al., 2017b; Feng et al.,
2017). Using bilingual aligned words, previ-
ous methods project multiple monolingual embed-
dings into a shared semantic space using linear
mappings (Mikolov et al., 2013b; Rothe et al.,
2016; Zhang et al., 2016; Baroni et al., 2015; Xing
et al., 2015; Smith et al., 2017) or canonical cor-
relation analysis (CCA) (Ammar et al., 2016b;
Faruqui and Dyer, 2014; Lu et al., 2015). Com-
pared with CCA, which only optimizes the corre-
lation for each individual pair of languages, lin-
ear mapping based methods can jointly optimize
all the languages in the common semantic space.
We focus on learning linear mappings to construct
the common semantic space and adopt correla-
tional neural networks (CorrNet) (Chandar et al.,
2016; Rajendran et al., 2015) as the basic model.
In contrast to previous work which only exploited
monolingual word semantics, we introduce mul-
tiple cluster-level alignments and design a new
cluster consistent CorrNet to align both words and
clusters.

Another branch of approaches for multilingual
word embeddings are based on parallel or compa-
rable data, such as parallel sentences (AP Chan-
dar et al., 2014; Gouws et al., 2015; Luong et al.,
2015; Hermann and Blunsom, 2014; Schwenk
et al., 2017), phrase translations (Duong et al.,
2016) and comparable documents (Vulic and
Moens, 2015). Moreover, to reduce the need of
bilingual alignment, several approaches have been
designed to learn cross-lingual embeddings based
on a small seed dictionary (Vulic and Korhonen,
2016; Zhang et al., 2016; Artetxe et al., 2017), or
even with no supervision (Cao et al., 2016; Zhang
et al., 2017d,c; Conneau et al., 2017; Artetxe et al.,
2018). However, such methods are still limited to
bilingual word embedding learning and remaining
to be explored for common semantic space con-
struction.

3 Approach

3.1 Overview
Figure 1 shows the overview of our neural archi-
tecture. We project all monolingual word em-
beddings into a common semantic space based
on word-level as well as cluster-level alignments
and learn the transformation functions. First, on
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Figure 1: Architecture Overview. In each monolingual semantic space, the words within solid rectangle denote a
neighbor based cluster and the words within dotted rectangle denote a linguistic property based cluster.

word-level, we build a neighborhood-consistent
CorrNet to augment word representations with
neighbor based clusters and align them in the
common semantic space. In addition, we apply
a language-independent convolutional neural net-
works to compose character-level word represen-
tation and concatenate it with word representation
in the common semantic space. Finally, we con-
struct clusters based on linguistic properties, in-
cluding closed word classes and affixes, and align
them in the common semantic space. We jointly
optimize for all the alignments in the common se-
mantic space for each pair of languages.

3.2 Basic Model
We briefly describe the basic model for learning
the common semantic space: correlational neural
networks (CorrNets) (Chandar et al., 2016; Rajen-
dran et al., 2015). It combines the advantages of
canonical correlation analysis (CCA) and autoen-
coder (AE).

Given the bilingual aligned word pairs between
two languages l1 and l2, we first use their mono-
lingual word embeddings to initialize each word
with a vector and obtain Ml1 2 R

|Vl1
|⇥dl1 and

Ml2 2 R
|Vl2

|⇥dl2 , where Vl1 and Vl2 are the bilin-
gual dictionary of l1 and l2. V i

l1
is the translation

of V i
l2

, and dl1 and dl2 are the vector dimensionali-
ties. Then for each language we learn a linear pro-
jection function to project Ml1 and Ml2 into the
common semantic space:

Hl1 = �(Ml1 · Wl1 + bl1) ,

Hl2 = �(Ml2 · Wl2 + bl2) ,

where Hl1 2 R
|Vl1

|⇥h and Hl2 2 R
|Vl2

|⇥h are the
vector representations for Vl1 and Vl2 in the com-
mon semantic space respectively. h is the vec-
tor dimensionality in the shared semantic space.
Wl1 2 R

dl1
⇥h and Wl2 2 R

dl2
⇥h are the transfor-

mation matrices, and bl1 and bl2 are the bias vec-
tors. � denotes Sigmoid function.

After we project the monolingual embeddings
into the common semantic space, we further re-
construct Ml1 and Ml2 from Hl1 and Hl2 sepa-
rately:

M
0

l1 = �(Hl1 · W>
l1 + b

0

l1) ,

M⇤
l1 = �(Hl2 · W>

l1 + b
0

l1) ,

M
0

l2 = �(Hl2 · W>
l2 + b

0

l2) ,

M⇤
l2 = �(Hl1 · W>

l2 + b
0

l2) ,

where b
0

l1
, b

0

l2
are the bias vectors. M

0

l1
and M

0

l2
are the monolingual reconstructions of Ml1 and
Ml2 from the common space, and M⇤

l1
and M⇤

l2
are cross-lingual reconstructions. W>

l1
and W>

l2
are the transposes of Wl1 and Wl2 respectively.

To learn the common semantic representations,
we minimize the distance between the aligned
word vectors as well as the loss of monolingual
and cross-lingual reconstruction:

OW =
X

{li,lj}2A

L(M
0

li , Mli) + L(M⇤
li , Mli)

+ L(M
0

lj , Mlj ) + L(M⇤
lj , Mlj ) + L(Hli , Hlj ) ,

where l denotes any language that we want to
project into the common semantic space, A de-
notes all bilingual dictionaries, and L denotes a
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similarity metric. In our work, we use cosine sim-
ilarity as the similarity metric.

3.3 Neighborhood-Consistent CorrNet
CorrNet can project multiple monolingual word
embeddings into a common semantic space using
bilingual word alignment. However, the same con-
cepts may have different semantic bias in various
languages. For example, the top five nearest words
of the concept “China” are: (Japan, India, Taiwan,
Chinese, Asia) in English, (Cosco, Shenzhen, Aus-
tralian, Shanghai, manufacturing) in Danish, and
(Beijing, Korea, Japan, aluminum, copper) in Ital-
ian respectively. In order to ensure the consistency
of the neighborhoods within the common seman-
tic space and make the cross-lingual mapping lo-
cally smooth, we propose to augment monolingual
word representation with its top-N nearest neigh-
boring words from the original monolingual se-
mantic space.3

Given the monolingual embeddings of the bilin-
gual aligned words for two languages l1 and l2,
Ml1 and Ml2 , for each word, we extract the top-N
nearest neighbors and construct the neighborhood
clusters. Each cluster tl = {w1, w2, ..., w|tl|} in
language l is represented by

ctl =
1

|tl|
X

w2tl

Ew ,

where Ew denotes the monolingual word embed-
ding for w.

We obtain all the neighborhood cluster vector
representations Cl1 , Cl2 for l1 and l2. We incorpo-
rate the neighborhood cluster information into the
common semantic space when projecting mono-
lingual embeddings:

Hl1 = �(Ml1 · Wl1 + Cl1 · Ul1 + bl1),

Hl2 = �(Ml2 · Wl2 + Cl2 · Ul2 + bl2), (1)

Besides the monolingual and cross-lingual re-
constructions for Ml1 and Ml2 in CorrNets, we
also add monolingual and cross-lingual recon-
structions for the neighborhood clusters:

C
0

l1 = �(Hl1 · U>
l1 + b⇤

l1) ,

C⇤
l1 = �(Hl2 · U>

l1 + b⇤
l1) ,

C
0

l2 = �(Hl2 · U>
l2 + b⇤

l2) ,

3We set N = 10 in our experiments since it performed
best on the intrinsic evaluation among {2, 5, 10, 20, 50}.

C⇤
l2 = �(Hl1 · U>

l2 + b⇤
l2) ,

In addition to optimizing the loss functions de-
scribed in the Section 3.2, we further optimize the
monolingual and cross-lingual reconstruction for
neighborhood clusters:

ON =
X

{li,lj}2A

L(C
0

li , Cli) + L(C⇤
li , Cli)

+ L(C
0

lj , Clj ) + L(C⇤
lj , Clj ) ,

3.4 Character-Level Word Alignment
Bilingual word alignment is not always enough or
available to induce a common semantic space, es-
pecially for low-resource languages. Although the
words that refer to the same concept are not ex-
actly the same in multiple languages, they often
share a set of similar characters, especially in re-
lated languages written in the same script. For
example, the same entity is spelled slightly dif-
ferently in three languages: Semsettin Gunaltay
in English, Şemsettin Günaltay in Turkish, and
Semsetin Ganoltey in Somali. Beyond word-level
alignment, we introduce character-level alignment
by composing word representations from its com-
positional characters using convolutional neural
networks (CNN). For each language, we adopt a
language-independent CNN to generate character-
level word representation.
Character Lookup Embeddings Let Sl be the
character set for language l and ESl 2 R

|Sl|⇥d

be the character lookup embeddings, where d is
the dimensionality of each character embedding.
Here, we use a simple yet effective method to
induce character embeddings from word embed-
dings4. For each character c, we initialize its em-
bedding by averaging the embeddings of all words
which contain the character. The character embed-
dings will be further tuned by the model.
Character-Level CNN (Kim et al., 2016) The
input layer is a sequence of characters of length k
for each word. Each character is represented by a
d-dimensional lookup embedding. Thus each in-
put sequence is represented as a feature map of
dimensionality d ⇥ k.

We use the convolution layer to learn the repre-
sentation for each sliding n-gram characters. We
make pi as the concatenated embeddings of n con-
tinuous columns from the input matrix, where n

4This approach is proved to be better than random initial-
ization of character embeddings.
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is the filter width. We then apply the convolution
weights W 2 R

d⇥nd to pi with a biased vector
b 2 R

d, i.e., p
0

i = tanh(W · pi + b). All n-gram
representations p

0

i are used to generate the word
representation y by max-pooling.

In our experiments, we apply multiple filters
with various widths to obtain the representation
for word wl

i. The final character-level word repre-
sentation ŵl

i is the concatenation of all word rep-
resentations with varying filter widths.
Cross-lingual Mapping Given the bilingual
aligned word pairs, we directly minimize the dis-
tance of the character-level word representations
in the common semantic space by:

Ochar =
P

{li,lj}2A L(Ŵ char
li , Ŵ char

lj )

The final word representation of wl
i in the

common semantic space is the concatenation of
character-level word presentation ŵl

i and projected
word representation hl

i.

3.5 Linguistic Property Alignment
Linguists have made great efforts at building lin-
guistic property knowledge bases for thousands of
languages in the world. These knowledge bases
include a large number of topological properties
(phonological, lexical and grammatical) which we
will use to build a high-level alignment between
words across languages. We exploit the following
resources:

• CLDR (Unicode Common Locale Data
Repository)5 which includes multilingual
gazetteers for months, weekdays, cardinal
and ordinal numbers;

• Wiktionary6 which is a multilingual, web-
based collaborative project to create an En-
glish content dictionary, includes word and
prefix/suffix dictionaries for 1,247 languages;

• Panlex7 database which contains 1.1 billion
pairwise translations among 21 million ex-
pressions in about 10,000 language varieties.

We mainly exploit two types of linguistic prop-
erties to extract word clusters. The first type is
language-independent closed word classes, such
as colors, weekdays, and months. Table 1 shows

5http://cldr.unicode.org/index/charts
6https://en.wiktionary.org
7http://panlex.org/

Class Name Words / Word Pairs
Colors white, yellow, red, blue, green ...
Weekdays monday, tuesday, friday, sunday ...
Months january, february, march, april ...
numbers one, two, three, four, five ...
pronouns i, me, you, he, she, her, they ...
prepositions of, in, on, for, from, about ...
conjunctions but, and, so, or, when, while ...
clothes hat, shirt, pants, skirt, socks ...

-like (god, godlike), (bird, birdlike) ...
-able (accept, acceptable), (adopt, adoptable) ...
micro- (gram, microgram), (chip, microchip) ...
auto- (maker, automaker), (gas, autogas) ...

Table 1: Examples of closed word classes and linguistic
properties based clusters for English

some examples of the word clusters we automat-
ically extracted from CLDR and Wiktionary for
English. The second type of word clusters is
generated based on morphological information,
including affixes that indicate various linguistic
properties. These properties tend to be consistent
across many languages. For example, “-like” is a
suffix denoting “similar to” in English, while in
Danish “-agtig” performs the same function. Wik-
tionary and Panlex include the affix alignments be-
tween English and any other languages. We fil-
tered out the many-to-many affix alignments and
obtained hundreds of alignments between each
language and English. For each affix, we derive a
set of word pairs (basic word, extended word with
affix) by first selecting all the word pairs where ba-
sic word + affix = extended word, then ranking all
word pairs based on the cosine similarity of their
monolingual word embedding. Finally we select
the top ranked 20 word pairs to form the cluster
for each affix.

We extract a set of word clusters from each lan-
guage, and align the clusters based on their func-
tions defined in CLDR, Wiktionary and Panlex.
For each language l, each cluster rl

i 2 Rl con-
tains a set of words or word-pairs sharing the same
function. We use the average operation to obtain
an overall vector representation for each cluster
MR

l .8 Then, we project the cluster-level vectors
into the shared semantic space and minimize the
distance between them:

HR
li = �(MR

li · Wli + bR
li ) ,

HR
lj = �(MR

lj · Wlj + bR
lj ) ,

8For each word pair, we use the vector of the extend word
minus the vector of the basic word as the vector representa-
tion of the word pair.
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Parameter Name Value
Monolingual Word Embedding Size 512
Multilingual Word Embedding Size 512
# of Filters in Convolution Layer 20
Filter Widths 1, 2, 3
Batch Size 500
Initial Learning Rate 0.5
Optimizer Adadelta

Table 2: Hyper-parameters.

OR =
X

{li,lj}2A

L(HR
li , HR

lj ) ,

where W is the same as the W used in Sec-
tion 3.3 for each language. We finally optimize
the sum of the losses by finding the parameters
✓ = {Wl, bl, b

0

l, Ul, b⇤
l , CNNl, bR

l }, where l de-
notes a specific language:

O✓ = OW + ON + Ochar + OR

4 Experiments

4.1 Experiment Setup
Previous work (Ammar et al., 2016b; Duong et al.,
2017) evaluated multilingual word embeddings on
a series of intrinsic (e.g., monolingual and cross-
lingual word similarity, word translation) and
extrinsic (e.g., multilingual document classifica-
tion, multilingual dependency parsing) evaluation
tasks. In order to evaluate the quality of the mul-
tilingual embeddings, we use QVEC (Tsvetkov
et al., 2015) tasks (details will be described in Sec-
tion 4.2) as the intrinsic evaluation platform. In
addition, to demonstrate the effectiveness of our
common semantic space for knowledge transfer,
especially for low-resource scenarios, we adopt
the low-resource language name tagging task for
extrinsic evaluation.

For fair comparison with state-of-the-art meth-
ods on building multi-lingual embeddings (Am-
mar et al., 2016b; Duong et al., 2017), we use the
same monolingual data and bilingual dictionaries
as in their work. We build multilingual word em-
beddings for 3 languages (English, Italian, Dan-
ish) and 12 languages (Bulgarian, Czech, Dan-
ish, German, Greek, English, Spanish, Finnish,
French, Hungarian, Italian, Swedish) respectively.
The monolingual data for each language is the
combination of the Leipzig Corpora Collection9

and Europarl.10 The bilingual dictionaries are the
same as those used in Ammar et al. (2016b).11

9http://wortschatz.uni-leipzig.de/en/download/
10http://www.statmt.org/europarl/index.html
11http://128.2.220.95/multilingual/data/

For each task, we evaluate the performance
of our common semantic space in comparison
with previously published multilingual word em-
beddings (MultiCluster, MultiCCA, MultiSkip,
and MultiCross)12. MultiCluster (Ammar et al.,
2016b) groups multilingual words into clusters
based on bilingual dictionaries and forces all the
words from various languages within one cluster
share the same embedding. MultiCCA (Ammar
et al., 2016b; Faruqui and Dyer, 2014) uses CCA
to estimate linear projections for each pair of lan-
guages. MultiSkip is an extension of the multilin-
gual skip-gram model (Luong et al., 2015), which
requires parallel data. MultiCross is an approach
to unify bilingual word embeddings into a shared
semantic space using post hoc linear transforma-
tions (Duong et al., 2017).

Table 2 lists the hyper-parameters used in the
experiments.

4.2 Intrinsic Evaluation: QVEC

In order to evaluate the quality of multilingual
embeddings, we adopt QVEC (Tsvetkov et al.,
2015) as the intrinsic evaluation measure. It eval-
uates the quality of word embeddings based on
the alignment of distributional word vectors to
linguistic feature vectors extracted from manu-
ally crafted lexical resources, e.g., SemCor (Miller
et al., 1993). For each word, each dimension
of its linguistic feature vector defines the proba-
bility of that word belongs to a supersense (e.g.,
NN.FOOD) which is summarized from Word-
Net (Fellbaum, 1998).

QVEC is computed as

QVEC = maxP
j aij1

DX

i=1

PX

j=1

r(xi, sj) ⇥ aij ,

where x 2 R
D⇥1 denotes a distributional word

vector and s 2 R
P⇥1 denotes a linguistic word

vector. D and P denote the sizes of vectors re-
spectively. aij = 1 iff xi is aligned to sj , other-
wise aij = 0. r(xi, sj) is the Pearson’s correlation
between xi and sj . QVEC-CCA (Ammar et al.,
2016b) is extended from QVEC by using CCA to
measure the correlation between the distributional
matrix and the linguistic vector matrix, instead of
cumulative dimension-wise correlation.

12For fair comparison, we use the development sets of the
intrinsic evaluation tasks in Ammar et al. (2016b) to select
the best model.
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3 Languages 12 Languages

Monolingual Multilingual Monolingual Multilingual

QVEC QVEC-CCA QVEC QVEC-CCA QVEC QVEC-CCA QVEC QVEC-CCA
MultiCluster 10.8 63.6 9.1 45.8 10.4 62.7 9.3 44.5
MultiCCA 10.8 63.8 8.5 43.9 10.8 63.9 8.5 43.7
MultiSkip 7.8 57.3 7.3 36.2 8.4 59.1 7.2 36.5
MultiCross - - - - 11.9 46.4 8.6 31.0

C
or

rN
et

W 14.8 63.6 11.3 43.4 14.7 63.8 13.2 43.9
W+N 15.8 64.2 13.1 43.9 15.8 64.6 14.0 44.8
W+N+C 15.3 66.2 12.2 44.5 16.0 66.6 14.0 44.7
W+N+L 16.2 66.1 13.1 44.8 16.1 64.7 13.8 44.9
W+N+C+L 16.2 67.3 12.4 45.4 16.3 66.7 14.1 45.2

Table 3: QVEC and QVEC-CCA scores. W: word alignment. N: neighbor based clustering and alignment. C:
character based clustering and alignment. L: linguistic property based clustering and alignment.

As shown in Table 3, our approaches outper-
form previous approaches in almost all cases13.
Specifically, by augmenting word representation
with neighboring words in the common semantic
space as in Eq. (1), the performance for mono-
lingual and multilingual QVEC and QVEC-CCA
tasks is consistently improved. In addition, by
aligning character-level compositional representa-
tions and linguistic property based clusters in the
shared semantic space, the monolingual and multi-
lingual representation quality is further improved.

4.3 Impact of Bilingual Dictionary Size

In order to show the impact of the size of bilingual
lexicons, we use three languages as a case study,
and gradually reduce the size of the lexicons for
each pair of languages from 40,000 to 10,000 and
further to 2,000, 1,000, 500 and 250. For follow-
ing experiments, we use MultiCluster and Multi-
CCA as baselines 14. Table 4 shows the results.
We observe that both MultiCCA and CorrNet ap-
proaches are sensitive to the size of the bilingual
lexicons. Our approach on the other hand can
maintain high performance, even when the size
of bilingual lexicons is reduced to 250. The per-
formances of MultiCluster based on various sizes
of bilingual dictionary are close because it jointly
trains the embedding of multiple languages from
scratch and by default takes advantage of identical
strings among all the languages.

13We conduct paired t-test between CorrNet W+N+Ch+L
and all the other models on 10 randomly sampled subsets.
The differences are all statistically significant while all p-
values are less than 0.05

14MultiSkip requires parallel corpora to train cross-lingual
embeddings while the original implementation of MultiCross
is not public.

4.4 Low-Resource Name Tagging

We evaluate the quality of multilingual embed-
dings on a downstream task by using the embed-
dings as input features. Here, we use low-resource
language name tagging as a target task, which
aims to automatically identify and named entities
from text and classify them into certain types, in-
cluding Person (PER), Location (LOC), Organiza-
tion (ORG), and Geo-Political Entities (GPE). We
experiment with two sets of languages. The first
set Amh+Tig consists of Amharic and Tigrinya.
Both languages share the same Ge’ez script and
descend from the proto-Semitic language fam-
ily. The other set Eng+Uig+Tur consists of one
high-resource language (English), one medium-
resource language (Turkish) and one low-resource
language (Uighur). It also consists of two distinct
language scripts: English and Turkish use Latin
script while Uighur uses Arabic script.

We use an LSTM-CRF architecture (Huang
et al., 2015; Lample et al., 2016; Ma and Hovy,
2016) for name tagging. It takes only word em-
bedding as input and predict a tag for each word.
Table 5 shows the statistics of training, develop-
ment, and test sets for each language released by
Linguistic Data Consortium (LDC).15 For each
language pair, we combine the bilingual aligned
words extracted from Wiktionary and monolingual
dictionaries based on identical strings.16 We eval-
uate the quality from several aspects:

15The annotations are from: Amh (LDC2016E87), Tig
(LDC2017E27), Uig (LDC2016E70), Tur (LDC2014E115),
Eng (Tjong Kim Sang and De Meulder, 2003). We combined
these corpora with Wikipedia dump to train word embeddings
with Word2Vec toolkit (Mikolov et al., 2013a).

16We extracted 23,781 pairs of words for Amh and Tig,
16,868 pairs for Eng and Tur, 3,353 pairs for Eng and Uig,
and 3,563 pairs for Tur and Uig.
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QVEC QVEC-CCA
Monolingual Multilingual Monolingual Multilingual

40,000 multiCCA 10.8 8.5 63.8 43.9
multiCluster 10.8 9.1 63.6 45.8
CorrNet W 14.8 11.3 63.6 43.4
CorrNet W+N+C+L 16.2 12.4 67.3 45.4

10,000 multiCCA 9.8 6.5 63.6 42.3
multiCluster 10.6 9.5 62.4 44.7
CorrNet W 14.8 11.3 63.4 43.0
CorrNet W+N+C+L 15.7 12.4 68.0 45.1

2,000 multiCCA 9.9 6.2 63.6 40.9
multiCluster 10.5 9.3 62.5 44.8
CorrNet W 14.5 7.1 62.0 39.2
CorrNet W+N+C+L 14.5 11.4 68.0 44.8

1,000 multiCCA 12.3 6.9 63.5 38.2
multiCluster 10.5 9.3 62.5 44.8
CorrNet W 13.7 9.4 63.0 40.0
CorrNet W+N+C+L 13.6 10.5 66.4 43.0

500 multiCCA 12.3 5.5 63.5 36.0
multiCluster 10.5 9.3 62.6 44.7
CorrNet W 13.3 9.1 62.8 39.4
CorrNet W+N+C+L 13.4 9.5 66.2 42.7

250 multiCCA 12.3 5.3 63.5 35.0
multiCluser 10.5 9.2 62.7 44.9
CorrNet W 13.8 9.3 62.5 39.3
CorrNet W+N+C+L 13.9 9.8 65.9 42.2

Table 4: Results using bilingual lexicons with varying sizes (40,000, 10,000, 2,000, 1,000, 500, 250) and three
languages. CorrNet W+N+C+L is the proposed approach with all the cluster types.

Amh Tig Uig Tur Eng
Train 1,506 1,585 1,500 1,500 14,029
Dev 167 176 190 378 3,250
Test 711 440 476 470 3,453

Table 5: # of Sentences for name tagging

Monolingual embedding quality evaluation
Table 6 shows the name tagging performance for
each language using the original monolingual em-
beddings and multilingual embeddings. For all
languages, the multilingual embeddings learned
from our approach significantly outperform those
learned from MultiCCA and MultiCluster, which
shows the effectiveness of our approach. More
importantly, the multilingual embeddings learned
from our approach also outperform original mono-
lingual embeddings, which demonstrates that by
projecting multiple languages into one common
space, the monolingual embedding quality can be
further improved.
Cross-lingual direct transfer In this setting, we
train a name tagger on one or two languages using
multilingual embeddings and test it on a new lan-
guage without any annotated data. Table 7 shows
the performance. For most testing languages, our

Multilingual
Train Mono- Multi- Multi- CorrNet
& Test lingual CCA Cluster W W+N+C+L
Amh 52.0 50.6 53.4 52.4 55.8
Tig 78.2 78.4 76.4 77.9 78.5
Uig 63.3 59.6 60.1 61.9 65.2
Tur 62.9 47.7 54.0 59.3 64.9

Table 6: Comparison on Monolingual Embedding
Quality: name tagging performance (F-score, %) using
monolingual embedding and multilingual embeddings.

approach achieves better performance than Mul-
tiCCA and MultiCluster. The closer that the lan-
guages are, such as Amharic and Tigrinya, the bet-
ter performance is achieved.
Cross-lingual mutual enhancement We finally
show the improvement by adding more cross-
lingual annotated data and also using multilingual
embeddings in Table 8. The multilingual embed-
dings learned by our approach consistently outper-
forms MultiCCA and MultiCluster. Particularly,
when there are not enough annotated examples,
the performance could be improved by incorpo-
rating annotated examples from other languages.
This is evident for Amharic, Tigrinya and Uighur.
For Turkish, we notice that a larger extra anno-
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Multi- Multi- CorrNet
Train Test CCA Cluster W W+N+C+L
Amh Tig 15.5 29.7 28.3 33.7
Tig Amh 11.1 24.7 12.8 23.3

Eng Uig 4.8 9.1 13.3 15.5
Tur Uig 0.4 11.4 19.8 25.0
Eng+Tur Uig 8.3 10.5 17.3 23.3

Eng Tur 17.6 21.4 18.3 22.4
Uig Tur 6.9 12.8 13.2 10.7
Eng+Uig Tur 20.4 23.3 14.5 27.0

Table 7: Comparison on Cross-lingual Direct Transfer:
name tagging performance (F-score, %) when the tag-
ger was trained on 1-2 source languages and tested on
a target language.

Multi- Multi- CorrNet
Train Test CCA Cluster W W+N+C+L
Tig+Amh Amh 52.9 54.7 52.1 56.5

Amh+Tig Tig 78.0 76.9 78.1 78.7

Eng+Uig Uig 64.8 62.2 65.1 67.7
Tur+Uig Uig 63.6 58.9 63.6 65.8
Eng+Tur+Uig Uig 65.8 64.8 64.6 68.5

Eng+Tur Tur 50.3 56.1 59.3 65.5
Uig+Tur Tur 51.4 52.7 57.8 62.7
Eng+Uig+Tur Tur 48.1 54.3 56.6 61.5

Table 8: Comparison on Cross-lingual Mutual En-
hancement: name tagging performance (F-score, %)
when the training set for the tagger was enhanced by
annotated examples in other languages.

tated set from other languages (e.g., Uig+Tur or
Eng+Uig+Tur) doesn’t necessarily result in im-
provement. This is partially due to the use of Ara-
bic script in Uighur, which differs from Turkish
and English. Thus we suggest to project closely
related languages using the same script into the
common semantic space.

We take Turkish name tagging as a case study
to show the benefit of the common semantic space
with extra English annotations. The monolingual
model failed to identify Belgrad´da as a geopoliti-
cal entity (GPE) because it doesn’t occur in Turk-
ish training data. However, by adding English an-
notations, the tagger successfully tags it as a GPE
since it’s semantically close to Belgrade in the
common semantic space according to their charac-
ter level compositional embeddings and Belgrade
is frequently tagged as GPE in English annota-
tions. In another example, using Turkish annota-
tions only, Kraliyet Donanması´na is mistakenly
tagged as a GPE since it’s following da and all
entity mentions following da in Turkish annota-
tions are annotated as GPE. After adding English

annotations into training, it is correctly tagged as
an ORG because da is well aligned with in in the
common semantic space according to the linguis-
tic property alignment between Turkish and En-
glish, and many entity mentions following in are
annotated as ORG in English annotations.

5 Conclusions and Future Work
We construct a common semantic space for multi-
ple languages based on a cluster-consistent corre-
lational neural network. It combines word-level
alignment and multi-level cluster alignment, in-
cluding neighbor based clusters, character-level
compositional word representations, and linguistic
property based clusters induced from the readily
available language-universal linguistic knowledge
bases. Our approach achieved significantly higher
performance than state-of-the-art multilingual em-
bedding learning methods through both intrinsic
and extrinsic evaluations. In the future, we will
further extend our approach to multi-lingual multi-
media common semantic space construction.
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Abstract
Multilingual Word Embeddings (MWEs) rep-
resent words from multiple languages in a sin-
gle distributional vector space. Unsupervised
MWE (UMWE) methods acquire multilin-
gual embeddings without cross-lingual super-
vision, which is a significant advantage over
traditional supervised approaches and opens
many new possibilities for low-resource lan-
guages. Prior art for learning UMWEs, how-
ever, merely relies on a number of indepen-
dently trained Unsupervised Bilingual Word
Embeddings (UBWEs) to obtain multilingual
embeddings. These methods fail to leverage
the interdependencies that exist among many
languages. To address this shortcoming, we
propose a fully unsupervised framework for
learning MWEs1 that directly exploits the re-
lations between all language pairs. Our model
substantially outperforms previous approaches
in the experiments on multilingual word trans-
lation and cross-lingual word similarity. In ad-
dition, our model even beats supervised ap-
proaches trained with cross-lingual resources.

1 Introduction
Continuous distributional word representa-
tions (Turian et al., 2010) have become a common
technique across a wide variety of NLP tasks.
Recent research, moreover, proposes cross-lingual
word representations (Klementiev et al., 2012;
Mikolov et al., 2013a) that create a shared em-
bedding space for words across two (Bilingual
Word Embeddings, BWE) or more languages
(Multilingual Word Embeddings, MWE). Words
from different languages with similar meanings
will be close to one another in this cross-lingual
embedding space. These embeddings have been
found beneficial for a number of cross-lingual and
even monolingual NLP tasks (Faruqui and Dyer,
2014; Ammar et al., 2016).

1Code: https://github.com/ccsasuke/umwe

The most common form of cross-lingual word
representations is the BWE, which connects the
lexical semantics of two languages. Traditionally
for training BWEs, cross-lingual supervision is re-
quired, either in the form of parallel corpora (Kle-
mentiev et al., 2012; Zou et al., 2013), or in the
form of bilingual lexica (Mikolov et al., 2013a;
Xing et al., 2015). This makes learning BWEs
for low-resource language pairs much more dif-
ficult. Fortunately, there are attempts to reduce
the dependence on bilingual supervision by requir-
ing a very small parallel lexicon such as identi-
cal character strings (Smith et al., 2017), or nu-
merals (Artetxe et al., 2017). Furthermore, re-
cent work proposes approaches to obtain unsuper-
vised BWEs without relying on any bilingual re-
sources (Zhang et al., 2017; Lample et al., 2018b).

In contrast to BWEs that only focus on a pair
of languages, MWEs instead strive to leverage the
interdependencies among multiple languages to
learn a multilingual embedding space. MWEs are
desirable when dealing with multiple languages
simultaneously and have also been shown to im-
prove the performance on some bilingual tasks
thanks to its ability to acquire knowledge from
other languages (Ammar et al., 2016; Duong et al.,
2017). Similar to training BWEs, cross-lingual su-
pervision is typically needed for training MWEs,
and the prior art for obtaining fully unsupervised
MWEs simply maps all the languages indepen-
dently to the embedding space of a chosen tar-
get language2 (usually English) (Lample et al.,
2018b). There are downsides, however, when us-
ing a single fixed target language with no interac-
tion between any of the two source languages. For
instance, French and Italian are very similar, and
the fact that each of them is individually converted
to a less similar language, English for example, in

2Henceforth, we refer to this method as BWE-Pivot as the
target language serves as a pivot to connect other languages.
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order to produce a shared embedding space will
inevitably degrade the quality of the MWEs.

For certain multilingual tasks such as translat-
ing between any pair of N given languages, an-
other option for obtaining UMWEs exists. One
can directly train UBWEs for each of such lan-
guage pairs (referred to as BWE-Direct). This is
seldom used in practice, since it requires training
O(N2) BWE models as opposed to only O(N)
in BWE-Pivot, and is too expensive for most use
cases. Moreover, this method still does not fully
exploit the language interdependence. For exam-
ple, when learning embeddings between French
and Italian, BWE-Direct only utilizes information
from the pair itself, but other Romance languages
such as Spanish may also provide valuable infor-
mation that could improve performance.

In this work, we propose a novel unsupervised
algorithm to train MWEs using only monolingual
corpora (or equivalently, monolingual word em-
beddings). Our method exploits the interdepen-
dencies between any two languages and maps all
monolingual embeddings into a shared multilin-
gual embedding space via a two-stage algorithm
consisting of (i) Multilingual Adversarial Training
(MAT) and (ii) Multilingual Pseudo-Supervised
Refinement (MPSR). As shown by experimental
results on multilingual word translation and cross-
lingual word similarity, our model is as efficient
as BWE-Pivot yet outperforms both BWE-Pivot
and BWE-Direct despite the latter being much
more expensive. In addition, our model achieves
a higher overall performance than state-of-the-art
supervised methods in these experiments.

2 Related Work

There is a plethora of literature on learning cross-
lingual word representations, focusing either on
a pair of languages, or multiple languages at the
same time (Klementiev et al., 2012; Zou et al.,
2013; Mikolov et al., 2013a; Gouws et al., 2015;
Coulmance et al., 2015; Ammar et al., 2016;
Duong et al., 2017, inter alia). One shortcom-
ing of these methods is the dependence on cross-
lingual supervision such as parallel corpora or
bilingual lexica. Abundant research efforts have
been made to alleviate such dependence (Vulić and
Moens, 2015; Artetxe et al., 2017; Smith et al.,
2017), but consider only the case of a single pair
of languages (BWEs). Furthermore, fully unsu-
pervised methods exist for learning BWEs (Zhang

et al., 2017; Lample et al., 2018b; Artetxe et al.,
2018a). For unsupervised MWEs, however, pre-
vious methods merely rely on a number of inde-
pendent BWEs to separately map each language
into the embedding space of a chosen target lan-
guage (Smith et al., 2017; Lample et al., 2018b).

Adversarial Neural Networks have been suc-
cessfully applied to various cross-lingual NLP
tasks where annotated data is not available, such as
cross-lingual text classification (Chen et al., 2016),
unsupervised BWE induction (Zhang et al., 2017;
Lample et al., 2018b) and unsupervised machine
translation (Lample et al., 2018a; Artetxe et al.,
2018b). These works, however, only consider the
case of two languages, and our MAT method (§3.1)
is a generalization to multiple languages.

Mikolov et al. (2013a) first propose to learn
cross-lingual word representations by learning a
linear mapping between the monolingual embed-
ding spaces of a pair of languages. It has then
been observed that enforcing the linear mapping
to be orthogonal could significantly improve per-
formance (Xing et al., 2015; Artetxe et al., 2016;
Smith et al., 2017). These methods solve a linear
equation called the orthogonal Procrustes prob-
lem for the optimal orthogonal linear mapping be-
tween two languages, given a set of word pairs as
supervision. Artetxe et al. (2017) find that when
using weak supervision (e.g. digits in both lan-
guages), applying this Procrustes process itera-
tively achieves higher performance. Lample et al.
(2018b) adopt the iterative Procrustes method with
pseudo-supervision in a fully unsupervised setting
and also obtain good results. In the MWE task,
however, the multilingual mappings no longer
have a closed-form solution, and we hence pro-
pose the MPSR algorithm (§3.2) for learning mul-
tilingual embeddings using gradient-based opti-
mization methods.

3 Model

In this work, our goal is to learn a single multi-
lingual embedding space for N languages, with-
out relying on any cross-lingual supervision. We
assume that we have access to monolingual em-
beddings for each of the N languages, which
can be obtained using unlabeled monolingual cor-
pora (Mikolov et al., 2013b; Bojanowski et al.,
2017). We now present our unsupervised MWE
(UMWE) model that jointly maps the monolin-
gual embeddings of all N languages into a single
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space by explicitly leveraging the interdependen-
cies between arbitrary language pairs, but is com-
putationally as efficient as learning O(N) BWEs
(instead of O(N2)).

Denote the set of languages as L with |L | =
N . Suppose for each language l 2 L with vocab-
ulary Vl, we have a set of d-dimensional mono-
lingual word embeddings El of size |Vl| ⇥ d. Let
Sl denote the monolingual embedding space for
l, namely the distribution of the monolingual em-
beddings of l. If a set of embeddings E are in
an embedding space S , we write E ` S (e.g.
8l : El ` Sl). Our models learns a set of encoders
Ml, one for each language l, and the correspond-
ing decoders M�1

l . The encoders map all El to a
single target space T : Ml(El) ` T . On the other
hand, a decoder M�1

l maps an embedding in T
back to Sl.

Previous research (Mikolov et al., 2013a) shows
that there is a strong linear correlation between
the vector spaces of two languages, and that learn-
ing a complex non-linear neural mapping does not
yield better results. Xing et al. (2015) further show
that enforcing the linear mappings to be orthogo-
nal matrices achieves higher performance. There-
fore, we let our encoders Ml be orthogonal linear
matrices, and the corresponding decoders can be
obtained by simply taking the transpose: M�1

l =
M>

l . Thus, applying the encoder or decoder to an
embedding vector is accomplished by multiplying
the vector with the encoder/decoder matrix.

Another benefit of using linear encoders and de-
coders (also referred to as mappings) is that we can
learn N � 1 mappings instead of N by choosing
the target space T to be the embedding space of a
specific language (denoted as the target language)
without losing any expressiveness of the model.
Given a MWE with an arbitrary T , we can con-
struct an equivalent one with only N �1 mappings
by multiplying the encoders of each language Ml

to the decoder of the chosen target language M>
t :

M0
t = M>

t Mt = I

M0
lEl = (M>

t Ml)El ` St

where I is the identity matrix. The new MWE is
isomorphic to the original one.

We now present the two major components of
our approach, Multilingual Adversarial Training
(§3.1) and Multilingual Pseudo-Supervised Re-
finement (§3.2).

Embeddings from langi

langi Encoder 

langj Decoder 

 

langj 

Discriminator 

Shared Embedding Space

Embeddings from langj

Forward and backward passes when training M

Forward and backward passes when training D

Dj

Mi

M>

j

JDj
JMi

langi

langi

langj

langj

langj

Figure 1: Multilingual Adversarial Training (Algo-
rithm 1). langi and langj are two randomly selected
languages at each training step. JDj

and JMi
are the

objectives of Dj and Mi, respectively (Eqn. 1 and 2).

3.1 Multilingual Adversarial Training
In this section, we introduce an adversarial train-
ing approach for learning multilingual embed-
dings without cross-lingual supervision. Adver-
sarial Training is a powerful technique for min-
imizing the divergence between complex distri-
butions that are otherwise difficult to directly
model (Goodfellow et al., 2014). In the cross-
lingual setting, it has been successfully ap-
plied to unsupervised cross-lingual text classifica-
tion (Chen et al., 2016) and unsupervised bilin-
gual word embedding learning (Zhang et al., 2017;
Lample et al., 2018b). However, these methods
only consider one pair of languages at a time, and
do not fully exploit the cross-lingual relations in
the multilingual setting.

Figure 1 shows our Multilingual Adversarial
Training (MAT) model and the training procedure
is described in Algorithm 1. Note that as ex-
plained in §3, the encoders and decoders adopted
in practice are orthogonal linear mappings while
the shared embedding space is chosen to be the
same space as a selected target language.
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Algorithm 1 Multilingual Adversarial Training
Require: Vocabulary Vi for each language langi 2 L . Hy-

perparameter k 2 N.
1: repeat
2: . D iterations
3: for diter = 1 to k do
4: lossd = 0
5: for all langj 2 L do
6: Select at random langi 2 L
7: Sample a batch of words xi ⇠ Vi

8: Sample a batch of words xj ⇠ Vj

9: x̂t = Mi(xi) . encode to T

10: x̂j = M
>

j (x̂t) . decode to Sj

11: yj = Dj(xj) . real vectors
12: ŷj = Dj(x̂j) . converted vectors
13: lossd += Ld(1, yj) + Ld(0, ŷj)

14: Update all D parameters to minimize lossd

15: . M iteration
16: loss = 0
17: for all langi 2 L do
18: Select at random langj 2 L
19: Sample a batch of words xi ⇠ Vi

20: x̂t = Mi(xi) . encode to T

21: x̂j = M
>

j (x̂t) . decode to Sj

22: ŷj = Dj(x̂j)
23: loss += Ld(1, ŷj)

24: Update all M parameters to minimize loss
25: orthogonalize(M) . see §3.3
26: until convergence

In order to learn a multilingual embedding
space without supervision, we employ a series
of language discriminators Dl, one for each lan-
guage l 2 L . Each Dl is a binary classifier with
a sigmoid layer on top, and is trained to identify
how likely a given vector is from Sl, the embed-
ding space of language l. On the other hand, to
train the mappings, we convert a vector from a ran-
dom language langi to another random language
langj (via the target space T first). The objective
of the mappings is to confuse Dj , the language dis-
criminator for langj , so the mappings are updated
in a way that Dj cannot differentiate the converted
vectors from the real vectors in Sj . This multilin-
gual objective enables us to explicitly exploit the
relations between all language pairs during train-
ing, leading to improved performance.

Formally, for any language langj , the objective
that Dj is minimizing is:

JDj = E
i⇠L

E
xi⇠Si
xj⇠Sj

r
Ld (1, Dj(xj)) +

Ld

⇣
0, Dj(M>

j Mixi)
⌘z (1)

where Ld(y, ŷ) is the loss function of D, which
is chosen as the cross entropy loss in practice. y
is the language label with y = 1 indicates a real

embedding from that language.
Furthermore, the objective of Mi for langi is:

JMi = E
j⇠L

E
xi⇠Si
xj⇠Sj

Ld

⇣
1, Dj(M>

j Mixi)
⌘

(2)

where Mi strives to make Dj believe that a con-
verted vector to langj is instead real. This adver-
sarial relation between M and D stimulates M
to learn a shared multilingual embedding space by
making the converted vectors look as authentic as
possible so that D cannot predict whether a vector
is a genuine embedding from a certain language or
converted from another language via M.

In addition, we allow langi and langj to be
the same language in (1) and (2). In this case,
we are encoding a language to T and back to
itself, essentially forming an adversarial autoen-
coder (Makhzani et al., 2015), which is reported
to improve the model performance (Zhang et al.,
2017). Finally, on Line 5 and 17 in Algorithm 1, a
for loop is used instead of random sampling. This
is to ensure that in each step, every discrimina-
tor (or mapping) is getting updated at least once,
so that we do not need to increase the number of
training iterations when adding more languages.
Computationally, when compared to the BWE-
Pivot and BWE-Direct baselines, one step of MAT
training costs similarly to N BWE training steps,
and in practice we train MAT for the same num-
ber of iterations as training the baselines. There-
fore, MAT training scales linearly with the num-
ber of languages similar to BWE-Pivot (instead of
quadratically as in BWE-Direct).

3.2 Multilingual Pseudo-Supervised
Refinement

Using MAT, we are able to obtain UMWEs with
reasonable quality, but they do not yet achieve
state-of-the-art performance. Previous research
on learning unsupervised BWEs (Lample et al.,
2018b) observes that the embeddings obtained
from adversarial training do a good job aligning
the frequent words between two languages, but
performance degrades when considering the full
vocabulary. They hence propose to use an iter-
ative refinement method (Artetxe et al., 2017) to
repeatedly refine the embeddings obtained from
the adversarial training. The idea is that we can
anchor on the more accurately predicted relations
between frequent words to improve the mappings
learned by adversarial training.
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Algorithm 2 Multilingual Pseudo-Supervised Re-
finement
Require: A set of (pseudo-)supervised lexica of word pairs

between each pair of languages Lex(langi, langj).
1: repeat
2: loss = 0
3: for all langi 2 L do
4: Select at random langj 2 L
5: Sample (xi, xj) ⇠ Lex(langi, langj)
6: ti = Mi(xi) . encode xi

7: tj = Mj(xj) . encode xj

8: loss += Lr(ti, tj) . refinement loss
9: Update all M parameters to minimize loss

10: orthogonalize(M) . see §3.3
11: until convergence

When learning MWEs, however, it is desirable
to go beyond aligning each language with the tar-
get space individually, and instead utilize the re-
lations between all languages as we did in MAT.
Therefore, we in this section propose a general-
ization of the existing refinement methods to in-
corporate a multilingual objective.

In particular, MAT can produce an approxi-
mately aligned embedding space. As mentioned
earlier, however, the training signals from D for
rare words are noisier and may lead to worse
performance. Thus, the idea of Multilingual
Pseudo-Supervised Refinement (MPSR) is to in-
duce a dictionary of highly confident word pairs
for every language pair, used as pseudo supervi-
sion to improve the embeddings learned by MAT.
For a specific language pair (langi, langj), the
pseudo-supervised lexicon Lex(langi, langj) is
constructed from mutual nearest neighbors be-
tween MiEi and MjEj , among the most frequent
15k words of both languages.

With the constructed lexica, the MPSR objective
is:

Jr = E
(i,j)⇠L 2

E
(xi,xj)⇠Lex(i,j)

Lr(Mixi, Mjxj)

(3)
where Lr(x, x̂) is the loss function for MPSR, for
which we use the mean square loss. The MPSR
training is depicted in Algorithm 2.

Cross-Lingual Similarity Scaling (CSLS)
When constructing the pseudo-supervised lexica,
a distance metric between embeddings is needed
to compute nearest neighbors. Standard distance
metrics such as the Euclidean distance or cosine
similarity, however, can lead to the hubness
problem in high-dimensional spaces when used
to calculate nearest neighbors (Radovanović

et al., 2010; Dinu and Baroni, 2015). Namely,
some words are very likely to be the nearest
neighbors of many others (hubs), while others
are not the nearest neighbor of any word. This
problem is addressed in the literature by designing
alternative distance metrics, such as the inverted
softmax (Smith et al., 2017) or the CSLS (Lample
et al., 2018b). In this work, we adopt the CSLS
similarity as a drop-in replacement for cosine
similarity whenever a distance metric is needed.
The CSLS similarity (whose negation is a distance
metric) is calculated as follows:

CSLS(x, y) = 2 cos(x, y)

� 1

n

X

y02NY (x)

cos(x, y0)

� 1

n

X

x02NX(y)

cos(x0, y)

(4)

where NY (x) is the set of n nearest neighbors of
x in the vector space that y comes from: Y =
{y1, ..., y|Y |}, and vice versa for NX(y). In prac-
tice, we use n = 10.

3.3 Orthogonalization
As mentioned in §3, orthogonal linear mappings
are the preferred choice when learning transforma-
tions between the embedding spaces of different
languages (Xing et al., 2015; Smith et al., 2017).
Therefore, we perform an orthogonalization up-
date (Cisse et al., 2017) after each training step to
ensure that our mappings M are (approximately)
orthogonal:

8l : Ml = (1 + �)Ml � �MlM>
l Ml

where � is set to 0.001.

3.4 Unsupervised Multilingual Validation
In order to do model selection in the unsupervised
setting, where no validation set can be used, a sur-
rogate validation criterion is required that does not
depend on bilingual data. Previous work shows
promising results using such surrogate criteria for
model validation in the bilingual case (Lample
et al., 2018b), and we in this work adopt a vari-
ant adapted to our multilingual setting:

V (M, E) = E
(i,j)⇠Pij

mean csls(M>
j MiEi, Ej)

=
X

i 6=j

pij · mean csls(M>
j MiEi, Ej)
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where pij forms a probability simplex. In this
work, we let all pij = 1

N(N�1) so that V (M, E)
reduces to the macro average over all language
pairs. Using different pij values can place varying
weights on different language pairs, which might
be desirable in certain scenarios.

The mean csls function is an unsupervised
bilingual validation criterion proposed by Lample
et al. (2018b), which is the mean CSLS similari-
ties between the most frequent 10k words and their
translations (nearest neighbors).

4 Experiments

In this section, we present experimental results to
demonstrate the effectiveness of our unsupervised
MWE method on two benchmark tasks, the mul-
tilingual word translation task, and the SemEval-
2017 cross-lingual word similarity task. We com-
pare our MAT+MPSR method with state-of-the-
art unsupervised and supervised approaches, and
show that ours outperforms previous methods, su-
pervised or not, on both tasks.

Pre-trained 300d fastText (monolingual) em-
beddings (Bojanowski et al., 2017) trained on the
Wikipedia corpus are used for all systems that re-
quire monolingual word embeddings for learning
cross-lingual embeddings.

4.1 Multilingual Word Translation

In this section, we consider the task of word trans-
lation between arbitrary pairs of a set of N lan-
guages. To this end, we use the recently released
multilingual word translation dataset on six lan-
guages: English, French, German, Italian, Por-
tuguese and Spanish (Lample et al., 2018b). For
any pair of the six languages, a ground-truth bilin-
gual dictionary is provided with a train-test split
of 5000 and 1500 unique source words, respec-
tively. The 5k training pairs are used in training
supervised baseline methods, while all unsuper-
vised methods do not rely on any cross-lingual re-
sources. All systems are tested on the 1500 test
word pairs for each pair of languages.

For comparison, we adopted a state-of-the-art
unsupervised BWE method (Lample et al., 2018b)
and generalize it for the multilingual setting us-
ing the two aforementioned approaches, namely
BWE-Pivot and BWE-Direct, to produce unsuper-
vised baseline MWE systems. English is cho-
sen as the pivot language in BWE-Pivot. We fur-
ther incorporate the supervised BWE-Direct (Sup-

BWE-Direct) method as a baseline, where each
BWE is trained on the 5k gold-standard word pairs
via the orthogonal Procrustes process (Artetxe
et al., 2017; Lample et al., 2018b).

Table 1 presents the evaluation results, wherein
the numbers represent precision@1, namely how
many times one of the correct translations of a
source word is retrieved as the top candidate. All
systems retrieve word translations using the CSLS
similarity in the learned embedding space. Ta-
ble 1a shows the detailed results for all 30 lan-
guage pairs, while Table 1b summarizes the re-
sults in a number of ways. We first observe the
training cost of all systems summarized in Ta-
ble 1b. #BWEs indicates the training cost of a cer-
tain method measured by how many BWE mod-
els it is equivalent to train. BWE-Pivot needs
to train 2(N�1) BWEs since a separate BWE is
trained for each direction in a language pair for
increased performance. BWE-Direct on the other
hand, trains an individual BWE for all (again, di-
rected) pairs, resulting a total of N(N�1) BWEs.
The supervised Sup-BWE-Direct method trains
the same number of BWEs as BWE-Direct but is
much faster in practice, for it does not require the
unsupervised adversarial training stage. Finally,
while our MAT+MPSR method does not train in-
dependent BWEs, as argued in §3.1, the training
cost is roughly equivalent to training N�1 BWEs,
which is corroborated by the real training time
shown in Table 1b.

We can see in Table 1a that our MAT+MPSR
method achieves the highest performance on all
but 3 language pairs, compared against both the
unsupervised and supervised approaches. When
looking at the overall performance across all lan-
guage pairs, BWE-Direct achieves a +0.6% per-
formance gain over BWE-Pivot at the cost of be-
ing much slower to train. When supervision is
available, Sup-BWE-Direct further improves an-
other 0.4% over BWE-Direct. Our MAT+MPSR
method, however, attains an impressive 1.3% im-
provement against Sup-BWE-Direct, despite the
lack of cross-lingual supervision.

To provide a more in-depth examination of the
results, we first consider the Romance language
pairs, such as fr-es, fr-it, fr-pt, es-it, it-pt and their
reverse directions. BWE-Pivot performs notably
worse than BWE-Direct on these pairs, which vali-
dates our hypothesis that going through a less sim-
ilar language (English) when translating between
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en-de en-fr en-es en-it en-pt de-fr de-es de-it de-pt fr-es fr-it fr-pt es-it es-pt it-pt

Supervised methods with cross-lingual supervision
Sup-BWE-Direct 73.5 81.1 81.4 77.3 79.9 73.3 67.7 69.5 59.1 82.6 83.2 78.1 83.5 87.3 81.0

Unsupervised methods without cross-lingual supervision
BWE-Pivot 74.0 82.3 81.7 77.0 80.7 71.9 66.1 68.0 57.4 81.1 79.7 74.7 81.9 85.0 78.9
BWE-Direct 74.0 82.3 81.7 77.0 80.7 73.0 65.7 66.5 58.5 83.1 83.0 77.9 83.3 87.3 80.5

MAT+MPSR 74.8 82.4 82.5 78.8 81.5 76.7 69.6 72.0 63.2 83.9 83.5 79.3 84.5 87.8 82.3

de-en fr-en es-en it-en pt-en fr-de es-de it-de pt-de es-fr it-fr pt-fr it-es pt-es pt-it

Supervised methods with cross-lingual supervision
Sup-BWE-Direct 72.4 82.4 82.9 76.9 80.3 69.5 68.3 67.5 63.7 85.8 87.1 84.3 87.3 91.5 81.1

Unsupervised methods without cross-lingual supervision
BWE-Pivot 72.2 82.1 83.3 77.7 80.1 68.1 67.9 66.1 63.1 84.7 86.5 82.6 85.8 91.3 79.2
BWE-Direct 72.2 82.1 83.3 77.7 80.1 69.7 68.8 62.5 60.5 86 87.6 83.9 87.7 92.1 80.6

MAT+MPSR 72.9 81.8 83.7 77.4 79.9 71.2 69.0 69.5 65.7 86.9 88.1 86.3 88.2 92.7 82.6

(a) Detailed Results

Training Cost Single Source Single Target

#BWEs time en-xx de-xx fr-xx es-xx it-xx pt-xx xx-en xx-de xx-fr xx-es xx-it xx-pt Overall

Supervised methods with cross-lingual supervision
Sup-BWE-Direct N(N�1) 4h 78.6 68.4 79.2 81.6 80.0 80.2 79.0 68.5 82.3 82.1 78.9 77.1 78.0

Unsupervised methods without cross-lingual supervision
BWE-Pivot 2(N�1) 8h 79.1 67.1 77.1 80.6 79.0 79.3 79.1 67.8 81.6 81.2 77.2 75.3 77.0
BWE-Direct N(N�1) 23h 79.1 67.2 79.2 81.7 79.2 79.4 79.1 67.1 82.6 82.1 78.1 77.0 77.6

MAT+MPSR N�1 5h 80.0 70.9 79.9 82.4 81.1 81.4 79.1 70.0 84.1 83.4 80.3 78.8 79.3

(b) Summarized Results

Table 1: Multilingual Word Translation Results for English, German, French, Spanish, Italian and Portuguese. The
reported numbers are precision@1 in percentage. All systems use the nearest neighbor under the CSLS distance
for predicting the translation of a certain word.

similar languages will result in reduced accuracy.
Our MAT+MPSR method, however, overcomes this
disadvantage of BWE-Pivot and achieves the best
performance on all these pairs through an explicit
multilingual learning mechanism without increas-
ing the computational cost.

Furthermore, our method also beats the BWE-
Direct approach, which supports our second hy-
pothesis that utilizing knowledge from languages
beyond the pair itself could improve performance.
For instance, there are a few pairs where BWE-
Pivot outperforms BWE-Direct, such as de-it, it-
de and pt-de, even though it goes through a third
language (English) in BWE-Pivot. This might
suggest that for some less similar language pairs,
leveraging a third language as a bridge could in
some cases work better than only relying on the
language pair itself. German is involved in all

these language pairs where BWE-Pivot outper-
forms than BWE-Direct, which is potentially due
to the similarity between German and the pivot
language English. We speculate that if choosing
a different pivot language, there might be other
pairs that could benefit. This observation serves
as a possible explanation of the superior perfor-
mance of our multilingual method over BWE-
Direct, since our method utilizes knowledge from
all languages during training.

4.2 Cross-Lingual Word Similarity
In this section, we evaluate the quality of
our MWEs on the cross-lingual word similarity
(CLWS) task, which assesses how well the sim-
ilarity in the cross-lingual embedding space cor-
responds to a human-annotated semantic similar-
ity score. The high-quality CLWS dataset from
SemEval-2017 (Camacho-Collados et al., 2017) is
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en-de en-es de-es en-it de-it es-it en-fa de-fa es-fa it-fa Average

Supervised methods with cross-lingual supervision
Luminoso .769 .772 .735 .787 .747 .767 .595 .587 .634 .606 .700
NASARI .594 .630 .548 .647 .557 .592 .492 .452 .466 .475 .545

Unsupervised methods without cross-lingual supervision
BWE-Pivot .709 .711 .703 .709 .682 .721 .672 .655 .701 .688 .695
BWE-Direct .709 .711 .703 .709 .675 .726 .672 .662 .714 .695 .698

MAT+MPSR .711 .712 .708 .709 .684 .730 .680 .674 .720 .709 .704

Table 2: Results for the SemEval-2017 Cross-Lingual Word Similarity task. Spearman’s ⇢ is reported. Lumi-
noso (Speer and Lowry-Duda, 2017) and NASARI (Camacho-Collados et al., 2016) are the two top-performing
systems for SemEval-2017 that reported results on all language pairs.

used for evaluation. The dataset contains word
pairs from any two of the five languages: English,
German, Spanish, Italian, and Farsi (Persian), an-
notated with semantic similarity scores.

In addition to the BWE-Pivot and BWE-
Direct baseline methods, we also include the
two best-performing systems on SemEval-2017,
Luminoso (Speer and Lowry-Duda, 2017) and
NASARI (Camacho-Collados et al., 2016) for
comparison. Note that these two methods are su-
pervised, and have access to the Europarl3 (for all
languages but Farsi) and the OpenSubtitles20164

parallel corpora.
Table 2 shows the results, where the perfor-

mance of each model is measured by the Spear-
man correlation. When compared to the BWE-
Pivot and the BWE-Direct baselines, MAT+MPSR
continues to perform the best on all language pairs.
The qualitative findings stay the same as in the
word translation task, except the margin is less sig-
nificant. This might be because the CLWS task is
much more lenient compared to the word transla-
tion task, where in the latter one needs to correctly
identify the translation of a word out of hundreds
of thousands of words in the vocabulary. In CLWS
though, one can still achieve relatively high corre-
lation in spite of minor inaccuracies.

On the other hand, an encouraging result is
that when compared to the state-of-the-art super-
vised results, our MAT+MPSRmethod outperforms
NASARI by a very large margin, and achieves
top-notch overall performance similar to the com-
petition winner, Luminoso, without using any bi-
texts. A closer examination reveals that our unsu-
pervised method lags a few points behind Lumi-

3http://opus.nlpl.eu/Europarl.php
4http://opus.nlpl.eu/

OpenSubtitles2016.php

noso on the European languages wherein the su-
pervised methods have access to the large-scale
high-quality Europarl parallel corpora. It is the
low-resource language, Farsi, that makes our un-
supervised method stand out. All of the unsuper-
vised methods outperform the supervised systems
from SemEval-2017 on language pairs involving
Farsi, which is not covered by the Europarl bitexts.
This suggests the advantage of learning unsuper-
vised embeddings for lower-resourced languages,
where the supervision might be noisy or absent.
Furthermore, within the unsupervised methods,
MAT+MPSR again performs the best, and attains
a higher margin over the baseline approaches on
the low-resource language pairs, vindicating our
claim of better multilingual performance.

5 Conclusion

In this work, we propose a fully unsupervised
model for learning multilingual word embeddings
(MWEs). Although methods exist for learning
high-quality unsupervised BWEs (Lample et al.,
2018b), little work has been done in the unsuper-
vised multilingual setting. Previous work relies
solely on a number of unsupervised BWE models
to generate MWEs (e.g. BWE-Pivot and BWE-
Direct), which does not fully leverage the interde-
pendencies among all the languages. Therefore,
we propose the MAT+MPSR method that explicitly
exploits the relations between all language pairs
without increasing the computational cost. In our
experiments on multilingual word translation and
cross-lingual word similarity (SemEval-2017), we
show that MAT+MPSR outperforms existing unsu-
pervised and even supervised models, achieving
new state-of-the-art performance.

For future work, we plan to investigate how our
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method can be extended to work with other BWE
frameworks, in order to overcome the instability
issue of Lample et al. (2018b). As pointed out by
recent work (Søgaard et al., 2018; Artetxe et al.,
2018a), the method by Lample et al. (2018b) per-
forms much worse on certain languages such as
Finnish, etc. More reliable multilingual embed-
dings might be obtained on these languages if we
adapt our multilingual training framework to work
with the more robust methods proposed recently.
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Abstract
This paper proposes a modularized sense in-
duction and representation learning model that
jointly learns bilingual sense embeddings that
align well in the vector space, where the cross-
lingual signal in the English-Chinese parallel
corpus is exploited to capture the collocation
and distributed characteristics in the language
pair. The model is evaluated on the Stanford
Contextual Word Similarity (SCWS) dataset to
ensure the quality of monolingual sense em-
beddings. In addition, we introduce Bilingual
Contextual Word Similarity (BCWS), a large
and high-quality dataset for evaluating cross-
lingual sense embeddings, which is the first
attempt of measuring whether the learned em-
beddings are indeed aligned well in the vector
space. The proposed approach shows the su-
perior quality of sense embeddings evaluated
in both monolingual and bilingual spaces.1

1 Introduction
Word embeddings have recently become the ba-
sic component in most NLP tasks for its ability
to capture semantic and distributed relationships
learned in an unsupervised manner. The higher
similarity between word vectors can indicate sim-
ilar meanings of words. Therefore, embeddings
that encode semantics have been shown to serve
as the good initialization and benefit several NLP
tasks. However, word embeddings do not allow
a word to have different meanings in different
contexts, which is a phenomenon known as pol-
ysemy. For example, “apple” may have different
meanings in fruit and technology contexts. Sev-
eral attempts have been proposed to tackle this
problem by inferring multi-sense word representa-
tions (Reisinger and Mooney, 2010; Neelakantan
et al., 2014; Li and Jurafsky, 2015; Lee and Chen,
2017).

1The code and dataset are available at http://
github.com/MiuLab/CLUSE.

These approaches relied on the “one-sense per
collocation” heuristic (Yarowsky, 1993), which
assumes that presence of nearby words correlates
with the sense of the word of interest. However,
this heuristic provides only a weak signal for dis-
criminating sense identities, and it requires a large
amount of training data to achieve competitive per-
formance.

Considering that different senses of a word may
be translated into different words in a foreign lan-
guage, Guo et al. (2014) and Šuster et al. (2016)
proposed to learn multi-sense embeddings using
this additional signal. For example, “bank” in
English can be translated into banc or banque in
French, depending on whether the sense is finan-
cial or geographical. Such information allows the
model to identify which sense a word belongs to.
However, the drawback of these models is that
the trained foreign language embeddings are not
aligned well with the original embeddings in the
vector space.

This paper addresses these limitations by
proposing a bilingual modularized sense induction
and representation learning system. Our learn-
ing framework is the first pure sense representa-
tion learning approach that allows us to utilize two
different languages to disambiguate words in En-
glish. To fully use the linguistic signals provided
by bilingual language pairs, it is necessary to en-
sure that the embeddings of each foreign language
are related to each other (i.e., they align well in
the vector space). We solve this by proposing an
algorithm that jointly learns sense representations
between languages. The contributions of this pa-
per are four-fold:

• We propose the first system that maintains
purely sense-level cross-lingual representa-
tion learning with linear-time sense decod-
ing.

• We are among the first to propose a single ob-
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jective for modularized bilingual sense em-
bedding learning.

• We are the first to introduce a high-quality
dataset for directly evaluating bilingual sense
embeddings.

• Our experimental results show the state-of-
the-art performance for both monolingual
and bilingual contextual word similarities.

2 Related Work

There are a lot of prior works focusing on repre-
sentation learning, while this work mainly focuses
on bridging the work about sense embeddings and
cross-lingual embeddings and introducing a newly
collected bilingual data for better evaluation.

Sense Embeddings Reisinger and Mooney
(2010) first proposed multi-prototype embeddings
to address the lexical ambiguity when using a sin-
gle embedding to represent multiple meanings of
a word. Huang et al. (2012); Neelakantan et al.
(2014); Li and Jurafsky (2015); Bartunov et al.
(2016) utilized neural networks as well as the
Bayesian non-parametric method to learn sense
embeddings. Lee and Chen (2017) first utilized
a reinforcement learning approach and proposed a
modularized framework that separates learning of
senses from that of words. However, none of them
leverages the bilingual signal, which may be help-
ful for disambiguating senses.

Cross-Lingual Word Embeddings Klementiev
et al. (2012) first pointed out the importance of
learning cross-lingual word embeddings in the
same space and proposed the cross-lingual docu-
ment classification (CLDC) dataset for extrinsic
evaluation. Gouws et al. (2015) trained directly
on monolingual data and extracted a bilingual sig-
nal from a smaller set of parallel data. Kočiskỳ
et al. (2014) used a probabilistic model that simul-
taneously learns alignments and distributed repre-
sentations for bilingual data by marginalizing over
word alignments. Hermann and Blunsom (2014)
learned word embeddings by minimizing the dis-
tances between compositional representations be-
tween parallel sentence pairs. Šuster et al. (2016)
reconstructed the bag-of-words representation of
semantic equivalent sentence pairs to learn word
embeddings. Shi et al. (2015) proposed a training
algorithm in the form of matrix decomposition,
and induced cross-lingual constraints for simul-
taneously factorizing monolingual matrices. Lu-
ong et al. (2015) extended the skip-gram model to

bilingual corpora where contexts of bilingual word
pairs were jointly predicted. Wei and Deng (2017)
proposed a variational autoencoding approach that
explicitly models the underlying semantics of the
parallel sentence pairs and guided the generation
of the sentence pairs. Although the above ap-
proaches aimed to learn cross-lingual embeddings
jointly, they fused different meanings of a word in
one embedding, leading to lexical ambiguity in the
vector space model.

Cross-Lingual Sense Embeddings Guo et al.
(2014) adopted the heuristics where different
meanings of a polysemous word usually can be
represented by different words in another language
and clustered bilingual word embeddings to in-
duce senses. Šuster et al. (2016) proposed an
encoder, which uses parallel corpora to choose a
sense for a given word, and a decoder that predicts
context words based on the chosen sense. Bansal
et al. (2012) proposed an unsupervised method for
clustering the translations of a word, such that the
translations in each cluster share a common se-
mantic sense. Upadhyay et al. (2017) leveraged
cross-lingual signals in more than two languages.
However, they either used pretrained embeddings
or learned only for the English side, which is un-
desirable since cross-lingual embeddings shall be
jointly learned such that they aligned well in the
embedding space.
Evaluation Datasets Several datasets can be
used to justify the performance of learned sense
embeddings. Huang et al. (2012) presented
SCWS, the first and only dataset that contains
word pairs and their sentential contexts for mea-
suring the quality of sense embeddings. However,
it is a monolingual dataset constructed in English,
so it cannot evaluate cross-lingual semantic word
similarity. On the other hand, while Camacho-
Collados et al. (2017) proposed a cross-lingual se-
mantic similarity dataset, it ignored the contextual
words but kept only word pairs, making it impos-
sible to judge sense-level similarity. In this paper,
we present an English-Chinese contextual word
similarity dataset in order to benchmark the exper-
iments about bilingual sense embeddings.

3 CLUSE: Cross-Lingual Unsupervised
Sense Embeddings

Our proposed model borrows the idea about mod-
ularization from Lee and Chen (2017), which
treats the sense induction and representation mod-
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Figure 1: Sense induction modules decide the senses of words, and two sense representation learning
modules optimize the sense collocated likelihood for learning sense embeddings within a language and
between two languages. Two languages are treated equally and optimized iteratively.

ules separately to avoid mixing word-level and
sense-level embeddings together.

Our model consists of four different modules il-
lustrated in Figure 1, where sense induction mod-
ules decide the senses of words, and two sense rep-
resentation learning modules optimize the sense
collocated likelihood for learning sense embed-
dings within a language and between two lan-
guages in a joint manner. All modules are detailed
below.

3.1 Notations
We denote our parallel corpus without word align-
ment C, where Cen is for the English part and Czh

is for the Chinese part. Our English vocabulary is
W en and Chinese vocabulary is W zh. Moreover,
Cen

t and Czh
t are the t-th sentence-level parallel

sentences in English and Chinese respectively. In
the following sections, we treat English as the ma-
jor language and Chinese as an additional bilin-
gual signal, while their roles can be mutually ex-
changed. Specifically, English and Chinese itera-
tively become the major language during the train-
ing procedure.

3.2 Bilingual Sense Induction Module
The bilingual sense induction module takes a par-
allel sentence pair as input and determines which
sense identity a target word belongs to given the
bilingual contextual information. Formally, for the
t-th English sentence Cen

t , we aim to decode the
most probable sense zik 2 Zi for the i-th word
wi 2 W en in Cen

t , where Zi is the set of sense

candidates for wi and 1  k  |Zi|. We assume
that the meaning of wi can be determined by its
surrounding words, or the so-called local context,
ci = {wi�m, · · · , wi+m}, where m is the size of
context window.

Aside from monolingual information, it is desir-
able to exploit the parallel sentences as additional
bilingual contexts to enable cross-lingual embed-
ding learning. Note that word alignment is not re-
quired in this work, so we consider the whole par-
allel bilingual sentence during training. Consider-
ing training efficiency, we sample M words in the
parallel bilingual sentence with their original rel-
ative order or pad it to M for those shorter than
M . Formally, given the t-th parallel bilingual sen-
tence Czh

t , the bilingual context of wi is therefore
c0
i = {w0

0, · · · , w0
M�1} and w0 2 W zh.

To ensure efficiency, continuous bag-of-words
(CBOW) model is applied, where it takes word-
level input tokens and outputs sense-level identi-
ties. Specifically, given an English word embed-
ding matrix P en, the local context can be mod-
eled as the average of word embeddings from its
context, 1

|ci|
P

wj2ci
P en

j . Similarly, we can model
the bilingual contextual information given Chinese
word embedding matrix P zh using the CBOW for-
mulation and obtain 1

M

P
w0

j2c0

i
P zh

j . We linearly
combine the contextual information from different
languages as:

C̄ = ↵ · 1

|ci|
X

wj2ci

P en
j + (1 � ↵) · 1

M

X

w0

j2c0

i

P zh
j .

(1)
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The likelihood of selecting each sense iden-
tity zik for wi can be formulated in the form
of Bernoulli distribution with a sigmoid function
�(·):

p(zik | ci, c
0
i) = �((Qen

ik )T C̄), (2)

where Qen is a 3-dimensional tensor with each
dimension denotes W en, zik for a specific word
i in W en, and the corresponding latent variable,
respectively. Therefore, Qen

ik will retrieve the la-
tent variable of k-th sense of i-th English word.
Finally, we can induce the sense identity, z⇤

ik,
given the contexts of a word wi from different lan-
guages, ci and c0

i.

z⇤
ik = arg max

zik

p(zik | ci, c
0
i) (3)

In order to allow the module to explore other po-
tential sense identities, we apply an ✏-greedy al-
gorithm (Mnih et al., 2013) for exploration in the
training procedure.

3.3 Monolingual Sense Induction Module
This module is the degraded version of bilingual
sense induction module when ↵ = 1, which oc-
curs where no parallel bilingual signal exists. In
other words, every bilingual sense induction mod-
ule will experience the degradation during the
training process presented in Algorithm 1. The
only difference is that it cannot access the bilin-
gual information. The purpose of this module is
to maintain the stability of sense induction and to
decode the sampled bilingual sense identity which
will later be used in the bilingual sense representa-
tion learning module. As shown in Figure 1, given
the monolingual context of a word, this module
selects its sense identity using (2) and (3) with
↵ = 1.

3.4 Monolingual Sense Representation
Learning Module

Given the decoded sense identities from the
sense induction module, the skip-gram architec-
ture (Mikolov et al., 2013) is applied consider-
ing that it only requires two decoded sense iden-
tities for stochastic training. We first create an in-
put English sense representation matrix U en and
an English collocation estimation matrix V en as
the learning targets. Given a target word wi and
its collocated word wj in the t-th English sen-
tence Cen

t , we map them to their sense identities
as z⇤

ik = si and z⇤
jl = sj by the sense induction

module and maximize the sense collocation likeli-
hood. The skip-gram objective can be formulated
as p(sj | si):

p(sj | si) =
exp((U en

si
)T V en

sj
)

P
sk

exp((U en
si

)T V en
sk

)
, (4)

where sk iterates over all possible English sense
identities in the denominator. This formulation
shares the same architecture as skip-gram but ex-
tends to rely on senses. Note that the Chinese
sense representation learning module is built sim-
ilarly.

3.5 Bilingual Sense Representation Learning
Module

To ensure sense embeddings of two different lan-
guages align well, we hypothesize that the target
sense identity si not only predicts the sense iden-
tity sj of wj in Cen

t but also one sampled sense
identity s0

l of w0
l from the parallel sentence Czh

t ,
where s0

l is decoded by the Chinese monolingual
sense induction module. Specifically, the bilin-
gual skip-gram objective can be formulated using
the English sense embedding matrix U en and the
bilingual collocation estimation matrix V zh as:

p(s0
l | si) =

exp((U en
si

)T V zh
s0

l
)

P
s0

k
exp((U en

si
)T V zh

s0

k
)
, (5)

where s0
k iterates over all possible Chinese sense

identities in the denominator.

3.6 Joint Learning
In this learning framework, the gradient cannot
be back-propagated from the representation mod-
ule to the induction module due to the usage of
arg max operator. It is therefore desirable to con-
nect these two modules in a way such that they
can improve each other by their own estimations.
In one direction, forwarding the prediction of the
sense induction module to the sense representation
learning module is trivial, while in another direc-
tion, we treat the estimated collocation likelihood
as the reward for the induction module.

First note that calculating the partition func-
tion in the denominator of (4) and (5) is in-
tractable since it involves a computationally ex-
pensive summation over all sense identities. In
practice, we adopt the negative sampling strategy
technique (Mikolov et al., 2013) and rewrite (4)
and (5) as:
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log p(sj | si) = log �((U en
si

)T V en
sj

)+

NX

k=1

Esk⇠pneg(s)[�(�(U en
si

)T V en
sk

)],

(6)

log p(s0
l | si) = log �((U en

si
)T V zh

s0

l
)+

NX

k=1

Es0

k⇠pneg(s0)[�(�(U en
si

)T V zh
s0

k
)],

(7)

where pneg(s) and pneg(s0) is the distribution over
all English senses and all Chinese senses for nega-
tive samples respectively, and N is the number of
negative sample. The rewritten objective for op-
timizing two sense representation learning mod-
ules is the same as maximizing (6) and (7). More-
over, we can utilize the probability of correctly
classifying the skip-gram sense pair as the reward
signal. The intuition is that a correctly decoded
sense identity is more likely to predict its neigh-
boring sense identity compared to incorrectly de-
coded ones.

This learning framework can now be viewed
as a reinforcement learning agent solving one-
step Markov Decision Process (Sutton and Barto,
1998; Lee and Chen, 2017). For bilingual mod-
ules, the state, action, and reward correspond to
bilingual context C̄, sense zik, and �((U en

si
)T V zh

s0

l
)

respectively. As for the monolingual modules, the
state, action, and reward correspond to monolin-
gual context ct, sense zik, and �((U en

si
)T V en

sj
)).

Finally, we can optimize both bilingual and mono-
lingual sense induction modules (P and Q from
(2) by minimizing the cross entropy loss between
decoded sense probability and reward. We also in-
clude an entropy regularization term as suggested
in (Šuster et al., 2016) to let the sense induction
module converge faster and make more confident
predictions. Formally,

min H(�((U en
si

)T V zh
s0

l
), p(zik | ci, c

0
i))

+ �E(p(zik | ci, c
0
i))

(8)

min H(�((U en
si

)T V en
sj

), p(zik | ci))

+ �E(p(zik | ci)) (9)

E is the entropy of selection probability weighted
by �. Note that the major language is switched

Algorithm 1 Bilingual Sense Embedding Learn-
ing Algorithm
Input: Cen, Czh, W en, W zh

Output: P en, P zh, Qen, Qzh, Uen, Uzh, V en, V zh

1: loop until converge
2: MAIN(en, zh, 0.4) . 0.4 is just an example weight
3: MAIN(zh, en, 0.4)
4: end loop
5: function MAIN(maj, bi, ↵)
6: t, i, j, k, l GETTRAINDATA(maj)
7: si, predi  INDUCESENSE(maj, bi, t, i, ↵)
8: sj ,  INDUCESENSE(maj, bi, t, j, ↵)
9: s0

l, pred0

l  INDUCESENSE(bi, bi, t, k, 1.0)
10: s0

k,  INDUCESENSE(bi, bi, t, l, 1.0)
11: r  TRAINSRL(maj, maj, si, sj)
12: r0

 TRAINSRL(maj, bi, si, s0

l)
13: r00

 TRAINSRL(bi, bi, s0

l, s0

k)
14: TRAINSI(maj, bi, r, predi)
15: TRAINSI(maj, bi, r0, predi)
16: TRAINSI(bi, bi, r00, pred0

l)
17: end function
18: function INDUCESENSE(maj, bi, t, i, ↵)
19: calculate ↵-weighted C̄ by (1)
20: select z⇤

ik by (2) and (3)
21: return z⇤

ik, p(z⇤

ik | C̄)
22: end function
23: function TRAINSRL(maj, bi, si, sj)
24: if maj==bi then
25: optimize Umaj , V maj by (6) given si, sj

26: else
27: optimize Umaj , V bi by (7) given si, sj

28: end if
29: return collocation prob of (si, sj)
30: end function
31: function TRAINSI(maj, bi, r, pred)
32: if maj==bi then
33: optimize P maj , Qmaj by (9) given r, pred
34: else
35: optimize P maj , Qbi by (8) given r, pred
36: end if
37: end function

iteratively among two languages. Algorithm 1
presents the full learning procedure.

4 New Dataset—Bilingual Contextual
Word Similarity (BCWS)

We propose a new dataset to measure the bilingual
contextual word similarity. English and Chinese
are chosen as our language pair for three reasons:

1. They are the top widely used languages in the
world.

2. English and Chinese belong to completely
different language families, making it inter-
esting to explore syntactic and semantic dif-
ference among them.

3. Chinese is a language that requires segmen-
tation, this dataset can also help researchers
experiment on different segmentation levels
and investigate how segmentation affects the
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English Sentence Chinese Sentence Score
Judges must give both sides an equal ⌘^8úa⇡↵Eã�É<JJJ444>⌘⌘�õ 7.00
opportunity to <state> their cases. ÕÅÑ_:⇥ (I like this story a lot, which

<tells> us some important inspiration.)
It was of negligible <importance> prior √ëË≈äÑ⇣2 È�ªB/¯v<ÕÕÕÅÅÅ> 6.94
to 1990, with antiquated weapons and Ñ⇥ (The prevention and early treatment of
few members. macular lesions is very <important>.)
Due to the San Andreas Fault bisecting 4ú$�∆<Nà✏�� ∫∑⇡<∑∑∑>® 3.70
the hill, one side has <cold> water, the �2˙�`�gL�Ñ<^⌥⌘JÜ~Â⇥
other has hot. (The owner of the fruit stall seemed surprised

that someone bought this <unpopular> product,
talking me few words about “you are such a pro”.)

Table 1: Sentence pair examples and average annotated scores in BCWS.

sense similarity.
This dataset also provides a direct measure to
determine whether the two language embeddings
align well in the vector space. Note that we focus
on word-level, and this is different from (Klemen-
tiev et al., 2012), which also measured the cross-
lingual embedding similarity but rely on the am-
biguous document-level classification.

Our dataset contains 2093 question pairs, where
each pair consists of exactly one English and one
Chinese sentence; note that they are not parallel
but with their own sentential contexts shown in
Table 1. Eleven raters2 were recruited to anno-
tate this dataset. Each rater gives a score ranging
from 1.0 (different) to 10.0 (same) for each ques-
tion to indicate the semantic similarity of bilingual
word pairs based on sentential clues. The anno-
tated dataset shows very high intra-rater consis-
tency; we leave one rater out and calculate Spear-
man correlation between the rater and the average
of the rest, and the average number is about 0.83,
indicating the human-level performance (the aver-
age number in SCWS is 0.52).

We describe the construction of BCWS below.

Chinese Multi-Sense Word Extraction We uti-
lize the Chinese Wikipedia dump to extract the
most frequent 10000 Chinese words that are
nouns, adjective, and verb based on Chinese
Wordnet (Huang et al., 2010). In order to test
the sense-level representations, we discard single-
sense words to ensure that the selected words are
polysemous. Also, the words with more than 20
senses are deleted, since those senses are too fine-

2They are all Chinese native speaker whose scores are at
least 29 in the TOEFL reading section or 157 in the GRE
verbal section.

grained and even hard for human to disambiguate.
We denote the list of Chinese words lc.

English Candidate Word Extraction We have
to find an English counterpart for each Chinese
word in lc. We utilize BabelNet (Navigli and
Ponzetto, 2010), a free and open-sourced knowl-
edge resource, to serve as our bilingual dictionary.
To be more concrete, we first query the selected
Chinese word using the free API call provided by
Babelnet to retrieve all WordNet senses3. For ex-
ample, the Chinese word “6�” has two major
meanings:

• a type of clothing worn by members of an or-
ganization

• force to submit or subdue.

Hence, we can obtain two candidate English
words “uniform” and “subjugate”. Each word in
lc retrieves its associated English candidate words
and obtain the dictionary D.

Enriching Semantic Relationship Note that D
is merely a simple translation mapping between
Chinese and English words. It is desirable that we
have a more complicated and interesting relation-
ship between bilingual word pairs. Hence, we tra-
verse D and for each English word we find its hy-
ponyms, hypernyms, holonyms and attributes, and
add the additional words into D. In our example,
we may obtain {6�:[uniform, subjugate, livery,
clothing, repress, dominate, enslave, dragoon...]}.
We sample 2 English words if the number of En-
glish candidate words is more than 5, 3 English
words if more than 10, and 1 English word oth-

3BabelNet contains sense definitions from various re-
sources such as Wordnet, Wikitionary, Wikidata, etc
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erwise to form the final bilingual pair. For ex-
ample, a bilingual word pair (6�, enslave) can
be formed accordingly. After this step, we obtain
2093 bilingual word pairs P .

Adding Contextual Information Given the
bilingual word pairs P , appropriate contexts
should be found in order to form the full sentences
for human judgment. For each Chinese word, we
randomly sample one example sentence in Chi-
nese WordNet that matches the PoS tag we se-
lected in section 4. For each English word, we
traverse the whole English Wikipedia dump to find
the sentences that contain the target English word.
We then sample one sentence where the target
word is tagged as the matched PoS tag4.

5 Experiments

5.1 Experimental Setup
Two sets of parallel data are used in the ex-
periments, one for English-Chinese (EN-ZH)
and another for English-German (EN-DE). UM-
corpus (Tian et al.) is used for EN-ZH train-
ing, while Europarl corpus (Koehn, 2005) is
used for EN-DE training. UM-corpus contains
15,764,200 parallel sentences with 381,921,583
English words and 572,277,658 unsegmented Chi-
nese words. Europarl contains 1,920,209 par-
allel sentences with 44,548,491 German words
and 47,818,827 English words. We evaluate our
proposed model on the benchmark monolingual
dataset, SCWS, and on the bilingual dataset, our
proposed BCWS, where the evaluation metrics are
actually introduced in section 5.4.

5.2 Hyperparameter Settings
In our experiments, we use a mini-batch size of
512, context window size for major language is
set to m = 5 and we sample M = 20 words for
bilingual context. For the exploration of sense in-
duction module, we set ✏ = 0.05. The � of en-
tropy regularization is set to 1.5 For negative sam-
pling in (6) and (7), we pick N = 25. The fixed
learning rate is set to 0.025. The embedding di-
mension is 300 and the sense number per word is
set to 3 for both Chinese, German, and English
(|Zi| = 3). This setting is for a fair comparison
with prior works.

4We use the NLTK PoS tagger to obtain the tags.
5We tried different values of � = 0.001, 0.5, and the

model converges approximately 12, 5 times slower compared
to � = 1.

5.3 Baseline
The baselines for comparison can be categorized
into three:

• Monolingual sense embeddings: Lee and
Chen (2017) is the current state-of-the-art
model of monolingual sense embedding eval-
uated on SCWS. We re-train the sense em-
beddings using the same data but only in En-
glish for fair comparison.

• Cross-lingual word embeddings: Luong et al.
(2015) treated words from different lan-
guages the same and trained cross-lingual
embeddings in the same space. Conneau
et al. (2017) utilized adversarial training to
map pretrained word embeddings into an-
other language space.

• Cross-lingual sense embeddings: Upadhyay
et al. (2017) utilized more than two languages
to learn multilingual embeddings. We report
the number shown in the paper for compari-
son.

5.4 Evaluation Metric
Reisinger and Mooney (2010) introduced two
contextual similarity estimations, AvgSimC and
MaxSimC. AvgSimC is a soft measurement that
addresses the contextual information with a prob-
ability estimation:

AvgSimC(wi, C̄t, wj , C̄t0) =

|Zi|X

k=1

|Zj |X

l=1

⇡(zik|C̄t)⇡(zjl|C̄t0)d(zik, zjl),

AvgSimC weights the similarity measurement
of each sense pair zik and zjl by their probabil-
ity estimations. On the other hand, MaxSimC is
a hard measurement that only considers the most
probable senses:

MaxSimC(wi, C̄t, wj , C̄t0) = d(zik, zjl),

zik = arg max
zik0

⇡(zik0 |C̄t),

zjl = arg max
zjl0

⇡(zjl0 |C̄t0).

d(zik, zjl) refers to the cosine similarity between
Umaj

zik and U bi
zjl

in the bilingual case (BCWS) and
Umaj

zik and Umaj
zjl in the monolingual case (SCWS).

5.5 Bilingual Embedding Evaluation
Cross-lingual sense embeddings are the main con-
tribution of this paper. Table 2 shows that all re-
sults from the proposed model are significantly
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Model ↵
EN-ZH EN-DE

Bilingual/BCWS Mono(EN)/SCWS Mono(EN)/SCWS
1) Monolingual Sense Embeddings
Lee and Chen (2017) 66.8 / 65.5 63.8 / 63.4
2) Cross-Lingual Word Embeddings
Luong et al. (2015) 49.2 61.1 62.1
Conneau et al. (2017) 52.5 65.5 64.0
3) Cross-Lingual Sense Embeddings
Upadhyay et al. (2017) - 45.0? -
Proposed 0.1 55.8 / 55.8 65.6 / 65.6 63.8 / 63.9

0.3 55.7 / 55.7 64.9 / 65.1 63.8 / 64.0
0.5 56.3 / 56.3 65.8 / 66.0 63.6 / 63.9
0.7 56.7 / 56.7 65.6 / 65.8 63.1 / 63.2
0.9 56.0 / 56.0 66.0 / 66.2 62.9 / 63.1

Table 2: Contextual similarity results evaluated on the SCWS/BCWS dataset, where the reported numbers
indicate Spearman’s rank correlation ⇢ ⇥ 100 on AvgSimC / MaxSimC. ? indicates that Upadhyay et al.
(2017) trained the sense embeddings using a different parallel dataset.

better than the baselines that learn cross-lingual
word embeddings. It indicates that the sense-level
information is critical for precise vector represen-
tations. In addition, all results for AvgSimC and
MaxSimC are the same in the proposed model,
showing that the learned selection distribution is
reliable for sense decoding.

5.6 Monolingual Embedding Evaluation

Because our model considers multiple languages
and learns the embeddings jointly, the multilin-
gual objective makes learning more difficult due
to more noises. In order to ensure the quality of
the monolingual sense embeddings, we also eval-
uate our learned English sense embeddings on the
benchmark SCWS data. Comparing the results be-
tween training on EN-ZH and training on EN-DE,
all results using EN-ZH are better than ones us-
ing EN-DE. The probable reason is that the lan-
guage difference between English and Chinese is
larger than English and German; parallel Chinese
sentences therefore provide informative cues for
learning better sense embeddings. Furthermore,
our proposed model achieves comparable or supe-
rior performance than the current state-of-the-art
monolingual sense embeddings proposed by Lee
and Chen (2017) when trained on our monolingual
data.

5.7 Sensitivity of Bilingual Contexts

To investigate how much the bilingual sense in-
duction module relies on another language, the re-

Model EN2DE DE2EN
1) Sentence-Level Training
Hermann and Blunsom (2014) 83.7 71.4
AP et al. (2014) 91.8 72.8
Wei and Deng (2017) 91.0 80.4
2) Word-Level Training
Klementiev et al. (2012) 77.7 71.1
Gouws et al. (2015) 86.5 75.0
Kočiskỳ et al. (2014) 83.1 75.4
Shi et al. (2015) 91.3 77.2
Luong et al. (2015) 86.4 75.6
Conneau et al. (2017) 78.7 67.1
Proposed 81.8 76.0

Table 3: Accuracy on cross-lingual document clas-
sification (%).

sults with different ↵ are shown in the table.
To justify the usefulness of utilizing bilingual

signal, we compare our model with Lee and Chen
(2017), which used monolingual signal in a sim-
ilar modular framework. Our method outper-
forms theirs in terms of MaxSimC on both EN-ZH
and EN-DE. However, this trend is not observed
on AvgSimC. The reason may be that bilingual
signal is indicative but noisy, which largely af-
fects AvgSimC due to its weighted sum operation.
MaxSimC only picks the most probable senses,
which makes it robust to noises.

In addition, our performance slightly degrades
as ↵ increases for EN-DE, and the best perfor-
mance is obtained when ↵ is small, indicating that
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Target kNN Senses (EN) kNN Senses (ZH)
apple 0 fruit, cake, sweet ↵ú,%),À’, iphone,fiÀ,ÁKõ,a⌅

(apple, spring, cake, iphone, egg, chocolate, purples)
apple 1 iphone, cake, google, stores ↵ú, iphone,Æfl,ˆ-�K,%),7L

(apple, iphone, microsoft, competitor, spring, google)
uniform 0 dressed, worn, tape, wearing, cloth G˚,I—,c�,ãP,�W,�›

(even, smooth, clothes, shoes, wearing, clothing)
uniform 1 particle, computed, varying, gradient K,â+,1⌘,I‚P‘,j⌥,[¶

(phase, powder, longitudinal, plasma, cut, stiffness)

Table 4: Words with similar senses obtained by kNN.

bilingual signal does help. However, this trend is
not observed on EN-ZH, because English is very
different from Chinese, such that it can benefit lit-
tle from Chinese than from German.

5.8 Extrinsic Evaluation

We further evaluate our bilingual sense embed-
dings using a downstream task, cross-lingual doc-
ument classification (CLDC), with a standard
setup (Klementiev et al., 2012). To be more con-
crete, a set of labeled documents in language A is
available to train a classifier, and we are interested
in classifying documents in another language B at
test time, which tests semantic transfer of informa-
tion across different languages. We use the aver-
aged sense embeddings as word embeddings for a
fair comparison.

The result is shown in Table 3. We can see that
our proposed model achieves comparable perfor-
mance or even superior performance to most prior
work on the DE2EN direction; however, the same
conclusion does not hold for the EN2DE direc-
tion. The reason may be that we test the model
that works best on BCWS and hence not able to
tune hyperparameters on the development set of
CLDC. In addition, we use the average of sense
vectors as input word embeddings, which may in-
duce some noises into the resulting vectors. In
sum, the comparable performance of the down-
stream task shows the practical usage and the po-
tential extension of the proposed model.

5.9 Qualitative Analysis

Some examples of our learned sense embeddings
are shown in Table 4. It is obvious to see that
the first sense of Apple is related to fruit and
things to eat, while the second one means the tech
company Apple Inc. Most English and Chinese
nearest neighbors match the meanings of the in-

duced senses, but there are still some noises that
are underlined. For example, cake should be the
neighbor of the first sense rather than the sec-
ond one. The same observation applies to iphone
and spring. In our second example for uniform,
the first sense is related to outfit and clothes, while
the second is related to engineering terms. How-
ever, even appears in the outfit and clothes sense,
which is incorrect. The reason may be that the
size of the parallel corpus is not large enough for
the model to accurately distinguish all senses via
unsupervised learning. Hence, utilizing external
resources such as bilingual dictionaries or design-
ing a new model that can use existing large mono-
lingual corpora like Wikipedia can be our future
work.

6 Conclusion

This paper is the first purely sense-level cross-
lingual representation learning model with effi-
cient sense induction, where several monolingual
and bilingual modules are jointly optimized. The
proposed model achieves superior performance on
both bilingual and monolingual evluation datasets.
A newly collected dataset for evaluating bilingual
contextual word similarity is presented, which
provides potential research directions for future
work.
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Tomáš Kočiskỳ, Karl Moritz Hermann, and Phil Blun-
som. 2014. Learning bilingual word representa-
tions by marginalizing alignments. arXiv preprint
arXiv:1405.0947.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Guang-He Lee and Yun-Nung Chen. 2017. MUSE:
Modularizing unsupervised sense embeddings. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
327–337.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1722–1732.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing, pages 151–159.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of Advances in neural informa-
tion processing systems, pages 3111–3119.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. NIPS Deep Learning
Workshop.

Roberto Navigli and Simone Paolo Ponzetto. 2010.
Babelnet: Building a very large multilingual seman-
tic network. In Proceedings of the 48th annual meet-
ing of the association for computational linguistics,
pages 216–225. Association for Computational Lin-
guistics.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117. Association for Computational Lin-
guistics.

Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong Sun.
2015. Learning cross-lingual word embeddings via
matrix co-factorization. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint

280



Conference on Natural Language Processing (Vol-
ume 2: Short Papers), volume 2, pages 567–572.
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Abstract
Semantic specialization is a process of fine-
tuning pre-trained distributional word vectors
using external lexical knowledge (e.g., Word-
Net) to accentuate a particular semantic re-
lation in the specialized vector space. While
post-processing specialization methods are ap-
plicable to arbitrary distributional vectors, they
are limited to updating only the vectors of
words occurring in external lexicons (i.e., seen
words), leaving the vectors of all other words
unchanged. We propose a novel approach to
specializing the full distributional vocabulary.
Our adversarial post-specialization method
propagates the external lexical knowledge to
the full distributional space. We exploit words
seen in the resources as training examples for
learning a global specialization function. This
function is learned by combining a standard
L2-distance loss with a adversarial loss: the
adversarial component produces more realis-
tic output vectors. We show the effectiveness
and robustness of the proposed method across
three languages and on three tasks: word sim-
ilarity, dialog state tracking, and lexical sim-
plification. We report consistent improvements
over distributional word vectors and vectors
specialized by other state-of-the-art special-
ization frameworks. Finally, we also propose
a cross-lingual transfer method for zero-shot
specialization which successfully specializes a
full target distributional space without any lex-
ical knowledge in the target language and with-
out any bilingual data.

1 Introduction

Word representation learning is a mainstay of mod-
ern Natural Language Processing (NLP), and its
usefulness has been proven across a wide spectrum
of NLP applications (Collobert et al., 2011; Chen
and Manning, 2014; Melamud et al., 2016b, inter
alia). Standard distributional word vector models

⇤Both authors equally contributed to this work.

are grounded in the distributional hypothesis (Har-
ris, 1954), that is, they leverage information about
word co-occurrences in large text corpora (Mikolov
et al., 2013; Pennington et al., 2014; Levy and Gold-
berg, 2014; Bojanowski et al., 2017). This depen-
dence on contextual signal results in a well-known
tendency to conflate semantic similarity with other
types of semantic association (Hill et al., 2015;
Schwartz et al., 2015; Vulić et al., 2017) in the
induced word vector spaces.1

A common remedy is to move beyond purely
unsupervised word representation learning, in a
process referred to as semantic specialization or
retrofitting. Specialization methods exploit lexical
knowledge from external resources, such as Word-
Net (Fellbaum, 1998) or the Paraphrase Database
(Ganitkevitch et al., 2013) to refine the seman-
tic properties of pre-trained vectors and specialize
the distributional spaces for a particular relation,
e.g., synonymy (i.e., true similarity) (Faruqui et al.,
2015; Mrkšić et al., 2017) or hypernymy (Nickel
and Kiela, 2017; Nguyen et al., 2017; Vulić and
Mrkšić, 2018).

The best-performing specialization models (cf.
Mrkšić et al. 2017) are deployed as post-processors
of the vector space: distributional vectors are fine-
tuned to satisfy linguistic constraints extracted
from external resources to offer improved support
to downstream NLP applications (Faruqui, 2016).
Such models are versatile as they can be applied
to arbitrary distributional spaces, but they have a
major drawback: they locally update only vectors
of words present in linguistic constraints (i.e., seen
words), whereas vectors of all other (i.e., unseen)
words remain intact (see Figure 1).

1For instance, it is difficult to discern synonyms from
antonyms in distributional vector spaces: this has a negative
impact on language understanding tasks such as statistical dia-
log modeling or text simplification (Glavaš and Štajner, 2015;
Faruqui et al., 2015; Mrkšić et al., 2016; Kim et al., 2016)

282



Source Target

1. Initial specialization

Seen

Seen
2.

 A
dv

er
sa

ria
l p

os
t-s

pe
ci

al
iz

at
io

n

Seen

3. Zero-shot specialization transfer

Specialized word vectors
Distributional word vectors

Figure 1: High-level illustration of the adversarial
post-specialization process and cross-lingual zero-
shot specialization, described in detail in §2.

Vulić et al. (2018) have recently proposed a
model which, based on the updates of vectors of
seen words, learns a global specialization func-
tion that can be applied to the large subspace of
unseen words. Their global method, termed post-
specialization and implemented as a deep feed-
forward network, effectively specializes all distri-
butional vectors.

In this paper, we propose a new approach to
post-specialization which addresses the following
two research questions: a) Is it possible to use a
more sophisticated learning approach to yield more
realistic specialized vectors for the full vocabu-
lary? b) Given that specialization methods inher-
ently require a large number of constraints, is it
possible to specialize distributional word vectors
where such resources are scarce or non-existent?
Our novel model learns the global specialization
function by casting the feed-forward specialization
network as a generator component of an adversar-
ial architecture, see Figure 2. The corresponding
discriminator component learns to discern original
specialized vectors (produced by any local special-
ization model) from vectors produced by transform-
ing distributional vectors with the feed-forward
post-specialization network (i.e., the generator).

We show that the proposed adversarial model
yields state-of-the-art performance on standard
word similarity benchmarks, outperforming the
post-specialization model of Vulić et al. (2018).
We further demonstrate the effectiveness of the pro-

posed model in two downstream tasks: lexical text
simplification and dialog state tracking. Finally,
we demonstrate that, by coupling our adversarial
specialization model with any unsupervised model
for inducing bilingual vector spaces, such as the
algorithm proposed by Conneau et al. (2018), we
can successfully perform zero-shot language trans-
fer of the specialization, that is, we can specialize
distributional spaces of languages without any lin-
guistic constraints in those languages, and without
any bilingual data.

2 Methodology

The post-specialization procedure (Vulić et al.,
2018) is a two-step process. First, a subspace of
vectors for words observed in external resources
is fine-tuned using any off-the-shelf specializa-
tion model, such as the original retrofitting model
(Faruqui et al., 2015), counter-fitting (Mrkšić et al.,
2016), dLCE (Nguyen et al., 2016), or state-of-the-
art ATTRACT-REPEL (AR) specialization (Mrkšić
et al., 2017; Vulić et al., 2017). We outline the
initial specialization algorithms in §2.1. In the sec-
ond step, the initial specialization is propagated
to the entire vocabulary, including words not ob-
served in the resources, relying on an adversarial
architecture augmented with a distance loss. This
adversarial post-specialization model, compatible
with any specialization model, is described in §2.2.

Finally, in §2.3, we introduce a cross-lingual
zero-shot specialization model which transfers the
specialization to a target language without any lexi-
cal resources. An overview of the proposed method-
ology from this section is provided in Figure 1.

2.1 Initial Specialization

Linguistic Constraints. Adopting the nomencla-
ture from Mrkšić et al. (2017), post-processing
models are generally guided by two broad sets of
constraints: 1) ATTRACT constraints specify which
words should be close to each other in the fine-
tuned vector space (e.g. synonyms like graceful
and amiable); 2) REPEL constraints describe which
words should be pulled away from each other (e.g.
antonyms like innocent and sinful). Earlier post-
processors (Faruqui et al., 2015; Jauhar et al., 2015;
Wieting et al., 2015) operate only with ATTRACT
constraints, and are thus not suited to model both
aspects contributing to the specialization process.

We first outline the state-of-the-art ATTRACT-
REPEL specialization model (Mrkšić et al., 2017)
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which leverages both sets of constraints. Here, we
again stress two important aspects relevant to our
post-specialization model: a) all initial specializa-
tion models fine-tune only representations for the
subspace of words seen in the external constraints,
while all other words remain unaffected by spe-
cialization; b) post-specialization is not tied to
ATTRACT-REPEL in particular; it is applicable on
top of any other post-processor.2

Specialization of Seen Words. The key idea is
to inject the knowledge from linguistic constraints
into pre-trained distributional word vectors. Given
a set A of ATTRACT word pairs and a set R of
REPEL word pairs, each word pair (vl, vr) from the
vocabulary Vs of seen words present in these sets
can be represented as a vector pair (xl, xr).

The optimization is driven by mini-batches
of ATTRACT pairs BA (batch size kA), and of
REPEL pairs BR (size kR). For both of these,
two sets of negative example pairs of equal size
are drawn from the 2(kA + kR) vectors oc-
curring in BA and BR. This defines the mini-
batches TA(BA) = [(t1

l , t
1
r) . . . (tkA

l , tkA
r )] and

TR(BR) = [(t1
l , t

1
r) . . . (tkR

l , tkR
r )]. Negative ex-

amples tl and tr for ATTRACT (or REPEL) pairs are
the nearest (or farthest) neighbours by cosine sim-
ilarity to xl and xr, respectively. They ensure that
the paired vectors for words in the constraints are
closer to each other (or more distant for antonyms)
than to their respective negative examples.

The overall objective function consists of three
terms. The first term pulls ATTRACT pairs together:

Att(BA, TA) =
kAX
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⌧(z) = max(0, z) is the standard rectifier (Nair and
Hinton, 2010). �A is the ATTRACT margin: it speci-
fies the tolerance for the difference between the two
distances (with the other pair member and with the
negative example). The second term, Rep(BR, TR),
is similar but now pushes REPEL pairs away from
each other, relying on the REPEL margin �R:

2We have empirically validated the robustness of the pro-
posed adversarial post-specialization by applying it also on top
of other post-processing methods: retrofitting (Faruqui et al.,
2015) and counter-fitting (Mrkšić et al., 2016). For brevity,
we only report the (best) results with ATTRACT-REPEL, the
best-performing initial/local specialization model.
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The final term is tasked to preserve the quality of
the original vectors through L2-regularization:

Pre(BA, BR) =
X

xi2BA[BR

�P ||yi � xi||2 (3)

yi is the vector specialized from the original dis-
tributional vector xi, and �P is a regularization
hyper-parameter. The optimizer finally minimizes
the following objective: LAR = Att(BA, TA) +
Rep(BR, TR) + Pre(BA, BR).

2.2 Adversarial Post-Specialization
Motivation. The AR method affects only a sub-
set of the full vocabulary V , and consequently only
a (small) subspace of the original space X (see Fig-
ure 1). In particular, it specializes the embeddings
Xs corresponding to Vs, the vocabulary of words
observed in the constraints. It leaves the embed-
dings Xu corresponding to all other (unseen) words
Vu identical.

Nevertheless, the perturbation underwent by the
original observed embeddings can provide evi-
dence about the general effects of specialization. In
particular, it allows to learn a global mapping func-
tion f : X 2 R

d ! Y 2 R
d for d-dimensional vec-

tors. The parameters for this function can be trained
in a supervised fashion from pairs of original and
initially specialized word embeddings (x(s)

i , y(s)
i )

from Vs, as illustrated by Figure 2. Subsequently,
the mapping can be applied to distributional word
vectors xu from the vocabulary of unseen words
Vu to predict ŷu, their specialized counterpart. This
procedure, called post-specialization, effectively
propagates the information stored in the external
constraints to the entire word vector space.

However, this mapping should not just model
the inherent transformation, but also ensure that
the resulting vector is ‘natural’. In particular, as-
suming that word representations lie on a manifold,
the mapping should return one of its values. The
intuition behind our formulation of the training ob-
jective is that: a) an L2-distance loss can retrieve
a faithful mapping whereas b) an adversarial loss
can prevent unrealistic outputs, as already proven
in the the visual domain (Pathak et al., 2016; Ledig
et al., 2017; Odena et al., 2017).
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Figure 2: Architecture of the AuxGAN: an adversarial generator-discriminator loss (above) is combined
with a max-margin L2-distance loss with random confounders (below).

Objective Function. The pairs of original and
specialized embeddings for seen words allow to
train the global mapping function. In principle,
this can be any differentiable parametrized func-
tion G(x; ✓G). Vulić et al. (2018) showed that non-
linear functions ensure a better mapping than linear
transformations which seem inadequate to mimic
the complex perturbations of the specialization pro-
cess, guided by possibly millions of pairwise con-
straints. Our preliminary experiments corroborate
this intuition. Thus, in this work we also opt for
implementing G(x; ✓G) as a deep neural network.
Each of the l hidden layers of size h non-linearly
transforms its input. The output layer is a linear
transformation into the prediction ŷ 2 Rd.

The parameters ✓G are learned by minimizing
the L2 distance between the training pairs. In partic-
ular, the loss is a contrastive margin-based ranking
loss with negative sampling (MM) as proposed by
Weston et al. (2011, inter alia). The gist of this
loss is that the first component increases the cosine
similarity cos of predicted and initially specialized
vectors of the same word up to a margin �MM . On
the other hand, the second component encourages
the predicted vectors to distance themselves from k
random confounders. These are negative examples
sampled uniformly from the batch B excluding the
current vector:

LMM =

||Vs||X

i=1

kX

j=1|j 6=i

⌧ [�MM �cos(G(x(s)
i ; ✓G),y(s)

i )+

+ cos(G(x(s)
i ; ✓G),y(s)

j )] (4)

One of the original contributions of this work is
combining the L2 distance with an adversarial loss,
resulting in an auxiliary-loss Generative Adversar-
ial Network (AuxGAN) as shown in Figure 2. The
role of the adversarial component, as mentioned
above, is to ‘soften’ the mapping and guarantee
realistic outputs from the target distribution.

The mapping can be considered a generator
G(x|✓G). On top of this, a discriminator D(x|✓D),
implemented also as a multi-layer neural net, tries
to distinguish whether a vector is sampled from the
predicted vectors or the AR-specialized vectors. Its
output layer performs binary classification through
softmax. The objective minimizes the loss LD:

LD = �

nX

i=1

log P (specialized = 0|G(xi; ✓G); ✓D)�

�

mX

i=1

log P (specialized = 1|yi; ✓D) (5)

In a two-player game (Goodfellow et al., 2014),
the generator is trained to fool the discriminator by
maximizing log(1 � P (0|G(xi; ✓G); ✓D)). How-
ever, to avoid vanishing gradients of G early on,
the loss LG is reformulated by swapping the labels
of Eq. (5) as follows:

LG = �

nX

i=1

log P (specialized = 1|G(xi; ✓G); ✓D)�

�

mX

i=1

log P (specialized = 0|yi; ✓D) (6)

During the optimization procedure through stochas-
tic gradient descent, we alternate among s steps for
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LD, one step for LG, and one step for LMM to
avoid the overfitting of D. The reason why s � 1
is that D can be kept close to a minimum of its loss
function by updating G less frequently.

2.3 Zero-shot Transfer to Other Languages

Once the AuxGAN has learned a global mapping
function G(x; ✓G) in a resource-rich language, it
can be directly applied to unseen words. In this
work, we propose a method to additionally post-
specialize the whole vocabulary Vt of a resource-
poor target language. We assume a real-world sce-
nario where no target language constraints are avail-
able to specialize it directly.

What is more, we assume that no bilingual
data or dictionaries are available either. Hence, we
rely on unsupervised cross-lingual word embed-
ding induction, and in particular on Conneau et al.
(2018)’s method. By virtue of these assumptions,
there is no limitation to the range of potential tar-
get languages that can be specialized. Incidentally,
please note that the proposed transfer method is
equally applicable on top of other cross-lingual
word embedding induction methods. These may re-
quire more bilingual supervision to learn the cross-
lingual vector space.3

After learning the shared cross-lingual word em-
bedding space in an unsupervised fashion (Con-
neau et al., 2018), the global post-specialization
function learnt on the seen source language vectors
is applied to the target language vectors, since they
lie in the same shared space (see Figure 1 again).
By virtue of the transfer, linguistic constraints in
the source language can enhance the distributional
vectors of target language vocabularies.

Conneau et al. (2018) learn a shared cross-
lingual vector space as follows. They first learn
a coarse initial mapping between two monolin-
gual embedding spaces in two different languages
through a GAN where the generator is a linear trans-
formation with an orthogonal matrix Ŵ. Its loss is
identical to Eq. (5) and Eq. (6), but unlike our Aux-
GAN model it discriminates between embeddings
drawn from the source language and the target lan-
guage distributions. Using the shared space, they
extract for each source vector the closest target
vector according to a distance metric designed to
mitigate the hubness problem (Radovanović et al.,

3See the recent survey papers on cross-lingual word em-
beddings and their typology (Upadhyay et al., 2016; Vulić and
Korhonen, 2016; Ruder et al., 2017)

2010), the Cross-Domain Similarity Local Scaling
(CSLS).

This creates a bilingual synthetic dictionary that
allows to further refine the coarse initial mapping.
In particular, the optimal parameters for the lin-
ear mapping minimizing the L2-distance between
source-target pairs are provided by the closed-form
Procrustes solution (Schönemann, 1966) based on
singular value decomposition (SVD):

Ŵ = arg minW ||W Xt � Xs||F = UV>

U⌃V
> = SVD(XtX

>

s ) (7)

where || · ||F is the Frobenius norm. After mapping
the original target embeddings into the shared space
with this method, we post-specialize them with
the function outlined in §2.2, learnt on the source
language. This yields the specialized target vectors
Ŷt = G(Ŵ Xt; ✓G).

3 Experimental Setup

Distributional Vectors. We estimate the robust-
ness of adversarial post-specialization by experi-
menting with three widely used collections of dis-
tributional English vectors. 1) SGNS-W2 vectors
are trained on the cleaned and tokenized Polyglot
Wikipedia (Al-Rfou et al., 2013) using Skip-Gram
with Negative Sampling (SGNS) (Mikolov et al.,
2013) by Levy and Goldberg (2014) with bag-of-
words contexts (window size is 2). 2) GLOVE-CC
are GloVe vectors trained on the Common Crawl
(Pennington et al., 2014). 3) FASTTEXT are vec-
tors trained on Wikipedia with a SGNS variant that
builds word vectors by summing the vectors of their
constituent character n-grams (Bojanowski et al.,
2017). All vectors are 300-dimensional.4

Constraints and Initial Specialization. We ex-
periment with the sets of linguistic constraints
used in prior work (Zhang et al., 2014; Ono et al.,
2015; Vulić et al., 2018). These constraints, ex-
tracted from WordNet (Fellbaum, 1998) and Ro-
get’s Thesaurus (Kipfer, 2009), comprise a total
of 1,023,082 synonymy/ATTRACT word pairs and
380,873 antonymy/REPEL pairs.

Note that the sets of constraints cover only a frac-
tion of the full distributional vocabulary, providing
direct motivation for post-specialization methods

4Experiments with other standard word vectors, such as
CONTEXT2VEC (Melamud et al., 2016a) and dependency-
based embeddings (Bansal et al., 2014) show similar trends
and lead to same conclusions.
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which are able to specialize the full vocabulary. For
instance, only 15.3% of the SGNS-W2 vocabulary
words are seen words present in the constraints.5

The constraints are initially injected into the dis-
tributional vector space (see Figure 1 again) us-
ing ATTRACT-REPEL, a state-of-the-art specializa-
tion model, for which we adopt the original sug-
gested model setup (Mrkšić et al., 2017).6 Hyper-
parameter values are set to: �A = 0.6, �R = 0.0,
�P = 10�9. The models are trained for 5 epochs
with Adagrad (Duchi et al., 2011), with batch sizes
set to kA = kR = 50, again as in the original work.

AuxGAN Setup and Hyper-Parameters. Both
the generator and the discriminator are feed-
forward nets with l = 2 hidden layers, each of
size h = 2048, and LeakyReLU as non-linear ac-
tivation (Maas et al., 2013). The dropout for the
input and hidden layers of the generator is 0.2 and
for the input layer of the discriminator 0.1. In eval-
uation, the noise is blanketed out in order to ensure
a deterministic mapping (Isola et al., 2017). More-
over, we smooth the golden labels for prediction by
a factor of 0.1 to make the model less vulnerable
to adversarial examples (Szegedy et al., 2016).

We train our model with SGD for 10 epochs of
1 million iterations each, feeding mini-batches of
size 32. For each pair in a batch we generate 25
negative examples; s = 5 (see §2.2). As a way to
normalize the mini-batches (Salimans et al., 2016),
these are constructed to contain exclusively either
original or specialized vectors. At each epoch, the
initial learning rate of 0.1 is decayed by a factor
of 0.98, or 0.5 if the score on the validation set
(computed as the average cosine similarity between
the predicted and AR-specialized embeddings)7 has
not increased. The hyper-parameters k and �MM

are tuned via grid search on the validation set.

Zero-Shot Specialization Setup. The GAN dis-
criminator for learning a shared cross-lingual vec-
tor space (see §2.3) has hyper-parameters identical
to the AuxGAN. The generator instead is a linear
layer initialized as an identity matrix and enforced
to lie on the manifold of orthogonal matrices dur-
ing training (Cisse et al., 2017). No dropout is used.
The unsupervised validation metric for early stop-

5The respective coverage for the 200K most frequent
GLOVE-CC and FASTTEXT words is only 13.3% and 14.6%.

6https://github.com/nmrksic/
attract-repel

7The score is computed as the average cosine similarity
between the original and specialized embeddings.

ping is the cosine distance between dictionary pairs
extracted with the CSLS similarity metric.

4 Results and Discussion

4.1 Word Similarity
Evaluation Setup. We first evaluate adversarial
post-specialization intrinsically, using two standard
word similarity benchmarks for English: SimLex-
999 (Hill et al., 2015) and SimVerb-3500 (Gerz
et al., 2016), a dataset containing human similarity
ratings for 3,500 verb pairs.8 The evaluation mea-
sure is Spearman’s ⇢ rank correlation between gold
and predicted word pair similarity scores.

We evaluate word vectors in two settings, sim-
ilar to Vulić et al. (2018). a) In the synthetic DIS-
JOINT setting, we discard all linguistic constraints
that contain any of the words found in SimLex or
SimVerb. This means that all test words from Sim-
Lex and SimVerb are effectively unseen words, and
through this setting we are able to in vitro evaluate
the model’s ability to generalize the specialization
function to unseen words. b) In the FULL setting
we leverage all constraints. This is a standard “real-
life” scenario where some test words do occur in
the constraints, while the mapping is learned for
the remaining words. We use the FULL setting in
all subsequent downstream applications (§4.2).

We compare our model to ATTRACT-REPEL
(AR), which specializes only the vectors of words
occurring in the constraints. We also provide com-
parisons to a post-specialization model of Vulić
et al. (2018) which specializes the full vocabulary,
but substitutes the AuxGAN architecture from §2.2
with a deep 5-layer feed-forward neural net also
based on the max-margin loss (see Eq. (4)) to learn
the mapping function (POST-DFFN).

Results and Analysis. The results are summa-
rized in Table 1. The scores suggest that the pro-
posed adversarial post-specialization model is uni-
versally useful and robust: we observe gains over
input distributional word vectors for all three vec-
tor collections. The results in the DISJOINT set-
ting illustrate the core limitation of the initial
specialization/post-processing models and indicate
the extent of improvement achieved when general-
izing the specialization function to unseen words

8Unlike WordSim-353 (Finkelstein et al., 2002) or MEN
(Bruni et al., 2014), SimLex and SimVerb provide explicit
guidelines to discern between true semantic similarity and
(more broad) conceptual relatedness, so that related but non-
similar words (e.g. tiger and jungle) have a low rating.
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Setting: DISJOINT Setting: FULL

GLOVE-CC FASTTEXT SGNS-W2 GLOVE-CC FASTTEXT SGNS-W2

SL SV SL SV SL SV SL SV SL SV SL SV

Distributional (X) .407 .280 .383 .247 .414 .272 .407 .280 .383 .247 .414 .272
Specialized: ATTRACT-REPEL .407 .280 .383 .247 .414 .272 .781 .761 .764 .744 .778 .761
Post-Specialized: POST-DFFN .645 .531 .503 .340 .553 .430 .785 .764 .768 .745 .781 .763
Post-Specialized: AUXGAN .652 .552 .513 .394 .581 .434 .789 .764 .766 .741 .782 .762

Table 1: Spearman’s ⇢ correlation scores for three standard English distributional vectors spaces on
English SimLex-999 (SL) and SimVerb-3500 (SV). POST-DFFN (Vulić et al., 2018) uses a deep non-linear
feed-forward network to learn the mapping function f . AUXGAN is our adversarial model (see §2.2).

through adversarial post-specialization. Moreover,
the scores suggest that the more sophisticated ad-
versarial post-specialization method (AUXGAN)
outperforms POST-DFFN across a large number of
experimental runs, verifying its effectiveness.

We observe only modest and inconsistent gains
over ATTRACT-REPEL and POST-DFFN in the FULL
setting. However, the explanation of this finding
is straightforward: 99.2% of SimLex words and
99.9% of SimVerb words are present in the external
constraints, making this an unrealistic evaluation
scenario. The usefulness of the initial ATTRACT-
REPEL specialization is less pronounced in real-
life downstream applications in which such high
coverage cannot be guaranteed, as shown in §4.2.

4.2 Downstream Tasks

We next evaluate the embedding spaces specialized
with the AuxGAN method in two tasks in which
discerning semantic similarity from semantic relat-
edness is crucial: lexical text simplification (LS)
and dialog state tracking (DST).

4.2.1 Lexical Text Simplification
The goal of lexical simplification is to replace com-
plex words (typically words that are used less often
in language and are therefore less familiar to read-
ers) with their simpler synonyms, without infring-
ing the grammaticality and changing the meaning
of the text. Replacing complex words with related
words instead of true synonyms affects the original
meaning (e.g., Ferrari pilot Vettel vs Ferrari air-
plane Vettel) and often yields ungrammatical text
(e.g., they drink all pizzas).

LS Using Word Vectors. We use Light-LS, a
publicly available LS tool based on word embed-
dings (Glavaš and Štajner, 2015). Light-LS gener-
ates and then ranks substitution candidates based
on similarity in the input word vector space. The

GLOVE-CC FASTTEXT SGNS-W2

Vector space Acc Acc Acc

Distributional .660 .578 .560
Specialized: AR .676 .698 .644
Post-Specialized:
POST-DFFN .723 .723 .709
AUXGAN .717 .739 .721

Table 2: Lexical simplification results for three
(post-specialized) distributional spaces.

quality of the space thus directly affects LS per-
formance: by plugging any word vector space into
Light-LS, we extrinsically evaluate that embedding
space for LS. Furthermore, the better the embed-
ding space captures true semantic similarity, the
better the substitutions made by Light-LS.

Evaluation Setup. We use the standard LS
dataset of Horn et al. (2014). It contains 500 sen-
tences with indicated complex words (one word
per sentence) that have to be substituted with sim-
pler synonyms. For each word, simplifications were
crowdsourced from 50 human annotators. Follow-
ing prior work (Horn et al., 2014; Glavaš and Šta-
jner, 2015), we evaluate the performance of Light-
LS using the metric that quantifies both the quality
and the frequency of word replacements: Accur-
racy (Acc) metric is the number of correct sim-
plifications made divided by the total number of
complex words.

Results and Analysis. Scores for all three pre-
trained vector spaces are shown in Table 2. Similar
to the word similarity task, embedding spaces pro-
duced with post-specialization models outperform
the vectors produced with AR and original distribu-
tional vectors. The gains are now more pronounced
in the real-life FULL setup, as only 59.6 % of all in-
dicated complex words and substitution candidates
from the LS dataset are covered in the external con-
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GLOVE-CC word vectors JGA

Distributional .797
Specialized: ATTRACT-REPEL .817
Post-Specialized: POST-DFFN .829
Post-Specialized: AUXGAN .836

Table 3: English DST performance (joint goal accu-
racy). GLOVE-CC word vectors.

straints. Adversarial post-specialization (AUXGAN)
has a slight edge over the post-specialization with
a simple feed-forward network (POST-DFFN) for
FASTTEXT and SGNS-W2 embeddings, but not for
GLOVE-CC vectors. In general, the fact that both
post-specialization methods outperform ATTRACT-
REPEL by a wide margin shows the importance of
specializing the full word vector space for down-
stream NLP applications.

4.2.2 Dialog State Tracking
Finally, we evaluate the importance of full-
vocabulary (adversarial) post-specialization in an-
other language understanding task: dialog state
tracking (DST) (Henderson et al., 2014; Williams
et al., 2016), which is a standard task to measure
the impact of specialization in prior work (Mrkšić
et al., 2017). A DST model is typically the first com-
ponent of a dialog system pipeline (Young, 2010),
tasked with capturing user’s goals and updating the
dialog belief state at each dialog turn. Distinguish-
ing similarity from relatedness is crucial for DST
(e.g., a dialog system should not recommend an

“expensive restaurant in the west” when asked for
an “affordable pub in the north”).

Evaluation Setup. To evaluate the effects of spe-
cialized word vectors on DST, following prior work
we utilize the Neural Belief Tracker (NBT), a sta-
tistical DST model that makes inferences purely
based on pre-trained word vectors (Mrkšić et al.,
2017).9 Again, as in prior work the DST evalu-
ation is based on the Wizard-of-Oz (WOZ) v2.0
dataset (Wen et al., 2017; Mrkšić et al., 2017), com-
prising 1,200 dialogues split into training (600 di-
alogues), development (200), and test data (400).
We report the standard DST metric: joint goal ac-
curacy (JGA), the proportion of dialog turns where
all the user’s search goal constraints were correctly
identified, computed as average over 5 NBT runs.

9https://github.com/nmrksic/
neural-belief-tracker; For full model details,
we refer the reader to the original paper.

Similarity (⇢) LS (Acc) DST (JGA)

Vector space IT DE IT DE IT DE

Distrib. .297 .417 .308 - .681 .621
AUXGAN .431 .525 .392 - .714 .651

Table 4: Results of zero-shot specialization applied
to IT and DE FASTTEXT distributional vectors.

Results and Analysis. We show English DST
performance in the FULL setting in Table 3. Only
NBT performance with GLOVE-CC vectors is re-
ported for brevity, as similar performance gains
are observed with the other two pre-trained vec-
tor collections. The results confirm our findings
established in the other two tasks: a) initial AR spe-
cialization of distributional vectors is useful, but b)
it is crucial to specialize the full vocabulary for im-
proved performance (e.g., 57% of all WOZ words
are present in the constraints), and c) the more so-
phisticated AUXGAN model yields additional gains.

4.3 Cross-Lingual Zero-Shot Specialization

Evaluation Setup. Large collections of linguis-
tic constraints do not exist for many languages.
Therefore, we test if the specialization knowledge
from a resoure-rich language (i.e., English) can
be transferred to resource-lean target languages
(see §2.3). We simulate resource-lean scenarios us-
ing two target languages: Italian (IT) and German
(DE).10 We evaluate zero-specialized IT and DE
FASTTEXT vectors, using English FASTTEXT vec-
tors as the source, on the same three tasks as before.
We report the same evaluation measures, using the
following evaluation data: 1) IT and DE SimLex-
999 datasets (Leviant and Reichart, 2015) for word
similarity; 2) IT lexical simplification data (SIMPI-
TIKI) (Tonelli et al., 2016); 3) IT and DE WOZ
data (Mrkšić et al., 2017) for DST.

Results and Analysis. The results are summa-
rized in Table 4. The gains over the original dis-
tributional vectors are substantial across all three
tasks and for both languages. This finding indicates
that the semantic content of distributional vectors
can be enriched even for languages without any
readily available lexical resources.

The gap between performances of language
transfer and the monolingual setting is explained

10Note that the two languages are not resource-poor, but we
treat them as such in our experiments. This choice of languages
was determined by the availability of high-quality evaluation
data to measure the effects of zero-shot specialization.
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by the noise introduced by the bilingual vector
alignment and the different ways concepts are lex-
icalized across languages, as studied by semantic
typology (Ponti et al., 2018). Nonetheless, in the
long run, these transfer results hold promise to sup-
port the specialization of vector spaces even for
resource-lean languages, and their applications.

5 Related Work

Vector Space Specialization. Specialization meth-
ods embed external information into vector spaces.
Some of them integrate external linguistic con-
straints into distributional training and jointly op-
timize distributional and non-distributional objec-
tives: they modify the prior or the regularization
(Yu and Dredze, 2014; Xu et al., 2014; Bian et al.,
2014; Kiela et al., 2015), or use a variant of the
SGNS-style objective (Liu et al., 2015; Ono et al.,
2015; Osborne et al., 2016).

Other models inject external knowledge from
available lexical resources (e.g., WordNet, PPDB)
into pre-trained word vectors as a post-processing
step (Faruqui et al., 2015; Rothe and Schütze, 2015;
Wieting et al., 2015; Nguyen et al., 2016; Mrkšić
et al., 2016; Cotterell et al., 2016; Mrkšić et al.,
2017). They offer a portable, flexible, and light-
weight approach to incorporating external knowl-
edge into arbitrary vector spaces, outperforming
less versatile joint models and yielding state-of-the-
art results on language understanding tasks (Mrkšić
et al., 2016; Kim et al., 2016; Vulić et al., 2017).
By design, these methods fine-tune only vectors of
words seen in external resources.

Vulić et al. (2018) suggest that specializing the
full vocabulary is beneficial for downstream appli-
cations. Comparing to their work, we show that a
more sophisticated adversarial post-specialization
can yield further gains across different tasks and
boost full-vocabulary specialization in resource-
lean settings through cross-lingual transfer.

Generative Adversarial Networks. GANs were
originally devised to generate images from input
noise variables (Goodfellow et al., 2014). The gen-
eration process is typically conditioned on discrete
labels or data from other modalities, such as text
(Mirza and Osindero, 2014). Otherwise, the condi-
tion can take the form of real data in input rather
than (or in addition to) noise: in this case, the gener-
ator parameters are better conceived as a mapping
function. For instance, it can bridge between pixel-
to-pixel (Isola et al., 2017) or character-to-pixel

(Reed et al., 2016) transformations.
The GAN objective can be mixed with more

traditional loss functions: in these cases, apart from
trying to fool the discriminator, the generator also
minimizes the distance between input and target
data (Pathak et al., 2016; Li and Wand, 2016; Ledig
et al., 2017). The distance can be formulated as
the mean squared error between the input and the
target (Pathak et al., 2016), their feature maps (Li
and Wand, 2016), both (Zhu et al., 2016), or a loss
calculated on feature maps of a deep convolutional
network (Ledig et al., 2017).

In the textual domain, adversarial models have
been proven to support domain adaptation (Ganin
et al., 2016) and language transfer (Chen et al.,
2016) by learning domain/language-invariant latent
features. Adversarial training also powers unsuper-
vised mapping between monolingual vector spaces
to learn cross-lingual word embeddings (Zhang
et al., 2017; Conneau et al., 2018). In this work, we
show how to apply adversarial techniques to the
problem of vector specialization, which has a sub-
stantial impact on language understanding tasks.

6 Conclusion and Future Work

We have presented adversarial post-specialization,
a novel model supported by adversarial training
which specializes word vectors for the full vocabu-
lary of the input distributional vector space, includ-
ing words unseen in external lexical resources. We
have also introduced a method for zero-shot spe-
cialization of word vectors in languages without
any external resources. The benefits of adversarial
post-specialization and its zero-shot transfer have
been demonstrated across three tasks (word simi-
larity, lexical text simplification, and dialog state
tracking) and for three languages.

In future work, we will explore more sophis-
ticated adversarial models such as Cycle-GAN
(Zhu et al., 2017). Moreover, we will experiment
with bootstrapping approaches to extract new lexi-
cal constraints from post-specialized embeddings.
We also plan to extend the method to asymmet-
ric relations (e.g., hypernymy) and to more target
(resource-lean) languages. The code is available
at https://github.com/cambridgeltl/
adversarial-postspec.
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jana Ivanović. 2010. Hubs in space: Popular nearest
neighbors in high-dimensional data. Journal of Ma-
chine Learning Research, 11:2487–2531.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen
Logeswaran, Bernt Schiele, and Honglak Lee. 2016.
Generative adversarial text to image synthesis. In
Proceedings of ICML, pages 1060–1069.

Sascha Rothe and Hinrich Schütze. 2015. AutoEx-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of ACL,
pages 1793–1803.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2017.
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Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid
Ó Séaghdha, Steve Young, and Anna Korhonen.
2017. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of ACL, pages 56–68.
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Abstract
Cross-lingual word embeddings are becoming
increasingly important in multilingual NLP.
Recently, it has been shown that these em-
beddings can be effectively learned by align-
ing two disjoint monolingual vector spaces
through linear transformations, using no more
than a small bilingual dictionary as supervi-
sion. In this work, we propose to apply an ad-
ditional transformation after the initial align-
ment step, which moves cross-lingual syn-
onyms towards a middle point between them.
By applying this transformation our aim is
to obtain a better cross-lingual integration of
the vector spaces. In addition, and perhaps
surprisingly, the monolingual spaces also im-
prove by this transformation. This is in con-
trast to the original alignment, which is typ-
ically learned such that the structure of the
monolingual spaces is preserved. Our exper-
iments confirm that the resulting cross-lingual
embeddings outperform state-of-the-art mod-
els in both monolingual and cross-lingual eval-
uation tasks.

1 Introduction

Word embeddings are one of the most widely used
resources in NLP, as they have proven to be of
enormous importance for modeling linguistic phe-
nomena in both supervised and unsupervised set-
tings. In particular, the representation of words
in cross-lingual vector spaces (henceforth, cross-
lingual word embeddings) is quickly gaining in
popularity. One of the main reasons is that they
play a crucial role in transferring knowledge from
one language to another, specifically in down-
stream tasks such as information retrieval (Vulić
and Moens, 2015b), entity linking (Tsai and Roth,
2016) and text classification (Mogadala and Ret-
tinger, 2016), while at the same time providing im-
provements in multilingual NLP problems such as
machine translation (Zou et al., 2013).

There exist different approaches for obtaining
these cross-lingual embeddings. One of the most
successful methodological directions, which con-
stitutes the main focus of this paper, attempts to
learn bilingual embeddings via a two-step process:
first, word embeddings are trained on monolin-
gual corpora and then the resulting monolingual
spaces are aligned by taking advantage of bilin-
gual dictionaries (Mikolov et al., 2013b; Faruqui
and Dyer, 2014; Xing et al., 2015).

These alignments are generally modeled as lin-
ear transformations, which are constrained such
that the structure of the initial monolingual spaces
is left unchanged. This can be achieved by im-
posing an orthogonality constraint on the linear
transformation (Xing et al., 2015; Artetxe et al.,
2016). Our hypothesis in this paper is that such
approaches can be further improved, as they rely
on the assumption that the internal structure of the
two monolingual spaces is identical. In reality,
however, this structure is influenced by language-
specific phenomena, e.g., the fact that Spanish dis-
tinguishes between masculine and feminine nouns
(Davis, 2015) as well as the specific biases of
the different corpora from which the monolingual
spaces were learned. Because of this, monolingual
embedding spaces are not isomorphic (Søgaard
et al., 2018; Kementchedjhieva et al., 2018). On
the other hand, simply dropping the orthogonality
constraints leads to overfitting, and is thus not ef-
fective in practice.

The solution we propose is to start with existing
state-of-the-art alignment models (Artetxe et al.,
2017; Conneau et al., 2018), and to apply a fur-
ther transformation to the resulting initial align-
ment. For each word w with translation w0, this
additional transformation aims to map the vector
representations of both w and w0 onto their aver-
age, thereby creating a cross-lingual vector space
which intuitively corresponds to the average of the
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two aligned monolingual vector spaces. Similar to
the initial alignment, this mapping is learned from
a small bilingual lexicon.

Our experimental results show that the proposed
additional transformation does not only benefit
cross-lingual evaluation tasks, but, perhaps sur-
prisingly, also monolingual ones. In particular, we
perform an extensive set of experiments on stan-
dard benchmarks for bilingual dictionary induc-
tion and monolingual and cross-lingual word simi-
larity, as well as on an extrinsic task: cross-lingual
hypernym discovery.

Code and pre-trained embeddings to reproduce
our experiments and to apply our model to any
given cross-lingual embeddings are available at
https://github.com/yeraidm/meemi.

2 Related Work

Bilingual word embeddings have been extensively
studied in the literature in recent years. Their na-
ture varies with respect to the supervision signals
used for training (Upadhyay et al., 2016; Ruder
et al., 2018). Some common signals to learn
bilingual embeddings come from parallel (Her-
mann and Blunsom, 2014; Luong et al., 2015;
Levy et al., 2017) or comparable corpora (Vulić
and Moens, 2015a; Søgaard et al., 2015; Vulić
and Moens, 2016), or lexical resources such as
WordNet, ConceptNet or BabelNet (Speer et al.,
2017; Mrksic et al., 2017; Goikoetxea et al., 2018).
However, these sources of supervision may be
scarce, limited to certain domains or may not be
directly available for certain language pairs.

Another branch of research exploits pre-trained
monolingual embeddings with weak signals such
as bilingual lexicons for learning bilingual embed-
dings (Mikolov et al., 2013b; Faruqui and Dyer,
2014; Ammar et al., 2016; Artetxe et al., 2016).
Mikolov et al. (2013b) was one of the first attempts
into this line of research, applying a linear trans-
formation in order to map the embeddings from
one monolingual space into another. They also
noted that more sophisticated approaches, such
as using multilayer perceptrons, do not improve
with respect to their linear counterparts. Xing
et al. (2015) built upon this work by normaliz-
ing word embeddings during training and adding
an orthogonality constraint. In a complementary
direction, Faruqui and Dyer (2014) put forward
a technique based on canonical correlation anal-
ysis to obtain linear mappings for both monolin-

gual embedding spaces into a new shared space.
Artetxe et al. (2016) proposed a similar linear
mapping to Mikolov et al. (2013b), generalizing
it and providing theoretical justifications which
also served to reinterpret the methods of Faruqui
and Dyer (2014) and Xing et al. (2015). Smith
et al. (2017) further showed how orthogonality
was required to improve the consistency of bilin-
gual mappings, making them more robust to noise.
Finally, a more complete generalization providing
further insights on the linear transformations used
in all these models can be found in Artetxe et al.
(2018a).

These approaches generally require large bilin-
gual lexicons to effectively learn multilingual em-
beddings (Artetxe et al., 2017). Recently, how-
ever, alternatives which only need very small dic-
tionaries, or even none at all, have been proposed
to learn high-quality embeddings via linear map-
pings (Artetxe et al., 2017; Conneau et al., 2018).
More details on the specifics of these two ap-
proaches can be found in Section 3.1. These mod-
els have in turn paved the way for the development
of machine translation systems which do not re-
quire any parallel corpora (Artetxe et al., 2018b;
Lample et al., 2018). Moreover, the fact that such
approaches only need monolingual embeddings,
instead of parallel or comparable corpora, makes
them easily adaptable to different domains (e.g.,
social media or web corpora).

In this paper we build upon these state-of-the-
art approaches by applying an additional trans-
formation, which aims to map each word and its
translation onto the average of their vector repre-
sentations. This strategy bears some resemblance
with the idea of learning meta-embeddings (Yin
and Schütze, 2016). Meta-embeddings are vector
space representations which aggregate several pre-
trained word embeddings from a given language
(e.g., trained using different corpora and/or dif-
ferent word embedding models). Empirically it
was found that such meta-embeddings can often
outperform the individual word embeddings from
which they were obtained. In particular, it was re-
cently argued that word vector averaging can be a
highly effective approach for learning such meta-
embeddings (Coates and Bollegala, 2018). The
main difference between such approaches and our
work is that because we rely on a small dictionary,
we cannot simply average word vectors, since for
most words we do not know the corresponding
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translation. Instead, we train a regression model
to predict this average word vector from the vector
representation of the given word only, i.e., without
using the vector representation of its translation.

3 Methodology

Our approach for improving cross-lingual embed-
dings consists of three main steps, where the first
two steps are the same as in existing methods.
In particular, given two monolingual corpora, a
word vector space is first learned independently
for each language. This can be achieved with
common word embedding models, e.g., Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014) or FastText (Bojanowski et al., 2017). Sec-
ond, a linear alignment strategy is used to map the
monolingual embeddings to a common bilingual
vector space (Section 3.1). Third, a final trans-
formation is applied on the aligned embeddings
so the word vectors from both languages are re-
fined and further integrated with each other (Sec-
tion 3.2). This third step is the main contribution
of our paper.

3.1 Aligning monolingual spaces

Once the monolingual word embeddings have
been obtained, a linear transformation is applied in
order to integrate them into the same vector space.
This linear transformation is generally carried out
using a supervision signal, typically in the form of
a bilingual dictionary. In the following we explain
two state-of-the-art models performing this linear
transformation.

VecMap (Artetxe et al., 2017). VecMap uses
an orthogonal transformation over normalized
word embeddings. An iterative two-step proce-
dure is also implemented in order to avoid the need
of starting with a large seed dictionary (e.g., in the
original paper it was tested with a very small bilin-
gual dictionary of just 25 pairs). In this proce-
dure, first, the linear mapping is estimated using
a small bilingual dictionary, and then, this dictio-
nary is augmented by applying the learned trans-
formation to new words from the source language.
Lastly, the process is repeated until some conver-
gence criterion is met.

MUSE (Conneau et al., 2018). In this case, the
transformation matrix is learned through an iter-

ative Procrustes alignment (Schönemann, 1966).1

The anchor points needed for this alignment can
be obtained either through a supplied bilingual
dictionary or through an unsupervised model. This
unsupervised model is trained using adversarial
learning to obtain an initial alignment of the two
monolingual spaces, which is then refined by
the Procrustes alignment using the most frequent
words as anchor points. A new distance met-
ric for the embedding space, referred to as cross-
domain similarity local scaling, is also introduced.
This metric, which takes into account the near-
est neighbors of both source and target words,
was shown to better handle high-density regions
of the space, thus alleviating the hubness problem
of word embedding models (Radovanović et al.,
2010; Dinu et al., 2015), which arises when a few
points (known as hubs) become the nearest neigh-
bors of many other points in the embedding space.

3.2 Meeting in the middle

After the initial alignment of the monolingual
word embeddings, our proposed method leverages
an additional linear model to refine the result-
ing bilingual word embeddings. This is because
the methods presented in the previous section ap-
ply constraints to ensure that the structure of the
monolingual embeddings is largely preserved. As
already mentioned in the introduction, conceptu-
ally this may not be optimal, as embeddings for
different languages and trained from different cor-
pora can be expected to be structured somewhat
differently. Empirically, as we will see in the eval-
uation, after applying methods such as VecMap
and MUSE there still tend to be significant gaps
between the vector representations of words and
their translations. Our method directly attempts
to reduce these gaps by moving each word vec-
tor towards the middle point between its current
representation and the representation of its trans-
lation. In this way, by bringing the two monolin-
gual fragments of the space closer to each other,
we can expect to see an improved performance
on cross-lingual evaluation tasks such as bilin-
gual dictionary induction. Importantly, the inter-
nal structure of the two monolingual fragments
themselves is also affected by this step. By aver-

1Very recently, Kementchedjhieva et al. (2018) showed
that projecting both monolingual embedding spaces onto a
third space (instead of directly onto each other) using a gen-
eralized Procrustes analysis facilitates the learning of align-
ments.
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aging between the representations obtained from
different languages, we hypothesize that the im-
pact of language-specific phenomena and corpus
specific biases will be reduced, thereby ending up
with more “neutral” monolingual embeddings.

In the following, we detail our methodologi-
cal approach. First, we leverage the same bilin-
gual dictionary that was used to obtain the ini-
tial alignment (Section 3.1). Specifically, let D =
{(w, w0)} be the given bilingual dictionary, where
w 2 V and w0 2 V 0, with V and V 0 representing
the vocabulary of the first and second language,
respectively. For pairs (w, w0) 2 D, we can
simply compute the corresponding average vector
~µw,w0 = ~vw+~vw0

2 . Then, using the pairs in D as
training data, we learn a linear mapping X such
that X~vw ⇡ ~µw,w0 for all (w, w0) 2 D. This map-
ping X can then be used to predict the averages
for words outside the given dictionary. To find the
mapping X , we solve the following least squares
linear regression problem:

E =
X

(w,w0)2D

kX ~w � ~µw,w0k2 (1)

Similarly, for the other language, we separately
learn a mapping X 0 such that X 0~vw0 ⇡ ~µw,w0 .

It is worth pointing out that we experimented
with several variants of this linear regression for-
mulation. For example, we also tried using a mul-
tilayer perceptron to learn non-linear mappings,
and we experimented with several regularization
terms to penalize mappings that deviate too much
from the identity mapping. None of these vari-
ants, however, were found to improve on the much
simpler formulation in (1), which can be solved
exactly and efficiently. Furthermore, one may
wonder whether the initial alignment is actually
needed, since e.g., Coates and Bollegala (2018)
obtained high-quality meta-embeddings without
such an alignment set. However, when applying
our approach directly to the initial monolingual
non-aligned embedding spaces, we obtained re-
sults which were competitive but slightly below
the two considered alignment strategies.

4 Evaluation

We test our bilingual embedding refinement ap-
proach on both intrinsic and extrinsic tasks. In
Section 4.1 we describe the common training
setup for all experiments and language pairs. The
languages we considered are English, Spanish,

Italian, German and Finnish. Throughout all the
experiments we use publicly available resources in
order to make comparisons and reproducibility of
our experiments easier.

4.1 Cross-lingual embeddings training
Corpora. In our experiments we make use of
web-extracted corpora. For English we use the
3B-word UMBC WebBase Corpus (Han et al.,
2013), while we chose the Spanish Billion Words
Corpus (Cardellino, 2016) for Spanish. For Italian
and German, we use the itWaC and sdeWaC cor-
pora from the WaCky project (Baroni et al., 2009),
containing 2 and 0.8 billion words, respectively.2

Lastly, for Finnish, we use the Common Crawl
monolingual corpus from the Machine Translation
of News Shared Task 20163, composed of 2.8B
words. All corpora are tokenized and lowercased.
Monolingual embeddings. The monolingual
word embeddings are trained with the Skipgram
model from FastText (Bojanowski et al., 2017) on
the corpora described above. The dimensionality
of the vectors was set to 300, with the default Fast-
Text hyperparameters.
Bilingual dictionaries. We use the bilingual
dictionaries packaged together by Artetxe et al.
(2017), each one conformed by 5000 word trans-
lations. They are used both for the initial bilingual
mappings and then again for our linear transfor-
mation.
Initial mapping. Following previous works, for
the purpose of obtaining the initial alignment, En-
glish is considered as source language and the
remaining languages are used as target. We
make use of the open-source implementations of
VecMap

4 (Artetxe et al., 2017) and MUSE5 (Con-
neau et al., 2018), which constitute strong base-
lines for our experiments (cf. Section 3.1). Both
of them were used with the recommended parame-
ters and in their supervised setting, using the afore-
mentioned bilingual dictionaries.
Meeting in the Middle. Then, once the initial
cross-lingual embeddings are trained, and as ex-
plained in Section 3.2, we obtain our linear trans-
formation by using the exact solution to the least

2UMBC, Spanish Billion-Words and ItWaC are the offi-
cial corpora of the hypernym discovery SemEval task (Sec-
tion 4.2.3) for English, Spanish and Italian, respectively.

3http://www.statmt.org/wmt16/
translation-task.html

4github.com/artetxem/vecmap
5github.com/facebookresearch/MUSE
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Model
EN-ES EN-IT EN-DE EN-FI

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMap 36.0 59.8 65.6 35.5 57.2 63.9 31.7 54.2 60.2 17.2 36.4 43.7
VecMapµ 37.8 61.5 67.1 36.3 59.2 66.3 33.5 57.3 61.7 18.5 40.9 48.3
MUSE 37.1 59.0 65.2 36.3 57.3 62.9 32.5 53.7 59.0 18.2 35.2 42.4
MUSEµ 38.3 62.3 67.2 37.0 59.0 65.7 33.7 57.0 62.2 19.4 41.1 49.0

Table 1: Bilingual dictionary induction results. Precision at k (P@K) performance for Spanish (ES), Italian (IT),
German (DE) and Finnish (FI), using English (EN) as source language.

squares linear regression problem. To this end, we
use the same bilingual dictionaries as in the pre-
vious step. Henceforth, we will refer to our trans-
formed models as VecMapµ and MUSEµ, depend-
ing on the initial mapping.

4.2 Experiments
We test our cross-lingual word embeddings in
two intrinsic tasks, i.e., bilingual dictionary induc-
tion (Section 4.2.1) and word similarity (Section
4.2.2), and an extrinsic task, i.e., cross-lingual hy-
pernym discovery (Section 4.2.3).

4.2.1 Bilingual dictionary induction
The dictionary induction task consists in auto-
matically generating a bilingual dictionary from a
source to a target language, using as input a list of
words in the source language.

Experimental setting For this task, and follow-
ing previous works, we use the English-Italian test
set released by Dinu et al. (2015) and those re-
leased by Artetxe et al. (2017) for the remaining
language pairs. These test sets have no overlap
with respect to the training and development sets,
and contain around 1900 entries each. Given an
input word from the source language, word trans-
lations are retrieved through a nearest-neighbor
search of words in the target language, using co-
sine distance. Note that this gives us a ranked
list of candidates for each word from the source
language. Accordingly, the performance of the
embeddings is evaluated with the precision at k
(P@k) metric, which evaluates for what percent-
age of test pairs, the correct answer is among the
k highest ranked candidates.

Results As can be seen in Table 1, our refine-
ment method consistently improves over the base-
lines (i.e., VecMap and MUSE) on all language
pairs and metrics. The higher scores indicate that
the two monolingual embedding spaces become
more tightly integrated because of our additional

transformation. It is worth highlighting here the
case of English-Finnish, where the gains obtained
in P@5 and P@10 are considerable. This might
indicate that our approach is especially useful for
morphologically richer languages such as Finnish,
where the limitations of the previous bilingual
mappings are most apparent.

Analysis When analyzing the source of errors in
P@1, we came to similar conclusions as Artetxe
et al. (2017).6 Several source words are translated
to words that are closely related to the one in the
gold reference in the target language; e.g., for the
English word essentially we obtain básicamente
(basically) instead of fundamentalmente (funda-
mentally) in Spanish, both of them closely re-
lated, or the closest neighbor for dirt being mu-
gre (dirt) instead of suciedad (dirt), which in fact
was among the five closest neighbors. We can also
find multiple examples of the higher performance
of our models compared to the baselines. For in-
stance, in the English-Spanish cross-lingual mod-
els, after the initial alignment, we can find that sec-
onds has minutos (minutes) as nearest neighbour,
but after applying our additional transformation,
seconds becomes closest to segundos (seconds).
Similarly, paint initially has tintado (tinted) as the
closest Spanish word, and then pintura (paint).

4.2.2 Word similarity
We perform experiments on both monolingual and
cross-lingual word similarity. In monolingual sim-
ilarity, models are tested in their ability to deter-
mine the similarity between two words in the same
language, whereas in cross-lingual similarity the
words belong to different languages. While in the
monolingual setting the main objective is to test
the quality of the monolingual subsets of the bilin-

6The results on this task are lower than those reported
in Artetxe et al. (2017). This is due to the different cor-
pora and embedding algorithms used to train the monolin-
gual embeddings. In particular, they use corpora including
Wikipedia, which is comparable across languages.
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Model
English Spanish Italian German

SemEval WordSim SimLex RG-65 SemEval RG-65 SemEval WordSim SemEval WordSim RG-65
r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢

VecMap 74.1 73.9 67.9 67.0 42.0 40.7 77.8 77.5 70.0 71.4 86.6 88.0 67.2 69.0 64.0 66.9 70.1 70.1 72.7 72.2 80.2 79.7
VecMapµ 75.0 74.8 70.5 70.1 43.8 41.8 78.0 76.6 71.5 72.1 87.6 89.4 68.4 68.9 65.3 67.3 70.9 70.7 72.7 72.4 81.0 81.3
MUSE 74.2 74.2 68.3 67.6 42.6 41.5 78.6 78.4 70.5 71.9 86.6 88.3 67.4 69.2 64.1 66.9 69.8 69.8 72.5 72.5 80.3 80.1
MUSEµ 75.0 74.8 70.8 70.4 44.2 42.4 78.3 77.5 71.8 72.3 87.7 89.3 68.6 69.1 65.3 67.2 70.4 70.2 72.2 72.1 80.3 80.0

Table 2: Monolingual word similarity results. Pearson (r) and Spearman (⇢) correlation.

gual vector space, the cross-lingual setting consti-
tutes a straightforward benchmark to test the qual-
ity of bilingual embeddings.

Experimental setting For monolingual word
similarity we use the English SimLex-999 (Hill
et al., 2015), and the language-specific versions
of SemEval-177 (Camacho-Collados et al., 2017),
WordSim-3538 (Finkelstein et al., 2002), and RG-
65 (Rubenstein and Goodenough, 1965). The cor-
responding cross-lingual datasets from SemEval-
18, WordSim-353 and RG-65 were considered for
the cross-lingual word similarity evaluation9. Co-
sine similarity is again used as comparison mea-
sure.

Results Tables 2 and 3 show the monolingual10

and cross-lingual word similarity results11, respec-
tively. For both the monolingual and cross-lingual
settings, we can notice that our models generally
outperform the corresponding baselines. More-
over, in cases where no improvement is obtained,
the differences tend to be minimal, with the excep-
tion of RG-65, but this is a very small test set for
which larger variations can thus be expected. In
contrast, there are a few cases where substantial
gains were obtained by using our model. This is
most notable for English WordSim and SimLex in
the monolingual setting.

7The original datasets of SemEval-17 contained also mul-
tiwords, but for consistency we use the version containing
single words only.

8WordSim datasets consist of the similarity re-scoring
for several languages of Leviant and Reichart (2015), down-
loaded from http://leviants.com/ira.leviant/
MultilingualVSMdata.html

9The WordSim-353 and RG-65 cross-lingual datasets
(Camacho-Collados et al., 2015) were downloaded at http:
//lcl.uniroma1.it/similarity-datasets/

10The English results correspond to the averaged perfor-
mance of the English fragments of English-Spanish, English-
Italian and English-German cross-lingual embeddings.

11The results of the original VecMap in cross-lingual sim-
ilarity are comparable or better to those reported in Artetxe
et al. (2017) on the three datasets used in their evaluation.

Figure 1: Comparative average similarity between
VecMap and MUSE (blue) and our proposed model
(red) on the SemEval cross-lingual similarity datasets.

Analysis In order to further understand the
movements of the space with respect to the orig-
inal VecMap and MUSE spaces, Figure 1 dis-
plays the average similarity values on the Se-
mEval cross-lingual datasets (the largest among
all benchmarks) of each model. As expected, the
figure clearly shows how our model consistently
brings the words from both languages closer on
all language pairs. Furthermore, this movement
is performed smoothly across all pairs, i.e., our
model does not make large changes to specific
words but rather small changes overall. This can
be verified by inspecting the standard deviation
of the difference in similarity after applying our
transformation. These standard deviation scores
range from 0.031 (English-Spanish for VecMap)
to 0.039 (English-Italian for MUSE), which are rel-
atively small given that the cosine similarity scale
ranges from -1 to 1.

As a complement of this analysis we show some
qualitative results which give us further insights on
the transformations of the vector space after our
average approximation. In particular, we analyze
the reasons behind the higher quality displayed
by our bilingual embeddings in monolingual set-
tings. While VecMap and MUSE do not trans-
form the initial monolingual spaces, our model
transforms both spaces simultaneously. In this
analysis we focus on the source language of our
experiments (i.e., English). We found interest-
ing patterns which are learned by our model and
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Model
English-Spanish English-Italian English-German

SemEval RG-65 SemEval WordSim SemEval WordSim RG-65
r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢ r ⇢

VecMap 71.7 71.6 82.1 82.4 69.6 69.6 60.2 63.1 71.6 71.3 64.1 65.9 78.1 78.8
VecMapµ 71.7 71.3 82.1 82.8 70.2 69.9 61.3 63.0 72.0 71.5 64.2 65.4 78.6 79.7
MUSE 72.0 72.0 81.9 82.3 69.4 69.4 59.9 62.7 70.4 70.1 63.5 65.1 78.4 79.5
MUSEµ 72.2 71.8 82.3 82.5 70.5 70.1 61.2 62.7 71.9 71.4 64.1 65.3 78.8 80.5

Table 3: Cross-lingual word similarity results. Pearson (r) and Spearman (⇢) correlation.

help understand these monolingual gains. For ex-
ample, a recurring pattern is that words in En-
glish which are translated to the same word, or
to semantically close words, in the target lan-
guage end up closer together after our transfor-
mation. For example, in the case of English-
Spanish the following pairs were among the pairs
whose similarity increased the most by applying
our transformation: cellphone-telephone, movie-
film, book-manuscript or rhythm-cadence, which
are either translated to the same word in Spanish
(i.e., teléfono and pelı́cula in the first two cases)
or are already very close in the Spanish space.
More generally, we found that word pairs which
move together the most tend to be semantically
very similar and belong to the same domain, e.g.,
car-bicycle, opera-cinema, or snow-ice.

4.2.3 Cross-lingual hypernym discovery
Modeling hypernymy is a crucial task in NLP, with
direct applications in diverse areas such as seman-
tic search (Hoffart et al., 2014; Roller and Erk,
2016), question answering (Prager et al., 2008;
Yahya et al., 2013) or textual entailment (Geffet
and Dagan, 2005). Hypernyms, in addition, are the
backbone of lexical ontologies (Yu et al., 2015),
which are in turn useful for organizing, navigat-
ing and retrieving online content (Bordea et al.,
2016). Thus, we propose to evaluate the contribu-
tion of cross-lingual embeddings towards the task
of hypernym discovery, i.e., given an input word
(e.g., cat), retrieve or discover its most likely (set
of) valid hypernyms (e.g., animal, mammal, feline,
and so on). Intuitively, by leveraging a bilingual
vector space condensing the semantics of two lan-
guages, one of them being English, the need for
large amounts of training data in the target lan-
guage may be reduced.

Experimental setting We follow Espinosa-
Anke et al. (2016) and learn a (cross-lingual) lin-
ear transformation matrix between the hyponym

and hypernym spaces, which is afterwards used
to predict the most likely (set of) hypernyms,
given an unseen hyponym. Training and evalu-
ation data come from the SemEval 2018 Shared
Task on Hypernym Discovery (Camacho-Collados
et al., 2018). Note that current state-of-the-art
systems aimed at modeling hypernymy (Shwartz
et al., 2016; Bernier-Colborne and Barriere, 2018)
combine large amounts of annotated data along
with language-specific rules and cue phrases such
as Hearst Patterns (Hearst, 1992), both of which
are generally scarcely (if at all) available for lan-
guages other than English. Therefore, we re-
port experiments with training data only from En-
glish (11,779 hyponym-hypernym pairs), and “en-
riched” models informed with relatively few train-
ing pairs (500, 1k and 2k) from the target lan-
guages. Evaluation is conducted with the same
metrics as in the original SemEval task, i.e., Mean
Reciprocal Rank (MRR), Mean Average Precision
(MAP) and Precision at 5 (P@5). These measures
explain a model’s behavior from complementary
prisms, namely how often at least one valid hy-
pernym was highly ranked (MRR), and in cases
where there is more than one correct hypernym,
to what extent they were all correctly retrieved
(MAP and P@5). Finally, as in the previous ex-
periments, we report comparative results between
our proposed models and the two competing base-
lines (VecMap and MUSE). As an additional in-
formative baseline, we include the highest scoring
unsupervised system at the SemEval task for both
Spanish and Italian (BestUns), which is based
on the distributional models described in Shwartz
et al. (2017).

Results The results listed in Table 4 indicate
several trends.12 First and foremost, in terms of

12Note that this task is harder than hypernymy detection
(Upadhyay et al., 2018). Hypernymy detection is framed as
a binary classification task, while in hypernym discovery hy-
pernyms have to be retrieved from the whole vocabulary.
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Train
data

Model
Spanish Italian

MAP MRR P@5 MAP MRR P@5

- BestUns 2.4 5.5 2.5 3.9 8.7 3.9

EN

VecMap 6.4 16.5 6.0 4.5 10.6 4.3
VecMapµ 6.1 15.4 5.7 5.6 13.3 5.4
MUSE 5.9 14.1 5.5 4.9 11.1 4.7
MUSEµ 6.2 14.8 5.8 5.1 11.7 4.9

EN
+

500

VecMap 7.3 18.2 7.0 6.1 14.0 5.8
VecMapµ 7.0 17.6 6.6 6.8 16.2 6.4
MUSE 6.4 15.9 6.1 5.3 12.0 5.0
MUSEµ 6.9 16.9 6.6 6.0 13.4 5.7

EN
+
1k

VecMap 7.9 19.2 7.6 7.0 16.4 6.6
VecMapµ 7.8 19.2 7.4 7.5 18.1 7.0
MUSE 7.2 17.3 6.9 6.2 13.8 5.8
MUSEµ 7.8 18.8 7.5 6.5 14.2 6.3

EN
+
2k

VecMap 8.0 19.1 7.7 8.2 19.1 7.5
VecMapµ 8.2 19.9 7.9 8.7 20.7 8.1
MUSE 7.2 17.2 6.8 7.2 15.8 7.0
MUSEµ 8.3 19.5 8.0 7.6 17.0 7.2

Table 4: Results on the hypernym discovery task.

model-wise comparisons, we observe that our pro-
posed alterations of both VecMap and MUSE im-
prove their quality in a consistent manner, across
most metrics and data configurations. In Italian
our proposed model shows an improvement across
all configurations. However, in Spanish VecMap
emerges as a highly competitive baseline, with
our model only showing an improved performance
when training data in this language abounds (in
this specific case there is an increase from 17.2 to
19.5 points in the MRR metric). This suggests that
the fact that the monolingual spaces are closer in
our model is clearly beneficial when hybrid train-
ing data is given as input, opening up avenues for
future work on weakly-supervised learning. Con-
cerning the other baseline, MUSE, the contribution
of our proposed model is consistent for both lan-
guages, again becoming more apparent in the Ital-
ian split and in a fully cross-lingual setting, where
the improvement in MRR is almost 3 points (from
10.6 to 13.3). Finally, it is noteworthy that even
in the setting where no training data from the tar-
get language is leveraged, all the systems based on
cross-lingual embeddings outperform the best un-
supervised baseline, which is a very encouraging
result with regards to solving tasks for languages
on which training data is not easily accessible or
not directly available.

Analysis A manual exploration of the results
obtained in cross-lingual hypernym discovery re-
veals a systematic pattern when comparing, for ex-

ample, VecMap and our model. It was shown in
Table 4 that the performance of our model grad-
ually increased alongside the size of the train-
ing data in the target language until surpassing
VecMap in the most informed configuration (i.e.,
EN+2k). Specifically, our model seems to show a
higher presence of generic words in the output hy-
pernyms, which may be explained by these being
closer in the space. In fact, out of 1000 candi-
date hyponyms, our model correctly finds person
143 times, as compared to the 111 of VecMap,
and this systematically occurs with generic types
such as citizen or transport. Let us mention, how-
ever, that the considered baselines perform re-
markably well in some cases. For example, the
English-only VecMap configuration (EN), unlike
ours, correctly discovered the following hyper-
nyms for Francesc Macià (a Spanish politician
and soldier): politician, ruler, leader and person.
These were missing from the prediction of our
model in all configurations until the most informed
one (EN+2k).

5 Conclusions and Future Work

We have shown how to refine bilingual word
embeddings by applying a simple transformation
which moves cross-lingual synonyms closer to-
wards their average representation. Before apply-
ing this strategy, we start by aligning the mono-
lingual embeddings of the two languages of in-
terest. For this initial alignment, we have consid-
ered two state-of-the-art methods from the litera-
ture, namely VecMap (Artetxe et al., 2017) and
MUSE (Conneau et al., 2018), which also served
as our baselines. Our approach is motivated by the
fact that these alignment methods do not change
the structure of the individual monolingual spaces.
However, the internal structure of embeddings is,
at least to some extent, language-specific, and is
moreover affected by biases of the corpus from
which they are trained, meaning that after the ini-
tial alignment significant gaps remain between the
representations of cross-lingual synonyms. We
tested our approach on a wide array of datasets
from different tasks (i.e., bilingual dictionary in-
duction, word similarity and cross-lingual hyper-
nym discovery) with state-of-the-art results.

This paper opens up several promising avenues
for future work. First, even though both lan-
guages are currently being treated symmetrically,
the initial monolingual embedding of one of the
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languages may be more reliable than that of the
other. In such cases, it may be of interest to
replace the vectors ~µw,w0 by a weighted aver-
age of the monolingual word vectors. Second,
while we have only considered bilingual scenar-
ios in this paper, our approach can naturally be ap-
plied to scenarios involving more languages. In
this case, we would first choose a single target
language, and obtain alignments between all the
other languages and this target language. To ap-
ply our model, we can then simply learn map-
pings to predict averaged word vectors across all
languages. Finally, it would also be interesting to
use the obtained embeddings in downstream ap-
plications such as language identification or cross-
lingual sentiment analysis, and extend our analy-
sis to other languages, with a particular focus on
morphologically-rich languages (after seeing our
success with Finnish), for which the bilingual in-
duction task has proved more challenging for stan-
dard cross-lingual embedding models (Søgaard
et al., 2018).
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Abstract

We release a corpus of 43 million atomic ed-
its across 8 languages. These edits are mined
from Wikipedia edit history and consist of in-
stances in which a human editor has inserted a
single contiguous phrase into, or deleted a sin-
gle contiguous phrase from, an existing sen-
tence. We use the collected data to show that
the language generated during editing differs
from the language that we observe in standard
corpora, and that models trained on edits en-
code different aspects of semantics and dis-
course than models trained on raw, unstruc-
tured text. We release the full corpus as a re-
source to aid ongoing research in semantics,
discourse, and representation learning.

1 Introduction

Written language often undergoes several rounds
of revision as human authors determine exactly
what information they want their words to convey.
On Wikipedia, this process is carried out collec-
tively by a large community at a rate of nearly two
revisions per second (Yang et al., 2017). While
Wikipedia’s revision history contains arbitrarily
complex edits, our corpus and analysis focuses on
atomic insertion edits: instances in which an ed-
itor has inserted a single, contiguous span of text
into an existing complete sentence (Table 1). This
restriction allows us to make several assumptions
which we believe make the data an especially pow-
erful source of signal. Namely, we can assume that
1) some information was not communicated by
the original sentence, 2) that information should
have been communicated (according to a human
editor), and 3) that information is communicated
by the inserted phrase. Thus, we believe that a
large data set of such edits is inherently valuable
for researchers modeling inference and discourse

⇤Both authors contributed equally.

Adding new relevant information
She died there in 1949 after a long illness.
Refining claim/Resolving ambiguity
Finlay announced he’d be on the 1000th
episode of “WWE Monday Night Raw”, but
he wasn’t.
Improving Discourse/Fluency
It is also being evaluated as a potential bio-
logical control for the invasive plant . . .

Table 1: Example atomic insertions (in bold) from
the corpus and the types of semantic and discourse
phenomena that such edits capture.

and that the data can yield insights about represen-
tation at both the phrase and the sentence level.

We mine Wikipedia edit history to create a cor-
pus of 43 million atomic insertion and deletion ed-
its covering 8 languages. We argue that the cor-
pus contains distinct semantic signals not present
in raw text. We thus focus our experiments on an-
swering the following questions:

1. How is language that is inserted during edit-
ing different from general Wikipedia text?

2. What can we learn about language by observ-
ing the editing process that we cannot readily
learn by observing only the final edited text?

Specifically, the contributions of this paper are:

• A new corpus (WikiAtomicEdits) of 26M
atomic insertions and 17M atomic deletions
covering 8 languages (§3 and §4): http:

//goo.gl/language/wiki-atomic-edits.

• Linguistic analysis showing that inserted lan-
guage differs measurably from the language
observed in general Wikipedia text (§5).
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• Language modeling experiments showing
that models trained on WikiAtomicEdits en-
code different aspects of semantics and dis-
course than models trained on raw, unstruc-
tured text (§6).

2 Theoretical Motivation

We borrow the idea of an atomic edit from
prior work in natural language inference, specif-
ically natural logic (Lakoff, 1970; Van Benthem,
1986). MacCartney (2009) defines an atomic
edit e applied to a natural language expression
s as the insertion, deletion, or substitution of a
sub-expression p such that both the original ex-
pression s and the resulting expression e(s) are
well-formed semantic constituents. E.g. s =
“She died from an illness”, p = “in 1949”, and
e(s) = “She died in 1949 from an illness”. This
formulation is desirable because it exposes a rela-
tionship between the surface form and the seman-
tics of natural language while remaining agnos-
tic about the underlying semantic representation.
That is, the difference in “meaning” between s and
e(s) is exactly the “meaning” of p (in context), re-
gardless of how that meaning is represented.

We adopt this philosophy in creating our cor-
pus. We focus our analysis specifically on atomic
insertion edits. We make the assumption that edi-
tors on Wikipedia are attempting to communicate
true information1 and to do so effectively. Inser-
tion edits are thus particularly interesting because
the underlying generation process admits the fol-
lowing assumptions:

1. The original sentence s does not effectively
communicate some piece of information.

2. A reasonable reader of s would like/expect
this information to be communicated.

3. This information is communicated by the in-
serted phrase p (in the context of e(s)).

We therefore believe that the supervision provided
by insertion edits can improve our understanding
of semantics, discourse, and composition, and that
the data released will be valuable for research in
these areas. The goal of our experiments is to es-
tablish that the signal provided in these edits is
distinct from what one could easily obtain given
currently available text corpora.

1This is true for the majority of edits, although about
13% of edits are “spam” (§4.3).

Language Ins Del Total
German 3.3 1.9 5.2
English 13.7 9.3 23.0
Spanish 1.4 0.9 2.3
French 2.0 2.0 4.0
Italian 1.0 0.6 1.6
Japanese 2.2 1.3 3.5
Russian 1.4 0.9 2.3
Chinese 0.7 0.4 1.1
Total 25.7 17.2 42.9

Table 2: The number of instances (in millions) of
atomic insertions/deletions for each language.

3 WikiAtomicEdits: Corpus Creation

3.1 Extracting Edits

Wikipedia edits can be accessed through
Wikipedia dumps. The edits are stored as
diffs on the entire Wikipedia page, meaning some
processing is required to reconstruct the changes
that were made at the sentence level. We use
historical snapshots of each Wikipedia document
and compare against subsequent snapshots to
extract sentence-level edits. We strip the HTML
tags and Wikipedia markup of the page and then
run a sentence splitter (Gillick, 2009) to obtain a
list of sentences for each snapshot. Rather than
run a full, quadratic-time (Myers, 1986) sequence
alignment to compare the two lists of sentences,
which is infeasible for long articles, we propose
an efficient precision-oriented approximation.

Given n sentences in one snapshot (“base”) and
m sentences in a subsequent one (“edited”), we
assume that most edits are local and restrict our
attention to a fixed-size window. For each sen-
tence si in the base snapshot, we compute pairwise
BLEU scores (Papineni et al., 2002) between si

and the sentences {tj}i+k
j=i�k (k = 5) in the edited

snapshot. We consider the sentence with the high-
est BLEU score in this window as a candidate. If
the sentences are not identical and the difference
consists of an insertion or deletion of a single con-
tiguous phrase2, we add this example to the cor-
pus. For each article, we run this algorithm over
the most recent 100,000 snapshots as of February
2018. We extract edits for 8 languages. Statistics
are shown in Table 2.

2We use the Python 2.7 difflib library to compute a
minimal diff at the byte level.
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3.2 Insertions vs. Deletions
We use the algorithm described above to extract
both atomic insertions and atomic deletions. How-
ever, we chose to omit the deletions from our lin-
guistic (§5) and language modeling (§6) analyses
for two reasons. First, our intuition is that spans
which are deleted by an editor are more likely to
be “bad” phrases (e.g. spam, false information,
or grammatical errors introduced by a previous
editor). To confirm this, we manually inspected
100 of each type of edit. We found that indeed
deletions contained a higher proportion of spam
text and malformed English (16/100) than did in-
sertions (7/100). Second, while insertions permit
a clean set of assumptions about the relationship
between the original sentence and the edited sen-
tence (§2), it is more difficult to make generaliza-
tions about deletions. Specifically, it is difficult
to say whether the original sentence should not
communicate the information in the deleted phrase
(i.e. the phrase contains false, irrelevant, or oth-
erwise erroneous information) or rather the origi-
nal sentence/surrounding context already commu-
nicates the information in the deleted phrase (i.e.
the deleted phrase is redundant). As such, dele-
tions are a noisier target for analysis. Nonetheless,
we recognize that the deletions provide a related
and likely useful signal. We thus include deletions
in our corpus but leave their deeper linguistic anal-
ysis for future work.

4 Corpus Quality & Reproducibility

4.1 Annotation
Given the data collected as above, we now in-
vestigate whether the extracted edits are suffi-
ciently clean to be useful for computational lan-
guage analysis and modeling. To do this, we focus
our attention specifically on the English, Spanish,
and German subcorpora, as these are languages for
which we could find a sufficient number of native
speakers to perform the necessary annotation for
our analysis. Thus, the discussion and results in
this section may not be representative of the other
languages in the corpus.

We are interested specifically in two questions.
First, we want to measure the overall corpus qual-
ity: how many of the inserted phrases represent
meaningful edits and how many are simply noise
(e.g. from editor or preprocessing error)? Second,
we want to understand, at least in part, the repro-
ducibility of the corpus: could we expect a differ-

en es de
No Error 78% 55% 85%
Possible Error 13% 30% 9%
Clear Error 9% 15% 6%

Table 3: Corpus quality for three languages for
which we were able to collect annotations. “No
Error”/“Clear Error” means annotators agreed
unanimously that the edit was/was not an error;
“Possible Error” means annotations were mixed.

ent group of human editors to produce the same
edits as those observed?

To address these questions, we collect annota-
tions in a semi-generative manner. Each annotator
is shown a sentence s and a phrase p to be inserted,
and is asked to insert p into s in order to form
a new sentence e(s). If s is not a complete and
well-formed sentence, or if there is no location at
which p can be inserted such that e(s) would be
a complete and well-formed sentence, annotators
are instructed to mark the edit as an error. We use
the “error” labels in order to study corpus quality
(§4.2) and use the annotators’ insertion location to
estimate reproducibility (§4.3).

We collect labels for 5,000 English edits, and
1,000 each for Spanish and German edits using a
crowd-sourcing platform. We collect 5-way an-
notations for English and 3-way annotations for
Spanish and German. Our choices of languages
and the differing levels of redundancy were due to
availability of annotators. We will release these
7,000 edits and their annotations with the corpus.

4.2 Corpus Quality

To measure corpus quality, we compute the pro-
portion of edits marked as errors by our annota-
tors. Table 3 shows our results. For English, in
78% of cases our annotators agreed unanimously
that p could be inserted meaningfully into s (55%
for Spanish; 85% for German). These numbers re-
assure us that, while there is some noise, the ma-
jority of the corpus represents legitimate edits with
meaningful signal. For more discussion of the er-
rors refer to Supplementary Material.

4.3 Agreement and Ambiguity

We next explore the extent to which the edits in
the corpus are reproducible. In an ideal world, we
would like to answer the question: given the same
original sentences, would a different group of hu-
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man editors produce the same edits? Answering
this directly would require annotators with domain
expertise and is infeasible in practice. However,
we can use our crowdsourced annotation to an-
swer a restricted variant of this question: given a
sentence s and an insertable phrase p, do humans
agree on where p belongs in s? We can measure
agreement in this setting straightforwardly using
exact match, and can interpret human performance
as that of a “perfect” language model. I.e. we
can interpret disagreement as evidence that repro-
ducing the particular edit is dependent on exoge-
nous information not available in the language of s
alone (e.g. knowledge of the underlying facts be-
ing discussed, or of the author’s individual style).

Based on our annotation experiment, we find
that individual annotators agree with the original
editor 66% of the time for English, 72% for Span-
ish, and 85% for German.3 More interesting than
how often humans disagree on this task, however,
is why they disagree. To better understand this, we
take a sample of 100 English sentences in which
at least one human annotator disagreed with the
original editor and no annotator marked the edit
as an error. We then manually inspect the sample
and record whether or not the annotators’ choices
of different insertion points give rise to sentences
with different semantic meaning or simply to sen-
tences with different discourse structure.

In particular, we consider three categories for
the observed disagreements: 1) the sentences are
meaning equivalent from a truth-conditional per-
spective, 2) the sentences contain significant dif-
ferences in meaning from a truth-conditional per-
spective, or 3) the sentences contain minor dif-
ferences or ambiguities in meaning (but would
likely be considered equivalent from the point of
view of most readers). We also include an error
category, for when the disagreement stems from
a single annotator making an erroneous choice.
Examples of each category are given in Table 4.
Note that the assessment of the truth conditions of
the sentence and their equivalence is based on our
judgment, and many of these judgments are sub-
jective. We will release our annotations for this
analysis with the corpus, to enable reproducibility
and refinement in future research.

Table 5 shows our results. We found 49% to
be meaning equivalent (i.e. the edit’s location ef-

3We consider cases which the annotator marks as “error”
to be a disagreement with the original editor.

fected discourse structure only), and 22% to have
significant differences in meaning (i.e. the edit’s
location fundamentally changed the meaning of
the sentence). An additional 13% exhibited mi-
nor differences or ambiguities in meaning, and in
the remaining 16% of cases, the disagreement ap-
peared to be due to annotator error.

5 Corpus Linguistic Analysis

We now turn our attention to exploring the lan-
guage in the corpus itself. In this section and in
§6, our focus is on the questions put forth in the
introduction: 1) how does the language that is in-
serted during editing differ from language that is
observed in general? and 2) what can we learn
about language by observing the editing process
that we cannot readily learn by observing only raw
text? Here, we explore these questions from a cor-
pus linguistics perspective. The analysis in this
section is based predominantly on the 14M inser-
tion edits from the English subcorpus (Table 2).

5.1 Manual Categorization of Insertions
We first characterize the types of insertions in
terms of the function they serve. Manually in-
specting the edits, we identify four high-level cate-
gories. Note that we do not intend these categories
to be formal or exhaustive, but rather to be illus-
trative of the types of semantic and discourse phe-
nomena in the corpus: i.e. to give sense of the bal-
ance between semantic, pragmatic, and grammati-
cal edits in the corpus. The categories we identify
are as follows:

1. Extension: the explicit addition of new infor-
mation that the author of the original sentence
did not intend to communicate.4

2. Refinement: the addition of information that
the author of the original sentence either in-
tended to communicate or assumed the reader
would already know. This category includes
hedges, non-restrictive modifiers, and other
clarifications or scoping-down of claims.

3. Fluency / Discourse: grammatical fixes, as
well as the insertion of discourse connectives
(“thus”), presuppositions (“also”), and edi-
torializations (“very”).

4Whether or not the author “intended” to communicate
something is based on our judgment. Since this annotation is
intended to be exploratory, we allow a degree of informality.
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Meaning Equivalent
Paul Wheelahan, the son of a mounted policeman, was born in Bombala, South Wales. . .
Paul Wheelahan was born in Bombala, South Wales, the son of a mounted policeman,. . .
Minor Difference / Ambiguity
She moved to Australia in 1964 and attended the University of New South Wales. . .
She moved to Australia and attended the University of New South Wales in 1964. . .
Significant Difference in Meaning
. . . he and Bart have to share a raft with Ned Flanders and his youngest son, Todd Flanders.
. . . he and his youngest son, Bart have to share a raft with Ned Flanders and Todd Flanders.

Table 4: Examples of sentences falling into three disagreement categories, defined in terms of the truth
conditions of the edited sentence. See text for a more detailed explanation.

Meaning Equivalent 49
Significant Differences in Meaning 22
Minor Differences/Ambiguities 13
Annotator Error 16

Table 5: Analysis of 100 sentences for which at
least one annotator disagreed with the gold label
and no annotator marked as an error.

4. Referring Expressions (RE): changes in the
name of an entity that do not change the un-
derlying referent, such as adding a first name
(“Andrew”) or a title (“Dr.”). RE edits could
fall within our definition of “refinement”, but
because they are especially prevalent we an-
notate them as a separate category.

We also define an Error category for spam, van-
dalism, and other “mistake” edits.

We manually categorize 100 randomly-sampled
edits. The breakdown is shown in Table 6. In
our sample, the majority (43%) were extensions,
and the second most frequent where refinements
(24%). No single category dominates and all are
well-represented, suggesting that a variety of phe-
nomena can be studied using this corpus.

5.2 Comparing Insertions to Raw Text
Understanding the high-level functions of edits, as
above, provides some insight into the type of lin-
guistic signals contained in the data. However,
we are particularly interested in whether the lan-
guage used for these functions is noticeably dif-
ferent from general Wikipedia text. That is: it is
not obvious that the language humans use to e.g.
extend or refine an existing claim should necessar-
ily be different, in aggregate, from the language
used to formulate these claims in general. We thus
explore whether this is the case.

We first compare the distribution of parts of
speech observed for the inserted phrases to the
distribution of parts of speech that we observe in
Wikipedia overall–i.e. in the sentences appear-
ing in the final, published version of Wikipedia,
not only the edit history. In order to compare the
relative frequencies in a straightforward way, we
look only at edits in which a single word was in-
serted.5 Figure 1 shows our results for English,
Spanish, and German. We see, for example, that
in English, adjectives and adverbs combined make
up nearly 30% of all inserted words, three and
a half times higher than the frequency of adjec-
tives/adverbs observed in the general Wikipedia
corpus, and that proper nouns are inserted at a
higher rate than would be suggested given their
base frequency.

Looking more carefully, we see that the nature
of the edits for each part of speech are qualita-
tively different as well. To explore this further,
we look at which words appear at substantially
higher rate as insertions than they do in the gen-
eral Wikipedia corpus. We compute this as fol-
lows: for a word w with part of speech pos, we
compute the number of times w occurs as an in-
sertion per thousand insertions of any word of type
pos, and compare this to the rate of occurrence of
w per thousand occurrences of any word of type
pos within the general Wikipedia corpus. Table 7
shows our results for English (Spanish and Ger-
man are given in the Supplementary Material). In
particular, we see that many words which are in-
serted at a significantly higher-than-baseline rate
reflect “refinement”-type edits. Many of these are
words which the original author may have commu-

5In our corpus 30% of inserted phrases are a single word,
and 70% are less than five words. We compared frequencies
for longer POS sequences as well, but it did not yield partic-
ular insight over looking at single POS tags.
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Category Freq. Example
Extend 43% The population was 39,000 in 2004, measured at 29,413 at the 2011 Census.
Refine 24% . . . began an investigation into Savile ’s apparent history of abuse. . .
RE 11% Andrew Sugerman has been involved in the production of motion pictures. . .
Fluency 9% Philippine coconut jam, meanwhile, is made from coconut cream. . .
Error 13% The team are well - known as a loser team in the past 5 years.The team is. . .

Table 6: High-level categories into which we manually characterize edits, to understand the variety of
phenomena captured by the corpus. Frequencies are based on our annotation of a sample of 100 edits.

(a) English (b) Spanish (c) German

Figure 1: Most frequent POS tags for English, Spanish, and German single-word insertions. Dark blue
bars show the relative frequency among inserted phrases and light blue bars show the relative frequency
among phrases observed in Wikipedia in general.

nicated implicitly but the editor chose to state ex-
plicitly, such as whether or not a person is a “cur-
rent”/“former” public figure6 or is “famous”. On
the other hand, words which are inserted at a sig-
nificantly lower-than-baseline rate are those which
would be unlikely to be omitted by the original
author. For example, if an event is famously the
“first” or the “only” one of its kind, it is highly
unlikely for the original author describing that
event not to use these words explicitly.

6 Language Modeling Analysis

We next explore the corpus from a language mod-
eling perspective. Again, we are interested in un-
derstanding how the signal captured by the editing
process is distinct from that captured by the final
edited text alone, and in characterizing the types of
signals we can learn from modeling the insertions
directly. We investigate this through two tasks:
first, given a sentence s and insertable phrase p,
predict the index i at which p should appear in s
(§6.1), and second, given a sentence s and an index
i, generate candidate phrases that would be appro-
priate to insert into s at i (§6.2).

6We note that the addition of “former” is likely tied to
changes in the real world (Wijaya et al., 2015).

NNP JJ RB

O
ve

r

City 16:2 former 34:6 also 187:91
Sir 7:1 current 11:2 currently 40:7
US 7:1 famous 9:2 very 24:11
John 6:3 professional 10:3 then 45:33
Roman 4:1 fictional 5:1 allegedly 10:1

U
nd

er

New 1:5 first 9:29 not 35:96
United 2:5 only 2:20 first 9:68
I 2:4 9 other 12:26 all 1:35
de 2:4 total 2:13 only 22:47
School 1:3 such 3:13 about 4:29

Table 7: Words that appear as insertions at sig-
nificantly higher rates (top row) and significantly
lower rates (bottom row) than their rate of occu-
rance in Wikipedia in general. We compute “rate”
as simply the observed occurrence of the given
word per thousand occurrences of any word with
the given POS. Table shows each word followed
by (rate as insertion):(rate in general)

6.1 Predicting Insertion Locations
Task. This task–given a phrase p and a sentence
s, choose the best index i in s at which to in-
sert p–is identical to the task we asked humans to
perform in §4. We consider two simple models
for performing this task: a basic language model
and a discriminative model trained on the insertion
data. We report performance as overall accuracy.
We analyze whether a model which is trained to
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model insertions directly captures something dif-
ferent than a general language model in terms of
the types of errors each model makes.

Models. We evaluate two models. First, we
evaluate a standard language modeling baseline
(General LM), in which we simply insert the
phrase p at every possible point in s and chose
the index which yields the lowest perplexity. We
use the LSTM language model from Jozefowicz
et al. (2016), which obtained SOTA results on lan-
guage modeling on the one billion words bench-
mark for English (Chelba et al., 2013). We train
this language model for each language on an aver-
age of ⇠ 500 million tokens from Wikipedia. Sec-
ond, we evaluate a discriminative model specifi-
cally trained on the insertion data (Discriminative
Model). This model represents the base sentence
using a sentence encoder that produces a context-
dependent representation of every word index in
the sentence, and then at test time, compares the
learned representation of each index with the rep-
resentation of the phrase p to be inserted. We use a
256-dimensional 2-layer biLSTM encoder, initial-
ized with FastText 300-dimensional word vectors
(Mikolov et al., 2018; Grave et al., 2018).7 We
hold out 50K and 10K insertion edits for each lan-
guage as development and test sets, and use the re-
maining edits (insertions and deletions) as training
data. This provides us with at least 1 million ex-
amples for training in each language (cf. Table 2).
See Supplementary Material for additional details.

Results. Table 8 shows the accuracy of each
model for each language. We see that the discri-
minitve model trained on insertions directly per-
forms better than the general LM by at least 1%
absolute accuracy on every language, and by 3.8%
absolute on average. It is worth emphasizing that
this performance improvement is despite the fact
that the general LM was trained with, on average,
four times the number of tokens8 and is a much
larger model–the general LM has ⇠ 2 billion pa-
rameters (Jozefowicz et al., 2016) compared to ⇠
1 million for the discriminative model.

More interesting than raw performance is the
difference in the types of errors that the models

7https://fasttext.cc/docs/en/
crawl-vectors.html

8The number of tokens in the WikiAtomicEdits is com-
puted as the the total number of words in the edited sentence
e(s) after the insertion. Refer to Supplementary Material for
more detailed statistics on the size of the dataset.

General LM Discr. Model
German 68.1 72.9
English 58.7 68.4
Spanish 67.0 70.1
French 69.9 73.4
Italian 69.0 72.9
Japanese 73.0 74.2
Russian 72.9 74.3
Chinese 65.5 68.9
Average 68.0 71.8

Table 8: Insertion accuracy on the test set.

make. For each model, we take a random sample
of 50 examples on which the model made a correct
prediction and 50 examples on which the model
made an incorrect prediction. We annotate these
200 examples9 according to the edit type classi-
fication discussed in §5.1. Table 9 shows the re-
sults. We find a significant difference10 (p < 0.01)
between the types of edits on which the General
LM makes correct predictions and the types on
which it makes incorrect predictions. Specifically,
the General LM appears to be especially good at
predicting location for fluency/discourse edits, and
especially poor at predicting the location of refine-
ment edits. In contrast, we do not see any sig-
nificant bias in the errors made by the discrimi-
native model compared to its correct predictions
(p = 0.23). We interpret this as evidence that the
insertion data captures some semantic signal that
is not readily gleaned from raw text corpora.

6.2 Predicting Insertion Phrases
Task. In a final set of experiments, we explore a
generative version of the language modeling task:
given a sentence s and an specified index i, gener-
ate a phrase p which would be appropriate to insert
into s at i. We are interested in what such a model
can learn about the nature of how sentences are
extended: what type of information would be rele-
vant from a semantic perspective, and natural from
a discourse perspective to insert at a given point?
We train two models for this task, one trained on
the training split of the WikiAtomicEdits corpus,
and one baseline trained on a comparable set of
phrasal insertions not derived from human edits.
We evaluate on the same 10K held-out insertion

9To avoid bias, the 200 examples are shuffled and the
annotator does not know which group (correct/incorrect, or
which model) each example belongs to.

10We use the chi-squared test provided by scipy.stats.
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Base General Discr.
Freq. LM Model

3 7 3 7
Extend 25 21 19 25 21
Refine 14 7 18 13 14
RE 6 7 9 4 9
Fluency 5 15 4 8 6

Table 9: Relationship between model accuracy and
insertion type, based on a sample of 50 correct (3)
and 50 incorrect (7) predictions from each model.
Base frequency is shown for reference and is based
on our analysis from §5.1. The General LM shows
a bias in accuracy by insertion type. This bias is
not observed for the discriminative model.

edits as in §6.1, and measure performance using
both a strict “exact match” as well as a softer sim-
ilarity metric.

Model. We use an standard sequence-to-
sequence model (Sutskever et al., 2014), modi-
fying the input with a special token denoting the
insertion point. For example, given the input [“
Angel ” is a song recorded by <ins> pop music
duo Eurythmics .], the model would be trained to
produce the target phrase [the British]. We use
a two-layer bidirectional encoder using the same
300-dimensional FastText embeddings as in §6.1,
and a sequence decoder with attention (Bahdanau
et al., 2015) using a learned wordpiece model
(Schuster and Nakajima, 2012) with a vocabulary
of 16,000.

Experimental Design. We train one version of
this model on the same set of 23M English ex-
amples as the discriminative insertion model from
§6.1; we refer to the model trained on this data
as Edits. For comparison, we train an identical
model on a set of simulated insertions which we
create by sampling sentences from Wikipedia and
removing contiguous spans of tokens, which we
then treat as the insertion phrases. To ensure that
this data is reasonably comparable to the Wiki-
AtomicEdits data, we parse the sampled sentences
(Andor et al., 2016) and only remove a span if it
represents a full subtree of the dependency parse
and is not the subject of the sentence.11 We gener-
ate 23M such “psuedo-edits” for training, the same

11Not all of the inserted phrases in WikiAtomicEdits are
well-formed constituents. However, generating psuedo-edits
using this heuristic provided a cleaner, more realistic compar-
ison than using fully-random spans.

size as the WikiAtomicEdits training set. We refer
to the model trained on this data as General.

Results. We look at the top 10 phrases proposed
by each model, as decoded by beam search. In
addition to reporting standard LM perplexity, we
compute two measures of performance, which are
intended to provide an intuitive picture of how
well each model captures the nature of the infor-
mation that is introduced by the human editors.
Specifically, we compute Exact Match as the pro-
portion of sentences for which the model produced
the gold phrase (i.e. the phrase inserted by the hu-
man editor) somewhere among the top 10 phrases.
We also compute Similarity@1 as the mean co-
sine similarity of each top-ranked phrase and re-
spective gold phrase over the test set. We use the
sum of the Glove embeddings (Pennington et al.,
2014) of each word in the phrase as a simple ap-
proximation of the phrase vector.

Table 11 shows the results. We see that, com-
pared to the model trained on General Wikipedia,
the model trained on WikiAtomicEdits generates
edits which are more similar to the human inser-
tions, according to all of our metrics. Table 10
provides a few qualitative examples of how the
phrases generated by the Edits model differ from
those generated by the General model. Specifi-
cally, we see that the Edits model proposes phrases
which better capture the discourse function of the
human edit: e.g. providing context for/elaboration
on a previously-stated fact. We note that this does
not mean that training on Edits is inherently “bet-
ter” than on General text, but rather that the su-
pervision encoded by the WikiAtomicEdits corpus
encodes aspects of language that are distinct from
those easily learned from existing resources.

7 Related Work

Wikipedia Edits. Wikipedia edit history has
been used as a source of supervision for a vari-
ety of NLP tasks, including sentence compression
and simplification (Yamangil and Nelken, 2008;
Yatskar et al., 2010), paraphrasing (Max and Wis-
niewski, 2010), entailment (Zanzotto and Pennac-
chiotti, 2010; Cabrio et al., 2012), and writing as-
sistance (Zesch, 2012; Cahill et al., 2013; Grund-
kiewicz and Junczys-Dowmunt, 2014). User ed-
its from Wikipedia and elsewhere have also been
analyzed extensively for insight into the editing
process and the types of edits made (Daxenberger
and Gurevych, 2012, 2013; Yang et al., 2017)
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She is cited as the first female superstar of Hindi Cinema He is married to Aida Leanca
and India ’s Meryl Streep and has two children

Edits General Edits General
and is the best actress of the film in japan and has a daughter in january
and is the best actress of the Indian cinema in june , and has a daughter in june
and is the best actress of the film industry in 2011 , and has a daughter and a daughter in january 2012

Table 10: Predicted phrase insertions from model trained on Edits vs. General corpus. The Edits model
better captures the discourse function of the human edit, e.g. elaborating on the previously-stated fact,
while the General model gives syntactically-appropriate but generic insertions.

Edits General
Log Perplexity 8.32 9.23
Exact Match 13.1% 8.0%
Similarity@1 0.54 0.48

Table 11: Comparison of how closely each model’s
generated phrases match the phrase inserted by
the human editor. “Edits” was trained on Wiki-
AtomicEdits and “General” was trained on com-
parable data not derived from human edits. We
consider the top 10 phrases generated by each
model.

and to better understand argumentation (Tan and
Lee, 2014). Particular attention has been given to
spam edits (Adler et al., 2011) and editor quality
(Leskovec et al., 2010). Our work differs in that
WikiAtomicEdits is much larger than currently
available corpora, both by number of languages
and by size of individual languages. In addition,
our focus on atomic edits should facilitate more
controlled studies of semantics and discourse.

Sentence Representation and Generation. We
view the WikiAtomicEdits corpus as being espe-
cially valuable for ongoing work in sentence rep-
resentation and generation, which requires models
of what “good” sentences look like and how they
are constructed. Recent work has attempted to
model sentence generation by re-writing existing
sentences, either using crowdsourced edit exam-
ples (Narayan et al., 2017) or unsupervised heuris-
tics (Guu et al., 2018); in contrast, we provide a
large corpus of natural, human-produced edits.

Also related is recent work in sentence rep-
resentation learning from raw text (Kiros et al.,
2015; Peters et al., 2018), bitext (McCann et al.,
2017), and other supervised tasks including NLI
(Conneau et al., 2017). Especially related is work
on learning representations from weakly-labelled
discourse relations (Nie et al., 2017; Jernite et al.,
2017), as the WikiAtomicEdits corpus captures

similar types of discourse signal.

Description of Data Release

Our full corpus is available for download at http:
//goo.gl/language/wiki-atomic-edits. The
data contains 26M atomic insertions and 17M
atomic deletions covering 8 languages. All sen-
tences (both the original sentence s, and the edited
sentence e(s)) have been POS-tagged and depen-
dency parsed (Andor et al., 2016) as well as scored
using a SOTA LM (Jozefowicz et al., 2016). We
also release the 5K 5-way human insertion annota-
tions for English, and 1K 3-way annotations each
for Spanish and German, as described in §4.

8 Conclusion

We have introduced the WikiAtomicEdits corpus,
derived from Wikipedia’s edit history, which con-
tains 43M examples of atomic insertions and dele-
tions in 8 languages. We have shown that the lan-
guage in this corpus is meaningfully different from
the language we observe in general, and that mod-
els trained on this corpus encode different aspects
of semantics and discourse than models trained on
raw text. These results suggest that the corpus will
be valuable to ongoing research in semantics, dis-
course, and representation learning.
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Abstract
A key challenge in cross-lingual NLP is de-
veloping general language-independent archi-
tectures that are equally applicable to any lan-
guage. However, this ambition is largely ham-
pered by the variation in structural and seman-
tic properties, i.e. the typological profiles of
the world’s languages. In this work, we anal-
yse the implications of this variation on the lan-
guage modeling (LM) task. We present a large-
scale study of state-of-the art n-gram based
and neural language models on 50 typolog-
ically diverse languages covering a wide va-
riety of morphological systems. Operating in
the full vocabulary LM setup focused on word-
level prediction, we demonstrate that a coarse
typology of morphological systems is predic-
tive of absolute LM performance. Moreover,
fine-grained typological features such as expo-
nence, flexivity, fusion, and inflectional synthe-
sis are borne out to be responsible for the pro-
liferation of low-frequency phenomena which
are organically difficult to model by statisti-
cal architectures, or for the meaning ambiguity
of character n-grams. Our study strongly sug-
gests that these features have to be taken into
consideration during the construction of next-
level language-agnostic LM architectures, ca-
pable of handling morphologically complex
languages such as Tamil or Korean.

1 Introduction
Deep learning has allowed NLP algorithms to dis-
pose of manually-crafted features, and to virtually
achieve language independence. However, their per-
formance still varies noticeably across languages
due to different underlying data distributions (Ben-
der, 2013; O’Horan et al., 2016). Linguistic ty-
pology, the systematic comparison of the world’s
languages, holds promise to explain these idiosyn-
crasies and interpret statistical models in terms of
variation in language structures (Ponti et al., 2017).

⇤Both authors equally contributed to this work.

In order to evaluate how cross-lingual structural
variation hinders the design of effective general-
purpose algorithms, we propose the task of lan-
guage modeling (LM) as a testbed. In particular,
we opt for a full-vocabulary setup where no word
encountered at training time is treated as an un-
known symbol, in order to a) ensure a fair compari-
son across languages with different word frequency
rates and b) avoid setting an arbitrary threshold on
vocabulary size (Cotterell et al., 2018).

Although there has recently been a tendency
towards expanding test language samples, the
datasets considered in previous works (Botha and
Blunsom, 2014; Vania and Lopez, 2017; Kawakami
et al., 2017; Cotterell et al., 2018) are not entirely
adequate yet to represent the typological variation
and to ground cross-lingual generalisations empiri-
cally. Hence, we test several LM architectures (in-
cluding n-gram, neural, and character-aware mod-
els) on a novel and wider set of 50 languages sam-
pled according to stratification principles.

Through this large-scale multilingual analysis,
we shed new light on the current limitations of
standard LM models and offer support to fur-
ther developments in multilingual NLP. In par-
ticular, we demonstrate that the previous fixed-
vocabulary assumption in fact ignores the limita-
tions of language modeling for morphologically
rich languages. Moreover, we find a strong corre-
lation across the board between LM model per-
formances and the type of morphological system
adopted in each language.

To motivate this correlation we show how fine-
grained typological properties interact with the fre-
quency distribution (Zipf, 1949) by regulating word
boundaries and the proliferation of word forms;
and 2) with the mapping between morphemes (here
intended as character n-grams) and meaning, by
possibly blurring it.

The paper is organised as follows. After provid-
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ing a short overview of multilingual LM and its
possible setups (§2), we describe the cross-lingual
variation in morphological systems and propose a
novel typologically diverse dataset for LM in §3.
We outline the data in §4 and benchmarked lan-
guage models in §5. Finally, we discuss the results
in light of linguistic typology in §6.

2 Multilingual Language Modeling

A language model computes a probability distribu-
tion over sequences of word tokens, and is typically
trained to maximise the likelihood of word input
sequences. The LM objective is expressed as:

P (w1, ...wn) =
Y

i

P (wi|w1, ...wi�1) (1)

wi is a word token with the index i in the sequence.
LM is considered a central task in NLP and lan-
guage understanding, with applications in speech
recognition (Mikolov et al., 2010), text summari-
sation (Filippova et al., 2015; Rush et al., 2015),
and information retrieval (Ponte and Croft, 1998;
Zamani and Croft, 2016). The importance of lan-
guage modeling has been accentuated even more in
representation learning recently, where it is used as
a novel form of unsupervised pre-training (and an
alternative to static word embeddings) for the ben-
efit of a variety of NLP applications (Peters et al.,
2018; Howard and Ruder, 2018).

Related Work: Datasets and Evaluation. Lan-
guage modeling is predominantly tested on English
and other Western European languages. Standard
English LM benchmarks are the Penn Treebank
(PTB) (Marcus et al., 1993) and the 1 Billion Word
Benchmark (BWB) (Chelba et al., 2013). Datasets
extracted from BBC News (Greene and Cunning-
ham, 2006) and IMDB Movie Reviews (Maas et al.,
2011) are also used for LM evaluation in English
(Wang and Cho, 2016; Miyamoto and Cho, 2016;
Press and Wolf, 2017).

For multilingual LM evaluation, Botha and Blun-
som (2014) extract datasets for Czech, French,
Spanish, German, and Russian from the 2013 Work-
shop on Statistical Machine Translation (WMT)
data (Bojar et al., 2013). Kim et al. (2016) reuse
these datasets and add Arabic. Ling et al. (2015)
evaluate on English, Portuguese, Catalan, German
and Turkish datasets extracted from Wikipedia.
Kawakami et al. (2017) evaluate on 7 European
languages using Wikipedia data, including Finnish.

To the best of our knowledge, the largest datasets
used in previous work are from (Müller et al., 2012;
Cotterell et al., 2018) and amount to 21 languages
from the Europarl data (Koehn, 2005). Despite the
large coverage of languages, these sets are still
restricted only to the languages of the European
Union. On the other hand, the most typologically
diverse dataset thus far was released by Vania and
Lopez (2017). It includes 10 languages represent-
ing some morphological systems.

This short survey of related work demonstrates
a clear tendency towards extending LM evaluation
to other languages, abandoning English-centric as-
sumptions, and focusing on language-agnostic LM
architectures. However, a comprehensive evalua-
tion set that systematically covers a wide and bal-
anced spectrum of typologically diverse languages
is still missing. The novel dataset we discuss in this
paper aims at bridging this gap (see §4).

Fixed vs. Full Vocabulary Setup. A majority of
language models rely on the fixed-vocabulary as-
sumption: they use a special symbol <UNK> that
represents all words not present in the fixed vocabu-
lary V , which are termed out-of-vocabulary (OOV).
Selecting the set V typically slips under the radar,
and can be seen as “something of a black art” de-
spite its enormous impact on final LM performance
(Cotterell et al., 2018).1 Standard LM setups either
fix the vocabulary V to the top n most frequent
words, typically with n = 10, 000 or n = 5, 000
(Mikolov et al., 2010; Ling et al., 2015; Vania and
Lopez, 2017; Lee et al., 2017, inter alia), or include
in V only words with a frequency below a certain
threshold (typically 2 or 5) (Heafield et al., 2013).

The rationale behind fixing the set V is a) to
make the language model more robust to handling
OOVs and to effectively bypass the problem of
unreliable word estimates for low-frequency and
unseen words (by ignoring them), and b) to enable
direct comparisons of absolute perplexity scores
across different models. However, this posits a
critical challenge as cross-linguistic evaluation be-
comes uneven. In fact, we witness a larger propor-
tion of vocabulary words replaced by <UNK> in
morphologically rich languages because of their
higher OOV rates (see Table 3). What is more,
while the fixed-vocabulary assumption artificially

1For instance, Vania and Lopez (2017) report perplexity
scores of ⇡20 for Finnish when V is fixed to the 5k most
frequent words. The same model in the full-vocabulary setup
obtains perplexity scores of ⇡2,000.
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FI Kreikkalaiset sijoittivat geometrian synnyn muinaiseen Egyptiin , jossa sitä tarvittiin maanmittaukseen .
FI (MIN-5) <UNK> <UNK> <UNK> synnyn <UNK> Egyptiin , jossa sitä tarvittiin <UNK> .
FI (10K) <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> , jossa sitä <UNK> <UNK> .

KO ’™+'Ù«r� —̨ò{9⌃Å©ú\Å"fÅ©ú"È∂�◆#åí�⌅1lx‹ºñ– ∑̇ò�9&í✓⇥◆.’™�Q�◆’™_�|9�ì…rt�1lq�◆>⇡�◆ËflñŸ̨°⇥◆ .
KO (MIN-5) ’™+' <UNK> <UNK> <UNK> <UNK> ∑̇ò�9&í✓⇥◆ .’™�Q�◆’™_�|9�ì…r <UNK> <UNK> .
KO (10K) ’™+' <UNK> <UNK> <UNK> <UNK> ∑̇ò�9&í✓⇥◆ .’™�Q�◆’™_� <UNK> <UNK> <UNK> .

Table 1: Examples from Finnish and Korean LM datasets after applying the standard fixed-vocabulary
assumption. MIN=5: only words with corpus frequency above 5 are retained in the final fixed vocabulary
V ; 10K: V comprises the 10k most frequent words.

improves the perplexity measure, it actually makes
the models less useful, especially in morphologi-
cally rich languages, as exemplified in Table 1.

Our goal is to get a clear picture on how dif-
ferent typological features and the corresponding
corpus frequency distributions affect LM perfor-
mance, without the influence of the unrealistic
fixed-vocabulary assumption. Therefore, we work
in the full-vocabulary LM setup (Adams et al.,
2017; Grave et al., 2017). This means that we ex-
plicitly decide to retain also infrequent words in
the modeled data: V contains all words occurring
at least once in the training set, only unseen words
from test data are treated as OOVs. We believe that
this setup leads to an evaluation that pinpoints the
crucial limitations of standard LM architectures.2

Why Not Open Vocabulary Setup? Recent neu-
ral LM architectures have also focused on han-
dling large vocabularies and unseen words using
character-aware modeling (Luong and Manning,
2016; Jozefowicz et al., 2016; Kawakami et al.,
2017, inter alia). This setup is commonly referred
to as the open-vocabulary setup. However, two dis-
tinct approaches with crucial modeling differences
are referred to by the same term in the literature.
a) Word-level generation constructs word vectors
for arbitrary words from constituent subword-level
components, but word-level prediction is still eval-
uated based on the fixed-vocabulary assumption.
b) Character-level generation predicts characters
instead of words.

Given that character-level prediction and word-
level prediction operate on entirely different sets
of symbols, their performance is hardly compara-
ble. Still, Jozefowicz et al. (2016) report that, in a
hybrid setup which evaluates character-level pre-
diction based on word-level perplexity with the

2For instance, as discussed later in §3 and validated empiri-
cally in §6, the vocabularies of morphologically rich languages
are inherently larger: it is simply more difficult to learn and
make LM predictions in such languages.

Type Fusion Exponence Flexivity Synthesis

Isolating low 1:1 1:1 low
Fusional mid many:1 1:many mid
Introflexive high many:1 1:many mid
Agglutinative mid 1:1 1:1 high

Table 2: Traditional morphological types described
in terms of selected features from WALS.

fixed-vocabulary assumption, current state-of-the-
art word-level prediction models (i.e., the ones we
discuss in §5) still significantly outperform such hy-
brid character-level prediction approaches. There-
fore, we operate in the full-vocabulary setup.

3 Typology of Morphological Systems

Aiming for a comprehensive multilingual LM
evaluation in this study, we survey all possible
types of morphological systems (Haspelmath and
Sims, 2013), which possibly lead to different per-
formances. Traditionally, languages have been
grouped into the four main categories: isolating,
fusional, introflexive and agglutinative, based on
their position along a spectrum measuring the pref-
erence on breaking up concepts in many words (on
one extreme) or rather compose them into single
words (on the other extreme).

The mono-dimensionality of this spectrum has
recently been challenged as languages exhibit a
multitude of morphological features that do not co-
vary across languages (Plank, 2017; Ponti et al.,
2018). The typological database WALS (Dryer and
Haspelmath, 2013) documents several of them that
are relevant for LM: inflectional synthesis, fusion,
exponence, and flexivity. Note that the prototypes of
traditional categories can be approximated in terms
of these features, as shown in Table 2, although
more combinations are possible.

Languages specify different subsets of grammat-
ical categories (such as tense for verbs, or num-
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ber for nouns), and for each category different val-
ues are available in each language: for instance,
Finnish has less tense values (it lacks a future),
whereas Slovene has more number values (includ-
ing a dual) compared to English. The feature in-
flectional synthesis for verbs (Bickel and Nichols,
2013) measures how many categories appear on
the maximally inflected verb per language. More
available categories enlarge the vocabulary (and
consequently the OOV rate) with forms instantiat-
ing all possible combinations of their values.

Another crucial aspect is how the available gram-
matical categories are expressed, which can be de-
scribed by fusion, exponence, and flexivity. Fusion
measures the degree of connectedness between a
grammatical marker to another word. The marker
can be (from lower to higher fusion) a separate
word, a clitic, an affix, or can affect the form of the
root itself (e.g. an umlaut or a tone).

Exponence measures the number of categories
(e.g., tense, number) a single morpheme tends to
convey. Exponence is separative if one grammatical
category is conveyed by one morpheme (1:1), and
cumulative if multiple categories are grouped into
one morpheme (many:1).

Flexivity indicates the possibility that the value
of a grammatical category be mapped into differ-
ent morphological forms (1:many). In other terms,
lemmas belonging to the same part-of-speech are
divided into inflectional classes (such as declension
classes for nouns or conjugation classes for verbs),
each characterised by a different paradigm, that is,
a different set of value-to-form mappings.

The three last features are illustrated by the ex-
amples Ex. (2)-Ex. (5), all uttering the sentence “I
will guard the doors and I will not open (them)”.3

(2) tôi
I

s≥
FUT

b£o
guard

vª c˚a
door

và
and

tôi
I

s≥
FUT

không
NEG

m
open (Vietnamese)

(3) kapı-lar-ı
door-PL-ACC

koruy-acağ-ım
guard-FUT-1SG

ve
and

aç-may-acağ-ım
open-NEG-FUT-1SG (Turkish)

(4) sorvegli-erò
guard-FUT.1SG

le
DEF

port-e
door-PL

e
and

non
NEG

apr-irò
open-FUT.1SG (Italian)

3All morphological glosses follow the Leipzig glossing
rules, listed at https://www.eva.mpg.de/lingua/
resources/glossing-rules.php

(5) ‘e-šmor
1SG-guard.FUT

‘al
on

ha-d‘lat-ót
DEF-door-PL

v‘-lo
and-NEG

‘e-ftach
1SG-wait.FUT

otán
them (Hebrew)

In particular, consider how tense and person are
expressed on verbs. Vietnamese in Ex. (2) puts
two particles tôi and sẽ before the verb, which are
distinct (separate exponence), autonomous from
the root (no fusion), and fixed (absence of flexiv-
ity). Turkish in Ex. (3) attaches suffixes: -acak- for
tense and -ım for person. These are distinct (sepa-
rate exponence), joined to the roots (concatenative
fusion), and (phonologically determined variants
of) the same morpheme (1:1 flexivity). Italian in
Ex. (4) uses affixes -erò and -irò: they are concate-
nated to the root with respect to fusion, convey
both tense and person (cumulative exponence), and
are dissimilar (presence of flexivity). Finally, in
Ex. (5) for Hebrew the consonant pattern of the
verb š-m-r is interdigitated by the vowel -o- for
tense, and preceded by a prefix ‘e- for person. The
first phenomenon alters the root itself (introflexive
fusion), is distinct from the second (separate ex-
ponence), and changes its realisation based on the
verb’s lemma (presence of flexivity).

The above evidence strongly motivates us, as
well as recent previous work (Vania and Lopez,
2017; Kawakami et al., 2017; Cotterell et al., 2018),
to approach LM with models that are aware of the
inner structure of their input words, and to bench-
mark these modeling choices on a typologically
diverse range of languages, as shown in §4.

4 Data

Selection of Languages. Our selection of test
languages is guided by the following goals: a) we
have to ensure the coverage of typological prop-
erties from §3, and b) we want to analyse a large
set of languages which extends and surpasses other
work in the LM literature (see §2).

Since cross-lingual NLP aims at modeling extant
languages rather than possible languages (includ-
ing, e.g., extinct ones), creating a balanced sample
is challenging. In fact, attested languages, intended
as a random variable, are extremely sparse and not
independent-and-identically-distributed (Cotterell
and Eisner, 2017). First, available and reliable data
exist only for a fraction of the world’s languages.
Second, these data are biased because their features
may not stem from the underlying distribution, i.e.,
from what is naturally possible/frequent, but rather
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can be inherited by genealogical relatedness or bor-
rowed by areal proximity (Bakker, 2010). To mit-
igate these biases, theoretical works resorted to
stratification approaches, where each subgroup of
related languages is sampled independently. maxi-
mizing their diversity (Dryer, 1989, inter alia). We
perform our selection in the same spirit.

We start from the Polyglot Wikipedia (PW)
project (Al-Rfou et al., 2013) which provides
cleaned and tokenised Wikipedia data in 40 lan-
guages. However, the majority of the PW lan-
guages are similar from the perspective of geneal-
ogy (26/40 are Indo-European), geography (28/40
are Western European), and typology (26/40 are
fusional). Consequently, the PW set is not a repre-
sentative sample of the world’s languages.

To amend this limitation, we source additional
languages with the data coming from the same
domain, Wikipedia, considering candidates in de-
scending order of corpus size cleaned and prepro-
cessed by the Polyglot tokeniser (Al-Rfou et al.,
2013). Since fusional languages are already repre-
sented in the PW, we add new languages from other
morphological types: isolating (Min Nan, Burmese,
Khmer), agglutinative (Basque, Georgian, Kan-
nada, Tamil, Mongolian, Javanese), and introflex-
ive languages (Amharic).

Partition. We construct datasets for all 50 lan-
guages by extracting the first 40K sentences for
each language, and split them into train (34K), vali-
dation (3K), and test (3K). This choice has been mo-
tivated by the following observations: a) we require
similarly-sized datasets from the same domain for
all languages; b) the size of the datasets has to be
similar to the standard English PTB dataset (Mar-
cus et al., 1993) which has been utilised to guide
LM development in English for more than 20 years.
The final list of 50 languages along with their lan-
guage codes (ISO 639-1), morphological type (i.e.,
isolating, fusional, introflexive, agglutinative), and
corpus statistics is provided in Table 3.

5 Models and Experimental Setup

Benchmarked Language Models. The avail-
ability of LM evaluation sets in a large number
of diverse languages, as described in §4, gives
an opportunity to conduct a full-fledged multilin-
gual analysis of representative LM architectures
for word-level prediction. First, we evaluate a state-
of-the-art model from the n-gram family of models

(Goodman, 2001) from the KenLM package.4 It
is based on 5-grams with extended Kneser-Ney
smoothing (Kneser and Ney, 1995; Heafield et al.,
2013). We refer to this model as KN5.

Modern LM architectures are almost exclusively
based on recurrent neural networks (RNNs), and
especially on Long-Short-Term Memory networks
(LSTMs). (Mikolov et al., 2010; Sundermeyer et al.,
2015; Chen et al., 2016, inter alia). They map a
sequence of input words to embedding vectors us-
ing a look-up matrix and then perform word-level
prediction by passing the vectors to the LSTM.

Finally, we also evaluate a character-aware vari-
ant of the neural LSTM LM architecture. We use
the Char-CNN-LSTM model (Kim et al., 2016)
due to its public availability and strong perfor-
mance in several languages. In this model, each
character is embedded and passed through a convo-
lutional neural network with max-over-time pool-
ing (LeCun et al., 1989), followed by a highway
network transformation (Srivastava et al., 2015) to
build word representations from their constituent
characters. By resorting to character-level informa-
tion, the model is able to provide better parame-
ter estimates for lower-frequency words, which is
particularly important for morphologically rich lan-
guages. The CNN-based word representations are
then processed in a sequence by a regular LSTM
network to obtain word-level predictions.

Evaluation Setup. We report perplexity scores
(Jurafsky and Martin, 2017, chapter 4.2.1) using
the full vocabulary for each respective LM dataset.
This means that we explicitly decide to retain also
infrequent words in the data and analyse the diffi-
culty of modeling such words in morphologically
rich languages (see §2 for the discussion).

In the full-vocabulary setup, the set V comprises
all words occurring at least once in the training
set. Unseen test words are mapped to one <UNK>
vector, sampled from the the space of trained word
vectors relying on a normal distribution and the
same fixed random seed for all models. On the other
hand, KN5 by design has a slightly different way
of handling unseen test words: they are regarded as
outliers and assigned low-probability estimates.

Training Setup and Parameters. For LSTM
and Char-CNN-LSTM language models, we re-
produce the standard LM setup of Zaremba et al.
(2015) and parameter choices of Kim et al. (2016).

4https://github.com/kpu/kenlm
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Batch size is 20 and a sequence length is 35, where
one step corresponds to one word token. The max-
imum word length is chosen dynamically based
on the longest word in the corpus. The corpus is
processed continuously; the RNN hidden states re-
set at the beginning of each epoch. Parameters are
optimised with SGD, and the gradient is averaged
over the batch size and sequence length. We then
scale the averaged gradient by the sequence length
(=35) and clip to 5.0 for more stable training. The
learning rate is 1.0, decayed by 0.5 after each epoch
if the validation perplexity does not improve. All
models are trained for 15 epochs, which is typically
sufficient for model convergence. Finally, KN5 is
trained relying on the suggested parameters from
the KenLM package.

6 Results and Discussion

In this section, we present our main empirical find-
ings on the connection between LM performance
and corpus statistics emerging from different ty-
pological profiles (see §3). Before proceeding, we
stress that the absolute perplexity scores across dif-
ferent languages are not directly comparable, but
their values provide evidence on the difficulty and
limitations of language modeling in each language,
considering the fact that all language models were
trained on similarly-sized datasets. The results for
all three benchmarked language models on all 50
languages are summarised in Table 3.

Comparison of Language Models. A quick in-
spection of the results from Table 3 reveals that the
Char-CNN-LSTM model is the best-performing
model overall. We report the best results with that
model for 48/50 languages and across all traditional
morphological types. Gains over the simpler recur-
rent LM architecture (i.e., the LSTM model) are
present for all 50/50 languages. In short, this means
that character-level information on the input side of
neural architectures, in addition to leading to fewer
parameters, is universally beneficial for the final
performance of word-level prediction, as also sug-
gested by Kim et al. (2016) on a much smaller set
of languages. By relying on character-level knowl-
edge, Char-CNN-LSTM model provides better es-
timates for lower-frequency words.

Moreover, the results show that KN5 is a compet-
itive baseline for several languages (e.g., Kannada,
Thai, Amharic). This further highlights the impor-
tance of testing models on a typologically diverse
set of languages: despite the clear superiority of

Figure 1: Perplexity scores with the Char-CNN-
LSTM language model (Kim et al., 2016) on PTB-
sized language modeling data in 50 languages as a
function of type-to-token ratios in training data.

neural LM architectures such as Char-CNN-LSTM
in a large number of languages, the results and the
marked outliers still suggest that there is currently
no “one-size-fits-all” model.

In general, large perplexity scores for certain
languages (e.g., agglutinative languages such as
Finnish, Korean, Tamil, or introflexive languages),
especially when compared to performance on En-
glish on a similarly-sized dataset, clearly point at
the limitations of all the “language-agnostic” LM
architectures. As suggested by Jozefowicz et al.
(2016), LM performance in English can be boosted
by simply collecting more data and working with
large vocabularies (e.g., reducing the number of
relevant OOVs). However, this solution is certainly
not applicable to a majority of the world’s lan-
guages (Bird, 2011; Gandhe et al., 2014; Adams
et al., 2017), see later in §6: Further Discussion.

Frequency Analysis and Traditional Morpho-
logical Types. We now analyse all languages in
our collection according to word-level frequency
properties also listed in Table 3 for all 50 lan-
guages. We report: 1) the vocabulary size (i.e., the
total number of vocabulary words in each training
dataset); 2) the total number of test words not occur-
ring in the corresponding training data; 3) the total
number of tokens in both training and test data;
and finally 4) type-to-token ratios (TTR) in train-
ing data. We also plot absolute perplexity scores
of Char-CNN-LSTM (Kim et al., 2016), the best-
performing model overall (see §6), in relation to
TTR ratios in Figure 1.
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Data Stats Baseline Models
Language (code) Vocab

Size
(Train)

New
Test
Vocab

Number
Tokens
(Train)

Number
Tokens
(Test)

Type /
Token
(Train)

KN5 LSTM Char-
CNN-
LSTM

⇥ Amharic (am) 89749 4805 511K 39.2K 0.18 1252 1535 981
⇥ Arabic (ar) 89089 5032 722K 54.7K 0.12 2156 2587 1659
⇤ Bulgarian (bg) 71360 3896 670K 49K 0.11 610 651 415
⇤ Catalan (ca) 61033 2562 788K 59.4K 0.08 358 318 241
⇤ Czech (cs) 86783 4300 641K 49.6K 0.14 1658 2200 1252
⇤ Danish (da) 72468 3618 663K 50.3K 0.11 668 710 466
⇤ German (de) 80741 4045 682K 51.3K 0.12 930 903 602
⇤ Greek (el) 76264 3767 744K 56.5K 0.10 607 538 405
⇤ English (en) 55521 2480 783K 59.5K 0.07 533 494 371
⇤ Spanish (es) 60196 2721 781K 57.2K 0.08 415 366 275
F Estonian (et) 94184 3907 556K 38.6K 0.17 1609 2564 1478
F Basque (eu) 81177 3365 647K 47.3K 0.13 560 533 347
⇤ Farsi (fa) 52306 2041 738K 54.2K 0.07 355 263 208
F Finnish (fi) 115579 6489 585K 44.8K 0.20 2611 4263 2236
⇤ French (fr) 58539 2575 769K 57.1K 0.08 350 294 231
⇥ Hebrew (he) 83217 3862 717K 54.6K 0.12 1797 2189 1519
⇤ Hindi (hi) 50384 2629 666K 49.1K 0.08 473 426 326
⇤ Croatian (hr) 86357 4371 620K 48.1K 0.14 1294 1665 1014
F Hungarian (hu) 101874 5015 672K 48.7K 0.15 1151 1595 929
⇤ Indonesian (id) 49125 2235 702K 52.2K 0.07 454 359 286
⇤ Italian (it) 70194 2923 787K 59.3K 0.09 567 493 349
F Japanese (ja) 44863 1768 729K 54.6K 0.06 169 156 136
F Javanese (jv) 65141 4292 622K 52K 0.10 1387 1443 1158
F Georgian (ka) 80211 3738 580K 41.1K 0.14 1370 1827 1097
⇤ Khmer (km) 37851 1303 579K 37.4K 0.07 586 637 522
F Kannada (kn) 94660 4604 434K 29.4K 0.22 2315 5310 2558
F Korean (ko) 143794 8275 648K 50.6K 0.22 5146 10063 4778
⇤ Lithuanian (lt) 81501 3791 554K 41.7K 0.15 1155 1415 854
⇤ Latvian (lv) 75294 4564 587K 45K 0.13 1452 1967 1129
⇤ Malay (ms) 49385 2824 702K 54.1K 0.07 776 725 525
F Mongolian (mng) 73884 4171 629K 50K 0.12 1392 1716 1165
⇤ Burmese (my) 20574 755 576K 46.1K 0.04 209 212 182
⇤ Min-Nan (nan) 33238 1404 1.2M 65.6K 0.03 61 43 39
⇤ Dutch (nl) 60206 2626 708K 53.8K 0.08 397 340 267
⇤ Norwegian (no) 69761 3352 674K 47.8K 0.10 534 513 379
⇤ Polish (pl) 97325 4526 634K 47.7K 0.15 1741 2641 1491
⇤ Portuguese (pt) 56167 2394 780K 59.3K 0.07 342 272 214
⇤ Romanian (ro) 68913 3079 743K 52.5K 0.09 384 359 256
⇤ Russian (ru) 98097 3987 666K 48.4K 0.15 1128 1309 812
⇤ Slovak (sk) 88726 4521 618K 45K 0.14 1560 2062 1275
⇤ Slovene (sl) 83997 4343 659K 49.2K 0.13 1114 1308 776
⇤ Serbian (sr) 81617 3641 628K 46.7K 0.13 790 961 582
⇤ Swedish (sv) 77499 4109 688K 50.4K 0.11 843 832 583
F Tamil (ta) 106403 6017 507K 39.6K 0.21 3342 6234 3496
⇤ Thai (th) 30056 1300 628K 49K 0.05 233 241 206
⇤ Tagalog (tl) 72416 3791 972K 66.3K 0.07 379 298 219
F Turkish (tr) 90840 4608 627K 45K 0.14 1724 2267 1350
⇤ Ukranian (uk) 89724 4983 635K 47K 0.14 1639 1893 1283
⇤ Vietnamese (vi) 32055 1160 754K 61.9K 0.04 197 190 158
⇤ Chinese (zh) 43672 1653 746K 56.8K 0.06 1064 826 797
⇤ Isolating (avg) 40930 1825 759K 54K 0.05 440 392 326
⇤ Fusional (avg) 73499 3532 689K 51.3K 0.11 842 969 618
⇥ Introflexive (avg) 87352 4566 650K 49.5K 0.14 1735 2104 1386
F Agglutinative (avg) 91051 4687 603K 45K 0.16 1898 3164 1727

Table 3: Test perplexities for 50 languages (ISO 639-1 codes sorted alphabetically) in the full-vocabulary
prediction LM setup; Left: Basic statistics of LM evaluation data (see §4 and §5). Right: Results with all
three language models in our comparison. Best absolute perplexity scores for each language are in bold,
but note that the absolute scores in the KN5 column are not directly comparable to the scores obtained
with neural models due to a different handling of OOVs at test time (see §5).

In isolating and some fusional languages (e.g.,
Vietnamese, Thai, English) the TTR tends to be
small: we have a comparatively low number of
infrequent words. Agglutinative languages such
as Finnish, Estonian, and Korean are on the other

side of the spectrum. Introflexive and fusional lan-
guages, typically over-represented in prior work
(see the discussion in §3), are found in the middle.

This emerges clearly in Figure 1, grouping isolat-
ing languages to the left side of the x-axis, followed
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by fusional languages (Germanic and Romance
first to the left, and then Balto-Slavic to the right),
and placing agglutinative languages towards the
far right. Crucially, TTR is an excellent predictor
of LM performance. To measure the correlation
between this corpus statistics variable and absolute
LM performance, we compute their Pearson’s r cor-
relation. We find a strong positive correlation, with
a value of r = 0.83 and significance p < 0.001.

We do observe a strong link between each lan-
guage’s morphological type, and the correspond-
ing perplexity score. A transition in terms of the
spectrum of morphological systems (see §3) can
be traced again on the y-axis of Figure 1, roughly
following the reported LM performance: from iso-
lating, over fusional and introflexive to agglutina-
tive languages. In fact, a correlation exists also
between traditional morphological types and LM
performance. We assessed its strength with the one-
way ANOVA statistical test, obtaining a value of
⌘2 = 0.37 and a significance of p < 0.001.

Finally, it should be noted that the choice of TTP
over other corpus statistics such as vocabulary size
is motivated by the fact that the corpora are compa-
rable, and not parallel. Because of this, the variation
of V may stem from the contents rather than the
intrinsic linguistic properties. As a counter-check,
the correlation between V and LM performance is
in fact milder, with r = 0.64. Yet, notwithstanding
the stronger correlation, TTP is unable to explain
the results entirely. Only through finer-grained ty-
pological features it becomes possible to justify
several outliers, as shown in the next subsection.

Fine-Grained Typological Analysis. Among
the relevant typological features (see §3 and Table
2), fusion and inflectional synthesis have the largest
impact on word-level predictions. In fact, the for-
mer determines the word boundaries, whereas the
latter regulates the amount of possible morpheme
combinations. Consider their effect on the fre-
quency distribution of words, expressed as follows
(Zipf, 1949):

f =
1
ks

PV
n=1

1
ns

(6)

f is the frequency, k the rank, and s � 0 the expo-
nent characteristic of the distribution. If high, both
typological features enlarge V and s, assigning less
probability mass to each word.

Low fusion means a preference for separate
words (as in isolating languages such as Viet-

namese and Chinese), leading to a smaller vocab-
ulary with less (but more frequent) words. This
property, additionally boosted by low inflectional
synthesis, facilitates statistical language modeling
in isolating languages. Vice versa, high fusion re-
sults in preference for concatenation of morphemes
or introflection, and consequently sparser vocabu-
laries. Yet, this distinction cannot justify the figures
by itself, as it equates agglutinative languages and
traditional fusional languages. Here, inflectional
synthesis is also at play. Through the statistical
test of one-way ANOVA, we found a weak effect
of ⌘2 = 0.09 for fusion and a medium effect of
⌘2 = 0.21 for inflection synthesis.

On the other hand, the fine-grained typological
features of exponence and flexivity play a role in
the ambiguity of the mapping between morphemes
and meanings or grammatical functions. This turns
out to be especially relevant for character-aware
models. The intuition is that if the mapping is
straightforward, injecting character information is
more advantageous. To validate this claim, we eval-
uate the ANOVA between exponence of nouns
and verbs and the difference in perplexity between
LSTM and Char-CNN-LSTM.5 We report a weak,
although existent, correlation with value ⌘2 = 0.07
and ⌘2 = 0.04, respectively.

Further Discussion. Importantly, our large-
scale multilingual LM study strongly indicates
that due to diverse typological profiles, certain lan-
guages and language groups are inherently more
complex to language-model when relying on es-
tablished statistical models, even when such mod-
els are constructed as widely applicable and (ar-
guably) language-agnostic. This finding supports
preliminary results from prior work (Botha and
Blunsom, 2014; Adams et al., 2017; Cotterell et al.,
2018), and is also backed by insights from linguis-
tic theory on variance of language complexity in
general and variance of morphological complexity
in specific (McWhorter, 2001; Evans and Levin-
son, 2009). More broadly and along the same line,
earlier research in statistical machine translation
(SMT) has also shown that typological factors such
as the amount of reordering, the morphological
complexity, as well as genealogical relatedness of
languages are crucial in predicting success in SMT
(Birch et al., 2008; Paul et al., 2009; Daiber, 2018).

Our results indicate that the artificial fixed-
5Unfortunately no values are available in WALS for the

feature of flexivity besides a limited domain.
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vocabulary assumption from prior work produces
overly optimistic perplexity scores, and its limita-
tion is even more pronounced in morphologically
rich languages, which inherently contain a large
number of infrequent words due to their productive
morphological systems. The typical solution to col-
lect more data (Jozefowicz et al., 2016; Kawakami
et al., 2017) mitigates this effect to a certain extent,
but stills suffers from the Zipfian hypothesis (1949),
and it cannot be guaranteed for resource-poor lan-
guages where obtaining sufficient monolingual data
is also a challenge (Adams et al., 2017).

Therefore, another solution is to resort to other
sources of information which are not purely contex-
tual/distributional. For instance, a promising line of
current and future research is to (learn to) exploit
subword-level patterns captured in an unsupervised
manner (Pinter et al., 2017; Herbelot and Baroni,
2017) or integrate existing morphological genera-
tion and inflection tools and regularities (Cotterell
et al., 2015; Vulić et al., 2017; Bergmanis et al.,
2017) into language models to reduce data sparsity,
and improve language modeling for morphologi-
cally rich languages. For instance, a recent enhance-
ment of the Char-CNN-LSTM language model that
enforces similarity between parameters of morpho-
logically related words leads to large perplexity
gains across a large number of languages, with the
most prominent gains reported for morphologically
complex languages (Gerz et al., 2018).

Given the recent success and improved perfor-
mance with LM-based pre-training methodology
(Peters et al., 2018; Howard and Ruder, 2018)
across a wide variety of syntactic and semantic
NLP tasks in English, improving language models
for other languages might have far-reaching con-
sequences for multilingual NLP in general. Typo-
logical information coded in typological databases
(Ponti et al., 2018) offer invaluable support to lan-
guage modeling (e.g., knowledge on word ordering,
morphological regularities), but such typologically-
informed LM architectures are still non-existent.

7 Conclusion

In this paper, we have run a large-scale study on
Language Modeling (LM) across several architec-
tures and a collection of 50 typologically diverse
languages. We have demonstrated that typological
properties of languages, such as their morphologi-
cal systems, have an enormous impact on the per-
formance of allegedly “language-agnostic” models.

We have found that the corpus statistics most pre-
dictive of LM performance is type-to-token ratio
(TTR), as demonstrated by their strong Pearson’s
correlation. In turn, the value of TTR is motivated
by fine-grained typological features that define the
type of morphological system within a language.
In fact, such features affect the word boundaries
and the number of morphemes per word, affecting
the word frequency distribution for each language.

We have also observed that injecting character in-
formation into word representations is always ben-
eficial because this mitigates the above-mentioned
sparsity issues. However, the extent of the gain
in perplexity partly depends on some typological
properties that regulate the ambiguity of the map-
ping between morphemes (here modeled as charac-
ter n-grams) and their meaning.

We hope that NLP/LM practitioners will find
the datasets for 50 languages put forth in this
work along with benchmarked LMs useful for fu-
ture developments in (language-agnostic as well
as typologically-informed) multilingual language
modeling. This study calls for next-generation so-
lutions that will additionally leverage typological
knowledge for improved language modeling. Code
and data are available at: http://people.ds.
cam.ac.uk/dsg40/lmmrl.html.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut,
and Lucia Specia. 2013. Findings of the 2013
Workshop on Statistical Machine Translation. In
Proceedings of the 8th Workshop on Statistical
Machine Translation, pages 1–44.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In Proceedings of ICML, pages 1899–
1907.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2013. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. In Proceedings of IN-
TERPSEECH, pages 2635–2639.

Xie Chen, Xunying Liu, Yanmin Qian, MJF Gales, and
Philip C Woodland. 2016. CUED-RNNLM: An
open-source toolkit for efficient training and evalu-
ation of recurrent neural network language models.
In Proceedings of ICASSP, pages 6000 –6004.

Ryan Cotterell and Jason Eisner. 2017. Probabilistic
typology: Deep generative models of vowel invento-
ries. In Proceedings of ACL, pages 1182–1192.

Ryan Cotterell, Sebastian J. Mielke, Jason Eisner, and
Brian Roark. 2018. Are all languages equally hard
to language-model? In Proceedings of NAACL-HLT.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-Markov models. In Proceed-
ings of CoNLL, pages 164–174.

Joachim Daiber. 2018. Typologically Robust Statisti-
cal Machine Translation. Ph.D. thesis, University
of Amsterdam.

Matthew S Dryer. 1989. Large linguistic areas and lan-
guage sampling. Studies in Language. International
Journal sponsored by the Foundation “Foundations
of Language”, 13(2):257–292.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig.

Nicholas Evans and Stephen C. Levinson. 2009. The
myth of language universals: Language diversity and
its importance for cognitive science. Behavioral and
Brain Sciences, 32(5):429–448.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of EMNLP, pages 360–368.

Ankur Gandhe, Florian Metze, and Ian Lane. 2014.
Neural network language models for low resource
languages. In Proceedings of INTERSPEECH,
pages 2615–2619.
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Abstract

We address fine-grained multilingual lan-
guage identification: providing a language
code for every token in a sentence, includ-
ing codemixed text containing multiple lan-
guages. Such text is prevalent online, in doc-
uments, social media, and message boards.
We show that a feed-forward network with a
simple globally constrained decoder can accu-
rately and rapidly label both codemixed and
monolingual text in 100 languages and 100
language pairs. This model outperforms pre-
viously published multilingual approaches in
terms of both accuracy and speed, yielding an
800x speed-up and a 19.5% averaged absolute
gain on three codemixed datasets. It further-
more outperforms several benchmark systems
on monolingual language identification.

1 Introduction

Codemixed text is common in user-generated con-
tent, such as web articles, tweets, and message
boards, but most current language ID models ig-
nore it. Codemixing involves language switches
within and across constituents, as seen in these
English-Spanish and English-Hindi examples.

(1) dame [NP ese book that you told me about]
Give me this book that you told me about.

(2) [NP aapki profile photo] [V P pyari hai]
Your profile photo is lovely.

Codemixing is the norm in many communities,
e.g. speakers of both Hindi and English. As much
as 17% of Indian Facebook posts (Bali et al., 2014)
and 3.5% of all tweets (Rijhwani et al., 2017)
are codemixed. This paper addresses fine-grained
(token-level) language ID, which is needed for
many multilingual downstream tasks, including
syntactic analysis (Bhat et al., 2018), machine
translation and dialog systems. Consider this ex-

ample, which seeks a Spanish translation for the
English word squirrel:

(3) como se llama un squirrel en español
What do you call a squirrel in Spanish?

Per-token language labels are needed; a system
cannot handle the whole input while assuming it
is entirely English or Spanish.

Fine-grained language ID presents new chal-
lenges beyond sentence- or document-level lan-
guage ID. Document-level labels are often avail-
able in metadata, but token-level labels are not.
Obtaining token-level labels for hundreds of lan-
guages is infeasible: candidate codemixed exam-
ples must be identified and multilingual speak-
ers are required to annotate them. Furthermore,
language ID models typically use character- and
word-level statistics as signals, but shorter inputs
have greater ambiguity and less context for pre-
dictions. Moreover, codemixing is common in
informal contexts that often have non-standard
words, misspellings, transliteration, and abbre-
viations (Baldwin et al., 2013). Consider (4),
a French-Arabic utterance that has undergone
transliteration, abbreviation and diacritic removal.

(4) cv bien hmd w enti
ça va bien alhamdullilah wa enti
ça va bien ⇣I  K @ È✏<À @ Y“mÃ '@
It’s going well, thank God, and you?

Language ID models must be fine-grained and ro-
bust to surface variations to handle such cases.

We introduce CMX, a fast, accurate language
ID model for CodeMiXed text that tackles these
challenges. CMX first outputs a language distri-
bution for every token independently with efficient
feed-forward classifiers. Then, a decoder chooses
labels using both the token predictions and global
constraints over the entire sentence. This decoder

328



produces high-quality predictions on monolingual
texts as well as codemixed inputs. We furthermore
show how selective, grouped dropout enables a
blend of character and word-level features in a sin-
gle model without the latter overwhelming the for-
mer. This dropout method is especially important
for CMX’s robustness on informal texts.

We also create synthetic training data to com-
pensate for the lack of token-level annotations.
Based on linguistic patterns observed in real-
world codemixed texts, we generate two mil-
lion codemixed examples in 100 languages. In
addition, we construct and evaluate on a new
codemixed corpus of token-level language ID la-
bels for 25k codemixed sentences (330k tokens).
This corpus contains examples derived from user-
generated posts that contain English mixed with
Spanish, Hindi or Indonesian.

Language ID of monolingual text has been ex-
tensively studied (Hughes et al., 2006; Baldwin
and Lui, 2010; Lui and Baldwin, 2012; King and
Abney, 2013), but language ID for codemixed text
has received much less attention. Some prior work
has focused on identifying larger language spans
in longer documents (Lui et al., 2014; Jurgens
et al., 2017) or estimating proportions of multiple
languages in a text (Lui et al., 2014; Kocmi and
Bojar, 2017). Others have focused on token-level
language ID; some work is constrained to pre-
dicting word-level labels from a single language
pair (Nguyen and Doğruöz, 2013; Solorio et al.,
2014; Molina et al., 2016a; Sristy et al., 2017),
while others permit a handful of languages (Das
and Gambäck, 2014; Sristy et al., 2017; Rijhwani
et al., 2017). In contrast, CMX supports 100 lan-
guages. Unlike most previous work–with Rijh-
wani et al. 2017 a notable exception–we do not as-
sume a particular language pair at inference time.
Instead, we only assume a large fixed set of lan-
guage pairs as a general constraint for all inputs.

We define and evaluate CMX and show that
it strongly outperforms state-of-the-art language
ID models on three codemixed test sets cover-
ing ten languages, and a monolingual test set in-
cluding 56 languages. It obtains a 19.5% abso-
lute gain on codemixed data and a 1.1% abso-
lute gain (24% error reduction) on the monolin-
gual corpus. Our analysis reveals that the gains
are even more pronounced on shorter text, where
the language ID task naturally becomes more dif-
ficult. In terms of runtime speed, CMX is roughly

800x faster than existing token-level models when
tested on the same machine. Finally, we demon-
strate a resource-constrained but competitive vari-
ant of CMX that reduces memory usage from 30M
to 0.9M.

2 Data

We create synthetic codemixed training examples
to address the expense and consequent paucity of
token-level language ID labels. We also anno-
tate real-world codemixed texts to measure per-
formance of our models, understand code-mixing
patterns and measure the impact of having such
examples as training data.

Synthetic data generation from monolingual
text. For training models that support hun-
dreds of languages, it is simply infeasible to ob-
tain manual token-level annotations to cover ev-
ery codemixing scenario (Rijhwani et al., 2017).
However, it is often easy to obtain sentence-level
language labels for monolingual texts. This allows
projection of sentence-level labels to each token,
but a model trained only on such examples will
lack codemixed contexts and thus rarely switch
within a sentence. To address this, we create syn-
thetic training examples that mix languages within
the same sequence.

To this end, we first collect a monolingual cor-
pus of 100 languages from two public resources:
the W2C corpus1 and the Corpus Crawler project.2

Then we generate a total of two million synthetic
codemixed examples for all languages.

In generating each training example, we first
sample a pair of languages uniformly.3 We sample
from a set of 100 language pairs, mainly includ-
ing the combination of English and a non-English
language. The full set is listed in the supplemental
material. Then we choose uniformly between gen-
erating an intra-mix or inter-mix example, which
are two of the most prominent types of codemix-
ing in the real world (Barman et al., 2014; Das and
Gambäck, 2014).4 An intra-mix sentence like (1)
starts with one language and switches to another
language, while an inter-mix sentence like (2) has

1http://ufal.mff.cuni.cz/w2c
2https://github.com/googlei18n/corpuscrawler
3Both our collected codemixed data and Barman et al.

(2014) indicate that more than 95% of codemixed instances
are bilingual.

4The two types of codemixing have roughly equal propor-
tions in our labeled corpus.
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en/es en/hi en/id
Number of tokens 98k 140k 94k
Number of sentences 9.5k 9.9k 5.3k

Table 1: Statistics of our YouTube and Google+
dataset, GY-Mix.

Test Set Languages
Twitter-Mix en, es

Web-Mix6 cs, en, eu, hu, hr, sk
GY-Mix en, es, hi, id

KB-Mono56 56 languages

Table 2: The languages of each testing corpora
in our experiments. The first three sets primarily
include codemixed texts while the last one (KB-
Mono56) is monolingual.

an overall single language with words from a sec-
ond language in the middle. To generate an exam-
ple, we uniformly draw phrases from our monolin-
gual corpus for the chosen target languages, and
then concatenate or mix phrases randomly. The
shorter phrase in inter-mix examples contains one
or two tokens, and the maximum length of each
example is eight tokens.

Manual annotations on real-world codemixed
text. We obtain candidates by sampling
codemixed public posts from Google+5 and
video comments from YouTube,6 limited to
three language pairs with frequent code switch-
ing: English-Spanish, English-Hindi7 and
English-Indonesian. All texts are tokenized and
lowercased by a simple rule-based model before
annotation. Both the candidate selection and
the annotation procedures are done by linguists
proficient in both languages. The final annotated
corpus contains 24.7k sentences with 334k tokens;
30% are monolingual, 67% are bilingual and 3%
have more than two languages. Finally, we create
an 80/10/10 split (based on tokens) for training,
development and testing, respectively. Table 1
gives the token and sentence counts per language.
In the rest of the paper, we refer to this dataset as
GY-Mix.

Evaluation datasets. We evaluate on four
datasets, three codemixed and one monolingual.
For a fair comparison, we report accuracies on

5https://plus.google.com/
6https://www.youtube.com/
7Hindi texts found in both Devanagari and Latin scripts.
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Figure 1: Basic feed-forward network unit for scor-
ing each token in the input and predicting possible
languages. Multiple features are embedded, con-
catenated, and fed into a hidden layer with ReLU
activation.

subsets of these test sets that include languages
supported by all tested models. Examples with
Hindi words written in Latin script are also re-
moved because the benchmark systems we com-
pare to do not support it.

• Twitter-Mix: Codemixed data from the
EMNLP 2016 shared task (Molina et al.,
2016b).

• Web-Mix6: Codemixed data crawled from
multilingual web pages (King and Abney,
2013), using a subset of six languages.

• GY-Mix: The test set of our token-level
codemixed data (en-es, en-hi, and en-id).

• KB-Mono56: Monolingual test set of Kocmi
and Bojar (2017), using a subset of 56 lan-
guages.

Table 2 summarizes the final language setting of
each test set used in our experiments.

3 Identifying Language Spans in
Codemixed Text

CMX uses two stages to assign language codes to
every token in a sentence. First, it predicts a dis-
tribution over labels for each token independently
with a feed-forward network that uses character
and token features from a local context window.
Then, it finds the best assignment of token labels
for an entire sentence using greedy search, sub-
ject to a set of global constraints. Compared to
sequence models like CRFs or RNNs, this two-
stage strategy has several major advantages for
fine-grained language ID: (1) it does not require
annotated codemixed text over hundreds of lan-
guages and their mixed pairings, (2) learning in-
dependent classifiers followed by greedy decoding
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Features Window D V

Character n-gram +/- 1 16 1000-5000
Script 0 8 27
Lexicon +/- 1 16 100

Table 3: Feature spaces of CMX. The window col-
umn indicates that CMX uses character n-gram
and lexicon features extracted from the previous
and following tokens as well as the current one.

is significantly faster than structured training (es-
pecially considering the large label set inherent in
language ID), and (3) it is far easier to implement.

3.1 Token Model
Simple feed-forward networks have achieved near
state-of-the-art performance in a wide range of
NLP tasks (Botha et al., 2017; Weiss et al., 2015).
CMX follows this strategy, with embedding, hid-
den, and softmax layers as shown in Figure 1. The
inputs to the network are grouped feature matrices,
e.g. character, script and lexicon features. Each
group g’s features are represented by a sparse ma-
trix Xg 2 R

Fg⇥Vg , where Fg is the number of
feature templates and Vg is the vocabulary size
of the feature group. The network maps sparse
features to dense embedding vectors and concate-
nates them to form the embedding layer:

h0 = vec[XgEg|8g] (1)

where Eg 2 R
Vg⇥Dg is a learned embedding ma-

trix per group. The final size of the embedding
layer |h0| =

P
g FgDg is the sum of all embedded

feature sizes. CMX uses both discrete and contin-
uous features. We use a single hidden layer with
size 256 and apply a rectified linear unit (ReLU)
over hidden layer outputs. A final softmax layer
outputs probabilities for each language. The net-
work is trained per-token with cross-entropy loss.

We explain the extraction process of each fea-
ture type below. Table 3 summarizes the three
types of features and their sizes used in CMX.
Character and lexicon features are extracted for
the previous and following tokens as well as the
current token to provide additional context.

Character n-gram features We apply character
n-gram features with n = [1, 4]. RNNs or CNNs
would provide more flexible character feature rep-
resentations, but our initial experiments did not
show significant gains over simpler n-gram fea-
tures. We use a distinct feature group for each

n. The model averages the embeddings accord-
ing to the fractions of each n-gram string in the
input token. For example, if the token is banana,
then one of the extracted trigrams is ana and the
corresponding fraction is 2/6. Note that there are
six trigrams in total due to an additional boundary
symbol at both ends of the token.

Following Botha et al. (2017), we use feature
hashing to control the size V and avoid storing a
big string-to-id map in memory during runtime.
The feature id of an n-gram string x is given by
H(x)mod Vg (Ganchev and Dredze, 2008), where
H is a well-behaved hash function. We set V =
1000, 1000, 5000, 5000 for n = 1, 2, 3, 4 respec-
tively; these values yield good performance and
are far smaller than the number of n-gram types.

Script features Some text scripts are strongly
correlated with specific languages. For example,
Hiragana is only used in Japanese and Hangul is
only used in Korean. Each character is assigned
one of the 27 types of scripts based on its unicode
value. The final feature vector contains the nor-
malized counts of all character scripts observed in
the input token.

Lexicon features This feature group is backed
by a large lexicon table which holds a language
distribution for each token observed in the mono-
lingual training data. For example, the word
mango occurs 48% of the time in English docu-
ments and 18% in Spanish ones. The table con-
tains about 6.2 million entries. We also construct
an additional prefix table of language distributions
for 6-gram character prefixes. If the input token
matches an entry in the lexicon table (or failing
that, the prefix table), our model extracts the fol-
lowing three groups of features.

• Language distribution. The language distri-
bution itself is included as the feature vector.

• Active languages. As above, but feature val-
ues are set to 1 for all non-zero probabili-
ties. For example, the word mango has fea-
ture value 1 on both English and Spanish.

• Singletons. If the token is associated with
only one language, return a one-hot vector
whose only non-zero value is the position in-
dicating that language.

The size of all lexicon feature vectors is equal to
the number of supported languages.
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vi: 0.80

en: 0.11

nl: 0.05

fr:-0.10

fr: 0.72

es: 0.13

ar-Latn: 
-0.05

ar-Latn:  
1.20

pl: 0.50

en: 0.15

ar-Latn: 
0.13

it: 0.70

es:-0.09

ar-Latn: 
0.23

en/ar-Latn

score = 1.64

fr/ar-Latn

score = 2.18

Input: 

Figure 2: Example of our decoding algorithm with global constraints for example (4) for two allowed
language pairs, en/ar-Latn and fr/ar-Latn.

50% dropout 

Lexicon-basedN-gram

Hidden Layer

Softmax

Figure 3: Our selective feature dropout method.
The model randomly sets the lexicon feature vec-
tors to zero with 50% probability while n-gram
features are always used.

3.2 Selective Feature Dropout
Preliminary experiments showed poor perfor-
mance, especially on informal texts, when all three
types of features are simply merged. Consider
the following example outputs on misspelled word
Ennnglish, for which no lexicon features fire.

Input: Ennnglish
With Lexicon Features W/o Lexicon Features

• p(sv) = 0.27 • p(en) = 0.74
• p(da) = 0.24 • p(nl) = 0.10
• p(nl) = 0.18 • p(fy) = 0.06
• . . . • . . .

Without dropout, the model with lexicon features
does not make effective use of the token’s charac-
ter n-grams and makes a catastrophically wrong
prediction. The core problem is that lexicon fea-
tures are both prevalent and highly predictive for
language ID; during training, this dampens the up-
dating of weights of n-gram features and thus di-
minishes their overall utility.

To address this issue and make CMX more
robust to noisy inputs, we selectively apply a
grouped feature dropout strategy that stochasti-
cally down-weights lexicon features during train-
ing. Figure 3 illustrates the idea: for each input,
after feature extraction, the vector of lexicon fea-

tures is randomly set to zero. This way, the model
must rely entirely on n-gram features for this par-
ticular input. Note that our feature dropout is dif-
ferent from standard dropout in at least two ways:
(1) dropout happens to entire feature groups rather
than on individual neurons, (2) we selectively ap-
ply dropout only on a subset of features. After
tuning the dropout rate on development data (Fig-
ure 5) we choose a dropout rate of 50%. Section
4.3 explains the tuning procedure.

3.3 Decoding with Global Constraints

Given a trained model, the goal of decoding is to
find the sequence of per-token languages that max-
imizes the overall score. The simple, greedy strat-
egy of picking the top prediction for each token
over-predicts too many languages in a single sen-
tence. For example, on average the greedy method
predicts more than 1.7 languages per sentence on
monolingual inputs. Because the token classier
uses a window including only the previous, cur-
rent, and next token, it has a quite limited view on
the entire sequence.

Motivated by this observation, we add the
following global constraint in decoding: only
monolingual outputs or codemixed outputs from
a fixed set of language pairs are permitted. We
choose a set of 100 language pairs, primarily in-
cluding the combination of English and a non-
English language. The full set is listed in the sup-
plemental material.

Finally, we introduce a straightforward variant
of greedy decoding that finds the optimal language
assignment in the presence of these global con-
straints. We independently find the best assign-
ment under each allowed language combination
(monolingual or language pair) and return the one
with the highest score.

Figure 2 shows paths for example (4) with
two allowed language pairs: en/ar-Latn and
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DATASET Twitter-Mix Web-Mix6 GY-Mix Average
LANGUAGES es/en 6 Langs es/en hi/en hi/hi-Latn/en id/en

LanideNN 71.3 52.1 65.7 79.6 – 22.9 58.3
EquiLID 87.9 63.5 71.0 81.9 – 64.9 73.9
CMX-small 88.8 91.0 89.9 98.2 85.0 86.7 90.9
CMX 92.4 93.2 91.8 98.4 87.4 91.1 93.4

Table 4: Codemixed Texts: Token-level accuracy (%) of different approaches on codemixed texts.
“CMX-small” corresponds to our small model without lexicon features and vocabulary tables. The hi/hi-
Latn/en column shows the accuracy on texts in English, Latin Hindi and Devanagari Hindi; the baseline
models do not support identification of text in Hindi in Latin script. Average shows averaged accuracy
on all sets except hi/hi-Latn/en. Boldface numbers indicate the best accuracy for each testing set.

fr/ar-Latn.8 The two paths in dashed and solid
lines indicate the best assignment for each lan-
guage pair respectively. Because scoring is in-
dependent across tokens, each subtask is com-
puted in O(N) time. The total decoding time is
O(N |L|) where L is the constraint set, and the
global optimality of this algorithm is guaranteed
because the assignment found in each subtask is
optimal.

4 Experiments

4.1 Training Setup
We train CMX on the concatenation of three
datasets: (a) GY-Mix’s training portion, (b) syn-
thetic codemixed data and (c) a monolingual cor-
pus that covers 100 languages. Every token in the
training set spawns a training instance. Our train-
ing set consists of 38M tokens in total, which is on
the same magnitude as the sizes of training data
reported in previous work (Jurgens et al., 2017;
Joulin et al., 2016).

We use mini-batched averaged stochastic gra-
dient descent (ASGD) (Bottou, 2010) with mo-
mentum (Hinton, 2012) and exponentially decay-
ing learning rates to learn the parameters of the
network. We fix the mini-batch size to 256 and the
momentum rate to 0.9. We tune the initial learning
rate and the decay step using development data.

4.2 Main Results
Codemixed Texts Table 4 lists our main results
on the codemixed datasets. We primarily compare
our approach against two benchmark systems:
EquiLID (Jurgens et al., 2017) and LanideNN

8Scores are sorted. Some languages omitted for illustra-
tion purposes.

(Kocmi and Bojar, 2017). Both achieved state-
of-the-art performance on several monolingual
and codemixed language ID datasets. LanideNN
makes a prediction for every character, so we con-
vert its outputs to per-token predictions by a vot-
ing method over characters in each word. For both
benchmarks, we use the public pre-trained model
provided by the authors. The EquiLID model uses
53M parameters, LanideNN uses 3M, and CMX
only uses 0.28M parameters.9

Across all datasets, CMX consistently outper-
forms both benchmark systems by a large mar-
gin. On average, our full model (CMX) is 19.5%
more accurate than EquiLID (93.4% vs. 73.9%);
the gain is even larger compared to LanideNN.
Note that none of the models are trained on the
Twitter-Mix or the Web-Mix6 dataset, so these
two datasets provide an evaluation on the out-
domain performance of each approach. In this set-
ting CMX also yields significant improvement in
accuracy, e.g. a 4.5% (absolute) gain over Equi-
LID on the Twitter-Mix dataset.

An Even Smaller Model We further compare
between CMX and a variant we call CMX-small,
which has no access to lexicon resources or lex-
icon features. This smaller variant has only
237k parameters and reduces the memory foot-
print from 30M to 0.9M during runtime, while
the (average) loss on accuracy is only 2.5%. This
comparison demonstrates that our approach is also
an excellent fit for resource-constrained environ-
ments, such as on mobile phones.

Monolingual Texts In addition to EquiLID and
LanideNN, we further compare CMX against

9We explain how we compute the number of parameters
of our model in the supplemental material.
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MODEL Sent Acc. Char/Sec

CODEMIXING MODELS
LanideNN 94.6 0.17k
EquiLID 95.1 0.25k
CMX-small 94.6 265.5k
CMX 96.6 206.1k

MONOLINGUAL MODELS
Langid.py 92.8 183.8k
fastText-small 92.5 2,671.1k
fastText-full 94.4 2,428.3k
CLD2 95.5 4,355.0k

Table 5: Monolingual Texts: Sentence-level ac-
curacy (%) on KB-Mono56. Monolingual models
make per-sentence predictions only.

Langid.py (Lui and Baldwin, 2012), CLD210 and
fastText (Joulin et al., 2016, 2017)—all are pop-
ular off-the-shelf tools for monolingual language
ID. Sentence-level predictions for EquiLID and
LanideNN models are obtained by simple vot-
ing. Table 5 summarizes sentence-level accuracy
of different approaches on the KB-Mono56 test
set. CMX achieves the best sentence-level accu-
racy over all monolingual and codemixing bench-
mark systems. The resource-constrained CMX-
small also performs strongly, obtaining 94.6% ac-
curacy on this test set.

Our approach also maintains high performance
on very short texts, which is especially important
for many language identification contexts such as
user-generated content. This is demonstrated in
Figure 4, which plots the cumulative accuracy
curve on KB-Mono56 over sentence length (as
measured by the number of non-whitespace char-
acters). For example, points at x=50 show the
averaged accuracies over sentences with no more
than 50 characters. We compare CMX against
the best performing monolingual and codemixing
benchmark systems. The relative gain is more
prominent on shorter sentences than on longer
ones. For example, the improvement is 4.6% on
short sentences (30 characters), while the gain
on segments 150 characters is 1.9%. Similar pat-
terns are seen with respect to other systems.

Inference Speed Table 5 also shows the infer-
ence speed of each method in characters per sec-
ond, tested on a machine with a 3.5GHz Intel

10https://github.com/CLD2Owners/cld2

Figure 4: Sentence-level accuracy (y-axis) on KB-
Mono56 as a function of the maximum number of
non-whitespace characters in a sentence (x-axis).
For example, the point at x = 50 denotes the ac-
curacy on all the sentences with  50 characters.

Figure 5: Accuracy on development sets with vari-
ous feature dropout rate values p.

Xeon processor and 32GB RAM. CMX (written
in C++) is far faster than other fine-grained sys-
tems, e.g. it has an 800x speed-up over Equi-
LID. It is not surprising that monolingual mod-
els are faster than CMX, which makes a predic-
tion for every token rather than once for the entire
sequence. Of course, monolingual models do not
support language ID on codemixed inputs, and fur-
thermore CMX performs the best even on mono-
lingual texts.

4.3 Analysis
Feature Dropout Rate To analyze how the fea-
ture dropout rate impacts the model performance,
we create a set of synthetically misspelled tokens
by random duplication or replacement of one or
two characters. In addition, we ensure that every
token has at least one language-unique character,
so a model with character n-gram features should
be able to easily identify the language of this to-
ken. Figure 5 shows the tuning results for dropout
values on misspelled tokens and the GY-Mix de-
velopment set. Without feature dropout (p=0.0),
our model only gets 72.1% on misspelled tokens,
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TRAINING DATA Twitter-Mix Web-Mix6 GY-Mix (Test) KB-Mono56

All Training Corpora 92.4 93.2 93.6 95.1
w/o GY-Mix (Train) 88.5 92.9 89.3 95.0
w/o Synthetic 92.1 88.8 92.5 95.1

Table 6: Token-level accuracy of our full model with different training sets, removing either GY-Mix
annotations or synthetic codemixed corpus at a time.

METHOD GY-Mix KB-Mono56 #Lang/Sent

Independent 87.8 91.9 1.78
Switching Penalty 89.4 93.1 1.58
Bilingually Constrained 93.6 95.1 1.27

Gold - - 1.15

Table 7: Token-level accuracy of different decod-
ing methods on GY-Mix and KB-Mono56, as well
as the averaged number of predicted languages in
each sentence.

indicating that n-gram features are not properly
trained. The proposed feature dropout method ef-
fectively addresses this issue, improving the accu-
racy to 95.3% with p � 0.5. We choose p = 0.5
(Figure 3) because it gives the best trade-off on the
two tuning sets. The curves in Figure 5 also show
that model performance is robust across a wide
range of dropout rates between the two extremes,
so the strategy is effective, but is not highly sensi-
tive and does not require careful tuning.

Impact of Decoding Algorithm Table 7 shows
a comparison over different decoding strategies,
including (a) independent greedy prediction for
each token, (b) adding a switching penalty and de-
coding with Viterbi, (c) and our bilingually con-
strained decoding. For the second method, we
add a fixed transition matrix that gives a penalty
score log p for every code switch in a sentence.
We choose p = 0.5, which gives the best over-
all results on the development set. Our approach
outperforms switching penalty by more than 2%
on both GY-Mix and KB-Mono56. To analyze the
reason behind this difference we show the average
number of languages in each sentence in Table 7.
Both baseline approaches on average predict more
than 1.5 languages per sentence while the oracle
number based on gold labels is only 1.15. Our
global bilingual constraints effectively address this
over-prediction issue, reducing the average num-
ber of predicted languages to 1.27. We also mea-
sure the running time of all methods. The decod-

ing speed of our method is 206k char/sec (Table
5), while the independent method is 220k char/sec.
Our decoding with global constraints thus only in-
creases the running time by a factor of 1.07.

Codemixed Training Datasets Our training
data consists of two codemixed corpora: manual
annotations on real-world data (GY-Mix) and a
synthetic corpus. To analyze their contribution, we
remove each corpus in turn from the training set
and report the results in Table 6. Adding the GY-
Mix training set mainly improves accuracy on GY-
Mix test and Twitter-Mix, while the gains from
the synthetic data are greatest on Web-Mix6. This
shows that synthetic data helps CMX generalize
to a broader range of languages since GY-Mix has
language overlap only with Twitter-Mix, not Web-
Mix6. The two examples below further demon-
strate the benefit of synthetic examples:

With Synthetic Data
• [ Translate ]en [ maçã ]pt [ to English ]en
• [ Translate ]en [ Apfel ]de [ to English ]en

Without Synthetic Data
• [ Translate maçã to ]pt [ English ]en
• [ Translate Apfel to English ]en

Both examples are likely potential queries
“Translate apple to English” with apple replaced
by its translation in German(de) or Portuguese(pt).
The underlying language pairings never appear in
GY-Mix. CMX with synthetic training data is able
to correctly identify the single token inter-mixed
in a sentence, while the model trained without syn-
thetic data fails on both cases.

Contribution of Features CMX has three types
of features: character n-gram, script, and lexicon
features. n-gram features play a crucial role as
back-off from lexicon features. Consider infor-
mal Latin script inputs, like hellooooo, for which
no lexicon features fire. Foregoing n-gram fea-
tures results in abysmal performance (<20%) on
this type of input because script features alone are
inadequate. The main impact of script features is
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to avoid embarrassing mistakes on inputs that can
be easily identified from their scripts. Finally, note
that removing lexicon features corresponds to the
CMX-small model. On monolingual inputs (Table
5), the lexicon features in CMX provide a 2.0%
absolute improvement in accuracy.

5 Conclusions

CMX is a fast and compact model for fine-
grained language identification. It outperforms re-
lated models on codemixed and monolingual texts,
which we show on several datasets covering text in
a variety of languages and gathered from diverse
sources. Furthermore, it is particularly robust to
the idiosyncrasies of short informal text.
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Abstract

Multilingual knowledge graphs (KGs) such as
DBpedia and YAGO contain structured knowl-
edge of entities in several distinct languages,
and they are useful resources for cross-lingual
AI and NLP applications. Cross-lingual KG
alignment is the task of matching entities
with their counterparts in different languages,
which is an important way to enrich the cross-
lingual links in multilingual KGs. In this pa-
per, we propose a novel approach for cross-
lingual KG alignment via graph convolutional
networks (GCNs). Given a set of pre-aligned
entities, our approach trains GCNs to embed
entities of each language into a unified vector
space. Entity alignments are discovered based
on the distances between entities in the embed-
ding space. Embeddings can be learned from
both the structural and attribute information of
entities, and the results of structure embedding
and attribute embedding are combined to get
accurate alignments. In the experiments on
aligning real multilingual KGs, our approach
gets the best performance compared with other
embedding-based KG alignment approaches.

1 Introduction

Knowledge graphs (KGs) represent human knowl-
edge in the machine-readable format, are becom-
ing the important basis of many applications in
the areas of artificial intelligence and natural lan-
guage processing. Multilingual KGs such as DB-
pedia (Bizer et al., 2009), YAGO (Suchanek et al.,
2008; Rebele et al., 2016), and BabelNet (Nav-
igli and Ponzetto, 2012) are especially valuable if
cross-lingual applications are to be built. Besides
the knowledge encoded in each distinct language,
multilingual KGs also contain rich cross-lingual
links that match the equivalent entities in different
languages. The cross-lingual links play an impor-
tant role to bridge the language gap in a multilin-
gual KG; however, not all the equivalent entities

are connected by cross-lingual links in most mul-
tilingual KGs. Therefore, increasingly more re-
search work studies the problem of cross-lingual
KG alignment, aiming to match entities in differ-
ent languages in a multilingual KG automatically.

Traditional cross-lingual KG alignment ap-
proaches either rely on machine translation tech-
nique or defining various language-independent
features to discover cross-lingual links. Most
recently, several embedding-based approaches
have been proposed for cross-lingual KG align-
ment, including MTransE (Chen et al., 2017) and
JAPE (Sun et al., 2017). Given two KGs and a set
of pre-aligned entities of them, embedding-based
approaches project entities into low-dimensional
vector spaces; entities are matched based on the
computations on their vector representations. Fol-
lowing very similar ideas as above, JE (Hao
et al., 2016) and ITransE (Zhu et al., 2017)
are embedding-based approaches for matching
entities between heterogeneous KGs, and they
can also work for the problem of cross-lingual
KG alignment. The above embedding-based
approaches can achieve promising performance
without machine translation or feature engineer-
ing.

However, we find that the above approaches
all try to jointly model the cross-lingual knowl-
edge and the monolingual knowledge in one uni-
fied optimization problem. The loss of two kinds
of knowledge has to be carefully balanced dur-
ing the optimization. For example, JE, MTransE,
and ITransE all use hyper-parameters to weight the
loss of entity alignments in the loss functions of
their models; JAPE uses the pre-aligned entities to
combine two KGs as one, and adds weight to the
scores of negative samples in its loss function. In
the above approaches, entities’ embeddings have
to encode both the structural information in KGs
and the equivalent relations of entities. Further-
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more, the attributes of entities (e.g., the age of a
people, the population of a country) have not been
fully utilized in the existing models. MTransE
and ITransE cannot use attributional information
in KGs; although JAPE includes the attribute types
in the model, the attribute values of entities are ig-
nored. We believe that considering the attribute
values can further improve the results of KG align-
ment.

Having the above observations, we propose a
new embedding-based KG alignment approach
which directly models the equivalent relations be-
tween entities by using graph convolutional net-
works (GCNs). GCN is a kind of convolu-
tional network which directly operates on graph-
structured data; it generates node-level embed-
dings by encoding information about the nodes’
neighborhoods. The adjacencies of two equiva-
lent entities in KGs usually contain other equiv-
alent entities, so we choose GCNs to gener-
ate neighborhood-aware embeddings of entities,
which are used to discover entity alignments. Our
approach can also provide a simple and effec-
tive way to include entities’ attribute values in the
alignment model. More specifically, our approach
has the following advantages:

• Our approach uses the entity relations in each
KG to build the network structure of GCNs,
and it only considers the equivalent relations
between entities in model training. Our ap-
proach has small model complexity and can
achieve encouraging alignment results.

• Our approach only needs pre-aligned entities
as training data, and it does not require any
pre-aligned relations or attributes between
KGs.

• Entity relations and entity attributes are effec-
tively combined in our approach to improve
the alignment results.

In the experiments on aligning real multilingual
KGs, our approach gets the best performance com-
pared with the baseline methods.

The rest of this paper is organized as fol-
lows, Section 2 reviews some related work, Sec-
tion 3 introduces some background knowledge,
Section 4 describes our proposed approach, Sec-
tion 5 presents the evaluation results, Section 6 is
the conclusion and future work.

2 Related Work

2.1 KG Embedding
In the past few years, much work has been done
on the problem of KG embedding. KG embedding
models embed entities and relations in a KG into
a low-dimensional vector space while preserving
the original knowledge. The embeddings are usu-
ally learned by minimizing a global loss function
of all the entities and relations in a KG, which can
be further used for relation prediction, informa-
tion extraction, and some other tasks. TransE is
a representative KG embedding approach (Bordes
et al., 2013), which projects both entities and rela-
tions into the same vector space; if a triple (h, r, t)
holds, TransE wants that h + r ⇡ t. The embed-
dings are learned by minimizing a margin-based
ranking criterion over the training set. TransE
model is simple but powerful, and it gets promis-
ing results on link prediction and triple classifica-
tion problems. To further improve TransE, several
enhanced models based on it have been proposed,
including TransR (Lin et al., 2015), TransH (Wang
et al., 2014) and TransD (Ji et al., 2015) etc.
By introducing new representations of relational
translation, later approaches achieve better perfor-
mance at the cost of increasing model complexity.
There are many other KG embedding approaches,
recent surveys (Wang et al., 2017; Nickel et al.,
2016) give detailed introduction and comparison.

2.2 Embedding-based KG Alignment
Here we introduce the KG Alignment approaches
most related to ours, and discuss the main differ-
ences between our approach and them.

JE (Hao et al., 2016) jointly learns the embed-
dings of multiple KGs in a uniform vector space
to align entities in KGs. JE uses a set of seed
entity alignments to connect two KGs, and then
learns the embeddings by using a modified TransE
model, which adds a loss of entity alignments in
its global loss function.

MTransE (Chen et al., 2017) encodes entities
and relations of each KG in a separated embed-
ding space by using TransE; it also provides tran-
sitions for each embedding vector to its cross-
lingual counterparts in other spaces. The loss
function of MTransE is the weighted sum of two
component models’ loss (i.e., knowledge model
and alignment model). To train the alignment
model, MTransE needs a set of aligned triples of
two KGs.
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JAPE (Sun et al., 2017) combines structure em-
bedding and attribute embedding to match enti-
ties in different KGs. Structure embedding fol-
lows the TransE model, which learns vector rep-
resentations of entities in the overlay graph of two
KGs. Attribute embedding follows the Skip-gram
model, which aims to capture the correlations of
attributes. To get desirable results, JAPE needs the
relations and attributes of two KGs to be aligned
in advance.

ITransE (Zhu et al., 2017) is a joint knowledge
embedding approach for multiple KGs, which is
also suitable for the cross-lingual KG alignment
problem. ITransE first learns both entity and rela-
tion embeddings following TransE; then it learns
to map knowledge embeddings of different KGs
into a joint space according to a set of seed en-
tity alignments. ITransE performs iterative entity
alignment by using the newly discovered entity
alignments to update joint embeddings of entities.
ITransE requires all relations being shared among
KGs.

The above approaches follow the similar frame-
work to match entities in different KGs. They all
rely on TransE model to learn entity embeddings,
and then define some kinds of transformation be-
tween embeddings of aligned entities. Compared
with these approaches, our approach uses an en-
tirely different framework; it uses GCNs to embed
entities in a unified vector space, where aligned
entities are expected to be as close as possible.
Our approach only focuses on matching entities in
two KGs, and it does not learn embeddings of re-
lations. MTransE, JAPE, and ITransE all require
relations being aligned or shared in KGs; our ap-
proach does not need this kind of prior knowledge.

3 Problem Formulation

KGs represent knowledge about real-world en-
tities as triples. Here we consider two kinds
of triples in KGs: relational triples, and attri-
butional triples. Relational triples represents re-
lations between entities, and it has the form
hentity1, relation, entity2i. Attributional triples
describe attributes of entities, and it has the form
hentity, attribute, valuei. For example in the
data of YAGO, graduatedFrom is a relation, and
(Albert Einstein, graduatedFrom, ETH Zurich) is
a relational triple; diedOnDate is an attribute, and
(Albert Einstein, diedOnDate, 1955) is an attri-
butional triple. Both relational and attributional

triples describe important information about enti-
ties, we will take both of them into account in the
task of cross-lingual KG alignment.

Formally, we represent a KG as G =
(E, R, A, TR, TA), where E, R, A are sets of en-
tities, relations and attributes, respectively; TR ⇢
E ⇥ R ⇥ E is the set of relational triples, TA ⇢
E ⇥A⇥V is the set of attributional triples, where
V is the set of attribute values.

Let G1 = (E1, R1, A1, TR
1 , TA

1 ) and G2 =
(E2, R2, A2, TR

2 , TA
2 ) be two KGs in different lan-

guages, and S = {(ei1 , ei2)|ei1 2 E1, ei2 2
E2}m

i=1 be a set of pre-aligned entity pairs between
G1 and G2. We define the task of cross-lingual KG
alignment as finding new entity alignments based
on the existing ones. In multilingual KGs such
as DBpedia and YAGO, the cross-lingual links in
them can be used to build the sets of pre-aligned
entity pairs. The already known entity alignments
are used as seeds or training data in the process of
KG alignment.

4 The Proposed Approach

The framework of our proposed approach is shown
in Figure 1. Given two KGs G1 and G2 in different
languages, and a set of known aligned entity pairs
S = {(ei1 , ei2)}m

i=1 between them, our approach
automatically find new entity alignments based on
GCN-based entity embeddings. The basic idea
of our approach is to use GCNs to embed enti-
ties from different languages into a unified vector
space, where equivalent entities are expected to be
as close as possible. Entity alignments are pre-
dicted by applying a pre-defined distance function
to entities’ GCN-representations.

4.1 GCN-based Entity Embedding

GCNs (Bruna et al., 2014; Henaff et al., 2015;
Defferrard et al., 2016; Kipf and Welling, 2017)
are a type of neural network that directly operates
on graph data. GCNs allow end-to-end learning
of prediction pipelines whose inputs are graphs of
arbitrary size and shape. The inputs of a GCN are
feature vectors of nodes and the structure of the
graph; the goal of a GCN is to learn a function of
features on the input graph and produces a node-
level output. GCNs can encode information about
the neighborhood of a node as a real-valued vec-
tor, which was usually used for classification or re-
gression. When solving the problem of KG align-
ment, we assume that (1) equivalent entities tend
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Figure 1: Framework of our approach (dashed blue lines connects equivalent entities in two KGs)

to have similar attributes, and (2) equivalent enti-
ties are usually neighbored by some other equiva-
lent entities. GCNs can combine the attribute in-
formation and the structure information together,
therefore our approach uses GCNs to project en-
tities into low-dimensional vector space, where
equivalent entities are close to each other.

A GCN-model consists of multiple stacked
GCN layers. The input to the l-th layer of the GCN
model is a vertex feature matrix, H(l) 2 R

n⇥d(l) ,
where n is the number of vertices and d(l) is the
number of features in the l-th layer. The output of
the l-th layer is a new feature matrix H(l+1) by the
following convolutional computation:

H(l+1) = �
⇣
D̂� 1

2 ÂD̂� 1
2 H(l)W (l)

⌘
(1)

where � is an activation function; A is a n⇥n con-
nectivity matrix that represents the structure infor-
mation of the graph; Â = A+ I , and I is the iden-
tity matrix; D̂ is the diagonal node degree matrix
of Â; W (l) 2 R

d(l)⇥d(l+1) is the weight matrix of
the l-th layer in the GCN, d(l+1) is the dimension-
ality of new vertex features.
Structure and Attribute Embedding. In our ap-
proach, GCNs are used to embed entities of two
KGs in a unified vector space. To utilize both
structure and attribute information of entities, our
approach assigns two feature vectors to each entity
in GCN layers, structure feature vector hs and at-
tribute feature vector ha. In the input layer, h(0)

s is
randomly initialized and updated during the train-
ing process; h(0)

a is the attribute vectors of entities
and it is fixed during the model training. Let Hs

and Ha be the structure and attribute feature ma-
trices of all the entities, we redefine the convolu-

tional computation as:

[H(l+1)
s ; H(l+1)

a ]

= �
⇣
D̂� 1

2 ÂD̂� 1
2 [H(l)

s W (l)
s ; H(l)

a W (l)
a ]

⌘ (2)

where W (l)
s and W (l)

a are the weight matrices for
structure features and attribute features in the l-th
layer, respectively; [ ; ] denotes the concatenation
of two matrices. The activation function � is cho-
sen as ReLU(·) = max(0, ·).
Model Configuration. More specifically, our ap-
proach uses two 2-layer GCNs, and each GCN
processes one KG to generate embeddings of its
entities. As defined in Section 3, we denote two
KGs as G1 = (E1, R1, A1, TR

1 , TA
1 ) and G2 =

(E2, R2, A2, TR
2 , TA

2 ); and let their corresponding
GCN models be denoted as GCN1 and GCN2.
As for the structure feature vectors of entities, we
set the dimensionality of feature vectors to ds in
all the layers of GCN1 and GCN2; and two GCN
models share the weight matrices W (1)

s and W (2)
s

for the structure features in two layers. As for
the attribute vectors of entities, we set the dimen-
sionality of output feature vectors to da. Because
two KGs may have different number of attributes
(i.e. |A1| 6= |A2|), the dimensionalities of the in-
put attribute feature vectors in two GCN models
are different. The first layer of each GCN model
transforms the input attribute feature vectors into
vectors of size da; and two GCN-models gener-
ate attribute embeddings of the same dimensional-
ity. Table 1 outlines the parameters of two GCNs
in our approach. The final outputs of two GCNs
are (ds + da)-dimensional embeddings of entities,
which are further used to discover entity align-
ments.
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Parameter GCN1 GCN2

Initial Structure Feature Matrices H(0)
s1 2 R

|E1|⇥ds H(0)
s2 2 R

|E2|⇥ds

Weight Matrix for Structure Features in Layer 1 W (1)
s 2 R

ds⇥ds

Weight Matrix for Structure Features in Layer 2 W (2)
s 2 R

ds⇥ds

Output Structure Embeddings H(2)
s1 2 R

|E1|⇥ds H(2)
s2 2 R

|E2|⇥ds

Initial Attribute Feature Matrices H(0)
a1 2 R

|E1|⇥|A1| H(0)
a2 2 R

|E2|⇥|A2|

Weight Matrix for Attribute Features in Layer 1 W (1)
a1 2 R

|A1|⇥da W (1)
a2 2 R

|A2|⇥da

Weight Matrix for Attribute Features in Layer 2 W (2)
a 2 R

da⇥da

Output Attribute Embeddings H(2)
a1 2 R

|E1|⇥da H(2)
a2 2 R

|E2|⇥da

Table 1: Parameters of two GCNs

Computation of Connectivity Matrix. In a
GCN model, the connectivity matrix A defines
the neighborhoods of entities in the convolutional
computation. For an undirected graph, the adja-
cency matrix can be directly used as As. But KGs
are relational multi-graphs, entities are connected
by typed relations. Therefore, we design a par-
ticular method for computing A of a KG; we let
aij 2 A indicate to what extent the information of
alignments propagates from the i-th entity to the
j-th entity. The probability of two entities being
equivalent differs greatly considering they connect
to aligned entities by different relations (e.g., has-
Parent vs. hasFriend). Therefore, we compute
two measures, which are called functionality and
inverse functionality, for each relation:

fun(r) =
#Head Entities of r

#Triples of r
(3)

ifun(r) =
#Tail Entities of r

#Triples of r
(4)

where #Triples of r is the number of triples
of relation r; #Head Entities of r and
#Tail Entities of r are the numbers of head
entities and tail entities of r, respectively. To
measure the influence of the i-th entity over the
j-the entity, we set aij 2 A as:

aij =
X

hei,r,eji2G

ifun(r)+
X

hej ,r,eii2G

fun(r) (5)

4.2 Alignment prediction
Entity alignments are predicted based on the dis-
tances between entities from two KGs in the GCN-
representation space. For entities ei in G1 and vj

in G2, we compute the following distance measure
between them:

D(ei, vj) =�
f(hs(ei), hs(vj)

ds

+ (1 � �)
f(ha(ei), ha(vj))

da

(6)

where f(x, y) =k x � y k1, hs(·) and ha(·)
denote the structure embedding and attribute em-
bedding of an entity, respectively; ds and da are
dimensionalities of structure embeddings and at-
tribute embeddings; � is a hyper-parameter that
balances the importance of two kinds of embed-
dings.

The distance is expected to be small for equiva-
lent entities and large for non-equivalent ones. For
a specific entity ei in G1, our approach computes
the distances between ei and all the entities in G2,
and returns a list of ranked entities as candidate
alignments. The alignment can be also performed
from G2 to G1. In the experiments, we report the
results of both directions of KG alignment.

4.3 Model Training

To enable GCNs to embed equivalent entities as
close as possible in the vector space, we use a
set of known entity alignments S as training data
to train GCN models. The model training is per-
formed by minimizing the following margin-based
ranking loss functions:

Ls =
X

(e,v)2S

X

(e0,v0)2S0

(e,v)

[f(hs(e), hs(v)) + �s

� f(hs(e
0), hs(v

0)]+
(7)
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La =
X

(e,v)2S

X

(e0,v0)2S0

(e,v)

[f(ha(e), ha(v)) + �a

� f(ha(e0), ha(v0)]+
(8)

where [x]+ = max{0, x}, S0
(e,v) denotes the set of

negative entity alignments constructed by corrupt-
ing (e, v), i.e. replacing e or v with a randomly
chosen entity in G1 or G2; �s, �a > 0 are margin
hyper-parameters separating positive and negative
entity alignments. Ls and La are loss functions for
structure embedding and attribute embedding, re-
spectively; they are independent of each other and
hence are optimized separately. We adopt stochas-
tic gradient descent (SGD) to minimize the above
loss functions.

5 Experiment

5.1 Datasets
We use the DBP15K datasets in the experiments,
which were built by Sun et al. (2017). The datasets
were generated from DBpedia, a large-scale multi-
lingual KG containing rich inter-language links
between different language versions. Subsets
of Chinese, English, Japanese and French ver-
sions of DBpedia are selected following certain
rules. Table 2 outlines the detail information
of the datasets. Each dataset contains data two
KGs in different languages and 15 thousand inter-
language links connecting equivalent entities in
two KGs. In the experiments, the known equiv-
alent entity pairs are used for model training and
testing.

5.2 Experiment Settings
In the experiments, we compared our approach
with JE, MTransE and JAPE. We also build JAPE0,
a variant of JAPE which does not use pre-aligned
relations and attributes. Because the approach
ITransE performs iterative alignment and it re-
quires two KGs sharing the same relations, we
do not include it in the comparison. The inter-
language links in each dataset are used as the gold
standards of entity alignments. For all the com-
pared approaches, we use 30% of inter-language
links for training and 70% of them for testing;
the split of training and testing are the same for
all approaches. We use Hits@k as the evalua-
tion measure to assess the performance of all the

approaches. Hits@k measures the proportion of
correctly aligned entities ranked in the top k candi-
dates. For the parameters of our approach, we set
ds = 1, 000, da = 100; the margin �s = �a = 3
in the loss function, and � in the distance measure
is emperically set to 0.9.

5.3 Results

Table 3 shows the results of all the compared
approaches on DBP15K datasets. We report
Hits@1, Hits@10 and Hits@50 of approaches
on each dataset. Because we use the same datasets
as in (Sun et al., 2017), the results of JE, MTransE,
and JAPE are obtained from (Sun et al., 2017).
For JAPE and JAPE0, each of them has three
variants: Structure Embedding without negative
triples (SE w/o neg.), Structure Embedding (SE),
Structure and attribute joint embedding (SE+AE).
We use GCN(SE) and GCN(SE+AE) to denote
two variants of our approach: one only uses re-
lational triples to perform structure embedding,
and the other uses both relational and attributional
triples to perform structure and attribute embed-
ding.

GCN(SE) vs. GCN(SE+AE)
We first compare the results of GCN(SE) and

GCN(SE+AE) to see whether the attributional in-
formation is helpful in the KG alignment task.
According to the results, adding attributes in our
approach do lead to slightly better results. The
improvements range from 1% to 10%, which are
very similar to the improvements of JAPE(SE)
over JAPE(SE+AE). It shows that the KG align-
ment mainly relays on the structural information in
KGs, but the attributional information is still use-
ful. Our approach uses the same framework for
embedding structure and attribute information, the
combination of two kinds of embeddings works
effectively.

GCN(SE+AE) vs. Baselines
On the dataset of DBP15KZH�EN ,

JAPE(SE+AE) performs best and gets five
best Hits@k values; our approach GCN(SE+AE)
gets the best Hits@1 in the alignment direction
of ZH!EN. The results of GCN(SE+AE) and
JAPE gets very close results regarding Hits@1
and Hits@10 in the direction of ZH!EN. In the
alignment direction of EN!ZH, JAPE(SE+AE)
outperforms GCN(SE+AE) by about 2-3%. But
it should be noticed that JAPE uses additional
aligned relations and attributes as its inputs,
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Datasets Entities Relations Attributes Rel. triples Attr. triples

DBP15KZH�EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

DBP15KJA�EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

DBP15KFR�EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

Table 2: Details of the datasets

DBP15KZH�EN
ZH ! EN EN ! ZH

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 21.27 42.77 56.74 19.52 39.36 53.25

*MTransE 30.83 61.41 79.12 24.78 52.42 70.45

*JAPE
SE w/o neg. 38.34 68.86 84.07 31.66 59.37 76.33

SE 39.78 72.35 87.12 32.29 62.79 80.55
SE + AE 41.18 74.46 88.90 40.15 71.05 86.18

JAPE0

SE w/o neg. 30.10 62.58 80.28 23.04 52.91 72.17
SE 30.54 66.41 83.94 23.91 57.02 77.31

SE + AE 33.32 69.28 86.40 33.02 66.92 85.15

GCN SE 38.42 70.34 81.24 34.43 65.68 77.03
SE + AE 41.25 74.38 86.23 36.49 69.94 82.45

DBP15KJA�EN
JA ! EN EN ! JA

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 18.92 39.97 54.24 17.80 38.44 52.48

*MTransE 27.86 57.45 75.94 23.72 49.92 67.93

*JAPE
SE w/o neg. 33.10 63.90 80.80 29.71 56.28 73.84

SE 34.27 66.39 83.61 31.40 60.80 78.51
SE + AE 36.25 68.50 85.35 38.37 67.27 82.65

JAPE0

SE w/o neg. 28.90 60.61 80.03 25.34 53.36 71.94
SE 29.35 63.31 82.76 26.37 57.35 76.87

SE + AE 31.06 64.11 81.57 32.45 62.21 79.08

GCN SE 38.21 72.49 82.69 36.90 68.50 79.51
SE + AE 39.91 74.46 86.10 38.42 71.81 83.72

DBP15KFR�EN
FR ! EN EN ! FR

Hits@1 Hits@10 Hits@50 Hits@1 Hits@10 Hits@50

*JE 15.38 38.84 56.50 14.61 37.25 54.01

*MTransE 24.41 55.55 74.41 21.26 50.60 69.93

*JAPE
SE w/o neg. 29.55 62.18 79.36 25.40 56.55 74.96

SE 29.63 64.55 81.90 26.55 60.30 78.71
SE + AE 32.39 66.68 83.19 32.97 65.91 82.38

JAPE0

SE w/o neg. 28.23 60.99 78.47 24.68 55.25 74.19
SE 27.58 62.03 79.98 24.93 58.95 77.79

SE + AE 30.21 65.81 82.57 31.42 63.86 80.95

GCN SE 36.51 73.42 85.93 36.08 72.37 85.44
SE + AE 37.29 74.49 86.73 36.77 73.06 86.39

Table 3: Results comparison of cross-lingual KG alignment (* marks the results obtained from (Sun et al.,
2017))

while our approach does not use these kinds
of prior knowledge. If compared with JAPE0,

GCN(SE+AE) performs better than it regrading
Hits@1 and Hits@10. While compared with
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Figure 2: GCN and JAPE using different sizes of training data (horizontal coordinates: proportions of
pre-aligned entities used in training data; vertical coordinates: Hits@1 )

JE and MTransE, GCN(SE+AE) outperform
them by more than 10% in most cases. On the
datasets of DBP15KJA�EN and DBP15KFR�EN ,
GCN(SE+AE) outperforms all the compared ap-
proaches regarding all the Hits@k measures.
Even compared with JAPE which uses extra
relation and attribute alignments, GCN(SE+AE)
still gets better results than it.

Comparing with all the baselines, both
GCN(SE) and GCN(SE+AE) outperform JE and
MTransE significantly. Among all the baselines,
JAPE is the strongest one; it might due to its
ability of using both relational and attributional
triples, and the extra alignments of relations and
attributes that it consumes. Our approach achieves
better results than JAPE on two datasets; Al-
though JAPE performs better than our approach,
the differences between their results are small.
If there are no existing relation and attribute
alignments between two KGs, our approach will
have distinct advantage over JAPE.

GCN vs. JAPE using different sizes of train-
ing data

To investigate how the size of training set affects
the results of our approach, we further compare
our approach with JAPE by using different number
of pre-aligned entities as training data. For JAPE,
the pre-aligned entities are used as seeds to make
their vectors overlapped. In our approach, all the
pre-aligned entities are used to train GCN models.
Intuitively, the more pre-aligned entities used, the
better results should be obtained by both GCN and
JAPE.

Here we use different proportions of pre-aligned
entities as training data, which ranges 10% to 50%
with step 10%; all the rest of pre-aligned entities
are used for testing. Figure 2 shows the Hits@1
of two approaches in three datasets. It shows that

both approaches perform better as the size of train-
ing data increases. And our approach always out-
performs JAPE except using 40% pre-aligned en-
tities as training data in Figure 2(a). Especially
in the tasks of aligning Japanese to English and
French to English, our approach has a distinct ad-
vantage over JAPE.

6 Conclusion and Future Work

This paper presents a new embedding-based KG
alignment approach which discovers entity align-
ments based on the entity embeddings learned by
GCNs. Our approach can make use of both the
relational and the attributional triples in KGs to
discover the entity alignments. We evaluate our
method on the data of real multilingual KGs, and
the results show the advantages of our approach
over the compared baselines.

In the future work, we will explore more ad-
vanced GCN models for KG alignment task, such
as Relational GCNs (Schlichtkrull et al., 2017)
and Graph Attention Networks (GATs) (Velick-
ovic et al., 2017). Furthermore, how to iteratively
discover new entity alignments in the framework
of our approach is another interesting direction
that we will study in the future.
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Abstract

Sememes are defined as the minimum seman-
tic units of human languages. As impor-
tant knowledge sources, sememe-based lin-
guistic knowledge bases have been widely
used in many NLP tasks. However, most lan-
guages still do not have sememe-based lin-
guistic knowledge bases. Thus we present
a task of cross-lingual lexical sememe pre-
diction, aiming to automatically predict se-
memes for words in other languages. We
propose a novel framework to model corre-
lations between sememes and multi-lingual
words in low-dimensional semantic space for
sememe prediction. Experimental results on
real-world datasets show that our proposed
model achieves consistent and significant im-
provements as compared to baseline methods
in cross-lingual sememe prediction. The codes
and data of this paper are available at https:
//github.com/thunlp/CL-SP.

1 Introduction

Words are regarded as the smallest meaningful unit
of speech or writing that can stand by themselves
in human languages, but not the smallest indivisi-
ble semantic unit of meaning. That is, the meaning
of a word can be represented as a set of semantic
components. For example, “Man = human + male
+ adult” and “Boy = human +male + child”. In lin-
guistics, the minimum semantic unit of meaning is
named sememe (Bloomfield, 1926). Some people
believe that semantic meanings of concepts such as
words can be composed of a limited closed set of
sememes. And sememes can help us comprehend
human languages better.
Unfortunately, the lexical sememes of words are

not explicit in most human languages. Hence, peo-
ple construct sememe-based linguistic knowledge

⇤ Indicates equal contribution
† Corresponding author

apple

apple (brand)apple (fruit)

computerfruit

 
PatternValue able bring SpecificBrand

word

sense

sememe

Figure 1: An example of HowNet.

bases (KBs) via manually annotating every words
with a pre-defined closed set of sememes. HowNet
(Dong and Dong, 2003) is one of the most well-
known sememe-based linguistic KBs. Different
fromWordNet (Miller, 1995) which focuses on the
relations between senses, it annotates each word
with one or more relevant sememes. As illustrated
in Fig. 1, the word apple has two senses includ-
ing apple (fruit) and apple (brand) in HowNet.
The sense apple (fruit) has one sememe fruit, and
the sense apple (brand) has five sememes includ-
ing computer, PatternValue, able, bring and Speci-
ficBrand. There exist about 2, 000 sememes and
over 100 thousand labeled Chinese and English
words in HowNet. HowNet has been widely used
in various NLP applications such as word simi-
larity computation (Liu and Li, 2002), word sense
disambiguation (Zhang et al., 2005), question clas-
sification (Sun et al., 2007) and sentiment classifi-
cation (Dang and Zhang, 2010).
However, most languages do not have such

sememe-based linguistic KBs, which prevents us
understanding and utilizing human languages to
a greater extent. Therefore, it is important to
build sememe-based linguistic KBs for various
languages. Manual construction for sememe-
based linguistic KBs requires efforts of many
linguistic experts, which is time-consuming and
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labor-intensive. For example, the construction of
HowNet has cost lots of Chinese linguistic experts
more than 10 years.
To address the issue of the high labor cost of

manual annotation, we propose a new task, cross-
lingual lexical sememe prediction (CLSP) which
aims to automatically predict lexical sememes for
words in other languages. CLSP aims to assist
in the annotation of linguistic experts. There are
two critical challenges for CLSP: (1) There is not
a consistent one-to-one match between words in
different languages. For example, English word
“beautiful” can refer to Chinese words of either
“美丽” or “漂亮”. Hence, we cannot simply trans-
late HowNet into another language. And how to
recognize the semantic meaning of a word in other
languages becomes a critical problem. (2) Since
there is a gap between the semantic meanings of
words and sememes, we need to build semantic
representations for words and sememes to capture
the semantic relatedness between them.
To tackle these challenges, in this paper, we pro-

pose a novel model for CLSP, which aims to trans-
fer sememe-based linguistic KBs from source lan-
guage to target language. Ourmodel contains three
modules including (1) monolingual word embed-
ding learning which is intended for learning se-
mantic representations of words for source and tar-
get languages respectively; (2) cross-lingual word
embedding alignment which aims to bridge the gap
between the semantic representations of words in
two languages; (3) sememe-based word embed-
ding learning whose objective is to incorporate se-
meme information into word representations. For
simplicity, we do not consider the hierarchy infor-
mation in HowNet in this paper.
In experiments, we take Chinese as source lan-

guage and English as target language to show the
effectiveness of our model. Experimental results
show that our proposed model could effectively
predict lexical sememes for words with differ-
ent frequencies in other languages. Our model
also has consistent improvements on two auxiliary
experiments including bilingual lexicon induction
and monolingual word similarity computation by
jointly learning the representations of sememes,
words in source and target languages.

2 Related Work

Since HowNet was published (Dong and Dong,
2003), it has attracted wide attention of re-

searchers. Most of related works focus on apply-
ing HowNet to specific NLP tasks (Liu and Li,
2002; Zhang et al., 2005; Sun et al., 2007; Dang
and Zhang, 2010; Fu et al., 2013; Niu et al., 2017;
Zeng et al., 2018; Gu et al., 2018). To the best of
our knowledge, only Xie et al. (2017) and Jin et al.
(2018) conduct studies of augmenting HowNet by
recommending sememes for new words. How-
ever, both of the two works are aimed to recom-
mend sememes for monolingual words and not ap-
plicable to cross-lingual circumstance. Accord-
ingly, our work is the first effort to automatically
perform cross-lingual sememe prediction to enrich
sememe-based linguistic KBs.
Our novel model adopts the method of word

representation learning (WRL). Recent years have
witnessed great advances in WRL. Models like
Skip-gram, CBOW (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) are immensely
popular and achieve remarkable performance in
many NLP tasks. However, most WRL meth-
ods learn distributional information of words
from large corpora while the valuable information
contained in semantic lexicons are disregarded.
Therefore, some works try to inject semantic infor-
mation of KBs intoWRL (Faruqui et al., 2015; Liu
et al., 2015; Mrkšic et al., 2016; Bollegala et al.,
2016). Nevertheless, these works are all applied
to word-based KBs such as WordNet, few works
pay attention to how to incorporate the knowledge
from sememe-based linguistic KBs.
There also have been plenty of studies work-

ing on cross-lingual WRL (Upadhyay et al., 2016;
Ruder, 2017). Most of them require parallel cor-
pora (Zou et al., 2013; AP et al., 2014; Her-
mann and Blunsom, 2014; Kočiskỳ et al., 2014;
Gouws et al., 2015; Luong et al., 2015; Coulmance
et al., 2015). Some of them adopt unsupervised
or weakly supervised methods (Mikolov et al.,
2013b; Vulić and Moens, 2015; Conneau et al.,
2017; Artetxe et al., 2017). There are also some
works using a seed lexicon as the cross-lingual sig-
nal (Dinu et al., 2014; Faruqui and Dyer, 2014;
Lazaridou et al., 2015; Shi et al., 2015; Lu et al.,
2015; Gouws et al., 2015; Wick et al., 2016; Am-
mar et al., 2016; Duong et al., 2016; Vulić and Ko-
rhonen, 2016).
In terms of our cross-lingual sememe prediction

task, parallel data-based bilingual WRL methods
are unsuitable because most language pairs have
no large parallel corpora. Besides, unsupervised
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methods are not appropriate either as they are gen-
erally hard to learn high-quality bilingual word
embeddings. Therefore, we choose the seed lex-
icon method in our model, and further introduce
matching mechanism that is inspired by Zhang
et al. (2017) to enhance its performance.

3 Methodology

In this section, we introduce our novel model for
CLSP. Here we define the language with sememe
annotations as source language and the language
without sememe annotations as target language.
The main idea of our model is to learn word em-
beddings of source and target languages jointly
in a unified semantic space, and then predict se-
memes for words in target language according
to the words with similar semantic meanings in
source language.
Ourmethod consists of three parts: monolingual

word representation learning, cross-lingual word
embedding alignment and sememe-based word
representation learning. Hence, we define the ob-
jective function of our method corresponding to
the three parts:

L = Lmono + Lcross + Lsememe. (1)

Here, the monolingual term Lmono is designed for
learning monolingual word embeddings from non-
parallel corpora for source and target languages re-
spectively. The cross-lingual term Lcross aims to
align cross-lingual word embeddings in a unified
semantic space. And Lsememe can draw sememe
information into word representation learning and
conduce to better word embeddings for sememe
prediction. In the following subsections, we intro-
duce the three parts in detail.

3.1 Monolingual Word Representation
Monolingual word representation is responsible
for explaining regularities in monolingual corpora
of source and target languages. Since the two cor-
pora are non-parallel,Lmono comprises twomono-
lingual sub-models that are independent of each
other:

Lmono = LS
mono + LT

mono, (2)

where the superscripts S and T denote source and
target languages respectively.
As a common practice, we choose the well es-

tablished Skip-gram model to obtain monolingual

word embeddings. Skip-gram model is aimed at
maximizing the predictive probability of context
words conditioned on the centered word. For-
mally, taking the source side for example, given a
trainingword sequence {wS

1 , · · · , wS
n}, Skip-gram

model intends to minimize:

LS
mono = �

n�KX

c=K+1

X

�KkK,k 6=0

logP (wS
c+k|wS

c ),

(3)
where K is the size of the sliding window.
P (wS

c+k|wS
c ) stands for the predictive probability

of one of the context words conditioned on the cen-
tered word wS

c , formalized by the following soft-
max function:

P (wS
c+k|wS

c ) =
exp(wS

c+k · wS
c )

P
wS

s 2V S exp(wS
s · wS

c )
, (4)

in which V s indicates the word vocabulary of
source language. LT

mono can be formulated simi-
larly.

3.2 Cross-lingual Word Embedding
Alignment

Cross-lingual word embedding alignment aims to
build a unified semantic space for the words in
source and target languages. Inspired by Zhang
et al. (2017), we align the cross-lingual word em-
beddings with signals of a seed lexicon and self-
matching.
Formally, Lcross is composed of two terms in-

cluding alignment by seed lexiconLseed and align-
ment by matching Lmatch:

Lcross = �sLseed + �mLmatch, (5)

where �s and �m are hyperparameters for control-
ling relative weightings of the two terms.

Alignment by Seed Lexicon
The seed lexicon term Lseed encourages word em-
beddings of translation pairs in a seed lexiconD to
be close, which can be achieved via a L2 regular-
izer:

Lseed =
X

hwS
s ,wT

t i2D

kwS
s � wT

t k2, (6)

in which wS
s and wT

t indicate the words in source
and target languages in the seed lexicon respec-
tively.
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Alignment by Matching Mechanism
As for the matching process, it is founded on an as-
sumption that each target word should be matched
to a single source word or a special empty word,
and vice versa. The goal of the matching process
is to find the matched source (target) word for each
target (source) word and maximize the matching
probabilities for all the matched word pairs. The
loss of this part can be formulated as:

Lmatch = LT2S
match + LS2T

match, (7)

where LT2S
match is the term for target-to-source

matching and LS2T
match is the term for source-to-

target matching.
Next, we give a detailed explanation of

target-to-source matching, and the source-to-
target matching is defined in the same way.
We first introduce a latent variable mt 2
{0, 1, · · · , |V S |} (t = 1, 2, · · · , |V T |) for each
target word wT

t , where |V S | and |V T | indicate the
vocabulary size of source and target languages re-
spectively. Here, mt specifies the index of the
source word that wT

t matches with, and mt = 0
signifies the empty word is matched. Then we
havem = {m1, m2, · · · , m|V T |}, and can formal-
ize the target-to-source matching term:

LT2S
match = � logP (CT |CS)

= � log
X

m
P (CT ,m|CS), (8)

where CT and CS denote the target and source cor-
pus respectively. Here, we simply assume that the
matching processes of target words are indepen-
dent of each other. Therefore, we have:

P (CT ,m|CS) =
Y

wT 2CT

P (wT ,m|CS)

=

|V T |Y

t=1

P (wT
t |wS

mt
)c(wT

t ),

(9)

where wS
mt

is the source word that wT
t matches

with, and c(wT
t ) is the number of times wT

t occurs
in the target corpus.

3.3 Sememe-based Word Representation
Sememe-based word representation is intended for
improving word embeddings for sememe predic-
tion by introducing the information of sememe-
based linguistic KBs of source language. In this
section, we present two methods of sememe-based
word representation.

Word Relation-based Approach
A simple and intuitive method is to let words with
similar sememe annotations tend to have similar
word embeddings, which we name word relation-
based approach. To beginwith, we construct a syn-
onym list from sememe-based linguistic KBs of
source language, where we regard words sharing
a certain number of sememes as synonyms. Next,
we force synonyms to have closer word embed-
dings.
Formally, we let wS

i be original word embed-
ding of wS

i and ŵS
i be its adjusted word embed-

ding. And let Syn(wS
i ) denote the synonym set of

word wS
i . Then the loss function is:

Lsememe =
X

wS
i 2V S

h
↵ikwS

i � ŵS
i k2+

X

wS
j 2Syn(wS

i )

�ijkŵS
i � ŵS

j k2
i
,

(10)

where ↵ and � control the relative strengths
of the two terms. It should be noted that
the idea of forcing similar words to have close
word embeddings is similar to the state-of-the-
art retrofitting approach (Faruqui et al., 2015).
However, retrofitting approach cannot be applied
here because sememe-based linguistic KBs such
as HowNet cannot directly provide its needed syn-
onym list.

Sememe Embedding-based Approach
Simple and effective as the word relation-based
approach is, it cannot make full use of the infor-
mation of sememe-based linguistic KBs because it
disregards the complicated relations between se-
memes and words as well as relations between
different sememes. To address this limitation,
we propose sememe embedding-based approach,
which learns both sememe and word embeddings
jointly.
In this approach, we represent sememes with

distributed vectors as well and place them into the
same semantic space as words. Similar to SPSE
(Xie et al., 2017), which learns sememe embed-
dings by decomposing word-sememe matrix and
sememe-sememe matrix, our method utilizes se-
meme embeddings as regularizers to learn better
word embeddings. Different from SPSE, we do
not use pre-trained word embeddings. Instead, we
learn word embeddings and sememe embeddings
simultaneously.
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More specifically, from HowNet we can ex-
tract a source-side word-sememe matrix MS with
MS

sj = 1 indicating word wS
s is annotated with

sememe xj , otherwise MS
sj = 0. Hence by fac-

torizing MS , we can define the loss function as:

Lsememe =
X

wS
s 2V S ,xj2X

(wS
s ·xj +bs+b0

j �MS
sj)

2,

(11)
where bs and b0

j are the biases of wS
s and xj , and

X denotes sememe set.
In this approach, we obtain word and sememe

embeddings in a unified semantic space. The se-
meme embeddings bear all the information about
the relationships between words and sememes, and
they inject the information into word embeddings.
Therefore, the word embeddings are expected to
be more suitable for sememe prediction.

3.4 Training and Prediction
Training
When training monolingual word embeddings, we
use negative sampling following Mikolov et al.
(2013a). In the optimization of sememe part,
we adopt the iterative updating method following
Faruqui et al. (2015) for word relation-based ap-
proach and stochastic gradient descent (SGD) for
sememe embedding-based approach. As for the
optimization of the seed lexicon term of cross-
lingual part, we also apply SGD.
Nevertheless, due to the existence of the la-

tent variable, optimization of the matching process
in cross-lingual part poses a challenge. We set-
tle on Viterbi EM algorithm to address the prob-
lem. Next, we still take the target-to-source side
as an example and give a detailed description of
the training process using Viterbi EM algorithm.
Viterbi EM algorithm alternates between a

Viterbi E step and a subsequent M step. The
Viterbi E step aims to find the most probable
matched word pairs given the current parameters.
Considering the independence, we can seek the
match for each word individually:

m̂t = argmax
s2{0,1,··· ,|V S |}

P (wT
t |wS

s ). (12)

As for the parametrization of the matching prob-
ability, there are various choices. For computa-
tional simplicity, we select cosine similarity:

P (wT
t |wS

s ) =

(
✏ if s = 0,

cos(wT
t ,wS

s ) otherwise,
(13)

where ✏ is a hyperparameter indicating the proba-
bility of matching the empty word. Therefore, the
Viterbi E step computes matching by:

m̃t = argmax
s2{1,··· ,|V S |}

cos(wT
t ,wS

s ), (14)

m̂t =

(
m̃t if cos(wT

t ,wS
m̃t

) > ✏,

0 otherwise.
(15)

From this, we can see that ✏ serves as a threshold
to keep out unreliable matched pairs.
The Viterbi M step performs maximization as if

the latent variable has been observed in the Viterbi
E step. Thus, we can treat the matched pairs as cor-
rect translations, and use a L2 regularizer as well.
Consequently, the M step computes:

(ŵS , ŵT ) = argmax
wS ,wT

M(wS ,wT ), (16)

where M(wS ,wT ) is defined as:

M(wS ,wT ) = �
|V T |X

t=1

I[m̃t 6= 0]
c(wT

t )

|CT | kwT
t �wS

m̃t
k2.

(17)

Prediction
Since we assume that words with similar sememe
annotations are similar and similar words should
have similar sememes, which resembles collabora-
tive filtering in personalized recommendation, we
can recommend sememes for target words accord-
ing to their most similar source words.
Formally, we define the score function

P (xj |wT
t ) of sememes xj given a target word wT

t

as:

P (xj |wT
t ) =

X

wS
s 2V S

cos(wS
s ,wT

t )·MS
sj ·crs , (18)

where rs is the descending rank of word simi-
larity cos(wS

s ,wT
t ) for the source word wS

s , and
c 2 (0, 1) is a hyperparameter. Thus, crs is a de-
clined confidence factor which can eliminate the
noise from irrelevant sourcewords and concentrate
on the most similar source words when predicting
sememes for target words.

4 Experiments

In this section, we first introduce the dataset used
in the experiments and then describe the experi-
mental settings of both baseline method and our
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model. Next, we present the experimental results
of different methods on the task of cross-lingual
lexical sememe prediction. And then we con-
duct detailed analysis and exhaustive case stud-
ies. Following this, we investigate the effect of
word frequency on cross-lingual sememe predic-
tion results. Finally, we perform further quantita-
tive analysis through two sub-tasks including bilin-
gual lexicon induction and word similarity compu-
tation.

4.1 Dataset
We use sememe annotations in HowNet for se-
meme prediction. HowNet annotates sememes
for 118, 346 Chinese words and 104, 025 En-
glish words. The number of sememes in to-
tal is 1, 983. Since some sememes only appear
few times in HowNet, which are expected to be
unimportant, we filter out those low-frequency se-
memes. Specifically, the frequency threshold is 5,
and the final number of distinct sememes used in
our experiments is 1, 400.
In our experiments, Chinese is source language

and English is target language. To learn Chi-
nese and English monolingual word embeddings,
we extract about 2.0G text from Sogou-T1 and
Wikipedia2 respectively. And we use THULAC3

(Li and Sun, 2009) for Chineseword segmentation.
As for seed lexicon, we build it in a similar way

to Zhang et al. (2017). First, we employ Google
Translation API4 to translate the source side (Chi-
nese) vocabulary. Then the translations in the tar-
get language (English) are queried again in the re-
verse direction to translate back to the source lan-
guage (Chinese). And we only keep the translation
pairs whose back translated words match with the
original source words.
In the task of bilingual lexicon induction, we opt

for Chinese-English Translation Lexicon Version
3.05 to be the gold standard. In the task of word
similarity computation, we choose WordSim-240
and WordSim-297 (Jin and Wu, 2012) datasets
for Chinese, and WordSim-353 (Finkelstein et al.,
2002) and SimLex-999 (Hill et al., 2015) datasets
for English to evaluate the performance of our

1Sogou-T is a corpus of web pages provided by a Chinese
commercial search engine. https://www.sogou.com/
labs/resource/t.php

2https://dumps.wikimedia.org/
3http://thulac.thunlp.org/
4https://cloud.google.com/translate/
5https://catalog.ldc.upenn.edu/

LDC2002L27

model. These datasets contain word pairs as well
as human-assigned similarity scores. The word
vectors are evaluated by ranking the word pairs ac-
cording to their cosine similarities, and measuring
Spearman’s rank correlation coefficient with the
human ratings.

4.2 Experimental Settings

We empirically set the dimension of word and se-
meme embeddings to 200. And the embeddings
are all randomly initialized. In monolingual word
embedding learning, we follow the optimal param-
eter settings in Mikolov et al. (2013a). We set the
window sizeK to 5, down-sampling rate for high-
frequency words to 10�5, learning rate to 0.025
and the number of negative samples to 5. In cross-
lingual word embedding alignment, the seed lexi-
con term weight �s is 0.01, and the matching term
weight �m is 1, 000. In sememe-based word repre-
sentation, the number of shared sememes for syn-
onyms in the word relation-based approach is 2.
In the training of matching process, we set ✏ to 0.5
empirically. When predicting sememes for words
in target language, we only consider 100most sim-
ilar source words for each target word and the at-
tenuation parameter c is 0.8. The testing set for
cross-lingual lexical sememe prediction contains
2, 000 randomly selected English words from the
vocabulary.

4.3 Cross-lingual Lexical Sememe Prediction

We evaluate our model by recommending se-
memes for English words. In HowNet, many
words have multiple sememes, so that sememe
prediction can be regarded as a multi-label clas-
sification task. We use mean average precision
(MAP) and F1 score to evaluate the sememe pre-
diction results.
We compare our model that incorporates se-

meme information with word relation-based ap-
proach (named CLSP-WR) and our model which
jointly trains word and sememe embeddings
(named CLSP-SE) with a baseline method BiLex
(Zhang et al., 2017), a bilingual WRL model with-
out incorporation of sememe information. For
BiLex, we use its trained bilingual word embed-
dings to predict sememes for the words in target
language with our sememe prediction approach.
Table 1 exhibits the evaluation results of cross-

lingual lexical sememe prediction with different
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Method Seed
Lexicon

Sememe Prediction

MAP F1 Score

BiLex

1000 27.57 16.08
2000 33.79 22.33
4000 35.78 25.74
6000 38.29 28.71

CLSP-WR

1000 28.12 18.55
2000 33.78 23.64
4000 38.30 27.74
6000 41.23 30.64

CLSP-SE

1000 31.78 18.22
2000 37.70 24.31
4000 40.77 29.33
6000 43.16 32.49

Table 1: Evaluation results of cross-lingual lexi-
cal sememe prediction with different seed lexicon
sizes.

seed lexicon sizes in {1000, 2000, 4000, 60006}.
From the table, we can clearly see that:
(1) Our two models perform much better com-

pared with BiLex in all the seed lexicon size set-
tings. It indicates that incorporating sememe infor-
mation into word embeddings can effectively im-
prove the performance of predicting sememes for
target words. The reason is that both of our models
makewords with similar sememe annotations have
similar embeddings, and as a result, we can recom-
mend better sememes for target words according to
its related source words.
(2) CLSP-SE model achieves better results than

CLSP-WRmodel. The reason is that by represent-
ing sememes in a latent semantic space, CLSP-
SE model can further capture the relatedness be-
tween sememes as well as the relatedness between
words and sememes, which is helpful for model-
ing the representations of those words with similar
sememes.

4.4 Case Study

In case study, we conduct qualitative analysis to
explain the effectiveness of our models with de-
tailed cases. We show two examples of cross-
lingual word sememe prediction, in which we pre-
dict sememes for handcuffs and canoeist. Fig. 2
shows the embeddings of five closest Chinese and
English words to handcuffs and canoeist, and the
vector of each word is projected down to two di-
mensions using t-SNE (Maaten and Hinton, 2008).

6The largest seed lexicon size is 6000 because that is the
maximum number of translation word pairs that we can obtain
from the bilingual corpora.

noose

 (rope)

  (sports star)

canoeist

swimmer

medalist

rower

weightlifter

 (sprint)

 (canoe)

(kayak)

 (kayak)

skier

handcuffs
gunpoint

cuffs

burglars

handcuff

 (handcuffs)

 (screwdriver)
 (shackles)

 (tie)

Figure 2: Two examples of nearest English and
Chinese words.

Table 2 lists top-5 sememes we predict for the
two words and the sememes annotated for each
word in HowNet are in boldface. In the table,
we also exhibit the annotated sememes of the five
closest Chinese words.

In the first example, our model finds the best
translated word for handcuffs in Chinese ⼿ 铐
“handcuffs”, whose sememe annotations are ex-
actly the same as those of handcuffs. In addition,
the second closest Chinese word 镣 铐 “shack-
les” is a synonym for ⼿铐 “handcuffs” and also
has the same sememe annotations. Therefore, our
model predicts all the correct sememes success-
fully. From the prediction results of this exam-
ple, we notice that our model can accurately pre-
dict general sememes like 用具 “tool” and ⼈ “hu-
man”, which are supposed to be difficult to predict.

In the second example, accurate Chinese trans-
lated counterpart for canoeist does not exist, but
our model still hits all the three annotated sememes
in the top-5 predicted sememes. By observing the
most similar Chinese words, we can find that al-
though these words do not have the same meaning
as canoeist, they are related to canoeist in different
aspects. For example, 短跑 “sprint” and canoeist
are both in the sports domain so that they share the
sememes 锻炼 “exercise” and 体育 “sport”. 名将
“sports star” has the meaning of sports star and it
can provide the sememe ⼈ “human” in sememe
prediction. Furthermore, it is noteworthy that our
model predicts 船 “ship” due to the nearest Chi-
nese words 独⽊⾈ “canoe” and 皮艇 “kayak”,
whereas 船 “ship” is not annotated for canoeist in
HowNet. It is obvious that 船 “ship” is an appro-
priate sememe for canoeist. Since HowNet is man-
ually annotated by experts, misannotated words al-
ways exist inevitably, which in some cases under-
estimates our models.
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Type Words Sememes

English Word handcuffs 用具 “tool”, “police”, “detain”,⼈ “human”, “guilty”

5 Nearest Chinese Words

⼿铐 “handcuffs” “guilty”, “police”,⼈ “human”, “detain”,用具 “tool”
镣铐 “shackles” “guilty”, “police”,⼈ “human”, “detain”,用具 “tool”

绑 “tie” 包扎 “wrap”
螺丝⼑ “screwdriver” 用具 “tool”, 放松 “loosen”, 勒紧 “tighten”

绳 “rope” 线 “linear”, 材料 “material”, 拴连 “fasten”

English Word canoeist 锻炼 “exercise”,⼈ “human”,体育 “sport”, 事情 “fact”, 船 “ship”

5 Nearest Chinese Words

短跑 “sprint” 事情 “fact”锻炼 “exercise”体育 “sport”
独⽊⾈ “canoe” 船 “ship”
皮艇 “kayak” 船 “ship”

名将 “sports star” 著名 “famous”,⼈ “human”, 官 “official”, 军 “military”
皮划艇 “kayak” 事情 “fact”,锻炼 “exercise”,体育 “sport”

Table 2: Two examples of cross-lingual lexical sememe prediction.

4.5 Effect of Word Frequency

To explore how frequencies of target words affect
cross-lingual sememe prediction results, we split
the testing set into four subsets according to word
frequency and then calculate the sememe predic-
tionMAP and F1 score for each subset. The results
are shown in Table 3.

Method Word
Frequency

Sememe Prediction

MAP F1 Score

BiLex

<200 30.35 21.83
200 - 500 34.83 25.95
501 - 2500 40.21 28.62

>2500 47.56 35.80

CLSP-WR

<200 34.73 24.41
200 - 500 39.50 29.49
501 - 2500 43.92 33.87

>2500 47.33 34.99

CLSP-SE

<200 36.54 27.49
200 - 500 41.46 30.09
501 - 2500 45.35 35.01

>2500 49.34 37.16

Table 3: Evaluation results of cross-lingual lexical
sememe prediction with different word frequen-
cies. The number of words in each frequency range
is 497, 458, 522 and 523 respectively.

From the table we can see that: (1) The more
frequently a target word appears in the corpus, the
better its predicted sememes are. It is because
high-frequency words normally have better word
embeddings, which are crucial to sememe predic-
tion. (2) Our models evidently perform better than
BiLex in different word frequencies, especially in
low frequency. It indicates that by considering
external information of HowNet, our models are
more robust and can competently handle sparse

scenarios.

4.6 Further Quantitative Analysis
In this section, we conduct two typical auxiliary
experiments to further analyze the superiority of
our models quantitatively.

Bilingual Lexicon Induction
Our models learn bilingual word embeddings in
one unified semantic space. Here we use transla-
tion top-1 and top-5 average precision (P@1 and
P@5) to evaluate bilingual lexicon induction per-
formance of our models and BiLex. The seed lex-
icon size also varies in {1000, 2000, 4000, 6000}.

Method Seed
Lexicon

Lexicon Induction

P@1 P@5

BiLex

1000 6.48 10.78
2000 10.84 15.84
4000 19.48 23.96
6000 25.89 29.59

CLSP-WR

1000 6.89 11.28
2000 11.96 18.08
4000 19.50 25.78
6000 25.83 31.03

CLSP-SE

1000 6.60 11.04
2000 11.90 18.62
4000 19.26 25.11
6000 26.91 32.17

Table 4: Bilingual lexicon induction performance
with different seed lexicon sizes.

The results are shown in Table 4. From this ta-
ble, we observe that our models, especially CLSP-
SEmodel, enhance the performance of word trans-
lation compared to BiLex no matter how large the
seed lexicon is. It indicates that our models can
bind bilingual word embeddings better.
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Word Similarity Computation
We also evaluate the task of monolingual word
similarity computation on WordSim-240 (WS-
240) and WordSim-297 (WS-297) datasets
for Chinese, and WordSim-353 (WS-353) and
SimLex-999 (SL-999) datasets for English.

Method
Chinese (source) English (target)

WS-240 WS-297 WS-353 SL-999

BiLex 60.36 62.17 60.46 27.22

CLSP-WR 61.27 65.25 60.46 27.22

CLSP-SE 60.84 65.62 62.47 28.79

Table 5: Performance on monolingual word simi-
larity computation with seed lexicon size 6000.

Table 5 shows the results of monolingual word
similarity computation on four datasets. From
the table, we find that: (1) Our models per-
form better than BiLex on both Chinese word
similarity datasets. It signifies incorporating se-
meme information helps learn better monolingual
embeddings; (2) CLSP-WR model does not en-
hance English word similarity results but CLSP-
SE model does. It is because CLSP-WR model
only post-processes Chineseword embeddings and
keeps English word embeddings unchanged while
CLSP-SE model undertakes bilingual alignment
and sememe information incorporation together,
which makes English word embeddings improve
with Chinese word embeddings.

5 Conclusion and Future Work

In this paper, we introduce a new task of cross-
lingual sememe prediction. This task is very im-
portant because the construction of sememe-based
linguistic knowledge bases in various languages
is beneficial to better understanding these lan-
guages. We propose a simple and effective model
for this task, including monolingual word repre-
sentation learning, cross-lingual word representa-
tion alignment and sememe-based word represen-
tation learning. Experimental results on real-world
datasets show that our model achieves consistent
and significant improvements compared to base-
line method in cross-lingual sememe prediction.
In the future, we will explore the following re-

search directions: (1) In this paper, for simplifi-
cation, we ignore the rich hierarchy information
in HowNet and also ignore the fact that a word
may have multiple senses. We will extend our

models to consider the structure information of se-
meme and multiple senses of words; (2) In fact,
our framework for cross-lingual lexical sememe
prediction can be transferred to other cross-lingual
tasks. We will explore the effectiveness of our
model in these tasks such as cross-lingual infor-
mation retrieval.
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Abstract

For languages with no annotated resources,
unsupervised transfer of natural language pro-
cessing models such as named-entity recog-
nition (NER) from resource-rich languages
would be an appealing capability. However,
differences in words and word order across
languages make it a challenging problem. To
improve mapping of lexical items across lan-
guages, we propose a method that finds trans-
lations based on bilingual word embeddings.
To improve robustness to word order differ-
ences, we propose to use self-attention, which
allows for a degree of flexibility with respect
to word order. We demonstrate that these
methods achieve state-of-the-art or competi-
tive NER performance on commonly tested
languages under a cross-lingual setting, with
much lower resource requirements than past
approaches. We also evaluate the challenges
of applying these methods to Uyghur, a low-
resource language.1

1 Introduction

Named entity recognition (NER), the task of de-
tecting and classifying named entities from text
into a few predefined categories such as people, lo-
cations or organizations, has seen the state-of-the-
art greatly advanced by the introduction of neu-
ral architectures (Collobert et al., 2011; Huang
et al., 2015; Chiu and Nichols, 2016; Lample et al.,
2016; Yang et al., 2016; Ma and Hovy, 2016; Pe-
ters et al., 2017; Liu et al., 2018; Peters et al.,
2018). However, the success of these methods is
highly dependent on a reasonably large amount of
annotated training data, and thus it remains a chal-
lenge to apply these models to languages with lim-
ited amounts of labeled data. Cross-lingual NER
attempts to address this challenge by transferring

1The source code is available at https://github.
com/thespectrewithin/cross-lingual_NER

knowledge from a high-resource source language
with abundant entity labels to a low-resource tar-
get language with few or no labels. Specifically,
in this paper we attempt to tackle the extreme sce-
nario of unsupervised transfer, where no labeled
data is available in the target language. Within
this paradigm, there are two major challenges to
tackle: how to effectively perform lexical mapping
between the languages, and how to address word
order differences.

To cope with the first challenge of lexical map-
ping, a number of methods use parallel corpora
to project annotations between languages through
word alignment (Ehrmann et al., 2011; Kim et al.,
2012; Wang and Manning, 2014; Ni et al., 2017).
Since parallel corpora may not be always avail-
able, Mayhew et al. (2017) proposed a “cheap
translation” approach that uses a bilingual dictio-
nary to perform word-level translation. The above
approaches provide a reasonable proxy for the
actual labeled training data, largely because the
words that participate in entities can be translated
relatively reliably given extensive parallel dictio-
naries or corpora (e.g., with 1 million word pairs
or sentences). Additionally, as a side benefit of
having explicitly translated words, models can di-
rectly exploit features extracted from the surface
forms (e.g. through character-level neural feature
extractors), which has proven essential for high
accuracy in the monolingual scenario (Ma and
Hovy, 2016). However, these methods are largely
predicated on the availability of large-scale paral-
lel resources, and thus, their applicability to low-
resource languages is limited.

In contrast, it is also possible to learn lex-
ical mappings through bilingual word embed-
dings (BWE). These bilingual embeddings can
be obtained by using a small dictionary to
project two sets of embeddings into a consistent
space (Mikolov et al., 2013a; Faruqui and Dyer,
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2014; Artetxe et al., 2016; Smith et al., 2017),
or even in an entirely unsupervised manner using
adversarial training or identical character strings
(Zhang et al., 2017; Artetxe et al., 2017; Lam-
ple et al., 2018). Many approaches in the past
have leveraged the shared embedding space for
cross-lingual applications (Guo et al., 2015; Am-
mar et al., 2016b; Zhang et al., 2016; Fang and
Cohn, 2017), including NER (Bharadwaj et al.,
2016; Ni et al., 2017). The minimal dependency
on parallel resources makes the embedding-based
method much more suitable for low-resource lan-
guages. However, since different languages have
different linguistic properties, it is hard, if not im-
possible, to align the two embedding spaces per-
fectly (see Figure 1). Meanwhile, because sur-
face forms are not available, character-level fea-
tures cannot be used, resulting in reduced tagging
accuracy (as demonstrated in our experiments).

To address the above issues, we propose a new
lexical mapping approach that combines the ad-
vantages of both discrete dictionary-based meth-
ods and continuous embedding-based methods.
Specifically, we first project embeddings of dif-
ferent languages into the shared BWE space, then
learn discrete word translations by looking for
nearest neighbors in this projected space, and fi-
nally train a model on the translated data. This
allows our method to inherit the benefits of both
embedding-based and dictionary-based methods:
its resource requirements are low as in the former,
but it suffers less from misalignment of the em-
bedding spaces and has access to character-level
information like the latter.

Turning to differences in word ordering, to
our knowledge there are no methods that explic-
itly deal with this problem in unsupervised cross-
lingual transfer for NER. Our second contribu-
tion is a method to alleviate this issue by incor-
porating an order-invariant self-attention mech-
anism (Vaswani et al., 2017; Lin et al., 2017)
into our neural architecture. Self-attention al-
lows re-ordering of information within a partic-
ular encoded sequence, which makes it possible
to account for word order differences between the
source and the target languages.

In our experiments, we start with models trained
in English as the source language on the CoNLL
2002 and 2003 datasets and transfer them into
Spanish, Dutch, and German as the target lan-
guages. Our approach obtains new state-of-the-

art cross-lingual results in Spanish and Dutch, and
competitive results in German, even without a
dictionary, completely removing the need for re-
sources such as Wikipedia and parallel corpora.
Next, we transfer English using the same approach
into Uyghur, a truly low-resource language. With
significantly fewer cross-lingual resources, our ap-
proach can still perform competitively with previ-
ous best results.

2 Approach

We establish our problem setting (§2.1), then
present our methods in detail (§2.2), and provide
some additional motivation (§2.3).

2.1 Problem Setting
NER takes a sentence as the input and outputs a se-
quence of labels corresponding to the named entity
categories of the words in the sentence, such as lo-
cation, organization, person, or none. In standard
supervised NER, we are provided with a labeled
corpus of sentences in the target language along
with tags indicating which spans correspond to en-
tities of each type.

As noted in the introduction, we study the prob-
lem of unsupervised cross-lingual NER: given la-
beled training data only in a separate source lan-
guage, we aim to learn a model that is able to per-
form NER in the target language. This transfer
can be performed using a variety of resources, in-
cluding parallel corpora (Täckström et al., 2012;
Ni et al., 2017), Wikipedia (Nothman et al., 2013),
and large dictionaries (Ni et al., 2017; Mayhew
et al., 2017). In this work, we limit ourselves to
a setting where we have the following resources,
making us comparable to other methods such as
Mayhew et al. (2017) and Ni et al. (2017):

• Labeled training data in the source language.

• Monolingual corpora in both source and target
languages.

• A dictionary, either a small pre-existing one, or
one induced by unsupervised methods.

2.2 Method
Our method follows the process below:

1. Train separate word embeddings using mono-
lingual corpora using standard embedding train-
ing methods (§2.2.1).

2. Project word embeddings in the two languages
into a shared embedding space by optimizing
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Figure 1: Example of the result of our approach on Spanish-English words not included in the dictionary (em-
beddings are reduced to 2 dimensions for visual clarity). We first project word embeddings into a shared space,
and then use the nearest neighbors for word translation. Notice that the word pairs are not perfectly aligned in the
shared embedding space, but after word translation we obtain correct alignments.

the word embedding alignment using the given
dictionary (§2.2.2).

3. For each word in the source language training
data, translate it by finding its nearest neighbor
in the shared embedding space (§2.2.3).

4. Train an NER model using the translated words
along with the named entity tags from the En-
glish corpus (§2.2.4).

We consider each in detail.

2.2.1 Learning Monolingual Embeddings
Given text in the source and target language, we
first independently learn word embedding matri-
ces X and Y in the source and target languages
respectively. These embeddings can be learned on
monolingual text in both languages with any of
the myriad of word embedding methods (Mikolov
et al., 2013b; Pennington et al., 2014; Bojanowski
et al., 2017).

2.2.2 Learning Bilingual Embeddings
Next, we learn a cross-lingual projection of X
and Y into a shared space. Assume we are given
a dictionary {xi, yi}D

i=1, where xi and yi denote
the embeddings of a word pair. Let XD =
[x1, x2, · · · , xD]> and YD = [y1, y2, · · · , yD]>

denote two embedding matrices consisting of
word pairs from the dictionary.

Following previous work (Zhang et al., 2016;
Artetxe et al., 2016; Smith et al., 2017), we opti-
mize the following objective:

min
W

dX

i=1

kWxi � yik2 s.t. WW> = I,

where W is a square parameter matrix. This ob-

jective can be further simplified as

max
W

Tr(XDWY >
D ) s.t. WW> = I.

Here, the transformation matrix W is constrained
to be orthogonal so that the dot product similarity
of words is invariant with respect to the transfor-
mation both within and across languages.

To optimize the above objective (the Procrustes
problem), we decompose the matrix Y >

D XD us-
ing singular value decomposition. Let the results
be Y >

D XD = U
P

V >, then W = UV > gives
the exact solution. We define the similarity ma-
trix between X and Y to be S = Y WX> =
Y U(XV )>, where each column contains the co-
sine similarity between source word xi and all tar-
get words yi. We can then define X 0 = XV and
Y 0 = Y U , which are X and Y transformed into a
shared embedding space.

To refine the alignment in this shared space fur-
ther, we iteratively perform a self-learning refine-
ment step k 2 times by:

1. Using the aligned embeddings to generate a new
dictionary that consists of mutual nearest neigh-
bors obtained using the same metric as intro-
duced below.

2. Solving the Procrustes problem based on the
newly generated dictionary to get a new set of
bilingual embeddings.

The bilingual embeddings at the end of the kth
step, X 0

k and Y 0
k, will be used to perform trans-

lation.

2.2.3 Learning Word Translations
To learn actual word translations, we next pro-
ceed to perform nearest-neighbor search in the

2We use k = 3 in this paper.
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common space. Instead of using a common dis-
tance metric such as cosine similarity, we adopt
the cross-domain similarity local scaling (CSLS)
metric (Lample et al., 2018), which is designed
to address the hubness problem common to the
shared embedding space (Dinu and Baroni, 2014).
Specifically,

CSLS(xi, yj) = 2 cos(xi, yj) � rT (xi) � rS(yj)

where rT (xi) = 1
K

P
yt2NT (xi)

cos(xi, yt) de-
notes the mean cosine similarity between xi and
its K neighbors yt. Using this metric, we find
translations for each source word s by selecting
target word t̂s where t̂s = arg max

t
CSLS(xs, yt).

2.2.4 Training the NER Model
Finally, we translate the entire English NER train-
ing data into the target language by taking English
sentences S = s1, s2, ..., sn and translating them
into target sentences T̂ = t̂1, t̂2, ..., t̂n. The la-
bel of each English word is copied to be the la-
bel of the target word. We can then train an NER
model directly using the translated data. Notably,
because the model has access to the surface forms
of the target sentences, it can use the character se-
quences of the target language as part of its input.

During learning, all word embeddings are nor-
malized to lie on the unit ball, allowing every
training pair an equal contribution to the objective
and improving word translation accuracy (Artetxe
et al., 2016). When training the NER model, how-
ever, we do not normalize the word embeddings,
because preliminary experiments showed the orig-
inal unnormalized embeddings gave superior re-
sults. We suspect this is due to frequency infor-
mation conveyed by vector length, an important
signal for NER. (Named entities appear less fre-
quently in the monolingual corpus.)

2.3 Discussion
Figure 1 shows an example of the embeddings and
translations learned with our approach trained on
Spanish and English data from the experiments
(see §4 for more details). As shown in the figure,
there is usually a noticeable difference between
the word embeddings of a word pair in different
languages, which is inevitable because different
languages have distinct traits and different mono-
lingual data, and as a result it is intrinsically hard
to learn a perfect alignment. This indicates that
models trained directly on data using the source
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Figure 2: Self-attentive Bi-LSTM-CRF Model

embeddings may not generalize well to the slightly
different embeddings of the target language.

Instead of directly modeling the shared embed-
ding space (Guo et al., 2015; Zhang et al., 2016;
Fang and Cohn, 2017; Ni et al., 2017), we lever-
age the shared embedding space for word transla-
tion. As shown in Figure 1, unaligned word pairs
can still be translated correctly with our method, as
the embeddings are still closer to the correct trans-
lations than the closest incorrect one.

3 NER Model Architecture

We describe the model we use to perform NER.
We will first describe the basic hierarchical neural
CRF tagging model (Lample et al., 2016; Ma and
Hovy, 2016; Yang et al., 2016), and introduce the
self-attention mechanism that we propose to deal
with divergence of word order.

3.1 Hierarchical Neural CRF
The hierarchical CRF model consists of three
components: a character-level neural network, ei-
ther an RNN or a CNN, that allows the model to
capture subword information, such as morpholog-
ical variations and capitalization patterns; a word-
level neural network, usually an RNN, that con-
sumes word representations and produces context

372



sensitive hidden representations for each word;
and a linear-chain CRF layer that models the de-
pendency between labels and performs inference.

In this paper, we closely follow the architecture
proposed by Lample et al. (2016), and use bi-
directional LSTMs for both the character level and
word level neural networks. Specifically, given
an input sequence of words (w1, w2, ..., wn), and
each word’s corresponding character sequence,
the model first produces a representation for each
word, xi, by concatenating its character rep-
resentation with its word embedding. Subse-
quently, the word representations of the input se-
quence (x1, x2, · · · , xn) are fed into a word level
Bi-LSTM, which models the contextual depen-
dency within each sentence and outputs a se-
quence of context sensitive hidden representations
(h1, h2, · · · , hn). A CRF layer is then applied
on top of the word level LSTM and takes in as
its input the sequence of hidden representations
(h1, h2, · · · , hn), and defines the joint distribution
of all possible output label sequences. The Viterbi
algorithm is used during decoding.

3.2 Self-Attention
The training-time inputs to our model are in
essence corrupted sentences from the target lan-
guage (e.g., Spanish), which have a different or-
der from natural target sentences. We propose to
alleviate this problem by adding a self-attention
layer (Vaswani et al., 2017) on top of the word-
level Bi-LSTM. Self-attention provides each word
with a context feature vector based on all the
words of a sentence. As the context vectors are
obtained irrespective of the words’ positions in a
sentence, at test time, the model is more likely to
see vectors similar to those seen at training time,
which we posit introduces a level of flexibility
with respect to the word order, and thus may al-
low for better generalization.

Let H = [h1, h2, · · · , hn]> be a sequence of
word-level hidden representations. We apply a
single layer MLP on H to obtain the queries Q
and keys K = tanh(HW + b), where W 2 R

d⇥d

is a parameter matrix and b 2 R
d is a bias term,

with d being the hidden state size. The output of
attention layer is defined as:

Ha = softmax(QK>) � (E � I)H

= [ha
1, h

a
2, ..., h

a
3]

>

where I is an identity matrix and E is an all-one

matrix. The term (E � I) serves as an atten-
tion mask that prevents the weights from center-
ing on the word itself, as we would like to provide
each word with sentence level context. The out-
puts from the self-attention layer are then concate-
nated with the original hidden representations to
form the final inputs to the CRF layer, which are
([h1, ha

1], [h2, ha
2], ..., [h3, ha

3]).

4 Experiments

To examine the effectiveness of both of our pro-
posed methods, we conduct four sets of experi-
ments. First, we evaluate our model both with
and without provided dictionaries on a benchmark
NER dataset and compare with previous state-of-
the-art results. Second, we compare our meth-
ods against a recently proposed dictionary-based
translation baseline (Mayhew et al., 2017) by di-
rectly applying our model on their translated data.3

Subsequently, we conduct an ablation study to fur-
ther understand our proposed methods. Lastly,
we apply our methods to a truly low-resource lan-
guage, Uyghur.

4.1 Experimental Settings
We evaluate our proposed methods on the bench-
mark CoNLL 2002 and 2003 NER datasets
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003), which contain 4 European lan-
guages, English, German, Dutch and Spanish. For
all experiments, we use English as the source lan-
guage and translate its training data into the target
language. We train a model on the translated data,
and test it on the target language. For each exper-
iment, we run our models 5 times using different
seeds and report the mean and standard deviation,
as suggested by Reimers and Gurevych (2017).

Word Embeddings For all languages, we use
two different embedding methods, fastText (Bo-
janowski et al., 2017) and GloVe (Pennington
et al., 2014), to perform word-embedding based
translations and train the NER model, respectively.
For fastText, we use the publicly available em-
beddings trained on Wikipedia for all languages.
For GloVe, we use the publicly available embed-
dings pre-trained on Gigaword and Wikipedia for
English. For Spanish, German and Dutch, we
use Spanish Gigaword and Wikipedia, German
WMT News Crawl data and Wikipedia, and Dutch

3We thank the authors of Mayhew et al. (2017) for shar-
ing their data.
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Wikipedia, respectively, to train the GloVe word
embeddings. We use a vocabulary size of 100,000
for both embedding methods.

Dictionary We consider three different settings
to obtain the seed dictionary, including two meth-
ods that do not use parallel resources:

1. Use identical character strings shared between
the two vocabularies as the seed dictionary.

2. Lample et al. (2018)’s method of using adver-
sarial learning to induce a mapping that aligns
the two embedding spaces, and the mutual near-
est neighbors in the shared space will be used as
a dictionary. The learning procedure is formu-
lated as a two player game, where a discrim-
inator is trained to distinguish words from the
two embedding spaces, and a linear mapping is
trained to align the two embedding spaces and
thus fool the discriminator.

3. Use a provided dictionary. In our experiments,
we use the ones provided by Lample et al.
(2018),4 each of which contain 5,000 source
words and about 10,000 entries.

Translation We follow the general procedure
described in Section 2, and replace each word
from the English training data with its correspond-
ing word in the target language. For out-of-
vocabulary (OOV) words, we simply keep them
as-is. We capitalize the resulting sentences fol-
lowing the pattern of the original English words.
Note that for German, simply following the En-
glish capitalization pattern does not work, because
all nouns in German are capitalized. To handle
this problem, we count the number of times each
word is capitalized in Wikipedia, and capitalize
the word if the probability is greater than 0.6.

Network Parameters For our experiments, we
set the character embedding size to be 25, char-
acter level LSTM hidden size to be 50, and word
level LSTM hidden size to be 200. For OOV
words, we initialize an unknown embedding by
uniformly sampling from range [�

q
3

emb , +
q

3
emb ],

where emb is the size of embedding, 100 in our
case. We replace each number with 0 when used
as input to the character level Bi-LSTM.

Network Training We use SGD with momen-
tum to train the NER model for 30 epochs, and
select the best model on the target language de-
velopment set. We choose the initial learning rate

4https://github.com/facebookresearch/
MUSE

to be ⌘0 = 0.015, and update it using a learning
decay mechanism after each epoch, ⌘t = ⌘0

1+⇢t ,
where t is the number of completed epoch and
⇢ = 0.05 is the decay rate. We use a batch
size of 10 and evaluate the model per 150 batches
within each epoch. We apply dropout on the in-
puts to the word-level Bi-LSTM, the outputs of
the word-level Bi-LSTM, and the outputs of the
self-attention layer to prevent overfitting. The self-
attention dropout rate is set to 0.5 when using
our translated data, and 0.2 when using cheap-
translation data. We use 0.5 for all other dropouts.
The word embeddings are not fine-tuned during
training.

4.2 Results
Table 1 presents our results on transferring from
English to three other languages, alongside results
from previous studies. Here “BWET” (bilingual
word embedding translation) denotes using the hi-
erarchical neural CRF model trained on data trans-
lated from English. As can be seen from the ta-
ble, our methods outperform previous state-of-the-
art results on Spanish and Dutch by a large mar-
gin and perform competitively on German even
without using any parallel resources. We achieve
similar results using different seed dictionaries,
and produce the best results when adding the self-
attention mechanism to our model.

Despite the good performance on Spanish and
Dutch, our model does not outperform the previ-
ous best result on German, and we speculate that
there are a few reasons. First, German has rich
morphology and contains many compound words,
making the word embeddings less reliable. Our
supervised result on German indicates the same
problem, as it is about 8 F1 points worse than
Spanish and Dutch. Second, these difficulties be-
come more pronounced in the cross-lingual set-
ting, leading to a noisier embedding space align-
ment, which lowers the quality of BWE-based
translation. We believe that this is a problem
with all methods using word embeddings. In such
cases, more resource-intensive methods may be
necessary.

4.2.1 Comparison with Dictionary-Based
Translation

Table 1 also presents results of a comparison be-
tween our proposed BWE translation method and
the “cheap translation” baseline of (Mayhew et al.,
2017). The size of the dictionaries used by both
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Model Spanish Dutch German Extra Resources
⇤ Täckström et al. (2012) 59.30 58.40 40.40 parallel corpus
⇤ Nothman et al. (2013) 61.0 64.00 55.80 Wikipedia
⇤ Tsai et al. (2016) 60.55 61.60 48.10 Wikipedia
⇤ Ni et al. (2017) 65.10 65.40 58.50 Wikipedia, parallel corpus, 5K dict.

⇤† Mayhew et al. (2017) 65.95 66.50 59.11 Wikipedia, 1M dict.
⇤ Mayhew et al. (2017) (only Eng. data) 51.82 53.94 50.96 1M dict.

Our methods:
BWET (id.c.) 71.14 ± 0.60 70.24 ± 1.18 57.03 ± 0.25 –
BWET (id.c.) + self-att. 72.37 ± 0.65 70.40 ± 1.16 57.76 ± 0.12 –
BWET (adv.) 70.54 ± 0.85 70.13 ± 1.04 55.71 ± 0.47 –
BWET (adv.) + self-att. 71.03 ± 0.44 71.25 ± 0.79 56.90 ± 0.76 –
BWET 71.33 ± 1.26 69.39 ± 0.53 56.95 ± 1.20 10K dict.
BWET + self-att. 71.67 ± 0.86 70.90 ± 1.09 57.43 ± 0.95 10K dict.

⇤ BWET on data from Mayhew et al. (2017) 66.53 ± 1.12 69.24 ± 0.66 55.39 ± 0.98 1M dict.
⇤ BWET + self-att. on data from Mayhew et al. (2017) 66.90 ± 0.65 69.31 ± 0.49 55.98 ± 0.65 1M dict.
⇤ Our supervised results 86.26 ± 0.40 86.40 ± 0.17 78.16 ± 0.45 annotated corpus

Table 1: NER F1 scores. ⇤Approaches that use more resources than ours (“Wikipedia” means Wikipedia is used
not as a monolingual corpus, but to provide external knowledge). †Approaches that use multiple languages for
transfer. “Only Eng. data” is the model used in Mayhew et al. (2017) trained on their data translated from English
without using Wikipedia and other languages. The “data from Mayhew et al. (2017)” is the same data translated
from only English they used. “Id.c.” indicates using identical character strings between the two languages as
the seed dictionary. “Adv.” indicates using adversarial training and mutual nearest neighbors to induce a seed
dictionary. Our supervised results are obtained using models trained on annotated corpus from CoNLL.

approaches are given in the right-most column.
Using our model on their translated data from En-
glish outperforms the baseline scores produced by
their models over all languages, a testament to the
strength of our neural CRF baseline. The results
produced by our model on their data indicate that
our approach is effective, as we manage to outper-
form their approaches on all three languages using
much smaller dictionaries and even without dictio-
naries. Also, we see that self-attention is effective
when applied on their data, which also does not
carry the correct word order.

4.2.2 Why Does Translation Work Better?
In this section, we study the effects of differ-
ent ways of using bilingual word embeddings and
the resulting induced translations. As we pointed
out previously, finding translations has two advan-
tages: (1) the model can be trained on the exact
points from the target embedding space, and (2)
the model has access to the target language’s orig-
inal character sequences. Here, we conduct abla-
tion studies over these two variables. Specifically,
we consider the following three variants.5

• Common space This is the most common set-
ting for using bilingual word embeddings, and
has recently been applied in NER (Ni et al.,
2017). In short, the source and target word em-
beddings are cast into a common space, namely

5In this study, we use GloVe for learning bilingual embed-
dings and word translations instead of fastText.

X 0 = XV and Y 0 = Y U , and the model is
trained with the source side embedding and the
source character sequence, and directly applied
on the target side.

• Replace In this setting, we replace each original
word embedding xi with its nearest neighbor yi

in the common space but do not perform trans-
lation. This way, the model will be trained with
target word embeddings and source-side char-
acter sequences.

• Translation This is our proposed approach,
where the model is trained on both exact points
in the target space and target language character
sequences.

The three variants are compared in Table 2.
The “common space” variant performs the worst
by a large margin, confirming our hypothesis that
discrepancy between the two embedding spaces
harms the model’s ability to generalize. From the
comparison between the “replace” and “transla-
tion,” we observe that having access to the target
language’s character sequence helps performance,
especially for German, perhaps due in part to its
capitalization patterns, which differ from English.
In this case, we have to lower-case all the words
for character inputs in order to prevent the model
from overfitting the English capitalization pattern.
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Model Spanish Dutch German
Common space 65.40 ± 1.22 66.15 ± 1.62 43.73 ± 0.94
Replace 68.21 ± 1.22 69.37 ± 1.33 48.59 ± 1.21
Translation 69.21 ± 0.95 69.39 ± 1.21 53.94 ± 0.66

Table 2: Comparison of different ways of using bilingual word embeddings, within our method (NER F1).

Model Uyghur Unsequestered Set Extra Resources
⇤† Mayhew et al. (2017) 51.32 Wikipedia, 100K dict.
⇤ Mayhew et al. (2017) (only Eng. data) 27.20 Wikipedia, 100K dict.

BWET 25.73 ± 0.89 5K dict.
BWET + self-att. 26.38 ± 0.34 5K dict.

⇤ BWET on data from Mayhew et al. (2017) 30.20 ± 0.98 Wikipedia, 100K dict.
⇤ BWET + self-att. on data from Mayhew et al. (2017) 30.68 ± 0.45 Wikipedia, 100K dict.
⇤ Combined (see text) 31.61 ± 0.46 Wikipedia, 100K dict., 5K dict.
⇤ Combined + self-att. 32.09 ± 0.61 Wikipedia, 100K dict., 5K dict.

Table 3: NER F1 scores on Uyghur. ⇤Approaches using language-specific features and resources (“Wikipedia”
means Wikipedia is used not as a monolingual corpus, but to provide external knowledge). †Approaches that
transfer from multiple languages and use language-specific techniques.

4.3 Case Study: Uyghur

In this section, we directly apply our approach
to Uyghur, a truly low-resource language with
very limited monolingual and parallel resources.
We test our model on 199 annotated evaluation
documents from the DARPA LORELEI program
(the “unsequestered set”) and compare with previ-
ously reported results in the cross-lingual setting
by Mayhew et al. (2017). Similar to our previous
experiments, we transfer from English, use fast-
Text embeddings trained on Common Crawl and
Wikipedia6 and a provided dictionary to perform
translation, and use GloVe trained on a monolin-
gual corpus that has 30 million tokens to perform
NER. Results are presented in Table 3.

Our method performs competitively, consid-
ering that we use a much smaller dictionary
than Mayhew et al. (2017) and no knowledge from
Wikipedia in Uyghur. Our best results come from
a combined approach: using word embeddings to
translate words that are not covered by Mayhew
et al. (2017)’s dictionary (last line of Table 3).
Note that for the CoNLL languages, Mayhew
et al. (2017) used Wikipedia for the Wikifier fea-
tures (Tsai et al., 2016), while for Uyghur they
used it for translating named entities, which is cru-
cial for low-resource languages when some named
entities are not covered by the dictionary or the
translation is not reliable. We suspect that the un-
reliable translation of named entities is the ma-

6https://github.com/facebookresearch/
fastText/blob/master/docs/crawl-vectors.
md

jor reason why our method alone performs worse
but performs better when combined with their data
that has access to higher quality translations of
named entities.

The table omits results using adversarial learn-
ing and identical character strings, as both failed
(F1 scores around 10). We attribute these failures
to the low quality of Uyghur word embeddings and
the fact that the two languages are distant. Also,
Uyghur is mainly written in Arabic script, mak-
ing the identical character method inappropriate.
Overall, this reveals a practical challenge for mul-
tilingual embedding methods, where the underly-
ing distributions of the text in the two languages
are divergent.

5 Related Work

Cross-Lingual Learning Cross-lingual learning
approaches can be loosely classified into two
categories: annotation projection and language-
independent transfer.

Annotation projection methods create training
data by using parallel corpora to project annota-
tions from the source to the target language. Such
approaches have been applied to many tasks un-
der the cross-lingual setting, such as POS tag-
ging (Yarowsky et al., 2001; Das and Petrov, 2011;
Täckström et al., 2013; Fang and Cohn, 2016),
mention detection (Zitouni and Florian, 2008) and
parsing (Hwa et al., 2005; McDonald et al., 2011).

Language independent transfer-based ap-
proaches build models using language indepen-
dent and delexicalized features. For instance,

376



Zirikly and Hagiwara (2015) transfers word
cluster and gazetteer features through the use of
comparable copora. Tsai et al. (2016) links words
to Wikipedia entries and uses the entry category
as features to train language independent NER
models. Recently, Ni et al. (2017) propose to
project word embeddings into a common space as
language independent features. These approaches
utilize such features by training a model on the
source language and directly applying it to the
target language.

Another way of performing language indepen-
dent transfer resorts to multi-task learning, where
a model is trained jointly across different lan-
guages by sharing parameters to allow for knowl-
edge transfer (Ammar et al., 2016a; Yang et al.,
2017; Cotterell and Duh, 2017; Lin et al., 2018).
However, such approaches usually require some
amounts of training data in the target language
for bootstrapping, which is different from our un-
supervised approach that requires no labeled re-
sources in the target language.

Bilingual Word Embeddings There have been
two general paradigms in obtaining bilingual word
vectors besides using dictionaries: through paral-
lel corpora and through joint training. Approaches
based on parallel corpora usually learn bilingual
word embeddings that can produce similar repre-
sentations for aligned sentences (Hermann and
Blunsom, 2014; Chandar et al., 2014). Jointly-
trained models combine the common monolin-
gual training objective with a cross-lingual train-
ing objective that often comes from parallel corpus
(Zou et al., 2013; Gouws et al., 2015). Recently,
unsupervised approaches also have been used to
align two sets of word embeddings by learning
a mapping through adversarial learning or self-
learning (Zhang et al., 2017; Artetxe et al., 2017;
Lample et al., 2018).

6 Conclusion

In this paper, we propose two methods to tackle
the cross-lingual NER problem under the unsuper-
vised transfer setting. To address the challenge of
lexical mapping, we find translations of words in
a shared embedding space built from a seed lex-
icon. To alleviate word order divergence across
languages, we add a self-attention mechanism to
our neural architecture. With these methods com-
bined, we are able to achieve state-of-the-art or
competitive results on commonly tested languages

under a cross-lingual setting, with lower resource
requirements than past approaches. We also eval-
uate the challenges of applying these methods to
an extremely low-resource language, Uyghur.
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Abstract

Beam search is a widely used approximate
search strategy for neural network decoders,
and it generally outperforms simple greedy
decoding on tasks like machine translation.
However, this improvement comes at substan-
tial computational cost. In this paper, we pro-
pose a flexible new method that allows us to
reap nearly the full benefits of beam search
with nearly no additional computational cost.
The method revolves around a small neural
network actor that is trained to observe and
manipulate the hidden state of a previously-
trained decoder. To train this actor network,
we introduce the use of a pseudo-parallel cor-
pus built using the output of beam search on
a base model, ranked by a target quality met-
ric like BLEU. Our method is inspired by ear-
lier work on this problem, but requires no re-
inforcement learning, and can be trained reli-
ably on a range of models. Experiments on
three parallel corpora and three architectures
show that the method yields substantial im-
provements in translation quality and speed
over each base system.

1 Introduction

Neural network sequence decoders yield state-
of-the-art results for many text generation tasks,
including machine translation (Bahdanau et al.,
2015; Luong et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017; Dehghani et al., 2018), text
summarization (Rush et al., 2015; Ranzato et al.,
2015; See et al., 2017; Paulus et al., 2017) and
image captioning (Vinyals et al., 2015; Xu et al.,
2015). These decoders generate tokens from left to
right, at each step giving a distribution over possi-
ble next tokens, conditioned on both the input and
all the tokens generated so far. However, since the
space of all possible output sequences is infinite
and grows exponentially with sequence length,
heuristic search methods such as greedy decod-

ing or beam search (Graves, 2012; Boulanger-
Lewandowski et al., 2013) must be used at de-
coding time to select high-probability output se-
quences. Unlike greedy decoding, which selects
the token of the highest probability at each step,
beam search expands all possible next tokens at
each step, and maintains the k most likely pre-
fixes, where k is the beam size. Greedy decoding
is very fast—requiring only a single run of the un-
derlying decoder—while beam search requires an
equivalent of k such runs, as well as substantial
additional overhead for data management. How-
ever, beam search often leads to substantial im-
provement over greedy decoding. For example,
Ranzato et al. (2015) report that beam search (with
k = 10) gives a 2.2 BLEU improvement in trans-
lation and a 3.5 ROUGE-2 improvement in sum-
marization over greedy decoding.

Various approaches have been explored recently
to improve beam search by improving the method
by which candidate sequences are scored (Li et al.,
2016; Shu and Nakayama, 2017), the termination
criterion (Huang et al., 2017), or the search func-
tion itself (Li et al., 2017). In contrast, Gu et al.
(2017) have tried to directly improve greedy de-
coding to decode for an arbitrary decoding objec-
tive. They add a small actor network to the de-
coder and train it with a version of policy gradient
to optimize sequence objectives like BLEU. How-
ever, they report that they are seriously limited by
the instability of this approach to training.

In this paper, we propose a procedure to mod-
ify a trained decoder to allow it to generate text
greedily with the level of quality (according to
metrics like BLEU) that would otherwise require
the relatively expensive use of beam search. To
do so, we follow Cho (2016) and Gu et al. (2017)
in our use of an actor network which manipulates
the decoder’s hidden state, but introduce a stable
and effective procedure to train this actor. In our
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training procedure, the actor is trained with ordi-
nary backpropagation on a model-specific artifi-
cial parallel corpus. This corpus is generated by
running the un-augmented model on the training
set with large-beam beam search, and selecting
outputs from the resulting k-best list which score
highly on our target metric.

Our method can be trained quickly and reli-
ably, is effective, and can be straightforwardly em-
ployed with a variety of decoders. We demon-
strate this for neural machine translation on three
state-of-the-art architectures: RNN-based (Luong
et al., 2015), ConvS2S (Gehring et al., 2017)
and Transformer (Vaswani et al., 2017), and three
corpora: IWSLT16 German-English,1 WMT15
Finnish-English2 and WMT14 German-English.3

2 Background

2.1 Neural Machine Translation
In sequence-to-sequence learning, we are given a
set of source–target sentence pairs and tasked with
learning to generate each target sentence (as a se-
quence of words or word-parts) from its source
sentence. We first use an encoding model such as a
recurrent neural network to transform a source se-
quence into an encoded representation, then gen-
erates the target sequence using a neural decoder.

Given a source sentence x = {x1, ..., xTs},
a neural machine translation system models the
distribution over possible output sentences y =
{y1, ..., yT } as:

P (y|x; ✓) =
TY

t=1

P (yt|y<t,x; ✓), (1)

where ✓ is the set of model parameters.
Given a parallel corpus Dx,y of source–target

sentence pairs, the neural machine translation
model can be trained by maximizing the log-
likelihood:

✓̂ = argmax
✓

(
X

hx,yi2Dx,y

log P (y|x; ✓)

)
. (2)

2.2 Decoding
Given estimated model parameters ✓̂, the decision
rule for finding the translation with the highest

1https://wit3.fbk.eu/
2http://www.statmt.org/wmt15/translation-task.html
3 http://www.statmt.org/wmt14/translation-task

probability for a source sentence x is given by

ŷ = argmax
y

n
P (y|x; ✓̂)

o
. (3)

However, since such exact inference requires the
intractable enumeration of large and potentially
infinite set of candidate sequences, we resort to
approximate decoding algorithms such as greedy
decoding, beam search, noisy parallel decoding
(NPAD; Cho, 2016), or trainable greedy decoding
(Gu et al., 2017).

Greedy Decoding In this algorithm, we gener-
ate a single sequence from left to right, by choos-
ing the token that is most likely at each step. The
output ŷ = {ŷ1, ..., ŷT } can be represented as

ŷt = argmax
y

n
P (y|ŷ<t,x; ✓̂)

o
. (4)

Despite its low computational complexity of
O(|V | ⇥ T ), the translations selected by this
method may be far from optimal under the over-
all distribution given by the model.

Beam Search Beam search decodes from left to
right, and maintains k > 1 hypotheses at each
step. At each step t, beam search considers all pos-
sible next tokens conditioned on the current hy-
potheses, and picks the k with the overall highest
scores

Qt
t0=1 P (yt0 |y<t0 ,x; ✓̂). When all the hy-

potheses are complete (they end in an end-of-the-
sentence symbol or reach a predetermined length
limit), it returns the hypothesis with the highest
likelihood. Tuning to find a roughly optimal beam
size k can yield improvements in performance
with sizes as high as 30 (Koehn and Knowles,
2017; Britz et al., 2017). However, the complexity
of beam search grows linearly in beam size, with
high constant terms, making it undesirable in some
applications where latency is important, such as in
on-device real-time translation.

NPAD Noisy parallel approximate decoding
(NPAD; Cho, 2016) is a parallel decoding algo-
rithm that can be used to improve greedy decod-
ing or beam search. The main idea is that a better
translation with a higher probability may be found
by injecting unstructured random noise into the
hidden state of the decoder network. Positive re-
sults with NPAD suggest that small manipulations
to the decoder hidden state can correspond to sub-
stantial but still reasonable changes to the output
sequence.
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Figure 1: A single step of a generic actor interacting with a decoder of each of three types. The dashed arrows
denote an optional recurrent connection in the actor network.

Trainable Greedy Decoding Approximate de-
coding algorithms generally approximate the
maximum-a-posteriori inference described in
Equation 3. This is not necessarily the optimal ba-
sis on which to generate text, since (i) the condi-
tional log-probability assigned by a trained NMT
model does not necessarily correspond well to
translation quality (Tu et al., 2017), and (ii) dif-
ferent application scenarios may demand differ-
ent decoding objectives (Gu et al., 2017). To
solve this, Gu et al. (2017) extend NPAD by re-
placing the unstructured noise with a small feed-
forward actor neural network. This network is
trained using a variant of policy gradient rein-
forcement learning to optimize for a target qual-
ity metric like BLEU under greedy decoding, and
is then used to guide greedy decoding at test time
by modifying the decoder’s hidden states. Despite
showing gains over the equivalent actorless model,
their attempt to directly optimize the quality met-
ric makes training unstable, and makes the model
nearly impossible to optimize fully. This paper of-
fers a stable and effective alternative approach to
training such an actor, and further develops the ar-
chitecture of the actor network.

3 Methods

We propose a method for training a small actor
neural network, following the trainable greedy de-
coding approach of Gu et al. (2017). This actor

takes as input the current decoder state ht, an at-
tentional context vector et for the source sentence,
and optionally the previous hidden state st�1 of
the actor, and produces a vector-valued action at

which is used to update the decoder hidden state.
The actor function can take on a variety of forms,
and we explore four: a feedforward network with
one hidden layer (ff ), feedforward network with
two hidden layers (ff2), a GRU recurrent network
(rnn; Cho et al., 2014), and gated feedforward net-
work (gate).

The feedforward ff actor function is computed
as

zt = �([ht, et]W
i + bi),

at = tanh(ztW
o + bo), (5)

the ff2 actor is computed as

z1
t = �([ht, et]W

i + bi),

z2
t = �(z1

t W
z + bz),

at = tanh(z2
t W

o + bo), (6)

the rnn actor is computed as

zt = �([ht, et]U
z + st�1W

z),

rt = �([ht, et]U
r + st�1W

r),

s̃t = tanh
�
[ht, et]U

h + (st�1 � rt)W
h
�
,

st = (1 � zt) � s̃t + zt � st�1,

at = stU, (7)

382



and the gate actor is computed as

zt = �([ht, et]U
z),

at = zt � tanh([ht, et]U). (8)

Once the action at has been computed, the hid-
den state ht is simply replaced with the updated
state h̃t:

h̃t = f(ht, et) + at. (9)

Figure 1 shows a single step of the actor inter-
acting with the underlying neural decoder of each
of the three NMT architectures we use: the RNN-
based model of Luong et al. (2015), ConvS2S
(Gehring et al., 2017), and Transformer (Vaswani
et al., 2017). We add the actor at the decoder layer
immediately after the computation of the atten-
tional context vector. For the RNN-based NMT,
we add the actor network only to the last decoder
layer, the only place attention is used. Here, it
takes as input the hidden state of the last decoder
layer hL

t and the source context vector et, and out-
puts the action at, which is added back to the at-
tention vector h̃L

t . For ConvS2S and Transformer,
we add an actor network to each decoder layer.
This actor is added to the sublayer which performs
multi-head or multi-step attention over the output
of the encoder stack. It takes as input the decoder
state hl

t and the source context vector el
t, and out-

puts an action al
t which is added back to get h̃l

t.

Training To overcome the severe instability re-
ported by Gu et al. (2017), we introduce the use of
a pseudo-parallel corpus generated from the un-
derlying NMT model (Gao and He, 2013; Auli
and Gao, 2014; Kim and Rush, 2016; Chen et al.,
2017; Freitag et al., 2017; Zhang et al., 2017) for
actor training. This corpus includes pairs that both
(i) have a high model likelihood, so that we can
coerce the model to generate them without much
additional training or many new parameters and,
(ii) represent high-quality translations, measured
according to a target metric like BLEU. We do this
by generating sentences from the original unaug-
mented model with large-beam beam search and
selecting the best sentence from the resulting k-
best list according to the decoding objective.

More specifically, let hx,yi be a sentence pair
in the training data and Z = {z1, ..., zk} be the k-
best list from beam search on the pretrained NMT
model, where k is the beam size. We define the
objective score of the translation z w.r.t. the gold-
standard translation y according to a target met-
ric such as BLEU (Papineni et al., 2002), NIST

(Doddington, 2002), negative TER (Snover et al.,
2006), or METEOR (Lavie and Denkowski, 2009)
as O(z,y). Then we choose the sentence z̃ that
has the highest score to become our new target
sentence:

z̃ = argmax
z=z1,..,zk

O(z,y). (10)

Once we obtain the pseudo-corpus Dx,z =
{hxi, z̃i}n

i=1}, we keep the underlying model
fixed and train the actor by maximizing the log-
likelihood of the actor parameters with these pairs:

✓̂a = argmax
✓a

(
X

hx,zi2Dx,z

log P (z|x; ✓̂, ✓a)

)

(11)

In this way, the actor network is trained to manip-
ulate the neural decoder’s hidden state at decoding
time to induce it to produce better-scoring outputs
under greedy or small-beam decoding.

4 Experiments

4.1 Setting

We evaluate our approach on IWSLT16 German-
English, WMT15 Finnish-English, and WMT14
De-En translation in both directions with three
strong translation model architectures.

For IWSLT16, we use tst2013 and tst2014 for
validation and testing, respectively. For WMT15,
we use newstest2013 and newstest2015 for vali-
dation and testing, respectively. For WMT14, we
use newstest2013 and newstest2014 for validation
and testing, respectively. All the data are tok-
enized and segmented into subword symbols using
byte-pair encoding (BPE; Sennrich et al., 2016)
to restrict the size of the vocabulary. Our pri-
mary evaluations use tokenized and cased BLEU.
For METEOR and TER evaluations, we use mul-
teval4 with tokenized and case-insensitive scor-
ing. All the underlying models are trained from
scratch, except for ConvS2S WMT14 English-
German translation, for which we use the trained
model (as well as training data) provided by
Gehring et al. (2017).5

4https://github.com/jhclark/multeval
5https://s3.amazonaws.com/fairseq-

py/models/wmt14.v2.en-de.fconv-py.tar.bz2
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BLEU" tok/s" BLEU" tok/s"
greedy beam4 tg greedy beam4 tg greedy beam4 tg greedy beam4 tg

IWSLT16 De ! En En ! De

RNN 23.57 24.90 23.59 62.8 45.0 60.4 20.05 21.11 19.88 48.1 32.5 45.7
ConvS2S 27.44 28.80 28.74 191.1 87.2 167.5 22.88 24.02 24.42 136.5 64.0 124.0
Transformer 27.15 28.74 28.36 63.9 31.0 59.8 23.87 25.03 25.46 57.9 26.5 51.2
WMT15 Fi ! En En ! Fi

RNN 12.45 13.22 13.02 51.5 33.1 43.4 9.77 10.81 10.57 44.0 31.2 43.8
ConvS2S 15.43 16.86 17.17 24.8 11.4 16.2 12.65 13.97 14.33 25.0 11.7 16.9
Transformer 13.76 14.61 14.49 31.4 13.4 29.8 12.38 13.55 12.95 29.8 12.8 27.9
WMT14 De ! En En ! De

RNN 23.08 24.62 24.54 38.4 26.6 36.4 18.87 20.59 19.89 33.2 22.4 32.5
ConvS2S 27.52 28.79 28.56 22.5 9.9 14.6 24.86 25.71 26.04 19.9 9.1 13.6
Transformer 26.44 27.31 26.96 32.9 14.3 30.9 22.01 22.74 22.31 28.5 12.2 26.1

Table 1: Generation quality (BLEU) and speed (tokens/sec). Speed is measured for sentence-by-sentence gen-
eration without mini-batching on the test set on CPU. We show the result by the underlying model with greedy
decoding (greedy), beam search with k = 4 (beam4) and our trainable greedy decoder (tg).

BLEU"

tg tg+beam4 tg tg+beam4
IWSLT16 De ! En En ! De

RNN 23.59 25.03 19.88 20.72
ConvS2S 28.74 29.50 24.42 24.74
Transformer 28.36 28.95 25.46 25.89
WMT15 Fi ! En En ! Fi

RNN 13.02 13.49 10.57 11.04
ConvS2S 17.17 17.51 14.33 14.87
Transformer 14.49 14.79 12.95 13.45
WMT14 De ! En En ! De

RNN 24.54 24.86 19.89 20.56
ConvS2S 28.56 28.46 26.04 26.08
Transformer 26.96 27.21 22.31 21.92

Table 2: Generation quality (BLEU") using the pro-
posed trainable greedy decoder without and with beam
search (k = 4). Results without beam search (tg) are
also appeared in Table 1.

RNN We use OpenNMT-py (Klein et al.,
2017)6 to implement our model. It is com-
posed of an encoder with two-layer bidirec-
tional RNN, and a decoder with another two-
layer RNN. We refer to OpenNMT’s default
setting (rnn size = 500, word vec size =
500) and the setting in Artetxe et al. (2018)
(rnn size = 600, word vec size = 300), and
choose similar hyper-parameters: rnn size =
500, word vec size = 300 for IWSLT16 and
rnn size = 600, word vec size = 500 for WMT.
We use the input-feeding decoder and global atten-
tion with the general alignment function (Luong
et al., 2015).

6https://github.com/OpenNMT/OpenNMT-py

ConvS2S We implement our model based
on fairseq-py.7 We follow the settings in
fconv iwslt de en and fconv wmt en de for
IWSLT16 and WMT, respectively.

Transformer We implement our model based
on the code from Gu et al. (2018).8 We follow
their hyperparameter settings for all experiments.

In the results below, we focus on the gate ac-
tor and pseudo-parallel corpora constructed by
choosing the sentence with the best BLEU score
from the k-best list produced by beam search with
k = 35. Experiments motivating these choices are
shown later in this section.

4.2 Results and Analysis

The results (Table 1) show that the use of the ac-
tor makes it practical to replace beam search with
greedy decoding in most cases: We lose little or
no performance, and doing so yields an increase in
decoding efficiency, even accounting for the small
overhead added by the actor. Among the three ar-
chitectures, ConvS2S—the one with the most and
largest layers—performs best. We conjecture that
this gives the decoder more flexibility with which
to guide decoding. In cases where model through-
put is less important, our method can also be com-
bined with beam search at test time to yield re-
sults somewhat better than either could achieve
alone. Table 2 shows the result when combining
our method with beam search.

7https://github.com/facebookresearch/fairseq-py
8https://github.com/salesforce/nonauto-nmt
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src Am Vormittag wollte auch die Arbeitsgruppe Migration und Integration ihre Beratungen fortsetzen .
ref During the morning , the Migration and Integration working group also sought to continue its discussions .

greedy The morning also wanted to continue its discussions on migration and integration .
beam4 In the morning , the working group on migration and integration also wanted to continue its discussions .
beam35? In the morning , the migration and integration working group also wanted to continue its discussions .

tg The morning , the Migration and Integration Working Group wanted to continue its discussions .
tg+beam4 In the morning , the Migration and Integration Working Group wanted to continue its discussions .

src Die meisten Mails werden unterwegs mehrfach von Software-Robotern gelesen .
ref The majority of e-mails are read several times by software robots en route to the recipient .

greedy Most mails are read by software robots on the go .
beam4 Most mails are read by software robots on the go .
beam35? Most e-mails are read several times by software robots on the road .

tg Most mails are read several times by software robots on the road .
tg+beam4 Most mails are read several times by software robots on the road .

src Ich suche schon seit einiger Zeit eine neue Wohnung fr meinen Mann und mich .
ref I have been looking for a new home for my husband and myself for some time now .

greedy I have been looking for a new apartment for some time for my husband and myself .
beam4 I have been looking for a new apartment for some time for my husband and myself .
beam35? I have been looking for a new apartment for my husband and myself for some time now .

tg I have been looking for a new apartment for my husband and myself for some time now .
tg+beam4 I have been looking for a new apartment for my husband and myself for some time now .

Table 3: Translation examples from the WMT14 De-En test set with Transformer. We show translations generated
by the underlying transformer using greedy decoding, beam search with k = 4, and beam search with k = 35 and
the oracle BLEU scorer (?). We also show the translations using our trainable greedy decoder both without and
with beam search. Phrases of interest are underlined.

IWSLT16 De-En WMT14 De-En
ref greedy k35? tg ref greedy k35? tg

Base Model 20.4 65.3 61.5 64.2 23.5 65.2 63.8 65.1
+Trainable Greedy Decoder 19.1 70.4 65.3 75.1 18.9 76.0 72.6 82.8

Table 4: Word-level likelihood (%) averaged by sentence for the IWSLT16 and WMT14 De-En test sets with
Transformer. Each row represents the model used to evaluate word-level likelihood, and each column represents a
different source of translations, including the reference (ref), greedy decoding on the base model (greedy), beam
search with k = 35 on the base model and the BLEU scorer (k35?), and trainable greedy decoder (tg).

Examples Table 3 shows a few selected transla-
tions from the WMT14 German-English test set.
In manual inspection of these examples and oth-
ers, we find that the actor encourages models to
recover missing tokens, optimize word order, and
correct prepositions.

Likelihood We also compare word-level likeli-
hood for different decoding results assigned by the
base model and the actor-augmented model. For a
sentence pair hx,yi, word-level likelihood is de-
fined as

Pw =
1

T

TX

t=1

P (yt|y<t,x; ✓). (12)

Table 4 shows the word-level likelihood aver-
aged over the test set for IWSLT16 and WMT14
German to English translation with Transformer.

Our trainable greedy decoder learns a much more
peaked distribution and assigns a much higher
probability mass to its greedy decoding result than
the base model. When evaluated under the base
model, the translations from trainable greedy de-
coding have smaller likelihood than the transla-
tions from greedy decoding using the base model
for both datasets. This indicates that the trainable
greedy decoder is able to find a sequence that is not
highly scored by the underlying model, but that
corresponds to a high value of the target metric.

Magnitude of Action Vector We also record the
L2 norm of the action, decoder hidden state, and
attentional source context vectors on the validation
set. Figure 2 shows these values over the course
of training on the IWSLT16 De-En validation set
with Transformer. The norm of the action starts
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Figure 2: The norms of the three activation vectors on
the IWSLT16 De-En validation set with Transformer.
Action, Context and State represent the norm of the ac-
tion, attentional source context vector and decoder hid-
den state, respectively.

small, increases rapidly early in training, and con-
verges to a value well below that of the decoder
hidden state. This suggests that the action adjusts
the decoders hidden state only slightly, rather than
overwriting it.

4.3 Effects of Model Settings

Actor Architecture Figure 3 shows the train-
able greedy decoding result on IWSLT16 De-En
validation set with different actor architectures.
We observe that our approach is stable across dif-
ferent actor architectures and is relatively insen-
sitive to the hyperparameters of the actor. For
the same type of actor, the performance increases
gradually with the hidden layer size. The use
of a recurrent connection within the actor does
not meaningfully improve performance, possibly
since all actors can use the recurrent connections
of the underlying decoder. Since the gate actor
contains no additional hyperparameters and was
observed to learn quickly and reliably, we use it
in all other experiments.

Here, we also explore a simple alternative to
the use of the actor: creating a pseudo-parallel
corpus with each model, and then training each
model, unmodified and entirety, directly on this
new corpus. This experiment (cont. in Figure 3)
yields results that are comparable to, but not bet-
ter than, the results seen with the actors. How-
ever, this comes with substantially greater com-
putational complexity at training time, and, if the
same trained model is to be optimized for multiple
target metrics, greater storage costs as well.

Figure 3: The effect of the actor architecture and hid-
den state size on trainable greedy decoding results over
the IWSLT16 De-En validation set with Transformer
(BLEU"), shown with a baseline (cont.) in which the
underlying model, rather than the actor, is trained on
the pseudo-parallel corpus. The Y-axis starts from 1.0.
w.o. indicates an actor with no hidden layer. 0.0 corre-
sponds to 33.04 BLEU.

Beam Size Figure 4a shows the effect of the
beam size used to generate the pseudo-parallel
corpus on the IWSLT16 De-En validation set with
Transformer. Trainable greedy decoding improves
over greedy decoding even when we set k = 1,
namely, running greedy decoding on the unaug-
mented model to construct the new training cor-
pus. With increased beam size k, the BLEU score
consistently increases, but we observe diminish-
ing returns beyond roughly k = 35, and we use
that value elsewhere.

Training Corpus Construction There are a va-
riety of ways one might use the output of beam
search to construct a pseudo-parallel corpus: We
could use the single highest-scoring output (by
BLEU, or our target metric) for each input (top1),
use all 35 beam search outputs (full), use all
those outputs that score higher than the threshold,
namely the base model’s greedy decoding output
(thd), or combine the top1 results with the gold-
standard translations (comb.). We show the effect
of training corpus construction in Figure 4b. para
denotes the baseline approach of training the actor
with the original parallel corpus used to train the
underlying NMT model. Among the four novel
approaches, full obtains the worst performance,
since the beam search outputs contain translations
that are far from the gold-standard translation. We
choose the best performing top1 strategy.
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Obj. BLEU" MTR" TER#

Greedy - 27.15 29.0 54.4
Beam4 - 28.74 29.9 51.9

sBLEU 28.36 29.7 52.0
sMTR 28.36 29.6 51.8
-sTER 28.05 29.6 51.4

Table 5: Results when trained with different decoding
objectives on IWSLT16 De-En translation using Trans-
former. MTR denotes METEOR. We report greedy de-
coding and beam search (k = 4) results using the orig-
inal model, and results with trainable greedy decoding
(lower half).

Decoding Objectives As our approach is capa-
ble of using an arbitrary decoding objective, we
investigate the effect of different objectives on
BLEU, METEOR (MTR) and TER scores with
Transformer for IWSLT16 De-En translation. Ta-
ble 5 shows the final result on the test set. When
trained with one objective, our model yields rela-
tively good performance on that objective. For ex-
ample, negative sentence-level TER (i.e., -sTER)
leads to -3.0 TER improvement over greedy de-
coding and -0.5 TER improvement over beam
search. However, since these objectives are all
well correlated with each other, training with dif-
ferent objectives do not differ dramatically.

5 Related Work

Data Distillation Our work is directly inspired
by work on knowledge distillation, which uses a
similar pseudo-parallel corpus strategy, but aims
at training a compact model to approximate the
function learned by a larger model or an ensem-
ble of models (Hinton et al., 2015). Kim and
Rush (2016) introduce knowledge distillation in
the context of NMT, and show that a smaller stu-
dent network can be trained to achieve similar
performance to a teacher model by learning from
pseudo-corpus generated by the teacher model.
Zhang et al. (2017) propose a new strategy to
generate a pseudo-corpus, namely, fast sequence-
interpolation based on the greedy output of the
teacher model and the parallel corpus. Freitag
et al. (2017) extend knowledge distillation on an
ensemble and oracle BLEU teacher model. How-
ever, all these approaches require the expensive
procedure of retraining the full student network.

Pseudo-Parallel Corpora in Statistical MT
Pseudo-parallel corpora generated from beam
search have been previously used in statistical

Figure 4: (a) The effect of beam size on the IWSLT16
De-En validation with Transformer and (b) the effect
of the training corpus composition in the same set-
ting. para: parallel corpus; full: all 35 beam search
outputs; thd: beam search outputs that score higher
than the base model’s greedy decoding output; top1:
beam search output with the highest bleu score; comb.:
top1+para. 0.0 corresponds to 33.04 BLEU.

machine translation (SMT) (Chiang, 2012; Gao
and He, 2013; Auli and Gao, 2014; Dakwale and
Monz, 2016). Gao and He (2013) integrate a re-
current neural network language model as an ad-
ditional feature into a trained phrase-based SMT
system and train it by maximizing the expected
BLEU on k-best list from the underlying model.
Our work revisits a similar idea in the context
trainable greedy decoding for neural MT.

Decoding for Multiple Objectives Several
works have proposed to incorporate different de-
coding objectives into training. Ranzato et al.
(2015) and Bahdanau et al. (2016) use reinforce-
ment learning to achieve this goal. Shen et al.
(2016) and Norouzi et al. (2016) train the model
by defining an objective-dependent loss func-
tion. Wiseman and Rush (2016) propose a learn-
ing algorithm tailored for beam search. Unlike
these works that optimize the entire model, Li
et al. (2017) introduce an additional network that
predicts an arbitrary decoding objective given a
source sentence and a prefix of translation. This
prediction is used as an auxiliary score in beam
search. All of these methods focus primarily on
improving beam search results, rather than those
with greedy decoding.
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6 Conclusion

This paper introduces a novel method, based on
an automatically-generated pseudo-parallel cor-
pus, for training an actor-augmented decoder to
optimize for greedy decoding. Experiments on
three models and three datasets show that the train-
ing strategy makes it possible to substantially im-
prove the performance of an arbitrary neural se-
quence decoder on any reasonable translation met-
ric in either greedy or beam-search decoding, all
with only a few trained parameters and minimal
additional training time.

As our model is agnostic to both the model ar-
chitecture and the target metric, we see the explo-
ration of more diverse and ambitious model–target
metric pairs as a clear avenue for future work.
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Abstract

One of the weaknesses of Neural Ma-
chine Translation (NMT) is in handling low-
frequency and ambiguous words, which we
refer as troublesome words. To address
this problem, we propose a novel memory-
enhanced NMT method. First, we investi-
gate different strategies to define and detect
the troublesome words. Then, a contextual
memory is constructed to memorize which tar-
get words should be produced in what situ-
ations. Finally, we design a hybrid model
to dynamically access the contextual memory
so as to correctly translate the troublesome
words. The extensive experiments on Chinese-
to-English and English-to-German translation
tasks demonstrate that our method signifi-
cantly outperforms the strong baseline models
in translation quality, especially in handling
troublesome words.

1 Introduction

Neural machine translation (NMT) based on the
encoder-decoder architecture becomes the new
state-of-the-art due to distributed representation
and end-to-end learning (Cho et al., 2014; Bah-
danau et al., 2015; Junczys-Dowmunt et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017).

However, the current NMT is a global model
that maximizes the performance on the overall
data and has problems in handling low-frequency
words and ambiguous words1, we refer these
words as troublesome words and define them in
Section 3.1.

Some previous work attempt to tackle the trans-
lation problem of low-frequency words. Sennrich
et al. (2016) propose to decompose the words into
subwords which are used as translation units so

1In this work, we consider a source word is ambiguous if
it has multiple translations with high entropy of probability
distribution.

  
Source:   阿尔卡特  宣称  去年  第四  季  销售
  成长 近 百分之三十
Pinyin:   aerkate cheng  qunian  disi ji  xiaoshou 
 chengzhang jin baifenzhisanshi 
Reference: alcatel  says  sales  in fourth quarter 
 last year grew nearly 30 %
NMT:  he said  sales  grew  nearly 30 percent in 
 fourth quarter of last year
NMT+LexiconTable: alcatel said sales growth 
 nearly 30 percent in fourth quarter of last year

Figure 1: The NMT model produces a wrong transla-
tion for the low-frequency word “aerkat”. While in-
troducing an external lexicon table without contextual
information, the model incorrectly translates the am-
biguous word “chengzhang” into “growth”.

that the low-frequency words can be represented
by frequent subword sequences. Arthur et al.
(2016) and Feng et al. (2017) try to incorporate
a translation lexicon into NMT in order to obtain
the correct translation of low-frequency words.
However, the former method still faces the low-
frequency problem of subwords. And the latter
one has a drawback that they use lexicons with-
out considering specific contexts. Fig. 1 shows
an example, in which “aerkate” is an infrequent
word and the baseline NMT incorrectly translates
it into a pronoun “he”. Incorporation of bilin-
gual lexicon rectifies the mistake but wrongly con-
verts “chengzhang” into an incorrect target word
“growth” since an entry “(chengzhang, growth)”
in the bilingual lexicon is somewhat wrongly used
without taking the contexts into account. Further-
more, these two kinds of methods mainly focus
on low-frequency words that are just a part of the
troublesome words.

In this paper, we categorize the words (includ-
ing infrequent words and ambiguous words) which
are difficult to translate as troublesome words and
propose a novel memory-augmented framework to

391



address them. Our method first investigates dif-
ferent strategies to define the troublesome words.
Then, these words and their contexts in the train-
ing data are memorized with a contextual mem-
ory which is finally accessed dynamically during
decoding to solve the translation problem of the
troublesome words.

Specifically, we first decode all the source sen-
tences of the bilingual training data with baseline
NMT and define the troublesome source words
according to the distance between the predicted
words and the gold words. The troublesome words
associated with their hidden contextual represen-
tations are stored in a memory which memorizes
the correct translation and the corresponding con-
textual information. During decoding, we acti-
vate the contextual memory when we encounter
the troublesome words and employ the contextual
similarity between the test sentence and the mem-
ory to determine appropriate target words. We test
our methods on Chinese-to-English and English-
to-German translation tasks. The experimental re-
sults demonstrate that the translation performance
can be significantly improved and a large portion
of troublesome words can be correctly translated.
The contributions are listed as follows:

1) We are the first to define and handle the trou-
blesome words in neural machine translation.

2) We propose to memorize not only the bilin-
gual lexicons but also their contexts with a contex-
tual memory.

3) We design a dynamic approach to correctly
translate the troublesome words by combining the
contextual memory and the NMT model.

2 Neural Machine Translation
NMT contains an encoder and a decoder. The
encoder transforms a source sentence X =
{x1, x2, ..., xTx} into a set of context vectors C =
(hm

1 , hm
2 , ..., hm

Tx) by using m stacked Long Short
Term Memory (LSTM) layers (Hochreiter and
Schmidhuber, 1997) . hm

j is the hidden state of
the top layer in encoder. The bottom layer of en-
coder is a bi-direction LSTM layer to collect the
context from the left side and right side.

The decoder generates one target word at a time
by computing pN

i (yi|y<i, C) as follows:

pN
i (yi|y<i, C) = softmax(Wyi ezi + bs) (1)

where ezi is the attention output:

ezi = tanh(Wz[z
m
i ; ci]) (2)

ci can be calculated as follows:

ci =
TxX

j=1

aijh
m
i (3)

where ai,j is the attention weight:

ai,j =
hm

j zm
iP

j hm
j zm

i

(4)

where zm
i is the hidden state of the top layer in

decoder. More detailed introduction can be found
in (Luong et al., 2015).

Notation. In this paper, we denote the whole
source vocabulary by VS = {sm}|VS |

m=1 and target
vocabulary by VT = {tn}|VT |

n=1, where sm is the
source word and tn is the target word. We denote
a source sentence by X and a target sentence by
Y . Each source word in X is denoted by xj . Each
target word in Y is denoted by yi. Accordingly,
a target word can be denoted not only by tn, but
also by yi. This does not contradict. tn means
this target word is the nth word in vocabulary VT ,
and yi means this target word is the ith word in
sentence Y . Similarly, we denote a source word
by sm and xj .

3 Method Description

Our method contains three parts: 1) definition
and detection of the troublesome words (Section
3.1); 2) contextual memory construction (Section
3.2); and 3) hybrid approach combining contextual
memory and baseline NMT model (Section 3.3).

3.1 Troublesome Word Definition
Generally speaking, troublesome words are those
that are difficult to translate for the baseline NMT
system BNMT . Fig. 2 shows the main process to
detect the troublesome words. Given each training
sentence pair (X,Y ), BNMT decodes the source
sentence X and outputs the predicted probability
of each gold target word pN

i (yi). We call yi an ex-
ception if pN

i (yi) satisfies the predefined excep-
tion criteria introduced below. The source word
xj is an exception (a candidate troublesome word)
if (xj , yi) is an entry in the word alignment A2.
Suppose xj appears N times in the training data
and there are M exceptions among all its aligned

2The word alignments A is extracted using the fast-align
tool (Dyer et al., 2013) on the bilingual training data with
both source-to-target and target-to-source directions.
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Figure 2: The main process to detect an exception.

gold target words. Then, the exception rate r(xj)
will be M/N .

Definition: xj is a troublesome word if
r(xj) > ✏ in which ✏ is a predefined threshold.

Exception Criteria. As discussed before, we
need an exception criterion to measure whether a
gold target word is an exception or not. In this pa-
per, we investigate three exception criteria. Here,
we introduce each of them through a toy exam-
ple shown in Fig. 3, in which the source sentence
is X = {x1, x2, x3} and the gold target sentence
is Y = {y1, y2, y3}. The left shows the proba-
bility distribution of all target vocabulary pN

i (VT )
at each decoding step i, where the probability of
the gold target word is highlighted in yellow. The
right shows the word alignments between X and
Y .

1) Absolute Criterion. A gold target word yi

is an exception if its predicted probability pN
i (yi)

is lower than a predefined threshold, namely
pN

i (yi) < p0. In Fig. 3, pN
i (yi) at each decod-

ing step is respectively 0.8, 0.31 and 0.2. If we
set p0 = 0.5, pN

2 (y2) and pN
3 (y3) are lower than

threshold p0. x1 and x3 are both exceptions ac-
cording to the alignments.

2) Gap Criterion. For this criterion, we utilize
the predicted probability gap between the gold tar-
get word and the top one. Specifically, the gap can
be calculated by:

g(yi) = max(pN
i (VT ))� pN

i (yi) (5)

where max(pN
i (VT )) is the top one in the prob-

ability distribution at the ith decoding step. yi

is an exception if g(yi) > g0. In Fig. 3, the
largest predicted probabilities at each decoding
step max(pN

i (VT )) are respectively 0.8, 0.35 and
0.75. Thus, the gap is 0.0, 0.04 and 0.55. If
g0 = 0.1, x3 is an exception since g(y3) > g0

and x3 aligns to y3.
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Figure 3: A toy example to show the process: if pN
i (yi)

(left) satisfies the predefined exception criteria and xj

aligns to yi, then xj is an exception.

3) Ranking Criterion. This criterion is based
on the ranking of pN

i (yi) in pN
i (VT ) (denoted by

rank(yi)). If rank(yi) > rank0, then yi is an
exception. In Fig. 3, the ranking of each gold tar-
get word is 1, 3 and 2. If we set rank0 = 2, then
rank(y2) = 3 > rank0 and x1 is an exception
due to the alignment between x1 and y2.

Using the above exception criteria and the def-
inition of troublesome words, we can detect all
the source-side troublesome words in the bilingual
training data.

3.2 Contextual Memory Construction
For a troublesome word, we now introduce how to
build a contextual memory M to store its transla-
tion knowledge. Specifically, the contextual mem-
ory contains five elements:

�
sm, tn, c(sm, tn), pL(sm, tn), r(sm)

 
(6)

each of them is described as follows:

• sm is a troublesome source word.

• tn is a gold target word for sm.

• c(sm, tn) is the context of lexicon pair
(sm, tn). Here, we use the hidden states of
encoder hj to represent the context, since it
contains the information from left (

�!
hj) and

right (
 �
hj). Note that when we traverse the

training data and memorize the contexts of
all troublesome words, there must be many
cases in which the same pair (sm, tn) appears
in different contexts. In order to reduce the
memory size and fuse different contexts of a
same lexicon pair, we merge these memories
by averaging the contexts. Assume there are
K different contexts for (sm, tn), and they
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Figure 4: The architecture of contextual memory-
augmented NMT.

are denoted by hk(sm, tn). The average con-
text of (sm, tn) can be calculated by:

c(sm, tn) =

PK
k=1 hk(sm, tn)

K
(7)

Note that the context here is defined on the
source side.

• pL(sm, tn) is the lexicon translation proba-
bility. It is the average of source-to-target
and target-to-source probabilities calculated
through maximum likelihood estimation on
word alignments.

• r(sm) is the exception rate of sm introduced
in Section 3.1 and it can indicate the transla-
tion difficulty of a source word. We will use
r(sm) to determine the dynamic weights of
contextual memories in Section 4.

Noise Reduction. As we know, the training
data and word alignments are not perfect and may
introduce noise to the contextual memory. To re-
duce the noise, we employ two strategies.

1) To improve the quality of the alignments A,
we derive the alignment results from source-to-
target and target-to-source, respectively. We only
save the alignments which exist in both directions.

2) We eliminate the lexicon pairs whose trans-
lation probabilities are too small. For a lexicon
pair (sm, tn), if its lexicon translation probability
is smaller than 0.01, we treat this lexicon pair as a
noisy sample and eliminate it from our memory.

3.3 Integrating Contextual Memory into
NMT

In this section, we integrate the contextual mem-
ory into NMT to handle troublesome words. The

overall framework is depicted in Fig. 4 and the
integration process can be divided into four steps:

Step 1. Given a test sentence X , the first step
is to find the troublesome words in X and collect
corresponding local memories from the global
contextual memory M. For each source word xj ,
we retrieve from M if it is a troublesome word and
obtain the local memory as follows:

�
xj , tn, c(xj , tn), pL(xj , tn), r(xj)

 
(8)

Step 2. The next step is to measure the con-
textual similarity between the context in the test
sentence X and the context in M. For the trou-
blesome word xj 2 X , we still use the encoder
hidden state hj to represent the context in X . The
corresponding context in M is c(xj , tn) in Eq. (8).
Here, we use a feed-forward network to measure
this similarity3:

dj(tn) =

sigmoid(vT
d ⇤ tanh(Wh ⇤ hj + Wc ⇤ c(xj , tn)))

(9)
where vd, Wh and Wc are learnable parameters.
The sigmoid function guarantees the similarity
score is in the range (0, 1). This similarity dj(tn)
will determine whether or not to adopt the target
translation word tn in M.

Step 3. The next task is calculating the prob-
ability pM

i (tn) of tn at each decoding step i.
pM

i (tn) is the probability predicted by the contex-
tual memory M and is calculated by:

pM
i (tn) =

TxX

j

ai,j ⇤ dj(tn) ⇤ pL(xj , tn) (10)

where ai,j is the attention weight, dj(tn) is the
context similarity in Eq. (9), and pL(xj , tn) is the
lexicon translation probability.

Step 4. The final task is to combine the mem-
ory predicted probability (pM

i in Eq. (10)) and the
NMT predicted one (pN

i in Eq. (1)). Here, we
propose a dynamic strategy to balance these two
probabilities:

pF
i (tn) = �i ⇤ pM

i (tn) + (1� �i) ⇤ pN
i (tn) (11)

where pF
i (tn) is the final probability of the tar-

get word tn, �i is the dynamic weight to adjust
3In our preliminary experiment, we also try cosine dis-

tance to measure this similarity, while the performance of co-
sine distance is lower than the current feed-forward network
method.
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the contribution from the memory and NMT. Here
we explain the reason why we apply the dynamic
manner. Recall that for each source troublesome
word sm, we calculate its exception rate (similar
to error rate). If a troublesome word has a lower
exception rate, indicating that this source word is
easier to be translated for the neural model. In this
case, pN

i is more reliable. Thus we design the dy-
namic weight �i according to the exception rate
r(xj):

�i = sigmoid(�� ⇤ �i)

�i =
TxX

j

ai,j ⇤ r(xj)
(12)

where �� is a learnable parameter. From Eq. (12),
the dynamic weight �i is determined by both of the
attention weight ai,j , and the exception rate r(xj).

Training the parameters. As discussed above,
our method contains some parameters (vd, Wh,
Wc and ��) to be learned. We denote the pa-
rameters introduced by our method by ✓M and
the parameters in NMT by ✓N . To make it
efficient, given the aligned training data D =�
X(d), Y (d)

 |D|
d=1

, we keep ✓N unchanged and op-
timize ✓M by maximizing the following objective
function.

L(✓M ) =
1

|D|

|D|X

d=1

TyX

i

log pF
i (y(d)

i ; ✓M ) (13)

where pF
i can be calculated by Eq. (11).

4 Experimental Settings

We test the proposed methods on Chinese-to-
English (CH-EN) and English-to-German (EN-
DE) translation. In CH-EN translation, we use
LDC corpus which includes 2.1M sentence pairs
for training. NIST 2003 dataset is used for vali-
dation. NIST04-06 and 08 datasets are used for
testing. In EN-DE translation, we use WMT 2014
EN-DE dataset, which includes 4.5M sentence
pairs for training. 2012-2013 datasets are used for
validation and 2014 dataset is used for testing.

We use the Zoph RNN toolkit4 to implement
all described methods. In all experiments, the en-
coder and decoder include two stacked LSTM lay-
ers. The word embedding dimension and the size
of hidden layers are both set to 1,000. The mini-
batch size is set to 128. We discard the training

4https://github.com/isi-nlp/Zoph_RNN.
We extend this toolkit with global attention.

sentence pairs whose length exceeds 100. We run
a total of 20 iterations for all translation tasks. We
test all methods based on two granularities: words
and sub-words. For word granularity, we limit the
vocabulary to 30K (CH-EN) and 50K (EN-DE) for
both the source and target languages. For sub-
word granularity, we use the BPE method (Sen-
nrich et al., 2016) to merge 30K (CH-EN) and
32K (EN-DE) steps. The beam size is set to 12.
We use case-insensitive 4-gram BLEU (Papineni
et al., 2002) for translation quality evaluation.

We compare our method with other relevant
methods as follows:

1) Baseline: It is the baseline NMT system with
global attention (Luong et al., 2015; Zoph and
Knight, 2016; Jean et al., 2015).

2) Arthur: It is the state-of-the-art method
which incorporates discrete translation lexicons
into NMT (Arthur et al., 2016). We implement
Arthur et al. (2016)’s method in two different
ways. In the first way, we fix the Baseline un-
changed, and utilize Arthur et al. (2016)’s method
in the test phase. We denote this system by
Arthur(test). In second way, we allow Baseline
to be retrained by Arthur et al. (2016)’s method,
and denote the system by Arthur(train+test). We
replicate the Arthurs work using the bias method
with the hyper parameter being set to 0.001 as re-
ported in their paper.

3) X+MEM: It is our proposed memory aug-
ment method for any neural model X, in which we
define the troublesome word by using the gap cri-
terion with threshold g0 = 0.1. We set threshold
✏ = 0.05, which is fine-tuned in validation set. It
means if the exception rate of a source word ex-
ceeds 0.05, we treat this word as a troublesome
word.

5 Results on CH-EN Translation

5.1 Our methods vs. Baseline

Table 1 reports the main translation results of CH-
EN translation. We first compare Baseline+MEM
with Baseline. As shown in row 1 and row 5 in Ta-
ble 1, Baseline+MEM can improve over Baseline
on all test datasets, and the average improvement
is 1.37 BLEU points. The results show that our
method could significantly outperform the base-
line model.
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# Model 03 04 05 06 08 Avg. 4

1 Baseline 41.01 42.94 40.31 40.57 30.96 39.16 -
2 Arthur(test) 41.34 43.31 40.79 40.84 31.11 39.48 -
3 Arthur(train+test) 41.88 43.75 41.16 41.63 31.47 39.98 -
4 Baseline(sub-word) 43.93 44.74 42.46 43.01 32.53 41.33 -
5 Baseline+MEM 42.74† 43.94† 42.15† 41.94† 31.86† 40.53 +1.37
6 Arthur(train+test)+MEM 43.04† 44.65⇤ 42.19† 42.59† 32.05⇤ 40.90 +0.92
7 Baseline(sub-word)+MEM 44.98† 45.51† 43.93† 43.95† 33.33† 42.34 +1.01

Table 1: The main results of CH-EN translation. 4 shows the BLEU points improvement of system “X+MEM”
than system X. “*” indicates that system “X+MEM” is statistically significant better (p < 0.05) than system X and
“†” indicates p < 0.01.

Model #Pairs Size Time BLEU
Baseline - - 0.406 39.16
Arthur(test) 938K 58M 0.429 39.48
Tword 125K 7.4M 0.423 39.77
+Context 125K 893M 0.508 40.19
+Dynamic 125K 893M 0.511 40.53
All+Context 938K 6.4G 1.829 40.23

Table 2: The effects of lexicon pairs only contain-
ing troublesome words (Tword), context and dynamic
weights. Column #Pairs shows the number of lexicon
pairs. Column Time shows the average decoding time
(seconds) of per sentence.

5.2 Results on Sub-words

We also test the proposed method when the
translation unit is sub-word. The baseline
and our method using sub-word as translation
unit are respectively denoted by Baseline(sub-
word) and Baseline(sub-word)+MEM. The re-
sults are shown in row 4 and row 7. From the
results, Baseline(sub-word)+MEM outperforms
Baseline(sub-word) by 1.01 BLEU points, indi-
cating that adopting sub-words as translation units
still faces the problem of troublesome tokens, and
our method could alleviate this problem.

5.3 Our Method vs. Method Using
Translation Lexicon

We also compare our method with Arthur et al.
(2016)’s method which incorporates a translation
lexicon into NMT. Here, the comparison is con-
ducted in two ways based on whether the baseline
neural model is fixed or retrained.

Fixed Baseline. Comparing Arthur(test) (row
2 in Table 1) and Baseline+MEM (row 5 in Ta-
ble 1), we can see that our proposed method can
surpass Arthur(test) with 1.05 BLEU points. As
there are three differences between our methods
and Arthur(test), we take the following experi-
ments to evaluate the effect of each difference.

The first difference is that our memory only

Source:  阿尔卡特  宣称  去年  第四 季  销售 
    成长 近  百分之三十
Pinyin:   aerkate cheng qunian disi ji xiaoshou 
  chengzhang jin baifenzhisanshi 
Reference: alcatel says sales in fourth quarter 
  last year grew nearly 30 %
Baseline: he said sales grew nearly 30 percent
  in fourth quarter of last year
Arthur:     alcatel says  sales growth nearly 30 
  percent in fourth quarter of last year 
Baseline+MEM: alcatel says sales grew nearly 
  30 percent in fourth quarter of last year 

Figure 5: An example to show that considering context
could produce a better translation result. In the exam-
ple, Arthur(test) translates chengzhang into a wrong
target word growth, while Baseline+MEM could over-
come this mistake with the help of the context model-
ing.

stores the lexicon pairs for troublesome words,
while Arthur(test) utilizes all the available lexi-
con pairs. We implement another system which is
similar to Arthur(test), except that we only utilize
the troublesome lexicon pairs. We denote the sys-
tem by Tword. The results are reported in Table 2.
From the results, we can find that Tword obtains
better translation results than Arthur(test) while
using much fewer lexicon pairs (125K vs. 938K).

The second difference is that we take the con-
text into consideration. When we add the con-
text on the basis of Tword (denoted by +Con-
text), it further improves the baseline system by
1.03 BLEU points, indicating the importance of
the context. Fig.5 shows the mentioned exam-
ple in Section 1, in which Arthur(test) trans-
lates chengzhang into a wrong target word growth,
while Baseline+MEM could overcome this mis-
take with the help of the context modeling.

We also implement another system, in which we
build the contextual memory for all source words.
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Memory Size

Figure 6: The comparison of different criteria. The
gap criterion outperforms others with the increase of
the memory size.

We denote the system by All+Context and the re-
sults are reported in Table 2. As shown in Table
2, All+Context surpasses Arthur(test) with 0.75
BLEU points while at the cost of 6.4G memory
footprint and 1.829s time consuming. However,
if we only build the contextual memory for the
troublesome words, comparing to All+Context,
there is only a slighter BLEU points decline (40.19
vs. 40.23) while sharply reduces memory size to
893M and decoding time to 0.511s, showing that
our strategy of only building the contextual mem-
ory for troublesome words is effective.

The final difference is that we employ the dy-
namic strategy to balance between NMT and the
contextual memory. When we employ this dy-
namic strategy (denoted by +Dynamic), the im-
provement can further reach 1.37 BLEU points.

Retrained Baseline. In the second compari-
son, we allow the baseline model to be retrained
by Arthur’s method (Arthur(train+test)).
We then implement our method using
Arthur(train+test) as baseline (denoted by
Arthur(train+test)+MEM). Comparing the
results of these two methods in Table 1 (line 3 and
6), our method is still effective on the retrained
model. The average gains are 0.92 BLEU points.

5.4 Effects of Different Exception Criteria
In our method, we investigate three exception cri-
teria to define the troublesome words. The fol-
lowing experiment is conducted to compare their
performances. For fairness, the comparison of the
three criteria is conducted under the same num-
ber of contextual memory, which can be achieved
by adjusting the respective thresholds (p0, g0 and
rank0). The results are reported in Fig. 6, in
which the x axis represents the size of contextual
memory, the y axis denotes BLEU score, and the
numbers in the bracket from left to right are the

Type Baseline Baseline+MEM
Low+Amb 38.15 39.75
Low 38.56 40.03
Amb 39.86 40.67
Others 40.49 40.76

Table 3: The BLEU score on different kinds of sen-
tences. Low denotes low frequency words, Amb de-
notes ambiguous words. Low+Amb denotes the low
frequency and ambiguous words.

Type Tword Error Rectify Deterio
Total 374 153 70 (45.8%) 11
Low+Amb 77 30 16 (53.3%) 3
Low 144 59 30 (50.8%) 4
Amb 117 48 20 (41.7%) 4
Others 36 16 4 (25%) 0

Table 4: The manual analysis on the word level. Col-
umn Tword shows the number of troublesome words
in sentence. Column Error shows the number of er-
rors made by Baseline when translates the troublesome
words. The number (ratio) of rectification caused by
our method is reported in column Rectify. Column
Deterio shows the number of deterioration (the orig-
inal translation is correct, while our method produces
the incorrect translation) caused by our method.

respective thresholds of gap, absolute and rank-
ing. As shown in Fig. 6, all the three criteria can
improve the translation quality. When the mem-
ory size is relatively small, absolute criterion per-
forms best. With the size increases, the gap crite-
rion achieves a higher performance than others.

Note that our current criteria only consider one
single factor. The combination of different criteria
may be more beneficial, and we leave this as our
future work.

5.5 Results on Low-Frequency Words and
Ambiguous Words

We further analyze our method on specific trou-
blesome words, such as low-frequency words and
ambiguous words. Here, we use the following def-
inition in our analysis.

Low-frequency words: The words whose fre-
quency is lower than 100.

Ambiguous words: Assume a word sm con-
tains K candidate translations with a probabil-
ity pL

k . If the entropy of probability distribution
�
PK

k=1 pL
k logpL

k > E0 ( E0 = 1.5 in this paper),
we treat this word as an ambiguous word.

Therefore, the sentences containing trouble-
some words can be divided into four different
parts: 1) sentences which contain both low-
frequency and ambiguous words (Low+Amb,
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Model Rectify Deterio
Arthur(test) 51 17
Baseline+MEM 70 11

Table 5: The numbers of rectification (Rectify) and
deterioration (Deterio) caused by different models.

986 sentences), 2) sentences which contain low-
frequency words but no ambiguous words (Low,
1427 sentences). 3) sentences which contain am-
biguous words while do not contain low-frequency
words (Amb, 1301 sentences). 4) Other sentences
(Others, 832 sentences). The results are reported
in Table 3. From this table, we observe that our
proposed method improves the translation quality
on all kinds of sentences. Low+Amb performs
best (Low the second), indicating that our method
is most effective in dealing with low-frequency
words. The improvement on Amb is 0.81 BLEU
points, showing that our method can also well han-
dle the ambiguous words.

We also conduct a manual analysis to figure out
how many troublesome words could be rectified
by our method. We randomly select 200 testing
sentences, and count the following three numbers:
1) the number of troublesome words in the sen-
tence (Tword), 2) the number of mistakes pro-
duced by Baseline (Error), 3) the number (ra-
tio) of rectification using our method (Rectify). 4)
The number of deterioration caused by our method
(Deterio). The statistics are reported in Table 4.
From the results, we can get similar conclusions
that our method is most effective on low-frequency
and ambiguous words with the rectification rate
50.8% and 41.7% respectively.

We can notice that the proposed method also
produces 11 deterioration cases (Deterio) when
rectifying the troublesome words. As a compar-
ison, we also count the total rectification and dete-
rioration numbers of Arthur(test). The results are
reported in Table 5. These results show that our
method could rectify more words (51 vs. 70) with
less deterioration (17 vs. 11) than Arthur(test).

6 Results on EN-DE Translation

We also test our method on EN-DE translation and
the results are reported in Table 6. We can see that
our method is still effective on EN-DE translation.
Specifically, when the translation unit is word, the
proposed method improves the baseline by 1.13
BLEU points. The improvement is 0.76 BLEU
points when the translation unit is sub-word.

Model Unit EN-DE
dev test

Baseline word 20.28 21.04
Baseline+MEM word 21.34† 22.17†

Baseline sub-word 22.10 22.85
Baseline+MEM sub-word 23.05† 23.61⇤

Table 6: The results on EN-DE translation. “*” in-
dicates that it is statistically significantly better (p <
0.05) than system X and “†” indicates p < 0.01.

7 Related Work

The related work can be divided into three cate-
gories and we describe each of them as follows:

Neural Turing Machine for NMT. Our idea
is first inspired by the Neural Turing Machine
(NTM) (Graves et al., 2014, 2016) and mem-
ory network (Weston et al., 2014). (Wang et al.,
2017a) used special NTM memory to extend
the decoder in the attention-based NMT. In their
method, the memory is used to provide tempo-
rary information from source to assist the decod-
ing process. In contrast, our work uses memory to
store contextual knowledge in the training data.

Smaller translation granularity. Our work
is also inspired by the other studies to deal with
the low-frequency and ambiguous words (Vickrey
et al., 2005; Zhai et al., 2013; Rios et al., 2017;
Carpuat and Wu, 2007; Li et al., 2016). Among
them, the most relevant is the work that decom-
poses the low-frequency words into smaller gran-
ularities, e.g, hybrid word-character model (Lu-
ong and Manning, 2016), sub-word model (Sen-
nrich et al., 2016) or word piece model (Wu et al.,
2016). These methods mainly focus on low-
frequency words that are just a subset of the trou-
blesome words. Furthermore, our experimental re-
sults show that even using a smaller translation
unit, the NMT model still faces the problem of
troublesome tokens and our method could allevi-
ate this problem.

Combining SMT and NMT. Our ideas are also
inspired by the work which combines SMT and
NMT. Earlier studies were mostly based on the
SMT framework, and have been deeply discussed
by the review paper in Zhang and Zong (2015).
Later, the researchers transfer to NMT framework,
e.g. (Wang et al., 2017b; Zhang and Zong, 2016;
Zhou et al., 2017; Tu et al., 2016; Mi et al., 2016;
He et al., 2016; Dahlmann et al., 2017; Wang et al.,
2017c,d; Gu et al., 2018; Zhao et al., 2018). The
most relevant studies are Arthur et al. (2016) and
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Feng et al. (2017). They incorporate the lexi-
con pairs into NMT to improve the translation
quality. There are three differences between our
method and theirs. First, we only utilize the lex-
icon pairs for the troublesome words, rather than
using all lexicon pairs. Second, we take contextual
information into consideration for memory con-
struction. Third, we design a dynamic strategy to
balance the memory and NMT. The experiments
show the superiority of our proposed methods.

8 Conclusions

To address troublesome words in NMT, we have
proposed a novel memory-enhanced framework.
We first define and detect the troublesome words,
then construct a contextual memory to store the
translation knowledge and finally access the con-
textual memory dynamically to correctly trans-
late the troublesome words. The extensive ex-
periments on Chinese-to-English and English-to-
German translation tasks demonstrate that our
method significantly outperforms the strong base-
line models in translation quality, especially in
handling the troublesome words.
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Abstract
The addition of syntax-aware decoding in
Neural Machine Translation (NMT) systems
requires an effective tree-structured neural net-
work, a syntax-aware attention model and a
language generation model that is sensitive to
sentence structure. We exploit a top-down
tree-structured model called DRNN (Doubly-
Recurrent Neural Networks) first proposed by
Alvarez-Melis and Jaakola (2017) to create
an NMT model called Seq2DRNN that com-
bines a sequential encoder with tree-structured
decoding augmented with a syntax-aware at-
tention model. Unlike previous approaches
to syntax-based NMT which use dependency
parsing models our method uses constituency
parsing which we argue provides useful in-
formation for translation. In addition, we
use the syntactic structure of the sentence to
add new connections to the tree-structured
decoder neural network (Seq2DRNN+SynC).
We compare our NMT model with sequential
and state of the art syntax-based NMT models
and show that our model produces more flu-
ent translations with better reordering. Since
our model is capable of doing translation and
constituency parsing at the same time we also
compare our parsing accuracy against other
neural parsing models.

1 Introduction
Neural machine translation (NMT) models were
initially proposed as extensions of sequential neu-
ral language models (Sutskever et al., 2014; Cho
et al., 2014; Bahdanau et al., 2015) or convolu-
tions over n-grams in the decoder (Kalchbren-
ner and Blunsom, 2013). Early methods for dis-
criminative training of machine translation models
showed that the loss functions for translation were
not sensitive to the production of certain impor-
tant words such as verbs, without which the out-
put sentence might be uninterpretable by humans.
A good solution was to penalise such bad outputs

using tree structures which get very low scores
if important words like verbs are missing (Chi-
ang, 2005; Zollmann and Venugopal, 2006; Gal-
ley et al., 2006). To this end, there has been a
push to incorporate some syntax into NMT mod-
els: Sennrich and Haddow (2016) incorporate
POS tags and dependency information from the
source side of a translation pair in NMT models.
Stahlberg et al. (2016) use source language syn-
tax to guide the decoder of an NMT system to
follow hierarchical structures (Hiero) rules (Chi-
ang, 2005). Eriguchi et al. (2016) and Bastings
et al. (2017) use tree-structured encoders to exploit
source language syntax. Aharoni and Goldberg
(2017) take the approach of serialising the parse
trees to use in a sequential decoder. Eriguchi et al.
(2017) propose an NMT+RNNG model, which ex-
plores the possibilities of using dependency syntax
trees from the target language using StackLSTMs
(Dyer et al., 2015, 2016) to aid a sequential de-
coder. These approaches showed promising im-
provements in translation quality but all the mod-
els in previous work, even the model in Eriguchi
et al. (2017) which uses RNNG, are bottom-up
tree structured decoders.

In contrast, we use a top-down tree-structured
model called DRNN (Doubly-Recurrent Neural
Networks) first proposed by Alvarez-Melis and
Jaakkola (2017) to model structural syntactic in-
formation for NMT. We call our novel NMT
model Seq2DRNN, using DRNNs as a tree-
structured decoder combined with a sequential en-
coder and a novel syntax-aware attention model.

All the previous work in syntax-aware NMT
mentioned above has focused on dependency pars-
ing as the syntactic model. In contrast, we wish to
pursue phrase structure (aka constituency) based
syntax-based NMT. We provide some analysis that
shows that constituency information can help re-
cover information in NMT decoding.
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We perform extensive experiments comparing
our model against other state-of-the-art sequence
to sequence and syntax-aware NMT models and
show that our model can improve translation qual-
ity and reordering quality. The model performs
translation and constituency parsing simultane-
ously so we also compare our parsing accuracy to
other neural parsing models.

2 Model Description
In this paper, source sentence will be written
as f = x1, x2, ..., xn, target sentence as e =
y1, y2, ..., ym where yj is a word. Additionally,
pk represents a non-terminal symbol (constituent,
phrase) in the target sentence constituency tree.
[v; u] stands for concatenation of vectors v and u.
W(x) is the word embedding of word x.

The design of our NMT system follows the
encoder-decoder model (also known as a sequence
to sequence model) proposed by Cho et al. (2014)
and Sutskever et al. (2014). Our system uses
a standard bidirectional gated RNN (BiLSTM or
bidirectional Long Short-Term Memory) (Huang
et al., 2015) as the encoder and our proposed tree-
structured RNN as the decoder.

2.1 Sequence to Sequence NMT (Seq2Seq)

Neural machine translation models generally con-
sist of an encoder, a decoder and an attention
model (Luong et al., 2015; Cho et al., 2015). The
encoder is used to produce hidden representations
of the source sentence, which is fed into the de-
coder along with the attention information to pro-
duce the translation output sequence.

A common approach is to use bidirectional
LSTMs as encoder, produce forward hidden states�!h i and backward hidden states

 �h i, and the final
representation henc

i is the concatenation of both:

�!h i =
��!
RNNenc(

�!h i�1, Wx(xi)) �h i =
 ��
RNNenc(

 �h i+1, Wx(xi))

henc
i = [

�!h i;
 �h i]

(1)

The decoder takes the output of the encoder
and generates a sequence in target language. The
attention mechanism provides additional context
vectors cj which is a weighted average contribu-
tion of each hi source side encoding.

hdec
j = RNNdec(hdec

j�1, [oj�1; cj ])

oj = softmax(Uhdec
j + b)

(2)

Here, U is the readout matrix and b is the bias
vector. oj is the output word embedding.

2.2 NMT with a Tree-Structured Decoder
(Seq2DRNN)

The output translation from a translation system
should convey the same meaning as the input. This
includes the correct word choices but also the right
information structure. Sentence structure can be
viewed as starting with an action or state (de-
scribed via verbs or other predicates) and the en-
tities or propositions involved in that activity or
state (usually described via arguments to verbs).
Thus certain words in the output translation, like
verbs, are crucial to the understanding of the tar-
get language sentence but only provide marginal
value in n-gram matching evaluations like the
BLEU score. Tree representations, produced via
dependency parsing and constituency parsing, are
useful because they are sensitive to this informa-
tion structure. Our tree-structured decoder uses
a neural network to generate trees (described in
§2.2.1), which is incorporated into an NMT model
(our novel encoder-decoder model is in §2.2.2)
which translates and produces a parse tree. Our
new Syntactic Connection method (SynC) is de-
scribed in §2.2.4 which is combined with the
Seq2DRNN model (Seq2DRNN+SynC) and the
attention mechanism (§2.2.3).

2.2.1 Doubly-Recurrent Neural Network

The Doubly-Recurrent Neural Network model
(Alvarez-Melis and Jaakkola, 2017) takes a vec-
tor representation as input and generates a tree.
Alvarez-Melis and Jaakkola (2017) show that the
DRNN model can effectively reconstruct trees
but they do not use DRNNs within a full-scale
NMT system. We also use DRNNs for phrase-
structure (aka constituency) tree structures rather
than dependency trees as in previous work. DRNN
decoding proceeds top-down; the generation of
nodes at depth d depend solely on the state of
nodes at depth < d. Unlike previous work in
tree-structured decoding for NMT by Dyer et al.
(2016) and Eriguchi et al. (2017), the output sen-
tence generation is not done in sequence, where
the target word yj is generated after all y<j are
generated. DRNN first predicts the structure of
the sentence and then expands each component to
predict words. When generating yj , information
regarding the structure of words from 1 to j � 1
and j + 1 to m can be used to aid prediction of yj .

A DRNN consists of two recurrent neural net-
work units, which separately process ancestral and
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fraternal information about nodes in the tree. As-
suming a node is v, its immediate parent node is
P (v) and its closest sibling on the left side (ap-
pears in the target language sequence just before
v) is S(v). The label of node v is zv. Then the an-
cestral hidden representation ha and fraternal rep-
resentation hf of a node are calculated with Equa-
tion 3.

ha
v = RNNa

dec(ha
P (v), zP (v))

hf
v = RNNf

dec(h
f
S(v), zS(v))

(3)

ha
v and hf

v are then combined to produce the hid-
den state of node v for prediction (predictive hid-
den state hv, Equation 4), which is used to predict
the labels of node v.

hv = tanh(Uf hf
v + Uaha

v) (4)
During the label prediction, DRNN first makes

topological decisions: whether (i) the current node
is a leaf node (node with no children, ↵v); then (ii)
whether the current node has siblings on its right-
hand side (�v). Both predictions are done using
sigmoid activations:

oa
v = �(uahv)

↵v = 1 if oa
v is activated. (5)

of
v = �(uf hv)

�v = 1 if of
v is activated.

(6)

Then, label representation ov is predicted using
↵v and �v, and the predictive hidden state hv:

ov = softmax(Uohv + ↵vua + �vuf ) (7)
At inference time each node at the same depth is

expanded independently, therefore the whole pro-
cess can be parallelised. This parallelism advan-
tage is not observed in any of the sequential de-
coders that generate output sequence strictly from
left to right nor from right to left (§4 has more dis-
cussion).

2.2.2 Parsing and Translating with DRNN

A DRNN is capable of producing a tree structure
with labels given an input vector representation. If
we train the DRNN to produce parse trees from
the output of an encoder RNN, this system will
be able to translate and parse at the same time.
(Alvarez-Melis and Jaakkola, 2017) in their paper
provided a proof-of-concept NMT experiment us-
ing dependency trees. Instead of an single RNN
unit to process fraternal information they had mul-
tiple for modelling the fraternal information on
syntactic tree structure because dependency parse

h^a

S

h^f

h^a

NP

h^a

VP

Andrei h^fLikes Cheese

h^a

h^a

Figure 1: Seq2DRNN on Constituency Tree

Encoder

Ich bin Doktor

Decoder

S

NP VP

I am NP

a doctor

hiddenRep

Context

Figure 2: Seq2DRNN Encoder-Decoder

trees differentiate between left and right children.
The model itself also disregards the sequential-
ity of natural language, and lack attention mech-
anisms to make it work in exchange for a strict
top-bottom decoding procedure.

We use constituency parse trees to represent
sentences in the target language (Figure 1) be-
cause constituency or phrase-structure trees are
more amenable to top-down derivation compared
to dependency trees. It is also easier to model for
DRNN, and presumably more capable at handling
unknown words which is common in NMT sys-
tems with limited vocabulary size.

Each node on the tree represents either a termi-
nal symbol (a word) or a non-terminal symbol (a
clause or phrase type). The sub-tree dominated by
a non-terminal node is the clause or phrase identi-
fied with this non-terminal node label.

A conventional bidirectional RNN (BiLSTM)
encoder (Cho et al., 2014; Sutskever et al., 2014)
is used to produce hidden states for the decoder
(see Figure 2).

We use breadth-first search to implement the
Seq2DRNN decoder. Two queues are used here:
current queue which is the queue containing all of
the nodes on the currently being processed depth,
and next queue with nodes on the next depth (Al-
gorithm 1 has all the details).

The decoding process starts from top to bottom,
from root to its children, then to its grandchildren,
and so on until the leaf nodes which are the output
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words.
In our implementation, sentence clauses (S

nodes) are generated as the children of the root
node to generalise over sentence types and in case
there are multiple sentences in a single translation
pair.

Initially, the current queue will only have one
entry: the root node, which is initialised with the
hidden representation of the source sentence.

Each node in the current queue is expanded in
the following manner: first generate all of its sib-
lings and add them to the current queue, and if any
node happens to be non-terminal, generate its first
child and add it to the next queue. After the current
queue is empty, make next the new current queue
and start working on nodes at the next depth.

For training, we use back-propagation through
trees using the approach in Goller and Küchler
(1996). In the forward pass, the source sentence is
encoded into a hidden representation and fed into
the decoder. The decoder generates the tree, pre-
dicts the labels of every node from root to leaves.
Then in the backward pass, gradients are calcu-
lated and used to update the parameters. The loss
calculation includes losses in topological predic-
tions: oa

v and of
v (Equations 5 and 6) and label pre-

dictions: ov (Equation 7).

Loss(e) =
X

v

Losslabel(ov, ôv)+

↵
X

v

Losstopo(oa
v, ô

a
v)+

↵
X

v

Losstopo(of
v ,

ˆ
of
v )

(8)

Here ↵ is a hyper-parameter.

2.2.3 Attention Mechanism

Attention mechanisms usually work by adding an
additional context vector during label prediction.
We use a variation of an existing attention mech-
anism proposed by Luong et al. (2015). In our
attention model, we produce a context vector cv

for every node v by looking at all hidden states
produced by the encoder henc

i , then calculating the
weights and adding up the weighted hidden states.

weightv,i = Va tanh(Wahv + Uahenc
i ) 2 R (9)

cv =
nX

i=1

ˆweightv,ihenc
i (10)

After the calculation in Equation 9, the weights
are normalised with a softmax function before be-

Algorithm 1 Seq2DRNN Decoder
1: procedure DECODE(hiddenRep)
2: currentQueue Node from hiddenRep
3: nextQueue empty
4: loop:
5: if currentQueue is not empty then
6: node currentQueue.pop()
7: Generate labels of node
8: if node has siblings then
9: currentQueue sibling(node)

10: if node has children then
11: nextQueue child(node)
12: goto loop

. all nodes at current depth are generated

. move on to the next depth
13: if nextQueue is not empty then
14: currentQueue nextQueue
15: nextQueue empty
16: goto loop.

. both queues should be empty now

ing used to calculate the context vector. The atten-
tion module allows the generation of labels to pay
more attention to specific token representations of
words in the input sentence.

2.2.4 SynC: Syntactic Connections for Lan-
guage Generation (Seq2DRNN+SynC)

A conventional Seq2Seq model uses an RNN lan-
guage model (Cho et al., 2014; Sutskever et al.,
2014) conditioned on the input representation pro-
duced by the encoder to generate the output one
word at a time (Equation 11). The prediction of a
word yj is directly conditioned on previously gen-
erated words where cj is the context vector.

P(e) =
Y

j

P(yj |y<j , cj) (11)

The problem with this word-level language
model is that it treats a sentence as a plain se-
quence of symbols regardless of its syntactic con-
struction. Sentences may contain multiple subor-
dinate clauses and their boundaries are not well-
modelled by sequential language models.

We propose a new method to connect the hid-
den units in the Seq2DRNN decoder that pays at-
tention to contextual tree relationships. The pre-
diction of the representation of a word or a con-
stituent zj (if a constituent then pj , if a word then
yj) is defined as follows:

P(zj | y<j , cj) =
P(zj | y<j , yk(8k, zj 2 pk_
precedes(yk, zj)) | cj)

(12)

The generation of the representation of a
word/constituent zj , which is part of the clause
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Ancestral (Phrases that contain current)

S VP

Fraternal (Previous phrases)

NP(Hungry...)<SOS>

current 
node

Word-level

...

Figure 3: SynC example: the three types of information
explicitly modelled when generating the current node/word
likes in Andrei when starving likes cheese.

that contain it (zj 2 pk), with clauses before which
(precedes(pk, zj)), is conditioned on the follow-
ing information: i) Word-level: previously gener-
ated words y<j ; ii) Ancestral Clause: the clauses
that contain the current word pk, i.e. (8kzj 2 pk);
iii) Fraternal Clause: the clauses that precede the
current clause pk, i.e. (8k precedes(pk, zj)).

In practice, the generation of a node looks at the
following representations:

1. Word-level: an RNN unit that produces the
representation of previous words as a se-
quence y<j ;

2. Ancestral: treating the ancestors of the cur-
rent node as a sequence (from root to the im-
mediate parent), the representation of that se-
quence: pk(8k, zj 2 pk);

3. Fraternal: treating the previous siblings of
the current node as well as the previous sib-
lings of its parent node and so on as a se-
quence, the representation of that sequence:
pk(8k, precedes(pk, zj)).

SynC creates connections in the tree-structured
decoder that pays attention to the structural con-
text of generation of each terminal or non-terminal
symbol in the phrase structure tree. For example
in English, it is common for verb phrases to follow
a noun phrase. But that noun phrase could itself be
a subordinate clause with its own verb phrases. In
this case, our goal is to explicitly model the fact
that the previous phrase is a noun phrase instead
of just the entire sequence of words.

SynC can be easily incorporated in the proposed
Seq2DRNN model (Seq2DRNN+SynC). In addi-
tion to the fraternal RNN unit that focuses on pre-
ceding sibling nodes, and the ancestral DRNN unit
that focus on parent nodes, a node would also look
at its parent’s previous sibling state (the hidden

S

NP VP

Andrei when starving Likes Cheese

Figure 4: SynC in action; when generating the word likes
in Andrei when starving likes cheese, the prediction will be
made knowing that the preceding clause is a noun phrase.

vector representation of preceding clauses from
the very beginning of the sentence). When a non-
terminal symbol is expanded into a sub-tree, it’s
first child will not have a previous sibling to pro-
vide fraternal information (S(v) = Null, as in
Equ 3). In this case, SynC establishes connection
between its first child and its parent’s fraternal in-
formation provider for such fraternal RNN state
(S(v) = S(P (v))).

hf
v =

8
>><

>>:

S(v) 6= Null, RNNf
dec(h

f
S(v), zS(v))

S(v) = Null, S(v) := S(P (v)),

RNNf
dec(h

f
S(v), zS(v))

(13)
An example is shown in Figure 4. In this case,
a word-level language model will regard starving
as the previous word, which is less helpful for the
prediction of a verb phrase likes cheese.

3 Experiments
3.1 Model Training

Experiments in this paper utilise constituency
trees on the target side, these trees are obtained
by using the Stanford Lexical Parser (Klein and
Manning, 2003a) which we chose for its speed and
accuracy prior to training.

This procedure of pre-parsing data is not re-
quired at test time, our NMT system would take
a sentence as input and produces the translation in
target language along with its constituency tree as
output.

We use the German-English dataset from
IWSLT2017 1 for our experiments, and tst2010-
2015 as the test set (Table 1).

To compare with other decoders that utilise
target-side syntactic information, we also evaluate
on three more datasets from News Commentary v8
using newstest2016 as testset (Table 2).

We replace all rarely occurring words with
1The International Workshop on Spo-

ken Language Translation Evaluation 2017:
https://sites.google.com/site/iwsltevaluation2017/TED-tasks
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Train pairs 226,572
Test pairs 8,079
Unique source words 128,857
Unique target words 61,566
Average source sentence length 21
Average target sentence length 20

Table 1: IWSLT2017 Dataset information

Language pair DE-EN CS-EN RU-EN
Train pairs 166,313 134,453 131,492
Test pairs 2,999 2,999 2,998
Uniq. src lex 149,318 153,173 159,074
Uniq. tgt lex 68,415 59,909 64,220
Avg. src len 25 22 25
Avg. tgt len 25 25 26

Table 2: News Commentary v8 Dataset information

BLEU RIBES Perplx.
Seq2Seq 22.83 81.5 1.828
Seq2DRNN 23.53 80.4 1.644
Seq2DRNN+SynC 25.36 82.6 1.750

Table 3: IWSLT17 Experiment results

UNK (Unknown) tokens. Only the top 50,000
most frequent words are kept.

3.2 Modelling details

The implementation of all models in this paper
is done using DyNet (Neubig et al., 2017a) with
Autobatching (Neubig et al., 2017b). We use
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) as RNN units. Each
LSTM unit has 2 layers, with input and hidden
dimension of 256. We use a minibatches of 64
samples. We use early stopping mechanism for
all experiments and Adam optimiser (Kingma and
Ba, 2015) as trainer.

Note that this configuration is significantly
smaller in both dimension and batch size than
those presented in IWSLT2017 due to hardware
limitations. All experiments are carried out on a
single GTX 1080 Ti GPU with 11GB of VRAM.

3.3 Results

Table 3 and Table 4 has the BLEU (Papineni
et al., 2002) and RIBES (Isozaki et al., 2010)
scores. In our IWSLT2017 tests, both Seq2DRNN
and Seq2DRNN+SynC produce better results than
the Seq2Seq baseline model in terms of BLEU
scores, while Seq2DRNN+SynC also produces
better RIBES scores indicating better reordering
of phrases in the output. The Seq2DRNN+SynC
model performs better than the Seq2DRNN
model. Both Seq2Seq and Seq2DRNN+SynC are
able to produce results with lower perplexities

than the baseline Seq2Seq model on the test data.
In our News Commentary v8 tests, the same

relative performance from Seq2DRNN(SynC) can
be observed. The Seq2DRNN+SynC model is
also able to out-perform the Str2Tree model
proposed by Aharoni and Goldberg (2017) and
NMT+RNNG by Eriguchi et al. (2017) in most
cases. Note that Eriguchi et al. (2017) used de-
pendency information instead of constituency in-
formation as presented in our work and Aharoni
and Goldberg (2017)’s work.

Table 5 shows an example translation from all
of the models we use in our experiments. Seq2Seq
is able to translate with the correct vocabulary, but
the sentences are often syntactically awkward. As
the sentence length increases the syntactic fluency
of Seq2Seq gets worse. Seq2DRNN is able to
produce more syntactically fluent sentences since
each lowest sub-clause contains typically  5
words. Seq2DRNN+SynC produces the best re-
sults in this example: produces more syntactically
fluent sentences, chooses the right words in the
right place more frequently.

We also took several examples from our
IWSLT17 experiment and blank out certain nouns
by replacing them with unknown tokens (Table 6).
Note that in our training set, most sentences do
not have unknown tokens, and those that do only
have at most 1. Our assumptions of the observed
patterns in this case are: i) the proposed models
are more capable at handling unknown tokens; ii)
while Seq2DRNN is more capable at retaining the
structure of the sentence, it cannot rely on a wider
context to predict certain common phrases with
noises in the source sentence; iii) the proposed
Seq2DRNN+SynC model is more capable at han-
dling unknown words both in the sense of being
better at retaining sentence structure and handling
noisy input.

3.4 Attention Module

We visualise the attention weights of our
Seq2DRNN+SynC model. Attention §2.2.3 com-
putes a context vector for each node in the tree (a
weighted sum of the source side vector represen-
tations). For the translation pair in Figure 2, we
show the attention weight of each pair of word and
node (Equation 9) in Figure 5.

The addition of syntax nodes in the output en-
ables the attention model to be used more effec-
tively and is also valuable for visual inspection of
syntactic nodes in the output mapping to the input.
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Dataset DE-EN CS-EN RU-EN
BLEU RIBES BLEU RIBES BLEU RIBES

Seq2Seq 16.61 73.8 11.22 69.6 12.03 69.6
Str2Tree 16.13 — 11.65 — 11.94 —
NMT+RNNG 16.41 75.0 12.06 70.4 12.46 71.0
Seq2DRNN 16.90 75.1 11.84 67.3 12.04 69.7
Seq2DRNN+SynC 17.21 75.8 12.11 70.3 12.96 71.1

Table 4: News Commentary v8 Experiment results. Seq2Seq and NMT+RNNG results are taken from Eriguchi et al. (2017),
Str2Tree (string-to-linearised-tree) results (no RIBES scores) come from Aharoni and Goldberg (2017) All numbers reported
here are of non-ensemble models.

Source wir wiederholten diese übung mit denselben studenten. was glauben sie passiert nun? nun
verstanden sie den vorteil des prototyping. so wurde aus demselben, schlechten team eines
unter den besten. sie produzierten die höchste konstruktion in der geringsten zeit.

Literal we repeated this exercise with the same students. now what do you believe happened? now they
understand the value of prototyping. so the same terrible team became one of the very best. they
produced the tallest construction in the shortest time.

Gold we did the exercise again with the same students. what do you think happened then? so now
they understand the value of prototyping. so the same team went from being the very worst to
being among the very best. they produced the tallest structures in the least amount of time.

Seq2Seq we repeated this with the same students. what happened you think differently? now, you know,
the advantage of the design of the cycle. so, the same one of the team of the team among the
best. it produced songs in the slightest building.

Seq2DRNN well repeat these queries with the same students. what do you think of this? now it understood
the advantage of the interests. that’s been made of the same thing of one thing. they produced
the highest construction of the best time at the best time.

Seq2DRNN+SynC we repeated this practice with the same students. what do you think happened? now, they
understood the value of prototyping. it was being made of the same thing of one of the best
ones. they produced the highest construction in the best time.

Table 5: Translation Sample. Gold is the reference, and Literal is produced by a bilingual German-English speaker.

Figure 5: Attention Module in Seq2DRNN+SynC. “ich”
means “I”, “bin” is “am”, “doktor”’s literal translation is
“doctor”. Darker colour means higher weight (relevance
score) as calculated in Equation 9. The values of each col-
umn sum up to 1. The attention weights in this example per-
fectly align with the appropriate clauses. Additional example
is provided in the appendix.

3.5 Parsing Quality
To evaluate the parsing quality, we follow the
approach by Vinyals et al. (2015) and train a
DRNN(SynC) model to produce English to En-
glish(Tree) translation. We use the same data and
experiment settings that Vinyals et al. (2015) used:
the Wall Street Journal Penn Treebank English
corpus with golden constituency structure, 256 for
input/hidden dimension and 3 layers of RNN. We
evaluate on section 23 of the aforementioned WSJ
data using EVALB2. The results are presented in
Table 7.

Although falling short behind more specifically
2 https://nlp.cs.nyu.edu/evalb/

designed models like the RNNG by Dyer et al.
(2016), our model is able to produce better results
than the LSTM+AD model proposed by Vinyals
et al. (2015), which is more comparable to ours
since they are also using an NMT model to do con-
stituency parsing. Since our work is more focusing
on the translation aspect, optimising and designing
a dedicated parser is slightly off-topic here. Nev-
ertheless, it is worth noting that in 50.89% of the
cases, Seq2DRNN+SynC was able to produce out-
put that perfectly matches the reference. The same
number for sentences with less than 40 words is
52.16%, while the F-measure increases to 90.5.
This shows Seq2DRNN(SynC) when doing pars-
ing can produce outputs of similar quality when
handling longer sentences.

We also do evaluation on our translation results
from the IWSLT dataset. Since translation re-
sults do not come with reference parse trees, we
parse the output of our decoder using the same
parser we used in our other experiments: the Stan-
ford Parser. Constituency parsing evaluation is
done using Precision/Recall/F1-scores on the out-
put constituent spans (unlabelled) and spans and
labels (labelled). The results are presented in Ta-
ble 8 and Table 9. The parser we use gets F1 score
of 87.04 on Penn Treebank English constituency
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0 src es war zeit zum abendessen und wir hielten auss-
chau nach einem restaurant.

die gute nachricht ist , dass die person , die das
gesagt hat ann coulter war .

S2S and it was time for dinner , and we were looking
for a restaurant.

the good news is that the person who said that was
ann coulter .

S2D it was the time for dinner , and we were looking
for a restaurant.

the good news is that the person who said that was
ann coulter .

S2D+L it was time for dinner , and we were looking for a
restaurant.

the good news is that the person who said that was
ann coulter .

1 src es war zeit zum abendessen und wir hielten auss-
chau nach einem UNK.

die gute UNK ist , dass die person , die das gesagt
hat ann coulter war .

S2S and it was time for dinner , and we thought we
were looking for a window.

the good news is that the person who said that
the teacher was ann coulter .

S2D it was the time for dinner , and we were looking
for a UNK pilot.

the good motivator is that the person who said that
was ann coulter .

S2D+L it was time for dinner , and we were looking for a
UNK.

the good news is that the person who said that was
ann coulter .

2 src es war zeit zum UNK und wir hielten ausschau nach
einem UNK.

die gute UNK ist , dass die UNK , die das gesagt
hat ann coulter war .

S2S and it was time for the time time , and we thought
we looked at a window search.

the good news is that the UNK that
the UNK , which was ann coulter .

S2D it was the second time , and we would look for a
UNK pilot.

the good motivator is that the UNK group who said
that was ann coulter.

S2D+L it was a time for UNK , and we were looking for a
UNK.

the good news is that the people who said that was
ann coulter .

3 src es war UNK zum UNK und wir hielten ausschau
nach einem UNK.

die gute UNK ist , dass die UNK , die das gesagt
hat UNK war .

S2S UNK was a time time and UNK , looking for a
UNK look for a look at a war.

UNK is not a cop ’s needs to be ozzie good to good
good , which is that the UNK UNK that said that it
was said .

S2D it was time of time and guerrilla . the good motivator is that the UNK planner that said
this was a UNK video.

S2D+L it was time for the tone and night to watch the
connection .

the good news is that the people that said that was
mandated .

Table 6: Unknown noun experiment samples. Substituted and correct nouns are marked in Bold, while incorrect elements
are marked in underline. Examples shown are: no UNK; 1 UNK; 2 UNKs; 3 UNKs. When there are no unknown tokens,
all three compared models are able to produce reasonably good if not identical translations. When there is only one UNK
token, Seq2DRNN often does not use the context to predict an appropriate word or phrase. In contrast, both the Seq2Seq and
Seq2DRNN+SynC were able to correctly predict that die gute UNK ist could be translated to the good news is. When there are
2 UNK tokens in the source sentence, Seq2Seq produces more incorrect predictions, Seq2DRNN makes some mistakes, while
Seq2DRNN+SynC is able to get the most parts correct. Finally, when we replace 3 nouns, all models fail to some degree while
Seq2Seq’s output is the worst.

Model F-measure
Baseline (Vinyals et al., 2015) < 70
LSTM+AD (Vinyals et al., 2015) 88.3
Petrov (2010) 91.8
Dyer et al. (2016) 92.4
Seq2DRNN 89.4
Seq2DRNN+SynC 89.9

Table 7: Parser scores. Numbers from (Vinyals et al., 2015)
are of non-ensemble models.

Unlabelled
Prec. Rec. F1

Seq2DRNN 96.87 96.93 96.90
Seq2DRNN+SynC 96.43 95.89 96.16

Table 8: IWSLT Translation result constituency unlabelled
scores. Reference parse trees obtained using Stanford Parser.

parsing (Klein and Manning, 2003b).
The presence of SynC in the decoder influences

Labelled
Prec. Rec. F1

Seq2DRNN 91.63 91.69 91.66
Seq2DRNN+SynC 90.73 90.22 90.48

Table 9: IWSLT Translation result constituency labelled
scores. Reference parse trees obtained using Stanford Parser.

parse tree construction: the Seq2DRNN+SynC F1
score is comparable but lower than Seq2DRNN.

4 Related Work
Recent research shows that modelling syntax is
useful for various neural NLP tasks. Dyer et al.
(2015, 2016); Vinyals et al. (2015); Luong et al.
(2016) have works on language modelling and
parsing, Tai et al. (2015) on semantic analysis, and
Zhang et al. (2016) on sentence completion, etc.

Eriguchi et al. (2017) showed that NMT model
can benefit from neural syntactical parsing mod-
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els. Choe and Charniak (2016) showed that a neu-
ral parsing problem shares similarity to neural lan-
guage modelling problem, which forms a build-
ing block of an NMT system. We can then make
the assumption that structural syntactic informa-
tion utilised in neural parsing models should be
able to aid NMT, which is shown to be true here.

Zhang et al. (2016) proposed TreeLSTM which
is another structured neural decoder. TreeL-
STM is not only structurally more complicated
but also uses external classifiers. Dong and
Lapata (2016) also proposed a sequence-to-tree
(Seq2Tree) model for question answering. Both
of these models are not designed for NMT and
lack a language model. While operate from top-to-
bottom like Seq2DRNN(+SynC), TreeLSTM and
Seq2Tree produce components that lack sequen-
tial continuity which we have shown to be non-
negligible for language generation.

Aharoni and Goldberg (2017), Wu et al. (2017),
and Eriguchi et al. (2017) experimented with NMT
models that utilise target side structural syntax.
Aharoni and Goldberg (2017) treated constituency
trees as sequential strings (linearised-tree) and
trained a Seq2Seq model to produce such se-
quences. Wu et al. (2017) proposed SD-NMT,
which models dependency syntax trees by adding
a shift-reduce neural parser to a standard RNN
decoder. Eriguchi et al. (2017) in addition to
Wu et al. (2017)’s work, proposed NMT+RNNG
which uses a modified RNNG generator (Dyer
et al., 2016) to process dependency instead of
constituency information as originally proposed
by Dyer et al. (2016), making it consequently
a StackLSTM sequential decoder with additional
RNN units so it is still a bottom-up tree-structured
decoder rather than a top-down decoder like ours.
Nevertheless, all of these research showed that
target side syntax could improve NMT systems.
We believe these models could also be augmented
with SynC connections (with NMT+RNNG one
has to instead use constituency information).

5 Conclusions
We propose an NMT model that utilises target
side constituency syntax with a strictly top-down
tree-structured decoder using Doubly-Recurrent
Neural Networks (DRNN) incorporated into an
encoder-decoder NMT model. We propose a new
way of modelling language generation by estab-
lishing additional clause-based syntactic connec-
tions called SynC. Our experiments show that

our proposed models can outperform a strong se-
quence to sequence NMT baseline and several ri-
val models and do parsing competitively.

In the future we hope to incorporate source side
syntax into the model. We plan to explore the
applications of SynC in NMT with more struc-
tured attention mechanisms, and potentially a hy-
brid phrase-based NMT systems with SynC, in
which the model can benefit from SynC to be more
extensible when handling larger lexicons.
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A Additional Translation Samples (IWSLT2017 German-English)
The samples here are from our IWSLT2017 German-English testset. We compared the performances of
all our proposed models as well as the baseline Seq2Seq model in Table 10.

We provide an additional example of our attention module visualisation in Figure 6 and for parser in
Figure 7.

Source 1 m ist das höchste, was ich gesehen habe.
Literal 1 m is the highest that i’ve seen.
Reference thirty-nine inches is the tallest structure i’ve seen.
Seq2Seq and the highest thing is i’ve seen.
Seq2DRNN one is the highest thing i’ve seen at that.
Seq2DRNN+SynC feet is the highest thing i’ve seen.
Source ich weiß nicht . sie wollten in die zeit zurck , bevor es autos gab oder twitter

oder amerika sucht den superstar.
Literal i dont know. they want to go back in time, before there were automobiles or

twitter or america looking for superstar.
Reference i dont know. they want to go back before there were automobiles or twitter or

american idol.
Seq2Seq i don’t know. they were in the days, when they were cars before cars or the

earnings, or america, and the country.
Seq2DRNN i don’t want to know before time, they wanted to go back before the cars be-

fore they were cars or americans.
Seq2DRNN+SynC i don’t know. they wanted to go back in time, they wanted to go back into

the before, before there had cars or twitter visitors.
Table 10: Translation Samples. Gold is the reference, and Literal is produced by a bilingual German-English speaker.
The reason we include the literal translation is that sometimes the reference translation from the corpus can have additional
components or be non-literal translations.

Figure 6: Attention visualisation (Seq2DRNN+SynC). Darker colour means higher attention weight as defined in Equ 9. The
sentence is randomly selected from our IWSLT experiment.
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Figure 7: Parser attention visualisation (Seq2DRNN+SynC). Darker colour means higher attention weight as defined in Equ 9.
The sentence is randomly selected from our PennTreebank experiment.
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Abstract

Task-oriented dialog systems are becoming
pervasive, and many companies heavily rely
on them to complement human agents for cus-
tomer service in call centers. With global-
ization, the need for providing cross-lingual
customer support becomes more urgent than
ever. However, cross-lingual support poses
great challenges—it requires a large amount of
additional annotated data from native speak-
ers. In order to bypass the expensive human
annotation and achieve the first step towards
the ultimate goal of building a universal dialog
system, we set out to build a cross-lingual state
tracking framework. Specifically, we assume
that there exists a source language with dia-
log belief tracking annotations while the tar-
get languages have no annotated dialog data
of any form. Then, we pre-train a state tracker
for the source language as a teacher, which
is able to exploit easy-to-access parallel data.
We then distill and transfer its own knowl-
edge to the student state tracker in target lan-
guages. We specifically discuss two types of
common parallel resources: bilingual corpus
and bilingual dictionary, and design different
transfer learning strategies accordingly. Ex-
perimentally, we successfully use English state
tracker as the teacher to transfer its knowl-
edge to both Italian and German trackers and
achieve promising results.

1 Introduction

Over the past few years, we have witnessed the
burgeoning of real-world applications of dialog
systems, with many academic, industrial, and
startup efforts racing to lead the widely-believed
next-generation human-machine interfaces. As
a result, numerous task-oriented dialog systems
such as virtual assistants and customer conversa-
tion services were developed (Wen et al., 2015;
Rojas-Barahona et al., 2017; Bordes and Weston,

2017; Williams et al., 2017; Li et al., 2017), with
Google Duplexbeing the most recent example.

With the rapid process of globalization, more
countries have observed growing populations of
immigrants, and more companies have moved for-
ward to develop their overseas business sectors. To
provide better customer service and bring down
the cost of labor at call centers, the development
of universal dialog systems has become a practi-
cal issue. A straightforward strategy is to sepa-
rately collect training data and train dialog sys-
tems for each language. However, it is not only
tedious but also expensive. Two settings naturally
arise for more efficient usage of the training data:
(1) Multi-lingual setting: we annotate data for
multiple languages and train a single model, with
possible innovations on joint training. (2) Cross-
lingual setting: we annotate data and train a model
for only one (popular) language, and transfer the
learned knowledge to other languages. Here we
are interested in the second case, and the impor-
tant research question we ask is: How can we build
cross-lingual dialog systems that can support less
popular, low- or even zero-resource languages?

As an initial step towards cross-lingual dialog
systems, we focus on the cornerstone of dialog
systems – dialog state tracking (DST), or belief
tracking, a key component for understanding user
inputs and updating belief state, i.e., a system’s in-
ternal representation of the state of conversation
(Young et al., 2010). Based on the perceived belief
state, the dialog manager can decide which action
to take, and what verbal response to generate (Pre-
cup and Teh, 2017; Bordes and Weston, 2017).

DST models require a considerable amount
of annotated data for training (Henderson et al.,
2014b; Mrksic et al., 2015, 2017). For a common
dialog shown in Figure 1, a typical data acquisition
process (Rojas-Barahona et al., 2017) not only re-
quires two human users to converse for multiple
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turns but also requires annotators to identify user’s
intention in each turn. Such two-step annotation is
very expensive, especially for rare languages.

We study the novel problem of cross-lingual
DST, where one leverages the annotated data of
a source language to train DST for a target lan-
guage with zero annotated data (Figure 1); no con-
versation dialog or dialog state annotation is avail-
able for the target language. In order to deal with
this zero-resource challenging scenario, we first
decouple the state-of-the-art neural belief tracker
framework (Mrksic et al., 2017) into sub-modules,
namely utterance encoder, context gate, and slot-
value decoder. By introducing a teacher-student
framework, we are able to transfer knowledge
across languages module by module, following
the divide-and-conquer philosophy. Requiring no
target-side dialog data, our method relies on other
easy-to-access parallel resources to understand the
connection between languages. Depending on the
popularity and availability of target language re-
sources, we study two kinds of parallel data: bilin-
gual corpus and bilingual dictionary, and we re-
spectively design two transfer learning strategies.

We use the popular Wizard-of-Oz (Rojas-
Barahona et al., 2017) dataset as our DST bench-
mark to evaluate the effectiveness of our cross-
lingual transfer learning. We specify English as
the source (primary) language and two different
European languages (German and Italian) as our
zero-annotation target languages. Compared with
an array of alternative transfer learning strate-
gies, our cross-lingual DST models consistently
achieve promising results in both scenarios for
both zero-annotation languages. To ensure repro-
ducibility, we release our code, training data and
parallel resources in the github1. Our main contri-
butions are three-fold:

• Towards building cross-lingual dialog sys-
tems, we are the first to study the cross-
lingual dialog state tracking problem.

• We systematically study different scenarios
for this problem based on the availability of
parallel data and propose novel transfer learn-
ing methods to tackle the problem.

• We empirically demonstrate the efficacy of
the proposed methods, showing that our
methods can accurately track dialog states for

1https://github.com/wenhuchen/
Cross-Lingual-NBT

languages with zero annotated data.

2 Related Work

2.1 Dialog State Tracking
Broadly speaking, the dialog belief tracking al-
gorithms can be divided into three families: 1)
hand-crafted rules 2) generative models, and
3) maximum-entropy model (Metallinou et al.,
2013). Later on, many deep learning based dis-
criminative models have surged to replace the
traditional strategies (Henderson et al., 2014a;
Mrksic et al., 2017; Williams et al., 2016)
and achieved state-of-the-art results on various
datasets. Though the discriminative models are re-
ported to achieve fairly high accuracy, their appli-
cations are heavily restricted by the domain, on-
tology, and language. Recently, a pointer network
based algorithm (Xu and Hu, 2018) and another
multi-domain algorithm (Rastogi et al., 2017) have
been proposed to break the ontology and domain
boundary. Besides, (Mrkšić et al., 2017) has
proposed an algorithm to train a unified frame-
work to deal with multiple languages with anno-
tated datasets. In contrast, our paper focuses on
breaking the language boundary and transfer DST
knowledge from one language into other zero-
annotation languages.

2.2 Cross-Lingual Transfer Learning
Cross-lingual transfer learning has been a very
popular topic during the years, which can be seen
as a transductive process. In such process, the in-
put domains of the source and target are differ-
ent (Pan and Yang, 2010) since each language has
its own distinct lexicon. By discovering the un-
derlying connections between the source and tar-
get domain, we could design transfer algorithms
for different tasks. Recently, algorithms have been
successfully designed for POS tagging (Zhang
et al., 2016; Kim et al., 2017), NER (Pan et al.,
2017; Ni et al., 2017) as well as image cap-
tioning (Miyazaki and Shimizu, 2016). These
methods first aim at discovering the relatedness
between two languages and separate language-
common modules from language-specific mod-
ules, then resort to external resources to trans-
fer the knowledge across the language boundary.
Our method addresses the transfer learning using
a teacher-student framework and proposes to use
the teacher to gradually guide the student to make
more proper decisions.
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Restaurant Price (Preis) Food (Essen) Area	(Bereich) Location (Ort) Telephone (Telefon)

The	House Cheap (Billig) Thai (Thailändisch) Center (Center) 106	Regent	Street 000-00000
Aladdin Expensive (Teuer) Greek (Griechisch) North (Norden) Mesa	Road	100 000-00000

User:	 I’m	looking	for	a	cheaper Restaurant
Inform(price=cheap)
System:	Sure,	What	kind	–and	where?
User:	Thai food,	somewhere	downtown
Inform(price=cheap,food=Thai,area=center)
System:	The	House	serves	cheap	Thai	food
User:	 	Where is	it?
Inform(price=cheap,food=Thai,area=center)
Request(location)
System:	The	House	 is	at	106	Regent	Street

User:	 Ich suche ein teures Restaurant
Inform(preis=?) 
System:	Sicher,	welche	Art	und	wann?
User:	griechisches Essen,	irgendwo	im	Norden
Inform(preis=?,essen=?,ort=?)
System:	The	House	serviert sehr billiges	thailändisches	Essen	
User:	 	Wo ist das?
Inform(preis=?,essen=?,ort=?);Request(?)
System:	Aladdin	befindet sich in	der	Mesa	Road

Transfer

English training dataset German test dataset

Figure 1: Cross-lingual transfer learning for dialog state tracking, where the underlying database (the table above)
is shared across languages. The source language has annotated dialogs and the ground truth states, but the target
language has neither dialogs nor ground truth states (only a testing dataset for evaluation).

3 Problem Definition

Utterance

System acts

Past State

What	do	you	want?

I	want	to	order	Greek	food

food:	none;	area:	center;	price:	none	

food area price Slot

Chinese North Expensive

Va
lu
e

Greek South Middle

Japanese West Cheap

Thai East Don’t	care

Don’t care Don’t care

Slot essen ort preis

Va
lu
e

Chinesisch Norden Teuer

Griechisch Süd Mittel

Japanisch West Billig

Thai Osten Es ist egal

Es ist egal Es ist egal

D
ST

Source Language ! Target Language "

System acts

Past State

Was	wollen	Sie	bestellen

Ich möchte chinesisches Essen	bestellen

essen:	none;	ort:	Norden;	preis:	none	

UtteranceD
ST

Figure 2: Cross-lingual DST structure, the ontology
and database between multiple languages are shared.

The dialog states are defined as a set of search
constraints (i.e. informable slots or goals) that the
user specified through the dialog and a set of at-
tribute questions regarding the search results (i.e.
requestable slots or requests). The objective of di-
alog state tracking (DST) is to predict and track
the user intention (i.e., the values of the aforemen-
tioned slots) at each time step based on the cur-
rent user utterance and the entire dialog history.
As shown in Figure 2, for each slot, the DST com-
putes an output distribution of the candidate values
using three inputs: (i) system response at, which
is the sentence generated by the system, (ii) ut-
terance ut, which is the sentence from the user,
and (iii) previous state, which denotes the selected
slot-value pairs. We define the ontology of the di-
alog system to be the set of all the possible words
the dialog slot and value can take. In this pa-
per, we are interested in learning a cross-lingual
DST. Specifically, we assume that the DST for the
source language has access to a human-annotated
training dataset D while the DSTs for the target

languages do not have access to annotated data in
other languages except for testing data. We here
mainly consider two different types of parallel re-
sources to assist the transfer learning:
(1) Bilingual Corpus, where abundant bilingual
corpora exist between the source and the target
languages. This is often the case for common lan-
guage pairs like German, Italian, and French, etc.
(2) Bilingual Dictionary, where public bilingual
dictionaries exist between the source and the tar-
get languages, but large-scaled parallel corpus are
harder to obtain. This can be the case for rarer lan-
guages like Finnish, Bulgarian, etc.
Furthermore, we assume that all the languages
share a common multi-lingual database, whose
column/row names and entry values are stored
via multiple languages (see the database in Fig-
ure 1). That is, the ontology of dialog among dif-
ferent languages is known with a one-to-one map-
ping between them (e.g., greek=griechisch=greco,
food=essen=cibo). Based on that, we could con-
struct a mapping function M to associate the on-
tology terms from different languages with pre-
designed language-agnostic concepts: for exam-
ple, M(foods) = M(Essen) = M(Cibo) =
FOOD. We illustrate our problem definition in Fig-
ure 2.

4 Decoupled Neural Belief Tracker
We design our cross-lingual DST on top
of the state-of-the-art Neural Belief Tracker
(NBT) (Mrksic et al., 2017), which demonstrates
many advantages (no hand-crafted lexicons, no
linguistic knowledge required, etc). These nice
properties are essential for our cross-lingual DST
design because we are pursuing a general and
simple framework regardless of the language
properties. In short, NBT consists of a neural
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network that computes the matching score for
every candidate slot-value pair (cs, cv) based on
the following three inputs: (i) the system dialog
acts at = (tq, ts, tv),2 (ii) the user utterance
ut, and (iii) the candidate slot-value pair. And
it identifies the user intents by evaluating the
scores for all the slot-value pairs (see Figure 3).
With a slight abuse of notation, we still use
cs, cv, ts, tv, tq 2 R

H to denote the vector
representations of themselves, where H is the
embedding dimension. We will use pre-trained
embedding vectors in our cross-lingual NBT, just
like the original NBT and they will be fixed during
training. To enable cross-lingual transfer learning,
we first re-interpret the architecture of the original
NBT by decomposing it into three components:

Utterance Encoding The first component is an
utterance encoder, which maps the utterance ut =
{w1, w2, · · · , wN} of a particular language into
a semantic representation vector r(ut) 2 R

H ,
where wi 2 R

H is the word vector for the i-th to-
ken and N is the length of the utterance. Note that
the dimension of the semantic vector r(ut) is the
same as that of the word vector. We implement

!

"

#

$% $& $' $(

Utterance

)*)+

Candidate 

,*,+,-

System acts

Utterance Encoding Slot-value Decoding

Aggregation Gate

Score

Request
gate "&

Candidate
gate "%

Confirm
gate "'CNN/RNN

Figure 3: Our implementation of baseline NBT,
slightly modified from (Mrksic et al., 2017).

the encoder using the same convolutional neural
network (CNN) as the original NBT, with a slight
modification of adding a top batch normalization
layer. We will explain this change in section 5.

Context Gate The second part is the context
gate, which takes the system acts at = (tq, ts, tv)

2tq represents the system request, ts, tv represents the
system confirmation. If the system wants to request some
information from the user by asking “what’s your favorite
area?”, then NBT sets tq=“AREA”. If the system wants to
confirm some information from a user by asking “should I try
Persian restaurants in the north?” then NBT sets ts, tv=“area,
north”.

and the candidate slot-value pair (cs, cv) as its in-
puts and filter out the desired information from the
encoded utterance. The context gate g is a sum of
three separate gates:

g(cs, cv, at) = g1 + g2 + g3 (1)

where the individual gates are defined as:
g1 = �(W s

c (cs + cv) + bs
c)

g2 = (cs · W q
t tq) � [1, · · · , 1]H

g3 = (cs · W s
t ts)(cv · W v

t tv) � [1, · · · , 1]H
(2)

where W s
c , W q

t , W s
t , W v

t 2 R
H⇥H are the weight

matrices, and � and · denote the Hadamard prod-
uct and the inner product, respectively. The three
gates g1 2 R

H , g2 2 R
H , g3 2 R

H model the rel-
evance between the candidate slot and value, the
system request and the system confirms, respec-
tively. The transformation matrices W q

t , W s
t , W v

t

are added to the original NBT to increase the
model flexibility of the gates.

Slot-Value Decoding The final component is a
slot-value decoder, which predicts the score y of a
given slot-value pair using the filtered information
from the utterance representation r as:
y(cs, cv, ut, at) = W T

y [r(ut) � g(cs, cv, at)] (3)

where Wy 2 R
H⇥1 is the weight vector. The

above expression computes the score for the slot-
value pair based on the information from the cur-
rent turn. We combine it with the information
from previous turns to get the final score:

ŷ(cv|ut, at, cs) =�y(cs, cv, ut, at)+

(1 � �)ŷ(cs, cv, ut�1, at�1)
(4)

here � is a combination weight. For each given
slot cs, NBT selects the single highest value for
informable slots and selects all values above a cer-
tain threshold for request slots. Here we replace
the multi-layer perceptron in the orginal NBT by a
linear output layer (to be explained in section 5).

5 Cross-lingual Neural Belief Tracker

In this section, we develop a cross-lingual Neu-
ral Belief Tracker (XL-NBT) that distills knowl-
edge from one NBT to another using a teacher-
student framework. We assume the ontology map-
ping M is known a priori (see Figure 3). XL-
NBT uses language-specific utterance encoder and
context gate for each input language while shar-
ing a common (language-agnostic) slot-value de-
coder across different languages (see Figure 3).
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The key idea is to optimize the language-specific
components of the student network (NBT of the
target language) so that their outputs are language-
agnostic. This is achieved by making these outputs
close to that of the teacher network (NBT of the
source language), as we detail below.

5.1 Teacher-Student Framework

We are given a well-trained NBT for a source
language e, and we want to learn an NBT for a
target language f without any annotated training
data. Therefore, we cannot learn the target-side
NBT from standard supervised learning. Instead,
we use a teacher-student framework to distill the
knowledge from the source-side NBT (teacher net-
work) into the target-side NBT (student network)
(see Figure 4). Let xe , (ce

s, c
e
v, u

e
t , a

e
t ) be

the input to the teacher network and let xf ,

(cf
s , cf

v , uf
t , af

t ) be the associated input to the stu-
dent network. The standard teacher-student frame-
work trains the student network by minimizing

Ĵ1 =
X

xe,xf

||y(ce
s, c

e
v, ue

t , a
e
t ) � y(cf

s , cf
v , uf

t , af
t )||2 (5)

where y(ce
s, c

e
v, u

e
t , a

e
t ) and y(cf

s , cf
v , uf

t , af
t ) de-

note the scores by the teacher and the student net-
works, respectively, and the slot-value pairs satisfy
M(cf

v ) = M(ce
v) and M(cf

s ) = M(ce
s). How-

ever, the target-side inputs (cf
s , cf

v , uf
t , af

t ) parallel
to (ce

s, c
e
v, u

e
t , a

e
t ) are usually not available in cross-

lingual DST, and, even worse, the target-side ut-
terance ue

t is not available. We may have to gener-
ate synthetic input data for the student network or
leverage external data sources. It is relatively easy
to use the mapping M(·) to generate (cf

s , cf
v , af

t ))
(i.e., the inputs of the target-side context gate)
from the (ce

s, c
e
v, a

e
t ). But it is more challenging

to obtain the parallel utterance data uf
t from ue

t ).
Therefore, we have to leverage external bilingual
data sources to alleviate the problem. However,
the external bilingual data are usually not in the
same domain as the utterance, and hence they are
not aligned with the slot-value pair and system acts
(i.e., (ce

s, c
e
v, a

e
t ) or (cf

s , cf
v , af

t )). For this reason,
we cannot perform the knowledge transfer by min-
imizing the cost (5). Instead, we need to develop
a new cost function where the utterance is not re-
quired to be aligned with the slot-value pair and
the system acts. To this end, let ge = ge(ce

s, c
e
v, a

e
t )

and gf = gf (cf
s , cf

v , af
t ). And we substitute (3)

into (5) and get:

Ĵ1  ||Wy||
2

X

cf

v ,ce
v

||re � ge
� rf � gf

||
2

= ||Wy||
2

X

cf

v ,ce
v

||ge
� (re � rf ) + rf � (ge

� gf )||2

 ||Wy||
2

X

cf

v ,ce
v

||ge
||

2
||re � rf ||

2 + ||rf ||
2
||ge

� gf
||

2

where re = re(ue
t ) and rf = rf (uf

t ). As
we mentioned earlier, the weight Wy in the slot-
value decoder is shared between the student and
the teacher networks and will not be updated.
The teacher-student optimization only adjusts the
weights related to the language-specific parts in
Figure 3 (i.e., utterance encoding and context gat-
ing). Therefore, the shared weight ||Wy|| is seen
as a constant. Furthermore,

P
cf
v ,ce

v
||ge||2 can be

seen as a constant since the teacher gate is fixed.
Since we use batch normalization layer to nor-
malize the encoder output (described in Figure 3),
||rf (uf

t )||2 can also be treated as a constant C2.
Therefore, we formally write the upper bound of
Ĵ1 as our surrogate cost function J :

J =C1||re(u
e
t ) � rf (uf

t )||2 + C2

X

cf

v ,ce
v

||ge
� gf

||
2

(6)

The surrogate cost has successfully decoupled ut-
terance encoder with context gate, and we use Jr

and Jg to measure the encoder matching cost and
the gate matching cost, respectively.

Jr = ||re(u
e
t ) � rf (uf

t )||2

Jg =
X

cf

v ,ce
v

||ge
� gf

||
2 (7)

The encoder cost Jr is optimized to distill the
knowledge from the teacher encoder to student
encoder while gate cost Jg is optimized to dis-
till the knowledge from teacher gate to student
gate. This objective function successfully decou-
ples the optimization of encoder and gate, thus we
are able to optimize Jr and Jg separately from dif-
ferent data sources. Recall that we can easily sim-
ulate the target-side system acts, slot-value pairs
(cf

s , cf
v , af ) by using the ontology mapping M .

Therefore, optimizing Jg is relatively easy. For-
mally, we write the gate matching cost as follows:

Jg =
X

ae

t
,ce

s
,ce

v

af

t
,cf

s
,cf

v

||ge(c
e
s, c

e
v, ae

t ) � gf (cf
s , cf

v , af
t )||2

(8)
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I	want	to	order	Greek	food

What	kind	of	food	do	
you	want?

greek
chinese
thai
japanese

!"($%(&'|)*, ,*,&-)||$/(&'|)*, ,*, &-))

01:3445					
0-, 0-:	None,	None	

&-%, &'% :	(FOOD,	greek)

||7 80% − 7(80/)||
Ichmöchte griechisches Essen

Welche Art	von	Essen	
willst du?

01::;;:<
0-, 0-:	None,	None	

&-/, &'/:	(ESSEN,	grieschisch)

=0
/

80
/

grieschisch
Chinesisch
thailändisch
japanisch

=0%

80%

||>(=0/, &-/, &'/) −>(=0%, &-%, &'%)||

+

Figure 4: Teacher-Student Framework for cross-lingual transfer learning. The dotted line denotes the imaginary
utterances, which expresses the same intention as the source side.

In	birds,	life	gains	new	mobility. Bei	Vögeln	erhält	das	Leben	neue	Mobilität.

I	can	take	a	look	at	your	records. Ich	kann	mir	deine	Unterlagen	ansehen.

Parallel  Corpora !"

Student
Encoder

||$ %&' − $(%&
*)||

Teacher 
Encoder CNN/RNN CNN/RNN

I	want	to	order	Greek	food

Dialogue Corpora D

Ich want	to	bestellen Greek	food

#sub=2; pos=0, 3 Mixed Language Corpora D’

Bilingual	Embedding

Replace

Ich mir

order

bestellen ordnen

Bilingual Dictionary !,I

CNN/RNN CNN/RNN
Student
Encoder

Teacher
Encoder

Figure 5: XL-NBT-C and XL-NBT-D for two scenarios

However, exact optimization of Jr is difficult and
we have to approximate it using external parallel
data. We consider two kinds of external resources
(bilingual corpus and bilingual dictionary) in the
sections 5.2-5.3 (see Figure 5 for the main idea).

5.2 Bilingual Corpus (XL-NBT-C)

In our first scenario, we assume there exists a par-
allel corpus Dp consisting of sentence pairs from
the source language and the target language. In
this case, the cost function (6) is approximated by

J = E
(me,mf )2Dp

||re(me) � rf (mf )||2 + ↵Jg (9)

where ↵ is the balancing factor and Jg is defined in
(6). The cost function (9) is minimized by stochas-
tic gradient descent. At test time, we switch the
encoder to receive target language inputs.

5.3 Bilingual Dictionary (XL-NBT-D)

In the second scenario, we assume there exists
no parallel corpus but a bilingual dictionary DB

that defines the correspondence between source
words and target words (a one-to-many mapping
{w : MD(w)}). Likewise, it is infeasible to op-
timize the exact encoder cost Jr due to the lack
of target-side utterances. We propose a word re-
placement strategy (to be described later) to gener-
ate synthetic parallel sentence ûf

t of “mixed” lan-
guage. Then, we use the generated target parallel
sentences to approximate the cost (6) by

Jr = E
ut2D

||re(u
e
t ) � rf (ûf

t )||2 + ↵Jg (10)

where ↵ is the balancing factor. For word replace-
ment, we first decide the number of words Nw to
be replaced, then we draw Nw positions randomly
from the source utterance and substitute the corre-
sponding word wi with their target word synonym
from MD(w) based on the context as follows:

jp(Nw = i) =
exp(�i/⌧)P

i0<N exp(�i0/⌧)

p(ŵ) =
ŵ · hŵP

w02M(wi)
w0 · hŵ

(11)

where hŵ =
P2

k=�2:k 6=0 wi+k represents the con-
text vector and N denotes the utterance length.
The context similarity of context and the target-
side synonym can better help us in choosing the
most appropriate candidate from the list. In our
following experiments, we adjust the temperature
of ⌧ to control the aggressiveness of replacement.
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6 Experiments

6.1 Dataset
The Wizard of Oz (WOZ) (Rojas-Barahona et al.,
2017) dataset is used for training and evaluation,
which consists of user conversations with task-
oriented dialog systems designed to help users
find suitable restaurants around Cambridge, UK.
The corpus contains three informable (i.e. goal-
tracking) slots: FOOD, AREA, and PRICE. The
users can specify values for these slots in order to
find which best meet their criteria. Once the sys-
tem suggests a restaurant, the users can ask about
the values of up to eight requestable slots (PHONE
NUMBER, ADDRESS, etc.). Multilingual WOZ
2.0 (Mrksic et al., 2017) has expanded this dataset
to include more dialogs and more languages. The
train, valid and test datasets for three different lan-
guages (English, German, Italian) are available
online3. We use the English as source language
where 600 dialogs are used for training, 200 for
validation and 400 for testing. We use the German
and Italian as the target language to transfer our
knowledge from English DST system. In the ex-
periments, we do not have access to any training
or validation dataset for German and Italian, and
we only have access to their testing dataset which
is composed of 400 dialogs.

For external resource, we use the IWSLT2014
Ted Talk parallel corpus (Mauro et al., 2012) from
the official website4 for bilingual corpus scenario.
In the IWSLT2014 parallel corpus, we only keep
the sentences between 4 and 40 words and de-
crease the sentence pairs to around 150K. We use
Panlex (Kamholz et al., 2014) as our data source
and crawl translations for all the words appearing
in the dialog datasets to build our bilingual dictio-
nary. We specifically investigate two kinds of pre-
trained embedding, and we use Glove (Pennington
et al., 2014) as the monolingual embedding and
MUSE (Conneau et al., 2017) as the bilingual em-
bedding to see their impacts on the DST perfor-
mance.

We split the raw DST corpus into turn-level ex-
amples. During training, we use the ground truth
previous state Vt�1 as inputs. At test time, we
use the model searched states as the previous state
to continue tracking intention until the end of the

3https://github.com/nmrksic/
neural-belief-tracker/tree/master/data

4https://wit3.fbk.eu/mt.php?release=
2014-01

dialog. When the dialog terminates, we use two
evaluation metrics introduced in Henderson et al.
(2014a) to evaluate the DST performance: (1)
Goals: the proportion of dialog turns where all the
users search goal constraints were correctly iden-
tified. (2) Requests: similarly, the proportion of
dialog turns where users requests for information
were identified correctly. Our implementation is
based on the NBT5, the details of our system set-
ting are described in the appendix.

6.2 Results
Here we highlight the baselines we use to compare
with our cross-lingual algorithm as follows:
(1) Supervised: this baseline algorithm assumes
the existence of annotated dialog belief tracking
datasets, and it determines the upper bound of the
DST model.
(2) w/o Transfer: this algorithm trains an English
NBT, and then directly feeds target language into
the embedding level as inputs during test time to
evaluate the performance.
(3) Ontology-match: this algorithm directly uses
exact string matching against the utterance to dis-
cover the perceived slot-value pairs, it directly as-
signs a high score to the appearing candidates.
(4) Translation-based: this system pre-trains a
translator on the external bilingual corpus and then
translates the English dialog and ontology into tar-
get language as “annotated” data, which is used
to train the NBT in the target language domain
(more details about the implementation, perfor-
mance and examples are listed in the appendix).
(5) Word-By-Word (WBW): this system trans-
forms the English dialog corpus into target lan-
guage word by word using the bilingual dictionary,
which is used to train the NBT in target side.
We demonstrate the results for our proposed al-
gorithms and other competing algorithms in Ta-
ble 2, from which we can easily conclude that that
(i) our Decoupled NBT does not affect the perfor-
mance, and (ii) our cross-lingual NBT framework
is able to achieve significantly better accuracy for
both languages in both parallel-resource scenarios.

Compare with Translator/WBW. With bilin-
gual corpus, XL-NBT-C with pre-trained bilin-
gual embedding can significantly outperform our
Translator baseline (Klein et al., 2017). This is
intuitive because the translation model requires

5https://github.com/nmrksic/
neural-belief-tracker
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Error Type Examples

Modify
Failure

Machine: I have two options that fit that description, golden wok Chinese restaurant and the Nirala which
serves Indian food, do you have a preference?
User: How about Nirala, whats the address and phone of that?
Previous State: food=Chinese; Prediction: food=none; Groundtruth: food=Indian

Maintain
Failure

Machine: there are $num places with a moderate price range. can you please tell me what kind of food
you would like?
User: well I want to eat in the north, whats up that way?
Previous State: food=expensive; Prediction: food=none; Groundtruth: food=expensive

History
Failure

Machine: Anatolia is located at $num bridge street city center.
User: thank you goodbye!
Previous State: food=Chinese; Prediction: food=Chinese;,Groundtruth: food=Turkish

Table 1: Here we show the frequent error types, the examples are translated to English for better understanding.

Language German (student) Italian (student) English (teacher)

Models Goal Request Goal Request Goal Request

w/ Supervised Dialog
NBT (Mrksic et al., 2017) - - - - 0.84 0.91
Decoupled NBT (mono) 0.79 0.83 0.86 0.91 0.82 0.89
Decoupled NBT (bilingual) 0.80 0.84 0.88 0.91 0.84 0.90

w/o Bilingual Data
w/o Transfer (mono) 0.15 0.10 0.15 0.11 - -
w/o Transfer (bilingual) 0.13 0.13 0.11 0.12 - -
Ontology Matching 0.24 0.21 0.23 0.21 - -

w/ Bilingual Corpus
Translate (Klein et al., 2017) 0.41 0.42 0.48 0.51 - -
XL-NBT-C (mono) 0.48 0.54 0.65 0.60 - -
XL-NBT-C (bilingual) 0.55 0.59 0.72 0.69 - -

w/ Bilingual Dictionary
Word-by-Word 0.22 0.25 0.25 0.27 - -
XL-NBT-D (mono) 0.14 0.15 0.23 0.22 - -
XL-NBT-D (bilingual) 0.51 0.56 0.73 0.63 - -

Table 2: Experimental results for cross-lingual NBT and other baseline algorithms. All results are averaged over
5 runs. Here we use “mono” to refer to the experiments with pre-trained monolingual embedding, “bilingual” to
refer to the experiments with pre-trained bilingual embedding.

both source-side encoding and target-side word-
by-word decoding, while our XL-NBT only needs
a bilingual source-encoding to align two vector
space, which averts the compounded decoding er-
rors. With the bilingual dictionary, the word-by-
word translator is very weak and leading to many
broken target sentences, which poses challenges
for DST training. In comparison, our XL-NBT-
D can control the replacement by adjusting its
temperature to maintain the stability of utterance
representation. Furthermore, for both cases, our
teacher-student framework can make use of the
knowledge learned in source-side NBT to assist its
decision making, while translator-based methods
learn from scratch.

Bilingual Corpus vs. Bilingual Dictionary.
From the table, we can easily observe that bilin-
gual corpus is obviously a more informative par-
allel resource to perform cross-lingual transfer
learning. The accuracy of XL-NBT-D is lower
than XL-NBT-C. We conjecture that our replace-

ment strategy to generate “mixed” language ut-
terance can sometimes break the semantic coher-
ence and cause additional noises during the trans-
fer process, which remarkably degrades the DST
performance.

Monolingual vs. Bilingual embedding. From
the table, we can observe that the bilingual embed-
ding and monolingual embedding does not make
much difference in supervised training. How-
ever, the gap in the bilingual corpus case is quite
obvious. Monolingual embedding even causes
the transfer to fail in a bilingual dictionary case.
We conjecture that the bilingual word embed-
ding already contain many alignment information
between two languages, which largely eases the
training of encoder matching objective.

German vs. Italian As can be seen, the transfer
learning results for Italian are remarkably higher
than German, especially for the “Goal” accuracy.
We conjecture that it is due to German declen-
sion, which can produce many word forms. The
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very diverse word forms present great challenges
for DST to understand its intention behind. Espe-
cially for the bilingual dictionary, German tends
to have much longer replacement candidate lists
than Italian, which introduces more noises to the
replacement procedure.

Error Analysis Here we showcase the most fre-
quent error types in subsection 6.1. From our
observation, these three types of errors distribute
evenly in the test dialogs. The error mainly comes
from the unaligned utterance space, which leads
to failure in understanding the intention of human
utterance in the target language. This can lead
the system to fail in modifying the dialog state or
maintaining the previous dialog states.

6.3 Discussion

Here we want to further highlight the comparison
between our transfer learning algorithm with the
MT-based approach. Though our approach outper-
forms the standard Translator trained on IWSLT-
2014, it does not necessarily claim that our transfer
algorithm outperforms any translation methods on
any parallel corpus. In our further ablation stud-
ies, we found that using Google Translator 6 can
actually achieve a better score than our transfer al-
gorithm, which is understandable considering the
complexity of Google Translator and the much
larger parallel corpus it leverages. By leverag-
ing more close-to-domain corpus and comprehen-
sive entity recognition/replacement strategy, the
translator model is able to achieve a higher score.
Apparently, we need to trade off the efficiency
for the accuracy. For DST problem, it is an
overkill to introduce a more complex translation
algorithm, what we pursue is a simple yet effi-
cient algorithm to achieve promising scores. It
is also worth mentioning that our XL-NBT al-
gorithm only takes several hours to achieve the
reported score, while the translator model takes
much more time and memory to train depend-
ing on the complexity. Thus, the simplicity and
efficiency makes our model a better fit for rare-
language and limited-budget scenarios.

6.4 Ablation Test

Here we investigate the effect‘ of hyper-parameter
↵, ⌧ on the evaluation results. The ↵ is used to
balance the optimization of encoder constraint and

6https://translate.google.com/

gate constraint, where larger ↵ means more opti-
mization on gate constraint. The temperature ⌧ is
used to control the aggressiveness of the replace-
ment XL-NBT-D, where smaller ⌧ means more
source words are replaced by target synonyms.
From the table Table 3, we can observe that the

↵ ablation (⌧ fixed to 0.1) ⌧ ablation (↵ fixed to 1)

value Goal Request value Goal Request

↵=0 0.13 0.00 ⌧=0 0.14 0.08
↵=0.1 0.46 0.54 ⌧=0.03 0.43 0.50
↵=1 0.51 0.56 ⌧=0.1 0.51 0.56
↵=5 0.46 0.54 ⌧=0.3 0.47 0.51
↵=10 0.46 0.52 ⌧=1 0.44 0.52
↵=100 0.44 0.50 ⌧=10 0.33 0.32

Table 3: Ablation test for hyper-parameter ↵ and ⌧ on
English-to-German XL-NBT-D.

experimental results are not very sensitive to ↵,
a dramatic change of ↵ will not harm the final
results too much, we simply choose ↵ = 1 as
the hyper-parameter. In contrast, the system is
more sensitive to temperature. Too conservative
replacement will lead to weak transfer, while too
aggressive replacement will destroy the utterance
representation. Therefore, we choose the a moder-
ate temperature of ⌧ = 0.1 throughout our experi-
ments. We also draw the learning curve (Precision
vs. Iteration) in the Appendix for both XL-NBT-
C and XL-NBT-D. The learning curves show that
our algorithm is stable and converges quickly, and
the reported results are highly reproducible.

7 Conclusion

In our paper, we propose a novel teacher-student
framework to perform cross-lingual transfer learn-
ing for DST. The key idea of our model is to de-
couple the current DST neural network into two
separate modules and transfer them separately. We
believe our method can be further extended into a
general purpose multi-lingual transfer framework
to resolve other NLP matching or classification
problems.
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Abstract
We propose a simple modification to exist-
ing neural machine translation (NMT) models
that enables using a single universal model to
translate between multiple languages while al-
lowing for language specific parameterization,
and that can also be used for domain adapta-
tion. Our approach requires no changes to the
model architecture of a standard NMT system,
but instead introduces a new component, the
contextual parameter generator (CPG), that
generates the parameters of the system (e.g.,
weights in a neural network). This param-
eter generator accepts source and target lan-
guage embeddings as input, and generates the
parameters for the encoder and the decoder,
respectively. The rest of the model remains
unchanged and is shared across all languages.
We show how this simple modification enables
the system to use monolingual data for train-
ing and also perform zero-shot translation. We
further show it is able to surpass state-of-the-
art performance for both the IWSLT-15 and
IWSLT-17 datasets and that the learned lan-
guage embeddings are able to uncover inter-
esting relationships between languages.

1 Introduction
Neural Machine Translation (NMT) directly mod-
els the mapping of a source language to a target
language without any need for training or tuning
any component of the system separately. This has
led to a rapid progress in NMT and its successful
adoption in many large-scale settings (Wu et al.,
2016; Crego et al., 2016). The encoder-decoder
abstraction makes it conceptually feasible to build
a system that maps any source sentence in any lan-
guage to a vector representation, and then decodes
this representation into any target language. Thus,
various approaches have been proposed to extend
this abstraction for multilingual MT (Luong et al.,
2016; Dong et al., 2015; Johnson et al., 2017; Ha
et al., 2016; Firat et al., 2016a).

Prior work in multilingual NMT can be broadly
categorized into two paradigms. The first, univer-

sal NMT (Johnson et al., 2017; Ha et al., 2016),
uses a single model for all languages. Univer-
sal NMT lacks any language-specific parameter-
ization, which is an oversimplification and detri-
mental when we have very different languages and
limited training data. As verified by our experi-
ments, the method of Johnson et al. (2017) suf-
fers from high sample complexity and thus un-
derperforms in limited data settings. The univer-
sal model proposed by Ha et al. (2016) requires a
new coding scheme for the input sentences, which
results in large vocabulary sizes that are diffi-
cult to scale. The second paradigm, per-language
encoder-decoder (Luong et al., 2016; Firat et al.,
2016a), uses separate encoders and decoders for
each language. This does not allow for sharing of
information across languages, which can result in
overparameterization and can be detrimental when
the languages are similar.

In this paper, we strike a balance between these
two approaches, proposing a model that has the
ability to learn parameters separately for each lan-
guage, but also share information between simi-
lar languages. We propose using a new contextual
parameter generator (CPG) which (a) generalizes
all of these methods, and (b) mitigates the afore-
mentioned issues of universal and per-language
encoder-decoder systems. It learns language em-
beddings as a context for translation and uses them
to generate the parameters of a shared translation
model for all language pairs. Thus, it provides
these models the ability to learn parameters sepa-
rately for each language, but also share informa-
tion between similar languages. The parameter
generator is general and allows any existing NMT
model to be enhanced in this way.1 In addition, it
has the following desirable features:
1. Simple: Similar to Johnson et al. (2017) and

Ha et al. (2016), and in contrast with Luong
et al. (2016) and Firat et al. (2016a), it can

1In fact, it could likely be applied in other scenarios, such
as domain adaptation, as well.
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be applied to most existing NMT systems with
some minor modification, and it is able to ac-
commodate attention layers seamlessly.

2. Multilingual: Enables multilingual translation
using the same single model as before.

3. Semi-supervised: Can use monolingual data.
4. Scalable: Reduces the number of parameters

by employing extensive, yet controllable, shar-
ing across languages, thus mitigating the need
for large amounts of data, as in Johnson et al.
(2017). It also allows for the decoupling of lan-
guages, avoiding the need for a large shared vo-
cabulary, as in Ha et al. (2016).

5. Adaptable: Can adapt to support new lan-
guages, without requiring complete retraining.

6. State-of-the-art: Achieves better performance
than pairwise NMT models and Johnson et al.
(2017). In fact, our approach can surpass state-
of-the-art performance.

We first introduce a modular framework that can
be used to define and describe most existing NMT
systems. Then, in Section 3, we introduce our
main contribution, the contextual parameter gen-
erator (CPG), in terms of that framework. We also
argue that the proposed approach takes us a step
closer to a common universal interlingua.

2 Background
We first define the multi-lingual NMT setting and
then introduce a modular framework that can be
used to define and describe most existing NMT
systems. This will help us distill previous contri-
butions and introduce ours.

Setting. We assume that we have a set of source
languages S and a set of target languages T . The
total number of languages is L = |S [ T |. We
also assume we have a set of C  |S| ⇥ |T |
pairwise parallel corpora, {P1, . . . , PC}, each of
which contains a set of sentence pairs for a single
source-target language combination. The goal of
multilingual NMT is to build a model that, when
trained using the provided parallel corpora, can
learn to translate well between any pair of lan-
guages in S⇥T . The majority of related work only
considers pairwise NMT, where |S| = |T | = 1.

2.1 NMT Modules
Most NMT systems can be decomposed to the fol-
lowing modules (also visualized in Figure 1).

Preprocessing Pipeline. The data preprocessing
pipeline handles tokenization, cleaning, normaliz-
ing the text data and building a vocabulary, i.e. a

two-way mapping from preprocessed sentences to
sequences of word indices that will be used for the
translation. A commonly used proposal for defin-
ing the vocabulary is the byte-pair encoding (BPE)
algorithm which generates subword unit vocabu-
laries (Sennrich et al., 2016b). This eliminates the
notion of out-of-vocabulary words, often resulting
in increased translation quality.

Encoder/Decoder. The encoder takes in in-
dexed source language sentences, and produces an
intermediate representation that can later be used
by a decoder to generate sentences in a target lan-
guage. Generally, we can think of the encoder as
a function, f (enc), parameterized by ✓(enc). Simi-
larly, we can think of the decoder as another func-
tion, f (dec), parameterized by ✓(dec). The goal
of learning to translate can then be defined as
finding the values for ✓(enc) and ✓(dec) that re-
sult in the best translations. A large amount of
previous work proposes novel designs for the en-
coder/decoder module. For example, using atten-
tion over the input sequence while decoding (Bah-
danau et al., 2015; Luong et al., 2015) provides
significant gains in translation performance.2

Parameter Generator. All modules defined so
far have previously been used when describing
NMT systems and are thus easy to conceptual-
ize. However, in previous work, most models
are trained for a given language pair, and it is
not trivial to extend them to work for multiple
pairs of languages. We introduce here the con-
cept of the parameter generator, which makes it
easy to define and describe multilingual NMT sys-
tems. This module is responsible for generating
✓(enc) and ✓(dec) for any given source and target
language. Different parameter generators result
in different numbers of learnable parameters and
can thus be used to share information across dif-
ferent languages. Next, we describe related work,
in terms of the parameter generator for NMT:

• Pairwise: In the simple and commonly used
pairwise NMT setting (Wu et al., 2016; Crego
et al., 2016), the parameter generator would gen-
erate separate parameters, ✓(enc) and ✓(dec), for
each pair of source-target languages. This re-

2Note that depending on the vocabulary that is used and
on whether it is one shared vocabulary across all languages,
or one vocabulary per language, the output projection layer of
the decoder (which produces probabilities over words) may
be language dependent, or common across all languages. In
our experiments, we used separate vocabularies and thus this
layer was language-dependent.
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Figure 1: Overview of an NMT system, under our modular framework. Our main contribution lies in the parameter generator
module (i.e., coupled or decoupled — each of the boxes with blue titles is a separate option). Note that g denotes a parameter
generator network. In our experiments, we consider linear forms for this network. However, our contribution does not depend
on the choices made regarding the rest of the modules; we could still use our parameter generator with different architectures
for the encoder and the decoder, as well as using different kinds of vocabularies.

sults in no parameter sharing across languages,
and thus O(ST ) parameters.

• Per-Language: In the case of Dong et al.
(2015), Luong et al. (2016) and Firat et al.
(2016a), the parameter generator would gener-
ate separate encoder parameters, ✓(enc), for each
source language, and separate decoder parame-
ters, ✓(dec), for each target language. This leads
to a reduction in the number of learnable pa-
rameters for multilingual NMT, from O(ST ) to
O(S+T ). On one hand, Dong et al. (2015) train
multiple models as a one-to-many multilingual
NMT system that translates from one source lan-
guage to multiple target languages. On the other
hand, Luong et al. (2016) and Firat et al. (2016a)
perform many-to-many translation. Luong et al.
(2016), however, only report results for a single
language pair and do not attempt multilingual
translation. Firat et al. (2016a) propose an at-
tention mechanism that is shared across all lan-
guage pairs. We generalize the idea of multi-
way multilingual NMT with the parameter gen-
erator network, described later.

• Universal: In the case of Ha et al. (2016) and
Johnson et al. (2017), the authors propose us-
ing a single common set of encoder-decoder
parameters for all language pairs. While Ha
et al. (2016) embed words in a common se-
mantic space across languages, Johnson et al.
(2017) learn language embeddings that are in
the same space as the word embeddings. Here,
the parameter generator would provide the same

parameters ✓(enc) and ✓(dec) for all language
pairs. It would also create and keep track of
learnable variables representing language em-
beddings that are prepended to the encoder input
sequence. As we observed in our experiments,
this system fails to perform well when the train-
ing data is limited. Finally, we believe that em-
bedding languages in the same space as words
is not intuitive; in our approach, languages are
embedded in a separate space.

In contrast to all these related systems, we pro-
vide a simple, efficient, yet effective alternative –
a parameter generator for multilingual NMT, that
enables semi-supervised and zero-shot learning.
We also learn language embeddings, similar to
Johnson et al. (2017), but in our case they are sep-
arate from the word embeddings and are treated as
a context for the translation, in a sense that will
become clear in the next section. This notion of
context is used to define parameter sharing across
various encoders and decoders, and, as we discuss
in our conclusion, is even applicable beyond NMT.

3 Proposed Method

We propose a new way to share information across
different languages and to control the amount of
sharing, through the parameter generator module.
More specifically, we propose contextual parame-
ter generators.

Contextual Parameter Generator. Let us de-
note the source language for a given sentence pair
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by `s and the target language by `t. Then, when
using the contextual parameter generator, the pa-
rameters of the encoder are defined as ✓(enc)

,

g(enc)(ls), for some function g(enc), where ls de-
notes a language embedding for the source lan-
guage `s. Similarly, the parameters of the decoder
are defined as ✓(dec)

, g(dec)(lt) for some func-
tion g(dec), where lt denotes a language embed-
ding for the target language `t. Our generic for-
mulation does not impose any constraints on the
functional form of g(enc) and g(dec). In this case,
we can think of the source language, `s, as a con-
text for the encoder. The parameters of the en-
coder depend on its context, but its architecture is
common across all contexts. We can make a simi-
lar argument for the decoder, and that is where the
name of this parameter generator comes from. We
can even go a step further and have a parameter
generator that defines ✓(enc)

, g(enc)(ls, lt) and
✓(dec)

, g(dec)(ls, lt), thus coupling the encoding
and decoding stages for a given language pair. In
our experiments we stick to the previous, decou-
pled, form, because unlike Johnson et al. (2017),
it has the potential to lead to an interlingua.

Concretely, because the encoding and decoding
stages are decoupled, the encoder is not aware of
the target language while generating it. Thus, we
can take an encoded intermediate representation of
a sentence and translate it to any target language.
This is because, in this case, the intermediate rep-
resentation is independent of any target language.
This makes for a stronger argument that the inter-
mediate representation produced by our encoder
could be approaching a universal interlingua, more
so than methods that are aware of the target lan-
guage when they perform encoding.

3.1 Parameter Generator Network
We refer to the functions g(enc) and g(dec) as pa-
rameter generator networks. Even though our pro-
posed NMT framework does not rely on a specific
choice for g(enc) and g(dec), here we describe the
functional form we used for our experiments. Our
goal is to provide a simple form that works, and
for which we can reason about. For this reason,
we decided to define the parameter generator net-
works as simple linear transforms, similar to the
factored adaptation model of Michel and Neubig
(2018), which was only applied to the bias terms
of the output softmax:

g(enc)(ls) , W(enc)ls, (1)

g(dec)(lt) , W(dec)lt, (2)

where ls, lt 2 R
M, W(enc) 2 R

P
(enc)⇥M,

W(dec) 2 R
P

(dec)⇥M, M is the language embed-
ding size, P (enc) is the number of parameters of
the encoder, and P (dec) is the number of parame-
ters of the decoder.

Another way to interpret this model is that it im-
poses a low-rank constraint on the parameters. As
opposed to our approach, in the base case of using
multiple pairwise models to perform multilingual
translation, each model has P = P (enc) + P (dec)

learnable parameters for its encoder and decoder.
Given that the models are pairwise, for L lan-
guages, we have a total of L(L � 1) learnable
parameter vectors of size P . On the other hand,
using our contextual parameter generator we have
a total of L vectors of size M (one for each lan-
guage), and a single matrix of size P ⇥ M . Then,
the parameters of the encoder and the decoder, for
a single language pair, are defined as a linear com-
bination of the M columns of that matrix.

Controlled Parameter Sharing. We can further
control parameter sharing by observing that the
encoder/decoder parameters often have some “nat-
ural grouping”. For example, in the case of recur-
rent neural networks we may have multiple weight
matrices, one for each layer, as well as attention-
related parameters. Based on this observations, we
now propose a way to control how much infor-
mation is shared across languages. The language
embeddings need to represent all of the language-
specific information and thus may need to be large
in size. However, when computing the parame-
ters of each group, only a small part of that infor-
mation is relevant. Let ✓(enc) = {✓(enc)

j }G
j=1 and

✓(enc)
j 2 R

P
(enc)
j , where G denotes the number of

groups. Then, we define:

✓(enc)
j , W(enc)

j
P(enc)

j
ls, (3)

where W(enc)
j

2 R
P

(enc)
j ⇥M 0

and P(enc)
j

2
R

M 0⇥M , with M 0 < M (and similarly for the de-
coder parameters). We can see now that P(enc)

j
is

used to extract the relevant information (size M 0)
for parameter group j, from the larger language
embedding (size M ). This allows us to control
the parameter sharing across languages in the fol-
lowing way: if we want to increase the number
of per-language parameters (i.e., the language em-
bedding size) we can increase M while keeping
M 0 small enough so that the total number of pa-
rameters does not explode. This would not have
been possible without the proposed low-rank ap-
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proximation for W(enc), that uses the parameter
grouping information.

Alternative Options. Given that our proposed
approach does not depend on the specific choice of
the parameter generator network, it might be inter-
esting to design models that use side-information
about the languages that are being used (such as
linguistic information about language families and
hierarchies). This is outside the scope of this pa-
per, but may be an interesting future direction.

3.2 Semi-Supervised and Zero-Shot Learning
The proposed parameter generator also enables
semi-supervised learning via back-translation.
Concretely, monolingual data can be used to train
the shared encoder/decoder networks to translate a
sentence from some language to itself (similar to
the idea of auto-encoders by Vincent et al. (2008)).
This is possible and can help learning because of
the fact that many of the learnable parameters are
shared across languages.

Furthermore, zero-shot translation, where the
model translates between language pairs for which
it has seen no explicit training data, is also pos-
sible. This is because the same per-language pa-
rameters are used to translate to and from a given
language, irrespective of the language at the other
end. Therefore, as long as we train our model us-
ing some language pairs that involve a given lan-
guage, it is possible to learn to translate in any di-
rection involving that language.

3.3 Potential for Adaptation
Let us assume that we have trained a model using
data for some set of languages, `1, `2, . . . , `m. If
we obtain data for some new language `n, we do
not have to retrain the whole model from scratch.
In fact, we can fix the parameters that are shared
across all languages and only learn the embed-
ding for the new language (along with the relevant
word embeddings if not using a shared vocabu-
lary). Assuming that we had a sufficient number
of languages in the beginning, this may allow us to
obtain reasonable translation performance for the
new language, with a minimal amount of training.3

3.4 Number of Parameters
For the base case of using multiple pairwise mod-
els to perform multilingual translation, each model
has P + 2WV parameters, where P = P (enc) +

3This is due to the small number of parameters that need
to be learned in this case. To put this into perspective, in most
of our experiments we used language embeddings of size 8.

P (dec), W is the word embedding size, and V is
the vocabulary size per language (assumed to be
the same across languages, without loss of gen-
erality). Given that the models are pairwise, for
L languages, we have a total of L(L � 1)(P +
2WV ) = O(L2P + 2L2WV ) learnable param-
eters. For our approach, using the linear parame-
ter generator network presented in Section 3.1, we
have a total of O(PM + LWV ) learnable param-
eters. Note that the number of encoder/decoder
parameters has no dependence on L now, meaning
that our model can easily scale to a large number
of languages.

4 Experiments
In this section, we describe our experimental setup
along with our results and key observations.

Setup. For all our experiments we use as the
base NMT model an encoder-decoder network
which uses a bidirectional LSTM for the encoder,
and a two-layer LSTM with the attention model
of Bahdanau et al. (2015) for the decoder. The
word embedding size is set to 512. This is a com-
mon baseline model that achieves reasonable per-
formance and we decided to use it as-is, without
tuning any of its parameters, as extensive hyperpa-
rameter search is outside the scope of this paper.

During training, we use a label smoothing fac-
tor of 0.1 (Wu et al., 2016) and the AMSGrad op-
timizer (Reddi et al., 2018) with its default param-
eters in TensorFlow, and a batch size of 128 (due
to GPU memory constraints). Optimization was
stopped when the validation set BLEU score was
maximized. The order in which language pairs are
used while training was as follows: we always first
sample a language pair (uniformly at random), and
then sample a batch for that pair (uniformly at ran-
dom).4 During inference, we employ beam search
with a beam size of 10 and the length normaliza-
tion scheme of (Wu et al., 2016). We want to em-
phasize that we did not run experiments with other
architectures or configurations, and thus this archi-
tecture was not chosen because it was favorable to
our method, but rather because it was a frequently
mentioned baseline in existing literature.

All experiments were run on a machine with
a single Nvidia V100 GPU, and 24 GBs of sys-
tem memory. Our most expensive experiment
took about 10 hours to complete, which would

4We did not observe any “forgetting” effect, because we
keep “re-visiting” all language pairs throughout training. It
would be interesting to explore other sampling schemes, but
it is outside the scope of this paper.
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Table 1: Comparison of our proposed approach (shaded rows) with the base pairwise NMT model (PNMT) and the Google
multilingual NMT model (GML) for the IWSLT-15 dataset. The Percent Parallel row shows what portion of the parallel corpus
is used while training; the rest is being used only as monolingual data. Results are shown for the BLEU and Meteor metrics.
CPG* represents the same model as CPG, but trained without using auto-encoding training examples. The best score in each
case is shown in bold.

BLEU Meteor
PNMT GML CPG* CPG PNMT GML CPG* CPG

En )Cs 14.89 15.92 16.88 17.22 19.72 20.93 21.51 21.72
Cs )En 24.43 25.25 26.44 27.37 27.29 27.46 28.16 28.52
En )De 25.99 15.92 26.41 26.77 44.72 42.97 45.97 46.30
De )En 30.93 29.60 31.24 31.77 30.73 29.90 30.95 31.13
En )Fr 38.25 34.40 38.10 38.32 57.43 53.86 57.42 57.68
Fr )En 37.40 35.14 37.11 37.89 34.83 33.14 34.34 34.89
En )Th 23.62 22.22 26.03 26.33 - - - -
Th )En 15.54 14.03 16.54 26.77 21.58 21.02 22.78 23.05
En )Vi 27.47 25.54 28.33 29.03 - - - -
Vi )En 24.03 23.19 25.91 26.38 27.59 26.96 28.23 28.7910

0%
Pa

ra
lle

lD
at

a

Mean 26.26 24.12 27.30 27.80 32.98 32.03 33.67 34.01
En )Cs 5.71 8.18 8.40 9.49 12.18 14.97 15.25 15.90
Cs )En 6.64 14.56 14.81 15.38 13.02 20.04 19.98 20.87
En )De 11.70 14.60 15.09 16.03 29.98 33.74 34.88 36.19
De )En 18.10 19.02 19.77 20.25 22.57 23.27 23.65 24.40
En )Fr 24.47 25.15 24.00 25.79 44.10 44.84 44.95 46.22
Fr )En 23.79 25.02 24.55 27.12 26.28 26.61 26.20 28.18
En )Th 7.86 15.58 18.41 17.65 - - - -
Th )En 7.13 9.11 10.19 10.14 13.91 16.32 16.78 16.92
En )Vi 18.01 17.51 18.92 18.90 - - - -
Vi )En 6.69 16.00 16.28 16.86 13.39 21.01 21.34 22.28

10
%

Pa
ra

lle
lD

at
a

Mean 13.01 16.47 17.04 17.76 21.93 25.10 25.38 26.37
En )Cs 0.49 1.25 1.57 2.38 4.60 6.24 6.28 8.38
Cs )En 1.10 1.76 1.87 4.60 6.29 7.13 7.08 11.15
En )De 1.22 4.13 4.06 6.46 12.23 18.29 17.61 23.83
De )En 1.46 3.42 3.86 7.49 7.58 8.79 8.95 13.73
En )Fr 2.88 7.74 7.41 12.45 13.88 21.29 21.80 30.36
Fr )En 4.05 5.22 5.06 11.39 9.58 9.86 9.83 16.34
En )Th 1.22 5.72 8.01 9.26 - - - -
Th )En 1.42 1.66 1.65 3.37 6.08 7.22 5.89 8.74
En )Vi 5.35 5.61 5.48 8.00 - - - -
Vi )En 2.01 3.57 3.64 6.43 7.86 8.76 8.48 12.04

1%
Pa

ra
lle

lD
at

a

Mean 2.12 4.01 4.26 7.18 8.51 10.95 10.74 15.58

cost about $25 on a cloud computing service such
as Google Cloud or Amazon Web Services, thus
making our results reproducible, even by indepen-
dent researchers.

Experimental Settings. The goal of our exper-
iments is to show how, by using a simple modi-
fication of this model, (i) we can achieve signif-
icant improvements in performance, while at the
same time (ii) being more data and computation
efficient, and (iii) enabling support for zero-shot
translation. To that end, we perform three types of
experiments:

1. Supervised: In this experiment, we use full
parallel corpora to train our models. Plain
pairwise NMT models (PNMT) are compared
to the same models modified to use our pro-
posed decoupled parameter generator. We use
two variants: (i) one which does not use auto-
encoding of monolingual data while training
(CPG*), and (ii) one which does (CPG). Please

refer to Section 3.2 for more details.
2. Low-Resource: Similar to the supervised ex-

periments except that we limit the size of the
parallel corpora used in training. However, for
GML and CPG the full monolingual corpus is
used for auto-encoding training.

3. Zero-Shot: In this experiment, our goal is to
evaluate how well a model can learn to trans-
late between language pairs that it has not seen
while training. For example, a model trained
using parallel corpora between English and
German, and English and French, will be eval-
uated in translating from German to French.
PNMT can perform zero-shot translation in this
setting using pivoting. This means that, in the
previous example, we would first translate from
German to English and then from English to
French (using two pairwise models for a sin-
gle translation). However, pivoting is prone to
error propagation incurred when chaining mul-
tiple imperfect translations. The proposed CPG
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Table 2: Comparison of our proposed approach (shaded rows) with the base pairwise NMT model (PNMT) and the Google
multilingual NMT model (GML) for the IWSLT-17 dataset. Results are shown for the BLEU metric only because Meteor does
not support It, Nl, and Ro. CPG8 represents CPG using language embeddings of size 8. The “C4” subscript represents the
low-rank version of CPG for controlled parameter sharing (see Section 3.1), using rank 4, etc. The best score in each case is
shown in bold.

BLEU
PNMT GML CPG8 CPG8

C4 CPG8
C2 CPG8

C1 CPG64
C8 CPG512

C8

Su
pe

rv
is

ed

De )En 21.78 21.25 22.56 20.78 22.09 21.23 21.50 22.38
De )It 13.16 13.84 14.73 14.34 14.43 13.84 14.34 14.11
De )Ro 10.85 11.95 12.24 12.37 12.72 10.37 11.32 11.94
En )De 19.75 17.06 19.41 19.04 18.42 17.04 17.46 19.29
En )It 27.70 25.74 27.57 27.11 28.21 26.26 27.26 27.48
En )Nl 24.41 22.46 24.47 25.15 24.64 23.94 24.48 24.50
En )Ro 19.23 18.60 20.83 20.96 18.69 17.23 20.20 20.86
It )De 14.39 12.76 14.61 15.06 14.15 13.12 14.18 14.69
It )En 29.84 27.96 30.62 30.10 29.44 29.22 29.56 30.18
It )Nl 16.74 16.27 17.99 18.11 18.05 17.13 17.71 17.99
Nl )En 26.30 24.78 26.31 26.17 25.74 26.15 26.33 26.20
Nl )It 16.03 16.10 16.81 17.50 17.03 16.81 16.89 17.09
Nl )Ro 12.84 12.48 14.01 14.44 12.56 11.79 12.38 13.66
Ro )De 12.75 12.21 13.58 13.66 13.02 12.62 12.96 13.63
Ro )En 24.33 22.88 23.83 23.88 24.20 23.58 24.65 23.57
Ro )Nl 13.70 14.11 15.34 15.51 15.11 14.65 15.29 15.19
Mean 18.99 18.15 19.68 19.75 19.28 18.44 19.16 19.74

Ze
ro

-S
ho

t De )Nl 12.75 12.50 12.74 12.80 11.65 12.41 12.67 12.75
It )Ro 9.97 9.57 10.57 10.17 10.42 9.65 10.69 10.32
Nl )De 11.32 10.47 11.52 11.20 11.28 10.89 11.63 11.45
Ro )It 11.69 10.82 11.51 11.40 11.66 11.42 11.78 11.27
Mean 11.43 10.84 11.59 11.39 11.25 11.09 11.69 11.44

models inherently support zero-shot translation
and require no pivoting.

For the experiments using the CPG model with-
out controlled parameter sharing, we use language
embeddings of size 8. This is based merely on
the fact that this is the largest model size we could
fit on one GPU. Whenever possible, we compare
against PNMT, GML by Johnson et al. (2017),5
and other state-of-the-art results.

Datasets. We use the following datasets:

• IWSLT-15: Used for supervised and low-
resource experiments only (this dataset does not
support zero-shot learning). We report results
for Czech (Ch), English (En), French (Fr), Ger-
man (De), Thai (Th), and Vietnamese (Vi).
This dataset contains ~90,000-220,000 training
sentence pairs (depending on the language pair),
~500-900 validation pairs, and ~1,000-1,300
test pairs.

• IWSLT-17: Used for supervised and zero-shot
experiments. We report results for Dutch (Nl),
English (En), German (De), Italian (It), and
Romanian (Ro). This dataset contains ~220,000

5We use our own implementation of GML in order to ob-
tain a fair comparison, in terms of the whole MT pipeline. We
have modified it to use the same per-language vocabularies
that we use for our approaches, as the proposed shared BPE
vocabulary fails to perform well for the considered datasets.

training sentence pairs (for all language pairs
except for the zero-shot ones), ~900 validation
pairs, and ~1,100 test pairs.

Data Preprocessing. We preprocess our data us-
ing a modified version of the Moses tokenizer
(Koehn et al., 2007) that correctly handles escaped
HTML characters. We also perform some Uni-
code character normalization and cleaning. While
training, we only consider sentences up to length
50. For both datasets, we generate a per-language
vocabulary consisting of the most frequently oc-
curring words, while ignoring words that appear
less than 5 times in the whole corpus, and capping
the vocabulary size to 20,000 words.

Results. Our results for the IWSLT-15 experi-
ments are shown in Table 1. It is clear that our
approach consistently outperforms both the corre-
sponding pairwise model and GML. Furthermore,
its advantage grows larger in the low-resource
setting (up to 5.06 BLEU score difference, or
a 2.4⇥ increase), which is expected due to the
extensive parameter sharing in our model. For
this dataset, there exist some additional published
state-of-the-art results not shown in Tables 1 and
2. Huang et al. (2018) report a BLEU score of
28.07 for the En)Vi task, while our model is able
to achieve a score of 29.03. Furthermore, Ha
et al. (2016) report a BLEU score of 25.87 for the
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En)De task, while our model is able to achieve
a score of 26.77.6 Our results for the IWSLT-17
experiments are shown in Table 2.7 Again, our
method consistently outperforms both PNMT and
GML, in both the supervised and the zero-shot set-
tings. Furthermore, the results indicate that our
model performance is robust to different sizes of
the language embeddings and the choice of M 0 for
controllable parameter sharing. It only underper-
forms in the degenerate case where M 0 = 1. It is
also worth noting that, in the fully supervised set-
ting, GML, the current state-of-the-art in the mul-
tilingual setting, underperforms the pairwise mod-
els.

The presented results provide evidence that our
proposed approach is able to significantly improve
performance, without requiring extensive tuning.

Language Embeddings. An important aspect
of our model is that it learns language embeddings.
In Figure 2 we show pairwise cosine distances be-
tween the learned language embeddings for our
fully supervised experiments. There are some in-
teresting patterns that indicate that the learned lan-
guage embeddings are reasonable. For example,
we observe that German (De) and Dutch (Nl) are
most similar for the IWSLT-17 dataset, with Ital-
ian (It) and Romanian (Ro) coming second. Fur-
thermore, Romanian and German are the furthest
apart for that dataset. These relationships agree
with linguistic knowledge about these languages
and the families they belong to. We see similar
patterns in the IWSLT-15 results but we focus on
IWSLT-17 here, because it is a larger, better qual-
ity, dataset with more supervised language pairs.
These results are encouraging for analyzing such
embeddings to discover relationships between lan-
guages that were previously unknown. For exam-
ple, perhaps surprisingly, French (Fr) and Viet-
namese (Vi) appear to be significantly related for
the IWSLT-15 dataset results. This is likely due
to French influence in Vietnamese because to the
occupation of Vietnam by France during the 19th

and 20th centuries (Marr, 1981).

6We were unable to find reported state-of-the-art results
for the rest of the language pairs.

7Note that, our results for IWSLT-17 are not comparable
to those of the official challenge report (Cettolo et al., 2017),
as we use less training data, a smaller baseline model, and our
evaluation pipeline potentially differs. However, the numbers
presented for all methods in this paper are comparable, as
they were all obtained using the same baseline model and
evaluation pipeline.

Figure 2: Pairwise cosine distance for all language pairs in
the IWSLT-15 and IWSLT-17 datasets. Darker colors repre-
sent more similar languages.

4.1 Implementation and Reproducibility
Along with this paper we are releasing an imple-
mentation of our approach and experiments as part
of a new Scala framework for machine transla-
tion.8 It is built on top of TensorFlow Scala (Pla-
tanios, 2018) and follows the modular NMT de-
sign (described in Section 2.1) that supports var-
ious NMT models, including our baselines (e.g.,
Johnson et al. (2017)). It also contains data load-
ing and preprocessing pipelines that support mul-
tiple datasets and languages, and is more efficient
than other packages (e.g., tf-nmt9). Further-
more, the framework supports various vocabular-
ies, among which we provide a new implementa-
tion for the byte-pair encoding (BPE) algorithm
(Sennrich et al., 2016b) that is 2 to 3 orders of
magnitude faster than the released one.10 All ex-
periments presented in this paper were performed
using version 0.1.0 of the framework.

5 Related Work

Interlingual translation (Richens, 1958) has been
the object of many research efforts. For a long
time, before the move to NMT, most practical
machine translation systems only focused on in-
dividual language pairs. Since the success of
end-to-end NMT approaches such as the encoder-
decoder framework (Sutskever et al., 2014; Bah-
danau et al., 2015; Cho et al., 2014), recent work
has tried to extend the framework to multi-lingual
translation. An early approach was Dong et al.
(2015) who performed one-to-many translation
with a separate attention mechanism for each de-
coder. Luong et al. (2016) extended this idea with
a focus on multi-task learning and multiple en-
coders and decoders, operating in a single shared
vector space. The same architecture is used in

8https://github.com/eaplatanios/symphony-mt
9https://github.com/tensorflow/nmt

10https://github.com/rsennrich/subword-nmt
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(Caglayan et al., 2016) for translation across mul-
tiple modalities. Zoph and Knight (2016) flipped
this idea with a many-to-one translation model,
however requiring the presence of a multi-way
parallel corpus between all the languages, which is
difficult to obtain. Lee et al. (2017) used a single
character-level encoder across multiple languages
by training a model on a many-to-one transla-
tion task. Closest to our work are more recent
approaches, already described in Section 2 (Firat
et al., 2016a; Johnson et al., 2017; Ha et al., 2016),
that attempt to enforce different kinds of parame-
ter sharing across languages.

Parameter sharing in multilingual NMT natu-
rally enables semi-supervised and zero-shot learn-
ing. Unsupervised learning has been previously
explored with key ideas such as back-translation
(Sennrich et al., 2016a), dual learning (He et al.,
2016), common latent space learning (Lample
et al., 2018), etc. In the vein of multilingual NMT,
Artetxe et al. (2018) proposed a model that uses
a shared encoder and multiple decoders with a fo-
cus on unsupervised translation. The entire sys-
tem uses cross-lingual embeddings and is trained
to reconstruct its input using only monolingual
data. Zero-shot translation was first attempted
in (Firat et al., 2016b) who performed zero-zhot
translation using their pre-trained multi-way mul-
tilingual model, fine-tuning it with pseudo-parallel
data generated by the model itself. This was
recently extended using a teacher-student frame-
work (Chen et al., 2017). Later, zero-shot transla-
tion without any additional steps was attempted in
(Johnson et al., 2017) using their shared encoder-
decoder network. An iterative training procedure
that leverages the duality of translations directly
generated by the system for zero-shot learning was
proposed by Lakew et al. (2017). For extremely
low resource languages, Gu et al. (2018) proposed
sharing lexical and sentence-level representations
across multiple source languages with a single tar-
get language. Closely related is the work of Cheng
et al. (2016) who proposed the joint training of
source-to-pivot and pivot-to-target NMT models.

Ha et al. (2018) are probably the first to intro-
duce a similar idea to that of having one network
(called a hypernetwork) generate the parameters of
another. However, in that work, the input to the
hypernetwork are structural features of the original
network (e.g., layer size and index). Al-Shedivat
et al. (2017) also propose a related method where
a neural network generates the parameters of a lin-
ear model. Their focus is mostly on interpretabil-

ity (i.e., knowing which features the network con-
siders important). However, to our knowledge,
there is no previous work which proposes hav-
ing a network generate the parameters of another
deep neural network (e.g., a recurrent neural net-
work), using some well-defined context based on
the input data. This context, in our case, is the
language of the input sentences to the translation
model, along with the target translation language.

6 Conclusion and Future Directions
We have presented here a novel contextual pa-
rameter generation approach to neural machine
translation. Our resulting system, which outper-
forms other state-of-the-art systems, uses a stan-
dard pairwise encoder-decoder architecture. How-
ever, it differs from earlier approaches by incor-
porating a component that generates the parame-
ters to be used by the encoder and the decoder for
the current sentence, based on the source and tar-
get languages, respectively. We refer to this novel
component as the contextual parameter genera-
tor. The benefit of this approach is that it dra-
matically improves the ratio of the number of pa-
rameters to be learned, to the number of training
examples available, by leveraging shared structure
across different languages. Thus, our approach
does not require any extra machinery such as back-
translation, dual learning, pivoting, or multilin-
gual word embeddings. It rather relies on the sim-
ple idea of treating language as a context within
which to encode/decode. We also showed that the
proposed approach is able to achieve state-of-the-
art performance without requiring any tuning. Fi-
nally, we performed a basic analysis of the learned
language embeddings, which showed that cosine
distances between the learned language embed-
dings reflect well known similarities among lan-
guage pairs such as German and Dutch.

In the future, we want to extend the concept of
the contextual parameter generator to more gen-
eral settings, such as translating between different
modalities of data (e.g., image captioning). Fur-
thermore, based on the discussion of Section 3.3,
we hope to develop an adaptable, never-ending
learning (Mitchell et al., 2018) NMT system.

Acknowledgments
We would like to thank Otilia Stretcu, Abulhair
Saparov, and Maruan Al-Shedivat for the useful
feedback they provided in early versions of this
paper. This research was supported in part by
AFOSR under grant FA95501710218.

433



References
Maruan Al-Shedivat, Avinava Dubey, and Eric P Xing.

2017. Contextual Explanation Networks. CoRR,
abs/1705.10301.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised Neural Ma-
chine Translation. In International Conference on
Learning Representations.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations.

Ozan Caglayan, Walid Aransa, Yaxing Wang,
Marc Masana, Mercedes Garcı́a-Martı́nez, Fethi
Bougares, Loı̈c Barrault, and Joost van de Weijer.
2016. Does Multimodality Help Human and
Machine for Translation and Image Captioning? In
Proceedings of the First Conference on Machine
Translation, volume 2.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuhito Sudoh,
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Abstract

Neural Machine Translation has achieved
state-of-the-art performance for several lan-
guage pairs using a combination of parallel
and synthetic data. Synthetic data is often
generated by back-translating sentences ran-
domly sampled from monolingual data us-
ing a reverse translation model. While back-
translation has been shown to be very effec-
tive in many cases, it is not entirely clear why.
In this work, we explore different aspects of
back-translation, and show that words with
high prediction loss during training benefit
most from the addition of synthetic data. We
introduce several variations of sampling strate-
gies targeting difficult-to-predict words using
prediction losses and frequencies of words. In
addition, we also target the contexts of difficult
words and sample sentences that are similar in
context. Experimental results for the WMT
news translation task show that our method
improves translation quality by up to 1.7 and
1.2 BLEU points over back-translation using
random sampling for GermanÑEnglish and
EnglishÑGerman, respectively.

1 Introduction

Neural machine translation (NMT) using a
sequence-to-sequence model has achieved state-
of-the-art performance for several language pairs
(Bahdanau et al., 2015; Sutskever et al., 2014; Cho
et al., 2014). The availability of large-scale train-
ing data for these sequence-to-sequence models is
essential for achieving good translation quality.

Previous approaches have focused on leverag-
ing monolingual data which is available in much
larger quantities than parallel data (Lambert et al.,
2011). Gulcehre et al. (2017) proposed two
methods, shallow and deep fusion, for integrat-
ing a neural language model into the NMT sys-
tem. They observe improvements by combining

the scores of a neural language model trained on
target monolingual data with the NMT system.

Sennrich et al. (2016a) proposed back-
translation of monolingual target sentences to
the source language and adding the synthetic
sentences to the parallel data. In this approach a
reverse model trained on parallel data is used to
translate sentences from target-side monolingual
data into the source language. This synthetic
parallel data is then used in combination with the
actual parallel data to re-train the model. This
approach yields state-of-the-art results even when
large parallel data are available and has become
common practice in NMT (Sennrich et al., 2017;
Garcı́a-Martı́nez et al., 2017; Ha et al., 2017).

While back-translation has been shown to be
very effective to improve translation quality, it is
not exactly clear why it helps. Generally speak-
ing, it mitigates the problem of overfitting and
fluency by exploiting additional data in the tar-
get language. An important question in this con-
text is how to select the monolingual data in the
target language that is to be back-translated into
the source language to optimally benefit transla-
tion quality. Pham et al. (2017) experimented with
using domain adaptation methods to select mono-
lingual data based on the cross-entropy between
the monolingual data and in-domain corpus (Ax-
elrod et al., 2015) but did not find any improve-
ments over random sampling as originally pro-
posed by Sennrich et al. (2016a). Earlier work
has explored to what extent data selection of paral-
lel corpora can benefit translation quality (Axelrod
et al., 2011; van der Wees et al., 2017), but such
selection techniques have not been investigated in
the context of back-translation.

In this work, we explore different aspects of
the back-translation method to gain a better under-
standing of its performance. Our analyses show
that the quality of the synthetic data acquired with
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a reasonably good model has a small impact on
the effectiveness of back-translation, but the ratio
of synthetic to real training data plays a more im-
portant role. With a higher ratio, the model gets bi-
ased towards noises in synthetic data and unlearns
the parameters completely. Our findings show that
it is mostly words that are difficult to predict in the
target language that benefit from additional back-
translated data. These are the words with high
prediction loss during training when the transla-
tion model converges. We further investigate these
difficult words and explore alternatives to random
sampling of sentences with a focus on increasing
occurrences of such words.

Our proposed approach is twofold: identifying
difficult words and sampling with the objective of
increasing occurrences of these words, and iden-
tifying contexts where these words are difficult to
predict and sample sentences similar to the diffi-
cult contexts. With targeted sampling of sentences
for back-translation we achieve improvements of
up to 1.7 BLEU points over back-translation using
random sampling.

2 Back-Translation for NMT
In this section, we briefly review a sequence-to-
sequence NMT system and describe our experi-
mental settings. We then investigate different as-
pects and modeling challenges of integrating the
back-translation method into the NMT pipeline.

2.1 Neural Machine Translation
The NMT system used for our experiments is
an encoder-decoder network with recurrent archi-
tecture (Luong et al., 2015). For training the
NMT system, two sequences of tokens, X ““
x1, . . . , xn

‰
and Y “

“
y1, . . . , ym

‰
, are given in

the source and target language, respectively.
The source sequence is the input to the encoder

which is a bidirectional long short-term memory
network generating a representation sn. Using an
attention mechanism (Bahdanau et al., 2015), the
attentional hidden state is:

rht “ tanhpWcrct;htsq
where ht is the target hidden state at time step t
and ct is the context vector which is a weighted
average of sn.

The decoder predicts each target token yt by
computing the probability:

ppyt|y†t, snq “ softmaxpWo
rhtq

For the token yt, the conditional probability
ppyt|y†t, snq during training quantifies the diffi-
culty of predicting that token in the context y†t.
The prediction loss of token yt is the negative log-
likelihood of this probability.

During training on a parallel corpus D, the
cross-entropy objective function is defined as:

L “
ÿ

pX,Y qPD

mÿ

i“1

´ log ppyi|y†i, snq

The objective of this function is to improve
the model’s estimation of predicting target words
given the source sentence and the target context.

The model is trained end-to-end by minimizing
the negative log likelihood of the target words.

2.2 Experimental Setup
For the translation experiments, we use
EnglishØGerman WMT17 training data and
report results on newstest 2014, 2015, 2016, and
2017 (Bojar et al., 2017).

As NMT system, we use a 2-layer attention-
based encoder-decoder model implemented in
OpenNMT (Klein et al., 2017) trained with em-
bedding size 512, hidden dimension size 1024,
and batch size 64. We pre-process the training data
with Byte-Pair Encoding (BPE) using 32K merge
operations (Sennrich et al., 2016b).

We compare the results to Sennrich et al.
(2016a) by back-translating random sentences
from the monolingual data and combine them with
the parallel training data. We perform the random
selection and re-training 3 times and report the av-
eraged outcomes for the 3 models. In all experi-
ments the sentence pairs are shuffled before each
epoch.

We measure translation quality by single-
reference case-sensitive BLEU (Papineni et al.,
2002) computed with the multi-bleu.perl
script from Moses.

2.3 Size of the Synthetic Data in
Back-Translation

One selection criterion for using back-translation
is the ratio of real to synthetic data. Sennrich et al.
(2016a) showed that higher ratios of synthetic data
leads to decreases in translation performance.

In order to investigate whether the improve-
ments in translation performance increases with
higher ratios of synthetic data, we perform three
experiments with different sizes of synthetic data.
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Size 2014 2015 2016 2017

Baseline 4.5M 26.7 27.6 32.5 28.1
+ synthetic (1:1) 9M 28.7 29.7 36.3 30.8
+ synthetic (1:4) 23M 29.1 30.0 36.9 31.1
+ synthetic (1:10) 50M 22.8 23.6 29.2 23.9

Table 1: GermanÑEnglish translation quality
(BLEU) of systems with different ratios of real:syn
data.

Figure 1 shows the perplexity as a function of
training time for different sizes of synthetic data.
One can see that all systems perform similarly
in the beginning and converge after observing in-
creasingly more training instances. However, the
model with the ratio of (1:10) synthetic data gets
increasingly biased towards the noisy data after
1M instances. Decreases in performance with
more synthetic than real data is also inline with
findings of Poncelas et al. (2018).

Comparing the systems using ratios of (1:1) and
(1:4), we see that the latter achieves lower perplex-
ity during training. Table 1 presents the perfor-
mance of these systems on the GermanÑEnglish
translation task. The BLEU scores show that
the translation quality does not improve linearly
with the size of the synthetic data. The model
trained on (1:4) real to synthetic ratio of training
data achieves the best results, however, the perfor-
mance is close to the model trained on (1:1) train-
ing data.

2.4 Direction of Back-Translation

Adding monolingual data in the target language to
the training data has the benefit of introducing new
context and improving the fluency of the transla-
tion model. The automatically generated trans-
lations in the source language while being erro-
neous, introduce new context for the source words
and will not affect the translation model signifi-
cantly.

Monolingual data is available in large quantities
for many languages. The decision of the direction
of back-translation is subsequently not based on
the monolingual data available, but on the advan-
tage of having more fluent source or target sen-
tences.

Lambert et al. (2011) show that adding syn-
thetic source and real target data achieves im-
provements in traditional phrase-based machine
translation (PBMT). Similarly in previous works

Size 2014 2015 2016 2017

Baseline 4.5M 21.2 23.3 28.0 22.4
+ synthetic tgt 9M 22.4 25.3 29.8 23.7
+ synthetic src 9M 24.0 26.0 30.7 24.8

Table 2: EnglishÑGerman translation quality
(BLEU) of systems using forward and reverse
models for generating synthetic data.

in NMT, back-translation is performed on mono-
lingual data in the target language.

We perform a small experiment to measure
whether back-translating from source to target is
also beneficial for improving translation quality.
Table 2 shows that in both directions the perfor-
mance of the translation system improves over the
baseline. This is in contrast to the findings of Lam-
bert et al. (2011) for PBMT systems where they
show that using synthetic target data does not lead
to improvements in translation quality.

Still, when adding monolingual data in the tar-
get language the BLEU scores are slightly higher
than when using monolingual data in the source
language. This indicates the moderate importance
of having fluent sentences in the target language.

Figure 1: Training plots for systems with different
ratios of (real : syn) training data, showing per-
plexity on development set.

2.5 Quality of the Synthetic Data in
Back-Translation

One selection criterion for back-translation is the
quality of the synthetic data. Khayrallah and
Koehn (2018) studied the effects of noise in the
training data on a translation model and discov-
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ered that NMT models are less robust to many
types of noise than PBMT models. In order for
the NMT model to learn from the parallel data,
the data should be fluent and close to the man-
ually generated translations. However, automati-
cally generating sentences using back-translation
is not as accurate as manual translations.

Size 2014 2015 2016 2017

Baseline 2.25M 24.3 24.9 29.5 25.6
+ synthetic 4.5M 26.0 26.9 32.2 27.5
+ ground truth 4.5M 26.7 27.6 32.5 28.1

Table 3: GermanÑEnglish translation quality
(BLEU).

To investigate the oracle gap between the
performance of manually generated and back-
translated sentences, we perform a simple exper-
iment using the existing parallel training data. In
this experiment, we divide the parallel data into
two parts, train the reverse model on the first half
of the data and use this model to back-translate the
second half. The manually translated sentences of
the second half are considered as ground truth for
the synthetic data.

Table 3 shows the BLEU scores of the experi-
ments. As to be expected, re-training with addi-
tional parallel data yields higher performance than
re-training with additional synthetic data. How-
ever, the differences between the BLEU scores of
these two models are surprisingly small. This indi-
cates that performing back-translation with a rea-
sonably good reverse model already achieves re-
sults that are close to a system that uses additional
manually translated data. This is inline with find-
ings of Sennrich et al. (2016a) who observed that
the same monolingual data translated with three
translation systems of different quality and used
in re-training the translation model yields similar
results.

3 Back-Translation and Token
Prediction

In the previous section, we observed that the re-
verse model used to back-translate achieves re-
sults comparable to manually translated sentences.
Also, there is a limit in learning from synthetic
data, and with more synthetic data the model un-
learns its parameters completely.

In this section, we investigate the influence
of the sampled sentences on the learning model.

Fadaee et al. (2017) showed that targeting specific
words during data augmentation improves the gen-
eration of these words in the right context. Specifi-
cally, adding synthetic data to the training data has
an impact on the prediction probabilities of indi-
vidual words. In this section, we further examine
the effects of the back-translated synthetic data on
the prediction of target tokens.

Figure 2: Top: Changes in mean token prediction
loss after re-training with synthetic data sorted by
mean prediction loss of the baseline system. De-
creases and increases in values are marked blue
and red, respectively. Bottom: Frequencies (log)
of target tokens in the baseline training data.

As mentioned in Section 2.1, the objec-
tive function of training an NMT system is to
minimize L by minimizing the prediction loss
´ log ppyt|y†t, snq for each target token in the
training data. The addition of monolingual data
in the target language improves the estimation of
the probability ppY q and consequently the model
generates more fluent sentences.

Sennrich et al. (2016a) show that by using back-
translation, the system with target-side monolin-
gual data reaches a lower perplexity on the de-
velopment set. This is expected since the do-
main of the monolingual data is similar to the do-
main of the development set. To investigate the
model’s accuracy independent from the domains
of the data, we collect statistics of the target token
prediction loss during training.

Figure 2 shows changes of token prediction loss
when training converges and the weights are verg-
ing on being stable. The values are sorted by mean
token prediction loss of the system trained on real
parallel data.
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We observe an effect similar to distributional
smoothing (Chen and Goodman, 1996): While
prediction loss increases slightly for most tokens,
the largest decrease in loss occurs for tokens with
high prediction loss values. This indicates that by
randomly sampling sentences for back-translation,
the model improves its estimation of tokens that
were originally more difficult to predict, i.e., to-
kens that had a high prediction loss. Note that we
compute the token prediction loss in just one pass
over the training corpus with the final model and
as a result it is not biased towards the order of the
data.

This finding motivates us to further explore
sampling criteria for back-translation that con-
tribute considerably to the parameter estimation of
the translation model. We propose that by over-
sampling sentences containing difficult-to-predict
tokens we can maximize the impact of using the
monolingual data. After translating sentences con-
taining such tokens and including them in the
training data, the model becomes more robust in
predicting these tokens.

In the next two sections, we propose several
methods of using the target token prediction loss
to identify the most rewarding sentences for back-
translating and re-training the translation model.

4 Targeted Sampling for Difficult Words

One of the main outcomes of using synthetic data
is better estimation of words that were originally
difficult to predict as measured by their high pre-
diction losses during training. In this section, we
propose three variations of how to identify these
words and perform sampling to target these words.

Algorithm 1 Sampling for difficult words
Input: Difficult tokens D “ tyiuD

i“1, monolingual
corpus M, number of required samples N
Output: Sampled sentences S “ tSiuN

i“1 where each
sentence Si is sampled from M

1: procedure DIFFSAMPLING (D, M, N ):
2: Initialize S “ tu
3: repeat
4: Sample Sc from M

5: for all tokens y in Sc do
6: if y P D then
7: Add Sc to S
8: until |S| “ N
9: return S

4.1 Token Frequency as a Feature of
Difficulty

Figure 2 shows that the majority of tokens with
high mean prediction losses have low frequencies
in the training data. Additionally, the majority of
decreases in prediction loss after adding synthetic
sentence pairs to the training data occurs with less
frequent tokens.

Note that these tokens are not necessarily rare
in the traditional sense; in Figure 2 the 10k less
frequent tokens in the target vocabulary benefit
most from back-translated data.

Sampling new contexts from monolingual data
provides context diversity proportional to the to-
ken frequencies and less frequent tokens benefit
most from new contexts. Algorithm 1 presents
this approach where the list of difficult tokens is
defined as:

D “ t@yi P Vt : freqpyiq † ⌘u

Vt is the target vocabulary and ⌘ is the frequency
threshold for deciding on the difficulty of the to-
ken.

4.2 Difficult Words with High Mean
Prediction Losses

In this approach, we use the mean losses to iden-
tify difficult-to-predict tokens. The mean predic-
tion loss ˆ̀pyq of token y during training is defined
as follows:

ˆ̀pyq “ 1

ny

Nÿ

n“1

|Y n|ÿ

t“1

´ log ppyn
t |yn

†t, snq�pyn
t , yq

where ny is the number of times token y is ob-
served during training, i.e., the token frequency of
y, N is the number of sentences in the training
data, |Y n| is the length of target sentence n, and
�pyn

t , yq is the Kronecker delta function, which is
1 if yn

t “ y and 0 otherwise.
By specifically providing more sentences for

difficult words, we improve the model’s estimation
and decrease the model’s uncertainty in prediction.
During sampling from the monolingual data, we
select sentences that contain difficult words.

Algorithm 1 presents this approach where the
list of difficult tokens is defined as:

D “ t@yi P Vt : ˆ̀pyiq ° µu

Vt is the vocabulary of the target language and
µ is the threshold on the difficulty of the token.
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De-En En-De
System test2014 test2015 test2016 test2017 test2014 test2015 test2016 test2017

BASELINE: 26.7 27.6 32.5 28.1 21.2 23.3 28.0 22.4
RANDOM: 28.7 29.7 36.3 30.8 24.0 26.0 30.7 24.8

FREQ 29.7 30.5 37.5 31.4 24.2 27.0 31.7 25.2
MEANPREDLOSS: 29.9 30.9 37.8 32.1 24.7 26.8 31.5 25.5
MEANPREDLOSS + STDPREDLOSS 30.0 30.9 37.7 31.9 24.1 26.9 31.0 25.3
PRESERVE PREDLOSS RATIO 29.8 30.9 37.4 31.6 24.5 27.2 31.8 25.5

Table 4: GermanØEnglish translation quality (BLEU). Experiments marked : are averaged over 3 runs.
MEANPREDLOSS and FREQ are difficulty criteria based on mean token prediction loss and token fre-
quency respectively. MEANPREDLOSS + STDPREDLOSS is experiments favoring tokens with skewed
prediction losses. PRESERVE PREDLOSS RATIO preserves the ratio of the distribution of difficult con-
texts.

4.3 Difficult Words with Skewed Prediction
Losses

By using the mean loss for target tokens as defined
above, we do not discriminate between differences
in prediction loss for occurrences in different con-
texts. This lack of discrimination can be problem-
atic for tokens with high loss variations. For in-
stance, there can be a token with ten occurrences,
out of which two have high and eight have low
prediction loss values.

We hypothesize that if a particular token is eas-
ier to predict in some contexts and harder in oth-
ers, the sampling strategy should be context sensi-
tive, allowing to target specific contexts in which
a token has a high prediction loss. In order to dis-
tinguish between tokens with a skewed and tokens
with a more uniform prediction loss distribution,
we use both mean and standard deviation of token
prediction losses to identify difficult tokens.

Algorithm 1 formalizes this approach where the
list of the difficult tokens is defined as:

D “ t@yi P Vt : ˆ̀pyiq ° µ ^ �p`pyiqq ° ⇢u

ˆ̀pyiq is the mean and �p`pyiqq is the standard
deviation of prediction loss of token yi, Vt is the
vocabulary list of the target language, and µ and ⇢
are the thresholds for deciding on the difficulty of
the token.

4.4 Preserving Sampling Ratio of Difficult
Occurrences

Above we examined the mean of prediction loss
for each token over all occurrences, in order to
identify difficult-to-predict tokens. However, the
uncertainty of the model in predicting a difficult

Algorithm 2 Sampling with ratio preservation
Input: Difficult tokens and the corresponding sentences
in the bitext D “ tyt, Yyt

“ ry1, . . . , yt, . . . , ymsu,
monolingual corpus M, number of required samples N
Output: Sampled sentences S “ tSiuN

i“1 where each
sentence Si is sampled from M

1: procedure PREDLOSSRATIOSAMPLING(D, M, N ):
2: Initialize S “ tu
3: Hpytq “ Nˆ|pyt,¨qPD|

|py¨,¨qPD|
4: repeat
5: Sample Sc from M

6: for all tokens y in Sc do
7: if |y P S| † Hpyq then
8: Add Sc to S
9: until |S| “ N

10: return S

token varies for different occurrences of the to-
ken: one token can be easy to predict in one con-
text, and hard in another. While the sampling step
in the previous approaches targets these tokens, it
does not ensure that the distribution of sampled
sentences is similar to the distribution of problem-
atic tokens in difficult contexts.

To address this issue, we propose an approach
where we target the number of times a token oc-
curs in difficult-to-predict contexts and sample
sentences accordingly, thereby ensuring the same
ratio as the distribution of difficult contexts. If to-
ken y1 is difficult to predict in two contexts and
token y2 is difficult to predict in four contexts,
the number of sampled sentences containing y2 is
double the number of sampled sentences contain-
ing y1. Algorithm 2 formalizes this approach.

4.5 Results
We measure the translation quality of var-
ious models for GermanÑEnglish and
EnglishÑGerman translation tasks. The re-
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sults of the translation experiments are presented
in Table 4. As baseline we compare our approach
to Sennrich et al. (2016a). For all experiments
we sample and back-translate sentences from the
monolingual data, keeping a one-to-one ratio of
back-translated versus original data (1:1).

We set the hyperparameters µ, ⇢, and ⌘ to 5,
10, and 5000 respectively. The values of the hy-
perparameters are chosen on a small sample of the
parallel data based on the token loss distribution.

As expected using random sampling for back-
translation improves the translation quality over
the baseline. However, all targeted sam-
pling variants in turn outperform random sam-
pling. Specifically, the best performing model for
GermanÑEnglish, MEANPREDLOSS, uses the
mean of prediction loss for the target vocabulary
to oversample sentences including these tokens.

For the EnglishÑGerman experiments we ob-
tain the best translation performance when we pre-
serve the prediction loss ratio during sampling.

We also observe that even though the model tar-
geting tokens with skewed prediction loss distribu-
tions (MEANPREDLOSS + STDPREDLOSS) im-
proves over random selection of sentences, it does
not outperform the model using only mean predic-
tion losses.

5 Context-Aware Targeted Sampling

In the previous section, we proposed methods
for identifying difficult-to-predict tokens and per-
formed targeted sampling from monolingual data.
While the objective was to increase the occur-
rences of difficult tokens, we ignored the context
of these tokens in the sampled sentences.

Arguably, if a word is difficult to predict in
a given context, providing more examples of the
same or similar context can aid the learning pro-
cess. In this section, we focus on the context of
difficult-to-predict words and aim to sample sen-
tences that are similar to the corresponding diffi-
cult context.

The general algorithm is described in Algo-
rithm 3. In the following sections, we discuss dif-
ferent definitions of the local context (line 7 and
line 9) and similarity measures (line 10) in this al-
gorithm, and report the results.

5.1 Definition of Local Context
Prediction loss is a function of the source sentence
and the target context. One reason that a token has

high prediction loss is that the occurrence of the
word is a deviation from what occurs more fre-
quently in other occurrences of the context in the
training data. This indicates an infrequent event,
in particular a rare sense of the word, a domain that
is different from other occurrences of the word, or
an idiomatic expression.

source wer glaube, dass das ende, sobald sie in
Deutschland ank|ä|men, ir|re, erzählt B|ahr.

reference if you think that this stops as soon as they
arrive in Germany, you’d be wrong, says
B|ahr.

NMT output who believe that the end, as soon as they go
to Germany, tells B|risk.

Table 5: An example from the synthetic data where
the word B|ahr is incorrectly translated to B|risk.
Subword unit boundaries are marked with ‘|’.

We identify pairs of tokens and sentences from
parallel data where in each pair the NMT model
assigns high prediction loss to the token in the
given context. Note that a token can occur sev-
eral times in this list, since it can be considered as
difficult-to-predict in different sentences.

We propose two approaches to define the local
context of the difficult token:

Neighboring tokens A straightforward way is
to use positional context: tokens that precede and
follow the target token, typically in a window of
w tokens to each side. For sentence S containing
a difficult token at index i the context function in
Algorithm 3 is:

contextpS, iq “ rSi´w, . . . , Si´1, Si`1, . . . , Si`ws

where Sj is the token at index j in sentence S.

Sentence from bitext containing difficult token:

He attended Stan|ford University, where he double
maj|ored in Spanish and History.

Sampled sentences from monolingual data:

´ The group is headed by Aar|on K|ush|ner, a Stan|ford
University gradu|ate who formerly headed a gre|eting card
company.
´ Ford just opened a new R&D center near Stan|ford Uni-
versity, a hot|bed of such technological research.
´ Joe Grund|fest, a professor and a colleague at Stan|ford
Law School, outlines four reasons why the path to the IP|O
has become so steep for asp|iring companies.

Table 6: Results of targeted sampling for the diffi-
cult subword unit ‘Stan’.
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Neighboring subword units In our analysis of
prediction loss during training, we observe that
several tokens that are difficult to predict are in-
deed subword units. Current state-of-the-art NMT
systems apply BPE to the training data to ad-
dress large vocabulary challenges (Sennrich et al.,
2016b).

By using BPE the model generalizes common
subword units towards what is more frequent in
the training data. This is inherently useful since it
allows for better learning of less frequent words.
However, a side effect of this approach is that at
times the model generates subword units that are
not linked to any words in the source sentence.

As an example, in Table 5 German source and
English reference translation show this problem.
The word B|ahr consisting of two subword units
is incorrectly translated into B|risk.

We address the insufficiency of the context for
subword units with high prediction losses by tar-
geting these tokens in sentence sampling.

Algorithm 3 formalizes this approach in sam-
pling sentences from the monolingual data. For a
sentence S containing a difficult subword at index
i, the context function is defined as:

contextpS, iq “ r. . . , Si´1, Si`1, . . .s

where every token Sj in the local context is a sub-
word unit and part of the same word as Si. Ta-
ble 6 presents examples of sampled sentences for
the difficult subword unit ‘Stan’.

Sentence from bitext containing difficult word:

Bud|dy Hol|ly was part of the first group induc|ted into the
Rock and R|oll Hall of F|ame on its formation in 1986.

Sampled sentences from monolingual data:

´ A 2008 Rock and R|oll Hall of F|ame induc|t|ee,
Mad|onna is ran|ked by the Gu|inn|ess Book of World
Rec|ords as the top-selling recording artist of all time.
´ The Rock and R|oll Hall of Fam|ers gave birth to the
California rock sound.
´ The winners were chosen by 500 voters, mostly musi-
cians and other music industry veter|ans, who belong to
the Rock and R|oll Hall of F|ame Foundation.

Table 7: Results of context-aware targeted sam-
pling for the difficult token ‘Rock’

5.2 Similarity of the Local Contexts
In context-aware targeted sampling, we compare
the context of a sampled sentence and the difficult
context in the parallel data and select the sentence

Algorithm 3 Sampling with context
Input: Difficult tokens and the corresponding sentences
in the bitext D “ tyt, Yyt

“ ry1, . . . , yt, . . . , ymsu,
monolingual corpus M, context function context,
number of required samples N, similarity threshold s
Output: Sampled sentences S “ tSiuN

i“1 where each
sentence Si is sampled from M

1: procedure CNTXTSAMPLING(D, M, context, N, s):
2: Initialize S “ tu
3: repeat
4: Sample Sc from M

5: for all tokens yt in Sc do
6: if yt P D then
7: Cm – contextpSc, indxofpSc, ytqq
8: for all Yyt

do
9: Cp – contextpYyt

, indxofpYyt
, ytqq

10: if SimpCm, Cpq ° s then
11: Add Sc to S
12: until |S| “ N
13: return S

if they are similar. In the following, we propose
two approaches for quantifying the similarities.

Matching the local context In this approach we
aim to sample sentences containing the difficult to-
ken, matching the exact context to the problematic
context. By sampling sentences that match in a lo-
cal window with the problematic context and dif-
fer in the rest of the sentence, we have more in-
stances of the difficult token for training.

Algorithm 3 formalizes this approach where the
similarity function is defined as:

SimpCm, Cpq “ 1

c

cÿ

i“1

�pCi
m, Ci

pq

Cm and Cp are the contexts of the sentences
from monolingual and parallel data respectively,
and c is the number of tokens in the contexts.

Word representations Another approach to
sampling sentences that are similar to the problem-
atic context is to weaken the matching assumption.
Acquiring sentences that are similar in subject and
not match the exact context words allows for lex-
ical diversity in the training data. We use em-
beddings obtained by training the Skipgram model
(Mikolov et al., 2013) on monolingual data to cal-
culate the similarity of the two contexts.

For this approach we define the similarity func-
tion in Algorithm 3 as:

SimpCm, Cpq “ cospvpCmq,vpCpqq

where vpCmq and vpCpq are the averaged embed-
dings of the tokens in the contexts.
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De-En En-De
System test2014 test2015 test2016 test2017 test2014 test2015 test2016 test2017

BASELINE : 26.7 27.6 32.5 28.1 21.2 23.3 28.0 22.4
RANDOM : 28.7 29.7 36.3 30.8 24.0 26.0 30.7 24.8

Difficulty criterion Context Similarity

FREQ TOKENS EMB 30.0 30.8 37.6 31.7 24.4 26.3 31.5 25.6
PREDLOSS SWORDS MATCH 29.1 30.1 36.9 31.0 23.8 26.2 28.8 23.2
PREDLOSS TOKENS MATCH 29.7 30.6 37.6 31.8 24.3 27.4 31.6 25.5
PREDLOSS TOKENS EMB 29.9 30.8 37.7 31.9 24.5 27.5 31.7 25.6
PREDLOSS SENTENCE EMB 24.9 25.5 30.1 26.2 22.0 24.6 27.9 22.5
MEANPREDLOSS TOKENS EMB 30.2 31.4 37.9 32.2 24.4 27.2 31.8 25.6

Table 8: GermanØEnglish translation quality (BLEU). Experiments marked : are averaged over 3 runs.
PREDLOSS is the contextual prediction loss and MEANPREDLOSS is the average loss. TOKEN and
SWORD are context selection definitions from neighboring tokens and subword units respectively. Note
that token includes both subword units and full words. EMB is computing context similarities with token
embeddings and MATCH is comparing the context tokens.

Table 7 presents examples of sampled sentences
for the difficult word rock. In this example, the
context where the word ‘Rock’ has high predic-
tion loss is about the music genre and not the most
prominent sense of the word, stone. Sampling sen-
tences that contain this word in this particular con-
text provides an additional signal for the transla-
tion model to improve parameter estimation.

5.3 Results
The results of the translation experiments are
given in Table 8. In these experiments, we set the
hyperparameters s and w to 0.75 and 4, respec-
tively. Comparing the experiments with different
similarity measures, MATCH and EMB, we observe
that in all test sets we achieve the best results when
using word embeddings. This indicate that for tar-
geted sampling, it is more beneficial to have diver-
sity in the context of difficult words as opposed to
having the exact ngrams.

When using embeddings as the similarity mea-
sure, it is worth noting that with a context of size
4 the model performs very well but fails when we
increase the window size to include the whole sen-
tence.

The experiments focusing on subword units
(SWORD) achieve improvements over the base-
lines, however they perform slightly worse than
the experiments targeting tokens (TOKEN).

The best BLEU scores are obtained with the
mean of prediction loss as difficulty criterion
(MEANPREDLOSS) and using word representa-
tions to identify the most similar contexts. We
observe that summarizing the distribution of the

prediction losses by its mean is more beneficial
than using individual losses. Our results motivate
further explorations of using context for targeted
sampling sentences for back-translation.

6 Conclusion

In this paper we investigated the effective method
of back-translation for NMT and explored alter-
natives to select the monolingual data in the tar-
get language that is to be back-translated into the
source language to improve translation quality.

Our findings showed that words with high pre-
diction losses in the target language benefit most
from additional back-translated data.

As an alternative to random sampling, we pro-
posed targeted sampling and specifically targeted
words that are difficult to predict. Moreover, we
used the contexts of the difficult words by incor-
porating context similarities as a feature to sample
sentences for back-translation. We discovered that
using the prediction loss to identify weaknesses
of the translation model and providing additional
synthetic data targeting these shortcomings im-
proved the translation quality in GermanØEnglish
by up to 1.7 BLEU points.
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Abstract

With great practical value, the study of Multi-
domain Neural Machine Translation (NMT)
mainly focuses on using mixed-domain paral-
lel sentences to construct a unified model that
allows translation to switch between different
domains. Intuitively, words in a sentence are
related to its domain to varying degrees, so
that they will exert disparate impacts on the
multi-domain NMT modeling. Based on this
intuition, in this paper, we devote to distin-
guishing and exploiting word-level domain
contexts for multi-domain NMT. To this end,
we jointly model NMT with monolingual
attention-based domain classification tasks
and improve NMT as follows: 1) Based on
the sentence representations produced by a
domain classifier and an adversarial domain
classifier, we generate two gating vectors
and use them to construct domain-specific
and domain-shared annotations, for later
translation predictions via different attention
models; 2) We utilize the attention weights
derived from target-side domain classifier
to adjust the weights of target words in the
training objective, enabling domain-related
words to have greater impacts during model
training. Experimental results on Chinese-
English and English-French multi-domain
translation tasks demonstrate the effec-
tiveness of the proposed model. Source
codes of this paper are available on Github
https://github.com/DeepLearnXMU/WDCNMT.

1 Introduction

In recent years, neural machine translation (NMT)
has achieved great advancement (Nal and Phil,
2013; Sutskever et al., 2014; Bahdanau et al.,
2015). However, two difficulties are encoun-
tered in the practical applications of NMT. On
the one hand, training a NMT model for a spe-

⇤Corresponding author

dàhuì de yìàn lièrù yìchéng

CH

Give priority to congress bills for inclusion in the agenda

EN

Figure 1: Word-level correlation heat map to Laws
domain for a Chinese(CH)-English(EN) parallel
sentence.

cific domain requires a large quantity of paral-
lel sentences in such domain, which is often not
readily available. Hence, the much more com-
mon practice is to construct NMT models using
mixed-domain parallel sentences. In this way,
the domain-shared translation knowledge can be
fully exploited. On the other hand, the translated
sentences often belong to multiple domains, thus
requiring a NMT model general to different do-
mains. Since the textual styles, sentence structures
and terminologies in different domains are of-
ten remarkably distinctive, whether such domain-
specific translation knowledge is effectively pre-
served could have a direct effect on the perfor-
mance of the NMT model. Therefore, how to
simultaneously exploit the exclusive and shared
translation knowledge of mixed-domain parallel
sentences for multi-domain NMT remains a chal-
lenging task.

To tackle this problem, recently, researchers
have carried out many constructive and in-depth
studies (Kobus et al., 2016; Zhang et al., 2016;
Pryzant et al., 2017; Farajian et al., 2017). How-
ever, most of these studies mainly focus on the uti-
lization of domain contexts as a whole in NMT,
while ignoring the discrimination of domain con-
texts at finer-grained level. In each sentence,
some words are closely associated with its do-
main, while others are domain-independent. In-
tuitively, these two kinds of words play differ-
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ent roles in multi-domain NMT, nevertheless, they
are not being distinguished by the current models.
Take the sentence shown in Figure 1 for exam-
ple. The Chinese words “‘å¨”(congress), “!
Y”(bills), “!\”(inclusion), and “!ß”(agenda)
are frequently used in Laws domain and imply the
Laws style of the sentence, while other words in
this sentence are common in all domains and they
mainly indicate the semantic meaning of the sen-
tence. Thus, it is reasonable to distinguish and
encode these two types of words separately to
capture domain-specific and domain-shared con-
texts, allowing the exclusive and shared knowl-
edge to be exploited without any interference from
the other. Meanwhile, the English words “prior-
ity”,“government”, “bill” and “agenda” are also
closely related to Laws domain. To preserve the
domain-related text style and idioms in generated
translations, it is also reasonable for our model to
pay more attention to these domain-related words
than the others during model training. On this ac-
count, we believe that it is significant to distin-
guish and explore word-level domain contexts for
multi-domain NMT.

In this paper, we propose a multi-domain NMT
model with word-level domain context discrimi-
nation. Specifically, we first jointly model NMT
with monolingual attention-based domain classi-
fication tasks. In source-side domain classifica-
tion and adversarial domain classification tasks,
we perform two individual attention operations on
source-side annotations to generate the domain-
specific and domain-shared vector representations
of source sentence, respectively. Meanwhile, an
attention operation is also placed on target-side
hidden states to implement target-side domain
classification. Then, we improve NMT with the
following two approaches:

(1) According to the sentence representations
produced by source-side domain classifier and ad-
verisal domain classifier, we generate two gating
vectors for each source annotation. With these two
gating vectors, the encoded information of source
annotation is selected automatically to construct
domain-specific and domain-shared annotations,
both of which are used to guide translation pre-
dictions via two attention mechanisms;

(2) Based on the attention weights of the target
words from target-side domain classifier, we em-
ploy word-level cost weighting strategy to refine
our model training. In this way, domain-specific

target words will be assigned greater weights than
others in the objective function of our model.

Our work demonstrates the benefits of sepa-
rate modeling of the domain-specific and domain-
shared contexts, which echoes with the success-
ful applications of the multi-task learning based on
shared-private architecture in many tasks, such as
discourse relation recognition (Liu et al., 2017b),
word segmentation (Chen et al., 2017b), text clas-
sification (Liu et al., 2017a), and image classifica-
tion (Liu et al., 2016). Overall, the main contribu-
tions of our work are summarized as follows:

• We propose to construct domain-specific and
domain-shared source annotations from ini-
tial annotations, of which effects are respec-
tively captured for translation predictions.

• We propose to adjust the weights of target
words in the training objective of NMT ac-
cording to their relevance to different do-
mains.

• We conduct experiments on large-scale
multi-domain Chinese-English and English-
French datasets. Experimental results
demonstrate the effectiveness of our model.

2 Model

Figure 2 illustrates the architecture of our model,
which includes a neural encoder equipped with a
domain classifier and an adversarial domain clas-
sifier, and a neural decoder with two attention
models and a target-side domain classifier.

2.1 Neural Encoder
As shown in the lower part of Figure 2, our
encoder leverages the sentence representations
produced by these two classifiers to construct
domain-specific and domain-shared annotations
from initial ones, preventing the exclusive and
shared translation knowledge from interfering
with each other. In our encoder, the input sen-
tence x=x1, x2, ..., xN are first mapped to word
vectors and then fed into a bidirectional GRU
(Cho et al., 2014) to obtain

�!
h =
�!
h 1,
�!
h 2, ...,

�!
h N

and
 �
h =
 �
h 1,
 �
h 2, ...,

 �
h N in the left-to-right and

right-to-left directions, respectively. These two
sequences are then concatenated as hi =

{
�!
h >

i ,
 �
h >

i }> to form the word-level semantic rep-
resentation of the input sentence.

Domain Classifier and Adversarial Domain
Classifier. With annotations {hi}N

i=1, we employ
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Decoder

Domain Classifier

Encoder
Domain-Specific
Annotations 

Domain-Shared
Annotations 

Domain Classifier

Er( ) Es( )

Er(y)

Adversarial Domain Classifier

Figure 2: The architecture illustration of our model. Note that our two source-side domain classifiers
are used to produce domain-specific and domain-shared annotations, respectively, and our target-side
domain classifier is only used during model training.

two attention-like aggregators to generate the se-
mantic representations of sentence x, denoted by
the vectors Er(x) and Es(x), respectively. Based
on these two vectors, we employ the same neu-
ral network to model two classifiers with different
context modeling objectives:

One is a domain classifier that aims to dis-
tinguish different domains in order to generate
domain-specific source-side contexts. It is trained
using the objective function J s

dc(x; ✓s
dc) = log

p(d|x; ✓s
dc), where d is the domain tag of x and

✓
s
dc is its parameter set. The other is an adversarial

domain classifier capturing source-side domain-
shared contexts. To this end, we train it using the
following adversarial loss functions:

J s1
adc(x; ✓s1

adc) = log p(d|x; ✓s1
adc, ✓

s2
adc), (1)

J s2
adc(x; ✓s2

adc) = H(p(d|x; ✓s1
adc, ✓

s2
adc)), (2)

where H(p(·))=�
PK

k=1 pk(·) log pk(·) is an en-
tropy of distribution p(·) with K domain labels,
✓

s1
adc and ✓

s2
adc denote the parameters of softmax

layer and the generation layer of Es(x) in this
classifier, respectively. By this means, Er(x) and
Es(x) are expected to encode the domain-specific
and domain-shared semantic representations of x,
respectively. It should be noted that our utiliza-
tion of domain classifiers is similar to adversarial
training used in (Pryzant et al., 2017) which injects

domain-shared contexts into annotations. How-
ever, by contrast, we introduce domain classifier
and adversarial domain classifier simultaneously
to distinguish different kinds of contexts for NMT
more explicitly.

Here we describe only the modeling procedure
of the domain classifier, while it is also applicable
to the adversarial domain classifier. Specifically,
Er(x) is defined as follows:

Er(x) =
NX

i=1

↵ihi, (3)

where ↵i =
exp(ei)PN
i0 exp(ei0)

,

ei = (va)
> tanh(Wahi),

and va and Wa are the relevant attention pa-
rameters. Then, we feed Er(x) into a fully
connected layer with ReLU function (Ballesteros
et al., 2015), and then pass its output through a
softmax layer to implement domain classification

p(·|x; ✓s
dc)

=softmax(W s>
dc ReLU(Er(x)) + bs

dc), (4)

where W s
dc and bs

dc are softmax parameters.
Domain-Specific and Domain-Shared Anno-

tations. Since domain-specific and domain-shared
contexts have different effects on NMT, and thus
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should be distinguished and separately captured
by NMT model. Specifically, we first leverage the
sentence representations Er(x) and Es(x) to gen-
erate two gating vectors, gr

i and gs
i , for annotation

hi in the following way:

gr
i = sigmoid(W (1)

gr Er(x) + W (2)
gr hi + bgr),

(5)

gs
i = sigmoid(W (1)

gs Es(x) + W (2)
gs hi + bgs),

(6)

where W ⇤
gr, W ⇤

gs, bgr and bgs denote the rele-
vant matrices and bias, respectively. With these
two vectors, we construct domain-specific and
domain-shared annotations hr

i and hs
i from hi:

hr
i = gr

i � hi, (7)
hs

i = gs
i � hi. (8)

2.2 Neural Decoder
The upper half of Figure 2 illustrates the architec-
ture of our decoder. In particular, with the atten-
tion weights of target words from the domain clas-
sifier, we employ word-level cost weighting strat-
egy to refine model training.

Formally, our decoder applies a nonlinear func-
tion g(⇤) to define the conditional probability of
translation y=y1, y2, ..., yM :

p(y|x) =
MY

j=1

p(yj |x, y<j) =
MY

j=1

g(yj�1, sj , c
r
j , c

s
j),

(9)

where the vector sj denotes the GRU hidden state.
It is updated as

sj = GRU(sj�1, yj�1, c
r
j , c

s
j). (10)

Here the vectors cr
j and cs

j represent the domain-
specific and domain-shared contexts, respectively.

Domain-Specific and Domain-Shared Con-
text Vectors. When generating yj , we define cr

j
as a weighted sum of the domain-specific annota-
tions {hr

i }:

cr
j =

NX

i=1

exp(er
j,i)PN

i0=1 exp(er
j,i0)

· hr
i , (11)

where er
j,i = a(sj�1, h

r
i ),

and a(*) is a feedforward neural network. Mean-
while, we produce cs

j from the domain-shared an-
notations {hs

i} as in Eq. 11. By introducing cr
j

and cs
j into sj , our decoder is able to distinguish

and simultaneously exploit two types of contexts
for translation predictions.

Domain Classifier. We equip our decoder
with a domain classifier with parameters ✓tdc,
which maximizes the training objective i.e.,
J t

dc(y; ✓t
dc) = log p(d|y; ✓t

dc). To do this,
we also apply attention operation to produce the
domain-aware semantic representation Er(y) of
y,

Er(y) =
MX

j=1

�jsj , (12)

where �j =
exp(ej)PM
j0 exp(ej0)

,

ej = (vb)
> tanh(Wbsj),

and vb and Wb are the related parameters. Like-
wise, we stack a domain classifier on top of Er(y).
Note that this classifier is only used in model
training to infer attention weights of target words.
These weights measure their semantic relevance
to different domains and can be utilized to adjust
their cost weights in NMT training objective.

NMT Training Objective with Word-Level
Cost Weighting. Formally, we define the objec-
tive function of NMT as follows:

Jnmt(x,y; ✓nmt)

=
MX

j=1

(1 + �j) log p(yj |x, y<j ; ✓nmt), (13)

where �j is the attention weight of yj obtained
by Eq. (12), and ✓nmt denotes the parameter
set of NMT. By this scaling strategy, domain-
specific words are emphasized with a bonus, while
domain-shared words are updated as usual.

Please note that scaling costs with a multiplica-
tive scalar essentially changes the magnitude of
parameter update but without changing its direc-
tion (Chen et al., 2017a). Besides, although our
scaling strategy is similar to the cost weighting
proposed by Chen et al. (2017a), our approach dif-
fers from it in two aspects: First, we employ word-
level cost weighting rather than sentence-level one
to refine NMT training; Second, our approach is
less time-consuming for multi-domain NMT.

2.3 Overall Training Objective
Given a mixed-domain training corpus D =
{(x,y, d)}, we train the proposed model accord-
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ing to the following objective function:

J (D; ✓) =
X

(x,y,d)2D
{Jnmt(x,y; ✓nmt)

+ J s
dc(x; ✓s

dc) + J t
dc(y; ✓t

dc) (14)

+ J s1
adc(x; ✓s1

adc) + � · J s2
adc(x; ✓s2

adc)}

where Jnmt(⇤), J s
dc(⇤), J t

dc(⇤) and J s⇤
adc(⇤) are

the objective functions of NMT, source-side do-
main classifier, target-side domain classifier, and
source-side adversarial domain classifier, respec-
tively, ✓={✓nmt, ✓

s
dc, ✓

t
dc, ✓

s1
adc, ✓

s2
adc}, and � is

the hyper-parameter for adversarial learning.
Particularly, to ensure encoding accuracy of

domain-shared contexts, we follow Chen et al.
(2017b) to adopt an alternative two-phase strat-
egy in training, where we alternatively optimize
J (D; ✓) with ✓

s1
adc and {✓-✓s1

adc} respectively
fixed at a time.

3 Experiment

To investigate the effectiveness of our model, we
conducted multi-domain translation experiments
on Chinese-English and English-French datasets.

3.1 Setup
Datasets. For Chinese-English translation, our
data comes from UM-Corpus (Tian et al., 2014)
and LDC1. To ensure data quality, we chose only
the parallel sentences with domain label Laws,
Spoken, and Thesis from UM-Corpus, and the
LDC bilingual sentences related to News domain
as our dataset. We used randomly selected sen-
tences from UM-Corpus and LDC as development
set, and combined the test set of UM-Corpus and
randomly selected sentences from LDC to con-
struct our test set. For English-French transla-
tion, we conducted experiments on the datasets
of OPUS corpus2, containing sentence pairs from
Medical, News, and Parliamentary domains. We
also divided these datasets into training, develop-
ment and test sets. Table 1 provides the statistics
of the corpora used in our experiments.

We performed word segmentation on Chi-
nese sentences using Stanford Segmenter3, and
tokenized English and French sentences using
MOSES script4. Then, we employed Byte Pair

1https://www.ldc.upenn.edu/.
2http://opus.nlpl.eu/
3https://nlp.stanford.edu/
4http://www.statmt.org/moses/

Task Domain Train Dev Test

CH-EN

Laws 219K 600 456
Spoken 219K 600 455
Thesis 299K 800 625
News 300K 800 650

EN-FR
Medical 1.09M 800 2000

News 180K 800 2000
Parliamentary 2.04M 800 2000

Table 1: Sentence numbers of data sets in our ex-
periments.

Encoding (Sennrich et al., 2016) to convert all
words into subwords. The translation quality was
evaluated by case-sensitive BLEU (Papineni et al.,
2002).

Contrast Models. Since our model is essen-
tially a standard attentional NMT model enhanced
with word-level domain contexts, we refer to it as
+WDC. We compared it with the following mod-
els, namely:

• OpenNMT5. A famous open-source NMT
system used widely in the NMT community
trained on mix-domain training set.

• DL4NMT-single (Bahdanau et al., 2015). A
reimplemented attentional NMT trained on a
single domain dataset.

• DL4NMT-mix (Bahdanau et al., 2015). A
reimplemented attentional NMT trained on
mix-domain training set.

• DL4NMT-finetune (Luong and Manning,
2015). A reimplemented attentional NMT
which is first trained using out-of-domain
training corpus and then fine-tuned using in-
domain dataset.

• +Domain Control (+DC) (Kobus et al.,
2016). It directly introduces embeddings of
source domain tag to enrich annotations of
encoder.

• +Multitask Learning (+ML1) (Dong et al.,
2015). It adopts a multi-task learning frame-
work that shares encoder representation and
separates the decoder modeling of different
domains.

• +Multitask Learning (+ML2) (Pryzant
et al., 2017). This model jointly trains

5http://opennmt.net/.
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NMT with domain classification via multi-
task learning.

• +Adversarial Discriminative Mixing
(+ADM) (Pryzant et al., 2017). It employs
adversarial training to achieve the domain
adaptation in NMT.

• +Target Token Mixing (+TTM) (Pryzant
et al., 2017). This model is similar to
+DC, with the only difference that it enriches
source annotations by adding target-side do-
main tag rather than source-side one.

Note that our model uses two annotation se-
quences, thus we also compared it with the afore-
mentioned models with two times of hidden state
size (2⇥hd). To further examine the effectiveness
of the proposed components in our model, we also
provided the performance of the following vari-
ants of our model:

• +WDC(S). It only exploits the source-side
word-level domain contexts for multi-domain
NMT.

• +WDC(T). It only employ word-level cost
weighting on the target side to refine the
model training.

Implementation Details. Following the com-
mon practice, we only used the training sentences
within 50 words to efficiently train NMT models.
Thus, 85.40% and 88.96% of the Chinese-English
and English-French parallel sentences were cov-
ered in our experiments. In addition, we set the
vocabulary size for Chinese-English and English-
French as 32,000 and 32,000, respectively. In do-
ing so, our vocabularies covered 99.97% Chinese
words and 99.99% English words of the Chinese-
English corpus, and almost 100% English words
and 99.99% French words of the English-French
corpus, respectively.

We applied Adam (Kingma and Ba, 2015) to
train models and determined the best model pa-
rameters based on the model performance on de-
velopment set. The used hyper-parameter were set
as follows: �1 and �2 of Adam as 0.9 and 0.999,
word embedding dimension as 500, hidden layer
size as 1000, learning rate as 5⇥10�4, batch size
as 80, gradient norm as 1.0, dropout rate as 0.1,
and beamsize as 10. Other settings were set fol-
lowing (Bahdanau et al., 2015).

Model Laws Spoken Thesis News
Contrast Models (1⇥hd)

OpenNMT 45.82 9.15 13.93 19.73
DL4NMT-single 43.66 5.49 14.54 18.74
DL4NMT-mix 46.82 8.95 15.93 20.33
DL4NMT-finetune 54.19 8.77 16.71 21.55
+DC 49.83 9.18 16.71 20.58
+ML1 46.82 6.66 15.10 20.17
+ML2 48.95 9.45 15.85 20.48
+ADM 48.30 9.41 16.34 20.06
+TTM 49.05 9.36 16.42 20.44

Contrast Models (2⇥hd)
DL4NMT-single 44.48 6.29 14.66 19.87
DL4NMT-mix 48.74 9.01 16.12 20.14
DL4NMT-finetune 54.69 9.07 17.11 21.85
+DC 50.43 9.38 16.45 20.44
+ML1 49.49 7.67 15.50 20.34
+ML2 50.05 9.35 16.03 20.64
+ADM 48.33 9.06 16.59 19.69
+TTM 49.92 9.01 16.38 21.04

Our Models
+WDC(S) 54.55 10.12 17.22 22.16
+WDC(T) 51.94 9.76 17.72 21.02
+WDC 55.03 10.20 18.04 22.29

Table 2: Overall Evaluation of the Chinese-
English translation task. 2⇥hd = two times of hid-
den state size.

3.2 Results on Chinese-English Translation

We first determined the optimal hyper-parameter
� (see Eq. (14)) on the development set. To do
this, we gradually varied � from 0.1 to 1.0 with
an increment of 0.1 in each step. Since our model
achieved the best performance when �=0.1, hence,
we set �=0.1 for all experiments thereafter.

Table 2 shows the overall experimental results.
Using almost the same hyper-parameters, our re-
implemented DL4NMT outperforms OpenNMT
in all domains, demonstrating that our baseline
is competitive in performance. Moreover, on all
test sets of different domains, our model signifi-
cantly outperforms other contrast models no mat-
ter which hyper-parameters they use. Further-
more, we arrive at the following conclusions:

First, our model surpasses DL4NMT-single,
DL4NMT-mix and DL4NMT-finetune, all of
which are commonly used in domain adaptation
for NMT. Please note that DL4NMT-finetune re-
quires multiple adapted NMT models to be con-
structed, while ours is a unified one that works
well in all domains.

Second, compared with +DC, +ML2 and
+ADM which all exploit source-side domain con-
texts for multi-domain NMT, our +WDC(S) still
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(b) An Example Sentence in Thesis Domain

de yìnglì shíyànjìsuàn

(a) An Example Sentence in Laws Domain

àomén tèbié de

Figure 3: The correlation heat map of the gating
vectors(blue/green) to domain-specific/domain-
shared annotations in two example sen-
tences. Note that domain-specific words “e
Ä”(Macao), “·{¨”(Legislative Council), “"
)”(Formation), “ç{”(Method), “µ4”(Seal),
“Oé”(Calculation), “¢"” (Experiment) are
strengthened by gr

i , while most of the domain-
shared words “!”(of) and “Ü”(and) are focused
by gs

i .

exhibits better performance. This is because that
these models focus on one aspect of domain con-
texts, while our model considers both domain-
specific and domain-shared contexts on the source
side.

Third, +WDC(T) also outperforms DL4NMT,
revealing that it is reasonable and effective to em-
phasize domain-specific words in model training..

Last, +WDC achieves the best performance
when compared with both +WDC(S) and
+WDC(T). Therefore, we believe that word-level
domain contexts on the both sides are com-
plementary to each other, and utilizing them
simultaneously is beneficial to multi-domain
NMT.

3.3 Experimental Analysis
Furthermore, we conducted several visualization
experiments to empirically analyze the individual
effectiveness of the added model components.

3.3.1 Visualizations of Gating Vectors
We first visualized the gating vectors gr

i and gs
i

to quantify their effects on extracting domain-
specific and domain-shared contexts from initial
source-side annotations. Since both gr

i and gs
i are

high dimension vectors, which are difficult to be
visualized directly, we followed Li et al. (2016)
and Zhou et al. (2017) to visualize their individ-
ual contributions to the final output, which can be

(a) Sentence Representation Er(x)

(c) Average of Sentence Annotations

{ (x)}

(b) Sentence Representation Es(x)

(d) Average of Sentence Annotations  
{ (x)}

Figure 4: The visualization of the sentence
representations and their corresponding average
annotations, where the triangle-shaped(purple),
circle-shaped(red), square-shaped(green) and
pentagonal-shaped(blue) points denote News,
Laws, Spoken and Thesis sentences, respectively.

approximated by their first derivatives.
Figure 3 shows the first derivative heat maps

for two example sentences in Laws and Thesis
domain, respectively. We can observe that with-
out any loss of semantic meanings from source
sentences, most of the domain-specific words are
strengthened by gr

i , while most of the domain-
shared words, especially function words, are fo-
cused by gs

i . This result is consistent with our ex-
pectation for the function of two gating vectors.

3.3.2 Visualizations of Sentence
Representations and Annotations

Furthermore, we applied the hypertools (Heusser
et al., 2018) to visualize the sentence representa-
tions Er(x) and Es(x), and the domain-specific
and domain-shared annotation sequences {hr

i }N
i=1

and {hs
i}N

i=1. Here we represent each annotation
sequence with its average vector in the figure.

As shown in Figure 4 (a) and (b), the sentence
representation vectors and the average annotation
vectors of different domains are clearly distributed
in different regions. By contrast, their distribu-
tions are much more concentrated in Figure 4 (c)
and (d). Thus, we conclude that our model is able
to distinctively learn domain-specific and domain-
shared contexts. Moreover, from Figure 4 (b), we
observe that the sentence representation vectors of
Laws domain does not completely coincide with
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Domain Top10 Target Words

Laws
Article, Chapter, Principles, regulations, Pro-
visions, Political, Servants, specify, China,
Municipal

Spoken
meanly, Rusty, 1910s, scours, mountaintops,
paralyze, Puff, perpetrators, hitter, weightlift-
ing

Thesis
aggregation, Activities, Computation, Alzhei-
mer, nn, Contemporarily, EVALUATION,
ethoxycarbonyl, sCRC, Announced

News
months, agency, outweighed, unconstitution-
ally, Congolese, session, Asia, news, hurts,
francs

Table 3: Examples of Domain-Specific Target
Words.

those of the other domains, this may be caused by
the more formal and consistent sentence styles in
Laws domain.

3.3.3 Illustrations of Domain-Specific Target
Words

Lastly, for each domain, we presented the top ten
target words with the highest weights learned by
our target-side domain classifier. To do this, we
calculated the average attention weight of each
word in the training corpus as its corresponding
domain weight.

As is clearly shown in Table 3 that most listed
target words are closely related to their domains.
This result validates the aforementioned hypothe-
sis that some words are domain-dependent while
others are domain-independent, and our target-
side domain classifier is capable of distinguishing
them with different attention weights.

3.4 Results on English-French Translation
Likewise, we determined the optimal �=0.1 on
the development set. Table 4 gives the results of
English-French multi-domain translation. Similar
to the previous experimental result in Section 3.2,
our model continues to achieve the best perfor-
mance compared to all contrast models using two
different hidden state size settings, which demon-
strates again that our model is effective and gen-
eral to different language pairs in multi-domain
NMT.

4 Related Work

In this work, we study on multi-domain machine
translation in the field of domain adaptation for
machine translation, which has attracted great at-
tention since SMT (Clark et al., 2012; Huck et al.,

Model Medical Parliamentary News
Contrast Models (1⇥hd)

OpenNMT 78.78 32.96 30.22
DL4NMT-single 77.34 33.28 29.56
DL4NMT-mix 78.48 33.16 31.62
DL4NMT-finetune 78.61 33.72 34.04
+DC 79.34 33.38 33.94
+ML1 77.29 33.39 31.92
+ML2 78.65 33.55 33.48
+ADM 76.74 33.06 33.43
+TTM 78.27 33.29 33.37

Contrast Models (2⇥hd)
DL4NMT-single 78.50 33.38 30.23
DL4NMT-mix 78.84 33.19 33.28
DL4NMT-finetune 79.17 33.88 34.20
+DC 79.96 33.44 33.52
+ML1 78.38 33.20 31.90
+ML2 79.41 33.55 33.62
+ADM 79.31 33.50 33.34
+TTM 79.36 33.13 33.68

Our Models
+WDC(S) 82.76 34.13 34.31
+WDC(T) 81.51 33.76 33.78
+WDC 83.35 34.17 34.87

Table 4: Overall Evaluation on the English-French
translation task.

2015; Sennrich et al., 2013). As for NMT, the
dominant strategies for domain adaptation gener-
ally fall into two categories:

The first category is to transfer out-of-domain
knowledge to in-domain translation. The con-
ventional method is fine-tuning, which first trains
the model on out-of-domain dataset and then fine-
tunes it on in-domain dataset (Luong and Man-
ning, 2015; Zoph et al., 2016; Servan et al., 2016).
Freitag and Al-Onaizan (2016) proceeded further
by ensembling the fine-tuned model with the origi-
nal one. Chu et al. (2017) fine-tuned the model us-
ing the mix of in-domain and out-of-domain train-
ing corpora. From the perspective of data selec-
tion, Chen et al. (2017a) scaled the top-level costs
of NMT system according to each training sen-
tence’s similarity to the development set. Wang
et al. (2017a) explored the data selection strategy
based on sentence embeddings for NMT domain
adaptation. Moreover, Wang et al. (2017b) further
proposed several sentence and domain weighting
methods with a dynamic weight learning strategy.
However, these approaches usually only perform
well on target domain while being highly time
consuming in transferring translation knowledge
to all the constitute domains.

The second category is to directly use a mixed-
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domain training corpus to construct NMT model
for the translated sentences derived from different
domains. In this aspect, Kobus et al. (2016) in-
corporated domain information into NMT by ap-
pending a domain indicator token to each source
sequence. Similarly, Johnson et al. (2016) added
an artificial token to the input sequence to indicate
the required target language. Contrastingly, Fara-
jian et al. (2017) utilized the similarity between
each test sentence and the training instances to dy-
namically set the hyper-parameters of the learn-
ing algorithm and update the generic model on
the fly. Pryzant et al. (2017) proposed three novel
models: discriminative mixing that jointly models
NMT with domain classification, adversarial dis-
criminative mixing, and target token mixing which
appends a domain token to the target sequence.
Sajjad et al. (2017) explored data concatenation,
model stacking, data selection and multi-model
ensemble to train multi-domain NMT. By exploit-
ing domain as a tag or a feature, Tars and Fishel
(2018) treated text domains as distinct languages
in order to use multi-lingual approaches when im-
plementing multi-domain NMT. Inspired by topic-
based SMT, some researchers resorted to incor-
porating topical contexts into NMT. Chen et al.
(2016) used the topic information of input sen-
tence as an additional input to decoder. Zhang
et al. (2016) enhanced the word representation by
adding its topic embedding. However, these meth-
ods require to have explicit document boundaries
between training data, which unfortunately do not
exist in most datasets.

Overall, our work is related to the second type
of approach with (Pryzant et al., 2017) and (Chen
et al., 2017a) most related to ours. Unlike (Pryzant
et al., 2017) applying adversarial training to only
capture domain-shared translation knowledge, we
further exploit domain-specific translation knowl-
edge for multi-domain NMT. Also, in sharp con-
trast to (Chen et al., 2017a), our model not only
exploits the source-side word-level domain con-
texts differently, but also employs a word-level
cost weighting strategy for multi-domain NMT.

5 Conclusion and Future Work

In this work, we have explored how to uti-
lize word-level domain contexts for multi-domain
NMT. By jointly modeling NMT and domain clas-
sification tasks, we utilize the sentence represen-
tations of source-side domain classifier and ad-

versarial domain classifier to construct domain-
specific and domain-shared source annotations,
which are then exploited by decoder. Moreover,
using the attentional weights of target-side domain
classifier, we adjust the weights of target words in
the training objective to refine model training. Ex-
perimental results and in-depth analyses demon-
strate the effectiveness of the proposed model.

In the future, we would like to extend the pro-
posed word-level cost weighting strategy to source
words. Besides, our method is also general to
other NMT models. Therefore, we plan to ap-
ply our method to the NMT with complex ar-
chitectures, for example, lattice-to-sequence NMT
(Su et al., 2017), hierarchy-to-sequence NMT (Su
et al., 2018), NMT with context-aware encoder
(Zhang et al., 2017) and Transformer (Vaswani
et al., 2017) and so on.
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Abstract

We introduce a novel discriminative latent-
variable model for the task of bilingual lexi-
con induction. Our model combines the bi-
partite matching dictionary prior of Haghighi
et al. (2008) with a state-of-the-art embedding-
based approach. To train the model, we derive
an efficient Viterbi EM algorithm. We provide
empirical improvements on six language pairs
under two metrics and show that the prior the-
oretically and empirically helps to mitigate the
hubness problem. We also demonstrate how
previous work may be viewed as a similarly
fashioned latent-variable model, albeit with a
different prior.1

1 Introduction

Is there a more fundamental bilingual linguistic re-
source than a dictionary? The task of bilingual lexi-
con induction seeks to create a dictionary in a data-
driven manner directly from monolingual corpora
in the respective languages and, perhaps, a small
seed set of translations. From a practical point of
view, bilingual dictionaries have found uses in a
myriad of NLP tasks ranging from machine trans-
lation (Klementiev et al., 2012) to cross-lingual
named entity recognition (Mayhew et al., 2017). In
this work, we offer a probabilistic twist on the task,
developing a novel discriminative latent-variable
model that outperforms previous work.

Our proposed model is a bridge between cur-
rent state-of-the-art methods in bilingual lexicon
induction that take advantage of word embeddings,
e.g., the embeddings induced by Mikolov et al.
(2013b)’s skip-gram objective, and older ideas in
the literature that build explicit probabilistic models
for the task. We propose a discriminative probabil-
ity model, inspired by Irvine and Callison-Burch

⇤The first two authors contributed equally.
1The code used to run the experiments is avail-

able at https://github.com/sebastianruder/
latent-variable-vecmap.

(2013), infused with the bipartite matching dictio-
nary prior of Haghighi et al. (2008). However, like
more recent approaches (Artetxe et al., 2017), our
model operates directly over pretrained word em-
beddings, induces a joint cross-lingual embedding
space, and scales to large vocabulary sizes. To train
our model, we derive a generalized expectation-
maximization algorithm (EM; Neal and Hinton,
1998) and employ an efficient matching algorithm.

Empirically, we experiment on three standard
and three extremely low-resource language pairs.
We evaluate intrinsically, comparing the quality
of the induced bilingual dictionary, as well as an-
alyzing the resulting bilingual word embeddings
themselves. The latent-variable model yields gains
over several previous approaches across language
pairs. It also enables us to make implicit mod-
eling assumptions explicit. To this end, we pro-
vide a reinterpretation of Artetxe et al. (2017) as a
latent-variable model with an IBM Model 1–style
(Brown et al., 1993) dictionary prior, which allows
a clean side-by-side analytical comparison. Viewed
in this light, the difference between our approach
and Artetxe et al. (2017), the strongest baseline,
is whether one-to-one alignments or one-to-many
alignments are admitted between the words of the
languages’ respective lexicons. Thus, we conclude
that our hard constraint on one-to-one alignments
is primarily responsible for the improvements over
Artetxe et al. (2017).

2 Background: Bilingual Lexicon
Induction and Word Embeddings

Bilingual lexicon induction2 is the task of finding
word-level translations between the lexicons of two
languages. For instance, the German word Hund
and the English word dog are roughly semantically

2For the purposes of this paper, we use bilingual lexicon
and (bilingual) dictionary synonymously. On the other hand,
unmodified lexicon always refers to a word list in a single
language.
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equivalent, so the pair Hund–dog should be an entry
in a German–English bilingual lexicon. The task
itself comes in a variety of flavors. We consider a
version of the task that only relies on monolingual
corpora in the tradition of Rapp (1995) and Fung
(1995). In other words, the goal is to produce a
bilingual lexicon primarily from unannotated raw
text in each of the respective languages. Impor-
tantly, we avoid reliance on bitext, i.e. corpora with
parallel sentences that are known translations of
each other, e.g., EuroParl (Koehn, 2005). The bi-
text assumption is quite common in the literature;
see Ruder et al. (2018, Table 2) for a survey. Ad-
ditionally, we will assume the existence of a small
seed set of word-level translations obtained from
a dictionary; we also experiment with seed sets
obtained from heuristics that do not rely on the
existence of linguistic resources.

2.1 Graph-Theoretic Formulation

To ease the later exposition, we will formulate the
task graph-theoretically. Let `src denote the source
language and `trg the target language. Suppose
the source language `src has nsrc word types in its
lexicon Vsrc and `trg has ntrg word types in its lexi-
con Vtrg. We will write vsrc(i) for the ith word type
in `src and vtrg(i) for the ith word type in `trg. We
can view the elements of Vsrc and Vtrg as sets of
vertices in a graph. Now consider the bipartite set
of vertices V = Vtrg [ Vsrc. In these terms, a bilin-
gual lexicon is just a bipartite graph G = (E, V )
and, thus, the task of bilingual lexicon induction is
a combinatorial problem: the search for a ‘good’
edge set E ✓ Vtrg⇥Vsrc. We depict such a bipartite
graph in Figure 1. In §3, we will operationalize the
notion of ‘goodness’ by assigning a weight wij to
each possible edge between Vtrg and Vsrc.

When the edge set E takes the form of a match-
ing, we will denote it as m.3 In general, we will
be interested in partial matchings, where many ver-
tices have no incident edges. We will write M
for the set of all partial matchings on the bipar-
tite graph G. The set of vertices in Vtrg (respec-
tively Vsrc) with no incident edges will be termed
utrg (respectively usrc). Note that for any matching
m, we have the identity utrg = Vtrg \ {i : (i, j) 2
m}.

3A matching is an edge set where none of the edges share
common vertices (West, 2000).
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Figure 1: Partial lexicons of German and English shown as a
bipartite graph. German is the target language and English is
the source language. The ntrg = 7 German words are shown
in blue and the nsrc = 6 English words are shown in green. A
bipartite matching m between the two sets of vertices is also
depicted. The German nodes in utrg are unmatched.

2.2 Word Embeddings
Word embeddings will also play a key role in our
model. For the remainder of the paper, we will as-
sume we have access to d-dimensional embeddings
for each language’s lexicon—for example, those
provided by a standard model such as skip-gram
(Mikolov et al., 2013b). Notationally, we define
the real matrices S 2 R

d⇥nsrc and T 2 R
d⇥ntrg .

Note that in this formulation si 2 R
d, the ith col-

umn of S, is the word embedding corresponding
to vsrc(i). Likewise, note that ti 2 R

d, the ith col-
umn of T , is the word embedding corresponding to
vtrg(i).

3 A Latent-Variable Model

The primary contribution of this paper is a novel
latent-variable model for bilingual lexicon induc-
tion. The latent variable will be the edge set E, as
discussed in §2.1. Given pretrained embeddings
for the source and target languages, arranged into
the matrices S and T , we define the density

p(T | S) :=
X

m2M
p(T | S,m) · p(m) (1)

where, recall from §2, M is the set of all bipar-
tite matchings on the graph G and m 2 M is an
individual matching. Note that, then, p(m) is a
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distribution over all bipartite matchings on G such
as the matching shown in Figure 1. We will take
p(m) to be fixed as the uniform distribution for the
remainder of the exposition, though more compli-
cated distributions could be learned, of course. We
further define the distribution

p✓(T | S,m) :=
Y

(i,j)2m

p(ti | sj)·
Y

i2utrg

p(ti) (2)

Recall we write (i, j) 2m to denote an edge in the
matching. Furthermore, for notational simplicity,
we have dropped the dependence of utrg on m.
(Recall utrg = Vtrg \ {i : (i, j) 2 m}). Next, we
define the two densities present in equation (2) as
Gaussians:

p✓(t | s) := N (⌦ s, I) (3)

/ exp ||t� ⌦ s||22
p✓(t) := N (µ, I) (4)

Given a fixed matching m, we may create ma-
trices Sm 2 R

d⇥|m| and Tm 2 R
d⇥|m| such that

the rows correspond to word vectors of matched
vertices (translations under the matching m). Now,
after some algebra, we see that we can rewriteQ

(i,j)2m
p(ti | si) in matrix notation:

p✓(Tm | Sm,m) =
Y

(i,j)2m

p(ti | sj) (5)

/
Y

(i,j)2m

exp ||ti � ⌦ sj ||22

= exp
X

(i,j)2m

||ti � ⌦ sj ||22

= exp ||Tm � ⌦ Sm||2F (6)

where ⌦ 2 R
d⇥d is an orthogonal matrix of param-

eters to be learned. The result of this derivation,
equation (6), will become useful during the discus-
sion of parameter estimation in §4.

We define the model’s parameters, to be opti-
mized, as ✓ = (⌦, µ).

Modeling Assumptions and their Limitations
In the previous section, we have formulated the
induction of a bilingual lexicon as the search for an
edge set E, which we treat as a latent variable that
we marginalize out in equation (2). Specifically,
we assume that E is a partial matching. Thus, for
every (i, j) 2m, we have ti ⇠ N (⌦ sj , I), that is,
the embedding for vtrg(i) is assumed to have been

drawn from a Gaussian centered around the embed-
ding for vsrc(j), after an orthogonal transformation.
This gives rise to two modeling assumptions, which
we make explicit: (i) There exists a single source
for every word in the target lexicon and that source
cannot be used more than once.4 (ii) There ex-
ists an orthogonal transformation, after which the
embedding spaces are more or less equivalent.

Assumption (i) may be true for related languages,
but is likely false for morphologically rich lan-
guages that have a many-to-many relationship be-
tween the words in their respective lexicons. We
propose to ameliorate this using a rank constraint
that only considers the top n most frequent words
in both lexicons for matching in §6. In addition,
we experiment with priors that express different
matchings in §7.

As for assumption (ii), previous work (Xing
et al., 2015; Artetxe et al., 2017) has achieved
some success using an orthogonal transformation;
recently, however, Søgaard et al. (2018) demon-
strated that monolingual embedding spaces are not
approximately isomorphic and that there is a com-
plex relationship between word form and meaning,
which is only inadequately modeled by current ap-
proaches, which for example cannot model poly-
semy. Nevertheless, we will show that imbuing our
model with these assumptions helps empirically in
§6, giving them practical utility.

Why it Works: The Hubness Problem Why
should we expect the bipartite matching prior to
help, given that we know of cases when multi-
ple source words should match a target word?
One answer is because the bipartite prior helps
us obviate the hubness problem, a common issue
in word-embedding-based bilingual lexicon induc-
tion (Dinu et al., 2015). The hubness problem is
an intrinsic problem of high-dimensional vector
spaces where certain vectors will be universal near-
est neighbors, i.e. they will be the nearest neigh-
bor to a disproportionate number of other vectors
(Radovanović et al., 2010). Thus, if we allow one-
to-many alignments, we will find the embeddings
of certain elements of Vsrc acting as hubs, i.e. the
model will pick them to generate a disproportionate
number of target embeddings, which reduces the
quality of the embedding space.5

Another explanation for the positive effect of the

4This is true by the definition of a matching.
5In §5, we discuss the one-to-many alignment used in

several of our baseline systems.
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Algorithm 1 Viterbi EM for our latent-variable model
1: repeat
2: // Viterbi E-Step
3: m?  argmax

m2M log p✓(m | S, T )
4: u?

trg  Vtrg \ {i : (i, j) 2m?}
5: // M-Step
6: U⌃V >  SVD

�
Tm?S>

m?

�

7: ⌦?  UV >

8: µ?  1/|u?

trg| ·
P

i2u
?
trg

ti
9: ✓  (⌦?, µ?)

10: until converged

one-to-one alignment prior is its connection to the
Wasserstein distance and computational optimal
transport (Villani, 2008). Concurrent work (Grave
et al., 2018) similarly has found the one-to-one
alignment prior to be beneficial.

4 Parameter Estimation

We will conduct parameter estimation through
Viterbi EM. We describe first the E-step, then the
M-step. Viterbi EM estimates the parameters by al-
ternating between the two steps until convergence.
We give the complete pseudocode in Algorithm 1.

4.1 Viterbi E-Step
The E-step asks us to compute the posterior of la-
tent bipartite matchings p(m | S, T ). Computation
of this distribution, however, is intractable as it
would require a sum over all bipartite matchings,
which is #P-hard (Valiant, 1979). Tricks from com-
binatorial optimization make it possible to max-
imize over all bipartite matchings in polynomial
time. Thus, we fall back on the Viterbi approxima-
tion for the E-step (Brown et al., 1993; Samdani
et al., 2012). The derivation will follow Haghighi
et al. (2008). In order to compute

m? = argmax
m2M

log p✓(m | S, T ) (7)

we construct a fully connected bipartite graph G =
(E, Vsrc [ Vtrg), where E = Vsrc ⇥ Vtrg. We weight
each arc (i, j) 2 E with the weight between the
projected source word and target word embeddings:
wij = log p(ti | sj)� log p(ti) = ||ti � ⌦ sj ||22 �
||ti�µ||22, where the normalizers of both Gaussians
cancel as both have the same covariance matrix,
i.e., I . Note that in the case where the ti and the
sj are of length 1, that is, ||ti||2 = ||sj ||2 = 1, and
µ = 0, we recover cosine distance between the
vectors up to an additive constant as orthogonal

matrices preserve length (the constant is always -1
as ||ti||2 = 1). We may ignore this constant during
the E-step’s combinatorial optimization. Note the
optimal partial matching will contain no edges with
weight wij < 0. For this reason, we remove such
edges from the bipartite graph. To find the maximal
partial bipartite matching on G to compute m?, we
employ an efficient algorithm as detailed in the next
section.

Finding a Maximal Bipartite Matching We
frame finding an optimal one-to-one alignment be-
tween nsrc source and ntrg words as a combina-
torial optimization problem, specifically, a linear
assignment problem (LAP; Bertsimas and Tsitsik-
lis, 1997). In its original formulation, the LAP re-
quires assigning a number of agents (source words)
to a number of tasks (target words) at a cost that
varies based on each assignment. An optimal solu-
tion assigns each source word to exactly one target
word and vice versa at minimum cost. The Hun-
garian algorithm (Kuhn, 1955) is one of the most
well-known approaches for solving the LAP, but
runs in O((nsrc + ntrg)3). This works for smaller
vocabulary sizes,6 but is prohibitive for matching
cross-lingual word embeddings with large vocabu-
laries for real-world applications.7

For each source word, most target words, how-
ever, are unlikely candidates for alignment. We
thus propose to consider only the top k most similar
target words for alignment with every source word.
We sparsify the graph by weighting the edges for
all other words with �1. The remaining weights
wij are chosen as discussed above. We employ a
version of the Jonker-Volgenant algorithm (Jonker
and Volgenant, 1987; Volgenant, 1996), which has
been optimized for LAP on sparse graphs, to find
the maximum-weight matching m? on G.8

4.2 M-Step

Next, we will describe the M-step. Given an op-
timal matching m? computed in §4.1, we search
for a matrix ⌦ 2 R

d⇥d. We additionally enforce
the constraint that ⌦ is a real orthogonal matrix,
i.e., ⌦>⌦ = I . Previous work (Xing et al., 2015;

6Haghighi et al. (2008) use the Hungarian algorithm to find
a matching between 2000 source and target language words.

7For reference, in §6, we learn bilingual lexicons between
embeddings of 200,000 source and target language words.

8After acceptance to EMNLP 2018, Edouard Grave
pointed out that Sinkhorn propagation (Adams and Zemel,
2011; Mena et al., 2018) may have been a computationally
more effective manner to deal with the latent matchings.
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Artetxe et al., 2017) found that the orthogonality
constraint leads to noticeable improvements.

Our M-step optimizes two objectives indepen-
dently. First, making use of the result in equa-
tion (6), we optimize the following:

log p(Tm? | Sm? ,m?) (8)

= ||Tm? � ⌦ Sm? ||2F + C

with respect to ⌦ subject to ⌦>⌦ = I . (Note we
may ignore the constant C during the optimization.)
Second, we optimize the objective

log
Y

i2utrg

p(ti) =
X

i2utrg

||ti � µ||22 + D (9)

with respect to the mean parameter µ, which is
simply an average. Note, again, we may ignore the
constant D during optimization.

Optimizing equation (8) with respect to ⌦
is known as the orthogonal Procrustes prob-
lem (Schönemann, 1966; Gower and Dijksterhuis,
2004) and has a closed form solution that ex-
ploits the singular value decomposition (Horn and
Johnson, 2012). Namely, we compute U⌃V > =
T>
mSm. Then, we directly arrive at the optimum:

⌦? = UV >. Optimizing equation (9) can also
been done in closed form; the point which min-
imizes distance to the data points (thereby maxi-
mizing the log-probability) is the centroid: µ? =
1/|utrg| ·

P
i2utrg

ti.

5 Reinterpretation of Artetxe et al.
(2017) as a Latent-Variable Model

The self-training method of Artetxe et al. (2017),
our strongest baseline in §6, may also be inter-
preted as a latent-variable model in the spirit of our
exposition in §3. Indeed, we only need to change
the edge-set prior p(m) to allow for edge sets other
than those that are matchings. Specifically, a match-
ing enforces a one-to-one alignment between types
in the respective lexicons. Artetxe et al. (2017), on
the other hand, allow for one-to-many alignments.
We show how this corresponds to an alignment dis-
tribution that is equivalent to IBM Model 1 (Brown
et al., 1993), and that Artetxe et al. (2017)’s self-
training method is actually a form of Viterbi EM.

To formalize Artetxe et al. (2017)’s contribution
as a latent-variable model, we lay down some more
notation. Let A = {1, . . . , nsrc + 1}ntrg , where
we define (nsrc + 1) to be none, a distinguished
symbol indicating unalignment. The set A is to be

interpreted as the set of all one-to-many alignments
a on the bipartite vertex set V = Vtrg [ Vsrc such
that ai = j means the ith vertex in Vtrg is aligned
to the jth vertex in Vsrc. Note that ai = (nsrc +
1) = none means that the ith element of Vtrg is
unaligned. Now, by analogy to our formulation in
§3, we define

p(T | S) :=
X

a2A
p(T | S,a) · p(a) (10)

=
X

a2A

ntrgY

i=1

p(ti | sai , ai) · p(ai) (11)

=

ntrgY

i=1

nsrc+1X

ai=1

p(ti | sai , ai) · p(ai) (12)

The move from equation (11) to equation (12) is the
dynamic-programming trick introduced in Brown
et al. (1993). This reduces the number of terms in
the expression from exponentially many to polyno-
mially many. We take p(a) to be a uniform distri-
bution over all alignments with no parameters to
be learned.

Artetxe et al. (2017)’s Viterbi E-Step In the
context of Viterbi EM, it means the max over A
will decompose additively s

max
a2A

log p(a | S, T ) =

ntrgX

i=1

max
1ai(nsrc+1)

log p(ai | S, T )

thus, we can simply find a? component-wise as
follows:

a?
i = argmax

1ai(nsrc+1)
log p(ai | ti, sai) (13)

Artetxe et al. (2017)’s M-step The M-step re-
mains unchanged from the exposition in §3 with the
exception that we fit ⌦ given matrices Sa and Ta

formed from a one-to-many alignment a, rather
than a matching m.

Why a Reinterpretation? The reinterpretation
of Artetxe et al. (2017) as a probabilistic model
yields a clear analytical comparison between our
method and theirs. The only difference between
the two is the constraint on the bilingual lexicon
that the model is allowed to induce.

6 Experiments
We first conduct experiments on bilingual dictio-
nary induction and cross-lingual word similarity
on three standard language pairs, English–Italian,
English–German, and English–Finnish.
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English–Italian English–German English–Finnish
5,000 25 num iden 5,000 25 num iden 5,000 25 num iden

Mikolov et al. (2013c) 34.93 00.00 0.00 1.87 35.00 0.00 0.07 19.20 25.91 0.00 0.00 7.02
Xing et al. (2015) 36.87 0.00 0.13 27.13 41.27 0.07 0.53 38.13 28.23 0.07 0.56 17.95
Zhang et al. (2016) 36.73 0.07 0.27 28.07 40.80 0.13 0.87 38.27 28.16 0.14 0.42 17.56
Artetxe et al. (2016) 39.27 0.07 0.40 31.07 41.87 0.13 0.73 41.53 30.62 0.21 0.77 22.61
Artetxe et al. (2017) 39.67 37.27 39.40 39.97 40.87 39.60 40.27 40.67 28.72 28.16 26.47 27.88
Ours (1:1) 41.00 39.63 40.47 41.07 42.60 42.40 42.60 43.20 29.78 0.07 3.02 29.76
Ours (1:1, rank constr.) 42.47 41.13 41.40 41.80 41.93 42.40 41.93 41.47 28.23 27.04 27.60 27.81

Table 1: Precision at 1 (P@1) scores for bilingual lexicon induction of different models with different seed dictionaries and
languages on the full vocabulary.

en-it en-de
Dict WS RG WS

Mikolov et al. (2013c) 5k .627 .643 .528
Xing et al. (2015) 5k .614 .700 .595
Zhang et al. (2016) 5k .616 .704 .596
Artetxe et al. (2016) 5k .617 .716 .597

Artetxe et al. (2017)
5k .624 .742 .616
25 .626 .749 .612

num .628 .739 .604

Ours (1:1)
5k .621 .733 .618
25 .621 .740 .617

num .624 .743 .617

Ours (1:1, rank constr.)
5k .623 .741 .609
25 .622 .753 .609

num .625 .755 .611

Table 2: Spearman correlations on English–Italian and
English–German cross-lingual word similarity datasets.

6.1 Experimental Details

Datasets For bilingual dictionary induction, we
use the English–Italian dataset by Dinu et al. (2015)
and the English–German and English–Finnish
datasets by Artetxe et al. (2017). For cross-lingual
word similarity, we use the RG-65 and WordSim-
353 cross-lingual datasets for English–German and
the WordSim-353 cross-lingual dataset for English–
Italian by Camacho-Collados et al. (2015).

Monolingual Embeddings We follow Artetxe
et al. (2017) and train monolingual embeddings
with word2vec, CBOW, and negative sampling
(Mikolov et al., 2013a) on a 2.8 billion word corpus
for English (ukWaC + Wikipedia + BNC), a 1.6
billion word corpus for Italian (itWaC), a 0.9 bil-
lion word corpus for German (SdeWaC), and a 2.8
billion word corpus for Finnish (Common Crawl).

Seed dictionaries Following Artetxe et al.
(2017), we use dictionaries of 5,000 words, 25
words, and a numeral dictionary consisting of

words matching the [0-9]+ regular expression
in both vocabularies.9 In line with Søgaard et al.
(2018), we additionally use a dictionary of identi-
cally spelled strings in both vocabularies.

Implementation details Similar to Artetxe et al.
(2017), we stop training when the improvement
on the average cosine similarity for the induced
dictionary is below 1⇥ 10�6 between succeeding
iterations. Unless stated otherwise, we induce a
dictionary of 200,000 source and 200,000 target
words as in previous work (Mikolov et al., 2013c;
Artetxe et al., 2016). For optimal 1:1 alignment,
we have observed the best results by keeping the
top k = 3 most similar target words. If using a
rank constraint, we restrict the matching in the E-
step to the top 40,000 words in both languages.10

Finding an optimal alignment on the 200,000 ⇥
200,000 graph takes about 25 minutes on CPU;11

with a rank constraint, matching takes around three
minutes.

Baselines We compare our approach with and
without the rank constraint to the original bilin-
gual mapping approach by Mikolov et al. (2013c).
In addition, we compare with Zhang et al. (2016)
and Xing et al. (2015) who augment the former
with an orthogonality constraint and normalization
and an orthogonality constraint respectively. Fi-
nally, we compare with Artetxe et al. (2016) who
add dimension-wise mean centering to Xing et al.
(2015), and Artetxe et al. (2017).

Both Mikolov et al. (2013c) and Artetxe et al.
(2017) are special cases of our famework and com-
parisons to these approaches thus act as an ablation
study. Specifically, Mikolov et al. (2013c) does not

9The resulting dictionaries contain 2772, 2148, and 2345
entries for English–{Italian, German, Finnish} respectively.

10We validated both values with identical strings using the
5,000 word lexicon as validation set on English–Italian.

11Training takes a similar amount of time as (Artetxe et al.,
2017) due to faster convergence.
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employ orthogonal Procrustes, but rather allows
the learned matrix ⌦ to range freely. Likewise, as
discussed in §5, Artetxe et al. (2017) make use of
a Viterbi EM style algorithm with a different prior
over edge sets.12

6.2 Results
We show results for bilingual dictionary induc-
tion in Table 1 and for cross-lingual word simi-
larity in Table 2. Our method with a 1:1 prior
outperforms all baselines on English–German and
English–Italian.13 Interestingly, the 1:1 prior by
itself fails on English–Finnish with a 25 word and
numerals seed lexicon. We hypothesize that the
prior imposes too strong of a constraint to find a
good solution for a distant language pair from a
poor initialization. With a better—but still weakly
supervised—starting point using identical strings,
our approach finds a good solution. Alternatively,
we can mitigate this deficiency effectively using
a rank constraint, which allows our model to con-
verge to good solutions even with a 25 word or
numerals seed lexicon. The rank constraint gen-
erally performs similarly or boosts performance,
while being about 8 times faster. All approaches do
better with identical strings compared to numerals,
indicating that the former may be generally suitable
as a default weakly-supervised seed lexicon.

On cross-lingual word similarity, our approach
yields the best performance on WordSim-353 and
RG-65 for English–German and is only outper-
formed by Artetxe et al. (2017) on English–Italian
Wordsim-353.

7 Analysis

Vocabulary sizes The beneficial contribution of
the rank constraint demonstrates that in similar lan-
guages, many frequent words will have one-to-one
matchings, while it may be harder to find direct
matches for infrequent words. We would thus ex-
pect the latent variable model to perform better if
we only learn dictionaries for the top n most fre-
quent words in both languages. We show results for
our approach in comparison to the baselines in Fig-
ure 2 for English–Italian using a 5,000 word seed
lexicon across vocabularies consisting of different

12Other recent improvements such as symmetric reweight-
ing (Artetxe et al., 2018) are orthogonal to our method, which
is why we do not explicitly compare to them here.

13Note that results are not directly comparable to (Conneau
et al., 2018) due to the use of embeddings trained on different
monolingual corpora (WaCKy vs. Wikipedia).

numbers n of the most frequent words14.

Figure 2: Bilingual dictionary induction results of our method
and baselines for English–Italian with a 5,000 word seed lexi-
con across different vocabulary sizes.

The comparison approaches mostly perform sim-
ilar, while our approach performs particularly well
for the most frequent words in a language.

Different priors An advantage of having an ex-
plicit prior as part of the model is that we can ex-
periment with priors that satisfy different assump-
tions. Besides the 1:1 prior, we experiment with
a 2:2 prior and a 1:2 prior. For the 2:2 prior, we
create copies of the source and target words V 0

src

and V 0
trg and add these to our existing set of vertices

V 0 = (Vtrg +V 0
trg, Vsrc +V 0

src). We run the Viterbi
E-step on this new graph G0 and merge matched
pairs of words and their copies in the end. Similarly,
for the 1:2 prior, which allows one source word to
be matched to two target words, we augment the
vertices with a copy of the source words V 0

src and
proceed as above. We show results for bilingual
dictionary induction with different priors across
different vocabulary sizes in Figure 3.

The 2:2 prior performs best for small vocabulary
sizes. As solving the linear assignment problem for
larger vocabularies becomes progressively more
challenging, the differences between the priors be-
come obscured and their performance converges.

Hubness problem We analyze empirically
whether the prior helps with the hubness problem.
Following Lazaridou et al. (2015), we define the
hubness Nk(y) at k of a target word y as follows:

Nk(y) = |{x 2 Q | y 2 NNk(x, G)}| (14)

where Q is a set of query source language words
and NNk(x, G) denotes the k nearest neighbors

14We only use the words in the 5,000 word seed lexicon that
are contained in the n most frequent words. We do not show
results for the 25 word seed lexicon and numerals as they are
not contained in the smallest n of most frequent words.
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(a) English–Italian (b) English–German (c) English–Finnish
Figure 3: Bilingual dictionary induction results of our method with different priors using a 5,000 word seed lexicon across
different vocabulary sizes.

Artetxe et al. (2017) Ours (1:1)

luis (20) gleichgültigkeit
- ‘indifference’ (14)

ungarischen heuchelei
- ‘Hungarian’ (18) - ‘hypocrisy’ (13)
jorge (17) ahmed (13)

mohammed (17) ideologie
- ‘ideology’ (13)

gewiß eduardo (13)- ‘certainly’ (17)

Table 3: Hubs in English–German cross-lingual embedding
space with degree of hubness. Non-name tokens are translated.

of x in the graph G.15 In accordance with Lazari-
dou et al. (2015), we set k = 20 and use the words
in the evaluation dictionary as query terms. We
show the target language words with the highest
hubness using our method and Artetxe et al. (2017)
for English–German with a 5,000 seed lexicon and
the full vocabulary in Table 3.16

Hubs are fewer and occur less often with our
method, demonstrating that the prior—to some
extent—aids with resolving hubness. Interestingly,
compared to Lazaridou et al. (2015), hubs seem to
occur less often and are more meaningful in current
cross-lingual word embedding models.17 For in-
stance, the neighbors of ‘gleichgültigkeit’ all relate
to indifference and words appearing close to ‘luis’
or ‘jorge’ are Spanish names. This suggests that
the prior might also be beneficial in other ways,
e.g. by enforcing more reliable translation pairs for
subsequent iterations.

15In other words, the hubness of a target word measures
how often it occurs in the neighborhood of the query terms.

16We verified that hubs are mostly consistent across runs
and similar across language pairs.

17Lazaridou et al. (2015) observed mostly rare words with
N20 values of up to 50 and many with N20 > 20.

en-tr en-bn en-hi et-fi

Artetxe et al. (2017) 28.93 0.87 2.07 30.18
Ours (1:1) 38.73 2.33 10.47 33.79
Ours (1:1, rank constr.) 42.40 11.93 31.80 34.78

Table 4: Bilingual dictionary induction results for English-
{Turkish, Bengali, Hindi} and Estonian-Finnish.

Low-resource languages Cross-lingual embed-
dings are particularly promising for low-resource
languages, where few labeled examples are typi-
cally available, but are not adequately reflected in
current benchmarks (besides the English–Finnish
language pair). We perform experiments with
our method with and without a rank constraint
and Artetxe et al. (2017) for three truly low-
resource language pairs, English–{Turkish, Ben-
gali, Hindi}. We additionally conduct an exper-
iment for Estonian-Finnish, similarly to Søgaard
et al. (2018). For all languages, we use fastText
embeddings (Bojanowski et al., 2017) trained on
Wikipedia, the evaluation dictionaries provided by
Conneau et al. (2018), and a seed lexicon based on
identical strings to reflect a realistic use case. We
note that English does not share scripts with Ben-
gali and Hindi, making this even more challenging.
We show results in Table 4.

Surprisingly, the method by Artetxe et al. (2017)
is unable to leverage the weak supervision and fails
to converge to a good solution for English-Bengali
and English-Hindi.18 Our method without a rank
constraint significantly outperforms Artetxe et al.
(2017), while particularly for English-Hindi the
rank constraint dramatically boosts performance.

Error analysis To illustrate the types of errors
the model of Artetxe et al. (2017) and our method
with a rank constraint make, we query both of them
with words from the test dictionary of Artetxe et al.

18One possible explanation is that Artetxe et al. (2017)
particularly rely on numerals, which are normalized in the
fastText embeddings.
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Query Gold Artetxe et al. (2017) Ours

unregierbar ungovernable untenable uninhabitable
nikolai nikolaj feodor nikolai
memoranden memorandums communiqus memos
argentinier argentinians brazilians argentines
trostloser bleaker dreary dark-coloured
umverteilungen redistributions inequities reforms
modischen modish trend-setting modish
tranquilizer tranquillizers clonidine opiates
sammelsurium hotchpotch assortment mishmash
demagogie demagogy opportunism demagogy
andris andris rehn viktor
dehnten halmahera overran stretched
deregulieren deregulate deregulate liberalise
eurokraten eurocrats bureaucrats eurosceptics
holte holte threw grabbed
reserviertheit aloofness disdain antipathy
reaktiv reactively reacting reactive
danuta danuta julie monika
scharfblick perspicacity sagacity astuteness

Table 5: Example translations for German-English.

(2017) in German and seek their nearest neighbours
in the English embedding space. P@1 over the
German-English test set is 36.38 and 39.18 for
Artetxe et al. (2017) and our method respectively.
We show examples where nearest neighbours of
the methods differ in Table 5.

Similar to Kementchedjhieva et al. (2018), we
find that morphologically related words are often
the source of mistakes. Other common sources of
mistakes in this dataset are names that are trans-
lated to different names and nearly synonymous
words being predicted. Both of these sources indi-
cate that while the learned alignment is generally
good, it is often not sufficiently precise.

8 Related work

Cross-lingual embedding priors Haghighi et al.
(2008) first proposed an EM self-learning method
for bilingual lexicon induction, representing words
with orthographic and context features and using
the Hungarian algorithm in the E-step to find an op-
timal 1:1 matching. Artetxe et al. (2017) proposed
a similar self-learning method that uses word em-
beddings, with an implicit one-to-many alignment
based on nearest neighbor queries. Vulić and Ko-
rhonen (2016) proposed a more strict one-to-many
alignment based on symmetric translation pairs,
which is also used by Conneau et al. (2018). Our
method bridges the gap between early latent vari-
able and word embedding-based approaches and
explicitly allows us to reason over its prior.

Hubness problem The hubness problem is an in-
trinsic problem in high-dimensional vector spaces
(Radovanović et al., 2010). Dinu et al. (2015) first
observed it for cross-lingual embedding spaces and

proposed to address it by re-ranking neighbor lists.
Lazaridou et al. (2015) proposed a max-marging ob-
jective as a solution, while more recent approaches
proposed to modify the nearest neighbor retrieval
by inverting the softmax (Smi, 2017) or scaling the
similarity values (Conneau et al., 2018).

9 Conclusion

We have presented a novel latent-variable model for
bilingual lexicon induction, building on the work
of Artetxe et al. (2017). Our model combines the
prior over bipartite matchings inspired by Haghighi
et al. (2008) and the discriminative, rather than gen-
erative, approach inspired by Irvine and Callison-
Burch (2013). We show empirical gains on six
language pairs and theoretically and empirically
demonstrate the application of the bipartite match-
ing prior to solving the hubness problem.
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688–698, Montréal, Canada. Association for Com-
putational Linguistics.

Peter H. Schönemann. 1966. A generalized solution of
the orthogonal Procrustes problem. Psychometrika,
31(1):1–10.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić.
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Abstract

Unsupervised word translation from non-
parallel inter-lingual corpora has attracted
much research interest. Very recently, neu-
ral network methods trained with adversarial
loss functions achieved high accuracy on this
task. Despite the impressive success of the re-
cent techniques, they suffer from the typical
drawbacks of generative adversarial models:
sensitivity to hyper-parameters, long training
time and lack of interpretability. In this paper,
we make the observation that two sufficiently
similar distributions can be aligned correctly
with iterative matching methods. We present a
novel method that first aligns the second mo-
ment of the word distributions of the two lan-
guages and then iteratively refines the align-
ment. Extensive experiments on word trans-
lation of European and Non-European lan-
guages show that our method achieves better
performance than recent state-of-the-art deep
adversarial approaches and is competitive with
the supervised baseline. It is also efficient,
easy to parallelize on CPU and interpretable.

1 Introduction

Inferring word translations between languages is a
long-standing research task. Earliest efforts con-
centrated on finding parallel corpora in a pair
of languages and inferring a dictionary by force
alignment of words between the two languages.
An early example of this approach is the transla-
tion achieved using the Rosetta stone.

However, if most languages share the same ex-
pressive power and are used to describe similar
human experiences across cultures, they should
share similar statistical properties. Exploiting sta-
tistical properties of letters has been successfully
employed by substitution crypto-analysis since at
least the 9th century. It seems likely that one can
learn to map between languages statistically, by

considering the word distributions. As one spe-
cific example, it is likely that the set of elements
described by the most common words in one lan-
guage would greatly overlap with those described
in a second language.

Another support for the plausibility of unsuper-
vised word translation came with the realization
that when words are represented as vectors that
encode co-occurrences, the mapping between two
languages is well captured by an affine transfor-
mation (Mikolov et al., 2013b). In other words,
not only that one can expect the most frequent
words to be shared, one can also expect the rep-
resentations of these words to be similar up to a
linear transformation.

A major recent trend in unsupervised learning
is the use of Generative Adversarial Networks
(GANs) presented by Goodfellow et al. (2014), in
which two networks provide mutual training sig-
nals to each other: the generator and the discrimi-
nator. The discriminator plays an adversarial role
to a generative model and is trained to distinguish
between two distributions. Typically, these dis-
tributions are labeled as “real” and “fake”, where
“fake” denotes the generated samples.

In the context of unsupervised translation (Con-
neau et al., 2017; Zhang et al., 2017a,b), when
learning from a source language to a target lan-
guage, the “real” distribution is the distribution of
the target language and the “fake” one is the map-
ping of the source distribution using the learned
mapping. Such approaches have been shown re-
cently to be very effective when employed on top
of modern vector representations of words.

In this work, we ask whether GANs are nec-
essary for achieving the level of success recently
demonstrated for unsupervised word translation.
Given that the learned mapping is simple and that
the concepts described by the two languages are
similar, we suggest to directly map every word
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in one language to the closest word in the other.
While one cannot expect that all words would
match correctly for a random initialization, some
would match and may help refine the affine trans-
formation. Once an improved affine transforma-
tion is recovered, the matching process can repeat.

Naturally, such an iterative approach relies on
a good initialization. For this purpose we employ
two methods. First, an initial mapping is obtained
by matching the means and covariances of the two
distributions. Second, multiple solutions, which
are obtained stochastically, are employed.

Using multiple stochastic solutions is crucial
for languages that are more distant, e.g., more
stochastic solutions are required for learning to
translate between English and Arabic, in compari-
son to English and French. Evaluating multiple so-
lutions relies on the ability to automatically iden-
tify the true matching without supervision and we
present an unsupervised reconstruction-based cri-
terion for determining the best stochastic solution.

Our presented approach is simple, has very few
hyper-parameters, and is trivial to parallelize. It
is also easily interpretable, since every step of the
method has a clear goal and a clear success metric,
which can also be evaluated without the ground
truth bilingual lexicon. An extensive set of exper-
iments shows that our much simpler and more ef-
ficient method is more effective than the state-of-
the-art GAN based method.

2 Related Work

The earlier contributions in the field of word trans-
lation without parallel corpora were limited to
finding matches between a small set of carefully
selected words and translations, and relied on co-
occurrence statistics (Rapp, 1995) or on similar-
ity in the variability of the context before and af-
ter the word (Fung, 1995). Finding translations of
larger sets of words was made possible in follow-
up work by incorporating a seed set of matching
words that is either given explicitly or inferred
based on words that appear in both languages or
are similar in edit distance due to a shared etymol-
ogy (Fung and Yee, 1998; Rapp, 1999; Schafer
and Yarowsky, 2002; Koehn and Knight, 2002;
Haghighi et al., 2008; Irvine and Callison-Burch,
2013; Xia et al., 2016; Artetxe et al., 2017).

For example, Koehn and Knight (2002)
matched English with German. Multiple heuris-
tics were suggested based on hand crafted rules,

including similarity in spelling and word fre-
quency. A weighted linear combination is em-
ployed to combine the heuristics and the matching
words are identified in a greedy manner. Haghighi
et al. (2008) modeled the problem of matching
words across independent corpora as a genera-
tive model, in which cross-lingual links are rep-
resented by latent variables, and employed an iter-
ative EM method.

Another example that employs iterations was
presented by Artetxe et al. (2017). Similarly to our
method, this method relies on word vector embed-
dings, in their case the word2vec method (Mikolov
et al., 2013a). Unlike our method, their method is
initialized using seed matches.

Our core method incorporates a circularity term,
which is also used in (Xia et al., 2016) for the
task of NMT and later on in multiple contributions
in the field of image synthesis (Kim et al., 2017;
Zhu et al., 2017). This term is employed when
learning bidirectional transformations to encour-
ages samples from either domain to be mapped
back to exactly the same sample when translated
to the other domain and back. Since our transfor-
mations are linear, this is highly related to employ-
ing orthogonality as done in (Xing et al., 2015;
Smith et al., 2017; Conneau et al., 2017) for the
task of weakly or unsupervised word vector space
alignment. Conneau et al. (2017) also employ a
circularity term, but unlike our use of it as part of
the optimization’s energy term, there it is used for
validating the solution and selecting hyperparam-
eters.

Very recently, Zhang et al. (2017a,b); Conneau
et al. (2017) have proposed completely unsuper-
vised solutions. All three solutions are based on
GANs. The methods differ in the details of the ad-
versarial training, in the way that model selection
is employed to select the best configuration and in
the way in which matching is done after the distri-
butions are aligned by the learned transformation.

Due to the min-max property of GANs, meth-
ods which rely on GANs are harder to interpret,
since, for example, the discriminator D could fo-
cus on a combination of local differences between
the distributions. The reliance on a discriminator
also means that complex weight dependent met-
rics are implicitly used, and that these metrics
evolve dynamically during training.

Our method does not employ GANs. Alter-
natives to GANs are also emerging in other do-
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mains. For example, generative methods were
trained by iteratively fitting random (“noise”) vec-
tors by Bojanowski et al. (2017); In the recent im-
age translation work of Chen and Koltun (2017),
distinguishability between distribution of images
was measured using activations of pretrained net-
works, a practice that is referred to as the “percep-
tual loss” (Johnson et al., 2016).

3 Non-Adversarial Word Translation

We present an approach for unsupervised word
translation consisting of multiple parts: (i) Trans-
forming the word vectors into a space in which the
two languages are more closely aligned, (ii) Mini-
Batch Cycle iterative alignment. There is an op-
tional final stage of batch-based finetuning.

Let us define two languages X and Y , each con-
taining a set of NX and NY words represented by
the feature vectors x1..xNX and y1..yNY respec-
tively. Our objective is to find the correspondence
function f(n) such that for every xn, f(n) yields
the index of the Y word that corresponds to the
word xn. If a set of possible correspondences is
available for a given word, our objective is to pre-
dict one member of this set. In this unsupervised
setting, no training examples of f(n) are given.

3.1 Approximate Alignment with PCA

Each language consists of a set of words each pa-
rameterized by a word vector. A popular exam-
ple of a word embedding method is FastText (Bo-
janowski et al., 2016), which uses the internal
word co-occurrence statistics for each language.
These word vectors are typically not expected to
be aligned between languages and since the align-
ment method we employ is iterative, a good ini-
tialization is key.

Let us motivate our approach by a method com-
monly used in 3D point cloud matching. Let A be
a set of 3D points and TA be the same set of points
with a rotated coordinate system. Assuming non-
isotropic distributions of points, transforming each
set of points to its principle axes of variations (us-
ing PCA) will align the two point clouds. As noted
by Daras et al. (2012), PCA-based alignment is
common in the literature of point cloud matching.

Word distributions are quite different from 3D
point clouds: They are much higher dimensional,
and it is not obvious a priori that different lan-
guages present different “views” of the same “ob-
ject” and share exactly the same axes of variation.

The success of previous results, e.g. (Conneau
et al., 2017), to align word vectors between lan-
guages using an orthonormal transformation does
give credence to this approach. Our method re-
lies on the assumption that many language pairs
share some principle axes of variation. The em-
pirical success of PCA initialization in this work
supports this assumption.

For each language [X , Y], we first select the N
most frequent word vectors. In our implementa-
tion, we use N = 5000 and employ FastText vec-
tors of dimension D = 300. We project the word
vectors, after centering, to the top p principle com-
ponents (we use p = 50).

3.2 Mini-Batch Cycle Iterative Closest Point
Although projecting to the top principle axes of
variation would align a rotated non-isotropic point
cloud, it does not do so in the general case. This
is due to languages having different word distribu-
tions and components of variation.

We therefore attempt to find a transformation T
that will align every word xi from language X to
a word yf(i) in language Y . The objective is there-
fore to minimize:

argmin
T

X

i

min
f(i)

|yi � Txf(i)| (1)

Eq. 1 is difficult to optimize directly and var-
ious techniques have been proposed for its opti-
mization. One popular method used in 3D point
cloud alignment is Iterative Closest Point (ICP).
ICP solves Eq. 1 iteratively in two steps.

1. For each yj , find the nearest Txi. We denote
its index by fy(j) = i

2. Optimize for T in
P

j kyj � Txfy(j)k

In this work, we use a modified version of ICP
which we call Mini-Batch Cycle ICP (MBC-ICP).
MBC-ICP learns transformations Txy for X ! Y
and Tyx for Y ! X . We include cycle-constraints
ensuring that a word x transformed to the Y do-
main and back is unchanged (and similarly for ev-
ery Y ! X ! Y transformation). The strength
of the cycle constraints is parameterized by � (we
have � = 0.1). We compute the nearest neigh-
bor matches at the beginning of each epoch, and
then optimize transformations Tyx and Txy using
mini-batch SGD with mini-batch size 128. Mini-
batch rather than full-batch optimization greatly
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increases the success of the method. Experimen-
tal comparisons can be seen in the results section.
Note we only compute the nearest neighbors at
the beginning of each epoch, rather than for each
mini-batch due to the computational expense.

Every iteration of the final MBC-ICP algorithm
therefore becomes:

1. For each yj , find the nearest Txyxi. We de-
note its index by fy(j)

2. For each xi, find the nearest Tyxyj . We de-
note its index by fx(i)

3. Optimize Txy and Tyx using mini-batch SGD
for a single epoch of {xi} and {yj} on:
P

j kyj � Txyxfy(j)k +
P

i kxi � Tyxyfx(i)k
+ �

P
i kxi � TyxTxyxik + �

P
j kyj �

TxyTyxyjk

A good initialization is important for ICP-type
methods. We therefore begin with the projected
data in which the transformation is assumed to be
relatively small and initialize transformations Txy

and Tyx with the identity matrix. We denote this
step PCA-MBC-ICP.

Once PCA-MBC-ICP has generated the corre-
spondences functions fx(i) and fy(j), we run a
MBC-ICP on the original 300D word vectors (no
PCA). We denote this step: RAW-MBC-ICP. We
initialize the optimization using fx(i) and fy(j)
learned before, and proceed with MBC-ICP. At
the end of this stage, we recover transformations
T̄xy and T̄yx that transform the 300D word vec-
tors from X ! Y and Y ! X respectively.

Reciprocal pairs: After several iterations of
MBC-ICP, the estimated transformations become
quite reliable. We can therefore use this transfor-
mation to identify the pairs that are likely to be
correct matches. We use the reciprocity heuristic:
For every word y 2 Y we find the nearest trans-
formed word from the set {Txyx|x 2 X}. We also
find the nearest neighbors for the Y ! X trans-
formation. If a pair of words is matched in both
X ! Y and Y ! X directions, the pair is de-
noted reciprocal. During RAW-MBC-ICP, we use
only reciprocal pairs, after the 50th epoch (this pa-
rameter is not sensitive).

In summary: we run PCA-MBC-ICP on the 5k
most frequent words after transformation to prin-
ciple components. The resulting correspondences
fx(i) and fy(j) are used to initialize a RAW-
MBC-ICP on the original 300D data (rather than

PCA), using reciprocal pairs. The output of the
method are transformation matrices Txy and Tyx.

3.3 Fine-tuning

MBC-ICP is able to achieve very competitive per-
formance without any further finetuning or use
of large corpora. GAN-based methods on the
other hand require iterative finetuning (Conneau
et al., 2017; Hoshen and Wolf, 2018) to achieve
competitive performance. To facilitate compari-
son with such methods, we also add a variant of
our method with identical finetuning to (Conneau
et al., 2017). As we show in the results section,
fine-tuning European languages typically results
in small improvements in accuracy (1-2%) for our
method, in comparison to 10-15% for the previ-
ous work. Following (Xing et al., 2015; Conneau
et al., 2017), fine-tuning is performed by running
the Procrustes method iteratively on the full vo-
cabulary of 200k words, initialized with the final
transformation matrix from MBC-ICP. The Pro-
crustes method uses SVD to find the optimal or-
thonormal matrix between X and Y given approx-
imate matches. The new transformation is used to
finetune the approximate matches. We run 5 iter-
ations of successive transformation and matching
estimation steps.

3.4 Matching Metrics

Although we optimize the nearest neighbor metric,
we found that in accordance with (Conneau et al.,
2017), neighborhood retrieval methods such as In-
verted Soft-Max (ISF) (Smith et al., 2017) and
Cross-domain Similarity Local Scaling (CSLS)
improve final retrieval performance. We there-
fore evaluate using CSLS. The similarity between
a word x 2 X and a word y 2 Y is computed as
2 cos(Txyx, y)�r(Txyx)�r(y), where r(.) is the
average cosine similarity between the word and its
10-NN in the other domain.

4 Multiple Stochastic Solutions

Our approach utilizes multiple stochastic solu-
tions, to provide a good initialization for the MBC-
ICP algorithm. There are two sources of stochas-
ticity in our system: (i) The randomized nature
of the PCA algorithm (it uses random matrices
(Liberty et al., 2007)) (ii) The order of the train-
ing samples (the mini-batches) when training the
transformations.

472



(a) (b) (c)

Figure 1: (a) Evolution of reconstruction loss as a function of epoch number for successful (Blue) and unsuccessful
runs (Red). (b) The final reconstruction loss distribution for En-Fr. (c) A similar histogram for En-Ar.

The main issue faced by unsupervised learn-
ing in the case of multiple solutions, is either (i)
choosing the best solution in case of a fixed par-
allel run budget, or (ii) finding a good stopping
criterion if attempting to minimize the number of
runs serially.

We use the reconstruction cost as an unsuper-
vised metrics for measuring convergence of MBC-
ICP. Specifically, we measure how closely every
x 2 X and y 2 Y is reconstructed by a trans-
formed word from the other domain.
X

j

kyj �Txyxfy(j)k+
X

i

kxi �Tyxyfx(i)k (2)

Although for isotropic distributions this has many
degenerate solutions, empirically we find that val-
ues that are significantly lower than the median al-
most always correspond to a good solution.

The optimization profile of MBC-ICP is pre-
dictable and easily lends itself for choosing effec-
tive termination criteria. The optimization profile
of a successfully converged and non-converging
runs are presented in Fig. 1(a). The reconstruction
loss clearly distinguish between the converged and
non-converging runs. Fig. 1(b,c) presents the dis-
tribution of final reconstruction costs for 500 dif-
ferent runs for En-Fr and En-Ar.

5 Experiments

We evaluated our method extensively to ensure
that it is indeed able to effectively and efficiently
perform unsupervised word translation. As a
strong baseline, we used the code and datasets
from the MUSE repository by Conneau et al.
(2017)1. Care was taken in order to make sure that
we report these results as fairly as possible: (1) the
results from the previous work were copied as is,

1https://github.com/facebookresearch/MUSE

except for En-It, where our runs indicated better
baseline results. (2) For languages not reported,
we ran the code with multiple options and report
the best results obtained. One crucial option for
GAN was whether to center the data or not. From
communication with the authors we learned that,
in nearly all non-European languages, centering
the data is crucial. For European languages, not
centering gave better results. For Arabic, center-
ing helps in one direction but is very detrimental
in the other. In all such cases, we report the best
baseline result per direction. (3) For the super-
vised baseline, we report both the results from the
original paper (in Tab. 1) and the results post Pro-
crustes finetuning, which are better (Tab. 2). (4)
Esperanto is not available in the MUSE repository
at this time. We asked the authors for the data and
will update the paper once available. Currently we
are able to say (without the supervision data) that
our method converges on En-Eo and Eo-En.

The evaluation concentrated on two aspects of
the translation: (i) Word Translation Accuracy
measured by the fraction of words translated to
a correct meaning in the target language, and (ii)
Runtime of the method.

We evaluated our method against the best meth-
ods from (Conneau et al., 2017). The supervised
baseline method learns an alignment from 5k su-
pervised matches using the Procrustes method.
The mapping is then refined using the Procrustes
method and CSLS matching on 200k unsupervised
word vectors in the source and target languages.
The unsupervised method proposed by (Conneau
et al., 2017), uses generative adversarial domain
mapping between the word vectors of the 50k most
common words in each language. The mapping is
then refined using the same procedure that is used
in the supervised baseline.

A comparison of the word translation accura-
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cies before finetuning can be seen in Tab. 1. Our
method significantly outperforms the method of
(Conneau et al., 2017) on all of the evaluated Eu-
ropean language pairs. Additionally, for these lan-
guages, our method performs comparably to the
supervised baseline on all pairs except En-Ru for
which supervision seems particularly useful. The
same trends are apparent for simple nearest neigh-
bors and CSLS although CSLS always performs
better. For non-European languages, none of the
unsupervised methods succeeds on all languages.
We found that the GAN baseline fails on Farsi,
Hindu, Bengali, Vietnamese and one direction of
Japanese and Indonesian while our method does
not succeed on Chinese, Japanese and Vietnamese.
We conclude that the methods have complemen-
tary strengths, our method doing better on more
languages. On languages where both methods suc-
ceed, MBC-ICP tends to do much better.

We present a comparison between the meth-
ods after finetuning and using the CSLS metric in
Tab. 2. All methods underwent the same finetun-
ing procedure. We can see that our method still
outperforms the GAN method and is comparable
to the supervised baseline on European languages.
Another observation is that on most European lan-
guage pairs, finetuning only makes a small differ-
ence for our method (1-2%). An unaligned vocab-
ulary of 7.5k is sufficient to achieve most of the ac-
curacy. This is in contrast with the GAN, that ben-
efits greatly from finetuning on 200k words. Non-
European language and English pairs are typically
more challenging, finetuning helps much more for
all unsupervised methods.

It is interesting to examine the languages on
which each method could not converge. They typ-
ically fall into geographical and semantic clusters.
The GAN method failed on Arabic and Hebrew,
Hindu, Farsi and Bengali. Whereas our method
failed on Japanese and Chinese. We suspect that
different statistical properties favor each method.

We also compare the different methods in terms
of training time required by the method. We em-
phasize that our method is trivially parallelizable,
simply by splitting the random initializations be-
tween workers. The run time of each solution of
MBC-ICP is 47 seconds on CPU. The run time of
all solutions can therefore be as low as a single
run, at linear increase in compute resources. As
it runs on CPU, parallelization is not expensive.
The average number of runs required for conver-

Table 1: Comparison of word translation accuracy (%)
- without finetuning. Bold: best unsupervised method.

Pair Supervised Unsupervised

Baseline GAN Ours

nn csls nn csls nn csls

European Languages

En-Es 77.4 81.4 69.8 75.7 75.9 81.1
Es-En 77.3 82.9 71.3 79.7 76.0 82.1

En-Fr 74.9 81.1 70.4 77.8 74.8 81.5
Fr-En 76.1 82.4 61.9 71.2 75.0 81.3

En-De 68.4 73.5 63.1 70.1 66.9 73.7
De-En 67.7 72.4 59.6 66.4 67.1 72.7

En-Ru 47.0 51.7 29.1 37.2 36.8 44.4
Ru-En 58.2 63.7 41.5 48.1 48.4 55.6

En-It 75.7 77.3 54.3 65.1 71.1 77.0
It-En 73.9 76.9 55.0 64.0 70.4 76.6

Non-European Languages

En-Fa 25.7 33.1 * * 19.6 29.0
Fa-En 33.5 38.6 * * 28.3 28.3

En-Hi 23.8 33.3 * * 19.4 30.3
Hi-En 34.6 42.8 * * 30.5 38.9

En-Bn 10.3 15.8 * * 9.7 13.5
Bn-En 21.5 24.6 * * 7.1 14.5

En-Ar 31.3 36.5 18.9 23.5 26.9 33.3
Ar-En 45.0 49.5 28.6 31 39.8 45.5

En-He 10.3 15.8 17.9 22.7 31.3 38.9
He-En 21.5 24.6 37.3 39.1 43.4 50.8

En-Zh 40.6 42.7 12.7 16.0 * *
Zh-En 30.2 36.7 18.7 25.1 * *

En-Ja 2.4 1.7 * * * *
Ja-En 0.0 0.0 3.1 3.6 * *

En-Vi 25.0 41.3 * * * *
Vi-En 40.6 55.3 * * * *

En-Id 55.3 65.6 18.9 23.5 39.4 57.1
Id-En 58.3 65.0 * * 37.1 58.1

*Failed to converge

gence depends on the language pair (see below,
Fig. 2). We note that our method learns transla-
tions for both languages at the same time.

The current state-of-the-art baseline by (Con-
neau et al., 2017) requires around 3000 seconds
on the GPU. It is not obvious how to parallelize
such a method efficiently. It requires about 30
times longer to train than our method (with par-
allelization) and is not practical on a multi-CPU
platform. The optional refinement step requires
about 10 minutes. The performance increase of re-
finement for our method are typically quite modest
and can be be skipped at the cost of 1-2% in accu-
racy, the GAN however requires finetuning to ob-
tain competitive results. Another obvious advan-
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Table 2: Word translation accuracy (%) - after finetun-
ing and using CSLS. Bold: best unsupervised methods.

Pair Supervised Unsupervised

Baseline GAN Ours

European Languages

En-Es 82.4 81.7 82.1
Es-En 83.9 83.3 84.1

En-Fr 82.3 82.3 82.3
Fr-En 83.2 82.1 82.9

En-De 75.3 74.0 74.7
De-En 72.7 72.2 73.0

En-Ru 50.7 44.0 47.5
Ru-En 63.5 59.1 61.8

En-It 78.1 76.9 77.9
It-En 78.1 76.7 77.5

Non-European Languages

En-Fa 32.6 * 34.6
Fa-En 40.2 * 41.5

En-Hi 34.5 * 34.6
Hi-En 44.8 * 44.5

En-Bn 16.6 * 14.7
Bn-En 24.1 * 21.9

En-Ar 34.5 35.3 35.1
Ar-En 49.7 49.7 50.6

En-He 41.1 41.6 40.5
He-En 54.9 52.6 52.9

En-Zh 42.7 32.5 *
Zh-En 36.7 31.4 *

En-Ja 1.7 * *
Ja-En 0.0 4.2 *

En-Vi 44.6 * *
Vi-En 56.9 * *

En-Id 68.0 67.8 68.0
Id-En 68.0 66.6 68.0

*Failed to converge

tage is that our method does not require a GPU.
Implementation: We used 100 iterations for the

PCA-MBC-ICP stage on 50 PCA word vectors.
This was run in parallel over 500 stochastic so-
lutions. We selected the solution with the small-
est unsupervised reconstitution criterion. This
solution was used to initialize RAW-MBC-PCA,
which we run for 100 iterations on the raw word
vectors. The latter 50 iterations of RAW-MBC-
ICP were carried out with only reciprocal pairs
contributing to the optimization. Results were typ-
ically not sensitive to hyper-parameter choice, al-
though longer optimization generally resulted in
better performance.

Ablation Analyses There are three important
steps for the convergence of the ICP step: (i)

Table 3: En-Es accuracy with and without PCA

Method En-Es Es-En

No PCA 0.0% 0.0%
With 300 PCs 0.0% 0.0%
With 50 PCs 82.2% 83.8%

Table 4: Fraction of converging runs per stochasticity.

Method En-Es En-Ar

No randomization 0.0% 0.0%
Randomized Ordering 0.0% 0.0%
Randomized PCA 9.8% 0.0%
Randomized Ordering + PCA 16.8% 1.2%

PCA, (ii) Dimensionality reduction, (iii) Multiple
stochastic solutions. In Tab. 3 we present the ab-
lation results on the En-Es pair with PCA and no
dimensionality reduction, with only the top 50 PCs
and without PCA at all (best run out of 500 cho-
sen using the unsupervised reconstruction loss).
We can observe that the convergence rate with-
out PCA and with PCA but without dimension-
ality reduction is much lower than with PCA, the
best run without PCA has not succeeded in obtain-
ing a good translation. This provides evidence that
both PCA and dimensionality reduction are essen-
tial for the success of the method.

We experimented with the different factors
of randomness between runs, to understand the
causes of diversity allowing for convergence in the
more challenging language pairs (such as En-Ar).
We performed the following four experiments: i.
Fixing PCA and Batch Ordering. ii. Fixing all
data batches to have the same ordering in all runs,
iii. Fix the PCA bases of all runs, iv. Let both PCA
and batch ordering vary between runs.

Tab. 4 compares the results on En-Es and En-
Ar for the experiments described above. It can
be seen that using both sources of stochasticity is
usually better. Although there is some probability
the PCA will result in aligned principle compo-
nents between the two languages, this usually does
not happen and therefore using stochastic PCA is
highly beneficial.

Convergence Statistics In Fig. 2 we present the
statistics for all language pairs with Procrustes-
ICP (P-ICP) vs MBC-ICP. In P-ICP, we first cal-
culate the matches for the vocabulary, and then
perform a batch estimate of the transformation us-
ing the P-ICP method (starting from PCA word
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Es Fr De

Ru It Ar

Figure 2: Histograms of the Reconstruction metric across 500 ICP runs for MBC-ICP (Red) and P-ICP (Blue).
The comparison is shown for En-Es, En-Fr, En-De, En-Ru, En-It, En-Ar. On average MBC-ICP converges to much
better minima. We can observe that MBC-ICP has many more converging runs than P-ICP. In fact for En-It and
En-Ar, P-ICP does not converge even once in 500 runs.

vectors and Txy initialized at identity). The only
source of stochasticity in P-ICP is the PCA where
in MBC-ICP the order of mini-batches provides
further stochasticity. Adding random noise to the
mapping initialization was not found to help. Each
plot shows the histogram in log space for the num-
ber of runs that achieved unsupervised reconstruc-
tion loss within the range of the bin. The con-
verged runs with lower reconstruction values typ-
ically form a peak which is quite distinct from the
non-converged runs allowing for easy detection of
converged runs. The rate of convergence gener-
ally correlates with our intuition for distance be-
tween languages (En-Ar much lower than En-Fr),
although there are exceptions.

MBC-ICP converges much better than P-ICP:
For the language pairs with a wide convergence
range (En-Es, En-Fr, En-Ru) we can see that
MBC-ICP converged on many more runs than P-
ICP. For the languages with a narrow convergence
range (En-Ar, En-It), P-ICP was not able to con-
verge at all. We therefore conclude that the mini-
batch update and batch-ordering stochasticity in-
crease the convergence range and is important for
effective unsupervised matching.

6 Conclusions

We have presented an effective technique for un-
supervised word-to-word translation. Our method
is simple and non-adversarial. We showed empir-
ically that our method outperforms current state-
of-the-art GAN methods in terms of pre and post
finetuning word translation accuracy. Our method
runs on CPU and is much faster than current meth-
ods when using parallelization. This will enable
researchers from labs that do not possess graphi-
cal computing resources to participate in this ex-
citing field. The proposed method is interpretable,
i.e. every stage has an intuitive loss function with
an easy to understand objective.

It is interesting to consider the relative perfor-
mance between language pairs. Typically more
related languages yielded better performance than
more distant languages (but note that Indonesian
performed better than Russian when translated to
English). Even more interesting is contrasting the
better performance of our method on West and
South Asian languages, and GAN’s better perfor-
mance on Chinese.

Overall, our work highlights the potential bene-
fits of considering alternatives to adversarial meth-
ods in unsupervised learning.
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Word translation without parallel data. arXiv
preprint arXiv:1710.04087 .

Petros Daras, Apostolos Axenopoulos, and Georgios
Litos. 2012. Investigating the effects of multiple
factors towards more accurate 3-d object retrieval.
IEEE Transactions on Multimedia 14(2):374–388.

Pascale Fung. 1995. Compiling bilingual lexicon en-
tries from a non-parallel english-chinese corpus.
In Proceedings of the Third Workshop on Very
Large Corpora. Massachusetts Institute of Technol-
ogy Cambridge, pages 173–183.

Pascale Fung and Lo Yuen Yee. 1998. An IR approach
for translating new words from nonparallel, compa-
rable texts. In Proceedings of the 17th international
conference on Computational linguistics-Volume 1.
Association for Computational Linguistics, pages
414–420.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems. pages 2672–2680.

Aria Haghighi, Percy Liang, Taylor Berg-kirkpatrick,
and Dan Klein. 2008. Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-
HLT .

Yedid Hoshen and Lior Wolf. 2018. Identifying analo-
gies across domains. In International Conference on
Learning Representations.

Ann Irvine and Chris Callison-Burch. 2013. Su-
pervised bilingual lexicon induction with multiple
monolingual signals. In HLT-NAACL. pages 518–
523.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016.
Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Com-
puter Vision. Springer, pages 694–711.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon
Lee, and Jiwon Kim. 2017. Learning to discover
cross-domain relations with generative adversarial
networks. arXiv preprint arXiv:1703.05192 .

Philipp Koehn and Kevin Knight. 2002. Learning a
translation lexicon from monolingual corpora. In
Proceedings of the ACL-02 workshop on Unsuper-
vised lexical acquisition-Volume 9. Association for
Computational Linguistics, pages 9–16.

Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson,
Vladimir Rokhlin, and Mark Tygert. 2007. Ran-
domized algorithms for the low-rank approximation
of matrices. PNAS .

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168
.

Reinhard Rapp. 1995. Identifying word translations in
non-parallel texts. In Proceedings of the 33rd an-
nual meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 320–322.

Reinhard Rapp. 1999. Automatic identification of
word translations from unrelated english and german
corpora. In Proceedings of the 37th annual meeting
of the Association for Computational Linguistics on
Computational Linguistics. Association for Compu-
tational Linguistics, pages 519–526.

Charles Schafer and David Yarowsky. 2002. Inducing
translation lexicons via diverse similarity measures
and bridge languages. In proceedings of the 6th con-
ference on Natural language learning-Volume 20.
Association for Computational Linguistics, pages 1–
7.

Samuel L Smith, David HP Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. arXiv preprint arXiv:1702.03859 .

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. arXiv preprint
arXiv:1611.00179 .

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In HLT-NAACL.
pages 1006–1011.

477



Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017a. Adversarial training for unsupervised
bilingual lexicon induction. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). vol-
ume 1, pages 1959–1970.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong
Sun. 2017b. Earth mover’s distance minimization
for unsupervised bilingual lexicon induction. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. pages
1934–1945.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and
Alexei A. Efros. 2017. Unpaired image-to-image
translation using cycle-consistent adversarial net-
works. In The IEEE International Conference on
Computer Vision (ICCV).

478



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 479–488
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Semi-Autoregressive Neural Machine Translation

Chunqi Wang⇤ Ji Zhang Haiqing Chen
Alibaba Group

{shiyuan.wcq, zj122146, haiqing.chenhq}@alibaba-inc.com

Abstract

Existing approaches to neural machine trans-
lation are typically autoregressive models.
While these models attain state-of-the-art
translation quality, they are suffering from
low parallelizability and thus slow at decod-
ing long sequences. In this paper, we propose
a novel model for fast sequence generation —
the semi-autoregressive Transformer (SAT).
The SAT keeps the autoregressive property
in global but relieves in local and thus are
able to produce multiple successive words
in parallel at each time step. Experiments
conducted on English-German and Chinese-
English translation tasks show that the SAT
achieves a good balance between translation
quality and decoding speed. On WMT’14
English-German translation, the SAT achieves
5.58⇥ speedup while maintaining 88% trans-
lation quality, significantly better than the pre-
vious non-autoregressive methods. When pro-
duces two words at each time step, the SAT
is almost lossless (only 1% degeneration in
BLEU score).

1 Introduction

Neural networks have been successfully applied
to a variety of tasks, including machine transla-
tion. The encoder-decoder architecture is the cen-
tral idea of neural machine translation (NMT). The
encoder first encodes a source-side sentence x =
x1 . . . xm into hidden states and then the decoder
generates the target-side sentence y = y1 . . . yn

from the hidden states according to an autoregres-
sive model

p(yt|y1 . . . yt�1,x)

Recurrent neural networks (RNNs) are inherently
good at processing sequential data. Sutskever

⇤ Part of this work was done when the author was at In-
stitute of Automation, Chinese Academy of Sciences.

y1 y2 y3 y4 y5

Autoregressive

y6

y1 y2 y3 y4 y5

Semi-Autoregressive

y6

y1 y2 y3 y4 y5

Non-Autoregressive

y6

Figure 1: The different levels of autoregressive proper-
ties. Lines with arrow indicate dependencies. We mark
the longest dependency path with bold red lines. The
length of the longest dependency path decreases as we
relieve the autoregressive property. An extreme case
is non-autoregressive, where there is no dependency at
all.

et al. (2014); Cho et al. (2014) successfully ap-
plied RNNs to machine translation. Bahdanau
et al. (2014) introduced attention mechanism into
the encoder-decoder architecture and greatly im-
proved NMT. GNMT (Wu et al., 2016) further im-
proved NMT by a bunch of tricks including resid-
ual connection and reinforcement learning.

The sequential property of RNNs leads to its
wide application in language processing. How-
ever, the property also hinders its parallelizability
thus RNNs are slow to execute on modern hard-
ware optimized for parallel execution. As a result,
a number of more parallelizable sequence models
were proposed such as ConvS2S (Gehring et al.,
2017) and the Transformer (Vaswani et al., 2017).
These models avoid the dependencies between dif-
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ferent positions in each layer thus can be trained
much faster than RNN based models. When infer-
ence, however, these models are still slow because
of the autoregressive property.

A recent work (Gu et al., 2017) proposed a
non-autoregressive NMT model that generates all
target-side words in parallel. While the paral-
lelizability is greatly improved, the translation
quality encounter much decrease. In this paper,
we propose the semi-autoregressive Transformer
(SAT) for faster sequence generation. Unlike
Gu et al. (2017), the SAT is semi-autoregressive,
which means it keeps the autoregressive property
in global but relieves in local. As the result, the
SAT can produce multiple successive words in
parallel at each time step. Figure 1 gives an il-
lustration of the different levels of autoregressive
properties.

Experiments conducted on English-German
and Chinese-English translation show that com-
pared with non-autoregressive methods, the SAT
achieves a better balance between translation qual-
ity and decoding speed. On WMT’14 English-
German translation, the proposed SAT is 5.58⇥
faster than the Transformer while maintaining
88% of translation quality. Besides, when produc-
ing two words at each time step, the SAT is almost
lossless.

It is worth noting that although we apply the
SAT to machine translation, it is not designed
specifically for translation as Gu et al. (2017); Lee
et al. (2018). The SAT can also be applied to any
other sequence generation task, such as summary
generation and image caption generation.

2 Related Work

Almost all state-of-the-art NMT models are au-
toregressive (Sutskever et al., 2014; Bahdanau
et al., 2014; Wu et al., 2016; Gehring et al., 2017;
Vaswani et al., 2017), meaning that the model gen-
erates words one by one and is not friendly to mod-
ern hardware optimized for parallel execution. A
recent work (Gu et al., 2017) attempts to acceler-
ate generation by introducing a non-autoregressive
model. Based on the Transformer (Vaswani et al.,
2017), they made lots of modifications. The most
significant modification is that they avoid feeding
the previously generated target words to the de-
coder, but instead feeding the source words, to pre-
dict the next target word. They also introduced
a set of latent variables to model the fertilities of

source words to tackle the multimodality problem
in translation. Lee et al. (2018) proposed another
non-autoregressive sequence model based on iter-
ative refinement. The model can be viewed as both
a latent variable model and a conditional denoising
autoencoder. They also proposed a learning algo-
rithm that is hybrid of lower-bound maximization
and reconstruction error minimization.

The most relevant to our proposed semi-
autoregressive model is (Kaiser et al., 2018). They
first autoencode the target sequence into a shorter
sequence of discrete latent variables, which at in-
ference time is generated autoregressively, and fi-
nally decode the output sequence from this shorter
latent sequence in parallel. What we have in com-
mon with their idea is that we have not entirely
abandoned autoregressive, but rather shortened the
autoregressive path.

A related study on realistic speech synthesis is
the parallel WaveNet (Oord et al., 2017). The pa-
per introduced probability density distillation, a
new method for training a parallel feed-forward
network from a trained WaveNet (Van Den Oord
et al., 2016) with no significant difference in qual-
ity.

There are also some work share a somehow
simillar idea with our work: character-level NMT
(Chung et al., 2016; Lee et al., 2016) and chunk-
based NMT (Zhou et al., 2017; Ishiwatari et al.,
2017). Unlike the SAT, these models are not able
to produce multiple tokens (characters or words)
each time step. Oda et al. (2017) proposed a bit-
level decoder, where a word is represented by a
binary code and each bit of the code can be pre-
dicted in parallel.

3 The Transformer

Since our proposed model is built upon the Trans-
former (Vaswani et al., 2017), we will briefly in-
troduce the Transformer. The Transformer uses an
encoder-decoder architecture. We describe the en-
coder and decoder below.

3.1 The Encoder

From the source tokens, learned embeddings of di-
mension dmodel are generated which are then mod-
ified by an additive positional encoding. The po-
sitional encoding is necessary since the network
does not leverage the order of the sequence by re-
currence or convolution. The authors use additive
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encoding which is defined as:

PE(pos, 2i) = sin(pos/100002i/dmodel)

PE(pos, 2i + 1) = cos(pos/100002i/dmodel)

where pos is the position of a word in the sen-
tence and i is the dimension. The authors chose
this function because they hypothesized it would
allow the model to learn to attend by relative po-
sitions easily. The encoded word embeddings are
then used as input to the encoder which consists of
N blocks each containing two layers: (1) a multi-
head attention layer, and (2) a position-wise feed-
forward layer.

Multi-head attention builds upon scaled dot-
product attention, which operates on a query Q,
key K and value V:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V

where dk is the dimension of the key. The au-
thors scale the dot product by 1/

p
dk to avoid the

inputs to softmax function growing too large in
magnitude. Multi-head attention computes h dif-
ferent queries, keys and values with h linear pro-
jections, computes scaled dot-product attention for
each query, key and value, concatenates the re-
sults, and projects the concatenation with another
linear projection:

Hi = Attention(QWQ
i , KWK

i , V W V
i )

MultiHead(Q, K, V ) = Concat(H1, . . . Hh)

in which WQ
i , WK

i 2 R
dmodel⇥dk and W V

i 2
R

dmodel⇥dv . The attention mechanism in the en-
coder performs attention over itself (Q = K =
V ), so it is also called self-attention.

The second component in each encoder block is
a position-wise feed-forward layer defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2

where W1 2 R
dmodel⇥dff , W2 2 R

dff ⇥dmodel ,
b1 2 R

dff , b2 2 R
dmodel .

For more stable and faster convergence, resid-
ual connection (He et al., 2016) is applied to each
layer, followed by layer normalization (Ba et al.,
2016). For regularization, dropout (Srivastava
et al., 2014) are applied before residual connec-
tions.

Input
Embedding

Output
Embedding

Multi-Head
Self-Attention

Add & Norm

Feed
Forward

Add & Norm

Masked 
Multi-Head

Self-Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Linear

Softmax

Nx
Nx

Positional
Encoding

Positional
Encoding

Probabilities

Inputs Shifted Outputs

Figure 2: The architecture of the Transformer, also of
the SAT, where the red dashed boxes point out the dif-
ferent parts of these two models.

3.2 The Decoder
The decoder is similar with the encoder and is also
composed by N blocks. In addition to the two
layers in each encoder block, the decoder inserts
a third layer, which performs multi-head attention
over the output of the encoder.

It is worth noting that, different from the en-
coder, the self-attention layer in the decoder must
be masked with a causal mask, which is a lower
triangular matrix, to ensure that the prediction for
position i can depend only on the known outputs
at positions less than i during training.

4 The Semi-Autoregressive Transformer

We propose a novel NMT model—the Semi-
Autoregressive Transformer (SAT)—that can pro-
duce multiple successive words in parallel. As
shown in Figure 2, the architecture of the SAT is
almost the same as the Transformer, except some
modifications in the decoder.
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4.1 Group-Level Chain Rule
Standard NMT models usually factorize the joint
probability of a word sequence y1 . . . yn according
to the word-level chain rule

p(y1 . . . yn|x) =
nY

t=1

p(yt|y1 . . . yt�1,x)

resulting in decoding each word depending on all
previous decoding results, thus hindering the par-
allelizability. In the SAT, we extend the standard
word-level chain rule to the group-level chain rule.

We first divide the word sequence y1 . . . yn into
consecutive groups

G1, G2, . . . , G[(n�1)/K]+1 =

y1 . . . yK , yK+1 . . . y2K , . . . , y[(n�1)/K]⇥K+1 . . . yn

where [·] denotes floor operation, K is the group
size, and also the indicator of parallelizability. The
larger the K, the higher the parallelizability. Ex-
cept for the last group, all groups must contain K
words. Then comes the group-level chain rule

p(y1 . . . yn|x) =

[(n�1)/K]+1Y

t=1

p(Gt|G1 . . . Gt�1,x)

This group-level chain rule avoids the depen-
dencies between consecutive words if they are in
the same group. With group-level chain rule, the
model no longer produce words one by one as the
Transformer, but rather group by group. In next
subsections, we will show how to implement the
model in detail.

4.2 Long-Distance Prediction
In autoregressive models, to predict yt, the model
should be fed with the previous word yt�1. We
refer it as short-distance prediction. In the SAT,
however, we feed yt�K to predict yt, to which
we refer as long-distance prediction. At the be-
ginning of decoding, we feed the model with K
special symbols <s> to predict y1 . . . yK in paral-
lel. Then y1 . . . yK are fed to the model to predict
yK+1 . . . y2K in parallel. This process will con-
tinue until a terminator </s> is generated. Fig-
ure 3 gives illustrations for both short and long-
distance prediction.

4.3 Relaxed Causal Mask
In the Transformer decoder, the causal mask is
a lower triangular matrix, which strictly prevents

Decoder Network

<s>      

     </s> 

Decoder Network

<s> <s>     

     </s> 

Figure 3: Short-distance prediction (top) and long-
distance prediction (bottom).

earlier decoding steps from peeping information
from later steps. We denote it as strict causal
mask. However, in the SAT decoder, strict causal
mask is not a good choice. As described in the
previous subsection, in long-distance prediction,
the model predicts yK+1 by feeding with y1. With
strict causal mask, the model can only access to y1

when predict yK+1, which is not reasonable since
y1 . . . yK are already produced. It is better to al-
low the model to access to y1 . . . yK rather than
only y1 when predict yK+1.

Therefore, we use a coarse-grained lower trian-
gular matrix as the causal mask that allows peep-
ing later information in the same group. We re-
fer to it as relaxed causal mask. Given the tar-
get length n and the group size K, relaxed causal
mask M 2 R

n⇥n and its elements are defined be-
low:

M [i][j] =

(
1 if j < ([(i � 1)/K] + 1) ⇥ K

0 other

For a more intuitive understanding, Figure 4
gives a comparison between strict and relaxed
causal mask.

4.4 The SAT

Using group-level chain rule instead of word-
level chain rule, long-distance prediction instead
of short-distance prediction, and relaxed causal
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Figure 4: Strict causal mask (left) and relaxed causal
mask (right) when the target length n = 6 and the
group size K = 2. We mark their differences in bold.

Model Complexity Acceleration
Transformer N(a + b) 1
SAT (beam search) N

K a + Nb K( a+b
a+Kb)

SAT (greedy search) N
K (a + b) K

Table 1: Theoretical complexity and acceleration of the
SAT. a denotes the time consumed on the decoder net-
work (calculating a distribution over the target vocabu-
lary) each time step and b denotes the time consumed
on search (searching for top scores, expanding nodes
and pruning). In practice, a is usually much larger than
b since the network is deep.

mask instead of strict causal mask, we success-
fully extended the Transformer to the SAT. The
Transformer can be viewed as a special case of
the SAT, when the group size K = 1. The non-
autoregressive Transformer (NAT) described in
Gu et al. (2017) can also be viewed as a special
case of the SAT, when the group size K is not less
than maximum target length.

Table 1 gives the theoretical complexity and ac-
celeration of the model. We list two search strate-
gies separately: beam search and greedy search.
Beam search is the most prevailing search strategy.
However, it requires the decoder states to be up-
dated once every word is generated, thus hinders
the decoding parallelizability. When decode with
greedy search, there is no such concern, therefore
the parallelizability of the SAT can be maximized.

5 Experiments

We evaluate the proposed SAT on English-German
and Chinese-English translation tasks.

5.1 Experimental Settings

Datasets For English-German translation, we
choose the corpora provided by WMT 2014 (Bo-
jar et al., 2014). We use the newstest2013 dataset
for development, and the newstest2014 dataset for
test. For Chinese-English translation, the corpora

Sentence Number Vocab Size
Source Target

EN-DE 4.5M 36K 36K
ZH-EN 1.8M 9K 34K

Table 2: Summary of the two corpora.

we use is extracted from LDC1. We chose the
NIST02 dataset for development, and the NIST03,
NIST04 and NIST05 datasets for test. For En-
glish and German, we tokenized and segmented
them into subword symbols using byte-pair encod-
ing (BPE) (Sennrich et al., 2015) to restrict the vo-
cabulary size. As for Chinese, we segmented sen-
tences into characters. For English-German trans-
lation, we use a shared source and target vocabu-
lary. Table 2 summaries the two corpora.

Baseline We use the base Transformer model
described in Vaswani et al. (2017) as the base-
line, where dmodel = 512 and N = 6. In
addition, for comparison, we also prepared a
lighter Transformer model, in which two en-
coder/decoder blocks are used (N = 2), and other
hyper-parameters remain the same.

Hyperparameters Unless otherwise specified,
all hyperparameters are inherited from the base
Transformer model. We try three different settings
of the group size K: K = 2, K = 4, and K =
6. For English-German translation, we share the
same weight matrix between the source and tar-
get embedding layers and the pre-softmax linear
layer. For Chinese-English translation, we only
share weights of the target embedding layer and
the pre-softmax linear layer.

Search Strategies We use two search strate-
gies: beam search and greedy search. As men-
tioned in Section 4.4, these two strategies lead to
different parallelizability. When beam size is set to
1, greedy search is used, otherwise, beam search is
used.

Knowledge Distillation Knowledge distillation
(Hinton et al., 2015; Kim and Rush, 2016) de-
scribes a class of methods for training a smaller
student network to perform better by learning from
a larger teacher network. For NMT, Kim and
Rush (2016) proposed a sequence-level knowl-
edge distillation method. In this work, we apply
this method to train the SAT using a pre-trained

1The corpora include LDC2002E18, LDC2003E14,
LDC2004T08 and LDC2005T0.
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Model Beam Size BLEU Degeneration Lattency Speedup

Transformer 4 27.11 0% 346ms 1.00⇥
1 26.01 4% 283ms 1.22⇥

Transformer, N=2 4 24.30 10% 163ms 2.12⇥
1 23.37 14% 113ms 3.06⇥

NAT (Gu et al., 2017) - 17.69 25% 39ms 15.6⇥
NAT (rescroing 10) - 18.66 20% 79ms 7.68⇥
NAT (rescroing 100) - 19.17 18% 257ms 2.36⇥
LT (Kaiser et al., 2018) - 19.80 27% 105ms -
LT (rescoring 10) - 21.00 23% - -
LT (rescoring 100) - 22.50 18% - -
IRNAT (Lee et al., 2018) - 18.91 22% - 1.98⇥

This Work

SAT, K=2 4 26.90 1% 229ms 1.51⇥
1 26.09 4% 167ms 2.07⇥

SAT, K=4 4 25.71 5% 149ms 2.32⇥
1 24.67 9% 91ms 3.80⇥

SAT, K=6 4 24.83 8% 116ms 2.98⇥
1 23.93 12% 62ms 5.58⇥

Table 3: Results on English-German translation. Latency is calculated on a single NVIDIA TITAN Xp without
batching. For comparison, we also list results reported by Gu et al. (2017); Kaiser et al. (2018); Lee et al. (2018).
Note that Gu et al. (2017); Lee et al. (2018) used PyTorch as their platform, but we and Kaiser et al. (2018) used
TensorFlow. Even on the same platform, implementation and hardware may not exactly be the same. Therefore,
it is not fair to directly compare BLEU and latency. A fairer way is to compare performance degradation and
speedup, which are calculated based on their own baseline.

autoregressive Transformer network. This method
consists of three steps: (1) train an autoregressive
Transformer network (the teacher), (2) run beam
search over the training set with this model and
(3) train the SAT (the student) on this new created
corpus.

Initialization Since the SAT and the Trans-
former have only slight differences in their ar-
chitecture (see Figure 2), in order to accelerate
convergence, we use a pre-trained Transformer
model to initialize some parameters in the SAT.
These parameters include all parameters in the en-
coder, source and target word embeddings, and
pre-softmax weights. Other parameters are initial-
ized randomly. In addition to accelerating conver-
gence, we find this method also slightly improves
the translation quality.

Training Same as Vaswani et al. (2017), we
train the SAT by minimize cross-entropy with la-
bel smoothing. The optimizer we use is Adam
(Kingma and Ba, 2015) with �1 = 0.9, �2 = 0.98
and " = 10�9. We change the learning rate during
training using the learning rate funtion described
in Vaswani et al. (2017). All models are trained
for 10K steps on 8 NVIDIA TITAN Xp with each

minibatch consisting of about 30k tokens. For
evaluation, we average last five checkpoints saved
with an interval of 1000 training steps.

Evaluation Metrics We evaluate the translation
quality of the model using BLEU score (Papineni
et al., 2002).

Implementation We implement the proposed
SAT with TensorFlow (Abadi et al., 2016). The
code and resources needed for reproducing the re-
sults are released at https://github.com/
chqiwang/sa-nmt.

5.2 Results on English-German
Table 3 summaries results of English-German
translation. According to the results, the trans-
lation quality of the SAT gradually decreases as
K increases, which is consistent with intuition.
When K = 2, the SAT decodes 1.51⇥ faster than
the Transformer and is almost lossless in transla-
tion quality (only drops 0.21 BLEU score). With
K = 6, the SAT can achieve 2.98⇥ speedup while
the performance degeneration is only 8%.

When using greedy search, the acceleration be-
comes much more significant. When K = 6,
the decoding speed of the SAT can reach about
5.58⇥ of the Transformer while maintaining 88%
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Model b=1 b=16 b=32 b=64
Transformer 346ms 58ms 53ms 56ms
SAT, K=2 229ms 38ms 32ms 32ms
SAT, K=4 149ms 24ms 21ms 20ms
SAT, K=6 116ms 20ms 17ms 16ms

Table 4: Time needed to decode one sentence under
various batch size settings. A single NVIDIA TIAN
Xp is used in this test.

Model K=1 K=2 K=4 K=6
Latency 1384ms 607ms 502ms 372ms

Table 5: Time needed to decode one sentence on CPU
device. Sentences are decoded one by one without
batching. K=1 denotes the Transformer.

of translation quality. Comparing with Gu et al.
(2017); Kaiser et al. (2018); Lee et al. (2018), the
SAT achieves a better balance between transla-
tion quality and decoding speed. Compared to the
lighter Transformer (N = 2), with K = 4, the SAT
achieves a higher speedup with significantly better
translation quality.

In a real production environment, it is often
not to decode sentences one by one, but batch by
batch. To investigate whether the SAT can accel-
erate decoding when decoding in batches, we test
the decoding latency under different batch size set-
tings. As shown in Table 4, the SAT significantly
accelerates decoding even with a large batch size.

It is also good to know if the SAT can still accel-
erate decoding on CPU device that does not sup-
port parallel execution as well as GPU. Results in
Table 5 show that even on CPU device, the SAT
can still accelerate decoding significantly.

5.3 Results on Chinese-English
Table 6 summaries results on Chinese-English
translation. With K = 2, the SAT decodes 1.69⇥
while maintaining 97% of the translation quality.
In an extreme setting where K = 6 and beam size
= 1, the SAT can achieve 6.41⇥ speedup while
maintaining 83% of the translation quality.

5.4 Analysis

Effects of Knowledge Distillation As shown in
Figure 5, sequence-level knowledge distillation is
very effective for training the SAT. For larger K,
the effect is more significant. This phenomenon
is echoing with observations by Gu et al. (2017);
Oord et al. (2017); Lee et al. (2018). In addition,
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Figure 5: Performance of the SAT with and without
sequence-level knowledge distillation.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

1 2 3 4 5 6 7 8 9 10 11 12

cr
os
s-
en
tro

py

positions

Transformer SAT,K=2 SAT,K=4 SAT,K=6 

Figure 6: Position-wise cross-entropy for various mod-
els on English-German translation.

we tried word-level knowledge distillation (Kim
and Rush, 2016) but only a slight improvement
was observed.

Position-Wise Cross-Entropy In Figure 6, we
plot position-wise cross-entropy for various mod-
els. To compare with the baseline model, the
results in the figure are from models trained
on the original corpora, i.e., without knowledge
distillation. As shown in the figure, position-
wise cross-entropy has an apparent periodicity
with a period of K. For positions in the same
group, the position-wise cross-entropy increase
monotonously, which indicates that the long-
distance dependencies are always more difficult to
model than short ones. It suggests the key to fur-
ther improve the SAT is to improve the ability of
modeling long-distance dependencies.

Case Study Table 7 lists three sample Chinese-
English translations from the development set. As
shown in the table, even when producing K = 6
words at each time step, the model can still gen-
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Model Beam Size BLEU Degeneration Lattency SpeedupNIST03 NIST04 NIST05 Averaged

Transformer 4 40.74 40.54 40.48 40.59 0% 410ms 1.00⇥
1 39.56 39.72 39.61 39.63 2% 302ms 1.36⇥

Transformer, N=2 4 37.30 38.55 36.87 37.57 7% 169ms 2.43⇥
1 36.26 37.19 35.50 36.32 11% 117ms 3.50⇥

This Work

SAT, K=2 4 39.13 40.04 39.55 39.57 3% 243ms 1.69⇥
1 37.94 38.73 38.43 38.37 5% 176ms 2.33⇥

SAT, K=4 4 37.08 38.06 37.12 37.42 8% 152ms 2.70⇥
1 35.77 36.43 35.04 35.75 12% 94ms 4.36⇥

SAT, K=6 4 34.61 36.29 35.06 35.32 13% 129ms 3.18⇥
1 33.44 34.54 33.28 33.75 17% 64ms 6.41⇥

Table 6: Results on Chinese-English translation. Latency is calculated on NIST02.

Source	 �	0	,	(	�	�	�	,	"	�	�	#	 	2	)	�	

Transformer	 the	international	football	federation	will	severely	punish	the	fraud	on	the	football	field	

SAT,	k=2	 fifa	will	severely	punish	the	deception	on	the	football	field	

SAT,	k=4	 fifa	a	will	severely	punish	the	fraud	on	the	football	court	

SAT,	k=6	 fifa	a	will	severely	punish	the	fraud	on	the	football	football	court	

Reference	 federation	international	football	association	to	mete	out	severe	punishment	for	fraud	on	the	football	field	

Source	 �	�	�		�	�	�	*	�	�	�	
	+	�	/	�	)	�	

Transformer	 the	largescale	exhibition	of	campus	culture	will	also	be	held	during	the	meeting	.	

SAT,	k=2	 the	largescale	cultural	cultural	exhibition	on	campus	will	also	be	held	during	the	meeting	.	

SAT,	k=4	 the	campus	campus	exhibition	will	also	be	held	during	the	meeting	.	

SAT,	k=6	 a	largescale	campus	culture	exhibition	will	also	be	held	on	the	sidelines	of	the	meeting	.	

Reference	 there	will	also	be	a	large	-	scale	campus	culture	show	during	the	conference	.	

Source	 -	�	�	!	'	�	.	�	�			�	&	�	�	�	�	1	�	%	$	�	

Transformer	 this	is	the	second	time	mr	koizumi	has	visited	the	yasukuni	shrine	since	he	came	to	power	.	

SAT,	k=2	 this	is	the	second	time	that	mr	koizumi	has	visited	the	yasukuni	shrine	since	he	took	office	.	

SAT,	k=4	 this	is	the	second	time	that	koizumi	has	visited	the	yasukuni	shrine	since	he	came	into	power	.	

SAT,	k=6	 this	is	the	second	visit	to	the	yasukuni	shrine	since	mr	koizumi	came	office	power	.	

Reference	 this	is	the	second	time	that	junichiro	koizumi	has	paid	a	visit	to	the	yasukuni	shrine	since	he	became	prime	minister	.	

	

Table 7: Three sample Chinese-English translations by the SAT and the Transformer. We mark repeated words or
phrases by red font and underline.

erate fluent sentences. As reported by Gu et al.
(2017), instances of repeated words or phrases are
most prevalent in their non-autoregressive model.
In the SAT, this is also the case. This suggests that
we may be able to improve the translation quality
of the SAT by reducing the similarity of the output
distribution of adjacent positions.

6 Conclusion

In this work, we have introduced a novel model
for faster sequence generation based on the Trans-
former (Vaswani et al., 2017), which we refer to as
the semi-autoregressive Transformer (SAT). Com-

bining the original Transformer with group-level
chain rule, long-distance prediction and relaxed
causal mask, the SAT can produce multiple con-
secutive words at each time step, thus speedup de-
coding significantly. We conducted experiments
on English-German and Chinese-English transla-
tion. Compared with previously proposed non-
autoregressive models (Gu et al., 2017; Lee et al.,
2018; Kaiser et al., 2018), the SAT achieves a bet-
ter balance between translation quality and decod-
ing speed. On WMT’14 English-German transla-
tion, the SAT achieves 5.58⇥ speedup while main-
taining 88% translation quality, significantly bet-
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ter than previous methods. When producing two
words at each time step, the SAT is almost lossless
(only 1% degeneration in BLEU score).

In the future, we plan to investigate better meth-
ods for training the SAT to further shrink the per-
formance gap between the SAT and the Trans-
former. Specifically, we believe that the following
two directions are worth study. First, use object
function beyond maximum likelihood to improve
the modeling of long-distance dependencies. Sec-
ond, explore new method for knowledge distilla-
tion. We also plan to extend the SAT to allow the
use of different group sizes K at different posi-
tions, instead of using a fixed value.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments. We also thank Wenfu
Wang, Hao Wang for helpful discussion and Lin-
hao Dong, Jinghao Niu for their help in paper writ-
ting.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. 2016. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–
283.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, et al. 2014. Findings of the 2014
workshop on statistical machine translation. In Pro-
ceedings of the ninth workshop on statistical ma-
chine translation, pages 12–58.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract

An effective method to improve neural ma-
chine translation with monolingual data is
to augment the parallel training corpus with
back-translations of target language sentences.
This work broadens the understanding of
back-translation and investigates a number
of methods to generate synthetic source sen-
tences. We find that in all but resource poor
settings back-translations obtained via sam-
pling or noised beam outputs are most effec-
tive. Our analysis shows that sampling or
noisy synthetic data gives a much stronger
training signal than data generated by beam or
greedy search. We also compare how synthetic
data compares to genuine bitext and study var-
ious domain effects. Finally, we scale to hun-
dreds of millions of monolingual sentences
and achieve a new state of the art of 35 BLEU
on the WMT’14 English-German test set.

1 Introduction

Machine translation relies on the statistics of large
parallel corpora, i.e. datasets of paired sentences
in both the source and target language. However,
bitext is limited and there is a much larger amount
of monolingual data available. Monolingual data
has been traditionally used to train language mod-
els which improved the fluency of statistical ma-
chine translation (Koehn, 2010).

In the context of neural machine translation
(NMT; Bahdanau et al. 2015; Gehring et al. 2017;
Vaswani et al. 2017), there has been extensive
work to improve models with monolingual data,
including language model fusion (Gulcehre et al.,
2015, 2017), back-translation (Sennrich et al.,
2016a) and dual learning (Cheng et al., 2016; He
et al., 2016a). These methods have different ad-
vantages and can be combined to reach high accu-
racy (Hassan et al., 2018).

*Work done while at Facebook AI Research.

We focus on back-translation (BT) which oper-
ates in a semi-supervised setup where both bilin-
gual and monolingual data in the target language
are available. Back-translation first trains an inter-
mediate system on the parallel data which is used
to translate the target monolingual data into the
source language. The result is a parallel corpus
where the source side is synthetic machine transla-
tion output while the target is genuine text written
by humans. The synthetic parallel corpus is then
simply added to the real bitext in order to train a fi-
nal system that will translate from the source to the
target language. Although simple, this method has
been shown to be helpful for phrase-based transla-
tion (Bojar and Tamchyna, 2011), NMT (Sennrich
et al., 2016a; Poncelas et al., 2018) as well as un-
supervised MT (Lample et al., 2018a).

In this paper, we investigate back-translation
for neural machine translation at a large scale
by adding hundreds of millions of back-translated
sentences to the bitext. Our experiments are based
on strong baseline models trained on the public bi-
text of the WMT competition. We extend previous
analysis (Sennrich et al., 2016a; Poncelas et al.,
2018) of back-translation in several ways. We pro-
vide a comprehensive analysis of different meth-
ods to generate synthetic source sentences and we
show that this choice matters: sampling from the
model distribution or noising beam outputs out-
performs pure beam search, which is typically
used, by 1.7 BLEU on average across several test
sets. Our analysis shows that synthetic data based
on sampling and noised beam search provides a
stronger training signal than synthetic data based
on argmax inference. We also study how adding
synthetic data compares to adding real bitext in
a controlled setup with the surprising finding that
synthetic data can sometimes match the accuracy
of real bitext. Our best setup achieves 35 BLEU
on the WMT’14 English-German test set by rely-
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ing only on public WMT bitext as well as 226M
monolingual sentences. This outperforms the sys-
tem of DeepL by 1.7 BLEU who train on large
amounts of high quality non-benchmark data. On
WMT’14 English-French we achieve 45.6 BLEU.

2 Related work

This section describes prior work in machine
translation with neural networks as well as semi-
supervised machine translation.

2.1 Neural machine translation
We build upon recent work on neural machine
translation which is typically a neural network
with an encoder/decoder architecture. The en-
coder infers a continuous space representation of
the source sentence, while the decoder is a neural
language model conditioned on the encoder out-
put. The parameters of both models are learned
jointly to maximize the likelihood of the target
sentences given the corresponding source sen-
tences from a parallel corpus (Sutskever et al.,
2014; Cho et al., 2014). At inference, a target sen-
tence is generated by left-to-right decoding.

Different neural architectures have been pro-
posed with the goal of improving efficiency
and/or effectiveness. This includes recurrent net-
works (Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015), convolutional net-
works (Kalchbrenner et al., 2016; Gehring et al.,
2017; Kaiser et al., 2017) and transformer net-
works (Vaswani et al., 2017). Recent work re-
lies on attention mechanisms where the encoder
produces a sequence of vectors and, for each
target token, the decoder attends to the most
relevant part of the source through a context-
dependent weighted-sum of the encoder vec-
tors (Bahdanau et al., 2015; Luong et al., 2015).
Attention has been refined with multi-hop atten-
tion (Gehring et al., 2017), self-attention (Vaswani
et al., 2017; Paulus et al., 2018) and multi-head
attention (Vaswani et al., 2017). We use a trans-
former architecture (Vaswani et al., 2017).

2.2 Semi-supervised NMT
Monolingual target data has been used to improve
the fluency of machine translations since the early
IBM models (Brown et al., 1990). In phrase-based
systems, language models (LM) in the target lan-
guage increase the score of fluent outputs during
decoding (Koehn et al., 2003; Brants et al., 2007).

A similar strategy can be applied to NMT (He
et al., 2016b). Besides improving accuracy during
decoding, neural LM and NMT can benefit from
deeper integration, e.g. by combining the hid-
den states of both models (Gulcehre et al., 2017).
Neural architecture also allows multi-task learning
and parameter sharing between MT and target-side
LM (Domhan and Hieber, 2017).

Back-translation (BT) is an alternative to lever-
age monolingual data. BT is simple and easy to
apply as it does not require modification to the MT
training algorithms. It requires training a target-
to-source system in order to generate additional
synthetic parallel data from the monolingual tar-
get data. This data complements human bitext to
train the desired source-to-target system. BT has
been applied earlier to phrase-base systems (Bo-
jar and Tamchyna, 2011). For these systems, BT
has also been successful in leveraging monolin-
gual data for domain adaptation (Bertoldi and Fed-
erico, 2009; Lambert et al., 2011). Recently, BT
has been shown beneficial for NMT (Sennrich
et al., 2016a; Poncelas et al., 2018). It has been
found to be particularly useful when parallel data
is scarce (Karakanta et al., 2017).

Currey et al. (2017) show that low resource
language pairs can also be improved with syn-
thetic data where the source is simply a copy of
the monolingual target data. Concurrently to our
work, Imamura et al. (2018) show that sampling
synthetic sources is more effective than beam
search. Specifically, they sample multiple sources
for each target whereas we draw only a single sam-
ple, opting to train on a larger number of target
sentences instead. Hoang et al. (2018) and Cot-
terell and Kreutzer (2018) suggest an iterative pro-
cedure which continuously improves the quality of
the back-translation and final systems. Niu et al.
(2018) experiment with a multilingual model that
does both the forward and backward translation
which is continuously trained with new synthetic
data.

There has also been work using source-side
monolingual data (Zhang and Zong, 2016). Fur-
thermore, Cheng et al. (2016); He et al. (2016a);
Xia et al. (2017) show how monolingual text from
both languages can be leveraged by extending
back-translation to dual learning: when training
both source-to-target and target-to-source models
jointly, one can use back-translation in both direc-
tions and perform multiple rounds of BT. A simi-
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lar idea is applied in unsupervised NMT (Lample
et al., 2018a,b). Besides monolingual data, var-
ious approaches have been introduced to benefit
from parallel data in other language pairs (Johnson
et al., 2017; Firat et al., 2016a,b; Ha et al., 2016;
Gu et al., 2018).

Data augmentation is an established technique
in computer vision where a labeled dataset is sup-
plemented with cropped or rotated input images.
Recently, generative adversarial networks (GANs)
have been successfully used to the same end (An-
toniou et al., 2017; Perez and Wang, 2017) as well
as models that learn distributions over image trans-
formations (Hauberg et al., 2016).

3 Generating synthetic sources

Back-translation typically uses beam search (Sen-
nrich et al., 2016a) or just greedy search (Lample
et al., 2018a,b) to generate synthetic source sen-
tences. Both are approximate algorithms to iden-
tify the maximum a-posteriori (MAP) output, i.e.
the sentence with the largest estimated probabil-
ity given an input. Beam is generally successful in
finding high probability outputs (Ott et al., 2018a).

However, MAP prediction can lead to less rich
translations (Ott et al., 2018a) since it always fa-
vors the most likely alternative in case of ambigu-
ity. This is particularly problematic in tasks where
there is a high level of uncertainty such as dia-
log (Serban et al., 2016) and story generation (Fan
et al., 2018). We argue that this is also problem-
atic for a data augmentation scheme such as back-
translation. Beam and greedy focus on the head of
the model distribution which results in very regu-
lar synthetic source sentences that do not properly
cover the true data distribution.

As alternative, we consider sampling from the
model distribution as well as adding noise to beam
search outputs. First, we explore unrestricted sam-
pling which generates outputs that are very di-
verse but sometimes highly unlikely. Second,
we investigate sampling restricted to the most
likely words (Graves, 2013; Ott et al., 2018a; Fan
et al., 2018). At each time step, we select the k
most likely tokens from the output distribution, re-
normalize and then sample from this restricted set.
This is a middle ground between MAP and unre-
stricted sampling.

As a third alternative, we apply noising Lam-
ple et al. (2018a) to beam search outputs. Adding
noise to input sentences has been very benefi-

cial for the autoencoder setups of (Lample et al.,
2018a; Hill et al., 2016) which is inspired by de-
noising autoencoders (Vincent et al., 2008). In
particular, we transform source sentences with
three types of noise: deleting words with proba-
bility 0.1, replacing words by a filler token with
probability 0.1, and swapping words which is im-
plemented as a random permutation over the to-
kens, drawn from the uniform distribution but re-
stricted to swapping words no further than three
positions apart.

4 Experimental setup

4.1 Datasets
The majority of our experiments are based on data
from the WMT’18 English-German news transla-
tion task. We train on all available bitext exclud-
ing the ParaCrawl corpus and remove sentences
longer than 250 words as well as sentence-pairs
with a source/target length ratio exceeding 1.5.
This results in 5.18M sentence pairs. For the back-
translation experiments we use the German mono-
lingual newscrawl data distributed with WMT’18
comprising 226M sentences after removing dupli-
cates. We tokenize all data with the Moses tok-
enizer (Koehn et al., 2007) and learn a joint source
and target Byte-Pair-Encoding (BPE; Sennrich et
al., 2016) with 35K types. We develop on new-
stest2012 and report final results on newstest2013-
2017; additionally we consider a held-out set from
the training data of 52K sentence-pairs.

We also experiment on the larger WMT’14
English-French task which we filter in the same
way as WMT’18 English-German. This results in
35.7M sentence-pairs for training and we learn a
joint BPE vocabulary of 44K types. As monolin-
gual data we use newscrawl2010-2014, compris-
ing 31M sentences after language identification
(Lui and Baldwin, 2012). We use newstest2012
as development set and report final results on
newstest2013-2015.

The majority of results in this paper are in terms
of case-sensitive tokenized BLEU (Papineni et al.,
2002) but we also report test accuracy with de-
tokenized BLEU using sacreBLEU (Post, 2018).

4.2 Model and hyperparameters
We re-implemented the Transformer model in py-
torch using the fairseq toolkit.1 All experiments

1Code available at https://github.com/
pytorch/fairseq
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are based on the Big Transformer architecture with
6 blocks in the encoder and decoder. We use the
same hyper-parameters for all experiments, i.e.,
word representations of size 1024, feed-forward
layers with inner dimension 4096. Dropout is set
to 0.3 for En-De and 0.1 for En-Fr, we use 16 at-
tention heads, and we average the checkpoints of
the last ten epochs. Models are optimized with
Adam (Kingma and Ba, 2015) using �1 = 0.9,
�2 = 0.98, and ✏ = 1e � 8 and we use the same
learning rate schedule as Vaswani et al. (2017). All
models use label smoothing with a uniform prior
distribution over the vocabulary ✏ = 0.1 (Szegedy
et al., 2015; Pereyra et al., 2017). We run exper-
iments on DGX-1 machines with 8 Nvidia V100
GPUs and machines are interconnected by Infini-
band. Experiments are run on 16 machines and
we perform 30K synchronous updates. We also
use the NCCL2 library and the torch distributed
package for inter-GPU communication. We train
models with 16-bit floating point operations, fol-
lowing Ott et al. (2018b). For final evaluation,
we generate translations with a beam of size 5 and
with no length penalty.

5 Results

Our evaluation first compares the accuracy of
back-translation generation methods (§5.1) and
analyzes the results (§5.2). Next, we simulate a
low-resource setup to experiment further with dif-
ferent generation methods (§5.3). We also com-
pare synthetic bitext to genuine parallel data and
examine domain effects arising in back-translation
(§5.4). We also measure the effect of upsampling
bitext during training (§5.5). Finally, we scale to a
very large setup of up to 226M monolingual sen-
tences and compare to previous research (§5.6).

5.1 Synthetic data generation methods

We first investigate different methods to gener-
ate synthetic source translations given a back-
translation model, i.e., a model trained in the
reverse language direction (Section 5.1). We
consider two types of MAP prediction: greedy
search (greedy) and beam search with beam size 5
(beam). Non-MAP methods include unrestricted
sampling from the model distribution (sampling),
restricting sampling to the k highest scoring out-
puts at every time step with k = 10 (top10) as well
as adding noise to the beam outputs (beam+noise).
Restricted sampling is a middle-ground between
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Figure 1: Accuracy of models trained on dif-
ferent amounts of back-translated data obtained
with greedy search, beam search (k = 5), ran-
domly sampling from the model distribution, re-
stricting sampling over the ten most likely words
(top10), and by adding noise to the beam outputs
(beam+noise). Results based on newstest2012 of
WMT English-German translation.

beam search and unrestricted sampling, it is less
likely to pick very low scoring outputs but still
preserves some randomness. Preliminary experi-
ments with top5, top20, top50 gave similar results
to top10.

We also vary the amount of synthetic data and
perform 30K updates during training for the bi-
text only, 50K updates when adding 3M synthetic
sentences, 75K updates for 6M and 12M sen-
tences and 100K updates for 24M sentences. For
each setting, this corresponds to enough updates to
reach convergence in terms of held-out loss. In our
128 GPU setup, training of the final models takes
3h 20min for the bitext only model, 7h 30min for
6M and 12M synthetic sentences, and 10h 15min
for 24M sentences. During training we also sam-
ple the bitext more frequently than the synthetic
data and we analyze the effect of this in more de-
tail in §5.5.

Figure 1 shows that sampling and beam+noise
outperform the MAP methods (pure beam search
and greedy) by 0.8-1.1 BLEU. Sampling and
beam+noise improve over bitext-only (5M) by be-
tween 1.7-2 BLEU in the largest data setting.
Restricted sampling (top10) performs better than
beam and greedy but is not as effective as unre-
stricted sampling (sampling) or beam+noise.

Table 1 shows results on a wider range of
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news2013 news2014 news2015 news2016 news2017 Average

bitext 27.84 30.88 31.82 34.98 29.46 31.00

+ beam 27.82 32.33 32.20 35.43 31.11 31.78
+ greedy 27.67 32.55 32.57 35.74 31.25 31.96
+ top10 28.25 33.94 34.00 36.45 32.08 32.94
+ sampling 28.81 34.46 34.87 37.08 32.35 33.51
+ beam+noise 29.28 33.53 33.79 37.89 32.66 33.43

Table 1: Tokenized BLEU on various test sets of WMT English-German when adding 24M synthetic
sentence pairs obtained by various generation methods to a 5.2M sentence-pair bitext (cf. Figure 1).
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Figure 2: Training perplexity (PPL) per epoch for
different synthetic data. We separately report PPL
on the synthetic data and the bitext. Bitext PPL is
averaged over all generation methods.

test sets (newstest2013-2017). Sampling and
beam+noise perform roughly equal and we adopt
sampling for the remaining experiments.

5.2 Analysis of generation methods
The previous experiment showed that synthetic
source sentences generated via sampling and beam
with noise perform significantly better than those
obtained by pure MAP methods. Why is this?

Beam search focuses on very likely outputs
which reduces the diversity and richness of the
generated source translations. Adding noise to
beam outputs and sampling do not have this prob-
lem: Noisy source sentences make it harder to pre-
dict the target translations which may help learn-
ing, similar to denoising autoencoders (Vincent
et al., 2008). Sampling is known to better approx-
imate the data distribution which is richer than the
argmax model outputs (Ott et al., 2018a). There-

Perplexity

human data 75.34
beam 72.42
sampling 500.17
top10 87.15
beam+noise 2823.73

Table 2: Perplexity of source data as assigned by a
language model (5-gram Kneser–Ney). Data gen-
erated by beam search is most predictable.

fore, sampling is also more likely to provide a
richer training signal than argmax sequences.

To get a better sense of the training signal pro-
vided by each method, we compare the loss on
the training data for each method. We report the
cross entropy loss averaged over all tokens and
separate the loss over the synthetic data and the
real bitext data. Specifically, we choose the setup
with 24M synthetic sentences. At the end of each
epoch we measure the loss over 500K sentence
pairs sub-sampled from the synthetic data as well
as an equally sized subset of the bitext. For each
generation method we choose the same sentences
except for the bitext which is disjoint from the syn-
thetic data. This means that losses over the syn-
thetic data are measured over the same target to-
kens because the generation methods only differ
in the source sentences. We found it helpful to up-
sample the frequency with which we observe the
bitext compared to the synthetic data (§5.5) but we
do not upsample for this experiment to keep condi-
tions as similar as possible. We assume that when
the training loss is low, then the model can easily
fit the training data without extracting much learn-
ing signal compared to data which is harder to fit.

Figure 2 shows that synthetic data based on
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source Diese gegenstzlichen Auffassungen von Fairness liegen nicht nur der politischen Debatte
zugrunde.

reference These competing principles of fairness underlie not only the political debate.
beam These conflicting interpretations of fairness are not solely based on the political debate.
sample Mr President, these contradictory interpretations of fairness are not based solely on the

political debate.
top10 Those conflicting interpretations of fairness are not solely at the heart of the political

debate.
beam+noise conflicting BLANK interpretations BLANK are of not BLANK based on the political

debate.

Table 3: Example where sampling produces inadequate outputs. ”Mr President,” is not in the source.
BLANK means that a word has been replaced by a filler token.

greedy or beam is much easier to fit compared to
data from sampling, top10, beam+noise and the
bitext. In fact, the perplexity on beam data falls
below 2 after only 5 epochs. Except for sampling,
we find that the perplexity on the training data is
somewhat correlated to the end-model accuracy
(cf. Figure 1) and that all methods except sam-
pling have a lower loss than real bitext.

These results suggest that synthetic data ob-
tained with argmax inference does not provide
as rich a training signal as sampling or adding
noise. We conjecture that the regularity of syn-
thetic data obtained with argmax inference is not
optimal. Sampling and noised argmax both expose
the model to a wider range of source sentences
which makes the model more robust to reorder-
ing and substitutions that happen naturally, even if
the model of reordering and substitution through
noising is not very realistic.

Next we analyze the richness of synthetic out-
puts and train a language model on real human text
and score synthetic source sentences generated by
beam search, sampling, top10 and beam+noise.
We hypothesize that data that is very regular
should be more predictable by the language model
and therefore receive low perplexity. We elimi-
nate a possible domain mismatch effect between
the language model training data and the synthetic
data by splitting the parallel corpus into three non-
overlapping parts:

1. On 640K sentences pairs, we train a back-
translation model,

2. On 4.1M sentence pairs, we take the source
side and train a 5-gram Kneser-Ney language
model (Heafield et al., 2013),

3. On the remaining 450K sentences, we apply
the back-translation system using beam, sam-
pling and top10 generation.

For the last set, we have genuine source sen-
tences as well as synthetic sources from different
generation techniques. We report the perplexity of
our language model on all versions of the source
data in Table 2. The results show that beam out-
puts receive higher probability by the language
model compared to sampling, beam+noise and
real source sentences. This indicates that beam
search outputs are not as rich as sampling outputs
or beam+noise. This lack of variability probably
explains in part why back-translations from pure
beam search provide a weaker training signal than
alternatives.

Closer inspection of the synthetic sources (Ta-
ble 3) reveals that sampled and noised beam out-
puts are sometimes not very adequate, much more
so than MAP outputs, e.g., sampling often in-
troduces target words which have no counterpart
in the source. This happens because sampling
sometimes picks highly unlikely outputs which are
harder to fit (cf. Figure 2).

5.3 Low resource vs. high resource setup
The experiments so far are based on a setup with a
large bilingual corpus. However, in resource poor
settings the back-translation model is of much
lower quality. Are non-MAP methods still more
effective in such a setup? To answer this ques-
tion, we simulate such setups by sub-sampling
the training data to either 80K sentence-pairs or
640K sentence-pairs and then add synthetic data
from sampling and beam search. We compare
these smaller setups to our original 5.2M sen-
tence bitext configuration. The accuracy of the
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Figure 3: BLEU when adding synthetic data from
beam and sampling to bitext systems with 80K,
640K and 5M sentence pairs.

German-English back-translation systems steadily
increases with more training data: On new-
stest2012 we measure 13.5 BLEU for 80K bitext,
24.3 BLEU for 640K and 28.3 BLEU for 5M.

Figure 3 shows that sampling is more effective
than beam for larger setups (640K and 5.2M bi-
texts) while the opposite is true for resource poor
settings (80K bitext). This is likely because the
back-translations in the 80K setup are of very poor
quality and the noise of sampling and beam+noise
is too detrimental for this brittle low-resource set-
ting. When the setup is very small the very regu-
lar MAP outputs still provide useful training signal
while the noise from sampling becomes harmful.

5.4 Domain of synthetic data
Next, we turn to two different questions: How
does real human bitext compare to synthetic data
in terms of final model accuracy? And how does
the domain of the monolingual data affect results?

To answer these questions, we subsample 640K
sentence-pairs of the bitext and train a back-
translation system on this set. To train a forward
model, we consider three alternative types of data
to add to this 640K training set. We either add:

• the remaining parallel data (bitext),

• the back-translated target side of the remain-
ing parallel data (BT-bitext),

• back-translated newscrawl data (BT-news).

The back-translated data is generated via sam-
pling. This setup allows us to compare synthetic
data to genuine data since BT-bitext and bitext
share the same target side. It also allows us to
estimate the value of BT data for domain adap-
tation since the newscrawl corpus (BT-news) is
pure news whereas the bitext is a mixture of eu-
roparl and commoncrawl with only a small news-
commentary portion. To assess domain adaptation
effects, we measure accuracy on two held-out sets:

• newstest2012, i.e. pure newswire data.

• a held-out set of the WMT training data
(valid-mixed), which is a mixture of eu-
roparl, commoncrawl and the small news-
commentary portion.

Figure 4 shows the results on both validation
sets. Most strikingly, BT-news performs almost
as well as bitext on newstest2012 (Figure 4a) and
improves the baseline (640K) by 2.6 BLEU. BT-
bitext improves by 2.2 BLEU, achieving 83% of
the improvement with real bitext. This shows that
synthetic data can be nearly as effective as real hu-
man translated data when the domains match.

Figure 4b shows the accuracy on valid-mixed,
the mixed domain valid set. The accuracy of BT-
news is not as good as before since the domain of
the BT data and the test set do not match. How-
ever, BT-news still improves the baseline by up to
1.2 BLEU. On the other hand, BT-bitext matches
the domain of valid-mixed and improves by 2.7
BLEU. This trails the real bitext by only 1.3 BLEU
and corresponds to 67% of the gain achieved with
real human bitext.

In summary, synthetic data performs remark-
ably well, coming close to the improvements
achieved with real bitext for newswire test data,
or trailing real bitext by only 1.3 BLEU for valid-
mixed. In absence of a large parallel corpus for
news, back-translation therefore offers a simple,
yet very effective domain adaptation technique.

5.5 Upsampling the bitext

We found it beneficial to adjust the ratio of bitext
to synthetic data observed during training. In par-
ticular, we tuned the rate at which we sample data
from the bitext compared to synthetic data. For
example, in a setup of 5M bitext sentences and
10M synthetic sentences, an upsampling rate of 2
means that we double the frequency at which we
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Figure 4: Accuracy on (a) newstest2012 and (b) a mixed domain valid set when growing a 640K bitext
corpus with (i) real parallel data (bitext), (ii) a back-translated version of the target side of the bitext
(BT-bitext), (iii) or back-translated newscrawl data (BT-news).

visit bitext, i.e. training batches contain on aver-
age an equal amount of bitext and synthetic data
as opposed to 1/3 bitext and 2/3 synthetic data.

Figure 5 shows the accuracy of various upsam-
pling rates for different generation methods in a
setup with 5M bitext sentences and 24M synthetic
sentences. Beam and greedy benefit a lot from
higher rates which results in training more on the
bitext data. This is likely because synthetic beam
and greedy data does not provide as much training
signal as the bitext which has more variation and
is harder to fit. On the other hand, sampling and
beam+noise require no upsampling of the bitext,
which is likely because the synthetic data is al-
ready hard enough to fit and thus provides a strong
training signal (§5.2).

5.6 Large scale results

To confirm our findings we experiment on
WMT’14 English-French translation where we
show results on newstest2013-2015. We augment
the large bitext of 35.7M sentence pairs by 31M
newscrawl sentences generated by sampling. To
train this system we perform 300K training up-
dates in 27h 40min on 128 GPUs; we do not up-
sample the bitext for this experiment. Table 4
shows tokenized BLEU and Table 5 shows deto-
kenized BLEU.2 To our knowledge, our baseline

2sacreBLEU signatures: BLEU+case.mixed+lang.en-
fr+numrefs.1+smooth.exp+test.SET+tok.13a+version.1.2.7
with SET 2 {wmt13, wmt14/full, wmt15}
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Figure 5: Accuracy when changing the rate at
which the bitext is upsampled during training.
Rates larger than one mean that the bitext is ob-
served more often than actually present in the
combined bitext and synthetic training corpus.

is the best reported result in the literature for new-
stest2014, and back-translation further improves
upon this by 2.6 BLEU (tokenized).

Finally, for WMT English-German we train
on all 226M available monolingual training sen-
tences and perform 250K updates in 22.5 hours
on 128 GPUs. We upsample the bitext with a
rate of 16 so that we observe every bitext sentence

3sacreBLEU signatures: BLEU+case.mixed+lang.en-
LANG+numrefs.1+smooth.exp+test.wmt14/full+
tok.13a+version.1.2.7 with LANG 2 {de,fr}
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news13 news14 news15

bitext 36.97 42.90 39.92
+sampling 37.85 45.60 43.95

Table 4: Tokenized BLEU on various test sets for
WMT English-French translation.

news13 news14 news15

bitext 35.30 41.03 38.31
+sampling 36.13 43.84 40.91

Table 5: De-tokenized BLEU (sacreBLEU) on var-
ious test sets for WMT English-French.

16 times more often than each monolingual sen-
tence. This results in a new state of the art of
35 BLEU on newstest2014 by using only WMT
benchmark data. For comparison, DeepL, a com-
mercial translation engine relying on high qual-
ity bilingual training data, achieves 33.3 tokenized
BLEU .4 Table 6 summarizes our results and com-
pares to other work in the literature. This shows
that back-translation with sampling can result in
high-quality translation models based on bench-
mark data only.

6 Conclusions and future work

Back-translation is a very effective data augmen-
tation technique for neural machine translation.
Generating synthetic sources by sampling or by
adding noise to beam outputs leads to higher ac-
curacy than argmax inference which is typically
used. In particular, sampling and noised beam
outperforms pure beam by 1.7 BLEU on average
on newstest2013-2017 for WMT English-German
translation. Both methods provide a richer train-
ing signal for all but resource poor setups. We
also find that synthetic data can achieve up to 83%
of the performance attainable with real bitext. Fi-
nally, we achieve a new state of the art result of 35
BLEU on the WMT’14 English-German test set
by using publicly available benchmark data only.

In future work, we would like to investigate
an end-to-end approach where the back-translation
model is optimized to output synthetic sources that
are most helpful to the final forward model.

4https://www.deepl.com/press.html

En–De En–Fr
a. Gehring et al. (2017) 25.2 40.5
b. Vaswani et al. (2017) 28.4 41.0
c. Ahmed et al. (2017) 28.9 41.4
d. Shaw et al. (2018) 29.2 41.5

DeepL 33.3 45.9
Our result 35.0 45.6

detok. sacreBLEU3 33.8 43.8

Table 6: BLEU on newstest2014 for WMT
English-German (En–De) and English-French
(En–Fr). The first four results use only WMT
bitext (WMT’14, except for b, c, d in En–De
which train on WMT’16). DeepL uses propri-
etary high-quality bitext and our result relies on
back-translation with 226M newscrawl sentences
for En–De and 31M for En–Fr. We also show deto-
kenized BLEU (SacreBLEU).

References
Karim Ahmed, Nitish Shirish Keskar, and Richard

Socher. 2017. Weighted transformer network for
machine translation. arxiv, 1711.02132.

Antreas Antoniou, Amos J. Storkey, and Harrison Ed-
wards. 2017. Data augmentation generative adver-
sarial networks. arXiv, abs/1711.04340.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Nicola Bertoldi and Marcello Federico. 2009. Domain
adaptation for statistical machine translation with
monolingual resources. In Workshop on Statistical
Machine Translation (WMT).

Ondrej Bojar and Ales Tamchyna. 2011. Improving
translation model by monolingual data. In Workshop
on Statistical Machine Translation (WMT).

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz Josef
Och, and Jeffrey Dean. 2007. Large language mod-
els in machine translation. In Conference on Natural
Language Learning (CoNLL).

Peter F. Brown, John Cocke, Stephen Della Pietra, Vin-
cent J. Della Pietra, Frederick Jelinek, John D. Laf-
ferty, Robert L. Mercer, and Paul S. Roossin. 1990.
A statistical approach to machine translation. Com-
putational Linguistics, 16:79–85.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
In Conference of the Association for Computational
Linguistics (ACL).

497



Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Ryan Cotterell and Julia Kreutzer. 2018. Explain-
ing and generalizing back-translation through wake-
sleep. arXiv preprint arXiv:1806.04402.

Anna Currey, Antonio Valerio Miceli Barone, and Ken-
neth Heafield. 2017. Copied Monolingual Data Im-
proves Low-Resource Neural Machine Translation.
In Proc. of WMT.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine transla-
tion through multi-task learning. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Angela Fan, Yann Dauphin, and Mike Lewis. 2018.
Hierarchical neural story generation. In Confer-
ence of the Association for Computational Linguis-
tics (ACL).

Orhan Firat, Kyunghyun Cho, and Yoshua Ben-
gio. 2016a. Multi-way, multilingual neural ma-
chine translation with a shared attention mecha-
nism. In Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T. Yarman-Vural, and Kyunghyun Cho. 2016b.
Zero-resource translation with multi-lingual neu-
ral machine translation. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In International
Conference of Machine Learning (ICML).

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. arXiv, 1308.0850.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor
O. K. Li. 2018. Universal neural machine transla-
tion for extremely low resource languages. arXiv,
1802.05368.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv, 1503.03535.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On integrating
a language model into neural machine translation.
Computer Speech & Language, 45:137–148.

Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. arXiv,
1611.04798.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving hu-
man parity on automatic chinese to english news
translation. arXiv, 1803.05567.

Soren Hauberg, Oren Freifeld, Anders Boesen Lindbo
Larsen, John W. Fisher, and Lars Kai Hansen. 2016.
Dreaming more data: Class-dependent distributions
over diffeomorphisms for learned data augmenta-
tion. In AISTATS.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tieyan Liu, and Wei-Ying Ma. 2016a. Dual learning
for machine translation. In Conference on Advances
in Neural Information Processing Systems (NIPS).

Wei He, Zhongjun He, Hua Wu, and Haifeng Wang.
2016b. Improved neural machine translation with
smt features. In Conference of the Association for
the Advancement of Artificial Intelligence (AAAI),
pages 151–157.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable Modified
Kneser-Ney Language Model Estimation. In Con-
ference of the Association for Computational Lin-
guistics (ACL).

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Vu Cong Duy Hoang, Philipp Koehn, Gholamreza
Haffari, and Trevor Cohn. 2018. Iterative back-
translation for neural machine translation. In Pro-
ceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 18–24.

Kenji Imamura, Atsushi Fujita, and Eiichiro Sumita.
2018. Enhancement of encoder and attention using
target monolingual corpora in neural machine trans-
lation. In Proceedings of the 2nd Workshop on Neu-
ral Machine Translation and Generation, pages 55–
63.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Gre-
gory S. Corrado, Macduff Hughes, and Jeffrey Dean.
2017. Google’s multilingual neural machine transla-
tion system: Enabling zero-shot translation. Trans-
actions of the Association for Computational Lin-
guistics (TACL), 5:339–351.

Lukasz Kaiser, Aidan N. Gomez, and François Chollet.
2017. Depthwise separable convolutions for neural
machine translation. CoRR, abs/1706.03059.

498



Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
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Abstract
Generating the English transliteration of a
name written in a foreign script is an important
and challenging step in multilingual knowl-
edge acquisition and information extraction.
Existing approaches to transliteration genera-
tion require a large (>5000) number of train-
ing examples. This difficulty contrasts with
transliteration discovery, a somewhat easier
task that involves picking a plausible translit-
eration from a given list. In this work, we
present a bootstrapping algorithm that uses
constrained discovery to improve generation,
and can be used with as few as 500 training ex-
amples, which we show can be sourced from
annotators in a matter of hours. This opens
the task to languages for which large number
of training examples are unavailable. We eval-
uate transliteration generation performance it-
self, as well the improvement it brings to cross-
lingual candidate generation for entity linking,
a typical downstream task. We present a com-
prehensive evaluation of our approach on nine
languages, each written in a unique script.1

1 Introduction

Transliteration is the process of transducing
names from one writing system to another (e.g.,
ओबामा in Devanagari to Obama in Latin script)
while preserving their pronunciation (Knight and
Graehl, 1998; Karimi et al., 2011). In particu-
lar, back-transliteration from foreign languages
to English has applications in multilingual knowl-
edge acquisition tasks including named entity
recognition (Darwish, 2013) and information re-
trieval (Virga and Khudanpur, 2003). Two tasks
feature prominently in the transliteration literature:
generation (Knight and Graehl, 1998) which in-
volves producing an appropriate transliteration for
a given word in an open-ended way, and discov-
ery (Sproat et al., 2006; Klementiev and Roth,

1code at github.com/shyamupa/hma-translit.

2008) which involves selecting an appropriate
transliteration for a word from a list of candidates.
This work develops transliteration generation ap-
proaches for low-resource languages.
Existing transliteration generation models re-

quire supervision in the form of source-target name
pairs (⇡5-10k), which are often collected from
names in Wikipedia inter-language links (Irvine
et al., 2010). However, most languages that use
non-Latin scripts are under-represented in terms of
such resources. Table 1 illustrates this issue, and
the extra coverage one can achieve by extending
to low-resource languages. A model that requires
50k name pairs as supervision can only support 6
languages, while one that just needs 500 could sup-
port 56. For a model to be widely applicable, it
must function in low-resource settings.

# Name Pairs in Wikipedia Languages Scripts

> 50, 000 6 5
> 10, 000 18 14
> 5, 000 24 15
> 1, 000 45 22
> 500 56 23
> 0 93 30

Table 1: Cumulative number of person name pairs in
Wikipedia inter-language links. While previous approaches
for transliteration generation were applicable to only 24 lan-
guages (spanning 15 scripts), our approach is applicable to
56 languages (23 scripts). When counting scripts we exclude
variants (e.g., all Cyrillic scripts and variants count as one).

Our Approach

Previous Work

We propose a new bootstrapping algorithm that
uses a weak generation model to guide discov-
ery of good transliterations, which in turn aids fu-
ture bootstrapping iterations.2 By carefully con-
trolling the interaction of discovery and the gen-
eration model via constrained inference, we show

2All generative approaches are also capable of discovery,
by using the posterior P(y | x) to select the most likely can-
didate transliteration, while the opposite is not true.
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how to bootstrap a generation model using a dic-
tionary of names in English, a list of words in the
foreign script, and little initial supervision (⇡500
name pairs). To the best of our knowledge, ours is
the first work to accomplish transliteration genera-
tion in such a low-resource setting.
We demonstrate the practicality of our approach

in truly low-resource scenarios and downstream
applications through two case studies. First, in
§8.1 we show that one can obtain the initial super-
vision from a single human annotator within a few
hours for two languages – Armenian and Punjabi.
This is a realistic scenario where language access
is limited to a single native informant. Second, in
§8.2 we show that our approach benefits a typical
downstream application, namely candidate genera-
tion for cross-lingual entity linking, by improving
recall on two low-resource languages – Tigrinya
and Macedonian. We also present an analysis (§7)
of the inherent challenges of transliteration, and
the trade-off between native (i.e., source) and for-
eign (i.e., target) vocabulary.

2 Related Work

We briefly review the limitations of existing gen-
eration and discovery approaches, and provide an
overview of how our work addresses them.

Transliteration Generation (Haizhou et al.,
2004; Jiampojamarn et al., 2009; Ravi and Knight,
2009; Jiampojamarn et al., 2010; Finch et al., 2015,
inter alia) requires generous amount of name
pairs (⇡5-10k) in order to learn to map words
in the source script to the target script. While
some approaches (Irvine et al., 2010; Tsai and
Roth, 2018) use Wikipedia inter-language links to
identify name pairs for supervision, a truly low-
resource language (like Tigrinya) is likely to have
limited Wikipedia presence as well.

Transliteration Discovery (Sproat et al., 2006;
Chang et al., 2009) is considerably easier than gen-
eration, owing to the smaller search space. How-
ever, discovery often uses features derived from
resources that are unavailable for low-resource lan-
guages, like comparable corpora (Sproat et al.,
2006; Klementiev and Roth, 2008).
A key limitation of discovery is the assumption

that the correct transliteration(s) is in the list of can-
didates N . Since discovery models always pick
something from N , they can produce false posi-
tives, if no correct transliteration is present in N .

To overcome this, it is prudent to develop genera-
tion models which can handle input for which the
transliteration does not belong in N .

Our Work We show that a weak generation
model can be iteratively improved using con-
strained discovery. In particular, our work uses
a weak generation model to discover new train-
ing pairs, using constraints to drive the bootstrap-
ping. Our generation model is inspired by the
success of sequence to sequence generation mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015)
for string transduction tasks like inflection and
derivation generation (Faruqui et al., 2016; Cot-
terell et al., 2017; Aharoni and Goldberg, 2017;
Makarov et al., 2017). Our bootstrapping frame-
work can be viewed as an instance of constraint
driven learning (Chang et al., 2007, 2012).

3 Transliteration Generation with Hard
Monotonic Attention - Seq2Seq(HMA)

We view generation as a string transduction task
and use a sequence to sequence (Seq2Seq) gen-
eration model that uses hard monotonic atten-
tion (Aharoni and Goldberg, 2017), henceforth
referred to as Seq2Seq(HMA). During genera-
tion, Seq2Seq(HMA) directly models the mono-
tonic source-to-target sequence alignments, using
a pointer that attends to a single input character
at a time. Monotonic attention is a natural fit
for transliteration because even though the num-
ber of characters needed to represent a sound in
the source and target language vary, the sequence
of sounds is presented in the same order.3 We re-
view Seq2Seq(HMA) below, and describe how it
can be applied to transliteration generation.

Encoding Input Word Let ⌃f be the source al-
phabet and ⌃e be the English alphabet. Let x =
(x1, x2, · · · , xn) denote an input word where each
character xi 2 ⌃f . The characters are first en-
coded using a embedding matrix W 2 R

|⌃f |⇥d

to get character embeddingsx1, x2, · · · , xn where
each xi 2 R

d. These embeddings are fed into
a bidirectional RNN encoder to generate encoded
vectors h1, h2, · · · , hn where each hi 2 R

2k,
and k is the size of output vector of the forward
(and backward) encoder. The encoded vectors
h1, h2, · · · , hn are then fed into the decoder.

3Many Indic scripts, that sometimes write vowels before
the consonants they are pronounced after, seem to violate this
claim, but Unicode representations of these scripts actually
preserve the consonant-vowel order.
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Figure 1: Transliteration using Seq2Seq transduction with
Hard Monotonic Attention, or Seq2Seq(HMA). The figure
shows how decoding proceeds for transliterating “थनोस” to
“thanos”. During decoding, themodel attends to a source char-
acter (e.g.,थ shown in blue) and outputs target characters (t, h,
a) until a step action is generated, which moves the attention
position forward by one character (to न), and so on.

MonotonicDecodingwithHardAttention Fig-
ure 1 illustrates the decoding process. The decoder
RNN generates a sequence of actions {s1, s2, · · · },
such that each si 2 ⌃e [ {step}. The step ac-
tion controls an attention position a, attending on
input character xa, with encoded vector ha. Each
action si is embedded into si 2 R

d using a output
embedding matrix A 2 R

(|⌃e|+1)⇥d. At any time
during decoding, the decoder uses its last hidden
state, the embedding of the previous action si and
the encoded vector ha of the current attended po-
sition to generate the next action si+1. If the gen-
erated action is step, the decoder increments the
attention position by one. This ensures that the de-
coding is monotonic, as the attention position can
only move forward or stay at the same position dur-
ing generation. We use Inference(G, x) to refer
to the above decoding process for a trained gener-
ation model G and input word x.

Training requires the oracle action sequence
{si} for input x1:n that generates the correct
transliteration y1:m. The oracle sequence is gener-
ated using the train name pairs and Algorithm 1 in
Aharoni and Goldberg (2017), with the character-
level alignment between x1:n and y1:m being gen-
erated using the algorithm in Cotterell et al. (2016).

Inference Strategies We describe an uncon-
strained and a constrained inference strategy to se-
lect the best transliteration ŷ from a beam {yi}k

i=1
of transliteration hypotheses, sorted in descending
order by likelihood. The constrained strategy use a
name dictionary N , to guide the inference. These
strategies are applicable to any generation model.

• Unconstrained (U) selects the most likely
item y1 in the beam as ŷ.

• Dictionary-Constrained (DC) selects the
highest scoring hypothesis that is present in
N , and defaults to y1 if none are in N .

It is tempting to disallow the model from gen-
erating hypotheses which are not in the dictionary
N . However, dictionaries are always incomplete,
and restricting the search to generate from N in-
evitably leads to incorrect predictions if the correct
transliteration is not in N . This is essentially the
same as the problem inherent to discovery models.

Other Strategies in Previous Work A related
constrained inference strategy was proposed by
Lin et al. (2016), who use a entity linking sys-
tem (Wang et al., 2015) to correct and re-rank hy-
potheses, using any available context to aid hypoth-
esis correction. Our constrained inference strategy
is much simpler, requiring only a name dictionary
N . We experimentally show that our approach out-
performs that of Lin et al. (2016).

4 Low-Resource Bootstrapping

Low-resource languages will have a limited num-
ber of name pairs for training a generation model.
To learn a good generation model in this setting,
we propose a new bootstrapping algorithm, that
uses constrained discovery to mine name pairs to
re-train the generation model. Our algorithm re-
quires a small (⇡500) seed list of name pairs S for
supervision, a dictionary N containing names in
English, and a list of words Vf in the foreign script.
Below we describe our algorithm and the con-

straints used to guide discovery of new name pairs.

4.1 The Bootstrapping Algorithm
Algorithm 1 shows the pseudo-code of the boot-
strapping procedure. We initialize a weak gener-
ation model G0 using a seed list of name pairs
S (line 1). At iteration t, the current generation
model Gt produces the top-k transliteration hy-
potheses {yi}k

i=1 for each word x 2 Vf (line 5). A
sourceword and hypothesis pair (x, yi), is added to
the set of mined name pairsB if they satisfy a set of
discovery constraints (described below) (line 8). A
new generation model Gt+1 is trained for the next
iteration using the union of the seed list S and the
mined name pairs B (line 12). B is purged after ev-
ery iteration (line 3) to preventGt+1 from being in-
fluenced by possibly incorrect name pairs mined in
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Algorithm 1 Bootstrapping a Transliteration Generation
Model via Constrained Discovery
Input:

English name dictionary N ; Seed training pairs S;
Vocabulary in the target language Vf .

Hyper-parameters:
initial minimum length threshold Lmin

0 ;
minimum likelihood threshold �min;
length ratio tolerance ✏.

Output: Generation model GT

1: G0 = train(S) . init. generation model.
2: while not converged do
3: B = ; . purge mined set.
4: for x in Vf do
5: {yi}

k
i=1 = argtopk Inference(Gt,x)

6: for yi in {yi}
k
i=1 do

7: if (x, yi) satisfies constraints in §4.2 then
8: B = B [ {(x, yi)} . add to mined set.
9: end if
10: end for
11: end for
12: Gt+1 = train (S [ B)
13: Lmin

t+1 = Lmin
t � 1 . reduce length threshold.

14: t = t + 1 . track iteration
15: end while

earlier iterations. The algorithm converges when
accuracy@1 stops increasing on a development set.
We note that our bootstrapping approach is applica-
ble to any transliteration generation model.
To ensure that high quality name pairs are added

to themined setB during bootstrapping, we use the
following discovery constraints.

4.2 Discovery Constraints
A word-transliteration pair (x, y) is added to the
set of mined pairs B, only if all the following con-
straints are satisfied,

1. y 2 N . i.e., y belongs in the dictionary.

2. P(y | x) > �min. The model is sufficiently
confident about the transliteration.

3. The ratio of lengths |y|
|x| should be close to the

average ratio estimated from S (Matthews,
2007). We encode this using the constraint
| |y|
|x| � r(S)|  ✏, where ✏ is a tunable toler-
ance and r(S) is the average ratio in S .

4. |y| > Lmin
t . We found that false positives

were more likely to be short hypotheses in
early iterations. As the model improves with
each iteration, Lmin

t is lowered to allow more
new pairs to be mined.

We note that our bootstrapping algorithm can
be formulated as an instance of constraint driven
learning (Chang et al., 2007, 2012).

5 Experimental Setup

Unless otherwise specified, we evaluate all gener-
ation models using the best model prediction ŷ us-
ing acc@1 against the reference transliteration y⇤.

Training and Evaluation Dataset We use the
train and development sets from the Named
Entities Workshop 2015 (Duan et al., 2015)
(NEWS2015) for Hindi (hi), Kannada (kn), Ben-
gali (bn), Tamil (ta) and Hebrew (he) as our train
and evaluation set.4 The size of the train set was
⇠12k, 10k, 14k, 10k and 10k respectively, and all
evaluation sets were ⇠1k.
For the low resource experiments, we sub-

sample 500 examples from each train set in the
NEWS2015 dataset using five random seeds and
report the averaged results. We also set aside a
1k name pairs from the corresponding NEWS2015
train set of each language as development data.
The foreign script portion of the remaining train
data is used as Vf in the bootstrapping algorithm.

Model and Tuning Details We implemented
Seq2Seq(HMA) using PyTorch.5 We used 50 di-
mensional character embeddings, and single layer
GRU (Cho et al., 2014) encoder with 20 hidden
states for all experiments. The Adam (Kingma and
Ba, 2014) optimizer was used with default hyper-
parameters, a learning rate of 0.001, a batch size
of 1, and maximum of 20 iterations in all experi-
ments. Beam search used a width of 10. For low-
resource experiments, all bootstrapping parame-
ters were tuned on the development data set aside
above. Lmin

0 is chosen from {10, 15, 20, 25}.

Name Dictionary We use a name dictionary of
1.05 million names constructed from the English
Wikipedia (dump dated 05/20/2017) by taking the
list of title tokens inWikipedia sorted by frequency,
and removing tokens which appears only once.

5.1 Comparisons

We compare with the following generation models:

P&R (Pasternack and Roth, 2009) A prob-
abilistic transliteration generation approach that
learns latent alignments between substrings in the
source and the target words. The model is trained
to score all possible segmentation and their align-
ments, using an EM-like algorithm.

4Test set was not available since shared task concluded.
5github.com/pytorch
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DirecTL+ (Jiampojamarn et al., 2009) A
HMM-like discriminative string transduction
model that predicts the output transliteration
using many-to-many alignments between the
source word and target transliteration. Following
Jiampojamarn et al. (2009), we use the m2m-
aligner (Jiampojamarn et al., 2007) to generate
the many-to-many alignments, and the public
implementation of DirecTL+ to train models.6

RPI-ISI (Lin et al., 2016) A transliteration ap-
proach that uses a language-independent entity
linking system (Wang et al., 2015) to jointly cor-
rect and re-rank the hypotheses produced by the
generation model. We compare to both the uncon-
strained inference (U) approach and the entity link-
ing constrained inference (+EL) approach.

Seq2Seq w/ Att A sequence to sequence gener-
ation model which uses soft attention as described
in (Bahdanau et al., 2015). This model does not
enforce monotonicity at inference time, and serves
as direct comparison for Seq2Seq(HMA).

6 Experiments

This section aims to analyze: (a) how effective
is Seq2Seq(HMA) for transliteration generation
when provided all available supervision (§6.1)?
and (b) how effective is the bootstrapping algo-
rithm in the low-resource setting when only 500
examples are available (§6.2)?

6.1 Full Supervision Setting
We compare Seq2Seq(HMA) with previous ap-
proaches when provided all available supervision,
to see how it fares under standard evaluation.
Results in the unconstrained inference (U) set-

ting (Table 2 top 5 rows) shows Seq2Seq(HMA),
denoted by “Ours”, outperforms previous ap-
proaches on Hindi, Kannada, and Bengali, with al-
most 3-4% gains. Improvements over the Seq2Seq
with Attention (Seq2Seq w/ Att) model demon-
strate the benefit of imposing the monotonicity
constraint in the generation model. On Tamil and
Hebrew, Seq2Seq(HMA) is at par with the best
approaches, with negligible gap (⇠0.3) in scores.
Overall, we see that Seq2Seq(HMA) can achieve
better (and sometimes competitive) scores than
state-of-the-art approaches in full supervision set-
tings. When comparing approaches which use con-
strained inference (Table 2, rows 6 and 7), we see

6https://code.google.com/p/directl-p

Lang. ! hi kn bn ta he Avg.Approach #

Full Supervision Setting (5-10k examples)

Seq2Seq w/ Att (U) 35.5 33.4 46.1 17.2 20.3 30.5
P&R (U) 37.4 31.6 45.4 20.2 18.7 30.7
DirecTL+ (U) 38.9 34.7 48.4 19.9 16.8 31.7
RPI-ISI (U) 40.3 29.8 49.4 20.2 21.5 32.2
Ours(U) 42.8 38.9 52.4 20.5 23.4 35.6

Approaches Using Constrained Inference

RPI-ISI + EL 44.8 37.6 52.0 29.0 37.2 40.1
Ours(DC) 51.8 43.3 56.6 28.0 36.1 43.2

Low-Resource Setting (500 examples)

Seq2Seq w/ Att (U) 17.0 13.6 14.5 6.0 9.5 12.1
P&R (U) 21.1 16.6 34.2 9.4 13.0 18.9
DirecTL+ (U) 26.6 25.3 35.5 11.8 10.7 22.0
Ours(U) 29.1 27.7 37.7 11.5 16.2 24.4
Ours(U) + Boot. 40.1 35.1 50.3 17.8 22.8 33.2

Table 2: Comparing different approaches on theNEWS2015
dataset using acc@1 as the evaluation metric. “Ours” denotes
the Seq2Seq(HMA) model, with (.) denoting the inference
strategy. Numbers for RPI-ISI are from Lin et al. (2016).

that using dictionary-constrained inference (as in
Ours(DC)) is more effective than using a entity-
linking model for re-ranking (RPI-ISI + EL).

6.2 Low-Resource Setting

In Table 2 (rows under “Low-Resource Setting”),
we evaluate different models in a low-resource set-
tingwhen provided only 500 name pairs as supervi-
sion. Results are averaged over 5 different random
sub-samples of 500 examples.
The results clearly demonstrate that all gener-

ation models suffer a drop in performance when
provided limited training data. Note that models
like Seq2Seq with Attention suffer a larger drop
than those which enforce monotonicity, suggesting
that incorporating monotonicity into the inference
step in the low-resource setting is essential. After
bootstrapping ourweak generationmodel usingAl-
gorithm 1, the performance improves substantially
(last row in Table 2). On almost all languages, the
generation model improves by at least 6%, with
performance for Hindi and Bengali improving by
more than 10%. Bootstrapping results for the lan-
guages are within 2-4% of the best model trained
with all available supervision.
To better analyze the progress of the transliter-

ation model during bootstrapping, we plot the ac-
curacy@1 of the current transliteration model af-
ter each bootstrapping iteration for each of the lan-
guages (solid lines in Figure 2). For reference,
we also show the best performance for a gener-
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Figure 2: Plot showing acc@1 after each bootstrapping itera-
tion for Hindi, Kannada, Bengali, Tamil and Hebrew, starting
with only 500 training pairs as supervision. For comparison,
the acc@1 of a model trained with all available supervision is
also shown (respective dashed lines, marked X-Full).

ation model using all available supervision from
§6.1 (dotted horizontal lines in Figure 2). From
Figure 2, we can see that almost after 5 bootstrap-
ping iterations, the generation model attains com-
petitive performance to respective state-of-the-art
models trained with full supervision.

6.3 Error Analysis

Though our model is state of the art, it does
present a few weaknesses. We have found that
the dictionary sometimes misleads the model dur-
ing constrained inference. For example, the cor-
rect transliteration “vidyul” of the Hindi व ुल, is
not present in the dictionary, but another hypothe-
sis “vidul” is. Another issue comes from the pro-
portion of native (i.e., from the source language)
and foreign (i.e., from English or other languages)
names in the training data. It is usually not the
case that the source and target scripts have the
same transliteration rules. For example, य in Hindi
might represent ya in English or Hindi names, but
ja in German. Similarly, while अ should be a in
Hindi names, it could be any of a few vowels in
English. The NEWS2015 dataset does not report
a native/foreign ratio, but by our estimation, it is
about 70/30 for each language. This native and
foreign names dichotomy are some of the inherent
challenges in transliteration, that we discuss in de-
tail in the next section.

7 Challenges Inherent to Transliteration

The fact that all models in Table 2 perform well or
poorly on the same languages suggests that most
of the observed performance variation is the result
of factors intrinsic to the specific languages. Here
we analyze some challenges that are inherent to
the transliteration task, and explain why the per-
formance ceiling is well under 100% for all lan-
guages, and lower for languages like Tamil and He-
brew than the others.

7.1 Source and Target-Specific Issues
Source-Driven Some transliteration errors are
due to ambiguities in the source scripts. For in-
stance, the Tamil script uses a single character to
denote {ta, da, tha, dha}, a single character for {ka,
ga, kha, gha}, etc., while the rest of the Indian
scripts have unique characters for each of these.
Thus, names like Hartley and Hardley are entirely
indistinguishable in Tamil but are distinguishable
in the other scripts. We illustrate this problem
by transliterating back and forth between Tamil
andHindi. When transliteratingHindi!Tamil, the
model achieves an accuracy of 31%, which drops
to 15% when transliterating Tamil!Hindi, sug-
gesting that the Tamil script is more ambiguous.
The Hebrew script also introduces error because

it tends to omit vowels or write them ambigu-
ously, leaving the model to guess between plau-
sible choices. For example, the word מלך could
be transliterated melech “king” just as easily as
malach “he ruled.” When Hebrew does write vow-
els, it reuses consonant letters, again ambiguously.
For example, ה can be used to express a or e, so
שמונה can be either shmona or shmone “eight mas-
culine/feminine”. The script also does not reliably
distinguish b from v or p from f, among others.
All languages run into problems when they are

faced with writing sounds that they do not natively
distinguish. For example, Hindi does not make a
distinction between w and v, so both vest and west
are written as वे ट in its script.
These script-specific deficiencies explains why

all models struggle on Tamil and Hebrew relative
to the others. These issues cannot be completely
resolved without memorizing individual source-
target pairs and leveraging context.

Target-Driven Some errors arise from the chal-
lenges presented by target script (here Latin script
for English). To handle English’s notoriously con-
voluted orthography, a model has to infer silent let-
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Native Foreign Ratio

Hindi 45.1 31.4 1.44
Bengali 63.1 20.1 3.14
Kannada 42.6 23.1 1.84
Tamil 24.3 05.2 4.67

Table 3: Acc@1 for native and foreign words for four lan-
guages (§7.2). Ratio is native performance relative to foreign.

ters, decide whether to use f or ph for /f/; use k, c,
ck, ch, or q for /k/, and so on. The problem is made
worse because English is not the only language that
uses Latin script. For example, German names like
Schmidt should be written with sch instead of sh,
and for French names like Margot and Margeau
(which are pronounced the same), we have to re-
sort to memorization. The arbitrariness extends
into borrowings from the source languages as well.
For example, the Indian name Bangalore is writ-
ten with a silent-e, and the name Lakshadweep con-
tains ee, instead of the expected i.

7.2 Disparity between Native and Foreign
All these issues come together to create a per-
formance disparity between native names, which
are well-integrated into the source language ety-
mologically (Indian names like Jasodhara or Ra-
manathan for Hindi), and foreign names (French
Grenoble or Japanese Honshu for Hindi), which
are not. The above datasets include an unspecified
mix of native and foreign names. This is a prob-
lem since any model must learn essentially sepa-
rate transliteration schemes for each.
To quantify the effect of this, we annotate na-

tive and foreign names in the test split of the four
Indian languages, and evaluate performance for
both categories. Table 3 shows that our model
performs significantly better on native names for
all the languages. A possible reason for is that
the source scripts were designed for writing na-
tive names (e.g., Tamil script lacks separate {ta,
da, tha, dha} characters because the Tamil lan-
guage does not distinguish these sounds). Further-
more, foreign names have a wide variety of origins
with their own conventions as discussed in §7.1.
The performance gap is proportionally greatest for
Tamil, likely due to its script.

8 Case Studies

In this section, we evaluate the practical utility
of our approach in low-resource settings and for
downstream applications through two case studies.

We first show that obtaining an adequate seed list
is possible with a few hours of manual annotation
(§8.1) from a single human annotator. We then
show the positive impact that our approach has on
a downstream task, by evaluating its contribution
to candidate generation for Tigrinya and Macedo-
nian entity linking (§8.2).

Language Monolingual Corpus Vocabulary

Punjabi Corpus ILCI-II� 30k
Armenian TED| 50k
Tigrinya Habit Project⌥ 225k

Macedonian TED| 60k
⌥=habit-project.eu/wiki/TigrinyaCorpus,
�=tdil-dc.in,
|=github.com/ajinkyakulkarni14/
TED-Multilingual-Parallel-Corpus

Table 4: Corpora used for obtaining foreign vocabulary Vf

for bootstrapping in the case studies in §8.1 and §8.2.

8.1 Manual Annotation
The manual annotation exercises simulate a low-
resource setting with only a single human annota-
tor is available. We judge the usability of the anno-
tations by training models on them and evaluating
the models on test sets of 1000 names each, ob-
tained from Wikipedia inter-language links. For
bootstrapping experiments, we use the corpora
shown in Table 4 to obtain foreign vocabulary Vf .

Languages Studied We investigate perfor-
mance on two languages: Armenian and Punjabi.
Spoken in Armenia and Turkey, Armenian is

an Indo-European language with no close relatives.
It has Eastern and Western dialects with different
spelling conventions. Armenian Wikipedia is pri-
marily written in the Eastern dialect, while our an-
notator was a native Western speaker.7
Punjabi is an Indic language from Northwest In-

dia and Pakistan that is closely related to Hindi.
Our annotator grew up primarily speaking Hindi.

Annotation Guidelines Annotators were given
two tasks. First, they were asked to write two
names and their English transliterations for each
letter in the source script: one beginning with the
letter and another containing it elsewhere. (e.g.
“Julia” and “Benjamin” for the letter “j” if the
source were English). The is done to ensure good
coverage over the alphabet. Next, annotators were
shown a list of English words and were asked to

7The annotator produced Western Armenian which was
mechanically mapped to “Eastern” by swapping five Arme-
nian character pairs: դ/տ, պ/բ , ք/կ , ձ/ծ, ճ/ջ
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Lang. ! Punjabi ArmenianApproach #

Ours(U) 33.4 49.9
Ours(U) + Bootstrapping 44.5 55.8

Annotation Time (hours) 5 4

Table 5: Acc@1 using human annotated seed set and boot-
strapping the Seq2Seq(HMA) model. Both languages per-
form well relative to the other languages investigated so far.
Both annotation sub-tasks took roughly the same time.

provide plausible transliteration(s) into the target
script. The list had a mix of recognizable foreign
(e.g., Clinton, Helsinki) and native names (e.g.,
Sarkessian, Yerevan for Armenian).
We collected about 600 and 500 annotated pairs

respectively for Armenian and Punjabi. Table 5
shows that the performance of the models trained
on the annotated data is comparable to that on the
standard test corpora for other languages. This
show that our approach is robust to human incon-
sistencies and regional spelling variations, and that
obtaining an adequate seed list is possible with just
a few hours of manual annotation.

8.2 Candidate Generation (CG)

Since transliteration is an intermediate step in
many downstreammultilingual information extrac-
tion tasks (Darwish, 2013; Kim et al., 2012; Jeong
et al., 1999; Virga and Khudanpur, 2003; Chen
et al., 2006), it is possibly to gauge its performance
extrinsically by the impact it has on such tasks. We
use the task of candidate generation (CG), which
is a key step in cross-lingual entity linking.
The goal of cross-lingual entity linking (Mc-

Namee et al., 2011; Tsai and Roth, 2016; Upad-
hyay et al., 2018) is to ground spans of text written
in any language to an entity in a knowledge base
(KB). For instance, grounding [Chicago] in the fol-
lowing German sentence to Chicago_(band).8

[Chicago] wird in Woodstock aufzutreten.

The role of CG in cross-lingual entity linking is
to create a set of plausible entities given a string
while ensuring the correct KB entity belongs to
that set. For the above German sentence, it would
provide a list of possible KB entities for the string
Chicago: Chicago_(band), Chicago_(city),
Chicago_(font), etc., so that entity linking can
select the band. Foreign scripts pose an additional
challenge for CG because they must be transliter-

8Translation: Chicago will perform at Woodstock.

ated before they are passed on to candidate gener-
ation. For instance, any mention of “Chicago” in
Amharic must first be transliterated from ሺካጎ.
Most approaches for CG use Wikipedia inter-

language links to generate the lists of candi-
dates (Tsai and Roth, 2016). While recent ap-
proaches such as Tsai and Roth (2018) have re-
sorted to name translation for CG, they require
over 10k examples for languages written in non-
Latin scripts, which is prohibitive for low-resource
languages with little Wikipedia presence.

Candidate Generation with Transliteration
We evaluate the extent to which our approach im-
proves recall of a naive CG baseline that generates
candidates by performing exact name match. For
each span of text to be linked (or query mention),
we first check if the naive name matching strategy
finds any candidates in the KB. If none are found,
the query mention is back-transliterated to English,
and at most 20 candidates are generated using a
inverted-index from English names to KB entities.
The evaluation metric is recall@20, i.e., if the
gold KB entity is in the top 20 candidates. We use
Tigrinya and Macedonian as our test languages.

Tigrinya is a South Semitic language related to
Amharic, written in the Ethiopic script, and spo-
ken primarily in Eritrea and northern Ethiopia. The
Tigrinya Wikipedia has <200 articles, so we use
inter-language links (⇠7.5k) from the Amharic
Wikipedia instead to extract 1k name pairs for the
seed set. We use the monolingual corpus in Ta-
ble 4 for bootstrapping and evaluate on the unse-
questered set provided under the NIST LoReHLT
evaluation, containing 4,630 query mentions.
The Ethiopic script is an alphasyllabary, where

each character is consonant-vowel pair. For exam-
ple, the characterመ is mä,ሚ with a tail is mi, and
ሞwith a line ismo. With 26 consonants and 8 vow-
els, this leads to a set of>200 characters creating a
sparsity problem since each character has its own
Unicode code point. However, the code points are
organized so that they can be automatically split9
into unique consonant and vowel codes without ex-
plicitly understanding the script. We assign arbi-
trary ASCII codes to each consonant and vowel so
thatመ/mä becomes “D 1” and ሞ/mo becomes “D
6.” This consonant-vowel splitting (CV-split) re-
duces the number of unique input characters to 55.

9Consonant = Unicode / 8; Vowel = Unicode % 8
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Approach Recall@20
Tigrinya

Name match (baseline) 31.4

Ours 35.6
Ours (CV-split) 41.3
Ours (CV-split) + Bootstrapping 46.2

Macedonian

Name match (baseline) 33.6

Ours 72.2
Ours + Bootstrapping 76.8

Table 6: Comparing candidate recall@20 for different ap-
proaches on Tigrinya and Macedonian. CV-split refers to
consonant-vowel splitting. Using our transliteration genera-
tion model with bootstrapping yields the highest recall, im-
proving significantly over a name match baseline.

Macedonian is a South Slavic language closely
related to the languages of the former Yugoslavia
and written in a local variant of the Cyrillic alpha-
bet similar to Serbian’s. We use the Macedonian
test set constructed by McNamee et al. (2011) con-
taining 1956 query mentions. A seed set of 1k
name pairs was obtained from the inter-language
Wikipedia links for Macedonian, and the monolin-
gual corpus from Table 4 is used for bootstrapping.

Candidate Generation Results Table 6 shows
the results for the two languages. For Tigrinya,
candidate generation with transliteration improves
on the baseline by 4.2%. Splitting the characters
(CV-split) gives another 5.7%, and adding boot-
strapping gives 4.9% more. Our approach yields
an overall 14.8% improvement in recall over the
baseline, showing that we can effectively exploit
the little available supervision by bootstrapping.
Macedonian yields more dramatic results, where
transliteration provides 38.6% improvement (more
than double the baseline), with bootstrapping pro-
viding another 4.6%. The differences between
Tigrinya andMacedonian is likely due both to their
test sets, corpora and writing systems.

9 Conclusion and Future Work

We presented a new transliteration generation
model, namely Seq2Seq(HMA), and a new boot-
strapping algorithm that can iteratively improve a
weak generation model using constrained discov-
ery. The model presented here achieves state-of-
the-art results on typical training set sizes, and
more importantly, works well in a low-resource
setting with the aid of the bootstrapping algorithm.
The key benefit of the bootstrapping approach is

that it can “recover” most of the performance lost
in the low-resource setting when little supervision
is available by training with a smaller seed set, an
English name dictionary, and a list of unannotated
words in the target script. Additionally, our boot-
strapping algorithm admits any generation model,
giving it wide applicability. Through case studies,
we showed that collecting an adequate seed list is
practical with a few hours of annotation. The ben-
efit of incorporating our transliteration approach
in a downstream task, namely candidate genera-
tion, was also demonstrated. Finally, we discussed
some of the inherent challenges of learning translit-
eration and the deficits of existing training sets.
There are several interesting directions for fu-

ture work. Performing model combination, either
by developing hybrid transliterationmodels (Nico-
lai et al., 2015) or by ensembling (Finch et al.,
2016), can further improve low resource translit-
eration. Jointly leveraging similarities between re-
lated languages, such as writing systems or pho-
netic properties (Kunchukuttan et al., 2018), also
shows promise for low-resource settings. Our anal-
ysis suggests value in revisiting “transliteration in
context” approaches (Goto et al., 2003; Hermjakob
et al., 2008), especially for languages like Hebrew.
We would also like to expand on the analyses pro-
vided in §7 which uncover challenges inherent to
the transliteration task, particularly the impact of
the native/foreign distinction in the train and test
data, the difficulties posed by specific scripts or
pairs of scripts, and how these impact both back-
and forward-transliteration. Recent work from
Merhav and Ash (2018) suggests many useful anal-
yses that we would like to incorporate.
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Abstract

Inducing multilingual word embeddings by
learning a linear map between embedding
spaces of different languages achieves remark-
able accuracy on related languages. How-
ever, accuracy drops substantially when trans-
lating between distant languages. Given
that languages exhibit differences in vocabu-
lary, grammar, written form, or syntax, one
would expect that embedding spaces of dif-
ferent languages have different structures es-
pecially for distant languages. With the goal
of capturing such differences, we propose a
method for learning neighborhood sensitive
maps, NORMA. Our experiments show that
NORMA outperforms current state-of-the-art
methods for word translation between distant
languages.

1 Introduction

The success of monolingual word embeddings has
sparked interest in multilingual word embeddings.
The goal is to learn word vectors where similar
words have similar vector representations regard-
less of their language. Multilingual word embed-
dings are playing an increasingly prominent role
in machine translation (Zou et al., 2013; Lam-
ple et al., 2018; Artetxe et al., 2018b). In addi-
tion, they are a promising avenue for cross-lingual
model transfer (Guo et al., 2015; Täckström et al.,
2012).

A prominent approach to learning multilingual
word embeddings is to induce a mapping function
between embedding spaces of different languages.
However, there is a key assumption behind learn-
ing such a mapping function: that the embedding
spaces of different languages exhibit similar struc-
tures (Mikolov et al., 2013a). Evidence that this
assumption holds has mostly been through extrin-
sic evaluation metrics such as word translation ac-
curacy. A notable exception is (Mikolov et al.,

Figure 1: Bottom: By learning a linear map between
embedding spaces of related languages, e.g., en-es, cur-
rent methods achieve high accuracy on word transla-
tion. Top: For distant language pairs, e.g., en-ru, where
differences are larger, word translation accuracy sub-
stantially degrades.

2013a), who showed empirical evidence on ani-
mals and numbers. Embeddings corresponding to
a few numbers and animals in English and Span-
ish were projected down to two dimensions us-
ing PCA, and then manually rotated to accentuate
similarity. Despite showing only these two con-
cepts for two related languages, this work con-
cluded that embedding spaces of different lan-
guages exhibit similar geometric arrangements.
Additionally, work in this line of inquiry has con-
tinued to develop methods based on this assump-
tion (Artetxe et al., 2018a; Conneau et al., 2018).
Given that languages differ along dimensions such
as vocabulary, grammar, written form, and syntax,
one would expect that embedding spaces of differ-
ent languages exhibit different structures. Indeed,
recent work showed that assumptions of isomor-
phism and linearity do not hold (Søgaard et al.,
2018; Nakashole and Flauger, 2018)

While these assumptions do not substantially
affect accuracy when translating between related
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languages, this is not the case for distant lan-
guages, see Figure 1. There is no established
quantitative metric for measuring distances be-
tween languages. Language trees trace the evo-
lution of languages but do not provide similar-
ity scores. (Chiswick and Miller, 2005) learned
similarity scores of 43 different languages to En-
glish by measuring how well Americans could
learn a given language in a fixed period of time.
Low scores on a standardized proficiency test were
taken to indicate a large distance between the lan-
guage and English. According to their scores,
Japanese and Chinese are the most distant from
English, Russian has a middle score, and French,
Portuguese, Dutch, as expected, have some of the
highest scores.

Additionally, linguists and psychologists have
long studied the question of how language af-
fects the way we think (Birner, 1999; Boroditsky,
2011). This influence would arise due to different
languages organizing concepts differently.

We would like to model some aspects of the
structural differences of languages when learning
mapping functions between embedding spaces. To
this end, we propose to learn neighborhood sensi-
tive maps. We can, in principle, achieve neighbor-
hood sensitive maps by training non-linear func-
tions. However, training non-linear functions, in
particular deep neural networks for this problem
is difficult to optimize for this zero-shot (Lazari-
dou et al., 2015) learning problem, as we show in
our experiments. Prior work alludes to similar ob-
servations(Mikolov et al., 2013a). For example,
(Conneau et al., 2018) found that using non-linear
mapping functions made training unstable1.

In summary, our contributions are as follows:

• We propose a method for learning neighbor-
hood sensitive maps, NORMA, which learns
a single mapping function but in a departure
from prior work, it discovers neighborhoods.
NORMA avoids learning multiple mapping
functions, thus enabling parameter sharing
among neighborhoods. This is a more effi-
cient use of training data than if we were to
train multiple mapping functions for differ-
ent neighborhoods as is done in (Zou et al.,
2013).

• The neighborhoods are learned jointly while
learning to translate, and we show that they

1https://openreview.net/forum?id=H196sainb

are interpretable.

• Our experiments show that for word trans-
lation between distant languages, NORMA
substantially outperforms methods that
achieve the best performance when translat-
ing between related languages.

• Additionally, in the related language setting,
we show that on rare words NORMA sub-
stantially outperforms state-of-the-art meth-
ods.

2 Related Work

The common approach to learning cross embed-
ding space mapping functions is: first monolingual
word embeddings for each language are trained in-
dependently; and second, a mapping function is
learned, using supervised or unsupervised meth-
ods. The resulting mapping function enables
translating words from the source to the target lan-
guage.

Map Induction Methods. The earliest and sim-
plest approach is to use a regularized least squares
loss to induce a linear map M as follows:
M̂ = arg minM ||MX � Y||F + �||M||,
here X and Y are matrices that contain word em-
bedding vectors for the source and target language
(Mikolov et al., 2013a; Dinu et al., 2014; Vulic
and Korhonen, 2016). Improved results were ob-
tained by imposing an orthogonality constraint on
M (Xing et al., 2015; Smith et al., 2017). Another
loss function used in prior work is the max-margin
loss, which has been shown to significantly outper-
form the least squares loss (Lazaridou et al., 2015;
Nakashole and Flauger, 2017).

Another approach is to use canonical correla-
tion analysis (CCA) to map two languages to a
shared embedding space (Haghighi et al., 2008;
Faruqui and Dyer, 2014; Lu et al., 2015; Ammar
et al., 2016).

Most of the prior methods can be characterized
as a series of linear transformations. In particular,
(Artetxe et al., 2018a) propose a framework to dif-
ferentiate prior methods in terms of which trans-
formations they perform: embedding normaliza-
tion, whitening, re-weighting, de-whitening, and
dimensionality reduction.

Work on phrase translation proposed to in-
duce many local maps that are individually trained
(Zhao et al., 2015) on local neighborhoods. In
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contrast, our approach trains a single function
while taking into account neighborhood sensitiv-
ity. Our underlying motivation of neighborhood
sensitivity is similar in spirit to the use of lo-
cally linear embeddings for nonlinear dimension-
ality reduction (Roweis and Saul, 2000).

Forms of Supervision. The methods we have
described so far fall under supervised learning.
In the supervised setting, a seed dictionary (5k
word pairs is a typical size) is used to induce
the mapping function. In (Artetxe et al., 2017)
a semi-supervised approach is explored, whereby
the method alternates between learning the map
and generating an increasingly large dictionary.
Completely unsupervised methods have recently
been proposed using adversarial training (Barone,
2016; Zhang et al., 2017; Conneau et al., 2018).
However, the underlying methods for learning the
mapping function are similar to prior work such as
(Xing et al., 2015). The limitations and strengths
of unsupervised methods are detailed in (Søgaard
et al., 2018)

Although in our our experiments we work in the
supervised setting, NORMA can work with any
form of supervision.

Translation Retrieval Methods. The most
commonly used way to obtain a translation t of
a source language word s is nearest neighbor re-
trieval, given by: t = arg maxt cos(Mxs, yt).
Alternative retrieval methods have been pro-
posed, such as the inverted nearest neighbor re-
trieval(Dinu et al., 2014), inverted softmax (Smith
et al., 2017) and Cross-Domain Similarity Local
Scaling (CSLS) (Conneau et al., 2018). Since we
are interested in evaluating the quality of mapping
functions, our experiments use standard nearest
neighbor retrieval for all methods.

3 Local Maps in Embedding Space

Is it useful for maps to be neighborhood sensitive?
To study this question we carried out experiments
comparing performance of neighborhood-specific
maps to global maps. A thorough analysis of this
kind was carried out in our prior work (Nakashole
and Flauger, 2018)

We created neighborhoods by first selecting
the embeddings of a few words associated with
specific topics such as diseases, or cities. We then
added all nearby words, which are words whose
cosine similarity to any of the selected words is

>=0.5 2. We used three language pairs for local
vs global map translation experiments: English to
German, English to Portuguese, and English to
Swedish. The neighborhoods and their train/test
splits are:
en � de: medication(3,415/500),
cities(2,083/500), and animals(990/500);
en � pt: diseases(1,670/300), chemi-
cals(1,279/300), and names(1,986/300);
en � sv: flowers(1,537/200), insects(1,271/200),
and names(1,416/200). The training and test data
was obtained from subsets of Facebook AI MUSE
lexicons3

For each of the neighborhoods, we evaluated
translation accuracy both when using a locally
trained map and when using a globally trained
map. The difference is that the locally trained map
is only trained using training data from the neigh-
borhood, whereas the global map is trained using
training data from the neighborhood but also from
all other neighborhoods and more (˜10000 word
pairs). That is, the training data for global maps is
a superset of the local training data.

We trained all maps using linear transforma-
tions. As we will show in our experiments, opti-
mizing neural network mapping functions for this
problem fails. This is a similar observation to
prior work (Mikolov et al., 2013a; Conneau et al.,
2018)1. More details on models and experimental
settings are described in Sections 4 and 5.

Figure 2 shows that for various neighbor-
hoods, translation accuracy is higher when we
train neighborhood-specific maps than one single
global map. These results are similar to (Zou et al.,
2013) who then trained many local maps. While
we could also proceed to train many local maps,
this requires identifying optimal neighborhoods.
It also requires gathering sufficient training data
for each of the neighborhoods independently. In
our proposed method, NORMA, we avoid learn-
ing multiple maps, creating a single map, while
modeling neighborhood information and promot-
ing parameter sharing.

Overall, the results in Figure 2 are an indicator
neighborhood sensitivity in maps is useful. This
would particularly be useful for distant languages

2We found a 0.5 cutoff to be a good compromise between
neighborhood purity, and size. However, our final method
(Section 4) on which all our comparison experiments were
based, automatically discovers neighborhoods based on ideas
from sparse coding.

3https://github.com/facebookresearch/
MUSE
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where a single global map that is linear might not
suffice since the underlying embedding structure
for distant languages might differ more than those
of related languages as depicted in Figure 1.

4 Model

In this section we introduce our model for learn-
ing neighborhood sensitive maps, NORMA. Our
approach jointly discovers neighborhoods while
learning to translate.

4.1 Reconstructive Neighborhood Discovery

Inspired by work on sparse coding (Lee et al.,
2007), we discover neighborhoods by learning a
reconstructive dictionary. We would like to learn
a dictionary of neighborhoods on the source lan-
guage side. To learn this dictionary, we set up a re-
construction objective, where for any given word
embedding xi 2 R

d, where d is the dimension-
ality of the word embeddings, we want to recon-
struct xi using a linear combination of K neigh-
borhoods. Let D 2 R

K⇥d be the neighborhood
matrix, each row of D represents a d-dimensional
vector which can be interpreted as representing the
center of the neighborhood. Let X 2 R

N⇥d be
a set of N embedding vectors corresponding to
words in the source language vocabulary4. We can
learn a reconstructive dictionary of K neighbor-
hoods with the following objective:

D, V = arg min
D,V

||X � VD||22 (1)

D 2 R
K⇥d is the learned dictionary of neighbor-

hoods, K > d and thus the dictionary is over-
complete; V 2 R

N⇥K are the learned neighbor-
hood membership weights for X. While we use
the squared loss, other loss functions can be used
(Lee et al., 2007). To encourage neighborhoods to
be different from each other, one can impose an
orthogonality constraint : ||DDT � I|| where I is
the identity matrix. The reconstruction error with
an orthogonality penalty is:

R(✓) = ||X � VD||22 + �||DDT � I|| (2)

Where � is a hyperparameter which controls the
contribution of the orthogonality constraint to the
reconstruction error.

4Since the vocabulary size can be very large, in our exper-
iments, we work in batches of N=50

4.2 Joint Neighborhood Discovery and
Translation

Our approach ties neighborhood discovery to the
word translation task. First, we obtain neighbor-
hood ‘factorized’ representations by multiplying
the input vector X by the dictionary of neighbor-
hoods:

XN = XDT ,

where XN 2 R
N⇥K . Here again N refers to

words in the source language vocabulary, English
in the case of en � de translation. And K is the
number of neighborhoods.

Second, we obtain an intermediate representa-
tion of the input, which contains both the original
input X and the neighborhood ‘factorized’ repre-
sentations of the input XN , through vector con-
catenation as follows:

XI = [XN ;X],

where XI 2 R
N⇥(K+d).

To get the final representation of the input, we
project XI into a low-dimensional vector of the
same size as the original input:

XF = XIWf ,

where Wf 2 R
(K+d)⇥d is a set of learned pa-

rameters. And XF 2 R
N⇥d is the resulting final

representation.
We use these neighborhood sensitive represen-

tation XF as the input for learning the mapping
function W, instead of the original X. We ex-
plore different ways for learning the mapping W:
first a linear mapping, and second, a single layer
neural network with a leaky rectified linear unit
(leaky ReLU5) non-linearity and a highway layer
(Srivastava et al., 2015). As we will show in our
experiments, training neural networks with more
layers fails on this zero-shot learning problem.

For the linear map, the translation ŷi is given
by:

ŷlinear
i = WxFi (3)

where xFi 2 XF is the neighborhood sensitive
representation of xi.

For the neural network map, using a single layer
neural network, and a highway layer, the transla-

5It outperformed other non-linearities such as tanh in our
initial experiments.
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Figure 2: Accuracy of globally vs locally trained mapping functions for various neighborhoods on en�de, en�pt,
and en � sv translation.

tion ŷi is given by:

hi = �1(xFiW)

ti = �2(xFiW
t)

ŷnn
i = ti ⇥ hi + (1.0 � ti) ⇥ xFi (4)

where �1 is a non-linearity. We use a leaky-ReLU
non-linearity. �2 is the sigmoid function. Wt is
another set of parameters in addition to W.

4.3 Objective Function
We use the max-margin loss function to learn the
parameters of the model:

L(✓) =
mP

i=1

kP
j 6=i

max
⇣
0, � + d(yi, ŷ

g
i ) �

d(yj , ŷ
g
i )

⌘
, (5)

Where yi is the true label; ŷg
i is the prediction,

which is either ŷlinear
i or ŷnn

i . The goal of the
max-margin loss function is to rank correct train-
ing data pairs (xi, yi) higher than incorrect pairs
(xi, yj) with a margin of at least �. The margin
� is a hyper-parameter and the incorrect labels,
yj are selected randomly such that j 6= i. k is
the number of incorrect examples per training in-
stance, and d(x, y) = (x�y)2 is the distance mea-
sure.

The joint neighborhood discovery and word
translation objective is given by:

J(✓) = L(✓) + R(✓) (6)

The neighborhood discovery part of the objec-
tive, R(✓), does not depend on availability of su-
pervised data and only requires monolingual data

on the source language side. Thus, we can dis-
cover neighborhoods in an unsupervised manner
on a large set of monolingual word embeddings,
then initialize using this pre-trained D which is
then jointly optimized with the translation part of
the objective L(✓). Importantly, this also means
that our method can work with unsupervised meth-
ods for learning mapping functions such as those
using adversarial training (Barone, 2016; Conneau
et al., 2018).

5 Experimental Evaluation

In this section, we study the following questions:
How does NORMA compare to state-of-the-art
methods for learning mapping functions between
embedding spaces of different languages? We
study this question in three settings: when trans-
lating between distant languages, when translat-
ing between related languages, and lastly, when
translating between related languages but on rare
words. Additionally, we ask the following ques-
tion: are the neighborhoods learned by NORMA
meaningful?

To study these questions, we carried out experi-
ments on word translation from English to two dis-
tant languages, a Slavic language (Russian), and
a Sino-Tibetan language (Chinese). In addition,
we carried out experiments on word translation be-
tween related languages (English, French, German
and Portuguese).

Data and Experimental Setup. The Facebook
AI MUSE3 project (Conneau et al., 2018) pro-
vides train/test data for bilingual dictionaries of
various language pairs, we use this data in our
experiments. The MUSE dictionaries consist of
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Method Slavic & Sino-Tibetan

en-ru en-zh en-de en-es en-fr

NORMA-Linear 50.33 43.27 68.50 77.47 76.10

NORMA-Highway-NN 49.27 33.10 67.33 77.65 75.50

1 layer-NN 49.13 30.66 66.80 77.60 75.53

2 layer-NN 0 0 0 0 0

1 layer-Highway-NN 49.50 30.91 67.00 77.50 75.60

2 layer-Highway-NN 0 0 0 0 0

Artetxe et al . 2018 47.93 20.4 70.13 79.6 79.30
Conneau et al. 2018 37.30 30.90 71.30 79.10 78.10

Smith et al. 2017 46.33 39.60 69.20 78.80 78.13

Xing et al. 2015 44.50 41.0 67.07 77.33 75.47

Lazaridou et al. 2015 48.27 29.60 68.20 77.60 75.86

Faruqui and Dyer (2014) 35.47 32.20 55.67 72.33 69.27

Mikolov et al. 2013 42.47 19.80 60.07 74.20 71.60

Table 1: Precision at 1 comparison of NORMA to previously proposed mapping functions. We used FAIR/MUSE
word translation lexicons train/test splits.

en-ru en-zh en-de en-es en-fr
NOUN 42% /55.1 42% /42.1 39% /74.6 40% /82.3 42% /80.0
VERB 41% /47.3 39% /47.6 38% /64.4 40% /71.6 41% /70.0
ADJECTIVE 10% /34.4 11% /38.7 10% /56.1 9% /76.9 10% /71.3

Table 2: Part-of-Speech (POS) distributions of the MUSE test sets. Listed are the top 3 parts of speech, which
account for ˜90% of the test data for all language pairs. X% /Y means the POS tag makes up X% of the test set,
with accuracy Y.

5,000/1,500 word pairs for train/test data. Unless
specified, we use the train/test split provided by
MUSE. Development sets: the MUSE dictionar-
ies that we used are very large. They contain over
100,000 entries for most language pairs, we tuned
our models on data that was not part of the train
and test sets.

We obtained pre-trained word embeddings from
FastText (Bojanowski et al., 2017). In Equation 2,
we did not find it helpful to encourage neighbor-
hoods to be different, thus we set � = 0. We set
the margin � in Equation 5 to be � = 0.4. For the
dictionary of neighborhoods D in Equation 1, we
set the number of neighborhoods K = 2, 0006.
We use N = 50 batch size. We estimate model

6We carried out experiments using different neighborhood
sizes, and consistently found K ⇡ 2000 to outperform other
choices.

parameters using stochastic gradient descent.

Methods Under Comparison. We compare
variations of NORMA to several previously pro-
posed methods for generating mapping functions.
The methods compared are: (Artetxe et al., 2018a;
Conneau et al., 2018; Smith et al., 2017; Xing
et al., 2015; Lazaridou et al., 2015; Faruqui and
Dyer, 2014; Mikolov et al., 2013a). More detailed
descriptions of these prior methods can be found
in the related work section.

Our primary goal is to evaluate the quality of
maps produced. While a number of prior work
proposed various approaches for retrieval, which
have been shown to improve accuracy by a few
points, we compare all methods using the same re-
trieval method, nearest neighbor. Thus, for (Con-
neau et al., 2018), we report the results for the vari-
ant of their method called: adv - Refine - NN.
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5.1 English to Slavic and Sino Tibetan

State-of-the-art methods have mostly focused
word translation evaluation on English to Latin
languages or other nearby languages. (Artetxe
et al., 2018a) performed experiments on en-es, en-
de, en-it and en-fi, where concepts might still be
organized in a relatively similar way. In (Con-
neau et al., 2018), the adversarial training method
proposed was evaluated on Chinese, Russian, and
Esperanto, but thorough comparison experiments
to prior work on word translation were only per-
formed on English to Italian.

We carried out en-ru and en-zh comparison ex-
periments, and present the results in the second
and third columns of Table 1. The two state-
of-of-the art methods (Artetxe et al., 2018a) and
(Conneau et al., 2018) are significantly outper-
formed by NORMA-Linear. On English to Rus-
sian, NORMA-Linear achieves 50.33 precision 1,
outperforming both (Artetxe et al., 2018a) (Con-
neau et al., 2018), as well as other methods.
On English to Chinese, NORMA-Linear achieves
43.37 precision 1, again ahead of other meth-
ods. The best performing variant of our method is
NORMA-Linear. The neural networks with more
than a single layer prove difficult to optimize for
this problem, and produce accuracy of 0. This
could be because the problem of cross-embedding
space mapping is a zero-shot learning problem,
which is much more difficult to train than a super-
vised problem, the setting in which deep learning
methods have thrived so far.

5.2 English to Related Languages

We show experiments on English to related lan-
guages in the last three columns of Table 1. On
these languages, indeed the most recently pro-
posed methods (Artetxe et al., 2018a; Conneau
et al., 2018) produce the best performing maps.
However, NORMA-Linear is only 2-3 points be-
hind these methods. This in contrast to English
to Chinese where both (Artetxe et al., 2018a) and
(Conneau et al., 2018) are behind NORMA - Lin-
ear, by more than 10 points.

A promising line of future work is to get
NORMA-Linear to bridge the 2-3 point gap on
related languages by exploring a best of both
worlds approach, combining neighborhood sensi-
tivity with the methods that achieve superior per-
formance on nearby languages.

en-pt
RARE MUSE

NORMA-Linear 57.67 72.60
NORMA-Highway-NN 49.33 71.73
1 layer-NN 48.67 72.13
1 layer-Highway-NN 49.33 72.10
Artetxe et al . 2018 47.00 77.73
Lazaridou et al 2015 48.00 72.27

Table 3: Performance for en-pt on rare words (RARE),
and the en-pt MUSE dataset, which as shown in Figure
3 contains a lot of frequent words.

Figure 3: Top: Frequency distribution of MUSE dictio-
nary test and train sets for en-pt. Bottom: Frequency
distribution of the RARE words dataset.

5.3 Accuracy by Part-of-Speech

We assigned each word its majority part-of-speech
by tagging the ClueWeb7 corpus, which contains
over 500 million webpages. We then evaluated
translation precision of NORMA-Linear stratified
by part-of-speech. The results are shown in Ta-
ble 5 We found that, nouns and verbs make up
about 80 percent of the MUSE test dictionaries,
followed by adjectives (˜10%). We found that
while nouns and verbs make up a large chunk
of the test data, nouns are translated with much
higher accuracy than verbs, except for English to
Chinese. This finding will serve as a guide for fu-
ture improvements to our method.

5.4 English to Languages: Rare Words

We analyzed the frequency distribution of the
MUSE dictionaries. To get word frequency infor-

7https://www.lemurproject.org/
clueweb09.php/
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Neighborhood
51 134 162 7
drugs criminally chuanyao khoisan
zonisamide judicature chuanyan bantu
cocaine prosecutory zhiang sepedi
ritalin derogation thanong otjiherero
hospitalized restitutionary qiangbing ndebeles
pheniprazine derogative pengpeng hereros
overdose jailable nguyan otjinene
disorientation extradition yuning shona
focusyn sodomy liheng hutu
alfaxalone crimes thanong witotoan

Table 4: Sample neighborhoods discovered by NORMA during en-de translation: 51 appears to represent drugs,
132: justice and crime; 162: Asian names, 7 : African names.

mation, we processed documents in the ClueWeb7

corpus and recorded word occurrence frequency.
We discovered that the MUSE dictionaries contain
a lot of frequent words. The top half of Figure 3
shows frequency counts of the en-pt MUSE test
dictionary. For readability we only show bins up
to occurrence frequency of 50,000. We see that
only about 50/1500 in the MUSE en-pt test data
are infrequent, the rest are frequent words, occur-
ring more than 10,000 times in the ClueWeb cor-
pus.

We therefore created another test set for en-pt
from the rest of the MUSE data which is not part
of the train or test data, with the goal of creating a
train/test of rare words. The bottom half of Figure
3 is a plot of frequency counts of train and test data
for these rare words.

We then compared variations of NORMA to
the best performing method on English to related
languages, which is (Artetxe et al., 2018a). The
comparison was done both on the regular MUSE
test dataset for en-pt and the rare word dataset for
en-pt. Since our method uses a max-margin loss
much like (Lazaridou et al., 2015), we also com-
pare to (Lazaridou et al., 2015).

Table 3 shows that NORMA-Linear outper-
forms (Artetxe et al., 2018a) by over 10 points on
the RARE words dataset. On the regular MUSE
dictionary, (Artetxe et al., 2018a) is ahead by
about 5 points. On RARE, (Lazaridou et al., 2015)
is behind NORMA-Linear by 9 points, whereas
on the MUSE dictionary performance of (Lazari-
dou et al., 2015) and NORMA-Linear is about the
same.

5.5 Neighborhood Interpretability

NORMA jointly discovers neighborhoods while
learning to translate words. We now ask if the dis-
covered neighborhoods semantically make sense.
We can answer this question since each neighbor-
hood vector can be seen as a “center” vector rep-
resenting the words in the neighborhood. Thus
we can consider words whose cosine similarity
to the neighborhood vector is greater than some
threshold, to be members of that neighborhood.
As we mentioned, we found that setting the to-
tal number of neighborhoods to be discovered to
K = 2, 000 provided the best results. Of these
2,000 we show some of them in Table 4 obtained
when training en � de. For each neighborhood,
we show 10 words that appear among the top 100
words of that neighborhood. It can be seen that the
neighborhoods represent some kind of “topics”.
For example, neighborhood number 51 appears to
represent drugs, and drug-related concepts; num-
ber 132 contains justice and crime-related con-
cepts; number 162 contains mostly Asian concepts
and names, number 7 contains mostly African and
names. We can see that the granularity of neigh-
borhoods and their specificity varies.

6 Conclusions

We propose neighborhood sensitive maps
for learning multilingual word embeddings,
NORMA. Our method is motivated by the fact
that languages differ along dimensions such as
vocabulary, grammar, written form, and syntax,
and therefore one would expect that embedding
spaces of different languages exhibit differ-
ent structures especially for distant languages.
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Our method jointly discovers neighborhoods
while learning to translate words. Experimental
evaluation showed that NORMA substantially
outperforms state-of-the-art (SOTA) methods on
distant languages, while only being a few points
behind on related languages. A promising line of
future work is to explore a best of both worlds ap-
proach, combining neighborhood sensitivity with
the methods that achieve superior performance on
nearby languages.
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Abstract

Although end-to-end neural machine transla-
tion (NMT) has achieved remarkable progress
in the recent years, the idea of adopting multi-
pass decoding mechanism into conventional
NMT is not well explored. In this paper, we
propose a novel architecture called adaptive
multi-pass decoder, which introduces a flexi-
ble multi-pass polishing mechanism to extend
the capacity of NMT via reinforcement learn-
ing. More specifically, we adopt an extra pol-
icy network to automatically choose a suit-
able and effective number of decoding passes,
according to the complexity of source sen-
tences and the quality of the generated trans-
lations. Extensive experiments on Chinese-
English translation demonstrate the effective-
ness of our proposed adaptive multi-pass de-
coder upon the conventional NMT with a sig-
nificant improvement about 1.55 BLEU.

1 Introduction

In the past several years, end-to-end neural ma-
chine translation (NMT) (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) has attracted increas-
ing attention from both academic and industry
communities. Compared with conventional sta-
tistical machine translation (SMT) (Brown et al.,
1993; Koehn et al., 2003), which needs to explic-
itly model latent structures, NMT adopts a uni-
fied encoder-decoder framework to directly trans-
form a source sentence into a target sentence. Fur-
thermore, the introduction of attention mechanism
(Bahdanau et al., 2014) enhances the capability of
NMT in capturing long-distance dependencies.

Recently, a number of authors have endeav-
ored to adopt the polishing mechanism into NMT.
Similar to human cognitive process for writing a
good paper, their models first create a complete

⇤ Corresponding author.

Source

héshı̀zhù xiānshēng dē wěirènqı̄ wéi yı̄ nián ,
yı̌ pèihé qı́ wéi fángwěihuı̀ wěiyuán dē
rèngqī jièmǎn rı̀qı̄ , qı́tā xı̄n wěirèngwěiyuān
dē rèngqı̄ zé wéi liǎngnı́an .

Reference

all appointments are for two years , except
that of mr ho sai - chu ’s which is for one
year in order to tie in with the expiry date of
his appointment as an ha member .

1st-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years as the
term of his term of office of the ha .

2nd-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years to serve
as the term of office of the ha .

3rd-pass
mr ho sai - chu ’s UNK is a year - long term
of two years with a term of two years to tie
in with the expiry date of his term of office .

4th-pass
mr ho sai - chu has been serving as a member
of authority for a term of two years with a
term of two years .

Table 1: Translation examples of more decoding passes
with the proposed multi-pass decoder.

draft and then polish it based on global under-
standing of the whole draft (Niehues et al., 2016;
Chatterjee et al., 2016; Zhou et al., 2017; Xia
et al., 2017; Junczys Dowmunt and Grundkiewicz,
2017) . Moreover, Zhang et al. (2018) introduces
a backward decoder to better exploit the right-to-
left target-side contexts. Generally these methods
employ two separate decoders to accomplish the
polishing task.

Although these polishing mechanism-based ap-
proaches demonstrate their effectiveness with two-
pass decoding, the idea of multi-pass decoding is
not well explored for NMT. Motivated by it, we
first propose a novel multi-pass decoder to per-
form the translation procedure with a fixed number
of decoding passes, referred to as decoding depth.
According to the preliminary results, just as ex-
pected, multi-pass decoding really benefit to most
translations. However, in some cases, the more
decoding passes perhaps lead to the poor trans-
lation. For example in Table 1, the 3rd-pass de-
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coding achieves a better result compared to 1st-
and 2nd-pass decoding. Nevertheless, a drastic de-
crease arises, when we perform the 4th-pass de-
coding. Therefore, it’s necessary to introduce a
flexible multi-pass decoding, which has the ability
to adaptively choose the suitable decoding passes.

Towards above goal, we further propose a novel
framework called adaptive multi-pass decoder to
automatically choose a proper decoding depth us-
ing reinforcement learning. Our model considers
multi-pass decoding as a sequential decision mak-
ing process, where continuing decoding or halt is
chosen at each step. An extra policy network is
employed to learn to automatically choose to con-
tinue next pass decoding or halt via reinforcement
learning. For the purpose of making accurate and
effective choices, the policy network employs re-
current neural network to capture the complexity
of source sentence as well as the difference be-
tween the consecutive generated translations. Ex-
tensive experiments on Chinese-English transla-
tion show the proposed adaptive multi-pass de-
coder is capable of choosing a suitable decoding
depth and significantly improves translation per-
formance over conventional NMT model.

2 Background

Given a source sentence x = x1, . . . , xm, . . . , xM

and a target sentence y = y1, . . . , yn, . . . , yN ,
end-to-end neural machine translation directly
models translation probability word by word as a
single, large neural network:

P (y|x; ✓) =
NY

n=1

P (yn|x,y<n; ✓) (1)

where ✓ is a set of model parameters and y<n de-
notes a partial translation. Prediction of n-th word
is generally made in an encoder-decoder frame-
work:

P (yn|x,y<n; ✓) = g(yn�1, sn, cn) (2)

where g(·) is a non-linear function, yn�1 denotes
the previously generated word, sn is n-th decoding
hidden state, and cn is a context vector for gener-
ating n-th target word. The decoder state sn is
computed by RNNs as follows:

sn = f(sn�1,yn�1, cn) (3)

where f(·) is an activation function. Actually
it’s found gated RNN alternatives such as LSTM

(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) often achieve better performance
than vanilla ones. cn is a dynamic vector that se-
lectively summarizes certain parts of source sen-
tence at each decoding step:

cn =
MX

m=1

↵n,mhm (4)

where ↵m,n measures how well xm and yn are
aligned, calculated by attention model (Bahdanau
et al., 2014; Luong et al., 2015), and hm is the en-
coder hidden state of the m-th source word. For
the purpose of capturing both forward and back-
ward contexts, bidirectional RNN (Schuster and
Paliwal, 1997) is often employed as the encoder
which converts the source sentence into an annota-
tion sequence h = {h1, . . . ,hm, . . . ,hM}, where
hm = [

�!
h m,
 �
h m] captures information about m-

th word with respect to the preceding and follow-
ing words in the source sentence respectively.

Although the introduction of RNNs as a de-
coder has resulted in substantial improvements in
terms of translation quality, simultaneously it im-
poses a serious restriction on the capability of
encoder-decoder framework caused by the struc-
ture of RNNs. That is, when the RNN decoder
generates the t-th word yt in decoding phase,
only y<t can be utilized, while the possible words
y>t are directly neglected. Thus, it’s difficult
to capture global information especially the un-
generated words for the current dominant RNN
decoder without new significant innovation. Un-
der the premise of preserving the original struc-
ture, a promising alternative to address the afore-
mentioned issue is to incorporate with auxiliary
neural networks to extend the RNN decoder.

Towards above goal, polishing mechanism-
based methods first capture the global information
through a complete draft created by SMT or NMT,
and then take it as input to finally generate a trans-
lation. Compared with conventional NMT, polish-
ing mechanism-based methods make a more accu-
rate prediction at each time-step due to the extra
global understanding, resulting in more fluent and
grammatically correct translation. While these
approaches have demonstrated the effectiveness,
previous approaches follow pre-defined routes to
perform the decoding procedure, not considering
choosing a suitable decoding depth for the com-
plexity of source sentences completely.

Therefore, it’s important to develop a novel
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framework for making an accurate and effective
choice about which decoding depth is appropriate
for the source sentence.

3 Adaptive Multi-pass Decoder
In this section, we present an adaptive multi-pass
decoder for neural machine translation, as illus-
trated in Figure 1. It could choose a proper de-
coding depth, depending on the complexity of the
source sentence. As shown in Figure 1, our model
includes three major components: an encoder to
summarize source sentences with parameter set ✓e,
a multi-pass decoder for multi-pass decoding with
parameter set ✓d, and a policy network to choose
a suitable depth with parameter set ✓p. The en-
coder of our model is identical to that of the domi-
nant NMT which is modeled using a bidirectional
RNN. Please refer to Bahdanau et al. (2014) for
more details. We will elaborate the multi-pass de-
coder and policy network for adaptive multi-pass
decoding in the following subsections.

3.1 Multi-pass Decoder
The multi-pass decoder is extended from the one
of the dominant NMT model to leverage the
target-side context. Similar to the dominant NMT
model, our multi-pass decoder also performs the
decoding under the semantic guide of source-side
context captured by the encoder, whereas more
importantly and differently, the global understand-
ing through the target-side context provided by last
pass decoding, is able to strongly assist our model
to produce a better translation.

Given the source-side and target-side contexts
separately captured by the encoder and last pass
decoding, the multi-pass decoder learns to gener-
ate next target word, based on previous generated
words. Using the multi-pass decoder with parame-
ter set ✓d, we calculate the conditional probability
of the translation ŷl at the l-th decoding pass as
follows:

P (ŷl|x, ŷl�1; ✓e, ✓d)

=
NlY

n=1

P (ŷl
n|x, ŷl

<n, ŷl�1; ✓e, ✓d)

=
NlY

n=1

gdec(ŷl
n�1, s

l,dec
n , cl,enc

n , cl,dec
n ) (5)

where gdec(·) is a non-linear function, and sl,dec
n

denotes the n-th decoding state within the l-th de-
coding pass. Nl indicates the length of generated

translation at the l-th decoding pass. The decoding
state sl,dec

n is obtained by RNNs as follows:

sl,dec
n = fdec(sl,dec

n�1 , ŷl
n�1, c

l,enc
n , cl,dec

n ) (6)

where fdec(·) is the GRU activation function.
cl,enc

n and cl,dec
n denote source-side and target-side

contexts at the n-th time step within the l-th de-
coding pass, respectively. It should be noted that
when the multi-pass decoder performs the first de-
coding, there doesn’t exist any generated transla-
tion. To address this case, the first-pass target-side
context c1,dec is set to zero.

Among the aforementioned contexts, cl,enc
n is

obtained as the weighted sum of the source-side
hidden states {hm}, while we take the target-side
hidden states {sl�1,dec

n } produced by last pass de-
coding as input to compute cl,dec

n . Similar to
the dominant NMT model, we adopt the atten-
tion model (Bahdanau et al., 2014; Luong et al.,
2015) to calculate the weights, which indicate the
alignment probability. We assume that attnenc de-
notes the encoder-decoder attention model, which
takes the source annotations {hm} as input, while
attndec are introduced to calculate the weight
which measures how well the decoding state sl,dec

attends the last-pass hidden states {sl�1,dec
n }.

Assuming sa indicates the decoding state,
which attends the annotations {sb

k} with a length
K, our attention model calculates the context vec-
tor sc as follows:

sc =
KX

k=1

↵ks
b
k (7)

↵k =
exp(ek)PK

k0=1 exp(ek0)
(8)

ek = (va)
T tanh(Was

a + Uas
b
k) (9)

where va, Wa and Ua are the parameters of atten-
tion model.

Given a training (x,y), the translation route can
be demonstrated as: x ! ŷ1 ! . . . ! ŷl !
. . . ! ŷL(x,y)�1 ! y.The intermediate transla-
tions {ŷl} are generated by decoding. Given a
training corpus D = {x,y}, we define the object
function using cross-entropy at last pass decoding
as follows:

Jdec(✓e, ✓d) = � 1

|D| arg min
✓e,✓d

X

(x,y)2D

{log P (y|x, ŷL(x,y)�1; ✓e, ✓d)} (10)

525
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…

he shi zhu liang nian
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1-pass target 
decoder state
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…
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attention 2-pass decoder
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2-pass target 
decoder state

ho sai the ha
…

2-pass decoder
attention 3-pass decoder

mr

3-pass target 
decoder state
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…
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attention
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s1
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s2
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Continue
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Policy state 
representation

Encoder

Figure 1: The architecture of our adaptive multi-pass decoder. Given the annotation sequence produced by the
encoder, a policy network is adopted to choose a suitable action from the set {Continue, Stop}, which indicates
continuing next pass decoding, or halt respectively. Different from the conventional decoder which only obtains
the source-side context with the source attention model attnenc, our multi-pass decoder also captures the target-
side context of last-pass decoding with decoder attention model attndec. The policy network also use attnpolicy

to collect useful information from the multi-pass decoding to choose an accurate and effective action to generate
a good translation. Note that in this work the same parameters set of decoder and the corresponding attention
is shared among different decoding passes. For this figure, we demonstrate a translation procedure with 3-pass
decoding controlled by adaptive multi-pass decoder.

where P (y|x, ŷL(x,y)�1; ✓e, ✓d) is conditional
probability computed by multi-pass decoder.
L(x,y) indicates the decoding depth for the in-
stance (x,y). For effectiveness, note that all the
intermediate translations {ŷl} are generated by
greedy search in training and testing phase.

3.2 Policy Network

The multi-pass decoding can be converted into se-
quential decision making process, in which a pol-
icy is adopted to choose next pass decoding or halt.
It’s expected to automatically choose an accurate
and effective decoding depth to generate a good
translation. For example, if the source sentence
is exhausted to obtain the corresponding transla-
tion such as the long sentences, we assume more
decoding passes are needed to improve the trans-
lation, while only one pass decoding is enough to
tackle the simple case.

Our main idea is to use reinforcement learn-
ing to control the decoding depth. We parameter-
ize the available action al 2 {Continue, Stop},
where Continue and Stop indicate continuing
next decoding pass and halt respectively, by a pol-
icy network ⇡(al|spolicy

l ; ✓p), where spolicy
l repre-

sents the policy state at the l-th decoding pass. For
the purpose of making a better choice about the de-
coding depth and direction, it’s necessary to con-
sider whether or not the source sentence is easy to

obtain a good translation and compared with the
last pass decoding, whether the quality of trans-
lation can be improved. Thus, supervised by this
guideline, the policy state spolicy

l is calculated by
GRU to model the difference between the consec-
utive two decoding passes as follows:

spolicy
l = fpolicy(spolicy

l�1 , ml) (11)

where fpolicy is the activation function, and ml

captures the useful information with respect to the
policy network at the l-th decoding pass. In this
work, we use the attention models attnpolicy to
collect the decoding progress, denoted as ml of
the l-th decoding pass. In order to take account of
the complexity of source sentence itself, the ini-
tial policy state spolicy

0 is computed by spolicy
0 =

tanh(WinithM ), where hM is last state source an-
notations, and Winit is the parameters of initializ-
ing the policy state. Finally, we take the policy
state spolicy

l as input to calculate the policy as fol-
lows:

⇡(al|spolicy
l ; ✓p) = softmax(Wps

policy
l + bp)

(12)
where Wp and bp are the parameters of the policy
network. In this work we use REINFORCE algo-
rithm (Williams, 1992), which is an instance of a
broader class of algorithms called policy gradient
methods (Sutton and Barto, 1998), to learn the pa-
rameter set ✓p such that the sequence of actions
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a = {a1, . . . ,al, . . . ,aL(x,y)
} maximizes the to-

tal expected reward. The expected reward for an
instance is defined as:

Jpolicy(✓p) = E⇡(a|spolicy ;✓p)r(ŷ
L(x,y)) (13)

where r(ŷL(x,y)) is the reward at the L(x,y)-th de-
coding pass. In this work, we use BLEU (Papineni
et al., 2002) of the final translation ŷL(x,y) gener-
ated by greedy search as input to compute our re-
ward as follows:

r(ŷL(x,y)) = BLEU(ŷL(x,y) ,y) (14)

4 Experiments

In this section, we describe experimental settings
and report empirical results.

4.1 Setup
We evaluated the proposed adaptive multi-
pass decoder on Chinese-English translation
task. The evaluation metric was case-insensitive
BLEU (Papineni et al., 2002) calculated by the
multi-bleu.perl1 script. The training cor-
pus2 consisted of 1.25M bilingual sentences with
27.9M Chinese words and 34.5M English words.
We used the NIST 2002 (MT02) as the validation
set for hyper-parameter optimization and model
selection, and NIST 2003 (MT03), 2004 (MT04),
2005 (MT05) and 2006 (MT06) as test sets.

To effectively train the NMT model, we trained
each model with sentences of length up to 50
words. Besides, we limited vocabulary size to
30K for both languages and map all the out-of-
vocabulary words in the Chinese-English corpus
to a special token UNK. We applied Rmsprop
(Graves, 2013) to train models and selected the
best model parameters according to the model per-
formance on the development set. During this
procedure, we set the following hyper-parameters:
word embedding dimension as 620, hidden layer
size as 1000, learning rate as 5⇥ 10�4, batch size
as 80, gradient norm as 1.0, and dropout rate as
0.3.

In the experiments, we compared our approach
against the following state-of-the-art SMT and
NMT systems:

1https://github.com/moses-
smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu.perl

2The training corpus includes LDC2002E18,
LDC2003E07, LDC2003E14, part of LDC2004T07,
LDC2004T08 and LDC2005T06

1. Moses3: an open source phrase-based transla-
tion system with default configuration and a
4-gram language model trained on the target
portion of training data. Note that we used all
data to train MOSES (Koehn et al., 2007).

2. RNNSearch: a variant of the attention-based
NMT system (Bahdanau et al., 2014) with
slight changes from dl4mt tutorial4.

3. Deliberation Network5: a re-implementation
of attention-based NMT system with two in-
dependent left-to-right decoders (Xia et al.,
2017). The first-pass decoder is identical to
one of RNNSearch to generate a draft transla-
tion, while the second-pass decoder polishes
it with an extra attention over the first pass de-
coder. The second-pass decoder is integrated
with the first-pass decoder via reinforcement
learning.

4. ABDNMT: As a comparison with the De-
liberation Network, ABDNMT utilizes first-
pass backward decoder to generate a trans-
lation with greedy search, and the second-
pass forward decoder refines it with attention
model (Zhang et al., 2018). For fairness, we
replace the first-pass backward decoder with
a forward decoder.

We set the beam size of all above-mentioned
models as 10 in our work. Deliberation Net-
work and ABDNMT were initialized with the pre-
trained RNNSearch as Xia et al. (2017) and Zhang
et al. (2018) described. Our multi-pass decoder
was also initialized with RNNSearch and other pa-
rameters were randomly initialized from a uniform
distribution on [�0.1, 0.1]. Besides, for effective-
ness, we set the maximum decoding depth of our
adaptive multi-pass decoder as 5.

4.2 Results on Chinese-English Translation

The experimental results of our model and base-
line models on Chinese-English machine transla-
tion datasets are depicted in Table 2 .

3http://www.statmt.org/moses
4https://github.com/nyu-dl/dl4mt-tutorial
5We reproduce the deliberation network based on REIN-

FORCE and gumbel-softmax (Jang et al., 2016), separately,
but there still exists a gap with its best performance. We
attribute this to that our reimplementation may be different
from the original model in some unknown details.
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System #Params Speed MT02 MT03 MT04 MT05 MT06 Ave.
Moses – – 33.79 30.86 32.71 30.02 30.49 31.02

RNNSearch 83.99M 87 39.68 36.51 40.20 36.87 36.43 37.50
Deliberation Network 125.16M 162 40.98 37.82 40.56 37.67 37.20 38.31

ABDNMT 122.86M 132 41.12 38.01 41.20 38.07 37.59 38.71
2-pass decoder 87.81M 160 41.18 37.76 41.06 38.02 37.41 38.56
3-pass decoder 87.81M 245 41.28 37.99 40.72 37.86 37.63 38.55
4-pass decoder 87.81M 293 41.05 37.86 40.87 38.18 37.57 38.62
5-pass decoder 87.81M 322 40.88 37.70 40.84 38.06 37.97 38.64

Adaptive multi-pass decoder 96.01M 180 41.42 38.39 41.43 38.54 37.86 39.05

Table 2: Evaluation of the NIST Chinese-English translation task. The BLEU scores are case-insensitive. “Params”
denotes the number the parameters in each model. The “Speed” denotes the generation speed in seconds on
the development set. RNNSearch is an attention-based neural machine translation model(Bahdanau et al., 2014)
with one-pass left-to-right decoding. RNNSearch(R2L) is a variant of RNNSearch with one-pass right-to-left
decoding. As a comparison, Deliberation Network (Xia et al., 2017) and ABDNMT (Zhang et al., 2018) involve
two independent decoders to adopt polishing mechanism to extend the ability of conventional NMT. Deliberation
Network utilizes two left-to-right decoders coupled with reinforcement learning. However, ABDNMT exploits
a backward decoder to perform first-pass right-to-left decoding. {2,3,4,5}-pass decoder utilizes our multi-pass
decoder with a fixed number of decoding passes. Furthermore, adaptive multi-pass decoder involves a policy
network to enhance our multi-pass decoder to choose a proper decoding depth.

Parameters RNNSearch, Deliberation Network
and ABDNMT have 83.99M, 125.16M and
122.86M parameters, respectively. And the pa-
rameter size of our {2,3,4,5}-pass decoder and
adaptive multi-pass decoder are about 87.81M and
96.01M, respectively.

Fixed Decoding Depth {2,3,4,5}-pass decoders
perform the left-to-right decoding by the multi-
pass decoder with a fixed number of decoding
passes. In contrast to the related machine transla-
tion systems, our fixed number-pass decoder sig-
nificantly outperforms Moses and RNNSearch by
7.53 and 1.05 BLEU points at least, as Table 2
presents. More importantly, our proposed multi-
pass decoder obtains much better performance
with an increase of only 3.82M parameters over
RNNSearch. As a comparison with Deliberation
Network involves two-pass decoding, the multi-
pass decoder has a minimum increase of 0.24
BLEU score. Nevertheless, our multi-pass de-
coder proves its effectiveness due to the less pa-
rameters consumption of 37.35M in contrast to
Deliberation Network. These results verify our
hypothesis that the more decoding passes can pol-
ish the generated output to improve the translation
quality. The underlying reason is that the attention
component attndec within our multi-pass decoder
can capture the extra target-side contexts to obtain
a global understanding to assist the translation pro-
cedure.

Towards the effect of the decoding depth set
{2,3,4,5}, our multi-pass decoders obtain the ap-
proximate results, but the whole curve of BLEU

is on an upward trend. Specifically, the multi-pass
decoder with decoding depth 5 achieves the best
performance with 38.64 BLEU, while the one with
decoding depth 3 performs the worst among the
decoding depth set with 38.55 BLEU. Although
the average results of {2,3,4,5}-pass decoder are
approximate, the distinction of {2,3,4,5}-pass de-
coder on NIST03, NIST04, NIST05, NIST06 and
NIST08 is not negligible. These results indirectly
prove the necessity of flexibility mechanism.

Adaptive Decoding Depth our proposed adap-
tive multi-pass decoder involves an extra pol-
icy network which controls the decoding depth
according to the complexity of the source sen-
tence and the differences between the consecu-
tive generated translations. As shown in Table
2, the proposed adaptive multi-pass decoder ob-
tains an improvement about 0.41 to 0.5 BLEU on
average over the {2,3,4,5}-pass decoder, which
demonstrates the effectiveness of the policy net-
work. Specifically, the adaptive multi-pass de-
coder outperforms the multi-pass decoder with
a fixed decoding depth by 0.69, 0.71, 0.68 and
0.45 BLEU scores on NIST03, NIST04, NIST05
and NIST06 datasets at most. In contrast to the
Moses, RNNSearch, Deliberation Network and
ABDNMT, the adaptive multi-pass decoder has
the corresponding improvement about 8.03, 1.55,
0.74 and 0.34 BLEU points, respectively. More
importantly, our adaptive multi-pass decoder out-
performs ABDNMT, Deliberation Network model
with a decrease of 26.85M, 29.15M parameters.

In order to further demonstrate the effective-
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Figure 2: Performance of the generated translations
with respect to the lengths of the source sentences on
the development dataset.

ness of adaptively choosing the decoding depth,
we investigate the ratio of decoding passes con-
sumed by our multi-pass decoder on the devel-
opment dataset, as shown in Table 3. Our adap-
tive multi-pass decoder chooses one-pass decod-
ing in a high ratio of 46.57%, while in most about
53.43% cases our model leverages more than one
pass decoding to produce a translation. The av-
erage decoding depth of our model is calculated
as: (1 ⇥ 46.36% + 2 ⇥ 20.84% + 3 ⇥ 13.10% +
4⇥ 13.55% + 5⇥ 6.15%) = 2.12. Moreover, our
ratio of the samples tends to decrease as the decod-
ing depth rises on a whole. Since time consump-
tion correlates with decoding depth, our adap-
tive multi-pass decoder proves its superior perfor-
mance due to fewer parameters and less decoding
passes.

Depth 1 2 3 4 5
Ratio(%) 46.57 20.45 13.00 13.60 6.38

Table 3: The ratio of decoding depth chosen by adap-
tive multi-pass decoder on the development dataset.

Time Consumption Due to the multi-pass de-
coding mechanism, the major limitation of our
proposed multi-pass decoder is time cost. In train-
ing phrase, we spend more time training the multi-
pass decoder than RNNSearch, Deliberation Net-
work and ABDNMT. However, in testing phrase,
as illustrated in Table 2, our adaptive multi-pass
decoder spends about 180s completing the entire
testing procedure, in comparison with the corre-
sponding 87s, 162s, 132s of RNNSearch, Deliber-
ation Network and ABDNMT, due to the auxiliary
policy network. These results are consistent with
above conclusion drew according to the decoding

Figure 3: Ratio of decoding depth set {1,2,3,4,5} con-
trolled by our adaptive multi-pass decoder with respect
to each length segment of the source sentences on the
development dataset.

depth. Therefore, it’s proven the necessity of our
proposed auxiliary policy network to choose the
decoding depth.

4.3 Effect of Source Sentence Length
Following Bahdanau et al. (2014), we group sen-
tences of similar lengths together and compute the
BLEU score for each group, as shown in Figure 2.
Obviously, our proposed adaptive multi-pass de-
coder outperforms RNNSearch in all length seg-
ments. Compared with {2,3,4,5}-pass decoders,
our adaptive multi-pass decoder outperforms most
even all the multi-pass decoders with fixed decod-
ing depth in the length segments.

For the purpose of investigating the flexibility of
policy network, we calculate the ratios of decoding
depth set {1,2,3,4,5} on each sentence group with
similar length, as illustrated in Figure 3. The ratio
of one-pass decoding remains high level on each
length segment, but explicitly is dominant on the
length segment [0, 10). In contrast, the ratios of
remaining decoding depths show upwards trends
on a whole. These results indirectly proves that
our policy network has the capability of choos-
ing the proper decoding depth. That is, when the
source sentence is difficult to be translated such
as some long sentences, more decoding passes are
consumed to improve the translation quality, while
in simple cases such as short source sentences,
one-pass decoding is adequate.

4.4 Case Study
To better understand the effectiveness of flexi-
ble polishing mechanism adopted by policy net-
work, Table 4 provides a Chinese-English transla-
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Source xı̄nhuáshè běijı̄ng 4 yuè 5 rı̀ diàn dàmı́ngdı̌ngdı̌ng dē wēiruǎn gōngsı̄ zǒngcái bı̌ěr · gàicı́ rı̀qıán bèi
jiānádà yı̀ jiā guǎngbō diàn tái ” shuàn le ” yı̀ bǎ , zài yúrénjié nàtiān bèi kāi le yīgè dàwángxiào .

Reference xinhua news agency, beijing, april 5 , bill gates , the all - famous microsoft chairman, was duped by
a canadian radio station the the other day and fell a victim to a big prank on april fools ’ day.

1st-pass
xihua news agency report of april 5 th from beijing (by staff reporter UNK UNK ) - the president of
microsoft ’s microsoft corporation , gates , was recently ” UNK ” by a radio station in canada
and was hit by a UNK day on the day of the day .

2nd-pass xinhua news agency, beijing, april 5, a fews days ago, microsoft ’s president , microsoft corporation ,
was ” UNK ” by a radio station in canada .

3rd-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

4th-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

5th-pass xinhua news agency, beijing, april 5 , microsoft ’s president bill gates, the president of microsoft ,
was ” UNK ” by a radio station in canada in few days ago .

Table 4: Translation examples at each decoding depth of adaptive multi-pass decoder.

tion example. Our proposed adaptive multi-pass
decoder has the ability to polish the generated hy-
pothesis again and again. As shown in Table 4,
we force our adaptive multi-pass decoder to per-
form the multi-pass decoding with fixed depth sets
{1,2,3,4,5}. The translation quality has an up-
wards trend with decoding depth 1 to 3, and the
decoding with depth set {4,5} generates the iden-
tical translation as the decoding depth 3. More-
over, given the same source sentence, we use the
proposed adaptive multi-pass decoder to choose
the decoding depth. As expected, our adaptive
multi-pass chooses 3-pass decoding which gen-
erates best translation and consumes least time,
rather than {4,5}-pass decoding. Therefore, these
results proves the effectiveness of our adaptive
multi-pass decoder.

5 Related Work

In this work, we mainly focus on how to adopt
adaptive polishing mechanism into NMT model,
which has attracted intensive attention in recent
years. We will elaborate polishing mechanism-
based methods in the following pages.

The polishing mechanism-based approaches
first generate a complete draft, and then improve
the quality of it based on the global understanding
of the whole draft. A related work is post-editing
(Niehues et al., 2016; Chatterjee et al., 2016;
Zhou et al., 2017; Junczys Dowmunt and Grund-
kiewicz, 2017): a source sentence e is first trans-
lated to f , and then f is refined by another model.
Niehues et al. (2016) used phrase-based statisti-
cal machine translation (PBMT) to pre-translate
the source sentence into target language, which
was taken as input of NMT to generate the final
translation. Zhou et al. (2017) combined phrase-
based statistical machine translation (PBMT), hi-

erarchical phrase-based statistical machine trans-
lation (HPMT) and NMT with a unified architec-
ture, similar to the dominant NMT model. Com-
pared with the dominant NMT model, two atten-
tion models were involved to compute the context
vectors. Specifically, an attention model is utilized
to calculate the context vector for each machine
system, while the other attention model obtains the
context vector over the all context vectors of ma-
chine systems.

In above works, the generating and refining are
two separate processes. As a comparison, Xia
et al. (2017) proposed deliberation network, which
consists of two decoders: a first-pass decoder gen-
erates a draft, which is taken as input of second-
pass decoder to obtain a better translation. All
the components of deliberation network are cou-
pled together and jointly optimized in an end-to-
end way via reinforcement learning. Instead of
first-pass forward decoder, Zhang et al. (2018)
adopted a backward decoder to capture the right-
to-left target-side contexts, which is taken as input
to assist the second-pass forward decoder to ob-
tain a better translation. Besides, the another dif-
ference with deliberation network is the second-
pass decoder is integrated with the first-pass de-
coder without reinforcement learning.

For the purpose of exploring polishing mech-
anism, our model adopts adaptive multi-pass de-
coding strategy. Compared with the previous
works which consumes no more than two decod-
ing passes, our multi-pass decoder makes an at-
tempt to perform the multi-pass decoding. More
importantly, we adopt adaptive decoding depth
controlled by policy network to extend the capac-
ity of our multi-pass decoder.
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6 Conclusion
In this paper, we propose a novel architecture
called adaptive multi-pass decoder to adopt pol-
ishing mechanism into the NMT model via rein-
forcement learning. Towards this goal, a novel
multi-pass decoder is introduced to generate the
translation, conditioned on the source- and target-
side contexts. Simultaneously, the multi-pass de-
coding is supervised by a policy network which
learns to choose a suitable action from continu-
ing next pass decoding or halt at each time step to
maximize the BLEU of the final translation. As a
result, our model has the capability of controlling
the decoding depth to generate a better translation.
Extensive experiments on Chinese-English trans-
lation demonstrate the effectiveness of the pro-
posed adaptive multi-pass decoder.

In this paper, we focus on utilizing multi-pass
decoder to polish the translation. Our proposed
multi-pass decoder performs the multi-pass decod-
ing mechanism with only forward decoding. One
promising direction is to incorporate the backward
decoding into our architecture. More specifically,
we can extend the policy network to choose the
backward decoding except for forward decoding
and halting.
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Abstract

Although the Transformer translation model
(Vaswani et al., 2017) has achieved state-of-
the-art performance in a variety of transla-
tion tasks, how to use document-level con-
text to deal with discourse phenomena prob-
lematic for Transformer still remains a chal-
lenge. In this work, we extend the Transformer
model with a new context encoder to repre-
sent document-level context, which is then in-
corporated into the original encoder and de-
coder. As large-scale document-level paral-
lel corpora are usually not available, we intro-
duce a two-step training method to take full
advantage of abundant sentence-level parallel
corpora and limited document-level parallel
corpora. Experiments on the NIST Chinese-
English datasets and the IWSLT French-
English datasets show that our approach im-
proves over Transformer significantly. 1

1 Introduction

The past several years have witnessed the rapid de-
velopment of neural machine translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2015),
which investigates the use of neural networks
to model the translation process. Showing re-
markable superiority over conventional statisti-
cal machine translation (SMT), NMT has been
recognized as the new de facto method and is
widely used in commercial MT systems (Wu et al.,
2016). A variety of NMT models have been pro-
posed to map between natural languages such as
RNNencdec (Sutskever et al., 2014), RNNsearch
(Bahdanau et al., 2015), ConvS2S (Gehring et al.,
2017), and Transformer (Vaswani et al., 2017).
Among them, the Transformer model has achieved
state-of-the-art translation performance. The ca-

⇤Corresponding author: Yang Liu.
1The source code is available at https://github.

com/Glaceon31/Document-Transformer

pability to minimize the path length between long-
distance dependencies in neural networks con-
tributes to its exceptional performance.

However, the Transformer model still suffers
from a major drawback: it performs translation
only at the sentence level and ignores document-
level context. Document-level context has proven
to be beneficial for improving translation perfor-
mance, not only for conventional SMT (Gong
et al., 2011; Hardmeier et al., 2012), but also for
NMT (Wang et al., 2017; Tu et al., 2018). Baw-
den et al. (2018) indicate that it is important to ex-
ploit document-level context to deal with context-
dependent phenomena which are problematic for
machine translation such as coreference, lexical
cohesion, and lexical disambiguation.

While document-level NMT has attracted in-
creasing attention from the community in the past
two years (Jean et al., 2017; Kuang et al., 2017;
Tiedemann and Scherrer, 2017; Wang et al., 2017;
Maruf and Haffari, 2018; Bawden et al., 2018;
Tu et al., 2018; Voita et al., 2018), to the best of
our knowledge, only one existing work has en-
deavored to model document-level context for the
Transformer model (Voita et al., 2018). Previous
approaches to document-level NMT have concen-
trated on the RNNsearch model (Bahdanau et al.,
2015). It is challenging to adapt these approaches
to Transformer because they are designed specifi-
cally for RNNsearch.

In this work, we propose to extend the Trans-
former model to take advantage of document-
level context. The basic idea is to use multi-
head self-attention (Vaswani et al., 2017) to com-
pute the representation of document-level context,
which is then incorporated into the encoder and
decoder using multi-head attention. Since large-
scale document-level parallel corpora are usually
hard to acquire, we propose to train sentence-
level model parameters on sentence-level paral-
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Figure 1: (a) The original Transformer translation model (Vaswani et al., 2017) and (b) the extended Transformer
translation model that exploits document-level context. The newly introduced modules are highlighted in red.

lel corpora first and then estimate document-level
model parameters on document-level parallel cor-
pora while keeping the learned original sentence-
level Transformer model parameters fixed. Our
approach has the following advantages:

1. Increased capability to capture context: the
use of multi-head attention, which signifi-
cantly reduces the path length between long-
range dependencies, helps to improve the ca-
pability to capture document-level context;

2. Small computational overhead: as all newly
introduced modules are based on highly par-
allelizable multi-head attention, there is no
significant slowdown in both training and de-
coding;

3. Better use of limited labeled data: our ap-
proach is capable of maintaining the superi-
ority over the sentence-level counterpart even
when only small-scale document-level paral-
lel corpora are available.

Experiments show that our approach achieves
an improvement of 1.96 and 0.89 BLEU points
over Transformer on Chinese-English and French-
English translation respectively by exploiting
document-level context. It also outperforms a
state-of-the-art cache-based method (Kuang et al.,
2017) adapted for Transformer.

2 Approach

2.1 Problem Statement
Our goal is to enable the Transformer translation
model (Vaswani et al., 2017) as shown in Figure
1(a) to exploit document-level context.

Formally, let X = x(1), . . . ,x(k), . . . ,x(K) be a
source-language document composed of K source
sentences. We use x(k) = x(k)

1 , . . . , x(k)
i , . . . , x(k)

I
to denote the k-th source sentence containing
I words. x(k)

i denotes the i-th word in the
k-th source sentence. Likewise, the corre-
sponding target-language document is denoted
by Y = y(1), . . . ,y(k), . . . ,y(K) and y(k) =

y(k)
1 , . . . , y(k)

j , . . . , y(k)
J represents the k-th target

sentence containing J words. y(k)
j denotes the j-th

word in the k-th target sentence. We assume that
hX,Yi constitutes a parallel document and each
hx(k),y(k)i forms a parallel sentence.

Therefore, the document-level translation prob-
ability is given by

P (Y|X; ✓) =
KY

k=1

P (y(k)|X,Y<k; ✓), (1)

where Y<k = y(1), . . . ,y(k�1) is a partial trans-
lation.

For generating y(k), the source document X can
be divided into three parts: (1) the k-th source sen-
tence X=k = x(k), (2) the source-side document-
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level context on the left X<k = x(1), . . . ,x(k�1),
and (3) the source-side document-level context on
the right X>k = x(k+1), . . . ,x(K). As the lan-
guages used in our experiments (i.e., Chinese and
English) are written left to right, we omit X>k for
simplicity.

We also omit the target-side document-level
context Y<k due to the translation error propaga-
tion problem (Wang et al., 2017): errors made in
translating one sentence will be propagated to the
translation process of subsequent sentences. Inter-
estingly, we find that using source-side document-
level context X<k, which conveys the same infor-
mation with Y<k, helps to compute better repre-
sentations on the target side (see Table 8).

As a result, the document-level translation prob-
ability can be approximated as

P (Y|X; ✓)

⇡
KY

k=1

P (y(k)|X<k,x
(k); ✓), (2)

=
KY

k=1

JY

j=1

P (y(k)
j |X<k,x

(k),y(k)
<j ; ✓), (3)

where y(k)
<j = y(k)

1 , . . . , y(k)
j�1 is a partial transla-

tion.
In this way, the document-level translation

model can still be defined at the sentence level
without sacrificing efficiency except that the
source-side document-level context X<k (or con-
text for short) is taken into account.

In the following, we will introduce how to rep-
resent the context (Section 2.2), how to integrate
the context (Section 2.3), and how to train the
model especially when only limited training data
is available (Section 2.4).

2.2 Document-level Context Representation
As document-level context often includes several
sentences, it is important to capture long-range
dependencies and identify relevant information.
We use multi-head self-attention (Vaswani et al.,
2017) to compute the representation of document-
level context because it is capable of reducing the
maximum path length between long-range depen-
dencies to O(1) (Vaswani et al., 2017) and deter-
mining the relative importance of different loca-
tions in the context (Bahdanau et al., 2015). Be-
cause of this property, multi-head self-attention
has proven to be effective in other NLP tasks such
as constituency parsing (Kitaev and Klein, 2018).

As shown in Figure 1(b), we use a self-attentive
encoder to compute the representation of X<k.
The input to the self-attentive encoder is a se-
quence of context word embeddings, represented
as a matrix. Suppose X<k is composed of M
source words: X<k = x1, . . . , xm, . . . , xM . We
use xm 2 R

D⇥1 to denote the vector representa-
tion of xm that is the sum of word embedding and
positional encoding (Vaswani et al., 2017). There-
fore, the matrix representation of X<k is given by

Xc = [x1; . . . ; xM ], (4)

where Xc 2 R
D⇥M is the concatenation of

all vector representations of all source contextual
words.

The self-attentive encoder is composed of a
stack of Nc identical layers. Each layer has two
sub-layers. The first sub-layer is a multi-head self-
attention:

A(1) = MultiHead(Xc, Xc, Xc), (5)

where A(1) 2 R
D⇥M is the hidden state calcu-

lated by the multi-head self-attention at the first
layer, MultiHead(Q,K,V) is a multi-head self-
attention function that takes a query matrix Q, a
key matrix K, and a value matrix V as inputs. In
this case, Q = K = V = Xc. This is why it
is called self-attention. Please refer to (Vaswani
et al., 2017) for more details.

Note that we follow Vaswani et al. (2017) to
use residual connection and layer normalization in
each sub-layer, which are omitted in the presenta-
tion for simplicity. For example, the actual output
of the first sub-layer is:

LayerNorm(A(1) + Xc). (6)

The second sub-layer is a simple, position-wise
fully connected feed-forward network:

C(1) =
h
FNN(A(1)

·,1 ); . . . ; FNN(A(1)
·,M )

i
(7)

where C(1) 2 R
D⇥M is the annotation of X<k af-

ter the first layer, A(1)
·,m 2 R

D⇥1 is the column vec-
tor for the m-th contextual word, and FNN(·) is
a position-wise fully connected feed-forward net-
work (Vaswani et al., 2017).

This process iterates Nc times as follows:

A(n) = MultiHead
⇣
C(n�1),C(n�1),C(n�1)

⌘
, (8)

C(n) =
h
FNN(A(n)

·,1 ); . . . ; FNN(A(n)
·,M )

i
, (9)
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where A(n) and C(n) (n = 1, . . . , Nc) are the hid-
den state and annotation at the n-th layer, respec-
tively. Note that C(0) = Xc.

2.3 Document-level Context Integration
We use multi-head attention to integrate C(Nc),
which is the representation of X<k, into both the
encoder and the decoder.

2.3.1 Integration into the Encoder
Given the k-th source sentence x(k), we use x

(k)
i 2

R
D⇥1 to denote the vector representation of the i-

th source word x(k)
i , which is a sum of word em-

bedding and positional encoding. Therefore, the
initial matrix representation of x(k) is

X = [x(k)
1 ; . . . ; x(k)

I ], (10)

where X 2 R
D⇥I is the concatenation of all vec-

tor representations of source words.
As shown in Figure 1(b), we follow (Vaswani

et al., 2017) to use a stack of Ns identical lay-
ers to encode x(k). Each layer consists of three
sub-layers. The first sub-layer is a multi-head self-
attention:

B(n) = MultiHead
⇣
S(n�1),S(n�1),S(n�1)

⌘
, (11)

where S(0) = X . The second sub-layer is con-
text attention that integrates document-level con-
text into the encoder:

D(n) = MultiHead
⇣
B(n),C(Nc),C(Nc)

⌘
. (12)

The third sub-layer is a position-wise fully con-
nected feed-forward neural network:

S(n) =
h
FNN(D(n)

·,1 ); . . . ; FNN(D(n)
·,I )

i
, (13)

where S(n) 2 R
D⇥I is the representation of

the source sentence x(k) at the n-th layer (n =
1, . . . , Ns).

2.3.2 Integration into the Decoder
When generating the j-th target word y(k)

j ,

the partial translation is denoted by y(k)
<j =

y(k)
1 , . . . , y(k)

j�1. We follow Vaswani et al. (2017) to
offset the target word embeddings by one position,
resulting in the following matrix representation of
y(k)

<j :

Y = [y(k)
0 , . . . , y(k)

j�1], (14)

where y(k)
0 2 R

D⇥1 is the vector representation of
a begin-of-sentence token and Y 2 R

D⇥j is the
concatenation of all vectors.

As shown in Figure 1(b), we follow (Vaswani
et al., 2017) to use a stack of Nt identical layers to
compute target-side representations. Each layer is
composed of four sub-layers. The first sub-layer is
a multi-head self-attention:

E(n) = MultiHead
⇣
T(n�1),T(n�1),T(n�1)

⌘
, (15)

where T(0) = Y . The second sub-layer is con-
text attention that integrates document-level con-
text into the decoder:

F(n) = MultiHead
⇣
E(n),C(Nc),C(Nc)

⌘
. (16)

The third sub-layer is encoder-decoder attention
that integrates the representation of the corre-
sponding source sentence:

G(n) = MultiHead
⇣
F(n),S(Ns),S(Ns)

⌘
. (17)

The fourth sub-layer is a position-wise fully con-
nected feed-forward neural network:

T(n) =
h
FNN(G(n)

·,1 ); . . . ; FNN(G(n)
·,j ),

i
, (18)

where T(n) 2 R
D⇥j is the representation at the

n-th layer (n = 1, . . . , Nt). Note that T(0) = Y .
Finally, the probability distribution of generat-

ing the next target word y(k)
j is defined using a

softmax layer:

P (y(k)
j |X<k,x

(k),y(k)
<j ; ✓) / exp(WoT

(Nt)
·,j ) (19)

where Wo 2 R
|Vy |⇥D is a model parameter, Vy

is the target vocabulary, and T(Nt)
·,j 2 R

D⇥1 is a
column vector for predicting the j-th target word.

2.3.3 Context Gating
In our model, we follow Vaswani et al. (2017) to
use residual connections (He et al., 2016) around
each sub-layer to shortcut its input to its output:

Residual(H) = H + SubLayer(H), (20)

where H is the input of the sub-layer.
While residual connections prove to be effective

for building deep architectures, there is one poten-
tial problem for our model: the residual connec-
tions after the context attention sub-layer might
increase the influence of document-level context
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X<k in an uncontrolled way. This is undesirable
because the source sentence x(k) usually plays a
more important role in target word generation.

To address this problem, we replace the residual
connections after the context attention sub-layer
with a position-wise context gating sub-layer:

Gating(H) = �H + (1 � �)SubLayer(H). (21)

The gating weight is given by

� = �(WiH + WsSubLayer(H)), (22)

where �(·) is a sigmoid function, Wi and Ws are
model parameters.

2.4 Training
Given a document-level parallel corpus Dd, the
standard training objective is to maximize the log-
likelihood of the training data:

✓̂ = argmax
✓

(
X

hX,Yi2Dd

log P (Y|X; ✓)

)
. (23)

Unfortunately, large-scale document-level par-
allel corpora are usually unavailable, even for
resource-rich languages such as English and Chi-
nese. Under small-data training conditions,
document-level NMT is prone to underperform
sentence-level NMT because of poor estimates of
low-frequency events.

To address this problem, we adopt the idea
of freezing some parameters while tuning the re-
maining part of the model (Jean et al., 2015; Zoph
et al., 2016). We propose a two-step training strat-
egy that uses an additional sentence-level paral-
lel corpus Ds, which can be larger than Dd. We
divide model parameters into two subsets: ✓ =
✓s [ ✓d, where ✓s is a set of original sentence-
level model parameters (highlighted in blue in
Figure 1(b)) and ✓d is a set of newly-introduced
document-level model parameters (highlighted in
red in Figure 1(b)).

In the first step, sentence-level parameters ✓s

are estimated on the combined sentence-level par-
allel corpus Ds [ Dd: 2

✓̂s = argmax
✓s

X

hx,yi2Ds[Dd

log P (y|x; ✓s). (24)

Note that the newly introduced modules (high-
lighted in red in Figure 1(b)) are inactivated in

2It is easy to create a sentence-level parallel corpus from
Dd.

this step. P (y|x; ✓s) is identical to the original
Transformer model, which is a special case of our
model.

In the second step, document-level parameters
✓d are estimated on the document-level parallel
corpus Dd only:

✓̂d = argmax
✓d

X

hX,Yi2Dd

log P (Y|X; ✓̂s, ✓d). (25)

Our approach is also similar to pre-training
which has been widely used in NMT (Shen et al.,
2016; Tu et al., 2018). The major difference is that
our approach keeps ✓̂s fixed when estimating ✓d

to prevent the model from overfitting on the rela-
tively smaller document-level parallel corpora.

3 Experiments

3.1 Setup
We evaluate our approach on Chinese-English
and French-English translation tasks. In Chinese-
English translation task, the training set contains
2M Chinese-English sentence pairs with 54.8M
Chinese words and 60.8M English words. 3 The
document-level parallel corpus is a subset of the
full training set, including 41K documents with
940K sentence pairs. On average, each document
in the training set contains 22.9 sentences. We use
the NIST 2006 dataset as the development set and
the NIST 2002, 2003, 2004, 2005, 2008 datasets
as test sets. The development and test sets contain
588 documents with 5,833 sentences. On average,
each document contains 9.9 sentences.

In French-English translation task, we use the
IWSLT bilingual training data (Mauro et al., 2012)
which contains 1,824 documents with 220K sen-
tence pairs as training set. For development and
testing, we use the IWSLT 2010 development and
test sets, which contains 8 documents with 887
sentence pairs and 11 documents with 1,664 sen-
tence pairs respectively. The evaluation metric for
both tasks is case-insensitive BLEU score as cal-
culated by the multi-bleu.perl script.

In preprocessing, we use byte pair encoding
(Sennrich et al., 2016) with 32K merges to seg-
ment words into sub-word units for all languages.
For the original Transformer model and our ex-
tended model, the hidden size is set to 512 and the

3The training set consists of sentence-level parallel cor-
pora LDC2002E18, LDC2003E07, LDC2003E14, news
part of LDC2004T08 and document-level parallel corpora
LDC2002T01, LDC2004T07, LDC2005T06, LDC2005T10,
LDC2009T02, LDC2009T15, LDC2010T03.
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# sent. 1 2 3
MT06 49.38 49.69 49.49

Table 1: Effect of context length on translation quality.
The BLEU scores are calculated on the development
set.

# Layer MT06
1 49.69
2 49.38
3 49.54
4 49.59
5 49.31
6 49.43

Table 2: Effect of self-attention layer number (i.e., Nc)
on translation quality. The BLEU scores are calculated
on the development set.

filter size is set to 2,048. The multi-head atten-
tion has 8 individual attention heads. We set N =
Ns = Nt = 6. In training, we use Adam (Kingma
and Ba, 2015) for optimization. Each mini-batch
contains approximately 24K words. We use the
learning rate decay policy described by Vaswani
et al. (2017). In decoding, the beam size is set
to 4. We use the length penalty (Wu et al., 2016)
and set the hyper-parameter ↵ to 0.6. We use four
Tesla P40 GPUs for training and one Tesla P40
GPU for decoding. We implement our approach
on top of the open-source toolkit THUMT (Zhang
et al., 2017). 4

3.2 Effect of Context Length
We first investigate the effect of context length
(i.e., the number of preceding sentences) on our
approach. As shown in Table 1, using two pre-
ceding source sentences as document-level context
achieves the best translation performance on the
development set. Using more preceding sentences
does not bring any improvement and increases
computational cost. This confirms the finding of
Tu et al. (2018) that long-distance context only has
limited influence. Therefore, we set the number of
preceding sentences to 2 in the following experi-
ments. 5

3.3 Effect of Self-Attention Layer Number
Table 2 shows the effect of self-attention
layer number for computing representations of

4https://github.com/thumt/THUMT
5If there is no preceding sentence, we simply use a single

begin-of-sentence token.

document-level context (see Section 2.2) on trans-
lation quality. Surprisingly, using only one self-
attention layer suffices to achieve good perfor-
mance. Increasing the number of self-attention
layers does not lead to any improvements. There-
fore, we set Nc to 1 for efficiency.

3.4 Comparison with Previous Work
In Chinese-English translation task, we compare
our approach with the following previous meth-
ods:

1. (Wang et al., 2017): using a hierarchical
RNN to integrate document-level context into
the RNNsearch model. They use a document-
level parallel corpus containing 1M sentence
pairs. Table 3 gives the BLEU scores re-
ported in their paper.

2. (Kuang et al., 2017): using a cache which
stores previous translated words and topi-
cal words to incorporate document-level con-
text into the RNNsearch model. They use
a document-level parallel corpus containing
2.8M sentence pairs. Table 3 gives the BLEU
scores reported in their paper.

3. (Vaswani et al., 2017): the state-of-the-art
NMT model that does not exploit document-
level context. We use the open-source toolkit
THUMT (Zhang et al., 2017) to train and
evaluate the model. The training dataset is
our sentence-level parallel corpus containing
2M sentence pairs.

4. (Kuang et al., 2017)*: adapting the cache-
based method to the Transformer model. We
implement it on top of the open-source toolkit
THUMT. We also use the same training data
(i.e., 2M sentence pairs) and the same two-
step training strategy to estimate sentence-
and document-level parameters separately.

As shown in Table 3, using the same data, our
approach achieves significant improvements over
the original Transformer model (Vaswani et al.,
2017) (p < 0.01). The gain on the concate-
nated test set (i.e., “All”) is 1.96 BLEU points. It
also outperforms the cache-based method (Kuang
et al., 2017) adapted for Transformer significantly
(p < 0.01), which also uses the two-step train-
ing strategy. Table 4 shows that our model also
outperforms Transformer by 0.89 BLEU points on
French-English translation task.
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Method Model MT06 MT02 MT03 MT04 MT05 MT08 All
(Wang et al., 2017) RNNsearch 37.76 - - - 36.89 27.57 -
(Kuang et al., 2017) RNNsearch - 34.41 - 38.40 32.90 31.86 -

(Vaswani et al., 2017) Transformer 48.09 48.63 47.54 47.79 48.34 38.31 45.97
(Kuang et al., 2017)* Transformer 48.14 48.97 48.05 47.91 48.53 38.38 46.37

this work Transformer 49.69 50.96 50.21 49.73 49.46 39.69 47.93

Table 3: Comparison with previous works on Chinese-English translation task. The evaluation metric is case-
insensitive BLEU score. (Wang et al., 2017) use a hierarchical RNN to incorporate document-level context into
RNNsearch. (Kuang et al., 2017) use a cache to exploit document-level context for RNNsearch. (Kuang et al.,
2017)* is an adapted version of the cache-based method for Transformer. Note that “MT06” is not included in
“All”.

Method Dev Test
Transformer 29.42 35.15

this work 30.40 36.04

Table 4: Comparison with Transformer on French-
English translation task. The evaluation metric is case-
insensitive BLEU score.

> = <

Human 1 24% 45% 31%
Human 2 20% 55% 25%
Human 3 12% 52% 36%
Overall 19% 51% 31%

Table 5: Subjective evaluation of the comparison be-
tween the original Transformer model and our model.
“>” means that Transformer is better than our model,
“=” means equal, and “<” means worse.

3.5 Subjective Evaluation

We also conducted a subjective evaluation to vali-
date the benefit of exploiting document-level con-
text. All three human evaluators were asked to
compare the outputs of the original Transformer
model and our model of 20 documents contain-
ing 198 sentences, which were randomly sampled
from the test sets.

Table 5 shows the results of subjective evalu-
ation. Three human evaluators generally made
consistent judgements. On average, around 19%
of Transformer’s translations are better than that
of our model, 51% are equal, and 31% are
worse. This evaluation confirms that exploiting
document-level context helps to improve transla-
tion quality.

3.6 Evaluation of Efficiency

We evaluated the efficiency of our approach. It
takes the original Transformer model about 6.7

Method Training Decoding
Transformer 41K 872

this work 31K 364

Table 6: Evaluation of training and decoding speed.
The speed is measured in terms of word/second (wps).

hours to converge during training and the training
speed is 41K words/second. The decoding speed is
872 words/second. In contrast, it takes our model
about 7.8 hours to converge in the second step of
training. The training speed is 31K words/second.
The decoding speed is 364 words/second.

Therefore, the training speed is only reduced by
25% thanks to the high parallelism of multi-head
attention used to incorporate document-level con-
text. The gap is larger in decoding because target
words are generated in an autoregressive way in
Transformer.

3.7 Effect of Two-Step Training
Table 7 shows the effect of the proposed two-
step training strategy. The first two rows only use
sentence-level parallel corpus to train the origi-
nal Transformer model (see Eq. 24) and achieve
BLEU scores of 39.53 and 45.97. The third row
only uses the document-level parallel corpus to di-
rectly train our model (see Eq. 23) and achieves
a BLEU score of 36.52. The fourth and fifth rows
use the two-step strategy to take advantage of both
sentence- and document-level parallel corpora and
achieve BLEU scores of 40.22 and 47.93, respec-
tively.

We find that document-level NMT achieves
much worse results than sentence-level NMT (i.e.,
36.52 vs. 39.53) when only small-scale document-
level parallel corpora are available. Our two-step
training method is capable of addressing this prob-
lem by exploiting sentence-level corpora, which
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sent. doc. MT06 MT02 MT03 MT04 MT05 MT08 All
940K - 36.20 42.41 43.12 41.02 40.93 31.49 39.53
2M - 48.09 48.63 47.54 47.79 48.34 38.31 45.97

- 940K 34.00 38.83 40.51 38.30 36.69 29.38 36.52
940K 940K 37.12 43.29 43.70 41.42 41.84 32.36 40.22
2M 940K 49.69 50.96 50.21 49.73 49.46 39.69 47.93

Table 7: Effect of two-step training. “sent.” denotes sentence-level parallel corpus and “doc.” denotes document-
level parallel corpus.

Integration MT06 MT02 MT03 MT04 MT05 MT08 All
none 48.09 48.63 47.54 47.79 48.34 38.31 45.97

encoder 48.88 50.30 49.34 48.81 49.75 39.55 47.51
decoder 49.10 50.31 49.83 49.35 49.29 39.07 47.48

both 49.69 50.96 50.21 49.73 49.46 39.69 47.93

Table 8: Effect of context integration. “none” means that no document-level context is integrated, “encoder”
means that the document-level context is integrated only into the encoder, “decoder” means that the document-
level context is integrated only into the decoder, and “both” means that the context is integrated into both the
encoder and the decoder.

Gating MT06 MT02 MT03 MT04 MT05 MT08 All
w/o 49.33 50.56 49.74 49.29 50.11 39.02 47.55
w/ 49.69 50.96 50.21 49.73 49.46 39.69 47.93

Table 9: Effect of context gating.

leads to significant improvements across all test
sets.

3.8 Effect of Context Integration
Table 8 shows the effect of integrating document-
level context to the encoder and decoder (see
Section 2.3). It is clear that integrating
document-level context into the encoder (Eq. 12)
brings significant improvements (i.e., 45.97 vs.
47.51). Similarly, it is also beneficial to inte-
grate document-level context into the decoder (Eq.
16). Combining both leads to further improve-
ments. This observation suggests that document-
level context does help to improve Transformer.

3.9 Effect of Context Gating
As shown in Table 9, we also validated the effec-
tiveness of context gating (see Section 2.3.3). We
find that replacing residual connections with con-
text gating leads to an overall improvement of 0.38
BLEU point.

3.10 Analysis
We use an example to illustrate how document-
level context helps translation (Table 10). In
order to translate the source sentence, NMT

has to disambiguate the multi-sense word “yun-
dong”, which is actually impossible without the
document-level context. The exact meaning of
“rezhong” is also highly context dependent. For-
tunately, the sense of “yundong” can be in-
ferred from the word “saiche” (car racing) in
the document-level context and “rezhong” is the
antonym of “yanjuan” (tired of). This example
shows that our model learns to resolve word sense
ambiguity and lexical cohesion problems by inte-
grating document-level context.

4 Related Work

Developing document-level models for machine
translation has been an important research direc-
tion, both for conventional SMT (Gong et al.,
2011; Hardmeier et al., 2012; Xiong et al.,
2013a,b; Garcia et al., 2014) and NMT (Jean et al.,
2017; Kuang et al., 2017; Tiedemann and Scher-
rer, 2017; Wang et al., 2017; Maruf and Haffari,
2018; Bawden et al., 2018; Tu et al., 2018; Voita
et al., 2018).

Most existing work on document-level NMT
has focused on integrating document-level con-
text into the RNNsearch model (Bahdanau et al.,
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Context · · ·ziji ye yinwei queshao jingzheng duishou er dui saiche youxie yanjuan
shi· · ·

Source wo rengran feichang rezhong yu zhexiang yundong.
Reference I’m still very fond of the sport.
Transformer I am still very enthusiastic about this movement.
Our work I am still very keen on this sport.

Table 10: An example of Chinese-English translation. In the source sentence, “yundong” (sport or political move-
ment) is a multi-sense word and “rezhong” (fond of) is an emotional word whose meaning is dependent on its
context. Our model takes advantage of the words “saiche” (car racing) and “yanjuan” (tired of) in the document-
level context to translate the source words correctly.

2015). These approaches can be roughly divided
into two broad categories: computing the repre-
sentation of the full document-level context (Jean
et al., 2017; Tiedemann and Scherrer, 2017; Wang
et al., 2017; Maruf and Haffari, 2018; Voita et al.,
2018) and using a cache to memorize most rel-
evant information in the document-level context
(Kuang et al., 2017; Tu et al., 2018). Our approach
falls into the first category. We use multi-head at-
tention to represent and integrate document-level
context.

Voita et al. (2018) also extended Transformer to
model document-level context, but our work is dif-
ferent in modeling and training strategies. The ex-
perimental part is also different. While Voita et al.
(2018) focus on anaphora resolution, our model is
able to improve the overall translation quality by
integrating document-level context.

5 Conclusion

We have presented a method for exploiting
document-level context inside the state-of-the-art
neural translation model Transformer. Exper-
iments on Chinese-English and French-English
translation tasks show that our method is able to
improve over Transformer significantly. In the fu-
ture, we plan to further validate the effectiveness
of our approach on more language pairs.
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Abstract

Noisy or non-standard input text can cause dis-
astrous mistranslations in most modern Ma-
chine Translation (MT) systems, and there
has been growing research interest in creat-
ing noise-robust MT systems. However, as of
yet there are no publicly available parallel cor-
pora of with naturally occurring noisy inputs
and translations, and thus previous work has
resorted to evaluating on synthetically created
datasets. In this paper, we propose a bench-
mark dataset for Machine Translation of Noisy
Text (MTNT), consisting of noisy comments
on Reddit1 and professionally sourced trans-
lations. We commissioned translations of En-
glish comments into French and Japanese, as
well as French and Japanese comments into
English, on the order of 7k-37k sentences per
language pair. We qualitatively and quantita-
tively examine the types of noise included in
this dataset, then demonstrate that existing MT
models fail badly on a number of noise-related
phenomena, even after performing adaptation
on a small training set of in-domain data. This
indicates that this dataset can provide an at-
tractive testbed for methods tailored to han-
dling noisy text in MT.2

1 Introduction

#nlproc is actualy f*ing hARD tbh

This handcrafted sentence showcases several
types of noise that are commonly seen on so-
cial media: abbreviations (“#nlproc”), typograph-
ical errors (“actualy”), obfuscated profanities
(“f*ing”), inconsistent capitalization (“hARD”),
Internet slang (“tbh” for “to be honest”) and
emojis ( ). Although machine translation has
achieved significant quality improvements over

1www.reddit.com
2The data is publicly available at http://www.cs.

cmu.edu/~pmichel1/mtnt/.

the past few years due to the advent of Neu-
ral Machine Translation (NMT) (Kalchbrenner
and Blunsom; Sutskever et al., 2014; Bahdanau
et al., 2014; Wu et al., 2016), systems are still
not robust to noisy input like this (Belinkov and
Bisk, 2018; Khayrallah and Koehn). For exam-
ple, Google Translate3 translates the above exam-
ple into French as:

#nlproc est en train de f * ing dur hb

which translates back into English as “#nlproc is
in the process of [f * ing] hard hb”. This shows
that noisy input can lead to erroneous translations
that can be misinterpreted or even offensive.

Noise in social media text is a known issue
that has been investigated in a variety of pre-
vious work (Eisenstein; Baldwin et al.). Most
recently, Belinkov and Bisk (2018) have fo-
cused on the difficulties that character based
NMT models have translating text with character
level noise within individual words (from scram-
bling to simulated human errors such as typos or
spelling/conjugation errors). This is a good first
step towards noise-robust NMT systems, but as we
demonstrate in §2, word-by-word replacement or
scrambling of characters doesn’t cover all the id-
iosyncrasies of language on the Internet.

At this point, despite the obvious utility of cre-
ating noise-robust MT systems, and the scientific
challenges contained therein, there is currently a
bottleneck in that there is no standard open bench-
mark for researchers and developers of MT sys-
tems to test the robustness of their models to
these and other phenomena found in noisy text on
the Internet. In this work, we introduce MTNT,
a new, realistic dataset aimed at testing robust-
ness of MT systems to these phenomena. The
dataset contains naturally created noisy source

3translate.google.com as of May 2018
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sentences with professionally sourced translations
both in a pair of typologically close languages
(English and French) and distant languages (En-
glish and Japanese). We collect noisy comments
from the Reddit online discussion website (§3)
in English, French and Japanese, and ask pro-
fessional translators to translate to and from En-
glish, resulting in approximately 1000 test sam-
ples and from 6k to 36k training samples in four
language pairs (English-French (en-fr), French-
English (fr-en), English-Japanese (en-ja) and
Japanese-English (ja-en)). In addition, we re-
lease additional small monolingual corpora in
those 3 languages to both provide data for semi-
supervised adaptation approaches as well as noisy
Language Modeling (LM) experiments. We test
standard translation models (§5) and language
models (§6) on our data to understand their failure
cases and to provide baselines for future work.

2 Noise and Input Variations in
Language on the Internet

2.1 Examples from Social Media Text
The term “noise” can encompass a variety of phe-
nomena in natural language, with variations across
languages (e.g. what is a typo in logographic writ-
ing systems?) and type of content (Baldwin et al.).
To give the reader an idea of the challenges posed
to MT and Natural Language Processing (NLP)
systems operating on this kind of text, we provide
a non-exhaustive list of types of noise and more
generally input variations that deviate from stan-
dard MT training data we’ve encountered in Red-
dit comments:

• Spelling/typographical errors: “across” !
“accross”, “receive” ! “recieve”, “could
have” ! “could of”, “temps” ! “tant”, “!
✏” ! “í✏”

• Word omission/insertion/repetition: “je
n’aime pas” ! “j’aime pas”,“je pense” !
“moi je pense”

• Grammatical errors: “a ton of” ! “a tons
of”, “There are fewer people” ! “There are
less people”

• Spoken language: “want to” ! “wanna”, “I
am” ! “I’m”, “je ne sais pas” ! “chais pas”,
“⁄RS#&⌅K.” ! “⁄OM&S-
S”,

• Internet slang: “to be honest” ! “tbh”,
“shaking my head” ! “smh”, “mort de rire”
! “mdr”, “S” ! “w”/“ç”

• Proper nouns (with or without correct capi-
talization): “Reddit”! “reddit”

• Dialects: African American Vernacular En-
glish, Scottish, Provençal, Québécois, Kan-
sai, Tohoku...

• Code switching: “This is so cute” ! “This
is so kawaii”, “C’est trop conventionel” !
“C’est trop mainstream”, “�ÍÅü?. . . ”
! “NowÅüing...”

• Jargon: on Reddit: “upvote”, “downvote”,
“sub”, “gild”

• Emojis and other unicode characters:
, , , , , ,

• Profanities/slurs (sometimes masked)
“f*ck”, “m*rde” . . .

2.2 Is Translating Noisy Text just another
Adaptation Problem?

To a certain extent, translating noisy text is a type
of adaptation, which has been studied extensively
in the context of both Statistical Machine Transla-
tion (SMT) and NMT (Axelrod et al.; Li et al.; Lu-
ong and Manning, 2015; Chu et al.; Miceli Barone
et al.; Wang et al.; Michel and Neubig, 2018).
However, it presents many differences with previ-
ous domain adaptation problems, where the main
goal is to adapt from a particular topic or style. In
the case of noisy text, it will not only be the case
that a particular word will be translated in a dif-
ferent way than it is in the general domain (e.g.
as in the case of “sub”), but also that there will
be increased lexical variation (e.g. due to spelling
or typographical errors), and also inconsistency in
grammar (e.g. due to omissions of critical words
or mis-usage). The sum of these differences war-
rants that noisy MT be treated as a separate in-
stance than domain adaptation, and our experi-
mental analysis in 5.4 demonstrates that even af-
ter performing adaptation, MT systems still make
a large number of noise-related errors.

3 Collection Procedure

We first collect noisy sentences in our three lan-
guages of interest, English, French and Japanese.
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Figure 1: Summary of our collection process and the respective sections addressing them. We apply the same
procedure for each language.

We refer to Figure 1 for an overview of the data
collection and translation process.

We choose Reddit as a source of data because
(1) its content is likely to exhibit noise, (2) some
of its sub-communities are entirely run in dif-
ferent languages, in particular, English, French
and Japanese, and (3) Reddit is a popular source
of data in curated and publicly distributed NLP
datasets (Tan et al.). We collect data using the pub-
lic Reddit API. 4

Note that the data collection and translation is
performed at the comment level. We split the par-
allel data into sentences as a last step.

3.1 Data Sources
For each language, we select a set of communities
(“subreddits”) that we know contain many com-
ments in that language:

English: Since an overwhelming majority of the
discussions on Reddit are conducted in En-
glish, we don’t restrict our collection to any
community in particular.

French: /r/france, /r/quebec and
/r/rance. The first two are among the
biggest French speaking communities on
Reddit. The third is a humor/sarcasm based
offspring of /r/france.

Japanese: /r/newsokur, /r/bakanewsjp,
/r/newsokuvip, /r/lowlevelaware

4In particular, we use this implementation:
praw.readthedocs.io/en/latest, and our com-
plete code is available at http://www.cs.cmu.edu/
~pmichel1/mtnt/.

and /r/steamr. Those are the biggest
Japanese speaking communities, with over
2,000 subscribers.

We collect comments made during the
03/27/2018-03/29/3018 time period for English,
09/2018-03/2018 for French and 11/2017-03/2018
for Japanese. The large difference in collection
time is due to the variance in comment through-
put and relative amount of noise between the
languages.

3.2 Contrast Corpora

Not all comments found on Reddit exhibit noise as
described in Section 2. Because we would like to
focus our data collection on noisy comments, we
devise criteria that allow us to distinguish poten-
tially noisy comments from clean ones. Specifi-
cally, we compile a contrast corpus composed of
clean text that we can compare to, and find poten-
tially noisy text that differs greatly from the con-
trast corpus. Given that our final goal is MT robust
to noise, we prefer that these contrast corpora con-
sist of the same type of data that is often used to
train NMT models. We select different datasets for
each language:

English: The English side of the preprocessed
parallel training data provided for the
German-English WMT 2017 News transla-
tion task,5 as provided on the website. This
amounts to ⇡ 5.85 million sentences.

5http://www.statmt.org/wmt17/
translation-task.html
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French: The entirety of the French side of
the parallel training data provided for the
English-French WMT 2015 translation task.6

This amounts to ⇡ 40.86 million sentences.

Japanese: We aggregate three small/medium
sized MT datasets: KFTT (Neubig, 2011),
JESC (Pryzant et al.) and TED talks (Cettolo
et al., 2012), amounting to ⇡ 4.19 million
sentences.

3.3 Identifying Noisy Comments
We now describe the procedure used to identify
comments containing noise.

Pre-filtering First, we perform three pre-
processing to discard comments that do not repre-
sent natural noisy text in the language of interest:

1. Comments containing a URL, as detected by
a regular expression.

2. Comments where the author’s username con-
tains “bot” or “AutoModerator”. This mostly
removes automated comments from bots.

3. Comments in another language: we run
langid.py7 (Lui and Baldwin) and discard
comments where p(lang | comment) > 0.5
for any language other than the one we are
interested in.

This removes cases that are less interesting, i.e.
those that could be solved by rule-based pattern
matching or are not natural text created by regu-
lar users in the target language. Our third criterion
in particular discards comments that are blatantly
in another language while still allowing comments
that exhibit code-switching or that contain proper
nouns or typos that might skew the language iden-
tification. In preliminary experiments, we noticed
that these criteria 14.47, 6.53 and 7.09 % of the
collected comments satisfied the above criteria re-
spectively.

Normalization After this first pass of filtering,
we pre-process the comments before running them
through our noise detection procedure. We first
strip Markdown8 syntax from the comments. For

6http://www.statmt.org/wmt15/
translation-task.html

7https://github.com/saffsd/langid.py
8https://daringfireball.net/projects/

markdown

English and French, we normalize the punctua-
tion, lowercase and tokenize the comments using
the Moses tokenizer. For Japanese, we simply
lowercase the alphabetical characters in the com-
ments. Note that this normalization is done for
the purpose of noise detection only. The collected
comments are released without any kind of pre-
processing. We apply the same normalization pro-
cedure to the contrast corpora.

Unknown words In the case of French and En-
glish, a clear indication of noise is the presence
of out-of-vocabulary words (OOV): we record all
lowercased words encountered in our reference
corpus described in Section 3.2 and only keep
comments that contain at least one OOV. Since
we did not use word segmentation for the Japanese
reference corpus, we found this method not to be
very effective to select Japanese comments and
therefore skipped this step.

Language model scores The final step of our
noise detection procedure consists of selecting
those comments with a low probability under a
language model trained on the reference monolin-
gual corpus. This approach mirrors the one used
in Moore and Lewis and Axelrod et al. to se-
lect data similar to a specific domain using lan-
guage model perplexity as a metric. We search
for comments that have a low probability under a
sub-word language model for more flexibility in
the face of OOV words. We segment the contrast
corpora with Byte-Pair Encoding (BPE) using the
sentencepiece9 implementation. We set the vocab-
ulary sizes to 1, 000, 1, 000 and 4, 000 for English,
French and Japanese respectively. We then use
a 5-gram Kneser-Ney smoothed language model
trained using kenLM10 (Heafield et al.) to calcu-
late the log probability, normalized by the number
of tokens for every sentence in the reference cor-
pus. Given a reddit comment, we compute the nor-
malized log probability of each of its lines under
our subword language model. If for any line this
score is below the 1st percentile of scores in the
reference corpus, the comment is labeled as noisy
and saved.

3.4 Creating the Parallel Corpora
Once enough data has been collected, we isolate
15, 000 comments in each language by the follow-

9https://github.com/google/
sentencepiece

10https://kheafield.com/code/kenlm/
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#samples #src tokens #trg tokens
en-fr 1,020 15,919 18,445
fr-en 1,022 16,662 16,038
en-ja 1,002 11,040 20,008
ja-en 1,020 23,997 33,429

Table 1: Test set numbers.

ing procedure:

• Remove all duplicates. In particular, this han-
dles comments that might have been scraped
twice or automatic comments from bots.

• To further weed out outliers (comments that
are too noisy, e.g. ASCII art, wrong lan-
guage. . . or not noisy enough), we discard
comments that are on either end of the dis-
tribution of normalized LM scores within the
set of collected comments. We only keep
comments whose normalized score is within
the 5-70 percentile for English (resp. 5-60 for
French and 10-70 for Japanese). These num-
bers are chosen by manually inspecting the
data.

• Choose 15, 000 samples at random.

We then concatenate the title of the thread
where the comment was found to the text and send
everything to an external vendor for manual trans-
lations. Upon reception of the translations, we no-
ticed a certain amount of variation in the quality of
translations, likely because translating social me-
dia text, with all its nuances, is difficult even for
humans. In order to ensure the highest quality in
the translations, we manually filter the data to seg-
ment the comments into sentences and weed out
poor translations for our test data. We thereby re-
tain around 1, 000 sentence pairs in each direction
for the final test set.

We gather the samples that weren’t selected for
the test sets to be used for training or fine-tuning
models on noisy data. We automatically split com-
ments into sentences with a regular expression
detecting sentence delimiters, and then align the
source and target sentences. Should this alignment
fail (i.e. the source comment contains a different
number of sentences than the target comment af-
ter automatic splitting), we revert back to provid-
ing the whole comment without splitting. For the
training data, we do not verify the correctness of
translations as closely as for the test data. Finally,

#samples #src tokens #trg tokens
en-fr 36,058 841k 965k
fr-en 19,161 661k 634k
en-ja 5,775 281k 506k
ja-en 6,506 172k 128k

Table 2: Training sets numbers.

#samples #src tokens #trg tokens
en-fr 852 16,957 18,948
fr-en 886 41,578 46,886
en-ja 852 40,124 46,886
ja-en 965 25,010 23,289

Table 3: Validation sets numbers.

we isolate ⇡ 900 samples in each direction to
serve as validation data.

Information about the size of the data can be
found in Table 1, 2 and 3 for the test, training
and validation sets respectively. We tokenize the
English and French data with the Moses (Koehn
et al.) tokenizer and the Japanese data with Kytea
(Neubig et al., 2011) before counting the number
of tokens in each dataset.

3.5 Monolingual Corpora
After the creation of the parallel train and test sets,
a large number of unused comments remain in
each language, which we provide as monolingual
corpora. This additional data has two purposes:
first, it serves as a resource for in-domain training
using semi-supervised methods relying on mono-
lingual data (e.g. Cheng et al.; Zhang and Zong).
Second, it provides a language modeling dataset
for noisy text in three languages.

We select 3, 000 comments at random in each
dataset to form a validation set to be used to tune
hyper-parameters, and provide the rest as training
data. The data is provided with one comment per
line. Newlines within individual comments are re-
placed with spaces. Table 4 contains information

#samples #tok #char

en
train 81,631 3,99M 18,9M
dev 3,000 146k 698k

fr
train 26,485 1,52M 7,49M
dev 3,000 176k 867k

ja
train 32,042 943k 3.9M
dev 3,000 84k 351k

Table 4: Monolingual data numbers.
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Spelling Grammar Emojis Profanities

en
newstest2014 0.210 0.189 0.000 0.030
newsdiscusstest2015 0.621 0.410 0.021 0.076
MTNT (en-fr) 2.180 0.559 0.289 0.239

fr
newstest2014 2.776 0.091 0.000 0.245
newsdiscusstest2015 1.686 0.457 0.024 0.354
MTNT 4.597 1.464 0.252 0.690

ja

TED 0.011 0.266 0.000 0.000
KFTT 0.021 0.228 0.000 0.000
JESC 0.096 0.929 0.090 0.058
MTNT 0.269 1.527 0.156 0.036

Table 5: Numbers, per 100 tokens, of quantifiable noise occurrences. For each language and category, the dataset
with the highest amount of noise is highlighted.

on the size of the datasets. As with the parallel
MT data, we provide the number of tokens after
tokenization with the Moses tokenizer for English
and French and Kytea for Japanese.

4 Dataset Analysis

In this section, we investigate the proposed data to
understand how different categories of noise are
represented and to show that our test sets contain
more noise overall than established MT bench-
marks.

4.1 Quantifying Noisy Phenomena
We run a series of tests to count the number of oc-
currences of some of the types of noise described
in Section 2. Specifically we pass our data through
spell checkers to count spelling and grammar er-
rors. Due to some of these tests being impractical
to run on a large scale, we limit our analysis to the
test sets of MTNT.

We use slightly different procedures depend-
ing on the tools available for each language. We
test for spelling and grammar errors in English
data using Grammarly11, an online resource for
English spell-checking. Due to the unavailabil-
ity of an equivalent of Grammarly in French and
Japanese, we test for spelling and grammar er-
ror using the integrated spell-checker in Microsoft
Word 201312. Note that Word seems to count
proper nouns as spelling errors, giving higher
numbers of spelling errors across the board in
French as compared to English.

For all languages, we also count the number
11https://www.grammarly.com/
12https://products.office.com/en-us/

microsoft-word-2013

of profanities and emojis using custom-made lists
and regular expressions13. In order to compare re-
sults across datasets of different sizes, we report
all counts per 100 words.

The results are recorded in the last row of each
section in Table 5. In particular, for the languages
with a segmental writing system, English and
French, spelling errors are the dominant type of
noise, followed by grammar error. Unsurprisingly,
the former are much less present in Japanese.

4.2 Comparison to Existing MT Test Sets

Table 5 also provide a comparison with the rel-
evant side of established MT test sets. For En-
glish and French, we compare our data to new-
stest201414 and newsdiscusstest201515 test sets.
For Japanese, we compare with the test sets of the
datasets described in Section 3.2.

Overall, MTNT contains more noise in all met-
rics but one (there are more profanities in JESC,
a Japanese subtitle corpus). This confirms that
MTNT indeed provides a more appropriate bench-
mark for translation of noisy or non-standard text.

Compared to synthetically created noisy test
sets (Belinkov and Bisk, 2018) MTNT contains
less systematic spelling errors and more varied
types of noise (e.g. emojis and profanities) and is
thereby more representative of naturally occurring
noise.

13available with our code at https://github.com/
pmichel31415/mtnt

14http://www.statmt.org/wmt15/dev-v2.
tgz

15http://www.statmt.org/wmt15/test.tgz
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5 Machine Translation Experiments

We evaluate standard NMT models on our pro-
posed dataset to assess its difficulty. Our goal is
not to train state-of-the art models but rather to test
standard off-the-shelf NMT systems on our data,
and elucidate what features of the data make it dif-
ficult.

5.1 Model Description

All our models are implemented in DyNet (Neu-
big et al., 2017) with the XNMT toolkit (?). We
use approximately the same setting for all lan-
guage pairs: the encoder is a bidirectional LSTM
with 2 layers, the attention mechanism is a multi
layered perceptron and the decoder is a 2 layered
LSTM. The embedding dimension is 512, all other
dimensions are 1024. We tie the target word em-
beddings and the output projection weights (Press
and Wolf). We train with Adam (Kingma and Ba,
2014) with XNMT’s default hyper-parameters, as
well as dropout (with probability 0.3). We used
BPE subwords to handle OOV words. Full con-
figuration details as well as code to reproduce
the baselines is available at https://github.
com/pmichel31415/mtnt.

5.2 Training Data

We train our models on standard MT datasets:

• en $ fr: Our training data consists in
the europarl-v716 and news-commentary-
v1017 corpora, totaling 2, 164, 140 samples,
54, 611, 105 French tokens and 51, 745, 611
English tokens (non-tokenized). We use
the newsdiscussdev201514 dev set from
WMT15 as validation data and evaluate
the model on the newsdiscusstest201515 and
newstest201414 test sets.

• en $ ja: We concatenate the respective train,
validation and test sets of the three corpora
mentioned in 3.2. In particular we detokenize
the Japanese part of each dataset to make
sure that any tokenization we perform will
be uniform (in practice we remove ASCII
spaces). This amounts to 3, 900, 772 training
samples (34, 989, 346 English tokens without
tokenization). We concatenate the dev sets

16http://www.statmt.org/europarl/
17http://www.statmt.org/wmt15/

training-parallel-nc-v10.tgz

en-fr fr-en

newstest2014 33.52 28.93
newsdiscusstest2015 33.03 30.76
MTNT 21.77 23.27
MTNT (+tuning) 29.73 30.29

en-ja ja-en

TED 14.51 13.25
KFTT 20.82 20.77
JESC 15.77 18.00
MTNT 9.02 6.65
MTNT (+tuning) 12.45 9.82

Table 6: BLEU scores of NMT models on the various
datasets.

associated with these corpora to serve as val-
idation data and evaluate on each respective
test set separately.

5.3 Results
We use sacreBLEU18, a standardized BLEU
score evaluation script proposed by Post (2018),
for BLEU evaluation of our benchmark dataset.
It takes in detokenized references and hypothe-
ses and performs its own tokenization before com-
puting BLEU score. We specify the intl tok-
enization option. In the case of Japanese text, we
run both hypothesis and reference through KyTea
before computing BLEU score. We strongly en-
courage that evaluation be performed in the same
manner in subsequent work, and will provide both
scripts and an evaluation web site in order to facil-
itate reproducibility.

Table 6 lists the BLEU scores for our models
on the relevant test sets in the two language pairs,
including the results on MTNT.

5.4 Analysis
To better understand the types of errors made by
our model, we count the n-grams that are over-
and under- generated with respect to the reference
translation. Specifically, we compare the count ra-
tios of all 1- to 3-grams in the output and in the
reference and look for the ones with the highest
(over-generated) and lowest (under-generated) ra-
tio.

We find that in English, the model under-
generates the contracted form of the negative (“do
not”/“don’t”) or of auxiliaries (“That is”/“I’m”).

18https://github.com/mjpost/sacreBLEU
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Source Moi faire la gueule dans le métro me manque, c’est grave ?
Target I miss sulking in the underground, is that bad?
Our model I do not know what is going on in the metro, that is a serious matter.
+ fine-tuning I do not want to be in the metro, it’s serious?
Source :o ’tain je me disais bien que je passais à côté d’un truc vu les upvotes.
Target :o damn I had the feeling that I was missing something considering the upvotes.
Our model o, I was telling myself that I was passing over a nucleus in view of the Yupvoots.
+ fine-tuning o, I was telling myself that I was going next to a nucleus in view of the <unk>upvotes.
Source * C’est noël / pâques / pentecôte / toussaint : Pick One, je suis pas catho
Target Christmas / Easter / Pentecost / All Saints: Pick One, I’m not Catholic!
Our model <unk> It is a pale/poward, a palec<unk>te d’<unk>tat: Pick One, I am not a catho!
+ fine-tuning <unk> It’s no<unk>l / pesc<unk>e /pentecate /mainly: Pick One, I’m not catho!

Table 7: Comparison of our model’s output before and after fine-tuning in fr-en.

Similarly, in French, our model over generates
“de votre” (where “votre” is the formal 2nd per-
son plural for “your”) and “n’ai pas” which show-
cases the “ne [. . . ] pas” negation, often dropped
in spoken language. Conversely, the informal sec-
ond person “tu” is under-generated, as is the in-
formal and spoken contraction of “cela”, “ça”. In
Japanese, the model under-generates, among oth-
ers, the informal personal pronoun — (“ore”) or
the casual form (“da”) of the verb'⇡ (“desu”,
to be). In ja-en the results are difficult to inter-
pret as the model seems to produce incoherent out-
puts (e.g. “no, no, no. . . ”) when the NMT system
encounters sentences it has not seen before. The
full list of n-grams with the top 5 and bottom 5
count ratios in each language pair is displayed in
Table 8.

fr-en en-fr ja-en en-ja

Over generated
<unk> <unk> no, no, l

it is not qu’ils i �

I do not de votre no, no, no, ↵ ?
That is s’il so on and &

not have n’ai pas on and so ⇡↵ ?
Under generated

it’s tu |  

I’m ça Is H⇤

I don’t que tu > #&

> ! ""The —

doesn’t as those  ⇤

Table 8: Over and under generated n-grams in our
model’s output for en-fr

5.5 Fine-Tuning
Finally, we test a simple domain adaptation
method by fine-tuning our models on the training
data described in Section 3.4. We perform one
epoch of training with vanilla SGD with a learn-
ing rate of 0.1 and a batch size of 32. We do not
use the validation data at all. As evidenced by the
results in the last row of Table 6, this drives BLEU
score up by 3.17 to 7.96 points depending on the
language pair. However large this increase might
be, our model still breaks on very noisy sentences.
Table 7 shows three examples in fr-en. Al-
though our model somewhat improves after fine-
tuning, the translations remain inadequate in all
cases. In the third case, our model downright fails
to produce a coherent output. This shows that de-
spite improving BLEU score, naive domain adap-
tation by fine-tuning doesn’t solve the problem of
translating noisy text.

6 Language Modeling Experiments

In addition to our MT experiments, we report
character-level language modeling results on the
monolingual part of our dataset. We use the data
described in Section 3.5 as training and validation
sets. We evaluate the trained model on the source
side of our en-fr, fr-en and ja-en test sets
for English, French and Japanese respectively.

We report results for two models: a Kneser-
Ney smoothed 6-gram model (implemented with
KenLM) and an implementation of the AWD-
LSTM proposed in (Merity et al., 2018)19. We re-
port the Bit-Per-Character (bpc) counts in table 9.

19https://github.com/salesforce/
awd-lstm-lm
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6-gram AWD LSTM
dev test dev test

English 2.081 2.179 1.706 1.810
French 1.906 2.090 1.449 1.705
Japanese 5.003 5.497 4.801 5.225

Table 9: Language modeling scores

We intend these results to serve as a baseline for
future work in language modeling of noisy text in
either of those three languages.

7 Related work

Handling noisy text has received growing attention
among various language processing tasks due to
the abundance of user generated content on popu-
lar social media platforms (Crystal, 2001; Herring,
2003; Danet and Herring, 2007). These contents
are considered as noisy when compared to news
corpora which have been the main data source for
language tasks (Baldwin et al.; Eisenstein). They
pose several unique challenges because they con-
tain a larger variety of linguistic phenomena that
are absent in the news domain and that lead to
degraded quality when applying an model to out-
of-domain data (Ritter et al.; Luong and Manning,
2015). Additionally, they are live examples of the
Cmabrigde Uinervtisy (Cambridge University) ef-
fect, where state-of-the-art models become brittle
while human’s language processing capability is
more robust (Sakaguchi et al., 2017; Belinkov and
Bisk, 2018).

Efforts to address these challenges have been
focused on creating in-domain datasets and an-
notations (Owoputi et al.; Kong et al.; Blodgett
et al., 2017), and domain adaptation training (Lu-
ong and Manning, 2015). In MT, improvements
were obtained for SMT (Formiga and Fonollosa).
However, the specific challenges for neural ma-
chine translation have not been studied until re-
cently (Belinkov and Bisk, 2018; Sperber et al.;
Cheng et al., 2018). The first provides empirical
evidence of non-trivial quality degradation when
source sentences contain natural noise or syn-
thetic noise within words, and the last two explore
data augmentation and adversarial approaches of
adding noise efficiently to training data to improve
robustness.

Our work also contributes to recent advances in
evaluating neural machine translation quality with
regard to specific linguistic phenomena, such as

manually annotated test sentences for English to
French translation, in order to identify errors due
to specific linguistic divergences between the two
languages (Isabelle et al.), or automatically gener-
ated test sets to evaluate typical errors in English
to German translation (Sennrich). Our contribu-
tion distinguishes itself from this previous work
and other similar initiatives (Peterson, 2011) by
providing an open test set consisting of naturally
occurring text exhibiting a wide range of phenom-
ena related to noisy input text from contempora-
neous social media.

8 Conclusion

We proposed a new dataset to test MT models for
robustness to the types of noise encountered in nat-
ural language on the Internet. We contribute par-
allel training and test data in both directions for
two language pairs, English $ French and English
$ Japanese, as well as monolingual data in those
three languages. We show that this dataset con-
tains more noise than existing MT test sets and
poses a challenge to models trained on standard
MT corpora. We further demonstrate that these
challenges cannot be overcome by a simple do-
main adaptation approach alone. We intend this
contribution to provide a standard benchmark for
robustness to noise in MT and foster research on
models, dataset and evaluation metrics tailored for
this specific problem.
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Constantin, and Evan Herbst. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Associ-
ation for Computational Linguistics on Interactive
Poster and Demonstration Sessions, pages 177–180.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. A dependency parser for tweets.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1001–1012.

Mu Li, Yinggong Zhao, Dongdong Zhang, and Ming
Zhou. Adaptive development data selection for log-
linear model in statistical machine translation. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
662–670.

Marco Lui and Timothy Baldwin. langid.py: An off-
the-shelf language identification tool. In Proceed-
ings of the Association for Computational Linguis-
tics 2012 System Demonstrations, pages 25–30.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Proceedings of the In-
ternational Workshop on Spoken Language Transla-
tion.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing lstm lan-
guage models. International Conference on Learn-
ing Representations.

Antonio Valerio Miceli Barone, Barry Haddow, Ulrich
Germann, and Rico Sennrich. Regularization tech-
niques for fine-tuning in neural machine translation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1490–1495.

Paul Michel and Graham Neubig. 2018. Extreme adap-
tation for personalized neural machine translation.

Robert C. Moore and William Lewis. Intelligent selec-
tion of language model training data. In Proceed-
ings of the Association for Computational Linguis-
tics 2010 Conference Short Papers, pages 220–224.

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

552



Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
japanese morphological analysis. In The 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies (ACL-
HLT), pages 529–533.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. Improved part-of-speech tagging for online
conversational text with word clusters. Association
for Computational Linguistics.

Kay Peterson. 2011. Openmt12 evaluation.

Matt Post. 2018. A call for clarity in reporting bleu
scores. arXiv preprint arXiv:1804.08771.

Ofir Press and Lior Wolf. Using the output embedding
to improve language models. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 157–163.

R. Pryzant, Y. Chung, D. Jurafsky, and D. Britz. Jesc:
Japanese-english subtitle corpus. ArXiv e-prints.

Alan Ritter, Sam Clark, Oren Etzioni, et al. Named en-
tity recognition in tweets: an experimental study. In
Proceedings of the conference on empirical methods
in natural language processing, pages 1524–1534.
Association for Computational Linguistics.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2017. Robsut wrod reocgini-
ton via semi-character recurrent neural network. In
AAAI, pages 3281–3287.

Rico Sennrich. How grammatical is character-level
neural machine translation? assessing mt quality
with contrastive translation pairs. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 376–382.

Matthias Sperber, Jan Niehues, and Alex Waibel. To-
ward robust neural machine translation for noisy in-
put sequences. In Proceedings of the International
Workshop on Spoken Language Translation, pages
90–96.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. Winning argu-
ments: Interaction dynamics and persuasion strate-
gies in good-faith online discussions. In Proceed-
ings of the 25th international conference on world
wide web, pages 613–624. International World Wide
Web Conferences Steering Committee.

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen,
and Eiichiro Sumita. Instance weighting for neural
machine translation domain adaptation. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1483–1489.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Jiajun Zhang and Chengqing Zong. Exploiting source-
side monolingual data in neural machine translation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1535–1545.

553



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 554–558
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

SimpleQuestions Nearly Solved:
A New Upperbound and Baseline Approach

Michael Petrochuk⇤† Luke Zettlemoyer⇤

⇤Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA
†Allen Institute for Artificial Intelligence, Seattle WA

{mikep5, lsz}@cs.washington.edu

Abstract

The SimpleQuestions dataset is one of the
most commonly used benchmarks for studying
single-relation factoid questions. In this pa-
per, we present new evidence that this bench-
mark can be nearly solved by standard meth-
ods. First, we show that ambiguity in the data
bounds performance at 83.4%; many questions
have more than one equally plausible interpre-
tation. Second, we introduce a baseline that
sets a new state-of-the-art performance level at
78.1% accuracy, despite using standard meth-
ods. Finally, we report an empirical analysis
showing that the upperbound is loose; roughly
a quarter of the remaining errors are also not
resolvable from the linguistic signal. Together,
these results suggest that the SimpleQuestions
dataset is nearly solved.

1 Introduction

We present new evidence that the SimpleQues-
tions benchmark (Bordes et al., 2015) can be
nearly solved by standard methods. First, we
show that ambiguity in the data bounds perfor-
mance; there are often questions have more than
one equally plausible interpretation. Second, we
introduce a baseline that sets a new state-of-the-art
performance level, despite using standard meth-
ods. Finally, we report an empirical analysis
showing that the upperbound is loose.

The simple questions task involves mapping an
English question (e.g. “Who wrote Gulliver’s
travels?”) to an analogous Freebase (Bollacker
et al., 2008) query, used to answer the ques-
tion. The query consists of a Freebase rela-
tion (e.g. /film/film/story by) and subject (e.g.
090s 0 [gulliver’s travels]). To understand how we
might bound performance on the SimpleQuestions
dataset, our first contribution in this paper, con-
sider the following examples:

a. who wrote gulliver’s travels?
(film/film/story by, 090s 0 [gulliver’s travels,

TV miniseries])

b. Name a character from gullivers travels.
(book/book/characters, 0btc7 [
gulliver’s travels])

In example (a) the phrase “Gulliver’s travels”
is mapped to a TV miniseries, while in (b) it is
mapped to a book. This introduces an unintended
ambiguity, since either mapping is equally plau-
sible for both examples (i.e. both books and TV
miniseries have authors and characters). We intro-
duce a method for automatically identifying many
such ambiguities in the data, for both the entities
and relations, and show that performance is upper-
bounded at 83.4%.

Our second main contribution is a baseline that
sets a new state-of-the-art performance level, de-
spite using standard methods. Our approach in-
cludes (1) a CRF used to tag the mention of the
subject in a question and (2) a BiLSTM used to
classify the Freebase relation. Despite its simplic-
ity, this approach achieves 78.1% accuracy for pre-
dicting Freebase subject-relation queries, surpass-
ing all previous models.

Finally, we present an empirical error analy-
sis of this model which shows the upperbound
is loose and that there is likely not much more
than 4% of performance to be gained with fu-
ture work on the data. Together, these re-
sults suggest that the SimpleQuestions dataset is
nearly solved. Our code and pretrained models
are available at github.com/PetrochukM/
Simple-Question-Answering.

2 Background

Single-relation factoid questions (simple ques-
tions) are common in many settings (e.g. Mi-
crosoft’s search query logs (Yih et al., 2014) and
WikiAnswers web questions (Fader et al., 2013)).
The SimpleQuestions dataset is one of the most
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commonly used benchmarks for studying such
questions.

The Freebase knowledge graph (KG) pro-
vides the facts for answering the questions in
the SimpleQuestions dataset. It includes 3 bil-
lion triples of the form (subject, relation, ob-
ject) (e.g. [04b5zb (Fires Creek), location/lo-
cation/containedby, 0f80hy (Nantahala National
Forest)]). We denote such triples as (s, r, o).

The SimpleQuestions task is to rewrite ques-
tions into subject-relation pairs of the form (sub-
ject, relation), denoted in this paper as (s, r). Each
pair defines a graph query that can be used to
answer the corresponding natural language ques-
tion. The subject is a Freebase object with a
identifier called an MID (e.g. 04b5zb ). Free-
base objects also typically include one or more
string aliases (e.g. MID 04b5zb is named “Fires
Creek”), which we will use later when comput-
ing our upper bounds. The relation is an ob-
ject property (e.g. location/location/containedby)
defined by the Freebase ontology. For example,
the question “which forest is fires creek in” cor-
responds with the subject-relation pair (04b5zb
[Fires Creek], location/location/containedby). Fi-
nally, the SimpleQuestions task is evaluated on
subject-relation pair accuracy.

The SimpleQuestions dataset provides a set of
108,442 simple questions; each question is accom-
panied by a ground truth triple (s, r, o). This
dataset also provides two subsets of Freebase:
FB2M and FB5M.1

3 Dataset Ambiguity and Upperbound

The ambiguity in the SimpleQuestions dataset
likely comes from the way the data was created.
Annotators were shown a single Freebase triple
and asked to write a question. For example, given
any of the following triples:

• (0btc7 [Gulliver’s Travels, Book],
book/written work/author, o3 dj [Dean
Swift])

• (06znpjr [Gulliver’s Travels, American film],
film/film/written by, 03whnyn [Nicholas
Stroller])

1The FB2M and FB5M subsets of Freebase KG can com-
plete 7,188,636 and 7,688,234 graph queries respectively;
therefore, the FB5M subset is 6.9% larger than the FB2M
subset. More previous research has cited FB2M numbers than
FB5M; therefore, we report our numbers on FB2M.

Subject Description
0btc7 Gulliver’s Travels (Book)
090s 0 Gulliver’s Travels (TV miniseries)
06znpjr Gulliver’s Travels (American film)
02py9bj Gulliver’s Travels (French film)

Table 1: FB2M entities with the alias “gulliver’s trav-
els”

Relation Count
book/written work/author 132
film/film/written by 67
film/film/story by 9
. . . . . .

Table 2: SimpleQuestions dataset abstract predicate
“who wrote e?” relation count

• (06znpjr [Gulliver’s Travels, American film],
film/film/story by, o3 dj [Dean Swift])

The annotator might reasonably contribute the
question “who wrote gulliver’s travels?” However,
adding all of these pairs to the data is problematic.
Systems are evaluated on producing the correct
subject-relation pair, and cannot learn a determin-
istic mapping that would get these three examples
correct. In this section, we present a simple heuris-
tic method for finding many such instances of am-
biguity, and use it to upper bound performance on
this benchmark.

3.1 Approach
Given an example question q with the ground truth
(s, r, o), our goal is to determine the set of all other
subject-relation pairs that are equally supported by
the text in q.

We first determine a string alias a for the subject
by matching a phrase in q with a Freebase alias
for s, in our example yielding “gulliver’s travels”.
For 97% of questions q, some string alias a ex-
actly matched a question q phrase. We then find
all other Freebase entities that share this alias a
and add them to a set S, in our example S is the
subject column of Table 1.

We define an abstract predicate p (e.g. “who
wrote e?”) as q with alias a abstracted. We de-
termine the set of potential relations R as the re-
lations p co-occurs with in the SimpleQuestions
dataset, in our example R is the relation column
of Table 2.

Finally, if there exists a subject-relation pair
(s, r) 2 KG such that r 2 R ^ s 2 S we de-
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fine that as an accurate semantic interpretation of
q. q is unanswerable if there exists multiple valid
subject-relation pairs (s, r). In our example above,
the question is unanswerable because of the many
different subject, relation pairs that co-occur with
“gulliver’s travels” and “who wrote e?”

3.2 Results
We find that 33.9% of examples in the Simple-
Questions dataset are unanswerable. In these
cases, we can predict a majority baseline (i.e. al-
ways guess the most commonly seen Freebase en-
tity or relation), yielding an upperbound of 85.2%.

Finally, we also found that 1.8% of example
questions were noisy. For example, “Which book
is written about?” does not reference the corre-
sponding ground truth subject 01n7q (california).
We also consider these examples unanswerable,
yielding a final upperbound of 83.4%.

4 Baseline Model

Our second main contribution is a baseline that
sets a new state-of-the-art performance level, de-
spite using standard methods. Our approach in-
cludes (1) a CRF tagger to determine the subject
alias, and (2) a BiLSTM to classify the relation.

4.1 Approach
Given a question q (e.g. “who wrote gulliver’s
travels?”) our model must predict the correspond-
ing subject-relation pair (s, r). We predict (s, r)
with a pipeline that first runs top-k subject recog-
nition and then relation classification.

We make use of two learned distributions. The
subject recognition model P (a|q) ranges over text
spans A within the question q, in our example
A includes the correct subject “gulliver’s travels”.
This distribution is modeled with a CRF, as de-
fined in more detail below. The relation classifica-
tion model P (r|q, a) will be used to select a Free-
base relation r that matches q. The distribution
ranges over all relations in Freebase that co-occur
with a subject that is named a. It is modeled with
an LSTM, that encodes q, again as defined in more
detail below.

Given these distributions, we predict the final
subject-relation pair (s, r) as follows. First, we
determine the most likely subject alias a according
to P (a|q) that also matches a subject alias in the
KG. We define set S as all Freebase entities named
a, in our example S is the subject column of Table

1. Second, we define all potential relations R such
that 8(s, r) 2 KG{r 2 R ^ s 2 S}. Using the
relation classification model p(r|q, a), we predict
the most likely relation rmax 2 R.

Now, the answer candidates are subject-relation
pairs such that (s, rmax) 2 KG{r 2 R ^
s 2 S}. In our example question, if rmax is
film/film/story by then S includes both subjects
06znpjr (Gullivers Travels, American film) and
02py9bj (Gullivers Travels, French film). Be-
cause there is no explicit linguistic signal to dis-
ambiguate this choice, we pick the subject that co-
occurs most often with rmax in Freebase.

4.2 Model Details

Our approach requires two models, in this section
we cover training and configuring these models.

Top-K Subject Recognition We model top-k
subject recognition P (a|q) using a linear-chain
conditional random field tagger (CRF) with a con-
ditional log likelihood loss objective. k candidates
are inferred with the top-k Viterbi algorithm.

Our model is trained on a dataset of questions
each with their corresponding subject alias span
delimited with IO tagging. The gold standard sub-
ject alias spans are determined by heuristically
matching a phrase in the question with a Freebase
alias for the subject.

All hyperparameters are hand tuned and then a
limited set are further tuned with grid search to in-
crease validation accuracy. In total we evaluated
at most 100 hyperparameter configurations. The
word embeddings are initialized with GloVe (Pen-
nington et al., 2014) and frozen. Adam (Kingma
and Ba, 2014), initialized with a learning rate of
0.001, is employed to optimize the model weights.
Finally, we halve the learning rate if the validation
accuracy has not improved in 3 epochs.

Relation Classification The relation classifica-
tion distribution P (r|q, a) is modeled with a one
layer BiLSTM batchnorm softmax classifier. The
BiLSTM encodes an abstract predicate string (e.g.
“who wrote e?”), as described in Section 4.1. The
last LSTM output vector is provided as input to
an output block consisting of batch normalization,
ReLU, and softmax.

All hyperparameters are hand tuned and then a
limited set are further tuned with Hyperband (Li
et al., 2017) to increase validation accuracy. Hy-
perband is allowed at most 30 epochs per model
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Previous Work Acc.
Random guess (Bordes et al., 2015) 4.9
Memory NN (Bordes et al., 2015) 61.6
Attn. LSTM (He and Golub, 2016) 70.9
GRU (Lukovnikov et al., 2017) 71.2
BiGRU-CRF & BiGRU 73.7
(Mohammed et al., 2017)
BiLSTM & BiGRU 74.9
(Mohammed et al., 2017)
BiGRU & BiGRU (Dai et al., 2016) 75.7
CNN & Attn. CNN & 76.4
BiLSTM-CRF (Yin et al., 2016)
HR-BiLSTM & CNN & 77.0
BiLSTM-CRF (Yu et al., 2017)
BiLSTM-CRF & BiLSTM (Ours) 78.1

Table 3: Summary of past results on the SimpleQues-
tions benchmark along with the neural models em-
ployed. Note that an “&” indicates multiple neural
models.

and a total of 1000 epochs. In total we evalu-
ated at most 500 hyperparameter configurations.
The word embeddings are initialized with Fast-
Text (Bojanowski et al., 2017) and frozen. We
use the AMSGrad variant of Adam (Reddi et al.,
2018), initialized with an learning rate of 0.001.
Finally, we double the batch size (Smith et al.,
2017) if the validation accuracy has not improved
in 3 epochs.

4.3 Results
Finally, we present our results on the SimpleQues-
tions test set.

SimpleQuestions Task Our model achieves
78.1% accuracy on the SimpleQuestions test set,
a new state-of-the-art without ensembling or data
augmentation (Table 3). These results suggest that
relatively standard architectures work well when
carefully tuned, and approach the level set by our
upper bound earlier in the paper. This further con-
firms the results of Mohammed et al. 2017.

Further Qualitative Analysis We also analyze
the remaining errors, to point toward directions for
future work.

In Section 3, we showed that questions can pro-
vide equal evidence for multiple subject-relation

1Türe and Jojic 2017 reported a 86.8% accuracy but we
and Mohammed et al. 2017 have not been able to replicate
their results. Wang et al. 2017 scored 77.5% but removed
0.5% of the test examples.

pairs. To remove this ambiguity, we count any
of these options as correct, and our performance
jumps to 91.5%.

The remaining 8.5% error comes from a number
of sources. First, we find that 1.9% of examples
were incorrect due to noise, as described in Sec-
tion 3. To better understand the remaining 6.5%
gap, we do an empirical error analysis on a sample
of 50 negative examples.

First we found that for 14 of 50 cases the
question provided equal linguistic evidence for
both the ground truth options and the predicted
subject-relation pair, similar to the dataset am-
biguity found in Section 3, suggesting that our
upper bound is loose. We note that Section 3
did not cover all possible question-subject-relation
pair ambiguities. The approach relied on exact
string matching to discover ambiguity; therefore,
missing other paraphrases. For example, the ab-
stract predicate “what classification is e” had more
examples than “what classification is the e” al-
lowing our approach to programmatically define
more subject-relation pair ambiguities for the for-
mer predicate than the latter.

The remaining 36 of 50 cases were linguistic
mistakes by our model. Among the 36 cases, we
identified these error cases:

• Low Shot (16 of 36) The relation label was
seen in the training data less than 10 times.

• Span Identification (14 of 36) The subject
span was incorrectly labeled.

• Noise (2 of 36) The question did not make
grammatical sense.

Together, this error analysis shows that the up-
perbound is loose. There is likely not much more
than 4% of performance to be gained with future
work on the data.

5 Conclusions and Future Work
The SimpleQuestions dataset is one of the most
commonly used benchmarks for studying single-
relation factoid questions. In this paper, we pre-
sented new evidence to suggest that this bench-
mark can be nearly solved by standard methods.
These results suggest there is likely not much more
than 4% to be gained with future work on the data.

Finally, other KG (e.g. Freebase) query datasets
should consider providing a set of correct subject-
relation pairs when there is ambiguity in the lin-
guistic input.
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Abstract

We formalize a new modular variant of current
question answering tasks by enforcing com-
plete independence of the document encoder
from the question encoder. This formulation
addresses a key challenge in machine compre-
hension by requiring a standalone representa-
tion of the document discourse. It addition-
ally leads to a significant scalability advantage
since the encoding of the answer candidate
phrases in the document can be pre-computed
and indexed offline for efficient retrieval. We
experiment with baseline models for the new
task, which achieve a reasonable accuracy but
significantly underperform unconstrained QA
models. We invite the QA research commu-
nity to engage in Phrase-Indexed Question An-
swering (PIQA, pika) for closing the gap. The
leaderboard is at: nlp.cs.washington.
edu/piqa

1 Introduction

Extractive question answering (QA) is the task of
selecting an answer phrase (span) to a question
given an evidence document. Due to the easi-
ness of evaluation (compared to generative QA)
and the fine-grainess of the answer (compared to
sentence-level QA), it has become one of the most
popular QA tasks, driven by massive new datasets
such as SQuAD (Rajpurkar et al., 2016) and Triv-
iaQA (Joshi et al., 2017). Current QA models
heavily rely on explicitly learning the interaction
between the evidence document and the question
using neural attention mechanisms (Wang and
Jiang, 2017; Xiong et al., 2017; Seo et al., 2017;
Lee et al., 2016, inter alia), in which the model
is fully aware of the question before or as it reads
the document. As a result, despite significant ad-
vances, they have not led to the standalone repre-
sentation of document discourse which is never-

⇤Most work done during internship with Google AI.

Barack Obama …

… (1961-present …

… 44th President …

… United States.

Who is the 
44th President 
of the U.S.?Nearest 

neighbor

“Barack Obama (1961-present) was the 44th President of the United States.”

When was 
Obama born?

Index vectors Query vectorsAnswer candidates Questions

Document encoder Question encoder

Figure 1: PIQA task for a short context sentence.

theless a key goal of research in reading compre-
hension. Furthermore, QA models that condition
the document representation on a question have
the practical scalability downside that the entire
model should be re-applied on the same document
for every question.

In this paper, we formalize a modular variant
of the QA task, Phrase Indexed Question Answer-
ing (PIQA), that enforces complete independence
between document encoder and question encoder
(Figure 1). In PIQA, all documents are processed
independently of any question to generate phrase
index vectors (blue nodes in the figure) for each
answer candidate (left boxes in the figure). Sim-
ilarly, the questions are independently mapped to
query vectors (red nodes in figure). Then, at in-
ference time, the answer is obtained by retrieving
the nearest indexed phrase vector to the query vec-
tor. Hence the algorithms aimed at tackling PIQA
have the inherent benefit of modularity and scala-
bility compared to current QA systems.

The task setup is analogous to how documents
or sentences are retrieved in modern search en-
gines via similarity search algorithms (Shrivastava
and Li, 2015). Nevertheless, there is a key dis-
tinction that search engines index each document
by its content, while PIQA requires one to index
each phrase in documents by its context.

We formally define the PIQA problem and
provide baseline models for the new task. Our
experiments show that the constraint introduced
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by PIQA leads to meaningful standalone docu-
ment representations and practical scalability ad-
vantage, demonstrating the significance of the new
task. Moreover, there is still a large gap between
the baselines and the unconstrained state of the art,
showing that the task is yet far from being solved.
We have set up a leaderboard1for PIQA challenge
and invite the research community to participate.
We currently support SQuAD and plan to expand
to other datasets as well.

2 Related Work
Reading comprehension. Massive reading
comprehension question answering datasets (Her-
mann et al., 2015; Hill et al., 2016; Dhingra et al.,
2017; Dunn et al., 2017) have driven a large
number of successful neural approaches (Kadlec
et al., 2016; Hu et al., 2017, inter alia). Choi et al.
(2017); Chen et al. (2017); Clark and Gardner
(2017); Min et al. (2018) tackled large-scale QA
by using a fast, coarse model (e.g. TF-IDF) to
retrieve few documents or sentences and then
using a slower, accurate model to obtain the
answer. Salant and Berant (2018) proposed
to minimize (but not prohibit) the influence of
question when modeling the document. Similarly
to ours, Lee et al. (2016) proposed to explicitly
learn the representation for each answer candidate
(phrase) in the document, but it was conditioned
(dependent) on the question.
Sentence retrieval. A closely related task to
ours is that of retrieving a sentence/paragraph in
a corpus that answers the question (Tay et al.,
2017). A comprehensive survey for neural ap-
proaches in information retrieval literature is dis-
cussed in Mitra and Craswell (2017). We note that
our problem is focused on phrasal answer extrac-
tion, which presents a unique challenge over sen-
tence retrieval—the need for context-based repre-
sentation as opposed to the content-based repre-
sentation in the sentence-retrieval literature.
Language representation. Recently there has
been a growing interest in developing natural
language representations that can be transferred
across tasks (Vendrov et al., 2016; Wieting et al.,
2016; Conneau et al., 2017, inter alia). In
particular, SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2017) encourage archi-
tectures that first encode the hypothesis and the
premise independently before a comparator neu-

1nlp.cs.washington.edu/piqa

ral network is applied. Our proposed problem
shares similar traits but has a stronger constraint
that only inner product comparison is allowed and
one needs to model phrases instead of complete
sentences.

3 Phrase-Indexed Question Answering

Extractive question answering is the task of ob-
taining the answer â to a question Q = {q1 . . . qn}
given an evidence document D = {d1 . . . dm},
where the answer â = (s, e) indicates the start
and end of a span in the document. The task is
often formulated as learning the probabilistic dis-
tribution of the answer given the question and the
document. In existing literature (Section 2), the
distribution is mainly featurized by Pr(a|Q, D) /
exp(F✓(Q, D, a)) where F✓ could be any real-
valued scoring function parameterized by ✓. Once
✓ is learned, the prediction â is obtained by

â = argmax
a

F✓(Q, D, a). (1)

So far, most competitive designs of F✓(Q, D, a)
make use of attention connections between the
words in Q and D. As a result, these models can-
not yield a query independent representation of the
document D. It is subsequently not possible to
independently assess the document understanding
capability of the model. Furthermore, F✓(Q, D, a)
needs to be re-computed for the entire document
for every new question. We believe that this inef-
ficiency precludes all current models as the candi-
dates for end-to-end QA systems.

We propose a new task—Phrase-Indexed Ques-
tion Answering (PIQA)—that addresses these is-
sues. We enforce the decomposability of F✓

into two exclusive functions G✓(Q), H✓(D, a) 2
R

k. The answer distribution is then modeled by
Pr(a|Q, D) / exp(G✓(Q) • H✓(D, a)), where •
is the inner product. The prediction is obtained by

â = argmax
a

G✓(Q) • H✓(D, a). (2)

In this setting, the document encoder H✓ learns
models the document independently of the ques-
tion. Successful question answering models that
follow the structure of PIQA will have two im-
portant advantages over current QA models: full
document comprehension and scalablity.

Full document comprehension. Language un-
derstanding ability is widely associated with learn-
ing a good standalone representation of text (or its
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components such as phrases) independent of the
end task (Bowman et al., 2015). Under PIQA con-
straints, the document encoder H✓ learns the rep-
resentation of the answer candidate phrases a in
the document D independent of the question. In
order to correctly answer questions, these phrase
representations (index vectors) need to correctly
encode their meaning with respect to their con-
text. Therefore, PIQA constraint enforces eval-
uating research in document comprehension and
phrase representation learning.

Scalability. Models that adhere to the PIQA
constraint only need to be run once for each docu-
ment, regardless of the number of questions asked.
To answer a question, the model then just needs to
encode the question and compare it to each of the
answer candidates via the inner product in Equa-
tion 2. Implemented naively, computing a single
inner product for each answer candidate is more
efficient than building a new document encoding;
after the documents are pre-encoded, Equation 2
is O(k) time per word where k is the vector size
(most neural models require O(k2) per word for
matrix multiplications).

More importantly, PIQA also permits an ap-
proximate solution in sublinear time using asym-
metric locality-sensitive hashing (aLSH) (Shrivas-
tava and Li, 2014, 2015), through which Equa-
tion 2 can be approximated for N answer candi-
dates with O(kN⇢ log N) time, where ⇢ < 1 is a
function of the approximation factor and the prop-
erties of the hash functions. We argue that this
type of approach will be essential for the develop-
ment of real world QA systems, where the number
of potential answers N is extremely large.

4 Baseline Models

We introduce several baselines for PIQA that are
motivated by related literature.

For all (neural) baselines, we represent the
words in D and Q with one of three embed-
ding mechanisms: CharCNN (Kim, 2014) +
GloVe (Pennington et al., 2014), and ELMo (Pe-
ters et al., 2018). We follow the majority
of the related literature and apply bidirectional
LSTMs (Hochreiter and Schmidhuber, 1997) to
these embeddings to build the context-aware rep-
resentations of the document D = {d1 . . .dm}
and question Q = {q1 . . .qn}, where the forward
& backward LSTM outputs are concatenated to
get a single word representation, i.e. di,qi 2 R

2k

where k is the hidden state size of LSTMs.
PIQA disallows cross-attention between docu-

ment and question. However, we can still bene-
fit from self-attention, which has become crucial
for machine translation (Vaswani et al., 2017) and
QA (Huang et al., 2018; Yu et al., 2018). In all
of our baselines, each variable-length question is
collapsed into a fixed length vector via the sum
qSA =

P
i uiqi where u = {u1 . . . un} is a vec-

tor containing a single weight for each word in
the question. Similarly, we experiment with doc-
ument side self attention to represent each docu-
ment word dj as a weighted sum of itself and all
neighboring words dSA

j =
P

i h
j
idj . The weight

vectors u and hj are calculated as

u = softmaxi(w
>qi)

hj = softmaxi(R✓(D, j)>K✓(D, i))

where R✓, and K✓ are trainable neural networks
with the same ouptut size, and w 2 R

2k is a train-
able weight vector. We use independent BiLSTMs
with hidden state size k (i.e. the output size is 2k)
to model both R✓ and K✓. That is, R✓(D, j) is
the j-th output of BiLSTM on top of D, and we
similarly define K✓ with unshared parameters.

For all (neural) baselines, the question is rep-
resented using the concatenation of two copies
of qSA, one that should have high inner product
with the vector for the answer’s start span and an-
other that should have high inner product with the
vector for the answer’s end. Thus, Equation 2’s
G✓(Q) = [qSA

s ,qSA
e ] where the subscripts s (start)

and e (end) imply that different sets of parameters
were used. Now we define several baselines.

LSTM baseline. An answer candidate a =
(s, e) is represented using the LSTM outputs at
its endpoints: from Equation 2, H✓(D, (s, e)) =
[ds,de] 2 R

4k and G✓(Q) = [qSA
s ,qSA

e ] 2 R
4k.

LSTM+SA baseline. The LSTM outputs are
augmented with the endpoint representations that
come out of the document’s self-attention (SA):
H✓(D, (s, e)) = [ds,dSA

s ,de,dSA
e ] 2 R

8k and
G✓(Q) = [qSA

s1 ,qSA
s2 ,qSA

e1 ,qSA
e2 ] 2 R

8k.

TF-IDF. We lastly include a purely TF-IDF-
based model, where each answer candidate phrase
is associated with a bag of neighbor words within
a distance of 7. Then the BOW vector is normal-
ized via TF-IDF and indexed. When the query
comes in, its TF-IDF vector is queried on the in-
dexed phrases to yield the answer.
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Constraint Model F1 (%) EM (%)

PI

TF-IDF 15.0 3.9
LSTM 57.2 46.8
LSTM+SA 59.8 49.0
LSTM+ELMo 60.9 50.9
LSTM+SA+ELMo 62.7 52.7

None Rajpurkar et al. (2016) 51.0 40.0
Yu et al. (2018) 89.3 82.5

Table 1: Performance on SQuAD dev set with the
PIQA constraint (top), and without the constraint (bot-
tom). See Section 4 for the description of the terms.

For training the (neural) models, we minimize
the negative log probability of getting the cor-
rect answer: the loss function for each example
(D, Q, a⇤) is L(✓) = � log Pr(a⇤|D, Q) where
a⇤ is the correct answer.

5 Experiments

We impose the independence restrictions from
PIQA on the Stanford Question Answering
Dataset2. We only consider answer spans with
length  7. We use the hidden state size (k) of
128, which results in a 512D (4k) and 1024D (8k)
vector for each phrase in LSTM and LSTM+SA,
respectively. The default embedding model is
CharCNN concatenated with 200D GloVe, with
an option to append ELMo vectors following the
same setup for SQuAD experiments discussed
in Peters et al. (2018). We use a batch size of 64
and train for 20 epochs with the default Adam op-
timizer (Kingma and Ba, 2015), and take the best
model on the validation set during training.

Results. Table 1 shows the results for the PIQA
baselines (top) and the unconstrained state of the
art (bottom). First, the TF-IDF model performs
poorly, which signifies the limitations of tradi-
tional document retrieval models for the task. Sec-
ond, we note that the addition of self-attention
makes a significant impact on results, improving
F1 by 2.6%. Next, we see that adding ELMo gives
3.7% and 2.9% improvement on F1 for LSTM and
LSTM+SA models, respectively. Lastly, the best
PIQA baseline model is 11.7% higher than the
first (unconstrained) baseline model (Rajpurkar
et al., 2016) and 26.6% lower than the state of the
art (Yu et al., 2018). This gives us a reasonable
starting point of the new task and a significant gap

2PIQA paradigm can be also extended to other extractive
QA datasets.

- According to the American Library Association, this makes. . .
- . . . tasked with drafing a European Charter of Human Rights,. . .

- The LM engines were successfully test-fired and restarted, . . . .
- Steam turbines were extensively applied. . .

- . . . primarily accomplished through the ductile stretching and thinning.
- . . . directly derived from the homogeneity or symmetry of space. . .

Table 2: Most similar phrase pairs from disjoint sets of
documents. Bold print is the phrase, and non-bold is its
context.

to close for future work.

Phrase representations. Since PIQA models
encode all answer candidates into the same space,
we expect similar answer candidates to have high
inner products with one another. Table 2 shows
pairs of answer candidates that come from differ-
ent documents in SQuAD, but that have similar
encodings (high inner product). We observe that
phrase representations learned through the PIQA
task capture different interesting characteristics of
the phrases. In all three rows, we can see that the
phrase pairs seem to fit into natural categories: na-
tional, or multi-national organizational constructs;
mechanical engines; and mechanical properties,
respectively. This suggests that the model has
learned interesting typing information above the
word level. The second and third rows also indi-
cate that the model has learned a rich representa-
tion of context. This is particularly obvious in the
third row where the two phrases are lexically dis-
similar, but preceded by the similar contexts ‘pri-
marily accomplished through’ and ‘directly de-
rived from’. We believe that this analysis, while
not complete, points toward exciting future lines
of work in learning highly contextualized phrase
representations through question answering.

Scalability. PIQA can also gain massive execu-
tion time speedups once the documents are pre-
encoded: in our simple benchmark on a consumer-
grade CPU and NumPy (for LSTM+SA model,
1024D vectors), one can easily perform exact
search over 1 million document words per second.
BiDAF (Seo et al., 2017), an open-sourced and rel-
atively light QA model reaching 77.5% F1 (66.5%
EM), can process less than 1k document words per
second with an equivalent computing power (after
pre-encoding the document as much as possible),
which is more than 1,000x slower.3

3The difference will be even higher with a dedicated sim-
ilarity search package such as Faiss (Johnson et al., 2017) or
approximate search (Section 3).
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Figure 2: F1 score versus number of vectors per word
for LSTM+SA. Answer candidates have been filtered
with varying threshold on an independent classifier
learned on the candidate representations.

It is also important to consider the memory
cost for storing a vector representation of each
of the answer candidates. We train an indepen-
dent single-layer perceptron classifier that pre-
dicts whether the phrase encoding is likely to be
a good one. By varying a threshold on the score
assigned by this classifier, we can filter answer
candidates prior to storage. Figure 2 illustrates
the trade-off between accuracy and memory (mea-
sured in mean number of vectors per document
word) resulting from this filtering procedure for
the LSTM+SA model. We observe that 1.3 vectors
(candidates) per word on average reaches > 98%
of the model’s F1 accuracy. This is equivalent to
5.2 KB per word with 1024D (4 KB) float vectors,
or around 15 TB for the entire English Wikipedia
(3 billion words). Future work will also involve
creating a better classifier (i.e. improving the
trade-off curve in Figure 2) for determining which
phrase vectors to store.

6 Conclusion and Future Work

We introduced Phrase-Indexed Question Answer-
ing (PIQA), a new variant of the extractive ques-
tion answering task that requires documents and
question encoded completely independently and
that they only interact each other via inner prod-
uct. We argued that building a question-agnostic
document encoder for question answering should
be an important consideration for those in the QA
community with the research goal of learning a
model that reads and comprehends documents.
Furthermore, the imposed constraint of the task
implies a sublinear scalability benefit. Given that
SQuAD models have recently outperformed hu-

mans, PIQA formulation motivates a new chal-
lenge for which we hope that the community’s
effort gradually closes the gap between our con-
strained baselines and the unconstrained models.
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Abstract

Recently, open-domain question answering
(QA) has been combined with machine com-
prehension models to find answers in a large
knowledge source. As open-domain QA re-
quires retrieving relevant documents from text
corpora to answer questions, its performance
largely depends on the performance of doc-
ument retrievers. However, since traditional
information retrieval systems are not effective
in obtaining documents with a high probabil-
ity of containing answers, they lower the per-
formance of QA systems. Simply extracting
more documents increases the number of ir-
relevant documents, which also degrades the
performance of QA systems. In this paper, we
introduce Paragraph Ranker which ranks para-
graphs of retrieved documents for a higher an-
swer recall with less noise. We show that rank-
ing paragraphs and aggregating answers us-
ing Paragraph Ranker improves performance
of open-domain QA pipeline on the four open-
domain QA datasets by 7.8% on average.

1 Introduction

With the introduction of large scale machine
comprehension datasets, machine comprehension
models that are highly accurate and efficient in
answering questions given raw texts have been
proposed recently (Seo et al., 2016; Xiong et al.,
2016; Wang et al., 2017c). While conventional
machine comprehension models were given a
paragraph that always contains an answer to a
question, some researchers have extended the
models to an open-domain setting where rele-
vant documents have to be searched from an ex-
tremely large knowledge source such as Wikipedia
(Chen et al., 2017; Wang et al., 2017a). How-
ever, most of the open-domain QA pipelines de-
pend on traditional information retrieval systems

⇤Corresponding author

which use TF-IDF rankings (Chen et al., 2017;
Wang et al., 2017b). Despite the efficiency of
the traditional retrieval systems, the documents re-
trieved and ranked at the top by such systems of-
ten do not contain answers to questions. However,
simply increasing the number of top ranked doc-
uments to find answers also increases the num-
ber of irrelevant documents. The tradeoff between
reading more documents and minimizing noise is
frequently observed in previous works that de-
fined the N number of top documents as a hyper-
parameter to find (Wang et al., 2017a).

In this paper, we tackle the problem of ranking
the paragraphs of retrieved documents for improv-
ing the answer recall of the paragraphs while fil-
tering irrelevant paragraphs. By using our simple
but efficient Paragraph Ranker, our QA pipeline
considers more documents for a high answer re-
call, and ranks paragraphs to read only the most
relevant ones. The work closest to ours is that of
Wang et al. (2017a). However, whereas their main
focus is on re-ranking retrieved sentences to maxi-
mize the rewards of correctly answering the ques-
tions, our focus is to increase the answer recall of
paragraphs with less noise. Thus, our work is com-
plementary to the work of Wang et al. (2017a).

Our work is largely inspired by the field of in-
formation retrieval called Learning to Rank (Liu
et al., 2009; Severyn and Moschitti, 2015). Most
learning to rank models consist of two parts: en-
coding networks and ranking functions. We use
bidirectional long short term memory (Bi-LSTM)
as our encoding network, and apply various rank-
ing functions proposed by previous works (Sev-
eryn and Moschitti, 2015; Tu et al., 2017). Also, as
the time and space complexities of ranking para-
graphs are much larger than those of ranking sen-
tences (Severyn and Moschitti, 2015), we resort to
negative sampling (Mikolov et al., 2013) for an ef-
ficient training of our Paragraph Ranker.
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Figure 1: Our proposed open-domain QA pipeline with Paragraph Ranker

Our pipeline with Paragraph Ranker improves
the exact match scores on the four open-domain
QA datasets by 7.8% on average. Even though
we did not further customize Document Reader
of DrQA (Chen et al., 2017), the large improve-
ment in the exact match scores shows that future
researches would benefit from ranking and read-
ing the more relevant paragraphs. By a qualitative
analysis of ranked paragraphs, we provide addi-
tional evidence supporting our findings.

2 Open-Domain QA Pipeline

Most open-domain QA systems are constructed
as pipelines that include a retrieval system and
a reader model. We additionally built Paragraph
Ranker that assists our QA pipeline for a better
paragraph selection. For the retrieval system and
the reader model, we used Document Retriever
and Document Reader of Chen et al. (2017).1 The
overview of our pipeline is illustrated in Figure 1.

2.1 Paragraph Ranker
Given N number of documents retrieved from
Document Retriever, we assume that each docu-
ment contains K number of paragraphs on aver-
age. Instead of feeding all NK number of para-
graphs to Document Reader, we select only M
number of paragraphs using Paragraph Ranker.
Utilizing Paragraph Ranker, we safely increase N
for a higher answer recall, and reduce the number
of paragraphs to read by selecting only top ranked
paragraphs.

Given the retrieved paragraphs Pi where i
ranges from 1 to NK, and a question Q, we en-

1https://github.com/facebookresearch/DrQA

code each paragraph and the question using two
separate RNNs such as Bi-LSTM. Representations
of each paragraph and the question are calculated
as follows:

pi
h = BiLSTMp(E(Pi)) qh = BiLSTMq(E(Q))

where BiLSTM(·) returns the concatenation of the
last hidden state of forward LSTM and the first
hidden state of backward LSTM. E(·) converts to-
kens in a paragraph or a question into pretrained
word embeddings. We use GloVe (Pennington
et al., 2014) for the pretrained word embeddings.

Once each paragraph and the question are rep-
resented as pi

h and qh, we calculate the probabil-
ity of each paragraph to contain an answer of the
question as follows:

p(Pi|Q) =
1

1 + e�s(pi
h,qh)

where we have used similarity function s(·, ·) to
measure the probability of containing answer to
the question Q in the paragraph Pi. While Wang
and Jiang (2015) adopted high capacity models
such as Match-LSTM for measuring the similarity
between paragraphs and questions, we use much
simpler scoring functions to calculate the similar-
ity more efficiently. We tested three different scor-
ing functions: 1) the dot product of pi

h and qh,
2) the bilinear form pi

h
T
Wqh, and 3) a multilayer

perceptron (MLP) (Severyn and Moschitti, 2015).
While utilizing MLP takes much more time than
the other two functions, recall of MLP was similar
to that of the dot product. Also, as recall of the bi-
linear form was worse than that of the dot product,
we use the dot product as our scoring function.
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Due to the large size of NK, it is difficult
to train Paragraph Ranker on all the retrieved
paragraphs.2 To efficiently train our model, we
use a negative sampling of irrelevant paragraphs
(Mikolov et al., 2013). Hence, the loss function of
our model is as follows:

J(⇥) = � log p(Pi|Q)

� Ek⇠pn [log(1 � p(Pk|Q))]

where k indicates indexes of negative samples that
do not contain the answer, and ⇥ denotes trainable
parameters of Paragraph Ranker. The distribution
of negative samples are defined as pn. We use
the distribution of all the Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016)
training paragraphs as pn .

Based on the rank of each paragraph from Para-
graph Ranker and the rank of source document
from Document Retriever, we collect top M para-
graphs to read. We combine the ranks by the mul-
tiplication of probabilities p(Pi|Q) and p̃(Di|Q)
to find most relevant paragraphs where p̃(Di|Q)
denotes TF-IDF score of a source document Di.

2.2 Answer Aggregation
We feed M paragraphs to Document Reader to
extract M answers. While Paragraph Ranker in-
creases the probability of including answers in the
top M ranked paragraphs, aggregation step should
determine the most probable answer among the M
extracted answers. Chen et al. (2017) and Clark et
al. (2017) used the unnormalized answer proba-
bility from the reader. However, as the unnormal-
ized answer probability is very sensitive to noisy
answers, Wang et al. (2017b) proposed a more so-
phisticated aggregation methods such as coverage-
based and strength-based re-rankings.

In our QA pipeline, we incorporate the
coverage-based method by Wang et al. (2017b)
with paragraph scores from Paragraph Ranker. Al-
though strength-based answer re-ranking showed
good performances on some datasets, it is too
complex to efficiently re-rank M answers. Given
the M candidate answers [A1, ..., AM ] from each
paragraph, we aggregate answers as follows:

Â = arg max
Ai

p(Ai|Q)

= arg max
Ai

p̃(Ai|Pi, Q)↵p(Pi|Q)� p̃(Di|Q)�

(1)
2NK ⇡ 350 when N = 5 in SQuAD QA pairs.

where p̃(Ai|Pi, Q) denotes the unnormalized an-
swer probability from a reader given the paragraph
Pi and the question Q. Importance of each score
is determined by the hyperparamters ↵, �, and �.
Also, we add up all the probabilities of the dupli-
cate candidate answers for the coverage-based ag-
gregation.

3 Experiments

3.1 Datasets
We evaluate our pipeline with Paragraph Ranker
on the four open-domain QA datasets. Wang et
al. (2017a) termed SQuAD without relevant para-
graphs for the open-domain QA as SQuADOPEN,
and we use the same term to denote the open-
domain setting SQuAD. CuratedTrec (Baudiš
and Šedivỳ, 2015) was created for TREC open-
domain QA tasks. WebQuestions (Berant et al.,
2013) contains questions from Google Suggest
API. WikiMovies (Miller et al., 2016) contains
questions regarding movies collected from OMDb
and the MovieLens database. We pretrain Docu-
ment Reader and Paragraph Ranker on the SQuAD
training set.3

3.2 Implementation Details
Paragraph Ranker uses 3-layer Bi-LSTM net-
works with 128 hidden units. On SQuADOPEN
and CuratedTrec, we set ↵, �, and � of Paragraph
Ranker to 1. Due to the different characteristics
of questions in WebQuestion and WikiMovies, we
find ↵, �, and � based on the validation QA pairs
of the two datasets. We use N = 20 for the num-
ber of documents to retrieve and M = 200 for
the number of paragraphs to read for all the four
datasets. We use Adamax (Kingma and Ba, 2014)
as the optimization algorithm. Dropout is applied
to LSTMs and embeddings with p = 0.4.

3.3 Results
In our experiments, Paragraph Ranker ranks
only paragraphs, and answers are determined by
unnormalized scores of the answers. Paragraph
Ranker + Answer Agg. sums up the unnormal-
ized probabilities of duplicate answers (i.e., � =
� = 0). Paragraph Ranker + Full Agg. aggre-
gates answers using Equation 1 with the coverage-
based aggregation.

3On SQuAD development set, pretrained Document
Reader achieves 69.1% EM, and pretrained Paragraph Ranker
achieves 96.7% recall on the top 5 paragraph .
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SQuADOPEN CuratedTrec WebQuestions WikiMovies

Model EM Recall EM Recall EM Recall EM Recall

DrQA (Chen et al., 2017) 27.1 77.8 19.7 86.0 11.8 74.4 24.5 70.3
DrQA + Fine-tune 28.4 - 25.7 - 19.5 - 34.3 -
DrQA + Multitask 29.8 - 25.4 - 20.7 - 36.5 -
R3 (Wang et al., 2017a) 29.1 - 28.4 - 17.1 - 38.8 -

Par. Ranker 28.5 83.1 26.8 91.4 18.0 70.7 33.4 79.7
Par. Ranker + Answer Agg. 28.9 - 28.2 - 18.4 - 33.9 -
Par. Ranker + Full Agg. 30.2 - 35.4 - 19.9 - 39.1 -

Table 1: Open-domain QA results on four QA datasets. Best scores including those of the Multitask
model are underlined. Bold texts denote best scores excluding those of the Multitask model.

Question #1 What position does Von Miller play? (SQuADOPEN)
Answer linebacker, linebacker, linebacker

Doc. Retriever (Top-1 document) Ferdinand Miller, from 1875 von Miller ... was an ore caster, ...
Miller was born and died in Munich. He was the son of the artisan and First ...
Ferdinand was simultaneously ennobled. Ferdinand’s younger brother was the ...

Par. Ranker (Top-1 paragraph) The two teams exchanged field goals ... with a 48-yarder by ...
(Top-2 paragraph) Luck was strip-sacked by Broncos’ linebacker Von Miller ...
(Top-3 paragraph) Broncos’ linebacker Von Miller forced a fumble off RGIII ...

Table 2: Top ranked paragraphs by Paragraph Ranker based on SQuADOPEN

In Table 1, we summarize the performance
and recall of each model on open-domain QA
datasets. We define recall as the probability of
read paragraphs containing answers. While Re-
inforced Reader-Ranker (R3) (Wang et al., 2017a)
performs better than DrQA on the three datasets
(SQuADOPEN, CuratedTrec, WikiMovies), Para-
graph Ranker + Full Agg. outperforms both
DrQA and R3. Paragraph Ranker + Full Agg.
achieved 3.78%, 24.65%, 2.05%, 0.77% relative
improvements in terms of EM on SQuADOPEN,
CuratedTrec, WebQuestion, and WikiMovies, re-
spectively (7.8% on average). It is noticeable
that our pipeline with Paragraph Ranker + Full
Agg. greatly outperforms DrQA + Multitask in
SQuADOPEN and CuratedTrec.

3.4 Analysis

In Table 2, we show 3 random paragraphs of the
top document returned by Document Retriever,
and the top 3 paragraphs ranked by Paragraph
Ranker from the top 40 documents. As Document
Retriever largely depends on matching of query to-
kens with document tokens, the top ranked doc-
ument is usually the document with most tokens

matching the query. However, Question 1 includes
the polysemy of the word “play” which makes
it more difficult for Document Retriever to per-
form effectively. Our Paragraph Ranker well un-
derstands that the question is about a sports player
not a musician. The top 1-3 paragraphs for the
second question came from the 30th, 7th, and 6th
documents, respectively, ranked by Document Re-
triever. This shows that increasing number of doc-
uments to rank helps Paragraph Ranker find more
relevant paragraphs.

4 Conclusion

In this paper, we present an open-domain ques-
tion answering pipeline and proposed Paragraph
Ranker. By using Paragraph Ranker, the QA
pipeline benefits from increased answer recall
from paragraphs to read, and filters irrelevant doc-
uments or paragraphs. With our simple Paragraph
Ranker, we achieve state-of-the-art performances
on the four open-domain QA datasets with large
margins. As future works, we plan to further im-
prove Paragraph Ranker based on the researches
on learning to rank.
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Abstract
In recent years many deep neural networks
have been proposed to solve Reading Compre-
hension (RC) tasks. Most of these models suf-
fer from reasoning over long documents and
do not trivially generalize to cases where the
answer is not present as a span in a given doc-
ument. We present a novel neural-based ar-
chitecture that is capable of extracting relevant
regions based on a given question-document
pair and generating a well-formed answer. To
show the effectiveness of our architecture, we
conducted several experiments on the recently
proposed and challenging RC dataset ‘Nar-
rativeQA’. The proposed architecture outper-
forms state-of-the-art results (Tay et al., 2018)
by 12.62% (ROUGE-L) relative improvement.

1 Introduction

Building Artificial Intelligence (AI) algorithms to
teach machines to read and to comprehend text
is a long-standing challenge in Natural Language
Processing (NLP). A common strategy for assess-
ing these AI algorithms is by treating them as RC
tasks. This can be formulated as finding an an-
swer to a question given the document(s) as evi-
dence. Recently, many deep-learning based mod-
els (Seo et al., 2017; Xiong et al., 2017; Wang
et al., 2017; Shen et al., 2017; Clark and Gardner,
2017) have been proposed to solve RC tasks based
on the SQuAD (Rajpurkar et al., 2016) and Trivi-
aQA (Joshi et al., 2017) datasets, reaching human
level performance. A common approach in these
models is to score and/or extract candidate spans
conditioned on a given question-document pair.

Most of these models have limited applicability
to real problems for the following reasons. They
do not generalize well to scenarios where the an-
swer is not present as a span, or where several dis-
continuous parts of the document are required to

⇤ To whom correspondence should be addressed.

form the answer. In addition, unlike humans, they
can not easily skip through irrelevant parts to com-
prehend long documents (Masson, 1983).

To address the issues above we develop a novel
context zoom-in network (ConZNet) for RC tasks,
which can skip through irrelevant parts of a doc-
ument and generate an answer using only the rel-
evant regions of text. The ConZNet architecture
consists of two phases. In the first phase we iden-
tify the relevant regions of text by employing a
reinforcement learning algorithm. These relevant
regions are not only useful to generate the answer,
but can also be presented to the user as support-
ing information along with the answer. The sec-
ond phase is based on an encoder-decoder archi-
tecture, which comprehends the identified regions
of text and generates the answer by using a resid-
ual self-attention network as encoder and a RNN-
based sequence generator along with a pointer net-
work (Vinyals et al., 2015) as the decoder. It has
the ability to generate better well-formed answers
not verbatim present in the document than span
prediction models.

Recently, there have been several attempts to
adopt condensing documents in RC tasks. Wang
et al. (2018) retrieve a relevant paragraph based
on the question and predict the answer span. Choi
et al. (2017) select sentence(s) to make a summary
of the entire document with a feed-forward net-
work and generate an answer based on the sum-
mary. Unlike existing approaches, our method has
the ability to select relevant regions of text not just
based on the question but also on how well regions
are related to each other. Moreover, our decoder
combines span prediction and sequence genera-
tion. This allows the decoder to copy words from
the relevant regions of text as well as to generate
words from a fixed vocabulary.

We evaluate our model using one of the chal-
lenging RC datasets, called ‘NarrativeQA’, which
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Figure 1: The proposed ConZNet architecture

was released recently by Kočiskỳ et al. (2017).
Experimental results show the usefulness of our
framework for RC tasks and we outperform state-
of-the-art results on this dataset.

2 Proposed Architecture

An overview of our architecture is shown in Figure
1, which consists of two phases. First, the identi-
fication of relevant regions of text is computed by
the Co-attention and Context Zoom layers as ex-
plained in Sections 2.1 and 2.2. Second, the com-
prehension of identified regions of text and out-
put generation is computed by Answer Genera-
tion block as explained in Section 2.3.

2.1 Co-attention layer
The words in the document, question and an-
swer are represented using pre-trained word em-
beddings (Pennington et al., 2014). These word-
based embeddings are concatenated with their cor-
responding char embeddings. The char embed-
dings are learned by feeding all the characters of a
word into a Convolutional Neural Network (CNN)
(Kim, 2014). We further encode the document and
question embeddings using a shared bi-directional
GRU (Cho et al., 2014) to get context-aware rep-
resentations.

We compute the co-attention between document
and question to get question-aware representations
for the document by using tri-linear attention as
proposed by Seo et al. (2017). Let di be the vector
representation for the document word i, qj be the
vector for the question word j, and ld and lq be the
lengths of the document and question respectively.
The tri-linear attention is calculated as

aij = wddi + wqqj + wdq(di � qj), (1)

where wd, wq, and wdq are learnable parameters
and � denotes the element-wise multiplication.

We compute the attended document word d̃i by
first computing �i = softmax(ai:) and followed
by d̃i =

Plq
j=1 �ijqj . Similarly, we compute a

question to document attention vector q̃ by first
computing b = softmax(max(ai:)) and followed
by q̃ =

Pld
i=i dibi. Finally, di, d̃i, di � d̃i, d̃i � q̃

are concatenated to yield a query-aware contextual
representation for each word in the document.

2.2 Context Zoom Layer
This layer finds relevant regions of text. We use
reinforcement learning to do that, with the goal of
improving answer generation accuracy – see Sec-
tion 2.4.

The Split Context operation splits the attended
document vectors into sentences or fixed size
chunks (useful when sentence tokenization is not
available for a particular language). This results in
n text regions with each having length lk, where
ld =

Pn
k=1 lk. We then get the representations,

denoted as zk, for each text region by running a
BiGRU and concatenating the last states of the for-
ward and backward GRUs.

The text region representations, zk, encode how
well they are related to the question, and their sur-
rounding context. Generating an answer may de-
pend on multiple regions, and it is important for
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each text region to collect cues from other regions
which are outside of their surroundings. We can
compute this by using a Self-Attention layer. It is
a special case of co-attention where both operands
(di and qj) are the text fragment itself, computed
by setting aij = �1 when i = j in Eq. 1.

These further self-attended text region represen-
tations, z̃k, are passed through a linear layer with
tanh activation and softmax layer as follows:

u = tanh(Wc[z̃1, · · · , z̃n] + bc), (2)
 = softmax(u), (3)

where  is the probability distribution of text re-
gions, which is the evidence used to generate the
answer. The policy of the reinforcement learner
is defined as ⇡(r|u; ✓z) =  r, where  r is the
probability of a text region r (agent’s action) be-
ing selected, u is the environment state as defined
in Eq. 2, and ✓z are the learnable parameters. Dur-
ing the training time we sample text regions using
 , in inference time we follow greedy evaluation
by selecting most probable region(s).

2.3 Answer Generation
This component is implemented based on the
encoder-decoder architecture of (Sutskever et al.,
2014). The selected text regions from the Con-
text Zoom layer are given as input to the encoder,
where its output is given to the decoder in order to
generate the answer.

The encoder block uses residual connected self-
attention layer followed by a BiGRU. The se-
lected relevant text regions (2  r) are first passed
through a separate BiGRU, then we apply a self-
attention mechanism similar to the Context Zoom
layer followed by a linear layer with ReLU activa-
tions. The encoder’s output consists of representa-
tions of the relevant text regions, denoted by ei.

The decoder block is based on an attention
mechanism (Bahdanau et al., 2015) and a copy
mechanism by using a pointer network similar to
(See et al., 2017). This allows the decoder to pre-
dict words from the relevant regions as well as
from the fixed vocabulary. At time step t, the de-
coder predicts the next word in the answer using
the attention distribution, context vector and cur-
rent word embedding. The attention distribution
and context vector are obtained as follows:

ot
i = vT tanh(Weei + Whht + bo), (4)

�t = softmax(ot
i), (5)

AW AS/MS
document 659 28/66
question 10 n/a
answer 5 n/a

NE
Train 32,747
Dev 3,461
Test 10,557

Table 1: NarrativeQA statistics. AW, AS/MS are de-
fined as avg. words, avg./max. sentences in the docu-
ment/question/answer. NE: Number of examples.

where ht is hidden state of the decoder, v, We,
Wh, bo are learnable parameters. The �t repre-
sents a probability distribution over words of rel-
evant regions ei. The context vector is given by
ct =

P
i �

t
iei.

The probability distribution to predict word wt

from the fixed vocabulary (Pfv) is computed by
passing state ht and context vector ct to a linear
layer followed by a softmax function denoted as

Pfv = softmax(Wv(Xv[ht, ct] + bp)+ bq). (6)

To allow decoder to copy words from the en-
coder sequence, we compute a soft gate (Pcopy),
which helps the decoder to generate a word by
sampling from the fixed vocabulary or by copying
from a selected text regions ( r). The soft gate is
calculated as

Pcopy = �(wT
p ct + vT

h ht + wT
x xt + bc), (7)

where xt is current word embedding, ht is hidden
state of the decoder, ct is the context vector, and
wp, vh, wx, and bc are learnable parameters. We
maintain a list of out-of-vocabulary (OOV) words
for each document. The fixed vocabulary along
with this OOV list acts as an extended vocabulary
for each document. The final probability distribu-
tion (unnormalized) over this extended vocabulary
(Pev) is given by

Pev(wt) = (1�Pcopy)Pfv(wt)+Pcopy

X

i:wi=wt

�t
i .

(8)

2.4 Training
We jointly estimate the parameters of our model
coming from the Co-attention, Context Zoom, and
Answer Generation layers, which are denoted as
✓a, ✓z , and ✓g respectively. Estimating ✓a and ✓g

is straight-forward by using the cross-entropy ob-
jective J1({✓a, ✓g}) and the backpropagation algo-
rithm. However, selecting text regions in the Con-
text Zoom layer makes it difficult to estimate ✓z
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given their discrete nature. We therefore formu-
late the estimation of ✓z as a reinforcement learn-
ing problem via a policy gradient method. Specif-
ically, we design a reward function over ✓z .

We use mean F-score of ROUGE-1, ROUGE-2,
and ROUGE-L (Lin and Hovy, 2003) as our re-
ward function R. The objective function to max-
imize is the expected reward under the probabil-
ity distribution of current text regions  r, i.e.,
J2(✓z) = Ep(r|✓z)[R]. We approximate the gra-
dient r✓zJ2(✓z) by following the REINFORCE
(Williams, 1992) algorithm. To reduce the high
variance in estimating r✓zJ2(✓z) one widely used
mechanism is to subtract a baseline value from
the reward. It is shown that any number will re-
duce the variance (Williams, 1992; Zaremba and
Sutskever, 2015), here we used the mean of the
mini-batch reward b as our baseline. The final ob-
jective is to minimize the following equation:

J(✓) = J1({✓a, ✓g})�J2(✓z)+
BX

i=1

(Ri�b), (9)

where, B is the size of mini-batch, and Ri is the
reward of example i 2 B. J(✓) is now fully differ-
entiable and we use backpropagation to estimate ✓.

3 Experimental Results

3.1 Dataset
The NarrativeQA dataset (Kočiskỳ et al., 2017)
consists of fictional stories gathered from books
and movie scripts, where corresponding sum-
maries and question-answer pairs are generated
with the help of human experts and Wikipedia arti-
cles. The summaries in NarrativeQA are 4-5 times
longer than documents in the SQuAD dataset.
Moreover, answers are well-formed by human ex-
perts and are not verbatim in the story, thus mak-
ing this dataset ideal for testing our model. The
statistics of NarrativeQA are available in Table 11.

3.2 Baselines
We compare our model against reported models
in Kočiskỳ et al. (2017) (Seq2Seq, ASR, BiDAF)
and the Multi-range Reasoning Unit (MRU) in Tay
et al. (2018). We implemented two baseline mod-
els (Baseline 1, Baseline 2) with Context Zoom
layer similar to Wang et al. (2018). In both base-
lines we replace the span prediction layer with an
answer generation layer. In Baseline 1 we use an

1please refer Kočiskỳ et al. (2017) for more details

attention based seq2seq layer without using copy
mechanism in the answer generation unit similar
to Choi et al. (2017). In Baseline 2 the answer
generation unit is similar to our ConZNet archi-
tecture.

3.3 Implementation Details
We split each document into sentences using the
sentence tokenizer of the NLTK toolkit (Bird and
Loper, 2004). Similarly, we further tokenize each
sentence, corresponding question and answer us-
ing the word tokenizer of NLTK. The model is
implemented using Python and Tensorflow (Abadi
et al., 2015). All the weights of the model are
initialized by Glorot Initialization (Glorot et al.,
2011) and biases are initialized with zeros. We use
a 300 dimensional word vectors from GloVe (Pen-
nington et al., 2014) (with 840 billion pre-trained
vectors) to initialize the word embeddings, which
we kept constant during training. All the words
that do not appear in Glove are initialized by sam-
pling from a uniform random distribution between
[-0.05, 0.05]. We apply dropout (Srivastava et al.,
2014) between the layers with keep probability of
0.8 (i.e dropout=0.2). The number of hidden units
are set to 100. We trained our model with the
AdaDelta (Zeiler, 2012) optimizer for 50 epochs,
an initial learning rate of 0.1, and a minibatch size
of 32. The hyperparameter ‘sample size’ (num-
ber of relevant sentences) is chosen based on the
model performance on the devset.

3.4 Results
Table 2 shows the performance of various models
on NarrativeQA. It can be noted that our model
with sample size 5 (choosing 5 relevant sentences)
outperforms the best ROUGE-L score available
so far by 12.62% compared to Tay et al. (2018).
The low performance of Baseline 1 shows that the
hybrid approach (ConZNet) for generating words
from a fixed vocabulary as well as copying words
from the document is better suited than span pre-
diction models (Seq2Seq, ASR, BiDAF, MRU).

To validate the importance of finding relevant
sentences in contrast to using an entire document
for answer generation, we experimented with sam-
ple sizes beyond 5. The performance of our model
gradually dropped from sample size 7 onwards.
This result shows evidence that only a few rele-
vant sentences are sufficient to answer a question.

We also experimented with various sample sizes
to see the effect of intra sentence relations for an-
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Model BLEU-1 BLEU-4 ROUGE-L METEOR
Seq2Seq * 15.89 1.26 13.15 4.08

ASR * 23.20 6.39 22.26 7.77
BiDAF * 33.72 15.53 36.30 15.38

MRU (Tay et al., 2018) 36.55 19.79 41.44 17.87
Baseline 1 (SS=5) 30.22 14.43 34.40 13.36
Baseline 2 (SS=5) 39.35 20.17 43.36 18.01
ConZNet (SS=1) 28.97 16.70 36.02 12.39
ConZNet (SS=3) 36.21 19.33 41.23 17.77
ConZNet (SS=5) 42.76 22.49 46.67 19.24
ConZNet (SS=7) 40.80 21.14 44.01 18.67

*These results are reported in Kočiskỳ et al. (2017)

Table 2: Performance of various models on NarrativeQA dataset (SS=sample size ⌘ number of relevant sentences)

swer generation. The performance of the model
improved dramatically with sample sizes 3 and 5
compared to the sample size of 1. These results
show that the importance of selecting multiple rel-
evant sentences for generating an answer. In ad-
dition, the low performance of Baseline 2 indi-
cates that just selecting multiple sentences is not
enough, they should also be related to each other.
This result points out that the self-attention mech-
anism in the Context zoom layer is an important
component to identify related relevant sentences.

4 Conclusion

We have proposed a new neural-based architecture
which condenses an original document to facili-
tate fast comprehension in order to generate better
well-formed answers than span based prediction
models. Our model achieved the best performance
on the challenging NarrativeQA dataset. Future
work can focus for example on designing an inex-
pensive preprocess layer, and other strategies for
improved performance on answer generation.
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Abstract

State-of-the-art systems in deep question an-
swering proceed as follows: (1) an initial
document retrieval selects relevant documents,
which (2) are then processed by a neural net-
work in order to extract the final answer.
Yet the exact interplay between both compo-
nents is poorly understood, especially con-
cerning the number of candidate documents
that should be retrieved. We show that choos-
ing a static number of documents – as used
in prior research – suffers from a noise-
information trade-off and yields suboptimal
results. As a remedy, we propose an adaptive
document retrieval model. This learns the opti-
mal candidate number for document retrieval,
conditional on the size of the corpus and the
query. We report extensive experimental re-
sults showing that our adaptive approach out-
performs state-of-the-art methods on multiple
benchmark datasets, as well as in the context
of corpora with variable sizes.

1 Introduction

Question-answering (QA) systems proceed by fol-
lowing a two-staged process (Belkin, 1993): in
a first step, a module for document retrieval se-
lects n potentially relevant documents from a
given corpus. Subsequently, a machine compre-
hension module extracts the final answer from
the previously-selected documents. The latter
step often involves hand-written rules or machine
learning classifiers (c. f. Shen and Klakow, 2006;
Kaisser and Becker, 2004), and recently also deep
neural networks (e. g. Chen et al., 2017; Wang
et al., 2018)

The number of candidate documents n affects
the interplay between both document retrieval and
machine comprehension component. A larger n
improves the recall of document retrieval and thus
the chance of including the relevant information.

However, this also increases the noise and might
adversely reduce the accuracy of answer extrac-
tion. It was recently shown that a top-1 system can
potentially outperform a system selecting more
than one document (Kratzwald and Feuerriegel,
2018). This finding suggests that a static choice
of n can result a suboptimal performance.

Contributions. This work analyzes the in-
terplay between document retrieval and machine
comprehension inside neural QA systems. We first
reason numerically why a fixed choice of n in doc-
ument retrieval can negatively affect the perfor-
mance of question answering. We thus propose a
novel machine learning model that adaptively se-
lects the optimal ni for each document retrieval.
The resulting system outperforms state-of-the-art
neural question answering on multiple benchmark
datasets. Notably, the overall size of the corpus
affects the optimal n considerably and, as a result,
our system evinces as especially superior over a
fixed n in settings where the corpus size is un-
known or grows dynamically.

2 Related Work

Taxonomy of QA systems. Question answering
systems are frequently categorized into two main
paradigms. On the one hand, knowledge-based
systems draw upon manual rules, ontologies and
large-scale knowledge graphs in order to deduce
answers (e. g. Berant et al., 2013; Lopez et al.,
2007; Unger et al., 2012). On the other hand,
QA system incorporate a document retrieval mod-
ule which selects candidate documents based on a
chosen similarity metric, while a subsequent mod-
ule then processes these in order to extract the
answer (e. g. Cao et al., 2011; Harabagiu et al.,
2000).

Deep QA. Recently, Chen et al. (2017) devel-
oped a state-of-the-art deep QA system, where the
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Figure 1: Comparison of how top-n document retrieval affects deep QA. Plot (a) shows the percentage of
exact matches with the correct answering, thereby measuring the end-to-end performance of the complete
system. Plot (b) gives the recall at top-n, i. e. the fraction of samples where at least once the correct
answer is returned. Plot (c) depicts the average number of documents that contain the ground-truth
answer. As a result, the recall lowers with increasing corpus size, yet this not necessarily compromises a
top-n system, as it often contains the correct answer more than once.

answer is extracted from the top n = 5 documents.
This choice stems from computing the dot product
between documents and a query vector; with tf-idf
weighting of hashed bi-gram counts. Wang et al.
(2018) extended this approach by implementing a
neural re-ranking of the candidate document, yet
keeping the fixed number of n selected documents
unchanged. In particular, the interplay between
both modules for document retrieval and machine
comprehension has not yet been studied. This es-
pecially pertains to the number of candidate docu-
ments, n, that should be selected during document
retrieval.

Component interactions. Extensive research
has analyzed the interplay of both document re-
trieval and machine comprehension in the con-
text of knowledge-based systems (c. f. Moldovan
et al., 2003) and even retrieval-based systems with
machine learning (c. f. Brill et al., 2002). How-
ever, these findings do not translate to machine
comprehension with deep learning. Deep neu-
ral networks consist of a complex attention mech-
anism for selecting the context-specific answer
(Hermann et al., 2015) that has not been avail-
able to traditional machine learning and, more-
over, deep learning is highly sensitive to settings
involving multiple input paragraphs, often strug-
gling with selecting the correct answer (Clark and
Gardner, 2017).

3 Noise-Information Trade-Off in
Document Retrieval

In the following, we provide empirical evidence
why a one-fits-all n can be suboptimal. For this

purpose, we run a series of experiments in order
to obtain a better understanding of the interplay
between document retrieval and machine compre-
hension modules. That is, we specifically com-
pare the recall of document retrieval to the end-to-
end performance of the complete QA system; see
Fig. 1. Our experiments study the sensitivity along
two dimensions: on the one hand, we change the
number of top-n documents that are returned dur-
ing document retrieval and, on the other hand, we
vary the corpus size.

Our experiments utilize the TREC QA dataset
as a well-established benchmark for open-domain
question answering. It contains 694 question-
answer pairs that are answered with the help of
Wikipedia. We vary the corpus between a small
case (where each question-answer pair contains
only one Wikipedia article with the correct an-
swer plus 50 % articles as noise) and the complete
Wikipedia dump containing more than five million
documents. Our experiments further draw upon
the DrQA system (Chen et al., 2017) for question
answering that currently stands as a baseline in
deep question answering. We further modified it to
return different numbers of candidate documents.

Fig. 1 (a) shows the end-to-end performance
across different top-n document retrievals as mea-
sured by the exact matches with ground truth. For
a small corpus, we clearly register a superior per-
formance for the top-1 system. However, we ob-
serve a different pattern with increasing corpus
size. Fig. 1 (b) and (c) shed light into the un-
derlying reason by reporting how frequently the
correct answer is returned and, as the correct an-
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Figure 2: Recall (a) and average number of rel-
evant documents (b) for growing top-n configu-
rations and a static corpus size (full Wikipedia
dump). While the recall is converging the number
of relevant documents keeps growing resulting in
a higher density of relevant information.

swer might appear multiple times, how often it is
included in the top-n. Evidently, the recall in (b)
drops quickly for a top-1 system when augment-
ing the corpus. Yet it remains fairly stable for a
top-n system, due to the fact that it is sufficient to
have the correct answer in any of the n documents.
According to (c), the correct answer is often more
than once returned by a top-n system, increasing
the chance of answer extraction.

The above findings result in a noise-information
trade-off. A top-1 system often identifies the cor-
rect answer for a small corpus, whereas a larger
corpus introduces additional noise and thus im-
pedes the overall performance. Conversely, a
top-n system accomplishes a higher density of rel-
evant information for a large corpus as the answer
is often contained multiple times. This effect is
visualized in an additional experiment shown in
Fig. 2. We keep the corpus size fixed and vary only
n, i.e. the number of retrieved documents. We see
the recall converging fast, while the average num-
ber of relevant documents keeps growing, leading
to a higher density of relevant information. As a
result, a top-n system might not be compromised
by a declining recall, since it contains the correct
answer over-proportionally often. This logic mo-
tivates us in the following to introduce an adap-
tive ni that optimizes the number of documents re-
trievals in a top-n system independently for every
query qi.

4 Adaptive Document Retrieval

This section advances deep question answering
by developing adaptive methods for document re-
trieval. Our methods differ from conventional doc-
ument retrieval in which the number of returned
documents is set to a fixed n. Conversely, we ac-
tively optimize the choice of ni for each document
retrieval i. Formally, we select ni between 1 and
a maximum ⌧ (e. g. ⌧ = 20), given documents
[d(1)

i , . . . , d(⌧)
i ]. These entail further scores denot-

ing the relevance, i. e. si = [s(1)
i , . . . , s(⌧)

i ]T with
normalization s. t.

P
j s(j)

i = 1. The scoring func-
tion is treated as a black-box and thus can be based
on simple tf-idf similarity but also complex prob-
abilistic models.

4.1 Threshold-Based Retrieval

As a naı̈ve baseline, we propose a simple
threshold-based heuristic. That is, ni is deter-
mined such that the cumulative confidence score
reaches a fixed threshold ✓ 2 (0, 1]. Formally, the
number ni of retrieved documents is given by

ni = max
k

kX

j=1

s(j)
i < ✓. (1)

In other words, the heuristic fills up documents un-
til surpassing a certain confidence threshold. For
instance, if the document retrieval is certain that
the correct answer must be located within a spe-
cific document, it automatically selects fewer doc-
uments.

4.2 Ordinal Regression

We further implement a trainable classifier in the
form of an ordinal ridge regression which is tai-
lored to ranking tasks. We further expect the cu-
mulative confidence likely to be linear. The classi-
fier then approximates ni with a prediction yi that
denotes the position of the first relevant document
containing the desired answer. As such, we learn
a function

yi = f([s(1)
i , . . . , s(⌧)

i ]) = dsT
i �e, (2)

where d. . .e denotes the ceiling function.
The ridge coefficients are learned through a cus-

tom loss function

L = kdX�e � yk1 + � k�k2 , (3)
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where X is a matrix containing scores of our train-
ing samples. In contrast to the classical ridge re-
gression, we introduce a ceiling function and re-
place the mean squared error by a mean absolute
error in order to penalize the difference from the
optimal rank. The predicted cut-off n̂i for docu-
ment retrieval is then computed for new observa-
tions s0

i via n̂i = ds0T
i �̂e+b. The linear offset b is

added in order to ensures that ni  n̂i holds, i. e.
reducing the risk that the first relevant document is
not included.

We additionally experimented with non-linear
predictors, including random forests and feed-
forward neural networks; however; we found no
significant improvement that justified the addi-
tional model complexity over the linear relation-
ship.

5 Experiments

We first compare our QA system with adaptive
document retrieval against benchmarks from the
literature. Second, we specifically study the sen-
sitivity of our adaptive approach to variations in
the corpus size. All our experiments draw upon
the DrQA implementation (Chen et al., 2017), a
state-of-the-art system for question answering in
which we replaced the default module for docu-
ment retrieval with our adaptive scheme (but leav-
ing all remaining components unchanged, specifi-
cally without altering the document scoring or an-
swer extraction).

For the threshold-based model, we set ⌧ = 15
and the confidence threshold to ✓ = 0.75. For the
ordinal regression approach, we choose ⌧ = 20
and use the original SQuAD train-dev split from
the full corpus also as the basis for training across
all experiments.

5.1 Overall Performance

In a first series of experiments, we refer to an ex-
tensive set of prevalent benchmarks for evaluating
QA systems, namely, SQuAD (Rajpurkar et al.,
2016), Curated TREC (Baudiš and Šedivý, 2015),
WikiMovies (Miller et al., 2016) and WebQues-
tions (Berant et al., 2013) in order to validate the
robustness of our findings. Based on these, we
then evaluate our adaptive QA systems against the
naı̈ve DrQA system in order to evaluate the rela-
tive performance. We included the deep QA sys-
tem R3 as an additional, top-scoring benchmark
from recent literature (Wang et al., 2018) for bet-

ter comparability.
Tbl. 1 reports the ratio of exact matches for the

different QA systems. The results demonstrate
the effectiveness of our adaptive scheme: it yields
the best-performing system for three out of four
datasets. On top of that, it outperforms the naı̈ve
DrQA system consistently across all datasets.

5.2 Sensitivity: Adaptive QA to Corpus Size
We earlier observed that the corpus size affects the
best choice of n and we thus study the sensitivity
with regard to the size. For this purpose, we repeat
the experiments from Section 3 in order to evaluate
the performance gain from our adaptive scheme.
More precisely, we compare the ordinal regression
(b = 1) against document retrieval with a fixed
document count n.

Fig. 3 shows the end-to-end performance, con-
firming the overall superiority of our adaptive doc-
ument retrieval. For instance, the top-1 system
reaches a slightly higher rate of exact matches
for small corpus sizes, but is ranked last when
considering the complete corpus. The high per-
formance of the top-1 system partially originates
from the design of the experiment itself, where we
initially added one correct document per question,
which is easy to dissect by adding little additional
noise. On the other hand, the top-10 system ac-
complishes the best performance on the complete
corpus, whereas it fails to obtain an acceptable
performance for smaller corpus sizes.

To quantify our observations, we use a nota-
tion of regret. Formally, let µnm denote the per-
formance of the top-n system on a corpus of
size m. Then the regret of choosing system n at
evaluation point m is the difference between the
best performing system µ⇤

m and the chosen sys-
tem rnm = µ⇤

m � µnm. The total regret of sys-
tem n is computed by averaging the regret over
all observations of system n, weighted with the
span in-between observations in order to account
for the logarithmic intervals. The best top-n sys-
tem yields a regret of 0.83 and 1.12 respectively,
whereas our adaptive control improves it down to
0.70.

5.3 Robustness Check
Experiments so far have been conducted on the
DrQA system. To show the robustness of our ap-
proach, we repeat all experiments on a different
QA system. Different from DrQA, this system op-
erates on paragraph-level information retrieval and
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Figure 3: End-to-end perfor-
mance of adaptive informa-
tion retrieval over static top-
n configurations and a grow-
ing corpus.

SQuAD TREC WebQuestions WikiMovies

DrQA (Chen et al., 2017)† 29.3 27.5 18.5 36.6

Threshold-based (✓ = 0.75) 29.8 28.7 19.2 38.6

Ordinal regression (b = 1) 29.7 28.1 19.4 38.0
Ordinal regression (b = 3) 29.6 29.3 19.6 38.4

R3 (Wang et al., 2018) 29.1 28.4 17.1 38.8
† : Numbers vary slightly from those reported in the original paper, as the public repository was optimized for runtime performance.

Table 1: End-to-end performance of the plain DrQA system measured in
exact matches. Performance of two threshold based and two regression
based adaptive retreival improvements as well as other state-of-the art
systems. Experiments are based on the full Wikipedia dump containing
more than 5 million documents.

SQuAD TREC WebQuestions WikiMovies

Top-50 System 27.0 23.5 15.1 24.4
Top-80 System 27.2 25.9 14.9 26.0

Threshold-based (✓ = 0.75, ⌧ = 100) 27.2 27.1 15.4 26.3
Ordinal regression (b = 3, ⌧ = 250) 27.3 27.1 16.7 26.5

Table 2: End-to-end performance measured in percentages of exact matching answers of a second QA
system that operates on paragraph-level information retrieval. We compare two configurations of the
system using the top-50 and top-80 ranked paragraphs to extract the answer against our threshold-based
approach and regression approach that selects the cutoff within the first 250 paragraphs.

uses cosine similarity to score tf-idf-weighted bag-
of-word (unigram) vectors. The reader is a modi-
fied version of the DrQA document reader with an
additional bi-directional attention layer (Seo et al.,
2017). We are testing two different configura-
tions1 of this system: one that selects the top-50
paragraphs and one that selects the top-80 para-
graphs against our approach as shown in Tab. 2.
We see that, owed to the paragraph-level infor-
mation retrieval, the number of top-n passages
gains even more importance. Both variations of
the system outperform a system without adaptive
retrieval, which confirms our findings.

6 Conclusion

Our contribution is three-fold. First, we establish
that deep question answering is subject to a noise-
information trade-off. As a consequence, the num-
ber of selected documents in deep QA should not
be treated as fixed, rather it must be carefully tai-
lored to the QA task. Second, we propose adap-
tive schemes that determine the optimal document

1Best configurations out of {30, 40, 50, 60, 70, 80,
90, and 100} on SQuAD train split.

count. This can considerably bolster the perfor-
mance of deep QA systems across multiple bench-
marks. Third, we further demonstrate how cru-
cial an adaptive document retrieval is in the con-
text of different corpus sizes. Here our adaptive
strategy presents a flexible strategy that can suc-
cessfully adapt to it and, compared to a fixed doc-
ument count, accomplishes the best performance
in terms of regret.

Reproducibility

Code to integrate adaptive document retrieval
in custom QA system and future research is
freely available at https://github.com/
bernhard2202/adaptive-ir-for-qa
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Abstract
This paper presents a challenge to the commu-
nity: Generative adversarial networks (GANs)
can perfectly align independent English word
embeddings induced using the same algo-
rithm, based on distributional information
alone; but fails to do so, for two different em-
beddings algorithms. Why is that? We believe
understanding why, is key to understand both
modern word embedding algorithms and the
limitations and instability dynamics of GANs.
This paper shows that (a) in all these cases,
where alignment fails, there exists a linear
transform between the two embeddings (so al-
gorithm biases do not lead to non-linear dif-
ferences), and (b) similar effects can not easily
be obtained by varying hyper-parameters. One
plausible suggestion based on our initial ex-
periments is that the differences in the induc-
tive biases of the embedding algorithms lead to
an optimization landscape that is riddled with
local optima, leading to a very small basin of
convergence, but we present this more as a
challenge paper than a technical contribution.

1 Introduction

This paper brings together two fascinating re-
search topics in natural language processing
(NLP), namely understanding the properties of
word embeddings (Mikolov et al., 2013; Mitchell
and Steedman, 2015; Mimno and Thompson,
2017) and unsupervised bilingual dictionary in-
duction (Conneau et al., 2018; Zhang et al., 2017;
Søgaard et al., 2018). In an effort to better under-
stand when unsupervised bilingual dictionary in-
duction is possible, we factored out linguistic dif-
ferences between languages, and studied English-
English alignability (by learning to align English
embeddings trained on different samples of the
English Wikipedia), when we came across a puz-
zling phenomena: English-English can be aligned
with almost 100% precision, if you use the same

embedding algorithms for the two samples, but
not at all (0% precision), if you use different em-
bedding algorithms. This results suggest that the
properties of word embeddings induced by differ-
ent algorithms challenge unsupervised bilingual
dictionary algorithms. Understanding why will
enable us to develop more stable adversarial learn-
ing algorithms and give us a better understanding
of how embedding algorithms differ.

Contributions We are, to the best of our knowl-
edge, the first to study unsupervised alignability of
pairs of English word embeddings. We show that
unsupervised alignment – specifically the MUSE
system (Conneau et al., 2018) – fails when the al-
gorithms used to induce the two embeddings dif-
fer, and that this is not because there is no linear
transformation between the two spaces. We fur-
ther show that poor initialization, as a result of
MUSE initially applying an identity transform to
two word embeddings far apart in space, is not
the sole reason the discriminator suffers from local
optima. Finally, we present an experiment show-
ing what the minimal corpus size is for unsuper-
vised alignment to succeed, in the absence of lin-
guistic differences.

2 Aligning embeddings

2.1 Unsupervised alignment using generative
adversarial networks

MUSE (Conneau et al., 2018) uses a vanilla gen-
erative adversarial network (GAN) with a linear
generator to learn alignments between embedding
spaces without supervision. In a two-player game,
a discriminator D aims to tell the two language
spaces apart, while a generator G aims to map
the source language into the target language space,
fooling the discriminator. While MUSE achieves
impressive results at times, MUSE is highly un-
stable, e.g., with different initializations precision
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scores vary between 0% and 45% for English-
Greek (Søgaard et al., 2018).

The parameters of a GAN with a linear gener-
ator are (⌦, w). They are obtained by solving the
following min-max problem:

min
⌦

max
w

E[log(Dw(X)) + log(1 � Dw(g⌦(Z)))]

(1)
which reduces to

min
⌦

JS (PX | P⌦) (2)

⌦ is initialized as the identity matrix I .
If G wins the game against an ideal discrimi-

nator on a very large number of samples, then F
(the source vector space) and ⌦E (with E being
the target vector space) can be shown to be close
in Jensen-Shannon divergence, and thus the model
has learned the true distribution. This result, re-
ferring to the distributions of the data, pdata , and
the distribution, pg, G is sampling from, is from
Goodfellow et al. (2014): If G and D have enough
capacity, and at each step of training, the discrim-
inator is allowed to reach its optimum given G,
and pg is updated so as to improve the criterion

Ex⇠pdata [log D⇤
G(x)] + Ex⇠pg [log(1 � D⇤

G(x))]

then pg converges to pdata .
This result relies on a number of assumptions

that do not hold in practice. Our generator, which
learns a linear transform ⌦, has very limited ca-
pacity, for example, and we are updating ⌦ rather
than pg. In practice, therefore, during training, we
alternate between k steps of optimizing the dis-
criminator and one step of optimizing the genera-
tor. If the GAN-based alignment is not success-
ful, this can thus be a result of two things: Ei-
ther that G does not have enough capacity, or that
D is stuck in a local optimum. Our results in §3
show that the inability to align English-English in
the case of different word embedding algorithms
is not a result of limited capacity, but a result of
the GAN being trapped in one of the many local
optima of the loss function.

2.2 Supervised alignment using Procrustes
Analysis

Procrustes Analysis (Schönemann, 1966) has been
commonly used for supervised alignment of word
embeddings (Smith et al., 2017; Artetxe et al.,
2018). Here, the optimal alignment between

two embedding spaces is computed using singular
value decomposition of the aligned embeddings
in a seed dictionary. Conneau et al. (2018) use
Procrustes Analysis to refine an initial seed dic-
tionary learned by the generative adversarial net-
work without supervision. In our supervised ex-
periments, we use 5000 seed words as supervision
for learning the alignment between embeddings.

2.3 Geometry of embeddings

Below we summarize some previous findings
about the geometry of monolingual embeddings
(Mimno and Thompson, 2017), and add some
new observations. We discuss five embed-
ding algorithms: SVD on positive PMI matrices
(Hyperwords-SVD) (Levy et al., 2015), skip-gram
negative sampling applied to co-occurrence matri-
ces (Hyperwords-SGNS) (Levy et al., 2015), con-
tinuous bag-of-words (CBOW) (Mikolov et al.,
2013a), GloVe (Pennington et al., 2014), and Fast-
Text (Bojanowski et al., 2017). To analyze the ge-
ometry of our monolingual embeddings in space,
we report average inner product to mean vector;
see Mimno and Thompson (2017) for details.

Hyperwords-SVD have a small average in-
ner product (0.0032), suggesting they are well-
dispersed through space; like Hyperwords-SGNS
and standard SGNS (Mimno and Thompson,
2017), they do not exhibit a clear word frequency
bias. Hyperwords-SGNS vectors also have a
small average inner product (0.0002), in contrast
with standard SGNS vectors, which are narrowly
clustered in a single orthant (Mimno and Thomp-
son, 2017). In line with standard SGNS vectors,
the frequency of words has relatively little effect
on their inner product, with the exception of the
rare words, which have slightly less positive in-
ner products. CBOW vectors have a relatively
large average inner product (4.2985). The vectors
trained by GloVe show a clear relationship with
word frequency, with low-frequency words oppos-
ing the frequency-balanced mean vector. The em-
beddings are well-dispersed, with an average in-
ner product of 0.0002. Finally, FastText vectors
have a large, positive inner product with the mean
(0.2988), indicating that they are not evenly dis-
persed through the space, but pointing in roughly
the same direction. The FastText vectors exhibit
a frequency bias, much like what has been previ-
ously observed with GloVe vectors. The differ-
ences are the results of the inductive biases of the

583



different embedding algorithms.

3 Experiments

This section presents our data, the hyper-
parameters of our embeddings, our experimental
protocols, and our results.

3.1 Data
In the following experiments we learn word
embeddings on samples of a publicly available
Wikipedia dump from March 2018.1 The data
is preprocessed using a publicly available pre-
processing script2, extracting text, removing non-
alphanumeric characters, converting digits to text,
and lowercasing the text.

3.2 Hyper-parameters
We train 300-dimensional word embeddings using
the algorithms’ recommended hyperparameter set-
tings, listed in the following:3 For Hyperwords-
SGNS, the window size is set to 2 and the subsam-
pling of frequent words and smoothing of the con-
text distribution are disabled. The minimal word
count for being in the vocabulary is 100. The
same applies for Hyperwords-SVD, and the ex-
ponent for weighting the eigenvalue matrix is 0.5.
For CBOW, the window size is set to 8, the num-
ber of negative samples is 25, and the subsampling
threshold for frequent words is 1e-4. For GloVe,
the window size is set to 15 and the cutoff param-
eter xmax to 10. Finally, for FastText, the window
size is 5, the number of negatives samples is 5 and
the sampling threshold is 0.0001.

3.3 Main experiments
We train word embeddings using the differ-
ent embedding algorithms listed in §3.2 on two
non-overlapping 10% samples of the English
Wikipedia dump (the samples contain 463,576 and
528,556 distinct words, with an overlap in vocab-
ulary of 351,858 words). We learn unsupervised
and supervised alignments for embeddings (as de-
scribed in §2) trained by different algorithms on
the same datasplits, and for embeddings trained
by the same algorithm on the two different datas-
plits. For the unsupervised alignments, we use the

1https://dumps.wikimedia.org/enwiki/
2http://mattmahoney.net/dc/textdata.

html
3We also ran experiments with one of the embedding al-

gorithms (FastText) to check if our results were robust across
hyper-parameter settings

default parameters of the MUSE system for the
adversarial training, i.e. a discriminator with 2
fully connected layers of 2048 units trained over
5 epochs, 1,000,000 iterations per epoch with 5
discriminator steps per iteration and a batch size
of 32.

We evaluate the alignments in terms of Preci-
sion@1 in the word translation retrieval task for
the 1500 test words used by Bojanowski et al.
(2017). The results are shown in Table 14. Our
main observations are: (a) MUSE learns perfect
alignments for embeddings learned by the same al-
gorithm on different data splits. (b) MUSE cannot
learn alignments for embeddings learned by differ-
ent algorithms on the same data splits, even if there
exists a linear transformation aligning both sets of
embeddings (the supervised algorithm learns per-
fect alignments). We also verify that MUSE can-
not learn to align embeddings from different algo-
rithms even when induced from the same sample.
As already mentioned, we also ran experiments
to check that the failure of MUSE to learn good
alignments was not a result of the differences in
hyper-parameter settings. §3.4 presents additional
experiments with normalization, for control; §3.5
addresses how much data is needed to align inde-
pendently induced embeddings from the same al-
gorithm. §4 discusses potential answers to why
MUSE fails when embeddings are induced using
different algorithms.

3.4 Experiments with normalization

The embeddings in the main experiments differ
in several ways; see §2. One possible explana-
tion for the inability of MUSE to align embed-
dings from different algorithms could be that the
two embeddings are so far apart in space that the
discriminator learns to discriminate between them
too quickly. Recall that ⌦ is initialized as the iden-
tity matrix I , which means that the generator ini-
tially presents the discriminator with the source
embedding as is. This is an effect that has of-
ten been observed with GANs (Arjovsky and Bot-
tou, 2017); could this also be the explanation for
our results? At a first glance, this seems a pos-
sible explanation. The inner products with the
mean differ significantly for the five embedding

4We report Precision at 1 scores but find that the pattern
is the same for Precision at 10, with perfect alignments for
embeddings from the same algorithm and 0 scores for align-
ments between embeddings from different algorithms in the
unsupervised experiments.
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Hyperwords-SGNS Hyperwords-SVD CBOW GloVe FastText

UNSUPERVISED

Hyperwords-SGNS 0.997

Hyperwords-SVD 0.000 0.992

CBOW 0.000 0.000 0.997

GloVe 0.000 0.000 0.000 0.997

FastText 0.000 0.000 0.000 0.000 0.997

SUPERVISED

Hyperwords-SVD 0.967

CBOW 0.990 0.989

GloVe 0.985 0.992 0.999

FastText 0.994 0.994 0.999 0.997

Table 1: Precision at 1 (P@1) for unsupervised GAN alignment with Procrustes refinement (top) and supervised
Procrustes analysis for the cases in which unsupervised alignment fails (bottom). Results clearly show that GANs
can align two independent embeddings induced by the same algorithm; but not embeddings aligned by different
ones. Supervised Procrustes analysis, on the other hand, perfectly aligns the embeddings in both cases.

algorithms (see §2). The only embeddings that
have roughly the same directionality are Hyper-
words and GloVe, and their centroids are very far
apart in cosine space. The cosine similarity of the
centroids of the two versions of Hyperwords is -
0.006, and the cosine similarity for Hyperwords-
SVD and GloVe is 0.019. However, poor initial-
ization as a result of applying the identity trans-
form to very distant word embeddings is not the
explanation for the poor performance of MUSE
in this set-up: Both sets of Hyperwords embed-
dings were normalized, but alignment still failed.
To verify this holds in general, i.e., that results are
not affected by normalization in general, we also
ran experiments with the remaining 14 embedding
pairs, normalizing and/or centering both embed-
dings. Results stayed the same: Precision at 1
scores of 0.

3.5 Learning curve
MUSE perfectly aligns independently induced
word embeddings induced by the same algorithm.
For FastText, it correctly aligns 99.7% of all words
in the evaluation lexicon with itself. Our samples
are 10% of a publicly available Wikipedia dump,
amounting to more than 400 million tokens per
sample. English-English alignment is an interest-
ing control experiment for unsupervised bilingual
dictionary induction, abstracting away from lin-
guistic differences, and we ran a series of exper-
iments to see how small samples MUSE can align
in the absence of linguistic differences. The learn-

Figure 1: Unsupervised alignment quality for FastText
embeddings trained on samples of different sizes, eval-
uated on 878 words covered by all of the embeddings.
The x-axis is log-scaled.

ing curve is presented in Figure 1.

4 Discussion

We have shown that the fact that MUSE cannot
align two embedding spaces for English induced
by different algorithms (even if using the same
corpus), is not a result of there not being a linear
transformation, and not a result of (lack of) nor-
malization or trivial differences in model hyper-
parameters. The only explanation left seems to be
that the inductive biases of the different algorithms
lead to a loss landscape so riddled with local op-
tima that MUSE cannot possible escape them.

To support this hypothesis, compare the loss
curves for the MUSE runs aligning embeddings
induced with the same algorithms (black curves)
to the runs aligning embeddings induced with dif-
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Figure 2: Discriminator losses using the same algo-
rithm for source and target (black curves) or using dif-
ferent algorithms (grey curves).

ferent algorithms, in Figure 2. When the em-
beddings are induced by the same algorithm, we
clearly see the contours of a min-max game, sug-
gesting that the generator and discriminator chal-
lenge each other, both contributing to a good
alignment. When the embeddings are induced by
different algorithms, however, the discriminator
quickly drops, with the generator unable to push
the discriminator out of a local optimum. Under-
standing when biases induce highly non-convex
landscapes, and how to make adversarial training
less sensitive to such scenarios, remains an open
problem, which we think will be key to the success
of unsupervised machine translation and related
tasks.
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Abstract
Most models for learning word embeddings
are trained based on the context informa-
tion of words, more precisely first order co-
occurrence relations. In this paper, a met-
ric is designed to estimate second order co-
occurrence relations based on context over-
lap. The estimated values are further used as
the augmented data to enhance the learning of
word embeddings by joint training with exist-
ing neural word embedding models. Experi-
mental results show that better word vectors
can be obtained for word similarity tasks and
some downstream NLP tasks by the enhanced
approach.

1 Introduction

In the last decade, the distributed word representa-
tion (a.k.a word embedding) has attracted tremen-
dous attention in the field of natural language pro-
cessing (NLP). Instead of large vectors, such as the
one-hot representation, the distributed word rep-
resentation embeds semantic and syntactic char-
acteristics of words into a low-dimensional space,
which makes it popular in NLP applications.

The main idea of most word embedding mod-
els follows the distributional hypothesis (Harris,
1954), i.e., the embedding of each word may be in-
ferred using its context. An important model fam-
ily for distributional word representation learning
is built based on the global matrix factorization
approach (Deerwester et al., 1990; Lee and Se-
ung, 2001; Srebro et al., 2005; Mnih and Hinton,
2007; Li et al., 2015; Wang and Cohen, 2016),
in which a dimensionality reduction over a sparse
matrix is performed to capture the statistical in-
formation about a corpus in low-dimensional vec-
tors. Another model family is neural word em-
beddings (Levy and Goldberg, 2014b), some at-
tempts include the famous Neural Probabilistic
Language Model (Bengio et al., 2003), SGNS and

CBOW (Mikolov et al., 2013a,b), GloVe (Pen-
nington et al., 2014) and their variants (Shazeer
et al., 2016; Kenter et al., 2016; Ling et al., 2017;
Patel et al., 2017).

Most of these models capture the context in-
formation of each word using the co-occurrence
matrix. However, the co-occurrence matrix only
represents relatively local information, i.e., it de-
scribes context associations based on word pairs’
co-occurrence counts without considering global
context perspective. Besides, the co-occurrence
matrix is only an estimation of a corpus, which
is only a sample of a language. A mass of re-
lated word pairs may not be observed in the cor-
pus, and the latent relations between unobserved
word pairs may not be modeled well due to the
missing knowledge.

Few attempts are carried out to indirectly
deal with unobserved co-occurrence for dense
neural word embeddings. SGNS (Mikolov
et al., 2013a,b) indirectly addresses this prob-
lem through negative sampling. Swivel (Shazeer
et al., 2016) improves GloVe by using a “soft
hinge” loss to prevent from over-estimating zero
co-occurrences. However, the latent relations be-
tween unobserved word pairs are not explicitly
represented. There are also some works around
semantic composition and distributional inference
(Mitchell and Lapata, 2008; Erk and Padó, 2008,
2010; Reisinger and Mooney, 2010; Thater et al.,
2011; Kartsaklis et al., 2013; Kober et al., 2016)
that are explored to address the sparseness prob-
lem, but they are not designed for training neural
word embeddings.

In this paper, we explore an approach that uti-
lizes context overlap information to dig up more
effective co-occurrence relations and propose ex-
tensions for GloVe and Swivel to validate the pos-
itive impact of introducing context overlap.
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2 Quantify Context Overlap

In this work, we explore quantifying context over-
lap based on the observation that to a certain ex-
tent the overlap of Point-wise Mutual Information
(PMI) (Church and Hanks, 1990) reflects context
overlap.

As shown in Figure 1, two separate words may
exhibit a particular aspect of interest or be seman-
tically related when the overlap area between their
PMI is relatively large.

The calculation of complete PMI-weighted con-
text overlap may be time-consuming when the
number of words is large. To make the time com-
plexity affordable, only the context words that
have strong lexical association with a target word
i are considered:

Si = {k 2 V |PMI(i, k) > hPMI} (1)

in which V is the vocabulary, hPMI is a thresh-
old which acts as a magnitude to shift PMI, and Si

denotes the set that consists of the context words
that have enough large PMI values with the target
word i. It is expected that most context informa-
tion associated with the word i can be captured by
its PMI values over Si. Then, we measure the de-
gree of context overlap (CO) between two target
words i, j as a function of their PMI values over
the intersection of Si and Sj , i.e.,

CO(i, j) =
X

k2Si\Sj

min(f(PMI(i, k)), f(PMI(j, k)))

(2)
where f is a monotonic mapping function to rec-
tify the data characteristics for certain objective
function in word embedding training.

Compared to identity function f(x) = x, we
find exponential function f(x) = exp(x) works
much better in our experiments. For the quantized
context overlap, the exponential mapping func-
tion results in a similar data distribution as the co-
occurrence counts, i.e., few word pairs have ex-
tremely large values while most word pairs’ values
are distributed in a relatively small range.

3 Extend to Existing Models

We consider the original co-occurrence matrix as
a description of first order co-occurrence rela-
tions, while the quantized context overlap as a de-
scription of second order co-occurrence relations
(Schütze, 1998), i.e., co-co-occurrences, which
is represented by “non-logarithmic PMI-weighted

Figure 1: PMI of different words. The x-axis repre-
sents a series of context words in a subset of the whole
vocabulary, the y-axis denotes PMI values between the
target word and context words. (a) The upper part of
this figure illustrates the large overlap between seman-
tics related words. (b) The lower part, on the con-
trary, is an example of relatively unrelated word pair,
in which the overlap is relatively small.

context overlap” in this work. The context overlap
between two words can be inferred even when they
never co-occur in the corpus. According to our
statistics, more than 84% word pairs in the second
order co-occurrence matrix are not included in the
first order co-occurrence matrix. We expect intro-
ducing second order co-occurrence relations may
enhance the quality of the word embedding that is
originally trained on first order co-occurrence rela-
tions. GloVe (Pennington et al., 2014) and Swivel
(Shazeer et al., 2016) are extended by joint train-
ing with context overlap information in this paper.

GloVe The logarithmic co-occurrence matrix
is factorized in GloVe with bias terms, and a
weighted least squares loss function is optimized:

JGloV e =
X

i,j

�ij(w
T
i w̃j+bi+b̃j�log Xij)

2 (3)

where Xij denotes the word-context co-
occurrence count between a target word i
and a context word j. The model parameters
to be learned include wi 2 R

d, w̃j 2 R
d, bi

and b̃j , which correspond to target word vector,
context word vector, bias terms associated with
the target word and the context word, respec-
tively. �ij is a weight whose value equals to
(min(Xij , xmax)/xmax)↵.

To extend GloVe, two tasks are trained in par-
allel during the training process: One is the main
task that follows the original GloVe training pro-
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cess as above; Another one is an auxiliary task
that tunes word embeddings using context overlap.
The parameters of word embeddings are shared in
both tasks.

Following GloVe-style loss function, in the aux-
iliary task, the dot products of word vectors are
pushed to estimate logarithmic second order co-
occurrence.

J (2)
GloV e =

X

i,j

�(2)
ij (AwT

i wj+b(2)
i +b(2)

j �log X(2)
ij )2

(4)
where the superscripts (2) are used to differenti-
ate with the terms in the original GloVe. X(2)

ij =
CO(i, j) represents context overlap, a word inde-
pendent learnable scale A is adopted to relieve the
potential inconformity between first order and sec-
ond order co-occurrences. The weight �(2)

ij is sim-
ilar to the original �ij , but using a different hyper-
parameter x(2)

max.

The multi-task (Ruder, 2017) loss function is
the weighted sum of the two tasks, i.e., J =

JGloV e+� ·J (2)
GloV e, where the weight � is a hyper-

parameter.

Swivel As pointed out by (Levy et al., 2015) ,
if the bias terms in GloVe are fixed to the log-
arithmic count of the corresponding word, the
dot products of target word vectors and context
word vectors are almost equivalent to the approx-
imation of logarithmic PMI matrix with a shift
of log

P
i,j Xij . Submatrix-wise Vector Embed-

ding Learner (Swivel) directly reconstructs the
PMI matrix by dot product between target vec-
tors and context vectors and deals with unobserved
co-occurrences using a “soft hinge” loss function.
(Shazeer et al., 2016) details its loss functions and
training process. In our extended version, we add a
supplementary loss function to handle second or-
der co-occurrences. When the second order co-
occurrence X(2)

ij is more than zero, the PMI of
context overlap is approximated.

1

2
�(2)

ij (AwT
i wj + B � PMI(2)(i, j))2 (5)

in which A, B are word independent learnable
scale parameters, and PMI(2)(i, j) is the Point-
wise Mutual Information computed on the second
order co-occurrence matrix [X(2)

ij ].

4 Experiments
4.1 Setup

Corpus The training dataset contains 6 billion
tokens collected from diversified corpora, includ-
ing the News Crawl corpus (Chelba et al., 2013),
the April 2010 Wikipedia dump (Shaoul, 2010;
Lee and Chen, 2017), and a year-2012 subset of
the Reddit comment datasets 1.

Preprocessing Following (Lee and Chen,
2017), the Stanford tokenizer is used to process
the training corpus, which are split into sentences
with characters converted to lower cases. Punctu-
ations are removed.

Parameter Configuration The vocabularies
are limited to the 200K most frequent words. Fol-
lowing (Pennington et al., 2014), a decreasing
weighting function is adopted to construct the co-
occurrence matrix. We use symmetric context
window of five words to the left and five words
to the right.

For GloVe, recommended parameters in (Pen-
nington et al., 2014) are used. Specifically, we set
↵ = 3

4 , xmax = 100, initial learning rate as 0.05,
100 iterations. For Swivel, recommended parame-
ters in (Shazeer et al., 2016) are used. The weight-
ing function is 0.1 + 0.25x0.5

ij , each shard is sam-
pled about 100 times. But we set the block size
as 4000 so that the vocabulary size can be divided
exactly.

For the auxiliary tasks, we tune the hyper-
parameters on the small News Crawl corpus. And
we find that in an appropriate range, the threshold
hPMI is not sensitive to the performance. In this
paper, hPMI , x(2)

max and � are set to log 100, 10000
and 0.2 respectively. Since there is no difference
between target vectors and context vectors (except
random initialization), in order to keep symmetry,
we not only approximate context overlap between
target vectors, but also approximate context over-
lap between context vectors simultaneously. Final
vectors are the sum of w and w̃ in both GloVe and
Swivel.

4.2 Intrinsic Evaluation
Table 1 shows the evaluation results of word sim-
ilarity tasks and word analogy tasks. Word sim-
ilarity is measured as the Spearman’s rank corre-
lation ⇢ between human-judged similarity and co-
sine distance of word vectors. In word analogy

1Available at https://files.pushshift.io/
reddit/comments/
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Method WS353 SL999 SCWS RW MEN MT771 Analogy
Sem Syn

GloVe 66.8 35.0 59.3 44.1 74.7 69.9 76.0 75.3
GloVe + CO 69.7 38.0 63.8 45.1 77.6 71.3 78.6 75.0

SGNS 71.1 40.7 67.1 52.8 78.1 70.4 67.2 77.3
Swivel 73.1 39.9 66.4 53.4 79.1 71.7 78.6 78.0

Swivel + CO 74.0 41.2 66.3 53.6 79.8 72.5 79.4 78.1

Table 1: Word similarity and analogy results (⇢⇥100 and analogy accuracy). We denote context overlap enhanced
method with “+ CO”. 300-dimensional embeddings are used. The datasets used include WS353 (Finkelstein et al.,
2001), SL999 (Hill et al., 2016), SCWS (Huang et al., 2012), RW (Luong et al., 2013), MEN (Bruni et al., 2014),
MT771 (Halawi et al., 2012), and Mikolov’s analogy dataset (Mikolov et al., 2013a).

task, the questions are answered over the whole
vocabulary through 3CosMul (Levy and Goldberg,
2014a). In addition to GloVe and Swivel, the
evaluations of SGNS are also reported for refer-
ence. We train SGNS with the word2vec tool, us-
ing symmetric context window of five words to the
left and five words to the right, and 5 negative sam-
ples.

As can be seen from the table, the context over-
lap information enhanced word embeddings per-
form better in most word similarity tasks and get
higher analogy accuracy in semantic aspect at the
cost of syntactic score. The improved semantics
performance, to a certain extent, reflects second
order co-occurrence relations are more semantic.

4.3 Text Classification
Text classification tasks are conducted on five
shared benchmark datasets from (Kim, 2014) in-
cluding binary classification tasks CR (Hu and
Liu, 2004), MR (Pang and Lee, 2005), Subj (Pang
and Lee, 2004) and multiple classification tasks
TREC (Li and Roth, 2002), SST1 (Socher et al.,
2013). Texts are preprocessed following the de-
scription of Section 4.1. We train Convolutional
Neural Networks (CNN) on top of our static pre-
trained word vectors following (Kim, 2014). To
avoid the high-risk of single-run estimate being
false (Melis et al., 2017; Reimers and Gurevych,
2017), average classification accuracies of 20 runs
are reported as the final scores. The results are
shown in Table 2. As can be seen from the re-
sults that the enhanced word embeddings outper-
form the baselines.

5 Model Analysis

As it is known to all, word frequency plays an
important role in the computation of word em-
beddings (Gittens et al., 2017). Inspired from

Method CR MR SST1 Subj TREC
GloVe 80.9 76.5 46.9 90.9 89.7
+ CO 81.7† 76.4 47.6† 91.4† 90.2†

Swivel 81.7 76.7 47.9 91.4 90.4
+ CO 82.4† 76.7 48.3† 91.7† 90.5

CBOW 80.6 75.3 46.5 89.8 89.6
SGNS 81.6 77.0 48.0 91.2 90.6

Table 2: Text classification results (Acc.%). Pre-
trained word vectors with 300 dimensions are reported
here. Enhanced runs statistically significantly (t-test,
p-value < 0.05) different from the GloVe/Swivel base-
line runs are marked with a †. The results of CBOW
and SGNS are also given for reference.

the graph in (Shazeer et al., 2016), relations be-
tween word analogy accuracy and the log mean
frequency of the words in analogy questions and
answers are plotted on Figure 2. The word em-
beddings trained by GloVe with or without context
overlap information are used here.

An obvious semantic performance improve-
ment is observed in the range of low frequency.
Our observation of second order co-occurrences
may explain this fact. We randomly sample 1 mil-
lion word pairs, and rank these word pairs in de-
scending order by their quantized context overlap.
In all the word pairs, average word frequency is
13934.4. However, it is only 1676.1 in the top
0.1% word pairs, it is 3984.8 in the top 1%, and
it is 7904.9 in the top 10%. This may be caused
by PMI’s bias towards infrequent words, but it il-
lustrates infrequent words carry more information
in second order co-occurrence relations.

6 Conclusion

In this paper, we propose an empirical metric to
enhance the word embeddings through estimating
second order co-occurrence relations using con-
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Figure 2: Relations between word analogy accuracy
and the log mean frequency.

text overlap. Instead of only local statistical infor-
mation, context overlap leverages global associa-
tion distribution to measure word pairs correlation.

The proposed method is easy to extend to ex-
isting models, such as GloVe and Swivel, by an
auxiliary objective function. The improvement in
experimental results helps to validate the positive
impact of introducing quantized context overlap.

We have considered the feasibility of enriching
SGNS and CBOW with information from context-
overlap. However, because of their training mode,
we can’t remake them in a straightforward way
following their “original spirit”. When training
SGNS and CBOW, the program scans the training
text. The target and context words are chosen us-
ing a slide window and negative sampling is used.
In this process, no co-occurrence matrix is explic-
itly computed, and we fail to extend it in a united
form as we extend GloVe and Swivel. The exten-
sions for GloVe and Swivel can also be used for
reference for extending other word embedding ap-
proaches that are trained on co-occurrence matrix.
The exploration for second order co-occurrence
can be traced back to 1990s. We think it is help-
ful to revive the classical method in a modern,
embedding driven way. How to integrate second
order co-occurrence information for approaches
like SGNS, CBOW should be an interesting future
work.

As future works, we suggest further investigat-
ing the characteristics of context overlap in diver-
sified ways.
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Abstract

Capturing the semantic relations of words
in a vector space contributes to many natu-
ral language processing tasks. One promis-
ing approach exploits lexico-syntactic pat-
terns as features of word pairs. In this
paper, we propose a novel model of this
pattern-based approach, neural latent rela-
tional analysis (NLRA). NLRA can general-
ize co-occurrences of word pairs and lexico-
syntactic patterns, and obtain embeddings of
the word pairs that do not co-occur. This
overcomes the critical data sparseness problem
encountered in previous pattern-based mod-
els. Our experimental results on measuring
relational similarity demonstrate that NLRA
outperforms the previous pattern-based mod-
els. In addition, when combined with a vec-
tor offset model, NLRA achieves a perfor-
mance comparable to that of the state-of-the-
art model that exploits additional semantic re-
lational data.

1 Introduction

Information on the semantic relations of words
is important for many natural language process-
ing tasks, such as recognizing textual entailment,
discourse classification, and question answering.
There are two main approaches to obtain the dis-
tributed relational representations of word pairs.

One is the vector offset method (Mikolov et al.,
2013a,b). This approach represents word pairs as
the vector offsets of their word embeddings. An-
other approach exploits lexico-syntactic patterns
to obtain word pair representations. As a pioneer
work, Turney (2005) introduced latent relational
analysis (LRA), based on the latent relation hy-
pothesis. It states that word pairs that co-occur in
similar lexico-syntactic patterns tend to have simi-
lar semantic relations (Turney, 2008b; Turney and
Pantel, 2010). LRA is expected to complement

the vector offset model because word embeddings
do not contain information on lexico-syntactic pat-
terns that connect word pairs in a corpus (Shwartz
et al., 2016).

However, LRA cannot obtain the representa-
tions of word pairs that do not co-occur in a cor-
pus. Even with a large corpus, observing a co-
occurrence of all semantically related word pairs
is nearly impossible because of Zipf’s law, which
states that most content words rarely occur. This
data sparseness problem is a major bottleneck of
pattern-based models such as LRA.

In this paper, we propose neural latent rela-
tional analysis (NLRA) to solve that data sparse-
ness problem. NLRA unsupervisedly learns the
embeddings of target word pairs and co-occurring
patterns from a corpus. In addition, it jointly
learns the mapping from the word embedding
space to the word-pair embedding space. By
this mapping, NLRA can generalize the co-
occurrences of word pairs and patterns, and obtain
the relational embeddings for arbitrary word pairs
even if they do not co-occur in the corpus.

Our experimental results on the task of mea-
suring relational similarity show that NLRA sig-
nificantly outperforms LRA, and it can also cap-
ture semantic relations of word pairs without co-
occurrences. Moreover, we show that combining
NLRA and the vector offset model improves the
performance and leads to competitive results to
those of the state-of-the-art method that exploits
additional semantic relational data.

2 Background

2.1 Vector Offset Model

The vector offset model (Mikolov et al., 2013a,b;
Levy and Goldberg, 2014) obtains word embed-
dings from a corpus and represents each word pair
(a, b) as the vector offset of their embedding as
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Figure 1: An illustration of NLRA

follows:
v(a,b) = vb � va (1)

where va and vb are the word embeddings of a and
b respectively.

This method regards relational information as
the change in multiple topicality dimensions from
one word to the other in the word embedding space
(Zhila et al., 2013). Meanwhile, it does not contain
the information of lexico-syntactic patterns that
were shown to capture complementary informa-
tion with word embeddings in previous studies on
the lexical semantic relation detection (Levy et al.,
2015; Shwartz et al., 2016).

2.2 Latent Relational Analysis
LRA takes a set of word pairs as input and gener-
ates the distributed representations of those word
pairs based on their co-occurring patterns.

Given target word pairs W =
{(a1, b1), . . . , (an, bn)}, LRA constructs a
list of lexico-syntactic patterns that connect those
pairs, such as is a or in the, from the corpus
for each word pair. Then, those patterns are
generalized by replacing any or all or none of the
intervening words with wildcards. As a feature
selection, the generalized patterns generated
from many word pairs are used as features. We
define the set of these target feature patterns as
C = {p1, . . . , pm}. Then, the 2n ⇥ 2m matrix
M is constructed. The rows of M correspond
to pairs (ai, bi) and reversed pairs (bi, ai). The
columns of M correspond to patterns XpiY and
swapped patterns Y piX , where X and Y are the
slots for the words of the word pairs. The value
of Mij represents the strength of the association
between the corresponding word pair and pattern,
which is calculated using weighting methods
such as positive pointwise mutual information

(PPMI). After these processes, the singular value
decomposition (SVD) is applied to M , and the
vector v(a,b) is assigned to each word pair (a, b).

Although pattern-based approaches such as
LRA have achieved promising results in some se-
mantic relational tasks (Turney, 2008a,b), they
have a crucial problem that a co-occurrence of
all semantically related word pairs cannot be ob-
served because of Zipf’s law, which states that the
frequency distribution of words has a long tail. In
other words, most words occur very rarely (Hanks,
2009). For the word pairs without co-occurrences,
LRA cannot obtain their vector representations.

3 Neural Latent Relational Analysis

We introduce NLRA, based on the latent rela-
tion hypothesis. NLRA represents the target word
pairs and lexico-syntactic patterns as embeddings.
Similar to the skip-gram model (Mikolov et al.,
2013a), NLRA updates those representations un-
supervisedly, such that the inner products of the
word pairs and patterns in which they co-occur in
a corpus have high values. Through this learning,
the word pairs that co-occur in similar patterns
have similar embeddings. Moreover, NLRA can
generalize the co-occurrences of the word pairs
and patterns by constructing the embeddings of
the word pairs from their word embeddings, thus
solving the data sparseness problem of word co-
occurrences. Therefore, NLRA can provide repre-
sentations that capture the information of lexico-
syntactic patterns even for the word pairs that do
not co-occur in a sentence.

Figure 1 is an illustration of our model. NLRA
encodes a word pair (a, b) into a dense vector as
follows:

h(a,b) = MLP ([va; vb; vb � va]) (2)
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where [va; vb; vb � va] is the concatenation of the
word embeddings of a and b and their vector off-
sets; MLP is a multilayer perceptron with nonlin-
ear activation functions.

A pattern p is a sequence of the words
w1, . . . , wk. The sequence of the corresponding
word embeddings w1, . . . , wk are encoded using
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997). Then, the final output vector
vp is used as the pattern embedding.

For unsupervised learning, we use the negative
sampling objective (Mikolov et al., 2013a). Given
a set of observed triples (a, b, p) 2 D, where a and
b are words such that (a, b) 2 W , or (b, a) 2 W
and p is a co-occurring pattern from a corpus, the
objective is as follows:

L =
X

(a,b,p)2D

log �(vp · h(a,b))

+
X

(a,b,p0)2D0

log �(�vp0 · h(a,b)) (3)

where D0 is a set of randomly generated negative
samples and � is the sigmoid function. We sam-
pled 10 negative patterns for each word pair. This
objective is maximized using the stochastic gradi-
ent descent.

After unsupervised learning, we can obtain
word pair representations v(a,b) as follows:

v(a,b) = [h(a,b); h(b,a)] (4)

4 Evaluation

4.1 Dataset

In our evaluation, we used the SemEval-2012 Task
2 dataset (Jurgens et al., 2012) for the task of
measuring relational similarity. This dataset con-
tains a collection of 79 fine-grained semantic re-
lations. For each relation, there are a few proto-
typical word pairs and a set of several dozen target
word pairs. The task is to rank the target pairs
based on the extent to which they exhibit the re-
lation. In our experiment, we calculated the score
of a target word pair with the average cosine sim-
ilarity between it and each prototypical word pair.
The models are evaluated in terms of the MaxDiff
accuracy and Spearman’s correlation. Following
previous works (Rink and Harabagiu, 2012; Zhila
et al., 2013), we used the test set that includes 69
semantic relations to evaluate the performance.

4.2 Baselines
VecOff. We used the 300-dimensional pre-trained
GloVe (Pennington et al., 2014)1 and represented
word pairs as described in Section 2.1.

LRA. We implemented LRA as described in Sec-
tion 2.2. We set W as the lemmatized word pairs
of the dataset. We used the English Wikipedia as
a corpus. For each word pair, we searched for pat-
terns of from one to three words. When searching
for patterns, the left word and right word adjacent
to the patterns were lemmatized to ignore their in-
flections. Following (Turney, 2008b), we selected
C as the top 20|W | generalized patterns. Then,
M was constructed using PPMI weighting, and its
dimensionality was reduced to 300 using SVD.

4.3 Our methods
NLRA. For each word pair in the dataset, co-
occurring patterns were extracted from the same
corpus in the same manner as with LRA, resulting
in D. For word embeddings, we used the same
pre-trained GloVe as VecOff. These embeddings
were updated during the training. For MLP , we
used three affine transformations followed by the
batch normalization (Ioffe and Szegedy, 2015) and
tanh activation. The size of each hidden layer of
the MLP was 300. To encode the patterns, we used
LSTM with the 300-dimensional hidden state. The
objective was optimized by AdaGrad (Duchi et al.,
2011) (whose learning rate was 0.01). We trained
the model for 50 epochs.

NLRA+VecOff. This method combines NLRA
and VecOff by averaging their score for a target
word pair.

4.4 Result and Analysis
Table 1 displays the overall result.

NLRA vs. LRA
First, NLRA outperformed LRA in terms of both
the average accuracy and correlation. These differ-
ences were statistically significant (p < 0.01) with
the paired t-test. These results indicate that gener-
alizing patterns with LSTM is better than by using
wildcards. Moreover, NLRA can successfully cal-
culate the relational similarity for the word pairs
that do not co-occur in the corpus. Table 2 shows
an example of the Reference–Express relation,
where the middle-score pair handshake:cordiality

1https://nlp.stanford.edu/projects/glove/
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Accuracy Correlation
Relation VecOff LRA NLRA NLRA+VecOff VecOff LRA NLRA NLRA+VecOff

Class-Inclusion 0.543 0.485 0.533 0.56 0.487 0.427 0.622 0.611
Part-Whole 0.45 0.427 0.465 0.488 0.304 0.282 0.38 0.395
Similar 0.414 0.346 0.412 0.436 0.267 0.123 0.271 0.315
Contrast 0.343 0.349 0.377 0.374 0.108 0.065 0.092 0.124
Attribute 0.462 0.414 0.447 0.486 0.406 0.299 0.367 0.456
Non-Attribute 0.39 0.366 0.369 0.381 0.217 0.16 0.125 0.174
Case Relations 0.468 0.438 0.536 0.558 0.391 0.291 0.553 0.544
Cause Purpose 0.444 0.471 0.448 0.485 0.345 0.387 0.397 0.454
Space-Time 0.5 0.428 0.516 0.525 0.424 0.31 0.489 0.493
Reference 0.441 0.447 0.449 0.465 0.297 0.346 0.404 0.378
Average 0.443 0.415 0.453 0.475 0.321 0.246 0.36 0.391

Table 1: Average MaxDiff accuracy and Spearman’s correlation of each major relation group.

Pair Human LRA NLRA
laugh:happiness 50 0.217 0.578
nod:agreement 46 0.245 0.347
tears:sadness 44 0.381 0.483

· · · · · ·

scream:terror 26 0.396 0.417
handshake:cordiality 24 0 (no pattern) 0.34
lie:dishonesty 16 0.206 0.394

· · · · · ·

discourse:relationship -60 0.331 0.275
friendliness:wink -68 0 (no pattern) 0.26

Table 2: The scores assigned by humans, LRA, and
NLRA for the Reference-Express relation. The pairs
are sorted in descending order according to the human
score.

and the low-score pair friendliness:wink have no
co-occurring pattern. In these cases, LRA could
not obtain the representations of those word pairs
nor correctly assign the score. By contrast, NLRA
could accomplish both because it could generalize
the co-occurrences of word pairs and patterns.

NLRA+VecOff vs. Other Models
Second, NLRA+VecOff outperformed the other
models. These differences were statistically
significant (the correlation difference between
NLRA+Vecoff and NLRA: p < 0.05; the other
differences: p < 0.01). These results indi-
cate that lexico-syntactic patterns and the vector
offset of word embeddings capture complemen-
tary information for measuring relational similar-
ity. This is inconsistent with the findings of Zhila
et al. (2013). That work combined heterogeneous
models, such as the vector offset model, pattern-
based model, etc., and stated that the pattern-based
model was less significant than the vector offset
model, based on their ablation study. We believe
that this was because their pattern-based model
did not generalize patterns with wildcards nor se-
lect useful features. Their pattern-based model
seemed to suffer from sparse feature space. In our
experiment, NLRA helped VecOff, for example,
for the Part-Whole relation, Cause Purpose rela-

Model Accuracy Correlation
Rink and Harabagiu (2012) 0.394 0.229
Mikolov et al. (2013b) 0.418 0.275
Levy and Goldberg (2014) 0.452 –
Zhila et al. (2013) 0.452 0.353
Iacobacci et al. (2015) 0.459 0.358
Turney (2013) 0.472 0.408
VecOff 0.443 0.321
LRA 0.415 0.264
NLRA 0.453 0.36
NLRA+VecOff 0.475 0.391

Table 3: Published results of other models on the Se-
mEval2012 Task 2 dataset.

tion, and Space-Time relation, where there seemed
to be prototypical patterns indicating those rela-
tions. Meanwhile, VecOff helped NLRA for the
Attribute relation, where the relational patterns
seemed to be diverse. These results showed that
the combined model is robust.

4.5 Comparison to other systems

We compared the results of our models to other
published results. Table 3 displays those results.
Rink and Harabagiu (2012) is the pattern-based
model with naive Bayes. Mikolov et al. (2013b),
Levy and Goldberg (2014), and Iacobacci et al.
(2015) are the vector offset models. Zhila et al.
(2013) is the model composed of various features.
Turney (2013) extracts the statistical features of
two word pairs from a word-context co-occurrence
matrix and trains the classifier with additional se-
mantic relational data to assign a relational simi-
larity for two word pairs.

NLRA+VecOff achieved a competitive perfor-
mance to the state-of-the-art method of Turney
(2013). Note that our method learns unsupervis-
edly and does not exploit additional resources, and
the method of Turney (2013) cannot obtain the dis-
tributed representation of word pairs.

A work similar to ours, Bollegala et al. (2015),
represented lexico-syntactic patterns as the vector
offset of co-occurring word pairs and updated the
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vector offsets of word pairs such that word pairs
that co-occur in similar patterns have similar off-
sets. They evaluated their model on all 79 seman-
tic relations of the dataset and achieved 0.449 ac-
curacy. In their setting, NLRA+VecOff achieved
0.47 accuracy, outperforming their model.

5 Related Work

5.1 Word Pairs and Co-occurring Patterns
Hearst (1992) detected the hypernymy relation
of word pairs from a corpus using several
handcrafted lexico-syntactic patterns. Turney
and Littman (2005) used 64 handcrafted lexico-
syntactic patterns as features of word pairs to rep-
resent word pairs as vectors. To obtain word-pair
embeddings, Turney (2005) extended the method
of Turney and Littman (2005) as LRA. Our work
is a neural extension of LRA.

Washio and Kato (2018) proposed the method
similar to ours in lexical semantic relation de-
tection. Their neural method modeled the co-
occurrences of word pairs and dependency paths
connecting two words to alleviate the data sparse-
ness problem of pattern-based lexical semantic
relation detection. While they assigned ran-
domly initialized embeddings to each dependency
path, our work encodes co-occurring patterns with
LSTM for better generalization. Jameel et al.
(2018) embedded word pairs with the context
words occurring around word pairs instead of
lexico-syntactic patterns. Their method cannot ob-
tain embeddings of word pairs that do not co-occur
in a corpus because they directly assigned embed-
dings to word pairs. By contrast, NLRA can ob-
tain embeddings for those word pairs.

In another research area, relation extraction,
several works have explored an idea similar to
the latent relation hypothesis (Riedel et al., 2013;
Toutanova et al., 2015; Verga et al., 2017). They
factorized a matrix of entity pairs and co-occurring
patterns, while they focused on named entity pairs
instead of word pairs and did not consider co-
occurrence frequencies.

5.2 Relation to Knowledge Graph
Embedding

Knowledge graph embedding (KGE) embeds enti-
ties and relations in knowledge graph (KG), where
entities and relations corresponds to nodes and
edges respectively (Nickel et al., 2011; Bordes
et al., 2013; Socher et al., 2013; Wang et al., 2014;

Lin et al., 2015; Yang et al., 2015; Nickel et al.,
2016; Trouillon et al., 2016; Liu et al., 2017; Wang
et al., 2017; Ishihara et al., 2018). By considering
words and lexico-syntactic patterns as nodes and
edges, respectively, a corpus can be viewed as a
graph, i.e., corpus graph (CG). Thus, NLRA can
be regarded as corpus graph embedding (CGE)
models based on the latent relation hypothesis.

Although KGE models can be easily applied to
CG, several differences exist between KG and CG.
First, the nodes and edges of CG are (sequences
of) linguistic expressions, such as tokens, lem-
mas, phrases, etc. Thus, the nodes and edges of
CG might exhibit compositionality and ambiguity,
while KG does not have those properties. Sec-
ond, the edges of CG have weights based on co-
occurrence frequencies unlike the edges of KG.
Finally, CG might have a large number of edges
types while the number of KG edges is at most
several thousands. An interesting research direc-
tion is exploring models suitable for CGE to cap-
ture the property of linguistic expressions and their
relations in the embedding space.

6 Conclusion

We presented NLRA, which learns the distributed
representation of word pairs capturing semantic
relational information through co-occurring pat-
terns encoded by LSTM. This model jointly learns
the mapping from the word embedding space
into the word-pair embedding space to general-
ize co-occurrences of word pairs and patterns.
Our experiment on measuring relational similarity
demonstrated that NLRA outperforms LRA and
can successfully solve the data sparseness prob-
lem of word co-occurrences, which is a major bot-
tleneck in pattern-based approaches. Moreover,
combining the vector offset model and NLRA
yielded competitive performance to the state-of-
the-art method, though our method relied only on
unsupervised learning. This combined model ex-
ploits the complementary information of lexico-
syntactic patterns and word embeddings.

In our future work, we will apply word-pair em-
beddings from NLRA to various downstream tasks
related to lexical relational information.
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Abstract

We approach the problem of generalizing pre-
trained word embeddings beyond fixed-size
vocabularies without using additional contex-
tual information. We propose a subword-
level word vector generation model that views
words as bags of character n-grams. The
model is simple, fast to train and provides
good vectors for rare or unseen words. Ex-
periments show that our model achieves state-
of-the-art performances in English word sim-
ilarity task and in joint prediction of part-of-
speech tag and morphosyntactic attributes in
23 languages, suggesting our model’s ability
in capturing the relationship between words’
textual representations and their embeddings.

1 Introduction

Word embeddings have been an essential part of
neural-network based approaches for natural lan-
guage processing tasks (Goldberg, 2016). How-
ever, many popular word embeddings techniques
have a fixed vocabulary (Mikolov et al., 2013;
Pennington et al., 2014), i.e., they can only pro-
vide vectors over a finite set of common words
that appear frequently in a given corpus. Such
methods fail to generate vectors for rare words
and words not present in the training corpus, but
appearing in the test corpus or downstream task
texts, raising difficulty for any methods relying on
word vectors to efficiently extract useful features
from text. This is often referred to as the out-of-
vocabulary (OOV) word problem. We aim to ad-
dress this problem by inferring vectors for OOV
words with only access to pre-trained vectors over
a fixed vocabulary of common words and the OOV
word itself without context.

The motivations come from both linguistics and
natural language processing applications. First,
from a linguistic view a word can be decomposed

into multiple morphemes: stems, affixes, modi-
fiers and etc. This is more often the case for rare
words. In some field such as chemistry and ag-
glutinative languages such as Turkish, there exists
a systematic way of composing words from mor-
phemes. Some can even be arbitrarily long.

Apart from the explicit and systematic way of
making words, we can also observe the ability of
a language speaker to infer the meaning of an un-
seen word. For instance, one can guess that “pre-
EMNLP” means “before EMNLP”, even without
the presence of any context, suggesting that it is
part of our implicit linguistic knowledge to infer
meaning of an unseen word solely from its lexi-
cal form. This observation, together with the mor-
pheme decomposition of many rare words, implies
the feasibility of inferring their vectors from those
for common words, and also raises the algorithmic
question of how to compute them efficiently.

Second, there are many NLP applications where
estimating word embeddings of OOV is critical.
For instance, in the case of analyzing Twitter data,
while there exists pre-trained word embeddings
with giant vocabularies trained on massive num-
ber of tweets, such as GloVe vectors (Pennington
et al., 2014), this would still not cover new words
coined by users everyday. In such cases, it is more
prudent to extend the available pre-trained vectors
trained on very large corpora, so that we can es-
timate embeddings for OOV words, instead of re-
training a new word / subword level embedding
model on the new extended data corpus.

OOV words have always been a problem for
methods that assume fixed vocabularies. A com-
mon workaround is to view all OOV words as a
special UNK token and use the same vector for
all of them. This would restrict any downstream
models from accessing distinct features of those
words. Thus, we would like a method to provide
vectors that capture semantic and grammatical fea-
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tures even for OOV words. We also would like
such method to maximally rely on the word itself,
instead of its context, as contextual information
is already used later with sentence level models
stacking over word vectors.

To achieve this, we aim to build a word embed-
ding model that generalizes pre-trained word em-
beddings to OOV words. First, given word embed-
dings for a fixed vocabulary, our model learns the
relationship between the subwords present in each
word and its corresponding pre-trained word vec-
tor. Then, using the learned subword information,
our model can generate word embeddings for any
word, regardless if it is OOV or not.

Contribution We propose a simple yet effec-
tive subword-level word embedding method that
can be efficiently trained given pre-trained word
vectors for a limited number of words. Once
trained, our embedding model takes the characters
n-grams in a word as input and gives its word vec-
tor as output.1

Our experiments on word similarity tasks in
English and POS tagging in a variety of lan-
guages suggests that the proposed word embed-
der is able to mimic and generalize consistently
the word vectors from in-vocabulary words to
out-of-vocabulary words, and achieves state-of-
the-art scores for the tasks compared to previ-
ous subword-level word embedders trained under
the same setting. This gives evidence that such
a simple model is capable of capturing language
speaker’s morphological knowledge, and also pro-
vides an easy way to generate word vectors for rare
or unseen (OOV) words with potential application
to various natural language processing tasks.

Related work There exist a large body of works
that try to incorporate morphological information
into word representations, e.g., (Alexandrescu and
Kirchhoff, 2006; Luong et al., 2013a; Qiu et al.,
2014; Botha and Blunsom, 2014; Cotterell and
Schütze, 2015; Soricut and Och, 2015). These ap-
proaches typically rely on the morphological de-
composition of words. Some other approaches
using subword information do not rely on mor-
phological decomposition but requires context in-
formation from large text corpus (Schütze, 1993;
Santos and Zadrozny, 2014; Ling et al., 2015; Wi-
eting et al., 2016).

1The code is available at https://github.com/
jmzhao/bag-of-substring-embedder.

In particular, Bojanowski et al. (2017) intro-
duced fastText, a word embedding method en-
hanced with subword (character n-gram) embed-
dings. They are able to generate vectors for OOV
words, which has been shown useful for text clas-
sification (Joulin et al., 2016), but the model is to
be trained over large text corpus.

Pinter et al. (2017) use a character-level bidi-
rectional LSTM model called MIMICK, mapping
from word strings to word vectors. The idea
of using character-level recurrent neural networks
(RNNs) for word vectors is not new (Ling et al.,
2015; Plank et al., 2016), but as per authors’
knowledge, they are by far the only attempt to
the exact task of generalizing word vectors from
only pre-trained vectors with a fixed vocabulary,
i.e. with no access to contextual information.

2 Bag-of-Substring Model

Our Bag-of-Substring (BoS) word vector gener-
ation model views a word as a bag of its sub-
strings, or character n-grams. Specifically, we
maintain a vector lookup table for each possi-
ble substrings (or character n-grams) of length
between lmin and lmax. A word vector is then
formed as the average of vectors of all its sub-
strings with lengths in the range. Let ⌃ be the fi-
nite set of characters in the language, subsb

a(s) =
{t is substring of s : a  |t|  b} for string s 2
⌃⇤ be the set of substrings of s whose length is be-
tween a and b inclusive, and <s> be the concatena-
tion of character <, string s and character > where
<,> 62 ⌃. The BoS embedding for a string/word s
can be expressed as

BoS(s; V ) =
1

|S<s>|
X

t2S<s>

vt, (1)

where V 2 R
d⇥(|⌃|lmin+···+|⌃|lmax ) are the param-

eters which stores the embeddings of dimension
d for each possible substring of length between
lmin and lmax, vt is the vector in V indexed by
t, S<s> is a shorthand for subslmax

lmin
(<s>). Spe-

cial characters <,> 62 ⌃ are used to mark the start
and the end of the word and thus help the model
to distinguish homographic morphemes that occur
at different word parts, e.g. prefixes or suffixes.
An example BoS representation for word infix
is subs4

3(<infix>) = {<in, <inf, inf,
infi, nfi, nfix, fix, fix>, ix>}.

fastText (Bojanowski et al., 2017) uses the same
idea for their word vector generation part. How-
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ever, unlike them, we train the model directly to-
wards pre-trained vectors, instead of via context
prediction over text corpora.

Training Given pre-trained vectors for a set of
common words, our model views them as targets
and is trained to fit these targets. Once the param-
eters (the vectors vt for the substrings) are learned,
the model can then be used to infer vectors for
rare words. Let U 2 R

d⇥|W | be the target vec-
tors of the same dimension d over finite vocabu-
lary W ⇢ ⌃⇤. Our model is trained by minimiz-
ing the overall loss between the generated and the
given vectors for each word:

minimize
V

1

|W |
X

w2W

l(BoS(w; V ), uw) (2)

where the loss function l(v, u) = 1
2kv � uk2

2,
namely the mean squared loss.

After training, one can use the learned V and
Eqn (1) to compute the vector for any given word,
even if it is OOV.

Hyperparameters We set the following hyper-
parameters for all the experiments. For BoS
model, lmin = 3 and lmax = 6 following Bo-
janowski et al. (2017). Note that under this setting,
S<s> can never be empty for non-empty string s.
For optimization, stochastic gradient descent with
learning rate 1 for 100 epochs. The dimension of
the word vectors is not a hyperparameters here as
it needs to agree with the target vector.

3 Word Similarity

We run experiments to quantitatively evaluate the
our model’s generalizability towards OOV words.

The word similarity task asks to predict word
similarity between a pair of two words. Given a
set of pairs of words and gold labels for their sim-
ilarities, the performance of word embeddings is
measured by the correlation between the gold sim-
ilarities and the similarities induced by the gen-
erated embeddings. And we can thus imply how
good our model is at generating word vectors. The
word similarity here is computed using the cosine
distance between the two word vectors, and the
correlation is computed using Spearman’s ⇢.

Datasets We evaluate over Stanford RareWord
(RW) introduced by Luong et al. (2013b) and
WordSim353 (WS) introduced by Finkelstein
et al. (2001). RW consists of less common words

Dim. # Tokens RW WS
Polyglot 64 100k 41(58%) 45(5%)
Google 300 160k 53(11%) 69(1%)

Table 1: Target vectors statistics and word similarity task
scores in Spearman’s ⇢ ⇥ 100. In parentheses are OOV rates.

Model Size Target RW WS
EditDist - - 18 -2
MIMICK 649KB Polyglot 14 12
BoS 238MB Polyglot 36 36
BoS 1.3GB Google 46 56
fastText 8.0GB - 48 74

Table 2: Word similarity task results measured in Spear-
man’s ⇢ ⇥ 100.

so we use it to access our model’s ability to gen-
eralize word embeddings to OOV words. WS is
composed of mostly common words and we use
it to test if our subword-level models successfully
mimic the target vectors.

Target vectors We train our BoS model over
the English Polyglot vectors 2 to establish a direct
comparison with results from MIMICK (Pinter
et al., 2017), and as well as the Google word2vec
vectors 3 which are popularly used in NLP tasks.
Polyglot (Al-Rfou et al., 2013) is a multilingual
NLP dataset, which also provides pre-trained word
vectors over each language’s corpus with a vocab-
ulary of 100,000 most frequent words. For Google
vectors, most of their vocabulary consists of non-
words such as URLs and phrases, so we normal-
ize tokens into ASCII characters by taking off all
the diacritics and take only tokens consisting of
a single word with all lower letters. Statistics of
the processed vectors are summarized in Table 1,
along with their word similarity task scores (for
in-vocabulary words only) and OOV rate over the
aforementioned evaluation sets.

Baselines We compare the scores with other
subword-level models (fastText and MIMICK)
and word similarity induced by non-parametric
edit distance (EditDist).

fastText (Bojanowski et al., 2017) uses the same
subword-level character n-gram model but is to
be trained via context prediction over large text
corpora (here English Wikipedia dump 4). MIM-

2http://polyglot.readthedocs.io/en/
latest/Download.html

3https://code.google.com/archive/p/
word2vec/

4https://fasttext.cc/docs/en/
pretrained-vectors.html
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ICK (Pinter et al., 2017) is a character-level bidi-
rectional LSTM word embedder trained against
pre-trained word vectors (here Polyglot vectors 5).

Edit distance is defined between two strings
as the smallest number of modifications: adding,
deleting and changing one character, needed to
turn one string into the other. It can be computed
using dynamic programming in O(|s1| ⇥ |s2|)
time. The word similarity between w1 and w2 here
is the edit distance normalized by the length of the
longer word:

sEditDist(w1, w2) = � dedit(w1, w2)

max(|w1|, |w2|)
(3)

where dedit is edit distance.

Results Results are summarized in Table 2.
When trained over Polyglot vectors, our BoS
model works better than EditDist and MIMICK.
When trained on Google vectors, the correlation
scores are almost as good as those of fastText,
the state-of-the-art subword level word embedder.
However, unlike fastText, our model does not have
access to word contexts in a large text corpus for
training. In both cases, the significant differences
of scores compared to those of EditDist, suggest
that our model indeed learns to capture semantic
similarities between words, rather than superficial
similarities in spelling.

Comparing to MIMICK, our model is able to fill
up 81% (14 to 36 against 41) and 73% (12 to 36
against 45) of the gaps in scores over RW and WS
respectively. This improvement is more significant
on RW with most (58%) of its words are OOV
for the PloyGlot vectors, suggesting our model’s
power in generating consistent word vectors for
OOV words. Surprisingly MIMICK performs no
better than the edit distance baseline when evalu-
ated on RW. Combined with the fact that it does
no better for WS which has a near-zero OOV rate,
it suggests MIMICK’s limited power of generaliz-
ing word vectors towards OOV words, or even re-
produce consistent word vector for in-vocabulary
words. As a sanity check, we see that all of the
embedder models scores obviously better than Ed-
itDist when evaluated over common words (WS),
showing that all of them are able to at least remem-
ber or mimic the word vectors for in-vocabulary
words.

Also note that our model is fast to train. With a
naive single-thread CPU-only Python implemen-

5https://github.com/yuvalpinter/Mimick

tation, it can finish 100 epochs of training over
English PolyGlot vectors within 352 seconds on
a machine with an Intel Core i7-6700 (3.4 GHz)
CPU, 32GB memory and 1TB SSD. Compared to
fastText which, with a fast multithread C++ im-
plementation, takes hours to be trained over giga
bytes of text corpus, our method provides a cheap
way to generalize reasonably good word vectors
for OOV words.

4 Joint Prediction of Part-of-Speech Tags
and Morphosyntactic Attributes

Besides word similarity, we try to access our em-
bedders’ ability of capturing words’ syntactic and
semantic features by evaluating with the task of
predicting part-of-speech (POS) tags and mor-
phosyntactic attributes for words in a sentence.
For each word in a given sentence, the task asks
for a POS tag and a label for each applicable
morphosyntactic category, such as gender, case or
tense.

Dataset We use Universal Dependencies (UD)
dataset (Petrov et al., 2012) for this task. UD is
an open-community effort to build consistent an-
notated treebank cross many languages. We pick
the specific version 1.4 to enable a direct compar-
ison with Pinter et al. (2017). Since we use Poly-
Glot vectors to train our word embedders, we con-
duct experiments on the 23 languages that appear
in both Polyglot and UD 1.4.

Model We adopt the same sentence-level bidi-
rectional LSTM model from Pinter et al. (2017)
for the joint prediction of both labels. Given a
sentence as a sequence of words, we first embed
each word using the word embedder we choose
and then fed the embeddings into the LSTM. The
output of LSTM is then used to predict POS and
morphosyntactic tags.

We emphasize the difference in the setting that
we fix the word embeddings during the training,
as to better evaluate the ability and consistency of
the embeddings in capturing words’ semantics and
syntactics, rather than LSTM’s ability to memo-
rize words and infer the role of words from their
context.

We use the same set of hyperparameters for the
LSTM model as Sec. 5.3 in Pinter et al. (2017)
and train the model for 20 epochs for each lan-
guage. The BoS and MIMICK word embedders
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Ntrain
POS tagging Morphosyntactic attributes

random MIMKCK BoS random MIMICK BoS
Kazakh 4,949 0.589 0.681 0.758(0.077) 0.021 0.032 0.240(0.208)
Tamil 6,329 0.480 0.678 0.774(0.097) 0.568 0.673 0.762(0.089)
Latvian 13,781 0.589 0.757 0.872(0.115) 0.374 0.572 0.676(0.104)
Vietnamese 31,800 0.749 0.564 0.846(0.282) - - -
Hungarian 33,017 0.594 0.858 0.922(0.065) 0.569 0.775 0.836(0.061)
Turkish 41,748 0.636 0.767 0.890(0.123) 0.543 0.776 0.826(0.050)
Greek 47,449 0.819 0.907 0.965(0.058) 0.783 0.903 0.934(0.031)
Bulgarian 50,000 0.804 0.903 0.971(0.068) 0.649 0.851 0.915(0.064)
Swedish 66,645 0.748 0.813 0.945(0.132) 0.707 0.812 0.930(0.118)
Basque 72,974 0.662 0.823 0.913(0.091) 0.564 0.778 0.820(0.042)
Russian 79,772 0.665 0.897 0.948(0.051) 0.592 0.855 0.915(0.060)
Danish 88,980 0.788 0.834 0.947(0.114) 0.745 0.813 0.927(0.114)
Indonesian 97,531 0.724 0.788 0.915(0.127) - - -
Chinese 98,608 0.721 0.793 0.835(0.042) 0.699 0.767 0.790(0.022)
Persian 121,064 0.843 0.866 0.957(0.091) 0.745 0.792 0.918(0.125)
Hebrew 135,496 0.814 0.858 0.957(0.099) 0.648 0.837 0.903(0.066)
Romanian 163,262 0.796 0.874 0.956(0.082) 0.718 0.876 0.942(0.066)
English 204,587 0.770 0.826 0.932(0.106) 0.822 0.859 0.947(0.089)
Arabic 225,853 0.780 0.901 0.950(0.049) 0.711 0.901 0.942(0.041)
Hindi 281,057 0.824 0.848 0.939(0.091) 0.863 0.888 0.951(0.063)
Italian 289,440 0.810 0.909 0.964(0.056) 0.839 0.927 0.964(0.037)
Spanish 382,436 0.819 0.914 0.959(0.045) 0.793 0.915 0.954(0.038)
Czech 1,173,282 0.695 0.908 0.966(0.058) 0.622 0.845 0.905(0.061)

Table 3: POS tagging accuracy and morphosyntactic attributes micro F1 over 23 languages (UD 1.4). In
parentheses are the gains to MIMICK.

are trained beforehand with PolyGlot dataset us-
ing the same way described earlier.

Results The POS tagging accuracies and micro
F1 scores for morphosyntactic attributes are re-
ported in Table 3 with word vectors generated by
different models. The BoS and MIMICK model
here are trained against Polyglot vectors. As a
comparison, we include the results using random
word vectors of the same dimension (64).

Our BoS model shows steady and significant
gain compared to MIMICK embeddings for both
tasks in all languages. We especially observe the
greatest margins for agglutinative languages such
as Turkish and Indonesian, and in Germanic lan-
guages English, Swedish and Danish, suggesting
that our model learns stable representations for
morphemes to consistent word type signal.

5 Conclusion

We proposed a subword-level word embedding
model and a word vector generalization method
that enables extending pre-trained word embed-
dings with fixed size vocabularies to estimate word
embeddings for out-of-vocabulary words. Intrin-
sic evaluation on word similarity tasks and extrin-
sic evaluation on POS tagging task demonstrate
that our model captures morphological knowledge
and generates good estimates of word vectors for

OOV words.
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Abstract

We present end-to-end neural models for de-
tecting metaphorical word use in context. We
show that relatively standard BiLSTM mod-
els which operate on complete sentences work
well in this setting, in comparison to previous
work that used more restricted forms of lin-
guistic context. These models establish a new
state-of-the-art on existing verb metaphor de-
tection benchmarks, and show strong perfor-
mance on jointly predicting the metaphoricity
of all words in a running text.

1 Introduction

Metaphors are pervasive in natural language, and
detecting them requires challenging contextual
reasoning about whether specific situations can ac-
tually happen. (Lakoff and Johnson, 1980). For
example, in Table 1, “examining” is metaphorical
because it is impossible to literally use a “micro-
scope” to examine an entire country. In this paper,
we present end-to-end neural models for metaphor
detection, which can learn rich contextual word
representations that are crucial for accurate inter-
pretation of figurative language.

In contrast, most previous approaches focused
on limited forms of linguistic context, for exam-
ple by only providing SVO triples such as (car,
drink, gasoline) to the model (Shutova et al.,
2016; Tsvetkov et al., 2013; Rei et al., 2017; Bulat
et al., 2017). While the verbal arguments provide
strong cues, providing the full sentential context
supports more accurate prediction, as seen in Ta-
ble 1. Even in the few cases when the full sentence
is used (Köper and im Walde, 2017; Turney et al.,
2011; Jang et al., 2016) existing models have used
unigram-based features with limited expressivity.

We investigate two common task formulations:
(1) given a target verb in a sentence, classify-
ing whether it is metaphorical or not, and (2)

The experts started examining the Soviet Union
with a microscope to study perceived changes.
Rockford teachers are honored for saving a
drowning student.
You’re drowning in student loan debt.

Table 1: Metaphorical usages of the target word are
bold faced, and literal usages are italicized. Full sen-
tence context is crucial for metaphor detection.

given a sentence, detecting all of the metaphor-
ical words (independent of their POS tags). We
find that relatively standard architectures based on
bi-directional LSTMs (Hochreiter and Schmidhu-
ber, 1997) augmented with contextualized word
embeddings (Peters et al., 2018) perform sur-
prisingly well on both tasks, even with mod-
est amount of training data. We improve the
previous state-of-the-art by 7.5 F1 on the VU
Amsterdam Metaphor Corpus (VUA) for the se-
quence labeling task (Steen et al., 2010), by
2.5 F1 on the VUA verb clasificiation dataset,
and by 4.9 F1 on the MOH-X dataset (Mo-
hammad et al., 2016). Our code is publicly
available at https://github.com/gao-g/
metaphor-in-context.

2 Task

We study two task formulations.

Sequence Labeling: Given a sentence x1,. . . ,xn,
predict a sequence of binary labels l1, . . . , ln
to indicate the metaphoricity of each word.

Classification: Given a sentence x1, . . . , xn and
a target verb index i, predict a binary label l
to indicate the metaphoricity of the target xi.

While both formulations have been studied in pre-
vious work, it is worth noting that the sequence
labeling task generalizes the classification task in
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Figure 1: A sequence labeling model for metaphor de-
tection. Every word in a sentence is classified.

that the prediction for the target verb can be ex-
tracted from the full sentence predictions. In ad-
dition, as will be shown in Section 5, we find that
given accurate annotations for all words in a sen-
tence, the sequence labeling model outperforms
the classification model even when the evaluation
is set up as a classification task.

3 Model

Our models use a bidirectional LSTM to encode
a sentence, and a feedforward neural network for
classification, optimized for the log-likelihood of
gold labels.

Sentence encoding For both sequence labeling
and classification, we represent each token xi in
the input sentence with a pre-trained word em-
bedding wi. To further encode contextual infor-
mation, we also concatenate ELMo (Embeddings
from Language Models) vectors ei from Peters
et al. (2018). These vectors have been shown to
be useful for word sense disambiguation, a task
closely related to metaphor detection (Birke and
Sarkar, 2006).

3.1 Sequence Labeling Model

Figure 1 shows the model architecture. We input
the word representation [wi; ei] to a bidirectional
LSTM, producing a contextualized representation
hi for each token. Then we use a feedforward neu-
ral network that takes hi to predict a label li for
each word xi.

When the dataset does not contain annotations
for every word, we make the simplifying assump-
tion that every unannotated word is used literally.

Make the people’s heart glow

M

+

1

Figure 2: A classification model for metaphor detec-
tion. Only a single word per sentence is labeled as
metaphorical or literal.

3.2 Classification Model
Figure 2 shows the model architecture. We con-
catenate an index embedding ni, which indicates
whether xi is the target verb. We use [wi; ei; ni]
as an input to a bidirectional LSTM, producing a
contextualized representation hi.

We add an attention layer by computing the at-
tention weight ai for token xi, and compute the
representation c as a weighted sum of LSTM out-
put states where Wa and ba are learned parameters.

ai = SoftMaxi(Wahi + ba)

c =
nX

i=1

aihi

Finally, we feed c to a feedforward network to
compute the label scores for target verb.

4 Dataset

We evaluate performance on a number of bench-
mark datasets, including two for classification
(TroFi and MOH\MOH-X) and one for tagging
(VUA).1 Table 2 shows statistics for the verb clas-
sification datasets. Despite being two times larger
than the MOH dataset, the TroFi dataset contains
only 50 unique verbs, and the larger VUA dataset
contains over 2K unique verbs. The MOH dataset
contains shorter and simpler sentences (example
sentences in WordNet), compared to sentences in
other datasets which come from resources such as

1For detailed information about each dataset, please re-
fer to original papers: TroFi (Birke and Sarkar, 2006),
MOH (Mohammad et al., 2016), VUA (Steen et al., 2010).
MOH-X refers to a subset of MOH dataset used in previous
work (Shutova et al., 2016) where verb and its argument are
extracted from each sentence.
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# % # Uniq. Avg #
Expl. Metaphor Verb Sent. Len

MOH-X 647 49% 214 8.0
MOH 1,639 25% 440 7.4
TroFi 3,737 43% 50 28.3
VUA 23,113 28% 2047 24.5

Table 2: Verb classification dataset statistics. %
Metaphor refers to sentence-level percentage.

Train Dev Test

# Unique tokens 13,843 7,458 7,200
# Tokens 116,622 38,628 50,175
# Unique sent. 6,323 1,550 2,694
% Metaphor 11.2 11.6 12.4

Table 3: VUA sequence labeling dataset statistics. %
Metaphor refers to token-level percentage.

news articles. The TroFi and MOH-X datasets
are constructed to have higher percentages of
metaphor, compared to the natural likelihood of
metaphor in a running text, as seen in the VUA
dataset.

Classification Experiment Setup We perform
10 fold cross-validation on the MOH-X and TroFi
datasets, following prior work. For the VUA
dataset, we use the original training and test split
(Klebanov et al., 2016), and set aside 10% of the
training set as a development set.

Sequence Labeling Experiment Setup The
VUA dataset contains annotations for all words in
each sentence. We divide the data into training,
development, and test set following the same split
for the VUA verb classification task. While the la-
bel classes are less balanced (only 11% metaphors
at the token level), this dataset is much bigger. Ta-
ble 3 shows the data statistics.

5 Experiments

Evaluation Metric We report precision, recall
and F1 measure for the metaphor class as well as
the overall accuracy. For the VUA dataset, we also
report macro-averaged F1 score across four gen-
res (conversation, academic writing, fiction and
news).

Comparison Systems We propose a simple yet
effective lexical baseline. It assigns the metaphor
label if the word is annotated metaphorically more
frequently than as literally in the training set, and
the literal label otherwise. We also compare our

Model P R F1 Acc.

Lexical Baseline 68.6 45.2 54.5 90.6
Wu (2018) ensemble 60.8 70.0 65.1 -
Ours (SEQ) 71.6 73.6 72.6 93.1

Table 4: Performance on the VUA sequence labeling
test set for all POS tags.

POS # % metaphor P R F1.

VERB 20K 18.1 68.1 71.9 69.9
NOUN 20K 13.6 59.9 60.8 60.4
ADP 13K 28.0 86.8 89.0 87.9
ADJ 9K 11.5 56.1 60.6 58.3
PART 3K 10.1 57.1 59.1 58.1

Table 5: The breakdown of performance on the VUA
sequence labeling test set by POS tags. We show data
statistics (count, % metaphor) on the training set. We
only show POS tags whose % metaphor > 10.

models to previously published work, including:
(1) a logistic regression classifier with features
that indicate verb lemmas and the verbs’ seman-
tic class from WordNet (Klebanov et al., 2016),
(2) a neural similarity network with skip-gram
word embeddings (Rei et al., 2017), (3) a bal-
anced logistic regression classifier on target verb
lemma that uses a set of features based on multi-
sense abstractness rating (Köper and im Walde,
2017), and (4) a CNN-LSTM ensemble model
with weighted-softmax classifier which incorpo-
rates pre-trained word2vec, POS tags, and word
cluster features (Wu et al., 2018).2

We experiment with both sequence labeling
model (SEQ) and classification model (CLS) for
the verb classification task, and the sequence la-
beling model (SEQ) for the sequence labeling
task.

Implementation Details We used 300d GloVe
vectors (Pennington et al., 2014) and 1024d ELMo
vectors. We used additional 50d index embedding
for the classification task. The LSTM module has
a 300d hidden state. We applied dropout on the in-
put to LSTM and on the input to the feedforward
layer. We fine-tuned learning rate and dropout rate
for each model on each dataset. We used SGD
to optimize the CLS model and Adam (Kingma
and Ba, 2013) for the SEQ model. We used
spaCy (Honnibal and Montani, 2017) for lemma-
tization, tokenization, and part-of-speech tagging.

2The best performing model on the VUA Metaphor De-
tection Shared Task at the NAACL 2018 workshop on Figu-
rative Language Processing.
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Model MOH-X (10 fold) TroFi (10 fold) VUA - Test
P R F1 Acc. P R F1 Acc. P R F1 Acc. MaF1

Lexical Baseline 39.1 26.7 31.3 43.6 72.4 55.7 62.9 71.4 67.9 40.7 50.9 76.4 48.9

Klebanov (2016) - - - - - - - - - - - - 60.0
Rei (2017) 73.6 76.1 74.2 74.8 - - - - - - - - -
Köper (2017) - - - - - 75.0 - - - 62.0 - -
Wu (2018) ensemble - - - - - - - - 60.0 76.3 67.2 - -

CLS 75.3 84.3 79.1 78.5 68.7 74.6 72.0 73.7 53.4 65.6 58.9 69.1 53.4
SEQ 79.1 73.5 75.6 77.2 70.7 71.6 71.1 74.6 68.2 71.3 69.7 81.4 66.4

Table 6: Model performances for the verb classification task. Our models achieve strong performance on all
datasets. The CLS model performs better than the SEQ model when only one word per sentence is annotated
by human (TroFi and MOH-X). When all words in the sentence are accurately annotated (VUA), the SEQ model
outperforms the CLS model.

Model P R F1. Acc.

SEQ 68.3 72.0 70.4 83.5
-ELMo 59.4 64.3 61.7 78.2
CLS 52.4 63.0 57.3 74.3
-ELMo 52.0 48.7 50.8 74.1

Table 7: Ablation study on VUA development set for
the verb classification task.

Sequence Labeling Results Performance on the
sequence labeling task is reported in Table 4.
While prior work (Klebanov et al., 2014; Özbal
et al., 2016) reported on the same dataset, the ex-
periment setting is not comparable (they did cross
validation on a smaller training set).3 Our lexical
baseline performs strongly in terms of precision,
as some words and POS tags are almost exclu-
sively annotated as literal. Our sequence labeling
model mainly improves recall.

Table 5 reports the breakdown of performance
by POS tags. Not surprisingly, tags with more data
are easier to classify. Adposition is the easiest to
identify as metaphorical and is also the most fre-
quently metaphorical class (28%). On the other
hand, particles are challenging to identify, since
they are often associated with multi-word expres-
sions, such as “put down the disturbances”.

Verb Classification Results Table 6 shows per-
formance on the verb classification task for three
datasets (MOH-X , TroFi and VUA).4

Our models achieve strong performance on all
datasets, outperforming existing models on the
MOH-X and VUA datasets. On the MOH-X
dataset, the CLS model outperforms the SEQ

3As a point of reference, their macro-averaged F1 scores
were 33.25 / 50.6 respectively.

4We did not compare to Shutova et al. (2016) as their ex-
periment setting is not comparable.

model, likely due to the simpler overall sentence
structure and the fact that the target verbs are the
only words annotated for metaphoricity. For the
VUA dataset, where we have annotations for all
words in a sentence, the SEQ model significantly
outperforms the CLS model. This result shows
that predicting metaphor labels of context words
helps to predict the target verb. We hypothesize
that Köper et al. (2017) outperforms our models on
the TroFi dataset for a similar reason: their work
uses concreteness labels, which highly correlate to
metaphor labels of neighboring words in the sen-
tence. Also, their best model uses the verb lemma
as a feature, which itself provides a strong clue in
the dataset of 50 verbs (see lexical baseline).

Table 7 shows an ablation study on input repre-
sentations (with or without ELMo vectors). Con-
textualized word vectors improve the performance
of both models by a large margin.

Error Analysis We sampled 100 errors of our
best model from the VUA verb classification de-
velopment set for analysis. Table 8 shows exam-
ples. Following the original annotation guideline,5

we classify metaphors into five categories: direct
metaphor, indirect metaphor, implicit metaphor,
personification, and borderline case. Indirect
metaphor, the most common type for verbs, means
that the basic meaning of a word is different from
its contextual meaning. Implicit metaphor occurs
due to an underlying link which points to a recov-
erable metaphorical concept.

About half of the errors were false positives, and
the other half were false negatives. Among the
false negatives, 33% are indirect metaphors, 18%
are personifications, and 2% are direct metaphors.
Among 55 false positives, 31% of verbs have im-

5http://www.vismet.org/metcor/documentation/home.html
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CLS SEQ Sentence Metaphor Type

7 7 To throw up an impenetrable Berlin Wall between you and them could be tactless. -

7 7 In reality you just invent a tale, as if you were sitting round a fire in a cave. direct metaphor

7 7 So they bought immunity. indirect metaphor

7 7 During the early states of the phased evacuation the logistical problem facing the po-
lice was the street-by-street warning of the population to make ready for evacuation.

indirect metaphor

7 4 There are few things worse than being bludgeoned into reading a book you hate. indirect metaphor

7 4 He thought of thick, fat, hot motorways carving up that land. personification

7 4 One might ask whether motorists are ever justified in knowingly taking risks with other
people’s lives.

-

7 4 The abstract talk of commuting by rail or road being replaced by information technol-
ogy finds a concrete expression in the idea of telecottages.

-

7 4 A fly landed on the empty, staring vizor, and crawled across it. -

Table 8: Some examples from the VUA verb classification development set. Metaphorical usages of the target
word are bold faced, and literal usages are italicized. Leftmost columns show the correctness of prediction.

plicit arguments that are not explicitly mentioned
in the context, 15% have long range dependencies
(at least five words away) from core arguments,
10% have arguments with rare word senses, and
5% have anthropomorphic arguments. Finally, we
found about half of false negatives and 20% of
false positives to be borderline cases, showing the
subjective nature of the task.

We sampled 257 dev examples that the CLS
model gets wrong but the SEQ model gets cor-
rect. We found that the SEQ model outperforms
the CLS model on detecting personifications, in-
direct metaphors, and direct metaphors involving
uncommon verbs.

6 Related Work
There has been significant work on studying dif-
ferent features for metaphor detection, includ-
ing concretenesss and abstractness (Turney et al.,
2011; Tsvetkov et al., 2014; Köper and im Walde,
2017), imaginability (Broadwell et al., 2013;
Strzalkowski et al., 2013), feature norms (Bulat
et al., 2017), sensory features (Tekiroglu et al.,
2015; Shutova et al., 2016), bag-of-words fea-
tures (Köper and im Walde, 2016), and semantic
class using WordNet (Hovy et al., 2013; Tsvetkov
et al., 2014). More recently, embedding-based ap-
proaches (Köper and im Walde, 2017; Rei et al.,
2017) showed gains on various benchmarks.

Many neural models with various features and
architectures were introduced in the 2018 VUA
Metaphor Detection Shared Task. They include
LSTM-based models and CRFs augmented by lin-
guistic features, such as WordNet, POS tags, con-
creteness score, unigrams, lemmas, verb clusters,

and sentence-length manipulation (Swarnkar and
Singh, 2018; Pramanick et al., 2018; Mosolova
et al., 2018; Bizzoni and Ghanimifard, 2018; Wu
et al., 2018). Researchers also studied different
word embeddings, such as embeddings trained
from corpora representing different levels of lan-
guage mastery (Stemle and Onysko, 2018) and
binarized vectors that reflect the General Inquirer
dictionary category of a word (Mykowiecka et al.,
2018). We show that contextualized word embed-
ding significantly improves metaphor detection.
We also study both sequence labeling and classifi-
cation approaches, suggesting that sequence label-
ing approach enhances performance when used to
jointly predict the metaphoricity of all words in a
sentence.

7 Conclusion

In this paper, we present simple biLSTM models
augmented with contextualized word representa-
tion for metaphor detection. Our models estab-
lish new state-of-the-arts across multiple existing
benchmarks, and our error analysis shows remain-
ing challenges for metaphor detection.
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Abstract

We introduce DSDS: a cross-lingual neural
part-of-speech tagger that learns from dis-
parate sources of distant supervision, and re-
alistically scales to hundreds of low-resource
languages. The model exploits annotation pro-
jection, instance selection, tag dictionaries,
morphological lexicons, and distributed repre-
sentations, all in a uniform framework. The
approach is simple, yet surprisingly effective,
resulting in a new state of the art without ac-
cess to any gold annotated data.

1 Introduction

Low-resource languages lack manually annotated
data to learn even the most basic models such as
part-of-speech (POS) taggers. To compensate for
the absence of direct supervision, work in cross-
lingual learning and distant supervision has dis-
covered creative use for a number of alternative
data sources to learn feasible models:
– aligned parallel corpora to project POS annota-

tions to target languages (Yarowsky et al., 2001;
Agić et al., 2015; Fang and Cohn, 2016),

– noisy tag dictionaries for type-level approxima-
tion of full supervision (Li et al., 2012),

– combination of projection and type constraints
(Das and Petrov, 2011; Täckström et al., 2013),

– rapid annotation of seed training data (Garrette
and Baldridge, 2013; Garrette et al., 2013).
However, only one or two compatible sources of

distant supervision are typically employed. In re-
ality severely under-resourced languages may re-
quire a more pragmatic “take what you can get”
viewpoint. Our results suggest that combining su-
pervision sources is the way to go about creating
viable low-resource taggers.

We propose a method to strike a balance be-
tween model simplicity and the capacity to eas-
ily integrate heterogeneous learning signals. Our

Figure 1: Illustration of DSDS (Distant Supervi-
sion from Disparate Sources).

system is a uniform neural model for POS tag-
ging that learns from disparate sources of dis-
tant supervision (DSDS). We use it to combine:
i) multi-source annotation projection, ii) instance
selection, iii) noisy tag dictionaries, and iv) dis-
tributed word and sub-word representations. We
examine how far we can get by exploiting only the
wide-coverage resources that are currently readily
available for more than 300 languages, which is
the breadth of the parallel corpus we employ.

DSDS yields a new state of the art by jointly
leveraging disparate sources of distant supervision
in an experiment with 25 languages. We demon-
strate: i) substantial gains in carefully selecting
high-quality instances in annotation projection, ii)
the usefulness of lexicon features for neural tag-
ging, and iii) the importance of word embeddings
initialization for faster convergence.

2 Method

DSDS is illustrated in Figure 1. The base model
is a bidirectional long short-term memory net-
work (bi-LSTM) (Graves and Schmidhuber, 2005;
Hochreiter and Schmidhuber, 1997; Plank et al.,
2016; Kiperwasser and Goldberg, 2016). Let x1:n
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be a given sequence of input vectors. In our
base model, the input sequence consists of word
embeddings ~w and the two output states of a
character-level bi-LSTM ~c. Given x1:n and a de-
sired index i, the function BiRNN✓(x1:n, i) (here
instantiated as LSTM) reads the input sequence in
forward and reverse order, respectively, and uses
the concatenated (�) output states as input for tag
prediction at position i.1 Our model differs from
prior work on the type of input vectors x1:n and
distant data sources, in particular, we extend the
input with lexicon embeddings, all described next.

Annotation projection. Ever since the seminal
work of Yarowsky et al. (2001), projecting sequen-
tial labels from source to target languages has been
one of the most prevalent approaches to cross-
lingual learning. Its only requirement is that paral-
lel texts are available between the languages, and
that the source side is annotated for POS.

We apply the approach by Agić et al. (2016),
where labels are projected from multiple sources
and then decoded through weighted majority vot-
ing with word alignment probabilities and source
POS tagger confidences. We exploit their wide-
coverage Watchtower corpus (WTC), in contrast
to the typically used Europarl data. Europarl cov-
ers 21 languages of the EU with 400k-2M sen-
tence pairs, while WTC spans 300+ widely diverse
languages with only 10-100k pairs, in effect sac-
rificing depth for breadth, and introducing a more
radical domain shift. However, as our results show
little projected data turns out to be the most bene-
ficial, reinforcing breadth for depth.

While Agić et al. (2016) selected 20k projected
sentences at random to train taggers, we propose a
novel alternative: selection by coverage. We rank
the target sentences by percentage of words cov-
ered by word alignment from 21 sources of Agić
et al. (2016), and select the top k covered instances
for training. In specific, we employ the mean
coverage ranking of target sentences, whereby
each target sentence is coupled with the arithmetic
mean of the 21 individual word alignment cover-
ages for each of the 21 source-language sentences.
We show that this simple approach to instance se-
lection offers substantial improvements: across all
languages, we learn better taggers with signifi-
cantly fewer training instances.

1CRF decoding did not consistently improve POS accu-
racy, as recently also independently found (Yang et al., 2018).

Dictionaries. Dictionaries are a useful source
for distant supervision (Li et al., 2012; Täckström
et al., 2013). There are several ways to exploit
such information: i) as type constraints during en-
coding (Täckström et al., 2013), ii) to guide unsu-
pervised learning (Li et al., 2012), or iii) as addi-
tional signal at training. We focus on the latter and
evaluate two ways to integrate lexical knowledge
into neural models, while comparing to the former
two: a) by representing lexicon properties as n-hot
vector (e.g., if a word has two properties accord-
ing to lexicon src, it results in a 2-hot vector, if the
word is not present in src, a zero vector), with m
the number of lexicon properties; b) by embedding
the lexical features, i.e., ~esrc is a lexicon src em-
bedded into an l-dimensional space. We represent
~esrc as concatenation of all embedded m proper-
ties of length l, and a zero vector otherwise. Tun-
ing on the dev set, we found the second embedding
approach to perform best, and simple concatena-
tion outperformed mean vector representations.

We evaluate two dictionary sources, motivated
by ease of accessibility to many languages: WIK-
TIONARY, a word type dictionary that maps to-
kens to one of the 12 Universal POS tags (Li
et al., 2012; Petrov et al., 2012); and UNIMORPH,
a morphological dictionary that provides inflec-
tional paradigms across 350 languages (Kirov
et al., 2016). For Wiktionary, we use the freely
available dictionaries from Li et al. (2012) and
Agić et al. (2017). The size of the dictionaries
ranges from a few thousands (e.g., Hindi and Bul-
garian) to 2M (Finnish UniMorph). Sizes are pro-
vided in Table 1, first columns. UniMorph covers
between 8-38 morphological properties (for En-
glish and Finnish, respectively).

Word embeddings. Embeddings are available
for many languages. Pre-initialization of ~w offers
consistent and considerable performance improve-
ments in our distant supervision setup (Section 4).
We use off-the-shelf Polyglot embeddings (Al-
Rfou et al., 2013), which performed consistently
better than FastText (Bojanowski et al., 2016).

3 Experiments

Baselines. We compare to the following weakly-
supervised POS taggers:
– AGIC: Multi-source annotation projection with

Bible parallel data by Agić et al. (2015).
– DAS: The label propagation approach by Das

and Petrov (2011) over Europarl data.
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(a) sentence selection (b) pre-trained embeddings

Figure 2: Learning curves for: a) random vs.
coverage-based sentence selection in annotation
projection, both with Polyglot embeddings, and b)
pre-trained embeddings on top of coverage-based
selection. Means over 21 languages.

– GARRETTE: The approach by Garrette and
Baldridge (2013) that works with projections,
dictionaries, and unlabeled target text.

– LI: Wiktionary supervision (Li et al., 2012).

Data. Our set of 25 languages is motivated by
accessibility to embeddings and dictionaries. In all
experiments we work with the 12 Universal POS
tags (Petrov et al., 2012). For development, we
use 21 dev sets of the Universal Dependencies 2.1
(Nivre et al., 2017). We employ UD test sets on
additional languages as well as the test sets of Agić
et al. (2015) to facilitate comparisons. Their test
sets are a mixture of CoNLL (Buchholz and Marsi,
2006; Nivre et al., 2007) and HamleDT test data
(Zeman et al., 2014), and are more distant from
the training and development data.

Model and parameters. We extend an off-the-
shelf state-of-the-art bi-LSTM tagger with lexicon
information. The code is available at: https://
github.com/bplank/bilstm-aux. The
parameter l=40 was set on dev data across all lan-
guages. Besides using 10 epochs, word dropout
rate (p=.25) and 40-dimensional lexicon embed-
dings, we use the parameters from Plank et al.
(2016). For all experiments, we average over 3
randomly seeded runs, and provide mean accu-
racy. For the learning curve, we average over 5
random samples with 3 runs each.

4 Results

Table 1 shows the tagging accuracy for individual
languages, while the means over all languages are
given in Figure 2. There are several take-aways.

Data selection. The first take-away is that
coverage-based instance selection yields substan-

tially better training data. Most prior work on an-
notation projection resorts to arbitrary selection;
informed selection clearly helps in this noisy data
setup, as shown in Figure 2 (a). Training on 5k
instances results in a sweet spot; more data (10k)
starts to decrease performance, at a cost of run-
time. Training on all WTC data (around 120k) is
worse for most languages. From now on we con-
sider the 5k model trained with Polyglot as our
baseline (Table 1, column “5k”), obtaining a mean
accuracy of 83.0 over 21 languages.

Embeddings initialization. Polyglot initializa-
tion offers a large boost; on average +3.8% abso-
lute improvement in accuracy for our 5k training
scheme, as shown in Figure 2 (b). The big gap in
low-resource setups further shows their effective-
ness, with up to 10% absolute increase in accuracy
when training on only 500 instances.

Lexical information. The main take-away is
that lexical information helps neural tagging, and
embedding it proves the most helpful. Embedding
Wiktionary tags reaches 83.7 accuracy on average,
versus 83.4 for n-hot encoding, and 83.2 for type
constraints. Only on 4 out of 21 languages are type
constraints better. This is the case for only one
language for n-hot encoding (French). The best
approach is to embed both Wiktionary and Uni-
morph, boosting performance further to 84.0, and
resulting in our final model. It helps the most on
morphological rich languages such as Uralic.

On the test sets (Table 4, right) DSDS reaches
87.2 over 8 test languages intersecting Li et al.
(2012) and Agić et al. (2016). It reaches 86.2 over
the more commonly used 8 languages of Das and
Petrov (2011), compared to their 83.4. This shows
that our novel “soft” inclusion of noisy dictionar-
ies is superior to a hard decoding restriction, and
including lexicons in neural taggers helps. We did
not assume any gold data to further enrich the lex-
icons, nor fix possible tagset divergences.

5 Discussion

Analysis. The inclusion of lexicons results in
higher coverage and is part of the explanation for
the improvement of DSDS; see correlation in Fig-
ure 3 (a). What is more interesting is that our
model benefits from the lexicon beyond its con-
tent: OOV accuracy for words not present in the
lexicon overall improves, besides the expected im-
provement on known OOV, see Figure 3 (b).
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LEX (103) DEV SETS (UD2.1) TEST SETS
LANGUAGE W U 5k TCW n-hotW ~eW DSDS DAS LI GARRETTE AGIC DSDS

Bulgarian (bg) 3 47 88.6 88.6 88.9 89.6 89.7 – – 83.1 77.7 83.9
Croatian (hr) 20 – 84.9 85.4 84.9 84.8 †84.8 – – – 67.1 †78.0
Czech (cs) 14 72 86.6 86.6 86.9 87.6 87.2 – – – 73.3 86.8
Danish (da) 22 24 89.6 89.0 89.8 90.2 90.0 83.2 83.3 78.8 79.0 84.5
Dutch (nl) 52 26 88.3 88.9 89.0 89.7 89.8 79.5 86.3 – – 83.9
English (en) 358 91 86.5 87.4 86.8 87.3 87.3 – 87.1 80.8 73.0 85.7
Finnish (fi) 104 2,345 81.5 81.2 81.8 82.4 82.4 – – – – –
French (fr) 17 274 91.0 89.6 91.7 91.2 91.4 – – 85.5 76.6 88.7
German (de) 62 71 85.0 86.4 85.5 86.0 86.7 82.8 85.8 87.1 80.2 84.1
Greek (el) 21 – 80.6 85.7 80.2 80.5 †80.5 82.5 79.2 64.4 52.3 †81.1
Hebrew (he) 3 12 76.0 76.1 75.5 74.9 75.3 – – – – –
Hindi (hi) 2 26 64.6 64.6 64.8 65.4 66.2 – – – 67.6 63.1
Hungarian (hu) 13 13 75.6 75.6 75.3 75.7 77.9 – – 77.9 72.0 77.3
Italian (it) 478 410 91.9 91.7 93.4 93.5 93.7 86.8 86.5 83.5 76.9 92.1
Norwegian (no) 47 18 90.9 90.9 90.9 91.0 91.5 – – 84.3 76.7 86.2
Persian (fa) 4 26 42.8 43.0 43.7 43.5 43.8 – – – 59.6 43.6
Polish (pl) 6 132 84.7 84.6 84.2 84.8 86.0 – – – 75.1 84.4
Portuguese 41 211 91.4 91.5 92.3 92.9 92.2 87.9 84.5 87.3 83.8 89.4
Romanian (ro) 7 4 83.9 83.9 84.8 85.3 86.3 – – – – –
Spanish (es) 234 324 90.4 88.6 91.0 91.5 92.0 84.2 86.4 88.7 81.4 91.7
Swedish (sv) 89 67 88.9 88.9 89.6 89.9 89.9 80.5 86.1 76.1 75.2 83.1

AVG(21) 83.0 83.2 83.4 83.7 84.0 AVG(8: DAS) 83.4 84.8 80.8 75.5 86.2
AVG(8: LI\AGIC) – 84.9 80.8 75.2 87.2

GERMANIC (6) 88.2 88.6 88.6 89.0 89.2 GERMANIC (4: DAS) 81.5 85.4 – – 83.9
ROMANCE (5) 89.7 89.0 90.6 90.9 91.1 ROMANCE (3: DAS) 86.3 85.8 86.5 80.7 91.1
SLAVIC (4) 86.2 86.3 86.2 86.7 86.9
INDO-IRANIAN (2) 53.7 53.8 54.3 54.4 55.0
URALIC (2) 78.5 78.4 78.6 79.0 80.1

Table 1: Results on the development sets and comparison of our best model to prior work. LEX: Size
(word types) of dictionaries (W: Wiktionary, U: UniMorph). TCW : type-constraints using Wiktionary;
~eW (embedded Wiktionary tags), DSDS: our model with ~eW[U . Results indicated by † use W only. Best
result in boldface; in case of equal means, the one with lower std is boldfaced. Averages over language
families (with two or more languages in the sample, number of languages in parenthesis).

More languages. All data sources employed in
our experiment are very high-coverage. However,
for true low-resource languages, we cannot safely
assume the availability of all disparate information
sources. Table 2 presents results for four addi-
tional languages where some supervision sources
are missing. We observe that adding lexicon in-
formation always helps, even in cases where only
1k entries are available, and embedding it is usu-
ally the most beneficial way. For closely-related
languages such as Serbian and Croatian, using re-
sources for one aids tagging the other, and modern
resources are a better fit. For example, using the
Croatian WTC projections to train a model for Ser-
bian is preferable over in-language Serbian Bible
data where the OOV rate is much higher.

How much gold data? We assume not having
access to any gold annotated data. It is thus in-
teresting to ask how much gold data is needed to
reach our performance. This is a tricky question,
as training within the same corpus naturally favors
the same corpus data. We test both in-corpus (UD)

(a) coverage vs. accuracy (b) OOV accuracy

Figure 3: Analysis of DSDS accuracy improve-
ments over the baseline on all development lan-
guages with respect to a) token coverage by the
lexicon, including Pearson’s ⇢; b) OOV accuracy
for tokens in/not in the lexicon, with 95% confi-
dence intervals of the mean. Here, a token is cov-
ered if we can find it in at least one lexicon.

and out-of-corpus data (our test sets) and notice an
important gap: while in-corpus only 50 sentences
are sufficient, outside the corpus one would need
over 200 sentences. This experiment was done for
a subset of 18 languages with both in- and out-of-
corpus test data.
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LEX (103) TEST SETS
LANGUAGE TEST PROJ EMB W U TnT 5k TCW n-hotW ~eW DSDS

Basque (eu) UD Bible eu 1 – 57.5 61.8 61.8 61.4 62.7 †62.7
Basque (eu) CoNLL Bible eu 1 – 57.0 60.3 60.3 60.3 61.3 †61.3
Estonian (et) UD WTC et – 10 79.5 80.6 – – – 81.5
Serbian (sr) UD WTC (hr) hr (hr) 20 – 84.0 84.7 85.5 85.1 85.2 †85.2
Serbian (sr) UD Bible (sr) hr (hr) 20 – 77.1 78.9 79.4 80.5 80.7 †80.7
Tamil (ta) UD WTC ta – – 58.2 61.2 – – – –

Table 2: Results for languages with missing data sources: WTC projections, Wiktionary (W), or Uni-
Morph (U). Test sets (TEST), projection sources (PROJ), and embeddings languages (EMB) are indicated.
Comparison to TnT (Brants, 2000) trained on PROJ. Results indicated by † use W only.

Further comparison. In Table 1 we directly re-
port the accuracies from the original contributions
by DAS, LI, GARRETTE, and AGIC over the same
test data. We additionally attempted to reach the
scores of LI by running their tagger over the Ta-
ble 1 data setup. The results are depicted in Fig-
ure 4 as mean accuracies over EM iterations until
convergence. We show: i) LI peaks at 10 iterations
for their test languages, and at 35 iterations for all
the rest. This is in slight contrast to 50 iterations
that Li et al. (2012) recommend, although select-
ing 50 does not dramatically hurt the scores; ii)
Our replication falls ⇠5 points short of their 84.9
accuracy. There is a large 33-point accuracy gap
between the scores of Li et al. (2012), where the
dictionaries are large, and the other languages in
Figure 4, with smaller dictionaries.

Compared to DAS, our tagger clearly benefits
from pre-trained word embeddings, while theirs
relies on label propagation through Europarl, a
much cleaner corpus that lacks the coverage of the
noisier WTC. Similar applies to Täckström et al.
(2013), as they use 1-5M near-perfect parallel sen-
tences. Even if we use much smaller and noisier
data sources, DSDS is almost on par: 86.2 vs. 87.3
for the 8 languages from Das and Petrov (2011),
and we even outperform theirs on four languages:
Czech, French, Italian, and Spanish.

6 Related Work

Most successful work on low-resource POS tag-
ging is based on projection (Yarowsky et al.,
2001), tag dictionaries (Li et al., 2012), annota-
tion of seed training data (Garrette and Baldridge,
2013) or even more recently some combination
of these, e.g., via multi-task learning (Fang and

Figure 4: The performance of LI with our dictio-
nary data over EM iterations, separate for the lan-
guages from Li et al. (2012) and all the remaining
languages in Table 1.

Cohn, 2016; Kann et al., 2018). Our paper con-
tributes to this literature by leveraging a range of
prior directions in a unified, neural test bed.

Most prior work on neural sequence predic-
tion follows the commonly perceived wisdom that
hand-crafted features are unnecessary for deep
learning methods. They rely on end-to-end train-
ing without resorting to additional linguistic re-
sources. Our study shows that this is not the case.
Only few prior studies investigate such sources,
e.g., for MT (Sennrich and Haddow, 2016; Chen
et al., 2017; Li et al., 2017; Passban et al., 2018)
and Sagot and Martı́nez Alonso (2017) for POS
tagging use lexicons, but only as n-hot features
and without examining the cross-lingual aspect.

7 Conclusions

We show that our approach of distant supervision
from disparate sources (DSDS) is simple yet sur-
prisingly effective for low-resource POS tagging.
Only 5k instances of projected data paired with
off-the-shelf embeddings and lexical information
integrated into a neural tagger are sufficient to
reach a new state of the art, and both data selec-
tion and embeddings are essential components to
boost neural tagging performance.
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Željko Agić, Barbara Plank, and Anders Søgaard.
2017. Cross-lingual tagger evaluation without test
data. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
248–253. Association for Computational Linguis-
tics.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word represen-
tations for multilingual nlp. arXiv preprint
arXiv:1307.1662.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Thorsten Brants. 2000. Tnt - a statistical part-of-speech
tagger. In Proceedings of the Sixth Applied Natural
Language Processing (ANLP-2000), Seattle, WA.

Sabine Buchholz and Erwin Marsi. 2006. Conll-
x shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City. Association for
Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1936–1945. Association for
Computational Linguistics.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages
600–609, Portland, Oregon, USA. Association for
Computational Linguistics.

Meng Fang and Trevor Cohn. 2016. Learning when
to trust distant supervision: An application to low-
resource pos tagging using cross-lingual projec-
tion. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 178–186, Berlin, Germany. Associ-
ation for Computational Linguistics.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation.
In Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 138–147, Atlanta, Georgia. Association for
Computational Linguistics.

Dan Garrette, Jason Mielens, and Jason Baldridge.
2013. Real-world semi-supervised learning of pos-
taggers for low-resource languages. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 583–592, Sofia, Bulgaria. Association
for Computational Linguistics.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Katharina Kann, Johannes Bjerva, Isabelle Augen-
stein, Barbara Plank, and Anders Sgaard. 2018.
Character-level supervision for low-resource pos
tagging. In Proceedings of the Workshop on Deep
Learning Approaches for Low-Resource NLP, pages
1–11, Melbourne. Association for Computational
Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. arXiv preprint
arXiv:1603.04351.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of wiktionary morphological
paradigms. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2016), Paris, France. European Lan-
guage Resources Association (ELRA).

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 688–697, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Shen Li, João Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In Proceedings
of the 2012 Joint Conference on Empirical Methods

619



in Natural Language Processing and Computational
Natural Language Learning, pages 1389–1398, Jeju
Island, Korea. Association for Computational Lin-
guistics.
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Abstract

Bilingual lexicon extraction has been studied
for decades and most previous methods have
relied on parallel corpora or bilingual dictio-
naries. Recent studies have shown that it
is possible to build a bilingual dictionary by
aligning monolingual word embedding spaces
in an unsupervised way. With the recent ad-
vances in generative models, we propose a
novel approach which builds cross-lingual dic-
tionaries via latent variable models and adver-
sarial training with no parallel corpora. To
demonstrate the effectiveness of our approach,
we evaluate our approach on several language
pairs and the experimental results show that
our model could achieve competitive and even
superior performance compared with several
state-of-the-art models.

1 Introduction

Learning the representations of languages is a fun-
damental problem in natural language processing
and most existing methods exploit the hypothesis
that words occurring in similar contexts tend to
have similar meanings (Pennington et al., 2014;
Bojanowski et al., 2017), which could lead word
vectors to capture semantic information. Mikolov
et al. (2013) first point out that word embeddings
learned on separate monolingual corpora exhibit
similar structures. Based on this finding, they sug-
gest it is possible to learn a linear mapping from a
source to a target embedding space and then gener-
ate bilingual dictionaries. This simple yet effective
approach has led researchers to investigate on im-
proving cross-lingual word embeddings with the
help of bilingual word lexicons (Faruqui and Dyer,
2014; Xing et al., 2015).

For low-resource languages and domains, cross-
lingual signal would be hard and expensive to ob-
tain, and thus it is necessary to reduce the need for
bilingual supervision. Artetxe et al. (2017) suc-
cessfully learn bilingual word embeddings with

only a parallel vocabulary of aligned digits. Zhang
et al. (2017) utilize adversarial training to obtain
cross-lingual word embeddings without any paral-
lel data. However, their performance is still signif-
icantly worse than supervised methods. By com-
bining the merits of several previous works, Con-
neau et al. (2018) introduce a model that reaches
and even outperforms supervised state-of-the-art
methods with no parallel data.

In recent years, generative models have be-
come more and more powerful. Both Genera-
tive Adversarial Networks (GANs) (Goodfellow
et al., 2014) and Variational Autoencoders (VAEs)
(Kingma and Welling, 2014) are prominent ones.
In this work, we borrow the ideas from both GANs
and VAEs to tackle the problem of bilingual lex-
icon induction. The basic idea is to learn latent
variables that could capture semantic meaning of
words, which would be helpful for bilingual lex-
icon induction. We also utilize adversarial train-
ing for our model and require no form of super-
vision. We evaluate our approach on several lan-
guage pairs and experimental results demonstrate
that our model could achieve promising perfor-
mance. We further combine our model with sev-
eral helpful techniques and show our model could
perform competitively and even superiorly com-
pared with several state-of-the-art methods.

2 Related Work

2.1 Bilingual Lexicon Induction

Extracting bilingual lexica has been studied by re-
searchers for a long time. Mikolov et al. (2013)
first observe there is isomorphic structure among
word embeddings trained separately on monolin-
gual corpora and they learn the linear transforma-
tion between languages. Zhang et al. (2016b) im-
prove the method by constraining the transforma-
tion matrix to be orthogonal. Xing et al. (2015) in-
corporate length normalization during training and
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qфs

pθs pθt

qфt

Figure 1: Illustration of our model. �s and �t map
the source and target word embeddings into latent vari-
ables. Discriminator D guides the two latent distribu-
tions to be the same.

maximize the cosine similarity instead. They point
out that adding an orthogonality constraint can im-
prove performance and has a closed-form solution,
which was referred to as Procrustes approach in
Smith et al. (2017). Canonical correlation analy-
sis has also been used to map both languages to a
shared vector space (Faruqui and Dyer, 2014; Lu
et al., 2015).

To reduce the need for supervision signals,
Artetxe et al. (2017) use identical digits and num-
bers to form an initial seed dictionary and then
iteratively refine their results until convergence.
Zhang et al. (2017) apply adversarial training to
align monolingual word vector spaces with no
supervision. Conneau et al. (2018) improve the
model by combining adversarial training and Pro-
crustes approach, and their unsupervised approach
could reach and even outperform state-of-the-art
supervised approaches. In this work, we make
further improvements and enhance the model pro-
posed in (Conneau et al., 2018) with latent variable
model and iterative training procedure.

2.2 Generative Models
VAEs (Kingma and Welling, 2014) represent one
of the most successful deep generative models.
Standard VAEs assume observed variables are
generated from latent variables and the latent vari-
ables are sampled from a simple Gaussian distri-
bution. Typically, VAEs utilize an neural infer-
ence model to approximate the intractable poste-
rior, and optimize model parameters jointly with

a reparameterized variational lower bound. VAEs
have been successfully applied in several natural
language processing tasks before (Zhang et al.,
2016a; Bowman et al., 2016).

GANs (Goodfellow et al., 2014) are another
framework for estimating generative models via
an adversarial process and have attracted huge at-
tention. The basic strategy is to train a generative
model and a discriminative model simultaneously
via an adversarial process. Adversarial training
technique for matching distribution has proven to
be powerful in a variety of tasks (Bowman et al.,
2016). Adversarial Autoencoder (Makhzani et al.,
2015) is a probabilistic autoencoder that uses the
GANs to perform variational inference. By com-
bining a VAE with a GAN, Larsen et al. (2016) use
learned feature representations in the GAN dis-
criminator as the basis for the VAE reconstruction
objective. GANs have been applied in machine
translation before (Yang et al., 2018; Lample et al.,
2018).

3 Proposed Approach

In this section, we first briefly introduce VAEs,
and then we illustrate the details and training tech-
niques of our proposed model.

3.1 Variational Autoencoder
Variational Autoencoders (VAEs) are deep genera-
tive model which are capable of learning complex
density models for data via latent variables. Given
a nonlinear generative model p✓(x|z) with input
x 2 R

D and associated latent variable z 2 R
L

drawn from a prior distribution p0(z), the goal of
VAEs is to use a recognition model, q�(z|x) to ap-
proximate the posterior distribution of the latent
variables by maximizing the following variational
lower bound

L✓,� = Eq�(z|x)[log p✓(x|z)] � KL(q�(z|x)||p0(z)),
(1)

where KL refers to Kullback-Leibler divergence.

3.2 Our Model
Basically, our model assumes that the source word
embedding {xn} and the target word embedding
{yn} could be drawn from a same latent variable
space {zn}, where {zn} is capable of capturing
semantic meaning of words.

In contrast to the standard VAE prior that as-
sumes each latent embedding zn to be drawn from
the same latent Gaussian, our model just requires
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the distribution of latent variables for source and
target word embeddings to be equal. To achieve
such a goal, we utilize adversarial training to guide
the two latent distributions to match with each
other.

As in adversarial training, we have networks �s

and �t for both source and target space, striving
to map words into the same latent space, while
the discriminator D is a binary classifier which
tries to distinguish between the two languages. We
also have reconstruction networks ✓s and ✓t as in
VAEs.

The objective function for the discriminator D
could be formulated as

LD = Ezy⇠q�t (z|y)[log D(zy)]

+ Ezx⇠q�s (z|x)[log(1 � D(zx))].
(2)

For the source side, the objective is to minimize

L�s,✓s = Ezx⇠q�s (z|x)[log p✓s(x|zx)]

� Ezx⇠q�s (z|x)[log D(zx)].
(3)

Here we define q�s(z|x) = N (µs(x), ⌃s(x)),
where µs(x) = Wµsx and ⌃s(x) = exp(W�sx);
Wµs and W�s are learned parameters. We also de-
fine the mean of p✓s(x|z) to be WT

µs
z. The objec-

tive function and structure for �t are similar.
The basic framework of our model is shown in

Figure 1. As we could see from the figure, our
model tries to map the source and target word em-
bedding into the same latent space which could
capture the semantic meaning of words.

Theoretical analysis has revealed that adversar-
ial training tries to minimize the Jensen-Shannon
(JS) divergence between the real and fake distribu-
tion. Therefore, one can view our model as replace
KL divergence in Equation 1 with JS divergence
and change the Gaussian prior to the target distri-
bution.

3.3 Training Strategy
Our model has two generators �s and �t, and we
have found that training them jointly would be ex-
tremely unstable. In this paper, we propose an
iterative method to train our models. Basically,
we first initialize Wµt to be identity matrix and
train �s and ✓s on the source side. After conver-
gence, we freeze Wµs , and then train �t and ✓t in
the target side. The pseudo-code for this process
is shown in Algorithm 1. It should be noted that
there is no variance once completing training.

Algorithm 1 Training Strategy
1: Wµt = I
2: for i = 1, · · · , niter do
3: while �s and ✓s have not converged do
4: Update discriminator D
5: Update �s and ✓s

6: end while
7: while �t and ✓t have not converged do
8: Update discriminator D
9: Update �t and ✓t

10: end while
11: end for

4 Experiment

Our experiments could be divided into two parts.
In the first part, we conduct experiments on small-
scale datasets and our main baseline is Zhang et al.
(2017). In the second part, we combine our model
with several advanced techniques and we compare
our model with Conneau et al. (2018) on large-
scale datasets.

#tokens vocab. size

zh-en zh 21m 3,349
en 53m 5,154

es-en es 61m 4,774
en 95m 6,637

it-en it 73m 8,490
en 93m 6,597

Table 1: Statistics of the non-parallel corpora. Lan-
guage codes: zh = Chinese, en = English, es = Spanish,
it = Italian.

4.1 Small-scale Datasets

In this section, our experiments focus on small-
scale datasets and our main baseline model is ad-
versarial autoencoder (Zhang et al., 2017). For
justice, we use the same model selection strategy
with Zhang et al. (2017), i.e. we choose the model
whose sum of reconstruction loss and classifica-
tion accuracy is the least. The source and target
word embeddings would be first mapped into the
latent space. For each source word embedding x,
it would be first transformed into zx. The the its k
nearest target embeddings would be retrieved and
be compared against the entry in a ground truth
bilingual lexicon. Performance is measured by
top-1 accuracy.
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4.1.1 Experiments on Chinese-English
Dataset

For this set of experiments, we use the same data
as Zhang et al. (2017). The statistics of the fi-
nal training data is given in Table 1. We use
Chinese-English Translation Lexicon Version 3.0
(LDC2002L27) as our ground truth bilingual lexi-
con for evaluation.

The baseline models are MonoGiza system
(Dou et al., 2015), translation matrix (TM)
(Mikolov et al., 2013), isometric alignment (IA)
(Zhang et al., 2016b) and adversarial training ap-
proach (Zhang et al., 2017).

Table 2 summarizes the performance of baseline
models and our approach. The results of baseline
models are cited from Zhang et al. (2017). As we
can see from the table, our model could achieve
superior performance compared with other base-
line models. Table 3 lists some word translation
examples given by our model.

Model #seeds Accuracy (%)
MonoGiza w/o emb. 0 0.05
MonoGiza w/ emb. 0 0.09

TM 50 0.29
IA 100 21.79

Zhang et al. (2017) 0 43.31
Ours 0 51.37

Table 2: Experimental results on Chinese-English
dataset. The results of baseline models are cited from
Zhang et al. (2017).

航空 铁路 时代 学校
airline rail antiquity school

aviation railway era education
airliner railroad century college
service freight medieval student
flight metro historian teacher

Table 3: Word translation examples for Chinese-
English dataset. Ground truths are marked in bold.

4.1.2 Experiments on Other Language Pairs
Datasets

We also conduct experiments on Spanish-English
and Italian-English language pairs. Again, we use
the same dataset with Zhang et al. (2017). and the
statistics are shown in Table 1. The ground truth
bilingual lexica for Spanish-English and Italian-

English are obtained from Multilingual Unsuper-
vised and Supervised Embeddings (MUSE) 1.

Model Accuracy (%)

es-en Zhang et al. (2017) 69.22
Ours 75.21

it-en Zhang et al. (2017) 55.31
Ours 61.08

Table 4: Experimental results on Spanish-English and
Italian-English datasets.

The experimental results are shown in Table 4.
Because Spanish, Italian and English are closely
related languages, the accuracy would be higher
than the Chinese-English dataset. Our model is
able to outperform baseline model in this setting.

Model Accuracy (%)
en-es en-ru en-zh

Methods without refinement
Adv-NN 69.8 29.1 18.5

Adv-CSLS 75.7 37.2 23.4
Ours-NN 71.8 32.8 22.9

Ours-CSLS 76.6 39.3 26.0
Methods with refinement

Adv-Refine-NN 79.1 37.3 30.9
Adv-Refine-CSLS 81.7 44.0 32.5
Ours-Refine-NN 79.1 42.7 32.5

Ours-Refine-CSLS 82.1 48.7 33.3

Table 5: Experimental results on large-scale datasets.
Language codes: en=English, es = Spanish, ru = Rus-
sian, zh = Chinese.

4.2 Large-scale Datasets

In this section, we integrate our method with Con-
neau et al. (2018), whose method improves Zhang
et al. (2017) by more sophiscated refinement pro-
cedure and validation criterion. We replace their
first step, namely the adversarial training step,
with our model. Basically, we first map the source
and target embeddings into the latent space us-
ing our algorithm, and then fine-tune the identity
mapping in the latent space with the closed-form
Procrustes solution. We use their similarity mea-
sure, namely cross-domain similarity local scaling
(CSLS), to produce reliable matching pairs and
validation criterion for unsupervised model selec-
tion.

1https://github.com/facebookresearch/MUSE
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We conduct experiments on English-Spanish,
English-Russian and English-Chinese datasets,
which are the same as Conneau et al. (2018).
The results are shown in Table 5. As seen, our
model could consistently achieve better perfor-
mance compared with adversarial training. After
refinement, our model could further achieve com-
petitive and even superior results compared with
state-of-the-art unsupervised methods. This fur-
ther demonstrates the capacity of our model.

5 Conclusion

Based on the assumption that word vectors in dif-
ferent languages could be drawn from a same la-
tent variable space, we propose a novel approach
which builds cross-lingual dictionaries via latent
variable models and adversarial training with no
parallel corpora. Experimental results on several
language pairs have demonstrated the effective-
ness and universality of our model. We hope our
method could be beneficial to other areas such as
unsupervised machine translation (Lample et al.,
2018).

Future directions include validate our model on
more realistic scenarios (Dinu et al., 2015) as well
as combine our algorithms with more sophiscated
adversarial networks (Arjovsky et al., 2017; Gul-
rajani et al., 2017).
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Abstract

Word translation, or bilingual dictionary in-
duction, is an important capability that im-
pacts many multilingual language processing
tasks. Recent research has shown that word
translation can be achieved in an unsuper-
vised manner, without parallel seed dictionar-
ies or aligned corpora. However, state of the
art methods for unsupervised bilingual dictio-
nary induction are based on generative adver-
sarial models, and as such suffer from their
well known problems of instability and hyper-
parameter sensitivity. We present a statistical
dependency-based approach to bilingual dic-
tionary induction that is unsupervised – no
seed dictionary or parallel corpora required;
and introduces no adversary – therefore being
much easier to train. Our method performs
comparably to adversarial alternatives and out-
performs prior non-adversarial methods.

1 Introduction

Translating words between languages, or more
generally inferring bilingual dictionaries, is a
long-studied research direction with applications
including machine translation (Lample et al.,
2017), multilingual word embeddings (Klemen-
tiev et al., 2012), and knowledge transfer to low
resource languages (Guo et al., 2016). Research
here has a long history under the guise of deci-
pherment (Knight et al., 2006). Current contempo-
rary methods have achieve effective word transla-
tion through theme-aligned corpora (Gouws et al.,
2015), or seed dictionaries (Mikolov et al., 2013).

Mikolov et al. (2013) showed that monolingual
word embeddings exhibit isomorphism across lan-
guages, and can be aligned with a simple lin-
ear transformation. Given two sets word vectors
learned independently from monolingual corpora,
and a dictionary of seed pairs to learn a linear
transformation for alignment; they were able to

estimate a complete bilingual lexicon. Many stud-
ies have since followed this approach, proposing
various improvements such as orthogonal map-
pings (Artetxe et al., 2016) and improved objec-
tives (Lazaridou et al., 2015).

Obtaining aligned corpora or bilingual seed dic-
tionaries is nevertheless not straightforward for all
language pairs. This has motivated a wave of
very recent research into unsupervised word trans-
lation: inducing bilingual dictionaries given only
monolingual word embeddings (Conneau et al.,
2018; Zhang et al., 2017b,a; Artetxe et al., 2017).
The most successful have leveraged ideas from
Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014). In this approach the genera-
tor provides the cross-modal mapping, taking em-
beddings of dictionary words in one language and
‘generating’ their translation in another. The dis-
criminator tries to distinguish between this ‘fake’
set of translations and the true dictionary of em-
beddings in the target language. The two play a
competitive game, and if the generator learns to
fool the discriminator, then its cross-modal map-
ping should be capable of inducing a complete dic-
tionary, as per Mikolov et al. (2013).

Despite these successes, such adversarial meth-
ods have a number of well-known drawbacks (Ar-
jovsky et al., 2017): Due to the nature of their
min-max game, adversarial training is very un-
stable, and they are prone to divergence. It
is extremely hyper-parameter sensitive, requiring
problem-specific tuning. Convergence is also hard
to diagnose and does not correspond well to effi-
cacy of the generator in downstream tasks (Hoshen
and Wolf, 2018).

In this paper, we propose an alternative sta-
tistical dependency-based approach to unsuper-
vised word translation. Specifically, we propose to
search for the cross-lingual word pairing that max-
imizes statistical dependency in terms of squared
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loss mutual information (SMI) (Yamada et al.,
2015; Suzuki and Sugiyama, 2010). Compared
to prior statistical dependency-based approaches
such as Kernelized Sorting (KS) (Quadrianto
et al., 2009) we advance: (i) through use of SMI
rather than their Hilbert Schmidt Independence
Criterion (HSIC) and (ii) through jointly optimis-
ing cross-modal pairing with representation learn-
ing within each view. In contrast to prior work that
uses a fixed representation, by non-linearly pro-
jecting monolingual world vectors before match-
ing, we learn a new embedding where statistical
dependency is easier to establish. Our method: (i)
achieves similar unsupervised translation perfor-
mance to recent adversarial methods, while being
significantly easier to train and (ii) clearly outper-
forms prior non-adversarial methods.

2 Proposed model

2.1 Deep Distribution Matching
Let dataset D contain two sets of unpaired mono-
lingual word embeddings from two languages
D = ({xi}n

i=1, {yj}n
j=1) where x, y 2 R

d. Let ⇡
be a permutation function over {1, 2, . . . , n}, and
⇧ the corresponding permutation indicator ma-
trix: ⇧ 2 {0, 1}n⇥n,⇧1n = 1n, and ⇧>1n =
1n. Where 1n is the n-dimensional vector with
all ones. We aim to optimize for both the per-
mutation ⇧ (bilingual dictionary), and non-linear
transformations gx(·) and gy(·) of the respective
wordvectors, that maximize statistical dependency
between the views. While regularising by requir-
ing the original word embedding information is
preserved through reconstruction using decoders
fx(·) and fy(·). Our overall loss function is:

min
⇥x,⇥y ,⇧

⌦(D;⇥x,⇥y)
| {z }

Regularizer

� �D⇧(D;⇥x,⇥y)
| {z }

Dependency

,

D⇧(D;⇥x,⇥y) = D⇧({gx(xi), gy(y⇡(i))}n
i=1),

⌦(D;⇥x,⇥y) =
nX

i=1

kxi � fx(gx(xi))k2
2

+ kyi � fy(gy(yi))k2
2

+ R(⇥x) + R(⇥y).

(1)

where ⇥s parameterize the encoding and recon-
struction transformations, R(·) is a regularizer
(e.g., `2-norm and `1-norm), and D⇧(·, ·) is a sta-
tistical dependency measure. Crucially compared
to prior methods such as matching CCA (Haghighi

et al., 2008), dependency measures such as SMI do
not need comparable representations to get started,
making the bootstrapping problem less severe.

2.2 Dependence Estimation

Squared-Loss Mutual Information (SMI)
The squared loss mutual information between two
random variables x and y is defined as (Suzuki
and Sugiyama, 2010):

SMI =

ZZ ✓
p(x, y)

p(x)p(y)
� 1

◆2

p(x)p(y)dxdy,

which is the Pearson divergence (Pearson, 1900)
from p(x, y) to p(x)p(y). The SMI is an f -
divergence (Ali and Silvey, 1966). That is, it is
a non-negative measure and is zero only if the ran-
dom variables are independent.

To measure SMI from a set of samples we take
a direct density ratio estimation approach (Suzuki
and Sugiyama, 2010), which leads (Yamada et al.,
2015) to the estimator:

dSMI({(xi, yi)}n
i=1) =

1

2n
tr (diag (b↵) KL) � 1

2
,

where K 2 R
n⇥n and L 2 R

n⇥n are the gram
matricies for x and y respectively, and

cH =
1

n2
(KK

>) � (LL
>),

bh =
1

n
(K � L)1n, b↵ =

⇣
cH + �In

⌘�1 bh,

� > 0 is a regularizer and In 2 R
n⇥n is the iden-

tity matrix.
SMI for Matching SMI computes the depen-
dency between two sets of variables, under an as-
sumption of known correspondence. In our ap-
plication this corresponds to a measure of depen-
dency between two aligned sets of monolingual
wordvectors. To exploit SMI for matching, we
introduce a permutation variable ⇧ by replacing
L ! ⇧>

L⇧ in the estimator:

dSMI({(xi, y⇡(i))}
n
1 )=

1
2n

tr
⇣
diag (b↵⇧) K⇧

>L⇧

⌘
�

1
2
,

that will enable optimizing ⇧ to maximize SMI.

2.3 Optimization of parameters
To initialize ⇥x and ⇥y, we first independently
estimate them using autoencoders. Then we em-
ploy an alternative optimization on Eq. (1) for
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(⇥x,⇥y) and ⇧ until convergence. We use 3
layer MLP neural networks for both f and g. Al-
gorithm 1 summarises the steps.
Optimization for ⇥x and ⇥y With fixed per-
mutation matrix ⇧ (or ⇡), the objective function

min
⇥x,⇥y

⌦(D;⇥x,⇥y) � �D⇧(D;⇥x,⇥y) (2)

is an autoencoder optimization with regularizer
D⇧(·), and can be solved with backpropagation.
Optimization for ⇧ To find the permuta-
tion (word matching) ⇧ that maximizes SMI
given fixed encoding parameters ⇥x,⇥y, we only
need to optimize the dependency term D⇧ in
Eq. (1). We employ the LSOM algorithm (Yamada
et al., 2015). The estimator of SMI for samples
{gx(xi), gy(y⇡(i))}n

i=1 encoded with gx, gy is:

dSMI =
1

2n
tr

⇣
diag (b↵⇥,⇧) K⇥x⇧

>
L⇥y⇧

⌘
� 1

2
.

Which leads to the optimization problem:

max
⇧2{0,1}n⇥n

tr
⇣
diag (b↵⇥,⇧) K⇥x⇧

>
L⇥y⇧

⌘

s.t. ⇧1n = 1n,⇧>1n = 1n. (3)

Since the optimization problem is NP-hard, we
iteratively solve the relaxed problem (Yamada
et al., 2015):

⇧new = (1 � ⌘)⇧old+

⌘ argmax
⇧

tr
⇣
diag

�
b↵⇥,⇧old

�
K⇥x⇧

>
L⇥y⇧

old
⌘

,

where 0 < ⌘  1 is a step size. The optimization
problem is a linear assignment problem (LAP).
Thus, we can efficiently solve the algorithm by
using the Hungarian method (Kuhn, 1955). To get
discrete ⇧, we solve the last step by setting ⌘ = 1.

Intuitively, this can be seen as searching for
the permutation ⇧ for which the data in the two
(initially unsorted views) have a matching within-
view affinity (gram) matrix, where matching is de-
fined by maximum SMI.

3 Experiments

In this section, we evaluate the efficacy of our pro-
posed method against various state of the art meth-
ods for word translation.
Implementation Details Our autoencoder con-
sists of two layers with dropout and a tanh non-
linearity. We use polynomial kernel to compute

Algorithm 1 SMI-based unsupervised word trans-
lation
Input: Unpaired word embeddings D =
({xi}n

i=1, {yj}n
j=1).

1: Init: weights ⇥x, ⇥y, permutation matrix ⇧.
2: while not converged do
3: Update ⇥x,⇥y given ⇧: Backprop (2).
4: Update ⇧ given ⇥x,⇥y: LSOM (3).
5: end while

Output: Permutation Matrix ⇧. Params ⇥x, ⇥y.

the gram matrices K and L. For all pairs of lan-
guages, we fix the number of training epochs to
20. All the word vectors are `2 unit normalized.
For CSLS we set the number of neighbors to 10.
For optimizing ⇧ at each epoch, we set the step
size ⌘ = 0.75 and use 20 iterations. For the regu-
larization R(⇥), we use the sum of the Frobenius
norms of weight matrices. We train ⇥ using full
batch gradient-descent, with learning rate 0.05.
Datasets We performed experiments on the
publicly available English-Italian, English-
Spanish and English-Chinese datasets released
by (Dinu and Baroni, 2015; Zhang et al., 2017b;
Vulic and Moens, 2013). We name this collective
set of benchmarks BLI. We also conduct further
experiments on a much larger recent public
benchmark, MUSE (Conneau et al., 2018)1.
Setting and Metrics We evaluate all methods
in terms of Precision@1, following standard prac-
tice. We note that while various methods in the
literature were initially presented as fully super-
vised (Mikolov et al., 2013), semi-supervised (us-
ing a seed dictionary) (Haghighi et al., 2008), or
unsupervised (Zhang et al., 2017b), most of them
can be straightforwardly adapted to run in any of
these settings. Therefore we evaluate all methods
both in the unsupervised setting in which we are
primarily interested, and also the commonly eval-
uated semi-supervised setting with 500 seed pairs.
Competitors: Non-Adversarial In terms of
competitors that, like us, do not make use
of GANs, we evaluate: Translation Matrix
(Mikolov et al., 2013), which alternates between
estimating a linear transformation by least squares
and matching by nearest neighbour (NN). Mul-
tilingual Correlation (Faruqui and Dyer, 2014),
and Matching CCA (Haghighi et al., 2008),
which alternates between matching and estimat-

1https://github.com/facebookresearch/MUSE/
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MUSE Dataset BLI Datasets

Methods es-en en-es it-en en-it zh-en en-zh es-en en-es it-en en-it zh-en en-zh

TM (Mikolov et al., 2013) 5.6 4.8 5.2 4.8 2.6 1.8 3.2 2.9 4.6 4.2 3.2 2.0

CCA (Faruqui and Dyer, 2014) 6.1 5.6 5.8 5.2 3.1 2.3 5.3 5.0 4.6 4.1 3.2 2.9

MCCA (Haghighi et al., 2008) 5.7 5.1 5.4 4.8 3.0 2.2 2.9 2.5 4.2 4.1 2.8 1.9

KS (Quadrianto et al., 2009) 8.3 7.4 6.3 5.7 4.8 3.2 9.6 8.9 8.2 7.3 3.7 3.5

Self-Training (Artetxe et al., 2017) 12.4 12.2 10.7 10.2 5.8 5.6 15.8 14.5 13.7 12.7 14.8 13.4

EMDOT (Zhang et al., 2017b) 72.4 71.8 72.8 72.6 32.8 31.7 29.3 31.2 25.6 28.4 24.2 27.8

W-GAN (Zhang et al., 2017b) 78.2 77.4 75.3 74.8 38.6 37.5 23.4 26.7 24.0 25.3 21.2 22.8

GAN-NN (Conneau et al., 2018) 69.8 71.3 72.1 71.5 41.3 40.2 21.4 24.3 22.7 23.2 21.3 21.8

Deep-SMI (Ours) 75.9 80.6 75.7 75.2 38.5 38.1 27.3 28.2 25.7 26.4 22.5 22.3

Deep-SMI-CSLS 79.2 84.5 78.8 78.5 43.7 42.8 28.6 29.3 26.7 28.2 23.2 24.7

Table 1: Unsupervised word translation on MUSE and BLI datasets. Precision @ 1 metric. Top group: Con-
ventional methods. Middle group: Adversarial methods. Bottom group: Our methods. Language codes
zh=Chinese,en=English,es=Spanish,it=Italian

MUSE Dataset BLI Datasets

Methods es-en en-es it-en en-it zh-en en-zh es-en en-es it-en en-it zh-en en-zh

TM (Mikolov et al., 2013) 32.6 30.1 34.3 33.6 32.4 31.2 28.2 32.1 29.2 32.1 28.5 27.4

CCA (Faruqui and Dyer, 2014) 27.3 27.1 25.4 24.2 23.1 20.2 25.8 28.3 24.3 25.1 19.2 22.8

MCCA (Haghighi et al., 2008) 26.3 25.8 22.7 21.3 24.5 23.8 24.2 26.1 17.6 19.2 18.4 21.6

KS (Quadrianto et al., 2009) 34.5 32.6 35.2 33.8 34.3 33.2 27.5 29.1 34.3 32.1 20.0 23.2

Self-Training (Artetxe et al., 2017) 35.8 31.4 36.0 34.6 34.3 33.0 27.8 29.8 39.7 33.8 23.6 21.4

EMDOT (Zhang et al., 2017b) 78.2 76.3 75.0 74.6 33.2 32.0 30.2 28.4 31.7 30.3 29.3 28.7

W-GAN (Zhang et al., 2017b) 81.2 80.5 77.2 75.1 39.0 38.2 28.6 27.9 33.7 29.5 36.7 34.4

GAN-NN (Conneau et al., 2018) 74.8 72.3 74.3 72.5 43.2 42.7 22.8 26.1 27.9 27.1 24.2 23.6

Deep-SMI (Ours) 80.6 75.9 78.2 76.7 45.7 44.6 38.5 37.6 42.3 38.2 29.2 27.4

Deep-SMI-CSLS 84.5 79.2 79.7 78.7 42.3 44.4 28.6 29.3 26.7 28.2 23.2 24.7

Table 2: Semi-supervised word translation on MUSE and BLI using 500 seed pair initial dictionary. Precision @
1 metric. Top group: Conventional methods. Middle group: Adversarial methods. Bottom group: Our methods.

ing a joint linear subspace. Kernelized Sort-
ing (Quadrianto et al., 2009), which directly uses
HSIC-based statistical dependency to match het-
erogeneous data points. Self Training (Artetxe
et al., 2017) A recent state of the art method
that alternate between estimating an orthonormal
transformation, and NN matching.

Competitors: Adversarial In terms of com-
petitors that do make use of adversarial training,
we compare: W-GAN and EMDOT (Zhang et al.,
2017b) make use of adversarial learning using
Wasserstein GAN and Earth Movers Distance re-
spectively. GAN-NN (Conneau et al., 2018) uses
adversarial learning to train an orthogonal trans-
formation, along with some refinement steps and
an improvement to the conventional NN match-
ing procedure called ‘cross-domain similarity lo-

cal scaling’ (CSLS). Since this is a distinct step,
we also evaluate our method with CSLS.

We use the provided code for GAN-NN
and Self-Train, while re-implementing EDOT/W-
GAN to avoid dependency on theano.

3.1 Results

Fully Unsupervised Table 1 presents compar-
ative results for unsupervised word translation on
BLI and MUSE. From these we observe: (i) Our
method (bottom) is consistently and significantly
better than non-adversarial alternatives (top). (ii)
Compared to adversarial alternatives Deep-SMI
performs comparably.

All methods generally perform better on the
MUSE dataset than BLI. These differences are
due to a few factors: MUSE is a significantly
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Figure 1: Training process of Deep-SMI

larger dataset than BLI, benefitting methods that
can exploit a large amount of training data. In the
ground-truth annotation, BLI contains 1-1 transla-
tions while MUSE contains more realistic 1-many
translations (if any correct translation is picked,
a success is counted), making it easier to reach a
higher score.

Semi-supervised Results using a 500-word
bilingual seed dictionary are presented in Table 2.
From these we observe: (i) The conventional
methods’ performances (top) jump up, showing
that they are more competitive if at least some
sparse data is available. (ii) Deep-SMI perfor-
mance also improves, and still outperforms the
classic methods significantly overall. (iii) Again,
we perform comparably to the GAN methods.

3.2 Discussion

Figure 1 shows the convergence process of Deep-
SMI. From this we see that: (i) Unlike the adver-
sarial methods, our objective (Eq. (1)) improves
smoothly over time, making convergence much
easier to assess. (ii) Unlike the adversarial meth-
ods, our accuracy generally mirrors the model’s
loss. In contrast, the various losses of the adver-
sarial approaches do not well reflect translation ac-
curacy, making model selection or early stopping
a challenge in itself. Please compare our Figure 1
with Fig 3 in Zhang et al. (2017b), and Fig 2 in
Conneau et al. (2018).

There are two steps in our optimization: match-
ing permutation ⇧ and representation weights ⇥.
Although this is an alternating optimization, it is
analogous to an EM-type algorithm optimizing la-
tent variables (⇧) and parameters (⇥). While
local minima are a risk, every optimisation step
for either variable reduces our objective Eq. (1).

There is no min-max game, so no risk of di-
vergence as in the case of adversarial GAN-type
methods.

Our method can also be understood as provid-
ing an unsupervised Deep-CCA type model for re-
lating heterogeneous data across two views. This
is in contrast to the recently proposed unsuper-
vised shallow CCA (Hoshen and Wolf, 2018), and
conventional supervised Deep-CCA (Chang et al.,
2018) that requires paired data for training; and us-
ing SMI rather than correlation as the optimisation
objective.

4 Conclusion

We have presented an effective approach to unsu-
pervised word translation that performs compara-
bly to adversarial approaches while being signifi-
cantly easier to train and diagnose; as well as out-
performing prior non-adversarial approaches.
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Abstract

This paper proposes an adversarial training
method for the multi-task and multi-lingual
joint modeling needed for utterance intent
classification. In joint modeling, common
knowledge can be efficiently utilized among
multiple tasks or multiple languages. This
is achieved by introducing both language-
specific networks shared among different tasks
and task-specific networks shared among dif-
ferent languages. However, the shared net-
works are often specialized in majority tasks or
languages, so performance degradation must
be expected for some minor data sets. In
order to improve the invariance of shared
networks, the proposed method introduces
both language-specific task adversarial net-
works and task-specific language adversarial
networks; both are leveraged for purging the
task or language dependencies of the shared
networks. The effectiveness of the adver-
sarial training proposal is demonstrated using
Japanese and English data sets for three differ-
ent utterance intent classification tasks.

1 Introduction

In natural language processing fields, full neural
network based methods are suitable for joint mod-
eling as they can simultaneously utilize multiple
task data sets or multiple language data sets to
improve the performance achieved for individual
tasks or languages (Collobert and Weston, 2008).
It is known that joint modeling can address the
data scarcity problem.

Key natural language processing technologies
for spoken dialogue systems include utterance in-
tent classification, which is needed to detect in-
tent labels such as dialogue act (Stolcke et al.,
2000; Khanpour et al., 2016), domain (Xu and
Sarikaya, 2014), and question type (Wu et al.,
2005) from input utterances (Ravuri and Stolcke,

2015a,b, 2016). One problem is that the train-
ing data are often limited or unbalanced among
different tasks or different languages. Therefore,
our motivation is to leverage both multi-task joint
modeling and multi-lingual joint modeling to en-
hance utterance intent classification.

The multi-task and multi-lingual joint modeling
can be composed by introducing both task-specific
networks, which are shared among different lan-
guages, and language-specific networks, which
are shared among different tasks (Masumura et al.,
2018; Lin et al., 2018). Although joint model-
ing is mainly intended to improve classification
performance in resource-poor tasks or languages,
its classification performance is degraded in some
minor data sets. This is because the language-
specific networks often depend on majority tasks,
while the task-specific networks often depend on
majority languages. What are needed are task-
specific networks that are invariant to languages,
and language-specific networks that are invariant
to tasks.

In order to explicitly improve the invariance of
language and task-specific networks, this paper in-
troduces adversarial training (Goodfellow et al.,
2014). Our idea is to train language-specific net-
works so as to be insensitive to the target task,
while training task-specific networks to be in-
sensitive to language. To this end, we intro-
duce multiple domain adversarial networks (Ganin
et al., 2016), language-specific task adversarial
networks, and task-specific language adversarial
networks, into a state-of-the-art fully neural net-
work based joint modeling; we adopt the bidi-
rectional long short-term memory recurrent neural
networks (BLSTM-RNNs) with attention mecha-
nism (Yang et al., 2016; Zhou et al., 2016). To the
best of our knowledge, this paper is the first study
to employ adversarial training for multi-input and
multi-output joint modeling.
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Experiments on Japanese and English data sets
demonstrate the effectiveness of the adversarial
training proposal. To support spoken dialogue sys-
tems, three different utterance intent classification
tasks are examined: dialogue act, topic type, and
question type classification.

2 Related Work

Joint Modeling: In natural language processing
research, joint modeling is usually split into multi-
task joint modeling and multi-lingual joint mod-
eling. Multi-task joint modeling has been shown
to effectively improve individual tasks (Collobert
and Weston, 2008; Liu et al., 2016a,b; Zhang
and Weng, 2016; Liu et al., 2016c). In addition,
multi-lingual joint modeling is achieved by learn-
ing common semantic representations among dif-
ferent languages (Guo et al., 2016; Duong et al.,
2016; Zhang et al., 2016, 2017b). In addition,
a few work have examined multi-task and multi-
lingual joint modeling (Masumura et al., 2018; Lin
et al., 2018). Different from the previous work,
our novelty is to introduce adversarial training for
multi-task and multi-lingual joint modeling.
Adversarial Training: The concept of adversar-
ial training was first proposed by Goodfellow et al.
(2014), and many studies in the machine learning
field have focused on adversarial training. Adver-
sarial training has been well utilized in text classi-
fication (Ganin et al., 2016; Chen et al., 2016; Liu
et al., 2017; Miyato et al., 2017; Chen and Cardie,
2018). Most natural language processing papers
adopted either the language invariant approach
(Chen et al., 2016; Zhang et al., 2017a) or the task
invariant approach (Ganin et al., 2016; Liu et al.,
2017; Chen and Cardie, 2018). This paper aims
to fully utilize both task adversarial training and
language adversarial training. To this end, we si-
multaneously introduce language-specific task ad-
versarial networks and task-specific language ad-
versarial networks.

3 Proposed Method

This section details our adversarial training
method for multi-task and multi-lingual joint mod-
eling of utterance intent classification.

In the j-th task utterance intent classification
for the i-th language input utterance, intent la-
bel l(j) 2 {1, · · · , K(j)} is estimated from in-
put utterance W(i) = {w(i)

1 , · · · , w(i)
T } where

i 2 {1, · · · , I} and j 2 {1, · · · , J}. Utter-

ance intent classification is followed by estima-
tion of the probabilities of each intent label given
input utterance, P (l(j)|W(i),⇥(i,j)) where ⇥(i,j)

is the trainable model parameter for the com-
bination of the i-th language and the j-th task.
In multi-task and multi-lingual joint modeling,
{⇥(1,1), · · · ,⇥(I,J)} are jointly trained from I
language and J task data sets.

3.1 Main Joint Network
The proposed method is founded on a fully neu-
ral network that employs I language-specific net-
works, J task-specific networks, and J classifica-
tion networks as well as Masumura et al. (2018).

The language-specific network can be shared
between multiple tasks, where words in the in-
put utterance are converted into language-specific
hidden representations. Each word in the i-th lan-
guage input utterance W(i) is first converted into
a continuous representation. Next, each word rep-
resentation is converted into a hidden representa-
tion that uses BLSTM-RNNs to take neighboring
word context information into account. The t-th
language-specific hidden representation for the i-
th language is given by:

w
(i)
t = EMBED(w(i)

t ; ✓(i)
h ), (1)

h
(i)
t = BLSTM({w

(i)
1 , · · · , w(i)

T }, t; ✓(i)
h ), (2)

where EMBED() is a linear transformational func-
tion for word embedding, BLSTM() is a function of
the BLSTM-RNN layer, and ✓

(i)
h is the trainable

parameter for the i-th language-specific network.
In addition, task-specific networks can be

shared between multiple languages, where the
language-specific hidden representations are con-
verted into task-specific hidden representations.
The t-th language-specific hidden representation
for the j-th task is given by:

u
(j)
t = BLSTM({h

(i)
1 , · · · , h(i)

T }, t; ✓(j)
u ), (3)

where ✓
(j)
u is the trainable parameter for the j-th

task-specific network.
In classification networks for each task, the

task-specific hidden representations are summa-
rized as sentence representation s

(j) by using a
self-attention mechanism that can consider the
importance of individual hidden representations
(Yang et al., 2016; Zhou et al., 2016; Sawada et al.,
2017). Next, predicted probabilities of the j-th
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task intent labels, o
(j) 2 R

K(j) , are given by:

s
(j) = ATTENSUM({h

(i)
1 , · · · , h(i)

T }; ✓(j)
o ), (4)

o
(j) = SOFTMAX(s(j); ✓(j)

o ), (5)

where ATTENSUM() is a weighted sum function
with self-attention, SOFTMAX() is a transforma-
tional function with softmax activation, and ✓

(j)
o

is the trainable parameter for the j-th classifica-
tion network. In the main joint networks of the
proposal, ⇥(i,j) corresponds to {✓

(i)
h , ✓

(j)
u ,✓(j)

o }.

3.2 Adversarial Networks
The proposed method combines a language-
specific task adversarial network with a task-
specific language adversarial network. The
task adversarial network is used for training the
language-specific networks to be insensitive to tar-
get task labels, and the language adversarial net-
work is used for training the task-specific net-
works to be insensitive to target language labels.
In order to efficiently use stochastic gradient de-
scent based training for optimizing the adversarial
networks, we use gradient reversal layers, which
allow the input vectors during forward propaga-
tion, and sign inversion of the gradients during
back propagation, to be utilized (Ganin et al.,
2016).

The i-th language-specific task adversarial net-
work estimates task labels from the i-th language-
specific hidden representations. The predicted
probabilities of task labels, x

(i) 2 R
J , are given

by:

h̃
(i)
t = GRL(h(i)

t ), (6)

h̃
(i) = ATTENSUM({h̃

(i)
1 , · · · , h̃(i)

T }; ✓(i)
x ), (7)

x
(i) = SOFTMAX(h̃(i), ✓(i)

x ), (8)

where GRL() represents the gradient reversal layer,
and ✓

(i)
x is the trainable parameter. The j-th task-

specific language adversarial network estimates
language labels from the j-th task-specific hid-
den representations. The predicted probabilities of
language labels, y

(j) 2 R
I , are given by:

ũ
(j)
t = GRL(u(j)

t ), (9)

ũ
(j) = ATTENSUM({ũ

(j)
1 , · · · , ũ(j)

T }; ✓(j)
y ), (10)

y
(j) = SOFTMAX(ũ(j), ✓(j)

y ), (11)

where ✓y is the trainable parameter.
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Figure 1: Proposed network structure for two tasks and
two languages.

The proposed network structure shown in Fig-
ure 1 includes both joint networks and adversar-
ial networks for two tasks and two languages.
The red components are language-specific net-
works, the orange components are task-specific
networks, and the purple components are classi-
fication networks. In addition, green components
are language-specific task adversarial networks,
and blue components are task-specific language
adversarial networks.

3.3 Training

Our adversarial training proposal jointly optimizes
all parameters in both the main joint networks and
the adversarial networks by using all training data
sets {D(1,1), · · · , D(I,J)} where D(i,j) represents
the sets of the input utterances and the reference.
The cross-entropy loss functions of each network
are defined as:

Lo = �
IX

i=1

JX

j=1

|D(i,j)|X

n=1

K(j)X

k=1

ô
(j)
n,k log o

(j)
n,k, (12)

Lx = �
IX

i=1

JX

j=1

|D(i,j)|X

n=1

JX

j0=1

x̂
(i)
n,j0 log x

(i)
n,j0 , (13)

Ly = �
IX

i=1

JX

j=1

|D(i,j)|X

n=1

IX

i0=1

ŷ
(j)
n,i0 log y

(j)
n,i0 , (14)

where Lo, Lx, and Ly are the cross entropy loss
terms for the classification networks, the task ad-
versarial networks, and the language adversarial
networks. ô

(j)
n,k, x̂

(i)
n,j0 , and ŷ

(j)
n,i0 are the reference

probabilities, and on,k, xn,j0 , and yn,i0 are the es-
timated probabilities of the k-th label in the j-th
task classification network, the j0-th task in the i-
th language-specific task adversarial network, and
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Task Utterance Label
DA Hello, how are you today? GREETING

I am so sorry to hear of your son’s accident. SYMPATHY/AGREE
Lets go to school an hour early today. PROPOSAL

TT What is the highest mountain in the world? MOUNTAIN
Who is president of the united states? PERSON
What is the name of the most recent Star Wars movie? MOVIE

QT Do you like egg salad? TRUE/FALSE
How do you correct a hook in a golf swing? EXPLANATION:METHOD
Why is blood red? EXPLANATION:CAUSE

Table 2: Examples of English data sets.

the i0-th language in the j-th task-specific lan-
guage adversarial network for Wn, respectively.

Due to use of gradient reversal layers, individ-
ual parameters are gradually updated as follows:

✓
(j)
o  ✓

(j)
o � ✏

@Lo

@✓
(j)
o

, (15)

✓
(j)
y  ✓

(j)
y � ✏�

@Ly

@✓
(j)
y

, (16)

✓
(j)
u  ✓

(j)
u � ✏(

@Lo

@✓
(j)
u

� �
@Ly

@✓
(j)
u

), (17)

✓
(i)
x  ✓

(i)
x � ✏↵

@Lx

@✓
(i)
x

, (18)

✓
(i)
h  ✓

(i)
h � ✏(

@Lo

@✓
(i)
h

� ↵
@Lx

@✓
(i)
h

� �
@Ly

@✓
(i)
h

),

(19)

where ↵ and � are hyper parameters of the param-
eter update, and ✏ is the learning rate. Note that
adversarial training is suppressed by setting ↵ and
� to 0.0. In training, we prepared optimizers for
individual data sets. The individual learning rates
fall when the validation loss of the target classifi-
cation network increases.

4 Experiments

Our experiments employed Japanese and English
data sets created for three different utterance in-
tent classification tasks. The tasks, dialogue act
(DA) classification, topic type (TT) classification,
and question type (QT) classification, are intended
to support spoken dialogue systems. For example,
the task of English DA classification is to obtain a
DA label from an input utterance. We used natural
language texts as the input utterances and individ-
ual label sets were unified between Japanese and
English. Data sets employed in experiments were
corpora that were made for constructing spoken
dialogue systems (Masumura et al., 2018). Each
of the data sets were divided into training (Train),

Language Task #labels Train Valid Test
Japanese DA 28 201 K 4 K 4 K

TT 168 40 K 4 K 4 K
QT 15 55 K 4 K 4 K

English DA 28 25 K 3 K 3 K
TT 168 25 K 3 K 3 K
QT 15 22 K 2 K 2 K

Table 1: Number of utterances in individual data sets.

validation (Valid), and test (Test) sets. Table 1
shows the number of utterances in individual data
sets where #labels represents the number of labels.
Table 2 shows English utterances and label exam-
ples for individual tasks.

4.1 Setups
We examined single-task and mono-lingual mod-
eling, multi-task joint modeling, multi-lingual join
modeling, and multi-task and multi-lingual joint
modeling with or without adversarial training.

We unified network configurations as follows.
Word representation size was set to 128, BLSTM-
RNN unit size was set to 400, and sentence rep-
resentation was set to 400. Dropout was used for
EMBED() and BLSTM(), and the dropout rate was
set to 0.5. Words that appeared only once in the
training data sets were treated as unknown words.
We used mini-batch stochastic gradient descent, in
which initial learning rate was set to 0.1. We opti-
mized hyper-parameters of adversarial training (↵
and �) for the validation sets by varying them from
0.001 to 1.0. Other hyper parameters were also op-
timized for the validation sets.

4.2 Results
Table 3 shows the results in terms of utterance
classification accuracy. For each setup, we con-
structed five models by varying the initial param-
eters and evaluated the average accuracy. Line
(1) shows baseline results: single-task and mono-
lingual modeling. Lines (2) and (3) show results
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Joint modeling Adversarial Training Japanese English
Multi-task Multi-lingual Task-invariant Language-invariant DA TT QT DA TT QT

(1). - - - - 66.6 79.1 87.7 61.8 64.5 83.4
(2)

p
- - - 66.5 79.6 89.3 60.6 64.4 83.7

(3)
p

-
p

- 66.5 80.6 89.5 61.6 65.7 83.7
(4) -

p
- - 66.7 78.7 87.2 61.4 64.3 83.0

(5) -
p

-
p

66.9 79.8 88.2 61.8 64.8 83.3
(6).

p p
- - 66.6 79.7 89.3 60.5 65.4 82.6

(7).
p p p

- 67.3 81.1 89.6 61.5 66.1 83.5
(8).

p p
-

p
66.7 80.7 89.5 60.9 66.7 83.0

(9).
p p p p

67.6 81.3 90.0 61.9 66.7 83.7

Table 3: Experimental results: utterance classification accuracy (%) for individual test sets.

with only performing multi-task joint modeling,
and lines (4) and (5) show results with only per-
forming multi-lingual joint modeling. Note that
lines (3) and (5) show the results achieved with ad-
versarial training. Line (6) shows multi-task and
multi-lingual joint modeling results: adversarial
training was suppressed by setting both ↵ and �
to 0.0. Lines (7)–(9) shows the results achieved
with adversarial training. Note that setting with
bold values achieved the highest performance in
our evaluation.

First, in lines (2) and (4), the classification per-
formance deteriorated in some cases, while per-
formance improvements were achieved in other
cases. On the other hand, in lines (3) and (5), clas-
sification performance in each data sets was im-
proved by introducing adversarial training. This
indicates that adversarial training was effective in
improving the performance of joint modeling.

Next, line (6) shows that, relative to line
1, multi-task and multi-lingual joint modeling
can improve the classification performance for
Japanese TT, Japanese QT, and English TT, but
classification performance was degraded for En-
glish DA and English QT. This indicates that it
is difficult to simultaneously improve the clas-
sification performance for all data sets because
joint modeling often depends on majority tasks
or majority languages. In addition, lines (7) and
(8) show the introduction of either task adver-
sarial networks or language adversarial networks
yielded better performance than line (6) for all
data sets. This indicates that adversarial train-
ing was effective in improving the performance
of multi-task and multi-lingual joint modeling.
The best results were achieved by using both
language-specific task adversarial networks and
task-specific language adversarial networks, line
(9). These results confirm that task adversarial

networks and language adversarial networks well
complement each other. Of particular benefit, the
proposed method demonstrated greater classifica-
tion performance improvements when the number
of training utterances per label was small.

5 Conclusions

We have proposed an adversarial training method
for the multi-task and multi-lingual joint modeling
needed to enhance utterance intent classification.
Our adversarial training proposal utilizes both task
adversarial networks and language adversarial net-
works for improving task-invariance in language-
specific networks and language-invariance in task-
specific networks. Experiments showed that the
adversarial training proposal could well realize the
benefits of joint modeling in all data sets.
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Abstract

In this paper we show that a simple beam ap-
proximation of the joint distribution between
attention and output is an easy, accurate, and
efficient attention mechanism for sequence to
sequence learning. The method combines the
advantage of sharp focus in hard attention and
the implementation ease of soft attention. On
five translation and two morphological inflec-
tion tasks we show effortless and consistent
gains in BLEU compared to existing attention
mechanisms.

1 Introduction

In structured input-output models as used in tasks
like translation and image captioning, the attention
variable decides which part of the input aligns to the
current output. Many attention mechanisms have
been proposed (Xu et al., 2015; Bahdanau et al.,
2014; Luong et al., 2015; Martins and Astudillo,
2016) but the de facto standard is a soft attention
mechanism that first assigns attention weights to
input encoder states, then computes an attention
weighted ’soft’ aligned input state, which finally
derives the output distribution. This method is end
to end differentiable and easy to implement.

Another less popular variant is hard attention
that aligns each output to exactly one input state but
requires intricate training to teach the network to
choose that state. When successfully trained, hard
attention is often found to be more accurate (Xu
et al., 2015; Zaremba and Sutskever, 2015). In
NLP, a recent success has been in a monotonic
hard attention setting in morphological inflection
tasks (Yu et al., 2016; Aharoni and Goldberg, 2017).
For general seq2seq learning, methods like Sparse-
Max (Martins and Astudillo, 2016) and local atten-
tion (Luong et al., 2015) were proposed to bridge
the gap between soft and hard attention.

⇤Both authors contributed equally to this work

In this paper we propose a surprisingly simpler
alternative based on the original joint distribution
between output and attention, of which existing soft
and hard attention mechanisms are approximations.
The joint model couples input states individually to
the output like in hard attention, but it combines the
advantage of end-to-end trainability of soft atten-
tion. When the number of input states is large, we
propose to use a simple approximation of the full
joint distribution called Beam-joint. This approxi-
mation is also easily trainable and does not suffer
from the high variance of Monte-Carlo sampling
gradients of hard attention.

We evaluated our model on five translation tasks
and increased BLEU by 0.8 to 1.7 over soft atten-
tion, which in turn was better than hard and the
recent Sparsemax (Martins and Astudillo, 2016)
attention. More importantly, the training process
was as easy as soft attention. For further support,
we also evaluate on two morphological inflection
tasks and got gains over soft and hard attention.

2 Background and Related Work
For sequence to sequence (seq2seq) learning the
encoder-decoder model is the standard and we re-
view it here. We then review related work on atten-
tion mechanisms on these models.

2.1 Attention-based Encoder Decoder Model
Let x1, . . . , xm denote the tokens in the input
sequence that have been transformed by an
encoder network to state vectors x1, . . . , xm,
which we jointly denote as x1...m. Let y1, . . . , yn

denote the output tokens in the target sequence.
The Encoder-Decoder (ED) network factorizes
Pr(y1, . . . , yn|x1...m) as

Qn
t=1 Pr(yt|x1...m, st)

where st is a decoder state summarizing
y1, . . . yt�1. For each t, a hidden attention variable
at is used to denote which part of x1...m aligns
with yt. Let P (at = j|x1...m, st) denote the
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probability that encoder state xj is relevant for
output yt. Typically this is estimated using a
softmax function over attention scores computed
from xj and decoder state st as follows.

P (at = j|x1...m, st) =
eA✓(xj ,st)

Pm
r=1 eA✓(xr,st)

(1)

where A✓(., .) is the attention unit that scores each
input state xj as per the decoder state st. There-
after, in the popular soft-attention mechanism, the
attention weighted sum of the input states is used
to model log likelihood for each yt as

log Pr(yt|x1...m) = log Pr(yt|
X

a

Pt(a)xa) (2)

where Pt(at = j) is the short form for P (at =
j|x1...m, st). Also, here and in the rest of the paper
we drop st from P (yt) and Pt(a) for ease of nota-
tion. The weighted sum

P
a Pt(a)xa is called an

input context ct which is fed to the decoder RNN
along with yt for computing the next state st+1.

2.2 Related Work
We next review existing attention types.

Soft Attention is the attention method described
in the previous section and is the current stan-
dard for seq2seq learning (Xu Chen, 2018; Koehn,
2017). It was proposed for translation in (Bah-
danau et al., 2014) and refined further in (Luong
et al., 2015). As shown in Eq 2, here each output
is derived from an attention averaged input. This
diffuses the coupling between the input and out-
put. The advantage of soft attention is end to end
differentiability, and fast training and inference.

Hard Attention was proposed in its current form
in (Xu et al., 2015) and attends to exactly one input
state for an output1. During training, log-likelihood
is an expectation over sampled attentions:

log Pt(yt|x1...m) =
MX

l=1

log Pt(yt|xãl) (3)

where ã1, . . . , ãM are sampled from the multino-
mial Pt(a). Because of the sampling, the gradi-
ent has to be computed by Monte Carlo gradi-
ent/REINFORCE (Williams, 1992) and is subject
to high variance. Many tricks are required to train

1Note, attention on a single input encoder state does not
imply attention on a single input token because RNNs or self-
attention capture the context around the token.

hard attention and there is little standardization
across implementations. Xu et al (2015) use a
combination of REINFORCE and soft attention.
Zaremba et al(2015) uses curriculum learning that
starts as soft-attention and gradually becomes dis-
crete. Ling& Rush (2017) aggregates multiple sam-
ples during training, and a single sampled attention
while testing. However, once trained well the sharp
focus on memory provided by hard-attention has
been found to yield superior performance (Xu
et al., 2015; Shankar and Sarawagi, 2018).

Sparse/Local Attention Many attempts have
been made to bridge the gap between soft and hard
attention. Luong et al (2015) proposes local atten-
tion that averages a window of input. This has been
refined later to include syntax (Chen et al., 2017;
Sennrich and Haddow, 2016; Chen et al., 2018).
Another idea is to replace the softmax in soft atten-
tion with sparsity inducing operators (Martins and
Astudillo, 2016; Niculae and Blondel, 2017). How-
ever, all sparse/local attention methods continue to
compute P (y) from an attention weighted sum of
inputs (Eq: 2) unlike hard attention.

3 Joint Attention-Output Models

We start from an explicit joint representation of the
uncertainty of the attention and output variables.

log Pt(yt|x1...m) = log
X

a

Pt(a)Pt(yt|xa) (4)

The joint model directly couples individual input
states to the output, and thus is a type of hard atten-
tion. Also, by taking an expectation, instead of a
single hard attention, it enjoys differentiability as in
soft-attention. We call this the full-joint method.

Unfortunately, either when the vocabulary or the
number of encoder states (m) is large, full-joint
is not practical. Existing hard and soft attentions
can be viewed as its approximations that either
marginalize early or hard select attention. We show
a surprisingly simple alternative approximation that
provides hard attention without its training com-
plexity. Our method called Beam-joint determin-
istically selects the top-k highest attention values
and approximates the full joint log probability as

log Pt(yt|x1...m) ⇡ log
X

a2TopK(Pt(a))

Pt(a)Pt(yt|xa) (5)

Thus, in beam-joint, we first compute the multi-
nomial attention distribution in O(m) time using
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Eq 1, select the Top-K input positions from the
multinomial, next with hard attention on each posi-
tion compute K output softmax, and finally com-
pute the attention weighted output mixture distribu-
tion. The number of output softmax is K times
in normal soft-attention but the actual running
time overhead is only 20–30% for translation tasks.
We used the default pass-through TopK operator
(which is not differentiable) and optimize the beam-
approximation directly. We also experimented with
a version which smoothly shifts from soft-attention
to beam-attention, but found that training the beam-
approximation directly leads to best results.

We show empirically that this very simple
scheme is surprisingly effective compared to exist-
ing hard and soft attention over several translation
tasks. Unlike sampling and variational methods
that require careful tuning and exotic tricks during
training, this simple scheme trains as easily as soft-
attention, without significant increase in training
time because even K = 6 works well enough.

Another reason why our ’sum of probabilities’
form performs better could be the softmax barrier
effect highlighted in (Yang et al., 2018). The au-
thors argue that the richness of natural language
cannot be captured in normal softmax due to the
low rank constraint it imposes on input-to-output
matrix. They improve performance using a Mixture
of Softmax model. Our beam-joint also is a mixture
of softmax and possibly achieves higher rank than
a single softmax. However their mixture requires
learning multiple softmax matrices, whereas ours
are due to varying attention and we do not learn
any extra parameters than soft attention.

4 Experiments

We compare attention models on two NLP tasks:
machine translation and morphological inflection.

4.1 Machine translation

We experiment on five language pairs from three
datasets: IWSLT15 English$Vietnamese (Cet-
tolo et al., 2015) which contains 133k train, 1.5k
validation(tst2012) and 1.2k test(tst2013) sentence
pairs respectively; IWSLT14 German$English
(Cettolo et al., 2014) which contains 160k train,
7.2k validation and 6.7k test sentence pairs respec-
tively ; Workshop on Asian Translation 2017
Japanese!English (Nakazawa et al., 2016) which
contains 2M train, 1.8k validation and 1.8k test
sentence pairs respectively. We use a 2 layer bi-

directional encoder and a 2 layer unidirectional de-
coder with 512 hidden LSTM units and 0.2 dropout
rate with vanilla SGD optimizer. We base our im-
plementation2 on the NMT code3 in Tensorflow.
We did no special hyper-parameter tuning and used
standard-softmax tuned parameters on a batch size
of 64.

Comparing attention models We compare
beam-joint (default K = 6) with standard soft and
hard attention. To further dissect the reasons behind
beam-joint’s gains, we compare beam-joint with a
sampling based approximation of full-joint called
Sample-Joint that replaces the TopK in Eq 5 with
K attention weighted samples. We train sample-
joint as well as hard-attention with REINFORCE
with 6-samples. Also to ascertain that our gains are
not explained by sparsity alone, we compare with
Sparsemax (Martins and Astudillo, 2016).

In Table 1 we show perplexity and BLEU with
three beam sizes (B). Beam-joint significantly out-
performs all other variants, including the standard
soft attention by 0.8 to 1.7 BLEU points. The per-
plexity shows even a more impressive drop in all
five datasets. Also we observe training times for
beam-joint to be only 20–30% higher than soft-
attention, establishing that beam-joint is both prac-
tical and more accurate.

Sample-joint is much worse than beam-joint.
Apart from the problem of high variance of gra-
dients in the reinforce step, another problem is that
sampling repeats states whereas TopK in beam-
joint gets distinct states. Hard attention too faces
training issues and performs worse than soft atten-
tion, explaining why it is not commonly used in
NMT. Sample-joint is better than Hard attention,
further highlighting the merits of the joint distri-
bution. Sparsemax is competitive but marginally
worse than soft attention. This is concordant with
the recent experiments of (Niculae and Blondel,
2017).

Comparison with Full Joint Next we evaluate
the impact of our beam-joint approximation against
full-joint and soft attention. Full-joint cannot scale
to large vocabularies, therefore we only compare
on En-Vi with a batch size of 32. Figure 1a shows
final BLEU of these methods as well as BLEU
against increasing training steps. Beam-joint both
converges faster and to a higher score than soft-

2https://github.com/sid7954/beam-joint-attention
3https://github.com/tensorflow/nmt
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Dataset Attention PPL BLEU
B=1 B=4 B=10

IWSLT14 DE-EN

Soft 9.61 27.7 28.6 28.5
Hard 9.50 25.3 25.6 25.5
Sparse 9.85 27.2 28.4 28.0
Sample-Joint 9.96 26.3 27.8 27.8
Beam-Joint 8.47 29.0 29.7 29.6

IWSLT14 EN-DE

Soft 10.68 23.1 24.2 24.2
Hard 10.15 21.4 21.8 21.7
Sparse 10.89 22.5 23.4 23.3
Sample-Joint 10.05 22.8 23.8 23.6
Beam-Joint 8.72 24.7 25.4 25.3

IWSLT15 EN-VI

Soft 10.27 26.0 26.6 26.4
Hard 10.53 24.1 24.3 24.0
Sparse 10.13 25.9 26.6 26.1
Sample-Joint 11.00 25.8 26.3 25.9
Beam-Joint 9.67 27.0 27.4 27.3

IWSLT14 VI-EN

Soft 8.30 23.6 24.7 24.6
Hard 8.28 21.1 21.9 21.5
Sparse 8.48 22.8 24.2 23.9
Sample-Joint 8.28 22.7 24.0 23.9
Beam-Joint 7.57 24.5 25.8 25.7

WAT17 JA-EN

Soft 12.46 17.6 18.9 18.5
Hard 12.78 13.2 13.1 12.7
Sparse 14.18 16.7 17.5 16.8
Sample-Joint 13.21 16.2 18.1 17.9
Beam-Joint 10.00 19.6 20.6 20.2

Table 1: Perplexity and test BLEU with three inference beam widths (B) on five translation tasks.
Beam-joint consistently and substantially outperforms soft-attention.

(a) BLEU Vs Training steps on En-Vi (b) BLEU Vs Training steps (Beam=1)

Figure 1: Test BLEU in various settings (Beam=1). Best viewed in color
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Figure 2: BLEU for Beam-Joint with increasing K.
BLEU increases with K and saturates at K=5

attention. For example by 10000 steps ( 5 epochs),
beam-joint has surpassed soft-attention by almost
2 BLEU points (20 vs 22). Moreover beam-joint
tracks full-joint well, and both converge finally to
similar BLEUs near 27 against 26 for soft attention.
This shows that an attention-beam of size 6 suffices
to approximate full joint almost perfectly.

Next, in Figure 1b, we compare beam-joint
(solid lines) and soft attention (dotted lines) for
convergence rates on three other datasets. For each
dataset beam-joint trains faster with a consistent
improvement of more than 1 BLEU.

Effect of K in Beam-joint We show the effect
of K used in TopK of beam-joint in Figure 2 on the
En-Vi and De-En tasks. On En-Vi BLEU increases
from 16.0 to 25.7 to 26.5 as K increases from 1 to
2 to 3; and then saturates quickly. Similar behavior
is observed in the other dataset. This shows that
small K values like 6 suffice for translation.

We further evaluate whether the performance
gain of beam-joint is due to the softmax barrier
alone in Table 2. We used our models trained with
K=6, and deployed them for test-time greedy de-
coding with K set to 1. Since the output now has
only a single softmax component, this model faces
the same bottleneck as soft-attention. One can ob-
serve that as expected these results are worse than
beam-joint with K=6, however they still exceed
soft-attention by a significant margin, demonstrat-
ing that the performance gain is not solely due to
the effect of ensembling or softmax-barrier.

4.2 Morphological Inflection

To demonstrate the use of this approach beyond
translation, we next consider two morphological

Dataset Soft Beam-Joint
(K=1)

Beam-Joint
(K=6)

En-De 23.1 24.5 24.7
De-En 27.7 28.4 29.0
En-Vi 26.0 26.5 27.0

Table 2: Comparing soft attention with Beam-Joint
using different values of K during inference. Dur-
ing training K = 6 for both Beam-Joint models.

inflection tasks. We use (Durrett and DeNero,
2013)’s dataset containing 8 inflection forms for
German Nouns (de-N) and 27 forms for German
Verbs (de-V). The number of training words is 2364
and 1627 respectively while the validation and test
words are 200 each. We train a one layer encoder
and decoder with 128 hidden LSTM units each with
a dropout rate of 0.2 using Adam(Kingma and Ba,
2014) and measure 0/1 accuracy for soft, hard and
full-joint attention models. Due to limited input
length and vocabulary, we were able to run directly
the full-joint model. We also ran the 100 units
wide two layer LSTM with hard-monotonic atten-
tion provided by (Aharoni and Goldberg, 2017)
labeled Hard-Mono4. The table below shows that
even for this task full-joint scores over existing at-
tention models5. The generic full-joint attention
provides slight gains even over the task specific
hard-monotonic attention.

Dataset Soft Hard Hard-
Mono

Full-
Joint

de-N 85.50 85.13 85.65 85.81
de-V 94.91 95.04 95.31 95.52

Conclusion

In this paper we showed a simple yet effective ap-
proximation of the joint attention-output distribu-
tion in sequence to sequence learning. Our joint
model consistently provides higher accuracy with-
out significant running time overheads in five trans-
lation and two morphological inflection tasks. An
interesting direction for future work is to extend
beam-joint to multi-head attention architectures as
in (Vaswani et al., 2017; Xu Chen, 2018).

Acknowledgements We thank NVIDIA Corpo-
ration for supporting this research by the donation
of Titan X GPU.

4https://github.com/roeeaharoni/morphological-
reinflection

5Our numbers are lower than earlier reported because ours
use a single model whereas (Aharoni and Goldberg, 2017) and
others report from an ensemble of five models.
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Abstract 

We present a neural network-based joint 
approach for emotion classification and 
emotion cause detection, which attempts 
to capture mutual benefits across the two 
sub-tasks of emotion analysis. Consider-
ing that emotion classification and emo-
tion cause detection need different kinds 
of features (affective and event-based sep-
arately), we propose a joint encoder which 
uses a unified framework to extract fea-
tures for both sub-tasks and a joint model 
trainer which simultaneously learns two 
models for the two sub-tasks separately. 
Our experiments on Chinese microblogs 
show that the joint approach is very prom-
ising. 

1 Introduction 

The analysis of emotions in texts is an important 
task in NLP. Traditional studies treat this task as 
a pipeline of two separated sub-tasks: emotion 
classification and emotion cause detection. The 
former identifies the category of an emotion and 
the latter detects the cause of an emotion. This 
separated framework makes each sub-task more 
flexible to deal with, but it neglects the relevance 
between the two sub-tasks. In this paper, we ex-
plore joint approaches which can capture mutual 
benefits across the relevant two sub-tasks. To the 
best of our knowledge, this work is the first at-
tempt to incorporate both emotion classification 
and emotion cause detection into a unified 
framework.  

Although emotion classification relies on af-
fective features and emotion cause detection 
needs event-based features, we propose a joint 
encoder which uses a unified framework to ex-

tract features for both emotion classification in-
stances and emotion cause detection instances. 
Then, we propose a joint model trainer which 
simultaneously learns two models for the two 
sub-tasks separately. The experiments on Chinese 
microblogs show that our joint approach can ef-
fectively learn models for both sub-tasks.  

2 Our Approach 

2.1 Corpus 

In this paper, we use the human-labeled emotion 
corpus provided by Cheng et al. (2017) as our 
experimental data (namely Cheng emotion cor-
pus). To better explain our work, we adopt twit-
ter’s terminology used in Cheng et al. (2017). 
Cheng emotion corpus can be considered as a 
collection of subtweets. For each emotion in a 
subtweet, all emotion keywords expressing the 
emotion are selected, and then the class and the 
cause of the emotion are annotated. The emotion 
categorization used in Huang et al. (2016) is 
adopted, which includes four basic emotions (i.e., 
joy, angry, sad and fearful) and three complex 
emotions (i.e., positive, neutral and negative). 
E.g. in the following example, the class of the 
emotion keyword (“ ”) is sad, and the cause of 
the emotion is “only I was at home again”.   
 

 
 
 

 
 
 
 

Figure 1: An example of a subtweet 
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Chinese :�兴冲冲勒跑回家~~发现又是我一个人再

家。。 ��早知道就去蹭饭了�

English Translation:  I was very excited to run back 

home. I found that only I was at home again.  If I 

knew it earlier, I would have a meal for free. 
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 Figure 2: The framework of our joint approach 
 

2.2 Problem Formulation 

In this paper, both the emotion classification sub-
task (namely EClass) and the emotion cause de-
tection sub-task (namely ECause) are clause-
level. Given an instance which is a clause in a 
subtweet, EClass assigns one of seven labels (i.e. 
six emotion classes and label ‘non-emotion’ 
which indicates the absence of an emotion) to the 
instance. Notice, because of the extremely low 
percentage of emotion ‘fearful’ (~0.6% in §3.1 
Table 1), we ignore this emotion class in EClass. 
Given an instance which is a pair of <an emotion 
keyword, a clause in the subtweet>, ECause as-
signs a binary label to the instance to indicates the 
presence of a causal relation. Moreover, the 
clause-level EClass can effectively avoid the 
problem of multiple emotions (Li et al., 2015) 
because clauses are a kind of fine-grained texts.  

Furthermore, the input text of an EClass in-
stance contains three sequences of words: the 
previous clause (i.e. PrevCL), the current clause 
(i.e. CurCL), and the following clause (i.e. 
FolCL). The previous clause and the following 
clause provide contextual information for the cur-
rent clause. The input text of an ECause instance 
also has three sequences of words: the emotion 
keyword (i.e. EmoKW), the current clause (i.e. 
CauseCL) and the context between EmoKW and 
CauseCL. The emotion keyword serves as an an-
chor, the current clause gives the description of 
an event which may cause the emotion, and the 
context provides complemental information for 

the event. Moreover, each word is represented 
with a vector from our word embedding model 
which is trained with word2vec1 and the tweet 
corpus of Cheng et al. (2017). 

2.3 The Joint Approach 

As shown in Fig. 2, there are two parts in our 
joint approach which is based on neural networks: 
a joint encoder (the lower part) which extracts 
feature representations for both EClass instances 
and ECause instances, and a linear decoder (the 
upper part) which assigns labels to instances ac-
cording to their representations.  
 
Neural Networks 
In the joint encoder, there are two neural net-
works (the attention network and the LSTM net-
work), and each neural network is composed of 
several layers: bidirectional LSTM (i.e. BiLSTM) 
and attention. The BiLSTM layer focuses on the 
extraction of sequence features, and the attention 
layer focuses on the learning of word importance 
(weights). Because of the feature sparse problem 
in our small-scaled experimental data, the atten-
tion network often cannot effectively extract fea-
tures to represent an event (see §3.2). Thus, in our 
joint encoder, we use the attention network to 
extract affective features (e.g. “ ” in Fig. 1) and 
the LSTM network to extract event-based fea-
tures (e.g. “I found that only I was at home again” 
in Fig. 1). 

                                                            
1 https://code.google.com/p/word2vec/ 
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The attention network: we implement the atten-
tion network used in Felbo et al. (2017), which 
includes two layers: a BiLSTM layer which ex-
tracts a sequence feature for each input word, and 
an attention layer which represents the input se-
quence using weighted words.  
The LSTM network: the network uses a BiLSTM 
layer to capture a sequence feature for each input 
word, and then uses the average of those features 
as the representation of the input sequence.  

In the linear decoder, there are two classifica-
tion networks (CNet EClass and CNet ECause) 
for EClass and ECause separately. Each classifi-
cation network uses a linear layer to build a prob-
abilistic classification model. 

 
The Joint Encoder 
As shown in Fig. 2, there are two sub-encoders in 
our joint encoder: Encoder EClass (the left part) 
which provides a representation for an EClass 
instance, and Encoder ECause (the right part) 
which extracts a representation for an ECause 
instance. Given an instance, one sub-encoder ex-
tracts a main representation (through the black 
lines in Fig.2) and the other sub-encoder provides 
an auxiliary representation (through the blue or 
red lines in Fig.2). Then, the concatenation of the 
two representations serves as the final representa-
tion for the instance (i.e. hEClass or hECause in Fig.2). 
In order to deal with the case that a main repre-
sentation may be overwhelmed by its correspond-
ing auxiliary representation, linear layers are used 
to reduce the dimensions of auxiliary representa-
tions. Moreover, there are three sequences of 
words either in the input text of an EClass in-
stance or in the input text of an ECause instance. 
In order to effectively use these input sequences, 
a multi-channel structure is chosen, which en-
codes the input sequences one by one.     
Encoder EClass: given the three sequences of 
words in an EClass instance (PrevCL, CurCL and 
FolCL), the attention network is applied to 
CurCL to extract an affective representation, and 
the LSTM network is applied to PrevCL and 
FolCL separately to extract two event-based rep-
resentations. Then, the concatenation of the three 
representations is used as the main representation 
(i.e. hmain_EClass). Furthermore, in order to extract 
more contextual information, the LSTM network 
of Encoder ECause is applied to PrevCL and 
FolCL (through the blue lines in Fig. 2) to extract 
the auxiliary representation (i.e. haux_EClass), which 

provides another event-based view for our emo-
tion classification.    
Encoder ECause: in order to separately deal with 
the three sequences of words (EmoKW, CauseCL 
and Context) in an ECause instance, the LSTM 
network is applied to each input sequence and 
then the concatenation of the three representa-
tions is used as the main representation (i.e. 
hmain_ECause). Furthermore, for each input sequence 
(CauseCL or Context), the BiLSTM layer in the 
attention network is used to extract more event-
based features (through the red lines in Fig. 2), 
and those features serve as an auxiliary represen-
tation (i.e. haux_ECause) which provides another 
event-based view for our emotion cause detec-
tion.   
 
The Joint Model Trainer 
During training, two models (JMEClass and 
JMECause) are learned simultaneously for the 
two sub-tasks (EClass and ECause) separately. 
Model JMEClass contains Encoder EClass and 
CNet EClass, and Model JMECause contains 
Encoder ECause and CNet ECause. Although 
each model uses auxiliary representations from 
the other model, but the learning of the model 
focuses on its own parameters. In other words, 
gradient calculation is disabled along the dashed 
lines in Fig. 2.  

In each episode, the batch of input data is 
composed of two sets of instances: EClass sub-
batch containing only EClass instances and 
ECause sub-batch containing only ECause in-
stances. Given the batch of data, the parameters 
of each model are updated according its corre-
sponding loss function. E.g., Model JMEClass 
uses only the EClass sub-batch, and its loss func-
tion is the mean squared errors of the instances in 
the sub-batch. In our joint model trainer, the two 
models are optimized using their own loss func-
tions as pipeline model training does, but they use 
up-to-date auxiliary representations from each 
other to help optimization.  

3 Experiments 

3.1 Experimental Setup  

In Cheng emotion corpus, there are ~3,000 sub-
tweets, ~11,000 instances for EClass, and 
~13,000 instances for ECause. Moreover, Table 1 
lists the class distribution in Cheng emotion cor-
pus for EClass. All experiments in this paper are 
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trained and tested by 5-fold cross-validation on 
Cheng emotion corpus, and all the results report-
ed are the average ones of 5-fold cross-validation 
performances. We use the precision, recall and F-
score as our evaluation metrics. However, be-
cause of the high percentage of label ‘non-
emotion’ in EClass (see Table 1) and label ‘0’ in 
ECause, similar to previous work (Li et al. 2015; 
Felbo et al., 2017; Cheng et al., 2017; Gui et al., 
2017), we report only the evaluation metrics of 
the six emotion classes for EClass and the evalua-
tion metrics of label ‘1’ for ECause. 
 

Class % Class % 
Joy 11.3 Angry 3.5 
Sad 2.6 Fearful* 0.6 
Positive 8.2 Neutral 4.4 
Negative 9.9 Non-emotion 59.5 

Table 1: The class distribution in Cheng emotion 
corpus for EClass. (*: ignored) 
 

During our joint training process, the dimen-
sion of the word embeddings is 20; the output 
dimension of the BiLSTM layer used in both the 
LSTM network and the attention network is 128; 
the output dimension of the linear network is 8; 
the batch size is 32. 

The two models (JMEClass and JMECause) 
which are learned by our joint approach are com-
pared with several pipeline models which are 
learned in a pipeline manner (i.e. either for 
EClass or for ECause) using one of the following 
state-of-the-art encoders. 
 ATT: the attention network in Fig.2 . 
 LSTM: the LSTM network in Fig.2. 
 ATT+LSTM: an hybrid encoder for emotion 

classification, which applies ATT to CurCL 
and LSTM to PrevCL and FolCL. 

 ConvMSMemnet: the encoder proposed by 
Gui et al. (2017) for emotion cause detection, 
which applies a convolutional multiple-slot 
deep memory network to CauseCL. 

3.2 Method Analysis 

Table 2 shows the performances of different emo-
tion classification models, where “Sequence” lists 
the sequences of input words used by each model 
and each metric is the average performances of 
six emotion classes. Moreover, Table 3 lists the 
detailed performances of each emotion class in 
Model JMEClass. 
 

Encoder Sequence Prec Rec F1 
LSTM CurCL 65.5 53.0 58.2
ATT CurCL 67.6 56.5 61.0

all 67.5 56.7 61.2
ATT+LSTM all 67.0 57.8 61.7
JMEClass all  67.7 58.5 62.4

Table 2: The performances of emotion classifica-
tion models. (all: PrevCL, CurCL plus FolCL) 
 

Class Prec Rec F1 
Joy 85.5 83.6 84.5 
Angry 62.8 45.0 52.4 
Sad 72.6 72.9 72.8 
Positive 63.0 54.7 58.6 
Neutral 62.5 41.2 49.7 
Negative 59.9 53.9 56.7 

Table 3: The performances of the six emotions in 
JMEClass 
 

In Table 2, Model ATT + CurCL out-performs 
LSTM + CurCL by 2.8% in F-scores, where ATT 
is a state-of-the-art encoder for emotion classifi-
cation (Felbo et al., 2017). The significant per-
formance improvement means that ATT can effec-
tively extract affective features in CurCL. In fact, 
the emotion classification on Chinese microblogs 
can rely much on emotion keywords occurring in 
CurCL. E.g. ~50% emotional instances in our 
experimental data contains emoticons (e.g. “ ” 
in Fig. 1) in CurCL and those emoticons them-
selves are strong emotion indicators. Secondly, 
when different kinds of contextual information 
are incorporated to Model ATT + CurCL, differ-
ent performance improvements obtain (0.2% for 
ATT + all and 0.7% for ATT+LSTM in F-scores). 
This indicates that for the emotion classification, 
the event-based features extracted by LSTM are 
more helpful than the affective features extracted 
by ATT, because contexts often provide the cause 
event of an emotion.  E.g. in Fig. 1, the previous 
clause of “ ” contains its cause “only I was at 
home again”. Finally, taking the advantage of the 
event-based features extracted by JMECause, 
JMEClass out-performs the best pipeline model 
(ATT+LSTM) by 0.7% in F-scores. This shows 
that it is important for the emotion classification 
to have an encoder which can effectively extract 
event-based features from contexts.   

In Table 3, the performance of a basic emotion 
(i.e., joy, angry or sad) is often better than the one 
of a complex emotion (i.e., positive, neutral or 
negative). However, in Table 1, the data size of a 
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basic emotion is often smaller than the one of a 
complex emotion. This indicates that difference 
in performance is likely linked to differences in 
the emotional contents of labels rather than dif-
ferences in data sizes. E.g. the complex emotion 
‘negative’ (i.e. a collection of complex emotions 
with negativity, such as ‘hate’, ‘anxious’, and so 
on) is more diverse than the basic emotion ‘sad’, 
and this diversity in emotional contents brings 
more challenges to the detection of this complex 
emotion. Furthermore, even if both ‘sad’ and ‘an-
gry’ are basic emotions and have similar data siz-
es in our experimental data, it seems much easier 
to detect ‘sad’ instances than to detect ‘angry’ 
instances. This is maybe because ‘angry’ is 
caused by more various events and it is more dif-
ficult to capture and utilize those cause events. 
Thus, it is necessary for the emotion classification 
to have an encoder which can extract the event-
based information of emotion cause from texts.   
 
Encoder Sequence Prec Rec F1 
ConvMS-
Memnet 

CauseCL 34.3 77.5 47.5

ATT all 55.4 60.9 58.0
LSTM all 55.6 61.3 58.3
JMECause all  53.1 66.7 59.1

Table 4: The performances of emotion cause de-
tection models. (all: EmoKW, CauseCL plus Con-
text) 

 
Table 4 shows the performances of different 

emotion cause detection models, where “Se-
quence” lists the sequences of input words used 
by each model. In Table 4, JMECause out-
performs the best pipeline model (LSTM) by 
0.8% in F-scores. The LSTM encoder is a state-
of-the-art approach used for emotion cause detec-
tion (Cheng et al., 2017). Furthermore, the per-
formance improvement of JMECause is from the 
significant increasing in recalls (5.4%). This indi-
cates that more emotion causes are correctly de-
tected when the event-based features extracted by 
Model JMEClass are incorporated. Moreover, 
among all models, the two models (ATT and 
LSTM) achieve relatively high precision and rela-
tively low recall, and ConvMS-Memnet obtains 
the lowest precision and highest recall. This 
means that both ATT and LSTM suffer from the 
feature coverage problem because some useful 
features cannot be extracted through their encod-
ers, and ConvMS-Memn suffers from the feature 

quality problem maybe because its encoder can-
not handle the informal writing style used in Chi-
nese microblogs.   

4 Related Work 

In recent years, intensive studies have explored 
supervised machine learning approaches using 
various types of features for different-level emo-
tion classification, such as document level (Alm 
et al. 2005; Li et al. 2014; Huang et al. 2016), 
sentence level or short text level (Tokushisa et al. 
2008; Bhowmick et al. 2009; Xu et al. 2012; Wen 
and Wan, 2014; Li et al. 2015; Felbo et al., 2017), 
and so on. Moreover, since both emotion and sen-
timent belong to affective feeling, some studies 
have explored the join learning of sentiment clas-
sification and emotion classification (Gao et al., 
2013; Wang et al., 2015).  

In the other hand, most of previous emotion 
cause detection studies is clause-based, which 
examine whether a clause around a given emotion 
keyword is a cause or not. Moreover, these stud-
ies  (Chen et al., 2010; Xu et al., 2017; Ghazi et 
al., 2015; Gui et al., 2017; Cheng et al., 2017) 
focus on how to extract two kinds of features for 
supervised model learning: explicit expression 
patterns (e.g. “to cause”, “for”), and implicit fea-
tures which can reflect the causal relation.  

5 Conclusion 

In this paper, we focus on a joint learning ap-
proach to emotion classification and emotion 
cause detection on Chinese microblogs, and the 
experiments show such a joint approach is very 
promising.  
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Abstract

Identifying optimistic and pessimistic view-
points and users from Twitter is useful for pro-
viding better social support to those who need
such support, and for minimizing the nega-
tive influence among users and maximizing the
spread of positive attitudes and ideas. In this
paper, we explore a range of deep learning
models to predict optimism and pessimism in
Twitter at both tweet and user level and show
that these models substantially outperform tra-
ditional machine learning classifiers used in
prior work. In addition, we show evidence
that a sentiment classifier would not be suffi-
cient for accurately predicting optimism and
pessimism in Twitter. Last, we study the verb
tense usage as well as the presence of polarity
words in optimistic and pessimistic tweets.

1 Introduction

“You know, ever since we were little, I would get
this feeling like... Like I’m floating outside of my
body, looking down at myself... And I hate what
I see... How I’m acting, the way I sound. And I
don’t know how to change it. And I’m so scared...
That the feeling is never gonna go away.”

The Edge of Seventeen1

Much has been written about optimism and
pessimism in psychological studies for decades
(Scheier and Carver, 1992). These feelings are af-
fected by one’s personality from an early age (as
pinpointed above) and can strongly impact one’s
psychological and physical health. For exam-
ple, pessimism and negative attitudes impact neg-
atively one’s mental health, can induce suicidal
thoughts, and affect negatively not only the per-
son in question, but also their family and friends
(Peterson and Bossio, 2001; Achat et al., 2000;

1https://www.imdb.com/title/tt1878870/

Scheier et al., 2001). On the other hand, optimism
reduces stress and promotes better physical health
and overall well-being (Carver et al., 2010).

Despite that optimism and pessimism are un-
der the scrutiny of many researchers (Rasmussen
et al., 2009; Kumar et al., 2017), large scale anal-
yses that explore optimism and pessimism in so-
cial media have just started to emerge (Ruan et al.,
2016). However, Ruan et al. (2016) focused on
identifying optimism and pessimism in Twitter us-
ing a simple “bag of words” representation with no
emphasis on incorporating semantic information
hidden in text. Often, a deeper understanding of
the text that accounts for textual semantic similar-
ities and the writer’s intention are required in order
to correctly detect the characteristics of optimistic
and pessimistic feelings in tweets. Towards this
end, our contributions in this paper are as follows.
First, we focus on the question: “Would a deep
learning approach help to discover these charac-
teristics better than traditional machine learning
classifiers used in prior work?” To our knowl-
edge, we take the first step towards exploring the
performance of deep learning models for opti-
mism/pessimism prediction in Twitter and iden-
tify the most promising deep learning models for
this task. Identifying optimism and pessimism in
Twitter has many applications including identify-
ing suicidal/depressive people and providing bet-
ter social support (e.g., emotional/empathetic sup-
port) that can improve people’s moods and atti-
tudes (Yan and Tan, 2014; Biyani et al., 2014;
Khanpour et al., 2018, 2017; Qiu et al., 2011).

Second, since it may seem intuitive that a pos-
itive sentiment is associated with optimism and a
negative sentiment with pessimism, we address the
question: “Would a sentiment classifier be suffi-
cient to correctly identify optimism and pessimism
in social media?” Figure 1 shows evidence that
a sentiment tool would not suffice on accurately
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Figure 1: Sentiment prediction on tweets with pessimist (left) and optimist (right) connotations.

predicting tweets with pessimistic and optimistic
connotations (left and right side of the figure, re-
spectively). We answer the above question by in-
vestigating a spectrum of sentiment analysis tools
and datasets for optimism/pessimism prediction.

Third, we perform a linguistic analysis, first
of its kind, and study the usage of verb tenses
(past, present, future) in optimistic and pessimistic
tweets, as well as the presence of polarity words
associated with both types of tweets.

2 Datasets
In this section, we first describe the optimism/
pessimism Twitter dataset and then present two
datasets used for sentiment analysis.

The Optimism/Pessimism Twitter dataset
(OPT) was made available to us by Ruan et al.
(2016). The total number of tweets in the dataset
is 7,475. These tweets were sampled from data
corresponding to 500 optimist and 500 pessimist
users, and were manually annotated using Ama-
zon Mechanical Turk. Precisely, each tweet was
manually annotated by five independent annota-
tors using a score between �3 (very pessimistic)
and 3 (very optimistic). For our evaluation, we
consider two different thresholds (0 and 1/-1) on
the above score and create two settings as follows.
In the first evaluation setting, a tweet is labeled
as pessimistic if its score is smaller than or equal
to 0, and optimistic, otherwise. In the second
evaluation setting, a tweet is labeled as pessimistic
if its score is smaller than or equal to �1, and
optimistic if its score is greater than or equal to 1.
A summary of this dataset is given in Table 1.

Threshold 0 Threshold 1/-1
Number of tweets 7,475 (O: 4,679) 3,847 (O: 2,507)
Number of users 1,000 1,000

Table 1: Dataset statistics. ‘O’ stands for optimistic tweets.

The Stanford Sentiment Treebank (SST)
(Socher et al., 2013) is a corpus for sentiment
analysis that capture complex linguistic patterns.
This dataset2 is based on a dataset originally in-
troduced by Pang and Lee (2005) and consists of
10,662 sentences from movie reviews downloaded
from rottentomatoes.com. From these sentences,
215,154 phrases were extracted using the Stanford
Parser (Klein and Manning, 2003) and labeled
using Amazon Mechanical Turk such that each
phrase was annotated by 3 human judges.

The Twitter Sentiment Analysis (TSA) dataset,3

available online for download, contains 1,578,627
tweets that are classified as 1 for positive senti-
ment and 0 for negative sentiment.

3 Experiments and Results

In experiments, we explore several deep learning
models for optimism/pessimism prediction. The
general training strategy is as follows: sentence
embeddings are fed into a sentence encoder to
obtain the sentence representation. The classi-
fier consists of three fully connected layers topped
by a softmax layer. Dropout was applied to the
first layer only. We used several encoders as fol-
lows, based on: (1) Bidirectional Long Short Term
Memory networks (BiLSTMs), which are a spe-
cial type of Recurrent Neural Networks (RNNs)
(Hochreiter and Schmidhuber, 1997); (2) Convo-
lutional Neural Networks (CNNs), which consist
of convolution and max pooling (Kim, 2014); and
(3) Stacked Gated RNNs (Chung et al., 2015).

We used SGD optimizer (Goodfellow et al.,
2016) with a learning rate of 0.1 and no weight de-
cay. At every tenth epoch we decreased the learn-

2https://nlp.stanford.edu/sentiment/
3http://thinknook.com/twitter-sentiment-analysis-

training-corpus-dataset-2012-09-22/
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Tweet Level User Level
Threshold 0 1/ � 1 0 1/ � 1

BiLSTM 79.65 87.24 76.65 90.52
GRUStack 80.19 87.76 76.38 92.24
CNN 77.78 90.32 73.55 91.68

NB 74.20 84.10 71.30 80.10
SVM 67.80 83.30 64.70 81.80

Table 2: Accuracy of deep learning vs. traditional classifiers
on the OPT dataset (shown as percentage).

ing rate by half. We used mini-batches of 40 sam-
ples. Dropout rate was set to 0.5 and the classi-
fier’s last three layers have 300, 200, and 100 neu-
rons. We used GloVe vectors (Pennington et al.,
2014) trained on Common Crawl 840B4 with 300
dimensions as fixed word embeddings.

For sentence embedding, after a cleanup pro-
cess, sentences were transformed into a list of
words, then words were replaced with word em-
beddings (GloVe) and padding was used to align
batch sentences to the same size.

3.1 Optimism/Pessimism Prediction
In our first experiment, we explore the above deep
learning models on the OPT dataset and com-
pare their performance with that of two traditional
machine learning classifiers, Naı̈ve Bayes (NB)
and Support Vector Machines (SVM), which were
used in the previous work for this task by Ruan
et al. (2016). In this experiment, the OPT dataset
is split in train-dev-test as 80-10-10(%), respec-
tively. We repeated each experiment 5 times and
averaged the results. Our deep learning implemen-
tation is built on top of TensorFlow (Abadi et al.,
2015). For NB and SVM, we used their implemen-
tation available in scikit-learn (Pedregosa et al.,
2011). Table 2 shows the accuracy of all these
models at tweet and user level for the two thresh-
olds 0 and 1/-1 (as discussed in Section 2).

We can see that overall, the deep learning mod-
els achieve a much higher performance compared
with the work by Ruan et al. (2016), i.e., the NB
and SVM classifiers on “bag of words,” for both
tweet and user level with both thresholds, yield-
ing an improvement in performance between 5%-
10%. For example, at tweet level and 1/-1 thresh-
old, CNN yields an accuracy of 90.32% as com-
pared with NB, which achieves an accuracy of
84.10%. At user level and 1/-1 threshold, GRUS-
tack yields an accuracy of 92.24%, as compared

4https://nlp.stanford.edu/projects/glove/

with 81.80% achieved by SVM. Not surprising,
for both tweet and user level, when we use a
threshold of 0, the performance of all models is
smaller compared with that of models obtained
when we use a 1/-1 threshold. Intuitively, this
is true since most of the tweets with a human-
annotated score between -1 and 1 are in the “gray”
area that is harder to classify. Note that Ruan et al.
(2016) considered the tweets with a score between
-1 and 1 as being neutral.

3.2 Sentiment vs. Optimism/Pessimism
In our second experiment, we investigate the cor-
relation between sentiment and optimism / pes-
simism, and argue that sentiment analyzers, that
are trained to predict sentiment (Liu, 2012; Pang
and Lee, 2008), fail to detect optimism and pes-
simism. Specifically, we train several sentiment
classifiers on the large SST and TSA sentiment
datasets (described in Section 2) and evaluate
the performance of these classifiers on the opti-
mism/pessimism categories from the OPT dataset.

Model Train Dev Test Acc%

LSTM SST SST OPT 63.20
BiLSTM SST SST OPT 63.60
CNN SST SST OPT 59.60
CNN TSA TSA OPT 67.60
RNN(char) TSA OPT OPT 55.20

GRUStack OPT OPT OPT 80.19

Table 3: Performance of sentiment classifiers on OPT.

Table 3 shows the performance of several deep
learning models trained on either SST or TSA
datasets and evaluated on the OPT dataset. Note
that the Dev set was used for model selection. As
can be seen from the table, the models trained on
the sentiment datasets perform poorly on the op-
timism/pessimism dataset. For example, there is
a drop in performance from 80.19% to 67.60%
when training on TSA (with an even larger de-
crease when we train on SST).

The SST/TSA sentiment classifiers are trained
to predict the sentiment as negative, neutral, or
positive. To calculate the accuracy in Table 3,
an optimistic tweet predicted as positive by the
sentiment classifier counts as a correct predic-
tion, whereas an optimistic tweet predicted as ei-
ther neutral or negative by the sentiment classi-
fier counts as an incorrect prediction (similarly for
pessimistic tweets). This analysis is done at tweet
level for the threshold of 0.
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Figure 2: Optimism and pessimism classified as positive,
negative, and neutral sentiment.

Figure 2 shows the normalized number of ex-
amples from optimism and pessimism categories
classified as positive, negative and neutral, using
the CNN model trained on TSA. Precisely, we
show how many tweets from the set of optimistic
(or pessimistic) tweets in the OPT dataset are pre-
dicted as negative, neutral or positive by the TSA
sentiment classifier. The numbers on each row
sum up to 1. As we can see from the figure, al-
though pessimism is more correlated with a nega-
tive sentiment, 13% of the pessimistic tweets are
classified as positive (with similar results on the
optimism category).

3.3 Linguistic Analysis

In this section, we perform a linguistic analysis
and study the usage of verb tenses in optimistic
and pessimistic tweets, as well as the presence
of polarity words associated with both types of
tweets. This analysis is done at tweet level with 1/-
1 threshold. The reason for using the 1/-1 thresh-
old is that we wanted to study the usage of verb
tenses and polarity words in tweets that are clear
optimistic or clear pessimistic (far from the deci-
sion boundary).

3.3.1 Verb Tenses in Optimism/Pessimism
For this analysis, we used the part of speech tagger
spaCy5 and assigned the verbs to their correspond-
ing tenses according to the Penn Treebank Project;
that is, the tags VBD and VBN correspond to past
tense, VBG, VBZ , VBP correspond to present
tense, whereas an MD tag followed by VB (pos-
sibly with a negation between them) corresponds
to the future tense.

5http://textanalysisonline.com/spacy-pos-tagging

As mentioned, a tweet was considered optimist
if its manually annotated score was above 1 and
pessimist if the score was below �1. The num-
bers of tweets with past, present, and future tenses
in the optimistic category are: 1,474, 7,444, and
561, respectively, whereas these numbers in the
pessimistic category are: 1,276, 5,311, and 325,
respectively.

Figure 3: Verb tenses in optimist/pessimist tweets.

Figure 3 shows the normalized verb occurrences
at past, present and future tenses in optimistic and
pessimistic tweets. As can be seen from the fig-
ure, the present tense is the most prevalent for both
categories, although there are more present tense
verbs in the optimistic category compared with the
pessimistic one. We can also observe that more
past tense verbs occur in the pessimistic category
and less future tense verbs in the pessimistic one.

While there are some common verbs such as
“be,” “have,” and “do,” that appear most fre-
quently in both optimistic and pessimistic cate-
gories at all three tenses, there are some verbs that
are more specific to one category than the other.
Examples of such verbs and their frequencies from
both categories at the present tense are shown in
Table 4. As we can see, optimism is characterized
more by verbs with a positive connotation.

[optimism] [pessimism]
(’be’, 1662) (‘be’, 1198)
(’have’, 738) (‘have’, 549)
(’do’, 316) (‘do’, 342)
(’love’, 266) (‘hate’, 122)
(‘thank’, 105) (‘f–k’, 88)
(’look’, 98) (‘kill’, 35)
(’want’, 94) (‘try’, 34)
(’hope’, 70) (‘cry’, 33)

Table 4: Verbs in tweets occurring at present tense.
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3.3.2 Polarity Words in Optimism/Pessimism
Next, we analyze the association of polarity words
from the positive and negative lexicons con-
structed by Hu and Liu (2004), in both tweet cat-
egories: optimism and pessimism. Instead of us-
ing the presence or absence of the words from the
two lexicons in tweets, we calculated the cosine
similarity between the word embeddings of the
words in the two lexicons with the words in the
tweets. If the similarity is above 0.8, then we con-
sider the word from the corresponding lexicon to
be present in the tweet (or synonym with a word
in tweet). Using the cosine similarity between the
word embeddings of words in lexicons with words
in tweets captures not only the exact match be-
tween the words (a cosine similarity of 1 for exact
match), but also incorporates the semantic infor-
mation that exists in the text.

Although this word similarity computation re-
laxes the exact match/presence of a word in a tweet
and aims at incorporating semantic similarity, a
high similarity between antonyms may occur since
word embeddings are known to not differentiate
well between synonyms and antonyms, which tend
to appear in similar contexts.

Figure 4: Polarity words in optimist/pessimist tweets.

Figure 4 shows the number of polarity words in
optimistic and pessimistic tweets. As shown in the
figure, more positive words appear in optimistic
tweets compared with negative words (1,242 vs.
71), while there is not a substantial difference be-
tween the numbers of positive and negative words
in pessimistic tweets (118 vs. 210).

Table 5 shows the top most frequent polarity
words associated with optimism and pessimism.
As we can see, words with a negative polarity
(e.g., bad) although not very frequent, still appear
in optimistic tweets. This supports our intuition
that a sentiment model is not enough to accurately
predict pessimism and optimism in Twitter.

Optimism
[positive] [negative]
(’great’, 289) (’bad’, 13)
(’loved’, 279) (’worried’, 11)
(’wonderful’, 155) (’lost’, 6)
(’glad’, 76) (’scared’, 5)
(’kind’, 45) (’terrible’, 4)
(’thrilled’, 29) (’disappointed’, 3)

Pessimism
[positive] [negative]
(’great’, 29) (’bad’, 36)
(’kind’, 27) (’lost’, 18)
(’loved’, 13) (’scared’, 16)
(’wonderful’, 9) (’alone’, 13)
(’surprised’, 8) (’terrible’, 12)
(’glad’, 6) (’terrified’, 12)

Table 5: Top frequent polarity words.

4 Concluding Remarks

In this paper, we explored deep learning models
for optimism and pessimism prediction in Twitter
and showed that these models substantially out-
perform traditional classifiers such as Naı̈ve Bayes
and Support Vector Machines. To our knowledge,
this work is the first computational study that ex-
plores optimism and pessimism using deep learn-
ing. We also showed that a sentiment classifier
would not be sufficient for accurately predicting
optimism and pessimism. This topic is less ex-
plored despite its importance in many applications
such as identifying suicidal/depressive people.

Interesting future directions are: understanding
how one’s age is correlated with optimism / pes-
simism; if one user is characterized by a mixture
of topics, is that user optimist (pessimist) across
all these topics? Thus, decomposing a user’s tex-
tual data into topic and correlating this with op-
timism and pessimism may be interesting to ex-
plore; last, studying how optimism and pessimism
are affected by sarcasm.

As we started our study with a pessimistic quote
from the movie “The Edge of Seventeen,” we end
our study with a quote from the same movie, with
a positive sentiment and full of optimism:

“Life’s about taking risks. Don’t be afraid
to put yourself out there.”
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Abstract

Newspapers need to attract readers with head-
lines, anticipating their readers’ preferences.
These preferences rely on topical, structural,
and lexical factors. We model each of these
factors in a multi-task GRU network to predict
headline popularity. We find that pre-trained
word embeddings provide significant improve-
ments over untrained embeddings, as do the
combination of two auxiliary tasks, news-
section prediction and part-of-speech tagging.
However, we also find that performance is very
similar to that of a simple Logistic Regression
model over character n-grams. Feature analy-
sis reveals structural patterns of headline popu-
larity, including the use of forward-looking de-
ictic expressions and second person pronouns.

1 Introduction

The data generated from online news consumption
constitutes a rich resource, which allows us to ex-
plore the relation between news content and user
opinions and behaviors. In order to stay in busi-
ness, newspapers need to pay attention to this in-
formation. For example, what headlines do users
click on, and why? With the volume of news being
consumed online today, there is great interest in
addressing this problem algorithmically. We col-
laborate with a large Danish newspaper, who gave
us access to several years’ worth of headlines, and
the number of clicks generated by readers.

We aggregate the viewing logs to classify head-
lines as popular or unpopular, and build models to
predict those classifications. We use an expanded
version of the dataset investigated by Hardt and
Rambow (2017). That work found that bag-of-
word models based on headlines did indeed have
predictive value concerning viewing behavior, al-
though models based on the article body were
more accurate. As Hardt and Rambow noted, this
is somewhat paradoxical: how can a model based

on the article text be better at predicting clicks?
After all, the choice to click on an article must be
based on the headline alone – the article is only
seen after the clicking decision is made. Hardt
and Rambow speculate that “it is possible that the
headline on its own gives readers a lot of semantic
information which we are not capturing with our
features, but which the whole article does provide.
So human readers can “imagine” the article before
they read it and implicitly base their behavior on
their expectation.” (Hardt and Rambow, 2017)

In other words, readers are able to anticipate the
contents of an article in advance from a headline,
because of the linguistic and world knowledge that
they bring to bear when assessing the headline. If
we can incorporate this “future” knowledge into a
prediction model, we are likely to improve perfor-
mance.

We test this hypothesis by defining ways to
model aspects of the lexical, structural, and top-
ical knowledge of human news readers:

• Lexical – Word Embeddings: we provide
our models with pretrained word embeddings
from large datasets. This models aspects of
the rich lexical information and association
that human readers bring to bear in reading a
headline.

• Structural – POS Tagging: part of speech
information is a basic component of struc-
tural linguistic knowledge, reflected in the
structure of common headline templates such
as “Can X do Y?” or “You will not believe
what happened when X”.

• Topical – Section Prediction: Each article is
labeled with a section (sports, politics, etc).
We include a task which predicts the section
of a headline. This models the ability of a
news reader to understand the most salient

659



and interesting topical material in a headline
text.

We use a multi-task learning (MTL) setup
(Caruana, 1993), which provides a natural frame-
work to test the above hypotheses: one of the first
uses of MTL was to include the outcome of fu-
ture diagnostic tests into a prediction task (Caru-
ana et al., 1996).

We explore the effect of pretrained word em-
beddings, and the effects of auxiliary tasks involv-
ing POS tagging and section prediction. We find
that the combination of all of these factors results
in substantial improvements over the baseline and
the previous work, which used a single-task sys-
tem. We also build logistic regression models,
both for word and character n-grams. The word-
based models have the advantage that the predic-
tiveness of individual words can be examined.

While the word n-gram models have perfor-
mance comparable to the baseline neural net, the
character n-gram model has higher performance,
competing with the best MTL result. This finding
is in line with the results from Zhang et al. (2015).

Our results indicate that MTL can indeed pro-
vide the tools to implement prediction processes
that involve expectations about the future. Given
the successful integration of two auxiliary tasks,
we see this as a promising starting point for fu-
ture research. However, the performance parity
with the character model underscores the fact that
simple model architectures still have a place. Our
findings, in line with other current work (Benton
et al., 2017), shine light on the question of auxil-
iary task selection and their interaction, and high-
light that MTL results should be rigorously tested.

A good predictive model is a powerful diagnos-
tic tool for editors, allowing them to select pro-
posed headlines. However, journalism is a creative
production process, so detection is only part of the
application. We also want to be able to give strate-
gic advice to headline writers. To this end, we re-
port an analysis of common n-gram features in the
word-based logistic regression model, that provide
some insights into successful headline patterns.

Contributions We explore an MTL architecture
with two auxiliary tasks for headline popularity
prediction. We show how aspects of lexical, struc-
tural, and topical knowledge are all relevant for
headline popularity. The positive results reported
here provide a fruitful basis for further develop-
ment of MTL models for news data. We also ana-

Figure 1: Example of Jyllands-Posten headline as seen
by audience

lyze lexical features that are predictive of headline
popularity.

2 Data

News Data The present work is based on a sig-
nificantly expanded and cleaned version of the
dataset used by Hardt and Rambow (2017). This
dataset includes Jyllands-Posten articles and logs.
Jyllands-Posten is a major Danish newspaper (and
became known to an international audience over
the cartoon controversy). The data covers a pe-
riod from July 2015 through July 2017. We re-
moved any articles from before July 2015, when
the viewing logs began, since these older articles
have unreliable numbers of clicks. The resulting
dataset consists of 82,532 articles and a total of
281,005,390 user views. We furthermore extracted
the news section each article belongs to (sports,
politics, etc.) from the URL.

We bin the articles by numbers of clicks into 2
bins, thus defining a classification task: is the ar-
ticle in the top 50% of clicks or not? The data is
divided into 80% training, and 10% each develop-
ment and test data.

Figure 1 shows the top headline on the Jyllands-
Posten web site for August 27, 2018. Our data
does not include information such as the position
of a headline on the page, and possible associated
graphical material.

Additional Data In addition to the news data
from JP, we obtained a corpus of 100 million
words of Danish text from the Society for Danish
Language and Literature, or DSL (Jørg Asmussen,
2018). This corpus was collected from diverse
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sources over a period from 1990 to 2010. The cor-
pus has been automatically annotated for part of
speech and lemmatization, and we use this for our
POS tagging task. We also downloaded the Dan-
ish Wikipedia, which consists of approximately 49
million words of Danish text. We use these cor-
pora in conjunction with the JP article texts to in-
duce pre-trained Danish word-embeddings.

Data Statement A. CURATION RATIONALE
The dataset is collected by Jyllands-Posten as part
of a general strategy to understand user behavior
and preferences with respect to the news content
on the site.

B. LANGUAGE VARIETY The data is Danish
(da-DK).

C. SPEAKER DEMOGRAPHIC The text is
produced by professional journalists.

D. ANNOTATOR DEMOGRAPHIC There is
no manual annotation of the text.

E. SPEECH SITUATION The texts were pro-
duced from July 2015 until July 2017; the intended
audience is Danish news consumers.

F. TEXT CHARACTERISTICS The text is
standard, mainstream Danish journalism.

3 Models

Our task is to predict which articles get the most
user clicks, based on the headline alone. We re-
port results using logistic regression and a neural
network, using MTL.

Logistic Regression We define the following
features for logistic regression models:

1. n-chars: sequences of n characters, with n
ranging from 2 to 6 in all experiments.

2. word unigrams: tfidf scores for all word uni-
grams

3. word bigrams: tfidf scores for all word bi-
grams

GRU Neural Network While the task is classi-
fication, which could be done with a feed-forward
model, we want a sequential architecture, so that
we can incorporate POS tagging as an auxiliary
task, adding POS output at each time step.

Based on good results in recent work (Lee and
Dernoncourt, 2016), (Liu et al., 2016), we choose
a Recurrent Neural Network architecture and after

a series of experiments on the training and valida-
tion set, we obtained the best results using GRU
(Gated Recurrent Unit) units.

Each layer k consists of two sets of units, la-
beled fw and bw that process the sequence for-
wards and backwards respectively, so that infor-
mation from the whole sequence is available on
every timestep t. The two directions’ activa-
tions are concatenated and fed to a fully-connected
softmax (for multi-class classification) or sigmoid
layer (for binary classification) to get the output
probability yk

t of the task associated with layer k.
So that higher level tasks can benefit, we embed
the output probabilities using the fully connected
label embedding LE layer, a technique used on
similar scenarios (Rønning et al., 2018). The em-
bedded label gets concatenated with the GRU out-
put to get the activation ak

t that gets fed in the next
layer, or the final fully connected prediction layer,
as presented in figure 2.

In the sequential auxiliary task, i.e. POS tag-
ging, this is done for every timestep, while for the
classification tasks the prediction is made on the
final timestep.

For regularization, we apply dropout on every
layer of our network.

Figure 2: Representation of a single timestep t for a
pair of forward-backward units on layer k where hk

t�1

is the previous hidden state.

Auxiliary Tasks In our setup, we use two auxil-
iary tasks:

1. POS tagging: we include POS tagging using
the DSL dataset on the first recurrent layer of
the GRU.

2. Section prediction: we include classification
into one of the 227 sections of the Jyllands-
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Posten website. The output for this task is
based on the penultimate recurrent layer.

Hyper-parameters and Training We perform a
grid search to find the best hyper-parameters for
a single-task model (i.e., without any auxiliary
tasks) and then keep those settings for all our ex-
periments. We settle on a model with hidden size
H = 112 and Nk = 3 layers, respectively. The
dropout probability p = 0.3 gave best results for
both models.

We train the model for 10 epochs using Adam
optimizer with the default parameters, clipping the
gradient updates so that their norm is not higher
than 5. We train the different tasks sequentially
for each epoch, with the lower level (POS tagging)
first and the popularity prediction last. Addition-
ally, we decay the learning rate by a factor of 0.9
after each epoch. While this is not common with
adaptive methods such as Adam, it performed bet-
ter. We stop training if the accuracy on the devel-
opment set stops improving.

4 Results

Tables 1 and 2 report accuracy for logistic re-
gression and neural classifiers. We also give the
best score from Hardt and Rambow (2017) for
comparison purposes (note, though, that the data
sets are not identical and can therefore not be di-
rectly compared). We observe a substantial im-
provement over the baseline GRU when incorpo-
rating the pre-trained embeddings and both aux-
iliary tasks. It seems that pretrained embeddings
and MTL act at least partly as regularizers, as these
models trained for more epochs without overfit-
ting. Interestingly, we observe a similar improve-
ment over the word-based logistic regression mod-
els with a character n-gram model.

5 Analysis and Discussion

Our main focus in this paper is on MTL as a frame-
work to explore the lexical, structural and topical
knowledge involved in users’ selection of head-
lines. However, recognizing a popular headline
and giving advice on how to write one are not the
same: we want to provide editors and journalists
with insights as to what constructions are likely to
attract more eyeballs.

One way to explore this is to examine individual
words and their contribution to predictiveness. Ta-
ble 3 displays the top 20 unigrams based on their

coefficients in the logistic regression model. For
each unigram we provide a translation (if needed)
and a comment. We classify several unigrams as
Deictic-reference. This follows Blom and Hansen
(2015), who suggest that headline ”clickbait” of-
ten relies on forward-looking expressions, such
as ”This”, as in, e.g., ”This is how you should
eat an avocado”. Here, ”this” is a referring ex-
pression, but the reader understands that the an-
tecedent will be found in the article body. Sev-
eral of these top unigrams are names that are of
specific topical interest in areas such as sports and
politics. Others mention topics of more general in-
terest (Researchers, dead, found). The second per-
son pronoun is also on the list – in general, it was
found that second person pronouns are far more
predictive of popularity than first or third person
pronouns. Finally, several unigrams identify sec-
tions of the newspaper of particular interest (car,
weather, analysis, and satire).

6 Related Work

Prediction of news headline popularity is an in-
creasingly important problem, as news consump-
tion has moved online. The insights and models
described here might well be applicable to related
problems of interest: for example, Balakrishnan
and Parekh (2014) and Jaidka et al. (2018) study
the problem of predicting clicks on email subject
lines.

Subramanian et al. (2018) show that a
regression-based multitask approach can increase
performance for the classification prediction of
popularity. Their work looks at the popularity of
online petitions, but the methodology applies to
our subject as well, and ties in with the approaches
taken in this project.

Benton et al. (2017) caution that in order to
evaluate MTL results properly, we need to take the
number of parameters into account. Our results to
some extent support this finding, by showing that
a simpler linear model can fare equally well on the
task.

The choice of auxiliary tasks greatly influences
the performance of MTL architectures, prompt-
ing several recent investigations into the selec-
tion process (Alonso and Plank, 2017; Bingel
and Søgaard, 2017). However, it is still unclear
whether these tasks serve as mere regularizers, or
whether they can also impart some additional in-
formation.
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model input accuracy
Hardt and Rambow (2017) word unigrams 61.2
logistic regression word unigrams 65.6
logistic regression word bigrams 65.7
logistic regression character 2-6grams 67.4

Table 1: Accuracy results for various Logistic Regression models

model input auxiliary tasks epoch accuracy
GRU 3 layers w/ 112 hidden random embeddings — 3 65.2
GRU 3 layers w/ 112 hidden pretrained embeddings — 5 66.8
GRU 3 layers w/ 112 hidden pretrained embeddings POS 5 65.7
GRU 3 layers w/ 112 hidden pretrained embeddings section 4 66.8
GRU 3 layers w/ 112 hidden pretrained embeddings POS+section 7 67.4

Table 2: Accuracy results for various GRU model implementations

Unigram Translation Comment
Magnussen Name (Sports)
Trump Name (Politics)
AGF Name (Sports)
Test
Her Here Deictic-reference
død dead topical
Wozniac Name (Tech)
Trumps Name (Politics)
Forskere Researchers topical
fundet found topical
du you pronoun
AGF-træner AGF coach Name (sports)
Se Watch Deictic-reference
Kevin Name (Sports)
Islamisk Islamic Name (Politics)
Analyse Analysis Section
Sådan This Deictic-reference
Satire Satire Section
bil car Section
DMI Weather Section

Table 3: Top twenty Unigrams (Logistic Regression)

7 Conclusion

We presented an exploratory approach to predict-
ing newspaper article popularity from headlines
alone. Using pre-trained embeddings and a MTL
setup, we are able to incorporate rich structural
and semantic knowledge into the task and sub-
stantially improve performance. While the results
are encouraging and allow the exploration of fur-
ther auxiliary tasks (for example article word pre-
diction), we find that a simple character-based n-

gram model performs competitively. These find-
ings highlight two aspects: 1) For any application
of MTL, this is a strong case for comparing the
results to non-deep models. While it is compara-
tively easy to show an improvement over the basic
STL model, there might be other simple models
that are competitive. 2) The selection of auxil-
iary tasks greatly influences the performance, even
beyond simple regularization, and in a non-linear
way. It does, however, provide us with a tool to
test human intuitions about task interactions and
the importance of certain problem aspects.
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Abstract

Inferring the agreement/disagreement relation
in debates, especially in online debates, is
one of the fundamental tasks in argumen-
tation mining. The expressions of agree-
ment/disagreement usually rely on argumen-
tative expressions in text as well as interac-
tions between participants in debates. Previ-
ous works usually lack the capability of jointly
modeling these two factors. To alleviate this
problem, this paper proposes a hybrid neural
attention model which combines self and cross
attention mechanism to locate salient part from
textual context and interaction between users.
Experimental results on three (dis)agreement
inference datasets show that our model outper-
forms the state-of-the-art models.

1 Introduction

The rise of various discussion forums and online
debate platforms, has given users a lot of opportu-
nities to express themselves and argue with each
other. The online argumentation and discussion
are always initiated and evolved by expressions of
agreement or disagreement of participants. Infer-
ring the agreement/disagreement in online debates
is crucial for many other tasks in broader anal-
ysis of social media and argumentation mining,
such as stance identification (Somasundaran and
Wiebe, 2010), claim/argument extraction (Hidey
et al., 2017) and persuasion analysis (Tan et al.,
2016).

It is observed that the expression of agree-
ment/disagreement in debates can be decomposed
into two factors: 1) the self-expression of claims
and 2) argumentative expressions to interact with
other participants. To illustrate this observation,
we show some examples in Figure 1, which is one
of quote-response pair (Q-R pair) in 4forum online

⇤Corresponding author.

debate website. The response expressed disagree-
ment with the claim in quote text. The mark ?
at the end of sentence carries strong emotion of
authors, while the phrase why doesn’t He answer
refers to the claims of God IS GOOD and express
the refutation to it.

God IS GOOD all the time …God IS GOOD all the time …

God IS GOOD all the time …God IS GOOD all the time …

Then why doesn't He answer prayers like He says He will in the Bible ?Then why doesn't He answer prayers like He says He will in the Bible ?

Quote

Response
Then why doesn't He answer prayers like He says He will in the Bible ?

Disagree God IS GOOD all the time …

God IS GOOD all the time …

Then why doesn't He answer prayers like He says He will in the Bible ?

Quote

Response
Then why doesn't He answer prayers like He says He will in the Bible ?

Disagree

Figure 1: Sampled Q-R Pair with topic of evolution where
the words colored red deliver crucial meaning of the text it-
self, while the words colored blue clarify the interactive rela-
tion between users.

Previous works on agreement/disagreement in-
ference mainly focus on exploiting features to
model the semantic information which only
reveals author’s self-expression. (Rosenthal
and McKeown, 2015; Menini and Tonelli,
2016). These existing models treat agree-
ment/disagreement inference as a ordinary sen-
timent classification problem and ignore the in-
teractions between participants in the discussion.
In order to jointly leverage the semantic infor-
mation of the text and interactions between Q-R
pairs, we regard the (dis)agreement inference as a
special case of Natural Language Inference (NLI)
(Rocktäschel et al., 2016), and propose a hybrid
neural attention model to this problem. The pro-
posed model consists of two kinds of attention:
1) self attention locates salient parts in text of
quote and response, and 2) cross attention cap-
tures the interactive argumentations between Q-R
pairs. The fusion of self and cross attention model
is capable of jointly modeling the two important
factors of inferring (dis)agreement in debates.

The main contributions of this paper are:
(1) We propose a neural attention model for
(dis)agreement inference which converts this
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problem to a natural language inference task. The
proposed model incorporates self and cross atten-
tion mechanism, jointly capturing significant part
for current context and extracting interactive rela-
tions between Q-R pairs. (2) Experimental results
on three datasets show that the proposed model
significantly improves performance (measured by
F1 score and accuracy) of state-of-the-art mod-
els by 1% on average. The visualization of ex-
tracted attention demonstrates different attention
mechanism works effectively in different aspect
for (dis)agreement inference.

2 Related Work

With the development of social forums, works
on (dis)agreement inference have shifted to on-
line debate. Abbott et al. (2011) utilize word-
based and dependencies-based features to recog-
nize disagreement in Internet Argument Corpus
(IAC) (Walker et al., 2012). Rosenthal and McK-
eown (2015) present a new corpus derived from
participant information, Agreement by Create De-
baters (ABCD), and investigate new features for
conversational structure. Further, Menini and
Tonelli (2016) develop a SVM classifier to detect
disagreement, relying on three aspects including
sentiment-based, semantic and surface features
extracted from both whole text and topic-related
part. However, the performances of all these mod-
els highly depend on the quality of hand-crafted
features. And these representations cannot reflect
the interaction between quote and response.

In other NLP tasks, the end-to-end deep learn-
ing approaches with attention mechanism have
shown impressive results. The attention mecha-
nism is proposed by Bahdanau et al. (2014) in
machine translation for selecting alignment be-
tween original words and foreign words before
translation. For Document Classification, Yang
et al. (2016) apply a hierarchical attention from
word-level to sentence-level with learnable con-
text vector. In Natural Language Inference (NLI),
Liu et al. (2016) construct an inner-attention with
mean pooling vector to seize important part from
text itself. Hao et al. (2017) propose an cross at-
tention modeling mutual influence between ques-
tion and answer for Question Answering (QA).
But there is no neural attention model incorporat-
ing both contextual and interactive information in
the scenario of (dis)agreement inference.

3 Model

The overall architecture of our model is shown in
Figure 2, comprising two parallel bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) net-
works as quote and response encoder and two at-
tention components that respectively extract self
and cross attention.

3.1 Quote and Response Encoder

A quote of length T is denoted as [q1, q2, · · · , qT ],
where qt 2 R

de is the de-dimensional representa-
tion of the t-th word in the text sequence. Sim-
ilarly, the corresponding response can be repre-
sented as [r1, r2, · · · , rT ], which shares the same
vector space with quote. To model the depen-
dence relation of text sequence, we leverage bi-
directional LSTM (BiLSTM) to encode quote and
response. The BiLSTM consists of a forward����!
LSTM which reads the text from x1 to xT and
a backward

 ����
LSTM which reads from xT to x1:

�!
ht =

����!
LSTM(xt), t 2 [1, T ] (1)

 �
ht =

 ����
LSTM(xt), t 2 [T, 1] (2)

Through concatenation, we obtain the representa-
tion of each time step ht = [

�!
ht ;
 �
ht ] 2 R

2d which
integrates the information around xt. The quote
and response are encoded as hQ = [

�!
hQ;
 �
hQ] 2

R
T⇥2d and hR = [

�!
hR;
 �
hR] 2 R

T⇥2d respectively.

3.2 Attention Component

After encoding the implicit word semantics, we
acquire the representation of both quote and re-
sponse.

Self Attention
The first source taken into consideration should
be the text sequence itself, i.e. the attention from
quote to quote itself and that from response to re-
sponse itself. When issuing an opinion, people
tend to center on several keywords which convey
the main idea. Thus in some sense, self attention is
a kind of dependency parsing that drives the model
to focus on salient parts of the context. Here, for
quote hQ = [h1

Q, h2
Q, · · · , hT

Q], self attention gen-
erates signal st

Q by:

st
Q =

exp[�(ht
Q)]

PT
i=1 exp[�(hi

Q)]
(3)

666



 !1 澳  !2 澳  !3 澳  !" 澳��� !1 澳  !2 澳  !3 澳  !" 澳��� !1 澳  !2 澳  !3 澳  !" 澳���

 !1 澳

 !2 澳

 !3 澳

 !" 澳

���

 !1 澳

 !2 澳

 !3 澳

 !" 澳

���

 !1 澳

 !2 澳

 !3 澳

 !" 澳

���

 #1 澳  #2 澳  #3 澳  #" 澳��� #1 澳  #2 澳  #3 澳  #" 澳��� #1 澳  #2 澳  #3 澳  #" 澳���

 #1 澳

 #2 澳

 #3 澳

 #" 澳

���

 #1 澳

 #2 澳

 #3 澳

 #" 澳

���

 #1 澳

 #2 澳

 #3 澳

 #" 澳

���

Q Self Attention Layer

R
 Self A

ttention Layer

 !1 澳  !2 澳  !3 澳  !" 澳��� !1 澳  !2 澳  !3 澳  !" 澳���

 #1 澳

 #2澳

 #3澳

 #" 澳

���

 #1 澳

 #2澳

 #3澳

 #" 澳

���

R2Q Cross Attention Layer

 !1 澳  !2 澳  !3 澳  !"澳���

Q
2R C

ross A
ttention Layer

 澳 澳  澳 澳

Qs Representation Qc Representation

Quote Representation

Qs Qc Qs+Qc Qs Qc Qs+Qc 

 澳 澳

 澳 澳

R
s R

epresentation
R

c Representation

 !1澳

 !2澳

 !3澳

 !"澳

���

 !1澳

 !2澳

 !3澳

 !"澳

���

Rs 

Rc 

Rs
+

Rc 

Rs
+

Rc 

Rs 

Rc 

Rs
+

Rc 
R

esponse R
epresentation

Softmax Layer

Agree DisagreeAgree Disagree

Transpose

along R
ow

along Column

 澳 澳

Softmax 

Element-wise Product

Sum along Row

Concat

 澳

Softmax 

Element-wise Product

Sum along Row

Concat

Self 
Matrix 
Product

Self 
Matrix 
Product

Cross 
Matrix 
Product

Response

Quote

BiLSTM
Outputs

 !1 澳  !2 澳  !3 澳  !" 澳���

 !1 澳

 !2 澳

 !3 澳

 !" 澳

���

 #1 澳  #2 澳  #3 澳  #" 澳���

 #1 澳

 #2 澳

 #3 澳

 #" 澳

���

Q Self Attention Layer

R
 Self A

ttention Layer

 !1 澳  !2 澳  !3 澳  !" 澳���

 #1 澳

 #2澳

 #3澳

 #" 澳

���

R2Q Cross Attention Layer

 !1 澳  !2 澳  !3 澳  !"澳���

Q
2R C

ross A
ttention Layer

 澳  澳

Qs Representation Qc Representation

Quote Representation

Qs Qc Qs+Qc 

 澳

 澳

R
s R

epresentation
R

c Representation

 !1澳

 !2澳

 !3澳

 !"澳

���

Rs 

Rc 

Rs
+

Rc 
R

esponse R
epresentation

Softmax Layer

Agree Disagree

Transpose

along R
ow

along R
ow

along R
ow

along Columnalong Columnalong Column

 澳

Softmax 

Element-wise Product

Sum along Row

Concat

Self 
Matrix 
Product

Self 
Matrix 
Product

Cross 
Matrix 
Product

Response

Quote

BiLSTM
Outputs

Figure 2: Model Architecture.

where � is a transformation mapping 2d-
dimensional vector into scalar value, with learn-
able weight WS 2 R

T and bias bS 2 R defined
as:

�(ht
Q) = tanh[WS(hQ · (ht

Q)T) + bS ] (4)

Similarly, with another parallel transformation,
the self attention signal of response can be cal-
culated as above. Then, we can obtain a more
compact representation of quote and response re-
spectively derived from the weighted sum, where
QS , RS 2 R

2d.

QS =
PT

t=1 st
Qht

Q (5)

RS =
PT

t=1 st
Rht

R (6)

Cross Attention
Another prominent facet comes from the relation
between each Q-R pair, i.e the attention from
quote to response and that from response to quote.
In whether disagreement or agreement cases, both
quote and response provides a precise context for
each other. The cross attention integrates interac-
tive influence which produces more specific fea-
tures for (dis)agreement inference.

As discussed above, cross attention ct
Q, ct

R for

quote and response can be computed by:

ct
Q =

exp[�(ht
R)]

PT
i=1 exp[�(hi

R)]
(7)

ct
R =

exp[�0(ht
Q)]

PT
i=1 exp[�0(hi

Q)]
(8)

where � and �0 are two parallel transformation
with learnable weight matrix WC , W 0

C 2 R
T and

bias bC , b0
C 2 R defined as:

�(ht
R) = tanh[WC(hQ · (ht

R)T) + bC ] (9)
�0(ht

Q) = tanh[W 0
C(hR · (ht

Q)T) + b0
C ] (10)

The representation of whole sequence
QC , RC 2 R

2d embracing cross attention
signal are:

QC =
PT

t=1 ct
Qht

Q (11)

RC =
PT

t=1 ct
Rht

R (12)

Hybrid Attention
In order to cooperate the advantage of self atten-
tion and cross attention, we design hybrid atten-
tion to get a more specific representation for quote
and response:

Q = QS �QC � (QS + QC) (13)
R = RS �RC � (QS + QC) (14)

667



where Q, R 2 R
6d and � is the vector concate-

nation operation.

3.3 (Dis)agreement Inference
Finally, the quote representation Q and response
representation R are concatenated as a vector v.
We use a fully-connected network to project 12d-
dimensional representation into n-dimensional
vector space, i.e.

y = softmax(Wlv + bl) (15)

where y 2 R
n is predicted probability distribution

for (dis)agreement inference, Wl and bl are param-
eters of softmax layer.

In a supervised learning framework, we train
our model in an end-to-end way. Given a set of
training data {(Qi, Ri), yi}, let byi denote the pre-
dicted probability distribution, the goal of training
is to minimize the cross-entropy loss:

loss = �
X

i

X

j

yj
i log byj

i (16)

where i is the index of quote-response pair, j
is the index of class and yi is the ground truth of
corresponding pair.

4 Experiment and Results

As prior work, we concentrate on direct disagree-
ment and agreement between quote-response (Q-
R) pairs. Specifically, in the proposed model, the
size of hidden units is 128 and all word embed-
dings are initialized by GloVe (Pennington et al.,
2014) of 300d. Both length of quote and response
are set to 64, padded where necessary. Adam is the
optimizer of model whose learning rate is 1e � 3,
� is (0.9, 0.999), ✏ is 1e � 8 and weight decay is
1e�5. All models are trained by mini-batch of 32
instances, with 5-fold cross validation.

4.1 Datasets
We conduct experiments on three most
commonly-used (dis)agreement inference
datasets. Table 1 shows the detail of these
datasets.

• Internet Argument Corpus (IAC) (Walker
et al., 2012) is a corpus crawled from on-
line political debate 4forums.com. Fol-
lowing prior work, we compute average score
for each pair and convert the score into bi-
nary labels, with [�5,�1] as disagreement
and [+1, +5] as agreement.

Table 1: Detail of Datasets

Dataset # Disagree # Agree # Neutral
IAC 6,157 1,113 -
DP 12,899 11,875 -

ABCD 25,200 13,519 72,683

• Debatepedia (DP) (Menini and Tonelli,
2016). DP corpus is crawled from
debatepedia.org, which is an online
encyclopedia of debates.

• Agreement by Create Debaters (ABCD)
(Rosenthal and McKeown, 2015) is devel-
oped from createdebate.com with la-
bels of agreement, disagreement and neutral.
As the original settings, the comparison ex-
periments are conducted on a balanced train-
ing set by downsampling and the full test set.

4.2 Comparison with Baseline Methods
As shown in Table 2, by accuracy and average
F1-score in percentage, we compare our model
with the best performing model of corresponding
dataset to our knowledge. These models are re-
ported in (Abbott et al., 2011; Menini and Tonelli,
2016; Rosenthal and McKeown, 2015) as Naive
Bayes (NB), JRip�2 (ruled based classifier using
�2 for feature selection), SVM, Maximum En-
tropy (ME), exploiting a rich suite of features in-
cluding n-grams, sentiment lexicon and syntax.

We also analyze the contribution of each com-
ponent in ablation experiment. BiLSTM-sum and
BiLSTM-concat refer only sum or concat oper-
ation is applied to both self and cross attention
respectively. Results show that BiLSTM-hybrid
gives the best performance across all datasets re-
gardless of data sizes. For smaller dataset such
as IAC, our model outperforms the previous best
methods by 8.8%. This outcome is consistent
across other larger datasets with a significant im-
provement of 19.6% on DP. What’ s more impor-
tant, on DP, the length of text is longer than other
datasets, so ordinary BiLSTM suffering from gra-
dient vanishing results in the poor performance. It
is the hybrid attention that effects. As for ABCD,
compared with ME based on textual features, Our
BiLSTM-hybrid also gives superior performance
of average F1 in 3-way inference. Since ABCD is
a corpus annotated by meta-thread rules, the ME
attaching conversational structure attains the best
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Table 2: Experimental results on three datasets.

2-way Inference 3-way Inference
IAC DP ABCD

Approaches Accuracy Approaches Accuracy Approaches Average F1
NB 60.3 SVM 74.0 ME 50.8

JRip�2 68.2 - - ME+structure* 77.6
Liu et al., 2016 74.9 Liu et al., 2016 92.4 Liu et al., 2016 76.5

BiLSTM 72.9 BiLSTM 55.2 BiLSTM 71.1
BiLSTM-self 76.1 BiLSTM-self 93.5 BiLSTM-self 75.8

BiLSTM-cross 76.4 BiLSTM-cross 93.3 BiLSTM-cross 75.9
BiLSTM-sum 76.4 BiLSTM-sum 93.3 BiLSTM-sum 76.4

BiLSTM-concat 76.8 BiLSTM-concat 93.5 BiLSTM-concat 76.4
BiLSTM-hybrid 77.0 BiLSTM-hybrid 93.6 BiLSTM-hybrid 76.9

(*) Conversational structure is a corpus-specific feature.

performance. We think it a corpus-specific feature
with weak generalization ability.

In addition, we adapt a NLI-oriented model pro-
posed by Liu et al. (2016) as a stronger baseline,
which comprises inner-attention with mean pool-
ing. The mean pooling of text encoder is set as
the summary representation for inner-attention to
seize important part from text itself. It is simi-
lar to our self attention but with coarse-grained
level from text to word. The results imply that
our BiLSTM-hybrid modeling additional interac-
tion with fine-grained attention from word to word
performs better.

4.3 Qualitative Analysis

To validate that different attention focuses on dif-
ferent part of text sequence, we visualize the out-
puts of self attention layer and cross attention
layer, with a Q-R pair of disagreement from IAC.
As show in Figure 3, darker color indicates larger
weight in the corresponding attention vector.

In quote, the self attention selects good which is
exactly the point that quote wants to argue. Simi-
larly, the self attention selects ? in response, which
indicates a rhetorical mood to show disagreement.
On the other hand, even though why doesn’t he
answer in response is endowed less weight from
the self attention, the cross attention highlights it
and god in quote. When inspecting the cross ma-
trix product of this pair, Figure 4 demonstrates
that our method is able to model the reference be-
tween god is good and why doesn’t he answer in
the whole interactive context.

5 Conclusion

In this paper, we propose a hybrid attention
based neural network for (dis)agreement infer-
ence in debate. The main motivation is to jointly

Figure 3: Attention Visualization. The topic is about evolu-
tion and the attitude of response is disagreement.

Figure 4: Cross Matrix Product Visualization.

leverage self attention for textual context and
cross attention for interactions between users to
improve the capability of inference on agree-
ment/disagreement relations. Experimental results
show that our model outperforms several strong
baselines. Visualization of extracted attention of
our model illustrates that our models is effective
in capturing the main point from different aspects.
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Abstract
Most text-classification approaches represent
the input based on textual features, either
feature-based or continuous. However, this ig-
nores strong non-linguistic similarities like ho-
mophily: people within a demographic group
use language more similar to each other than to
non-group members. We use homophily cues
to retrofit text-based author representations
with non-linguistic information, and introduce
a trade-off parameter. This approach increases
in-class similarity between authors, and im-
proves classification performance by making
classes more linearly separable. We evalu-
ate the effect of our method on two author-
attribute prediction tasks with various training-
set sizes and parameter settings. We find that
our method can significantly improve classifi-
cation performance, especially when the num-
ber of labels is large and limited labeled data
is available. It is potentially applicable as pre-
processing step to any text-classification task.

1 Introduction
Predicting socio-demographic author characteris-
tics is becoming ever more relevant with the per-
vasive use of user-generated content. Classifying
user attributes such as age and gender is useful for
a number of applications both in the public sector,
where it can support the investigation of crime (in
forensic linguistics) or the determination of social
policies, and in the private sector, where compa-
nies want to profile a potential consumer market,
targeting communication strategies and advertis-
ing to specific communities. Furthermore, recent
work in NLP has shown that incorporating au-
thor attributes in various NLP tasks can also im-
prove performance (Volkova et al., 2013; Hovy,
2015; Hovy and Søgaard, 2015; Lynn et al., 2017;
Preotiuc-Pietro et al., 2016).

In these tasks, authors are typically represented
via their linguistic profiles, i.e., information avail-

able in the text. This includes both word-based
features as well as continuous representations
(embeddings). Generally, linguistic features are
divided into content-related and strictly stylistic
features. While the first can be effectively repre-
sented by (n-grams of) words which capture the
topic and meaning of a text, the second ones fo-
cus on the use of function words, expressions, pro-
nouns, syntactic structures, etc. There is evidence
in the literature that content-related text charac-
teristics are more effective than stylistic features
for gender and age prediction (Fatima et al., 2017;
Rosenthal and McKeown, 2011). This effect is
the consequence of a non-linguistic auto-selection
process known as homophily: people within in a
demographic group tend to be more similar to each
other than to other groups, and subjects belong-
ing to different groups are therefore naturally more
prone to discuss different topics.

Despite the large amount of available social me-
dia data (in April 2018, Facebook had more than
two billion active users, YouTube and WhatsApp
each one-and-a-half billion, and Twitter 330 mil-
lion, see statista.com), we often encounter scenar-
ios with limited availability of ground-truth user
attributes, leading to remarkable performance dif-
ferences to, say, blogs. This difference is due
to the shortness of social media texts and the
wider range of topics (Rangel et al., 2016), which
weaken linguistic profile features. In such cases,
improving author representations beyond the lin-
guistic profiles can be especially useful.

We implement this intuition of leveraging
demographic homophily by using retrofitting
(Faruqui et al., 2015), a method introduced to re-
fine word vectors to reflect semantic similarity
information from lexicons. In our case, we in-
crease the similarity between the (linguistically-
based) continuous authors representations within
each class (here: age or gender). Authors who
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share the same gender or age therefore get more
similar vector representations (see section 3.2).
This effectively increases class-separability and
can thereby improve classification performance.

We also experiment with a trade-off param-
eter ↵, which controls the relative influence of
the retrofitting process vs. the original embedding
vector on the retrofit representation, allowing us to
explore the effect of both factors on the final pre-
diction outcome.

In order to extend the in-class homophily infor-
mation to unlabeled data, we induce a transforma-
tion matrix to translate between the original and
retrofitted embedding space. This matrix can be
applied to unlabeled data to transform the author
representations in the test set.

We use a set of almost 100K authors to pre-
dict age and gender. In order to explore limited-
resource scenarios, we experiment with a range
of training set sizes. Our results indicate that de-
mographic retrofitting of linguistic representations
substantially increases classification performance
for age and gender prediction, especially in low-
resource scenarios.

It is an easy, fast, and efficient preprocessing
step that can substantially improve classification
performance. We show our method for author-
attribute prediction, but believe it can potentially
be applied to any text-classification task.

Contributions In this paper, we introduce de-
mographic retrofitting based on in-class ho-
mophily, and make the following contributions:

1. we present a substantial expansion of the
original retrofitting algorithm (Faruqui et al.,
2015). In contrast to prior work, which re-
lies on external ontologies, our method relies
solely on the information contained within
the training data.

2. We show how to generalize the transforma-
tion from training data to unlabeled data, us-
ing a translation matrix.

3. We publicly release all our
data and models on our GitHub
page, https://github.com/Bocconi-
NLPLab/retrofit attributes.

2 Data
We use data from Hovy et al. (2015), a collec-
tion of reviews of online companies from various

countries, including author information. We se-
lect all reviews written in English from American
and British sources, if they include both age and
gender of the author, and if the review is at least
10 tokens long (shorter reviews tend to be mis-
tokenized URLs or replies). We aggregate the re-
views by users, so that each instance is a collec-
tion of texts’ from a unique user. This leaves us
with 98,608 individual users, and about 8M words
(roughly 80 words per instance). For each user,
we use the age (discretized by decade) and gen-
der (self-stated as binary, and augmented by Hovy
et al. (2015) based on the users’ first name) as tar-
get variables. We minimally preprocess the text
data, collapsing all numbers into 0s, and tokeniz-
ing via spacy (Honnibal and Johnson, 2015).

3 Methodology
In our experiments, we are interested in the ef-
fect of homophily-inducing retrofitting on author-
attribute prediction. In order to evaluate the effect,
we compare the performance of author representa-
tions based on linguistic input to the performance
of the same representation retrofitted to the author
attribute class in question. In this section, we out-
line the details for the different steps.

3.1 Linguistic author representations

We train Doc2Vec, a paragraph2vec (Le and
Mikolov, 2014) implementation, on the corpus, in-
ducing a 98K-by-300 matrix D, where each row
represents an author. We follow the parametriza-
tion suggested in Lau and Baldwin (2016), setting
the window size to 15, minimum word-frequency
to 10, negative samples to 5, downsampling rate to
0.00001, and run for 1000 iterations. We use the
resulting author embeddings as input to the author-
attribute classifier (see 3.4). We induce the author
embeddings over the entire corpus of 98K authors,
without recurrence to age or gender information.

As comparison, we also create a bag-of-words
(BOW) representation with the same dimensional-
ity. We use �2 as selection criterion to find the top
300 words in the training data, separately for both
age and gender classification.

3.2 Retrofitting

Our goal is to enhance the author representations,
which are based on linguistic similarity, with de-
mographic information about the target variable
(say, age). In order to introduce this information
into the vector space, we rely on retrofitting, by in-
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(a) Non-retrofitted

(b) Retrofitted

Figure 1: Schematic representation of 500 authors
colored by age group, without (top) and with (bot-
tom) retrofitting

creasing the similarity of authors within the same
target group (say, people in their 20s). We thereby
separate the target classes in embedding space,
making them easier to differentiate by a classifier.

Faruqui et al. (2015) introduced retrofitting of
word vectors based on external ontologies, such
as WordNet (Miller, 1995) or PPDB (Ganitkevitch
et al., 2013). Instead of these resources, we map
each labeled author to the list of all other authors
with the same label in the training data. Formally,
we create a set ⌦ containing tuples of authors
(di, dj |yi = yj). We do this separately for each
demographic dimension - age and gender.

During retrofitting, we iteratively update the au-
thor representation in the training data (initially
linguistically-based) to increase the cosine simi-
larity between authors within the same class (as
defined in ⌦). This creates a retrofitted ma-
trix D̂train of the original author matrix Dtrain.
The update for an author representation di is a
weighted combination of the original embedding

and the average over all its current neighbors:

d̂i = ↵di + �

P
j:(i,j)2⌦ d̂j

N

where di is the original linguistic representation
vector, N = |{8j : (i, j) 2 ⌦}| is the set of
all embeddings in the same label group, and ↵
and � are hyper-parameters that control the trade-
off between the original representation and the
updates from the neighboring embeddings during
retrofitting. In Faruqui et al. (2015), ↵ = �. In
contrast, we define

� = 1 � ↵

By varying ↵ from 0 to 1, we can control the
strength of the retrofitting process. ↵ = 1 sim-
ply reproduces the original matrix, i.e., D̂ = D,
whereas ↵ = 0 only relies on the neighborhood
updates after the initialization. Figure 1 shows a
sample of 500 users in a non-retrofitted (1a) and
retrofitted (1b) 3D embedding space, colored by
class. The color distribution shows how people be-
longing to the same group get drawn closer to each
other in embeddings space when using retrofitting.

3.3 Translation
We can only retrofit the embeddings of authors in
the training set Dtrain, since we need information
about the class label in order to construct ⌦. How-
ever, the retrofitting process changes the configu-
ration of the embedding space (into ˆDtrain), so a
separating hyperplane learned on D̂train will not
be applicable to a test set Dtest in the original em-
bedding space.

In order to extend the homophily information to
authors in the test set, we use a translation matrix
T (a 300 ⇥ 300 matrix), which approximates the
transformation from the original training data ma-
trix Dtrain into the retrofitted matrix D̂train. We
obtain T by minimizing the least-square difference
in Dtrain · T = D̂train.

T captures the retrofitting operation, and allows
us to modify the test subjects’ representations as if
age and gender were known, despite the absence
of class information. In particular, by applying T
to the matrix of the author embeddings in the unla-
beled test set Dtest, we obtain a retrofitted version

ˆDtest that preserves the transformation learned on
the training data. Since the least-square approxi-
mation is not perfect, we find that in practice fit-
ting a classifier on the approximation Dtrain · T
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works better than using D̂train, acting as a regu-
larizer.

3.4 Classification

We retrofit the author embeddings in the training
set (see 3.2) and learn a translation matrix to trans-
form the representations of the remaining authors
in the test set. We train three separate Logistic
Regression classifiers: one on author embeddings,
one on the retrofit embeddings, and one on BOW
features. It is technically possible to retrofit BOW
representations as well, but in practice, the classi-
fier does not converge, as word count-based vec-
tors do not represent a continuous space that cap-
tures latent similarities.

We then use the three classifiers to predict the
author attributes of the remaining authors in the
test data set. We evaluate the results via micro-F1
score (averaged over 100 runs), since our tasks in-
clude imbalanced multi-class scenarios: micro-F1
weights the contribution of each class according
to their relative size and is therefore more infor-
mative than accuracy.

Since we are interested in the effect of the train-
ing set size on performance, we vary the number of
available training examples from 1000 to 10,000,
using the remaining authors as test set. For each
training set size, we collect 100 random subsam-
ples and average over them.

4 Results
The learning curves in Figure 2 show that
retrofitting outperforms both the original author
embeddings and BOW representations for age
(top) and gender (bottom) prediction in terms of
F1. The effect is stronger when little training
data is available. We evaluate the statistical sig-
nificance of the difference between results with
retrofitting and original embeddings via a boot-
strap sampling test. We do not test against BOW,
since this is consistently lower than embeddings.
The resulting p-value are given in the respective
figures. For gender classification, there are small,
but not significant improvements with retrofitting.
By contrast, for age classification, small values of
↵ (0.01, 0.1, and 0.25) result in significantly better
classification than when using any other method.

The performance differences between the meth-
ods are generally more pronounced for age-
prediction, which has 10 possible labels, than for
gender prediction (two labels). The difference in
optimal ↵ value suggests a relation between ↵ and

label space.
In both tasks, the best result is achieved by

choosing a low ↵, i.e., by giving more weight to
the demographic association of the users than to
their linguistic feature representations. In prac-
tice, this value should be determined via cross-
validation: here we show different levels of ↵ in
order to give some intuition of its on performance.
Note that the curves for the original embeddings
and BOW are unaffected by ↵ and do not change.
We repeat them at each figure for comparison. In-
creasing ↵ eventually converges with the original
embeddings, but we see that even intermediate val-
ues can be close to the original embeddings.

5 Related Work
The first studies to apply statistical NLP tech-
niques to author attribute prediction are Koppel
et al. (2002); Argamon et al. (2003), using the
British National Corpus (BNC). The same authors
also introduced the use of blogs as data source
(Koppel et al., 2006).

In recent years, predicting socio-demographic
variables from text has seen increased interest,
with several corpora for the classification of age
and gender, covering various languages, such as
English (Schler et al., 2006; Rosenthal and McK-
eown, 2011), Spanish, French, German, Dutch
(Company and Wanner, 2015), Greek (Mikros,
2012), Chinese (Zhang et al., 2016), and Viet-
namese (Pham et al., 2009).

A big contribution in this field, however, was
the shared tasks of the PAN workshops (Rangel
et al., 2013, 2014, 2015, 2016).

Research has identified a variety of linguis-
tic features, ranging from “stylistic features with
n-grams models, parts-of-speech, collocations,
LDA, different readability indexes, vocabulary
richness, correctness or verbosity” (Rangel et al.,
2016). However, none of these papers used demo-
graphic information directly in the author repre-
sentations.

Closest to our method are Lopez-Monroy et al.
(2013), who propose the use of second-order rep-
resentations. They created specific profiles for the
target classes, and exploited them for the creation
of the profile of each document. In both cases, the
linguistic representation of the documents passes
through a class-related profile.

The methods applied in the PAN workshops
also reflect the recent research trend towards
word embeddings, which we explore in this pa-
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a) ↵ = 0.01 b) ↵ = 0.1 c) ↵ = 0.25 d) ↵ = 0.5 e) ↵ = 0.75

Figure 2: Learning curves (micro-F1) for 3 classifiers on age (top) and gender prediction (bottom) for
different values of ↵. Retrofitting influence decreases from left to right. All data points averaged over
100 runs. Shaded area is 95%-confidence interval for retrofitting. p-values denote statistical difference
between original and retrofit embeddings according to bootstrap test.

per. Bayot and Gonçalves (2016) first used
word2vec embeddings as input features to a
SVM classifier, followed by the use of convo-
lutional (CNN) and recurrent neural networks
(RNN) by Miura et al. (2017). Markov et al.
(2016) also created document representations
through word2vec, using a Logistic Regression
classifier.

6 Conclusion
We explore retrofitting text-based author embed-
dings with non-linguistic demographic informa-
tion to increase in-class similarity. This method
increases class-separability to improve classifica-
tion performance. We use a corpus of almost 100K
users, and evaluate the effect of our method on
age and gender prediction for various levels of
available training data. We find that aggressive
retrofitting (prioritizing homophily over linguis-
tic embeddings) is beneficial for prediction per-
formance, especially when the available amount

of training data is limited. While the effect di-
minishes with increased training data size, our ap-
proach provides a simple method to incorporate
non-linguistic knowledge into author representa-
tions. For another application (introducing geo-
graphic information into city representations), see
Hovy and Purschke (2018). Our method is fast,
simple, and applicable to any problem represented
in embedding space. It is therefore a viable pre-
processing step to any text-classification task.
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Abstract

Traditional neural language models tend to
generate generic replies with poor logic and
no emotion. In this paper, a syntactically con-
strained bidirectional-asynchronous approach
for emotional conversation generation (E-
SCBA) is proposed to address this issue. In
our model, pre-generated emotion keywords
and topic keywords are asynchronously intro-
duced into the process of decoding. It is much
different from most existing methods which
generate replies from the first word to the last.
Through experiments, the results indicate that
our approach not only improves the diversity
of replies, but gains a boost on both logic and
emotion compared with baselines.

1 Introduction

In recent years, as artificial intelligence has de-
veloped rapidly, researchers are pursuing tech-
nologies with greater similarities to human intel-
ligence. As a subjective factor, emotion performs
an elemental difference between humans and ma-
chines. In other words, machines that could under-
stand emotion would be more responsive to human
needs. For example, in education, positive emo-
tions improve students’ learning efficiency (Kort
et al., 2002). In healthcare, mood prediction can
be used in mental health counseling to help an-
ticipate and prevent suicide or depression (Taylor
et al., 2017; Jaques et al., 2017). To make machine
more intelligent, we must resolve the conundrum
of emotional interactions.

There are tons of researches about conversa-
tion, an important channel for communication be-
tween humans. And lots of work has recently been
carried out in open-domain conversation devoted
to generating meaningful replies (Vinyals and Le,
2015; Li et al., 2016; Serban et al., 2016). Unfor-
tunately, the factors considered in these methods
only concerns topic, like (Xing et al., 2017), where

⇤The corresponding author of this paper.

they failed to take emotion into account. Unlike
the former, the work in (Zhou et al., 2017) first
addressed the emotional factor in large-scale con-
versation generation, and it showed that emotional
replies obtain superior performances compared to
the baselines that did not consider emotion. How-
ever, two defects still manifest themselves in the
aforementioned models. First, all methods above
only adopted a single factor (i.e., topic or emo-
tion), because of which the bias of information can
not comprehensively summarize the human con-
versations to achieve favorable results. Second,
the way that generates replies from the first word
to the last can lead to a decline in diversity, limited
by the high-frequency generic words in the begin-
ning (e.g., I and you), as argued in (Mou et al.,
2016).

The deficiencies above inspire us to introduce
a new approach called E-SCBA, studying both
emotion and topic. Three main contributions are
presented in this paper: (1) It conducts a study
of compound information, which constitutes the
syntactic constraint in the conversation generation.
(2) Different from the work in (Mou et al., 2016),
a bidirectional-asynchronous decoder with multi-
stage strategy is proposed to utilize the syntactic
constraint. It ensures the unobstructed communi-
cation between different information and allows
a fine-grained control of the reply to address the
problem of fluency and grammaticality as argued
in (Ghosh et al., 2017; Zhou et al., 2017). (3)
Our experiments show that E-SCBA work better
on emotion, logic and diversity than the general
seq2seq and other models that consider only a sin-
gle factor during the generation.

2 Model

2.1 Overview

The whole process of emotional conversation gen-
eration consists of the following three steps:
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Step I: Given a post, we first use two networks
combined with category embeddings to re-
spectively predict emotion keyword and topic
keyword that should appear in the final reply
(see Section 2.2).

Step II: After the prediction, a newly designed
decoder is used to introduce both keywords
into the content1, as shown in Figure 1. It
first produces a sequence of hidden states
based on the emotion keyword (Step I), and
then uses an emotional attention mechanism
to affect the generation of middle sequence,
which is based on the topic keyword (Step II).
The remaining two sides are ultimately gen-
erated by the combination of middle part and
keywords (Step III). A detailed description is
given in Section 2.3.

Step III: Finally, a direction selector is used to ar-
range the generated reply in a logically cor-
rect order by selecting the better one from
forward and backward forms of the reply
generated in the last step (see Section 2.4).

In this work, we default that the replies contain
at least one emotion keyword and one topic key-
word, which are expected to appear in the dictio-
naries we used.

2.2 Keyword Predictor
The keywords to be selected are pre-stored in the
prepared dictionaries. The adopted emotion dic-
tionary was proposed by (Xu et al., 2008), which
contains 27,466 emotion words divided into 7 cat-
egories: Happy, Like, Surprise, Sad, Fear, Angry
and Disgust. The adopted topic dictionary was ob-
tained by the LDA model (Blei et al., 2003), in-
cluding 10 categories with 100 words for each cat-
egory. And to avoid situations in which emotion
and topic keywords are predicted to be the same
word, all the overlapping words in these two dic-
tionaries default to emotion keywords.

The prediction of emotion and topic keywords
follows the similar path. We first derive topic cate-
gory and emotion category from the post with two
classifiers separately. To be more specific, the pre-
trained LDA model is used for the topic category
inference. And the work in (Sun et al., 2018) is ap-
plied for emotion. The concrete model is an emo-

1Syntactic constraint starts to work here, and can be intu-
itively interpreted as relative positions of emotion words and
topic words, as well as different combinations between them.

tion transfer network. Given a specific external
stimuli (e.g., a sentence), the network produce an
emotional response, which is specifically an emo-
tion category in this work. After this, combining
the sum of hidden states h̃ =

PT
i=1 hi from en-

coder and the category embeddings k = {ket, ktp},
keywords are predicted as follows:

p(wk
et|x, ket) = softmax(Ww

et[h̃; ket]) (1)

p(wk
tp|x, ktp) = softmax(Ww

tp[h̃; ktp]) (2)

where wk
et and wk

tp separately represent the emo-
tion keyword and topic keyword that are expected
to appear in the reply.

2.3 Bidirectional-Asynchronous Decoder
Due to the decoder architecture shown in Figure
1, we suppose the reply in this section is y =
(yct, wk

tp, y
md, wk

et, y
ce)2 where y

md is the mid-
dle part between two keywords and y

ct, y
ce rep-

resent the remaining sides connected to the topic
keyword and emotion keyword. The generation
of middle part y

md = (ymd
1 , ..., ymd

K ) can be de-
scribed as follows:

cet
j = f et

att(s
tp
j�1, {set

i }K0

i=1) (3)

p(ymd|x, wk) =
KY

j=1

p(ymd
j |ymd

j�1, s
tp
j , cet

j ) (4)

where w
k = < wk

et, w
k
tp > represents the set of

keywords, set
i and stp

j separately represent the de-
coding state of the steps that introduce emotion
keyword and topic keyword. cet

j is the emotional
constrain unit at time j, computing by the emotion
control function f et

att as follows:

cet
j =

K0X

i=1

↵et
j,is

et
i (5)

↵et
j,i =

exp(eet
j,i)PK0

t=1 exp(eet
j,t)

(6)

eet
j,i = (vmd

↵ )T tanh(Wmd
↵ stp

j�1 + Umd
↵ set

i ) (7)

where eet
j,i represents the impact scores of the emo-

tion state set
i on the topic state stp

j�1.
After generating the middle part, we connect it

with the keywords to form a new sequence. Two
seq2seq models are used to encode the connected

2For the training data in opposite direction, we reversed
the target replies to meet the requirement.
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Figure 1: The process of generating replies in the test. The middle part of the reply is generated in Steps
I and II, and the remaining two sides are generated in Step III. The RNN networks used in the decoder
do not share the parameters with each other.

sequences and decode y
ce = (yce

1 , ..., yce
M ) and

y
ct = (yct

1 , ..., yct
N ), as below:

p(yce|wk, ymd) = p(yce|[wk
tp, y

md,f , wk
et]) (8)

p(yct|wk, ymd) = p(yct|[wk
et, y

md,b, wk
tp]) (9)

where y
md,f and y

md,b are the forward and back-
ward situations of the middle part, respectively.

2.4 Direction Selector

To make the samples meet the requirements of de-
coder, by default we place the topic keyword as the
first keyword on the left and the emotion keyword
on the right in training. However, in real situa-
tions, the topic keyword does not always appear
before the emotion keyword, where we must de-
termine correct direction by the machine.

By connecting the results in the preceding sec-
tion, we get y

f = (yct,b, wk
tp, y

md,f , wk
et, y

ce,f ) as
the forward situation and y

b means the backward
situation. GRU networks are used as encoders to
process sequences in different situations, which do
not share parameters. And the direction is pre-
dicted by:

p(d|yf , yb) = sigmoid(Wd[h̃d,f , h̃d,b]) (10)

h̃d,⇤ =
T 0X

i=1

GRU(y⇤
i ) (11)

where ⇤ 2 {f , b} means forward or backward. Af-
ter the operation completes, one of the sequences
y

f and y
b should conform to our expectations.

3 Experiment

3.1 Data

We evaluated and trained E-SCBA on the emo-
tional conversation dataset NLPCC2017. There
are a total of 1,119,201 Chinese post-reply pairs
in the set. The dictionaries mentioned in Sec-
tion 2.2 were used to mark the conversation. The
cases whose replies contain both emotion key-
words and topic keywords account for 42.6%
(476,121) of the total3, which are suitable data
for the bidirectional-asynchronous decoder. We
randomly sampled 8,000 for validation, 3,000 for
testing and the rest for training. We also sampled
another 60,000 pairs from the training set to train
the LDA model4 mentioned in Section 2.2. Be-
sides, an error analysis is presented based on a
Chinese movie subtitle dataset which is collected
from the Internet.

3.2 Metrics

To evaluate our approach, we use the metrics as
below:

Embedding-based Metrics: We measure the
similarity computed by cosine distance between
a candidate reply and the target reply using
sentence-level embedding, following the work in
(Liu et al., 2016; Serban et al., 2017).

3Please note that we did not use the original labels of the
dataset, but the emotion categories of the keywords as labels
to avoid unnecessary bias. For cases that contain multiple
topic keywords or emotion keywords, we chose the keywords
that appear less frequently to reduce imbalances.

4High frequency words and stop words, which have no
benefit to the topics, were removed in advance.
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Method
Overall Happy Like Surprise

C L E C L E C L E C L E
S2S 1.301 0.776 0.197 1.368 0.924 0.285 1.341 0.757 0.217 1.186 0.723 0.076
S2S-AW 1.348 1.063 0.231 1.437 1.097 0.237 1.418 1.125 0.276 1.213 0.916 0.105
E-SCBA 1.375 1.123 0.476 1.476 1.286 0.615 1.437 1.173 0.545 1.197 0.902 0.245

Method
Sad Fear Angry Disgust

C L E C L E C L E C L E
S2S 1.393 0.928 0.237 1.245 0.782 0.215 1.205 0.535 0.113 1.368 0.680 0.236
S2S-AW 1.423 1.196 0.293 1.260 1.105 0.272 1.198 0.860 0.182 1.488 1.145 0.253
E-SCBA 1.497 1.268 0.525 1.268 1.124 0.453 1.110 0.822 0.347 1.637 1.289 0.603

Table 1: The results of human annotations (C = Consistency, L = Logic, E = Emotion).

Method G–M E–A V–E D–1 D–2
S2S 0.297 0.382 0.284 0.086 0.212
S2S-STW 0.328 0.433 0.327 0.135 0.343
S2S-SEW 0.322 0.421 0.319 0.146 0.364
S2S-AW 0.363 0.485 0.352 0.162 0.417
E-SCBA 0.405 0.553 0.395 0.218 0.582

Table 2: The results of automatic evaluation (G–E
= Greedy Matching, E–A = Embedding Average,
V–E = Vector Extrema).

Distinct Metrics: By computing the number
of different unigrams (Distinct-1) and bigrams
(Distinct-2), we measure information and diversity
in the candidate replies, following the work in (Li
et al., 2016; Xing et al., 2017).

Human Annotations: We asked four annota-
tors to evaluate the replies5 generated from our ap-
proach and baselines from Consistency, Logic and
Emotion. Consistency measures fluency and gram-
maticality of the reply on a three-point scale: 0, 1,
2; Logic measures the degree to which the post and
the reply logically match on a three-point scale6 as
above; Emotion judges whether the reply includes
the right emotion. A score of 0 means the emotion
is wrong or there is no emotion, and a score of 1 is
the opposite.

3.3 Baselines
In the experiments, E-SCBA is compared with the
following baselines:

S2S: the general seq2seq model with attention
method (Bahdanau et al., 2014).

5700 conservations in total, 100 for each emotion cate-
gory, were sampled randomly from the test set.

6If a reply is too short or turns up frequently, it would be
annotated as either 0 or 1 (if the annotator thought the reply
related to the post), like ”Me too” and ”I think so”.

S2S-STW: the model uses a synchronous
method that starts generating its reply solely and
directly from the topic keyword.

S2S-SEW: the model uses a synchronous
method that starts generating its reply solely and
directly from the emotion keyword.

S2S-AW: the model uses an asynchronous
method the same as (Mou et al., 2016).

The synchronous method in S2S-STW and S2S-
SEW was mentioned in (Mou et al., 2015), acting
as the contrast to the asynchronous models.

3.4 Results and Discussion
The results of automatic evaluation are shown in
Table 2. Compared with the best model (S2S-AW)
that considers only a single factor, E-SCBA makes
significant improvement on the distinct metrics
(+0.056 and +0.165), which verifies the effective-
ness of taking both emotion and topic information
into account to improve the diversity. Likewise,
our approach also respectively achieves 0.042,
0.068 and 0.043 gains on G-M, E-A and V-E, ben-
efiting from the compound information that cap-
tures the thrust of human conversation so that E-
SCBA has a better ability to learn the goal dis-
tribution. Furthermore, the grades of the asyn-
chronous models are higher than the synchronous
models on both kinds of metrics, showing that the
asynchronous method is a more suitable way for
content-introducing conversation generation.

Table 1 depicts the human annotations (t-test: p
< 0.05 for C and L, p < 0.01 for E). Overall, E-
SCBA outperforms S2S-AW on all three metrics,
where the compound information plays a positive
role in the comprehensive promotion. However,
in Surprise and Angry, the grades of Consistency
and Logic are not satisfactory, since the data for
them are much less than others (Surprise (1.2%)
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Post Emotion Chinese English(translated)
◊S@˝U�⌘ÏÍ˝ÿ∆;®⇥

Hunted by the authorities,
we work in secret.

Disgust  �Õ´222ΩΩΩÑ���………⇥ There is a sense of being mocked.

⌘�Ù(¬fl`ÏÑ6\«↵⇥
I have been observing your

production process.
Happy ⌘������`ÁÌ™™™õõõ I hope you keep working hard

GÇ`£);bÜ÷�ã≈
1�⇢Ÿ7Ü⇥

If you had stopped him that day,
things would have been different.

Sad �Åfififi∆∆∆«ªÑÂÂÂPPPÜ� Don’t look back on the past!

n⇢⌘⌫-_ÔÂÂ –õ
C)ÑÇı⇥

The general public can also have
some concepts of rights.

Like ÔÂ\\\:::÷Ï���;;;Ñ�Ë⌃ This can be a part of their life

⌘Ï∞(_ÔÂª�ŸÃÜ⇥
We can also leave here now.

Sad :::WWWæææÑ⇥ What a pity.

£*∫��ÖÑ/œ`Ÿ7Ñ
és�Ÿ*±P⇥

The man is looking forward to having a
beautiful girl like you to send this box.

Disgust ⌘���ÖÖÖÑ/œ`Ÿ7ÑAAA◆◆◆
I am looking forward to a

hooligan like you

Table 3: Sampled conversations with a corresponding emotion from the Chinese movie subtitle data.

and Angry (0.7%)). Besides, the score of Emo-
tion in Surprise has a big difference from others.
We think the reason is that the characteristic of
Surprise overlaps with other categories that have
much more data, such as Happy, which interferes
with the learning efficiency of the approach in Sur-
prise. Meanwhile, it is harder for annotators to de-
termine which one is the right emotion.

3.5 Case Study and Error Analysis
In this section, we sampled some typical cases
from a Chinese movie subtitle dataset to do a fur-
ther error analysis. The cases are shown in Table 3.
The post of weibo and movie subtitle are applied
in different scenes to obey different distributions.
The weaker correlation between training sets and
test sets can present a more reliable study.

The first three conversations are positive sam-
ples and others are negative samples that have con-
tent with flaws. For the reply in the antepenulti-
mate line, its problem is the faint emotion. Since
the emotion keyword in this sentence is a poly-
semic word, and it expresses a meaning with no
emotion here. Under diverse circumstances, a pol-
ysemic word probably have different meanings,
emotional or neutral. For example, the word ”like”
can be a generic word when it denotes similar, but
it can also be an emotion word when it denotes
enjoy. Same situation also occurs in Chinese. Be-
sides, we notice that if the LDA model pick a

meaningless topic keyword from the dictionary,
our approach may have a difficulty in generating a
diverse and long reply, as the reply in the penulti-
mate line. The lack of information causes generic
replies which are consisted of few words gener-
ated from the networks. The last line presents
another limitation. The emotion keyword hooli-
gan corresponds to the post and the topic keyword
looking forward to is meaningful, but the com-
bination of them, looking forward to a hooligan,
does not conform to the normal logic. This situ-
ation is caused by the fact that two kinds of key-
words are generated independently before decod-
ing, and it may cause a mismatch. In the future, we
will try to explore different network architectures
to make keywords interact with each other during
the generation.

4 Conclusion

In this paper, we proposed a novel conversation
generation approach (E-SCBA) to make a more
comprehensive optimization for the quality of re-
ply, which introduces both emotion and topic
knowledge into the generation. The newly de-
signed decoder makes use of syntactic knowledge
to constrain generation and ensures fluency and
grammaticality of reply. Experiments show that
our approach can generate replies that have rich
diversity and feature both emotion and logic.
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Abstract

The lack of labeled data is one of the main
challenges when building a task-oriented dia-
logue system. Existing dialogue datasets usu-
ally rely on human labeling, which is expen-
sive, limited in size, and in low coverage. In
this paper, we instead propose our framework
auto-dialabel to automatically cluster the dia-
logue intents and slots. In this framework, we
collect a set of context features, leverage an
autoencoder for feature assembly, and adapt
a dynamic hierarchical clustering method for
intent and slot labeling. Experimental results
show that our framework can promote human
labeling cost to a great extent, achieve good in-
tent clustering accuracy (84.1%), and provide
reasonable and instructive slot labeling results.

1 Introduction

Building a task-oriented dialogue system is chal-
lenging. In real world, unlabeled dialogue data
is usually available for companies who has inter-
active platform with users. Based on these unla-
beled data, the well-known sequence-to-sequence
framework (Sutskever et al., 2014; Cho et al.,
2014) is widely used in dialogue response genera-
tion (Vinyals and Le, 2015; Sordoni et al., 2015;
Shang et al., 2015), but it can not handle task-
oriented scenario well since it needs accuracy in-
stead of fluency. Generally, a task-oriented dia-
logue system needs to realize user’s intent, which
means user’s current goal in a dialogue session.
To fulfill this intent, the system usually needs sev-
eral key information (slot). As shown in Fig-
ure 1, a dialogue utterance is labeled with intent
flight, and several slots such as its from location,
arrive time. Training a task-oriented dialogue sys-
tem usually needs abundant such labeled data.

Existing well-known dialogue datasets are
mostly human-labeled, such as ATIS (Hemphill
et al., 1990), DSTC (Williams et al., 2013),

Frames (El Asri et al., 2017), and the Stanford
dataset (Eric et al., 2017). Human-labeled datasets
are expensive to produce, limited in size, and re-
stricted to a specific domain, which make them
difficult to extend. Moreover, the intent and slot
label sets are usually decided by human experi-
ence. Since we usually do not know the exact
intents or slots of a new unlabeled data, the as-
signed label names may be subjective in some
extent. To better assist the human labeling pro-
cess, Wen et al. (2017) proposed an improved ver-
sion of Wizard-of-Oz (Kelley, 1984) data collec-
tion methods, which incorporate crowdsourcing to
collect domain specific data. Instead of human-
labeling, Cohn et al. (1995) proposed a semisu-
pervised framework active learning, which can
minimize the need for human annotation in a cer-
tain extent. However, these approaches are still
mostly or selectively human-labeled, and may be
distracted by the disadvantages raised above.

Thus, in this paper, we propose an unsuper-
vised labeling method to automatically cluster di-
alogue intents and corresponding slots. Since the
intent of a dialogue utterance may depend on its
topic or some frequent key words, utterances in
the same intent may share similar context features.
Hence, we cluster these utterances into different
intents. Given a new dialogue dataset whose num-
ber and type of intents are uncharted, the cluster-
ing process does not need any prior information
and can derive a new set of intents. We modify dy-
namic clustering methods to automatically decide
the number of clustering classes. The clustered in-
tents are labeled as integer indices. Before cluster-
ing, for better utilization of extracted features, we
leverage an autoencoder to map all features into
the same space. For the slot labeling, since the
phrases of same slots such as location and time
may share same type of features, we leverage a
similar way to cluster slots within each intent.
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I want to fly one way from Chicago on 8 am
this Wednesday and arrive in San Francisco
11 pm in the evening.

Intent:
flight

Slot Value
From_loc Chicago
To_loc San Francisco
Depart_date Wednesday
Depart_time 8 am
Arrive_time 11 pm
Round_trip one way

Figure 1: An example of the dialogue labeling task.

Experimental results on the ATIS
dataset (Hemphill et al., 1990) show that our
proposed methods can achieve 84.1% intent
clustering accuracy, and provide reasonable and
instructive slot labeling results. Moreover, since
the whole process is unsupervised, it can be much
faster and more consistent and objective than
human labeling, and extended to other domains.
We think the proposed methods can be a good
attempt for the automatic dialogue labeling task.

2 Auto-Dialabel Framework

Formally, we treat a multi-turn dialogue session
D = {Q1, R1, · · · , QN , RN } as a sequence of N
query-response pairs between two interlocutors, in
which query Q⇤ represents user’s utterance and re-
sponse R⇤ represents assistance’s utterance. Each
query utterance Qt should be labeled with an in-
tent It 2 [0, K], which represents the interlocu-
tor’s purpose in current utterance. K is the num-
ber of intent classes, and should be dynamically
decided during the labeling procedure.

Since each intent has its corresponding slots, for
intent It, we set its slot as St = {St,1, · · · , St,Lt},
where Lt is number of slots in It. St is also
learned automatically and dynamically.

In detail, given a set of query utterances, the
unsupervised dialogue auto-labeling system labels
the intents and slots based on the following steps:

feature extraction and assembly, which extracts
a set of context features F from query utterance,
and leverages an autoencoder to compress each
extracted feature into same size, then concatenate
them as the assembled feature embedding E .

intent clustering, which adopt dynamic hierar-
chical clustering to get intents based on E .

slot clustering, which leverages the same clus-
tering methods to get slots based on word-level
features and labeled intents.

The process of intent labeling is shown in Fig-
ure 2. Slot labeling has a similar process to intent

labeling. Features are a key to both intent label-
ing and slot labeling. We first introduce the fea-
ture extraction and assembly, which involves all
the features used in our model. It is noted that we
leverage all the features for intent clustering while
we only use word-level features for slot labeling.

2.1 Feature Extraction and Assembly
We design a set of context features F⇤ at different
levels of granularity to model the query utterance,
including word embedding, POS tag, frequent key
words, and topic features.

Word Embedding Given an n-words Q =
{w1, · · · , wn}, intuitively, the feature of Q re-
lied on each words within it. One frequently-used
way to model a sentence by words is to use a
mean pooling for all word embeddings: FW =
1
n

Pn
i embedding of wi

POS Tag Since the distribution of the POS tag
may effect the sentence’s structure in syntactic
level, we use bag-of-POS as the POS tag fea-
ture FP . Given np types of POS tags, FP =
{p1, · · · , pnp} is a discrete vector in which each
dimension pi represents the existence of a POS tag
POSi.

Frequent Key Words In several occasions, the
intent of a sentence is decided by some key
words. So we specially emphasize it by introduc-
ing the frequent key words feature FX . FX =
{x1, · · · , xc} represents the information of key
words in query utterance. To centralize the word
information, we cluster all the noun words into
c different classes by its word embedding, then
count the occurrence frequency of each class as
a discrete vector FX .

Topic The topic-level feature denotes the topic
information of query utterance. We leverage an
unsupervised topic model to get the topic distribu-
tion FT 2 R

t as the topic-level feature, t is the
number of topics. Since query utterance are short
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I would like a flight from
Denver to Los Angeles for
April first on delta airlines.

……

……

Unlabeled	
Data

Feature
Extraction Autoencoder Feature

Assembly
Dynamic
Clustering

Clustering
Results

On	April	first	I	need	a	flight	
going	from	Phoenix	to	San	
Diego.

feature1

feature2

feature3

input	feature

input	feature

Encoder

Decoder

encoded	
feature1

encoded	
feature2

encoded	
feature3

encoded	
feature

assembled	
feature

Figure 2: An illustration of our proposed auto-dialabel framework for intent labeling.

texts, while conventional topic models such as
LDA and PLSA depends on document-level word
co-occurrence patterns to detect topics, which may
suffer from data sparsity, thus directly applying
those models may not work well. In this paper, we
leverage the biterm topic model (BTM) proposed
by Yan et al. (2013) for better performance.

The assembled feature embedding E is the com-
bination of each Fi. Since each Fi has different
dimensions, which may unequally affect the clus-
tering results, we use an autoencoder to encode all
Fi into same dimensions as Ei, then we concate-
nate all the Ei as E , which will be used in the clus-
tering procedure, as shown in Figure 2.

2.2 Intent Clustering

Since given a new set of dialogue data, we do not
know the number of intents it contains, thus we
adapt the hierarchical clustering method to a dy-
namic version which can automatically decide the
end of the clustering process by the cohesion of
different classes. At the beginning of clustering,
each query utterance is considered as a different
class. At each steps, the cluster model chooses two
classes which are the closest in distance, and clus-
ter them into the same class. We use radial basis
function (rbf) as the clustering distance. This pro-
cess ends when all the distances exceed the thresh-
old value, which is tuned on a labeled dataset, and
fixed for future use.

2.3 Slot Clustering

Since slots usually correspond to intents, we do
slot labeling based on both the query utterance and
the labeled intents. Considering that most slots are
composed of noun words, we extract all the noun
words in a dialogue, and leverage the same clus-
tering methods as in the intent clustering part to

cluster them into different slot classes. Note that
the slot clustering are word-level. So in feature ex-
traction, it did not extract the topic-level features.

3 Experiments

3.1 Dataset and Baseline Systems
We conduct experiments on the widely used ATIS
dataset (Hemphill et al., 1990). The clustering pa-
rameters are tuned on the training set of the ATIS
dataset (Hemphill et al., 1990), while the exper-
iments are conducted on its test set. During clus-
tering, we tune the clustering distance limit since it
may be more general than the number of classes,
and can be transferred to other datasets. The ra-
dial basis function (rbf) is used with sklearn de-
fault settings.

Since there is no existing systems specially
designed for unsupervised dialogue labeling, we
choose three well-known and widely used sen-
tence representation methods, and leverage the re-
sults vector for clustering as our baseline systems.
The first one is the BTM topic model (Yan et al.,
2013). We use the topic distribution for clustering.
The second one is the CDSSM model proposed
by Shen et al. (2014). We use the clickthrough data
for pre-training and get encoded sentence vector
for clustering. The third one is the sentence em-
bedding calculated by the average of word embed-
ding in query utterance. For each baseline, we
leverage the k-means for clustering and use the
gold intent number as the cluster number of these
models.

3.2 Intent Labeling
We leverage glove.6B.300d (Pennington et al.,
2014) as the pre-trained word embedding in all the
baseline and proposed systems. The POS tag is
labeled through NLTK toolkit (Bird et al., 2009).
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Models Intent Labeling Acc (%)
topic model 25.4
CDSSM vector 20.7
glove embedding 25.6
auto-dialabel 84.1

Table 1: Intent labeling accuracy.

The topic number of BTM is set to 20 as default.
Each encoded feature dimension is set to 30, then
concatenated to a 120 dimension assembled vec-
tor. We have 17 kinds of gold intents, and our sys-
tem predicted 18 kinds of intents. Since the clus-
tering results have no label information, we sort
the predicted intent classes and gold intent classes
by size, and manually map them. We leverage in-
tent labeling accuracy as the evaluation metrics.

3.2.1 Overall Performance
Our auto-dialabel can reduce the tedious work of
understanding the intent of each dialogue utter-
ance and finding slot words in it. It clusters all
utterances into several intent classes, and words
into slot classes, which leaves human labelers only
small labors to set label names for each class. Ex-
perimental results show that with auto-dialabel,
we can label the whole ATIS dataset in less than 1
hour from end to end, compared to days we spend
by human labeling. Table 1 shows the perfor-
mance comparison of our model with other base-
line systems. From Table 1, we find that our pro-
posed auto-dialabel achieves high intent labeling
accuracy (84.1%) and outperforms other baseline
systems by a large margin. This may be because
that the baseline systems are not specifically de-
signed for intent scenario so that they can not han-
dle the intent and slot clustering well, or are not
capable of capturing complex intent relevant in-
formation.

3.2.2 Ablation Tests
Feature Extraction The feature extraction part
extracts 4 kinds of features. We conduct ablation

Model Acc Model Acc Model Acc
FT 50.8 �FT 78.9 no encode 32.5
FX 78.0 �FX 77.5 K-means 28.5
FW 75.9 �FW 80.7 Spectral 40.7
FP 70.2 �FP 78.3 auto-dialabel 84.1

Table 2: Intent labeling ablation tests. F⇤ shows the
performance of the system with only feature F⇤. �F⇤

shows the performance of the system excluded feature
F⇤. no encode shows the performance of the system
excluded the autoencoder parts.

Intent Slot
flight period of day : noon, evening

month name : november, april
day name : monday, sunday
city name : cleveland, houston

ground service period of day : night, morning;
day name : monday;
city name : denver, washington

Table 3: Slot clustering cases

tests including and excluding each kind of features
to see the performance. The results are shown in
Table 2. From Table 2, we find the frequent key in-
formation as the most important feature. Since the
intent is usually influenced by key words occur-
ring in utterance, these kind of features can better
capture key information which contributes most to
the intent detection. On the contrary, the topic fea-
ture is less useful. Since it is not designed for this
task, the information it represents may not directly
assist the detection of intents.

Feature Assembly We concatenate the origi-
nally extracted features for clustering. The results
are shown in Table 2 as no encode, which suggests
that the encoding part is essential in feature assem-
bly. Since each feature has a different dimension,
if we alternatively concatenate them directly, the
”longer” feature may get more ”attention”, which
may distract the clustering results. Generally, en-
coding all the features into the same dimension is
an efficient way to balance the information.

Dynamic Clustering To test the performance
of our modified dynamic clustering method, we
leverage two most common used clustering meth-
ods for ablation test, which are k-means and spec-
tral clustering. Both clustering numbers are set
to gold intent number. The results are shown
in Table 2, and we can find both methods per-
form worse than our methods, which shows that
our methods can handle this task well. Besides,
both baseline methods need prior intent number
which is unavailable in advance in most cases.
Compared with these baseline clustering methods,
our method can dynamically determine the intent
number and is more practical.

3.3 Slot Labeling
Due to the limitation of space, we just show some
slot clustering result cases in Table 3. After man-
ually assigning names, we find that auto-dialabel
can extract about 70% of the slots with accuracy,
including city name, period of day, month name,
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and day name. The labeled slots above are the
main slots for this scenario and could cover a large
portion of airline ticket reservation demands. Gen-
erally, the slots clustered by auto-dialabel are rea-
sonable and constructive.

4 Conclusion

In this paper, we formalize the auto-labeling task
for dialogue data, and propose an unsupervised
framework auto-dialabel. We design a set of lin-
guistics and neural-network based features, lever-
age an autoencoder for feature assembly, and mod-
ify a hierarchical clustering method for dialogue
intents and slots labeling. Experimental results
show that our framework can achieve 84.1% in-
tent clustering accuracy, and provide reasonable
and instructive slot labeling results.
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Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers, vol-
ume 1, pages 438–449.

688



Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In Proceedings of the SIGDIAL 2013
Conference, pages 404–413.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd international conference
on World Wide Web, pages 1445–1456. ACM.

689



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 690–695
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Extending Neural Generative Conversational Model using External
Knowledge Sources

Prasanna Parthasarathi
McGill University, Canada

pparth2@cs.mcgill.ca

Joelle Pineau
McGill University, Canada

Facebook AI Research, Canada
jpineau@cs.mcgill.ca

Abstract

The use of connectionist approaches in conver-
sational agents has been progressing rapidly
due to the availability of large corpora. How-
ever current generative dialogue models often
lack coherence and are content poor. This
work proposes an architecture to incorporate
unstructured knowledge sources to enhance
the next utterance prediction in chit-chat type
of generative dialogue models. We focus
on Sequence-to-Sequence (Seq2Seq) conver-
sational agents trained with the Reddit News
dataset, and consider incorporating external
knowledge from Wikipedia summaries as well
as from the NELL knowledge base. Our exper-
iments show faster training time and improved
perplexity when leveraging external knowl-
edge.

1 Introduction

Much of the research in dialogue systems from
the last few years has focused on replacing all (or
some) of its components with Deep Neural Net-
work (DNN) architectures (Levin and Pieraccini,
1997; Dahl et al., 2012; Li et al., 2017; Serban
et al., 2016a,b; Vinyals and Le, 2015). These
DNN models are trained end-to-end with large
corpora of human-to-human dialogues, and essen-
tially learn to mimic human conversations.

Although these models can represent the input
context, the need for a dedicated external memory
to remember information in context was pointed
out and mechanisms were introduced in models
like Memory Networks (Sukhbaatar et al., 2015;
Bordes et al., 2016; Gulcehre et al., 2018), and the
Neural Turing Machine (Graves et al., 2014). Al-
though these models, in theory, are better at main-
taining the state using their memory component,
they require longer training time and excessive
search for hyperparameters.

In this paper we explore the possibility of in-
corporating external information in dialogue sys-
tems as a mechanism to supplement the standard
context encoding and facilitate the generation to
be more specific with faster learning time. Fur-
thermore, especially in the case of chit-chat sys-
tems, knowledge can be leveraged from differ-
ent topics ( education, sports, news, travel, etc.).
Current memory-based architectures cannot effi-
ciently handle access to large unstructured exter-
nal knowledge sources.

In this work, we build on the popular Encoder-
Decoder model, and incorporate external knowl-
edge as an additional continuous vector. The pro-
posed Extended Encoder-Decoder (Ext-ED) archi-
tecture learns to predict the embedding of the rel-
evant external context during training and, during
testing, uses an augmented state of external con-
text and encoder final state to generate the next ut-
terance. We evaluate our model with experiments
on Reddit News dataset, and consider using either
the Wikipedia summary (Scheepers, 2017) or the
NELL KB (Carlson et al., 2010) as a source of ex-
ternal context.

2 Related Work

Incorporating supplemental knowledge in neural
conversational agents has been addressed in a few
recent works on dialogue systems. Previous re-
search however was mostly in the context of goal-
driven dialogue systems, where the knowledge-
base is highly structured, and queried to obtain
very specific information (e.g. bus schedules,
restaurant information, more broad tourist infor-
mation).

Few goal-oriented dialogues research use ex-
ternal information directly from the web or rele-
vant data sources. An exception is (Long et al.,
2017), which searches the web for relevant infor-
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mation that pertains to the input context and pro-
vides them as suggestions (like advising on places
to visit while the user intends to visit a city). Sim-
ilarly, instead of dynamically querying the web,
(Ghazvininejad et al., 2017) pre-trains the model
from facts in Foursquare (Yang et al., 2013) to se-
lect relevant facts as suggestions.

Moving closer to unstructured domains, but still
within task-driven conversations, (Lowe et al.,
2015) proposes a way of retrieving relevant re-
sponses based on external knowledge sources. The
model selects relevant knowledge from Ubuntu
man pages and uses it to retrieve a relevant
context-response pair that is inline with the knowl-
edge extracted. Similarly, (Young et al., 2017) ex-
tracts relations within the context and parses over
it to score the message response pairs. The rela-
tional knowledge provides a way of incorporating
useful knowledge or common sense as termed by
the authors.

Though (Guu et al., 2017) did not directly make
use of an external knowledge source, they used an
edit vector that aids in editing a sampled prototype
sentence. This is relevant to our proposed model
as the generated response is conditioned on a sup-
plementary vector similar to the external context
vector discussed later in this paper.

3 Technical Background

3.1 Recurrent Neural Networks
The Recurrent Neural Network (RNN) is a vari-
ant of neural network used for learning represen-
tations of inputs, x1:T , that have an inherent se-
quential structure (speech, video, dialogue etc.).
In natural language processing, RNNs are used to
learn language models that generalize over n-gram
models (Katz, 1987). The RNN maintains a hid-
den state, ht, that is an abstraction of inputs ob-
served until time-step t of the input sequence, and
uses xt to operate on them. RNN uses two pro-
jection functions, U and W , for computing oper-
ations on input and hidden states respectively. A
third function, V , to map ht to the output, yt, the
output of the RNN at every time step t. yt, is a
distribution over the next token given the previous
tokens, and is computed as a function of ht. The
functions of the RNN can be explained as shown
in Equations 1 and 2,

ht = g (U · xt + W · ht�1 + b) , (1)

yt = V · ht + d, (2)

where yt is the output, xt is the vector represen-
tation of input token, ht is the internal state of
the RNN at time t and g is a non-linear function
(like tanh or sigmoid). RNNs are trained with
Back Propagation Through Time (BPTT) (Rumel-
hart et al., 1988) to compute weight updates using
the derivative of a loss function with respect to the
parameters over all previous time-steps.

3.2 Seq2Seq Dialogue Architecture
Generative dialogue models (Sutskever et al.,
2014; Serban et al., 2015) extends the language
model learned by RNNs to generate natural lan-
guage that are conditioned not only on the previ-
ous words generated in the response but also on a
representation of the input context. The ability of
such a learning module to understand an input se-
quence of words (that we call context (ci

1:T )) and
generate a response r

i
1:T tantamount to solving

the dialogue task.
(Vinyals and Le, 2015) first proposed a vanilla

LSTM (Hochreiter and Schmidhuber, 1997) dia-
logue model that encodes a given context with an
LSTM (Encoder) and feeds it to another LSTM
(Decoder) that generates a response token-by-
token. Here the choice of encoder and decoder
modules can be any recurrent architectures like
GRU (Cho et al., 2014), RNN, Bi-directional
LSTM (Schuster and Paliwal, 1997), etc. The
model is then trained to learn a conditional distri-
bution over the vocabulary for generating the next
token in response to the ith context as shown in
Equation 3:

P
⇣
r

i
1:T | c

i
1:T

⌘
= ⇧T

k=1P
⇣
ri
k | r

i
1:k�1

, ci
1:T

⌘
.

(3)
With neural language models, this form can aid

in maintaining long term dependencies and the
next word distribution can be made to condition-
ally depend on an arbitrarily long context. Sophis-
ticated models have made significant architectural
improvements to aid better modelling of the con-
texts (Serban et al., 2016b).

4 Extended Encoder Decoder
Architecture

The primary objective of the proposed architecture
is to supplement response generation with exter-
nal knowledge relevant to the context. Most of
the knowledge sources that are available are free-
form and lack suitable structure for easy querying
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of relevant information. In this work, we attempt
to incorporate such unstructured knowledge cor-
pora for dialogue generation in Seq2Seq models.

Figure 1: Architecture Diagram of Extended Encoder
Decoder Model.

4.1 The Model
The Extended Encoder Decoder (Ext-ED) model,
shown in Figure 1, uses an encoder LSTM (param-
eterized as ⇥Enc) to encode the ith context, c

i
1:T ,

and a fully connected layer (f ) to predict an ex-
ternal context vector (ec

i) conditioned on the en-
coded context. The predicted external context vec-
tor, ec

i, is provided to the decoder LSTM (⇥Dec)
at every step, augmented with the encoder final
state and previous predicted token, to generate the
next token in the response:

P
⇣
ec

i | c
i
1:T

⌘
= f

⇣
⇥Enc

⇣
c

i
1:T

⌘⌘
(4)

P
⇣
r

i
1:T | c

i
1:T

⌘
= ⇧T

k=1P
⇣
ri
k | r

i
1:k�1

, ci
1:T , ec

i
⌘

.

(5)
The decoder is provided with an encoding of

the context along with the external knowledge en-
coding, as ec

i acts as information supplement to
the knowledge available in the context as shown in
Equations 4 and 5.

During training, the gradients for Ext-ED pa-
rameters (f, ⇥Enc, ⇥Dec) are computed by back-
propagating the gradients for parameters with re-
spect to losses in Equations 6, 7 and 8:

L1 =
TX

k=1

Q
�
ri | êci, ci

�
log P

�
ri | ci

�
, (6)

L2 = kêc
i � ec

ik2, (7)

L3 = �
TX

k=1

Q
�
ri | ci,0

�
log P

�
ri | ci

�
. (8)

Here L1 is the log-likelihood that is used to
make the model distribution mimic the data dis-
tribution. L2 trains f to correctly predict eci, and
L3 trains ⇥Dec to make use of the external con-
text by forcing it the model distribution to diverge
when not provided with the external context (eci is
set to 0 vector). In the loss equations, P and Q rep-
resent the data and the model learned distributions
respectively, and ec

i and êc
i represent true and

model(f ) predicted external knowledge encoding.

4.2 External Context Vector
We use Wikipedia summary (Scheepers, 2017)
and NELL knowledge base (KB) (Carlson et al.,
2010) to compute the external knowledge encod-
ing for every context in the context-response pairs.
Algorithm 1 oultines the pseudocode for comput-
ing the external context vector (ec

i). For ith input
context, the methods Return All Values for Entity
or Wiki Summary Query is used to extract the ex-
ternal knowledge vector, eci, from NELL KB or
Wikipedia summary sources.

Algorithm 1: Get External Context Vector
(ci

1:T )
1 eci

 zero vector
2 # Ext Tokens 0
3 for t in range (1,T) do
4 if ci

t is not a stop word then
5 External TokensList  

Wiki Summary Query(ci
t)

6 % Return All Values for Entity(ci
t)

7 for token in External TokensList do
8 eci

 eci +
GloVe Embedding(token)

9 # Ext Tokens # Ext Tokens + 1

10 return eci

# Ext Tokens

The external context encoding, ec
i, is a fixed

length continuous embedding of the knowledge
from external sources, as having all the words
sampled (represented as a Bag of Words ) proved
to be a severe computational overhead because of
sparsity.

The continuous embedding of external context
provides an additional conditioning with relevant
external knowledge that is used to generate the
next utterance. Although this is the intended hy-
pothesis, there are certain expected characteristics
that are desirable of external knowledge sources
for them to be useful:

• The knowledge vectors being away from the
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Figure 2: Convergence of Sequence loss (cross-entropy
loss in sequential outputs) over different models dur-
ing training.(-L3 in legend denote exclusion of L3 loss
from gradient computation.)

mean of their distribution.

• The knowledge vectors having high variance.

We analyzed the knowledge vectors constructed
using the two knowledge sources and the distri-
bution of distances of ec

i from their mean. The
variance of this distribution in NELL KB was 1.44
and from that of Wikipedia summary was 0.73.
Mean distance was very low (0.77) in the case
of Wikipedia compared to that of NELL (2.16).
We observed that the vectors not being spread out
made them less useful than the encoded context
itself in the initial experiments.

5 Experiments and Discussion

We evaluated Ext-ED by training with Reddit
News dataset, and incorporated Wikipedia Sum-
mary and NELL KB as sources of external knowl-
edge. The objective of the experiments are three-
fold: (1) to evaluate the ability of the model to
make use of the external context to condition the
response; (2) to analyze the training time with the
additional knowledge provided; and (3) to observe
any tangible differences in training with the two
knowledge sources.

For the first analysis, we trained Ext-ED with
external context (R100) and validated it without
providing it (see Ext-ED - L3 Ablation in Table 1).
Without the inclusion of L3, Ext-ED did not find
the external context useful and the performance
was not very different from a Vanilla Seq2Seq di-
alogue model (Figure 2). The encoder context had

enough variance to be a viable information source
and hence the external context was ignored. This
can be observed from similar learning curves of
Vanilla Seq2Seq, Ext-ED - L3 (Wiki) models in
Figure 2.

With propagating back gradients with respect
to L3, we observed that the model learns to use
the external context, but, as discussed in Section
4.2, the variance in the external context vectors
constructed using the two knowledge sources was
too low. To fix this, we scaled the external con-
text vectors with N (4, 1). This improved the vari-
ance in the knowledge that subsequently improved
the usefulness of these vectors which was also ob-
served in Figure 2.

Model PPL BLEU-4
Vanilla Seq2Seq 38.09 0.437
Ext-ED - L3 (Wiki) 38.37 0.435
Ext-ED - L3 Ablation 37.06 0.425
Ext-ED (Wiki) 30.26 0.53
Ext-ED (NELL KB) 29.07 0.525
Ext-ED Ablation 601.8 0.274

Table 1: Comparison of BLEU (sentence bleu) and
Perplexity scores on validation set across different
models.

The provision of external knowledge improved
the Perplexity and BLEU-4 scores as shown in Ta-
ble 1. Though the improvements are reasonable,
the metrics used are not strong indicators for eval-
uating the influence of external contexts in dia-
logue. But, they do indicate that the prediction ac-
curacy is improved with the inclusion of external
knowledge sources. The poor perplexity for Ext-
ED Ablation is because the model is conditioned
to predict the next utterance using ec

i and when
not provided the context alone is not sufficiently
informative. Another way to interpret this would
be to see that the external context and and the dia-
logue context provide complementary information
for better predicting the next utterance. Further,
the experiments illustrated that the model, when
provided with an informative source of knowl-
edge (the one that has higher variance), will let
the model converge faster. One possible hypothe-
sis is that ec

i, which has high variance and is pro-
vided as input in every step of decoding, is learned
before the RNN parameters converge. The infor-
mation in ec

i is relevant to the context and subse-
quently helps in training the decoder faster.
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6 Conclusion

The proposed model, Extended Encoder Decoder,
offers a framework to incorporate unstructured
external knowledge to generate dialogue utter-
ances. The experiments helped in understanding
the need for external knowledge sources for im-
proving learning time, and helped characterize the
value of external knowledge sources. The exper-
iments showed that external knowledge improved
the learning time of the models. In future work, we
aim to add more experiments with dialogue tasks
that require understanding a supplementary source
of knowledge to solve the task. Also, we plan to
look at specialized tasks that naturally evaluate the
influence of external knowledge, to help the model
to generate diverse responses.
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Abstract

Categorizing a patient’s intentions during clin-
ical interactions in general and within motiva-
tional interviewing specifically may improve
decision making in clinical treatments. Within
this paper, we propose a method that mod-
els the temporal flow of a conversation and
the transition between topics by using domain
adaptation on a clinical dialogue corpus com-
prising Motivational Interviewing (MI) ses-
sions. We deploy Bi-LSTM and topic mod-
els jointly to learn theme shifts across differ-
ent time stages within these hour-long MI ses-
sions to assess the patient’s intent to change
their habits or to sustain them respectively.
Our experiments show promising results and
improvements after considering temporality in
the classification task over our baseline. This
result confirms and extends related literature
that has manually identified that certain phases
within MI sessions are more predictive of pa-
tient outcomes than others.

1 Introduction

Motivational Interviewing (MI) (Miller and Roll-
nick, 2012) is a collaborative communication style
used to address a variety of health problems
such as alcohol and drug use. Accurately under-
standing the patient’s intentions to change from
his/her speech during the session could greatly en-
hance the efficacy of MI. Motivational Interview-
ing Skill Code (MISC) is a coding system that
captures client language, specifically change talk
(CT) and sustain talk (ST) (Miller et al., 2008).
However, reliable MISC coding is labor-intensive
and requires domain expertise. Recent computa-
tional annotation methods have been proposed to
automatically classify patients’ behaviors within
MI (Xiao et al., 2016; Pérez-Rosas et al., 2017;
Gibson et al., 2017). To this end, Recurrent Neu-
ral Networks (RNN) that capture sequential infor-
mation are applied for the classification of patient

behavior.
Recent research shows that themes and words

within a conversation change across time (Dufour
et al., 2016). Similarly within MI, topics and
the patient’s attitude towards their willingness to
change might shift. Within this work, we investi-
gate how shifts in themes across time affects per-
formance of the intention classifications for the di-
alogue.

Specifically, we focus on the patient intent clas-
sification task and propose a method that adopts
the temporal factor by domain adaptation to im-
prove performance of the classifiers. We eval-
uate our approach on a dataset of college alco-
holism (Carey et al., 2009; Borsari et al., 2012),
containing transcripts of MI conducted with U.S.
college students. Specifically, we first explore
the theme shift and give a brief analysis by
topic modeling (Blei et al., 2003). We then uti-
lize Bi-directional Long Short-Term Memory (Bi-
LSTM) (Graves and Schmidhuber, 2005) to en-
code utterances from both word and topic embed-
dings. Next, we concatenate both contextual in-
formation with the encoded utterance representa-
tions. Finally, we jointly train a unified represen-
tation of utterance by domain adversarial training
and patient intent classification. We show that this
approach can lead to improvements in classifica-
tion performance.

2 Dataset

We conduct our experiments on a clinical dataset
of college student alcoholism (Carey et al., 2009;
Borsari et al., 2012), where we obtain 193 MI tran-
scripts with a total of 83677 utterances. Each of
the MI session ranged between 60 and 90 min-
utes. Each client utterance was coded using the
MISC. In this paper, we focus on classifying pa-
tient behavior on the utterance-level. Specifically,
we classify patient behavior on collapsed MISC
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Table 1: Examples of utterances in Alcoholism
Treatment. “I” stands for interventionist and “P”
for patient. MISC codes are provided in the third
column. P and I codes are coded following MISC.
Change talk (CT), sustain talk (ST), and follow
neutral (FN) codes are also provided.

Role Conversation MISC
I Maybe you could tell me a lit-

tle bit about what you do on the
weekends, what your weekends
have been like.

quo

P Well we go out, but before we
go out we just drink in the dorm
room.

FN

I Has this sort of changed your
thinking, are things different
than they were when you came
in?

quc

P I mean, I feel guilty about
drinking,

CT
(o+3)

I Yeah. So it feels like, or it
sounds like social social drink-
ing is a big part of how you meet
other people.

res

P It’s just, like . . . and I don’t
mean to sound mean, but about
the kids who don’t drink, and
people think that, “Oh, the kids
who dont drink are losers”.

ST
(o-3)

annotation codes into with three categories: “CT”:
Change talk indicates utterances that reflect moti-
vating factors related to change; “ST”: Sustain talk
indicate the patient has no intentions to change;
“FN”: Follow neutral means there is no indica-
tion of patient inclination. An example conver-
sation snippet, highlighting all three sources of
information is provided in Table 1. The inten-
tion labels (o+3, o-3) are only available for pa-
tients, whose ‘+’ and ‘-’ refer to change vs sus-
tain talk (CT vs ST) and the number measures the
“strength of client language,” which represents a
subjective assessment by human annotators, and
the ‘quo’ and ‘quc’ refer to “open question” and
“closed questions”, which are only for interven-
tionist (see (Borsari et al., 2015) for details regard-
ing the coding strategy). While the MISC codes of
client utterances within MISC are more complex
and comprise other types of annotations, we focus

on human intention modeling (i.e., CT vs. ST vs.
FN) only.

How the theme of dialogue shift overtime?

Figure 1: 10 topic proportions of patient’s utter-
ance across time stages.

We qualitatively examined how the distribution
of content changes across different time stages. To
measure the distribution of content, we trained a
topic model with 10 topics using Gensim (Řehůřek
and Sojka, 2010) with default parameters. The
data doesn’t have associated timestamps, thus we
empirically split each MI transcript by the number
of patient utterances equally into three time stages,
stage 1, stage 2 and stage 3. We calculated the
proportion of each topic within the same time pe-
riod by take the average of all transcripts. We then
normalized the topic distributions and finally vi-
sualize the extent to which distributions of the 10
topics varies by time.

We can observe the varied topic distributions
across different stages of conversations, where
the topic distributions are plotted from the bot-
tom to the top. There are some topics have
more variations, such as topic 4, and some top-
ics are very stable such as topic 1 1. Recent
research shows the performance of classification
tasks might be impacted by the temporal charac-
ter of language (Huang and Paul, 2018). Thus, it
might be desirable to model the temporality in the
computational classifiers.

1The 5 top words of topic 4 and 1: yeah, go, friends, know,
people; beer, alcohol, games, meeting, playing.
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3 Model

The architecture of the proposed model is shown
in Figure 2. We feed four types of information
to the model: topic- and word-level data of the
utterance (content), preceding interventionist ver-
bal behavior (context) and prior MISC annotations
of utterances (MISC). Particularly, we empirically
extracted previous 5 utterances as context and 10
previous codes as MISC2, where we set “unk” as
the default.

Embeddings. We built two types of embed-
dings, word embedding and topic embedding.
We created word embeddings from Googles pre-
trained Word2Vec (Mikolov et al., 2013) and cre-
ated topic embeddings from a trained LDA (Blei
et al., 2003) specific to the corpus. We treated each
MISC as one document and trained an embedding
model.

Unified Representation. We apply Bi-
directional LSTM (Bi-LSTM) (Graves and
Schmidhuber, 2005) on the inputs. Dropouts (Sri-
vastava et al., 2014) are applied on the outputs of
Bi-LSTM. We merge the outputs by concatenation
and feed the outputs to the dense layer to learn a
unified representation of the utterance.

Joint Learning. We apply domain adversarial
training (Ganin et al., 2016) only on the topic in-
puts from learned topic representations. Our in-
tuition is that the topic distributions across differ-
ent stages of the MI session could track the vari-
ations of patients’ intents. We empirically split
the conversation into three time stages: Stage 1-
3 (i.e, beginning, middle, and end). The goal of
domain adversarial training is converted to a time
stage prediction task, which aims to differentiate
topic themes both locally and globally. We used
one-hot encoding to represent labels of the predic-
tion tasks. We deploy softmax functions for both
time stage and intention predictions. We use cate-
gorical cross entropy to jointly optimize the train-
ing process of the two classification tasks: domain
classification and patient intent classification.

4 Experiments

Each utterance is lowercased and tokenized by
NLTK (Bird et al., 2009). We filter out the utter-
ances that are shorter than 5 tokens and then re-
move punctuations. Finally, we obtain 22432 pa-

2We encode 10 MISC codes prior to the current one as
a sequence of 10 “words”, then we treat the sequence as an
additional input document.

tient utterances. The dataset is stratified and split
into training set (80%), validation set (10%) and
testing set (10%), as shown in Table 2. We train
our models on the training set and run grid search
to find the optimal parameters on the validation set
by the weighted F1 score.

Table 2: Statistics of the processed dataset.

Datasets Train Valid Test Total
CT 6246 779 768 7794
ST 3099 406 401 3906
FN 8600 1058 1074 10732

All 22432

The details of optimized parameters are listed
as follows. The models were trained for 15 epochs
with a batch size of 64. Each utterance and
its context are padded to 50 words. The utter-
ance’s previous MISC codes are padded to 10.
We pad the sequences with an “unknown”-token.
The size of LSTMs was tuned in the range of
[100, 150, 200] and the size of dense layer tuned
within [100, 150, 200]. We select the activation
function of the Dense layer within {relu (Hahn-
loser et al., 2000), tanh, softplus} (Hahnloser
et al., 2000). We tried different flip gradient value
within [0.05, 0.01, 0.005] for the domain adversar-
ial training. We tuned the dropout rate between
[0.1, 0.2]. The optimizer was selected either RM-
Sprop (Hinton et al., 2012) or Adam (Kingma and
Ba, 2014) with a fixed learning rate of 0.001. Fi-
nally, we empirically set the loss weight of the do-
main adversarial training to 0.05.

We trained the topic model on the MI
corpus using Gensim (Řehůřek and Sojka,
2010). The number of topics was selected
by coherence scores among 5, 10, 20 topics.
We used Google pre-trained word embedding
with 300 dimensions (Mikolov et al., 2013).
We obtained 50-dimension code embedding by
Word2vec (Mikolov et al., 2013) for the MISC
codes, where each sequence of MISC were treated
as a document.

We select three different approaches as our
baselines with the inputs: content, context, MISC,
and topic.

• (Pérez-Rosas et al., 2017) with rich lin-
guistic features (denote as Perez2017 lin):
We reproduced their method. We used
scikit-learn (Buitinck et al., 2013) to ex-
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Figure 2: The proposed model learns from tow different channels: word and topic channels. The topic
channel captures the theme shifts across stages while the word channel aims to capture the behavior
indicators within each utterance.

tract n-gram features, and applied Stanford
Parser (Manning et al., 2014) to extract Part-
of-Speech (POS). We replaced LIWC (Pen-
nebaker et al., 2001) by a free and open
source lexicon (Mohammad and Turney,
2013) to extract semantic features. We use
Ngram+ to denote the rich linguistic features.

• (Pérez-Rosas et al., 2017) with embeddings
(denote as Perez2017 vec): Word embed-
ding shows superior results over the n-gram
features in the classification tasks (Mikolov
et al., 2013) in the recent past. We experi-
ment feeding the classifier with word vectors
while we keep the same parameter settings as
the Perez2017 lin baseline. We deploy the
strategy of concatenating word embeddings
to build representations of utterances, which
is denoted as “Vec-con”.

• (Xiao et al., 2016) (denoted as Xiao2016):
Their approach applies Bi-directional RNN
to encode each utterance by both the utter-
ance itself and its preceding one. There are
two major differences between their method
and ours: first, they did not consider tempo-
rality in their model, second, they did not use
the previous MISC sequences as inputs. They
used Gated Recurrent Unit (GRU) (Chung
et al., 2014) as the RNN cell.

We use the “Co”, “Ct”, “MISC” to denote the
utterance (content), preceding interventionist ver-
bal behavior (context) and prior MISC annotations
of utterances (MISC) respectively. And we use
“All” to denote all of the inputs3. We use the “T”

3The baselines did not use one or more inputs (the context

to denote temporal shifts proposed in our paper.
We balance training weights for the classification
labels. We use metrics from scikit-learn (Buitinck
et al., 2013) to evaluate the classification perfor-
mance by precision, recall and weighted F1 on the
intention labels.

4.1 Results and Discussion

Table 3: Results of classification evaluations.

Features Method Precision Recall F1
Perez2017 lin

Ngram+
Co 0.62 0.62 0.62

Co+Ct 0.60 0.61 0.61
All 0.61 0.61 0.62

Perez2017 vec

Vec-con
Co 0.60 0.58 0.59

Co+Ct 0.61 0.59 0.60
All 0.61 0.57 0.58

Xiao2016

Vec
Co 0.65 0.63 0.64

Co+Ct 0.68 0.64 0.65
All 0.67 0.67 0.67

Proposed model

Vec
Co+T 0.65 0.64 0.65

Co+Ct+T 0.70 0.66 0.68
All+T 0.74 0.67 0.70

The results of our experiments are summarized
in the Table 3. Findings indicate that our proposed
approach leads to a small performance boost af-
ter using the topic embeddings. Thus, our sim-

and MISC) in the original publications. We used different
combinations for fair comparison.
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ple feature augmentation approach has the poten-
tial to make classifiers more robust. In addition,
the contextual information (“Ct”) is quite useful
to identify the patients’ current intentions, and
the sequential information through time stages has
strong indications of human intentions.

Significance Analysis

We conducted significance analysis to compare
Xiao2016 and our proposed method. Because
Xiao2016 only used content and context inputs, in
this analysis, we train our method with the same
inputs (Co+Ct). We followed the method of boot-
strap samples (Berg-Kirkpatrick et al., 2012) to
create 50 pairs of training and test datasets with
replacement, where we keep the sizes the same in
the Table 2. We keep the same experimental steps
and use the parameters that achieved the best per-
formances in the Table 3 to train the models.

To compare the two approaches, we conduct a
paired t-test comparing the achieved F1 scores of
both models. We used a two-tail test instead of
one tail test used in the paper due to its increased
rigor and lack of prior assumptions (Dror et al.,
2018). The test reveals a significant result with
t(85) = 3.084 and p = 0.00275. The result shows
that we can reject the null hypothesis that our pro-
posed method is not better than Xiao2016.

5 Conclusion

In this paper, we focus on the temporal charac-
teristics of the MI corpus and propose a simple
method that models the temporal factor within a
single MI session. We jointly learn the utterance
representation via time stage and intention predic-
tions and the proposed model improves the per-
formance of the classification task. The identified
intent of clients could help therapists adjust their
treatment strategy. In future work, we will inves-
tigate other external sources of knowledge, such
as acoustic cues and videos to further improve the
performance of the model.
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Abstract

Generating semantically coherent responses is
still a major challenge in dialogue genera-
tion. Different from conventional text gener-
ation tasks, the mapping between inputs and
responses in conversations is more compli-
cated, which highly demands the understand-
ing of utterance-level semantic dependency, a
relation between the whole meanings of in-
puts and outputs. To address this problem, we
propose an Auto-Encoder Matching (AEM)
model to learn such dependency. The model
contains two auto-encoders and one mapping
module. The auto-encoders learn the seman-
tic representations of inputs and responses,
and the mapping module learns to connect the
utterance-level representations. Experimental
results from automatic and human evaluations
demonstrate that our model is capable of gen-
erating responses of high coherence and flu-
ency compared to baseline models.1

1 Introduction

Automatic dialogue generation task is of great
importance to many applications, ranging from
open-domain chatbots (Higashinaka et al., 2014;
Vinyals and Le, 2015; Li et al., 2016, 2017a; Su
et al., 2018) to goal-oriented technical support
agents (Bordes and Weston, 2016; Zhou et al.,
2017; Asri et al., 2017). Recently there is an
increasing amount of studies about purely data-
driven dialogue models, which learn from large
corpora of human conversations without hand-
crafted rules or templates. Most of them are based
on the sequence-to-sequence (Seq2Seq) frame-
work (Sutskever et al., 2014) that maximizes the
probability of gold responses given the previous
dialogue turn. Although such methods offer great

⇤Equal Contribution
1The code is available at https://github.com/

lancopku/AMM

promise for generating fluent responses, they still
suffer from the poor semantic relevance between
inputs and responses (Xu et al., 2018). For exam-
ple, given “What’s your name” as the input, the
models generate “I like it” as the output.

Recently, the neural attention mechanism (Lu-
ong et al., 2015; Vaswani et al., 2017) has been
proved successful in many tasks including neural
machine translation (Ma et al., 2018b) and abstrac-
tive summarization (Lin et al., 2018), for its ability
of capturing word-level dependency by associat-
ing a generated word with relevant words in the
source-side context. Recent studies (Mei et al.,
2017; Serban et al., 2017) have applied the at-
tention mechanism to dialogue generation to im-
prove the dialogue coherence. However, conversa-
tion generation is a much more complex and flex-
ible task as there are less “word-to-words” rela-
tions between inputs and responses. For exam-
ple, given “Try not to take on more than you can
handle” as the input and “You are right” as the
response, each response word can not find any
aligned words from the input. In fact, this task re-
quires the model to understand the utterance-level
dependency, a relation between the whole mean-
ings of inputs and outputs. Due to the lack of
utterance-level semantic dependency, the conven-
tional attention-based methods that simply capture
the word-level dependency achieve less satisfying
performance in generating high-quality responses.

To address this problem, we propose a
novel Auto-Encoder Matching model to learn
utterance-level dependency. First, motivated by
Ma et al. (2018a), we use two auto-encoders to
learn the semantic representations of inputs and re-
sponses in an unsupervised style. Second, given
the utterance-level representations, the mapping
module is taught to learn the utterance-level de-
pendency. The advantage is that by explicitly sep-
arating representation learning and dependency
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How are you

How are you

I am fine

I am fine

Figure 1: An illustration of the Auto-Encoder Match-
ing model. The encoder and decoder are two auto-
encoders that are responsible for learning the semantic
representations. The mapping module is responsible
for learning the utterance-level dependency.

learning, the model has a stronger modeling ability
compared to traditional Seq2Seq models. Exper-
imental results show that our model substantially
outperforms baseline methods in generating high-
quality responses.

Our contributions are listed as follows:

• To promote coherence in dialogue gener-
ation, we propose a novel Auto-Encoder
Matching model to learn the utterance-level
dependency.

• In our proposed model, we explicitly separate
utterance representation learning and depen-
dency learning for a better expressive ability.

• Experimental results on automatic evaluation
and human evaluation show that our model
can generate much more coherent text com-
pared to baseline models.

2 Approach

In this section, we introduce our proposed model.
An overview is presented in Section 2.1. The de-
tails of the modules are shown in Sections 2.2, 2.3
and 2.4. The training method is introduced in Sec-
tion 2.5.

2.1 Overview
The proposed model contains three modules: an
encoder, a decoder, and a mapping module, as
shown in Figure 1.

In general, our model is different from the con-
ventional sequence-to-sequence models. The en-
coder and decoder are both implemented as auto-
encoders (Baldi, 2012). They learn the internal
representations of inputs and target responses, re-
spectively. In addition, a mapping module is built
to map the internal representations of the input and
the response.

2.2 Encoder
The encoder E✓ is an unsupervised auto-encoder
based on Long Short Term Memory Networks
(LSTM) (Hochreiter and Schmidhuber, 1996). As
it is essentially a LSTM-based Seq2Seq model,
we name the encoder and decoder of the auto-
encoder “source-encoder” and “source-decoder”.
To be specific, the encoder E✓ receives the source
text x = {x1, x2, ..., xn}, and encodes it to an in-
ternal representation h, and then decodes h to a
new sequence x̃ = {x̃1, x̃2, ..., x̃n} for the recon-
struction of the input. We extract the hidden state
h as the semantic representation. The encoder E✓

is trained to reduce the reconstruction loss, whose
loss function is defined as follows:

J1(✓) = � log P (x̃|x; ✓) (1)

where ✓ refers to the parameters of the encoder E✓.

2.3 Decoder
Similar to the encoder, our decoder D� is also a
LSTM-based auto-encoder. However, as there is
no target text provided in the testing stage, we pro-
pose the customized implementation, which is il-
lustrated in Section 2.5. Here in the introduction
of the decoder, we do not provide the testing de-
tails. Similarly, we name the encoder and decoder
of the auto-encoder “target-encoder” and “target-
decoder”. The target-encoder receives the target
y = {y1, y2, ..., yn} and encodes it to a utterance-
level semantic representation s, and then decodes
s to a new sequence to approximate the target text.
The loss function is identical to that of the en-
coder:

J2(�) = � log P (ỹ|y; �) (2)

2.4 Mapping Module
As our model is constructed for dialogue genera-
tion, we design the mapping module to ensure that
the generated response is semantically consistent
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with the source. There are many matching mod-
els that can be used to learn such dependency rela-
tions (Hu et al., 2014; Guo et al., 2016; Pang et al.,
2016; Chen et al., 2018). For simplicity, we only
use a simple feedforward network for implemen-
tation. The mapping module M� transforms the
source semantic representation h to a new repre-
sentation t. To be specific, we implement a multi-
layer perceptron (MLP) g(·) for M� and train it by
minimizing the L2-norm loss J3(�) of the trans-
formed representation t and the semantic represen-
tation of target response s:

t = g(h)

J3(�) =
1

2
kt � sk2

2

(3)

2.5 Training and Testing
In the testing stage, given an input utterance, the
encoder E✓, the decoder D�, and the matching
module M� work together to produce a dialogue
response. The source-encoder first receives the in-
put x and encodes it to a semantic representation h
of the source utterance. Then, the mapping mod-
ule transforms h to t, a target response represen-
tation. Finally, t is sent to the target-decoder for
response generation.

In the training stage, besides the auto-encoder
loss and the mapping loss, we also use an end-to-
end loss J4(✓,�, �):

J4(✓, �, �) = � log P (y|x; ✓,�, �) (4)

= �
TX

t=1

log P (yt|x, y1..t�1; ✓,�, �)

(5)

where x is the source input, y is the target re-
sponse, and T is the length of response sequence.
The model learns to generate ỹ to approximate y
by minimizing the reconstruction losses J1(✓) and
J2(�), the mapping loss J3(�), and the end-to-end
loss J4(✓,�, �). The details are illustrated below:

J = �1 [J1(✓) + J2(�)] + �2J3(�)

+ �3J4(✓,�, �)
(6)

where J refers to the total loss, and �1, �2, and �3

are hyperparameters.

3 Experiment

We conduct experiments on a high-quality dia-
logue dataset called DailyDialog built by Li et al.

(2017b). The dialogues in the dataset reflect
our daily communication and cover various topics
about our daily life. We split the dataset into three
parts with 36.3K pairs for training, 11.1K pairs for
validation, and 11.1K pairs for testing.

3.1 Experimental Details
For dialogue generation, we set the maximum
length to 15 words for each generated sentence.
Based on the performance on the validation set,
we set the hidden size to 512, embedding size to
64 and vocabulary size to 40K for baseline mod-
els and the proposed model. The parameters are
updated by the Adam algorithm (Kingma and Ba,
2014) and initialized by sampling from the uni-
form distribution ([�0.1, 0.1]). The initial learn-
ing rate is 0.002 and the model is trained in mini-
batches with a batch size of 256. �1 and �3 are
set to 1 and �2 is set to 0.01 in Equation (6). It is
important to note that for a fair comparison, we re-
implement the baseline models with the best set-
tings on the validation set. After fixing the hyper-
parameters, we combine the training and valida-
tion sets together as a larger training set to produce
the final model.

3.2 Results
We use BLEU (Papineni et al., 2002), to com-
pare the performance of different models, and
use the widely-used BLEU-4 as our main BLEU
score. The results are shown in Table 1. The
proposed AEM model significantly outperforms
the Seq2Seq model. It demonstrates the effec-
tiveness of utterance-level dependency on improv-
ing the quality of generated text. Furthermore,
we find that the utterance-level dependency also
benefits the learning of word-level dependency.
The improvement from the AEM model to the
AEM+Attention model2 is 0.68 BLEU-4 point. It
is much more obvious than the improvement from
the Seq2Seq model to the Seq2Seq+Attention,
which is 0.29 BLEU-4 point.

We also report the diversity of the generated re-
sponses by calculating the number of distinct un-
igrams, bigrams, and trigrams. The results are
shown in Table 2. We find that the AEM model
achieves significant improvement on the diversity
of generated text. The number of unique tri-
gram of the AEM model is almost six times more

2With the additional attention mechanism, the outputs of
attention-based decoder and our decoder are combined to-
gether to predict the probability of response words.
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4
Seq2Seq 12.43 4.57 2.69 1.84
AEM 13.55 4.89 3.04 2.16
Seq2Seq+Attention 13.63 4.99 3.05 2.13
AEM+Attention 14.17 5.69 3.78 2.84

Table 1: BLEU scores for the AEM model and the Seq2Seq model.

Models Dist-1 Dist-2 Dist-3
Seq2Seq 0.8K 2.7K 5.5K
AEM 3.1K 14.8K 31.2K
Seq2Seq+Attention 2.5K 13.6K 34.6K
AEM+Attention 3.3K 23.2K 53.9K

Table 2: Diversity scores for the AEM model and the Seq2Seq model. Dist-1, Dist-2, and Dist-3 are respectively
the number of distinct unigrams, bigrams, and trigrams in the generated text.

Models Fluency Coherence G-Score
Seq2Seq 6.97 3.51 4.95
AEM 8.11 4.18 5.82
Seq2Seq+Attention 5.11 3.30 4.10
AEM+Attention 7.92 4.97 6.27

Table 3: Human evaluation results of the AEM model
and the Seq2Seq model.

than that of the Seq2Seq model. Also, it should
be noticed that the attention mechanism performs
almost the same compared to the AEM model
(31.2K vs. 34.6K in terms of Dist-3), which indi-
cates that the utterance-level dependency and the
word-level dependency are both indispensable for
dialogue generation. Therefore, by combining the
two dependencies together, the AEM+Attention
model achieves the best results. Such improve-
ments are expected. With the increase of the rel-
evance of the generated text, it gets harder for
the model to generate repeated responses. In our
experimental results, the number of repetitive “I
don’t know” in the AEM+Attention model is re-
duced by 50% compared to the Seq2Seq model.

For dialogue generation, human evaluation is
more convincing, so we also report human eval-
uation results on the test set. We randomly choose
100 utterances in daily communication style for
the human evaluation, each of which is sent to
different models to generate responses. The re-
sults are distributed to the annotators who have
no knowledge about which model the sentence is
from. All annotators have linguistic background.
They are asked to score the generated responses
in terms of fluency and coherence. Fluency rep-

Input 1: My name is David. What is my
name?
Seq2Seq: Ours, maria.
AEM: Pardon me? It is unreasonable!
Input 2: I’m going to kill you!
Seq2Seq: I know. I’m a good man.
AEM: What?!?!!!! No!!
Input 3: I hate you.
Seq2Seq: I’m not.
AEM: You do? you’re a sweet girl.
Input 4: How are you?
Seq2Seq: Fine.
AEM: Fine. I’m good.
Input 5: Can you say ‘Hello’?
Seq2Seq: Yeah, I guess.
AEM: Sure, I guess.

Table 4: Examples generated by the AEM model and
the Seq2Seq model.

resents whether each sentence is in correct gram-
mar. Coherence evaluates whether the generated
response is relevant to the input. The score ranges
from 1 to 10 (1 is very bad and 10 is very good).
To evaluate the overall performance, we use the
geometric mean of fluency and coherence as the
final evaluation metric.

Table 3 shows the results of human evaluation.
The inter-annotator agreement is satisfactory con-
sidering the difficulty of human evaluation. The
Pearson’s correlation coefficient is 0.69 on co-
herence and 0.57 on fluency, with p < 0.0001.
First, it is clear that the AEM model outperforms
the Seq2Seq model with a large margin, which
proves the effectiveness of the AEM model on
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generating high quality responses. Second, it is
interesting to note that with the attention mech-
anism, the coherence is decreased slightly in the
Seq2Seq model but increased significantly in the
AEM model. It suggests that the utterance-level
dependency greatly benefits the learning of word-
level dependency. Therefore, it is expected that the
AEM+Attention model achieves the best G-score.

Table 4 shows the examples generated by the
AEM model and the Seq2Seq model. For easy
questions (ex. 4 and ex. 5), they both perform
well. For hard questions (ex. 1 and ex. 2), the pro-
posed model obviously outperforms the Seq2Seq
model. It shows that the utterance-level depen-
dency learned by the proposed model is useful for
handling complex inputs.

3.3 Error Analysis

Although our model achieves the best perfor-
mance, there are still several failure cases. We find
that the model performs badly for the inputs with
unseen words. For instance, given “Bonjour” as
the input, it generates “Stay out of here” as the out-
put. It shows that the proposed model is sensitive
to the unseen utterance representations. Therefore,
we would like to explore more approaches to ad-
dress this problem in the future work. For exam-
ple, the auto-encoders can be replaced by varia-
tional auto-encoders to ensure that the distribution
of utterance representations is normal, which has
a better generalization ability.

4 Conclusion

In this work, we propose an Auto-Encoder Match-
ing model to learn the utterance-level semantic de-
pendency, a critical dependency relation for gener-
ating coherent and fluent responses. The model
contains two auto-encoders that learn the utter-
ance representations in an unsupervised way, and a
mapping module that builds the mapping between
the input representation and response representa-
tion. Experimental results show that the proposed
model significantly improves the quality of gener-
ated responses according to automatic evaluation
and human evaluation, especially in coherence.
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Abstract

This paper introduces a document grounded
dataset for conversations. We define “Docu-
ment Grounded Conversations” as conversa-
tions that are about the contents of a specified
document. In this dataset the specified docu-
ments were Wikipedia articles about popular
movies. The dataset contains 4112 conversa-
tions with an average of 21.43 turns per con-
versation. This positions this dataset to not
only provide a relevant chat history while gen-
erating responses but also provide a source of
information that the models could use. We
describe two neural architectures that provide
benchmark performance on the task of gen-
erating the next response. We also evaluate
our models for engagement and fluency, and
find that the information from the document
helps in generating more engaging and fluent
responses.

1 Introduction

At present, dialog systems are considered to be ei-
ther task-oriented, where a specific task is the goal
of the conversation (e.g. getting bus information
or weather for a particular location); or non-task
oriented where conversations are more for the sake
of themselves, be it entertainment or passing the
time. Ultimately, we want our agents to smoothly
interleave between task-related information flow
and casual chat for the given situation. There is
a dire need of a dataset which caters to both these
objectives.

Serban et al. (2015) provide a comprehensive
list of available datasets for building end-to-end
conversational agents. Datasets based on movie
scripts (Lison and Tiedemann, 2016; Danescu-
Niculescu-Mizil and Lee, 2011a) contain artifi-
cial conversations. The Ubuntu Dialogue Corpus
(Lowe et al., 2015) is based on technical support
logs from the Ubuntu forum. The Frames dataset

(Asri et al., 2017) was collected to solve the prob-
lem of frame tracking. These datasets do not pro-
vide grounding of the information presented in the
conversations. Zhang et al. (2018) focuses on per-
sonas in dialogues: each worker has a set of pre-
defined facts about the persona that they can talk
about. Most of these datasets lack conversations
with large number of on-topic turns.

We introduce a new dataset which addresses the
concerns of grounding in conversation responses,
context and coherence in responses. We present a
dataset which has real human conversations with
grounding in a document. Although our exam-
ples use Wikipedia articles about movies, we see
the same techniques being valid for other external
documents such as manuals, instruction booklets,
and other informational documents. We build a
generative model with and without the document
information and find that the responses generated
by the model with the document information is
more engaging (+7.5% preference) and more flu-
ent (+0.96 MOS). The perplexity also shows a
11.69 point improvement.

2 The Document Grounded Dataset

To create a dataset for document grounded con-
versations, we seek the following things: (1) A set
of documents (2) Two humans chatting about the
content of the document for more than 12 turns.
We collected conversations about the documents
through Amazon Mechanical Turk (AMT). We re-
strict the topic of the documents to be movie-
related articles to facilitate the conversations. We
initially experimented with different potential do-
mains. Since movies are engaging and widely
known, people actually stay on task when dis-
cussing them. In fact in order to make the task
interesting, we offered a choice of movies to the
participants so that they are invested in the task.
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2.1 Document Set Creation

We choose Wikipedia (Wiki) 1 articles to cre-
ate a set of documents D = {d1, . . . , d30} for
grounding of conversations. We randomly select
30 movies, covering various genres like thriller,
super-hero, animation, romantic, biopic etc. We
extract the key information provided in the Wiki
article and divide it into four separate sections.
This was done to reduce the load of the users to
read, absorb and discuss the information in the
document. Hence, each movie document di con-
sists of four sections {s1, s2, s3, s4} correspond-
ing to basic information and three key scenes of
the movie. The basic information section s1 con-
tains data from the Wikipedia article in a stan-
dard form such as year, genre, director. It also
includes a short introduction about the movie, rat-
ings from major review websites, and some crit-
ical responses. Each of the key scene sections
{s2, s3, s4} contains one short paragraph from the
plot of the movie. Each paragraph contains on an
average 7 sentences and 143 words. These para-
graphs were extracted automatically from the orig-
inal articles, and were then lightly edited by hand
to make them of consistent size and detail. An ex-
ample of the document is attached in Appendix.

2.2 Dataset Creation

To create a dataset of conversations which uses the
information from the document, involves the par-
ticipation of two workers. Hence, we explore two
scenarios: (1) Only one worker has access to the
document and the other worker does not and (2)
Both the workers have access to the document. In
both settings, they are given the common instruc-
tions of chatting for at least 12 turns.

Scenario 1: One worker has document. In this
scenario, only one worker has access to the docu-
ment. The other worker cannot see the document.
The instruction to the worker with the document
is: Tell the other user what the movie is, and try
to persuade the other user to watch/not to watch
the movie using the information in the document;
and the instruction to the worker without the doc-
ument is: After you are told the name of the movie,
pretend you are interested in watching the movie,
and try to gather all the information you need to
make a decision whether to watch the movie in the
end. An example of part of the dialogue for this

1https://en.wikipedia.org

user2: Hey have you seen the inception?
user1: No, I have not but have heard of it.

What is it about
user2: It’s about extractors that perform

experiments using military technology
on people to retrieve info about their
targets.

Table 1: An example conversation for scenario 1. User
1 does not have access to the document, while User 2
does. The full dialogue is attached in the Appendix.

User 2: I thought The Shape of Water was
one of Del Toro’s best works.
What about you?

User 1: Did you like the movie?
User 1: Yes, his style really extended the story.
User 2: I agree. He has a way with fantasy

elements that really helped this story
be truly beautiful.

Table 2: An example conversation for scenario 2. Both
User 1 and User 2 have access to the Wiki document.
The full dialogue is attached in the Appendix.

scenario is shown in Table 1.

Scenario 2: Both workers have document. In
this scenario, both the workers have access to the
same Wiki document. The instruction given to
the workers are: Discuss the content in the doc-
ument with the other user, and show whether you
like/dislike the movie. An example of the dialogue
for this scenario is shown in Table 2.

Workflow: When the two workers enter the
chat-room, they are initially given only the first
section on basic information s1 of the document
di. After the two workers complete 3 turns (for the
first section 6 turns is needed due to initial greet-
ings), the users will be shown the next section. The
users are encouraged to discuss information in the
new section, but are not constrained to do so.

2.3 Dataset Statistics
The dataset consists of total 4112 conversations
with an average of 21.43 turns. The number of
conversations for scenario 1 is 2128 and for sce-
nario 2 it is 1984. We consider a turn to be an
exchange between two workers (say w1 and w2).
Hence an exchange of w1, w2, w1 has 2 turns (w1,
w2) and (w2, w1). We show the comparison of our
dataset as CMU Document Grounded Conversa-
tions (CMU DoG) with other datasets in Table 3.
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Dataset # Utterances Avg. # of Turns
CMU DoG 130000 31
Persona-chat (Zhang et al., 2018) 164,356 14
Cornell Movie (Danescu-Niculescu-Mizil and Lee, 2011b) 304,713 1.38
Frames dataset (Asri et al., 2017) 19,986 15

Table 3: Comparison with other datasets. The average number of turns are calculated as the number of utterances
divided by the number of conversations for each of the datasets.

Rating 1 Rating 2 Rating 3 Rating 2& 3
Total # of conversations 1443 2142 527 2669
Total # of utterances 28536 80104 21360 101464
Average # utterances/conversation 19.77(13.68) 35.39(8.48) 40.53(12.92) 38.01(9.607)
Average length of utterance 7.51(50.19) 10.56(8.51) 16.57(15.23) 11.83(10.58)

Table 4: The statistics of the dataset. Standard deviation in parenthesis.

One of the salient features of CMUDoG dataset
is that it has mapping of the conversation turns
to each section of the document, which can then
be used to model conversation responses. Another
useful aspect is that we report the quality of the
conversations in terms of how much the conversa-
tion adheres to the information in the document.

Split Criteria: We automatically measure the
quality of the conversations using BLEU (Pap-
ineni et al., 2002) score. We use BLEU because
we want to measure the overlap of the turns of
the conversation with the sections of the docu-
ment. Hence, a good quality conversation should
use more information from the document than a
low quality conversation. We divide our dataset
into three ratings based on this measure. The
BLEU score is calculated between all the utter-
ances {x1, . . . , xn} of a conversation Ci and the
document di corresponding to Ci. We eliminate
incomplete conversations that have less than 10
turns. The percentiles for the remaining conver-
sations are shown in Table 5. We split the dataset
into three ratings based on BLEU score.

Percentile 20 40 60 80 99
BLEU 0.09 0.20 0.34 0.53 0.82

Table 5: The distribution of BLEU score for conversa-
tions with more than 10 turns.

Rating 1: Conversations are given a rating of 1
if their BLEU score is less than or equal to 0.1. We
consider these conversations to be of low-quality.

Rating 2: All the conversations that do not fit in
rating 1 and 3 are marked with a rating of 2.

Rating 3: Conversations are labeled with a rat-
ing of 3, only if the conversation has more than
12 turns and has a BLEU score larger than 0.587.
This threshold was calculated by summing the
mean (0.385) and the standard deviation (0.202)
of BLEU scores of the conversations that do not
belong rating 1.

The average BLEU score for workers who have
access to the document is 0.22 whereas the aver-
age BLEU score for the workers without access to
the document is 0.03. This suggests that even if the
workers had external knowledge about the movie,
they have not extensively used it in the conversa-
tion. It also suggests that the workers with the doc-
ument have not used the information from the doc-
ument verbatim in the conversation. Table 4 shows
the statistics on the total number of conversations,
utterances, and average number of utterances per
conversation and average length of utterances for
all the three ratings.

3 Models

In this section we discuss models which can lever-
age the information from the document for gener-
ating responses. We explore generative models for
this purpose. Given a dataset X = {x0, . . . , xn}
of utterances in a conversation Ci, we consider
two settings: (1) to generate a response xi+1 when
given only the current utterance xi and (2) to gen-
erate a response xi+1 when given the correspond-
ing section si and the previous utterance xi.

Without section: We use the sequence-to-
sequence model (Sutskever et al., 2014) to build
our baseline model. Formally, let ✓E represent the
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parameters of the encoder. Then the representation
hxi of the current utterance xi is given by:

hxi = Encoder(xi; ✓E) (1)

Samples of xi+1 are generated as follows:

p(x̂|hxi) =
Y

t

p(x̂t|x̂<t, hxi) (2)

where, x̂<t are the tokens generated before x̂t. We
also use global attention (Luong et al., 2015) with
copy mechanism (See et al., 2017) to guide our
generators to replace the unknown (UNK) tokens.
We call this model SEQ.

With section: We extend the sequence-to-
sequence framework to include the section si cor-
responding the current turn. We use the same en-
coder to encode both the utterance and the section.
We get the representation hxi of the current utter-
ance xi using Eq. 1. The representation of the
section is given by:

hsi = Encoder(si; ✓E) (3)

The input at each time step t to the generative
model is given by ht = [xt�1; hs], where xt�1

is the embedding of the word at the previous time
step. We call this model SEQS.

Experimental Setup: For both SEQ and SEQS
model, we use a two-layer bidirectional LSTM
as the encoder and a LSTM as the decoder. The
dropout rate of the LSTM output is set to be 0.3.
The size of hidden units for both LSTMs is 300.
We set the word embedding size to be 100, since
the size of vocabulary is relatively small2. The
models are trained with adam (Kingma and Ba,
2014) optimizer with learning rate 0.001 until they
converge on the validation set for the perplexity
criteria. We use beam search with size 5 for re-
sponse generation. We use all the data (i.e all
the conversations regardless of the rating and sce-
nario) for training and testing. The proportion of
train/validation/test split is 0.8/0.05/0.15.

4 Evaluation

In what follows, we first present an analysis of
the dataset, then provide an automatic metric for
evaluation of our models–perplexity and finally
present the results of human evaluation of the gen-
erated responses for engagement and fluency.

scenario NW LT
1 0.78 12.85
2 5.84 117.12

Table 6: The results of data analysis. LT refers to the
average length of xi in scenario 1 and xi, . . . , xi+k in
scenario 2.

Dataset analysis: We perform two kinds of au-
tomated evaluation to investigate the usefulness of
the document in the conversation. The first one
is to investigate if the workers use the informa-
tion from the document in the conversation. The
second analysis is to show that the document adds
value to the conversation. Let the set of tokens in
the current utterance xi be N , the set of tokens
in the current section si be M , the set of tokens
in the previous three utterances be H , and the set
of stop words be S. In scenario 1, we calculate
the set operation (NW) as |((N \ M) \ H) \ S|.
Let the tokens that appear in all the utterances
(xi, . . . , xi+k) corresponding to the current sec-
tion si be K and the tokens that appear in all the
utterances (xi, . . . , xi+p) corresponding to the pre-
vious section si�1 be P . In scenario 2, we calcu-
late the set operation (NW) as |((K\M)\P )\S|.
The results in Table 6 show that people use the in-
formation in the new sections and are not fixated
on old sections. It also shows that they use the
information to construct the responses.

Perplexity: To automatically evaluate the flu-
ency of the models, we use perplexity measure.
We build a language model on the train set of re-
sponses using ngrams up to an order of 33. The
generated test responses achieve a perplexity of
21.8 for the SEQ model and 10.11 for the SEQS
model. This indicates that including the sections
of document helps in the generation process.

4.1 Human Evaluation
We also perform two kinds of human evaluations
to evaluate the quality of predicted utterances – en-
gagement and fluency. These experiments are per-
formed on Amazon Mechanical Turk.

Engagement: We set up a pairwise comparison
following Bennett (2005) to evaluate the engage-
ment of the generated responses. The test presents
the chat history (1 utterance) and then, in random

2The total number of tokens is 46000, and we limit the
vocabulary to be 10000 tokens.

3We use the SRILM toolkit (Stolcke, 2002)
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order, its corresponding response produced by the
SEQ and SEQS models. A third option “No Pref-
erence” was given to participants to mark no pref-
erence for either of the generated responses. The
instruction given to the participants is “Given the
above chat history as context, you have to pick
the one which can be best used as the response
based on the engagingness.” We randomly sam-
ple 90 responses from each model. Each response
was annotated by 3 unique workers and we take
majority vote as the final label. The result of the
test is that SEQ generated responses were chosen
only 36.4% times as opposed to SEQS generated
responses which were chosen 43.9% and the “No
Preference” option was chosen 19.6% of times.
This result shows the information from the sec-
tions improves the engagement of the generated
responses.

Fluency: The workers were asked to evaluate
the fluency of the generated response on a scale
of 1 to 4, where 1 is unreadable and 4 is perfectly
readable. We randomly select 120 generated re-
sponses from each model and each response was
annotated by 3 unique workers. The SEQ model
got a low score of 2.88, contrast to the SEQS score
of 3.84. This outcome demonstrates that the in-
formation in the section also helps in guiding the
generator to produce fluent responses.

5 Conclusion

In this paper we introduce a crowd-sourced con-
versations dataset that is grounded in a predefined
set of documents which is available for download
4. We perform multiple automatic and human
judgment based analysis to understand the value
the information from the document provides to the
generation of responses. The SEQS model which
uses the information from the section to generate
responses outperforms the SEQ model in the eval-
uation tasks of engagement, fluency and perplex-
ity.
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Abstract

The main goal of this paper is to develop
out–of–domain (OOD) detection for dialog
systems. We propose to use only in–
domain (IND) sentences to build a generative
adversarial network (GAN) of which the dis-
criminator generates low scores for OOD sen-
tences. To improve basic GANs, we apply
feature matching loss in the discriminator, use
domain–category analysis as an additional task
in the discriminator, and remove the biases in
the generator. Thereby, we reduce the huge
effort of collecting OOD sentences for train-
ing OOD detection. For evaluation, we experi-
mented OOD detection on a multi–domain di-
alog system. The experimental results showed
the proposed method was most accurate com-
pared to the existing methods.

1 Introduction

Multi–domain dialog systems (Hakkani-Tur et al.,
2016; Jiang et al., 2014; Lee et al., 2013; Ryu
et al., 2015; Seon et al., 2014) should detect
whether an input request is out–of–domain (OOD)
because users do not know the exact coverages of
those systems. One important problem of building
OOD detection is the huge effort required to col-
lect OOD sentences. This paper focuses on devel-
oping an accurate OOD detection method that re-
quires only in–domain (IND) sentences for train-
ing, so this paper can reduce the effort of collect-
ing OOD sentences.

For OOD detection, sentences would be repre-
sented in a continuous vector space in which IND
cases are distinguished from OOD cases. There-
fore, we use the existing sentence embedding
method for OOD detection (Ryu et al., 2017). The
authors train a recurrent neural network (RNN)
for domain–category analysis task, in which one
domain–category is assigned to an input sentence.
Due to the similarity between OOD detection and

domain–category analysis, the extracted features
(i.e., representation) of the RNN contain informa-
tion about domain–category. In addition, the word
representations are pre–trained from a large unla-
belled corpus, so the sentence embedding method
has the advantage in understanding rare or un-
known words that are likely to appear in OOD sen-
tences.

Afterwards, we use the learned representations
of IND sentences to train one–class classifiers that
distinguish IND sentences from OOD sentences.
We propose to use a generative adversarial net-
work (GAN) (Goodfellow et al., 2014) that con-
sists of a generator G and a discriminator D. We
train D that distinguishes the IND sentences from
the fake sentences generated by G, so we expect D
to reject OOD sentences. We apply three modifi-
cations to improve basic GANs. To the best of our
knowledge, this is the first study that uses GANs
to solve OOD detection.

2 Related Work

Lane et al. (2007) proposed an in–domain verifica-
tion method. The authors first build a basic binary
classifier for each domain, and then build a meta
classifier that takes the scores by the basic binary
classifiers as input. However, in our experiment,
many OOD sentences were misclassified into IND
because OOD sentences were not in the negative
examples of the classifiers. Therefore, the con-
fidence scores of the basic binary classifiers are
not sufficiently reliable evidences of OOD. Also,
understanding rare or unknown words remains a
problem because bag–of–words model is used.

Ryu et al. (2017) proposed an autoencoder–
based method. The authors use neural sentence
embedding that has the advantage in represent-
ing rare or unknown words. Based on those dis-
tributed sentence representations, an autoencoder
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£ “When was Good Day released?” (Songfinder)

¤ “I have an appointment November 20 at 4 pm.” (Schedule)

¥ “What exercise should I do in the evening?” (Diet Talk)

¦ “Please delete the recorded Infinite Challenge.” (TV)

Figure 1: Distributed representations of IND sen-
tences.

£ “Please send this message to my dad.” (Message)

¤ “Show me my hotel reservations.” (Hotel)

¥ “I don’t play with you any more.” (Smalltalk)

¦ “I heard my friend has divorced.” (Smalltalk)

Figure 2: Distributed representations of OOD sen-
tences.

is trained on IND sentences. The autencoder will
have low reconstruction errors for IND sentences,
so an input sentence can be classified into either
IND or OOD. However, the autoencoder–based
method has a limitation in expandability. When
the weights are initialized carefully and regular-
ization techniques are applied, the trained autoen-
coder reconstructs any input accurately. This re-
sult means that the reconstruction errors by the
ideal autoencoder are not reliable evidence of
OOD, so in OOD detection, autoencoders have lit-
tle room for improvement.

3 Methods

As we discussed in Section 1, we use the sen-
tence embedding to represent sentences in an 300–
dimensional continuous vector space. We propose
to use a GAN to OOD detection; a GAN consists
of two adversarial components: generator G and
discriminator D. G generates artificial data to de-

ceive D. D distinguishes real data from the artifi-
cial data generated by G. GAN is an unsupervised
algorithm because learning G and D does not re-
quire labels. Standard GANs are trained based on
the objective function V (D, G) as

min
G

max
D

V (D, G) = Ex⇠pdata [log D(x)] (1)

+Ez⇠pz(z)[log 1 � D(G(z))].

So GAN is a minimax two–player game be-
cause G minimizes V (D, G), and D maximizes
V (D, G).

We propose to use GANs to obtain a one–class
classifier for OOD detection. When we train G to
generate sentences similar to IND sentences and
D to classify real IND sentences and fake sen-
tences generated by G, we expect D to reject OOD
sentences. Therefore, we use the low confidence
score by D about an input sentence as the evidence
that the sentence is OOD.

Let pz(z) be a continuous uniform distribution
(�1, 1). We define G that generates fake data
G(z) 2 Rm from input noise z ⇠ pz(z), f that
extracts features from either real data x of (x, y) ⇠
pdata(x, y) or G(z), and D that measures the prob-
ability of either f(x) or f(G(z)) from the real data
as

G(z) = �h(Wgz), (2)
f(x) = �h(Whx + bf ), (3)

f(G(z)) = �h(WhG(z) + bf ), (4)
D(f(x)) = �g(Wdf(x) + bd), (5)

D(f(G(z))) = �g(Wdf(G(z)) + bd), (6)

where Wg, Wf , and Wd are weight matrices, bf

and bd are bias vectors. So we define two objective
functions

LD = �E(x,y)⇠pdata(x,y)[logD(f(x))] (7)

� Ez⇠pz(z)[log(1 � D(f(G(z))))],
LG = �Ez⇠pz(z)[logD(f(G(z)))]. (8)

Because G(z) continuously changes during the
training, f of traditional GAN also changes. Thus
we define C 2 R

|D| that computes domain–
category of f(x) as

C(f(x)) = softmax(Wcf(x) + bc), (9)

where Wc is a weight matrix and bc is a bias vec-
tor. We expect f trained by the losses of both D
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Feature Extractor 

In-domain 
Sentences

Real Data ,ܠ) ,ܠ)ୟ୲ୟୢ~(ܡ (ܡ

Noise (ܢ)ࢠ~ܢ

Fake Data (ܢ)ܩ

Discriminator ܦ Domain-category 
Analysis ܥ

Generator ܩ

Figure 3: Generative adversarial network for out–
of–domain sentence detection.

and C to be more stable than f trained by the loss
of only D, so we define an objective function

LC = E(x,y)⇠pdata(x,y)[H(C(f(x)), y)], (10)

where H(p, q) is the categorical cross entropy and
y is the true domain–category.

In addition, GAN suffers from a mode collapse
problem in which G generates samples with a low
variance. To solve the problem, we remove the
biases in the generator because the G was trained
to use the biases mainly instead of the weights to
generate data.

Second, we apply feature matching (Salimans
et al., 2016). The authors say “Instead of directly
maximizing the output of the discriminator, the
new objective requires the generator to generate
data that matches [sic] the statistics of the real
data, where we use the discriminator only to spec-
ify the statistics that we think are worth matching”.
So G is trained to generate high variance sentence
G(z) by additional objective function

Lf = ||E(x,y)⇠pdata(x,y)f(x) � Ez⇠pz(z)f(G(z))||22.
(11)

Based on our design of GAN, we train D, C,
f, and G as Algorithm 1. To implement our GAN

Algorithm 1 Training process of GAN for OOD
detection.

for number of training iterations do
Sample real data (x, y) ⇠ pdata(x, y).
Sample noise z ⇠ pz(z).
Update D, C, and f based on LD + LC.
Sample noise z ⇠ pz(z).
Update G based on LG + Lf.

end for

for one–class classification, we use the Tensorflow
library (Abadi et al., 2015). We train our mod-
els by using Adam (Kingma and Ba, 2015) opti-
mizer with a mini–batch size of 256 and an initial
learning rate of 0.01 that is decreased linearly dur-
ing 500 epochs. All weights are initialized from
a zero–centered Normal distribution with standard
deviation 1.0.

4 Experiments

4.1 Data Set
We experimented on a data set of 6,268 Korean
sentences. We collected 706 OOD sentences about
three domains: hotel, message, and smalltalk; and
5,562 IND sentences about fourteen domains: air-
plane, alarm, bus, call, car navigation, diet talk,
exchange, general, schedule, songfinder, time,
train, and TV control. We used eighty percent of
the IND sentences to train the models; we used the
remaining IND sentences and all OOD sentences
for testing.

4.2 Evaluation Metrics
We use equal error rate (EER) to represent the ac-
curacy of OOD detection (Lane et al., 2007). EER
is the error rate at which false acceptance rate

FAR =
Number of accepted OOD sentences

Number of OOD sentences
(12)

and false rejection rate

FRR =
Number of rejected ID sentences

Number of ID sentences
(13)

are equal.
We performed each experiment 20 times, and

recorded the average EER of OOD detection.

4.3 Compared Methods
We have three variations of vanilla GAN: to re-
move the biases, to add domain–category analy-
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Table 1: EERs [%] ± s.d. (n = 20) of OOD detec-
tion.

Method EER

Local outlier factor 13.33
One–class SVM 13.76
Autoencoder 9.24 ± 0.43

GAN with biases 15.93 ± 5.82
GAN 9.18 ± 0.30
GAN with DCA task 9.17 ± 0.40
GAN with FM loss 9.04 ± 0.30
GAN with DCA task 8.96 ± 0.34and FM loss

sis (DCA) task, and to add feature matching (FM)
loss. So we assessed five settings about GAN.

We compare our method to three one–class clas-
sifiers. (1) Local outlier factor (Breunig et al.,
2000) compares the local density of a point to
the local densities of its neighbors, and consid-
ers the point that has lower density than their
neighbors as an outlier. The local density of
a point is defined by the distance to its near-
est neighbors. (2) One–class support vector ma-
chines (One–class SVMs) (Schölkopf et al., 2001)
that treats the origin as a negative example to learn
a decision function. (3) Autoencoder is explained
in Section 2.

4.4 Results
In the experiments (Table 1), the best
EER (8.96%) was obtained by the GAN in which
all three of our variations are applied (p < 0.05).
This result means that (1) removing the biases
and using the feature matching prevented the
generator from mode collapse problem and (2)
using domain–category analysis as an auxiliary
task stabilized the training of feature extractor.
Compared to the other one–class classification
methods including the autoencoder, the proposed
GAN was most accurate (p < 0.05), so we can
say that the discriminator scores of the GAN are
reliable evidence for OOD detection (Table 2).

5 Conclusion

In this paper, we aimed at building OOD detection
without OOD sentences for training. We proposed
to use the discriminator of a GAN, which is trained
on only IND sentences. The proposed method out-
performed the existing methods in our data set.

Table 2: Average score [%] by the discriminator of
the GAN.

Data Score

IND training sentences 98.69 (± 3.36)
Fake sentences G(z) 0.20 (± 1.70)
IND test sentences 88.59 (± 28.09)
OOD test sentences 8.04 (± 23.10)

To train the GAN, we used the distributed
sentence representations computed from the pre–
trained sentence embeddings instead of symbolic
sentences. However, we think the limitation of
the pre–trained sentence embeddings can be over-
come by building a GAN that generates symbolic
sentences and discriminates them.
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Abstract
This paper presents a task for machine listen-
ing comprehension in the argumentation do-
main and a corresponding dataset in English.
We recorded 200 spontaneous speeches argu-
ing for or against 50 controversial topics. For
each speech, we formulated a question, aimed
at confirming or rejecting the occurrence of
potential arguments in the speech. Labels were
collected by listening to the speech and mark-
ing which arguments were mentioned by the
speaker. We applied baseline methods ad-
dressing the task, to be used as a benchmark
for future work over this dataset. All data used
in this work is freely available for research.

1 Introduction

Machine reading comprehension (MRC) is the
NLP task equivalent to reading comprehension
tests that assess the understanding of written texts
by humans. MRC is usually realized as a ques-
tion answering (QA) task through multiple-choice
questions or as a cloze test (Richardson et al.,
2013; Hermann et al., 2015; Hill et al., 2015).
With the abundance of multimedia content nowa-
days, this line of work has been extended to
speech, by applying QA methods to speech tran-
scripts, i.e. the output of automatic speech recog-
nition (ASR). In such works, the task is conse-
quently referred to as ‘spoken question answer-
ing’ (Li et al., 2018), ‘question answering over
speech transcripts’ (Turmo et al., 2007; Lamel
et al., 2008) or machine listening comprehension
(MLC) (Chung and Glass, 2018).

We continue this line of work, and present a lis-
tening comprehension task and associated bench-
mark data over argumentative content. In the argu-
mentation domain, such as political debates, peo-
ple are often exposed directly to the audio (or

⇤* This work was done at IBM within Project Debater; the
first 3 authors equally contributed to this work.

the video), without access to a written version.
Human comprehension is then done in real-time
through listening. We simulate this scenario in our
dataset. Namely, annotation is carried out by lis-
tening to debate speeches rather than by reading
transcripts as done in prior work. The auditory
modality is richer than written text in terms of the
signal available to listeners, e.g., prosody. Simi-
larly, machine comprehension can make use of the
extra-lexical signal. The dataset we construct and
release enables utilizing such signals, as done for
instance in (Lippi and Torroni, 2016) for detecting
claims in debates.

Most often, in both reading and listening com-
prehension tasks, the answer is explicitly men-
tioned in the text; frequently, the answer is even
an actual segment of the text, as in SQuAD (Ra-
jpurkar et al., 2016), one of the most popular MRC
datasets. Conversely, in argumentation, presuppo-
sitions are fundamental (Habernal et al., 2018), in-
ferences are more subtle and the answer may rely
on common knowledge. Going beyond the fac-
toid level, Tseng et al. (2016) presented a listening
comprehension task over TOEFL listening tests.1

In comparison, our data consists of spontaneous
speech and is not adapted for non-native speakers.

We use data from iDebate2, a high-quality, cu-
rated database of controversial topics – referred to
as “motions”, as in formal parliamentary propos-
als – with a list of arguments for and against each
motion. We selected 50 motions, and recorded ex-
perienced debaters making four speeches for each
of them (two for and two against the motion). We
then asked annotators to listen to a speech and
presented them with a list of arguments that were
proposed independently in iDebate for the motion.
The annotators had to mark which of these argu-

1https://www.ets.org/toefl
2https://idebate.org/debatabase
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ments were mentioned in the speech (see Section 2
for further details). Example 1 shows one such ar-
gument alongside a speech snippet, demonstrating
the unique nature of this domain and data. Specif-
ically, the argument against the motion is implied
from the speech, but is not explicitly mentioned in
it.

Example 1 (Positively labeled argument)
Motion: We should introduce goal line technology
[in sports]
Argument: Controversy and debate are a part of
the game
Speech stance: opposing (“con”)
... people also like it to some extent when officials
make mistakes, because it adds to some of the like
drama, the, oh, what if this happened? ... And I
think that one of the biggest things that fans enjoy
bonding over is when refs make mistakes that are
blatantly wrong.

iDebate was chosen since its arguments are
good candidates to construct comprehension ques-
tions: more than half of the assessed arguments
are mentioned in our recorded speeches, and the
large majority of the speeches contain at least one
of the arguments suggested by iDebate. Further-
more, each argument in iDebate is coupled with
a counter-argument. Those, in turn, may be used
to rebut each argument that was detected through
MLC, suggesting intriguing future directions to
explore the released data. In a task related to ours,
Boltuz̆ić and S̆najder (2014) have searched iDe-
bate arguments in user argumentative comments.
Their work, though, consisted of only two motions
and included written, rather than audio data.

We release our annotated data and the results
of baseline methods applied to it as a benchmark
dataset for the MLC task. The dataset includes
200 speeches for 50 motions, in English. For each
speech we include the following: (i) the audio
version of the speech; (ii) manual and automatic
transcripts; (iii) a labeled listening comprehension
question, consisting of a set of arguments from
iDebate that potentially appear in the speech.

The main contributions of this work are: (i) pro-
posal of the new task of listening comprehension
over argumentative content, a domain very differ-
ent from those previously used for reading or lis-
tening comprehension tasks; (ii) a comprehensive
and rich labeled dataset of 200 speeches cover-
ing 50 topics, transcribed both automatically and

manually, and labeled for the listening comprehen-
sion task; (iii) establishment of baselines over the
dataset.

All the recordings, their transcripts and
labels are available for research at https:
//www.research.ibm.com/haifa/
dept/vst/debating_data.shtml.

2 Data

iDebate iDebate contains a list of controversial
topics, phrased as parliamentary motions. Each
motion is associated with arguments (referred to as
“points”) supporting or contesting it. Each argu-
ment may be comprised of several sentences and
is briefly summarized in a title.

Selecting iDebate motions At the time of this
research, iDebate contained 684 motions.3 We
selected 50 clearly-defined motions, and simpli-
fied their phrasing when necessary. For ex-
ample, we rephrased “This House believes that
cannabis should be legalised” to “We should le-
galize cannabis”.

Producing debate speeches We recorded argu-
mentative speeches for each motion. First, two
speeches supporting each motion were recorded
by two experienced debaters. In doing so, we
followed the process described in (Mirkin et al.,
2018), where a speaker is presented with a motion
and its description and is instructed to record a few
minutes speech that supports it, with 10 minutes
to prepare, but without checking any online ma-
terials. Given a speech supporting the motion, we
asked another debater to listen to it and then record
a speech rebutting it, and in consequence – oppos-
ing the motion. These response speeches are of
different nature than the initial speeches beyond
the opposite stance, as they often contain refer-
ences and rebuttal to arguments mentioned in this
initial speech.

Through this process, we produced in total
200 speeches recorded by 14 different speak-
ers, equally distributed between the motions, and
between the “pro” and “con” stances. Each
speech was transcribed automatically using Wat-
son ASR.4 The transcripts were split automatically
into sentences using a bi-directional LSTM that
was trained on spoken language corpora (Pahuja
et al., 2017). For completeness of the dataset,

3We accessed iDebate on Jan. 28, 2018.
4https://www.ibm.com/watson/services/speech-to-text
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for each ASR transcript we include a manually-
corrected “reference” human transcript, including
manually added punctuation. Based on the hu-
man transcripts, we computed the word error rate
(WER) of the ASR transcripts: 8.03% on average.
For comparison, the WER of the ASR transcripts
in (Li et al., 2018) is 22.73%.

Labeling Given the recorded speeches, we car-
ried out a labeling task employing experienced
annotators, all of whom are highly proficient
English-speakers. Given a motion and a speech,
the annotators were instructed to listen to it once,
preferably without pausing, and select which ones
of iDebate argument titles were mentioned in it, or
None if none of them was. Specifically, they were
instructed to answer positively if it would be cor-
rect to say that “the speaker argued that arg ...”
where arg is the argument’s title. A single ques-
tion contained all the iDebate titles for the mo-
tion, which have the suitable stance for the given
speech. Each of the 200 questions was answered
by five annotators.

On average, the labeled data contains 4.4 argu-
ment titles per speech, where a title contains 10.5
words and an argument text includes 6 sentences
and 156 words.

Labeling results In 173 (86.5%) of the
speeches, at least one iDebate argument was
found, and 248 (⇠56%) of the iDebate arguments
were labeled as positive at least once.

In order to analyze agreement between annota-
tors, we transformed each multiple-choice ques-
tion to a set of binary questions containing a
speech and a single argument title. This amounted
to 878 annotated speech–argument pairs, of which
354 (40.3%) are labeled as positive (i.e. an aver-
age of ⇠1.8 positive arguments per speech). The
average pairwise Cohen’s Kappa (Cohen, 1960)
score over the labels is 0.52 (0.55 for support-
ing and 0.50 for opposing speeches). The Fleiss’
Kappa (Fleiss, 1971) is 0.52. Noteworthy, 78.5%
of the labels were of high confidence: four or five
annotators agreed on the label. Figure 1 shows
the distribution of positive answers over the binary
questions.

We analyzed a sample of arguments–speech
pairs that had low agreement between annotators,
i.e., those that have two or three positive labels.
One reason for disagreement that we identified
concerns argument titles that contain two claims,

Figure 1: The percentage of binary questions labeled
as positive by 0 to 5 annotators.

of which only one is argued by the speaker. An
example is the title “Gambling is associated with
other forms of addiction and harmful behaviour”
concerning the motion “We should ban gambling”.
In a speech about this motion, only “addiction”
was mentioned but not “harmful behaviour”, re-
sulting with two annotators accepting it and three
rejecting it. Another possible source of disagree-
ment is argument titles that are semantically sim-
ilar, but not identical to the arguments presented
in the speech. For instance, two of five annotators
accepted the argument “on-line gambling affects
families” when the speaker argued on the effects
of gambling on families, but did not mention on-
line gambling specifically.

Listening vs. reading To corroborate the reli-
ability of our labeling through listening, we re-
peated the task for 40 randomly sampled speeches,
replacing only the audio with manual human tran-
scripts of the speeches.5 The average pairwise
Cohen’s Kappa score over the labels is 0.59 and
the Fleiss’ Kappa is 0.60. While these may in-
dicate that the reading task is somewhat easier
(e.g. because the annotator can read the text mul-
tiple times), it was encouraging to discover that
audio-based labeling achieves similar results to
text-based labeling: we compared the labels ob-
tained via reading and via listening and found that
87% of them were identical. Labeling by listen-
ing is closer to the task of listening comprehen-
sion than labeling via reading. Another advantage
is that it removes the need to manually transcribe
the speeches (in our experience, ASR transcripts
are not ideal for labeling). As mentioned, in our

5We use manual and not ASR transcripts for this analysis,
under the assumption that when listening, the annotators are
also receiving error-free content.
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released dataset we do provide human transcripts
for all speeches.

Analysis of potential bias Recent works
showed undesired artifacts in natural language
inference datasets, namely that in some datasets
for inferring relations between two texts, infer-
ence can in fact be done by only considering
one of them (Schwartz et al., 2017; Gururangan
et al., 2018; Tsuchiya, 2018; Poliak et al., 2018).
To explore this issue in our dataset, we assessed
the correlation between several features of the
argument title and the label. Specifically, we
computed the Spearman’s correlation (Spearman,
1904) between the label and the title’s length,
occurrences of named entities or negation words
in the title, and the correlation between the labels
and the titles’ 100 most frequent words, stopwords
excluded. This resulted in low correlation coeffi-
cients, summarized in Table 1. This preliminary
analysis suggests that naive features extracted
from the title are not sufficient for predicting its
label.6

Feature Spearman ⇢
Title length -0.07
Named entity -0.08
Negation -0.03
Frequent words 0.14

Table 1: Spearman correlation between labels and fea-
tures of argument titles. For the frequent words, the fig-
ure shown is the maximum (absolute) correlation found
between positive labels and words from the titles. The
words which yielded this correlation were “women”
and “environment”.

3 Evaluation

Next, we establish baselines for our annotated
dataset. All baselines are based on simple un-
supervised text similarity methods for selecting
which arguments were mentioned in a debate
speech. Strictly, this is an entailment task rather
than a similarity task, and similarity serves here as
an approximation. Below we describe the estab-
lishment of the baselines.

Evaluation configurations We considered two
ways of representing a speech and two ways of

6We thank the anonymous reviewers for helping us im-
prove this analysis.

representing an argument, to a total of four dif-
ferent experimental configurations. A speech can
be represented as a single text or as the set of its
sentences. When a speech is represented by a set
of sentences, we considered the maximum simi-
larity score obtained by a sentence in the speech.
For the speech text we used the ASR transcripts
of the audio speeches, with the automatic split
into sentences, as described in Section 2. The
sentence-based configurations, therefore, depend
on the specific automatic splitting of the texts into
sentences. An argument can be represented us-
ing only its title or by its extended text. The va-
lidity of matching an argument’s text against the
speech while labels refer to titles stems from en-
tailment transitivity: under the observation that in
our data an argument text typically entails its title,
if an argument text is mentioned in the speech (i.e.
is entailed by it), its title is also entailed by the
speech (that is, given that typically arg ) title,
if speech ) arg then speech ) title.)

Evaluation metric The performance of each
method is calculated as the average accuracy over
speeches in the test set, where the accuracy of a
speech is the ratio of correct answers out of the
number of choices presented for it. This ensures
that each speech contributes equally to the overall
accuracy regardless of the number of potential ar-
guments associated with it. Since there is an equal
number of speeches per motion, this is also the av-
erage accuracy over motions.7

Development and test sets We randomly split
the data into development and test sets (dev and
test below), such that 60% of the motions (30
motions, 120 speeches, 60 of each of supporting
and opposing speeches) are in dev and 40% (80
speeches) are in test. For each method, we select
a threshold that maximizes accuracy over dev, and
apply it to test. In other words, an argument is con-
sidered to be mentioned in the speech if its simi-
larity score is above the threshold.

7We chose accuracy over precision and recall since we
wished to give an equal weight to each question; therefore,
a micro-average score – where we consider each argument-
speech pair as an item in the calculation – was unsuitable.
With a small number of pairs per question, one often encoun-
ters anomalies: when there are no positive labels, recall is un-
defined, and when no positive prediction is given for a ques-
tion, precision is undefined.
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3.1 Assessed methods

All-yes baseline As a reference point, we com-
pute the accuracy obtained when all arguments are
predicted to be mentioned in the speech, resulting
in 39.8% accuracy.

word2vec (w2v) We create a w2v (Mikolov
et al., 2013) vector representation for each text,
removing stopwords; each word is represented by
a 200-dimensional word embedding learned over
Wikipedia. A tfidf -weighted average of the word
embeddings represents each text, where idf val-
ues are counted when considering each Wikipedia
sentence as a document. Given a pair of texts, their
score is the cosine similarity between their vector
representations.

skip-thought (ST) Kiros et al. (2015) presented
a general sentence encoder, that has been applied
successfully to a variety of tasks such as seman-
tic relatedness and paraphrase detection, often ob-
taining state of the art results. We use its available
implementation to encode the texts as vectors, and
compute the cosine similarity between them.

3.2 Results

Table 2 shows the accuracy of all w2v config-
urations. Representing an argument using its
more verbose several-sentences-long content out-
performs using its short single-sentence title. On
the speech side, considering each sentence sepa-
rately is preferable to using the entire speech. We
compared the results of the best w2v-based config-
uration (arg-sentence), to the performance of the
skip-thought auto-encoder. In this setting, encod-
ing individual speech sentences and an argument,
the accuracy of skip-thought was 60.2%.

Method Accuracy (%)
all-yes 39.8
w2v title-speech 49.8
w2v arg-speech 57.6
w2v title-sentence 55.8
w2v arg-sentence 64.6
ST arg-sentence 60.2

Table 2: Accuracy results over the test set ASR tran-
scripts, for w2v and skip-thought (ST).

The highest scoring method, w2v arg-sentence,
reaches, then, a rather modest accuracy of 64.6%.
One weakness of this method, revealed through

analysis of its false positive predictions, is its ten-
dency to prefer longer sentences. It is nevertheless
substantially superior to the trivial all-yes base-
line, as well as its all-no counterpart.

As explained, we chose accuracy as the main
metric for this benchmark as it enables comput-
ing macro-average scores over speeches with a
variable number of arguments. For reference, the
micro-average precision and recall scores of the
w2v arg-sentence are 57.1% and 43% respectively,
with an F1 score of 49.1%. Optimizing for this
metric enables controlling the trade-off between
precision and recall with a threshold, depending
on the end-application needs.

In sum, we have set a baseline for this task by
computing similarity between averaged word em-
beddings vectors. This simple method can be used
as a starting point for future works on this dataset.

4 Conclusions

Machine listening comprehension is a challeng-
ing task, whose complexity stems, among other
things, from the difficulty to handle spoken lan-
guage and from errors due to automatic transcrip-
tion. The argumentation domain, often with com-
plex and elaborate reasoning, relying on presuppo-
sitions and world knowledge, adds another dimen-
sion to this complexity. In this work, we suggest
a task and a corresponding benchmark dataset to
assess comprehension in this domain. We focused
on the task of confirming the occurrence of argu-
ments in a speech, which – as shown in this work
– can be handled to some degree with standard
textual inference methods. Other types of ques-
tions can be formulated over this data in following
work. We release a rich dataset, accompanied with
benchmarks, that can drive various studies in lis-
tening comprehension and argumentation mining.
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Abstract

We tackle discourse-level relation recognition,
a problem of determining semantic relations
between text spans. Implicit relation recogni-
tion is challenging due to the lack of explicit
relational clues. The increasingly popular neu-
ral network techniques have been proven ef-
fective for semantic encoding, whereby widely
employed to boost semantic relation discrimi-
nation. However, learning to predict seman-
tic relations at a deep level heavily relies on a
great deal of training data, but the scale of the
publicly available data in this field is limited.
In this paper, we follow Rutherford and Xue
(2015) to expand the training data set using
the corpus of explicitly-related arguments, by
arbitrarily dropping the overtly presented dis-
course connectives. On the basis, we carry out
an experiment of sampling, in which a simple
active learning approach is used, so as to take
the informative instances for data expansion.
The goal is to verify whether the selective use
of external data not only reduces the time con-
sumption of retraining but also ensures a bet-
ter system performance. Using the expanded
training data, we retrain a convolutional neu-
ral network (CNN) based classifer which is a
simplified version of Qin et al. (2016)’s stack-
ing gated relation recognizer. Experimen-
tal results show that expanding the training
set with small-scale carefully-selected exter-
nal data yields substantial performance gain,
with the improvements of about 4% for accu-
racy and 3.6% for F-score. This allows a weak
classifier to achieve a comparable performance
against the state-of-the-art systems.

1 Introduction

Since the Penn Discourse Treebank of version 2.0
(PDTB) was released in 2008 (Prasad et al., 2008),
there is a significant amount of research has been
carried out on discourse-level relation recognition

⇤ Corresponding author

between a variety of text spans (namely, argument-
argument relations). From a perspective of inclu-
sion or omission of conjunctions, the study in this
field has been directed toward two issues: recog-
nizing explicit relations or implicit. Listed below
are two pairs of arguments, where the arguments
in 1) hold an explicit causal relation while those in
2) are implicitly related with a causal relation.

1) [She left the company]Arg1 because
[she would move to California]Arg2.

2) [We have never seen the kitty since
then]Arg1. [John told us the kitty has
been adopted]Arg2.

In general, the explicit relations can be directly
signaled by the conjunctions (also called connec-
tives) which inherently exist, such as the conjunc-
tion “because” in 1). This allows a predictor to
speculate relations by the word senses of conjunc-
tions. Using conjunctions as relational predicates,
the earlier study has achieved a prediction perfor-
mance of no less than 93% for accuracy (Pitler and
Nenkova, 2009). By contrast, the implicit relations
like that in 2) are difficult to automatically recog-
nize due to the lack of conjunctions.

We focus on the implicit relation recognition in
this paper, and follow Rutherford and Xue (2015)
to strengthen the current neural discourse-level re-
lation classification by expanding the training data
set. The explicit-to-implicit (Exp2Imp for short)
relation transformation is used. In particular, we
propose to introduce active learning into the data
expansion process, with the aim to reduce redun-
dancy and reinforce the use of informative in-
stances. In our experiments, we cooperate active
learning with a simple version of Exp2Imp trans-
formation. Experimental results show that such a
cooperation allows substantial improvements to be
achieved for 4 main relation types in PDTB.
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2 Related Work

Multi-class implicit relation recognition can be
boiled down to a classification problem. This en-
corages the study of supervised classification at
the earlier time (Pitler and Nenkova, 2009; Lin
et al., 2009; Louis et al., 2010; Park and Cardie,
2012; Rutherford and Xue, 2014). Recently, the
neural network based approaches become increas-
ingly popular due to the capacity of deep seman-
tic learning and understanding (Zhang et al., 2015;
Qin et al., 2016; Chen et al., 2016; Qin et al., 2017;
Liu and Li, 2016). However, a large amount of
labeled data is urgently needed to train the mod-
els. (Rutherford and Xue, 2015; Braud and Denis,
2016; Liu et al., 2016; Wu et al., 2017).

The explicitly-related arguments in the corpus
of PDTB has been sufficiently proven to be usable
for creating implicitly-related arguments (Ruther-
ford and Xue, 2015; Braud and Denis, 2016; Liu
et al., 2016; Wu et al., 2017), only if the omis-
sion of inherent conjunctions will not distort the
original semantic relations (Rutherford and Xue,
2015). Benefiting from the high-accuracy ex-
plicit relation recognition, a simple pattern, such
as Argument1+because+Argument2, may enable
the acquisition of countless explicitly-related ar-
guments from texts. It makes it possible to coop-
erate with Rutherford and Xue (2015)’s Exp2Imp
relation transformation for creating a tremendous
number of labeled implicit relation instances.

However, it is inevitable to bring in the redun-
dant information when using such a scale of unre-
fined artificial instances to directly expand the ex-
isting training data. This causes a time-consuming
retraining process. By contrast, random sampling
for retrenchment may leave informative instances
out of the expanded data set.

Active learning (AL) is especially applicable to
redundancy reduction. It is able to automatically
select the most informative samples for use in a
cycle of training. Nowadays, there have been a va-
riety of AL models successfully used in different
language processing tasks (Li and Guo, 2013; Guo
and Wang, 2015; Yang et al., 2015; Zhang et al.,
2017; Ramirez-Loaiza et al., 2017). This allows
us to draw lessons from the experiences.

3 Informative Instances

In general, in the field of machine learning, an in-
formative instance is defined as the one which has
been classified with less confidence (i.e., higher

 

Original Decision Boundary Ground-truth Class Boundary 

Figure 1: Examples of informative instances

uncertainty). Assume that Irj (xi, M) refers to the
the level of uncertainty at which a classifier M de-
termines an instance xi as the member of the class
rj , thus xi is informative only if it significantly in-
creases the level of uncertainty:

x⇤ = arg max
X

rj2R

Irj (xi; M) (1)

The utilization of informative instances in data
expansion for training has been proven effective in
improving the fully-supervised classification mod-
els. For example, the instances marked with a dot-
dashed circle in Figure 1 can be regarded to be
informative. It is because a classifier may fail to
deterministically distinguish between them. If us-
ing such instances as additional training data, we
may retrain the classifier to revise the original de-
cision boundary, and pursue the ground-truth.

4 Active Learning (AL)
AL is a kind of retraining mechanism by data ex-
pansion. Figure 2 shows the workflow, which pri-
marily includes 4 steps:

• Step 1: in which a learning model is required
to be trained on the previously labeled data.

• Step 2: where the well-trained model is used
to classify the unlabeled external data.

• Step 3: relies on the classification results to
evaluate informativeness over the unlabeled
data. The informative instances will be even-
tually adopted for manual annotation.

• Step 4: adds the newly annotated data to the
existing, and retrains the learning model.

It is noteworthy that AL is not an “once-for-all”
deal. On the contrary, it needs to be carried out re-
peatedly and iteratively, until a predefined condi-
tion is met, such as the time at which the classifica-
tion performance remains almost the same within
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Figure 2: Workflows of ALs

a series of successive iterations, or termination af-
ter a fixed number of iterations.

5 Cooperating AL with Exp2Imp

We cooperate AL with Exp2Imp transformation.
The workflow is also shown in Figure 2, where
the labeled data set contains a certain number of
implicitly-related argument pairs, while the unla-
beled the explicitly-related.

In each iteration of AL, a classifier is trained
on the labeled implicitly-related argument pairs,
but it is driven to forcibly classify the explicitly-
related argument pairs. On the basis, informative-
ness measurement is performed to sample the in-
formative explicitly-related argument pairs. And
then, instead of experts, the Exp2Imp transforma-
tion module serves as an annotator to mark the re-
lations of the sampled argument pairs. Along with
the automatically-annotated relations, such argu-
ment pairs are used as the counterfeit implicit re-
lation instances. They are eventually added to the
original labeled data set for expansion.

5.1 Informativeness Measurement
We employ an uncertainty sampling function (Zhu
et al., 2008; Settles, 2010; Yang et al., 2015;
Ramirez-Loaiza et al., 2017) to measure the infor-
mativeness:

Inf(xi) =
X

rj2R

Irj (xi; M) (2)

=
X

rj2R

P (rj |xi) log P (rj |xi) (3)

where, for an instance xi, the entropy of the pre-
dicted probabilities over all kinds of PDTB rela-
tion classes is used as the score of informativeness.

In order to reduce the computational complexity
in practice, we sample informative instances in an
iteration-independent batch-by-batch manner. In
each iteration, a batch of instances in the unlabeled

Learning rate 0.001 Filter size (2, 3, 5)
Number of filter 512 Optimizer Adam
Batch size 128 threshold ✓ 0.95

Table 1: Hyperparameter settings of CNN

data set will be taken, only if their informativeness
scores are higher than a constant threshold ✓:

U 0 = {xi | Inf(xi) > ✓, 8xi 2 U} (4)

where, U is the unlabeled data set while U 0 con-
sists of the potentially informative instances.

5.2 Statistical Information based Exp2Imp
We implement a much simpler Exp2Imp transfor-
mation model than Rutherford and Xue (2015)’s
work. Statistical information is used.

For an explicitly-related argument pair in U ,
we rely on the conjunction to determine the rela-
tion. For example, if the arguments are syntac-
tically connected by the conjunction “because”,
their relation will be identified as Contingency

(Causality plus Condition). We previously look
up conjunctions in a small subset of U and analy-
sis the ground-truth explicit relations they signal.
If a conjunction invariably signals a single type of
relation (e.g., because! Contingency), we pre-
serve the one-to-one correspondence between the
conjunction and the relation type. Else if a con-
junction used to signal multiple-type relations, we
align it solely with the relation it most frequently
signals ever.

The Exp2Imp module first determines explicit
relations based on conjunction-relation alignment,
and then omits the conjunctions to create the coun-
terfeit implicitly-related argument pairs.

5.3 CNN based Classification
We follow Qin et al. (2016) to use Siamese CNN
for argument modeling and relation classification.
The 300-dimensional word embeddings and 50-
dimensional POS embeddings are used to repre-
sent the arguments. We also follow Mikolov et al.
(2013) to pretrain the word embeddings and ini-
tialize the POS by random sampling in [-1,1]. Ta-
ble 1 shows the hyperparameter settings.

The source codes of AL, Exp2Imp and Siamese
CNN1 to fully reproduce the experiments has been
made publicly available, to which we attached the
set of informative training data.

1https://github.com/AndreaXu0401/ALIDRC
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Metrics Baseline Blender (U) AL (U)
Tem. P 61.54 66.67 81.82

R 14.55 14.54 16.36
F1 23.53 23.88 27.27

Com. P 38.74 72.72 82.50
R 29.66 17.94 22.76
F1 33.59 28.73 35.68

Con. P 53.15 45.64 59.00
R 27.84 32.60 34.80
F1 36.54 38.03 43.78

Exp. P 60.08 55.98 59.57
R 83.09 79.92 88.48
F1 69.73 65.85 71.21

Accuracy 56.78 54.70 60.63
Macro F1 40.85 39.12 44.48

Table 2: The four-way classification performance

6 Experimentation

We experiment on the PDTB v2.0 (Prasad et al.,
2008). Sections 2-20 are used as the benchmark
training set. They are also used as the labeled set
in the AL process. Sections 21-22 are taken as the
test set and sections 0-1 the development set.

The ground-truth explicitly-related argument
pairs in the PDTB corpus are divided into two sub-
sets: one consists of 450 instances which are used
for aligning conjunctions and relation types, the
other is consisted of 17,000 instances and used as
the unlabeled data set U in the AL process.

6.1 Main Results

For the purpose of comparison, we expand the
benchmark training data set (Baseline) in two dif-
ferent ways: Blender and AL. Blender combines
the benchmark with U. Exp2Imp transformation
is performed for the instances in U. Thus Blender
mixes the true implicitly-related argument pairs
and all the counterfeits in U. By contrast, AL sam-
ples informative counterfeits for expansion.

We train CNN on the benchmark and the ex-
panded versions, and test the best-developed mod-
els for four-way classification among the relation
types of Expansion (Exp), Contingency (Con),
Comparison (Com) and Temporality (Tem). Ta-
ble 2 shows the performance. It can be observed
that simply adding all the counterfeits to the train-
ing data set negatively influences the learning pro-
cess, causing a performance loss of about 1.73%
for macro F1 and 2.08% for accuracy. This may

Systems Accuracy Macro F1

IO (2015) 57.10 40.50
MNN (2016) 57.27 44.98
MTN (2016) - 42.50
DSWE (2017) 58.85 44.84
MANN (2017) 57.39 47.80
Ours 60.63 44.48

Table 3: Comparison with the state of the art

result from the fact that the relations of some coun-
terfeits change to be uncertain due to the omission
of inherent conjunctions. Such counterfeits prob-
ably mislead CNN during the learning process.

On the contrary, AL obtains a substantial perfor-
mance gain. Using about 15 percent of instances
in U for expansion, AL improves CNN with 3.85%
for accuracy and 3.63% for macro F1. This may
imply that the carefully-selected counterfeits by
AL most probably have positive effects on the re-
training. The uncertainty caused by arbitrary con-
junction omission plays a counter-productive role,
prompting CNN to pursue more precise classifica-
tion boundaries in the AL process.

6.2 Discussion

6.2.1 Comparison to Expansion Methods
We compare the proposed method to the recently
popular, all of which more or less expand the train-
ing data, so as to introduce comprehensive linguis-
tic knowledge into the learning process:

• Intelligent Omission (IO) (Rutherford and
Xue, 2015) consciously omits conjunctions
in explicitly related argument pairs to create
counterfeits. Herein, a model is developed to
identify the counterfeits whose semantic rela-
tions keep unchanged after conjunction omis-
sion. Such samples are used for expansion.

• Multi-task Neural Network (MNN) (Liu
et al., 2016). The training set is expanded
with RST-DT (Carlson et al., 2003) and NYT
(Sandhaus, 2008). The other two MNN based
models include Wu et al. (2016)’s MTN
and Lan et al. (2017)’s MANN. MANN is
more sophisticated due to the use of attention
mechanism, while MTN acts as a bilingual
discourse analysis system. Both of them in-
troduce external datasets in the training pro-
cesses, NANT and BiSynData, respectively .
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• DSWE based CNN model (Wu et al., 2017),
where Discourse-Specific Word Embeddings
(DSWE) are used. DSWE are pre-trained on
the large English Gigaword corpus.

It can be found that our method achieves com-
petitive performance, showing the best accuracy
and almost comparable F score to those of most
competitors. It is noteworthy that the neural net-
work we use is much weaker than the sophisticated
MNN, MTN and MANN. Besides, there are fewer
instances used for expansion than that for training
DSWE. This may imply that AL is cost-effective.

6.2.2 Informative Instances
We randomly sample a couple of informative in-
stances by tracking the AL process, along with
some less informative cases. They helps illustrate
the intuition that informativeness verification ben-
efits data cleaning, in the process of using counter-
feits for distant supervision.

3) [He further said that it would study
other alternatives]Arg1 omitted con-
junction [it hasn’t yet made any propos-
als to shareholders]Arg2.

Conjunction: however
Relation: Comparison.Contrast

4) [all of a sudden you are relegated to
a paltry sum]Arg1 omitted conjunction
[you become a federal judge]Arg2.

Conjunction: when
Relation:Temporality.Synchrony

The instances listed above are to some ex-
tent informative. When the conjunctions inher-
ently connecting the arguments were pruned off,
the semantic relations changed to be uncertain.
For example, assume the conjunctions “however”
and “when” are respectively replaced by “there-
fore” and “although”, the arguments in 3) will
appear to have a Contingency.Causality
relation as well, and those in 4) seems to hold
a Contingency.Compromise relation with a
very reasonable possibility. It means that the rela-
tions the argument pair hold are ambiguous if there
isn’t any manually-edited explicit relational signal
(e.g., conjunction). Nevertheless, from the other
perspective, such instances are frankly useful for
training a classifier. It is because:

• Learning to distinguish the relations of such
arguments is challenging beyond other cases.

• A challenging task enables the training pro-
cess to be more strict but effective.

• This makes it possible to learn the subtle dif-
ferences among argument pairs which belong
to different relation classes.

On the contrary, the instances listed below are
far from informative. There are less alternative re-
lations can be imaged to replace the original, even
if the conjunctions “although” and “because” have
been pruned off. Note that such instances are un-
doubtedly useful at the very beginning of the train-
ing process. At that time, they facilitate the initial-
ization of fuzzy classification boundaries. How-
ever, they are most probably useless for calibrating
the boundaries at the level of subtle difference.

5) [She was dreadful to her war-
damaged husband]Arg1 omitted con-
junction [she was kind and playful to
her children]Arg2.

Conjunction: although
Relation: Comparison.Contrast

6) [The ad was devastating]Arg1. omit-
ted conjunction [it raised questions
about Mr. Courter’s credibility]Arg2.

Conjunction: because
Relation: Contingency.Cause

7 Conclusion
This paper demonstrates the contributions of AL
to the enhancement of implicit relation classifica-
tion. Using an AL model, we successfully sample
a batch of informative explicitly-related argument
pairs. Following Exp2Imp strategy, we convert the
arguments into implicitly-related cases. This helps
expand training data for fully-supervised relation
modeling. By retraining, we enable a weak CNN
model to achieve competitive performance.

Active learning can be systematically cooper-
ated with Rutherford and Xue (2015)’s intelligent
omission. This will enable the sampling of both
informative and reliable instances for data expan-
sion. Besides, using the carefully expanded train-
ing data set, the sophisticated learning model like
MNN may be further enhanced significantly.
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Abstract
Split and rephrase is the task of breaking down
a sentence into shorter ones that together con-
vey the same meaning. We extract a rich new
dataset for this task by mining Wikipedia’s
edit history: WikiSplit contains one million
naturally occurring sentence rewrites, provid-
ing sixty times more distinct split examples
and a ninety times larger vocabulary than the
WebSplit corpus introduced by Narayan et al.
(2017) as a benchmark for this task. Incor-
porating WikiSplit as training data produces a
model with qualitatively better predictions that
score 32 BLEU points above the prior best re-
sult on the WebSplit benchmark.

1 Introduction
A complex sentence can typically be rewritten
into multiple simpler ones that together retain the
same meaning. Performing this split-and-rephrase
task is one of the main operations in text sim-
plification, alongside paraphrasing and dropping
less salient content (Siddharthan, 2006; Zhu et al.,
2010; Woodsend and Lapata, 2011, i.a.). The area
of automatic text simplification has received a lot
of attention (Siddharthan, 2014; Shardlow, 2014),
yet still holds many open challenges (Xu et al.,
2015). Splitting sentences in this way could also
benefit systems where predictive quality degrades
with sentence length, as observed in, e.g., rela-
tion extraction (Zhang et al., 2017) and translation
(Koehn and Knowles, 2017). And the schema-free
nature of the task may allow for future supervision
in the form of crowd-sourced rather than expen-
sive expert annotation (He et al., 2015).

Narayan et al. (2017) introduce the WebSplit
corpus for the split-and-rephrase task and report
results for several models on it. Aharoni and Gold-
berg (2018) improve WebSplit by reducing over-
lap in the data splits, and demonstrate that neural

⇤Both authors contributed equally.

A classic leaf symptom is water-soaked lesions be-
tween the veins which appear as angular leaf-spots
where the lesion edge and vein meet.

A classic leaf symptom is the appearance of angular,
water-soaked lesions between the veins. The angular
appearance results where the lesion edge and vein
meet.

Figure 1: A split-and-rephrase example extracted from
a Wikipedia edit, where the top sentence had been
edited into two new sentences by removing some words
(yellow) and adding others (blue).

encoder-decoder models (Bahdanau et al., 2014)
perform poorly, even when enhanced with a copy
mechanism (Gu et al., 2016; See et al., 2017).

One limitation of the WebSplit examples them-
selves is that they contain fairly unnatural linguis-
tic expression using a small vocabulary. We in-
troduce new training data mined from Wikipedia
edit histories that have some noise, but which have
a rich and varied vocabulary over naturally ex-
pressed sentences and their extracted splits. Fig-
ure 1 gives an example of how a Wikipedia editor
rewrote a single sentence into two simpler ones.
We create WikiSplit, a set of one million such ex-
amples mined from English Wikipedia, and show
that models trained with this resource produce dra-
matically better output for split and rephrase.

Our primary contributions are:

• A scalable, language agnostic method for
extracting split-and-rephrase rewrites from
Wikipedia edits.

• Public release of the English WikiSplit
dataset, containing one million rewrites:
http://goo.gl/language/wiki-split

• By incorporating WikiSplit into training, we
more than double (30.5 to 62.4) the BLEU
score obtained on WebSplit by Aharoni and
Goldberg (2018).

732



Correct

Street Rod is the first in a series of two games released for the PC and Commodore 64 in 1989.
Street Rod is the first in a series of two games. It was released for the PC and Commodore 64 in 1989.

He played all 60 minutes in the game and rushed for 114 yards, more yardage than all the Four Horsemen combined.
He played all 60 minutes in the game. He rushed for 114 yards, more yardage than all the Four Horsemen combined.

Unsupported

When the police see Torco’s injuries, they send Ace to a clinic to be euthanized, but he escapes and the clinic worker covers
up his incompetence.
When the police see Torco’s injuries to his neck, they believe it is a result of Ace biting him. They send Ace to a clinic to
be euthanized, but he escapes and the clinic worker covers up his incompetence.

Missing

The avenue was extended to Gyldenløvesgade by Copenhagen Municipality in 1927-28 and its name was changed to
Rosenørns Allé after Ernst Emil Rosenørn (1810-1894) .
The avenue was extended to Gyldenløvesgade by Copenhagen Municipality in 1927-28. The street was named after Ernst
Emil Rosenørn (1810-1894) .

Table 1: Examples of correct and noisy sentence splits extracted from Wikipedia edits. Noise from unsupported or
missing statements is visualized with the same coloring as in Figure 1.

2 The WikiSplit Corpus

WebSplit provides a basis for measuring progress
on splitting and rephrasing sentences. However,
its small size, inherent repetitiveness, and syn-
thetic nature limit its broader applicability. In par-
ticular, we see it as a viable benchmark for eval-
uating models, but not for training them. To that
end, we introduce the WikiSplit corpus and detail
its construction next.

2.1 Mining Wikipedia Edits

Wikipedia maintains snapshots of entire docu-
ments at different timestamps, which makes it
possible to reconstruct edit histories for docu-
ments. This has been exploited for many NLP
tasks, including sentence compression (Yamangil
and Nelken, 2008), text simplification (Yatskar
et al., 2010; Woodsend and Lapata, 2011; Tonelli
et al., 2016) and modeling semantic edit intentions
(Yang et al., 2017).

To construct the WikiSplit corpus, we identify
edits that involve sentences being split. A list of
sentences for each snapshot is obtained by strip-
ping HTML tags and Wikipedia markup and run-
ning a sentence break detector (Gillick, 2009).
Temporally adjacent snapshots of a Wikipedia
page are then compared to check for sentences that
have undergone a split like that shown in Figure 1.
We search for splits in both temporal directions.

Given all candidate examples extracted this
way, we use a high-precision heuristic to retain
only high quality splits. To extract a full sentence
C and its candidate split into S = (S1, S2), we

Thresh. � Correct Unsupp. Miss. Size
0.1 161 35 6 1.4m
0.2 168 35 4 1.0m
0.3 169 31 4 0.5m

Table 2: Quality vs corpus size trade-off when setting
the similarity threshold. The counts are for a random
sample of 100 split-and-rephrase examples extracted
using our method (i.e., 200 simple sentences). Keys:
Unsupported; Missing

require that C and S1 have the same trigram pre-
fix, C and S2 have the same trigram suffix, and
S1 and S2 have different trigram suffixes. To filter
out misaligned pairs, we use BLEU scores (Pap-
ineni et al., 2002) to ensure similarity between the
original and the split versions.

Specifically, we discard pairs where BLEU(C,
S1) or BLEU(C, S2) is less than � (an em-
pirically chosen threshold). If multiple candi-
dates remain for a given sentence C, we retain
arg maxS (BLEU(C, S1) + BLEU(C, S2)).1

2.2 Corpus Statistics and Quality
Our extraction heuristic is imperfect, so we man-
ually assess corpus quality using the same catego-
rization schema proposed by Aharoni and Gold-
berg (2018); see Table 1 for examples of cor-
rect, unsupported and missing sentences in splits
extracted from Wikipedia. We do this for 100
randomly selected examples using three different

1We attempted to mitigate other noise inherent in
Wikipedia by removing items that 1) repeated a token more
than three times in a row; 2) contained a token longer than 25
characters; 3) were suggestive of profane vandalism.
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WebSplit WikiSplit

Count Unique Count Unique

C 1.3m 17k 1.0m 1.0m
S0 6.1m 28k 2.0m 1.9m
t 344k 7k 33.1m 633k

Table 3: Training corpus statistics in terms of com-
plex sentences (C), simple sentences (S0=[iSi) and to-
kens (t, appearing across unique complex sentences).
WikiSplit provides much greater diversity and scale.

thresholds of �. As shown in Table 2, �=0.2 pro-
vides the best trade-off between quality and size.

Out of the 100 complex sentences in the sam-
ple, only 4 contained information that was not
completely covered by the simple sentences. In
our corpus, every complex sentence is split into
two simpler sentences, so the sample contains 200
simple sentences. Out of these we found 168
(84%) to be correct, while 35 (18%) contained un-
supported facts. Thus, for the overall sample of
100 split-and-rephrase examples, 68% are perfect
while 32% contain some noise (either unsupported
facts or missing information). We stress that our
main goal is to use data extracted this way as train-
ing data and accept that its use for evaluation is an
imperfect signal with some inherent noise and bias
(by construction).

After extraction and filtering, we obtain over
one million examples of sentence splits from
around 18 million English documents. We ran-
domly reserved 5000 examples each for tun-
ing, validation and testing, producing 989,944
unique complex training sentences, compared to
the 16,938 of WebSplit (cf. Table 3).

2.3 Comparison to WebSplit
Narayan et al. (2017) derived the WebSplit corpus
by matching up sentences in the WebNLG cor-
pus (Gardent et al., 2017) according to partitions
of their underlying meaning representations (RDF
triples). The WebNLG corpus itself was created
by having crowd workers write sentential realiza-
tions of one or more RDF triples. The resulting
language is often unnatural, for example, “Akeem
Dent once played for the Houston Texans team
which is based in Houston in Texas.”2

Repetition arises because the same sentence
fragment may appear in many different examples.

2Given RDF triple: {(H Txns, city, Texas), (Akeem Dent,
formerTeam, H Txns), (H Txns, city, Houston)}.

This is to be expected given that WebSplit’s small
vocabulary of 7k words must account for the 344k
tokens that make up the distinct complex sen-
tences themselves.3

This is compounded in that each sentence con-
tains a named entity by construction. In contrast,
our large new WikiSplit dataset offers more natu-
ral and diverse text (see examples in Table 1), hav-
ing a vocabulary of 633k items covering the 33m
tokens in its distinct complex sentences.

The task represented by our WikiSplit dataset
is a priori both harder and easier than that of the
WebSplit dataset – harder because of the greater
diversity and sparsity, but potentially easier due to
the uniform use of a single split.

Of the two datasets, WebSplit is better suited
for evaluation: its construction method guaran-
tees cleaner data than is achieved by our extrac-
tion heuristic, and it provides multiple reference
decompositions for each complex sentence, which
tends to improve the correlation of automatic met-
rics with human judgment in related text genera-
tion tasks (Toutanova et al., 2016).

3 Experiments

In order to understand how WikiSplit can inform
the split-and-rephrase task, we vary the composi-
tion of the training set when training a fixed model
architecture. We compare three training config-
urations: WEBSPLIT only, WIKISPLIT only, and
BOTH, which is simply their concatenation.

Text-to-text training instances are defined as all
the unique pairs of (C, S), where C is a complex
sentence and S is its simplification into multiple
simple sentences (Narayan et al., 2017; Aharoni
and Goldberg, 2018). For training, we delimit the
simple sentences with a special symbol. We depart
from the prior work by only using a subset of the
WebSplit training set: we take a fixed sub-sample
such that each distinct C is paired with a single
S, randomly selected from the multiple possibili-
ties in the dataset. This scheme produced superior
performance in preliminary experiments.

As a quality measure, we report multi-reference
corpus-level BLEU4 (Papineni et al., 2002), but

3We use WebSplit v1.0 throughout, which is the scaled-
up re-release by Narayan et al. (2017) at http://github.
com/shashiongithub/Split-and-Rephrase,
commit a9a288c. Preliminary experiments showed the
same trends on the smaller v0.1 corpus, as resplit by Aharoni
and Goldberg (2018).

4Using NLTK v3.2.2, with case sensitive scoring.
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#train/eval! WebSplit 1.0 WikiSplit
SOURCE 58.0 73.4
SPLITHALF 54.9 71.7
WEBSPLIT 35.3 4.2
WIKISPLIT 59.4 76.0
BOTH 61.4 76.1

Table 4: Corpus-level BLEU scores on the validation
sets for the same model architecture trained on different
data.

include sentence-level BLEU (sBLEU) for direct
comparison to past work.5 We also report length-
based statistics to quantify splitting.

We use the same sequence-to-sequence archi-
tecture that produced the top result for Aharoni
and Goldberg (2018), “Copy512”, which is a one-
layer, bi-directional LSTM (cell size 512) with
attention (Bahdanau et al., 2014) and a copying
mechanism (See et al., 2017) that dynamically
interpolates the standard word distribution with
a distribution over the words in the input sen-
tence. Training details are as described in the Ap-
pendix of Aharoni and Goldberg (2018) using the
OpenNMT-py framework (Klein et al., 2017).6

3.1 Results
We compare to the SOURCE baseline, which is
the previously reported method of taking the un-
modified input sentence as prediction, and we add
SPLITHALF, the natural baseline of deterministi-
cally splitting a complex sentence into two equal-
length token sequences and appending a period to
the first one.

Table 4 compares our three training configu-
rations on the validation sets of both WebSplit
and WikiSplit. The WEBSPLIT model scores
35.3 BLEU on the WebSplit validation set but
fails to generalize beyond its narrow domain, as
evidenced by reaching only 4.2 BLEU on the
WikiSplit validation set.

The example predictions in Table 7 illustrate
how this model tends to drop content (“Alfred
Warden”, “mouth”, “Hamburg”), hallucinate com-
mon elements from its training set (“food”, “ingre-
dient”, “publisher”) and generally fails to produce
coherent sentences.

5Past work on WebSplit (Narayan et al., 2017; Aharoni
and Goldberg, 2018) reported macro-averaged sentence-level
BLEU, calculated without smoothing precision values of
zero. We found this ill-defined case occurred often for low-
quality output.

6github.com/OpenNMT/OpenNMT-py, 0ecec8b

BLEU sBLEU #S/C #T/S
Reference – 2.5 10.9
SOURCE 58.7 56.1 1.0 20.5
SPLITHALF 55.7 53.0 2.0 10.8
AG18 30.5 25.5 2.3 11.8
WEBSPLIT 34.2 30.5 2.0 8.8
WIKISPLIT 60.4 58.0 2.0 11.2
BOTH 62.4 60.1 2.0 11.0

Table 5: Results on the WebSplit v1.0 test set when
varying the training data while holding model ar-
chitecture fixed: corpus-level BLEU, sentence-level
BLEU (to match past work), simple sentences per com-
plex sentence, and tokens per simple sentence (micro-
average). AG18 is the previous best model by Aha-
roni and Goldberg (2018), which used the full WebSplit
training set, whereas we downsampled it.

In contrast, the WIKISPLIT model achieves
59.4 BLEU on the WebSplit validation set, without
observing any in-domain data. It also outperforms
the two deterministic baselines on both validation
sets by a non-trivial BLEU margin. This indi-
cates that the WikiSplit training data enable better
generalization than when using WebSplit by itself.
Reintroducing the downsampled, in-domain train-
ing data (BOTH) further improves performance on
the WebSplit evaluation.

These gains in BLEU from using WikiSplit
carry over to the blind manual evaluation we per-
formed on a random sample of model predictions
on the WebSplit validation set. As shown in Ta-
ble 6, the BOTH model produced the most accurate
output (95% correct simple sentences), with the
lowest incidence of missed or unsupported state-
ments. Our manual evaluation includes the cor-
responding outputs from Aharoni and Goldberg
(2018) (AG18), which were 22% accurate.

The examples in Table 7 demonstrate that the
WIKISPLIT and BOTH models produce much
more coherent output which faithfully rephrases
the input. In Example 1, the combined model
(BOTH) produces three fluent sentences, overcom-
ing the strong bias toward two-sentence output in-
herent in the majority of its training examples.

We relate our approach to prior work on Web-
Split v1.0 by reporting scores on its test set in Ta-
ble 5. Our best performance in BLEU is again
obtained by combining the proposed WikiSplit
dataset with the downsampled WebSplit, yielding
a 32 point improvement over the prior best result.
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Training Unsupported Missing Repeated Correct
AG18 82 45 12 26/119 (22%)
WEBSPLIT 58 47 13 32/100 (32%)
WIKISPLIT 8 5 0 91/100 (91%)
BOTH 4 4 0 95/100 (95%)

Table 6: Manual evaluation results, as counts over the simple sentences predicted by each model for a random
sample of 50 inputs from WebSplit 1.0 validation set.

Example 1 from WebSplit validation set

Input Alan Bean , born in Wheeler , Texas , was a crew member of Apollo 12 where Alfred
Worden served as the backup pilot .

AG18 Alan Bean is a member of the crew of Apollo 12 which was operated by backup
pilot . Alan Shepard was born in Texas .

WEBSPLIT Alan Bean served as a crew member of Apollo 12 . Alan Bean was born in Wheeler .
WIKISPLIT Alan Bean , born in Wheeler , Texas . He was a crew member of Apollo 12 where

Alfred Worden served as the backup pilot .
BOTH Alan Bean was born in Wheeler , Texas . Alan Bean was a crew member of

Apollo 12 . Alfred Worden served as the backup pilot .

Example 2 from WikiSplit validation set

Input He is a short , dark grayish - green monster with a beak - like mouth and a cap
made out of the upper part of a creature ’s skull .

WEBSPLIT He is a food found in grayish . grayish monster is an ingredient in grayish .
WIKISPLIT He is a short , dark grayish - green monster with a beak - like mouth . A cap made

out of the upper part of a creature ’s skull .
BOTH He is a short , dark grayish - green monster with a beak - like mouth . His cap is

made out of the upper part of a creature ’s skull .

Example 3 from WikiSplit validation set

Input Der beglückte Florindo is an opera composed by Handel in Hamburg in 1708 as
part of a double opera , the other part being Die verwandelte Daphne .

WEBSPLIT Handel opera is the publisher of the opera opera . Handel is the capital of 1708 .
WIKISPLIT Der beglückte Florindo is an opera composed by Handel in Hamburg in 1708 . It

was part of a double opera , the other part being Die verwandelte Daphne .
BOTH Der beglückte Florindo is an opera composed by Handel in Hamburg in 1708 as part

of a double opera . The other part being Die verwandelte Daphne .

Table 7: Example model predictions for items from each validation set. AG18 gives the output of the Copy512-
model of Aharoni and Goldberg (2018), while the other outputs are from our models trained on the corresponding
data.

4 Conclusion and Outlook

Our results demonstrate a large, positive impact on
the split-and-rephrase task when training on large,
diverse data that contains some noise. This sug-
gests that future improvements may come from
finding other such sources of data as much as from
modeling. The new WikiSplit dataset is intended
as training data, but for further progress on the
split-and-rephrase task, we ideally need evaluation
data also derived from naturally occurring sen-

tences, and an evaluation metric that is more sen-
sitive to the particularities of the task.
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Abstract

BLEU is widely considered to be an informa-
tive metric for text-to-text generation, includ-
ing Text Simplification (TS). TS includes both
lexical and structural aspects. In this paper we
show that BLEU is not suitable for the evalua-
tion of sentence splitting, the major structural
simplification operation. We manually com-
piled a sentence splitting gold standard cor-
pus containing multiple structural paraphrases,
and performed a correlation analysis with hu-
man judgments.1 We find low or no correlation
between BLEU and the grammaticality and
meaning preservation parameters where sen-
tence splitting is involved. Moreover, BLEU
often negatively correlates with simplicity, es-
sentially penalizing simpler sentences.

1 Introduction

BLEU (Papineni et al., 2002) is an n-gram-
based evaluation metric, widely used for Ma-
chine Translation (MT) evaluation. BLEU has
also been applied to monolingual translation tasks,
such as grammatical error correction (Park and
Levy, 2011), summarization (Graham, 2015) and
text simplification (Narayan and Gardent, 2014;
Štajner et al., 2015; Xu et al., 2016), i.e. the rewrit-
ing of a sentence as one or more simpler sentences.

Along with the application of parallel corpora
and MT techniques for TS (e.g., Zhu et al., 2010;
Wubben et al., 2012; Narayan and Gardent, 2014),
BLEU became the main automatic metric for TS,
despite its deficiencies (see §2). Indeed, focus-
ing on lexical simplification, Xu et al. (2016) ar-
gued that BLEU gives high scores to sentences
that are close or even identical to the input, espe-
cially when multiple references are used. In their
experiments, BLEU failed to predict simplicity,

1The corpus can be found in https://github.com/
eliorsulem/HSplit-corpus

but obtained a higher correlation with grammat-
icality and meaning preservation, relative to the
SARI metric they proposed.

In this paper, we further explore the appli-
cability of BLEU for TS evaluation, examining
BLEU’s informativeness where sentence splitting
is involved. Sentence splitting, namely the rewrit-
ing of a single sentence as multiple sentences
while preserving its meaning, is the main struc-
tural simplification operation. It has been shown
useful for MT preprocessing (Chandrasekar et al.,
1996; Mishra et al., 2014; Li and Nenkova, 2015)
and human comprehension (Mason and Kendall,
1979; Williams et al., 2003), independently from
other lexical and structural simplification opera-
tions. Sentence splitting is performed by many TS
systems (Zhu et al., 2010; Woodsend and Lapata,
2011; Siddharthan and Angrosh, 2014; Narayan
and Gardent, 2014, 2016). For example, 63% and
80% of the test sentences are split by the systems
of Woodsend and Lapata (2011) and Zhu et al.
(2010), respectively (Narayan and Gardent, 2016).
Sentence splitting is also the focus of the recently
proposed Split-and Rephrase sub-task (Narayan
et al., 2017; Aharoni and Goldberg, 2018), in
which the automatic metric used is BLEU.

For exploring the effect of sentence splitting
on BLEU scores, we compile a human-generated
gold standard sentence splitting corpus – HSplit,
which will also be useful for future studies of split-
ting in TS, and perform correlation analyses with
human judgments. We consider two reference
sets. First, we experiment with the most common
set, proposed by Xu et al. (2016), evaluating a va-
riety of system outputs, as well as HSplit. The ref-
erences in this setting explicitly emphasize lexical
operations, and do not contain splitting or content
deletion.2 Second, we experiment with HSplit as

2Nevertheless, they are also used in contexts where struc-
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the reference set, evaluating systems that focus on
sentence splitting. The first setting allows assess-
ing whether BLEU with the standard reference set
is a reliable metric on systems that perform split-
ting. The second allows assessing whether BLEU
can be adapted to evaluate splitting, given a refer-
ence set so oriented.

We find that BLEU is often negatively corre-
lated with simplicity, even when evaluating out-
puts without splitting, and that when evaluating
outputs with splitting, it is less reliable than a
simple measure of similarity to the source (§4.2).
Moreover, we show that BLEU cannot be adapted
to assess sentence splitting, even where the refer-
ence set focuses on this operation (§4.3). We con-
clude that BLEU is not informative and is often
misleading for TS evaluation and for the related
Split and Rephrase task.

2 Related Work

The BLEU Metric. BLEU (Papineni et al.,
2002) is reference-based, where the use of mul-
tiple references is used to address cross-reference
variation. To address changes in word order,
BLEU uses n-gram precision, modified to elimi-
nate repetitions across the references. A brevity
term penalizes overly short sentences. Formally:

BLEU = BP ⇥ exp(
NX

n=1

wnlog(pn))

where BP is the brevity penalty term, pn are the
modified precisions, and wn are the corresponding
weights, which are usually uniform in practice.

The experiments of Papineni et al. (2002)
showed that BLEU correlates with human judg-
ments in the ranking of five English-to-Chinese
MT systems and that it can distinguish human and
machine translations. Although BLEU is widely
used in MT, several works have pointed out its
shortcomings (e.g., Koehn and Monz, 2006). In
particular, Callison-Burch et al. (2006) showed
that BLEU may not correlate in some cases with
human judgments since a huge number of poten-
tial translations have the same BLEU score, and
that correlation decreases when translation quality
is low. Some of the reported shortcomings are rel-
evant to monolingual translation, such as the im-
possibility to capture synonyms and paraphrases
that are not in the reference set, or the uniform
weighting of words.

tural operations are involved (Nisioi et al., 2017; Sulem et al.,
2018b).

BLEU in TS. While BLEU is standardly used
for TS evaluation (e.g., Xu et al., 2016; Nisioi
et al., 2017; Zhang and Lapata, 2017; Ma and
Sun, 2017), only few works tested its correlation
with human judgments. Using 20 source sentences
from the PWKP test corpus (Zhu et al., 2010) with
5 simplified sentences for each of them, Wubben
et al. (2012) reported positive correlation of BLEU
with simplicity ratings, but no correlation with ad-
equacy. T-BLEU (Štajner et al., 2014), a vari-
ant of BLEU which uses lower n-grams when no
overlapping 4-grams are found, was tested on out-
puts that applied only structural modifications to
the source. It was found to have moderate posi-
tive correlation for meaning preservation, and pos-
itive but low correlation for grammaticality. Cor-
relation with simplicity was not considered in this
experiment. Xu et al. (2016) focused on lexical
simplification, finding that BLEU obtains reason-
able correlation for grammaticality and meaning
preservation but fails to capture simplicity, even
when multiple references are used. To our knowl-
edge, no previous work has examined the behavior
of BLEU on sentence splitting, which we inves-
tigate here using a manually compiled gold stan-
dard.

3 Gold-Standard Splitting Corpus

In order to investigate the effect of correctly split-
ting sentences on the automatic metric scores, we
build a parallel corpus, where each sentence is
modified by 4 annotators, according to specific
sentence splitting guidelines. We use the complex
side of the test corpus of Xu et al. (2016).3

While Narayan et al. (2017) recently pro-
posed the semi-automatically compiled WEB-
SPLIT dataset for training automatic sentence
splitting systems, here we generate a completely
manual corpus, without a-priori splitting points
nor do we pre-suppose that all sentences should
be split. This corpus enriches the set of references
focused on lexical operations that were collected
by Xu et al. (2016) for the same source sentences
and can also be used as an out-of-domain test set
for Split-and-Rephrase (Narayan et al., 2017).

We use two sets of guidelines. In Set 1, an-
notators are required to split the original as much
as possible, while preserving the sentence’s gram-

3https://github.com/cocoxu/
simplification includes the corpus, the SARI metric
and the SBMT-SARI system. The corpus comprises 359
sentences.
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maticality, fluency and meaning. The guidelines
include two sentence splitting examples.4 In Set
2, annotators are encouraged to split only in cases
where it simplifies the original sentence. That is,
simplicity is implicit in Set 1 and explicit in Set 2.
In both sets, the annotators are instructed to leave
the source unchanged if splitting violates gram-
maticality, fluency or meaning preservation.5

Each set of guidelines is used by two annotators,
with native or native-like proficiency in English.
The obtained corpora are denoted by HSplit1,
HSplit2 (for Set 1), and HSplit3 and HSplit4 (for
Set 2), each containing 359 sentences. Table 1
presents statistics for the corpora. Both in terms
of the number of splits per sentence (# Sents) and
in terms of the proportion of input sentences that
have been split (SplitSents), we observe that the
average difference within each set is significantly
greater than the average difference between the
sets.6 This suggests that the number of splits is
less affected by the explicit mention of simplicity
than by the inter-annotator variability.

# Sents SplitSents (%)
HSplit1 1.93 68
HSplit2 2.28 86
HSplit3 1.87 63
HSplit4 1.99 71

HSplitAverage 2.02 72

Table 1: Statistics for the sentence splitting benchmark.
#Sents denotes the average number of sentences in the out-
put. SplitSents denotes the proportion of input sentences that
have been split. The last row presents the average scores of
the 4 HSplit corpora.

4 Experiments

4.1 Experimental Setup
Metrics. In addition to BLEU,7 we also ex-
periment with (1) iBLEU (Sun and Zhou, 2012)
which was recently used for TS (Xu et al., 2016;
Zhang et al., 2017) and which takes into account
the BLEU scores of the output against the input
and against the references; (2) the Flesch-Kincaid
Grade Level (FK; Kincaid et al., 1975), computed
at the system level, which estimates the readabil-
ity of the text with a lower value indicating higher

4Examples are taken from Siddharthan (2006).
5Examples are not provided in the case of Set 2 so as not

to give an a-priori notion of simplicity. The complete guide-
lines are found in the supplementary material.

6Wilicoxon’s signed rank test, p = 1.6 · 10�5 for #Sents
and p = 0.002 for SplitSents.

7System-level BLEU scores are computed using the
multi-bleu Moses support tool. Sentence-level BLEU scores
are computed using NLTK (Loper and Bird, 2002).

readability;8 (3) SARI (Xu et al., 2016), which
compares the n-grams of the system output with
those of the input and the human references, sep-
arately evaluating the quality of words that are
added, deleted and kept by the systems. For
completeness, we also experiment with the neg-
ative Levenshtein distance to the source (-LDSC),
which serves as a measure of conservatism.9

We explore two settings. In one (“Standard Ref-
erence Setting”, §4.2), we use two sets of ref-
erences: the Simple Wikipedia reference (yield-
ing BLEU-1ref and iBLEU-1ref), and 8 refer-
ences obtained by crowdsourcing by Xu et al.
(2016) (yielding BLEU-8ref, iBLEU-8ref and
SARI-8ref). In the other (“HSplit as Reference
Setting”, §4.3), we use HSplit as the reference set.

Systems. For “Standard Reference Setting”, we
consider both a case where evaluated systems do
not perform any splittings on the test set (“Sys-
tems/Corpora without Splits”), and one where we
evaluate these systems, along with the HSplit cor-
pus, used in the role of system outputs (“All Sys-
tems/Corpora”). Systems include six MT-based
simplification systems, including outputs of the
state-of-the-art neural TS system of Nisioi et al.
(2017), in four variants: either default settings
or initialization by word2vec, for each both the
highest and the fourth ranked hypotheses in the
beam are considered.10 We further include Moses
(Koehn et al., 2007) and SBMT-SARI (Xu et al.,
2016), a syntax-based MT system tuned against
SARI, and the identity function (outputs are same
as inputs). The case which evaluates outputs with
sentence splitting additionally includes the four
HSplit corpora and the HSplit average scores.

For “HSplit as Reference Setting”, we con-
sider the outputs of six simplification systems
whose main simplification operation is sentence
splitting: DSS, DSSm, SEMoses, SEMosesm,
SEMosesLM and SEMosesm

LM , taken from (Sulem
et al., 2018b).

Human Evaluation. We use the evaluation
benchmark provided by Sulem et al. (2018b),11

including system outputs and human evaluation
scores corresponding to the first 70 sentences of

8We thus computed the correlation in §4.2 for -FK.
9LDSC is computed using NLTK.

10Taking the fourth hypothesis rather than the first has been
found to yield considerably less conservative TS systems.

11https://github.com/eliorsulem/
simplification-acl2018
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Systems/Corpora without Splits All Systems/Corpora
G M S StS G M S StS

BLEU-1ref 0.43 (0.2) 1.00 (0) -0.81 (0.01) -0.43 (0.2) 0.11 (0.4) 0.08 (0.4) -0.60 (0.02) -0.67 (0.008)
BLEU-8ref 0.61 (0.07) 0.89 (0.003) -0.59 (0.08) -0.11 (0.4) 0.26 (0.2) 0.13 (0.3) -0.42 (0.08) -0.50 (0.05)
iBLEU-1ref 0.21 (0.3) 0.93 (0.001) -0.85 (0.008) -0.61 (0.07) 0.02 (0.5) 0.07 (0.4) -0.61 (0.02) -0.71(0.004)
iBLEU-8ref 0.61 (0.07) 0.89 (0.003) -0.59 (0.08) -0.11 (0.4) 0.26 (0.2) 0.13 (0.3) -0.42 (0.08) -0.50 (0.05)

-FK -0.21 (0.3) -0.57 (0.09) 0.67 (0.05) 0.39 (0.2) -0.05 (0.4) -0.03 (0.5) 0.51 (0.05) 0.64 (0.01)
SARI-8ref -0.64 (0.06) -0.86 (0.007) 0.52 (0.1) 0.00 (0.5) -0.64 (0.01) -0.72 (0.004) 0.26 (0.2) -0.02 (0.5)

-LDSC 0.29 (0.3) 0.86 (0.007) -0.88 (0.004) -0.57 (0.09) 0.21 (0.3) 0.51 (0.04) -0.68 (0.007) -0.52 (0.04)

Table 2: Spearman correlation (and p-values) at the system level between the rankings of automatic metrics and of human
judgments for “Standard Reference Setting”. Automatic metrics (rows) include BLEU and iBLEU (each used either with a
single reference or with 8 references), the negative Flesh-Kincaid Grade Level (-FK), and SARI, computed with 8 references.
We also include the negative Levenshtein distance between the output and the source (-LDSC ). Human judgments are of the
Grammaticality (G), Meaning Preservation (M), Simplicity (S) and Structural Simplicity (StS) of the output. The left-hand side
reports correlations where only simplifications that do not include sentence splitting are considered. The right-hand side reports
correlations where the HSplit corpora are evaluated as well (see text). BLEU negatively correlates with S and StS in both cases,
and shows little to no correlation with G and M where sentence splitting is involved.

the test corpus of Xu et al. (2016), and extend it to
apply to HSplit as well.

The evaluation of HSplit is carried out by 3
in-house native English annotators, who rated the
different input-output pairs for the different sys-
tems according to 4 parameters: Grammaticality
(G), Meaning preservation (M), Simplicity (S) and
Structural Simplicity (StS). G and M are measured
using a 1 to 5 scale. A -2 to +2 scale is used
for measuring simplicity and structural simplicity.
For computing the inter-annotator agreement of
the whole benchmark (including the system out-
puts and the HSplit corpora), we follow Pavlick
and Tetreault (2016) and randomly select, for each
sentence, one annotator’s rating to be the rating of
Annotator 1 and the rounded average rating of the
two other annotators to be the rating of Annotator
2. We then compute weighted quadratic  (Co-
hen, 1968) between Annotator 1 and 2. Repeating
this process 1000 times, the obtained medians and
95% confidence intervals are 0.42 ± 0.002 for G,
0.77 ± 0.001 for M and 0.59 ± 0.002 for S and
StS.

4.2 Results with Standard Reference Setting
Description of the Human Evaluation Scores.
The human evaluation scores for each parame-
ter are obtained by averaging over the 3 annota-
tors. The scores at the system level are obtained
by averaging over the 70 sentences. In the ”All
systems/corpora” case of the ”Standard Reference
Setting”, where 12 systems/corpora are consid-
ered, the range of the average G scores at the sys-
tem level is from 3.71 to 4.80 (� = 0.29). For
M, this max-min difference between the systems
is 1.23 (�=0.40). For S and StS, the differences
are 0.53 (� = 0.17) and 0.65 (� = 0.20). At the
sentence level, considering 840 sentences (70 for

each of the system/corpora), the G and M scores
vary from 1 to 5 (� equals 0.69 and 0.85 respec-
tively), and the S and StS scores from -1 to 2 (�
equals 0.53 and 0.50).

In the ”Systems/corpora without Splits” case of
the ”Standard Reference Setting”, where 7 sys-
tems/corpora are considered, the max-min differ-
ence at the system level are again 1.09 (� = 0.36)
and 1.23 (� = 0.47) for G and M respectively. For
S and StS, the differences are 0.45 and 0.49 (� =
0.18). At the sentence level, considering 490 sen-
tences (70 for each of the system/corpora), the G
and M scores vary from 1 to 5 (� equals 0.78 and
1.01 respectively), and the S and StS scores from
-1 to 2 (� equals 0.51 and 0.46).

Comparing HSplit to Identity. Comparing the
BLEU score on the input (the identity function)
and on the HSplit corpora, we observe that the
former yields much higher BLEU scores. Indeed,
BLEU-1ref obtains 59.85 for the input and 43.90
for the HSplit corpora (averaged over the 4 HSplit
corpora). BLEU-8ref obtains 94.63 for the input
and 73.03 for HSplit.12 The high scores obtained
for Identity, also observed by Xu et al. (2016),
indicate that BLEU is a not a good predictor for
relative simplicity to the input. The drop in the
BLEU scores for HSplit is not reflected by the
human evaluation scores for grammaticality (4.43
for AvgHSplit vs. 4.80 for Identity) and meaning
preservation (4.70 vs. 5.00), where the decrease
between Identity and HSplit is much more lim-
ited. For examining these tendencies in more de-
tail, we compute the correlations between the au-

12These scores concern the first 70 sentences of the corpus.
A similar phenomenon is observed on the whole corpus (359
sentences). BLEU-1ref obtains 59.23 for the input and 45.68
for HSplit. BLEU-8ref obtains 94.93 for the input and 75.68
for HSplit.
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tomatic metrics and the human evaluation scores.
They are described in the following paragraph.

Correlation with Human Evaluation. The
system-level Spearman correlations between the
rankings of the automatic metrics and the human
judgments (see §4.1) are presented in Table 2.
We find that in all cases BLEU and iBLEU neg-
atively correlate with S and StS, indicating that
they fail to capture simplicity and structural sim-
plicity. Where gold standard splits are evaluated
as well, BLEU’s and iBLEU’s failure to capture
StS is even more pronounced. Moreover, BLEU’s
correlation with G and M in this case disappears.
In fact, BLEU’s correlation with M in this case is
considerably lower than that of -LDSC and its cor-
relation with G is comparable, suggesting BLEU
is inadequate even as a measure of G and M if
splitting is involved.

We examine the possibility that BLEU mostly
acts as a measure of conservatism, and com-
pute the Spearman correlation between -LDSC

and BLEU. The high correlations we obtain be-
tween the metrics indicate that this may be the
case. Specifically, BLEU-1ref obtains correlations
of 0.86 (p = 7 ⇥ 10�3) without splits and of 0.52
(p = 0.04) where splitting is involved. BLEU-8ref
obtains 0.82 (p = 0.01) and 0.55 (p = 0.03).

SARI obtains positive correlations with S,
of 0.52 (without splits) and 0.26 (all sys-
tems/corpora), but correlates with StS in neither
setting. This may stem from SARI’s focus on lex-
ical, rather than structural TS.

Similar trends are observed in the sentence-
level correlation for S, StS and M, whereas G
sometimes benefits in the sentence level from in-
cluding HSplit in the evaluation. For G and M, the
correlation with BLEU is lower than its correlation
with -LDSC in both cases.

G M S StS
BLEU 0.36⇤ 0.43⇤ 0.17 (3 · 10�4) 0.17 (3 · 10�4)
iBLEU 0.32⇤ 0.40⇤ 0.15 (8 · 10�4) 0.15 (8 · 10�4)
SARI -0.05 (0.2) -0.11 (0.02) 0.18 (10�4) 0.19 (6 · 10�5)

-LDSC 0.65⇤ 0.66⇤ 0.21⇤ 0.20 (10�5)

Table 3: Sentence-level Spearman correlation (and p-values)
between the automatic metrics and the human ratings for
“HSplit as Reference Setting”. ⇤p < 10�5.

4.3 Results with HSplit as Reference Setting
We turn to examining whether BLEU may be
adapted to address sentence splitting, if provided
with references that include splittings.

Description of the Human Evaluation Scores.
In the ”HSplit as Reference Reference Setting”,
where 6 systems are considered, the max-min dif-
ference at the system level is 0.16 (� = 0.06) for
G, 0.37 for M (� = 0.15), and 0.41 for S and StS
(� equals 0.20 and 0.19 respectively). At the sen-
tence level, considering 420 sentences (70 for each
of the systems), the G and M scores vary from 1 to
5 (� equals 0.99 and 0.88 respectively), and the S
and StS scores from -2 to 2 (� equals 0.63).

Correlation with Human Evaluation. On
the system-level Spearman correlation between
BLEU and human judgments, we find that while
correlation with G is high (0.57, p = 0.1), it
is low for M (0.11, p = 0.4), and negative for
S (-0.70, p = 0.06) and StS (-0.60, p = 0.1).
Sentence-level correlations of BLEU and iBLEU
are positive, but they are lower than those obtained
by LDSC . See Table 3.

To recap, results in this section demonstrate that
even when evaluated against references that focus
on sentence splitting, BLEU fails to capture the
simplicity and structural simplicity of the output.

5 Conclusion

In this paper we argued that BLEU is not suitable
for TS evaluation, showing that (1) BLEU nega-
tively correlates with simplicity, and that (2) even
as a measure of grammaticality or meaning preser-
vation it is comparable to, or worse than -LDSC ,
which requires no references. Our findings sug-
gest that BLEU should not be used for the eval-
uation of TS in general and sentence splitting in
particular, and motivate the development of alter-
native methods for structural TS evaluation, such
as (Sulem et al., 2018a).
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Abstract
How to generate relevant and informative re-
sponses is one of the core topics in response
generation area. Following the task formu-
lation of machine translation, previous works
mainly consider response generation task as
a mapping from a source sentence to a tar-
get sentence. To realize this mapping, exist-
ing works tend to design intuitive but complex
models. However, the relevant information ex-
isted in large dialogue corpus is mainly over-
looked. In this paper, we propose Sequence
to Sequence with Prototype Memory Network
(S2SPMN) to exploit the relevant information
provided by the large dialogue corpus to en-
hance response generation. Specifically, we
devise two simple approaches in S2SPMN to
select the relevant information (named proto-
types) from the dialogue corpus. These pro-
totypes are then saved into prototype mem-
ory network (PMN). Furthermore, a hierarchi-
cal attention mechanism is devised to extract
the semantic information from the PMN to as-
sist the response generation process. Empiri-
cal studies indicate the advantage of our model
over several classical and strong baselines.

1 Introduction

Dialogue systems, or say, chatbots are usually con-
sidered as the future of human-computer interac-
tion and extensive works have been done in this
area (Wen et al., 2016; Qiu et al., 2017; Wen et al.,
2017; Kreyssig et al., 2018).

As one of the main approaches for dialogue
system design, response generation has attracted
more and more attention from research commu-
nity. Neural networks based models like Seq2Seq
architecture (Vinyals and Le, 2015; Shang et al.,
2015) are proven to be effective to generate valid
responses for a dialogue system. However, as re-
vealed in many previous works (Li et al., 2016a;

⇤*Chenliang Li is the Corresponding Author

Wu et al., 2018), ”safe reply” is still an open prob-
lem and lots of efforts are made to generate more
informative responses (Li et al., 2016a; Mou et al.,
2016; Li et al., 2016b; Qiu et al., 2017; Li et al.,
2017; Zhao et al.; He et al., 2017; Zhou et al.,
2017; Liu et al., 2018; Chen et al., 2018).

Note that in this paper when we say response
generation, we focus on single turn chit-chat for
that other tasks like multi-turn (Zhang et al.,
2018) or goal-oriented (Kan et al., 2018)genera-
tion could be partly considered as the extensions
of single-turn generation.

Though existing works mentioned above are
helpful in some ways, they all follow the task for-
mulation proposed by (Ritter et al., 2011), which
considers response generation (RG) task as a map-
ping from a source sentence to a target sentence
like machine translation (MT). This task formu-
lation ignores the natural difference between MT
and RG: MT deals with sentence pairs of the same
meanings while RG needs to realize the meaning
transformation from a source post to the target re-
sponse. In this sense, the meaning transformation
is more difficult than machine translation. Hence,
many researchers have designed more and more
complex models. However, given a target post, the
relevant information covered by the dialogue cor-
pus is usually overlooked. It is intuitive that the
responses for a similar post would provide more
contextual information to guide the response gen-
eration. To this end, we are interested in exploit-
ing the relevant responses in the training set as soft
prototypes to assist the response generation.

Specifically, in this paper, we propose Se-
quence to Sequence with Prototype Memory Net-
work (named S2SPMN). We introduce two Pro-
totype Memory Networks (PMNs) to store the rel-
evant responses extracted from the dialogue cor-
pus: static PMN and dynamic PMN. Tested on
a widely used benchmark dataset, the proposed
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Figure 1: S2SPMN Framework

S2SPMN produces more informative responses
than the standard and strong baselines. To the
best of our knowledge, it is the first work lever-
aging prototype information in dialogue corpus in
response generation area.

The contributions of this paper could be sum-
marized as follows:

(1) We propose S2SPMN, a simple yet effec-
tive response generation model which could lever-
age relevant information in dialogue corpus to as-
sist response generation.

(2) Empirical studies indicate the superiority of
proposed S2SPMN over other methods.

2 Architecture

2.1 Problem Definition
Given a dialogue dataset � = {Xi, Yi}N

i=1, where
Yi is the response for a post Xi, we aim to train
a model with � such that the model can gener-
ate an accurate and informative response for a
new post X 0. Here, we propose to exploit the
relevant information provided by �. Let T 0 =
(r1, r2, ..., rm) refers to the prototype memory
network constructed for post X 0, where ri is the
i-th relevant response (named prototype) extracted
from dialogue dataset �. The goal is to derive the
model to generate the response Y 0: p(Y 0|X 0) =
p(Y 0|T 0, X 0).

In following sections, we firstly introduce the
generation framework with hierarchical attention
mechanism assuming PMN is constructed. Then
we will introduce two kinds of PMNs: static PMN
and dynamic PMN.

2.2 Sequence-to-Sequence with Prototype
Memory Network

S2SPMN is built with a Seq2Seq encoder-decoder
framework (Sutskever et al., 2014) with the atten-
tion mechanism (Bahdanau et al., 2014). We use

LSTM (Hochreiter and Schmidhuber, 1997) to
materialize both encoder and decoder. The hid-
den state at t-th encoding step is generated from
previous hidden state ht�1 and current input xt as
follows:

ht = lstm(xt, ht�1) (1)

For decoder, at i-th timestep, si is the decoder’s
hidden state and pi is the probability distribution
of candidate words .

si = lstm(yi�1, si�1, ci, oi) (2)
pi = softmax(MLP (si, yt�1, oi, ci)) (3)

where MLP () is a one-layer perception, oi is the
hierarchical attention over entire prototype mem-
ory network which will be formalized in following
sections. ci is the summarization for the post re-
garding to the hidden state si�1:

ci =
TX

j=1

↵ijhj , ↵ij =
exp(eij)PT

k=1 exp(eik)
(4)

eij = vT
1 MLP (si�1, hj) (5)

where v1 is the attention parameter.

2.3 Prototype Memory Network
Given a post X 0, a set of responses are selected
from training set as prototypes and are then saved
into the Prototype Memory Network(PMN). We
propose two kinds of Prototype Memory Net-
works.

Static PMN: For static PMN(SPMN), we ran-
domly select m responses before training starts
and the entire PMN remains unchanged during the
training process. That is, we use the same proto-
types for all the post-response pairs.

Dynamic PMN: In dynamic PMN(DPMN),
prototypes are selected by retrieving the most rel-
evant posts. We calculate the cosine similarity
with TF-IDF weighting scheme between the given
post and all the posts in training set. We consider
top-m posts and put the associated responses into
DPMN. This means that the prototypes are char-
acteristic for each post-response pair.

In both SPMN and DPMN, m is a predefined
hyper-parameter controlling the size of the PMN.
Each prototype is represented with the concate-
nation of word embeddings. We perform zero
padding for both SPMN and DPMN with a pseudo

746



word1, making the length for the representation
of each prototype be the same. Here we de-
note the prototype memory network as PMN =
{r1, r2, ..., rm}, in which rm is the representation
of m-th prototype and m is the size of the PMN.
And rm = {wm,1, wm,2, ..., wm,l} where wm,i is
the embedding of i-th word, and l is the maximum
allowable length for a prototype.

For both SPMN and DPMN, we select re-
sponses rather than posts although sometimes they
have similar vocabularies and syntactic structure.
We believe that using responses as prototypes
could help with the meaning transformation from
post to response. In DPMN, all the retrieved proto-
types could be considered as responses to the tar-
get post. It is intuitive that the generated response
would have similar representation to these proto-
types.

2.4 Hierarchical Attention Mechanism
We use a two-stage hierarchical attention mech-
anism to extract useful information in PMN and
integrate it into the decoding process. The first
stage is a sentence level attention over entire PMN
to generate the abstractive prototype r̂i at each
timestep:

r̂i =
MX

j=1

�ijrj , �ij =
exp(fij)PM

k=1 exp(fik)
(6)

fij = vT
2 MLP (si�1, rj) (7)

where v2 is the attention parameter.
The second stage is a word level attention oi

over the generated r̂i = {ŵ1, ŵ2, ..., ŵl} and is
calculated as follows:

oi =
lX

j=1

�ijŵj , �ij =
exp(gij)Pl

k=1 exp(gik)
(8)

gij = vT
3 MLP (si�1, ŵj) (9)

where v3 is the attention parameter.

3 Experiment

3.1 Experiment Setup
We use a subset of STC dataset (Shang et al.,
2015) crawled from Weibo, the largest social me-
dia in China. The vocabulary size is set to be
8, 000 for computational efficiency and words out
of vocabulary are replaced by the symbol ”unk”.

1The embedding of the pseudo word is a zero vector.

We remove sentences longer than 25 words or
containing more than 2 unk symbols. After pre-
processing step, we have 315, 980 post-response
pairs in training set, 3, 510 pairs in validation set
and 300 in test set.

In our model, we use one-layer LSTM and the
hidden size is set to be 600 in both encoder and de-
coder. For all the words used in our model, the em-
bedding size is 300. Mini-batch learning is used
and batch size is set as 64. We use simple SGD for
optimization and the initial learning rate is set to
be 0.2.

3.2 Evaluation Metrics

We use two automatic evaluation metrics includ-
ing Perplexity and Distinct. Human evaluation is
also conducted as the only gold standard for re-
sponse generation is human judgement.

Perplexity: Following (Vinyals and Le, 2015)
and (Xing et al., 2017), we use perplexity as
one of our automatic evaluation metrics. Perplex-
ity could measure the holistic condition of model
learning. A lower perplexity score indicates bet-
ter generalization performance. Perplexity on both
validation set (PPL-V) and test set (PPL-T) are
presented in table 2.

Distinct-1, Distinct-2: Distinct-1 and distinct-
2 calculate the ratios of distinct unigrams and bi-
grams in the generated responses respectively (Li
et al., 2016a; Xing et al., 2017; Wu et al., 2018).
The higher score suggests that the generated re-
sponse is more diverse and informative. Here, we
report the distinct-1 and distinct-2 scores on entire
test set.

Human Annatation: We further recruit human
annotators to judge the quality of the generated an-
swers for all the qa-pairs in test set. Responses
generated by all the methods are pooled and ran-
domly shuffled for each annotator. A score be-
tween 0 and 2 is assigned to each generated answer
based on the following criteria:

+2: the answer is natural and relevant to the
question.

+1: the answer can be used as a reply, but is not
informative enough (e.g. “⌘_/” (me too), “�
ÂS” (I don’t know)).

+0: the answer is irrelevant and unclear in
meaning (e.g. too many grammatical errors to un-
derstand).
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Model PPL-V PPL-T distinct-1 distinct-2
S2SA 8.41 9.05 0.0809 0.2110
TAS2S 7.38 7.84 0.04759 0.1087
SPMN500 7.04 7.93 0.06430 0.1734
SPMN1000 6.28 7.72 0.07347 0.1909
DPMN100 6.45 7.69 0.04350 0.1048

Table 1: Automatic evaluation

3.3 Results Comparation

We use a standard baseline and a strong baseline
for comparison.

S2SA: The standard Seq2Seq model with an at-
tention mechanism (Vinyals and Le, 2015).

TAS2S: One of the existing state-of-the-art neu-
ral models based on Seq2Seq architecture. The
topical words relevant to the post are considered
via an attention mechanism when decoding (Xing
et al., 2017).

As for our models, we use SPMN to denote
the generating method with static prototype mem-
ory networks and DPMN with dynamic prototype
memory networks. The numbers following model
names are the size of PMN.

Automatic Evaluation: Table 1 shows the au-
tomatic evaluation results. We see that both SPMN
and DPMN obtain huge improvements over the
two baselines in terms of PPL-V and PPL-T.
Also, we observe that SPMN1000 outperforms
SPMN500 in all the four automatic metrics. Note
that each post has the same prototypes provided
by SPMN. This is reasonable that the relevant re-
sponse is more likely to be covered by storing
more prototypes in SPMN. As for the DPMN, we
can see that DPMN achieves the best performance
with only 100 prototypes in terms of PPL-T, com-
pared with the other 4 methods. This suggests
that using a retrieval mechanism to incorporate the
relevant responses brings more useful information
for better response generation. Note that S2SA
outperforms the others in terms of distinct-1 and
distinct-2. Further human evaluation indicates that
many responses generated by S2SA are irrelevant
and meaningless, which could inevitably increase
the distinct scores.

Human Annotation: Table 2 shows human
annotation results. It is clear that our mod-
els (SPMN500, SPMN1000, DPMN100) gener-
ate much more informative and valid responses
and much less meaningless or “safe” responses
than baseline models (S2SA, TAS2S). Specifi-
cally, SPMN500, SPMN1000 and DPMN100 all

Model 0 1 2 Kappa
S2SA 76.83% 16.33% 6.83% 0.6124
TAS2S 69.83% 19.83% 10.33% 0.7425
SPMN500 21.67% 55.00% 23.33% 0.6534
SPMN1000 19.17% 52.50% 28.33% 0.7330
DPMN100 12.08% 56.67% 31.25% 0.6280

Table 2: Human Annotation

outperform S2SA and TAS2S by producing more
informative and valid responses. Also, we can
find that DPMN still outperforms SPMN500 and
SPMN1000 with only 100 relevant responses,
which is consistent with the observation made in
automatic evaluation (in terms of PPL-V and PPL-
T).

Case Study Table 3 shows several cases gen-
erated by different models. Note that the size of
training set and vocabulary used in our experi-
ments are relatively small compared to millions of
qa-pairs used in other works (Xing et al., 2017;
Wu et al., 2018), so it’s reasonable that bad cases
sometimes occur in results of baselines. How-
ever, our models, no matter the static one or the
dynamic one, could generate amazing responses
which are not only grammatical and informative,
but also have some emotional expressions like the
use of punctuation and repetition.

4 Related Work

4.1 Natural language generation

How to generate grammatical and interesting
sentences in different situations is one of the
core topics in natural language processing area.
Extensive works are proposed to generate po-
ems (Zhang et al., 2017), abstracts (Wang and
Ling, 2016), arguments (Hua and Wang, 2018),
stories (Peng et al., 2018) and so on. Although
existing approaches are useful in some ways, it’s
still difficult to generate natural sentences from
scratch and integrating retrieved results has re-
cently become a new fashion in this area. Hua and
Wang (2018) proposed an encoder-decoder style
neural network-based argument generation model
enriched with externally retrieved evidence from
Wikipedia. Li et al. (2018) devised a Retrieve-
Rerank-Rewrite model for abstractive summariza-
tion which uses retrieved results as soft template
to assist the decoding process.
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Post 1 ééé˝̋̋†††fififi´́́˙̇̇VVV���GGG⇥⇥⇥ÑÑÑééé=== (Mono Lake in California,the US, fantastically beautiful )
S2SA  unkÑ0π,1/unk (It’s unk if there’s unk)
TAS2S ��� (speechless)
SPMN500 Ÿ/¿H0π�⌘_ª↵↵ (Where’s the place? I’d like to go and see)
SPMN1000 Ÿ/(Í�� (What’s the place?!)
DPMN100 ⌘_ÛªÑ0π (That’s exactly where I want to go)

Post 2 ↵↵↵↵↵↵˝̋̋©©©ààààààØØØâââÑÑÑbaby (Oh! Look at the baby! She’s driving mom mad!)
S2SA unk,unk! (speechless)
TAS2S ⌘_ú" (Wow,I like her,too)
SPMN500 }Ô1J�}Ô1� (She’s so cute!)
SPMN1000 ⌘_/Ÿ7Ñ (I was like her when I was at her age)
DPMN100 ⌘_Û{�* (I want a baby like her)

Post 3
≈≈≈ÓÓÓÂÂÂ���àààÎÎÎ���îîîÑÑÑ80ˆ̂̂ããã���ÿÿÿ°°°≈≈≈ÓÓÓÑÑÑ↵↵↵ÀÀÀÏÏÏ������öööÅÅÅ���ttt���
(80 things to regret after decorating your house! Look at this article if you haven’t started decoration!)

S2SA  unkÑˆ⇡�⌘⇢ �*unkÑunk! (When I have unk, I will have a unk unk!)
TAS2S �Ñ (speechless)
SPMN500 ⌘_Åª↵↵��öÅ6œ� (Ok,I will read and collect it!)
SPMN1000 àû(�àû(�àû( (very very very useful)
DPMN100 àû(�àû(�àû(�àû(� (very very very very useful!)

Table 3: The answers generated by different models for the sampled questions.

4.2 Response generation

Hand-craft rules, retrieval and generation are three
main solutions for conversational AI and genera-
tion is the most interesting one in current research
community. Li et al. (2016a; 2016b; 2017) pro-
posed a series of works in solving the ”safe reply”
problem using different approaches like redefining
the objective function or leveraging GAN. Xing
et al. (2017) considered topic coherence issue by
incorporating topical words. Dynamically restrict-
ing the target vocabulary is also an interesting idea
and Wu et al. (2018) proposed to filter irrelevant
words while achieving better computational effi-
ciency . He et al. (2017) introduced copy mecha-
nism to simulate people’s behaviors in real conver-
sations and the proposed model could copy useful
words from source sentences. Zhou et al. (2017)
indicated that emotion is quite important in real
dialogues thus an emotional chatting machine was
devised to generate emotional responses. Liu
et al. (2018) proposed a neural knowledge diffu-
sion (NKD) model to introduce knowledge into di-
alogue generation.

5 Conclusion and Future Work

In this paper, we propose S2SPMN, a simple yet
effective response generation model by exploiting
relevant information contained in large dialogue
dataset. Empirical studies indicate that simply se-
lecting responses from training set as prototypes
and integrating them into the generation process
could dramatically improve the quality of gener-
ated responses. Moreover, our model is very flex-

ible and could be adapted to any other Seq2Seq
based generation methods. Most importantly, we
claim the intrinsic difference between RG and MT
and propose a new way to define response genera-
tion.

As the first work trying to help with the mean-
ing transformation between source and target, we
have obtained the encouraging progress. However,
we know that there are still many directions to
enrich the proposed framework. In future work,
we would like to devise more sophisticated solu-
tions to bridge the semantic gap in RG and explore
linguistic patterns in conversations like what has
been done in discourse analysis (Lei et al., 2018) .
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Abstract

Recently, Reinforcement Learning (RL) ap-
proaches have demonstrated advanced perfor-
mance in image captioning by directly op-
timizing the metric used for testing. How-
ever, this shaped reward introduces learning
biases, which reduces the readability of gen-
erated text. In addition, the large sample space
makes training unstable and slow. To allevi-
ate these issues, we propose a simple coher-
ent solution that constrains the action space
using an n-gram language prior. Quantita-
tive and qualitative evaluations on benchmarks
show that RL with the simple add-on module
performs favorably against its counterpart in
terms of both readability and speed of con-
vergence. Human evaluation results show that
our model is more human readable and grace-
ful. The implementation will become publicly
available upon the acceptance of the paper1.

1 Introduction

Image captioning (Farhadi et al., 2010; Kulkarni
et al., 2011; Yao et al., 2017; Lu et al., 2016; Dai
et al., 2017; Li et al., 2017) aims at generating nat-
ural language descriptions of images. Advanced
by recent developments of deep learning, many
captioning models rely on an encoder-decoder
based paradigm (Vinyals et al., 2015), where the
input image is encoded into hidden representations
using a Convolutional Neural Network (CNN) fol-
lowed by a Recurrent Neural Network (RNN) de-
coder to generate a word sequence as the caption.
Further, the decoder RNN can be equipped with
spatial attention mechanisms (Xu et al., 2015) to
incorporate precise visual contexts, which often
yields performance improvements empirically.

Although the encoder-decoder framework can
be effectively trained with maximum likelihood
estimation (MLE) (Salakhutdinov, 2010), recent

1https://github.com/tgGuo15/PriorImageCaption

research (Ranzato et al., 2015) have pointed out
that the MLE based approaches suffer from the
so-called exposure bias problem. To address this
problem, (Ranzato et al., 2015) proposed a Re-
inforcement Learning (RL) based training frame-
work. The method, developed on top of the RE-
INFORCE algorithm (Williams, 1992), directly
optimizes the non-differentiable test metric (e.g.
BLEU (Papineni et al., 2002), CIDEr (Vedan-
tam et al., 2015), METEOR (Banerjee and Lavie,
2005) etc.), and achieves promising improve-
ments. However, learning with RL is a notoriously
difficult task due to the high-variance of gradient
estimation. Actor-critic (Sutton and Barto, 1998)
methods are often adopted, which involves train-
ing an additional value network to predict the ex-
pected reward. On the other hand, (Rennie et al.,
2017) designed a self-critical method that utilizes
the output of its own test-time inference algorithm
as the baseline to normalize the rewards, which
leads to further performance gains.

Beside to the high-variance problem, we notice
that there are two other drawbacks of RL-based
captioning methods that are often overlooked in
the literature. First, while these methods can di-
rectly optimize the non-differentiable rewards and
achieve high test scores, the generated captions
contain many repeated trivial patterns, especially
at the end of the sequence. Table 1 shows ex-
amples of bad-endings generated by a self-critical
based RL algorithm (model details refer to Sec-
tion 4). Specifically, 46.44% generated captions
end with phrases as “with a”, “on a”, “of a”, etc.
(for detailed statistics see Appendix A), on the
MSCOCO (Chen et al., 2015) validation set with
the standard data splitting by (Karpathy and Li,
2015). The reason is that the shaped reward func-
tion biases the learning. In Figure 1, we see these
additive patterns at the end of captions, although
make no sense to humans, yield to a higher re-
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Image ID Generated sentence CIDEr
262262 a tall building with a clock tower with a 160.1
262148 a man doing a trick on a skateboard on a 146.5
52413 a person holding a cell phone in a 132.4
393225 a bow of soup with carrots and a 118.5

Table 1: Examples of bad sequences generated by a
self-critical based RL baseline. Blue color indicates
the bad ending. Sequences with bad endings have high
CIDEr scores.

ward. Empirically, removing these endings re-
sults in a huge performance drop of around 6%.
(Paulus et al., 2017) has also reported that in ab-
stractive summarization, using RL only achieves
high ROUGE (Lin, 2004) score, yet the human-
readability is very poor. The second drawback is
that RL-based text generation is sample-inefficient
due to the large action space. Specifically, the
search space is of size O(|V|T ), where V is a set
of words, T is the sentence length, and | · | denotes
the cardinality of a set. This often makes training
unstable and converge slowly.

In this work, to tackle these two issues, we pro-
pose a simple yet effective solution by introducing
coherent language constraints on local action se-
lections in RL. Specifically, we first obtain word-
level n-gram (Kneser and Ney, 1995) model from
the training set and then use it as an effective prior.
During the action sampling step in RL, we reduce
the search space of actions based on the constitu-
tion of the previous word contexts as well as our
n-gram model. To further promote samples with
high rewards, we sample multiple sentences dur-
ing the training and update the policy based on
the best-rewarded one. Such simple treatments
prevent the appearance of bad endings and expe-
dite the convergence while maintaining compara-
ble performance to the pure RL counterpart. In ad-
dition, the proposed framework is generic, which
can be applied to many different kinds of neural
structures and applications.

2 Model Architecture

Encoder-Decoder Model: We adopt a similar
structure as GNIC (Vinyals et al., 2015), which
first encodes an image I to a dense vector hI

by CNN. The vector hI is then fed as the input
to an LSTM-based (Hochreiter and Schmidhuber,
1997) language model decoder. At each step t, the
LSTM receives the previous output wt�1 as the in-
put; computes the hidden state ht; and predicts the

Figure 1: A demonstration of the sequence with bad
ending has higher BLEU and CIDEr scores compared
to the one without.

next word wt as below:

ht = LSTM(ht�1, wt�1), lt = Wlht

wt ⇠ softmax(lt),
(1)

where w0 = hI and h0 and c0 are initialized to
zero. The generation ends if a special token *end*
is predicted.

Attention Model: Instead of utilizing a static
representation of the image, attention mechanism
dynamically reweights the spatial features from
CNN to focus on the different region of the im-
age at each word generation. We specifically con-
sider the standard architecture used in (Xu et al.,
2015), where A = {a1, a2, ..., aL} is the spatial
feature set and each ai 2 RD corresponds to fea-
tures extracted at different image locations. Then
the hidden states of the LSTM is computed as

eti = fatt(ai, ht�1), �ti =
exp(eti)PL

k=1 exp(etk)
,

zt =
LX

k=1

�tkak, ht = LSTM([ht�1, zt], wt�1),

(2)
where fatt is an attention model, which we use
a single fully connected layer conditioned on the
previous hidden state. Once ht is obtained, the
word generation is same as equation (1).

Sequence Generation with RL: We follow the
training procedure of (Rennie et al., 2017). The
decoder LSTM can be viewed as a “policy” de-
noted by p✓, where ✓ is the set of parameters of the
network. At each time step t, the policy chooses
an action by generating a word wt and obtains a
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new “state” (i.e. hidden states of LSTM, attention
weights, etc.). Once the end token is generated, a
“reward” r is given based on the score (e.g. CIDEr
or BLEU) of the predicted sentence. The goal is to
maximize the expected reward as

L(✓) = Ews⇠p✓ [r(w
s)], (3)

where ws = {ws
1, w

s
2, ..., w

s
T } are sampled words

at every time step. The REINFORCE algorithm
(Williams, 1992) provides unbiased gradient esti-
mation of ✓ as

r✓L(✓) ⇡ r(ws)r✓log p✓(w
s), (4)

using a single sequence.

Variance Reduction with Self-Critical: We re-
duce the variance of the gradient estimator by us-
ing the self-critical approach as

r✓L(✓) ⇡ (r(ws) � r(w̄))r✓log p✓(w
s), (5)

where w̄t is the baseline reward calculated by the
current model under the inference algorithm used
at test time defined as

w̄t = arg max
wt

p✓(wt|ht). (6)

Then, sequences have rewards higher than w̄ will
be increased in probability, while samples result in
lower reward will be suppressed.

3 Prior Language Constraint with
N -Gram Model

Method: We collect all n-grams (n=3 or 4 in our
experiments) from a corpus of captions. We use
the training set from MSCOCO to avoid the usage
of the additional resource. Thus, a fair comparison
to previous methods is guaranteed. Then, we fil-
ter the n-grams with frequencies lower than five.
The set of remaining ones is denoted as F . Dur-
ing training, given the previous tokens predicted
by the decoder, we constraint the sample space the
current prediction by

wt ⇠ softmax(p✓(w
s
t ) · ↵t), (7)

where ↵i is an indicator vector whose length is the
vocabulary size |V| and its elements are non-zero
only if the corresponding word and the previous
(n � 1)-gram constitute a valid n-gram in F as

↵t[k] =

(
1 if {ws

t�n+1, · · · , ws
t�1, k} 2 F

0 otherwise
. (8)

Figure 2: Training time of models with (right) and
without (left) spatial attention.

Discussion: The key motivation for applying the
above constraint is two-fold: (1) this ensures gen-
erated captions always formed by valid n-grams,
which provides us a direct way of eliminating the
repeated common phrases and bad-endings like
the ones in Table 1; and (2) this shrinks the size
of action space, which makes the training con-
verges much faster. For MSCOCO, action space is
changed from more than 9,000 to 56 on average.

4 Experiments

Dataset: We perform both quantitative and qual-
itative evaluations on MSCOCO dataset. The
dataset contains 123,287 images and each image
has at least five human captions. To seek fair com-
parison to others, we use the publicly available
splits, which contains 82,783 training, 5,000 vali-
dation and 5,000 testing images.

Implementation Details: Our implementations
are based on the publicly project.2 We use an Ima-
geNet pre-trained 101-layered ResNet3 (He et al.,
2016) to extract visual features. We consider
two types (see Section 2) of architectural train-
ing with RL: (1) the plain encoder-decoder, and
(2) the encoder-decoder with attention. For the
former one, we represent each image by a 2,048-
dimension vector by extracting the features from
the last convolutional layer with average pooling.
For the attention model, we apply spatial adaptive
max pooling and the output feature map has the
size of 14 ⇥ 14 ⇥ 2, 048. At each time step, the
attention model produces weights over 196 spatial
locations. The size of word embeddings and the
hidden dimension of the LSTM are set to 512 for
all experiments. More details are in Appendix B.

Compared Methods: We report our results in
four different settings, which include the combina-
tions of with/without attention and using tri-/four-

2https://github.com/ruotianluo/self-critical.pytorch
3https://github.com/KaimingHe/deep-residual-networks
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Methods CIDEr BLEU4 ROUGE-L METEOR BadEnd-Rate

Pu
bl

is
he

d (Karpathy and Li, 2015) 66.0 23.0 - - 19.5 0.0
(Xu et al., 2015) - - 25.0 - - 23.0 0.0

MIXER (Ranzato et al., 2015) - - 29.1 - - - - - -
(Ren et al., 2017) 93.7 30.4 52.5 25.1 - -

Im
pl

em
en

te
d

ED-XE 89.8 28.0 51.7 24.2 0.0
Att-XE 95.1 29.2 52.8 24.8 0.0

ED-SC (Rennie et al., 2017) 101.8 / 96.1 31.2 / 30.3 53.1 / 52.9 24.6 / 23.9 46.4% / 0.0
Att-SC (Rennie et al., 2017) 105.7 / 100.8 32.3 / 30.8 53.8 / 53.1 25.2 / 24.1 43.7% / 0.0

Ours-ED-4-gram 96.7 29.1 51.4 23.9 0.0
Ours-Att-4-gram 102.0 30.2 53.6 25.6 0.0
Ours-ED-tri-gram 95.1 29.8 52.4 24.1 0.0
Ours-Att-tri-gram 100.4 28.7 51.8 25.0 0.0

Table 2: Quantitative evaluation of our method compared to baselines on MSCOCO. Blue text indicates the per-
formance after adjustments and red text indicates the best performance.

gram. We directly compare with our counterparts
that have the same structures but no n-gram mod-
ules. Specifically, they are encoder-decoder based
self-critical (ED-SC), and the one with attention
(Att-SC). In addition, since our experimental setup
is almost identical to many existing works, we
also include their reported results, which include
(Karpathy and Li, 2015; Xu et al., 2015; Ranzato
et al., 2015; Ren et al., 2017). At last, we also in-
clude the performance of our warm-start models -
the models trained by MLE (Vinyals et al., 2015)
using cross entropy (ED-XE and Att-XE) - as a
reference.

Evaluation Metric and Performance Adjust-
ment: We report performance on FIVE metrics:
BLEU4, METEOR, ROUGE-L,CIDEr and Bad
Ending Rate. For the self-critical baselines, we
report two sets of performances: 1) the captions
directly generated by the model; and 2) the se-
quences of removing bad endings of the generated
captions, based on the distribution in Appendix A.

Results: Table 2 summarizes the performances
of our models compared with other baselines.
We see that without performance adjustments, the
self-critical RL with attention performs the best.
However, since it contains many bad endings, our
method achieves supreme results after these re-
peated patterns are removed. We also provide
some qualitative comparison between our atten-
tion model and self-critical in Appendix C.

Efficient Training: We show that constraining
the action space leads to a more efficient RL train-
ing in Figure 2. CIDEr score is calculated after
removing bad endings. We plot three curves using
architectures with/without attentions. The Green
curve is the self-critical, the blue one is with prior-
itized sampling, and the red one is our final model

with 4-gram constraint. We observe that we can
speed up almost twice than its counterpart.

Online Evaluation: We also evaluate our atten-
tion model on COCO online server4 and results
are reported in Table 3. Att-SC gets a higher score
than ours in the online test, however, with a lot of
bad endings where the bad ending ratio is 72.7%.

Human Evaluation: We also implement human
evaluation on the results generated by our Att-4-
gram compared with Att-SC. We randomly select
200 images from the test set. Each time, one image
with two captions generated by two different mod-
els are shown to the volunteer and three choices
are provided: (1) the first one is better; (2) both
are the same level; (3) the second one is better.
See more details in Appendix D. In Table 5, our
model wins 400 times and performs more closely
to human than Att-SC.

Evaluating Captions Diversity: To further
evaluate the quality of the caption model, we fol-
low (Shetty et al., 2017) to measure the diversity
of the generated captions. We compute the nov-
elty score of our 4-gram model, which is defined
as whether a particular caption has been observed
in the training set. When two models have the
same level predictive performances (e.g. CIDEr),
a higher novelty score usually indicates more di-
verse generations. We conduct the experiment five
times and report the averaged novelty score of our
4-gram model and the Att-SC, which are 77.83%
and 59.28% respectively. As the reference, the
METEOR and novelty scores reported in (Shetty
et al., 2017) are 23.6, and 79.84%, respectively.

4https://competitions.codalab.org/competitions/3221
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Methods CIDEr BLEU4 METEOR ROUGE-L BadEnd-Rate
Att-SC 109.3 61.9 32.9 67.7 72.7%

Att-4-gram 104.7 59.8 33.0 66.2 0
Att-LSTM-LM 104.3 61.0 33.9 68.5 0

Table 3: Quantitative results on online server (C40 test).Red text indicates the best performance.

Methods CIDEr BLEU4 ROUGE-L METEOR BadEnd-Rate
Att-SC (Rennie et al., 2017) 105.7 / 100.8 32.3 / 30.8 53.8 / 53.1 25.2 / 24.1 43.7% / 0.0

Ours-ED-4-gram 96.7 29.1 51.4 23.9 0.0
Ours-Att-4-gram 102.0 30.2 53.6 25.6 0.0
ED-LSTM-LM 99.4 30.9 52.7 24.6 0.0
Att-LSTM-LM 105.9 32.8 54.1 25.4 0.0

Table 4: Quantitative evaluation with our extension methods on MSCOCO. Blue text indicates the performance
after adjustments and red text indicates the best performance.

Methods 4-gram win Same level 4-gram lose
4-gram VS SC 400 349 251

Table 5: Human evaluation results for attention models

5 Neural Language Models Extension
Inspired by the paper reviews, we extend our
model by adopting another language prior to eval-
uating the effectiveness of constraining action
space during REINFORCE training. We train our
neural language model based on the MSCOCO
caption corpus with an LSTM unit.

LSTM Language Model: Given a word series
{w0, w1, ..., wT }, the target of a neural language
model is to maximize the log-likelihood as:

max
✓

log p✓(w0, w1, ..., wT ). (9)

We model p✓(w0, w1, ..., wT ) by an LSTM unit:

log p✓(w0, ..., wT ) =
TX

t=1

log p✓LM (wt|ht�1)

ht = LSTMLM (ht�1, wt�1),
(10)

where w0 is set to a *start* token for all sentences.
h0 and c0 are initialized to zero. After obtain-
ing the optimized ✓⇤

LM , we can use it to constrain
the action space similar to the N-gram language
model. Specifically, given previous t � 1 sampled
words from current caption model, we compute
p✓⇤

LM
(wt|w0, w1, ..., wt�1), which is the probabil-

ity of the next word over the entire vocabulary. We
then apply a simple thresholding rule to form a
subset of valid words for the captioning model.

↵t[k] =

(
1 if {k} 2 F
0 otherwise

, where

F ={wt|p✓⇤

LM
(wt|w0, w1, ..., wt�1) � ⌘}.

(11)

⌘ is a hyperparameter.

Additional Experiments The word embedding
size and hidden dimension of ✓LM are set to 256
for this experiment. We use Adam optimizer for
training language model and the learning rate is
set to 0.001. The batch size of language model
training and REINFORCE training are both set to
20 in the experiments. ⌘ is set to 0.00005 for the
first word and increases by a factor of two for ev-
ery timestep. We report our results in two settings,
which include the combination of with/without at-
tention for the caption model (termed ED-LSTM-
LM and Att-LSTM-LM). We use the same warm-
start models as in the N-gram experiments. The
performances are summarized in Table 4 and Ta-
ble 3. We see that the neural language model
provides further performance gains compared to
the N-gram model without introducing any bad-
endings. This is because that the LSTM language
model covers a larger context than N-gram, which
helps to generate more accurate captions.

6 Conclusion

In this paper, we present a simple but efficient ap-
proach to RL-based image caption by consider-
ing n-gram language prior to constrain the action
space. Our method converges faster and achieves
better results than self-critical setting after remov-
ing bad endings in the generated captions. In ad-
dition, captions generated by our models are more
human readable and graceful. We further extend
our ideas using neural language model. The re-
sults demonstrate that the captioning models are
more beneficial from the neural language model
than the N-gram model.
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Abstract

Image paragraph captioning models aim to
produce detailed descriptions of a source im-
age. These models use similar techniques as
standard image captioning models, but they
have encountered issues in text generation, no-
tably a lack of diversity between sentences,
that have limited their effectiveness. In this
work, we consider applying sequence-level
training for this task. We find that standard
self-critical training produces poor results, but
when combined with an integrated penalty on
trigram repetition produces much more diverse
paragraphs. This simple training approach im-
proves on the best result on the Visual Genome
paragraph captioning dataset from 16.9 to 30.6
CIDEr, with gains on METEOR and BLEU
as well, without requiring any architectural
changes.

1 Introduction

Image captioning aims to describe the objects, ac-
tions, and details present in an image using natural
language. Most image captioning research has fo-
cused on single-sentence captions, but the descrip-
tive capacity of this form is limited; a single sen-
tence can only describe in detail a small aspect of
an image. Recent work has argued instead for im-
age paragraph captioning with the aim of generat-
ing a (usually 5-8 sentence) paragraph describing
an image.

Compared with single-sentence captioning,
paragraph captioning is a relatively new task.
The main paragraph captioning dataset is the Vi-
sual Genome corpus, introduced by Krause et al.
(2016). When strong single-sentence captioning
models are trained on this dataset, they produce
repetitive paragraphs that are unable to describe
diverse aspects of images. The generated para-
graphs repeat a slight variant of the same sentence
multiple times, even when beam search is used.
Prior work, discussed in the following section,

tried to address this repetition with architectural
changes, such as hierarchical LSTMs, which sep-
arate the generation of sentence topics and words.

In this work, we consider an approach for train-
ing paragraph captioning models that focuses on
increasing the diversity of the output paragraph. In
particular, we note that self-critical sequence train-
ing (SCST) (Ranzato et al., 2015; Rennie et al.,
2016), a technique which uses policy gradient
methods to directly optimize a target metric, has
been successfully employed in standard caption-
ing, but not in paragraph captioning. We observe
that during SCST training the intermediate results
of the system lack diversity, which makes it dif-
ficult for the model to improve. We address this
issue with a simple repetition penalty which down-
weights trigram overlap.

Experiments show that this technique greatly
improves the baseline model. A simple baseline,
non-hierarchical model trained with repetition-
penalized SCST outperforms complex hierarchi-
cal models trained with both cross-entropy and
customized adversarial losses. We demonstrate
that this strong performance gain comes from the
combination of repetition-penalized search and
SCST, rather than from either individually, and
discuss how this impacts the output paragraphs.

2 Background and Related Work

Nearly all modern image captioning models em-
ploy variants of an encoder-decoder architecture.
As introduced by Vinyals et al. (2014), the en-
coder is a CNN pre-trained for classification and
the decoder is a LSTM or GRU. Following work in
machine translation, Xu et al. (2015) added an at-
tention mechanism over the encoder features. Re-
cently, Anderson et al. (2017) further improved
single-sentence captioning performance by incor-
porating object detection in the encoder (bottom-
up attention) and adding an LSTM layer before
attending to spatial features in the decoder (top-
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down attention).
Single-sentence and paragraph captioning mod-

els are evaluated with a number of metrics,
including some designed specifically for cap-
tioning (CIDEr) and some adopted from ma-
chine translation (BLEU, METEOR). CIDEr and
BLEU measure accuracy with n-gram overlaps,
with CIDEr weighting n-grams by TF-IDF (term-
frequency inverse-document-frequency), and ME-
TEOR uses unigram overlap, incorporating syn-
onym and paraphrase matches. We discuss these
metrics in greater detail when analyzing our ex-
periments.

Related Models Krause et al. (2016) introduced
the first large-scale paragraph captioning dataset,
a subset of the Visual Genome dataset, along with
a number of models for paragraph captioning.
Empirically, they showed that paragraphs con-
tain significantly more pronouns, verbs, corefer-
ences, and greater overall ”diversity” than single-
sentence captions. Whereas most single-sentence
captions in the MSCOCO dataset describe only the
most important object or action in an image, para-
graph captions usually touch on multiple objects
and actions.

The paragraph captioning models proposed by
Krause et al. (2016) included template-based (non-
neural) approaches and two encoder-decoder mod-
els. In both neural models, the encoder is an ob-
ject detector pre-trained for dense captioning. In
the first model, called the flat model, the decoder
is a single LSTM which outputs an entire para-
graph word-by-word. In the second model, called
the hierarchical model, the decoder is composed
of two LSTMs, where the output of one sentence-
level LSTM is used as input to the other word-level
LSTM.

Recently, Liang et al. (2017) extended this
model with a third (paragraph-level) LSTM and
added adversarial training. In total, their model
(RTT-GAN) incorporates three LSTMs, two at-
tention mechanisms, a phrase copy mechanism,
and two adversarial discriminators. To the best
of our knowledge, this model achieves state-of-
the-art performance of 16.9 CIDEr on the Visual
Genome dataset (without external data).

For our experiments, we use the top-down
single-sentence captioning model in Anderson
et al. (2017). This model is similar to the ”flat”
model in Krause et al. (2016), except that it incor-
porates attention with a top-down mechanism.

3 Approach

The primary issue in current paragraph captioning
models, especially non-hierarchical ones, is lack
of diversity of topic in the output paragraph. For
example, for the image of a skateboarder in Figure
1, the flat model outputs ”The man is wearing a
black shirt and black pants” seven times. This ex-
ample is not anomalous: it is a typical failure case
of the model. Empirically, in validation, ground
truth paragraphs contain 0.62 repeated trigrams
on average, whereas paragraphs produced by the
flat cross-entropy model contain 25.9 repeated tri-
grams on average.

3.1 Self-Critical Sequence Training

Self-critical sequence training (SCST) is a
sequence-level optimization procedure proposed
by Rennie et al. (2016), which has been widely
adopted in single-sentence captioning but has not
yet been applied to paragraph captioning. This
method provides an alternative approach to word-
level cross-entropy which can incorporate a task
specific metric.

Sequence-level training employs a policy gra-
dient method to optimize directly for a non-
differentiable metric, such as CIDEr or BLEU.
This idea was first applied to machine transla-
tion by Ranzato et al. (2015) in a procedure
called MIXER, which incrementally transitions
from cross-entropy to policy gradient training. To
normalize the policy gradient reward and reduce
variance during training, MIXER subtracts a base-
line estimate of the reward as calculated by a linear
regressor.

SCST replaces this baseline reward estimate
with the reward obtained by the test-time infer-
ence algorithm, namely the CIDEr score of greedy
search. This weights the gradient by the differ-
ence in reward given to a sampled paragraph com-
pared to the current greedy output (see Eq. 3-9 in
(Rennie et al., 2016)). Additionally, SCST uses a
hard transition from cross-entropy to policy gradi-
ent training. The final gradient is:

�Ews⇠p✓ [(r(w
s) � r(wg))r✓ log p✓(w

s | x)]

Where ws is a sampled paragraph, wg is a greedy
decoded paragraph, r is the reward (e.g CIDEr),
p✓ is the captioning model.
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Figure 1: Example paragraph outputs of our model. The final example is a failure case of both our model and the
non-penalized model. Our model does not suffer from the repetition problem of the non-penalized, but it does not
produce a great caption because it does not understand that the image is black-and-white.

3.2 Repetition Penalty

In preliminary experiments, we find that directly
applying SCST is not effective for paragraph cap-
tioning models. Table 1 shows that when training
with SCST, the model performs only marginally
better than cross-entropy. In further analysis, we
see that the greedy baseline in SCST training has
very non-diverse output, which leads to poor pol-
icy gradients. Unlike in standard image caption-
ing, the cross-entropy model is too weak for SCST
to be effective.

To address this problem, we take inspiration
from recent work in abstractive text summariza-
tion, which encounters the same challenge when
producing paragraph-length summaries of docu-
ments (Paulus et al., 2017). These models tar-
get the repetition problem by simply preventing
the model from producing the same trigram more
than once during inference. We therefore intro-
duce an inference constraint that penalizes the log-
probabilities of words that would result in repeated
trigrams. The penalty is proportional to the num-
ber of times the trigram has already been gener-

ated.
Formally, denote the (pre-softmax) output of the

LSTM by o, where the length of o is the size of the
target vocabulary and ow is the log-probability of
word w. We modify ow by ow ! ow � kw · ↵,
where kw is the number of times the trigram com-
pleted by word w has previously been generated
in the paragraph, and ↵ is a hyperparameter which
controls the degree of blocking. When ↵ = 0,
there is no penalty, so we have standard greedy
search. When ↵ ! 1, or in practice when ↵ ex-
ceeds about 5, we have full trigram blocking.

We incorporate this penalty into the greedy
baseline used to compute policy gradients in
SCST. During inference, we employ the same
repetition-penalized greedy search.

4 Methods and Results

For our paragraph captioning model we use the
top-down model from Anderson et al. (2017). Our
encoder is a convolutional network pretrained for
object detection (as opposed to dense captioning,
as in Krause et al. (2016) and Liang et al. (2017)).
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METEOR CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4
Krause et al. (Template) 14.31 12.15 37.47 21.02 12.30 7.38
Krause et al. (Flat w/o object detector) 12.82 11.06 34.04 19.95 12.20 7.71
Krause et al. (Flat) 13.54 11.14 37.30 21.70 13.07 8.07
Krause et al. (Hierarchical) 15.95 13.52 41.90 24.11 14.23 8.69
Liang et al. (w/o discriminator) 16.57 15.07 41.86 24.33 14.56 8.99
Liang et al. 17.12 16.87 41.99 24.86 14.89 9.03
Ours (XE training, w/o rep. penalty) 13.66 12.89 32.78 19.00 11.40 6.89
Ours (XE training, w/ rep. penalty) 15.17 22.68 35.68 22.40 14.04 8.70
Ours (SCST training, w/o rep. penalty) 13.63 13.77 29.67 16.45 9.74 5.88
Ours (SCST training, w/ rep. penalty) 17.86 30.63 43.54 27.44 17.33 10.58

Table 1: Results of our model compared with prior published results. Note that Liang et al. (2017) also trains a
model on additional data, but here we only compare models trained on Visual Genome. Also note that our models
employ greedy search, whereas other models employ beam search.

The encoder extracts between 10 and 100 objects
per image and applies spatial max-pooling to yield
a single feature vector of dimension 2048 per ob-
ject. The decoder is a 1-layer LSTM with hidden
dimension 512 and top-down attention.

Evaluation is done on the Visual Genome
dataset with the splits provided by Krause et al.
(2016). We first train for 25 epochs with cross-
entropy (XE) loss, using Adam with learning
rate 5 · 10�4. We then train an additional 25
epochs with repetition-penalized SCST targeting
a CIDEr-based reward, using Adam with learning
rate 5 · 10�5.

Our PyTorch-based implementation is available
at https://github.com/lukemelas/
image-paragraph-captioning.

Results Table 1 shows the main experimen-
tal results. Our baseline cross-entropy caption-
ing model gets similar scores to the original flat
model. When the repetition penalty is applied to
a model trained with cross-entropy, we see a large
improvement on CIDEr and a minor improvement
on other metrics.1 When combining the repetition
penalty with SCST, we see a dramatic improve-
ment across all metrics, and particularly on CIDEr.
Interestingly, SCST only works when its baseline
reward model is strong; for this reason the combi-
nation of the repetition penalty and SCST is par-
ticularly effective.

Table 2 compares the effect of training with
1We believe the improvement may be largest on CIDEr

because, in the calculation of CIDEr, n-gram counts are
clipped to the number of times each n-gram appears in the ref-
erence sentence. However, a similar procedure is applied in
calculating BLEU, on which we show lesser improvements.

different values of the penalty hyperparameter ↵,
demonstrating that intermediate values of ↵ (⇡
2.0) perform slightly better than large values. An
intermediate value of ↵ discourages the model
from producing repeat trigrams, but still permits
the model to output them when there are no likely
alternative phrases.

↵ METEOR CIDEr BLEU-4
0.0 13.8 13.6 5.9
1.0 17.4 28.9 10.2
2.0 17.7 31.4 10.8
4.0 17.6 30.1 10.4
10.0 17.5 30.6 9.9

Table 2: Varying the repetition penalty ↵ (on the vali-
dation set). ↵ = 10 is equivalent to trigram blocking.

XE w/o
penalty

XE w/
penalty

SCST w/
penalty

Avg. # of trigram
repeats in output 25.9 0.67 3.70

Avg. # unique trigram
overlaps btw. output

and ground truth
2.23 2.97 3.49

Table 3: Analysis of different model outputs (↵ = 2.0
for models w/ penalty)

Finally, Table 3 shows quantitative changes
in trigram repetition and ground truth matches.
The cross-entropy model fails to generate enough
unique phrases. Blocking these entirely gives
some benefit, but the SCST model is able to raise
the total number of matched trigrams while rein-
troducing few repeats.
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5 Conclusion

This work targets increased diversity in image
paragraph captioning. We show that training with
SCST combined with a repetition penalty leads
to a substantial improvement in the state-of-the-
art for this task, without requiring architectural
changes or adversarial training. In future work,
we hope to further address the language issues of
paragraph generation as well as extend this simple
approach to other tasks requiring long-form text or
paragraph generation.
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Abstract

ROUGE is one of the first and most widely
used evaluation metrics for text summariza-
tion. However, its assessment merely relies
on surface similarities between peer and model
summaries. Consequently, ROUGE is unable
to fairly evaluate summaries including lexical
variations and paraphrasing. We propose a
graph-based approach adopted into ROUGE to
evaluate summaries based on both lexical and
semantic similarities. Experiment results over
TAC AESOP datasets show that exploiting the
lexico-semantic similarity of the words used
in summaries would significantly help ROUGE
correlate better with human judgments.

1 Introduction

Quantifying the quality of summaries is an im-
portant and necessary task in the field of auto-
matic text summarization. Among the metrics
proposed for this task (Hovy et al., 2006; Tratz
and Hovy, 2008; Giannakopoulos et al., 2008),
ROUGE (Lin, 2004) is the first and still most
widely used one (Graham et al., 2015). This met-
ric measures the concordance of system-generated
(peer) summaries and human-generated reference
(model) summaries by determining n-grams, word
sequences, and word pair matches. ROUGE as-
sumes that a peer summary is of high quality if
it shares many words or phrases with a model
summary. However, different terminology may be
used to refer to the same concepts and hence rely-
ing only on lexical overlaps may underrate content
quality scores. For clarity, consider the following
two sentences:

(i) They strolled around the city.
(ii) They took a walk to explore the town.

These sentences are semantically similar, but lex-
ically different. If one of them is included in a
model summary, while a peer summary contains

another one, ROUGE or other surface based eval-
uation metrics cannot capture their similarity due
to the minimal lexical overlap. We aim to help
ROUGE with identifying the semantic similarities
of linguistic items, and consequently tackling the
main problem of its bias towards lexical similari-
ties.

Considering senses instead of words, we use the
Personalized PageRank (PPR) algorithm (Haveli-
wala, 2002) to leverage repetitive random walks
on WordNet 3.0 (Fellbaum, 1998) as a semantic
network. We disambiguate each word into its in-
tended sense, and obtain the probability distribu-
tion of each sense over all senses in the network.
Weights in this distribution denote the relevance
of the corresponding senses. At each iteration, we
measure the semantic similarity by looking at the
path taken by the random walker, and weighting
the overlaps between a pair of ranked PPR vec-
tors. Our graph-based approach (ROUGE-G) com-
putes semantic similarity scores between n-grams,
along with their match counts, to perform both se-
mantic and lexical comparisons of peer and model
summaries. The experiment results indicate that
ROUGE-G variants significantly outperform their
corresponding variants of ROUGE. Beyond en-
hancing the evaluation prowess of ROUGE, due to
its lexico-semantic analysis of summaries, we be-
lieve that ROUGE-G has the potential to expand the
applicability of ROUGE to abstractive summariza-
tion.

2 Background

In the summarization literature, a couple of
ROUGE variants (i.e., ROUGE-1, ROUGE-2,
ROUGE-SU4) are reported to have a strong corre-
lation with human assessments, and are frequently
used to evaluate summaries (Lin and Och, 2004;
Owczarzak and Dang, 2011; Over and Yen, 2004).
Although ROUGE is a popular evaluation met-
ric, improving the current evaluation metrics is
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still an open research area. Many of these ef-
forts are analyzed and gathered in the surveys pro-
vided by Steinberger and Ježek (2012). Herein,
we try to briefly review the most significant ones.
Since DUC 2005, the Pyramid metric (Passon-
neau et al., 2005) was introduced as one of the
principal metrics for evaluating summaries in the
TAC conference. However, this metric is semi-
automated and requires manual identification of
summary content units (SCUs). Soon after, Hovy
et al. (2006) proposed a metric based on com-
parison of basic syntactic units (Basic Elements)
between peer and model summaries. This met-
ric, BE-HM, was specified as one of the base-
lines in the TAC AESOP task. Among systems
participated in this task from 2009 to 2011, Auto-
SummENG (DEMOKRITOSGR) (Giannakopoulos
et al., 2008) is one of the top systems which com-
pares the graph representations of peer and model
summaries. Recently, some evaluation metrics
have studied the effectiveness of word semantic
similarity to evaluate summaries including termi-
nology variations and paraphrasing (Baroni et al.,
2014; ShafieiBavani et al., 2017, 2018). For in-
stance, an automated variant of the Pyramid metric
has used distributional semantics to map text con-
tent within peer summaries to SCUs (Passonneau
et al., 2013). A more recent metric, ROUGE-WE,
(Ng and Abrecht, 2015) has also enhanced ROUGE
by incorporating the use of a variant of word em-
beddings, called word2vec (Mikolov et al., 2013).

3 Graph-Theoretic Summary Evaluation

Given a pair of peer and model summaries, we
compute PPR vectors at the following levels: (i)
sense level, to disambiguate each word (having a
set of senses); and (ii) n-gram level, to measure the
semantic similarity. We compare the PPR vectors
of each pair of n-grams using the following mea-
sures: (i) Path-based: considering the path that
the random walker takes at each iteration to get to
a particular node; (ii) Rank and Weight: weighting
the overlaps between a pair of ranked PPR vectors.

3.1 Vector Representation

The WordNet graph has edges of various types,
with the main types being hypernymy and
meronymy to connect nodes containing senses.
However, we do not use these types, and consider
an edge as an undirected semantic or lexical re-
lation between two synsets. We have utilized the

WordNet graph enriched by connecting a sense -
irrespective of its part-of-speech (POS) - with all
the other senses that appear in its disambiguated
gloss (Pilehvar and Navigli, 2015). Dimension of
the vector representation is the number of con-
nected nodes in the graph. For better clarity, we
consider the adjacency matrix A for our seman-
tic graph, and perform iterative random walks be-
ginning at a set of senses S on WordNet with the
probability mass of p(0)(S), which is uniformly
distributed across the senses si 2 S, and the mass
for all si /2 S set to zero. This provides a fre-
quency or multinomial distribution over all senses
in WordNet, with a higher probability assigned to
senses that are frequently visited. The PPR vector
of S is given by:

p(k)(S) = dAp(k�1)(S) + (1 � d)p(0)(S) (1)

At each iteration, the random walker may fol-
low one of the edges with probability d or jump
back to any node si 2 S with probability (1 �
d)/|S|. Following the standard convention, the
value of damping factor d is set to 0.85. The num-
ber of iterations k is also set to 20, which is suffi-
cient for the distribution to converge.

3.2 Comparing Vectors
Conventional measures for comparing PPR vec-
tors calculate the probability that a random walker
meets a particular node after a specific number of
iterations, which is potentially problematic (Rothe
and Schütze, 2014). For example, consider the fol-
lowing connected nodes:

law suit tailor dress

The PPR vectors of suit and dress have some
weight on tailor, which is desirable. However,
the PPR vector of law will also have a non-zero
weight for tailor. Consequently, law and dress
are spuriously similar because of the node tailor.
To prevent this type of false similarity, the ran-
dom walker needs to take into account the walking
path to reach a particular node (Rothe and Schütze,
2014). We formalize this by defining the semantic
similarity of two sets of nodes I and J as:

Simsem(I, J) =
kX

x=0

cx
⇥ RW (p(x)(I), p(x)(J)) (2)
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where damping factor c was optimized on the
TAC 2010 (Owczarzak and Dang, 2010) AESOP
dataset, and set to 0.7 to ensure that early meetings
are more valuable than later meetings. At each
iteration x, we compare PPR vectors by ranking
their dimensions (senses) based on their values,
and weighting the overlaps between them (Equa-
tion 3). Hence, we weight the similarity such that
differences in the highest ranks (most important
senses in a vector) are penalized more than differ-
ences in lower ranks. This measure has proven to
be superior to cosine similarity, Jensen-Shannon
divergence, and Rank-Biased Overlap for compar-
ing vectors (Pilehvar et al., 2013).

RW (Y, Z) =

8
<

:

P
h2H

(rh(Y )+rh(Z))�1

P|H|
i=1 (2i)�1

, if |H| > 0

0, otherwise
(3)

where H is the intersection of all senses with non-
zero probability in both vectors Y and Z. rh(Y )
denotes the rank of sense h in vector Y , where rank
1 is the highest rank. The denominator is used as
a normalization factor that guarantees a maximum
value of one. The minimum value is zero and oc-
curs when there is no overlap, i.e., |H| = 0.

3.3 Calculating ROUGE-G

We combine lexical and semantic similarities to
compute ROUGE-G-N:

ROUGE-G-N =
X

M2{ModelSums}

X

n-gramm2M,
n-gramp2PeerSum

SimLS(n-gramm, n-gramp)

X

M2{ModelSums}

X

n-gramm2M

Count(n-gramm)

(4)
where SimLS is the score of lexico-semantic sim-
ilarity between a pair of n-grams in model sum-
mary (n-gramm) and peer summary (n-gramp):

SimLS(n-gramm, n-gramp) =

� ⇥ Countmatch(n-gramm, n-gramp)

+ (1 � �) ⇥ Simsem(n-gramm, n-gramp)

(5)

Scaling factor � was optimized on the TAC
2010 AESOP dataset, and set to 0.5 to reach
the best correlation with the manual metrics.
Countmatch(n-gramm, n-gramp) is the maxi-
mum number of the n-gram co-occurring in a peer
summary and a set of model summaries.

3.4 Disambiguation of n-grams
Prior to measuring semantic similarities, each
word in n-grams has to be analyzed and dis-
ambiguated into its intended sense. However,
conventional word sense disambiguations are
not applicable due to the lack of contextual
information. Hence, we seek the semantic
alignment that maximizes the similarity of the
senses of the compared words. As an example
(Pilehvar et al., 2013), consider two sentences
of ”a1. Officers fired.” and ”a2. Several
policemen terminated in corruption probe.”,
the semantic alignment procedure has been
performed as ”Pa1. officer3

n, fire4
v”, and ”Pa2.

policeman1
n, terminate4

v, corruption6
n, probe1

n”.
tip denotes the i-th sense of a word t in WordNet
with POS p. After alignment, among all possible
pairings of all senses of firev to all senses of
all words in a2, the sense fire4

v (employment
termination) obtains the maximal similarity value
of Simsem(fire4

v, terminate4
v) = 1.

3.5 OOV Handling
Out-of-vocabulary (OOV) words are the words
that are not defined in the corresponding lexical
resource, hence, they will be ignored while gener-
ating PPR vectors. The reason is that they do not
have an associated node in the WordNet graph for
the random walk to be initialized from. To take
them into consideration, we add an extra dimen-
sion for each OOV term in the resulting PPR vec-
tor. Following Pilehvar and Navigli (2015), we set
the associated weights of the new dimensions to
0.5 so as to guarantee their placement among the
top dimensions in their vectors.

4 Experiments

4.1 Data and Metrics
The only available datasets for the task of Sum-
marization Evaluation are three AESOP datasets1

provided by TAC 2009, 2010, and 2011. Among
them, we optimize scaling factors using the TAC
2010 AESOP dataset, and evaluate ROUGE-G on
the TAC 2011 (Owczarzak and Dang, 2011) AE-
SOP dataset for two main reasons: (i) it is the only
dataset on which evaluation metrics can be as-
sessed for their ability to measure summary Read-
ability; (ii) To be in line with the most recent
work (ROUGE-WE) that has also been evaluated

1https://tac.nist.gov/data/
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only on this dataset for measuring the Readability
scores. This dataset consists of 44 topics, and a set
of 10 documents for each topic. There are four
human-crafted model summaries for each docu-
ment set. A summary for each topic is generated
by each of the 51 summarizers which participated
in the main TAC summarization task. The out-
put of participating automatic metrics is tasked to
be compared against human judgments using three
manual metrics of Pyramid, Readability, and Re-
sponsiveness. Hence, the outputs are scored based
on their summary content, linguistic quality, and a
combination of both, respectively.

Prior to computing correlation of ROUGE-G
variants with manual metrics, ROUGE-G scores
have reliably been computed (95% confidence in-
tervals) under ROUGE bootstrap resampling with
the default number of sampling point (1000). Cor-
relation of ROUGE-G evaluation scores with the
human judgments is then assessed with three met-
rics of correlation: Pearson r; Spearman ⇢; and
Kendall ⌧ . We compute scores using the default
NIST settings for baselines in the TAC 2011 AE-
SOP task (with stemming and keeping stopwords).

4.2 Results

We evaluate ROUGE-G, against the top met-
rics (C S IIITH3, DemokritosGR1, Catolicasc1)
among the 23 metrics participated in TAC AESOP
2011, ROUGE, and the most recent related work
(ROUGE-WE) (Table 1). Overall results support
our proposal to consider semantics besides sur-
face with ROUGE. Since the large/small differ-
ences in competing correlations with human as-
sessment are not an acceptable proof of superior-
ity/inferiority in performance of one metric over
another, significance tests should be applied. To
better clarify the effectiveness of ROUGE-G, we
have used pairwise Williams significance test rec-
ommended by Graham et al. (2015) for summa-
rization evaluation. Accordingly, evaluation of a
given summarization metric, Mnew, takes the form
of quantifying three correlations: r(Mnew, H),
that exists between the evaluation metric scores
for summarization systems and corresponding hu-
man assessment scores; r(Mbase, H), that stands
for the correlation of baseline metrics with human
judges; and the third correlation, between evalu-
ation metric scores themselves, r(Mbase, Mnew).
It can happen for a pair of competing metrics
for which the correlation between metric scores

is strong, that a small difference in competing
correlations with human assessment is significant,
while, for a different pair of metrics with a larger
difference in correlation, the difference is not sig-
nificant (Graham et al., 2015). Using this sig-
nificance test, the results show that all increases
in correlations of ROUGE-G compared to ROUGE
and ROUGE-WE variants are statistically signifi-
cant (p < 0.05). We analyze the correlation results
reported in Table 1 in the following.

ROUGE-G-2 achieves the best correlation with
Pyramid, regarding all correlation metrics. More-
over, every ROUGE-G variant outperforms its cor-
responding ROUGE and ROUGE-WE variants, re-
gardless of the correlation metric used. However,
the only exception is ROUGE-SU4, which corre-
lates slightly better with Pyramid when measuring
with Pearson correlation. One possible reason is
that Pyramid measures content similarity between
peer and model summaries, while the variants of
ROUGE-G favor semantics behind the content for
measuring similarities. Since some of the seman-
tics attached to the skipped words are lost in the
construction of skip-bigrams, ROUGE-SU4 shows
a better correlation comparing to ROUGE-G-SU4.

For Responsiveness, ROUGE-G-SU4 achieves
the best correlation when measuring with Pear-
son. We also observe that ROUGE-G-2 obtains the
best correlation with Responsiveness while mea-
suring with the Spearman and Kendall rank cor-
relations. The reason is that semantic interpreta-
tion of bigrams is easier, and that of contiguous
bigrams is much more precise. We also see that
every variant of ROUGE-G outperforms its corre-
sponding ROUGE and ROUGE-WE variants.

The readability score is based on grammatical-
ity, structure, and coherence. Although our main
goal is not to improve the readability, ROUGE-
G-SU4 and ROUGE-G-2 are observed to correlate
very well with this metric when measured with the
Pearson and Spearman/Kendall rank correlations,
respectively. Besides, every variant of ROUGE-
G represents the best correlation results compar-
ing to its corresponding variants of ROUGE and
ROUGE-WE for all correlation metrics. This is
likely due to considering word types and POS tag-
ging while aligning and disambiguating n-grams.
POS features are shown by Feng et al. (2010) to
be helpful in predicting linguistic quality.

We optimize scaling factor � (Equation 5) on
the TAC 2010 AESOP dataset. Figure 1 shows
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Pyramid Responsiveness Readability

Metric Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall

C S IIITH3 0.965 0.903 0.758 0.933 0.781 0.596 0.731 0.358 0.242
DemokritosGR1 0.974 0.897 0.747 0.947 0.845 0.675 0.794 0.497 0.359
Catolicasc1 0.967 0.902 0.735 0.950 0.837 0.666 0.819 0.494 0.366

ROUGE-1 0.966 0.909 0.747 0.935 0.818 0.633 0.790 0.391 0.285
ROUGE-2 0.961 0.894 0.745 0.942 0.790 0.610 0.752 0.398 0.293
ROUGE-SU4 0.981 0.894 0.737 0.955 0.790 0.602 0.784 0.395 0.293

ROUGE-WE-1 0.949 0.914 0.753 0.916 0.819 0.631 0.785 0.431 0.322
ROUGE-WE-2 0.977 0.898 0.744 0.953 0.797 0.615 0.782 0.414 0.304
ROUGE-WE-SU4 0.978 0.881 0.720 0.954 0.787 0.597 0.793 0.407 0.302

ROUGE-G-1 0.971 0.915 0.758 0.944 0.825 0.638 0.791 0.434 0.330
ROUGE-G-2 0.983 0.926 0.774 0.956 0.869 0.713 0.790 0.516 0.385
ROUGE-G-SU4 0.979 0.898 0.741 0.957 0.814 0.616 0.823 0.445 0.334

Table 1: Correlation results with the manual metrics of Pyramid, Responsiveness, and Readability using
the correlation metrics of Pearson r, Spearman ⇢, and Kendall ⌧ . The best correlations are specified in
bold, and the underlined scores show the top correlations in the TAC AESOP 2011.

the correlation results by the variants of ROUGE-
G with Pyramid (Pyr) and Responsiveness (Rsp)
metrics measured by Pearson. The best results are
observed when � = 0.5. Performance deterio-
rates when � approaches 1.0 which indicates the
ROUGE scores without any touch of semantic sim-
ilarity. Decreasing � to zero causes the exclusion
of lexical match counts, and consequently inap-
propriateness of the outcomes. This shows the im-
portance of using both lexical and semantic simi-
larities to fairly judge the quality of summaries.
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Figure 1: Exploring scaling factor �

It is noteworthy that we have evaluated our ap-
proach with the following settings for computing
and comparing PPR vectors: (i) Path-based with
Rank and Weight measure (current setting); (ii)
Path-based with cosine similarity; (iii) Excluding
path-based measure and using Rank and Weight
measure solely. The results showed that the cur-
rent setting performs better than the other two.

5 Conclusion

This paper presents ROUGE-G to overcome the
limitation of high lexical dependency in ROUGE.

Our approach leverages a sense-based represen-
tation to calculate PPR vectors for n-grams. The
semantic similarity of n-grams are then computed
using a formalization of Path-based and Rank
and Weight measures. We finally improve on
ROUGE by performing both semantic and lexi-
cal analysis of summaries. Experiments over the
TAC AESOP datasets demonstrate that ROUGE-
G achieves higher correlations with manual judg-
ments in comparison with ROUGE.

In order to demonstrate the effectiveness of
ROUGE-G to fairly evaluate abstractive sum-
maries, we need to conduct experiments on a
dataset composed of abstractive summaries. How-
ever, we evaluated our approach on the TAC 2011
AESOP dataset, which is made of summaries
that were generated mostly by extractive systems.
Since there is not such dataset at the time of writ-
ing this paper, we can continue building on this
work by using model summaries, which are ab-
stractive in nature, as a proxy. Thereupon, it is
possible to incorporate jackknifing procedure in
the scoring process in order to see whether our
metric can differentiate between peer summaries
(naturally extractive) vs. model summaries (natu-
rally abstractive).
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Abstract

Recent work on abstractive summarization has
made progress with neural encoder-decoder
architectures. However, such models are of-
ten challenged due to their lack of explicit
semantic modeling of the source document
and its summary. In this paper, we ex-
tend previous work on abstractive summa-
rization using Abstract Meaning Representa-
tion (AMR) with a neural language genera-
tion stage which we guide using the source
document. We demonstrate that this guid-
ance improves summarization results by 7.4
and 10.5 points in ROUGE-2 using gold stan-
dard AMR parses and parses obtained from
an off-the-shelf parser respectively. We also
find that the summarization performance us-
ing the latter is 2 ROUGE-2 points higher
than that of a well-established neural encoder-
decoder approach trained on a larger dataset.
Code is available at https://github.
com/sheffieldnlp/AMR2Text-summ

1 Introduction

Abstractive summarization is the task of automat-
ically producing the summary of a source doc-
ument through the process of paraphrasing, ag-
gregating and/or compressing information. Re-
cent work in abstractive summarization has made
progress with neural encoder-decoder architec-
tures (See et al., 2017; Chopra et al., 2016; Rush
et al., 2015). However, these models are of-
ten challenged when they are required to com-
bine semantic information in order to generate a
longer summary (Wiseman et al., 2017). To ad-
dress this shortcoming, several works have ex-
plored the use of Abstract Meaning Representa-
tion (Banarescu et al., 2013, AMR). These were
motivated by AMR’s capability to capture the
predicate-argument structure which can be utilized
in information aggregation during summarization.

However, the use of AMR also has its own
shortcomings. While AMR is suitable for infor-
mation aggregation, it ignores aspects of language
such as tense, grammatical number, etc., which
are important for the natural language generation
(NLG) stage that normally occurs in the end of the
summarization process. Due to the lack of such
information, approaches for NLG from AMR typ-
ically infer it from regularities in the training data
(Pourdamghani et al., 2016; Konstas et al., 2017;
Song et al., 2016; Flanigan et al., 2016), which
however is not suitable in the context of summa-
rization. Consequently, the main previous work on
AMR-based abstractive summarization (Liu et al.,
2015) only generated bag-of-words from the sum-
mary AMR graph.

In this paper, we propose an approach to guide
the NLG stage in AMR-based abstractive summa-
rization using information from the source docu-
ment. Our objective is twofold: (1) to retrieve
the information missing from AMR but needed for
NLG and (2) improve the quality of the summary.
We achieve this in a two-stages process: (1) esti-
mating the probability distribution of the side in-
formation, and (2) using it to guide a Luong et al.
(2015)’s seq2seq model for NLG.

Our approach is evaluated using the Proxy Re-
port section from the AMR dataset (Knight et al.,
2017, LDC2017T10) which contains manually an-
notated document and summary AMR graphs. Us-
ing our proposed guided AMR-to-text NLG, we
improve summarization results using both gold
standard AMR parses and parses obtained using
the RIGA (Barzdins and Gosko, 2016) parser by
7.4 and 10.5 ROUGE-2 points respectively. Our
model also outperforms a strong baseline seq2seq
model (See et al., 2017) for summarization by 2
ROUGE-2 points.
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2 Related Work

Abstractive Summarization using AMR: In
Liu et al. (2015) work, the source document’s sen-
tences were parsed into AMR graphs, which were
then combined through merging, collapsing and
graph expansion into a single AMR graph repre-
senting the source document. Following this, a
summary AMR graph was extracted, from which
a bag of concept words was obtained without at-
tempting to form fluent text. Vilca and Cabezudo
(2017) performed a summary AMR graph extrac-
tion augmented with discourse-level information
and the PageRank (Page et al., 1998) algorithm.
For text generation, Vilca and Cabezudo (2017)
used a rule-based syntactic realizer (Gatt and Re-
iter, 2009) which requires substantial human input
to perform adequately.

Seq2seq using Side Information: In Neural
Machine Translation (NMT) field, recent work
(Zhang et al., 2018) explored modifications to the
decoder of seq2seq models to improve translation
results. They used a search engine to retrieve sen-
tences and their translation (referred to as trans-
lation pieces) that have high similarity with the
source sentence. When similar n-grams from a
source document were found in the translation
pieces, they rewarded the presence of those n-
grams during the decoding process through a scor-
ing mechanism calculating the similarity between
source sentence and the source side of the transla-
tion pieces. Zhang et al. (2018) reported improve-
ments in translation results up to 6 BLEU points
over their seq2seq NMT baseline. In this paper we
use the same principle and reward n-grams that are
found in the source document during the AMR-
to-Text generation process. However we use a
simpler approach using a probabilistic language
model in the scoring mechanism.

3 Guiding NLG for AMR-based
summarization

We first briefly describe the AMR-based summa-
rization method of Liu et al. (2015) and then our
guided NLG approach.

3.1 AMR-based summarization
In Liu et al. (2015)’s work, each of the sentence
of the source document was parsed into an AMR
graph, and combined into a source graph, G =
(V, E) where v 2 V and e 2 E are the unique

concepts and the relations between pairs of con-
cepts. They then extracted a summary graph, G0

using the following sub-graph prediction:

G0 = arg max
Ĝ=(V̂ ,Ê)

X

v2V̂

✓
|f(v) +

X

e2Ê

 
|f(e) (1)

where f(v) and f(e) are the feature representations
of node v and edge e respectively. The final sum-
mary produced was a bag of concept words ex-
tracted from G0. This output we will be replacing
with our proposed guided NLG.

3.2 Unguided NLG from AMR
Our baseline is a standard (unguided) seq2seq
model with attention (Luong et al., 2015) which
consists of an encoder and a decoder. The encoder
computes the hidden representation of the input,
{z1, z2, . . . , zk}, which is the linearized summary
AMR graph, G0 from Liu et al. (2015), follow-
ing Van Noord and Bos (2017)’s preprocessing
steps. Following this, the decoder generates the
target words, {y1, y2, . . . , ym}, using the condi-
tional probability Ps2s(yj |y<j , z), which is calcu-
lated using the equation

Ps2s(yj |y<j , z) = softmax(Wsh̃t) (2)

, where the attentional hidden state, h̃t is calcu-
lated using the equation

h̃t = tanh(Wc[ct; ht]) (3)

, where ct is the source context vector, and ht is
the target RNN hidden state. The source context
vector is defined as the weighted average over all
the source RNN hidden states, h̄s, given the align-
ment vector, at where at is defined as

at(s) =
exp(score(ht, h̄s))P
s0 exp(score(ht, h̄s0))

(4)

3.3 Guided NLG from AMR
Our goal is to improve the text generated from the
summary AMR graph by the probability distribu-
tion of the seq2seq model, Ps2s using the source
document. Since not all sentences in the source
document will be used in generating the summary,
we prune the source document to a set of k sen-
tences which have the highest similarity with the
summary AMR graph. For graph-to-graph sim-
ilarity comparison, we use the source document
AMR parses and calculate the Longest Common

769



Subsequence (LCS) between the linearized AMR
parses and the summary AMR graph. We keep the
top-k sentences sorted by LCS length. To distin-
guish this pruned document from the source docu-
ment, we refer to the former as side information.

Our aim is is to combine Ps2s with the probabil-
ity distribution estimated using words in the side
information, Pside, in order to score each word
given its context during decoding. We estimate
Pside as the linear interpolation of 2-gram to 4-
gram probabilities in the form of

Pside(xj |xj�1
j�3) = �3PLM (xj |xj�1

j�3)

+ �2PLM (xj |xj�1
j�2)

+ �1PLM (xj |xj�1)

(5)

, where xj is a word occurring in side information
document, PLM is an N -gram LM estimated using
Maximum Likelihood:

PLM (xj |xj�1
j�N�1) =

count(xj�N�1 . . . xj)

count(xj�N�1 . . . xj�1)
(6)

and �i is defined as

�i = ✓�i�1 where ✓ 2 R, �i > 0 and
X

i

�i = 1

(7)
where ✓ is a hyper-parameter that we tune using
the dev dataset during the experiments.

Lastly, we combine the probability distribution
of the decoder, Ps2s with that provided by the side
information, Pside, as follows:

s(yj |y<j , z) = log a +  ⇤ log(
b

a
+ 1) (8)

where  is a hyper-parameter determining the
influence of the side information on the de-
coding process, a is Ps2s(yj |y<j , z) and b is
Pside(yj |yj�1

j�3). s(yj |y<j , z) is used during beam
search replacing Ps2s(yj |y<j , z) for all words that
occur in the side information. The intuition behind
Eq. 8 is that we are rewarding word yj when it ap-
pears in similar context in the side information, i.e.
the source document being summarized.

4 Experiments

We conduct experiments in order to answer the
following questions about our proposed approach:
(1) Is our baseline model comparable with the
state-of-the-art AMR-to-text approaches? (2)
Does the guidance from the source document im-
prove the result of AMR-to-Text in the context

Model BLEU
Our model (unguided NLG) 21.1
NeuralAMR (Konstas et al., 2017) 22.0
TSP (Song et al., 2016) 22.4
TreeToStr (Flanigan et al., 2016) 23.0

Table 1: Results for AMR-to-text

of summarization? (3) Does the improvement in
AMR-to-Text hold when we use the generator for
abstractive summarization using AMR? We an-
swer each of these in the following paragraphs.

AMR-to-Text baseline comparison We com-
pare our baseline model (described in §3.2) against
previous works in AMR-to-text using the data
from the recent SemEval-2016 Task 8 (May, 2016,
LDC2015E86). Table 1 reports BLEU scores
comparing our model against previous works.
Here, we see that our model achieves a BLEU
score comparable with the state-of-the-art, and
thus we argue that it is sufficient to be used in our
subsequent experiments with guidance.

Guided NLG for AMR-to-Text In this exper-
iment we apply our guided NLG mechanism de-
scribed in §3.3 to our baseline seq2seq model. To
isolate the effects of guidance we skip the actual
summarization process and proceed to directly
generating the summary text from the gold stan-
dard summary AMR graphs from the Proxy Re-
port section. To determine the hyper-parameters,
we perform a grid search using the dev dataset,
where we found the best combination of  , ✓ and
k are 0.95, 2.5 and 15 respectively. We have two
different settings for this experiment: the oracle
and non-oracle settings. In the oracle setting, we
directly use the gold standard summary text as the
guidance for our model. The intuition is that in this
setting, our model knows precisely which words
should appear in the summary text, thus providing
an upper bound for the performance of our guided
NLG approach. In the non-oracle setting, we use
the mechanism described in §3.3. We also com-
pare them against the baseline (unguided) model
from §3.2. Table 2 reports performance for all
models. The difference between the guided and
the unguided model is 16.2 points in BLEU and
9.9 points in ROUGE-2, while there is room for
improvement as evidenced by the difference be-
tween the oracle and non-oracle result.

Guided NLG for full summarization In this
experiment we combine our guided NLG model
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Model BLEU F1 ROUGE
R-1 R-2 R-L

Guided NLG (Oracle) 61.3 79.4 63.7 76.4
Guided NLG 45.8 70.7 49.5 64.9
Unguided NLG 29.6 68.6 39.6 61.3

Table 2: BLEU and ROUGE results for guided and un-
guided models using test dataset.

with Liu et al. (2015)’s work in order to gener-
ate fluent texts from their summary AMR graphs
using the hyper-parameters tuned in the previous
paragraph. Liu et al. (2015) used parses from both
the manual annotation of the Proxy dataset as well
as those obtained using the JAMR parser (Flanigan
et al., 2014). Instead of JAMR we use the RIGA
parser (Barzdins and Gosko, 2016) which had the
highest accuracy in the SemEval 2016 Task 8
(May, 2016). We compare our result against Liu
et al. (2015)’s bag of words1, the unguided AMR-
to-text model from §3.2, and a seq2seq summa-
rization model (OpenNMT BRNN)2,3 which sum-
marizes directly from the source document to sum-
mary sentence without using AMR as an interlin-
gua and is trained on CNN/DM corpus (Hermann
et al., 2015) using the same settings as See et al.
(2017).

AMR NLG Model F1 ROUGE
parses R-1 R-2 R-L

Gold
Guided 40.4 20.3 31.4
Unguided 38.9 12.9 27.0
Liu et al. (2015) 39.6 6.2 22.1

RIGA
Guided 42.3 21.2 33.6
Unguided 37.8 10.7 26.9
Liu et al. (2015) 40.9 5.5 21.4

Directly
from
Text

OpenNMT
BRNN 2 layer,
emb 256, hidden
1024

36.1 19.2 31.1

Table 3: The F1 ROUGE scores for guided, unguided,
Liu et al. (2015) (BoW) results in Gold and RIGA
parses, and seq2seq summarization. All models are run
using test dataset.

In Table 3, we can see that our approach results

1We were able to obtain comparable AMR summariza-
tion subgraph prediction to their reported results using their
published software but not to match their bag-of-word gener-
ation results.

2We use the OpenNMT-pytorch implementation
https://github.com/OpenNMT/OpenNMT-py and
a pre-trained model downloaded from http://opennmt.
net/OpenNMT-py/Summarization.html which has
higher result than See et al. (2017)’s summarizer.

3The pre-trained model generates multiple sentences
summary, but we use only the first sentence summary for
evaluation in accordance with the AMR dataset.

in improvements over both the unguided AMR-to-
text and the standard seq2seq summarization. One
interesting note is that using the RIGA parses re-
sult in higher ROUGE scores than the gold parses
for the guided model in our experiment. This phe-
nomenon was also observed in Liu et al. (2015)’s
experiment where the summary graphs extracted
from automatic parses had higher accuracy than
those extracted from manual parses. We hypothe-
size this can be attributed to how the AMR dataset
is annotated as there might be discrepancies in dif-
ferent annotator’s choices of AMR concepts and
relations for sentences with similar wording. In
contrast, the AMR parsers introduce errors, but
they are consistent in their choices of AMR con-
cepts and relations. The discrepancies in the man-
ual annotation could have impacted the perfor-
mance of the AMR summarizer that we use more
negatively than the noise introduced due to the
AMR parsing errors.

NLG Model Generated Summary
Gold on 8 august 2008 russia conducted

airstrikes on georgian targets .
Guided on 8 august 2008 russia conducted

airstrikes on georgian separatist tar-
gets .

Unguided on 8 august 2008 russia conducted a
softening of the georgia ’s separatist
target .

Seq2seq the russian laboratory complex is a 90
- building campus and served as the
location for russia ’s secret biological
weapons program in the soviet era of
a moscow regional depository threaten
moscow .

Table 4: Result summaries of guided, unguided and
seq2seq models compared with gold summary.

In Table 4, we show sample summaries from
the different models, where we can see that our
guided model improves the unguided model by
correcting a wrong word (a softening) into a cor-
rect one (airstrikes) and introducing a better suited
word from the source document (georgian instead
of georgia ’s).

NLG Model Fluency
Guided 2.66
Unguided 2.16

Table 5: Fluency scores on test dataset.

We also evaluated manually by asking human
evaluators to judge sentences’ fluency (grammat-
ical and naturalness) on a scale of 1 (worst) to 6
(best) for the guided and unguided model (see Ta-
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ble 5). While the manual evaluation shows im-
provement over the unguided model, on the other
hand, grammatical mistakes and redundant repeti-
tion in the generated text are still major problems
(see Table 6) in our AMR generation.

Guided NLG Model Problems
the soldiers were injured
when a attempt to defuse the
bombs .

grammatical mistake

on 20 october 2002 the state
- run radio nepal reported on
20 october 2002 that at the
evening - run radio nepal re-
ported on 20 october 2002
that the guerrillas were killed
and killed .

redundant repetition

Table 6: Problems in guided model’s summaries.

5 Conclusion and Future Works

In this paper we proposed a guided NLG approach
that substantially improves the output of AMR-
based summarization. Our approach uses a simple
guiding process based on a probabilistic language
model. In future work we aim to improve summa-
rization performance by jointly training the guid-
ing process with the AMR-based summarization
process.
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Abstract
Practical summarization systems are expected
to produce summaries of varying lengths, per
user needs. While a couple of early sum-
marization benchmarks tested systems across
multiple summary lengths, this practice was
mostly abandoned due to the assumed cost
of producing reference summaries of multiple
lengths. In this paper, we raise the research
question of whether reference summaries of
a single length can be used to reliably evalu-
ate system summaries of multiple lengths. For
that, we have analyzed a couple of datasets
as a case study, using several variants of the
ROUGE metric that are standard in summa-
rization evaluation. Our findings indicate that
the evaluation protocol in question is indeed
competitive. This result paves the way to prac-
tically evaluating varying-length summaries
with simple, possibly existing, summarization
benchmarks.

1 Introduction
Automated summarization systems typically pro-
duce a text that mimics a manual summary. In
these systems, an important aspect is the output
summary length, which may vary according to
user needs. Consequently, output length has been
a common tunable parameter in pre-neural sum-
marization systems and has been incorporated re-
cently in few neural models as well (Kikuchi et al.,
2016; Fan et al., 2017; Ficler and Goldberg, 2017).

It was originally assumed that summarization
systems should be assessed across multiple sum-
mary lengths. For that, the earliest Document Un-
derstand Conference (DUC) (NIST, 2011) bench-
marks, in 2001 and 2002, defined several tar-
get summary lengths and evaluated each summary
against (manually written) reference summaries of
the same length.

However, due to the high cost incurred, subse-
quent DUC and TAC (NIST, 2018) benchmarks

(2003-2014), as well as the more recently popular
datasets CNN/Daily Mail (Nallapati et al., 2016)
and Gigaword (Graff et al., 2003), included refer-
ences and evaluation for just one summary length
per input text. Accordingly, systems were asked
to produce a single summary, of corresponding
length. This decision was partly supported by an
observation that system rankings tended to corre-
late across different summary lengths (Over et al.,
2007), even though, as we show in Section 2, this
correlation is limited.

In this paper, we propose that the summariza-
tion community should consider resuming evalu-
ating summarization systems over multiple length
outputs, as it would allow better assessment of
length-related performance within and across sys-
tems (illustrated in Section 3). To avoid the need in
multiple-length reference summaries we raise the
following research question: can reference sum-
maries of a single length be used to evaluate sys-
tem summaries of multiple lengths, as reliably as
when using references of multiple lengths, with
respect to different standard evaluation metrics?
Recently, Kikuchi et al. (2016) evaluated system
summaries of three different lengths against ref-
erence summaries of a single length. Yet, their
evaluation methodology was not assessed through
correlation to human judgment, as has been com-
monly done for other automatic evaluation pro-
tocols. Here, we provide a closer look into this
methodology, given its potential value.

As a first accessible case study, we test our re-
search question over the DUC 2001 and 2002 data
(Section 2). To the best of our knowledge, these
are the only two datasets that include multiple
length reference and submitted system summaries,
as well as manual assessment of the latter. Our
analysis reveals that, for this data and with respect
to various highly utilized automatic ROUGE met-
rics, the answer to our question is affirmative, in

774



# refs ref lengths (# words) # clusters # systems
2001 3 50, 100, 200, 400 30 14
2002 2 10, 50, 100, 200 59 10

Table 1: DUC 2001 and 2002. Number of refer-
ence summaries per length for each text cluster,
reference lengths, number of clusters and number
of evaluated systems.

terms of correlation with human judgment.
Our promising results suggest repeating the as-

sessment methodology presented here in future
work, to test our question over more recent and
broader summarization datasets and human eval-
uation schemes. This, in turn, would allow the
community to feasibly resume proper evaluation
and deliberate development of systems that target
effective summaries across a range of lengths.

2 Case Study Analysis

Here, we first examine the relevance of our pro-
posal to reinstitute summarization evaluation over
multiple summary lengths. Then, we investigate
our research question of whether using reference
summaries of a single length suffices for evalu-
ating system summaries of multiple lengths. We
turn to the DUC 2001 and 2002 multi-document
summarization datasets, which, to the best of our
knowledge, are the only available datasets that
provide the necessary requirements for this anal-
ysis (see Table 1).

The importance of evaluating and comparing
systems at several lengths is demonstrated with
the observation that system rankings can change
quite significantly at different summary lengths.
In 2001, the Spearman correlation between the
available human rankings of systems at the 50-
word and 400-word lengths is 0.61. For example,
the system ranked first at length 50 ranks sixth at
lengths 200 and 400. Even for the human sys-
tem ranking at the 100-word length, which devi-
ates the least from human rankings at the other
lengths, the correlation with system ranking at the
400 length is only 0.73. Generally, the larger the
difference between a pair of summary lengths, the
greater the fluctuation in system rankings. Simi-
lar trends were observed for DUC 2002, and when
comparing system rankings by automatic ROUGE
scoring (both rankings are elaborated below). Ob-
viously, such performance differences are over-
looked when evaluating systems over summaries
of a single length.

Next, we turn to investigate our research ques-
tion. In this paper, we examine it with respect to
automatic summary evaluation, which has become
most common for system development and evalua-
tion, thanks to its speed and low cost. Specifically,
we use several variants of the ROUGE metric (Lin,
2004), which is almost exclusively utilized as an
automatic evaluation metric class for summariza-
tion. ROUGE variants are based on word sequence
overlap between a system summary and a refer-
ence summary, where each variant measures a dif-
ferent aspect of text comparison. Despite its pit-
falls, ROUGE has shown reasonable correlation
of its system scores to those obtained by manual
evaluation methods (Lin, 2004; Over and James,
2004; Over et al., 2007; Nenkova et al., 2007;
Louis and Nenkova, 2013; Peyrard et al., 2017),
such as SEE (Lin, 2001), responsiveness (NIST,
2006) and Pyramid (Nenkova et al., 2007).

We follow the same methodology of assessing
the reliability of automatic evaluation scores by
measuring their correlation to human evaluation
scores. In our case, DUC 2001 and 2002 ap-
plied the SEE manual evaluation method. NIST
assessors compared systems’ summaries to refer-
ence summaries, which were all decomposed into
a list of elementary discourse units (EDUs). Each
reference EDU was marked throughout the sys-
tem EDUs and was scored for how well it was
expressed. The final manually evaluated scores,
called the human mean content coverage scores,
are provided in the DUC datasets. We can then
correlate the human-based system ranking, at-
tained from these provided scores, to the system
ranking attained from the automatic scores that we
calculate using our proposed methodology.

As a baseline, we consider the ROUGE Recall
scores obtained by the standard reference sum-
mary configuration (Standard, first row in Ta-
ble 2), that is, when system summaries of each
length (table columns) are evaluated against ref-
erence summaries of the same length. This is the
same configuration used by Lin (2004) when intro-
ducing and assessing ROUGE. Then, looking into
our research question, we consider reference sum-
mary configurations in which system summaries
of all lengths are evaluated against reference sum-
maries of a single chosen length (OnlyNNN, sub-
sequent rows of Table 2). In each configuration
(each row), we repeat the evaluation twice: once
using the complete set of available reference sum-
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System Summary Length
50 100 200 400 Avg. across lengths

3refs 1ref 3refs 1ref 3refs 1ref 3refs 1ref 3refs 1ref
R

ef
er

en
ce

Se
t Standard 0.72 0.65 0.88 0.85 0.9 0.86 0.95 0.94 0.86 0.83

Only50 0 0 +0.02 0 +0.01 +0.04 +0.01 +0.02 +0.010 +0.015
Only100 -0.01 +0.04 0 0 +0.01 -0.01 +0.02 0 +0.005 +0.008
Only200 -0.09 -0.09 -0.06 -0.08 0 0 +0.01 -0.01 -0.035 -0.0045
Only400 -0.06 +0.02 -0.09 -0.09 -0.01 +0.03 0 0 -0.040 -0.010

Table 2: Pearson correlations between ROUGE-1 and human scores over DUC 2001 for different system
summary lengths (column pairs) and different reference summary configurations (rows), when using one
reference or three. The first baseline row presents absolute correlations while successive rows show
relative differences to the baseline.

2001 2002
R-1 R-2 R-L R-1 R-2 R-L

3refs 1ref 3refs 1ref 3refs 1ref 2refs 1ref 2refs 1ref 2refs 1ref

R
ef

er
en

ce
Se

t Standard 0.86 0.83 0.79 0.77 0.87 0.83 0.78 0.75 0.86 0.82 0.82 0.77

Only10 - - - - - - 0 -0.015 -0.100 -0.178 -0.003 -0.045
Only50 +0.010 +0.015 -0.013 -0.038 +0.008 +0.010 +0.035 +0.053 -0.050 -0.038 +0.020 +0.080
Only100 +0.005 +0.008 -0.010 -0.003 +0.005 +0.013 +0.023 +0.048 -0.035 0 -0.008 +0.040
Only200 -0.035 -0.045 -0.055 -0.053 -0.033 -0.04 +0.013 +0.023 -0.068 -0.025 -0.028 +0.005
Only400 -0.040 -0.010 -0.075 -0.075 -0.038 0 - - - - - -

Table 3: Averaged correlations (across system summary lengths, equivalent to the rightmost columns
in Table 2) for different ROUGE variants (column pairs) and reference summary configurations (rows),
when using 1 reference or multiple. The first row presents absolute correlations, with relative differences
in subsequent rows.

maries of the utilized reference length, and once
with just one randomly chosen reference summary
from that set (the 3refs and 1ref sub-columns).

For each reference summary configuration, we
compute ROUGE Recall system scores1 for the
three common ROUGE variants R-1, R-2 and
R-L, which compare unigrams, bigrams and the
longest common subsequence, respectively. Sys-
tem scores, per summary length, are obtained by
averaging across all summarized texts. We then
calculate their Pearson correlation2 with the avail-
able human mean content coverage scores for the
systems. The first row of Table 2 shows these cor-
relations, considering the R-1 scores for the DUC
2001 systems, per summary length. The subse-
quent rows show the corresponding figures for the
single-reference-length configurations. For read-
ability, we present in these rows the relative differ-
ences to the Standard baseline row. Hence, pos-
itive values indicate a configuration that is at least
as good as the standard configuration.

Table 3 presents correlations averaged over all
summary lengths, for the three ROUGE variants

1Omitting stop words.
2Following Lin (2004). Spearman ranking correlations

provide similar results.

over both datasets. We see in the tables that evalu-
ating system summaries of all lengths against ref-
erences of a single length often performs on par
with the standard configuration. In particular, the
single fixed set of 50-word reference summaries
performs overall as well as the standard approach,
and, although not substantially, is the most effec-
tive configuration within the data analyzed. In
other words, in this dataset, the 50-word reference
summaries provide a “test sample” for evaluating
the longer system summaries, which is as effective
as the same length references used by the standard
method.

We note that even when a single reference sum-
mary is available, reasonable correlations with hu-
man scores are obtained for the 50 word reference.
This suggests that it may be possible to compare
system summaries of multiple lengths even against
a single reference summary, of a relatively short
length. This observation seems to deserve further
assessment over recent large scale datasets, such
as CNN/DailyMail, which provide a single rela-
tively short reference for each summarized text.

In addition to correlation to human assessment,
we computed the correlations between system
rankings calculated by Standard and those calcu-
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Figure 1: R-1 scores of a few systems, evaluated
against the 50-word reference set of DUC 01. Sys-
tems R, S and T are from DUC 01; ICSISumm is
a later competitive system (Gillick et al., 2008).

lated by Only50, at each system summary length.
We find very high correlations (above 0.95 for all
system summary lengths, in both datasets) when
using multiple references and slightly lower (0.85
to 0.9) with one reference summary. These figures
show that the Only50 configuration ranks systems
very similarly to Standard.

To further verify our results, we computed cor-
relations in two additional settings. First, we con-
ducted the same analysis, excluding 2-3 of the
worst systems, which might artificially boost the
correlation (Rankel et al., 2013). Second, we com-
puted score differences between all pairs of sys-
tems, for both human and ROUGE scores, and
computed the correlation between these two sets
of differences (Rankel et al., 2011). In both cases
we observed rather consistent results, assessing
that a single set of short reference summaries eval-
uates system summaries of different lengths just as
well as the standard configuration.

3 Cross-length Summary Evaluation

This section illustrates how system performances
can be measured and compared when evaluating
them on outputs of varying lengths against a sin-
gle reference point. Figure 1 presents the ROUGE
scores of the Only50 configuration for three DUC-
01 submitted systems, and for ICSISumm (Gillick
et al., 2008), a later competitive system.

As expected when measuring ROUGE Recall
against a fixed reference length, longer system
summaries typically cover more of the reference
summaries content than shorter ones, yielding
higher scores. Yet, it can be noted, for example,
that the value of the 400-word summary of system
R in the figure is lower than that of the 200-word
summaries of the other systems. Such a compar-

ison is impossible in the standard setup, as each
system length is evaluated against different ref-
erence summaries. We note that similar compar-
isons are embedded in the evaluations of Stein-
berger and Jezek (2004) and Kikuchi et al. (2016),
who also evaluated multiple summary lengths.

Further, one can define the marginal value
of longer summaries of a given system as the
ROUGE score increase per number of additional
words, namely the graph slope. This denotation
allows measuring the effectiveness of producing
longer summaries. For example, deploying sys-
tem R, we might decide to output only summaries
no longer than 200 words, since the marginal value
of longer summaries becomes too small. The other
systems, on the other hand, seem marginally effec-
tive also in 400 word summaries.

4 Discussion

We proposed the potential value of evaluat-
ing summarization systems at different summary
lengths. Such evaluations would allow proper
evaluation of systems’ “length knob”, track-
ing how their ranking changes across summary
lengths as well as tracking the cross-length be-
havior of individual systems. Given that reference
summaries of a single length are usually available
in practice, we analyzed the potential use of refer-
ence summaries of a single length for evaluating
system summaries of multiple lengths. We found,
on the only two datasets readily available for such
analysis, that this configuration is as reliable as the
standard configuration, which evaluates each sys-
tem summary against a reference of a matching
length.

To broadly substantiate our findings, we pro-
pose future work that would follow our assess-
ment methodology over test samples from cur-
rent datasets (e.g. CNN/DailyMail), judging per-
formance of current systems and utilizing current
manual evaluation protocols. This would require
preparing, for limited samples, additional manu-
ally crafted summaries of several lengths and man-
ually evaluating system summaries of correspond-
ing lengths. Using such data, it will be possible
to repeat our analysis and test the broader valid-
ity of the single-reference-length configuration. If
broadly assessed, it will be possible to start evalu-
ating system summaries of multiple lengths over
most currently available datasets, leveraging the
available single-length reference summaries. Fu-
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ture benchmarks could require systems to produce
different length outputs, while feasibly evaluating
them using the existing, single length, reference
summaries. This, in turn, is likely to drive research
to better address the need for producing high qual-
ity summaries flexibly across a range of summary
lengths, a dimension that has been disregarded for
long.
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Abstract

Extractive summarization models require
sentence-level labels, which are usually
created heuristically (e.g., with rule-based
methods) given that most summarization
datasets only have document-summary pairs.
Since these labels might be suboptimal, we
propose a latent variable extractive model
where sentences are viewed as latent variables
and sentences with activated variables are
used to infer gold summaries. During training
the loss comes directly from gold summaries.
Experiments on the CNN/Dailymail dataset
show that our model improves over a strong
extractive baseline trained on heuristically
approximated labels and also performs
competitively to several recent models.

1 Introduction

Document summarization aims to automatically
rewrite a document into a shorter version while
retaining its most important content. Of the
many summarization paradigms that have been
identified over the years (see Mani 2001 and
Nenkova and McKeown 2011 for comprehensive
overviews), two have consistently attracted atten-
tion: extractive approaches generate summaries
by copying parts of the source document (usually
whole sentences), while abstractive methods may
generate new words or phrases which are not in
the document.

A great deal of previous work has focused on
extractive summarization which is usually mod-
eled as a sentence ranking or binary classifi-
cation problem (i.e., sentences which are top
ranked or predicted as True are selected as
summaries). Early attempts mostly leverage
human-engineered features (Filatova and Hatzi-
vassiloglou, 2004) coupled with binary classi-
fiers (Kupiec et al., 1995), hidden Markov models
(Conroy and O’leary, 2001), graph based methods

(Mihalcea, 2005), and integer linear programming
(Woodsend and Lapata, 2010).

The successful application of neural network
models to a variety of NLP tasks and the avail-
ability of large scale summarization datasets (Her-
mann et al., 2015; Nallapati et al., 2016) has
provided strong impetus to develop data-driven
approaches which take advantage of continuous-
space representations. Cheng and Lapata (2016)
propose a hierarchical long short-term memory
network (LSTM; Hochreiter and Schmidhuber
1997) to learn context dependent sentence repre-
sentations for a document and then use yet an-
other LSTM decoder to predict a binary label for
each sentence. Nallapati et al. (2017) adopt a
similar approach, they differ in their neural ar-
chitecture for sentence encoding and the features
used during label prediction, while Narayan et al.
(2018) equip the same architecture with a training
algorithm based on reinforcement learning. Ab-
stractive models (Nallapati et al., 2016; See et al.,
2017; Paulus et al., 2017) are based on sequence-
to-sequence learning (Sutskever et al., 2014; Bah-
danau et al., 2015), however, most of them under-
perform or are on par with the baseline of simply
selecting the leading sentences in the document as
summaries (but see Paulus et al. 2017 and Celiky-
ilmaz et al. 2018 for exceptions).

Although seemingly more successful than their
abstractive counterparts, extractive models require
sentence-level labels, which are not included in
most summarization datasets (only document and
gold summary pairs are available). Sentence la-
bels are usually obtained by rule-based methods
(Cheng and Lapata, 2016) or by maximizing the
ROUGE score (Lin, 2004) between a subset of sen-
tences and the human written summaries (Nalla-
pati et al., 2017). These methods do not fully
exploit the human summaries, they only create
True/False labels which might be suboptimal.
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Figure 1: Latent variable extractive summarization
model. senti is a sentence in a document and sum senti
is a sentence in a gold summary of the document.

In this paper we propose a latent variable ex-
tractive model and view labels of sentences in
a document as binary latent variables (i.e., ze-
ros and ones). Instead of maximizing the likeli-
hood of “gold” standard labels, the latent model
directly maximizes the likelihood of human sum-
maries given selected sentences. Experiments on
the CNN/Dailymail dataset (Hermann et al., 2015)
show that our latent extractive model improves
upon a strong extractive baseline trained on rule-
based labels and also performs competitively to
several recent models.

2 Model

We first introduce the neural extractive summa-
rization model upon which our latent model is
based on. We then describe a sentence compres-
sion model which is used in our latent model and
finally move on to present the latent model itself.

2.1 Neural Extractive Summarization

In extractive summarization, a subset of sentences
in a document is selected as its summary. We
model this problem as an instance of sequence la-
beling. Specifically, a document is viewed as a se-
quence of sentences and the model is expected to
predict a True or False label for each sentence,
where True indicates that the sentence should be
included in the summary. It is assumed that during
training sentences and their labels in each docu-

ment are given (methods for obtaining these labels
are discussed in Section 3).

As shown in the lower part of Figure 1, our
extractive model has three parts: a sentence en-
coder to convert each sentence into a vector, a
document encoder to learn sentence representa-
tions given surrounding sentences as context, and
a document decoder to predict sentence labels
based on representations learned by the document
encoder. Let D = (S1, S2, . . . , S|D|) denote a
document and Si = (wi

1, w
i
2, . . . , w

i
|Si|) a sen-

tence in D (where wi
j is a word in Si). Let

Y = (y1, . . . , y|D|) denote sentence labels. The
sentence encoder first transforms Si into a list
of hidden states (hi

1,h
i
2, . . . ,h

i
|Si|) using a Bidi-

rectional Long Short-Term Memory Network (Bi-
LSTM; Hochreiter and Schmidhuber 1997; Schus-
ter and Paliwal 1997). Then, the sentence encoder
yields vi, the representation of Si, by averaging
these hidden states (also see Figure 1):

vi =
1

|Si|
X

j

hi
j (1)

In analogy to the sentence encoder, the doc-
ument encoder is another Bi-LSTM but applies
on the sentence level. After running the Bi-
LSTM on a sequence of sentence representations
(v1,v2, . . . ,v|D|), we obtain context dependent
sentence representations (hE

1 ,hE
2 , . . . ,hE

|D|).
The document decoder is also an LSTM which

predicts sentence labels. At each time step, it
takes the context dependent sentence representa-
tion of Si produced by the document encoder as
well as the prediction in the previous time step:

hD
i = LSTM(hD

i�1,


We e(yi�1)

hE
i

�
) (2)

where We 2 R
d⇥2 is the label embedding ma-

trix (d is the hidden dimension for the document
decoder LSTM) and yi�1 is the prediction at time
step i�1; the predicted label distribution for yi is:

p(yi|y1:i�1,h
D
i�1) = softmax(Wo hD

i ) (3)

where Wo 2 R
2⇥d.

The model described above is usually trained
by minimizing the negative log-likelihood of sen-
tence labels in training documents; it is almost
identical to Cheng and Lapata (2016) except that
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we use a word-level long short-term memory net-
work coupled with mean pooling to learn sentence
representations, while they use convolutional neu-
ral network coupled with max pooling (Kim et al.,
2016).

2.2 Sentence Compression
We train a sentence compression model to map a
sentence selected by the extractive model to a sen-
tence in the summary. The model can be used to
evaluate the quality of a selected sentence with re-
spect to the summary (i.e., the degree to which it is
similar) or rewrite an extracted sentence according
to the style of the summary.

For our compression model we adopt a stan-
dard attention-based sequence-to-sequence archi-
tecture (Bahdanau et al., 2015; Rush et al., 2015).
The training set for this model is generated from
the same summarization dataset used to train the
exractive model. Let D = (S1, S2, . . . , S|D|) de-
note a document and H = (H1, H2, . . . , H|H|)
its summary. We view each sentence Hi in the
summary as a target sentence and assume that
its corresponding source is a sentence in D most
similar to it. We measure the similarity between
source sentences and candidate targets using
ROUGE, i.e., Sj = argmaxSj

ROUGE(Sj , Hi)
and hSj , Hii is a training instance for the compres-
sion model. The probability of a sentence Ĥi be-
ing the compression of Ŝj (i.e., ps2s(Ĥi|Ŝj)) can
be estimated with a trained compression model.

2.3 Latent Extractive Summarization
Training the extractive model described in Sec-
tion 2.1 requires sentence-level labels which are
obtained heuristically (Cheng and Lapata, 2016;
Nallapati et al., 2017). Our latent variable model
views sentences in a document as binary variables
(i.e., zeros and ones) and uses sentences with acti-
vated latent variables (i.e., ones) to infer gold sum-
maries. The latent variables are predicted with
an extractive model and the loss during training
comes from gold summaries directly.

Let D = (S1, S2, . . . , S|D|) denote a document
and H = (H1, H2, . . . , H|H|) its human summary
(Hk is a sentence in H). We assume that there is a
latent variable zi 2 {0, 1} for each sentence Si in-
dicating whether Si should be selected, and zi = 1
entails it should. We use the extractive model
from Section 2.1 to produce probability distribu-
tions for latent variables (see Equation (3)) and ob-
tain them by sampling zi ⇠ p(zi|z1:i�1,hD

i�1) (see

Figure 1). C = {Si|zi = 1}, the set of sentences
whose latent variables equal to one, are our current
extractive summaries. Without loss of generality,
we denote C = (C1, . . . , C|C|). Then, we estimate
how likely it is to infer the human summary H
from C. We estimate the likelihood of summary
sentence Hl given document sentence Ck with the
compression model introduced in Section 2.2 and
calculate the normalized1 probability skl:

skl = exp

✓
1

|Hl|
log ps2s(Hl|Ck)

◆
(4)

The score Rp measures the extent to which H can
be inferred from C:

Rp(C, H) =
1

|C|

|C|X

k=1

|H|
max
l=1

skl (5)

For simplicity, we assume one document sentence
can only find one summary sentence to explain it.
Therefore, for all Hl, we only retain the most ev-
ident skl. Rp(C, H) can be viewed as the “preci-
sion” of document sentences with regard to sum-
mary sentences. Analogously, we also define Rr,
which indicates the extent to which H can be cov-
ered by C:

Rr(C, H) =
1

|H|

|H|X

l=1

|C|
max
k=1

skl (6)

Rr(C, H) can be viewed as the “recall” of docu-
ment sentences with regard to summary sentences.
The final score R(C, H) is the weighted sum of the
two:

R(C, H) = ↵ Rp(C, H) + (1 � ↵) Rr(C, H) (7)

Our use of the terms “precision” and “recall” is
reminiscent of relevance and coverage in other
summarization work (Carbonell and Goldstein,
1998; Lin and Bilmes, 2010; See et al., 2017).

We train the model by minimizing the negative
expected R(C, H):

L(✓) = �E(z1,...,z|D|)⇠p(·|D)[R(C, H)] (8)

where p(·|D) is the distribution produced by the
neural extractive model (see Equation (3)). Unfor-
tunately, computing the expectation term is pro-
hibitive, since the possible latent variable combi-
nations are exponential. In practice, we approx-
imate this expectation with a single sample from

1We also experimented with unnormalized probabilities
(i.e., excluding the exp in Equation (4)), however we ob-
tained inferior results.

781



the distribution of p(·|D). We use the REIN-
FORCE algorithm (Williams, 1992) to approxi-
mate the gradient of L(✓):

rL(✓) ⇡
P|D|

i=1 r log p(zi|z1:i�1,hD
i�1)[R(C, H) � bi]

Note that the model described above can be
viewed as a reinforcement learning model, where
R(C, H) is the reward. To reduce the variance of
gradients, we also introduce a baseline linear re-
gression2 model bi (Ranzato et al., 2016) to es-
timate the expected value of R(C, H). To avoid
random label sequences during sampling, we use
a pre-trained extractive model to initialize our la-
tent model.

3 Experiments

Dataset and Evaluation We conducted exper-
iments on the CNN/Dailymail dataset (Hermann
et al., 2015; See et al., 2017). We followed
the same pre-processing steps as in See et al.
(2017). The resulting dataset contains 287,226
document-summary pairs for training, 13,368 for
validation and 11,490 for test. To create sen-
tence level labels, we used a strategy similar to
Nallapati et al. (2017). We label the subset of
sentences in a document that maximizes ROUGE
(against the human summary) as True and all
other sentences as False. Using the method de-
scribed in Section 2.2, we created a compression
dataset with 1,045,492 sentence pairs for training,
53,434 for validation and 43,382 for testing. We
evaluated our models using full length F1 ROUGE
(Lin, 2004) and the official ROUGE-1.5.5.pl
script. We report ROUGE-1, ROUGE-2, and
ROUGE-L.

Implementation We trained our extractive
model on an Nvidia K80 GPU card with a batch
size of 32. Model parameters were uniformly ini-
tialized to [� 1p

c
, 1p

c
] (c is the number of columns

in a weight matrix). We used Adam (Kingma and
Ba, 2014) to optimize our models with a learning
rate of 0.001, �1 = 0.9, and �2 = 0.999. We
trained our extractive model for 10 epochs and
selected the model with the highest ROUGE on
the validation set. We rescaled the gradient when
its norm exceeded 5 (Pascanu et al., 2013) and

2The linear regression model bt is trained by minimiz-
ing the mean squared error between the prediction of bt and
R(C, H).

Model R-1 R-2 R-L
LEAD3 40.34 17.70 36.57
LEAD3 (Nallapati et al., 2017) 39.20 15.70 35.50
abstract 35.46 13.30 32.65
pointer+coverage 39.53 17.28 36.38
abstract-RL 41.16 15.75 39.08
abstract-ML+RL 39.87 15.82 36.90
SummaRuNNer 39.60 16.20 35.30
EXTRACT-CNN 40.11 17.52 36.39
REFRESH (Narayan et al., 2018) 40.00 18.20 36.60
EXTRACT 40.62 18.45 37.14
LATENT 41.05 18.77 37.54
LATENT+COMPRESS 36.69 15.43 34.33

Table 1: Results of different models on the
CNN/Dailymail test set using full-length F1 ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L).

regularized all LSTMs with a dropout rate of 0.3
(Srivastava et al., 2014; Zaremba et al., 2014). We
also applied word dropout (Iyyer et al., 2015) at
rate 0.2. We set the hidden unit size d = 300 for
both word-level and sentence-level LSTMs and all
LSTMs had one layer. We used 300 dimensional
pre-trained FastText vectors (Joulin et al., 2017)
to initialize our word embeddings. The latent
model was initialized from the extractive model
(thus both models have the same size) and we
set the weight in Equation (7) to ↵ = 0.5. The
latent model was trained with SGD, with learning
rate 0.01 for 5 epochs. During inference, for both
extractive and latent models, we rank sentences
with p(yi = True|y1:i�1, D) and select the top
three as summary (see also Equation (3)).

Comparison Systems We compared our model
against LEAD3, which selects the first three lead-
ing sentences in a document as the summary
and a variety of abstractive and extractive mod-
els. Abstractive models include a sequence-to-
sequence architecture (Nallapati et al., 2016); ab-
stract), its pointer generator variant (See et al.
2017; pointer+coverage), and two reinforce-
ment learning-based models (Paulus et al. 2017;
abstract-RL and abstract-ML+RL). We also com-
pared our approach against an extractive model
based on hierarchical recurrent neural networks
(Nallapati et al. 2017; SummaRuNNer), the model
described in Section 2.1 (EXTRACT) which en-
codes sentences using LSTMs, a variant which
employs CNNs instead (Cheng and Lapata 2016;
EXTRACT-CNN), as well as a similar system based
on reinforcement learning (Narayan et al. 2018;
REFRESH).
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Results As shown in Table 1, EXTRACT, our
extractive model outperforms LEAD3 by a wide
margin. EXTRACT also outperforms previously
published extractive models (i.e., SummaRuNNer,
EXTRACT-CNN, and REFRESH). However, note
that SummaRuNNer generates anonymized sum-
maries (Nallapati et al., 2017) while our models
generate non-anonymized ones, and therefore the
results of EXTRACT and SummaRuNNer are not
strictly comparable (also note that LEAD3 results
are different in Table 1). Nevertheless, EXTRACT
exceeds LEAD3 by +0.75 ROUGE-2 points
and +0.57 in terms of ROUGE-L, while Sum-
maRuNNer exceeds LEAD3 by +0.50 ROUGE-
2 points and is worse by �0.20 points in terms
of ROUGE-L. We thus conclude that EXTRACT
is better when evaluated with ROUGE-2 and
ROUGE-L. EXTRACT outperforms all abstractive
models except for abstract-RL. ROUGE-2 is lower
for abstract-RL which is more competitive when
evaluated against ROUGE-1 and ROUGE-L.

Our latent variable model (LATENT; Section
2.3) outperforms EXTRACT, despite being a strong
baseline, which indicates that training with a loss
directly based on gold summaries is useful. Dif-
ferences among LEAD3, EXTRACT, and LATENT
are all significant with a 0.95 confidence inter-
val (estimated with the ROUGE script). Inter-
estingly, when applying the compression model
from Section 2.2 to the output of our latent model
( LATENT+COMPRESS ), performance drops con-
siderably. This may be because the compres-
sion model is a sentence level model and it re-
moves phrases that are important for creating the
document-level summaries.

4 Conclusions

We proposed a latent variable extractive summa-
rization model which leverages human summaries
directly with the help of a sentence compression
model. Experimental results show that the pro-
posed model can indeed improve over a strong ex-
tractive model while application of the compres-
sion model to the output of our extractive system
leads to inferior output. In the future, we plan to
explore ways to train compression models tailored
to our summarization task.
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Abstract

Many modern neural document summariza-
tion systems based on encoder-decoder net-
works are designed to produce abstractive
summaries. We attempted to verify the de-
gree of abstractiveness of modern neural ab-
stractive summarization systems by calculat-
ing overlaps in terms of various types of units.
Upon the observation that many abstractive
systems tend to be near-extractive in prac-
tice, we also implemented a pure copy system,
which achieved comparable results as abstrac-
tive summarizers while being far more com-
putationally efficient. These findings suggest
the possibility for future efforts towards more
efficient systems that could better utilize the
vocabulary in the original document.

1 Introduction

Document summarization has been a hot research
topic in natural language processing for long.
When human writers summarize a document, they
often edit its constituent sentences in order to
succinctly capture the meaning of the document.
For instance, Jing and McKeown (2000) observed
that summary authors trimmed extraneous con-
tent, combined sentences, replaced phrases or
clauses with more general or specific variants.
The abstractive summaries thus involve sentences
which deviate from those of the source document
in structure or content.

On the contrary, automated summarization gen-
erally produces extractive summaries by select-
ing complete sentences from the source document
(Nenkova et al., 2011) to ensure that the output is
grammatical.

Recently, many modern neural summarization
systems based on encoder-decoder networks have
been proposed, aiming at producing abstractive

⇤The first two authors contributed equally.

summaries. These systems highly rely on the at-
tention mechanism (Bahdanau et al., 2015) that fo-
cus on different parts of input during the decod-
ing stage. Some also suggested to use a copy-
ing mechanism (Gulcehre et al., 2016; Gu et al.,
2016) to directly copy words from input. This nat-
urally brings us to a question: in how much de-
gree are current neural document summarizers ab-
stractive? In this work, we conduct such a study
on the popularly-used CNN / DailyMail news cor-
pora. By calculating various types of overlaps be-
tween summaries generated by neural abstractive
summarizers and the original document, we veri-
fied that many systems are in fact heavily extract-
ing text spans from input.

Recent studies found that automated methods
can generate a wider range of summaries by ex-
tracting over sub-sentential units of meaning, such
as elementary discourse units (EDUs), from the
source documents rather than whole sentences (Li
et al., 2016; Durrett et al., 2016). We built on a
rather standard pointer-generator system to pro-
duce a summarizer that purely copies from input.
Limited vocabulary size makes the new summa-
rizer more computationally efficient, without loss
of performance. The findings in this paper may
hint future studies towards more efficient and more
effective near-extractive systems, instead of a less
important target of improving abstraction.

To summarize, in this paper we provide:

• A quantitative analysis on how abstractive
current neural document summarizers are by
calculating various types of content overlap
with the input documents.

• A simple modification on the standard
pointer-generator document summarizer to
produce equally good near-extractive sum-
maries while being more computationally ef-
ficient due to largely reduced vocabulary size.
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2 Neural Abstractive Summarization

Recently end-to-end training with encoder-
decoder neural networks (Sutskever et al., 2014)
have achieved huge success in data sufficient
sequence transduction tasks such as machine
translation, which brings potential applications
for summarization tasks, especially for abstractive
settings. Earlier practice is mostly achieved on
abstractive sentence summarization (Rush et al.,
2015), which is essentially sentence simplification
working on short text inputs. These neural
sentence abstraction models are able to achieve
good ROUGE (Lin and Hovy, 2003) scores on
headline generation benchmarks, 1 but have not
been proved to be useful for generating summaries
with multiple sentences for full documents with
longer contexts, which is the main focus of this
study on document summarization.

One possible way for document-level neural
summarization is to design hierarchical encoding
to represent sentences and words at different lev-
els. Related studies treat a document as a se-
quence of sentences and take sentence embed-
dings as input for a document-level RNN, while
using a convolutional network or recurrent net-
work to generate sentence vectors from original
tokens (Cheng and Lapata, 2016). Meanwhile,
the attention mechanism will become hierarchical
as well (Nallapati et al., 2016). When decoding,
sentence-level attention weights will be used as
input for calculating word-level attention weights.
Experimental results in previous work suggest that
such schemes could be useful for extractive sum-
marization when calculating sentence weights, but
could only generate rather disappointing results
for abstractive summaries.

It has been shown to be useful to incorporate
the copying mechanism (Gulcehre et al., 2016; Gu
et al., 2016; See et al., 2017) that allows a word
to be generated by directly copying an input word
rather than producing all words from the hidden
state from scratch. Meanwhile, directly optimiz-
ing ROUGE via reinforcement learning has been
shown to be more effective than optimizing refer-
ence likelihood (Paulus et al., 2018).

Recent work has achieved improvements by
modeling attention based on more structured inter-
sentence relationships such as graphs (Tan et al.,

1One caveat is that achieving high ROUGE scores on
datasets with single references only is not an indication that
the system is indeed generating good results.

2017; Yasunaga et al., 2017). In practice, a severe
issue of repetitive generation has been reported in
other related work. It has been shown helpful to
encourage diversity and novelty in calculating at-
tention weights (Chen et al., 2016; Nema et al.,
2017), or incorporating different modules with
mutual communications to encode different para-
graphs in the input document (Celikyilmaz et al.,
2018). Another perspective is to promote better
information coverage, such as pre-estimating term
frequencies in the target summary (Suzuki and Na-
gata, 2017) or directly introducing a coverage loss
between encoder states and decoder states (See
et al., 2017).

Among the aforementioned related studies, a
few proposed systems explicitly targeted at gener-
ating abstractive summaries for documents. How-
ever, these systems highly rely on the attention
mechanism and/or copying mechanism that heav-
ily depends on different part of input during the
decoding stage. This naturally brings to a question
on whether neural summarizers are indeed gener-
ating abstractive summaries after reading and di-
gesting the input document, or they are just ex-
tracting subparts of the original document to per-
form near-extractive summaries.

3 Quantitative Analysis

3.1 Approaches
To verify whether current abstractive neural sum-
marizers are just lazy generators that tend to copy
original words and text spans, we computed the
overlaps between the output summaries and the
original article using the overlapping ratio mea-
sured by the following units: longest common sub-
sequences (LCS), n-grams, and full sentences.

We studied a few representative systems that ex-
plicitly claim to have the ability to output abstrac-
tive summaries. The systems we compared in this
work include:

• A basic sequence-to-sequence model with the
attention mechanism.

• The pointer-generator system plus coverage
mechanism presented by See et al. (2017).

• The graph-based attention system by Tan
et al. (2017), aiming at better capturing
salient information.

• The Distraction system by Chen et al. (2016),
which attempt to distract attention.
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• The deep reinforced model (Paulus et al.,
2018) which combines intra-attention mecha-
nism and reinforcement learning to target for
better ROUGE scores and summary quality.
to traverse between different content of a doc-
ument so as to better grasp the overall mean-
ing for summarization.

We also attempted to include some other popu-
lar abstractive document summarizers such as the
SummaRuNNer system (Nallapati et al., 2017),
but we failed to reach the authors to get their sys-
tem outputs.

We collected experimental results from these
systems on two large-scale corpora of CNN and
DailyMail, which have been almost exclusively
used in recent work on neural document summa-
rization. The corpora were originally constructed
in (Hermann et al., 2015) by collecting human
generated abstractive highlights from the news
stories. Just like almost all recent studies on neural
summarization, the main conclusions might vary
on other domains or even other news datasets.

3.2 Results
Table 1 displays the results of overlaps calculated
for various system outputs over the original doc-
uments. Note that the authors of the Distraction
system (Chen et al., 2016) did not conduct exper-
iments on the Daily Mail subset of data, therefore
only the results on CNN dataset are shown. We
also include overlap results of manually-written
reference summary highlights for comparison.

We can observe that the outputs from the
pointer-generator systems (See et al., 2017) have
the most amount of overlaps in terms of whole
sentences, and most of the words or n-grams are
in fact taken from the original document without
further modifications or paraphrases. This obser-
vation is predictable since the system relies heav-
ily on the pointer network module that directly
copy from the input. The deep Reinforced model
(Paulus et al., 2018), which relies on an intra-
attention mechanism, also have rather high over-
laps with the original document, suggesting that it
is also an near-extractive system by some degree.

Other abstractive neural summarizers do not
tend to directly copy full sentences, but do not
generate words beyond the lexical choices used
in the input document either, with considerably
large overlaps of n-grams in general. A notable ex-
ception is the graph-based attention system where

the overlap statistics are close to manually-written
reference summaries. However, we manually
checked a few samples and observed that the pro-
duced summaries tend to generate contents that do
not conform to the information conveyed in the
original documents. This is also verified in manual
rating scores described later.

We conclude that currently many neural news
summarizers which claimed to be abstractive tend
to directly copy large spans of contents from the
original documents, at least on the CNN / Daily
Mail dataset which is the almost exclusively used
benchmark in recent studies.

4 Near-Extractive Summarization

Now that we have observed large long-span over-
laps between generated summaries and the origi-
nal documents, it is natural to think about the fol-
lowing question: Do we really need to generate
tokens from decoder states in a neural summarizer
rather than just simply copying spans from input?

As previously mentioned, near-extractive sum-
maries containing smaller text units from the input
document have been shown sufficient for produc-
ing good summaries. On the other hand, generat-
ing words from a decoder state is based on time-
consuming calculations of a softmax distribution,
given that the vocabulary size is relatively large.
Therefore, we would like to try abandoning de-
coder word generation, while just directly copying
words from the input document instead.

4.1 Approach

We built a summarizer that only copy input words
for outputs with trivial modifications upon the
pointer-generator model (See et al., 2017). Specif-
ically, it implements a sequence-to-sequence
model that uses the soft attention distribution to
produce an output sequence whose elements are
all from the input sequence, similar to what a
pointer network (Vinyals et al., 2015) does. We
simply use the attention distribution as the final
copy distribution, while the model does not gener-
ate words from the whole vocabulary using a soft-
max layer as in original recurrent networks. The
training objective is to maximize the likelihood of
words contained in reference summaries, similar
to what has been used in the SummaRuNNer sys-
tem for abstractive training (Nallapati et al., 2017).
We keep using the same hyperparameters as in the
original pointer-generator model.
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LCS unigram bigram 4-gram sentence
Reference 75.0% 87.6% 49.0% 34.0% 3.5%
Seq2seq 87.4% 93.2% 76.0% 66.0% 10.8%
Pointer-generator 98.2% 99.8% 92.5% 93.0% 60.1%
Pointer-generator+coverage 98.8% 99.9% 96.1% 94.0% 70.0%
Reinforced (Paulus et al., 2018) 90.6% 95.8% 85.3% 80.2% 19.3%
Graph attention (Tan et al., 2017) 74.3% 82.3% 59.9% 42.1% 3.3%
Reference(CNN) 63.0% 75.2% 39.2% 25.9% 0.8%
Distraction (Chen et al., 2016) (CNN) 74.7% 94.0% 65.4% 38.7% 0.8%

Table 1: The overlap proportions between summaries and the original document

4.2 Experiments
We conducted experiments on the CNN / Daily
Mail datasets and adopt the widely used ROUGE
metrics (Lin and Hovy, 2003) for evaluation as
previous work did.

Table 2 shows the ROUGE scores for the pro-
duced summaries. We can see that a pure copy
system could produce equally or slightly better re-
sults in terms of word-matching metrics. The cov-
erage mechanism introduced by See et al. (2017)
is also effective for a pure copy system. As a
side note, we verified the observation from See
et al. (2017) that current neural summarizers can-
not genuinely outperform a properly implemented
LEAD baseline that simply takes the first three
sentences from the original document, at least for
the datasets used here that mainly consist of news
describing events or activities.

R-1 R-2 R-L
PtrGen 36.44 15.66 33.42
PtrGen + cov 39.53 17.28 36.38
Ptr 37.44 16.08 34.25
Ptr + cov 39.74 17.31 36.53
Lead3 39.98 17.25 36.20

Table 2: ROUGE scores on CNN/Daily Mail

We also conducted human evaluation on outputs
for a sample of 30 documents in the common sub-
part of the system inputs. We asked three raters to
evaluate on the following metrics in a summary us-
ing 1-5 scoring scheme (5 is the best, and rational
numbers were allowed if raters felt uncertain over
some cases): informativeness (INF), relevance
(REL), fluency (FLU) and coherence (COH), as
used by Grusky et al. (2018). The results are listed
in Table 3. We find the pure copy system per-
forms similarly to the pointer-generator. However,
we can also observe a rough trend that: the more

abstractive a system is, the higher the chance of
generating irrelevant or grammatically worse con-
tent. Such observation is consistent with manual
evaluation results conducted by another study to-
wards more abstraction (Kryściński et al., 2018),
in parallel to our work. This is a signal that
other than pursuing for heavily abstractiveness, we
could also spend more efforts on directly identi-
fying and extracting useful pieces from the input,
in order to get more controlled and more useful
summaries with better quality beyond the heavily
biased ROUGE metrics (Chaganty et al., 2018).

INF REL FLU COH
Lead3 2.97 3.20 4.10 3.33
Pure copy 3.03 3.37 3.87 3.14
PtrGen 3.01 3.44 3.65 3.11
Reinforced 3.18 3.17 3.57 2.97
Distraction 2.44 2.88 3.37 2.70
GraphAtt 2.75 2.87 2.47 2.14
Reference 3.71 4.32 4.54 4.12

Table 3: Human ratings

A larger merit for implementing a pure copy
system is that it is more computationally effective
than abstractive summarizers that generate words
in a large vocabulary from decoder states. Table 4
lists the speed for decoding as well as the memory
costs in training for the pure copy system, com-
pared with the original pointer-generator system.
The numbers are averaged results from multiple
runs on the same computing environment of Tesla
M40 GPU. We can see that the speed doubles from
a pure copy summarizer, while the GPU memory
cost is reduced to around a quarter.

We visualize the copying probabilities (atten-
tion weights) for an example summary along with
the original document in Figure 1. We can observe
that the pure copy system tends to attend on con-
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Pure copy PtrGen
Decoding Speed 0.87 step/s 0.44 step/s

GPU Usage 2216MB 8368MB
Memory Cost 2.67GB 3.30GB

Table 4: Comparison of computational costs

Figure 1: Visualization of copy probabilities

tinuous spans of input to form sentences.

5 Conclusion

In this work we attempted to quantify the abstrac-
tiveness of modern neural abstractive summariza-
tion systems by calculating overlaps of various
units. Inspired by the observation that many sys-
tems tend to be near-extractive, we also imple-
mented a pure copy system and achieved com-
parable performance while being far more effi-
cient. Giving the observations that the abstrac-
tive summaries produced by current systems have
lower quality than extractive summaries, our study
should give hints for focusing on better extractions
from the input, rather than deliberately pursuing
for more abstraction but losing real quality beyond
automatic metrics.
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Abstract

Automatic essay scoring (AES) is the task of
assigning grades to essays without human in-
terference. Existing systems for AES are typ-
ically trained to predict the score of each sin-
gle essay at a time without considering the rat-
ing schema. In order to address this issue, we
propose a reinforcement learning framework
for essay scoring that incorporates quadratic
weighted kappa as guidance to optimize the
scoring system. Experiment results on bench-
mark datasets show the effectiveness of our
framework.

1 Introduction

In recent years, neural networks have been widely
used to grade student essays automatically and
achieve state-of-the-art performance. In partic-
ular, a distributed representation is learned for
an essay with variant neural networks and a lin-
ear layer is then used to produce the final score.
Existing researches focus on learning better es-
say representation using different neural networks,
including long short-term memory (LSTM) net-
work (Taghipour and Ng, 2016), hierarchical con-
volutional neural networks (CNN) (Dong and
Zhang, 2016), hierarchical CNN-LSTM structure
with attention mechanism (Dong et al., 2017), and
SKIPFLOW LSTM (Tay et al., 2017).

The major evaluation metric for AES is
quadratic weighted kappa (QWK), which is also
the official metric of Automated Student Assess-
ment Prize1 (ASAP). It evaluates the scoring re-
sults by taking rating schema into consideration.
Because QWK is not differentiable, it is hard to
train systems via optimizing this metric directly.
Alternatively, existing AES systems are typically
trained to predict the score for a single essay and
optimized using mean square error (MSE). The

⇤Corresponding author
1https://www.kaggle.com/c/asap-aes

gap between training and testing also limits the
performance of state-of-the-art AES systems.

Recently, reinforcement learning (RL) has been
introduced to optimize models in terms of non-
differentiable quality metrics and studies have
shown its effectiveness for various tasks including
language generation (Ranzato et al., 2015; Rennie
et al., 2016; Zhang et al., 2017), machine transla-
tion (Bahdanau et al., 2016) and relation classifi-
cation (Feng et al., 2018).

Inspired by these researches, we propose a
novel reinforcement learning framework that in-
corporates QWK as the guidance to optimize the
essay scoring system. In our framework, we score
a pack of essays at a time and the scoring of each
single essay is treated as an action. The QWK
value computed for the pack of essays is then de-
livered as a reward to update the scoring system.
Because the existing regression-based essay scorer
is unable to generate a probability distribution in
nature, it is non-trivial to be used within the rein-
forcement learning framework. We therefore pro-
pose to use a classification-based scoring system
instead. The proposed framework is evaluated in
the benchmark datasets from ASAP and experi-
ment results confirm its effectiveness on two dif-
ferent settings of essay representation structures.

2 Model
Typically, an essay scorer contains two compo-
nents, namely, essay representation and essay
scoring. The component of essay representation
transforms an input essay into a distributed vec-
tor and the component of essay scoring assigns
a score to the essay based on the vector. Both
components are usually trained jointly. In order
to incorporate QWK to guide the process of essay
scoring, we introduce a novel essay scoring strat-
egy named packed evaluation. At each time, essay
scorer grades a pack of essays together with the
target essay, and QWK is calculated for the pack.
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Figure 1: The reinforcement learning framework for
automatic essay scoring. Node in color stands for a tar-
get essay and nodes in grey are essays randomly chose
to form a pack for QWK calculation.

To avoid contingency, for each target essay, we re-
peat the packed evaluation multiple times by ran-
domly choosing other essays in a pack. And the
average QWK it achieves is set to be the reward.
The reward is then delivered to the essay scorer
as a weak signal to supervise the scorer. Figure 1
illustrates the training process of our model. We
will introduce the different parts in detail in the
rest of this section.

2.1 Essay Representation
This component converts an input essay into a
dense vector as its representation. Recurrent neu-
ral networks (Williams and Zipser, 1989) are
widely used to learn a representation for a se-
quence of words for essay scoring. Following ex-
isting researches, we also use recurrent neural net-
works (RNN) and test two different structures.

Bidirectional LSTM We first use a double-
layer bi-directional LSTM network (Hochreiter
and Schmidhuber, 1997) to process the essay.
LSTM is a variant of recurrent neural network
which uses gates to control the information flow.
Our LSTM processes one word at a timestamp.
Given the word embedding sequence {x1, x2, ...,
xn} for the essay, the hidden states of the LSTM
are calculated as follows:

ft = �(Wfxt + Ufht�1 + bf )

it = �(Wixt + Uiht�1 + bi)

ot = �(Woxt + Uoht�1 + bo)

c̃t = tanh(Wcxt + Ucht�1 + bc)

ct = ft � ct�1 + it � c̃t

ht = ot � tanh(ct)

where Wf , Wi, Wo, Wc, Uf , Ui, Uo and Uc are
weight matrices, bf , bi, bo and bc are bias vec-
tors. � denotes sigmoid function and � denotes
element-wise multiplication.

In particular, the average value over all hidden
states of each LSTM layer are computed, and we
concatenate the mean states of the two layers to-
gether as the embedding vector of the essay. Given
hi,j as the j-th hidden state of the i-th layer, the
layer outputs and the essay embedding vector E
are defined as follows:

outputi =
1

n

nX

j=1

hi,j

E =


output0
output1

�

Dilated LSTM Dilated recurrent neural net-
works (Chang et al., 2017) are proved to be more
effective than traditional RNNs in long sequence
processing, by capturing multi-timescale informa-
tion along the sequence, with the mechanism of
dilated skip connections.

Denoting si
t = f(xi

t, s
i
t�1) as the iteration of

cell states in traditional RNNs, states in dilated
RNNs are iterated as si

t = f(xi
t, s

i
t�ki), where

ki is the skip length in the i-th layer. In order to
keep the most information active, we simply con-
catenate the average hidden states of every layer to
form the essay embedding.

E = concat(outputi), for i in 1, 2, ..., L

where L is the number of layers.

2.2 Essay Scoring
Traditionally, a linear layer with sigmoid function
is used to score an essay. Given an essay embed-
ding vector E, the essay score is calculated as fol-
lows:

y = sigmoid(W T
l E + bl)

where Wl and bl are weight vector and bias for
scoring. By running n examples together, mean
square error is used to evaluate the predicted score.

lossMSE =
1

n

nX

i=1

(yi � ŷi)
2

where y and ŷ are score vectors representing pre-
dicted scores and ground truth scores, respectively.
As we can see, such objective function is unable to
take rating schema into consideration.
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The regression-based scorer only outputs a sin-
gle value without probability distribution. It is
thus non-trivial to use it for policy learning in
RL framework directly. Therefore, we propose to
use a classification-based scorer, in which differ-
ent score categories and their probabilities consti-
tute an action space.

Classification-based Scoring We first feed the
essay vector into a fully connected layer, then soft-
max function is used to transform the output into
a probability distribution. Given an essay embed-
ding vector E, the probability distribution vector c
is calculated as follows:

c = softmax(WcE + bc)

where Wc and bc are weight matrix and bias vec-
tor, respectively.

Given the ground truth category, cross entropy
loss is applied to evaluate the agreement of the
probabilities as follows:

lossCE = �
NX

i=1

Yilog(ci)

where N is the number of categories, which is
equal to the number of possible ratings. Y is a
one-hot vector with the element representing the
ground truth category set as one.

Inter-class Penalty Cross entropy loss used
in classification-based scorer does not imply the
difference between categories, i.e. the rank infor-
mation that is deemed to be important for essay
scoring. Thus we enforce a penalty in addition to
the cross entropy loss. Inspired by the definition of
QWK, the penalty vector p is defined as follows:

pi =
(i � score)2

(N � 1)2

where score is the ground truth score of the essay.
The penalty loss function is defined as:

lossP =
NX

i=1

cipi

Mixed Scoring In practice, we jointly
train both a regression-based scoring layer and a
classification-based scoring layer over the same
document representation to help the classification-
based scorer converge. By combining the two
scorers together, the overall loss function can be
written as:

losspre = ↵0lossMSE + �0lossCE + �0lossP

where ↵0, �0 and �0 are hyper parameters. Mixed
scoring is used as a pre-train model for our essay
scorer in the phase of reinforcement learning.

2.3 Reinforcement Learning
We define our loss function as the negative ex-
pected reward:

lossRL = �E⌧⇠p(⌧)r(⌧)

where ⌧ is the set of actions, r denotes the reward,
which is the average QWK an essay achieves in
the packed evaluation.

By running n examples at a time, according to
the REINFORCE algorithm (Williams, 1992), an
approximated gradient can be calculated by:

@lossRL

@✓
=

nX

i=1

[@log(pi,y|Ei; ✓)Ri]

where ✓ denotes all parameters relevant to score
calculation, and @log(pi,y|Ei; ✓) can be computed
by standard back propagation.

Note that only the classification-based scorer is
involved in the process of reinforcement learning
for essay scoring. The overall loss function for this
phase can be written as:

lossoverall = ↵1lossRL + �1lossCE + �1lossP

where ↵1, �1 and �1 are hyper parameters.

2.4 Quadratic Weighted Kappa(QWK)
QWK calculation emphasizes on the overall rating
schema. By setting QWK as the reward, our model
is trained at a macro aspect taking the grading spe-
cialty of different sets of essays into consideration.

An N-by-N quadratic weight matrix W is first
computed to encode the rating information.

Wi,j =
(i � j)2

(N � 1)2

where N is the number of possible ratings. An
N-by-N matrix A is calculated such that Ai,j corre-
sponds to the number of essays that receive a score
i by the human rater, and a score j by the scoring
system. Another N-by-N matrix B is constructed
as the outer product of the histogram vectors of the
two ratings. A and B are then normalized such that
they have the same sum. Finally, from the three
matrices, the quadratic weighted kappa is calcu-
lated as follows:

 = 1 � ⌃i,jWi,jAi,j

⌃i,jWi,jBi,j
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set # of essays avg. of len. rating range
1 1783 350 2-12
2 1800 350 1-6
3 1726 150 0-3
4 1772 150 0-3
5 1805 150 0-4
6 1800 150 0-4
7 1569 250 0-30
8 723 650 0-60

Table 1: Details of the ASAP dataset.

3 Experiment

3.1 Experiment Setup
The ASAP dataset is used for evaluation. It con-
sists of essays written by middle-school English-
speaking students ranging among eight different
topics. More details are listed in Table 1. As
there are no released labels for the test data, we
separate the validation set and test set from the
original training data. Following Taghipour and
Ng (2016) and Dong et al. (2017), we use 5-fold
cross-validation. In each fold, the split is 60%,
20%, 20% for training, validation and testing re-
spectively.

All essays are parsed with the NLTK2 tok-
enizer. We pre-train the word embedding via
word2vec (Mikolov et al., 2013) on the whole
dataset. The number of hidden states in LSTMs
is 200. We use a four-layer double-directional di-
lated LSTM with skip lengths 1,2,4,8 in each layer
respectively. During the training and the scoring,
scores are scaled to range [0,1] for regression-
based scorer. They are restored to integers when
calculating QWK values. In the RL phase, the
pack size is 64 essays, and packed evaluation is
repeated 7 times per essay. The essay scorer for
RL is pre-trained by mixed scoring.

We compare the performance of different ap-
proaches:

• B0: This model uses a double-layer bi-
directional LSTM to encode an essay and
mean square error as objective function to
train the essay scorer;

• B1: This is a classification-based scorer and
it is trained jointly with a regression-based
scorer;

• P0: Based on B1, this model incorporates
penalty loss function;

2http://www.nltk.org

set B0 B1 P0 RL0 P1 RL1
1 .711 .666 .666 .680 .759 .766
2 .582 .579 .579 .589 .630 .659
3 .627 .653 .662 .670 .673 .688
4 .758 .758 .761 .771 .768 .778
5 .768 .781 .786 .796 .795 .805
6 .776 .786 .787 .798 .790 .791
7 .766 .711 .726 .737 .748 .760
8 .604 .491 .525 .545 .536 .545

Avg .699 .678 .687 .698 .712 .724

Table 2: Experiment results for different models in
terms of QWK. Bolded number is the best performance
in each row.

• P1: This model shares the same settings
with P0, but uses dilated LSTM instead of
a double-layer bi-directional LSTM for essay
representation;

• RL0: This model uses P0 as the scorer under
our reinforcement learning framework;

• RL1: This model uses P1 as the scorer under
our reinforcement learning framework.

3.2 Results
The overall results of our models in terms of QWK
are shown in Table 2. We have the following find-
ings:

• By incorporating a penalty loss to the classifi-
cation scorer, the performance of P0 is equal
to or better than B1 on all the eight sets. This
indicates the effectiveness of combining rank
information with cross-entropy loss for essay
scoring.

• By replacing double-layer bi-directional
LSTM with dilated LSTM, P1 improves the
QWK values by a large margin compared
with P0 on all the eight sets. This indicates
the effectiveness of using dilated LSTM for
document representation for the task of au-
tomatic essay scoring. The performance im-
provement brought by P1 compared to P0 is
even greater when the length of essays are
higher (set 1,2,7,8, see Table 1), indicating
that dilated networks are specifically better at
long sequence processing.

• By incorporating QWK to guide the opti-
mization of essay scorer, approaches (RL0
and RL1) with reinforcement learning strat-
egy can improve the performance consis-
tently on all the eight sets compared to their
counterparts (P0 and P1). We also performed
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one-tailed t-test, showing that the improve-
ments brought by reinforcement learning are
significant with p < 0.05 compared to their
base scorer models (RL1 vs. P1 and RL2 vs.
P2).

• The performance of classification-based
scorer B1 can equate or improve the per-
formance on four datasets (set 3,4,5,6)
compared with regression-based scorer B0.
The rating ranges for set 1,2,7,8 are much
greater than set 3,4,5,6 (see Table 1). The
performance difference between B1 and B0
decreases (from positive to negative) when
the number of rating categories increases.
This is because when the number of cat-
egories get larger, it requires much more
parameters for the classification-based scorer
to be well trained. Given N categories,
the classification layer should output N
probabilities for each category per essay,
costing N times more parameters than
regression-based scoring.

4 Related Work
There are two lines of research related to our work
including text quality evaluation and reinforce-
ment learning for natural language processing.

4.1 Text Quality Evaluation
Traditionally, AES models are usually divided
into three categories: classification, regression and
ranking. Naive Bayes models are mostly used
in classification tasks. Larkey (1998) use bag-
of-word features. Following that, Rudner and
Liang (2002) develop a system based on multi-
nomial Bernoulli Naive Bayes, using content and
style features. E-rater (Attali and Burstein, 2004)
is one of the earliest systems to adopt regres-
sion methods. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression (cBLRR) fo-
cusing on domain-adaptation tasks. Ranking mod-
els use linguistic features. Yannakoudakis et al.
(2011) formulate AES as a pair-wise ranking prob-
lem by ranking the order of pair essays. Chen and
He (2013) formulate AES into a list-wise ranking
problem by considering the order relation among
the whole essays.

Argument quality evaluation is a task closely
related to AES, which involves evaluation of ar-
gumentative texts with various grains (argument-
level, post-level, etc.). Tan et al. (2016); Wei et al.
(2016a); Wang et al. (2017) make use of linguis-
tic features to evaluate the persuasiveness of ar-

guments in online forums. Wei et al. (2016b); Ji
et al. (2018) consider features from the perspec-
tives of argumentation interaction between par-
ticipants. Persing and Ng (2017) construct their
model based on error types for argumentation.

4.2 Reinforcement Learning for Natural
Language Processing

Being able to optimize non-differentiable quality
metrics, reinforcement learning has been widely
used in natural language processing tasks such as
machine translation (Bahdanau et al., 2016), im-
age captioning (Rennie et al., 2016; Zhang et al.,
2017) and text summarization (Ranzato et al.,
2015). To the best of our knowledge, this paper
is the first attempt to optimize the scorer by QWK
that considers rating schema.

Skip connections in RNNs are capable of
capturing long-term dependencies in sequences.
Vezhnevets et al. (2017) introduces dilated LSTM
to allow its manager to operate at a low temporal
resolution. Yu et al. (2017) propose a reinforce-
ment learning method to let the network learn how
long to skip.

5 Conclusion and Future Work

In this paper, we propose a reinforcement learning
framework incorporating QWK metric as the re-
ward to train the essay scoring system directly. A
packed evaluation strategy is used for QWK com-
putation and the scoring of each essay is treated
as a single action. In particular, dilated LSTM is
used to encode an essay, and a softmax layer is
utilized for essay grading. Experiment results on
benchmark datasets prove that training the grading
system toward QWK is effective.

Further analysis on experiment results indicates
the disadvantage of using a classification-based
scorer for essays with complex grading schema.
One of the future directions can be exploring other
kinds of scoring actions than classification under
the reinforcement learning framework.
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Abstract

Understanding search queries is a hard prob-
lem as it involves dealing with “word salad”
text ubiquitously issued by users. However,
if a query resembles a well-formed ques-
tion, a natural language processing pipeline
is able to perform more accurate interpreta-
tion, thus reducing downstream compounding
errors. Hence, identifying whether or not a
query is well formed can enhance query un-
derstanding. Here, we introduce a new task
of identifying a well-formed natural language
question. We construct and release a dataset
of 25,100 publicly available questions classi-
fied into well-formed and non-wellformed cat-
egories and report an accuracy of 70.7% on the
test set. We also show that our classifier can
be used to improve the performance of neu-
ral sequence-to-sequence models for generat-
ing questions for reading comprehension.

1 Introduction

User issued search queries often do not follow for-
mal grammatical structure, and require specialized
language processing (Bergsma and Wang, 2007;
Barr et al., 2008; Manshadi and Li, 2009; Mishra
et al., 2011). Traditional natural language pro-
cessing (NLP) tools trained on formal text (e.g.
treebanks) often have difficulty analyzing search
queries; the lack of regularity in the structure of
queries makes it difficult to train models that can
optimally process the query to extract information
that can help understand the user intent behind the
query (Baeza-Yates et al., 2006).

One clear direction to improve query process-
ing is to annotate a large number of queries with
the desired annotation scheme. However, such
an annotation can be prohibitively expensive and
models trained on such queries might suffer from
freshness issues, as the domain and nature of
queries evolve frequently (Markatos, 2001; Bawa

et al., 2003; Roy et al., 2012). Another direction
is to obtain a paraphrase of the given query that is
a grammatical natural language question, and then
analyze that paraphrase to extract the required in-
formation (Nogueira and Cho, 2017; Buck et al.,
2018). There are available tools and datasets,
such as Quora question paraphrases and the Par-
alex dataset (Fader et al., 2013) – for identifying
query paraphrases (Wang et al., 2017; Tomar et al.,
2017), but these datasets do not contain informa-
tion about whether a query is a natural language
question or not. Identifying well-formed natural
language questions can also facilitate a more nat-
ural interaction between a user and a machine in
personal assistants or chatbots (Yang et al., 2014;
Mostafazadeh et al., 2016) or while recommend-
ing related queries in search-engines.

Identifying a well-formed question should be
easy by parsing with a grammar, such as
the English resource grammar (Copestake and
Flickinger, 2000), but such grammars are highly
precise and fail to parse more than half of web
queries. Thus, in this paper we present a model
to predict whether a given query is a well-formed
natural language question. We construct and pub-
licly release a dataset of 25,100 queries annotated
with the probability of being a well-formed nat-
ural language question (§2.1). We then train a
feed-forward neural network classifier that uses
the lexical and syntactic features extracted from
the query on this data (§2.2). On a test set of
3,850 queries, we report an accuracy of 70.1%
on the binary classification task. We also demon-
strate that such a query well-formedness clas-
sifier can be used to improve the quality of a
sequence-to-sequence question generation model
(Du et al., 2017) by showing an improvement of
0.2 BLEU score in its performance (§3). Our
dataset ise available for download at http://goo.
gl/language/query-wellformedness.
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Query Well-formed? Reasoning
what is the breed of scooby doo? 1 Grammatical and an explicit question
tell me whats the breed of scooby doo? 0 A command but not a question
headache evenings? 0 Ungrammatical and not a question
what causes headaches during evenings 1 Grammatical and an explicit question
what 12.5 as a fraction? 0 An explicit question but ungrammatical

Table 1: Examples of well-formed and non-wellformed queries according to the annotation guideline.

2 Well-formed Natural Language
Question Classifier

In this section we describe the data annotation,
and the models used for question well-formedness
classification.

2.1 Dataset Construction
We use the Paralex corpus (Fader et al., 2013)
that contains pairs of noisy paraphrase questions.
These questions were issued by users in WikiAn-
swers (a Question-Answer forum) and consist of
both web-search query like constructs (“5 parts of
chloroplast?”) and well-formed questions (“What
is the punishment for grand theft?”), and thus
is a good resource for constructing the question
well-formedness dataset. We select 25,100 queries
from the unique list of queries extracted from the
corpus such that no two queries in the selected
set are paraphrases. The queries are then anno-
tated into well-formed or non-wellformed ques-
tions. We define a query to be a well-formed nat-
ural language question if it satisfies the following:

1. Query is grammatical.
2. Query is an explicit question.
3. Query does not contain spelling errors.

Table 1 shows some examples that were shown
to the annotators to illustrate each of the above
conditions. Every query was labeled by five dif-
ferent crowdworkers with a binary label indicating
whether a query is well-formed or not. We average
the ratings of the five annotators to get the prob-
ability of a query being well-formed. Table 2.1
shows some queries with obtained human anno-
tation. Humans are pretty good at identifying an
implicit query (“Population of owls...”) or a sim-
ple well-formed question (“What is released...”),
but may miss out on subtle spelling mistakes like
“disscovered” or disagree on whether the deter-
miner “the” is needed before the word “genocide”
(“What countries have genocide happened in?”).
Similar to other NLP tasks like entailment (Dagan

Query (q) pwf (q)
population of owls just in north
america?

0.0

who disscoverd rihanna? 0.2
what countries have genocide hap-
pened in?

0.6

what is released when an ion is
formed?

1.0

Table 2: Examples of human annotations on query
well-formedness.

Figure 1: The distribution of the annotated questions
according to well-formedness probability.

et al., 2006; Bowman et al., 2015), paraphrasing
(Wieting et al., 2015) etc. we rely on the wisdom
of the crowd to get such annotations in order to
make the data collection scalable and language-
independent.

Figure 1 is the histogram of query well-
formedness probability across the dataset. Inter-
estingly, the number of queries where at least 4
or more annotators agree1 on well-formedness is
large: |{q | 0.8  pwf (q)  0.2}| = 19206
queries. These constitute 76.5% of all queries in
the dataset. The Fleiss’ kappa (Fleiss, 1971) for
measuring agreement among multiple annotators
is computed to be  = 0.52 which shows mod-
erate agreement (Landis and Koch, 1977). We

1At least 4 annotators label the query with 0 or 1.
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then randomly divided the dataset in approx. 70%,
15%, 15% ratio into training, development and test
sets containing 17500, 3750, and 3850 queries re-
spectively. While testing, we consider every query
well-formed where at least 4 out of 5 annotators
(pwf � 0.8) marked it as well-formed.2

2.2 Model

We use a feed-forward neural network with 2 hid-
den layers with ReLU activations (Glorot et al.,
2011) on each layer and a softmax at the output
layer predicting 0 or 1. We extract a variety of
features from the query which can be helpful in
the classification. We extract character-3, 4-grams
and word-1, 2-grams as they can be helpful in cap-
turing spelling errors. In addition to lexical fea-
tures, we also extract syntactic features that can
inform the model on any anomaly in the structure
of the query. Specifically, we annotate the query
with POS-tags using SyntaxNet POS tagger (Al-
berti et al., 2015) and extract POS-1, 2, 3-grams.3

Every feature in the network is represented as a
real-valued embedding. All the n-grams embed-
dings of every feature type are summed together
and concatenated to form the input layer as shown
in Figure 2. The model is trained using cross-
entropy loss against the gold labels for each query.
The hyperparameters are tuned to maximize accu-
racy on the dev set and results are reported on the
test set.

Hyperparameters. We fix the size of the first
and second hidden layers to be 128 and 64 respec-
tively. The character n-gram embeddings were of
length 16 and all other feature embeddings were
of length 25. We use stochastic gradient descent
with momentum for optimization with learning
rate tuned over [0.001 � 0.3], a batch size of 32
and 50000 training steps.

2.3 Experiments

Baselines. The majority class baseline is 61.5%
which corresponds to all queries being classified
non-wellformed. The question word baseline that
classifies any query starting with a question word

2We randomly selected 100 queries and manually deter-
mined if each of those queries were well-formed. We found
pwf (q) = 0.8 to be the value above which all queries were
well-formed.

3The use of dependency labels as features and use of pre-
trained Glove embeddings did not show improvement and
hence omitted here for space constraints.

word n-grams char n-grams POS n-grams

pwf(q)

Figure 2: A feed-forward neural network for query
well-formedness classification.

Model Accuracy (%)
majority class baseline 61.5
word bi-LSTM baseline 65.8
question word baseline 54.9
word-1 65.4
word-1, 2 65.5
word-1, 2 char-3, 4 66.9
word-1, 2 POS-1, 2, 3 70.7
word-1, 2 char-3, 4 POS-1, 2, 3 70.2
Approx. human upper bound 88.4

Table 3: Performance of well-formedness query classi-
fier on the test set.

as a well-formed question gets 54.9%.4 Also, we
used a single-layer word-level biLSTM encoder
with hidden layer of length 50 to encode the ques-
tion and then use this representation in the softmax
layer to predict the label (Lee and Dernoncourt,
2016). This classifier achieved 65.8%.

Results. The best performance obtained is
70.7% while using word-1, 2-grams and POS-
1, 2, 3-grams as features. Using POS n-grams
gave a strong boost of 5.2 points over word un-
igrams and bigrams. Although character-3, 4-
grams gave improvement over word unigrams and
bigrams, the performance did not sustain when
combined with POS tags.5 A random sample of
1000 queries from the test set were annotated by
one of the authors of the paper with proficiency in
English, which matched the gold label with 88.4%
accuracy providing an approximate upper-bound
for model performance.

A major source of error is our model’s inabil-
ity to understand deep semantics and syntax. For
example, “What is the history of dirk bikes?” is
labeled as a non-wellformed question with pwf =

4List of question words: https://en.wikipedia.org/
wiki/Interrogative_word

5We assumed character n-grams to help identify spelling
mistakes, but our dataset has relatively few misspelled
words–only 6 in 100 random queries.
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0 by annotators because of the misspelled word
“dirk” (the correct word is “dirt”). However, the
POS tagger identifies “dirk” as a noun and as “NN
NNS” is a frequent POS-bigram, our model tags it
as a well-formed question with pwf = 0.8, unable
to identify that the word does not fit in the con-
text of the question. Another source of error is the
inability to capture long term grammatical depen-
dencies. For example, in “What sort of work did
Edvard Munch made ?” the verb “made” is in-
correctly in the past tense instead of present tense.
Our model is unable to capture the relationship be-
tween “did” and “made” and thus marks this as a
well-formed question.

3 Improving Question Generation

Automatic question generation is the task of gen-
erating questions that ask about the information or
facts present in either a given sentence or para-
graph (Vanderwende, 2008; Heilman and Smith,
2010). Du et al. (2017) present a state-of-the-
art neural sequence-to-sequence model to generate
questions from a given sentence/paragraph. The
model used is an attention-based encoder-decoder
network (Bahdanau et al., 2015), where the en-
coder reads in a given text and the decoder is an
LSTM RNN that produces the question by predict-
ing one word at a time.

Du et al. (2017) use the SQuAD question-
answering dataset (Rajpurkar et al., 2016) to de-
velop a question generation dataset by pairing sen-
tences from the text with the corresponding ques-
tions. The question generation dataset contains ap-
prox 70k, 10k, and 12k training, development and
test examples. Their current best model selects
the top ranked question from the n-best list pro-
duced by the decoder as the output. We augment
their system by training a discriminative reranker
(Collins and Koo, 2005) with the model score
of the question generation model and the well-
formedness probability of our classifier as features
to optimize BLEU score (Papineni et al., 2002) be-
tween the selected question from the 10-best list
and the reference question on the development set.
We then use this reranker to select the best ques-
tion from the 10-best list of the test set.

We use the evaluation package released by Chen
et al. (2015) to compute BLEU-1 and BLEU-4
scores.6 Table 4 shows that the reranked question
selected using our query well-formedness clas-

6BLEU-x uses precision computed over [1, x]-grams.

Model BLEU-1 BLEU-4
Baseline 41.3 12.0
Reranked 41.6 12.2

Table 4: Reranking the n-best output of a neu-
ral seq2seq question generation model using well-
formedness probability.

Sentence: montana is home to the rocky
mountain elk foundation and has a historic big
game hunting tradition.
Gold question: what is the name of the big
game hunting foundation in montana?
seq2seq: what is a historic big game hunting
tradition? (pwf = 0.7)
Reranked: what is the name of the historic
big game tradition? (pwf = 0.8)

Figure 3: Example showing question selection from the
n-best list using our reranking model.

sifier improves the BLEU-4 score of a seq-to-
seq question generation model from 12.0 to 12.2.
The oracle improvement, by selecting the sentence
from the list that maximizes the BLEU-4 score is
15.2. However, its worth noting that an increase
in well-formedness doesn’t guarantee an improved
BLEU score, as the oracle sentence maximizing
the BLEU score might be fairly non-wellformed
(Callison-Burch et al., 2006). For example, “who
was elected the president of notre dame in?” has a
higher BLEU score to the reference “who was the
president of notre dame in 1934?” than our well-
formed question “who was elected the president of
notre dame?”. Figure 3 shows a question genera-
tion example with the output of Du et al. (2017) as
the baseline result and the reranked question using
the wellformed probability.

4 Related Work

We have referenced much of the related work
throughout the paper. We now review another or-
thogonally related field of work. Grammatical er-
ror correction (GEC) is the task of correcting the
grammatical errors (if any) in a piece of text (Ng
et al., 2014). As GEC includes not just identifica-
tion of ungrammatical text but also correcting the
text to produce grammatical text, its a more com-
plex task. However, grammatical error prediction
(Schmaltz et al., 2016; Daudaravicius et al., 2016)
is the task of classifying whether or not a sentence
is grammatical, which is more closely related to
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our task as classifying a question as well-formed
requires making judgement on both the style and
grammar of the text.

5 Conclusion

We proposed a new task of well-formed nat-
ural language question identification and estab-
lished a strong baseline on a new dataset that can
be downloaded at: http://goo.gl/language/

query-wellformedness. We also showed that
question well-formedness information can be a
helpful signal in improving state-of-the-art ques-
tion generation systems.
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Abstract
Deep neural networks reach state-of-the-art
performance for wide range of natural lan-
guage processing, computer vision and speech
applications. Yet, one of the biggest chal-
lenges is running these complex networks
on devices such as mobile phones or smart
watches with tiny memory footprint and low
computational capacity. We propose on-device
Self-Governing Neural Networks (SGNNs),
which learn compact projection vectors with
local sensitive hashing. The key advantage of
SGNNs over existing work is that they sur-
mount the need for pre-trained word embed-
dings and complex networks with huge pa-
rameters. We conduct extensive evaluation
on dialog act classification and show signifi-
cant improvement over state-of-the-art results.
Our findings show that SGNNs are effective at
capturing low-dimensional semantic text rep-
resentations, while maintaining high accuracy.

1 Introduction
Deep neural networks are one of the most suc-
cessful machine learning methods outperforming
many state-of-the-art machine learning methods
in natural language processing (Sutskever et al.,
2014), speech (Hinton et al., 2012) and visual
recognition tasks (Krizhevsky et al., 2012). The
availability of high performance computing has
enabled research in deep learning to focus largely
on the development of deeper and more com-
plex network architectures for improved accuracy.
However, the increased complexity of the deep
neural networks has become one of the biggest
obstacles to deploy deep neural networks on-
device such as mobile phones, smart watches and
IoT (Iandola et al., 2016). The main challenges
with developing and deploying deep neural net-
work models on-device are (1) the tiny mem-
ory footprint, (2) inference latency and (3) sig-
nificantly low computational capacity compared

to high performance computing systems such as
CPUs, GPUs and TPUs on the cloud.

There are multiple strategies to build
lightweight text classification models for on-
device. One can create a small dictionary of
common input ! category mapping on the device
and use a naive look-up at inference time. How-
ever, such an approach does not scale to complex
natural language tasks involving rich vocabularies
and wide language variability. Another strategy is
to employ fast sampling techniques (Ahmed et al.,
2012; Ravi, 2013) or incorporate deep learning
models with graph learning like (Bui et al., 2017,
2018), which result in large models but have
proven to be extremely powerful for complex
language understanding tasks like response com-
pletion (Pang and Ravi, 2012) and Smart Reply
(Kannan et al., 2016).

In this paper, we propose Self-Governing Neu-
ral Networks (SGNNs) inspired by projection net-
works (Ravi, 2017). SGNNs are on-device deep
learning models learned via embedding-free pro-
jection operations. We employ a modified ver-
sion of the locality sensitive hashing (LSH) to
reduce input dimension from millions of unique
words/features to a short, fixed-length sequence
of bits. This allows us to compute a projection
for an incoming text very fast, on-the-fly, with a
small memory footprint on the device since we
do not need to store the incoming text and word
embeddings. We evaluate the performance of our
SGNNs on Dialogue Act classification, because
(1) it is an important step towards dialog interpre-
tation and conversational analysis aiming to under-
stand the intent of the speaker at every utterance
of the conversation and (2) deep learning meth-
ods reached state-of-the-art (Lee and Dernoncourt,
2016; Khanpour et al., 2016; Tran et al., 2017; Or-
tega and Vu, 2017).
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The main contributions of the paper are:

• Novel Self-Governing Neural Networks
(SGNNs) for on-device deep learning for
short text classification.

• Compression technique that effectively cap-
tures low-dimensional semantic text repre-
sentation and produces compact models that
save on storage and computational cost.

• On the fly computation of projection vectors
that eliminate the need for large pre-trained
word embeddings or vocabulary pruning.

• Exhaustive experimental evaluation on dia-
log act datasets, outperforming state-of-the-
art deep CNN (Lee and Dernoncourt, 2016)
and RNN variants (Khanpour et al., 2016; Or-
tega and Vu, 2017).

2 Self-Governing Neural Networks

We model the Self-Governing network using
a projection model architecture (Ravi, 2017).
The projection model is a simple network with
dynamically-computed layers that encodes a set
of efficient-to-compute operations which can be
performed directly on device for inference. The
model defines a set of efficient “projection” func-
tions P(~xi) that project each input instance ~xi to
a different space ⌦P and then performs learning in
this space to map it to corresponding outputs yp

i . A
very simple projection model comprises just few
operations where the inputs ~xi are transformed us-
ing a series of T projection functions P

1, ..., PT

followed by a single layer of activations.

2.1 Model Architecture
In this work, we design a Self-Governing Neu-
ral Network (SGNN) using multi-layered locality-
sensitive projection model. Figure 1 shows the
model architecture of the on-device SGNN net-
work. The self-governing property of this network
stems from its ability to learn a model (e.g., a clas-
sifier) without having to initialize, load or store
any feature or vocabulary weight matrices. In this
sense, our method is a truly embedding-free ap-
proach unlike majority of the widely-used state-
of-the-art deep learning techniques in NLP whose
performance depends on embeddings pre-trained
on large corpora. Instead, we use the projection
functions to dynamically transform each input to a
low-dimensional representation. Furthermore, we

stack this with additional layers and non-linear ac-
tivations to achieve deep, non-linear combinations
of projections that permit the network to learn
complex mappings from inputs xi to outputs yi.
An SGNN network is shown below:

ip = [P1(xi), ..., P
T (xi)] (1)

hp = �(Wp · ip + bp) (2)
ht = �(Wt · ht�1 + bt) (3)
yi = softmax(Wo · hk + bo) (4)

where, ip refers to the output of projection opera-
tion applied to input xi, hp is applied to projec-
tion output, ht is applied at intermediate layers
of the network with depth k followed by a final
softmax activation layer at the top. In a k-layer
SGNN, ht, where t = p, p + 1, ..., p + k � 1
refers to the k subsequent layers after the pro-
jection layer. Wp, Wt, Wo and bp, bt, bo represent
trainable weights and biases respectively.

The projection transformations use pre-
computed parameterized functions, i.e., they are
not trained during the learning process, and their
outputs are concatenated to form the hidden units
for subsequent operations. Each input text xi is
converted to an intermediate feature vector (via
raw text features such as skip-grams) followed by
projections.

xi
F�! ~xi

P�! [P1(xi), ..., P
T (xi)] (5)

On-the-fly Computation. The transformation
step F dynamically extracts features from the raw
input. Text features (e.g., skip-grams) are con-
verted into feature-ids fj (via hashing) to gener-
ate a sparse feature representation ~xi of feature-id,
weight pairs (fj , wj) . This intermediate feature
representation is passed through projection func-
tions P to construct projection layer ip in SGNN.
For this last step, a projection vector P

k is first
constructed on-the-fly using a hash function with
feature ids fj in ~xi and fixed seed as input, then
dot product of the two vectors < ~xi, Pk > is com-
puted and transformed into binary representation
P

k(~xi) using sgn(.) of the dot product.
As shown in Figure 1, both F and P steps are

computed on-the-fly, i.e., no word-embedding or
vocabulary/feature matrices need to be stored and
looked up during training or inference. Instead
feature-ids and projection vectors are dynamically
computed via hash functions. For intermediate
feature weights wj , we use observed counts in
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Figure 1: Self-Governing Neural Network (SGNN) architecture.

each input text and do not use pre-computed statis-
tics like idf. Hence the method is embedding-free.

Model Optimization. The SGNN network is
trained from scratch on the task data using a su-
pervised loss defined wrt ground truth ŷi:

L(.) =
X

i2N

cross � entropy(yi, ŷi) (6)

During training, the network learns to choose
and apply specific projection operations P

j (via
activations) that are more predictive for a given
task. The choice of the type of projection ma-
trix P as well as representation of the projected
space ⌦P has a direct effect on computation cost
and model size. We leverage an efficient random-
ized projection method and use a binary represen-
tation {0, 1}d for ⌦P. This yields a drastically
lower memory footprint both in terms of number
and size of parameters.

Computing Projections. We employ an effi-
cient randomized projection method for the pro-
jection step. We use locality sensitive hashing
(LSH) (Charikar, 2002) to model the underly-
ing projection operations in SGNN. LSH is typi-
cally used as a dimensionality reduction technique
for clustering (Manning et al., 2008). LSH al-
lows us to project similar inputs ~xi or interme-

diate network layers into hidden unit vectors that
are nearby in metric space. We use repeated bi-
nary hashing for P and apply the projection vec-
tors to transform the input ~xi to a binary hash rep-
resentation denoted by Pk(~xi) 2 {0, 1}, where
[Pk(~xi)] := sgn[h~xi, Pki]. This results in a d-
bit vector representation, one bit corresponding to
each projection row Pk=1...d.

The same projection matrix P is used for train-
ing and inference. We never need to explicitly
store the random projection vector Pk since we
can compute them on the fly using hash functions
over feature indices with a fixed row seed rather
than invoking a random number generator. This
also permits us to perform projection operations
that are linear in the observed feature size rather
than the overall feature or vocabulary size which
can be prohibitively large for high-dimensional
data, thereby saving both memory and computa-
tion cost. Thus, SGNN can efficiently model high-
dimensional sparse inputs and large vocabulary
sizes common for text applications instead of re-
lying on feature pruning or other pre-processing
heuristics employed to restrict input sizes in stan-
dard neural networks for feasible training. The bi-
nary representation is significant since this results
in a significantly compact representation for the
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projection network parameters that in turn consid-
erably reduces the model size.

SGNN Parameters. In practice, we employ T dif-
ferent projection functions P

j=1...T , each result-
ing in d-bit vector that is concatenated to form
the projected vector ip in Equation 5. T and d
vary depending on the projection network param-
eter configuration specified for P and can be tuned
to trade-off between prediction quality and model
size. Note that the choice of whether to use a sin-
gle projection matrix of size T · d or T separate
matrices of d columns depends on the type of pro-
jection employed (dense or sparse). For the in-
termediate feature step F in Equation 5, we use
skip-gram features (3-grams with skip-size=2) ex-
tracted from raw text.

2.2 Training and Inference

We use the compact bit units to represent the pro-
jection in SGNN. During training, the network
learns to move the gradients for points that are
nearby to each other in the projected bit space
⌦P in the same direction. SGNN network is
trained end-to-end using backpropagation. Train-
ing can progress efficiently with stochastic gradi-
ent descent with distributed computing on high-
performance CPUs or GPUs.

Complexity. The overall complexity for SGNN
inference, governed by the projection layer, is
O(n · T · d), where n is the observed feature size
(*not* overall vocabulary size) which is linear in
input size, d is the number of LSH bits specified
for each projection vector Pk, and T is the number
of projection functions used in P. The model size
(in terms of number of parameters) and memory
storage required for the projection inference step
is O(T · d · C), where C is the number of hidden
units in hp in the multi-layer projection network
and typically smaller than T · d.

3 Datasets and Experimental Setup

3.1 Data Description

We conduct our experimental evaluation on two
dialog act benchmark datasets.

• SWDA: Switchboard Dialog Act Corpus
(Godfrey et al., 1992; Jurafsky et al., 1997)
is a popular open domain dialogs corpus be-
tween two speakers with 42 dialogs acts.

• MRDA: ICSI Meeting Recorder Dialog Act
Corpus (Adam et al., 2003; Shriberg et al.,
2004) is a dialog corpus of multiparty meet-
ings with 5 tags of dialog acts.

Datasets Class Vocab. Train Validation Test
SwDA 42 20K 193K 23K 5K
MRDA 5 12K 78K 16K 15K

Table 1: Dialog Act Datasets Statistics

Table 1 summarizes dataset statistics. We use the
train, validation and test splits as defined in (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017).

3.2 Experimental Setup

We setup our experimental evaluation, as follows:
given a classification task and a dataset, we gen-
erate an on-device model. The size of the model
can be configured (by adjusting the projection ma-
trix P) to fit in the memory footprint of the de-
vice, i.e. a phone has more memory compared to
a smart watch. For each classification task, we re-
port Accuracy on the test set.

3.3 Hyperparameter and Training

For both datasets we used the following: 2-
layer SGNN (PT=80,d=14 ⇥ FullyConnected256

⇥ FullyConnected256), mini-batch size of 100,
dropout rate of 0.25, learning rate was initialized
to 0.025 with cosine annealing decay (Loshchilov
and Hutter, 2016). Unlike prior approaches (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017) that
rely on pre-trained word embeddings, we learn the
projection weights on the fly during training, i.e
word embeddings (or vocabularies) do not need to
be stored. Instead, features are computed on the
fly and are dynamically compressed via the pro-
jection matrices into projection vectors. These val-
ues were chosen via a grid search on development
sets, we do not perform any other dataset-specific
tuning. Training is performed through stochastic
gradient descent over shuffled mini-batches with
Nesterov momentum optimizer (Sutskever et al.,
2013), run for 1M steps.

4 Results

Tables 2 and 3 show results on the SwDA and
MRDA dialog act datasets. Overall, our SGNN
model consistently outperforms the baselines and
prior state-of-the-art deep learning models.
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4.1 Baselines

We compare our model against a majority class
baseline and Naive Bayes classifier (Lee and Der-
noncourt, 2016). Our model significantly outper-
forms both baselines by 12 to 35% absolute.

4.2 Comparison against State-of-art Methods

We also compare our performance against prior
work using HMMs (Stolcke et al., 2000) and re-
cent deep learning methods like CNN (Lee and
Dernoncourt, 2016), RNN (Khanpour et al., 2016)
and RNN with gated attention (Tran et al., 2017).

To the best of our knowledge, (Lee and Der-
noncourt, 2016; Ortega and Vu, 2017; Tran et al.,
2017) are the latest approaches in dialog act clas-
sification, which also reported on the same data
splits. Therefore, we compare our research against
these works. According to (Ortega and Vu, 2017),
prior work by (Ji and Bilmes, 2006) achieved
promising results on the MRDA dataset, but since
the evaluation was conducted on a different data
split, it is hard to compare them directly.

For both SwDA and MRDA datasets, our
SGNNs obtains the best result of 83.1 and 86.7 ac-
curacy outperforming prior state-of-the-art work.
This is very impressive given that we work with
very small memory footprint and we do not rely
on pre-trained word embeddings. Our study also
shows that the proposed method is very effective
for such natural language tasks compared to more
complex neural network architectures such as deep
CNN (Lee and Dernoncourt, 2016) and RNN vari-
ants (Khanpour et al., 2016; Ortega and Vu, 2017).
We believe that the compression techniques like
locality sensitive projections jointly coupled with
non-linear functions are effective at capturing low-
dimensional semantic text representations that are
useful for text classification applications.

4.3 Discussion on Model Size and Inference

LSTMs have millions of parameters, while our
on-device architecture has just 300K parameters
(order of magnitude lower). Most deep learning
methods also use large vocabulary size of 10K or
higher. Each word embedding is represented as
100-dimensional vector leading to a storage re-
quirement of 10, 000⇥100 parameter weights just
in the first layer of the deep network. In con-
trast, SGNNs in all our experiments use a fixed
1120-dimensional vector regardless of the vocab-
ulary or feature size, dynamic computation results

Method Acc.
Majority Class (baseline) (Ortega and Vu, 2017) 33.7
Naive Bayes (baseline) (Khanpour et al., 2016) 47.3
HMM (Stolcke et al., 2000) 71.0
DRLM-conditional training (Ji and Bilmes, 2006) 77.0
DRLM-joint training (Ji and Bilmes, 2006) 74.0
LSTM (Lee and Dernoncourt, 2016) 69.9
CNN (Lee and Dernoncourt, 2016) 73.1
Gated-Attention&HMM (Tran et al., 2017) 74.2
RNN+Attention (Ortega and Vu, 2017) 73.8
RNN (Khanpour et al., 2016) 80.1
SGNN: Self-Governing Neural Network (ours) 83.1

Table 2: SwDA Dataset Results

Method Acc.
Majority Class (baseline)(Ortega and Vu, 2017) 59.1
Naive Bayes (baseline) (Khanpour et al., 2016) 74.6
Graphical Model (Ji and Bilmes, 2006) 81.3
CNN (Lee and Dernoncourt, 2016) 84.6
RNN+Attention(Ortega and Vu, 2017) 84.3
RNN (Khanpour et al., 2016) 86.8
SGNN: Self-Governing Neural Network (ours) 86.7

Table 3: MRDA Dataset Results

in further speed up for high-dimensional feature
spaces. This amounts to a huge savings in storage
and computation cost wrt FLOPs (floating point
operations per second).

5 Conclusion

We proposed Self-Governing Neural Networks for
on-device short text classification. Experiments
on multiple dialog act datasets showed that our
model outperforms state-of-the-art deep leaning
methods (Lee and Dernoncourt, 2016; Khanpour
et al., 2016; Ortega and Vu, 2017). We introduced
a compression technique that effectively captures
low-dimensional semantic representation and pro-
duces compact models that significantly save on
storage and computational cost. Our approach
does not rely on pre-trained embeddings and ef-
ficiently computes the projection vectors on the
fly. In the future, we are interested in extend-
ing this approach to more natural language tasks.
For instance, we built a multilingual SGNN model
for customer feedback classification (Liu et al.,
2017) and obtained 73% on Japanese, close to
best performing system on the challenge (Plank,
2017). Unlike their method, we did not use any
pre-processing, tagging, parsing, pre-trained em-
beddings or other resources.
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Abstract

We focus on the multi-label categorization task
for short texts and explore the use of a hierar-
chical structure (HS) of categories. In contrast
to the existing work using non-hierarchical flat
model, the method leverages the hierarchical
relations between the categories to tackle the
data sparsity problem. The lower the HS level,
the worse the categorization performance. Be-
cause lower categories are fine-grained and the
amount of training data per category is much
smaller than that in an upper level. We propose
an approach which can effectively utilize the
data in the upper levels to contribute catego-
rization in the lower levels by applying a Con-
volutional Neural Network (CNN) with a fine-
tuning technique. The results using two bench-
mark datasets show that the proposed method,
Hierarchical Fine-Tuning based CNN (HFT-
CNN) is competitive with the state-of-the-art
CNN based methods.

1 Introduction

Short text categorization is widely studied since
the recent explosive growth of online social net-
working applications (Song et al., 2014). In
contrast with documents, short texts are less
topic-focused in texts. Major attempts to
tackle the problem is to expand short texts
with knowledge extracted from the textual cor-
pus, machine-readable dictionaries, and thesauri
(Phan et al., 2008; Wang et al., 2008; Chen et al.,
2011; Wu et al., 2012). However, because of
domain-independent nature of dictionaries and
thesauri, it is often the case that the data distri-
bution of the external knowledge is different from
the test data collected from some specific domain,
which deteriorates the overall performance of cat-
egorization. A methodology which maximizes
the impact of pre-defined domains/categories is
needed to improve categorization performance.

More recently, many authors have attempted
to apply deep learning techniques including CNN
(Wang et al., 2015; Zhang and Wallace, 2015;
Zhang et al., 2017; Wang et al., 2017), the atten-
tion based CNN (Yang et al., 2016), bag-of-words
based CNN (Johnson and Zhang, 2015a), and the
combination of CNN and recurrent neural network
(Lee and Dernoncourt, 2016; Zhang et al., 2016)
to text categorization. Most of them demon-
strated that neural network models are powerful
for learning features from texts, while they fo-
cused on single-label or a few labels problem.
Several efforts have been made to multi-labels
(Johnson and Zhang, 2015b; Liu et al., 2017). Liu
et al. explored a family of new CNN models
which are tailored for extreme multi-label classi-
fication (Liu et al., 2017). They used a dynamic
max pooling scheme, a binary cross-entropy loss,
and a hidden bottleneck layer to improve the
overall performance. The results by using six
benchmark datasets where the label-set sizes are
up to 670K showed that their method attained
at the best or second best in comparison with
seven state-of-the-art methods including FastText
(Joulin et al., 2017) and bag-of-words based CNN
(Johnson and Zhang, 2015a). However, all of
these attempts aimed at utilizing a large volume
of data.

We address the problem of multi-label short text
categorization and explore the use of a HS of cat-
egories. The lower level of categories are fine-
grained compared to the upper level of categories.
Moreover, it is often the case that the amount of
training data in a lower level is much smaller than
that in an upper level which deteriorates the over-
all performance of categorization. We propose
an approach which can effectively utilize the data
in the upper levels to contribute categorization in
lower levels by applying fine-tuning to the CNN
which can learn a HS of categories and incorporate
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Figure 1: HFT-CNN model

granularity of categories into categorization. We
transferred the parameters of CNN trained from
upper to lower levels according to the HS, and
finely tuned parameters. The main contributions
of our work can be summarized: (1) We propose a
method that maximizes the impact of pre-defined
categories to alleviate data sparsity in multi-label
short texts. (2) We empirically examined a fine-
tuning with CNN that fits to learn a HS of cate-
gories defined by lexicographers, and (3) The re-
sults show that our method is competitive to the
state-of-the-art CNN based methods by using two
benchmark datasets, especially it is effective for
categorization of short texts consisting of a few
words with a large number of labels.

2 Hierarchical Fine-Tuning based CNN

2.1 CNN architecture
Similar to other CNN (Johnson and Zhang, 2015a;
Liu et al., 2017), our HFT-CNN model shown in
Figure 1 is based on (Kim, 2014). Let xi 2 R

k be
the k-dimensional word vector with the i-th word
in a sentence obtained by applying skip-gram
model provided in fastText1. A sentence with
length n is represented as x1:n = [x1,x2, · · · ,xn]
2 R

nk. A convolution filter w 2 R
hk is applied

to a window size of h words to produce a new fea-
ture, ci = f(w·xi:i+h�1+b) where b 2 R indicates
a bias term and f refers to a non-linear activation
function. We applied this convolution filter to each
possible window size in the sentence and obtained
a feature map, m 2 R

n�h+1. As shown in Fig-
ure 1, we then apply a max pooling operation over
the feature map and obtain the maximum value
m̂ as a feature of this filter. We obtained multi-
ple filters by varying window sizes and multiple

1https://github.com/facebookresearch/fastText

features. These features form a pooling layer and
are passed to a fully connected layer. In the fully
connected layer, we applied dropout (Hinton et al.,
2012). The dropout randomly sets values in the
layer to 0. Finally, we obtained the probability dis-
tribution over categories. The network is trained
with the objective that minimizes the binary cross-
entropy (BCE) of the predicted distributions and
the actual distributions by performing stochastic
gradient descent.

2.2 Hierarchical structure learning
Our key idea is to use a fine-tuning technique in
CNN to tackle the data sparsity problem, espe-
cially a lower level of a HS. Following a HS, we
transferred the parameters of CNN trained in the
upper levels to the lower levels which are worse
trained because of the lack of data, and then finely
tuned parameters of CNN for lower levels (Figure
1). This approach can effectively utilize the data
in the upper levels to contribute categorization in
the lower levels.

Fine-tuning is motivated by the observation that
the earlier features of CNN contain more generic
features that should be effective for many tasks,
but later layers of the CNN becomes progressively
more specific to the details of the classes contained
in the original dataset. The motivation is identical
to a HS of categories as we first learn to distinguish
among generic categories at the upper level of a
hierarchy, then learns lower level distinctions by
using only within the appropriate top level of the
HS. We note that fine-tuning the last few layers are
usually sufficient for transfer learning as the last
few layers become more specific features. How-
ever, the HS consisting of deep level needs to fine-
tune the early layers as well because the distance
between the upper and lower level of categories
is significant. For this reason, we transferred two
layers shown in Figure 1, i.e., a layer obtained by
word embedding and the convolutional layer. We
used them as an initial parameter to learn the sec-
ond level of a hierarchy. We repeated this pro-
cedure from the top level to the bottom level of
a hierarchy. We note that a HS consists of many
levels. We fine-tune between adjacent layers only
because they are more correlated with each other
compared to distant layers.

2.3 Multi-label categorization
Each test instance is classified into categories with
probabilities/scores by applying HFT-CNN. We
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Dataset #L Tr Te C
RCV1 4 23,149 781,265 103
Amazon670K 9 490,449 153,025 670,091

Table 1: Data Statistics: #L shows the depth of a hier-
archy. Tr and Te refer to the # of training and test data,
respectively. C indicates the total # of categories.

then utilize a constraint of a HS to obtain final
results which differs from the existing work on
non-hierarchical flat model (Johnson and Zhang,
2015a; Liu et al., 2017). This is done by using
two scoring functions: One is a Boolean Scoring
Function (BSF). Another is a Multiplicative Scor-
ing Function (MSF). Both functions set a thresh-
old value and categories whose scores exceed the
threshold value are considered for selection. The
difference is that BSF has a constraint that a cate-
gory can only be selected if its ancestor categories
are selected. MSF does not have such a constraint,
i.e., we extracted all the categories whose scores
exceeded the threshold value and sorted them in
descending order as the system’s assignments.

3 Experiments

3.1 Data and HFT-CNN model setting

We selected two benchmark datasets having a
HS from the extreme classification repository2:
RCV1 (Lewis et al., 2004) and Amazon670K
(Leskovec and Krevl, 2015). All the documents in
RCV1 and item descriptions in Amazon670K are
tagged by using Tree Tagger (Schmid, 1995). We
used nouns, verbs, and adjectives. We then applied
fastText. Each dataset has an official training and
test sets. We used each fold in the experiments.
We choose titles from the training and test set on
RCV1. The maximum number of words in the ti-
tle was 13 words. Each text of Amazon670K con-
sists of a product name and its item description.
We extracted the first 13 words from each item de-
scription and used them in the experiments. Table
1 presents the statistics on the datasets. We di-
vided the training data into two folds; we used 5%
to tuning the parameters, and the remains to train
the models. Our model setting is shown in Table
23. In the experiments, we run three times for each
model and obtained the averaged performance.

2manikvarma.org/downloads/XC/XMLRepository.html
3Our source code including Chainer’s version of XML-

CNN is available at: HTTP://github.com/ShimShim46/HFT-
CNN.

3.2 Evaluation Metrics

We used the standard F1 measure. Furthermore,
we evaluated our method by two rank-based eval-
uation metrics: the precision at top k, P@k
and the Normalized Discounted Cumulated Gains,
NDCG@k which are commonly used for com-
paring extreme multi-label classification meth-
ods (Liu et al., 2017). We calculated P@k and
NDCG@k for each test data and then obtained an
average over all the test data.

3.3 Basic results

We compared HFT-CNN with a method which
has hierarchical-based categorization but without
fine-tuning (WoFT-CNN) and Flat model to ex-
amine the effect of the fine-tuning. WoFT-CNN
shows that we independently trained parameters
of CNN for each level and trained parameters are
not transferred. Flat means that we simply applied
our CNN model. The results are shown in Ta-
ble 3. The HFT-CNN is better than WoFT-CNN
and Flat model except for Micro-F1 obtained by
WoFT-CNN(M) in Amazon670K. We also found
that the overall results obtained by MSF were bet-
ter to those obtained by BSF.

3.4 Comparison with state-of-the-art method

We chose XML-CNN as a comparative method
because their method attained at the best or sec-
ond best compared to the seven existing methods
in six benchmark datasets (Liu et al., 2017). Origi-
nal XML-CNN is implemented by using Theano4,
while we implemented HFT-CNN by Chainer5. In
order to avoid the influence of differences in li-
braries, we implemented XML-CNN by Chainer
and compared it with HFT-CNN. We used the
author-provided implementation in Chainer’s ver-
sion of XML-CNN. We recall that we set convo-
lutional filters with the window sizes to (2,3,4)
and the stride size to 1 because of short text. To
make a fair comparison, we also evaluated XML-
CNN with the same window sizes and stride size
as HFT-CNN.

Liu et al. evaluated their method by using P@k
and NDCG@k. We used their metrics as well as
F1 measure. We did not set a threshold value on
BSF and MSF when we evaluated by using these
metrics, but instead, we used a ranked list of cate-

4https://drive.google.com/file/d/1Wwy1MNkrJRXZM3WN
ZNywa94c2-iEh 6U/view

5https://chainer.org
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Description Values Description Values
Input word vectors fastText Filter region size (2,3,4)
Stride size 1 Feature maps (m) 128
Filters 128 ⇥ 3 Activation function ReLu
Pooling 1-max pooling Dropout Randomly selected
Dropout rate1 0.25 Dropout rate2 0.5
Hidden layers 1,024 Batch sizes 100
Learning rate Predicted by Adam Epoch 40 with early stopping
Loss function BCE loss over sigmoid activation Threshold value for BSF and MSF 0.5

Table 2: HFT-CNN model settings: Dropout rate1 shows dropout immediately after embedding layer, and Dropout
rate2 refers to dropout in a fully connected layer.

Metric RCV1
F1 HFT(B) WoFT(B) HFT(M) WoFT(M) Flat
Micro 79.87 79.69 80.29 80.06 79.51
Macro 50.31 49.59 51.40 50.64 47.71

Amazon670K
Metrics HFT(B) WoFT(B) HFT(M) WoFT(M) Flat
Micro 49.74 50.12 ⇤50.94 50.94 49.10
Macro 6.78 6.37 9.87 8.68 5.73

Table 3: Basic results: (B) and (M) refer to a BSF
and MSF, respectively. Bold font shows the best result
within each line. The method marked with “⇤” indi-
cates the score is not statistically significant compared
to the best one. We used a t-test, p-value < 0.05.

gories assigned to the test instance. The results are
shown in Table 4. HFT-CNN with BSF/MSF has
the best scores with statistical significance com-
pared to both of the XML-CNNs. On RCV1,
HFT-CNN(B) in P@1 and NDCG@1 were worse
than XML-CNN(1), while HFT-CNN(M) with the
same metrics were statistically significant com-
pared to XML-CNN(1). This is not surprising be-
cause hierarchical fine-tuning does not contribute
to the accuracy at the top level as the trained pa-
rameters on the top level have not changed in the
level.

We also examined the affection on each system
performance by the depth of a hierarchical struc-
ture. Figure 2 shows Micro-F1 at each hierarchi-
cal level. The deeper the hierarchical level, the
worse the system’s performance. However, HFT-
CNN is still better than XML-CNNs. The im-
provement by MSF was 1.00 ⇠ 1.34% by Micro-
F1 and 3.77 ⇠ 10.07% by Macro-F1 on RCV1.
On Amazon670K, the improvement was 1.10 ⇠
9.26% by Micro-F1 and 1.10 ⇠ 3.60% by Macro-
F1. This shows that hierarchical fine-tuning fits to
learn the hierarchical category structure.

We recall that we focused on the multi-label
problem. Figures 3 illustrates Micro-F1 and
Macro-F1 against the number of categories per
short text. We can see from RCV1 in Figure 3

Metric RCV1
HFT(B) HFT(M) XML(1) XML(2)

P@1 92.60 93.29 92.93 92.55
P@3 ⇤77.56 77.70 77.18 76.80
P@5 ⇤53.96 54.23 53.85 53.60
G@1 92.60 93.29 92.93 92.55
G@3 ⇤88.47 88.79 88.16 87.75
G@5 89.37 89.81 89.19 88.80

Metric Amazon670K
HFT(B) HFT(M) XML(1) XML(2)

P@1 86.54 85.39 84.62 84.12
P@3 66.25 65.34 64.83 64.48
P@5 51.09 ⇤50.84 49.93 49.75
G@1 86.54 85.39 84.62 84.12
G@3 76.26 75.05 74.50 74.13
G@5 72.84 71.46 70.99 70.74

Table 4: Comparative results: “1” and “2” of XML
show the stride size=1 and 2 by XML-CNN, respec-
tively. “G” stands for NDCG.

that Micro-F1 obtained by HFT-CNN and XML-
CNNs were not statistically significant difference
in the number of categories, while Macro-F1 by
HFT-CNN except for the number of 13 categories
was constantly better to XML-CNNs. On Ama-
zon670K data, when the number of categories as-
signed to the short text is less than 38, HFT-CNN
was better than XML-CNNs or HFT-CNN was not
statistically significant compared to XML-CNNs
by both F1-scores. However, when it exceeds 39,
HFT-CNN was worse than XML-CNNs. One pos-
sible reason is the use of BSF: a category can only
be selected if its ancestor categories are selected.
Therefore, once the test data could not be classi-
fied into categories correctly, their child categories
also cannot be correctly assigned to the test data.
In contrast, as shown in Figure 5, HFT-CNN by
MSF was better than XML-CNNs in both Micro
and Macro F1 even in the deep level of a hierarchy.
From the observations, a robust scoring function is
needed for further improvement.

It is important to note that how the ratio of
training data affects the overall performance as
we focused on the data sparsity problem. Figure
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(a) Micro-F1 (RCV1) (b) Macro-F1(RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 2: Performance in each hierarchical level: HFT-CNN used BSF

(a) Micro-F1 (RCV1) (b) Macro-F1 (RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 3: Performance against the # of categories per short text: HFT-CNN used BSF

(a) Micro-F1 (RCV1) (b) Macro-F1 (RCV1) (c) Micro-F1 (Amazon670K) (d) Macro-F1 (Amazon670K)

Figure 4: Performance against a ratio of the training data

(a) Micro-F1 (Amazon670K) (b) Macro-F1 (Amazon670K)

Figure 5: Performance against the # of categories per
short text: Comparison with HFT-CNN by MSF and
other methods

4 shows Micro and Macro-F1 against a ratio of
the training data. Overall, the curves show that
more training helps the performance, while the
curves obtained by HFT-CNN drop slowly com-
pared to other methods in both datasets and evalu-
ation metrics. From the observations mentioned in
the above, we can conclude that fine-tuning works
well, especially in the cases that the number of the
training data per category is small.

4 Conclusion

We have presented an approach to multi-label cat-
egorization for short text. The comparative re-
sults with XML-CNN showed that HFT-CNN is
competitive, especially for the cases that there ex-
ists only a small amount of training data. Fu-
ture work will include: (i) incorporating lexical
semantics such as named entities and domain-
specific senses for further improvement, (ii) ex-
tending the method to utilize label dependency
constraints (Bi and Kwok, 2011), and (iii) improv-
ing the accuracy of the top ranking categories to
deal with P@1 and NDCG@1 metrics.
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Abstract

Deep neural networks have been displaying
superior performance over traditional super-
vised classifiers in text classification. They
learn to extract useful features automatically
when sufficient amount of data is presented.
However, along with the growth in the num-
ber of documents comes the increase in the
number of categories, which often results in
poor performance of the multiclass classifiers.
In this work, we use external knowledge in
the form of topic category taxonomies to aide
the classification by introducing a deep hier-
archical neural attention-based classifier. Our
model performs better than or comparable to
state-of-the-art hierarchical models at signifi-
cantly lower computational cost while main-
taining high interpretability.

1 Introduction

A large number of documents are being generated
all over the world everyday, and as a result auto-
matic text classification has become an essential
tool for searching, retrieving, and managing the
text (Allahyari et al., 2017). There has been an
increasing trend in developing data-driven neural
text classifiers (Collobert et al., 2011; Lai et al.,
2015; Zhang et al., 2015; Yogatama et al., 2017;
Conneau et al., 2017), due to their ability to han-
dle large-scale corpora and their robustness in au-
tomatic feature extraction.

However, text classification has become in-
creasingly challenging as the number of categories
grows with continually expanding corpus. To alle-
viate this problem, one form of the external knowl-
edge – class taxonomy – has been introduced
to aid the classification in a hierarchical fashion
(Koller and Sahami, 1997). In general, hierarchi-
cal classifiers can be categorized into two broad
approaches: local (top-down and bottom-up) and
global (or big-bang) (Silla and Freitas, 2011). The

local approaches create a unique classifier for each
parent node in the taxonomy (Liu et al., 2001;
Quinn and Laier, 2006; Vens et al., 2008; Kowsari
et al., 2017), while global approaches create a sin-
gle classifier for the entire taxonomy (Silla Jr and
Freitas, 2009).

Kowsari et al. (2017) recently proposed a hierar-
chical neural-based model called HDLTex, which
displayed superior performance over traditional
non-neural-based models with a top-down struc-
ture. However, HDLTex suffers the inherited dis-
advantage of the top-down approach: the number
of sub-models grows exponentially with respect to
the number of sub-trees. This is especially prob-
lematic in HDLTex, as it uses deep networks with
a large number of parameters for the sub-models,
and the combined model itself grows exponen-
tially with the depth of taxonomy.

In contrast, we propose a unified global deep
neural-based classifier that overcomes the prob-
lem of exploding models. The backbone of our
approach is one encoder-decoder structure that se-
quentially predicts the class label of the next level,
conditioned on a dynamic document representa-
tion obtained based on a variant of an attention
mechanism (Bahdanau et al., 2015). The contri-
bution of our paper is as follows:

1. We propose an end-to-end global neural
attention-based model for hierarchical clas-
sification, which performs better than the
state-of-the-art hierarchical classifier at lower
computation cost.

2. We empirically show that the use of hierar-
chical taxonomy provides a robust classifier,
by comparing with state-of-the-art flat classi-
fiers.
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2 Literature Review

Traditional text classification methods focus on se-
lecting a good set of features (for example,TF-IDF
(Salton and Buckley, 1987)) to represent the doc-
uments and employing non-linear classifiers such
as SVM (Dumais et al., 1998; Joachims, 1999;
Tong and Koller, 2001), decision trees (Apté et al.,
1994), or Naive Bayes (McCallum et al., 1998;
Kim et al., 2006) methods for text classification.
More recent work has employed deep neural net-
works to merge feature extraction and classifica-
tion into one joint process, where the model pa-
rameters can be learned through back-propagation
(Xue et al., 2008; Lai et al., 2015; Zhang et al.,
2015). A common theme in these convolutional
neural networks (CNN)-based or recurrent neural
network (RNN)-based approaches is to create a
document representation from either the last hid-
den state of the RNN or via some pooling opera-
tions on all hidden states.

Furthermore, the attention mechanism (Bah-
danau et al., 2015; Sutskever et al., 2014) has been
adapted for these CNN/RNN structures for text
classification (Lin et al., 2017), providing high
interpretability and allowing us to inspect which
parts of the text are discriminative for a particular
sample.

In addition, external knowledge has been exam-
ined as a way to boost the performance of text clas-
sifiers (Collobert and Weston, 2008a; Ngiam et al.,
2011; Howard and Ruder, 2018). One form of ex-
ternal knowledge is built on top of the hierarchical
relations of the classes (Koller and Sahami, 1997),
where a class taxonomy is used to improve the per-
formance of the end-level classification1. Most of
the hierarchical classifiers2 perform classification
by navigating through the hierarchy in top-down
approaches (Liu et al., 2001; Quinn and Laier,
2006; Vens et al., 2008), where a local classifier
is constructed at each parent node. The state-of-
the-art hierarchical classifier HDLTex is proposed
by Kowsari et al. (2017). It combines deep neural
networks in the top-down fashion where a sepa-

1Classifiers that do not take into account the hierarchy and
are only concerned with predicting the leaf nodes are termed
flat classifiers in this work.

2We use the term “hierarchical classifiers” to refer the
models that follow the external taxonomy of class labels,
which is substantially different from hierarchical attention
networks (Yang et al., 2016). In Yang et al. (2016), hierar-
chical attention networks refer to the hierarchical nature of
their attention mechanism; the model attends to the sentences
first and then attends to the words.

rate neural network (either CNN or RNN) is built
at each parent node to classify its children.

3 Model
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Figure 1: Proposed model architecture

Our proposed model (Figure 1) consists of three
parts: 1) a bidirectional LSTM encoder (Hochre-
iter and Schmidhuber, 1997) that transforms each
word into vector representations based on their
context. 2) an attention module that helps to gener-
ate dynamic document representations across dif-
ferent level of classification, 3) multi-layer percep-
tron (MLP) classifiers at each level that makes the
prediction of classes at that level based on the dy-
namically generated document representation and
the level masking.

Our hierarchical classification model can be
viewed as a sequence-to-sequence model, where
a sequence of word embeddings is used to gen-
erate a sequence of hierarchical class labels. In
addition, we employ a modified attention module
from the traditional attention mechanism used in
sequential generation tasks (Bahdanau et al., 2015;
Sutskever et al., 2014). Instead of computing at-
tention weights conditioned on the hidden state of
the decoder at time step i, we condition on the par-
ent category embedding ck�1. This is intuitive in
our setting as the document representation should
depend on the parent class predicted by the model.

Formally, suppose we are given a document
with n tokens D = (w1, w2, ..., wn) and its cat-
egory labels of m levels C = (c1, . . . , cm), ck 2
{clk

1 , . . . , clk
sk

} where lk indicates the k-th level of
the class taxonomy and sk represents the number
of classes in level k 3. A bidirectional LSTM is

3We suppose wi and ci are word embeddings and class
embedding respectively.
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first used to extract features of the document:
�!
ht =

����!
LSTM(wt,

���!
ht�1),

 �
ht =

 ����
LSTM(wt,

 ���
ht+1).

(1)

The encoder’s hidden states H = (h1, . . . , hn) are
constructed by the concatenation of (

�!
ht) and (

 �
ht)

as hi = [
�!
ht ,
 �
ht ].

When classifying the class label at level k, we
first form contextual word features H̄k by concate-
nating the previously predicted category embed-
ding ck�1 (parent) with each of the encoder’s out-
puts H = (h1, . . . , hn):

H̄k = H � ck�1. (2)

Then, we transform these n vectors in H̄k into n
attention scores (scalars) through a series of linear
and non-linear transformations:

ak = softmax(ws2tanh(Ws1H̄
T
k )). (3)

As one single attention distribution might only fo-
cus on a specific component of the semantics in
the document, we follow Lin et al. (2017)’s work
to perform m hops of attention and form the multi-
head attention matrix Ak (m ⇥ n). To encour-
age diversity over the multiple hops of the atten-
tion distributions, we employ the Frobenius norm
penalty (Lin et al., 2017) P =

���AkA>
k � I

���
2

F
to

force the attention hops to focus on different as-
pects of the semantics.

The document representation for level k is ob-
tained by multiplying the multi-head attention ma-
trix and the contextual word features:

Dk = Ws3AkH̄k. (4)

Finally, a two layered multi-layer perceptron
(MLP) is employed to classify the category at level
k:

dk = RELU(WD[Dk, dk � 1]),

yk = softmax(Wkdk)
(5)

Normally, the softmax in Equation 5 is computed
over all class labels across the entire taxonomy
levels. This is not desirable when the taxonomy
is deep and the number of classes is large. We
solve this by employing a level masking technique
where we mask out all the classes that are not in
the current classification level k. The loss is then
calculated as the joint cross entropy loss among all
levels of the taxonomy: l =

Pm
i=1 li.

DBpedia WOS
Level 1 Categories 9 7
Level 2 Categories 70 134
Level 3 Categories 219 NA
Number of documents 381,025 46,985
Mean document length 106.9 200.7

Table 1: Dataset Comparison

4 Experimental Setup

Dataset Two datasets are used for our experi-
ments: Web of Science (WOS) and DBpedia. Web
of Science (WOS) is a hierarchical two-level tax-
onomy dataset that contains 46,985 documents
collected from Web of Science (Reuters, 2012) by
Kowsari et al. (2017). Despite its small size, WOS
is used as a benchmark dataset for hierarchical
classification as it provides the raw text for deep
neural models to train on4.

As deep learning models usually contain a large
number of parameters that need to be learned, to
prevent over-fitting (Lawrence et al., 1997; Srivas-
tava et al., 2014) we usually need a large dataset
to train upon. Thus, we curated a bigger dataset
with hierarchical labels from Wikipedia meta in-
formation provider DBpedia5. Compared to WOS,
our DBpedia dataset is larger in two aspects: the
number of data instances and the number of hier-
archical levels (Table 1). The DBpedia ontology
was first used in Zhang et al. (2015) for flat text
classification. We instead use the DBpedia ontol-
ogy to construct a dataset with a three-level taxon-
omy of classes. In order to ensure enough docu-
ments per-class, we only extract leaf-classes with
more than 200 documents. We also randomly sub-
sample 3,000 documents per category to balance
the number of leaf-level categories. This results
in 381,025 documents in total, which we split into
90% for training (from which 10% were kept aside
for validation) and 10% on testing, on which we
report our classification metrics6.

Baselines State-of-the-art flat classifiers such
as FastText (Joulin et al., 2017), Bi-directional

4The LSHTC dataset (Partalas et al., 2015) has been
widely used as a benchmark for hierarchical text classifica-
tion. However, the raw texts are not available which makes
it difficult to extract features for modern neural approaches.
Instead, only the tf-idf vectors are provided as inputs with no
option to retrieve the original text (even after consulting with
the original authors we were unable to procure it).

5http://wiki.dbpedia.org/
6Our code and data will be released at https://

github.com/koustuvsinha/hier-class
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DBpedia WOS
Flat Baselines Overall Overall
FastText 86.2 61.3
BiLSTM + MLP + Maxpool 94.20 77.69
BiLSTM + MLP + Meanpool 94.68 73.08
Structured Self Attention (m=1) 94.04 77.40
Hierarchical Models l1 l2 l3 Overall l1 l2 Overall
HDLTex (5B params) 99.26 97.18 95.5 92.10 90.45 84.66 76.58
Our model (34M params) 99.21 96.03 95.32 93.72 89.32 82.42 77.46

Table 2: Test accuracy on the WOS and DBpedia datasets. The flat baseline models are trained without the hierarchical
taxonomy of classes and therefore only have results on the leaf-node classification.

LSTM with max/mean pooling (Collobert and We-
ston, 2008b; Lee and Dernoncourt, 2016) and
the Structured Self-attentive classifier (Lin et al.,
2017) are used for the comparison. We no-
ticed that using the default hyperparameters of the
Structured Self-attentive classifier with high atten-
tion hops (m >= 8) performed poorly compared
to use just one attention hop (m = 1). There-
fore, we reported the results of using one attention
hop (m = 1) as our baselines for fair comparison.
We also compare our classifier to the state-of-the-
art hierarchical classifier HDLTex (Kowsari et al.,
2017).

Hyperparameters We use 300-dimensional word
embeddings which are randomly initialized and
fine-tuned during training. Two-layer Bidirec-
tional LSTM with 300 hidden units in each layer
are employed. In the multi-head attention mech-
anism, we use 4 heads (hops) with 0.1 Frobe-
nius norm penalty because it gives the best valida-
tion performance. The final fully-connected MLP
layer WD has 1200 hidden units. In addition, we
add 0.4 dropout on BiLSTM layers and MLP lay-
ers to prevent over-fitting.

For optimization, we use the standard Adam
optimizer (Kingma and Ba, 2014) with the learn-
ing rate of 0.001, weight decay of 10�4 and 10�6

for WOS and DBpedia, respectively. The gra-
dients are clipped to 0.5 in order to prevent ex-
ploding gradients. All the results are obtained af-
ter 25 epochs of training. After every 10 epochs,
we reduce the learning rate by half if the valida-
tion accuracy is not improving. We employ early-
stopping to select the best model. In addition, a
weighted loss function is utilized to balance the
performance on under-represented classes.

Hierarchical Evaluation For evaluating hierar-
chical models, we present the teacher-forcing re-

sult on each level, such as l1, l2 and l3. This
indicates the per-level classification performance
when we provide the true parent class to the classi-
fier while predicting the next class. However, this
is not desirable as during inference we should not
have access to the correct parent class. Hence we
also present the Overall score in Table 2, where
the classifier uses its own prediction as the parent
class.

5 Results
Our model is significantly better than the existing
state-of-the-art hierarchical baseline (Table 2). Al-
though, we also see that both hierarchical classi-
fiers (ours and HDLTex) perform comparably with
or slightly worse than the state-of-the-art flat clas-
sifiers in terms of accuracy. However, the robust-
ness analysis we performed in Table 3 indicates
that hierarchical models are more robust in their
errors since most of the errors generated by hierar-
chical classifiers remain within the correct tree of
the parent class, while flat classifiers do worse. For
example, on WOS, 88.57% of all classified data by
our hierarchical model is within the correct subtree
compared to 85.56% for the flat classifier.

Classifier Correct parent Predicted parent
Flat classifier - BiLSTM Max Pooling 90.74 85.56
Hierarchical approach - Our model 93.03 88.57

Table 3: Robustness analysis of taxonomy on the WOS
dataset. We compare the success rate of our model and the
BiLSTM flat classifier. The success rate is defined as the
number of times the predicted class is within the same sub-
tree as the correct parent. We calculate this in two scenar-
ios: 1. when the true parent class is manually provided, or
teacher-forced (Correct parent), and 2. when the true parent
class is predicted by our model (Predicted parent)

Interestingly, the class taxonomy seems to be
more beneficial in boosting the performance of
hierarchical classifiers on WOS than DBpedia.
The hierarchical classifiers perform better on the
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(a) Level 1 - correct class : Medical (b) Level 2 - correct class : Crohn’s disease

Figure 2: WOS dataset attention rereading per level. Highlighted words indicate the attented words. Stronger color denote
higher focus of attention. We note that the attention spread becomes much more focused in Level 2 compared to its parent
Level 1.

leaf-node level classification of WOS than that
on DBpedia. We observe this behaviour due to
the dataset of DBpedia being shorter in average
length making it easier to classify for flat classi-
fiers, hence hierarchical classifiers overfit on the
training data.

In addition to the performance improvement on
both datasets over HDLTex, our model takes sig-
nificantly less time and resources to train, espe-
cially when the dataset is large in terms of the in-
termediate non-leaf nodes in the output taxonomy.
As HDLTex needs to build one sub-classifier for
each parent nodes, the number of sub-classifiers
grows quickly. For example, there are 80 parent
nodes in the taxonomy of the DBpedia dataset and
HDLTex needs to build 80 RNNs, where each sub-
classifier contains around 67 million parameters.
As a consequence, we can barely fit the whole
model of HDLTex on our CPU 7 because it re-
quires 60 GB RAM to build these 80 deep neural
networks.

6 Discussion

Analysis of Attention The intuition behind build-
ing dynamic document representations, using mul-
tiple attentions across different hierarchical levels,
is to have a re-reading effect over the taxonomy.
When we first encounter an article as humans, we
tend to read it carefully, but on subsequent reads
we can easily identify the key aspects of the ar-
ticle. We find in our exploratory experiments the
attention vectors behave exactly the same. For the

7It is not possible to fit the entire model in one GPU as
our best GPU has the RAM capacity of 12GB, one needs to
have multiple GPU’s and parallel execution for this task.

first level, the attention values are more spread out
to help our classifier pick various important as-
pects of the article, but on the subsequent levels,
the attention is more focused towards specific key-
words for that subclass, as the example shown in
Figure 2 8. We perform additional qualitative anal-
ysis of attention spread which is provided in Ap-
pendix.

7 Conclusion

In this work, we propose a light-weight neural-
based hierarchical classifier that performs better
than or comparable to the state-of-the-art hier-
archical model at lower computation cost. Our
model employs an adapted version of attention to
represent documents dynamically through the hi-
erarchy, which provides additional interpretability
of the dynamic document representations. In ad-
dition, we demonstrate that the robustness of flat
text classification can be improved by using ex-
ternal knowledge such as a hierarchical taxonomy.
As a future direction, we will advance our model
to automatically construct the hierarchical taxon-
omy in order to improve text classification with a
large number of classes.
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Abstract
We propose Labeled Anchors, an interactive
and supervised topic model based on the an-
chor words algorithm (Arora et al., 2013). La-
beled Anchors is similar to Supervised An-
chors (Nguyen et al., 2014) in that it extends
the vector-space representation of words to in-
clude document labels. However, our formula-
tion also admits a classifier which requires no
training beyond inferring topics, which means
our approach is also fast enough to be interac-
tive. We run a small user study that demon-
strates that untrained users can interactively
update topics in order to improve classification
accuracy.

In this paper, we concern ourselves with the prob-
lem of interactive and transparent text classifica-
tion. The value of such a classifier can be seen in
the events shortly before the 2016 US presidential
election when FBI Director James Comey notified
Congress that the FBI had obtained emails from
candidate Hillary Clinton’s private email server
which potentially contained state secrets. Nearly
a week later, just two days before the election,
Comey announced that nothing had been found in
the emails that warranted prosecution. Many spec-
ulate that the timing of these announcements may
have influenced the election.

There are times when the ability to quickly an-
alyze large quantities of text is of critical impor-
tance. In the case of the Clinton emails, man-
ual inspection appears to have been possible in
one week’s time, but there could have been less
controversy if the emails had been categorized in
a shorter period of time. Furthermore, in future
cases the data may be too large for manual analy-
sis.

While there are many text classification algo-
rithms, none are both interactive and transparent at

scale. We require interactivity because we would
like to leverage human intuition to improve classi-
fication accuracy for a specific task. Transparency
not only enables interactivity, but also allows users
to inspect the classifier and gain confidence in the
results.

Topic models such as Latent Dirichlet Alloca-
tion (or LDA) (Blei et al., 2003) aim to automat-
ically distill large collections of documents into
topics. These topics can be used to perform doc-
ument classification (Rubin et al., 2012). Further-
more, work has been done to increase the human
interpretability of topics (Mimno et al., 2011).
Traditionally, topic models are graphical models
which typically scale poorly to large data. A faster
alternative is the Anchor Words algorithm, which
relies on non-negative matrix factorization to infer
topics (Arora et al., 2013). Ordinarily, this factor-
ization is NP-Hard (Arora et al., 2012), but with
certain separability assumptions related to ”an-
chor” words which uniquely identify topics, the
factorization is scalable.

The Interactive Topic Model (Hu et al., 2011)
allows human knowledge to be injected into the
model in order to shape the topics in some mean-
ingful way. While this model does incorporate
user feedback, it is not fast enough to be truly
interactive. A more scalable alternative is Tan-
dem Anchors, which allows users to specify an-
chor words in order to influence the resulting top-
ics (Lund et al., 2017).

A separate line of topic modeling research
deals with supervised topic modeling, which al-
lows document labels to influence topic infer-
ence (Mcauliffe and Blei, 2008). The most recent
work on supervised topic modeling is Supervised
Anchors (Nguyen et al., 2014). This approach
uses document labels to influence the selection of
anchor words, which in turn affects the resulting
topics. However, Supervised Anchors requires a
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downstream classifier to be trained using topics as
features.

Our main contribution combines the idea of
Tandem Anchors with Supervised Anchors to pro-
duce text classification which is both interactive
and transparent. Additionally, the mathematical
approach we take to build this classification re-
quires no training beyond inferring topics, unlike
Supervised Anchors which requires both topic in-
ference and significant additional time for training
a downstream classifier. While Supervised An-
chors requires the construction of an external clas-
sifier, our approach generates the classifier as part
of topic inference. Consequently, our model is ex-
tremely fast and scalable compared to Supervised
Anchors. We demonstrate that users are able to
use our model to interactively improve document
classification accuracy by manipulating topics.

1 Labeled Anchors

In this section we describe our approach, com-
bining interactive and supervised topic model-
ing, which we call Labeled Anchors. We ex-
tend the Anchor Words algorithm (Arora et al.,
2013) which takes as input a V ⇥ D matrix M of
document-word counts and recovers a V ⇥ K ma-
trix A of word probabilities conditioned by topic,
where there are V word types, D documents, and
K topics. Our approach extends this algorithm to
incorporate L possible document labels.

1.1 Vanilla Anchor Words
In order to compute the topic-word matrix A, the
Anchor Words algorithm uses a V ⇥ V cooccur-
rence matrix Q̄. Each entry Q̄i,j gives the condi-
tional probability of word j occurring after observ-
ing word i in a document. Following Appendix
D.1 of Arora et al. (2013), Q̄ is obtained by row-
normalizing Q, which in turn is constructed using

Q = M̄M̄T � M̂ (1)

where M̄ is a normalized version of the document-
word matrix M giving equal weight to each doc-
ument regardless of document length, and M̂ ac-
counts for words not cooccurring with themselves.

Q̄ is a V -dimensional vector-space representa-
tion of each word and is used to compute a set
of anchor words S. Each anchor word uniquely
identifies a topic by having non-zero probability
in one topic only. These anchors are computed
using an adaptation of the Gram-Schmidt process

from Arora et al. (2013). Once the set of anchor
words S has been computed, we reconstruct the
non-anchor words as a convex combination of the
anchor word vectors. The coefficients of these
combinations C are computed using exponenti-
ated gradient descent to optimize

Ci = argmin
Ci

DKL(Q̄i||
X

k2S

Ci,kQ̄k) (2)

where i is the ith word of the vocabulary, Q̄i

is the vector-space representation of word i, and
DKL(·||·) is Kullback-Leibler divergence.1

Because the occurrence pattern of each anchor
word throughout the documents must mirror that
of the topic it anchors, each coefficient Ci,j gives
the conditional probability of topic j occurring
given word i. This is the inverse conditioning we
desire in the topic-word matrix A. We can there-
fore compute A using Bayes’ Rule by multiplying
the coefficient matrix C with the empirical proba-
bility of each word to get the probability of a word
given a particular topic.

1.2 Vector-Space Representations
Supervised Anchors (Nguyen et al., 2014) aug-
ments Q̄ by appending L additional columns to
Q̄ corresponding to the probability of words cooc-
curring with the L possible document labels. Be-
cause this augmented vector-space representation
includes dimensions corresponding to document
labels, both the anchor words and the resulting
topics will reflect the document labels.

Our algorithm, called Labeled Anchors, also
augments the vector-space representation to in-
clude the L document labels. However, we do not
directly modify Q̄. Instead, we treat the L possible
document labels as words and pretend that we ob-
serve these label pseudowords directly in each la-
beled document; a graphical representation of this
is shown below in Figure 1.2

Consequently, our document-word matrix M is
a (V + L) ⇥ D matrix. The first V entries of each
column of M give the word counts for a particular
document. The last L entries are zero, except for
the entry corresponding to the label of that docu-
ment.

We then construct Q̄ using Equation 1, obtain-
ing an order V + L square matrix. As with Su-

1Alternatively, we can use l2-norm in place of KL-
divergence.

2We could add multiple such words per label, but our pre-
liminary experiments indicate that one per label is sufficient.
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Figure 1: Labeled Anchors treats labels as observed
words in each labeled documents and updates Q̄ un-
der this assumption, creating the additional rows and
columns highlighted here.

pervised Anchors, these additional L dimensions
guide anchor selection to include anchors which
reflect the underlying document labels. When we
use Equation 2 to compute C, we also obtain an
additional L rows of coefficients which each cor-
respond to the conditional probability of a topic
given a label. Finally, the first V rows of A are
computed using Bayes’ Rule to give us the proba-
bility of words given topics.

Labeled Anchors inherits the run time charac-
teristics of the original Anchor Words algorithm.
As shown in Arora et al. (2013), topic recov-
ery requires O(KV 2 + K2V T ), where V is the
size of the vocabulary, K is the number of an-
chors/topics, and T is the average number of iter-
ations (typically around 100 in our experiments).
Since V � K, adding any modest number of top-
ics (less than 200) does not noticeably increase the
runtime. Furthermore, since vocabulary size tends
to grow logarithmically with respect to the size of
the data (Heaps, 1978), this approach is scalable
even for very large datasets.

1.3 Free Classifier
Note that once the cooccurrence matrix Q̄ has
been computed, the recovery of the topic-word
matrix A scales with the size of the vocabulary,
not the size of the data. However, Supervised An-
chors requires topic assignments for each train-
ing document3 for use as features for some down-
stream classifier. Therefore, the process of build-
ing a classifier scales linearly with the number of
documents and can be time consuming compared
to topic recovery.

In contrast, the formulation of Labeled Anchors
allows us to construct a classifier with no addi-
tional training. To do so, rather than using LDA

3This is typically done using LDA with fixed topics.

with fixed topics, we employ a simple model simi-
lar to Labeled LDA (Ramage et al., 2009) with the
following generative story for an individual docu-
ment containing N words:

1. Draw label ` ⇠ Cat(�)

2. For each i 2 [1, ..., N ] :

(a) Draw topic assignment zi|` ⇠ Cat( l)

(b) Draw word wi|zi ⇠ Cat(�zi)

The prior over document labels � is simply the
proportion of each label in the training data. We
can estimate topic-label probabilities  using the
last L rows of the coefficient matrix C, while the
word-topic probabilities � are the first V rows of
A. Using these hyperparameters, we make predic-
tions using the following:

`⇤ = argmax
`

p(`|w) = argmax
`

p(`,w) (3)

= argmax
`

KX

z1=1

...
KX

zN=1

p(`, z,w) (4)

= argmax
`

p(`)
NY

i=1

KX

zi=1

p(zi|`)p(wi|zi) (5)

= argmax
`

�`

NY

i=1

KX

zi=1

 `,zi�zi,wi (6)

= argmax
`

log�`+
NX

i=1

log

 
KX

zi=1

C`,ziAzi,wi

!

(7)

where Equation 4 unmarginalizes the probabili-
ties across the word-topic assignments, Equation 5
uses the model’s conditional independencies to ex-
pand and simplify the probabilities, Equation 6 ex-
plicitly uses the parameters from the generative
model, and Equation 7 transitions to the matrix
representations for these probabilities as found in
Section 1.2. In Equation 7 we also switch to log
space to mitigate numeric precision issues.

1.4 User Interaction
Assuming that Q̄ is precomputed and fixed, La-
beled Anchors is fast enough to allow interactive
modification of the topics as well as interactive
display of classification accuracy, even on large
datasets. The final step to solving the problem of
creating an interactive and transparent classifier is
to allow users to inject domain specific knowledge
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#Docs #Vocab Labeled Supervised
39388 3406 .532s 17.1s
99955 4829 .886s 28.6s
990820 6648 1.10s 282s

Table 1: Runtime for Labeled Anchors and Super-
vised Anchors on various subsets of Amazon product
reviews. Labeled Anchors is dramatically faster than
Supervised Anchors and scales to much larger datasets.

into the topic model. To do so, we use the idea
of Tandem Anchors (Lund et al., 2017), which al-
lows users to manually select sets of words to form
anchors.

Ordinarily, anchor words can be somewhat in-
scrutable to human users. Because anchor words
must uniquely identify topics, good anchors are
typically esoteric low-to-mid frequency words. In-
tuitive, high frequency words usually appear in
multiple topics. However, if we examine Equa-
tion 2, we can see that the anchor words are just
points in V -dimension space; they do not actually
have to correspond to any particular word so long
as that point in space uniquely identifies a topic.

Tandem Anchors allows multiple words to form
a single anchor pseudoword by computing the
element-wise harmonic mean of a set of words.
Since the harmonic mean tends towards the lowest
values, the resulting pseudoword anchor largely
ignores superfluous cooccurrence patterns in the
constituent words. Consequently, while individ-
ual words forming the anchor may be ambiguous,
users can combine multiple ambiguous words to
intuitively express a single coherent idea.

2 Experimental Results

Before running a user study to validate that La-
beled Anchors works as an interactive and trans-
parent classifier, we first run a synthetic experi-
ment to determine the runtime characteristics of
our algorithm. We take subsets of a large collec-
tion of Amazon reviews4 to produce datasets of
various sizes. Using this data, we compare the run-
time of Labeled Anchors with that of Supervised
Anchors. All results are obtained using a single
core of an Intel Core i7-4770K.5

As shown in Table 1, Labeled Anchors is or-
ders of magnitude faster than Supervised Anchors,
even for moderately sized datasets. Both Labeled

4http://jmcauley.ucsd.edu/data/amazon
5Our Python implementation is available at

https://github.com/byu-aml-lab/ankura.

Anchors and Supervised Anchors require us to re-
cover topic-word distributions, an operation which
scales with the size of the vocabulary. How-
ever, Supervised Anchors also requires us to infer
document-topic distributions in order to train an
external classifier, an operation which scales lin-
early with the number of documents. Since vocab-
ulary size typically grows logarithmically with re-
spect to the number of documents (Heaps, 1978),
Labeled Anchors scales much better than Super-
vised Anchors.

When a user updates the anchors, the system
must reinfer the topics, create the classifier, and
evaluate the development dataset, all within a few
seconds. If the update is too slow, the interac-
tion will suffer due to increased cognitive load on
users (Cook and Thomas, 2005). Results from an
exploratory user study confirm this: when partic-
ipants are faced with update times around 10 sec-
onds, they are not successful in their topic-based
tasks.6

Having established that Labeled Anchors is fast
enough to be interactive, we now demonstrate that
participants can use our system to improve topics
for classification. In order demonstrate the role
of human knowledge in interactive topic model-
ing, we ask the users to identify sentiment (i.e.
product rating) rather than product category, since
the natural topics which arise from the Anchor
Words algorithm tend to reflect product category
instead of rating. We preprocess a set of Ama-
zon product reviews with standard tokenization,
stopword removal, and by removing words which
appear in fewer than 100 documents. After pre-
processing, empty documents are discarded, re-
sulting in 39,388 documents. We use an 80/20
train/test split, with 1,500 training documents re-
served as development data. We recruit five partic-
ipants drawn from a university student body. The
median age is 21. Three are male and two are fe-
male. None of the students have any prior famil-
iarity with topic modeling.

We present the participants with a user inter-
face similar to that of Lund et al. (2017). Users
can view and edit a list of anchor words (or rather,
sets of words which form each anchor), and they
can view the top ten most probable words for each
topic. We display the classification accuracy on
the development data to give users an indication of

6For this reason, we do not report interactive results with
Supervised Anchors.
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Figure 2: User study accuracy results comparing accu-
racy on the development set to the accuracy on the test
set. The black horizontal line indicates the baseline ac-
curacy from Supervised Anchors. The black star indi-
cates the initial accuracy using Gram-Schmidt anchors
with Labeled Anchors. The blue dots indicate various
intermediate steps while editing the anchors. The red
pluses are the final states after each user completes the
task.

how they are doing. After a brief training on the
interface, users are asked to modify the anchors to
produce topics which reflect the underlying prod-
uct ratings and improve the classification accuracy
on the development dataset as much as possible.
Participants are given forty minutes to perform this
task.

Figure 2 summarizes the results of our user
study. With just baseline anchors from Gram-
Schmidt, the classification accuracy of Labeled
Anchors is on par with that of Supervised Anchors
using logistic regression as the downstream clas-
sifier. However, because Labeled Anchors is fast
enough to allow interaction, participants are able
to improve classification accuracy on the devel-
opment set by an average of 5.31%. This corre-
sponds to a 2.31% increase in accuracy on the test
set.

We record each step of the user interactions
and find a Pearson correlation coefficient of .88
between development accuracy and test accuracy.
Thus, Labeled Anchors allows participants to in-
teractively see updated classification accuracy and
have confidence that held-out test accuracy will
also improve.

With regard to the interaction that users had
with the dataset, we observe several common
strategies. Firstly, we notice that users who made
more edits tend to have more success in terms of
accuracy; this validates our assertion that slower
update times hurt performance. Secondly, users

end with a median of 21 topics, which is close
to the 20 topics they start with, suggesting that
either the users felt like this was an appropriate
number of topics, or that they felt uneasy dras-
tically changing the total number of topics from
what they started with. Lastly, we find that users
chose more single word anchors than we expected,
with about 88% of anchors being single word an-
chors. Most of the multiword anchors users used
were short 2-3 word phrases which did not have an
obvious single word counterpart.

3 Conclusion

Our results demonstrate that Labeled Anchors
yields a classifier that is both human-interpretable
and fast. Our approach not only combines the
strengths of Supervised Anchors and Tandem An-
chors, but introduces a mathematical construct for
producing a classifier as a by-product of topic in-
ference. Compared to Supervised Anchors, which
requires costly training of a downstream classi-
fier in addition to topic inference, our approach is
much more scalable. Using Labeled Anchors, our
participants are able to adjust the classifier so as
to obtain superior classification results than those
produced by Supervised Anchors alone.

Returning to our original motivating problem
of quickly annotating a large collection of unla-
beled emails, we assert that our approach could
aid in quickly labeling the entire collection. With
a modest investment of manual annotation, the ini-
tial training set could be labeled, and then with the
help of our system the remaining documents could
be automatically labeled in a transparent and ex-
plainable fashion.
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Abstract

Topic models are evaluated based on their abil-
ity to describe documents well (i.e. low per-
plexity) and to produce topics that carry coher-
ent semantic meaning. In topic modeling so
far, perplexity is a direct optimization target.
However, topic coherence, owing to its chal-
lenging computation, is not optimized for and
is only evaluated after training. In this work,
under a neural variational inference frame-
work, we propose methods to incorporate a
topic coherence objective into the training pro-
cess. We demonstrate that such a coherence-
aware topic model exhibits a similar level of
perplexity as baseline models but achieves sub-
stantially higher topic coherence.

1 Introduction

In the setting of a topic model (Blei, 2012), per-
plexity measures the model’s capability to describe
documents according to a generative process based
on the learned set of topics. In addition to de-
scribing documents well (i.e. achieving low per-
plexity), it is desirable to have topics (represented
by top-N most probable words) that are human-
interpretable. Topic interpretability or coherence
can be measured by normalized point-wise mutual
information (NPMI) (Aletras and Stevenson, 2013;
Lau et al., 2014). The calculation of NPMI however
is based on look-up operations in a large reference
corpus and therefore is non-differentiable and com-
putationally intensive. Likely due to these reasons,
topic models so far have been solely optimizing
for perplexity, and topic coherence is only evalu-
ated after training. As has been noted in several
publications (Chang et al., 2009), optimization for
perplexity alone tends to negatively impact topic
coherence. Thus, without introducing topic coher-
ence as a training objective, topic modeling likely
produces sub-optimal results.

Compared to classical methods, such as mean-
field approximation (Hoffman et al., 2010) and
collapsed Gibbs sampling (Griffiths and Steyvers,
2004) for the latent Dirichlet allocation (LDA)
(Blei et al., 2003) model, neural variational infer-
ence (Kingma and Welling, 2013; Rezende et al.,
2014) offers a flexible framework to accommodate
more expressive topic models. We build upon the
line of work on topic modeling using neural varia-
tional inference (Miao et al., 2016, 2017; Srivastava
and Sutton, 2017) and incorporate topic coherence
awareness into topic modeling.

Our approaches of constructing topic coherence
training objective leverage pre-trained word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014; Salle et al., 2016; Joulin et al., 2016). The
main motivation is that word embeddings carry
contextual similarity information that is highly re-
lated to the mutual information terms involved in
the calculation of NPMI. In this paper, we explore
two methods: (1) we explicitly construct a differ-
entiable surrogate topic coherence regularization
term; (2) we use word embedding matrix as a factor-
ization constraint on the topical word distribution
matrix that implicitly encourages topic coherence.

2 Models

2.1 Baseline: Neural Topic Model (NTM)

The model architecture shown in Figure 1 is a vari-
ant of the Neural Variational Document Model
(NVDM) (Miao et al., 2016). Let x 2 R

|V |⇥1

be the bag-of-words (BOW) representation of a
document, where |V | is the size of the vocabu-
lary and let z 2 R

K⇥1 be the latent topic variable,
where K is the number of topics. In the encoder
q�(z|x), we have ⇡ = fMLP (x), µ(x) = l1(⇡),
log �(x) = l2(⇡), h(x, ✏) = µ + � � ✏, where
✏ ⇠ N (0, I), and finally z = f(h) = ReLU(h).
The functions l1 and l2 are linear transformations
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<latexit sha1_base64="S4A32L1g0ns4FLpnsizfH/GGM78=">AAAB/HicbVDNS8MwHE3n15xf1R29BIcwL6MVwR0HXjxOcB+wlpGm6RaWpCVJxVLmv+LFgyJe/UO8+d+Ybj3o5oOQx3u/H3l5QcKo0o7zbVU2Nre2d6q7tb39g8Mj+/ikr+JUYtLDMYvlMECKMCpIT1PNyDCRBPGAkUEwuyn8wQORisbiXmcJ8TmaCBpRjLSRxnbd42nTC2IWqoybK3+cX4zthtNyFoDrxC1JA5Toju0vL4xxyonQmCGlRq6TaD9HUlPMyLzmpYokCM/QhIwMFYgT5eeL8HN4bpQQRrE0R2i4UH9v5IirIpuZ5EhP1apXiP95o1RHbT+nIkk1EXj5UJQyqGNYNAFDKgnWLDMEYUlNVoinSCKsTV81U4K7+uV10r9suU7LvbtqdNplHVVwCs5AE7jgGnTALeiCHsAgA8/gFbxZT9aL9W59LEcrVrlTB39gff4A+86U8Q==</latexit><latexit sha1_base64="S4A32L1g0ns4FLpnsizfH/GGM78=">AAAB/HicbVDNS8MwHE3n15xf1R29BIcwL6MVwR0HXjxOcB+wlpGm6RaWpCVJxVLmv+LFgyJe/UO8+d+Ybj3o5oOQx3u/H3l5QcKo0o7zbVU2Nre2d6q7tb39g8Mj+/ikr+JUYtLDMYvlMECKMCpIT1PNyDCRBPGAkUEwuyn8wQORisbiXmcJ8TmaCBpRjLSRxnbd42nTC2IWqoybK3+cX4zthtNyFoDrxC1JA5Toju0vL4xxyonQmCGlRq6TaD9HUlPMyLzmpYokCM/QhIwMFYgT5eeL8HN4bpQQRrE0R2i4UH9v5IirIpuZ5EhP1apXiP95o1RHbT+nIkk1EXj5UJQyqGNYNAFDKgnWLDMEYUlNVoinSCKsTV81U4K7+uV10r9suU7LvbtqdNplHVVwCs5AE7jgGnTALeiCHsAgA8/gFbxZT9aL9W59LEcrVrlTB39gff4A+86U8Q==</latexit><latexit sha1_base64="S4A32L1g0ns4FLpnsizfH/GGM78=">AAAB/HicbVDNS8MwHE3n15xf1R29BIcwL6MVwR0HXjxOcB+wlpGm6RaWpCVJxVLmv+LFgyJe/UO8+d+Ybj3o5oOQx3u/H3l5QcKo0o7zbVU2Nre2d6q7tb39g8Mj+/ikr+JUYtLDMYvlMECKMCpIT1PNyDCRBPGAkUEwuyn8wQORisbiXmcJ8TmaCBpRjLSRxnbd42nTC2IWqoybK3+cX4zthtNyFoDrxC1JA5Toju0vL4xxyonQmCGlRq6TaD9HUlPMyLzmpYokCM/QhIwMFYgT5eeL8HN4bpQQRrE0R2i4UH9v5IirIpuZ5EhP1apXiP95o1RHbT+nIkk1EXj5UJQyqGNYNAFDKgnWLDMEYUlNVoinSCKsTV81U4K7+uV10r9suU7LvbtqdNplHVVwCs5AE7jgGnTALeiCHsAgA8/gFbxZT9aL9W59LEcrVrlTB39gff4A+86U8Q==</latexit><latexit sha1_base64="S4A32L1g0ns4FLpnsizfH/GGM78=">AAAB/HicbVDNS8MwHE3n15xf1R29BIcwL6MVwR0HXjxOcB+wlpGm6RaWpCVJxVLmv+LFgyJe/UO8+d+Ybj3o5oOQx3u/H3l5QcKo0o7zbVU2Nre2d6q7tb39g8Mj+/ikr+JUYtLDMYvlMECKMCpIT1PNyDCRBPGAkUEwuyn8wQORisbiXmcJ8TmaCBpRjLSRxnbd42nTC2IWqoybK3+cX4zthtNyFoDrxC1JA5Toju0vL4xxyonQmCGlRq6TaD9HUlPMyLzmpYokCM/QhIwMFYgT5eeL8HN4bpQQRrE0R2i4UH9v5IirIpuZ5EhP1apXiP95o1RHbT+nIkk1EXj5UJQyqGNYNAFDKgnWLDMEYUlNVoinSCKsTV81U4K7+uV10r9suU7LvbtqdNplHVVwCs5AE7jgGnTALeiCHsAgA8/gFbxZT9aL9W59LEcrVrlTB39gff4A+86U8Q==</latexit>

log �(x)
<latexit sha1_base64="3OvljUvE4Rc/xCbtOHk8Cv2OTAc=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUIiY6VWBiLRB9SE1WO46RWHTuyHUQVdWDhV1gYQIiVj2Djb3DaDNByJMtH59yre+8JUkaVdpxva219Y3Nru7JT3d3bPzi0j457SmQSky4WTMhBgBRhlJOuppqRQSoJSgJG+sHkuvD790QqKvidnqbET1DMaUQx0kYa2TWPiRh6isYJaniBYKGaJubLH2bnI7vuNJ054CpxS1IHJToj+8sLBc4SwjVmSKmh66Taz5HUFDMyq3qZIinCExSToaEcJUT5+fyIGTwzSggjIc3jGs7V3x05SlSxm6lMkB6rZa8Q//OGmY5afk55mmnC8WJQlDGoBSwSgSGVBGs2NQRhSc2uEI+RRFib3KomBHf55FXSu2i6TtO9vay3W2UcFVADp6ABXHAF2uAGdEAXYPAInsEreLOerBfr3fpYlK5ZZc8J+APr8wfW8pgu</latexit><latexit sha1_base64="3OvljUvE4Rc/xCbtOHk8Cv2OTAc=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUIiY6VWBiLRB9SE1WO46RWHTuyHUQVdWDhV1gYQIiVj2Djb3DaDNByJMtH59yre+8JUkaVdpxva219Y3Nru7JT3d3bPzi0j457SmQSky4WTMhBgBRhlJOuppqRQSoJSgJG+sHkuvD790QqKvidnqbET1DMaUQx0kYa2TWPiRh6isYJaniBYKGaJubLH2bnI7vuNJ054CpxS1IHJToj+8sLBc4SwjVmSKmh66Taz5HUFDMyq3qZIinCExSToaEcJUT5+fyIGTwzSggjIc3jGs7V3x05SlSxm6lMkB6rZa8Q//OGmY5afk55mmnC8WJQlDGoBSwSgSGVBGs2NQRhSc2uEI+RRFib3KomBHf55FXSu2i6TtO9vay3W2UcFVADp6ABXHAF2uAGdEAXYPAInsEreLOerBfr3fpYlK5ZZc8J+APr8wfW8pgu</latexit><latexit sha1_base64="3OvljUvE4Rc/xCbtOHk8Cv2OTAc=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUIiY6VWBiLRB9SE1WO46RWHTuyHUQVdWDhV1gYQIiVj2Djb3DaDNByJMtH59yre+8JUkaVdpxva219Y3Nru7JT3d3bPzi0j457SmQSky4WTMhBgBRhlJOuppqRQSoJSgJG+sHkuvD790QqKvidnqbET1DMaUQx0kYa2TWPiRh6isYJaniBYKGaJubLH2bnI7vuNJ054CpxS1IHJToj+8sLBc4SwjVmSKmh66Taz5HUFDMyq3qZIinCExSToaEcJUT5+fyIGTwzSggjIc3jGs7V3x05SlSxm6lMkB6rZa8Q//OGmY5afk55mmnC8WJQlDGoBSwSgSGVBGs2NQRhSc2uEI+RRFib3KomBHf55FXSu2i6TtO9vay3W2UcFVADp6ABXHAF2uAGdEAXYPAInsEreLOerBfr3fpYlK5ZZc8J+APr8wfW8pgu</latexit><latexit sha1_base64="3OvljUvE4Rc/xCbtOHk8Cv2OTAc=">AAACBHicbVC7TsMwFHV4lvIKMHaxqJDKUiUIiY6VWBiLRB9SE1WO46RWHTuyHUQVdWDhV1gYQIiVj2Djb3DaDNByJMtH59yre+8JUkaVdpxva219Y3Nru7JT3d3bPzi0j457SmQSky4WTMhBgBRhlJOuppqRQSoJSgJG+sHkuvD790QqKvidnqbET1DMaUQx0kYa2TWPiRh6isYJaniBYKGaJubLH2bnI7vuNJ054CpxS1IHJToj+8sLBc4SwjVmSKmh66Taz5HUFDMyq3qZIinCExSToaEcJUT5+fyIGTwzSggjIc3jGs7V3x05SlSxm6lMkB6rZa8Q//OGmY5afk55mmnC8WJQlDGoBSwSgSGVBGs2NQRhSc2uEI+RRFib3KomBHf55FXSu2i6TtO9vay3W2UcFVADp6ABXHAF2uAGdEAXYPAInsEreLOerBfr3fpYlK5ZZc8J+APr8wfW8pgu</latexit>

fMLP
<latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit>

fMLP
<latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit><latexit sha1_base64="NHguYJAmhhAh8mNsjCzuxYbGyBA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx4UKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKG5tb2zvF3dLe/sHhUfn4pK3jVDFssVjEqhtQjYJLbBluBHYThTQKBHaCyc3c7zyh0jyWj2aaoB/RkeQhZ9RYqRMOsvu75mxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62OHdGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZn/ToZcITNiagllittbCRtTRZmxCZVsCN7qy+ukfVX13Kr3cF1p1PM4inAG53AJHtSgAbfQhBYwmMAzvMKbkzgvzrvzsWwtOPnMKfyB8/kDFqqPXA==</latexit>

✏ ⇠ N (0, I)
<latexit sha1_base64="M9OPDY9KwPr9Nfe2cn+vi4AXMvE=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahgpREBLssuNGNVLAPaEKZTKft0HmEmYlQQpdu/BU3LhRx6ye482+ctFlo9cCFwzn3cu89UcyoNp735RSWlldW14rrpY3Nre0dd3evpWWiMGliyaTqREgTRgVpGmoY6cSKIB4x0o7Gl5nfvidKUynuzCQmIUdDQQcUI2OlnnsYkFhTJgUMNOUw4MiMMGLpzbTincLrk55b9qreDPAv8XNSBjkaPfcz6EuccCIMZkjrru/FJkyRMhQzMi0FiSYxwmM0JF1LBeJEh+nskSk8tkofDqSyJQycqT8nUsS1nvDIdmaH6kUvE//zuokZ1MKUijgxROD5okHCoJEwSwX2qSLYsIklCCtqb4V4hBTCxmZXsiH4iy//Ja2zqu9V/dvzcr2Wx1EEB+AIVIAPLkAdXIEGaAIMHsATeAGvzqPz7Lw57/PWgpPP7INfcD6+AQ2YmKQ=</latexit><latexit sha1_base64="M9OPDY9KwPr9Nfe2cn+vi4AXMvE=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahgpREBLssuNGNVLAPaEKZTKft0HmEmYlQQpdu/BU3LhRx6ye482+ctFlo9cCFwzn3cu89UcyoNp735RSWlldW14rrpY3Nre0dd3evpWWiMGliyaTqREgTRgVpGmoY6cSKIB4x0o7Gl5nfvidKUynuzCQmIUdDQQcUI2OlnnsYkFhTJgUMNOUw4MiMMGLpzbTincLrk55b9qreDPAv8XNSBjkaPfcz6EuccCIMZkjrru/FJkyRMhQzMi0FiSYxwmM0JF1LBeJEh+nskSk8tkofDqSyJQycqT8nUsS1nvDIdmaH6kUvE//zuokZ1MKUijgxROD5okHCoJEwSwX2qSLYsIklCCtqb4V4hBTCxmZXsiH4iy//Ja2zqu9V/dvzcr2Wx1EEB+AIVIAPLkAdXIEGaAIMHsATeAGvzqPz7Lw57/PWgpPP7INfcD6+AQ2YmKQ=</latexit><latexit sha1_base64="M9OPDY9KwPr9Nfe2cn+vi4AXMvE=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahgpREBLssuNGNVLAPaEKZTKft0HmEmYlQQpdu/BU3LhRx6ye482+ctFlo9cCFwzn3cu89UcyoNp735RSWlldW14rrpY3Nre0dd3evpWWiMGliyaTqREgTRgVpGmoY6cSKIB4x0o7Gl5nfvidKUynuzCQmIUdDQQcUI2OlnnsYkFhTJgUMNOUw4MiMMGLpzbTincLrk55b9qreDPAv8XNSBjkaPfcz6EuccCIMZkjrru/FJkyRMhQzMi0FiSYxwmM0JF1LBeJEh+nskSk8tkofDqSyJQycqT8nUsS1nvDIdmaH6kUvE//zuokZ1MKUijgxROD5okHCoJEwSwX2qSLYsIklCCtqb4V4hBTCxmZXsiH4iy//Ja2zqu9V/dvzcr2Wx1EEB+AIVIAPLkAdXIEGaAIMHsATeAGvzqPz7Lw57/PWgpPP7INfcD6+AQ2YmKQ=</latexit><latexit sha1_base64="M9OPDY9KwPr9Nfe2cn+vi4AXMvE=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahgpREBLssuNGNVLAPaEKZTKft0HmEmYlQQpdu/BU3LhRx6ye482+ctFlo9cCFwzn3cu89UcyoNp735RSWlldW14rrpY3Nre0dd3evpWWiMGliyaTqREgTRgVpGmoY6cSKIB4x0o7Gl5nfvidKUynuzCQmIUdDQQcUI2OlnnsYkFhTJgUMNOUw4MiMMGLpzbTincLrk55b9qreDPAv8XNSBjkaPfcz6EuccCIMZkjrru/FJkyRMhQzMi0FiSYxwmM0JF1LBeJEh+nskSk8tkofDqSyJQycqT8nUsS1nvDIdmaH6kUvE//zuokZ1MKUijgxROD5okHCoJEwSwX2qSLYsIklCCtqb4V4hBTCxmZXsiH4iy//Ja2zqu9V/dvzcr2Wx1EEB+AIVIAPLkAdXIEGaAIMHsATeAGvzqPz7Lw57/PWgpPP7INfcD6+AQ2YmKQ=</latexit>

q�(z|x)
<latexit sha1_base64="TP0wCA7TvMnNTjjrjdgXJOfjhew=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0WoCCURwS4LblxWsA9oQphMJu3QySTOTMQa+hFu/BU3LhRx68Kdf+OkzaK2XhjmcM493HuPnzAqlWX9GKWV1bX1jfJmZWt7Z3fP3D/oyDgVmLRxzGLR85EkjHLSVlQx0ksEQZHPSNcfXeV6954ISWN+q8YJcSM04DSkGClNeebZneckQ1pz/JgFchzpL3ucQEd7FJwnHyannlm16ta04DKwC1AFRbU889sJYpxGhCvMkJR920qUmyGhKGZkUnFSSRKER2hA+hpyFBHpZtOjJvBEMwEMY6EfV3DKzjsyFMl8N90ZITWUi1pO/qf1UxU23IzyJFWE49mgMGVQxTBPCAZUEKzYWAOEBdW7QjxEAmGlc6zoEOzFk5dB57xuW3X75qLabBRxlMEROAY1YINL0ATXoAXaAIMn8ALewLvxbLwaH8bnrLVkFJ5D8KeMr18c/59y</latexit><latexit sha1_base64="TP0wCA7TvMnNTjjrjdgXJOfjhew=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0WoCCURwS4LblxWsA9oQphMJu3QySTOTMQa+hFu/BU3LhRx68Kdf+OkzaK2XhjmcM493HuPnzAqlWX9GKWV1bX1jfJmZWt7Z3fP3D/oyDgVmLRxzGLR85EkjHLSVlQx0ksEQZHPSNcfXeV6954ISWN+q8YJcSM04DSkGClNeebZneckQ1pz/JgFchzpL3ucQEd7FJwnHyannlm16ta04DKwC1AFRbU889sJYpxGhCvMkJR920qUmyGhKGZkUnFSSRKER2hA+hpyFBHpZtOjJvBEMwEMY6EfV3DKzjsyFMl8N90ZITWUi1pO/qf1UxU23IzyJFWE49mgMGVQxTBPCAZUEKzYWAOEBdW7QjxEAmGlc6zoEOzFk5dB57xuW3X75qLabBRxlMEROAY1YINL0ATXoAXaAIMn8ALewLvxbLwaH8bnrLVkFJ5D8KeMr18c/59y</latexit><latexit sha1_base64="TP0wCA7TvMnNTjjrjdgXJOfjhew=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0WoCCURwS4LblxWsA9oQphMJu3QySTOTMQa+hFu/BU3LhRx68Kdf+OkzaK2XhjmcM493HuPnzAqlWX9GKWV1bX1jfJmZWt7Z3fP3D/oyDgVmLRxzGLR85EkjHLSVlQx0ksEQZHPSNcfXeV6954ISWN+q8YJcSM04DSkGClNeebZneckQ1pz/JgFchzpL3ucQEd7FJwnHyannlm16ta04DKwC1AFRbU889sJYpxGhCvMkJR920qUmyGhKGZkUnFSSRKER2hA+hpyFBHpZtOjJvBEMwEMY6EfV3DKzjsyFMl8N90ZITWUi1pO/qf1UxU23IzyJFWE49mgMGVQxTBPCAZUEKzYWAOEBdW7QjxEAmGlc6zoEOzFk5dB57xuW3X75qLabBRxlMEROAY1YINL0ATXoAXaAIMn8ALewLvxbLwaH8bnrLVkFJ5D8KeMr18c/59y</latexit><latexit sha1_base64="TP0wCA7TvMnNTjjrjdgXJOfjhew=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0WoCCURwS4LblxWsA9oQphMJu3QySTOTMQa+hFu/BU3LhRx68Kdf+OkzaK2XhjmcM493HuPnzAqlWX9GKWV1bX1jfJmZWt7Z3fP3D/oyDgVmLRxzGLR85EkjHLSVlQx0ksEQZHPSNcfXeV6954ISWN+q8YJcSM04DSkGClNeebZneckQ1pz/JgFchzpL3ucQEd7FJwnHyannlm16ta04DKwC1AFRbU889sJYpxGhCvMkJR920qUmyGhKGZkUnFSSRKER2hA+hpyFBHpZtOjJvBEMwEMY6EfV3DKzjsyFMl8N90ZITWUi1pO/qf1UxU23IzyJFWE49mgMGVQxTBPCAZUEKzYWAOEBdW7QjxEAmGlc6zoEOzFk5dB57xuW3X75qLabBRxlMEROAY1YINL0ATXoAXaAIMn8ALewLvxbLwaH8bnrLVkFJ5D8KeMr18c/59y</latexit>

p�(x|z)
<latexit sha1_base64="Lzx9LffsryzPfUQTzpP4J8gisJs=">AAACFnicbVDLSsNAFJ34rPUVdelmsAh1YUlEsMuCG5cV7AOaECbTSTt08mDmRqyhX+HGX3HjQhG34s6/cdJmUVsvDHM45x7uvcdPBFdgWT/Gyura+sZmaau8vbO7t28eHLZVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXud65Z1LxOLqDccLckAwiHnBKQFOeeZ54DgwZkKrjx6KvxqH+socJdrQL8Dz5ODnzzIpVs6aFl4FdgAoqqumZ304/pmnIIqCCKNWzrQTcjEjgVLBJ2UkVSwgdkQHraRiRkCk3m541waea6eMglvpFgKfsvCMjocp3050hgaFa1HLyP62XQlB3Mx4lKbCIzgYFqcAQ4zwj3OeSURBjDQiVXO+K6ZBIQkEnWdYh2IsnL4P2Rc22avbtZaVRL+IooWN0gqrIRleogW5QE7UQRU/oBb2hd+PZeDU+jM9Z64pReI7QnzK+fgHM16Ba</latexit><latexit sha1_base64="Lzx9LffsryzPfUQTzpP4J8gisJs=">AAACFnicbVDLSsNAFJ34rPUVdelmsAh1YUlEsMuCG5cV7AOaECbTSTt08mDmRqyhX+HGX3HjQhG34s6/cdJmUVsvDHM45x7uvcdPBFdgWT/Gyura+sZmaau8vbO7t28eHLZVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXud65Z1LxOLqDccLckAwiHnBKQFOeeZ54DgwZkKrjx6KvxqH+socJdrQL8Dz5ODnzzIpVs6aFl4FdgAoqqumZ304/pmnIIqCCKNWzrQTcjEjgVLBJ2UkVSwgdkQHraRiRkCk3m541waea6eMglvpFgKfsvCMjocp3050hgaFa1HLyP62XQlB3Mx4lKbCIzgYFqcAQ4zwj3OeSURBjDQiVXO+K6ZBIQkEnWdYh2IsnL4P2Rc22avbtZaVRL+IooWN0gqrIRleogW5QE7UQRU/oBb2hd+PZeDU+jM9Z64pReI7QnzK+fgHM16Ba</latexit><latexit sha1_base64="Lzx9LffsryzPfUQTzpP4J8gisJs=">AAACFnicbVDLSsNAFJ34rPUVdelmsAh1YUlEsMuCG5cV7AOaECbTSTt08mDmRqyhX+HGX3HjQhG34s6/cdJmUVsvDHM45x7uvcdPBFdgWT/Gyura+sZmaau8vbO7t28eHLZVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXud65Z1LxOLqDccLckAwiHnBKQFOeeZ54DgwZkKrjx6KvxqH+socJdrQL8Dz5ODnzzIpVs6aFl4FdgAoqqumZ304/pmnIIqCCKNWzrQTcjEjgVLBJ2UkVSwgdkQHraRiRkCk3m541waea6eMglvpFgKfsvCMjocp3050hgaFa1HLyP62XQlB3Mx4lKbCIzgYFqcAQ4zwj3OeSURBjDQiVXO+K6ZBIQkEnWdYh2IsnL4P2Rc22avbtZaVRL+IooWN0gqrIRleogW5QE7UQRU/oBb2hd+PZeDU+jM9Z64pReI7QnzK+fgHM16Ba</latexit><latexit sha1_base64="Lzx9LffsryzPfUQTzpP4J8gisJs=">AAACFnicbVDLSsNAFJ34rPUVdelmsAh1YUlEsMuCG5cV7AOaECbTSTt08mDmRqyhX+HGX3HjQhG34s6/cdJmUVsvDHM45x7uvcdPBFdgWT/Gyura+sZmaau8vbO7t28eHLZVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXud65Z1LxOLqDccLckAwiHnBKQFOeeZ54DgwZkKrjx6KvxqH+socJdrQL8Dz5ODnzzIpVs6aFl4FdgAoqqumZ304/pmnIIqCCKNWzrQTcjEjgVLBJ2UkVSwgdkQHraRiRkCk3m541waea6eMglvpFgKfsvCMjocp3050hgaFa1HLyP62XQlB3Mx4lKbCIzgYFqcAQ4zwj3OeSURBjDQiVXO+K6ZBIQkEnWdYh2IsnL4P2Rc22avbtZaVRL+IooWN0gqrIRleogW5QE7UQRU/oBb2hd+PZeDU+jM9Z64pReI7QnzK+fgHM16Ba</latexit>

N (0, I)
<latexit sha1_base64="ah24JwkFU+akSqw/ekabSYL6yyM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJUkJKIYJcFN7qRCvYBbSiT6aQdOpmEmYlSYj/FjQtF3Pol7vwbJ20W2npg4HDOvdwzx485U9pxvq2V1bX1jc3CVnF7Z3dv3y4dtFSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj68yv/1ApWKRuNeTmHohHgoWMIK1kfp2qRdiPSKYp7fTinOGbk77dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNNpsZcoGmMyxkPaNVTgkCovnUWfohOjDFAQSfOERjP190aKQ6UmoW8ms6Bq0cvE/7xuooOalzIRJ5oKMj8UJBzpCGU9oAGTlGg+MQQTyUxWREZYYqJNW0VTgrv45WXSOq+6TtW9uyjXa3kdBTiCY6iAC5dQh2toQBMIPMIzvMKb9WS9WO/Wx3x0xcp3DuEPrM8fmfCS3Q==</latexit><latexit sha1_base64="ah24JwkFU+akSqw/ekabSYL6yyM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJUkJKIYJcFN7qRCvYBbSiT6aQdOpmEmYlSYj/FjQtF3Pol7vwbJ20W2npg4HDOvdwzx485U9pxvq2V1bX1jc3CVnF7Z3dv3y4dtFSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj68yv/1ApWKRuNeTmHohHgoWMIK1kfp2qRdiPSKYp7fTinOGbk77dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNNpsZcoGmMyxkPaNVTgkCovnUWfohOjDFAQSfOERjP190aKQ6UmoW8ms6Bq0cvE/7xuooOalzIRJ5oKMj8UJBzpCGU9oAGTlGg+MQQTyUxWREZYYqJNW0VTgrv45WXSOq+6TtW9uyjXa3kdBTiCY6iAC5dQh2toQBMIPMIzvMKb9WS9WO/Wx3x0xcp3DuEPrM8fmfCS3Q==</latexit><latexit sha1_base64="ah24JwkFU+akSqw/ekabSYL6yyM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJUkJKIYJcFN7qRCvYBbSiT6aQdOpmEmYlSYj/FjQtF3Pol7vwbJ20W2npg4HDOvdwzx485U9pxvq2V1bX1jc3CVnF7Z3dv3y4dtFSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj68yv/1ApWKRuNeTmHohHgoWMIK1kfp2qRdiPSKYp7fTinOGbk77dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNNpsZcoGmMyxkPaNVTgkCovnUWfohOjDFAQSfOERjP190aKQ6UmoW8ms6Bq0cvE/7xuooOalzIRJ5oKMj8UJBzpCGU9oAGTlGg+MQQTyUxWREZYYqJNW0VTgrv45WXSOq+6TtW9uyjXa3kdBTiCY6iAC5dQh2toQBMIPMIzvMKb9WS9WO/Wx3x0xcp3DuEPrM8fmfCS3Q==</latexit><latexit sha1_base64="ah24JwkFU+akSqw/ekabSYL6yyM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSJUkJKIYJcFN7qRCvYBbSiT6aQdOpmEmYlSYj/FjQtF3Pol7vwbJ20W2npg4HDOvdwzx485U9pxvq2V1bX1jc3CVnF7Z3dv3y4dtFSUSEKbJOKR7PhYUc4EbWqmOe3EkuLQ57Ttj68yv/1ApWKRuNeTmHohHgoWMIK1kfp2qRdiPSKYp7fTinOGbk77dtmpOjOgZeLmpAw5Gn37qzeISBJSoQnHSnVdJ9ZeiqVmhNNpsZcoGmMyxkPaNVTgkCovnUWfohOjDFAQSfOERjP190aKQ6UmoW8ms6Bq0cvE/7xuooOalzIRJ5oKMj8UJBzpCGU9oAGTlGg+MQQTyUxWREZYYqJNW0VTgrv45WXSOq+6TtW9uyjXa3kdBTiCY6iAC5dQh2toQBMIPMIzvMKb9WS9WO/Wx3x0xcp3DuEPrM8fmfCS3Q==</latexit>

W
<latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit><latexit sha1_base64="5r2I0wad77bSzyICVEspKQF+4Gk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSqzssV9yquwTZJF5OKpCjOSx/DUYxSyOUhgmqdd9zE+NnVBnOBM5Lg1RjQtmUjrFvqaQRaj9bHjonV1YZkTBWtqQhS/X3REYjrWdRYDsjaiZ63VuI/3n91IR1P+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6btVr3VYa9TyOIlzAJVyDBzVowD00oQ0MEJ7hFd6cR+fFeXc+Vq0FJ585hz9wPn8AsTOM0Q==</latexit>

h = µ + � � ✏
<latexit sha1_base64="Jp2UFBOVK3wO0hQTGoqglx7jpjs=">AAACCHicbVC7SgNBFL3rM8ZXNKWFgyEgCGHXxjRCwMYygnlANoTZ2UkyZGZnmZkVwpJOG3/FxkIRWz/Bzs5PcTZJoYkHBg7nnMude4KYM21c98tZWV1b39jMbeW3d3b39gsHh00tE0Vog0guVTvAmnIW0YZhhtN2rCgWAaetYHSV+a07qjST0a0Zx7Qr8CBifUawsVKvcDxEl8gXCTpDvmYDgZEvQ2mQT2PNeJYouRV3CrRMvDkp1Yrl+28AqPcKn34oSSJoZAjHWnc8NzbdFCvDCKeTvJ9oGmMywgPasTTCgupuOj1kgspWCVFfKvsig6bq74kUC63HIrBJgc1QL3qZ+J/XSUy/2k1ZFCeGRmS2qJ9wZCTKWkEhU5QYPrYEE8XsXxEZYoWJsd3lbQne4snLpHle8dyKd2PbqMIMOTiCEzgFDy6gBtdQhwYQeIAneIFX59F5dt6c91l0xZnPFOEPnI8fLx+aUg==</latexit><latexit sha1_base64="kUTd8fpX2swTqjjxgyheWFO8p/U=">AAACCHicbVDLSgMxFM3UV62vapcuDJaCIJQZN3YjFNy4rGAf0BlKJpNpQ5PJkGSEMnSnG3/FjQtF3LrwA9zpB/gFfoCZtgttPRA4nHMuN/f4MaNK2/aHlVtaXlldy68XNja3tneKu3stJRKJSRMLJmTHR4owGpGmppqRTiwJ4j4jbX94nvntayIVFdGVHsXE46gf0ZBipI3UKx4M4Bl0eQKPoatonyPoikBo6JJYUZYlynbVngAuEmdGyvVS5eb77euz0Su+u4HACSeRxgwp1XXsWHspkppiRsYFN1EkRniI+qRraIQ4UV46OWQMK0YJYCikeZGGE/X3RIq4UiPumyRHeqDmvUz8z+smOqx5KY3iRJMITxeFCYNawKwVGFBJsGYjQxCW1PwV4gGSCGvTXcGU4MyfvEhaJ1XHrjqXpo0amCIP9sEhOAIOOAV1cAEaoAkwuAX34BE8WXfWg/VsvUyjOWs2UwJ/YL3+AKkcnOw=</latexit><latexit sha1_base64="kUTd8fpX2swTqjjxgyheWFO8p/U=">AAACCHicbVDLSgMxFM3UV62vapcuDJaCIJQZN3YjFNy4rGAf0BlKJpNpQ5PJkGSEMnSnG3/FjQtF3LrwA9zpB/gFfoCZtgttPRA4nHMuN/f4MaNK2/aHlVtaXlldy68XNja3tneKu3stJRKJSRMLJmTHR4owGpGmppqRTiwJ4j4jbX94nvntayIVFdGVHsXE46gf0ZBipI3UKx4M4Bl0eQKPoatonyPoikBo6JJYUZYlynbVngAuEmdGyvVS5eb77euz0Su+u4HACSeRxgwp1XXsWHspkppiRsYFN1EkRniI+qRraIQ4UV46OWQMK0YJYCikeZGGE/X3RIq4UiPumyRHeqDmvUz8z+smOqx5KY3iRJMITxeFCYNawKwVGFBJsGYjQxCW1PwV4gGSCGvTXcGU4MyfvEhaJ1XHrjqXpo0amCIP9sEhOAIOOAV1cAEaoAkwuAX34BE8WXfWg/VsvUyjOWs2UwJ/YL3+AKkcnOw=</latexit><latexit sha1_base64="OtP30//48+JbrWFBFhe7SmdQh8Q=">AAACCHicbVDLSgMxFM34rPVVdenCYBEEocy4sRuh4MZlBfuAzlAymbQNTSZDckcoQ5du/BU3LhRx6ye482/MtLPQ1gOBwznncnNPmAhuwHW/nZXVtfWNzdJWeXtnd2+/cnDYNirVlLWoEkp3Q2KY4DFrAQfBuolmRIaCdcLxTe53Hpg2XMX3MElYIMkw5gNOCVipXzkZ4WvsyxRfYN/woSTYV5EC7LPEcJEnqm7NnQEvE68gVVSg2a98+ZGiqWQxUEGM6XluAkFGNHAq2LTsp4YlhI7JkPUsjYlkJshmh0zxmVUiPFDavhjwTP09kRFpzESGNikJjMyil4v/eb0UBvUg43GSAovpfNEgFRgUzlvBEdeMgphYQqjm9q+YjogmFGx3ZVuCt3jyMmlf1jy35t251Ua9qKOEjtEpOkceukINdIuaqIUoekTP6BW9OU/Oi/PufMyjK04xc4T+wPn8Aa1LmHY=</latexit>

Figure 1: Model architecture

with bias. We choose the multi-layer perceptron
(MLP) in the encoder to have two hidden layers
with 3 ⇥ K and 2 ⇥ K hidden units respectively,
and we use the sigmoid activation function. The de-
coder network p✓(x|z) first maps z to the predicted
probability of each of the word in the vocabulary
y 2 R

|V |⇥1 through y = softmax(Wz + b), where
W 2 R

|V |⇥K . The log-likelihood of the document
can be written as log p✓(x|z) =

P|V |
i=1{x � log y}.

We name this model Neural Topic Model (NTM)
and use it as our baseline. We use the same encoder
MLP configuration for our NVDM implementation
and all variants of NTM models used in Section 3.
In NTM, the objective function to maximize is the
usual evidence lower bound (ELBO) which can be
expressed as

LELBO(xi)

⇡ 1

L

LX

l=1

log p✓(x
i|zi,l) � DKL(q�(h|x)||p✓(h)

where zi,l = ReLU(h(xi, ✏l)), ✏l ⇠ N (0, I).
We approximate Ez⇠q(z|x)[log p✓(x|z)] with Monte
Carlo integration and calculate the Kullback-
Liebler (KL) divergence analytically using the fact
DKL(q�(z|x)||p✓(z)) = DKL(q�(h|x)||p✓(h))
due to the invariance of KL divergence under deter-
ministic mapping between h and z.

Compared to NTM, NVDM uses different ac-
tivation functions and has z = h. Miao (2017)
proposed a modification to NVDM called Gaus-
sian Softmax Model (GSM) corresponding to hav-
ing z = softmax(h). Srivastava (2017) proposed
a model called ProdLDA, which uses a Dirichlet
prior instead of Gaussian prior for the latent vari-
able h. Given a learned W , the practice to extract
top-N most probable words for each topic is to
take the most positive entries in each column of
W (Miao et al., 2016, 2017; Srivastava and Sutton,
2017). This is an intuitive choice, provided that z

is non-negative, which is indeed the case for NTM,
GSM and ProdLDA. NVDM, GSM, and ProdLDA
are state-of-the-art neural topic models which we
will use for comparison in Section 3.

2.2 Topic Coherence Regularization: NTM-R
The topic coherence metric NPMI (Aletras and
Stevenson, 2013; Lau et al., 2014) is defined as

NPMI(w)

=
1

N(N � 1)

NX

j=2

j�1X

i=1

log P (wi,wj)
P (wi)P (wj)

� log P (wi, wj)

where w is the list of top-N words for a topic.
N is usually set to 10. For a model generating
K topics, the overall NPMI score is an average
over all topics. The computational overhead and
non-differentiability originate from extracting the
co-occurrence frequency from a large corpus1.

From the NPMI formula, it is clear that word-
pairs that co-occur often would score high, unless
they are rare word-pairs – which would be normal-
ized out by the denominator. The NPMI scoring
bears remarkable resemblance to the contextual
similarity produced by the inner product of word
embedding vectors. Along this line of reasoning,
we construct a differentiable, computation-efficient
word embedding based topic coherence (WETC).

Let E be the row-normalized word embedding
matrix for a list of N words, such that E 2 R

N⇥D

and kEi,:k = 1, where D is the dimension of the
embedding space. We can define pair-wise word
embedding topic coherence in a similar spirit as
NPMI:

WETCPW (E) =
1

N(N � 1)

NX

j=2

j�1X

i=1

hEi,:, Ej,:i

=

P
{ET E} � N

2N(N � 1)

where h·, ·i denotes inner product. Alternatively,
we can define centroid word embedding topic co-
herence

WETCC(E) =
1

N

X
{EtT }

where vector t 2 R
1⇥D is the centroid of E, nor-

malized to have ktk = 1. Empirically, we found
1A typical calculation of NPMI over 50 topics based on

the Wikipedia corpus takes ⇠20 minutes, using code provided
by (Lau et al., 2014) at https://github.com/jhlau/
topic_interpretability.
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that the two WETC formulations behave very sim-
ilarly. In addition, both WETCPW and WETCC

correlate to human judgement almost equally well
as NPMI when using GloVe (Pennington et al.,
2014) vectors2.

With the above observations, we propose the
following procedure to construct a WETC-based
surrogate topic coherence regularization term: (1)
let E 2 R

|V |⇥D be the pre-trained word embed-
ding matrix for the vocabulary, rows aligned with
W ; (2) form the W -weighted centroid (topic) vec-
tors T 2 R

D⇥K by T = ET W ; (3) calculate
the cosine similarity matrix S 2 R

|V |⇥K between
word vectors and topic vectors by S = ET ; (4)
calculate the W -weighted sum of word-to-topic
cosine similarities for each topic C 2 R

1⇥K as
C =

P
i(S � W )i,:. Compared to WETCC , in

calculating C we do not perform top-N operation
in W , but directly use W for weighted sum. Specif-
ically, we use W -weighted topic vector construc-
tion in Step-2 and W -weighted sum of the cosine
similarities between word vectors and topic vectors
in Step-4. To avoid unbounded optimization, we
normalize the rows of E and the columns of W be-
fore Step-2, and normalize the columns of T after
Step-2. The overall maximization objective func-
tion becomes LR(x; ✓,�) = LELBO + �

P
i Ci,

where � is a hyper-parameter with positive values
controlling the strength of topic coherence regular-
ization. We name this model NTM-R.

2.3 Word Embedding as a Factorization
Constraint: NTM-F and NTM-FR

Instead of allowing all the elements in W to be
freely optimized, we can impose a factorization
constraint of W = ET̂ , where E is the pre-trained
word embedding matrix that is fixed, and only T̂
is allowed to be learned through training. Under
this configuration, T̂ lives in the embedding space,
and each entry in W is the dot product similarity
between a topic vector T̂i and a word vector Ej . As
one can imagine, similar words would have similar
vector representations in E and would have similar
weights in each column of W . Therefore the fac-
torization constraint encourages words with similar
meaning to be selected or de-selected together thus
potentially improving topic coherence.

We name the NTM model with factorization con-
straint enabled as NTM-F. In addition, we can apply

2See Appendix A for details on an empirical study of
human judgement of topic coherence, NPMI and WETC with
various types of word embeddings.

Metric Perplexity NPMI

Number of topics 50 200 50 200

LDA

LDA, mean-field 1046 1195 0.11 0.06
LDA, collapsed Gibbs 728 688 0.17 0.14

Neural Models

NVDM 750 743 0.14 0.13
GSM 787 829 0.22 0.19
ProdLDA 1172 1168 0.28 0.24
NTM 780 768 0.18 0.18
NTM-R 775 763 0.28 0.23
NTM-F 898 1086 0.29 0.24
NTM-FR 924 1225 0.27 0.26

Table 1: Comparison to LDA and neural variational
models on the 20NewsGroup dataset. Best numbers
are bolded. The blue underlined row highlights the
best NPMI and perplexity tradeoff as discussed in
text.

the regularization discussed in the previous section
on the resulting matrix W and we name the result-
ing model NTM-FR.

3 Experiments and Discussions

3.1 Results on 20NewsGroup
First, we compare the proposed models to state-
of-the-art neural variational inference based topic
models in the literature (NVDM, GSM, and
ProdLDA) as well as LDA benchmarks, on the
20NewsGroup dataset3. In training NVDM and
all NTM models, we used Adadelta optimizer
(Zeiler, 2012). We set the learning rate to 0.01 and
train with a batch size of 256. For NTM-R, NTM-
F and NTM-FR, the word embedding we used
is GloVe (Pennington et al., 2014) vectors pre-
trained on Wikipedia and Gigaword with 400,000
vocabulary size and 50 embedding dimensions4.
The topic coherence regularization coefficient � is
set to 50. The results are presented in Table 1.

Overall we can see that LDA trained with col-
lapsed Gibbs sampling achieves the best perplexity,
while NTM-F and NTM-FR models achieve the
best topic coherence (in NPMI). Clearly, there is a
trade-off between perplexity and NPMI as identi-
fied by other papers. So we constructed Figure 2,
which shows the two metrics from various models.
For the models we implemented, we additionally

3We use the exact dataset from (Srivastava and Sutton,
2017) to avoid subtle differences in pre-processing

4Obtained from https://nlp.stanford.edu/
projects/glove/
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Figure 2: NPMI vs. perplexity for various models at 50 topics. For NVDM and NTM models the traces
correspond to the evolution over training epochs. High transparency is the beginning of the training.

show the full evolution of these two metrics over
training epochs.

From Figure 2, it becomes clear that although
ProdLDA exhibits good performance on NPMI,
it is achieved at a steep cost of perplexity, while
NTM-R achieves similar or better NPMI at much
lower perplexity levels. At the other end of the
spectrum, if we look for low perplexity, the best
numbers among neural variational models are be-
tween 750 and 800. In this neighborhood, NTM-R
substantially outperforms the GSM, NVDM and
NTM baseline models. Therefore, we consider
NTM-R the best model overall. Different down-
stream applications may require different tradeoff
points between NPMI and perplexity. However, the
proposed NTM-R model does appear to provide
tradeoff points on a Pareto front compared to other
models across most of the range of perplexity.

3.2 Comments on NTM-F and NTM-FR
It is worth noting that although NTM-F and NTM-
FR exhibit high NPMI early on, they fail to main-
tain it during the training process. In addition, both
models converged to fairly high perplexity levels.
Our hypothesis is that this is caused by NTM-F and
NTM-FR’s substantially reduced parameter space -
from |V | ⇥ K to D ⇥ K, where |V | ranges from
1,000 to 150,000 in a typical dataset, while D is on
the order of 100.

Some form of relaxation could alleviate this
problem. For example, we can let W = ET̂ + A,
where A is of size |V | ⇥ K but is heavily regu-
larized, or let W = EQT̂ where Q is allowed as
additional free parameters. We leave fully address-

ing this to future work.

3.3 Validation on other Datasets

To further validate the performance improvement
from using WETC-based regularization in NTM-R,
we compare NTM-R with the NTM baseline model
on a few more datasets: DailyKOS, NIPS, and
NYTimes5 (Asuncion and Newman, 2007). These
datasets offer a wide range of document length
(ranging from ⇠100 to ⇠1000 words), vocabulary
size (ranging from ⇠7,000 to ⇠140,000), and type
of documents (from news articles to long-form sci-
entific writing). In this set of experiments, we used
the same settings and hyperparameter � as before
and did not fine-tune for each dataset. The results
are presented in Figure 3. In a similar style as Fig-
ure 2, we show the evolution of NPMI and WETC
versus perplexity over epochs until convergence.

Among all datasets, we observed improved
NPMI at the same perplexity level, validating the
effectiveness of the topic coherence regularization.
However, on the NYTimes dataset, the improve-
ment is quite marginal even though WETC im-
provements are very noticeable. One particularity
about the NYTimes dataset is that approximately
58,000 words in the 140,000-word vocabulary are
named entities. It appears that the large number
of named entities resulted in a divergence between
NPMI and WETC scoring, which is an issue to
address in the future.

5https://archive.ics.uci.edu/ml/
datasets/Bag+of+Words
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Figure 3: Performance comparison between NTM-R and NTM on multiple datasets, with 50 topics. Top
row is NPMI versus perplexity, bottom row is WETCC versus perplexity. From left to right: DailyKOS,
NIPS, and NYTimes. See text for details about the datasets.

4 Conclusions

In this work, we proposed regularization and factor-
ization constraints based approaches to incorporate
awareness of topic coherence into the formulation
of topic models: NTM-R and NTM-F respectively.
We observed that NTM-R substantially improves
topic coherence with minimal sacrifice in perplex-
ity. To our best knowledge, NTM-R is the first topic
model that is trained with an objective towards
topic coherence – a feature directly contributing to
its superior performance. We further showed that
the proposed WETC-based regularization method
is applicable to a wide range of text datasets.
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A Word Embedding Topic Coherence

As studied in (Aletras and Stevenson, 2013) and
(Lau et al., 2014), the NPMI metric for assessing
topic coherence over a list of words w is defined
in Eq. 1.

NPMI(w)

=
1

N(N � 1)

NX

j=2

j�1X

i=1

log P (wi,wj)
P (wi)P (wj)

� log P (wi, wj)

(1)

where P (wi) and P (wi, wj) are the probability of
words and word pairs, calculated based on a refer-
ence corpus. N is usually set to 10, by convention,
so that NPMI is evaluated over the topic-10 words
for each topic. For a model generating K topics,
the overall NPMI score is an average over all the
topics. The computational overhead comes from ex-
tracting the relevant co-occurrence frequency from
a large corpus. This problem is exacerbated when
the look-up also requires a small sliding window as
the authors of (Lau et al., 2014) suggested. A typi-
cal calculation of 50 topics based on a few million
documents from the Wikipedia corpus takes ⇠20
minutes6.

6Using code provided by (Lau et al., 2014) at https://
github.com/jhlau/topic_interpretability.
Running parallel processes on 8 Intel Xeon E5-2686 CPUs.

For a list of words w of length N , we can as-
semble a corresponding word embedding matrix
E 2 R

N⇥D with each row corresponding to a word
in the list. D is the dimension of the embedding
space. Averaging across the rows, we can obtain
vector t 2 R

1⇥D as the centroid of all the word
vectors. It may be regarded as a "topic" vector. In
addition, we assume that each row of E and t is
normalized, i.e. ktk = 1 and kEi,:k = 1. With
these, we define pair-wise and centroid word em-
bedding topic coherence WETCPW and WETCC

as follows:

WETCPW (E) =
1

N(N � 1)

NX

j=2

j�1X

i=1

hEi,:, Ej,:i

=

P
{ET E} � N

2N(N � 1)
(2)

WETCC(E) =
1

N

X
{EtT } (3)

where h·, ·i denotes inner product. The simplifica-
tion in Eq. 2 is due to the row normalization of
E.

In this setting, we have the flexibility to use any
pre-trained word embeddings to construct E. To ex-
periment, we compared several recently developed
variants 7. The dataset from (Aletras and Steven-
son, 2013) provides human ratings for 300 topics
coming from 3 corpora: 20NewsGroup (20NG),
New York Times (NYT) and genomics scientific ar-
ticles (Genomics), which we use as the human gold
standard. We use Pearson and Spearman correla-
tions to compare NPMI and WETC scores against
human ratings. The results are shown in Table 2.

7Details of pre-trained word embeddings used in Table 2

• Word2Vec (Mikolov et al., 2013): pre-trained on
GoogleNews, with 3 million vocabulary size and 300
embedding dimension. Obtained from https://
code.google.com/archive/p/word2vec/.

• GloVe (Pennington et al., 2014): pre-trained on
Wikipedia and Gigaword, with 400,000 vocabu-
lary size and 50 and 300 embedding dimension.
Obtained from https://nlp.stanford.edu/
projects/glove/.

• FastText (Joulin et al., 2016): pre-trained on
Wikipedia with 2.5 million vocabulary size and 300
embedding dimension. Obtained from https://
github.com/facebookresearch/fastText.

• LexVec (Salle et al., 2016): pre-trained on Wikipedia
with 370,000 vocabulary size and 300 embedding di-
mension. Obtained from https://github.com/
alexandres/lexvec.

835



Dataset 20NG NYT Genomics

Correlation P S P S P S

NPMI 0.74 0.74 0.72 0.71 0.62 0.65

GloVe-50d
WETCPW 0.82 0.77 0.73 0.71 0.65 0.65

WETCC 0.81 0.77 0.73 0.71 0.65 0.65

GloVe-300d
WETCPW 0.77 0.75 0.78 0.76 0.68 0.70

WETCC 0.80 0.75 0.78 0.76 0.68 0.70

Word2Vec
WETCPW 0.29 0.23 0.53 0.59 0.56 0.55

WETCC 0.31 0.23 0.55 0.59 0.56 0.55

FastText
WETCPW 0.40 0.61 0.63 0.67 0.62 0.62

WETCC 0.48 0.61 0.64 0.67 0.63 0.62

LexVec
WETCPW 0.37 0.57 0.79 0.80 0.65 0.64

WETCC 0.47 0.57 0.81 0.80 0.65 0.64

Table 2: NPMI and WETC correlation with human
gold standard (P: Pearson, S: Spearman)

From Table 2 we observed a minimal difference
between pair-wise and centroid based WETC in
general. Overall, GloVe appears to perform the
best across different types of corpora and its cor-
relation with human ratings is very comparable
to NPMI-based scores. Our NPMI calculation is
based on the Wikipedia corpus and should serve as
a fair comparison. In addition to the good correla-
tion exhibited by WETC, the evaluation of WETC
only involves matrix multiplications and summa-
tions and thus is fully differentiable and several
orders of magnitude faster than NPMI calculations.
WETC opens the door of incorporating topic coher-
ence as a training objective, which is the key idea
we will investigate in the subsequent sections. It
is worth mentioning that, for GloVe, the low di-
mensional embedding (50d) appears to perform al-
most equally well as high dimensional embedding
(300d). Therefore, we will use Glove-400k-50d in
all subsequent experiments.

While the WETC metric on its own might be of
interest to the topic modeling research community,
we leave the task of formally establishing it as a
standard metric in place of NPMI to future work.
In this work, we still use the widely accepted NPMI
as the objective topic coherence metric for model
comparisons.
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Abstract
Text normalization is an important enabling
technology for several NLP tasks. Recently,
neural-network-based approaches have out-
performed well-established models in this
task. However, in languages other than En-
glish, there has been little exploration in this
direction. Both the scarcity of annotated data
and the complexity of the language increase
the difficulty of the problem. To address these
challenges, we use a sequence-to-sequence
model with character-based attention, which
in addition to its self-learned character embed-
dings, uses word embeddings pre-trained with
an approach that also models subword infor-
mation. This provides the neural model with
access to more linguistic information espe-
cially suitable for text normalization, without
large parallel corpora. We show that providing
the model with word-level features bridges the
gap for the neural network approach to achieve
a state-of-the-art F1 score on a standard Ara-
bic language correction shared task dataset.

1 Introduction

Text normalization systems have many potential
applications – from assisting native speakers and
language learners with their writing, to supporting
NLP applications with sparsity reduction by clean-
ing large textual corpora. This can help improve
benchmarks across many NLP tasks.

In recent years, neural encoder-decoder models
have shown promising results in language tasks
like translation, part-of-speech tagging, and text
normalization, especially with the use of an atten-
tion mechanism. In text normalization, however,
previous state-of-the-art results rely on developing
many other pipelines on top of the neural model.
Furthermore, such neural approaches have barely
been explored for this task in Arabic, where pre-
vious state-of-the-art systems rely on combining
various statistical and rule-based approaches.

We experiment with both character embeddings
and pre-trained word embeddings, using several
embedding models, and we achieve a state-of-the-
art F1 score on an Arabic spelling correction task.

2 Related Work

The encoder-decoder neural architecture
(Sutskever et al., 2014; Cho et al., 2014) has
shown promising results in text normalization
tasks, particularly in character-level models (Xie
et al., 2016; Ikeda et al., 2016). More recently,
augmenting this neural architecture with the
attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015) has dramatically increased
the quality of results across most NLP tasks.
However, in text normalization, state-of-the-art
results involving attention (e.g., Xie et al. 2016)
also rely on several other models during inference,
such as language models and classifiers to filter
suggested edits. Neural architectures at the word
level inherently rely on multiple models to align
and separately handle out-of-vocabulary (OOV)
words (Yuan and Briscoe, 2016).

In the context of Arabic, we are only aware of
one attempt to use a neural model for end-to-end
text normalization (Ahmadi, 2017), but it fails to
beat all baselines reported later in this paper. Ara-
bic diacritization, which can be considered forms
of text normalization, has received a number of
neural efforts (Belinkov and Glass, 2015; Abandah
et al., 2015). However, state-of-the-art approaches
for end-to-end text normalization rely on several
additional models and rule-based approaches as
hybrid models (Pasha et al., 2014; Rozovskaya
et al., 2014; Nawar, 2015; Zalmout and Habash,
2017), which introduce direct human knowledge
into the system, but are limited to correcting spe-
cific mistakes and rely on expert knowledge to be
developed.
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3 Approach

Many common mistakes addressed by text nor-
malization occur fundamentally at the character
level. Moreover, the input data tends to be too
noisy for a word-level neural model to be an end-
to-end solution due to the high number of OOV
words. In Arabic, particularly, mistakes may range
from simple orthographic errors (e.g., positioning
of Hamzas) and keyboard errors to dialectal code
switching and spelling variations, making the task
more challenging than a generic language correc-
tion task. We opt for a character-level neural ap-
proach to capture these highly diverse mistakes.
While this method is less parallelizable due to the
long sequence lengths, it is still more efficient due
to the small vocabulary size, making inference and
beam search computationally feasible.

3.1 Neural Network Architecture

Given an input sentence x and its corrected ver-
sion y, the objective is to model P (y|x). The
vocabulary can consist of any number of unique
tokens, as long as the following are included: a
padding token to make input batches have equal
length, the two canonical start-of-sentence and
end-of-sentence tokens of the encoder-decoder ar-
chitecture, and an OOV token to replace any char-
acter outside the training data during inference.
Each character xi in the source sentence x is
mapped to the corresponding dce-dimensional row
vector ci of a learnable dvoc ⇥ dce embedding ma-
trix, initialized with a random uniform distribution
with mean 0 and variance 1. For the encoder, we
learn d-dimensional representations for the sen-
tence with two gated recurrent unit (GRU) lay-
ers (Cho et al., 2014), making only the first layer
bidirectional following Wu et al. (2016). Like
long short-term memory (Hochreiter and Schmid-
huber, 1997), GRU layers are well-known to im-
prove the performance of recurrent neural net-
works (RNN), but are slightly more computation-
ally efficient than the former.

For the decoder, we use two GRU layers along
with the attention mechanism proposed by Luong
et al. (2015) over the encoder outputs hi. The
initial states for the decoder layers are learned
with a fully-connected tanh layer in a similar
fashion to Cho et al. (2014), but we do so from
the first encoder output. During training, we use
scheduled sampling (Bengio et al., 2015) and feed
the dce-dimensional character embeddings at ev-

⊕

h1 h2 h3

f1 
b1

f2 
b2

f3 
b3

rtrt-1

hT

fT 
bT

…

……

……

stst-1 ……

Figure 1: Illustration of the encoder and decoder recur-
rent layers.

ery time step, but using a constant sampling prob-
ability. While tuning scheduled sampling, we
found that introducing a sampling probability pro-
vided better results than relying on the ground
truth, i.e., teacher forcing (Williams and Zipser,
1989). However, introducing a schedule did not
yield any improvement as opposed to keeping the
sampling probability constant and unnecessarily
complicates hyperparameter search. For both the
encoder and decoder RNNs, we also use dropout
(Srivastava et al., 2014) on the non-recurrent con-
nections of both the encoder and decoder layers
during training.

The decoder outputs are fed to a final softmax
layer that reshapes the vectors to dimension dvoc

to yield an output sequence y. The loss function
is the canonical cross-entropy loss per time step
averaged over the yi.

3.2 Word Embeddings

To address the challenge posed by the small
amount of training data, we propose adding pre-
trained word-level information to each charac-
ter embedding. To learn these word representa-
tions, we use FastText (Bojanowski et al., 2016),
which extends Word2Vec (Mikolov et al., 2013)
by adding subword information to the word vec-
tor. This is very suitable for this task, not only be-
cause many mistakes occur at the character level,
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Figure 2: Illustration showing how the character em-
beddings are enriched with word-level features.

but also because FastText handles almost all OOVs
by omitting the Word2Vec representation and sim-
ply using the subword-based representation. It is
possible, yet extremely rare that FastText cannot
handle a word– this can occur if the word contains
an OOV n-gram or character that did not appear in
the data used to train the embeddings. It should
also be noted that these features are only fed to the
encoder layer; the decoder layer only receives dce-
dimensional character embeddings as inputs, and
the softmax layer has a dvoc-dimensional output.

Each character embedding ci is replaced by
the concatenation [ci;wj] before being fed to the
encoder-decoder model, where wj is the dwe-
dimensional word embedding for the word in
which ci appears in. This effectively handles al-
most all cases except white spaces, in which we
just always append a dwe-dimensional vector w_
initialized with a random uniform distribution of
mean 0 and variance 1. For OOVs, we just append
the whitespace embedding w_ to the word’s char-
acters.

3.3 Inference

During inference, the decoder layer uses a beam
search, keeping a fixed number (i.e., beam width)
of prediction candidates with the highest log-
likelihood at each step. Whenever an "end-of-
sentence" token is produced in a beam, the decoder
stops predicting further tokens for it. We then
pick the individual beam with the highest overall
log-likelihood as our prediction. As a final step,
we reduce text sequences that are repeated six or
more times to a threshold of 5 repetitions (e.g.,
"abababababab" ! "ababababab"). This
helps address rare cases where the decoder mis-
behaves and produces non-stop repetitions of text,

Baseline P R F1

MLE 77.08 41.56 54.00
MADAMIRA 77.47 32.10 45.39
MLE then MADAMIRA 64.38 38.42 48.12
MADAMIRA then MLE 73.55 44.61 55.54

Table 1: Baselines scores on the QALB 2014 shared
task development set.

and also helps avoid extreme running times for
the NUS MaxMatch scorer (Dahlmeier and Ng,
2012), which we use for evaluation and compar-
ison purposes.

4 Evaluation

4.1 Data
We tested the proposed approach on the QALB
dataset, a corpus for Arabic language correction
and subject of two shared tasks (Zaghouani et al.,
2014; Mohit et al., 2014; Rozovskaya et al., 2015).
Following the guidelines of both shared tasks, we
only used the training data of the QALB 2014
shared task corpus (19,411 sentences). Similarly,
the validation dataset used is only that of the
QALB 2014 shared task, consisting of 1,017 sen-
tences. We use two blind tests, one from each year.
During training, we only kept sentences of up to
400 characters in length, resulting in the loss of
172 sentences.

4.2 Metric
Like in the QALB shared tasks, we use the Max-
Match scorer to compute the optimal word-level
edits that map each source sentence to its respec-
tive corrected sentence. We report the F1 score
of these edits against those provided in the gold
data by the same tool. We compare against the
best reported system in the QALB 2014 shared
task test set (CLMB) (Rozovskaya et al., 2014),
as well as the best in the QALB 2014 shared task
development and the QALB 2015 shared task test
sets (CUFE) (Nawar, 2015).

4.3 Baselines
We consider two different baselines. The first is
the output from MADAMIRA (Pasha et al., 2014),
a tool for morphological analysis and disambigua-
tion of Arabic. The second is using maximum
likelihood estimation (MLE) based on the counts
of the MaxMatch gold edits from the training data;
that is, each word or phrase gets either replaced
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Model P R F1

Wide embeds 80.80 59.80 68.73
+ preprocessing 79.63 58.81 67.57

Narrow embeds 80.00 62.46 70.15
+ preprocessing 80.25 57.80 67.20

Concat embeds 80.74 61.10 69.56
+ preprocessing 79.81 58.28 67.37

CUFE (Nawar, 2015) – – 68.72

Table 2: System scores on the QALB 2014 shared task
development dataset for the different FastText embed-
dings.

or kept as is, depending on the most common
action in the training data. We found that, un-
like Eskander et al. (2013) suggested, first using
MADAMIRA and then MLE yields better results
than composing these in the reverse order. The re-
sults are presented in Table 1.

4.4 Model Settings

In all experiments, we used batch and character
embedding sizes of b = dce = 128, hidden layer
size of d = 256, dropout probability of 0.1, de-
coder sampling probability of 0.35, and gradient
clipping with a maximum norm of 10. When run-
ning all the trained models during inference, we
used a beam width of 5. We used the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.0005, ✏=1·10�8, �1=0.9, and �2=0.999, and
trained the model for 30 epochs. We report three
different setups with FastText word embeddings:
narrow, wide, and the concatenation of both. For
each of these, we report results on two separately
trained models: one without preprocessing, and
one with MADAMIRA and then MLE preprocess-
ing to the inputs. We also report an ablation study
where we choose the best of these six trained mod-
els and compare against two separately trained
models with identical setups, but using Word2Vec
and no word-level features, respectively.

All the word embeddings used are of dimen-
sion dwe =300, and were trained with a single
epoch over the Arabic Gigaword corpus (Parker
et al., 2011). In the experiments including prepro-
cessing, the respective word vectors were obtained
from Gigaword preprocessed with MADAMIRA.
The narrow and wide word embeddings were
trained with context windows of sizes 2 and 5, re-
spectively. All other hyperparameters were kept to
the default FastText values, except the minimum

Model P R F1

No word embeds 81.55 56.13 66.49
Word2Vec 82.16 51.53 63.33
FastText 80.00 62.46 70.15

Table 3: Ablation tests on the QALB 2014 shared task
development dataset. All settings used no preprocess-
ing and narrow word embeddings.

n-gram size, which was reduced from 3 to 2 to
compensate for single-character prefixes and suf-
fixes that appear in Arabic when omitting the short
vowels (Erdmann et al., 2018).

4.5 Results
Development set results are shown in Tables 2
and 3, test set results in Table 4. In all mod-
els, training without preprocessing consistently
yielded better results than their analogues with the
inputs pre-fed to MADAMIRA and then MLE. All
the FastText embeddings setups with no prepro-
cessing outperformed the previous state-of-the-art
results in the development dataset. We hypothe-
size that this is occurs because the model has ac-
cess to more examples of errors to normalize dur-
ing training, thereby increasing performance. The
best performing model was that with the narrow
word embeddings; consistent with the results of
Zalmout et al. (2018) showing the superior perfor-
mance of narrow word embeddings over both wide
embeddings and the concatenation of both. This
is justified by Goldberg (2015) and Trask et al.
(2015), who illustrate that wider word embeddings
tend to capture more semantic information, while
narrower word embeddings model more syntactic
phenomena.

In our ablation study, we compared the perfor-
mance of the narrow FastText embeddings against
narrow Word2Vec embeddings trained over the
same Arabic Gigaword corpus with the same hy-
perparameters, as well as to no word-level embed-
dings at all. The results, displayed in Table 3,
show that using only Word2Vec slightly increases
precision but significantly hurts recall. This high-
lights the effectiveness of using FastText for text
normalization, as well as the need to handle OOVs
in a noisy context for word-level representations to
help in this particular problem. Despite that hav-
ing OOV cases can help the model by indicating
that a word is likely erroneous, this does not pro-
vide linguistic information the way FastText does.
The narrow FastText embeddings with no prepro-
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(2014) (2015)
Model F1 F1

MADAMIRA then MLE 55.56 60.98
CLMB (Rozovskaya et al., 2014) 67.91 –
CUFE (Nawar, 2015) 66.68 72.87
Narrow embeds 70.39 73.19

Table 4: System score on the QALB 2014 and QALB
2015 shared task test datasets.

cessing setup achieved state-of-the-art results in
all three datasets, beating all systems in both the
2014 and 2015 QALB shared tasks in F1 score.

4.6 Error Analysis

We conducted a detailed error analysis of 101 sen-
tences from the development set (6,370 words).
The sample contained 1,594 erroneous words
(25%). The errors were manually classified in a
number of categories, which are presented in Ta-
ble 5. The Table indicates the percentage of the
error type in the whole set of errors as well as the
error-specific F1 and an example. Some common
problems, Hamza (glottal stop) and Ta Marbuta
(feminine ending), are well handled in our best
system. This is due to their commonality in the
training data. Other types are less common –
dialectal constructions, consonantal switches and
Mood/Case. Punctuation is very common, how-
ever it is also very idiosyncratic. We also note
the presence of a small percentage (0.5%) of gold
errors. For more information on Arabic lan-
guage orthography issues from a computational
perspective, see (Buckwalter, 2007; Habash, 2010;
Habash et al., 2012).

5 Conclusion and Future Work

We propose a novel approach to text normal-
ization by enhancing character embeddings with
word-level features that model subword informa-
tion and model syntactic phenomena. This signifi-
cantly improves the neural model’s recall, allow-
ing the correction of more complex and diverse
errors. Our approach achieves state-of-the-art re-
sults in the QALB dataset, despite it being small
and seemingly unsuited for a neural model. Mo-
roever, our neural model is sophisticated enough
to not benefit from preprocessing techniques that
reduce the number of errors in the data. Our ap-
proach is general enough to be implemented for
any other text normalization task and does not rely

Gold% Error Type F1 Example
4.8 Ta Marbuta 95.4 ÈK. A⇣Jª ! ⇣ÈK. A⇣Jª
29.8 Hamza 92.8 YJ⌦K⌦ A⇣K ! YJ⌦K⌦

�
A⇣K

10.5 Space 87.5 I. ⌧. É A” ! I. ⌧. É A”
0.8 Alif Maqsura 83.3 ˙ ⇣ÊÀ @ ! ⌦̇

⇣ÊÀ @
0.7 Repeated Letter 81.8 » @ @ @ @ Ag. QÀ @ ! » Ag. QÀ @
0.6 Wa of Plurality 66.7 ÒÀ A⇣Ø ! @ÒÀ A⇣Ø
39.3 Punctuation 56.4 NIL ! .
2.2 Multiple Types 43.1 È” AJ⌦ ⇣ÆÀ

�
@ ! ⇣È” AJ⌦ ⇣ÆÀ @

1.7 Consonant Switch 41.0 ëm⇡⌘Ö ! ë  m⇡⌘Ö
1.6 Other Types 38.3 … ⇣Æ⇣JÀ @ ! …⇣J ⇣ÆÀ @
2.3 Mood & Case 33.3  ‡ ÒK⌦ QÂî” !  ·�⌦K⌦ QÂî”
2.8 Dialect 32.8 I. ⇣J∫J⌦Î ! I. ⇣J∫J⌦É
1.3 Deleted Letter n/a QÂî⇣J⌧⌦É ! QÂî⇣J  J⌧⌦É
1.1 Grammar n/a  P  Aj. ⇣JK⌦ !  ‡   P  Aj. ⇣JK⌦
0.5 Gold Error n/a ˙ ⇣Ê À @ ! ˙ ⇣ÊÀ @

Table 5: Error analysis on a sample from the QALB
2014 shared task development set, ordered by F1 score.

on domain-specific knowledge to develop.
Future directions include expanding the num-

ber of training pairs via synthetic data gener-
ation, where generative models can potentially
add human-like errors to a large, unannotated
corpus. Different sequence-to-sequence architec-
tures, such as the Transformer module (Vaswani
et al., 2017), could also be explored and re-
searched more exhaustively. The word-level fea-
tures provided by FastText could also be replaced
by separately trained neural approaches that gen-
erate word embeddings from a word’s characters
(e.g., ELMo embeddings, Peters et al. 2018), and
could also be fine-tuned towards specific applica-
tions. Another interesting direction includes hy-
brid word-character architectures, where the en-
coder receives word-level features, while the de-
coder operates at the character level. We are also
interested in applying our approach to other lan-
guages and dialects.
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Abstract

Topic coherence is increasingly being used to
evaluate topic models and filter topics for end-
user applications. Topic coherence measures
how well topic words relate to each other, but
offers little insight into the utility of the topics
in describing the documents. In this paper, we
explore the topic intrusion task — the task of
guessing an outlier topic given a document and
a set of topics — and propose a method to auto-
mate it. We improve upon the state-of-the-art
substantially, demonstrating its viability as an
alternative method for topic model evaluation.

1 Introduction

Topic models have traditionally been evaluated us-
ing model perplexity, but there is an increasing
trend to use topic coherence as a task-independent
evaluation (Newman et al., 2010; Mimno et al.,
2011; Aletras and Stevenson, 2013; Lau et al.,
2014; Röder et al., 2015). In earlier work (Bha-
tia et al., 2017), we showed that topic coherence as
a standalone evaluation can be misleading, which
we illustrated with an adversarial topic model that
produces highly coherent topics that collectively
tell us little about the content of the document col-
lection.

We went on to explore an alternative approach to
assessing topics using topic intrusion, based on the
manual task of Chang et al. (2009). In the original
topic intrusion setup, users are presented with a
document, a set of associated topics (from a topic
model) and an intruder topic, and are tasked to find
the intruder. Success in the task demonstrates that
the topics learnt by the topic model are relevant to
the document. We proposed a method to automate
this (Bhatia et al., 2017), by training a support vec-
tor regression model based on information retrieval
(IR) and word co-occurrence features to predict the
intruder topic.

Although our earlier method is able to distin-
guish between good and bad topic models (at the
model-level), we provided no evaluation at the doc-
ument level other than the observation that “there
are still slight disparities between human annota-
tors and the automated method in intruder topic
selection”. Additionally, the method involves a
number of dependencies on complex external sys-
tems such as Indri, and no implementation of the
method was ever released. In this paper, we extend
our earlier work (Bhatia et al., 2017) as follows:
(1) we improve the results based on a novel neural
model and provide additional analysis of document-
level evaluation via mean-absolute-error; (2) we
propose a new metric to measure the performance
of the system; and (3) we release an open source
implementation of our system.1

2 Related Work

Chang et al. (2009) introduced the word and topic
intrusion tasks to assess topic models. Since then,
various automatic measures to assess topics have
been proposed (Newman et al., 2010; Mimno et al.,
2011; Aletras and Stevenson, 2013). Lau et al.
(2014) compared and contrasted these approaches,
and proposed a variant method based on normalised
pointwise mutual information. Röder et al. (2015)
conducted a systematic search using a framework
that combines various existing measures.

In Bhatia et al. (2017), we revisited the topic
intrusion task of Chang et al. (2009), and explored
its viability as an alternative task-independent ap-
proach for topic model evaluation. We tested a
number of topic models and found that there can
be large discrepancies between conventional topic
coherence measures and topic intrusion results, sug-
gesting that topics can be individually coherent but

1Source code and dataset can be downloaded at: https:
//github.com/sb1992/Topic-Intrusion-for-
Automatic-Topic-Model-Evaluation.

844



Figure 1: Architecture diagram of our method

poor descriptors of the documents. In addition, we
proposed a method to automate the topic intrusion
task and reported encouraging correlation levels
with human judgements for model-level evaluation.

3 Datasets and Topic Models

We conduct our experiments using the datasets
of Bhatia et al. (2017): (1) APNEWS, a collec-
tion of Associated Press news articles; and (2) the
British National Corpus (“BNC”: Burnard (1995)),
made up of excerpts from diverse sources such
as journals, books, letters, and articles. For the
topic models we experiment with the following:
standard LDA (lda: Blei et al. (2003)), corre-
lated topic model (ctm: Blei and Lafferty (2006)),
non-parametric topic model (hca: Buntine and
Mishra (2014)), neural topic model (ntm: Cao
et al. (2015)), and an adversarial topic model
(cluster: Bhatia et al. (2017)). cluster is
adversarial in the sense that it is designed to pro-
duce topics that are coherent but poor descriptors
of documents.

4 Methodology

In this section, we briefly describe the topic intru-
sion task and propose an improved methodology to
automate it.

4.1 Task

Chang et al. (2009) first proposed the topic intru-
sion task with the aim of assessing whether topics
associated with a document capture its content. In
this task, an annotator is presented with a docu-
ment along with its top-3 highest probability topics
and a low probability intruder topic, and are asked
to identify the outlier intruder topic. Bhatia et al.

(2017) incorporate an additional constraint: the in-
truder topic has to have high probability for at least
one other document. Their rationale is to ensure
that the intruder is interpretable. We follow the
approach of our earlier work (Bhatia et al., 2017)
when generating intruder topics.

4.2 Human Judgements

To assess our methodology, we need human anno-
tations for the topic intrusion task. We collect hu-
man judgements using Amazon Mechanical Turk.
Each HIT is comprised of 5 documents, and each
document is paired with 4 topics (3 real and 1 in-
truder). To control for annotation quality, an addi-
tional document–topics pair is inserted as part of
the HIT. The control item’s intruder topic is gener-
ated by randomly sampling words from the corpus
vocabulary. To pass the quality control, an anno-
tator has to select the correct intruder topic; they
are filtered out if their pass rate over all controls is
< 0.6.2

Each HIT is judged by 10 workers. We col-
lect additional annotations by releasing the task
internally to a small number of local workers. We
needed to carry out some annotations internally
to make sure that each HIT had at least 4 anno-
tations. The average number of internal annota-
tions was approximately 1.6. For each topic model,
we collected annotations for 100 documents on 2
corpora (5 topic models ⇥ 100 documents ⇥ 2
collections = 1000). After filtering and including
internal judgements we have an average of 6.7 and
6.9 annotations for APNEWS and BNC, respectively.

4.3 Intruder Topic Detection

We propose a neural network model to automati-
cally predict intruder topics. Our model is inspired
by Severyn and Moschitti (2015), where they com-
bine a learn-to-rank deep learning architecture in
an IR setting to rank the documents for a given
query. We adapt it to our topic intrusion task by
ranking topics for a given document. Our task
takes the form of a document di with correspond-
ing topics Ti = {t1i , t

2
i , t

3
i , t

4
i }, where 3 topics are

real and 1 is the intruder. The topic set Ti has la-
bels Yi = {y1

i , y
2
i , y

3
i , y

4
i } (“1” denotes the intruder

topic, or “0” otherwise). We train using a point-
wise ranking approach, where training examples

2We fixed the threshold to 0.6 based on preliminary exper-
iments. We found that it was a challenging task, and this value
provides quality without filtering out most of the workers.
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Figure 2: mpGOLD vs. System Scores at the model level

are triples of (di, t
j
i , y

j
i ) — essentially the task is

formulated as a binary classification problem.
The architecture of our network is given in Fig-

ure 1. The input to our model is a document–topic
pair, with each represented as a sequence of words.
These words are mapped to embeddings, via em-
bedding matrix W 2 R

|V |⇥d, where V is the vocab-
ulary and d the dimensionality of the embeddings.
The document embeddings Ed 2 R

k⇥d (k = doc-
ument length) and topic embeddings Et 2 R

m⇥d

(m = number of topic words) are processed via
convolutional layers (Kim, 2014; Severyn and Mos-
chitti, 2015) to produce two hidden representations
for the document and topic. The convolution oper-
ation is performed using feature maps of varying
size followed by a max-pooling operation to pro-
duce a constant-length vector. The document and
topic hidden representations are concatenated and
fed to 2 dense layers and ultimately reduced to a
sigmoid-activated score.

4.3.1 External IR Feature

A good topic model learns common themes in the
document collection. A limitation of our network
is the lack of global- or collection-level informa-
tion (as the input consists of only a document and
topic). To incorporate collection-level information,
we include an IR feature where we query document
di using the topic words of tji . We use Okapi BM25
(Robertson and Walker, 1994) to compute the rel-
evance score of the document with respect to its
N topic words independently, thereby constructing
an N -dimensional feature vector.3 This external
feature vector is incorporated into the network after
the convolutional layers (see Figure 1).

3N = 5 in our experiments.

Model BNC ! APNEWS APNEWS ! BNC

mpORIG mp nss mpORIG mp nss

lda 0.47 0.31 0.21 0.40 0.32 0.22
ctm 0.44 0.34 0.20 0.41 0.31 0.19
hca 0.48 0.37 0.21 0.42 0.35 0.20
ntm 0.40 0.43 0.19 0.37 0.32 0.18

cluster 0.48 0.42 0.19 0.51 0.47 0.22
Overall 0.46 0.37 0.20 0.42 0.36 0.21

Table 1: mae between mpGOLD and nss/mp. “BNC
! APNEWS” means the model is trained on BNC
and tested on APNEWS. Boldface indicates optimal
performance for each dataset.

4.4 Aggregating Human and System Scores
for a Document

For each document we have a number of workers
identifying the intruder topic. To aggregate the
results, Chang et al. (2009) define model precision
(mpGOLD), which is the proportion of workers who
correctly identified the intruder, as a proxy for how
clearly the intruder topic is inappropriate for the
document.

Our system and that of Bhatia et al. (2017) com-
pute several scores for a document (one for each
topic). Bhatia et al. (2017) select the topic with the
maximum score as the intruder, and compute model
precision (mp) based on that. This yields binary
precision scores (i.e. the model either predicts the
intruder correctly or not) and ignores the relative
magnitude of the system score. We additionally
propose using the normalised sigmoid score (nss)
as a means of scoring the intruder topic for a given
document, which is computed by normalising the
raw sigmoid scores over all topics.
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Model Best/Worst Topics nss

lda
share revenue cents billion quarter earnings analysts net rose income 0.001
european greece europe billion debt country crisis minister french france 0.002

ctm
building lodge bauer buildings fee part stephens hall property council 0.007
military army afghanistan killed soldiers forces troops iraq war attacks 0.013

hca
shares earnings keywords insights profit thomson cents reuters premarket net 0.011
upheld ruling appeals justices appellate supreme injunction plaintiffs unconstitutional rulings 0.051

ntm
rose shrank pct decliners quadrupled exhibitors parade spectrum index outperform 0.110
arraigned burglarizing arrested bigamy detectives motorcyclist arraignment coroner accomplice fondled 0.141

cluster
soared plummeted climbed surged dipped tumbled dropped fell slipped rose 0.005
students teachers kindergarten tutors elementary coursework curriculum teaching tutoring education 0.013

lda
lot good things long put start number making kind place 0.291
political issue called issues policy decision long change statement support 0.271

ctm
online information internet book video media facebook phone computer technology 0.263
show music film movie won festival tickets game band play 0.233

hca
richter riverboat sheppard lander plazas tam mandarin amarillo colosseum nassau 0.376
deplorable interaction foresee envelope handwriting knot quickest scrambled alarmed mum 0.368

ntm
aboard spacewalks bushels budget lifeboats flotilla lifeboat spacewalk millage spaceflight 0.364
evacuated evacuations evacuate evacuating airlifted twisters aftershocks evacuation driest barricaded 0.323

cluster
accord delegations accords cooperation consultations negotiators negotiation committees intergovernmental negotiations 0.323
summaries summary critiques excerpts articles responses quotes references descriptions critique 0.309

Table 2: Examples of best topics (top-half) and worst topics (bottom-half) based on nss.

4.4.1 Implementation Details
For our experiments, we train the model on outputs
from all topics models over one dataset, and test
it on the other (cross-domain training). We use a
single channel for the convolutional networks, pad
the documents as necessary (k = 200), and use the
top-10 words to represent a topic (i.e. m = 10).
Word embeddings are initialised using pre-trained
GloVe (Pennington et al., 2014) vectors (d = 100),
and their weights are fixed during training. We use
kernel windows of width = {3, 5, 7} with 100 fea-
ture maps each and two (fully-connected) hidden
layers, with dimensionality of 50 and 10. We use
a dropout rate of 0.5, 0.5 and 0.25 after the docu-
ment, topic and first hidden layer, respectively. We
set the batch size to 100, and use Adam as the opti-
mizer with a learning rate of 0.001. For activation
functions, we use ReLU for the fully-connected
layers and sigmoid for the final layer. To reduce
variance, we run the models with 8 different seeds
for initialisation and take the average for a topic’s
sigmoid score.

5 Results

By taking the mean of mpGOLD and mp over doc-
uments, Bhatia et al. (2017) compute a single
human/system score for each topic model. Al-
though this resulted in a strong correlation between
mpGOLD and mp, the evaluation is limited to model-
level comparison: it separates good topic models
from bad topic models, but does not provide any

insights into the performance of each top model
over individual documents. We aim to improve
model-level correlation in this work, in addition to
analysing document-level evaluation, i.e. investi-
gating how well the system predicts mpGOLD for
each individual document.

We present plots of human and system scores in
Figure 2. There are 3 system scores: mp of Bha-
tia et al. (2017) (mpORIG), and mp and nss of our
proposed system. In general, we found strong cor-
relation for all systems, but nss of our proposed
system performs substantially better than mpORIG,
though our mp is lower than mpORIG.

To compare the performance of our system with
human judgements at the document level, we com-
pute mean absolute error (mae) between mpGOLD
and nss/mp, as summarised in Table 1. We find
for both datasets nss consistently outperforms
mpORIG and mp by a substantial margin, and also
has a score close to human judgements. We can
attribute this to the fact that nss provides more
nuanced system predictions (over the full range
[0, 1]), whereas mp tends to be binary.4

6 Discussion

One motivation we have in this paper is to test
whether topic intrusion can be used as an alternative
means for assessing topics. Given the encouraging

4Strictly speaking, it is continuous as it is averaged over
the runs for the multiple random seeds, but in general, it tends
to be (close to) 0 or 1.
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mae results, we attempt to use nss to rank topics
produced by a topic model.

To accomplish this, we first filter out the topics
that occur in less than 5 documents as top 1-topic:
these topics tend to be noisy, and as such do not ap-
pear with significant weight in any documents. For
each of the filtered topics we randomly select 5–10
documents for which it is a top topic and calculate
its mean nss over these documents. We then use
the topics’ mean nss to rank them; in Table 2 we
show some selected best and worst topics for differ-
ent topic models. Overall, the top-ranked topics ap-
pear to be more descriptive than the bottom-ranked
topics. Having said that, we found instances where
coherent topics have low nss ranking (e.g. ctm
topics in the bottom half of Table 2), but stress that
ultimately the topic intrusion approach to assess-
ing topics is very different to topic coherence. We
include a more comprehensive list of best/worst
topics in the supplementary material.

7 Conclusion

We explore an alternative approach to evaluate
topic models based on topic allocations in docu-
ments, i.e. via topic intrusion. We propose an auto-
mated method that improves upon the state-of-the-
art substantially at the model- and document-levels,
and demonstrate that it can be used to rank/filter
topics. As future work we intend to explore ways
that combine both the topic coherence and topic
intrusion for topic model evaluation.

References
Nikos Aletras and Mark Stevenson. 2013. Evaluating

topic coherence using distributional semantics. In
Proceedings of the Tenth International Workshop on
Computational Semantics (IWCS-10), pages 13–22,
Potsdam, Germany.

Shraey Bhatia, Jey Han Lau, and Timothy Baldwin.
2017. An automatic approach for document-level
topic model evaluation. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 206–215. Associa-
tion for Computational Linguistics.

David Blei and John Lafferty. 2006. Correlated topic
models. Advances in Neural Information Process-
ing Systems, 18.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Wray L Buntine and Swapnil Mishra. 2014. Experi-
ments with non-parametric topic models. In Pro-
ceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 881–890.

Lou Burnard. 1995. User guide for the British National
Corpus.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng
Ji. 2015. A novel neural topic model and its su-
pervised extension. In Proceedings of AAAI 2015,
pages 2210–2216.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L.
Boyd-Graber, and David M. Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in Neural Information Processing Systems
21 (NIPS-09), pages 288–296, Vancouver, Canada.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of EACL 2014, pages 530–539.

David Mimno, Hanna Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011), pages 262–272, Edinburgh, UK.

David Newman, Jey Han Lau, Karl Grieser, and Tim-
othy Baldwin. 2010. Automatic evaluation of topic
coherence. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 100–108.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

S.E. Robertson and S. Walker. 1994. Some simple ef-
fective approximations to the 2-Poisson Model for
probabilistic weighted retrieval. In Proceedings of
17th International ACM-SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR’94), pages 232–241.
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Abstract

The text in many web documents is organized
into a hierarchy of section titles and corre-
sponding prose content, a structure which pro-
vides potentially exploitable information on
discourse structure and topicality. However,
this organization is generally discarded dur-
ing text collection, and collecting it is not
straightforward: the same visual organization
can be implemented in a myriad of different
ways in the underlying HTML. To remedy
this, we present a flexible system for automat-
ically extracting the hierarchical section titles
and prose organization of web documents ir-
respective of differences in HTML representa-
tion. This system uses features from syntax,
semantics, discourse and markup to build two
models which classify HTML text into section
titles and prose text. When tested on three
different domains of web text, our domain-
independent system achieves an overall preci-
sion of 0.82 and a recall of 0.98. The domain-
dependent variation produces very high pre-
cision (0.99) at the expense of recall (0.75).
These results exhibit a robust level of accuracy
suitable for enhancing question answering, in-
formation extraction, and summarization.1

1 Introduction
Web text continues to be an immense resource for
researchers working in NLP and related areas, but
its typographic structure (i.e., its visual organiza-
tion) remains underutilized. Many texts on the
web are organized into sections based on the top-
ics presented, and each section has a title followed
by prose text. The title tends to be visually dis-
tinct to separate it from the prose that succeeds it.
Apart from improving the readability of the page,
this explicit organization makes titles act as intu-
itive indexes for the prose text(s) that follow them.

1The source code and corpora generated by this
research are available at https://github.com/
abhijith-athreya/ASDUS.

In other words, titles are concise summaries of the
following prose text.

Most current methods of web text extraction do
not separate titles from prose text, instead treat-
ing the entire document as a single unit without
internal structure. However, this internal organi-
zation has the potential to provide input to a vari-
ety of NLP tasks that can make use of information
on topicality or discourse structure. In the case of
question answering, this information can facilitate
identifying maximally relevant sections to search
for answers. It can also increase accuracy by fil-
tering out false positives and minor references re-
lated to the topic of the question, which might be
present in other sections. For information retrieval
tasks, semantic matching of the search terms can
be performed on the titles first, followed by a
search on the prose texts associated with closely
matching headers.

However, detecting the titles and prose seg-
ments in an HTML document is difficult for two
reasons. One of them is the flexibility of HTML,
which allows the same typographic layout to be
represented in code in multiple ways. Tags are
also nested with varying depths. Figure 1 illus-
trates this problem: similar title and prose text seg-
ments from four website privacy policies2 have al-
together different HTML tag structures. The sec-
ond problem is that it is not straightforward to dis-
tinguish the information (encoded in HTML) that
is necessary for title-prose detection from the rest
of the HTML structure, including unrelated links,
multiple tags with little or no content and page
headers and footers. Sieving only useful informa-
tion from these pages requires a flexible approach.

2All the policies were retrieved on 2018-01-20, from the
below URLs:
https://rule.alibaba.com/rule/detail/2034.htm
https://www.apple.com/legal/privacy/en-ww/
https://www.cbsinteractive.com/legal/cbsi/privacy-policy
https://help.bet365.com/en/privacy-policy
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Figure 1: Excerpts from the website privacy policies of Alibaba.com, Apple, CBS Interactive and bet365. At left
are browser renderings, and at right are the XPaths of the section titles.

We present ASDUS (Automatic Segment De-
tection using Unsupervised and Supervised learn-
ing), a system that uses a variety of features of text
and markup structure to identify the title and prose
organization of HTML documents automatically.
Our approach effectively strips away all unrelated
HTML and produces simplified HTML with a pre-
dictable tag structure, thus making the extraction
of section titles and prose text straightforward for
downstream applications. We present two ap-
proaches, a domain-independent approach that re-
quires no prior training and a domain-dependent
approach that takes advantage of a labeled cor-
pus. The domain-independent approach (abbrevi-
ated DI) yields an overall precision of 0.82, re-
call of 0.98 and coverage of 97.21%. The do-
main dependent approach (DD) produces an over-
all precision of 0.99, recall of 0.75 and coverage
of 93.10%. We are releasing ASDUS and asso-
ciated datasets to the research community for use
and improvement.

2 Related Work

The detection of titles and prose in web documents
has received little (if any) prior attention, but we
briefly survey literature in some related areas.

Titles can be thought of as metalinguistic de-
scriptions for the prose text they are associated
with. Wilson (2013) attempted to identify a
core metalinguistic vocabulary for the English lan-
guage and to automatically identify instances of
metalanguage usage. Deixis present in a text
can also be considered metadata and detection of
deixis helps in structuring the flow of information.
Wilson and Oberlander (2014) attempted to cap-
ture word senses related to deixis.

Topic classification is the problem of segre-
gating a document into different topics, and ar-
gumentative zoning (Teufel et al., 1999) was an
early effort that shares some goals with the present
work, as it addressed the detection of the main the-
matic areas in research articles. Teufel and Kan
(2011) built a robust argumentative zoning sys-
tem which used maximum entropy modeling to
go with morphological features. Conditional ran-
dom fields were adopted for categorization of sen-
tences of a scientific abstract into different sec-
tions by Hirohata et al. (2008). Using posterior
discourse and lexical constraints as features, Guo
et al. (2013) improved upon existing information
structure analysis of scientific documents through
unsupervised and minimal supervised learning.

HTML structure analysis is the process of ex-
tracting useful information by utilizing the under-
lying HTML document structure. Information ex-
traction from HTML using machine learning was
introduced in SRV (Freitag, 1998), a top-down re-
lational algorithm for information extraction. This
system aimed at filling pre-defined slots for a web
page in a particular domain. A set of extraction
rules suitable to extract information from a web-
site is called a wrapper (Flesca et al., 2004). Dalvi
et al. (2011) worked on enhancing wrapper induc-
tion techniques by introducing a generic frame-
work which allows for training on noisy data. Liao
et al. (2015) used web block segmentation and
machine learning algorithms to retrieve business
event data, such as coupons, tickets, and sales
campaigns. Garcı́a-Plaza et al. (2017) worked on
using fuzzy logic to leverage HTML markup for
web page clustering. Using four essential fea-
tures viz., text frequency, title, emphasis and po-
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sition, they define 31 independent rules to arrive
at the importance of a text segment. Unlike our
approach, which is independent of the tag struc-
tures and learns patterns on its own, these methods
depend on handcrafted rules and similar tag struc-
tures to identify various sections of the document.

3 Approach

Figure 2: Stages of the DI and DD approaches.

3.1 Domain-Independent Approach (DI)
Figure 2 depicts the stages of this approach, which
are explained in detail below.

Figure 3: The graph shows two clusters. The one nearer
to the origin is the title cluster and the farther one is the
prose cluster. Cluster medians are marked with Xs.

Text Collection: Using jsoup (Hedley, 2017),
we parse the HTML file and for each non-empty
tag encountered we extract a tuple consisting of
the text and its XPath.

Feature Extraction and Clustering: For each
tuple, we extract a set of features which aids in
differentiating titles from prose text. The features
are own text length, next text length, number of
punctuation symbols, number of sentences, num-
ber of stop words (stop words were derived from
Weka (Hall et al., 2009)), number of discourse
cues, number of named entity slots and number
of words with capitalized initial letter. We cal-
culated the number of discourse cues as the sum

of explicit discourse markers provided by Denver
(2018) and the number of coreference chains. We
used Stanford CoreNLP (Manning et al., 2014) for
identifying coreference chains and named entities.

Titles tend to contain less text than prose seg-
ments, as well as fewer punctuation symbols, stop
words, discourse markers, sentences and named
entities. Since titles are not followed immediately
by titles (in most cases), the next text length fea-
ture helps to remove false positives for title iden-
tification. All these features are collapsed into
two dimensions, one being the text length and the
other being the linear combination of remaining
features.

K-means clustering (using scikit-learn (Pe-
dregosa et al., 2011)) is performed on the feature
set to group it into two mutually exclusive subsets.
Figure 3 shows an example plot of the clustering.
We obtain two distinct clusters with the title clus-
ter closer to the origin and the prose cluster away
from the origin. We leverage this property to ob-
tain the label of the title cluster by identifying the
label for the origin ([0,0]). Each text segment (and
thus each tuple) is classified into title or prose us-
ing the k-means model.

Segment Identification: For each potential title
identified in the previous phase, an overlap score is
calculated by measuring the overlap between the
lemmatized form of words belonging to the title
and the lemmatized form of words from the next
text segment. Based on experiments on a devel-
opment set, the overlap threshold was set to 75%.
Titles with overlap scores exceeding the threshold
and their corresponding XPaths are added to the
list of probable title candidates.

Simple Version Generation: Each element in
the final title list is marked with a custom attribute
in the original HTML. To generate the simple ver-
sion, a top down parse of the HTML is performed,
wherein nodes with custom attribute (titles) are en-
closed in <h2> tags and the text between two con-
secutive titles (prose) is enclosed in <p> tags. For
the last segment, the prose text immediately fol-
lowing the title is added. For subsequent prose
sections, a unigram overlap score similar to the
one in the previous step is performed to avoid the
addition of unrelated text, such as a page footer.
Legitimate textual content appearing before the
first title is included in the final output under an
uncategorized title.
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Type of Doc. # Docs. # Titles # Prose
Privacy 152 3611 14506
TOS 100 2299 7818
Misc. 51 685 3676

Table 1: Test set details of the DI approach.

3.2 Domain-Dependent Approach (DD)
The DD approach differs from the DI approach by
feature selection: the DD approach trains a neural
network classifier on previously labeled examples.

Feature Extraction and Training: To construct
labeled data for training, we chose to use web
privacy policies due to their lengthy nature, the
presence of a reasonable number of segments, the
presence of relatively similar content with vary-
ing HTML structure across websites and their im-
portance to the general public. We annotated each
HTML tag of 100 web privacy policies with one
of three labels: title, prose and unrelated. We
built two word embedding models (using gensim
(Řehůřek and Sojka, 2010)), one using text from
the titles and the other using prose texts. Then for
each HTML tag, we calculated two semantic re-
latedness scores: one between the title embedding
and the text in the tag (t-score), and the other be-
tween the prose embedding and the text in the tag
(p-score). The t-score is the log probability for a
text segment with respect to the title embedding.
The p-score is the log probability for a text seg-
ment with respect to the prose embedding. The
intuition behind using these scores is that the t-
score will be higher for titles and lower for prose
text. Similarly, the p-score will be higher for prose
text than titles. The t-score, p-score and length
of the text formed the feature set. Using Tensor
Flow (Abadi et al., 2015), we trained a feed for-
ward neural network (h1=24, h2=48) to classify
text between tags as title, prose or unrelated.

4 Dataset and Results
The problem of automatic detection of titles and
prose text in HTML documents has received scant
prior attention. Due to this, a corpus contain-
ing HTML documents along with their respec-
tive annotated versions (titles and prose sections
annotated) was unavailable. This lack of data
prompted the creation of a new corpus consisting
of web documents and their respective annotated
versions.

The dataset consisted of three sets of web doc-
uments to achieve an exhaustive evaluation of the

system. The first set consisted of 152 website pri-
vacy policies. We collected 80 of them from Ama-
zon Alexa’s top 100 websites list for 2016 and
72 from the top two websites of each top Google
Trends entry of 2017. Privacy policies of various
companies have different HTML structure. They
tend to contain many sections with each section
having a title and corresponding prose text. They
are also lengthy and include essential information
which is often neglected by most users (Wilson
et al., 2016). These factors make privacy poli-
cies ideal candidates for testing ASDUS. For the
second set, we used www.randomlists.com to gen-
erate a list of 200 random sites. We selected the
websites which had terms of service in English,
and this left us with 100 documents. Similar to
privacy policies, terms of service documents offer
a reliable set of testing opportunities. For the third
set, we wanted greater diversity in content and do-
main, leading us to chose web pages by collect-
ing the top two to four Google search results for
the following topics: news, sports, botany, web
design, photography, data science, cookie poli-
cies, HTML, history, migraine, dataset, technical
documentation, shoes, grammar, kids stories and
cricket. We skipped web pages which did not have
sectional demarcations. Table 1 has more details
on the size of the dataset. The dataset for the DD
approach consisted of the same 152 web privacy
policies which were used in the DI approach. Pri-
vacy policies of different websites have content re-
lated to similar topics which makes them specific
and suitable for the DD approach. Out of 152, 122
were used for training and development and the
remaining 30 were used for testing. We manually
annotated the entire data set and created sanitized
versions out of them for evaluation.

We evaluated our models in two ways. One was
the ability to detect all title and prose segments,
measured via precision, recall and F-1 scores. This
metric is evaluated by comparing the simplified
output of ASDUS with the sanitized version. The
output was deemed correct only when the system
detected and produced both the title and its corre-
sponding prose section. The second facet of eval-
uation was to determine the percentage of legiti-
mate original text reproduced in the output. We
name this the coverage of the output. A higher
coverage indicates lower loss of text, which is de-
sirable.

The results of the DI approach are presented in
Table 2. The near-perfect recall is due to the ro-
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Type P R F1 S C
PP 0.75 0.97 0.85 3611 96.92%
TOS 0.92 0.99 0.95 2299 98.85%
Misc 0.89 0.98 0.93 685 95.86%
Avg 0.82 0.98 0.89 6595 97.21%

Table 2: Results of the DI model. Columns rep-
resent type of web document, precision, recall, F-
1 score, support and coverage respectively. Un-
der Type, PP=privacy policies, TOS=terms of service,
Misc=miscellaneous and Avg=weighted average.

bust method of learning XPaths of all titles cou-
pled with the clustering method, which ensured
the detection of nearly all the segments. Precision
is slightly lower because some prose texts with rel-
atively short lengths were wrongly classified as ti-
tles. The feature set enables the creation of two
distinct clusters, which in turn results in all titles
being detected during the clustering phase. To test
the effect of each feature on the final results, an ab-
lation study was conducted by removing one dif-
ferent feature from each run. This resulted in a
total of seven runs, whose results are depicted in
Table 3. The dropped feature is listed in the first
column. The biggest drop in performance occurs
when the own text length feature is dropped. The
drop in F-1 scores in all runs suggests the contri-
bution of every feature towards the result. The
removal of discourse markers and named entity
slots resulted in the least decrease in performance,
and the greatest decrease came from removing text
length.

Dropped Feature P R F1
text length 0.69 0.73 0.71
stop words 0.75 0.75 0.75
punctuation symbols 0.76 0.79 0.77
sentences 0.76 0.79 0.77
next text length 0.76 0.81 0.78
capitalized first letter 0.78 0.80 0.79
discourse markers 0.79 0.85 0.81
named entity slots 0.79 0.85 0.81
None 0.82 0.98 0.85

Table 3: Results of the ablation study for the DI ap-
proach. The columns indicate dropped feature, preci-
sion, recall and F-1 score respectively.

In sharp contrast to the DI approach, the DD
approach (Table 4) has high precision owing to
the similarity of title texts across documents in the
same domain and differences between vocabular-
ies of title and prose text. Training on word em-

Precision Recall F-1 Supp. Cover
0.99 0.75 0.86 754 93.10%

Table 4: Results of the DD model.

beddings of titles has rendered the system sensi-
tive to variations, resulting in the rejection of many
legitimate titles, which in turn led to the slightly
lower recall and coverage values. This over-fitting
can be mitigated by training on a larger corpus and
by increasing the context window while generat-
ing word embeddings of prose text.

The complementary nature of the two models
is identifiable from the results. The word em-
beddings of the DD approach contribute towards
precision, and the lexical and morphological fea-
tures of the DI approach contribute towards recall.
We can treat the word embeddings as the seman-
tic aspect of the underlying text and the lexical
and morphological characteristics of the DI model
as the syntactic aspect. Both of these aspects of
language thus inform the orthographic structure of
documents. However, the domain-independence
or the ability of the DI approach to work on dif-
ferent domains without the need for prior labeled
data is a substantial advantage over the DD ap-
proach, which requires pre-labeled data. Annota-
tion of HTML documents and generation of the
sanitized version is a tedious process and requires
human effort, lending value to both methods.

5 Future Work and Conclusion
The two methods presented in this paper were ef-
fective in identifying the title and prose texts of
segments of HTML pages. The DI approach, with
its high coverage, is desirable when the penalty for
losing text is high. The DD approach can be used
in situations where precision is prioritized over re-
call. In the future, we intend to build upon our
methods and enable automatic detection of sub-
headers. This would lead to the identification of
hierarchical organization of the text, which pro-
vides a novel approach to generate web ontologies.
Further, we have planned to generate titles for
prose text essentially creating micro-summaries of
text, a relatively unexplored area.
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Abstract

In this work, we examine methods for data
augmentation for text-based tasks such as neu-
ral machine translation (NMT). We formulate
the design of a data augmentation policy with
desirable properties as an optimization prob-
lem, and derive a generic analytic solution.
This solution not only subsumes some exist-
ing augmentation schemes, but also leads to an
extremely simple data augmentation strategy
for NMT: randomly replacing words in both
the source sentence and the target sentence
with other random words from their corre-
sponding vocabularies. We name this method
SwitchOut. Experiments on three transla-
tion datasets of different scales show that
SwitchOut yields consistent improvements of
about 0.5 BLEU, achieving better or compara-
ble performances to strong alternatives such as
word dropout (Sennrich et al., 2016a). Code to
implement this method is included in the ap-
pendix.

1 Introduction and Related Work

Data augmentation algorithms generate extra data
points from the empirically observed training set
to train subsequent machine learning algorithms.
While these extra data points may be of lower qual-
ity than those in the training set, their quantity and
diversity have proven to benefit various learning al-
gorithms (DeVries and Taylor, 2017; Amodei et al.,
2016). In image processing, simple augmentation
techniques such as flipping, cropping, or increasing
and decreasing the contrast of the image are both
widely utilized and highly effective (Huang et al.,
2016; Zagoruyko and Komodakis, 2016).

However, it is nontrivial to find simple equiva-
lences for NLP tasks like machine translation, be-
cause even slight modifications of sentences can
result in significant changes in their semantics, or

*: Equal contributions.

require corresponding changes in the translations in
order to keep the data consistent. In fact, indiscrim-
inate modifications of data in NMT can introduce
noise that makes NMT systems brittle (Belinkov
and Bisk, 2018).

Due to such difficulties, the literature in data
augmentation for NMT is relatively scarce. To
our knowledge, data augmentation techniques for
NMT fall into two categories. The first category is
based on back-translation (Sennrich et al., 2016b;
Poncelas et al., 2018), which utilizes monolin-
gual data to augment a parallel training corpus.
While effective, back-translation is often vulner-
able to errors in initial models, a common prob-
lem of self-training algorithms (Chapelle et al.,
2009). The second category is based on word re-
placements. For instance, Fadaee et al. (2017) pro-
pose to replace words in the target sentences with
rare words in the target vocabulary according to
a language model, and then modify the aligned
source words accordingly. While this method gen-
erates augmented data with relatively high quality,
it requires several complicated preprocessing steps,
and is only shown to be effective for low-resource
datasets. Other generic word replacement methods
include word dropout (Sennrich et al., 2016a; Gal
and Ghahramani, 2016), which uniformly set some
word embeddings to 0 at random, and Reward Aug-
mented Maximum Likelihood (RAML; Norouzi
et al. (2016)), whose implementation essentially
replaces some words in the target sentences with
other words from the target vocabulary.

In this paper, we derive an extremely simple
and efficient data augmentation technique for NMT.
First, we formulate the design of a data augmenta-
tion algorithm as an optimization problem, where
we seek the data augmentation policy that max-
imizes an objective that encourages two desired
properties: smoothness and diversity. This opti-
mization problem has a tractable analytic solution,
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which describes a generic framework of which
both word dropout and RAML are instances. Sec-
ond, we interpret the aforementioned solution and
propose a novel method: independently replacing
words in both the source sentence and the tar-
get sentence by other words uniformly sampled
from the source and the target vocabularies, respec-
tively. Experiments show that this method, which
we name SwitchOut, consistently improves over
strong baselines on datasets of different scales, in-
cluding the large-scale WMT 15 English-German
dataset, and two medium-scale datasets: IWSLT
2016 German-English and IWSLT 2015 English-
Vietnamese.

2 Method

2.1 Notations
We use uppercase letters, such as X , Y , etc., to
denote random variables and lowercase letters such
as x, y, etc., to denote the corresponding actual
values. Additionally, since we will discuss a data
augmentation algorithm, we will use a hat to denote
augmented variables and their values, e.g. bX , bY , bx,
by, etc. We will also use boldfaced characters, such
as p, q, etc., to denote probability distributions.

2.2 Data Augmentation
We facilitate our discussion with a probabilistic
framework that motivates data augmentation algo-
rithms. With X , Y being the sequences of words
in the source and target languages (e.g. in machine
translation), the canonical MLE framework maxi-
mizes the objective

JMLE(✓) = Ex,y⇠bp(X,Y ) [log p✓(y|x)] .

Here bp(X, Y ) is the empirical distribution over all
training data pairs (x, y) and p✓(y|x) is a param-
eterized distribution that we aim to learn, e.g. a
neural network. A potential weakness of MLE is
the mismatch between bp(X, Y ) and the true data
distribution p(X, Y ). Specifically, bp(X, Y ) is usu-
ally a bootstrap distribution defined only on the
observed training pairs, while p(X, Y ) has a much
larger support, i.e. the entire space of valid pairs.
This issue can be dramatic when the empirical ob-
servations are insufficient to cover the data space.

In practice, data augmentation is often used to
remedy this support discrepancy by supplying ad-
ditional training pairs. Formally, let q( bX, bY ) be
the augmented distribution defined on a larger sup-
port than the empirical distribution bp(X, Y ). Then,

MLE training with data augmentation maximizes

JAUG(✓) = Ebx,by⇠q( bX,bY ) [log p✓(by|bx)] .

In this work, we focus on a specific family of q,
which depends on the empirical observations by

q( bX, bY ) = Ex,y⇠bp(x,y)

h
q( bX, bY |x, y)

i
.

This particular choice follows the intuition that an
augmented pair (bx, by) that diverges too far from
any observed data is more likely to be invalid and
thus harmful for training. The reason will be more
evident later.

2.3 Diverse and Smooth Augmentation

Certainly, not all q are equally good, and the more
similar q is to p, the more desirable q will be.
Unfortunately, we only have access to limited ob-
servations captured by bp. Hence, in order to use
q to bridge the gap between bp and p, it is neces-
sary to utilize some assumptions about p. Here, we
exploit two highly generic assumptions, namely:

• Diversity: p(X,Y ) has a wider support set,
which includes samples that are more diverse
than those in the empirical observation set.

• Smoothness: p(X, Y ) is smooth, and similar
(x, y) pairs will have similar probabilities.

To formalize both assumptions, let s(bx, by; x, y) be
a similarity function that measures how similar
an augmented pair (bx, by) is to an observed data
pair (x, y). Then, an ideal augmentation policy
q( bX, bY |x, y) should have two properties. First,
based on the smoothness assumption, if an aug-
mented pair (bx, by) is more similar to an empirical
pair (x, y), it is more likely that (bx, by) is sampled
under the true data distribution p(X,Y ), and thus
q( bX, bY |x, y) should assign a significant amount
of probability mass to (bx, by). Second, to quantify
the diversity assumption, we propose that the en-
tropy H[q( bX, bY |x, y)] should be large, so that the
support of q( bX, bY ) is larger than the support of bp
and thus is closer to the support p(X, Y ). Com-
bining these assumptions implies that q( bX, bY |x, y)
should maximize the objective

J(q; x, y) = Ebx,by⇠q( bX,bY |x,y)

⇥
s(bx, by; x, y)

⇤

+ ⌧H(q( bX, bY |x, y)),
(1)
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where ⌧ controls the strength of the diversity objec-
tive. The first term in (1) instantiates the smooth-
ness assumption, which encourages q to draw sam-
ples that are similar to (x, y). Meanwhile, the sec-
ond term in (1) encourages more diverse samples
from q. Together, the objective J(q; x, y) extends
the information in the “pivotal” empirical sample
(x, y) to a diverse set of similar cases. This echoes
our particular parameterization of q in Section 2.2.

The objective J(q; x, y) in (1) is the canonical
maximum entropy problem that one often encoun-
ters in deriving a max-ent model (Berger et al.,
1996), which has the analytic solution:

q⇤(bx, by|x, y) =
exp {s(bx, by; x, y)/⌧}P

bx0,by0 exp {s(bx0, by0; x, y)/⌧}
(2)

Note that (2) is a fairly generic solution which is
agnostic to the choice of the similarity measure s.
Obviously, not all similarity measures are equally
good. Next, we will show that some existing algo-
rithms can be seen as specific instantiations under
our framework. Moreover, this leads us to propose
a novel and effective data augmentation algorithm.

2.4 Existing and New Algorithms
Word Dropout. In the context of machine trans-
lation, Sennrich et al. (2016a) propose to randomly
choose some words in the source and/or target sen-
tence, and set their embeddings to 0 vectors. In-
tuitively, it regards every new data pair generated
by this procedure as similar enough and then in-
cludes them in the augmented training set. For-
mally, word dropout can be seen as an instantiation
of our framework with a particular similarity func-
tion s(x̂, ŷ; x, y) (see Appendix A.1).

RAML. From the perspective of reinforcement
learning, Norouzi et al. (2016) propose to train
the model distribution to match a target distribu-
tion proportional to an exponentiated reward. De-
spite the difference in motivation, it can be shown
(c.f. Appendix A.2) that RAML can be viewed as
an instantiation of our generic framework, where
the similarity measure is s(bx, by; x, y) = r(by; y) if
bx = x and �1 otherwise. Here, r is a task-specific
reward function which measures the similarity be-
tween by and y. Intuitively, this means that RAML
only exploits the smoothness property on the target
side while keeping the source side intact.

SwitchOut. After reviewing the two existing
augmentation schemes, there are two immediate

insights. Firstly, augmentation should not be re-
stricted to only the source side or the target side.
Secondly, being able to incorporate prior knowl-
edge, such as the task-specific reward function r in
RAML, can lead to a better similarity measure.

Motivated by these observations, we propose to
perform augmentation in both source and target
domains. For simplicity, we separately measure
the similarity between the pair (bx, x) and the pair
(by, y) and then sum them together, i.e.

s(bx, by; x, y)/⌧ ⇡ rx(bx, x)/⌧x + ry(by, y)/⌧y, (3)

where rx and ry are domain specific similarity func-
tions and ⌧x, ⌧y are hyper-parameters that absorb
the temperature parameter ⌧ . This allows us to
factor q⇤(bx, by|x, y) into:

q⇤(bx, by|x, y) =
exp {rx(bx, x)/⌧x}P
bx0 exp {rx(bx0, x)/⌧x}

⇥ exp {ry(by, y)/⌧y}P
by0 exp {ry(by0, y)/⌧y}

(4)

In addition, notice that this factored formulation
allows bx and by to be sampled independently.

Sampling Procedure. To complete our method,
we still need to define rx and ry, and then design
a practical sampling scheme from each factor in
(4). Though non-trivial, both problems have been
(partially) encountered in RAML (Norouzi et al.,
2016; Ma et al., 2017). For simplicity, we follow
previous work to use the negative Hamming dis-
tance for both rx and ry. For a more parallelized
implementation, we sample an augmented sentence
bs from a true sentence s as follows:

1. Sample bn 2 {0, 1, ..., |s|} by p(bn) / e�bn/⌧ .

2. For each i 2 {1, 2, ..., |s|}, with probability
bn/ |s|, we can replace si by a uniform bsi 6= si.

This procedure guarantees that any two sentences
bs1 and bs2 with the same Hamming distance to s
have the same probability, but slightly changes the
relative odds of sentences with different Hamming
distances to s from the true distribution by negative
Hamming distance, and thus is an approximation
of the actual distribution. However, this efficient
sampling procedure is much easier to implement
while achieving good performance.

Algorithm 1 illustrates this sampling procedure,
which can be applied independently and in paral-
lel for each batch of source sentences and target
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sentences. Additionally, we open source our imple-
mentation in TensorFlow and in PyTorch (respec-
tively in Appendix A.5 and A.6).

Algorithm 1: Sampling with SwitchOut.
Input : s: a sentence represented by vocab integral ids,

⌧ : the temperature, V : the vocabulary
Output : bs: a sentence with words replaced

1 Function HammingDistanceSample(s, ⌧ , |V |):
2 Let Z(⌧) 

P
|s|

n=0 e�n/⌧ be the partition function.
3 Let p(n) e�n/⌧/Z(⌧) for n = 0, 1, ..., |s|.
4 Sample bn ⇠ p(n).
5 In parallel, do:
6 Sample ai ⇠ Bernoulli(bn/ |s|).
7 if ai = 1 then
8 bsi  Uniform(V \{si}).
9 else

10 bsi  si.
11 end
12 return bs

3 Experiments

Datasets. We benchmark SwitchOut on three
translation tasks of different scales: 1) IWSLT
2015 English-Vietnamese (en-vi); 2) IWSLT 2016
German-English (de-en); and 3) WMT 2015
English-German (en-de). All translations are word-
based. These tasks and pre-processing steps are
standard, used in several previous works. Detailed
statistics and pre-processing schemes are in Ap-
pendix A.3.

Models and Experimental Procedures. Our
translation model, i.e. p✓(y|x), is a Transformer
network (Vaswani et al., 2017). For each dataset,
we first train a standard Transformer model with-
out SwitchOut and tune the hyper-parameters on
the dev set to achieve competitive results. (w.r.t. Lu-
ong and Manning (2015); Gu et al. (2018); Vaswani
et al. (2017)). Then, fixing all hyper-parameters,
and fixing ⌧y = 0, we tune the ⌧x rate, which con-
trols how far we are willing to let bx deviate from x.
Our hyper-parameters are listed in Appendix A.4.

Baselines. While the Transformer network with-
out SwitchOut is already a strong baseline, we also
compare SwitchOut against two other baselines
that further use existing varieties of data augmenta-
tion: 1) word dropout on the source side with the
dropping probability of �word = 0.1; and 2) RAML
on the target side, as in Section 2.4. Additionally,
on the en-de task, we compare SwitchOut against
back-translation (Sennrich et al., 2016b).

Method en-de de-en en-vi

Transformer 21.73 29.81 27.97
+WordDropout 20.63 29.97 28.56
+SwitchOut 22.78† 29.94 28.67†

+RAML 22.83 30.66 28.88
+RAML +WordDropout 20.69 30.79 28.86
+RAML +SwitchOut 23.13† 30.98† 29.09

Table 1: Test BLEU scores of SwitchOut and other base-
lines (median of multiple runs). Results marked with † are
statistically significant compared to the best result without
SwitchOut. For example, for en-de results in the first column,
+SwitchOut has significant gain over Transformer; +RAML
+SwitchOut has significant gain over +RAML.

SwitchOut vs. Word Dropout and RAML.
We report the BLEU scores of SwitchOut, word
dropout, and RAML on the test sets of the tasks
in Table 1. To account for variance, we run
each experiment multiple times and report the me-
dian BLEU. Specifically, each experiment with-
out SwitchOut is run for 4 times, while each ex-
periment with SwitchOut is run for 9 times due
to its inherently higher variance. We also con-
duct pairwise statistical significance tests using
paired bootstrap (Clark et al., 2011), and record
the results in Table 1. For 4 of the 6 settings,
SwitchOut delivers significant improvements over
the best baseline without SwitchOut. For the re-
maining two settings, the differences are not sta-
tistically significant. The gains in BLEU with
SwitchOut over the best baseline on WMT 15
en-de are all significant (p < 0.0002). Notably,
SwitchOut on the source demonstrates as large
gains as these obtained by RAML on the target
side, and SwitchOut delivers further improvements
when combined with RAML.

SwitchOut vs. Back Translation. Traditionally,
data-augmentation is viewed as a method to en-
large the training datasets (Krizhevsky et al., 2012;
Szegedy et al., 2014). In the context of neural
MT, Sennrich et al. (2016b) propose to use artifi-
cial data generated from a weak back-translation
model, effectively utilizing monolingual data to en-
large the bilingual training datasets. In connection,
we compare SwitchOut against back translation.
We only compare SwitchOut against back transla-
tion on the en-de task, where the amount of bilin-
gual training data is already sufficiently large2. The

2We add the extra monolingual data from
http://data.statmt.org/rsennrich/wmt16_
backtranslations/en-de/
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Method en-de

Transformer 21.73
+SwitchOut 22.78

+BT 21.82
+BT +RAML 21.53
+BT +SwitchOut 22.93
+BT +RAML +SwitchOut 23.76

Table 2: Test BLEU scores of back translation (BT) compared
to and combined with SwitchOut (median of 4 runs).

BLEU scores with back-translation are reported in
Table 2. These results provide two insights. First,
the gain delivered by back translation is less signifi-
cant than the gain delivered by SwitchOut. Second,
SwitchOut and back translation are not mutually ex-
clusive, as one can additionally apply SwitchOut on
the additional data obtained from back translation
to further improve BLEU scores.

Effects of ⌧x and ⌧y. We empirically study the
effect of these temperature parameters. During
the tuning process, we translate the dev set of the
tasks and report the BLEU scores in Figure 1. We
observe that when fixing ⌧y, the best performance
is always achieved with a non-zero ⌧x.
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Figure 1: Dev BLEU scores with different ⌧x and ⌧y . Top
left: WMT 15 en-de. Top right: IWSLT 16 de-en. Bottom:
IWSLT 15 en-vi.

Where does SwitchOut Help the Most? Intu-
itively, because SwitchOut is expanding the sup-
port of the training distribution, we would expect
that it would help the most on test sentences that
are far from those in the training set and would thus
benefit most from this expanded support. To test
this hypothesis, for each test sentence we find its
most similar training sample (i.e. nearest neighbor),
then bucket the instances by the distance to their

nearest neighbor and measure the gain in BLEU af-
forded by SwitchOut for each bucket. Specifically,
we use (negative) word error rate (WER) as the
similarity measure, and plot the bucket-by-bucket
performance gain for each group in Figure 2. As
we can see, SwitchOut improves increasingly more
as the WER increases, indicating that SwitchOut is
indeed helping on examples that are far from the
sentences that the model sees during training. This
is the desirable effect of data augmentation tech-
niques.
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Figure 2: Gains in BLEU of RAML+SwitchOut over RAML.
x-axis is ordered by the WER between a test sentence and its
nearest neighbor in the training set. Left: IWSLT 16 de-en.
Right: IWSLT 15 en-vi.

4 Conclusion

In this paper, we propose a method to design data
augmentation algorithms by solving an optimiza-
tion problem. These solutions subsume a few ex-
isting augmentation schemes and inspire a novel
augmentation method, SwitchOut. SwitchOut de-
livers improvements over translation tasks at differ-
ent scales. Additionally, SwitchOut is efficient and
easy to implement, and thus has the potential for
wide application.
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Abstract

Unsupervised learning of cross-lingual word
embedding offers elegant matching of words
across languages, but has fundamental limi-
tations in translating sentences. In this pa-
per, we propose simple yet effective methods
to improve word-by-word translation of cross-
lingual embeddings, using only monolingual
corpora but without any back-translation. We
integrate a language model for context-aware
search, and use a novel denoising autoencoder
to handle reordering. Our system surpasses
state-of-the-art unsupervised neural transla-
tion systems without costly iterative training.
We also analyze the effect of vocabulary size
and denoising type on the translation perfor-
mance, which provides better understanding
of learning the cross-lingual word embedding
and its usage in translation.

1 Introduction

Building a machine translation (MT) system re-
quires lots of bilingual data. Neural MT mod-
els (Bahdanau et al., 2015), which become the
current standard, are even more difficult to train
without huge bilingual supervision (Koehn and
Knowles, 2017). However, bilingual resources
are still limited to some of the selected language
pairs—mostly from or to English.

A workaround for zero-resource language pairs
is translating via an intermediate (pivot) language.
To do so, we need to collect parallel data and train
MT models for source-to-pivot and pivot-to-target
individually; it takes a double effort and the de-
coding is twice as slow.

Unsupervised learning is another alternative,
where we can train an MT system with only mono-
lingual corpora. Decipherment methods (Ravi and
Knight, 2011; Nuhn et al., 2013) are the first work
in this direction, but they often suffer from a huge
latent hypothesis space (Kim et al., 2017).

Recent work by Artetxe et al. (2018) and Lam-
ple et al. (2018) train sequence-to-sequence MT
models of both translation directions together in an
unsupervised way. They do back-translation (Sen-
nrich et al., 2016a) back and forth for every itera-
tion or batch, which needs an immensely long time
and careful tuning of hyperparameters for massive
monolingual data.

Here we suggest rather simple methods to build
an unsupervised MT system quickly, based on
word translation using cross-lingual word embed-
dings. The contributions of this paper are:

• We formulate a straightforward way to com-
bine a language model with cross-lingual
word similarities, effectively considering
context in lexical choices.

• We develop a postprocessing method for
word-by-word translation outputs using a de-
noising autoencoder, handling local reorder-
ing and multi-aligned words.

• We analyze the effect of different artificial
noises for the denoising model and propose
a novel noise type.

• We verify that cross-lingual embedding on
subword units performs poorly in translation.

• We empirically show that cross-lingual map-
ping can be learned using a small vocabulary
without losing the translation performance.

The proposed models can be efficiently trained
with off-the-shelf softwares with little or no
changes in the implementation, using only mono-
lingual data. The provided analyses help for bet-
ter learning of cross-lingual word embeddings for
translation purpose. Altogether, our unsupervised
MT system outperforms the sequence-to-sequence
neural models even without training signals from
the opposite translation direction, i.e. via back-
translation.
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2 Cross-lingual Word Embedding
As a basic step for unsupervised MT, we learn a
word translation model from monolingual corpora
of each language. In this work, we exploit cross-
lingual word embedding for word-by-word trans-
lation, which is state-of-the-art in terms of type
translation quality (Artetxe et al., 2017; Conneau
et al., 2018).

Cross-lingual word embedding is a continu-
ous representation of words whose vector space
is shared across multiple languages. This en-
ables distance calculation between word embed-
dings across languages, which is actually finding
translation candidates.

We train cross-lingual word embedding in a
fully unsupervised manner:

1. Learn monolingual source and target embed-
dings independently. For this, we run skip-
gram algorithm augmented with character n-
gram (Bojanowski et al., 2017).

2. Find a linear mapping from source embed-
ding space to target embedding space by
adversarial training (Conneau et al., 2018).
We do not pre-train the discriminator with
a seed dictionary, and consider only the top
Vcross-train words of each language as input to
the discriminator.

Once we have the cross-lingual mapping, we
can transform the embedding of a given source
word and find a target word with the closest em-
bedding, i.e. nearest neighbor search. Here, we
apply cross-domain similarity local scaling (Con-
neau et al., 2018) to penalize the word similarities
in dense areas of the embedding distribution.

We further refine the mapping obtained from
Step 2 as follows (Artetxe et al., 2017):

3. Build a synthetic dictionary by finding mu-
tual nearest neighbors for both translation di-
rections in vocabularies of Vcross-train words.

4. Run a Procrustes problem solver with the dic-
tionary from Step 3 to re-train the mapping
(Smith et al., 2017).

5. Repeat Step 3 and 4 for a fixed number of
iterations to update the mapping further.

3 Sentence Translation
In translating sentences, cross-lingual word em-
bedding has several drawbacks. We describe each
of them and our corresponding solutions.

3.1 Context-aware Beam Search
The word translation using nearest neighbor
search does not consider context around the cur-
rent word. In many cases, the correct translation is
not the nearest target word but other close words
with morphological variations or synonyms, de-
pending on the context.

The reasons are in two-fold: 1) Word embed-
ding is trained to place semantically related words
nearby, even though they have opposite meanings.
2) A hubness problem of high-dimensional em-
bedding space hinders a correct search, where lots
of different words happen to be close to each other
(Radovanović et al., 2010).

In this paper, we integrate context information
into word-by-word translation by combining a lan-
guage model (LM) with cross-lingual word em-
bedding. Let f be a source word in the current
position and e a possible target word. Given a his-
tory h of target words before e, the score of e to be
the translation of f would be:

L(e; f, h) = �emb log q(f, e) + �LM log p(e|h)

Here, q(f, e) is a lexical score defined as:

q(f, e) =
d(f, e) + 1

2

where d(f, e) 2 [�1, 1] is a cosine similarity be-
tween f and e. It is transformed to the range [0, 1]
to make it similar in scale with the LM probability.
In our experiments, we found that this simple lin-
ear scaling is better than sigmoid or softmax func-
tions in the final translation performance.

Accumulating the scores per position, we per-
form a beam search to allow only reasonable trans-
lation hypotheses.

3.2 Denoising
Even when we have correctly translated words for
each position, the output is still far from an ac-
ceptable translation. We adopt sequence denois-
ing autoencoder (Hill et al., 2016) to improve the
translation output of Section 3.1. The main idea
is to train a sequence-to-sequence neural network
model that takes a noisy sentence as input and pro-
duces a (denoised) clean sentence as output, both
of which are of the same (target) language. The
model was originally proposed to learn sentence
embeddings, but here we use it directly to actually
remove noise in a sentence.

Training label sequences for the denoising net-
work would be target monolingual sentences, but
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we do not have their noisy versions at hand. Given
a clean target sentence, the noisy input should
be ideally word-by-word translation of the corre-
sponding source sentence. However, such bilin-
gual sentence alignment is not available in our un-
supervised setup.

Instead, we inject artificial noise into a clean
sentence to simulate the noise of word-by-word
translation. We design different noise types after
the following aspects of word-by-word translation.

3.2.1 Insertion
Word-by-word translation always outputs a target
word for every position. However, there are a
plenty of cases that multiple source words should
be translated to a single target word, or that some
source words are rather not translated to any word
to make a fluent output. For example, a German
sentence “Ich höre zu.” would be translated to
“I’m listening to.” by a word-by-word transla-
tor, but “I’m listening.” is more natural in English
(Figure 1).

Ich höre zu

I’m listening to

I’m listening

Word-by-word

Denoising

Figure 1: Example of denoising an insertion noise.

We pretend to have extra target words which
might be translation of redundant source words, by
inserting random target words to a clean sentence:

1. For each position i, sample a probability pi ⇠
Uniform(0, 1).

2. If pi < pins, sample a word e from the most
frequent Vins target words and insert it before
position i.

We limit the inserted words by Vins because tar-
get insertion occurs mostly with common words,
e.g. prepositions or articles, as the example above.
We insert words only before—not after—a posi-
tion, since an extra word after the ending word
(usually a punctuation) is not probable.

3.2.2 Deletion
Similarly, word-by-word translation cannot handle
the contrary case: when a source word should be
translated into more than one target words, or a

target word should be generated from no source
words for fluency. For example, a German word
“im” must be “in the” in English, but word transla-
tion generates only one of the two English words.
Another example is shown in Figure 2.

eine der besten

one the best

one of the best

Word-by-word

Denoising

Figure 2: Example of denoising a deletion noise.

To simulate such situations, we drop some
words randomly from a clean target sentence (Hill
et al., 2016):

1. For each position i, sample a probability pi ⇠
Uniform(0, 1).

2. If pi < pdel, drop the word in the position i.

3.2.3 Reordering
Also, translations generated word-by-word are not
in an order of the target language. In our beam
search, LM only assists in choosing the right word
in context but does not modify the word order. A
common reordering problem of German!English
is illustrated in Figure 3.

was ich gesagt habe

what I said have

what I have said

Word-by-word

Denoising

Figure 3: Example of denoising the reordering noise.

From a clean target sentence, we corrupt its
word order by random permutations. We limit the
maximum distance between an original position
and its new position like Lample et al. (2018):

1. For each position i, sample an integer �i from
[0, dper].

2. Add �i to index i and sort the incremented
indices i + �i in an increasing order.

3. Rearrange the words to be in the new po-
sitions, to which their original indices have
moved by Step 2.
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de-en en-de fr-en en-fr
System BLEU [%] BLEU [%] BLEU [%] BLEU [%]

Word-by-Word 11.1 6.7 10.6 7.8
+ LM 14.5 9.9 13.6 10.9

+ Denoising 17.2 11.0 16.5 13.9

(Lample et al., 2018) 13.3 9.6 14.3 15.1
(Artetxe et al., 2018) - - 15.6 15.1

Table 1: Translation results on German$English newstest2016 and French$English newstest2014.
Beam size is 10 and top 100 words are considered in the nearest neighbor search.

This is a generalized version of swapping two
neighboring words (Hill et al., 2016). Reordering
is highly dependent of each language, but we
found that this noise is generally close to word-
by-word translation outputs.

Insertion, deletion, and reordering noises were ap-
plied to each mini-batch with different random
seeds, allowing the model to see various noisy ver-
sions of the same clean sentence over the epochs.

Note that the deletion and permutation noises
are integrated in the neural MT training of Artetxe
et al. (2018) and Lample et al. (2018) as additional
training objectives. Whereas we optimize an inde-
pendent model solely for denoising without archi-
tecture change. It allows us to easily train a larger
network with a larger data. Insertion noise is of
our original design, which we found to be the most
effective (Section 4.1).

4 Experiments

We applied the proposed methods on WMT
2016 German$English task and WMT 2014
French$English task. For German/English, we
trained word embeddings with 100M sentences
sampled from News Crawl 2014-2017 monolin-
gual corpora. For French, we used News Crawl
2007-2014 (around 42M sentences). The data was
lowercased and filtered to have a maximum sen-
tence length 100. German compound words were
splitted beforehand. Numbers were replaced with
category labels and recovered back after decoding
by looking at the source sentence. Also, frequent
casing was applied to the translation output.

fasttext (Bojanowski et al., 2017) was used to
learn monolingual embeddings for only the words
with minimum count 10. MUSE (Conneau et al.,
2018) was used for cross-lingual mappings with
Vcross-train = 100k and 10 refinement iterations

(Step 3-5 in Section 2). Other parameters follow
the values in Conneau et al. (2018). With the same
data, we trained 5-gram count-based LMs using
KenLM (Heafield, 2011) with its default setting.

Denoising autoencoders were trained using
Sockeye (Hieber et al., 2017) on News Crawl
2016 for German/English and News Crawl 2014
for French. We considered only top 50k frequent
words for each language and mapped other words
to <unk>. The unknowns in the denoised output
were replaced with missing words from the noisy
input by a simple line search.

We used 6-layer Transformer encoder/decoder
(Vaswani et al., 2017) for denoisers, with embed-
ding/hidden layer size 512, feedforward sublayer
size 2048 and 8 attention heads.

As a validation set for the denoiser training, we
used newstest2015 (German $ English) or
newstest2013 (French $ English), where the
input/output sides both have the same clean target
sentences, encouraging a denoiser to keep at least
clean part of word-by-word translations. Here, the
noisy input showed a slight degradation of per-
formance; the model seemed to overfit to specific
noises in the small validation set.

Optimization of the denoising models was done
with Adam (Kingma and Ba, 2015): initial learn-
ing rate 0.0001, checkpoint frequency 4000, no
learning rate warmup, multiplying 0.7 to the learn-
ing rate when the perplexity on the validation set
did not improve for 3 checkpoints. We stopped the
training if it was not improved for 8 checkpoints.

Table 1 shows the results. LM improves word-
by-word baselines consistently in all four tasks,
giving at least +3% BLEU. When our denoising
model is applied on top of it, we have additional
gain around +3% BLEU. Note that our meth-
ods do not involve any decoding steps to gener-
ate pseudo-parallel training data, but still perform
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better than unsupervised MT systems that rely on
repetitive back-translations (Artetxe et al., 2018;
Lample et al., 2018) by up to +3.9% BLEU. The
total training time of our method is only 1-2 days
with a single GPU.

4.1 Ablation Study: Denoising

dper pdel Vins BLEU [%]

2 14.7
3 14.9
5 14.9

3 0.1 15.7
0.3 15.1

3 0.1

10 16.8
50 17.2

500 16.8
5000 16.5

Table 2: Translation results with different values of de-
noising parameters for German!English.

To examine the effect of each noise type in de-
noising autoencoder, we tuned each parameter of
the noise and combined them incrementally (Ta-
ble 2). Firstly, for permutations, a significant im-
provement is achieved from dper = 3, since a local
reordering usually involves a sequence of 3 to 4
words. With dper > 5, it shuffles too many con-
secutive words together, yielding no further im-
provement. This noise cannot handle long-range
reordering, which is usually a swap of words that
are far from each other, keeping the words in the
middle as they are.

Secondly, we applied the deletion noise with
different values of pdel. 0.1 gives +0.8% BLEU,
but we immediately see a degradation with a larger
value; it is hard to observe one-to-many transla-
tions more than once in each sentence pair.

Finally, we optimized Vins for the insertion
noise, fixing pins = 0.1. Increasing Vins is gener-
ally not beneficial, since it provides too much vari-
ations in the inserted word; it might not be related
to its neighboring words. Overall, we observe the
best result (+1.5% BLEU) with Vins = 50.

4.2 Ablation Study: Vocabulary
We also examined how the translation perfor-
mance varies with different vocabularies of cross-
lingual word embedding in Table 3. The first three
rows show that BPE embeddings performs worse

Vocabulary BLEU [%]

Merges

BPE
20k 10.4
50k 12.5

100k 13.0

Vcross-train

Word

20k 14.4
50k 14.4

100k 14.5
200k 14.4

Table 3: Translation results with different vocabularies
for German!English.

than word embeddings, especially with smaller
vocabulary size. For small BPE tokens (1-3 char-
acters), the context they meet during the embed-
ding training is much more various than a com-
plete word, and a direct translation of such small
token to a BPE token of another language would
be very ambiguous.

For word level embeddings, we compared dif-
ferent vocabulary sizes used for training the
cross-lingual mapping (the second step in Section
2). Surprisingly, cross-lingual word embedding
learned only on top 20k words is comparable to
that of 200k words in the translation quality. We
also increased the search vocabulary to more than
200k but the performance only degrades. This
means that word-by-word translation with cross-
lingual embedding depends highly on the frequent
word mappings, and learning the mapping be-
tween rare words does not have a positive effect.

5 Conclusion

In this paper, we proposed a simple pipeline
to greatly improve sentence translation based on
cross-lingual word embedding. We achieved
context-aware lexical choices using beam search
with LM, and solved insertion/deletion/reordering
problems using denoising autoencoder. Our novel
insertion noise shows a promising performance
even combined with other noise types. Our meth-
ods do not need back-translation steps but still out-
performs costly unsupervised neural MT systems.
In addition, we proved that for general translation
purpose, an effective cross-lingual mapping can be
learned using only a small set of frequent words,
not on subword units.
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Abstract

Decipherment of homophonic substitution ci-
phers using language models (LMs) is a well-
studied task in NLP. Previous work in this
topic scores short local spans of possible plain-
text decipherments using n-gram LMs. The
most widely used technique is the use of beam
search with n-gram LMs proposed by Nuhn
et al. (2013). We propose a beam search al-
gorithm that scores the entire candidate plain-
text at each step of the decipherment using a
neural LM. We augment beam search with a
novel rest cost estimation that exploits the pre-
diction power of a neural LM. We compare
against the state of the art n-gram based meth-
ods on many different decipherment tasks. On
challenging ciphers such as the Beale cipher
we provide significantly better error rates with
much smaller beam sizes.

1 Introduction

Breaking substitution ciphers recovers the plain-
text from a ciphertext that uses a 1:1 or homo-
phonic cipher key. Previous work using pre-
trained language models (LMs) for decipherment
use n-gram LMs (Ravi and Knight, 2011; Nuhn
et al., 2013). Some methods use the Expectation-
Maximization (EM) algorithm (Knight et al.,
2006) while most state-of-the-art approaches for
decipherment of 1:1 and homophonic substitution
ciphers use beam search and rely on the clever
use of n-gram LMs (Nuhn et al., 2014; Hauer
et al., 2014). Neural LMs globally score the en-
tire candidate plaintext sequence (Mikolov et al.,
2010). However, using a neural LM for decipher-
ment is not trivial because scoring the entire candi-
date partially deciphered plaintext is computation-
ally challenging. We solve both of these problems
in this paper and provide an improved beam search
based decipherment algorithm for homophonic ci-
phers that exploits pre-trained neural LMs for the
first time.

2 Decipherment Model
We use the notation from Nuhn et al. (2013). Ci-
phertext fN

1 = f1..fi..fN and plaintext eN
1 =

e1..ei..eN consist of vocabularies fi 2 Vf and
ei 2 Ve respectively. The beginning tokens in the
ciphertext (f0) and plaintext (e0) are set to “$” de-
noting the beginning of a sentence. The substi-
tutions are represented by a function � : Vf !
Ve such that 1:1 substitutions are bijective while
homophonic substitutions are general. A cipher
function � which does not have every �(f) fixed is
called a partial cipher function (Corlett and Penn,
2010). The number of fs that are fixed in � is
given by its cardinality. �0 is called an extension
of �, if f is fixed in �0 such that �(�0(f), �(f))
yields true 8f 2 Vf which are already fixed in �
where � is Kronecker delta. Decipherment is then
the task of finding the � for which the probability
of the deciphered text is maximized.

�̂ = arg max
�

p(�(f1)...�(fN )) (1)

where p(.) is the language model (LM). Find-
ing this argmax is solved using a beam search al-
gorithm (Nuhn et al., 2013) which incrementally
finds the most likely substitutions using the lan-
guage model scores as the ranking.

2.1 Neural Language Model
The advantage of a neural LM is that it can be used
to score the entire candidate plaintext for a hypoth-
esized partial decipherment. In this work, we use a
state of the art byte (character) level neural LM us-
ing a multiplicative LSTM (Radford et al., 2017).

Consider a sequence S = w1, w2, w3, ..., wN .
The LM score of S is SCORE(S):

P (S) = P (w1, w2, w3, ..., wN )

P (S) =
NY

i=1

P (wi | w1, w2, ..., wi�1))

SCORE(S) = �
NX

i=1

log(P (wi | w<i))

(2)
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2.2 Beam Search
Algorithm 1 is the beam search algorithm (Nuhn
et al., 2013, 2014) for solving substitution ci-
phers. It monitors all partial hypotheses in lists
Hs and Ht based on their quality. As the
search progresses, the partial hypotheses are ex-
tended, scored with SCORE and appended to
Ht. EXT LIMITS determines which extensions
should be allowed and EXT ORDER picks the next
cipher symbol for extension. The search continues
after pruning: Hs  HISTOGRAM_PRUNE(Ht).
We augment this algorithm by updating the
SCORE function with a neural LM.

Algorithm 1 Beam Search for Decipherment
1: function (BEAM SEARCH (EXT ORDER, EXT LIM-

ITS))
2: initialize sets Hs, Ht

3: CARDINALITY = 0
4: Hs.ADD((;,0))
5: while CARDINALITY < |Vf | do
6: f = EXT ORDER[CARDINALITY]
7: for all � 2 Hs do
8: for all e 2 Ve do
9: �’ := � [ {(e, f)}

10: if EXT LIMITS(�’) then
11: Ht.ADD(�’,SCORE(�’))
12: HISTOGRAM PRUNE(Ht)
13: CARDINALITY = CARDINALITY + 1
14: Hs = Ht

15: Ht.CLEAR()
16: return WINNER(Hs)

3 Score Estimation (SCORE)

Score estimation evaluates the quality of the
partial hypotheses �. Using the example
from Nuhn et al. (2014), consider the vo-
cabularies Ve = {a, b, c, d} and Vf =
{A, B, C, D}, extension order (B, A, C, D), and
ciphertext $ ABDDCABCDADCABDC $. Let � =
{(a, A), (b, B))} be the partial hypothesis. Then
SCORE(�) scores this hypothesized partial deci-
pherment (only A and B are converted to plain-
text) using a pre-trained language model in the hy-
pothesized plaintext language.

3.1 Baseline
The initial rest cost estimator introduced by Nuhn
et al. nuhnbeam computes the score of hypothe-
ses only based on partially deciphered text that
builds a shard of n adjacent solved symbols. As a
heuristic, n-grams which still consist of unsolved
cipher-symbols are assigned a trivial estimate of
probability 1. An improved version of rest cost es-

timation (Nuhn et al., 2014) consults lower order
n-grams to score each position.

3.2 Global Rest Cost Estimation

The baseline scoring method greatly relies on local
context, i.e. the estimation is strictly based on par-
tial character sequences. Since this depends solely
on the n-gram LM, the true conditional probabil-
ity under Markov assumption is not modeled and,
therefore, context dependency beyond the window
of (n� 1) is ignored. Thus, attempting to utilize a
higher amount of context can lower the probability
of some tokens resulting in poor scores.

We address this issue with a new improved ver-
sion of the rest cost estimator by supplement-
ing the partial decipherment �(fN

1 ) with predicted
plaintext text symbols using our neural language
model (NLM). Applying � = {(a, A), (b, B))} to
the ciphertext above, we get the following partial
hypothesis:
�(fN

1 ) = $a1b2...a6b7..a10..a13b14..$
We introduce a scoring function that is able to
score the entire plaintext including the missing
plaintext symbols. First, we sample1 the plaintext
symbols from the NLM at all locations depend-
ing on the deciphered tokens from the partial hy-
pothesis � such that these tokens maintain their re-
spective positions in the sequence, and at the same
time are sampled from the neural LM to fit (prob-
abilistically) in this context. Next, we determine
the probability of the entire sequence including the
scores of sampled plaintext as our rest cost esti-
mate.

NLM

In our running example, this would yield a score
estimation of the partial decipherment, �(fN

1 ) :

�(fN
1 ) = $ a1b2d3c4c5a6b7c8d9a10d11d12a13b14d15c16 $

Thus, the neural LM is used to predict the score of
the full sequence. This method of global scoring
evaluates each candidate partial decipherment by
scoring the entire message, augmented by the sam-

1The char-level sampling is done incrementally from left
to right to generate a sequence that contains the deciphered
tokens from � at the exact locations they occur in the above
�(fN

1 ). If the LM prediction contradicts the hypothesized
decipherment we stop sampling and start from the next char-
acter.
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Cipher Length Unique
Symbols

Obs/
symbol

Zodiac-408 408 54 7.55
Beale Pt. 2 763 180 4.23

Table 1: Homophonic ciphers used in our experiments.

pled plaintext symbols from the NLM. Since more
terms participate in the rest cost estimation with
global context, we use the plaintext LM to provide
us with a better rest cost in the beam search.

3.3 Frequency Matching Heuristic
Alignment by frequency similarity (Yarowsky and
Wicentowski, 2000) assumes that two forms be-
long to the same lemma when their relative fre-
quency fits the expected distribution. We use
this heuristic to augment the score estimation
(SCORE):

FMH(�0) =

����log
✓

⌫(f)

⌫(e)

◆���� f 2 Vf , e 2 Ve

(3)
⌫(f) is the percentage relative frequency of the ci-
phertext symbol f , while ⌫(e) is the percentage
relative frequency of the plaintext token e in the
plaintext language model. The closer this value to
0, the more likely it is that f is mapped to e.

Thus given a � with the SCORE(�), the exten-
sion �0 (Algo. 1) is scored as:
SCORE(�0) = SCORE(�) + NEW(�0)� FMH(�0)

(4)
where NEW is the score for symbols that have been
newly fixed in �0 while extending � to �0. Our
experimental evaluations show that the global rest
cost estimator and the frequency matching heuris-
tic contribute positively towards the accuracy of
different ciphertexts.

4 Experimental Evaluation

We carry out 2 sets of experiments: one on let-
ter based 1:1, and another on homophonic sub-
stitution ciphers. We report Symbol Error Rate
(SER) which is the fraction of characters in the
deciphered text that are incorrect.

The character NLM uses a single layer multi-
plicative LSTM (mLSTM) (Radford et al., 2017)
with 4096 units. The model was trained for a sin-
gle epoch on mini-batches of 128 subsequences of
length 256 for a total of 1 million weight updates.
States were initialized to zero at the beginning of
each data shard and persisted across updates to
simulate full-backprop and allow for the forward
propagation of information outside of a given sub-

sequence. In all the experiments we use a charac-
ter NLM trained on English Gigaword corpus aug-
mented with a short corpus of plaintext letters of
about 2000 words authored by the Zodiac killer2.

4.1 1:1 Substitution Ciphers
In this experiment we use a synthetic 1:1 let-
ter substitution cipher dataset following Ravi and
Knight (2008), Nuhn et al. (2013) and Hauer et
al. (2014). The text is from English Wikipedia
articles about history3, preprocessed by stripping
the text of all images, tables, then lower-casing all
characters, and removing all non-alphabetic and
non-space characters. We create 50 cryptograms
for each length 16, 32, 64, 128 and 256 using a
random Caesar-cipher 1:1 substitution.

Length Beam SER(%) 1 SER(%) 2
64 100 4.14 4.14

1,000 1.09 1.04
10,000 0.08 0.12
100,000 0.07 0.07

128 100 7.31 7.29
1,000 1.68 1.55
10,000 0.15 0.09
100,000 0.01 0.02

Table 2: Symbol Error Rates (SER) based on Neural
Language Model and beam size (Beam) for solving
1:1 substitution ciphers of lengths 64 and 128, respec-
tively. SER 1 shows beam search with global scoring,
and SER 2 shows beam search with global scoring with
frequency matching heuristic.

Figure 1: Symbol error rates for decipherment of 1:1
substitution ciphers of different lengths. The beam size
is 100k. Beam 6-gram model uses the beam search
from Nunh et al. (2013).

2https://en.wikisource.org/wiki/Zodiac Killer letters
3http://en.wikipedia.org/wiki/History
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I H A V E D E P O S I T E D I N T H E C O U N T Y O

F B E D F O R D A B O U T F O U R M I L E S F R O M

B U F O R D S I N A N E X C A V A T I O N O R V A U

L T S I X F E E T B E L O W T H E S U R F A C E O F

T H E G R O U N D T H E F O L L O W I N G A R T I C

L E S B E L O N G I N G J O I N T L Y T O T H E P A

115 73 24 807 37 52 49 17 31 62 647 22 7 15 140 47 29 107 79 84 56 239 10 26 811 5

196 308 85 52 160 136 59 211 36 9 46 316 554 122 106 95 53 58 2 42 7 35 122 53 31 82

77 250 196 56 96 118 71 140 287 28 353 37 1005 65 147 807 24 3 8 12 47 43 59 807 45 316

101 41 78 154 1005 122 138 191 16 77 49 102 57 72 34 73 85 35 371 59 196 81 92 191 106 273

60 394 620 270 220 106 388 287 63 3 6 191 122 43 234 400 106 290 314 47 48 81 96 26 115 92

158 191 110 77 85 197 46 10 113 140 353 48 120 106 2 607 61 420 811 29 125 14 20 37 105 28

Figure 2: First few lines from part two of the Beale cipher. The letters have been capitalized.

Fig 1 plots the results of our method for cipher
lengths of 16, 32, 64, 128 and 256 alongside Beam
6-gram (the best performing model) model (Nuhn
et al., 2013)

4.2 An Easy Cipher: Zodiac-408
Zodiac-408, a homophonic cipher, is commonly
used to evaluate decipherment algorithms.

Beam SER (%) 1 SER (%) 2
10k 3.92 3.18
100k 2.40 1.91
1M 1.47 1.22

Table 3: Symbol Error Rates (SER) based on Neu-
ral Language Model and beam size (Beam) for deci-
phering Zodiac-408, respectively. SER 1 shows beam
search with global scoring, and SER 2 shows beam
search with global scoring with the frequency match-
ing heuristic.

Our neural LM model with global rest cost es-
timation and frequency matching heuristic with a
beam size of 1M has SER of 1.2% compared to
the beam search algorithm (Nuhn et al., 2013) with
beam size of 10M with a 6-gram LM which gives
an SER of 2%. The improved beam search (Nuhn
et al., 2014) with an 8-gram LM, however, gets 52
out of 54 mappings correct on the Zodiac-408 ci-
pher.

4.3 A Hard Cipher: Beale Pt 2
Part 2 of the Beale Cipher is a more challeng-
ing homophonic cipher because of a much larger
search space of solutions. Nunh et al. (2014) were
the first to automatically decipher this Beale Ci-
pher.

With an error of 5% with beam size of 1M vs
5.4% with 8-gram LM and a pruning size of 10M,
our system outperforms the state of the art (Nuhn
et al., 2014) on this task.

!1

I L I K E K I L L I N G P E O P L

E B E C A U S E I T I S S O M U C

H F U N I T I S M O R E F U N T H
A

A N K I L L I N G W I L D G A M E

I N T H E F O R T E S T B E C A U

S E M A N I S T H E M O S T D A N

G E R T U E A N A M A L O F A L L

Figure 3: First 119 characters from deciphered Zodiac-
408 text. The letters have been capitalized.

Beam SER (%) 1 SER (%) 2
10k 41.67 48.33

100k 7.20 10.09
1M 4.98 5.50

Table 4: Symbol Error Rates (SER) based on Neural
Language Model and beam size (Beam) for decipher-
ing Part 2 of the Beale Cipher. SER 1 shows beam
search with global scoring, and SER 2 shows beam
search with global scoring with the frequency match-
ing heuristic.

5 Related Work

Automatic decipherment for substitution ciphers
started with dictionary attacks (Hart, 1994; Jakob-
sen, 1995; Olson, 2007). Ravi and Knight (2008)
frame the decipherment problem as an integer lin-
ear programming (ILP) problem. Knight et al.
(2006) use an HMM-based EM algorithm for solv-
ing a variety of decipherment problems. Ravi and
Knight (2011) extend the HMM-based EM ap-
proach with a Bayesian approach, and report the
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first automatic decipherment of the Zodiac-408 ci-
pher.

Berg-Kirkpatrick and Klein (2013) show that
a large number of random restarts can help the
EM approach.Corlett and Penn (2010) presented
an efficient A* search algorithm to solve letter
substitution ciphers. Nuhn et al. (2013) produce
better results in faster time compared to ILP and
EM-based decipherment methods by employing a
higher order language model and an iterative beam
search algorithm. Nuhn et al. (2014) present var-
ious improvements to the beam search algorithm
in Nuhn et al. (2013) including improved rest cost
estimation and an optimized strategy for order-
ing decipherment of the cipher symbols. Hauer
et al. (2014) propose a novel approach for solv-
ing mono-alphabetic substitution ciphers which
combines character-level and word-level language
model. They formulate decipherment as a tree
search problem, and use Monte Carlo Tree Search
(MCTS) as an alternative to beam search. Their
approach is the best for short ciphers.

Greydanus (2017) frames the decryption pro-
cess as a sequence-to-sequence translation task
and uses a deep LSTM-based model to learn the
decryption algorithms for three polyalphabetic ci-
phers including the Enigma cipher. However,
this approach needs supervision compared to our
approach which uses a pre-trained neural LM.
Gomez et al. (2018) (CipherGAN) use a genera-
tive adversarial network to learn the mapping be-
tween the learned letter embedding distributions
in the ciphertext and plaintext. They apply this
approach to shift ciphers (including Vigenère ci-
phers). Their approach cannot be extended to ho-
mophonic ciphers and full message neural LMs as
in our work.

6 Conclusion

This paper presents, to our knowledge, the first
application of large pre-trained neural LMs to
the decipherment problem. We modify the beam
search algorithm for decipherment from Nuhn et
al. (2013; 2014) and extend it to use global scor-
ing of the plaintext message using neural LMs.
To enable full plaintext scoring we use the neural
LM to sample plaintext characters which reduces
the beam size required. For challenging ciphers
such as Beale Pt 2 we obtain lower error rates with
smaller beam sizes when compared to the state of
the art in decipherment for such ciphers.
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Abstract

This paper examines the problem of adapt-
ing neural machine translation systems to new,
low-resourced languages (LRLs) as effectively
and rapidly as possible. We propose meth-
ods based on starting with massively multi-
lingual “seed models”, which can be trained
ahead-of-time, and then continuing training on
data related to the LRL. We contrast a num-
ber of strategies, leading to a novel, simple,
yet effective method of “similar-language reg-
ularization”, where we jointly train on both a
LRL of interest and a similar high-resourced
language to prevent over-fitting to small LRL
data. Experiments demonstrate that massively
multilingual models, even without any explicit
adaptation, are surprisingly effective, achiev-
ing BLEU scores of up to 15.5 with no data
from the LRL, and that the proposed similar-
language regularization method improves over
other adaptation methods by 1.7 BLEU points
average over 4 LRL settings.1

1 Introduction

When disaster strikes, news and social media are
invaluable sources of information, allowing hu-
manitarian organizations to rapidly mitigate crisis
situations and save lives (Vieweg et al., 2010; Neu-
big et al., 2011; Starbird et al., 2012). However,
language barriers looms large over these efforts,
especially when disasters occur in parts of the
world that use less common languages. In these
cases, machine translation (MT) technology can
be a valuable tool, with one widely-heralded suc-
cess story being the deployment of Haitian Creole-
to-English translation systems during the earth-
quakes in Haiti (Lewis, 2010; Munro, 2010).

However, data-driven MT systems, particularly
neural machine translation (NMT; Kalchbrenner

1Code to reproduce experiments at https://github.
com/neubig/rapid-adaptation

and Blunsom (2013); Bahdanau et al. (2015)), re-
quire large amounts of training data, and creating
high-quality systems in low-resource languages
(LRLs) is a difficult challenge where research ef-
forts have just begun (Gu et al., 2018). Another
hurdle, which to our knowledge has not been cov-
ered in previous research, is the time it takes to
create such a system. In a crisis situation, time
is of the essence, and systems that require days or
weeks of training will not be desirable or even fea-
sible.

In this paper we focus on the question: how can
we create MT systems for new language pairs as
accurately as possible, and as quickly as possible?
To examine this question we propose NMT meth-
ods at the intersection of cross-lingual transfer
learning (Zoph et al., 2016) and multilingual train-
ing (Johnson et al., 2016), two paradigms that, to
our knowledge, have not been used together in pre-
vious work. Our methods, laid out in §2 follow the
process of training a seed model on a large num-
ber of languages, then fine-tuning the model to im-
prove its performance on the language of interest.
We propose a novel method of similar-language
regularization (SLR) where training data from a
second similar languages is used to help prevent
over-fitting to the small LRL dataset.

In the experiments in §3, we attempt to answer
two questions: (1) Which method of creating mul-
tilingual systems and adapting them to an LRL is
the most effective way to increase accuracy? (2)
How can we create the strongest system possible
with a bare minimum of training time? The re-
sults are sometimes surprising – we first find that
a single monolithic model trained on 57 languages
can achieve BLEU scores as high as 15.5 with no
training data in the new source language whatso-
ever. In addition, the proposed method starting
with a universal model then fine-tuning with the
SLR proves most effective, achieving gains of 1.7
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BLEU points averaged over several language pairs
compared to previous methods adapting to only
the LRL.

2 Training Paradigms

In this paper, we consider the setting where we
have a source LRL of interest, and we want to
translate into English.2 All of our adaptation
methods are based on first training on larger data
including other languages, then fine-tuning the
model to be specifically tailored to the LRL. We
first discuss a few multilingual training paradigms
from previous literature (§2.1), then discuss our
proposed adaptation methods (§2.2).

2.1 Multilingual Modeling Methods
We use three varieties of multilingual training:
Single-source modeling (“Sing.”) is the first
method, using only parallel data between the LRL
of interest and English. This method is straightfor-
ward and the resulting model will be most highly
tailored to the final test language pair, but the
method also has the obvious disadvantage that
training data is very sparse.
Bi-source modeling (“Bi”) trains an MT system
with two source languages: one LRL that we
would like to translate from, and a second highly
related high-resource language (HRL): the helper
source language.3 This method is inspired by
Johnson et al. (2016), who examine multilingual
translation models to/from English and two highly
related languages such as Spanish/Portuguese or
Japanese/Korean. The advantage of this method is
that it allows the LRL to learn from a highly simi-
lar helper, potentially increasing accuracy.
All-source modeling (“All”) trains not only on a
couple source languages, but instead creates a uni-
versal model on all of the languages that we have
at our disposal. In our experiments (§3.1) this en-
tails training systems on 58 source languages, to
our knowledge the largest reported in NMT exper-
iments.4 This paradigm allows us to train a single

2Translation into LRLs, is a challenging and interesting
problem in it’s own right, but beyond the scope of the paper.

3“Related” could mean different things: typologically re-
lated or having high lexical overlap. In our experiments our
LRLs are all selected to have an helper that is highly similar
in both aspects, but choosing an appropriate helper when this
is not the case is an interesting problem for future work.

4In contrast to Gu et al. (2018), who train on 10 languages.
Malaviya et al. (2017); Tiedemann (2018) train NMT on over
1,000 languages, but only as a feature extractor for down-
stream tasks; MT accuracy itself is not evaluated.

model that has wide coverage of vocabulary and
syntax of a large number of languages, but also
has the drawback in that a single model must be
able to express information about all the languages
in the training set within its limited parameter bud-
get. Thus, it is reasonable to expect that this model
may achieve worse accuracy than a model created
specifically to handle a particular source language.

In the following, we will consider adaptation
methods that focus on tailoring a more general
model (i.e. bi-source or universal) to a more spe-
cific model (i.e. single-source or bi-source).

2.2 Adaptation to New Languages
As noted in the introduction, there are two major
requirements: the accuracy of the system is im-
portant and the training time required from when
we learn of a need for translation to when we can
first start producing adequate results. Throughout
the discussion, we will compare various adapta-
tion paradigms with respect to these two aspects.

2.2.1 Adaptation by Fine-tuning
Our first adaptation method, inspired by Zoph
et al. (2016) is based on fine-tuning to the source
language of interest. Within our experiments, we
will test this setting, but also make two distinctions
between the types of adaptation:
Seed Model Variety: Zoph et al. (2016) per-
formed experiments taking a bilingual system
trained on a different language (e.g. French) and
adapting it to a new LRL (e.g. Uzbek). We can
also take universal model and adapt it to the new
language, a setting that we examine (to our knowl-
edge, for the first time) in this work.
Warm vs. Cold Start: Another contrast is
whether we have training data for the LRL of inter-
est while training the original system, or whether
we only receive training data after the original
model has already been trained. We call the former
warm start, and the latter cold start. Intuitively,
we expect warm-start training to perform better,
as having access to the LRL of interest during the
training of the original model will ensure that it
can handle the LRL to some extent. However, the
cold-start scenario is also of interest: we may want
to spend large amounts of time training a strong
model, then quickly adapt to a new language that
we have never seen before in our training data as
data becomes available. For the cold-start models,
we start with a model that is only trained on the
HRL similar to the LRL (Bi�), or a model trained
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LRL train dev test HRL train
aze 5.94k 671 903 tur 182k
bel 4.51k 248 664 rus 208k
glg 10.0k 682 1,007 por 185k
slk 61.5k 2,271 2,445 ces 103k

Table 1: Data sizes in sentences for LRL/HRL pairs

on all languages but the LRL (All�).

2.2.2 Similar-Language Regularization
One problem with adapting to a small amount of
data in the target language is that it will be very
easy for the model to over-fit to the small train-
ing set. To alleviate this problem, we propose a
method of similar language regularization: while
training to adapt to the language of interest, we
also add some data from another similar HRL
that has sufficient resources to help prevent over-
fitting. We do this in two ways:
Corpus Concatenation: Simply concatenate the
data from the two corpora, so that we have a small
amount of data in the LRL, and a large amount of
data in the similar HRL.
Balanced Sampling: Every time we select a mini-
batch to do training, we either sample it from the
LRL, or from the HRL according to a fixed ra-
tio. We try different sampling strategies, includ-
ing sampling with a 1-to-1 ratio, 1-to-2 ratio, and
1-to-4 ratio for the LRL and HRL respectively.

3 Experiments

3.1 Experimental Setup

We perform experiments on the 58-language-to-
English TED corpus (Qi et al., 2018), which is
ideal for our purposes because it has a wide variety
of languages over several language families, some
high-resourced and some low-resourced. Like
Qi et al. (2018), we experiment with Azerbaijani
(aze), Belarusian (bel), and Galician (glg) to En-
glish, and also additionally add Slovak (slk), a
slightly higher resourced language, for contrast.
These languages are all paired with a similar HRL:
Turkish (tur), Russian (rus), Portuguese (por), and
Czech (ces) respectively. Data sizes are shown in
Table 1.

Models are implemented using xnmt (Neu-
big et al., 2018), commit 8173b1f, and start
with the recipe for training on IWSLT TED5. The
model consists of an attentional neural machine
translation model (Bahdanau et al., 2015), using
bi-directional LSTM encoders, 128-dimensional

5Found in examples/stanford-iwslt/

word embeddings, 512-dimensional hidden states,
and a standard LSTM-based decoder.

Following standard practice (Sennrich et al.,
2016; Denkowski and Neubig, 2017), we break
low-frequency words into subwords using the
sentencepiece toolkit.6 There are two alter-
natives for creating subword units: jointly learning
subwords over all source language, or separately
learning subwords for each source language, then
taking the union of all the subword vocabularies as
the vocabulary for the multilingual model. Previ-
ous work on multilingual training has preferred the
former (Nguyen and Chiang, 2017), but in this pa-
per we use the latter for two reasons: (1) because
data in the LRL will not affect the subword units
from the other languages, in the cold-start sce-
nario we can postpone creation of subword units
for the LRL until directly before we start train-
ing on the LRL itself, and (2) we need not be
concerned with the LRL being “overwhelmed” by
the higher-resourced languages when calculating
statistics used in the creation of subword units, be-
cause all languages get an equal share.7 In the ex-
periments, we use a subword vocabulary of 8,000
for each language.

We also compare with two additional baselines:
phrase-based MT implemented in Moses,8 and
unsupervised NMT implemented in undreamt.9

Moses is trained on the bilingual data only (train-
ing multilingually reduced average accuracy), and
undreamt is trained on all monolingual data
available for the LRL and English.

3.2 Experimental Results
Table 2 shows our main translation results, with
warm-start scenarios in the upper half and cold-
start scenarios in the lower half.

Does Multilingual Training Help? To answer
this question, we can compare the warm-start
Sing., Bi, and All settings, and find that the an-
swer is a resounding yes, gains of 7-13 BLEU
points are obtained by going from single-source
to bi-source or all-source training, corroborating
previous work (Gu et al., 2018). Bi-source mod-
els tend to perform slightly better than all-source
models, indicating that given identical parameter

6https://github.com/google/
sentencepiece, using the unigram training setting.

7 Preliminary experiments found both comparable: with
scores of 20.1 and 19.4 for separate and joint respectively.

8http://statmt.org/moses
9https://github.com/artetxem/undreamt
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Strategy aze/tur bel/rus glg/por slk/ces Avg.
Phrase-based 5.9 10.5 22.3 23.0 15.4
Unsupervised NMT 0.0 0.3 0.4 0.0 0.2

W
ar

m
St

ar
t

Sing. 2.7 2.8 16.2 24.0 11.4
Bi 10.9 15.8 27.3 26.5 20.1
All 9.7 16.7 26.5 25.0 19.5
Bi !Sing. 11.4 16.3 27.5 27.1 20.6
All!Sing. 10.1 17.5 28.2 27.4 20.8
All!Bi 11.7 18.3 28.8 28.2 21.8
All!Bi 1-1 10.2 18.3 28.8 28.3 21.4
All!Bi 1-2 11.0 17.5 29.1 28.2 21.4
All!Bi 1-4 11.1 17.9 28.5 27.9 21.3

C
ol

d
St

ar
t

Bi� 3.8 2.5 8.6 5.4 5.1
All� 3.7 3.5 15.5 7.3 7.5
Bi� !Sing. 8.7 11.8 25.4 26.8 18.2
All�!Sing. 8.8 15.3 26.5 27.6 19.5
All�!Bi 10.7 17.4 28.4 28.0 21.2
All�!Bi 1-1 10.5 16.0 28.0 28.2 20.7
All�!Bi 1-2 10.7 17.1 28.3 27.9 21.0
All�!Bi 1-4 11.0 17.4 28.4 27.6 21.1

Table 2: BLEU for single-source (Sing.), bi-source
(Bi), and all-source universal (All) models, with
adapted counterparts. 1-1, 1-2, 1-4 indicate balanced
sampling from §2.2. Bold indicates highest score.

capacity, training on a highly resourced language
is effective. Comparing with the phrase-based
baseline, as noted by Koehn and Knowles (2017)
NMT tends to underperform on low-resource set-
tings when trained only on the data available for
these languages. However, multilingual training
of any variety quickly remedies this issue; all out-
perform phrase-based handily.

More interestingly, examining the cold-start re-
sults, we can see that even systems with no data
in the target language are able to achieve non-
trivial accuracies, up to 15.5 BLEU on glg-eng.
Interestingly, in the cold-start scenario, the All�

model bests the Bi� model, indicating that mas-
sively multilingual training is more useful in this
setting. In contrast, the unsupervised NMT model
struggles, achieving a BLEU score of around 0 for
all language pairs – this is because unsupervised
NMT requires high-quality monolingual embed-
dings from the same distribution, which can be
trained easily in English, but are not available in
the low-resource languages we are considering.
Does Adaptation Help? Regarding adaptation,
we can first observe that regardless of the origi-
nal model and method for adaptation, adaptation
is helpful, particularly (and unsurprisingly) in the
cold-start case. When adapting directly to only
the target language (“!Sing.”), adapting from the
massively multilingual model performs better, in-
dicating that information about all input languages
is better than just a single language. Next, compar-
ing with our proposed method of adding similar

0 1 2 3 4 5 6 7 8 9 10
0

0.03

0.06

0.09

0.12

0.15

0.18

0.21
bel-rus

Sing.

Bi

All-→Sing.

All-→Bi

All-→Bi 1-1

Hours Training

B
L

E
U

0 1 2 3 4 5 6 7 8 9
0

0.03

0.06

0.09

0.12

0.15
aze-tur

Sing.

Bi

All-→Sing.

All-→Bi

All-→Bi 1-1

Hours Training

B
L

E
U

Figure 1: Example of adaptation on the aze-eng and
bel-eng development sets

language regularization (“!Bi”), we can see that
this helps significantly over adapting directly to
the LRL, particularly in the cold-start case where
we can observe gains of up to 1.7 BLEU points.
Finally, in our data setting, corpus concatenation
outperforms balanced sampling in both the cold-
start and warm-start scenarios.
How Can We Adapt Most Efficiently? Finally,
we revisit adapting to new languages efficiently,
with Figure 1 showing BLEU vs. hours training
for the aze/tur and bel/rus source language pairs
(others were similar). We can see that in all cases
the cold-start models (All� !) either outperform
or are comparable in final accuracy to the from-
scratch single-source and bi-source models. In ad-
dition, all of the adapted models converge faster
than the bi-source from-scratch trained models, in-
dicating that adapting from seed models is a good
strategy for rapid construction of MT systems in
new languages. Comparing the cold-start adap-
tation strategies, we can see that in general, the
higher the density of target language training data,
the faster the training converges to a solution, but
the worse the final solution is. This suggests that
there is a speed/accuracy tradeoff in the amount
of similar language regularization we apply dur-
ing fine-tuning.

4 Related Work

While adapting MT systems to new languages
is a long-standing challenge (Schultz and Black,
2006; Jabaian et al., 2013), multilingual NMT is
highly promising in its ability to abstract across
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language boundaries (Firat et al., 2016; Ha et al.,
2016; Johnson et al., 2016). Results on multi-
lingual training for low-resource translation (Gu
et al., 2018; Qi et al., 2018) further demonstrates
this potential, although these works do not con-
sider adaptation to new languages, the main focus
of our work. Notably, we did not examine par-
tial freezing of parameters, another method proven
useful for cross-lingual adaptation (Zoph et al.,
2016); this is orthogonal to our multi-lingual train-
ing approach but the two methods could poten-
tially be combined. Finally, unsupervised NMT
approaches (Artetxe et al., 2017; Lample et al.,
2018, 2017) require no parallel data, but rest on
strong assumptions about high-quality comparable
monolingual data. As we show, when this assump-
tion breaks down these methods fail to function,
while our cold-start methods achieve non-trivial
accuracies even with no monolingual data.

5 Conclusion
This paper examined methods to rapidly adapt MT
systems to new languages by fine-tuning. In both
warm-start and cold-start scenarios, the best re-
sults were obtained by adapting a pre-trained uni-
versal model to the low-resource language while
regularizing with similar languages.
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Abstract

We propose and compare methods for gradient-
based domain adaptation of self-attentive neu-
ral machine translation models. We demon-
strate that a large proportion of model param-
eters can be frozen during adaptation with
minimal or no reduction in translation qual-
ity by encouraging structured sparsity in the
set of o�set tensors during learning via group
lasso regularization. We evaluate this tech-
nique for both batch and incremental adapta-
tion across multiple data sets and language
pairs. Our system architecture—combining a
state-of-the-art self-attentive model with com-
pact domain adaptation—provides high quality
personalized machine translation that is both
space and time e�cient.

1 Introduction

Professional translators typically translate a collec-
tion of related documents drawn from a domain
for which they have a set of previously translated
examples. Domain adaptation is critical to provid-
ing high quality suggestions for interactive machine
translation and post-editing interfaces. When many
translators use the same shared service, the system
must train and apply a personalized adapted model
for each user. We describe a system architecture and
training method that achieve high space e�ciency,
time e�ciency, and translation performance by en-
couraging structured sparsity in the set of o�set
tensors stored for each user.

E�ective model personalization requires both
batch adaptation to an in-domain training set, as
well as incremental adaptation to the test set. Batch
adaptation is applied when a user uploads relevant
translated documents before starting to work. Incre-
mental adaptation is applied when a user provides a
correct translation of each segment just after receiv-
ing machine translation suggestions, and the system
is able to train on that correction before generating

suggestions for the next segment. This is referred
to as a posteriori adaptation by Turchi et al. (2017).
Our experiments compare both types of adaptation.
There are cases for which incremental adaptation
achieves better performance using fewer examples,
as examples drawn directly from the test set are
often highly relevant to subsequent parts of that test
set. There are also cases for which the gains from
both types of domain adaptation are additive.

The time required to translate and to adapt both
must be minimal in a personalized translation ser-
vice. Interactive translation requires suggestions to
be generated at typing speed, and incremental adap-
tation must occur within a few hundred milliseconds
to keep up with a translator’s typical workflow. The
service can be expected to store models for a large
number of users and dynamically load and adapt
models for many active users concurrently. There-
fore, minimizing the number of parameters stored
for each user’s personalized model is important both
for reducing storage requirements and latency. We
achieve space and time e�ciency by representing
each user’s model as an o�set from the unadapted
baseline parameters and encouraging most o�set
tensors to be zero during adaptation.

We show that group lasso regularization can be
applied to a self-attentive Transformer model to
freeze up to 75% of the parameters with minimal
or no loss of adapted translation quality across ex-
periments on four English!German data sets. We
confirm these findings for six additional language
pairs.

2 Related Work

There is extensive work on incremental adapta-
tion from human post edits or simulated post edits,
both for statistical machine translation (Green et al.,
2013; Denkowski et al., 2014a,b; Wuebker et al.,
2015) and neural machine translation (Peris et al.,
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2017; Turchi et al., 2017; Karimova et al., 2017).
Both Turchi et al. (2017) and Karimova et al. (2017)
apply vanilla fine-tuning algorithms. In addition
to fine-tuning towards user corrections, the former
applies a priori adaptation to retrieved data that
is similar to the incoming source sentences. Peris
et al. (2017) propose a variant of fine-tuning with
passive-aggressive learning algorithms. In contrast
to these papers, where all model parameters are
possibly altered during training, this work focuses
on space e�ciency of the adapted models.

Regularization methods that promote or enforce
sparsity have been previously used in the context of
sparse feature models for SMT: Duh et al. (2010)
presented an application of multi-task learning via
`1/`2 regularization for feature selection in an N -
best reranking task. A similar approach, employ-
ing `1/`2 regularization for feature selection and
multi-task learning, was developed by Simianer
et al. (2012) and Simianer and Riezler (2013) for
tuning of SMT systems. Both works report improve-
ments from regularization.

Techniques for enforcing sparse models using `1

regularization during stochastic gradient descent
optimization were previously developed for linear
models (Tsuruoka et al., 2009).

An extremely space e�cient method for person-
alized model adaptation is presented by Michel
and Neubig (2018). Here, adaptation is performed
solely on the output vocabulary bias vector. An-
other notable approach for creating compact mod-
els is student-teacher-training or knowledge distil-
lation (Kim and Rush, 2016). To the best of our
knowledge, this has not been applied in a domain
adaptation setting.

3 Self-Attentive Translation Model

The neural machine translation systems used in this
work are based on the Transformer model intro-
duced by Vaswani et al. (2017), which uses self-
attention rather than recurrent or convolutional lay-
ers to aggregate information across words. In addi-
tion to its superior performance, its main practical
advantage over recurrent models is faster training.

The Transformer follows the encoder-decoder
paradigm. Source word vectors x1, . . . , xm are
chosen from an embedding matrix Xe. A series
of stacked encoder layers generate intermediate
representations z1, . . . , zm. Each layer of the en-
coder consists of two sub-layers: a multi-head self-
attention layer that uses scaled dot-product atten-

tion over all source positions, followed by a feed-
forward filter layer. Layer normalization (Ba et al.,
2016), dropout (Srivastava et al., 2014), and resid-
ual connections (He et al., 2016) are applied to each
sub-layer.

A series of stacked decoder layers produces a
sequence of target word vectors y1, . . . , yn. Each
decoder layer has three sub-layers: self-attention,
encoder-attention, and a filter. For target position j,
the self-attention layer can attend to any previous
target position j0 2 [1, j], with target words o�set
by one so that representations at j can observe word
j�1, but not word j. The encoder-attention layer
can attend to the final encoder state zi for any source
position i 2 [1, m]. Observed target word vectors
are chosen from an embedding matrix Ye, and target
word j is predicted from yj via a soft-max layer
parameterized by an output projection matrix Yo.

The encoders in this work have six layers that
have a self-attention sub-layer size of 256 and a
filter sub-layer size of 512. Each filter performs
two linear transformations and a ReLU activation:

f(x) = max(0, xW1 + b1)W2 + b2.

The decoders in this work have three layers,
and all sub-layer sizes are 256. The decoder sub-
layers are simplified versions of those described in
Vaswani et al. (2017): The filter sub-layers perform
only a single linear transformation, and layer nor-
malization is only applied once per decoder layer
after the filter sub-layer.

Unlike in Vaswani et al. (2017), none of Xe, Ye,
or Yo share parameters in our TensorFlow1 imple-
mentation. Baseline models are optimized with
Adam (Kingma and Ba, 2015).

4 Compact Adaptation

4.1 Fine Tuning
Personalized machine translation requires batch
adaptation to a domain-relevant bitext (such as a
user provided translation memory) as well as in-
cremental adaptation to the test set. We apply fine-
tuning, which involves continuing to train model pa-
rameters with a gradient-based method on domain-
relevant data, as a simple and e�ective method for
neural translation domain adaptation (Luong and
Manning, 2015). The fine-tuned model without
regularization and clipping is denoted as the Full
Model. Confirming previous work, we found that

1https://www.tensorflow.org/
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stochastic gradient descent (SGD) is the most e�ec-
tive optimizer for fine tuning (Turchi et al., 2017).
In our experiments, batch adaptation uses a batch
size of 7000 words for 10 Epochs and a fixed learn-
ing rate of 0.1, dropout of 0.1, and label smoothing
with ✏ls = 0.1 (Szegedy et al., 2016).

Incremental adaptation uses a batch size of one
and a learning rate of 0.01. To ensure a strong
adaptation e�ect within a single document, we set
dropout and label smoothing to zero and perform up
to three SGD updates on each segment. After each
update, we measure the model perplexity on the
current training example and continue with another
update if the perplexity is still above 1.5.

4.2 O�set Tensors

In a personalized translation service, adapted mod-
els need to be loaded quickly, so a space-e�cient
representation is critical for time e�ciency as well.
Production speed requirements using contemporary
cloud hardware limit model sizes to roughly 10M
parameters per user, while a high-quality baseline
Transformer model typically requires 35M parame-
ters or more. We propose to store the parameters
of an adapted model as an o�set from the baseline
model. Each tensor is a sum W = Wb+Wu, where
Wb is from the baseline model and is shared across
all adapted models, while the o�set Wu is specific
to an individual user domain. Space e�ciency is
achieved by only storing Wu for a subset of tensors
and setting the rest of the o�set tensors to zero.

One approach to achieving model sparsity is to
manually partition the network into a small number
of regions and systematically evaluate translation
performance when storing o�sets for only one re-
gion. We define five distinct regions, which are
evaluated in isolation: Outer layers (the first and
last layers of both encoder and decoder), inner lay-
ers (all the remaining layers), the two embedding
matrices Xe and Ye, and the output projection ma-
trix Yo. The latter three are each stored as a single
matrix and each contributes 10.3M parameters to
the full model size in English!German. During
adaptation, the embedding matrices are only up-
dated for vocabulary present in the training exam-
ples, and so the o�sets can be stored e�ciently as
a sparse collection of columns. The same principle
can be applied to the output projection matrix by
only updating parameters corresponding to vocabu-
lary items that appears in the adaptation examples
(denoted Sparse Output Proj. in Table 1).

A second approach to achieving model sparsity
is to use a procedure to select the subset of o�set
tensors that are stored. For example, we evaluate
a simple policy that stores an o�set for all tensors
whose average change in parameter values is higher
than a threshold. This set is selected on a develop-
ment domain and held fixed for all other domains.
We refer to this method as fixed adaptation.

4.3 Tensor Selection via Group Lasso

A group sparse regularization penalty such as group
lasso can be applied to the o�set tensors for simul-
taneous regularization and tensor selection. This
penalty drives entire o�set tensors to zero, so that
they do not need to be stored or loaded. We add the
following regularization term to the loss function
(Scardapane et al., 2017):

R`1,2(T ) =
X

T2T

p
|T |k�Tk2 (1)

k�Tk2 =
X

⌧2T

�⌧2 (2)

Here, each tensor corresponds to one group. T
denotes the set of all tensors in the model, ⌧ 2 T
the set of all weights within a single tensor and �⌧
the size of the o�set for ⌧ . Note that we are regu-
larizing the di�erence between the parameters of
the adapted model and the baseline model, rather
than regularizing the full network parameters di-
rectly. In this way, we maintain the expressive
power of the full network while minimizing the
size of the adapted models. Group lasso regular-
ization is equivalent to `1 regularization when the
group size is 1. Sparsity among groups is encour-
aged because the `1 norm serves as a convex proxy
for the `0 norm, which would explicitly penalize
the number of non-zero elements (Yuan and Lin,
2006). To facilitate tensor selection, we define a
threshold # to clip o�set tensors �T with aver-
age weight 1

|T |
P

⌧2T �⌧ < # to zero. Both the
threshold # and the regularization weight � were
manually tuned on a development domain and set
to # = 10�4 and � = 10�6. We apply clipping to
all tensors except the embedding and output pro-
jection matrices Xe, Ye and Yo. As our production
constraints allow us to retain only one of the three,
we pre-select the sparse output projection as part
of the model and exclude the embedding matrices
from adaptation. This method will be denoted as
Lasso.
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User1 User2 Autodesk IWSLT
# Param. Batch Incr. Batch Incr. Batch Incr. Batch Incr.

Baseline 36.2M 35.7 32.7 40.3 25.9

Full Model 25.8M 47.5 48.2 44.2 34.8 47.7 46.6 27.5 26.3

Outer Layers 2.2M 45.0 47.9 36.4 33.1 45.5 44.7 27.3 26.1
Inner Layers 2.7M 45.4 47.2 36.7 33.6 45.5 43.9 27.8 26.5
Encoder Embed. 5.0M 41.7 41.8 33.6 32.9 42.5 41.6 27.4 26.4
Decoder Embed. 5.5M 36.6 37.6 33.0 33.0 40.8 40.5 26.2 25.9
Output Proj. 10.3M 44.2 46.0 38.1 34.5 45.2 42.9 27.1 26.5
Sparse Output Proj. (*) 5.5M 43.5 46.7 39.7 34.7 45.5 43.3 27.1 26.7

(*) + Fixed 6.9M 46.4 47.8 42.3 30.9 47.6 43.7 27.3 26.0
(*) + Lasso 6.7M 47.6 46.6 43.1 33.2 47.9 41.5 27.5 27.0

Full Model Batch+Incr. 25.9M 50.6 41.8 52.6 27.0
(*) + Lasso Batch+Incr. 9.2M 51.3 39.1 51.1 27.6

Repetition Rate Source 11.0 8.8 18.3 9.2
Repetition Rate Target 9.4 8.7 17.5 7.5

Table 1: Experimental results in B��� (%) on the English!German data. We evaluate changes to each
region of the network separately. In combination with sparse output projection, we also evaluate a fixed
selection of parameters chosen by thresholding and a set selected dynamically for each data set using group
lasso. The two bottom rows show repetition rates in % for the source and target sides of the test data.

5 Experiments
5.1 Data
We first evaluate all techniques on an
English!German Transformer network trained on
98M parallel sentence pairs. We apply byte pair
encoding (Sennrich et al., 2016) separately to each
language and obtain vocabularies with 40K unique
tokens each. We refer to the unadapted model
as Baseline. We evaluate on four domains. For
development, we use a data set labeled User1 that
was gathered from a user of the browser-based CAT
(computer-aided translation) tool Lilt2 and contains
documents from the financial domain with 48K
segments for batch adaptation and 1790 segments
for testing and incremental adaptation. We further
evaluate on a second user test set User2 (technical
support, 31k batch adaptation, 1000 test segments);
the public Autodesk corpus3, where we select the
first 20k segments for batch adaptation and the
next 1000 segments for testing; and the IWSLT
corpus4 (semi-technical talks), where we use all
provided 206K sentences for batch adaptation

2https://lilt.com
3https://autodesk.app.box.com/

Autodesk-PostEditing
4http://workshop2017.iwslt.org/

and the dev2010 set (888 sentences) for testing.
The overall best performing compact adaptation
technique, group lasso regularization, is further
evaluated on six other language pairs trained using
production data sets collected from Lilt’s user
base: English$French, English$Russian and
English$Chinese. Adaptation is performed on
user data from various domains (technical manuals,
finance, legal), each with 8k-10k segments for
batch adaptation and 2000 segments for testing
and incremental adaptation. Translation quality is
evaluated using the cased B��� (Papineni et al.,
2002) measure.

5.2 Results

Table 1 shows English!German results. Full
model adaptation, where all o�sets are stored, im-
proves over the baseline in all cases to various de-
grees. This full model contains only 25.8M param-
eters, as o�sets for both embedding matrices are
stored as sparse collections of columns for the vo-
cabulary present in the adaptation data. Next, we
evaluate the impact of storing o�sets only for one
region at a time. We observe that among the three
vocabulary matrices, the output projection Yo has
the strongest impact on quality, which is not dimin-
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en!fr fr!en en!ru ru!en en!zh zh!en Avg.

Baseline 28.8 35.8 10.7 29.2 19.9 18.9 23.9
Full Model Batch+Incr. 36.6 49.6 21.0 42.1 40.6 46.6 39.4
(*) + Lasso Batch+Incr. 36.0 46.3 19.8 42.7 39.3 45.0 38.2

Table 2: Experimental results in B��� (%) on six production language pairs. We compare the unadapted
baseline model with a full model and the model with sparse output projection and group lasso, both with
application of batch and incremental adaptation.

ished by storing a sparse variant that is restricted
only to observed vocabulary.

In addition, we evaluate two methods of choosing
a subset of tensors procedurally. We first experi-
ment with a fixed subset of tensor o�sets that was
chosen by selecting all tensors for which parame-
ters were o�set by more than 0.002 on average after
batch adaptation on the User1 data set. This sim-
ple procedure approaches the performance of full
model adaptation, but stores only 27% of its param-
eters. Dynamically selecting tensor o�sets for each
data set using group lasso regularization improves
performance on 6 out of 8 data conditions.

The combination of batch and incremental adap-
tation yields further improvements, with the excep-
tion of the User2 and IWSLT tasks, where incre-
mental adaptation overall performs not as well as
batch adaptation. For these tasks, both tests sets
exhibit lower repetition rates5 (Cettolo et al., 2014)
than the test sets for the two other tasks (see the two
bottom lines in Table 1). The User2 test set is fur-
thermore a random sample of non-consecutive text
from a translation memory, which is suboptimal for
incremental learning.

Altogether, we are able to achieve translation
performance similar to full model adaptation with
25% of the total network parameters. Note that due
to the selection of entire tensors with groupwise
regularization, there is nearly zero space overhead
incurred by storing a sparse set of o�set tensors.

Table 2 confirms our main findings on six other
language pairs. We observe average improvements
of 14.3 B��� with our final compact model, which
compares to 15.5 B��� for full model adaptation.

6 Conclusion

We describe an e�cient approach to personalized
machine translation that stores a sparse set of ten-

5Repetition rates have been confirmed to be a suitable in-
dicator for gains through incremental adaptation in numerous
works (Wuebker et al., 2015; Bertoldi et al., 2014).

sor o�sets for each user domain. Group lasso regu-
larization applied to the o�sets during adaptation
achieves high space and time e�ciency while yield-
ing translation performance close to a full adapted
model, for both batch and incremental adaptation
and their combination.
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Abstract
Deep neural networks reach state-of-the-art
performance for wide range of natural lan-
guage processing, computer vision and speech
applications. Yet, one of the biggest chal-
lenges is running these complex networks
on devices such as mobile phones or smart
watches with tiny memory footprint and low
computational capacity. We propose on-device
Self-Governing Neural Networks (SGNNs),
which learn compact projection vectors with
local sensitive hashing. The key advantage of
SGNNs over existing work is that they sur-
mount the need for pre-trained word embed-
dings and complex networks with huge pa-
rameters. We conduct extensive evaluation
on dialog act classification and show signifi-
cant improvement over state-of-the-art results.
Our findings show that SGNNs are effective at
capturing low-dimensional semantic text rep-
resentations, while maintaining high accuracy.

1 Introduction
Deep neural networks are one of the most suc-
cessful machine learning methods outperforming
many state-of-the-art machine learning methods
in natural language processing (Sutskever et al.,
2014), speech (Hinton et al., 2012) and visual
recognition tasks (Krizhevsky et al., 2012). The
availability of high performance computing has
enabled research in deep learning to focus largely
on the development of deeper and more com-
plex network architectures for improved accuracy.
However, the increased complexity of the deep
neural networks has become one of the biggest
obstacles to deploy deep neural networks on-
device such as mobile phones, smart watches and
IoT (Iandola et al., 2016). The main challenges
with developing and deploying deep neural net-
work models on-device are (1) the tiny mem-
ory footprint, (2) inference latency and (3) sig-
nificantly low computational capacity compared

to high performance computing systems such as
CPUs, GPUs and TPUs on the cloud.

There are multiple strategies to build
lightweight text classification models for on-
device. One can create a small dictionary of
common input ! category mapping on the device
and use a naive look-up at inference time. How-
ever, such an approach does not scale to complex
natural language tasks involving rich vocabularies
and wide language variability. Another strategy is
to employ fast sampling techniques (Ahmed et al.,
2012; Ravi, 2013) or incorporate deep learning
models with graph learning like (Bui et al., 2017,
2018), which result in large models but have
proven to be extremely powerful for complex
language understanding tasks like response com-
pletion (Pang and Ravi, 2012) and Smart Reply
(Kannan et al., 2016).

In this paper, we propose Self-Governing Neu-
ral Networks (SGNNs) inspired by projection net-
works (Ravi, 2017). SGNNs are on-device deep
learning models learned via embedding-free pro-
jection operations. We employ a modified ver-
sion of the locality sensitive hashing (LSH) to
reduce input dimension from millions of unique
words/features to a short, fixed-length sequence
of bits. This allows us to compute a projection
for an incoming text very fast, on-the-fly, with a
small memory footprint on the device since we
do not need to store the incoming text and word
embeddings. We evaluate the performance of our
SGNNs on Dialogue Act classification, because
(1) it is an important step towards dialog interpre-
tation and conversational analysis aiming to under-
stand the intent of the speaker at every utterance
of the conversation and (2) deep learning meth-
ods reached state-of-the-art (Lee and Dernoncourt,
2016; Khanpour et al., 2016; Tran et al., 2017; Or-
tega and Vu, 2017).
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The main contributions of the paper are:

• Novel Self-Governing Neural Networks
(SGNNs) for on-device deep learning for
short text classification.

• Compression technique that effectively cap-
tures low-dimensional semantic text repre-
sentation and produces compact models that
save on storage and computational cost.

• On the fly computation of projection vectors
that eliminate the need for large pre-trained
word embeddings or vocabulary pruning.

• Exhaustive experimental evaluation on dia-
log act datasets, outperforming state-of-the-
art deep CNN (Lee and Dernoncourt, 2016)
and RNN variants (Khanpour et al., 2016; Or-
tega and Vu, 2017).

2 Self-Governing Neural Networks

We model the Self-Governing network using
a projection model architecture (Ravi, 2017).
The projection model is a simple network with
dynamically-computed layers that encodes a set
of efficient-to-compute operations which can be
performed directly on device for inference. The
model defines a set of efficient “projection” func-
tions P(~xi) that project each input instance ~xi to
a different space ⌦P and then performs learning in
this space to map it to corresponding outputs yp

i . A
very simple projection model comprises just few
operations where the inputs ~xi are transformed us-
ing a series of T projection functions P

1, ..., PT

followed by a single layer of activations.

2.1 Model Architecture
In this work, we design a Self-Governing Neu-
ral Network (SGNN) using multi-layered locality-
sensitive projection model. Figure 1 shows the
model architecture of the on-device SGNN net-
work. The self-governing property of this network
stems from its ability to learn a model (e.g., a clas-
sifier) without having to initialize, load or store
any feature or vocabulary weight matrices. In this
sense, our method is a truly embedding-free ap-
proach unlike majority of the widely-used state-
of-the-art deep learning techniques in NLP whose
performance depends on embeddings pre-trained
on large corpora. Instead, we use the projection
functions to dynamically transform each input to a
low-dimensional representation. Furthermore, we

stack this with additional layers and non-linear ac-
tivations to achieve deep, non-linear combinations
of projections that permit the network to learn
complex mappings from inputs xi to outputs yi.
An SGNN network is shown below:

ip = [P1(xi), ..., P
T (xi)] (1)

hp = �(Wp · ip + bp) (2)
ht = �(Wt · ht�1 + bt) (3)
yi = softmax(Wo · hk + bo) (4)

where, ip refers to the output of projection opera-
tion applied to input xi, hp is applied to projec-
tion output, ht is applied at intermediate layers
of the network with depth k followed by a final
softmax activation layer at the top. In a k-layer
SGNN, ht, where t = p, p + 1, ..., p + k � 1
refers to the k subsequent layers after the pro-
jection layer. Wp, Wt, Wo and bp, bt, bo represent
trainable weights and biases respectively.

The projection transformations use pre-
computed parameterized functions, i.e., they are
not trained during the learning process, and their
outputs are concatenated to form the hidden units
for subsequent operations. Each input text xi is
converted to an intermediate feature vector (via
raw text features such as skip-grams) followed by
projections.

xi
F�! ~xi

P�! [P1(xi), ..., P
T (xi)] (5)

On-the-fly Computation. The transformation
step F dynamically extracts features from the raw
input. Text features (e.g., skip-grams) are con-
verted into feature-ids fj (via hashing) to gener-
ate a sparse feature representation ~xi of feature-id,
weight pairs (fj , wj) . This intermediate feature
representation is passed through projection func-
tions P to construct projection layer ip in SGNN.
For this last step, a projection vector P

k is first
constructed on-the-fly using a hash function with
feature ids fj in ~xi and fixed seed as input, then
dot product of the two vectors < ~xi, Pk > is com-
puted and transformed into binary representation
P

k(~xi) using sgn(.) of the dot product.
As shown in Figure 1, both F and P steps are

computed on-the-fly, i.e., no word-embedding or
vocabulary/feature matrices need to be stored and
looked up during training or inference. Instead
feature-ids and projection vectors are dynamically
computed via hash functions. For intermediate
feature weights wj , we use observed counts in
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Figure 1: Self-Governing Neural Network (SGNN) architecture.

each input text and do not use pre-computed statis-
tics like idf. Hence the method is embedding-free.

Model Optimization. The SGNN network is
trained from scratch on the task data using a su-
pervised loss defined wrt ground truth ŷi:

L(.) =
X

i2N

cross � entropy(yi, ŷi) (6)

During training, the network learns to choose
and apply specific projection operations P

j (via
activations) that are more predictive for a given
task. The choice of the type of projection ma-
trix P as well as representation of the projected
space ⌦P has a direct effect on computation cost
and model size. We leverage an efficient random-
ized projection method and use a binary represen-
tation {0, 1}d for ⌦P. This yields a drastically
lower memory footprint both in terms of number
and size of parameters.

Computing Projections. We employ an effi-
cient randomized projection method for the pro-
jection step. We use locality sensitive hashing
(LSH) (Charikar, 2002) to model the underly-
ing projection operations in SGNN. LSH is typi-
cally used as a dimensionality reduction technique
for clustering (Manning et al., 2008). LSH al-
lows us to project similar inputs ~xi or interme-

diate network layers into hidden unit vectors that
are nearby in metric space. We use repeated bi-
nary hashing for P and apply the projection vec-
tors to transform the input ~xi to a binary hash rep-
resentation denoted by Pk(~xi) 2 {0, 1}, where
[Pk(~xi)] := sgn[h~xi, Pki]. This results in a d-
bit vector representation, one bit corresponding to
each projection row Pk=1...d.

The same projection matrix P is used for train-
ing and inference. We never need to explicitly
store the random projection vector Pk since we
can compute them on the fly using hash functions
over feature indices with a fixed row seed rather
than invoking a random number generator. This
also permits us to perform projection operations
that are linear in the observed feature size rather
than the overall feature or vocabulary size which
can be prohibitively large for high-dimensional
data, thereby saving both memory and computa-
tion cost. Thus, SGNN can efficiently model high-
dimensional sparse inputs and large vocabulary
sizes common for text applications instead of re-
lying on feature pruning or other pre-processing
heuristics employed to restrict input sizes in stan-
dard neural networks for feasible training. The bi-
nary representation is significant since this results
in a significantly compact representation for the
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projection network parameters that in turn consid-
erably reduces the model size.

SGNN Parameters. In practice, we employ T dif-
ferent projection functions P

j=1...T , each result-
ing in d-bit vector that is concatenated to form
the projected vector ip in Equation 5. T and d
vary depending on the projection network param-
eter configuration specified for P and can be tuned
to trade-off between prediction quality and model
size. Note that the choice of whether to use a sin-
gle projection matrix of size T · d or T separate
matrices of d columns depends on the type of pro-
jection employed (dense or sparse). For the in-
termediate feature step F in Equation 5, we use
skip-gram features (3-grams with skip-size=2) ex-
tracted from raw text.

2.2 Training and Inference

We use the compact bit units to represent the pro-
jection in SGNN. During training, the network
learns to move the gradients for points that are
nearby to each other in the projected bit space
⌦P in the same direction. SGNN network is
trained end-to-end using backpropagation. Train-
ing can progress efficiently with stochastic gradi-
ent descent with distributed computing on high-
performance CPUs or GPUs.

Complexity. The overall complexity for SGNN
inference, governed by the projection layer, is
O(n · T · d), where n is the observed feature size
(*not* overall vocabulary size) which is linear in
input size, d is the number of LSH bits specified
for each projection vector Pk, and T is the number
of projection functions used in P. The model size
(in terms of number of parameters) and memory
storage required for the projection inference step
is O(T · d · C), where C is the number of hidden
units in hp in the multi-layer projection network
and typically smaller than T · d.

3 Datasets and Experimental Setup

3.1 Data Description

We conduct our experimental evaluation on two
dialog act benchmark datasets.

• SWDA: Switchboard Dialog Act Corpus
(Godfrey et al., 1992; Jurafsky et al., 1997)
is a popular open domain dialogs corpus be-
tween two speakers with 42 dialogs acts.

• MRDA: ICSI Meeting Recorder Dialog Act
Corpus (Adam et al., 2003; Shriberg et al.,
2004) is a dialog corpus of multiparty meet-
ings with 5 tags of dialog acts.

Datasets Class Vocab. Train Validation Test
SwDA 42 20K 193K 23K 5K
MRDA 5 12K 78K 16K 15K

Table 1: Dialog Act Datasets Statistics

Table 1 summarizes dataset statistics. We use the
train, validation and test splits as defined in (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017).

3.2 Experimental Setup

We setup our experimental evaluation, as follows:
given a classification task and a dataset, we gen-
erate an on-device model. The size of the model
can be configured (by adjusting the projection ma-
trix P) to fit in the memory footprint of the de-
vice, i.e. a phone has more memory compared to
a smart watch. For each classification task, we re-
port Accuracy on the test set.

3.3 Hyperparameter and Training

For both datasets we used the following: 2-
layer SGNN (PT=80,d=14 ⇥ FullyConnected256

⇥ FullyConnected256), mini-batch size of 100,
dropout rate of 0.25, learning rate was initialized
to 0.025 with cosine annealing decay (Loshchilov
and Hutter, 2016). Unlike prior approaches (Lee
and Dernoncourt, 2016; Ortega and Vu, 2017) that
rely on pre-trained word embeddings, we learn the
projection weights on the fly during training, i.e
word embeddings (or vocabularies) do not need to
be stored. Instead, features are computed on the
fly and are dynamically compressed via the pro-
jection matrices into projection vectors. These val-
ues were chosen via a grid search on development
sets, we do not perform any other dataset-specific
tuning. Training is performed through stochastic
gradient descent over shuffled mini-batches with
Nesterov momentum optimizer (Sutskever et al.,
2013), run for 1M steps.

4 Results

Tables 2 and 3 show results on the SwDA and
MRDA dialog act datasets. Overall, our SGNN
model consistently outperforms the baselines and
prior state-of-the-art deep learning models.
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4.1 Baselines

We compare our model against a majority class
baseline and Naive Bayes classifier (Lee and Der-
noncourt, 2016). Our model significantly outper-
forms both baselines by 12 to 35% absolute.

4.2 Comparison against State-of-art Methods

We also compare our performance against prior
work using HMMs (Stolcke et al., 2000) and re-
cent deep learning methods like CNN (Lee and
Dernoncourt, 2016), RNN (Khanpour et al., 2016)
and RNN with gated attention (Tran et al., 2017).

To the best of our knowledge, (Lee and Der-
noncourt, 2016; Ortega and Vu, 2017; Tran et al.,
2017) are the latest approaches in dialog act clas-
sification, which also reported on the same data
splits. Therefore, we compare our research against
these works. According to (Ortega and Vu, 2017),
prior work by (Ji and Bilmes, 2006) achieved
promising results on the MRDA dataset, but since
the evaluation was conducted on a different data
split, it is hard to compare them directly.

For both SwDA and MRDA datasets, our
SGNNs obtains the best result of 83.1 and 86.7 ac-
curacy outperforming prior state-of-the-art work.
This is very impressive given that we work with
very small memory footprint and we do not rely
on pre-trained word embeddings. Our study also
shows that the proposed method is very effective
for such natural language tasks compared to more
complex neural network architectures such as deep
CNN (Lee and Dernoncourt, 2016) and RNN vari-
ants (Khanpour et al., 2016; Ortega and Vu, 2017).
We believe that the compression techniques like
locality sensitive projections jointly coupled with
non-linear functions are effective at capturing low-
dimensional semantic text representations that are
useful for text classification applications.

4.3 Discussion on Model Size and Inference

LSTMs have millions of parameters, while our
on-device architecture has just 300K parameters
(order of magnitude lower). Most deep learning
methods also use large vocabulary size of 10K or
higher. Each word embedding is represented as
100-dimensional vector leading to a storage re-
quirement of 10, 000⇥100 parameter weights just
in the first layer of the deep network. In con-
trast, SGNNs in all our experiments use a fixed
1120-dimensional vector regardless of the vocab-
ulary or feature size, dynamic computation results

Method Acc.
Majority Class (baseline) (Ortega and Vu, 2017) 33.7
Naive Bayes (baseline) (Khanpour et al., 2016) 47.3
HMM (Stolcke et al., 2000) 71.0
DRLM-conditional training (Ji and Bilmes, 2006) 77.0
DRLM-joint training (Ji and Bilmes, 2006) 74.0
LSTM (Lee and Dernoncourt, 2016) 69.9
CNN (Lee and Dernoncourt, 2016) 73.1
Gated-Attention&HMM (Tran et al., 2017) 74.2
RNN+Attention (Ortega and Vu, 2017) 73.8
RNN (Khanpour et al., 2016) 80.1
SGNN: Self-Governing Neural Network (ours) 83.1

Table 2: SwDA Dataset Results

Method Acc.
Majority Class (baseline)(Ortega and Vu, 2017) 59.1
Naive Bayes (baseline) (Khanpour et al., 2016) 74.6
Graphical Model (Ji and Bilmes, 2006) 81.3
CNN (Lee and Dernoncourt, 2016) 84.6
RNN+Attention(Ortega and Vu, 2017) 84.3
RNN (Khanpour et al., 2016) 86.8
SGNN: Self-Governing Neural Network (ours) 86.7

Table 3: MRDA Dataset Results

in further speed up for high-dimensional feature
spaces. This amounts to a huge savings in storage
and computation cost wrt FLOPs (floating point
operations per second).

5 Conclusion

We proposed Self-Governing Neural Networks for
on-device short text classification. Experiments
on multiple dialog act datasets showed that our
model outperforms state-of-the-art deep leaning
methods (Lee and Dernoncourt, 2016; Khanpour
et al., 2016; Ortega and Vu, 2017). We introduced
a compression technique that effectively captures
low-dimensional semantic representation and pro-
duces compact models that significantly save on
storage and computational cost. Our approach
does not rely on pre-trained embeddings and ef-
ficiently computes the projection vectors on the
fly. In the future, we are interested in extend-
ing this approach to more natural language tasks.
For instance, we built a multilingual SGNN model
for customer feedback classification (Liu et al.,
2017) and obtained 73% on Japanese, close to
best performing system on the challenge (Plank,
2017). Unlike their method, we did not use any
pre-processing, tagging, parsing, pre-trained em-
beddings or other resources.
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Abstract

In large-scale domain classification for natu-
ral language understanding, leveraging each
user’s domain enablement information, which
refers to the preferred or authenticated do-
mains by the user, with attention mechanism
has been shown to improve the overall do-
main classification performance. In this paper,
we propose a supervised enablement attention
mechanism, which utilizes sigmoid activation
for the attention weighting so that the attention
can be computed with more expressive power
without the weight sum constraint of softmax
attention. The attention weights are explicitly
encouraged to be similar to the corresponding
elements of the ground-truth’s one-hot vec-
tor by supervised attention, and the attention
information of the other enabled domains is
leveraged through self-distillation. By evaluat-
ing on the actual utterances from a large-scale
IPDA, we show that our approach significantly
improves domain classification performance.

1 Introduction

Due to recent advances in deep learning tech-
niques, intelligent personal digital assistants (IP-
DAs) such as Amazon Alexa, Google Assistant,
Microsoft Cortana, and Apple Siri have been
widely used as real-life applications of natural
language understanding (Sarikaya et al., 2016;
Sarikaya, 2017).

In natural language understanding, domain clas-
sification is a task that finds the most relevant do-
main given an input utterance (Tur and de Mori,
2011). For example, “make a lion sound” and
“find me an apple pie recipe” should be classified
as ZooKeeper and AllRecipe, respectively.
Recent IPDAs cover more than several thousands
of diverse domains by including third-party devel-
oped domains such as Alexa Skills (Kumar et al.,
2017; Kim et al., 2018a; Kim and Kim, 2018),

Google Actions, and Cortana Skills, which makes
domain classification to be a more challenging
task.

Given a large number of domains, leverag-
ing user’s enabled domain information1 has been
shown to improve the domain classification per-
formance since enabled domains reflect the user’s
context in terms of domain usage (Kim et al.,
2018b). For an input utterance, Kim et al. (2018b)
use attention mechanism so that a weighted sum
of the enabled domain vectors are used as an input
signal as well as the utterance vector. The enabled
domain vectors and the attention weights are au-
tomatically trained in an end-to-end fashion to be
helpful for the domain classification.

In this paper, we propose a supervised enable-
ment attention mechanism for more effective at-
tention on the enabled domains. First, we use lo-
gistic sigmoid instead of softmax as the attention
activation function to relax the constraint that the
weight sum over all the enabled domains is 1 to the
constraint that each attention weight is between
0 and 1 regardless of the other weights (Martins
and Astudillo, 2016; Kim et al., 2017). There-
fore, all the attention weights can be very low if
there are no enabled domains relevant to a ground-
truth so that we can disregard the irrelevant en-
abled domains, and multiple attention weights can
have high values when multiple enabled domains
are helpful for disambiguating an input utterance.
Second, we encourage each attention weight to
be high if the corresponding enabled domain is a
ground-truth domain and if otherwise, to be low,
by a supervised attention method (Mi et al., 2016)
so that the attention weights can be directly tuned
for the downstream classification task. Third, we

1Enabled domain information specifically refers to pre-
ferred or authenticated domains in Amazon Alexa, but it can
be extended to other information such as the list of recently
used domains.
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Figure 1: Model architecture: the input utterance is represented as a dense vector through word embedding and BiLSTM. Do-
main enablement vector is computed as a weighted sum of enabled domain vectors through the proposed attention mechanism.
The two vectors are concatenated for the final domain prediction thorough a feed-forward neural network.

apply self-distillation (Furlanello et al., 2018) on
top of the enablement attention weights so that we
can better utilize the enabled domains that are not
ground-truth domains but still relevant.

Evaluating on datasets obtained from real usage
in a large-scale IPDA, we show that our approach
significantly improves domain classification per-
formance by utilizing the domain enablement in-
formation effectively.

2 Model

Figure 1 shows the overall architecture of the pro-
posed model.

Given an input utterance, each word of the utter-
ance is represented as a dense vector through word
embedding followed by bidirectional long short-
term memory (BiLSTM) (Graves and Schmidhu-
ber, 2005). Then, an utterance vector is composed
by concatenating the last outputs of the forward
LSTM and the backward LSTM.2

To represent the domain enablement informa-
tion, we obtain a weighted sum of domain enable-
ment vector where the weights are calculated by
logistic sigmoid function on top of the multiplica-
tive attention (Luong et al., 2015) for the utterance
vector and the domain enablement vectors. The
attention weight of an enabled domain e is formu-

2We have also evaluated word vector summation, CNN
(Kim, 2014), BiLSTM mean-pooling, and BiLSTM max-
pooling (Conneau et al., 2017) as alternative utterance repre-
sentation methods, but they did not show better performance
on our task.

lated as follows:

ae = � (u · ve) ,

where u is the utterance vector, ve is the enable-
ment vector of enabled domain e, and � is sig-
moid function. Compared to conventional atten-
tion mechanism using softmax function, which
constraints the sum of the attention weights to be
1, sigmoid attention has more expressive power,
where each attention weight can be between 0 and
1 regardless of the other weights. We show that
using sigmoid attention is actually more effective
for improving prediction performance in Section
3.

The utterance vector and the weighted sum of
the domain enablement vectors are concatenated
to represent the utterance and the domain enable-
ment as a single vector. Given the concatenated
vector, a feed-forward neural network with a sin-
gle hidden layer3 is used to predict the confidence
score by logistic sigmoid function for each do-
main.

One issue of the proposed architecture is that
the domain enablement can be trained to be a very
strong signal, where one of the enabled domains
would be the predicted domains regardless of the
relevancy of the utterances to the predicted do-
mains in many cases. To reduce this prediction
bias, we use randomly sampled enabled domains

3We utilize scaled exponential linear units (SeLU) as the
activation function for the hidden layer(Klambauer et al.,
2017).
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instead of the correct enabled domains of an input
utterance with 50% probability during training so
that the domain enablement is used as an auxil-
iary signal rather than determining signal. During
inference, we always use the correct domain en-
ablements of the given utterances.

The main loss function of our model is formu-
lated as binary log loss between the confidence
score and the ground-truth vector as follows:

Lm = �
nX

i=1

yi log oi + (1 � yi) log (1 � oi) ,

where n is the number of all domains, o is an
n-dimensional confidence score vector from the
model, and y is an n-dimensional one-hot vector
whose element corresponding to the position of
the ground-truth domain is set to 1.

2.1 Supervised Enablement Attention
Attention weights are originally intended to be au-
tomatically trained in an end-to-end fashion (Bah-
danau et al., 2015), but it has been shown that
applying proper explicit supervision to the atten-
tion improves the downstream tasks such as ma-
chine translation given the word alignment and
constituent parsing given annotations between sur-
face words and nonterminals (Mi et al., 2016; Liu
et al., 2016; Kamigaito et al., 2017).

We hypothesize that if the ground-truth domain
is one of the enabled domains, the attention weight
for the ground-truth domain should be high and
vice versa. To apply this hypothesis in the model
training as a supervised attention method, we for-
mulate an auxiliary loss function as follows:

La = �
X

e2E

ye log ae + (1 � ye) log (1 � ae) ,

where E is a set of enabled domains and ae is the
attention weight for the enabled domain e.

2.2 Self-Distilled Attention
One issue of supervised attention in Section 2.1
is that enabled domains that are not ground-truth
domains are encouraged to have lower attention
weights regardless of their relevancies to the in-
put utterances and the ground-truth domains. Dis-
tillation methods utilize not only the ground-truth
but also all the output activations of a source
model so that all the prediction information from
the source model can be utilized for more effec-
tive knowledge transfer between the source model

and the target model (Hinton et al., 2014). Self-
distillation, which trains a model leveraging the
outputs of the source model with the same archi-
tecture or capacity, has been shown to improve
the target model’s performance with a distillation
method (Furlanello et al., 2018).

We use a variant of self-distillation methods,
where the model outputs at the previous epoch
with the best dev set performance are used as the
soft targets for the distillation,4 so that the en-
abled domains that are not ground-truths can also
be used for the supervised attention. While con-
ventional distillation methods utilize softmax acti-
vations as the target values, we show that distilla-
tion on top of sigmoid activations is also effective
without loss of generality. The loss function for
the self-distillation on the attention weights is for-
mulated as follows:

Ld = �
X

e2E

ãe log ae + (1 � ãe) log (1 � ae) ,

where ãe is the attention weight of the model
showing the dev set performance in the previous
epochs. It is formulated as:

ãe = �
⇣u · ve

T

⌘
,

where T is the temperature for sufficient usage of
all the attention weights as the soft target. In this
work, we set T to be 16, which shows the best dev
set performance.

We have also evaluated soft-target regulariza-
tion (Aghajanyan, 2017), where a weighted sum
of the hard ground-truth target vector and the soft
target vector is used as a single target vector,
but it did not show better performance than self-
distillation.

All the described loss functions are added to
compose a single loss function as follows:

L = Lm + ↵
�
(1 � �) La + �tLd

 
,

where ↵ is a coefficient representing the degree
of supervised enablement attention and �t denotes
the degree of the self-distillation. We set ↵ to be
0.01 in this work. Following Hu et al. (2016), �t =
1 � 0.95t, where t denotes the current training
epoch starting from 0 so that the hard ground-truth
targets are more influential in the early epochs
and the self-distillation is more utilized in the late
epochs.

4This approach is closely related to Temporal Ensembling
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Model no Attention method Biased ground-truth inclusion Unbiased ground-truth inclusion
Top1 MRR Top3 Top1 MRR Top3

(1) sfm 95.81 97.27 99.08 90.65 93.60 97.31
(2) sgmd 95.98 97.43 99.19 91.03 93.92 97.49
(3) sgmd, spvs 96.10 97.50 99.21 91.11 93.98 97.53
(4) sgmd, spvs, sdst 96.29 97.65 99.32 91.33 94.14 97.62
(5) sfm, bias 97.01 98.26 99.75 90.07 93.03 96.84
(6) sgmd, spvs, sdst, bias 97.48 98.51 99.76 90.58 93.30 96.73

Table 1: Accuracies (%) on a test set with biased ground-truth inclusion in the enabled domains (90%) (left) and a
test set with unbiased inclusion (70%) (right) with various enablement attention methods. sftm, sgmd, spvs, sdst,
and bias denote softmax, sigmoid, supervised, self-distilled, and domain enablement bias, respectively.

Utterance Ground-truth Enabled domain: [attention weights for model (1), (2), and (4)], ...

what is the price of bitcoin Crypto Price Sleep and Relaxation Sounds: [0.9998, 0.0004, 0.2029],
Crypto Price: [0.0001, 9.21e-0.6, 0.9977]

find me a round trip ticket flight Expedia Expedia: [0.0048, 5.37e-08, 0.6205], KAYAK: [0.9952, 0.0004, 0.461]
find my phone Find My Phone The Name Game: [1.0, 0.0001, 0.1677]

Table 2: Sample utterances correctly predicted with model (4) but not with model (1) and (2).

3 Experiments

We evaluate our proposed model on domain clas-
sification leveraging enabled domains. The en-
abled domains can be a crucial disambiguat-
ing signal especially when there are multiple
similar domains. For example, assume that
the input utterance is “what’s the weather”
and there are multiple weather-related domains
such as NewYorkWeather, AccuWeather,
and WeatherChannel. In this case, if
WeatherChannel is included as an enabled do-
main of the current user, it is likely to be the most
relevant domain to the user.

3.1 Datasets

Following the data collection methods used in
Kim et al. (2018b), our models are trained us-
ing utterances with explicit invocation patterns.
For example, given a user’s utterance, “Ask
{ZooKeeper} to {play peacock sound},” “play
peacock sound” and ZooKeeper are extracted to
compose a pair of the utterance and the ground-
truth, respectively. In this way, we have gener-
ated train, development, and test sets containing
4.4M, 500K, and 500K utterances, respectively.
All the utterances are from the usage log of Ama-
zon Alexa and the ground-truth of each utterance
is one of 1K frequently used domains. The aver-
age number of enabled domains per utterance in
the test sets is 8.47.

One issue of this collected data sets is that the

(Laine and Aila, 2017), but we just leverage the model out-
puts at the previous epoch rather than accumulating the out-
puts over multiple epochs.

ground-truth is included in the enabled domains
for more than 90% of the utterances, where the
ground-truths are biased to enabled domains.5 For
more correct and unbiased evaluation of the mod-
els on the input utterances from real live traffic, we
also evaluate the models on the same sized train,
development, and test sets where the utterances are
sampled to set the ratio of ground-truth inclusion
in enabled domains to be 70%, which is closer to
the ratio for actual input traffic.

3.2 Results
Table 1 shows the accuracies of our proposed
models on the two test sets. We also show
mean reciprocal rank (MRR) and top-3, accuracy6

which is meaningful when utilizing post reranker,
but we do not cover reranking issues in this paper
(Robichaud et al., 2014; Kim et al., 2018a).

From Table 1, we can first see that chang-
ing softmax attention to sigmoid attention signif-
icantly improves the performance. This means
that having more expressive power for the do-
main enablement information by relaxing the soft-
max constraint is effective in terms of leveraging
the domain enablement information for domain
classification. Along with sigmoid attention, su-
pervised attention leveraging ground-truth slightly
improves the performance, and supervised atten-
tion combined with self-distillation shows sig-
nificant performance improvement. It demon-

5Since the data collection method leverages utterances
where users already know the exact domain names, such do-
mains are likely to be the enabled domains of the users.

6Top-3 accuracy is calculated as # (utterances one of
whose top three predictions is a ground-truth) / # (total ut-
terances).
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strates that supervised domain enablement atten-
tion leveraging ground-truth enabled domains is
helpful, and utilizing attention information from
other enabled domains is synergistic.

Kim et al. (2018b)’s model also adds a domain
enablement bias vector to the final output, which
is helpful when the ground-truth domain is one of
the enabled domains. Such models (5) and (6) also
show good performance for the test set where the
ground-truth is one of the enabled domains with
more than 90% probability. However, for the un-
biased test set where the ground-truth is included
in the enabled domains with a smaller probability,
not adding the bias vector is shown to be better
overall.

Table 2 shows sample utterances correctly pre-
dicted with model (4) but not with model (1) and
(2). For the first two utterances, the ground-
truths are included in the enabled domains, but
there were only hundreds or fewer training in-
stances whose ground-truths are CryptoPrice
or Expedia. In these cases, we can see that
model (1) attends to unrelated domains, model (2)
attends to none of the enabled domains, but model
(4), which uses supervised attention, is shown
to attend to the ground-truth even without many
training examples. “find my phone” has a single
enabled domain which is not a ground-truth. In
this case, model (1) still fully attends to the unre-
lated domain because of softmax attention while
model (2) and (4) do not highly attend to it so that
the unrelated enabled domain is not impactive.

3.3 Implementation Details

The word vectors are initialized with off-the-shelf
GloVe vectors (Pennington et al., 2014), and all
the other model parameters are initialized with
Xavier initialization (Glorot and Bengio, 2010).
Each model is trained for 25 epochs and the pa-
rameters showing the best performance on the de-
velopment set are chosen as the model parameters.
We use ADAM (Kingma and Ba, 2015) for the op-
timization with the initial learning rate 0.0002 and
the mini-batch size 128. We use gradient clipping,
where the threshold is set to 5. We use a variant of
LSTM, where the input gate and the forget gate are
coupled and peephole connections are used (Gers
and Schmidhuber, 2000; Greff et al., 2017). We
also use variational dropout for the LSTM regular-
ization (Gal and Ghahramani, 2016). All the mod-
els are implemented with DyNet (Neubig et al.,

2017).

4 Conclusion

We have introduced a novel domain enablement
attention mechanism improving domain classifi-
cation performance utilizing domain enablement
information more effectively. The proposed at-
tention mechanism uses sigmoid attentions for
more expressive power of the attention weights,
supervised attention leveraging ground-truth in-
formation for explicit guidance of the attention
weight training, and self-distillation for the atten-
tion supervision leveraging enabled domains that
are not ground truth domains. Evaluating on utter-
ances from real usage in a large-scale IPDA, we
have demonstrated that our proposed model sig-
nificantly improves domain classification perfor-
mance by better utilizing domain enablement in-
formation.
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Abstract

In the sentence classification task, context
formed from sentences adjacent to the sen-
tence being classified can provide important
information for classification. This context is,
however, often ignored. Where methods do
make use of context, only small amounts are
considered, making it difficult to scale. We
present a new method for sentence classifica-
tion, Context-LSTM-CNN, that makes use of
potentially large contexts. The method also
utilizes long-range dependencies within the
sentence being classified, using an LSTM, and
short-span features, using a stacked CNN. Our
experiments demonstrate that this approach
consistently improves over previous methods
on two different datasets.

1 Introduction

Artificial neural networks (ANN) and especially
Deep Neural Networks (DNN) give state-of-the
art results for sentence classification tasks. Usu-
ally, sentences are treated as separate instances for
the task. However, in many situations the sen-
tence that is the focus of classification appears
in a context that can provide additional informa-
tion. For example, in the below sentences from the
IEMOCAP dataset, it is difficult to classify M02 as
showing excitement, without the prior context:

• M01: I got it. I got accepted to U.S.C..
• F01: Oh, for real?
• M02: Yes! I just found out today. I just got the letter.
Our work is motivated by sentence classifica-

tion in the text of medical records, in which com-
plex judgements may be made across several sen-
tences, each adding weight and nuance to a point.
We believe, however, that the techniqe is more
widely applicable. In order to test generalisability
and to allow reproducibility, we therefore present
an evaluation of the method with publicy avail-
able, non-medical corpora.

Previous work on using context for sentence
classification used LSTM and CNN network lay-
ers to encode the surrounding context, giving an
improvement in classification accuracy (Lee and
Dernoncourt, 2016). However, the use of CNN
and LSTM layers imposes a significant computa-
tional cost when training the network, especially
if the size of the context is large. For this reason,
the approach presented in (Lee and Dernoncourt,
2016) is explicitly intended for sequential, short-
text classification.

In many cases, however, the context available is
of significant size. We therefore introduce a new
method, Context-LSTM-CNN1, which is based
on the computationally efficient FOFE (Fixed Size
Ordinally Forgetting) method (Zhang et al., 2015),
and an architecture that combines an LSTM and
CNN for the focus sentence. The method consis-
tently improves over results obtained from either
LSTM alone, CNN alone, or these two combined,
with little increase in training time.

This paper makes three contributions: 1) a
demonstration of the importance of context in
some sentence classification tasks; 2) an adapta-
tion of existing datasets for such sentence classifi-
cation tasks, in order to support reproducibility of
evaluations; 3) a neural architecture for sentence
classification that outperforms previous methods,
and can include context of arbitrary size without
incurring a large computational cost.

2 Related work

Since their introduction (Collobert et al., 2011),
CNNs with word embedding language models
have become common for text classification tasks
(Kim, 2014; Conneau et al., 2017). One limi-
tation of the original CNN approach is the loss

1The code is publicly available at
https://github.com/deansong/contextLSTMCNN
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of long distance dependencies. In order to deal
with this in image and speech recognition tasks,
Xu et al. (2015); Sainath et al. (2015) combined
CNNs with a Recurrent Neural Network (RNN)
layer. Zhou et al. (2015) subsequently applied this
to text classification. However, the CNN-RNN
approach was originally devised for sequence la-
belling, is biased towards later words in the se-
quence, and does not perform better than CNN
alone. Huynh et al. (2016) suggested reversing
the architecture to first apply the RNN followed
by a CNN with pooling to obtain global features.
This gave results that improved over CNN-RNN,
but not over CNN alone. In this paper, we build
on Huynh et al. (2016)’s approach by replacing the
GRU-based RNN (Cho et al., 2014) with an LSTM
(Hochreiter and Schmidhuber, 1997) and by using
multiple kernel sizes and more features in the sub-
sequent CNN layer.

Lee and Dernoncourt (2016) showed that when
classifying short texts, accuracy can be boosted by
adding a CNN or LSTM derived vector representa-
tion of the surrounding context. For long contexts
(such as patient records which may include well
over 100 sentences), however, this will incur a sig-
nificant additional computational cost. In this pa-
per, we therefore apply an adaptation of the FOFE
encoding (Zhang et al., 2015) to encode context.

3 Model

The Context-LSTM-CNN model is shown in Fig-
ure 1. It is based on the following components:

1. Input layer using word embeddings to encode
the words of the focus sentence.

2. Bi-directional LSTM applied to the word em-
beddings of the focus sentence.

3. CNN on the outputs of the LSTM.
4. FOFE applied to word embeddings of both

left and right context.
5. A final output layer.

In brief, an LSTM layer is used to encode the
focus sentence. This is followed by convolutional
layers with small-size kernels and max-pooling to
extract local features at specific points from the
LSTM outputs. In addition to processing the fo-
cus sentence, we also encode the full left and right
contexts using an adaptation of FOFE applied to
our embeddings. This encodes any variable length
context into a fixed length embedding, thus allow-
ing us to include large contexts without rapidly in-

Right Embedding

Focus Embedding

Left Embedding

FOFE encoding

Bi-directional LSTM

CNN-2 ... CNN-6

Pool ... PoolDenseDense

Concatenate

Dense(Activation = Softmax/Sigmoid)

Output

FOFE encoding

Figure 1: Structure of the C-LSTM-CNN model

creasing the computational cost. The output of the
FOFE layers are then each passed through separate
fully connected layers, before being concatenated
and connected to output layer.

In detail, the full network takes three in-
puts. The first is the sequence of words X =
(x1, x2, ...xT ), where T is the length of the sen-
tence to be classified, and where each xi is a word
embedding for the respective word in this sen-
tence. Embeddings are pre-trained by Word2Vec
(Mikolov et al., 2013) on the corpus used for the
respective experiment. The embeddings are not
updated during the training of our network.

The second and third inputs are the left and
right context, which will connect to the FOFE en-
coders. Each context is a sequence of sentences
XC = (s1, s2, ...sN ), where each sentence is a se-
quence of word embeddings sn = (x1, x2, ...xU )
from the same embedding space as X .

The first component of the inputs, derived from
the focus sentence, is processed by a bi-directional
LSTM with one layer, in order to capture long-
distance dependencies within the sentence. Since
LSTMs impose a significant computational cost
for very long sequences we only use this layer for
the input representing the focus sentence, and not
for the left and right contexts.

The LSTM generates outputs hlstm =
(h1, h2..., hT ) which are passed on to the convolu-
tional layer (CNN) in order to learn local features
for different kernel sizes l from the history-aware
outputs of the LSTM. For each of several kernel
sizes, we generate f different features, to give
CNN outputs cl

cnn = (c1, c2, · · · , cT�l+1). For
each CNN output cl

cnn, we use max-overtime

901



pooling to extract the most significant feature, and
dropout to make the learned features more robust.

We use an adapted version of FOFE to provide
information about the left and right contexts of the
focus. Instead of the original 1 of k FOFE repre-
sentation, we apply FOFE encoding to word2vec
embeddings. This gives a weighted sum of the
context word embeddings, with weights decreas-
ing exponentially with distance from the focus.

The embedding z for a sentence (x1, x2, ...xU )
is initialised to z1 = x1, and then calculated recur-
sively for u 2 2 · · · U as zu = ↵ · zu�1 + xu. The
parameter ↵ is the forgetting factor, which con-
trols how fast the weights used for words farther
away from the start of the sentence diminish. This
method is fast and compactly encodes the words
of a sentence in a single embedding vector.

For our use of FOFE, we encode all sentences
in the document to left and right of the focus
sentence, in two hierarchical steps. First we en-
code each context sentence into a FOFE embed-
ding zsent, with a slowly-decreasing ↵sent. Fol-
lowing this, the left context FOFE encodings are
themselves encoded into a single context embed-
ding using a rapidly decreasing ↵cont. This is cal-
culated starting with zcont

1 = zsent
1 and is calcu-

lated for m 2 2 · · · |Cleft| as zcont
m = ↵cont ·

zcont
m�1 + zsent

m . The right context FOFE encod-
ings are encoded in the same way, starting with
zcont
|Cright| = zsent

|Cright| and recursively applying the
same formula for m 2 |Cright| · · · 2. This gives
a heavy bias towards sentences more local to the
focus sentence, but only slightly decreases the im-
portance of words within each sentence. The final
FOFE embeddings for the left and right contexts
are then put through a dense linear layer to ob-
tain the hidden layer outputs, which are combined
with the LSTM-CNN outputs. The concatenated
outputs from the dense FOFE layers and from the
CNN layer for all kernel sizes are then used as in-
put to a final softmax output layer.

4 Experiments

We compare the performance of four different
network architectures: 1) CNN only; 2) LSTM
only; 3) LSTM-CNN; 4) LSTM context encoded
LSTM-CNN (L-LSTM-CNN), in which the one
left and right context sentence are encoded by
LSTM; and 5) Context-LSTM-CNN (C-LSTM-
CNN). We use the following two datasets for eval-
uation:

Interactive Emotional Dyadic Motion Cap-
ture Database (Busso et al., 2008)2 (IEMO-
CAP). Originally created for the analysis of hu-
man emotions based on speech and video, a tran-
script of the speech component is available for
NLP research. Each sentence in the dialogue is
annotated with one of 10 types of emotion. There
is a class imbalance in the labelled data, and so
we follow the approach of (Chernykh et al., 2017),
and only use sentences classified with one of four
labels (‘Anger’, ‘Excitement’, ‘Neutral’ and ‘Sad-
ness’). For this dataset, instead of using left and
right contexts, we assign all sentences from one
person to one context and all sentences from the
other person to the other context. While only the
sentences with the four classes of interest are used
for classification, all sentences of the dialog are
used as the context. This results in a set of 4936 la-
belled sentences with average sentence length 14,
and average document length is 986.

Drug-related Adverse Effects (Gurulingappa
et al., 2012)3 (ADE). This dataset contains sen-
tences sampled from the abstracts of medical case
reports. For each sentence, the annotation indi-
cates whether adverse effects of a drug are be-
ing described (‘Positive’) or not (‘Negative’). The
original release of the data does not contain the
document context, which we reconstructed from
PubMed4. Sentences for which the full abstract
could not be found were removed, resulting in
20,040 labelled sentences, with average sentence
length 21 and average document length 129.

Model IEMOCAP ADE time(s)
CNN only 58.16 (0.78) 89.49 (0.75) 218
LSTM only 56.30 (2.16) 89.04 (0.75) 648
LSTM-CNN 59.43 (1.60) 89.86 (1.06) 1239
L-LSTM-CNN 63.84 (2.03) 90.22 (0.75) 1800
C-LSTM-CNN 71.49 (2.32) 90.85 (0.37) 1243

Table 1: Average test accuracy and training time.
Best values are marked as bold, standard devia-
tions in parentheses

In all experiments, five-fold cross validation
was used for evaluation (for comparison with
(Huynh et al., 2016)). For each fold, 50 epochs
were run for training using a minibatch size of 64
for each fold, and the Adamax optimization algo-

2http://sail.usc.edu/iemocap/iemocap_
release.htm

3https://sites.google.com/site/
adecorpus/home/document

4https://www.ncbi.nlm.nih.gov/pubmed/
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F-measure Anger (1,103) Sadness (1,084) Neutral (1,708) Excitement (1,041) Negative(14,854) Positive(5,186)

CNN only 67.44 (1.02) 56.92 (3.25) 54.93 (3.70) 53.93 (2.50) 80.59 (1.08) 92.28 (0.59)

LSTM only 65.07 (2.49) 54.21 (4.03) 55.12 (2.95) 49.75 (1.80) 80.25 (1.23) 92.24 (0.54)

LSTM-CNN 67.74 (1.11) 55.86 (6.56) 57.17 (3.27) 56.95 (4.06) 81.55 (0.99) 93.00 (0.87)

L-LSTM-CNN 72.83 (1.81) 60.35 (4.65) 61.67 (3.18) 61.30 (2.64) 82.29 (0.80) 93.24 (0.60)

C-LSTM-CNN 79.54(1.70) 66.07(4.65) 67.54(4.72) 73.11(4.09) 83.11(0.24) 93.72 (0.33)

Table 2: Average test F-measure for each class. Instance numbers in parentheses after class name. Best
values are marked as bold, standard deviations in parentheses

Figure 2: Context level (red line) and sentence level
(blue line) forgetting factor test

rithm. To deal with label imbalance in the data,
class weights wi for class i were set proportional
to max(fi)/fi where fi is the frequency of class i.

We used word2vec embeddings with 50 dimen-
sions (suggesed as sufficient by (Lai et al., 2016)).
For the LSTM, 64 hidden units were used. For the
CNN, layers for kernel sizes 2 to 6 were included
in the network, and 64 features were used for each.

4.1 Effect of Forgetting Factors

We examined the effect of the two context encoder
hyperparameters: ↵cont (context level forgetting
factor) and ↵w (sentence level forgetting factor)
on classification performance over the IEMOCAP
dataset. We tested both in the range of 0.1 to 1
with an incremental step of 0.1. Results are shown
in Figure 2. Accuracy improves as ↵cont increases,
but drops at ↵cont = 1, at which point all context
sentence are given equal weight. This may be be-
cause context closest to the focus sentence is more
important than distant context. Therefore, we se-
lect ↵cont = 0.9 in all experiments.

For ↵sent, performance always increases as
↵sent increases, with best results at ↵sent = 1,
at which point all words in the sentence con-
tribute equally in the context code. This implies
that for individual sentences in the context, it is
more preferable to lose word order, than to down
weight any individual word. In all experiments,
we therefore set the sentence level forgetting fac-

tor to ↵sent = 1

4.2 Evaluation Results

Table 1 shows the mean and standard deviations
for accuracy over the cross validation folds, and
training time, for both data sets. CNN alone per-
forms better than LSTM alone in both tasks. The
combined LSTM-CNN network consistently im-
proves performance beyond both CNN alone and
LSTM alone. Both context based models (L-
LSTM-CNN and C-LSTM-CNN) perform better
than non context based models, but note that L-
LSTM-CNN increases training time by approxi-
mately 1.5x, whereas C-LSTM-CNN shows only
a marginal increase in training time, with a large
increase in accuracy on the IEMOCAP corpus.

Table 2 shows the F1-measure for each class
in the two datasets. Again, Context-LSTM-CNN
outperforms the other models on all classes for
all data sets. C-LSTM-CNN improves on average
by 6.28 over L-LSTM-CNN, 10.16 over LSTM-
CNN, 11.4 over CNN and 13.29 over LSTM.

We conducted a t-test between L-LSTM-CNN
and C-LSTM-CNN. On IEMOCAP, C-LSTM-
CNN is significantly better than L-LSTM-CNN
(p = 0.002). On ADE, C-LSTM-CNN is not sig-
nificantly better than L-LSTM-CNN (p = 0.128).
This may because ADE sentences are less context
dependent. Alternatively, as the ADE task is rela-
tively easy, with all models able to achieve about
90% accuracy, a context based approach might not
be able to further improve the accuracy.

5 Conclusion

In this paper we introduced a new ANN model,
Context-LSTM-CNN, that combines the strength
of LSTM and CNN with the lightweight context
encoding algorithm, FOFE. Our model shows a
consistent improvement over either a non-context
based model and a LSTM context encoded model,
for the sentence classification task.
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Abstract
Deep NLP models benefit from underlying
structures in the data—e.g., parse trees—
typically extracted using off-the-shelf parsers.
Recent attempts to jointly learn the latent struc-
ture encounter a tradeoff: either make factor-
ization assumptions that limit expressiveness,
or sacrifice end-to-end differentiability. Using
the recently proposed SparseMAP inference,
which retrieves a sparse distribution over latent
structures, we propose a novel approach for
end-to-end learning of latent structure predic-
tors jointly with a downstream predictor. To
the best of our knowledge, our method is the
first to enable unrestricted dynamic computa-
tion graph construction from the global latent
structure, while maintaining differentiability.

1 Introduction
Latent structure models are a powerful tool for
modeling compositional data and building NLP
pipelines (Smith, 2011). An interesting emerging
direction is to dynamically adapt a network’s com-
putation graph, based on structure inferred from
the input; notable applications include learning to
write programs (Bosnjak et al., 2017), answering
visual questions by composing specialized modules
(Hu et al., 2017; Johnson et al., 2017), and compos-
ing sentence representations using latent syntactic
parse trees (Yogatama et al., 2017).

But how to learn a model that is able to condi-
tion on such combinatorial variables? The ques-
tion then becomes: how to marginalize over all
possible latent structures? For tractability, exist-
ing approaches have to make a choice. Some of
them eschew global latent structure, resorting to
computation graphs built from smaller local deci-
sions: e.g., structured attention networks use lo-
cal posterior marginals as attention weights (Kim
et al., 2017; Liu and Lapata, 2018), and Mail-
lard et al. (2017) construct sentence representa-
tions from parser chart entries. Others allow more
flexibility at the cost of losing end-to-end differ-
entiability, ending up with reinforcement learning

problems (Yogatama et al., 2017; Hu et al., 2017;
Johnson et al., 2017; Williams et al., 2018). More
traditional approaches employ an off-line structure
predictor (e.g., a parser) to define the computation
graph (Tai et al., 2015; Chen et al., 2017), some-
times with some parameter sharing (Bowman et al.,
2016). However, these off-line methods are unable
to jointly train the latent model and the downstream
classifier via error gradient information.

We propose here a new strategy for building dy-
namic computation graphs with latent structure,
through sparse structure prediction. Sparsity al-
lows selecting and conditioning on a tractable num-
ber of global structures, eliminating the limitations
stated above. Namely, our approach is the first that:

A) is fully differentiable;
B) supports latent structured variables;
C) can marginalize over full global structures.

This contrasts with off-line and with reinforcement
learning-based approaches, which satisfy B and
C but not A; and with local marginal-based meth-
ods such as structured attention networks, which
satisfy A and B, but not C. Key to our approach
is the recently proposed SparseMAP inference
(Niculae et al., 2018), which induces, for each data
example, a very sparse posterior distribution over
the possible structures, allowing us to compute the
expected network output efficiently and explicitly
in terms of a small, interpretable set of latent struc-
tures. Our model can be trained end-to-end with
gradient-based methods, without the need for pol-
icy exploration or sampling.

We demonstrate our strategy on inducing latent
dependency TreeLSTMs, achieving competitive
results on sentence classification, natural language
inference, and reverse dictionary lookup.

2 Sparse Latent Structure Prediction
We describe our proposed approach for learning
with combinatorial structures (in particular, non-
projective dependency trees) as latent variables.
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Figure 1: Our method computes a sparse probability distribution over all possible latent structures: here, only
two have nonzero probability. For each selected tree h, we evaluate p⇠(y | h, x) by dynamically building the
corresponding computation graph (e.g., a TreeLSTM). The final, posterior prediction is a sparse weighted average.

2.1 Latent Structure Models
Let x and y denote classifier inputs and outputs,
and h 2 H(x) a latent variable; for example, H(x)
can be the set of possible dependency trees for x.
We would like to train a neural network to model

p(y | x) :=
X

h2H(x)

p✓(h | x) p⇠(y | h, x), (1)

where p✓(h | x) is a structured-output parsing
model that defines a distribution over trees, and
p⇠(y | h, x) is a classifier whose computation
graph may depend freely and globally on the struc-
ture h (e.g., a TreeLSTM). The rest of this section
focuses on the challenge of defining p✓(h | x) such
that Eqn. 1 remains tractable and differentiable.

2.2 Global Inference
Denote by f✓(h; x) a scoring function, assigning
each tree a non-normalized score. For instance,
we may have an arc-factored score f✓(h; x) :=P

a2h s✓(a; x), where we interpret a tree h as a
set of directed arcs a, each receiving an atomic
score s✓(a; x). Deriving p✓ given f✓ is known
as structured inference. This can be written as a
⌦-regularized optimization problem of the form

p✓(· | x) := argmax
q24|H(x)|

X

h2H(x)

q(h)f✓(h; x)�⌦(q),

where 4|H(x)| is the set of all possible probability
distributions over H(x). Examples follow.

Marginal inference. With negative entropy reg-
ularization, i.e., ⌦(q) :=

P
h2H(x) q(h) log q(h),

we recover marginal inference, and the probability
of a tree becomes (Wainwright and Jordan, 2008)

p✓(h | x) / exp(f✓(h; x)).

This closed-form derivation, detailed in Ap-
pendix A, provides a differentiable expression
for p✓. However, crucially, since exp(·) > 0,
every tree is assigned strictly nonzero probabil-
ity. Therefore—unless the downstream p⇠ is con-
strained to also factor over arcs, as in Kim et al.
(2017); Liu and Lapata (2018)—the sum in Eqn. 1
requires enumerating the exponentially large H(x).
This is generally intractable, and even hard to ap-
proximate via sampling, even when p✓ is tractable.

MAP inference. At the polar opposite, setting
⌦(q) := 0 yields maximum a posteriori (MAP)
inference (see Appendix A). MAP assigns a prob-
ability of 1 to the highest-scoring tree, and 0 to
all others, yielding a very sparse p✓. However,
since the top-scoring tree (or top-k, for fixed k)
does not vary with small changes in ✓, error gra-
dients cannot propagate through MAP. This pre-
vents end-to-end gradient-based training for MAP-
based latent variables, which makes them more
difficult to use. Related reinforcement learning ap-
proaches also yield only one structure, but sidestep
non-differentiability by instead introducing more
challenging search problems.

2.3 Sparse Inference
In this work, we propose using SparseMAP in-
ference (Niculae et al., 2018) to sparsify the set
H while preserving differentiability. SparseMAP
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uses a quadratic penalty on the posterior marginals

⌦(q) := ku(q)k2
2 , where [u(q)]a :=

X

h:a2h

q(h).

Situated between marginal inference and MAP in-
ference, SparseMAP assigns nonzero probability
to only a small set of plausible trees H̄ ⇢ H, of size
at most equal to the number of arcs (Martins et al.,
2015, Proposition 11). This guarantees that the
summation in Eqn. 1 can be computed efficiently
by iterating over H̄: this is depicted in Figure 1 and
described in the next paragraphs.

Forward pass. To compute p(y | x) (Eqn. 1),
we observe that the SparseMAP posterior p✓ is
nonzero only on a small set of trees H̄, and thus
we only need to compute p⇠(y | h, x) for h 2 H̄.
The support and values of p✓ are obtained by solv-
ing the SparseMAP inference problem, as we de-
scribe in Niculae et al. (2018). The strategy, based
on the active set algorithm (Nocedal and Wright,
1999, chapter 16), involves a sequence of MAP
calls (here: maximum spanning tree problems.)

Backward pass. We next show how to compute
end-to-end gradients efficiently. Recall from Eqn. 1
p(y | x) =

P
h2H p✓(h | x) p⇠(y | h, x), where h

is a discrete index of a tree. To train the classifier,
we have @p(y|x)/@⇠ =

P
h2H p✓(h | x)@p⇠(y|h,x)/@⇠,

therefore only the terms with nonzero probabil-
ity (i.e., h 2 H̄) contribute to the gradient.
@p⇠(y|h,x)/@⇠ is readily available by implementing
p⇠ in an automatic differentiation library.1 To train
the latent parser, the total gradient @p(y|x)/✓ is the
sum

P
h2H̄ p⇠(y | h, x) @p✓(h|x)/@✓. We derive the

expression of @p✓(h|x)/@✓ in Appendix B. Crucially,
the gradient sum is also sparse, like p✓, and ef-
ficient to compute, amounting to multiplying by a
|H̄(x)|-by-|H̄(x)| matrix. The proof, given in Ap-
pendix B, is a novel extension of the SparseMAP
backward pass (Niculae et al., 2018).

Generality. Our description focuses on proba-
bilistic classifiers, but our method can be readily
applied to networks that output any representa-
tion, not necessarily a probability. For this, we
define a function r⇠(h, x), consisting of any auto-
differentiable computation w.r.t. x, conditioned on

1Here we assume ✓ and ⇠ to be disjoint, but weight sharing
is easily handled by automatic differentiation via the product
rule. Differentiation w.r.t. the summation index h is not neces-
sary: p⇠ may use the discrete structure h freely and globally.

subj. SST SNLI

left-to-right 92.71 82.10 80.98
flat 92.56 83.96 81.74

off-line 92.15 83.25 81.37
latent 92.25 84.73 81.87

Table 1: Accuracy scores for classification and NLI.

the discrete latent structure h in arbitrary, non-
differentiable ways. We then compute

r̄(x) :=
X

h2H(x)

p✓(h | x)r⇠(h, x) = Eh⇠p✓r⇠(h, x).

This strategy is demonstrated in our reverse-
dictionary experiments in §3.4. In addition, our
approach is not limited to trees: any structured
model with tractable MAP inference may be used.

3 Experiments

We evaluate our approach on three natural language
processing tasks: sentence classification, natural
language inference, and reverse dictionary lookup.

3.1 Common aspects
Word vectors. Unless otherwise mentioned, we
initialize with 300-dimensional GloVe word embed-
dings (Pennington et al., 2014) We transform every
sentence via a bidirectional LSTM encoder, to pro-
duce a context-aware vector vi encoding word i.

Dependency TreeLSTM. We combine the word
vectors vi in a sentence into a single vector using a
tree-structured Child-Sum LSTM, which allows an
arbitrary number of children at any node (Tai et al.,
2015). Our baselines consist in extreme cases of de-
pendency trees: where the parent of word i is word
i+1 (resulting in a left-to-right sequential LSTM),
and where all words are direct children of the root
node (resulting in a flat additive model). We also
consider off-line dependency trees precomputed by
Stanford CoreNLP (Manning et al., 2014).

Neural arc-factored dependency parsing. We
compute arc scores s✓(a; x) with one-hidden-layer
perceptrons (Kiperwasser and Goldberg, 2016).

Experimental setup. All networks are trained
via stochastic gradient with 16 samples per batch.
We tune the learning rate on a log-grid, using a
decay factor of 0.9 after every epoch at which the
validation performance is not the best seen, and
stop after five epochs without improvement. At test
time, we scale the arc scores s✓ by a temperature t
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seen unseen concepts
rank acc10 acc100 rank acc10 acc100 rank acc10 acc100

left-to-right 17 42.6 73.8 43 33.2 61.8 28 35.9 66.7
flat 18 45.1 71.1 31 38.2 65.6 29 34.3 68.2

latent 12 47.5 74.6 40 35.6 60.1 20 38.4 70.7

Maillard et al. (2017) 58 30.9 56.1 40 33.4 57.1 40 57.1 62.6
Hill et al. (2016) 12 48 28 22 41 70 69 28 54

Table 2: Results on the reverse dictionary lookup task (Hill et al., 2016). Following the authors, for an input
definition, we rank a shortlist of approximately 50k candidate words according to the cosine similarity to the
output vector, and report median rank of the expected word, accuracy at 10, and at 100.

chosen on the validation set, controlling the sparsity
of the SparseMAP distribution. All hidden layers
are 300-dimensional.2

3.2 Sentence classification
We evaluate our models for sentence-level subjec-
tivity classification (Pang and Lee, 2004) and for
binary sentiment classification on the Stanford Sen-
timent Treebank (Socher et al., 2013). In both
cases, we use a softmax output layer on top of the
Dependency TreeLSTM output representation.

3.3 Natural language inference (NLI)
We apply our strategy to the SNLI corpus (Bow-
man et al., 2015), which consists of classify-
ing premise-hypothesis sentence pairs into entail-
ment, contradiction or neutral relations. In this
case, for each pair (xP , xH ), the running sum is
over two latent distributions over parse trees, i.e.,P

hP 2H(xP )

P
hH2H(xH) p⇠(y | x{P,H}, h{P,H})

p✓(hP | xP )p✓(hH | xH). For each pair of trees,
we independently encode the premise and hypothe-
sis using a TreeLSTM. We then concatenate the two
vectors, their difference, and their element-wise
product (Mou et al., 2016). The result is passed
through one tanh hidden layer, followed by the
softmax output layer.3

3.4 Reverse dictionary lookup
The reverse dictionary task aims to compose a dic-
tionary definition into an embedding that is close
to the defined word. We therefore used fixed in-
put and output embeddings, set to unit-norm 500-
dimensional vectors provided, together with train-
ing and evaluation data, by Hill et al. (2016). The

2Our dynet (Neubig et al., 2017) implementation is avail-
able at https://github.com/vene/sparsemap.

3For NLI, our architecture is motivated by our goal of eval-
uating the impact of latent structure for learning compositional
sentence representations. State-of-the-art models condition-
ally transform the sentences to achieve better performance,
e.g., 88.6% accuracy in Chen et al. (2017).

28%
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1.0

1.0
1.0

1.0
1.0

X 16%

? a vivid cinematic portrait .

1.0
1.0

1.0

1.0

1.0

· · ·

13%

? a vivid cinematic portrait .

1.0
1.0

1.0
1.0

1.0

· · ·

Figure 2: Three of the sixteen trees with nonzero prob-
ability for an SST test example. Flat representations,
such as the first tree, perform well on this task, as re-
flected by the baselines. The second tree, marked with
X, agrees with the off-line parser.

network output is a projection of the TreeLSTM
encoding back to the dimension of the word embed-
dings, normalized to unit `2 norm. We maximize
the cosine similarity of the predicted vector with
the embedding of the defined word.

4 Discussion

Experimental performance. Classification and
NLI results are reported in Table 1. Compared to
the latent structure model of Yogatama et al. (2017),
our model performs better on SNLI (80.5%) but
worse on SST (86.5%). On SNLI, our model also
outperforms Maillard et al. (2017) (81.6%). To our
knowledge, latent structure models have not been
tested on subjectivity classification. Surprisingly,
the simple flat and left-to-right baselines are very
strong, outperforming the off-line dependency tree
models on all three datasets. The latent TreeLSTM
model reaches the best accuracy on two out of the
three datasets. On reverse dictionary lookup (Ta-
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Figure 3: Examples of coordinate structures where our model assigns high probability to a symmetric parse
(marked †). While not consistent with the standard asymmetrical parse produced by CoreNLP (marked with X),
the symmetric analysis may be more appropriate for TreeLSTM composition.

ble 2), our model also performs well, especially
on concept classification, where the input defini-
tions are more different from the ones seen during
training. For context, we repeat the scores of the
CKY-based latent TreeLSTM model of Maillard
et al. (2017), as well as of the LSTM from Hill et al.
(2016); these different-sized models are not entirely
comparable. We attribute our model’s performance
to the latent parser’s flexibility, investigated below.

Selected latent structures. We analyze the la-
tent structures selected by our model on SST, where
the flat composition baseline is remarkably strong.
We find that our model, to maximize accuracy,
prefers flat or nearly-flat trees, but not exclusively:
the average posterior probability of the flat tree
is 28.9%. In Figure 2, the highest-ranked tree is
flat, but deeper trees are also selected, including
the projective CoreNLP parser output. Syntax is
not necessarily an optimal composition order for
a latent TreeLSTM, as illustrated by the poor per-
formance of the off-line parser (Table 1). Conse-
quently, our (fully unsupervised) latent structures
tend to disagree with CoreNLP: the average prob-
ability of CoreNLP arcs is 5.8%; Williams et al.
(2018) make related observations. Indeed, some
syntactic conventions may be questionable for re-
cursive composition. Figure 3 shows two examples
where our model identifies a plausible symmetric
composition order for coordinate structures: this
analysis disagrees with CoreNLP, which uses the
asymmetrical Stanford / UD convention of assign-
ing the left-most conjunct as head (Nivre et al.,

2016). Assigning the conjunction as head instead
seems preferable in a Child-Sum TreeLSTM.

Training efficiency. Our model must evaluate
at least one TreeLSTM for each sentence, mak-
ing it necessarily slower than the baselines, which
evaluate exactly one. Thanks to sparsity and auto-
batching, the actual slow-down is not problematic;
moreover, as the model trains, the latent parser
gets more confident, and for many unambiguous
sentences there may be only one latent tree with
nonzero probability. On SST, our average training
epoch is only 4.7⇥ slower than the off-line parser
and 6⇥ slower than the flat baseline.

5 Conclusions and future work

We presented a novel approach for training latent
structure neural models, based on the key idea
of sparsifying the set of possible structures, and
demonstrated our method with competitive latent
dependency TreeLSTM models. Our method’s gen-
erality opens up several avenues for future work:
since it supports any structure for which MAP in-
ference is available (e.g., matchings, alignments),
and we have no restrictions on the downstream
p⇠(y | h, x), we may design latent versions of
more complicated state-of-the-art models, such as
ESIM for NLI (Chen et al., 2017). In concurrent
work, Peng et al. (2018) proposed an approximate
MAP backward pass, relying on a relaxation and a
gradient projection. Unlike our method, theirs does
not support multiple latent structures; we intend to
further study the relationship between the methods.
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Abstract

We introduce a class of convolutional neural
networks (CNNs) that utilize recurrent neu-
ral networks (RNNs) as convolution filters. A
convolution filter is typically implemented as a
linear affine transformation followed by a non-
linear function, which fails to account for lan-
guage compositionality. As a result, it limits
the use of high-order filters that are often war-
ranted for natural language processing tasks.
In this work, we model convolution filters with
RNNs that naturally capture compositionality
and long-term dependencies in language. We
show that simple CNN architectures equipped
with recurrent neural filters (RNFs) achieve re-
sults that are on par with the best published
ones on the Stanford Sentiment Treebank and
two answer sentence selection datasets.1

1 Introduction

Convolutional neural networks (CNNs) have been
shown to achieve state-of-the-art results on various
natural language processing (NLP) tasks, such as
sentence classification (Kim, 2014), question an-
swering (Dong et al., 2015), and machine transla-
tion (Gehring et al., 2017). In an NLP system, a
convolution operation is typically a sliding win-
dow function that applies a convolution filter to
every possible window of words in a sentence.
Hence, the key components of CNNs are a set
of convolution filters that compose low-level word
features into higher-level representations.

Convolution filters are usually realized as linear
systems, as their outputs are affine transformations
of the inputs followed by some non-linear activa-
tion functions. Prior work directly adopts a lin-
ear convolution filter to NLP problems by utiliz-
ing a concatenation of embeddings of a window
of words as the input, which leverages word order
information in a shallow additive way. As early

1The code is available at https://github.com/
bloomberg/cnn-rnf.

CNN architectures have mainly drawn inspiration
from models of the primate visual system, the ne-
cessity of coping with language compositionality
is largely overlooked in these systems. Due to the
linear nature of the convolution filters, they lack
the ability to capture complex language phenom-
ena, such as compositionality and long-term de-
pendencies.

To overcome this, we propose to employ re-
current neural networks (RNNs) as convolution
filters of CNN systems for various NLP tasks.
Our recurrent neural filters (RNFs) can naturally
deal with language compositionality with a recur-
rent function that models word relations, and they
are also able to implicitly model long-term de-
pendencies. RNFs are typically applied to word
sequences of moderate lengths, which alleviates
some well-known drawbacks of RNNs, including
their vulnerability to the gradient vanishing and
exploding problems (Pascanu et al., 2013). As in
conventional CNNs, the computation of the con-
volution operation with RNFs can be easily paral-
lelized. As a result, RNF-based CNN models can
be 3-8x faster than their RNN counterparts.

We present two RNF-based CNN architectures
for sentence classification and answer sentence
selection problems. Experimental results on the
Stanford Sentiment Treebank and the QASent and
WikiQA datasets demonstrate that RNFs signifi-
cantly improve CNN performance over linear fil-
ters by 4-5% accuracies and 3-6% MAP scores
respectively. Analysis results suggest that RNFs
perform much better than linear filters in detecting
longer key phrases, which provide stronger cues
for categorizing the sentences.

2 Approach

The aim of a convolution filter is to produce a lo-
cal feature for a window of words. We describe
a novel approach to learning filters using RNNs,
which is especially suitable for NLP problems.
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We then present two CNN architectures equipped
with RNFs for sentence classification and sentence
matching tasks respectively.

2.1 Recurrent neural filters
We briefly review the linear convolution filter
implementation by Kim (2014), which has been
widely adopted in later works. Consider an
m-gram word sequence [xi, · · · ,xi+m�1], where
xi 2 R

k is a k-dimensional word vector. A lin-
ear convolution filter is a function applied to the
m-gram to produce a feature ci,j :

ci,j =f(w>
j xi:i+m�1 + bj),

xi:i+m�1 =xi � xi+1 � · · · � xi+m�1,
(1)

where � is the concatenation operator, bj is a bias
term, and f is a non-linear activation function.
We typically use multiple independent linear fil-
ters to yield a feature vector ci for the word se-
quence. Linear convolution filters make strong as-
sumptions about language that could harm the per-
formance of NLP systems. First, linear filters as-
sume local compositionality and ignore long-term
dependencies in language. Second, they use sep-
arate parameters for each value of the time in-
dex, which hinders parameter sharing for the same
word type (Goodfellow et al., 2016). The assump-
tions become more problematic if we increase the
window size m.

We propose to address the limitations by em-
ploying RNNs to realize convolution filters, which
we term recurrent neural filters (RNFs). RNFs
compose the words of the m-gram from left to
right using the same recurrent unit:

ht = RNN(ht�1,xt), (2)

where ht is a hidden state vector that encoded in-
formation about previously processed words, and
the function RNN is a recurrent unit such as
Long Short-Term Memory (LSTM) unit (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent
Unit (GRU) (Cho et al., 2014). We use the last
hidden state hi+m�1 as the RNF output feature
vector ci. Features learned by RNFs are interde-
pendent of each other, which permits the learning
of complementary information about the word se-
quence. The left-to-right word composing proce-
dure in RNFs preserves word order information
and implicitly models long-term dependencies in
language. RNFs can be treated as simple drop-
in replacements of linear filters and potentially
adopted in numerous CNN architectures.

2.2 CNN architectures
Sentence encoder We use a CNN architec-
ture with one convolution layer followed by
one max pooling layer to encode a sentence.
In particular, the RNFs are applied to every
possible window of m words in the sentence
{x1:m,x2:m+1, · · · ,xn�m+1:n} to generate fea-
ture maps C = [c1, c2, · · · , cn�m+1]. Then a
max-over-time pooling operation (Collobert et al.,
2011) is used to produce a fixed size sentence rep-
resentation: v = max{C}.

Sentence classification We use a CNN architec-
ture that is similar to the CNN-static model de-
scribed in Kim (2014) for sentence classification.
After obtaining the sentence representation v, a
fully connected softmax layer is used to map v to
an output probability distribution. The network is
optimized against a cross-entropy loss function.

Sentence matching We exploit a CNN architec-
ture that is nearly identical to the CNN-Cnt model
introduced by Yang et al. (2015). Let v1 and v2

be the vector representations of the two sentences.
A bilinear function is applied to v1 and v2 to pro-
duce a sentence matching score. The score is com-
bined with two word matching count features and
fed into a sigmoid layer. The output of the sig-
moid layer is used by binary cross-entropy loss to
optimize the model.

3 Experiments
We evaluate RNFs on some of the most popular
datasets for the sentence classification and sen-
tence matching tasks. After describing the experi-
mental setup, we compare RNFs against both lin-
ear filters and conventional RNN models, and re-
port our findings in § 3.2.

3.1 Experimental settings
Data We use the Stanford Sentiment Tree-
bank (Socher et al., 2013) in our sentence classifi-
cation experiments. We report accuracy results for
both binary classification and fine-grained classi-
fication settings. Two answer sentence selection
datasets, QASent (Wang et al., 2007) and Wik-
iQA (Yang et al., 2015), are adopted in our sen-
tence matching experiments. We use MAP and
MRR to evaluate the performance of answer sen-
tence selection models.

Competitive systems We consider CNN vari-
ants with linear filters and RNFs. For RNFs, we
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adopt two implementations based on GRUs and
LSTMs respectively. We also compare against the
following RNN variants: GRU, LSTM, GRU with
max pooling, and LSTM with max pooling.2 We
use the publicly available 300-dimensional GloVe
vectors (Pennington et al., 2014) pre-trained with
840 billion tokens to initialize the word embed-
dings for all the models. The word vectors are
fixed during downstream training. Finally, we re-
port best published results for each dataset.3

Parameter tuning For all the experiments, we
tune hyperparameters on the development sets and
report results obtained with the selected hyperpa-
rameters on the test sets. After the preliminary
search, we choose the number of hidden units (fea-
ture maps) from {200, 300, 400}, and the filter
window width from {2, 3, 4, 5} for linear filters
and from {5, 6, 7, 8} for RNFs. Linear filters tend
to perform well with small window widths, while
RNFs work better with larger window widths. We
apply dropout to embedding layers, pooling lay-
ers, RNN input layers, and RNN recurrent layers.
The dropout rates are selected from {0, 0.2, 0.4},
where 0 indicates that dropout is not used for
the specific layer. Optimization is performed by
Adam (Kingma and Ba, 2015) with early stopping.
We conduct random search with a budget of 100
runs to seek the best hyperparameter configuration
for each system.

3.2 Results

The evaluation results on sentiment classification
and answer sentence selection are shown in Ta-
ble 1 and Table 2 respectively. RNFs significantly
outperform linear filters on both tasks. In fact, we
find that CNN-RNF variants significantly outper-
form CNN-linear-filter on nearly every hyperpa-
rameter configuration in our experiments. On the
Stanford Sentiment Treebank, CNN-RNF-LSTM
outperforms CNN-linear-filter by 5.4% and 3.9%
accuracies on the fine-grained and binary classi-
fication settings respectively. We observe similar
performance boosts by adopting RNFs for CNNs
on the QASent and WikiQA test sets. CNN-RNF-
GRU improves upon CNN-linear-filter by 3.7%
MRR score on QASent and CNN-RNF-LSTM
performs better than CNN-linear-filter by 6.1%

2Max pooling performed better than mean pooling in our
preliminary experiments.

3We exclude results obtained from systems using external
resources beyond word embeddings.

System Fine-grained Binary

CNN variants
CNN-linear-filter 48.0 86.1
CNN-RNF-GRU 53.0 90.0
CNN-RNF-LSTM 53.4 90.0
RNN variants
GRU 50.5 88.7
LSTM 50.3 89.3
GRU-maxpool 51.7 89.7
LSTM-maxpool 51.6 89.8

Best published results
(Lei et al., 2017) 53.2 89.9

Table 1: Accuracy results on the Stanford Sentiment
Treebank. The best results obtained from our imple-
mentations are in bold. The best published results are
underlined.

MAP score on WikiQA. In particular, CNN-RNF-
LSTM achieves 53.4% and 90.0% accuracies on
the fine-grained and binary sentiment classifica-
tion tasks respectively, which match the state-of-
the-art results on the Stanford Sentiment Tree-
bank. CNN-RNF-LSTM also obtains competitive
results on answer sentence selection datasets, de-
spite the simple model architecture compared to
state-of-the-art systems.

Conventional RNN models clearly benefit from
max pooling, especially on the task of answer sen-
tence selection. Like RNF-based CNN models,
max-pooled RNNs also consist of two essential
layers. The recurrent layer learns a set of hid-
den states corresponding to different time steps,
and the max pooling layer extracts the most salient
information from the hidden states. However, a
hidden state in RNNs encodes information about
all the previous time steps, while RNFs focus on
detecting local features from a window of words
that can be more relevant to specific tasks. As a
result, RNF-based CNN models perform consis-
tently better than max-pooled RNN models.

CNN-RNF models are much faster to train than
their corresponding RNN counterparts, despite
they have the same numbers of parameters, as
RNFs are applied to word sequences of shorter
lengths and the computation is parallelizable. The
training of CNN-RNF-LSTM models takes 10-20
mins on the Stanford Sentiment Treebank, which
is 3-8x faster than the training of LSTM models,
on an NVIDIA Tesla P100 GPU accelerator.
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System QASent WikiQA

MAP MRR MAP MRR

CNN variants
CNN-linear-filter 0.750 0.813 0.668 0.687
CNN-RNF-GRU 0.773 0.850 0.726 0.738
CNN-RNF-LSTM 0.780 0.841 0.729 0.747
RNN variants
GRU 0.739 0.815 0.658 0.678
LSTM 0.745 0.806 0.651 0.671
GRU-maxpool 0.744 0.814 0.712 0.724
LSTM-maxpool 0.762 0.825 0.701 0.711

Best published results
(Rao et al., 2016) 0.801 0.877 0.701 0.718
(Wang and Jiang, 2017) - - 0.743 0.755

Table 2: Evaluation results on answer sentence selection datasets. The best results obtained from our implementa-
tions are in bold. The best published results are underlined.

Figure 1: Local label consistency ratio results com-
puted on SST dev set.

4 Analysis

We now investigate why RNFs are more effective
than linear convolution filters on the binary senti-
ment classification task. We perform quantitative
analysis on the development set of the Stanford
Sentiment Treebank (SST), in which sentiment la-
bels for some phrases are also available.

Local label consistency (LLC) ratio We first
inspect whether longer phrases have a higher ten-
dency to express the same sentiment as the entire
sentence. We define the local label consistency
(LLC) ratio as the ratio of m-grams that share the
same sentiment labels as the original sentences.
The LLC ratios with respect to different phrase
lengths are shown in Figure 1. Longer phrases are

Figure 2: Key phrase hit rate results computed on SST
dev set. The RNFs are implemented with LSTMs.

more likely to convey the same sentiments as the
original sentences. Therefore, the ability to model
long phrases is crucial to convolution filters.

Key phrase hit rate We examine linear filters
and RNFs on the ability to detect a key phrase in
a sentence. Specifically, we define the key phrases
for a sentence to be the set of phrases that are la-
beled with the same sentiment as the original sen-
tence. The key phrase hit rate is then defined as the
ratio of filter-detected m-grams that fall into the
corresponding key phrase sets. The filter-detected
m-gram of a sentence is the one whose convo-
lution feature vector has the shortest Euclidean
distance to the max-pooled vector. The hit rate
results computed on SST dev set are presented
in Figure 2. As shown, RNFs consistently per-
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form better than linear filters on identifying key
phrases across different phrase lengths, especially
on phrases of moderate lengths (4-7). The results
suggest that RNFs are superior to linear filters, as
they can better model longer phrases whose labels
are more consistent with the sentences.4

5 Related work

Linear convolution filters are dominated in CNN-
based systems for both computer vision and nat-
ural language processing tasks. One exception
is the work of Zoumpourlis et al. (2017), which
proposes a convolution filter that is a function
with quadratic forms through the Volterra kernels.
However, this non-linear convolution filter is de-
veloped in the context of a computational model
of the visual cortex, which is not suitable for NLP
problems. In contrast, RNFs are specifically de-
rived for NLP tasks, in which a different form
of non-linearity, language compositionality, often
plays a critical role.

Several works have employed neural network
architectures that contain both CNN and RNN
components to tackle NLP problems. Tan et al.
(2016) present a deep neural network for answer
sentence selection, in which a convolution layer is
applied to the output of a BiLSTM layer for ex-
tracting sentence representations. Ma and Hovy
(2016) propose to compose character representa-
tions of a word using a CNN, whose output is then
fed into a BiLSTM for sequence tagging. Kalch-
brenner and Blunsom (2013) introduce a neural
architecture that uses a sentence model based on
CNNs and a discourse model based on RNNs.
Their system achieves state-of-the-art results on
the task of dialogue act classification. Instead of
treating an RNN and a CNN as isolated compo-
nents, our work directly marries RNNs with the
convolution operation, which illustrates a new di-
rection in mixing RNNs with CNNs.

6 Conclusion and future work

We present RNFs, a new class of convolution fil-
ters based on recurrent neural networks. RNFs se-
quentially apply the same recurrent unit to words
of a phrase, which naturally capture language
compositionality and implicitly model long-term

4Phrases of very long lengths (8-10) are rarely annotated
in SST dev data, which could explain why linear filters and
RNFs achieve similar hit rates, as small data sample often
leads to high variance.

dependencies. Experiments on sentiment classifi-
cation and answer sentence selection tasks demon-
strate that RNFs give a significant boost in per-
formance compared to linear convolution filters.
RNF-based CNNs also outperform a variety of
RNN-based models, as they focus on extracting lo-
cal information that could be more relevant to par-
ticular problems. The quantitive analysis reveals
that RNFs can handle long phrases much better
than linear filters, which explains their superior-
ity over the linear counterparts. In the future, we
would like to investigate the effectiveness of RNFs
on a wider range of NLP tasks, such as natural lan-
guage inference and machine translation.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of the Association for Computational Linguis-
tics (ACL).

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of
the International Conference on Machine Learning
(ICML).

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. 2016. Deep learning, volume 1.
MIT press Cambridge.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8).

916



Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of Em-
pirical Methods for Natural Language Processing
(EMNLP).

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. 2017. Deriving neural architectures from
sequence and graph kernels. In Proceedings of
the International Conference on Machine Learning
(ICML).

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the Association for Computational
Linguistics (ACL).

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP).

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proceedings of the ACM
International on Conference on Information and
Knowledge Management (CIKM).

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of Empirical Methods for Nat-
ural Language Processing (EMNLP).

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Lstm-based deep learning models for
non-factoid answer selection. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR).

Mengqiu Wang, Noah A Smith, and Teruko Mita-
mura. 2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In Proceedings of Em-
pirical Methods for Natural Language Processing
(EMNLP).

Shuohang Wang and Jing Jiang. 2017. A compare-
aggregate model for matching text sequences. In
Proceedings of the International Conference on
Learning Representations (ICLR).

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP).

Georgios Zoumpourlis, Alexandros Doumanoglou,
Nicholas Vretos, and Petros Daras. 2017. Non-
linear convolution filters for cnn-based learning.
In Proceedings of the International Conference on
Computer Vision (ICCV).

917



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 918–924
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Exploiting Rich Syntactic Information for Semantic Parsing
with Graph-to-Sequence Model

Kun Xu1⇤, Lingfei Wu2, Zhiguo Wang2, Mo Yu2, Liwei Chen3, Vadim Sheinin2

1Tencent AI Lab
2IBM Research

3Peking University, Beijing, China
{syxu828,zgw.tomorrow,gflfof}@gmail.com, lwu@email.wm.edu

chenliwei@pku.edu.cn,vadims@us.ibm.com

Abstract
Existing neural semantic parsers mainly utilize
a sequence encoder, i.e., a sequential LSTM,
to extract word order features while neglect-
ing other valuable syntactic information such
as dependency or constituent trees. In this
paper, we first propose to use the syntactic
graph to represent three types of syntactic in-
formation, i.e., word order, dependency and
constituency features; then employ a graph-to-
sequence model to encode the syntactic graph
and decode a logical form. Experimental re-
sults on benchmark datasets show that our
model is comparable to the state-of-the-art on
Jobs640, ATIS, and Geo880. Experimental re-
sults on adversarial examples demonstrate the
robustness of the model is also improved by
encoding more syntactic information.

1 Introduction

The task of semantic parsing is to translate text to
its formal meaning representations, such as logical
forms or structured queries. Recent neural seman-
tic parsers approach this problem by learning soft
alignments between natural language and logical
forms from (text, logic) pairs (Jia and Liang, 2016;
Dong and Lapata, 2016; Krishnamurthy et al.,
2017). All these parsers follow the conventional
encoder-decoder architecture that first encodes the
text into a distributional representation and then
decodes it to a logical form. These parsers may
differ in the choice of the decoders, such as se-
quence or tree decoders, but they utilize the same
encoder which is essentially a sequential Long
Short-Term Memory network (SeqLSTM). This
encoder only extracts word order features while
neglecting useful syntactic information, such as
dependency parse and constituency parse.

However, the syntactic features capture im-
portant structural information of the natural lan-

⇤ Work done when the author was at IBM Research.

guage input, which complements the simple word
sequence. For example, a dependency graph
presents grammatical relations that hold among
the words; and a constituent tree provides a phrase
structure representation. Intuitively, by incorpo-
rating such additional information, the encoder
could produce a more meaningful and robust sen-
tence representation. The combination of these
features (i.e., sequence + trees) forms a general
graph structure (see Figure 1). This inspires us
to apply a graph encoder to produce a represen-
tation of a graph-structured input. The graph en-
coder also has the advantages that it could simulta-
neously encode all types of syntactic contexts, and
incorporate multiple types of syntactic structures
in a unified way.

In this paper, we first introduce a structure,
namely syntactic graph, to represent three types
of syntactic information, i.e., word order, depen-
dency and constituency features (see §2). We then
employ a novel graph-to-sequence (Graph2Seq)
model (Xu et al., 2018), which consists of a graph
encoder and a sequence decoder, to learn the rep-
resentation of the syntactic graph (see §3). Specif-
ically, the graph encoder learns the representation
of each node by aggregating information from its
K-hop neighbors. Given the learned node em-
beddings, the graph encoder uses a pooling-based
method to generate the graph embedding. On the
decoder side, a Recurrent Neural Network (RNN)
decoder takes the graph embedding as its initial
hidden state to generate the logical form while
employing an attention mechanism over the node
embeddings. Experimental results show that our
model achieves the competitive performance on
Jobs640, ATIS, and Geo880 datasets.

Different from existing works, we also inves-
tigate the robustness of our model by evaluating
the model on two types of adversarial examples
(Belinkov and Bisk, 2017; Cheng et al., 2018).
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Sentence Level FeatureDependency FeatureConstituency Feature
what are the jobs for programmer that has salary 50000 that uses c++ and not related with AI
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Figure 1: The syntactic graph for the Jobs640 question what are the jobs for programmer that has salary 50000 that uses c++
and not related with AI. Due to the space limitation, the constituent tree is partially shown here.

Experimental results show that the model cou-
pling all syntactic features has the best robustness,
achieving the best performance. Our code and
data is available at https://github.com/IBM/

Text-to-LogicForm.

2 Syntactic Graph

We represent three types of syntactic features, i.e.,
word order, dependency parse and constituency
parse, as the syntactic graph (see Figure 1).
• Word Order Features. Previous neural seman-
tic parsers mainly use these features by building a
SeqLSTM that works on the word sequence. Our
syntactic graph also incorporates this information
by generating a node for each word and connect-
ing them in the chain form. In order to capture the
forward and backward contextual information, we
link these nodes in two directions, that is, from left
to right and from right to left.
• Dependency Features. A dependency parse de-
scribes the grammatical relations that hold among
words. Reddy et al. (2016, 2017) have demon-
strated that the dependency parse tree could be
directly transformed to a logical form, which in-
dicates that the dependency information (i.e., tree
structure and dependency labels) is critical to the
semantic parsing task. We incorporate this infor-
mation into the syntactic graph by adding directed
edges between the word nodes and assign them
with dependency labels.
• Constituency Features. Similar to the depen-
dency parse, the constituency parse represents the
phrase structure, which is also important to the se-
mantic parsing task. Take Figure 1 as an example:
given the constituent tree that explicitly annotates
“not related with AI” (node #1) is a proposition
phrase, the model could learn a meaningful em-
bedding for this phrase by encoding this structure
into the model. Motivated by this observation, we

add the non-terminal nodes of the constituent tree
and the edges describing their parent-child rela-
tionships into the syntactic graph.

3 Graph-to-sequence Model for
Semantic Parsing

After building the syntactic graph for the input
text, we employ a novel graph-to-sequence model
(Xu et al., 2018), which includes a graph encoder
and a sequence decoder with attention mechanism,
to map the syntactic graph to the logical form.
Conceptually, the graph encoder generates node
embeddings for each node by accumulating infor-
mation from its K-hop neighbors, and then pro-
duces a graph embedding for the entire graph by
abstracting all these node embeddings. Next, the
sequence decoder takes the graph embedding as
the initial hidden state, and calculates the atten-
tion over all node embeddings on the encoder side
to generate logical forms. Note that this graph
encoder does not explicitly encode the edge label
information, therefore, for each labeled edge, we
add a node whose text attribute is the edge’s label.

Node Embedding. Given the syntactic graph
G = (V, E), we take the embedding generation
process for node v 2 V as an example to explain
the node embedding generation algorithm1:
(1) We first transform node v’s text attribute to a
feature vector, av, by looking up the embedding
matrix We;
(2) The neighbors of v are categorized into for-
ward neighbors N`(v) and backward neighbors
Na(v) according to the edge direction. In partic-
ular, N`(v) returns the nodes that v directs to and
Na(v) returns the nodes that direct to v;
(3) We aggregate the forward representations of
v’s forward neighbors {hk�1

u` , 8u 2 N`(v)} into
1Interested readers may refer to (Xu et al., 2018) for more

implementation details.
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a single vector, hk
N`(v), where k2{1, ..., K} is the

iteration index. Specifically, this aggregator feeds
each neighbor’s vector to a fully-connected neural
network and applies an element-wise max-pooling
operation to capture different aspects of the neigh-
bor set. Notice that, at iteration k, this aggregator
only uses the representations generated at k � 1.
The initial forward representation of each node is
its feature vector calculated in step (1);
(4) We concatenate v’s current forward represen-
tation hk�1

v` with the newly generated neighbor-
hood vector hk

N`(v). The resulted vector is fed into
a fully connected layer with nonlinear activation
function �, which updates the forward represen-
tation of v, hk

v`, to be used at the next iteration;
(5) We update the backward representation of v,
hk

va using the similar procedure as introduced in
step (3) and (4) except that operating on the back-
ward representations;
(6) We repeat steps (3)⇠(5) K times, and the con-
catenation of the final forward and backward rep-
resentations is used as the final representation of
v. Since the neighbor information from different
hops may have different impacts on the node em-
bedding, we learn a distinct aggregator at each it-
eration.
Graph Embedding. We feed the obtained node
embeddings into a fully-connected neural net-
work, and apply the element-wise max-pooling
operation on all node embeddings. We did not
find substantial performance improvement using
mean-pooling.
Sequence Decoding. The decoder is an RNN
which predicts the next token yi given all the pre-
vious words y<i = y1, ..., yi�1, the RNN hidden
state si for time-step i and the context vector ci

that captures the attention of the encoder side. In
particular, the context vector ci depends on a set
of node representations (h1,...,hV ) to which the
encoder maps the input graph. The context vec-
tor ci is dynamically computed using an attention
mechanism over the node representations. The
whole model is jointly trained to maximize the
conditional log-probability of the correct descrip-
tion given a source graph. In the inference phase,
we use the beam search algorithm to generate a
description with beam size = 3.

4 Experiments

We evaluate our model on three datasets: Jobs640,
a set of 640 queries to a database of job listings;

Method Jobs Geo ATIS
Zettlemoyer and Collins (2007) 79.3 86.1 84.6
Kwiatkowski et al. (2011) - 88.6 82.8
Liang et al. (2011) 90.7 87.9 -
Kwiatkowski et al. (2013) - 89.0 -
Wang et al. (2014) - 90.4 91.3
Zhao and Huang (2015) 85.0 88.9 84.2
Jia and Liang (2016) - 85.0 76.3
Dong and Lapata (2016)-Seq2Seq 87.1 85.0 84.2
Dong and Lapata (2016)-Seq2Tree 90.0 87.1 84.6
Rabinovich et al. (2017) 92.9 85.7 85.3
Graph2Seq 91.2 88.1 85.9

w/o word order features 86.7 84.4 82.9
w/o dependency features 89.3 85.8 83.8
w/o constituency features 88.9 84.7 84.6
w/ ONLY word order features 88.0 84.8 83.1

BASELINE 88.1 84.9 83.0

Table 1: Exact-match accuracy on Jobs640, Geo880 and
ATIS.

Geo880, a set of 880 queries to a database of
U.S. geography; and ATIS, a set of 5,410 queries
to a flight booking system. We use the standard
train/development/test split as previous works, and
the logical form accuracy as our evaluation metric.

The model is trained using the Adam optimizer
(Kingma and Ba, 2014), with mini-batch size 30.
Our hyper-parameters are cross-validated on the
training set for Jobs640 and Geo880, and tuned on
the development set for ATIS. The learning rate is
set to 0.001. The decoder has 1 layer, and its hid-
den state size is 300. The dropout strategy (Sri-
vastava et al., 2014) with the ratio of 0.5 is ap-
plied at the decoder layer to avoid overfitting. We

is initialized using GloVe word vectors from Pen-
nington et al. (2014) and the dimension of word
embedding is 300. For the graph encoder, the hop
size K is set to 10, the non-linearity function �
is implemented as ReLU (Glorot et al., 2011), the
parameters of the aggregators are randomly initial-
ized. We use the Stanford CoreNLP tool (Manning
et al., 2014) to generate the dependency and con-
stituent trees.
Results and Discussion. Table 1 summarizes
the results of our model and existing semantic
parsers on three datasets. Our model achieves
competitive performance on Jobs640, ATIS and
Geo880. Our work is the first to use both multiple
trees and the word sequence for semantic parsing,
and it outperforms the Seq2Seq model reported in
Dong and Lapata (2016), which only uses limited
syntactic information.
Comparison with Baseline. To better demon-
strate that our work is an effective way to uti-
lize both multiple trees and the word sequence
for semantic parsing, we compare with an addi-
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tional straightforward baseline method (referred as
BASELINE in Table 1). To deal with the graph
input, the BASELINE decomposes the graph em-
bedding to two steps and applies different types of
encoders sequentially: (1) a SeqLSTM to extract
word order features, which results in word embed-
dings, Wseq; (2) two TreeLSTMs (Tai et al., 2015)
to extract the dependency tree and constituency
features while taking Wseq as initial word embed-
dings. The resulted word embeddings and non-
terminal node embeddings (from TreeLSTMs) are
then fed into a sequence decoder.

We can see that our model significantly outper-
forms the BASELINE. One possible reason is that
our graph encoder jointly extracts these features
in a unified model by propagating the dependency
and constituency information to all nodes in the
syntactic graph. However, BASELINE separately
models these features using two distinct TreeL-
STMs. As a result, the non-terminal tree nodes
only retain only one type of syntactic information
propagated from their descendants in the tree.

Ablation Study. In Table 1, we also report the
results of three ablation variants of our model,
i.e., without word order features/dependency
features/constituency features. We find that
Graph2Seq is superior to Seq2Seq (Dong and Lap-
ata, 2016) which is expected since Graph2Seq ex-
ploits more syntactic information. Among these
features, the word order feature have more impact
on the performance than other two syntactic fea-
tures. By incorporating either the dependency or
the constituency features, the model could gain
further performance improvement, which under-
lines the importance of utilizing more aspects of
syntactic information. Finally, removing both syn-
tactic features (w/ ONLY word order) performs
slightly worse compared to the Seq2Seq baseline.
This shows that using K=10 hops is good enough
for memorizing the sentences in our benchmarks,
although still weaker compared to a bidirectional
LSTM encoder.

A natural question here is on which type of
queries our model could benefit from incorporat-
ing these parse features. By analyzing the queries
and our predicted logical forms, we find that the
parse features mainly improve the prediction ac-
curacy for the queries with complex logical forms.
Table 2 gives some running examples of com-
plicated queries in three datasets. We find that
the model that exploits three syntactic information

could correctly predict these logical forms while
the model that only uses word order features may
fail.

Complicated Query & Predicted Logical Forms
Jobs Q: what are the jobs for programmer that has salary

50000 that uses c++ and not related with AI
Pred: answer(J,(job(J),-((area(J,R),const(R,’ai’))),

language(J,L),const(L,’c++’), title(J,P),
const(P,’Programmer’),salary greater than(J,
50000,year)))).

Geo Q: which is the density of the state that the largest
river in the united states run through

Pred: answer(A,(density(B,A),state(B),
longest(C,(river(C),loc(C,D),const(D,id(usa)))),
traverse(C,B))))

ATIS Q: please find a flight round trip from los angeles
to tacoma washington with a stopover in san
francisco not exceeding the price of 300 dollars
for june tenth 1993

Pred: (lambda $0 e (and (flight $0) (round trip $0)
(from $0 los angeles) (to $0 tacoma washington)
(stop $0 san francisco) (< (cost $0) 300)
(day number $0 tenth) (month $0 june)
(year $0 1993)))

Table 2: Examples of complicated query and predicted logi-
cal forms.

Robustness Study. Different from previous
works, we evaluate the robustness of our model by
creating adversarial examples with the hope to in-
vestigate the impact of introducing more syntactic
information on robustness. Specifically, we cre-
ate two types of adversarial examples and con-
duct experiments on the ATIS dataset. Follow-
ing Belinkov and Bisk (2017), we first experiment
with the synthetic noise, SWAP, which swaps
two letters (e.g. noise!nosie). It is common to
see such noisy information when typing quickly.
Given a text, we randomly perform swap on m
2 {1, 2, 3, 4, 5} words that not correspond to the
operators or arguments in logical forms, ensuring
the meaning of the text is not changed. We train
Graph2Seq on the training data and first evaluate
it on the original development data, Devori. Then
we use the same model but evaluate it on a vari-
ant of Devori, whose queries contain m swapped
words.

Figure 2 summarizes the results of our model
on the first type of adversarial examples, i.e., the
ATIS development set with the SWAP noise. From
Figure 2, we can see that (1) the performance
of our model on all combinations of features de-
grade significantly when increasing the number of
swapped words; (2) the model that uses three syn-
tactic features (our default model) always achieves
the best performance, and the performance gap
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Figure 2: The logical form accuracy on the development set
of ATIS with various swapped words number.

compared to others increases when rising the num-
ber of swapped words; (3) word order features are
the most sensitive to the word sequence while the
dependency and constituency features seem more
robust to such noisy information; (4) thanks to
the robustness of the dependency and constituency
features, the default model performs significantly
better than the one that only uses word order
features on the noisy sentences. These findings
demonstrate that incorporating more aspects of
syntactic information could enhance the robust-
ness of the model.

We also experiment with the paraphrase of the
input text as the second type of adversarial exam-
ples. More specifically, we collect the paraphrase
of a text by first translating it to the other language
such as Chinese and then translating it back to
English, using the Google Translate service. We
use this method to collect a new variant of Devori

whose queries are the paraphrases of the original
ones. By manually reading these queries, we find
94% queries convey the same meaning as original
ones. Similar to the first experiment, we still train
the model on Devori and evaluate it on the newly
created dataset.

Feature Accori Accpara Diff.
Word Order 84.8 78.7 -6.1
Dep 83.5 80.1 -3.4
Cons 82.9 77.3 -5.6
Dep + Cons 84.0 80.7 -3.3
Word Order + Dep 85.2 82.3 -2.9
Word Order + Cons 84.9 79.9 -5.0
Word Order + Dep + Cons 86.0 83.5 -2.5

Table 3: Evaluation results on ATIS where Accori and
Accpara denote the accuracy on the original and paraphrased
development set of ATIS, respectively.

Table 3 shows the results of our model on the
second type of adversarial examples, i.e., the para-
phrased ATIS development set. We also report the

result of our model on the original ATIS devel-
opment set. We can see that (1) no matter which
feature our model uses, the performance degrades
at least 2.5% on the paraphrased dataset; (2) the
model that only uses word order features achieves
the worst robustness to the paraphrased queries
while the dependency feature seems more robust
than other two features. (3) simultaneously utiliz-
ing three syntactic features could greatly enhance
the robustness of our model. These results again
demonstrate that our model could benefit from in-
corporating more aspects of syntactic information.

5 Related Work

Existing works of generating text representation
has evolved into two main streams. The first one is
based on the word order, that is, either generating
general purpose and domain independent embed-
dings of word sequences (Wu et al., 2018a; Arora
et al., 2017), or building Bi-directional LSTMs
over the text (Zhang et al., 2018). These methods
neglect other syntactic information, which, how-
ever, has been proved to be useful in shallow se-
mantic parsing, e.g., semantic role labeling (Pun-
yakanok et al., 2008). To address this, recent
works attempt to incorporate these syntactic infor-
mation into the text representation. For example,
Xu et al. (2016) builds separated neural networks
for different types of syntactic annotation. Gorm-
ley et al. (2015); Wu et al. (2018b) decompose a
graph to simpler sub-graphs and embed these sub-
graphs independently. Our approach, compared
to the above methods, provided a unified solution
to arbitrary combinations of syntactic graphs. In
parallel to syntactic features, other works leverage
additional information such as dialogue and para-
phrasing for semantic parsing (Su and Yan, 2017;
Gur et al., 2018).

6 Conclusions

Existing neural semantic parsers mainly leverage
word order features while neglecting other valu-
able syntactic information. To address this, we
propose to build a syntactic graph which repre-
sents three types of syntactic information, and fur-
ther apply a novel graph-to-sequence model to
map the syntactic graph to a logical form. Ex-
perimental results show that the robustness of our
model is improved due to the incorporating more
aspects of syntactic information, and our model
outperforms previous semantic parsing systems.
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Abstract

In models to generate program source code
from natural language, representing this code
in a tree structure has been a common ap-
proach. However, existing methods often fail
to generate complex code correctly due to a
lack of ability to memorize large and com-
plex structures. We introduce RECODE, a
method based on subtree retrieval that makes
it possible to explicitly reference existing code
examples within a neural code generation
model. First, we retrieve sentences that are
similar to input sentences using a dynamic-
programming-based sentence similarity scor-
ing method. Next, we extract n-grams of ac-
tion sequences that build the associated ab-
stract syntax tree. Finally, we increase the
probability of actions that cause the retrieved
n-gram action subtree to be in the predicted
code. We show that our approach improves the
performance on two code generation tasks by
up to +2.6 BLEU.1

1 Introduction

Natural language to code generation, a subtask
of semantic parsing, is the problem of converting
natural language (NL) descriptions to code (Ling
et al., 2016; Yin and Neubig, 2017; Rabinovich
et al., 2017). This task is challenging because it
has a well-defined structured output and the in-
put structure and output structure are in different
forms.

A number of neural network approaches have
been proposed to solve this task. Sequential ap-
proaches (Ling et al., 2016; Jia and Liang, 2016;
Locascio et al., 2016) convert the target code into
a sequence of symbols and apply a sequence-to-
sequence model, but this approach does not en-
sure that the output will be syntactically correct.

1Code available at https://github.com/
sweetpeach/ReCode

Tree-based approaches (Yin and Neubig, 2017;
Rabinovich et al., 2017) represent code as Ab-
stract Syntax Trees (ASTs), which has proven ef-
fective in improving accuracy as it enforces the
well-formedness of the output code. However,
representing code as a tree is not a trivial task, as
the number of nodes in the tree often greatly ex-
ceeds the length of the NL description. As a re-
sult, tree-based approaches are often incapable of
generating correct code for phrases in the corre-
sponding NL description that have low frequency
in the training data.

In machine translation (MT) problems (Zhang
et al., 2018; Gu et al., 2018; Amin Farajian et al.,
2017; Li et al., 2018), hybrid methods combin-
ing retrieval of salient examples and neural models
have proven successful in dealing with rare words.
Following the intuition of these models, we hy-
pothesize that our model can benefit from query-
ing pairs of NL descriptions and AST structures
from training data.

In this paper, we propose RECODE, and adap-
tation of Zhang et al. (2018)’s retrieval-based ap-
proach neural MT method to the code genera-
tion problem by expanding it to apply to gen-
eration of tree structures. Our main contribu-
tion is to introduce the use of retrieval methods
in neural code generation models. We also pro-
pose a dynamic programming-based sentence-to-
sentence alignment method that can be applied to
similar sentences to perform word substitution and
enable retrieval of imperfect matches. These con-
tributions allow us to improve on previous state-
of-the-art results.

2 Syntactic Code Generation

Given an NL description q, our purpose is to gen-
erate code (e.g. Python) represented as an AST a.
In this work, we start with the syntactic code gen-
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eration model by Yin and Neubig (2017), which
uses sequences of actions to generate the AST be-
fore converting it to surface code. Formally, we
want to find the best generated AST â given by:

â = arg max
a

p(a|q)

p(a|q) =
TY

t=1

p(yt|y<t, q)

where yt is the action taken at time step t and
y<t = y1...yt�1 and T is the number of total time
steps of the whole action sequence resulting in
AST a.

We have two types of actions to build an AST:
APPLYRULE and GENTOKEN. APPLYRULE(r)
expands the current node in the tree by applying
production rule r from the abstract syntax gram-
mar2 to the current node. GENTOKEN(v) pop-
ulates terminal nodes with the variable v which
can be generated from vocabulary or by COPYing
variable names or values from the NL description.
The generation process follows a preorder traver-
sal starting with the root node. Figure 1 shows
an action tree for the example code: the nodes cor-
respond to actions per time step in the construction
of the AST.

Interested readers can reference Yin and Neubig
(2017) for more detail of the neural model, which
consists of a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) encoder-decoder with action
embeddings, context vectors, parent feeding, and
a copy mechanism using pointer networks.

3 RECODE: Retrieval-Based Neural
Code Generation

We propose RECODE, a method for retrieval-
based neural syntactic code generation, using re-
trieved action subtrees. Following Zhang et al.
(2018)’s method for neural machine translation,
these retrieved subtrees act as templates that bias
the generation of output code. Our pipeline at test
time is as follows:

• retrieve from the training set NL descriptions
that are most similar with our input sentence
(§3.1),

• extract n-gram action subtrees from these
retrieved sentences’ corresponding target
ASTs (§3.2),

2https://docs.python.org/2/library/
ast.html

• alter the copying actions in these subtrees, by
substituting words of the retrieved sentence
with corresponding words in the input sen-
tence (§3.3), and

• at every decoding step, increase the probabil-
ity of actions that would lead to having these
subtrees in the produced tree (§3.4).

3.1 Retrieval of Training Instances
For every retrieved NL description qm from train-
ing set (or retrieved sentence for short), we com-
pute its similarity with input q, using a sentence
similarity formula (Gu et al., 2016; Zhang et al.,
2018):

sim(q, qm) = 1 � d(q, qm)

max(|q| ,|qm|)

where d is the edit distance. We retrieve only the
top M sentences according to this metric where
M is a hyperparameter. These scores will later be
used to increase action probabilities accordingly.

3.2 Extracting N -gram Action Subtrees
In Zhang et al. (2018), they collect n-grams from
the output side of the retrieved sentences and
encourage the model to generate these n-grams.
Word n-grams are obvious candidates when gen-
erating a sequence of words as output, as in NMT.
However, in syntax-based code generation, the
generation target is ASTs with no obvious linear
structure. To resolve this problem, we instead use
retrieved pieces of n-gram subtrees from the tar-
get code corresponding to the retrieved NL de-
scriptions. Though we could select successive
nodes in the AST as retrieved pieces, such as
[assign; expr*(targets); expr] from Figure
1, we would miss important structural information
from the rules that are used. Thus, we choose to
exploit actions in the generation model rather than
AST nodes themselves to be candidates for our re-
trieved pieces.

In the action tree (Figure 1), we consid-
ered only successive actions, such as sub-
trees where each node has one or no chil-
dren, to avoid overly rigid structures or com-
binatorial explosion of the number of retrieved
pieces the model has to consider. For ex-
ample, such an action subtree would be given
by [assign ! expr*(targets), expr(value)

; expr(value) ! List; List ! epsilon].
As the node in the action tree holds structural

information about its children, we set the subtrees
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t0

t1

t2

t3

t4

t5

t6

root > assign

assign > expr*(targets), expr(value) 

expr*(targets) > expr 

expr > Name 

Name > str 

GENTOKEN[params] 

GENTOKEN[/n] 

expr(value) > List 

List > epsilon 

Input       :  params is an empty list Target Code      : params = [ ]

Action Flow

Parent Feeding

Apply Rule

Generate Token

Generate Token 
 with Copy

t7

t8

t9

ti

ti

ti

Retrieved: List lst is an empty list Retrieved Code: lst = [ ]

GENTOKEN[lst] 

GENTOKEN[/n] 

Figure 1: The action sequence used to generate AST for the
target code given the input example. Dashed nodes repre-
sent terminals. Each node is labeled with time steps. AP-
PLYRULE action is represented as rule in this figure. Blue
dotted boxes denote 3-gram action subtrees. Italic words are
unedited words. Red bold words are different object names.

to have a fixed depth, linear in the size of the
tree. These can be considered “n-grams of ac-
tions”, emphasizing the comparison with machine
translation which uses n-grams of words. n is a
hyperparameter to be tuned.

3.3 Word Substitution in Copy Actions
Using the retrieved subtree without modification
is problematic if it contains at least one node cor-
responding to a COPY action because copied to-
kens from the retrieved sentence may be different
from those in the input. Figure 1 shows an ex-
ample when the input and retrieved sentence have
four common words, but the object names are dif-
ferent. The extracted action n-gram would contain
the rule that copies the second word (“lst”) of the
retrieved sentence while we want to copy the first
word (“params”) from the input.

By computing word-based edit distance be-
tween the input description and the retrieved sen-
tence, we implement a one-to-one sentence align-
ment method that infers correspondences between
uncommon words. For unaligned words, we alter
all COPY rules in the extracted n-grams to copy to-
kens by their aligned counterpart, such as replace
“params” with “lst”, and delete the n-gram sub-
tree, as it is not likely to be relevant in the pre-
dicted tree. Thus, in the example in Figure 1,
the GENTOKEN(LST) action in t5 will not be exe-
cuted.

3.4 Retrieval-Guided Code Generation
N -gram subtrees from all retrieved sentences are
assigned a score, based on the best similarity score

Dataset HS Django
Train 533 16,000
Dev 66 1,000
Test 66 1,805
Avg. tokens in description 39.1 14.3
Avg. number of nodes of AST 136.6 17.2

Table 1: Dataset statistics as reported Yin and Neubig (2017)

of all instances where they appeared. We normal-
ize the scores for each input sentence by subtract-
ing the average over the training dataset.

At decoding time, incorporate these retrieval-
derived scores into beam search: for a given time
step, all actions that would result in one of the
retrieved n-grams u to be in the prediction tree
has its log probability log(p(yt | yt�1

1 )) increased
by � ⇤ score(u) where � is a hyperparameter, and
score(u) is the maximal sim(q, qm) from which u
is extracted. The probability distribution is then
renormalized.

4 Datasets and Evaluation Metrics
We evaluate RECODE with the Hearthstone (HS)
(Ling et al., 2016) and Django (Oda et al., 2015)
datasets, as preprocessed by Yin and Neubig
(2017). HS consists of Python classes that imple-
ment Hearthstone card descriptions while Django
contains pairs of Python source code and English
pseudo-code from Django web framework. Table
1 summarizes dataset statistics.

For evaluation metrics, we use accuracy of ex-
act match and the BLEU score following Yin and
Neubig (2017).

5 Experiments

For the neural code generation model, we use the
settings explained in Yin and Neubig (2017). For
the retrieval method, we tuned hyperparameters
and achieved best result when we set nmax = 4
and � = 3 for both datasets3. For HS, we set
M = 3 and M = 10 for Django.

We compare our model with Yin and Neubig
(2017)’s model that we call YN17 for brevity,
and a sequence-to-sequence (SEQ2SEQ) model
that we implemented. SEQ2SEQ is an attention-
enabled encoder-decoder model (Bahdanau et al.,
2015). The encoder is a bidirectional LSTM and
the decoder is an LSTM.

5.1 Results
Table 2 shows that RECODE outperforms the base-
lines in both BLEU and accuracy, providing ev-

3n-gram subtrees are collected up to nmax-gram
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idence for the effectiveness of incorporating re-
trieval methods into tree-based approaches.

HS Django
Acc BLEU Acc BLEU

SEQ2SEQ 0.0 55.0 13.9 67.3
YN17 16.2 75.8 71.6 84.5
ASN† 18.2 77.6 - -
ASN + SUPATT† 22.7 79.2 - -
RECODE 19.6 78.4 72.8 84.7

Table 2: Results compared to baselines. YN17 result is taken
from Yin and Neubig (2017). ASN result is taken from Rabi-
novich et al. (2017)

.

We ran statistical significance tests for RECODE
and YN17, using bootstrap resampling with N =
10,000. For the BLEU scores of both datasets, p <
0.001. For the exact match accuracy, p < 0.001
for Django dataset, but for Hearthstone, p > 0.3,
showing that the retrieval-based model is on par
with YN17. It is worth noting, though, that HS
consists of long and complex code, and that gener-
ating exact matches is very difficult, making exact
match accuracy a less reliable metric.

We also compare RECODE with Rabinovich
et al. (2017)’s Abstract Syntax Networks with
supervision (ASN+SUPATT) which is the
state-of-the-art system for HS. RECODE ex-
ceeds ASN without extra supervision though
ASN+SUPATT has a slightly better result. How-
ever, ASN+SUPATT is trained with supervised
attention extracted through heuristic exact word
matches while our attention is unsupervised.

5.2 Discussion and Analysis
From our observation and as mentioned in Rabi-
novich et al. (2017), HS contains classes with sim-
ilar structure, so the code generation task could
be simply matching the tree structure and filling
the terminal tokens with correct variables and val-
ues. However, when the code consists of complex
logic, partial implementation errors occur, lead-
ing to low exact match accuracy (Yin and Neubig,
2017). Analyzing our result, we find this intuition
to be true not only for HS but also for Django.

Examining the generated output for the Django
dataset in Table 3, we can see that in the first ex-
ample, our retrieval model can successfully gen-
erate the correct code when YN17 fails. This
difference suggests that our retrieval model ben-
efits from the action subtrees from the retrieved
sentences. In the second example, although our
generated code does not perfectly match the refer-
ence code, it has a higher BLEU score compared

Example 1
“if o�set is lesser than integer 0, sign is set to ’-’, otherwise sign is ’+’ ” Input
sign = offset < 0 or ’-’ YN17
sign = ’-’ if offset < 0 else ’+’ RECODE
sign = ’-’ if offset < 0 else ’+’ Gold
Example 2
“evaluate the function timesince with d, now and reversed set Input
to boolean true as arguments, return the result.”

return reversed(d, reversed=now) YN17
return timesince(d, now, reversed=now) RECODE
return timesince(d, now, reversed=True) Gold
Example 3
“return an instance of SafeText , Input
created with an argument s converted into a string .”
return SafeText(bool(s)) YN17
return SafeText(s) RECODE
return SafeString(str(s)) Gold

Table 3: Django examples on correct code and predicted
code with retrieval (RECODE) and without retrieval (YN17).

NAME_BEGIN Earth Elemental NAME_END ATK_BEGIN 7 Input
ATK_END DEF_BEGIN 8 DEF_END COST_BEGIN 5

COST_END DUR_BEGIN -1 DUR_END TYPE_BEGIN Minion

TYPE_END PLAYER_CLS_BEGIN Shaman PLAYER_CLS_END

RACE_BEGIN NIL RACE_END RARITY_BEGIN Epic RARITY_END

DESC_BEGIN Taunt . Overload : ( 3 ) DESC_END.

class EarthElemental (MinionCard) : YN17
def __init__ (self) :

super ( ).__init__ ("Earth Elemental", 5,
CHARACTER_CLASS.SHAMAN, CARD_RARITY.EPIC,
buffs=[Buff(ManaChange(Count

(MinionSelector(None, BothPlayer())), -1))])
def create_minion (self, player) :

return Minion(7, 8, taunt=True)

class EarthElemental (MinionCard) : RECODE
def __init__ (self) :

super ( ).__init__ ("Earth Elemental", 5,
CHARACTER_CLASS.SHAMAN, CARD_RARITY.EPIC,
overload=3)

def create_minion (self, player) :
return Minion(7, 8, taunt=True)

class EarthElemental (MinionCard) : Gold
def __init__ (self) :

super ( ).__init__ ("Earth Elemental", 5,
CHARACTER_CLASS.SHAMAN, CARD_RARITY.EPIC,
overload=1)

def create_minion (self, player) :
return Minion(7, 8, taunt=True)

Table 4: HS examples on correct code and predicted code
with retrieval (RECODE) and without retrieval (YN17).

to the output of YN17 because our model can
predict part of the code (timesince(d, now,
reversed)) correctly. The third example shows
where our method fails to apply the correct action
as it cannot cast s to str type while YN17 can at
least cast s into a type (bool). Another common
type of error that we found RECODE’s generated
outputs is incorrect variable copying, similarly to
what is discussed in Yin and Neubig (2017) and
Rabinovich et al. (2017).

Table 4 presents a result on the HS dataset4. We
can see that our retrieval model can handle com-
plex code more effectively.

6 Related Work

Several works on code generation focus on do-
main specific languages (Raza et al., 2015; Kush-
man and Barzilay, 2013). For general purpose
code generation, some data-driven work has been

4More example of HS code is provided in the supplemen-
tary material.
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done for predicting input parsers (Lei et al., 2013)
or a set of relevant methods (Raghothaman et al.,
2016). Some attempts using neural networks have
used sequence-to-sequence models (Ling et al.,
2016) or tree-based architectures (Dong and La-
pata, 2016; Alvarez-Melis and Jaakkola, 2017).
Ling et al. (2016); Jia and Liang (2016); Locas-
cio et al. (2016) treat semantic parsing as a se-
quence generation task by linearizing trees. The
closest work to ours are Yin and Neubig (2017)
and Rabinovich et al. (2017) which represent code
as an AST. Another close work is Dong and Lapata
(2018), which uses a two-staged structure-aware
neural architecture. They initially generate a low-
level sketch and then fill in the missing informa-
tion using the NL and the sketch.

Recent works on retrieval-guided neural ma-
chine translation have been presented by Gu et al.
(2018); Amin Farajian et al. (2017); Li et al.
(2018); Zhang et al. (2018). Gu et al. (2018) use
the retrieved sentence pairs as extra inputs to the
NMT model. Zhang et al. (2018) employ a sim-
pler and faster retrieval method to guide neural
MT where translation pieces are n-grams from re-
trieved target sentences. We modify Zhang et al.
(2018)’s method from textual n-grams to n-grams
over subtrees to exploit the code structural simi-
larity, and propose methods to deal with complex
statements and rare words.

In addition, some previous works have used
subtrees in structured prediction tasks. For ex-
ample, Galley et al. (2006) used them in syntax-
based translation models. In Galley et al. (2006),
subtrees of the input sentence’s parse tree are as-
sociated with corresponding words in the output
sentence.

7 Conclusion

We proposed an action subtree retrieval method at
test time on top of an AST-driven neural model for
generating general-purpose code. The predicted
surface code is syntactically correct, and the re-
trieval component improves the performance of a
previously state-of-the-art model. Our successful
result suggests that our idea of retrieval-based gen-
eration can be potentially applied to other tree-
structured prediction tasks.
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Abstract

Previous work approaches the SQL-to-text
generation task using vanilla Seq2Seq mod-
els, which may not fully capture the inherent
graph-structured information in SQL query. In
this paper, we first introduce a strategy to rep-
resent the SQL query as a directed graph and
then employ a graph-to-sequence model to en-
code the global structure information into node
embeddings. This model can effectively learn
the correlation between the SQL query pattern
and its interpretation. Experimental results
on the WikiSQL dataset and Stackoverflow
dataset show that our model significantly out-
performs the Seq2Seq and Tree2Seq baselines,
achieving the state-of-the-art performance.

1 Introduction

The goal of the SQL-to-text task is to automati-
cally generate human-like descriptions interpret-
ing the meaning of a given structured query lan-
guage (SQL) query (Figure 1 gives an example).
This task is critical to the natural language inter-
face to a database since it helps non-expert users
to understand the esoteric SQL queries that are
used to retrieve the answers through the question-
answering process (Simitsis and Ioannidis, 2009)
using varous text embeddings techniques (Kim,
2014; Arora et al., 2017; Wu et al., 2018a).

Earlier attempts for SQL-to-text task are rule-
based and template-based (Koutrika et al., 2010;
Ngonga Ngomo et al., 2013). Despite requiring
intensive human efforts to design temples or rules,
these approaches still tend to generate rigid and
stylized language that lacks the natural text of the
human language. To address this, Iyer et al. (2016)
proposes a sequence-to-sequence (Seq2Seq) net-
work to model the SQL query and natural lan-
guage jointly. However, since the SQL is designed

⇤ Work done when the author was at IBM Research.

(SQL): SELECT company WHERE assets > val0 AND sales > val0 
AND industry_rank <= val2 AND revenue = val3
Interpretation:
      which company has both the market value and assets higher than 
val0, ranking in top val2 and revenue of val3

Figure 1: An example of SQL query and its interpretation.

to express graph-structured query intent, the se-
quence encoder may need an elaborate design to
fully capture the global structure information. In-
tuitively, varous graph encoding techniques base
on deep neural network (Kipf and Welling, 2016;
Hamilton et al., 2017; Song et al., 2018) or based
on Graph Kernels (Vishwanathan et al., 2010; Wu
et al., 2018b), whose goal is to learn the node-level
or graph-level representations for a given graph,
are more proper to tackle this problem.

In this paper, we first introduce a strategy to
represent the SQL query as a directed graph (see
§2) and further make full use of a novel graph-
to-sequence (Graph2Seq) model (Xu et al., 2018)
that encodes this graph-structured SQL query, and
then decodes its interpretation (see §3). On the en-
coder side, we extend the graph encoding work of
Hamilton et al. (2017) by encoding the edge direc-
tion information into the node embedding. Our en-
coder learns the representation of each node by ag-
gregating information from its K-hop neighbors.
Different from Hamilton et al. (2017) which ne-
glects the edge direction, we classify the neighbors
of a node according to the edge direction, say v,
into two classes, i.e., forward nodes (v directs to)
and backward nodes (direct to v). We apply two
distinct aggregators to aggregate the information
of these two types of nodes, resulting two repre-
sentations. The node embedding of v is the con-
catenation of these two representations. Given the
learned node embeddings, we further introduce a
pooling-based and an aggregation-based method
to generate the graph embedding.
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On the decoder side, we develop an RNN-based
decoder which takes the graph vector representa-
tion as the initial hidden state to generate the se-
quences while employing an attention mechanism
over all node embeddings. Experimental results
show that our model achieves the state-of-the-art
performance on the WikiSQL dataset and Stack-
overflow dataset. Our code and data is available at
https://github.com/IBM/SQL-to-Text.

2 Graph Representation of SQL Query

Representing the SQL query as a graph instead
of a sequence could better preserve the inherent
structure information in the query. An example is
illustrated in the blue dashed frame in Figure 2.
One can see that representing them as a graph in-
stead of a sequence could help the model to bet-
ter learn the correlation between this graph pattern
and the interpretation “...both X and Y higher than
Z...”. This observation motivates us to represent
the SQL query as a graph. In particular, we use
the following method to transform the SQL query
to a graph:1

SELECT Clause. For the SELECT clause such
as “SELECT company”, we first create a node as-
signed with text attribute select. This SELECT
node connects with column nodes whose text at-
tributes are the selected column names such as
company. For SQL queries that contain aggrega-
tion functions such as count or max, we add one
aggregation node which is connected with column
nodes. Similarly, their text attributes are the ag-
gregation function names.

WHERE Clause. The WHERE clause usually
contains more than one condition. For each condi-
tion, we use the same process as for the SELECT
clause to create nodes. For example, in Figure 2,
we create node assets and >val0 for the first con-
dition, the node sales and >val0 for the second
condition. We then integrate the constraint nodes
that have the same text attribute (e.g., >val0 in
Figure 2). For a logical operator such as AND, OR
and NOT, we create a node that connects with all
column nodes that the operator works on. Finally,
these logical operator nodes connect with the SE-
LECT node.

1This method could be simply extended to cope with more
general SQL queries that have complex syntaxes such as
JOIN and ORDER BY.

company

assets

sales

industry

> val0

�= val2 profits = val3

ANDSELECT

Figure 2: The graph representation of the SQL query in Fig-
ure 1.

3 Graph-to-sequence Model

Based on the constructed graphs for the SQL
queries, we make full use of a novel graph-to-
sequence model (Xu et al., 2018), which consists
of a graph encoder to learn the embedding for the
graph-structured SQL query, and a sequence de-
coder with attention mechanism to generate sen-
tences. Conceptually, the graph encoder generates
the node embedding for each node by accumu-
lating information from its K-hop neighbors, and
produces a graph embedding for the entire graph
by abstracting all node embeddings. Our decoder
takes the graph embedding as the initial hidden
state and calculates the attention over all node em-
beddings on the encoder side to generate natural
language interpretations.

Node Embedding. Given the graph G = (V, E),
since the text attribute of a node may include a list
of words, we first use a Long Short Term Memory
(LSTM) to generate the feature vector av for all
nodes 8v 2 V from v’s text attribute. We use these
feature vectors as initial node embeddings. Then,
our model incorporates information from a node’s
neighbors within K hop into its representation by
repeating the following process K times:

h0
v` = av, h0

`v = av, 8v 2 V (1)
hk

N`(v) = Mk
`({hk�1

u` , 8u 2 N`(v)}) (2)

hk
v` = �(Wk · CONCAT(hk�1

v` , hk
N`(v))) (3)

hk
Na(v) = Mk

a({hk�1
ua , 8u 2 Na(v)}) (4)

hk
va = �(Wk · CONCAT(hk�1

va , hk
Na(v))) (5)

where k 2 {1, ..., K} is the iteration index, N is
the neighborhood function2, hk

v` (hk
va) is node v’s

forward (backward) representation which aggre-
gates the information of nodes in N`(v) (Na(v)),

2
N`(v) returns the nodes that v directs to and Na(v) re-

turns the nodes that direct to v.
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Mk
` and Mk

a are the forward and backward aggre-
gator functions, Wk denotes weight matrices, � is
a non-linearity function.

For example, for node v 2 V , we first aggre-
gate the forward representations of its immediate
neighbors {hk�1

u` , 8u 2 N`(v)} into a single vec-
tor hk

N`(v) (equation 2). Note that this aggrega-
tion step only uses the representations generated
at previous iteration and its initial representation is
av. Then we concatenate v’s current forward rep-
resentation hk�1

v` with the newly generated neigh-
borhood vector hk

N`(v). This concatenated vector
is fed into a fully connected layer with nonlinear
activation function �, which updates the forward
representation of v to be used at the next itera-
tion (equation 3). Next, we update the backward
representation of v in the similar fashion (equa-
tion 4⇠5). Finally, the concatenation of the for-
ward and backward representation at last itera-
tion K, is used as the resulting representation of
v. Since the neighbor information from different
hops may have the different impact on the node
embedding, we learn a distinct aggregator function
at each step. This aggregator feeds each neigh-
bor’s vector to a fully-connected neural network
and an element-wise max-pooling operation is ap-
plied to capture different aspects of the neighbor
set.

Graph Embedding. Most existing works of
graph convolution neural networks focus more on
node embeddings rather than graph embeddings
(GE) since their focus is on the node-wise clas-
sification task. However, graph embeddings that
convey the entire graph information are essential
to the downstream decoder, which is crucial to our
task. For this purpose, we propose two ways to
generate graph embeddings, namely, the Pooling-
based and Node-based methods.

Pooling-based GE. This method feeds the ob-
tained node embeddings into a fully-connected
neural network and applies the element-wise max-
pooling operation on all node embeddings. In
experiments, we did not observe significant per-
formance improvement using min-pooling and
average-pooling.

Node-based GE. Following (Scarselli et al.,
2009), this method adds a super node vs that is
connected to all other nodes by a special type of
edge. The embedding of vs, which is treated as
graph embedding, is produced using node embed-
ding generation algorithm mentioned above.

Sequence Decoding. The decoder is an RNN
which predicts the next token yi given all the pre-
vious words y<i = y1, ..., yi�1, the RNN hid-
den state si for time-step i and the context vector
ci that captures the attention of the encoder side.
In particular, the context vector ci depends on a
set of node representations (h1,...,hV ) to which
the encoder maps the input graph. The context
vector ci is dynamically computed using attention
mechanism over the node representations. Our
model is jointly trained to maximize the condi-
tional log-probability of the correct description
given a source graph with respect to the parame-
ters ✓ of the model:

✓⇤ = arg max
✓

NX

n=1

TnX

t=1

log p(yn
t |yn

<t, x
n)

where (xn, yn) is the n-th SQL-interpretation pair
in the training set, and Tn is the length of the n-th
target sentence yn. In the inference phase, we use
the beam search algorithm with beam size = 5.

4 Experiments

We evaluate our model on two datasets, WikiSQL
(Zhong et al., 2017) and Stackoverflow (Iyer et al.,
2016). WikiSQL consists of a corpus of 87,726
hand-annotated SQL query and natural language
question pairs. These SQL queries are further
split into training (61,297 examples), development
(9,145 examples) and test sets (17,284 examples).
StackOverflow consists of 32,337 SQL query and
natural language question pairs, and we use the
same train/development/test split as (Iyer et al.,
2016). We use the BLEU-4 score (Papineni et al.,
2002) as our automatic evaluation metric and also
perform a human study. For human evaluation,
we randomly sampled 1,000 predicted results and
asked three native English speakers to rate each in-
terpretation against both the correctness conform-
ing to the input SQL and grammaticality on a
scale between 1 and 5. We compare some vari-
ants of our model against the template, Seq2Seq,
and Tree2Seq baselines.

Graph2Seq-PGE. This method uses the
Pooling method for generating Graph Embedding.

Graph2Seq-NGE. This method uses the Node
based Graph Embedding.

Template. We implement a template-based
method which first maps each element of a SQL
query to an utterance and then uses simple rules
to assemble these utterances. For example, we

933



BLEU-4 Grammar. Correct.
Template 15.71 1.50 -
Seq2Seq 20.91 2.54 62.1%

Seq2Seq + Copy 24.12 2.65 64.5%
Tree2Seq 26.67 2.70 66.8%

Graph2Seq-PGE 38.97 3.81 79.2%
Graph2Seq-NGE 34.28 3.26 75.3%
(Iyer et al., 2016) 18.4 3.16 64.2%
Graph2Seq-PGE 23.3 3.23 70.2%
Graph2Seq-NGE 21.9 2.97 65.1%

Table 1: Results on the WikiSQL (above) and Stackoverflow
(below).

map SELECT to which, WHERE to where, > to
more than. This method translates the SQL query
of Figure 1 to which company where assets more
than val0 and sales more than val0 and industry
less than or equal to val1 and profits equals val2.

Seq2Seq. We choose two Seq2Seq models
as our baselines. The first one is the attention-
based Seq2Seq model proposed by Bahdanau et al.
(2014), and the second one additionally introduces
the copy mechanism in the decoder side (Gu et al.,
2016). To evaluate these models, we employ
a template to convert the SQL query into a se-
quence: “SELECT + <aggregation function> + <Split
Symbol> + <selected column> + WHERE + <condition0>

+ <Split Symbol> + <condition1> + ... ”.
Tree2Seq. We also choose a tree-to-sequence

model proposed by (Eriguchi et al., 2016) as our
baseline. We use the SQL Parser tool3 to convert a
SQL query into the tree structure4 which is fed to
the Tree2Seq model.

Our proposed models are trained using the
Adam optimizer (Kingma and Ba, 2014), with
mini-batch size 30. Our hyper-parameters are set
based on performance on the validation set. The
learning rate is set to 0.001. We apply the dropout
strategy (Srivastava et al., 2014) with the ratio of
0.5 at the decoder layer to avoid overfitting. Gra-
dients are clipped when their norm is bigger than
20. We initialize word embeddings using GloVe
word vectors from Pennington et al. (2014), and
the word embedding dimension is 300. For the
graph encoder, the hop size K is set to 6, the non-
linearity function � is implemented as ReLU (Glo-
rot et al., 2011), the parameters of weight matrices
Wk are randomly initialized. The decoder has one
layer, and its hidden state size is 300.

3http://www.sqlparser.com
4See Appendix for details.

SQL Query & Interpretations
1. COUNT Player WHERE starter = val0 AND touchdowns

= val1 AND position = val2
S: How many players played in position val2
G: number of players with starter val0 and get touchdowns
val1 for val2
2. SELECT Tires WHERE engine = val0 AND chassis =

val1 AND team = val2
S: which tire has engine val0 and chassis val1 and val2
G: which tire does val2 run with val0 engine and val1 chassis

Table 2: Example of SQL queries and predicted interpreta-
tions where S and G denotes Seq2Seq and Graph2Seq mod-
els, respectively.

Results and Discussion Table 1 summarizes the
results of our models and baselines. Although
the template-based method achieves decent BLEU
scores, its grammaticality score is substantially
worse than other baselines. We can see that on
both two datasets, our Graph2Seq models per-
form significantly better than the Seq2Seq and
Tree2Seq baselines. One possible reason is that
in our graph encoder, the node embedding retains
the information of neighbor nodes within K hops.
However, in the tree encoder, the node embed-
ding only aggregates the information of descen-
dants while losing the knowledge of ancestors.
The pooling-based graph embedding is found to
be more useful than the node-based graph em-
bedding because Graph2Seq-NGE adds a nonex-
istent node into the graph, which introduces the
noisy information in calculating the embeddings
of other nodes. We also conducted an experiment
that treats the SQL query graph as an undirected
graph and found the performance degrades.

By manually analyzing the cases in which the
Graph2Seq model performs better than Seq2Seq,
we find the Graph2Seq model is better at inter-
preting two classes of queries: (1) the complicated
queries that have more than two conditions (Query
1); (2) the queries whose columns have implicit
relationships (Query 2). Table 2 lists some such
SQL queries and their interpretations. One possi-
ble reason is that the Graph2Seq model can better
learn the correlation between the graph pattern and
natural language by utilizing the global structure
information.

We find the hop size has a significant impact on
our model since it determines how many neigh-
bor nodes to be considered during the node em-
bedding generation. As the hop size increasing,
the performance is found to be significantly im-
proved. However, after the hop size reaches 6,
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increasing the hop size can not boost the perfor-
mance on WikiSQL anymore. By analyzing the
most complicated queries (around 6.2%) in Wik-
iSQL, we find there are average six hops between
a node and its most distant neighbor. This result
indicates that the selected hop size should guar-
antee each node can receive the information from
others nodes in the graph.

5 Conclusions

Previous work approaches the SQL-to-text task
using an Seq2Seq model which does not fully cap-
ture the global structure information of the SQL
query. To address this, we proposed a Graph2Seq
model which includes a graph encoder, an atten-
tion based sequence decoder. Experimental results
show that our model significantly outperforms the
Seq2Seq and Tree2Seq models on the WikiSQL
and Stackoverflow datasets.

Appendix

Root

Select List Where Clause

ANDColumn_0 Column_n…

Condition_m…Condition_0

OR

Figure 3: Tree representation of the SQL query.

We apply the SQL Parser tool5 to convert
an SQL query to a tree whose structure is il-
lustrated in Figure 3. More specifically, the
root has two child nodes, namely Select List and
Where Clause. The child nodes of Select List rep-
resent the selected columns in the SQL query. The
Where Clause has the logical operators occurred
in the SQL query as its children. The children of a
logical operator node are the conditions on which
this operator works.
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Abstract

We study the automatic generation of syn-
tactic paraphrases using four different models
for generation: data-to-text generation, text-
to-text generation, text reduction and text ex-
pansion, We derive training data for each of
these tasks from the WebNLG dataset and we
show (i) that conditioning generation on syn-
tactic constraints effectively permits the gen-
eration of syntactically distinct paraphrases for
the same input and (ii) that exploiting different
types of input (data, text or data+text) further
increases the number of distinct paraphrases
that can be generated for a given input.

1 Introduction

The ability to automatically generate paraphrases
(alternative phrasings of the same content) has
been shown to be useful in many areas of Natu-
ral Language Processing such as question answer-
ing (Riezler et al., 2007), semantic parsing (Berant
and Liang, 2014)), machine translation (Kauchak
and Barzilay, 2006; Zhou et al., 2006), sentence
compression (Napoles et al., 2011) and sentence
representation (Wieting et al., 2015). From a
linguistic standpoint, the automatic generation of
paraphrases is an important task in its own right as
it demonstrates the capacity of NLP techniques to
handle a key feature of natural language.

In this paper, we focus on the automatic gener-
ation of syntactic paraphrases that is, texts which
share the same meaning but differ in their syntax.
Our work makes the following contributions. We
show that conditioning text generation on syntac-
tic information permits generating distinct syntac-
tic paraphrases for the same input. We provide
a systematic exploration of how different types
of generation tasks impact paraphrasing and show
that exploiting different types of input permits in-
creasing the number of paraphrases produced for a

given input. We make available four training cor-
pora for syntactically constrained, data- and text-
to-text generation, text expansion and text reduc-
tion.

2 Related Work

Previous work on paraphrase generation falls into
three main groups. Based mainly on monolingual
data, earlier approaches use data-driven, (Lin and
Pantel, 2001), grammar- or thesaurus-based meth-
ods (Madnani et al., 2007; McKeown, 1983; Has-
san et al., 2007; Kozlowski et al., 2003; Quirk
et al., 2004; Zhao et al., 2008). In contrast,
the pivot-based approach exploits bilingual data
and machine translation methods to extract and
generate paraphrases (Callison-Burch, 2008; Gan-
itkevitch and Callison-Burch, 2014; Ganitkevitch
et al., 2011). Finally, neural approaches build
upon the encoder-decoder architecture to learn
paraphrase generation models (Mallinson et al.,
2017; Prakash et al., 2016).

(Prakash et al., 2016) uses a stacked resid-
ual LSTM network with residual connections be-
tween LSTM layers and show that their model out-
performs sequence to sequence, attention-based,
and bi- directional LSTM model on three datasets
(PPDB, WikiAnswers, and MSCOCO).

(Mallinson et al., 2017) introduces a neural
model for multi-lingual, multi-pivot backtransla-
tion and show that it outperforms a paraphrase
model trained with a commonly used Statisti-
cal Machine Translation system (SMT) on three
tasks, namely, correlation with human judgments
of paraphrase quality; paraphrase and similarity
detection; and sentence-level paraphrase genera-
tion.

(Iyyer et al., 2018) also use backtranslation as a
mean to provide training data. In addition, it uses
syntax to control paraphrase generation. Given
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D2T5best

Aktieselskab is the operating organisation for Aarhus Airport which has a runway name of ”10R/28L” with a length of 2777.
The Aktieselskab is the operating organisation for Aarhus Airport which has a runway name of ”10R/28L” with a length of
2777.
Aktieselskab is the operating organisation for Aarhus Airport which has a runway length of 2777 and is named ”10R/28L”.

T2T5best

Operated by Aktieselskab, Aarhus Airport has a runway length of 2777 metres and a runway name ”10R/28L”.
Operated by the Aktieselskab organisation, Aarhus Airport, has a runway length of 2777 metres and a runway named
”10R/28L”.
Aarhus Airport is operated by Aktieselskab. Its runway name is ”10R/28L” and its length is 2777 metres.
Aarhus Airport, operated by Aktieselskab, has a runway length of 2777 with a name of ”10R/28L”.
Aktieselskab is the operation organisation of Aarhus Airport where the runway ”10R/28L” with a length of 2777.
The Aktieselskab is the operating organisation of Aarhus Airport., This airport has a runway length of 2777 metres and a
runway named ”10R/28L”.
The ”10R/28L” runway at Aarhus Airport is 2777 in length, which is run by the operating organization of Aktieselskab.
The ”10R/28L” runway at Aarhus Airport, operated by the Aktieselskab, is 2777 in length.

ALLsyn

Aarhus Airport has a runway length of 2777.0 metres and is operated by Aktieselskab. The name of the runway is ”10L/28R”.
Aarhus Airport is operated by Aktieselskab; its runway name is ”10L/28R” and its runway length is 2777.0.
Aarhus Airport is operated by Aktieselskab, its runway name is ”10R/28L” and has a length of 2777.
Aarhus Airport is operated by the Aktieselskab organisation. Its runway name is ”10R/28L” and has a length of 2777.
Aarhus Airport, operated by Aktieselskab, has a runway length of 2777 and the runway name is ”10R/28L”.
Aarhus Airport, operated by Aktieselskab, has a runway length of 2777 with a name of ”10R/28L”.
Aarhus Airport, which is operated by the Aktieselskab organisation, has a runway that ’s 2777.0 long and is named ”10L/28R”.
Aktieselskab is the operation organisation of Aarhus Airport where the runway ”10R/28L” with a length of 2777.
Aktieselskab is the operation organisation of Aarhus Airport, where the runway is named ”10R/28L”, with a length of 2777.
Aktieselskab is the operation organization for Aarhus Airport, where the runway is named ”10L/28R”, with a length of 2777.0.
Aktieselskab operates Aarhus Airport which has a runway that is 2777 meters long and the runway name ”10R/28L”.
Operated by Aktieselskab, Aarhus Airport, has a runway length of 2777 metres and a runway named ”10R/28L”.
Operated by Aktieselskab, Aarhus Airport, has a runway length of 2777 metres and is named ”10R/28L”.
Operated by the Aktieselskab organisation, Aarhus Airport has a runway that is 2777.0 metres long. It also has a runway with
the name ”10L/28R”.
The ”10R/28L” runway which is 2777 meters long is located in Aarhus Airport which is operated by the Aktieselskab
organisation.

Table 1: Some Example Output

TXsyn Ti, k, t ) To with mg(To) = mg(Ti) [ {t}, k 2 K(T )
Ti Madrid is part of Community of Madrid whose leader party is the

Ahora Madrid. The Adolfo Suarez Madrid-Barajas Airport is located there.
k possessive
t { (Madrid country Spain) }

To Adolfo Suarez Madrid-Barajas Airport is located in Madrid, part of the Community
of Madrid in Spain where the leader party is Ahora Madrid.

TRsyn Ti, k, t ) To with mg(Ti) = mg(To) [ {t}, k 2 K(T )
Ti Al Asad Airbase is located at ”Al Anbar Province, Iraq” and operated by the United

States Air Force. The base ’s runway called ”08/26” and 3990 meters long.
k Subject Relative
t { (Al Asad Airbase operatingOrganisation United States Air Force) }

To Al Asad Airbase ( in ”Al Anbar Province, Iraq”), has a runway named ”08/26”
and a runway that is 3990 metres long.

Table 2: TR: Text Reduction, Ti, To: input/output text, k: syntactic constraint, M : meaning representation, a set
of RDF triples, mg(T ): meaning of text T , K(T ): syntactic constraints realised by text T ).
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a syntactic template T and an input sentence S,
the model first generates a full syntactic parse PT .
Next this syntactic parse is used together with the
input sentence to predict a syntactic paraphrase of
S which realises the input syntactic template T .

Our approach is closest to (Iyyer et al., 2018)
but differs from it in that instead of restricting
paraphrase generation to a text rewriting prob-
lem, we explore how various sources of input im-
pacts the number and the type of generated para-
phrases. It also differs from the former two ap-
proaches (Prakash et al., 2016; Mallinson et al.,
2017) in that we focus on syntactic paraphrases
and condition generation on syntax. In that sense,
our approach also shares similarities with recent
models for controllable text generation (Hu et al.,
2017; Semeniuta et al., 2017), which use varia-
tional autoencoders to model holistic properties of
sentences such as style, topic and various other
syntactic features. Our work is arguably conceptu-
ally simpler, focuses on syntactic paraphrases and
introduces a new text production mode based on
hybrid “data and text” input.

3 Generating Syntactic Paraphrases

In order to generate syntactically distinct para-
phrases, we formulate the generation task as a
structured prediction task conditioned on both
some input I and some syntactic constraint k. In
this way, the same input I can be mapped to sev-
eral output Ti each satisfying a different syntactic
constraint ki. Table 1 shows some examples.

In addition, we consider different, semantically
equivalent, sources of information. That is, we
compare the paraphrases obtained when generat-
ing text from data, from text or from text and data.
For the later, we consider two subtasks namely text
expansion and text reduction. For each of these
two tasks, the input is a text and a data unit. For
text expansion, the output is a text verbalising both
the input text and the input data. Conversely, for
text reduction, the output is a text verbalising the
input text minus the text verbalising the input data.
Table 2 shows some example input and output for
text expansion and text reduction.

4 Training and Test Data

Training data. The WEBNLG dataset (Gardent
et al., 2017) associates sets of RDF triples with
one or more texts verbalising these sets of triples.

We derive training corpora for syntactically con-
strained generation from this dataset as follows.

We enrich the WEBNLG texts with labels in-
dicating syntactic structures that are realised by
these texts by first, parsing1 these texts and then
using syntactic templates to identify the target
structures occurring in those texts. We use the fol-
lowing list of syntactic labels: subject relative, ob-
ject relative, sentence coordination, VP coordina-
tion, passive voice, apposition, possessive relative,
pied piping, transitive clause, prepositional object,
ditransitive clause, predicative clause.

Based on the resulting, syntactically enriched,
WEBNLG corpus, we then build four training cor-
pora (T2Tsyn, TXsyn, D2Tsyn, TRsyn) using the
sets of RDF triples as pivots to relate paraphrases.
For data-to-text generation (D2Tsyn), the input is
a linearised and delexicalised version of the set of
RDF triples representing the meaning of the out-
put text, for text-to-text generation (T2Tsyn), the
input is a text and for hybrid data-and-text-to-text
generation (TXsyn and TRsyn), the input is a text
and a linearised RDF triple.

For the text-to-text datasets, we additionally re-
quire that, for any corpus instance hk, Ti, Toi, To

differs from Ti on exactly one syntactic label2.

Test data. For any input hk, Ii occuring in the
test data, we ensure that hk, Ii does not occur in
the training data. (where I is either a set of RDF
triples, a text or a text and an RDF triple).

5 Experimental Setup

Models and Baselines D2T5best and T2T5best

For each generation task, we aim to learn a model
that maximises the likelihood P (T |I; k; ✓) of a
text given some input I , some model parameters ✓
and some syntactic constraint k. We use a simple
encoder-decoder model where both encoder and
decoder are bidirectional LSTMs and the encoder
receives as input a sequence including both the in-
put I and the syntactic constraint k.

We compare our models with the output pro-
duced by beam search when no syntactic con-
straint applies. For D2T5best, we take the 5 best
output generated from data. For T2T5best, there
may be several input sentences associated with the
same meaning: we take the 5 best output for each

1We used the Stanford CoreNLP dependency parser ver-
sion 3.8, 2018-06-09

2K(Ti) = (K(Ti) \ K(To)) [ {k} and K(To) =
(K(Ti) \ K(To)) [ {k0

} for some k 6= k0.
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of these sentences hence T2T5best may (and does)
in fact yield more than 5 output per input meaning.
Finally, ALLsyn groups together all output gener-
ated by the four syntactically constrained models
for a given meaning.

Implementation Details We use the
OpenNMTpy sequence-to-sequence model
(Klein et al., 2017) with attention and a bidirec-
tional LSTM encoder. The encoder and decoder
have two layers. Models were trained for 13
epochs, with a mini-batch size of 64, a dropout
rate of 0.3, and a word embedding size of 500.
They were optimised with SGD with a starting
learning rate of 1.0.

Evaluation. We assess both the linguis-
tic/syntactic adequacy of the generated texts and
the diversity of the paraphrases being generated.

Syntactic and Linguistic Adequacy (BLEU,
Synt, BLEUsyn). For the syntactically constrained
models, given an input syntactic constraint k, the
BLEU score3 is computed with respect to those
references which satisfy k. In that way, the BLEU
score indicates how close to the syntactic target the
generated sentence is and therefore how well the
model succeeds in generating the required syntac-
tic constructs – as the number of references varies
across inputs, we use BLEU at the sentence level
(Papineni et al., 2002). In addition, we compute
the proportion of output satisfying the input syn-
tactic constraint (Synt) and the BLEU score for
these output which satisfy the input syntactic con-
straint (BLEUsyn). The number of output satisfy-
ing the input syntactic constraint is computed by
first parsing the generated output and then apply-
ing the templates used for the automatic annota-
tion of the training data.

Diversity (Sim, #Txt/Mg). To measure the level
of paraphrasing obtained, we group together in-
puts which share the same meaning (i.e., inputs
that are linked in the WEBNLG dataset to the
same set of RDF triples) and we compute the
number of distinct texts generated per meaning (#
Txt/Mg). We further analyse these sets by com-
puting the average pairwise similarity (Sim) of
the texts present in these sets. We use the Rat-
cliff/Obershelp algorithm (Black, 2004) to com-
pute similarity4. A low similarity indicates more

3We use the sacrebleu script with BLEU-4.
4The Ratcliff/Obershelp similarity score varies between

O and 1 where 1 is a complete match. It is expressed by the

diversity across the set of outputs sharing the same
meaning.

Human Evaluation (% SPar). For each model,
we manually examined for 50 meanings, a maxi-
mum of 10 randomly chosen output and recorded
the average number (# SPar) of syntactically cor-
rect paraphrases per input.

6 Results

Table 3 summarises the results.

Diversity. The results for ALLsyn (aggregat-
ing all output texts generated for a given mean-
ing) shows that combining different genera-
tion models increases diversity (# Txt/Mg:13.25,
Sim:0.61)) while maintaining a good level of
linguistic (BLEU:62.87) and syntactic adequacy
(Synt:0.91).

The human evaluation further shows that the
distinct outputs generated by the ALLsyn model
are indeed syntactic, not purely lexical, variants.
Table 1 shows some example output for ALLsyn.

Expansion, Reduction and Generation. Inter-
estingly, the text expansion and reduction mod-
els markedly improve on traditional T2T and
D2T models both in terms of linguistic adequacy
(higher BLEU score) and in terms of diversity
(higher number of distinct output per meaning,
lower similarity between texts generated from the
same meaning). The comparison with T2T gen-
eration is particularly striking as the training data
is 3 to 5 times larger for the T2Tsyn model than
for the TXsyn and the TRsyn model respectively.
Similarly, it is noticable that although the T2Tsyn

training corpus is 3 times larger than the D2Tsyn

corpus, the T2Tsyn and the D2Tsyn models show
similar results. This is in line with results from
(Aharoni and Goldberg, 2018) which shows that
rephrasing is a difficult task.

Linguistic Adequacy. Overall the linguistic ad-
equacy of the syntactically constrained models is
high with a BLEU score with respect to a single
reference ranging from 46.20 (D2Tsyn) to 83.87
(TXsyn). Moreover, the generated sentences show
close similarity with the reference sentence realis-
ing the input constraint (BLEUsyn: from 48.16 to
89.32).

formula sim(S1, S2) = 2⇤match(S1,S2)
len(S1)+len(S2) where a match is

defined as the sum of the length of the matching segments
(match(S1, S2) =

P
m2overlap(S1,S2)

len(m).
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Model BLEU Synt BLEUsyn Sim test # Txt/Mg # Corpora # SPar/Mg
- - - (vs ref) (# txt/Mg ref) (# outputs)

T2T5best 6.21 N/A N/A 0.76 (0.61) 5.85 (44.98) 715910 3.98 (5.5)
D2T5best 4.71 N/A N/A 0.81 (0.63) 4.71 (5.98) 27156 1.86 (4.42)
TRsyn 66.63 0.70 80.45 0.62 (0.63) 2.92 (6.10) 40936 2.56 (3.9)
TXsyn 83.87 0.88 89.32 0.68 (0.68) 2.56 (6.55) 74844 0.92 (1.16)
T2Tsyn 49.95 0.98 50.23 0.72 (0.68) 1.92 (18.49) 202218 1.58 (1.70)
D2Tsyn 46.20 0.84 48.16 0.81 (0.61) 1.04 (3.87) 66595 1 (1.1)
ALLsyn 62.87 0.91 65.11 0.61 (0.62) 13.25 (68.95) NA 6.3 (15)

Table 3: Results and Corpora Size (BLEU score wrt reference satisfying the input constraint k, Synt: proportion
of output satisfying k; BLEUsyn: BLEU score for output satisfying k; Sim: average pair-wise similarity between
sentences output for a given (data or text) input (in brackets: the similarity score calculated on the reference
corpus); # Txt/Mg: avg nb of distinct text generated per meaning (in brackets: the average number of texts per
meaning occurring in the reference data); # Corpora : size of the corpora; # SPar/Mg (%): Avg number of syntactic
paraphrases per meaning found by human evaluation (in brackets: the average total number of output considered)

While the baseline models underperform in
terms of BLEU scores, the manual evaluation (#
SPar/Mg) indicates that they, in fact, produce ac-
ceptable output. The low BLEU scores for these
models are probably due to the fact that each out-
put is evaluated against a single reference while
the dataset is constructed to maximise the number
of paraphrases available for a given input.

7 Some examples

Table 1 shows some example outputs illustrat-
ing the main differences between the D2T5best,
T2T5best and the ALLsyn model. As these ex-
amples show, syntactically constrained generation
(ALLsyn) outputs a much larger number of para-
phrases. The difference is due both to the fact that
ALLsyn groups together the output of 4 (syntac-
tically driven) generation models and to the input
syntactic constraint, which ensures greater diver-
sity. Thus in the example shown, ALLsyn yields
15 paraphrases each with strong syntactic differ-
ences as summarised below.

Sentence Segmentation. The number of verb
phrases, clauses and sentences used to verbalise
the same input varies. One output text is made of
2 sentences and one VP coordination, another of 3
coordinated clauses and a third of two coordinated
clauses and a VP coordination.

Syntax. The same input property is realised by
different syntactic structures. For instance, the
property operatingOrganisation is alternatively
realised by an active verb (operates), a passive
verb (is operated by), a participial apposition (,op-
erated by ..,), a subject relative (which is operated

by), a nominal predicative construction (is the op-
eration organization) and a preposed participial
(Operated by .., ).

Word Order. The same content is verbalised us-
ing varying word order and clause ordering. Thus
the ALLsyn output shows four different ways of
ordering the realisation of the three properties op-
eratinOrganization (oO), runwayLength (rL), run-
wayName (rN) contained in the input namely, rL-
oO-rN (once), oO-rN-rL (6 times), oO-rL-rN (6
times) and rN-rL-oO (once).

By constrast, the baseline models output a
much smaller range of syntactic paraphrases. The
D2T5best model is particularly weak as among the
five best outputs it produces, only three are distinct
and all have almost identical syntax. The T2T5best

model produces more outputs (8 against 3 for the
D2T5best model and 15 for the ALLsyn model).
One reason for this is that, contrary to the D2T5best

model which has a single input (namely a set of
RDF triples), this model can have several inputs
for the same set of RDF triples.

8 Conclusion

We have proposed new syntactically constrained
models for text generation and shown that their
use effectively supports the generation of syntac-
tic paraphrases. In future work, we plan to inves-
tigate to what extent these methods can be used to
support the automatic generation of grammar ex-
ercises.
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Abstract

We present a model for semantic proto-role la-
beling (SPRL) using an adapted bidirectional
LSTM encoding strategy that we call Neural-
Davidsonian: predicate-argument structure is
represented as pairs of hidden states corre-
sponding to predicate and argument head to-
kens of the input sequence. We demonstrate:
(1) state-of-the-art results in SPRL, and (2)
that our network naturally shares parameters
between attributes, allowing for learning new
attribute types with limited added supervision.

1 Introduction

Universal Decompositional Semantics (UDS)
(White et al., 2016) is a contemporary seman-
tic representation of text (Abend and Rappoport,
2017) that forgoes traditional inventories of se-
mantic categories in favor of bundles of simple,
interpretable properties. In particular, UDS in-
cludes a practical implementation of Dowty’s the-
ory of thematic proto-roles (Dowty, 1991): ar-
guments are labeled with properties typical of
Dowty’s proto-agent (AWARENESS, VOLITION ...)
and proto-patient (CHANGED STATE ...).

Annotated corpora have allowed the exploration
of Semantic Proto-role Labeling (SPRL) 1 as a
natural language processing task (Reisinger et al.,
2015; White et al., 2016; Teichert et al., 2017).
For example, consider the following sentence, in
which a particular pair of predicate and argument
heads have been emphasized: “The cat ate the
rat.” An SPRL system must infer from the con-
text of the sentence whether the rat had VOLITION,
CHANGED-STATE, and EXISTED-AFTER the eat-
ing event (see Table 2 for more properties).

We present an intuitive neural model that

1SPRL and SPR refer to the labeling task and the under-
lying semantic representation, respectively.

The cat ate the rat

Word
Embeddings

BiLSTM 

Wshared

ReLU

Wchanged_stateWvolition Wexisted_after

hate hrat

����� ���� �����

Neural Davidsonian 
Semantic Proto-roles 

changed_state(eate, rat)

existed_after(eate, rat)

volition(eate, rat)

Figure 1: BiLSTM sentence encoder with SPR de-
coder. Semantic proto-role labeling is with respect
to a specific predicate and argument within a sen-
tence, so the decoder receives the two correspond-
ing hidden states.

achieves state-of-the-art performance for SPRL.2

As depicted in Figure 1, our model’s architecture
is an extension of the bidirectional LSTM, cap-
turing a Neo-Davidsonian like intuition, wherein
select pairs of hidden states are concatenated to
yield a dense representation of predicate-argument
structure and fed to a prediction layer for end-
to-end training. We include a thorough quanti-
tative analysis highlighting the contrasting errors
between the proposed model and previous (non-
neural) state-of-the-art.

In addition, our network naturally shares a sub-
set of parameters between attributes. We demon-
strate how this allows learning to predict new at-

2Implementation available at https://github.
com/decomp-sem/neural-sprl.
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SPR Property Explanation of Property

INSTIGATION Arg caused the Pred to happen? X 7
VOLITIONAL Arg chose to be involved in the Pred? X 7

AWARE
Arg was/were aware of being
involved in the Pred? X X

PHYSICALLY EXISTED Arg existed as a physical object? X X

EXISTED AFTER Arg existed after the Pred stopped? X 7

CHANGED STATE
The Arg was/were altered or somehow
changed during or by the end of the Pred? X X

Table 1: Example SPR annotations for the toy example “The cat ate the rat,” where the Predicate in
question is “ate” and the Argument in question is either “cat” or “rat.” Note that not all SPR properties
are listed, and the binary labels (X, 7) are coarsened from a 5-point Likert scale.

tributes with limited supervision: a key finding
that could support efficient expansion of new SPR
attribute types in the future.

2 Background

Davidson (1967) is credited for representations
of meaning involving propositions composed of
a fixed arity predicate, all of its core argu-
ments arising from the natural language syn-
tax, and a distinguished event variable. The
earlier example could thus be denoted (modulo
tense) as (9e)eat[(e, CAT, RAT)], where the vari-
able e is a reification of the eating event. The
order of the arguments in the predication im-
plies their role, where leaving arguments unspec-
ified (as in “The cat eats”) can be handled ei-
ther by introducing variables for unstated argu-
ments, e.g., (9e)(9x)[eat(e, CAT, x)], or by cre-
ating new predicates that correspond to differ-
ent arities, e.g., (9e)eat intransitive[(e, CAT)].3

The Neo-Davidsonian approach (Castañeda, 1967;
Parsons, 1995), which we follow in this work, al-
lows for variable arity by mapping the argument
positions of individual predicates to generalized
semantic roles, shared across predicates,4 e.g.,
AGENT, PATIENT and THEME, in: (9e)[eat(e) ^
Agent(e, CAT) ^ Patient(e, RAT)].

Dowty (1991) conjectured that the distinction
between the role of a prototypical Agent and
prototypical Patient could be decomposed into a
number of semantic properties such as “Did the
argument change state?”. Here we formulate this

3This formalism aligns with that used in PropBank
(Palmer et al., 2005), which associated numbered, core ar-
guments with each sense of a verb in their corpus annotation.

4For example, as seen in FrameNet (Baker et al., 1998).

as a Neo-Davidsonian representation employing
semantic proto-role (SPR) attributes:

(9e) [eat(e)
^ volition(e, CAT) ^ instigation(e, CAT)...

^ ¬volition(e, RAT) ^ destroyed(e, RAT)... ]

Dowty’s theory was empirically verified by
Kako (2006), followed by pilot (Madnani et al.,
2010) and large-scale (Reisinger et al., 2015) cor-
pus annotation efforts, the latter introducing a lo-
gistic regression baseline for SPRL. Teichert et al.
(2017) refined the evaluation protocol,5 and devel-
oped a CRF (Lafferty et al., 2001) for the task, rep-
resenting existing state-of-the-art.

Full details about the SPR datasets introduced
by Reisinger et al. (2015) and White et al. (2016),
which we use in this work, are provided in Ap-
pendix B. For clarity, Table 1 shows a toy SPRL
example, including a few sample SPR properties
and explanations.

3 “Neural-Davidsonian” Model

Our proposed SPRL model (Fig. 1) determines the
value of each attribute (e.g., VOLITION) on an ar-
gument (a) with respect to a particular predication
(e) as a function on the latent states associated
with the pair, (e, a), in the context of a full sen-
tence. Our architecture encodes the sentence using
a shared, one-layer, bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997; Graves et al., 2013).
We then obtain a continuous, vector representa-
tion hea = [he; ha], for each predicate-argument
pair as the concatenation of the hidden BiLSTM

5Splitting train/dev/test along Penn Treebank boundaries
and casting the SPRL task as multi-label binary classification.
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states he and ha corresponding to the syntactic
head of the predicate of e and argument a respec-
tively. These heads are obtained over gold syntac-
tic parses using the predicate-argument detection
tool, PredPatt (White et al., 2016).6

For each SPR attribute, a score is predicted by
passing hea through a separate two-layer percep-
tron, with the weights of the first layer shared
across all attributes:

Score(attr, hea) = Wattr [g (Wshared [hea])]

This architecture accomodates the definition of
SPRL as multi-label binary classification given
by Teichert et al. (2017) by treating the score
as the log-odds of the attribute being present
(i.e. P(attr|hea) = 1

1+exp[�Score(attr,hea)] ). This
architecture also supports SPRL as a scalar re-
gression task where the parameters of the network
are tuned to directly minimize the discrepancy
between the predicted score and a reference scalar
label. The loss for the binary and scalar models
are negative log-probability and squared error,
respectively; the losses are summed over all SPR
attributes.

Training with Auxiliary Tasks A benefit of the
shared neural-Davidsonian representation is that
it offers many levels at which multi-task learning
may be leveraged to improve parameter estima-
tion so as to produce semantically rich represen-
tations hea, he, and ha. For example, the sen-
tence encoder might be pre-trained as an encoder
for machine translation, the argument represen-
tation ha can be jointly trained to predict word-
sense, the predicate representation, he, could be
jointly trained to predict factuality (Saurı́ and
Pustejovsky, 2009; Rudinger et al., 2018), and
the predicate-argument representation, hea, could
be jointly trained to predict other semantic role
formalisms (e.g. PropBank SRL—suggesting a
neural-Davidsonian SRL model in contrast to re-
cent BIO-style neural models of SRL (He et al.,
2017)).

To evaluate this idea empirically, we exper-
imented with a number of multi-task training
strategies for SPRL. While all settings outper-
formed prior work in aggregate, simply initial-
izing the BiLSTM parameters with a pretrained
English-to-French machine translation encoder7

6Observed to be state-of-the-art by Zhang et al. (2017).
7using a modified version of OpenNMT-py (Klein et al.,

produced the best results,8 so we simplify discus-
sion by focusing on that model. The efficacy of
MT pretraining that we observe here comes as no
surprise given prior work demonstrating, e.g., the
utility of bitext for paraphrase (Ganitkevitch et al.,
2013), that NMT pretraining yields improved con-
textualized word embeddings9 (McCann et al.,
2017), and that NMT encoders specifically capture
useful features for SPRL (Poliak et al., 2018).

Full details about each multi-task experiment,
including a full set of ablation results, are reported
in Appendix A; details about the corresponding
datasets are in Appendix B.

Except in the ablation experiment of Figure
2, our model was trained on only the SPRL
data and splits used by Teichert et al. (2017)
(learning all properties jointly), using GloVe10

embeddings and with the MT-initialized BiLSTM.
Models were implemented in PyTorch and trained
end-to-end with Adam optimization (Kingma and
Ba, 2014) and a default learning rate of 10�3.
Each model was trained for ten epochs, selecting
the best-performing epoch on dev.

Prior Work in SPRL We additionally include
results from prior work: “LR” is the logistic-
regression model introduced by Reisinger et al.
(2015) and “CRF” is the CRF model (specifically
SPRL?) from Teichert et al. (2017). Although
White et al. (2016) released additional SPR an-
notations, we are unaware of any benchmark re-
sults on that data; however, our multi-task results
in Appendix A do use the data and we find (un-
surprisingly) that concurrent training on the two
SPR datasets can be helpful. Using only data and
splits from White et al. (2016), the scalar regres-
sion architecture of Table 6 achieves a Pearson’s ⇢
of 0.577 on test.

There are a few noteworthy differences between
our neural model and the CRF of prior work.
As an adapted BiLSTM, our model easily ex-

2017) trained on the 109 Fr-En corpus (Callison-Burch et al.,
2009) (Appendix A).

8e.g. this initialization resulted in raising micro-averaged
F1 from 82.2 to 83.3

9More recent discoveries on the usefulness of language
model pretraining (Peters et al., 2018; Howard and Ruder,
2018) for RNN encoders suggest a promising direction for
future SPRL experiments.

10300-dimensional, uncased; glove.42B.300d from
https://nlp.stanford.edu/projects/glove/;
15,533 out-of-vocabulary words across all datasets were
assigned a random embedding (uniformly from [�.01, .01]).
Embeddings remained fixed during training.
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previous work this work
LR CRF binary scalar

instigation 76.7 85.6 88.6 0.858
volition 69.8 86.4 88.1 0.882
awareness 68.8 87.3 89.9 0.897
sentient 42.0 85.6 90.6 0.925
physically existed 50.0 76.4 82.7 0.834
existed before 79.5 84.8 85.1 0.710
existed during 93.1 95.1 95.0 0.673
existed after 82.3 87.5 85.9 0.619
created 0.0 44.4 39.7 0.549
destroyed 17.1 0.0 24.2 0.346
changed 54.0 67.8 70.7 0.592
changed state 54.6 66.1 71.0 0.604
changed possession 0.0 38.8 58.0 0.640
changed location 6.6 35.6 45.7 0.702
stationary 13.3 21.4 47.4 0.711
location 0.0 18.5 53.8 0.619
physical contact 21.5 40.7 47.2 0.741
manipulated 72.1 86.0 86.8 0.737
micro f1 71.0 81.7 83.3
macro f1 55.4? 65.9? 71.1
macro-avg pearson 0.753

Table 2: SPR comparison to Teichert et al. (2017).
Bold number indicate best F1 results in each row.
Right-most column is pearson correlation coefi-
cient for a model trained and tested on the scalar
regression formulation of the same data.

ploits the benefits of large-scale pretraining, in
the form of GloVe embeddings and MT pretrain-
ing, both absent in the CRF. Ablation experiments
(Appendix A) show the advantages conferred by
these features. In contrast, the discrete-featured
CRF model makes use of gold dependency labels,
as well as joint modeling of SPR attribute pairs
with explicit joint factors, both absent in our neu-
ral model. Future SPRL work could explore the
use of models like the LSTM-CRF (Lample et al.,
2016; Ma and Hovy, 2016) to combine the advan-
tages of both paradigms.

4 Experiments

Table 2 shows a side-by-side comparison of
our model with prior work. The full break-
down of F1 scores over each individual prop-
erty is provided. For every property except EX-
ISTED DURING, EXISTED AFTER, and CREATED
we are able to exceed prior performance. For
some properties, the absolute F1 gains are quite
large: DESTROYED (+24.2), CHANGED POSSES-
SION (+19.2.0), CHANGED LOCATION (+10.1),
STATIONARY (+26.0) and LOCATION (+35.3). We
also report performance with a scalar regression
version of the model, evaluated with Pearson cor-
relation. The scalar model is with respect to the

phys. contact volition

#
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�
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1 ALL 80 �14 6 80 �14 �10
2 PROPERNOUN 18 �2 �2 21 4 �5
3 ORG. 15 �9 2 31 �6 �1
4 PRONOUN 10 0 8 12 0 0
5 PHRASEVERB 14 �6 0 9 �4 1
6 METAPHOR 11 �5 �2 6 �2 0
7 LIGHTVERB 5 �2 1 5 �1 2

Table 3: Manual error analysis on a sample of in-
stances (80 for each property) where outputs of
CRF and the binary model from Table 2 differ.
Negative � FALSE+ and � FALSE– indicate the
neural model represents a net reduction in type I
and type II errors respectively over CRF. Posi-
tive values indicate a net increase in errors. Each
row corresponds to one of several (overlapping)
subsets of the 80 instances in disagreement: (1)
all (sampled) instances; (2) argument is a proper
noun; (3) argument is an organization or institu-
tion; (4) argument is a pronoun; (5) predicate is
phrasal or a particle verb construction; (6) pred-
icate is used metaphorically; (7) predicate is a
light-verb construction. #DIFFER is the size of the
respective subset.

original SPR annotations on a 5-point Likert scale,
instead of a binary cut-point along that scale (> 3).
Manual Analysis We select two properties
(VOLITION and MAKES PHYSICAL CONTACT) to
perform a manual error analysis with respect to
CRF 11 and our binary model from Table 2. For
each property, we sample 40 dev instances with
gold labels of “True” (> 3) and 40 instances of
“False” ( 3), restricted to cases where the two
system predictions disagree.12 We manually label
each of these instances for the six features shown
in Table 3. For example, given the input “He sits
down at the piano and plays,” our neural model
correctly predicts that He makes physical contact
during the sitting, while CRF does not. Since He is
a pronoun, and sits down is phrasal, this example
contributes �1 to � FALSE– in rows 1, 4 and 5.

11We obtained the CRF dev system predictions of Teichert
et al. (2017) via personal communication with the authors.

12According to the reference, of the 1071 dev examples,
150 have physical contact and 350 have volition. The two
models compared here differed in phy. contact on 62 positive
and 44 negative instances and for volition on 43 positive and
54 negative instances.
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Figure 2: Effect of using only a fraction of the
training data for a property while either ignoring
or co-training with the full training data for the
other SPR1 properties. Measurements at 1%, 5%,
10%, 25%, 50%, and 100%.

For both properties our model appears more
likely to correctly classify the argument in cases
where the predicate is a phrasal verb. This is
likely a result of the fact that the BiLSTM has
stronger language-modeling capabilities than the
CRF, particularly with MT pretraining. In general,
our model increases the false-positive rate for
MAKES PHYSICAL CONTACT, but especially
when the argument is pronominal.

Learning New SPR Properties One motiva-
tion for the decompositional approach adopted by
SPRL is the ability to incrementally build up an in-
ventory of annotated properties according to need
and budget. Here we investigate (1) the degree to
which having less training data for a single prop-
erty degrades our F1 for that property on held-out
data and (2) the effect on degradation of concur-
rent training with the other properties. We focus
on two properties only: INSTIGATION, a canonical
example of a proto-agent property, and MANIP-
ULATED, which is a proto-patient property. For
each we consider six training set sizes (1, 5, 10,
25, 50 and 100 percent of the instances). Starting
with the same randomly initialized BiLSTM13, we
consider two training scenarios: (1) ignoring the
remaining properties or (2) including the model’s
loss on other properties with a weight of � = 0.1
in the training objective.

Results are presented in Figure 2. We see that,
in every case, most of the performance is achieved
with only 25% of the training data. The curves
also suggest that training simultaneously on all
SPR properties allows the model to learn the tar-

13Note that this experiment does not make use of MT pre-
training as was used for Table 2, to best highlight the impact
of parameter sharing across attributes.

get property more quickly (i.e., with fewer training
samples) than if trained on that property in iso-
lation. For example, at 5% of the training train-
ing data, the “all properties” models are achiev-
ing roughly the same F1 on their respective tar-
get property as the “target property only” models
achieves at 50% of the data.14 As the SPR prop-
erties currently annotated are by no means seman-
tically exhaustive,15 this experiment indicates that
future annotation efforts may be well served by fa-
voring breadth over depth, collecting smaller num-
bers of examples for a larger set of attributes.

5 Conclusion

Inspired by: (1) the SPR decomposition of
predicate-argument relations into overlapping fea-
ture bundles and (2) the neo-Davidsonian formal-
ism for variable-arity predicates, we have pro-
posed a straightforward extension to a BiLSTM
classification framework in which the states of
pre-identified predicate and argument tokens are
pairwise concatenated and used as the target for
SPR prediction. We have shown that our Neural-
Davidsonian model outperforms the prior state of
the art in aggregate and showed especially large
gains for properties of CHANGED-POSSESSION,
STATIONARY, and LOCATION. Our architecture
naturally supports discrete or continuous label
paradigms, lends itself to multi-task initialization
or concurrent training, and allows for parameter
sharing across properties. We demonstrated this
sharing may be useful when some properties are
only sparsely annotated in the training data, which
is suggestive of future work in efficiently increas-
ing the range of annotated SPR property types.
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Name # Description
LR Logistic Regr. model,

Reisinger et al. (2015)
CRF CRF model,

Teichert et al. (2017)
SPR1 0 SPR1 basic model
SPR1-RAND 0 SPR1, random word embeddings
MT:SPR1 1a SPR1 after MT pretraining
PB:SPR1 1a SPR1 after PB pretraining
MT:PB:SPR1 1a SPR1 after MT+PB pretraining
SPR1+2 1b SPR1 and SPR2 concurrently
SPR1+WSD 1b SPR1 and WSD concurrently
MT:SPR1+2 1b SPR1+2 after MT pretraining
MT:SPR1+WSD 1b SPR1+WSD after MT pretraining
MT:SPR1S 1c SPR1 scalar after MT pretraining
PB:SPR1S 1c SPR1 scalar after PB pretraining
PS-MS 1d SPR1 propty-specific model sel.
SPR2 3 SPR2 basic scalar model
MT:SPR2 3 SPR2 after MT pretraining
PB:SPR2 3 SPR2 after PB pretraining
MT:PB:SPR2 3 SPR2 after MT+PB pretraining

Table 4: Name and short description of each ex-
perimental condition reported. MT: indicates pre-
training with machine translation; PB: indicates
pretraining with PropBank SRL.

A Mult-Task Investigation

Multi-task learning has been found to improve
performance on many NLP tasks, particularly for
neural models, and is rapidly becoming de rigueur
in the field. The strategy involves optimizing for
multiple training objectives corresponding to dif-
ferent (but usually related) tasks. Collobert and
Weston (2008) use multi-task learning to train a
convolutional neural network to perform multiple
core NLP tasks (POS tagging, named entity recog-
nition, etc.). Multi-task learning has also been
used to improve sentence compression (Klerke
et al., 2016), chunking and dependency parsing
(Hashimoto et al., 2017). Related work on UDS
(White et al., 2016) shows improvements on event
factuality prediction with multi-task learning on
BiLSTM models (Rudinger et al., 2018). To com-
plete the basic experiments reported in the main
text, here we include an investigation of the im-
pact of multi-task learning for SPRL.

We borrow insights from Mou et al. (2016) who
explore different multi-task strategies for NLP
including approach of initializing a network by
training it on a related task (“INIT”) versus inter-
spersing tasks during training (“MULT”). Here we
employ both of these strategies, referring to them
as pretraining and concurrent training. We also
use the terminology target task and auxiliary task
to differentiate the primary task(s) we are inter-

ested in from those that play only a supporting role
in training. In order to tune the impact of aux-
iliary tasks on the learned representation, Luong
et al. (2016) use a mixing parameter, ↵i, for each
task i. Each parameter update consists of selecting
a task with probability proportional to its ↵i and
then performing one update with respect to that
task alone. They show that the choice of ↵ has a
large impact on the effect of multi-task training,
which influences our experiments here.

Please refer to Appendix B for details on the
datasets used in this section. In particular, with
a few exceptions, White et al. (2016) annotates
for the same set of properties as Reisinger et al.
(2015), but with slightly different protocol and on
a different genre. However, in this section we treat
the two datasets as if they were separate tasks. To
avoid cluttering the results in the main text, we
exclusively present results there on what we call
SPR1 which consists of the data from Reisinger
et al. (2015) and the train/dev/test splits of Teichert
et al. (2017). We refer to the analogous tasks built
on the data and splits of White et al. (2016) us-
ing the term SPR2. (We are not aware of any
prior published results on property prediction for
the SPR2.)

In addition to the binary and scalar SPR archi-
tectures outlined in Section 3 of the main paper,
we also considered concurrently training the BiL-
STM on a fine-grained word-sense disambigua-
tion task or on joint SPR1 and SPR2 prediction.
We also experimented with using machine trans-
lation and PropBank SRL to initialize the parame-
ters of the BiLSTM. Preliminary experimentation
on dev data with other combinations helped prune
down the set of interesting experiments to those
listed in Table 4 which assigns names to the mod-
els explored here. Our ablation study in Section
4 of the main paper uses the model named SPR1
while the other results in the main paper corre-
spond to MT:SPR1 in the case of binary prediction
and MT:SPR1S in the case of scalar prediction. Af-
ter detailing the additional components used for
pretraining or concurrent training, we present ag-
gregate results and for the best performing models
(according to dev) we present property-level ag-
gregate results.

A.1 Auxiliary Tasks

Each auxiliary task is implemented in the form of
a task-specific decoder with access to the hidden
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states computed by the shared BiLSTM encoder.
In this way, the losses from these tasks backpropa-
gate through the BiLSTM. Here we describe each
task-specific decoder.

PropBank Decoder The network architecture
for the auxiliary task of predicting abstract role
types in PropBank is nearly identical to the ar-
chitecture for SPRL described in Section 3 of the
main paper. The main difference is that the Prop-
Bank task is a single-label, categorical classifica-
tion task.

P(rolei|hea) = softmaxi
�
Wpropbank [hea]

�

The loss from this decoder is the negative log of
the probability assigned to the correct label.

Supersense Decoder The word sense disam-
biguation decoder computes a probability distribu-
tion over 26 WordNet supersenses with a simple
single-layer feedforward network:

P(supersensei|ha) = softmaxi(W [ha])

where W 2 R1200⇥26 and ha is the RNN hid-
den state corresponding to the argument head to-
ken we wish to disambiguate. Since the gold la-
bel in the supersense prediction task is a distribu-
tion over supersenses, the loss from this decoder
is the cross-entropy between its predicted distri-
bution and the gold distribution.

French Translation Decoder Given the en-
coder hidden states, the goal of translation is to
generate the reference sequence of tokens Y =
y1, · · · , yn in the target language, i.e., French. We
employ the standard decoder architecture for neu-
ral machine translation. At each time step i, the
probability distribution of the decoded token yi is
defined as:

P (yi) = softmax
�
tanh(Wfr

⇥
si; ci

⇤
+ bfr)

�

where Wfr is a transform matrix, and bfr is a bias.
The inputs are the decoder hidden state si and the
context vector ci. The decoder hidden state si is
computed by:

si = RNN(yi�1, si�1)

where RNN is a recurrent neural network using L-
layer stacked LSTM, yi�1 is the word embedding
of token yi�1, and s0 is initialized by the last en-
coder left-to-right hidden state.

micro-F1 macro-F1

LR 71.0 55.4?

CRF 81.7 65.9?

SPR1-RAND 77.7 57.3
SPR1 82.2 69.3
MT:SPR1 83.3 71.1
PB:SPR1 82.3 67.9
MT:PB:SPR1 82.8 70.9
SPR1+2 83.3 70.4
SPR1+WSD 81.9 67.9
MT:SPR1+2 83.2 70.0
MT:SPR1+WSD 81.8 67.4
PS-MS 82.9 69.5

Table 5: Overall test performance for all settings
described in Experiments 1 and 1a-d. The tar-
get task is SPR1 as binary classification. Micro-
and macro-F1 are computed over all properties.
(?Baseline macro-F1 scores are computed from
property-specific precision and recall values in Te-
ichert et al. (2017) and may introduce rounding er-
rors.)

The context vector ci is computed by an at-
tention mechanism (Bahdanau et al., 2014; Luong
et al., 2015),

ci =
X

t

↵i,tht,

↵i,t =
exp

�
s

>
i (W↵ht + b↵)

�
)

P
k exp

�
s

>
i (W↵hk + b↵)

� ,

where W↵ is a transform matrix and b↵ is a bias.
The loss is the negative log-probability of the de-
coded sequence.

A.2 Results
In this section, we present a series of experiments
using different components of the neural archi-
tecture described in Section 3, with various train-
ing regimes. Each experimental setting is given a
name (in SMALLCAPS) and summarized in Table
4. Unless otherwise stated, the target task is SPR1
(classification). To ease comparison, we include
results from the main paper as well as additional
results.

Experiment 0: Embeddings By default, all
models reported in this paper employ pretrained
word embeddings (GloVe). In this experiment we
replaced the pretrained embeddings in the vanilla
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CRF SPR1 MT:SPR1 SPR1+2

instigation 85.6 84.6 88.6 85.6
volition 86.4 87.9 88.1 88.0
awareness 87.3 88.3 89.9 88.4
sentient 85.6 89.6 90.6 90.0
physically existed 76.4 82.3 82.7 80.2
existed before 84.8 86.0 85.1 86.8
existed during 95.1 94.2 95.0 94.8
existed after 87.5 86.9 85.9 87.5
created 44.4 46.6 39.7 51.6
destroyed 0.0 11.1 24.2 6.1
changed 67.8 67.4 70.7 68.1
changed state 66.1 66.8 71.0 67.1
changed possession 38.8 57.1 58.0 63.7
changed location 35.6 60.0 45.7 52.9
stationary 21.4 43.2 47.4 53.1
location 18.5 46.9 53.8 53.6
physical contact 40.7 52.7 47.2 54.7
manipulated 86.0 82.2 86.8 86.7
micro f1 81.7 82.2 83.3 83.3
macro f1 65.9 69.3 71.1 70.4

Table 6: Breakdown by property of binary classifi-
cation F1 on SPR1. All new results outperforming
prior work (CRF) in bold.

SPR1 model (SPR1) with randomly initialized
word embeddings (SPR1-RAND). The results (Ta-
ble 5) reveal substantial gains from the use of pre-
trained embeddings; this is likely due to the com-
paratively small size of the SPR1 training data.

Experiment 1a: Multi-task Pretraining We
pretrained the BiLSTM encoder with two separate
auxiliary tasks: French Translation and Prop-
Bank Role Labeling. There are three settings: (1)
Translation pretraining only (MT:SPR1), (2) Prop-
Bank pretraining only (PB:SPR1), and (3) Transla-
tion pretraining followed by PropBank pretraining
(MT:PB:SPR1). In each case, after pretraining, the
SPRL decoder is trained end-to-end, as in Experi-
ment 0 (on SPR1 data).

Experiment 1b: Multi-task Concurrent One
auxiliary task (Supersense or SPR2) is trained
concurrently with SPR1 training. In one epoch
of training, a training example is sampled at ran-
dom (without replacement) from either task un-
til all training instances have been sampled. The
loss from the auxiliary task (which, in both cases,
has more training instances than the target SPRL
task) is down-weighted in proportion to ratio of
the dataset sizes:

↵ =
|target task|

|auxiliary task|

SPR property SPR1S MT:SPR1S SPR2

instigation 0.835 0.858 0.590
volition 0.869 0.882 0.837
awareness 0.873 0.897 0.879
sentient 0.917 0.925 0.880
physically existed 0.820 0.834 -
existed before 0.696 0.710 0.618
existed during 0.666 0.673 0.358
existed after 0.612 0.619 0.478
created 0.540 0.549 -
destroyed 0.268 0.346 -
changed 0.619 0.592 -
changed state 0.616 0.604 0.352
changed possession 0.359 0.640 0.488
change of location 0.778 0.702 0.492
changed state continuous - - 0.373
was for benefit - - 0.578
stationary 0.705 0.711 -
location 0.627 0.619 -
physical contact 0.731 0.741 -
manipulated 0.715 0.737 -
was used - - 0.203
partitive - - 0.359
macro-avg pearson 0.743 0.753 0.591

Table 7: SPR1 and SPR2 as scalar prediction tasks.
Pearson correlation between predicted and gold
values.

The auxiliary task loss is further down-
weighted by a hyperparameter � 2
{1, 10�1, 10�2, 10�3, 10�4} which is chosen
based on dev results. We apply this training
regime with the auxiliary task of Supersense
prediction (SPR1+WSD) and the scalar SPR2
prediction task (SPR1+SPR2), described in
Experiment 2.

Experiment 1c: Multi-task Combination This
setting is identical to Experiment 1b, but includes
MT pretraining (the best-performing pretraining
setting on dev), as described in 1a. Accord-
ingly, the two experiments are MT:SPR1+WSD and
MT:SPR1+SPR2.

Experiment 1d: Property-Specific Model Selec-
tion (PS-MS) Experiments 1a–1c consider a va-
riety of pretraining tasks, co-training tasks, and
weight values, �, in an effort to improve aggre-
gate F1 for SPR1. However, the SPR properties
are diverse, and we expect to find gains by choos-
ing training settings on a property-specific basis.
Here, for each property, we select from the set
of models considered in experiments 1a–1c the
one that achieves the highest dev F1 for the target
property. We report the results of applying those
property-specific models to the test data.
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SPR1S 0.743 SPR2 0.591
MT:SPR1S 0.753 MT:SPR2 0.577
PB:SPR1S 0.731 PB:SPR2 0.568
MT:PB:SPR1S 0.720 MT:PB:SPR2 0.564

Table 8: SPR1 and SPR2 as scalar prediction
tasks. The overall performance for each experi-
mental setting is reported as the average Pearson
correlation over all properties. Highest SPR1 and
SPR2 results are in bold.

Experiment 2: SPR as a scalar task In Exper-
iment 2, we trained the SPR decoder to predict
properties as scalar instead of binary values. Per-
formance is measured by Pearson correlation and
reported in Tables 8 and 7. In this case, we treat
SPR1 and SPR2 both as target tasks (separately).
By including SPR1 as a target task, we are able
to compare (1) SPR as a binary task and a scalar
task, as well as (2) SPR1 and SPR2 as scalar tasks.
These results constitute the first reported numbers
on SPR2.

We observe a few trends. First, it is generally
the case that properties with high F1 on the SPR1
binary task also have high Pearson correlation on
the SPR1 scalar task. The higher scoring proper-
ties in SPR1 scalar are also generally the higher
scoring properties in SPR2 (where the SPR1 and
SPR2 properties overlap), with a few notable ex-
ceptions, like INSTIGATION. Overall, correlation
values are lower in SPR2 than SPR1. This may
be the case for a few reasons. (1) The underlying
data in SPR1 and SPR2 are quite different. The
former consists of sentences from the Wall Street
Journal via PropBank (Palmer et al., 2005), while
the latter consists of sentences from the English
Web Treebank (Bies et al., 2012) via the Univer-
sal Dependencies; (2) certain filters were applied
in the construction of the SPR1 dataset to remove
instances where, e.g., predicates were embedded
in a clause, possibly resulting in an easier task; (3)
SPR1 labels came from a single annotator (after
determining in pilot studies that annotations from
this annotator correlated well with other annota-
tors), where SPR2 labels came from 24 different
annotators with scalar labels averaged over two-
way redundancy.

Discussion With SPR1 binary classification as
the target task, we see overall improvements from
various multi-task training regimes (Experiments

1a-d, Tables 5 and 6), using four different auxiliary
tasks: machine translation into French, PropBank
abstract role prediction, word sense disambigua-
tion (WordNet supersenses), and SPR2.16 These
auxiliary tasks exhibit a loose trade-off in terms
of the quantity of available data and the seman-
tic relatedness of the task: MT is the least related
task with the most available (parallel) data, while
SPR2 is the most related task with the smallest
quantity of data. While we hypothesized that the
relatedness of PropBank role labeling and word
sense disambiguation tasks might lead to gains in
SPR performance, we did not see substantial gains
in our experiments (PB:SPR1, SPR1+WSD). We
did, however, see improvements over the target-
task only model (SPR1) in the cases where we
added MT pretraining (MT:SPR1) or SPR2 con-
current training (SPR1+2). Interestingly, combin-
ing MT pretraining with SPR2 concurrent training
yielded no further gains (MT:SPR1+2).

B Data

SPR1 The SPR1.0 (“SPR1”) dataset introduced
by Reisinger et al. (2015) contains proto-role an-
notations on 4,912 Wall Street Journal sentences
from PropBank (Palmer et al., 2005) correspond-
ing to 9,738 predicate-argument pairs with 18
properties each, in total 175,284 property annota-
tions. All annotations were performed by a sin-
gle, trusted annotator. Each annotation is a rating
from 1 to 5 indicating the likelihood that the prop-
erty applies, with an additional “N/A” option if the
question of whether the property holds is nonsen-
sical in the context.

To compare with prior work (Teichert et al.,
2017), we treat the SPR1 data as a binary pre-
diction task: the values 4 and 5 are mapped to
True (property holds), while the values 1, 2, 3,
and “N/A” are mapped to False (property does not
hold). In additional experiments, we move to treat-
ing SPR1 as a scalar prediction task; in this case,
“N/A” is mapped to 1, and all other annotation val-
ues remain unchanged.
SPR2 The second SPR release (White et al.,
2016) contains annotations on 2,758 sentences
from the English Web Treebank (EWT) (Bies
et al., 2012) portion of the Universal Dependen-
cies (v1.2) (Silveira et al., 2014)17, corresponding

16Note that in some cases we treat SPR2 as an auxiliary
task, and in others, the target task.

17We exclude the SPR2 pilot data; if included, the SPR2
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to 6,091 predicate-argument pairs. With 14 proto-
role properties each, there are a total of 85,274 an-
notations, with two-way redundancy. As in SPR1,
the value of each annotation is an integral value 1-
5 or “N/A.” We treat SPR2 as a scalar prediction
task, first mapping “N/A” to 1, and then averag-
ing the two-way redundant annotation values to a
single value.

Word Sense Disambiguation Aligned with
proto-role property annotations in the SPR2 re-
lease are word sense disambiguation judgments
for the head tokens of arguments. Candi-
date word senses (fine-grained) from WordNet
(Fellbaum, 1998) were presented to Mechani-
cal Turk workers (at least three annotators per
instance), who selected every applicable sense
of the word in the given context. In this
work, we map the fine-grained word senses to
one of 26 coarse-grained WordNet noun su-
persenses (e.g., noun.animal, noun.event,
noun.quantity, etc.). In many cases, a word
may be mapped to more than one supersense. We
treat the supersense label on a word as a distri-
bution over supersenses, where the probability as-
signed to one supersense is proportional to the
number of annotators that (indirectly) selected that
supersense. In practice, the entropy of these re-
sulting supersense distributions is low, with an av-
erage perplexity of 1.42.

PropBank The PropBank project consists of
predicate-argument annotations over corpora for
which gold Penn TreeBank-style constituency
parses are available. We use the Unified Prop-
Bank release (Bonial et al., 2014; Ide and Puste-
jovsky, 2017), which contains annotations over
OntoNotes as well as the English Web TreeBank
(EWT). Each predicate in each corpus is anno-
tated for word sense, and each argument of each
predicate is given a label such as ARG0, ARG1,
etc., where the interpretation of the label is de-
fined relative to the word sense. We use Prop-
Bank Frames to map these sense-specific labels to
16 sense-independent labels such as PAG (proto-
agent), PPT (proto-patient), etc., and then formu-
late a task to predict the abstracted labels. Because
our model requires knowledge of predicate and ar-
gument head words, we ran the Stanford Univer-
sal Dependencies converter (Schuster and Man-
ning, 2016) over the gold constituency parses to

release contains annotations for 2,793 sentences.

obtain Universal Dependency parses, which were
then processed by the PredPatt framework (Zhang
et al., 2017; White et al., 2016) to identify head
words.

English-French Data The 109 French-English
parallel corpus (Callison-Burch et al., 2009) con-
tains 22,520,376 French-English sentence pairs,
made up of 811,203,407 French words and
668,412,817 English words. The corpus was con-
structed by crawling the websites of international
organizations such as the Canadian government,
the European Union, and the United Nations.
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Abstract

Styles of leaders when they make decisions in
groups vary, and the different styles affect the
performance of the group. To understand the
key words and speakers associated with de-
cisions, we initially formalize the problem as
one of predicting leaders’ decisions from dis-
cussion with group members. As a dataset, we
introduce conversational meeting records from
a historical corpus, and develop a hierarchical
RNN structure with attention and pre-trained
speaker embedding in the form of a, Conversa-
tional Decision Making Model (CDMM). The
CDMM outperforms other baselines to pre-
dict leaders’ final decisions from the data. We
explain why CDMM works better than other
methods by showing the key words and speak-
ers discovered from the attentions as evidence.

1 Introduction

Decision making in groups refers to the process of
making choices to resolve issues by discussing the
issues with group members (Lunenburg, 2011).
It has various styles based on the balance of
the participation between the leader and mem-
bers from autocratic, democratic, laissez-faire (let
go) to delegation types of groups (Lewin et al.,
1939; Vroom and Jago, 1988). Social psycholo-
gists note that decision making affects the group
performance and the satisfaction of its members
(Yang, 2010), and that leadership plays a role (Lar-
son Jr et al., 1998). In this paper, we study the key
factors that are closely related to the decision mak-
ing process used by leaders.

First, we build conversational meeting records
from The Annals of the Joseon Dynasty (hence-
forth referred to as the AJD), after which, we for-
malize our research problem as predicting lead-
ers’ decisions in conversational discussions from
the data (Sec 2). The AJD consists of the records
of kings who governed the Korean peninsula from

Facts
Official A

King

Official B

Official C

Meta
information

Title
Time

“I propose 
combining two 
local districts.”

Combining two local districts

“It is a hard problem.”

“It is reasonable to 
combine the regions.”

“I propose another 
solution.”

The king follows 
Official C’s suggestion.

Figure 1: Screenshot and structure of an article in
the annals of the Joseon dynasty

1392 to 1910. In the AJD, the kings discuss the
issues with government officials and decide upon
a course of action. Many discussion corpora are
available such as Augmented Multi-party Interac-
tion (AMI) (Carletta et al., 2005) which is meeting
recordings as video, and are used to identify and
summarize decisions in the conversation (Hsueh
and Moore, 2007; Fernández et al., 2008; Bui
et al., 2009). However, the AJD has more speakers
than AMI, and it is a longitudinal corpus spanning
over 400 years.

To predict the decisions in the corpus, we de-
velop a model which we term the Conversa-
tional Decision-Making Model (CDMM) (Sec 3).
CDMM is based on the hierarchical RNN struc-
ture with attention (Yang et al., 2016), but we add
speaker information with pre-trained embedding.
We also devise a way to make the speaker em-
bedding using co-occurrence document network
(Sec 3.3). In comparison with several other meth-
ods, CDMM shows the highest macro-averaged F1
score (Sec 4). We also show why CDMM works
better with key words and speakers by examining
the attention values (Sec 5).
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Kings Articles Utterances Participants

15 13,216 95,615 4,502

(a) Basic statistics of the corpus

Order 1,996 Accept 1,457
Approve 2,245 Reject 818
Disapprove 468 Discuss 6,214

(b) Distribution of articles over decisions

Table 1: Statistics of a conversational meeting
records and king’s decisions from the AJD

2 Meeting Records from the AJD

Historiographers recorded the behaviors of kings
and events in the country, and compiled these
records as books when the king died or abdicated
the throne. Each article of the AJD consists of the
time, title, body and meta-information such as cat-
egories.

Meeting articles in the AJD consist of who said
what on an issue in dialogue form, and the king’s
decision. Figure 1 shows an example of a meeting
record article1. In the article, the king and govern-
ment officials discuss the issue of combining two
local regions. The king asks for a solution to the
issue from the officials, and they state their opin-
ions. At the end of the article, the king decided to
follow official C’s suggestion to solve this issue.

We build a corpus from the AJD using the fol-
lowing process. We crawl the AJD website to re-
trieve the documents and select articles that have
three or more speakers per document. We identify
the king’s final decision in each article by examin-
ing the final sentence and the title as summarized
by historians. We initially determine whether or
not the final sentence of the subject is that by a
king, as some issues are dealt with by others, such
as the king’s mother. We also extract the verbs in
the final sentence and the title that indicates the
decisions. From these, we categorize each king’s
decisions into six types: Order, Approve, Disap-
prove, Accept and Reject. Some articles include a
discussion of an issue, but the king’s final decision
is not explicitly recorded or the king postpones the
decision. We treat this type of decision as Discuss,
i.e., the sixth category. Finally, we choose fifteen
kings with more than 200 articles that have his fi-
nal decisions. Table 1 shows the basic statistics of

1http://sillok.history.go.kr/id/kda_
10103027_005
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Final decision

Word embedding Speaker embedding Embeddings

Figure 2: Conversational Decision-Making Model

our meeting records data from the AJD.

3 Conversational Decision Making
Model

This section describes our model, the Con-
versational Decision-Making Model (CDMM),
for identifying leaders’ decisions from meeting
records. CDMM is based on the Hierarchical At-
tention Network (HAN) (Yang et al., 2016), but
we change the sentence level to the utterance level
and use speaker information (described in Section
3.2). To encode the speaker information, we build
the speaker embedding from co-occurrence docu-
ment network (described in Section 3.3).

3.1 Word Encoder
To encode the t-th word of i-th utterance xit,
t 2 {1, . . . , T}, we initially change the word xit to
word vector wit using the word embedding matrix
Ww, wit = Wwxit. We use a bi-directional GRU
(Bahdanau et al., 2014), and concatenate the hid-
den states hit = [

�!
hit;
 �
hit]. Then, we use the atten-

tion mechanism in HAN to find important words
to classify the decision. Each word has an atten-
tion value ↵it, and we compute the utterance word
vector, ui =

PT
t=1 ↵ithit.

3.2 Utterance Encoder with Speaker
In CDMM, the i-th utterance has word sequence
representation vector ui and speaker vector si.
First, we change the speaker zi to vector si using
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the speaker embedding matrix Ws, si = Wszi. To
encode a length U of the utterances (ui, si), i 2
{1, . . . , U}, we suggest encoders based on GRU
(Bahdanau et al., 2014), which can learn ui and si

simultaneously, as follows:

hi = (1� zi)� hi�1 + zi � h̃i

zi = �(Wzuui + Wzssi + Uzhi�1 + bz)

ri = �(Wruui + Wrssi + Urhi�1 + br)

h̃i = tanh(Whuui + Whssi + ri � (Uhhi�1) + bh)

Here, hi is the i-th utterance hidden state, and zi

and ri denote the update and reset gate, respec-
tively. This is similar to earlier work (Li et al.,
2016), but we add the speaker vector to the utter-
ance level, not the word level.

As in the word encoder, we use the bi-
directional GRU with the utterance encoder and
concatenate the hidden states hi = [

�!
hi ;
 �
hi ]. We

use the same attention mechanism to find impor-
tant utterances. Each utterance has an attention
value of ↵i, and for the conversation vector we use
d =

PU
i=1 ↵ihi.

With vector d, CDMM predicts the decision us-
ing softmax p = softmax(Wcd + bc), and a
dropout scheme (Srivastava et al., 2014) to avoid
over-fitting.

3.3 Pre-trained Speaker Embedding
Unlike word embedding which is pre-trained from
news or Wikipedia articles (Mikolov et al., 2013;
Bojanowski et al., 2017), pre-trained speaker em-
bedding for the AJD does not exist. To overcome
this limitation, we suggest the building of speaker
embedding from the co-occurrence document net-
work in the AJD. The AJD contains not only meet-
ing records but also personnel management re-
ports and explanations of the officials. We there-
fore build a co-occurrence network. The vertices
are people, and two individuals are connected if
they appear in the same article. The weight of
the edge is the number of co-occurrences in the
same article. With this network, we realize speaker
embedding using the node2vec algorithm (Grover
and Leskovec, 2016), which generates node vector
representation.

4 Experiments

This section describes the experiments and results
of CDMM as well as other methods for classifying
the king’s decisions in the AJD.

4.1 Experiment Setting
We split the data as 80/10/10 for train-
ing/validation/test. Because the meeting records
contain fifteen kings, we split the data randomly
for each king and merge each part into the entire
training, validation and test set.

We compare CDMM with the following meth-
ods. The majority of classes predicts all test exam-
ples as the major class, Discuss. We apply Naive
Bayes and the SVM with the linear kernel. To use
these methods, we remove words whose document
frequency is smaller than twenty. To see the power
of the speaker information, we run these baselines
on words and speaker features together. We also
run fastText (Joulin et al., 2017), which is a clas-
sifier with n-gram features and hierarchical soft-
max, and is similar to CBOW (Mikolov et al.,
2013). We use pre-trained Korean word vectors2

(Grave et al., 2018) to fastText and CDMM. We
create the speaker embedding from the AJD. For a
fair comparison, we exclude the valid and test ar-
ticles to construct the co-occurrence network. We
use node2vec implementation3 for speaker embed-
ding. We set the GRU hidden state size to 200, the
dimension of the speaker embedding to 200 and
the dropout probability to 0.5 for CDMM.

4.2 Predictions of the King’s Decision Results
Table 2 shows the results. CDMM performs bet-
ter than all other methods for macro-average
and weighted-averaged metrics. The majority of
classes shows the lowest performance. Naive
Bayes and SVM outperform the baseline. fast-
Text with pre-trained word vectors outperforms its
counterpart, in accordance with an earlier result
(Lample et al., 2016). CDMM without a speaker
performs equally to HAN, the only difference be-
ing that HAN encodes sentences and CDMM en-
codes utterances. It does not show good perfor-
mance as it models only the hierarchical struc-
ture of the conversation. However, when we add
speaker information, the performance increases
even with random initialization of speaker embed-
ding. The performances of Naive Bayes and SVM
also increase when they are assigned speakers as
features. These observations signal that speaker
information is helpful for predicting the king’s de-
cisions. Finally, CDMM with pre-trained speaker

2https://github.com/facebookresearch/
fastText/blob/master/docs/crawl-vectors.
md

3http://snap.stanford.edu/node2vec
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Method Micro F1 Macro Prec Macro Rec Macro F1 W-avg F1

Majority of classes 0.472 0.079 0.167 0.107 0.303
Naive Bayes 0.479 0.173 0.176 0.126 0.321
SVM linear 0.381 0.249 0.246 0.246 0.383
SVM RBF 0.487 0.236 0.186 0.142 0.337
Naive Bayes with speaker 0.466 0.268 0.177 0.135 0.323
SVM linear with speaker 0.423 0.292 0.259 0.243 0.403
SVM RBF with speaker 0.472 0.079 0.167 0.107 0.303
fastText w/o word vector 0.487 0.158 0.193 0.150 0.349
fastText 0.499 0.315 0.225 0.215 0.402
CDMM w/o speaker 0.481 0.176 0.214 0.178 0.379
CDMM with speaker (random init) 0.504 0.258 0.227 0.208 0.401
CDMM with speaker (pre-trained) 0.476 0.329 0.307 0.313 0.456

Table 2: King’s decision classification precision, recall and F-measures. Micro F1 is the micro-averaged
value of F-measure, and Macro Prec, Rec and F1 are the macro-averaged values of precision, recall and
F-measure respectively. W-avg F1 is the weighted average according to the number of true examples in
each class. CDMM outperforms all other methods compared.

(a) Word “Wish to do”

(b) Word “Okay”

Figure 3: Attention weight distribution of words for
each class

embedding shows better results compared to all
other methods.

5 Discussion

Here, we investigate the attention values to de-
termine the important words and speakers for
predicting the king’s decisions. We also obtain
evidence showing why CDMM with pre-trained
speaker embedding outperforms the others.

5.1 Key Words and Speakers
We investigate the important words using word
attention values. To find the important words,
we compute the mutual information (Christopher
et al., 2008) of words that have the top 10% of at-
tention values in the utterances among the classes.

(a) Word “Okay” from kings

(b) Word “Okay” from officials

Figure 4: Attention weight distribution of word for
each class from kings and officials

Figure 3 shows the attention weight distribu-
tions of the two examples of the top words “Wish
to do” and “Okay”. The word “Wish to do” is usu-
ally used to make a request to the king. The peak
of the attention weight distribution of “Wish to do”
for the Approve class is around 0.7, whereas it is
around 0.3 for Order and Discuss. We can inter-
pret this to mean that CDMM assigns greater at-
tention to that word to predict Approve compared
to Order and Discuss. The word “Okay” is used to
consent to the opinions of others. CDMM assigns
a high attention value to the word to predict Order
and Accept compared to Discuss.

However, the attention values differ according
to the speaker. As shown in Figure 4, CDMM
gives a high attention score to the word “Okay” for
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Name (Eng) Position Class

Sin Sukju Secretary Order
Jeong Changson Secretary Order
Kim Jonkyung Local gov Approve
Kim Neuk Local gov Approve
Gwon Jin Local gov Disapprove
Kim Seup Remonstrator Disapprove
Hwang Hui Central gov Accept
Han Myeonghoe Central gov Accept
Kim Jikyung Remonstrator Reject
Sung Damnyeon Remonstrator Reject

Table 3: Name (translated in English) and position
of the speakers who have high mutual informa-
tion scores for the classes. Local gov is the local
government official and Central gov is the central
government official. Remonstrator is the official
who remonstrates to the king. The position of the
speaker is important to predict the king’s decision.

Accept as compared to the other classes when the
speaker is king. However, when officials use this
word, CDMM assigns a high attention value to the
word in the Order class. Despite the fact that the
same word is used, the king’s decision is changed
based on the speaker. This is additional evidence
showing why the speaker information is useful to
predict the decision.

5.2 Position of the Speaker

We investigate the key speakers from utterance at-
tention values. To determine the important person,
we use the same technique of finding important
words.

We find that high ranking person’s positions are
shared for each class. Table 3 shows the top ranked
speakers and their positions for each class. The
chief secretary who takes orders from the king has
a high rank in the Order class. For Approve and
Disapprove, local authorities are highly ranked.
For Accept, central government officials have high
MI values. Interestingly, officials who remonstrate
to the king have high scores in the Disapprove and
Reject class. We can thus say that the kings refuse
admonitions commonly from officials.

From these results, we can gain insight into
why pre-trained speaker embedding is helpful to
predict the king’s decisions. People in the same
organization are in the same community of co-
occurrence news article network (Özgür et al.,

2008). Therefore, the AJD network contains the
community information, and node2vec generates
the node’s closeness via embedding. CDMM can
have this knowledge in the model therefore out-
performs the other methods.

6 Conclusion

In this paper, we created conversational meet-
ing data from the Annals of the Joseon Dynasty
(AJD). We presented Conversational Decision-
Making Model (CDMM) to predict leaders’ deci-
sions from the data. We also suggested the use of
speaker embedding from co-occurrence document
network with node2vec. With this data, we showed
that CDMM outperforms other methods in terms
of most metrics. We implemented CDMM using
tensorflow (Abadi et al., 2016), and published the
code and data in public4. We also analyzed the rea-
soning behind the success of CDMM and the key
words and speakers by investigating the concept of
attention.

Studies of small group dynamics can be help-
ful when attempting to understand group deci-
sion making behavior (Backstrom et al., 2006).
Prior work which analyzed small group dynam-
ics relied on a hidden Markov model (Magdon-
Ismail et al., 2003), a dynamic Bayesian network
(Mathur et al., 2012) or a layered probabilistic
model (Cheng et al., 2014) for various datasets
such as networks or recorded video. We suggest
CDMM, which combine two types of data to pre-
dict leaders’ decision. We can also apply this idea
to other group dynamics analyses.
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Abstract

Discourse segmentation, which segments texts
into Elementary Discourse Units, is a fun-
damental step in discourse analysis. Previ-
ous discourse segmenters rely on complicated
hand-crafted features and are not practical in
actual use. In this paper, we propose an end-
to-end neural segmenter based on BiLSTM-
CRF framework. To improve its accuracy, we
address the problem of data insufficiency by
transferring a word representation model that
is trained on a large corpus. We also propose
a restricted self-attention mechanism in order
to capture useful information within a neigh-
borhood. Experiments on the RST-DT corpus
show that our model is significantly faster than
previous methods, while achieving new state-
of-the-art performance. 1

1 Introduction

Discourse segmentation, which divides text into
proper discourse units, is one of the fundamen-
tal tasks in natural language processing. Accord-
ing to Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), a complex text is com-
posed of non-overlapping Elementary Discourse
Units (EDUs), as shown in Table 1. Segment-
ing text into such discourse units is a key step in
discourse analysis (Marcu, 2000) and can benefit
many downstream tasks, such as sentence com-
pression (Sporleder and Lapata, 2005) or docu-
ment summarization (Li et al., 2016).

Since EDUs are initially designed to be deter-
mined with lexical and syntactic clues (Carlson
et al., 2001), existing methods for discourse seg-
mentation usually design hand-crafted features to
capture these clues (Feng and Hirst, 2014). Es-
pecially, nearly all previous methods rely on syn-
tactic parse trees to achieve good performance.

1Our code is available at https://github.com/
PKU-TANGENT/NeuralEDUSeg

[Mr. Rambo says]e1 [that a 3.2-acre prop-
erty]e2 [overlooking the San Fernando Val-
ley]e3 [is priced at $4 million]e4 [because the
late actor Erroll Flynn once lived there.]e5

Table 1: A sentence that is segmented into five EDUs

But extracting such features usually takes a long
time, which contradicts the fundamental role of
discourse segmentation and hinders its actual use.
Considering the great success of deep learning on
many NLP tasks (Lu and Li, 2016), it’s a natural
idea for us to design an end-to-end neural model
that can segment texts fast and accurately.

The first challenge of applying neural methods
to discourse segmentation is data insufficiency.
Due to the limited size of labeled data in exist-
ing corpus (Carlson et al., 2001), it’s quite hard to
train a data-hungry neural model without any prior
knowledge. In fact, some traditional features, such
as the POS tags or parse trees, naturally provide
strong signals for identifying EDUs. Removing
them definitely increases the difficulty of learning
an accurate model. Secondly, many EDU bound-
aries are actually not determined locally. For ex-
ample, to recognize the boundary between e3 and
e4 in Table 1, our model has to be aware that e3 is
an embedded clauses starting from “overlooking”,
otherwise it could regard “San Fernando Valley”
as the subject of e4. Such kind of long-distance
dependency can be precisely extracted from parse
trees but is difficult for neural models to capture.

To address these challenges, in this paper, we
propose a neural discourse segmenter based on
the BiLSTM-CRF (Huang et al., 2015) framework
and further improve it from two aspects. Firstly,
since the discourse segmentation corpus is too
small to learn precise word representations, we
transfer a word representation model trained on a
large corpus into our task, and show that this trans-
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ferred model can provide very useful information
for our task. Secondly, in order to model long-
distance dependency, we employ the self-attention
mechanism (Vaswani et al., 2017) when encoding
the text. Different from previous self-attention,
we restrict the attention area to a neighborhood of
fixed size. The motivation is that effective infor-
mation for determining the boundaries is usually
collected from adjacent EDUs, while the whole
text may contain many disturbing words, which
could mislead the model into incorrect decisions.
In summary, the contributions of this work are as
follows:

• Our neural discourse segmentation model
doesn’t rely on any syntactic features, while it
can outperform other state-of-the-art systems
and achieve significant speedup.

• To our knowledge, we are the first to trans-
fer word representations learned from large
corpus into discourse segmentation task and
show that they can significantly alleviate the
data insufficiency problem.

• Based on the nature of discourse segmenta-
tion, we propose a restricted attention mech-
anism , which enables the model to capture
useful information within a neighborhood but
ignore unnecessary faraway noises.

2 Neural Discourse Segmentation Model

We model discourse segmentation as a sequence
labeling task, where the start word of each EDU
(except the first EDU) is supposed to be labeled as
1 and other words are labeled as 0. Figure 1 gives
an overview of our segmentation model. We will
introduce the BiLSTM-CRF framework in Section
2.1, and describe the two key components of our
model in Section 2.2, 2.3.

2.1 BiLSTM-CRF for Sequence Labeling
Conditional Random Fields (CRF) (Lafferty et al.,
2001) is an effective method to sequence labeling
problem and has been widely used in many NLP
tasks (Sutton and McCallum, 2012). To approach
our discourse segmentation task in a neural way,
we adopt the BiLSTM-CRF model (Huang et al.,
2015) as the framework of our system. Formally,
given an input sentence x = {xt}n

t=1, we first em-
bed each word into a vector et. Then these word
embeddings are fed into a bi-directional LSTM

Figure 1: Overview of our model for discourse segmen-
tation

layer to model the sequential information:

ht = BiLSTM(ht�1, et) (1)

where ht is the concatenation of the hidden states
from both forward and backward LSTMs. After
encoding this sentence, we make labeling deci-
sions for each word. Instead of modeling the deci-
sions independently, the CRF layer computes the
conditional probability p(y|h;W,b) over all pos-
sible label sequences y given h as follows:

p(y|h;W,b) =

Qn
i=1  i(yi�1, yi,h)P

y02Y

Qn
i=1  i(y0

i�1, y
0
i,h)

(2)

where  i(yi�1, yi,h) = exp(wThi + b) is the po-
tential function and Y is the set of possible label
sequences. The training objective is to maximize
the conditional likelihood of the golden label se-
quence. During testing, we search for the label
sequence with the highest conditional probability.

2.2 Transferring Representations Learned
from Large Corpus

Due to the large parameter space, neural models
usually require much more training data in order
to achieve good performance. However, to the best
of our knowledge, nearly all existing discourse
segmentation corpora are limited in size. After we
remove all the syntactic features, which has been
proven useful in many previous work (Bach et al.,
2012; Feng and Hirst, 2014; Joty et al., 2015), it’s
expected that our neural model will not achieve
very satisfying results.

To tackle this issue, we propose to leverage
model learned from other large datasets, aiming
that this transferred model has been well trained

963



to encode text and capture useful signals. Instead
of training the transferred model by ourselves, in
this paper, we adopt the ELMo word representa-
tions (Peters et al., 2018), which are derived from
a bidirectional language model (BiLM) trained on
one billion word benchmark corpus (Chelba et al.,
2014). Specifically, this BiLM has one charac-
ter convolution layer and two biLSTM layers, and
correspondingly there are three internal represen-
tations for each word xt, which are denoted as
{hLM

t,l }3
l=1. Following (Peters et al., 2018), we

compute the ELMo representation rt for word xt

as follows:

rt = �LM
X3

l=0
sLM
l hLM

t,l (3)

where sLM are normalized weights and �LM con-
trols the scaling of the entire ELMo vector. Then
we concatenate rt with the word embedding et,
and take them as the input of Equation (1).

2.3 Restricted Self-Attention
As we have introduced in Section 1, some EDU
boundaries rely on relatively long-distance sig-
nals to recognize, while normal LSTM model is
still weak at this. Recently, self-attention mecha-
nism, which relates different positions of a single
sequence, has been successfully applied to many
NLP tasks (Vaswani et al., 2017; Wang et al.,
2017) and shows its superiority in capturing long
dependency. However, we found that most bound-
aries are actually only influenced by nearby EDUs,
thereby forcing the model to attend to the whole
sequence will bring in unnecessary noises. There-
fore, we propose a restricted self-attention mech-
anism, which only collects information from a
fixed neighborhood. To do this, we first compute
the similarity between current word xi and each
nearby word xj within a window:

si,j = wT
attn[hi,hj ,hi � hj ] (4)

Then the attention vector ai is computed as a
weighted sum of nearby words:

↵i,j =
esi,j

PK
k=�K esi,i+k

(5)

ai =
XK

j=�K
↵i,i+khi+k (6)

where hyper-parameter K is the window size.
This attention vector ai is then put into another

BiLSTM layer together with hi in order to fuse
the information:

h̃t = BiLSTM(h̃t�1, [ht,at]) (7)

We use h̃t as the new input to the CRF layer.

3 Experiments and Results

3.1 Dataset and Metrics
We conduct experiments on the RST Discourse
Treebank (RST-DT) (Carlson et al., 2001). The
original corpus contains 385 Wall Street Journal
articles from the Penn Treebank, which are di-
vided in to training set (347 articles, 6132 sen-
tences) and test set (38 articles, 991 sentences).
We randomly sample 34 (10%) articles from the
train set as validation set in order to tune the hyper-
parameters and only train our model on the re-
mained train set. We follow mainstream studies
(Soricut and Marcu, 2003; Joty et al., 2015) to
measure segmentation accuracy only with respect
to the intra-sentential segment boundaries, and we
report Precision (P), Recall (R) and F1-score (F1)
for segmentation performance.

3.2 Implementation Details
We tune all the hyper-parameters according to the
model performance on the separated validation
set. The 300-D Glove embeddings (Pennington
et al., 2014) are employed and kept fixed during
training. We use the AllenNLP toolkit (Gardner
et al., 2018) to compute the ELMo word represen-
tations. The hidden size of our model is set to be
200 and the batch size is 32. L2 regularization
is applied to trainable variables with its weight as
0.0001 and we use dropout between every two lay-
ers, where the dropout rate is 0.1. For model train-
ing, we employ the Adam algorithm (Kingma and
Ba, 2014) with its initial learning rate as 0.0001
and we clip the gradients to a maximal norm 5.0.
Exponential moving average is applied to all train-
able variables with a decay rate 0.9999. The win-
dow size K for restricted attention is set to be 5.

3.3 Performance
The results of our model and other competing sys-
tems on the test set of RST-DT are shown in Table
2. We compare our results against the following
systems: (1) SPADE (Soricut and Marcu, 2003)
is an early system using simple lexical and syn-
tactic features; (2) NNDS (Subba and Di Eugenio,
2007) uses a neural network classifier to do the
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Model Tree P(%) R(%) F1(%)
SPADE Gold 84.1 85.4 84.7
NNDS Gold 85.5 86.6 86.0

CRFSeg Gold 92.7 89.7 91.2
Reranking Gold 93.1 94.2 93.7
CRFSeg Stanford 91.0 87.2 89.0
CODRA BLLIP 88.0 92.3 90.1

Reranking Stanford 91.5 90.4 91.0
Two-Pass BLLIP 92.8 92.3 92.6

Our Model No 92.9 95.7 94.3
- Attention No 92.4 94.8 93.6

- ELMo No 87.9 84.5 86.2
- Both No 87.0 82.8 84.8
Human No 98.5 98.2 98.3

Table 2: Performance of our model and other systems
on the RST-DT test set 3

segmentation after extracting features; (3) CRF-
Seg (Hernault et al., 2010) is the first discourse
segmenter using CRF model; (4) CODRA (Joty
et al., 2015) uses fewer features and a simple lo-
gistic regression model to achieve impressive re-
sults; (5) Reranking (Bach et al., 2012) reranks
the N-best outputs of a base CRF segmenter; (6)
Two-Pass (Feng and Hirst, 2014) conducts a sec-
ond segmentation after extracting global features
from the first segmentation result. All these meth-
ods rely on tree features and we list their perfor-
mance given different parse trees, where Gold are
the trees extracted from the Penn Treebank (Prasad
et al., 2005), Stanford represents trees from the
Stanford parser (Klein and Manning, 2003) and
BLLIP represents those from the BLLIP parser
(Charniak and Johnson, 2005). It should be noted
that the results of SPADE and CRFSeg are taken
from Bach et al. (2012) since the original papers
adopt different evaluation metrics. All the other
results are taken from the corresponding original
papers.

From Table 2, we can see that our model
achieves state-of-the-art performance without ex-
tra parse trees. Especially, if no gold parse trees
are provided, our system outperforms other meth-
ods by more than 1.7 points in F1 score. Since the
gold parse trees are not available when processing
new sentences, this improvement becomes more
valuable when the system is put into use.

3In parallel with our work, Li et al. (2018) proposes an-
other neural model with its performance as: P-91.6, R-92.8,
F1-92.2. We didn’t see their paper at the time of submission,
but it’s worth mentioning here for the readers’ reference.

System Speed (Sents/s) Speedup
Two-Pass 1.39 1.0x
SPADE 3.78 2.7x

Ours (Batch=1) 9.09 6.5x
Ours (Batch=32) 76.23 54.8x

Table 3: Speed comparison with two open-sourced dis-
course segmenter

To further explore the influence of different
components in our model, we also report the re-
sults of ablation experiments in Table 2. We can
see that the transferred ELMo representations pro-
vide the most significant improvement. This ac-
cords with our assumption that the RST-DT cor-
pus itself is not large enough to train an expres-
sive neural model sufficiently. With the help of the
transferred representations, we are capable of cap-
turing more semantic and syntactic signals. Also,
comparing the models with and without the re-
stricted self-attention, we find that this attention
mechanism can further boost the performance. Es-
pecially, if there are no ELMo vectors, the im-
provement provided by the attention mechanism
is more noticeable.

3.4 Speed Comparison

We also measure the speedup of our model against
traditional systems in Table 3. The Two-Pass sys-
tem has the best performance among all existing
methods, while SPADE is much simpler with less
features. We test these systems on the same ma-
chine (CPU: Intel Xeon E5-2690, GPU: NVIDIA
Tesla P100). The results show that our system is
2.4-6.5 times faster than the compared systems if
the batch size is 1. Moreover, if we process the
test sentences in parallel, we can achieve 20.2-
54.8 times speedup with the batch size as 32. This
makes our system more practical in actually use.

3.5 Effect of Restricted Self-Attention

We propose to restrict the self-attention within a
neighborhood instead of the whole sequence. Ta-
ble 4 demonstrates the performance of our model
over different window size K. We can see that
all these results is better than the performance our
model without attention mechanism. However, a
proper restriction window is helpful for the atten-
tion mechanism to take better effect.
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Window Size 1 5 10 1
F1-score 94.0 94.3 94.2 93.8

Table 4: Performance of our model over different at-
tention window size

4 Conclusion

In this paper, we propose a neural discourse seg-
menter that can segment text fast and accurately.
Different from previous methods, our segmenter
doesn’t rely on any hand-crafted features, espe-
cially the syntactic parse tree. To achieve our goal,
we propose to leverage the word representations
learned from large corpus and we also propose a
restricted self-attention mechanism. Experimen-
tal results on RST-DT show that our system can
achieve state-of-the-art performance together with
significant speedup.
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Abstract

Video content on social media platforms con-
stitutes a major part of the communication be-
tween people, as it allows everyone to share
their stories. However, if someone is unable to
consume video, either due to a disability or net-
work bandwidth, this severely limits their par-
ticipation and communication. Automatically
telling the stories using multi-sentence descrip-
tions of videos would allow bridging this gap.
To learn and evaluate such models, we intro-
duce VideoStory, a new large-scale dataset for
video description as a new challenge for multi-
sentence video description. Our VideoStory
captions dataset is complementary to prior
work and contains 20k videos posted publicly
on a social media platform amounting to 396
hours of video with 123k sentences, tempo-
rally aligned to the video.

1 Introduction

Telling stories about what we experience is a cen-
tral part of human communication (Mateas and Sen-
gers, 2003). Increasingly, stories about our experi-
ences are captured in the form of videos and then
shared on social media platforms. One goal of auto-
matically understanding and describing such videos
with natural language is to generate multi-sentence
descriptions which convey the story, making them
accessible to situationally (e.g. bandwidth) or phys-
ically (“blind”) disabled people. However, it is still
a challenge for vision and language models to auto-
matically encode and describe temporal content in
videos with multi-sentence descriptions (Rohrbach
et al., 2014; Zhou et al., 2018b). To better under-
stand the stories shared on social media we collect
and annotate a novel dataset consisting of videos
from a social media platform. Importantly, we
collect descriptions containing multiple sentences,

⇤*Work done while SG was intern at Facebook AI Re-
search.

as single sentences would typically not be able to
capture the narration and plot of the video.

We introduce a large-scale multi-sentence de-
scription dataset for videos. To build a dataset
of high quality, diverse and narratively interesting
videos, we choose videos that had high engage-
ment on a social media platform. Existing video
captioning datasets, such as ActivityNet Captions
(Krishna et al., 2017) or cooking video datasets
(Regneri et al., 2013; Zhou et al., 2018a), have
focused on sets of pre-selected human activities,
whereas social media videos contain a great diver-
sity of topics. Videos with high engagement tend
to be narratively interesting, because humans find
very predictable videos less enjoyable, meaning
that captioning of the videos accurately requires
integrating information from the entire video to
describe a sequence of events (see Figure 1). To-
gether, this creates a diverse and challenging new
benchmark for video and language understanding.

We present a thorough analysis of the new bench-
mark, demonstrating that linguistic and video con-
text is crucial to accurate captioning and that the
captions have a temporal consistency. We also
show baseline results using state-of-the-art models.

2 Multi-Sentence VideoStory Dataset

In Table 1 we summarize existing video descrip-
tion datasets; most provide only single-sentence
descriptions or are restricted to narrow domains.
Other multi-sentence description datasets are pro-
posed for story narration of sets of images taken
from a Flickr album (Huang et al., 2016; Krause
et al., 2017). Other related work includes visual
summarization of Flickr photo albums (Sigurds-
son et al., 2016a) or videos (De Avila et al., 2011;
Zhang et al., 2016) where the idea is to pick the
key images or frames that summarize the visual
content.
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Two little girls are 
riding on the horse 
backs.

One of the horses starts to 
wallow in the puddle, throwing 
the girl into the muddy water.

The little girl is getting a hold of 
herself, the girl on the other horse 
continues to laugh at the whole 
incident.

A dog joins her in the 
puddle, while the horse 
stands up and shakes off 
the water on it.

She then smiles 
and grabs the 
horse.

The man who walked her 
down the aisle steps 
away towards the side of 
the room as the couple 
take each others arms.

A large group of people 
have gathered inside of 
a room for a wedding.

A woman walks down 
the aisle with a man 
slowly as people watch.

The two of them get 
to the end of the 
aisle where a groom 
stands waiting.

The man shakes hands 
with the groom and 
gives the woman a kiss 
on her forehead.

Figure 1: Example videos and multi-sentence description in our VideoStory Dataset showing temporally,
overlapping time alignments. Each segment has time boundaries annotated and is described by a sentence.

Dataset Domain # videos:clips Avg.D #ActL #sent Loc multi-sent. overlap
MSVD (Chen and Dolan, 2011) human :2k 10s - 70k X - -
MSR-VTT (Xu et al., 2016) open 7k:10k 20s - 200k X - -
Charades (Sigurdsson et al., 2016b) human 10k: 30s 157 16.1k - X -
YouCook (Das et al., 2013) cooking 88:- 95s 2.7k X - -
VTW (Zeng et al., 2016) open 18k:- 90s - 45k - X -
TGIF (Li et al., 2016) open :100k 3s - 128k X - -
MPII MD (Rohrbach et al., 2015) movie 94:68k 4s - 68.3k X (X) (X)
M-VAD (Torabi et al., 2015) movie 92:46k 6s - 55.9k X (X) (X)
LSMDC (Rohrbach et al., 2017) movie 200:128k 4s - 128.1k X (X) (X)
TACoS (Regneri et al., 2013) cooking 127:3.5k 286s: 11.8k X X -
TACos multi-level (Rohrbach et al., 2014) cooking 185:25k 307s: 67 75k X X -
Youcook II (Zhou et al., 2018a) cooking 2k:15.4 316:19.6s - 15.4k X X -
ActivityNet Captions (Krishna et al., 2017) human activity 20k:100k 180:36s 203 100k X X X

VideoStory (Ours) social media 20k:123k 70:18s - 123k X X X

Table 1: Comparison of our dataset with other video description datasets. Avg.D: Average duration of
the video/clip. #ActL: No. of action labels. Loc: temporally localized language descriptions; multi-sent:
multi-sentence descriptions; overlap: allows overlap among segments. (X) indicates datasets with multiple
sentences, however they are mainly used to generate individual clip descriptions.

We select videos posted on a social media plat-
form to create our dataset because of the variability
in topics, length, viewpoints, and quality. They
also tend to represent a good distribution of sto-
ries communicated by humans. We select videos
from social media that are public and popular with
a large number of comments and shares that trig-
gered interactions between people. In total, our
dataset consists of 20k videos with duration rang-
ing from 20s-180s and spanning across diverse top-
ics that are observed on social media platforms. We
follow Krishna et al. (2017) to create temporally
annotated sentences where each task is divided into
two steps: (i) describing the video in multiple sen-
tences, covering objects, situations and important

details of the video; (ii) aligning each sentence in
the paragraph with the corresponding timestamps
in the video. We refer to these as video segments.
In Figure 1, we present two example annotated
videos describing (i) a scene where two girls are
playing with horses; (ii) a wedding with a bride
walking down the aisle.

We summarize the statistics of our dataset in
Table 2 and compare it to prior work in Table 1.
Each of the 20k videos in our VideoStory dataset is
annotated with a paragraph which has on average
4.67 temporally localized sentences. As we have
three paragraphs per video for validation and test
set, we have a total of 26,245 paragraphs with a to-
tal of 123k sentences. Each sentence in the dataset
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Split #Videos #Clips #Para #W/P Original shuffled
train 17,098 80,598 17,098 61.76 - -
val 999 13,796 2,997 59.88 20.95 24.82
test 1,011 14,093 3,033 59.77 21.12 24.95
test blind 1,039 14,139 3,117 69.45 23.81 27.99
total 20,147 122,626 26,245 62.23 - -

Table 2: VideoStory dataset: Dataset statistics (#V:
No.of unique videos. #Para: No.of unique para-
graphs. #W/P: Average number of words per para-
graph.) and perplexity scores for original and shuf-
fled sentences.

has an average length of 13.32 words, and each
video has the average paragraph length of 62.23
words. Each sentence is aligned to a clip of on
average 18.33 seconds which covers on average
26.04% of the full video. However, the entire para-
graph for each video on average describes 96.7%
of the whole video, demonstrating that each para-
graph annotation covers the majority of the video.
Furthermore, we found that 22% of the temporal
descriptions overlap, showing that our annotation
allows co-occurring or simultaneous events. We
divide our dataset in training (17098 videos), vali-
dation (999), test (1011) and blind test splits (1039).
Each video in the training set has a single annota-
tion, but videos in validation, test, and blind test
splits have three temporally localized paragraph
annotations, for evaluation. While the test set can
be used to compare model variants in a paper, only
the best model per paper should be evaluated on
the blind test set annotations, which will only be
possible on an evaluation server. Annotations for
the blind test set will not be released.

To explore the different domains in our dataset
vs. ActivityNet captions we use the normalized
pointwise mutual information to identify the words
most closely associated with each dataset. High-
est ranked words for ActivityNet are almost exclu-
sively sports related, whereas in our dataset they
include animals, baby, and words related to social
events such as weddings. Most dominant actions in
ActivityNet are either sports or household activity
related whereas actions in our dataset are related to
social activities such as laughing, waving, cheering
etc. Our analysis of the distribution of POS cate-
gories show that nouns are the most dominant cate-
gory observed in the VideoStory captions dataset
with 24% of the total tokens followed by verbs
(18.5%), determiners (15.9%), adjectives (4.36%),
adverbs (5.16%) and propositions (5.04%). We

start end
Figure 2: Distribution of annotations in time in
VideoStory dataset. Most of the videos have major-
ity of it annotated except the first few and last few
seconds—which, in our analysis, correlated with
the page/logo information.

also observe the similar distribution of POS cate-
gories in ActivityNet captions.

We also find that ActivityNet has 50% of the
videos where at least one segment in the video
describes more than half of the video duration
whereas in our dataset only 30% of videos have
that phenomenon. In Figure 2, we show the dis-
tribution of sentence/segment annotations in time.
The average number of (temporally localized) sen-
tences is 4.67 compared to 3.65 in ActivityNet,
despite having shorter videos, indicating the high
information content of our videos.

In Table 3 we present all three paragraph
annotations for a video showing a wedding
ceremony. Out of 3 annotations, Annotation
2 is more descriptive compared to 1 and 3.
However, it misses details about the presence of
the photographer and taking the pictures.

Temporal Analysis. High quality video descrip-
tions are more than bags of single-sentence cap-
tions; they should tell a coherent story. To identify
the importance of sentence ordering or temporal
coherence in our video paragraphs, we train a neu-
ral language model (Merity et al., 2017) on the
training paragraphs of the VideoStory dataset and
report perplexity on the correct order of sentences
vs. randomly shuffled order of sentences in the
descriptions created to understand the importance
of temporal coherence in the video descriptions of
our dataset. Results in Table 2 show that shuffled
sentences have higher perplexity scores, demon-
strating that order of sentences in the paragraphs
are important for the coherence in the story.

3 Baseline Captioning Models

We explore learning to caption the videos using
ground truth video segments.

Image Captioning Models. To understand if the
temporal component of the video is contributing
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Annotation 1: A bride walks down the aisle to her waiting bridegroom. As the bride walks, a photographer captures
photos. At the end of the aisle the man giving the bride away shakes hands and hugs the bridegroom. The bride and
bridegroom then interlock arms and face forward together.
Annotation 2: A large group of people have gathered inside of a room for a wedding. A woman walks down the aisle
with a man slowly as people watch. The two of them get to the end of the aisle where a groom stands waiting.The man
shakes hands with the groom and gives the woman a kiss on her forehead. The man who walked her down the aisle steps
away towards the side of the room as the couple take each others arms.
Annotation 3: A groom is standing at the end of an aisle as a photographer takes a photo. The bride and father then
come into view and walk down the aisle to the waiting groom. They stop at the grooms spot and the bride’s father then
shakes the grooms hand and gives a hug and walks to his spot. The groom then holds arms with the bride to begin the
wedding ceremony.

Table 3: Example video description annotations in our VideoStory set. Each video has multiple paragraphs
and localized time-interval annotations for every sentence in the paragraph.

to the description, we trained image captioning
models on a frame sampled from the middle of the
each segment of a video. We use the Show and Tell
(Vinyals et al., 2015) image captioning architecture
to generate captions.
Video Captioning Models. We study various
video captioning models. First, we use sequence to
sequence (seq-seq) recurrent neural network (RNN)
model which has a two-layer encoder RNN to en-
code video features and a decoder RNN to generate
descriptions. In the seq-seq approach we treat each
description/segment individually and use an RNN
decoder to describe each segment of the video, sim-
ilar to Venugopalan et al. (2015), but using Gated
Recurrent Units, GRUs, (Cho et al., 2014) for both
the encoder and decoder.

In most videos, events are correlated with pre-
vious and future events. For example, for the first
video description shown in Figure 1 once the girl
is thrown into the water, she gets hold of herself,
and the horse shakes off water on her. To capture
such contextual correlations, we incorporate con-
text from previous segment description into the cap-
tioning module. We build a model (seq-seq + con-
text) which takes current segment video features
and hidden representation of previous segment’s
sentence generation RNN at every timestamp in the
decoder. For a given video segment, with hidden
encoded video representation hv

i and hidden repre-
sentation of previous segment hs

i�1, the concatena-
tion of (hv

i , hs
i�1) is fed as input to the decoder that

describes the segment (shown in Figure 3). Prior
work has shown using previous video context has
improved generated captions (Krishna et al., 2017).
Visual representation. For the image caption-

Proposals

3D 
CNN

hs

<start>

a man standing .

h1

hs

<start>

a woman walking .

h2

...

a

a

Figure 3: Our seq-seq+context model

ing models, we used features extracted from pre-
trained ResNet-152 on ImageNet (He et al., 2016).
For video captioning models we extract features
from pre-trained 3D convolution ResNext-101 ar-
chitecture trained on Kinetics (Kay et al., 2017),
denoted as R3D, which achieved state-of-the-art
results on various activity recognition tasks (Hara
et al., 2018). Since a significant percentage of our
videos has objects other than humans (e.g., animals)
we also experiment with image-video fusion fea-
tures(denoted by RNEXT, R3D) i.e., concatenation
of ResNext-101 features extracted from pre-trained
ImageNet with R3D features described above. We
extract image features from the same frames which
were used to extract R3D features.

4 Experiments and Results

For every segment, we set the maximum number
of the sequence of features to 120 (i.e., 16X120
frames from the video) and maximum sentence
length to 30. We trained using Adam optimizer
with learning rate 0.0001. We use GRU as recur-
rent architecture to encode frames and decode cap-
tions with 512 dimensional hidden representation.
We measure the captioning performance with most
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GT (Ground Truth):
A baby is playing outside with two dogs.
The baby rolls the ball and the dog brings the ball back to the baby.
The baby tosses the ball again and again for the dogs.
One of the dogs walk away but the other stays and plays with the baby.

I (Image):
The dog is standing on the bed .
The dog is looking at the dog .
The dog is walking on the ground .
The dog is walking around the room .

seq-seq (RNEXT,R3D):
A dog is walking in the water with a baby .
The dog runs up and down the water .
The dog runs up and down the slide .
A baby is walking around the house with a baby .

seq-seq+context (RNEXT,R3D):
A dog is standing in the middle of a house .
The dog runs around the room and the dog jumps up and down .
The dog is walking on the floor and the dog walks away .
the girl runs around the house and the other dog runs away .

Table 4: Qualitative results: Descriptions generated by all variations of our baseline models.

visual feat
Model frame,video B-3 B-4 M R C
I (single-frame) RN-152, – 1.99 0.52 7.87 18.99 23.00
seq-seq –,R3D 2.33 0.60 8.33 19.59 26.48
seq-seq + context – ,R3D 2.78 0.78 9.20 21.24 30.80
seq-seq RNEXT,R3D 2.63 0.79 8.44 19.89 27.64
seq-seq + context RNEXT,R3D 3.37 1.20 9.37 21.52 33.88
trained on ActivityNet Captions
seq-seq + context RNEXT,R3D 1.68 0.49 8.48 19.40 22.12

Table 5: Captioning results from VideoStory
Dataset using ground-truth test video segments.
We report BLEU (B) and METEOR (M), ROUGE-
L(R) and CIDEr (C). Best scores are in bold.

commonly-used evaluation metrics: BLEU{3,4},
METEOR, ROUGE-L, and CIDEr following previ-
ous works of image and video captioning (Papineni
et al., 2002; Lin, 2004; Banerjee and Lavie, 2005;
Vedantam et al., 2015).

In Table 5, we present the performance of our
baseline models on VideoStory test dataset. We
observe that models that consider context (seq-
seq+context) from the previously generated sen-
tence have better performance than the correspond-
ing models without context (seq-seq), with both
3D convolution based features (R3D) as well as
image-video fusion features (RNEXT,R3D). This
indicates that our model benefited from contextual
information, and that sentences in our stories are
contextual, rather than independent.

To validate the strength of our baseline model,
we train our best performing model on ActivityNet
Captions. It achieves 10.92 (METEOR) and 43.42
(CIDEr) on the val set, close to state-of-the-art re-
sults of 11.06 and 44.71 by Zhou et al. (2018b),
indicating that it is a strong baseline. However,
when evaluating our ActivityNet model on our
VideoStory dataset (Table 5, last row), we see sig-
nificantly lower performance compared to a model
trained on our dataset, highlighting the complemen-
tary nature of our dataset.

Our image only (single frame) model has the
lowest scores across all metrics suggesting that a
single image is not enough to generate contextual
descriptions. We observed that our fusion models
consistently outperform models with video-only
R3D features, indicating features extracted using
pre-trained ImageNet complement activity based
R3D features. We show qualitative results from the
variants of our models in Table 4. We observe that
single frame models tend to repeat same captions
and seq-seq model without context repeats phrases
in the descriptions.

5 Conclusions

This paper introduces a dataset which we sourced
from videos on social media and annotated with
multi-sentence descriptions. We benchmark strong
baseline approaches on the dataset, and our eval-
uations show that our dataset is complementary
from prior work due to more diverse topics and
the selection of engaging videos which tell a story.
Our VideoStory dataset can serve as a good bench-
mark to build models for story understanding and
multi-sentence video description.
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Abstract
Visual reasoning is a special visual ques-
tion answering problem that is multi-step and
compositional by nature, and also requires
intensive text-vision interactions. We pro-
pose CMM: Cascaded Mutual Modulation as
a novel end-to-end visual reasoning model.
CMM includes a multi-step comprehension
process for both question and image. In each
step, we use a Feature-wise Linear Modula-
tion (FiLM) technique to enable textual/visual
pipeline to mutually control each other. Ex-
periments show that CMM significantly out-
performs most related models, and reach state-
of-the-arts on two visual reasoning bench-
marks: CLEVR and NLVR, collected from
both synthetic and natural languages. Ab-
lation studies confirm that both our multi-
step framework and our visual-guided lan-
guage modulation are critical to the task.
Our code is available at https://github.
com/FlamingHorizon/CMM-VR.

1 Introduction
It is a challenging task in artificial intelligence to
perform reasoning with both textual and visual in-
puts. Visual reasoning task is designed for re-
searches in this field. It is a special visual ques-
tion answering (VQA) (Antol et al., 2015) prob-
lem, requiring a model to infer the relations be-
tween entities in both image and text, and gen-
erate a textual answer to the question correctly.
Unlike other VQA tasks, questions in visual rea-
soning often contain extensive logical phenomena,
and refer to multiple entities, specific attributes
and complex relations. Visual reasoning datasets
such as CLEVR (Johnson et al., 2017a) and NLVR
(Suhr et al., 2017) are built on unbiased, synthetic
images, with either complex synthetic questions
or natural-language descriptions, facilitating in-
depth analyses on reasoning ability itself.

* Corresponding Author

Figure 1: Connections and differences between
previous “program-generating” works and our
model: other models generate/control multi-step
image-comprehension processes with single question
representation, while we put more attention on lan-
guage logics and let multi-modal information modulate
each other in each step. The question and image are
taken as a visual-reasoning example from CLEVR
dataset.

Most previous visual reasoning models focus on
using the question to guide the multi-step comput-
ing on visual features (which can be defined as a
image-comprehension “program”). Neural Mod-
ule Networks (NMN) (Andreas et al., 2016a,b)
and Program Generator + Execution Engine
(PG+EE) (Johnson et al., 2017b) learn to com-
bine specific image-processing modules, guided
by question semantics. Feature-modulating meth-
ods like FiLM (De Vries et al., 2017; Perez et al.,
2018) control image-comprehension process using
modulation-parameters generated from the ques-
tion, allowing models to be trained end-to-end.
However, the image-comprehension program in
visual reasoning tasks can be extremely long and
sophisticated. Using a single question represen-
tation to generate or control the whole image-
comprehension process raises difficulties in learn-
ing. Moreover, since information comes from
multiple modalities, it is not intuitive to assume
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that one (language) is the “program generator”,
and the other (image) is the “executor”. One way
to avoid making this assumption is to perform
multiple steps of reasoning with each modality
being generator and executor alternately in each
step. For these two reasons, we propose Cascaded
Mutual Modulation (Figure 1), a novel visual rea-
soning model to solve the problem that previous
“program-generating” models lack a method to
use visual features to guide multi-step reasoning
on language logics. CMM reaches state-of-the-
arts on two benchmarks: CLEVR (complex syn-
thetic questions) and NLVR (natural-language).

2 Related Work

Perez et al. (2018) proposed FiLM as an end-
to-end feature-modulating method. The orig-
inal ResBlock+GRU+FiLM structure uses sin-
gle question representation, and conditions all
image-modulation-parameters on it, without suf-
ficiently handling multi-step language logics. In
contrast, we modulate both image and language
features alternately in each step, and condition
the modulation-parameters on the representations
from previous step. We design an image-guided
language attention pipeline and use it in combina-
tion with FiLM in our CMM framework, and sig-
nificantly outperform the original structure.

Other widely-cited works on CLEVR/NVLR
include Stacked Attention Networks (SAN) (Yang
et al., 2016), NMN (Andreas et al., 2016b),
N2NMN (Hu et al., 2017), PG+EE (Johnson et al.,
2017b) and Relation Networks (RN) (Santoro
et al., 2017). The recent CAN model (Hudson
and Manning, 2018) also uses multiple question
representations and has strong performances on
CLEVR. However, these representations are not
modulated by the visual part as in our model.

In other VQA tasks, DAN (Nam et al., 2017)
is the only multi-step dual framework related to
ours. For comparison, in every time step, DAN
computes textual and visual attention in parallel
with the same key-vector, while we perform tex-
tual attention and visual modulation (instead of at-
tention) in a cascaded manner.

3 Model

We review and extend FiLM in Section 3.1-3.2,
and introduce CMM model in Section 3.3-3.4.

3.1 Visual Modulation

Perez et al. (2018) proposed Feature-wise Linear
Modulation (FiLM), an affine transformation on
intermediate outputs of a neural network (v stands
for visual):

F iLMv(Fi,c|�i,c, �i,c) = �i,cFi,c + �i,c, (1)

where Fi,c is the c-th feature map (C in to-
tal) generated by Convolutional Neural Networks
(CNN) in the i-th image-comprehension step.
Modulation-parameters �i,c and �i,c can be condi-
tioned on any other part of network (in their work
the single question representation q). If the output
tensor Vi of a CNN block is of size C ⇥ H ⇥ W ,
then Fi,c is a single slice of size 1⇥H⇥W . H and
W are the height and width of each feature map.

Unlike (Perez et al., 2018), in each step i, we
compute a new question vector qi. Modulation-
parameters �i and �i (C ⇥ 1 vectors, �i =
[�i,1, ...,�i,C], etc.) are conditioned on the previ-
ous question vector qi�1 instead of a single q:

�i, �i = MLP i(qi�1). (2)

MLP stands for fully connected layers with lin-
ear activations. The weights and biases are not
shared among all steps.

3.2 Language Modulation

In each step i, we also apply FiLM to modulate
every language “feature map”. If the full question
representation is a D ⇥ T matrix, a question “fea-
ture map” fi,d is defined as a 1 ⇥ T vector gather-
ing T features along a single dimension. D is the
hidden-state dimension of language encoder, and
T is a fixed maximum length of word sequences.

F iLM l(fi,d|�i,d, �i,d) = �i,dfi,d + �i,d, (3)

where l stands for language. Concatenated
modulation-parameters �i and �i (D ⇥ 1) are con-
ditioned on the visual features Vi computed in the
same step:

�i, �i = gm(Vi), (4)

where gm (Section 3.4) is an interaction func-
tion that converts 3-d visual features to language-
modulation-parameters. The weights in gm are
shared among all N steps.
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Figure 2: Details in CMM step i (middle), with a modulated ResBlock (right) and a modulated textual attention
pipeline (top). Visual and textual features modulate each other in each step to compute new representations.

3.3 Cascaded Mutual Modulation

The whole pipeline of our model is built up with
multiple steps. In each step i (N in total), previous
question vector qi�1 and the visual features Vi�1

are taken as input; qi and Vi are computed as out-
put. Preprocessed questions/images are encoded
by language/visual encoders to form q0 and V0.

In each step, we cascade a FiLM-ed ResBlock
with a modulated textual-attention. We feed Vi�1

into the ResBlock modulated by parameters from
qi�1 to compute Vi, and then control the tex-
tual attention process with modulation-parameters
from Vi, to compute the new question vector qi.
(Figure 2, middle).

Each ResBlock contains a 1 ⇥ 1 convolution,
a 3 ⇥ 3 convolution, a batch-normalization (Ioffe
and Szegedy, 2015) layer before FiLM modula-
tion, followed by a residual connection (He et al.,
2016). (Figure 2, right. We keep the same Res-
Block structure as (Perez et al., 2018)). To be con-
sistent with (Johnson et al., 2017b; Perez et al.,
2018), we concatenate the input visual features
Vi�1 of each ResBlock i with two “coordinate
feature maps” scaled from �1 to 1, to enrich rep-
resentations of spatial relations. All CNNs in our
model use ReLU as activation functions; batch-
normalization is applied before ReLU.

After the ResBlock pipeline, we apply lan-
guage modulation on the full language features
{h1, ..., hT } (D ⇥ T ) conditioned on Vi and
rewrite along the time dimension, yielding:

ei,t = FiLM l(ht|gm(Vi)), (5)

and compute visual-guided attention weights:

↵i,t = softmaxt(W
att
i ei,t + batt

i ), (6)

and weighted summation over time:

qi =
TX

t=1

↵i,tht. (7)

In equation (6), W att
i 2 R

1⇥D and batt
i 2 R

1⇥1

are network weights and bias; ht is the t-th lan-
guage state vector (D ⇥ 1), computed using a bi-
directional GRU (Chung et al., 2014) from word
embeddings {w1, ..., wT }. In each step i, the lan-
guage pipeline does not re-compute ht, but re-
modulate it as ei,t instead. (Figure 2, top.)

3.4 Feature Projections
We use a function gp to project the last visual fea-
tures VN into a final representation:

ufinal = gp(VN ). (8)

gp includes a convolution with K 1 ⇥ 1 ker-
nels, a batch-normalization afterwards, followed
by global max pooling over all pixels (K = 512).

We also need a module gm (equation (4)) to
compute language-modulations with Vi, since Vi

is 3-d features (not a weighted-summed vector as
in traditional visual-attention). We choose gm to
have the same structure as gp, except that K equals
to the total number of modulation-parameters in
each step. This design is critical (Section 4.3).

We use a fully connected layer with 1024 ReLU
hidden units as our answer generator. It takes
ufinal as input, and predicts the most probable an-
swer in the answer vocabulary.
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Model Overall Count Exist Compare
Numbers

Query
Attribute

Compare
Attribute

Human 92.6 86.7 96.6 86.5 95.0 96.0
SAN (Yang et al., 2016) 76.7 64.4 82.7 77.4 82.6 75.4
N2NMN (Andreas et al., 2016a) 83.7 68.5 85.7 84.9 90.0 88.7
PG+EE-9K 88.6 79.7 89.7 79.1 92.6 96.0
PG+EE-700K (Johnson et al., 2017b) 96.9 92.7 97.1 98.7 98.1 98.9
RN (Santoro et al., 2017) 95.5 90.1 97.8 93.6 97.9 97.1
COG-model (Yang et al., 2018) 96.8 91.7 99.0 95.5 98.5 98.8
FiLM 97.7 94.3 99.1 96.8 99.1 99.1
FiLM-raw (Perez et al., 2018) 97.6 94.3 99.3 93.4 99.3 99.3
DDRprog (Suarez et al., 2018) 98.3 96.5 98.8 98.4 99.1 99.0
CAN (Hudson and Manning, 2018) 98.9 97.1 99.5 99.1 99.5 99.5
CMM-single (ours) 98.6 96.8 99.2 97.7 99.4 99.1
CMM-ensemble (ours) 99.0 97.6 99.5 98.5 99.6 99.4

Table 1: Accuracies on CLEVR test set. N2NMN and PG+EE need extra supervision to train with reinforcement
learning. FiLM-raw uses raw image as input (others use pre-extracted features). Another work (Mascharka et al.,
2018) gets 99.1% accuracy but uses strong program supervision, which is a totally different setting.

4 Experiments

We are the first to achieve top results on both
datasets (CLEVR, NLVR) with one structure. See
Appendix for more ablation and visualization re-
sults.

4.1 CLEVR

CLEVR (Johnson et al., 2017a) is a commonly-
used visual reasoning benchmark containing
700,000 training samples, 150,000 for validation
and test. Questions in CLEVR cover several typ-
ical elements of reasoning: counting, comparing,
querying the memory, etc. Many well-designed
models on VQA have failed on CLEVR, revealing
the difficulty to handle the multi-step and compo-
sitional nature of logical questions.

On CLEVR dataset, we embed the question
words into a 200-dim continuous space, and use a
bi-directional GRU with 512 hidden units to gen-
erate 1024-dim question representations. Ques-
tions are padded with NULL token to a maximum
length T = 46. As the first-step question vector in
CMM, q0 can be arbitrary RNN hidden state in the
set {h1, ..., hT } (Section 3.3). We choose the one
at the end of the unpadded question.

In each ResBlock, the feature map number C
is set to 128. Images are pre-processed with
a ResNet101 network pre-trained on ImageNet
(Russakovsky et al., 2015) to extract 1024 ⇥ 14 ⇥
14 visual features (this is also common practice on
CLEVR). We use a trainable one-layer CNN with
128 kernels (3⇥3) to encode the extracted features
into V0 (128 ⇥ 14 ⇥ 14). Convolutional paddings
are used to keep the feature map size to be 14⇥14
through the visual pipeline.

We train the model with an ADAM (Kingma
and Ba, 2014) optimizer using a learning rate of
2.5e-4 and a batch-size of 64 for about 90 epoches,
and switch to an SGD with the same learning rate
and 0.9 momentum, fine-tuning for another 20
epoches. SGD generally brings around 0.3 points
gains to CMM on CLEVR.

We achieve 98.6% accuracy with single model
(4-step), significantly better than FiLM and other
related work, only slightly lower than CAN, but
CAN needs at least 8 model-blocks for >98% (and
12 for best). We achieve state-of-the-art of 99.0%
with ensemble of 4/5/6 step CMM models. Table
1 shows test accuracies on all types of questions.
The main improvements over program-generating
models come from “Counting” and “Compare
Numbers”, indicating that CMM framework sig-
nificantly enhances language (especially numeric)
reasoning without sophisticated memory design
like CAN.

4.2 NLVR
NLVR (Suhr et al., 2017) is a visual reason-
ing dataset proposed by researchers in NLP field.
NLVR has 74,460 samples for training, 5,940 for
validation and 5,934 for public test. In each sam-
ple, there is a human-posed natural language de-
scription on an image with 3 sub-images, and re-
quires a false/true response.

We use different preprocessing methods on
NLVR. Before training, we reshape NLVR images
into 14 ⇥ 56 raw pixels and use them directly as
visual inputs V0. For language part, we correct
some obvious typos among the rare words (fre-
quency < 5) in the training set, and pad the sen-
tences to a maximum length of 26. Different from
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CLEVR, LSTM works better than GRU on the
real-world questions. For training, we use ADAM
with a learning rate of 3.5e-4 and a batch-size of
128 for about 200 epoches, without SGD fine-
tuning.

Our model (3-step, 69.9%) outperforms all pro-
posed models on both validation and public test
set, showing that CMM is also suitable for real-
world languages (Table 2).

Model Dev Test-P
Text only 56.6 57.2
Image only 55.4 56.1
CNN+RNN (Suhr et al., 2017) 56.6 58.0
NMN (Andreas et al., 2016b) 63.1 66.1
FiLM (our run) 59.0 61.3
CNN-BiAtt (Tan and Bansal, 2018) 66.9 69.7
CMM-3-steps (ours) 68.0 69.9

Table 2: Accuracies on valid and test set of NLVR.

4.3 Ablation Studies
We list CMM ablation results in Table 3. Abla-
tions on CLEVR show that CMM is robust to step
number but sensitive to gm structure because it’s
the key to multi-modal interaction. Section 3.4 is
temporarily a best choice. CMM performs over 7-
point higher than FiLM on NLVR in a setting of
same hyper-parameters and ResBlocks, showing
the importance of handling language logics (see
also difficult CLEVR subtasks in Table 1).

CLEVR NLVR
Model Val Model Dev Test-P
5-step 98.4 FiLM-hyp 59.0 61.3
6-step 98.4 1-step 65.3 66.9

gm-CNN 93.3 2-step 67.7 66.8
gm w/o BN 94.1 3-step 68.5 68.4

gm-NS 97.0 4-step 67.2 66.5
4-step 98.6 3-step-LSTM 68.0 69.9

Table 3: Ablation studies on CLEVR/NLVR. gm-CNN
means using 2-layer-CNN with 3 ⇥ 3 kernels, followed
by concatenation and MLP, as gm. BN means batch-
normalization in gm. NS means not sharing weights.
“FiLM-hyp” uses all the same hyper-parameters as the
3-step CMM (both use GRU as question encoder).

4.4 A Case Study
We select an image-question pair from the vali-
dation set of CLEVR for visualization. In Table
4, we visualize the multi-step attention weights on
question words, and the distribution of argmax po-
sition in the global max-pooling layer of gp (equiv-

According to NLVR rules, we will run on the unreleased
test set (Test-U) in the near future.

Words Block 1 Block 2 Block 3 Visual Attention Map
<START> 0.017 0.030 0.052

Is 0.006 0.048 0.501
there 0.010 0.041 0.299

a 0.006 0.031 0.015
big 0.008 0.031 0.001

brown 0.049 0.040 0.002
object 0.149 0.265 0.003

of 0.032 0.063 0.003
the 0.030 0.029 0.004

same 0.062 0.032 0.002
shape 0.345 0.152 0.007

as 0.233 0.031 0.001
the 0.000 0.005 0.004

green 0.003 0.014 0.004
thing 0.012 0.075 0.011

<END> 0.006 0.036 0.025

Table 4: Visualization of CMM intermediate outputs
on a sample from CLEVR validation set. We colour
the largest attention weight with dark gray, and top four
attention weights in the rest with light gray.

alent to the last visual “attention map” although
there isn’t explicit visual attention in our image-
comprehension pipeline). On the bottom right is
the original image, and on the top right is the dis-
tribution of argmax positions in the global max-
pooling, multiplied by the original image.

Our model attends to phrases “same shape as”
and “brown object” in the first two reasoning
steps. These phrases are meaningful because
“same shape as” is the core logic in the question,
and “brown object” is the key entity to generat-
ing the correct answer. In the last step, the model
attends to the phrase “is there”. This implicitly
classifies the question into question-type “exist”,
and directs the answer generator to answer “no” or
“yes”. The visual map, guided by question-based
modulation parameters, concentrates on the green
and brown object correctly.

The result shows that visual features can guide
the comprehension of question logics with textual
modulation. On the other hand, question-based
modulation parameters enable the ResBlocks to
filter out irrelative objects.

5 Conclusion

We propose CMM as a novel visual reasoning
model cascading visual and textual modulation
in each step. CMM reaches state-of-the-arts on
visual reasoning benchmarks with both synthetic
and real-world languages.
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Abstract
There is growing interest in the language de-
veloped by agents interacting in emergent-
communication settings. Earlier studies have
focused on the agents’ symbol usage, rather
than on their representation of visual input. In
this paper, we consider the referential games
of Lazaridou et al. (2017), and investigate the
representations the agents develop during their
evolving interaction. We find that the agents
establish successful communication by induc-
ing visual representations that almost perfectly
align with each other, but, surprisingly, do not
capture the conceptual properties of the ob-
jects depicted in the input images. We con-
clude that, if we are interested in develop-
ing language-like communication systems, we
must pay more attention to the visual seman-
tics agents associate to the symbols they use.

1 Introduction
There has recently been a revival of interests in
language emergence simulations involving agents
interacting in visually-grounded games. Unlike
earlier work (e.g., Briscoe, 2002; Cangelosi and
Parisi, 2002; Steels, 2012), many recent simula-
tions consider realistic visual input, for example,
by playing referential games with real-life pictures
(e.g., Jorge et al., 2016; Lazaridou et al., 2017;
Havrylov and Titov, 2017; Lee et al., 2018; Ev-
timova et al., 2018). This setup allows us to ad-
dress the exciting issue of whether the needs of
goal-directed communication will lead agents to
associate visually-grounded conceptual represen-
tations to discrete symbols, developing natural-
language-like word meanings. However, while
most studies present some analysis of the agents’
symbol usage, they pay little or no attention to the
representation of the visual input that the agents
develop as part of their evolving interaction.

We study here agent representations following
the model and setup of Lazaridou et al. (2017).

This is an ideal starting point, since it involves an
extremely simple signaling game (Lewis, 1969),
that is however played with naturalistic images,
thus allowing us to focus on the question of how
the agents represent these images, and whether
such representations meet our expectations for
natural word meanings. In their first game, Lazari-
dou’s Sender and Receiver are exposed to the
same pair of images, one of them being randomly
marked as the “target”. The Sender always sees
the target in the left position, and it must pick
one discrete symbol from a fixed vocabulary to
send to the Receiver. The Receiver sees the im-
ages in random order, together with the sent sym-
bol, and it tries to guess which image is the tar-
get. In case of success, both players get a pay-
off of 1. Since an analysis of vocabulary usage
brings inconclusive evidence that the agents are
using the symbols to represent natural concepts
(such as beaver or bayonet), Lazaridou and col-
leagues next modify the game, by presenting to
the Sender and the Receiver different images for
each of the two concepts (e.g., the Sender must
now signal that the target is a beaver, while see-
ing a different beaver from the one shown to the
Receiver). This setup should encourage concept-
level thinking, since the two agents should not
be able to communicate about low-level percep-
tual characteristics of images they do not share.
Lazaridou and colleagues present preliminary evi-
dence suggesting that, indeed, agents are now de-
veloping conceptual symbol meanings. We repli-
cate Lazaridou’s games, and we find that, in both,
the agents develop successfully aligned represen-
tations that, however, are not capturing conceptual
properties at all. In what is perhaps our most strik-
ing result, agents trained in either version of the
game succeed at communicating about pseudo-
images generated from random noise (Fig. 2). We
conclude that, if we want interactive agents to
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develop a vocabulary of words denoting natural
meanings, more attention must be paid to the way
in which they are representing their perceptual in-
put.

2 Experimental setup

Architecture We re-implement Lazaridou’s
Sender and Receiver architectures (using their
better-behaved “informed” Sender). Both agents
are feed-forward networks. The Sender takes
image representations as input, it projects them
into its own representational space, compares
them, and finally outputs a probability distribution
over vocabulary symbols, from which a single
discrete symbol is then sampled. We report here
results obtained with an output vocabulary of 100
symbols, but the same patterns were observed
using a range of sizes from 2 to 1, 000. The
Receiver takes as input the target and distractor
input image representations in random order, as
well as the symbol produced by the sender (as a
vocabulary-sized one-hot vector). It embeds the
images and the symbol into its own representa-
tional space, where it performs a symbol-to-image
comparison, producing a probability distribution
over the two images, one of which is selected by
sampling from this distribution. If the Receiver
selected the target image, a reward of 1 is assigned
to both agents. The whole architecture is jointly
trained by letting the agents play, and updating
their parameters with Reinforce (Williams, 1992).
See Lazaridou et al. (2017) for details.

Data Following Lazaridou et al. (2017), for each
of the 463 concepts they used, we randomly sam-
ple 100 images from ImageNet (Deng et al., 2009).
We construct 50, 000 mini-batches of 32 image
pairs during training and 1, 024 pairs for valida-
tion. We construct a held-out test set in the same
way by sampling 10 images per concept from Ima-
geNet (for 2 concepts, we were not able to assem-
ble enough further images), for a total of 4, 610.
We compute RSA scores (see below) on the cross-
product of these images. We also use the held-
out set to construct mini-batches of images pairs
to compute test performance. Following Lazari-
dou, the images are passed through a pre-trained
VGG ConvNet (Simonyan and Zisserman, 2015).
The input vector fed to the agents is the second-to-
last 4096-D fully connected layer1.

1We found very similar results with the top 1000-D soft-
max layer.

Games We re-implement both Lazaridou’s
same-image game, where Sender and Receiver
are shown the same two images (always of differ-
ent concepts), and their different-image game,
where the Receiver sees different images than
the Sender’s. We repeat all experiments using
100 random initialization seeds. As we faithfully
reproduced the setup of Lazaridou et al. (2017),
we refer the reader there for hyper-parameters and
training details.

3 Experiments

We first asked in which way playing the game af-
fects the way agents “see” the input data, that is,
in which way their image embeddings differ from
the input image representations, and from each
other. Concerning Sender and Receiver, a reason-
able expectation is that successful communication
implies a convergence of representations. How
should these representations relate to the input?
Recall that input representations are from one of
the top layers of a state-of-the-art ConvNet trained
on ImageNet concept categorization, and the top
layers of such networks are known to capture high-
level concept semantics (Zeiler and Fergus, 2014).
The game image pairs are always sampled from
different concepts. So, it would make sense for the
agents to simply learn to carry through the simi-
larity structure of the input space, in order to com-
municate about distinct concepts. Consequently,
we predicted that, as training proceeds, Sender
and Receiver representations will become closer
to each other, and to the input ones.

In order to compare the similarity structure of
input, Sender and Receiver spaces, we borrow
representational similarity analysis (RSA) from
computational neuroscience (Kriegeskorte et al.,
2008). Given two sets r1 and r2 of representa-
tions of the same item collection (e.g., r1 is the
collection of input images mapped in Sender em-
bedding space and r2 is the same collection rep-
resented by Receiver), we first compute s1 as all
possible pairwise (cosine) similarities between the
representations in r1, and s2 as those in r2. We
then compute the (Spearman) correlation between
the similarity vectors s1 and s2. This latter value,
which we will call RSA score, measures the global
agreement between s1 and s2, relative to the cho-
sen input collection. If N is the number of items
in the collection that we compute representations
for, both similarity vectors s1 and s2 are of length
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Figure 1: RSA scores of the two agents (⇢S/R), and
of each agent with the input (⇢S/I and ⇢R/I ), dur-
ing the first 10, 000 training games. S refers to
Sender, R to Receiver, I to input. Values remain
stable until end of training. Best viewed in color.

N(N � 1). Therefore, it is not necessary for rep-
resentations r1 and r2 to belong to the same space
(for example, in our case, input and agent vectors
have different dimensionality).

Figure 1 shows RSA and mean validation re-
ward (MVR) development curves for the cross-
validated best seed in the same-image game. At
the beginning of training, the RSA scores are non-
zeros, which is expected as the two agents archi-
tectures are similar and randomly initialized the
same way. They are also somewhat correlated
with the input, which we attribute to the fact that
untrained neural networks can already extract rel-
evant image features (Jarrett et al., 2009). As
training converges, Sender and Receiver similar-
ity spaces also converge. However, contrary to
our prediction, the agent similarity spaces are not
strongly correlated with the input visual space. We
note that, during the first few hundred games, the
Sender (green curve) aligns with the input, but
the Receiver (blue curve) does not. Therefore,
it seems that, in order to establish communica-
tion, the two agents have to drift from the input.
Indeed, when communication is successfully es-
tablished at the end of training,2 the two agents
have a RSA score of ⇢S/R = 0.98. However ei-
ther agent’s score with the input is a much lower
⇢S/I = ⇢R/I = 0.33.3 On the contrary, when the
agents fail to establish communication, by the end
of training their RSA score is just ⇢S/R = 0.39,
but they stay closer to the input (⇢S/I = 0.58 and

2We consider training successful if MVR � 80%.
3Values averaged over the 96 successful seeds.

⇢R/I = 0.42).4

The drift of the agents from input similarity
could be attributed to the characteristics of the
game they are playing. Since they are only asked
to distinguish between pictures of different con-
cepts, they have no incentive to keep different
instances of a concept distinct (if the agents are
never asked to distinguish one dog from another,
they might eventually become unable to tell dogs
apart). That is, we might be assisting to the in-
ception of a form of categorical perception (Gold-
stone and Hendrickson, 2010), whereby the agents
lose sensitivity to within-category differences. If
this is the case, we should observe that same-
concept image similarity is higher in Sender (or
Receiver) space with respect to input space. How-
ever, this turns out not to be the case. To the con-
trary, average pairwise same-concept similarity is
consistently lower in Sender space than in the in-
put (mean z-normalized same-concept similarity
in input space is at 1.94 vs. 0.57 in Sender space,
averaged across successful seeds). A similar effect
is observed by looking at higher-class (mammal,
furniture, etc.) similarities: images from the same
classes become less similar in Sender space (0.61
z-normalized within-class input similarity vs. 0.30
in Sender space). This suggests that the agents
are becoming less proficient at capturing the sim-
ilarity among instances of the same concept or of
the same class. The same conclusion is qualita-
tively supported by the pairs of images that un-
derwent the largest shift between input and Sender
space. For example, for two test images of avoca-
dos which have an input similarity of 0.82 (and are
reasonably similar to the human eye), the Sender
similarity is at the low value of �0.27 (Receiver
similarity is �0.59). Contrarily, for an image of a
cabin in a field and an image of a telephone that
have an intuitively correct very low input similar-
ity of 0.02, the Sender similarity for these images
is 0.94 (Receiver similarity is 0.95).

Lazaridou et al. (2017) designed their second
game to encourage more general, concept-like ref-
erents. Unfortunately, we replicate the anomalies
above in the different-image setup, although to a
less marked extent. When successful communica-
tion is established at the end of training, the agents
have ⇢S/R = 0.90. But again, the agents’ repre-
sentation do not align with the input space: their
scores with the input are at lower values of ⇢S/I =

4Values averaged over the 4 failing seeds.
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Test

Tr
ai

n

Same im. Diff. im. Noise
Same im. 100 72 95
Diff. im. 98 83 87

Table 1: Percentage average rewards on the same-
image, different-image and noise test sets for
agents trained in the same- and different-image
games (chance level at 50%). For each game,
values are averaged on 10 test runs consisting of
1, 000 games of mini-batches of 32 image pairs,
using the cross-validated best seed.

0.40 and ⇢R/I = 0.37.5 In case of communication
failure, by the end of training their RSA score is
at the lower value of ⇢S/R = 0.74, and their val-
ues with respect to the input are ⇢S/I = 0.36 and
⇢R/I = 0.34.6 Again, same-concept images drift
apart in agent space, although now to a lesser ex-
tent (1.94 z-normalized mean similarity in input
space vs. 1.07 in Sender space). More encourag-
ingly, we don’t find the same pattern for within-
class mean similarities (0.61 input space vs. 0.75
Sender space).

We must conjecture that the agents are compar-
ing low-level properties of the image pairs, inde-
pendently of the game they play. As an extreme
way to test this, we look at how agents trained to
play the two games behave when tested with in-
put pairs that are just random noise vectors drawn
from a standard Normal distribution.7 If the agents
are indeed indifferent to the objects represented by
images, the radical shift in the nature of the input
to the game should not affect them much.

Results are shown in Table 1. We confirm that
the same-image game is the easiest, and we ob-
serve that agents trained in one game perform rea-
sonably well on the other. More importantly, no
matter which game they are trained on, the agents
perform very well on noise input! This confirms
our hypothesis that the Sender and Receiver are
able to communicate about input data that contain
no conceptual content at all, which in turn suggests
that they haven’t extracted any concept-level in-
formation (e.g., features that would allow them to
recognize instances of the dog or chair category)
during training. To get a sense of the sort of noise
pairs agents succeed to communicate about, Fig-

5Values averaged over the 19 successful seeds.
6Values averaged over the 81 failing seeds.
7As during training inputs are divided by their norm, we

also normalize each noise vector, so multiple noise variances
would have no effect.

Figure 2: Noise vectors agents trained on the same-
image game successfully communicate about.

ure 2 provides an example.
Finally, we draw 1, 000 noise pairs (z1, z2), and

present each to the Sender with either z1 or z2 as
target. We then compare, pair by pair, whether
the highest probability symbol changes when the
target is swapped. We average across 10 random
runs using the best cross-validated seed. In both
versions of the game, for more than 99% of the
pairs, the symbol with highest probability changes
when the target is swapped. This suggests that the
agents perform a relative comparison of the two
inputs, rather than an absolute one, in line with
the general conclusion that they are not using the
vocabulary to denote stable conceptual properties
of the objects depicted in the images.

4 Discussion

Existing literature in game theory already showed
that convergence towards successful communi-
cation is ensured under specific conditions (see
Skyrms (2010) and references therein). How-
ever, the important contribution of Lazaridou et al.
(2017) is to play a signaling game with real-life
images instead of artificial symbols. This raises
new empirical questions that are not answered by
the general mathematical results, such as: When
the agents do succeed at communicating, what are
the input features they rely upon? Do the internal
representations they develop relate to the concep-
tual properties of the input? Our study suggests
that the agents’ representations are not capturing
general conceptual properties of different objects,
but they are rather specifically tuned to success-
fully distinguish images based on inscrutable low-
level relational properties.

Interestingly, our conclusions can be aligned
with findings in psycholinguistic experimental lit-
erature on dialogue. In order to achieve communi-
cation, the agents develop a form of ‘’conceptual
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pact” (Brennan and Clark, 1996): Their internal
representations align while at the same time drift-
ing away from human-level properties of the input.
The agents agree on a shared use of the vocabu-
lary, that does not correspond to concepts in the
input data.

In future work, we would like to encourage the
development of more natural word meanings by
enforcing the agent representations to stay more
faithful to the perceptual input they receive. Mov-
ing ahead, it is fundamental to design setups where
agents would have stronger reasons to develop
human-like communication strategies.
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Abstract

A capsule is a group of neurons, whose activ-
ity vector represents the instantiation param-
eters of a specific type of entity. In this pa-
per, we explore the capsule networks used for
relation extraction in a multi-instance multi-
label learning framework and propose a nov-
el neural approach based on capsule networks
with attention mechanisms. We evaluate our
method with different benchmarks, and it is
demonstrated that our method improves the
precision of the predicted relations. Particu-
larly, we show that capsule networks improve
multiple entity pairs relation extraction1.

1 Introduction

This paper focus on the task of relation extrac-
tion. One popular method for relation extraction
is the multi-instance multi-label learning frame-
work (MIML) (Surdeanu et al., 2012) with dis-
tant supervision, where the mentions for an en-
tity pair are aligned with the relations in Free-
base (Bollacker et al., 2008). The recently pro-
posed neural network (NN) models (Zeng et al.,
2014; Ye et al., 2017; Yang et al., 2018; Wang
et al., 2018a) achieve state-of-the-art performance.
However, despite the great success of these NNs,
some disadvantages remain. First, the existing
models focus on, and heavily rely on, the quali-
ty of instance representation. Using a vector to
represent a sentence is limited because languages
are delicate and complex. Second, CNN subsam-
pling fails to retain the precise spatial relationship-
s between higher-level parts. The structural re-
lationships such as the positions in sentences are
valuable. Besides, existing aggregation operations

⇤ Corresponding author.
1In this paper, multiple entity pairs relation extraction

refers to multiple entity pairs in a single sentence and each
pair of entities contains only one relation label.

summarizing the sentence meaning into a fixed-
size vector such as max or average pooling are lack
of guidance by task information. Self-attention
(Lin et al., 2017) can select task-dependent infor-
mation. However, the context vectors are fixed
once learned (Gong et al., 2018).

More importantly, most state-of-the-art systems
can only predict one most likely relation for a s-
ingle entity pair. However, it is very common that
one sentence may contain multiple entity pairs and
describe multiple relations. It is beneficial to con-
sider other relations in the context while predicting
the relations (Sorokin and Gurevych, 2017). For
example, given the sentence ”[Swag It Out] is the
official debut single by American [singer] [Zen-
daya]”, our model can predict multi-relations for
these multiple entity pairs simultaneously.

In our work, we present a novel architecture
based on capsule networks (Sabour et al., 2017)
for relation extraction. We regard the aggregation
as a routing problem of how to deliver the mes-
sages from source nodes to target nodes. This pro-
cess enables the capsule networks to decide what
and how much information need to be transferred
as well as identify complex and interleaved fea-
tures. Furthermore, the capsule networks convert
the multi-label classification problem into a multi-
ple binary classification problem. We also import
word-level attention by considering the different
contribution of the words. The experimental re-
sults show that our model achieves improvements
in both single and multiple relation extraction.

2 Related Work

Neural Relation Extraction: In the recent years,
NN models have shown superior performance over
approaches using hand-crafted features in various
tasks. CNN is the first one of the deep learn-
ing models that have been applied to relation ex-
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Figure 1: Architecture of capsule networks for relation extraction

traction (Santos et al., 2015). Variants of convo-
lutional networks include piecewise-CNN (PCN-
N) (Zeng et al., 2015), instance-level selective at-
tention CNN (Lin et al., 2016), rank CNN (Ye
et al., 2017), attention and memory CNN (Feng
et al., 2017) and syntax-aware CNN (He et al.,
2018). Recurrent neural networks (RNN) are an-
other popular choice, and have been used in re-
cent works in the form of attention RNNs (Zhou
et al., 2016), context-aware long short-term mem-
ory units (LSTMs) (Sorokin and Gurevych, 2017),
graph-LSTMs (Peng et al., 2017) and ensemble L-
STMs (Yang et al., 2018).

Capsule Network: Recently, the capsule net-
work has been proposed to improve the represen-
tation limitations of CNNs and RNNs. (Sabour
et al., 2017) replaced the scalar-output feature de-
tectors of CNNs with vector-output capsules and
max-pooling with routing-by-agreement. (Hinton
et al., 2018)) proposed a new iterative routing pro-
cedure among capsule layers, based on the EM al-
gorithm. For natural language processing tasks,
(Zhao et al., 2018) explored capsule networks for
text classification. (Gong et al., 2018) designed
two dynamic routing policies to aggregate the out-
puts of RNN/CNN encoding layer into a final en-
coding vector. (Wang et al., 2018b) proposed a
capsule model based on RNN for sentiment anal-
ysis. To the best of our knowledge, there has
been no work that investigates the performance
of capsule networks in relation extraction tasks at
present.

3 Methodology

In this section, we first introduce the MIML frame-
work, and then describe the model architecture we
propose for relation extraction, which is shown in
Figure 1.

3.1 Preliminaries
In MIML, the set of text sentences for the single
entity pair or multiple entity pairs2 (maximum t-
wo entity pairs in this paper) is denoted by X =
{x1, x2, ..., xn}. Assumed that there are E pre-
defined relations (including NA) to extract. For-
mally, for each relation r, the prediction target is
denoted by P (r|x1, ..., xn).

3.2 Neural Architectures
Input Representation: For each sentence xi, we
use pretrained word embeddings to project each
word token onto the dw-dimensional space. We
adopt the position features as the combination-
s of the relative distances from the current word
to M entities and encode these distances in M
dp-dimensional vectors3. For single entity pair
relation extraction, M = 2; for multiple entity
pairs relation extraction, we limit the maximum
number of entities in a sentence to four (i.e. t-
wo entity pairs). As three entities in one in-
stance is possible when two tuples have a com-
mon entity, we set the relative distance to the
missing entity to a very large number. Finally,
each sentence is transformed into a matrix xi =
{w1, w2, ..., wL} 2 RL⇥V , where L is the sen-
tence length with padding and V = dw + dp ⇤M .

Bi-LSTM Layer: We make use of LSTMs to
deeply learn the semantic meaning of a sentence.
We concatenate the current memory cell hidden s-
tate vector ht of LSTM from two directions as the
output vector ht = [

�!
h t,
 �
h t] 2 R2B at time t,

where B denotes the dimensionality of LSTM.

2Since the number of sentences with multiple entity pairs
is relatively small, we make use of all the sentences as train-
ing samples.

3We also adopt an attention mechanism similar to word-
level attention in Bi-LSTM layer by considering the different
contribution of the M position embeddings.
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We import word-level attention mechanism as
only a few words in a sentence that are relevant to
the relation expressed (Jat et al., 2018). The scor-
ing function is gt = ht⇥A⇥r, where A 2 RE⇥E

is a square matrix and r 2 RE⇥1 is a relation vec-
tor. Both A and r are learned. After obtaining gt,
we feed them to a softmax function to calculate
the final importance ↵t = softmax(gt). Then,
we get the representation x̃t = ↵tht.

For a given bag of sentences, the learning is
done using the setting proposed by (Zeng et al.,
2015), where the sentence with highest probabili-
ty of expressing the relation in a bag is selected to
train the model in each iteration.

Primary Capsule Layer: Suppose ui 2 Rd

denotes the instantiated parameters set of a cap-
sule, where d is the dimension of the capsule. Let
W b 2 R2⇥2B be the filter shared across different
windows. We have a window sliding each 2-gram
vector in the sequence x̃ 2 RL⇥2B with stride 1
to produce a list of capsules U 2 R(L+1)⇥C⇥d,
totally C ⇥ d filters.

uij = squash(W b
i ⌦ Sj�1:j + b1) (1)

where 0  i  C ⇥ d, 0  j  L + 1,
squash(x) = ||x||2

0.5+||x||2
x

||x|| , b1 is the bias ter-
m. For all C ⇥ d filters, the generated cap-
sule feature maps can be rearranged as U =
{u1, u2, ..., u(L+1)⇥C}, where totally (L+1)⇥C
d-dimensional vectors are collected as capsules.

Algorithm 1 Dynamic Routing Algorithm
1: procedure ROUTING(ûj|i, âj|i, r, l)
2: Initialize the logits of coupling coefficients

bj|i = 0
3: for r iterations do
4: for all capsule i in layer l and capsule j in

layer l + 1 do
5: cj|i = âj|i · softmax(bj|i)

6: for all capsule j in layer l + 1 do
7: vj = squash(

P
i cj|iûj|i), aj = ||vj ||

8: for all capsule i in layer l and capsule j in
layer l + 1 do

9: bj|i = bj|i + ûj|i · vj
return vj , aj

Dynamic Routing: We explore the transfor-
mation matrices to generate the prediction vector
uj|i 2 Rd from a child capsule i to its parent cap-
sule j. The transformation matrices share weights
W c 2 RE⇥d⇥d across the child capsules, where

E is the number relations (parent capsules) in the
layer above. Formally, each corresponding vote
can be computed by:

ûj|i = W c
j ui + b̂j|i 2 Rd (2)

The basic idea of dynamic routing is to design a
nonlinear map:

{ûj|i 2 Rd}i=1,...,H,j=1,...,E 7! {vj 2 Rd}E
j=1

where H = (L + 1)⇥ C.
Inspired by (Zhao et al., 2018), we attempt to

use the probability of existence of parent cap-
sules to iteratively amend the connection strength,
which is summarized in Algorithm 1. The length
of the vector vj represents the probability of each
relation. We use a separate margin loss Lk for each
relation capsule k:

Lk = Ykmax(0, m+ � ||vk||)2

+ �(1� Yk)max(0, ||vk||�m�)2
(3)

where Yk = 1 if the relation k is present, m+ =
0.9 , m� = 0.1 and � = 0.5. The total loss can be
formulated as: Ltotal =

PE
k=1 Lk

3.3 Prediction
For single entity pair relation extraction, we cal-
culate the length of the vector vj which repre-
sents the probability of each relation. For multi-
ple entity pairs relation extraction, we choose re-
lations with top two probability meanwhile bigger
than the threshold (We empirically set the thresh-
old 0.7). Finally, we may get one or two predicted
relations r. Given entity pair (e1, e2), in order to
choose which relationship the tuple belongs to, we
adopt the pretrained embeddings of entities and re-
lations4 and calculate rk = arg min

k
|t � h � rk|

, where t, h are the embeddings of entities e1, e2

respectively and rk is the relation embedding. The
relation with the closest embedding to the entity
embedding difference is the predicted category.

4 Experiments

We test our model on the NYT dataset (NYT) de-
veloped by (Riedel et al., 2010) for single entity
pair relation extraction and the Wikidata dataset
(Sorokin and Gurevych, 2017) for multiple enti-
ty pairs relation extraction. We exclude sentences
longer than L . All code is implemented in Ten-
sorflow (Abadi et al., 2016). We adopt the Adam

4http://openke.thunlp.org
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optimizer (Kingma and Ba, 2014) with learning
rate 0.001, batch size 128, LSTMs’ unit size 300,
L = 120, dp = 5, d = 8, C = 32, dropout rate
0.5, routing iteration 3.

4.1 Practical Performance
NYT dataset (Single entity pair):

Figure 2: Performance comparison on the NYT dataset.

We utilize the word embeddings released by
(Lin et al., 2016)5. The precision-recall curves
for different models on the test set are shown in
Figure 2. Our model BiLSTM+Capsule achieves
comparable results compared with all baselines,
where Mintz refers to (Mintz et al., 2009), Hoff-
mann refers to (Hoffmann et al., 2011), MIMLRE
refers to (Surdeanu et al., 2012), CNN+ATT refers
to (Zeng et al., 2015), PCNN+ATT refers to (Lin
et al., 2016), Rank+ExATT refers to (Ye et al.,
2017) and Memory refers to (Feng et al., 2017).
We also show the precision numbers for some par-
ticular recalls as well as the AUC in Table 1, where
our model generally leads to better precision. In-
terestingly, we observe our model achieve com-
parable results to predict multi-relation compared
with Rank+ExATT in Figure 3. Given an entity
tuple (South Korea, Seoul) which has two rela-
tions: /location/./administrative divisions and /lo-
cation/./capital. We observe these two relations
have the highest scores among the other relation-
s in our model which demonstrate the ability of
multi-relations prediction.

Wikidata dataset (Multiple entity pairs):
We train word embeddings using Glove (Pen-

nington et al., 2014)6 on the Wikipedia Corpus.
5dw = 50
6dw = 200

Figure 3: Normalized output relation scores.

Table 1: Precisions on the NYT dataset.
Recall 0.1 0.2 0.3 0.4 AUC

PCNN+ATT 0.698 0.606 0.518 0.446 0.323
Rank+ExATT 0.789 0.726 0.620 0.514 0.395
Our Model 0.788 0.743 0.654 0.546 0.397

We show the precision numbers for some partic-
ular recalls as well as the AUC in Table 2, where
PCNN+ATT (1) refers to train sentences with two
entities and one relation label, PCNN+ATT (m)
refers to train sentences with four entities7 and two
relation labels. We observe that our model exhibits
the best performances. Moreover, in the process of
predicting the existence of relations for a sentence,
our approach is more convenient , as the PCNN-
ATT (1) has to predict all possible pairs of enti-
ties in the sentence while our approach can predict
multiple relations simultaneously.

Table 2: Precisions on the Wikidata dataset.
Recall 0.1 0.2 0.3 AUC

Rank+ExATT 0.584 0.535 0.487 0.392
PCNN+ATT (m) 0.365 0.317 0.213 0.204
PCNN+ATT (1) 0.665 0.517 0.413 0.396

Our Model 0.650 0.519 0.422 0.405

Ablation study: To better demonstrate the per-
formance of capsule net and attention mechanism,
we remove the primary capsule layer and dynam-
ic routing to make Bi-LSTM layer followed by a
fully connected layer instead. We also remove the
word-level attention separately. The experimental
results on Wikidata dataset are summarized in Ta-
ble 3. The results of ”-Word-ATT” row refers to
the results without word-level attention. Accord-
ing to the table, the drop of precision demonstrates
that the word-level attention is quite useful. Gen-
erally, all two proposed strategies contribute to the
effectiveness of our model.

7Two additional position embeddings.
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Table 3: Ablation study of capsule net and word-level
attention on Wikidata dataset.

Recall 0.1 0.2 0.3 AUC
-Word-ATT 0.648 0.515 0.395 0.389

-Capsule 0.635 0.507 0.413 0.386
Our Model 0.650 0.519 0.422 0.405

4.2 Discussion

CNN vs Capsule: Capsule networks achieve
comparable results compared with baselines. In
fact, the capsule combines features by cluster-
ing. A nonlinear map is constructed in an itera-
tive manner, ensuring the output of each capsule
to be sent to an appropriate parent in the subse-
quent layer. Dynamic routing may be more effec-
tive than the strategies such as max-pooling in C-
NN, which essentially detects whether a feature is
present in any position of the text or not, but los-
es spatial information of the feature. Additional-
ly, capsule achieves comparable results to predict
multi-relations in the case of single entity pair, and
performs better in the case of multiple entity pairs
relation extraction.

Choice of d: In the experiments, the larger the
dimension of the capsule, the more the capabili-
ties of the feature information it contains. Howev-
er, larger dimension increases the computational
complexity. We test different levels of dimensions
of capsules. The model is trained on two Nvidi-
a GTX1080ti GPUs with 64G RAM and six In-
tel(R) Core(TM) i7-6850K CPU 3.60GHz. As the
table 4 depicts, the training time increases with the
growth of d. When d = 32, we observe that the
loss decreases very slowly and the model is diffi-
cult to converge. So we only train 2 epochs and
stop training. We set the parameter d = 8 em-
pirically to balance the precision and training time
cost.

Table 4: Precisions on the Wikidata dataset with differ-
ent choice of d.

Recall 0.1 0.2 0.3 AUC Time
d = 1 0.602 0.487 0.403 0.367 4h
d = 32 0.645 0.501 0.393 0.370 -
d = 16 0.655 0.518 0.413 0.413 20h
d = 8 0.650 0.519 0.422 0.405 8h

Effects of Iterative Routing:
We also study how the iteration number affec-

t the performance on the Wikidata dataset. Table

Table 5: Precisions on the Wikidata dataset with differ-
ent number of dynamic routing iterations.

Recall 0.1 0.2 0.3 AUC
Iteration=1 0.531 0.455 0.353 0.201
Iteration=2 0.592 0.498 0.385 0.375
Iteration=3 0.650 0.519 0.422 0.405
Iteration=4 0.601 0.505 0.422 0.385
Iteration=5 0.575 0.495 0.394 0.376

5 shows the comparison of 1 - 5 iterations. We
find that the performance reach the best when it-
eration is set to 3. The results indicate the dy-
namic routing is contributing to improve the per-
formance. Specifically, in the iteration algorith-
m, the bj|i = bj|i + ûj|i · vj . When the number
of iteration is very large, vj becomes either 0 or
1, which means each underlying capsule is only
linked to a single upper capsule. Therefore, the
iteration times should not be too large.

4.3 Conclusion

We propose a relation extraction approach based
on capsule networks with attention mechanism.
Although we use Bi-LSTM as sentence encod-
ing in this paper, the other encoding method, such
as convolved n-gram, could be alternatively used.
Experimental results of two benchmarks show that
the model improves the precision of the predicted
relations.

In the future, we tend to resolve the situation of
how to assign predicted relationship to multi en-
tity pairs when two entities have multi-relations
by utilizing prior knowledge such as entity type
and joint training with named entity recognition.
We will also try to optimize the model in terms
of speed and focus on other problems by leverag-
ing class ties between labels, specially on multi-
label learning problems. Besides, dynamic rout-
ing could also be useful to improve other natural
language processing tasks such as the sequence-
to-sequence task and so on.
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Abstract

Entity typing aims to classify semantic types
of an entity mention in a specific context.
Most existing models obtain training data us-
ing distant supervision, and inevitably suf-
fer from the problem of noisy labels. To
address this issue, we propose entity typing
with language model enhancement. It uti-
lizes a language model to measure the com-
patibility between context sentences and la-
bels, and thereby automatically focuses more
on context-dependent labels. Experiments
on benchmark datasets demonstrate that our
method is capable of enhancing the entity typ-
ing model with information from the language
model, and significantly outperforms the state-
of-the-art baseline. Code and data for this pa-
per can be found from https://github.
com/thunlp/LME.

1 Introduction

Entity typing classifies semantic types of an en-
tity mention in a context sentence, and can be
beneficial for a large number of natural language
processing tasks (Neelakantan and Chang, 2015),
such as entity linking (Chabchoub et al., 2016),
relation extraction (Miwa and Sasaki, 2014), and
question answering (Yahya et al., 2013). Fine-
grained entity typing (FET) (Ling and Weld, 2012;
Yosef et al., 2012; Yao et al., 2013; Gillick
et al., 2014; Del Corro et al., 2015; Yogatama
et al., 2015; Yaghoobzadeh and Schütze, 2015;
Ren et al., 2016a; Yuan and Downey, 2018) is
based on a large set of fine-grained types and is
therefore more challenging. So far, neural mod-
els (Dong et al., 2015; Shimaoka et al., 2017; Xin
et al., 2018) have achieved state-of-the-art results
on FET.

All current FET models rely on distant super-
vision (DS) (Mintz et al., 2009) to obtain training

⇤ Corresponding author: Zhiyuan Liu.

Raw Schwarzenegger was elected to be the governor.
Schwarzenegger acted in the film Terminator.

Good (A) politician was elected to be the governor.
(An) actor acted in the film Terminator.

Bad (An) actor was elected to be the governor.
(A) politician acted in the film Terminator.

Table 1: Examples of entity mention—type name re-
placement.

data, due to the lack of large-scale human-labeled
data. Such reliance on DS has been a signifi-
cant problem for entity typing. In DS, an entity
mention in the context sentence is first linked to
a named entity in the knowledge base (KB). The
entity has type labels1 stored in the KB, and all
labels will be assigned to this entity mention. In
other words, these are noisy global labels with-
out considering the specific context of the entity
mention. On the other hand, entity typing aims
to predict context-dependent types of the entity
mention, and test datasets are all human-labeled.
The difference between DS and human annotation
leads to a huge gap in performances between train-
ing/development and test dataset.2

To address this problem, we propose En-
tity Typing with Language Model Enhancement
(LME). It is able to measure the compatibility be-
tween the context sentence and each distantly su-
pervised label, in an unsupervised manner using
meaning of the label.

In previous works, the hierarchical structure of
labels has been considered (Ren et al., 2016b;
Karn et al., 2017; Xu and Barbosa, 2018). How-
ever, to the best of our knowledge, precious

1 Since entities are classified into labels of types, type and
label have the same meaning in this paper.

2 In the WIKI dataset, strict accuracies and macro-F1
scores are respectively 72.3%/89.2% on the development set
and 59.7%/79.0% on the test set, using the model NFGEC
from (Shimaoka et al., 2017).
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information inside names of labels has never
been used. For example, whether the label is
/person/actor or /foo/bar makes no dif-
ference. We argue that, the meaning of entity men-
tion words can also be expressed by the name of its
context-dependent type, to some extent. Based
on this argument, replacements with context-
dependent types make more sense than those with
global-but-context-irrelevant ones. We provide an
example in Table 1. The entity Schwarzenegger
has types /actor and /politician, and we
can see that replacements with context-dependent
types produce better sentences.

The natural way to evaluate the soundness of
sentences is language modeling (Bengio et al.,
2003; Mikolov et al., 2010). Our method em-
ploys a language model to evaluate the soundness
of each synthetic sentence generated by replacing
the entity mention with its type’s name. It is able
to focus more on context-dependent types.

We conduct experiments to compare our model
with the state-of-the-art baseline on two widely
used datasets. The results demonstrate that LME
is capable of improving entity typing systems by
considering the meaning of labels, and alleviating
the problem of noise in distantly-supervised entity
typing.

2 Model

Our model (Figure 1) consists of two parts: an en-
tity typing (ET) module, and a language model en-
hancement (LME) module.

ET predicts a probability distribution vector y
for an entity mention, where each entry yi repre-
sents the predicted probability for each type label.

In the training phase, LME optimizes a lan-
guage model whose input includes y, and also
back-propagates gradients through y to parame-
ters inside ET. In the testing phase, LME is not
involved and y is directly used for inference: if yi

is greater than a threshold 0.5, the ith type is con-
sidered true; if all entries are below the threshold,
the type with the greatest entry is considered true.

2.1 Entity Typing Module

Entity typing is defined on an ontology T (the set
of all labels). Given an entity mention e and its
context sentence s = {l1, l2, ..., e, r1, r2, ...} (li
and ri are left and right context words), the typing
model predicts a vector y indicating the probabil-

Schwarzenegger acted in the film Terminator

FeatureContextMention

Language Model

ET
Module

/person
/actor

/politician
…
…

LME 
Module

(__) acted    in       the      film  Terminator

/person
/actor

/politician
…
…

y

Jlm

Figure 1: Our model: an entity typing (ET) module and
a language model enhancement (LME) module.

ity distribution over all labels in the ontology:

y = �(Wy [vM ;vC ;vF ]), (1)

where � is the sigmoid function, Wy is a param-
eter matrix, and [; ; ] denotes concatenation. Three
vectors: Mention, Context and Feature, are built
from e and s as follows:

Entity mention vector There may be multi-
ple words e1, e2, ... in the entity mention, and vM

is the average of word embeddings of these words.
Context vector Two bi-directional LSTMs

(Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997) are used for left and right con-
text words. The outputs of BiLSTMs further go
through a self-attention layer. vC is the concate-
nation of the attention-layer outputs.

Hand-crafted feature vector A sparse fea-
ture vector f is built from the entity mention e. The
features are adopted from those used by Gillick
et al. (2014) and Yogatama et al. (2015). vF is a
dense projection of f :

vF = Wf f , (2)

where Wf is the projection matrix.
After y is calculated, DS provides a label vector

y⇤ 2 {0, 1}|T |, where |T | is the number of labels.
The loss function for typing is the cross-entropy
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between y and y⇤:

Jtype = H(y⇤,y)
= �

P
i y

⇤
i log(yi) + (1 � y⇤

i ) log(1 � yi),
(3)

2.2 Language Model Enhancement Module
The core part of the LME module is an LSTM lan-
guage model (Sundermeyer et al., 2012). The lan-
guage model takes a sentence {w1, w2, ..., wn} as
input, and assigns a probability to this sentence.
Concretely, at step i, the LSTM reads the word
sub-sequence {w1, ..., wi}, and predicts the prob-
ability of wi+1 succeeding the sub-sequence. A
well trained language model predicts high proba-
bility for a reasonable sentence.

Before applying the LME module to enhance
the ET module, the language model is pre-trained
with sentences from the training set. The loss
function for s in the pre-train phase is:

Jpre = LM({l1, l2, ..., e, r1, r2, ...}), (4)

where bold face letters are word embeddings
for corresponding words. LM(·) is the language
model loss function: accumulative step-wise log-
probability of each word of the input sequence.
A well-trained language model calculates smaller
loss for a more reasonable sentence.

After pre-training the language model, the LME
module is combined with the ET module. Con-
cretely, we assign an embedding vector Li for
each label, and take the sum of label embeddings
weighted by y. The sum h replaces e in the input
sequence of the language model:

h =
PT

i=1 yiLi, (5)
Jlm = LM({l1, l2, ...,h, r1, r2, ...}), (6)

where L is the matrix of all label embeddings, and
Jlm is loss function of the language model used
in the training phase. In order to ensure that label
embeddings are in the same semantic space with
word embeddings, L is initialized with word em-
beddings of the labels’ names.

In the training phase, parameters of the ET mod-
ule are updated w.r.t.

Jtrain = Jtype + �Jlm, (7)

where � is the weight to balance the loss.
The ET module has a much smaller parame-

ter space than the language model. In order to

make full use of the gradients, we only update pa-
rameters of the ET module and fix the language
model in the training phase. Now that the lan-
guage model is fixed, when Jlm is being mini-
mized, it adjusts the probability distribution in y.
If a label i is compatible with the context sen-
tence, its corresponding entry yi is expected to
have a high value. Gradients are back-propagated
through y and update parameters of the ET mod-
ule. In this way, y can learn to be more context-
dependent.

3 Experiments

3.1 Dataset
We employ two well-established and widely-used
dataset for evaluating our model: WIKI (Ling
and Weld, 2012) and ONTONOTES (Gillick et al.,
2014).

Training parts of both datasets are labeled with
DS, and testing parts are annotated by human.
Therefore they are suitable for evaluating how
our model can narrow the gap between DS and
ground-truth context-dependent labels. Statistics
of the two datasets are provided in Table 2.

Dataset Train Development Test

WIKI 2,000,000 10,000 563
ONTONOTES 251,039 2,202 8,963

Table 2: Number of instances in each part of datasets.

3.2 Experiment Settings
The baseline for comparison is the hybrid model
NFGEC proposed by Shimaoka et al. (2017). It
is described as the ET module of our model. Our
own model is referred to as NFGEC+LME.

We implement our model based on the source
code of NFGEC.3 For a fair comparison, the ET
module is unchanged, including all hyperparame-
ters and methods of parameter random initializa-
tion. Word embeddings are initialized with pre-
trained embeddings provided by Pennington et al.
(2014).

There are a few additional hyperparameters in
our model. The most important one is �, the
weight between two parts of the loss function.
Other ones include the learning rate r for pretrain-
ing the language model and the hidden size h of
LSTM used in the language model. We perform

3https://github.com/shimaokasonse/
NFGEC
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a grid-search based on performances on the de-
velopment set, and set r = 0.005 and h = 500.
Details of � will be discussed in Section 3.4.

3.3 Overall Results
We compare vanilla NFGEC and NFGEC+LME
in Table 3. The results of NFGEC come from
the paper by Shimaoka et al. (2017). For run-
ning NFGEC+LME, � is set to 0.005 in WIKI and
0.001 in ONTONOTES.

Evaluation metrics include strict accuracy,
macro-F1 score and micro-F1 score (Ling and
Weld, 2012).

Dataset WIKI ONTONOTES

Metric Strict Macro Micro Strict Macro Micro

NFGEC 59.68 78.97 75.36 50.89 70.80 64.93
+LME 62.88 80.61 76.95 52.90 72.41 65.17

Table 3: Performance of entity typing, evaluated by
strict accuracy, macro-F1 and micro-F1 score. (%)

From the results we see that:
(1) In both datasets, LME consistently helps

NFGEC to better classify entity mentions into
their context-dependent types. We can see im-
provements in all metrics. This is because LME is
capable of evaluating the appropriateness of each
label and distinguishing context-dependent ones
from global-but-context-irrelevant ones. There-
fore LME helps the system to focus on more rea-
sonable types.

(2) Among all metrics, the improvement on
strict accuracy is the most significant. Strict ac-
curacy is the proportion of entity mentions whose
predicted types are completely identical with hu-
man annotation. It is therefore the most impor-
tant metric for evaluating how robust the system is
against noisy labels. The ability of LME alleviat-
ing noises from DS contributes to improving strict
accuracy most.

3.4 Analysis of �

We choose the optimal � values for results in Table
3 according to their performances on the develop-
ment set. After they are chosen, we compare the
results on the test set under different values of � in
Figure 2.

Conclusions from the previous subsection can
be seen again: when � is set to a proper value,
our model can consistently outperform the base-
line over all metrics; strict accuracy is the metric
with the most significant improvements.
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Figure 2: The performance under different � values.
� = 0 is the vanilla NFGEC. Note that values of
the vertical axis are improvements compared to vanilla
NFGEC.

Also, we notice that the performances deteri-
orate when � grows too large, and may even be
worse than the baseline. The reason is that LME
is a kind of regularization: its role is only in the
training phase, exchanging the performance on
training set with that on test set. So �, as a reg-
ularization coefficient, must be carefully chosen.

3.5 Qualitative Analysis
In order to have an intuitive feeling of the model,
we provide an example of LME’s effect.

In the following sentence (from the test set of
WIKI), both models try to predict the type of Lake
Placid which, in this very context, is a town in
New York. We show all labels with at least one
score over the threshold 0.5, or is annotated true
by human in Table 4.

Scaringe dismissed Brian Barrett of Lake
Placid as one of his defense attorneys.

Type NFGEC +LME Human

/person 0.622 0.150 False
/location 0.323 0.627 True
/location/city 0.024 0.208 True

Table 4: An example, showing the scores by two mod-
els as well as human annotation.

NFGEC predicts a high score for /person
and a low score for /location, probably be-
cause both words of the entity mention are first-
letter capitalized and thus look like a person’s
name. LME, however, may consider the sen-
tence structure person of location to be more rea-
sonable than person of person, and makes the
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correct judgment between these two labels. As
for /location/city, LME also shows higher
confidence than NFGEC, but it is still regretfully
below the threshold. This also demonstrates a
weakness of LME: limited by the performance of
the ET module. Addressing this limitation can be
considered as a future direction for improvement.

4 Conclusion

In this paper, we propose a novel architecture
LME to improve entity typing systems. It utilizes
a language model and a set of label embeddings
to judge the compatibility between labels and con-
text sentences, and reduces noises introduced by
DS. Experiments demonstrate that LME is capable
of helping NFGEC, a state-of-the-art entity typing
model, to alleviate the problem of noisy labels,
and reaching a new state-of-the-art performance.
Since the LME module does not depend on the ET
module, we are confident that LME can be adapted
to other entity typing systems as well.

Future Work Utilizing meaning of labels to al-
leviate the problem of noises from DS is an intere-
sting direction. We make the first attempt in this
paper, and we believe the direction is worth further
exploring. For example, (1) how to train a lan-
guage model that is sensitive with incorrect labels;
(2) how to combine meaning of labels with the hi-
erarchical structure of types; (3) how to find the
optimal � easily for a new dataset. LME may also
be extended to other tasks that also suffer from
noises and incompleteness of DS, such as relation
extraction (Takamatsu et al., 2012; Ritter et al.,
2013; Lin et al., 2016). However, since a relation
does not have a specific location in the sentence, it
needs more effort than a simple replacement.
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Abstract

Detecting events and classifying them into pre-
defined types is an important step in knowl-
edge extraction from natural language texts.
While the neural network models have gen-
erally led the state-of-the-art, the differences
in performance between different architec-
tures have not been rigorously studied. In
this paper we present a novel GRU-based
model that combines syntactic information
along with temporal structure through an at-
tention mechanism. We show that it is compet-
itive with other neural network architectures
through empirical evaluations under different
random initializations and training-validation-
test splits of ACE2005 dataset.

1 Introduction

Events are the lingua franca of news stories and
narratives and describe important changes of state
in the world. Identifying events and classifying
them into different types is a challenging aspect of
understanding text. This paper focuses on the task
of event detection, which includes identifying the
“trigger” words that indicate events and classify-
ing the events into refined types. Event detection is
the necessary first step in inferring more semantic
information about the events including extracting
the arguments of events and recognizing temporal
and causal relationships between different events.

Neural network models have been the most suc-
cessful methods for event detection. However,
most current models ignore the syntactic relation-
ships in the text. One of the main contributions of
our work is a new DAG-GRU architecture (Chung
et al., 2014) that captures the context and syntac-
tic information through a bidirectional reading of
the text with dependency parse relationships. This
generalizes the GRU model to operate on a graph
by novel use of an attention mechanism.

1Also associated with Oregon State University.

Following the long history of prior work on
event detection, ACE2005 is used for the precise
definition of the task and the data for the purposes
of evaluation. One of the challenges of the task
is the size and sparsity of this dataset. It con-
sists of 599 documents, which are broken into a
training, development, testing split of 529, 30, and
40 respectively. This split has become a de-facto
evaluation standard since (Li et al., 2013). Fur-
thermore, the test set is small and consists only
of newswire documents, when there are multiple
domains within ACE2005. These two factors lead
to a significant difference between the training and
testing event type distribution. Though some work
had been done comparing method across domains
(Nguyen and Grishman, 2015), variations in the
training/test split including all the domains has not
been studied. We evaluate the sensitivity of model
accuracy to changes in training and test set splits
through a randomized study.

Given the limited amount of training data in
comparison to other datasets used by neural net-
work models, and the narrow margin between
many high performance methods, the effect of the
initialization of these methods needs to be consid-
ered. In this paper, we conduct an empirical study
of the sensitivity of the system performance to the
model initialization.

Results show that our DAG-GRU method is
competitive with other state-of-the-art methods.
However, the performance of all methods is more
sensitive to the random model initialization than
expected. Importantly, the ranking of different
methods based on the performance on the standard
training-validation-test split is sometimes different
from the ranking based on the average over mul-
tiple splits, suggesting that the community should
move away from single split evaluations.
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2 Related Work

Event detection and extraction are well-studied
tasks with a long history of research.

Nguyen and Grishman (2015) used CNNs
to represent windows around candidate triggers.
Each word is represented by a concatenation of its
word and entity type embeddings with the distance
to candidate trigger. Global max-pooling summa-
rizes the CNN filter and the result is passed to a
linear classifier.

Nguyen and Grishman (2016) followed up with
a skip-gram based CNN model which allows the
filter to skip non-salient or otherwise unnecessary
words in the middle of word sequences.

Feng et al. (2016) combined a CNN, simi-
lar to (Nguyen and Grishman, 2015), with a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) to create a hybrid network. The output of
both networks was concatenated together and fed
to a linear model for final predictions.

Nguyen et al. (2016) uses a bidirectional gated
recurrent units (GRUs) for sentence level encod-
ing, and in conjunction with a memory network,
to jointly predict events and their arguments.

Liu et al. (2016) created a probablistic soft logic
model incorporating the semantic frames from
Framenet (Baker et al., 1998) in the form of ex-
tra training examples. Based on the intuition that
entity and argument information is important for
event detection, Liu et al. (2017) built an attention
model over annotated arguments and the context
surrounding event trigger candidates.

Liu et al. (2018) created a cross language atten-
tion model for event detection and used it for event
detection in both the English and Chinese portions
of the ACE2005 data.

Recently, Nguyen and Grishman (2018) used
graph-CNN (GCCN) where the convolutional fil-
ters are applied to syntactically dependent words
in addition to consecutive words. The addition of
the entity information into the network structure
produced the state-of-the-art CNN model.

Another neural network model that includes
syntactic dependency relationships is DAG-based
LSTM (Qian et al., 2018). It combines the syntac-
tic hidden vectors by weighted average and adds
them through a dependency gate to the output gate
of the LSTM model. To the best of our knowledge,
none of the neural models combine syntactic in-
formation with attention, which motivates our re-
search.

3 DAG GRU Model

Event detection is often framed as a multi-class
classification problem (Chen et al., 2015; Ghaeini
et al., 2016). The task is to predict the event
label for each word in the test documents, and
NIL if the word is not an event. A sentence is a
sequence of words x1 . . . xn, where each word is
represented by a k-length vector. The standard
GRU model works as follows:

rt = �(Wrxt + Urht�1 + br)
zt = �(Wzxt + Uzht�1 + bz)
h̃t = tanh(Whxt + rt � Uhht�1 + bh)
ht = (1 � zt) � ht�1 + zt � h̃t

The GRU model produces a hidden vector ht for
each word xt by combining its representation with
the previous hidden vector. Thus ht summarizes
both the word and its prior context.

Our proposed DAG-GRU model incorporates
syntactic information through dependency parse
relationships and is similar in spirit to (Nguyen
and Grishman, 2018) and (Qian et al., 2018).
However, unlike those methods, DAG-GRU uses
attention to combine syntactic and temporal infor-
mation. Rather than using an additional gate as
in (Qian et al., 2018), DAG-GRU creates a sin-
gle combined representation over previous hid-
den vectors and then applies the standard GRU
model. Each relationship is represented as an
edge, (t, t0, e), between words at index t and t0

with an edge type e. The standard GRU edges are
included as (t, t � 1, temporal).

Each dependency relationship may be between
any two words, which could produce a graph with
cycles. However, back-propagation through time
(Mozer, 1995) requires a directed acyclic graph
(DAG), Hence the sentence graph, consisting of
temporal and dependency edges E, is split into
two DAGs: a “forward” DAG Gf that consists of
only of edges (t, t0, e) where t0 < t and a corre-
sponding “backward” DAG Gb where t0 > t. The
dependency relation between t and t0 also includes
the parent-child orientation, e.g., nsubj-parent or
nsubj-child for a nsubj (subject) relation.

An attention mechanism is used to combine the
multiple hidden vectors. The matrix Dt is formed
at each word xt by collecting and transforming all
the previous hidden vectors coming into node t,
one per each edge type e. ↵ gives the attention, a
distribution weighting importance over the edges.
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At least three members of a family in Indias northeastern state of Tripura were hacked to death by a tribal mob

nsubj

auxpass

tanh softmaxx dot tanh dot

Figure 1: The hidden state of “hacked” is a combination of previous output vectors. In this case, three vectors
are aggregated with DAG-GRU’s attention model. ht00 , is included in the input for the attention model since it is
accessible through the “subj” dependency edge. ht0 is included twice because it is connected through a narrative
edge and a dependency edge with type “auxpass.” The input matrix is non-linearly transformed by Ua and tanh.
Next, wa determines the importance of each vector in Dt. Finally, the attention at is produced by tanh followed
by softmax then applied to Dt. The subject “members” would be distant under a standard RNN model, however
the DAG-GRU model can focus on this important connection via dependency edges and attention.

Finally, the combined hidden vector ha is created
by summing Dt weighted by attention.

DT
t = [tanh(Ueht0)|(t, t0, e) 2 E]

↵ = softmax(tanh(Dtwa))

ha = DT
t ↵

However, having a set of parameters Ue for each
edge type e is over-specific for small datasets. In-
stead a shared set of parameters Ua is used in con-
junction with an edge embedding ve.

DT
t = [tanh(Uaht0 � ve)|(t, t0, e) 2 E]

The edge type embedding ve is concatenated
with the hidden vector ht0 and then transformed
by the shared weights Ua. This limits the number
of parameters while flexibly weighting the differ-
ent edge types. The new combined hidden vector
ha is used instead of ht�1 in the GRU equations.

The model is run forward and backward with
the output concatenated, hc,t = hf,t � hb,t, for a
representation that includes the entire sentence’s
context and dependency relations. After applying
dropout (Srivastava et al., 2014) with 0.5 rate to
hc,t, a linear model with softmax is used to make
predictions for each word at index t.

4 Experiments

We use the ACE2005 dataset for evaluation. Each
word in each document is marked with one of

the thirty-three event types or Nil for non-triggers.
Several high-performance models were repro-
duced for comparison. Each is a good faith re-
production of the original with some adjustments
to level the playing field.

For word embeddings, Elmo was used to gen-
erate a fixed representation for every word in
ACE2005 (Peters et al., 2018). The three vectors
produced per word were concatenated together for
a single representation. We did not use entity type
embeddings for any method. The models were
trained to minimize the cross entropy loss with
Adam (Kingma and Ba, 2014) with L2 regulariza-
tion set at 0.0001. The learning rate was halved
every five epochs starting from 0.0005 for a max-
imum of 30 epochs or until convergence as deter-
mined by F1 score on the development set.

The same training method and word embed-
dings were used across all the methods. Based on
preliminary experiments, these settings resulted in
better performance than those originally specified.
However, notably both GRU (Nguyen et al., 2016)
and DAG-LSTM (Qian et al., 2018) were not used
as joint models. Further, the GRU implementation
did not use a memory network, instead we used
the final vectors from the forward and backward
pass concatenated to each timestep’s output for ad-
ditional context. For CNNs (Nguyen and Grish-
man, 2015) the number of filters was reduced to
50 per filter size. The CNN+LSTM (Feng et al.,
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Figure 2: A comparison of mean performance versus
number of parameters.

2016) model had no other modifications. DAG-
GRU used a hidden layer size of 128. Variant A of
the DAG-GRU model utilized the attention mech-
anism, while variant B used averaging, that is:

Dt =
1

|E(t)|
X

(t0,e)2E(t)

tanh(Uaht0 � ve)

4.1 Effects of Random Initialization
Given that ACE2005 is small as far as neural net-
work models are concerned, the effect of the ran-
dom initialization of these models needs to be
studied. Although some methods include tests of
significance, the type of statistical test is often not
reported. Simple statistical significance tests, such
as the t-test, are not compatible with a single F1
score, instead the average of F1 scores should be
tested (Wang et al., 2015).

We reproduced and evaluated five different sys-
tems with different initializations to empirically
assess the effect of initialization. The experiments
were done on the standard ACE2005 split and
the aggregated results over 20 random seeds were
given in Table 1. The random initializations of the
models had a significant impact on their perfor-
mance. The variation was large enough that the
observed range of the F1 scores overlapped across
almost all the models. However the differences
in average performances of different methods, ex-
cept for CNN and DAG-LSTM, were significant
at p < 0.05 according to the t-test, not controlling
for multiple hypotheses.

Both the GRU (Nguyen et al., 2016) and CNN
(Nguyen and Grishman, 2015) models perform
well with their best scores being close to the re-
ported values. The CNN+LSTM model’s results
were significantly lower than the published val-
ues, though this method has the highest variation.
It is possible that there is some unknown factor
such as the preprocessing of the data that signifi-
cantly impacted the results or that the value is an
outlier. Likewise, the DAG-LSTM model under-
performed. However, the published results were

based on a joint event and argument extraction
model and probably benefited from the additional
entity and argument information.

DAG-GRU A consistently and significantly out-
performs the other methods in this comparison.
The best observed F1 score, 71.1%, for DAG-
GRU is close to the published state-of-the-art
scores of DAG-LSTM and GCNN at 71.9% and
71.4% respectively. With additional entity infor-
mation, GCNN achieves a score of 73.1%. Also,
the attention mechanism used in DAG-GRU A
shows a significant improvement over the averag-
ing method of DAG-GRU B. This indicates that
some syntactic links are more useful than others
and that the weighting attention applies is neces-
sary to utilize that syntactic information.

Another source of variation was the distribu-
tional differences between the development and
testing sets. Further, the testing set only include
newswire articles whereas the training and dev.
sets contain informal writing such as web log
(WL) documents. The two sets have different pro-
portions of event types and each model saw at least
a 2% drop in performance between dev. and test
on average. At worst, the DAG-LSTM model’s
drop was 5.26%. This is a problem for model se-
lection, since the dev. score is used to choose the
best model, hyperparameters, or random initial-
ization. The distributional differences mean that
methods which outperform others on the dev. set
do not necessarily perform as well on the test set.
For example, DAG-GRU A performs worse that
DAG-GRU B on the dev. set, however it achieves
a higher mean score on the testing set.

One method of model selection over random
initializations is to train the model k times and
pick the best one based on the dev. score. Repeat-
ing this model selection procedure many times for
each model is prohibitively expensive, so the ex-
periment was approximated by bootstrapping the
twenty samples per model (Efron, 1992). For each
model, 5 dev. & test score pairs were sampled with
replacement from the twenty available pairs. The
initialization with the best dev. score was selected
and the corresponding test score was taken. This
model selection process of picking the best of 5
random samples was repeated 1000 times and the
results are shown in Table 2. This process did not
substantially increase the average performance be-
yond the results in Table 1, although it did reduce
the variance, except for the CNN model. It ap-
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Model Dev Mean Mean Min Max Std. Dev. Published
DAG-GRU A 70.3% 69.2% ± 0.42 67.8% 71.1% 0.91% -
DAG-GRU B 71.2% 68.4% ± 0.45 67.39% 70.53% 0.96% -
GRU 70.3% 68.0% ± 0.42 66.4% 69.4% 0.86% 69.3%†

CNN+LSTM 69.6% 66.4% ± 0.62 63.6% 68.1% 1.32% 73.4%
DAG-LSTM 70.5% 65.2% ± 0.44 63.0% 66.8% 0.94% 71.9%†

CNN 68.5% 64.7% ± 0.65 61.6% 67.2% 1.38% 67.6%

Table 1: The statistics of the 20 random initializations
experiment. † denotes results are from a joint event and
argument extraction model.

Model Dev Mean Mean Std. Dev.
DAG-GRU A 72.0% 69.2% ± 0.04% 0.68%
DAG-GRU B 72.0% 67.9% ± 0.04% 0.60%
GRU 71.5% 68.4% ± 0.05% 0.80%
CNN+LSTM 70.8% 66.8% ± 0.07% 1.08%
DAG-LSTM 70.4% 65.5% ± 0.02% 0.40%
CNN 69.6% 65.4% ± 0.09% 1.49%

Table 2: Bootstrap estimates on 1000 samples for each
model after model selection based on dev set scores.

pears that using the dev. score for model selection
is only marginally helpful.

4.2 Randomized Splits

In order to explore the effect of the training/testing
split popularized by (Li et al., 2013), a randomized
cross validation experiment was conducted. From
the set of 599 documents in ACE2005, 10 random
splits were created maintaining the same 529, 30,
40 document counts per split, training, develop-
ment, testing, respectively. This method was used
to evaluate the effect of the standard split, since
it maintains the same data proportions while only
varying the split. The results of the experiment are
found in Table 3.

The effect of the split is substantial. Almost
all models’ performance dropped except for DAG-
LSTM, however the variance increased across all
models. In the worst case, the standard deviation
increased threefold from 0.86% to 2.60% for the
GRU model. In fact, the increased variation of the
splits means that the confidence intervals for all
the models overlap. This aligns with cross domain
analysis, some domains such as WL are known to
be much more difficult than the newswire domain
which comprises all of the test data under the stan-
dard split (Nguyen and Grishman, 2015). Further,
the effect of the difference in splits also negates
the benefits of the attention mechanism of DAG-

Method Dev Mean Mean Min Max Std. Dev.
DAG-GRU A 71.4% 68.4% ± 1.85% 65.7% 74.1% 2.59%
DAG-GRU B 70.9% 68.4% ± 1.88% 64.19% 73.59 2.63%
DAG-LSTM 68.9% 67.3% ± 1.43% 63.5% 70.7% 2.00%
GRU 69.8% 66.6% ± 1.86% 62.5% 71.1% 2.60%
CNN+LSTM 69.8% 66.3% ± 2.03% 60.1% 70.3% 2.83%
CNN 68.0% 65.4% ± 1.59% 60.7% 69.2% 2.22%

Table 3: Average results on 10 randomized splits.

GRU A. This is likely due to the test partitions’
inclusion of WL and other kinds of informal writ-
ing. The syntactic links are much more likely to be
noisy for informal writing, reducing the syntactic
information’s usefulness and reliability.

All these sources of variation are greater than
most advances in event detection, so quantifying
and reporting this variation is essential when as-
sessing model performance. Further, understand-
ing this variation is important for reproducibility
and is necessary for making any valid claims about
a model’s relative effectiveness.

5 Conclusions
We introduced and evaluated a DAG-GRU model
along with four previous models in two different
settings, the standard ACE2005 split with mul-
tiple random initializations and the same dataset
with multiple random splits. These experiments
demonstrate that our model, which utilizes syntac-
tic information through an attention mechanism, is
competitive with the state-of-the-art. Further, they
show that there are several significant sources of
variation which had not been previously studied
and quantified. Studying and mitigating this vari-
ation could be of significant value by itself. At a
minimum, it suggests that the community should
move away from evaluations based on single ran-
dom initializations and single training-test splits.
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Abstract

Publication information in a researcher’s aca-
demic homepage provides insights about the
researcher’s expertise, research interests, and
collaboration networks. We aim to extract
all the publication strings from a given aca-
demic homepage. This is a challenging task
because the publication strings in different
academic homepages may be located at dif-
ferent positions with different structures. To
capture the positional and structural diversity,
we propose an end-to-end hierarchical model
named PubSE based on Bi-LSTM-CRF. We
further propose an alternating training method
for training the model. Experiments on real
data show that PubSE outperforms the state-
of-the-art models by up to 11.8% in F1-score.

1 Introduction

Researchers often list their publications in their
academic homepages. These publications provide
insights about the researchers’ expertise, research
interests, and collaboration networks. Extracting
publications from a researcher’s homepage is an
essential step in extracting the researcher’s pro-
file (Tang et al., 2010). In this study, we aim to ex-
tract every publication from a researcher’s home-
page. For ease of discussion, we call such a pub-
lication item a publication string. Figure 1 illus-
trates the studied problem. There are two publi-
cations on the homepage shown in the figure, a
journal article and a conference paper. We aim to
extract them as two separate publication strings.

Extracting publication strings from academic
homepages helps bypass the problem of name
ambiguity (i.e., different authors with the same
name) (Zhu et al., 2018) in extracting publica-
tion strings from indexing sites such as DBLP and
PubMed. However, extracting publication strings

⇤ Corresponding author

A super important research article 
Doe, J. 12/2008 In: Great Journal. 23, 5, p. 34-45. 
Journal article  
A very interesting conference paper 

Doe, J. 2007 In: Good Venue. London : Publisher p. 111-119. 9 p. 
Conference paper (peer-reviewed)  

Professor John Doe

Publications

Presentations
Doe, J. (2004 April) An excellent presentation: In a Conference 

Figure 1: Part of a homepage with publication strings

from academic homepages directly has its own
challenges: (i) The list of publications may be lo-
cated anywhere in a homepage with varying con-
texts. The structure of the list and the format-
ting styles of a publication string can vary vastly
across different homepages. For example, some
researchers like to list some of their publications
with more details, such as full venue names, vol-
ume and page information, while listing the other
publication in a concise way. Also, some re-
searchers like to group their publication by year
or by topic. (ii) A publication string may contain
multiple lines of text (cf. Figure 1), and there may
not be a clear boundary between two publications
strings. (iii) There may be strings in an academic
homepage that share very similar structures and
styles with publication strings, such as records of
conference presentations (cf. Figure 1). Previous
work (Hong et al., 2009; Chung et al., 2012) fo-
cuses on feature and rule engineering and cannot
accommodate the above challenges.

To address these challenges, we propose a
model named PubSE to extract every publica-
tion string from an academic homepage. PubSE
has two characteristics: (i) The model structure
reflects the structure of a list of publications,
by its loss-functions at both text line-level and
webpage-level. (ii) The training process of the
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model utilizes both text line-level and webpage-
level information via an alternating training pro-
cedure to reduce overfitting. Our PubSE model
can extract publication strings in non-trivial cases,
such as multi-line publication strings from a non-
continuous publication list. We make the follow-
ing contributions: (i) We create a dataset of 2,500
homepages1, in which each publication string is
labeled. (ii) We address the problem of publication
string extraction by end-to-end learning, without
feature engineering. (iii) We propose a model that
can learn the structures of publication lists and the
styles of publication strings. We also propose an
alternating training method that can reduce overfit-
ting and further improve the prediction accuracy.

2 Related Work

Earlier studies extract publication strings from re-
search papers (Peng and McCallum, 2006; Coun-
cill et al., 2008; Tkaczyk et al., 2015). Such a
problem is simpler for two reasons: (i) The ref-
erence list of a research paper usually appears at a
fixed position (e.g., end of paper) and is continu-
ous. (ii) The references are usually well-formatted
and have few format variations since they may be
generated by software such as LATEX.

For extracting publication strings from aca-
demic homepages, previous studies use either
rule-based (Hong et al., 2009; Yang and Ho, 2010)
or a hybrid of machine learning and rule-based
methods (Chung et al., 2012).

For example, Chung et al. (2012) develop a sys-
tem named PRM that first segments an HTML
DOM tree and its contents based on HTML tags.
Then, PRM uses a linear chain CRF model to la-
bel the different parts of the tree. Based on the
labels, it refines the publication string boundaries
by heuristic rules to produce final predictions.

Relying on the HTML DOM tree structure
makes it difficult to train a machine learning based
model for publication extraction because: (i) Text
in a publication string may be separated in many
different DOM tree nodes. (ii) The DOM tree
structure, which previous web data record extrac-
tion systems (Liu et al., 2003; Furche et al., 2014;
Omari et al., 2016) rely on, may vary given the
same webpage content.

As a result, we do not use HTML tags in our
model. Instead, we work on the visible text con-

1Dataset available at http://www.ruizhang.
info/data/homepub.html

tents. To the best of our knowledge, no existing
studies for publication string extraction can effec-
tively model the structure of publication lists.

3 Dataset

To the best of our knowledge, there is no public
dataset of academic homepages that has labeled
publication strings.

We downloaded 2,500 academic homepages
from 100 universities around the world. We use
Selenium, an open-source automated rendering
software, to render the webpages. We collect visi-
ble texts from the webpages and then manually tag
all the publication strings in them. During tagging,
we mark the beginning and ending byte offsets of
each publication string. Among the 2,500 aca-
demic homepages, 723 homepages (28.9%) con-
tain publication lists, which consist of a total of
13,237 publication strings. Among the 723 home-
pages that contain publication strings, there are
117 homepages (16.2%) that contain multi-line
publication strings. On average, there are 732.1
(std=1583.3) tokens, 89.9 (std=141.6) lines, and
18.3 (std=35.4) publication strings per homepage.
We call this dataset HomePub.

Each publication string in HomePub dataset is
annotated by two annotators. Disagreement is re-
solved by a third annotator. On publication string
level, annotators agree on 83.76% publications,
and the Cohen’s kappa is 0.2084.

We have developed a program PageTagger2 to
assist the annotation. On average, it takes about
2.5 minutes to annotate one academic homepage
when using the PageTagger tool.

Note that our annotation does not consider the
following as publication strings: (i) Master or PhD
theses; (ii) working papers; (iii) seminars, invited
talks, or presentations; and (iv) patents. Our anno-
tation also excludes the numbers (e.g., [1] or [i]) if
the publication strings are in a numbered list.

4 Methods

We summarize the baseline models in Section 4.1
and present our PubSE model in Section 4.2.

4.1 Baselines

PRM: Chung et al. (2012) develop a publication
string extraction system based on region boundary

2https://github.com/yiqingzhang/
page-tagger

1006



ts1

LSTM LSTM

tsn td1

LSTM LSTM 

tdn

 ls1  lsn

Line-level model  Webpage-level model 

... ...

σϕs(bs = 1 | s)

  ld1  ldn

... ...

......
σϕd(bd = 1 | d)

 

Parameter 
Sharing 

Figure 2: PubSE model

analysis and CRF. We train their system on 60%
of the HomePub dataset.

ParsCit: ParsCit (Councill et al., 2008) is a
CRF-based document structure analysis and ref-
erence parsing tool. We use ParsCit as an off-the-
shelf tool on the HomePub dataset.

CNN-Sentence: In the HomePub dataset, over
80% of the publication strings are in a single line.
The problem of extracting publication strings can
be viewed as a single-line text classification prob-
lem (Kim, 2014; Yang et al., 2016; Joulin et al.,
2017). Following Kim (2014), we implement a
line-level classification model. We use the GloVe
(300 dimensions) pre-trained embedding on this
model (the same embedding is used across all the
models that require word embeddings as the in-
put). This model predicts whether each line in the
webpage is a publication string.

Bi-LSTM-CRF: The problem of extracting
publication strings can also be viewed as a se-
quence labeling task (Lample et al., 2016; Gui
et al., 2017; Liu et al., 2017), where there are two
possible labels for each token, publication (I) or
non-publication (O). A consecutive sequence of I
tokens forms a publications string. Sequence la-
beling approaches can capture correlations of la-
bels and words, as well as words themselves. Fol-
lowing Ma and Hovy (2016), we implement a Bi-
LSTM-CRF model. We concatenate token-level
with character-level embeddings as the model in-
put, to better deal with out-of-vocabulary tokens.

4.2 PubSE Model
To capture the hierarchical structure of a home-
page and address the issue of multi-line publi-
cation strings, we propose a hierarchical model
named PubSE with an alternating training method,
which alternates between training a line-level and
a webpage-level model to reduce overfitting. Fig-
ure 2 illustrates the model structure.

We incorporate both line-level and webpage-
level information in the model since the predic-

tions depend on both local (line-level) and global
(webpage-level) context. On one hand, local in-
formation such as word embeddings and morphol-
ogy information is crucial for the predictions over
individual lines. On the other hand, global in-
formation is also necessary, e.g., to help identify
the starting and ending positions of a publication
list and the boundaries between multi-line publi-
cations strings.

Line-level model: As shown in Figure 2, the
left Bi-LSTM network ⇡✓(`|s) specializes in line-
level inputs, where each mini batch of input com-
poses of lines in a webpage. On top of this sub-
module, we add another layer ��s(bs|s) to model
whether each line contains a publication string:

Lline = �✓sL(⇡✓(`|s), yt) + ��sL(��s(bs|s), yl),

where ` denotes the predicted labels for tokens tsi
in a line s, and bs denotes the predicted label for a
line, i.e., whether the line contains a publication
string or not; yt and yl denote the ground truth
label for each token and line. Hyperparameters
�✓s and ��s are the coefficients for token-level and
line-level, while ✓ and �s are the parameters of the
two networks; L is the cross-entropy loss:

L(ŷ, y) = �(1 � y)log(1 � ŷ) � ylog(ŷ),

where ŷ denotes the predicted label, and y denotes
the ground truth label.

The inputs to the line-level model are each
line in the form of h(e1, c1), (e2, c2), ..., (en, cn)i,
where ek and ck are the word embedding and
character embedding of the token tsk. Network
⇡✓(`|s) outputs a label for each token, while net-
work ��s(bs|s) gives binary output for each line,
indicating whether it contains a publication string.
Extraction result is based on the output of ⇡✓(`|s).

Webpage-level model: Similarly, the right Bi-
LSTM sub-module ⇡✓(`|d) in Figure 2 specializes
in webpage-level inputs, where the whole home-
page d is supplied to the model as a long se-
quence of token embeddings. We add another
layer ��d

(bd|d) to reflect whether the homepage
contains publication strings:

Lpage = �✓d
L(⇡✓(`|d), yt)+��d

L(��d
(bd|d), yw),

where bd denotes whether the document contains
publication or not; �✓d

and ��d
are token-level and

webpage-level coefficients; yw denotes the ground
truth label for a webpage; ✓ and �d are network pa-
rameters. Note that the left and right sub-modules
collaborate by sharing network weights ✓.
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Exact Match 85% Match Multi-line Only (Exact)
Methods Precision Recall F1 Precision Recall F1 Precision Recall F1
PRM (Chung et al., 2012) 15.39 37.54 21.83 18.25 44.52 25.89 5.70 10.83 7.47
ParsCit (Councill et al., 2008) 70.34 18.22 28.94 72.46 18.76 29.81 12.94 1.22 2.22
CNN-Sentence (Kim, 2014) 73.39 76.69 75.00 76.57 80.01 78.25 16.03 18.01 16.96
Bi-LSTM-CRF (Ma and Hovy, 2016) 74.15 77.22 75.65 75.76 78.90 77.30 21.11 22.21 21.65
PubSE (Proposed model) 84.12 91.12 87.48 87.28 94.53 90.76 70.70 76.80 73.62

Table 1: Performance of different models on the HomePub dataset. The first and second groups show the performance on the
whole test dataset. The third group shows the exact matching performance on the subset that contains multi-line publications.

Alternating training method: Inspired by the
training procedure of curriculum learning (Bengio
et al., 2009) and soft-landing (He et al., 2016), we
adopt an alternating training procedure controlled
by the following function:

f(k) = H(cos(k/T )),

where T controls the period of the function, and
k is the number of epochs. The H denotes the
Heaviside step function. In the kth epoch, we will
train only one of the submodules, given by

L = f(k)Lline + f(k + 1)Lpage.

Our intuition is that the training of line-level and
webpage-level networks can reinforce each other
and reduce overfitting. If we only train the model
on the line-level input, the model will lose all the
long-term dependency information. For example,
a string that describes a thesis resembles that of a
conference paper. To filter such strings, we need
to rely on indicators that may reside in a different
line such as a heading “Dissertations supervised”.
On the other hand, if we only train the model on
webpage-level input, the model may be dominated
by the longest line on the homepage, such as biog-
raphy information. Our alternating training proce-
dure balances the two factors and can better model
the hierarchical structure of a publication list.

The PubSE model can capture and exploit in-
formation on the webpage from four different
perspectives: (i) character-level information such
as word morphology; (ii) token-level information
such as word context; (iii) line-level information
such as whether a line is a publication string; and
(iv) webpage-level information such as whether a
webpage contains publication strings.

5 Experiments

Settings and Evaluation: We divide the Home-
Pub dataset by a 60-40 split and train our model on
60% of the total data. We use 20% of the training
set as a validation set for early stopping and hyper-
parameter tuning. The optimal hyperparameters
are obtained with a standard grid search procedure
on the validation set. We use 40 as the batch size

for the line-level model and 1 for the webpage-
level model. We set �✓s , ��s , �✓d

, ��d
, T as 1,

0.05, 1, 0.3, 1/⇡, respectively.
We use precision, recall, and F1-score to mea-

sure the performance, and we report both ex-
act and relaxed matching performance. In ex-
act matching, a publication string is considered to
be correctly extracted only if it exactly matches
a publication string in the ground truth. In relax
matching, we allow mismatching 15% of publica-
tion strings. (i.e., a publication string is considered
correct if it contains at least 85% of the tokens of
a publication string in the ground truth.) We also
list the model performance on webpages in the test
set that contain multi-line publication strings.

Results: We report the experiment results in Ta-
ble 1. The result shows that the proposed PubSE
model consistently outperforms all the baselines
with a statistically significant margin, and the ad-
vantage is up to 11.8%. In particular, the use of the
webpage-level sub-module helps PubSE to handle
multi-line publication strings, which yields a sig-
nificant performance gain.

In comparison, PRM struggles in determining
which part of a page contains publications. ParsCit
requires well-formatted inputs. For example, if
publication strings do not contain page numbers,
ParsCit will be reluctant to separate the list of
publication strings into individual records. CNN-
Sentence and Bi-LSTM-CRF give poor results in
pages that contain multi-line publication strings.

Methods Exact
Match

85%
Match

Multi-
line

L + LP 76.65 79.38 18.99
W 83.04 86.27 62.04

W + WP 84.18 87.22 63.77
L + W 85.98 89.1 63.36

PubSE (L+LP+W+WP) 87.48 90.76 73.62
Table 2: F1-score of different variations of the PubSE model.
L means only the line-level sub-module ⇡✓(`|s); LP means
the extra layer ��s

(bs|s); W means only the webpage-level
sub-module ⇡✓(`|d); WP means the extra layer ��d

(bd|d).

Ablation Study: We also test different varia-
tions of our proposed model PubSE, and the re-
sults are shown in Table 2.

About 50% improvement over the best baseline
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Watching Whoopi : the politics and ethics of the ethics of witnessing.
Harris, G. 05/2009 In: Performance Paradigm. 5, 1, p. n/a.
Journal article

Susan and Darren : the appearance of authenticity.
Harris, G. 12/2008 In: Performance Research. 13, 4, p. 4-15. 12 p.
Journal article

Watching Whoopi : the politics and ethics of the ethics of witnessing.
Harris, G. 05/2009 In: Performance Paradigm. 5, 1, p. n/a.
Journal article

Susan and Darren : the appearance of authenticity.
Harris, G. 12/2008 In: 
Journal article

Ground truth annotation      |            Model prediction Example 1

Susan and Darren : the appearance of authenticity. 
Harris, G. 12/2008 In: Performance Research. 13, 4, p. 4-15. 12 p. 
Journal article 

How to shop 
Harris, G. 2007 In: Bobby Baker. London : Routledge p. 191-195. 5 p. 
Chapter (peer-reviewed)

Susan and Darren : the appearance of authenticity. 
Harris, G. 12/2008 In: Performance Research. 13, 4, p. 4-15. 12 p. 
Journal article 

How to shop 
Harris, G. 2007 In: Bobby Baker. London : Routledge p. 191-195. 5 p. 
Chapter (peer-reviewed)

Example 2Ground truth annotation      |            Model prediction

Rhetoric 
Roer, H. 2013 The Oxford Guide to the Historical Reception of Augustine. Pollmann, K. (ed.). Oxford: Oxford University Press, Vol. 3, p. 1650-1657 7 p.

Example 3

Rhetoric 
Roer, H. 2013 The Oxford Guide to the Historical Reception of Augustine. Pollmann, K. (ed.). Oxford: Oxford University Press, Vol. 3, p. 1650-1657 7 p.

Model prediction
Ground truth annotation

[
]

[
]

[ ]

[ ]

[
]

]
[

[
]

]
[

[ ]

[
]

][

Figure 3: Typical errors of various models. Underlined tokens are labeled as I (publication). “[” and “]” are not part of the
text. They are used to highlight the boundary of publication strings.

is made by training the model with webpage-level
input (W) since it is difficult to extract multi-line
publication strings without a global view of the
whole webpage.

The effect of the alternating training method
(L+W) is also significant. The webpage-level
model (W) may not handle short lines too well,
e.g., a line with text “Conference paper (peer-
reviewed)” as shown in Figure 1. This problem
is solved by combining the line-level model with
the webpage-level model (L+W).

Error analysis: Figure 3 shows typical errors
made by various models. Examples 1 shows er-
rors occurred in line-level model prediction re-
sults. The line-level model does not handle multi-
line publication strings well since the predictions
of different lines are independent, so the model
fails to capture dependency relationships in differ-
ent lines.

Example 2 shows prediction results given by the
webpage-level model. We see that the webpage-
level model can make a more accurate predic-
tion for multi-line publications. However, it may
make false positive predictions for short lines
(e.g., “Chapter (peer-reviewed)”), while the line-
level model seldom makes such mistakes. This
is the motivation for us to integrate both the line-
level and the webpage-level models.

PubSE can avoid most of the errors shown in
Examples 1 and 2. Nevertheless, PubSE still
makes mistakes in some challenging cases. Ex-
ample 3 shows such a case, where PubSE does not

recognize that “Rhetoric” is a publication title. A
possible explanation is that such a short publica-
tion title is less common.

6 Conclusions and Future work
We studied publication string extraction and pro-
posed a model named PubSE for the problem.
PubSE models the publication list structure with
its hierarchical structure and loss functions. We
proposed an alternating training scheme that com-
bines both line-level and webpage-level informa-
tion, which are crucial for predicting multi-line
publication strings. Experiments show that the
proposed PubSE model outperforms the state-of-
the-art models by up to 11.8% in F1-score.

For future work, we aim to expand our ex-
perimental study to a larger scale. We further
consider extracting publication strings from aca-
demic homepages of the same organization. Such
homepages may share similar templates, which
may help improve the extraction accuracy. We
also plan to investigate adaptive alternating model
training schemes as well as external memory
mechanism such as memory networks.
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Abstract

It is common that entity mentions can con-
tain other mentions recursively. This paper in-
troduces a scalable transition-based method to
model the nested structure of mentions. We
first map a sentence with nested mentions to
a designated forest where each mention corre-
sponds to a constituent of the forest. Our shift-
reduce based system then learns to construct
the forest structure in a bottom-up manner
through an action sequence whose maximal
length is guaranteed to be three times of the
sentence length. Based on Stack-LSTM which
is employed to efficiently and effectively rep-
resent the states of the system in a continuous
space, our system is further incorporated with
a character-based component to capture letter-
level patterns. Our model achieves the state-
of-the-art results on ACE datasets, showing its
effectiveness in detecting nested mentions.1

1 Introduction

There has been an increasing interest in named
entity recognition or more generally recognizing
entity mentions2 (Alex et al., 2007; Finkel and
Manning, 2009; Lu and Roth, 2015; Muis and Lu,
2017) that the nested hierarchical structure of en-
tity mentions should be taken into account to bet-
ter facilitate downstream tasks like question an-
swering (Abney et al., 2000), relation extraction
(Mintz et al., 2009; Liu et al., 2017), event extrac-
tion (Riedel and McCallum, 2011; Li et al., 2013),
and coreference resolution (Soon et al., 2001; Ng
and Cardie, 2002; Chang et al., 2013). Practically,
the mentions with nested structures frequently ex-
ist in news (Doddington et al., 2004) and biomed-
ical documents (Kim et al., 2003). For example in

1We make our implementation available at https://
github.com/berlino/nest-trans-em18.

2Mentions are defined as references to entities that could
be named, nominal or pronominal (Florian et al., 2004).

Figure 1: An example sentence of nested mentions
represented in the structure of forest. PER:Person,
ORG:Organization, GPE:Geo-Political Entity.

Figure 1, “UN Secretary General” of type Person
also contains “UN” of type Organization.

Traditional sequence labeling models such as
conditional random fields (CRF) (Lafferty et al.,
2001) do not allow hierarchical structures between
segments, making them incapable to handle such
problems. Finkel and Manning (2009) presented
a chart-based parsing approach where each sen-
tence with nested mentions is mapped to a rooted
constituent tree. The issue of using a chart-based
parser is its cubic time complexity in the number
of words in the sentence.

To achieve a scalable and effective solution
for recognizing nested mentions, we design a
transition-based system which is inspired by
the recent success of employing transition-based
methods for constituent parsing (Zhang and Clark,
2009) and named entity recognition (Lou et al.,
2017), especially when they are paired with neu-
ral networks (Watanabe and Sumita, 2015). Gen-
erally, each sentence with nested mentions is
mapped to a forest where each outermost mention
forms a tree consisting of its inner mentions. Then
our transition-based system learns to construct this
forest through a sequence of shift-reduce actions.
Figure 1 shows an example of such a forest. In
contrast, the tree structure by Finkel and Manning
(2009) further uses a root node to connect all tree
elements. Our forest representation eliminates the
root node so that the number of actions required to
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construct it can be reduced significantly.
Following (Dyer et al., 2015), we employ Stack-

LSTM to represent the system’s state, which con-
sists of the states of input, stack and action history,
in a continuous space incrementally. The (par-
tially) processed nested mentions in the stack are
encoded with recursive neural networks (Socher
et al., 2013) where composition functions are used
to capture dependencies between nested mentions.
Based on the observation that letter-level patterns
such as capitalization and prefix can be beneficial
in detecting mentions, we incorporate a character-
level LSTM to capture such morphological infor-
mation. Meanwhile, this character-level compo-
nent can also help deal with the out-of-vocabulary
problem of neural models. We conduct exper-
iments in three standard datasets. Our system
achieves the state-of-the-art performance on ACE
datasets and comparable performance in GENIA
dataset.

2 Related Work

Entity mention recognition with nested structures
has been explored first with rule-based approaches
(Zhang et al., 2004; Zhou et al., 2004; Zhou,
2006) where the authors first detected the inner-
most mentions and then relied on rule-based post-
processing methods to identify outer mentions.
McDonald et al. (2005) proposed a structured
multi-label model to represent overlapping seg-
ments in a sentence. but it came with a cubic time
complexity in the number of words. Alex et al.
(2007) proposed several ways to combine multiple
conditional random fields (CRF) (Lafferty et al.,
2001) for such tasks. Their best results were ob-
tained by cascading several CRF models in a spe-
cific order while each model is responsible for de-
tecting mentions of a particular type. However,
such an approach cannot model nested mentions
of the same type, which frequently appear.

Lu and Roth (2015) and Muis and Lu (2017)
proposed new representations of mention hyper-
graph and mention separator to model overlap-
ping mentions. However, the nested structure is
not guaranteed in such approaches since overlap-
ping structures additionally include the crossing
structures3, which rarely exist in practice (Lu and
Roth, 2015). Also, their representations did not
model the dependencies between nested mentions

3For example, in a four-word sentence ABCD, the phrase
ABC and BCD together form a crossing structure.

Initial State [�, 0, �]
Final State [S, n, A]

SHIFT
[S, i, A]

[S|w, i+1, A|SHIFT]

REDUCE-X
[S|t1t0, i, A]

[S|X, i, A|REDUCE-X]

UNARY-X
[S|t0, i, A]

[S|X, i, A|UNARY-X]

Figure 2: Deduction rules. [S, i, A] denotes stack,
buffer front index and action history respectively.

explicitly, which may limit their performance. In
contrast, the chart-based parsing method (Finkel
and Manning, 2009) can capture the dependencies
between nested mentions with composition rules
which allow an outer entity to be influenced by its
contained entities. However, their cubic time com-
plexity makes them not scalable to large datasets.

As neural network based approaches are proven
effective in entity or mention recognition (Col-
lobert et al., 2011; Lample et al., 2016; Huang
et al., 2015; Chiu and Nichols, 2016; Ma and
Hovy, 2016), recent efforts focus on incorporating
neural components for recognizing nested men-
tions. Ju et al. (2018) dynamically stacked mul-
tiple LSTM-CRF layers (Lample et al., 2016), de-
tecting mentions in an inside-out manner until no
outer entities are extracted. Katiyar and Cardie
(2018) used recurrent neural networks to extract
features for a hypergraph which encodes all nested
mentions based on the BILOU tagging scheme.

3 Model

Specifically, given a sequence of words
{x0, x1, . . . , xn}, the goal of our system is
to output a set of mentions where nested struc-
tures are allowed. We use the forest structure to
model the nested mentions scattered in a sentence,
as shown in Figure 1. The mapping is straightfor-
ward: each outermost mention forms a tree where
the mention is the root and its contained mentions
correspond to constituents of the tree.4

3.1 Shift-Reduce System
Our transition-based model is based on the shift-
reduce parser for constituency parsing (Watan-

4Note that words that are not contained in any mention
each forms a single-node tree.
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abe and Sumita, 2015), which adopts (Zhang and
Clark, 2009; Sagae and Lavie, 2005). Generally,
our system employs a stack to store (partially) pro-
cessed nested elements. The system’s state is de-
fined as [S, i, A] which denotes stack, buffer front
index and action history respectively. In each step.
an action is applied to change the system’s state.

Our system consists of three types of transition
actions, which are also summarized in Figure 2:

• SHIFT pushes the next word from buffer to
the stack.

• REDUCE-X pops the top two items t0 and
t1 from the tack and combines them as a
new tree element {X ! t0t1} which is then
pushed onto the stack.

• UNARY-X pops the top item t0 from the stack
and constructs a new tree element {X ! t0}
which is pushed back to the stack.

Since the shift-reduce system assumes unary
and binary branching, we binarize the trees in
each forest in a left-branching manner. For exam-
ple, if three consecutive words A, B, C are anno-
tated as Person, we convert it into a binary tree
{Person ! {Person⇤ ! A, B}, C} where
Person⇤ is a temporary label for Person. Hence,
the X in reduce- actions will also include such
temporary labels.

Note that since most words are not contained in
any mention, they are only shifted to the stack and
not involved in any reduce- or unary- actions. An
example sequence of transitions can be found in
Figure 3. Our shift-reduce system is different from
previous parsers in terms of the terminal state. 1)
It does not require the terminal stack to be a rooted
tree. Instead, the final stack should be a forest con-
sisting of multiple nested elements with tree struc-
tures. 2) To conveniently determine the ending of
our transition process, we add an auxiliary symbol
$ to each sentence. Once it is pushed to the stack,
it implies that all deductions of actual words are
finished. Since we do not allow unary rules be-
tween labels like X1 ! X2, the length of maxi-
mal action sequence is 3n.5

3.2 Action Constraints
To make sure that each action sequence is valid,
we need to make some hard constraints on the ac-

5In this case, each word is shifted (n) and involved in a
unary action (n). Then all elements are reduced to a single
node (n � 1). The last action is to shift the symbol $.

Indonesian leaders visited him $

leaders visited him $

BufferStack

Shift

Indonesian Unary-GPE

Indonesian

GPE
leaders visited him $

Action

Shift

Indonesian

GPE
leaders visited him $Reduce-PER

Indonesian

GPE leaders

PER

Shift

him $

Unary-PER

Shift

$

$

Indonesian

GPE leaders

PER

visited

Indonesian

GPE leaders

PER

himvisited

Indonesian

GPE leaders

PER

him

PER
visited

Shift

visited him $

him

PER
$

Indonesian

GPE leaders

PER

visited

Figure 3: An example sequence of transition actions
for the sentence “Indonesian leaders visited him”. $ is
the special symbol indicating the termination of transi-
tions. PER:Person, GPE:Geo-Political Entity.

tion to take. For example, reduce- action can only
be conducted when there are at least two elements
in the stack. Please see the Appendix for the full
list of restrictions. Formally, we use V(S, i, A) to
denote the valid actions given the parser state. Let
us denote the feature vector for the parser state at
time step k as pk. The distribution of actions is
computed as follows:

p(zk | pk) =
exp

�
w>

zk
pk + bzk

�
P

z02V(S,i,A) exp
�
w>

z0pk + bz0

�

(1)
where wz is a column weight vector for action z,
and bz is a bias term.

3.3 Neural Transition-based Model
We use neural networks to learn the representation
of the parser state, which is pk in (1).

Representation of Words
Words are represented by concatenating three vec-
tors:

exi = [ewi , epi , cwi ] (2)

where ewi and epi denote the embeddings for i-th
word and its POS tag respectively. cwi denotes the
representation learned by a character-level model
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using a bidirectional LSTM. Specifically, for char-
acter sequence s0, s1, . . . , sn in the i-th word, we
use the last hidden states of forward and back-
ward LSTM as the character-based representation
of this word, as shown below:

cwi = [
����!
LSTMc(s0, . . . , sn),

 ����
LSTMc(s0, . . . , sn)]

(3)

Representation of Parser States
Generally, the buffer and action history are en-
coded using two vanilla LSTMs (Graves and
Schmidhuber, 2005). For the stack that involves
popping out top elements, we use the Stack-LSTM
(Dyer et al., 2015) to efficiently encode it.

Formally, if the unprocessed word sequence in
the buffer is xi, xi+1, . . . , xn and action history se-
quence is a0, a1, . . . , ak�1, then we can compute
buffer representation bk and action history repre-
sentation ak at time step k as follows:

bk =
 �����
LSTMb[exi , . . . , exn ] (4)

ak =
�����!
LSTMa[ea0 , . . . , eak�1 ] (5)

where each action is also mapped to a distributed
representation ea.6 For the state of the stack, we
also use an LSTM to encode a sequence of tree
elements. However, the top elements of the stack
are updated frequently. Stack-LSTM provides an
efficient implementation that incorporates a stack-
pointer.7 Formally, the state of the stack bk at time
step k is computed as:

sk = Stack-LSTM[htm , . . . ,ht0 ] (6)

where hti denotes the representation of the i-th
tree element from the top, which can be computed
recursively similar to Recursive Neural Network
(Socher et al., 2013) as follows:

hparent = W>
u,lhchild + bu,l (7)

hparent = W>
b,l[hlchild,hrchild] + bu,l (8)

where Wu,l and Wb,l denote the weight matrices
for unary(u) and binary(b) composition with par-
ent node being label(l). Note that the composition
function is distinct for each label l. Recall that the
leaf nodes of each tree element are raw words. In-
stead of representing them with their original em-
beddings introduced in Section 3.3, we found that

6Note that LSTMb runs in a right-to-left order such that
the output can represent the contextual information of xi.

7Please refer to Dyer et al. (2015) for details.

Models ACE04 ACE05 GENIA w/s
Finkel and Manning (2009) - - 70.3 38†

Lu and Roth (2015) 62.8 62.5 70.3 454
Muis and Lu (2017) 64.5 63.1 70.8 263
Katiyar and Cardie (2018) 72.7 70.5 73.6 -
Ju et al. (2018) 8 - 72.2 74.7 -
Ours 73.3 73.0 73.9 1445
- char-level LSTM 72.3 71.9 72.1 1546
- pre-trained embeddings 71.3 71.5 72.0 1452
- dropout layer 71.7 72.0 72.7 1440

Table 1: Main results in terms of F1 score (%). w/s:
# of words decoded per second, number with † is re-
trieved from the original paper.

concatenating the buffer state in (5) are beneficial
during our initial experiments. Formally, when a
word xi is shifted to the stack at time step k, its
representation is computed as:

hleaf = W>
leaf [exi ,bk] + bleaf (9)

Finally, the state of the system pk is the con-
catenation of the states of buffer, stack and action
history:

pk = [bk, sk,ak] (10)

Training
We employ the greedy strategy to maximize the
log-likelihood of the local action classifier in (1).
Specifically, let zik denote the k-th action for the
i-th sentence, the loss function with `2 norm is:

L(✓) = �
X

i

X

k

log p(zik) +
�

2
k✓k2 (11)

where � is the `2 coefficient.

4 Experiments

We mainly evaluate our models on the standard
ACE-04, ACE-05 (Doddington et al., 2004), and
GENIA (Kim et al., 2003) datasets with the same
splits used by previous research efforts (Lu and
Roth, 2015; Muis and Lu, 2017). In ACE datasets,
more than 40% of the mentions form nested struc-
tures with some other mention. In GENIA, this
number is 18%. Please see Lu and Roth (2015)
for the full statistics.

4.1 Setup
Pre-trained embeddings GloVe (Pennington et al.,
2014) of dimension 100 are used to initialize the

8Note that in ACE2005, Ju et al. (2018) did their exper-
iments with a different split from Lu and Roth (2015) and
Muis and Lu (2017) which we follow as our split.
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word vectors for all three datasets.9 The embed-
dings of POS tags are initialized randomly with
dimension 32. The model is trained using Adam
(Kingma and Ba, 2014) and a gradient clipping of
3.0. Early stopping is used based on the perfor-
mance of development sets. Dropout (Srivastava
et al., 2014) is used after the input layer. The `2 co-
efficient � is also tuned during development pro-
cess.

4.2 Results

The main results are reported in Table 1. Our neu-
ral transition-based model achieves the best results
in ACE datasets and comparable results in GENIA
dataset in terms of F1 measure. We hypothesize
that the performance gain of our model compared
with other methods is largely due to improved per-
formance on the portions of nested mentions in
our datasets. To verify this, we design an experi-
ment to evaluate how well a system can recognize
nested mentions.

Handling Nested Mentions

The idea is that we split the test data into two
portions: sentences with and without nested men-
tions. The results of GENIA are listed in Table
2. We can observe that the margin of improve-
ment is more significant in the portion of nested
mentions, revealing our model’s effectiveness in
handling nested mentions. This observation helps
explain why our model achieves greater improve-
ment in ACE than in GENIA in Table 1 since the
former has much more nested structures than the
latter. Moreover, Ju et al. (2018) performs bet-
ter when it comes to non-nested mentions possibly
due to the CRF they used, which globally normal-
izes each stacked layer.

Decoding Speed

Note that Lu and Roth (2015) and Muis and Lu
(2017) also feature linear-time complexity, but
with a greater constant factor. To compare the
decoding speed, we re-implemented their model
with the same platform (PyTorch) and run them
on the same machine (CPU: Intel i5 2.7GHz). Our
model turns out to be around 3-5 times faster than
theirs, showing its scalability.

9We also additionally tried using embeddings trained on
PubMed for GENIA but the performance was comparable.

GENIA
Nested Non-Nested

P R F1 P R F1

Lu and Roth (2015) 76.3 60.8 67.7 73.1 70.7 71.9
Muis and Lu (2017) 76.5 60.3 67.4 74.8 71.3 73.0
Ju et al. (2018) 79.4 63.6 70.6 78.5 77.5 78.0
Ours 80.3 64.6 71.6 76.8 73.9 75.3

Table 2: Results (%) on different types of sentences on
the GENIA dataset.

Ablation Study

To evaluate the contribution of neural components
including pre-trained embeddings, the character-
level LSTM and dropout layers, we test the perfor-
mances of ablated models. The results are listed
in Table 1. From the performance gap, we can
conclude that these components contribute signifi-
cantly to the effectiveness of our model in all three
datasets.

5 Conclusion and Future Work

In this paper, we present a transition-based model
for nested mention recognition using a forest rep-
resentation. Coupled with Stack-LSTM for rep-
resenting the system’s state, our neural model can
capture dependencies between nested mentions ef-
ficiently. Moreover, the character-based compo-
nent helps capture letter-level patterns in words.
The system achieves the state-of-the-art perfor-
mance in ACE datasets.

One potential drawback of the system is the
greedy training and decoding. We believe that al-
ternatives like beam search and training with ex-
ploration (Goldberg and Nivre, 2012) could fur-
ther boost the performance. Another direction that
we plan to work on is to apply this model to rec-
ognizing overlapping and entities that involve dis-
continuous spans (Muis and Lu, 2016) which fre-
quently exist in the biomedical domain.
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Appendix

The action constraints are listed as follows:

• The SHIFT action is valid only when the
buffer is not empty.

• The UNARY-X actions are valid only when
the stack is not empty.

• The REDUCE-X actions are valid only when
the stack has two or more elements.

• If the top element of the stack is labeled, then
unary actions are not valid. That is, {X1 !
X2} is not allowed.

• If only one of the top two elements of the
stack is temporary, say X*, then among
all reduce actions, only REDUCE-X* and
REDUCE-X are valid.

• If the top two elements of the stack are both
temporary, then all reduce actions are not al-
lowed.

• If one of the elements in the stack is tempo-
rary, say X*, which means it is not finished,
then last terminal symbol $ cannot be shifted
until it is reduced to X.
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Abstract
Relation Extraction suffers from dramatical
performance decrease when training a model
on one genre and directly applying it to a
new genre, due to the distinct feature distribu-
tions. Previous studies address this problem by
discovering a shared space across genres us-
ing manually crafted features, which requires
great human effort. To effectively automate
this process, we design a genre-separation net-
work, which applies two encoders, one genre-
independent and one genre-shared, to explic-
itly extract genre-specific and genre-agnostic
features. Then we train a relation classifier us-
ing the genre-agnostic features on the source
genre and directly apply to the target genre.
Experiment results on three distinct genres
of the ACE dataset show that our approach
achieves up to 6.1% absolute F1-score gain
compared to previous methods. By incorpo-
rating a set of external linguistic features, our
approach outperforms the state-of-the-art by
1.7% absolute F1 gain. We make all programs
of our model publicly available for research
purpose 1 .

1 Introduction
Relation extraction aims to identify and categorize
the semantic relation between two entity mentions
based on the contexts within the sentence. Super-
vised learning approaches have shown to be ef-
fective on this task. However, as relation extrac-
tion highly depends on information about entities
and their contexts, a supervised model trained in
one genre suffers from dramatical performance de-
crease when applied to a new genre, due to the dis-
tinct contexts among various genres.

Previous studies (Plank and Moschitti, 2013;
Nguyen and Grishman, 2014, 2015; Yu et al.,

⇤*Corresponding author
1We make all cleaned codes and resources publicly

available at https://github.com/Garym713/Genre-Separation-
Network-for-Relation-Extraction

shared feature

Feature

Output

Feature

Input

Source Genre Target Genre

Feature
Projection

Feature
Engineering

Genre Separation
Network

source feature target feature

Figure 1: Comparison of Genre Separation Methods.

2015; Gormley et al., 2015) tackle this problem
by manually crafting genre-agnostic features such
as word clusters and word embeddings, to train
a genre-shared relation extractor. These methods
suffer from information loss due to the limited hu-
man knowledge to capture all genre-agnostic fea-
tures. As depicted in Figure 1, where red rectan-
gles are features shared by two genres, and blue
and green triangles are source and target genre fea-
tures respectively, Feature Engineering only cap-
tures a portion of the genre-agnostic features. Fu
et al. (2017), depicted as Feature Projection, ap-
plies a domain adversarial neural network to auto-
matically project the source and target genre fea-
tures into one unified feature space. However,
it unnecessarily introduces genre-specific features
which undermine the overall performance.

To address these problems, we propose a genre-
separation network, which consists of two sep-
arate Convolutional Neural Networks (CNNs) to
automatically separates genre-specific and genre-
agnostic features for each genre, which is depicted
as Genre Separation Network in Figure 1. To
avoid information loss during feature encoding,
we reconstruct the original input from the two
separate feature spaces via a novel reconstruction
loss. Then we use an adversarial similarity loss
to limit the genre-agnostic features into one fea-
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Figure 2: Overall genre separation framework for cross-genre relation extraction

ture space. The genre-agnostic features are finally
used to predict entity relations in the source and
target genres.

2 Approach

2.1 Overview

An overview of our framework is presented
in Figure 2. We formulate the task as fol-
lows: given a labeled source genre corpus
S = {(s1, e11, e12, r1), ..., (sn, en1, en2, rn)},
where si = [wi1, ..., wim] denotes a sentence.
ei1 and ei2 denote two entity mentions, and ri

denotes the relation betwern ei1 and ei2, we
build a relation extraction model on S and ap-
ply it to a different target genre corpus T =
{(ŝ1, ê11, ê12), ..., (ŝn, ˆen1, ˆen2)}.

2.2 Genre Separation Network (GSN)

As shown in Figure 1, our goal is to distinguish the
genre-agnostic features (red rectangles) and genre-
specific features (blue triangles and green crosses).
Using source genre as an example, we apply a
source private CNN encoder on the source sen-
tence to generate the source-specific feature repre-
sentation fp

s , and a shared CNN encoder to gener-
ate genre-agnostic feature f c

s . Similarly, we get fp
t

and f c
t from the target private CNN encoder and

the shared CNN encoder respectively. To separate
fp

s from f c
s and separate fp

t from f c
t , we introduce

a difference loss following previous studies (Bous-
malis et al., 2016; Liu et al., 2017). More details
will be elaborated below.

Formally, given a source sentence (s, e1, e2, r)
where s = [w1, ..., wm], for each word wik,
we generate a multi-type embedding: ṽi =

[vi, pi, p̃i, ti, t̃i, ci, ⌘i] where vi denotes a pre-
trained word embedding. pi and p̃i are position
embeddings (Al-Badrashiny et al., 2017) indicat-
ing the distance from wi to e1 and e2 respec-
tively. ti and t̃i are entity type embedding (Ren
et al., 2016; Huang et al., 2016) of e1 and e2.
ci is the chunking embedding, and ⌘i is a bi-
nary digit indicating whether the word is within
the shortest dependency path between e1 and
e2 (Bunescu and Mooney, 2005; Liu et al., 2015;
Huang et al., 2017). All these embeddings except
pre-trained word embedding are randomly initial-
ized and optimized during training. Thus the in-
put layer is a sequence of word representations
V = {ṽ1, ṽ2, ..., ṽn}. We then apply the convo-
lution weights W to each sliding n-gram phrase gj

with a biased vector b, i.e., g
0

j = tanh(W ·V )+ b.
All n-gram representations g

0

j are further used to
get an overall vector representation f by max-
pooling.

Once we obtain fp
s , f c

s , fp
s and f c

s , we compute
the difference loss:

Ldiff = ||fp>
s · f c

s + fp>
t · f c

t ||F2
where ||.||F2 represents the squared Frobenius
norm.

To limit the genre-agnostic features from vari-
ous genres into a shared feature space, we further
design a genre adversarial training component. We
take the genre-agnostic features from both source
genre and target genre as input to a Gradient Re-
versed Layer(GRL) (Ganin et al., 2016), which
acts as a general hidden layer in forward process
and reverses the gradient in loss backward phase to
confuse the genre classifier, so that it cannot dis-
tinguish the input features from the source genre
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to the target genre:

Ladv =
Ns+NtX

i=0

dil log(dˆi) + (1 � di) log(1 � dˆi)

where di 2 {0, 1} indicates the samples from the
source genre or the target genre, and Ns, Nt refer
to the number of examples in the source genre and
the target genre respectively. The term d̂i repre-
sents the probability of the sample from the source
genre, which is acquired by a linear function of the
genre classifier.

2.3 Genre Reconstruction
Till now, we can separate the features of each
genre into two separated feature spaces by opti-
mizing Ldiff and Ladv. However, there is no guar-
antee that the separated feature spaces are actually
meaningful. From equation Ldiff , we can see that
the fp

s , fp
t would be easily optimized to zero if we

did not place a constraint, in which case the model
would fail to train. Therefore, we further recon-
struct the input sentence from both genre-specific
features and genre-agnostic features.

For each genre, e.g., the source genre, we
first sum the genre-specific feature vector fp

s

and genre-agnostic feature vector f c
s , i.e., fs =

fp
s + f c

s . We take fs as input to an unpooling
layer (Zeiler and Fergus, 2014) followed by a de-
convolutional neural netowrk (DcNN) (Xu et al.,
2014). The output of DcNN will include the same
number of decoded vectors V ⇤ = {ṽ⇤

1, ṽ
⇤
2, ..., ṽ

⇤
n}

as input V = {ṽ1, ṽ2, ..., ṽn}. We optimize the
DcNN with the following reconstruction loss:

Lrec = 1 �
nX

i=0

|cos(ṽi, ṽ
⇤
i )|

where n indicates the total number of words in the
input sentence, ṽi represents the input word rep-
resentation described in Section 2.2, and ṽ⇤

i is the
corresponding reconstructed vector from DcNN.

2.4 Cross Genre Relation Extraction
We next utilize the genre-agnostic features from
the source genre f c

s to train a relation classifier.
We first feed f c

s into a fully connected layer and
obtain a dense vector, then we use a linear projec-
tion function with a softmax as the relation classi-
fier to determine the relation type

Lrelation =
NsX

i=0

KX

k=0

�xk log(xk)

where K is the total number of relation types. xk

represents the probability of entities being classi-
fied to category k.

We finally linearly combine all the loss func-
tions and jointly optimize the model using
SGD (Bottou, 2010).

L = Lrelation + ↵Ldiff + �Lrec + �Ladv

where ↵, �, � denote the weights of various
losses.2

3 Experiments

3.1 Data and Parameters
We evaluate our approach on the English portion
of ACE2005 dataset (Walker et al., 2006; Ji et al.,
2010; Hong et al., 2015; Yu et al., 2016). It covers
6 genres: Newswire (nw), Broadcast Conversa-
tion (bc), Broadcast News (bn), Telephone Speech
(cts), Usenet Newsgroups (un), and Weblogs (wl)
and 11 relation types. Following previous work
(Yu et al., 2015; Nguyen and Grishman, 2015;
Gormley et al., 2015), we use newswire and broad-
cast news (nw&bn) as training data, half of bc
as development set, and test the model on the re-
maining half of bc, cts, wl. We conduct the same
preprocessing steps as previous work and yield
43,497 entity pairs in total for training.

Table 3.1 shows the hyper-parameters that we
use to train our model.

Hyper-parameters Value
# of Filters in Shared/Private CNN encoder 800
Filter Width 3
Hidden Size of Fully Connected Layer 300
Position Embedding Size 25
Entity Type/Chunking Embedding Size 25
Optimizer SGD
Learning rate 0.001
Pre-trained Word Embedding Glove-1003

Table 1: Hyper-parameters

3.2 Baseline Models
We compare our approach with the following
methods:

FCM (Gormley et al., 2015) is a feature combi-
nation model which composes word embeddings
with traditional linguistic features.

Hybrid FCM (Gormley et al., 2015) incorpo-
rates many more selected linguistic features com-
pared to FCM.

2We set ↵ = 0.075, � = 0.01, � = 0.25 when the model
performs the best on the development set.
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LRFCM (Yu et al., 2015) is a feature compo-
sitional model which scales to more features and
more labels.

Log-linear & DNN (Nguyen and Grishman,
2015) explores CNN, Bi-GRU, Forward GRU,
Backward GRU, and log-linear model for relation
extraction. We compare against the performances
of individual models instead of assembled models.

CNN+DANN (Fu et al., 2017) utilizes do-
main adversarial training to automatically extract
genre-agnostic features for source and target genre
within one feature space.

3.3 Comparison and Analysis

Table 2 shows the cross-genre relation extrac-
tion performance among various methods. Our
approach significantly outperforms all previous
baselines by 1.2%-1.7% (F1). Table 3 presents the
results without using extra linguistic features (only
embedding based features), our approach achieves
2.9%-6.1% absolute gain over baselines. The ab-
lation test by removing each component at a time
justifies the contribution of each method. The
difference and reconstruction components ensure
the features to be separated into shared and pri-
vate spaces, and they can remove redundant genre-
specific features to some extent. That’s why we
got a significant F-score improvement when only
utilizing these two components. The adversarial
training component can further encourage the fea-
tures of each genre from the shared encoder to be
close to each other, thus the performance is further
improved. We also conduct ablation experiments
on each feature components. Among the linguistic
features we used, the entity type and position fea-
tures contribute the most to the performance. For
example, the relation extraction performance de-
creases by about 8% if removing the entity type
feature. We analyze the reasons and find that the
entity type feature is vital to ensure the types of
two entity mentions to be consistent with the hard
entity type constraint of each relation type defined
in ACE schema.

For the remaining errors, we notice that our
model easily fails to predict relations between
nested entity mentions. For example, in “Our
president has put homeland security in the hands
of failed Republican hacks.”, our model mistak-
enly predicts the relationship between Republican
and failed Republican hacks as None instead of
organization-affiliation, due to the lack of context

System bc cts wl
FCM 61.9 52.93 50.36

Hybrid FCM 63.48 56.12 55.17
LRFCM 59.4 - -

Log-linear 57.83 53.14 53.06
CNN 63.26 55.63 53.91

Bi-GRU 63.07 56.47 53.65
Forward GRU 61.44 54.93 55.10

Backward GRU 60.82 56.03 51.78
CNN+DANN 65.16 - -
w/o Difference 59.87 54.10 52.73
w/o Adversarial 64.42 57.32 55.63

w/o Reconstruction 59.12 53.48 53.17
Our Approach 66.38 57.92 56.84

Table 2: Cross Genre Relation Extraction Perfor-
mances (Macro F-score %) on Various Genres. w/o
Difference means to ablate the Ldiff loss. w/o Adver-
sarial means to ablate the adversarial training compo-
nent. w/o Reconstruction means to ablate the genre re-
construction component.

System bc cts wl
CNN 46.3 40.8 35.8
GRU 45.2 40.2 35.1

Bi-GRU 46.7 41.2 36.5
Our Approach 52.8 45.3 39.4

Table 3: Cross Genre Relation Extraction Perfor-
mances (Macro F-score %) on Various Genres (without
linguistic features)

information. Besides, we also observe some failed
cases where the two entities are separated with a
extreme wide context, which suggests us to in-
corporate dependency path based deep neural net-
works into the framework.

4 Related Work

Previous studies on cross-genre relation extraction
either manually or automatically extract genre-
agnostic features (Plank and Moschitti, 2013;
Nguyen and Grishman, 2014; Yu et al., 2015;
Gormley et al., 2015; Nguyen and Grishman,
2015), suffering from human labor and limited
coverage of effective features, or automatically
project source and target genres into one unified
feature space and learn genre shared features (Fu
et al., 2017), which inevitably introduces noise
from genre specific features. Compared with these
methods, our approach separates genre-specific
features from genre-agnostic features first, and
then automatically extracts meaningful features
for cross-genre relation extraction.

Our work is also related to studies on domain
separation networks (Bousmalis et al., 2016; Liu
et al., 2017; Chen et al., 2017), which explic-
itly extracts features from two separate subspaces:
domain-specific and domain-agnostic. We adopt
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a similar framework for cross-genre relation ex-
traction and introduce a novel reconstruction com-
ponent which is proved to be suitable to relation
extraction.

5 Conclusions

We propose a genre separation framework for
cross-genre relation extraction. Without requiring
human crafted features, this framework can effec-
tively separate genre-specific features from genre-
agnostic ones, and automatically extract mean-
ingful features for the task. To ensure the sepa-
ration of features within each genre and enforce
the genre agnostic features from source genre and
target genre to be in the same feature space, we
design a difference loss and an adversarial train-
ing component. Experiments on various genres
demonstrate the effectiveness of our framework.
In the future, we will extend our framework to
cross-lingual and cross-domain information ex-
traction tasks.
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Abstract
To disambiguate between closely related con-
cepts, entity linking systems need to effec-
tively distill cues from a mention’s textual con-
text. We investigate several techniques for us-
ing these cues in the task of noisy entity link-
ing on short texts. Our starting point is a state-
of-the-art attention-based model from prior
work; while this model’s attention typically
identifies context that is topically relevant, it
fails to identify some of the most indicative
context words, especially those exhibiting lex-
ical overlap with the true title. Augmenting
the model with convolutional networks over
characters still leaves it largely unable to pick
up on these cues compared to sparse features
that target them directly, indicating that au-
tomatically learning how to identify relevant
character-level context features is a hard prob-
lem. Armed with these sparse features, our
final system1 outperforms past work on the
WikilinksNED test set by 2.8% absolute.

1 Introduction

Effectively using an entity mention’s context to
disambiguate it is the crux of the entity linking
task: in isolation, the mention Richard Wright
could refer to three possible entities in Wikipedia’s
knowledge base corresponding to an artist, a mu-
sician, or an author. Previous work in this area
has distilled context information by exploiting tf-
idf features (Cucerzan, 2007; Milne and Witten,
2008; Ratinov et al., 2011), global link coher-
ence (Hoffart et al.; Sil and Florian, 2016), cues
from coreference (Cheng and Roth, 2013; Ha-
jishirzi et al., 2013; Durrett and Klein, 2014), con-
volutional neural networks (Sun et al.; Francis-
Landau et al., 2016), or more sophisticated neural
architectures (Gupta et al., 2017; Sil et al., 2018).

⇤Work done while at UT Austin.
1Code available at

https://github.com/davidandym/wikilinks-ned

These approaches typically focus on aggregat-
ing information from a mix of sources, including
long-range information from the textual context or
other linked entities. While this approach is suit-
able for entity linking settings such as newswire
(Bentivogli, 2010) and Wikipedia (Ratinov et al.,
2011), we cannot always rely on this information
in other settings like Twitter (Guo et al., 2013;
Fang and Chang, 2014; Huang et al., 2014; Dredze
et al., 2016), Snapchat (Moon et al., 2018), other
web platforms (Eshel et al., 2017), or dialogue sys-
tems (Bowden et al., 2018). We need models that
can make effective use of limited context windows
in noisy settings.

In this work, we investigate this problem of ef-
fectively using context in the setting of the Wik-
ilinksNED dataset from Eshel et al. (2017). The
examples in this dataset, which consists of 3.2 mil-
lion entity disambiguation examples derived from
Wikilinks (Singh et al., 2012), have at most 20
words of context on either side and usually no
other mentions of the entity being disambiguated.
We build off a state-of-the-art attentive LSTM
model from prior work (Eshel et al., 2017) and
show that despite its good performance, it fails to
resolve some examples that human readers would
find trivial. For example, disambiguating the iden-
tity of the song Down in Figure 1 is easy if we can
recognize the nearby string Jay Sean in the con-
text, but the model sometimes fails to do this.

We explore the performance of a standard at-
tention mechanism as well as two modifications.
First, we inject character information into the
model through character-level CNNs; these give
the model a deeper ability to recognize character
correspondences between the context and entity ti-
tle. However, these convolutional filters struggle
to learn useful features in this noisy context and
ultimately do not help performance. By contrast,
sparse features explicitly targeting these overlaps
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in 2009 Jay Sean’s single reached the number 1 spot

Attention

Linear

Down

Attention Down (Jay 
Sean Song)

Down (Blink 
182 Song)

Down (Band)
Features (Sec 4.3)[l · et, l � et, (l � et)

2] [r · et, r � et, (r � et)
2]

st

et

l r

Figure 1: Neural entity linking model. Down has three
possible link targets: in the attentive variants of our
model, each target computes attention weights over
GRUs that consume the left and right context. These
representations are passed into a layer that compares
them to the entity’s embedding, yielding a final score
which is normalized over all possible link targets.

appear to be more successful. We investigate the
relation between our model’s attention and what
the sparse features learn. Our final model, using
these features, achieves an accuracy of 75.8% on
this dataset, substantially outperforming our base-
line model as well as results from prior work.

2 Basic Model

The WikilinksNED dataset consists of entity men-
tions in context scraped from the web, with
gold annotation derived from the fact that those
mentions originally appeared with hyperlinks to
Wikipedia. We denote the mention text (i.e., an-
chor text of the hyperlink) by m, and denote the
left and right context of the mention by cl and cr

respectively; these are at most 20 words. For this
dataset, we can assume that the possible linked ti-
tles for a mention have been seen in training, and
the main task is instead to disambiguate between
them and identify the gold title t⇤. We therefore
follow prior work (Eshel et al., 2017) and take
as candidates all gold entities in the training set
whose mention was m rather than relying on a sep-
arate candidate generation scheme.

Our model places a distribution over titles
P (t|m, cl, cr), where t takes values in the set of
candidate Wikipedia titles for that mention. This
model, depicted in Figure 1, roughly follows that
of Eshel et al. (2017), with some key differences,
as we discuss in the rest of this section.

Embedding contexts Given an example of the
form (m, cl, cr), our model first uses a GRU layer
(Cho et al., 2014) over each context to convert cl

and cr into continuous vector representations l and
r, respectively. Our word embeddings are trained
over Wikipedia as described in the following para-
graph.

Embedding entities We follow the method of
Eshel et al. (2017) for generating entity embed-
dings, using word2vecf (Levy and Goldberg,
2014) to jointly train word and entity embeddings
simultaneously using Wikipedia article text. Each
title t is associated in turn with each content word
w in the article, yielding a set of (w, t) pairs that
are consumed by the training procedure. This
yields a set of title embeddings et which we can
treat as distributed representations of entities.

Entity-context comparison We systematically
compare the representations for l, r, and et as fol-
lows:

[l · et, r · et, l � et, r � et, (l � et)
2, (r � et)

2]

where · denotes the conventional dot product and
the other comparisons are elementwise. These fea-
tures form the input to a final feedforward layer
which produces a real-valued score st for the
given title. Repeating this computation for each
title, our model’s distribution is P (t|m, cl, cr) =
softmaxt(st).

Training Because our model involves substan-
tial computation for each possible title, we want
to limit the set of titles considered during train-
ing. For each example we consider, we construct a
set T containing the gold title and 4 negative “dis-
tractor” titles from the candidate set. Unlike Es-
hel et al. (2017), we structure training as a multi-
class decision among these titles rather than a bi-
nary prediction problem over each title as gold or
not. We run our model over the candidates t 2 T
to produce the distribution P (t|m, cl, cr) and train
to maximize the log probablity log P (t⇤|m, cl, cr)
of the gold title.

Results The model set forth in this section is the
basis for the remaining models in this paper; we
call it the GRU model as that is the only context en-
coding mechanism it uses. As shown in Table 1,
this GRU model gets a score of 73.4 on the Wik-
ilinksNED development set. In the next section,
we explore techniques for using the context in a
more sophisticated way to improve further on this
result.
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Model Accuracy on Test (%)

Eshel et al. (2017) 73.0
Eshel system release 72.2
GRU+ATTN 74.5
GRU+ATTN+FEATS 75.8

Model Accuracy on Dev (%)

GRU 73.4
GRU+ATTN 74.4
GRU+ATTN+FEATS 74.9
GRU+ATTN+CNN 73.8

Table 1: Results on the WikilinksNED dev and test
sets. Our model including features achieves state-of-
the-art performance on the test set, compared to both
the reported numbers from Eshel et al. (2017) as well as
their released software. Incorporating character CNNs
surprisingly leads to lower performance compared to
these simple features.

3 Exploiting Context Cues

3.1 Attention
One way to improve over the basic GRU model is
to use attention over the context based on the ti-
tle under consideration. The attention we use is a
modified version of the dot product attention (Lu-
ong et al., 2015) used by Eshel et al. (2017), al-
lowing the model to weight the importance of the
outputs of the GRU at each time step. Each con-
text (left and right) has its own attention weights.
For a given side of context and candidate t, the at-
tention first computes a transformation of the en-
tity embedding et as follows: qt = tanh(Wet).
This allows the model to learn an attention query
qt distinct from the candidate embedding et. The
model then computes attention probabilities ↵i for
each GRU output oi, normalized over the entire
sequence of GRU outputs (of length n):

↵i = softmaxi(qt · oi)

The resulting probability distribution is used to
take a weighted sum of GRU outputs to get a rep-
resentation a:

a =
nX

i

↵ioi

We compute al and ar independently and symmet-
rically for the left and right context. These vectors
are then fed forward through the model as the fi-
nal continuous representation of the left or right
context, l or r respectively.

Results In Table 1, we see that our model with
attention (GRU+ATTN) outperforms our basic GRU
model by around 1% absolute. It also outperforms
the roughly similar model of Eshel et al. (2017) on
the test set: this gain is due to a combination of
factors including the improved training procedure
and some small modeling changes.2 However, our
attention scheme is not without its shortcomings,
as we now discuss.

3.2 Shortcomings of Attention
One common and frustrating error our model
makes is failing to correctly disambiguate men-
tions whose contexts share similar words or
character overlap with the gold entity’s actual
Wikipedia title. In these instances, the model fails
to attend correctly to words that we, as human
readers, would most likely see as disambiguating
terms. For instance, in this example’s left context:

...known also for the B.P. Koirala In-
stitute of Health Sciences, one of the
biggest government hospital. The in-
digenous people of Dharan are Limbu ...

the model fails to identify people as a critical term
for disambiguation. This failure is partially due to
the model’s sole reliance on distributed represen-
tations: the embedding for people and the title em-
bedding for Limbu People need to somehow con-
tain enough common information for the model
to associate these, identify people as an important
token, and use it to disambiguate between candi-
date titles such as Limbu People, Limbu Language,
and Limbu Alphabet. Moreover, with such noisy,
unstructured context, it is difficult for the model
to learn to rely on other grammatical or semantic
cues (such as are indicating that the title is prob-
ably a plural noun, which alphabet and language
are not).

3.3 Character CNNs
One way to address these issues in the model is
to exploit more fine-grained character-level infor-
mation. This circumvents the need to separately
learn a distributed correspondence between terms
with lexical overlap, and is especially useful when
these terms may be unknown words; for exam-
ple, a year mentioned within a context is often

2Note that in Eshel et al. (2017), the authors point out that
their dataset has a high percentage of errors (35% of the errors
made by their model are spurious), meaning that the skyline
on this task is likely not higher than 90%.
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unknown and therefore assigned an UNK embed-
ding, even if that year matches exactly with a year
in the gold candidate’s title.

One solution to this is to allow our model to
consult character-level information, which past
models have done successfully for named en-
tity recognition (Chiu and Nichols, 2015; Lample
et al., 2016; Ma and Hovy, 2016), text classifica-
tion (Zhang et al., 2015), and POS tagging (San-
tos and Zadrozny, 2014). We use convolutional
neural networks (CNNs) to distill character repre-
sentations of words into vectors that we concate-
nate with our word representations. We addition-
ally use character CNNs over entity titles and con-
catenate these representations with the title em-
beddings et, to allow the model to learn to char-
acterize similarities between contexts and entity
titles. Our CNNs use window sizes of 6 and 100
filters each; these values were selected through hy-
perparameter tuning on the development set.

Table 1 shows the impact of incorporating char-
acter CNNs (GRU+ATTN+CNN). Surprisingly,
these have a mild negative impact on perfor-
mance. One possible explanation of this is that it
causes the model to split its attention between se-
mantically important and lexically similar context
terms. Consider the following example:

really think Final Fight could be a lot of
a fun as a vigilante justice movie with a
high quotient of hand-to-hand fight se-
quences. Think The Warriors

The gold title is The Warrior (film) and the base
model correctly places 90% of its attention weight
on the word movie when calculating attention
for this title. However, the character-level CNN
model only places 60% of its attention weight on
it, distributing its attention values more evenly
across the rest of the words. Such cases are fre-
quent: the average highest weight given by at-
tention in GRU+ATTN+CNN is about 6% lower
than the average highest attention weight given by
GRU+ATTN. The CNNs seem to have generally
decreased the model’s confidence in what context
clues are key for disambiguation, leading to lower
performance. We will return to more analysis of
this in Section 4.

3.4 Lexical Feature Set
To determine whether character level overlap be-
tween the entity title and context is useful, we take

Entity Title: Limbu People

Known also for the B.P. Koirala Institute of Health Sciences, one of 
the biggest government hospital. The indigenous people of Dharan 

are Limbu

Left Context:

[…[Left pos:4 has Exact overlap=True], [Left pos:5 has Exact overlap=False],…]

Figure 2: An example of feature generation from
an example. Here, because the word people
occurs in the title and in the left context 4
words away from the mention, the indicator feature
[Pos=4,Match=ExactWord,Context=Left] fires in the
feature set.

a more direct approach to incorporating that infor-
mation into our model and build a set of sparse
features that directly target it.

Figure 2 shows an example of how our features
are computed. We fire features on each word in
the context that is either an exact match or a sub-
string of a word in the candidate title; people is
the relevant token here. We conjoin that match
information with whether the word is in the left
or right context along with the bucketed offset of
the word from the mention. This feature set is
then appended to the vector comparison features
to form the input to the model’s feedforward layer
(see Figure 1).

Table 1 shows the results of stacking these
features on top of our model with attention
(GRU+ATTN+FEATS). We see our highest devel-
opment set performance and correspondingly high
test performance from this model. This indicates
that character-level information is useful for dis-
ambiguation, but character CNNs as we incorpo-
rated them are not able to distill it as effectively
as sparse features can. Our model augmented with
these sparse features achieves state-of-the-art re-
sults on the test set.

4 Attention and “Obvious” Terms

Now that we have identified features which seem
useful for this entity linking problem, we can ask
how the tokens attended by our attention mecha-
nism compare to those singled out by the features.

Table 2 contains statistics regarding the
attention values of our GRU+ATTN and
GRU+ATTN+CNN model on a subset of ex-
amples that both models got wrong. We define
accuracy as the percentage of examples in which
the model gives the highest attention to a word
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Stilton Cheese

Roquefort is a very strong stinky cheese from sheep’s milk. Like Stilton…

Delta Robot

I’m aiming high, for a little robot on my desk, of an articulated - or a delta…

 - GRU+ATTN
 - GRU+ATTN+CNN

Feat=[Pos=6-10,Match=ExactWord,Context=Left]

Feat=[Pos=5,Match=ExactWord,Context=Left]

Figure 3: Examples of our models putting high atten-
tion weight into irrelevant context words, not acknowl-
edging the relevance of disambiguating terms that share
lexical overlap with the correct title. We display the
weight given to the top 4 attended words above each
word for two of our models.

that contains one of our lexical features, out
of all examples where such a feature exists
anywhere. The reported probability mass is the
total attention mass that the model puts into words
that associated with lexical features, averaged
over all examples where such features exist. We
see that the model frequently fails to exploit this
information, and moreover the addition of CNNs
does not strongly improve this.

Figure 3 shows examples of this behavior. In
the first example, rather than identifying cheese
as a salient term, both models instead focus more
heavily on milk and like. Similarly, in the second
example, the model fails to recognize the impor-
tance of robot in the context.

One possible reason that CNNs don’t help more
is that the sparse features only trigger on a sub-
set of examples. Because the CNNs process ev-
ery example, they may not see enough examples
of lexical overlap to pick up on it, and instead
try to augment what the word embedding model
is already doing with subword information, which
ends up being unstable for this task. Naturally,
words with these overlap characteristics are not al-
ways the most disambiguating term. However, in
light of noisy contexts, when the standard repre-
sentation of context fails to be sufficient for allow-
ing the model to disambiguate, we want the model
to be able to leverage this character level informa-
tion to help it make intuitive decisions, which the
CNN fails to do.

5 Conclusion

In this paper, we observed that in noisy entity link-
ing settings on short texts, neural models relying

Context Acc (%) Prob Mass (%)

GRU+ATTN L 0.41 0.32
GRU+ATTN R 0.36 0.30
GRU+ATTN+CNN L 0.46 0.32
GRU+ATTN+CNN R 0.36 0.28

Table 2: Our models’ attention “accuracy”: how often
each model’s maximally-attended word also triggered
a feature to fire. Prob Mass indicates the average sum
of attention scores over feature-triggering words. All
values are computed over a sample of 10,000 examples
that each model got wrong.

on attention do not always pick up on the cor-
rect context clues, even when those clues exhibit
very obvious surface overlap with the correct en-
tity title. These models can perform better when
augmented with sparse features explicitly target-
ing this kind of lexical overlap: our system us-
ing these features achieves state-of-the-art disam-
biguation accuracy on the WikilinksNED dataset.
By contrast, automatically learning learning fine-
grained character-level features with CNNs in this
context is hard. More exploration is needed to bet-
ter understand what inductive biases are necessary
for an entity linking system to make maximally ef-
fective use of the information available to it.
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Abstract

The task of event detection involves identify-
ing and categorizing event triggers. Contex-
tual information has been shown effective on
the task. However, existing methods which
utilize contextual information only process the
context once. We argue that the context can
be better exploited by processing the context
multiple times, allowing the model to perform
complex reasoning and to generate better con-
text representation, thus improving the over-
all performance. Meanwhile, dynamic mem-
ory network (DMN) has demonstrated promis-
ing capability in capturing contextual informa-
tion and has been applied successfully to var-
ious tasks. In light of the multi-hop mecha-
nism of the DMN to model the context, we
propose the trigger detection dynamic memory
network (TD-DMN) to tackle the event detec-
tion problem. We performed a five-fold cross-
validation on the ACE-2005 dataset and exper-
imental results show that the multi-hop mech-
anism does improve the performance and the
proposed model achieves best F1 score com-
pared to the state-of-the-art methods.

1 Introduction

According to ACE (Automatic Content Extrac-
tion) event extraction program, an event is iden-
tified by a word or a phrase called event trigger
which most represents that event. For example, in
the sentence “No major explosion we are aware
of”, an event trigger detection model is able to
identify the word “explosion” as the event trigger
word and further categorize it as an Attack event.
The ACE-2005 dataset also includes annotations
for event arguments, which are a set of words or
phrases that describe the event. However, in this
work, we do not tackle the event argument classi-
fication and focus on event trigger detection.

The difficulty of the event trigger detection task
lies in the complicated interaction between the

event trigger candidate and its context. For in-
stance, given a sentence at the end of a passage:

they are going over there to do a mission they
believe in and as we said, 250 left yesterday.

It’s hard to directly classify the trigger word
“left” as an “End-Position” event or a “Transport”
event because we are not certain about what the
number “250” and the pronoun “they” are refer-
ring to. But if we see the sentence:

we are seeing these soldiers head out.
which is several sentences away from the for-

mer one, we now know the “250” and “they” refer
to “the soldiers”, and from the clue “these soldiers
head out” we are more confident to classify the
trigger word “left” as the “Transport” event.

From the above, we can see that the event
trigger detection task involves complex reason-
ing across the given context. Exisiting methods
(Liu et al., 2017; Chen et al., 2015; Li et al.,
2013; Nguyen et al., 2016; Venugopal et al., 2014)
mainly exploited sentence-level features and (Liao
and Grishman, 2010; Zhao et al., 2018) proposed
document-level models to utilize the context.

The methods mentioned above either not di-
rectly utilize the context or only process the con-
text once while classifying an event trigger candi-
date. We argue that processing the context multi-
ple times with later steps re-evaluating the context
with information acquired from the previous steps
improves the model performance. Such a mech-
anism allows the model to perform complicated
reasoning across the context. As in the example,
we are more confident to classify “left” as a “Tran-
port” event if we know “250” and “they” refer to
“soldiers” in previous steps.

We utilize the dynamic memory network
(DMN) (Xiong et al., 2016; Kumar et al., 2016)
to capture the contextual information of the given
trigger word. It contains four modules: the input
module for encoding reference text where the an-
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Memory Module

Input Module

Answer Module

Question Module

Document Context Sentence as Question

Figure 1: Overview of the TD-DMN architecture

swer clues reside, the memory module for storing
knowledge acquired from previous steps, the ques-
tion module for encoding the questions, and the
answer module for generating answers given the
output from memory and question modules.

DMN is proposed for the question answering
task, however, the event trigger detection problem
does not have an explicit question. The original
DMN handles such case by initializing the ques-
tion vector produced by the question module with
a zero or a bias vector, while we argue that each
sentence in the document could be deemed as a
question. We propose the trigger detection dy-
namic memory network (TD-DMN) to incorporate
this intuition, the question module of TD-DMN
treats each sentence in the document as implicitly
asking a question “What are the event types for
the words in the sentence given the document con-
text”. The high-level architecture of the TD-DMN
model is illustrated in Figure 1.

We compared our results with two models: DM-
CNN(Chen et al., 2015) and DEEB-RNN(Zhao
et al., 2018) through 5-fold cross-validation on the
ACE-2005 dataset. Our model achieves best F1

score and experimental results further show that
processing the context multiple times and adding
implicit questions do improve the model perfor-
mance. The code of our model is available online.1

2 The Proposed Approach

We model the event trigger detection task as a
multi-class classification problem following exist-
ing work. In the rest of this section, we describe
four different modules of the TD-DMN separately
along with how data is propagated through these
modules. For simplicity, we discuss a single docu-
ment case. The detailed architecture of our model
is illustrated in Figure 2.

1https://github.com/AveryLiu/TD-DMN

2.1 Input Module
The input module further contains two layers:
the sentence encoder layer and the fusion layer.
The sentence encoder layer encodes each sentence
into a vector independently, while the fusion layer
gives these encoded vectors a chance to exchange
information between sentences.

Sentence encoder layer Given document d
with l sentences (s1, . . . , sl), let si denotes the i-th
sentence in d with n words (wi1, . . . , win). For the
j-th word wij in si, we concatenate its word em-
bedding wij with its entity type embedding2

eij

to form the vector Wij as the input to the sentence
encoder Bi-GRU(Cho et al., 2014) of size Hs. We
obtain the hidden state hij by merging the forward
and backward hidden states from the Bi-GRU:

hij =
���!
GRUs(Wij) +

 ���
GRUs(Wij) (1)

where + denotes element-wise addition.
We feed hij into a two-layer perceptron to gen-

erate the unnormalized attention scalar uij :

uij = tanh(hij · Ws1) · Ws2 (2)

where Ws1 and Ws2 are weight parameters of the
perceptron and we omitted bias terms. uij is then
normalized to obtain scalar attention weight ↵ij :

↵ij =
exp(uij)Pn

k=1 exp(uik)
(3)

The sentence representation si is obtained by:

si =
nX

j=1

↵ijhij (4)

Fusion layer The fusion layer processes the en-
coded sentences and outputs fact vectors which
contain exchanged information among sentences.
Let si denotes the i-th sentence representation ob-
tained from the sentence encoder layer. We gen-
erate fact vector fi by merging the forward and
backward states from fusion GRU:

fi =
����!
GRUf (si) +

 ���
GRUf (si) (5)

Let Hf denotes the hidden size of the fusion
GRU, we concatenate fact vectors f1 to fl to ob-
tain the matrix F of size l by Hf , where the i-th
row in F stores the i-th fact vector fi.

2The ACE-2005 includes entity type (including type “NA”
for none-entity) annotations for each word, the entity type
embedding is a vector associated with each entity type.
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Figure 2: The detailed architecture of the TD-DMN model. The figure depicts a simplified case where
a single document d with l sentences is the input to the input module and a sentence si of d with n
words is the input to the question module. The input module encodes document d into a fact matrix
{F |f1, . . . , fl}. The question module encodes sentence si into the question vector q

⇤. The memory
module initializes m0 with q

⇤ and iteratively processes for t times, at each time k it produces a memory
vector mk using fact matrix F , question vector q

⇤ and previous memory state mk�1. The answer
module outputs the predicted trigger type for each word in si using the concatenated tensor of the hidden
states of the question module and the last memory state mt.

2.2 Question Module
The question module treats each sentence s in d as
implicitly asking a question: What are the event
types for each word in the sentence s given the
document d as context? For simplicity, we only
discuss the single sentence case. Iteratively pro-
cessing from s1 to sl will give us all encoded ques-
tions in document d.

Let Wij be the vector representation of j-th
word in si, the question GRU generates hidden
state qij by:

qij =
���!
GRUq(Wij) +

 ���
GRUq(Wij) (6)

The question vector q
⇤ is obtained by averaging

all hidden states of the question GRU:

q
⇤ =

1

n

nX

j=1

qij (7)

Let Hq denotes the hidden size of the question
GRU, q

⇤ is a vector of size Hq, the intuition here
is to obtain a vector that represents the question
sentence. q

⇤ will be used for the memory module.

2.3 Memory Module
The memory module has three components: the
attention gate, the attentional GRU(Xiong et al.,

2016) and the memory update gate. The attention
gate determines how much the memory module
should attend to each fact given the facts F , the
question q

⇤, and the acquired knowledge stored in
the memory vector mt�1 from the previous step.

The three inputs are transformed by:

u = [F ⇤ q
⇤; |F � q

⇤|; F ⇤mt�1; |F �mt�1|] (8)

where ; is concatenation. ⇤, � and |.| are element-
wise product, subtraction and absolute value re-
spectively. F is a matrix of size (m, Hf ), while q

⇤

and mt�1 are vectors of size (1, Hq) and (1, Hm),
where Hm is the output size of the memory update
gate. To allow element-wise operation, Hf , Hq

and Hm are set to a same value H . Meanwhile, q⇤

and mt�1 are broadcasted to the size of (m, H).
In equation 8, the first two terms measure the sim-
ilarity and difference between facts and the ques-
tion. The last two terms have the same functional-
ity for facts and the last memory state.

Let � of size l denotes the generated attention
vector. The i-th element in � is the attention
weight for fact fi. � is obtained by transforming
u using a two-layer perceptron:

� = softmax(tanh(u · Wm1) · Wm2) (9)
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Methods Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg
P R F1 P R F1 P R F1 P R F1 P R F1 F1

DMCNN 67.6 60.5 63.9 62.6 63.1 62.9 68.9 62.1 65.3 68.9 65.0 66.9 66.0 65.5 65.8 64.9
DEEB-RNN 64.9 64.1 64.5 63.4 64.7 64.0 66.1 64.3 65.2 66.0 67.3 66.6 65.5 67.2 66.3 65.3

TD-DMN 1-hop 67.3 62.1 64.6 65.4 61.7 63.5 72.0 60.0 65.4 66.6 68.0 67.3 68.3 65.0 66.6 65.5
TD-DMN 2-hop 69.2 61.0 64.8 64.6 63.4 64.0 64.3 66.4 65.3 68.7 65.9 67.3 68.5 65.7 67.1 65.7
TD-DMN 3-hop 66.3 63.7 64.9 66.9 60.6 63.6 68.3 64.0 66.1 67.9 66.3 67.1 70.2 64.3 67.1 65.8
TD-DMN 4-hop 66.7 63.4 65.0 61.4 65.5 63.4 66.4 66.0 66.2 64.7 69.1 66.8 70.0 63.4 66.5 65.6

Table 1: 5-fold cross-validation results on the ACE-2005 dataset. The results are rounded to a single
digit. The F1 of the last column are calculated by averaging F1 scores of all folds.

where Wm1 and Wm2 are parameters of the per-
ceptron and we omitted bias terms.

The attentional GRU takes facts F , fact atten-
tion � as input and produces context vector c of
size Hc. At each time step t, the attentional GRU
picks the ft as input and uses �t as its update gate
weight. For space limitation, we refer reader to
(Xiong et al., 2016) for the detailed computation.

The memory update gate outputs the updated
memory mt using question q

⇤, previous memory
state mt�1 and context c:

mt = relu([q⇤; mt�1; c] · Wu) (10)

where Wu is the parameter of the linear layer.
The memory module could be iterated several

times with a new � generated for each time. This
allows the model to attend to different parts of
the facts in different iterations, which enables the
model to perform complicated reasoning across
sentences. The memory module produces mt as
the output at the last iteration.

2.4 Answer Module
Answer module predicts the event type for each
word in a sentence. For each question GRU hidden
state qij , the answer module concatenates it with
the memory vector mt as the input to the answer
GRU with hidden size Ha. The answer GRU out-
puts aij by merging its forward and backward hid-
den states. The fully connected dense layer then
transforms aij to the size of the number of event
labels O and the softmax layer is applied to output
the probability vector pij . The k-th element in pij

is the probability for the word wij being the k-th
event type. Let yij be the true event type label for
word wij . Assuming all sentences are padded to
the same length n, the cross-entropy loss for the
single document d is applied as:

J(y, p) = �
lX

i=1

nX

j=1

OX

k=1

I(yij = k)log p(k)
ij

(11)

where I(·) is the indicator function.

3 Experiments

3.1 Dataset and Experimental Setup
Dateset
Different from prior work, we performed a 5-fold
cross-validation on the ACE 2005 dataset. We par-
titioned 599 files into 5 parts. The file names of
each fold can be found online3. We chose a differ-
ent fold each time as the testing set and used the
remaining four folds as the training set.

Baselines
We compared our model with two other mod-
els: DMCNN (Chen et al., 2015) and DEEB-
RNN (Zhao et al., 2018). DMCNN is a sentence-
level event detection model which enhances tradi-
tional convolutional networks with dynamic mul-
tiple pooling mechanism customized for the task.
The DEEB-RNN is a state-of-the-art document-
level event detection model which firstly generate
a document embedding and then use it to aid the
event detection task.

Evaluation
We report precision, recall and F1 score of each
fold along with the averaged F1 score of all folds.
We evaluated all the candidate trigger words in
each testing set. A candidate trigger word is cor-
rectly classified if its event subtype and offsets
match its human annotated label.

Implementation Details
To avoid overfitting, we fixed the word embedding
and added a 1 by 1 convolution after the embed-
ding layer to serve as a way of fine tuning but
with a much smaller number of parameters. We
removed punctuations, stop words and sentences
which have length less equal than 2. We used the
Stanford corenlp toolkit(Manning et al., 2014) to

3https://github.com/AveryLiu/TD-DMN/data/splits
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separate sentences. We down-sampled negative
samples to ease the unbalanced classes problem.

The setting of the hyperparameters is the same
for different hops of the TD-DMN model. We set
H , Hs, Hc, and Ha to 300, the entity type embed-
ding size to 50, Ws1 to 300 by 600, Ws2 to 600 by
1, Wm1 to 1200 by 600, Wm2 to 600 by 1, Wu to
900 by 300, the batch size4 to 10. We set the down-
sampling ratio to 9.5 and we used Adam optimizer
(Kingma and Ba, 2014) with weight decay set to
1e�5. We set the dropout(Srivastava et al., 2014)
rate before the answer GRU to 0.4 and we set all
other dropout rates to 0.2. We used the pre-trained
word embedding from (Le and Mikolov, 2014).

3.2 Results on the ACE 2005 Corpus
The performance of each model is listed in ta-
ble 1. The first observation is that models us-
ing document context drastically outperform the
model that only focuses on the sentence level fea-
ture, which indicates document context is helpful
in event detection task. The second observation
is that increasing number of hops improves model
performance, this further implies that processing
the context for multiple times does better exploit
the context. The model may have exhausted the
context and started to overfit, causing the perfor-
mance drop at the fourth hop.

The performance of reference models is much
lower than that reported in their original papers.
Possible reasons are that we partitioned the dataset
randomly, while the testing set of the original par-
tition mainly contains similar types of documents
and we performed a five-fold cross-validation.

3.3 The Impact of the Question Module
To reveal the effects of the question module, we
ran the model in two different settings. In the first
setting, we initialized the memory vector m0 and
question vector q

⇤ with a zero vector, while in the
second setting, we ran the model untouched. The
results are listed in the table 2. The two models
perform comparably under the 1-hop setting, this
implies that the model is unable to distinguish the
initialization values of the question vector well in
the 1-hop setting. For higher number of hops, the
untouched model outperforms the modified one.
This indicates that with a higher number of mem-
ory iterations, the question vector q

⇤ helps the
model to better exploit the context information.

4In each batch, there are 10 documents.

Methods F1 F ⇤
1

TD-DMN 1-hop 65.48 65.52
TD-DMN 2-hop 65.69 65.46
TD-DMN 3-hop 65.78 65.51
TD-DMN 4-hop 65.57 65.40

Table 2: The impact of the question module, F ⇤
1

indicates results with empty questions.

We still observe the increase and drop pattern of
the F1 for the untouched model. However, such a
pattern is not obvious with empty questions. This
implies that we are unable to have a steady gain
without the question module in this specific task.

4 Future Work

In this work, we explored the TD-DMN archi-
tecture to exploit document context. Extending
the model to include wider contexts across several
similar documents may also be of interest. The
detected event trigger information can be incor-
porated into question module when extending the
TD-DMN to the argument classification problem.
Other tasks with document context but without ex-
plicit questions may also benefit from this work.

5 Conclusion

In this paper, we proposed the TD-DMN model
which utilizes the multi-hop mechanism of the dy-
namic memory network to better capture the con-
textual information for the event trigger detec-
tion task. We cast the event trigger detection as
a question answering problem. We carried five-
fold cross-validation experiments on the ACE-
2005 dataset and results show that such multi-hop
mechanism does improve the model performance
and we achieved the best F1 score compared to the
state-of-the-art models.
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Abstract

A rich line of research attempts to make
deep neural networks more transparent by gen-
erating human-interpretable ‘explanations’ of
their decision process, especially for inter-
active tasks like Visual Question Answering
(VQA). In this work, we analyze if existing ex-
planations indeed make a VQA model – its re-
sponses as well as failures – more predictable
to a human. Surprisingly, we find that they do
not. On the other hand, we find that human-
in-the-loop approaches that treat the model as
a black-box do.

1 Introduction

As technology progresses, we are increasingly
collaborating with AI agents in interactive scenar-
ios where humans and AI work together as a team,
e.g., in AI-assisted diagnosis, autonomous driving,
etc. Thus far, AI research has typically only fo-
cused on the AI in such an interaction – for it to
be more accurate, be more human-like, understand
our intentions, beliefs, contexts, and mental states.

In this work, we argue that for human-AI inter-
actions to be more effective, humans must also un-
derstand the AI’s beliefs, knowledge, and quirks.

Many recent works generate human-
interpretable ‘explanations’ regarding a model’s
decisions. These are usually evaluated offline
based on whether human judges found them to be
‘good’ or to improve trust in the model. However,
their contribution in an interactive setting remains
unclear. In this work, we evaluate the role of
explanations towards making a model predictable
to a human.

We consider an AI trained to perform the
multi-modal task of Visual Question Answering
(VQA) (Malinowski and Fritz, 2014; Antol et al.,
2015), i.e., answering free-form natural language

⇤Denotes equal contribution.

Figure 1: We evaluate the extent to which expla-
nation modalities (right) and familiarization with
a VQA model help humans predict its behavior –
its responses, successes, and failures (left).

questions about images. VQA is applicable to
scenarios where humans actively elicit informa-
tion from visual data, and naturally lends itself to
human-AI interactions. We consider two tasks that
demonstrate the degree to which a human under-
stands their AI teammate (we call Vicki) – Failure
Prediction (FP) and Knowledge Prediction (KP).
In FP, we ask subjects on Amazon Mechanical
Turk to predict if Vicki will correctly answer a
given question about an image. In KP, subjects
predict Vicki’s exact response.

We aid humans in forming a mental model of
Vicki by (1) familiarizing them with its behavior
in a ‘training’ phase and (2) exposing them to its
internal states via various explanation modalities.
We then measure their FP and KP performance.

Our key findings are that (1) humans are indeed
capable of predicting successes, failures, and out-
puts of the VQA model better than chance, (2) ex-
plicitly training humans to familiarize themselves
with the model improves their performance, and
(3) existing explanation modalities do not enhance
human performance.

2 Related Work

Explanations in deep neural networks. Sev-
eral works generate explanations based on inter-
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nal states of a decision process (Zeiler and Fergus,
2014; Goyal et al., 2016b), while others generate
justifications that are consistent with model out-
puts (Ribeiro et al., 2016; Hendricks et al., 2016).
Another popular form of providing explanations is
to visualize regions in the input that contribute to a
decision – either by explicitly attending to relevant
input regions (Bahdanau et al., 2014; Xu et al.,
2015), or exposing implicit attention for predic-
tions (Selvaraju et al., 2017; Zhou et al., 2016).
Evaluating explanations. Several works evaluate
the role of explanations in developing trust with
users (Cosley et al., 2003; Ribeiro et al., 2016)
or helping them achieve an end goal (Narayanan
et al., 2018; Kulesza et al., 2012). Our work, how-
ever, investigates the role of machine-generated
explanations in improving the predictability of a
VQA model.
Failure prediction. While Bansal et al. (2014)
and Zhang et al. (2014) predict failures of a model
using simpler statistical models, we explicitly train
a person to do this.
Legibility. Dragan et al. (2013) describe the
intent-expressiveness of a robot as its trajectory
being expressive of its goal. Analogously, we eval-
uate if explanations of the intermediate states of a
VQA model are expressive of its output.
Humans adapting to technology. Wang et al.
(2016) and Pelikan and Broth (2016) observe hu-
mans’ strategies while adapting to the limited ca-
pabilities of an AI in interactive language games.
In our work we explicitly measure to what extent
humans can form an accurate model of an AI, and
the role of familiarization and explanations.

3 Setup
Agent. We use the VQA model by Lu et al. (2016)
as our AI agent (that we call Vicki). The model
processes the question at multiple levels of granu-
larity (words, phrases, entire question) and at each
level, has explicit attention mechanisms on both
the image and the question1. It is trained on the
train split of the VQA-1.0 dataset (Antol et al.,
2015). Given an image and a question about the
image, it outputs a probability distribution over
1000 answers. Importantly, the model’s image and
question attention maps provide access to its ‘in-
ternal states’ while making a prediction.

Vicky is quirky at times, i.e., has biases, albeit
in a predictable way. Agrawal et al. (2016) out-

1We use question-level attention maps in our experiments.

Figure 2: These montages highlight some of
Vicki’s quirks. For a given question, Vicki has the
same response to each image in a montage. Com-
mon visual patterns (that Vicki presumably picks
up on) within each montage are evident.

lines several such quirks. For instance, Vicki has a
limited capability to understand the image – when
asked the color of a small object in the scene, say
a soda can, it may simply respond with the most
dominant color in the scene. Indeed, it may an-
swer similarly even if no soda can is present, i.e.
if the question is irrelevant.

Further, Vicki has a limited capability to un-
derstand free-form natural language, and in many
cases, answers questions based only on the first
few words of the question. It is also generally
poor at answering questions requiring “common
sense” reasoning. Moreover, being a discrimina-
tive model, Vicki has a limited vocabulary (1k)
of answers. Additionally, the VQA 1.0 dataset
contains label biases; therefore, the model is very
likely to answer “white’ to a “what color” ques-
tion (Goyal et al., 2016a).

To get a sense for this, see Fig. 2 which depicts
a clear pattern. In top-left, even when there is no
grass, Vicki tends to latch on to one of the domi-
nant colors in the image. For top-right, even when
there are no people in the image, it seems to re-
spond with what people could plausibly do in the
scene if they were present. In this work, we mea-
sure to what extent lay people can pick up on these
quirks by interacting with the agent, and whether
existing explanation modalities help do so.
Tasks: Failure Prediction (FP). Given an image
and a question about the image, we measure how
well a person can predict if Vicki will successfully
answer the question. A person can presumably
predict the failure modes of Vicki well if they have
a good sense of its strengths and weaknesses.
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(a) The Failure Prediction (FP) interface. (b) The Knowledge Prediction (KP) interface.

Figure 3: (a) A person guesses if a VQA model (Vicki) will answer this question for this image correctly
or wrongly. (b) A person guesses what Vicki’s exact answer will be for this QI–pair.

Knowledge Prediction (KP). In this task, we
aim to obtain a fine-grained measure of a person’s
understanding of Vicki’s behavior. Given a QI–
pair, a subject guesses Vicki’s exact response from
a set of its output labels. Snapshots of our inter-
faces can be seen in Fig. 3.

4 Experimental Setup
In this section we investigate ways to make Vicki’s
behavior more predictable to a subject. We ap-
proach this by – providing instant feedback about
Vicki’s actual behavior on each QI pair once the
subject responds, and exposing subjects to various
explanation modalities that reveal Vicki’s internal
states before they respond.
Data. We identify a subset of questions in the
VQA-1.0 (Antol et al., 2015) validation split that
occur more than 100 times. We select 7 diverse
questions2 from this subset that are representa-
tive of the different types of questions (counting,
yes/no, color, scene layout, activity, etc.) in the
dataset. For each of the 7 questions, we sample a
set of 100 images. For FP, the 100 images are ran-
dom samples from the set of images on which the
question was asked in VQA-1.0 val. For the KP
task, these 100 images are random images from
VQA-1.0 val. Ray et al. (2016) found that ran-
domly pairing an image with a question in the
VQA-1.0 dataset results in about 79% of pairs be-
ing irrelevant. This combination of relevant and
irrelevant QI-pairs allows us to test subjects’ abil-
ity to develop a robust understanding of Vicki’s
behavior across a wide variety of inputs.
Study setup. We conduct our studies on Ama-
zon Mechanical Turk. Each task (HIT) comprises

2What kind of animal is this? What time is it? What are
the people doing? Is it raining? What room is this? How
many people are there? What color is the umbrella?

of 100 QI-pairs where for simplicity (for the sub-
ject), a single question is asked across all 100 im-
ages. The annotation task is broken down into a
train and test phase of 50 QI-pairs each. Over
all settings, 280 workers took part in our study (1
unique worker per HIT), resulting in 28k human
responses. Subjects were paid an average of $3
base plus $0.44 performance bonus, per HIT.
There are some challenges involved in scaling
data-collection in this setting: (1) Due to the pres-
ence of separate train and test phases, our AMT
tasks tend to be unusually long (mean HIT dura-
tions across the tasks of FP and KP = 10.11±1.09
and 24.49 ± 1.85 min., respectively). Crucially,
this also reduces the subject pool to only those
willing to participate in long tasks. (2) Once a
subject participates in a task, they cannot do an-
other because their familiarity with Vicki would
leak over. This constraint causes our analyses to
require as many subjects as tasks. Since work divi-
sion in crowdsourcing tasks follows a Pareto prin-
ciple (Little, 2009), this makes data collection very
slow.
In light of these challenges, we focus on a small
set of questions to systematically evaluate the role
of training and exposure to Vicki’s internal states.

4.1 Evaluating the role of familiarization

To familiarize subjects with Vicki, we provide
them with instant feedback during the train phase.
Immediately after a subject responds to a QI–
pair, we show them whether Vicki actually an-
swered the question correctly or not (in FP) or
what Vicki’s response was (in KP), along with a
running score of how well they are doing. Once
training is complete, no further feedback is pro-
vided and subjects are asked to make predictions
for the test phase. At the end, they are shown their
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score and paid a bonus proportional to the score.
Failure Prediction. In FP, always guessing that
Vicki answers ‘correctly’ results in 58.29% accu-
racy, while subjects do slightly better and achieve
62.66% accuracy, even without prior familiarity
with Vicki (No Instant Feedback (IF)). Further, we
find that subjects that receive training via instant
feedback (IF) achieve 13.09% higher mean accu-
racies than those who do not (see Fig 4; IF vs No
IF for FP (left)).
Knowledge Prediction. In KP, answering each
question with Vicki’s most popular answer overall
(‘no’) would lead to an accuracy of 13.4%. Ad-
ditionally, answering each question with its most
popular answer for that question leads to an ac-
curacy of 31.43%. Interestingly, subjects who are
unfamiliar with Vicki (No IF) achieve 21.27% ac-
curacy – better than the most popular answer over-
all, but worse than the question-specific prior over
its answers. The latter is understandable as sub-
jects unfamiliar with Vicki do not know which of
its 1000 possible answers the model is most likely
to predict for each question.

We find that mean performance in KP with IF
is 51.11%, 29.84% higher than KP without IF (see
Fig 4; IF vs No IF for KP (right)). It is appar-
ent that just from a few (50) training examples,
subjects succeed in building a mental model of
Vicki’s behavior that generalizes to new images.
Additionally, the 29.84% improvement over No
IF for KP is significantly larger than that for FP
(13.09%). This is understandable because a priori
(No IF), KP is a much harder task as compared to
FP due to the increased space of possible subject
responses given a QI-pair, and the combination of
relevant and irrelevant QI-pairs in the test phase.

Questions such as ‘Is it raining?’ have strong
language priors – to these Vicki often defaults to
the most popular answer (‘no’), irrespective of im-
age. On such questions, subjects perform consid-
erably better in KP once they develop a sense for
Vicki’s inherent biases via instant feedback. For
open-ended questions like ‘What time is it?’, feed-
back helps subjects (1) narrow down the 1000 po-
tential options to the subset that Vicki typically
answers with – in this case time periods such as
‘daytime’ rather than actual clock times and (2)
identify correlations between visual patterns and
Vicki’s answer. In other cases like ‘How many
people are in the image?’ the space of possible an-
swers is clear a priori, but after IF subjects realize

that Vicki is bad at detailed counting and bases its
predictions on coarse signals of the scene layout.

4.2 Evaluating the role of explanations
In this setting, we show subjects an image, a ques-
tion, and one of the explanation modalities de-
scribed below. We experiment with 3 qualitatively
different modalities (see Fig.1, right):
Confidence of top-5 predictions. We show sub-
jects Vicki’s confidence in its top-5 answer predic-
tions from its vocabulary as a bar plot (of course,
we do not show the actual top-5 predictions). At-
tention maps. Along with the image we show
subjects the spatial attention map over the image
and words of the question which indicate the re-
gions that Vicki is looking at and listening to, re-
spectively. Grad-CAM. We use the CNN visu-
alization technique by Selvaraju et al. (2017), us-
ing the (implicit) attention maps corresponding to
Vicki’s most confident answer.
Automatic approaches. We also evaluate auto-
matic approaches to detect Vicki’s failure from its
internal states. We find that both, a decision stump
on Vicki’s confidence in its top answer, and on the
entropy of its softmax output, result in an FP accu-
racy of 60% on our test set. A Multi-layer Percep-
tron (MLP) trained on Vicki’s output 1000-way
softmax to predict success vs failure, achieves an
FP accuracy of 81%. Training on just top-5 soft-
max outputs achieves an FP accuracy of 61.43%.
Training an MLP which takes as input question
features (average word2vec embeddings (Mikolov
et al., 2013) of words in the question) concate-
nated with image features (fc7 from VGG-19) to
predict success vs failure (which we call ALERT
following (Zhang et al., 2014)) achieves an FP ac-
curacy of 65%. Training an MLP on identical
question features as above but concatenated with
Grad-CAM saliency maps leads to FP accuracy of
73.14%. 3 Note that we only report machine re-
sults to put human accuracies in perspective. We
do not draw any inferences about the relative ca-
pabilities of both.
Results. Average performance of subjects in the
test phases of FP and KP, for different experimen-
tal settings are summarized in Fig. 4. In the first
setting, we show subjects an explanation modality
with instant feedback (IF+Explanation). For ref-
erence, also see performance of subjects provided
with IF and no explanation modality (IF).

3These methods are trained on 66% of VQA-1.0 val. The
remaining data is used for validation.
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Figure 4: Average performance across subjects for Failure Prediction and Knowledge Prediction, across
different settings: with or without (1) Instant feedback (IF) in the train phase, and (2) an explanation
modality. Explanation modalities are shown in both train and test phases unless stated otherwise. Error
bars are 95% confidence intervals from 1000 bootstrap samples. Note that the dotted lines are various
machine approaches applied to FP.

We observe that on both FP and KP, subjects
who received an explanation along with IF show
no statistically significant difference in perfor-
mance compared to those who did not. We see
in Fig. 4, that both bootstrap based standard error
(95% confidence intervals) overlap significantly.

Seeing that explanations in addition to IF does
not outperform an IF baseline, we next measure
whether explanations help a user not already fa-
miliar with Vicki via IF. That is, we evaluate if ex-
planations help against a No IF baseline by provid-
ing an explanation only in the test phase, and no
IF (see Fig 4; No IF + Explanation). Additionally,
we also experiment with providing IF and an ex-
planation only during the train phase (see Fig 4; IF
+ Explanation (Train Only)), to measure whether
access to internal states during training can help
subjects build better intuitions for model behav-
ior without needing access to internal states at test
time. In both settings however, we observe no
statistically significant difference in performance
over the No IF and IF baselines, respectively. 4

5 Conclusion
As technology progresses, human-AI teams are in-
evitable. We argue that for these teams to be more
effective, we should also be pursuing research di-
rections to help humans understand the strengths,
weaknesses, quirks, and tendencies of AI. We in-
stantiate these ideas in the domain of Visual Ques-
tion Answering (VQA), by proposing two tasks
that help measure how well a human ‘understands’

4When piloting the tasks ourselves, we found it easy to
‘overfit’ to the explanations and hallucinate patterns.

a VQA model (we call Vicki) – Failure Prediction
(FP) and Knowledge Prediction (KP). We find that
lay people indeed get better at predicting Vicki’s
behavior using just a few ‘training’ examples, but
surprisingly, existing popular explanation modali-
ties do not help make its failures or responses more
predictable. While previous works have typically
assessed their interpretability or their role in im-
proving human trust, our preliminary hypothesis
is that these modalities may not yet help perfor-
mance of human-AI teams in a goal-driven set-
ting. Clearly, much work remains to be done in
developing improved explanation modalities that
can improve human-AI teams.

Future work involves closing the loop and eval-
uating the extent to which improved human per-
formance at FP and KP translates to improved suc-
cess of human-AI teams at accomplishing a shared
goal. Co-operative human-AI games may be a nat-
ural fit for such an evaluation.
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Abstract

This work introduces fact salience: The task
of generating a machine-readable representa-
tion of the most prominent information in a
text document as a set of facts. We also present
SALIE, the first fact salience system. SALIE is
unsupervised and knowledge agnostic, based
on open information extraction to detect facts
in natural language text, PageRank to deter-
mine their relevance, and clustering to pro-
mote diversity. We compare SALIE with sev-
eral baselines (including positional, standard
for saliency tasks), and in an extrinsic evalua-
tion, with state-of-the-art automatic text sum-
marizers. SALIE outperforms baselines and
text summarizers showing that facts are an ef-
fective way to compress information.

1 Introduction

Automatic knowledge acquisition at large scale
requires the transformation of human-readable
knowledge into a machine-understandable format.
Machine-readable information is usually struc-
tured in the form of facts, in which a given rela-
tion links a set of arguments [e.g., (“US”, “with-
draws from”, “Iran nuclear deal”)]. Facts are at
the core of several natural language understanding
applications such as knowledge-base (KB) con-
struction (Nguyen et al., 2017), question answer-
ing (Abujabal et al., 2018), structured search (Bast
et al., 2014), or entity-linking (Cheng and Roth,
2013).

Different approaches aim to discover facts from
natural language text. In the extremes of the spec-
trum, relation extraction (Mintz et al., 2009) looks
for all facts linkable to a KB, whereas open in-
formation extraction (Banko et al., 2007) extracts
facts over an unconstrained set of arguments and
relations. In this paper, we aim to additionally
score facts according to their prominence.

We define fact salience as the task of discover-
ing the most prominent facts in a text document.
A fact is salient if it carries the essential informa-
tion that the text conveys. A higher salient score
denotes higher prominence, determining a ranking
across all facts in the document. This ranking must
reflect relevance and diversity: We want the top-k
facts to compress the most relevant information in
the smallest number of facts.

Fact salience is closely related to automatic
text summarization (Erkan and Radev, 2004) as
both try to capture the essential information in a
document. However, fact salience output is re-
quired to be interpreted by machines to a certain
extent. Text summarization, on the contrary, is
meant to be understood by humans alone; it is
often composed by ungrammatical text and iso-
lated keywords, making it difficult to structure in
a machine-readable form ex-post.

Here we present SALIE (Salient Information
Extraction), the first fact salience system able to
output a ranking of salient open facts from a text
document. SALIE is unsupervised and knowledge
agnostic. It uses facts as atomic units and PageR-
ank to detect their relevance. It also exploits the
fact structure to promote diversity via clustering.

We evaluated SALIE on a real-world dataset
and compared it with the strong positional base-
line (facts appearing first are more relevant) and,
in an extrinsic evaluation, with two top text
summarizers (one reimplemented to work at fact
level). SALIE outperforms baselines and text
summarization competitors particularly when the
size of the output is restricted, suggesting that
facts, as atomic units expressing a single propo-
sition (Del Corro and Gemulla, 2013), are an ef-
fective way to compress information.

The source code and the processed datasets are
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publicly available1 to encourage further develop-
ments of the fact salience task.

2 Fact Salience

Fact salience is the task of extracting salient facts
from a text document. Salient facts must fulfil two
requirements: (i) relevance and (ii) diversity.

A fact is relevant if it carries the essential infor-
mation that the text conveys. A fact is not relevant
per se but in a specific context. In an article about
the US-Iran nuclear deal the fact (“US”, “with-
draws from”, “Iran Nuclear Deal”) is more rele-
vant that (“Washington”, “is”, “US capital”).

The output of a fact salience system must ensure
that the top-k facts contain the maximum informa-
tion in the smallest number of facts. This implies
a dependency between facts as less relevant facts
should be penalized when they carry information
already contained in more relevant ones.

3 Related Work

Fact salience is close to automatic text summariza-
tion (Erkan and Radev, 2004); both must detect the
most prominent information in the text. However,
while text summarization generates summaries for
humans, fact salience output must be interpretable
by machines. Fluency and language cohesion are
not requirements for fact salience.

Triple scoring in KBs (Bast et al., 2017) is also
related. However, while in fact salience a fact is
not relevant per se but locally in a textual con-
text, triple KB scoring asses the global relevance
of a KB fact for a specific entity [(“T. Burton”,
“profession”, “actor”) vs. (“T. Burton”, “profes-
sion”, “director”)] .

Typically, a text summarization system splits
the text into atomic units (usually sentences) that
are scored and ranked (Allahyari et al., 2017). Di-
versity is generally guaranteed by clustering them
in topics and selecting the most representative
members from each cluster. Once selected, the
atomic units are compressed to ensure minimality.

Generating a machine-readable representation
from text summarization output is difficult. This
output can be incomplete or ungrammatical,
given the use of compression techniques (Zajic
et al., 2007), or the inclusion of keywords or
short unconnected phrases with topical informa-
tion (Hasan and Ng, 2014). Open information

1https://github.com/mponza/SalIE

extractors will most likely fail to generate mean-
ingful facts in these circumstances. However,
text summarization techniques to score the atomic
units can be exploited for fact salience.

Open facts have been already used in text
summarization for redundancy, using syn-
onymity (Christensen et al., 2013) or as input
for a classifier (Christensen et al., 2014). In this
case, we use facts as atomic units. Working at
the fact level provides a natural framework to
detect essential information in a text document,
since facts are minimal comprehensive atomic
units expressing a single proposition (Del Corro
and Gemulla, 2013). This helps to avoid working
with sentences that might express more than one
proposition or arbitrary chunking the input text.
Compression is also more principled at a fact
level as the fact hierarchical structure is clearly
defined (Gashteovski et al., 2017). Additionally,
we exploit the fact structure to promote diversity.

Several supervised and unsupervised methods
have been used in text summarization to deter-
mine the relative prominence of the atomic units.
For instance, two of the top performer systems
Durrett et al. (2016) and Mihalcea and Tarau
(2004), which we include in our extrinsic evalu-
ation, are based on ILP and an unsupervised graph
algorithm respectively. Other approaches include
LDA (Pouriyeh et al., 2017), ontology-based (Bar-
alis et al., 2013) or clustering (Yang et al., 2014),
and more recently neural-based methods (See
et al., 2017). As in Mihalcea and Tarau (2004) or
Erkan and Radev (2004) we use PageRank to es-
tablish the relative prominence of the atomic units
(Sec. 4.1). However, we weight the graph edges
using word vectors to allow more expressive se-
mantics, avoiding the sparsity of frequency-based
methods.

Different approaches have also been explored to
promote diversity. Xiong and Luo (2014), for ex-
ample, use LSA, and Chien and Chang (2013) rely
on topic models. In our case, we generate diversity
by exploiting the fact structure (Sec. 4.2). We clus-
ter facts in terms of their subjects as a way to have
the most relevant information about the different
entities appearing in the text. The subject is typi-
cally the topic of the clause or proposition (Quirk
et al., 1985).
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4 SALIE: Salient Information Extraction

SALIE is a graph-based method for the extrac-
tion of salient open facts in text documents. Open
facts are a structured machine-readable represen-
tation of the information in text. Its arguments are
not linked to an existing KB. SALIE takes as in-
put all open facts detected by an open information
extraction system (in our implementation we use
MINIE (Gashteovski et al., 2017)).

SALIE works in two stages: (i) relevance and
(ii) diversification. First, a graph with open facts
as nodes is instantiated so that PageRank assesses
their relative relevance. Later, a clustering algo-
rithm selects a diversified set of facts.

4.1 Fact Relevance

SALIE computes fact relevance by growing a
complete graph of open facts GOF = (V, E)
extracted from the input text. Coherence is in-
duced by weighting the edges E between nodes
V , whereas a relevance prior is induced via the in-
stantiation of the PageRank’s teleport vector.

Step 1 – Facts as Nodes. Each node is a
fact extracted by MINIE. Undefined facts (with
no clear co-reference) [(“He”, “plays”, “soft-
ball”)] or facts with constituents composed by
single words (generally uninformative or noisy)
[(“doorman”, “has”, “age”)] are removed.

Step 2 – Coherence: Edge Weighting. We
want related facts to get a higher weight assum-
ing that the most relevant facts will be those more
central. We weight each edge (u, v) with the se-
mantic similarity between u and v as the cosine
between the centroid of the word embeddings in
the facts. Stanovsky et al. (2015) have shown that
learning word embeddings with open facts allows
the generation of higher quality vectors . The as-
sumption is that the relatedness of words within
a fact is stronger than with words outside. This
provides the basis for more accurate contextual-
ization. Accordingly, in our implementation we
use GloVe (Pennington et al., 2014) trained on the
Wikipedia corpus using open facts extracted by
MINIE for co-occurence context.

Step 3 – Relevance Prior. We introduce a prior
for each fact by computing a score used to in-
stantiate the PageRank’s teleport vector. The as-
sumption is that authors tend to express the most
relevant facts at the beginning. We instantiated
each fact teleport as factPrior(i) =

xi��X
�� , where

xi = |V | � i and i is the fact index. This is impor-
tant especially for news where the lead paragraph
is the most important part of the article. That’s
why the positional baseline is so strong in tasks as
text summarization or entity salience (Ponza et al.,
2018).

Step 4 – Relevance Computation. This stage
runs PageRank on the graph. The stationary distri-
bution will capture the relevance of each open fact.
This distribution reflects the semantic centrality of
each fact weighted by its relevance prior.

4.2 Fact Diversification
In this stage SALIE diversifies the set of rele-
vant facts computed in the previous stage. Facts
are clustered exploiting the fact structure, and the
most relevant facts in each cluster are selected ac-
cording to the relevance scores.

Facts have clear semantics regarding the role
of each of its constituents (i.e., subject, relation,
and object) in the proposition. SALIE exploits
this by clustering together those facts that have
the same head in the subject’s constituent. As the
subject is typically the theme (or topic) of a the
clause (Quirk et al., 1985), the intuition here is
that facts with the same subject express informa-
tion about the same entity. Therefore, each cluster
will contain a ranked set of facts about each entity
in the document.

After the facts have been clustered, we itera-
tively select facts from each cluster according to
its relevance until we reach the desired number of
facts as output. The number of facts in the output
is a parameter of the system.

5 Experiments

Methodology. Given a document we want to eval-
uate how salient the top-k facts are. The number of
facts in the ranking is a parameter of the model so
we evaluate 5 configurations: top-1 to top-5 facts.
Dataset. As there is no dataset to directly asses the
saliency of facts, we compare the extracted facts
in each ranking with a manually generated sum-
mary. We use the New York Times (Sandhaus,
2008) corpus, consisting of 3956 news articles and
summaries from 2007 (with summaries larger than
50 tokens) as described by Durrett et al. (2016).
Metrics. To measure how close is the rank-
ing to the summary, we use the ROUGE pack-
age2, standard for document summarization (Lin,

2pypi.org/project/pyrouge/0.1.3
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Human Summary
Body of Toni Grossi Abrams, widow and Staten Island socialite, is found in warehouse on outskirts of Panama City, Panama, where she had moved to
begin career in real estate; Debra Ann Ridgley, one of her tenants, is charged with stabbing Abrams to death in her apartment on April 9.

Method Salient Facts / Summary

Position
1 (“Surgery patients”, “lie low in”, “style retreat”)
2 (“Remains”, “were discovered beside warehouse at”, “edge of cinder-topped soccer field on outskirts of Panama City”)
3 (“Abrams”, “had been stabbed to death in”, “apartment”)

TextRank
1 (“Ridgley”, “was in Abrams’s apartment”, “Garcia and friend”)
2 (“Ridgley”, “was in Abrams’s apartment that”, “night”)
3 (“Abrams’s body”, “remains in”, “Panama City morgue”)

Berkeley The widow of a mortgage executive, Ms. Abrams was something of a force of nature in Staten Island society. The suspect, Debra
Ann Ridgley, is.

SALIE
1 (“Abrams”, “had been stabbed to death in”, “apartment”)
2 (“Remains”, “were discovered beside warehouse at”, “edge of cinder-topped soccer field on outskirts of Panama City”)
3 (“Apartment”, “tending wounds at time of”, “murder”)

(a) MINIE safe mode.

Human Summary
Russian state oil company Rosneft has lined up $22 billion in financing from consortium of Western banks to buy assets from bankrupt rival Yukos;
Rosneft says it will bid for refineries owned by Yukos as outlet for production from its Yugansk subsidiary in western Siberia; some of banks listed.

Method Salient Facts / Summary

Position
1 (“State oil company”, “lined up $ from consortium of banks buy assets from”, “rival”)
2 (“Rosneft”, “increase footprint in”, “oil and gas business”)
3 (“Bids”, “are successful as”, “expected”)

TextRank
1 (“Banks”, “made loans to”, “Rosneft and state company”)
2 (“Banks”, “lent company related to Rosneft”, “$ increase share”)
3 (“State oil company”, “lined up $ from consortium of banks buy assets from”, “rival”)

Berkeley The Russian state oil company Rosneft has lined up $22 billion from a consortium of Western banks.

SALIE
1 (“State oil company”, “lined up $ from consortium of banks buy assets from”, “rival”)
2 (“Banks”, “made loans to”, “Rosneft and state company”)
3 (“Rosneft”, “increase footprint in”, “oil and gas business”)

(b) MINIE aggressive mode.

Table 1: Top-3 salient facts automatically extracted from a sample of two NYT documents with two
different MINIE modes. For Berkeley (which does not return facts) we show its produced summary. On
the top of each table we show the summary written by a human for the input document.

2004). ROUGE-1 measures the presence of single
words between the salient facts and the summary;
ROUGE-L identifies the longest common sub-
sequence (LCS) with maximum length between
facts and summary; ROUGE-1.2W measures the
weighted LCS by taking into account spatial re-
lations and giving higher values to consecutive
matches; ROUGE-SU is the number of occurring
bigrams between the facts and summary with arbi-
trary gaps. For each metric we report the F1 per-
formance, all computed with a 95% confidence in-
terval, run with stemming and stopword removal3.

To compute the ROUGE score, the facts were
flattened and concatenated into a sequence of to-
kens respecting the ranking order. For the com-
putation, this sequence is considered equivalent to
a summary, so the same conditions apply: If all
the extracted tokens fully cover the gold standard
summary, the ROUGE score reaches its highest
value.

3Package arguments: -c 95 -m -s -U -w 1.2.

Note that we do not take into account the
correctness of the facts (i.e., if they are well-
structured). All systems implemented, except the
Berkeley summarizer (Durrett et al., 2016), use
the same open facts extracted by MINIE. Also for
the Berkeley summarizer, we do not evaluate the
structure or fluency of the summary.
SALIE. Outputs top-k facts per article. We show
results for two MINIE configurations: safe and ag-
gressive, which differ in the fact average size.
Intrinsic Evaluation. As there is no direct fact
salience competitor, we designed three baselines:
The standard Position baseline which ranks facts
with respect to their order of appearance, Tf-Idf
which ranks them with respect to the subject’s
head tf-idf and the Context baseline which ranks
facts with respect to the cosine-similarity between
the document and the fact embedding’s centroid.
Extrinsic Evaluation. We used two state-of-
the-art document summarizers, i.e., the unsuper-
vised graph-based TextRank (Mihalcea and Ta-
rau, 2004) and the supervised Berkeley summa-
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Method ROUGE-1 ROUGE-L ROUGE-1.2W ROUGE-SU

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Position 13.9 20.4 24.8 27.8 29.7 12.8 18.1 21.8 24.4 26.0 6.20 8.80 10.8 12.2 13.2 2.70 5.30 7.50 9.00 10.0
Tf-Idf 10.5 15.8 19.0 21.0 22.3 9.60 13.2 15.7 17.5 18.5 4.60 6.30 7.50 8.50 9.20 1.40 2.80 4.00 4.80 5.30
Context 13.6 19.6 22.8 24.6 25.7 11.5 16.3 18.9 20.4 21.3 5.60 8.00 9.40 10.3 11.0 2.50 4.40 5.60 6.30 6.70
TextRank 15.2 21.5 24.5 26.1 26.8 13.0 17.5 19.8 21.3 22.0 6.20 8.40 9.70 10.6 11.2 2.60 4.90 6.40 7.20 7.50
Berkeley 8.50 18.0 25.4 30.4 34.1 8.00 16.3 22.5 26.7 29.7 3.80 7.70 11.0 13.2 14.9 0.80 3.40 6.90 10.1 12.7
SALIE 17.1 24.2 28.0 30.0 30.9 15.3 21.2 24.3 26.0 26.8 7.40 10.3 12.0 13.1 13.6 3.60 6.50 8.30 9.20 9.50

Diff. +1.9 +2.7 +2.6 -0.4 -3.2 +2.3 +3.1 +1.8 -0.7 -2.9 +1.2 +1.5 +1.0 -0.1 -1.3 +0.9 +1.2 +0.8 -0.9 -3.2

(a) MINIE safe mode.

Method ROUGE-1 ROUGE-L ROUGE-1.2W ROUGE-SU

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Position 10.1 15.3 19.3 22.3 24.5 9.60 13.8 17.2 19.8 21.7 4.40 6.30 7.80 9.10 10.1 1.40 2.90 4.50 5.80 6.90
Tf-Idf 8.90 13.6 16.4 18.3 19.6 8.30 11.3 13.4 15.0 16.1 3.80 5.20 6.20 6.90 7.60 0.90 2.00 2.90 3.50 4.10
Context 9.50 14.5 17.9 20.0 21.4 8.40 12.4 15.1 16.8 18.0 3.90 5.70 6.90 7.80 8.50 1.20 2.40 3.40 4.20 4.80
TextRank 11.3 17.2 20.3 22.2 23.3 10.1 14.3 16.7 18.2 19.2 4.60 6.40 7.60 8.40 9.00 1.30 2.90 4.20 5.00 5.60
Berkeley 3.60 10.6 16.2 21.2 25.4 3.50 9.90 14.8 19.0 22.5 1.60 4.60 7.00 9.10 11.0 0.20 1.20 2.80 4.80 6.90
SALIE 11.6 17.9 21.6 24.2 25.9 10.5 15.9 19.1 21.3 22.8 4.80 7.20 8.60 9.70 10.5 1.60 3.30 4.60 5.70 6.50

Diff. +0.3 +0.7 +1.3 +1.9 +0.5 +0.4 +1.6 +1.9 +1.5 +0.3 +0.2 +0.8 +0.8 +0.6 -0.5 +0.2 +0.4 +0.1 -0.1 -0.4

(b) MINIE aggressive mode.

Table 2: Results on the NYT dataset with two different MINIE modes.

rizer (Durrett et al., 2016). We adapted TextRank
to work with facts instead of sentences. For the
Berkeley summarizer, we used the model online4.
As the size of the summaries is a parameter of the
summarizer, we set it to match the average size of
MINIE facts (safe is 10 and aggressive is 6), For
example, for the top-5 configuration in the aggres-
sive mode, the summary length is set to 30.

Tab. 1 shows example outputs for the position
baseline, the text summarizers and SALIE.

5.1 Results

Tabs. 2a and 2b show the results for all the sys-
tems and baselines. We use colors black, gray
and light gray for the first, second and third best
performing methods. In each ROUGE configura-
tion, we show results for five rankings: top-1 to
top-5. The difference between SALIE and the best
competitor is reported in the last line of the tables.

Tab. 2a shows the results where facts have
been extracted with MINIE’s safe mode. SALIE
outperforms all other methods and baselines for
the first three rankings (top-1 to top-3), although
Berkeley summarizer comes first in top-4 and 5
facts as a higher budget takes the system closer
to the gold standard human-readable summaries.
TextRank has an opposite behavior compared to
Berkeley, performing well in top-1 and 2 but lag-
ging behind as more facts are added probably due
to the lack of a diversification stage. It is interest-

4nlp.cs.berkeley.edu/projects/
summarizer.shtml

ing to note that systems working at the fact level do
well in constrained settings, suggesting that facts
may be an effective way to compress information.

Tab. 2b shows the results when MINIE is used
in aggressive mode. In this experiment, we aim
to analyze the behavior of the systems in a re-
stricted scenario with a very small budget size (6
tokens per fact). SALIE achieves the highest per-
formance overall metrics independently the num-
ber of facts used, with the only exception on the
ROUGE-1.2W and ROUGE-SU score when 4 or 5
facts are used. The second and third best perform-
ing methods are Position and TextRank. Again, in
this case, it is suggested that facts are an appropri-
ate mechanism to compress information.

Overall SALIE shows a more stable balance
across all rankings in both settings. It always ranks
first or second (except in ROUGE-SU top-5 where
it comes third). Compared to TextRank it seems
to significantly better manage redundancy, while
compared to the Berkeley it does better at detect-
ing relevant information in constrained settings.
This is due to the use of facts as a mean to com-
press information.

6 Conclusions

We introduced the fact salience task. We also
presented SALIE, the first fact salience system.
SALIE outperformed standard baselines but also
state-of-the-art automatic text summarizer. We
showed that working at the fact level allows to
more effectively compress information.
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Abstract
Reading comprehension tasks test the ability
of models to process long-term context and
remember salient information. Recent work
has shown that relatively simple neural meth-
ods such as the Attention Sum-Reader can
perform well on these tasks; however, these
systems still significantly trail human perfor-
mance. Analysis suggests that many of the
remaining hard instances are related to the
inability to track entity-references throughout
documents. This work focuses on these hard
entity tracking cases with two extensions: (1)
additional entity features, and (2) training with
a multi-task tracking objective. We show
that these simple modifications improve per-
formance both independently and in combina-
tion, and we outperform the previous state of
the art on the LAMBADA dataset, particularly
on difficult entity examples.

1 Introduction
There has been tremendous interest over the past
several years in Cloze-style (Taylor, 1953) reading
comprehension tasks, datasets, and models (Her-
mann et al., 2015; Hill et al., 2016; Kadlec et al.,
2016; Dhingra et al., 2016; Cui et al., 2016). Many
of these systems apply neural models to learn to
predict answers based on contextual matching, and
have inspired other work in long-form generation
and question answering. The extent and limits
of these successes have also been a topic of in-
terest (Chen et al., 2016; Chu et al., 2017). Re-
cent analysis by Chu et al. (2017) suggests that a
significant portion of the errors made by standard
models, especially on the LAMBADA dataset (Pa-
perno et al., 2016), derive from the inability to cor-
rectly track entities or speakers, or a failure to han-
dle various forms of reference.

This work targets these shortcomings by de-
signing a model and training scheme targeted to-
wards entity tracking. Specifically we introduce

Figure 1: A LAMBADA example where the final
word “julie” (with reference chain in brackets) is
the answer, y, to be predicted from the preceding
context x. A system must know the two speak-
ers and the current dialogue turn, simple context
matching is not sufficient. Here, our model’s pre-
dictions before and after adding multi-task objec-
tive are shown.

two simple changes to a stripped down model:
(1) simple, entity-focused features, and (2) two
multi-task objectives that target entity tracking.
Our ablation analysis shows that both indepen-
dently improve entity tracking, which is the pri-
mary source of overall model’s improvement. To-
gether they lead to state-of-the-art performance on
LAMBADA dataset and near state-of-the-art on
CBT dataset (Hill et al., 2016), even with a rel-
atively simple model.

2 Background and Related Work

Cloze-style reading comprehension uses a passage
of word tokens x = x1:n (the context), with one
token xj masked; the task is to fill in the masked
word y, which was originally at position j. These
datasets aim to present a benchmark challenge re-
quiring some understanding of the context to se-
lect the correct word. This task is a prerequi-
site for problems like long-form generation and
document-based question answering.

A number of datasets in this style exist with dif-
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ferent focus. Here we considered the LAMBADA
dataset and the named entity portion of the Chil-
dren’s Book Test dataset (CBT-NE). LAMBADA
uses novels where examples consist of 4-5 sen-
tences and the last word to be predicted is masked,
xn. The dataset is constructed carefully to focus
on examples where humans needed the context to
predict the masked word. CBT-NE examples, on
the other hand, include 21 sentences where the
masked word is a named entity extracted from
the last sentence, with j  n, and is constructed
in a more automated way. We show an example
from LAMBADA in Figure 1. In CBT, as well
as the similar CNN/Daily Mail dataset (Hermann
et al., 2015), the answer y is always contained in x
whereas in LAMBADA it may not be. Chu et al.
(2017) showed, however, that training only on ex-
amples where y is in x leads to improved overall
performance, and we adopt this approach as well.

Related Work The first popular neural network
reading comprehension models were the Attentive
Reader and its variant Impatient Reader (Hermann
et al., 2015). Both were the first to use bidirec-
tional LSTMs to encode the context paragraph and
the query separately. The Stanford Reader (Chen
et al., 2016) is a simpler version with fewer lay-
ers for inference. These models use an encoder
to map each context token xi to a vector ui. Fol-
lowing the terminology of Wang et al. (2017), ex-
plicit reference models calculate a similarity mea-
sure si = s(ui, q) between each context vector
ui and a query vector q derived for the masked
word. These similarity scores are projected to an
attention distribution ↵ = softmax({si}) over the
context positions in 1, . . . , n, which are taken to be
candidate answers.

The Attention Sum Reader (Kadlec et al., 2016)
is a further simplified version. It computes ui and
q with separate bidirectional GRU (Chung et al.,
2014) networks, and si with a dot-product. It is
trained to minimize:

L0(✓) = � ln p(y | x, q)

= � ln
X

i:xi=y

p(xi | q) = � ln
X

i:xi=y

↵i,

where ✓ is the set of all parameters associated with
the model, and y is the correct answer. At test
time, a pointer sum attention mechanism is used
to predict the word type with the highest aggre-
gate attention as the answer. The Gated Attention
Reader (Dhingra et al., 2016) leverages the same

mechanism for prediction and introduces an atten-
tion gate to modulate the joint context-query infor-
mation over multiple hops.

The Recurrent Entity Networks (Henaff et al.,
2016) uses a custom gated recurrent module, Dy-
namic Memory, to learn and update entity repre-
sentations as new examples are received. Their
gate function is combined of (1) a similarity mea-
sure between the input and the hidden states, and
(2) a set of trainable ”key” vectors which could
learn any attribute of an entity such as its loca-
tion or other entities it is interacting with in the
current context. The Query Reduction Networks
(Seo et al., 2016) is also a gated recurrent network
which tracks state in a paragraph and uses a hid-
den query vector to keep pointing to the answer at
each step. The query is successively transformed
with each new sentence to a reduced state that’s
easier to answer given the new information.

Model In this work, we were particularly inter-
ested in the shortcomings of simple models and
exploring whether or how much entity tracking
could help, since Chu et al. (2017) has pointed out
this weakness. As a result, we adapt a simplified
Attention Sum (AttSum) reader throughout all ex-
periments. Our version uses only a single bidirec-
tional GRU for both ui and q. This GRU is of size
2d, using the first d states for the context and sec-
ond d for the query. Formally, let

!
hi and

 
hi (both

in R
2d) represent the forward and backward states

of a bidirectional GRU run over x, and let
!
hi," and

!
hi,# be the first and second d states respectively,
and define || as the concatenation operator. The

context vectors are constructed as ui =
!
hi,"||

 
hi,".

For datasets using the last word, the query is con-
structed as q =

!
hn,#||

 
h1,#. When the masked

word can be anywhere, the query is constructed
as q =

!
hj�1,#||

 
hj+1,#.

Our main contribution is the extension of this
simple model to incorporate entity tracking. Other
authors have explored extending neural reading
comprehension models with linguistic features,
particularly Dhingra et al. (2017) who use a modi-
fied GRU with knowledge such as coreference re-
lations and hypernymy. In Dhingra et al. (2018),
the most recent coreferent antecedent for each to-
ken is incorporated into the update equations of
the GRU unit to bias the reader towards coreferent
recency. In this work, we instead use a much sim-
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1 Sentence Index, POS Tag, NER Tag
2 Is among last 3 PERSON words in x
3 Is a PERSON word in the last sentence
4 Is a PERSON word identical to previous PERSON word
5 Is a PERSON word identical to next PERSON word
6 Quoted-speech Index
7 Speaker

Table 1: Word-level features used in AttSum-Feat
model.

pler set of features and compare to this and several
other models as baseline approaches.

3 Learning to Track Entities

Analysis on reading comprehension has indicated
that neural models are strong at matching local
context information but weaker at following enti-
ties through the discourse (Chen et al., 2016; Chu
et al., 2017). We consider two straightforward
ways for extending the Attention Sum baseline to
better track entities.

Method 1: Features We introduce a short-list
of features in Table 1 to augment the representa-
tion of each word in x. These features are meant
to help the system to identify and use the rela-
tionships between words in the passage.1 Features
2-5 apply only to words tagged PERSON by the
NER tagger. Features 6-7 apply only to words be-
tween opening and closing quotation marks. Fea-
ture 6 indicates the index of the quote in the doc-
ument, and Feature 7 gives the assumed speaker
of the quote using some simple rules; we provide
the rules in the Supplementary Material. Though
most of these features are novel, they are moti-
vated by recent analysis (Wang et al., 2015; Chen
et al., 2016; Wang et al., 2017).

All features are incorporated into a word’s rep-
resentation by embedding each discrete feature
into a vector of the same size as the original word
embedding, adding the vectors as well as a bias,
and applying a tanh nonlinearity.

Method 2: Multitasking We additionally en-
courage the neural model to keep track of enti-
ties by multitasking with simple auxiliary entity-
tracking tasks. Examples such as Figure 1 suggest
that keeping track of which entities are currently in

1POS tags are produced with the NLTK library (Bird
et al., 2009), and NER tags with the Stanford NER tag-
ger (Finkel et al., 2005). We additionally found it useful to
tag animate words as PERSONs on the CBT-NE data, using
the animate word list of Bergsma and Lin (2006).

scope is useful for answering reading comprehen-
sion questions. There, amy and julie are convers-
ing, and being able to track that amy is the speaker
of the final quote helps to rule her out as a candi-
date answer. We consider two tasks:

For Task 1 (L1) we train the same model to pre-
dict repeated named entities. For all named enti-
ties xj such that there is a xi = xj with i < j,
we attempt to mask and predict the word type xj .
This is done by introducing another Cloze predic-
tion, but now setting the target y = xj , reduc-
ing the context to preceding words x1:j�1 with

ui =
!
hi , and the query q =

!
hj�1. (Note that

unlike above, both of these only use the forward
states of the GRU). We use a bilinear similarity
score si = q

T
Q ui, for this prediction where Q

is a learned transformation in R
2d⇥2d. This task is

inspired by the antecedent ranking task in corefer-
ence (Wiseman et al., 2015, 2016).

For Task 2 (L2) we train to predict the order in-
dex in which a named entity has been introduced.
For example, in Figure 1, julie would be 1, amy
would be 2, marsh would be 3, etc. The hope
here is that learning to predict when entities reap-
pear will help the model track their reoccurences.
For the blue labeled julie, the model would aim to
predict 1, even though it appears later in the con-
text. This task is inspired by the One-Hot Pointer
Reader of Wang et al. (2017) on the Who-did-
What dataset (Onishi et al., 2016). Formally, let-
ting cidx(xj) be the predicted index for xj , we min-
imize:

L2(✓) = � ln p( cidx(xj) = idx(xj) | x1:j�1)

= � ln softmax(W
!
hj)idx(xj),

where W 2 R
|E|⇥2d and E is the set of entity

word types in the document. Note that this is a
simpler computation, requiring only O(|E| ⇥ n)
predictions per x, whereas L1 requires O(n2).

The full model minimizes a multi-task loss:
L0(✓) + �1L1(✓) + �2L2(✓). Using L1 and L2

simultaneously did not lead to improved perfor-
mance however, and so either �1, �2 is always 0.
We believe that this is because, while the learn-
ing objectives for L1 and L2 are mathematically
different, they are both designed to similarly track
the entities mentioned so far in the document and
thus do not provide complementary information to
each other.

We found it useful to have two hyperparameters
per auxiliary task governing the number of distinct
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named entity word types and tokens used in defin-
ing the losses L1 and L2. In particular, per doc-
ument these hyperparameters control in a top-to-
bottom order the number of distinct named entity
word types we attempt to predict, as well as the
number of tokens of each type considered.

4 Experiments

Methods This section highlights several aspects
of our methodology; full hyperparameters are
given in the Supplementary Material. For the
training sets, we exclude examples where the an-
swer is not in the context. The validation and test
sets are not modified however and the model with
the highest accuracy on the validation set is chosen
for testing. For both tasks, the context words are
mapped to learned embeddings; importantly, we
initialize the first 100 dimensions with the 100-
dimensional GLOVE embeddings (Pennington
et al., 2014). Named entity words are anonymized,
as is done in the CNN/Daily Mail corpus (Her-
mann et al., 2015) and in some of the experiments
of Wang et al. (2017). The model is regularized
with dropout (Srivastava et al., 2014) and opti-
mized with ADAM (Kingma and Ba, 2014). For
all experiments we performed a random search
over hyperparameter values (Bergstra and Bengio,
2012), and report the results of the models that per-
formed best on the validation set. Our implemen-
tation is available at https://github.com/
harvardnlp/readcomp.

Results and Discussion Table 2 shows the full
results of our best models on the LAMBADA and
CBT-NE datasets, and compares them to recent,
best-performing results in the literature.

For both tasks the inclusion of either en-
tity features or multi-task objectives leads to
large statistically significant increases in valida-
tion and test score, according to the McNemar
test (↵ = 0.05) with continuity correction (Di-
etterich, 1998). Without features, AttSum + L2

achieves the best test results, whereas with fea-
tures AttSum-Feat + L1 performs best on CBT-
NE. The results on LAMBADA indicate that en-
tity tracking is a very important overlooked as-
pect of the task. Interestingly, with features in-
cluded, AttSum-Feat + L2 appears to hurt test
performance on LAMBADA and leaves CBT-
NE performance essentially unchanged, amount-
ing to a negative result for L2. On the other
hand, the effect of AttSum-Feat + L1 is pro-

LAMBADA Val Test

GA Reader (Chu et al., 2017) - 49.00
MAGE (48) (Dhingra et al., 2017) 51.10 51.60
MAGE (64) (Dhingra et al., 2017) 52.10 51.10
GA + C-GRU (Dhingra et al., 2018) - 55.69

AttSum 56.03 55.60
AttSum + L

1 58.35 56.86
AttSum + L

2 58.08 57.29
AttSum-Feat 59.62 59.05
AttSum-Feat + L

1 60.22 59.23
AttSum-Feat + L

2 60.13 58.47
CBT-NE

GA Reader (Dhingra et al., 2016) 78.50 74.90
EpiReader (Trischler et al., 2016) 75.30 69.70
DIM Reader (Liu et al., 2017) 77.10 72.20
AoA (Cui et al., 2016) 77.80 72.0
AoA + Reranker (Cui et al., 2016) 79.60 74.0

AttSum 74.35 69.96
AttSum + L

1 76.20 72.16
AttSum + L

2 76.80 72.60
AttSum-Feat 77.80 72.36
AttSum-Feat + L

1 78.40 74.36
AttSum-Feat + L

2 79.40 72.40

Table 2: Validation & Test results on all datasets.
AttSum* are our models, including variants with
features and multi-task loss. Others indicate previ-
ous best published results. All improvements over
AttSum are statistically significant (↵ = 0.05) ac-
cording to the McNemar test with continuity cor-
rection (Dietterich, 1998).

nounced on CBT-NE, and while our simple mod-
els do not increase the state-of-the-art test perfor-
mance on CBT-NE, they outperform “attention-
over-attention” in addition to reranking (Cui et al.,
2016), and is outperformed only by architectures
supporting “multiple-hop” inference over the doc-
ument (Dhingra et al., 2016). Our best model on
CBT-NE test set, AttSum-Feat + L1, is very close
to the current state-of-the-art result. On the vali-
dation sets for both LAMBADA and CBT-NE, the
improvements from adding features to AttSum +
Li are statistically significant (for full results refer
to our supplementary material). On LAMBADA,
the L1 multi-tasked model is a 3.5-point increase
on the state of the art.

Our method also employs fewer parameters
than other richer models such as the GA Reader
in (Dhingra et al., 2016). More specifically, in
terms of number of parameters, our models are
very similar to a 1-hop GA Reader. In contrast,
all published experiments of the latter use 3 hops
where each hop requires 2 separate Bi-GRUs, one
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LAMBADA All Entity Speaker Quote

AttSum 56.03 75.17 74.81 73.31
AttSum + L

1 58.35 78.51 78.38 79.42
AttSum + L

2 58.08 78.17 77.96 76.76
AttSum-Feat 59.62 79.40 80.34 79.68
AttSum-Feat + L

1 60.22 82.00 82.98 81.67
AttSum-Feat + L

2 60.14 82.06 83.06 82.60

CBT-NE

AttSum 74.35 76.28 75.08 74.96
AttSum + L

1 76.20 78.03 76.98 77.33
AttSum + L

2 76.80 77.45 76.27 76.48
AttSum-Feat 77.80 80.58 79.84 79.61
AttSum-Feat + L

1 78.40 80.44 79.68 79.78
AttSum-Feat + L

2 79.40 82.41 81.51 81.39

Table 3: Ablation results on validation sets, see text
for definitions of the numeric columns and mod-
els.

to model the document and one for the query. This
constitutes the largest difference in model size be-
tween the two approaches.

Table 3 considers the performance of the differ-
ent models based on a segmentation of the data.
Here we consider examples where: (1) Entity -
if the answer is a named entity; (2) Speaker - if
the answer is a named entity and the speaker of
quote; (3) Quote - if the answer is found within a
quoted speech. Note that Speaker and Quote cat-
egories, while mutually exclusive, are subsets of
the overall Entity category. We see that both the
additional features and multi-task objectives in-
dependently result in a clear improvement in all
categories, but that the gains are particularly pro-
nounced for named entities and specifically for
Speaker and Quote examples. Here we see siz-
able increases in performance, particularly in the
Speaker category. We see larger increases in the
more dialog heavy LAMBADA task.

As a qualitative example of the improvement af-
forded by multi-task training, in Figure 1 we show
the different predictions made by our model with
and without L1 (colored as blue and red, respec-
tively). Note that amy and julie are both entities
that have been repeated twice in the passage. In
addition to the final answer, our model with the
L1 loss was also able to predict these entities (at
the colored locations) given preceding words. Fur-
ther qualitative analysis reveals that these augmen-
tations improved the model’s ability to eliminate
non-entity choices from predictions. Some exam-
ples are shown in Figure 2.

Figure 2: LAMBADA examples where AttSum
incorrectly predicts a non-entity answer whereas
AttSum-Feat and AttSum + Li choose correctly.

5 Conclusion

This work demonstrates that learning to track en-
tities with features and multi-task learning signif-
icantly increases the performance of a baseline
reading comprehension system, particularly on the
difficult LAMBADA dataset. This result indicates
that higher-level word relationships may not be
modeled by simple neural systems, but can be in-
corporated with minor additional extensions. This
work hints that it is difficult for vanilla models to
learn long-distance entity relations, and that these
may need to be encoded directly through features
or possibly with better pre-trained representations.
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Abstract

We address the problem of detecting dupli-
cate questions in forums, which is an impor-
tant step towards automating the process of
answering new questions. As finding and an-
notating such potential duplicates manually is
very tedious and costly, automatic methods
based on machine learning are a viable alter-
native. However, many forums do not have
annotated data, i.e., questions labeled by ex-
perts as duplicates, and thus a promising solu-
tion is to use domain adaptation from another
forum that has such annotations. Here we fo-
cus on adversarial domain adaptation, deriv-
ing important findings about when it performs
well and what properties of the domains are
important in this regard. Our experiments with
StackExchange data show an average improve-
ment of 5.6% over the best baseline across
multiple pairs of domains.

1 Introduction

Recent years have seen the rise of community
question answering forums, which allow users to
ask questions and to get answers in a collaborative
fashion. One issue with such forums is that dupli-
cate questions easily become ubiquitous as users
often ask the same question, possibly in a slightly
different formulation, making it difficult to find
the best (or one correct) answer (Hoogeveen et al.,
2018; Lai et al., 2018). Many forums allow users
to signal such duplicates, but this can only be
done after the duplicate question has already been
posted and has possibly received some answers,
which complicates merging the question threads.
Discovering possible duplicates at the time of
posting is much more valuable from the perspec-
tive of both (i) the forum, as it could prevent a
duplicate from being posted, and (ii) the users, as
they could get an answer immediately.

⇤ Work conducted while the author was at QCRI.

Duplicate question detection is a special case of
the more general problem of question-question
similarity. The latter was addressed using a vari-
ety of textual similarity measures, topic modeling
(Cao et al., 2008; Zhang et al., 2014), and syntac-
tic structure (Wang et al., 2009; Filice et al., 2016;
Da San Martino et al., 2016; Barrón-Cedeño et al.,
2016; Filice et al., 2017). Another approach is to
use neural networks such as feed-forward (Nakov
et al., 2016a), convolutional (dos Santos et al.,
2015; Bonadiman et al., 2017; Wang et al., 2018),
long short-term memory (Romeo et al., 2016), and
more complex models (Lei et al., 2016; Nicosia
and Moschitti, 2017; Uva et al., 2018; Joty et al.,
2018; Zhang and Wu, 2018). Translation models
have also been popular (Zhou et al., 2011; Jeon
et al., 2005; Guzmán et al., 2016a,b).

The above work assumes labeled training
data, which exists for question-question similar-
ity, e.g., from SemEval-2016/2017 (Agirre et al.,
2016; Nakov et al., 2016b, 2017), and for dupli-
cate question detection, e.g., SemEval-2017 task
3 featured four StackExchange forums, Android,
English, Gaming, and Wordpress, from CQADup-
Stack (Hoogeveen et al., 2015, 2016). Yet, such
annotation is not available for many other forums,
e.g., the Apple community on StackExchange.

In this paper, we address this lack of annotation
using adversarial domain adaptation (ADA) to ef-
fectively use labeled data from another forum. Our
contributions can be summarized as follows:
• we are the first to apply adversarial domain

adaptation to the problem of duplicate question
detection across different domains;1

• on the StackExchange family of forums, our
model outperforms the best baseline with an av-
erage relative improvement of 5.6% (up to 14%)
across all domain pairs.
1The code and the data are available at the following link:

http://github.com/darsh10/qra_code
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Figure 1: Our cross-domain question-question similarity
model. The Question encoder is common for the questions
from the source domain and from the target domain. The
model and its training procedure are described in Section 2.

• we study when transfer learning performs well
and what properties of the domains are impor-
tant in this regard; and

• we show that adversarial domain adaptation can
be efficient even for unseen target domains,
given some similarity of the target domain with
the source one and with the regularizing adver-
sarial domain.

Adversarial domain adaptation (ADA) was pro-
posed by Ganin and Lempitsky (2015), and was
then used for NLP tasks such as sentiment analy-
sis and retrieval-based question answering (Chen
et al., 2016; Ganin et al., 2016; Li et al., 2017; Liu
et al., 2017; Yu et al., 2018; Zhang et al., 2017),
including cross-language adaptation (Joty et al.,
2017) for question-question similarity.2

The rest of this paper is organized as follows:
Section 2 presents our model, its components, and
the training procedure. Section 3 describes the
datasets we used for our experiments, stressing
upon their nature and diversity. Section 4 de-
scribes our adaptation experiments and discusses
the results. Finally, Section 5 concludes with pos-
sible directions for future work.

2 Method

Our ADA model has three components: (i) ques-
tion encoder, (ii) similarity function, and (iii) do-
main adaptation component, as shown in Figure 1.

The encoder E maps a sequence of word tokens
x = (x1, .., xn) to a dense vector v = E(x). The
similarity function f takes two question vectors,
v1 and v2, and predicts whether the corresponding
questions are duplicates.

2Prior work on cross-language adaptation for question-
question similarity used cross-language tree kernels
(Da San Martino et al., 2017).

The domain classifier g takes a question vector
v and predicts whether the question is from the
source or from the target domain. We train the
encoder not only to do well on the task for the
source data, but also to fool the domain classi-
fier, as shown in Algorithm 1. We describe the
design choices considered for our domain adapta-
tion model in the following two subsections.

2.1 Question Similarity Function
We consider two options for our similarity func-
tion f(v1,v2):
(i) a logistic function that computes the probability
that two questions are similar/duplicates, which is
trained with the cross-entropy loss:

sigmoid
⇣
W>(v1 � v2) + b

⌘

where � is an element-wise vector product
between unit encodings of questions;

(ii) a simple cosine similarity function,
i.e., cosine(v1,v2), trained using the pairwise
hinge loss with a margin m:
X

i

max({(1�yi)f(vi
1,v

i
2)+m�yif(vi

1,v
i
2)}, 0)

Our experiments reported in Table 3 show that
the cosine similarity function performs far better.

2.2 Domain Adaptation Components
The adversarial component is responsible for
reducing the difference between the source
and the target domain distributions. There
are two common approaches to achieve this:
(i) classification-based (Ganin and Lempitsky,
2015) and (ii) Wasserstein (Arjovsky et al., 2017).

The main difference between them is in the
way the domain discrepancy loss is computed. In
the classification-based approach, the adversarial
component is a classifier trained to correctly pre-
dict the domain (source vs. target) of the input
question. In contrast, the question encoder is op-
timized to confuse the domain classifier, which,
as a result, encourages domain invariance. Ar-
jovsky and Bottou (2017) showed that this adver-
sarial optimization process resembles minimizing
the Jenson-Shannon (JS) divergence between the
source Ps and the target distribution Pt:

JS(Ps, Pt) = KL(Ps, Pm) + KL(Pg, Pm)

where Pm = (Ps +Pt)/2 and KL is the Kullback-
Leibler divergence.
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Algorithm 1: Training Procedure
Input: source data Xs; target data Xt

Hyper-parameters: learning rates ↵1, ↵2; batch size m; ad-
versarial importance �
Parameters to be trained: question encoder ✓e, question
similarity classifier ✓s and domain classifier ✓d

Similarity classification loss Lc is either the cross-entropy
loss or hinge loss, described in Section 2.1
Adversarial loss Ld, described in Section 2.2
repeat

for each batch do
Construct a sub-batch of similar and dissim-

ilar question pairs from the annotated source data
{(xs

i1 , xs
i2), y

s
i }

m
i=1

Calculate the classification loss Lc using ✓e and ✓s

for this sub-batch
Construct a sub-batch of questions {xs

i , x
t
j}

m
i=1

from the corpora of source and target domains
Calculate the domain discrepancy loss Ld using ✓e

and ✓d for this sub-batch
Total loss L = Lc � �Ld

✓e = ✓e � ↵1O✓e
L

✓s = ✓s � ↵1O✓s
L

✓d = ✓d + ↵2O✓d
L

end for
until ✓e, ✓s and ✓d converge

In contrast, the Wasserstein method attempts to re-
duce the approximated Wasserstein distance (also
known as Earth Mover’s Distance) between the
distributions for the source and for the target do-
main as follows:

W (Ps, Pt) = sup
||f ||L1

Ex⇠Ps [f(x)] � Ex⇠Pt [f(x)]

where f is a Lipchitz-1 continuous function real-
ized by a neural network.

Arjovsky et al. (2017) have shown that the
Wasserstein method yields more stable training for
computer vision tasks.

2.3 Training Procedure

Algorithm 1 describes the procedure to train the
three components of our model. Adversarial train-
ing needs two kinds of training data: (i) annotated
question pairs from the source domain, and (ii) un-
labeled questions from the source and the target
domains.

The question encoder is trained to perform well
on the source domain using the similarity classi-
fication loss Lc. In order to enforce good per-
formance on the target domain, the question en-
coder is simultaneously trained to be incapable
in discriminating between question pairs from the
source vs. the target domain. This is done through
the domain classification loss Ld.

Dataset Questions Duplicates Train Dev Test

AskUbuntu 257,173 27,289 9,106 1,000 1,000
SuperUser 343,033 11,407 9,106 1,000 1,000
Apple 80,466 2,267 – 1,000 1,000
Android 42,970 2,371 – 1,000 1,000

Sprint 31,768 23,826 9,100 1,000 1,000

Quora 537,211 149,306 9,100 – –

Table 1: Statistics about the datasets. The table shows the
number of question pairs that have been manually marked as
similar/duplicates by the forum users (i.e., positive pairs). We
further add 100 negative question pairs per duplicate question
by randomly sampling from the full corpus of questions.

3 Datasets

The datasets we use can be grouped as follows:

• Stack Exchange is a family of technical com-
munity support forums. We collect ques-
tions (composed by title and body) from the
XML dumps of four forums: AskUbuntu, Su-
perUser, Apple, and Android. Some pairs of
similar/duplicate questions in these forums are
marked by community users.

• Sprint FAQ is a newly crawled dataset from
the Sprint technical forum website. It contains
a set of frequently asked questions and their
paraphrases, i.e., three similar questions, para-
phrased by annotators.

• Quora is a dataset of pairs of similar questions
asked by people on the Quora website. They
cover a broad set of topics touching upon phi-
losophy, entertainment and politics.

Note that these datasets are quite heteroge-
neous: the StackExchange forums focus on spe-
cific technologies, where questions are informal
and users tend to ramble on about their issues, the
Sprint FAQ forum is technical, but its questions are
concise and shorter, and the Quora forum covers
many different topics, including non-technical.

Statistics about the datasets are shown in Ta-
ble 1. Moreover, in order to quantify the differ-
ences and the similarities, we calculated the frac-
tion of unigrams, bigrams and trigrams that are
shared by pairs of domains. Table 2 shows statis-
tics about the n-gram overlap between AskUbuntu
or Quora as the source and all other domains as
the target. As one might expect, there is a larger
overlap within the StackExchange family.
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Source Target Unigrams Bigrams Trigrams

AskUbuntu

Android 0.989 0.926 0.842
Apple 0.991 0.926 0.853
SuperUser 0.990 0.921 0.822
Sprint 0.959 0.724 0.407
Quora 0.922 0.696 0.488

Quora

AskUbuntu 0.949 0.647 0.326
Apple 0.969 0.721 0.426
Android 0.973 0.762 0.473
SuperUser 0.958 0.663 0.338
Sprint 0.942 0.647 0.310

Table 2: Proportion of n-grams that are shared between the
source and the target domains.

4 Experiments and Evaluation

4.1 Experimental Setup

Baselines We compare our ADA model to the fol-
lowing baselines: (a) direct transfer, which di-
rectly applies models learned from the source to
the target domain without any adaptation; and
(b) the standard unsupervised BM25 (Robertson
and Zaragoza, 2009) scoring provided in search
engines such as Apache Lucene (McCandless
et al., 2010).

Models We use a bi-LSTM (Hochreiter and
Schmidhuber, 1997) encoder that operates on 300-
dimensional GloVe word embeddings (Penning-
ton et al., 2014), which we train on the combined
data from all domains. We keep word embeddings
fixed in our experiments. For the adversarial com-
ponent, we use a multi-layer perceptron.

Evaluation Metrics As our datasets may con-
tain some duplicate question pairs, which were
not discovered and thus not annotated, we end up
having false negatives. Metrics such as MAP and
MRR are not suitable in this situation. Instead,
we use AUC (area under the curve) to evaluate
how well the model ranks positive pairs vs. nega-
tive ones. AUC quantifies how well the true posi-
tive rate (tpr) grows at various false positive rates
(fpr) by calculating the area under the curve start-
ing from fpr = 0 to fpr = 1. We compute
the area integrating the false positive rate (x-axis)
from 0 up to a threshold t, and we normalize the
area to [0, 1]. This score is known as AUC(t). It is
more stable than MRR and MAP in our case when
there could be several false negatives.3

3For illustration, say of 100 candidates, 2 false negatives
are ranked higher than the correct pair, the AUC score drops
by 3 points (linear drop), as compared to the 66.67 point drop
for MRR. We can avoid the expensive manually tagging of
the negative pairs for experiments by using the AUC score.

Adaptation Similarity AUC(0.05) AUC(0.1)
— Sigmoid 0.431 0.557
— Cosine 0.692 0.782

Classification Cosine 0.791 0.862
Wasserstein Cosine 0.795 0.869

Table 3: Duplicate question detection: direct transfer vs.
adversarial domain adaptation from AskUbuntu to Android.

Source Target Direct BM25 Adv.

AskUbuntu

Android 0.692 0.681 0.790
Apple 0.828 0.747 0.855
SuperUser 0.908 0.765 0.911
Sprint 0.917 0.956 0.937

SuperUser
AskUbuntu 0.730 0.644 0.796
Apple 0.828 0.747 0.861
Android 0.770 0.681 0.790
Sprint 0.928 0.956 0.932

Table 4: Domain adaptation for the StackExchange source-
target domain pairs when using the Direct approach, BM25,
and our adaptation model, measured with AUC(0.05).

4.2 Choosing the Model Components

Model Selection We select the best compo-
nents for our domain adaptation model via ex-
perimentation on the AskUbuntu–Android domain
pair. Then, we apply the model with the best-
performing components across all domain pairs.

Hyperparameters We fine-tune the hyper-
parameters of all models on the development set
for the target domain.

Similarity Function Table 3 shows the AUC at
0.05 and 0.1 for different models of question sim-
ilarity, training on AskUbuntu and testing on An-
droid. The first row shows that using cosine sim-
ilarity with a hinge loss yields much better results
than using a cross-entropy loss. This is likely be-
cause (i) there are some duplicate question pairs
that were not tagged as such and that have come up
as negative pairs in our training set, and the hinge
loss deals with such outliers better. (ii) The cosine
similarity is domain-invariant, while the weights
of the feed-forward network of the softmax layers
capture source-domain features.

Domain Adaptation Component We can see
that the Wasserstein and the classification-based
methods perform very similarly, after proper
hyper-parameter tuning. However, Wasserstein
yields better stability, achieving an AUC vari-
ance 17 times lower than the one for classification
across hyper-parameter settings. Thus, we chose
it for all experiments in the following subsections.
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Source Target Direct BM25 Adv.

Sprint
AskUbuntu 0.615 0.644 0.615
Apple 0.719 0.747 0.728
Android 0.627 0.681 0.648
Sprint 0.977 0.956 –
SuperUser 0.795 0.765 0.795

Quora
AskUbuntu 0.446 0.644 0.446
Apple 0.543 0.747 0.543
Android 0.443 0.681 0.460
Sprint 0.786 0.956 0.794
SuperUser 0.624 0.765 0.649

Table 5: Domain adaptation results when using Sprint
and Quora as the source domains with the Direct approach,
BM25, and our adaptation model, measured with AUC(0.05).

4.3 When Does Adaptation Work Well?

Tables 4 and 5 study the impact of domain adapta-
tion when applied to various source-target domain
pairs, using the Direct approach, BM25, and our
adaptation model. We can make the following ob-
servations:

• For almost all source–target domain pairs
from the StackExchange family, domain
adaptation improves over both baselines,
with an average relative improvement of
5.6%. This improvement goes up to 14% for
the AskUbuntu–Android source–target do-
main pair.

• Domain adaptation on the Sprint dataset per-
forms better than direct transfer, but it is still
worse than BM25.

• Domain adaptation from Quora performs the
worst, with almost no improvement over di-
rect transfer, which is far behind BM25.

• The more similar the source and the target do-
mains, the better our adaptation model per-
forms.

Table 2 shows that AskUbuntu has high sim-
ilarity to other StackExchange domains, lower
similarity to Sprint, and even lower similarity to
Quora. The Pearson coefficient (Myers et al.,
2010) between the n-gram fractions and the do-
main adaptation effectiveness for unigrams, bi-
grams and trigrams is 0.57, 0.80 and 0.94, respec-
tively, which corresponds to moderate-to-strong
positive correlation. This gives insight into how
simple statistics can predict the overall effective-
ness of domain adaptation.

Pivot\Target SuperUser Apple Android
SuperUser 0.911 0.827 0.678
Apple 0.900 0.855 0.711
Android 0.904 0.843 0.790
Quora 0.906 0.815 0.673
Direct 0.908 0.828 0.692

Table 6: AUC(0.05) of ADA to unseen domains, with
AskUbuntu as a source.

4.4 Adapting to Unseen Domains

We also experiment with domain adaptation to a
target domain that was not seen during training
(even adversarial training). We do so by training to
adapt to a pivot domain different from the target.
Table 6 shows that this yields better AUC com-
pared to direct transfer when using Apple and An-
droid as the pivot/target domains. We hypothesize
that this is due to Apple and Android being closely
related technical forums for iOS and Android de-
vices. This sheds some light on the generality of
adversarial regularization.

5 Conclusion and Future Work

We have applied and analyzed adversarial meth-
ods for domain transfer for the task of duplicate
question detection; to the best of our knowledge,
this is the first such work. Our experiments sug-
gest that (i) adversarial adaptation is rather effec-
tive between domains that are similar, and (ii) the
effectiveness of adaptation is positively correlated
with the n-gram similarity between the domains.

In future work, we plan to develop better meth-
ods for adversarial adaptation based on these ob-
servations. One idea is to try source-pivot-target
transfer, similarly to the way this is done for ma-
chine translation (Wu and Wang, 2007). Another
promising direction is to have an attention mech-
anism (Luong et al., 2015) for question similarity
which can be adapted across domains.4
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Abstract

Sequence-to-sequence (SEQ2SEQ) models
have been successfully applied to automatic
math word problem solving. Despite its
simplicity, a drawback still remains: a math
word problem can be correctly solved by more
than one equations. This non-deterministic
transduction harms the performance of max-
imum likelihood estimation. In this paper,
by considering the uniqueness of expression
tree, we propose an equation normalization
method to normalize the duplicated equations.
Moreover, we analyze the performance
of three popular SEQ2SEQ models on the
math word problem solving. We find that
each model has its own specialty in solving
problems, consequently an ensemble model is
then proposed to combine their advantages.
Experiments on dataset Math23K show that
the ensemble model with equation normal-
ization significantly outperforms the previous
state-of-the-art methods.

1 Introduction

Developing computer systems to automatically
solve math word problems (MWPs) has been an
interest of NLP researchers since 1963 (Feigen-
baum et al., 1963; Bobrow, 1964). A typical
MWP is shown in Table 1. Readers are asked
to infer how many pens and pencils Jessica have
in total, based on the textual problem descrip-
tion provided. Statistical machine learning-based
methods (Kushman et al., 2014; Amnueyporn-
sakul and Bhat, 2014; Zhou et al., 2015; Mitra and
Baral, 2016; Roy and Roth, 2018) and semantic
parsing-based methods (Shi et al., 2015; Koncel-
Kedziorski et al., 2015; Roy and Roth, 2015;
Huang et al., 2017) are proposed to tackle this
problem, yet they still require considerable manual

⇤The work was done when Lei Wang and Deng Cai were
interns at Tencent AI Lab.

Problem: Dan has 5 pens and 3 pencils, Jes-
sica has 4 more pens and 2 less pencils than
him. How many pens and pencils does Jessica
have in total?
Equation: x = 5+4+3� 2; Solution: 10

Table 1: A math word problem

efforts on feature or template designing. For more
literatures about solving math word problems au-
tomatically, refer to a recent survey paper Zhang
et al. (2018).

Recently, the Deep Neural Networks (DNNs)
have opened a new direction towards automatic
MWP solving. Ling et al. (2017) take multiple-
choice problems as input and automatically gener-
ate rationale text and the final choice. Wang et al.
(2018) then make the first attempt of applying
deep reinforcement learning to arithmetic word
problem solving. Wang et al. (2017) train a deep
neural solver (DNS) that needs no hand-crafted
features, using the SEQ2SEQ model to automati-
cally learn the problem-to-equation mapping.

Although promising results have been reported,
the model in (Wang et al., 2017) still suffers from
an equation duplication problem: a MWP can be
solved by multiple equations. Taking the prob-
lem in Table 1 as an example, it can be solved by
various equations such as x = 5 + 4 + 3 � 2,
x = 4 + (5 � 2) + 3 and x = 5 � 2 + 3 + 4. This
duplication problem results in a non-deterministic
output space, which has a negative impact on the
performance of most data-driven methods. In this
paper, by considering the uniqueness of expres-
sion tree, we propose an equation normalization
method to solve this problem.

Given the success of different SEQ2SEQ mod-
els on machine translation (such as recurrent
encoder-decoder (Wu et al., 2016), Convolutional
SEQ2SEQ model (Gehring et al., 2017) and Trans-
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former (Vaswani et al., 2017)), it is promising to
adapt them to MWP solving. In this paper, we
compare the performance of three state-of-the-art
SEQ2SEQ models on MWP solving. We observe
that different models are able to correctly solve
different MWPs, therefore, as a matter of course,
an ensemble model is proposed to achieve higher
performance. Experiments on dataset Math23K
show that by adopting the equation normaliza-
tion and model ensemble techniques, the accuracy
boosts from 60.7% to 68.4%.

The remaining part of this paper is organized as
follows: we first introduce the SEQ2SEQ Frame-
work in Section 2. Then the equation normaliza-
tion process is presented in Section 3, following
which three SEQ2SEQ models and an ensemble
model are applied to MWP solving in Section 4.
The experimental results are presented in Section
5. Finally we conclude this paper in Section 6.

2 SEQ2SEQ Framework

The process of using SEQ2SEQ model to solve
MWPs can be divided into two stages (Wang et al.,
2017). In the first stage (number mapping stage),
significant numbers (numbers that will be used in
real calculation) in problem P are mapped to a list
of number tokens {n1, . . . , nm} by their natural
order in the problem text. Throughout this paper,
we use the significant number identification (SNI)
module proposed in (Wang et al., 2017) to iden-
tify whether a number is significant. In the second
stage, SEQ2SEQ models can be trained by taking
the problem text as the source sequence and equa-
tion templates (equations after number mapping)
as the target sequence.

Taking the problem P in Table 1 as an example,
first we can obtain a number mapping M : {n1 =
5; n2 = 3; n3 = 4; n4 = 2; }, and trans-
form the given equation EP : x = 5+4+3�2 to
an equation template TP : x = n1 +n3 +n2 �n4.
During training, the objective of our SEQ2SEQ
model is to maximize the conditional probabil-
ity P (Tp|P ), which will be decomposed to token-
wise probabilities. During decoding, we use beam
search to approximate the most likely equation
template. After that, we replace the number tokens
with actual numbers and calculate the solution S
with a math solver.

3 Equation Normalization
In the number mapping stage, the equations EP

have been successfully transformed to equation
templates TP . However, due to the equation du-
plication problem introduced in Section 1, this
problem-equation templates formalization is a
non-deterministic transduction that will have ad-
verse effects on the performance of maximum
likelihood estimation. There are two types of
equation duplication: 1) order duplication such
as “n1 + n3 + n2” and “n1 + n2 + n3”, 2)
bracket duplication such as “n1 + n3 � n2” and
“n1 + (n3 � n2)”.

To normalize the order-duplicated templates,
we define two normalization rules:

• Rule 1: Two duplicated equation templates
with unequal length should be normalized to
the shorter one. For example, two equation
templates “n1 + n2 + n3 + n3 � n3”, “n1 +
n2 + n3” should be normalized to the latter
one.

• Rule 2: The number tokens in equation tem-
plates should be ordered as close as possible
to their order in number mapping. For exam-
ple, three equation templates “n1 +n3 +n2”,
“n1 + n2 + n3” and “n3 + n1 + n2” should
be normalized to “n1 + n2 + n3”.

To solve the bracket duplication problem, we
further normalize the equation templates to an ex-
pression tree. Every inner node in the expres-
sion tree is an operator with two children, while
each leaf node is expected to be a number to-
ken. An example of expressing equation template
n1 +n2 +n3 �n4 as the unique expression tree is
shown in Figure 1.

Figure 1: A Unique Expression Tree

After equation normalization, the SEQ2SEQ
models can solve MWPs by taking problem text
as source sequence and the postorder traversal of
an unique expression tree as target sequence, as
shown in Figure 2.

1065



Figure 2: Framework of SEQ2SEQ models

4 Models

In this section, we present three types of SEQ2SEQ
models to solve MWPs: bidirectional Long Short
Term Memory network (BiLSTM) (Wu et al.,
2016), Convolutional SEQ2SEQ model (Gehring
et al., 2017), and Transformer (Vaswani et al.,
2017). To benefit the output accuracy with all
three architectures, we propose to use a simple en-
semble method.

4.1 BiLSTM

The BiLSTM model uses two LSTMs (forward
and backward) to learn the representation of each
token in the sequence based on both the past and
the future context of the token. At each time step
of decoding, the deocder uses a global attention
mechanism to read those representations.

In more detail, we use two-layer Bi-LSTM cells
with 256 hidden units as encoder, and two lay-
ers LSTM cells with 512 hidden units as decoder.
In addition, we use Adam optimizer with learning
rate 1e�3, �1 = 0.9, and �2 = 0.99. The epochs,
minibatch size, and dropout rate are set to 100, 64,
and 0.5, respectively.

4.2 ConvS2S

ConvS2S (Gehring et al., 2017) uses a convolu-
tional architecture instead of RNNs. Both encoder
and decoder share the same convolutional struc-
ture that uses n kernels striding from one side
to the other, and uses gate linear units as non-
linearity activations over the output of convolu-
tion.

Our ConvS2S model adopts a four layers en-
coder and a three layers decoder, both using ker-
nels of width 3 and hidden size 256. We adopt
early stopping and learning rate annealing and set
max-epochs equals to 100.

4.3 Transformer
Vaswani et al. (2017) proposed the Transformer
based on an attention mechanism without rely-
ing on any convolutional or recurrent architecture.
Both encoder and decoder are composed of a stack
of identical layers. Each layer contains two parts:
a multi-head self-attention module and a position-
wise fully-connected feed-forward network.

Our transformer is four layers deep, with
nhead = 16, dk = 12, dv = 32, and dmodel = 512,
where nhead is the number of heads of its self-
attention, dk is the dimension of keys, dv is the di-
mension of values, and dmodel is the output dimen-
sion of each sub-layer. In addition, we use Adam
optimizer with learning rate 1e�9, �1 = 0.9, �2 =
0.99, and dropout rate of 0.3.

4.4 Ensemble Model
Through careful observation (detailed in Section
5.2), we find that each model has a speciality in
solving problems. Therefore, we propose an en-
semble model which selects the result according
to models’ generation probability:

p(y) =
TY

t=1

p(yt|y<t, x)

where y = {y1, ..., yT } is the target sequence, and
x = {x1, ..., xS} is the source sequence. Finally,
the output of the model with the highest generation
probability is selected as the final output.

5 Experiment

In this section, we conduct experiments on dataset
Math23K to examine the performance of differ-
ent SEQ2SEQ models. Our main experimental
result is to show a significant improvement over
the baseline methods. We further conduct a case
study to analyze why different SEQ2SEQ models
can solve different kinds of MWPs.

Dataset: Math23K1 collected by Wang et al.
(2017) contains 23,162 labeled MWPs. All these

1https://ai.tencent.com/ailab/Deep_
Neural_Solver_for_Math_Word_Problems.
html
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Acc w/o EN (%) Acc w/ EN (%)
DNS 58.1 60.7

Bi-LSTM 59.6 66.7
ConvS2S 61.5 64.2

Transformer 59.0 62.3
Ensemble 66.4 68.4

Table 2: Model comparison. EN is short for equation
normalization

Bi-LSTM Transformer ConvS2S
w/o EN 59.6 59.0 61.5

+ SE 63.1 59.9 62.2
+ OE 63.7 60.7 62.9
+ EB 65.3 61.2 62.9

Table 3: The ablation study of three equation normal-
ization methods. SE is the first Rule mentioned in Sec-
tion 3. OE is the second rule mentioned in Section 3.
EB means eliminating the brackets.

problems are linear algebra questions with only
one unknown variable.

Baselines: We compare our methods with two
baselines: DNS and DNS-Hybrid. Both of them
are proposed in (Wang et al., 2017), with state-
of-the-art performance on dataset Math23K. The
DNS is a vanilla SEQ2SEQ model that adopts
GRU (Chung et al., 2014) as encoder and LSTM
as decoder. The DNS-Hybrid is a hybrid model
that combines DNS and a retrieval-based solver to
achieve better performance.

5.1 Results
In experiments, we use the testing set in Math23K
as the test set, and randomly split 1, 000 prob-
lems from the training set as validation set. Eval-
uation results are summarized in Table 2. First,
to examine the effectiveness of equation nor-
malization, model performance with and with-
out equation normalization are compared. Then
the performance of DNS, DNS-Hybrid, Bi-LSTM,
ConvS2S, Transformer, and Ensemble model are
examined on the dataset.

Several observations can be made from the re-
sults. First, the equation normalization process
significantly improves the performance of each
model. The accuracy of different models gain
increases from 2.7% to 7.1% after equation nor-
malization. Second, Bi-LSTM, ConvS2S, Trans-
former can achieve much higher performance than
DNS, which means that popular machine transla-
tion models are also efficient in automatic MWP

solving. Third, by combining the SEQ2SEQ mod-
els, our ensemble model gains additional 1.7% in-
crease on accuracy.

In addition, we have further conducted three ex-
tra experiments to disentangle the benefits of three
different EN techniques. Table 3 gives the details
of the ablation study of the three SEQ2SEQ mod-
els. Taking Bi-LSTM as an example, accuracies of
rule 1 (SE), rule 2 (OE) and eliminating brackets
(EB) are 63.1%, 63.7% and 65.3%, respectively.
Obviously, the performance of SEQ2ESQ models
benefits from the equation normalization technolo-
gies.

5.2 Case Study
Further, we conduct a case analysis on the capa-
bility of different SEQ2SEQ models and provide
three examples in Table 4. Our analysis is summa-
rized as follows: 1) Transformer occasionally gen-
erates mathematically incorrect templates, while
Bi-LSTM and ConvS2S almost do not, as shown
in Example 1. This is probably because the size
of training data is still not enough to train the
multi-head self-attention structures; 2) In Exam-
ple 2, the Transformer is adapted to solve prob-
lems that require complex inference. It is mainly
because different heads in a self-attention structure
can model various types of relationships between
number tokens; 3) The multi-layer convolutional
block structure in ConvS2S can properly process
the context information of number tokens. In Ex-
ample 3, it is the only one that captures the rela-
tionship between stamp A and stamp B.

6 Conclusion

In this paper, we first propose an equation normal-
ization method that normalizes duplicated equa-
tion templates to an expression tree. We test dif-
ferent SEQ2SEQ models on MWP solving and pro-
pose an ensemble model to achieve higher per-
formance. Experimental results demonstrate that
the proposed equation normalization method and
the ensemble model can significantly improve the
state-of-the-art methods.
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Example 1: Two biological groups have produced 690 (n1) butterfly specimens in 15 (n2) days.
The first group produced 20 (n3) each day. How many did the second group produced each day?
Bi-LSTM: n1n2/n3�; (correct) ConvS2S: n2n3 + n1⇤; (error) Transformer: n2n1n3n3+;
(error)
Example 2: A plane, in a speed of 500 (n1) km/h, costs 3 (n2) hours traveling from city A to city
B. It only costs 2 (n3) hours for return. How much is the average speed of the plane during this
round-trip?
Bi-LSTM: n1n2 ⇤ n3⇤; (error) ConvS2S: 11 + 1n1/1n2/ + /; (error) Transformer: n1n2 ⇤
n3 ⇤ n2n3 + /; (correct)
Example 3: Stamp A is 2 (n1) paise denomination, and stamp B is 7 (n2) paise denomination.
If we are asked to buy 10 (n3) of each, how much more does it cost to buy stamps A than to buy
stamps B.
Bi-LSTM: n1n2n3 ⇤ �; (error) ConvS2S: n1n3 ⇤ n2n3 ⇤ �; (correct) Transformer: n2n2 ⇤
n2n3 ⇤ �; (error)

Table 4: Three examples of solving MWP with SEQ2SEQ model. Note that the results are postorder traversal of
expression trees, and the problems are translated to English for brevity.
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Abstract

State-of-the-art networks that model relations
between two pieces of text often use complex
architectures and attention. In this paper, in-
stead of focusing on architecture engineering,
we take advantage of small amounts of la-
belled data that model semantic phenomena
in text to encode matching features directly in
the word representations. This greatly boosts
the accuracy of our reference network, while
keeping the model simple and fast to train.
Our approach also beats a tree kernel model
that uses similar input encodings, and neu-
ral models which use advanced attention and
compare-aggregate mechanisms.

1 Introduction

Modeling a match between pieces of text is at the
core of many NLP tasks. Recently, manual feature
engineering methods have been shadowed by neu-
ral network approaches. These networks model
the interaction of two pieces of text, or word-to-
word interactions across sentences, using sophis-
ticated attention mechanisms (Wang et al., 2016a;
Santos et al., 2016) and compare-aggregate frame-
works (He and Lin, 2016; Wang et al., 2017).

Architectural complexity is tied to longer train-
ing times 1. Meaningful features may take long
time to emerge by only leveraging word represen-
tations and the training data of the task at hand.
This is especially problematic with little data, as it
often happens in question answering (QA) tasks,
e.g., answer sentence selection (Wang et al., 2007;
Yang et al., 2015). Thus, effective word represen-
tations are crucial in neural network models to get
state-of-the-art performance.

⇤Now at Google
†This work was partially carried out when the author was

at the University of Trento
1http://dawn.cs.stanford.edu/

benchmark/

In this work, we try to answer the following re-
search questions: (i) in addition to lexical links,
can we incorporate higher-level semantic links be-
tween the words in a question and a candidate an-
swer passage, and (ii) can we show that such infor-
mation has an impact on the quality of our model,
and also allows us to keep the architecture simple?

We show that modeling semantic relations im-
proves the performance of a neural network for an-
swer sentence selection with (i) a little number of
semantic annotations, and (ii) a little increase in
training time w.r.t. more complex architecture.

2 Related Work

Traditional work on QA makes heavily use of syn-
tactic and semantic features (Hickl et al., 2007;
Ferrucci et al., 2010). A different direction con-
sists in using structural kernels on text encoded
as trees (Severyn and Moschitti, 2012; Severyn
et al., 2013a,b; Tymoshenko et al., 2014; Ty-
moshenko and Moschitti, 2015). Recently, deep
learning methods have been very successful in
NLP tasks. Words and sentences are mapped
into low dimensional representations using con-
volutional (Krizhevsky et al., 2012) and recur-
rent networks (Schuster and Paliwal, 1997), and
then adoperated for classification. Complex net-
works for such a task include attentive networks
and compare-aggregate networks.

Attentive Networks (Bahdanau et al., 2015;
Parikh et al., 2016; Yin et al., 2016) build a sen-
tence representation by also considering the other
sentence, weighting the contribution of its parts
with the so-called attention mechanism.

Compare-Aggregate Networks (Wang and
Jiang, 2017) apply several decompositions to
each sentence in a pair. The resulting vectors are
compared or composed with multiple functions,
and possibly some attention mechanisms. All the
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intermediate results are then aggregated into a
fixed size vector to quantify the final match.

In this work, we take some elements of the
traditional QA research, i.e., semantic features,
and use them to model relationships between sen-
tence pairs, in the context of a neural network,
which is less complex than attentive and compare-
aggregate counterparts.

3 Question Analysis

Question Analysis is an important part of a QA
system (Lally et al., 2012) and can give us syn-
tactic and semantic clues that greatly help in scor-
ing answer passages, and in identifying the final
answer. Leveraging a relatively small number of
annotated examples, we can automatically extract
question properties that may be exploited by a QA
model to increase the accuracy of its answers. We
use classifiers to extract the question category and
the question focus.
Question Category. Questions can be broadly
classified into categories according to a given tax-
onomy. When the category is indicative of the an-
swer type, the latter can be furtherly characterized
by the Lexical Answer Type (LAT), which accord-
ing to Lally et al. (2012) is a word or noun phrase
in the question that specifies the type of the answer
without any attempt to understand its semantics.
Question Focus. In the literature there are mul-
tiple definitions of question focus. According
to Ferrucci et al. (2010), the focus is the ques-
tion part that substituted with the answer, renders
the question a stand-alone statement. According
to Bunescu and Huang (2010), the focus is the “set
of all maximal noun phrases in the question that
corefer with the answer”. Their definition allows
a question to have multiple focuses or an implicit
focus. Additionally, it is more tied to the LAT and
indeed the focus can be used to infer the answer
type. We adopt such definition since we build our
question focus identifier using the annotated data
they provide. Note that we do not consider multi-
word or implicit focus.

4 Answer Sentence Selection with CNNs

Given a query or question q and a candidate an-
swer passage a, the task of answer selection can
be defined as learning a function f(q, a) that out-
puts a relevancy probability s 2 [0, 1]. Multi-
ple answers associated with a question are sorted
in descending order by the score s. A good an-

swer selection system places the highest number
of correct answers at the top of a candidate answer
list. In this paper, we use convolutional neural net-
works, referred to as CNNs (Kim, 2014; Kalch-
brenner et al., 2014), to (i) classify a question into
a category, (ii) identify the focus word in a ques-
tion, and (iii) build a question and answer repre-
sentations for QA.

4.1 Sentence Matrix Encoding
A sentence s of length n is a sequence of words
(w1, ..., wn), which are drawn from a vocabulary
V . Each word is encoded with an integer id from
1 to |V |, and then represented as a vector, w 2 Rd,
looked up into an embedding matrix, E 2 Rd⇥|V |.
The matrix E is obtained by concatenating all the
embeddings of the words in V . The id 0 is used
for padding and it is mapped to the zero vector.
The ith column in E corresponds to the word with
integer id i to facilitate the lookup.

4.2 Question Analysis Networks
We use CNNs for question analysis. The ques-
tion category network applies convolutions of
different width and then pooling on the question.
The results are concatenated and fed to a multi-
layer perceptron (MLP) that outputs a probability
distribution over the possible categories seen dur-
ing training. The question focus network applies
convolutions that operate on windows centered on
each question word. Therefore, the input and out-
put resolutions are the same. We stack a number of
convolutions to increase the receptive field. Every
output vector from the last convolution of the stack
is passed through an MLP, which produces a scalar
value. All those values are normalized across each
sentence with a softmax, to form a probability dis-
tribution over the sentence tokens.

4.3 Answer Sentence Selection Network
Our neural model is based on the Severyn and
Moschitti (2015, 2016) model (S&M from now
on), showed in Figure 1. This model is simple,
fast and well studied. It has also been reproduced
in other work (Rao et al., 2017; Chen et al., 2017;
Sequiera et al., 2017).

The S&M model embeds the question and an-
swer passage and operates independent convolu-
tional and max-pooling layers on each. A bilin-
ear transformation (Bordes et al., 2014) produces
a similarity value xsim for the pair. The similar-
ity, the encoded question and passage, and a vec-
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Figure 1: The S&M CNN model. Diagram from Severyn
and Moschitti (2016).

tor of real valued features xfeat are concatenated
in the join layer. The latter is fed to a hidden layer
with a non-linearity, and the final softmax layer
outputs the matching probability. The word vec-
tors of the question and the answer are augmented
with an additional feature, which is embedded in a
small dimensional space. This feature signals if a
word appears in both the question and answer. We
found that the real valued features and the simi-
larity matrix do not increase the network accuracy
and we removed them from our model. This find-
ing is consistent with recent reproduction papers
by Rao et al. (2017); Sequiera et al. (2017).

4.4 Our QA Network with Semantic Overlap
We propose to add semantic features to the sen-
tence matrix to establish links between words that
go beyond lexical matching. Figure 2 describes
our network. The key addition to the S&M model
is the semantic overlap vector. Each word is there-
fore represented by concatenating three vectors:
the word embedding vector, a feature embedding
vector which can represent two values – if a word
is contained or not in both question and answer –
and the semantic overlap embedding vector. The
semantic vector wso, with dimensionality s, em-
beds a feature so which can assume C + 1 values,
if we consider the C question classes plus a no-
match value. Each feature value is looked up into
an embedding matrix Wso 2 Rs⇥|C|+1. Analo-
gously, the word overlap binary feature is looked
up into an embedding matrix Wwo 2 Rr⇥|2|. The
final word representation will be the concatenation
of all these vectors: w0

= [w;wwo;wso].
Here we describe how the semantic word over-

lap feature is computed. For each question we col-
lect the output of our question analysis CNNs. The
question focus CNN determines which word in the

Cat. Named Entity Type

HUM Person
LOC Loc, Gpe
NUM Date, Time, Percent, Quantity, Ordinal,

Cardinal
ENTY Norp, Org, Facility, Product, Event,

Work of art, Law, Language
DESC Norp, Org, Facility, Product, Event,

Work of art, Law, Language, Date,
Time, Percent, Quantity, Ordinal, Car-
dinal

ABBR Norp, Org, Facility, Product, Event,
Work of art, Law, Language

Table 1: Mapping between question categories
and OntoNotes entity types.

question is the focus. The question category CNN
assigns a class to the question. After that, each
word is associated with a semantic overlap fea-
ture so (which will eventually be embedded using
Wwo) according to the following strategy:

1. for each word in the question which is not
the question focus so is equal to 0. For the
question focus word so is equal to the id of
the question category (the question focus and
category are output by our CNN classifiers);

2. for each answer word so is equal to 0, with
the exeception of words covered by named
entities (NEs), for which so is equal to the
id of the question category that is compatible
with their entity type, according to the map-
ping in Table 1.

The Wwo and Wso matrices are parameters
of the model, and they are learned during train-
ing. The question category and question focus
annotations for the QA datasets are produced by
our neural network classifiers. The NEs are ob-
tained with an off-the-shelf processor 2, trained on
OntoNotes (Weischedel et al., 2012).

5 Experimental Results

Here we describe how we train our networks for
question analysis and then we present the an-
swer sentence selection experiments. More details
about preprocessing, training and hyperparameter
choice can be found in the appendix.

5.1 Question Classification
Dataset. The CNN question classifier is trained
on the UIUC dataset (Li and Roth, 2006). We use
the 6 coarse classes to train the classifier.

2In the future, we will also train the NE recognizer.

1072



who
 is 

yo
ur bo

ss
 

? 

cla
ire

 is my
bo

ss
 

w
or

d
em

be
dd

in
gs

w
or

d
ov

er
la

p
se

m
an

tic
ov

er
la

p
w

or
d

em
be

dd
in

gs
w

or
d

ov
er

la
p

se
m

an
tic

ov
er

la
p

sentence
matrix 

convolution 
feature maps

pooled 
representations

joined 
representations

hidden 
layer

softmax 
layer

qu
es

tio
n

an
sw

er

Question categories

hum

num

loc

desc

enty

abbr

fo
cu

s 

pe
rs

on

. 

Figure 2: Our model with word and semantic overlap vectors. The convolution of size 3 is not padded, and the filters are 4.
The semantic overlap vectors of the question focus word boss, and the answer word claire are the same, because the latter is
an entity of type Person. The question has HUM category. Ignoring stopwords, the word boss appears in the question and the
answer, and this is reflected in the word overlap embedding space.

Results. The classifier has accuracy of 91.2%
on the UIUC test set. Our goal is to annotate
new questions with reasonable accuracy. Since the
model convergences well, we annotate the ques-
tions in the QA datasets after training on the UIUC
data, and select the best model on the test data.

5.2 Question Focus Identification
Dataset. The CNN focus identifier is trained
on the dataset from Bunescu and Huang (2010),
which contains the first 2,000 UIUC questions an-
notated with focus information. After removing
the questions with implicit and multi-focus, we
end up with 1,030 questions.
Results. The cross-validation accuracy of the clas-
sifier is 92.3%. After convergence, we annotate
the focus words in the QA datasets.

5.3 TrecQA
Dataset. We test our model on TrecQA (Wang
et al., 2007), one of the most popular benchmarks
for answer selection. The dataset contains factoid
questions and candidate answer sentences.

We use the same splits of the original data, but
we run our experiments using the larger provided
training set (TRAIN-ALL). This is noisier data,
which, on the other hand, gives us more exam-
ples for training. We remove from the dev. and test
sets questions without answers, and questions with

System MAP MRR

Santos et al. (2016) 75.30 85.11
He and Lin (2016) 75.88 82.19

Severyn and Moschitti (2016) 76.54 81.86
Wang et al. (2016b) 77.14 84.47

Rao et al. (2016) 80.10 87.70
Wang et al. (2017) 80.20 87.50
Shen et al. (2017) 82.20 88.90

CNNWO TRAIN-ALL 76.49 (0.4) 84.22 (0.5)
CNNWO+SO TRAIN-ALL 77.93 (0.7) 84.89 (0.9)

Table 2: MAP and MRR (%) on the TrecQA Clean dataset.

only correct or incorrect answer sentence candi-
dates. The resulting dev. and test sets contain
respectively 65 and 68 questions. This setting
follows a standard in recent work on TREC-QA
which is referred to as TrecQA Clean (See Shen
et al. (2017)).
Results. Table 2 contains results from previ-
ous work, and the performance of our models.
CNNWO is our variant of the S&M model. It
has comparable performance in terms of MAP,
but it is 2.4% points higher in MRR. Our model
CNNWO+SO that integrates the semantic over-
lap improves over CNNWO by 1.44% points in
MAP, and 0.67% points in MRR. It approaches
the model by Rao et al. (2016), which uses a
triplet ranking loss, and several strategies to build
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System MAP MRR

Miao et al. (2016) 68.86 70.69
Yin et al. (2016) 69.21 71.08

Severyn and Moschitti (2016) 69.51 71.07
Chen et al. (2017) 70.10 71.80
Rao et al. (2016) 70.90 72.30

Tymoshenko et al. (2016) 71.25 72.30
Guo et al. (2017) 71.71 73.36

Wang et al. (2017) 71.80 73.10
Shen et al. (2017) 73.30 75.00

Wang et al. (2016a) 73.41 74.18
Wang and Jiang (2017) 74.33 75.40

CNNWO 69.53 (0.5) 71.35 (0.5)
CNNWO+SO 72.24 (0.5) 73.91 (0.5)

Table 3: MAP and MRR (%) on the WikiQA dataset.

training instances with difficult negative exam-
ples. Our system beats several others that use word
alignments and attention mechanisms. The better
systems employ expensive bidirectional networks,
sophisticated attention mechanisms, and extract
multiple views of questions and answers for com-
paring and aggregating them.

5.4 WikiQA

Dataset. TrecQA and its test set are small, so re-
sults may be unstable. In addition, lexical over-
lap between questions and answer candidates is
high (Yih et al., 2013). This means that simple
lexical similarity features are highly discrimina-
tive. Therefore, we also experiment with Wik-
iQA (Yang et al., 2015), which is an order of mag-
nitude larger than TrecQA. We use the Yin et al.
(2016) experimental setting.
Results. Table 3 contains the results on Wik-
iQA. Again the MAP score is comparable with
the S&M model, while the MRR is slightly
higher. Our model CNNWO+SO improves over
CNNWO by 2.71% points in MAP, and 2.56%
points in MRR, with a higher margin with respect
to TrecQA. Interestingly, our approach improves
upon the Tymoshenko et al. (2016) tree-kernel
model by 1 MAP point. This model includes rela-
tional information in terms of question focus, en-
tities and question categories too, but uses addi-
tional syntactic information (i.e., syntactic trees).
Our network is able to make better use of the pro-
vided semantic clues. Surprisingly, CNNWO+SO

also achieves higher MAP than the model by Wang
et al. (2017), which is a state-of-the-art complex
approach mixing attention and interaction factors

of multiple sentence perspectives.

5.5 Discussion
The results with the CNNWO+SO model suggest
that the semantic overlap vectors are an effective
way of linking questions and answers. This is es-
pecially true, given the results on WikiQA, where
the questions and answers have little lexical over-
lap. With the additional semantic information, the
CNN is able to better model the relevancy of can-
didate passages. It also surpasses the accuracy of
more complex systems, which have higher train-
ing time. The annotation networks (which can be
trained only once) and the answer selection net-
works take little time to train: from 10 to 20 min-
utes in total, depending on the number of ques-
tion/answer pairs. CNNs are faster at training and
inference time with respect to RNNs, especially
when the latter incorporate attention mechanisms,
which increase the number of computations. We
argue that annotating a relatively small number
of examples with semantic information, could be
time well spent to increase model accuracy, with-
out increasing its architectural complexity. We
would like to add that we also experimented with
RNNs (LSTM and GRU) in place of the CNN sen-
tence model. Such encoders easily overfitted, re-
quiring careful regularization, and did not yield
better results for us.

6 Conclusion and Future Work

In this paper, we presented a neural network that
models semantic links between questions and an-
swers, in addition to lexical links. The annota-
tions for establishing such links are produced by
a set of fast neural components for question anal-
ysis, trained on publicly available datasets. The
evaluation on two QA datasets shows that our ap-
proach can achieve state-of-the-art performance
using a simple CNN, leading to a low complex-
ity and training time. Our approach is an inter-
esting first step towards a future architecture, in
which we will jointly optimize the semantic anno-
tators and the answer sentence selection model, in
an end-to-end fashion.
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Abstract
Previous work on question-answering systems
mainly focuses on answering individual ques-
tions, assuming they are independent and de-
void of context. Instead, we investigate se-
quential question answering, asking multiple
related questions. We present QBLink, a new
dataset of fully human-authored questions.
We extend existing strong question answer-
ing frameworks to include previous questions
to improve the overall question-answering ac-
curacy in open-domain question answering.
The dataset is publicly available at http://
sequential.qanta.org.

1 Introduction
The framework of combining information retrieval
and neural reading comprehension has been the ba-
sis of several systems for answering open-domain
questions over unstructured text (Chen et al., 2017;
Wang et al., 2018; Clark and Gardner, 2018; Htut
et al., 2018). Typically, such systems take one in-
put question at a time, retrieving and ranking mul-
tiple paragraphs that potentially contain the answer.
A reading comprehension model then produces a
ranked list of candidate answer spans from each
paragraph. The final answer is then selected from
the produced spans.

In information-seeking dialogs, e.g., personal
assistants, users interact with a question answering
system by asking a sequence of related questions,
where questions share the same predicate, entities,
or at least a topic. Answering each question in isola-
tion is sub-optimal as information from previously
asked questions and previously obtained answers
can help better answer the current question.

We study the task of sequential open-domain
question answering. We ask how a standard open-
domain question answering system can incorpo-
rate connections between question-answer pairs

⇤The first two authors contributed equally.

Lead-in: Only twenty-one million units in this system
will ever be created. For 10 points each:
Question 1: Name this digital payment system whose
transactions are recorded on a “block chain”.
Answer: Bitcoin
Question 2: Bitcoin was invented by this person, who,
according to a dubious Newsweek cover story, is a 64-
year-old Japanese-American man who lives in California.
Answer: Satoshi Nakamoto
Question 3: This online drugs marketplace, Chris Bor-
glum’s one-time favorite, used bitcoins to conduct all of
its transactions. It was started in 2011 by Ross Ulbricht
using the pseudonym Dread Pirate Roberts.
Answer: Silk Road

Figure 1: An example sequence of questions from
QBLink. The lead-in and question 1 are asking about
the same object/answer. The subject of question 2 is
the same as the object of question 1. All questions are
about a narrow topic, Bitcoin.

in the same sequence. We introduce QBLink, a
new dataset of about 18,000 question sequences
(Figure 1), each sequence consists of three natu-
rally occurring human-authored questions (totaling
around 56,000 unique questions). The sequences
themselves are also naturally occurring (i.e., we
do not artificially combine individually-authored
questions to form sequences), which allows us to
focus more on the important connections between
questions that should be incorporated to improve
the end-to-end question answering accuracy.

We compare sequence-aware models to base-
lines that process each question separately. For
our sequence-aware models, we tweak the retrieval
component by incorporating previous questions
and their answers together with the current ques-
tion to better rank the retrieved paragraphs. For the
reader, we use the semantic relations between enti-
ties in previous questions (or their corresponding
answers) and entities mentioned in the paragraph
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being read (candidate answers) to better choose
the answer entity. Both the retrieval and reading
steps can be slightly improved by incorporating
sequence information.

Our contributions are two-fold: first, we present
a new dataset for sequential question answering.
Our dataset is composed of complex questions
about a variety of topics. We make the dataset pub-
licly available to encourage future research. Sec-
ond, we use our dataset to compare baselines in
the open-domain question answering setup with
the goal of showing that incorporating sequential
connections between questions is advantageous.

2 Sequential Question Answering Task

We define the task of open-domain sequential
question answering: given a document collection
D and questions grouped into disjoint sequences
{Si | i = 1 . . . n} where each Si is an ordered se-
quence of question, answer pairs, and a subset of
documents Si = ((qj

i , aj
i , Dj

i ) | j = 1 . . . m), the
task is to answer questions qĵ

i with document evi-
dences Dĵ

i given access to previously asked ques-
tions in the same sequence and their corresponding
answers {(qj

i , aj
i ) | j < ĵ}.

Following Chen et al. (2017), we split the task
into two steps—a retrieval step and a reading step.
In the retrieval step the current question qĵ

i and
previous questions and answers {(qj

i , aj
i ) | j < ĵ}

are used to retrieve a ranked list of paragraphs Dĵ
i

from D that are likely to contain the correct answer
to the current question qĵ

i . The retrieved paragraphs
Dĵ

i are the input to the reading step that selects a
span from Dĵ

i as the answer to qĵ
i . The reading

step has access to previous questions and answers
{(qj

i , aj
i ) | j < ĵ} as well.

3 Dataset Construction

This section describes QBLink’s construction.
QBLink is based on the bonus questions of Quiz
Bowl tournaments. Unlike previous work that only
uses the starter (or tossup) questions (Boyd-Graber
et al., 2012), bonus questions are not interruptable
(players always hear the complete question) and
have greater variability in difficulty. Bonus ques-
tions start with a lead-in text, which sets the stage
for the rest of the question, followed by a sequence
of related questions. Figure 1 shows an example of
a sequence of three questions.

Num. Questions (Num. Sequences) ⇥ 3
Training 45,747 (15,249)
Developme 3,630 (1,210)
Testing 6,555 (2,185)

Num. Sequences per Domain
Current Events 240
Fine Arts 2,588
Geography 472
History 3,961
Literature 3,879
Mythology 758
Philosophy 692
Religion 746
Science 4,028
Social Science 827
Trash 453

Num. Questions Tokens
Training 32.6 ± 9.6
Developme 33.5 ± 9.9
Testing 32.1 ± 10.24

Num. TagMe Entities
Training 2.46 ± 1.68
Developme 2.49 ± 1.68
Testing 2.48 ± 1.77
Num. Unique Answers 43,597
Num. Unique Answer Pages 18,529

Table 1: Statistics about QBLink. Most questions are
fairly long and contain 2.5 entity mentions in average
which demonstrates the complexity of the questions.

Specifically, we collect bonus questions from
http://quizdb.org for the tournaments in
2008–2018. Each question is categorized by topic
as history, literature, science, geography, fine arts,
philosophy, religion, mythology, social sciences,
current events or trash. We filter out too short
questions (fewer than ten tokens), and only keep
questions with exactly three sub-questions.

We map the answers to unambiguous Wikipedia
pages using combination of rule based match-
ing and fuzzy string matching, then filter out the
questions whose answers are not mapped to any
Wikipedia page (12.5% of the questions).

To keep our development and test set intact and
and of a reasonable percentage of questions, we
use the questions in 2014 tournament (the year
with the largest number of questions) for devel-
opment and testing, and the rest of the questions
are used for training. Table 1 shows the number
of question sequences and questions per split as
well as tokens and linked Wikipedia mentions per
question. We use TagMe (Ferragina and Scaiella,
2010) for mention detection and linking question
text to Wikipedia.
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4 Baselines

We build our baselines on the DrQA framework
of Chen et al. (2017) for open-domain question an-
swering over Wikipedia.1 The framework operates
in a retrieval phase followed by a reading phase.

The retrieval phase uses a simple tf-idf (Salton
and Buckley, 1987) ranking of Wikipedia articles
given a question as the query.

The reading phase is a multi-layer recurrent
neural network model that extracts an answer
span from the top d retrieved paragraphs. The
reader model computes a contextualized represen-
tation of each token ti by running the token se-
quence through a multi-layer bidirectional long
short-term memory network (BiLSTM) (Hochre-
iter and Schmidhuber, 1997) and taking the corre-
sponding hidden state to each token at the top layer.
The question itself is encoded in a vector q as a
weighted average of the hidden states of a BiLSTM
over the word embeddings of its individual tokens.
The model then computes an unnormalized proba-
bility score of ti as the start and end token of the
answer span,

Start(i) = exp(ti
TWstartq);

End(i) = exp(ti
TWendq). (1)

To find the answer in multiple paragraphs at test
time, we merge all paragraphs before feeding them
to the reader (Clark and Gardner, 2018).

4.1 Answering Question in Isolation
We experiment with three models that ignore the
sequential connections between questions and an-
swer each question in isolation. Our first model is a
simple information retrieval (IR) baseline that only
uses the retrieval component: the title of the top-1
Wikipedia article is predicted as the answer.

Our second baseline is the full DrQA base-
line whose reader is trained/tuned on the train-
ing/development questions of our dataset. To as-
sign paragraphs to each of the training questions,
we follow a similar distant-supervision approach
to Chen et al. (2017). We retrieve the top twenty
Wikipedia articles for each question, exclude the
paragraphs that do not contain the gold answer,
and then rank the remaining paragraphs using tf-
idf. Each of the top ten paragraphs is paired
with the question to form a data instance for train-
ing the reader.

1We use the Wikipedia dump of 2017–09–20.

Finally, we tweak the DrQA reader to limit the
candidate answer spans to entity mentions that are
linked to Wikipedia. We set the pre-normalization
start and end scores of spans that are not detected
mentions to zero.

4.2 Incorporating Context in Retrieval
To incorporate the sequential connections between
questions in the retrieval phase, we append the
previously asked questions to the current question.
We also compare appending the predicted answers
(top-1 span) to each of the previous questions as
well as the gold answers to the current question.

4.3 Incorporating Context in Reader
In addition to encoding which entities have ap-
peared in previous questions, we also want to
provide our models with relationship information.
However, pre-defined relationships from knowl-
edge bases tend to be brittle. Instead, we use a
continuous representation of relationships (Iyyer
et al., 2016). For example, suppose we want to
encode the relationships for an entity (answer can-
didate) that starts at i and ends at j. We summarize
that entities relationships from each of possible k
relation-spans. A relation-span is a sequence of to-
kens from Wikipedia that contains both the answer
candidate and an answer to a previous question
(For example, the correct answer in Figure 2 has
a relation-span “He is best known for defending
President Ronald Reagan during the assassination
attempt by John Hinckley Jr.” with the previous
answer “Ronald Reagan”). This is summarized
in a vector rij by merging all k relation-spans in
a single span that is then fed through a BiLSTM
whose hidden states are combined as a weighted
sum where the weights are computed with self-
attention (Lin et al., 2017).

The stronger the similarity between the relation
that the question is asking about and the relation-
spans, the higher the score of the candidate answer
should be. We estimate that similarity r by con-
catenating the elementwise absolute difference and
hadamard product between rij and the question
embedding q. Then, we use a trainable weight
vector wrel to combine the components of the
concatenation output and produce a single simi-
larity score as

r = wrel
T [|q � rij|;q � rij].

This can then influence the final selection of
the answer span by adding the relation similarity

1079



Method EM
Baselines: Questions in Isolation

IR 15.6
DrQA 39.3
DrQA + limiting to entities 39.7

DrQA + Retrieval with context
Previous questions 36.4
Previous predicted answers 39.8
Previous gold answers 40.1

DrQA + Reading with context
Append relation descriptions

w/ predicted answers 40.2

Append relation descriptions
w/ gold answers 40.7

Explicit relation embedding
w/ predicted answers 38.3

Explicit relation embedding
w/ gold answers 39.5

IR w/ Previous gold answers +
Reading w/ Append relation
descriptions w/ gold answers

40.7

Table 2: Incorporating sequence information in the re-
trieval and the reading step slightly improves overall
accuracy compared to answering questions in isolation.

score r to the start and end scores of the candidate
answer (Equation 1) as

Start(i) = exp(ti
T Wstartq + r)

End(j) = exp(tj
T Wendq + r). (2)

The relation embedding module is trained jointly
with the reader.

5 Baseline Results

We use QBLink to compare the baselines’ ques-
tion answering accuracy. Incorporating previous
questions and answers slightly improves the accu-
racy (Table 2).

We set the maximum number of retrieved doc-
uments to ten, and each document is divided into
paragraphs each of 400 tokens. At test time, we
merge the top ten ranked such paragraphs and feed
them to the reader. We use the reader network
of Chen et al. (2017). We limit the number of re-
lation description spans for each entity pair to five.
We used an LSTM of one hidden layer and 128 hid-
den units for the paragraph, question, and relation
description encoders. Each reader was trained for
twenty epochs.

Table 2 summarizes the results of the baselines
(Section 4). Question-answering accuracy is exact-
match accuracy since we limit the answer spans
to entity mentions whose boundaries are fixed
for all models.

Question: This man attempted to impress Jodie Foster
by shooting Ronald Reagan, but he failed to kill the Pres-
ident. At trial, he was found not guilty by reason of
insanity.
Gold answer to previous question: Ronald Reagan
Predict without relation span: George H. W. Bush
Correct answer: John Hinckley Jr.
Relation span: He is best known for defending Presi-
dent Ronald Reagan during the assassination attempt by
John Hinckley Jr.

Figure 2: Modeling the relation between President
Ronald Reagan and John Hinckley Jr. expressed by re-
lation span helps the reader select the correct answer
entity.

Incorporating the previous answer in the retrieval
and the reading components slightly improves the
overall question answering accuracy (Table 2). The
accuracy drops by more than 3% when using the en-
tire text of previous questions in the retrieval phase.
Modeling relations reduces the accuracy slightly
compared to augmenting paragraphs with relation
spans. One possible explanation is that our rela-
tion embedding model ends up being under-trained
since we could not retrieve any relation-spans for
many questions. Replacing Wikipedia with a larger
corpus (e.g., ClueWeb) might help improve the
training of the relation embedding model. Unsur-
prisingly, the gold answers to previous questions
are more useful than the predicted answers, which
highlights a need for models that take into account
the uncertainty about previous answers when gold
previous answers are not available. However, pro-
viding answers to previous questions is consistent
for most Quiz Bowl tournament play.

Figure 2 gives an example of how explicit rela-
tion embedding helps reader get a correct predic-
tion. Without the relation span, the model predicts
George H. W. Bush (vice president at that time) as
correct answer. Including the direct relation span
between Reagan and John Hinckley Jr., the model
gets the correct answer.

6 Related Work and Discussion

We adopt the open-domain question answering
framework (Wang et al., 2018; Chen et al., 2017).
Previous work considers improving that base
framework itself (Clark and Gardner, 2018;
Swayamdipta et al., 2018, inter alia). But retains
the assumption of answering individual questions.

Aside from the open-domain setup, much of the
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recent work on question answering has focused on
the sub-problem of reading-comprehension, where
the gold answer to each question is assumed to
exist in a given single paragraph for the model to
read (Hermann et al., 2015; Rajpurkar et al., 2016;
Seo et al., 2017). Another line of work on ques-
tion answering is question answering over struc-
tured knowledge-bases (Berant et al., 2013; Be-
rant and Liang, 2014; Yao and Van Durme, 2014;
Gardner and Krishnamurthy, 2017). Although
we focus on the more general open-domain setup,
QBLink can be adapted to be usable in the reading-
comprehension setup as well as the question an-
swering over knowledge-bases setup.

Several question answering datasets have been
proposed (Berant et al., 2013; Joshi et al., 2017;
Trischler et al., 2017; Rajpurkar et al., 2018, inter
alia). However, all of them were limited to answer-
ing individual questions.

Saha et al. (2018) study the problem of sequen-
tial question answering, and introduce a dataset
for the task. However, we differ from them in two
aspects: 1) They consider question-answering over
structured knowledge-bases. 2) Their dataset con-
struction was overly synthetic: templates were col-
lected by human annotators given knowledge-base
predicates. Further, sequences were constructed
synthetically as well by grouping individual ques-
tions by predicate or subjects.

Both Iyyer et al. (2017) and Talmor and Berant
(2018) answer complex questions by decomposing
each into a sequence of simple questions. Iyyer
et al. (2017) adopt a semantic parsing approach
to answer questions over semi-structured tables.
They construct a dataset of around 6,000 question
sequences by asking humans to rewrite a set of
2,000 complex questions into simple sequences.
Talmor and Berant (2018) consider the setup of
open-domain question answering over unstructured
text, but their dataset is constructed synthetically
(with human paraphrasing) by combining simple
questions with a few rules.

In parallel to our work, Choi et al. (2018) and
Reddy et al. (2018) introduce sequential question
answering datasets (QuAC and CoQA) that focus
on the reading comprehension setup (i.e., a sin-
gle text snippet is pre-specified for answering the
given questions). QBLink is entirely naturally oc-
curring (all questions and answers were authored
independently from any knowledge sources) and is
primarily designed to challenge human players.

The idea of our baseline to improving the reading
step by incorporating additional relation descrip-
tion spans is similar as Weissenborn et al. (2017)
and Mihaylov and Frank (2018), who integrate
background commonsense knowledge into reading-
comprehension systems. Both rely on structured
knowledge bases to extract information about se-
mantic relations that hold between entities. On
the other hand, we extract text spans that mention
each pair of entities and encoded them into vector
representations of the relations between entities.

7 Conclusions and Future Work

We introduce QBLink, a dataset of 56,000 natu-
rally occurring sequential question, answer pairs.
The questions are designed primarily to challenge
human players in Quiz Bowl tournaments. We
use QBLink to evaluate baselines for sequential
open-domain question answering. We show that
incorporating sequential information helps slightly
improve question answering accuracy.

In the future, we would like to invest in building
better sequential question answering models that
push the accuracy beyond the presented baselines.
Specifically, we will look at how to better model
the interaction between the reader and the relation
embedding model and how to improve the relation
embedding model itself by adopting ideas from the
relation extraction literature (Miwa and Bansal,
2016; Peng et al., 2017; Ammar et al., 2017).
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Abstract

Recently, string kernels have obtained state-
of-the-art results in various text classification
tasks such as Arabic dialect identification or
native language identification. In this paper,
we apply two simple yet effective transductive
learning approaches to further improve the re-
sults of string kernels. The first approach is
based on interpreting the pairwise string ker-
nel similarities between samples in the train-
ing set and samples in the test set as features.
Our second approach is a simple self-training
method based on two learning iterations. In
the first iteration, a classifier is trained on the
training set and tested on the test set, as usual.
In the second iteration, a number of test sam-
ples (to which the classifier associated higher
confidence scores) are added to the training set
for another round of training. However, the
ground-truth labels of the added test samples
are not necessary. Instead, we use the labels
predicted by the classifier in the first training
iteration. By adapting string kernels to the
test set, we report significantly better accuracy
rates in English polarity classification and Ara-
bic dialect identification.

1 Introduction

In recent years, methods based on string ker-
nels have demonstrated remarkable performance
in various text classification tasks ranging from
authorship identification (Popescu and Grozea,
2012) and sentiment analysis (Giménez-Pérez
et al., 2017; Popescu et al., 2017) to native
language identification (Popescu and Ionescu,
2013; Ionescu et al., 2014, 2016; Ionescu and
Popescu, 2017), dialect identification (Ionescu and
Popescu, 2016b; Ionescu and Butnaru, 2017; But-
naru and Ionescu, 2018) and automatic essay scor-
ing (Cozma et al., 2018). As long as a labeled
training set is available, string kernels can reach
state-of-the-art results in various languages in-

cluding English (Ionescu et al., 2014; Giménez-
Pérez et al., 2017; Cozma et al., 2018), Ara-
bic (Ionescu, 2015; Ionescu et al., 2016; Ionescu
and Butnaru, 2017; Butnaru and Ionescu, 2018),
Chinese (Popescu et al., 2017) and Norwegian
(Ionescu et al., 2016). Different from all these re-
cent approaches, we use unlabeled data from the
test set to significantly increase the performance
of string kernels. More precisely, we propose two
transductive learning approaches combined into a
unified framework. We show that the proposed
framework improves the results of string kernels in
two different tasks (cross-domain sentiment clas-
sification and Arabic dialect identification) and
two different languages (English and Arabic). To
the best of our knowledge, transductive learning
frameworks based on string kernels have not been
studied in previous works.

2 Transductive String Kernels
String kernels. Kernel functions (Shawe-Taylor
and Cristianini, 2004) capture the intuitive notion
of similarity between objects in a specific domain.
For example, in text mining, string kernels can
be used to measure the pairwise similarity be-
tween text samples, simply based on character n-
grams. Various string kernel functions have been
proposed to date (Lodhi et al., 2002; Shawe-Taylor
and Cristianini, 2004; Ionescu et al., 2014). Per-
haps one of the most recently introduced string
kernels is the histogram intersection string kernel
(Ionescu et al., 2014). For two strings over an al-
phabet ⌃, x, y 2 ⌃⇤, the intersection string kernel
is formally defined as follows:

k\(x, y) =
X

v2⌃p

min{numv(x), numv(y)}, (1)

where numv(x) is the number of occurrences of n-
gram v as a substring in x, and p is the length of
v. The spectrum string kernel or the presence bits
string kernel can be defined in a similar fashion
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Figure 1: The standard kernel learning pipeline based
on the linear kernel. Kernel normalization is not illus-
trated for simplicity. Best viewed in color.

(Ionescu et al., 2014). The standard kernel learn-
ing pipeline is presented in Figure 1. String ker-
nels help to efficiently (Popescu et al., 2017) com-
pute the dual representation directly, thus skipping
the first step in the pipeline illustrated in Figure 1.
Transductive string kernels. We propose a
simple and straightforward approach to produce
a transductive similarity measure suitable for
strings, as illustrated in Figure 2. We take the fol-
lowing steps to derive transductive string kernels.
For a given kernel (similarity) function k, we first
build the full kernel matrix K, by including the
pairwise similarities of samples from both the train
and the test sets (step S1 in Figure 2) . For a train-
ing set X = {x1, x2, ..., xm} of m samples and
a test set Y = {y1, y2, ..., yn} of n samples, such
that X \Y = ;, each component in the full kernel
matrix is defined as follows (step S2 in Figure 2):

Kij = k(zi, zj), (2)

where zi and zj are samples from the set Z =
X [ Y = {x1, x2, ..., xm, y1, y2, ..., yn}, for all
1  i, j  m + n. We then normalize the kernel
matrix by dividing each component by the square

Figure 2: The transductive kernel learning pipeline
based on the linear kernel. Kernel normalization and
RBF kernel transformation are not illustrated for sim-
plicity. Best viewed in color.
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root of the product of the two corresponding diag-
onal components:

K̂ij =
Kijp

Kii · Kjj
. (3)

We transform the normalized kernel matrix into
a radial basis function (RBF) kernel matrix as fol-
lows:

K̃ij = exp

 
�1 � K̂ij

2�2

!
. (4)

As the kernel matrix is already normalized, we can
choose �2 = 0.5 for simplicity. Therefore, Equa-
tion (4) becomes:

K̃ij = exp
⇣
�1 + K̂ij

⌘
. (5)

Each row in the RBF kernel matrix K̃ is now in-
terpreted as a feature vector, going from step S2 to
step S3 in Figure 2. In other words, each sample zi

is represented by a feature vector that contains the
similarity between the respective sample zi and all
the samples in Z (step S3 in Figure 2). Since Z
includes the test samples as well, the feature vec-
tor is inherently adapted to the test set. Indeed,
it is easy to see that the features will be different
if we choose to apply the string kernel approach
on a set of test samples Y 0, such that Y 0 6= Y .
It is important to note that through the features,
the subsequent classifier will have some informa-
tion about the test samples at training time. More
specifically, the feature vector conveys informa-
tion about how similar is every test sample to ev-
ery training sample. We next consider the linear
kernel, which is given by the scalar product be-
tween the new feature vectors. To obtain the final
linear kernel matrix, we simply need to compute
the product between the RBF kernel matrix and its
transpose (step S4 in Figure 2):

K̈ = K̃ · K̃ 0. (6)
In this way, the samples from the test set, which
are included in Z, are used to obtain new (trans-
ductive) string kernels that are adapted to the test
set at hand.

Transductive kernel classifier. After obtaining
the transductive string kernels, we use a simple
transductive learning approach that falls in the cat-
egory of self-training methods (McClosky et al.,
2006; Chen et al., 2011). The transductive ap-
proach is divided into two learning iterations. In
the first iteration, a kernel classifier is trained on
the training data and applied on the test data, just
as usual. Next, the test samples are sorted by the

classifier’s confidence score to maximize the prob-
ability of correctly predicted labels in the top of
the sorted list. In the second iteration, a fixed
number of samples (1000 in the experiments) from
the top of the list are added to the training set for
another round of training. Even though a small
percent (less than 8% in all experiments) of the
predicted labels corresponding to the newly in-
cluded samples are wrong, the classifier has the
chance to learn some useful patterns (from the cor-
rectly predicted labels) only visible in the test data.
The transductive kernel classifier (TKC) is based
on the intuition that the added test samples bring
more useful information than noise, since the ma-
jority of added test samples have correct labels. Fi-
nally, we would like to stress out that the ground-
truth test labels are never used in our transductive
algorithm.

The proposed transductive learning approaches
are used together in a unified framework. As any
other transductive learning method, the main dis-
advantage of the proposed framework is that the
unlabeled test samples from the target domain
need to be used in the training stage. Neverthe-
less, we present empirical results indicating that
our approach can obtain significantly better ac-
curacy rates in cross-domain polarity classifica-
tion and Arabic dialect identification compared to
state-of-the-art methods based on string kernels
(Giménez-Pérez et al., 2017; Ionescu and Butnaru,
2017). We also report better results than other do-
main adaptation methods (Pan et al., 2010; Bolle-
gala et al., 2013; Franco-Salvador et al., 2015; Sun
et al., 2016; Huang et al., 2017).

3 Polarity Classification
Data set. For the cross-domain polarity classi-
fication experiments, we use the second version
of Multi-Domain Sentiment Dataset (Blitzer et al.,
2007). The data set contains Amazon product re-
views of four different domains: Books (B), DVDs
(D), Electronics (E) and Kitchen appliances (K).
Reviews contain star ratings (from 1 to 5) which
are converted into binary labels as follows: re-
views rated with more than 3 stars are labeled as
positive, and those with less than 3 stars as nega-
tive. In each domain, there are 1000 positive and
1000 negative reviews.
Baselines. We compare our approach with sev-
eral methods (Pan et al., 2010; Bollegala et al.,
2013; Franco-Salvador et al., 2015; Sun et al.,
2016; Giménez-Pérez et al., 2017; Huang et al.,
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Method DEK!B BEK!D BDK!E BDE!K
SST 76.3 78.3 83.9 85.2
KE-Meta 77.9 80.4 78.9 82.5
K0/1 (sota) 82.0 81.9 83.6 85.1
K\ (sota) 80.7 80.7 83.0 85.2

K̈0/1 82.9 83.2* 84.8* 86.0*
K̈\ 82.5 82.9* 84.5* 86.1*
K̈0/1 + TKC 84.1* 84.0* 85.4* 86.9*
K̈\ + TKC 83.8* 83.5* 85.0* 87.1*

Table 1: Multi-source cross-domain polarity classifi-
cation accuracy rates (in %) of our transductive ap-
proaches versus a state-of-the-art (sota) baseline based
on string kernels (Giménez-Pérez et al., 2017), as well
as SST (Bollegala et al., 2013) and KE-Meta (Franco-
Salvador et al., 2015). The best accuracy rates are high-
lighted in bold. The marker * indicates that the per-
formance is significantly better than the best baseline
string kernel according to a paired McNemar’s test per-
formed at a significance level of 0.01.

2017) in two cross-domain settings. Using string
kernels, Giménez-Pérez et al. (2017) reported bet-
ter performance than SST (Bollegala et al., 2013)
and KE-Meta (Franco-Salvador et al., 2015) in the
multi-source domain setting. In addition, we com-
pare our approach with SFA (Pan et al., 2010),
KMM (Huang et al., 2007), CORAL (Sun et al.,
2016) and TR-TrAdaBoost (Huang et al., 2017) in
the single-source setting.
Evaluation procedure and parameters. We
follow the same evaluation methodology of
Giménez-Pérez et al. (2017), to ensure a fair com-
parison. Furthermore, we use the same kernels,
namely the presence bits string kernel (K0/1) and
the intersection string kernel (K\), and the same
range of character n-grams (5-8). To compute the
string kernels, we used the open-source code pro-
vided by Ionescu and Popescu (2016a). For the
transductive kernel classifier, we select r = 1000
unlabeled test samples to be included in the train-
ing set for the second round of training. We choose
Kernel Ridge Regression (Shawe-Taylor and Cris-
tianini, 2004) as classifier and set its regulariza-
tion parameter to 10�5 in all our experiments. Al-
though Giménez-Pérez et al. (2017) used a differ-
ent classifier, namely Kernel Discriminant Anal-
ysis, we observed that Kernel Ridge Regression
produces similar results (±0.1%) when we em-
ploy the same string kernels. As Giménez-Pérez
et al. (2017), we evaluate our approach in two
cross-domain settings. In the multi-source setting,
we train the models on all domains, except the one
used for testing. In the single-source setting, we
train the models on one of the four domains and
we independently test the models on the remain-

ing three domains.

Results in multi-source setting. The results for
the multi-source cross-domain polarity classifica-
tion setting are presented in Table 1. Both the
transductive presence bits string kernel (K̈0/1)
and the transductive intersection kernel (K̈\) ob-
tain better results than their original counterparts.
Moreover, according to the McNemar’s test (Diet-
terich, 1998), the results on the DVDs, the Elec-
tronics and the Kitchen target domains are signifi-
cantly better than the best baseline string kernel,
with a confidence level of 0.01. When we em-
ploy the transductive kernel classifier (TKC), we
obtain even better results. On all domains, the ac-
curacy rates yielded by the transductive classifier
are more than 1.5% better than the best baseline.
For example, on the Books domain the accuracy
of the transductive classifier based on the presence
bits kernel (84.1%) is 2.1% above the best base-
line (82.0%) represented by the intersection string
kernel. Remarkably, the improvements brought by
our transductive string kernel approach are statis-
tically significant in all domains.

Results in single-source setting. The results for
the single-source cross-domain polarity classifica-
tion setting are presented in Table 2. We consid-
ered all possible combinations of source and tar-
get domains in this experiment, and we improve
the results in each and every case. Without excep-
tion, the accuracy rates reached by the transduc-
tive string kernels are significantly better than the
best baseline string kernel (Giménez-Pérez et al.,
2017), according to the McNemar’s test performed
at a confidence level of 0.01. The highest im-
provements (above 2.7%) are obtained when the
source domain contains Books reviews and the tar-
get domain contains Kitchen reviews. As in the
multi-source setting, we obtain much better results
when the transductive classifier is employed for
the learning task. In all cases, the accuracy rates of
the transductive classifier are more than 2% better
than the best baseline string kernel. Remarkably,
in four cases (E!B, E!D, B!K and D!K)
our improvements are greater than 4%. The im-
provements brought by our transductive classifier
based on string kernels are statistically significant
in each and every case. In comparison with SFA
(Pan et al., 2010), we obtain better results in all but
one case (K!D). With respect to KMM (Huang
et al., 2007), we also obtain better results in all
but one case (B!E). Remarkably, we surpass the
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Method D!B E!B K!B B!D E!D K!D B!E D!E K!E B!K D!K E!K
SFA 79.8 78.3 75.2 81.4 77.2 78.5 73.5 76.7 85.1 79.1 80.8 86.8
KMM 78.6 - - - - 72.2 76.9 - - - - 83.6
CORAL 78.3 - - - - 73.9 76.3 - - - - 83.6
TR-TrAdaBoost 74.7 69.1 70.6 79.6 71.8 74.4 74.9 75.9 83.1 77.8 75.7 83.7
K0/1 (sota) 82.0 72.4 72.7 81.4 74.9 73.6 71.3 74.4 83.9 74.6 75.4 84.9
K\ (sota) 82.1 72.4 72.8 81.3 75.1 72.9 71.8 74.5 84.4 74.9 75.1 84.9

K̈0/1 83.3* 74.5* 74.3* 83.0* 76.9* 74.9* 74.0* 76.0* 85.4* 77.6* 77.3* 86.0*
K̈\ 83.2* 74.2* 74.0* 82.8* 76.4* 75.1* 74.2* 75.9* 85.2* 77.6* 77.3* 85.9*
K̈0/1 + TKC 84.9* 78.5* 76.6* 84.0* 79.6* 76.4* 76.6* 77.1* 86.4* 79.6* 80.9* 87.0*
K̈\ + TKC 84.5* 78.5* 75.8* 84.2* 79.1* 76.5* 76.7* 76.8* 86.4* 79.4* 80.5* 87.0*

Table 2: Single-source cross-domain polarity classification accuracy rates (in %) of our transductive approaches
versus a state-of-the-art (sota) baseline based on string kernels (Giménez-Pérez et al., 2017), as well as SFA (Pan
et al., 2010), KMM (Huang et al., 2007), CORAL (Sun et al., 2016) and TR-TrAdaBoost (Huang et al., 2017). The
best accuracy rates are highlighted in bold. The marker * indicates that the performance is significantly better than
the best baseline string kernel according to a paired McNemar’s test performed at a significance level of 0.01.

other state-of-the-art approaches (Sun et al., 2016;
Huang et al., 2017) in all cases.

4 Arabic Dialect Identification
Data set. The Arabic Dialect Identification (ADI)
data set (Ali et al., 2016) contains audio record-
ings and Automatic Speech Recognition (ASR)
transcripts of Arabic speech collected from the
Broadcast News domain. The classification task is
to discriminate between Modern Standard Arabic
and four Arabic dialects, namely Egyptian, Gulf,
Levantine, and Maghrebi. The training set con-
tains 14000 samples, the development set contains
1524 samples, and the test contains another 1492
samples. The data set was used in the ADI Shared
Task of the 2017 VarDial Evaluation Campaign
(Zampieri et al., 2017).
Baseline. We choose as baseline the approach of
Ionescu and Butnaru (2017), which is based on
string kernels and multiple kernel learning. The
approach that we consider as baseline is the win-
ner of the 2017 ADI Shared Task (Zampieri et al.,
2017). In addition, we also compare with the
second-best approach (Meta-classifier) (Malmasi
and Zampieri, 2017).
Evaluation procedure and parameters. Ionescu
and Butnaru (2017) combined four kernels into a
sum, and used Kernel Ridge Regression for train-
ing. Three of the kernels are based on character n-
grams extracted from ASR transcripts. These are
the presence bits string kernel (K0/1), the intersec-
tion string kernel (K\), and a kernel based on Lo-
cal Rank Distance (KLRD) (Ionescu, 2013). The
fourth kernel is an RBF kernel (Kivec) based on
the i-vectors provided with the ADI data set (Ali
et al., 2016). In our experiments, we employ the
exact same kernels as Ionescu and Butnaru (2017)
to ensure an unbiased comparison with their ap-

Method Development Test
Meta-classifier - 71.65
K0/1+K\+KLRD+Kivec (sota) 64.17 76.27

K̈0/1+K̈\+K̈LRD+K̈ivec 65.42* 77.08
K̈0/1+K̈\+K̈LRD+K̈ivec + TKC 66.73* 78.35*

Table 3: Arabic dialect identification accuracy rates (in
%) of our adapted string kernels versus the 2017 ADI
Shared Task winner (sota) (Ionescu and Butnaru, 2017)
and the first runner up (Malmasi and Zampieri, 2017).
The best accuracy rates are highlighted in bold. The
marker * indicates that the performance is significantly
better than (Ionescu and Butnaru, 2017) according to
a paired McNemar’s test performed at a significance
level of 0.01.

proach. As in the polarity classification experi-
ments, we select r = 1000 unlabeled test samples
to be included in the training set for the second
round of training the transductive classifier, and
we use Kernel Ridge Regression with a regular-
ization of 10�5 in all our ADI experiments.
Results. The results for the cross-domain Arabic
dialect identification experiments on both the de-
velopment and the test sets are presented in Ta-
ble 3. The domain-adapted sum of kernels ob-
tains improvements above 0.8% over the state-
of-the-art sum of kernels (Ionescu and Butnaru,
2017). The improvement on the development set
(from 64.17% to 65.42%) is statistically signifi-
cant. Nevertheless, we obtain higher and signif-
icant improvements when we employ the trans-
ductive classifier. Our best accuracy is 66.73%
(2.56% above the baseline) on the development set
and 78.35% (2.08% above the baseline) on the test
set. The results show that our domain adaptation
framework based on string kernels attains the best
performance on the ADI Shared Task data set, and
the improvements over the state-of-the-art are sta-
tistically significant, according to the McNemar’s
test.
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Abstract
We introduce a novel parameterized convo-
lutional neural network for aspect level sen-
timent classification. Using parameterized
filters and parameterized gates, we incorpo-
rate aspect information into convolutional neu-
ral networks (CNN). Experiments demonstrate
that our parameterized filters and parame-
terized gates effectively capture the aspect-
specific features, and our CNN-based mod-
els achieve excellent results on SemEval 2014
datasets.

1 Introduction
Continuous growing of user generated text in so-
cial media platforms such as Twitter drives senti-
ment classification increasingly popular. The goal
of sentiment classification is to detect whether a
piece of text expresses a positive, a negative, or
a neutral sentiment (Rosenthal et al., 2017). The
majority of the literature focuses on general sen-
timent analysis (document level), not involving a
specific topic or entity. When there are multiple
aspects about an entity in a sentence, it is hard to
determine the sentiment as a whole.

Differing from general sentiment classifica-
tion, aspect level sentiment classification identifies
opinions from text about specific entities and their
aspects (Pontiki et al., 2015). For example, given a
sentence “great food but the service was dreadful”,
the sentiment polarity about aspect “food” is pos-
itive while the sentiment polarity about “service”
is negative. If we ignore the aspect information,
it is hard to determine the sentiment for a target
aspect, which accounts for a large portion of sen-
timent classification error (Jiang et al., 2011).

Recently, machine learning based approaches
are becoming popular for this task. Representa-
tive approaches in literature include Support Vec-
tor Machine (SVM) with manually created fea-
tures (Jiang et al., 2011; Wagner et al., 2014) and

neural network based models (Tang et al., 2016;
Wang et al., 2016; Huang et al., 2018). Because of
neural networks’ capacity of learning representa-
tions from data without feature engineering, they
are of growing interest for this natural language
processing task. The mainstream neural meth-
ods are either based on long short-term memory
(Hochreiter and Schmidhuber, 1997) or memory
networks (Sukhbaatar et al., 2015). None of them
are using convolutional neural networks (CNN),
which are good at capturing local patterns.

In the present work, we propose two simple yet
effective convolutional neural networks with as-
pect information incorporated. The overall archi-
tecture differs significantly from previous work.
Specifically, we design two novel neural units that
take target aspects into account. One is parameter-
ized filter, the other is parameterized gate. These
units both are generated from aspect-specific fea-
tures and are further applied on the sentence. Our
experiments show that our two model variants
work surprisingly well on this type of task.

2 Related Work

Aspect level sentiment classification is a branch of
sentiment classification (Pang et al., 2002; Wang
and Manning, 2012). It aims at identifying the
sentiment polarity of one aspect target in a context
sentence.

One typical early work tries to identify the as-
pect level sentiment polarity based on predefined
language rules (Nasukawa and Yi, 2003). Na-
sukawa and Yi first perform dependency parsing
on sentences. Then rules are applied to determine
the sentiment about aspects. Standard machine
learning algorithms like SVM are also widely used
on this task. Jiang et al. create several target-
dependent features, then they feed these target-
dependent features with content features into an
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SVM classifier.
In recent years, aspect level sentiment classifi-

cation is dominated by neural network based ap-
proaches. The majority of published works rely
on the architecture of long short-term memory
(LSTM) (Tang et al., 2016). Wang et al. (2016)
use an attention vector generated from aspect em-
bedding to better capture the important parts in
sentences. Tay et al. (2018) introduce a word-
aspect fusion operation to learn associative rela-
tionships between aspects and sentences. Huang
et al. (2018) use an attention-over-attention layer
to further improve the performance.

Another type of neural architectures known as
memory network (Sukhbaatar et al., 2015) has also
been used in this task. Tang et al. (2016) takes an
aspect term as a query sent to external memory.
Their model consists of multiple computational
layers. Each layer is an attention model. One
recent work Dyadic MemNN (Tay et al., 2017)
places associative layers on top of memory net-
works to improve the performance.

The overall architecture in this paper differs sig-
nificantly with all these previous works. To the
best of our knowledge, this paper is the first at-
tempt using convolutional neural networks (Kim,
2014; Huang and Carley, 2017) for aspect level
sentiment classification.

3 Parameterized Convolutional Neural
Networks

In this section, we introduce our method for as-
pect level sentiment classification, which is based
on convolutional neural networks. We first de-
scribe CNN for general sentiment classification,
then we introduce our two model variants Pa-
rameterized Filters for Convolutional Neural Net-
works (PF-CNN) and Parameterized Gated Con-
volutional Neural Networks (PG-CNN).

3.1 Problem Definition
In aspect level sentiment classification, we are
given a sentence s = [w1, w2, ..., wi, ..., wn] and
an aspect target t = [wi, wi+1, ..., wi+m�1]. The
goal is to classify whether the sentiment towards
the aspect in the sentence is positive, negative, or
neutral.

3.2 Convolutional Neural Networks
We first briefly describe convolutional neural net-
works (CNN) for general sentiment classification

(Kim, 2014). Given a sentence s = [w1, w2,
..., wi, ..., wn], let vi 2 Rk be the word vector for
word wi. A sentence of length n can be repre-
sented as a matrix s = [v1, v2, ..., vn] 2 Rn⇥k.
A convolution filter w 2 Rh⇥k with width h is
applied to the word matrix to get high-level repre-
sentative features. Specifically, for a word window
vi:i+h�1 2 Rh⇥k, a feature ci is generated by

ci = f(w � vi:i+h�1 + b) (1)

where � represents element-wise product, b 2 R
is a bias term and f is a non-linear function. Slid-
ing the filter window from the beginning of the
word matrix till the end, we get a feature map
c 2 Rn�h+1.

c = [c1, c2, ..., cn�h+1] (2)

After that, a pooling operation is applied over the
feature map to get one single general sentiment
feature ✓g in each map. We use max pooling in
the CNN for sentences.

✓g = pooling(c) (3)

We denote this process as ✓g = CNNg(s; w, b).
Using d such convolutional filters, we can get a
general sentiment feature vector ⇥g 2 Rd without
information from aspect terms.

3.3 Parameterized Filters

Standard convolutional neural networks do not
consider information from aspect terms. Herein,
our first model variant overcomes this issue by pa-
rameterizing filters using aspect terms. We call
it Parameterized Filters for Convolutional Neural
Networks (PF-CNN). The overall architecture is
shown in the left of Figure 1.

Formally, given the aspect term with length m,
t = [wi, wi+1, ..., wi+m�1] and the corresponding
embedding matrix t = [vi, vi+1, ..., vi+m�1] 2
Rm⇥k, we first use another CNNt to extract one
single feature ✓t from t.

✓t = CNNt(t; wt, bt) (4)

where wt 2 Rht⇥k, bt are the convolutional fil-
ter, bias term for CNNt. ht is the width of fil-
ters applied on aspect targets. With hs ⇥ k such
filters and bias terms, we can get a feature ma-
trix ⇥t 2 Rhs⇥k, where hs is the filter width ap-
plied on sentences. We use average pooling in the
CNNt for aspects.
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Figure 1: The overall architectures of PF-CNN and PG-CNN.

In the next step, ⇥t is further used as a convolu-
tional filter applied on the sentence.

✓s = CNNs(s;⇥t, bs) (5)

Using such d parameterized filters, we get the
aspect-specific features ⇥s 2 Rd with target term
information. We further concatenate the targeted
feature vector with general sentiment features as
the final classification features ⇥ = [⇥g, ⇥s].

3.4 Parameterized Gates
The second model variant we designed is called
Parameterized Gated Convolutional Neural Net-
works (PG-CNN). The overall architecture is
shown in the right of Figure 1.

Similar with PF-CNN, PG-CNN also utilizes a
convolutional neural network to extract feature ⇥t

from aspect terms, which instead is used as a gate
(Dauphin et al., 2017) in the CNN applied on the
sentence. The key step of PG-CNN is described in
equation (6).

ci = (w�vi:i+h�1+b) ·�(⇥t�vi:i+h�1+b) (6)

Instead of using a non-linear function f in equa-
tion (1), we use a gate �(⇥t � vi:i+h�1 + b) to
control how much information passing to the next
layer, where �(·) is sigmoid function. For each
general filter applied on the sentence, one param-
eterized gate is generated from the aspect.

After that, we generate the final classification
feature ⇥ in the same way as standard CNN.

3.5 Final Classification
We feed the final classification feature into a lin-
ear layer to project ⇥ into the space of targeted
classes:

x = Wl · ⇥ + bl (7)

where Wl and bl are the weight matrix and bias.
Following the linear layer, we use a softmax layer
to compute the probability of class c.

P (y = c|x) =
exp(xc)P
i2C exp(xi)

(8)

3.6 Model training
We train our model to minimize the cross-entropy
loss function with L2 regularization:

loss = �
X

(s,t)

X

c2C

I(y = c)logP (y = c|s, a) + �||p||2

where I(·) is the indicator function and p is the set
of all parameters in the convolutional layers and
linear layer.

4 Experiments

4.1 Experiments Setting
Dataset
We adopt one widely used dataset from SemEval
2014 Task 4 (Pontiki et al., 2014). It contains two
domain-specific datasets for laptops and restau-
rants. Each data point is a pair of a sentence and
an aspect term. Experienced annotators tagged
each pair with sentiment polarity. Following re-
cent work (Tay et al., 2018), we take 500 train-
ing instances as development set1. Unfortunately,
many works have not mentioned the usage of de-
velopment set (Wang et al., 2016; Ma et al., 2017).
Hyperparameters and Training
We use rectifier as non-linear function f in the
CNNg, CNNt and sigmoid in the CNNs, filter
window sizes of 1, 2, 3, 4 with 100 feature maps

1The splits can be found at
https://github.com/vanzytay/ABSA DevSplits.
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Dataset Positive Neutral Negative
Laptop-Train 767 373 673
Laptop-Dev 220 87 193
Laptop-Test 341 169 128
Restaurant-Train 1886 531 685
Restaurant-Dev 278 102 120
Restaurant-Test 728 196 196

Table 1: Statistics of the datasets.

Laptops Restaurants
Model 3-way Binary 3-way Binary
TD-LSTM 62.38 79.31 69.73 84.41
AT-LSTM 65.83 78.25 74.37 84.74
ATAE-LSTM 60.34 74.20 70.71 84.52
AF-LSTM 68.81 83.58 75.44 87.78
CNN 68.65 85.50 77.95 89.50
PF-CNN 70.06 86.35 79.20 90.15
PG-CNN 69.12 86.14 78.93 90.58

Table 2: Comparisons results with baselines. We use
accuracy to measure the performance. Performances of
baselines are cited from (Tay et al., 2018).

each, l2 regularization term of 0.001 and mini-
batch size of 25. Parameterized filters and gates
have the same size and number as normal filters.
They are generated uniformly by CNN with win-
dow sizes of 1, 2, 3, 4, eg. among 100 parameter-
ized filters with size 3, 25 of them are generated
by aspect CNN with filter size 1, 2, 3, 4 respec-
tively. The word embeddings are initialized with
300-dimensional Glove vectors (Pennington et al.,
2014) and are fixed during training. For the out
of vocabulary words we initialize them randomly
from uniform distribution U(�0.01, 0.01). We ap-
ply dropout on the final classification features of
PG-CNN. The dropout rate is chosen as 0.3.

Training is done through mini-batch stochastic
gradient descent with Adam update rule (Kingma
and Ba, 2015). The initial learning rate is 0.001.
If the training loss does not drop after every three
epochs, we decrease the learning rate by half. We
adopt early stopping based on the validation loss
on development sets.

4.2 Results
We use accuracy metric to measure the perfor-
mance. To show the effectiveness of our model,
we compare it with several baseline methods. We
list them as follows:

TD-LSTM uses two LSTM networks to model
the preceding and following contexts surrounding

the aspect term. The last hidden states of these
two LSTM networks are concatenated for predict-
ing the sentiment polarity (Tang et al., 2016).

AT-LSTM combines the sentence hidden states
from a LSTM with the aspect term embedding to
generate the attention vector. The final sentence
representation is the weighted sum of the hidden
states (Wang et al., 2016).

ATAE-LSTM further extends AT-LSTM by ap-
pending the aspect embedding into each word vec-
tor (Wang et al., 2016).

AF-LSTM introduces a word-aspect fusion at-
tention to learn associative relationships between
aspect and context words (Tay et al., 2018).

CNN uses the architecture proposed in (Kim,
2014) without explicitly considering aspect. We
use filter window sizes of 1,2,3,4 with 100 maps
each. Dropout rate is chosen as 0.5. Early stop-
ping based on validation accuracy is applied.

Our two models achieve the best performance
when compared to these baselines as shown in
Table 2, which shows that our proposed neural
units effectively captures the aspect-specific fea-
tures. Compared to one recently proposed model
AF-LSTM, our method achieve 2%-5% improve-
ments. Surprisingly, a vanilla CNN works quite
well on this problem. It even beats these well-
designed LSTM models, which further proves that
using CNN-based methods is a direction worth ex-
ploring.

4.3 Case Study & Discussion

Compared to a vanilla CNN, our two model vari-
ants could successfully distinguish the describing
words for corresponding aspect targets. In the sen-
tence “the appetizers are ok, but the service is
slow”, a vanilla CNN outputs the same negative
sentiment label for both aspect terms “appetizers”
and “service”, while PF-CNN and PG-CNN suc-
cessfully recognize that “slow” is only used for
describing “service” and output neutral and neg-
ative labels for aspects “appetizers” and “service”
respectively. In another example “the staff mem-
bers are extremely friendly and even replaced my
drink once when i dropped it outside”, our models
also find out that positive and neutral sentiment for
“staff” and “drink” respectively.

One thing we notice in our experiment is that a
vanilla CNN ignoring aspects has comparable per-
formance with some well-designed LSTM models
in this aspect-level sentiment classification task.
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For a sentence containing multiple aspects, we as-
sume the majority of the aspect-level sentiment la-
bel is the sentence-level sentiment label. Using
this labeling scheme, in the restaurant data, 1034
out of 1117 test points have the same sentence-
level and aspect-level labels. Thus, a sentence-
level classifier with accuracy 75% also classifies
70% aspect-labels correctly. A similar observation
was made for the laptop dataset as well. Probably
this is the reason why a vanilla CNN has compara-
ble performance on these two datasets. For future
research, a more balanced dataset would be help-
ful to overcome this issue.

5 Conclusion

We propose a novel method for aspect level senti-
ment classification. We introduce two novel neu-
ral units called parameterized filter and parameter-
ized gate to incorporate aspect information into the
convolutional neural network architecture. Com-
parisons with baseline methods show our model
effectively learns the aspect-specific sentiment ex-
pressions. Our experiments demonstrate a signif-
icant improvement compared to multiple strong
neural baselines.

To the best of our knowledge, our model is the
first attempt using convolutional neural networks
solving this problem. We hope this work could in-
spire future research exploring in this direction. It
is also interesting to see whether such parameter-
ized CNN architecture could benefit other natural
language processing tasks involving text pairs like
question answering task.
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Abstract
In this paper, we target at improving the per-
formance of multi-label emotion classifica-
tion with the help of sentiment classification.
Specifically, we propose a new transfer learn-
ing architecture to divide the sentence rep-
resentation into two different feature spaces,
which are expected to respectively capture the
general sentiment words and the other impor-
tant emotion-specific words via a dual atten-
tion mechanism. Extensive experimental re-
sults demonstrate that our transfer learning ap-
proach can outperform several strong base-
lines and achieve the state-of-the-art perfor-
mance on two benchmark datasets.

1 Introduction

In recent years, the number of user-generated
comments on social media platforms has grown
exponentially. In particular, social platforms such
as Twitter allow users to easily share their per-
sonal opinions, attitudes and emotions about any
topic through short posts. Understanding people’s
emotions expressed in these short posts can fa-
cilitate many important downstream applications
such as emotional chatbots (Zhou et al., 2018b),
personalized recommendations, stock market pre-
diction, policy studies, etc. Therefore, it is crucial
to develop effective emotion detection models to
automatically identify emotions from these online
posts.

In the literature, emotion detection is typically
modeled as a supervised multi-label classifica-
tion problem, because each sentence may con-
tain one or more emotions from a standard emo-
tion set containing anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise and trust. Table 1 shows three example
sentences along with their emotion labels. Tra-
ditional approaches to emotion detection include
lexicon-based methods (Wang and Pal, 2015),

ID Tweet Emotion

T1 AI revolution, soon is possible
#fearless #good #goodness

joy, optimism

T2 Shitty is the worst feeling ever
#depressed #anxiety

fear, sadness

T3 I am back lol. #revenge joy, anger

Table 1: Example Tweets from SemEval-18 Task 1.

graphical model-based methods (Li et al., 2015b)
and linear classifier-based methods (Quan et al.,
2015; Li et al., 2015a). Given the recent suc-
cess of deep learning models, various neural net-
work models and advanced attention mechanisms
have been proposed for this task and have achieved
highly competitive results on several benchmark
datasets (Wang et al., 2016; Abdul-Mageed and
Ungar, 2017; Felbo et al., 2017; Baziotis et al.,
2018; He and Xia, 2018; Kim et al., 2018).

However, these deep models must overcome
a heavy reliance on large amounts of annotated
data in order to learn a robust feature represen-
tation for multi-label emotion classification. In
reality, large-scale datasets are usually not read-
ily available and costly to obtain, partly due to
the ambiguity of many informal expressions in
user-generated comments. Conversely, it is eas-
ier to find datasets (especially in English) associ-
ated with another closely related task: sentiment
classification, which aims to classify the sentiment
polarity of a given piece of text (i.e., positive, neg-
ative and neutral). We expect that these resources
may allow us to improve sentiment-sensitive rep-
resentations and thus more accurately identify
emotions in social media posts. To achieve these
goals, we propose an effective transfer learning
(TL) approach in this paper.

Most existing TL methods either 1) assume that
both the source and the target tasks share the same
sentence representation (Mou et al., 2016) or 2)
divide the representation of each sentence into a
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Figure 1: Overview of Different Transfer Learning Models.

shared feature space and two task-specific feature
spaces (Liu et al., 2017; Yu et al., 2018), as demon-
strated by Fig 1.a and Fig 1.b. However, when ap-
plying these TL approaches to our scenario, the
former approach may lead the learnt sentence rep-
resentation to pay more attention to general senti-
ment words such as good but less attention to the
other sentiment-ambiguous words like shock that
are also integral to emotion classification. The lat-
ter approach can capture both the sentiment and
the emotion-specific words. However, some sen-
timent words only occur in the source sentiment
classification task. These words tend to receive
more attention in the source-specific feature space
but less attention in the shared feature space, so
they will be ignored in our emotion classification
task. Intuitively, any sentiment word also indicates
emotion and should not be ignored by our emotion
classification task.

Therefore, we propose a shared-private (SP)
model as shown in Fig 1.c, where we employ a
shared LSTM layer to extract shared sentiment
features for both sentiment and emotion classifi-
cation tasks, and a target-specific LSTM layer to
extract specific emotion features that are only sen-
sitive to our emotion classification task. How-
ever, as pointed out by Liu et al. (2017) and Yu
et al. (2018), it is not guaranteed that such a simple
model can well differentiate the two feature spaces
to extract shared and target-specific features as we
expect. Take the sentence T1 in Table 1 as an
example. Both the shared and task-specific lay-
ers could assign higher attention weights to good
and goodness due to their high frequencies in the
training data but lower attention weights to fear-
less due to its rare occurrences. In this case, this
SP model can only predict the joy emotion but ig-
nores the optimism emotion. Hence, to enforce the
orthogonality of the two feature spaces, we fur-
ther introduce a dual attention mechanism, which

feeds the attention weights in one feature space as
extra inputs to compute those in the other feature
space, and explicitly minimizes the similarity be-
tween the two sets of attention weights. Experi-
mental results show that our dual attention trans-
fer architecture can bring consistent performance
gains in comparison with several existing transfer
learning approaches, achieving the state-of-the-art
performance on two benchmark datasets.

2 Methodology

2.1 Base Model for Emotion Classification
Given an input sentence, the goal of emotion anal-
ysis is to identify one or multiple emotions con-
tained in it. Formally, let x = (w1,w2, . . . ,wn)
be the input sentence with n words, where wj is
a d-dimensional word vector for word wj in the
vocabulary V , and is retrieved from a lookup ta-
ble E 2 Rd⇥|V|. Moreover, let E be a set of
pre-defined emotion labels. Accordingly, for each
x, our task is to predict whether it contains one
or more emotions in E . We denote the output as
e 2 {0, 1}K where ek 2 {0, 1} denotes whether
or not x contains the k-th emotion. We further as-
sume that we have a set of labeled sentences, de-
noted by De = {x(i), e(i)}N

i=1.
Sentence Representation: We use the stan-

dard bi-directional Long Short Term Memory (Bi-
LSTM) network to sequentially process each word
in the input:

�!
hj = LSTM(

��!
hj�1,xj , ⇥f ),

 �
hj = LSTM(

 ��
hj+1,xj , ⇥b),

where ⇥f and ⇥b denotes all the parameters in
the forward and backward LSTM. Then, for each
word xj , its hidden state hj 2 Rd is generated by
concatenating

�!
hj and

 �
hj as hj = [

�!
hj ;
 �
hj ].

For emotion classification, since emotion words
are relatively more important for final predic-
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tions, we adopt the widely used attention mech-
anism (Bahdanau et al., 2014) to select the key
words for sentence representation. Specifically,
we first take the final hidden state hn as a sentence
summary vector z, and then obtain the attention
weight ↵i for each hidden state hj as follows:

uj = v> tanh(Whhj + Wzz), (1)

↵j =
exp(uj)Pn
l=1 exp(ul)

, (2)

where Wh,Wz 2 Ra⇥d and v 2 Ra are learnable
parameters. The final sentence representation H is
computed as:

H =
nX

j=1

↵jhj .

Output Layer: We first apply a Multilayer Per-
ceptron (MLP) with one hidden layer on top of H,
followed by normalizing it to obtain the probabil-
ity distribution over all of the emotion labels:

p(e(i) | H) = o(i) = softmax(MLP(H)).

Then, we propose to minimize the KL divergence
between our predicted probability distribution and
the normalized ground truth distribution as our ob-
jective function:

L =
1

N

NX

i=1

KX

k=1

e(i)
k

�
log(e(i)

k )� log(o(i)
k )

�
.

During the test stage, we will select a threshold �
on the development set so that the emotion with
scores higher than � will be predicted as 1.

2.2 Transfer Learning Architecture
Due to the limited number of annotated data for
multi-label emotion classification, here we resort
to sentiment classification to consider a transfer
learning scenario. Let Ds = {x(m), y(m)}M

m=1

be another set of labeled sentences for sentiment
classification, where y(m) is the ground-truth label
indicating whether the m-th sentence is positive,
negative or neutral.

2.2.1 Shared-Private (SP) Model
Intuitively, sentiment classification is a coarse-
grained emotion analysis task, and can be fully
leveraged to learn a more robust sentiment-
sensitive representation. Therefore, we first use
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Figure 2: Dual Attention Transfer Network.

a shared attention-based Bi-LSTM layer to trans-
form the input sentences in both tasks into a
shared hidden representation Hc, and also employ
another task-specific Bi-LSTM layer to get the
target-specific hidden representation Ht. Next, we
employ the following operations to map the hid-
den representations to the sentiment label y and
the emotion label e:

p(y(m)|Hc) = softmax
�
WsHc + bs

�
,

p(e(i)|Hc,Ht) = softmax
�
MLP([Hc;Ht])

�
,

where Ws 2 Rd⇥3 and bs 2 R3 are the parame-
ters for the source sentiment classification task.

2.2.2 Proposed Dual Attention Transfer
Network (DATN)

As we introduced before, the shared and target-
specific feature spaces in the above SP model are
expected to respectively capture the general senti-
ment words and the task-specific emotion words.
However, without any constraints, the two feature
spaces may both tend to pay more attention to fre-
quently occurring and important sentiment words
like great and happy, but less to those rarely oc-
curring but crucial emotion words like anxiety and
panic. Therefore, to encourage the two feature
spaces to focus on sentiment words and emotion-
specific words respectively, we propose using the
attention weights computed from the shared layer
as extra inputs to compute the attention weights of
the target-specific layer. Specifically, as shown in
Fig. 2, we first use Eq.1 and Eq.2 to compute the
attention weights ↵s in the shared layer, and then
use the following equation to obtain the attention
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weights ↵t in the target specific layer:

ut
j = vt> tanh(Wt

hh
t
j + w↵↵s

j + Wt
zz

t),

↵t
j =

exp(ut
j)Pn

l=1 exp(ut
l)

.

In addition, we introduce another similarity loss to
explicitly enforce the difference between the two
attention weights and minimize the cosine simi-
larity between ↵s and ↵t.

Finally, our combined objective function is de-
fined as follows:

J =� 1

M

MX

m=1

log p(ym|Hc) + L

+ �
NX

i=1

cos sim(↵s
i , ↵

t
i),

where � is a hyperparameter used to control the
effect of the similarity loss.

2.2.3 Model Details
During the training stage, we adopted the widely
used alternating optimization strategy, which iter-
atively samples one mini-batch from Ds for only
updating the parameters in the left part of our
model, followed by sampling another mini-batch
from De for updating all the parameters in our
model. It is also worth noting that in Fig. 2, we
first obtain the shared attention weights ↵s and
feed it as extra inputs to compute ↵t. In fact, to
differentiate the attention weights in the two fea-
ture spaces, we can also first compute ↵t, followed
by computing ↵s based on ↵t. We refer to these
two variants of our model as DATN-1 and DATN-
2 respectively.

3 Experiments

3.1 Experiment Settings
Datasets: We conduct experiments on both En-
glish and Chinese languages.

For English, we employ a widely used Twit-
ter dataset from SemEval 2016 Task 4A (Nakov
et al., 2016) as our source sentiment classification
task. For our target emotion classification task,
we use the Twitter dataset recently released by Se-
mEval 2018 Task 1C (Mohammad et al., 2018),
which contains 11 emotions as shown in the top of
Fig. 2. To tokenize the tweets in our dataset, we
follow (Owoputi et al., 2013) by adopting most of

Dataset Train Dev Test Words

E1 SemEval-18 6,838 886 3,259 32,557
S1 SemEval-16 28,631 - - 40439

E2 Ren-CECps-1 13,841 1,972 3,602 40,099S2 Ren-CECps-2 15,199 - -

Table 2: The number of sentences in each dataset.

their preprocessing rules except that we split the
hashtag into ‘#’ and its subsequent word.

For Chinese, we use a well known Chinese blog
dataset Ren-CECps from (Quan and Ren, 2010),
which contains 1487 documents with each sen-
tence labeled by a sentiment label and 8 emotion
labels: anger, expectation, anxiety, joy, love, hate,
sorrow and surprise. Given the difficulty of find-
ing a large-scale sentiment classification dataset
specific to Chinese blogs, we simply divided the
original dataset to form our source and target
tasks1. The basic statistics of our two datasets are
summarized in Table 2.

Parameter Settings: The word embedding size
d is set to be 300 for E1 and 200 for E2, and
the lookup table E is initialized by pre-trained
word embeddings based on Glove2. The hidden
dimension and the number of LSTM layers in both
datasets are set to be 200 and 1. During training,
Adam (Kingma and Ba, 2014) is used to schedule
the learning rate, where the initial learning rate is
set to be 0.001. Also, the dropout rate is set to
0.5. After tuning, � is set as 0.05 for both datasets,
and � is set as 0.12 for E1 and 0.2 for E2. All the
models are implemented with Tensorflow.

Evaluation Metrics: We take the official code
from SemEval-18 Task 1C and use accuracy and
Macro F1 score as main metrics. For E2, we fol-
low (Zhou et al., 2018a) to use average precision
(AP) and one error (OE) as secondary metrics.

3.2 Results
To better evaluate our proposed methods, we em-
ployed the following systems for comparison: 1)
Base, training our base model in Section 2.1 only
on De; 2) FT (Fine-Tuning), using Ds to pre-
train the whole model, followed by using De to
Fine Tune the model parameters; 3) FS, the Fully-
Shared framework by (Mou et al., 2016) as shown
in Fig 1.a; 4) PSP and APSP, the Private-Shared-
Private framework and its extension with Adver-

1The first 560/80/160 documents are used as train/dev/test
set for emotion classification, and the remaining 687 docu-
ments are used for sentiment classification.

2https://nlp.stanford.edu/projects/glove/.
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When you dread going   to work early … but   you always come back home happy    ;   smiling   #   goodday

Base

DATN-2
α𝑠

α𝑡

Methods Prediction

joy, optimism

joy, optimism,
love

Figure 3: Comparison of attention weights between Base and our DATN-2 model on a test sentence from SemEval-18. Note
that the ground truth emotion labels for this example are joy, optimism and love.

Methods S1 ! E1 S2 ! E2

ACC" F1" ACC" F1" AP" OE#

Base 0.569 0.521 0.368 0.399 0.648 0.531
FT 0.575 0.519 0.372 0.398 0.655 0.519
FS 0.577 0.526 0.386 0.403 0.662 0.507
PSP 0.579 0.531 0.384 0.405 0.658 0.517
APSP 0.580 0.540 0.389 0.399 0.670 0.499

SP 0.577 0.532 0.389 0.410 0.667 0.507
DATN-1 0.582 0.543 0.393 0.410 0.670 0.501
DATN-2 0.583 0.544 0.400 0.420 0.674 0.498

Rank 2 0.582 0.534 - 0.392 0.641 0.523
Rank 1 0.595 0.542 - 0.416 0.680 0.455
DATN-2⇤ 0.597 0.551 - - - -
Base† - - 0.445 0.426 0.725 0.425
DATN-2† - - 0.457 0.444 0.732 0.415

Table 3: The results of different transfer learning methods
by averaging ten runs (top) and the comparison between our
best model and the state-of-the-art systems (bottom). DATN-
2⇤ indicates the ensemble results of ten runs. Base† and
DATN-2† denotes the average results of conducting ten-fold
cross validation on the whole dataset for fair comparison, and
here for the source and target tasks in DATN-2†, we use the
same training data. For E1, Rank1 and Rank2 are the top
two systems from the official leadboard; For E2, Rank1 and
Rank2 are from (Zhou et al., 2016, 2018a).

sarial losses by (Liu et al., 2017) as shown in
Fig 1.b; 5) SP, DATN-1 and DATN-2, the Shared-
Private model and two variants of our Dual At-
tention Transfer Network as shown in Fig 1.c and
Fig 1.d.

In Table 3, we report the comparison results be-
tween our method and the baseline systems. It can
be easily observed that 1) for transfer learning, al-
though the performance of SP is similar to or even
lower than some baseline systems, our proposed
dual attention models, i.e., DATN-1 and DATN-
2, can generally boost SP to achieve the best re-
sults. To investigate the significance of the im-
provements, we combine each model’s predictions
of all emotion labels followed by treating them as
a single label, and then perform McNemar’s sig-
nificance tests (Gillick and Cox, 1989). Finally,
we verify that for English, DATN-1 is significantly
better than Base, FT, FS and SP, while DATN-2
is significant better than all the methods except
APSP; for Chinese, DATN-1 and DATN-2 are sig-
nificantly better than all the compared methods. 2)

Even compared with the state-of-the-art systems
in E1 which also employ other external resources,
including the affective embedding, emotion lexi-
con and sentiment classification datasets (Baziotis
et al., 2018), the ensemble results of DATN-2 can
achieve slightly better performance; in addition, it
is clear that our model can obtain the best perfor-
mance in E2.

Furthermore, to obtain a better understanding of
the advantage of our method, we choose one sen-
tence from the test set of E1, and visualize the at-
tention weights obtained by Base and DATN-2 in
Fig 3. We can see that Base pays more attention to
those frequent emotion words while ignoring the
less frequent but important emoji, and thus fails to
predict the love emotion implied by the emoji. In
contrast, with the proposed dual attention mech-
anism, DATN-2 makes correct predictions since
it can respectively capture the general sentiment
words and the emotion-specific emojis.

4 Conclusion

In this paper, we proposed a dual attention-based
transfer learning approach to leverage sentiment
classification to improve the performance of multi-
label emotion classification. Using two bench-
mark datasets, we show the effectiveness of the
proposed transfer learning method.
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Abstract

The task of sentiment modification requires re-
versing the sentiment of the input and preserv-
ing the sentiment-independent content. How-
ever, aligned sentences with the same content
but different sentiments are usually unavail-
able. Due to the lack of such parallel data, it is
hard to extract sentiment independent content
and reverse the sentiment in an unsupervised
way. Previous work usually can not reconcile
sentiment transformation and content preser-
vation. In this paper, motivated by the fact the
non-emotional context (e.g., “staff”) provides
strong cues for the occurrence of emotional
words (e.g., “friendly”), we propose a novel
method that automatically extracts appropriate
sentiment information from the learned senti-
ment memories according to the specific con-
text. Experiments show that our method sub-
stantially improves the content preservation
degree and achieves the state-of-the-art perfor-
mance. 1

1 Introduction

Sentiment modification of natural language texts
is a special task that connects sentiment analy-
sis and natural language generation. It facili-
tates many NLP applications, such as news rewrit-
ing and automatic conversion of review attitude,
which reduce the human effort. Sentiment mod-
ification presents two requirements: one is that
the sentiment or the attitude of the text needs to
be transformed to the opposite; the other is that
the transformed text should maintain semantic rel-
evance to the input text as much as possible.

Recently, there have been some researches
which focus on the work of editing a sentence to
alter specific attributes, like style and sentiment
(Shen et al., 2017; Hu et al., 2017). Typically,

1The code is available at https://github.com/
lancopku/SMAE

the parallel data with the same content but differ-
ent sentiment is not available. This line of work
attempts to extract the attribute-independent con-
tent from a dense sentence representation by ad-
versarial learning. However, it is hard to extract
the attribute-independent content in such implicit
ways, which makes these methods tend to generate
input-irrelevant texts.

Most existing methods can not reconcile the
performance of sentiment transformation and con-
tent preservation. Direct replacement of emotional
words can keep the context but may lead to low-
quality sentences. For example, given an input
“The food is cold like rock”, this method probably
outputs “The food is warm like rock”. State-of-
the-art models using neural networks struggle to
generate high-quality sentences. However, these
models usually lead to poor content preservation.
For instance, when the source text is “This is a
wonderful movie”, we expect an output like “This
movie is disappointing”. However, the generated
sentence may be “The waiters are very rude”,
which has little relevance to the source text. In
general, it is difficult to preserve semantic content
and reverse the sentiment at the same time without
parallel data.

To address this problem, we propose a novel
model which performs well in both sentiment
transformation and content preservation. Our
model first learns two kinds of sentiment mem-
ories by explicitly separating emotional words.
Then, according to the specific context, the model
extracts appropriate sentiment information from
the memory of target sentiment. The decoder
takes the extracted memory and the context rep-
resentation together to perform decoding. The
overview of our model is shown in Figure 1. The
main architecture of our model is a Sentiment-
Memory based Auto-Encoder (SMAE). The pro-
posed model achieves the state-of-the-art perfor-
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Pos Mem:

Content:
Input:

Output:friendly
delicious

disgusting
hate

The food is…

Neg Mem:

⋯

⋯

The food is 
delicious.
(positive)

The food is 
delicious.

The food is 
putrid.

Output:

learn memory

extract memory

extract memory

Figure 1: Illustration of the proposed model with a pos-
itive input. Solid and dashed lines indicate the training
process and the testing process, respectively. The pro-
cess with a negative input is in a similar way.

mance, especially improves content preservation
degree by a large margin.

Our contributions are concluded as follows:

• We propose a method that uses sentiment
memories to accomplish sentiment modifica-
tion without any help of the parallel data.

• The proposed method improves the content
preservation degree by a large margin when
compared with current systems.

2 Related Work

Recently, there has been some studies for senti-
ment modification. Shen et al. (2017) learn an en-
coder that maps a sentence with its original style to
a style-independent content representation. This is
then passed to a style-dependent decoder for ren-
dering. Fu et al. (2017) implement a multi-decoder
auto-encoder (Bengio et al., 2009; Dai and Le,
2015) where the encoder is used to capture the
content and the sentiment-specific decoders are
used to generate target sentence. Hu et al. (2017)
augment the unstructured variables z in vanilla
VAE with a set of structured variables c each of
which targets a salient and independent seman-
tic feature of sentences, to control sentence sen-
timent. However, all of these work attempt to im-
plicitly separate the non-emotional content from
the emotional information in a dense sentence rep-
resentation. Xu et al. (2018) explicitly filter out
emotional words. They use two sentiment-specific
decoders to attach sentiments to non-emotional
context. The decoders bear all the burdens to
generate sentiments. In our model, we use sen-
timent memories to assist generating sentiments
with only one decoder, which results in fewer pa-
rameters.

The proposed sentiment-memory based auto-
encoder (Bengio et al., 2009; Ma et al., 2018b)
learns the idea of memory network (Weston et al.,
2014; Sukhbaatar et al., 2015) but simplifies the
process. Our work is also related to the generation
tasks (Wang et al., 2017; Liu et al., 2018; Ma et al.,
2018a; Lin et al., 2018). These tasks usually gen-
erate texts that preserve main information of input
texts.

3 Proposed Model

We first use a variant of self-attention(Lin et al.,
2017; Kim et al., 2017) mechanism to distinguish
the emotional and non-emotional words. Then the
positive words and negative words are used to up-
date the corresponding memory modules. Finally,
the decoder uses the target sentiment information
extracted from the memory and the content repre-
sentation to perform decoding.

3.1 Emotional Words Detection Model

We first find the emotional words that have the
most discriminative power for sentiment polarity.
This work is done by training a sentiment classi-
fier with a simple self-attention mechanism. Here
the sequence of inputs {h1, ..., hT } are the hidden
states of a LSTM, running over the words in the
source sentence {x1, ..., xT }. The context vector
can then be computed using a simple sum:

c =
TX

t=1

at · ht (1)

where at denotes the attention weight of the t-th
word. The sentence vector c is then fed into a
fully connected layer to predict the sentiment po-
larity of the source text. Since the words with ob-
vious emotional tendencies will be given greater
weights compared to those non-emotional words
during training, at can be used to distinguish be-
tween emotional and non-emotional words.

The weights of standard attention mechanism
sum to 1. When there are several emotional words,
the sum 1 is distributed by these words. How-
ever, we expect that each emotional word has a
weight close to 1 to identify its sentiment attribute.
Hence, following (Kim et al., 2017), we modify
the calculation of attention weights as follows to
get more distinguishable weights:

at = sigmoid(vT
ht) (2)

where v is the parameter vector. The sigmoid
function follows our intention that giving each in-
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put word a distinguishable weight which is close
to 1 or 0. However, these weights falls between
0 and 1. They still can not thoroughly distin-
guish the emotional words from non-emotional
words without redundant information. Following
Xu et al. (2018), we map attention weights to dis-
crete values, 0 or 1, and we adopt their discrete
method. The weights greater than the averaged at-
tention value are assigned to 1 and the weights less
than the averaged attention value are assigned to 0.
The weight at after discretization is denoted as ât.
Then, ât can be regarded as the emotional word
identifier. 1 � ât becomes non-emotional word
identifier.

3.2 Sentiment-Memory Based Auto-Encoder

After the separation of emotional and non-
emotional words, the proposed SMAE is used
to process these two kinds of information. We
employ the seq2seq based auto-encoder. Both
the encoder and the decoder are LSTM networks
(Hochreiter and Schmidhuber, 1997).

If xi is a context word, then âi is 0, causing
(1� âi)xi to be xi. Therefore, the sequence {(1�
â1)x1, · · · , (1 � âT )xT } can be regarded as non-
emotional word embedding sequence. It is fed into
the LSTM encoder sequentially. we select hT in
the last state tuple (hT , cT ) of the encoder as the
content representation of the input.

Meanwhile, the embeddings of the emotional
words of the source text are used to update the
sentiment-memory. Since we have two kinds of
sentiments, positive and negative, we use M

pos 2
R

e⇥� and M
neg 2 R

e⇥� to denote the positive
memory and the negative memory, respectively. e
is the embedding size and � is a hyper-parameter
which controls the size of the memory.

We illustrate the following part by using posi-
tive input as an example. We first sum the embed-
ding of the emotional words to get a vector rep-
resentation of the emotional information, which is
denoted as s

pos 2 R
e. We then use a simple at-

tention mechanism to find the columns in M
pos

that are most closely related to the emotional in-
formation. The outer product of the transposition
of emotional information s

pos and the attention
weights w broadcasts the sentiment vector s

pos to
a matrix. Then, the matrix is added to the exist-
ing memory M

pos. Due to the attention weight
w, the columns that are most closely related to the
emotional information are updated more with the

sentiment information s
pos. Formally, we have:

s
pos =

TX

i=1

âi · xi (3)

w = softmax
�
(spos)T

M
pos

�
(4)

M
pos = M

pos + s
pos ⌦ w (5)

where ⌦ denotes the outer product.
Previous work employ two sentiment-specific

decoders to generate text based on the supposed
non-emotional representation. The decoders bear
all the burdens to generate sentiments. In our
model, we extract some sentiment information
from the sentiment-memories to assist decod-
ing. Intuitively, the context word “staff” is more
likely to be associated with the emotional word
“friendly”, and “food” is more likely to be asso-
ciated with “delicious”. So we use the context
vector s

con to extract the corresponding sentiment
memory that is more likely to be used in the future
decoding. The context vector s

con is represented
as the sum of the embedding of non-emotional
words. Then s

con is used to compute the attention
weights u over the columns of sentiment memory
matrix. We sum these weighted columns as the ex-
tracted memory m̃ and add m̃ to the last cell state
cT of the encoder:

s
con =

TX

i=1

(1 � âi) · xi (6)

u = softmax
�
(scon)T

M
pos

�
(7)

m̃ =
�X

j=1

uj · M
pos
j (8)

c̃T = cT + Wm̃ (9)
where uj denotes the j-th value in vector u, Mpos

j
denotes the j-th column of M

pos and W is the
parameter matrix. The new tuple (hT , c̃T ) then
acts as the initial state of the decoder.

The negative input is processed in the same way.
At the training stage, the decoder is encouraged to
restore the source text. Therefore, the cross en-
tropy loss function is optimized.

4 Experiments

4.1 Data Preprocessing

We use the Yelp Review Dataset (Yelp) provided
by Yelp Dataset Challenge2 to conduct experi-
ments. Each item is a sentence from the review

2https://www.yelp.com/dataset/
challenge
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Model ACC BLEU
CEA 71.96 2.77
MAE 74.59 5.45
SMAE 76.64 (+2.05) 24.00 (+18.55)

Table 1: Performance of the proposed method and
state-of-the-art systems.

on Yelp and is labeled as having either negative or
positive sentiment. We train a CNN sentence clas-
sifier (Kim, 2014) to filter examples with ambigu-
ous sentiment polarities (category probability <
0.8). The processed dataset contains 510K, 20K,
and 20K pairs for training, validation, and testing,
respectively. The classifier achieves an accuracy
of 94% on the processed dataset and is also used
to test transformation accuracy.

4.2 Experiment Settings

We tune our hyper-parameters on the development
set. The word embeddings are initialized ran-
domly with a size of 128. The hidden size of the
sentiment-memory based auto-encoder is 300. We
use Adam optimizer (Kingma and Ba, 2014) with
an initial learning rate set to 0.001 to train our
model and the batch size is set to 64. The hyper-
parameter � which controls the size of memory
matrix is 60.

4.3 Baselines

We compare our proposed method with two state-
of-the-art systems that have been used for senti-
ment modification. We run the released code on
our dataset.
Cross-aligned Auto-Encoder (CAE): This sys-
tem, proposed by Shen et al. (2017), uses a shared
latent content space across different sentiments
and leverages refined alignment of latent represen-
tations to perform sentiment modification.
Multi-decoder Auto-Encoder (MAE): This sys-
tem is proposed by Fu et al. (2017). They use a
multi-decoder seq2seq model (Bengio et al., 2009;
Dai and Le, 2015) where the encoder captures con-
tent information by adversarial learning (Goodfel-
low et al., 2014) and the sentiment-specific de-
coders are used to generate target sentences.

4.4 Results and Discussions

We use ACC to denote the transformation accu-
racy. Following Gan et al. (2017), we also com-
pute BLEU (Papineni et al., 2002) between the

Model Sentiment Content Fluency
CAE 6.55 4.46 5.98
MAE 6.64 4.43 5.36
SMAE 6.57 5.98 6.69

Table 2: Results of human evaluation.

Input: Very helpful and informative staff!
CAE: Worst service ever.
MAE: Very nice here and poor!
Proposed: Very rude and careless staff !
Input: I will never go here again.
CAE: I love this place here!
MAE: I had say this place here.
Proposed: I will never go anywhere else.
Input: The worst and would never recommend
anyone to use them.
CAE: The best place I ’ve been to go here!
MAE: The first experience is so happy and nice.
Proposed: The best and would definitely rec-
ommend anyone to use them.

Table 3: Examples generated by the proposed method
and baselines. In comparison, our model changes the
sentiment of inputs with higher semantic relevance.

output and the source text to evaluate the con-
tent preservation degree. A high BLEU score pri-
marily indicates that the system can correctly pre-
serve content by retaining the same words from
the source sentence.

The experimental results of our proposed model
and the baselines are shown in Table 1. Both base-
line models have low BLEU score but high ac-
curacy, which indicates that they may be trapped
in a situation that they simply output a sentence
with the target sentiment regardless of the content.
The main reason is that these methods using adver-
sarial learning attempt to implicitly separate the
emotional information from the context informa-
tion in a sentence vector. However, without paral-
lel data, it is difficult to achieve such a goal. Our
proposed SMAE model takes advantage of self-
attention mechanism and explicitly removes the
emotional words, leading to a significant improve-
ment of content preservation and the state-of-the-
art performance in terms of both metrics.

We also involve human evaluation to measure
the quality of generated text. Each item contains
an input and three outputs generated by different
systems. Then 200 items are distributed to 2 an-
notators with linguistic background. The annota-
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Models ACC BLEU
SMEA 76.64 24.00
SMEA (w/o memories) 14.08 26.09

Table 4: Ablation test of memory module.

The staff here is very rude.
It really is n’t worth coming here .
Very pleased with this business.
Been here once and loved going here.

Table 5: The effectiveness of the memory module with
examples. The red words are absent in the input but
generated with the help of sentiment memories.

tors have no idea about which system the output is
from. They are asked to score the output on three
criteria on a scale from 1 to 10: the transformed
sentiment degree, the content preservation degree,
and the fluency. Table 2 shows the evaluation re-
sults. Our model has obvious advantage over the
baseline systems in content preservation, and also
performs well in other aspects.

Several randomly selected examples generated
by different models are shown in Table 3. These
examples clearly show our proposed model can
generate sentences that are more semantically rel-
evant to the input text compared to the baselines.

4.5 Effectiveness of Sentiment-Memories

To verify the effectiveness of the memory mod-
ule of our model, we conduct ablation study by
excluding the sentiment-memory module. The re-
sult is shown in Table 4. According to the re-
sult, the complete model achieves an improve-
ment of 62.56% on transformation accuracy over
the model that excludes the sentiment memories,
which means the sentiment memories are key
components to ensure successful sentiment mod-
ification. In addition, several examples are shown
in Table 5 to visually demonstrate the effective-
ness of the memory module. we can find that the
proposed model is capable of generating appro-
priate emotional words (red words in Table 5) to
adapt different contexts.

4.6 Error Analysis

To better interpret our model, we also analyze the
failure examples whose sentiments are not trans-
formed. We observe that in most cases, these in-
puts do not have emotional tendencies. Although
we have filtered the sentiment-ambiguous exam-

ples in preprocessing, there are still a few am-
biguous inputs such as “What can I say ?” and
“Been here twice.”. Since our model tries to pre-
serve non-emotional content. These words are
easily kept and then the decoder barely depends on
sentiment-memories. Thus, it is difficult to handle
the sentiment transformation with these examples.

5 Conclusion

In this paper, we propose a model that first learns
sentiment memories without parallel data and then
automatically extracts sentiment information to
adapt different contexts when decoding. Exper-
imental results show that our method substan-
tially improves the content preservation degree
and achieves the state-of-the-art performance.
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Abstract

In this work, we propose a new model for
aspect-based sentiment analysis. In contrast to
previous approaches, we jointly model the de-
tection of aspects and the classification of their
polarity in an end-to-end trainable neural net-
work. We conduct experiments with di↵erent
neural architectures and word representations
on the recent GermEval 2017 dataset. We were
able to show considerable performance gains
by using the joint modeling approach in all set-
tings compared to pipeline approaches. The
combination of a convolutional neural network
and fasttext embeddings outperformed the best
submission of the shared task in 2017, estab-
lishing a new state of the art.

1 Introduction

Sentiment analysis (Pang and Lee, 2008) is the au-
tomatic detection of the sentiment expressed in a
piece of text. Typically, this is modeled as a clas-
sification task with at least two classes (positive,
negative), sometimes extended to three (neutral) or
more fine-grained categories. Aspect-based senti-
ment analysis (ABSA) aims at a finer analysis, i.e.
it requires that certain aspects of an entity in ques-
tion be distinguished and the sentiment be classi-
fied with regard to each of them. An example can
be seen in Figure 1.

This introduces several new challenges. First,
labeled data, which are needed to train statistical
models, are more di�cult to obtain. Therefore
the amount of available training data is limited.
Thus a good model for ABSA has to make the
best possible use of the available data. Second,
the detection of the subset of aspects that occur in
a given piece of text is non-trivial. Errors intro-
duced at this stage severely limit the performance
on the overall ABSA task. Third, the general sen-
timent and the sentiment of each aspect can each

German: Alle so “Yeah, Streik beendet” Bahn
so “Okay, dafür werden dann natürlich die Tick-
ets teurer” Alle so “Können wir wieder Streik
haben?”

Translation: Everybody’s like “Yeah, strike’s
over” Bahn goes “Okay, but therefore we’re go-
ing to raise the prices” Everybody’s like “Can we
have the strike back?”

General sentiment: neutral
Aspect sentiment: Ticket purchase:negative

General:positive

Figure 1: Example sentence with contained aspects and
their polarity.

be completely di↵erent from each other (cf. Fig-
ure 1). This means that a model has to be able to
distinguish aspects in the text and make indepen-
dent decisions for each of them.

We want to address each of these challenges by
(1) leveraging unlabeled data by modeling word
representations and (2) modeling aspect detection
and classification of their polarity jointly in an
end-to-end trainable system.

We evaluate our approach on the GermEval
2017 data, i.e. customer reviews about Deutsche
Bahn AG on social media. We particularly address
subtask C as the typical setting where two pieces
of information have to be detected from raw text:

1. Which aspects are mentioned?

2. For each mentioned aspect, what is the polar-
ity of its sentiment?

From the new state-of-the-art results we obtain,
we conclude that modeling of word representa-
tions and joint modeling of aspects and polarity
have not yet received the attention they deserve.
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2 Related Work

Two recent shared tasks address ABSA: SemEval
2016 Task 5 (Pontiki et al., 2016) and GermEval
2017 (Wojatzki et al., 2017). The SemEval dataset
is extremely small. The English laptop reviews,
e.g., only contain 395 training instances for the
prediction of 88 aspect categories and their po-
larities. Because of this sparsity, top-ranked sys-
tems rely on feature engineering and hand-crafted
rules. GermEval is a larger dataset (~20K train-
ing instances, 20 aspect categories) and thus suited
for our goal of evaluating the quality of fully au-
tomatic methods for learning aspect and polarity
predictions. Furthermore the top systems at Se-
mEval 2016, XRCE (Brun et al., 2016) and IIT-
TUDA (Kumar et al., 2016), not only rely heavily
on feature engineering but also separate the tasks
of aspect detection and aspect polarity classifica-
tion into two di↵erent parts of their pipeline.

The winners of GermEval 2017 rely on neural
methods (Lee et al., 2017). They try to link all as-
pects to a sequence of tokens and model the task as
a sequence labeling problem. This leads to prob-
lems because some aspects are not assigned to any
token but still have to be detected and classified.
Our approach always considers the complete doc-
ument and produces the set of all detected aspects
at once. Although Lee et al. (2017) incorporate
some aspects of multi-task learning, the predic-
tion of aspect category and polarity remains sep-
arated in each of their approaches. In our work,
we show that a joint learning of these two tasks
achieves better performance. The approach by Lee
et al. (2017) also relies more heavily on external
sources than ours. While we only collected a cor-
pus of ~113K unlabeled German tweets, Lee et al.
(2017) include annotated English data as well as a
much larger unlabeled German corpus (Wikipedia,
cf. Al-Rfou et al. (2013)) in their setting.

Ruder et al. (2016) propose another neural
model for ABSA. Similarly to the approaches
mentioned above, they assume that aspects have
already been detected by some other system in a
pipeline architecture, and they concentrate on po-
larity classification on the sentence level by unify-
ing information from other sentences on the docu-
ment level. We compare ourselves to this baseline
and show improvements over pipeline approaches.

3 Proposed Model

3.1 Embedding Algorithm
Word2vec skip-gram (Mikolov et al., 2013) is a
widely used algorithm to obtain pretrained vector
representations for input words. Notably, Lee et al.
(2017) use it for their experiments on the Germ-
Eval data. FastText (Grave et al., 2017) works in
a similar fashion but has the advantage of incor-
porating subword information in the embedding
learning process. So it can not only learn sim-
ilar embeddings for word forms sharing a com-
mon stem but also generate embeddings for un-
seen words in the test set by combining the learned
character ngram embeddings. This can be cru-
cial when dealing with a morphologically rich lan-
guage such as German. Glove (Pennington et al.,
2014) — similar to word2vec — does not incor-
porate character-level information, but uses global
rather than local information to learn its word em-
beddings.

We have trained each of these embedding learn-
ing algorithms on a corpus of ~113K tweets men-
tioning at least one of @DB info and @DB Bahn,
two o�cial accounts of Deutsche Bahn AG o↵er-
ing information and replying to questions. We col-
lected these tweets specifically to build a docu-
ment collection that is closely related to the do-
main of GermEval 2017. We also included the
GermEval training set for the embedding training.

3.2 Pipeline LSTM (baseline)
We compare our proposed approach to the model
described in (Ruder et al., 2016). They first encode
each sentence with glove word embeddings and
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997). Then this output is concatenated with
an embedding of the aspect addressed in the cur-
rent sentence and finally fed in a document-level
BiLSTM. As we are dealing with social media
texts, our documents are already very short. So
we do not split them into shorter units (sentences).
Therefore the second hierarchy level of (Ruder
et al., 2016), that combines the output of consec-
utive sentences in a document, is superfluous and
omitted in our experiments. In all other aspects
— including hyperparameters — we do as (Ruder
et al., 2016), i.e. we duplicate a tweet for each
aspect detected in it, concatenate an aspect em-
bedding of size 15 to the output of the BiLSTM
encoder, use dropout of 0.5 after the embedding
layer and after LSTM cells, and apply a gradient
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clipping norm of 5. As Ruder et al. (2016) rely
on the detected aspects to be given at test time,
for a realistic comparison, we feed in the aspects
as detected by the strong GermEval baseline sys-
tem based on support vector machines. The so ob-
tained system serves as our first baseline, repre-
senting a state-of-the-art pipeline system.

3.3 End-to-end LSTM
We modify the pipeline model described in the
last section as follows: the aspect detection is in-
tegrated into the neural network architecture per-
mitting an end-to-end optimization of the whole
model during training. This is achieved by for-
matting the classifier output as a vector z 2
{ 0, 1, 2, 3 }|A|, where A is the set of all 20 aspects
(e.g., General, Ticket purchase, Design, Safety,
. . . ). This corresponds to predicting one of the
four classes N/A, positive, negative and neutral for
each aspect. Specifically, we obtain a hidden rep-
resentation of an input document X in the follow-
ing manner:

v = DO(BiLSTM(DO(embed(X)))) (1)

where embed 2 {word2vec, glove, fasttext }
and DO = dropout (Hinton et al., 2012).
The design choices for the BiLSTM in this step
remain the same as in the baseline model.

Then, we transform the feature vector v ex-
tracted from the text X to a score vector ŷ(a) for
each aspect a 2 A and apply softmax normaliza-
tion:

ŷ(a) = softmax(W(a)v + b(a)) (2)

where

softmax(x)i =
exp(xi)

P3
k=0 exp(xk)

for i = 0, . . . , 3 (3)

Thus for each aspect, we predict its presence or
absence as well as its polarity in one step:

z(a) = arg max
i

ŷ(a)
i (4)

The loss is simply the cross entropy summed over
all aspects:

L(✓) =
X

a2A
H(y(a), ŷ(a)) (5)

with
H(y, ŷ) = �

X

i

yi · log(ŷi) (6)
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Figure 2: Schematic view of end-to-end CNN architec-
ture.

3.4 End-to-End CNN
Keeping the formalization as an end-to-end task,
we replace the BiLSTM by a convolutional neu-
ral network (CNN) as described in (Kim, 2014).
As in their setting CNN-non-static, we use 300-
dimensional word embeddings, a max-over-time
pooling operation, filter sizes of 3, 4, 5, and
dropout with a rate of 0.5 (as before). We use
ReLu ( f (x) = max(0, x)) as our activation func-
tion, and 300 filters of each size, a number also
found in related work on sentiment analysis (dos
Santos and Gatti, 2014). Following (Kim, 2014),
we do not apply dropout after the embedding
layer:

v = DO(CNN(embed(X))) (7)

With Equation 7 replacing Equation 1, the aspect-
wise classification for the end-to-end CNN then
follows the same definitions as described in the
previous section.

3.5 Pipeline CNN
In order to compare the e↵ects of joint end-to-
end and pipeline approaches across neural archi-
tectures, we also include an experiment where the
CNN model from the previous section replaces the
BiLSTM in the pipeline setting described in sec-
tion 3.2.
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4 Experiments

We conduct our experiments on the GermEval
2017 data (Wojatzki et al., 2017), i.e. customer
feedback about Deutsche Bahn AG on social me-
dia, microblogs, news, and Q&A sites. The data
were collected over the time of one year and manu-
ally annotated, resulting in a main dataset of about
26K documents, divided into a training, develop-
ment, and test set using a random 80%/10%/10%
split. About 1,800 documents from the last 3
months of the data collection period constitute a
diachronic test set that can be used to test the ro-
bustness of a system over time. We keep the pro-
posed data split and filter out training instances
where the same aspect category was assigned two
di↵erent polarity classes (which a↵ects approxi-
mately 4% of the data). The development and test
data remain the same.

We choose our hyperparameters based on the
development data using the following procedure:
we train initial models with a hyperparameter
setting based on values we found in the liter-
ature, stochastic gradient descent with a learn-
ing rate of 0.01 (as in dos Santos and Gatti
(2014)) and a mini-batch size of 10 (as in Ruder
et al. (2016)). For the best-performing CNN and
LSTM architectures (end-to-end + fasttext), we
then refine the learning rate and batch size on
the development data using random search in the
range { 0.001, 0.003, 0.01, 0.03, 0.1 } for learning
rate and { 5, 10, 20 } for batch size. For the CNN
setting, this results in a learning rate of 0.03 and a
batch size of 5 (which we then use for all CNN
architectures in the final experiments). For the
LSTM setting, this results in a learning rate of 0.01
and a batch size of 10 (which we then use for all
LSTM architectures).

Training our models takes between 1-3 minutes
per epoch on a GeForce GTX 1080 GPU, the end-
to-end CNN being the fastest model to train.

5 Discussion

Aspect polarity Table 1 shows the results of our
experiments, as well as the results of our strong
baselines. Note that the majority class baseline al-
ready provides good results. This is due to highly
unbalanced data; the aspect category “Allgemein”
(“general”), e.g., constitutes 61.5% of the cases.
This imbalance makes the task even more chal-
lenging.

Over all architectures, we observe a comparable

or better performance when using fasttext embed-
dings instead of word2vec or glove. This backs
our hypothesis that subword features are important
for processing the morphologically rich German
language. Leaving everything else unchanged, we
can furthermore see an increase in performance
for all settings, when switching from the pipeline
to an end-to-end approach. The best performance
(marked in bold) is achieved by a combination
of CNN and FastText embeddings, which outper-
forms the highly adapted winning system of the
shared task.

Aspect category only Even though our archi-
tectures are designed for the task of joint predic-
tion of aspect category and polarity, we can also
evaluate them on the detection of aspect categories
only. Table 2 shows the results for this task. First
of all, we can see that the SVM-based GermEval
baseline model has very decent performance as it
is practically on par with the best submission for
the synchronic and even outperforms the best sub-
mission on the diachronic test set. It is therefore
well-suited to serve as input to the pipeline LSTM
model we compare with in our main task.

Comparing our architectures, we see again that
fasttext embeddings always lead to equal or better
performance. And even though we do not directly
optimize our models for this task only, our best
model (CNN+fasttext) outperforms all baselines,
as well as the GermEval winning system.

Impact of domain-specific corpus We compare
the domain-specific FastText embeddings to Fast-
Text embeddings trained on Wikipedia1, which is
approximately 100 times the size of our domain-
specific corpus. We report the results in Ta-
ble 3. The embeddings trained on Wikipedia
show slightly lower performance on the dev set
but slightly higher or equal performance on the
test sets. We conclude that the main positive im-
pact of FastText stems from its capability to model
subword information and that a large domain-
independent corpus or a small domain-specific
corpus lead to similar performance gains.

6 Conclusion

We have presented a new approach to ABSA.
By solving the two classification problems (aspect

1Downloaded from https://github.com/
facebookresearch/fastText/blob/master/
pretrained-vectors.md.
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development set synchronic test set diachronic test set
Pipeline LSTM + word2vec .350 .297 .342
End-to-end LSTM + word2vec .378 .315 .383
Pipeline CNN + word2vec .350 .298 .343
End-to-end CNN + word2vec .400 .319 .388
Pipeline LSTM + glove .350 .297 .342
End-to-end LSTM + glove .378 .315 .384
Pipeline CNN + glove .350 .298 .342
End-to-end CNN + glove .415 .315 .390
Pipeline LSTM + fasttext .350 .297 .342
End-to-end LSTM + fasttext .378 .315 .384
Pipeline CNN + fasttext .342 .295 .342
End-to-end CNN + fasttext .511 .423 .465
majority class baseline – .315 .384
GermEval baseline – .322 .389
GermEval best submission – .354 .401

Table 1: Results on the GermEval data, aspect + sentiment task. Micro-averaged F1-scores for both aspect
category and aspect polarity classification as computed by the GermEval evaluation script. In the bottom part of
the table, we report results from (Wojatzki et al., 2017).

development set synchronic test set diachronic test set
End-to-end LSTM + word2vec .517 .442 .455
End-to-end CNN + word2vec .521 .436 .470
End-to-end LSTM + glove .517 .442 .456
End-to-end CNN + glove .537 .457 .480
End-to-end LSTM + fasttext .517 .442 .456
End-to-end CNN + fasttext .623 .523 .557
majority class baseline – .442 .456
GermEval baseline – .481 .495
GermEval best submission – .482 .460

Table 2: Micro-averaged F1-scores for the prediction of aspect categories only (i.e. without taking polarity into
account at all) as computed by the GermEval evaluation script. The results in the bottom part of the table are taken
from (Wojatzki et al., 2017).

dev synchr. test diachr. test
aspect + sent. .502 .423 .465
aspect only .610 .544 .571

Table 3: Results of the end-to-end CNN model with
fasttext embeddings trained on the German Wikipedia.

categories + aspect polarity) inherent to ABSA
in a joint manner, we observe significant perfor-
mance gains for both of these tasks on the Germ-
Eval 2017 data. Our experiments also showed that
word representations leveraging subword informa-
tion are crucial for a challenging task like ABSA
in a morphologically rich language, such as Ger-
man. Furthermore we observed consistently bet-
ter performance of CNN architectures in otherwise

comparable scenarios, which suggests that CNNs
cope better with the irregularities of user-written
texts on social media, a research question we leave
to future work. By establishing a new state of the
art in aspect detection and polarity classification,
we provide a new practical baseline for future re-
search in this area.
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Abstract

We explore two methods for representing au-
thors in the context of textual sarcasm detec-
tion: a Bayesian approach that directly rep-
resents authors’ propensities to be sarcastic,
and a dense embedding approach that can learn
interactions between the author and the text.
Using the SARC dataset of Reddit comments,
we show that augmenting a bidirectional RNN
with these representations improves perfor-
mance; the Bayesian approach suffices in ho-
mogeneous contexts, whereas the added power
of the dense embeddings proves valuable in
more diverse ones.

1 Introduction

Irony and sarcasm1 are extreme examples of
context-dependence in language. Given only the
text Great idea! or What a hardship!, we cannot
resolve the speaker’s intentions unless we have in-
sight into the circumstances of utterance – who
is speaking, and to whom, and how the content
relates to the preceding discourse (Clark, 1996).
While certain texts are biased in favor of sarcas-
tic uses (Kreuz and Caucci, 2007; Wallace et al.,
2014), the non-literal nature of this phenomenon
ensures that there is an important role for prag-
matic inference (Clark and Gerrig, 1984).

The current paper is an in-depth study of one
important aspect of the context dependence of sar-
casm: the author. Our guiding hypotheses are that
authors vary in their propensity for using sarcasm,
that this propensity is influenced by more general
facts about the context, and that authors have their
own particular ways of indicating sarcasm. These
hypotheses are well supported by psycholinguis-
tic research (Colston and Lee, 2004; Gibbs, 2000;
Dress et al., 2008), but our ability to test them

1We use “sarcasm” to include both sarcasm and irony, as
the two are generally conflated in the literature we review.

Yeah great idea
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BiGRU 
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x3
f

x3
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‘WiseGuy33’

Hidden
layer(s)

Sarcastic!

Sigmoid
layer

Figure 1: The model architecture. Look-ups are indi-
cated by arrows, dense connections by diamonds. The
author embedding can be null (a text-only baseline), a
prior reflecting the author’s propensity for sarcasm, or
a learned embedding. There are potentially multiple
layers between the initial example embedding and the
output sigmoid layer.

at scale has until recently been limited by avail-
able annotated corpora. With the release of the
Self-Annotated Reddit Corpus (SARC), Khodak
et al. (2017) have helped to address this limitation.
SARC is large and diverse, and its distribution of
users across comments and forums makes it par-
ticularly well suited to modeling authors and their
relationship to sarcasm.

Our core model of comment texts is a bidirec-
tional RNN with GRU cells. To model authors,
we propose two strategies for augmenting these
RNN representations: a simple Bayesian method
that captures only an author’s raw propensity for
sarcasm, and a dense embedding method that al-
lows for complex interactions between author and
text (Figure 1). We find that, on SARC, the simple
Bayesian approach does remarkably well, espe-
cially in smaller, more focused forums. On the full
SARC dataset, author embeddings are able to en-
code more kinds of variation and interaction with
the text, and thus they achieve the highest predic-
tive accuracy. These findings extend and reinforce
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the prior work on user-level modeling for sarcasm
(Section 2), and they indicate that simple represen-
tation methods are effective here.

2 Previous Work

A substantial literature exists around sarcasm de-
tection. Many of the prior studies focus on the
analysis of Twitter posts, which lend themselves
well to sarcasm detection with NLP methods be-
cause they are available in large quantities, they
tend to correspond roughly to a single utterance,
and users’ hashtags in tweets (e.g., #sarcasm,
#not) can provide imperfect but useful labels. A
central theme of this literature is that bringing in
contextual features helps performance.

González-Ibánez et al. (2011) trained classifiers
using a combination of lexical and pragmatic fea-
tures, including emoticons and whether the user
was responding to another tweet (see also Felbo
et al. 2017). Bamman and Smith (2015) extend
this kind of analysis with additional information
about the context. Of special interest here are their
contextual features: the author’s historical senti-
ment, topics, and terms; the addressee; and fea-
tures drawn from historical interactions between
the author and addressee. The study finds most
features to be useful, but a model trained on the
tweet and author features alone achieved essen-
tially the same performance (84.9% accuracy) as
a model trained on all features (85.1%).

In a similar vein, Rajadesingan et al. (2015)
used a complex combination of features from
users’ Twitter histories, including sentiment,
grammar, and word choice, as inputs into their
model, and report a ⇡7% gain in classification ac-
curacy upon adding these features to a baseline n-
gram classifier.

Recent papers have also applied deep learning
methods to detecting sarcastic tweets. Poria et al.
(2016) use a combination convolutional–SVM ar-
chitecture with auxiliary sentiment input features.
The architecture of Zhang et al. (2016) includes an
RNN, and uses contextual features as well as tweet
text for inputs.

Amir et al. (2016) extend the work of Bamman
and Smith by generating author embeddings to re-
flect users’ word-usage patterns (but not sarcasm
history) in a manner similar to the paragraph vec-
tors introduced by Le and Mikolov (2014). With
the inclusion of these embeddings, their convolu-
tional neural network (CNN) achieves a 2% gain

in accuracy over that of Bamman and Smith.
Ghosh and Veale (2017) present a combination

CNN/LSTM (long short-term memory RNN) ar-
chitecture that takes as inputs user affect inferred
from recent tweets as well as the text of the tweet
and that of the parent tweet. When a tweet was
addressed to someone by name, the name of the
addressee was included in the text representation
of the tweet, providing a loose link between in-
terlocutors (West et al., 2014) and a ⇡1% gain in
performance for some data sets.

There has also been a small amount of previ-
ous work on Reddit data for sarcasm (Tay et al.,
2018; Ghosh and Muresan, 2018). Wallace et al.
(2014) explore a hand-labeled dataset of ⇡3K
Reddit comments from six subreddits. They report
that, when human graders attempted to mark com-
ments as sarcastic or not sarcastic, they needed
additional context like subreddit norms and au-
thor history roughly 30% of the time, and that the
comments which graders found ambiguous were
largely the same as those on which a baseline bag-
of-words classifier tended to make mistakes. In a
follow-up study, Wallace et al. (2015) find that se-
mantic cues for sarcasm differ by subreddit, and
they show classifier accuracy gains when model-
ing subreddit-specific variation.

The work that is closest to our own is that of
Hazarika et al. (2018), who also experiment on the
SARC dataset. Their model learns author, forum,
and text embeddings, and they show that all three
kinds of representation contribute positively to the
overall performance. We take a much simpler ap-
proach to author embeddings and do not include
forum embeddings, and we report comparable per-
formance (Section 6). We take this as further indi-
cation of the value of author features for modeling
sarcasm.

3 The SARC Dataset

The Self-Annotated Reddit Corpus (SARC) was
created by Khodak et al. (2017).2 It includes
an unprecedented 533M comments. The corpus
is self-annotated in the sense that a comment is
considered sarcastic if its author marked it with
the “/s” tag. As a result, the positive examples
are essentially those which the authors considered
ambiguous enough to explicitly tag as sarcastic,
meaning that the prediction problem is actually to
identify which comments are not only sarcastic but

2http://nlp.cs.princeton.edu/SARC/2.0/
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Comments % sarcastic

Entire corpus (bal.) 257,082 50.00

r/politics (bal.) 13,668 50.00
r/politics (unbal.) 309,925 3.06

r/AskReddit (bal.) 11,660 50.00
r/AskReddit (unbal) 1,548,803 0.53

Table 1: Basic statistics for SARC.

both sarcastic and not obviously so.
The dataset is filtered in numerous ways, and

has good precision (only ⇡1% false positive rate)
but poor recall (2% false negatives relative to
0.25% true positives, or ⇡11% recall). To alle-
viate the issues caused by low recall, the dataset
also includes a balanced sample, where comments
are supplied in pairs, both responding to the same
parent comment and with exactly one of the two
tagged as sarcastic. All comments are accompa-
nied with ancestor comments from the original
conversation, author information, and a score as
voted on by Reddit users.

This dataset presents numerous advantages for
sarcasm detection. For one, it is vastly larger than
past sarcasm datasets, which enables the training
of more sophisticated models. In addition, most
work in sarcasm detection has focused on tweets,
which are very short and tend to use abbreviated
and atypical language. Reddit comments are not
constrained by length and are therefore more rep-
resentative of how people typically write. Finally,
Reddit is organized into topically-defined commu-
nities known as subreddits, each of which has its
own community norms and linguistic patterns. By
making available large amounts of data from a
number of subreddits, SARC facilitates the com-
parative analysis of subreddits, and more gener-
ally provides a view into the differences between
communities.

Table 1 provides basic statistics on the entire
corpus as well as the subreddits that we focus on
in our experiments.

4 Models

Our baseline model is a bidirectional RNN with
GRU cells (BiGRU; Cho et al. 2014). We tried
variants with LSTM cells and did not observe a
significant difference in performance. We there-
fore chose to use GRU cells as the model with

fewer parameters.3

The inputs to the BiGRU model are users’ com-
ments, which are split into words (and in the case
of conjunctions, subwords) and punctuation marks
and are converted to word vectors. The final states
of the two directions of the BiGRU are concate-
nated with each other and run through either a
single fully-connected linear layer or two fully-
connected linear layers with a rectified linear unit
in between. The output of the final linear layer
is fed through a sigmoid function which outputs
the estimated probability of sarcasm. This base-
line does not take author information into account:
for each comment, only the words of the comment
are considered as inputs.

The Bayesian prior model extends the Bi-
GRU with the sarcastic and non-sarcastic com-
ment counts for authors seen in the training data,
which serves as a prior for sarcasm frequency.
This version of the model takes as inputs both a
representation of the comment and the author rep-
resentation xauthor 2 Z

2
�0 to estimate the proba-

bility of sarcasm. The model can be interpreted
as computing a posterior probability of sarcasm
given both the comment and the prior of previous
sarcastic and non-sarcastic comment counts – au-
thor modeling reduced to a Bernoulli prior. For
previously unseen authors, xauthor is set to (0, 0).

The author embedding approach extends the
baseline BiGRU in a more sophisticated way.
Here, each author seen in the training data is asso-
ciated with a randomly initialized embedding vec-
tor xauthor 2 R

15, which is then provided as an
input to the model along with a representation of
the words of the comment. A special randomly
initialized vector xUNK is used for previously un-
seen authors. The author embeddings are updated
during training, with the goal of learning more so-
phisticated individualized patterns of sarcasm than
the Bayesian prior allows. We experimented with
training the xUNK vector on infrequently-seen au-
thors (fewer than 5 comments in the training set)
instead of using a random vector, and found some
suggestions of improved performance. However,
as the differences in performance were not sub-
stantial enough to change the relative performance
of the different models, we report the results for
the simpler random-xUNK model.

3Our models and associated experiment code are
available at https://github.com/kolchinski/
reddit-sarc
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5 Experiments

We conducted three sets of experiments, one for
each model, to evaluate the effectiveness of the
different approaches to author modeling. Each set
of experiments was conducted on five datasets: the
balanced version of the entire corpus as well as the
balanced and unbalanced versions of the r/politics
and r/AskReddit subcorpora (Table 1).

In all cases, the raw comment data was tok-
enized into words and punctuation marks, with
components of contractions treated as individual
words. We mapped tokens to FastText embed-
ding vectors which had been trained, using sub-
word infomation, on Wikipedia 2017, the UMBC
webbase corpus, and the statmt.org news dataset
(Mikolov et al., 2018). While vectors existed for
nearly 100% of tokens generated, exceptions were
mapped to a randomly initialized UNK vector.

All models were trained with early stopping on
a randomly partitioned holdout set of either 5% of
the data for balanced subreddit corpora or 1% for
the others. The performance of the model, as used
for hyperparameter tuning, was evaluated against a
second holdout set, generated in the same manner
as the first holdout set but disjoint from both it and
the portion of the data used for training.

Hyperparameters were tuned to maximize
model performance as evaluated in this manner,
starting with a randomized search process and
fine-tuned manually. The final evaluation was con-
ducted against the test set, with a single randomly
partitioned holdout set from the training data again
used for early stopping. We applied dropout (Sri-
vastava et al., 2014) during training before and be-
tween all linear layers. For additional regulariza-
tion, we also applied an l2-norm penalty to the lin-
ear weights but not to the GRU weights.

We attempted other model variations, including
multiple GRU layers and an attention mechanism
for GRU outputs, but did not observe any gains in
performance from the larger models.

6 Results and Discussion

6.1 Quantitive assessment

Table 2 reports the means of 10 runs to control
for variation deriving from randomness in the op-
timization process (Reimers and Gurevych, 2017).

Where there is overlap between our experiments
and those of Hazarika et al. (2018) (CASCADE),
our model is highly competitive. We slightly

under-perform on the full balanced dataset but
come out ahead on r/politics. This is striking be-
cause our model makes use of much less informa-
tion. First, unlike CASCADE, we do not have fo-
rum embeddings. Second, CASCADE author em-
beddings involve extensive feature engineering in-
cluding “stylometric” and “personality” features.
Our author embeddings, on the other hand, are
either simple empirical estimates (Bayesian pri-
ors) or learned embeddings with random initializa-
tions, in both cases allowing simpler model spec-
ification and training, and more flexibility on the
task for which they are used.

There is also evidence that the BiGRU yields
better representations of texts than does Hazarika
et al.’s CNN-based model. Our ‘No embed’ model
is akin to their CASCADE with no contextual fea-
tures, which achieves only 0.66 on the full bal-
anced corpus and 0.70 on the r/politics balanced
dataset. Both numbers are well behind our ‘No
embed’. Unfortunately, we do not have space for
a fuller study of the similarities and differences be-
tween our model and CASCADE.

Both of our methods for representing authors
perform well. This is perhaps especially strik-
ing for the unbalanced experiments, where the
percentage of sarcastic comments is tiny (Ta-
ble 1). The two methods perform differently on
individual forums than on the full dataset. For
the r/politics and r/AskReddit communities, the
Bayesian priors give the best results. The situa-
tion is reversed for the full dataset, where the high-
dimensional embeddings outperform the Bayesian
priors. This likely reflects two interacting fac-
tors. First, with smaller, more focused forums, it
is harder to learn good author embeddings, so the
simple prior is more reliable. Second, on the full
dataset, there are more examples, and also more
complex interactions between authors and their
texts, so the added representational power of the
embeddings proves justified.

6.2 Qualitative comparisons

Table 3 provides example predictions from the dif-
ferent models. Each example is taken from the
holdout set of a run in which all three models were
trained on the same training set and evaluation was
conducted on the same holdout set.

For both sarcastic and non-sarcastic comments,
author modeling can be helpful for disambigua-
tion. For instance, in examples 1 and 2, omitting
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r/politics r/AskReddit
Full balanced balanced unbalanced balanced unbalanced

No embed 74.8 [74.6, 74.9] 74.3 [74.1, 74.6] 58.7 [58.2, 59.1] 64.3 [63.4, 65.2] 56.9 [56.6, 57.2]
Bayesian prior 74.0 [73.7, 74.3] 77.6 [77.4, 77.9] 64.7 [64.6, 64.8] 69.1 [68.8, 69.4] 57.7 [57.6, 57.7]
15d embed 75.3 [74.8, 75.7] 75.1 [74.4, 75.8] 62.0 [59.9, 63.9] 66.0 [65.1, 66.8] 57.1 [56.6, 57.6]

Khodak et al. (2017) 75.8 76.5 27.0 – –
CASCADE 77.0 75.0 – – –

Table 2: Mean macro-averaged F1 scores with bootstrapped 95% confidence intervals, based on 10 runs. CAS-
CADE is the best system of Hazarika et al. (2018), and we report the strongest baseline numbers established by
Khodak et al. (2017).

Model Predictions of p(sarcastic)
Reddit comment Sarcastic? No user rep. Bayesian Multidimensional

1. Good thing Trump is going to bring
back all those low education high pay-
ing jobs.

Yes .45 .68 .84

2. lol woops! No .78 .36 .25

3. The most ubiquitous undergarments I
see these days.

Yes .15 .17 .79

4. Such a deep confession, and it doesn’t
sound like the guy who wrote it is an
asshole at all.

Yes .33 .45 .86

5. It’s not entirely impossible that there
are recipe’s that have yet to be discov-
ered.

No .23 .23 .81

Table 3: Examples selected to highlight differences between the models.

author modeling led to incorrect predictions, but
including the frequency of the author’s sarcasm
use alone was enough to change the prediction
from incorrect to correct.

In cases like examples 3 and 4, where the
Bayesian prior was insufficient, including a model
of the author’s individualized patterns of sarcasm
was much more powerful. That said, the more
complex embedding model can misfire, as in ex-
ample 5, where the simpler models make a correct
prediction but it does not. This appeared to happen
more for non-sarcastic examples, where the em-
bedding model would occasionally strongly influ-
ence the predicted probability of sarcasm upward.
Evidently, authors have more individualized pat-
terns of sarcasm than of non-sarcasm.

Judging by the relative performance of the
Bayesian and multidimensional-embedding mod-
els (Table 2), the multidimensional model wins
more disagreements than it loses with the

Bayesian model when there is more training data
available. However, when there is not, it overfits
to such a degree that its predictions of authors’
sarcasm patterns are less useful than the Bayesian
approach. This suggests a future direction of ex-
ploration: the most useful model of all may be
one that expands in complexity for authors with
more examples available, and shrinks for those
who have fewer.

7 Conclusion

This paper evaluated two data-driven methods for
modeling the role of the author in sarcasm detec-
tion. Both prove effective. As shown by Hazarika
et al. (2018), similar techniques can be extended
to other aspects of the context. While our ex-
periments did not support adding these represen-
tations, we think listeners rely on them as well,
so additional computational modeling work here
is likely to prove fruitful.
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Abstract

We carry out a syntactic analysis of two state-
of-the-art sentiment analyzers, Google Cloud
Natural Language and Stanford CoreNLP, to
assess their classification accuracy on sen-
tences with negative polarity items. We were
motivated by the absence of studies investigat-
ing sentiment analyzer performance on sen-
tences with polarity items, a common con-
struct in human language. Our analysis fo-
cuses on two sentential structures: downward
entailment and non-monotone quantifiers; and
demonstrates weaknesses of Google Natural
Language and CoreNLP in capturing polarity
item information. We describe the particular
syntactic phenomenon that these analyzers fail
to understand that any ideal sentiment analyzer
must. We also provide a set of 150 test sen-
tences that any ideal sentiment analyzer must
be able to understand.

1 Introduction

Sentiment analysis of texts, from relatively long
product and movie reviews (Pang et al., 2002) to
short tweets (Go et al., 2009), is a rich and evolv-
ing field. Probabilistic analyzers, such as Google’s
Natural Language client (Google, 2018) and Stan-
ford’s CoreNLP package (Manning et al., 2014),
have improved in recent years, but major chal-
lenges remain in classifying practical sentences.
In this paper, we focus on a particular grammat-
ical phenomena analyzers often misclassify: the
presence of specific polarity items.

As one of the fundamental components of nat-
ural language, polarity items (e.g. nothing, any,
ever) are lexical items that can appear only in spe-
cific licensing contexts. Thus, we should be able
to identify the grammatical polarity of a sentence
by the presence of such polarity items, allowing us
to determine its sentiment. However, these licens-
ing contexts are challenging to identify and are

generally different for each item (Baker, 1970).
We aim to understand how negative polarity items
are involved in misclassified sentences and use
this knowledge to characterize the syntactic phe-
nomenon an ideal sentiment analyzer must learn.

First, we present a brief background on senti-
ment analyzers and polarity items. In the next
section, we describe our methodology in terms
of what kinds of sentences we want to use and
how we can best test the sentiment analyzers.
Our methodology involves trying sentences with
negative polarity items under two different li-
censing contexts, downward entailment and non-
monotone quantifiers. We then evaluate variations
of the sentences to show that the sentiment ana-
lyzers are not correctly using the polarity items.
By exploring these misclassified sentences, we de-
scribe the particular syntactic configuration that
leads to misclassification, presenting weaknesses
in the state-of-the-art sentiment analyzers in un-
derstanding and handling polarity items.

2 Background and Previous Work

2.1 Sentiment Analyzers

Most sentiment analyzers (Wang et al., 2012; Pak
and Paroubek, 2010; Cambria et al., 2013) are
based on a statistical approach, relying on a con-
glomeration of sentiments of the individual words
in a sample. The main assumption behind such
statistical approaches is that keywords contain es-
sential information to infer the sentiment of a
whole sample. Therefore, this type of statistical
approach does not readily consider complex syn-
tactic interactions between individual words; in-
stead, the main focus lies in the system’s learning
of the relevant knowledge through texts relevant to
the sentiment analysis task.

Statistical methods often employ bag-of-words
as input features and represent a document by the
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summation of all bag-of-words features in that
document. A model, such as a maximum entropy
classifier or support vector machine (Mullen and
Collier, 2004), can be trained to learn which words
or combinations of words are relevant for senti-
ment analysis (Pang et al., 2002). With bag-of-
words as the input of a model, we lose spatial
structure for a document, so a classifier is inca-
pable of differentiating “I knew the dog would
never bite” from “The dog knew the man would
never bite” or “Bite never I knew the dog would.”

To overcome such challenges, deep learning
models have gained popularity for this task. (Glo-
rot et al., 2011) use domain adaptation to train an
adversarial network, where two models are pit-
ted against each other: one classifying sentiment
and the other creating input documents. This ap-
proach allows the system to learn from data sets
across multiple domains, increasing the flexibility
of the sentiment classifier. However, the weakness
of this approach is that the system uses a bigram
bag-of-words as input, making it unable to learn
long-distance syntactic phenomena.

Recent methods have proposed learning word
embeddings (Tang et al., 2014) or applying deep
neural architectures (Dos Santos and Gatti de
Bayser, 2014) to extract context and sentiment
from short texts, as these contain minimal infor-
mation. Although these techniques have shown
performance improvements, they have not been
completely successful in capturing long-distance
dependencies, leading to the proposal of memory
networks (Weston et al., 2014) and attention-based
mechanisms (Wang et al., 2016).

2.2 Polarity Items

In Emergence of Meaning (Crain, 2012), Crain
puts forward polarity items, like “some” and “any”
that are similar, but are sometimes interpreted dif-
ferently. He presents the example of (1) “John
didn’t eat any of the kangaroo.” and compares it
to (2) “John didn’t eat some of the kangaroo.” The
sentence with “some” implies that John did eat a
part of the kangaroo, but there is a part of it that he
did not eat. The sentence with “any” implies the
stronger statement that John did not eat any of the
kangaroos. These two interpretations differ due
to the polarity of the two words. “Any” is only
accepted in negative contexts, so it has negative
polarity, whereas “some” can be accepted in both
positive and negative contexts and possesses posi-

tive polarity. To observe that “any” only works in
negative contexts, consider the sentence (3) “John
ate any of the kangaroo.” which has positive con-
text, and is incorrect with the word “any”.

Further, the words “any” and “some” can some-
times be used interchangeably and have the same
interpretation. (4) “You’ll never convince me that
John didn’t eat some/any of the kangaroo.” con-
tains (1) and (2). In (4) there is negation (never)
in a higher clause; then the latter clause contains
negation and “any”/“some”. These practical ex-
amples demonstrate that word ordering in a sen-
tence matters, and that polarity items can exist in
complex statements requiring a fundamental un-
derstanding of human language for correct inter-
pretation. Therefore, a model just working with
bag-of-words or even n-gram features does not ap-
pear to be sufficient for practical sentences that re-
quire spatial or syntactic understanding.

Polarity items are permitted only within specific
licensing contexts, which means they can only oc-
cur in specific sentential structures. Our paper ex-
plores two licensing contexts: downward entail-
ment and non-monotone quantifiers. Under down-
ward entailment, the sentence acts as a monotone
decreasing function such that when parts of the
sentence are removed monotonically, the relative
strength of a statement monotonically decreases.
For example, “nobody moved into the house” im-
plies “nobody moved into the house quickly”,
so “nobody moved” is a monotone-decreasing
phrase. On the other hand, non-monotone quan-
tifiers lack clear downward or upward entailment
(Giannakidou, 2002). For example, the phrase
“exactly three men never moved” does not en-
tail “exactly three men never moved quickly” and
vice-versa, so it has non-monotone entailment.
The linguistic phenomenon of licensing contexts
and polarity items are a fundamental part of hu-
man language, and the metric to measure the per-
formance of a sentiment analyzer should consider
how it handles these polarity items.

3 Related Work

To the best of our knowledge, there are no previous
studies investigating the weaknesses of Google
Natural Language, CoreNLP, or other probabilis-
tic sentiment analyzers in classifying sentences
with polarity items.
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Classification accuracy
Downward entailment Non-monotone quantifier

a b c d e a’ b’ c’ d’ e’
Google NLP 0% 0% 0% 80% 80% 0% 0% 0% 93.3% 86.7%

Stanford CoreNLP 0% 0% 0% 33.3% 53.3% 0% 0% 0% 33.3% 66.7%

Table 1: Summary of classification accuracy on downward entailment and non-monotone quantifiers. Each cate-
gory indicates 15 test sentences. a: Bill has never done anything [negative adjective], b: [subject phrase] has never
done anything [negative adjective], c: Bill has not done anything [negative adjective], d: Bill has done something
[negative adjective], e: [subject phrase] has done something [negative adjective]. a’-e’: instead of Bill, we use a
non-monotone quantifier (e.g. exactly half).

4 Experiment

4.1 Methodology

We developed 150 test sentences derived from two
base sentences, under two different licensing con-
texts: downward entailment and non-monotone
quantifiers. We first tested on Google Cloud Natu-
ral Language (Google, 2018) and then repeated the
experiment on the Stanford CoreNLP sentiment
analyzer (Socher et al., 2013). Each base sentence
consists of a subject phrase, a verb phrase, some
polarity item(s), and some modifiers (e.g. painful).
The rest of the test sentences consist of variations
on the base sentences in the specific phrases, po-
larity items or modifiers used, allowing us to iden-
tify the sentence element responsible for misclas-
sification. We chose 15 sentences with minimal
sentiment ambiguity per category, allowing us to
demonstrate with statistical confidence the inabil-
ity of these sentiment analyzers to capture syntac-
tic phenomena.

4.2 Results

For both downward entailment and non-monotone
quantifiers, we considered two base sentences:

1. (A) has/have [never or not] done anything
(B: negative adjectives). These include cat-
egories a, b, c, a’, b’ and c’.

2. (A) has/have done something (B: negative ad-
jectives). These include categories d, e, d’,
and e’.

For (A), we used subject phrases such as “I”
and “Bill and his friends”, and in the case of non-
monotone quantifiers, we used subjects such as
“exactly half”, “99% of people”, and “exactly ten
students”.

4.2.1 Downward entailment
Sentences in category a (eg: “Bill has never done
anything terrible”) should be classified as positive.
Both Google Natural Language and CoreNLP
achieved 0% accuracy on sentences in this cate-
gory as shown in Table 1. The sentiment analyz-
ers classified these sentences as either negative or
neutral. We consider neutral classification incor-
rect, as the overall sentence is expressing a posi-
tive sentiment towards the subject for possessing
good moral character. Our varied adjectives re-
veals that the adjective used is not the reason for
misclassfication.

To investigate misclassification further, we var-
ied the subject phrase (A) with fifteen different
subject phrases (category b). We observed that
sentences such as “Bill has never done anything
terrible” and “Bill in my English class has never
done anything terrible.” are classified as nega-
tive by Google Natural Language and CoreNLP.
The magnitude of the negative sentiment remains
the same, indicating that minor variations in the
subject phrases do not affect the sentiment of
the sentence. However, while CoreNLP classi-
fies “Bill has never done anything grumpy” as
neutral, it classifies “Sally has never done any-
thing grumpy” as negative. Google Natural Lan-
guage classifies both as negative, although the
score changes slightly. This example demonstrates
another weakness of the sentiment analyzers: they
treat subject phrases with the same context (“Bill”
vs. “Sally”) differently.

Next, we show that the reason for misclassifica-
tion is not the presence of “never” by varying the
sentences to contain “not” (category c; e.g. “Bill
has not done anything terrible”). Both Google
Natural Language and CoreNLP classify all 15
sentences as negative and yield the same classi-
fication accuracy of 0%. We note that for some
sentences there is a minor change in the score, but
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(ROOT
(S

(NP (NNP Bill))
(VP (VBZ has)
(ADVP (RB never))
(VP (VBN done)

(S (ADJP (NN anything)
(JJ terrible)))))

(.)))

Figure 1: Parse tree for “Bill has never done anything
terrible.”

the sentiment of sentences remains the same.
We now consider sentences in category (2) that

are semantically opposite to sentences in category
(1). For example, “Bill has done something ter-
rible” or other variations (types d and e) should
be unambiguously classified as negative. Here,
Google Natural Language achieves a classification
accuracy of 80% (12 out of 15 test sentences) com-
pared to CoreNLP’s 33.3% (5 out of 15 test sen-
tences). For Google Natural Language, it is ev-
ident that the element that causes misclassifica-
tion is the negative polarity item that the analyzer
fails to interpret. The analyzer fails to invert the
negative sentiment of negative adjectives (B) and
thus classifies the sentence as negative or neutral.
CoreNLP, however, does poorly on all categories,
although it does significantly better on sentences
in category (2).

We now consider the parse tree of the original
sentence “Bill has never done anything terrible”
(Figure 1) to demonstrate the successful parse of
“has never done anything terrible” as a single verb
phrase. The failure of the analyzers to correctly
determine sentiment implies that despite noting
the sentence’s hierarchical structure, they are un-
able to understand long-term dependencies - they
lack an understanding of the c-command relation
(Radford, 2004).

4.2.2 Non-monotone quantifiers
We repeated the same analysis for non-monotone
quantifiers by including non-monotone quantifiers
within the subject phrase. For example, “Exactly
half had never done anything terrible” and its sis-
ter sentences (e.g. “Ninety percent of parents had
never done anything terrible”) should be classi-
fied as positive. Similar to our findings on down-
ward entailment, both Google Natural Language
and CoreNLP achieve a classification accuracy of

(ROOT
(S
(ADVP (RB Exactly))

(NP (NN half))
(VP (VBD had)
(ADVP (RB never))
(VP (VBN done)

(S
(ADJP (NN anything)

(JJ terrible)))))
(.)))

Figure 2: Parse tree for “Exactly half had never done
anything terrible.”

0% on the three classes of sentences within cat-
egory (1): a total of 45 sentences from class (a’),
(b’), and (c’) as shown in Table 1. Analyzers again
determine “had never done anything terrible” as a
single verb phrase, as shown in a parse tree in Fig-
ure 2.

For semantically opposite sentences (class (d’)
and (e’)), we get a similar result as in down-
ward entailing sentences, although the classifica-
tion accuracy slightly increases for both analyz-
ers. Again, we consider neutral classification as a
misclassification, as the sentence clearly contains
either a positive or negative sentiment towards the
subject.

We interpret our experiment with non-
monotone quantifiers as follows: (1) both
CoreNLP and Google Natural Language lack
an understanding of the negative polarity item
“anything” and (2) the variation of subject phrases
results in a minor change in the sentiment. We
note that, as in the case of downward entailment,
the failure of the analyzers implies an inability
to understand the c-command relation (Radford,
2004). We note a limitation of our experiment:
the selection of arbitrary adjectives. However, the
15 adjectives used are commonly used to describe
humans, and the result was quite consistent. Fur-
ther, we found coherent results for both downward
entailment and non-monotone quantifiers and
were able to highlight the lack of long-distance
dependency understanding in state-of-the-art
analyzers. Finally, we highlight the importance
of assessing performance of sentiment analyzers
using practical sentences that involve not only
negation as in previous studies (Socher et al.,
2013), but also polarity items such as the 150
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sentences used in our experiment.

5 Discussion

Our experiment indicates that the Stanford
CoreNLP sentiment analyzer (Socher et al., 2013)
and Google Cloud Natural Language (Google,
2018) do not understand the c-command relation
(Radford, 2004). We now argue that this issue is
not a result of the training set used, but rather a
fundamental inability of the model class. First,
we note that long-term dependencies are a well-
known weakness of probabilistic models, even
those specifically designed to capture them, such
as bidirectional RNNs or LSTMs (Zhang et al.,
2018). Next, we note that the sentences that we
tested are general sentences whose components
could be found in any linguistic corpus; in fact,
CoreNLP’s treebank does contain annotated sen-
tences containing the “... has never ...” or “...
has no ...” constructions, and so the model should
correctly analyze such sentences. As a result, we
draw the conclusion that these models lack an un-
derstanding of long-term dependencies, and based
on our experiments, they specifically fail to under-
stand the c-command relation (Radford, 2004). Fi-
nally, we remind readers that the c-command rela-
tion is associated with Chomskyan grammars; and
need not be necessary within other models of syn-
tax. Consequently, learning the c-command rela-
tion may lead to better analyzers, but it need not
be the only way to improve performance.

6 Conclusions

We evaluated two state-of-the-art sentiment ana-
lyzers, Stanford CoreNLP (Socher et al., 2013)
and Google Cloud Natural Language (Google,
2018), using sentences with negative polarity
items under two different licensing contexts:
downward entailment and non-monotone quanti-
fiers. Through such analysis, we noted that cur-
rent analyzers lack a complete understanding of
negative polarity items, and by extension, the c-
command relation. We have also produced a set of
sentences that can be used to test future analyzers.
This work can be extended to validate other ana-
lyzers, test non-probabilistic sentiment analyzers
or build, new improved sentiment analyzers. We
have made the set of misclassified sentences avail-
able as supplementary material.
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Abstract
Are brand names such as Nike female or male?
Previous research suggests that the sound of a
person’s first name is associated with the per-
son’s gender, but no research has tried to use
this knowledge to assess the gender of brand
names. We present a simple computational ap-
proach that uses sound symbolism to address
this open issue. Consistent with previous re-
search, a model trained on various linguistic
features of name endings predicts human gen-
der with high accuracy. Applying this model
to a data set of over a thousand commercially-
traded brands in 17 product categories, our re-
sults reveal an overall bias toward male names,
cutting across both male-oriented product cat-
egories as well as female-oriented categories.
In addition, we find variation within categories,
suggesting that firms might be seeking to im-
bue their brands with differentiating character-
istics as part of their competitive strategy.

1 Introduction
When naming humans, clear gender conventions
seem to exist in every society. For example, in
the English-speaking world, Jessica, Linda, and
Nancy are female names, while John, Michael, and
William are male names. In turn, decades of gender-
stereotyping research suggest that people associate

particular genders with particular characteristics.
For example, females are viewed as “warm,” “ex-
pressive,” and “emotional,” while males are viewed
as “assertive,” “competent,” and “rational” (Brover-
man et al., 1972; Spence and Helmreich, 1979). We
ask whether any of this applies to commercially-
traded brands, and is there a gender strategy un-
derlying brand names? If so, what does this strat-
egy say about firms’ motivations in making these
choices? Is it driven by product category char-
acteristics or is it driven by competitive strategy
considerations within each category?

In this paper, we take the first steps toward an-
swering these questions. We start by developing
a machine-learning method to predict the gender
of human first names. Large labeled data sets of
human first names are available from the U.S. and
the U.K. to train such an algorithm. Using various
linguistic features of such names—for example, “a”
ending, sonorant ending (m, n, ng, l, r), etc.—we
find that we can predict human gender quite ac-
curately (approximately 80% success rates). We
then use this algorithm to predict the masculinity-
femininity of brand names (see Figure 1). For this
purpose we have identified another data set where
a large number of brand names are available, pre-
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classified into many different product categories—
detergents, analgesics, health and beauty aids, elec-
tronics, etc. Finally, having classified brand names
by gender, we ask what the variation in brand name
gender, within and across product categories, can
tell us about the marketing strategy in brand name
choices. By using NLP-methods to analyze brand
names, we contribute not only a new application
domain for such methods, but also, importantly,
advance the branding literature by suggesting that
brand name gender may be part of a brand’s posi-
tioning strategy.

Figure 1: Illustration of our methodology. A gender
classifier trained on people’s names is applied to brand
names.

2 Sound symbolism and gender of names
Existing work from linguistics has suggested that
male and female names have different phonologi-
cal properties. Here we summarize gender-related
features of first names identified in the literature: 1)
Names ending in the mid-central unstressed vowel
sound ‘uh’ are almost always feminine (Lieber-
son and Bell, 1992); 2) Names ending in a vowel
tend to be feminine (Slater and Feinman, 1985); 3)
Names ending in a sonorant (m, n, ng, l, r) may
be either masculine or feminine (Barry and Harper,
1995; Lieberson and Bell, 1992; Slater and Fein-
man, 1985); 4) Names ending in a ‘fricative’ or
‘affricate’ produced by restricting airflow through
the mouth to create frication (s, z, f, v, h, sh, ch,
dj) tend to be masculine (Barry and Harper, 1995);
5) Names ending in a ‘plosive’ produced by stop-
ping airflow through the mouth (p, b, t, d, k, g)
are almost always masculine (Barry and Harper,
1995); 6) Words and names featuring fricatives are
more associated with femininity relative to those

with plosives, which are associated with masculin-
ity (Folkins and Lenrow, 1966; Guèvremont and
Grohmann, 2014; Klink, 2000); 7) The front / back
vowel distinction mirrors that of plosives and frica-
tives. Brand names with front vowels, such as “i,”
and “ee,” seem more feminine than names with
back vowels, such as “oh,” “oo” (Klink, 2000).

Despite the rich literature on sound symbolism
and gender, sparse attempts have been made to sys-
tematically examine the contribution of different
linguistic features in gender prediction of names at
scale (Bird et al., 2009). Although recent work has
examined gender issues in web-crawled data (Zhao
et al., 2017) and historical corpora (Garg et al.,
2018), there has been no study on exploiting lin-
guistic features to predict gender of brand names.

3 Computational methods
Table 1 summarizes the full set of features that we
used for modeling. We took orthographic forms
of names as a proxy for phonetic forms due to
practical scalability. We started by considering
names ending in the sound ‘uh’ as ending with the
letter ‘a’, because ‘a’ accounts for the vast majority
of instances of this sound. After this initial step, we
dummy-coded names ending in a vowel with the
letters ‘a’, ‘e’, ‘i’, ‘o’, ‘u’, and ‘y’ (i.e., any name
ending in a vowel was coded 1 on this feature,
whereas all other names were coded 0; see Table
1 for an illustration). We coded names ending in
fricatives and plosives with the letters ‘p’, ‘b’, ‘t’,
‘d’, ‘k’, ‘g’, ‘f’, ‘v’, ‘s’, ‘z’, ‘th’, ‘sh’, ‘ch’, and
‘dge’. We coded sonorant endings based on the
letters ‘m’, ‘n’, ‘ng’, ‘r’, ‘and ‘l’.

We also considered word-initial occurrences of
all the previously mentioned sounds, making sym-
metric hypotheses that word-initial vowels will pre-
dict femininity, word-initial plosives will predict
masculinity, and that sonorants and fricatives may
be predictive in some way. Coding was based on
the same letters with some minor variations (the
letters ‘w’ and ‘y’ were included with sonorants,
and the letter ‘j’ was included with fricatives).

Finally, we considered the total number of oc-
currences of all the previously mentioned sounds,
hypothesizing that the total number of vowels will
predict femininity, total number of plosives will
predict masculinity, and total number of sonorants
and fricatives may be predictive in some way. Ad-
ditionally, we consider two distinct categories of
vowels: front vowels, represented by the letters ‘i’,
and ‘e’, which we hypothesize will predict feminin-
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ity, and back vowels, represented by the letters ‘o’
and ‘u’, which we hypothesize will be more predic-
tive of masculinity. We excluded features such as
stressed syllable and number of syllables that have
been linked with name gender (Slater and Feinman,
1985) because they require manual coding and do
not scale. However, we considered total number of
letters as a proxy for name length.

Table 1: Features for gender prediction of people’s and
brand names, with example values for Linda.

Linguistic feature Value of Linda
A ending? 1
Vowel ending (a, e, i, o, u, y)? 1
Fricative ending (f,v,th,s,z,sh,ch,dge)? 0
Sonorant ending (m,n,ng,l,r)? 0
Plosive ending (p,b,t,d,k,g)? 0
1st letter vowel (a, e, i, o, u)? 0
1st letter fricative (f,v,th,s,z,sh,ch,j)? 0
1st letter sonorant (m,n,l,r,w,y)? 1
1st letter plosive (p,b,t,d,k,g)? 0
Number of letters 5
Number of front vowels 1
Number of back vowels 0
Number of vowels (a, e, i, o, u) 2
Number of fricatives (f,v,th,s,z,sh,ch,j) 0
Number of sonorants (m,n,l,r,w,y) 2
Number of plosives (p,b,t,d,k,g) 0

We used three simple models for name gender
classification based on the features we have de-
scribed. For all methods, we considered binary
classification (female/male) and excluded “gender-
neutral” names that are ambiguous. 1) To exam-
ine how each feature contributes to name gen-
der prediction individually, we first considered
a single-feature logistic model that determines
gender of a name y from one of the features x:
log p(y=female)

p(y=male) = �0 + �1x. 2) To examine how
features combine to name gender prediction, we
considered a multivariate version of the logistic
model. We applied a sparsity constraint with au-
tomatic relevance determination (Yamashita et al.,
2008) to explore the minimal set of features neces-
sary for gender determination, taking into account
the fact that the features are over-complete and
not interdependent, e.g. “a ending” entails “vowel
ending.” We used the default settings on the hyper-
parameters in the open-source Python package. 1

3) We considered random forest as an alternative
multivariate classifier, based on decision trees us-
ing the Gini impurity criterion and bootstrapped
subsamples in ensemble averaging. We used the
Python sklearn package for this model.

1https://github.com/KamitaniLab/sml

4 Data
We draw data from three primary sources, two
for people’s names and one for brand names.
For people’s names, we relied on databases
of U.S. and U.K. names available at https:
//github.com/OpenGenderTracking/
globalnamedata/tree/master/assets.
The U.S. data come from the yearly birth records
maintained by the U.S Social Security Administra-
tion from 1880 to 2013; the U.K. data come from
the UK Office of National Statistics, the Northern
Ireland Statistics and Research Administration,
and the Scotland General Register Office. After
removing names that are labeled as both male and
female, we ended up with 97102 unique English
names (60984 female, 36118 male) to work with.
For brand names, we relied on Kantar Media’s
Stradegy database. This database documents U.S.
advertising spending by brands in virtually every
product category. 2 In this case, after removing
multi-word names that are derivative brands (e.g.,
Ford Escort) and a small number (66) of names that
are common English words (e.g., Coach) based
on the ⇠5000 most frequent words in the British
National Corpus, 3 we ended up with 1021 brand
names in 17 product categories. We represented
each name as a 16-dimensional vector based on the
features described, and we made all data available
in the supplementary materials.

5 Results
Evaluation. We tested all gender classifiers on the
English dataset in a supervised setting. Table 2
summarizes the model performances in a five-fold
cross validation with the data initially randomized.

Overall, all models predicted gender of people’s
names substantially above chance (50%). In partic-
ular, the multivariate models performed better than
the single-feature model though the difference is
small, suggesting that gender information is likely
encoded in a restricted set of features. Figure 2
confirms this finding by showing the fitted weights
on different features from the sparse logistic classi-
fier. The top four features with the highest weights
are “a ending,” “plosive ending,” “sonorant ending,”
and “fricative ending,” suggesting the dominance
of gender information in the ending of names. The
same four features also yielded the highest predic-
tive accuracies in the single-feature model except
for the feature of “vowel ending” - 75.1%: a end-

2https://www.kantar.com/
3http://www.kilgarriff.co.uk/BNClists/lemma.al
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ing 65%; plosive ending - 66%; sonorant ending -
72%; fricative ending - 66%.

Figure 2: Feature coefficients in logistic regression.

We observed a small difference in predictive ac-
curacy between the random forest model and the
sparse logistic model, suggesting the features are
relatively robust to classifier variation. We also
observed that predictive accuracies on male names
tend to be poorer than those on female names, possi-
bly because some male names also end with vowels
27.1%, e.g., Joshua), but female names predomi-
nantly end with vowels 76.4%).

Table 2: Model accuracies on name gender prediction.

Model Acc. % Female % Male %
Single-feature 75.1 76.4 72.9
Sparse logistic 80.5 83.9 74.9
Random forest 81.8 85.4 75.7

Brand name gender prediction. We applied
the three classifiers to the brand name database,
by using the weights estimated from the English
name database. We used a conservative criterion in
determining gender of brand names. In particular,
we took majority vote from prediction of the three
classifiers for any given brand name as opposed to
relying on prediction from a single classifier. 4

Although it is difficult to fully evaluate the ac-
curacy of our classifiers on brand name gender,
we identified “true” gender of a small set of brand
names where etymology can be found from the
Oxford English Dictionary, summarized in Table 3.
We found that our procedure of gender classifica-
tion yielded an accuracy of 83.3% on this small set,
which is consistent with the accuracies we obtained

4We also considered a more stringent criterion by analyz-
ing only the subset of brand names where all three classifiers
agreed on gender prediction (N = 702 out of 1021 names),
and our results are similar based on that subset of brand names.

with people’s names. We refrained from evaluat-
ing our models against human judgments on brand
name gender, because people’s conceptions might
be biased or primed given the products associated
with brands (e.g., cosmetic brand names might be
perceived as female). Figure 3 visualizes the brand
names in the feature space we considered, with
predicted gender and annotated example brands.

Table 3: Brand names with gender identified from the
OED and model-predicted gender (Male vs. Female).

Brand Etymology True Pred.
Amazon Female warrior (1398) F M
Titan Helio’s father (1413) M M
Pandora Woman (1581) F F
Hermes Zeus’ son (1605) M M
Nike Goddess (1846) F F
Lincoln US president (-) M M

Brand name gender distribution. We ana-
lyzed gender distributions across and within the 17
product categories. Across categories, we observed
a strong asymmetry in frequency between male and
female brand names. The scatter-plot in Figure 3
illustrates that male and female brand names sep-
arate in sound-attribute space. tSNE (Maaten and
Hinton, 2008) with 17 feature attributes was used
to generate this plot, which shows that male and
female names separate along the first dimension,
but not in the second dimension. This suggests that
these names share commonalities, but they are also
different.

We observed that the gross number of male
brand names is significantly greater than the num-
ber of female brand names (binomial p < 0.0001).
Several factors could contribute to this bias. For
example, many present-day brands originated long
before gender equality was valued, and the brand
names that emerged from these male-dominated
eras tend to skew masculine. It should also be
noted that many brands are named after company
founders (e.g., Ford), and surnames may tend to be
more masculine than first names.

A more fine-grained analysis in the individual
product categories revealed nuanced patterns in
gender distribution (Figure 3). Although the male
bias we observed at the broad level applies to 14
of 17 categories (binomial p < 0.0001) including
some intuitive ones such as “power tools,” “mil-
itary,” and “baseball equipment,” this bias is sur-
prisingly weak or non-existent in “car / trucks” and
“men haircare” where we expect more male as op-
posed to female consumers. Second, brands where
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we expect more female consumers such as “jew-
elry,” “cosmetics,” and “womens underwear” have
a relatively high proportion of male-oriented names.
These patterns suggest that although male brand
names might be an overall preferred convention,
gender-polarized brands might have adopted a re-
versal strategy in naming with the opposite gender.

Figure 3: Predicted gender of 1021 brand names given
16 features and mapped a 2D space via tSNE. Bottom
panel shows gender proportions in gross and 17 indi-
vidual product categories.

6 Discussion
While the notion of brand name gender is an intrigu-
ing concept in theory, its practical measurement has
proved elusive. This paper has shown that NLP-
methods can be used fruitfully to get a handle on
this problem. Our results suggest that brand names
are more male-oriented than female-oriented over-
all. However, under this broad result, there are
several interesting nuances. First, the overall pref-
erence for male names applies not only in cate-
gories that are primarily male-oriented, but also in
some categories that are primarily female-oriented.
Second, there is considerable within-category vari-
ation in brand name gender. Understanding these
nuances is an important topic for future research.
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Abstract
Fact-checking of textual sources needs to ef-
fectively extract relevant information from
large knowledge bases. In this paper, we ex-
tend an existing pipeline approach to better
tackle this problem. We propose a neural
ranker using a decomposable attention model
that dynamically selects sentences to achieve
promising improvement in evidence retrieval
F1 by 38.80%, with (⇥65) speedup compared
to a TF-IDF method. Moreover, we incorpo-
rate lexical tagging methods into our pipeline
framework to simplify the tasks and render the
model more generalizable. As a result, our
framework achieves promising performance
on a large-scale fact extraction and verification
dataset with speedup.

1 Introduction

With the rapid growth of available textual infor-
mation, automatic extraction and verification, also
known as fact-checking, has become important in
order to identify relevant and factual information
from the ever-growing information pool. The Fak-
eNews Challenge (Pomerleau and Rao) addresses
fact-checking as a simple stance detection prob-
lem, where the article is verified by checking the
stance agreement between an article’s title and
content. Similar to the FakeNews, (Rashkin et al.,
2017; Vlachos and Riedel, 2014) focused on po-
litical statements from Politifact.com to verify the
degree of truthfulness. However, they assume that
the gold standard documents containing the evi-
dence are already known, which overly simplifies
the task.

Question Answering (QA) is similar to fact-
checking in the sense that a question and its an-
swers can be considered as a claim and evidence
respectively, but the answers may come from a
large-scale database. Several approaches (Chen

⇤⇤ These two authors contributed equally.

Claim Finding Dory was written by anyone but an American.

Evidence
Finding Dory: Directed by Andrew Stanton with
co-direction by Angus MacLane, the screenplay was
written by Stanton and Victoria Strouse
Andrew Stanton: Andrew Stanton -LRB- born
December 3, 1965 -RRB- is an American film director
, screenwriter, producer and voice actor based at Pixar.

Label REFUTE

Table 1: Example of verified claim with evidence from
multiple Wikipedia pages

et al., 2017a; Ryu et al., 2014; Ahn et al., 2004)
proposed QA system utilizing resources such as
Wikipedia, which is more comprehensive and in-
corporates wider world knowledge. However, the
main focus is to identify only the “correct” an-
swers that support a given question. Since the abil-
ity to refute is as important as to support, it does
not fully address the verification problem of fact-
checking.

Recently, Thorne et al. (2018) proposed a pub-
lic dataset to explore the complete process of the
large-scale fact-checking. It is designed not only
to verify claims but also to extract sets of related
evidence. Nevertheless, the pipeline solution pro-
posed in that paper suffers from following prob-
lems: 1) The overall performance (30.88% accu-
racy) still needs further improvement to be ap-
plicable to the evidence selection and classifica-
tion, which also highlights the challenging na-
ture of this task. 2) The evidence retrieval us-
ing Term Frequency-Inverse Document Frequency
(TF-IDF) is time-consuming since the TF-IDF be-
tween a claim and set of candidate evidence cannot
be computed in advance.

In this paper, we extend the original pipeline so-
lution to achieve faster and better fact-checking re-
sults. Our main contributions are: 1) Propose a
neural ranker using decomposable attention (DA)
model for evidence selection to speed up (⇥65)
and outperform related works. 2) Incorporate sev-
eral lexical tag information to effectively simplify
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k DRtfidf DRrerank

1 0.3145 0.6099
2 0.4321 0.7292
5 0.5895 0.8052
10 0.6916 0.8322
25 0.7882 0.8494
100 0.8886 0.8886

Table 2: Oracle document retrieval macro-recall in the
test set (SUPPORT/REFUTE).

the problem and generalize the models. 3) Im-
prove the overall fact extraction F1 by 38.80%
and verification accuracy by 2.10% to achieve the
state-of-the-art performance on the dataset.

2 Methodology

Our pipeline framework1 has three main mod-
ules: document retrieval (DR), evidence selection
(ES), and textual entailment recognition (TER).
The goal is to verify a given claim with a set of ev-
idence from Wikipedia (Table 1). The verification
labels are support, refute and not enough informa-
tion (NEI) to verify.

2.1 Lexical Tagging
In our framework, two lexical tags (i.e. part-
of-speech (POS) and named entity recognition
(NER)) are used to enhance the performance. We
compute the tags for claims in advance using the
Stanford CoreNLP (Manning et al., 2014) library.
Using this information is helpful in the follow-
ing ways: 1) it helps keyword extraction for each
claim. 2) it reduces the out-of-vocabulary (OOV)
problems related to name or organization enti-
ties, for better generalization. For example, a
claim like “Michael Jackson and Justin Timber-
lake are friends,” is replaced as “PERSON-1 and
PERSON-2 are friends”. In this way, we encour-
age our model to learn verification without dealing
with the real entity values but the delexicalized in-
dexed tokens.

2.2 Document Retrieval (DR)
For document retrieval, we extend the method of
DrQA (Chen et al., 2017a), which calculates co-
sine similarity between query and document, us-
ing binned unigram and bigram TF-IDF features.
We refer to this method as DRtfidf .

Instead of directly selecting top k document us-
ing TF-IDF as in DRtfidf , our document retriever

1https://github.com/HLTCHKUST/fact-checking

DRrerank use TD-IDF to reduce the search space
from 5.4M to 100 documents. Re-ranking is then
applied to select the top k documents. For re-rank,
we defined a score function frank that ranks the
relevance of the document by considering both the
title and the content as follows:

rclaim =
POSmatch

POSclaim
, rtitle =

POSmatch

POStitle
,

frank = rclaim ⇥ rtitle ⇥ tf -idf

To capture the relevance from the title, all the
POS tags with high discriminating power (NN,
NNS, NNP, NNPS, JJ, CD) of a claim are cho-
sen as keywords. POSclaim and POStitle are the
counts of such POS tags inside the claim and title
respectively. POSmatch is the count of common
POS keywords in the claim and the title; rclaim is
a ratio between POSmatch and POSclaim to reward
the documents with higher keyword hits; rtitle is
the ratio between POSmatch and POStitle to pe-
nalize those documents with more candidate key-
words as it is more likely to have keyword hits
with more candidates. We incorporate the TF-
IDF score (tf -idf ) to ensure that the content in-
formation is not neglected. Our experiments show
that our re-rank strategy increases the document
recall compared to the single-step approach (Ta-
ble 2). To decide on the optimal value for hyper-
parameter k, full-pipeline performance was com-
pared to evaluate the effect of k on final verifica-
tion accuracy.

2.3 Evidence Selection (ES)
In this module, l sentences are extracted as pos-
sible evidence for the claim. Instead of selecting
the sentences by recomputing sentence-level TF-
IDF features between claim and document text as
in Thorne et al. (2018), we propose a neural ranker
using decomposable attention (DA) model (Parikh
et al., 2016) to perform evidence selection. DA
model does not require the input text to be parsed
syntactically, nor is an ensemble, and it is faster
without any recurrent structure. In general, using
neural methods is better for the following reasons:
1) The TF-IDF may have limited ability to capture
semantics compared to word representation learn-
ing 2) Faster inference time compared to TF-IDF
methods that need real-time reconstruction.

The neural ranker DArank is trained using a
fake task, which is to classify whether a given sen-
tence is an evidence of a given claim or not. The
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TF-IDF DArank DArank+NER
1:1 1:4 1:9 1:1 1:4 1:9

l 2 0.847 0.170 0.889 0.889 0.109 0.889 0.893
5 0.918 0.451 0.966 0.968 0.345 0.962 0.968

Time 3.57s 0.055s

Table 3: Oracle evidence selection macro-recall in the
test set using gold documents (SUPPORT/REFUTE).

output of DArank is considered as the evidence
probability. The training samples are unbalanced
since there are more unrelated sentences than ev-
idence sentences. Note that the classifier’s accu-
racy on the fake task is not crucial because the
choice of evidence is based on the relative score
of relevance compared to other candidates. There-
fore, it is not necessary to balance positive and
negative samples using up/down-sampling, to the
contrary, making it unbalanced actually improved
the performance (Table 3).

Unlike the k value which is fixed, the l value is
selected dynamically based on the evidence score
of DArank’. It is used as a confidence measure
of the given sentence being an evidence. Evidence
with the score below fixed threshold value th is
eliminated. Hence, each claim will have a differ-
ent number of l evidence. To decide on th, we also
carry out the full-pipeline evaluation. We propose
the dynamic selection of l because we hypothe-
size that any wrong evidence, or noise, from early
module could harm the subsequent RTE module.

2.4 Recognizing Textual Entailment (RTE)
Given a claim and l possible evidence, a DArte

classifier is trained to recognize the textual entail-
ment to be support, refute or not enough informa-
tion to verify (NEI). Same as Thorne et al. (2018),
we use the decomposable attention (DA) between
the claim and the evidence for RTE. DA model
decomposes the RTE problem into subproblems,
which can be considered as bi-direction word-
level attention features. Note that the DA model is
utilized over other models such as as Chen et al.
(2017b); Glockner et al. (2018), because it is a
simple but effective model.

Our DArte model must correctly decide
whether a claim is NEI, when the evidence re-
trieved is irrelevant and insufficient. However,
NEI claims have no annotated evidence, thus can-
not be used to train RTE. To overcome this issue,
same as (Thorne et al., 2018), the most probable
NEI evidence are simulated by sampling sentences
from the nearest page to the claim using the docu-
ment retrieval module.

MLP DArte DArte+NER
Accuracy (%) 63.2 78.4 79.9

Table 4: Oracle RTE classification accuracy in the test
set using gold evidence.

3 Experimental setup

Dataset: FEVER dataset (Thorne et al., 2018) is
a relatively large-scale dataset compared to other
previous fact extraction and verification works,
with around 5.4M Wikipedia documents and 185k
samples. The claims are generated by altering
sentences extracted from Wikipedia, with human-
annotated evidence sentences and verification la-
bels (e.g. Table 1). The training/validation/test
sets of these three datasets are split in advance by
the providers. Note that the test-set was equally
split into 3 classes: Supported (3333), Refuted
(3333), NEI (3333).
Training: We trained our models end-to-end us-
ing Adagrad optimizer (Duchi et al., 2011). The
embedding size is set to 200 and initialized with
GloVe (Pennington et al., 2014). The dropout rate
is set to 0.2. In all the datasets, we tuned the
hyper-parameters with grid-search over the vali-
dation set.
Evaluation: For each module, we independently
measure oracle performance, where we assume
gold standard documents and set of evidence are
provided (oracle evaluation). For the final full-
pipeline, we compare to and follow the metric de-
fined in Thorne et al. (2018). NoScoreEv is a sim-
ple classification accuracy that only considers the
correctness of the verification label. On the other
hand, ScoreEv is a stricter measure that also con-
siders the correctness of the retrieved evidence.
Hence, it is a more meaningful measure because
it considers the classification to be correct only
if appropriate evidence is provided to justify the
classification.

4 Experimental Results

4.1 Oracle Performance
Document Retrieval: As shown in Table 2, our
count-based re-rank strategy outperforms the TF-
IDF method.

Take k = 1 as an example, we achieve 60.99%
recall using only one document, which is ⇠30%
higher than TF-IDF approach. Given that the re-
call upper-bound of re-rank is 0.8886 (k=100), our
method manages to retrieve near the limit by just
retrieving a few documents. Note that there is
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k
DR results RTE results

Macro
Recall

Macro
Precision F1 Accuracy Evidence

ScoreEv NoScoreEv Precision Recall F1
2 0.729 0.383 0.498 0.412 0.541 0.169 0.655 0.269
3 0.768 0.270 0.396 0.407 0.534 0.166 0.672 0.267
4 0.791 0.209 0.328 0.407 0.535 0.164 0.676 0.264
5 0.805 0.170 0.279 0.397 0.529 0.161 0.675 0.260

Table 5: Effect of de-noising DR modules on RTE score

th
ES results RTE results

Macro
Recall

Macro
Precision F1 Accuracy Evidence

ScoreEv NoScoreEv Precision Recalll F1
0.2 0.653 0.275 0.353 0.405 0.540 0.337 0.629 0.439
0.4 0.607 0.349 0.406 0.418 0.542 0.481 0.586 0.528
0.6 0.535 0.368 0.406 0.424 0.525 0.618 0.517 0.563
0.8 0.413 0.330 0.348 0.416 0.484 0.772 0.400 0.527

Table 6: Effect of de-noising ES modules on RTE score

a trade-off between the document recall and the
noise ratio (i.e. low precision). As shown in Ta-
ble 5, k = 2 with a low recall but high precision
and F1 has the highest accuracy. This means DR
that can effectively leverage this trade-off (there-
fore, high F1) performs the best. Therefore, we
select k = 2 for our full-pipeline.
Evidence Selection: In Table 3, the trained neu-
ral ranker achieves a promising recall of 96.8%.
In the case of l = 5, our neural ranker can per-
form 5% better than the TF-IDF method. Here,
we use fixed l = 5 results for fair comparison with
TF-IDF method. The ratios in Table 3 are the ra-
tio of negative samples we tried to train the fake
task. For example, 1:4 means that four negative
sentences are sampled for each true evidence sen-
tence. The results further give supports to our as-
sumption that using unbalanced up-sampling actu-
ally help train our neural ranker. Along with per-
formance gain, we also achieve a drastic gain in
inference time by around 65 times from 3.57 sec-
onds to 0.055 seconds for each sample.

The full-pipeline results for different values of
th is shown in Table 6. Similar to document re-
trieval, having a high F1 score is the most im-
portant factor in assuring high full-pipeline per-
formance. This is because providing a succinct
set of evidence makes the verification task eas-
ier for the RTE module. Therefore, we choose
DArank+NER model with th = 0.6 for the full-
pipeline.
Recognizing Textual Entailment: The oracle

classification accuracy for RTE is shown in Ta-
ble 4. The MLP is a simple multi-layer percep-
tron using TF and TF-IDF cosine similarity be-
tween the claim and evidence as features as shown
in Thorne et al. (2018). The highest accuracy
achieved is 79.9% using DArte with NER infor-
mation, thus, we further evaluate the full-pipeline
accuracy on this setting.

4.2 Full pipeline Performance
Combining each of our improved pipeline mod-
ules using k = 2, th = 0.6, the full pipeline re-
sults are shown in Table 7. Our proposed frame-
work can achieve 42.43% in ScoreEv and 52.54%
in NoScoreEv, which outperforms DRtfidf +DA
by 11.55% and 2.10%, respectively. The evidence
retrieval F1 in our full framework is 56.3%, which
is improved promisingly by 38.80%.

5 Related Work

Prior work (Vlachos and Riedel, 2014; Ciampaglia
et al., 2015) have proposed fact-checking through
entailment from knowledge bases. Some works
have investigated fact verification using PolitiFact
data (Wang, 2017; Rashkin et al., 2017) or Fak-
eNews challenge (Pomerleau and Rao). Most
closely related to our work, Thorne et al. (2018)
addresses large-scale fact extraction and verifica-
tion task using a pipeline approach. In addition,
question answering (Dang et al., 2007; Chen et al.,
2017a; Ryu et al., 2014; Ahn et al., 2004) and
task-oriented dialog systems (Dhingra et al., 2017;
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Model Label Accuracy (%) Label Evidence F1ScoreEv NoScoreEv Precision Recall F1
DRtfidf + MLP * 21.80 38.75 0.500 0.387 0.310 0.175
DRtfidf + DA * 30.88 50.44 0.530 0.520 0.517
Proposed 42.43 52.54 0.533 0.527 0.523 0.563

Table 7: Full-pipeline evaluation on the test set using k = 2 and th = 0.6. The first and the second one (with *)
are the baselines from Thorne et al. (2018).

Madotto et al., 2018) also have similar aspects to
these works, although aiming at a different goal.

Other fields that are related to the particular in-
dividual modules of our system are the following:
Document and evidence retrieval for identifying
text segments and documents to support a given
claim (Salton and Buckley, 1987; Le and Mikolov,
2014; Cartright et al., 2011; Bellot et al., 2013;
Rinott et al., 2015). Recognizing textual entail-
ment that aims to determine whether a hypothesis
h can justifiably be inferred from a premise (Dang
et al., 2007; Bowman et al., 2015; Parikh et al.,
2016; Chen et al., 2017b; Glockner et al., 2018).
In some of these work (Rinott et al., 2015; Rashkin
et al., 2017), the lexical and linguistic features are
leveraged to further improve the performance.

6 Conclusion

In this paper, we extend the pipeline framework
for fact-checking and propose a neural ranker for
evidence selection. Our experiments show that
the usage of lexical tagging is helpful in simplify-
ing the task and improving the generalization abil-
ity. Moreover, reducing noise in the input of RTE
module, by de-noising the DR and SR modules,
appears to be crucial for improving the overall per-
formance. As a result, our ranker outperforms the
TF-IDF method by 38.8% in evidence retrieval F1,
with 65 times faster inference speed, achieving a
promising performance in a large-scale fact ex-
traction and verification dataset.
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Abstract

We leverage a popularity measure in social
media as a distant label for extractive summa-
rization of online conversations. In social me-
dia, users can vote, share, or bookmark a post
they prefer. The number of these actions is re-
garded as a measure of popularity. However,
popularity is not determined solely by content
of a post, e.g., a text or an image it contains,
but is highly based on its contexts, e.g., tim-
ing, and authority. We propose Disjunctive
model that computes the contribution of con-
tent and context separately. For evaluation, we
build a dataset where the informativeness of
comments is annotated. We evaluate the re-
sults with ranking metrics, and show that our
model outperforms the baseline models which
directly use popularity as a measure of infor-
mativeness.

1 Introduction
Online conversations are increasingly significant
for communication, e.g., Slack1 for work com-
munication and Reddit2 for general discussion.
To organize overwhelming information from these
conversations, researchers have been working on
summarizing online conversations (Bhatia et al.,
2014; Carenini et al., 2007; Mehdad et al., 2013,
2014; Oya et al., 2014). State-of-the-art models in
both abstractive (Rush et al., 2015) and extractive
(Cheng and Lapata, 2016) summarization tasks are
based on neural networks, but these models re-
quire large amounts of training data. In previous
research, these data were created automatically by
retrieving headlines and highlights of news articles
edited by news editors. However, these method-
ologies cannot be applied to the summarization of
online conversations because of a lack of summary
annotations.

1https://slack.com
2https://www.reddit.com

Distant labels have been used to train mod-
els, thereby reducing the need for manual label-
ing; some of these labels were also applied to
the summarization task. Categories of news arti-
cles (Isonuma et al., 2017) and ratings of online
reviews (Xiong and Litman, 2014) were used as
distant labels in extractive summarization. How-
ever, these have been used as supplementary la-
bels to enhance conventional summarization mod-
els, whereas we present labels which a model can
solely be trained with.

We leverage a measure of popularity as a dis-
tant label. In social media, users can vote, share,
or bookmark a post they prefer, and the number of
these actions are regarded as indications of popu-
larity. We assume that measures of popularity re-
flects the informativeness, the index required for
a summary (Erkan and Radev, 2004), and validate
whether popularity can be used as a distant label
for extractive summarization. However, popular-
ity is not solely determined by content, e.g., a text
or an image, but is highly affected by contexts,
e.g., timing, and authority (Cheng et al., 2017;
Burghardt et al., 2017; Suh et al., 2010; Hessel
et al., 2017; Jaech et al., 2015). Therefore, to uti-
lize popularity as an indicator of informativeness,
we need to exclude the effect of context.

To exclude the effect, we propose Disjunctive
model. This model computes two scalar values;
one from a content feature and the other from a
context feature. These two values are then mul-
tiplied to predict the popularity. The scalar val-
ues can be interpreted as the contribution of con-
tent and context to the prediction. We assume that
the contribution of content to indicate informative-
ness.

For evaluation, we build a test dataset where
comments are annotated for informativeness. We
measure informativeness as an index indicative of
the best sentences to extract as a summary. We
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select Reddit as a data source, where the karma
score, a measure of popularity in Reddit, is known
to be affected by contexts. Our test task is to ex-
tract informative posts. Because informativeness
of each post is annotated via crowdsourcing, the
extracts can be ranked, but the appropriate number
is unknown. Therefore, we employ ranking met-
rics in the evaluation. Our experiment only use
karma scores for training to verify that they reflect
informativeness. The results show that our model
outperforms baseline models that directly adopt
karma scores as an indicator of informativeness.
Furthermore, our model focus on a local feature
of a single post, whereas conventional centrality-
based models (Erkan and Radev, 2004; Mihalcea
and Tarau, 2004) use a global context of posts, and
the complementary hybrid of the both models out-
perform both the centrality-based models and our
models.

The contributions of this paper are three fold. 1)
Propose a model that harnesses a popularity mea-
sure as a distant label for extractive summariza-
tion. 2) Create a dataset of online conversations
in which the informativeness of contents are an-
notated to verify that popularity does not correlate
with informativeness because of the effect of con-
text. 3) Demonstrate that our model, when com-
bined with a centrality-based model, outperforms
baseline models in predicting the informativeness
of posts.

2 Related Work
Previous research of summarizing online conver-
sations can be categorized into graph-based meth-
ods (Mehdad et al., 2013, 2014; Shang et al.,
2018), template-based methods (Oya et al., 2014),
and methods which use dialogue acts as a fea-
ture (Bhatia et al., 2014; Carenini et al., 2007).
In previous research, few or no training data was
adopted because of a lack of labeled data. Our
model harnesses a vast amount of data from social
media.

Many researchers used user-contributed labels
from social media as distant labels. Xiong (2014)
used review scores on a movie-rating site for a
summarization task. For a sentiment analysis on
Twitter3, Davidov(2010) used hashtags, and Gui-
bon (2017) used emoji. In our study, we leverage
a popularity measure for a summarization task.

Factor analysis quantifies the contribution of
3https://twitter.com

each feature to the result, using a linear model. For
example, Suh (2010) analyzed factors contributing
to popularity in Twitter. Our model assumes a lin-
ear relationship between context and content, and
thus enables to utilize the contribution of content
as an indicator of informativeness.

3 Data

In this study, we work with Reddit threads. A
thread is a set of comments, and the first posted
comment is called a submission. Comments can
be made in response to submissions as well as
comments under the submissions, resulting in a
thread being tree-structured. Submissions and
comments can be upvoted or downvoted by read-
ers, and karma scores are computed as upvotes mi-
nus downvotes. Karma scores follow Zipf’s law
(Cheng et al., 2017). Therefore, we smooth the
karma scores as follows:

f(k) =

(
log(k + 1) (k � 0)

0 (k < 0)

where k represents the karma score.
Reddit is organized into subreddits by topic.

Posts from the subreddits AskMen, AskWomen,
and AskReddit with 420,598, 247,012, and
644,034 comments, respectively, are collected and
split into training and validation sets with a 4:1
ratio. The validation sets are used for early-
stopping. All comments were posted from June,
1, 2016 through June, 1, 2017.

Manual Annotation We crowdsource the anno-
tation of comments in terms of informativeness to
utilize them as test data. Annotators are asked to
choose 3 informative comments from 10. We de-
fine 10 comments as a subset; each comment is a
reply to a submission. For submissions with more
than 10 replies, posts with the top 10 karma scores
are selected. For each subreddit, 130 subsets were
annotated, for a total of 1,300 comments. Because
10 annotators vote for 3 different comments each,
the number of votes for a comment ranged from 0
to 10. These numbers we refer to as the annotated
score. The comments in each subset are shuffled
to invalidate the effect of the order in which anno-
tators read the comments.

Liu and Liu (2008) observed that the best sum-
mary differs among annotators, especially when
summarizing conversations, consequently result-
ing in low Kappa scores. In their study, the Kappa
statistics for six different annotators varied from
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Table 1: Examples of posts with low karma scores and high annotated scores, and vice versa.

karma
score

annotated
score

post

0 8 Martin Shkreli was streaming League of legends and my brother messaged him to see if he
could get an invite to the group. They have played a few times since.

1 10 Same thing goes for being bitten by a dog, instead of instinctively pulling away...force your
arm/hand down their throat. Super effective.

1 10 1 Make sure you have solid internet. 2 Find work from home, they actually exist book keeping,
software testing, data entry, etc. 3 Work from home while earning a modest wage you wont get
rich on those jobs, but it will certainly pay the bills.

360 0 Ill try this the next time my toddler bites me.
253 0 Im an English major who wants to go into marketing. Wat do
228 0 Sadly people buy the first thing that the see and this is what is in season.

Figure 1: Description of the Disjunctive model.
L

andN
represent addition and multiplication, respectively.

The components of each model we use for training and
testing are shown. Black and white squares represent
scalars and functions, respectively.

0.11 to 0.35. In our study, the Fleiss Kappa coef-
ficients (Fleiss and Cohen, 1973) of the annotated
data are 0.252 for AskMen, 0.191 for AskWomen,
and 0.213 for AskReddit.

The correlation coefficients of the karma scores
versus the annotated scores are low: 0.063 for
AskMen, 0.081 for AskReddit, and 0.107 for
AskWomen. Table 1 shows some examples of
posts with low karma scores and high annotated
scores, and vice versa. It shows that there are in-
formative posts with low karma scores, and non-
informative posts with high karma scores. This
implies that it is necessary to exclude the effect of
context to leverage karma scores as distant labels
for summarization.

4 Proposed Model
To exclude the effect of context from the popu-
larity, we propose Disjunctive model (Figure 1).
This model computes two scalar values, a content
score and a context score from a content feature
and a context feature, respectively by multiply-

ing parameter vectors. The model is trained to
predict popularity by multiplying the two scores
and adding a context bias, which is also computed
from a context feature. After training, the two
scores represent the contribution of the content
and context to popularity. We assume that the con-
tent score indicates informativeness. While train-
ing, the popularity score is used to predict the pop-
ularity, which is represented by the karma scores
in our study. During evaluation, the content score
is used for prediction of informativeness. The con-
text score is constrained to be positive; otherwise,
it can be either positive or negative, making it dif-
ficult to assume that a content score represents in-
formativeness.

4.1 Context Feature Extractor

We use a multi-layer perceptron (MLP) to extract
the features of the context of comments. Our study
discusses six attributes of context: the karma score
of a submission, the karma score of the previous
comment, the depth in a thread, the relative time
since the previous comment, the rank of the rela-
tive time among all replies to a previous comment,
and the number of replies to a previous comment.
The number of layers is set to 3, and the dimen-
sions of each layer are 64.

4.2 Content Feature Extractor

We use two content extractors: long short-term
memory (LSTM) as a basic language model, and
a factored neural network (FNN) (Cheng et al.,
2017) as a model that achieved state-of-the-art re-
sults in karma score prediction tasks. FNN, which
is a language model, sequentially predicts the next
words in a comment and its reply using an atten-
tion mechanism. As in the previous research, we
pretrain this model using the same data used in the
training, and fine-tune its parameters on the karma
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Figure 2: Description of baseline models. (a) Concat
model. (b) Text model.

score prediction task. A single-layer LSTM and
FNN are used and the last hidden layers are used
as the content feature. The dimensions of the hid-
den layers are set to 64, and the dimensions of the
word embedding are set to 256.

5 Experiments
We train the summarization model using karma
scores as distant labels and evaluate the predic-
tion of informativeness with the annotated dataset.
As explained in Sec 3, the informativeness of each
post is annotated via crowdsourcing and it is diffi-
cult to determine the appropriate number of posts
needed to create a summary. Therefore, we em-
ploy ranking metrics for evaluation. In each sub-
set, where subsets were defined in Sec 3, we rank
each comment from 1 to 10 in terms of predicted
scores and annotated scores. Ranks of tied scores
are set randomly. To avoid randomness from af-
fecting the result, we evaluate 100 times and com-
pute an average as a result. We use three metrics:
Spearman’s Rho (S⇢), precision@3 (prec3), and
Mean Reciprocal Rank (MRR) (Mcfee and Lanck-
riet, 2010).

5.1 Experimental Setting

Experiments are conducted by using mean-
squared error as the loss function and Adam as
the optimizer (Kingma and Ba, 2014). We re-
place words that appear fewer than five times
with <unk>. There are 63,093 unique terms for
AskMen, 53,589 for AskWomen, and 80,426 for
AskReddit. The maximum length of each com-
ment is clipped to 50. The mini-batch size is 64.

5.2 Baseline Model

We experiment with four baseline models. Two
are supervised models as shown in Figure 2: the

Concat model concatenates content and context
features, and the Text model uses only content
features. The other two are centrality-based un-
supervised models: LexRank (Erkan and Radev,
2004) and TextRank (Mihalcea and Tarau, 2004).
The unsupervised models only use content fea-
tures. Disjunctive model use different scores for
prediction in the training and in the test, as shown
in Figure 1; however, Concat and Text models use
a popularity score, the predicted value of a karma
score, both in the training and in the test. This is
because there is no substitute for the content score
in these models.

5.3 Hybrid Model

The supervised models in our study, including the
Disjunctive models, compute features from a sin-
gle post only. To also harness the global infor-
mation encoded in all posts in a subset, we build
a Hybrid model which multiplies the scores from
the Disjunctive model and the TextRank.

6 Results
The results of the experiments described in Sec 5
are shown in Table 2. The suffixes Disjunctive,
Concat, and Text denote the supervised models de-
scribed in Sec 4 and Sec 5. The prefixes LSTM
and FNN indicate the models we use for content
feature extractors. Among the supervised models,
our Disjunctive models outperform both LSTM
and FNN-based baseline models. In contrast, the
results of the Concat models are poor. Unsuper-
vised models which use the global feature of posts
in a subset perform well. The FNNDisjunctive
model combined with TextRank outperforms both
the supervised models and the unsupervised mod-
els. To confirm that multiplication performs better
in our task, we also experimented with Additive
models, which simply add the context score and
the content score instead of multiplying. Although
better performing than the Text model, the perfor-
mance was not as good as the Disjunctive model
(Not shown in Table).

7 Discussion
Here we discuss the comparison of the results
shown in Table 2, and how our Disjunctive model
separate the effect of content and context.

Text Model vs Concat Model vs Disjunctive
Model The Text model performs worse than our
model. A possible reason is that karma scores can
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Table 2: Result of ranking annotated scores. The best results among the supervised models are underlined, and the
best results among all the models are bolded. The names of our models are also bolded.

Content Model AskMen AskReddit AskWomen
Type S⇢ MRR prec3 S⇢ MRR prec3 S⇢ MRR prec3

Super.
Local

LSTMConcat 0.021 0.279 0.297 0.028 0.294 0.323 0.146 0.315 0.367
FNNConcat 0.032 0.276 0.298 0.068 0.325 0.323 0.129 0.309 0.346
LSTMText 0.057 0.313 0.337 0.08 0.335 0.342 0.230 0.373 0.413
FNNText 0.045 0.308 0.318 0.052 0.326 0.320 0.169 0.360 0.393
LSTMDisjunctive 0.046 0.325 0.327 0.137 0.362 0.384 0.302 0.409 0.452
FNNDisjunctive 0.164 0.375 0.378 0.196 0.411 0.414 0.259 0.402 0.435

Unsup. TextRank 0.300 0.405 0.417 0.301 0.425 0.435 0.291 0.416 0.422
Global LexRank 0.043 0.321 0.352 0.137 0.305 0.384 0.122 0.347 0.383

Hybrid TextRank+LSTMDisjuntive 0.095 0.373 0.358 0.199 0.396 0.422 0.340 0.438 0.468
TextRank+FNNDisjunctive 0.319 0.436 0.452 0.336 0.452 0.448 0.345 0.437 0.460

Figure 3: Karma scores and annotated scores of posts
extracted by the LSTMConcat model (blue dots on
the left) and the LSTMDisjunctive model (red dots
shifted to the right for visibility) from the AskWomen
dataset. Histograms of the karma scores and the anno-
tated scores are also shown above and on the right.

be different even with similar text content because
of different context, and this confuses the models
that only use content features. Our model, by con-
trast, can avoid this problem because it considers
the effect of context.

The Text model outperform the Concat model
because context is a strong factor in predicting
karma scores. If a model can use both content and
context (as the Concat model does), it might over-
fit to context and ignore content. This does not
happen in our model because it does not use con-
text in test.

Hybrid Model vs Disjunctive Model The good
performance results of the TextRank model indi-
cate that global features of the posts are informa-
tive for ranking. While the supervised models just

focus on one post at a time in each subset, the un-
supervised models look at all the posts together
in a subset. The hybrid model of the TextRank
and the FNNDisjunctive models takes advantage
of the complementary focus of the individual mod-
els, and outperforms both the supervised and the
unsupervised models.

Separation of Content and Context The visu-
alization in Figure 3 shows that our model can
predict informativeness whereas the Concat model
cannot. From each subset explained in Sec 3, we
extract the post with the highest predicted score by
the LSTMConcat and the LSTMDisjunctive. The
karma scores and annotated scores of the extracted
posts are plotted as blue and red dots, respectively.
The karma scores are smoothed by the equation
described in Sec 3. There are 130 subsets, for a
total of 260 dots plotted. The Concat model ex-
tracts posts with low annotated scores but high
karma scores, whereas the Disjunctive model ex-
tracts posts with high annotated scores regardless
of the karma scores.

8 Conclusion
We proposed Disjunctive model that harnesses
popularity as distant labels for use in extractive
summarization. Our model was shown capable
of separating the effects of content and context in
a popularity measure and predicting the informa-
tiveness of content. To evaluate this, we built a
Reddit dataset where informative comments were
annotated. Our model, combined with a centrality-
based model, outperformed the baseline models
on the task of ranking posts to correspond to the
rank of the annotated scores in three ranking met-
rics. Our models currently use only a single post
as a feature. In the future, we will develop a model
which uses a series of posts as a feature.
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Abstract

Individuals express their locus of control, or
“control”, in their language when they iden-
tify whether or not they are in control of their
circumstances. Although control is a core
concept underlying rhetorical style, it is not
clear whether control is expressed by how or
by what authors write. We explore the roles
of syntax and semantics in expressing users’
sense of control –i.e. being “controlled by” or
“in control of” their circumstances– in a cor-
pus of annotated Facebook posts. We present
rich insights into these linguistic aspects and
find that while the language signaling control
is easy to identify, it is more challenging to
label it is internally or externally controlled,
with lexical features outperforming syntac-
tic features at the task. Our findings could
have important implications for studying self-
expression in social media.

1 Introduction

Language is a form of action, and written occur-
rences constitute a performance of power and con-
trol (Fairclough, 2001). Research in natural lan-
guage processing has long focused on distilling
the constituents of writing that conveys author-
ity (Danescu-Niculescu-Mizil et al., 2012), domi-
nance (Bradley and Lang, 1999), dogmatism (Fast
and Horvitz, 2016), expertise (Levy and Potts,
2015) and politeness (Danescu-Niculescu-Mizil
et al., 2012). These studies have shown how au-
thors’ use of certain lexical and syntactic patterns
achieve specific rhetorical effects. In this study,
we contribute to the growing literature with an
analysis of how individuals express control, and
compare the insights and predictive power ob-
tained from both, lexical and syntactic features.

We operationalize the key aspects of locus of
control described by existing psychology theories

⇤Masoud Rouhizadeh & Kokil Jaidka co-lead this work.

(Rotter, 1966) to identify an external locus of con-
trol when authors express that they feel controlled
by other people or the environment. On the other
hand, authors communicate an internal locus of
control when they ascribe the control of their deci-
sions and circumstances to themselves. This study
poses the question: do writers rely more on con-
tent than syntax to convey their control? Fol-
lowing its psychological underpinnings, we expect
that overall lexical choice, self-reference, and cer-
tain verb categories would be indicative features
for modeling author’s locus of control. Our study
attempts to validate these assumptions by answer-
ing two research questions:

• To what extent can lexical and syntactic fea-
tures predict control relevance and internal
and external locus of control?

• Which verb categories are more associated
with control relevance and internal vs. ex-
ternal locus of control?

We train a multi-stage predictive model to clas-
sify posts on Facebook as (a) control-relevant or
not, and (b) internal vs. external control. We
find that syntactic and semantic features work well
to identify control relevance, with verb categories
and pronoun use being the most predictive fea-
tures. However, determining internal vs. external
control is a more challenging task, where lexical
features vastly outperform syntax-based features.
The best performance is seen by a model that
combines lexical and syntactic features along with
self-reference ratio. We will be releasing our tools
and models along with annotated and anonymized
datasets for the benefit of the research community.

2 Background

Locus of control, or “control”, reflects the extent
to which people ascribe the cause or control of
events in their lives to themselves or the external
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factors (Rotter, 1966). The language indicating in-
ternal control in a given situation signals intention-
ality (the author is describing an action that he/she
intended) and awareness (the author is aware of
the effect of the action). Internal control is of-
ten associated with causing a given event or doing
something that is clearly a choice. The external
control language, on the other hand, is character-
ized by lack of intention or awareness, or by con-
crete mention of being controlled by others. It is
usually lined to describing an out-of-control event,
or something that is not a choice

Organizations and governments are attempting
to better understand issues of locus of control and
self-efficacy, which are closely related with phys-
ical health and job performance (Marmot et al.,
1991; Harter et al., 2003). The study by (Jaidka
et al., 2018b) offered to explore the relationship
between locus of control (measured through sur-
veys) and the Big 5 personality taxonomy (John
and Srivastava, 1999), and touched briefly upon
the content-related linguistic signals. However,
the present study is more interested in comparing
the lexical (aka open-vocabulary or bag-of-words)
and syntactic signals of control that are embedded
in language. If deployed on a large scale with the
informed consent of the authors, it may allow un-
obtrusive, cost-effective estimates of well-being1.

Signals within the language should provide in-
sight into the cognitive sense of control experi-
enced by an individual; however, to our knowl-
edge, no study has examined whether these signals
are stronger in the way people express themselves,
or what they say. Although the discourse and lexi-
cal signals that convey status and dominance have
been studied in previous work, they involve con-
trolling other people (Danescu-Niculescu-Mizil
et al., 2012; Fast and Horvitz, 2016), while locus
of control is an assessment of the writer’s own af-
fairs – perhaps indicated through lexical features
that focus on first person pronouns.

Dominance has also been qualitatively mea-
sured in terms of the affective context at the level
of an utterance (Bradley and Lang, 1999); how-
ever, we found that this also did not correspond to
our notion of locus of control. With reference to
the syntactic features, we will test whether control
may be understood through different verb forms,
and active versus passive voice. Locus of control

1http://www.pewinternet.org/2016/06/22/social-media-
and-the-workplace/

is different from semantic role labeling: for inter-
nal control, we are mainly interested in whether
the author is the agent (rather than identifying who
the agent is, in a sentence), and how much they
control their life. External control includes a com-
plex mixture of semantic roles such as patient, ex-
periencer, theme, recipient, and beneficiary.

3 Locus of control data

Posts on Facebook capture self-expression by a
diverse audience about their daily lives, which
makes it a natural starting point for exploring the
linguistic features of control. For data collec-
tion, we deployed a survey on Qualtrics compris-
ing several demographic questions, the Sense of
Control facet items from the MIDUS survey (Brim
et al., 2004) and a 3-item health inventory measur-
ing poor health, general health and weekly excer-
cise, taken from the CDCs Behavioral Risk Factor
Surveillance System (BRFSS) and the European
Social Survey (ESS). We invited users to share
access to their Facebook status updates and ran-
domly sampled 2000 users who had posted at least
100 words (with 839 status updates on average).
We then randomly sampled 2 status updates per
user to obtain 4000 statuses. We cleaned up the
text by removing URLs, hashtags, user handles,
etc. and split each status into sentences using our
in-house pattern-based sentence splitter inspired
by CMU ARK Twitter Twokenize script (Owoputi
et al., 2013). Finally, from each status update, we
selected one sentence that has 2 or more words.

3.1 Locus of control annotation

Building a useful computational model requires
labeled training data. We labeled the Facebook
dataset using three trained annotators pursuing a
Master’s program in Psychology, to construct the
first public corpus annotated with control. We
asked the annotators to determine whether the au-
thor of the sentence is in control (internal control)
or being controlled by others or circumstances (ex-
ternal control). To ensure quality work, we pro-
vided examples corresponding to each point on the
scale. The examples provided to the annotators are
also provided in the annotation scheme described
in the Appendix.

In this paper, we focus on Stage 1 and Stage 2
of annotation, which distinguish control-relevant
sentences and classify them as either internal or
external control. We evaluate the reliability of
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the annotations by computing percent-agreement.
The highest pairwise inter-annotator agreement
between annotators is 90.2% for Stage 1 and 79%
for Stage 2.

4 Methods

To train and test the classifiers for the Stage 1
and 2, we use the Differential Language Analy-
sis ToolKit2 (DLATK) (Schwartz et al., 2017), a
Python package developed for social media text
analysis. Lexical features are extracted in DLATK
and syntax-based features are separately generated
and imported into DLATK feature sets.

4.1 Lexical features
ngrams: Normalized frequency distribution over
1-, 2- and 3-grams
LIWC: Frequency distribution of categories from
the Linguistic Inquiry and (LIWC) (Pennebaker
et al., 2007).
ANEW: Weighted frequency distribution of the
Dominance score in the Affective Norms in En-
glish Words (ANEW) (Bradley and Lang, 1999).
Word2Vec Topics: We use word clusters built
on top of Word2Vec, by Preoţiuc-Pietro, Lampos
and Aletras (2015). They built 200 open-ended
word clusters by applying spectral clustering to
the word-to-word similarity matrix from the neu-
ral embeddings Mikolov et. al (2013).
Pronouns: We clustered all pronouns (except for
possessives) into 1st-, 2nd-, and 3rd-person re-
gardless of their syntactic role.

4.2 Syntax-based features
We acquire dependency parses of our corpus by
SyntaxNet (Andor et al., 2016) with Parsey Mc-
Parseface model3 that produces universal depen-
dencies in relation, head, dependent triples in
CONLL format. We obtain subject-verb tuples
(SVs) and subject-verb-object triples (SVOs) from
the dependency trees. In our in-house evaluation
on a random set of 100 Tweets, SyntaxNet with
the Parsey McParseface model outperforms the
Stanford Parser (Socher et al., 2013) on extracting
SVs and SVOs from social media (P=.75, R= 68,
TN Rate =.90 for the former; P=.51, R= .55, TN
Rate =.80 for the latter). SyntaxNet is also a bet-
ter tool for our purpose compared to the Tweebo

2https://dlatk.wwbp.org
3https://github.com/tensorflow/models/

tree/master/research/syntaxnet

Parser (Kong et al., 2014), that only provides de-
pendency graphs and not the relations.
Verb predicate features: We identify the verb
classes using (a) linguistically-driven Levin’s
Classes (Lev) (Levin, 1993), and (b) an in-house
manual verb clustering on the most frequent 130
verb into 40 semantic classes (M). Inspired by
the previous research (Rouhizadeh et al., 2016),
we extract five sets of dependency-driven verb
predicate features. (1) Pronouns-SVO: occur-
rence of 1st, 2nd, and 3rd person pronouns in the
subject/object positions, (2) VerbCat-1-2-3PP oc-
currence of 1st, 2nd, and 3rd person pronouns
in the subject/object positions of each verb cate-
gory (from the Levin’s or our own verb classes),
(3) VerbCat-1PP: occurrence of 1st or non-1st
pronouns (i.e. self-reference ratio) in the sub-
ject/object positions of each verb category, (4)
VerbCat-SVO: all words in the subject/object po-
sitions of each verb category, and (5) VerbCat-
all categories of all the verbs in subject-verb and
subject-verb-object contexts.
POS-ngrams: We capture shallow syntactic fea-
tures by constructing Penn Part-of-Speech (POS)
unigrams, bigrams and trigrams after tagging ev-
ery word with their POS information by using the
Python NLTK package (Bird et al., 2009).

5 Results

We train multiple classifiers on different sets of
lexical and syntactic features after performing fea-
ture selection based on univariate regression be-
tween each feature and the outcome. We also
perform dimensionality reduction by randomized
principal component analysis (PCA). After evalu-
ating a number of classification models available
in Pythons sklearn package, we report the results
from the logistic regression classifier, with L2 pe-
nalization, and inverse of regularization strength
set to 0.1, which obtain the best results. Although
we have experimented with a variety of feature
combinations which are included in the Appendix,
we discuss selected classifiers (for meaningful
comparisons) as well as the best-performing ones.

5.1 Predicting control relevance

We report the results for prediction performance
of the main feature in Table 1a. We see that
lexical ngrams are moderately effective, whereas
LIWC, ANEW, and w2v features are not helpful.
On the other hand, pronouns appear to be very
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(a) Control Relevance
P R F1

Lexical features
ngram .854 .918 .885
Pronouns .858 1.00 .923

Syntax-based features
VerbCat-all (M) .878 .997 .934
VerbCat-all (Lev) .903 .997 .948
POS-ngram .849 .913 .880

Best combination
VerbCat-1PP (Lev) .917 .990 .952
% Agreement for Human annotators: 90.2

(b) Internal/External Control
P R F1

Lexical features
ngram .726 .682 .702
Pronouns .236 .204 .218

Syntax-based features
VerbCat-all (M) .532 .189 .280
VerbCat-all (Lev) .597 .246 .347
POS-ngram .635 .688 .659

Best combination
ngram,LIWC,w2v,VerbCat-1PP(Lev) .700 .737 .718
% Agreement for Human annotators: 79.0

Table 1: Precision, recall and F1-measure for predicting control-relevance and internal/external control
(10-fold CV) from lexical and syntactic features.

helpful, despite their linguistic and semantic sim-
plicity. Among the syntax-based features, using
the verb categories of SV and SVOs provide the
second best F1 score (Levin’s classes are better
than our classes), and adding self-reference ratio
to verb categories generates the best results. In-
terestingly, POS-ngrams perform on-par with the
lexical ngrams, suggesting that the encoded syn-
tactic information in pos-sequences is just as good
as lexical information in ngrams with considerably
less sparsity and more efficient computation.

5.2 Predicting Internal/External control

The best results for classifying internal vs. exter-
nal control are in Table 1b. Unlike control rele-
vance, ngrams are the most helpful features here
and pronouns and verb category features result
in a poor performance. LIWC, ANEW, and w2v
do not noticeably improve the results when com-
bined with ngrams, but adding verb categories and
self-reference ratio to this combination creates the
best result. This suggests that identifying inter-
nal/external control benefits from an ensemble of
syntactic, semantic and lexical features and sim-
ple lexical features are more helpful than word
embeddings. Similar to control relevance, POS-
ngrams are helpful here although they are not as
good as lexical ngrams.

5.3 Linguistic insights

Table 2 shows the most predictive verb categories
(with subject or subject-object arguments) based
on logistic regression coefficient. We see that
not only does the magnitude of the relationship
change, but it is possible that the direction can
completely change (positive values are control rel-
evance in Table 2a and external control in Ta-
ble 2b. Interestingly, we see that verbs for au-
dio/visual activities, demand, and start/end of pro-

cesses, are more frequently used in control-related
contexts, whereas using love and like verbs is an
informative signal that a given sentence is not re-
lated to control. In addition, verbs of cognition,
missing, feeling, and hope are positively associ-
ated with being controlled by others or the envi-
ronment, whereas verbs indicating attempt are cor-
related with author’s control of the situation. Al-
though not complete, these semantic categories are
intuitively well-associated with the psychological
theory of the control concept. In the Appendix,
we also identify the POS ngram patterns which
are significantly correlated with both, control rel-
evance and internal vs. external control.

6 Error Analysis

In observing the instances of misclassification, we
observed the following general patterns:

• False negatives:
– Control-relevant imperative sentences were
frequently misclassified as control-irrelevant,
e.g. “have a good day everyone”; “Find Je-
sus.”; “Stay focused!”
– Internal LoC sentences with modals and
’get’ were misclassified as external LoC, e.g.,
“Finally got a best man!”; “Join me and you
can save money on all you purchase here.”

• False positives:
– Control-irrelevant sentences with emotion
verbs (“like”, “hate”) were often misclas-
sified as control-relevant, e.g., “I Hate
SNOW!” ; “I dont like cologne, but it smells
nice.”
– External LoC sentences with possessive
pronouns and the verb “make” were mis-
classified as internal LoC, e.g., “It made my
day.”; “Is your name math because i have a
problem with you.”
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(a) Control Relevance
Verb category r Verbs
Audio-visual .15⇤⇤ see, say, look, talk, hear, speak
Demand .10⇤⇤ need, want, ask
Start/end .08⇤⇤ start, stop, follow, leave
Auxiliary .07⇤⇤ be, have, do
Buying .06⇤⇤ buy, spend, pay
Like -.06⇤⇤ like, love

(b) Internal/External Control
Verb category r Verbs
Cognition .08⇤⇤ know, think, mean, understand
Missing .07⇤⇤ miss
Feeling .06⇤⇤ feel
Auxiliary .06⇤⇤ be, have, do
Hope .06⇤⇤ hope, wish
Attempt -.07⇤⇤ try, check

Table 2: Logistic regression coefficient between verb categories and control (positive values are control
relevance and external control). **: p < 0.01 after Benjamini-Hochberg correction. Features with
positive coefficients are shaded blue and those with negative coefficients are shaded red.

7 Validation against psychological LoC

An ideal validation of language-based control
against psychological LoC would find that users
expressing an internal LoC in their social media
posts would also be more likely to have an inter-
nal psychological LoC as measured by the Sense
of Control scale (Brim et al., 2004), and poorer
health as reported in previous work (Birnbaum
et al., 2010). With only two observations per
user, we speculate that our data does not afford
us enough power to confirm this relationship. A
Spearman correlation between the counts of in-
ternal and external-labeled sentences per user and
their self-reported LoC and health items, revealed
a weak association between authors of a higher
number of sentences labeled as external LoC and
their psychological LoC as per the survey ques-
tionnaire (⇢ = �.06, p < 0.05, N = 2000), phys-
ical and general health (-0.08< ⇢ < -0.06, p <
0.01, N = 2000). Authors with higher number of
sentences labeled as internal LoC did not show a
significant association with internal LoC, but were
more likely to exercise regularly (⇢ = 0.04, p <
0.05, N = 2000). These findings, although weak,
correspond in direction to the findings reported in
the literature (Birnbaum et al., 2010), suggesting
that future work should investigate to what extent
the linguistic expressions of control can extrapo-
late to psychological LoC.

8 Conclusion

We describe a computational linguistic approach
to identify the locus of the author’s control in their
social media writing. Utilizing its psychological
underpinnings, we create an annotated dataset of
4000 sentences, labeled with control relevance and
of internal and external control. We show that
identifying control is largely dependent on syn-
tactic information for control-relevance and lexi-
cal information for internal/external control. From

the NLP standpoint, this suggests that solely us-
ing bag-of-word features may not be sufficient for
predicting specific psychological outcomes. We
have also distinguished our work against domi-
nance and thematic roles, which may be the closest
approximations to LoC; however these concepts
do not completely translate into each other.

Differential language analyses identified inter-
esting associations between verbs categories and
control. We found that audio/visual verbs tend
to occur significantly more in the control-related
text, and some emotion verbs such as “miss” or
“feel” are correlated with lack of control of the
surroundings. A caveat of using language-based
models is that their association with traits is corre-
lational, not causal. Furthermore, the differences
in platform affordances (Jaidka et al., 2018c) and
diachronic drifts in language use over time (Jaidka
et al., 2018a) imply that language models to iden-
tify control may need domain adaptation before
they are applied on other corpora, language from
other time periods and other social media plat-
forms, as well as posthoc domain adaptation be-
fore they can scale to measure community traits
(Rieman et al., 2017).

Existing psychological theories are mainly
based on self-expressed and self-perceived lo-
cus of control in questionnaires, but they may
be susceptible to self-report biases. Instead, we
demonstrate that some of these constructs can re-
liably be extracted from language samples, such
as social media posts, which are unsolicited self-
expressions of control.

Internal locus of control has been argued to be
important for mental and physical health, and to
characterize well-run (“empowered”) work teams;
We hope that the model presented here can be
used–with appropriate consent and privacy–for
unobtrusive monitoring of LoC in many therapy
and work settings.
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Abstract

To what extent could the sommelier profes-
sion, or wine stewardship, be displaced by
machine learning algorithms? There are at
least three essential skills that make a quali-
fied sommelier: wine theory, blind tasting, and
beverage service, as exemplified in the rigor-
ous certification processes of certified somme-
liers and above (advanced and master) with
the most authoritative body in the industry, the
Court of Master Sommelier (hereafter CMS).
We propose and train corresponding machine
learning models that match these skills, and
compare algorithmic results with real data col-
lected from a large group of certified wine pro-
fessionals. We find that our machine learn-
ing models outperform human sommeliers on
most tasks — most notably in the section of
blind tasting, where both hierarchically super-
vised Latent Dirichlet Allocation outperforms
sommeliers’ judgment calls by over 6% in
terms of F1-score; in the section of beverage
service — wine and food pairing, a modified
Siamese neural networks based on BiLSTM
achieves better results than sommeliers by 2%.
This demonstrates, contrary to popular opinion
in the industry, that the sommelier profession
is at least to some extent automatable, barring
economic (Kleinberg et al., 2017) and psycho-
logical (Dietvorst et al., 2015) complications.

1. Introduction and Related Work

Thanks to the Somm documentaries and a gen-
eral increase in awareness about wine, somme-
liers, and the Court of Master Sommeliers, there
is now a certain celebrity status, a glamor associ-
ated with becoming a sommelier. When encoun-
tered with the question — “is the sommelier pro-
fession going to be negatively affected by recent
advances in machine learning and artificial intel-
ligence?” during informal interviews conducted
by authors in the sommelier community, there ap-

pears to be a general consensus among profession-
als that the high standards of hospitality upheld by
qualified sommeliers are well beyond the capabil-
ities of machines.

The current study asks the question, to what ex-
tent would the sommelier profession be displaced
by machine learning algorithms? What aspects of
the sommelier profession could be outperformed,
and therefore perhaps displaced by what kinds of
applications of machine learning?

What makes a qualified sommelier or wine pro-
fessional? According to the Court of Master Som-
melier1, one of the two organizations held in the
highest esteem in the global industry, there are at
least three indispensable components as exempli-
fied in the certification exams leading up to the
Master Sommelier diploma: theory, blind tasting,
and service.

To satisfy the theoretical requirement, somme-
lier candidates are required to sit on a timed exam
of various questions covering a wide range of wine
topics including geography, soil, viticulture, laws,
history, language, etc. without any officially struc-
tured study guides2. We argue that this particu-
lar task maps to the stream of research concern-
ing open-domain Question Answering (hereafter,
OQA), where the model is given a question and
access to a large corpus (Chen et al., 2017), com-
bining and therefore leveraging both the Informa-
tion Retrieval (Weinberger et al., 2009) and Ma-
chine Comprehension literature (Hermann et al.,
2015; Chen et al., 2016). In Section 3, we train an
open-domain QA model building upon Chen et al.

1”The Court of Master Sommeliers sets the global stan-
dard of excellence for beverage service within the hospitality
industry with integrity, exemplary knowledge, and humility.”
— https://www.mastersommeliers.org/

2There are indeed a list of recommended references and
an unofficial source of study guides popular among candi-
dates: https://www.guildsomm.com, which we use
as our training data.
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(2017), on a large corpus of wine topics drawn
from recommended study resources by CMS. We
contrast the machine performance with somme-
liers’ performance on equivalent test questions.

To satisfy the blind tasting requirement, candi-
dates have to blind taste a flight of wines, pre-
cisely describe the wine, and accurately identify
the grape varietal, the region (thus the country),
the vintage, and the quality level of each. Accord-
ing to wine programs such as CMS or WSET3,
blind tasting consists of two steps — tasting and
deduction. Tasting refers to the sensory experience
associated with evaluating wines — color, aroma,
favor, aftertaste, etc. Proficient candidates are ex-
pected be able to detect a wide range of charac-
teristics of the focal wine, and precisely describe
the wine with meaningful descriptors accordingly.
Deduction is the logical process that leads the can-
didate to conclude on the identity of the wine given
the characteristics he detects in the first step. Ac-
cording to wine educators and master sommeliers
such as Geoff Kruth M.S., it is the deduction part
of blind tasting that separates great blind tasters
from mediocre ones, mostly due to the fact that
it requires greater logical thinking and reasoning.
We propose that the deduction step maps exactly
to the machine learning task of structured predic-
tion (Taskar et al., 2005; Belanger and McCal-
lum, 2016; Barutcuoglu et al., 2006; Rousu et al.,
2006). In Section 4, we demonstrate that a hi-
erarchical supervised Latent Dirichlet Allocation
model (Perotte et al., 2011; Nguyen et al., 2013)
trained on a large corpus of textual descriptions
of wines of different grape varietals, regions, vin-
tages, and quality levels, outperforms sommeliers
in deduction by a large margin.

To satisfy the service requirement, candidates
are grilled on questions of wines and spirits, food
and wine pairing, salesmanship, and service me-
chanics in a restaurant setting. In Section 5,
we showcase a modified Siamese Neural Net-
work (Yang et al., 2015; Mueller and Thyagara-
jan, 2016; Neculoiu et al., 2016; Pei et al., 2016;
Bertinetto et al., 2016) coupled with Bidirectional
Long Short-term Memory Networks (Hochreiter
and Schmidhuber, 1997; Schuster and Paliwal,
1997; Zhang et al., 2015) trained on corpora of
wine reviews (Hendrickx et al., 2016) and cook-
ing recipes (Tasse and Smith, 2008; Jermsurawong
and Habash, 2015) outperforms sommeliers’ per-

3Wine & Spirit Education Trust

formance.

2. Data Collection and Preprocessing

Our datasets consist of three parts: (1) Study Re-
sources: a large corpus consisting of all the rec-
ommended resources for sommelier certification
by the CMS, for the Question Answering — The-
ory Component detailed in Section 3; (2) Wine
Reviews: a massive repository of expert wine re-
views with rich meta-data, based on reviews from
Decanter, Vinous, Wine Spectator, and Wine En-
thusiast, the four widely recognized media outlets
in the industry, for the Structured Prediction —
Deduction in Blind Tasting Component detailed in
Section 4; (3) Survey Responses from 1, 305 certi-
fied wine professionals, covering topics on theory,
deductive tasting, and wine and food pairing, thus
providing experts’ performance data with which
we compare results from our corresponding ma-
chine learning models in Section 3, Section 4, and
Section 5.

2.1 Preprocessing
The study resource dataset consists of documents
of various categories and topics from the Guild-
Somm. We treat texts under each sub-category
as a document — there are 752 documents in our
dataset and the average length of documents is
1, 384 words.

For the wine review dataset, we only consider
wines for which we had at least 200 reviews in
the training set, leading to 850, 119 reviews com-
bined. When different names were used for the
same grape, we normalize these to the same cat-
egory. For instance, Pinot Bianco (Italy), Pinot
Blanc (France), and Weissburgunder (Germany)
are mapped together and renamed Pinot Blanc ac-
cording to the wine grape encyclopedia (Robinson
et al., 2013; Robinson and Harding, 2015). We
preprocessed all the text data in standard proce-
dures.

2.2 Summary of Datasets
We plot the country and point distributions of our
review dataset in Figure 1 , grouped by media out-
let. Interestingly, Vinous appears proportionally
much more focused on Italian wines and its ratings
are more skewed to the right compared to others
(a.k.a. greater rating inflation), somehow contrary
to the brand image; Wine Spectator is much more
focused on Old World whereas Wine Enthusiast is
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more evenly distributed across countries.
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Figure 1: Country and Point Distribution of Wine
Reviews

2.3 Survey Details
We administered timed online surveys to wine pro-
fessionals in several active sommelier communi-
ties such as the Guild of Sommeliers, the Society
of Wine Educators, etc. Each survey consists of

three sections that correspond to the three com-
ponents respectively — theory, deductive tasting,
and pairing. Each section lasts no longer than 15
minutes and consists of 30 questions, randomly
drawn from a large pool of practice questions from
the Guild of Sommeliers and the Society of Wine
Educators.

In the first section, we administered two sets of
questions varying difficulty level — one on the
level of certified sommelier (CMS level 2), the
other on the level of advanced sommelier (CMS
level 3). The Question Answering (wine theory)
pool consists of 1, 400 questions (700 equivalent
to level 2 difficulty, 700 equivalent to level 3 dif-
ficulty) from Society of Wine Educators’ Certified
Specialist of Wine and Certified Specialist of Spir-
its programs, and 1, 480 questions (740 at level 2
difficulty and 740 at level 3 difficulty) from Guild
of Sommelier practice repository. 2, 304 questions
were used for training, and the rest for testing. In
the second section, we randomly drew 30 textual
descriptions from our pool of 850, 119 reviews de-
tailed in Section 2, and asked the subject to deduce
the varietal, vintage range, region, and quality
level of the wine being described. In the third sec-
tion, we randomly drew 30 wines (Title and Tast-
ing note) from the repository of wine reviews and
30 recipes from the CMU Recipe Database CURD
(Tasse and Smith, 2008), and asked the subject
to rate the pairings on a scale from 1 to 5. We
circulated our survey to members of the Guild of
Sommeliers and Society of Wine Educators com-
munities and received 1, 412 responses. The first
section of theory questions serves not only as a
dataset compared against QA models, but also as
a validation and screening procedure: we removed
the responses with fewer than 184 correct answers
to the 30 questions in section 1, reducing our sam-
ple size to 1, 305. Sommelier scores were calcu-
lated aggregating all the participants’ answers.

3. Wine Theory: open-domain Question
Answering

We implemented an open-domain Question An-
swering system modeled after Chen et al. (2017),
consisting of a Document Retriever module and a
Document Reader module.

The Document Retriever module finds the three
4We choose the cutoff rate of 60% because it is the the

pass rate in real sommelier exams both for the certified and
advanced.
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most relevant documents by comparing docu-
ments and questions as TF-IDF weighted bag-of-
word vectors that include bigrams. We also adopt
the hashing of Weinberger et al. (2009) for map-
ping bigrams with an unsigned murmur3 hash.

The Document Reader module is essentially a
bidirectional Long Short-term Memory Network
(BiLSTM) (Hochreiter and Schmidhuber, 1997;
Zhang et al., 2015) applied to each paragraph
in relevant documents, the predicted answers of
which are finally aggregated. For detailed proce-
dures of implementation, we refer readers to Chen
et al. (2017). The only differences are, our batch
size is 25 and we adopted a dropout rate of 0.1.
We document the results in Table 1. Surprisingly,
our OQA results converge to the high levels of
accuracies achievable by machine comprehension
models. We argue that it is because our corpus is
relatively small and concentrated on wine-related
topics, which results in few complications arising
from the integration of large-scale information re-
trieval and machine comprehension, and therefore
more germane to single machine comprehension
models. Note that we removed survey results be-
low 60% accuracy, stacking the odds against us
because now the sommeliers’ performance results
are inflated, which could provide partial explana-
tions for OQA being behind. The comparison still
looks promising, despite the 4.8% disparity in per-
formance.

Data Generation Training Set Test Set
Exact Match F1 Exact Match F1

Sommeliers NA NA 67.1 71.7
OQA System 58.1 67.8 55.7 66.9

Table 1: Evaluation results of OQA in comparison
with sommeliers’ performance.

Comparing the accuracies across regions, we
find sommeliers did much better than DrQA in old
world regions while DrQA edged out on most new
world regions. It might echo the greater emphasis
of sommelier training in real life on the old world,
and/or reflect the more complications introduced
by French, Italian, German, and Spanish termi-
nologies which we didn’t correct for when dealing
with the old world wine regions.

4. Blind Tasting: HSLDA

We implemented the Hierarchically Supervised
Latent Dirichlet Allocation (HSLDA) model (Per-
otte et al., 2011) for deduction in blind tasting

based on textual descriptions of wines, because
of the natural fit in-between — the texts describ-
ing wines are hierarchically (from top to bottom:
grape varietal, country, region, vintage, quality)
and multiply (blends vs. monovarietals)) labeled
bag-of-word (simple and performant for reviews)
data. For model details, we refer readers to Per-
otte et al. (2011). We use the subset of wine
reviews published in Wine Enthusiast and De-
canter for this task. It contains 183, 660 wine
descriptions for training and 39, 150 for testing.
There are 41.1 terms on average in each docu-
ment, with a 11.6 standard deviation. There are
12, 132 unique (sub-)categories in the form of
“Sangiovese, Italy, Tuscany, 2015, Riserva”. We
use a Gaussian prior over the regression parame-
ters where a range of values for µ, the mean prior
parameter for regression coefficients are evaluated
(µ 2 {�3, �2.5, �2, . . . , 1}). We set the num-
ber of topics to 20 based on small sample testing
and CMS tasting grid. Prior distributions of hy-
perparameters are gamma distributed with a shape
parameter of 1 and a scale parameter of 1, 000.

Initial results were less satisfying and most er-
rors occurred because mono-varietals were pre-
dicted to be blends and vice versa. Therefore we
explored two solutions: (1) we separated our data
into mono-varietals (Model 1), and blends (Model
2), and trained HSLDAd separately; (2) we cre-
ated a smaller yet more balanced training set re-
garding mono-varietals and blends (Model 3).

In Model 1, we simplified “testable” (i.e., in-
cluded in Court of Master Sommelier tasting ex-
ams) blends in our dataset such as “Southern
Rhone red blend”, “Marsanne Roussanne blend”,
“Sangiovese blend”, and such were treated the
same as the mono-varietals. Model 2 and 3 were
trained using the exact blending grape varietals.
We believe Model 1 is closest to the decision mak-
ing processes encountered by sommeliers in CMS
certification exams, whereas Model 3 is more
likely to resemble sommelier challenges such as
Top Somm.

We computed precision and recall of all the cat-
egories, yielding a 12, 132⇥12, 132 sparse confu-
sion matrix for Model 3, a 11, 672⇥11, 672 sparse
confusion matrix for Model 1, and a 386 ⇥ 386
confusion matrix for Model 2. We then aver-
aged them to get a single real number measure-
ment. Table 2 shows the average F1 scores of
different models versus sommeliers’ performance.
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Likewise, the sommeliers’ performance measures
represent a conservative(ly higher) estimate since
scores lower than 60% in section 1 were removed.
We find the HSLDA model, especially of monova-
rietals, outperforms sommeliers by 6.3%, as mea-
sured by F1. In aggregate, sommeliers did signif-

F1 Scores Training Set Testing Set
HSLDA1 Monovarietal 71.1 68.4
HSLDA2 Blend 62.5 59.1
HSLDA3 Balanced 59.8 56.4
Sommeliers NA 62.1

Table 2: Evaluation results of HSLDAs in compar-
ison with sommeliers’ performance.

icantly better in red and sparkling wines, and in
French, German, and Californian wines, whereas
Model 1 edged out in white wines, south America
wines.

5. Food and Wine Pairing: Siamese
Neural Networks with LSTM

For food and wine pairing, we trained an un-
tied and modified version of Manhattan LSTM
(Mueller and Thyagarajan, 2016), where we pre-
processed the texts differently and applied LSTM-
Based Importance Weighting in place of the
original simple similarity function coupled with
LSTM. We retained from the recipes only ingre-
dients, serving ingredients and essential actions,
which were passed to the BiLSTM (Zhang et al.,
2015). For a given pair of wine and recipe descrip-
tions, we applied a weight compatibility function
g(h(a)

Ta
, h(b)

Tb
) = exp(�||aT h(a)

Ta
�bT h(b)

Tb
||1), where

aT and bT are shared network weights applied to
BiLSTM representations ha

Ta
and hb

Tb
. For model

architecture and other implementation details we
refer readers to Mueller and Thyagarajan (2016)
and Rücklé and Gurevych (2017).

We obtained our ground-truth labels for wine
and recipe pairings on a scale from 1 to 5 using an
automated weighting scheme based on wine and
food pairing principles (Goldstein and Goldstein,
2006)5 leveraging the GuildSomm tasting notes of
grape varietals and recipe ingredients, under close
guidance of a certified sommelier with the CMS.
Details of the weighting scheme is included in our
online supplementary documents. In the end we
simplified our scale to binary — {1, 2} converted

5One of the few recommended resources for certified
sommelier candidates on wine and food pairing.

to 0, {3, 4, 5} converted to 1. We document our ac-
curacies in Table 3. Surprisingly, the model edged
out by 1.7%.

Accuracy Training Set Testing Set
Modified MaLSTM 82.3 79.8
Sommeliers NA 78.1

Table 3: Evaluation results of Modified MaLSTM
in comparison to sommeliers’ performance.

6. Conclusion and Future Work

We examine how machine learning can be used to
understand, assist, and improve human decision-
making, echoing recent studies in computational
social sciences (Dietvorst et al., 2015; Kleinberg
et al., 2017). We dissect sommelier skills into
three parts and train ML models for each. We
show with our choices of suitable models, col-
lection of valuable datasets and annotations, that
ML algorithms outperform sommeliers in essen-
tial skills. Future work could improve on:

1. fine-tuning the Open-domain Question An-
swering for wine knowledge;

2. connecting our HSLDA or hierarchical multi-
label classification to robotic sensors to fully
mimic the blind tasting task;

3. exploring other simpler and more efficient
ML models for pairing tasks;

4. training a joint multi-task model, since it is
accepted in the industry that a solid knowl-
edge of wine theory helps immensely in blind
tasting and wine service. It would be inter-
esting to quantify the synergy in the learning
process;

5. exploring ML applications to other aspects of
the service component.
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Abstract
Detecting fine-grained emotions in online
health communities provides insightful in-
formation about patients’ emotional states.
However, current computational approaches to
emotion detection from health-related posts
focus only on identifying messages that con-
tain emotions, with no emphasis on the emo-
tion type, using a set of handcrafted features.
In this paper, we take a step further and pro-
pose to detect fine-grained emotion types from
health-related posts and show how high-level
and abstract features derived from deep neu-
ral networks combined with lexicon-based fea-
tures can be employed to detect emotions.

1 Introduction

Emotions are an essential part of our lives and re-
flect feelings such as joy, sadness, and fear, which
affect our overall wellbeing. Emotion detection
from text using computational models has been
extensively studied from data such as news head-
lines, social media, blog posts, and song lyrics
(Katz et al., 2007; Abdul-Mageed and Ungar,
2017; Mohammad and Turney, 2013; Strapparava
and Mihalcea, 2007; Liew and Turtle, 2016).

Recently, emotion detection started to emerge
in online health communities (OHCs) (Khanpour
et al., 2018; Biyani et al., 2014; Wang et al., 2012).
OHCs provide a user-friendly environment for pa-
tients, their families and friends to share thoughts
and socialize with each other on topics such as
therapeutic processes, side effects, and mental and
emotional health. Emotion detection in OHCs is
substantially different from the general text due
to a health-related vocabulary that people use in
OHCs. For example, the phrase “hot flashes” may
not have a specific meaning in the general do-
main, but it bears a very negative feeling in pa-
tients’ posts. Similarly, the post: “Just received

“My doctor’s office is very clean, who cares when
he has prescribed me a wrong medication for six
months!”

Table 1: Example of an emotional message from an OHC
that contains a sad emotion.

notice from my doctor, I have a positive Colo-
guard result” is associated with a very sad emotion
in a health domain, i.e., when a test is positive, it
means that the disease is present.

Despite of emergence of emotion detection in
OHCs, most of the recent works have been de-
voted to high level emotion analysis, i.e., identify-
ing messages that contain emotions, with no em-
phasis on the unique challenges associated with
fine-grained emotion detection. In order to cor-
rectly detect the types of emotions present in mes-
sages posted in OHCs, a deep understanding of the
text and the writer’s intention are required. Table
1 shows an example of a message that contains
a sad emotion, which is hidden in text. We ran
several sentiment tools on this message, including
Stanford CoreNLP (Socher et al., 2013), and in-
terestingly, all showed a positive sentiment, while
the emotion expressed is clearly one of sadness
(mixed with sarcasm). Thus, even an approach
to predict the negative sentiment of the message
would not suffice.

In this paper, we analyze messages in OHCs
to understand the most prominent emotions in
health-related posts and propose a computational
model that is able to exploit the semantic informa-
tion from text and coherently combines high-level
(abstract) features with surface and lexicon-based
features to automatically detect fine-grained emo-
tions. Our contributions are as follows:

1. We study fine-grained emotions and their dis-
tribution in messages posted in OHCs by con-
structing and analyzing two health-related
datasets for fine-grained emotion detection.
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Identifying emotions in patients’ messages
augments the capability of OHCs’ modera-
tors, caregivers, and doctors to provide high-
quality services to OHCs’ users and patients.
To our knowledge, we are the first to address
fine-grained emotion detection in OHCs.

2. We propose a computational model, called
ConvLexLSTM, for emotion detection in
OHCs. Our model combines the output of
a Convolutional Neural Network (CNN) with
lexicon-based features, which are all fed into
a Long Short-Term Memory (LSTM) net-
work that produces the final output via soft-
max. We show empirically that ConvLexL-
STM significantly outperforms strong base-
lines and prior works. Moreover, we show
that the proposed model continues to perform
well even in the absence of lexicon features.

3. Finally, we apply ConvLexLSTM in a large
scale experiment to study the correlation
between US holidays and users’ emotional
states, which can help design smarter ap-
proaches to improve patients’ moods.

2 Related Work

Emotion detection has been extensively studied in
computational linguistics for a long time (Moham-
mad and Turney, 2013; Strapparava et al., 2004).
The Ekman’s basic emotion set, which includes
six emotions: anger, disgust, fear, happiness, sad-
ness, and surprise, is arguably the best well-known
emotion categorization (Ekman, 1992). Strappa-
rava and Mihalcea (2008) proposed knowledge-
based and corpus-based methods for classifying
emotions based on Ekman’s basic emotions. Co-
occurrence of general words with emotional words
has beed used by Katz et al. (2007) for identifying
emotion types latent in news headlines. Keyword-
based approaches that are based on finding emo-
tional words in text suffer from the inability to
classify text that lacks specific keywords. There-
fore, Bao et al. (2009) proposed to use topical
relations between words and emotion types for
emotion classification in online news. Strapparava
et al. (2012) studied emotions from song lyrics.

Emotion detection has been studied in social
media as well and brings additional challenges
due to their informal context in which people do
not follow grammatical rules and use many char-
acters that do not occur in formal text (e.g., #,
:)). Emotion lexicons derived from social media,

e.g., based on emotion word hashtags, have been
shown to improve models’ performance for emo-
tion detection (Mohammad, 2012; Sykora et al.,
2013). Abdul-Mageed and Ungar (2017) used
distant supervision to construct a large dataset
from the general Twitter for fine-grained emo-
tion detection and explored deep learning mod-
els to detect emotions. Liew and Turtle (2016)
and Liew et al. (2016) also created a dataset
of about 15, 500 tweets labeled with 28 emotion
types, using the Amazon Mechanical Turk. Some
studies combined knowledge-based and keyword-
based approaches with linguistic features and used
a machine learning algorithm to reasonably clas-
sify sentences with no emotional keywords (Yang
et al., 2012; Neviarouskaya et al., 2010).

Emotional support is considered as one of the
main advantages of using OHCs that brings bet-
ter feelings (Khanpour et al., 2017; Zhang et al.,
2017a,b; Qiu et al., 2011) and fewer mortality
odds to patients (Kroenke et al., 2013). Inter-
estingly, to this date, only very few studies have
started to analyze emotions in OHCs using com-
putational models (Wang et al., 2012; Biyani et al.,
2014; Wang et al., 2014b,a). For example, Wang
et al. (2012) used linear regression to identify
emotional support from a cancer forum. Their
model predicts to what extent each sentence con-
tains either emotional or non-emotional support.
Their features include: LIWC features, POS tags,
message length, subjectivity intensity, and LDA
topical features. Biyani et al. (2014) identified
messages that contain emotions in a breast can-
cer forum using unigrams, POS tags, structural
patterns, and five lexicons that contain strong and
weak subjective words, cancer drugs, side-effects,
and cancer procedures, and showed that lexicons
features have a high impact on the results. Khan-
pour and Caragea (2018) used deep learning to ex-
tract therapeutic processes and side effects from
patients’ posts. Wang et al. (2014b) classified
OHCs’ messages based on the intention of the par-
ticipant when writing messages (e.g., seeking or
providing information) and used a combination of
features from Wang et al. (2012) coupled with lex-
icon features used in Biyani et al. (2014).

3 Data Collection and Annotation

To study the most prominent emotions and their
distribution in OHCs and to evaluate our model
for fine-grained emotion detection in OHCs, we
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constructed two benchmark datasets, since, to our
knowledge, no labeled dataset is available for this
task. The first dataset is created by using data
from Biyani et al. (2014), which contains 1066
sentences from the breast cancer discussion board
in the Cancer Survivors’ Network (CSN) of the
American Cancer Society, denoted as B-DS. Note
that Biyani et al. (2014) performed sentence level
classification since longer messages often com-
prise different topics. A sentence level analysis
can make a better estimation on the purpose of the
commentator in writing that sentence, whether or
not expressing his or her emotions. For the second
dataset, we randomly selected 225 comments from
21 discussion threads in the lung cancer discussion
board of CSN. We denote this second dataset as L-
DS. Following Biyani et al. (2014), we extracted
all sentences out of comments and chose sentences
with a length greater than four words. We ended
up with 1041 sentences in L-DS. In total, we have
2107 sentences labeled with emotion types.

For our annotation task, we followed the six
emotions suggested by Ekman (1992). Our anno-
tators were allowed to attribute one or more emo-
tions to a single sentence, e.g., a sentence could
be annotated as bearing sadness or a combina-
tion of sadness and fear. The annotation task was
conducted iteratively following prior studies and
guidelines, using three training rounds (DMello,
2016; Fort et al., 2016; Shanahan et al., 2006). In
each round, 300 sentences drawn from both B-
DS and L-DS were assigned to the annotators,1

and we asked them to meet with the researchers
in a group to discuss disagreements and docu-
ment their discussion before the next 300 instances
were assigned. Upon passing the training pe-
riod, annotators were assigned to annotate the re-
maining sentences from B-DS and L-DS, and they
ended up with 83% Kappa inter-annotator agree-
ment. For the remaining 17%, the annotators ex-
pressed their views on each case in the presence of
the researchers and finally 100% agreement was
achieved during 20 days. All these sentences plus
the 900 ones used during the three training rounds
became part of the final dataset. Table 2 represents
the distribution of emotions in 2107 sentences.
Note that some sentences do not contain any emo-
tion. As can be seen from the table, both datasets
have a similar distribution of emotions, with joy
and sadness being the most prominent.

1Annotators were three graduate students.

Emotions Lung Breast Percentage(%)
Anger 59 29 4.0
Disgust 4 1 0.2
Fear 33 39 3.4
Joy 368 470 39.7
Sadness 183 134 15.0
Surprise 8 3 0.5

Table 2: Emotion distributions in B-DS and L-DS with the
percentage estimated from both L-DS and B-DS.

4 Model

Given a sentence of n words, we apply CNN to
extract high-level (abstract) features that capture
the semantic part of the text (Lai et al., 2015). We
combine high-level features with surface-level and
lexicon-based features. Our proposed model, Con-
vLexLSTM, is shown graphically in Figure 1. As
can be seen from the figure, we use a combination
of CNN and LSTM models, where the final fea-
ture vectors from CNN augmented with lexicon-
based features are fed as input to the LSTM net-
work. The architecture of our proposed classifi-
cation model is close to the models described in
Kim et al. (2016) and Xiao and Cho (2016), in
which they applied a character-level CNN to cre-
ate high-level features, whereas our model works
at word-level and uses lexicon features. We use
the word-level input to benefit from applying em-
bedding vectors, trained on OHCs. We use the
character-level model by Kim et al. (2016), de-
noted by C-ConvLSTM, as one of our baselines.

Figure 1: The structure of ConvLexLSTM.

Lexicon-based Features: Lexicon-based ap-
proaches for detecting emotions in the text have
been the main stream of many models (Strappar-
ava et al., 2004; Strapparava and Mihalcea, 2008;
Mohammad, 2012; Liu, 2012).

In our work, we used the same lexicons that
were provided by Biyani et al. (2014) such as weak
subjective words (numWeak), strong subjective
words (numStrong) (Stoyanov et al., 2005), can-
cer drugs (numDrug), side-effects (numSide),
and therapeutic procedures (numProc). These
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lexicons address differentiation between emo-
tional versus non-emotional messages. However,
we need more granular information for differenti-
ating between a variety of emotion types. Hence,
we also used lexicons introduced by Strappar-
ava and Mihalcea (2007), denoted as EmoLex1,
and by Mohammad and Turney (2013), denoted
as EmoLex2. We use frequencies of lexicon
words to construct the lexicon-based feature vec-
tors. Note that prior work (Biyani et al., 2014)
showed that LIWC did not generate high quality
features for classification in OHCs, and thus, we
did not use it in our study.

5 Experiments and Results

Next, we describe the evaluation of ConvLexL-
STM, using the joy and sadness emotions, which
have at least 5% coverage in our labeled data (see
Table 2). Also, since binary tasks are consid-
ered easier to learn than multi-class tasks (Bishop,
2006), we trained our models in the two-class
setting: joy/non-joy (and sad/non-sad), by bina-
rizing the datasets. In all experiments, we used
word embeddings as input to the neural networks,
which were generated with the W2vector mod-
ule in Gensim (Řehůřek and Sojka, 2010) on
the data (users’ comments) from all discussion
boards of the Cancer Survivors’ Network (CSN)
of the American Cancer Society, between June
2000 and June 2012. We also experimented with
word embeddings generated using Wikipedia, but
these embeddings resulted in lower performance
as compared with those generated using CSN data.
We estimated hyper-parameters for each deep neu-
ral network via a grid search over combinations
of important hyper-parameters (e.g., learning rate,
decay rate, dropout, number of layers, filter re-
gion size, and number of filters). The grid search
was done on a development set that consists of re-
moving 20% of instances from the training set in
each iteration of 10-fold cross-validation. We re-
port precision, recall and F1-score.

5.1 Performance of ConvLexLSTM

First, we evaluate ConvLexLSTM performance
in an ablation experiment to determine the role
played by each component for emotion detec-
tion. Specifically, we compare ConvLexLSTM
with ConvLSTM (a model that has the same ar-
chitecture as ConvLexLSTM, but does not use any
external lexicon), CNN, LSTM, and support vec-

Method B-DS L-DS
Pr Re F1 Pr Re F1

Joy

ConvLexLSTM 92.3 94.3 93.2 90.4 89.3 89.8
ConvLSTM 86.6 88.4 87.4 87.0 83.0 85.0
CNN 85.0 84.0 84.5 82.2 82.8 82.5
LSTM 86.0 86.6 86.3 85.0 83.0 84.0
Seven-Lexicon 63.4 87.3 73.45 60.0 85.1 70.37
C-ConvLSTM 86.2 87.0 86.6 85.0 82.0 83.47
SWAT 66.0 68.0 67.0 65.5 66.7 66.0
EmoSVM 81.0 82.0 81.5 82.0 80.0 81.0

Sad

ConvLexLSTM 93.7 91.1 92.3 88.0 90.9 89.4
ConvLSTM 89.0 87.8 88.4 81.0 87.5 84.0
CNN 83.2 83.6 83.4 81.7 80.5 81.0
LSTM 87.4 85.8 86.6 83.2 83.6 83.4
Seven-Lexicon 61.0 84.9 70.99 61.0 83.3 70.42
C-ConvLSTM 85.0 83.6 84.3 83.7 82.1 82.9
SWAT 65.0 66.0 65.5 64.0 65.0 64.5
EmoSVM 80.5 81.7 81.0 79.0 78.0 78.5

Table 3: Emotion detection results using 10-fold cross vali-
dation. The numbers are percentages.

tor machine (SVM) with the (concatenated) fea-
tures from the seven lexicons (described above).

Table 3 shows the results of this comparison.
As can be seen from the table, ConvLexLSTM
achieves the best results consistently throughout
all experiments in terms of all compared mea-
sures. This ablation experiment confirms our in-
tuition that all components are contributing to the
final emotion detection. For example, removing
the seven lexicon features from ConvLexLSTM,
which yields ConvLSTM, results in a drop in F1-
score by 5.8% on joy in B-DS, and by 3.9% on
sadness in B-DS. Still, ConvLSTM is the second
performing model in terms of F1-score. These re-
sults show that our model can be successfully ap-
plied in a health domain even in the absence of
health lexicons, which are often expensive to ob-
tain. Not surprisingly, the SVM with the seven-
lexicon based features (denoted as Seven-Lexicon)
performs the worst among the compared models,
suggesting that capturing the semantic information
from text via deep neural networks improves emo-
tion detection.

Second, we compare ConvLexLSTM with three
baselines: C-ConvLSTM (i.e., a character-level
CNN-LSTM) (Kim et al., 2016), SWAT (Katz
et al., 2007) (i.e., an emotion detection model from
SemEval-2007), and EmoSVM (i.e., an SVM with
a set of handcrafted features: unigrams, bigrams,
POS tags, the word-emotions association lexicon
by Mohammad (2012), the WordNet-Affect lexi-
con by Strapparava et al. (2004), and the output
of the Stanford sentiment tool by Socher et al.
(2013). Table 3 shows the results of this compari-
son as well. As can be seen, ConvLexLSTM out-
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Figure 2: Joy and sadness throughout events.

performs all three baselines on both datasets, and
more importantly, the character-level CNN-LSTM
by Kim et al. (2016) (i.e., the C-ConvLSTM
model). This result confirms our belief that ap-
plying word embedding vectors, which are trained
directly on data from OHCs yields improvement
in performance over character-level models.

It is worth mentioning that all deep neu-
ral networks, ConvLexLSTM, ConvLSTM, CNN,
LSTM, and C-ConvLSTM, that capture high-level
semantic features perform better than the tradi-
tional models on emotion detection. The lexicon-
based features act as a complement (for the high-
level semantic features) by looking into exact
words in the text to generate appropriate features
in ConvLexLSTM for emotion detection. With
a paired T-test, the improvements of ConvLexL-
STM over the compared models for F1-score are
statistically significant for p-values < 0.05.

5.2 Impact of holidays on emotional states

We further analyzed the impact of several US hol-
idays, i.e., 4th of July, Labor Day, Thanksgiv-
ing Day, Christmas Day, and New Year’s Eve,
on CSN users’ emotional states, joy and sadness.
For this experiment, we extracted messages from
each event day itself and from two days before and
two days after each event (holiday) from the entire
CSN data. We also collected messages written on
five random days (June 15, October 20, March 9,
April 3, and January 29), which are not close to
any event, to be used as a baseline for compar-
ing the emotional states of participants in different
holidays. Consistent with our labeled datasets, we
removed messages with less than four tokens. We
used our best performing model ConvLexLSTM
to classify joy and sadness on these data.

Figure 2 shows the percentage of joy and sad
predicted messages for each holiday and for the
five random days. As can be seen from the fig-
ure, on the random days, the percentage of joy and

sad emotions are similar, and so are they for 4th
of July and Labor Day, whereas Christmas and
Thanksgiving show more joyful spirits, possibly
due to family gatherings and other social events
around these holidays, in which people feel sup-
ported, and hence, feel better. Christmas shows
an increase in joy and a slight decrease in sad
emotions compared with Thanksgiving. Interest-
ingly, around the New Year’s Eve, the percentage
of sad messages is almost twice higher compared
with the percentage of joy messages, which can
be attributed to the end of the holiday season and
family gatherings and the beginning of a new chal-
lenging year.

6 Conclusion

In this paper, we addressed the problem of fine-
grained emotion detection from OHCs messages.
To this end, we first annotated a dataset from a
cancer forum (i.e., the Cancer Survivors’ Network
of the American Cancer Society) with the six most
common emotions suggested by Ekman (1992)
and studied the most prominent emotions and their
distribution in OHCs. We found that joy and sad-
ness occur most frequently in the forum, followed
by anger and fear. Not surprisingly, disgust and
surprise appear the least number of times. We
then proposed a computational model that com-
bines the strengths of CNNs, LSTMs and lexicon-
based approaches to capture the hidden semantics
in OHCs messages and to provide a more insight-
ful understanding of emotional messages by iden-
tifying their emotion types.

Our results are promising and show that our pro-
posed model, with or without lexicon-based fea-
tures, which are often expensive to obtain or main-
tain in a health domain, provides a better emo-
tion type detection compared with strong baselines
and prior works. Given our initial success, in the
future, it would be valuable to construct a large
health-related dataset to cover other types of emo-
tions, e.g., anger or fear.
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Abstract
Nowcasting based on social media text
promises to provide unobtrusive and near
real-time predictions of community-level out-
comes. These outcomes are typically re-
garding people, but the data is often aggre-
gated without regard to users in the Twitter
populations of each community. This paper
describes a simple yet effective method for
building community-level models using Twit-
ter language aggregated by user. Results on
four different U.S. county-level tasks, span-
ning demographic, health, and psychological
outcomes show large and consistent improve-
ments in prediction accuracies (e.g. from Pear-
son r = .73 to .82 for median income pre-
diction or r = .37 to .47 for life satisfac-
tion prediction) over the standard approach of
aggregating all tweets. We make our aggre-
gated and anonymized community-level data,
derived from 37 billion tweets – over 1 billion
of which were mapped to counties, available
for research.

1 Introduction

Social media is an increasingly popular re-
source for large-scale population assessment
which promises a cheap and non-intrusive com-
plement to standard surveys with finer spatio-
temporal scales (Coppersmith et al., 2015; Mow-
ery et al., 2016; Wang et al., 2017). Twitter has
been used — among other things — to measure
community health (Paul and Dredze, 2011; Mow-
ery et al., 2016; Eichstaedt et al., 2015), well-
being (Schwartz et al., 2013), and public opinion
on politics (O’Connor et al., 2010; Miranda Filho
et al., 2015). By having access to measurements
from multiple locations or communities, models
trained on text data from social media can be used
both to predict future measurements and to pro-
vide community estimates where these are lacking
or are not robust. Such research is made possible

by the massive amount of easily accessible user-
generated data from public social media.

However, there has been little research on the
way in which such data should be aggregated in
order to compute community-level lexical feature
estimates. One study explored the benefit of nor-
malizing lexicon word count features as the pro-
portion of users in each county which use at least
one word from a given category (Culotta, 2014a).
This method lead to a significant improvement but
was limited to broad categories of a psychological
based dictionary rather than normalizing frequen-
cies of individual lexical features within users be-
fore aggregating to the county. Typically, data are
aggregated in a “bag of words” style, disregarding
tweets and authors (Schwartz et al., 2013; Eich-
staedt et al., 2015; Curtis et al., 2018). We find,
however, that giving equal weight to each user,
rather than to each word or tweet, yields much
more accurate community-level predictions.

In this paper, we conduct a series of experi-
ments testing various simple yet intuitive aggre-
gation methods. We show that choice of aggrega-
tion methods can result in substantial (one might
even say “remarkable”) boosts in accuracy when
predicting U.S. county level outcomes (e.g. user-
to-county aggregation yields a 7% to 27% increase
in Pearson correlation). Contributions include (a)
validation of aggregation approaches across four
outcomes related to health, psychology, and demo-
graphics, (b) validation that aggregation has some
effect on smaller sample of Twitter data, (c) show
the effect of power tweeters (or “super users”) and
(d) release of resource-intensive community ag-
gregated lexical data.

Related work. This is the first work we know
of to explore simple aggregation techniques for
population-level prediction tasks from language.
Previous work has explored more sophisticated
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adjustments, such as addressing demographic-self
selection bias in Twitter community predictions
by re-weighting messages, finding small improve-
ments (a 4.5% reduction in symmetric mean abso-
lute percentage error) (Culotta, 2014b). In a politi-
cal voting intention prediction application, (Lam-
pos et al., 2013) modeled users and words jointly
by learning separate regression weights for the
two dimensions based on the intuition that each
user contributes differently towards the outcome.
However, their model was specifically adapted to
problems that use time-series outcomes, rather
than community-level aggregation. Distributions
of lexical features are considered at multiple lev-
els of analysis (message, user and community) in
(Almodaresi et al., 2017) though each level con-
siders one type of aggregation. Similar aggre-
gation methods have been used in the context of
topic modeling (Latent Dirichlet Allocation (Blei
et al., 2003) and Author Topic Model (Rosen-Zvi
et al., 2004)) by considering user, hashtag and con-
versation level aggregations (Alvarez-Melis and
Saveski, 2016; Hong and Davison, 2010) but,
again, community level aggregation and predic-
tion tasks were not considered.

2 Data

Research was reviewed by an academic institu-
tional review board and deemed exempt.

2.1 Twitter Data Collection
Twitter Sample A random 10% sample of the
entire Twitter stream (‘GardenHose’) was col-
lected between July 2009 and April 2014, which
was then supplemented with a random 1% sam-
ple from May 2014 to February 2015. The total
sample contains approximately 37.6 billion tweets
(Preotiuc-Pietro et al., 2012).

County Mapping In order to map each tweet to
a location within a county in the United States, we
use both self-reported location information in user
profiles and latitude/longitude coordinates associ-
ated with a tweet. If latitude/longitude coordinates
are present then we trivially map the tweet to a
county. The self-reported location information is a
free text field and we use a cascading set of rules to
map this field to a county. The rules are designed
to avoid false positives (incorrect mappings) at the
expense of fewer mappings. The full details of this
process can be found in (Schwartz et al., 2013).
Note that the latitude/longitude coordinates are a

tweet attribute whereas the self-reported location
is a user attribute yet both are used to map tweets
to counties. Users are assigned a county by con-
sidering their earliest county mapped tweet.

In total, we are able to map 1.78 billion of the
37.6 billion tweets to a US county using the above-
mentioned method. The county mapped data set
was then filtered to contain only English tweets
using the popular langid.py method (Lui and Bald-
win, 2012), further reducing our tweet set to 1.64
billion tweets. For experiments with user-level
data aggregation, we removed users who made rel-
atively few (less than 30) posts in our data set.

Publicly Available Stream The standard pub-
licly available Twitter stream outputs approxi-
mately 1% of the public Tweet volume. Since a
10% sample is not available to most researchers,
we replicated a 1% sample by taking a random
10% of our county mapped, English filtered 10%
sample. The same process of county mapping, lan-
guage filtering and user selection was applied to
this data resulting in 131 million county mapped
English tweets from 1.57 millions users. Table 1
presents the data set statistics.

The County Tweet Lexical Bank The County
Tweet Lexical Bank is a U.S. County level data
set comprised of two feature sets1 :
• an aggregated “bag-of-words” count vector

across all the county’s messages in order to pre-
serve anonymity. The unigrams represent the
most frequent words in the data set;2 ;

• a “bag-of-topics” representation for each
county, with 2000 social media-derived topics
described in (Schwartz et al., 2013).

Both feature sets will be releases across the 2009-
2015 time span as well as individual years. Yearly
updates will be included as they become available.
As we are only releasing aggregated word-level
features, as opposed to raw Tweets, this data re-
lease is within Twitter’s Terms of Service.

2.2 Outcomes

The following U.S. county demographic, psycho-
logical and health variables were used in our pre-
diction tasks. Table 2 gives statistics for each
county variable.

1Available at https://github.com/wwbp
2While 25,000 features were used in the predictive tasks

we removed some features (@-mentions, URLs, etc.) from
the data release to preserve anonymity.
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Number of Tweets Number
of

Users
Full

Sample
County
Mapped English⇤ User

Level⇤⇤

10% 37.6B 1.78B 1.64B 1.53B 5.25M
1% - - 199M 131M 1.57M

Table 1: Number of tweets in each section of the
resource, including the total number of users. (*)
The number of tweets used in the “all” experi-
ments; (**) the number of tweets in the remaining
experiments.

N Mean Std Dev Min Max Skew
Income 1750 4.66 0.11 4.33 5.07 0.47
Educat. 1750 21.57 9.46 5.70 70.30 1.20
Life Satis. 1952 3.39 0.03 3.26 3.51 0.02
Heart Dis. 2041 186.66 45.59 54.82 412.32 0.66

Table 2: Descriptives of U.S. County data used in
the four prediction tasks.

Income and Education The census data
for county median household income (log-
transformed to reduce skewness; N=1,750) and
percentage of people with a Bachelor’s degree
(N=1,750) were obtained from the 2010 U.S.
Census Bureau’s American Community Survey
(ACS).

Life Satisfaction To assess subjective well-
being we used the average response to the ques-
tion “In general, how satisfied are you with in your
life?” (1 = very dissatisfied and 5 = very satis-
fied) (Lawless and Lucas, 2011). Estimates are
averaged across 2009 and 2010 (N=1,952).

Mortality Rates From the Centers of Dis-
ease Control and Prevention (CDC) we collected
age-adjusted mortality rates for heart disease
(N=2,041). Rates are averaged across 2010-2015.

3 Methods

3.1 Aggregation
Our aim is to use the user-level information based
on the assumption that aggregating data first at
the user-level would remove biases introduced by
non-standard users of the platform. To this end,
we explore three types of aggregation: (1) tweet
to county, (2) county “bag of words” and (3) user
to county.

Tweet to County Here we compute

feati,j =
1

Nj

X

k

i(unigramk), (1)

where i denotes the indicator function for
unigrami. Here the ith feature for the jth unit of
analysis (a U.S. county) is equal to the relative fre-
quency of the unigram: the number of times each
unigram was mentioned divided by Nj the total
number of tweets from county j.

County Next, we use a method which was gen-
erally used in past research, which aggregates all
messages to a community disregarding any meta-
data, including tweet or user information. Previ-
ous state-of-the-art results using this method in-
clude life satisfaction r = .31 (Schwartz et al.,
2013), atheroclerotic heart disease r = .42 (Eich-
staedt et al., 2015) and education r = 0.15 (Culotta,
2014b). We therefore consider each county a “bag
of words” using (1) with Nj equal to the number
of unigrams from county j.

User to County The third method treats the unit
of analysis (U.S. county) as a community of users.
Therefore, feature weights are extracted at the user
level, normalized and then averaged to communi-
ties:

feati,j =
1

Nj

X

k2Uj

rk(unigrami), (2)

where Uj is the set of users in county j, Nj is
the total number of Twitter users in county j and
rk(x) is the relative frequency of feature x for user
k with i 2 {all unigrams} and j 2 {all counties}.

Features

We use as features a list of 2,000 social media-
derived topics generated from Latent Dirichlet Al-
location (Blei et al., 2003) using the complete
MyPersonality Facebook data set consisting of
approximately 15 million posts (Schwartz et al.,
2013). The topic loadings are computed from the
most frequent 25,000 unigrams in our data set. We
also use a subset of these unigrams as additional
features in our models (25,000 reduced to 10,000).

Experimental setup

For each of the four county level Census and
health variables we built three models using 10-
fold cross validation with the following features:
(1) unigrams, (2) topics and (3) unigrams + top-
ics. For consistency across tasks we only consid-
ered counties with 100 or more 30+ tweet users
(N=2,041).
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Income Educat. Life
Satis.

Heart
Disease

Tweet to County .68 .80 .26 .70
County .73 .80 .37 .70
User to County .82 .88 .47 .75

(a) Unigrams + Topics, Pearson r

Income Educat. Life
Satis.

Heart
Disease

Tweet to County .67 .79 .22 .65
County .72 .78 .37 .64
User to County .79 .87 .44 .73

(b) Unigrams, Pearson r

Income Educat. Life
Satis.

Heart
Disease

Tweet to County .65 .77 .31 .71
County .68 .80 .34 .71
User to County .81 .87 .47 .76

(c) Topics, Pearson r

Table 3: Prediction results (Pearson r) for direct
aggregation comparison on the 10% sample.

We used a feature selection pipeline which first
removed all low variance features and then fea-
tures that were not correlated with our census and
health data. Principal component analysis was
then applied to the reduced feature set for fur-
ther dimensionality reduction. This preprocess-
ing was used to avoid overfitting, since our model
included more independent variables (2000 topic
frequencies and/or 10k unigrams) than observa-
tions (at most 2,041 counties). For the prediction
task we used linear regression with `2 regulariza-
tion (Ridge regression) (Eichstaedt et al., 2015).
The regression regularization parameter ↵ was set
to 1000 using grid search.

Because our initial dataset consisted of 37.6
billion tweets, using distributed IO was crucial
for data aggregation and feature extraction. We
used a Hadoop-style cluster consisting of 64 disks
and 64 CPU cores across 8 physical machines.
Over this cluster, we used Hadoop MapReduce for
the county mapping step (taking approximately 1
week of wall clock runtime) and Spark for the fea-
ture aggregations (taking approximately 1 day of
wall clock runtime). The entire pipeline of county
mapping, English language filtering, feature ex-
traction and prediction used the DLATK Python
package (Schwartz et al., 2017)3.

3Available at https://github.com/dlatk

Income Educat. Life
Satis.

Heart
Disease

User to County .82 .88 .47 .75
Nuser�tweets 1.350B 1.350B 1.356B 1.360B
Tweet to County (all) .72 .81 .36 .71
County (all) .73 .82 .31 .72
Nall�tweets 1.621B 1.621B 1.628B 1.634B

Table 4: Prediction results (Pearson r, using uni-
grams + topics) using full 10% data vs. users with
30+ tweets. The number of tweets used in each
task is listed to highlight the fact that the “User to
County” tasks use less tweets than the “all” tasks.

Experiments
Using the above setup we perform 3 experiments
in order to explore the effects of data aggregation.
We 1) directly compare aggregation methods us-
ing our 10% data; 2) compare aggregation meth-
ods using a 1% sample and, finally, 3) explore the
effect of choosing an upper bound on the number
of posts per Twitter users, looking at users with
less than 50, 500, 1000 posts. This allows us to
exclude frequent posters who are potentially orga-
nizations or bots.

4 Results and Discussion

Direct aggregation comparison. The results of
our predictive experiments on the 10% data can
be found in Table 3. Across all four tasks we see
that the “User to County” approach outperforms
the other aggregation methods, giving a higher
Pearson r and obtaining state-of-the-art results for
community-level predictions.

We see the largest gains for the “User to
County” aggregation for the income outcome,
with a 13 point increase in Pearson r for topics
alone and a 9 point increase for unigrams + topics.

In Table 4 we remove the 30+ tweet requirement
from the “Tweet to County” and “County” meth-
ods and compare against the “User to County”
method (with the 30+ tweet requirement). Again
we see the “User to County” method outperforms
all others in spite of the fact that the “User to
County” approach uses less data than both “all”
approaches, which contains 108 million more
tweets.

1% data. In Table 5 we repeat the above ex-
periment on a 1% Twitter sample. Here we see
that the “User to County” method outperforms
both the “Tweet to County” and “County” meth-
ods (with all three tasks using the same number of
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Income Educat. Life
Satis.

Heart
Disease

Tweet to County .71 .62 .77 .71 .35 .32 .64 .63
County .70 .60 .76 .67 .32 .28 .62 .62
User to County .76 .70 .79 .74 .39 .28 .66 .66
Nuser�tweets 127M 130M 127M 130M 127M 130M 127M 131M
County (all) .75 .67 .83 .77 .37 .34 .68 .66
Nall�tweets 191M 195M 191M 195M 191M 197M 191M 198M
Ncounties 949 1750⇤ 949 1750⇤ 954 1952⇤ 960 2041⇤

Table 5: 1% sample prediction results (Pearson r) using topics + unigrams. ⇤ same counties as the 10%
prediction task.

Max
Tweets Income Educat. Life

Satis.
Heart

Disease
Num. Users

Removed

C
ou

nt
y

(a
ll)

50 .73 .84 .34 .68 4,665,114
500 .81 .87 .44 .75 611,661
1000 .81 .87 .41 .75 217,517

No Max .73 .82 .31 .72 -

U
se

rt
o

C
ou

nt
y

50 .68 .80 .34 .64 4,665,114
500 .80 .87 .47 .76 611,661
1000 .81 .87 .47 .76 217,517

No Max .81 .87 .48 .76 -

Table 6: Prediction results (Pearson r) using topics
+ unigrams. Users with more than “Max Tweets”
number of tweets are removed from the sample.

tweets). When we compare the “User to County”
and “County (all)” methods we see the “User to
county” outperforming on two out of four tasks
(Income and Life Satisfaction). Again, we note
that the “User to County” is using less data than
the “County (all)”. While, across the board, the
performance increase is not as substantial as in the
10% results, we see comparable performance be-
tween “User to County” and “County (all)” meth-
ods despite the difference in the number of tweets.

Super users. One theory why we see such large
gains depending on aggregation technique is that
aggregating through users negates the effects of
super users – those who post an extraordinary
amount (such as organizations or bots). We im-
plemented a maximum tweet requirement in or-
der to remove these users and see if that accounts
for the difference. Here we use both the “User to
County” and “County (all)” samples and report re-
sults in Table 6. These results demonstrate that
by keeping only users with less than 500 tweets
we get results close to our “User to County (No
Max)” method using the user-naive “County (all)”
scheme. This shows that relatively few users (in
this case 611k) can significantly decrease perfor-
mance, though still leaves a small gain from the
user to county approach. As seen in the lower half
of the table, this thresholding does not increase

performance when using the “User to County”
method, which suggests such users can still be
beneficial if they are just treated such that they
can’t dominate a community. This highlights the
benefit of our simple method: we do not need to
consider optimizations which may not generalize
across data, such as upper-bound thresholds on
the number of tweets per user. Further, the user-
to-county aggregation seems to provide at least a
small benefit beyond removal of super users.

5 Conclusion

This study explored the benefit of aggregation
techniques for streaming user-generated data from
individual messages to community level data, the
typical setting for nowcasting. We showed that
by simply aggregating to users first and then tak-
ing the mean within a county, we can obtain
large gains (remarkably, up to a 13 point increase
in Pearson correlation) over typical aggregation
methods common in past work. In order to foster
nowcasting research utilizing this more ideal ag-
gregation, we will release the County Tweet Lex-
ical Bank – a large aggregated and anonymized
county-level data set, and computed on more than
1.6 billion tweets posted over 5 years.

Future work in this area can look at adjusting
models to account for other meta-data such as tem-
poral variation and diversity and to adjust for se-
lection biases present in social media, where the
user base on social media is not representative
of the population of the community (Greenwood
et al., 2016).
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Abstract

We propose a conditional non-autoregressive
neural sequence model based on iterative re-
finement. The proposed model is designed
based on the principles of latent variable mod-
els and denoising autoencoders, and is gen-
erally applicable to any sequence generation
task. We extensively evaluate the proposed
model on machine translation (En$De and
En$Ro) and image caption generation, and
observe that it significantly speeds up decod-
ing while maintaining the generation quality
comparable to the autoregressive counterpart.

1 Introduction

Conditional neural sequence modeling has be-
come a de facto standard in a variety of tasks (see,
e.g., Cho et al., 2015, and references therein).
Much of this recent success is built on top of au-
toregressive sequence models in which the proba-
bility of a target sequence is factorized as a prod-
uct of conditional probabilities of next symbols
given all the preceding ones. Despite its success,
neural autoregressive modeling has its weakness
in decoding, i.e., finding the most likely sequence.
Because of intractability, we must resort to sub-
optimal approximate decoding, and due to its se-
quential nature, decoding cannot be easily paral-
lelized and results in a large latency (see, e.g., Cho,
2016). This has motivated the recent investiga-
tion into non-autoregressive neural sequence mod-
eling by Gu et al. (2017) in the context of machine
translation and Oord et al. (2017) in the context of
speech synthesis.

In this paper, we propose a non-autoregressive
neural sequence model based on iterative refine-
ment, which is generally applicable to any se-
quence generation task beyond machine transla-
tion. The proposed model can be viewed as both

⇤ Equal Contribution

a latent variable model and a conditional denois-
ing autoencoder. We thus propose a learning algo-
rithm that is hybrid of lowerbound maximization
and reconstruction error minimization. We further
design an iterative inference strategy with an adap-
tive number of steps to minimize the generation
latency without sacrificing the generation quality.

We extensively evaluate the proposed condi-
tional non-autoregressive sequence model and
compare it against the autoregressive counterpart,
using the state-of-the-art Transformer (Vaswani
et al., 2017), on machine translation and im-
age caption generation. In the case of ma-
chine translation, the proposed deterministic non-
autoregressive models are able to decode approx-
imately 2 � 3⇥ faster than beam search from
the autoregressive counterparts on both GPU and
CPU, while maintaining 90-95% of translation
quality on IWSLT’16 En$De, WMT’16 En$Ro
and WMT’14 En$De. On image caption genera-
tion, we observe approximately 3⇥ and 5⇥ faster
decoding on GPU and CPU, respectively, while
maintaining 85% of caption quality.1

2 Non-Autoregressive Sequence Models

Sequence modeling in deep learning has largely
focused on autoregressive modeling. That is,
given a sequence Y = (y1, . . . , yT ), we use some
form of a neural network to parametrize the con-
ditional distribution over each variable yt given all
the preceding variables, i.e.,

log p(yt|y<t) = f✓(y<t),

where f✓ is for instance a recurrent neural net-
work. This approach has become a de facto
standard in language modeling (Mikolov et al.,

1 We release the implementation, preprocessed datasets as
well as trained models online at https://github.com/
nyu-dl/dl4mt-nonauto.
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2010). When this is conditioned on an extra vari-
able X , it becomes a conditional sequence model
log p(Y |X) which serves as a basis on which
many recent advances in, e.g., machine transla-
tion (Bahdanau et al., 2014; Sutskever et al., 2014;
Kalchbrenner and Blunsom, 2013) and speech
recognition (Chorowski et al., 2015; Chiu et al.,
2017) have been made.

Despite the recent success, autoregressive se-
quence modeling has a weakness due to its nature
of sequential processing. This weakness shows
itself especially when we try to decode the most
likely sequence from a trained model, i.e.,

Ŷ = arg max
Y

log p(Y |X).

There is no known polynomial algorithm for solv-
ing it exactly, and practitioners have relied on ap-
proximate decoding algorithms (see, e.g., Cho,
2016; Hoang et al., 2017). Among these, beam
search has become the method of choice, due to
its superior performance over greedy decoding,
which however comes with a substantial compu-
tational overhead (Cho, 2016).

As a solution to this issue of slow decoding, two
recent works have attempted non-autoregressive
sequence modeling. Gu et al. (2017) have mod-
ified the Transformer (Vaswani et al., 2017) for
non-autoregressive machine translation, and Oord
et al. (2017) a convolutional network (Oord et al.,
2016) for non-autoregressive modeling of wave-
form. Non-autoregressive modeling factorizes the
distribution over a target sequence given a source
into a product of conditionally independent per-
step distributions:

p(Y |X) =
TY

t=1

p(yt|X),

breaking the dependency among the target vari-
ables across time. This allows us to trivially
find the most likely target sequence by tak-
ing arg maxyt p(yt|X) for each t, effectively
bypassing the computational overhead and sub-
optimality of decoding from an autoregressive se-
quence model.

This desirable property of exact and parallel de-
coding however comes at the expense of poten-
tial performance degradation (Kaiser and Bengio,
2016). The potential modeling gap, which is the
gap between the underlying, true model and the
neural sequence model, could be larger with the

non-autogressive model compared to the autore-
gressive one due to challenge of modeling the fac-
torized conditional distribution above.

3 Iterative Refinement for Deterministic
Non-Autoregressive Sequence Models

3.1 Latent variable model
Similarly to two recent works (Oord et al., 2017;
Gu et al., 2017), we introduce latent variables to
implicitly capture the dependencies among target
variables. We however remove any stochastic be-
havior by interpreting this latent variable model,
introduced immediately below, as a process of it-
erative refinement.

Our goal is to capture the dependencies among
target symbols given a source sentence without
auto-regression by introducing L intermediate ran-
dom variables and marginalizing them out:

p(Y |X) =
X

Y 0,...,Y L

 
TY

t=1

p(yt|Y L, X)

!
(1)

 
TY

t=1

p(yL
t |Y L�1, X)

!
· · ·
 

TY

t=1

p(y0
t |X)

!
.

Each product term inside the summation is mod-
elled by a deep neural network that takes as input
a source sentence and outputs the conditional dis-
tribution over the target vocabulary V for each t.

Deterministic Approximation The marginal-
ization in Eq. (1) is intractable. In order to avoid
this issue, we consider two approximation strate-
gies; deterministic and stochastic approximation.
Without loss of generality, let us consider the case
of single intermediate latent variable, that is L =
1. In the deterministic case, we set ŷ0

t to the most
likely value according to its distribution p(y0

t |X),
that is ŷ0

t = arg maxy0
t
p(y0

t |X). The entire lower
bound can then be written as:

log p(Y |X) �
 

TX

t=1

log p(yt|Ŷ L, X)

!
+ · · ·

+

 
TX

t=1

log p(y1
t |Ŷ 0, X)

!
+

 
TX

t=1

log p(ŷ0
t |X)

!
.

Stochastic Approximation In the case of
stochastic approximation, we instead sample ŷ0

t

from the distribution p(y0
t |X). This results in the

unbiased estimate of the marginal log-probability
log p(Y |X). Other than the difference in whether
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most likely values or samples are used, the remain-
ing steps are identical.

Latent Variables Although the intermediate
random variables could be anonymous, we con-
strain them to be of the same type as the output Y
is, in order to share an underlying neural network.
This constraint allows us to view each conditional
p(Y l|Ŷ l�1, X) as a single-step of refinement of a
rough target sequence Ŷ l�1. The entire chain of
L conditionals is then the L-step iterative refine-
ment. Furthermore, sharing the parameters across
these refinement steps enables us to dynamically
adapt the number of iterations per input X . This is
important as it substantially reduces the amount of
time required for decoding, as we see later in the
experiments.

Training For each training pair (X, Y ⇤), we
first approximate the marginal log-probability. We
then minimize

JLVM(✓) = �
L+1X

l=0

 
TX

t=1

log p✓(y
⇤
t |Ŷ l�1, X)

!
,

(2)

where Ŷ l�1 = (ŷl�1
1 , . . . , ŷl�1

T ), and ✓ is a set of
parameters. We initialize ŷ0

t (t-th target word in
the first iteration) as xt0 , where t0 = (T 0/T ) · t. T 0

and T are the lengths of the source X and target
Y ⇤, respectively.

3.2 Denoising Autoencoder
The proposed approach could instead be viewed
as learning a conditional denoising autoencoder
which is known to capture the gradient of the log-
density. That is, we implicitly learn to find a di-
rection �Y in the output space that maximizes
the underlying true, data-generating distribution
log P (Y |X). Because the output space is discrete,
much of the theoretical analysis by Alain and Ben-
gio (2014) are not strictly applicable. We however
find this view attractive as it serves as an alterna-
tive foundation for designing a learning algorithm.

Training We start with a corruption process
C(Y |Y ⇤), which introduces noise to the correct
output Y ⇤. Given the reference translation Y ⇤, we
sample Ỹ ⇠ C(Y |Y ⇤) which becomes as an input
to each conditional in Eq. (1). Then, the goal of
learning is to maximize the log-probability of the
original reference Y ⇤ given the corrupted version.
That is, to minimize

JDAE(✓) = �
TX

t=1

log p✓(y
⇤
t |Ỹ , X). (3)

Once this cost JDAE is minimized, we can re-
cursively perform the maximum-a-posterior infer-
ence, i.e., Ŷ = arg maxY log p✓(Y |X), to find Ŷ
that (approximately) maximizes log p(Y |X).

Corruption Process C There is little consen-
sus on the best corruption process for a sequence,
especially of discrete tokens. In this work, we
use a corruption process proposed by Hill et al.
(2016), which has recently become more widely
adopted (see, e.g., Artetxe et al., 2017; Lam-
ple et al., 2017). Each y⇤

t in a reference target
Y ⇤ = (y⇤

1, . . . , y
⇤
T ) is corrupted with a probability

� 2 [0, 1]. If decided to corrupt, we either (1) re-
place y⇤

t+1 with this token y⇤
t , (2) replace y⇤

t with a
token uniformly selected from a vocabulary of all
unique tokens at random, or (3) swap y⇤

t and y⇤
t+1.

This is done sequentially from y⇤
1 until y⇤

T .

3.3 Learning
Cost function Although it is possible to train
the proposed non-autoregressive sequence model
using either of the cost functions above (JLVM or
JDAE,) we propose to stochastically mix these two
cost functions. We do so by randomly replacing
each term Ŷ l�1 in Eq. (2) with Ỹ in Eq. (3):

J(✓) = �
L+1X

l=0

 
↵l

TX

t=1

log p✓(y
⇤
t |Ŷ l�1, X) (4)

+(1 � ↵l)
TX

t=1

log p✓(y
⇤
t |Ỹ , X)

!
,

where Ỹ ⇠ C(Y |Y ⇤), and ↵l is a sample from
a Bernoulli distribution with the probability pDAE.
pDAE is a hyperparameter. As the first conditional
p(Y 0|X) in Eq. (1) does not take as input any tar-
get Y , we set ↵0 = 1 always.

Distillation Gu et al. (2017), in the context of
machine translation, and Oord et al. (2017), in
the context of speech generation, have recently
discovered that it is important to use knowledge
distillation (Hinton et al., 2015; Kim and Rush,
2016) to successfully train a non-autoregressive
sequence model. Following Gu et al. (2017),
we also use knowledge distillation by replacing
the reference target Y ⇤ of each training example
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(X, Y ⇤) with a target Y AR generated from a well-
trained autoregressive counterpart. Other than this
replacement, the cost function in Eq (4) and the
model architecture remain unchanged.

Target Length Prediction One difference be-
tween the autoregressive and non-autoregressive
models is that the former naturally models the
length of a target sequence without any arbitrary
upper-bound, while the latter does not. It is hence
necessary to separately model p(T |X), where T
is the length of a target sequence, although during
training, we simply use the length of each refer-
ence target sequence.

3.4 Inference: Decoding
Inference in the proposed approach is en-
tirely deterministic. We start from the in-
put X and first predict the length of the tar-
get sequence T̂ = arg maxT log p(T |X). Then,
given X and T̂ we generate the initial tar-
get sequence by ŷ0

t = arg maxyt log p(y0
t |X), for

t = 1, . . . , T We continue refining the target se-
quence by ŷl

t = arg maxyt log p(yl
t|Ŷ l�1, X), for

t = 1, . . . , T .
Because these conditionals, except for the ini-

tial one, are modeled by a single, shared neu-
ral network, this refinement can be performed
as many iterations as necessary until a pre-
defined stopping criterion is met. A crite-
rion can be based either on the amount of
change in a target sequence after each iteration
(i.e., D(Ŷ l�1, Ŷ l)  ✏), or on the amount of
change in the conditional log-probabilities (i.e.,
| log p(Ŷ l�1|X) � log p(Ŷ l�1|X)|  ✏) or on the
computational budget. In our experiments, we use
the first criterion and use Jaccard distance as our
distance function D.

4 Related Work

Non-Autoregressive Neural Machine Transla-
tion Schwenk (2012) proposed a continuous-
space translation model to estimate the conditional
distribution over a target phrase given a source
phrase, while dropping the conditional dependen-
cies among target tokens. The evaluation was
however limited to reranking and to short phrase
pairs (up to 7 words on each side) only. Kaiser and
Bengio (2016) investigated neural GPU (Kaiser
and Sutskever, 2015), for machine translation.
They evaluated both non-autoregressive and au-
toregressive approaches, and found that the non-

autoregressive approach significantly lags behind
the autoregressive variants. It however differs
from our approach that each iteration does not out-
put a refined version from the previous iteration.
The recent paper by Gu et al. (2017) is most rel-
evant to the proposed work. They similarly intro-
duced a sequence of discrete latent variables. They
however use supervised learning for inference, us-
ing the word alignment tool (Dyer et al., 2013). To
achieve the best result, Gu et al. (2017) stochas-
tically sample the latent variables and rerank the
corresponding target sequences with an external,
autoregressive model. This is in contrast to the
proposed approach which is fully deterministic
during decoding and does not rely on any extra
reranking mechanism.

Parallel WaveNet Simultaneously with Gu
et al. (2017), Oord et al. (2017) presented a non-
autoregressive sequence model for speech genera-
tion. They use inverse autoregressive flow (IAF,
Kingma et al., 2016) to map a sequence of in-
dependent random variables to a target sequence.
They apply the IAF multiple times, similarly to
our iterative refinement strategy. Their approach is
however restricted to continuous target variables,
while the proposed approach in principle could be
applied to both discrete and continuous variables.

Post-Editing for Machine Translation Novak
et al. (2016) proposed a convolutional neural net-
work that iteratively predicts and applies token
substitutions given a translation from a phase-
based translation system. Unlike their system, our
approach can edit an intermediate translation with
a higher degree of freedom. QuickEdit (Grang-
ier and Auli, 2017) and deliberation network (Xia
et al., 2017) incorporate the idea of refinement into
neural machine translation. Both systems consist
of two autoregressive decoders. The second de-
coder takes into account the translation generated
by the first decoder. We extend these earlier ef-
forts by incorporating more than one refinement
steps without necessitating extra annotations.

Infusion Training Bordes et al. (2017) pro-
posed an unconditional generative model for im-
ages based on iterative refinement. At each step
l of iterative refinement, the model is trained to
maximize the log-likelihood of target Y given the
weighted mixture of generated samples from the
previous iteration Ŷ l�1 and a corrupted target Ỹ .
That is, the corrupted version of target is “infused”
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(a) (b)

Figure 1: (a) BLEU scores on
WMT’14 En-De w.r.t. the num-
ber of refinement steps (up to
102). The x-axis is in the loga-
rithmic scale. (b) the decoding
latencies (sec/sentence) of dif-
ferent approaches on IWSLT’16
En!De. The y-axis is in the
logarithmic scale.
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Figure 2: We compose three transformer blocks (“En-
coder”, “Decoder 1” and “Decoder 2”) to implement
the proposed non-autoregressive sequence model.

into generated samples during training. In the do-
main of text, however, computing a weighted mix-
ture of two sequences of discrete tokens is not well
defined, and we propose to stochastically mix de-
noising and lowerbound maximization objectives.

5 Network Architecture

We use three transformer-based network blocks
to implement our model. The first block
(“Encoder”) encodes the input X , the second
block (“Decoder 1”) models the first conditional
log p(Y 0|X), and the final block (“Decoder 2”)
is shared across iterative refinement steps, model-
ing log p(Y l|Ŷ l�1, X). These blocks are depicted
side-by-side in Fig. 2. The encoder is identical to
that from the original Transformer (Vaswani et al.,
2017). We however use the decoders from Gu
et al. (2017) with additional positional attention
and use the highway layer (Srivastava et al., 2015)
instead of the residual layer (He et al., 2016).

The original input X is padded or shortned to fit
the length of the reference target sequence before
being fed to Decoder 1. At each refinement step
l, Decoder 2 takes as input the predicted target se-
quence Ŷ l�1 and the sequence of final activation
vectors from the previous step.

6 Experimental Setting

We evaluate the proposed approach on two se-
quence modeling tasks: machine translation and
image caption generation. We compare the pro-
posed non-autoregressive model against the au-
toregressive counterpart both in terms of genera-
tion quality, measured in terms of BLEU (Papineni
et al., 2002), and generation efficiency, measured
in terms of (source) tokens and images per second
for translation and image captioning, respectively.

Machine Translation We choose three tasks of
different sizes: IWSLT’16 En$De (196k pairs),
WMT’16 En$Ro (610k pairs) and WMT’14
En$De (4.5M pairs). We tokenize each sentence
using a script from Moses (Koehn et al., 2007)
and segment each word into subword units us-
ing BPE (Sennrich et al., 2016). We use 40k
tokens from both source and target for all the
tasks. For WMT’14 En-De, we use newstest-2013
and newstest-2014 as development and test sets.
For WMT’16 En-Ro, we use newsdev-2016 and
newstest-2016 as development and test sets. For
IWSLT’16 En-De, we use test2013 for validation.

We closely follow the setting by Gu et al.
(2017). In the case of IWSLT’16 En-De, we
use the small model (dmodel = 278, dhidden =
507, pdropout = 0.1, nlayer = 5 and nhead =
2).2 For WMT’14 En-De and WMT’16 En-Ro,
we use the base transformer by Vaswani et al.
(2017) (dmodel = 512, dhidden = 512, pdropout =
0.1, nlayer = 6 and nhead = 8). We use the
warm-up learning rate scheduling (Vaswani et al.,
2017) for the WMT tasks, while using linear an-
nealing (from 3 ⇥ 10�4 to 10�5) for the IWSLT
task. We do not use label smoothing nor aver-
age multiple check-pointed models. These deci-
sions were made based on the preliminary exper-
iments. We train each model either on a single

2 Due to the space constraint, we refer readers to (Vaswani
et al., 2017; Gu et al., 2017) for more details.
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IWSLT’16 En-De WMT’16 En-Ro WMT’14 En-De MS COCO
En! De! GPU CPU En! Ro! GPU CPU En! De! GPU CPU BLEU GPU CPU

A
R b = 1 28.64 34.11 70.3 32.2 31.93 31.55 55.6 15.7 23.77 28.15 54.0 15.8 23.47 4.3 2.1

b = 4 28.98 34.81 63.8 14.6 32.40 32.06 43.3 7.3 24.57 28.47 44.9 7.0 24.78 3.6 1.0

N
AT

FT 26.52 – – – 27.29 29.06 – – 17.69 21.47 – – – – –
FT+NPD 28.16 – – – 29.79 31.44 – – 19.17 23.30 – – – – –

O
ur

M
od

el

idec = 1 22.20 27.68 573.0 213.2 24.45 25.73 694.2 98.6 13.91 16.77 511.4 83.3 20.12 17.1 8.9
idec = 2 24.82 30.23 423.8 110.9 27.10 28.15 332.7 62.8 16.95 20.39 393.6 49.6 20.88 12.0 5.7
idec = 5 26.58 31.85 189.7 52.8 28.86 29.72 194.4 29.0 20.26 23.86 139.7 23.1 21.12 6.2 2.8
idec = 10 27.11 32.31 98.8 24.1 29.32 30.19 93.1 14.8 21.61 25.48 90.4 12.3 21.24 2.0 1.2

Adaptive 27.01 32.43 125.9 29.3 29.66 30.30 118.3 16.5 21.54 25.43 107.2 20.3 21.12 10.8 4.8

Table 1: Generation quality (BLEU") and decoding efficiency (tokens/sec" for translation, images/sec" for image
captioning). Decoding efficiency is measured sentence-by-sentence. AR: autoregressive models. b: beam width.
idec: the number of refinement steps taken during decoding. Adaptive: the adaptive number of refinement steps.
NAT: non-autoregressive transformer models (Gu et al., 2017). FT: fertility. NPD reranking using 100 samples.

P40 (WMT’14 En-De and WMT’16 En-Ro) or on
a single P100 (IWSLT’16 En-De) with each mini-
batch consisting of approximately 2k tokens. We
use four P100’s to train non-autoregressive models
on WMT’14 En-De.

Image Caption Generation: MS COCO We
use MS COCO (Lin et al., 2014). We use the
publicly available splits (Karpathy and Li, 2015),
consisting of 113,287 training images, 5k valida-
tion images and 5k test images. We extract 49
512-dimensional feature vectors for each image,
using a ResNet-18 (He et al., 2016) pretrained on
ImageNet (Deng et al., 2009). The average of
these vectors is copied as many times to match
the length of the target sentence (reference dur-
ing training and predicted during evaluation) to
form the initial input to Decoder 1. We use the
base transformer (Vaswani et al., 2017) except that
nlayer is set to 4. We train each model on a single
1080ti with each minibatch consisting of approxi-
mately 1,024 tokens.

Target Length Prediction We formulate the tar-
get length prediction as classification, predict-
ing the difference between the target and source
lengths for translation and the target length for im-
age captioning. All the hidden vectors from the
nlayer layers of the encoder are summed and fed to
a softmax classifier after affine transformation. We
however do not tune the encoder’s parameters for
target length prediction. We use this length predic-
tor only during test time. We find it important to
accurately predict the target length for good over-
all performance. See Appendix A for an analysis
on our length prediction model.

Training and Inference We use Adam (Kingma
and Ba, 2014) and use L = 3 in Eq. (1) dur-
ing training (itrain = 4 from hereon.) We use
pDAE = 0.5. We use the deterministic strat-
egy for IWSLT’16 En-De, WMT’16 En-Ro and
MS COCO, while the stochastic strategy is used
for WMT’14 En-De. These decisions were made
based on the validation set performance. After
both the non-autogressive sequence model and tar-
get length predictor are trained, we decode by first
predicting the target length and then running itera-
tive refinement steps until the outputs of consecu-
tive iterations are the same (or Jaccard distance be-
tween consecutive decoded sequences is 1). To as-
sess the effectiveness of this adaptive scheme, we
also test a fixed number of steps (idec). In machine
translation, we remove any repetition by collaps-
ing multiple consecutive occurrences of a token.

7 Results and Analysis

We make some important observations in Table 1.
First, the generation quality improves across all
the tasks as we run more refinement steps idec even
beyond that used in training (itrain = 4), which
supports our interpretation as a conditional denois-
ing autoencoder in Sec. 3.2. To further verify this,
we run decoding on WMT’14 (both directions) up
to 100 iterations. As shown in Fig. 1 (a), the qual-
ity improves well beyond the number of refine-
ment steps used during training.

Second, the generation efficiency decreases as
more refinements are made. We plot the average
seconds per sentence in Fig. 1 (b), measured on
GPU while sequentially decoding one sentence at
a time. As expected, decoding from the autore-
gressive model linearly slows down as the sen-
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En!De De!En
itrain pDAE distill rep no rep rep no rep

A
R b = 1 28.64 34.11

b = 4 28.98 34.81

O
ur

M
od

el
s 1 0 14.62 18.03 16.70 21.18

2 0 17.42 21.08 19.84 24.25
4 0 19.22 22.65 22.15 25.24
4 1 19.83 22.29 24.00 26.57
4 0.5 20.91 23.65 24.05 28.18
4 0.5

p
26.17 27.11 31.92 32.59

Table 2: Ablation study on the dev set of IWSLT’16.

tence length grows, while decoding from the non-
autoregressive model with a fixed number of iter-
ations has the constant complexity. However, the
generation efficiency of non-autoregressive model
decreases as more refinements are made. To make
a smooth trade-off between the quality and speed,
the adaptive decoding scheme allows us to achieve
near-best generation quality with a significantly
lower computational overhead. Moreover, the
adaptive decoding scheme automatically increases
the number of refinement steps as the sentence
length increases, suggesting that this scheme cap-
tures the amount of information in the input well.
The increase in latency is however less severe than
that of the autoregressive model.

We also observe that the speedup in decoding
is much clearer on GPU than on CPU. This is a
consequence of highly parallel computation of the
proposed non-autoregressive model, which is bet-
ter suited to GPUs, showcasing the potential of
using the non-autoregressive model with a spe-
cialized hardware for parallel computation, such
as Google’s TPUs (Jouppi et al., 2017). The re-
sults of our model decoded with adaptive decod-
ing scheme are comparable to the results from (Gu
et al., 2017), without relying on any external tool.
On WMT’14 En-De, the proposed model outper-
forms the best model from (Gu et al., 2017) by two
points.

Lastly, it is encouraging to observe that the pro-
posed non-autoregressive model works well on
image caption generation. This result confirms the
generality of our approach beyond machine trans-
lation, unlike that by Gu et al. (2017) which was
for machine translation or by Oord et al. (2017)
which was for speech synthesis.

Ablation Study We use IWSLT’16 En-De to in-
vestigate the impact of different number of refine-
ment steps during training (denoted as itrain) as
well as probability of using denoising autoencoder
objective during training (denoted as pDAE). The

stochastic distill IWSLT’16 (En!) WMT’14 (En!)

23.65 7.56
p

22.80 16.56
p

27.11 18.91
p p

25.39 21.22

Table 3: Deterministic and stochastic approximation

results are presented in Table 2.
First, we observe that it is beneficial to use mul-

tiple iterations of refinement during training. By
using four iterations (one step of decoder 1, fol-
lowed by three steps of decoder 2), the BLEU
score improved by approximately 1.5 points in
both directions. We also notice that it is neces-
sary to use the proposed hybrid learning strategy to
maximize the improvement from more iterations
during training (itrain = 4 vs. itrain = 4, pDAE =
1.0 vs. itrain = 4, pDAE = 0.5.) Knowledge distil-
lation was crucial to close the gap between the pro-
posed deterministic non-autoregressive sequence
model and its autoregressive counterpart, echoing
the observations by Gu et al. (2017) and Oord et al.
(2017). Finally, we see that removing repeating
consecutive symbols improves the quality of the
best trained models (itrain = 4, pDAE = 0.5) by ap-
proximately +1 BLEU. This suggests that the pro-
posed iterative refinement is not enough to remove
repetitions on its own. Further investigation is nec-
essary to properly tackle this issue, which we leave
as a future work.

We then compare the deterministic and
stochastic approximation strategies on IWSLT’16
En!De and WMT’14 En!De. According to
the results in Table 3, the stochastic strategy is
crucial with a large corpus (WMT’14), while the
deterministic strategy works as well or better with
a small corpus (IWSLT’16). Both of the strategies
benefit from knowledge distillation, but the gap
between the two strategies when the dataset is
large is much more apparent without knowledge
distillation.

7.1 Qualitative Analysis

Machine Translation In Table 4, we present
three sample translations and their iterative refine-
ment steps from the development set of IWSLT’16
(De!En). As expected, the sequence generated
from the first iteration is a rough version of trans-
lation and is iteratively refined over multiple steps.
By inspecting the underlined sub-sequences, we
see that each iteration does not monotonically
improve the translation, but overall modifies the
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Src seitdem habe ich sieben Häuser in der Nachbarschaft mit den Lichtern versorgt und sie funktionierenen wirklich gut .
Iter 1 and I ’ve been seven homes since in neighborhood with the lights and they ’re really functional .
Iter 2 and I ’ve been seven homes in the neighborhood with the lights , and they ’re a really functional .
Iter 4 and I ’ve been seven homes in neighborhood with the lights , and they ’re a really functional .
Iter 8 and I ’ve been providing seven homes in the neighborhood with the lights and they ’re a really functional .
Iter 20 and I ’ve been providing seven homes in the neighborhood with the lights , and they ’re a very good functional .
Ref since now , I ’ve set up seven homes around my community , and they ’re really working .

Src er sah sehr glücklich aus , was damals ziemlich ungewöhnlich war , da ihn die Nachrichten meistens deprimierten .
Iter 1 he looked very happy , which was pretty unusual the , because the news was were usually depressing .
Iter 2 he looked very happy , which was pretty unusual at the , because the news was s depressing .
Iter 4 he looked very happy , which was pretty unusual at the , because news was mostly depressing .
Iter 8 he looked very happy , which was pretty unusual at the time because the news was mostly depressing .
Iter 20 he looked very happy , which was pretty unusual at the time , because the news was mostly depressing .
Ref there was a big smile on his face which was unusual then , because the news mostly depressed him .

Src furchtlos zu sein heißt für mich , heute ehrlich zu sein .
Iter 1 to be , for me , to be honest today .
Iter 2 to be fearless , me , is to be honest today .
Iter 4 to be fearless for me , is to be honest today .
Iter 8 to be fearless for me , me to be honest today .
Iter 20 to be fearless for me , is to be honest today .
Ref so today , for me , being fearless means being honest .

Table 4: Three sample De!En translations from
the non-autoregressive sequence model. Source sen-
tences are from the dev set of IWSLT’16. The first
iteration corresponds to Decoder 1, and from thereon,
Decoder 2 is repeatedly applied. Sub-sequences with
changes across the refinement steps are underlined.

translation towards the reference sentence. Miss-
ing words are added, while unnecessary words
are dropped. For instance, see the second exam-
ple. The second iteration removes the unnecessary
“were”, and the fourth iteration inserts a new word
“mostly”. The phrase “at the time” is gradually
added one word at a time.

Image Caption Generation Table 5 shows two
examples of image caption generation. We ob-
serve that each iteration captures more and more
details of the input image. In the first example
(left), the bus was described only as a “yellow bus”
in the first iteration, but the subsequent iterations
refine it into “yellow and black bus”. Similarly,
“road” is refined into “lot”. We notice this behav-
ior in the second example (right) as well. The first
iteration does not specify the place in which “a
woman” is “standing on”, which is fixed immedi-
ately in the second iteration: “standing on a tennis
court”. In the final and fourth iteration, the pro-
posed model captures the fact that the “woman” is
“holding” a racquet.

8 Conclusion

Following on the exciting, recent success of non-
autoregressive neural sequence modeling by Gu
et al. (2017) and Oord et al. (2017), we proposed a
deterministic non-autoregressive neural sequence
model based on the idea of iterative refinement.
We designed a learning algorithm specialized to
the proposed approach by interpreting the entire

model as a latent variable model and each refine-
ment step as denoising.

We implemented our approach using the Trans-
former and evaluated it on two tasks: machine
translation and image caption generation. On both
tasks, we were able to show that the proposed non-
autoregressive model performs closely to the au-
toregressive counterpart with significant speedup
in decoding. Qualitative analysis revealed that
the iterative refinement indeed refines a target se-
quence gradually over multiple steps.

Despite these promising results, we observed
that proposed non-autoregressive neural sequence
model is outperformed by its autoregressive coun-
terpart in terms of the generation quality. The
following directions should be pursued in the fu-
ture to narrow this gap. First, we should inves-
tigate better approximation to the marginal log-
probability. Second, the impact of the corruption
process on the generation quality must be stud-
ied. Lastly, further work on sequence-to-sequence
model architectures could yield better results in
non-autoregressive sequence modeling.
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Generated Caption

Iter 1 a yellow bus parked on parked in of parking road .
Iter 2 a yellow and black on parked in a parking lot .
Iter 3 a yellow and black bus parked in a parking lot .
Iter 4 a yellow and black bus parked in a parking lot .

Reference Captions

a tour bus is parked on the curb waiting
city bus parked on side of hotel in the rain .
bus parked under an awning next to brick sidewalk
a bus is parked on the curb in front of a building .
a double decked bus sits parked under an awning

Generated Caption

Iter 1 a woman standing on playing tennis on a tennis racquet .
Iter 2 a woman standing on a tennis court a tennis racquet .
Iter 3 a woman standing on a tennis court a a racquet .
Iter 4 a woman standing on a tennis court holding a racquet .

Reference Captions

a female tennis player in a black top playing tennis
a woman standing on a tennis court holding a racquet .
a female tennis player preparing to serve the ball .
a woman is holding a tennis racket on a court
a woman getting ready to reach for a tennis ball on the ground

Table 5: Two sample image captions from the proposed non-autoregressive sequence model. The images are
from the development set of MS COCO. The first iteration is from decoder 1, while the subsequent ones are from
decoder 2. Subsequences with changes across the refinement steps are underlined.
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Abstract

We propose a large margin criterion for train-
ing neural language models. Conventionally,
neural language models are trained by mini-
mizing perplexity (PPL) on grammatical sen-
tences. However, we demonstrate that PPL
may not be the best metric to optimize in
some tasks, and further propose a large mar-
gin formulation. The proposed method aims
to enlarge the margin between the “good” and
“bad” sentences in a task-specific sense. It is
trained end-to-end and can be widely applied
to tasks that involve re-scoring of generated
text. Compared with minimum-PPL training,
our method gains up to 1.1 WER reduction for
speech recognition and 1.0 BLEU increase for
machine translation.

1 Introduction

Language models (LMs) estimate the likelihood
of a symbol sequence {xt}T

t=0, based on the joint
probability,

p(x0, . . . , xT ) = p(x0)
TY

t=1

p(xt|x0, . . . , xt�1).

(1)

To measure the quality of an LM, a commonly
adopted metric is perplexity (PPL), defined as

PPL , exp

(
� 1

T

TX

t=0

log p(xt|x0, . . . , xt�1)

)
,

A good language model has a small PPL, being
able to assign higher likelihoods to sentences that
are more likely to appear.

LMs are widely applied in automatic speech
recognition (ASR) (Yu and Deng, 2014) and ma-
chine translation (MT) (Koehn, 2009). Follow-
ing Koehn (2009), one may interpret the language

⇤Contributions were made while at Baidu Research.

model as prior knowledge on the text to be in-
ferred, which provides information complemen-
tary to the ASR or MT system itself. In prac-
tice, there are several ways to incorporate the lan-
guage model. The simplest way may be re-scoring
an n-best list returned by the ASR or MT sys-
tem (Mikolov et al., 2010; Sundermeyer et al.,
2012). A slightly more sophisticated way is to
jointly consider the ASR/MT and language model
in a beam search decoder (Amodei et al., 2016).
Specifically, at each time step, the decoder ap-
pends every symbol in the vocabulary to each se-
quence in the current candidate set. For every
hypothesis, a score is calculated as a linear com-
bination of the log-likelihoods given by both the
ASR/MT and language models. Then, only the
top K hypotheses with the highest scores are re-
tained, as an updated candidate set. More recently,
Gulcehre et al. (2015) and Sriram et al. (2017) pro-
pose to predict the next symbol based on a fusion
of the hidden states in the ASR/MT and language
models. A gating mechanism is jointly trained to
determine how much the language model should
contribute.

The afore-discussed language models are gen-
erative in the sense that they merely model the
joint distribution of a symbol sequence (Eq. (1)).
While the research community is mostly focused
on pushing the limit of PPL (e.g., Jozefowicz et al.,
2016), very limited attention has been paid to the
discrimination power of language models when
they are applied to real tasks, such as ASR and
MT (Li and Khudanpur, 2008). By contrast, dis-
criminative language modeling aims at enhancing
the performance in downstream applications. For
example, existing works (Roark et al., 2004, 2007)
often target at improving ASR accuracy. The
key motivation underlying them is that the model
should be able to discriminate between “good” and
“bad” sentences in a task-specific sense, instead
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of just modeling grammatical ones. The com-
mon methodology (Dikic et al., 2013) is to build
a binary classifier upon hand-crafted features ex-
tracted from the sentences. However, it is not ob-
vious how these methods can utilize large unanno-
tated corpus, which is often easily available, and
the hand-crafted features are also ad hoc and may
result in suboptimal performance.

In this work, we study how to improve the dis-
crimination ability of a recurrent network-based
neural language model (RNNLM). The goal is to
enlarge the difference between the log-likelihoods
of “good” and “bad” sentences. In an contrast to
the existing works (Roark et al., 2004, 2007), our
method does not rely on hand-crafted features, and
is trained in end-to-end manner and able to take
advantage of large external text corpus. In fact,
it is a general training criterion that is transparent
to the network architecture of the RNNLM, and
can be applied to various text generation tasks, in-
cluding ASR and MT. Experiments on state-of-art
ASR and MT systems show its significant advan-
tage over an LM trained by minimizing PPL.

2 Background on RNNLM

We first give some background knowledge on
RNNLMs. The prototypical RNNLM (Mikolov
et al., 2010) has one layer of recurrent cell and
works as follows. Denote a sentence as x =
[x0, . . . , xt, . . . ], where the xt’s are words. Let
~xt be the embedding vector for xt. The recurrent
cell takes in the embedding and produces a hidden
state ~ht by

~ht = �(U~xt + V ~ht�1),

where �(z) = 1
1+e�z is sigmoid activation func-

tion. ~ht�1 is the hidden state at the last timestep.
U and V are learnable parameters. The ~ht is then
passed into a multi-way classifier to produce a
probability distribution over the vocabulary (for
the next word),

~p = softmax(W~ht +~b).

The W and ~b are also trainable parameters.
The training objective is to maximize the log-
likelihood of the next word, and the parameters are
learned by back-propagation algorithm.

The vanilla recurrent cell can also be re-
placed by one or multiple layers of LSTM cells,
which produces better results (Zaremba et al.,

2014). In a more general form, the RNNLM
can be represented as a conditional probability,
p✓(xt|x0, . . . , xt�1), parameterized by ✓. In the
prototypical case, ✓ = [U, V, W,~b]. We could de-
fine the LM-score of a sentence x as

LM-score(x) , log p✓(x)

=
X

t

log p✓(x
t|x0, . . . , xt�1).

The RNNLM is trained by maximizing the aver-
age LM-score over all the x’s in a corpus, or equiv-
alently, minimizing the PPL on the corpus.

3 Problem Formulation
We motivate and formulate a large margin training
criterion in this section. Suppose for every ref-
erence sentence xi, we have a collection of hy-
potheses xi,j , j = 1, . . . , K, usually obtained as
the top-K candidates by a beam search decoder.

3.1 A Motivating Example
An RNNLM trained by minimizing PPL cannot
guarantee a higher score on the “gold” reference
than the inferior hypothesis, which is undesirable.
One example is given in Tab. 1. The reference is
taken from the text labels of dev93’ set of Wall
Street Journal (WSJ) dataset. The hypothesis is
generated by a CTC-based (Graves et al., 2006)
ASR system trained on WSJ training set. Words
in red are mistakes made by the hypothesis. We
then train an RNNLM on Common Crawl1 co-
pora by minimizing PPL. Training follows a typi-
cal setup (Jozefowicz et al., 2016) with a vocabu-
lary of 400K the most frequent words. Any out-of-
vocabulary word is replaced by an hUNKi token.
The RNNLM is then employed to score the sen-
tences. The LM-score of the erroneous hypothesis
is higher than that of the reference. In fact, this is
reasonable as “a decade as concerns” seems to be
a more common phrase. In the training corpus, we
find that “a decade as concerns” appears once, but
“its defeat is confirmed” does not appear. More-
over, “a decade as” appears 2,280 times, but “its
defeat is” appears only 24 times. However, this is
undesirable because if there is another hypothesis
that happens to be the same as reference, which
will not be ranked as the best candidate.

It would be helpful if the LM can also learn
from the imperfect hypotheses so that it can tell

1http://web-language-models.
s3-website-us-east-1.amazonaws.com/
wmt16/deduped/en-new.xz
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Sentence LM-score

reference

coniston declined to discuss its
plans for its defeat is confirmed

but indicated that it doesn’t
plan to simply walk away

-116.52

hypothesis

coniston declined to discuss its
plans for a decade as concerns

but indicated that it doesn’t
plan to simply walk away

-112.65

Table 1: Reference and one hypothesis, scored by
an RNNLM. Words in red are mistakes in the hy-
pothesis. The RNNLM is trained on Common
Crawl copora by minimizing PPL. We want the
reference to be higher scored than the hypothesis,
but it does not happen here.

(a) (b)

Figure 1: Training losses of (a) straightforward for-
mulation Eq. (2); and (b) large margin formulation
Eq. (3)

(a) (b)

Figure 2: Histogram of the margin log p(xi) �
log p(xi,j). The more positive, the more the dis-
crimination. (a) Straightforward formulation; (b)
LMLM compared with RNNLM (a minimum-PPL
LM trained on Common Crawl)

apart “good” and “bad” candidates. With this
motivation, we train to assign larger LM-scores
for the xi’s but smaller ones for the (imper-
fect) xi,j’s. A quantity of particular interest is
log p(xi) � log p(xi,j), the margin/difference be-
tween the LM-scores of the references and the
(imperfect) hypotheses. The intuition is that the
more positive the margin, the better the LM is at
discrimination.

3.2 Straightforward but Failed Formulation
Without loss of generality, we assume that all
the xi,j’s are imperfect and different from xi. A
straightforward way is to adopt the following ob-
jective:

min
✓

1

N

NX

i=1

0

@� log p✓(xi) +
1

K

KX

j=1

log p✓(xi,j)

1

A .

(2)
Similar formulation is also seen in (Tachioka and
Watanabe, 2015), where they only utilize one
beam candidate, i.e., K = 1. Optimization can be
carried out by mini-batch stochastic gradient de-
scent (SGD). Each iteration, SGD randomly sam-
ples a batch of i’s and j’s, computes stochastic
gradient w.r.t. ✓, and takes an update step. How-
ever, a potential problem with this formulation is
that the second term (corresponding to the infe-
rior hypotheses) may dominate the optimization.
Specifically, the training is almost always driven
by the xi,j’s, but does not effectively enhance the
discrimination. We illustrate this fact in the fol-
lowing experiment.

Using the ASR system in section 3.1, we extract
256 beam candidates for every training example in
Wall Street Journal (WSJ) dataset. Warm started
from the pre-trained RNNLM in section 3.1, we
apply SGD to minimize the loss in Eq. (2), with
a mini-batch size of 128. The training loss is
shown in Fig. 1a. We observe that the learning
dynamic is very unstable, and deceases to be neg-
ative. The unbound decreasing is due to the second
term in Eq. (2) being negative and dominating the
training process. Next, we inspect log p✓(xi) �
log p✓(xi,j), the margin between the scores of a
ground-truth and a candidate. In Fig. 2a, we his-
togram the margins for all the i, j’s in a dev set.
The distribution appears to be symmetric around
zero, which indicates poor discrimination ability.
Given these facts, we conclude that the straight-
forward formulation in Eq. (2) is not effective.

3.3 Large Margin Formulation
To effectively utilize all the imperfect beam candi-
dates, we propose the following objective,

min
✓

NX

i=1

BX

j=1

max
�
0, ⌧�(log p✓(xi)�log p✓(xi,j))

 
,

(3)
where log p✓(xi) � log✓(xi,j) is the margin be-
tween the scores of a ground-truth xi and a can-
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didate xi,j . The hinge loss on the margin encour-
ages the log-likelihood of the ground-truth to be at
least ⌧ larger than that of the imperfect hypothesis.
We call an LM trained by the above formulation as
Large Margin Language Model (LMLM).

We repeat the same experiment in section 3.2,
but change the objective function to Eq. (3) and
set ⌧ = 1. Fig. 1b shows the training loss, which
steadily decreases and approaches zero rapidly.
Compared with the learning curve of naive formu-
lation (Fig. 1a), the large margin based training is
much more stable. In Fig. 2b, we also examine
the histogram of log p✓(xi) � log p✓(xi,j), where
p✓(·) is now the LM learned by LMLM. Compared
with the histogram by the conventional RNNLM,
LMLM significantly moves the distribution to the
positive side, indicating more discrimination.

3.4 Ranking Loss Type Formulation
In most cases, all beam candidates are imperfect.
It may be beneficial to exploit the information
that some candidates are relatively better than the
others. We consider ranking them according to
some metrics w.r.t. the ground-truth sentences. For
ASR, the metric is WER, and for MT, the metric
is BLEU score. We define xi,0 , xi and assume
that the candidates {xi,j}K

j=1 are sorted such that

WER(xi,xi,j�1) < WER(xi,xi,j)

for ASR, and

BLEU(xi,xi,j�1) > BLEU(xi,xi,j)

for MT. In other words, xi,j�1 has better quality
than xi,j .

We then enforce the “better” sentences to have
a score at least ⌧ larger than those “worse” ones.
This leads to the following formulation,

min
✓

NX

i=1

B�1X

j=0

BX

k=j+1

max
�
0,

⌧ � (log p✓(xi,j) � log✓(xi,k)),
 
.

(4)

Compared with LMLM formulation Eq. (3), the
above introduces more comparisons among the
candidates, and hence more computational cost
during training. We call this formulation ranking-
loss-based LMLM (rLMLM).

To summarize this section, we have proposed
LMLM and rLMLM that aim at discriminating be-
tween hypotheses in a task-specific (e.g., WER or
BLEU) sense, instead of minimizing PPL.

4 Experiments on ASR

We apply the LMs trained under different criteria
to rescore the beams in various ASR systems. In
particular, we are interested in knowing which of
the two training mechanisms is better: minimizing
PPL (e.g., the RNNLM in Section 3.1), or fitting
to the WER metric by the proposed methods.

Adapting an RNNLM to a specific domain has
been of interest, especially to the speech commu-
nity (Park et al., 2010; Chen et al., 2015; Ma et al.,
2017). We adopt Ma et al. (2017) that fine-tune
the softmax layer of RNNLM by minimizing the
PPL on the text labels of training set. According
to Ma et al. (2017), the reason not to fine-tune all
the layers is due to the limited text labels in the tar-
get domain. Indeed, we also observe overfitting if
adapting all layers, but adapting only the softmax
layer effectively decreases the PPL on the text la-
bels of dev sets. We refer to this fine-tuning as
RNNLM-adapted in the following sections.

To make a fair comparison with the adapted
model, we also use the RNNLM as an initializa-
tion for our LMLM and rLMLM. In total, there
are four language models for rescoring the beams.
RNNLM and its adapted version that aim at reduc-
ing PPL; and the two proposed methods, LMLM
and rLMLM that try to fit to WER.

4.1 WSJ Dataset
The WSJ corpora consists of about 80 hours of
read speech with texts drawn from a machine-
readable corpus of Wall Street Journal news.
We use the standard configuration of train si284
dataset for training, dev93 for development and
eval92 for testing.

Our ASR model has one convolution layer, fol-
lowed by 5 bidirectional RNNs and one fully con-
nected layer, with a CTC loss on top. The text
labels of the training set are used to train a 4-gram
language model, which is employed in the ASR
decoder. The beam search decoder has a beam
width of 2000. Before beam rescoring, this ASR
system achieves a WER of 12.16 on dev93 set and
7.69 on eval92 set. To put this into perspective,
we list some previous state-of-the-art system in
Tab. 2. Compared with them, our baseline is al-
ready very competitive.

4.1.1 WERs and PPLs
The out-of-vocabulary rate of WSJ text is only
0.28%, making the RNNLM reasonable to use.
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We apply the RNNLM, RNNLM-adapted (Ma
et al., 2017), LMLM and rLMLM to rescore the
beams on dev and test set. The final score assigned
to a beam is a weighted sum of the ASR and lan-
guage model scores. The weight is found by min-
imizing the WER on the dev set.

Tab. 3 reports the WERs on dev93 and eval92
sets. All methods reduce the WER over the
baseline without rescoring. However, LMLM
and rLMLM are notably better than the other
two methods. Moreover, although RNNLM and
RNNLM-adapted achieve smaller PPLs on the text
labels, the advantage does not transfer to WER.

ASR Models WER
dev93 eval92

EESEN (Miao et al., 2015) N/A 7.34
Attention (Bahdanau et al., 2016) N/A 9.30

Gram-CTC (Liu et al., 2017) N/A 6.75
5-layer Bidi-RNNs (baseline) 12.16 7.69

Table 2: Published WERs on WSJ dev93 and
eval92 set

rescoring WER PPL
language model dev93 eval92 dev93 eval92

baseline 12.16 7.69 N/A N/A(no rescore)
RNNLM 10.71 6.59 207.43 205.00

RNNLM-adapted 10.11 6.34 159.50 157.85
LMLM 9.44 5.56 575.83 563.69
rLMLM 9.63 5.48 345.60 348.32

Table 3: Rescore 2000-best list of WSJ dev93 and
eval92 set. Digits in bold are the best and ital-
ics are the runner-ups. Lower PPL does not corre-
spond to lower WER.

4.1.2 Correlation between scores and WERs
To better understand the proposed methods, we
calculate the correlation coefficients between the
hypotheses’ WERs and their scores (by different
language models). In specific, for every utterance
in the test set, we have a set of beam candidates,
their word level accuracies (100-WER) and scores
given by an LM, from which a Pearson correla-
tion coefficient can be calculated. We calculate
the coefficients for all the utterances in the test set,
and boxplot these coefficients in Fig. 3. The cor-
relation coefficients by LMLM and rLMLM tend

Figure 3: Correlation coefficients between word
level accuracy (1 � WER/100) and LM-scores
by the different LMs, higher is better. Red hori-
zontal lines are medians. Green dots are means.
Whiskers are 5% and 95% quantiles. Lower and
upper box boundaries are 25% and 75% quantiles.

to be higher than RNNLM and RNNLM-adapted.
This indicates that LMLM and rLMLM are more
aligned with the goal of reducing WER.

4.1.3 Case Study
Tab. 4 posts some examples from the test set. The
first column lists the ground-truth labels, and their
corresponding best candidates as re-ranked by the
four LMs (see notes in the second column). Words
in red are mistakes made by the candidate sen-
tences. Scores of these sentences are listed in the
last four columns. We have the following observa-
tions:

1. LMLM and rLMLM give worse scores
on the ground-truth labels than RNNLM
and RNNLM-adapted, which explains their
higher PPL in Tab. 3.

2. In the first example, RNNLM and RNNLM-
adapted assign higher scores to a shorter sen-
tence. This is reasonable (though not neces-
sarily desirable) as LM-score is a summation
of log-probabilities, each of which is nega-
tive. In contrast, LMLM and rLMLM are
able to assign higher scores to longer and bet-
ter candidates.

3. In the other two examples, LMLM and
rLMLM seem to favor more sensible sen-
tences, though they are not more grammatical
than those picked by RNNLM and RNNLM-
adapted. We conjecture that since LMLM
and rLMLM utilize beam candidates in their
training, they capture and compensate for
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references and hypotheses reference or
ranked 1st by

LM-score

RNNLM RNNLM
-adapted LMLM rLMLM

for such group rate coverage employers can charge the
former workers and their families the average cost of providing

the health benefits plus a two percent administrative fee

reference,
LMLM -144.74 -142.90 -162.61 -165.93

for such group rate coverage employers can charge the
former workers and their families the average cost of providing

the health benefits plus two percent administrative

RNNLM,
RNNLM-adapted -144.53 -142.85 -172.66 -168.10

for such group rate coverage employers can charge the
former workers and their families the average cost of providing

their health benefits plus a two percent administrative fee
rLMLM -146.72 -145.67 -163.73 -162.92

we’d like to see something that leads to real democracy
says jaime bonilla vice secretary general reference -105.8 -106.28 -122.93 -108.42

we’d like to see something that leads the real democracy
says jm bonier vice secretary general

RNNLM,
RNNLM-adapted -103.13 -102.84 -141.94 -118.38

we’d like to see something that leads to real democracy
says jim bone vice secretary general LMLM, rLMLM -104.52 -105.37 -125.40 -104.73

the big shoe is going to drop when we see the trade number reference -64.28 -61.04 -80.63 -82.91

the big she was going to drop in to see the trade numbers RNNLM,
RNNLM-adapted -64.32 -61.68 -94.26 -86.89

the big shoe is going to drop in see the trade number LMLM, rLMLM -67.53 -64.50 -84.09 -84.65

Table 4: Some “gold” references and best hypotheses (after rescoring by different language models) for
eval92 set. In red are errors or missing word (denoted as ‘ ’).

some weakness in the ASR, which is not
achieved by RNNLM and RNNLM-adapted.

4.2 10K Speech Dataset

We further validate our methods on a larger noisy
dataset collected by Liu et al. (2017). The dataset
has about 10K hours of spontaneous speech. The
utterances are corrupted by background noise, and
a large portion of them are accented. Therefore it
is much more challenging than WSJ. We adopt the
same training-dev-test split as in Liu et al. (2017).
In specific, there are 5.4M utterances for training,
2,066 for development and 2,054 for testing.

rescoring WER PPL
language model dev test dev test

baseline 19.17 20.90 N/A N/A(no rescore)
RNNLM 18.38 20.07 264.21 252.85

RNNLM-adapted 18.29 20.03 236.74 226.22
LMLM 18.17 19.62 2250.79 2095.39
rLMLM 17.98 19.49 1225.04 1152.63

Table 5: Rescore 2000-best list of our internal dev
and test set. Digits in bold are the best and italics
are the runner-ups.

The ASR we build has the same architecture as
in Liu et al. (2017), except that its decoder inte-
grates an in-domain 5-gram language model. This
system achieves a WER of 19.17 on dev set, bet-
ter than the reported 19.77 baseline in Liu et al.
(2017). Based on the ASR, we repeat the same
experiments in section 4.1. Tab. 5 reports WERs
and PPLs on dev and test sets. Both LMLM and
rLMLM outperform the other methods in WER,
although their PPLs are higher. This trend is simi-
lar to that in Tab. 3.

5 Experiments on NMT

In this section, we experiment the large-margin
criterion trained LM with a competitive Chinese-
to-English NMT system. The NMT model is
trained from 2M parallel sentence pairs. Follow-
ing Shen et al. (2016), we use NIST 06 newswire
portion (616 sentences) for development and NIST
08 newswire portion (691 sentences) for testing.
We use OpenNMT-py2 package with the default
configuration to train the model: batch size is 64;
word embedding size is 500; dropout rate is 0.3;
target vocabulary size is 50K; number of epochs is
20, after which a minimum dev perplexity of 7.72

2https://github.com/OpenNMT/OpenNMT-py
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is achieved.

5.1 BLEUs and PPLs
We use a beam size of 10 for decoding, and re-
port case-insensitive 4-reference BLEU-4 scores
(by calling “multi bleu.perl”3). The NMT model
achieves 35.18 BLEU score on dev set and 31.52
on test set (see table 6). To put this into per-
spective, Shen et al. (2016) trains their models
on 2.56M pairs of sentences and reports a dev
BLEU score of 32.7 (via MOSES) or 30.7 (via
RNNsearch, beam size of 10). So our NMT model
is already very competitive.

To construct the training data for LMLM and
rLMLM, 10 beam candidates are extracted for ev-
ery sentence in the training set. We then fol-
low the same experimental steps outlined in sec-
tion 4.1, except that the ASR score is now changed
to NMT score. In addition, we also find that nor-
malizing the LM score by sentence length can
improve the re-scoring performance substantially.
Tab. 6 compares the BLEU score after re-ranking
by the different LMs. LMLM and rLMLM both
improve upon the baseline significantly, and out-
perform RNNLM and RNNLM-adapted by a no-
table margin. We also observe that the PPLs of
LMLM and rLMLM are much larger than those
of RNNLM and RNNLM-adapted, suggesting that
the PPL metric may be very poorly correlated with
BLEU.

Interestingly, RNNLM-adapted does not show
any gain in BLEU score over RNNLM. To under-
stand this, we recall that NMT is trained by min-
imizing PPL on target text. Its decoder is implic-
itly an RNNLM on target language. We conjecture
that adapting an LM to the target domain can only
duplicate the functionality of the NMT decoder,
which does not bring any additional benefit.

5.2 Correlation between scores and BLEUs
We measure the correlation between the LM
scores and BLUEs. The calculation is done on
dev06 set in the same way as Section 4.1.2, but
now we change the WERs to BLEUs. The box-
plot of the correlation coefficients are shown in
Fig. 4. Compared with the boxplot in Fig. 3,
now the correlation coefficients by all LMs are
more dispersed. Sometimes, they even take neg-
ative values. The mean correlation by LMLM

3https://github.com/OpenNMT/
OpenNMT-py/blob/master/tools/multi-bleu.
perl

rescoring BLEU PPL
language model dev06 test08 dev06 test08

baseline 35.18 31.52 N/A N/A(no rescore)
RNNLM 36.17 32.17 129.91 137.25

RNNLM-adapted 36.17 31.97 78.20 89.27
LMLM 37.79 33.11 7.75e5 3.73e6
rLMLM 37.82 33.13 2.68e5 1.12e6

Table 6: Rescore 10-best list for dev (nist 06) and
test (nist 08) set. Digits in bold are the best and
italics are the runner-ups.

Figure 4: Correlation coefficients between BLEUs
and LM-scores by the different LMs, higher is
better. Red horizontal lines are medians. Green
dots are means. Whiskers are 5% and 95% quan-
tiles. Lower and upper box boundaries are 25%
and 75% quantiles.

and rLMLM, however, is considerably higher than
those by RNNLM and RNNLM-adapted.

6 Related Work

“Language modeling is an art of determining the
probability of a sequence of words” (Goodman,
2001). In the past decades, there has been a trend
of increasing the context that an LM can condition
on. N-gram models (Chen and Goodman, 1996)
assume that each symbol depends on the previ-
ous N � 1 symbols. Feed forward neural network
based LMs (Bengio et al., 2003) are not count
based but they inherit the restrictive assumption.
To model longer-term dependencies, RNNLMs
(Mikolov et al., 2010) are proposed. RNNLMs of-
ten achieve smaller PPLs than the N-gram coun-
terparts (Sundermeyer et al., 2012; Zaremba et al.,
2014; Jozefowicz et al., 2016). This paper focuses
on RNNLM-type architectures.

While these works all adopt PPL as the metric
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to optimize, sometimes one may optimize a task-
specific objective. For example, Kuo et al. (2002);
Roark et al. (2007) and Dikic et al. (2013) pro-
pose discriminative LMs to improve speech recog-
nition. The common methodology therein is to
fit a probabilistic model, e.g., conditional random
field (Roark et al., 2004), to the space of text can-
didates, and maximize the probability at the de-
sired candidate. The problem is often solved by
perceptron algorithm. However, these methods all
rely on ad-hoc choice of features, e.g., counts of
n-grams where n varies in a small range (e.g.,1
to 3). Moreover, it is also not clear how these
methods would take advantage of an existing lan-
guage model (trained on large unsupervised cor-
pus). Nevertheless, the same methodology can be
extended to RNNLMs, thus avoiding the afore-
mentioned limitations. For example, Auli and Gao
(2014) train an RNNLM by favoring sentences
with high BLEU scores and integrate it into a
phrase-based MT decoder.

If we cast the problem of picking the best text
sequence as a ranking problem, the aforemen-
tioned works can be considered as “pointwise”
learning-to-rank approaches (Cossock and Zhang,
2008). In contrast, the proposed method is a “pair-
wise” approach (Liu, 2009), as it learns a neural
language model by comparison between pairs of
sentences. Earlier works in this fashion may date
back to (Collins and Koo, 2005), which improves
a semantic parser. Learning “by pairwise compari-
son” is also seen in several MT literatures. For ex-
ample, Hopkins and May (2011) propose to train
a phrase-based MT system by minimizing a pair-
wise ranking loss. Wiseman and Rush (2016) op-
timize the beam search process in a Neural Ma-
chine Translation (NMT) system. They enforce
the score of a reference to be higher than that of
its decoded k-th candidate by at least a unit mar-
gin.

Rather than optimizing the MT system itself,
this work proposes a general method of training
recurrent neural language models, which can ben-
efit various text generation tasks, including speech
recognition and machine translation.

7 Conclusions

We have proposed a large margin criterion for
training recurrent neural language models. Rather
than minimizing PPL, the proposed criterion
is based on comparison between pairs of sen-

tences. We have formulated two algorithms
that implement the training criterion. One com-
pares between references and imperfect hypothe-
ses (LMLM), the other compares between all pairs
of hypotheses (rLMLM). We applied the language
models trained by these two algorithms to speech
recognition and machine translation. Both of
them demonstrate superior performance over their
minimum-PPL counterparts. However, the perfor-
mance gain from LMLM to rLMLM is small, al-
though rLMLM is built on more pairwise compar-
isons and requires more training efforts. The ef-
ficiency with respect to the number of pairs is a
future research topic.
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Ethem Alpaydin. 2013. Classification and ranking
approaches to discriminative language modeling for

1190



asr. IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 21(2):291–300.

Joshua T. Goodman. 2001. A bit of progress in lan-
guage modeling. Computer Speech & Language,
15(4):403–434.

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In In
Proceedings of the 23rd international conference on
Machine learning.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In EMNLP.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Hong-Kwang Jeff Kuo, Eric Fosler-Lussier, Hui Jiang,
and Chin-Hui Lee. 2002. Discriminative training of
language models for speech recognition in acoustics.
In IEEE International Conference on Speech, and
Signal Processing (ICASSP).

Zhifei Li and Sanjeev Khudanpur. 2008. Large-scale
discriminative n-gram language models for statisti-
cal machine translation. In AMTA.

Hairong Liu, Zhenyao Zhu, Xiangang Li, and Sanjeev
Satheesh. 2017. Gram-ctc: Automatic unit selection
and target decomposition for sequence labelling. In
34th International Conference on Machine Learn-
ing.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval, volume 3. Foundations and Trends R� in
Information Retrieval.

Min Ma, Michael Nirschl, Fadi Biadsy, and Shankar
Kumar. 2017. Approaches for neural-network lan-
guage model adaptation. In Proceedings of Inter-
speech.

Yajie Miao, Mohammad Gowayyed, and Florian
Metze. 2015. Eesen: End-to-end speech recogni-
tion using deep rnn models and wfst-based decod-
ing, pages 167–174. ieee, 2015. In Workshop on
Automatic Speech Recognition and Understanding
(ASRU).

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
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Abstract
We present a dataset for evaluating the gram-
maticality of the predictions of a language
model. We automatically construct a large
number of minimally different pairs of En-
glish sentences, each consisting of a gram-
matical and an ungrammatical sentence. The
sentence pairs represent different variations of
structure-sensitive phenomena: subject-verb
agreement, reflexive anaphora and negative
polarity items. We expect a language model
to assign a higher probability to the grammati-
cal sentence than the ungrammatical one. In an
experiment using this data set, an LSTM lan-
guage model performed poorly on many of the
constructions. Multi-task training with a syn-
tactic objective (CCG supertagging) improved
the LSTM’s accuracy, but a large gap remained
between its performance and the accuracy of
human participants recruited online. This sug-
gests that there is considerable room for im-
provement over LSTMs in capturing syntax in
a language model.

1 Introduction

A language model (LM) defines a probability dis-
tribution over sequences of words. Recent techno-
logical advances have led to an explosion of neural
network-based LM architectures. The most pop-
ular ones are based on recurrent neural networks
(RNNs) (Elman, 1990; Mikolov et al., 2010),
in particular Long Short-Term Memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997).
While a large number of alternative architectures
have been proposed in the past few years, LSTMs
are still highly competitive (Melis et al., 2018).

Language models are typically evaluated using
perplexity: it is considered desirable for an LM
to assign a high probability to held-out data from
the same corpus as the training data. This mea-
sure conflates multiple sources of success (or fail-
ure) in predicting the next word: common collo-

cations, semantics, pragmatics, syntax, and so on.
The quality of the syntactic predictions made by
the LM is arguably particularly difficult to mea-
sure using perplexity: since most sentences are
grammatically simple and most words can be pre-
dicted from their local context, perplexity rewards
LMs primarily for collocational and semantic pre-
dictions.

We propose to supplement perplexity with a
metric that assesses whether the probability dis-
tribution defined by the model conforms to the
grammar of the language. Following previous
work (Lau et al., 2017; Linzen et al., 2016; Gu-
lordava et al., 2018), we suggest that given two
sentences that differ minimally from each other,
one of which is grammatical and the other which is
not, it is desirable for the model to assign a higher
probability to the grammatical one.

The value of this approach can be illustrated
with a recent study by Tran et al. (2018), where a
standard LSTM language model was compared to
an attention-only LM without recurrence (Vaswani
et al., 2017). Although the attention-only model
had somewhat better perplexity on the valida-
tion set, when the models were tested specifically
on challenging subject-verb agreement dependen-
cies, the attention-only model made three times
as many errors as the LSTM. In other words, the
LSTM learned more robust syntactic representa-
tions, but this advantage was not reflected in its av-
erage perplexity on the corpus, since syntactically
challenging sentences are relatively infrequent.

Previous work on targeted syntactic evaluation
of language models has identified syntactically
challenging sentences in corpora (Linzen et al.,
2016; Gulordava et al., 2018). While evaluation
on naturally occurring examples is appealing, this
approach has its limitations (see Section 2). In
particular, syntactically challenging examples are
sparsely represented in a corpus, their identifica-
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tion requires a clean parsed corpus, and naturally
occurring sentences are difficult to control for con-
founds. We contrast the naturalistic approach with
a constructed dataset, which allows us to exam-
ine a much larger range of specific grammatical
phenomena than has been possible before. We
use templates to automatically create our test sen-
tences, making it possible to generate a large test
set while maintaining experimental control over
our materials as well as a balanced number of ex-
amples of each phenomenon.

We test three LMs on the data set we develop:
an n-gram baseline, an RNN LM trained on an
unannotated corpus, and an RNN LM trained on a
multitask objective: language modeling and Com-
binatory Categorial Grammar (CCG) supertagging
(Bangalore and Joshi, 1999). We also conduct
a human experiment using the same materials.
The n-gram baseline largely performed at chance,
suggesting that good performance on the task re-
quires syntactic representations. The RNN LMs
performed well on simple cases, but struggled on
more complex ones. Multi-task training with a su-
pervised syntactic objective improved the perfor-
mance of the RNN, but it was still much weaker
than humans. This suggests that our data set is
challenging, especially when explicit syntactic su-
pervision is not available, and can therefore moti-
vate richer language modeling architectures.

2 Overview of the approach

2.1 Grammaticality and LM probability
How should grammaticality be captured in the
probability distribution defined by an LM? The
most extreme position would be that a language
model should assign a probability of zero to un-
grammatical sentences. For most applications,
some degree of error tolerance is desirable, and
it is not practical to assign a sentence a proba-
bility of exactly zero.1 Following Linzen et al.
(2016) and Gulordava et al. (2018), our desider-
atum for the language model is more modest: if
two closely matched sentence differ only in their
grammaticality, the probability of the grammati-
cal sentence should be higher than the probability
of the ungrammatical one. For example, the fol-
lowing minimal pair illustrates the fact that third-

1Nor is it possible to have a threshold ✏ such that all gram-
matical sentences have probability higher than ✏ and all un-
grammatical sentences have probability lower than ✏, for the
simple reason that there is an infinite number of grammatical
sentences (Lau et al., 2017).

person present English verbs agree with the num-
ber of their subject:

(1) Simple agreement:
a. The author laughs.
b. *The author laugh.

We expect the probability of (1a) to be higher than
the probability of (1b). Previous work has simpli-
fied this setting further by comparing the proba-
bility that the LM assigns to a single word that is
the locus of ungrammaticality. In (1), for exam-
ple, the LM would be fed the first two words of
the sentence, and would be considered successful
on the task if it predicts P (laughs) > P (laugh).

The prediction setting is only applicable when
the locus of ungrammaticality is a single word,
rather than, say, the interaction between two
words; moreover, the information needed to make
the grammaticality decision needs to be available
in the left context of the locus of grammaticality.
These conditions do not always hold. Negative po-
larity items (NPIs), for example, are words like
any and ever that can only be used in the scope
of negation.2 The grammaticality of placing a par-
ticular quantifier in the beginning of the sentences
in (2) depends on whether the sentence contains
an NPI later on:

(2) Simple NPI:
a. No students have ever lived here.
b. *Most students have ever lived here.

It would not be possible to compare these two sen-
tences using the prediction task. In the current pa-
per, we use the more general setting and compare
the probability of the two complete sentences.

2.2 Data set construction
Previous work has used syntactically complex sen-
tences identified from a parsed corpus. This ap-
proach has several limitations. If the corpus is
automatically parsed, the risk of a parse error in-
creases with the complexity of the construction
(Bender et al., 2011). If the test set is restricted
to sentences with gold parses, it can be difficult
or impossible to find a sufficient number of exam-
ples of syntactically challenging cases. Moreover,
using naturally occurring sentences can introduce

2In practice, the conditions that govern the distribution of
NPIs are much more complicated, but this first approxima-
tion will suffice for the present purposes. For a review, see
Giannakidou (2011).
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confounds that may complicate the interpretation
of the experiments (Ettinger et al., 2018).

To circumvent these issues, we use templates
to automatically construct a large number of En-
glish sentence pairs (⇠350,000). Our data set in-
cludes three phenomena that linguists consider to
be sensitive to hierarchical syntactic structure (Ev-
eraert et al., 2015; Xiang et al., 2009): subject-
verb agreement (described in detail in Sections 4.1
and 4.2), reflexive anaphora (Section 4.3) and neg-
ative polarity items (Section 4.4).

The templates can be described using non-
recursive context-free grammars. We specify the
preterminal symbols that make up a syntactic con-
struction and have different terminal symbols that
those preterminals could be mapped to. For ex-
ample, the template for the simple agreement con-
struction illustrated in (1) consists of the following
rules:

(3) a. Simple agreement ! D MS MV
b. D ! the
c. MS ! {author, pilot, . . .}
d. MV ! {laughs, smiles, . . .}

We generate all possible combinations of the ter-
minals. The Supplementary Materials provide a
full description of all our templates.3

While these examples are somewhat artificial,
our goal is to isolate the syntactic capabilities of
the model; it is in fact beneficial to minimize the
semantic or collocational cues that can be used
to identify the grammatical sentence. Gulordava
et al. took this approach further and constructed
“colorless green ideas” test cases by substituting
random content words into sentences from a cor-
pus. We take a more moderate position and avoid
combinations that are very implausible or violate
selectional restrictions (e.g., the apple laughs). We
do this by having separate templates for animate
and inanimate subjects and verbs so that the re-
sulting sentences are always reasonably plausible.

3 Related work

Targeted evaluation: LM evaluation data sets
using challenging prediction tasks have been pro-
posed in the context of semantics and discourse
comprehension (Zweig and Burges, 2011; Paperno
et al., 2016). Evaluation sets consisting of chal-

3The code, the data set and the Supplementary
Materials can be found at https://github.com/
BeckyMarvin/LM_syneval.

lenging syntactic constructions have been con-
structed for parser evaluation (Rimell et al., 2009;
Nivre et al., 2010; Bender et al., 2011), and mini-
mal pair approaches have been proposed for eval-
uating image captioning (Shekhar et al., 2017) and
machine translation systems (Sennrich, 2017), but
no data sets exist that target a range of syntactic
constructions for language model evaluation.

Acceptability judgments: Lau et al. (2017)
compared the ability of different LMs to pre-
dict graded human acceptability judgments. The
forced-choice approach used in the current pa-
per has been shown to be effective in human
acceptability judgment experiments (Sprouse and
Almeida, 2017). In some early work, neural net-
works were trained explicitly to predict acceptabil-
ity judgments (Lawrence et al., 1996; Allen and
Seidenberg, 1999); Post (2011) likewise trained a
classifier on top of a parser to predict grammatical-
ity. Warstadt et al. (2018) use a transfer learning
approach, where an unsupervised model is fine-
tuned on acceptability prediction. Our work dif-
fers from those studies in that we do not advocate
providing any explicit grammaticality signal to the
LM at any point (“no negative evidence”).

Syntax in LMs: There have been several pro-
posals over the years to incorporate explicit syn-
tax into LMs to overcome the inability of n-gram
LMs to model long-distance dependencies (Juraf-
sky et al., 1995; Roark, 2001; Pauls and Klein,
2012). While RNN language models can in prin-
ciple model longer dependencies (Mikolov et al.,
2010; Linzen et al., 2016), in practice it can still be
beneficial to inject syntax into the model. This can
be done by combining it with a supervised parser
(Dyer et al., 2016) or other multi-task learning ob-
jectives (Enguehard et al., 2017). Our work is or-
thogonal to this area of research, but can be seen
as providing a potential opportunity to underscore
the advantage of such syntax-infused models.

4 Data set composition

This section describes all of the types of sentence
pairs included in our data set, which include exam-
ples of subject-verb agreement (Sections 4.1 and
4.2), reflexive anaphoras (Section 4.3) and nega-
tive polarity items (Section 4.4).
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4.1 Subject-verb agreement
Determining the correct number of the verb is triv-
ial in examples such as (1) above, in which the
sentence only contains a single noun. By contrast,
in cases where there are multiple nouns in the sen-
tence, identifying which of them is the subject of a
given verb requires understanding the structure of
the sentence. In particular, the relevant subject is
not necessarily the first noun of the sentence:

(4) Agreement in a sentential complement:
a. The bankers knew the officer smiles.
b. *The bankers knew the officer smile.

Here the verb smiles needs to agree with the em-
bedded subject officer rather than the main clause
subject bankers. The subject is also not necessar-
ily the most recent noun before the verb: when
the subject is modified by a phrase, a distracting
noun (“attractor”) often intervenes in the linear or-
der of the sentence between the head of the subject
and the verb. Two examples of such modifiers are
prepositional phrases and relative clauses (RCs):

(5) Agreement across a prepositional phrase:
a. The farmer near the parents smiles.
b. *The farmer near the parents smile.

(6) Agreement across a subject relative clause:
a. The officers that love the skater smile.
b. *The officers that love the skater smiles.

We include all four possible configurations of
noun number for each type of minimal pair;
for (5), these would be:4

(7) a. The farmer near the parent smiles/*smile.
b. The farmer near the parents smiles/*smile.
c. The farmers near the parent smile/*smiles.
d. The farmers near the parents

smile/*smiles.

Sentences where the two nouns conflict in num-
ber are expected to be more challenging, but in-
terpretable errors may certainly occur even when
they do not. For example, the model may use
the heuristic that sentences with multiple nouns
are likely to have a plural verb (a heuristic that

4The slash notation indicates the word that differs be-
tween the grammatical and ungrammatical sentence; for ex-
ample, in (7a), the full sentence pair would be:

(i) a. The farmer near the parent smiles.
b. *The farmer near the parent smile.

would be effective for coordination); alternatively,
it might prefer singular verbs to plural ones regard-
less of whether the subject is singular or plural,
simply because the singular form of the verb is
more frequent.

Next, in verb phrase (VP) coordination, both of
the verbs need to agree with the subject:

(8) Short VP coordination:
a. The senator smiles and laughs.
b. *The senator smiles and laugh.

We had both singular and plural subjects. The
number of the verb immediately adjacent to the
subject was always grammatical. This problem
can in principle be solved with a trigram model
(smiles and laughs is likely to be a more frequent
trigram than smiles and laugh); to address this po-
tential concern, we also included a coordination
condition with a longer dependency:

(9) Long VP coordination:
The manager writes in a journal every day and
likes/*like to watch television shows.

4.2 Agreement and object relative clauses
We go into greater depth in object relative clauses,
which most clearly require a hierarchical represen-
tation. In (10) and (11), the model needs to be
able to distinguish the embedded subject (parents)
from the main clause subject (farmer) when mak-
ing its predictions:

(10) Agreement across an object relative clause:
a. The farmer that the parents love swims.
b. *The farmer that the parents love swim.

(11) Agreement in an object relative clause:
a. The farmer that the parents love swims.
b. *The farmer that the parents loves swims.

In keeping with the minimal pair approach, we
never introduce two agreement errors at the same
time: either the embedded verb or the main verb is
incorrectly inflected, but not both.

We include a number of variations on the pat-
tern in (11). First, we delete the relativizer that,
with the hypothesis that the absence of an overt
cue to structure will make the task more difficult:

(12) The farmer the parents love/*loves swims.

In another condition, we replace the main sub-
ject with an inanimate noun and keep the embed-
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ded subject animate. We base this manipulation
on human experimental work showing that sim-
ilar nouns (for example, two animate nouns) are
more likely to cause confusion during comprehen-
sion than dissimilar nouns, such as an animate and
an inanimate noun (Van Dyke, 2007):

(13) The movies that the author likes are/*is good.

For a complete list of all the types of minimal pairs
we include, see the Supplementary Materials.

4.3 Reflexive anaphora

A reflexive pronoun such as himself needs to have
an antecedent from which it derives its interpreta-
tion. The pronoun needs to agree in number (and
gender) with its antecedent:

(14) Simple reflexive:
a. The senators embarrassed themselves.
b. *The senators embarrassed herself.

There are structural conditions on the nouns to
which a reflexive pronoun can be bound. One of
these conditions requires the antecedent to be in
the same clause as the reflexive pronoun. For ex-
ample, (15b) cannot refer to a context in which the
pilot embarrassed the bankers:

(15) Reflexive in a sentential complement:
a. The bankers thought the pilot embar-

rassed himself.
b. *The bankers thought the pilot embar-

rassed themselves.

Likewise, in the following minimal pair, sentence
(16b) is ungrammatical, because the reflexive pro-
noun themselves, which is part of the main clause,
cannot be bound to the noun phrase the architects,
which is inside an embedded clause:

(16) Reflexive across an object relative clause:
a. The manager that the architects like

doubted himself.
b. *The manager that the architects like

doubted themselves.

4.4 Negative polarity items

Negative polarity items, introduced in example (2)
above, are words that (to a first approximation)
need to occur in the context of negation. Crucially
for the purposes of the present work, the scope
of negation is structurally defined. In particular

the negative noun phrase needs to c-command the
NPI: the syntactic non-terminal node that domi-
nates the negative noun phrase must also domi-
nate the NPI. This is the case in (17a), but not
in (17b), where the negative noun phrase is too
deep in the tree to c-command the NPI ever (Xiang
et al., 2009; Everaert et al., 2015).

(17) NPI across a relative clause:
a. No authors that the security guards like

have ever been famous.
b. *The authors that no security guards like

have ever been famous.

All of the nouns and verbs in the NPI cases were
plural. As in some of the agreement cases, we in-
cluded a variant of (17) in which the subject was
inanimate.

5 Experimental setup

To show how our challenge set can be used to eval-
uate the syntactic performance of LMs, we trained
three LMs with increasing levels of syntactic so-
phistication. All of the LMs were trained on a
90 million word subset of Wikipedia (Gulordava
et al., 2018). Our n-gram LM and LSTM LM do
not require annotated data. The third model is also
an LSTM LM, but it requires syntactically anno-
tated data (CCG supertags).

N-gram model: We trained a 5-gram model on
the same 90M word corpus using the SRILM
toolkit (Stolcke, 2002) which backs off to smaller
n-grams using Kneser-Ney smoothing.

Single-task RNN: The RNN LM had two layers
of 650 LSTM units, a batch size of 128, a dropout
rate of 0.2, and a learning rate of 20.0, and was
trained for 40 epochs (following the hyperparam-
eters of Gulordava et al. 2018).

Multi-task RNN: In multi-task learning, the
system is trained to optimize an objective func-
tion that combines the objective functions of sev-
eral tasks. We combine language modeling with
CCG supertagging, a task that predicts for each
word in the sentence its CCG supertag (Bangalore
and Joshi, 1999; Lewis et al., 2016). We sim-
ply sum the two objective functions with equal
weights (Enguehard et al., 2017). Early stopping
in this model is based on the combined loss on
language modeling and supertagging. Supertags
provide a large amount of syntactic information
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about the word; the sequence of supertags of a
sentence strongly constrains the possible parses of
the sentence. We use supertagging as a “scaffold”
task (Swayamdipta et al., 2017): our goal is not to
produce a competitive supertagger, but to induce
better syntactic representations, which would then
lead to improved language modeling. We used
CCG-Bank (Hockenmaier and Steedman, 2007) as
our CCG corpus.

Human evaluation: We designed a human ex-
periment on Amazon Mechanical Turk that mir-
rored the task that was given to the LMs: both ver-
sions of a minimal pair were shown on the screen
at the same time, and participants were asked to
judge which one of them was more acceptable (for
details, see the Supplementary Materials). We em-
phasize that we do not see human performance on
complex syntactic dependencies as setting an up-
per bound on the performance that we should ex-
pect from an LM. There is a rich literature showing
that humans make mistakes such as subject-verb
agreement errors; in fact, most of the phenomena
we test were inspired by work in psycholinguistics
that studies these errors (Bock and Miller, 1991;
Phillips et al., 2011). At the same time, while we
do not see a reason not to aspire for 100% accu-
racy, we are interested in comparing LM and hu-
man errors: if the errors are similar, the two sys-
tems may be using similar representations.

6 Results

Local agreement: The overall accuracy per
condition can be seen in Table 1. The n-gram
LM’s accuracy was only 79% for simple agree-
ment and agreement in a sentential complement,
both of which can be solved entirely using local
context. This is because not all subject and verb
combinations in our materials appeared verbatim
in the 90M word training corpus; for those combi-
nations, the model fell back on unigram probabili-
ties, which in this context amounts to selecting the
more frequent form of the verb.

Both RNNs performed much better than the
n-gram model on the simple agreement case
(single-task: 94%; multi-task: 100%), reflecting
these models’ ability to generalize beyond the spe-
cific bigrams that occurred in the corpus. Ac-
curacy on agreement in a sentential complement
was also very high (single-task: 99%; multi-task:
93%). This indicates that the RNNs do not rely on
the heuristic whereby the first noun of the sentence

is likely to be its subject. They did slightly worse
but still very well on short VP coordination (both
90%); this dependency is also local, albeit across
the word and.

Non-local agreement: The accuracy of the
n-gram model on non-local dependencies (long
VP coordination and agreement across a phrase
or a clause) was very close to 50%. This sug-
gests that local collocational information is not
useful in these conditions. The single-task RNN
also performed much more poorly on these con-
ditions than on the local agreement conditions,
though for the most part its accuracy was better
than chance. Humans did worse on these depen-
dencies as well, but their accuracy did not drop as
sharply as the RNNs’ (human accuracies ranged
from 82% to 88%). In most of these cases, multi-
task learning was very helpful; for example, accu-
racy in long VP coordination increased from 61%
to 81%. Still, both RNNs performed poorly on
agreement across an object RC, especially with-
out that, whereas humans performed comparably
on all non-local dependencies.

Agreement inside an object RC: This case is
particularly interesting, because this dependency
is purely local (see (11)), and the interference is
from the distant sentence-initial noun. Although
this configuration is similar to the sentential com-
plement case, performance was worse both in
RNNs and humans. However, RNNs performed
better than humans, at least when the sentence in-
cluded the overt relativizer that. This suggests that
interference is sensitive to proximity in RNNs but
to syntactic status in humans — humans appear to
be confusing the main clause subject and the em-
bedded subject (Wagers et al., 2009).

Reflexive anaphora: The RNNs’ performance
was significantly worse on simple reflexives (83%)
than on simple agreement (94%), and did not dif-
fer between the single-task and multi-task mod-
els. By contrast, human performance did not dif-
fer between subject-verb agreement and reflexive
anaphoras. The surprisingly poor performance for
this adjacent dependency seems to be due to an
asymmetry in accuracy between himself and them-
selves on the one hand (100% accuracy in the
multi-task RNN) and herself on the other hand
(49% accuracy).5 Accuracy was very low for all

5This may be because himself and themselves are signifi-
cantly more frequent than herself, and consequently the num-
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RNN Multitask n-gram Humans # sents

SUBJECT-VERB AGREEMENT:
Simple 0.94 1.00 0.79 0.96 280
In a sentential complement 0.99 0.93 0.79 0.93 3360
Short VP coordination 0.90 0.90 0.51 0.94 1680
Long VP coordination 0.61 0.81 0.50 0.82 800
Across a prepositional phrase 0.57 0.69 0.50 0.85 44800
Across a subject relative clause 0.56 0.74 0.50 0.88 22400
Across an object relative clause 0.50 0.57 0.50 0.85 44800
Across an object relative (no that) 0.52 0.52 0.50 0.82 44800
In an object relative clause 0.84 0.89 0.50 0.78 44800
In an object relative (no that) 0.71 0.81 0.50 0.79 44800

REFLEXIVE ANAPHORA:
Simple 0.83 0.86 0.50 0.96 560
In a sentential complement 0.86 0.83 0.50 0.91 6720
Across a relative clause 0.55 0.56 0.50 0.87 44800

NEGATIVE POLARITY ITEMS:
Simple 0.40 0.48 0.06 0.98 792
Across a relative clause 0.41 0.73 0.60 0.81 31680

Table 1: Overall accuracies for the LSTMs, n-gram model and humans on each test case.

pronouns in the structurally complex case in which
the dependency was across a relative clause (55%
compared to 87% in humans).

NPIs: The dependency in simple NPIs spans
only four words, so the n-gram model could in
principle capture it. In practice, the n-gram model
systematically selected the wrong answer, sug-
gesting that it backed off to comparing the bi-
grams no students and most students, the first of
which is presumably less frequent. Surprisingly,
the n-gram model’s accuracy was higher than 50%
on NPIs across a relative clause, a dependency that
spans more than five words. In this case, the bi-
grams that the and the chef (for example) happen
to be more frequent than the that no and no chef.
This difference was apparently strong enough to
make up for the low-frequency bigram at the start
of the sentence.

The RNNs did poorly on this task. The accu-
racy of the single-task model was around 40%.
The multi-task did somewhat better on the simple
NPIs (48%) and much better on the NPIs across a
relative clause (73%). At the same time, an exam-
ination of the plot of log probability of each word
in a sentence (Figure A.1 in the Supplementary
Materials) suggests that the single-task RNN is in

ber representation learned for herself was not robust. An-
other possibility is that gender bias reduces the probability
of an anaphoric relation between herself and words such as
surgeon (Rudinger et al., 2018).

fact able to differentiate between the grammatical
and ungrammatical sentences when it reaches the
NPI, but this difference does not offset the overall
probability advantage of the ungrammatical sen-
tence (which is likely due to non-grammatical col-
locational factors). In any case, the fact that the
n-gram baseline did not perform at chance sug-
gests that there are non-syntactic cues to this task,
complicating the interpretation of the performance
of other LMs.

Perplexity: The perplexity of the n-gram model
on the Wikipedia test data was 157.5, much higher
than the perplexity of the single-task RNN (78.65)
and the multi-task RNN (61.10). In other words,
perplexity tracked accuracy on our syntactic data
set – an unsatisfying outcome given our goal of
dissociating perplexity and our syntactic evalua-
tion method, but an expected one given that each
model was conditioned on richer information than
the previous one. In previous work, perplexity and
syntactic judgment accuracy have been found to
be partly dissociable (Kuncoro et al., 2018; Tran
et al., 2018).

Lexical variation and frequency: There was
considerable lexical variation in the results; we
have mentioned the surprising asymmetry be-
tween himself and herself above. As another
case study, we examine variation in the results
of the simple agreement condition in the single-
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Main Embedded Single-task Multi-task Humans Example sentence
subject subject

Across an objective relative clause:
Singular Singular 0.83 0.77 0.96 The author that the minister likes laughs/*laugh.
Singular Plural 0.51 0.30 0.90 The author that the ministers like laughs/*laugh.
Plural Singular 0.18 0.53 0.77 The authors that the minister likes laugh/*laughs.
Plural Plural 0.50 0.73 0.80 The authors that the ministers like laugh/*laughs.

Within an objective relative clause:
Singular Singular 0.73 0.92 0.94 The author that the minister likes/*like laughs.
Singular Plural 0.91 0.81 0.72 The author that the ministers like/*likes laugh.
Plural Singular 0.81 0.97 0.73 The authors that the minister likes/*like laugh.
Plural Plural 0.87 0.84 0.76 The authors that the ministers like/*likes laugh.

Table 2: Accuracy within and across an object relative clause (only in the cases in which the main subject was
animate and the relativizer that was present). The subject that the verb is expected to agree with is underlined.

task RNN. Accuracy varied by verb, ranging from
is and are, which had 100% accuracy, to swims,
where accuracy was only 60% (recall that average
accuracy was 94%). This may be a frequency ef-
fect: either the LM is learning less robust number
representations for infrequent verbs, or the tail of
the distribution over the vocabulary is more frag-
ile during word prediction. Pauls and Klein (2012)
propose normalizing for unigram frequency when
deriving acceptability judgments from an LM. Our
preliminary experiments with this method did not
significantly improve overall performance; regard-
less of the effectiveness of this method, such cor-
rections should arguably not be necessary in an
LM that adequately captures grammaticality.

7 Case study: agreement and object
relative clauses

The overall results in Table 1 were averaged over
all of the possible number configurations within
each condition. In this section, we take a closer
look at agreement in sentences with an object RC
(see Table 2). This kind of finer-grained analy-
sis helps explain the cases in which the LMs are
failing, and might reveal some of the patterns or
heuristics the LMs are using.

Performance in agreement across an object RC
was poor. Both RNNs made attraction errors: they
often preferred the verb that agreed in number with
the irrelevant embedded subject to the verb that
agreed with the correct main subject. The multi-
task RNN showed greater symmetry between the
simpler singular/singular and plural/plural cases,
whereas the single-task RNN performed poorly
even in these cases, often preferring a singular

verb when both subjects were plural. This default
preference for singular verbs matches the behavior
of younger children (Franck et al., 2004).

Performance in agreement within an object RC
was better; still, the single-task RNN made the
most errors when both subjects were singular, per-
haps due to a heuristic in which a sentence with
multiple subjects is likely to have a plural verb (as
in coordination sentences). By contrast, the multi-
task model seemed to have a general bias towards
singular subjects in this condition. Incidentally,
the human results with object RCs were also unex-
pected: while attraction errors when the two sub-
jects differ in number are to be expected (Wagers
et al., 2009), our participants made a sizable num-
ber of errors even when both subjects were plural.

Despite the generally poor performance in ob-
ject RCs, Figures A.2 and A.3 in the Supple-
mentary Materials show that the single-task RNN
is typically assigning a higher probability to the
grammatical word of a minimal pair than to the
ungrammatical word.

8 Discussion

We have described a template-based data set for
targeted syntactic evaluation of language models.
The data set consists of pairs of sentences that are
matched except for their grammaticality; we con-
sider a language model to capture the relevant as-
pects of the grammar of the language if it assigns
a higher probability to the grammatical sentence
than to the ungrammatical one.

An RNN language model performed very well
on local subject-verb agreement dependencies,
significantly outperforming an n-gram baseline.
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This suggests that the task is a viable evalua-
tion strategy. Even on simple cases, however,
the RNN’s accuracy was sensitive to the partic-
ular lexical items that occurred in the sentence;
this would not be expected if its syntactic repre-
sentations were fully abstract. The RNN’s per-
formance degraded markedly on non-local depen-
dencies, approaching chance levels on agreement
across an object relative clause. Multi-task train-
ing with a syntactic objective (CCG supertagging)
mitigated this drop in performance for some but
not all of the dependencies we tested. We con-
jecture that the benefits of the inductive bias con-
ferred by multi-task learning will be amplified
when the amount of training data is limited.

Our results contrast with the results of Gulor-
dava et al. (2018), who obtained a prediction accu-
racy of 81% on English sentences from their test
corpus and 74% on constructed sentences modeled
after sentences from the corpus. It is likely that our
sentences are more syntactically challenging than
the ones they were able to find in the relatively
small manually annotated treebank they used.

One limitation of our approach is that it is not
always clear what constitutes a minimal grammati-
cality contrast. In the subject-verb agreement case,
the contrast was clear: the two present-tense forms
of the verb, e.g., laugh vs. laughs. Our NPI ma-
nipulations, on the other hand, were less success-
ful: the members of the contrasts differed not only
in their syntactic structure but also in low-level
n-gram probabilities, making the performance on
this particular contrast harder to interpret.

We emphasize that the goal of this article was
not to advocate for LSTMs in particular as an ef-
fective architecture for modeling syntax; indeed,
our results show that LSTM language models are
far from matching naive annotators’ performance
on this task, let alone performing at 100% accu-
racy. We hope that our data set, and future ex-
tensions to other phenomena and languages, will
make it possible to measure progress in syntactic
language modeling and will lead to better under-
standing of the syntactic generalizations captured
by language models.
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Abstract

Despite the tremendous empirical success of
neural models in natural language process-
ing, many of them lack the strong intuitions
that accompany classical machine learning ap-
proaches. Recently, connections have been
shown between convolutional neural networks
(CNNs) and weighted finite state automata
(WFSAs), leading to new interpretations and
insights. In this work, we show that some re-
current neural networks also share this con-
nection to WFSAs. We characterize this
connection formally, defining rational recur-
rences to be recurrent hidden state update
functions that can be written as the Forward
calculation of a finite set of WFSAs. We show
that several recent neural models use ratio-
nal recurrences. Our analysis provides a fresh
view of these models and facilitates devising
new neural architectures that draw inspiration
from WFSAs. We present one such model,
which performs better than two recent base-
lines on language modeling and text classifica-
tion. Our results demonstrate that transferring
intuitions from classical models like WFSAs
can be an effective approach to designing and
understanding neural models.

1 Introduction

Neural models, and in particular gated variants of
recurrent neural networks (RNNs, e.g., Hochre-
iter and Schmidhuber, 1997; Cho et al., 2014),
have become a core building block for state-
of-the-art approaches in NLP (Goldberg, 2016).
While these models empirically outperform clas-
sical NLP methods on many tasks (Zaremba et al.,
2014; Bahdanau et al., 2015; Dyer et al., 2016;
Peng et al., 2017, inter alia), they typically lack
the intuition offered by classical models, making it
hard to understand the roles played by each of their
components. In this work we show that many neu-
ral models are more interpretable than previously

q1/1̄q0

8↵/1̄ 8↵/�(↵)

8↵/µ(↵)

Figure 1: A two-state WFSA B described in §2. It
is closely related to several models studied in this
paper (§4.1). Bold circles indicate initial states,
and double circles final states, which are associ-
ated with final weights. Arrows represent transi-
tions, labeled by the symbols ↵ they consume, and
the weights as a function of ↵. Arcs not drawn
are assumed to have weight 0̄. For brevity, 8↵
means 8↵ 2 ⌃, with ⌃ being the alphabet.

thought, by drawing connections to weighted fi-
nite state automata (WFSAs). We study several re-
cently proposed RNN architectures and show that
one can use WFSAs to characterize their recur-
rent updates. We call such models rational re-
currences (§3).1 Analyzing recurrences in terms
of WFSAs provides a new view of existing models
and facilitates the development of new ones.

In recent work, Schwartz et al. (2018) intro-
duced SoPa, an RNN constructed from WFSAs,
and thus rational by our definition. They also
showed that a single-layer max-pooled CNN (Le-
Cun, 1998) can be simulated by a set of simple
WFSAs (one per output dimension), and accord-
ingly are also rational. In this paper we broaden
such efforts, and show that rational recurrences are
in frequent use (Mikolov et al., 2014; Balduzzi and
Ghifary, 2016; Lei et al., 2016, 2017a,b; Bradbury
et al., 2017; Foerster et al., 2017). For instance,
we will show in §4 that the WFSA diagrammed

1 Where the term regular is used with unweighted FSAs
(e.g., regular languages, regular expressions), rational is the
weighted analog (e.g., rational series, Sakarovitch, 2009; ra-
tional kernels, Cortes et al., 2004).
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in Figure 1 has strong connections to several of
the models mentioned above.

Based on these observations, we then discuss
potential approaches to deriving novel neural ar-
chitectures from WFSAs (§5). As a case study,
we present a new model motivated by the in-
terpolation of a two-state WFSA and a three-
state one, capturing (soft) unigram and bigram
features, respectively. Our experiments show
that in two tasks—language modeling and text
classification—the proposed model outperforms
recently proposed rational models (§6). Fur-
ther extensions might lead to larger gains, and
the rational recurrence view could facilitate eas-
ier exploration of such extensions. To pro-
mote such exploration, we publicly release our
implementation at https://github.com/
Noahs-ARK/rational-recurrences.

2 Background: Weighted Finite State
Automata (WFSAs)

This section reviews weighted finite-state au-
tomata and semirings, which underly our anal-
yses in §3. WFSAs extend nondeterministic
unweighted finite-state automata by assigning
weights to transitions, start states, and final states.
Instead of simply accepting or rejecting a string, a
WFSA returns a score for the string, and this score
summarizes the weights along all paths through
the WFSA that consume the string. In order for
this summary score to be efficiently computable,
weights are taken from a semiring.

Definition 1 (Kuich and Salomaa, 1986). A
semiring is a set K along with two associative bi-
nary operations on K, � (addition) and ⌦ (multi-
plication), and two identity elements: 0̄ for addi-
tion, and 1̄ for multiplication. Semirings also re-
quire that addition is commutative, multiplication
distributes over addition, and that multiplication
by 0̄ annihilates (i.e., 0̄ ⌦ a = a ⌦ 0̄ = 0̄).

One common semiring is the real (or plus-
times) semiring: hR, +, ·, 0, 1i. The other one
used in this work is the max-plus semir-
ing hR [ {�1}, max, +, �1, 0i. We refer the
reader to Kuich and Salomaa (1986) for others.

Definition 2. A weighted finite-state automaton
(WFSA) over a semiring K is a 5-tuple, A =
h⌃, Q, ⌧, �, ⇢i,2 with:

2Some authors define ⌧ , �, and ⇢ to be partial functions—
applying only a subset of transitions, initial states, and final

• a finite input alphabet ⌃;
• a finite state set Q;
• transition weights ⌧ : Q⇥Q⇥(⌃ [ {"}) ! K;
• initial weights � : Q ! K;
• and final weights ⇢ : Q ! K.

" /2 ⌃ marks special "-transitions that may be
taken without consuming any input. A assigns a
score AJxK to a string x = x1 . . . xn 2 ⌃⇤ by
summing over the scores of all possible paths de-
riving x. The score of each individual path is the
product of the weights of the transitions it consists
of. Formally:

Definition 3 (path score). Let ⇡ = ⇡1 . . . ⇡n be a
sequence of adjacent transitions in A, with each
transition ⇡i = (qi, qi+1, zi) 2 Q⇥Q⇥(⌃ [ {"}).
The path ⇡ derives string x 2 ⌃⇤, which is
the substring of z = z1z2 . . . zn that excludes
" symbols (for example, if z = a"bc"""d, then
x = abcd). ⇡’s score in A is given by

A[⇡] = �(q1) ⌦
 

n�

i=1

⌧(⇡i)

!
⌦ ⇢(qn+1). (1)

Definition 4 (string score). Let ⇧(x) denote the
set of all paths in A that derive x. Then the score
assigned by A to x is defined to be

AJxK =
�

�2⇧(x)

A[⇡]. (2)

Because K is a semiring, AJxK can be com-
puted in time linear in |x| by the Forward algo-
rithm (Baum and Petrie, 1966). Here, for simplic-
ity, we describe the Forward algorithm without "-
transitions.3 Its dynamic program is given by:

⌦0(q) = �(q), (3a)

⌦i+1(q) =
�

q02Q
⌦i(q

0) ⌦ ⌧(q0, q, xi), (3b)

AJxK =
�

q2Q
⌦n(q) ⌦ ⇢(q). (3c)

⌦i(q) gives the total score of all paths that derive
x1 . . . xi and end in state q.

Example 5. Figure 1 diagrams a WFSA B, con-
sisting of two states. A path starts from the initial
state q0 (with �(q0) = 1̄); it then takes any num-

states respectively. Our definition is equivalent, giving the
weight functions value 0̄ wherever they were undefined.

3"-transitions can be handled with a slight modifica-
tion (Schwartz et al., 2018). Note though that if A contains
a cycle of "-transitions, then either K must follow the star
semiring laws (Kuich and Salomaa, 1986), or the number of
consecutive "-transitions allowed must be capped.
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ber of “self-loop” transitions, each consuming an
input without changing the path score (since it’s
weighted by 1̄); it then consumes an input sym-
bol ↵ and takes a transition weighted by µ(↵),
and reaches the final state q1 (with ⇢(q1) = 1̄);
it may further consume more input by taking self-
loops at q1, updating the path score by multiply-
ing it by �(↵) for each symbol ↵. Then from
Definition 4, we can calculate that B gives the
empty string score 0̄, and gives any nonempty
string x = x1 . . . xn 2 ⌃+ score BJxK =

n�1�

i=1

0

@µ(xi) ⌦
n�

j=i+1

�(xj)

1

A� µ(xn). (4)

B can be seen as capturing soft unigram pat-
terns (Davidov et al., 2010), in the sense that it
consumes one input symbol to reach the final state
from the initial state. It is straightforward to de-
sign WFSAs capturing longer patterns by includ-
ing more states (Schwartz et al., 2018), as we will
discuss later in §4 and §5.

3 Rational Recurrences

Before formally defining rational recurrences in
§3.2, we highlight the connection between WFSAs
and RNNs using a motivating example (§3.1).

3.1 A Motivating Example
We describe a simplified RNN which strips away
details of some recent RNNs, in order to highlight
the behaviors of the forget gate and the input.

Example 6. For an input sequence x = x1 . . . xn,
let the word embedding vector for xt be vt.
As in many gated RNN variants (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014), we use a
forget gate ft, which is computed with an affine
transformation followed by an elementwise sig-
moid function �. The current input representation
ut is similarly computed, but with an optional non-
linearity (e.g., tanh) g. The hidden state ct can be
seen as a weighted sum of the previous state and
the new input, controlled by the forget gate.

ft = �
�
Wfvt + bf

�
, (5a)

ut = (1 � ft) � g
�
Wuvt + bu

�
, (5b)

ct = ft � ct�1 + ut. (5c)

The hidden state ct can then be used in down-
stream computation, e.g., to calculate output state
ht = tanh(ct), which is then fed to an MLP clas-
sifier. We focus only on the recurrent computation.

In Example 6, both ft and ut depend only on
the current input token xt (through vt), and not
the previous state. Importantly, the interaction
with the previous state ct�1 is not via affine trans-
formations followed by nonlinearities, as in, e.g.,
an Elman network (Elman, 1990), where ct =
tanh(Wcct�1 +Wvvt +bc). As we will discuss
later, this is important in relating this recurrent up-
date function to WFSAs.

Since the recurrent update in Equation 5c is el-
ementwise, for simplicity we focus on just the ith
dimension. Unrolling it in time steps, we get

[ct]i = [ft]i [ct�1]i + [ut]i

=
t�1X

j=1

0

@[uj ]i

tY

k=j+1

[fk]i

1

A+ [ut]i,
(6)

where [·]i denotes the ith dimension of a vector.
As noted by Lee et al. (2017), the hidden state at
time step t can be seen as a sum of previous in-
put representations, weighted by the forget gate;
longer histories typically get a smaller weight,
since the forget gate values are between 0 and 1
due to the sigmoid function.

Let’s recall the WFSA B (Figure 1 and Exam-
ple 5) using the real semiring hR, +, ·, 0, 1i. Equa-
tion 6 is recovered by parameterizing B’s weight
functions µ and � with

µ(xt) = [ut]i, �(xt) = [ft]i. (7)

Denote the resulting WFSA by Bi, and we have:

Proposition 7. Running a single layer RNN in Ex-
ample 6 over any nonempty input string x 2 ⌃+,
the ith dimension of its hidden state at time step t
equals the score assigned by Bi to x:t:

[ct]i = BiJx:tK. (8)

In other words, the ith dimension of the RNN
in Example 6 can be seen as a WFSA structurally
equivalent to B. Its weight functions are imple-
mented as the ith dimension of Equations 5, and
the learned parameters are the ith row of W and
b. Then it is straightforward to recover the full d-
dimensional RNN, by collecting d such WFSAs,
each of which is parametrized by a row in the Ws
and bs. Based on this observation, we are now
ready to formally define rational recurrences.

3.2 Recurrences and Rationality
For a function c: ⌃⇤ !K

d, its recurrence is said to
be the dependence of c(x:t) on c(x:t�1), for input
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sequence 8x 2 ⌃+. We discuss a class of recur-
rences that can be characterized by WFSAs. The
mathematical counterpart of WFSAs are rational
power series (Berstel and Reutenauer, 1988), jus-
tifying naming such recurrences rational:

Definition 8 (rational recurrence). The recurrence
of c : ⌃⇤ ! K

d is said to be rational, if there ex-
ists a set of weighted finite state automata {Ai}d

i=1
over alphabet ⌃ and semiring hK, �, ⌦, 0̄, 1̄i with
both � and ⌦ taking constant time and space, such
that 8x 2 ⌃⇤,

⇥
c(x)

⇤
i
= AiJxK, 8i 2 {1, 2, . . . , d}.4 (9)

It directly follows from Proposition 7 that

Corollary 9. The recurrence in Example 6 is ra-
tional.

4 Relationship to Existing Neural Models

This section studies several recently proposed neu-
ral architectures, and relates them to rational re-
currences. §4.1 begins by relating some of them
to the RNN defined in Example 6, and then to the
WFSA B (Example 5). We then describe a WFSA
similar to B, but with one additional state, and dis-
cuss how it provides a new view of RNN mod-
els motivated by n-gram features (§4.2). In §4.3
we study rational recurrences that are not elemen-
twise, using an existing model.

In the following discussion, we shall assume the
real seimiring, unless otherwise noted.

4.1 Neural Architectures Related to B

Despite its simplicity, Example 6 corresponds to
several existing neural architectures. For instance,
quasi-RNN (QRNN; Bradbury et al., 2017) and
simple recurrent unit (SRU; Lei et al., 2017b)
aim to speed up the recurrent computation. To
do so, they drop the matrix multiplication depen-
dence on the previous hidden state, resulting in
similar recurrences to that in Example 6.5 Other
works start from different motivations, but land on
similar recurrences, e.g., strongly-typed RNNs (T-
RNN; Balduzzi and Ghifary, 2016) and its gated

4We restrict that both operations take constant time and
space, to exclude the use of arbitrarily complex semir-
ings (§4.3).

5The SRU architecture discussed through this work is
based on Lei et al. (2017b). In a later updated version, Lei
et al. (2018) introduce diagonal matrix multiplication interac-
tion in the hidden state updates, inspired by (Li et al., 2018),
which yields a recurrence not obviously rational.

variants (T-LSTM and T-GRU), and structurally
constrained RNNs (SCRN; Mikolov et al., 2014).

The analysis in §3.1 directly applies to SRU,
T-RNN, and SCRN. In fact, Example 6 presents
a slightly more complicated version of them. In
these models, input representations are computed
without the bias term or any nonlinearity: ut =
Wuvt. By Proposition 7 and Corollary 9:
Corollary 10. The recurrences of single-layer
SRU, T-RNN, and SCRN architectures are ratio-
nal.

It is slightly more complicated to analyze the
recurrences of the QRNN, T-LSTM, and T-GRU.
Although their hidden states ct are updated in the
same way as Equation 5c, the input representa-
tions and gates may depend on previous inputs.
For example, in T-LSTM and T-GRU, the forget
gate is a function of two consecutive inputs:

ft = � (Vfvt�1 + Wfvt + bf ) . (10)

QRNNs are similar, but may depend on up to K
tokens, due to the K-window convolutions. Eis-
ner (2002) discuss finite state machines for sec-
ond (or higher) order probabilistic sequence mod-
els. Following the same intuition, we sketch the
construction of WFSAs corresponding to QRNNs
with 2-window convolutions in Appendix A, and
summarize the key results here:
Proposition 11. The recurrences of single-layer
T-GRU, T-LSTM, and QRNN are rational. In par-
ticular, a single-layer d-dimensional QRNN using
K-window convolutions can be recovered by a set
of d WFSAs, each with O(2 |⌃|K�1) states.

The size of WFSAs needed to recover QRNN
grows exponentially in the window size. There-
fore, at least for QRNNs, Proposition 11 has more
conceptual value than practical.

4.2 More than Two States
So far our discussion has centered on B, a two-
state WFSA capturing unigram patterns (Exam-
ple 5). In the same spirit as going from unigram to
n-gram features, one can use WFSAs with more
states to capture longer patterns (Schwartz et al.,
2018). In this section we augment B by intro-
ducing more states, and explore its relationship
to some neural architectures motivated by n-gram
features. We start with a three-state WFSA as an
example, and then discuss more general cases.

Figure 2 diagrams a WFSA C, augmenting B

with another state. To reach the final state q2, at
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q0

8↵/1

q1

8↵/�1(↵)

q2/1

8↵/�2(↵)

8↵/µ2(↵)8↵/µ1(↵)

Figure 2: A three-state WFSA C discussed in §4.2.

least two transitions must be taken, in contrast to
one in B. History information is decayed by the
self-loop at the final state q2, assuming �2 is be-
tween 0 and 1. C has another self-loop over q1,
weighted by �1 2 (0, 1). The motivation is to
allow (but down-weight) nonconsecutive bigrams,
as we will soon show.

The scores assigned by C can be inductively
computed by applying the Forward algorithm (§2).
Given input sequence x longer than one, let
CJx:0K = 0, then CJx:t+1K =

CJx:tK �2(xt+1) + �t µ2(xt+1), (11)

where

�t = �t�1 �1(xt) + µ1(xt), (12)

and �0 = 0. Unrolling �t in time, we get �t =

t�1X

j=1

0

@µ1(xj)
tY

k=j+1

�1(xk)

1

A+ µ1(xt). (13)

Due to the self-loop over state q1, �t can be seen
as a weighted sum of the µ1 terms up to xt (Equal-
tion 13). The second product term in Equation 11
then provides multiplicative interactions between
µ2, and the weighted sum of µ1s. In this sense, it
captures nonconsecutive bigram features.

At a first glance, Equations 11 and 12
resemble recurrent convolutional neural net-
works (RCNN; Lei et al., 2016). RCNN is in-
spired by nonconsecutive n-gram features and low
rank tensor factorization. It is later studied from a
string kernel perspective (Lei et al., 2017a). Here
we review its nonlinear bigram version:

c(1)
t = c(1)

t�1 � �t + u(1)
t , (14a)

c(2)
t = c(2)

t�1 � �t + c(1)
t�1 � u(2)

t , (14b)

where the u(j)
t s are computed similarly to Equa-

tion 5b, and c(2)
t is used as output for onward

computation. Different strategies to computing �t

were explored (Lei et al., 2015, 2016). When �t

is a constant, or depends only on xt, e.g., �t =
�(W�vt+b�), the ith dimension of Equations 14

8↵/µ1,2(↵)

8↵/µ2,1(↵)
q1

8↵/µ1,1(↵)8↵/1

8↵/⌘1(↵)

8↵/µ2,2(↵) 8↵/1

8↵/⌘2(↵)
q2/1 q3 q4

Figure 3: WFSA D1 discussed in §4.3. Two initial
states q1 and q4 are used here.

can be recovered from Equation 11, by letting

µj(xt) = [u(j)
t ]i, �j(xt) = [�t]i, j = 1, 2. (15)

It is straightforward to generalize the above dis-
cussion to higher order cases: n-gram RCNN cor-
responds to WFSAs with n + 1 states, constructed
similarly to how we build C from B (Appendix B).

Proposition 12. For a single-layer RCNN with �t

being a constant or depending only on xt, the re-
currence is rational.

As noted later in §4.3, its recurrence may not be
rational when �t = �(Wcct�1 + W�vt + b�).

4.3 Beyond Elementwise Operations

So far we have discussed rational recurrences for
models using elementwise recurrent updates (e.g.,
Equation 5c). This section uses an existing model
as an example, to study a rational recurrence that is
not elementwise. We focus on the input switched
affine network (ISAN; Foerster et al., 2017). Aim-
ing for efficiency and interpretability, it does not
use any explicit nonlinearity; its affine transforma-
tion parameters depend only on the input:

ct = Wxtct�1 + bxt . (16)

Due to the matrix multiplication, the recurrence of
a single-layer ISAN is not elementwise. Yet, we
argue that it is rational. We will sketch the proof
for a 2-dimensional case, and it is straightforward
to generalize to higher dimensions (Appendix C).

We define two WFSAs, each recovering one di-
mension of ISAN’s recurrent updates. Figure 3
diagrams one of them, D1. The other one, D2,
is identical (including shared weights), except us-
ing q3 instead of q2 as the final state. For any
nonempty input sequence x 2 ⌃+, the scores
assigned by D1 and D2 can be inductively com-
puted by applying the Forward algorithm. Letting
D1Jx:0K = D2Jx:0K = 0, for t � 1

D1Jx:tK
D2Jx:tK

�
= fWxt


D1Jx:t�1K
D2Jx:t�1K

�
+ ebxt , (17)
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where

fWxt =


µ1,1(xt) µ1,2(xt)
µ2,1(xt) µ2,2(xt)

�
,

ebxt =


⌘1(xt)
⌘2(xt)

�
.

(18)

Then Equation 16, in the case of hidden size 2, is
recovered by letting Wxt = fWxt and bxt = ebxt .

Proposition 13. The recurrence of a single-layer
ISAN is rational.

Corollary 14. For a single-layer Elman network,
in the absence of any nonlinearity, the recurrence
is rational.

Discussion. It is known that an Elman network
can approximate any recursively computable par-
tial function (Siegelmann and Sontag, 1995). On
the other hand, in their single-layer cases, WFSAs
(and thus models with rational recurrences) are re-
stricted to rational series (Schützenberger, 1961).
Therefore, we hypothesize that models like Elman
networks, LSTMs, and GRUs, where the recur-
rences depend on previous states through affine
transformations followed by nonlinearities, are not
rational.

This work does not intend to propose rational
recurrences as a concept general enough to include
most existing RNNs. Rather, we wish to study a
more constrained class of methods to better under-
stand the connections between WFSAs and RNNs.
Therefore in Definition 8, we restrict the semir-
ings to be “simple,” in the sense that both opera-
tions take constant time and space. Such a restric-
tion aims to exclude the possibility of hiding arbi-
trarily complex computations inside the semiring,
which might allow RNNs to satisfy the definition
in a trivial and unilluminating way.

Such theoretical limitations might be less se-
vere than they appear, since it is not yet entirely
clear what they correspond to in practice, espe-
cially when multiple vertical layers of these mod-
els are used (Leshno and Schocken, 1993). We
defer to future work the further study of the con-
nections between WFSAs and Elman-style RNNs.

Closing this section, Table 1 summarizes the
discussed recurrent neural architectures and their
corresponding WFSAs.

5 Deriving Neural Models from WFSAs

Rational recurrences provide a new view of several
recently proposed neural models. Based on such

Models Recurrence Function WFSA

§4.1 SRU, SCRN
ct = ft � ct�1 + ut BT-RNN, QRNN

§4.2 RCNN
c
(1)
t = c

(1)
t�1 � �t + u

(1)
t

c
(2)
t = c

(2)
t�1 � �t + c

(1)
t�1 � u

(2)
t

C

§4.3 ISAN ct = Wxt
ct�1 + bxt

D1, D2

Table 1: Recurrent neural network architectures
discussed in §4 and their corresponding WFSAs.
§4.1: SRU (Lei et al., 2017b), SCRN (Mikolov
et al., 2014), T-RNN and its gated variants (Bal-
duzzi and Ghifary, 2016), and QRNN (Bradbury
et al., 2017); §4.2: RCNN (Lei et al., 2016); §4.3:
ISAN (Foerster et al., 2017).

observations, this section aims to explore potential
approaches to designing neural architectures in a
more interpretable and intuitive way: by deriving
them from WFSAs. §5.1 studies an interpolation
of unigram and bigram features by combining 2-
state and 3-state WFSAs (Figures 1 and 2). We
then explore alternative semirings (§5.2), an ap-
proach orthogonal to what we’ve discussed so far.

We note that our goal is not to devise new state-
of-the-art architectures. Rather, we illustrate a
new design process for neural architectures that
draws inspiration from WFSAs. That said, in our
experiments (§6), one of our new architectures
performs as well as or better than strong baselines.

5.1 Aggregating Different Length Patterns
We start by presenting a straightforward extension
to 2-state and 3-state rational models: one com-
bining both. It is inspired by many classical NLP
models, where unigram features and higher-order
ones are interpolated.

Figure 4 diagrams a 4-state WFSA F. Com-
pared to C (Figure 2), F uses q1 as a second fi-
nal state, aiming to capture both unigram and bi-
gram patterns, since a path is allowed to stop at
q1 after consuming one input. The final states are
weighted by ⇢1 and ⇢2 respectively. Another no-
table modification is the additional state q3, which
is used to create a “shortcut” to reach q2, together
with an "-transition. Specifically, starting from q0,
a path can now take the "-transition and reach q3,
and then take a transition with weight µ2 to reach
q2. Recall from §2, that "-transitions do not con-
sume any input, yet they can still be weighted by a
(parameterized) function � not depending on the
inputs. The "-transition allows for skipping the
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q0

8↵/1 8↵/�1(↵) 8↵/�2(↵)

8↵/µ2(↵)8↵/µ1(↵)

q3

"/� 8↵/µ2(↵)

q1/⇢1 q2/⇢2

Figure 4: A WFSA F that combines both unigram
and bigram features (§5.1). Two final states q1 and
q2 are used, with weights ⇢1 and ⇢2, respectively.

first word in a bigram. It can be discouraged by
using � 2 (0, 1), just as we do in our experiments.

Deriving the neural architecture. As in §3, we
relate hidden states of an RNN to the scores as-
signed by WFSAs to input strings. We then derive
the neural architecture with a dynamic program.
Here we keep the discussion self-contained by ex-
plicitly overviewing the procedure. It is a direct
application of the Forward algorithm (§2), though
now in a form that deals with the "-transition.
Such an approach applies, of course, to more gen-
eral cases, as noted by Schwartz et al. (2018).

Given an input string x 2 ⌃+, let z(j)
t denote

the total score of all paths landing in state qj just
after consuming xt. Let z(j)

0 = 0, then for t � 1,

z(0)
t = 1

z(1)
t = z(1)

t�1 �1(xt) + z(0)
t�1 µ1(xt)

z(3)
t = z(0)

t �

z(2)
t = z(2)

t�1 �2(xt) + (z(1)
t�1 + z(3)

t�1) µ2(xt)

FJx:tK = ⇢1 z(1)
t + ⇢2 z(2)

t .

We now collect d of these WFSAs to construct an
RNN, and we parameterize their weight functions
with the technique we’ve been using:

c(1)
t = c(1)

t�1 � f (1)
t + u(1)

t , (19a)

c(2)
t = c(2)

t�1 � f (2)
t + (c(1)

t�1 + r) � u(2)
t , (19b)

ct = p(1) � c(1)
t + p(2) � c(2)

t , (19c)

where

f (j)
t = �

�
W(j)

f vt + b(j)
f

�
, (20a)

u(j)
t = (1 � f (j)

t ) � g
�
W(j)

u vt + b(j)
u

�
, (20b)

p(j) = �(b(j)
p ), r = �(br). (20c)

The p vectors correspond to the final state weights
⇢1 and ⇢2. Despite the similarities, p are different
from output gates (Bradbury et al., 2017), since the
former do not depend on the input, and are param-

Model Unigram Bigram Semiring

RRNN(B) X real
RRNN(B)m+ X max-plus
RRNN(C) X real
RRNN(F) X X real

Table 2: Rational recurrent neural architectures
compared in the experiments (§6.1).

eterized (through a sigmoid) by two leanred vec-
tors b(j)

p . The same applies to r and br, which
correspond to the weights for "-transitions �.

5.2 Alternative Semirings
Our new understanding of rational recurrences al-
lows us to consider a different kind of extension:
replacing the semiring. We introduce an example,
which modifies Example 6 by replacing its real
(plus-times) semiring with the max-plus semir-
ing hR [ {�1}, max, +, �1, 0i:
Example 15.

ft = log �
�
Wfvt + bf

�
, (21a)

ut = g
�
Wuvt + bu

�
, (21b)

ct = max{ft + ct�1,ut}. (21c)

Example 15 does not use the forget gate when
computing ut (Equation 21b), which is differ-
ent from its plus-times counterpart, where ut =
(1� ft)� g

�
Wuvt +bu

�
. The reason is that, un-

like the real semiring, the max-plus semiring lacks
a well-defined negation. Possible alternatives in-
clude taking the log of a separate input gate, or
using log(1� ft), which we leave for future work.

Example 15 can be seen as replacing sum-
pooling with max-pooling. Both max and sum-
pooling have been used successfully in vision and
NLP models. Intuitively, max-pooling “detects”
the occurrence of a pattern while sum-pooling
“counts” the occurrence of a pattern. One advan-
tage of max operator is that the model’s decisions
can be back-traced and interpreted, as argued by
Schwartz et al. (2018). Such a technique is appli-
cable to all the models with rational recurrences.

6 Experiments

This section evaluates four rational RNNs on
language modeling (§6.2) and text categoriza-
tion (§6.3). Our goal is to compare the behaviors
of models derived from different WFSAs, show-
ing that our understanding of WFSAs allows us to
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improve existing rational models.

6.1 Compared Models
Our comparisons focus on the recurrences of the
models, i.e., how the hidden states ct are com-
puted (e.g., Equations 5c and 19c). Therefore we
follow Lei et al. (2017b) and use u(j)

t = W(j)
u v(j)

t

across all compared models, listed below and as
well as in Table 2:
• RRNN(B), with real semiring (§4.1);
• RRNN(B)m+, with max-plus semiring (§5.2);
• RRNN(C), with real semiring (§4.2);
• RRNN(F), with real semiring (§5.1).

We also compare to an LSTM baseline. Aiming
to control for comfounding factors, we do not use
highway connections in any of the models.6 In the
interest of space, the full architectures and hyper-
parameters are detailed in Appendices D and E.

6.2 Language Modeling
Dataset and implementation. We experiment
with the Penn Treebank corpus (PTB; Marcus
et al., 1993). We use the preprocessing and splits
from Mikolov et al. (2010), resulting in a vocabu-
lary size of 10K and 1M tokens.

Following standard practice, we treat the train-
ing data as one long sequence, split into mini
batches, and train using BPTT truncated to 35
time steps (Williams and Peng, 1990). The in-
put embeddings and output softmax weights are
tied (Press and Wolf, 2017).

Results. Following Collins et al. (2017) and
Melis et al. (2018), we compare models con-
trolling for parameter budget. Table 3 sum-
marizes language modeling perplexities on PTB
test set. The middle block compares all mod-
els with two layers and 10M trainable parameters.
RRNN(B) and RRNN(C) achieve roughly the same
performance; interpolating both unigram and bi-
gram features, RRNN(F) outperforms others by
more than 2.9 test perplexity. For the three-layer
and 24M setting (the bottom block), we observe
similar trends, except that RRNN(C) slightly under-
performs RRNN(B). Here RRNN(F) outperforms
others by more than 2.1 perplexity.

Using a max-plus semiring, RRNN(B)m+ un-
derperforms RRNN(B) under both settings. Possi-
ble reasons could be the suboptimal design choice

6Thus RRNN(B) is essentially an SRU without highway
connections. We denote it differently, to note its differences
from the original implementation (Lei et al., 2017b). Simi-
larly, we do not denote RRNN(C) as RCNN (Lei et al., 2016).

Model ` # Params. Dev. Test

LSTM 2 24M 73.3 71.4
LSTM 3 24M 78.8 76.2

RRNN(B) 2 10M 73.1 69.2
RRNN(B)m+ 2 10M 75.1 71.7
RRNN(C) 2 10M 72.5 69.5
RRNN(F) 2 10M 69.5 66.3

RRNN(B) 3 24M 68.7 65.2
RRNN(B)m+ 3 24M 70.8 66.9
RRNN(C) 3 24M 70.0 67.0
RRNN(F) 3 24M 66.0 63.1

Table 3: Language modeling perplexity on PTB
test set (lower is better). LSTM numbers are taken
from Lei et al. (2017b). ` denotes the number of
layers. Bold font indicates best performance.

Split Amazon SST subj CR

Train 20K 6.9K 8K 3.0K
Dev. 05K 0.9K 1K 0.4K
Test 25K 1.8K 1K 0.4K

Table 4: Number of instances in the text classifica-
tion datasets (§6.3).

for computing input representations in the for-
mer (§5.2). Finally, most compared models out-
perform the LSTM baselines, whose numbers are
taken from Lei et al. (2017b).7

6.3 Text Classification
Implementation. We use unidirectional 2-layer
architectures for all compared models. To build
the classifiers, we feed the final RNN hidden states
into a 2-layer tanh-MLP. Further implementation
details are described in Appendix E.

Datasets. We experiment with four binary text
classification datasets, described below.
• Amazon (electronic product review corpus;

McAuley and Leskovec, 2013).8 We focus on
the positive and negative reviews.

• SST (Stanford sentiment treebank; Socher et al.,
2013).9 We focus on the binary classification
task. SST provides labels for syntactic phrases;
we experiment with a more realistic setup, and
7Melis et al. (2018) point out that carefully tuning LSTMs

can achieve much stronger performance, at the cost of excep-
tionally large amounts of computational resources for tuning.

8http://riejohnson.com/cnn_data.html
9nlp.stanford.edu/sentiment/index.html
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Model Amazon SST subj CR

LSTM 91.2±0.3 85.1±0.6 93.3±0.6 82.4±1.5

RRNN(B) 92.4±0.1 85.8±0.3 93.9±0.4 84.1±1.0

RRNN(C) 92.8±0.2 84.8±0.4 93.8±0.6 84.5±0.9

RRNN(B)m+ 89.2±3.1 84.9±0.4 92.6±0.5 84.3±0.5

RRNN(F) 92.7±0.2 86.5±0.6 94.8±0.5 85.1±0.5

Table 5: Text classification test accuracy averaged
over 5 runs. ± denotes standard deviation, and
bold font indicates best averaged performance.

consider only complete sentences at either train-
ing or evaluating time.

• subj (Subjectivity dataset; Pang and Lee, 2004).
As subj doesn’t come with official splits, we
randomly split it to train (80%), development
(10%), and test (10%) sets.

• CR (customer reviews dataset; Hu and Liu,
2004).10 As with subj, we randomly split this
dataset using the same ratio.

Table 4 summarizes the sizes of the datasets.

Results. Table 5 summarizes text classification
test accuracy. We report the average perfor-
mance of 5 trials different only in random seeds.
RRNN(F) outperforms all other models on 3 out
of the 4 datasets. For Amazon, the largest one,
we do not observe significant differences between
RRNN(F) and RRNN(C), while both outperform
others. This may suggest that the interpolation
of unigram and bigram features by RRNN(F) is
especially useful in small data setups. As in the
language modeling experiments, RRNN(B)m+ un-
derperforms all other models in most cases, and
in particular RRNN(B). These results provide ev-
idence that replacing the real semiring in rational
models might be challenging. We leave further ex-
ploration to future work.

7 Related Work

Weighted finite state automata. WFSAs were
once popular among many sequential tasks (Mohri
et al., 2002; Kumar and Byrne, 2003; Cortes et al.,
2004; Pardo and Birmingham, 2005; Moore et al.,
2006, inter alia), and are still successful in mor-
phology (Dreyer, 2011; Cotterell et al., 2015; Ras-
togi et al., 2016, inter alia). Compared to neural
networks, WFSAs are better understood theoreti-

10http://www.cs.uic.edu/?liub/FBS/
sentiment-analysis.html

cally and arguably more interpretable. They were
recently revisited in combination with the for-
mer in, e.g., text generation (Ghazvininejad et al.,
2016, 2017; Lin et al., 2017) and automatic music
accompaniment (Forsyth, 2016).

Recurrent neural networks. RNNs (Elman,
1990; Jordan, 1989) prove to be strong mod-
els for sequential data (Siegelmann and Sontag,
1995). Besides the perhaps most notable gated
variants (Hochreiter and Schmidhuber, 1997; Cho
et al., 2014), extensive efforts have been devoted
to developing alternatives (Balduzzi and Ghifary,
2016; Miao et al., 2016; Zoph and Le, 2017; Lee
et al., 2017; Lei et al., 2017a; Vaswani et al., 2017;
Gehring et al., 2017, inter alia). Departing from
the above approaches, this work derives RNN ar-
chitectures drawing inspiration from WFSAs.

Another line of work studied the connections
between WFSAs and RNNs in terms of model-
ing capacity, both empirically (Kolen, 1993; Giles
et al., 1992; Weiss et al., 2018, inter alia) and the-
oretically (Cleeremans et al., 1989; Visser et al.,
2001; Chen et al., 2018, inter alia).

8 Conclusion
We presented rational recurrences, a new con-
struction to study the recurrent updates in RNNs,
drawing inspiration from WFSAs. We showed
that rational recurrences are in frequent use by
several recently proposed recurrent neural archi-
tectures, providing new understanding of them.
Based on such connections, we discussed ap-
proaches to deriving novel neural architectures
from WFSAs. Our empirical results demonstrate
the potential of doing so. We publicly release our
implementation at https://github.com/
Noahs-ARK/rational-recurrences.
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Abstract
Many efforts have been made to facilitate natu-
ral language processing tasks with pre-trained
language models (LMs), and brought signifi-
cant improvements to various applications. To
fully leverage the nearly unlimited corpora and
capture linguistic information of multifarious
levels, large-size LMs are required; but for a
specific task, only parts of these information
are useful. Such large-sized LMs, even in the
inference stage, may cause heavy computation
workloads, making them too time-consuming
for large-scale applications. Here we propose
to compress bulky LMs while preserving use-
ful information with regard to a specific task.
As different layers of the model keep differ-
ent information, we develop a layer selec-
tion method for model pruning using sparsity-
inducing regularization. By introducing the
dense connectivity, we can detach any layer
without affecting others, and stretch shallow
and wide LMs to be deep and narrow. In
model training, LMs are learned with layer-
wise dropouts for better robustness. Experi-
ments on two benchmark datasets demonstrate
the effectiveness of our method.

1 Introduction
Benefited from the recent advances in neural net-
works (NNs) and the access to nearly unlim-
ited corpora, neural language models are able to
achieve a good perplexity score and generate high-
quality sentences. These LMs automatically cap-
ture abundant linguistic information and patterns
from large text corpora, and can be applied to fa-
cilitate a wide range of NLP applications (Rei,
2017; Liu et al., 2018; Peters et al., 2018).

Recently, efforts have been made on learning
contextualized representations with pre-trained
language models (LMs) (Peters et al., 2018).
These pre-trained layers brought significant im-
provements to various NLP benchmarks, yielding

the Recurrent Unit: the Input of the Recurrent Unit:

input

output

input

output
output

input

Introducing the dense connectivity 
to detach any layers without 

eliminating other layers

Conducting pruning by 
layer selection.

Pruned RNN
(resulting model)

Densely-connected RNN
(deep & narrow)

Vanilla Stacked-RNN
(shallow & wide)

Figure 1: Leverage the dense connectivity to compress
models via layer selection, and replace wide and shal-
low RNNs with deep and narrow ones.

up to 30% relative error reductions. However, due
to high variability of language, gigantic NNs (e.g.,
LSTMs with 8,192 hidden states) are preferred to
construct informative LMs and extract multifar-
ious linguistic information (Peters et al., 2017).
Even though these models can be integrated with-
out retraining (using their forward pass only), they
still result in heavy computation workloads during
inference stage, making them prohibitive for real-
world applications.

In this paper, we aim to compress LMs for
the end task in a plug-in-and-play manner. Typ-
ically, NN compression methods require the re-
training of the whole model (Mellempudi et al.,
2017). However, neural language models are usu-
ally composed of RNNs, and their backpropaga-
tions require significantly more RAM than their
inference. It would become even more cumber-
some when the target task equips the coupled LMs
to capture information in both directions. There-
fore, these methods do not fit our scenario very
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well. Accordingly, we try to compress LMs while
avoiding costly retraining.

Intuitively, layers of different depths would
capture linguistic information of different lev-
els. Meanwhile, since LMs are trained in a task-
agnostic manner, not all layers and their extracted
information are relevant to the end task. Hence,
we propose to compress the model by layer se-
lection, which retains useful layers for the target
task and prunes irrelevant ones. However, for the
widely-used stacked-LSTM, directly pruning any
layers will eliminate all subsequent ones. To over-
come this challenge, we introduce the dense con-
nectivity. As shown in Fig. 1, it allows us to detach
any layers while keeping all remaining ones, thus
creating the basis to avoid retraining. Moreover,
such connectivity can stretch shallow and wide
LMs to be deep and narrow (Huang et al., 2017),
and enable a more fine-grained layer selection.

Furthermore, we try to retain the effective-
ness of the pruned model. Specifically, we mod-
ify the L1 regularization for encouraging the se-
lection weights to be not only sparse but bi-
nary, which protects the retained layer connections
from shrinkage. Besides, we design a layer-wise
dropout to make LMs more robust and better pre-
pared for the layer selection.

We refer to our model as LD-Net, since the
layer selection and the dense connectivity form the
basis of our pruning methods. For evaluation, we
apply LD-Net on two sequence labeling bench-
mark datasets, and demonstrated the effectiveness
of the proposed method. In the CoNLL03 Named
Entity Recognition (NER) task, the F1 score in-
creases from 90.78±0.24% to 91.86±0.15% by
integrating the unpruned LMs. Meanwhile, after
pruning over 90% calculation workloads from the
best performing model1 (92.03%), the resulting
model still yields 91.84±0.14%. Our implemen-
tations and pre-trained models would be released
for futher study2.

2 LD-Net

Given a input sequence of T word-level tokens,
{x1, x2, · · · , xT }, we use xt to denote the embed-
ding of xt. For a L-layers NN, we mark the input
and output of the lth layer at the tth time stamp as
xl,t and hl,t.

1Based on their performance on the development sets
2 https://github.com/LiyuanLucasLiu/

LD-Net.

2.1 RNN and Dense Connectivity
We represent one RNN layer as a function:

hl,t = Fl(xl,t,hl,t�1) (1)

where Fl is the recurrent unit of lth layer, it could
be any RNNs variants, and the vanilla LSTMs is
used in our experiments.

As deeper NNs usually have more representa-
tion power, RNN layers are often stacked together
to form the final model by setting xl,t = hl�1,t.
These vanilla stacked-RNN models, however, suf-
fer from problems like the vanishing gradient, and
it’s hard to train very deep models.

Recently, the dense connectivity and residual
connectivity have been proposed to handle these
problems (He et al., 2016; Huang et al., 2017).
Specifically, dense connectivity refers to adding
direct connections from any layer to all its subse-
quent layers. As illustrated in Figure 1, the input
of lth layer is composed of the original input and
the output of all preceding layers as follows.

xl,t = [xt,h1,t, · · · ,hl�1,t]

Similarly, the final output of the L-layer RNN is
ht = [xt,h1,t, · · · ,hL,t]. With dense connectiv-
ity, we can detach any single layer without elim-
inating its subsequent layers (as in Fig. 1). Also,
existing practices in computer vision demonstrate
that such connectivities can lead to deep and nar-
row NNs and distribute parameters into different
layers. Moreover, different layers in LMs usually
capture linguistic information of different levels.
Hence, we can compress LMs for a specific task
by pruning unrelated or unimportant layers.

2.2 Language Modeling
Language modeling aims to describe the sequence
generation. Normally, the generation probability
of the sequence {x1, · · · , xT } is defined in a “for-
ward” manner:

p(x1, · · · , xT ) =
TY

t=1

p(xt|x1, · · · , xt�1) (2)

Where p(xt|x1, · · · , xt�1) is computed based on
the output of RNN, ht. Due to the dense con-
nectivity, ht is composed of outputs from different
layers, which are designed to capture linguistic in-
formation of different levels. Similar to the bot-
tleneck layers employed in the DenseNet (Huang
et al., 2017), we add additional layers to unify such
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information. Accordingly, we add an projection
layer with the ReLU activation function:

h⇤
t = ReLU(Wproj · ht + bproj) (3)

Based on h⇤
t , it’s intuitive to calculate

p(xt|x1, · · · , xt�1) by the softmax function,
i.e., softmax(Wout · h⇤

t + b).
Since the training of language models needs

nothing but the raw text, it has almost unlimited
corpora. However, conducting training on ex-
tensive corpora results in a huge dictionary, and
makes calculating the vanilla softmax intractable.
Several techniques have been proposed to handle
this problem, including adaptive softmax (Grave
et al., 2017), slim word embedding (Li et al.,
2018), the sampled softmax and the noise con-
trastive estimation (Józefowicz et al., 2016). Since
the major focus of our paper does not lie in the
language modeling task, we choose the adaptive
softmax because of its practical efficiency when
accelerated with GPUs.

2.3 Contextualized Representations
As pre-trained LMs can describe the text genera-
tion accurately, they can be utilized to extract in-
formation and construct features for other tasks.
These features, referred as contextualized repre-
sentations, have been demonstrated to be essen-
tially useful (Peters et al., 2018). To capture in-
formation from both directions, we utilized not
only forward LMs, but also backward LMs. Back-
ward LMs are based on Eqn. 4 instead of Eqn. 2.
Similar to forward LMs, backward LMs approach
p(xt|xt+1, · · · , xT ) with NNs. For reference, the
output of the RNN in backward LMs for xt is
recorded as hr

t .

p(x1, · · · , xn) =
TY

t=1

p(xt|xt+1, · · · , xT ) (4)

Ideally, the final output of LMs (e.g., h⇤
t ) would

be the same as the representation of the target
word (e.g., xt+1); therefore, it may not contain
much context information. Meanwhile, the output
of the densely connected RNN (e.g., ht) includes
outputs from every layer, thus summarizing all ex-
tracted features. Since the dimensions of ht could
be too large for the end task, we add a non-linear
transformation to calculate the contextualized rep-
resentation (rt):

rt = ReLU(Wcr · [ht,h
r
t ] + bcr) (5)

Our proposed method bears the same intuition
as the ELMo (Peters et al., 2018). ELMo is de-
signed for the vanilla stacked-RNN, and tries to
calculate a weighted average of different layers’
outputs as the contextualized representation. Our
method, benefited from the dense connectivity and
its narrow structure, can directly combine the out-
puts of different layers by concatenation. It does
not assume the outputs of different layers to be in
the same vector space, thus having more potential
for transferring the constructed token representa-
tions. More discussions are available in Sec. 4.

2.4 Layer Selection
Typical model compression methods require re-
training or gradient calculation. For the coupled
LMs, these methods require even more computa-
tion resources compared to the training of LMs,
thus not fitting our scenario very well.

Benefited from the dense connectivity, we are
able to train deep and narrow networks. Moreover,
we can detach one of its layer without eliminating
all subsequent layers (as in Fig. 1). Since different
layers in NNs could capture different linguistic in-
formation, only a few of them would be relevant
or useful for a specific task. As a result, we try
to compress these models by the task-guided layer
selection. For i-th layer, we introduce a binary
mask zi 2 {0, 1} and calculate hl,t with Eqn. 6
instead of Eqn. 1.

hl,t = zi · Fl(xl,t,hl,t�1) (6)

With this setting, we can conduct a layer selection
by optimizing the regularized empirical risk:

min L + �0 · R (7)

where L is the empirical risk for the sequence la-
beling task and R is the sparse regularization.

The ideal choice for R would be the L0 regu-
larization of z, i.e., R0(z) = |z|0. However, it
is not continuous and cannot be efficiently opti-
mized. Hence, we relax zi from binary to a real
value (i.e., 0  zi  1) and replace R0 by:

R1 = |z|1

Despite the sparsity achieved by R1, it could
hurt the performance by shifting all zi far away
from 1. Such shrinkage introduces additional
noise in hl,t and xl,t, which may result in inef-
fective pruned LMs. Since our goal is to conduct
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Figure 2: Penalty values of various R for z with three dimensions. �1 has been set to 2 for R2 and R3.

pruning without retraining, we further modify the
L1 regularization to achieve sparsity while allevi-
ating its shrinkage effect. As the target of R is to
make z sparse, it can be “turned-off” after achiev-
ing a satisfying sparsity. Therefore, we extend R1

to a margin-based regularization:

R2 = �(|z|0 > �1)|z|1

In addition, we also want to make up the re-
laxation made on z, i.e., relaxing its values from
binary to [0, 1]. Accordingly, we add the penalty
|z(1 � z)|1 to encourage z to be binary (Murray
and Ng, 2010) and modify R2 into R3:

R3 = �(|z|0 > �1)|z|1 + |z(1 � z)|1

To compare R1, R2 and R3, we visualize their
penalty values in Fig. 2. The visualization is
generated for a 3-dimensional z while the tar-
geted sparsity, �1, is set to 2. Comparing to
R1, we can observe that R2 enlarges the optimal
point set from 0 to all z with a satisfying spar-
sity, thus avoiding the over-shrinkage. To better
demonstrate the effect of R3, we further visualize
its penalties after achieving a satisfying sparsity
(w.l.o.g., assuming z3 = 0). One can observe that
it penalizes non-binary z and favors binary values.

2.5 Layer-wise Dropout
So far, we’ve customized the regularization term
for the layer-wise pruning, which protects the re-
tained connections among layers from shrinking.
After that, we try to further retain the effective-
ness of the compressed model. Specifically, we
choose to prepare the LMs for the pruned inputs,
thus making them more robust to pruning.

Accordingly, we conduct the training of LMs
with a layer-wise dropout. As in Figure 3, a
random part of layers in the LMs are randomly
dropped during each batch. The outputs of the
dropped layers will not be passed to their subse-
quent recurrent layers, but will be sent to the pro-
jection layer (Eqn. 3) for predicting the next word.

the Recurrent Unit:

(b)

the Input of the 
Recurrent Unit:

input

output

(a)

input

output

Layer-wise

 

Dropout

the Dropped
Recurrent Unit:

Figure 3: Layer-wise dropout conducted on a 4-layer
densely connected RNN. (a) is the remained RNN. (b)
is the original densely connected RNN.

In other words, this dropout is only applied to the
input of recurrent layers, which aims to imitate the
pruned input without totally removing any layers.

3 Sequence Labeling

In this section, we will introduce our sequence la-
beling architecture, which is augmented with the
contextualized representations.

3.1 Neural Architecture
Following the recent studies (Liu et al., 2018;
Kuru et al., 2016), we construct the neural archi-
tecture as in Fig. 4. Given the input sequence
{x1, x2, · · · , xT }, for tth token (xt), we assume
its word embedding is wt, its label is yt, and its
character-level input is {ci,1, ci,2, · · · , ci, }, where
ci, is the space character following xt.

The character-level representations have be-
come the required components for most of the
state-of-the-art. Following the recent study (Liu
et al., 2018), we employ LSTMs to take the
character-level input in a context-aware manner,
and mark its output for xt as ct. Similar to the
contextualized representation, ct usually has more
dimensions than wt. To integrate them together,
we set the output dimension of Eqn. 5 as the di-
mension of wt, and project ct to a new space with
the same dimension number. We mark the pro-
jected character-level representation as c⇤

t .
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Figure 4: The proposed sequence labeling architecture
with contextualized representations.

After projections, these vectors are concate-
nated as vt = [c⇤

t ; rt;wt], 8i 2 [1, T ] and fur-
ther fed into the word-level LSTMs. We refer to
their output as U = {u1, · · · ,uT }. To ensure
the model to predict valid label sequences, we ap-
pend a first-order conditional random field (CRF)
layer to the model (Lample et al., 2016). Specifi-
cally, the model defines the generation probability
of y = {y1, · · · , yT } as

p(y|U) =

QT
t=1 �(yt�1, yt,ut)P

ŷ2Y(U)

QT
t=1 �(ŷt�1, ŷt,ut)

(8)

where ŷ = {ŷ1, . . . , ŷT } is a generic label se-
quence, Y(U) is the set of all generic label se-
quences for U and �(yt�1, yt,ut) is the potential
function. In our model, �(yt�1, yt,ut) is defined
as exp(Wytut + byt�1,yt), where Wyt and byt�1,yt

are the weight and bias parameters.

3.2 Model Training and Inference
We use the following negative log-likelihood as
the empirical risk.

L = �
X

U

log p(y|U) (9)

For testing or decoding, we want to find the op-
timal sequence y⇤ that maximizes the likelihood.

y⇤ = argmax
y2Y(U)

p(y|U) (10)

Although the denominator of Eq. 8 is complicated,
we can calculate Eqs. 9 and 10 efficiently by the
Viterbi algorithm.

For optimization, we decompose it into two
steps, i.e., model training and model pruning.
Model training. We set �0 to 0 and optimize
the empirical risk without any regularization, i.e.,
min L. In this step, we conduct optimization with

the stochastic gradient descent with momentum.
Following (Peters et al., 2018), dropout would be
added to both the coupled LMs and the sequence
labeling model.
Model pruning. We conduct the pruning based
on the checkpoint which has the best performance
on the development set during the model train-
ing. We set �0 to non-zero values and optimize
min L + �0R3 by the projected gradient descent
with momentum. Any layer i with zi = 0 would
be deleted in the final model to complete the prun-
ing. To get a better stability, dropout is only added
to the sequence labeling model.

4 Experiments

We will first discuss the capability of the LD-Net
as language models, then explore the effectiveness
of its contextualized representations.

4.1 Language Modeling

For comparison, we conducted experiments on the
one billion word benchmark dataset (Chelba et al.,
2013) with both LD-Net (with 1,600 dimensional
projection) and the vanilla stacked-LSTM. Both
kinds of models use word embedding (random ini-
tialized) of 300 dimension as input and use the
adaptive softmax (with default setting) as an ap-
proximation of the full softmax. Additionally,
as preprocessing, we replace all tokens occurring
equal or less than 3 times with as UNK, which
shrinks the dictionary from 0.79M to 0.64M.

The optimization is performed by the Adam al-
gorithm (Kingma and Ba, 2014), the gradient is
clipped at 5.0 and the learning rate is set to start
from 0.001. The layer-wise dropout ratio is set
to 0.5, the RNNs are unrolled for 20 steps with-
out resetting the LSTM states, and the batch size
is set to 128. Their performances are summa-
rized in Table 1, together with several LMs used in
our sequence labeling baselines. For models with-
out official reported parameter numbers, we esti-
mate their values (marked with†) by assuming they
adopted the vanilla LSTM. Note that, for models
3, 5, 6, 7, 8, and 9, PPL refers to the averaged per-
plexity of the forward and the backward LMs.

We can observe that, for those models tak-
ing word embedding as the input, embedding
composes the vast majority of model parame-
ters. However, embedding can be embodied as a
“sparse” layer which is computationally efficient.
Instead, the intense calculations are conducted in
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Network Ind. # Hid. # Layer # Param.# (·107) PPL
RNN Others

8192-1024 (Józefowicz et al., 2016) 1 8192 2 15.1] 163] 30.6

CNN-8192-1024 (Józefowicz et al., 2016) 2 8192 2 15.1] 89] 30.0

CNN-4096-512 (Peters et al., 2018) 3 4096 2 3.8] 40.6] 39.7

2048-512 (Peters et al., 2017) 4 2048 1 0.9] 40.6] 47.50

2048-Adaptive (Grave et al., 2017) 5 2048 2 5.2† 26.5† 39.8

vanilla LSTM 6 2048 2 5.3† 25.6† 40.27
7 1600 2 3.2† 24.2† 48.85

LD-Net without Layer-wise Dropout 8 300 10 2.3† 24.2† 45.14

LD-Net with Layer-wise Dropout 9 300 10 2.3† 24.2† 50.06

Table 1: Performance comparison of language models. Models marked with† adopted adaptive softmax and the
vanilla LSTMs, which has less softmax parameters. Models marked with] employed sampled softmax LSTMs w.
projection, which results in less RNN parameters w.r.t. the size of hidden states.

RNN layers and softmax layer for language mod-
eling, or RNN layers for contextualized represen-
tations. At the same time, comparing the model
8192-1024 and CNN-8192-1024, their only differ-
ence is the input method. Instead of taking word
embedding as the input, CNN-8192-1024 utilizes
CNN to compose word representation from the
character-level input. Despite the greatly reduced
parameter number, the perplexity of the resulting
models remains almost unchanged. Since replac-
ing embedding layer with CNN would make the
training slower, we only conduct experiments with
models taking word embedding as the input.

Comparing LD-Net with other baselines, we
think it achieves satisfactory performance with re-
gard to the size of hidden states. It demonstrates
the LD-Net’s capability of capturing the underly-
ing structure of natural language. Meanwhile, we
find that the layer-wise dropout makes it harder
to train LD-Net and its resulting model achieves
less competitive results. However, as would be
discussed in the next section, layer-wise dropout
allows the resulting model to generate better con-
textualized representations and be more robust to
pruning, even with a higher perplexity.

4.2 Sequence Labeling
Following TagLM (Peters et al., 2017), we eval-
uate our methods in two benchmark datasets,
the CoNLL03 NER task (Tjong Kim Sang and
De Meulder, 2003) and the CoNLL00 Chunking
task (Tjong Kim Sang and Buchholz, 2000).
CoNLL03 NER has four entity types and includes

the standard training, development and test sets.
CoNLL00 chunking defines eleven syntactic
chunk types (e.g., NP and VP) in addition to
Other. Since it only includes training and test
sets, we sampled 1000 sentences from training set
as a held-out development set (Peters et al., 2017).

In both cases, we use the BIOES labeling
scheme (Ratinov and Roth, 2009) and use the
micro-averaged F1 as the evaluation metric. Based
on the analysis conducted in the development set,
we set �0 = 0.05 for the NER task, and �0 = 0.5
for the Chunking task. As discussed before, we
conduct optimization with the stochastic gradient
descent with momentum. We set the batch size,
the momentum, and the learning rate to 10, 0.9,
and ⌘t = ⌘0

1+⇢t respectively. Here, ⌘0 = 0.015 is
the initial learning rate and ⇢ = 0.05 is the de-
cay ratio. Dropout is applied in our model, and its
ratio is set to 0.5. For a better stability, we use gra-
dient clipping of 5.0. Furthermore, we employ the
early stopping in the development set and report
averaged score across five different runs.

Regarding the network structure, we use the
30-dimension character-level embedding. Both
character-level and word-level RNNs are set to
one-layer LSTMs with 150-dimension hidden
states in each direction. The GloVe 100-dimension
pre-trained word embedding3 is used as the initial-
ization of word embedding wt, and will be fine-
tuned during the training. The layer selection vari-
ables zi are initialized as 1, remained unchanged

3 https://nlp.stanford.edu/projects/glove/
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Network Avg. #FLOPs F1 score
(LMs Ind.#) ppl (·106) (avg±std)

NoLM (/) / 3 94.42±0.08

R-ELMo (6) 40.27 108 96.19±0.07

R-ELMo (7) 48.85 68 95.86±0.04

LD-Net ⇤ (8) 45.14 51 96.01±0.07

LD-Net ⇤ (9) 50.06 51 96.05±0.08

LD-Net (8) origin 51 96.13
pruned 13 95.46±0.18

LD-Net (9) origin 51 96.15
pruned 10 95.66±0.04

Table 2: Performance comparisons in the CoNLL00
Chunking task. LD-Net maked with ⇤ are trained with-
out pruning (layer selection).

during the model training and only be updated dur-
ing the model pruning. All other variables are ran-
domly initialized (Glorot and Bengio, 2010).
Compared methods. The first baseline, referred
as NoLM, is our sequence labeling model with-
out the contextualized representations, i.e., calcu-
lating vt as [c⇤

t ;wt] instead of [c⇤
t ; rt;wt]. Be-

sides, ELMo (Peters et al., 2018) is the major base-
line. To make comparison more fair, we imple-
mented the ELMo model and use it to calculate
the rt in Eqn. 5 instead of [ht,hr

t ]. Results of re-
implemented models are referred with R-ELMo
(� is set to the recommended value, 0.1) and the
results reported in its original paper are referred
with O-ELMo. Additionally, since TagLM (Peters
et al., 2017) with one-layer NNs can be viewed as
a special case of ELMo, we also include its results.
Sequence labeling results. Table 2 and 3 sum-
marizes the results of LD-Net and baselines. Be-
sides the F1 score and averaged perplexity, we
also estimate FLOPs (i.e., the number of floating-
point multiplication-adds) for the efficiency evalu-
ation. Since our model takes both word-level and
character-level inputs, we estimated the FLOPs
value for a word-level input with 4.39 character-
level inputs, while 4.39 is the averaged length of
words in the CoNLL03 dataset.

Before the model pruning, LD-Net achieves a
96.05±0.08 F1 score in the CoNLL00 Chunking
task, yielding nearly 30% error reductions over the
NoLM baseline. Also, it scores 91.86±0.15 F1 in
the CoNLL03 NER task with over 10% error re-
ductions. Similar to the language modeling, we

Network Avg. #FLOPs F1 score
(LMs Ind.#) ppl (·106) (avg±std)

NoLM (/) / 3 90.78±0.24

O-ELMo (3) 39.70 79] 92.22±0.10

TagLM (4) 47.50 22] 91.62±0.23

R-ELMo (6) 40.27 108 91.99±0.24

R-ELMo (7) 48.85 68 91.54±0.10

LD-Net ⇤ (8) 45.14 98 91.76±0.18

LD-Net ⇤ (9) 50.06 98 91.86±0.15

LD-Net (8) origin 51 91.95
pruned 5 91.55±0.06

LD-Net (9) origin 51 92.03
pruned 5 91.84±0.14

Table 3: Performance comparison in the CoNLL03
NER task. Models marked with† employed LSTMs
with projection, which is more efficient than the vanilla
LSTMs. LD-Net maked with ⇤ are trained without
pruning (layer selection).

observe that the most complicated models achieve
the best perplexity and provide the most improve-
ments in the target task. Still, considering the
number of model parameters and the resulting per-
plexity, our model demonstrates its effectiveness
in generating contextualized representations. For
example, comparing to our methods, R-ELMo (7)
leverages LMs with the similar perplexity and pa-
rameter number, but cannot get the same improve-
ments with our method on both datasets.

Actually, contextualized representations have
strong connections with the skip-thought vec-
tors (Kiros et al., 2015). Skip-thought models try
to embed sentences and are trained by predict-
ing the previous and afterwards sentences. Sim-
ilarly, LMs encode a specific context as the hid-
den states of RNNs, and use them to predict fu-
ture contexts. Specifically, we recognize the cell
states of LSTMs are more like to be the sentence
embedding (Radford et al., 2017), since they are
only passed to the next time stamps. At the same
time, because the hidden states would be passed to
other layers, we think they are more like to be the
token representations capturing necessary signals
for predicting the next word or updating context
representations4. Hence, LD-Net should be more

4We tried to combine the cell states with the hidden states
to construct the contextualized representations by concatena-
tion or weighted average, but failed to get better performance.
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Network (LMs Ind.#) FLOPs Batch size Peak RAM Time (s) Speed
103words/s 103sents/s

R-ELMo (6) 108 200 8Gb 32.88 22 0.4

LD-Net (9, origin) 51 80 8Gb 25.68 26 0.5

LD-Net (9, pruned) 5 80 4Gb 6.90 98 2.0
500 8Gb 4.86 (5X) 166 (6X) 2.9 (5X)

Table 4: Speed comparison in the CoNLL03 NER task. We can observe that LD-Net (9, pruned) achieved about 5
times speed up on the wall-clock time over LD-Net (9, origin).

effective then ELMo, as concatenating could pre-
serve all extracted signals while weighted average
might cause information loss.

Although the layer-wise dropout makes the
model harder to train, their resulting LMs generate
better contextualized representations, even with-
out the same perplexity. Also, as discussed in (Pe-
ters et al., 2018, 2017), the performance of the
contextualized representation can be further im-
proved by training larger models or using the CNN
to represent words.

For the pruning, we started from the model with
the best performance on the development set (re-
ferred with “origin”), and refer the performances
of pruned models with “pruned” in Table 2 and 3.
Essentially, we can observe the pruned models get
rid of the vast majority of calculation while still re-
taining a significant improvement. We will discuss
more on the pruned models in Sec. 4.4.

4.3 Speed Up Measurements
We use FLOPs for measuring the inference ef-
ficiency as it reflects the time complexity (Han
et al., 2015), and thus is independent of spe-
cific implementations. For models with the same
structure, improvements in FLOPs would result in
monotonically decreasing inference time. How-
ever, it may not reflect the actual efficiency of
models due to the model differences in paral-
lelism. Accordingly, we also tested wall-clock
speeds of our implementations.

Our implementations are based on the PyTorch
0.3.15, and all experiments are conducted on the
CoNLL03 dataset with the Nvidia GTX 1080
GPU. Specifically, due to the limited size of
CoNLL03 test set, we measure such speeds on the
training set. As in Table 4, we can observe that,
the pruned model achieved about 5 times speed
up. Although there is still a large margin between
We think it implies that ELMo works as token representations
instead of sentence representations

5http://pytorch.org/

F1 F1

(a) ConNLL00 Chunking (b) ConNLL03 NER

Figure 5: The performance of pruned models in two
tasks w.r.t. their efficiency (FLOPs).

the actual speed-up and the FLOPs speed-up, we
think the resulting decode speed (166K words/s) is
sufficient for most real-world applications.

4.4 Case Studies
Effect of the pruning ratio. To explore the effect
of the pruning ratio, we adjust �1 and visualize the
performance of pruned models v.s. their FLOPs #
in Fig 5. We can observe that LD-Net outperforms
its variants and demonstrates its effectiveness.

As the pruning ratio becoming larger, we can
observe the performance of LD-Net first increases
a little, then starts dropping. Besides, in the
CoNLL03 NER task, LMs can be pruned to a rel-
atively small size without much loss of efficiency.
As in Table 3, we can observe that, after prun-
ing over 90% calculations, the error of the re-
sulting model only increases about 2%, yielding
a competitive performance. As for the CoNLL00
Chunking task, the performance of LD-Net decays
in a faster rate than that in the NER task. For ex-
ample, after pruning over 80% calculations, the
error of the resulting model increases about 13%.
Considering the fact that this corpus is only half
the size of the CoNLL03 NER dataset, we can ex-
pect the resulting models have more dependencies
on the LMs. Still, the pruned model achieves a
25% error reduction over the NoLM baseline.
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Figure 6: The performance of pruned models in two
tasks w.r.t. their efficiency (FLOPs).

Layer selection pattern. We further studied the
layer selection patterns. Specifically, we use the
same setting of LD-Net (9) in Table 3, conduct
model pruning using for 50 times, and summa-
rize the statics in Figure 6. We can observe that
network layers formulate two clear clusters, one
is likely to be preserved during the selection, and
the other is likely to be pruned. This is consistent
with our intuition that some layers are more impor-
tant than others and the layer selection algorithm
would pick up layers meaningfully.

However, there is some randomness in the se-
lection result. We conjugate that large networks
trained with dropout can be viewed as a ensem-
ble of small sub-networks (Hara et al., 2016), also
there would be several sub-networks having the
similar function. Accordingly, we think the ran-
domness mainly comes from such redundancy.
Effectiveness of model pruning. Zhu and Gupta
(2017) observed pruned large models consistently
outperform small models on various tasks (includ-
ing LM). These observations are consistent with
our experiments. For example, LD-Net achieves
91.84 after pruning on the CoNLL03 dataset. It
outperforms TagLM (4) and R-ELMo (7), whose
performances are 91.62 and 91.54. Besides, we
trained small LMs of the same size as the pruned
LMs (1-layer densely connected LSTMs). Its per-
plexity is 69 and its performance on the CoNLL03
dataset is 91.55 ± 0.19.

5 Related Work

Sequence labeling. Linguistic sequence labeling
is one of the fundamental tasks in NLP, encom-
passing various applications including POS tag-
ging, chunking, and NER. Many attempts have
been made to conduct end-to-end learning and
build reliable models without handcrafted fea-
tures (Chiu and Nichols, 2016; Lample et al.,
2016; Ma and Hovy, 2016).

Language modeling. Language modeling is a
core task in NLP. Many attempts have been paid to
develop better neural language models (Zilly et al.,
2017; Inan et al., 2016; Godin et al., 2017; Melis
et al., 2017). Specifically, with extensive corpora,
language models can be well trained to generate
high-quality sentences from scratch (Józefowicz
et al., 2016; Grave et al., 2017; Li et al., 2018;
Shazeer et al., 2017). Meanwhile, initial attempts
have been made to improve the performance of
other tasks with these methods. Some methods
treat the language modeling as an additional su-
pervision, and conduct co-training for knowledge
transfer (Dai and Le, 2015; Liu et al., 2018; Rei,
2017). Others, including this paper, aim to con-
struct additional features (referred as contextual-
ized representations) with the pre-trained language
models (Peters et al., 2017, 2018).
Neural Network Acceleration. There are mainly
three kinds of NN acceleration methods, i.e.,
prune network into smaller sizes (Han et al.,
2015; Wen et al., 2016), converting float operation
into customized low precision arithmetic (Hubara
et al., 2018; Courbariaux et al., 2016), and using
shallower networks to mimic the output of deeper
ones (Hinton et al., 2015; Romero et al., 2014).
However, most of them require costly retraining.

6 Conclusion

Here, we proposed LD-Net, a novel framework
for efficient contextualized representation. As
demonstrated on two benchmarks, it can conduct
the layer-wise pruning for a specific task. More-
over, it requires neither the gradient oracle of LMs
nor the costly retraining. In the future, we plan to
apply LD-Net to other applications.
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Abstract
Identifying the salience (i.e. importance) of
discourse units is an important task in lan-
guage understanding. While events play im-
portant roles in text documents, little research
exists on analyzing their saliency status. This
paper empirically studies the Event Salience
task and proposes two salience detection mod-
els based on content similarities and discourse
relations. The first is a feature based salience
model that incorporates similarities among dis-
course units. The second is a neural model
that captures more complex relations between
discourse units. Tested on our new large-
scale event salience corpus, both methods
significantly outperform the strong frequency
baseline, while our neural model further im-
proves the feature based one by a large mar-
gin. Our analyses demonstrate that our neu-
ral model captures interesting connections be-
tween salience and discourse unit relations
(e.g., scripts and frame structures).

1 Introduction
Automatic extraction of prominent information
from text has always been a core problem in lan-
guage research. While traditional methods mostly
concentrate on the word level, researchers start
to analyze higher-level discourse units in text,
such as entities (Dunietz and Gillick, 2014) and
events (Choubey et al., 2018).

Events are important discourse units that form
the backbone of our communication. They play
various roles in documents. Some are more central
in discourse: connecting other entities and events,
or providing key information of a story. Others
are less relevant, but not easily identifiable by NLP
systems. Hence it is important to be able to quantify
the “importance” of events. For example, Figure 1
is a news excerpt describing a debate around a
jurisdiction process: “trial” is central as the main
discussing topic, while “war” is not.

Figure 1: Examples annotations. Underlying words
are annotated event triggers; the red bold ones are
annotated as salient.

Researchers are aware of the need to identify
central events in applications like detecting salient
relations (Zhang et al., 2015), and identifying cli-
max in storyline (Vossen and Caselli, 2015). Gener-
ally, the salience of discourse units is important for
language understanding tasks, such as document
analysis (Barzilay and Lapata, 2008), information
retrieval (Xiong et al., 2018), and semantic role
labeling (Cheng and Erk, 2018). Thus, proper mod-
els for finding important events are desired.

In this work, we study the task of event salience
detection, to find events that are most relevant to
the main content of documents. To build a salience
detection model, one core observation is that salient
discourse units are forming discourse relations. In
Figure 1, the “trial” event is connected to many
other events: “charge” is pressed before “trial”;
“trial” is being “delayed”.

We present two salience detection systems based
on the observations. First is a feature based learn-
ing to rank model. Beyond basic features like fre-
quency and discourse location, we design features
using cosine similarities among events and enti-
ties, to estimate the content organization (Grimes,
1975): how lexical meaning of elements relates
to each other. Similarities from within-sentence
or across the whole document are used to capture
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interactions on both local and global aspects (§4).
The model significantly outperforms a strong “Fre-
quency” baseline in our experiments.

However, there are other discourse relations be-
yond lexical similarity. Figure 1 showcases some:
the script relation (Schank and Abelson, 1977)1

between “charge” and “trial”, and the frame re-
lation (Baker et al., 1998) between “attacks” and
“trial” (“attacks” fills the “charges” role of “trial”).
Since it is unclear which ones contribute more to
salience, we design a Kernel based Centrality Esti-
mation (KCE) model (§5) to capture salient specific
interactions between discourse units automatically.

In KCE, discourse units are projected to embed-
dings, which are trained end-to-end towards the
salience task to capture rich semantic information.
A set of soft-count kernels are trained to weigh
salient specific latent relations between discourse
units. With the capacity to model richer relations,
KCE outperforms the feature-based model by a
large margin (§7.1). Our analysis shows that KCE
is exploiting several relations between discourse
units: including script and frames (Table 5). To
further understand the nature of KCE, we conduct
an intrusion test (§6.2), which requires a model to
identify events from another document. The test
shows salient events form tightly related groups
with relations captured by KCE.

The notion of salience is subjective and may vary
from person to person. We follow the empirical ap-
proaches used in entity salience research (Dunietz
and Gillick, 2014). We consider the summarization
test: an event is considered salient if a summary
written by a human is likely to include it, since
events about the main content are more likely to
appear in a summary. This approach allows us to
create a large-scale corpus (§3).

In this paper, we make three main contributions.
First, we present two event salience detection sys-
tems, which capture rich relations among discourse
units. Second, we observe interesting connections
between salience and various discourse relations
(§7.1 and Table 5), implying potential research on
these areas. Finally, we construct a large scale
event salience corpus, providing a testbed for fu-
ture research. Our code, dataset and models are
publicly available2.

1Scripts are prototypical sequences of events: a restaurant
script normally contains events like “order”, “eat” and “pay”.

2https://github.com/hunterhector/
EventSalience

2 Related Work

Events have been studied on many aspects due to
their importance in language. To name a few: event
detection (Li et al., 2013; Nguyen and Grishman,
2015; Peng et al., 2016), coreference (Liu et al.,
2014; Lu and Ng, 2017), temporal analysis (Do
et al., 2012; Chambers et al., 2014), sequenc-
ing (Araki et al., 2014), script induction (Chambers
and Jurafsky, 2008; Balasubramanian et al., 2013;
Rudinger et al., 2015; Pichotta and Mooney, 2016).

However, studies on event salience are prema-
ture. Some previous work attempts to approximate
event salience with word frequency or discourse
position (Vossen and Caselli, 2015; Zhang et al.,
2015). Parallel to ours, Choubey et al. (2018) pro-
pose a task to find the most dominant event in news
articles. They draw connections between event
coreference and importance, on hundreds of closed-
domain documents, using several oracle event at-
tributes. In contrast, our proposed models are fully
learned and applied on more general domains and
at a larger scale. We also do not restrict to a single
most important event per document.

There is a small but growing line of work on
entity salience (Dunietz and Gillick, 2014; Dojchi-
novski et al., 2016; Xiong et al., 2018; Ponza et al.,
2018). In this work, we study the case for events.

Text relations have been studied in tasks like
text summarization, which mainly focused on co-
hesion (Halliday and Hasan, 1976). Grammati-
cal cohesion methods make use of document level
structures such as anaphora relations (Baldwin and
Morton, 1998) and discourse parse trees (Marcu,
1999). Lexical cohesion based methods focus on
repetitions and synonyms on the lexical level (Sko-
rochod’ko, 1971; Morris and Hirst, 1991; Erkan
and Radev, 2004). Though sharing similar intu-
itions, our proposed models are designed to learn
richer semantic relations in the embedding space.

Comparing to the traditional summarization task,
we focus on events, which are at a different granu-
larity. Our experiments also unveil interesting phe-
nomena among events and other discourse units.

3 The Event Salience Corpus

This section introduces our approach to construct a
large-scale event salience corpus, including meth-
ods for finding event mentions and obtaining
saliency labels. The studies are based on the Anno-
tated New York Times corpus (Sandhaus, 2008), a
newswire corpus with expert-written abstracts.
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3.1 Automatic Corpus Creation
Event Mention Annotation: Despite many anno-
tation attempts on events (Pustejovsky et al., 2002;
Brown et al., 2017), automatic labeling of them in
general domain remains an open problem. Most
of the previous work follows empirical approaches.
For example, Chambers and Jurafsky (2008) con-
sider all verbs together with their subject and ob-
ject as events. Do et al. (2011) additionally in-
clude nominal predicates, using the nominal form
of verbs and lexical items under the Event frame in
FrameNet (Baker et al., 1998).

There are two main challenges in labeling event
mentions. First, we need to decide which lexi-
cal items are event triggers. Second, we have to
disambiguate the word sense to correctly identify
events. For example, the word “phone” can re-
fer to an entity (a physical phone) or an event (a
phone call event). We use FrameNet to solve these
problems. We first use a FrameNet based parser:
Semafor (Das and Smith, 2011), to find and disam-
biguate triggers into frame classes. We then use the
FrameNet ontology to select event mentions.

Our frame based selection method follows the
Vendler classes (Vendler, 1957), a four way clas-
sification of eventuality: states, activities, accom-
plishments and achievements. The last three classes
involve state change, and are normally considered
as events. Following this, we create an “event-
evoking frame” list using the following procedure:

1. We keep frames that are subframes of Event
and Process in the FrameNet ontology.

2. We discard frames that are subframes of state,
entity and attribute frames, such as Entity, At-
tributes, Locale, etc.

3. We manually inspect frames that are not sub-
frames of the above-mentioned ones (around
200) to keep event related ones (including sub-
frames), such as Arson, Delivery, etc.

This gives us a total of 569 frames. We parse the
documents with Semafor and consider predicates
that trigger a frame in the list as candidates. We
finish the process by removing the light verbs3 and
reporting events4 from the candidates, similar to
previous research (Recasens et al., 2013).
Salience Labeling: For all articles with a human
written abstract (around 664,911) in the New York

3Light verbs carry little semantic information: “appear”,
“be”, “become”, “do”, “have”, “seem”, “do”, “get”, “give”,
“go”, “have”, “keep”, “make”, “put”, “set”, “take”.

4Reporting verbs are normally associated with the narrator:
“argue”, “claim”, “say”, “suggest”, “tell”.

Train Dev Test

# Documents 526126 64000 63589

Avg. # Word 794.12 790.27 798.68

Avg. # Events 61.96 60.65 61.34

Avg. # Entities 197.63 196.95 198.40

Avg. # Salience 8.77 8.79 8.90

Table 1: Dataset Statistics.

Times Annotated Corpus, we extract event men-
tions. We then label an event mention as salient if
we can find its lemma in the corresponding abstract
(Mitamura et al. (2015) showed that lemma match-
ing is a strong baseline for event coreference.). For
example, in Figure 1, event mentions in bold and
red are found in the abstract, thus labeled as salient.
Data split is detailed in Table 1 and §6.

3.2 Annotation Quality
While the automatic method enables us to create
a dataset at scale, it is important to understand the
quality of the dataset. For this purpose, we have
conducted two small manual evaluation study.

Our lemma-based salience annotation method
is based on the assumption that lemma matching
being a strong detector for event coreference. In
order to validate this assumption, one of the authors
manually examined 10 documents and identified
82 coreferential event mentions pairs between the
text body and the abstract. The automatic lemma
rule identifies 72 such pairs: 64 of these matches
human decision, producing a precision of 88.9%
(64/72) and a recall of 78% (64/82). There are 18
coreferential pairs missed by the rule.

The next question is: is an event really important
if it is mentioned in the abstract? Although prior
work (Dunietz and Gillick, 2014) shows that the as-
sumption to be valid for entities, we study the case
for events. We asked two annotators to manually
annotate 10 documents (around 300 events) using
a 5-point Likert scale for salience. We compute
the agreement score using Cohen’s Kappa (Cohen,
1960). We find the task to be challenging for hu-
man: annotators don’t agree well on the 5-point
scale (Cohens Kappa = 0.29). However, if we col-
lapse the scale to binary decisions, the Kappa be-
tween the annotators raises to 0.67. Further, the
Kappa between each annotator and automatic la-
bels are 0.49 and 0.42 respectively. These agree-
ment scores are also close to those reported in the
entity salience tasks (Dunietz and Gillick, 2014).
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While errors exist in the automatic annotation
process inevitably, we find the error rate to be rea-
sonable for a large-scale dataset. Further, our study
indicates the difficulties for human to rate on a
finer scale of salience. We leave the investigation
of continuous salience scores to future work.

4 Feature-Based Event Salience Model

This section presents the feature-based model, in-
cluding the features and the learning process.

4.1 Features
Our features are summarized in Table 2.
Basic Discourse Features: We first use two ba-
sic features similar to Dunietz and Gillick (2014):
Frequency and Sentence Location. Frequency is
the lemma count of the mention’s syntactic head
word (Manning et al., 2014). Sentence Loca-
tion is the sentence index of the mention, since
the first few sentences are normally more impor-
tant. These two features are often used to estimate
salience (Barzilay and Lapata, 2008; Vossen and
Caselli, 2015).
Content Features: We then design several lexical
similarity features, to reflect Grimes’ content relat-
edness (Grimes, 1975). In addition to events, the
relations between events and entities are also im-
portant. For example, Figure 1 shows some related
entities in the legal domain, such as “prosecutors”
and “court”. Ideally, they should help promote the
salience status for event “trial”.

Lexical relations can be found both within-
sentence (local) or across sentence (global) (Hal-
liday and Hasan, 1976). We compute the local
part by averaging similarity scores from other units
in the same sentence. The global part is com-
puted by averaging similarity scores from other
units in the document. All similarity scores are
computed using cosine similarities on pre-trained
embeddings (Mikolov et al., 2013).

These lead to 3 content features: Event Voting,
the average similarity to other events in the docu-
ment; Entity Voting, the average similarity to en-
tities in the document; Local Entity Voting, the
average similarity to entities in the same sentence.
Local event voting is not used since a sentence
often contains only 1 event.

4.2 Model
A Learning to Rank (LeToR) model (Liu, 2009)
is used to combine the features. Let evi denote

the ith event in a document d. Its salience score is
computed as:

f(evi, d) = Wf · F (evi, d) + b (1)

where F (evi, d) is the features for evi in d (Ta-
ble 2); Wf and b are the parameters to learn.

The model is trained with pairwise loss:
X

ev+,ev�2d

max(0, 1 � f(ev+, d) + f(ev�, d)), (2)

w.r.t. y(ev+, d) = +1 & y(ev�, d) = �1.

y(ei, d) =

(
+1, if ei is a salient entity in d,

�1, otherwise.

where ev+ and ev� represent the salient and non-
salient events; y is the gold standard function.
Learning can be done by standard gradient meth-
ods.

5 Neural Event Salience Model

As discussed in §1, the salience of discourse units
is reflected by rich relations beyond lexical simi-
larities, for example, script (“charge” and “trial”)
and frame (a “trial” of “attacks”). The relations
between these words are specific to the salience
task, thus difficult to be captured by raw cosine
scores that are optimized for word similarities. In
this section, we present a neural model to exploit
the embedding space more effectively, in order to
capture relations for event salience estimation.

5.1 Kernel-based Centrality Estimation
Inspired by the kernel ranking model (Xiong et al.,
2017), we propose Kernel-based Centrality Estima-
tion (KCE), to find and weight semantic relations
of interests, in order to better estimate salience.

Formally, given a document d, the set of anno-
tated events V = {ev1, . . . evi . . . , evn}, KCE first
embed an event into vector space: evi

Emb���! �!evi.
The embedding function is initialized with pre-
trained embeddings. It then extract K features
for each evi:

�K(evi, V) = {�1(
�!evi, V), . . . , (3)

�k(�!evi, V), . . . , �K(�!evi, V)},

�k(�!evi, V) =
X

evj2V
exp

 
�

(cos(�!evi,
�!evj) � µk)2

2�2
k

!
.

(4)
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Name Description

Frequency The frequency of the event lemma in document.
Sentence Location The location of the first sentence that contains the event.

Event Voting Average cosine similarity with other events in document.
Entity Voting Average cosine similarity with other entities in document.
Local Entity Voting Average cosine similarity with entities in the sentence.

Table 2: Event Salience Features.

�k(
�!evi, V) is the k-th Gaussian kernel with mean

µk and variance �2
k. It models the interactions be-

tween events in its kernel range defined by µk and
�k. �K(evi, V) enforces multi-level interactions
among events — relations that contribute similarly
to salience are expected to be grouped into the same
kernels. Such interactions greatly improve the ca-
pacity of the model with negligible increase in the
number of parameters. Empirical evidences (Xiong
et al., 2017) have shown that kernels in this form
are effective to learn weights for task-specific term
pairs.

The final salience score is computed as:

f(evi, d) = Wv · �K(evi, V) + b, (5)

where Wv is learned to weight the contribution of
the certain relations captured by each kernel.

We then use the exact same learning objective
as in equation (2). The pairwise loss is first back-
propagated through the network to update the ker-
nel weights Wv, assigning higher weights to rele-
vant regions. Then the kernels use the gradients
to update the embeddings, in order to capture the
meaningful discourse relations for salience.

Since the features and KCE capture different as-
pects, combining them may give superior perfor-
mance. This can be done by combining the two
vectors in the final linear layer:

f(evi, d) = Wv · �K(evi, V) + Wf · F (evi, d) + b (6)

5.2 Integrating Entities into KCE
KCE is also used to model the relations between
events and entities. For example, in Figure 1,
the entity “court” is a frame element of the event
“trial”; “United States” is a frame element of the
event “war”. It is not clear which pair contributes
more to salience. We again let KCE to learn it.

Formally, let E be the list of entities in the doc-
ument, i.e. E = {en1, . . . , eni, . . . , enn}, where

eni is the ith entity in document d. KCE extracts
the kernel features about entity-event relations as
follows:

�K(evi, E) = {�1(
�!evi, E), . . . , (7)

�k(�!evi, E), . . . , �K(�!evi, E)},

�k(�!evi, E) =
X

enj2E
exp

 
�

(cos(�!evi,
�!enj) � µk)2

2�2
k

!

(8)

similarly, eni is embedded by: eni
Emb���! �!eni,

which is initialized by pre-trained entity embed-
dings.

We reach the full KCE model by combining all
the vectors using a linear layer:

f(evi, d) = We · �K(evi, E) + Wv · �K(evi, V)

+ Wf · F (evi, d) + b (9)

The model is again trained by equation (2).

6 Experimental Methodology

This section describes our experiment settings.

6.1 Event Salience Detection
Dataset: We conduct our experiments on the
salience corpus described in §3. Among the
664,911 articles with abstracts, we sample 10%
of the data as the test set and then randomly leave
out another 10% documents for development. Over-
all, there are 4359 distinct event lexical items, at a
similar scale with previous work (Chambers and Ju-
rafsky, 2008; Do et al., 2011). The corpus statistics
are summarized in Table 1.
Input: The inputs to models are the documents
and the extracted events. The models are required
to rank the events from the most to least salience.
Baselines: Three methods from previous re-
searches are used as baselines: Frequency, Loca-
tion and PageRank. The first two are often used
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to simulate saliency (Barzilay and Lapata, 2008;
Vossen and Caselli, 2015). The Frequency baseline
ranks events based on the count of the headword
lemma; the Location baseline ranks events using
the order of their appearances in discourse. Ties
are broken randomly.

Similar to entity salience ranking with PageRank
scores (Xiong et al., 2018), our PageRank baseline
runs PageRank on a fully connected graph whose
nodes are the events in documents. The edges are
weighted by the embedding similarities between
event pairs. We conduct supervised PageRank on
this graph, using the same pairwise loss setup as
in KCE. We report the best performance obtained
by linearly combining Frequency with the scores
obtained after a one-step random walk.
Evaluation Metric: Since the importance of
events is on a continuous scale, the boundary be-
tween “important” and “not important” is vague.
Hence we evaluate it as a ranking problem. The
metrics are the precision and recall value at 1, 5
and 10 respectively. It is adequate to stop at 10
since there are less than 9 salient events per doc-
ument on average (Table 1). We also report Area
Under Curve (AUC). Statistical significance values
are tested by permutation (randomization) test with
p < 0.05.
Implementation Details: We pre-trained word
embeddings with 128 dimensions on the whole
Annotated New York Times corpus using
Word2Vec (Mikolov et al., 2013). Entities are ex-
tracted using the TagMe entity linking toolkit (Fer-
ragina and Scaiella, 2010). Words or entities that
appear only once in training are replaced with spe-
cial “unknown” tokens.

The hyper-parameters of the KCE kernels follow
previous literature (Xiong et al., 2017). There is
one exact match kernel (µ = 1, � = 1e�3) and
ten soft-match kernels evenly distributed between
(�1, 1), i.e. µ 2 {�0.9, �0.7, . . . , 0.9}, with the
same � = 0.1.

The parameters of the models are optimized by
Adam (Kingma and Ba, 2015), with batch size
128. The vectors of entities are initialized by the
pre-trained embeddings. Event embeddings are
initialized by their headword embedding.

6.2 The Event Intrusion Test: A Study

KCE is designed to estimate salience by modeling
relations between discourse units. To better under-
stand its behavior, we design the following event

intrusion test, following the word intrusion test
used to assess topic model quality (Chang et al.,
2009).
Event Intrusion Test: The test will present to a
model a set of events, including: the origins, all
events from one document; the intruders, some
events from another document. Intuitively, if events
inside a document are organized around the core
content, a model capturing their relations well
should easily identify the intruder(s).

Specifically, we take a bag of unordered events
{O1, O2, . . . , Op}, from a document O, as the ori-
gins. We insert into it intruders, events drawn
from another document, I: {I1, I2, . . . , Iq}. We
ask a model to rank the mixed event set M =
{O1, I1, O2, I2, . . .}. We expect a model to rank
the intruders Ii below the origins Oi.
Intrusion Instances: From the development set,
we randomly sample 15,000 origin and intruding
document pairs. To simplify the analysis, we only
take documents with at least 5 salient events. The
intruder events, together with the entities in the
same sentences, are added to the origin document.
Metrics: AUC is used to quantify ranking quality,
where events in O are positive and events in I are
negative. To observe the ranking among the salient
origins, we compute a separate AUC score between
the intruders and the salient origins, denoted as SA-
AUC. In other words, SA-AUC is the AUC score
on the list with non-salient origins removed.
Experiments Details: We take the full KCE model
to compute salient scores for events in the mixed
event set M , which are directly used for ranking.
Frequency is recounted. All other features (Table 2)
are set to 0 to emphasize the relational aspects,

We experiment with two settings: 1. adding only
the salient intruders. 2. adding only the non-salient
intruders. Under both settings, the intruders are
added one by one, allowing us to observe the score
change regarding the number of intruders added.
For comparison, we add a Frequency baseline, that
directly ranks events by the Frequency feature.

7 Evaluation Results

This section presents the evaluations and analyses.

7.1 Event Salience Performance
We summarize the main results in Table 3.
Baselines: Frequency is the best performing base-
line. Its precision at 1 and 5 are higher than 40%.
PageRank performs worse than Frequency on all
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Method P@01 P@05 P@10 AUC

Location 0.3555 – 0.3077 – 0.2505 – 0.5226 –
PageRank 0.3628 – 0.3438 – 0.3007 – 0.5866 –
Frequency 0.4542 – 0.4024 – 0.3445 – 0.5732 –

LeToR 0.4753† +4.64% 0.4099† +1.87% 0.3517† +2.10% 0.6373† +11.19%
KCE (-EF) 0.4420 �2.69% 0.4038 +0.34% 0.3464† +0.54% 0.6089† +6.23%
KCE (-E) 0.4861†‡ +7.01% 0.4227†‡ +5.04% 0.3603†‡ +4.58% 0.6541†‡ +14.12%
KCE 0.5049†‡ +11.14% 0.4277†‡ +6.29% 0.3638†‡ +5.61% 0.6557†‡ +14.41%

Method R@01 R@05 R@10 W/T/L

Location 0.0807 – 0.2671 – 0.3792 – –/–/–
PageRank 0.0758 – 0.2760 – 0.4163 – –/–/–
Frequency 0.0792 – 0.2846 – 0.4270 – –/–/–

LeToR 0.0836† +5.61% 0.2980† +4.70% 0.4454† +4.31% 8037 / 48493 / 6770
KCE (-EF) 0.0714 �9.77% 0.2812 �1.18% 0.4321† +1.20% 6936 / 48811 / 7553
KCE (-E) 0.0925†‡ +16.78% 0.3172†‡ +11.46% 0.4672†‡ +9.41% 11676 / 43294 / 8330
KCE 0.0946†‡ +19.44% 0.3215†‡ +12.96% 0.4719†‡ +10.51% 12554 / 41461 / 9285

Table 3: Event salience performance. (-E) and (-F) marks removing Entity information and Features from
the full KCM model. The relative performance differences are computed against Frequency. W/T/L
are the number of documents a method wins, ties, and loses compared to Frequency. † and ‡ mark the
statistically significant improvements over Frequency†, LeToR‡ respectively.

Feature Groups P@1 P@5 P@10 R@1 R@5 R@10 AUC

Loc 0.3548 0.3069 0.2497 0.0807 0.2671 0.3792 0.5226
Frequency 0.4536 0.4018 0.3440 0.0792 0.2846 0.4270 0.5732

+ Loc 0.4734 0.4097 0.3513 0.0835 0.2976 0.4436 0.6354
+ Loc + Event 0.4726 0.4101† 0.3516 0.0831 0.2969 0.4431 0.6365†

+ Loc + Entity 0.4739 0.4100 0.3518 0.0812 0.2955 0.4418 0.6374
+ Loc + Entity + Event 0.4739 0.4100 0.3518† 0.0832 0.2974 0.4452† 0.6374†

+ Loc + Entity + Event + Local 0.4754† 0.4100 0.3517† 0.0837 0.2981 0.4454† 0.6373†

Table 4: Feature Ablation Results. + sign indicates the additional features to Frequency. Loc is the
sentence location feature. Event is the event voting feature. Entity is the entity voting feature. Local
is the local entity voting feature. † marks the statistically significant improvements over + Loc.

the precision and recall metrics. Location performs
the worst.

Feature Based: LeToR outperforms the baselines
significantly on all metrics. Particularly, its P@1
value outperforms the Frequency baseline the most
(4.64%), indicating a much better estimation on
the most salient event. In terms of AUC, LeToR
outperforms Frequency by a large margin (11.19%
relative gain).

Feature Ablation: To understand the contribution
of individual features, we conduct an ablation study
of various feature settings in Table 4. We gradu-
ally add feature groups to the Frequency baseline.
The combination of Location (sentence location)
and Frequency almost sets the performance for the
whole model. Adding each voting feature individu-
ally produces mixed results. However, adding all
voting features improves all metrics. Though the
margin is small, 4 of them are statistically signifi-

cant over Frequency+Location.

Kernel Centrality Estimation: The KCE model
further beats LeToR significantly on all metrics,
by around 5% on AUC and precision values, and by
around 10% on the recall values. Notably, the P@1
score is much higher, reaching 50%. The large
relative gain on all the recall metrics and the high
performance on precision show that KCE works
really well on the top of the rank list.

Kernel Ablation: To understand the source of per-
formance gain of KCE, we conduct an ablation
study by removing its components: -E removes
of entity kernels; -EF removes the entity kernels
and the features. We observe a performance drop
in both cases. Without entities and features, the
model only using event information still performs
similarly to Frequency. The drops are also a reflec-
tion of the small number of events (⇡ 60 per docu-
ment) comparing to entities (⇡ 200 per document).
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Word2Vec KCE

attack kill 0.69 0.3
arrest charge 0.53 0.3
USA (E) war 0.46 0.3
911 attack (E) attack 0.72 0.3
attack trade 0.42 0.9
hotel (E) travel 0.49 0.9
charge murder 0.49 0.7
business (E) increase 0.43 0.7
attack walk 0.44 -0.3
people (E) work 0.40 -0.3

Table 5: Similarities between event entity pairs.
Word2vec shows the cosine similarity in pre-
trained embeddings. KCE lists their closest kernel
mean after training. (E) marks entities.

The study indicates that the relational signals and
features contain different but both important infor-
mation.
Discussion: The superior results of KCE demon-
strate its effectiveness in predicting salience. So
what additional information does it capture? We re-
visit the changes made by KCE: 1. it adjusts the em-
beddings during training. 2. it introduces weighted
soft count kernels. However, the PageRank base-
line also does embedding tuning but produces poor
results, thus the second change should be crucial.
We plot the learned kernel weights of KCE in Fig-
ure 2. Surprisingly, the salient decisions are not
linearly related, nor even positively correlated to
the weights. In fact, besides the “Exact Match”
bin, the highest absolute weights actually appear
at 0.3 and -0.3. This implies that embedding sim-
ilarities do not directly imply salience, breaking
some assumptions of the feature based model and
PageRank.

Figure 2: Learned Kernel Weights of KCE

Case Study: We inspect some pairs of events
and entities in different kernels and list some ex-
amples in Table 5. The pre-trained embeddings
are changed a lot. Pairs of units with different

raw similarity values are now placed in the same
bin. The pairs in Table 3 exhibit interesting types
of relations: e.g.,“arrest-charge” and “attack-kill”
form script-like chains; “911 attack” forms a quasi-
identity relation (Recasens et al., 2010) with “at-
tack”; “business” and “increase” are candidates as
frame-argument structure. While these pairs have
different raw cosine similarities, they are all useful
in predicting salience. KCE learns to gather these
relations into bins assigned with higher weights,
which is not achieved by pure embedding based
methods. The KCE has changed the embedding
space and the scoring functions significantly from
the original space after training. This partially ex-
plains why the raw voting features and PageRank
are not as effective.

7.2 Intrusion Test Results

Figure 3 plots results of the intrusion test . The left
figure shows the results of setting 1: adding non-
salient intruders. The right one shows the results
of setting 2: adding salient intruders. The AUC is
0.493 and the SA-AUC is 0.753 if all intruders are
added.

The left figure shows that KCE successfully finds
the non-salient intruders. The SA-AUC is higher
than 0.8. Yet the AUC scores, which include the
rankings of non-salience events, are rather close
to random. This shows that the salient events in
the origin documents form a more cohesive group,
making them more robust against the intruders; the
non-salient ones are not as cohesive.

In both settings, KCE produces higher SA-AUC
than Frequency at the first 30%. However, in set-
ting 2, KCE starts to produce lower SA-AUC than
Frequency after 30%, then gradually drops to 0.5
(random). This phenomenon is expected since the
asymmetry between origins and intruders allow
KCE to distinguish them at the beginning. When
all intruders are added, KCE performs worse be-
cause it relies heavily on the relations, which can
be also formed by the salient intruders. This phe-
nomenon is observed only on the salient intruders,
which again confirms the cohesive relations are
found among salient events.

In conclusion, we observe that the salient events
form tight groups connected by discourse rela-
tions while the non-salient events are not as related.
The observations imply that the main scripts in
documents are mostly anchored by small groups
of salient events (such as the “Trial” script in
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Figure 3: Intruder study results. X-axis shows the percentage of intruders inserted. Y-axis is the AUC score
scale. The left and right figures are results from salient and non-salient intruders respectively. The blue
bar is AUC. The orange shaded bar is SA-AUC. The line shows the SA-AUC of the frequency baseline.

Example 1). Other events may serve as “back-
grounds” (Cheung et al., 2013). Similarly, Choubey
et al. (2018) find that relations like event corefer-
ence and sequence are important for saliency.

8 Conclusion

We propose two salient detection models, based
on lexical relatedness and semantic relations. The
feature-based model with lexical similarities is ef-
fective, but cannot capture semantic relations like
scripts and frames. The KCE model uses kernels
and embeddings to capture these relations, thus
outperforms the baselines and feature-based mod-
els significantly. All the results are tested on our
newly created large-scale event salience dataset.
While the automatic method inevitably introduces
noises to the dataset, the scale enables us to study
complex event interactions, which is infeasible via
costly expert labeling.

Our case study shows that the salience model
finds and utilize a variety of discourse relations:
script chain (attack and kill), frame argument re-
lation (business and increase), quasi-identity (911
attack and attack). Such complex relations are not
as prominent in the raw word embedding space.
The core message is that a salience detection mod-
ule automatically discovers connections between
salience and relations. This goes beyond prior cen-
tering analysis work that focuses on lexical and
syntax and provide a new semantic view from the
script and frame perspective.

In the intrusion test, we observe that the small
number of salient events are forming tight con-
nected groups. While KCE captures these relations
quite effectively, it can be confused by salient in-
trusion events. The phenomenon indicates that the
salient events are tightly connected, which form

the main scripts of documents.
This paper empirically reveals many interest-

ing connections between discourse phenomena and
salience. The results also suggest that core script
information may reside mostly in the salient events.
Limited by the data acquisition method, this paper
only models discourse salience as binary decisions.
However, salience value may be continuous and
may even have more than one aspects. In the fu-
ture, we plan to investigate these complex settings.
Another direction of study is large-scale semantic
relation discovery, for example, frames and scripts,
with a focus on salient discourse units.
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Abstract
The current leading paradigm for temporal
information extraction from text consists of
three phases: (1) recognition of events and
temporal expressions, (2) recognition of tem-
poral relations among them, and (3) time-line
construction from the temporal relations. In
contrast to the first two phases, the last phase,
time-line construction, received little attention
and is the focus of this work. In this paper,
we propose a new method to construct a linear
time-line from a set of (extracted) temporal re-
lations. But more importantly, we propose a
novel paradigm in which we directly predict
start and end-points for events from the text,
constituting a time-line without going through
the intermediate step of prediction of tempo-
ral relations as in earlier work. Within this
paradigm, we propose two models that pre-
dict in linear complexity, and a new training
loss using TimeML-style annotations, yielding
promising results.

1 Introduction
The current leading perspective on temporal infor-
mation extraction regards three phases: (1) a tem-
poral entity recognition phase, extracting events
(blue boxes in Fig. 1) and their attributes, and ex-
tracting temporal expressions (green boxes), and
normalizing their values to dates or durations, (2)
a relation extraction phase, where temporal links
(TLinks) among those entities, and between events
and the document-creation time (DCT) are found
(arrows in Fig. 1, left). And (3), construction of a
time-line (Fig. 1, right) from the extracted tempo-
ral links, if they are temporally consistent. Much
research concentrated on the first two steps, but
very little research looks into step 3, time-line con-
struction, which is the focus of this work.

In this paper, we propose a new time-line con-
struction paradigm that evades phase 2, the re-
lation extraction phase, because in the classical

paradigm temporal relation extraction comes with
many difficulties in training and prediction that
arise from the fact that for a text with n tempo-
ral entities (events or temporal expressions) there
are n2 possible entity pairs, which makes it likely
for annotators to miss relations, and makes infer-
ence slow as n2 pairs need to be considered. Tem-
poral relation extraction models consistently give
lower performance than those in the entity recog-
nition phase (UzZaman et al., 2013; Bethard et al.,
2016, 2017), introducing errors in the time-line
construction pipe-line.

The ultimate goal of our proposed paradigm is
to predict from a text in which entities are already
detected, for each entity: (1) a probability distribu-
tion on the entity’s starting point, and (2) another
distribution on the entity’s duration. The proba-
bilistic aspect is crucial for time-line based deci-
sion making. Constructed time-lines allow for fur-
ther quantitative reasoning with the temporal in-
formation, if this would be needed for certain ap-
plications.

As a first approach towards this goal, in this pa-
per, we propose several initial time-line models in
this paradigm, that directly predict - in a linear
fashion - start points and durations for each entity,
using text with annotated temporal entities as input
(shown in Fig. 1). The predicted start points and
durations constitute a relative time-line, i.e. a total
order on entity start and end points. The time-line
is relative, as start and duration values cannot (yet)
be mapped to absolute calender dates or durations
expressed in seconds. It represents the relative
temporal order and inclusions that temporal enti-
ties have with respect to each other by the quanti-
tative start and end values of the entities. Relative
time-lines are a first step toward our goal, building
models that predict statistical absolute time-lines.
To train our relative time-line models, we define
novel loss functions that exploit TimeML-style an-
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notations, used in most existing temporal corpora.
This work leads to the following contributions:

• A new method to construct a relative
time-line from a set of temporal relations
(TL2RTL).

• Two new models that, for the first time, di-
rectly predict (relative) time-lines - in lin-
ear complexity - from entity-annotated texts
without doing a form of temporal relation ex-
traction (S-TLM & C-TLM).

• Three new loss functions based on the map-
ping between Allen’s interval algebra and the
end-point algebra to train time-line models
from TimeML-style annotations.

In the next sections we will further discuss the
related work on temporal information extraction.
We will describe the models and training losses in
detail, and report on conducted experiments.

2 Related Work

2.1 Temporal Information Extraction
The way temporal information is conveyed in lan-
guage has been studied for a long time. It can
be conveyed directly through verb tense, explicit
temporal discourse markers (e.g. during or af-
terwards) (Derczynski, 2017) or temporal expres-
sions such as dates, times or duration expressions
(e.g. 10-05-2010 or yesterday). Temporal infor-
mation is also captured in text implicitly, through
background knowledge about, for example, dura-
tion of events mentioned in the text (e.g. even
without context, walks are usually shorter than
journeys).

Most temporal corpora are annotated with
TimeML-style annotations, of which an example
is shown in Fig 1, indicating temporal entities,
their attributes, and the TLinks among them.

The automatic extraction of TimeML-style tem-
poral information from text using machine learn-
ing was first explored by Mani et al. (2006). They
proposed a multinomial logistic regression classi-
fier to predict the TLinks between entities. They
also noted the problem of missed TLinks by anno-
tators, and experimented with using temporal rea-
soning (temporal closure) to expand their training
data.

Since then, much research focused on further
improving the pairwise classification models, by

exploring different types of classifiers and fea-
tures, such as (among others) logistic regression
and support vector machines (Bethard, 2013; Lin
et al., 2015), and different types of neural network
models, such as long short-term memory networks
(LSTM) (Tourille et al., 2017; Cheng and Miyao,
2017), and convolutional neural networks (CNN)
(Dligach et al., 2017). Moreover, different sieve-
based approaches were proposed (Chambers et al.,
2014; Mirza and Tonelli, 2016), facilitating mix-
ing of rule-based and machine learning compo-
nents.

Two major issues shared by these existing ap-
proaches are: (1) models classify TLinks in a pair-
wise fashion, often resulting in an inference com-
plexity of O(n2), and (2) the pair-wise predictions
are made independently, possibly resulting in pre-
diction of temporally inconsistent graphs. To ad-
dress the second, additional temporal reasoning
can be used at the cost of computation time, dur-
ing inference (Chambers and Jurafsky, 2008; De-
nis and Muller, 2011; Do et al., 2012), or dur-
ing both training and inference (Yoshikawa et al.,
2009; Laokulrat et al., 2015; Ning et al., 2017;
Leeuwenberg and Moens, 2017). In this work, we
circumvent these issues, as we predict time-lines
- in linear time complexity - that are temporally
consistent by definition.

2.2 Temporal Reasoning

Temporal reasoning plays a central role in tempo-
ral information extraction, and there are roughly
two approaches: (1) Reasoning directly with
Allen’s interval relations (shown in Table 1), by
constructing rules like: If event X occurs before
Y, and event Y before Z then X should happen be-
fore Z (Allen, 1990). Or (2), by first mapping the
temporal interval expressions to expressions about
interval end-points (start and endings of entities)
(Vilain et al., 1990). An example of such map-
ping is that If event X occurs before Y then the
end of X should be before the start of Y. Then rea-
soning can be done with end-points in a point al-
gebra, which has only three point-wise relations
(=, <, >), making reasoning much more efficient
compared to reasoning with Allen’s thirteen inter-
val relations.

Mapping interval relations to point-wise expres-
sions has been exploited for model inference by
Denis and Muller (2011), and for evaluation by
UzZaman and Allen (2011). In this work, we ex-
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TLink Extraction: O(n²) S-TLM and C-TLM: O(n)

Output: Relative TimelineTimeML Annotations

includes simultaneous

Last week, John jogged for many hours.
t1 t2

before e1: jogged

t1: last week

t2: many hours

Input: Text with Temporal Entities (n=3)

Last week, John jogged for many hours.
t1 e1 t2

DCT
TL2RTL

DCT

e1

Figure 1: An overview of two paradigms: (1) The indirect approach (dashed arrows), where first TLinks
are predicted from which we can build a relative time-line using TL2RTL. And (2), the direct approach
(solid arrow), where a relative time-line is predicted directly from the input by S-TLM or C-TLM.

ploit it for the first time for model training, in our
loss functions.

3 Models

We propose two model structures for direct
time-line construction: (1) a simple context-
independent model (S-TLM), and (2) a contex-
tual model (C-TLM). Their structures are shown in
Fig. 2. Additionally, we propose a method to con-
struct relative time-lines from a set of (extracted)
TLinks (TL2RTL). In this section we first explain
the first two direct models S-TLM and C-TLM,
and afterwards the indirect method TL2RTL.

3.1 Direct Time-line Models

Word representation
In both S-TLM and C-TLM, words are repre-
sented as a concatenation of a word embedding,
a POS embedding, and a Boolean feature vector
containing entity attributes such as the type, class,
aspect, following (Do et al., 2012). Further details
on these are given in the experiments section.

Simple Time-line Model (S-TLM)
For the simple context-independent time-line
model, each entity is encoded by the word repre-
sentation of the last word of the entity (generally
the most important). From this representation we
have a linear projection to the duration d, and the
start s. S-TLM is shown by the dotted edges in
Fig 2. An advantage of S-TLM is that it has very
few parameters, and each entity can be placed on
the time-line independently of the others, allow-
ing parallelism during prediction. The downside
is that S-TLM is limited in its use of contextual
information.

Contextual Time-line Model (C-TLM)
To better exploit the entity context we also propose
a contextual time-line model C-TLM (solid edges
in Fig 2), that first encodes the full text using two
bi-directional recurrent neural networks, one for
entity starts (BiRNNs), and one for entity dura-
tions (BiRNNd).1 On top of the encoded text we
learn two linear mappings, one from the BiRNNd

output of the last word of the entity mention to its
duration d, and similarly for the start time, from
the BiRNNs output to the entity’s start s.

Predicting Start, Duration, and End
Both proposed models use linear mappings2 to
predict the start value si and duration di for the
encoded entity i. By summing start si and dura-
tion di we can calculate the entity’s end-point ei.

ei = si + max(di, dmin) (1)

Predicting durations rather than end-points makes
it easy to control that the end-point lies after the
start-point by constraining the duration di by a
constant minimum duration value dmin above 0,
as shown in Eq. 1.

Modeling Document-Creation Time
Although the DCT is often not found explicitly in
the text, it is an entity in TimeML, and has TLinks
to other entities. We model it by assigning it a
text-independent start sDCT and duration dDCT.

Start sDCT is set as a constant (with value 0).
This way the model always has the same reference
point, and can learn to position the entities w.r.t.
the DCT on the time-line.

1We also experimented with sharing weights among
BiRNNd and BiRNNs. In our experiments, this gave worse
performance, so we propose to keep them separate.

2Adding more layers did not improve results.
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Last week , John jogged for many hours .
t1 e1 t2

biRNNd  biRNNd  biRNNd biRNNd  biRNNd  biRNNd  biRNNd biRNNd  biRNNd 

biRNNs biRNNs  biRNNs biRNNs  biRNNs  biRNNs  biRNNs biRNNs  biRNNs 

se1 de1st1 dt1 st2 dt2

w2 w1  w3  w4  w5  w6  w7  w8  w9 

Figure 2: Schematic overview of our two time-line models: C-TLM (solid edges), exploiting entity
context, and the simpler S-TLM (dotted edges), which is context independent. The models predict a
starting point (s) and duration (d) for each given temporal entity (t1, e1, and t2) in the input.

In contrast, DCT duration dDCT is modeled as
a single variable that is learned (initialized with
1). Since multiple entities may be included in the
DCT, and entities have a minimum duration dmin,
a constant dDCT could possibly prevent the model
from fitting all entities in the DCT. Modeling dDCT

as a variable allows growth of dDCT and averts this
issue.3

Training Losses
We propose three loss functions to train time-line
models from TimeML-style annotations: a regular
time-line loss L⌧ , and two slightly expanded dis-
criminative time-line losses, L⌧ce and L⌧h.

Regular Time-line Loss (L⌧ )
Ground-truth TLinks can be seen as constraints on
correct positions of entities on a time-line. The
regular time-line loss L⌧ expresses the degree to
which these constraints are met for a predicted
time-line. If all TLinks are satisfied in the time-
line for a certain text, L⌧ will be 0 for that text.

As TLinks relate entities (intervals), we first
convert the TLinks to expressions that relate the
start and end points of entities. How each TLink
is translated to its corresponding point-algebraic
constraints is given in Table 1, following Allen
(1990).

As can be seen in the last column there are only
two point-wise operations in the point-algebraic
constraints: an order operation (<), and an equal-
ity operation (=). To model to what degree each
point-wise constraint is met, we employ hinge
losses, with a margin m⌧ , as shown in Eq. 2.

3Other combinations of modeling sDCT and dDCT as vari-
able or constant decreased performance.

4No TLink for Allen’s overlap relation is present in
TimeML, also concluded by UzZaman and Allen (2011).

Table 1: Point algebraic interpretation (IPA) of
temporal links used to construct the loss function.
The start and end points of event X are indicated
by sx and ex respectively.

Allen Algebra Temporal Links Point Algebra

X precedes Y
Y preceded by X

X before Y
Y after X ex < sy

X starts Y
Y started by X

X begins Y
Y begun by X

sx = sy

ex < ey

X finishes Y
Y finished by X

X ends Y
Y ended by X

ex = ey

sy < sx

X during Y
Y includes X

X is included Y
Y includes X

sy < sx

ex < ey

X meets Y
Y met by X

X immediately before Y
Y immediately after X ex = sy

X overlaps Y
Y overlapped by X

absent4

absent4
sx < sy

sy < ex

ex < ey

X equals Y X simultaneous Y
X identity Y

sx = sy

ex = ey

To explain the intuition and notation: If we have
a point-wise expression ⇠ of the form x < y (first
case of Eq. 2), then the predicted point x̂ should
be at least a distance m⌧ smaller (or earlier on the
time-line) than predicted point ŷ in order for the
loss to be 0. Otherwise, the loss represents the dis-
tance x̂ or ŷ still has to move to make x̂ smaller
than ŷ (and satisfy the constraint). For the sec-
ond case, if ⇠ is of the form x = y, then point x̂
and ŷ should lie very close to each other, i.e. at
most a distance m⌧ away from each other. Any
distance further than the margin m⌧ is counted as
loss. Notice that if we set margin m⌧ to 0, the
second case becomes an L1 loss |x̂ � ŷ|. How-
ever, we use a small margin m⌧ to promote some
distance between ordered points and prevent con-
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fusion with equality. Fig. 3 visualizes the loss for
three TLinks.

Y ey sy

Xsx ex

X simultaneous Y

X before Y

X includes Y

mτ mτmτ

Figure 3: Visualization of the time-line loss L⌧

with margin m⌧ , for two events X and Y, and
TLinks simultaneous, before, and includes. The
red arrows’ lengths indicate the loss per relation,
i.e. how much the points should be shifted to sat-
isfy each relation.

Lp(⇠|t, ✓) =

(
max(x̂ + m⌧ � ŷ, 0) iff x < y

max(|x̂ � ŷ| � m⌧ , 0) iff x = y

(2)

The total time-line loss L⌧ (t|✓) of a model with
parameters ✓ on text t with ground-truth TLinks
R(t), is the sum of the TLink-level losses of
all TLinks r 2 R(t). Each TLink-level loss
Lr(r|t, ✓) for TLink r is the sum of the point-
wise losses Lp(⇠|t, ✓) of the corresponding point-
algebraic constraints ⇠ 2 IPA(r) from Table 1.5

Lr(r|t, ✓) =
X

⇠2IPA(r)

Lp(⇠|t, ✓) (3)

L⌧ (t, ✓) =
X

r2R(t)

Lr(r|t, ✓) (4)

Discriminative Time-line Losses
To promote a more explicit difference between the
relations on the time-line we introduce two dis-
criminative loss functions, L⌧ce and L⌧h, which
build on top of Lr. Both discriminative loss func-
tions use an intermediate score S(r|t, ✓) for each
TLink r based on the predicted time-line. As scor-
ing function, we use the negative Lr loss, as shown
in Eq. 5.

S(r|t, ✓) = �Lr(r|t, ✓) (5)
5The TLink during and its inverse are mapped to simulta-

neous, following the evaluation of TempEval-3.

Then, a lower time-line loss Lr(r|t, ✓) results in
a higher score for relation type r. Notice that the
maximum score is 0, as this is the minimum Lr.

Probabilistic Loss (L⌧ce)
Our first discriminative loss is a cross-entropy
based loss. For this the predicted scores are nor-
malized using a soft-max over the possible rela-
tion types (TL). The resulting probabilities are
used to calculate a cross-entropy loss, shown in
Eq. 6. This way, the loss does not just promote the
correct relation type but also distantiates from the
other relation types.

L⌧ce(t|✓) =
X

r2R(t)

r · log
⇣ eS(r|t,✓)

P
r02TL eS(r0|t,✓)

⌘

(6)

Ranking Loss (L⌧h)
When interested in discriminating relations on the
time-line, we want the correct relation type to have
the highest score from all possible relation types
TL. To represent this perspective, we also define
a ranking loss with a score margin mh in Eq. 7.

L⌧h(t|✓) =
X

r2R(t)

X

r02TL\{r}
max(S(r0|t, ✓)�S(r|t, ✓)+mh, 0)

(7)

Training Procedure
S-TLM and C-TLM are trained by by iterating
through the training texts, sampling mini-batches
of 32 annotated TLinks. For each batch we (1)
perform a forward pass, (2) calculate the total loss
(for one of the loss functions), (3) derive gradients
using Adam6 (Kingma and Ba, 2014), and (4) up-
date the model parameters ✓ via back-propagation.
After each epoch we shuffle the training texts.
As stopping criteria we use early stopping (Mor-
gan and Bourlard, 1990), with a patience of 100
epochs and a maximum number of 1000 epochs.

3.2 From TLinks to Time-lines (TL2RTL)
To model the indirect route, we construct a novel
method, TL2RTL, that predicts relative time lines
from a subset of TLinks, shown in Fig 1. One
can choose any method to obtain a set of TLinks
R(t) from a text t, serving as input to TL2RTL.

6Using the default parameters from the paper.
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TL2RTL constructs a relative time-line, by assign-
ing start and end values to each temporal entity,
such that the resulting time-line satisfies the ex-
tracted TLinks R(t) by minimizing a loss function
that is 0 when the extracted TLinks are satisfied.
TL2RTL on itself is a method and not a model.
The only variables over which it optimizes the loss
are the to be assigned starts and duration values.

In detail, for a text t, with annotated entities
E(t), we first extract a set of TLinks R(t). In
this work, to extract TLinks, we use the current
state-of-the-art structured TLink extraction model
by Ning et al. (2017). Secondly, we assign a start
variable si, and duration variable di to each en-
tity i 2 E(t). Similar to S-TLM and C-TLM, for
each i 2 E(t), di is bounded by a minimum dura-
tion dmin to ensure start si always lies before end
ei. Also, we model the DCT start sDCT as a con-
stant, and its duration dDCT as a variable. Then we
minimize one of the loss functions L⌧ , L⌧ce, or
L⌧h on the extracted TLinks R(t), obtaining three
TL2RTL variants, one for each loss. If the initially
extracted set of TLinks R(t) is consistent, and the
loss is minimized sufficiently, all si and di form
a relative time-line that satisfies the TLinks R(t),
but from which we can now also derive consistent
TLinks for any entity pair, also the pairs that were
not in R(t). To minimize the loss we use Adam
for 10k epochs until the loss is zero for each doc-
ument.7

4 Experiments

4.1 Evaluation and Data
Because prediction of relative time-lines trained
on TimeML-style annotations is new, we cannot
compare our model directly to relation extraction
or classification models, as the latter do not pro-
vide completely temporally consistent TLinks for
all possible entity pairs, like the relative time-
lines do. Neither can we compare directly to ex-
isting absolute time-line prediction models such
as Reimers et al. (2018) because they are trained
on different data with a very different annotation
scheme.

To evaluate the quality of the relative time-line
models in a fair way, we use TimeML-style test
sets as follows: (1) We predict a time-line for each
test-text, and (2) we check for all ground-truth an-

7For some documents the extracted TLinks were tempo-
rally inconsistent, resulting in a non-zero loss. Nevertheless,
> 96% of the extracted TLinks were satisfied.

notated TLinks that are present in the data, what
would be the derived relation type based on the
predicted time-line, which is the relation type that
gives the lowest time-line loss Lr. This results
in a TLink assignment for each annotated pair
in the TimeML-style reference data, and there-
for we can use similar metrics. As evaluation
metric we employ the temporal awareness met-
ric, used in TempEval-3, which takes into account
temporal closure (UzZaman et al., 2013). Notice
that although we use the same metric, compari-
son against relation classification systems would
be unfair, as our model assigns consistent labels
to all pairs, whereas relation classification systems
do not.

For training and evaluation we use two data
splits, TE‡ and TD‡, exactly following Ning et al.
(2017). Some statistics about the data are shown
in Table 2.8 The splits are constituted from various
smaller datasets: the TimeBank (TB) (Pustejovsky
et al., 2002), the AQUANT dataset (AQ), and the
platinum dataset (PT) all from TempEval-3 (Uz-
Zaman et al., 2013). And, the TimeBank Dense
(Cassidy et al., 2014) , and the Verb-Clause dataset
(VC) (Bethard et al., 2007).

4.2 Hyper-parameters and Preprocessing

Hyper-parameters shared in all settings can be
found in Table 3. The following hyper-parameters
are tuned using grid search on a development
set (union of TB and AQ): dmin is chosen from
{1, 0.1, 0.01}, m⌧ from {0, 0.025, 0.05, 0.1},
↵d from {0, 0.1, 0.2, 0.4, 0.8}, and ↵rnn from
{10, 25, 50}. We use LSTM (Hochreiter and
Schmidhuber, 1997) as RNN units9 and em-
ploy 50-dimensional GloVe word-embeddings
pre-trained10 on 6B words (Wikipedia and
NewsCrawl) to initialize the models’ word embed-
dings.

We use very simple tokenization and consider
punctuation11 or newline tokens as individual to-
kens, and split on spaces. Additionally, we low-
ercase the text and use the Stanford POS Tagger
(Toutanova et al., 2003) to obtain POS.

8We explicitly excluded all test documents from training
as some corpora annotated the same documents.

9We also experimented with GRU as RNN type, obtaining
similar results.

10https://nlp.stanford.edu/projects/glove
11, ./\"’=+-;:()!?<>%&$*|[]{}
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Table 2: Dataset splits used for evaluation (indicated with ‡).

Split Training data #TLinks #Documents Test data #TLinks #Documents

TD‡ TD (train+dev) 4.4k 27 TD (test) 1.3k 9
TE3‡ TB, AQ, VC, TD (full) 17.5k 256 PT 0.9k 20

Table 3: Hyper-parameters from the experiments.

Hyper-parameter Value

Document-creation starting time (sDCT) 0
Minimum event duration (dmin) 0.1
Time-line margin (m⌧ ) 0.025
Hinge loss margin (mh) 0.1

Dropout (↵d) 0.1
Word-level RNN units (↵rnn) 25
Word-embedding size (↵wemb) 50
POS-embedding size 10

Table 4: Evaluation of relative time-lines for each
model and loss function, where L⇤ indicates the
(unweighted) sum of L⌧ , L⌧ce, and L⌧h.

TE3‡ TD‡

Model P R F P R F

Indirect: O(n2)
TL2RTL (L⌧ ) 53.5 51.1 52.3 59.1 61.2 60.1
TL2RTL (L⌧ce) 53.9 51.7 52.8 61.2 60.7 60.9
TL2RTL (L⌧h) 52.8 51.1 51.9 57.9 60.6 59.2
TL2RTL (L⇤) 52.6 52.0 52.3 62.3 62.3 62.3

Direct: O(n)
S-TLM (L⌧ ) 50.1 50.4 50.2 57.8 59.5 58.6
S-TLM (L⌧ce) 50.1 50.0 50.1 53.4 53.5 53.5
S-TLM (L⌧h) 51.5 51.7 51.6 55.1 56.4 55.7
S-TLM (L⇤) 50.9 51.0 51.0 56.5 55.3 55.9
C-TLM (L⌧ ) 56.2 56.1 56.1 57.1 59.7 58.4
C-TLM (L⌧ce) 54.4 55.4 54.9 52.4 57.3 54.7
C-TLM (L⌧h) 55.7 55.5 55.6 55.3 54.9 55.1
C-TLM (L⇤) 54.0 54.3 54.1 54.6 53.5 54.1

5 Results

We compared our three proposed models for the
three loss functions L⌧ , L⌧ce, and L⌧h, and their
linear (unweighted) combination L⇤, on TE3‡ and
TD‡, for which the results are shown in Table 4.

A trend that can be observed is that overall per-
formance on TD‡ is higher than that of TE3‡, even
though less documents are used for training. We
inspected why this is the case, and this is caused
by a difference in class balance between both test
sets. In TE3‡ there are many more TLinks of type
simultaneous (12% versus 3%), which are very

difficult to predict, resulting in lower scores for
TE3‡ compared to TD‡. The difference in perfor-
mance between the datasets is probably also be re-
lated to the dense annotation scheme of TD‡ com-
pared to the sparser annotations of TE3‡, as dense
annotations give a more complete temporal view
of the training texts. For TL2RTL better TLink
extraction12 is also propagated into the final time-
line quality.

If we compare loss functions L⌧ , L⌧ce, and
L⌧h, and combination L⇤, it can be noticed that,
although all loss functions seem to give fairly
similar performance, L⌧ gives the most robust
results (never lowest), especially noticeable for
the smaller dataset TD‡. This is convenient, be-
cause L⌧ is fastest to compute during training,
as it requires no score calculation for each TLink
type. L⌧ is also directly interpretable on the time-
line. The combination of losses L⇤ shows mixed
results, and has lower performance for S-TLM
and C-TLM, but better performance for TL2RTL.
However, it is slowest to compute, and less inter-
pretable, as it is a combined loss.

Moreover, we can clearly see that on TE3‡, C-
TLM performs better than the indirect models,
across all loss functions. This is a very interesting
result, as C-TLM is an order of complexity faster
in prediction speed compared to the indirect mod-
els (O(n) compared to O(n2) for a text with n
entities).13 We further explore why this is the case
through our error analysis in the next section.

On TD‡, the indirect models seem to perform
slightly better. We suspect that the reason for this
is that C-TLM has more parameters (mostly the
LSTM weights), and thus requires more data (TD‡

has much fewer documents than TE3‡) compared
to the indirect methods. Another result supporting
this hypothesis is the fact that the difference be-
tween C-TLM and S-TLM is small on the smaller

12F1 of 40.3 for TE3‡ and 48.5 for TD‡ (Ning et al., 2017)
13We do not directly compare prediction speed, as it would

result in unfair evaluation because of implementation differ-
ences. However, currently, C-TLM predicts at ⇠100 w/s incl.
POS tagging, and ⇠2000 w/s without. When not using POS,
overall performance decreases consistently with 2-4 points.
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B A II I S
B 24.8% 4.7% 2.8% 1.6% 0.1%
A 5.0% 15.8% 3.2% 0.5% 0.0%
II 3.2% 3.2% 13.0% 0.6% 0.1%
I 4.0% 1.2% 1.0% 3.2% 0.0%
S 4.4% 3.0% 2.6% 1.3% 0.4%

B A II I S
B 23.0% 8.2% 1.3% 0.9% 0.8%
A 4.7% 17.1% 1.8% 0.3% 0.5%
II 4.3% 4.4% 11.1% 0.4% 0.0%
I 1.6% 5.4% 0.5% 1.3% 0.5%
S 4.3% 4.1% 1.8% 0.6% 0.9%

Figure 4: On the left, the confusion matrix of C-TLM (L⌧ ), and on the right of TL2RTL (L⌧ce), on TE3‡

for the top-5 most-frequent TLinks (together 95% of data): BEFORE (B), AFTER (A), IS INCLUDED (II),
INCLUDES (I), and SIMULTANEOUS (S). Predictions are shown on the x-axis and ground-truth on the
y-axis.

TD‡, indicating that C-TLM does not yet utilize
contextual information from this dataset, whereas,
in contrast, on TE3‡, the larger dataset, C-TLM
clearly outperforms S-TLM across all loss func-
tions, showing that when enough data is available
C-TLM learns good LSTM weights that exploit
context substantially.

6 Error Analysis

We compared predictions of TL2RTL(L⌧ ) with
those of C-TLM (L⌧ ), the best models of each
paradigm. In Table 4, we show the confusion ma-
trices of both systems on TE3‡.

When looking at the overall pattern in errors,
both models seem to make similar confusions on
both datasets (TD‡ was excluded for space con-
straints). Overall, we find that simultaneous is the
most violated TLink for both models. This can be
explained by two reasons: (1) It is the least fre-
quent TLink in both datasets. And (2), simulta-
neous entities are often co-referring events. Event
co-reference resolution is a very difficult task on
its own.

We also looked at the average token-distance
between arguments of correctly satisfied TLinks
by the time-lines of each model. For TL2RTL
(L⌧ ) this is 13 tokens, and for C-TLM (L⌧ ) 15.
When looking only at the TLinks that C-TLM (L⌧ )
satisfied and TL2RTL (L⌧ ) did not, the average
distance is 21. These two observations suggest
that the direct C-TLM (L⌧ ) model is better at po-
sitioning entities on the time-line that lie further
away from each other in the text. An explana-
tion for this can be error propagation of TLink ex-
traction to the time-line construction, as the pair-
wise TLink extraction of the indirect paradigm ex-
tracts TLinks in a contextual window, to prune the
O(n2) number of possible TLink candidates. This

Table 5: Example events from the top-
shortest/longest durations and top-earliest/latest
start values assigned by the model.

Short d Long d Early s Late s

started going destroyed realize
meet expects finished bring
entered recession invaded able
told war pronounced got
arrived support created work
allow make took change
send think appeared start
asked created leaving reenergize

consequently prevents TL2RTL to properly posi-
tion distant events with respect to each other.

To get more insight in what the model learns we
calculated mean durations and mean starts of C-
TLM (L⌧ ) predictions. Table 5 contains examples
from the top-shortest, and top-longest duration as-
signments and earliest and latest starting points.
We observe that events that generally have more
events included are assigned longer duration and
vice versa. And, events with low start values are
in the past tense and events with high start values
are generally in the present (or future) tense.

7 Discussion

A characteristic of our model is that it assumes
that all events can be placed on a single time-
line, and that it does not assume that unlabeled
pairs are temporally unrelated. This has big ad-
vantages: it results in fast prediction, and missed
annotation do not act as noise to the training, as
they do for pairwise models. Ning et al. (2018) ar-
gue that actual, negated, hypothesized, expected or
opinionated events should possibly be annotated
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on separate time-axis. We believe such multi-axis
representations can be inferred from the generated
single time-lines if hedging information is recog-
nized.

8 Conclusions

This work leads to the following three main contri-
butions14: (1) Three new loss functions that con-
nect the interval-based TimeML-annotations to
points on a time-line, (2) A new method, TL2RTL,
to predict relative time-lines from a set of pre-
dicted temporal relations. And (3), most impor-
tantly, two new models, S-TLM and C-TLM, that
– to our knowledge for the first time – predict (rel-
ative) time-lines in linear complexity from text,
by evading the computationally expensive (often
O(n2)) intermediate relation extraction phase in
earlier work. From our experiments, we conclude
that the proposed loss functions can be used effec-
tively to train direct and indirect relative time-line
models, and that, when provided enough data, the
– much faster – direct model C-TLM outperforms
the indirect method TL2RTL.

As a direction for future work, it would be
very interesting to extend the current models, div-
ing further into direct time-line models, and learn
to predict absolute time-lines, i.e. making the
time-lines directly mappable to calender dates and
times, e.g. by exploiting complementary data
sources such as the EventTimes Corpus (Reimers
et al., 2016) and extending the current loss func-
tions accordingly. The proposed models also pro-
vide a good starting point for research into prob-
abilistic time-line models, that additionally model
the (un)certainty of the predicted positions and du-
rations of the entities.
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Abstract

Event extraction is of practical utility in natu-
ral language processing. In the real world, it
is a common phenomenon that multiple events
existing in the same sentence, where extracting
them are more difficult than extracting a sin-
gle event. Previous works on modeling the as-
sociations between events by sequential mod-
eling methods suffer a lot from the low effi-
ciency in capturing very long-range dependen-
cies. In this paper, we propose a novel Jointly
Multiple Events Extraction (JMEE) frame-
work to jointly extract multiple event trig-
gers and arguments by introducing syntactic
shortcut arcs to enhance information flow and
attention-based graph convolution networks to
model graph information. The experiment re-
sults demonstrate that our proposed frame-
work achieves competitive results compared
with state-of-the-art methods.

1 Introduction

Extracting events from natural language text is
an essential yet challenging task for natural lan-
guage understanding. When given a document,
event extraction systems need to recognize event
triggers with their specific types and their corre-
sponding arguments with the roles. Technically
speaking, as defined by the ACE 2005 dataset1,
a benchmark for event extraction (Grishman et al.,
2005), the event extraction task can be divided into
two subtasks, i.e., event detection (identifying and
classifying event triggers) and argument extraction
(identifying arguments of event triggers and label-
ing their roles).

In event extraction, it is a common phenomenon
that multiple events exist in the same sentence.
Extracting the correct multiple events from those

⇤*Corresponding author.
1https://catalog.ldc.upenn.edu/

ldc2006t06

sentences is much more difficult than in the one-
event-one-sentence cases because those various
types of events are often associated with each
other. For example, in the sentence “He left the
company, and planned to go home directly.”, the
trigger word left may trigger a Transport (a person
left a place) event or an End-Position (a person re-
tired from a company) event. However, if we take
the following event triggered by go into consider-
ation, we are more confident to judge it as a Trans-
port event rather than an End-Position event. This
phenomenon is quite common in our real world, as
Injure and Die events are more likely to co-occur
with Attack events than others, whereas Marry and
Born events are less likely to co-occur with Attack
events. As we investigated in ACE 2005 dataset,
there are around 26.2% (1042/3978) sentences be-
long to this category.

Significant efforts have been dedicated to solv-
ing this problem. Most of them exploiting vari-
ous features (Liu et al., 2016b; Yang and Mitchell,
2016; Li et al., 2013; Keith et al., 2017; Liu et al.,
2016a; Li et al., 2015), introducing memory vec-
tors and matrices (Nguyen et al., 2016), introduc-
ing more transition arcs (Sha et al., 2018), keeping
more contextual information (Chen et al., 2015)
into sentence-level sequential modeling methods
like RNNs and CRFs. Some also seek features
in document-level methods (Liao and Grishman,
2010; Ji and Grishman, 2008). However, sentence-
level sequential modeling methods suffer a lot
from the low efficiency in capturing very long-
range dependencies while the feature-based meth-
ods require extensive human engineering, which
also largely affects model performance. Besides,
these methods do not adequately model the asso-
ciations between events.

An intuitive way to alleviate this phenomenon
is to introduce shortcut arcs represented by lin-
guistic resources like dependency parsing trees to
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Figure 1: An example of dependency parsing result produced by Stanford CoreNLP. There are two events in the
sentence: a Die event triggered by the word killed with four arguments in red and an Attack event triggered by the
word barrage with three arguments in blue. The red dotted arc is the shortcut path consisting of three directed arcs
from trigger killed to another trigger barrage.

drain the information flow from a point to its target
through fewer transitions. Comparing to sequen-
tial order, modeling with these arcs often success-
fully reduce the needed hops from one event trig-
ger to another in the same sentences. In Figure
1, for example, there are two events: a Die event
triggered by the word killed with four arguments
in red and an Attack event triggered by the word
barrage with three arguments in blue. We need
six hops from killed to barrage according to se-
quential order, but only three hops according to the
arcs in dependency parsing tree (along the nmod-
arc from killed to witnesses, along the acl-arc from
witnesses to called, and along the xcomp-arc from
called to barrage). These three arcs consist of a
shortcut path2, draining the dependency syntactic
information flow from killed to barrage with fewer
hops3.

In this paper, we propose a novel Jointly
Multiple Events Extraction (JMEE) framework by
introducing syntactic shortcut arcs to enhance in-
formation flow and attention-based graphic convo-
lution networks to model the graph information.
To implement modeling with the shortcut arcs, we
adopt the graph convolutional networks (GCNs)
(Kipf and Welling, 2016; Marcheggiani and Titov,
2017; Nguyen and Grishman, 2018) to learn syn-
tactic contextual representations of each node by
the representative vectors of its immediate neigh-
bors in the graph. And then we utilize the syn-
tactic contextual representations to extract triggers
and arguments jointly by a self-attention mecha-
nism to aggregate information especially keeping
the associations between multiple events.

2In a shortcut path which consists of existing arcs, some
arcs may reverse their directions.

3The length of the longest path in a tree is always no more
than the sequential length consisting of the same number of
nodes, which means even in the worst cases, the shortcut path
will not perform worse than sequential modeling.

We extensively evaluate the proposed JMEE
framework with the widely-used ACE 2005
dataset to demonstrate its benefits in the experi-
ments especially in capturing the associations be-
tween events. To summary, our contribution in this
work is as follows:

• We propose a novel joint event extraction
framework JMEE based on syntactic struc-
tures which enhance information flow and
alleviate the phenomenon where multiple
events are in the same sentence.

• We propose a self-attention mechanism to ag-
gregate information especially keeping the
associations between multiple events and
prove it is useful in event extraction.

• We achieve the state-of-the-art performance
on the widely used datasets for event extrac-
tion using the proposed model with GCNs
and self-attention mechanism.

2 Approach

Generally, event extraction can be cast as a multi-
class classification problem deciding whether each
word in the sentence forms a part of event trig-
ger candidate and whether each entity in the sen-
tence plays a particular role in the event triggered
by the candidate triggers. There are two main
approaches to event extraction: (i) the joint ap-
proach that extracts event triggers and arguments
simultaneously as a structured prediction problem,
and (ii) the pipelined approach that first performs
trigger prediction and then identifies arguments in
separate stages. We follow the joint approach that
can effectively avoid the propagated errors in the
pipeline.

Additionally, we extract events in sentence-
level mainly for three reasons. Firstly, in our in-
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Figure 3: The architecture of our jointly multiple events extraction framework.

• The positional embedding vector of wi: If
wc is the current word, we encode the rela-
tive distance i � c from wi to wc as a real-
valued vector by looking up the randomly
initialized position embedding table (Nguyen
et al., 2016; Liu et al., 2017; Nguyen and Gr-
ishman, 2018).

• The entity type label embedding vector of
wi: Similarly to the POS-tagging label em-
bedding vector of wi, we annotate the entity
mentions in a sentence using BIO annotation
schema and transform the entity type labels to
real-valued vectors by looking up the embed-
ding table. It should be noticed that we use
the whole entity extent in ACE 2005 dataset
which contains overlapping entity mentions
and we sum all the possible entity type label
embedding vectors for each token.

The transformation from the token wi to the
vector xi essentially converts the input sentence
W into a sequence of real-valued vectors X =
(x1, x2, ..., xn), which will be feed into later mod-
ules to learn more effective representations for
event extraction.

2.2 Syntactic Graph Convolution Network
Considering an undirected graph G = (V, E)
as the syntactic parsing tree for sentence W ,
where V = v1, v2, ..., vn(|V| = n) and E are
sets of nodes and edges, respectively. In V ,
each vi is the node representing token wi in
W . Each edge (vi, vj) 2 E is a directed syn-
tactic arc from token wi to token wj , with the
type label K(wi, wj). Additionally, to allow in-
formation to flow against the direction, we also

add reversed edge (vj , vi) with the type label
K 0(wi, wj). Following Kipf and Welling (2016),
we also add all the self-loops, i.e., (vi, vi) for
any vi 2 V . For example, in the dependency
parsing tree shown in Figure 1, there are four
arcs in the subgraph with only two nodes “killed”
and “witnesses”: the dependency arc with the
type label K(“killed”, “witnesses”) = nmod,
the revresed dependency arc with the additional
type label K(“witnesses”, “killed”) = nmod0,
and the two self-loops of “killed” and “wit-
nesses” with type label K(“killed”, “killed”) =
K(“witnesses”, “witnesses”) = loop.

Therefore, in the k-th layer of syntactic graph
convolution network module, we can calculate the
graph convolution vector h(k+1)

v for node v 2 V
by:

h(k+1)
v = f(

X

u2N (v)

(W (k)
K(u,v)h

(k)
u + b(k)

K(u,v))) (1)

where K(u, v) indicates the type label of the edge
(u, v); W (k)

K(u,v) and b(k)
K(u,v) are the weight matrix

and the bias for the certain type label K(u, v), re-
spectively; N (v) is the set of neighbors of v in-
cluding v (because of the self-loop); f is the ac-
tivation function. Moreover, we use the output of
the word representation module xi to initialize the
node representation h0

vi
of the first layer of GCNs.

After applying the above two changes, the num-
ber of predefined directed arc type label (let us say,
N ) will be doubled (to 2N + 1). It means we will
have 2N +1 sets of parameter pairs W (k)

k and b(k)
k

for a single layer of GCN. In this work, we use
Stanford Parser (Klein and Manning, 2003) to gen-
erate the arcs in dependency parsing trees for sen-
tences as the shortcut arcs. The current representa-
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tion contains approximately 50 different grammat-
ical relations, which is too high for the parameter
number of a single layer of GCN and not compat-
ible with the existing training data scale. To re-
duce the parameter numbers, following Marcheg-
giani and Titov (2017), we modify the definition
of type label K(wi, wj) to:

K(wi, wj) =

8
<

:

along, (vi, vj) 2 E
rev, i! = j&(vj , vi) 2 E
loop, i == j

(2)
where the new K(wi, wj) only have three type la-
bels.

As not all types of edges are equally informative
for the downstream task, moreover, there are also
noises in the generated syntactic parsing struc-
tures; we apply gates on the edges to weight their
individual importances. Inspired by Dauphin et al.
(2017); Marcheggiani and Titov (2017), we calcu-
late a weight g(k)

u,v for each edge (u, v) indicating
the importance for event extraction by:

g(k)
u,v = �(h(k)

u V (k)
K(u,v) + d(k)

K(u,v)) (3)

where � is the logistic sigmoid function, V (k)
K(u,v)

and d(k)
K(u,v) are the weight matrix and the bias of

the gate. With this additional gating mechanism,
the final syntactic GCN computation is formulated
as

h(k+1)
v = f(

X

u2N (v)

g(k)
u,v(W

(k)
K(u,v)h

(k)
u + b(k)

K(u,v)))

(4)
As stacking k layers of GCNs can model in-

formation in k hops, and sometimes the length of
shortcut path between two triggers is less than k,
to avoid information over-propagating, we adapt
highway units (Srivastava et al., 2015), which al-
low unimpeded information flowing across stack-
ing GCN layers. Typically, highway layers con-
duct nonlinear transformation as:

t = �(WT hk
v + bT ) (5)

h
(k+1)
v = h(k+1)

v +t�g(WHhk
v+bH)+(1�t)�hk

v

(6)
where � is the sigmoid function; � is the element-
wise product operation; g is a nonlinear activation
function; t is called transform gate and (1 � t) is

called carry gate. Therefore, the input of the k-th
GCN layers should be h

(k) instead of h(k).
The GCNs are designed to capture the depen-

dencies between shortcut arcs, while the layer
number of GCNs limits the ability to capture lo-
cal graph information. However, in this cases, we
find that leveraging local sequential context will
help to expand the information flow without in-
creasing the layer number of GCNs, which means
LSTMs and GCNs maybe complementary. There-
fore, instead of feeding the word representation
X = (x1, x2, ..., xn) into the first GCN layer,
we follow Marcheggiani and Titov (2017), apply
Bidirectional LSTM (Bi-LSTM) (Hochreiter and
Schmidhuber, 1997) to encode the the word repre-
sentation X as:

�!p t =
����!
LSTM(�!p t�1, xt) (7)

 �p t =
 ����
LSTM( �p t�1, xt) (8)

and the input of t-th token to GCNs is xt =
[�!p t,

 �p t], where [, ] is the concatenation opera-
tion. The Bi-LSTM adaptively accumulates and
abstracts the context for each token in the sen-
tence.

2.3 Self-Attention Trigger Classification

When taking each token as the current word, we
get the representation D from all tokens calcu-
lated by GCNs. Traditional event extraction sys-
tems often use max-pooling or its amelioration to
aggregate information to each position. However,
the max-pooling aggregation mechanisms tend to
produce similar results after GCN modules in our
framework. For example, if we get the aggregated
vector Agi at each position i by this max-pooling
mechanism Agi = max poolingn

j=1(Hj) with the
GCNs output {Hj |j = 1, ..., n} in which n is the
sentence length, and the vector Agi is all the same
at each position. Besides, predicting a trigger la-
bel for a token should take other possible trigger
candidates into consideration. To capture the asso-
ciations between triggers in a sentence, we design
a self-attention mechanism to aggregate informa-
tion especially keeping the associations between
multiple events.

Given the current token wi, the self-attention
score vector and the context vector at position i
are calculated as:

score = norm(exp(W2f(W1D+b1)+b2)) (9)
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Ci = [
nX

j=1,j!=i

scorej ⇤Dj , Di] (10)

where norm means the normalization operation.
Then we feed the context vector Ci into a fully-
connected network to predict the trigger label in
BIO annotation schema as:

Ci = f(WcCi + bc) (11)

yti = softmax(WtCi + bt) (12)

where f is a non-linear activation and yti is the
final output of the i-th trigger label.

2.4 Argument Classification

When we have extracted an entire trigger candi-
date, which is meeting an O label after an I-Type
label or a B-Type label, we use the aggregated con-
text vector C to perform argument classification
on the entity list in the sentence.

For each entity-trigger pair, as both the entity
and the trigger candidate are likely to be a subse-
quence of tokens, we aggregate the context vectors
of subsequences to trigger candidate vector Ti and
entity vector Ej by average pooling along the se-
quence length dimension. Then we concatenate
them together and feed into a fully-connected net-
work to predict the argument role as:

yaij = softmax(Wa[Ti, Ej ] + ba) (13)

where yaij is the final output of which role the j-
th entity plays in the event triggered by the i-th
trigger candidate.

When training our framework, if the trigger can-
didate that we focus on is not a correct trigger, we
set all the golden argument labels concerning the
trigger candidate to OTHER (not any roles). With
this setting, the labels of the trigger candidate will
be further adjusted to reach a reasonable probabil-
ity distribution.

2.5 Biased Loss Function

In order to train the networks, we minimize the
joint negative log-likelihood loss function. Due
to the data sparsity in the ACE 2005 dataset, we
adapt our joint negative log-likelihood loss func-

tion by adding a bias item as:

J(✓) = �
NX

p=1

(

npX

i=1

I(yti)log(p(yti |✓))

+�

tpX

i=1

epX

j=1

log(p(yaij |✓)))

(14)

where N is the number of sentences in training
corpus; np, tp and ep are the number of tokens,
extracted trigger candidates and entities of the p-th
sentence; I(yti) is an indicating function, if yti is
not O, it outputs a fixed positive floating number ↵
bigger than one, otherwise one; � is also a floating
number as a hyper-parameter like ↵.

3 Experiments

3.1 Experiment Settings
Dataset, Resources and Evaluation Metric
We evaluate our JMEE framework on the ACE
2005 dataset. The ACE 2005 dataset annotate 33
event subtypes and 36 role classes, along with the
NONE class and BIO annotation schema, we will
classify each token into 67 categories in event de-
tection and 37 categories in argument extraction.
To comply with previous work, we use the same
data split as the previous work (Ji and Grishman,
2008; Liao and Grishman, 2010; Li et al., 2013;
Chen et al., 2015; Liu et al., 2016b; Yang and
Mitchell, 2016; Nguyen et al., 2016; Sha et al.,
2018). This data split includes 40 newswire arti-
cles (881 sentences) for the test set, 30 other doc-
uments (1087 sentences) for the development set
and 529 remaining documents (21,090 sentences)
for the training set.

We deploy the Stanford CoreNLP toolkit5 to
preprocess the data, including tokenizing, sen-
tence splitting, pos-tagging and generating depen-
dency parsing trees.

Also, we follow the criteria of the previous work
(Ji and Grishman, 2008; Liao and Grishman, 2010;
Li et al., 2013; Chen et al., 2015; Liu et al., 2016b;
Yang and Mitchell, 2016; Nguyen et al., 2016; Sha
et al., 2018) to judge the correctness of the pre-
dicted event mentions.
Hyperparameter Setting
For all the experiments below, in the word rep-
resentation module, we use 300 dimensions for
the embeddings and 50 dimensions for the rest

5http://stanfordnlp.github.io/CoreNLP/
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Method
Trigger Trigger Argument Argument

Identification (%) Classification (%) Identification (%) Role (%)
P R F1 P R F1 P R F1 P R F1

Cross-Event N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
JointBeam 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
PSL N/A 75.3 64.4 69.4 N/A N/A
JRNN 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
dbRNN N/A 74.1 69.8 71.9 71.3 64.5 67.7 66.2 52.8 58.7
JMEE 80.2 72.1 75.9 76.3 71.3 73.7 71.4 65.6 68.4 66.8 54.9 60.3

Table 1: Overall performance comparing to the state-of-the-art methods with golden-standard entities.

three embeddings including pos-tagging embed-
ding, positional embedding and entity type em-
bedding. In the syntactic GCN module, we use a
three-layer GCN, a one-layer Bi-LSTM with 220
hidden units, self-attention with 300 hidden units
and 200 hidden units for the rest transformation.
We also set dropout rate to 0.5 and L2-norm to 1e-
8. The batch size in our experiments is 32, and
we utilize a maximum length n = 50 of sentences
in the experiments by padding shorter sentences
and cutting off longer ones. These hyperparam-
eters are either randomly searched or chosen by
experiences when tuning in the development set.

We use ReLU (Glorot et al., 2011) as our non-
linear activate function. We apply the stochastic
gradient descent algorithm with mini-batches and
the AdaDelta update rule (Zeiler, 2012). The gra-
dients are computed using back-propagation. Dur-
ing training, besides the weight matrices, we also
fine-tune all the embedding tables.

3.2 Overall Performance
We compare our performance with the following
state-of-the-art methods:

1 Cross-Event is proposed by Liao and Grishman
(2010), which uses document level information
to improve the performance of event extraction;

2 JointBeam is the method proposed by Li et al.
(2013), which extracts events based on structure
prediction by manually designed features;

3 DMCNN is proposed by Chen et al. (2015),
which uses dynamic multi-pooling to keep mul-
tiple events’ information;

4 PSL is proposed by Liu et al. (2016b), which
uses a probabilistic reasoning model to classify
events by using latent and global information to
encode the associations between events;

5 JRNN is proposed by Nguyen et al. (2016),
which uses a bidirectional RNN and manually
designed features to jointly extract event trig-
gers and arguments.

6 dbRNN is proposed by Sha et al. (2018), which
adds dependency bridges over Bi-LSTM for
event extraction.

Table 1 shows the overall performance com-
paring to the above state-of-the-art methods with
golden-standard entities. From the table, we can
see that our JMEE framework achieves the best F1

scores for both trigger classification and argument-
related subtasks among all the compared methods.
There is a significant gain with the trigger classi-
fication and argument role labeling performances,
which is 2% higher over the best-reported mod-
els. These results demonstrate the effectivenesses
of our method to incorporate with the graph con-
volution and syntactic shortcut arcs.

3.3 Effect on Extracting Multiple Events
To evaluate the effect of our framework for allevi-
ating the multiple events phenomenon, we divide
the test data into two parts (1/1 and 1/N) follow-
ing Nguyen et al. (2016); Chen et al. (2015) and
perform evaluations separately. 1/1 means that
one sentence only has one trigger or one argu-
ment plays a role in one sentence; otherwise, 1/N
is used.

Table 2 illustrates the performance (F1 scores)
of JRNN (Nguyen et al., 2016), DMCNN (Chen
et al., 2015), the two baseline model Embed-
ding+T and CNN in Chen et al. (2015) and our
framework in trigger classification subtask and
argument role labeling subatsk. Embedding+T
uses word embedding vectors and the traditional
sentence-level features in Li et al. (2013), while
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ing the multiple-event phenomenon. In our frame-
work, we introduce syntactic shortcut arcs to en-
hance information flow and adapt the graph convo-
lution network to capture the enhanced representa-
tion. Then a self-attention aggregation mechanism
is applied to aggregate the associations between
events. Besides, we jointly extract event triggers
and arguments by optimizing a biased loss func-
tion due to the imbalances in the dataset. The ex-
periment results demonstrate the effectiveness of
our proposed framework. In the future, we plan
to exploit the information of one argument which
plays different roles in various events to do better
in event extraction task.
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Abstract

Distantly-supervised Relation Extraction (RE)
methods train an extractor by automatically
aligning relation instances in a Knowledge
Base (KB) with unstructured text. In addi-
tion to relation instances, KBs often contain
other relevant side information, such as aliases
of relations (e.g., founded and co-founded are
aliases for the relation founderOfCompany).
RE models usually ignore such readily avail-
able side information. In this paper, we pro-
pose RESIDE, a distantly-supervised neural
relation extraction method which utilizes ad-
ditional side information from KBs for im-
proved relation extraction. It uses entity type
and relation alias information for imposing
soft constraints while predicting relations. RE-
SIDE employs Graph Convolution Networks
(GCN) to encode syntactic information from
text and improves performance even when
limited side information is available. Through
extensive experiments on benchmark datasets,
we demonstrate RESIDE’s effectiveness. We
have made RESIDE’s source code available to
encourage reproducible research.

1 Introduction

The construction of large-scale Knowledge Bases
(KBs) like Freebase (Bollacker et al., 2008) and
Wikidata (Vrandečić and Krötzsch, 2014) has
proven to be useful in many natural language pro-
cessing (NLP) tasks like question-answering, web
search, etc. However, these KBs are not exhaus-
tive. Relation Extraction (RE) attempts to fill this
gap by extracting semantic relationships between
entity pairs from plain text. This task can be mod-
eled as a simple classification problem after the
entity pairs are specified. Formally, given an en-
tity pair (e1,e2) from the KB and an entity anno-
tated sentence (or instance), we aim to predict the

⇤Research internship at Indian Institute of Science.

relation r, from a predefined relation set, that ex-
ists between e1 and e2. If no relation exists, we
simply label it NA.

Most supervised relation extraction methods re-
quire large labeled training data which is expen-
sive to construct. Distant Supervision (DS) (Mintz
et al., 2009) helps with the construction of this
dataset automatically, under the assumption that
if two entities have a relationship in a KB, then
all sentences mentioning those entities express the
same relation. While this approach works well in
generating large amounts of training instances, the
DS assumption does not hold in all cases. Riedel
et al. (2010); Hoffmann et al. (2011); Surdeanu
et al. (2012) propose multi-instance based learn-
ing to relax this assumption. However, they use
NLP tools to extract features, which can be noisy.

Recently, neural models have demonstrated
promising performance on RE. Zeng et al. (2014,
2015) employ Convolutional Neural Networks
(CNN) to learn representations of instances. For
alleviating noise in distant supervised datasets, at-
tention has been utilized by (Lin et al., 2016; Jat
et al., 2018). Syntactic information from depen-
dency parses has been used by (Mintz et al., 2009;
He et al., 2018) for capturing long-range depen-
dencies between tokens. Recently proposed Graph
Convolution Networks (GCN) (Defferrard et al.,
2016) have been effectively employed for en-
coding this information (Marcheggiani and Titov,
2017; Bastings et al., 2017). However, all the
above models rely only on the noisy instances
from distant supervision for RE.

Relevant side information can be effective for
improving RE. For instance, in the sentence, Mi-
crosoft was started by Bill Gates., the type infor-
mation of Bill Gates (person) and Microsoft (or-
ganization) can be helpful in predicting the cor-
rect relation founderOfCompany. This is because
every relation constrains the type of its target en-
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Figure 1: Overview of RESIDE. RESIDE first encodes each sentence in the bag by concatenating em-
beddings (denoted by �) from Bi-GRU and Syntactic GCN for each token, followed by word attention.
Then, sentence embedding is concatenated with relation alias information, which comes from the Side
Information Acquisition Section (Figure 2), before computing attention over sentences. Finally, bag
representation with entity type information is fed to a softmax classifier. Please see Section 5 for more
details.

tities. Similarly, relation phrase “was started
by” extracted using Open Information Extrac-
tion (Open IE) methods can be useful, given that
the aliases of relation founderOfCompany, e.g.,
founded, co-founded, etc., are available. KBs used
for DS readily provide such information which has
not been completely exploited by current models.

In this paper, we propose RESIDE, a novel dis-
tant supervised relation extraction method which
utilizes additional supervision from KB through
its neural network based architecture. RESIDE
makes principled use of entity type and relation
alias information from KBs, to impose soft con-
straints while predicting the relation. It uses en-
coded syntactic information obtained from Graph
Convolution Networks (GCN), along with embed-
ded side information, to improve neural relation
extraction. Our contributions can be summarized
as follows:

• We propose RESIDE, a novel neural method
which utilizes additional supervision from KB
in a principled manner for improving distant su-
pervised RE.

• RESIDE uses Graph Convolution Networks
(GCN) for modeling syntactic information and
has been shown to perform competitively even
with limited side information.

• Through extensive experiments on benchmark

datasets, we demonstrate RESIDE’s effective-
ness over state-of-the-art baselines.

RESIDE’s source code and datasets used in the
paper are available at http://github.com/
malllabiisc/RESIDE.

2 Related Work
Distant supervision: Relation extraction is the
task of identifying the relationship between two
entity mentions in a sentence. In supervised
paradigm, the task is considered as a multi-class
classification problem but suffers from lack of
large labeled training data. To address this limita-
tion, (Mintz et al., 2009) propose distant supervi-
sion (DS) assumption for creating large datasets,
by heuristically aligning text to a given Knowl-
edge Base (KB). As this assumption does not
always hold true, some of the sentences might
be wrongly labeled. To alleviate this shortcom-
ing, Riedel et al. (2010) relax distant supervi-
sion for multi-instance single-label learning. Sub-
sequently, for handling overlapping relations be-
tween entities (Hoffmann et al., 2011; Surdeanu
et al., 2012) propose multi-instance multi-label
learning paradigm.

Neural Relation Extraction: The performance
of the above methods strongly rely on the quality
of hand engineered features. Zeng et al. (2014)
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propose an end-to-end CNN based method which
could automatically capture relevant lexical and
sentence level features. This method is further im-
proved through piecewise max-pooling by (Zeng
et al., 2015). Lin et al. (2016); Nagarajan et al.
(2017) use attention (Bahdanau et al., 2014) for
learning from multiple valid sentences. We also
make use of attention for learning sentence and
bag representations.

Dependency tree based features have been
found to be relevant for relation extraction (Mintz
et al., 2009). He et al. (2018) use them for getting
promising results through a recursive tree-GRU
based model. In RESIDE, we make use of recently
proposed Graph Convolution Networks (Deffer-
rard et al., 2016; Kipf and Welling, 2017), which
have been found to be quite effective for modelling
syntactic information (Marcheggiani and Titov,
2017; Nguyen and Grishman, 2018; Vashishth
et al., 2018a).

Side Information in RE: Entity description
from KB has been utilized for RE (Ji et al., 2017),
but such information is not available for all enti-
ties. Type information of entities has been used by
Ling and Weld (2012); Liu et al. (2014) as features
in their model. Yaghoobzadeh et al. (2017) also
attempt to mitigate noise in DS through their joint
entity typing and relation extraction model. How-
ever, KBs like Freebase readily provide reliable
type information which could be directly utilized.
In our work, we make principled use of entity type
and relation alias information obtained from KB.
We also use unsupervised Open Information Ex-
traction (Open IE) methods (Mausam et al., 2012;
Angeli et al., 2015), which automatically discover
possible relations without the need of any prede-
fined ontology, which is used as a side information
as defined in Section 5.2.

3 Background: Graph Convolution
Networks (GCN)

In this section, we provide a brief overview of
Graph Convolution Networks (GCN) for graphs
with directed and labeled edges, as used in
(Marcheggiani and Titov, 2017).

3.1 GCN on Labeled Directed Graph

For a directed graph, G = (V, E), where V and
E represent the set of vertices and edges respec-
tively, an edge from node u to node v with label
luv is represented as (u, v, luv). Since, informa-

tion in directed edge does not necessarily propa-
gate along its direction, following (Marcheggiani
and Titov, 2017) we define an updated edge set E 0

which includes inverse edges (v, u, l�1
uv ) and self-

loops (u, u,>) along with the original edge set E ,
where > is a special symbol to denote self-loops.
For each node v in G, we have an initial represen-
tation xv 2 R

d, 8v 2 V . On employing GCN, we
get an updated d-dimensional hidden representa-
tion hv 2 R

d, 8v 2 V , by considering only its im-
mediate neighbors (Kipf and Welling, 2017). This
can be formulated as:

hv = f

0

@
X

u2N (v)

(Wluvxu + bluv)

1

A .

Here, Wluv 2 R
d⇥d and bluv 2 R

d are label de-
pendent model parameters which are trained based
on the downstream task. N (v) refers to the set of
neighbors of v based on E 0 and f is any non-linear
activation function. In order to capture multi-
hop neighborhood, multiple GCN layers can be
stacked. Hidden representation of node v in this
case after kth GCN layer is given as:

hk+1
v = f

0

@
X

u2N (v)

⇣
W k

luv
hk

u + bk
luv

⌘
1

A .

3.2 Integrating Edge Importance

In automatically constructed graphs, some edges
might be erroneous and hence need to be dis-
carded. Edgewise gating in GCN by (Bastings
et al., 2017; Marcheggiani and Titov, 2017) allows
us to alleviate this problem by subduing the noisy
edges. This is achieved by assigning a relevance
score to each edge in the graph. At kth layer, the
importance of an edge (u, v, luv) is computed as:

gk
uv = �

⇣
hk

u · ŵk
luv

+ b̂k
luv

⌘
, (1)

Here, ŵk
luv
2 R

m and b̂k
luv
2 R are parameters

which are trained and �(·) is the sigmoid function.
With edgewise gating, the final GCN embedding
for a node v after kth layer is given as:

hk+1
v = f

0

@
X

u2N (v)

gk
uv ⇥

⇣
W k

luv
hk

u + bk
luv

⌘
1

A .

(2)
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4 RESIDE Overview

In multi-instance learning paradigm, we are given
a bag of sentences (or instances) {s1, s2, ...sn} for
a given entity pair, the task is to predict the relation
between them. RESIDE consists of three compo-
nents for learning a representation of a given bag,
which is fed to a softmax classifier. We briefly
present the components of RESIDE below. Each
component will be described in detail in the sub-
sequent sections. The overall architecture of RE-
SIDE is shown in Figure 1.

1. Syntactic Sentence Encoding: RESIDE uses
a Bi-GRU over the concatenated positional and
word embedding for encoding the local con-
text of each token. For capturing long-range
dependencies, GCN over dependency tree is
employed and its encoding is appended to the
representation of each token. Finally, attention
over tokens is used to subdue irrelevant tokens
and get an embedding for the entire sentence.
More details in Section 5.1.

2. Side Information Acquisition: In this mod-
ule, we use additional supervision from KBs
and utilize Open IE methods for getting rele-
vant side information. This information is later
utilized by the model as described in Section
5.2.

3. Instance Set Aggregation: In this part, sen-
tence representation from syntactic sentence
encoder is concatenated with the matched re-
lation embedding obtained from the previous
step. Then, using attention over sentences,
a representation for the entire bag is learned.
This is then concatenated with entity type em-
bedding before feeding into the softmax classi-
fier for relation prediction. Please refer to Sec-
tion 5.3 for more details.

5 RESIDE Details

In this section, we provide the detailed description
of the components of RESIDE.

5.1 Syntactic Sentence Encoding

For each sentence in the bag si with m tokens
{w1, w2, ...wm}, we first represent each token
by k-dimensional GloVe embedding (Pennington
et al., 2014). For incorporating relative position
of tokens with respect to target entities, we use
p-dimensional position embeddings, as used by

(Zeng et al., 2014). The combined token embed-
dings are stacked together to get the sentence rep-
resentation H 2 R

m⇥(k+2p). Then, using Bi-GRU
(Cho et al., 2014) over H, we get the new sen-
tence representation Hgru 2 R

m⇥dgru , where dgru

is the hidden state dimension. Bi-GRUs have been
found to be quite effective in encoding the context
of tokens in several tasks (Sutskever et al., 2014;
Graves et al., 2013).

Although Bi-GRU is capable of capturing lo-
cal context, it fails to capture long-range depen-
dencies which can be captured through depen-
dency edges. Prior works (Mintz et al., 2009; He
et al., 2018) have exploited features from syntac-
tic dependency trees for improving relation ex-
traction. Motivated by their work, we employ
Syntactic Graph Convolution Networks for en-
coding this information. For a given sentence,
we generate its dependency tree using Stanford
CoreNLP (Manning et al., 2014). We then run
GCN over the dependency graph and use Equa-
tion 2 for updating the embeddings, taking Hgru

as the input. Since dependency graph has 55 dif-
ferent edge labels, incorporating all of them over-
parameterizes the model significantly. Therefore,
following (Marcheggiani and Titov, 2017; Nguyen
and Grishman, 2018; Vashishth et al., 2018a) we
use only three edge labels based on the direction
of the edge {forward (!), backward ( ), self-
loop (>)}. We define the new edge label Luv for
an edge (u, v, luv) as follows:

Luv =

8
><

>:

! if edge exists in dependency parse
 if edge is an inverse edge
> if edge is a self-loop

For each token wi, GCN embedding hgcn
ik+1

2
R

dgcn after kth layer is defined as:

hgcn
ik+1

= f

 
X

u2N (i)

gk
iu ⇥

⇣
W k

Liu
hgcn

uk
+ bk

Liu

⌘!
.

Here, gk
iu denotes edgewise gating as defined in

Equation 1 and Liu refers to the edge label defined
above. We use ReLU as activation function f ,
throughout our experiments. The syntactic graph
encoding from GCN is appended to Bi-GRU out-
put to get the final token representation, hconcat

i
as [hgru

i ; hgcn
ik+1 ]. Since, not all tokens are equally

relevant for RE task, we calculate the degree of
relevance of each token using attention as used in
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Figure 2: Relation alias side information extraction for a given sentence. First, Syntactic Context Extrac-
tor identifies relevant relation phrases P between target entities. They are then matched in the embedding
space with the extended set of relation aliases R from KB. Finally, the relation embedding corresponding
to the closest alias is taken as relation alias information. Please refer Section 5.2.

(Jat et al., 2018). For token wi in the sentence,
attention weight ↵i is calculated as:

↵i =
exp(ui)Pm

j=1 exp(uj)
where, ui = hconcat

i · r.

where r is a random query vector and ui is the
relevance score assigned to each token. Atten-
tion values {↵i} are calculated by taking soft-
max over {ui}. The representation of a sentence
is given as a weighted sum of its tokens, s =Pm

j=1 ↵ihconcat
i .

5.2 Side Information Acquisition

Relevant side information has been found to im-
prove performance on several tasks (Ling and
Weld, 2012; Vashishth et al., 2018b). In distant
supervision based relation extraction, since the en-
tities are from a KB, knowledge about them can be
utilized to improve relation extraction. Moreover,
several unsupervised relation extraction methods
(Open IE) (Angeli et al., 2015; Mausam et al.,
2012) allow extracting relation phrases between
target entities without any predefined ontology and
thus can be used to obtain relevant side informa-
tion. In RESIDE, we employ Open IE methods
and additional supervision from KB for improving
neural relation extraction.

Relation Alias Side Information
RESIDE uses Stanford Open IE (Angeli et al.,
2015) for extracting relation phrases between tar-
get entities, which we denote by P . As shown in
Figure 2, for the sentence Matt Coffin, executive of

lowermybills, a company.., Open IE methods ex-
tract “executive of” between Matt Coffin and low-
ermybills. Further, we extend P by including to-
kens at one hop distance in dependency path from
target entities. Such features from dependency
parse have been exploited in the past by (Mintz
et al., 2009; He et al., 2018). The degree of match
between the extracted phrases in P and aliases of
a relation can give important clues about the rel-
evance of that relation for the sentence. Several
KBs like Wikidata provide such relation aliases,
which can be readily exploited. In RESIDE, we
further expand the relation alias set using Para-
phrase database (PPDB) (Pavlick et al., 2015). We
note that even for cases when aliases for relations
are not available, providing only the names of rela-
tions give competitive performance. We shall ex-
plore this point further in Section 7.3.

For matching P with the PPDB expanded rela-
tion alias set R, we project both in a d-dimensional
space using GloVe embeddings (Pennington et al.,
2014). Projecting phrases using word embeddings
helps to further expand these sets, as semanti-
cally similar words are closer in embedding space
(Mikolov et al., 2013; Pennington et al., 2014).
Then, for each phrase p 2 P , we calculate its co-
sine distance from all relation aliases in R and take
the relation corresponding to the closest relation
alias as a matched relation for the sentence. We
use a threshold on cosine distance to remove noisy
aliases. In RESIDE, we define a kr-dimensional
embedding for each relation which we call as
matched relation embedding (hrel). For a given
sentence, hrel is concatenated with its representa-
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tion s, obtained from syntactic sentence encoder
(Section 5.1) as shown in Figure 1. For sentences
with |P| > 1, we might get multiple matched re-
lations. In such cases, we take the average of their
embeddings. We hypothesize that this helps in im-
proving the performance and find it to be true as
shown in Section 7.

Entity Type Side Information
Type information of target entities has been shown
to give promising results on relation extraction
(Ling and Weld, 2012; Yaghoobzadeh et al.,
2017). Every relation puts some constraint on the
type of entities which can be its subject and object.
For example, the relation person/place of birth
can only occur between a person and a location.
Sentences in distance supervision are based on en-
tities in KBs, where the type information is readily
available.

In RESIDE, we use types defined by FIGER
(Ling and Weld, 2012) for entities in Freebase. For
each type, we define a kt-dimensional embedding
which we call as entity type embedding (htype).
For cases when an entity has multiple types in dif-
ferent contexts, for instance, Paris may have types
government and location, we take the average over
the embeddings of each type. We concatenate the
entity type embedding of target entities to the final
bag representation before using it for relation clas-
sification. To avoid over-parameterization, instead
of using all fine-grained 112 entity types, we use
38 coarse types which form the first hierarchy of
FIGER types.

5.3 Instance Set Aggregation

For utilizing all valid sentences, following (Lin
et al., 2016; Jat et al., 2018), we use attention over
sentences to obtain a representation for the entire
bag. Instead of directly using the sentence repre-
sentation si from Section 5.1, we concatenate the
embedding of each sentence with matched relation
embedding hrel

i as obtained from Section 5.2. The
attention score ↵i for ith sentence is formulated
as:

↵i =
exp(ŝi · q)Pn

j=1 exp(ŝj · q)
where, ŝi = [si; h

rel
i ].

here q denotes a random query vector. The bag
representation B, which is the weighted sum of
its sentences, is then concatenated with the entity
type embeddings of the subject (htype

sub ) and object

Datasets Split # Sentences # Entity-pairs

Riedel
(# Relations: 53)

Train 455,771 233,064
Valid 114,317 58,635
Test 172,448 96,678

GIDS
(# Relations: 5)

Train 11,297 6,498
Valid 1,864 1,082
Test 5,663 3,247

Table 1: Details of datasets used. Please see Sec-
tion 6.1 for more details.

(htype
obj ) from Section 5.2 to obtain B̂.

B̂ = [B; htype
sub ; htype

obj ] where, B =
nX

i=1

↵iŝi.

Finally, B̂ is fed to a softmax classifier to get the
probability distribution over the relations.

p(y) = Softmax(W · B̂ + b).

6 Experimental Setup

6.1 Datasets
In our experiments, we evaluate the models on
Riedel and Google Distant Supervision (GIDS)
dataset. Statistics of the datasets is summarized
in Table 1. Below we described each in detail1.

1. Riedel: The dataset is developed by (Riedel
et al., 2010) by aligning Freebase relations with
New York Times (NYT) corpus, where sen-
tences from the year 2005-2006 are used for
creating the training set and from the year 2007
for the test set. The entity mentions are anno-
tated using Stanford NER (Finkel et al., 2005)
and are linked to Freebase. The dataset has
been widely used for RE by (Hoffmann et al.,
2011; Surdeanu et al., 2012) and more recently
by (Lin et al., 2016; Feng et al.; He et al., 2018).

2. GIDS: Jat et al. (2018) created Google Dis-
tant Supervision (GIDS) dataset by extending
the Google relation extraction corpus2 with ad-
ditional instances for each entity pair. The
dataset assures that the at-least-one assumption
of multi-instance learning, holds. This makes
automatic evaluation more reliable and thus re-
moves the need for manual verification.

1Data splits and hyperparameters are in supplementary.
2https://research.googleblog.com/2013/04/50000-

lessons-on-how-to-read-relation.html
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(a) Riedel dataset (b) GIDS dataset

Figure 3: Comparison of Precision-recall curve. RESIDE achieves higher precision over the entire range
of recall than all the baselines on both datasets. Please refer Section 7.1 for more details.

6.2 Baselines
For evaluating RESIDE, we compare against the
following baselines:

• Mintz: Multi-class logistic regression model
proposed by (Mintz et al., 2009) for distant su-
pervision paradigm.

• MultiR: Probabilistic graphical model for multi
instance learning by (Hoffmann et al., 2011)

• MIMLRE: A graphical model which jointly
models multiple instances and multiple labels.
More details in (Surdeanu et al., 2012).

• PCNN: A CNN based relation extraction model
by (Zeng et al., 2015) which uses piecewise
max-pooling for sentence representation.

• PCNN+ATT: A piecewise max-pooling over
CNN based model which is used by (Lin et al.,
2016) to get sentence representation followed
by attention over sentences.

• BGWA: Bi-GRU based relation extraction
model with word and sentence level attention
(Jat et al., 2018).

• RESIDE: The method proposed in this paper,
please refer Section 5 for more details.

6.3 Evaluation Criteria
Following the prior works (Lin et al., 2016; Feng
et al.), we evaluate the models using held-out eval-
uation scheme. This is done by comparing the re-
lations discovered from test articles with those in
Freebase. We evaluate the performance of models
with Precision-Recall curve and top-N precision
(P@N) metric in our experiments.

7 Results

In this section we attempt to answer the following
questions:

Q1. Is RESIDE more effective than existing ap-
proaches for distant supervised RE? (7.1)

Q2. What is the effect of ablating different com-
ponents on RESIDE’s performance? (7.2)

Q3. How is the performance affected in the ab-
sence of relation alias information? (7.3)

7.1 Performance Comparison

For evaluating the effectiveness of our proposed
method, RESIDE, we compare it against the base-
lines stated in Section 6.2. We use only the neural
baselines on GIDS dataset. The Precision-Recall
curves on Riedel and GIDS are presented in Figure
3. Overall, we find that RESIDE achieves higher
precision over the entire recall range on both the
datasets. All the non-neural baselines could not
perform well as the features used by them are
mostly derived from NLP tools which can be er-
roneous. RESIDE outperforms PCNN+ATT and
BGWA which indicates that incorporating side in-
formation helps in improving the performance of
the model. The higher performance of BGWA
and PCNN+ATT over PCNN shows that attention
helps in distant supervised RE. Following (Lin
et al., 2016; Liu et al., 2017), we also evaluate our
method with different number of sentences. Re-
sults summarized in Table 2, show the improved
precision of RESIDE in all test settings, as com-
pared to the neural baselines, which demonstrates
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One Two All

P@100 P@200 P@300 P@100 P@200 P@300 P@100 P@200 P@300

PCNN 73.3 64.8 56.8 70.3 67.2 63.1 72.3 69.7 64.1
PCNN+ATT 73.3 69.2 60.8 77.2 71.6 66.1 76.2 73.1 67.4
BGWA 78.0 71.0 63.3 81.0 73.0 64.0 82.0 75.0 72.0
RESIDE 80.0 75.5 69.3 83.0 73.5 70.6 84.0 78.5 75.6

Table 2: P@N for relation extraction using variable number of sentences in bags (with more than one
sentence) in Riedel dataset. Here, One, Two and All represents the number of sentences randomly
selected from a bag. RESIDE attains improved precision in all settings. More details in Section 7.1

Figure 4: Performance comparison of different ab-
lated version of RESIDE on Riedel dataset. Over-
all, GCN and side information helps RESIDE im-
prove performance. Refer Section 7.2.

the efficacy of our model.

7.2 Ablation Results

In this section, we analyze the effect of various
components of RESIDE on its performance. For
this, we evaluate various versions of our model
with cumulatively removed components. The ex-
perimental results are presented in Figure 4. We
observe that on removing different components
from RESIDE, the performance of the model de-
grades drastically. The results validate that GCNs
are effective at encoding syntactic information.
Further, the improvement from side information
shows that it is complementary to the features ex-
tracted from text, thus validating the central thesis
of this paper, that inducing side information leads
to improved relation extraction.

7.3 Effect of Relation Alias Side Information

In this section, we test the performance of the
model in setting where relation alias information is
not readily available. For this, we evaluate the per-
formance of the model on four different settings:
• None: Relation aliases are not available.

Figure 5: Performance on settings defined in Sec-
tion 7.3 with respect to the presence of relation
alias side information on Riedel dataset. RESIDE
performs comparably in the absence of relations
from KB.

• One: The name of relation is used as its alias.
• One+PPDB: Relation name extended using

Paraphrase Database (PPDB).
• All: Relation aliases from Knowledge Base3

The overall results are summarized in Figure 5.
We find that the model performs best when aliases
are provided by the KB itself. Overall, we find
that RESIDE gives competitive performance even
when very limited amount of relation alias infor-
mation is available. We observe that performance
improves further with the availability of more alias
information.

8 Conclusion

In this paper, we propose RESIDE, a novel neural
network based model which makes principled use
of relevant side information, such as entity type
and relation alias, from Knowledge Base, for im-
proving distant supervised relation extraction. RE-
SIDE employs Graph Convolution Networks for

3Each relation in Riedel dataset is manually mapped to
corresponding Wikidata property for getting relation aliases.
Few examples are presented in supplementary material.
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encoding syntactic information of sentences and
is robust to limited side information. Through ex-
tensive experiments on benchmark datasets, we
demonstrate RESIDE’s effectiveness over state-
of-the-art baselines. We have made RESIDE’s
source code publicly available to promote repro-
ducible research.
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Abstract

Traditional approaches to the task of ACE
event detection primarily regard multiple
events in one sentence as independent ones
and recognize them separately by using
sentence-level information. However, events
in one sentence are usually interdependent
and sentence-level information is often insuf-
ficient to resolve ambiguities for some types
of events. This paper proposes a novel
framework dubbed as Hierarchical and Bias
Tagging Networks with Gated Multi-level
Attention Mechanisms (HBTNGMA) to solve
the two problems simultaneously. Firstly, we
propose a hierarchical and bias tagging net-
works to detect multiple events in one sen-
tence collectively. Then, we devise a gated
multi-level attention to automatically extract
and dynamically fuse the sentence-level and
document-level information. The experimen-
tal results on the widely used ACE 2005
dataset show that our approach significantly
outperforms other state-of-the-art methods.

1 Introduction

Event detection (ED) is a crucial subtask of event
extraction, which aims to identify event triggers
and classify them into specific types from texts.
According to the task defined in Automatic Con-
text Extraction1 (ACE), given the following sen-
tence S1, a robust ED system should be able to rec-
ognize two events: a Die event triggered by died
and an Attack event triggered by fired.

S1: In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

To this end, most methods (Ahn, 2006; Hong
et al., 2011; Chen et al., 2015; Nguyen and Grish-
man, 2016; Liu et al., 2017) model ED as a multi-
classification task and predict every word in the

1http://projects.ldc.upenn.edu/ace/
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Figure 1: Top 5 event types that co-occur with Attack
event in the same sentence in ACE 2005.

sentence separately to determine whether it trig-
gers a specific type of event by using sentence-
level information. However, they face two prob-
lems: (1) Neglecting event interdependency by
separately predicting each event; (2) Sentence-
level information is usually insufficient to resolve
ambiguities for some types of events. In the fol-
lowing, we will use examples to illustrate these
two problems specifically.

S2: The project leader was fired for the
bankruptcy of the subsidiary company.

Event interdependency: In S1, fired triggers
an Attack event, while it triggers an End-Position
event in S2. Because of the ambiguity, a tradi-
tional approach may mislabel fired in S1 as a trig-
ger of End-Position event. However, if we know
died triggers a Die event in S1, which is easier to
disambiguate, we tend to predict that fired triggers
an Attack event. The reason is that the events men-
tioned in the same sentence tend to be semanti-
cally coherent and a Die event usually co-occurs
with an Attack event. The similar phenomenon
can be found in S2. We conduct a statistical anal-
ysis on ACE 2005 dataset, and find that nearly
30% sentences contain multiple events which is
a proportion we can not ignore. To give an in-
tuitive illustration, the top 5 event types that co-
occur with Attack event in the same sentence are
shown in Figure 1. We call such clues as event
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interdependency. Some works (Li et al., 2013;
Yang and Mitchell, 2016; Liu et al., 2016b) rely
on a set of elaborately designed features and com-
plicated natural language processing (NLP) tools
to capture event interdependency. However, these
methods lack generalization, take a large amount
of human effort and are prone to error propaga-
tion problem. Though Nguyen et al. (2016) use a
Recurrent Neural Networks (RNN) based classifi-
cation model to capture the event interdependency
between current event candidate and the former
(left) predicted events, they miss the event interde-
pendency between current event candidate and the
later (right) predicted events, and the later events
can not change the type of current event. The rea-
son is that they classify the words of the sentence
from left to right one by one and only use the for-
mer events to predict the later event types. We
claim that both of the former and later predicted
events are important to predict the event type of
current trigger candidate. For example in S1, the
former predicted Die event can help us to predict
that fired triggers an Attack event, while in S2 the
later predicted bankruptcy event can help us to
predict that fired triggers an End-Position event.
Thus, how to use a neural-based model to capture
all event interdependencies (the interdependencies
between the current event candidate and its for-
mer/later predicted events) in the whole sentence
is a challenging problem.

Sentence-level and document-level informa-
tion: Besides event interdependency, knowing that
American tank is a weapon can also give us addi-
tional evidence to predict that fired triggers an At-
tack event in S1. Similarly in S2, knowing that
project leader is a job title can also help us to
predict that fired triggers an End-Position event.
We call such clues as sentence-level information.
However, sometimes it is difficult even for peo-
ple to classify event types from an isolated sen-
tence. We must resort to document-level informa-
tion. For example, considering the following sen-
tence with an ambiguous word left:

S3: He left the company.

It is hard to tell left triggers a Transport event
which means that he left the place, or an End-
Position event which means that he resigned from
the company. However, if we read the whole doc-
ument, a clue like “He planned to go shopping
before he went home, because he got off work
early today.” would give us more confidence to

believe that left triggers a Transport event, while
a clue like “They held a party for his retire-
ment.” would indicate the aforementioned event
is an End-Position event. We call such clues as
document-level information. Moreover, the confi-
dence of sentence-level and document-level infor-
mation should be taken into consideration when
using them together to construct a broader range
of contextual information. For example in S3,
document-level information will give us more ev-
idence, while in S1 sentence-level information
is enough to disambiguate the types of events.
There have been some feature-based studies (Ji
and Grishman, 2008; Liao and Grishman, 2010;
Huang and Riloff, 2012) that construct rules to
capture document-level information for improv-
ing sentence-level ED. However, they suffer from
two problems: (1) The features they used of-
ten need to be manually designed and may in-
volve error propagation from existing NLP tools;
(2) Sentence-level and document-level informa-
tion are integrated by a large number of fixed rules,
which is complicated to construct and it will be far
from complete. Thus, how to use a neural-based
model to automatically extract sentence-level and
document-level information and dynamically inte-
grate them is another challenging problem.

In this paper, we propose a Hierarchical and
Bias Tagging Networks with Gated Multi-level
Attention Mechanisms (HBTNGMA) to address
the two problems stated above simultaneously. To
capture event interdependency and collectively de-
tect multiple events in one sentence, we propose a
hierarchical and bias tagging networks for event
detection. In which, we exploit a hierarchical
RNN-based tagging layer to capture all event in-
terdependencies in the whole sentence and de-
vise a bias objective function to reinforce the in-
fluence of trigger tags on the model2. To use
a broader range of contextual information of the
event candidate, we propose a gated multi-level at-
tention, which can automatically extract sentence-
level and document-level information and inte-
grate them dynamically. In summary, the contri-
butions of this paper are as follows:

• We propose a novel framework for event
detection, which can automatically extract

2Compared with the task like Named Entities Recogni-
tion, the number of “O” tags is much more than the number
of trigger tags in ED task, i.e. if we use the non-bias objec-
tive function and tag all words in one sentence as “O”, we will
gain a low loss. Thus we devise a bias objective function.
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and dynamically integrate sentence-level and
document-level information and collectively
detect multiple events in one sentence.

• To capture event interdependency, we ex-
ploit a hierarchical and bias tagging net-
works to detect multiple events in one sen-
tence collectively. To automatically extract
and dynamically integrate contextual infor-
mation, we devise a gated multi-level atten-
tion Mechanisms. To our knowledge, this
is the first work to jointly use event inter-
dependency, sentence-level information and
document-level information via a neural tag-
ging schema for event detection task.

• We conduct extensive experiments on a
widely used ACE 2005 dataset, and the ex-
perimental results show that our approach
significantly outperforms other state-of-the-
art methods 3.

2 Task Description

Event detection (ED) is a crucial subtask of event
extraction (EE). In this paper, we focus on ED
task defined in ACE evaluation, where an event
is defined as a specific occurrence involving one
or more participants. Firstly, we introduce some
ACE terminology to facilitate the understanding of
this task: Event trigger: the main word or phrase
that most clearly expresses the occurrence of an
event. Event arguments: the mentions that are in-
volved in an event (viz., participants). Event men-
tion: a phrase or sentence within which an event
is described, including a trigger and arguments.

Given an English text document, an ED system
should identify event triggers and categorize their
event types for each sentence. For instance, in the
sentence “He died in the hospital”, an ED system
is expected to detect a Die event along with the
trigger word “died”. The ACE 2005 evaluation
defines 8 event types and 33 subtypes, such as At-
tack or Die. Following previous works (Li et al.,
2013; Chen et al., 2015; Liu et al., 2017; Nguyen
and Grishman, 2016), we categorize triggers into
these 33 subtypes.

3 Methodology

In this paper, we formulate event detection as a
sequence labelling task. As shown in Figure 2,

3Our source code, including all hyper-parameter settings
and pre-trained word embeddings, is openly available at
https://github.com/yubochen/NBTNGMA4ED

we label all words in one sentence collectively via
a Hierarchical and Bias Tagging Networks with
Gated Multi-level Attention Mechanisms (HBT-
NGMA). We assign a tag for each word to indi-
cate whether it triggers a specific type of event.
We adopt the “BIO” tags schema, where tag “O”
represent the “other” tag which means that the cor-
responding word does not trigger any event, tags
“B-EventType” and “I-EventType” represent the
“Begin-EventType” and “Inside-EventType” tag
respectively. “EventType” means that the word
triggers a specific type of event. “B” and “I” rep-
resent the position of the word in a trigger to solve
the problem that a trigger word contains multi-
ple words such as “take over”, “go off” and so
on. Thus, the total number of tags is Nt = 2 ⇤
|NeventType| + 1, where |NeventType| is the size of
the predefined event types and |NeventType| = 33
in this paper as stated above.

Figure 2 describes the architecture of HBT-
NGMA, which primarily involves the following
four components: (i) embedding layer, which
transforms each word into a continuous vector; (ii)
BiLSTM layer, which uses a Bidirectional Long
Short Term Memory (BiLSTM) to encode the se-
mantics of each word considering the forward and
backward information; (iii) gated multi-level at-
tention, in which we propose a sentence-level and
document-level attention to automatically extract
sentence-level and document-level information re-
spectively, and we devise a fusion gate to dy-
namically integrate them as context information;
and (iv) Hierarchical tagging layer, in which we
propose two Tagging LSTM (TLSTM1 and TL-
STM2) and a tagging attention to automatically
capture the event interdependency and tag all the
words of the sequence collectively.

3.1 Embedding Layer

This paper uses the learned word embeddings as
the source of basic features. Specifically, we use
the Skip-gram model (Mikolov et al., 2013) to
learn word embeddings on the NYT corpus.

Given a document d = {s1, s2, ..., si, ..., sNs},
where Ns is the number of sentences in the doc-
ument. The i-th sentence si can be represented
as token sequence si = {w1, w2, ..., wt, ..., wNw},
where Nw is length of the sentence and wt is the
t-th token of the sentence. Assume that the word
embedding for token wt is et and we use it as the
input of the following layer.
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Figure 2: The architecture of our proposed hierarchical and bias tagging networks with gated multi-level attention.

3.2 BiLSTM Layer
In sequence labelling problems, the BiLSTM has
been proven effective to capture the semantic in-
formation of each word (Lample et al., 2016). In
this paper, we use the LSTM unit as described in
(Zaremba and Sutskever, 2014). For each word
wt, the forward LSTM encodes wt by consider-
ing the contextual information from word w1 to
wt, which is marked as

�!
h t. Similarly, the back-

ward LSTM encodes wt based on the contextual
information from wNw to wt, which is marked as
 �
h t. Finally, we concatenate

�!
h t and

 �
h t to rep-

resent the information of the word wt, denoted as
ht = [

�!
h t,
 �
h t], and we concatenate

�!
h Nw and

 �
h 1

to represent the encoding information of the whole
sentence si, denoted as hsi = [

�!
h Nw ,

 �
h 1].

3.3 Gated Multi-level Attention
Gated multi-level attention primarily involves the
following three components: (i) sentence-level at-
tention layer, which automatically captures im-
portant sentence-level information by consider-
ing the current word; (ii) document-level atten-
tion layer, which automatically captures impor-
tant document-level information by considering
the current sentence; and (iii) fusion gate layer,
which use a fusion gate to dynamically integrate
sentence-level and document-level information.

Sentence-level Attention Layer
Sentence-level attention layer aims to capture the
important clues in sentence level. For each can-
didate word wt in the sentence, its sentence-level

semantic information sht is calculated as follows:

sht =
XNw

k=1
↵k

shk (1)

where ↵k
s is the weight of each word representa-

tion hk. In this paper, we define ↵k
s as following:

↵k
s =

exp(zk
s )

PNw

j=1 exp(zj
s)

(2)

where zk
s is the relatedness between the t-th word

representation ht and the k-th word representation
hk, modeled by bilinear attention as:

zk
s = tanh(htWsahT

k + bsa) (3)

where Wsa is the weight matrix and bsa is the
bias term. Following above sentence-level atten-
tion mechanism, we can get the sentence-level in-
formation for each word wt by considering the se-
mantic information of the word wt.

Document-level Attention Layer
Similar to sentence-level attention, document-
level attention captures the vital clues in the doc-
ument level. The document-level semantic infor-
mation dhi for i-th sentence calculated as follows:

dhi =
XNs

k=1
↵k

dhsk

↵k
d =

exp(zk
d )

PNs

j=1 exp(zj
d)

zk
d = tanh(hsi

WdahT
sk

+ bda)

(4)

where ↵k
d is the weight of each sentence repre-

sentation hsk , zk
d is the relatedness between i-th
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sentence representation hsi and the k-th sentence
representation hsk , Wda is the weight matrix and
bda is the bias term. Compared with sentence-level
information, all words in the i-th sentence have the
same document-level information dhi.

Fusion Gate Layer
We devise a fusion gate to dynamically integrate
sentence-level information sht and document-
level information dhi for the t-th word wt in the
i-th sentence si, and calculate the contextual in-
formation representation crt as follows:

crt = (Gt � sht) + ((1 � Gt) � dhi) (5)

where Gt is a fusion gate aims to model the con-
fidence of clues provided by sentence-level infor-
mation sht and document-level information dhi,
which is calculated as follows:

G = �(Wg[sht, dhi] + bg) (6)

where Wg is the weight matrix and bg is the bias
term, � is a sigmoid function and � denotes
element-wise multiplication. Finally, the contex-
tual information crt of word wt and its word em-
bedding et are concatenated into a single vector
xrt = [et, crt] as the feature representation of wt.

3.4 Hierarchical Tagging Layer
In hierarchical tagging layer, we propose two Tag-
ging LSTMs (TLSTM1 and TLSTM2) and a tag-
ging attention to automatically capture the event
interdependency and tag the sequence collectively.

The First Tagging Layer: TLSTM1
When detecting the tag of word wt in TLSTM1,
the inputs are: the feature representation xrt ob-
tained from embedding layer and gated multi-level
attention layer, former predicted tag vector T 1

t�1,
and former hidden vector h1

t�1 in TLSTM1. The
detail operations are defined as follows:

i1t = �(W 1
ix

xrt + W 1
ih

h1
t�1 + W 1

iT
T 1

t�1)

f1
t = �(W 1

fx
xrt + W 1

fh
h1

t�1 + W 1
fT

T 1
t�1)

o1
t = �(W 1

ox
xrt + W 1

oh
h1

t�1 + W 1
oT

T 1
t�1)

u1
t = '(W 1

ux
xrt + W 1

uh
h1

t�1 + W 1
uT

T 1
t�1)

c1
t = i1t � u1

t + f1
t � c1

t�1

h1
t = o1

t � '(c1
t )

T 1
t = W 1

T h1
t + b1

T

(7)

Where it is an input gate, ut is an input modulation
gate, ft is a forget gate, ot is an output gate, ct is a
memory cell and T 1

t is a predicted tagging vector.

The Second Tagging Layer: TLSTM2
Though the TLSTM1 can capture the interdepen-
dency between current event candidate and the for-
mer predicted event tags, it can not capture the
interdependency between the current event candi-
date and the later predicted event tags. Thus, we
devise a second tagging layer (TLSTM2) upon the
LSTM1 to capture the interdependency between
the current event candidate and both of former and
later predicted event tags from TLSTM1. When
detecting the tag of word wt in TLSTM2, the in-
puts are: the feature representation xrt, former
predicted tag vector T 2

t�1 in TLSTM2, the pre-
liminary predicted information T a

t calculated from
TLSTM1, and former hidden vector h2

t�1 in TL-
STM2. The detail operations are defined as fol-
lows:

i2t = �(W 2
ix

xrt + W 2
ih

h2
t�1 + W 2

iT
T 2

t�1 + W 2
ia

T a
t )

f2
t = �(W 2

fx
xrt + W 2

fh
h2

t�1 + W 2
fT

T 2
t�1 + W 2

fa
T a

t )

o2
t = �(W 2

ox
xrt + W 2

oh
h2

t�1 + W 2
oT

T 2
t�1 + W 2

oa
T a

t )

u2
t = '(W 2

ux
xrt + W 2

uh
h2

t�1 + W 2
uT

T 2
t�1 + W 2

ua
T a

t )

c2
t = i2t � u2

t + f2
t � c2

t�1

h2
t = o2

t � '(c2
t )

T 2
t = W 2

T h2
t + b2

T

(8)

The unit structure of TLSTM2 is similar to the
unit of TLSTM1. The parts need to pay attention
are follows: (1) the initial hidden input h2

0 of the
TLSTM2 is the last hidden vector h1

Nw
of the TL-

STM1. (2) the preliminary predicted information
T a

t is calculated from TLSTM1 by using a tagging
attention as follows.

Tagging Attention
Tagging attention aims to automatically encode
the preliminary predicted information T a

t for the
word wt and the details are as follows:

T a
t =

XNw

k=1
↵k

T T 1
k

↵k
T =

exp(zk
T )

PNw

j=1 exp(zj
T )

zk
T = tanh(T 1

t Wta(T 1
k )T + bta)

(9)

where ↵k
T is the weight of each preliminary pre-

dicted tag T 1
k , zk

T is the relatedness between t-th
preliminary predicted tag T 1

t and the k-th prelim-
inary predicted tag T 1

k , Wta is the weight matrix
and bta is the bias term.

The final normalized tag probability for word
wt is based on the predicted tag vector T 2

t from
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TLSTM2 and computed as follows:

Ot = WyT 2
t + by

p(Oi
t|sj , ✓) =

exp(Oi
t)PNt

k=1 exp(Ok
t )

(10)

where p(Oi
t|sj , ✓) is the probability that assigning

the i-th tag to word wt in sentence sj when param-
eters is ✓, and Nt is the total number of tags.

3.5 Training with Bias Objective Function
In one sentence, the number of “O” tags is much
more than the number of trigger tags. Thus, we
devise a bias objective function J(✓) to reinforce
the influence of trigger tags on the model, which
is defined as follows:

J(✓) = max
XNts

j=1

XNw

t=1
(log p(Oyt

t |sj , ✓) · I(O)

+ ↵ log p(Oyt

t |sj , ✓) · (1 � I(O)))
(11)

where Nts is the number of training sentences, Nw

is the length of sentence sj , p(Oyt
t |sj , ✓) is the nor-

malized probabilities of tags defined in Formula
10 and yt is the golden tag of word wt in sentence
sj , ↵ is the bias weight and the larger ↵ will bring
the greater influence of trigger tags on the model.
Besides, I(O) is a switching function to distin-
guish the loss of tag “O” and trigger tags, which
is defined as follows:

I(O) =

⇢
1, if tag = “O”
0, if tag 6= “O” (12)

To compute the network parameter ✓, we maxi-
mize the log likelihood J (✓) through stochastic
gradient descent over shuffled mini-batches with
the Adadelta (Zeiler, 2012) update rule.

4 Experiments

4.1 Experimental Setting
Dataset and Evaluation Metrics
We conduct experiments on the widely used ACE
2005 dataset. For comparison, as the same as pre-
vious works (Liao and Grishman, 2010; Li et al.,
2013; Chen et al., 2015; Nguyen et al., 2016; Liu
et al., 2017), we used the same test set with 40
documents and the same development set with 30
documents and the rest 529 documents are used
for training. Finally, we use Precision (P ), Recall
(R) and F measure (F1) as the evaluation metrics
as the same as previous work.

Hyper-parameter Setting
Hyper-parameters are tuned on the development
dataset by grid search. We train the word embed-
ding using Skip-gram algorithm 4 on the NYT cor-
pus 5. We set the dimension of word embeddings
as 100, the dimension of tag vector as 20, all the
size of LSTM in BiLSTM layer, TLSTM1 and TL-
STM2 layer as 100, the bias parameter ↵ in For-
mula 11 as 5, the batch size as 20, the learning rate
as 0.001, the dropout rate as 0.5.

4.2 Our Method vs. State-of-the-art Methods
We select the following state-of-the-art methods
for comparison, which can be classified as two
types: separate and collective methods:

Separate methods: 1) Li’s MaxEnt: the
method that detects events in one sentence sepa-
rately by using human-designed features (Li et al.,
2013). 2) Liao’s CrossEvent : the method that
uses cross event information (Liao and Grish-
man, 2010). 3) Hong’s CrossEntity: the method
that uses cross entity information (Hong et al.,
2011). 4) Chen’s DMCNN: the dynamic multi-
pooling convolutional neural networks method
(Chen et al., 2015). 5) Chen’s DMCNN+:
the DMCNN method argumented with automati-
cally labeled data (Chen et al., 2017). 6) Liu’s
FrameNet : the method that leverages FrameNet
as extended training data to improve ED (Liu et al.,
2016a). 7) Liu’s ANN-Aug: the method that use
the annotated argument information via a super-
vised attention to improve ED (Liu et al., 2017).

Collective methods: 1) Li’s Structure: the
method that collectively detects events by us-
ing human-designed features (Li et al., 2013).
2) Yang’s JointEE: the method that detects
events and entities in one sentence jointly based
on human-designed features (Yang and Mitchell,
2016). 3) Nguyen’s JRNN: the method that ex-
ploits a RNN model to collectively detects events
by only using sentence-level information (Nguyen
et al., 2016). 4) Liu’s PSL : the method that uses
a probabilistic soft logic to detect events by using
human-designed features (Liu et al., 2016b).

Experimental results are shown in Table 1.
From the table, we have the following observa-
tions: (1) Among all the methods, our HBT-
NGMA achieves the best performance. It can
improve the best collective method’s F1 by

4https://code.google.com/p/word2vec/
5https://catalog.ldc.upenn.edu/LDC2008T19
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Methods P R F1

Li’s MaxEnt (2013) 74.5 59.1 65.9
Liao’s CrossEvent (2010) 68.7 68.9 68.8

Hong’s CrossEntity (2011) 72.9 64.3 68.3
Chen’s DMCNN (2015) 75.6 63.6 69.1

Chen’s DMCNN+ † (2017) 75.7 66.0 70.5
Liu’s FrameNet † (2016a) 77.6 65.2 70.7
Liu’s ANN-Aug † (2017) 76.8 67.5 71.9

Li’s Structure (2013) 73.7 62.3 67.5
Yang’s JointEE (2016) 75.1 63.3 68.7
Nguyen’s JRNN (2016) 66.0 73.0 69.3

Liu’s PSL (2016b) 75.3 64.4 69.4
Ours HBTNGMA 77.9 69.1 73.3

Table 1: Overall performance on blind test data. The
upper table illustrates the performance of separate ED
systems and the lower illustrates collective ED systems.
† means the method that uses external resources.

3.9% (Liu’s PSL) and improve the best sepa-
rate method’s F1 by 1.4% (Liu’s ANN-Aug) al-
though Liu’s ANN-Aug uses FrameNet as exter-
nal resources. We also perform a t-test (p 6

0.05), which indicates that our method signifi-
cantly outperforms all of the compared methods.
(2) Comparing our HBTNGMA to separate meth-
ods, it achieves a better performance. It proves
that collectively predicting multiple events in one
sentence is effective. (3) Our HBTNGMA out-
performs feature-based collective methods (Li’s
Structure, Yang’s JointEE and Liu’s PSL), it
proves that our automatically learned features
can efficiently capture semantic information from
plain texts. (4) Compared with Nguyen’s JRNN,
HBTNGMA gains a 4.0% improvement on F1

value. The reason is that Nguyen’s JRNN only
uses sentence-level information while our model
exploits multi-level information, and our model
can capture the interdependencies between the
current event candidate and its former/later pre-
dicted events simultaneously.

4.3 Effect of The Hierarchical and Bias
Tagging Networks

In this subsection, we prove the effectiveness of
hierarchical and bias tagging networks for collec-
tive ED. We select following methods as base-
lines: 1) LSTM+Softmax: a simplified version
of our HBTNGMA, which directly use a soft-
max layer to separately detect events after we
get the feature representation xrt of each word
wt. 2) LSTM+CRF: the method is similar to
our HBTNGMA, which uses a CRF layer to tag
words instead of our Hierarchical TLSTM (HTL-
STM) tagging layer. 3) LSTM+TLSTM: the
method is similar to our HBTNGMA, which only

use a TLSTM1 and takes all tags have same in-
fluence in training loss (i.e. ↵ in is set as 1)
. 4) LSTM+HTLSTM: the method is similar
to our HBTNGMA, which use a HTLSTM (TL-
STM1+TLSTM2) and do not use bias objective
function. And LSTM+HTLSTM+Bias is our pro-
posed HBTNGMA. Moreover, we divide the test-
ing data into two parts according the event num-
ber in a sentence (single event and multiple events)
and perform evaluations separately.

Method 1/1 1/N all
LSTM+Softmax 74.7 44.6 66.8

LSTM+CRF 75.1 49.5 68.5
LSTM+TLSTM 76.8 51.2 70.2

LSTM+HTLSTM 77.9 57.3 72.4
LSTM+HTLSTM+Bias 78.4 59.5 73.3

Table 2: Performance of different ED systems. 1/1
means one sentence that only has one event and 1/N
means that one sentence has multiple events.

Table 2 shows the results. And we have
the following observations: 1) Compared
with LSTM+Softmax, LSTM-based collective
ED methods (LSTM+CRF, LSTM+TLSTM,
LSTM+HTLSTM, LSTM+HTLSTM+Bias) achie-
ves a better performance. Surprisingly, the
LSTM+HTLSTM+Bias yields a 14.9% improve-
ment on the sentence contains multiple events
over the LSTM+Softmax. It proves neural tagging
schema is effective for ED task especially for
the sentences contain multiple events. 2) The
LSTM+TLSTM achieve better performances than
LSTM+CRF. And the LSTM+HTLSTM achieve
better performances than LSTM+TLSTM. The
results prove the effectiveness of the TLSTM
layer and HTLSTM layer. 3) Compared with
LSTM+HTLSTM, the LSTM+HTLSTM+Bias
gains a 0.9% improvement on all sentence. It
demonstrates the effectiveness of our proposed
bias objective function.

4.4 Effect of The Gated Multi-level Attention
This subsection studies the effectiveness of our
gated multi-level attention. We adopt same archi-
tecture of our HBTNGMA as shown in Figure 2
with different level clues as baselines: 1) Word
Only is the method only uses word embedding et

to identify events. 2) Word+SA uses sentence-
level attention to capture important sentence-level
information as additional clues. 3) Word+DA
uses document-level attention to capture important
document-level information as additional clues. 4)
Word+Average MA uses both of sentence-level
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and document-level attention to capture multi-
level information and integrate them with a aver-
age gate (all the dimension of the fusion gate are
set as 0.5 ), which is a special case of our pro-
posed HBTNGMA. And Word+Gated MA is our
proposed HBTNGMA model.

Method P R F1

Word Only 70.1 63.4 66.6
Word+SA 75.6 68.2 71.7
Word+DA 73.1 65.8 69.3

Word+Average MA 76.5 68.7 72.4
Word+Gated MA 77.9 69.1 73.3

Table 3: Performance of gated multi-level attention.

Results are shown in Table 3. From the re-
sults, we have the following observations: 1)
Compared with word only, Word+SA achieves a
better performance. We can make the same ob-
servation when comparing Word+DA with word
only. It proves that both sentence-level and
document-level information are helpful for ED
task. 2) Compared with Word+DA, Word+SA
achieves a better performance. It proves that in
most of cases sentence-level information provides
more clues than document-level information. 3)
Word+Gated MA gains a 0.9% improvement than
Word+Average MA. It demonstrates that the effec-
tiveness of our fusion gate to dynamically inte-
grate clues from multiple levels.

4.5 Case Study
Interesting Cases: Our neural tagging schema not
only can model the interdependency between mul-
tiple events in one sentence as proved in Subsec-
tion 4.3, but also the “BIO” tagging schema can
solve the multiple words trigger inherently. We
conduct a statistical analysis on the experimental
results, and find that nearly 50% cases with multi-
ple word trigger was solved by our model. Exam-
ple is shown in Figure 3.

Early Saturday，more units were waiting in Kuwait to    smash through    any Iraqi resistance. 
B-Attack I-AttackO O O O O O O O O O O O

Figure 3: The example of case solved by our model.

Attention Visualization: As limited of space,
we take one sentence with high sentence-level
gated weight (example 1) and one sentence with
high document-level gated weight (example 2) as
examples for attention visualization. As shown in
Figure 4, in example 1, sentence-level informa-
tion plays more important role in disambiguating
fired, and the words (tank, died and Baghdad) give

Sentence Document

Sentence Document

Example 1 (sentence-level attention) ：

Example 2 (document-level attention) ：

In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel.

… this is when you were in the Senate --“less and less information was new, 
fewer and fewer arguments were fresh,and the repetitiveness of the old arguments 
became tiresome.” “I was becoming almost as cynical as my constituents. I knew 
it was time to leave." Isn't that a great argument for term limits? 

Figure 4: Attention visualization. The heat map indi-
cate the contextual attention. Blue for sentence-level
and orange for document-level. The pie chart indicate
the fusion gate weight.

us ample evidence to predict that fired triggers an
Attack event. While document-level information
plays a more important role in example 2. The
surrounding sentence “this is ... tiresome.” gives
us more confidence to predict that leave triggers
an End-Position event.

5 Related Works

Event detection is an increasingly hot and chal-
lenging research topic in NLP. Generally, exist-
ing approaches could roughly be divided into two
groups: separate and collective methods.

Separate methods: These methods regard mul-
tiple events in one sentence as independent ones
and recognize them separately. These meth-
ods include feature-based methods which exploit
a diverse set of strategies to convert classifica-
tion clues into feature vectors (Ahn, 2006; Ji
and Grishman, 2008; Liao and Grishman, 2010;
Hong et al., 2011; Huang and Riloff, 2012), and
neural-based methods which use neural networks
to automatically capture clues from plain texts
(Chen et al., 2015; Nguyen and Grishman, 2015;
Feng et al., 2016; Nguyen and Grishman, 2016;
Chen et al., 2017; Duan et al., 2017; Liu et al.,
2017). Though effective these methods, they ne-
glect event interdependency by separately predict-
ing each event.

Collective methods: These methods try to
model the event interdependency and detect mul-
tiple events in one sentence collectively. How-
ever, nearly all of these methods are feature-based
methods (McClosky et al., 2011; Li et al., 2013;
Yang and Mitchell, 2016; Liu et al., 2016b), which
rely on elaborately designed features and suffer er-
ror propagation from existing NLP tools. Nguyen
et al. (2016) exploits a neural-based method to de-
tect multiple events collectively. However, they
only use the sentence-level information and ne-
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glect document-level clues, and can only capture
the interdependencies between the current event
candidate and its former predicted events. More-
over, there method can not handle the multiple
words trigger problem.

6 Conclusion

This paper proposes a novel framework for event
detection, which can automatically extract and dy-
namically integrate sentence-level and document-
level information and collectively detect multi-
ple events in one sentence. A hierarchical and
bias tagging networks is proposed to detect mul-
tiple events in one sentence collectively. A gated
multi-level attention is devised to automatically
extract and dynamically integrate contextual infor-
mation. The experimental results on the widely
used dataset prove the effectiveness of the pro-
posed method.
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Abstract

We present a complete, automated, and effi-
cient approach for utilizing valency analysis in
making dependency parsing decisions. It in-
cludes extraction of valency patterns, a proba-
bilistic model for tagging these patterns, and
a joint decoding process that explicitly con-
siders the number and types of each token’s
syntactic dependents. On 53 treebanks rep-
resenting 41 languages in the Universal De-
pendencies data, we find that incorporating va-
lency information yields higher precision and
F1 scores on the core arguments (subjects and
complements) and functional relations (e.g.,
auxiliaries) that we employ for valency anal-
ysis. Precision on core arguments improves
from 80.87 to 85.43. We further show that
our approach can be applied to an ostensibly
different formalism and dataset, Tree Adjoin-
ing Grammar as extracted from the Penn Tree-
bank; there, we outperform the previous state-
of-the-art labeled attachment score by 0.7. Fi-
nally, we explore the potential of extending va-
lency patterns beyond their traditional domain
by confirming their helpfulness in improving
PP attachment decisions.1

1 Introduction

Many dependency parsers treat attachment deci-
sions and syntactic relation labeling as two in-
dependent tasks, despite the fact that relation la-
bels carry important subcategorization informa-
tion. For example, the number and types of the
syntactic arguments that a predicate may take is
rather restricted for natural languages — it is not
common for an English verb to have more than one
syntactic subject or more than two objects.

In this work, we present a parsing approach
that explicitly models subcategorization of (some)
syntactic dependents as valency patterns (see

1Our implementation is available at https://
github.com/tzshi/valency-parser-emnlp18

He says that you like to swim .

nsubj

ccomp

mark

nsubj

xcomp

mark

Figure 1: Sample annotation in UD, encoding the
core valency pattern nsubj ˛ ccomp for says,
nsubj ˛ xcomp for like, and so on (see §2-4)

Fig. 1 for examples), and operationalize this no-
tion as extracted supertags. An important dis-
tinction from prior work is that our definition of
valency-pattern supertags is relativized to a user-
specified subset of all possible syntactic relations
(see §3). We train supertaggers that assign proba-
bilities of potential valency patterns to each token,
and leverages these probabilities during decoding
to guide our parsers so that they favor more lin-
guistically plausible output structures.

We mainly focus on two subsets of relations in
our analysis, those involving core arguments and
those that represent functional relations, and per-
form experiments over a collection of 53 treebanks
in 41 languages from the Universal Dependencies
dataset (UD; Nivre et al., 2017). Our valency-
aware parsers improve upon strong baseline sys-
tems in terms of output linguistic validity, mea-
sured as the accuracy of the assigned valency pat-
terns. They also have higher precision and F1
scores on the subsets of relations under analysis,
suggesting a potentially controlled way to balance
precision-recall trade-offs.

We further show that our approach is not limited
to a particular treebank annotation style. We apply
our method to parsing another grammar formal-
ism, Tree Adjoining Grammar, where dependency
and valency also play an important role in both
theory and parser evaluation. Our parser reaches
a new state-of-the-art LAS score of 92.59, with
more than 0.6 core-argument F1-score improve-
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ment over our strong baseline parser.
Finally, we demonstrate the applicability of our

valency analysis approach to other syntactic phe-
nomena less associated with valency in its tradi-
tional linguistic sense. In a case study of PP at-
tachment, we analyze the patterns of two syntac-
tic relations commonly used in PP attachment, and
include them in the joint decoding process. Preci-
sion of the parsers improves by an absolute 3.30%
on these two relation types.

2 Syntactic Dependencies and Valencies

According to Nivre (2005), the modern depen-
dency grammar can be traced back to Tesnière
(1959), with its roots reaching back several cen-
turies before the Common Era. The theory is cen-
tered on the notion of dependency, an asymmet-
rical relation between words of a sentence. Tes-
nière distinguishes three node types when analyz-
ing simple predicates: verb equivalents that de-
scribe actions and events, noun equivalents as the
arguments of the events, and adverb equivalents
for detailing the (temporal, spatial, etc.) circum-
stances. There are two types of relations: (1)
verbs dominate nouns and adverbs through a de-
pendency relation; (2) verbs and nouns are linked
through a valency relation. Tesnière compares a
verb to an atom: a verb can attract a certain num-
ber of arguments, just as the valency of an atom
determines the number of bonds it can engage in
(Ágel and Fischer, 2015). In many descriptive
lexicographic works (Helbig and Schenkel, 1959;
Herbst et al., 2004), valency is not limited to verbs,
but also includes nouns and adjectives. For more
on the linguistic theory, see Ágel et al. (2003,
2006).

Strictly following the original notion of va-
lency requires distinguishing between arguments
and adjuncts, as well as obligatory and optional
dependents. However, there is a lack of consen-
sus as to how these categorizations may be dis-
tinguished (Tutunjian and Boland, 2008), and thus
we adopt a more practical definition in this paper.

3 Computational Representation

Formally, we fix a set of syntactic relations R,
and define the valency pattern of a token wi with
respect to R as the linearly-ordered2 sequence

2Our approach, whose full description is in §5, can be
adapted to cases where linear ordering is de-emphasized. The
algorithm merely requires a distinction between left and right

Dataset Subset Syntactic Relations

UD

Core nsubj, obj, iobj,
csubj, ccomp, xcomp

Func. aux, cop, mark,
det, clf, case

PP (§8) nmod, obl

TAG Core 0 (subject), 1 (object),
2 (indirect object)

Co-head CO

Table 1: Sets of syntactic relations we used for va-
lency analysis. UD subsets come from the official
categorization in the annotation guidelines.

a´j ¨ ¨ ¨ a´1 ˛ a1 ¨ ¨ ¨ ak: the ˛ symbol denotes the
center word wi, and each al asserts the existence
of a word w dominated by wi via relation al P R,
wi

al�Ñ w. For al and am, when l † m, the syn-
tactic dependent for al linearly precedes the syn-
tactic dependent for am. As an example, consider
the UD-annotated sentence in Fig. 1. The token
says has a core-relation3 valency pattern nsubj ˛
ccomp, and like has the pattern nsubj ˛ xcomp.
If we consider only functional relations, both like
and swim have the pattern mark ˛.4 We sometimes
employ the abbreviated notation ↵L ˛↵R, where ↵
indicates a sequence and the letters L and R distin-
guish left dependencies from right dependencies.

We make our definition of valency patterns de-
pendent on choice of R not only because some de-
pendency relations are more often obligatory and
closer to the original theoretical definition of va-
lency, but also because the utility of different types
of syntactic relations can depend on the down-
stream task. For example, purely functional de-
pendency labels are semantically vacuous, so they
are often omitted in the semantic representations
extracted from dependency trees for question an-
swering (Reddy et al., 2016, 2017). There are also
recent proposals for parser evaluation that down-
play the importance of functional syntactic rela-
tions (Nivre and Fang, 2017).

dependents. We choose to encode linearity since it appears
that most languages empirically exhibit word order prefer-
ences even if they allow for relatively free word order.

3UD core and functional relations are listed in Table 1.
4The (possibly counterintuitive) direction for that and to

is a result of UD’s choice of a content-word-oriented design.
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4 Pilot Study: Sanity Checks

We consider two questions that need to be ad-
dressed at the outset:5

1. How well do the extracted patterns generalize
to unseen data?

2. Do state-of-the-art parsers already capture
the notion of valency implicitly, though they
are not explicitly optimized for it?

The first question checks the feasibility of learning
valency patterns from a limited amount of data;
the second probes the potential for any valency-
informed parsing approach to improve over cur-
rent state-of-the-art systems.

To answer these questions, we use the UD 2.0
dataset for the CoNLL 2017 shared task (Zeman
et al., 2017) and the system outputs6 of the top
five performing submissions (Dozat et al., 2017;
Shi et al., 2017b; Björkelund et al., 2017; Che
et al., 2017; Lim and Poibeau, 2017). Selection
of treebanks is the same as in §6. We extract va-
lency patterns relative to the set of 6 UD core ar-
guments given in Table 1 because they are close to
the original notion of valency and we hypothesize
that these patterns should exhibit few variations.
This is indeed the case: the average number of
valency patterns we extract is 110.4 per training
treebank, with Turkish (tr) having the fewest at
34, and Galician (gl) having the most at 298 pat-
terns. We observe that in general, languages with
higher degree of flexibility in word order tend to
generate more patterns in the data, as our patterns
encode linear word order information.

Next, we extract valency patterns from the test
set and compare them against those from the train-
ing set. On average, out of the 55.4 patterns ob-
served in the gold-standard test sets, only 5.5, or
9.98%, are new and unseen with respect to train-
ing. In comparison, 36.2% of the word types ap-
pearing in the test sets are not seen during training.
This suggests that the valency pattern space is rel-
atively restricted, and the patterns extracted from
training sets do generalize well to test sets.

Finally, we consider the average number of va-
lency patterns extracted from the top-performing

5We actually performed these sanity checks after im-
plementation and experiments of our approach, because we
missed this idea and because it requires access to test sets that
we abstained from looking at during model development.

6Retrieved from https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-2424.

system outputs and the number of those not ob-
served in training.7 All 5 systems are remarkably
“hallucinatory” in inventing valency relations, in-
troducing 16.8 to 35.5 new valency patterns, sig-
nificantly larger than the actual number of unseen
patterns. Below we show an error committed by
the state-of-the-art Dozat et al. (2017) parser (up-
per half) as compared to the gold-standard annota-
tion (lower half), and we highlight the core argu-
ment valency relations of the verb bothers in bold.
The system incorrectly predicts how come to be a
clausal subject.

How come no one bothers to ask ...

advmod

csubj

nsubj

ccomp

advmod

fixed nsubj

xcomp

Each such non-existent new pattern implies at
least some (potentially small) parsing error that
can contribute to the degradation of downstream
task performance.

5 Valency-Aware Dependency Parsing

5.1 Overview
Our model is based on the following probability
factorization for a given sentence x “ w1, . . . , wn

and parse tree y for x:

P py|xq “ 1

Zx

n�

i“1

P pvi|wiqP phi|wiqP pri|wi, hiq,

where Zx is the normalization factor, vi is the va-
lency pattern extracted for wi from y, hi is the
index of the syntactic governor of wi, and ri is
the syntactic relation label of the dependency rela-
tion between whi and wi. We first assume that we
have a feature extractor that associates each token
in the sentence wi with a contextualized feature
vector wi, and explain how to calculate the fac-
tored probabilities (§5.2). Then we discuss decod-
ing (§5.3) and training (§5.4). Our decoder can be
viewed as a special-case implementation of head-
automaton grammars (Alshawi, 1996; Eisner and
Satta, 1999). Finally, we return to the issue of fea-
ture extraction (§5.5).

7The CoNLL 2017 shared task is an end-to-end parsing
task, so the participating systems do not have access to gold-
standard tokenization, which is a potential explanation for the
presented analysis. On the other hand, the conclusion still
holds even if we restrict to system outputs with perfect or
nearly perfect segmentations.
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R-INIT:
↵L ˛ ‚↵R

h h

R-LINK:

↵L ˛ ↵R
1 ‚ a↵R

2

h i i ` 1 j

‚↵̂L ˛ ↵̂R

↵L ˛ ↵R
1 a ‚ ↵R

2

h j

‚↵̂L ˛ ↵̂R

h
a�Ñ j

R-COMB:

↵L ˛ ↵R
1 ‚ ↵R

2

h j
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Figure 2: Eisner’s (1996)/Eisner and Satta’s (1999) algorithm, with valency-pattern annotations, incorpo-
rated as state information, shown explicitly. We show only the R-rules; the L-rules are symmetric.

5.2 Parameterization
We parameterize P pvi|wiq as a softmax distribu-
tion over all candidate valency patterns:

P pvi|wiq 9 exppscoreVAL
vi

pwiqq,

where scoreVAL is a multi-layer perceptron (MLP).
For each word wi, we generate a probability dis-

tribution over all potential syntactic heads in the
sentence (Zhang et al., 2017). After we have se-
lected the head of wi to be whi , we decide on the
syntactic relation label based on another probabil-
ity distribution. We use two softmax functions:

P phi|wiq 9 exppscoreHEADpwhi ,wiqq,
P pri|wi, hiq 9 exppscoreLABEL

ri
pwhi ,wiqq,

where both scoreHEAD and scoreLABEL are param-
eterized by deep biaffine scoring functions (Dozat
and Manning, 2017).

5.3 Decoding
For joint decoding, we adopt the Eisner’s (1996)
algorithm annotated with valency patterns as the
state information in Eisner and Satta (1999). The
algorithm is depicted in Fig. 2. For each complete
and incomplete span, visualized as triangles and
trapezoids respectively, we annotate the head with
its valency pattern. We adopt Earley’s (1970) no-
tation of ‚ to outward-delimit the portion of a va-
lency pattern, starting from the center word ˛, that
has already been collected within the span. INIT
generates a minimal complete span with hypoth-
esized valency pattern; the ‚ is put adjacent to ˛.

COMB matches an incomplete span to a complete
span with compatible valency pattern, yielding a
complete analysis on the relevant side of ˛. LINK
either advances the ‚ by attaching a syntactic de-
pendent with the corresponding relation label, or
attaches a dependent with a relation label irrele-
vant to the current valency analysis. This algo-
rithm can be easily extended to cases where we
analyze multiple subsets of valency relations si-
multaneously: we just need to annotate each head
with multiple layers of valency patterns, one for
each subset.8

The time complexity of a naïve dynamic
programming implementation is Op|V |2|↵|n3q,
where |V | is the number of valency patterns and
|↵| is the maximum length of a valency pattern. In
practice, |V | is usually larger than n, making the
algorithm prohibitively slow. We thus turn to A*
parsing for a more practical solution.

A* parsing We take inspiration from A* CCG
parsing (Lewis and Steedman, 2014; Lewis et al.,
2016; Yoshikawa et al., 2017). The idea (see
Alg. 1) is to estimate the best compatible full parse
for every chart item (in our case, complete and in-
complete spans), and expand the chart based on
the estimated priority scores. Our factorization of
probability scores allows the following admissi-
ble heuristic: for each span, we can optimistically
estimate its best full parse score by assigning to

8To allow our model to account for unseen patterns in new
data, we create a special wildcard valency pattern that allows
dependents with arbitrary relations in the decoding process,
and during training, treat valency patterns occurring fewer
than 5 times as examples of the wildcard pattern.
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Algorithm 1 Agenda-based best-first parsing al-
gorithm, adapted from Lewis et al. (2016), Alg. 1.
Helper Functions: INITpsq returns the set of
spans generated by INIT. C.RULESppq returns the
set of spans that can be derived by combining p
with existing entries in C through COMB or LINK.

1: procedure PARSE(s)
2: // Empty priority queue A
3: A � H
4: // Initialize A with minimal complete spans
5: for p P INITpsq do
6: A.INSERTppq;
7: // Empty chart C
8: C � H
9: while A ‰ H do

10: p � A.POPMAXpq
11: // Found the global optimal solution
12: if p is a full parse then return p
13: else if p R C then
14: C.ADDppq
15: // Extend the chart
16: for p1 P C.RULESppq do
17: A.INSERTpp1q

every token outside the span the best possible va-
lency pattern, best possible attachment and best re-
lation label.

5.4 Training
We train all components jointly and optimize for
the cross entropy between our model prediction
and the gold standard, or, equivalently, the sum
of the log-probabilities for the three distributions
comprising our factorization from §5.1. This can
be thought of as an instance of multi-task learn-
ing (MTL; Caruana, 1997), which has been shown
to be useful in parsing (Kasai et al., 2018). To
further reduce error propagation, instead of using
part-of-speech tags as features, we train a tagger
jointly with our main parser components (Zhang
and Weiss, 2016).

5.5 Feature Extraction
We adopt bi-directional long short-term memory
networks (bi-LSTMs; Hochreiter and Schmidhu-
ber, 1997) as our feature extractors, since they
have proven successful in a variety of syntactic
parsing tasks (Kiperwasser and Goldberg, 2016;
Cross and Huang, 2016; Stern et al., 2017; Shi
et al., 2017a). As inputs to the bi-LSTMs,

we concatenate one pre-trained word embedding,
one randomly-initialized word embedding, and
the output of character-level LSTMs for captur-
ing sub-token level information (Ballesteros et al.,
2015). The bi-LSTM output vectors at each
timestep are then assigned to each token as its con-
textualized representation wi.

6 Experiments

Data and Evaluation Our main experiments are
based on UD version 2.0, which was prepared for
the CoNLL 2017 shared task (Zeman et al., 2017).
We used 53 of the treebanks9 across 41 languages
that have train and development splits given for the
shared task. In contrast to the shared-task setting,
where word and sentence segmentation are to be
performed by the system, we directly use the test-
set gold segmentations in order to focus directly on
parsing; but this does mean that the performance
of our models cannot be directly compared to the
officially-reported shared-task results. For evalu-
ation, we report unlabeled and labeled attachment
scores (UAS and LAS respectively). Further, we
explicitly evaluate precision, recall and F1 scores
(P/R/F) for the syntactic relations from Table 1, as
well as valency pattern accuracies (VPA) involv-
ing those relations.

Implementation Details We use three-layer bi-
LSTMs with 500 hidden units (250 in each di-
rection) for feature extraction. The valency an-
alyzer uses a one-hidden-layer MLP with ReLU
activation function (Nair and Hinton, 2010), while
the head selector and labeler use 512- and 128-
dimensional biaffine scoring functions respec-
tively. Our models are randomly initialized (Glo-
rot and Bengio, 2010) and optimized with AMS-
grad (Reddi et al., 2018) with initial learning rate
0.002. We apply dropout (Srivastava et al., 2014)
to our MLPs and variational dropout (Gal and
Ghahramani, 2016) to our LSTMs with a keep rate
of 0.67 during training.

Efficiency Our A* parsers are generally reason-
ably efficient; for the rare († 1%) cases where the
A* search does not finish within 500,000 chart ex-
pansion steps, we back off to a model without va-
lency analysis. When analyzing three or more re-
lation subsets, the initialization steps become pro-

9We exclude the two large treebanks cs and
ru_syntagrus due to experiment resource constraints.
There are other Czech and Russian treebanks in our selected
collection.
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Core Func.
Subsets UAS LAS # VPA P / R / F # VPA P / R / F

Baseline 87.59 83.64 2.75 95.83 80.87 / 81.31 / 81.08 4.85 97.51 91.99 / 92.43 / 92.20

Core MTL 87.71 83.80 2.73 96.02 81.96 / 81.98 / 81.96 4.85 97.51 91.96 / 92.50 / 92.23
+ Joint Decoding 87.80 83.93 2.60 96.68 85.43 / 81.75 / 83.53 4.86 97.50 91.81 / 92.65 / 92.22

Func. MTL 87.67 83.71 2.75 95.80 80.69 / 81.21 / 80.94 4.84 97.58 92.30 / 92.57 / 92.44
+ Joint Decoding 87.72 83.75 2.75 95.80 80.64 / 81.32 / 80.96 4.80 97.74 93.16 / 92.42 / 92.79

Core + Func. MTL 87.67 83.79 2.73 95.99 81.72 / 81.81 / 81.75 4.84 97.59 92.27 / 92.62 / 92.44
+ Joint Decoding 87.81 83.99 2.63 96.60 84.70 / 81.90 / 83.26 4.82 97.74 92.98 / 92.69 / 92.83

Table 2: Macro-averaged results on UD 2.0 across 53 treebanks. Detailed results in the Suppl. Material.
VPA=valency pattern accuracy; MTL=multi-task learning; #=average number of predicted attachments
per sentence. Best results for each metrics are highlighted in bold.

Treebank Baseline Joint ER Treebank Baseline Joint ER Treebank Baseline Joint ER

DutchMAX 84.91 89.83 32.63 PortugueseMAX 92.24 93.46 15.66 NorwegianMIN 90.38 91.41 10.76
Greek 85.82 89.50 25.95 PortugueseMIN 86.90 88.88 15.10 Indonesian 81.53 83.51 10.75
SwedishMAX 86.97 90.21 24.92 SpanishMAX 85.04 87.29 15.06 Latvian 71.33 74.41 10.74
FinnishMAX 88.14 90.87 22.96 Hungarian 79.11 82.13 14.45 FrenchMIN 90.56 91.51 10.01
Italian 87.04 90.00 22.85 Arabic 74.33 77.97 14.16 Basque 76.79 78.97 9.39
LatinMAX 82.52 86.37 22.03 Urdu 70.47 74.63 14.07 Hindi 80.38 82.16 9.04
Danish 85.85 88.93 21.75 DutchMIN 76.03 79.18 13.13 German 81.05 82.73 8.85
FinnishMIN 87.95 90.44 20.68 SwedishMIN 85.51 87.36 12.76 CzechMIN 76.68 78.64 8.42
Slovenian 86.03 88.59 18.31 Croatian 84.14 86.12 12.46 Polish 86.67 87.72 7.84
Old Slavonic 76.79 81.02 18.25 Gothic 72.15 75.60 12.38 A. GreekMIN 59.00 62.17 7.74
FrenchMAX 89.86 91.71 18.21 A. GreekMAX 74.31 77.48 12.34 Turkish 58.43 61.59 7.61
Estonian 72.02 77.09 18.09 Hebrew 80.27 82.60 11.80 Korean 83.33 84.55 7.31
Slovak 80.39 83.78 17.32 Persian 80.83 83.08 11.72 Chinese 73.81 75.66 7.07
CzechMAX 85.58 88.02 16.90 NorwegianMAX 91.20 92.21 11.50 EnglishMIN 84.69 85.60 5.96
LatinMIN 76.60 80.55 16.89 Catalan 88.19 89.54 11.49 Vietnamese 48.45 51.49 5.91
Romanian 82.60 85.51 16.74 EnglishMID 84.26 86.05 11.37 Galician 72.17 73.70 5.49
EnglishMAX 90.96 92.43 16.20 SpanishMIN 88.72 89.98 11.17 Japanese 91.87 91.88 0.14
Russian 82.17 85.05 16.13 Bulgarian 83.98 85.75 11.02 Average 81.08 83.53 13.80

Table 3: Treebank-specific F1 scores on core argument relations, comparing the baseline models to our
Core MTL + joint decoding models, sorted by the error reduction (ER, %) rate. When comparing a model
with performance s2 against baseline score s1, ER is defined as ps2 ´ s1q{p1 ´ s1q. For languages with
two or three treebanks, we include multiple entries differentiated by the subscripts MAX/MID/MIN,
corresponding to the treebanks with the highest/median/lowest ER, respectively. A. Greek = Ancient
Greek.
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hibitively slow due to the large number of valency
pattern combinations. Thus, we limit the num-
ber of combinations for each token to the highest-
scoring 500.

Results on UD We present our main experimen-
tal results on UD in Table 2. The baseline sys-
tem does not leverage any valency information
(we only train the head selectors and labelers,
and use the original Eisner decoder). We com-
pare the baseline to settings where we train the
parsers jointly with our proposed valency analyz-
ers, distinguishing the effect of using this infor-
mation only at training (multi-task learning; MTL)
vs. both at training and decoding.

Including valency analysis into the training ob-
jective already provides a slight improvement in
parsing performance, in line with the findings of
Kasai et al. (2018). With our proposed joint de-
coding, there is a mild improvement to the overall
UAS and LAS, and a higher boost to VPA. The
output parse trees are now more precise in the an-
alyzed valency relations: on core arguments, pre-
cision increases by as much as 4.56. As shown
by Table 3, the performance gain of joint decod-
ing varies across treebanks, ranging from an error
reduction rate of over 30% (Dutch Lassy Small
Treebank) on core argument relations to nearly
0% (Japanese). Overall, our approach exhibits a
clearly positive impact on most of the treebanks
in UD. We do not see performance correlating
to language typology, although we do observe
smaller error-reduction rates on treebanks with
lower baseline performances, that is, on “harder”
languages.

7 Parsing Tree Adjoining Grammar

Dependency and valency relations also play an
important role in formalisms other than depen-
dency grammar. In this section, we apply our pro-
posed valency analysis to Tree Adjoining Gram-
mar (TAG; Joshi and Schabes, 1997), because
TAG derivation trees, representing the process
of inserting obligatory arguments and adjoining
modifiers, can be treated as a dependency repre-
sentation (Rambow and Joshi, 1997). We follow
prior art and use Chen’s (2001) automatic conver-
sion of the Penn Treebank (Marcus et al., 1993)
into TAG derivation trees. The dataset annota-
tion has labels 0, 1 and 2, corresponding to sub-
ject, direct object, and indirect object; we treat
these as our core argument subset in valency anal-

ysis.10 Additionally, we also analyze CO (co-head
for phrasal verbs) as a separate singleton subset.
We leave out adj (adjuncts) in defining our va-
lency patterns. We strictly follow the experiment
protocol of previous work (Bangalore et al., 2009;
Chung et al., 2016; Friedman et al., 2017; Kasai
et al., 2017, 2018), and report the results in Ta-
ble 4. The findings are consistent with our main
experiments: MTL helps parsing performance,
and joint decoding further improves on core argu-
ment F1 scores, reaching a new state-of-the-art re-
sult of 92.59 LAS. The precision recall trade-off is
pronounced for the CO relation subset.

8 Case Study on PP Attachment

Although valency information has traditionally
been used to analyze complements or core argu-
ments,11 in this section, we show the utility of
our approach in analyzing other types of syntactic
relations. We choose the long-standing problem
of prepositional phrase (PP) attachment (Hindle
and Rooth, 1993; Brill and Resnik, 1994; Collins
and Brooks, 1995; de Kok et al., 2017), which is
known to be a major source of parsing mistakes
(Kummerfeld et al., 2012; Ng and Curran, 2015).
In UD analysis, PPs usually have the labels obl
or nmod with respect to their syntactic parents,
whereas adpositions are attached via a case rela-
tion, which is included in the functional relation
subset. Thus, we add another relation subset, obl
and nmod, to our valency analysis.

Table 5 presents the results for different com-
binations of valency relation subsets. We find
that PP-attachment decisions are generally harder
to make, compared with core and functional re-
lations. Including them during training distracts
other parsing objectives (compare Core + PP with
only analyzing Core in §6). However, they do per-
mit improvements on precision for PP attachment
by 3.30, especially with our proposed joint decod-
ing. This demonstrates the usage of our algorithm
outside the traditional notions of valency — it can
be a general method for training parsers to focus
on specific subsets of syntactic relations.

10We choose not to use the sparse labels 3 and 4, which
encode additional complements.

11There are also recent proposals to analyze valency with-
out distinguishing complements and adjuncts (Čech et al.,
2010).
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Core CO
UAS LAS VPA P / R / F VPA P / R / F

Friedman et al. (2017) 90.31 88.96 – – – –
Kasai et al. (2017) 90.97 89.68 – – – –
Kasai et al. (2018) 93.26 91.89 – – – –

Baseline 93.66 92.44 97.06 92.45 / 92.76 / 92.60 99.22 73.11 / 87.20 / 79.54

Core + CO MTL 93.71 92.53 97.19 92.74 / 93.20 / 92.97 99.24 75.43 / 84.44 / 79.68
+ Joint Decoding 93.75 92.59 97.47 93.27 / 93.22 / 93.24 99.24 76.06 / 83.70 / 79.70

Table 4: Experimental results on parsing TAGs.

UAS LAS Core P / R / F Func. P / R / F PP P / R / F

Baseline 87.59 83.64 80.87 / 81.31 / 81.08 91.99 / 92.43 / 92.20 77.29 / 77.99 / 77.62

PP MTL 87.67 83.70 80.61 / 81.23 / 80.91 92.03 / 92.50 / 92.26 78.30 / 78.38 / 78.32
+ Joint Decoding 87.68 83.69 79.93 / 81.50 / 80.69 91.92 / 92.51 / 92.21 80.59 / 77.68 / 79.04

Core + PP MTL 87.70 83.77 81.62 / 81.81 / 81.71 91.93 / 92.52 / 92.22 77.93 / 78.25 / 78.08
+ Joint Decoding 87.80 83.91 84.18 / 81.97 / 83.05 91.68 / 92.65 / 92.16 79.71 / 78.03 / 78.83

Core + Func. + PP MTL 87.67 83.75 81.35 / 81.68 / 81.50 92.18 / 92.61 / 92.39 77.99 / 78.22 / 78.08
+ Joint Decoding 87.81 83.94 83.88 / 81.97 / 82.90 92.78 / 92.63 / 92.70 79.54 / 78.11 / 78.78

Table 5: Experimental results involving analyzing PPs as valency patterns.

9 Further Related Work

Supertagging Supertagging (Bangalore and
Joshi, 2010) has been proposed for and used
in parsing TAG (Bangalore and Joshi, 1999;
Nasr and Rambow, 2004), CCG (Curran and
Clark, 2003; Curran et al., 2006), and HPSG
(Ninomiya et al., 2006; Blunsom and Baldwin,
2006). Within dependency parsing, supertags
have also been explored in the literature, but prior
work mostly treats them as additional features.
Ambati et al. (2013, 2014) use CCG supertags to
improve dependency parsing results, while Ouchi
et al. (2014, 2016) leverage dependency-based
supertags as features. Faleńska et al. (2015) com-
pare supertagging to parser stacking, where they
extract supertags from base parsers to provide
additional features for stacked parsers, instead of
having a supertagger as a separate component.

Constrained Dependency Grammar Another
line of research (Wang and Harper, 2004; Foth
et al., 2006; Foth and Menzel, 2006; Bharati
et al., 2002, 2009; Husain et al., 2011) utilizes su-
pertags in dependency parsing within the frame-
work of constraint dependency grammar (CDG;
Maruyama, 1990; Heinecke et al., 1998). Con-
straints in CDG may be expressed in very gen-
eral terms (and are usually hand-crafted for spe-
cific languages), so prior work in CDG involves
a constraint solver that iteratively or greedily up-

date hypotheses without optimality guarantees. In
contrast, our work focuses on a special form of
constraints — the valency patterns of syntactic de-
pendents within a subset of relations — and we
provide an efficient A*-based exact decoding al-
gorithm.

Valency in Parsing To the best of our knowl-
edge, there have been few attempts to utilize lex-
ical valency information or to improve specifi-
cally on core arguments in syntactic parsing apart
from CDG. Øvrelid and Nivre (2007) target pars-
ing core relations in Swedish with specifically-
designed features such as animacy and defi-
niteness that are useful in argument realization.
Jakubıček and Kovář (2013) leverage external lex-
icons of verb valency frames for reranking. Mir-
roshandel et al. (2012, 2013) and Mirroshandel
and Nasr (2016) extract selectional constraints and
subcategorization frames from large unannotated
corpora, and enforce them through forest rerank-
ing. Our approach does not rely on external re-
sources or lexicons, but directly extracts valency
patterns from labeled dependency parse trees. Ear-
lier works in this spirit include Collins (1997).

Semantic Dependency Parsing and Semantic
Role Labeling The notion of valency is also
used to describe predicate-argument structures
that are adopted in semantic dependency pars-
ing and semantic role labeling (Surdeanu et al.,
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2008; Hajič et al., 2009; Oepen et al., 2014, 2015).
While semantic frames clearly have patterns, pre-
vious work (Punyakanok et al., 2008; Flanigan
et al., 2014; Täckström et al., 2015; Peng et al.,
2017; He et al., 2017) incorporates several types
of constraints, including uniqueness and determin-
ism constraints that require that certain labels ap-
pear as arguments for a particular predicate only
once. They perform inference through integer lin-
ear programming, which is usually solved approx-
imately, and cannot easily encode linear ordering
constraints for the arguments.

A* parsing Best-first search uses a heuristic to
expand the parsing chart instead of doing so ex-
haustively. It was first applied to PCFGs (Rat-
naparkhi, 1997; Caraballo and Charniak, 1998;
Sagae and Lavie, 2006), and then to dependency
parsing (Sagae and Tsujii, 2007; Zhao et al.,
2013; Vaswani and Sagae, 2016). Our proba-
bility factorization permits a simple yet effec-
tive A* heuristic. A* parsing was introduced for
parsing PCFGs (Klein and Manning, 2003; Pauls
and Klein, 2009), and has been widely used for
grammar formalisms and parsers with large search
spaces, for example CCG (Auli and Lopez, 2011)
and TAG (Waszczuk et al., 2016, 2017). Our
decoder is similar to the supertag and dependency
factored A* CCG parser (Yoshikawa et al., 2017),
which in turn builds upon the work of Lewis and
Steedman (2014) and Lewis et al. (2016). Our
model additionally adds syntactic relations into
the probability factorizations.

10 Conclusions

We have presented a probability factorization and
decoding process that integrates valency patterns
into the parsing process. The joint decoder favors
syntactic analyses with higher valency-pattern su-
pertagging probabilities. Experiments on a large
set of languages from UD show that our parsers
are more precise in the subset of syntactic rela-
tions chosen for valency analysis, in addition to
enjoying the benefits gained from jointly training
the parsers and supertaggers in a multi-task learn-
ing setting.

Our method is not limited to a particular type of
treebank annotation or a fixed subset of relations.
We draw similar conclusions when we parse TAG
derivation trees. Most interestingly, in a case study
on PP attachment, we confirm the utility of our
parsers in handling syntactic relations beyond the

traditional domain of valency.
A key insight of this paper that departs from

prior work on automatic extraction of supertags
from dependency annotations is that our definition
of valency patterns is relativized to a subset of syn-
tactic relations. This definition is closer to the lin-
guistic notion of valency and alleviates the data
sparsity problems in that the number of extracted
valency patterns is small. At the same time, the
patterns generalize well, and empirically, they are
effective in our proposed joint decoding process.

Our findings point to a number of directions for
future work. First, the choice of subsets of syntac-
tic relations for valency analysis impacts the pars-
ing performance in those categories. This may
suggest a controllable way to address precision-
recall trade-offs targeting specific relation types.
Second, we experimented with a few obvious sub-
sets of relations; characterizing what subsets can
be most improved with valency augmentation is an
open question. Finally, our decoder builds upon
projective dependency-tree decoding algorithms.
In the future, we will explore the possibility of re-
moving the projective constraint and the tree re-
quirement, extending the applicability of valency
patterns to other tasks such as semantic role label-
ing.
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Abstract

Unsupervised learning of syntactic structure is
typically performed using generative models
with discrete latent variables and multinomial
parameters. In most cases, these models have
not leveraged continuous word representa-
tions. In this work, we propose a novel gener-
ative model that jointly learns discrete syntac-
tic structure and continuous word representa-
tions in an unsupervised fashion by cascading
an invertible neural network with a structured
generative prior. We show that the invertibility
condition allows for efficient exact inference
and marginal likelihood computation in our
model so long as the prior is well-behaved. In
experiments we instantiate our approach with
both Markov and tree-structured priors, eval-
uating on two tasks: part-of-speech (POS) in-
duction, and unsupervised dependency parsing
without gold POS annotation. On the Penn
Treebank, our Markov-structured model sur-
passes state-of-the-art results on POS induc-
tion. Similarly, we find that our tree-structured
model achieves state-of-the-art performance
on unsupervised dependency parsing for the
difficult training condition where neither gold
POS annotation nor punctuation-based con-
straints are available.1

1 Introduction

Data annotation is a major bottleneck for the appli-
cation of supervised learning approaches to many
problems. As a result, unsupervised methods that
learn directly from unlabeled data are increasingly
important. For tasks related to unsupervised syn-
tactic analysis, discrete generative models have
dominated in recent years – for example, for both
part-of-speech (POS) induction (Blunsom and
Cohn, 2011; Stratos et al., 2016) and unsuper-
vised dependency parsing (Klein and Manning,

1Code is available at https://github.com/jxhe/struct-
learning-with-flow.

(a) Traditional pre-trained
skip-gram embeddings

(b) Learned latent embedd-
ings from our approach

Figure 1: Visualization (t-SNE) of skip-gram embeddings
(trained on one billion words with context window size equal
to 1) and latent embeddings learned by our approach with a
Markov-structured prior. Each node represents a word and is
colored according to the most likely gold POS tag from the
Penn Treebank (best seen in color).

2004; Cohen and Smith, 2009; Pate and Johnson,
2016). While similar models have had success on
a range of unsupervised tasks, they have mostly ig-
nored the apparent utility of continuous word rep-
resentations evident from supervised NLP appli-
cations (He et al., 2017; Peters et al., 2018). In
this work, we focus on leveraging and explicitly
representing continuous word embeddings within
unsupervised models of syntactic structure.

Pre-trained word embeddings from massive un-
labeled corpora offer a compact way of inject-
ing a prior notion of word similarity into mod-
els that would otherwise treat words as discrete,
isolated categories. However, the specific prop-
erties of language captured by any particular em-
bedding scheme can be difficult to control, and,
further, may not be ideally suited to the task at
hand. For example, pre-trained skip-gram em-
beddings (Mikolov et al., 2013) with small con-
text window size are found to capture the syntac-
tic properties of language well (Bansal et al., 2014;
Lin et al., 2015). However, if our goal is to sepa-
rate syntactic categories, this embedding space is
not ideal – POS categories correspond to overlap-
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x3
<latexit sha1_base64="r7RTsVKDbYXIRCyPj9szuInKMVA=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcqMCuqu6MZlBccW2qFk0kwbmkyG5I5Yhv6DuNXvcCVu/QY/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7Gt9m8/USVZjJ6gElMfYGHEQsZwWCoTi8Q6fO0f96v1pyGk5e9DNwC1FBRrX71tzeQJBE0AsKx1l3XicFPsQJGOJ1WeommMSZjPKRdAyMsqPbT3O/UPjHMwA6lMicCO2f/b6RYaIFhZJRZ03OzjAEpua4bFYxE1rJn8rueiKAeiHomUjrUC0YgvPJTFsUJ0IjMfIQJt0HaWTb2gClKgE8MwEQx8xWbjLDCBEyCFZORu5jIMvDOGtcN5/6i1rwpwiqjI3SMTpGLLlET3aEW8hBBHL2iN/RuvVgf1qf1NZOWrGLnEM2V9f0HLzudBQ==</latexit><latexit sha1_base64="r7RTsVKDbYXIRCyPj9szuInKMVA=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcqMCuqu6MZlBccW2qFk0kwbmkyG5I5Yhv6DuNXvcCVu/QY/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7Gt9m8/USVZjJ6gElMfYGHEQsZwWCoTi8Q6fO0f96v1pyGk5e9DNwC1FBRrX71tzeQJBE0AsKx1l3XicFPsQJGOJ1WeommMSZjPKRdAyMsqPbT3O/UPjHMwA6lMicCO2f/b6RYaIFhZJRZ03OzjAEpua4bFYxE1rJn8rueiKAeiHomUjrUC0YgvPJTFsUJ0IjMfIQJt0HaWTb2gClKgE8MwEQx8xWbjLDCBEyCFZORu5jIMvDOGtcN5/6i1rwpwiqjI3SMTpGLLlET3aEW8hBBHL2iN/RuvVgf1qf1NZOWrGLnEM2V9f0HLzudBQ==</latexit><latexit sha1_base64="r7RTsVKDbYXIRCyPj9szuInKMVA=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcqMCuqu6MZlBccW2qFk0kwbmkyG5I5Yhv6DuNXvcCVu/QY/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7Gt9m8/USVZjJ6gElMfYGHEQsZwWCoTi8Q6fO0f96v1pyGk5e9DNwC1FBRrX71tzeQJBE0AsKx1l3XicFPsQJGOJ1WeommMSZjPKRdAyMsqPbT3O/UPjHMwA6lMicCO2f/b6RYaIFhZJRZ03OzjAEpua4bFYxE1rJn8rueiKAeiHomUjrUC0YgvPJTFsUJ0IjMfIQJt0HaWTb2gClKgE8MwEQx8xWbjLDCBEyCFZORu5jIMvDOGtcN5/6i1rwpwiqjI3SMTpGLLlET3aEW8hBBHL2iN/RuvVgf1qf1NZOWrGLnEM2V9f0HLzudBQ==</latexit>

x2
<latexit sha1_base64="OUe9NQ3ny9IilmHPU3ONQ4TtfRo=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3LCo4ttEPJpJk2NJkMyR2xDP0Hcavf4Urc+g1+hn9gZjoL214I9+Tcc8PJCWLONDjOj1VaW9/Y3CpvV3Z29/YPqodHj1omilCPSC5VN8CachZRDxhw2o0VxSLgtBNMbrN554kqzWT0ANOY+gKPIhYygsFQ3X4g0ufZoDmo1pyGk5e9CtwC1FBR7UH1tz+UJBE0AsKx1j3XicFPsQJGOJ1V+ommMSYTPKI9AyMsqPbT3O/MPjPM0A6lMicCO2f/b6RYaIFhbJRZ0wuzjAEpua4bFYxF1rJn8rueiqAeiHomUjrUS0YgvPJTFsUJ0IjMfYQJt0HaWTb2kClKgE8NwEQx8xWbjLHCBEyCFZORu5zIKvCajeuGc39Ra90UYZXRCTpF58hFl6iF7lAbeYggjl7RG3q3XqwP69P6mktLVrFzjBbK+v4DLZmdBA==</latexit><latexit sha1_base64="OUe9NQ3ny9IilmHPU3ONQ4TtfRo=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3LCo4ttEPJpJk2NJkMyR2xDP0Hcavf4Urc+g1+hn9gZjoL214I9+Tcc8PJCWLONDjOj1VaW9/Y3CpvV3Z29/YPqodHj1omilCPSC5VN8CachZRDxhw2o0VxSLgtBNMbrN554kqzWT0ANOY+gKPIhYygsFQ3X4g0ufZoDmo1pyGk5e9CtwC1FBR7UH1tz+UJBE0AsKx1j3XicFPsQJGOJ1V+ommMSYTPKI9AyMsqPbT3O/MPjPM0A6lMicCO2f/b6RYaIFhbJRZ0wuzjAEpua4bFYxF1rJn8rueiqAeiHomUjrUS0YgvPJTFsUJ0IjMfYQJt0HaWTb2kClKgE8NwEQx8xWbjLHCBEyCFZORu5zIKvCajeuGc39Ra90UYZXRCTpF58hFl6iF7lAbeYggjl7RG3q3XqwP69P6mktLVrFzjBbK+v4DLZmdBA==</latexit><latexit sha1_base64="OUe9NQ3ny9IilmHPU3ONQ4TtfRo=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3LCo4ttEPJpJk2NJkMyR2xDP0Hcavf4Urc+g1+hn9gZjoL214I9+Tcc8PJCWLONDjOj1VaW9/Y3CpvV3Z29/YPqodHj1omilCPSC5VN8CachZRDxhw2o0VxSLgtBNMbrN554kqzWT0ANOY+gKPIhYygsFQ3X4g0ufZoDmo1pyGk5e9CtwC1FBR7UH1tz+UJBE0AsKx1j3XicFPsQJGOJ1V+ommMSYTPKI9AyMsqPbT3O/MPjPM0A6lMicCO2f/b6RYaIFhbJRZ0wuzjAEpua4bFYxF1rJn8rueiqAeiHomUjrUS0YgvPJTFsUJ0IjMfYQJt0HaWTb2kClKgE8NwEQx8xWbjLHCBEyCFZORu5zIKvCajeuGc39Ra90UYZXRCTpF58hFl6iF7lAbeYggjl7RG3q3XqwP69P6mktLVrFzjBbK+v4DLZmdBA==</latexit>

x1
<latexit sha1_base64="wPlw8y/0IqfHJrazcSQaHuwQ07k=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpcyIoO6KblxWcGyhLSWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlPlUCaXbATFM8Ij5wEGwdqwZkYFgrWB8m81bT0wbrqIHmMSsJ8kw4iGnBCzV7gYyfZ72vX6l6tbdvPAy8ApQRUU1+5Xf7kDRRLIIqCDGdDw3hl5KNHAq2LTcTQyLCR2TIetYGBHJTC/N/U7xqWUGOFTanghwzv7fSIk0ksDIKrNm5mYZA0oJU7MqGMmsZc/kdzORQS2QtUykTWgWjEB41Ut5FCfAIjrzESYCg8JZNnjANaMgJhYQqrn9CqYjogkFm2DZZuQtJrIM/PP6dd29v6g2boqwSugYnaAz5KFL1EB3qIl8RJFAr+gNvTsvzofz6XzNpCtOsXOE5sr5/gMr950D</latexit><latexit sha1_base64="wPlw8y/0IqfHJrazcSQaHuwQ07k=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpcyIoO6KblxWcGyhLSWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlPlUCaXbATFM8Ij5wEGwdqwZkYFgrWB8m81bT0wbrqIHmMSsJ8kw4iGnBCzV7gYyfZ72vX6l6tbdvPAy8ApQRUU1+5Xf7kDRRLIIqCDGdDw3hl5KNHAq2LTcTQyLCR2TIetYGBHJTC/N/U7xqWUGOFTanghwzv7fSIk0ksDIKrNm5mYZA0oJU7MqGMmsZc/kdzORQS2QtUykTWgWjEB41Ut5FCfAIjrzESYCg8JZNnjANaMgJhYQqrn9CqYjogkFm2DZZuQtJrIM/PP6dd29v6g2boqwSugYnaAz5KFL1EB3qIl8RJFAr+gNvTsvzofz6XzNpCtOsXOE5sr5/gMr950D</latexit><latexit sha1_base64="wPlw8y/0IqfHJrazcSQaHuwQ07k=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpcyIoO6KblxWcGyhLSWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlPlUCaXbATFM8Ij5wEGwdqwZkYFgrWB8m81bT0wbrqIHmMSsJ8kw4iGnBCzV7gYyfZ72vX6l6tbdvPAy8ApQRUU1+5Xf7kDRRLIIqCDGdDw3hl5KNHAq2LTcTQyLCR2TIetYGBHJTC/N/U7xqWUGOFTanghwzv7fSIk0ksDIKrNm5mYZA0oJU7MqGMmsZc/kdzORQS2QtUykTWgWjEB41Ut5FCfAIjrzESYCg8JZNnjANaMgJhYQqrn9CqYjogkFm2DZZuQtJrIM/PP6dd29v6g2boqwSugYnaAz5KFL1EB3qIl8RJFAr+gNvTsvzofz6XzNpCtOsXOE5sr5/gMr950D</latexit>

e1
<latexit sha1_base64="WgitCLnES1r4TeJXeVDWd7cTvpM=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGVGBHVXdOOygmMLbSmZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZTJZTuBMQwwSPmAwfBOrFmRAaCtYPJXTZvPzNtuIoeYRqzviSjiIecErBUpxfIlM0G3qBacxtuXngVeAWooaJag+pvb6hoIlkEVBBjup4bQz8lGjgVbFbpJYbFhE7IiHUtjIhkpp/mfmf4zDJDHCptTwQ4Z/9vpEQaSWBslVkzC7OMAaWEqVsVjGXWsmfyu5nKoB7IeibSJjRLRiC87qc8ihNgEZ37CBOBQeEsGzzkmlEQUwsI1dx+BdMx0YSCTbBiM/KWE1kF/kXjpuE+XNaat0VYZXSCTtE58tAVaqJ71EI+okigV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAMuJzw</latexit><latexit sha1_base64="WgitCLnES1r4TeJXeVDWd7cTvpM=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGVGBHVXdOOygmMLbSmZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZTJZTuBMQwwSPmAwfBOrFmRAaCtYPJXTZvPzNtuIoeYRqzviSjiIecErBUpxfIlM0G3qBacxtuXngVeAWooaJag+pvb6hoIlkEVBBjup4bQz8lGjgVbFbpJYbFhE7IiHUtjIhkpp/mfmf4zDJDHCptTwQ4Z/9vpEQaSWBslVkzC7OMAaWEqVsVjGXWsmfyu5nKoB7IeibSJjRLRiC87qc8ihNgEZ37CBOBQeEsGzzkmlEQUwsI1dx+BdMx0YSCTbBiM/KWE1kF/kXjpuE+XNaat0VYZXSCTtE58tAVaqJ71EI+okigV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAMuJzw</latexit><latexit sha1_base64="WgitCLnES1r4TeJXeVDWd7cTvpM=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGVGBHVXdOOygmMLbSmZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZTJZTuBMQwwSPmAwfBOrFmRAaCtYPJXTZvPzNtuIoeYRqzviSjiIecErBUpxfIlM0G3qBacxtuXngVeAWooaJag+pvb6hoIlkEVBBjup4bQz8lGjgVbFbpJYbFhE7IiHUtjIhkpp/mfmf4zDJDHCptTwQ4Z/9vpEQaSWBslVkzC7OMAaWEqVsVjGXWsmfyu5nKoB7IeibSJjRLRiC87qc8ihNgEZ37CBOBQeEsGzzkmlEQUwsI1dx+BdMx0YSCTbBiM/KWE1kF/kXjpuE+XNaat0VYZXSCTtE58tAVaqJ71EI+okigV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAMuJzw</latexit>

e2
<latexit sha1_base64="wBcNk6euWGMrg+Da+mnoLSs6/Fg=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcq0COqu6MZlBUcL7VAyaaYNzWNI7ghl6D+IW/0OV+LWb/Az/AMz01nY9kK4J+eeG05OGHNmwPN+nNLa+sbmVnm7srO7t39QPTx6NCrRhPpEcaW7ITaUM0l9YMBpN9YUi5DTp3Bym82fnqk2TMkHmMY0EHgkWcQIBkt1+6FI6WzQGlRrXsPLy10FzQLUUFGdQfW3P1QkEVQC4diYXtOLIUixBkY4nVX6iaExJhM8oj0LJRbUBGnud+aeWWboRkrbI8HN2f8bKRZGYBhbZdbMwixjQClu6lYFY5G17Jn8bqYirIeinom0icySEYiugpTJOAEqydxHlHAXlJtl4w6ZpgT41AJMNLNfcckYa0zAJlixGTWXE1kFfqtx3fDuL2rtmyKsMjpBp+gcNdElaqM71EE+IoijV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAOWpzx</latexit><latexit sha1_base64="wBcNk6euWGMrg+Da+mnoLSs6/Fg=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcq0COqu6MZlBUcL7VAyaaYNzWNI7ghl6D+IW/0OV+LWb/Az/AMz01nY9kK4J+eeG05OGHNmwPN+nNLa+sbmVnm7srO7t39QPTx6NCrRhPpEcaW7ITaUM0l9YMBpN9YUi5DTp3Bym82fnqk2TMkHmMY0EHgkWcQIBkt1+6FI6WzQGlRrXsPLy10FzQLUUFGdQfW3P1QkEVQC4diYXtOLIUixBkY4nVX6iaExJhM8oj0LJRbUBGnud+aeWWboRkrbI8HN2f8bKRZGYBhbZdbMwixjQClu6lYFY5G17Jn8bqYirIeinom0icySEYiugpTJOAEqydxHlHAXlJtl4w6ZpgT41AJMNLNfcckYa0zAJlixGTWXE1kFfqtx3fDuL2rtmyKsMjpBp+gcNdElaqM71EE+IoijV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAOWpzx</latexit><latexit sha1_base64="wBcNk6euWGMrg+Da+mnoLSs6/Fg=">AAACDXicZVDLSgMxFM3UV62vqks3g0VwUcq0COqu6MZlBUcL7VAyaaYNzWNI7ghl6D+IW/0OV+LWb/Az/AMz01nY9kK4J+eeG05OGHNmwPN+nNLa+sbmVnm7srO7t39QPTx6NCrRhPpEcaW7ITaUM0l9YMBpN9YUi5DTp3Bym82fnqk2TMkHmMY0EHgkWcQIBkt1+6FI6WzQGlRrXsPLy10FzQLUUFGdQfW3P1QkEVQC4diYXtOLIUixBkY4nVX6iaExJhM8oj0LJRbUBGnud+aeWWboRkrbI8HN2f8bKRZGYBhbZdbMwixjQClu6lYFY5G17Jn8bqYirIeinom0icySEYiugpTJOAEqydxHlHAXlJtl4w6ZpgT41AJMNLNfcckYa0zAJlixGTWXE1kFfqtx3fDuL2rtmyKsMjpBp+gcNdElaqM71EE+IoijV/SG3p0X58P5dL7m0pJT7ByjhXK+/wAOWpzx</latexit>

e3
<latexit sha1_base64="LgiizHRmhHOKEEbwqVR4tWBS3lw=">AAACDXicZVDLTgIxFL2DL8QXauLGzURi4oKQQRfqjujGJSQiJECwUzrQ0E4n7R0TMuEfjFv9DlfGrd/gxn/wD+wAC4GbNPf03HOb0+NHghv0vG8ns7K6tr6R3cxtbe/s7uX3Dx6MijVldaqE0k2fGCZ4yOrIUbBmpBmRvmANf3ibzhtPTBuuwnscRawjST/kAacELdVs+zJh4+5FN1/wSt6k3GVQnoFC5aj28wgA1W7+t91TNJYsRCqIMa2yF2EnIRo5FWyca8eGRYQOSZ+1LAyJZKaTTPyO3VPL9NxAaXtCdCfs/42ESCMJDqwybWZuljKolDBFq8KBTFv6zORuRtIv+rKYirQJzIIRDK46CQ+jGFlIpz6CWLio3DQbt8c1oyhGFhCquf2KSwdEE4o2wZzNqLyYyDKon5euS17NZnUD08rCMZzAGZThEipwB1WoAwUBL/AKb86z8+58OJ9TacaZ7RzCXDlff9YqntM=</latexit><latexit sha1_base64="RMNkU799kfoHwXHS6vi9XiRQ2tw=">AAACDXicZVDLSgMxFM3UV62vquDGzWARXJQy1YW6K3XjsgXHFtqhZNJMG5pMhuSOUIb+g7jVX3DrSlwJfoMb/8E/MDPtwrYXwj0599xwcvyIMw2O823lVlbX1jfym4Wt7Z3dveL+wb2WsSLUJZJL1faxppyF1AUGnLYjRbHwOW35o5t03nqgSjMZ3sE4op7Ag5AFjGAwVLvri4ROehe9YsmpOFnZy6A6A6XaUfOHvdY/G73ib7cvSSxoCIRjrTtVJwIvwQoY4XRS6MaaRpiM8IB2DAyxoNpLMr8T+9QwfTuQypwQ7Iz9v5FgoQWGoVGmTc/NUgak5LpsVDAUaUufye56LPyyL8qpSOlALxiB4MpLWBjFQEMy9RHE3AZpp9nYfaYoAT42ABPFzFdsMsQKEzAJFkxG1cVEloF7XrmuOE2TVR1NK4+O0Qk6Q1V0iWroFjWQiwji6Ak9oxfr0Xqz3q2PqTRnzXYO0VxZX39bgqCP</latexit><latexit sha1_base64="RMNkU799kfoHwXHS6vi9XiRQ2tw=">AAACDXicZVDLSgMxFM3UV62vquDGzWARXJQy1YW6K3XjsgXHFtqhZNJMG5pMhuSOUIb+g7jVX3DrSlwJfoMb/8E/MDPtwrYXwj0599xwcvyIMw2O823lVlbX1jfym4Wt7Z3dveL+wb2WsSLUJZJL1faxppyF1AUGnLYjRbHwOW35o5t03nqgSjMZ3sE4op7Ag5AFjGAwVLvri4ROehe9YsmpOFnZy6A6A6XaUfOHvdY/G73ib7cvSSxoCIRjrTtVJwIvwQoY4XRS6MaaRpiM8IB2DAyxoNpLMr8T+9QwfTuQypwQ7Iz9v5FgoQWGoVGmTc/NUgak5LpsVDAUaUufye56LPyyL8qpSOlALxiB4MpLWBjFQEMy9RHE3AZpp9nYfaYoAT42ABPFzFdsMsQKEzAJFkxG1cVEloF7XrmuOE2TVR1NK4+O0Qk6Q1V0iWroFjWQiwji6Ak9oxfr0Xqz3q2PqTRnzXYO0VxZX39bgqCP</latexit>

f�(e)
<latexit sha1_base64="8oxgnabmEamXCM6ELWdhWTrrt8c="></latexit><latexit sha1_base64="JbCPJ2fHAGZa8Ebw6DTj/vvFjWE="></latexit><latexit sha1_base64="JbCPJ2fHAGZa8Ebw6DTj/vvFjWE="></latexit>

DMV prior

Markov prior

z1
<latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit><latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit><latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit>
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<latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit><latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit><latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit>
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<latexit sha1_base64="VwYPdoeVjXkUU912kwmjdymaS+E=">AAACCHicZVBLTsMwFHT4lvIrsGQTUSGxqKoEkIBdBRuWRRBaqY0qx3Vaq3Yc2S9IJeoJEFs4ByvElltwDG6Ak2ZB2ydZbzxvnjWeIOZMg+P8WEvLK6tr66WN8ubW9s5uZW//UctEEeoRyaVqB1hTziLqAQNO27GiWASctoLRTTZvPVGlmYweYBxTX+BBxEJGMBjq/rl31qtUnbqTl70I3AJUUVHNXuW325ckETQCwrHWHdeJwU+xAkY4nZS7iaYxJiM8oB0DIyyo9tPc6sQ+NkzfDqUyJwI7Z/9vpFhogWFolFnTM7OMASm5rhkVDEXWsmfyux6LoBaIWiZSOtRzRiC89FMWxQnQiEx9hAm3QdpZLHafKUqAjw3ARDHzFZsMscIETHhlk5E7n8gi8E7rV3Xn7rzauC7CKqFDdIROkIsuUAPdoibyEEED9Ire0Lv1Yn1Yn9bXVLpkFTsHaKas7z/xkZqy</latexit><latexit sha1_base64="VwYPdoeVjXkUU912kwmjdymaS+E=">AAACCHicZVBLTsMwFHT4lvIrsGQTUSGxqKoEkIBdBRuWRRBaqY0qx3Vaq3Yc2S9IJeoJEFs4ByvElltwDG6Ak2ZB2ydZbzxvnjWeIOZMg+P8WEvLK6tr66WN8ubW9s5uZW//UctEEeoRyaVqB1hTziLqAQNO27GiWASctoLRTTZvPVGlmYweYBxTX+BBxEJGMBjq/rl31qtUnbqTl70I3AJUUVHNXuW325ckETQCwrHWHdeJwU+xAkY4nZS7iaYxJiM8oB0DIyyo9tPc6sQ+NkzfDqUyJwI7Z/9vpFhogWFolFnTM7OMASm5rhkVDEXWsmfyux6LoBaIWiZSOtRzRiC89FMWxQnQiEx9hAm3QdpZLHafKUqAjw3ARDHzFZsMscIETHhlk5E7n8gi8E7rV3Xn7rzauC7CKqFDdIROkIsuUAPdoibyEEED9Ire0Lv1Yn1Yn9bXVLpkFTsHaKas7z/xkZqy</latexit><latexit sha1_base64="VwYPdoeVjXkUU912kwmjdymaS+E=">AAACCHicZVBLTsMwFHT4lvIrsGQTUSGxqKoEkIBdBRuWRRBaqY0qx3Vaq3Yc2S9IJeoJEFs4ByvElltwDG6Ak2ZB2ydZbzxvnjWeIOZMg+P8WEvLK6tr66WN8ubW9s5uZW//UctEEeoRyaVqB1hTziLqAQNO27GiWASctoLRTTZvPVGlmYweYBxTX+BBxEJGMBjq/rl31qtUnbqTl70I3AJUUVHNXuW325ckETQCwrHWHdeJwU+xAkY4nZS7iaYxJiM8oB0DIyyo9tPc6sQ+NkzfDqUyJwI7Z/9vpFhogWFolFnTM7OMASm5rhkVDEXWsmfyux6LoBaIWiZSOtRzRiC89FMWxQnQiEx9hAm3QdpZLHafKUqAjw3ARDHzFZsMscIETHhlk5E7n8gi8E7rV3Xn7rzauC7CKqFDdIROkIsuUAPdoibyEEED9Ire0Lv1Yn1Yn9bXVLpkFTsHaKas7z/xkZqy</latexit>
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<latexit sha1_base64="dBjf+CpSwGrI4obgBuQoM2II8ZM=">AAACFnicZVDLTgIxFO34RHyAunQzkZi4IGQwJuqO6MYlJiIkQEin3IGGdjpp7xhxMh9i3Op3uDJu3foZ/oEdYCFwk+aenntuc3r8SHCDnvfjrKyurW9s5rby2zu7e4Xi/sGDUbFm0GBKKN3yqQHBQ2ggRwGtSAOVvoCmP7rJ5s1H0Iar8B7HEXQlHYQ84IyipXrFwnMv6SA8YYIaIE17xZJX8SblLoPqDJTIrOq94m+nr1gsIUQmqDHtqhdhN6EaOROQ5juxgYiyER1A28KQSjDdZGI8dU8s03cDpe0J0Z2w/zcSKo2kOLTKrJm5WcagUsKUrQqHMmvZM5O7GUu/7MtyJtImMAtGMLjsJjyMYoSQTX0EsXBRuVlIbp9rYCjGFlCmuf2Ky4ZUU4Y2yrzNqLqYyDJonFWuKt7deal2PQsrR47IMTklVXJBauSW1EmDMBKTV/JG3p0X58P5dL6m0hVntnNI5sr5/gNojaDp</latexit><latexit sha1_base64="dBjf+CpSwGrI4obgBuQoM2II8ZM=">AAACFnicZVDLTgIxFO34RHyAunQzkZi4IGQwJuqO6MYlJiIkQEin3IGGdjpp7xhxMh9i3Op3uDJu3foZ/oEdYCFwk+aenntuc3r8SHCDnvfjrKyurW9s5rby2zu7e4Xi/sGDUbFm0GBKKN3yqQHBQ2ggRwGtSAOVvoCmP7rJ5s1H0Iar8B7HEXQlHYQ84IyipXrFwnMv6SA8YYIaIE17xZJX8SblLoPqDJTIrOq94m+nr1gsIUQmqDHtqhdhN6EaOROQ5juxgYiyER1A28KQSjDdZGI8dU8s03cDpe0J0Z2w/zcSKo2kOLTKrJm5WcagUsKUrQqHMmvZM5O7GUu/7MtyJtImMAtGMLjsJjyMYoSQTX0EsXBRuVlIbp9rYCjGFlCmuf2Ky4ZUU4Y2yrzNqLqYyDJonFWuKt7deal2PQsrR47IMTklVXJBauSW1EmDMBKTV/JG3p0X58P5dL6m0hVntnNI5sr5/gNojaDp</latexit><latexit sha1_base64="dBjf+CpSwGrI4obgBuQoM2II8ZM=">AAACFnicZVDLTgIxFO34RHyAunQzkZi4IGQwJuqO6MYlJiIkQEin3IGGdjpp7xhxMh9i3Op3uDJu3foZ/oEdYCFwk+aenntuc3r8SHCDnvfjrKyurW9s5rby2zu7e4Xi/sGDUbFm0GBKKN3yqQHBQ2ggRwGtSAOVvoCmP7rJ5s1H0Iar8B7HEXQlHYQ84IyipXrFwnMv6SA8YYIaIE17xZJX8SblLoPqDJTIrOq94m+nr1gsIUQmqDHtqhdhN6EaOROQ5juxgYiyER1A28KQSjDdZGI8dU8s03cDpe0J0Z2w/zcSKo2kOLTKrJm5WcagUsKUrQqHMmvZM5O7GUu/7MtyJtImMAtGMLjsJjyMYoSQTX0EsXBRuVlIbp9rYCjGFlCmuf2Ky4ZUU4Y2yrzNqLqYyDJonFWuKt7deal2PQsrR47IMTklVXJBauSW1EmDMBKTV/JG3p0X58P5dL6m0hVntnNI5sr5/gNojaDp</latexit>
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<latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit><latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit><latexit sha1_base64="jbtr+W9vpRfg2saI7YImOblkNik=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcqMCOqu6MZlRccW2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DRy0TRahHJJeqE2BNOYuoBww47cSKYhFw2g7GN9m8/USVZjJ6gElMfYGHEQsZwWCo++e+26/WnIaTl70M3ALUUFGtfvW3N5AkETQCwrHWXdeJwU+xAkY4nVZ6iaYxJmM8pF0DIyyo9tPc6tQ+MczADqUyJwI7Z/9vpFhogWFklFnTc7OMASm5rhsVjETWsmfyu56IoB6IeiZSOtQLRiC89FMWxQnQiMx8hAm3QdpZLPaAKUqATwzARDHzFZuMsMIETHgVk5G7mMgy8M4aVw3n7rzWvC7CKqMjdIxOkYsuUBPdohbyEEFD9Ire0Lv1Yn1Yn9bXTFqyip1DNFfW9x/uTZqw</latexit>
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<latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit><latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit><latexit sha1_base64="ZNKuRe23lzCJMNesh6cRgweKXJI=">AAACCHicZVDLSgMxFM3UV62vqks3g0VwUcpMEdRd0Y3Lio4W2qFk0kwbmkyG5I5Qh36BuNXvcCVu/Qs/wz8wM52FbS+Ee3LuueHkBDFnGhznxyqtrK6tb5Q3K1vbO7t71f2DBy0TRahHJJeqE2BNOYuoBww47cSKYhFw+hiMr7P54xNVmsnoHiYx9QUeRixkBIOh7p77zX615jScvOxl4Baghopq96u/vYEkiaAREI617rpODH6KFTDC6bTSSzSNMRnjIe0aGGFBtZ/mVqf2iWEGdiiVORHYOft/I8VCCwwjo8yanptlDEjJdd2oYCSylj2T3/VEBPVA1DOR0qFeMALhhZ+yKE6ARmTmI0y4DdLOYrEHTFECfGIAJoqZr9hkhBUmYMKrmIzcxUSWgddsXDac27Na66oIq4yO0DE6RS46Ry10g9rIQwQN0St6Q+/Wi/VhfVpfM2nJKnYO0VxZ33/v75qx</latexit>
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Syntax  
Model

Figure 2: Depiction of proposed generative model. The syntax model is composed of discrete random variables, zi. Each ei

is a latent continuous embeddings sampled from Gaussian distribution conditioned on zi, while xi is the observed embedding,
deterministically derived from ei. The left portion depicts how the neural projector maps the simple Gaussian to a more
complex distribution in the output space. The right portion depicts two instantiations of the syntax model in our approach: one
is Markov-structured and the other is DMV-structured. For DMV, ztree is the latent dependency tree structure.

ping interspersed regions in the embedding space,
evident in Figure 1(a).

In our approach, we propose to learn a new
latent embedding space as a projection of pre-
trained embeddings (depicted in Figure 1(b)),
while jointly learning latent syntactic structure –
for example, POS categories or syntactic depen-
dencies. To this end, we introduce a new gener-
ative model (shown in Figure 2) that first gener-
ates a latent syntactic representation (e.g. a de-
pendency parse) from a discrete structured prior
(which we also call the “syntax model”), then,
conditioned on this representation, generates a se-
quence of latent embedding random variables cor-
responding to each word, and finally produces the
observed (pre-trained) word embeddings by pro-
jecting these latent vectors through a parameter-
ized non-linear function. The latent embeddings
can be jointly learned with the structured syntax
model in a completely unsupervised fashion.

By choosing an invertible neural network as
our non-linear projector, and then parameterizing
our model in terms of the projection’s inverse,
we are able to derive tractable exact inference
and marginal likelihood computation procedures
so long as inference is tractable in the underlying
syntax model. In §3.1 we show that this derivation
corresponds to an alternate view of our approach
whereby we jointly learn a mapping of observed
word embeddings to a new embedding space that
is more suitable for the syntax model, but include
an additional Jacobian regularization term to pre-
vent information loss.

Recent work has sought to take advantage
of word embeddings in unsupervised generative

models with alternate approaches (Lin et al., 2015;
Tran et al., 2016; Jiang et al., 2016; Han et al.,
2017). Lin et al. (2015) build an HMM with Gaus-
sian emissions on observed word embeddings, but
they do not attempt to learn new embeddings. Tran
et al. (2016), Jiang et al. (2016), and Han et al.
(2017) extend HMM or dependency model with
valence (DMV) (Klein and Manning, 2004) with
multinomials that use word (or tag) embeddings
in their parameterization. However, they do not
represent the embeddings as latent variables.

In experiments, we instantiate our approach us-
ing both a Markov-structured syntax model and
a tree-structured syntax model – specifically, the
DMV. We evaluate on two tasks: part-of-speech
(POS) induction and unsupervised dependency
parsing without gold POS tags. Experimental re-
sults on the Penn Treebank (Marcus et al., 1993)
demonstrate that our approach improves the ba-
sic HMM and DMV by a large margin, lead-
ing to the state-of-the-art results on POS induc-
tion, and state-of-the-art results on unsupervised
dependency parsing in the difficult training sce-
nario where neither gold POS annotation nor
punctuation-based constraints are available.

2 Model
As an illustrative example, we first present a base-
line model for Markov syntactic structure (POS in-
duction) that treats a sequence of pre-trained word
embeddings as observations. Then, we propose
our novel approach, again using Markov structure,
that introduces latent word embedding variables
and a neural projector. Lastly, we extend our ap-
proach to more general syntactic structures.
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2.1 Example: Gaussian HMM

We start by describing the Gaussian hidden
Markov model introduced by Lin et al. (2015),
which is a locally normalized model with multi-
nomial transitions and Gaussian emissions. Given
a sentence of length `, we denote the latent POS
tags as z = {zi}`

i=1, observed (pre-trained) word
embeddings as x = {xi}`

i=1, transition parame-
ters as ✓, and Gaussian emission parameters as ⌘.
The joint distribution of data and latent variables
factors as:

p(z, x; ✓, ⌘) =
Y`

i=1
p✓(zi|zi�1)p⌘(xi|zi), (1)

where p✓(zi|zi�1) is the multinomial transition
probability and p⌘(xi|zi) is the multivariate Gaus-
sian emission probability.

While the observed word embeddings do inform
this model with a notion of word similarity – lack-
ing in the basic multinomial HMM – the Gaussian
emissions may not be sufficiently flexible to sepa-
rate some syntactic categories in the complex pre-
trained embedding space – for example the skip-
gram embedding space as visualized in Figure 1(a)
where different POS categories overlap. Next we
introduce a new approach that adds flexibility to
the emission distribution by incorporating new la-
tent embedding variables.

2.2 Markov Structure with Neural Projector

To flexibly model observed embeddings and yield
a new representation space that is more suitable
for the syntax model, we propose to cascade a neu-
ral network as a projection function, deterministi-
cally transforming the simple space defined by the
Gaussian HMM to the observed embedding space.
We denote the latent embedding of the ith word in
a sentence as ei 2 R

de , and the neural projection
function as f , parameterized by �. In the case of
sequential Markov structure, our new model cor-
responds to the following generative process:

For each time step i = 1, 2, · · · , `,

• Draw the latent state zi ⇠ p✓(zi|zi�1)
• Draw the latent embedding ei ⇠ N (µzi ,⌃zi)
• Deterministically produce embedding

xi = f�(ei)

The graphical model is depicted in Figure 2. The
deterministic projection can also be viewed as
sampling each observation from a point mass at

f�(ei). The joint distribution of our model is:

p(z, e, x; ✓, ⌘, �)

=
Y`

i=1
[p✓(zi|zi�1)p⌘(ei|zi)p�(xi|ei)],

(2)

where p⌘(·|zi) is a conditional Gaussian distribu-
tion, and p�(xi|ei) is the Dirac delta function cen-
tered at f�(ei):

p�(xi|ei) = �(xi�f�(ei)) =

(
1 xi = f�(ei)

0 otherwise
(3)

2.3 General Structure with Neural Projector
Our approach can be applied to a broad family of
structured syntax models. We denote latent em-
bedding variables as e = {ei}`

i=1, discrete latent
variables in the syntax model as z = {zk}K

k=1
(K > `), where z1, z2, . . . , z` are conditioned to
generate e1, e2, . . . , e`. The joint probability of
our model factors as:

p(z, e, x; ✓, ⌘, �) =
Y`

i=1

⇥
p⌘(ei|zi)p�(xi|ei)

⇤

· psyntax(z; ✓), (4)

where psyntax(z; ✓) represents the probability of
the syntax model, and can encode any syntactic
structure – though, its factorization structure will
determine whether inference is tractable in our full
model. As shown in Figure 2, we focus on two
syntax models for syntactic analysis in this paper.
The first is Markov-structured, which we use for
POS induction, and the second is DMV-structured,
which we use to learn dependency parses without
supervision.

The marginal data likelihood of our model is:

p(x) =
X

z

⇣
psyntax(z; ✓)

·
Y`

i=1

⇥ Z

ei

p⌘(ei|zi)p�(xi|ei)dei

| {z }
p(xi|zi)

⇤⌘
.

(5)

While the discrete variables z can be marginal-
ized out with dynamic program in many cases, it
is generally intractable to marginalize out the la-
tent continuous variables, ei, for an arbitrary pro-
jection f in Eq. (5), which means inference and
learning may be difficult. In §3, we address this
issue by constraining f to be invertible, and show
that this constraint enables tractable exact infer-
ence and marginal likelihood computation.
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3 Learning & Inference

In this section, we introduce an invertibility con-
dition for our neural projector to tackle the op-
timization challenge. Specifically, we constrain
our neural projector with two requirements: (1)
dim(x) = dim(e) and (2) f�1

� exists. Invert-
ible transformations have been explored before
in independent components analysis (Hyvärinen
et al., 2004), gaussianization (Chen and Gopinath,
2001), and deep density models (Dinh et al., 2014,
2016; Kingma and Dhariwal, 2018), for unstruc-
tured data. Here, we generalize this style of ap-
proach to structured learning, and augment it with
discrete latent variables (zi). Under the invertibil-
ity condition, we derive a learning algorithm and
give another view of our approach revealed by the
objective function. Then, we present the architec-
ture of a neural projector we use in experiments: a
volume-preserving invertible neural network pro-
posed by Dinh et al. (2014) for independent com-
ponents estimation.

3.1 Learning with Invertibility
For ease of exposition, we explain the learning
algorithm in terms of Markov structure without
loss of generality. As shown in Eq. (5), the op-
timization challenge in our approach comes from
the intractability of the marginalized emission fac-
tor p(xi|zi). If we can marginalize out ei and
compute p(xi|zi), then the posterior and marginal
likelihood of our Markov-structured model can be
computed with the forward-backward algorithm.
We can apply Eq. (3) and obtain :

p(xi|zi; ⌘, �) =

Z

ei

p⌘(ei|zi)�(xi � f�(ei))dei.

By using the change of variable rule to the integra-
tion, which allows the integration variable ei to be
replaced by x

0
i = f�(ei), the marginal emission

factor can be computed in closed-form when the
invertibility condition is satisfied:

p(xi|zi; ⌘, �)

=

Z

x0

i

p⌘(f�1
� (x0

i)|zi)�(xi � x
0
i)

���det
@f�1

�

@x
0
i

���dx
0
i

= p⌘(f�1
� (xi)|zi)

���det
@f�1

�

@xi

���, (6)

where p⌘(·|z) is a conditional Gaussian distribu-

tion,
@f�1

�

@xi
is the Jacobian matrix of function f�1

�

at xi, and
��det

@f�1
�

@xi

�� represents the absolute value
of its determinant. This Jacobian term is nonzero
and differentiable if and only if f�1

� exists.
Eq. (6) shows that we can directly calculate the

marginal emission distribution p(xi|zi). Denote
the marginal data likelihood of Gaussian HMM as
pHMM(x), then the log marginal data likelihood of
our model can be directly written as:

log p(x) = log pHMM(f�1
� (x))

+
X`

i=1
log

���det
@f�1

�

@xi

���,
(7)

where f�1
� (x) represents the new sequence of em-

beddings after applying f�1
� to each xi. Eq. (7)

shows that the training objective of our model is
simply the Gaussian HMM log likelihood with an
additional Jacobian regularization term. From this
view, our approach can be seen as equivalent to
reversely projecting the data through f�1

� to an-
other manifold e that is directly modeled by the
Gaussian HMM, with a regularization term. In-
tuitively, we optimize the reverse projection f�1

�
to modify the e space, making it more appropri-
ate for the syntax model. The Jacobian regular-
ization term accounts for the volume expansion or
contraction behavior of the projection. Maximiz-
ing it can be thought of as preventing information
loss. In the extreme case, the Jacobian determi-
nant is equal to zero, which means the projection
is non-invertible and thus information is being lost
through the projection. Such “information pre-
serving” regularization is crucial during optimiza-
tion, otherwise the trivial solution of always pro-
jecting data to the same single point to maximize
likelihood is viable.2

More generally, for an arbitrary syntax model
the data likelihood of our approach is:

p(x) =
X

z

⇣
psyntax(z)

·
Y`

i=1
p⌘(f�1

� (xi)|zi)
���det

@f�1
�

@xi

���
⌘
.

(8)

If the syntax model itself allows for tractable in-
ference and marginal likelihood computation, the
same dynamic program can be used to marginal-
ize out z. Therefore, our joint model inherits the
tractability of the underlying syntax model.

2For example, all ei could learn to be zero vectors, lead-
ing to the trivial solution of learning zero mean and zero vari-
ance Gaussian emissions achieving infinite data likelihood.
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··
·

<latexit sha1_base64="n3mWCM7/BmwuNjxBIg9VkyIruU0=">AAACC3icZVDLTgIxFL2DL8QX6tLNRGLigpDBjbowEt24xMQBEiCkUzpQaaeT9o4JISR+gXGr3+HKuDV+g5/hH9gBFwI3ae7puec2pyeIBTfoed9OZml5ZXUtu57b2Nza3snv7tWMSjRlPlVC6UZADBM8Yj5yFKwRa0ZkIFg9GFyn8/oD04ar6A6HMWtL0ot4yClBS9VatKvQdPIFr+RNyl0E5T9QuPzKXTwCQLWT/2l1FU0ki5AKYkyz7MXYHhGNnAo2zrUSw2JCB6THmhZGRDLTHk3cjt0jy3TdUGl7InQn7P+NEZFGEuxbZdrMzCxlUClhilaFfZm29JnJ3QxlUAxkMRVpE5o5IxietUc8ihNkEZ36CBPhonLTZNwu14yiGFpAqOb2Ky7tE00o2vxyNqPyfCKLwD8pnZe8W69QuYJpZeEADuEYynAKFbiBKvhA4R6e4QVenSfnzXl3PqbSjPO3sw8z5Xz+Al1gngY=</latexit><latexit sha1_base64="3duua+im21Knd6Mo/ulJRO+F6GY=">AAACC3icZVDLTgIxFO3gC8cX6tLNRGLigpDBjbowEt24xMQBEiCkUzpQaaeT9o4JmfALxq1u/QVXxq3xE4yf4R/YGVgI3KS5p+ee25weP+JMg+v+WLml5ZXVtfy6vbG5tb1T2N2raxkrQj0iuVRNH2vKWUg9YMBpM1IUC5/Thj+8TueNB6o0k+EdjCLaEbgfsoARDIaqt0lPgu4Wim7ZzcpZBJUpKF5+2RfR67dd6xZ+2z1JYkFDIBxr3aq4EXQSrIARTsd2O9Y0wmSI+7RlYIgF1Z0kczt2jgzTcwKpzAnBydj/GwkWWmAYGGXa9MwsZUBKrktGBQORtvSZ7K5Hwi/5opSKlA70nBEIzjoJC6MYaEgmPoKYOyCdNBmnxxQlwEcGYKKY+YpDBlhhAiY/22RUmU9kEXgn5fOye+sWq1doUnl0gA7RMaqgU1RFN6iGPETQPXpCz+jFerTerHfrYyLNWdOdfTRT1ucfeoefeg==</latexit><latexit sha1_base64="3duua+im21Knd6Mo/ulJRO+F6GY=">AAACC3icZVDLTgIxFO3gC8cX6tLNRGLigpDBjbowEt24xMQBEiCkUzpQaaeT9o4JmfALxq1u/QVXxq3xE4yf4R/YGVgI3KS5p+ee25weP+JMg+v+WLml5ZXVtfy6vbG5tb1T2N2raxkrQj0iuVRNH2vKWUg9YMBpM1IUC5/Thj+8TueNB6o0k+EdjCLaEbgfsoARDIaqt0lPgu4Wim7ZzcpZBJUpKF5+2RfR67dd6xZ+2z1JYkFDIBxr3aq4EXQSrIARTsd2O9Y0wmSI+7RlYIgF1Z0kczt2jgzTcwKpzAnBydj/GwkWWmAYGGXa9MwsZUBKrktGBQORtvSZ7K5Hwi/5opSKlA70nBEIzjoJC6MYaEgmPoKYOyCdNBmnxxQlwEcGYKKY+YpDBlhhAiY/22RUmU9kEXgn5fOye+sWq1doUnl0gA7RMaqgU1RFN6iGPETQPXpCz+jFerTerHfrYyLNWdOdfTRT1ucfeoefeg==</latexit>

+
<latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit><latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit><latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit>

=<latexit sha1_base64="tt7sHfQoCO2k4YfwNUEEi7Nc9MQ=">AAACE3icZVDNSgMxEJ6tf7X+VT16WSyCh1K2XtRDsejFYwVrC20t2TTbhiabJZkVylLwKcSrPocnETz5AD6Gb2C29WDbgTBfvvlmmPn8SHCDnvftZJaWV1bXsuu5jc2t7Z387t6dUbGmrE6VULrpE8MED1kdOQrWjDQj0hes4Q+v0nrjgWnDVXiLo4h1JOmHPOCUoKXu274SPTOSNiWVcTdf8EreJNxFUP4DhYvPXOURAGrd/E+7p2gsWYhUEGNaZS/CTkI0cirYONeODYsIHZI+a1kYEslMJ5lsPXaPLNNzA6XtC9GdsP87EiKNJDiwyjSZmVrKoFLCFK0KBzJN6ZjJPz2o6MtiKtImMHOLYHDWSXgYxchCOt0jiIWLyk0dcntcM4piZAGhmttTXDogmlC0PuasR+V5RxZB/aR0XvJuvEL1EqaRhQM4hGMowylU4RpqUAcKGp7hBV6dJ+fNeXc+ptKM89ezDzPhfP0CDOChpQ==</latexit><latexit sha1_base64="J710iawjlDt3Kcch2yC+lHTgmcU=">AAACE3icZVBNSwMxEM3Wr7p+VT16WSyCh1K2XtRDsejFYwVrC+1astlsG5pslmRWKEv/hnhV/4YnETx5Fn+G/8Bs24NtB8K8vHkzzDw/5kyD6/5YuaXlldW1/Lq9sbm1vVPY3bvTMlGENojkUrV8rClnEW0AA05bsaJY+Jw2/cFVVm8+UKWZjG5hGFNP4F7EQkYwGOq+40se6KEwKa2OuoWiW3bH4SyCyhQULz7tavz6bde7hd9OIEkiaASEY63bFTcGL8UKGOF0ZHcSTWNMBrhH2wZGWFDtpeOtR86RYQInlMq8CJwx+78jxUILDH2jzJKeqWUMSMl1yaigL7KUjRn/s4NKvihlIqVDPbcIhGdeyqI4ARqRyR5hwh2QTuaQEzBFCfChAZgoZk5xSB8rTMD4aBuPKvOOLILGSfm87N64xdolmkQeHaBDdIwq6BTV0DWqowYiSKEn9IxerEfrzXq3PibSnDXt2UczYX39ASoHoxk=</latexit><latexit sha1_base64="J710iawjlDt3Kcch2yC+lHTgmcU=">AAACE3icZVBNSwMxEM3Wr7p+VT16WSyCh1K2XtRDsejFYwVrC+1astlsG5pslmRWKEv/hnhV/4YnETx5Fn+G/8Bs24NtB8K8vHkzzDw/5kyD6/5YuaXlldW1/Lq9sbm1vVPY3bvTMlGENojkUrV8rClnEW0AA05bsaJY+Jw2/cFVVm8+UKWZjG5hGFNP4F7EQkYwGOq+40se6KEwKa2OuoWiW3bH4SyCyhQULz7tavz6bde7hd9OIEkiaASEY63bFTcGL8UKGOF0ZHcSTWNMBrhH2wZGWFDtpeOtR86RYQInlMq8CJwx+78jxUILDH2jzJKeqWUMSMl1yaigL7KUjRn/s4NKvihlIqVDPbcIhGdeyqI4ARqRyR5hwh2QTuaQEzBFCfChAZgoZk5xSB8rTMD4aBuPKvOOLILGSfm87N64xdolmkQeHaBDdIwq6BTV0DWqowYiSKEn9IxerEfrzXq3PibSnDXt2UczYX39ASoHoxk=</latexit>+
<latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit><latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit><latexit sha1_base64="9nq30MFPFBgzWoiP8ja7QQU/IdQ=">AAACE3icZVDNSsNAEN7Uv1r/qh69BIsgWEoqgnorevFYwdhCG8tms2mX7mbD7kQooa8hXvU5PIlXH8DH8A3cpDnYdmCZb7/5Zpj5/JgzDY7zY5VWVtfWN8qbla3tnd296v7Bo5aJItQlkkvV9bGmnEXUBQacdmNFsfA57fjj26zeeaZKMxk9wCSmnsDDiIWMYDDUU9+XPNATYVJ6Nh1Ua07DycNeBs0C1FAR7UH1tx9IkggaAeFY617TicFLsQJGOJ1W+ommMSZjPKQ9AyMsqPbSfOupfWKYwA6lMi8CO2f/d6RYaIFhZJRZ0nO1jAEpua4bFYxElrIx+T87qO6LeiZSOtQLi0B45aUsihOgEZntESbcBmlnDtkBU5QAnxiAiWLmFJuMsMIEjI8V41Fz0ZFl4J43rhvO/UWtdVOYVUZH6Bidoia6RC10h9rIRQQp9Ire0Lv1Yn1Yn9bXTFqyip5DNBfW9x9LXZ/K</latexit>
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⇥
<latexit sha1_base64="ZndHDGIBuRmtjyQp3+WY268Rqpk=">AAACGnicZVBNTwIxEJ31E/AL5ehlIzHxQMjiRb0RvXjExBUSINgtXWhot5t21oRs+CEejFf9HZ6MVy/+DP+BXeAgMEkzr2/etDMviAU36Hk/ztr6xubWdi5f2Nnd2z8oHh49GJVoynyqhNKtgBgmeMR85ChYK9aMyECwZjC6yerNJ6YNV9E9jmPWlWQQ8ZBTgpbqFUudQIm+GUub0g5yycykVyx7VW8a7iqozUG5no+fHwGg0Sv+dvqKJpJFSAUxpl3zYuymRCOngk0KncSwmNARGbC2hRGxv3TT6fAT99QyfTdU2p4I3Sn7vyMl0kiCQ6vMklmoZQwqJUzFqnAos5Q9M71nW1UCWclE2oRmaRAML7spj+IEWURnc4SJcFG5mVFun2tGUYwtIFRzu4pLh0QTitbOgvWotuzIKvDPq1dV7856dQ2zyMExnMAZ1OAC6nALDfCBwhhe4Q3enRfnw/l0vmbSNWfeU4KFcL7/AOnOpC4=</latexit><latexit sha1_base64="GA/1htO7LILujmrbyffQUaNEFXA=">AAACGnicZVBNTwIxEO3iF+AXytHLRmLigZDFi3ojevGIiStEIKRbutDQbjftrHGz4Yd4MF715I/wZLx68Wf4C7S7cBCYpJnXN2/ameeFnGlwnG8rt7K6tr6RLxQ3t7Z3dkt7+7daRopQl0guVdvDmnIWUBcYcNoOFcXC47TljS/TeuueKs1kcANxSHsCDwPmM4LBUP1SuetJPtCxMCnpAhNUT/qlilNzsrCXQX0GKo1C+Hj39vDb7Jd+ugNJIkEDIBxr3ak7IfQSrIARTifFbqRpiMkYD2nHwACbX3pJNvzEPjLMwPalMicAO2P/dyRYaIFhZJRp0nO1lAEpua4aFYxEmtJnsnu6VdUT1VSktK8XBgH/rJewIIyABmQ6hx9xG6SdGmUPmKIEeGwAJoqZVWwywgoTMHYWjUf1RUeWgXtSO68518arCzSNPDpAh+gY1dEpaqAr1EQuIihGz+gFvVpP1rv1YX1OpTlr1lNGc2F9/QEALqZO</latexit><latexit sha1_base64="GA/1htO7LILujmrbyffQUaNEFXA="></latexit>

f�1
� (xi)

<latexit sha1_base64="T5O2W5fdBe9YVbRkg7tBseU/cmg="></latexit><latexit sha1_base64="fjhIxwws58GsuvPWxj5BWS9qhG8="></latexit><latexit sha1_base64="fjhIxwws58GsuvPWxj5BWS9qhG8="></latexit>

Inverse 
Projection g

<latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit><latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit><latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit>

g
<latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit><latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit><latexit sha1_base64="jHj0NqdQ+87fbQS5prPS5RHLnOU=">AAACBnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy5bcGyhHUomzbShyWRI7ghl6AeIW/0OV+LW3/Az/AMz01nY9kK4J+eeG05OEAtuwHV/nLX1jc2t7dJOeXdv/+CwcnT8ZFSiKfOoEkp3A2KY4BHzgINg3VgzIgPBOsHkPpt3npk2XEWPMI2ZL8ko4iGnBCzVHg0qVbfu5oVXQaMAVVRUa1D57Q8VTSSLgApiTK/hxuCnRAOngs3K/cSwmNAJGbGehRGRzPhpbnSGzy0zxKHS9kSAc/b/RkqkkQTGVpk1szDLGFBKmJpVwVhmLXsmv5upDGqBrGUibUKzZATCGz/lUZwAi+jcR5gIDApnoeAh14yCmFpAqOb2K5iOiSYUbHRlm1FjOZFV4F3Wb+tu+6ravCvCKqFTdIYuUANdoyZ6QC3kIYoYekVv6N15cT6cT+drLl1zip0TtFDO9x+Yv5n5</latexit>

ei
<latexit sha1_base64="REkAECskl6vTPQb6KrE5yd3HUvc=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGUqgrorunFZwbGFdiiZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZRJZTuBsQwwSPmAQfBurFmRAaCdYLJXTbvPDNtuIoeYRozX5JRxENOCViq2w9kymYDPqjW3IabF14FzQLUUFHtQfW3P1Q0kSwCKogxvaYbg58SDZwKNqv0E8NiQidkxHoWRkQy46e53xk+s8wQh0rbEwHO2f8bKZFGEhhbZdbMwixjQClh6lYFY5m17Jn8bqYyqAeynom0Cc2SEQiv/ZRHcQIsonMfYSIwKJxlg4dcMwpiagGhmtuvYDommlCwCVZsRs3lRFaBd9G4abgPl7XWbRFWGZ2gU3SOmugKtdA9aiMPUSTQK3pD786L8+F8Ol9zackpdo7RQjnff2gonSg=</latexit><latexit sha1_base64="REkAECskl6vTPQb6KrE5yd3HUvc=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGUqgrorunFZwbGFdiiZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZRJZTuBsQwwSPmAQfBurFmRAaCdYLJXTbvPDNtuIoeYRozX5JRxENOCViq2w9kymYDPqjW3IabF14FzQLUUFHtQfW3P1Q0kSwCKogxvaYbg58SDZwKNqv0E8NiQidkxHoWRkQy46e53xk+s8wQh0rbEwHO2f8bKZFGEhhbZdbMwixjQClh6lYFY5m17Jn8bqYyqAeynom0Cc2SEQiv/ZRHcQIsonMfYSIwKJxlg4dcMwpiagGhmtuvYDommlCwCVZsRs3lRFaBd9G4abgPl7XWbRFWGZ2gU3SOmugKtdA9aiMPUSTQK3pD786L8+F8Ol9zackpdo7RQjnff2gonSg=</latexit><latexit sha1_base64="REkAECskl6vTPQb6KrE5yd3HUvc=">AAACDXicZVDLSgMxFM3UV62vqks3wSK4KGUqgrorunFZwbGFdiiZNNOGJpMhuSOUof8gbvU7XIlbv8HP8A/MTGdh2wvhnpx7bjg5QSy4Adf9cUpr6xubW+Xtys7u3v5B9fDoyahEU+ZRJZTuBsQwwSPmAQfBurFmRAaCdYLJXTbvPDNtuIoeYRozX5JRxENOCViq2w9kymYDPqjW3IabF14FzQLUUFHtQfW3P1Q0kSwCKogxvaYbg58SDZwKNqv0E8NiQidkxHoWRkQy46e53xk+s8wQh0rbEwHO2f8bKZFGEhhbZdbMwixjQClh6lYFY5m17Jn8bqYyqAeynom0Cc2SEQiv/ZRHcQIsonMfYSIwKJxlg4dcMwpiagGhmtuvYDommlCwCVZsRs3lRFaBd9G4abgPl7XWbRFWGZ2gU3SOmugKtdA9aiMPUSTQK3pD786L8+F8Ol9zackpdo7RQjnff2gonSg=</latexit>

xi
<latexit sha1_base64="YTThJcjf7ThL3C1arIc7iYN4iXU=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m83bT0wbrqIHmMTMl2QY8ZBTApbq9AKZPk/7vF+punU3L7wMGgWooqJa/cpvb6BoIlkEVBBjug03Bj8lGjgVbFruJYbFhI7JkHUtjIhkxk9zv1N8apkBDpW2JwKcs/83UiKNJDCyyqyZuVnGgFLC1KwKRjJr2TP53UxkUAtkLRNpE5oFIxBe+SmP4gRYRGc+wkRgUDjLBg+4ZhTExAJCNbdfwXRENKFgEyzbjBqLiSwD77x+XXfvL6rNmyKsEjpGJ+gMNdAlaqI71EIeokigV/SG3p0X58P5dL5m0hWn2DlCc+V8/wGHZ507</latexit><latexit sha1_base64="YTThJcjf7ThL3C1arIc7iYN4iXU=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m83bT0wbrqIHmMTMl2QY8ZBTApbq9AKZPk/7vF+punU3L7wMGgWooqJa/cpvb6BoIlkEVBBjug03Bj8lGjgVbFruJYbFhI7JkHUtjIhkxk9zv1N8apkBDpW2JwKcs/83UiKNJDCyyqyZuVnGgFLC1KwKRjJr2TP53UxkUAtkLRNpE5oFIxBe+SmP4gRYRGc+wkRgUDjLBg+4ZhTExAJCNbdfwXRENKFgEyzbjBqLiSwD77x+XXfvL6rNmyKsEjpGJ+gMNdAlaqI71EIeokigV/SG3p0X58P5dL5m0hWn2DlCc+V8/wGHZ507</latexit><latexit sha1_base64="YTThJcjf7ThL3C1arIc7iYN4iXU=">AAACDXicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDIkd8Qy9B/ErX6HK3HrN/gZ/oGZ6SxseyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m83bT0wbrqIHmMTMl2QY8ZBTApbq9AKZPk/7vF+punU3L7wMGgWooqJa/cpvb6BoIlkEVBBjug03Bj8lGjgVbFruJYbFhI7JkHUtjIhkxk9zv1N8apkBDpW2JwKcs/83UiKNJDCyyqyZuVnGgFLC1KwKRjJr2TP53UxkUAtkLRNpE5oFIxBe+SmP4gRYRGc+wkRgUDjLBg+4ZhTExAJCNbdfwXRENKFgEyzbjBqLiSwD77x+XXfvL6rNmyKsEjpGJ+gMNdAlaqI71EIeokigV/SG3p0X58P5dL5m0hWn2DlCc+V8/wGHZ507</latexit>

xi,l
<latexit sha1_base64="vwq6y+PoHkbNqh+fpEPZilaEdao=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5ikfXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfFoSfHQ==</latexit><latexit sha1_base64="vwq6y+PoHkbNqh+fpEPZilaEdao=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5ikfXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfFoSfHQ==</latexit><latexit sha1_base64="vwq6y+PoHkbNqh+fpEPZilaEdao=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5ikfXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfFoSfHQ==</latexit>

xi,r
<latexit sha1_base64="nykeAuIuyivai+ip12Gc3TWLdk8=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5infXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfIFafIw==</latexit><latexit sha1_base64="nykeAuIuyivai+ip12Gc3TWLdk8=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5infXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfIFafIw==</latexit><latexit sha1_base64="nykeAuIuyivai+ip12Gc3TWLdk8=">AAACEnicZVDLTgIxFO3gC/GFunTTSExcTMhgTNQd0Y1LTERIYEI6pQMN7XRs7xjJZD7DuNXvcGXc+gN+hn9gB1gI3KS5p+ee25yeIBbcgOf9OIWV1bX1jeJmaWt7Z3evvH/wYFSiKWtSJZRuB8QwwSPWBA6CtWPNiAwEawWjm3zeemLacBXdwzhmviSDiIecErCU3w1k+pz1Uu5infXKFa/qTQovg9oMVNCsGr3yb7evaCJZBFQQYzo1LwY/JRo4FSwrdRPDYkJHZMA6FkZEMuOnE9MZPrFMH4dK2xMBnrD/N1IijSQwtMq8mblZzoBSwrhWBUOZt/yZyd2MZeAG0s1F2oRmwQiEl37KozgBFtGpjzARGBTOA8J9rhkFMbaAUM3tVzAdEk0o2BhLNqPaYiLLoHlWvap6d+eV+vUsrCI6QsfoFNXQBaqjW9RATUTRI3pFb+jdeXE+nE/nayotOLOdQzRXzvcfIFafIw==</latexit>

h(1)
i,l

<latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="d20bZPfnQOhStvpbd1JYhfyuJWM=">AAAB93icZVDLSgMxFM3UVx2r1rWbYBFclDJ1o+4ENy4rOLbQDiWTybSheQzJHaEMXQtu/Q5X4sf4Gf6BmWkXtr0Q7sm554aTE2eCWwiCH6+2s7u3f1A/9I8a/vHJabPxYnVuKAupFtoMYmKZ4IqFwEGwQWYYkbFg/Xj2UM77r8xYrtUzzDMWSTJRPOWUgKN642Yr6ARV4W3QXYEWWtW4+TtKNM0lU0AFsXbYDTKICmKAU8EW/ii3LCN0RiZs6KAiktmoqGwu8KVjEpxq444CXLH/NwoirSQwdcqy2bVZyYDWwradCqaybOUz1d3OZdyOZbsUGZvaDSOQ3kYFV1kOTNGljzQXGDQuI8EJN4yCmDtAqOHuK5hOiSEUXHC+i6i7Gcg2CK87d53gKUB1dI4u0BXqoht0jx5RD4WIogS9ow/vzfv0vpZJ1rxVpGdorbzvP0dVlyg=</latexit><latexit sha1_base64="UqJBtKil1Ol91WcJviTDNRmxj54=">AAACD3icZVDLSgMxFL3js9aqVZdugkVQKGXGjboT3LisYG2hrSWTZtpgMhmSO0IZ5lPErX6HK/EL/Az/wEzbhbYXwj0599xwcsJECou+/+2trK6tb2yWtsrblZ3dvep+5cHq1DDeYlpq0wmp5VLEvIUCJe8khlMVSt4On26KefuZGyt0fI+ThPcVHcUiEoyiowbVw16osnE+yESdyPwxOw3O8kG15jf8aZFlEMxBDebVHFR/ekPNUsVjZJJa2w38BPsZNSiY5Hm5l1qeUPZER7zrYEwVt/1saj4nJ44Zkkgbd2IkU/bvRkaVVRTHTlk0+29WMKi1tHWnwrEqWvHM9G4nKqyHql6IjI3sghGMLvuZiJMUecxmPqJUEtSkCIoMheEM5cQByoxwXyFsTA1l6OIsu4yCxUSWQeu8cdXw73wowREcwykEcAHXcAtNaAGDCbzCG7x7L96H9zkLc8Wbp3oA/8r7+gWMo5/N</latexit><latexit sha1_base64="UqJBtKil1Ol91WcJviTDNRmxj54=">AAACD3icZVDLSgMxFL3js9aqVZdugkVQKGXGjboT3LisYG2hrSWTZtpgMhmSO0IZ5lPErX6HK/EL/Az/wEzbhbYXwj0599xwcsJECou+/+2trK6tb2yWtsrblZ3dvep+5cHq1DDeYlpq0wmp5VLEvIUCJe8khlMVSt4On26KefuZGyt0fI+ThPcVHcUiEoyiowbVw16osnE+yESdyPwxOw3O8kG15jf8aZFlEMxBDebVHFR/ekPNUsVjZJJa2w38BPsZNSiY5Hm5l1qeUPZER7zrYEwVt/1saj4nJ44Zkkgbd2IkU/bvRkaVVRTHTlk0+29WMKi1tHWnwrEqWvHM9G4nKqyHql6IjI3sghGMLvuZiJMUecxmPqJUEtSkCIoMheEM5cQByoxwXyFsTA1l6OIsu4yCxUSWQeu8cdXw73wowREcwykEcAHXcAtNaAGDCbzCG7x7L96H9zkLc8Wbp3oA/8r7+gWMo5/N</latexit><latexit sha1_base64="3qhYlX9qLp+05qt4Pk5toEMfBus=">AAACGnicZVDLTgIxFO34RHyhLN00EhNMCJlxo+6Iblxi4ggJIOmUDjS000l7x4RM5lOMW/0OV8atGz/DP7ADLARu0tzTc89tTk8QC27AdX+ctfWNza3twk5xd2//4LB0dPxoVKIp86kSSrcDYpjgEfOBg2DtWDMiA8Fawfg2n7eemTZcRQ8wiVlPkmHEQ04JWKpfKncDmY6yfsprWGRPadU7z/qlilt3p4VXgTcHFTSvZr/02x0omkgWARXEmI7nxtBLiQZOBcuK3cSwmNAxGbKOhRGRzPTSqfkMn1lmgEOl7YkAT9n/GymRRhIYWWXezMIsZ0ApYWpWBSOZt/yZ6d1MZFALZC0XaROaJSMQXvVSHsUJsIjOfISJwKBwHhQecM0oiIkFhGpuv4LpiGhCwcZZtBl5y4msAv+ifl13791K42YeVgGdoFNURR66RA10h5rIRxRN0Ct6Q+/Oi/PhfDpfM+maM98po4Vyvv8AevShTg==</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit><latexit sha1_base64="BSeNPzIye1eC45VcyN+Ot1HADN0=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94FYv0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AHw0oVI=</latexit>

h(1)
i,r

<latexit sha1_base64="M6AXFmCURF5oagaaj1n7FJbNekI=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94Fev0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AIYqoVg=</latexit><latexit sha1_base64="M6AXFmCURF5oagaaj1n7FJbNekI=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94Fev0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AIYqoVg=</latexit><latexit sha1_base64="M6AXFmCURF5oagaaj1n7FJbNekI=">AAACGnicZVDLSgMxFM3UV62vapdugkWoUMqMCOqu6MZlBWsLbS2ZNNOGJpMhuSOUYT5F3Op3uBK3bvwM/8BM24VtL4R7cu654eT4keAGXPfHya2tb2xu5bcLO7t7+wfFw6NHo2JNWZMqoXTbJ4YJHrImcBCsHWlGpC9Yyx/fZvPWM9OGq/ABJhHrSTIMecApAUv1i6WuL5NR2k94Fev0Kal4Z2m/WHZr7rTwKvDmoIzm1egXf7sDRWPJQqCCGNPx3Ah6CdHAqWBpoRsbFhE6JkPWsTAkkpleMjWf4lPLDHCgtD0h4Cn7fyMh0kgCI6vMmlmYZQwoJUzVqmAks5Y9M72bifSrvqxmIm0Cs2QEgqtewsMoBhbSmY8gFhgUzoLCA64ZBTGxgFDN7VcwHRFNKNg4CzYjbzmRVdA8r13X3PuLcv1mHlYeHaMTVEEeukR1dIcaqIkomqBX9IbenRfnw/l0vmbSnDPfKaGFcr7/AIYqoVg=</latexit>

h(2)
i,r

<latexit sha1_base64="PLD+o/nimrkoifAVqZrGlSo/hiw=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY50+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AIfOoVk=</latexit><latexit sha1_base64="PLD+o/nimrkoifAVqZrGlSo/hiw=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY50+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AIfOoVk=</latexit><latexit sha1_base64="PLD+o/nimrkoifAVqZrGlSo/hiw=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY50+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AIfOoVk=</latexit>

h(2)
i,l

<latexit sha1_base64="cJNeTq2Nhpm5E1hwBlQIZx9c5Vc=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY5E+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AH3YoVM=</latexit><latexit sha1_base64="cJNeTq2Nhpm5E1hwBlQIZx9c5Vc=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY5E+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AH3YoVM=</latexit><latexit sha1_base64="cJNeTq2Nhpm5E1hwBlQIZx9c5Vc=">AAACGnicZVDLSgMxFM34rPU12qWbYBEqlDItgrorunFZwdpCW0smzbShyWRI7ghlmE8Rt/odrsStGz/DPzDTdmHbC+GenHtuODl+JLgBz/tx1tY3Nre2czv53b39g0P36PjRqFhT1qRKKN32iWGCh6wJHARrR5oR6QvW8se32bz1zLThKnyAScR6kgxDHnBKwFJ9t9D1ZTJK+wkvY5E+JaXaedp3i17FmxZeBdU5KKJ5Nfrub3egaCxZCFQQYzpVL4JeQjRwKlia78aGRYSOyZB1LAyJZKaXTM2n+MwyAxwobU8IeMr+30iINJLAyCqzZhZmGQNKCVO2KhjJrGXPTO9mIv2yL8uZSJvALBmB4KqX8DCKgYV05iOIBQaFs6DwgGtGQUwsIFRz+xVMR0QTCjbOvM2oupzIKmjWKtcV7/6iWL+Zh5VDJ+gUlVAVXaI6ukMN1EQUTdArekPvzovz4Xw6XzPpmjPfKaCFcr7/AH3YoVM=</latexit>

ei,l
<latexit sha1_base64="RK13y47CcxdR2glSf1NvWyEIbaU=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ2LrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z/2158K</latexit><latexit sha1_base64="RK13y47CcxdR2glSf1NvWyEIbaU=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ2LrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z/2158K</latexit><latexit sha1_base64="RK13y47CcxdR2glSf1NvWyEIbaU=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ2LrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z/2158K</latexit>

ei,r
<latexit sha1_base64="ILR7g1A/jBsoHtYqP1JEuivgHQ4=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ3rrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z8AuJ8Q</latexit><latexit sha1_base64="ILR7g1A/jBsoHtYqP1JEuivgHQ4=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ3rrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z8AuJ8Q</latexit><latexit sha1_base64="ILR7g1A/jBsoHtYqP1JEuivgHQ4=">AAACEnicZVDLSgMxFM34rPVVdekmWAQXpUxFUHdFNy4rOLbQDiWTZtrQZDImd4QyzGeIW/0OV+LWH/Az/AMz0y5seyHck3PPDScniAU34Lo/zsrq2vrGZmmrvL2zu7dfOTh8NCrRlHlUCaU7ATFM8Ih5wEGwTqwZkYFg7WB8m8/bz0wbrqIHmMTMl2QY8ZBTApbye4FMWdZPeQ3rrF+punW3KLwMGjNQRbNq9Su/vYGiiWQRUEGM6TbcGPyUaOBUsKzcSwyLCR2TIetaGBHJjJ8WpjN8apkBDpW2JwJcsP83UiKNJDCyyryZuVnOgFLC1KwKRjJv+TPF3UxkUAtkLRdpE5oFIxBe+SmP4gRYRKc+wkRgUDgPCA+4ZhTExAJCNbdfwXRENKFgYyzbjBqLiSwD77x+XXfvL6rNm1lYJXSMTtAZaqBL1ER3qIU8RNETekVv6N15cT6cT+drKl1xZjtHaK6c7z8AuJ8Q</latexit>

Figure 3: Depiction of the architecture of the inverse pro-
jection f�1

� that composes multiple volume-preserving cou-
pling layers, with which we parameterize our model. On
the right, we schematically depict how the inverse projection
transforms the observed word embedding xi to a point ei in
a new embedding space.

3.2 Invertible Volume-Preserving Neural Net
For the projection we can use an arbitrary invert-
ible function, and given the representational power
of neural networks they seem a natural choice.
However, calculating the inverse and Jacobian of
an arbitrary neural network can be difficult, as it
requires that all component functions be invert-
ible and also requires storage of large Jacobian
matrices, which is memory intensive. To address
this issue, several recent papers propose specially
designed invertible networks that are easily train-
able yet still powerful (Dinh et al., 2014, 2016;
Jacobsen et al., 2018). Inspired by these works,
we use the invertible transformation proposed by
Dinh et al. (2014), which consists of a series of
“coupling layers”. This architecture is specially
designed to guarantee a unit Jacobian determinant
(and thus the invertibility property).

From Eq. (8) we know that only f�1
� is re-

quired for accomplishing learning and inference;
we never need to explicitly construct f�. Thus, we
directly define the architecture of f�1

� . As shown
in Figure 3, the nonlinear transformation from the
observed embedding xi to h

(1)
i represents the first

coupling layer. The input in this layer is parti-
tioned into left and right halves of dimensions, xi,l

and xi,r, respectively. A single coupling layer is
defined as:

h
(1)
i,l = xi,l, h

(1)
i,r = xi,r + g(xi,l), (9)

where g : R
dx/2 ! R

dx/2 is the coupling func-
tion and can be any nonlinear form. This transfor-
mation satisfies dim(h(1)) = dim(x), and Dinh
et al. (2014) show that its Jacobian matrix is tri-

angular with all ones on the main diagonal. Thus
the Jacobian determinant is always equal to one
(i.e. volume-preserving) and the invertibility con-
dition is naturally satisfied.

To be sufficiently expressive, we compose mul-
tiple coupling layers as suggested in Dinh et al.
(2014). Specifically, we exchange the role of
left and right half vectors at each layer as shown
in Figure 3. For instance, from xi to h

(1)
i the

left subset xi,l is unchanged, while from h
(1)
i to

h
(2)
i the right subset h

(1)
i,r remains the same. Also

note that composing multiple coupling layers does
not change the volume-preserving and invertibility
properties. Such a sequence of invertible transfor-
mations from the data space x to e is also called
normalizing flow (Rezende and Mohamed, 2015).

4 Experiments

In this section, we first describe our datasets and
experimental setup. We then instantiate our ap-
proach with Markov and DMV-structured syntax
models, and report results on POS tagging and de-
pendency grammar induction respectively. Lastly,
we analyze the learned latent embeddings.

4.1 Data
For both POS tagging and dependency parsing, we
run experiments on the Wall Street Journal (WSJ)
portion of the Penn Treebank.3 To create the ob-
served data embeddings, we train skip-gram word
embeddings (Mikolov et al., 2013) that are found
to capture syntactic properties well when trained
with small context window (Bansal et al., 2014;
Lin et al., 2015). Following Lin et al. (2015), the
dimensionality dx is set to 100, and the training
context window size is set to 1 to encode more
syntactic information. The skip-gram embeddings
are trained on the one billion word language mod-
eling benchmark dataset (Chelba et al., 2013) in
addition to the WSJ corpus.

4.2 General Experimental Setup
For the neural projector, we employ rectified net-
works as coupling function g following Dinh et al.
(2014). We use a rectified network with an input
layer, one hidden layer, and linear output units,
the number of hidden units is set to the same as
the number of input units. The number of cou-
pling layers are varied as 4, 8, 16 for both tasks.

3Preprocessing is different for the two tasks, we describe
the details in the following subsections.
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We optimize marginal data likelihood directly us-
ing Adam (Kingma and Ba, 2014). For both tasks
in the fully unsupervised setting, we do not tune
the hyper-parameters using supervised data.

4.3 Unsupervised POS tagging
For unsupervised POS tagging, we use a Markov-
structured syntax model in our approach, which
is a popular structure for unsupervised tagging
tasks (Lin et al., 2015; Tran et al., 2016).

Setup. Following existing literature, we train
and test on the entire WSJ corpus (49208 sen-
tences, 1M tokens). We use 45 tag clusters, the
number of POS tags that appear in WSJ cor-
pus. We train the discrete HMM and the Gaus-
sian HMM (Lin et al., 2015) as baselines. For the
Gaussian HMM, mean vectors of Gaussian emis-
sions are initialized with the empirical mean of all
word vectors with an additive noise. We assume
diagonal covariance matrix for p(ei|zi) and initial-
ize it with the empirical variance of the word vec-
tors. Following Lin et al. (2015), the covariance
matrix is fixed during training. The multinomial
probabilities are initialized as ✓kv / exp(ukv),
where ukv ⇠ U [0, 1]. For our approach, we
initialize the syntax model and Gaussian param-
eters with the pre-trained Gaussian HMM. The
weights of layers in the rectified network are ini-
tialized from a uniform distribution with mean
zero and a standard deviation of

p
1/nin, where

nin is the input dimension.4 We evaluate the per-
formance of POS tagging with both Many-to-One
(M-1) accuracy (Johnson, 2007) and V-Measure
(VM) (Rosenberg and Hirschberg, 2007). Given
a model we found that the tagging performance is
well-correlated with the training data likelihood,
thus we use training data likelihood as a unsuper-
vised criterion to select the trained model over 10
random restarts after training 50 epochs. We re-
peat this process 5 times and report the mean and
standard deviation of performance.

Results. We compare our approach with ba-
sic HMM, Gaussian HMM, and several state-
of-the-art systems, including sophisticated HMM
variants and clustering techniques with hand-
engineered features. The results are presented in
Table 1. Through the introduced latent embed-
dings and additional neural projection, our ap-
proach improves over the Gaussian HMM by 5.4
points in M-1 and 5.6 points in VM. Neural HMM

4This is the default parameter initialization in PyTorch.

System M-1 VM
w/o hand-engineered features

Discrete HMM 62.7 53.8
PYP-HMM (Blunsom and Cohn, 2011) 77.5 69.8
NHMM (basic) (Tran et al., 2016) 59.8 54.2
NHMM (+ Conv) (Tran et al., 2016) 74.1 66.1
NHMM (+ Conv & LSTM) (Tran et al., 2016) 79.1 71.7
Gaussian HMM (Lin et al., 2015) 75.4 (1.0) 68.5 (0.5)
Ours (4 layers) 79.5 (0.9) 73.0 (0.7)
Ours (8 layers) 80.8 (1.3) 74.1 (0.7)
Ours (16 layers) 73.2 (4.3) 70.5 (2.1)

w/ hand-engineered features
Feature HMM (Berg-Kirkpatrick et al., 2010) 75.5 –
Brown (+ proto) (Christodoulopoulos et al., 2010) 76.1 68.8
Cluster (word-based) (Yatbaz et al., 2012) 80.2 72.1
Cluster (token-based) (Yatbaz et al., 2014) 79.5 69.1

Table 1: Unsupervised POS tagging results on entire WSJ,
compared with other baselines and state-of-the-art systems.
Standard deviation is given in parentheses when available.

(a) Gaussian HMM (b) Our approach

Figure 4: Normalized Confusion matrix for POS tagging ex-
periments, row label represents the gold tag.

(NHMM) (Tran et al., 2016) is a baseline that also
learns word representation jointly. Both their ba-
sic model and extended Conv version does not
outperform the Gaussian HMM. Their best model
incorporates another LSTM to model long dis-
tance dependency and breaks the Markov assump-
tion, yet our approach still achieves substantial im-
provement over it without considering more con-
text information. Moreover, our method outper-
forms the best published result that benefits from
hand-engineered features (Yatbaz et al., 2012) by
2.0 points on VM.

Confusion Matrix. We found that most tagging
errors happen in noun subcategories. Therefore,
we do the one-to-one mapping between gold POS
tags and induced clusters and plot the normalized
confusion matrix of noun subcategories in Fig-
ure 4. The Gaussian HMM fails to identify “NN”
and “NNS” correctly for most cases, and it often
recognizes “NNPS” as “NNP”. In contrast, our ap-
proach corrects these errors well.
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4.4 Unsupervised Dependency Parsing
without gold POS tags

For the task of unsupervised dependency parse in-
duction, we employ the Dependency Model with
Valence (DMV) (Klein and Manning, 2004) as the
syntax model in our approach. DMV is a genera-
tive model that defines a probability distribution
over dependency parse trees and syntactic cate-
gories, generating tokens and dependencies in a
head-outward fashion. While, traditionally, DMV
is trained using gold POS tags as observed syntac-
tic categories, in our approach, we treat each tag
as a latent variable, as described in §2.3.

Most existing approaches to this task are not
fully unsupervised since they rely on gold POS
tags following the original experimental setup for
DMV. This is partially because automatically pars-
ing from words is difficult even when using un-
supervised syntactic categories (Spitkovsky et al.,
2011a). However, inducing dependencies from
words alone represents a more realistic exper-
imental condition since gold POS tags are of-
ten unavailable in practice. Previous work that
has trained from words alone often requires ad-
ditional linguistic constraints (like sentence inter-
nal boundaries) (Spitkovsky et al., 2011a,b, 2012,
2013), acoustic cues (Pate and Goldwater, 2013),
additional training data (Pate and Johnson, 2016),
or annotated data from related languages (Cohen
et al., 2011). Our approach is naturally designed
to train on word embeddings directly, thus we at-
tempt to induce dependencies without using gold
POS tags or other extra linguistic information.

Setup. Like previous work we use sections 02-
21 of WSJ corpus as training data and evaluate
on section 23, we remove punctuations and train
the models on sentences of length 6 10, “head-
percolation” rules (Collins, 1999) are applied to
obtain gold dependencies for evaluation. We train
basic DMV, extended DMV (E-DMV) (Head-
den III et al., 2009) and Gaussian DMV (which
treats POS tag as unknown latent variables and
generates observed word embeddings directly
conditioned on them following Gaussian distri-
bution) as baselines. Basic DMV and E-DMV
are trained with Viterbi EM (Spitkovsky et al.,
2010) on unsupervised POS tags induced from
our Markov-structured model described in §4.3.
Multinomial parameters of the syntax model in
both Gaussian DMV and our model are initial-
ized with the pre-trained DMV baseline. Other

System 6 10 all
w/o gold POS tags

DMV (Klein and Manning, 2004) 49.6 35.8
E-DMV (Headden III et al., 2009) 52.1 38.2
UR-A E-DMV (Tu and Honavar, 2012) 58.9 46.1
CS⇤ (Spitkovsky et al., 2013) 72.0⇤ 64.4⇤

Neural E-DMV (Jiang et al., 2016) 55.3 42.7
CRFAE (Cai et al., 2017) 37.2 29.5
Gaussian DMV 55.4 (1.3) 43.1 (1.2)
Ours (4 layers) 58.4 (1.9) 46.2 (2.3)
Ours (8 layers) 60.2 (1.3) 47.9 (1.2)
Ours (16 layers) 54.1 (8.5) 43.9 (5.7)

w/ gold POS tags (for reference only)

DMV (Klein and Manning, 2004) 55.1 39.7
UR-A E-DMV (Tu and Honavar, 2012) 71.4 57.0
MaxEnc (Le and Zuidema, 2015) 73.2 65.8
Neural E-DMV (Jiang et al., 2016) 72.5 57.6
CRFAE (Cai et al., 2017) 71.7 55.7
L-NDMV (Big training data) (Han et al., 2017) 77.2 63.2

Table 2: Directed dependency accuracy on section 23 of
WSJ, evaluating on sentences of length 6 10 and all lengths.
Starred entries (⇤) denote that the system benefits from ad-
ditional punctuation-based constraints. Standard deviation is
given in parentheses when available.

parameters are initialized in the same way as in
the POS tagging experiment. The directed depen-
dency accuracy (DDA) is used for evaluation and
we report accuracy on sentences of length 6 10
and all lengths. We train the parser until training
data likelihood converges, and report the mean and
standard deviation over 20 random restarts.

Comparison with other related work. Our
model directly observes word embeddings and
does not require gold POS tags during training.
Thus, results from related work trained on gold
tags are not directly comparable. However, to
measure how these systems might perform with-
out gold tags, we run three recent state-of-the-
art systems in our experimental setting: UR-
A E-DMV (Tu and Honavar, 2012), Neural E-
DMV (Jiang et al., 2016), and CRF Autoencoder
(CRFAE) (Cai et al., 2017).5 We use unsupervised
POS tags (induced from our Markov-structured
model) in place of gold tags.6 We also train ba-
sic DMV on gold tags and include several state-
of-the-art results on gold tags as reference points.

Results. As shown in Table 2, our approach
is able to improve over the Gaussian DMV by
4.8 points on length 6 10 and 4.8 points on all

5For the three systems, we use implementations from the
original papers (via personal correspondence with the au-
thors), and tune their hyperparameters on section 22 of WSJ.

6Using words directly is not practical because these sys-
tems often require a transition probability matrix between in-
put symbols, which requires too much memory.
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System M-1 VM
Ours (4 layers) 78.2 71.2
Ours (8 layers) 72.5 69.7
Ours (16 layers) 67.2 69.2

Table 3: Unsupervised POS tagging results of our approach
on WSJ, with random initialization of syntax model.

lengths, which suggests the additional latent em-
bedding layer and neural projector are helpful.
The proposed approach yields, to the best of our
knowledge,7 state-of-the-art performance with-
out gold POS annotation and without sentence-
internal boundary information. DMV, UR-A E-
DMV, Neural E-DMV, and CRFAE suffer a large
decrease in performance when trained on unsu-
pervised tags – an effect also seen in previous
work (Spitkovsky et al., 2011a; Cohen et al.,
2011). Since our approach induces latent POS
tags jointly with dependency trees, it may be able
to learn POS clusters that are more amenable to
grammar induction than the unsupervised tags.
We observe that CRFAE underperforms its gold-
tag counterpart substantially. This may largely be
a result of the model’s reliance on prior linguistic
rules that become unavailable when gold POS tag
types are unknown. Many extensions to DMV can
be considered orthogonal to our approach – they
essentially focus on improving the syntax model.
It is possible that incorporating these more sophis-
ticated syntax models into our approach may lead
to further improvements.

4.5 Sensitivity Analysis
Impact of Initialization. In the above experi-
ments we initialize the structured syntax compo-
nents with the pre-trained Gaussian or discrete
baseline, which is shown as a useful technique
to help train our deep models. We further study
the results with fully random initialization. In the
POS tagging experiment, we report the results in
Table 3. While the performance with 4 layers is
comparable to the pre-trained Gaussian initializa-
tion, deeper projections (8 or 16 layers) result in a
dramatic drop in performance. This suggests that
the structured syntax model with very deep projec-
tions is difficult to train from scratch, and a simpler
projection might be a good compromise in the ran-
dom initialization setting.

Different from the Markov prior in POS tag-
7We tried to be as thorough as possible in evaluation

by running top performing systems using our more difficult
training setup when this was feasible – but it was not possible
to evaluate them all.

System M-1 VM
Gaussian HMM 72.0 65.0
Ours (4 layers) 76.4 69.3
Ours (8 layers) 76.8 69.4
Ours (16 layers) 67.3 62.0

Table 4: Unsupervised POS tagging results on WSJ, with
fastText vectors as the observed embeddings.

System 6 10 all
Gaussian DMV 53.6 41.3
Ours (4 layers) 56.9 43.9
Ours (8 layers) 57.1 42.3
Ours (16 layers) 52.9 39.5

Table 5: Directed dependency accuracy on section 23 of
WSJ, with fastText vectors as the observed embeddings.

ging experiments, our parsing model seems to be
quite sensitive to the initialization. For example,
directed accuracy of our approach on sentences of
length 6 10 is below 40.0 with random initializa-
tion. This is consistent with previous work that has
noted the importance of careful initialization for
DMV-based models such as the commonly used
harmonic initializer (Klein and Manning, 2004).
However, it is not straightforward to apply the har-
monic initializer for DMV directly in our model
without using some kind of pre-training since we
do not observe gold POS.

Impact of Observed Embeddings. We investi-
gate the effect of the choice of pre-trained embed-
ding on performance while using our approach.
To this end, we additionally include results us-
ing fastText embeddings (Bojanowski et al., 2017)
– which, in contrast with skip-gram embeddings,
include character-level information. We set the
context windows size to 1 and the dimension size
to 100 as in the skip-gram training, while keep-
ing other parameters set to their defaults. These
results are summarized in Table 4 and Table 5.
While fastText embeddings lead to reduced perfor-
mance with our model, our approach still yields an
improvement over the Gaussian baseline with the
new observed embeddings space.

4.6 Qualitative Analysis of Embeddings
We perform qualitative analysis to understand how
the latent embeddings help induce syntactic struc-
tures. First we filter out low-frequency words and
punctuations in WSJ, and visualize the rest words
(10k) with t-SNE (Maaten and Hinton, 2008) un-
der different embeddings. We assign each word
with its most likely gold POS tags in WSJ and
color them according to the gold POS tags.
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Target Skip-gram Markov Structure
come go came follow

coming sit
be go do give
follow

singing dancing sing
drumming dance
dances

dancing drumming
marching playing
recording

cigars cigarettes sodas
champagne cigar
rum

sodas bottles
drinks pills
cigarettes

newer flashier fancier
conventional low-end
new-generation

softer lighter
thinner darker
smoother

fanciest priciest up-scale
loveliest fancier
high-end

liveliest priciest
smartest best-run
fastest-growing

Table 6: Target words and their 5 nearest neighbors, based
on skip-gram embeddings and our learned latent embeddings
with Markov-structured syntax model.

agenda

error

process

timetable

plans
dreams

payments

(obj)

smokers

parents
furriers

issuers folksaides

(subj)

aide resident
attorney singer

actress

owner

(subj)

Figure 5: Visualization (t-SNE) of learned latent embed-
dings with DMV-structured syntax model. Each node rep-
resents a word and is colored according to the most likely
gold POS tag in the Penn Treebank (best seen in color).

For our Markov-structured model, we have dis-
played the embedding space in Figure 1(b), where
the gold POS clusters are well-formed. Further,
we present five example target words and their five
nearest neighbors in terms of cosine similarity. As
shown in Table 6, the skip-gram embedding cap-
tures both semantic and syntactic aspects to some
degree, yet our embeddings are able to focus es-
pecially on the syntactic aspects of words, in an
unsupervised fashion without using any extra mor-
phological information.

In Figure 5 we depict the learned latent em-
beddings with the DMV-structured syntax model.
Unlike the Markov structure, the DMV structure
maps a large subset of singular and plural nouns to
the same overlapping region. However, two clus-
ters of singular and plural nouns are actually sepa-
rated. We inspect the two clusters and the overlap-
ping region in Figure 5, it turns out that the nouns
in the separated clusters are words that can appear
as subjects and, therefore, for which verb agree-
ment is important to model. In contrast, the nouns

in the overlapping region are typically objects.
This demonstrates that the latent embeddings are
focusing on aspects of language that are specifi-
cally important for modeling dependency without
ever having seen examples of dependency parses.

Some previous work has deliberately created
embeddings to capture different notions of sim-
ilarity (Levy and Goldberg, 2014; Cotterell and
Schütze, 2015), while they use extra morphol-
ogy or dependency annotations to guide the em-
bedding learning, our approach provides a poten-
tial alternative to create new embeddings that are
guided by structured syntax model, only using un-
labeled text corpora.

5 Related Work

Our approach is related to flow-based generative
models, which are first described in NICE (Dinh
et al., 2014) and have recently received more at-
tention (Dinh et al., 2016; Jacobsen et al., 2018;
Kingma and Dhariwal, 2018). This relevant
work mostly adopts simple (e.g. Gaussian) and
fixed priors and does not attempt to learn inter-
pretable latent structures. Another related gen-
erative model class is variational auto-encoders
(VAEs) (Kingma and Welling, 2013) that opti-
mize a lower bound on the marginal data likeli-
hood, and can be extended to learn latent struc-
tures (Miao and Blunsom, 2016; Yin et al., 2018).
Against the flow-based models, VAEs remove the
invertibility constraint but sacrifice the merits of
exact inference and exact log likelihood compu-
tation, which potentially results in optimization
challenges (Kingma et al., 2016). Our approach
can also be viewed in connection with generative
adversarial networks (GANs) (Goodfellow et al.,
2014) that is a likelihood-free framework to learn
implicit generative models. However, it is non-
trivial for a gradient-based method like GANs to
propagate gradients through discrete structures.

6 Conclusion

In this work, we define a novel generative ap-
proach to leverage continuous word representa-
tions for unsupervised learning of syntactic struc-
ture. Experiments on both POS induction and un-
supervised dependency parsing tasks demonstrate
the effectiveness of our proposed approach. Fu-
ture work might explore more sophisticated in-
vertible projections, or recurrent projections that
jointly transform the entire input sequence.
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Universidade da Coruña

FASTPARSE Lab, LyS Research Group, Departamento de Computación
Campus de Elviña, s/n, 15071 A Coruña, Spain

d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

We introduce novel dynamic oracles for train-
ing two of the most accurate known shift-
reduce algorithms for constituent parsing: the
top-down and in-order transition-based pars-
ers. In both cases, the dynamic oracles man-
age to notably increase their accuracy, in com-
parison to that obtained by performing clas-
sic static training. In addition, by improving
the performance of the state-of-the-art in-order
shift-reduce parser, we achieve the best ac-
curacy to date (92.0 F1) obtained by a fully-
supervised single-model greedy shift-reduce
constituent parser on the WSJ benchmark.

1 Introduction

The shift-reduce transition-based framework was
initially introduced, and successfully adapted from
the dependency formalism, into constituent pars-
ing by Sagae and Lavie (2005), significantly in-
creasing phrase-structure parsing performance.

A shift-reduce algorithm uses a sequence of
transitions to modify the content of two main data
structures (a buffer and a stack) and create partial
phrase-structure trees (or constituents) in the stack
to finally produce a complete syntactic analysis for
an input sentence, running in linear time. Initially,
Sagae and Lavie (2005) suggested that those par-
tial phrase-structure trees be built in a bottom-up
manner: two adjacent nodes already in the stack
are combined under a non-terminal to become a
new constituent. This strategy was followed by
many researchers (Zhang and Clark, 2009; Zhu
et al., 2013; Watanabe and Sumita, 2015; Mi and
Huang, 2015; Crabbé, 2015; Cross and Huang,
2016b; Coavoux and Crabbé, 2016; Fernández-
González and Gómez-Rodrı́guez, 2018) who man-
aged to improve the accuracy and speed of the ori-
ginal Sagae and Lavie’s bottom-up parser. With
this, shift-reduce algorithms have become com-

petitive, and are the fastest alternative to perform
phrase-structure parsing to date.

Some of these attempts (Cross and Huang,
2016b; Coavoux and Crabbé, 2016; Fernández-
González and Gómez-Rodrı́guez, 2018) intro-
duced dynamic oracles (Goldberg and Nivre,
2012), originally designed for transition-based de-
pendency algorithms, to bottom-up constituent
parsing. They propose to use these dynamic or-
acles to train shift-reduce parsers instead of a tra-
ditional static oracle. The latter follows the stand-
ard procedure that uses a gold sequence of trans-
itions to train a model for parsing new sentences
at test time. A shift-reduce parser trained with this
approach tends to be prone to suffer from error
propagation (i.e. errors made in previous states
are propagated to subsequent states, causing fur-
ther mistakes in the transition sequence). Dy-
namic oracles (Goldberg and Nivre, 2012) were
developed to minimize the effect of error propaga-
tion by training parsers under closer conditions to
those found at test time, where mistakes are inevit-
ably made. They are designed to guide the parser
through any state it might reach during learning
time. This makes it possible to introduce error ex-
ploration to force the parser to go through non-
optimal states, teaching it how to recover from
mistakes and lose the minimum number of gold
constituents.

Alternatively, some researchers decided to fol-
low a different direction and explore non-bottom-
up strategies for producing phrase-structure syn-
tactic analysis.

On the one hand, (Dyer et al., 2016; Kuncoro
et al., 2017) proposed a top-down transition-based
algorithm, which creates a phrase structure tree in
the stack by first choosing the non-terminal on the
top of the tree, and then considering which should
be its child nodes. In contrast to the bottom-up
approach, this top-down strategy adds a lookahead
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Figure 1: Simplified constituent tree, taken from Eng-
lish WSJ §22.

guidance to the parsing process, while it loses rich
local features from partially-built trees.

On the other hand, Liu and Zhang (2017a) re-
cently developed a novel strategy that finds a com-
promise between the strengths of top-down and
bottom-up approaches, resulting in state-of-the-art
accuracy. Concretely, this parser builds the tree
following an in-order traversal: instead of starting
the tree from the top, it chooses the non-terminal
of the resulting subtree after having the first child
node in the stack. In that way each partial con-
stituent tree is created in a bottom-up manner,
but the non-terminal node is not chosen when all
child nodes are in the stack (as a purely bottom-up
parser does), but after the first child is considered.

Liu and Zhang (2017a) report that the top-down
approach is on par with the bottom-up strategy in
terms of accuracy and the in-order parser yields
the best accuracy to date on the WSJ. However,
despite being two adequate alternatives to the tra-
ditional bottom-up strategy, no further work has
been undertaken to improve their performance.1

We propose what, to our knowledge, are the
first optimal dynamic oracles for both the top-
down and in-order shift-reduce parsers, allowing
us to train these algorithms with exploration. The
resulting parsers outperform the existing versions
trained with static oracles on the WSJ Penn Tree-
bank (Marcus et al., 1993) and Chinese Treebank
(CTB) benchmarks (Xue et al., 2005). The version
of the in-order parser trained with our dynamic or-
acle achieves the highest accuracy obtained so far
by a single fully-supervised greedy shift-reduce
system on the WSJ.

2 Preliminaries

The original transition system of Sagae and Lavie
(2005) parses a sentence from left to right by read-
ing (moving) words from a buffer to a stack, where
partial subtrees are built. This process is per-

1In parallel to this work, Fried and Klein (2018) present a
non-optimal dynamic oracle for training the top-down parser.

formed by a sequence of Shift (for reading) and
Reduce (for building) transitions that will lead the
parser through different states or parser configur-
ations until a terminal one is reached. While in
the bottom-up strategy the Reduce transition is in
charge of labeling the partial subtree with a non-
terminal at the same time the tree is built, Dyer
et al. (2016) and Liu and Zhang (2017a) intro-
duce a novel transition to choose the non-terminal
on top, leaving the Reduce transition just to cre-
ate the subtree under the previously decided non-
terminal. We will now explain more in detail both
the top-down and the in-order transition systems.

In both transition systems, parser configurations
have the form c = h⌃, i, f, �, ↵i, where ⌃ is a
stack of constituents, i is the position of the left-
most unprocessed word in the buffer (which is the
next to be pushed onto the stack), f is a boolean
variable used by the in-order transition system to
mark if a configuration is terminal or not and with
no value in top-down parser configurations, � is
the set of constituents that have already been built,
and ↵ is the set of non-terminal nodes that are cur-
rently in the stack.

Each constituent is represented as a tuple
(X, l, r), where X is a non-terminal and l and
r are integers defining its span. Constituents are
composed of one or several words or constituents,
and just one non-terminal node on top. Each word
wi is represented as (w, i, i + 1). To define our or-
acles, we will need to represent each non-terminal
node of the tree as (X, j), where j has the value
of i when X is included in the stack and is used to
keep them in order.2

For instance, the phrase-structure tree in Fig-
ure 1 can be decomposed as the following set of
gold constituents: {(S, 0, 6), (NP, 0, 2), (VP, 2,
5), (ADVP, 3, 4), (ADJP, 4, 5)}. In addition, the
ordered set of gold non-terminal nodes added to
the stack while following a top-down strategy will
be {(S, 0), (NP, 0), (VP, 2), (ADVP, 3), (ADJP, 4)}
and, according to an in-order approach, {(NP, 1),
(S, 2), (VP, 3), (ADVP, 4), (ADJP, 5)}. It is worth
mentioning that the index of non-terminal nodes
in the top-down method is the same as the left-
most span index of the constituent that it will pro-
duce. However, this does not hold in the in-order
approach, as the leftmost child is fully processed
before the node is added to the stack, so the index

2When two or more non-terminals share their labels
within the tree, we use a secondary index to make them
unique.
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for the node will point to the leftmost span index
of the second leftmost child.

Note that the information about the span of a
constituent, the set of predicted constituents � and
the set ↵ of predicted non-terminal nodes in the
stack is not used by the original top-down and in-
order parsers. However, we need to include it in
parser configurations at learning time to allow an
efficient implementation of the proposed dynamic
oracles.

Given an input string w0 · · · wn�1, the in-order
parsing process starts at the initial configuration
cs(w0 . . . wn�1) = h[ ], 0, false, {}, {}i and, after
applying a sequence of transitions, it ends in
a terminal configuration h(S, 0, n), n, true, �, ↵i,
where n is the number of words in the input sen-
tence. The top-down transition system shares the
same form for the initial and terminal configura-
tions, except for the fact that variable f has no
value in both cases.

Figure 2 shows the available transitions in the
top-down algorithm. In particular, the Shift trans-
ition moves the first (leftmost) word in the buf-
fer to the stack; the Non-Terminal-X transition
pushes onto the stack the non-terminal node X that
should be on top of a coming constituent, and the
Reduce transition pops the topmost stack nodes
until the first non-terminal node appears (which
is also popped) and combines them into a con-
stituent with this non-terminal node as their par-
ent, pushing this new constituent into the stack.
Note that every reduction action will add a new
constituent to � and remove a non-terminal node
from ↵, and every Non-Terminal transition will
include a new non-terminal node in ↵. Figure 3
shows the top-down transition sequence that pro-
duces the phrase-structure tree in Figure 1.

In Figure 4 we describe the available trans-
itions in the in-order algorithm. The Shift,
Non-Terminal-X and Reduce transitions have the
same behavior as defined for the top-down trans-
ition system, except that the Reduce transition not
only pops stack nodes until finding a non-terminal
node (also removed from the stack), but also the
node below this non-terminal node, and combines
them into a constituent spanning all the popped
nodes with the non-terminal node on top. And, fi-
nally, a Finish transition is also available to end the
parsing process. Figure 5 shows the in-order trans-
ition sequence that outputs the constituent tree in
Figure 1.

The standard procedure to train a greedy shift-
reduce parser consists of training a classifier to ap-
proximate an oracle, which chooses optimal trans-
itions with respect to gold parse trees. This classi-
fier will greedily choose which transition sequence
the parser should apply at test time.

Depending on the strategy used for training the
parser, oracles can be static or dynamic. A static
oracle trains the parser only on gold transition se-
quences, while a dynamic one can guide the parser
through any possible transition path, allowing the
exploration of non-optimal sequences.

3 Dynamic Oracles

Previous work such as (Cross and Huang, 2016b;
Coavoux and Crabbé, 2016; Fernández-González
and Gómez-Rodrı́guez, 2018) has introduced and
successfully applied dynamic oracles for bottom-
up phrase-structure parsing. We present dynamic
oracles for training the top-down and in-order
transition-based constituent parsers.

Goldberg and Nivre (2012) show that imple-
menting a dynamic oracle reduces to defining a
loss function on configurations to measure the dis-
tance from the best tree they can produce to the
gold parse. This allows us to compute which trans-
itions will lead the parser to configurations where
the minimum number of mistakes are made.

3.1 Loss function
According to Fernández-González and Gómez-
Rodrı́guez (2018), we can define a loss function
in constituent parsing as follows: given a parser
configuration c and a gold tree tG, a loss func-
tion `(c) is implemented as the minimum Ham-
ming loss between t and tG, (L(t, tG)), where t is
the already-built tree of a configuration c0 reach-
able from c (written as c  t). This Hamming
loss is computed as the size of the symmetric dif-
ference between the set of constituents � and �G

in the trees t and tG, respectively. Therefore, the
loss function is defined as:

`(c) = min
�|c �

L(�, �G) = |�G \ �| + |� \ �G|

and, according to the authors, it can be efficiently
computed for a non-binary bottom-up transition
system by counting the individually unreachable
arcs from configuration c (|U(c, �G)|) plus the er-
roneous constituents created so far (|�c \ �G|):

`(c) = min
�|c �

L(�, �G) = |U(c, �G)| + |�c \ �G|
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Shift: h⌃, i, /, �, ↵i ) h⌃|(wi, i, i + 1), i + 1, /, � [ {(wi, i, i + 1)}, ↵i

Non-Terminal-X: h⌃, i, /, �, ↵i ) h⌃|(X, i), i, /, �, ↵ [ {(X, i)}i

Reduce: h⌃|(X, j)|(Y1, m0, m1)|...|(Yk, mk�1, mk), i, /, �, ↵i

) h⌃|(X, j, mk), i, /, � [ {(X, j, mk)}, ↵ \ {(X, j)}i

Figure 2: Transitions of a top-down constituent parser.

Transition ⌃ Buffer

[ ] [ The, ...]
NTS [ S ] [ The, ...]
NTNP [ S, NP ] [ The, ...]
SH [ S, NP, The ] [ public, ...]
SH [ S, NP, The, public ] [ is, ...]
RE [ S, NP ] [ is, ...]
NTVP [ S, NP, VP ] [ is, ...]
SH [ S, NP, VP, is ] [ still, ...]
NTADVP [ S, NP, VP, is, ADVP ] [ still, ...]
SH [ S, NP, VP, is, ADVP, still ] [ cautious, ...]
RE [ S, NP, VP, is, ADVP ] [ cautious, ...]
NTADJP [ S, NP, VP, is, ADVP, ADJP ] [ cautious, ...]
SH [S, NP,VP, is, ADVP, ADJP, cautious] [ . ]
RE [ S, NP, VP, is, ADVP, ADJP ] [ . ]
RE [ S, NP, VP ] [ . ]
SH [ S, NP, VP, . ] [ ]
RE [ S ] [ ]

Figure 3: Transition sequence for producing the con-
stituent tree in Figure 1 using a top-down parser. SH
= Shift, NTX = Non-Terminal-X and RE = Reduce.
Already-built constituents are marked in bold.

We adapt the latter to efficiently implement a loss
function for the top-down and in-order strategies.

While in bottom-up parsing constituents are
created at once by a Reduce transition, in the other
two approaches a Non-Terminal transition begins
the process by naming the future constituent and
a Reduce transition builds it by setting its span
and children. Therefore, a Non-Terminal trans-
ition that deviates from the non-terminals expected
in the gold tree will eventually produce a wrong
constituent in future configurations, so it should
be penalized. Additionally, a sequence of gold
Non-Terminal transitions may also lead to a wrong
final parse if they are applied in an incorrect or-
der. Then, the computation of the Hamming loss
in top-down and in-order phrase-structure parsing
adds two more terms to the bottom-up loss expres-
sion: (1) the number of predicted non-terminal
nodes that are currently in the stack (↵c),3 but
not included in the set of gold non-terminal nodes
(↵G), and (2) the number of gold non-terminal

3Note that we only consider predicted non-terminal nodes
still in the stack, since wrong non-terminal nodes that have
been already reduced are included in the loss as erroneous
constituents.

nodes in the stack that are out of order with respect
to the order needed in the gold tree:

`(c) = min
�|c �

L(�, �G) = |U(c, �G)| + |�c \ �G|

+|↵c \ ↵G| + out of order(↵c, ↵G)

This loss function is used to implement a dynamic
oracle that, when given any parser configuration,
will return the set of transitions ⌧ that do not in-
crease the overall loss (i.e., `(⌧(c)) � `(c) = 0),
leading the system through optimal configurations
that minimize Hamming loss with respect to tG.

As suggested by (Coavoux and Crabbé, 2016;
Fernández-González and Gómez-Rodrı́guez,
2018), constituent reachability can be used to
efficiently compute the first term of the symmetric
difference (|�G \ �|), by simply counting the gold
constituents that are individually unreachable
from configuration c, as we describe in the next
subsection.

The second and third terms of the loss (|�c \�G|
and |↵c \ ↵G|) can be trivially computed and are
used to penalize false positives (extra erroneous
constituents) so that final F-score is not harmed
due to the decrease of precision, as pointed out by
(Coavoux and Crabbé, 2016; Fernández-González
and Gómez-Rodrı́guez, 2018). Note that it is cru-
cial that the creation of non-gold Non-Terminal
transitions is avoided, since these might not affect
the creation of gold constituents, however, they
will certainly lead the parser to the creation of ex-
tra erroneous constituents in future steps.

Finally, the function out of order of the last
term can be implemented by computing the
longest increasing subsequence of gold non-
terminal nodes in the stack, where the order re-
lation is given by the order of non-terminals
(provided by their associated index) in the trans-
ition sequence that builds the gold tree (this or-
der is unique, as none of our two parsers of in-
terest have spurious ambiguity). Obtaining the
longest increasing subsequence is a well-known
problem solvable in time O(n log n) (Fredman,
1975), where n denotes the length of the input se-
quence. Once we have the largest possible sub-
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Shift: h⌃, i, false, �, ↵i ) h⌃|(wi, i, i + 1), i + 1, false, � [ {(wi, i, i + 1)}, ↵i

Non-Terminal-X: h⌃, i, false, �, ↵i ) h⌃|(X, i), i, false, �, ↵ [ {(X, i)}i

Reduce: h⌃|(Y1, m0, m1)|(X, j)|...|(Yk, mk�1, mk), i, false, �, ↵i

) h⌃|(X, m0, mk), i, false, � [ {(X, m0, mk)}, ↵ \ {(X, j)}i

Finish: h(S, 0, n), n, false, �, ↵i ) h(S, 0, n), n, true, �, ↵i

Figure 4: Transitions of a in-order constituent parser.

Transition ⌃ Buffer

[ ] [ The, ...]
SH [ The ] [ public, ...]
NTNP [ The, NP ] [ public, ...]
SH [ The, NP, public ] [ is, ...]
RE [ NP ] [ is, ...]
NTS [ NP, S ] [ is, ...]
SH [ NP, S, is ] [ still, ...]
NTVP [ NP, S, is, VP ] [ still, ...]
SH [ NP, S, is, VP, still ] [ cautious, ...]
NTADVP [ NP, S, is, VP, still, ADVP ] [ cautious, ...]
RE [ NP, S, is, VP, ADVP ] [ cautious, ...]
SH [ NP, S, is, VP, ADVP, cautious ] [ . ]
NTADJP [NP, S, is,VP, ADVP, cautious, ADJP] [ . ]
RE [ NP, S, is, VP, ADVP, ADJP ] [ . ]
RE [ NP, S, VP ] [ . ]
SH [ NP, S, VP, . ] [ ]
RE [ S ] [ ]
FI [ S ] [ ]

Figure 5: Transition sequence for producing the con-
stituent tree in Figure 1 using an in-order parser. SH =
Shift, NTX = Non-Terminal-X, RE = Reduce and FI =
Finish. Already-built constituents are marked in bold.

sequence of gold non-terminal nodes in our con-
figuration’s stack that is compatible with the gold
order, the remaining ones give us the number of er-
roneous constituents that we will unavoidably gen-
erate, even in the best case, due to building them
in an incorrect order.

We will prove below that this loss formulation
returns the exact loss and the resulting dynamic
oracle is correct.

3.2 Constituent reachability
We now show how the computation of the set
of reachable constituents developed for bottom-
up parsing in (Coavoux and Crabbé, 2016;
Fernández-González and Gómez-Rodrı́guez,
2018) can be extended to deal with the top-down
and in-order strategies.

Top-down transition system Let �G and ↵G

be the set of gold constituents and the set of
gold non-terminal nodes, respectively, for our
current input. We say that a gold constitu-
ent (X, l, r) 2 �G is reachable from a con-

figuration c = h⌃, j, /, �c, ↵ci with ⌃ =
[(Yp, ip, ip�1) · · · (Y2, i2, i1)|(Y1, i1, j)], and it is
included in the set of individually reachable con-
stituents R(c, �G), iff it satisfies one of the follow-
ing conditions:4

(i) (X, l, r) 2 �c (i.e. it has already been created
and, therefore, it is reachable by definition).

(ii) j  l < r ^ (X, l) /2 ↵c (i.e. the words
dominated by the gold constituent are still in
the buffer and the non-terminal node that be-
gins its creation has not been added to the
stack yet; therefore, it can be still created
after pushing the correct non-terminal node
and shifting the necessary words).

(iii) l 2 {ik | 1  k  p} ^ j  r ^ (X, l) 2 ↵c

(i.e. its span is partially or completely in
the stack and the corresponding non-terminal
node was already added to the stack, then, by
shifting more words or/and reducing, the con-
stituent can still be created).

In-order transition system Let �G and ↵G

be the set of gold constituents and the set of
gold non-terminal nodes, respectively, for our
current input. We say that a gold constitu-
ent (X, l, r) 2 �G is reachable from a con-
figuration c = h⌃, j, false, �c, ↵ci with ⌃ =
[(Yp, ip, ip�1) · · · (Y2, i2, i1)|(Y1, i1, j)], and it is
included in the set of individually reachable con-
stituents R(c, �G), iff it satisfies one of the follow-
ing conditions:

(i) (X, l, r) 2 �c (i.e. it has already been cre-
ated).

(ii) j  l < r (i.e. the constituent is entirely in
the buffer, then it can be still built).

(iii) l 2 {ik | 1  k  p} ^ j  r ^ (X, m) /2 ↵c

(i.e. its first child is still a totally- or partially-
built constituent on top of the stack and the
non-terminal node has not been created yet;

4Please note that elements from the stack can be an
already-built constituent, a shifted word or a non-terminal
node. Therefore, (Yp, ip, ip�1), (Y2, i2, i1) and (Y1, i1, j)
should be represented as (Yp, ip�1), (Y2, i1) and (Y1, j), re-
spectively, when they are non-terminal nodes. We omit this
for simplicity.
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therefore, it has to wait till the first child is
completed (if it is still pending) and, then,
it can be still created by pushing onto the
stack the correct non-terminal node and shift-
ing more words if necessary).

(iv) l 2 {ik | 1  k  p} ^ j  r ^ (X, m) 2
↵c ^ 9(Y, l, m) 2 ⌃ (i.e. its span is par-
tially or completely in the stack, and its first
child (which is an alredy-built constituent)
and the non-terminal node assigned are ad-
jacent, thus, by shifting more words or/and
reducing, the constituent can still be built).

In both transition systems, the set of individually
unreachable constituents U(c, �G) with respect to
the set of gold constituents �G can be easily com-
puted as �G \ R(c, �G) and will contain the gold
constituents that can no longer be built.

3.3 Correctness
We will now prove that the above expression of
`(c) indeed provides the minimum possible Ham-
ming loss to the gold tree among all the trees that
are reachable from configuration c. This implies
correctness (or optimality) of our oracle.

To do so, we first show that both algorithms are
constituent-decomposable. This amounts to say-
ing that if we take a set of m constituents that are
tree-compatible (can appear together in a constitu-
ent tree, meaning that no pair of constituent spans
overlap unless one is a subset of the other) and in-
dividually reachable from a configuration c, then
the set is also reachable as a whole.

We prove this by induction on m. The base
case (m = 1) is trivial. Let us suppose that
constituent-decomposability holds for any set of
m tree-compatible constituents. We will show that
it also holds for any set T of m+1 tree-compatible
constituents.

Let (X, l, r) be one of the constituents in T
such that r = min{r0 | (X 0, l0, r0) 2 T} and
l = max{l0 | (X 0, l0, r) 2 T}. Let T 0 =
T \ {(X, l, r)}. Since T 0 has m constituents, by
induction hypothesis, T 0 is a reachable set from
configuration c.

Since (X, l, r) is individually reachable by hy-
pothesis, it must satisfy at least one of the condi-
tions for constituent reachability. As these con-
ditions are different for each particular algorithm,
we continue the proof separately for each:

Top-down constituent-decomposability In this
case, we enumerated three constituent reachability

conditions, so we divide the proof into three cases:
If the first condition holds, then the constitu-

ent (X, l, r) has already been created in c. Thus,
it will still be present after applying any of the
possible transition sequences that build T 0 starting
from c. Hence, T = T 0 [ {(X, l, r)} is reachable
from c.

If the second condition holds, then j  l < r
and the constituent (X, l, r) can be created by l�j
Shift transitions, followed by one Non-Terminal
transition, r � l Shift transitions and one Reduce
transition. This will leave the parser in a configur-
ation whose value of j is r, and where stack ele-
ments with left span index  l (apart from those
referencing the new non-terminal and its leftmost
child) have not changed. Thus, constituents of T 0

are still individually reachable in this configura-
tion, as their left span index is either � r (and
then they meet the second reachability condition)
or  l (and then they meet the third), so T is reach-
able from c.

Finally, if the third condition holds, then we can
create (X, l, r) by applying r � j Shift transitions
followed by a sequence of Reduce transitions stop-
ping when we obtain (X, l, r) on the stack (this
will always happen after a finite number of such
transitions, as the reachability condition guaran-
tees that l is the left span index of some constitu-
ent already on the stack, and that (X, l) is on the
stack). Following the same reasoning as in the pre-
vious case regarding the resulting parser configur-
ation, we conclude that T is reachable from c.

With this we have shown the induction step, and
thus constituent decomposability for the top-down
parser.

In-order constituent decomposability The in-
order parser has four constituent reachability con-
ditions. Analogously to the previous case, we
prove the reachability of T by case analysis.

If the first condition holds, then we have a situ-
ation where the constituent (X, l, r) has already
been created in c, so reachability of T follows
from the same reasoning as for the first condition
in the top-down case.

If the second condition holds, we have j  l <
r and the constituent (X, l, r) can be created by
l � j + 1 Shift transitions (where the last one
shifts a word that will be assigned as left child
of the new constituent), followed by the relevant
Non-Terminal-X transition, r � l � 1 more Shift
transitions and one Reduce transition. After this,
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the parser will be in a configuration where j takes
the value r, where we can use the same reasoning
as in the second condition of the top-down parser
to show that all constituents of T 0 are still reach-
able, proving reachability of T .

For the third condition, the proof is analogous
but the combination of transitions that creates the
non-terminal starts with a sequence composed of
Reduce transitions (when there is a non-terminal
at the top of the stack) or Non-Terminal-Y trans-
itions for arbitrary Y (when the top of the stack is
a constituent) until the top node on the stack is a
constituent with left span index l (this ensures that
the constituent at the top of the stack can serve
as leftmost child for our desired constituent), fol-
lowed by a Non-Terminal-X, r�j Shift transitions
and one Reduce transition.

Finally, for the fourth condition, the reasoning
is again analogous, but the computation leading to
the non-terminal starts with as many Reduce trans-
itions as non-terminal nodes located above (X,m)
in the stack (if any). If we call j the index asso-
ciated to the resulting transition, then it only re-
mains to apply r � j Shift transitions followed by
a Reduce transition.

Optimality With this, we have shown constitu-
ent decomposability for both parsing algorithms.
This means that, for a configuration c, and a set of
constituents that are individually reachable from
c, there is always some computation that can build
them all. This facilitates the proof that the loss
function is correct.

To finish the proof, we observe the following:
• Let c0 be a final configuration reachable from

c. The set (�c0 \ �G), representing erroneous
constituents that have been built, will always
contain at least |�c \ �G|, as the algorithm
never deletes constituents.

• In addition, c0 will contain one erroneous
constituent for each element of (↵c \ ↵G),
as once a non-terminal node is on the stack,
there is no way to reach a final configura-
tion without using it to create an erroneous
constituent. Note that these erroneous con-
stituents do not overlap those arising from the
previous item, as �c stores already-built con-
stituents and ↵c non-terminals that have still
not been used to build a constituent.

• Given a subset S of R(c, �G), the previously
shown constituent decomposability property
implies that there exists at least one transition

sequence starting from c that generates the
tree S[(�c\�G)[E, where E is a set of erro-
neous constituents containing one such con-
stituent per element of (↵c \ ↵G). This tree
has loss |tG|�(|�c[S|)+|�c\�G|+|↵c\↵G|.
The term |tG| � (|�c [ S|) corresponds to
missed constituents (gold constituents that
have not been already created and are not cre-
ated as part of S), the other two to erroneous
constituents.

• As we have shown that the erroneous con-
stituents arising from (�c0 \�G) and (↵c\↵G)
are unavoidable, computations yielding a tree
with minimum loss are those that maximize
|�c [ S| in the previous term. In general, the
largest possible |S| is for S = R(c, �G). In
that case, we would correctly generate every
reachable constituent and the loss would be

`(c) = |U(c, �G)| + |�c \ �G|

+|↵c \ ↵G|

However, we additionally want to generate
constituents in the correct order, and this may
not be possible if we have already shifted
some of them into the stack in a wrong or-
der. The function out of order gives us the
number of reachable constituents that are lost
for this cause in the best case. Thus, indeed,
the expression

`(c) = |U(c, �G)| + |�c \ �G|

+|↵c \ ↵G| + out of order(↵c, ↵G)

provides the minimum loss from configura-
tion c.

4 Experiments

4.1 Data
We test the two proposed approaches on two
widely-used benchmarks for constituent parsers:
the Wall Street Journal (WSJ) sections of the Eng-
lish Penn Treebank5 (Marcus et al., 1993) and ver-
sion 5.1 of the Penn Chinese Treebank (CTB)6

(Xue et al., 2005). We use the same predicted POS
tags and pre-trained word embeddings as Dyer
et al. (2016) and Liu and Zhang (2017a).

5Sections 2-21 are used as training data, Section 22 for
development and Section 23 for testing

6Articles 001- 270 and 440-1151 are taken for training,
articles 301-325 for system development, and articles 271-
300 for final testing
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4.2 Neural Model
To perform a fair comparison, we define the novel
dynamic oracles on the original implementations
of the top-down parser by Dyer et al. (2016) and
in-order parser by Liu and Zhang (2017a), where
parsers are trained with a traditional static oracle.
Both implementations follow a stack-LSTM ap-
proach to represent the stack and the buffer, as well
as a vanilla LSTM to represent the action history.
In addition, they also use a bi-LSTM as a composi-
tional function for representing constituents in the
stack. Concretely, this consists in computing the
composition representation scomp as:

scomp = (LSTMfwd[ent, s0, ..., sm];

LSTMbwd[ent, sm, ..., s0])

where ent is the vector representation of a non-
terminal, and si, i 2 [0, m] is the ith child node.

Finally, the exact same word representation
strategy and hyper-parameter values as (Dyer
et al., 2016) and (Liu and Zhang, 2017a) are used
to conduct the experiments.

4.3 Error exploration
In order to benefit from training a parser by a dy-
namic oracle, errors should be made during the
training process so that the parser can learn to
avoid and recover from them. Unlike more com-
plex error-exploration strategies as those studied
in (Ballesteros et al., 2016; Cross and Huang,
2016b; Fried and Klein, 2018), we decided to
consider a simple one that follows a non-optimal
transition when it is the highest-scoring one, but
with a certain probability. In that way, we eas-
ily simulate test time conditions, when the parser
greedily chooses the highest-scoring transition,
even when it is not an optimal one, placing the
parser in an incorrect state.

In particular, we run experiments on devel-
opment sets for each benchmark/algorithm with
three different error exploration probabilities and
choose the one that achieves the best F-score.
Table 1 reports all results, including those ob-
tained by the top-down and in-order parsers
trained by a dynamic oracle without error explor-
ation (equivalent to a traditional static oracle).

4.4 Results
Table 2 compares our system’s accuracy to other
state-of-the-art shift-reduce constituent parsers on
the WSJ and CTB benchmarks. For comparison,

Top-down In-order
Exp. WSJ CTB WSJ CTB
None 91.81 88.94 91.95 89.69
0.1 91.87 89.13 92.05 89.91
0.2 91.99 88.70 91.98 89.88
0.3 91.97 89.20 91.95 89.87

Table 1: F-score comparison of different error-
exploration probabilities on WSJ §22 and CTB §301-
325 for the top-down a in-order dynamic oracles.

Parser Type Strat F1
(Cross and Huang, 2016a) gs bu 90.0
(Cross and Huang, 2016b) gs bu 91.0
(Cross and Huang, 2016b) gd bu 91.3
(Liu and Zhang, 2017a) gs bu 91.3
(Fernández-G and Gómez-R, 2018) gs bu 91.5
(Fernández-G and Gómez-R, 2018) gd bu 91.7
(Dyer et al., 2016) gs td 91.2
This work gd td 91.7
(Liu and Zhang, 2017a) gs in 91.8
This work gd in 92.0
(Zhu et al., 2013) b bu 90.4
(Watanabe and Sumita, 2015) b bu 90.7
(Liu and Zhang, 2017b) b bu 91.7
(Fried and Klein, 2018) bp td 91.6
(Fried and Klein, 2018) bd td 92.1
(Fried and Klein, 2018) bp in 92.2
(Stern et al., 2017b) bg td 92.6
(Stern et al., 2017a) ch bu 91.8
(Gaddy et al., 2018) ch bu 92.1
(Kitaev and Klein, 2018) ch bu 93.6

Parser Type Strat F1
(Wang et al., 2015) gs bu 83.2
(Liu and Zhang, 2017a) gs bu 85.7
(Fernández-G and Gómez-R, 2018) gs bu 86.3
(Fernández-G and Gómez-R, 2018) gd bu 86.8
(Dyer et al., 2016) gs td 84.6
This work gd td 85.3
(Liu and Zhang, 2017a) gs in 86.1
This work gd in 86.6
(Zhu et al., 2013) b bu 83.2
(Watanabe and Sumita, 2015) b bu 84.3
(Liu and Zhang, 2017b) b bu 85.5
(Fried and Klein, 2018) bd td 85.5
(Fried and Klein, 2018) bp td 84.7
(Fried and Klein, 2018) bp in 87.0

Table 2: Accuracy comparison of state-of-the-art
single-model fully-supervised constituent parsers on
WSJ §23 (top) and CTB §271-300 (bottom). The
“Type” column shows the type of parser: gs is a greedy
parser trained with a static oracle, gd a greedy parser
trained with a dynamic oracle, b a beam search parser,
bp a beam search parser trained with a policy gradient
method, bd a beam search parser trained with a non-
optimal dynamic oracle, bg a generative beam search
parser, and ch a chart-based parser. Finally, the “Strat”
column describes the strategy followed (bu=bottom-up,
td=top-down and in=in-order).
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Parser Oracle #1 #2 #3 #4 #5
Top-down static 90.98 88.76 85.01 76.63 77.35

dynamic 91.34 (+0.36) 89.18 (+0.42) 85.17 (+0.16) 77.12 (+0.49) 80.02 (+2.67)

In-order static 91.36 89.21 85.15 77.08 79.02
dynamic 91.55 (+0.19) 89.43 (+0.22) 85.34 (+0.19) 77.57 (+0.49) 81.03 (+2.01)

Table 3: F-score on constituents with a number of children ranging from one to five on WSJ §23.

we also include some recent state-of-the-art pars-
ers with global chart decoding that achieve the
highest accuracies to date on WSJ, but are much
slower than shift-reduce algorithms.

Top-down and in-order parsers benefit from be-
ing trained by these new dynamic oracles in both
datasets. The top-down strategy achieves a gain of
0.5 and 0.7 points in F-score on WSJ and CTB
benchmarks, respectively. The in-order parser
obtains similar improvements on the CTB (0.5
points), but less notable accuracy gain on the WSJ
(0.2 points). Although a case of diminishing re-
turns might explain the latter, the in-order parser
trained with the proposed dynamic oracle still
achieves the highest accuracy to date in greedy
transition-based constituent parsing on the WSJ.7

While this work was under review, Fried and
Klein (2018) proposed to train the top-down and
in-order parsers with a policy gradient method in-
stead of custom designed dynamic oracles. They
also present a non-optimal dynamic oracle for
the top-down parser that, combined with more
complex error-exploration strategies and size-10
beam search, significantly outperforms the policy
gradient-trained version, confirming that even
non-optimal dynamic oracles are a good option.8

4.5 Analysis
Dan Bikel’s randomized parsing evaluation com-
parator (Bikel, 2004) was used to perform signi-
ficance tests on precision and recall metrics on
WSJ §23 and CTB §271-300. The top-down parser
trained with dynamic oracles achieves statistically
significant improvements (p < 0.05) in precision

7Note that the proposed dynamic oracles are orthogonal to
approaches like beam search, re-ranking or semi-supervision,
that can boost accuracy but at a large cost to parsing speed.

8Unfortunately, we cannot directly compare our approach
to theirs, since they use beam-search decoding with size 10
in all experiments, gaining up to 0.3 points in F-score, while
penalizing speed with respect to greedy decoding. However,
by extrapolating the results above, we hypothesize that our
optimal dynamic oracles (especially the one designed for the
in-order algorithm) with their same training and beam-search
decoding setup might achieve the best scores to date in shift-
reduce parsing.

both on the WSJ and CTB benchmarks, and in re-
call on WSJ. The in-order parser trained with the
proposed technique obtains significant improve-
ments (p < 0.05) in recall in both benchmarks,
although not in precision.

We also undertake an analysis to check if dy-
namic oracles are able to mitigate error propaga-
tion. We report in Table 3 the F-score obtained
in constituents with different number of children
on WSJ §23 by the top-down and in-order al-
gorithms trained with both static and dynamic or-
acles. Please note that creating a constituent with
a great number of children is more prone to suffer
from error propagation, since a larger number of
transitions is required to build it. The results seem
to confirm that, indeed, dynamic oracles manage
to alleviate error propagation, since improvements
in F-score are more notable for larger constituents.

5 Conclusion

We develop the first optimal dynamic oracles for
training the top-down and the state-of-the-art in-
order parsers. Apart from improving the sys-
tems’ accuracies in both cases, we achieve the
best result to date in greedy shift-reduce pars-
ing on the WSJ. In addition, these promising
techniques could easily benefit from recent stud-
ies in error-exploration strategies and yield state-
of-the-art accuracies in transition-based parsing
in the near future. The parser’s source code
is freely available at https://github.com/
danifg/Dynamic-InOrderParser.

Acknowledgments

This work has received funding from the European
Research Council (ERC), under the European
Union’s Horizon 2020 research and innovation
programme (FASTPARSE, grant agreement No
714150), from MINECO (FFI2014-51978-C2-2-
R, TIN2017-85160-C2-1-R) and from Xunta de
Galicia (ED431B 2017/01).

1311



References
Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and

Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack LSTM parser. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Aus-
tin, Texas, USA, November 1-4, 2016, pages 2005–
2010.

Dan Bikel. 2004. On the Parameter Space of Gener-
ative Lexicalized Statistical Parsing Models. Ph.D.
thesis, University of Pennsylvania.

Maximin Coavoux and Benoit Crabbé. 2016. Neural
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Abstract

We introduce a method to reduce constituent
parsing to sequence labeling. For each word
wt, it generates a label that encodes: (1) the
number of ancestors in the tree that the words
wt and wt+1 have in common, and (2) the non-
terminal symbol at the lowest common ances-
tor. We first prove that the proposed encoding
function is injective for any tree without unary
branches. In practice, the approach is made
extensible to all constituency trees by collaps-
ing unary branches. We then use the PTB and
CTB treebanks as testbeds and propose a set of
fast baselines. We achieve 90% F-score on the
PTB test set, outperforming the Vinyals et al.
(2015) sequence-to-sequence parser. In addi-
tion, sacrificing some accuracy, our approach
achieves the fastest constituent parsing speeds
reported to date on PTB by a wide margin.

1 Introduction

Constituent parsing is a core problem in NLP
where the goal is to obtain the syntactic structure
of sentences expressed as a phrase structure tree.

Traditionally, constituent-based parsers have
been built relying on chart-based, statistical mod-
els (Collins, 1997; Charniak, 2000; Petrov et al.,
2006), which are accurate but slow, with typical
speeds well below 10 sentences per second on
modern CPUs (Kummerfeld et al., 2012).

Several authors have proposed more efficient
approaches which are helpful to gain speed while
preserving (or even improving) accuracy. Sagae
and Lavie (2005) present a classifier for con-
stituency parsing that runs in linear time by re-
lying on a shift-reduce stack-based algorithm, in-
stead of a grammar. It is essentially an ex-
tension of transition-based dependency parsing
(Nivre, 2003). This line of research has been
polished through the years (Wang et al., 2006;
Zhu et al., 2013; Dyer et al., 2016; Liu and

Zhang, 2017; Fernández-González and Gómez-
Rodrı́guez, 2018).

With an aim more related to our work, other au-
thors have reduced constituency parsing to tasks
that can be solved faster or in a more generic
way. Fernández-González and Martins (2015) re-
duce phrase structure parsing to dependency pars-
ing. They propose an intermediate representation
where dependency labels from a head to its de-
pendents encode the nonterminal symbol and an
attachment order that is used to arrange nodes
into constituents. Their approach makes it pos-
sible to use off-the-shelf dependency parsers for
constituency parsing. In a different line, Vinyals
et al. (2015) address the problem by relying on a
sequence-to-sequence model where trees are lin-
earized in a depth-first traversal order. Their so-
lution can be seen as a machine translation model
that maps a sequence of words into a parenthesized
version of the tree. Choe and Charniak (2016) re-
cast parsing as language modeling. They train a
generative parser that obtains the phrasal structure
of sentences by relying on the Vinyals et al. (2015)
intuition and on the Zaremba et al. (2014) model
to build the basic language modeling architecture.

More recently, Shen et al. (2018) propose an
architecture to speed up the current state-of-the-
art chart parsers trained with deep neural net-
works (Stern et al., 2017; Kitaev and Klein, 2018).
They introduce the concept of syntactic distances,
which specify the order in which the splitting
points of a sentence will be selected. The model
learns to predict such distances, to then recursively
partition the input in a top-down fashion.

Contribution We propose a method to trans-
form constituent parsing into sequence labeling.
This reduces it to the complexity of tasks such as
part-of-speech (PoS) tagging, chunking or named-
entity recognition. The contribution is two-fold.
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First, we describe a method to linearize a tree
into a sequence of labels (§2) of the same length
of the sentence minus one.1 The label generated
for each word encodes the number of common an-
cestors in the constituent tree between that word
and the next, and the nonterminal symbol associ-
ated with the lowest common ancestor. We prove
that the encoding function is injective for any tree
without unary branchings. After applying collaps-
ing techniques, the method can parse unary chains.

Second, we use such encoding to present differ-
ent baselines that can effectively predict the struc-
ture of sentences (§3). To do so, we rely on a
recurrent sequence labeling model based on BIL-
STM’s (Hochreiter and Schmidhuber, 1997; Yang
and Zhang, 2018). We also test other models in-
spired in classic approaches for other tagging tasks
(Schmid, 1994; Sha and Pereira, 2003). We use
the Penn Treebank (PTB) and the Penn Chinese
Treebank (CTB) as testbeds.

The comparison against Vinyals et al. (2015),
the closest work to ours, shows that our method is
able to train more accurate parsers. This is in spite
of the fact that our approach addresses constituent
parsing as a sequence labeling problem, which
is simpler than a sequence-to-sequence problem,
where the output sequence has variable/unknown
length. Despite being the first sequence label-
ing method for constituent parsing, our baselines
achieve decent accuracy results in comparison to
models coming from mature lines of research, and
their speeds are the fastest reported to our knowl-
edge.

2 Linearization of n-ary trees

Notation and Preliminaries In what follows,
we use bold style to refer to vectors and matrices
(e.g x and W). Let w=[w1, w2, ..., w|w|] be an in-
put sequence of words, where wi 2 V . Let T|w|
be the set of constituent trees with |w| leaf nodes
that have no unary branches. For now, we will
assume that the constituent parsing problem con-
sists in mapping each sentence w to a tree in T|w|,
i.e., we assume that correct parses have no unary
branches. We will deal with unary branches later.

To reduce the problem to a sequence labeling
task, we define a set of labels L that allows us
to encode each tree in T|w| as a unique sequence
of labels in L(|w|�1), via an encoding function

1A last dummy label is generated to fulfill the properties
of sequence labeling tasks.

�|w| : T|w| ! L(|w|�1). Then, we can reduce
the constituent parsing problem to a sequence la-
beling task where the goal is to predict a function
F|w|,✓ : V |w| ! L|w|�1, where ✓ are the parame-
ters to be learned. To parse a sentence, we label it
and then decode the resulting label sequence into
a constituent tree, i.e., we apply F|w|,✓ � ��1

|w|.
For the method to be correct, we need the en-

coding of trees to be complete (every tree in T|w|
must be expressible as a label sequence, i.e., �|w|
must be a function, so we have full coverage of
constituent trees) and injective (so that the in-
verse function ��1

|w| is well-defined). Surjectivity
is also desirable, so that the inverse is a function
on L|w|�1, and the parser outputs a tree for any
sequence of labels that the classifier can generate.

We now define our �|w| and show that it is total
and injective. Our encoding is not surjective per
se. We handle ill-formed label sequences in §2.3.

2.1 The Encoding
Let wi be a word located at position i in the sen-
tence, for 1  i  |w| � 1. We will assign it a
2-tuple label li = (ni, ci), where: ni is an inte-
ger that encodes the number of common ancestors
between wi and wi+1, and ci is the nonterminal
symbol at the lowest common ancestor.

Basic encodings The number of common ances-
tors may be encoded in several ways.

1. Absolute scale: The simplest encoding is to
make ni directly equal to the number of an-
cestors in common between wi and wi+1.

2. Relative scale: A second and better variant
consists in making ni represent the difference
with respect to the number of ancestors en-
coded in ni�1. Its main advantage is that the
size of the label set is reduced considerably.

Figure 1 shows an example of a tree linearized ac-
cording to both absolute and relative scales.

Encoding for trees with exactly k children For
trees where all branchings have exactly k children,
it is possible to obtain a even more efficient lin-
earization in terms of number of labels. To do so,
we take the relative scale encoding as our starting
point. If we build the tree incrementally in a left-
to-right manner from the labels, if we find a neg-
ative ni, we will need to attach the word wi+1 (or
a new subtree with that word as its leftmost leaf)
to the (�ni + 2)th node in the path going from
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PRP       NN      VBD   DET    JJ     NN    IN    DET      NN        .
My    daughter  broke  the    red    toy   with    a     hammer    .

S

NP

NP

NP

NP
PP

VP

 2NP      1S          2VP  4NP   4NP   3NP  4PP   5NP      1S
Linearized tree (absolute scale):

Linearized tree (relative scale):

2NP      -1S         1VP  2NP   0NP  -1NP  1PP  1NP     -4S

Figure 1: An example of a constituency tree linearized
applying both absolute and relative scales.

wi to the root. If every node must have exactly k
children, there is only one valid negative value of
ni: the one pointing to the first node in said path
that has not received its kth child yet. Any smaller
value would leave this node without enough chil-
dren (which cannot be fixed later due to the left-
to-right order in which we build the tree), and any
larger value would create a node with too many
children. Thus, we can map negative values to a
single label. Figure 2 shows an example for the
case of binarized trees (k = 2).

 3NP      2S'        3VP  5NP    6NP'   4NP  5PP   6NP      1S
Linearized tree (absolute scale):

Linearized tree (relative scale):

 3NP     -1S'        1VP  2NP    1NP'  -2NP  1PP   1NP     -5S

PRP       NN       VBD   DET    JJ     NN    IN    DET      NN        .
My    daughter  broke  the    red    toy   with    a     hammer    .

S'

NP

NP

NP

NP
PP

VP

NP'

S

Linearized tree (simplified relative scale):
3NP       -S'        1VP  2NP    1NP'    -NP  1PP   1NP       -S

Figure 2: An example of a binarized constituency tree,
linearized both applying absolute and relative scales.

Links to root Another variant emerged from the
empirical observation that some tokens that are
usually linked to the root node (such as the final
punctuation in Figure 1) were particularly difficult
to learn for the simpler baselines. To successfully
deal with these cases in practice, it makes sense to
consider a simplified annotation scheme where a

node is assigned a special tag (ROOT, ci) when it
is directly linked to the root of the tree.

From now on, unless otherwise specified, we
use the relative scale without the simplification for
exactly k children. This will be the encoding used
in the experiments (§4), because the size of the la-
bel set is significantly lower than the one obtained
by relying on the absolute one. Also, it works di-
rectly with non-binarized trees, in contrast to the
encoding that we introduce for trees with exactly k
children, which is described only for completeness
and possible interest for future work. For the ex-
periments (§4), we also use the special tag (ROOT,
ci) to further reduce the size of the label set and to
simplify the classification of tokens connected to
the root, where |ni| is expected to be large.

2.2 Theoretical correctness

We now prove that �|w| is a total function and in-
jective for any tree in T|w|. We remind that trees
in this set have no unary branches. Later (in §2.3)
we describe how we deal with unary branches. To
prove correctness, we use the relative scale. Cor-
rectness for the other scales follows trivially.

Completeness Every pair of nodes in a rooted
tree has at least one common ancestor, and a
unique lowest common ancestor. Hence, for any
tree in T|w|, the label li = (ni, ci) defined in Sec-
tion 2.1 is well-defined and unique for each word
wi, 1  i  |w| � 1; and thus �|w| is a total func-
tion from T|w| to L(|w|�1).

Injectivity The encoding method must ensure
that any given sequence of labels corresponds to
exactly one tree. Otherwise, we have to deal with
ambiguity, which is not desirable.

For simplicity, we will prove injectivity in two
steps. First, we will show that the encoding is
injective if we ignore nonterminals (i.e., equiva-
lently, that the encoding is injective for the set of
trees resulting from replacing all the nonterminals
in trees in T|w| with a generic nonterminal X).
Then, we will show that it remains injective when
we take nonterminals into account.

For the first part, let ⌧ 2 T|w| be a tree where
nonterminals take a generic value X . We repre-
sent the label of the ith leaf node as •i. Con-
sider the representation of ⌧ as a bracketed string,
where a single-node tree with a node labeled A
is represented by (A), and a tree rooted at R
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with child subtrees C1 . . . Cn is represented as
(R(C1 . . . Cn)).

Each leaf node will appear in this string as a
substring (•i). Thus, the parenthesized string has
the form ↵0(•1)↵1(•2) . . . ↵|w|�1(•|w|)↵w, where
the ↵is are strings that can only contain brackets
and nonterminals, as by construction there can be
no leaf nodes between (•i) and (•i+1).

We now observe some properties of this paren-
thesized string. First, note that each of the sub-
strings ↵i must necessarily be composed of zero
or more closing parentheses followed by zero or
more opening parentheses with their correspond-
ing nonterminal, i.e., it must be of the form
[)]⇤[(X]⇤. This is because an opening parenthesis
followed by a closing parenthesis would represent
a leaf node, and there are no leaf nodes between
(•i) and (•i+1) in the tree.

Thus, we can write ↵i as ↵i)↵i(, where ↵i) is a
string matching the expression [)]⇤ and ↵i( a string
matching the expression [(X]⇤. With this, we can
write the parenthesized string for ⌧ as

↵0)↵0((•1)↵1)↵1((•2)↵2)↵2( . . . (•|w|)↵|w|)↵|w|(.

Let us now denote by �i the string ↵i�1((•i)↵i).
Then, and taking into account that ↵0) and ↵w(

are trivially empty in the previous expression due
to bracket balancing, the expression for the tree
becomes simply �1�2 . . . �|w|, where we know,
by construction, that each �i is of the form
[(X]⇤(•i)[)]⇤.

Since we have shown that each tree in T|w|
uniquely corresponds to a string �1�2 . . . �|w|, to
show injectivity of the encoding, it suffices to
show that different values for a �i generate dif-
ferent label sequences.

To show this, we can say more about the form
of �i: it must be either of the form [(X]⇤(•i) or
of the form (•i)[)]⇤, i.e., it is not possible that �i

contains both opening parenthesis before the leaf
node and closing parentheses after the leaf node.
This could only happen if the tree had a subtree of
the form (X(•i)), but this is not possible since we
are forbidding unary branches.

Hence, we can identify each �i with an in-
teger number �(�i): 0 if �i has neither open-
ing nor closing parentheses outside the leaf node,
+k if it has k opening parentheses, and �k if it
has k closing parentheses. It is easy to see that
�(�1)�(�2) . . . �(�|w|�1) corresponds to the val-
ues ni in the relative-scale label encoding of the

tree ⌧ . To see this, note that the number of un-
closed parentheses at the point right after �i in the
string exactly corresponds to the number of com-
mon ancestors between the ith and (i + 1)th leaf
nodes. A positive �(�i) = k corresponds to open-
ing k parentheses before �i, so the number of com-
mon ancestors of wi and wi+1 will be k more than
that of wi�1 and wi. A negative �(�i) = �k cor-
responds to closing k parentheses after �i, so the
number of common ancestors will conversely de-
crease by k. A value of zero means no opening or
closing parentheses, and no change in the number
of common ancestors.

Thus, different parenthesized strings
�1�2 . . . �|w| generate different label sequences,
which proves injectivity ignoring nonterminals
(note that �(�|w|) does not affect injectivity as
it is uniquely determined by the other values: it
corresponds to closing all the parentheses that
remain unclosed at that point).

It remains to show that injectivity still holds
when nonterminals are taken into account. Since
we have already proven that trees with differ-
ent structure produce different values of ni in
the labels, it suffices to show that trees with the
same structure, but different nonterminals, pro-
duce different values of ci. Essentially, this re-
duces to showing that every nonterminal in the tree
is mapped into a concrete ci. That said, consider
a tree ⌧ 2 T|w|, and some nonterminal X in ⌧ .
Since trees in Tw do not have unary branches, X
has at least two children. Consider the rightmost
word in the first child subtree, and call it wi. Then,
wi+1 is the leftmost word in the second child sub-
tree, and X is the lowest common ancestor of wi

and wi+1. Thus, ci = X , and a tree with identical
structure but a different nonterminal at that posi-
tion will generate a label sequence with a different
value of ci. This concludes the proof of injectivity.

2.3 Limitations

We have shown that our proposed encoding is a
total, injective function from trees without unary
branches with yield of length |w| to sequences of
|w| � 1 labels. This will serve as the basis for our
reduction of constituent parsing to sequence label-
ing. However, to go from theory to practice, we
need to overcome two limitations of the theoreti-
cal encoding: non-surjectivity and the inability to
encode unary branches. Fortunately, both can be
overcome with simple techniques.
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Handling of unary branches The encoding
function �|w| cannot directly assign the nontermi-
nal symbols of unary branches, as there is not any
pair of words (wi, wi+1) that have those in com-
mon. Figure 3 illustrates it with an example.

It is worth remarking that this is not a limitation
of our encoding, but of any encoding that would
facilitate constituent parsing as sequence labeling,
as the number of nonterminal nodes in a tree with
unary branches is not bounded by any function of
|w|. The fact that our encoding works for trees
without unary branches owes to the fact that such a
tree cannot have more than |w|�1 non-leaf nodes,
and therefore it is always possible to encode all of
them in labels associated with |w| � 1 leaf nodes.

S

X
Y

Z

1_S   3_Y   1_S   1_S

S

Y

T:

 T1      T2     T3     T4      T5

w1     w2   w3    w4      w5

 T1      T2     T3     T4      T5

w1     w2    w3    w4      w5

Φ(T):

Φ-1(Φ(T)):

Figure 3: An example of a tree that cannot be di-
rectly linearized with our approach. wi and Ti abstract
over words and PoS tags. Dotted lines represent incor-
rect branches after applying and inverting our encoding
naively without any adaptation for unaries. The nonter-
minal symbol of the second ancestor of w2 (X) cannot
be decoded, as no pair of words have X as their lowest
common ancestor. A similar situation can be observed
for the closest ancestor of w5 (Z).

To overcome this issue, we follow a collapsing
approach, as is common in parsers that need spe-
cial treatment of unary chains (Finkel et al., 2008;
Narayan and Cohen, 2016; Shen et al., 2018). For
clarity, we use the name intermediate unary chains
to refer to unary chains that end up into a nonter-
minal symbol (e.g. X ! Y in Figure 3) and leaf
unary chains to name those that yield a PoS tag
(e.g. Z ! T5). Intermediate unary chains are col-
lapsed into a chained single symbol, which can be

encoded by �|w| as any other nonterminal symbol.
On the other hand, leaf unary chains are collapsed
together with the PoS tag, but these cannot be en-
coded and decoded by relying on �|w|, as our en-
coding assumes a fixed sequence of leaf nodes and
does not encode them explicitly. To overcome this,
we propose two methods:

1. To use an extra function to enrich the PoS
tags before applying our main sequence la-
beling function. This function is of the form
 |w| : V |w| ! U |w|, where U is the set of la-
bels of the leaf unary chains (without includ-
ing the PoS tags) plus a dummy label ?.  |w|
maps wi to ? if there is no leaf unary chain
at wi, or to the collapsed label otherwise.

2. To extend our encoding function to predict
them as a part of our labels li, by transform-
ing them into 3-tuples (ni, ci, ui) where ui

encodes the leaf unary chain collapsed label
for wi, if there is any, or none otherwise. We
call this extended encoding function � 0

|w|.

The former requires to run two passes of se-
quence labeling to deal with leaf unary chains.
The latter avoids this, but the number of labels is
larger and sparser. In §4 we discuss how these two
approaches behave in terms of accuracy and speed.

Non-surjectivity Our encoding, as defined for-
mally in Section 2.1, is injective but not surjec-
tive, i.e., not every sequence of |w| � 1 labels of
the form (ni, ci) corresponds to a tree in T|w|. In
particular, there are two situations where a label
sequence formally has no tree, and thus ��1

|w| is not
formally defined and we have to use extra heuris-
tics or processing to define it:

• Sequences with conflicting nonterminals. A
nonterminal can be the lowest common an-
cestor of more than two pairs of contiguous
words when branches are non-binary. For ex-
ample, in the tree in Figure 1, the lowest com-
mon ancestor of both “the” and “red” and of
“red” and “toy” is the same NP node. This
translates into c4 = NP , c5 = NP in the la-
bel sequence. If we take that sequence and
set c5 = VP , we obtain a label sequence that
does not strictly correspond to the encoding
of any tree, as it contains a contradiction: two
elements referencing the same node indicate
different nonterminal labels. In practice, this
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problem is trivial to solve: when a label se-
quence encodes several conflicting nontermi-
nals at a given position in the tree, we com-
pute��1

|w| using the first such nonterminal and
ignoring the rest.

• Sequences that produce unary structures.
There are sequences of values ni that do not
correspond to a tree in T|w| because the only
tree structure satisfying the common ances-
tor conditions of their values (the one built
by generating the string of �is in the injec-
tivity proof) contains unary branchings, caus-
ing the problem described above where we
do not have a specification for every nonter-
minal. An example of this is the sequence
(1, S), (3, Y ), (1, S), (1, S) in absolute scal-
ing, that was introduced in Figure 3. In prac-
tice, as unary chains have been previously
collapsed, any generated unary node is con-
sidered as not valid and removed.

3 Sequence Labeling

Sequence labeling is an structured prediction task
that generates an output label for every token in an
input sequence (Rei and Søgaard, 2018). Exam-
ples of practical tasks that can be formulated un-
der this framework in natural language processing
are PoS tagging, chunking or named-entity recog-
nition, which are in general fast. However, to our
knowledge, there is no previous work on sequence
labeling methods for constituent parsing, as an en-
coding allowing it was lacking so far.

In this work, we consider a range of methods
ranging from traditional models to state-of-the-
art neural models for sequence labeling, to test
whether they are valid to train constituency-based
parsers following our approach. We give the es-
sential details needed to comprehend the core of
each approach, but will mainly treat them as black
boxes, referring the reader to the references for a
careful and detailed mathematical analysis of each
method. Appendix A specifies additional hyper-
parameters for the tested models.

Preprocessing We add to every sentence both
beginning and end tokens.

3.1 Traditional Sequence Labeling Methods
We consider two baselines to train our prediction
function F|w|,✓, based on popular sequence label-
ing methods used in NLP problems, such as PoS

tagging or shallow parsing (Schmid, 1994; Sha
and Pereira, 2003).

Conditional Random Fields (Lafferty et al.,
2001) Let CRF|w|,✓ be its prediction function, a
CRF model computes conditional probability dis-
tributions of the form p(l,w) such that CRF✓(w)
= l = arg maxl0 p(l0,w). In our work, the inputs
to the CRF are words and PoS tags. To repre-
sent a word wi, we are using information of the
word itself and also contextual information from
w[i�1:i+1].2 In particular:

• We extract the word form (lowercased), the
PoS tag and its prefix of length 2, from
w[i�1:i+1]. For these words we also include
binary features: whether it is the first word,
the last word, a number, whether the word is
capitalized or uppercased.

• Additionally, for wi we look at the suffixes of
both length 3 and 2 (i.e. wi[�3:] and wi[�2:]).

To build our CRF models, we relied on the
sklearn-crfsuite library3.

MultiLayer Perceptron (Rosenblatt, 1958) We
use one hidden layer. Let MLP|w|,✓ be its predic-
tion function, it treats sequence labeling as a set of
independent predictions, one per word. The pre-
diction for a word is computed as softmax(W2 ·
relu(W1 · x + b1) + b2), where x is the input
vector and Wi and bi the weights and biases to
be learned at layer i. We consider both a discrete
(MLPd) and an embedded (MLPe) perceptron. For
the former, we use as inputs the same set of fea-
tures as for the CRF. For the latter, the vector x for
wi is defined as a concatenation of word and PoS
tag embeddings from w[i�2:i+2].4

To build our MLPs, we relied on keras.5

3.2 Sequence Labeling Neural Models
We are using NCRFPP++6, a sequence label-
ing framework based on recurrent neural net-
works (RNN) (Yang and Zhang, 2018), and more
specifically on bidirectional short-term memory
networks (Hochreiter and Schmidhuber, 1997),

2We tried contextual information beyond the immediate
previous and next word, but the performance was similar.

3https://sklearn-crfsuite.readthedocs.io/en/latest/
4In contrast to the discrete input, larger contextual infor-

mation was useful.
5https://keras.io/
6https://github.com/jiesutd/NCRFpp, with PyTorch.
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which have been successfully applied to problems
such as PoS tagging or dependency parsing (Plank
et al., 2016; Kiperwasser and Goldberg, 2016).
Let LSTM(x) be an abstraction of a standard long
short-term memory network that processes the se-
quence x = [x1, ...,x|x|], then a BILSTM encoding
of its ith element, BILSTM(x, i) is defined as:

BILSTM(x, i) = hi = hl
i � hr

i =
LSTMl(x[1:i]) � LSTMr(x[|x|:i])

In the case of multilayer BILSTM’S, the time-
step outputs of the BILSTMm are fed as input to
the BILSTMm+1. The output label for each wi is
finally predicted as softmax(W · hi + b).

Given a sentence [w1, w2, ..., w|w|], the input to
the sequence model is a sequence of embeddings
[w1,w2, ...,w|w|] where each wi = wi � pi �
chi, such that wi and pi are a word and a PoS
tag embedding, and chi is a word embedding ob-
tained from an initial character embedding layer,
also based on a BILSTM. Figure 4 shows the ar-
chitecture of the network.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

w1               w2                           w|w|-1          w|w|

...

...

h1 h2  h|w|

  

Linear Linear Linear Linear

Softmax

 h|w-1|

Softmax Softmax Softmax

l1 l2 l|w-1| l|w|

Figure 4: Architecture of the neural model

4 Experiments

We report results on models trained using the rela-
tive scale encoding and the special tag (ROOT,ci).
As a reminder, to deal also with leaf unary chains,
we proposed two methods in §2.3: to predict them
relying both on the encoding functions �|w| and
 |w|, or to predict them as a part of an enriched
label predicted by the function � 0

|w|. For clarity,
we are naming these models with the superscripts
 ,� and � 0 , respectively.

Datasets We use the Penn Treebank (Marcus
et al., 1994) and its official splits: Sections 2 to 21
for training, 22 for development and 23 for test-
ing. For the Chinese Penn Treebank (Xue et al.,
2005): articles 001- 270 and 440-1151 are used

for training, articles 301-325 for development, and
articles 271-300 for testing. We use the version
of the corpus with the predicted PoS tags of Dyer
et al. (2016). We train the � models based on the
predicted output by the corresponding  model.

Metrics We use the F-score from the EVALB
script. Speed is measured in sentences per second.
As the problem is reduced to sequence labeling,
we briefly comment on the accuracy (percentage
of correctly predicted labels) of our baselines.

Source code It can be found at https://
github.com/aghie/tree2labels

Hardware The models are run on a single
thread of a CPU7 and on a consumer-grade GPU8.
In sequence-to-sequence work (Vinyals et al.,
2015) the authors use a multi-core CPU (the num-
ber of threads was not specified), while we pro-
vide results on a single core for easier comparabil-
ity. Parsing sentences on a CPU can be framed as
an “embarrassingly parallel” problem (Hall et al.,
2014), so speed can be made to scale linearly with
the number of cores. We use the same batch size
as Vinyals et al. (2015) for testing (128).9

4.1 Results
Table 1 shows the performance of our baselines
on the PTB development set. It is worth noting
that since we are using different libraries to train
the models, these might show some differences
in terms of performance/speed beyond those ex-
pected in theory. For the BILSTM model we test:

• BILSTMm=1: It does not use pretrained word
embeddings nor character embeddings. The
number of layers m is set to 1.

• BILSTMm=1,e: It adds pretrained word em-
beddings from GloVe (Pennington et al.,
2014) for English and from the Gigaword
corpus for Chinese (Liu and Zhang, 2017).

• BILSTMm=1,e,ch: It includes character em-
beddings processed through a BILSTM.

• BILSTMm=2,e: m is set to 2. No character
embeddings.

• BILSTMm=2,e,ch: m is set to 2.

7An Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz.
8A GeForce GTX 1080.
9A larger batch will likely result in faster parsing when

executing the model on a GPU, but not necessarily on a CPU.
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Model F-score Acc. Sent/s Sent/s
(CPU) (GPU)

CRF ,� 60.4 63.9 83 -
MLP ,�

d 72.6 78.1 16 49
MLP ,�

e 74.8 79.3 503 666
CRF�

0
60.3 65.4 6 -

MLP�
0

d 71.9 78.0 31 95
MLP�

0
e 75.4 79.7 342 890

BILSTM ,�
m=1 87.2 88.9 144 541

BILSTM ,�
m=1,e 88.3 89.8 144 543

BILSTM ,�
m=1,e,ch 88.5 90.0 120 456

BILSTM ,�
m=2,e 89.7 90.7 72 476

BILSTM ,�
m=2,e,ch 89.9 90.9 65 405

BILSTM�
0

m=1 87.3 89.3 206 941
BILSTM�

0
m=1,e 88.5 90.1 209 957

BILSTM�
0

m=1,e,ch 88.0 90.0 180 808
BILSTM�

0
m=2,e 89.8 90.9 119 842

BILSTM�
0

m=2,e,ch 89.7 90.9 109 716

Table 1: Performance of the proposed sequence label-
ing methods on the development set of the PTB. For the
CRF models the complexity is quadratic with respect to
the number of labels, which causes CRF� 0

to be partic-
ularly slow.

The  ,� and the � 0 models obtain similar F-
scores. When it comes to speed, the BILSTMs� 0

are notably faster than the BILSTMs ,�. � 0 mod-
els are expected to be more efficient, as leaf unary
chains are handled implicitly. In practice, � 0 is a
more expensive function to compute than the orig-
inal �, since the number of output labels is sig-
nificantly larger, which reduces the expected gains
with respect to the  ,� models. It is worth not-
ing that our encoding is useful to train an MLPe

with a decent sense of phrase structure, while be-
ing very fast. Paying attention to the differences
between F-score and Accuracy for each baseline,
we notice the gap between them is larger for CRFs
and MLPs. This shows the difficulties that these
methods have, in comparison to the BILSTM ap-
proaches, to predict the correct label when a word
wi+1 has few common ancestors with wi. For ex-
ample, let -10X be the right (relative scale) label
between wi and wi+1, and let l1=-1X and l2=-9X
be two possible wrong labels. In terms of accu-
racy it is the same that a model predicts l1 or l2,
but in terms of constituent F-score, the first will
be much worse, as many closed parentheses will
remain unmatched.

Tables 2 and 3 compare our best models against
the state of the art on the PTB and CTB test sets.
The performance corresponds to models without
reranking strategies, unless otherwise specified.

5 Discussion

We are not aware of work that reduces con-
stituency parsing to sequence labeling. The work
that can be considered as the closest to ours is
that of Vinyals et al. (2015), who address it as
a sequence-to-sequence problem, where the out-
put sequence has variable/unknown length. In
this context, even a one hidden layer percep-
tron outperforms their 3-layer LSTM model with-
out attention, while parsing hundreds of sen-
tences per second. Our best models also out-
performed their 3-layer LSTM model with atten-
tion and even a simple BILSTM model with pre-
trained GloVe embeddings obtains a similar per-
formance. In terms of F-score, the proposed se-
quence labeling baselines still lag behind mature
shift-reduce and chart parsers. In terms of speed,
they are clearly faster than both CPU and GPU
chart parsers and are at least on par with the fastest
shift-reduce ones. Although with significant loss
of accuracy, if phrase-representation is needed in
large-scale tasks where the speed of current sys-
tems makes parsing infeasible (Gómez-Rodrı́guez,
2017; Gómez-Rodrı́guez et al., 2017), we can use
the simpler, less accurate models to get speeds
well above any parser reported to date.

It is also worth noting that in their recent work,
published while this manuscript was under review,
Shen et al. (2018) developed a mapping of binary
trees with n leaves to sequences of n � 1 integers
(Shen et al., 2018, Algorithm 1). This encoding
is different from the ones presented here, as it is
based on the height of lowest common ancestors in
the tree, rather than their depth. While their pur-
pose is also different from ours, as they use this
mapping to generate training data for a parsing al-
gorithm based on recursive partitioning using real-
valued distances, their encoding could also be ap-
plied with our sequence labeling approach. How-
ever, it has the drawback that it only supports bi-
narized trees, and some of its theoretical properties
are worse for our goal, as the way to define the in-
verse of an arbitrary label sequence can be highly
ambiguous: for example, a sequence of n�1 equal
labels in this encoding can represent any binary
tree with n leaves.

6 Conclusion

We presented a new parsing paradigm, based on a
reduction of constituency parsing to sequence la-
beling. We first described a linearization function
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Model Testbed CPU Run GPU Run F-score
#Cores Sents/s #GPU Sents/s

Sequence labeling
MLP ,�

e WSJ23 1 501 1 669 74.1
MLP�

0
e WSJ23 1 349 1 929 74.8

BILSTM ,�
m=1,e WSJ23 1 148 1 581 88.1

BILSTM�
0

m=1,e WSJ23 1 221 1 1016 88.3
BILSTM ,�

m=2,e,ch WSJ23 1 66 1 434 89.9
BILSTM�

0
m=2,e,ch WSJ23 1 115 1 780 90.0

BILSTM ,�
m=2,e WSJ23 1 74 1 506 90.0

BILSTM�
0

m=2,e WSJ23 1 126 1 898 90.0
Sequence-to-sequence
3-layer LSTM WSJ 23 <70

3-layer LSTM + Attention⇧ WSJ 23
Multi-core

120 88.3(number not
(Vinyals et al., 2015) specified)
Constituency parsing as dependency parsing
Fernández-González and Martins (2015)⇧ WSJ23 1 41 90.2
Chart-based parsers
Charniak (2000)⇤ WSJ23 1 6 89.5
Petrov and Klein (2007)⇤ WSJ23 1 6 90.1
Stern et al. (2017)⇧ WSJ23 16* 20 91.8
Kitaev and Klein (2018) WSJ23 2 70 95.1+ELMo (Peters et al., 2018)⇧
Chart-based parsers with GPU-specific implementation
Canny et al. (2013)⇧ WSJ(<30) 1 250
Hall et al. (2014)⇧ WSJ(<40) 1 404
Transition-based and other greedy constituent parsers
Zhu et al. (2013)⇧ WSJ23 1 101 89.9
Zhu et al. (2013)+Padding⇧ WSJ23 1 90 90.4
Dyer et al. (2016)⇤ WSJ23 1 17 91.2
Fernández and Gómez-Rodrı́guez (2018)⇧ WSJ23 1 18 91.7
Stern et al. (2017)⇧ WSJ23 16* 76 91.8
Liu and Zhang (2017) WSJ23 91.8
Shen et al. (2018) WSJ23 1 111 91.8

Table 2: Comparison against the state of the art.*Stern et al. (2017) report that they use a 16-core machine, but
sentences are processed one-at-a-time. Hence, they do not exploit inter-sentence parallelism, but they may gain
some speed from intra-sentence parallelism. ⇧ indicates the that the speed was reported in the paper itself. ⇤ and
⇤ indicate that the speeds were extracted from Zhu et al. (2013) and Fernández and Gómez-Rodrı́guez (2018).

Model F-score
MLP ,�

e 63.1
MLP�

0
e 64.4

BILSTM ,�
m=2,e,ch 84.4

BILSTM�
0

m=2,e,ch 84.1
BILSTM ,�

m=2,e 84.4
BILSTM�

0
m=2,e 83.1

Zhu et al. (2013) 82.6
Zhu et al. (2013)+P 83.2
Dyer et al. (2016) 84.6
Liu and Zhang (2017) 86.1
Shen et al. (2018) 86.5
Fernández and Gómez-Rodrı́guez (2018) 86.8

Table 3: Performance on the CTB test set

to transform a constituent tree (with n leaves) into
a sequence of n � 1 labels that encodes it. We
proved that this encoding function is total and in-
jective for any tree without unary branches. We

also discussed its limitations: how to deal with
unary branches and non-surjectivity, and showed
how these can be solved. We finally proposed a
set of fast and strong baselines.
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2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523–1533. Associa-
tion for Computational Linguistics.

Jenny Rose Finkel, Alex Kleeman, and Christopher D
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. Proceedings of ACL-
08: HLT, pages 959–967.
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Abstract

To approximately parse an unfamiliar lan-
guage, it helps to have a treebank of a sim-
ilar language. But what if the closest avail-
able treebank still has the wrong word order?
We show how to (stochastically) permute the
constituents of an existing dependency tree-
bank so that its surface part-of-speech statis-
tics approximately match those of the target
language. The parameters of the permuta-
tion model can be evaluated for quality by dy-
namic programming and tuned by gradient de-
scent (up to a local optimum). This optimiza-
tion procedure yields trees for a new artificial
language that resembles the target language.
We show that delexicalized parsers for the tar-
get language can be successfully trained using
such “made to order” artificial languages.

1 Introduction

Dependency parsing is a core task in natural lan-
guage processing (NLP). Given a sentence, a
dependency parser produces a dependency tree,
which specifies the typed head-modifier relations
between pairs of words. While supervised de-
pendency parsing has been successful (McDonald
and Pereira, 2006; Nivre, 2008; Kiperwasser and
Goldberg, 2016), unsupervised parsing can hardly
produce useful parses (Mareček, 2016). So it is
extremely helpful to have some treebank of super-
vised parses for training purposes.

1.1 Past work: Cross-lingual transfer
Unfortunately, manually constructing a treebank
for a new target language is expensive (Böhmová
et al., 2003). As an alternative, cross-lingual
transfer parsing (McDonald et al., 2011) is some-
times possible, thanks to the recent development
of multi-lingual treebanks (McDonald et al., 2013;
Nivre et al., 2015; Nivre et al., 2017). The idea
is to parse the sentences of the target language
with a supervised parser trained on the treebanks
of one or more source languages. Although the
parser cannot be expected to know the words of
the target language, it can make do with parts of

speech (POS) (McDonald et al., 2011; Täckström
et al., 2013; Zhang and Barzilay, 2015) or cross-
lingual word embeddings (Duong et al., 2015; Guo
et al., 2016; Ammar et al., 2016). A more serious
challenge is that the parser may not know how to
handle the word order of the target language, un-
less the source treebank comes from a closely re-
lated language (e.g., using German to parse Lux-
embourgish). Training the parser on trees from
multiple source languages may mitigate this issue
(McDonald et al., 2011) because the parser is more
likely to have seen target part-of-speech sequences
somewhere in the training data. Some authors
(Rosa and Žabokrtský, 2015a,b; Wang and Eis-
ner, 2016) have shown additional improvements
by preferring source languages that are “close” to
the target language, where the closeness is mea-
sured by distance between POS language models
trained on the source and target corpora.

1.2 This paper: Tailored synthetic data
We will focus on delexicalized dependency pars-
ing, which maps an input POS tag sequence to
a dependency tree. We evaluate single-source
transfer—train a parser on a single source lan-
guage, and evaluate it on the target language. This
is the setup of Zeman and Resnik (2008) and
Søgaard (2011a).

Our novel ingredient is that rather than seek a
close source language that already exists, we cre-
ate one. How? Given a dependency treebank of
a possibly distant source language, we stochasti-
cally permute the children of each node, accord-
ing to some distribution that makes the permuted
language close to the target language.

And how do we find this distribution? We adopt
the tree-permutation model of Wang and Eisner
(2016). We design a dynamic programming algo-
rithm which, for any given distribution p in Wang
and Eisner’s family, can compute the expected
counts of all POS bigrams in the permuted source
treebank. This allows us to evaluate p by com-
puting the divergence between the bigram POS
language model formed by these expected counts,
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and the one formed by the observed counts of POS
bigrams in the unparsed target language. In order
to find a p that locally minimizes this divergence,
we adjust the model parameters by stochastic gra-
dient descent (SGD).

1.3 Key limitations in this paper
Better measures of surface closeness between two
languages might be devised. However, even
counting the expected POS N -grams is moder-
ately expensive, taking time exponential in N if
done exactly. So we compute only these local
statistics, and only for N = 2. We certainly need
N > 1 because the 1-gram distribution is not af-
fected by permutation at all. N = 2 captures
useful bigram statistics: for example, to mimic a
verb-final language with prenominal modifiers, we
would seek constituent permutations that result in
matching its relatively high rate of VERB–PUNCT
and ADJ–NOUN bigrams. While N > 2 might
have improved the results, it was too slow for our
large-scale experimental design. §7 discusses how
richer measures could be used in the future.

We caution that throughout this paper, we as-
sume that our corpora are annotated with gold
POS tags, even in the target language (which lacks
any gold training trees). This is an idealized set-
ting that has often been adopted in work on unsu-
pervised and cross-lingual transfer.§7 discusses a
possible avenue for doing without gold tags.

2 Modeling Surface Realization

We begin by motivating the idea of tree permuta-
tion. Let us suppose that the dependency tree for a
sentence starts as a labeled graph—a tree in which
siblings are not yet ordered with respect to their
parent or one another. Each language has some
systematic way to realize its unordered trees as
surface strings:1 it imposes a particular order on
the tree’s word tokens. More precisely, a language
specifies a distribution p(string | unordered tree)
over a tree’s possible realizations.

As an engineering matter, we now make the
strong assumption that the unordered dependency
trees are similar across languages. That is, we sup-
pose that different languages use similar underly-
ing syntactic/semantic graphs, but differ in how
they realize this graph structure on the surface.

1Modeling this process was the topic of the recent Surface
Realization Shared Task (Mille et al., 2018). Most relevant
is work on tree linearization (Filippova and Strube, 2009;
Futrell and Gibson, 2015; Puzikov and Gurevych, 2018).

Thus, given a gold POS corpus u of the un-
known target language, we may hope to explain its
distribution of surface POS bigrams as the result of
applying some target-language surface realization
model to the distribution of cross-linguistically
“typical” unordered trees. To obtain samples of
the latter distribution, we use the treebanks of one
or more other languages. The present paper eval-
uates our method when only a single source tree-
bank is used. In the future, we could try tuning a
mixture of all available source treebanks.

2.1 Realization is systematic
We presume that the target language applies the
same stochastic realization model to all trees. All
that we can optimize is the parameter vector of
this model. Thus, we deny ourselves the free-
dom to realize each individual tree in an ad hoc
way. To see why this is important, suppose the tar-
get language is French, whose corpus u contains
many NOUN–ADJ bigrams. We could achieve
such a bigram from the unordered source tree

DET NOUN VERB PROPN ADJ
the cake made Sue sleepy

det nsubj dobj
xcomp

by ordering

it to yield
DET NOUN ADJ VERB PROPN
the cake sleepy made Sue

det dobjxcomp
nsubj

.
However, that realization is not in fact appropri-
ate for French, so that ordered tree would not be
a useful training tree for French. Our approach
should disprefer this tempting but incorrect real-
ization, because any model with a high probabil-
ity of this realization would, if applied system-
atically over the whole corpus, also yield sen-
tences like He sleepy made Sue, with un-
wanted PRON–ADJ bigrams that would not match
the surface statistics of French. We hope our ap-
proach will instead choose the realization model
that is correct for French, in which the NOUN–ADJ
bigrams arise instead from source trees where the
ADJ is a dependent of the NOUN, yielding (e.g.)

DET NOUN ADJ VERB PROPN
the cake tasty pleased Sue

dobjdet amod
nsubj

. This has
the same POS sequence as the example above (as
it happens), but now assigns the correct tree to it.

2.2 A parametric realization model
As our family of realization distributions, we
adopt the log-linear model used for this purpose by
Wang and Eisner (2016). The model assumes that
the root node a of the unordered dependency tree
selects an ordering ⇡(a) of the na nodes consisting
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of a and its na � 1 dependent children. The pro-
cedure is repeated recursively at the child nodes.
This method can produce only projective trees.

Each node a draws its ordering ⇡(a) indepen-
dently according to

p✓(⇡ | a) =
1

Z(a)
exp

X

1i<jna

✓ · f(⇡, i, j) (1)

which is a distribution over the na! possible or-
derings. Z(a) is a normalizing constant. f is a
feature vector extracted from the ordered pair of
nodes ⇡i, ⇡j , and ✓ is the model’s parameter vec-
tor of feature weights. See Appendix A for the fea-
ture templates, which are a subset of those used by
Wang and Eisner (2016). These features are able
to examine the tree’s node labels (POS tags) and
edge labels (dependency relations). Thus, when a
is a verb, the model can assign a positive weight to
“subject precedes verb” or “subject precedes ob-
ject,” thus preferring orderings with these features.

Following Wang and Eisner (2016, §3.1), we
choose new orderings for the noun and verb nodes
only,2 preserving the source treebank’s order at all
other nodes a.

2.3 Generating training data

Given a source treebank B and some parameters
✓, we can use equation (1) to randomly sample re-
alizations of the trees in B. The effect is to reorder
dependent phrases within those trees. The result-
ing permuted treebank B0 can be used to train a
parser for the target language.

2.4 Choosing parameters ✓

So how do we choose ✓ that works for the tar-
get language? Suppose u is a corpus of target-
language POS sequences, using the same set of
POS tags as B. We evaluate parameters ✓ accord-
ing to whether POS tag sequences in B0 will be
distributed like POS tag sequences in u.

To do this, first we estimate a bigram language
model q̂ from the actual distribution q of POS se-
quences observed in u. Second, let p✓ denote
the distribution of POS sequences that we expect
to see in B0, that is, POS sequences obtained by

2Specifically, the 93% of nodes tagged with NOUN,
PROPN, PRON or VERB in Universal Dependencies format.
In retrospect, this restriction was unnecessary in our setting,
but it skipped only 4.4% of nodes on average (from 2% to
11% depending on language). The remaining nodes were
nouns, verbs, or childless.

stochastically realizing observed trees in B ac-
cording to ✓. We estimate another bigram model
p̂✓ from this distribution p✓.

We then try to set ✓, using SGD, to minimize a
divergence D(p̂✓, q̂) that we will define below.

2.4.1 Estimation of bigram models
Estimating q̂ is straightforward: q̂(t | s) =
cq(st)/cq(s), where cq(st) is the count of POS bi-
gram st in the average3 sentence of u and cq(s) =P

t0 cq(st0). We estimate p̂✓ in the same way,
where cp(st) denotes the expected count of st in a
random POS sequence y ⇠ p✓. This is equivalent
to choosing q̂, p̂✓ to minimize the KL-divergences
KL(q || q̂), KL(p✓ || p̂✓). It ensures that each
model’s expected bigram counts match those in
the POS sequences.

However, these maximum-likelihood estimates
might overfit on our finite data, u and B. We
therefore smooth both models by first adding � =
0.1 to all bigram counts cq(st) and cp(st).4

2.4.2 Divergence of bigram models
We need a metric to evaluate ✓. If p and q are
bigram language models over POS sequences y
(sentences), their Kullback-Leibler divergence is

KL(p || q)
def
= Ey⇠p[log p(y) � log q(y)] (2)

=
X

s,t

cp(st) (3)
· (log p(t | s) � log q(t | s))

where y ranges over POS sequences and st ranges
over POS bigrams. These include bigrams where
s = BOS (“beginning of sequence”) or t = EOS
(“end of sequence”), which are boundary tags that
we take to surround y.

All quantities in equation (3) can be determined
directly from the (expected) bigram counts given
by cp and cq. No other model estimation is needed.

A concern about equation (3) is that a single bi-
gram st that is badly underrepresented in q may
contribute an arbitrarily large term log p(t|s)

q(t|s) . To
limit this contribution to at most log 1

↵ , for some
small ↵ 2 (0, 1), we define KL↵(p || q) by a vari-
ant of equation (3) in which q(t | s) has been re-
placed by q̃(t | s)

def
= ↵p(t | s) + (1 � ↵)q(t | s).5

3A more familiar definition of cq would use the total count
in u. Our definition, which yields the same bigram probabil-
ities, is analogous to our definition of cp. This cp is needed
for KL(p || q) in (3), and cq symmetrically for KL(q || p).

4Ideally one should tune � to minimize the language
model perplexity on held-out data (e.g., by cross-validation).

5This is inspired by the ↵-skew divergence of Lee (1999,

1327



Our final divergence metric D(p̂✓, q̂) defines D
as a linear combination of exclusive and inclusive
KL↵ divergences, which respectively emphasize
p✓’s precision and recall at matching q’s bigrams:

D(p, q) = (1��)·KL↵1(p || q)

Ey⇠p[ |y| ] +�·KL↵2(q || p)

Ey⇠q[ |y| ]
(4)

where �, ↵1, ↵2 are tuned by cross-validation to
maximize the downstream parsing performance.
The division by average sentence length converts
KL from nats per sentence to nats per word,6 so
that the KL values have comparable scale even if
B has much longer or shorter sentences than u.

3 Algorithms

3.1 Efficiently computing expected counts
We now present a polynomial-time algorithm for
computing the expected bigram counts cp under p✓

(or equivalently p̂✓), for use above. This averages
expected counts from each unordered tree x 2 B.
Algorithm 1 in the supplement gives pseudocode.

The insight is that rather than sampling a single
realization of x (as B0 does), we can use dynamic
programming to sum efficiently over all of its ex-
ponentially many realizations. This gives an exact
answer. It algorithmically resembles tree-to-string
machine translation, which likewise considers the
possible reorderings of a source tree and incorpo-
rates a language model by similarly tracking their
surface N -grams (Chiang, 2007, §5.3.2).

For each node a of the tree x, let the POS string
ya be the realization of the subtree rooted at a. Let
ca(st) be the expected count of bigram st in ya,
whose distribution is governed by equation (1).
We allow s = BOS or t = EOS as defined in §2.4.2.

The ca function can be represented as a sparse
map from POS bigrams to reals. We compute ca

at each node a of x in a bottom-up order. The final
step computes croot, giving the expected bigram
counts in x’s realization y (that is, cp in §2.4).

We find ca as follows. Let n = na and recall
from §2.2 that ⇡(a) is an ordering of a1, . . . , an,
where a1, . . . , an�1 are the child nodes of a, and
an is a dummy node representing a’s head token.

2001). Indeed, we may regard KL↵(p || q) as the ↵-skew di-
vergence between the unigram distributions p(· | s) and q(· |

s), averaged over all s in proportion to cp(s). In principle, we
could have used the ↵-skew divergence between the distribu-
tions p(·) and q(·) over POS sequences y, but computing that
would have required a sampling-based approximation (§7).

6Recall that the units of negated log-probability are called
bits for log base 2, but nats for log base e.

Also, let a0 and an+1 be dummy nodes that always
appear at the start and end of any ordering.

For all 0  i  n and 1  j  n + 1, let
pa(i, j) denote the expected count of the aiaj node
bigram—the probability that ⇡(a) places node ai

immediately before node aj . These node bigram
probabilities can be obtained by enumerating all
possible orderings ⇡, a matter we return to below.

It is now easy to compute ca:

ca(st) = cwithin
a (st) + cbetween

a (st) (5)

cwithin
a (st) =

(Pn
i=1 cai(st) if s 6= BOS, t 6= EOS

0 otherwise

cacross
a (st) =

nX

i=0

n+1X

j=1

pa(i, j)cai(s EOS)caj (BOS t)

That is, ca inherits all non-boundary bigrams st
that fall within its child constituents (via cwithin

a ). It
also counts bigrams st that cross the boundary be-
tween consecutive nodes (via cacross

a ), where nodes
ai and aj are consecutive with probability pa(i, j).

When computing ca via (5), we will have al-
ready computed ca1 , . . . , can�1 bottom-up. As for
the dummy nodes, an is realized by the length-1
string h where h is the head token of node a, while
a0 and an+1 are each realized by the empty string.
Thus, can simply assigns count 1 to the bigrams
BOS h and h EOS, and ca0 and can+1 each assign
expected count 1 to BOS EOS. (Notice that thus,
cacross
a (st) counts ya’s boundary bigrams—the bi-

grams st where s = BOS or t = EOS—when i = 0
or j = n + 1 respectively.)

3.2 Efficient enumeration over permutations
The main challenge above is computing the node
bigram probabilities pa(i, j). These are marginals
of p(⇡ | a) as defined by (1), which unfortunately
is intractable to marginalize: there is no better way
than enumerating all n! permutations.

That said, there is a particularly efficient way
to enumerate the permutations. The Steinhaus-
Johnson-Trotter (SJT) algorithm (Sedgewick,
1977) does so in O(1) time per permutation, ob-
taining each permutation by applying a single
swap to the previous one. Only the features that
are affected by this swap need to be recomputed.
For our features (Appendix A), this cuts the run-
time per permutation from O(n2) to O(n).

Furthermore, the single swap of adjacent
nodes only changes 3 bigrams (possibly including
boundary bigrams). As a result, it is possible to
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obtain the marginal probabilities with O(1) addi-
tional work per permutation. When a node bigram
is destroyed, we increment its marginal probability
by the total probability of permutations encoun-
tered since the node bigram was last created. This
can be found as a difference of partial sums. The
final partial sum is the normalizing constant Z(a),
which can be applied at the end. Pseudocode is
given in supplementary material as Algorithm 2.

When we train the parameters ✓ (§2.4), we must
back-propagate through the whole computation of
equation (4), which depends on tag bigram counts
ca(st), which depend via (5) on expected node
bigram counts pa(i, j), which depend via Algo-
rithm 2 on the permutation probabilities p(⇡ | a),
which depend via (1) on the feature weights ✓.

4 Heuristics

4.1 Pruning high-degree trees
As a further speedup, we only train on trees with
number of words < 40 and maxa na  5, so
na!  120.7 We then produce the synthetic tree-
bank B0 (§2.3) by drawing a single realization of
each tree in B for which maxa na  7. This re-
quires sampling from up to 7! = 5040 candidates
per node, again using SJT.8

That is, in this paper we run exact algorithms
(§3), but only on a subset of B. The subset is
not necessarily representative. An improvement
would use importance sampling, with a proposal
distribution that samples the slower trees less often
during SGD but upweights them to compensate.

§7 suggests a future strategy that would run on
all trees in B via approximate, sampling-based al-
gorithms. The exact methods would remain useful
for calibrating the approximation quality.

4.2 Minibatch estimation of cp

To minimize (4), we use the Adam variant of SGD
(Kingma and Ba, 2014), with learning rate 0.01
chosen by cross-validation (§5.1).

SGD requires a stochastic estimate of the gra-
dient of the training objective. Ordinarily this is
done by replacing an expectation over the entire
training set with an expectation over a minibatch.

7We found that this threshold worked much better than
 4 and about as well as the much slower  6.

8This pruning heuristic retains 36.1% of the trees (aver-
aging over the 20 development treebanks (§5.1)) for training,
and 66.6% for actual realization. The latter restriction fol-
lows Wang and Eisner (2016, §4.2): they too discarded trees
with nodes having na � 8.

Equation (2) with p = p̂✓ is indeed an expecta-
tion over sentences of B. It can be stochastically
estimated as (3) where cp gives the expected bi-
gram counts averaged over only the sentences in a
minibatch of B. These are found using §3’s algo-
rithms with the current ✓. Unfortunately, the term
log p(t | s) depends on bigram counts that should
be derived from the entire corpus B in the same
way. Our solution is to simply reuse the minibatch
estimate of cp for the latter counts. We use a large
minibatch of 500 sentences from B so that this
drop-in estimate does not introduce too much bias
into the stochastic gradient: after all, we only need
to estimate bigram statistics on 17 POS types.9

By contrast, the cq values that are used for
the expectation in the second term of (4) and in
log q(t | s) do not change during optimization, so
we simply compute them once from all of u.

4.3 Informed initialization
Unfortunately the objective (4) is not convex, so
the optimizer is sensitive to initialization (see §5.3
below for empirical discussion). Initializing ✓ =
0 (so that p(⇡ | a) is uniform) gave poor results in
pilot experiments. Instead, we initially choose ✓

to be the realization parameters of the source lan-
guage, as estimated from the source treebank B.
This is at least a linguistically realistic ✓, although
it may not be close to the target language.10

For this initial estimation, we follow Wang and
Eisner (2016) and perform supervised training
on B of the log-linear realization model (1), by
maximizing the conditional log-likelihood of B,
namely

P
(x,t)2B log p✓(t | x), where (x, t) are

an unordered tree and its observed ordering in B.
This initial objective is convex.11

5 Experiments

We performed a large-scale experiment requiring
hundreds of thousands of CPU-hours. To our
knowledge, this is the largest study of parsing
transfer yet attempted.

9We also used the minibatch to estimate the average sen-
tence length Ey⇠p[ |y| ] in (4), although here we could have
simply used all of B since this value does not change.

10As an improvement, one could also try initial realization
parameters for B that are estimated from treebanks of other
languages. Concretely, the optimizer could start by selecting
a “galactic” treebank from Wang and Eisner (2016) that is
already close to the target language, according to (4), and try
to make it even closer. We leave this to future work.

11Unfortunately, we did not regularize it, which probably
resulted in initializing some parameters too close to ±1 for
the optimizer to change them meaningfully.
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5.1 Data and setup
As our main dataset, we use Universal Dependen-
cies version 1.2 (Nivre et al., 2015)—a set of 37
dependency treebanks for 33 languages, with a
unified POS-tag set and relation label set.

Our evaluation metric was unnormalized attach-
ment score (UAS) when parsing a target treebank
with a parser trained on a (possibly permuted)
source treebank. For both evaluation and training,
we used only the training portion of each treebank.

Our parser was Yara (Rasooli and Tetreault,
2015), a fast and accurate transition-based depen-
dency parser that can be rapidly retrained. We
modified Yara to ignore the input words and use
only the input gold POS tags (see §1.3). To train
the Yara parser on a (possibly permuted) source
treebank, we first train on 80% of the trees and use
the remaining 20% to tune Yara’s hyperparame-
ters. We then retrain Yara on 100% of the source
trees and evaluate it on the target treebank.

Similar to Wang and Eisner (2017), we use
20 treebanks (18 distinct languages) as develop-
ment data, and hold out the remaining 17 tree-
banks for the final evaluation. We chose the hy-
perparameters (↵1, ↵2, �) of (4) to maximize the
target-language UAS, averaged over all 376 trans-
fer experiments where the source and target tree-
banks were development treebanks of different
languages.12 (See Appendix C for details.)

The next few sections perform some ex-
ploratory analysis on these 376 experiments.
Then, for the final test in §5.4, we will evaluate
UAS on all 337 transfer experiments where the
source is a development treebank and the target is
a test treebank of a different language.13

5.2 Exploratory analysis
We have assumed that a smaller divergence be-
tween source and target treebanks results in bet-
ter transfer parsing accuracy. Figure 1 shows that
these quantities are indeed correlated, both for the
original source treebanks and for their “made to
order” permuted versions.

12We have 19*20=380 pairs in total, minus the four ex-
cluded pairs (grc, grc proiel), (grc proiel, grc), (la proiel,
la itt) and (la itt, la proiel). Unlike Wang and Eisner (2017),
we exclude duplicated languages in development and testing.

13Specifically, there are 3 duplicated sets: {grc,
grc proiel}, {la, la proiel, la itt}, and {fi, fi ftb}. When-
ever one treebank is used as the target language, we exclude
the other treebanks in the same set.

15According to the family (and sub-family) information at
http://universaldependencies.org.

Figure 1: UAS is higher when divergence is lower.
Each point represents a pair of source and target lan-
guages, whose shape and color identify the treebank of
the target language (see legend). The marker is solid if
the source and target languages belong to the same lan-
guage family.15 The left graph uses the original source
treebank (Kendall’s ⌧ = �0.41), while the right graph
uses its permuted version (⌧ = �0.39).

Thus, we hope that the optimizer will find a sys-
tematic permutation that reduces the divergence.
Does it? Yes: Figures 5 and 6 in the supplemen-
tary material show that the optimizer almost al-
ways manages to reduce the objective on training
data, as expected.

One concern is that our divergence metric might
misguide us into producing dysfunctional lan-
guages whose trees cannot be easily recovered
from their surface strings, i.e., they have no good
parser. In such a language, the word order might
be extremely free (e.g., ✓ = 0), or common con-
structions might be syntactically ambiguous. For-
tunately, Appendix D shows that our synthetic lan-
guages appear natural with respect to their their
parsability.

The above findings are promising. So does per-
muting the source language in fact result in better
transfer parsing of the target language? We exper-
iment on the 376 development pairs.

The solid lines in Figure 2 show our improve-
ments on the dev data, with a simpler scatterplot
given by in Figure 7 in the supplementary mate-
rial. The upshot is that the synthetic source tree-
banks yield a transfer UAS of 52.92 on average.
This is not yet a result on held-out test data: recall
that 52.92 was the best transfer UAS achieved by
any hyperparameter setting. That said, it is 1.00
points better than transferring from the original
source treebanks, a significant difference (paired
permutation test by language pair, p < 0.01).

Figure 2 shows that this average improvement
is mainly due to the many cases where the source
and target languages come from different families.
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Permutation tends to improve source languages
that were doing badly to start with. However, it
tends to hurt a source language that is already in
the target language family.

A hypothetical experiment shows that permut-
ing the source does have good potential to help (or
at least not hurt) in both cases. The dashed lines
in Figure 2—and the scatterplot in Figure 8—
show the potential of the method, by showing
the improvement we would get from permuting
each source treebank using an “oracle” realization
policy—the supervised realization parameters ✓

that are estimated from the actual target treebank.
The usefulness of this oracle-permuted source
varies depending on the source language, but it
is usually much better than the automatically-
permuted version of the same source.

This shows that large improvements would be
possible if we could only find the best permutation
policy allowed by our model family. The ques-
tion for future work is whether such gains can be
achieved by a more sensitive permutation model
than (1), a better divergence objective than (4), or
a better search algorithm than §4.2. Identifying the
best available source treebank, or the best mixture
of all source treebanks, would also help greatly.

5.3 Sensitivity to initializer
Figure 2 makes clear that performance of the syn-
thetic source treebanks is strongly correlated with
that of their original versions. Most points in Fig-
ure 7 lie near the diagonal (Kendall’s ⌧ = 0.85).
Even with oracle permutation in Figure 8, the cor-
relation remains strong (⌧ = 0.59), suggesting
that the choice of source treebank is important
even beyond its effect on search initialization.

We suspected that when “made to order” source
treebanks (more than the oracle versions) have
performance close to their original versions, this
is in part because the optimizer can get stuck near
the initializer (§4.3). To examine this, we experi-
mented with random restarts, as follows. In addi-
tion to informed initialization (§4.3), we optimized
from 5 other starting points ✓ ⇠ N (0, I). From
these 6 runs, we selected the final parameters that
achieved the best divergence (4). As shown by
Figure 9 in the supplement, greater gains appear
to be possible with more aggressive search meth-
ods of this sort, which we leave to future work.
We could also try non-random restarts based on
the realization parameters of other languages, as
suggested in footnote 10.

5.4 Final evaluation on the test languages
For our final evaluation (§5.1), we use the same
hyperparameters (Appendix C) and report on
single-source transfer to the 17 held-out treebanks.

The development results hold up in Figure 3.
Using the synthetic languages yields 50.36 UAS
on average—1.75 points over the baseline, which
is significant (paired permutation test, p < 0.01).

In the supplementary material (Appendix E),
we include some auxiliary experiments on multi-
source transfer.

6 Related Work

6.1 Unsupervised parsing
Unsupervised parsing has remained challenging
for decades (Mareček, 2016). Classical gram-
mar induction approaches (Lari and Young, 1990;
Carroll and Charniak, 1992; Klein and Manning,
2004; Headden III et al., 2009; Naseem et al.,
2010) estimate a generative grammar to explain
the sentences, for example by the Expectation-
Maximization (EM) algorithm, and then use it to
parse. Some such approaches try to improve the
grammar model. For example, Klein and Man-
ning (2004)’s dependency model with valence was
the first to beat a trivial baseline; later improve-
ments considered higher-order effects and punctu-
ation (Headden III et al., 2009; Spitkovsky et al.,
2012). Other approaches try to avoid search error,
using strategies like convexified objectives (Wang
et al., 2008; Gimpel and Smith, 2012), informed
initialization (Klein and Manning, 2004; Mareček
and Straka, 2013), search bias (Smith and Eis-
ner, 2005, 2006; Naseem et al., 2010; Gillenwa-
ter et al., 2010), branch-and-bound search (Gorm-
ley and Eisner, 2013), and switching objectives
(Spitkovsky et al., 2013).

The alternative of cross-lingual transfer has re-
cently flourished thanks to the development of
consistent cross-lingual datasets of POS-tagged
(Petrov et al., 2012) and dependency-parsed (Mc-
Donald et al., 2013) sentences. McDonald et al.
(2011) showed a significant improvement over
grammar induction by simply using the delexical-
ized parser trained on other language(s). Subse-
quent improvements have come from re-weighting
source languages (Søgaard, 2011b; Rosa and
Žabokrtský, 2015a,b; Wang and Eisner, 2016),
adapting the model to the target language us-
ing WALS (Dryer and Haspelmath, 2013) fea-
tures (Naseem et al., 2012; Täckström et al., 2013;
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All (376) in-family (46) cross-family (330)

Original 51.92 63.90 50.24

Synthetic 52.92 62.85 51.53
Oracle 59.45 66.14 58.51

Figure 2: Unlabeled attachment scores (UAS) from 376 pairs of development treebanks. Each column represents a
target treebank, and each polyline within that column shows transfer from variants of a different source treebank.
The three points on the polyline (from left to right) represent the target UAS for parsers trained on three sources:
the original source treebank, the “made to order” permutation that attempts to match surface statistics of the
target treebank, and an oracle permutation that uses a realization model trained on the target language. We use
solid markers and purple lines if the transfer is within-family (source and target treebank from the same language
family), and hollow and olive for cross-family transfer. The black polyline in each column is the mean of the
others. The table in the lower left gives summary results; the number in each column header gives the number
of points summarized. For each column, we boldface the better result between the “Synthetic” and “Original”, or
both if they are not significantly different (paired permutation test, p < 0.01). We also show the oracle permutation
result in row “Oracle”.

Figure 3: UAS on 337 language pairs from the training
languages to the test languages.

Zhang and Barzilay, 2015; Ammar et al., 2016),
and improving the lexical representations via mul-
tilingual word embeddings (Duong et al., 2015;
Guo et al., 2016; Ammar et al., 2016) and syn-
thetic data generation (§6.2).

6.2 Synthetic data generation

Our novel proposal ties into the recent interest in
data augmentation in supervised machine learn-
ing. In unsupervised parsing, the most widely

adopted synthetic data method has been annota-
tion projection, which generates synthetic anal-
yses of target-language sentences by “project-
ing” the analysis from a source-language trans-
lation. Of course, this requires bilingual cor-
pora as an additional resource. Annotation pro-
jection was proposed by Yarowsky et al. (2001),
gained promising results on sequence labelling
tasks, and was later developed for unsupervised
parsing (Hwa et al., 2005; Ganchev et al., 2009;
Smith and Eisner, 2009; Tiedemann, 2014; Ma
and Xia, 2014; Tiedemann et al., 2014). Recent
work in this vein has mainly focused on improv-
ing the synthetic data, including reweighting the
training trees (Agić et al., 2016) or pruning those
that cannot be aligned well (Rasooli and Collins,
2015, 2017; Lacroix et al., 2016).

On the other hand, Wang and Eisner (2016) pro-
posed to permute source language treebanks us-
ing word order realization models trained on other
source languages. They generated on the order of
50,000 synthetic languages by “mixing and match-
ing” a few dozen source languages. Their idea was
that with a large set of synthetic languages, they
could use them as supervised examples to train
an unsupervised structure discovery system that
could analyze any new language. Systems built
with this dataset were competitive in single-source
parser transfer (Wang and Eisner, 2016), typology
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prediction (Wang and Eisner, 2017), and parsing
unknown languages (Wang and Eisner, 2018).

Our work in this paper differs in that our syn-
thetic treebanks are “made to order.” Rather than
combine aspects of different treebanks and hope to
get at least one combination that is close to the tar-
get language, we “combine” the source treebank
with a POS corpus of the target language, which
guides our customized permutation of the source.

Beyond unsupervised parsing, synthetic data
has been used for several other tasks. In NLP, it
has been used for complex tasks such as question-
answering (QA) (Serban et al., 2016) and machine
reading comprehension (Weston et al., 2016; Her-
mann et al., 2015; Rajpurkar et al., 2016), where
highly expressive neural models are used and not
enough real data is available to train them. In the
playground of supervised parsing, Gulordava and
Merlo (2016) conduct a controlled study on the
parsibility of languages by generating treebanks
with short dependency length and low variability
of word order.

7 Conclusion & Future Work

We have shown how cross-lingual transfer pars-
ing can be improved by permuting the source tree-
bank to better resemble the target language on the
surface (in its distribution of gold POS bigrams).
The code is available at https://github.
com/wddabc/ordersynthetic. Our work
is grounded in the notion that by trying to ex-
plain the POS bigram counts in a target corpus,
we can discover a stochastic realization policy for
the target language, which correctly “translates”
the source trees into appropriate target trees.

We formulated an objective for evaluating such
a policy, based on KL-divergence between bigram
models. We showed that the objective could be
computed efficiently by dynamic programming,
thanks to the limitation to bigram statistics.

Experimenting on the Universal Dependencies
treebanks v1.2, we showed that the synthetic tree-
banks were—on average—modestly but signifi-
cantly better than the corresponding real treebanks
for single-source transfer (and in Appendix E, on
multi-source transfer).

On the downside, Figure 7 shows that with our
current method, permuting the source language to
be more like the target language is helpful (on av-
erage) only when the source language is from a
different language family. This contrast would be

even more striking if we had a better optimizer:
Figure 9 shows that SGD’s initialization bias lim-
its permutation’s benefit for cross-family training,
as well as its harm for within-family training.

Several opportunities for future work have al-
ready been mentioned throughout the paper. We
are also interested in experimenting with richer
families of permutation distributions, as well as
“conservative” distributions that tend to prefer the
original source order. We could use entropy reg-
ularization (Grandvalet and Bengio, 2005) to en-
courage more “deterministic” patterns of realiza-
tion in the synthetic languages.

We would also like to consider more sensi-
tive divergence measures that go beyond bigrams,
for example using recurrent neural network lan-
guage models (RNNLMs) for q̂ and p̂✓. This
means abandoning our exact dynamic program-
ming methods; we would also like to abandon ex-
act exhaustive enumeration in order to drop §4.1’s
bounds on n. Fortunately, there exist powerful
MCMC methods (Eisner and Tromble, 2006) that
can sample from interesting distributions over the
space of n! permutations, even for large n. Thus,
we could approximately sample from p✓ by draw-
ing permuted versions of each tree in B.

Given this change, a very interesting direction
would be to graduate from POS language models
to word language models, using cross-lingual un-
supervised word embeddings (Ruder et al., 2017).
This would eliminate the need for the gold POS
tags that we unrealistically assumed in this paper
(which are typically unavailable for a low-resource
target language). Furthermore, it would enable us
to harness richer lexical information beyond the 17
UD POS tags. After all, even a (gold) POS corpus
might not be sufficient to determine the word or-
der of the target language: “NOUN VERB NOUN”
could be either subject-verb-object or object-verb-
subject. However, “water drink boy” is pre-
sumably object-verb-subject. Thus, using cross-
lingual embeddings, we would try to realize the
unordered source trees so that their word strings,
with few edits, can achieve high probability under
a neural language model of the target.
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Lê H`ông, Alessandro Lenci, Nikola Ljubešić, Olga
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Parser model interpolation for multi-source delexi-
calized transfer. In Proceedings of the 14th Inter-
national Conference on Parsing Technologies, pages
71–75.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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Jörg Tiedemann, Željko Agić, and Joakim Nivre. 2014.
Treebank translation for cross-lingual parser induc-
tion. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 130–140.

Dingquan Wang and Jason Eisner. 2016. The Galac-
tic Dependencies treebanks: Getting more data by
synthesizing new languages. Transactions of the
Association of Computational Linguistics, 4:491–
505. Data available at https://github.com/
gdtreebank/gdtreebank.

Dingquan Wang and Jason Eisner. 2017. Fine-grained
prediction of syntactic typology: Discovering la-
tent structure with supervised learning. Transac-
tions of the Association for Computational Linguis-
tics (TACL), 5.

Dingquan Wang and Jason Eisner. 2018. Surface statis-
tics of an unknown language indicate how to parse it.
Transactions of the Association for Computational
Linguistics (TACL). To appear.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin.
2008. Semi-supervised convex training for depen-
dency parsing. In Proceedings of ACL-HLT, pages
532–540.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks.
In Proceedings of the International Conference on
Learning Representations.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora.
In Proceedings of the First International Conference
on Human Language Technology Research.

Daniel Zeman and Philip Resnik. 2008. Cross-
language parser adaptation between related lan-
guages. In Proceedings of the IJCNLP-08 Workshop
on NLP for Less Privileged Languages.

Yuan Zhang and Regina Barzilay. 2015. Hierarchical
low-rank tensors for multilingual transfer parsing.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1857–1867.

1337



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1338–1346
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Tell-and-Answer: Towards Explainable Visual Question
Answering using Attributes and Captions

Qing Li1, Jianlong Fu2, Dongfei Yu1, Tao Mei3, Jiebo Luo4

1University of Science and Technology of China
2Microsoft Research, Beijing, China

3JD AI Research, Beijing 100105, China
4University of Rochester, Rochester, NY

1{sealq, ydf2010}@mail.ustc.edu.cn, 2jianf@microsoft.com,
3tmei@jd.com, 4jluo@cs.rochester.edu

Abstract

In Visual Question Answering, most existing
approaches adopt the pipeline of representing
an image via pre-trained CNNs, and then us-
ing the uninterpretable CNN features in con-
junction with the question to predict the an-
swer. Although such end-to-end models might
report promising performance, they rarely pro-
vide any insight, apart from the answer, into
the VQA process. In this work, we propose to
break up the end-to-end VQA into two steps:
explaining and reasoning, in an attempt to-
wards a more explainable VQA by shedding
light on the intermediate results between these
two steps. To that end, we first extract at-
tributes and generate descriptions as explana-
tions for an image. Next, a reasoning mod-
ule utilizes these explanations in place of the
image to infer an answer. The advantages of
such a breakdown include: (1) the attributes
and captions can reflect what the system ex-
tracts from the image, thus can provide some
insights for the predicted answer; (2) these
intermediate results can help identify the in-
abilities of the image understanding or the an-
swer inference part when the predicted an-
swer is wrong. We conduct extensive ex-
periments on a popular VQA dataset and our
system achieves comparable performance with
the baselines, yet with added benefits of ex-
planability and the inherent ability to further
improve with higher quality explanations.

1 Introduction

Answering textual questions from images, which
is referred to as visual question answering,
presents fundamental challenges to both computer
vision and natural language processing communi-
ties. Significant progress has been made on VQA
in recent years (Antol et al., 2015; Zhu et al.,
2016; Wu et al., 2016a; Yang et al., 2016; Goyal
et al., 2017; Yu et al., 2017; Teney et al., 2017;

What is the woman doing 
sitting on the bench? talking on phoneAnswer

Reasoning

Attributes:
sit, phone, bench, cell, talk, woman, chair, park 
Caption:
a woman sitting on a bench talking on a cell phone.

Figure 1: An example of explanation and reasoning
in VQA. We first extract attributes in the image
such as “sit”, “phone” and “woman.” A caption is
also generated to encode the relationship between
these attributes, e.g. “woman sitting on a bench.”
Then a reasoning module uses these explanations
to predict an answer “talking on phone.”

A few ducks swim in the 
ocean near two ferries.

Is there a ferry in the 
picture?

A green fire hydrant 
sitting next to a street.

QA Yes (0.99)

QA Yes (0.99)

Figure 2: Two contrasting cases that show how the
explanations can be used to determine if the sys-
tem guesses the answer.

Wang et al., 2017; Gurari et al., 2018; Ander-
son et al., 2018; Lu et al., 2018; Li et al., 2018).
A widely used pipeline is to first encode an im-
age with Convolutional Neural Networks (CNNs)
and represent associated questions with Recurrent
Neural Networks (RNNs), and then formulate the
vision-to-language task as a classification problem
on a list of answer candidates. Although promis-
ing performance has been reported, this end-to-
end paradigm fails to provide any insight to illumi-
nate the VQA process. In most cases, giving an-
swers without any explanation cannot satisfy hu-
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man users, especially when the predicted answer
is not correct. More frustratingly, the system gives
no hint about which part of such systems is the
culprit for a wrong answer.

To address the above issues, we propose to
break up the popular end-to-end pipeline into two
steps: explaining and reasoning. The philoso-
phy behind such a break-up is to mimic the image
question answering process of human beings: first
understanding the content of the image and then
performing inference about the answer according
to the understanding. As is shown in Fig.1, we first
generate two-level explanations for an image via
pre-trained attribute detectors and image caption-
ing model: 1). word-level: attributes, indicating
individual objects and attributes the system learns
from the image. 2). sentence-level: captions, rep-
resenting the relationship between the objects and
attributes. Then the generated explanations and
question are infused to a reasoning module to pre-
dict an answer. The reasoning module is mainly
composed of LSTMs.

Our method has three benefits. First, these ex-
planations are interpretable. According to the at-
tributes and captions, we can tell what objects, at-
tributes and their relationship the machine learns
from the image as well as what information is lost
during the image understanding step. In contrast,
the fully-connected layer features of CNNs are
usually uninterpretable to humans. When the pre-
dicted answer is correct, these attributes and cap-
tions can be provided for users as the supplemen-
tary explanations to the answer. Second, the sep-
aration of explaining and reasoning enables us to
localize which step of the VQA process the error
comes from when the predicted answer is wrong.
If the explanations don’t include key information
to answer the question, the error is caused by miss-
ing information during the explaining step. Oth-
erwise, the reasoning module should be respon-
sible for the wrong answer. Third, the explana-
tions can also indicate whether the system really
finds key information from the image to answer
the question or merely guesses an answer. Fig.2
presents two contrasting cases to illustrate this. In
the first case, both the generated caption and the
question include the key concept “ferry”, so the
answer “Yes” with a high probability is reliable.
However, although the answer “Yes” has the same
high probability in the second case, the caption is
irrelevant to the question. The system sticks to

a wrong answer even with the correct input from
sentence generation. This is due to the training set
bias that a large proportion of questions starting
with “is there” in the training set have the answer
“Yes”.

To our knowledge, this is the first effort to break
down the previous end-to-end pipeline to shed
light on the VQA process. Our main contributions
are summarized as follows:

• We propose to formulate VQA into two sepa-
rate steps: explaining and reasoning. Our
framework generate attributes and captions
for images to shed light on why the system
predicts any specific answer.

• We adopt several ways to measure the expla-
nation quality and demonstrate strong corre-
lation between explanation quality and VQA
accuracy. The current system achieves com-
parable performance to the baselines and can
naturally improve with explanation quality.

• Extensive experiments are conducted on the
popular VQA dataset (Antol et al., 2015).
We dissect all results according to the mea-
surements of the quality of explanations to
present a thorough analysis of the strength
and weakness of our framework.

2 Related Work

There is a growing research interest in the task
of visual question answering. In this section, we
summarize recent advances from two directions.
Attention in VQA. The attention mechanism is
firstly used in the machine translation task (Bah-
danau et al., 2014) and then is brought into the
vision-to-language tasks (Xu et al., 2015; You
et al., 2016; Yang et al., 2016; Lu et al., 2016; Nam
et al., 2017; Yu et al., 2017; Teney et al., 2017;
Anderson et al., 2018; Teney et al., 2018; Liang
et al., 2018). The visual attention in the vision-to-
language tasks is used to address the problem of
“where to look”. In VQA, the question is used as
a query to search for the relevant regions in the im-
age. Yang et al. propose a stacked attention model
which queries the image for multiple times to in-
fer the answer progressively. Beyond the visual
attention, Lu et al. exploit a hierarchical question-
image co-attention strategy to attend to both re-
lated regions in the image and crucial words in
the question. Attention mechanism can find the
question-related regions in the image, which ac-
counts for the answer to some extent. But the at-
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tended regions still don’t explicitly exhibit what
the system learns from the image and it is also not
explained why these regions should be attended to.
High-level Concepts. In the scenario of vision-
to-language, high-level concepts exhibit superior
performance than the low-level or middle-level vi-
sual features of the image (Fang et al., 2015; Wu
et al., 2016a,b). (Fang et al., 2015) first learn in-
dependent detectors for visual words based on a
multi-instance learning framework and then gen-
erate descriptions for images based on the set of
visually detected words via a maximum entropy
language model. (Wu et al., 2016a,b) presents a
thorough study on how much the high-level con-
cepts can benefit the image captioning and visual
question answering tasks. These work mainly uses
high-level concepts to obtain a better performance.
Different from these work, our paper is focused
on fully exploiting the readability and understand-
ability of attributes and captions to explain the pro-
cess of visual question answering and use these
explanations to analyze our system.

3 Methodology

In this section, we introduce the proposed frame-
work for the breakdown of VQA. As illustrated in
Figure 3, the framework consists of three modules:
word prediction, sentence generation, and answer
reasoning. Next, we describe the three modules in
details.

3.1 Word Prediction

From the work (Wu et al., 2016a), we have
learned that explicit high-level attributes can ben-
efit vision-to-language tasks. In fact, besides per-
formance gain, the readability and understandabil-
ity of attributes also makes them an intuitive way
to explain what the model learns from images.

We first build a word list based on MS COCO
Captions (Chen et al., 2015). We extract the most
N frequent words in all captions and filter them
by lemmatization and removing stop words to de-
termine a list of 256 words, which cover over 90%
of the word occurrences in the dataset. Our words
are not tense or plurality sensitive, for example,
“horse” and “horses” are considered as the same
word. This significantly decreases the size of our
word list. Given the word list, every image is
paired with multiple labels (words) according to
its captions. Then we formulate word prediction as
a multi-label classification task and fine-tune the

ResNet-152 (He et al., 2016) on our image-words
dataset by minimizing the element-wise sigmoid
cross entropy loss:

J =
1

N

NX

i=1

VX

j=1

�yij log pij�(1�yij) log(1�pij)

(1)
where N is batch size, V is the size of word list,
yi = [yi1, yi2, ..., yiV ], yij 2 {0, 1} is the label
vector of the ith image, pi = [pi1, pi2, ..., piV ] is
the probability vector.

In the testing phase, instead of using region pro-
posals like (Wu et al., 2016a), we directly feed the
whole image into the word prediction CNN in or-
der to keep simple and efficient. As a result, each
image is encoded into a fixed-length vector, where
each dimension represents the probability of the
corresponding word occurring in the image.
Word Quality Evaluation. We adopt two metrics
to evaluate the predicted words. The first measures
the accuracy of the predicted words by computing
cosine similarity between the label vector y and
the probability vector p:

a =
yTp

||y|| · ||p|| (2)

However, this metric disregards the extent to
which the predicted words are relevant to the ques-
tion. Intuitively speaking, question-relevant expla-
nations for images should be more likely to help
predict right answers than irrelevant ones. There-
fore, we propose another metric to measure the
relevance between the words and the question.
We first encode the question into a 0-1 vector q
in terms of the word list. Then the relevance is
computed as:

r =
qTp

||q|| · ||p|| (3)

3.2 Sentence Generation
This section we talk about generating sentence-
level explanations for images by using a pre-
trained image captioning model. Similar to
(Vinyals et al., 2015), we train an image cap-
tioning model by maximizing the probability of
the correct caption given an image. Suppose we
have an image I to be described by a caption
S = {s1, s2, ..., sL}, st 2 V , where V is the vo-
cabulary, L is the caption length. First the im-
age I is represented by the activations of the first
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…
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Q: what are the animals in the picture? 

A: giraffe

LSTM
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𝐯𝑠

LSTM

Figure 3: An overview of the proposed framework for VQA with three modules: word prediction (upper
left), sentence generation (lower left), answer reasoning (right). Explaining: in word prediction, the
image is fed into pre-trained visual detectors to extract word-level explanation, which is represented
by probability vector vw; in sentence generation, we input the image to pre-trained captioning model to
generate a sentence-level explanation. Reasoning: the caption and question are encoded by two different
LSTMs into vs and vq, respectively. Then vq,vw and vs are concatenated and fed to a fully connected
layer with softmax to predict an answer.

fully connected layer of ResNet-152 pre-trained
on ImageNet, denoted as vi. The caption S can
be represented as a sequence of one-hot vector
S = {s1, s2, ..., sL}. Then we formulate the cap-
tion generation problem as minimizing the cost
function:

J(vi,S) = � log P (S|vi)

= �
LX

t=0

log P (st|vi, s1, ..., st�1)
(4)

where P (st|vi, s1, ..., st�1) is the probability of
generating the word st given the image representa-
tion vi and previous words {s1, ..., st�1}. We em-
ploy a single-layer LSTM with 512-dimensional
hidden states to model this probability. In the test-
ing phase, the image is input to pre-trained image
captioning model to generate sentence-level expla-
nation.
Sentence Quality Evaluation. Similar to word
quality evaluation, we evaluate the quality of the
generated sentence from two perspectives: accu-
racy and relevance. The former one is an average
fusion of four widely used metrics: BLEU@N,
METEOR, ROUGE-L and CIDEr-D (Chen et al.,
2015), which try to consider the accuracy of the
generated sentence from different perspectives.
Note that we normalize all the metrics into [0, 1]
before fusion. The latter metric is to measure the
relevance between the generated sentence and the
question. The binary TF weights are calculated
over all words of the sentence to produce an in-
tegrated representation of the entire sentence, de-

noted by s. Likewise, the question can be encoded
to q. The relevance is computed as:

r =
qT s

||q|| · ||s|| (5)

3.3 Answer Reasoning
This section we discuss the reasoning module.
Suppose we have an image I explained by the
predicted words W and the generated sentence S ,
the question Q and the answer A. As shown in
Fig.3, we denote the representations of the pre-
dicted words W as vs. The caption S and ques-
tion Q are encoded by two different LSTMs into
vs and vq, respectively. What bears mention-
ing is that these two LSTMs share a common
word-embedding matrix, but not other parameters,
because the question and caption have different
grammar structures and similar vocabularies. At
last, the vw, vs, and vq are concatenated and fed
into a fully connected layer with softmax to pre-
dict the probability on a set of candidate answers:

v = [vT
w vT

s vT
q ]T (6)

p = softmax(Wv + b) (7)

where W,b are the weight matrix and bias vec-
tor of the fully connected layer. The optimizing
objective for the reasoning module is to minimize
the cross entropy loss as:

J(I, Q, A) = J(W, S, Q, A) = � log p(A)
(8)

where p(A) denotes the probability of the ground
truth A.
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4 Experiments and Analysis
4.1 Experiment Setting
Dataset. We evaluate our framework on VQA-
real (Antol et al., 2015) dataset. For each image in
VQA-real, 3 questions are annotated by different
workers and each question has 10 answers from
different annotators. We follow the official split
and report our results on the open-ended task.
Metric. We use the accuracy:
min( #humans giving that answer

3 , 1), i.e., an answer
is deemed 100% accurate if at least three workers
provided that exact answer.
Ablation Models. To analyze the contribution
of word-level and sentence-level explanations, we
ablate the full model and evaluate several variants
as:

• Word-based VQA: use the feature concate-
nation of the predicted words and question in
Eq.6.

• Sentence-based VQA: use the feature con-
catenation of the generated sentence and
question in Eq.6.

• Full VQA: use the feature concatenation of
words, sentence, and question in Eq.6.

4.2 Word-based VQA
Table 1: The relationship between word quality
and accuracy (%).

(a) Word accuracy

Word
accuracy

VQA
accuracy

[0.0, 0.2) 46.30
[0.2, 0.8) 55.84
[0.8, 1.0) 58.52

(b) W-Q Relevance

W-Q
Relevance

VQA
accuracy

[0.0, 0.2) 54.69
[0.2, 0.8) 60.23
[0.8, 1.0) 76.15

An important characteristics of our framework
is that the quality of explanations can influence the
final VQA performance. In this section, we ana-
lyze the impact of the quality of predicted words
on the VQA accuracy. We measure the quality
from two sides: word accuracy and word-question
relevance. Table 1a shows the relationship be-
tween word accuracy and VQA performance. We
can learn that the more accurate the predicted
words, the better the VQA performance. Similar
to word accuracy, the more relevant to the question
the predicted words, the better the VQA perfor-
mance. Particularly, when the word-question rele-
vance exceeds 0.8, the predicted words are highly
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Figure 4: The comparison of the impact of word ac-
curacy and word-question relevance on VQA per-
formance.
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Figure 5: The comparison of the impact of sen-
tence accuracy and sentence-question relevance on
VQA performance.

pertinent to the question, boosting the VQA accu-
racy to 76.15%. This indicates high-quality word-
level explanations can benefit the VQA perfor-
mance a lot. As shown in Fig.4, word-question
relevance has a bigger impact on the final VQA
performance than word accuracy.

4.3 Sentence-based VQA

Table 2: The relationship between sentence quality
and accuracy.

(a) Sentence accuracy

Sentence
accuracy

VQA
accuracy

[0.0, 0.2) 51.29
[0.2, 0.8) 55.53
[0.8, 1.0) 61.33

(b) S-Q Relevance

S-Q
Relevance

VQA
accuracy

[0.0, 0.2) 52.79
[0.2, 0.8) 62.34
[0.8, 1.0) 89.81

In this section, we evaluate the sentence-based
VQA model and analyze the relationship between
the sentence quality and the VQA performance.
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Table 3: Performance comparison on the valida-
tion split of VQA-real open-ended task when the
sentence-based VQA model uses different sources
of captions. (accuray in %)

Caption source
validation

All Y/N Num Others

null 46.21 73.82 34.98 25.63
sentence generation 54.85 76.31 36.64 42.23
relevant groundtruth 56.05 77.42 41.04 44.34

Similar to the quality measurements of predicted
words, we focus on the accuracy of the generated
sentence itself and the relevance between sentence
and question. As shown in Table 2a, the more ac-
curate the generated sentence, the higher the VQA
accuracy. The results suggest that the VQA per-
formance can be further improved by a better im-
age captioning model. From Table 2b, we can see
that the more relevant to the question the generated
sentence, the better the VQA performance. Once
the relevance reaches 0.8, the accuracy can sig-
nificantly increase to 89.81%. This proves that a
question-related sentence is more likely to contain
the key information for the VQA module to an-
swer the question. As shown in Fig. 5, sentence-
question relevance has greater influence on VQA
performance than sentence accuracy does.

To further verify the causal relationship be-
tween sentence quality and VQA performance, we
conduct the following control experiments. First,
we evaluate sentence-based VQA model when
feeding different sources of captions with ascend-
ing quality: null (only including an “#end” token),
sentence generation and relevant groundtruth (se-
lecting from the groundtruth captions the most rel-
evant one to the question). As shown in Table 3,
sentence generation performs much better than
null. And using relevant groundtruth captions, the
accuracy can improve by another 1.2 percent. Fig-
ure 6 presents an example to illustrate the effect
of the sentence quality on the accuracy. From the
above analysis, we can safely reach the conclu-
sion that the VQA performance can be greatly im-
proved by generating sentence-level explanations
of high quality, especially of high relevance to the
question.

4.4 Case Study
From the above evaluation of word-based and
sentence-based VQA model, we conclude

Image and question Generated Caption Prediction (accuracy)

Q: what sport are they playing?

(Good) a group of people playing 
frisbee in a field.

frisbee (1.00)

(Wrong) a group of people playing 
soccer in a field.

soccer (0.00)

(Empty) NULL tennis (0.00)

Figure 6: A control case for comparing the accu-
racy when inputting captions of different quality.
When getting a caption of high quality (the first
one), the system can answer the question correctly.
If we manually change the “frisbee” to “soccer”, a
wrong answer is predicted. When using an empty
sentence, the system predicts the most popular an-
swer “tennis” for this question.

that the relevance between explanations (at-
tributes/caption) and the question has a great
impact on the final VQA performance. In this
section we illustrate this conclusion by studying
four possible types of cases: 1). high relevance
and correct answer; 2). low relevance and wrong
answer; 3). high relevance but wrong answer; 4).
low relevance but correct answer.
High relevance and correct answer. From the
first case in Fig. 7, we can see that the explanations
for the image are highly relevant to the question:
both the predicted attributes and the generated sen-
tence contain the words “man” and “racket” occur-
ring in the question. And the explanations also has
key information that can predict the answer “ten-
nis court.” In this type of case, the system success-
fully extracts from the image the relevant informa-
tion that covers the question, facilitating answer
generation.
Low relevance and wrong answer. In the sec-
ond case, although the attributes and caption can
reflect part of the image content such as “man”
and “food”, they neglect the key information about
the “glass” that is asked in the question. The
absence of “glass” in the explanations produces
a low explanation-question relevance score and
leads the system to a wrong answer. In this type
of case, two lessons can be derived from the low
relevance: 1). as the explanations are irrelevant to
the question, the system tends to predict the most
frequent answer (“beer”) for this question type
(“what kind of drink ...”), which implies that the
answer is actually guessed from the dataset bias;
2). the error comes from the image understanding
part rather than the question answering module,
because the system fails to extract from the image
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Image Explanations, Question and Answer
① High relevance and correct answer

Attributes: tennis, ball, man, racket, hit, court, play, player, swing, hold (0.87, 0.72) 
Caption: a man holding a tennis racket on a tennis court. (0.88, 0.68)
Question: where is the man swinging the racket?
Answer: tennis court (tennis court)

② Low relevance and wrong answer
Attributes: bicycle, man, sit, eat, bike, look, outside, food, person, table (0.06, 0.48)
Caption: a man sitting at a table with a plate of food. (0.00, 0.34)
Question: what kind of drink is in the glass?
Answer: beer (water)

③ High relevance but wrong answer
Attributes: street, bus, cow, city, walk, car, drive, stand, road, white (0.51, 0.77)
Caption: a cow that is walking in the street (0.51, 0.55)
Question: what is walking next to the bus? 
Answer: car (cow)

④ Low relevance but correct answer
Attributes: woman, bear, teddy, hold, sit, glass, animal, large, lady (0.00, 0.19)
Caption: a woman holding a sandwich in her hands (0.00, 0.30)
Question: does the man need a haircut? 
Answer: yes (yes)

Figure 7: Four types of cases in our results: 1). high relevance and correct answer; 2). low relevance and
wrong answer; 3). high relevance but wrong answer; 4). low relevance but correct answer. “(*,*)” behind
the explanations (attributes/caption) denotes the explanation-question relevance score and explanation
accuracy, respectively. Gray denotes groundtruth answers.

QA:121,512

CA: 66,844

① RA: 47,070

Y/N: 22,928 O: 24,142

④ GA: 19,774

Y/N: 13,075 O: 6,699

WA: 54,668

③ RA: 10,945

Y/N: 1,694 O: 9,251

② GA: 43,723

Y/N: 7,937 O: 35,786

QA: all questions and answers
CA: questions with correct answers
WA: questions with wrong answers
GA: questions with guessed answers
RA: questions with reliable answers
Y/N: answer type is Yes/No
O: answer type is other than Yes/No

Figure 8: Dataset dissection according to the four types of cases. We define that the answer is guessed
when the explanations are irrelevant to the question and otherwise reliable. The case numbers in the third
row correspond to these in Fig.7. QA: all questions and answers. CA: questions with correct answers.
WA: questions with wrong answers. GA: questions with guessed answers. RA: questions with reliable
answers. Y/N: answer type “yes/no”. O: answer types other than “yes/no”.

enough information to answer the question in the
first place. This error suggests that some improve-
ments are needed in word prediction and sentence
generation modules to generate more comprehen-
sive explanations for the image.
High relevance but wrong answer. In the third
case, we can see that although the system fails to
predict the correct answer, the explanations for the
image are indeed relevant to the question and the
system also recognize the key information “cow.”
This indicates that the error is caused by the ques-
tion answering module rather than the explanation

generation part. The system can recognize that “a
cow is walking in the street” and “a bus is in the
street”, but it fails to conclude that “the cow is next
to the bus.” This error may lie in the weakness
of LSTM which struggles on such complex spatial
relationship inference. In the following analysis,
we would show that such cases only occupy a rel-
atively small proportion of the whole dataset.
Low relevance but correct answer. In the last
example of Fig. 7, we know from the explana-
tions that the system mistakes the “man” in the
image for “woman” and neglects the information
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about his “hair.” The explanations, therefore, have
a low relevance score, which indicates that the an-
swer “yes” is guessed by the system. Although
the guessed answer is correct, it cannot be cred-
ited to the correctness of the system. In fact, for
this particular answer type “yes/no”, the system
has at least 50% chance to hit the right answer.

We dissect all the results in the dataset accord-
ing to the above four types of cases, as shown
in Fig. 8. Among the questions that the sys-
tem answers correctly, nearly 30% are guessed.
This discovery indicates that, buried in the seem-
ingly promising performance, the system actually
takes advantage of the dataset bias, rather than
truly understands the image content. Over 65%
of the answers that are correctly guessed belong
to “yes/no”, an answer type easier for the system
to hit the right answer than other types. As for
the questions to which the system predicts wrong
answers, a large proportion (around 80%) has a
low explanation-question relevance, which means
that more efforts need to be put into improving the
attributes detectors and image captioning model.
Questions with other answer types account for
more than 80% of the wrongly-guessed answers.
This is not surprising because for these questions
the system cannot rely on the dataset bias any-
more, considering the great variety of the candi-
date answers.

4.5 Performance Comparison

Table 4: Performance comparison with the base-
lines. We show the performance on both test-dev
and test-standard splits of VQA-real open-ended
task. Human is the human performance for ref-
erence.

Method
test-dev test-standard

All Y/N Num Others All Y/N Num Others

LSTM Q+I (Antol et al., 2015) 53.74 78.94 35.24 36.42 54.06 79.01 35.55 36.80
Concepts (Wu et al., 2016a) 57.46 79.77 36.79 43.10 57.62 79.72 36.04 43.44

ACK (Wu et al., 2016b) 59.17 81.01 38.42 45.23 59.44 81.07 37.12 45.83
MCB w/n attention (Fukui et al., 2016) 60.80 81.20 35.10 49.30 - - - -

Human (Antol et al., 2015) - - - - 83.30 95.77 83.39 72.67

Word-based VQA 56.76 77.57 35.21 43.85 - - - -
Sentence-based VQA 57.91 78.03 36.73 45.52 - - - -

Full VQA 59.93 79.32 38.41 48.25 60.07 79.09 38.25 48.57

In this section, we present the performance
comparison between variants of our framework
and the baselines. From Table 4, we can
see that sentence-based VQA consistently out-
performs word-based VQA, which indicates that
sentence-level explanations are superior to word-
level ones. The generated captions not only in-
clude the objects in the image, but also encode

the relationship between these objects, which is
important for predicting the correct answer. Fur-
thermore, full VQA model obtains a better perfor-
mance by combining attributes and captions.

Compared with the baselines, our framework
achieves better performance than LSTM Q+I (An-
tol et al., 2015), Concepts (Wu et al., 2016a), and
ACK (Wu et al., 2016b), which use CNN fea-
tures, high-level concepts, and external knowl-
edge, respectively. MCB without attention (Fukui
et al., 2016) achieves better performance than
ours and other methods, but it suffers from a
high-dimensional feature (16,000 vs 1,280), which
poses a limitation on the model’s efficiency. The
main advantage of our framework over other
methods is that it not only predicts an answer to
the question, but also generates human-readable
attributes and captions to explain the answer.
These explanations can help us understand what
the system extracts from an image and their rele-
vance to the question. As explanations improve,
so would our system.

5 Discussions and Conclusions

In this work, we break up the end-to-end VQA
pipeline into explaining and reasoning, and
achieve comparable performance with the base-
lines. Different from previous work, our method
first generates attributes and captions as explana-
tions for an image and then feed these explana-
tions to a question answering module to infer an
answer. The merit of our method lies in that these
attributes and captions allow a peek into the pro-
cess of visual question answering. Furthermore,
the relevance between these explanations and the
question can act as indication whether the system
really understands the image content.

It is worth noting although we also use the
CNN-RNN combination, we generate words and
captions as the explanations of images, thus al-
lowing the VQA system to perform reasoning on
semantics instead of unexplainable CNN features.
Since the effectiveness of CNN for generating at-
tributes and captions is well established, the use of
CNN as a component does not contradict our high-
level objective for explainable VQA. Our goal is
not to immediately make a big gain in perfor-
mance, but to propose a more powerful frame-
work for VQA. Our current implementation al-
ready matches the baselines, but more importantly,
provides the ability to explain and to improve.
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Abstract
Active learning identifies data points to la-
bel that are expected to be the most useful in
improving a supervised model. Opportunis-
tic active learning incorporates active learn-
ing into interactive tasks that constrain possi-
ble queries during interactions. Prior work has
shown that opportunistic active learning can be
used to improve grounding of natural language
descriptions in an interactive object retrieval
task. In this work, we use reinforcement learn-
ing for such an object retrieval task, to learn a
policy that effectively trades off task comple-
tion with model improvement that would ben-
efit future tasks.

1 Introduction

In machine learning tasks where obtaining labeled
examples is expensive, active learning is used
to lower the cost of annotation without sacrific-
ing model performance. Active learning allows
a learner to iteratively query for labels of unla-
beled data points that are expected to maximally
improve the existing model. It has been used in a
number of natural language processing tasks such
as text categorization (Lewis and Gale, 1994), se-
mantic parsing (Thompson et al., 1999) and infor-
mation extraction (Settles and Craven, 2008).

The most commonly used framework for active
learning is pool-based active learning, where the
learner has access to the entire pool of unlabeled
data at once, and can iteratively query for exam-
ples. In contrast, sequential active learning is a
framework in which unlabeled examples are pre-
sented to the learner in a stream (Lewis and Gale,
1994). For every example, the learner can decide
whether to query for its label or not. This results in
an additional challenge – since the learner cannot
compare all unlabeled data points before choosing
queries, each query must be chosen based on local
information only.

Multilabel active learning is the application of
active learning in scenarios where multiple labels,
that are not necessarily mutually exclusive, are as-
sociated with a data point (Brinker, 2006). These
setups often suffer from sparsity, both in the num-
ber of labels that are positive for a data point, and
in the number of positive data points per label.

Opportunistic active learning incorporates a
form of multilabel sequential active learning into
an interactive task. It was recently introduced for
the task of interpreting natural-language object de-
scriptions, motivated by the task of instructing a
robot to retrieve a specific item (Thomason et al.,
2017). In this task, a human describes one of a set
of objects in unrestricted natural language and the
agent must determine which object was described.
The agent is allowed to ask questions about other
objects in the current environment to obtain la-
bels that allow it to learn classifiers for concepts
used in such descriptions. As the questions are re-
stricted to the objects available in the current inter-
action, the learning process across interactions can
be seen as a form of multilabel sequential active
learning. Further, the agent can either restrict itself
to querying labels relevant to understanding the
current description, or be opportunistic and query
labels that can only aid future interactions – for
example querying whether some object is “round”
when trying to understand the description “a red
box”.

More generally, in opportunistic active learn-
ing, an agent is engaged in a series of sequen-
tial decision-making tasks. The agent uses one
or more supervised models to complete each task.
Each task involves some sampled examples from
a given feature space, and the agent is allowed to
query for labels of these examples to improve its
models for current and future tasks. Queries in this
setting have a higher cost than in traditional active
learning as the agent may choose to query for la-
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bels that are not relevant for the current task, but
expected to be of use for future tasks. Such op-
portunistic queries enable an agent to learn from
a greater number of interactions, by allowing it
to ask queries that would aid future tasks when it
is sufficiently confident of completing the current
task. They also allow an agent to focus on con-
cepts that could have more impact than those rele-
vant to the current task – for example by choosing
a frequently used concept as opposed to a rare one.
Further, identifying which queries are optimal for
model improvement is more difficult as the agent
does not have access to the entire pool of unlabeled
examples at any given time, similar to sequential
active learning settings.

Another sample application of opportunistic ac-
tive learning could be in a task oriented dialog
system providing restaurant recommendations to
a user. In this case, a possible opportunistic query
would be to ask the user for a Chinese restaurant
they liked, when the user is searching for an Ital-
ian one. The query is not relevant to the imme-
diate task of recommending an Italian restaurant
but would improve the underlying recommenda-
tion system.

Prior work on using opportunistic active learn-
ing in understanding natural-language object de-
scriptions has shown that an agent following
an opportunistic policy, that queries for labels
not necessarily relevant to the current interac-
tion, learns to perform better at identifying ob-
jects correctly over time (Thomason et al., 2017).
However, this work only compares static policies
that select actions based on manually-engineered
heuristics. In this work, we focus on learning an
optimal policy for this task using reinforcement
learning, in the spirit of other recent attempts to
learn policies for different types of active learn-
ing (Fang et al., 2017; Woodward and Finn, 2017).
This allows an agent to choose whether or not to
be opportunistic based on the specific interaction
as well as the overall statistics of the dataset.

Our learned policy outperforms a static base-
line by improving its success rate on object re-
trieval while asking fewer questions on average.
The learned policy also learns to distribute queries
more uniformly across concepts than the baseline.

2 Related Work

Active learning methods aim to identify examples
that are likely to be the most useful in improving a

supervised model. A number of metrics have been
proposed to evaluate examples, including uncer-
tainty sampling (Lewis and Gale, 1994), density-
weighted methods (Settles and Craven, 2008),
expected error reduction (Roy and McCallum,
2001), query by committee (Seung et al., 1992),
and the presence of conflicting evidence (Sharma
and Bilgic, 2016); as surveyed by Settles (2010).
Some of these metrics can be extended to the mul-
tilabel setting, by assuming that one-vs-all clas-
sifiers are learned for each label, and that all the
learned classifiers are comparable (Brinker, 2006;
Singh et al., 2009; Li et al.). Label statistics have
also been incorporated into heuristics for selecting
instances to be queried (Yang et al., 2009; Li and
Guo, 2013). There have also been Bayesian ap-
proaches that select both an instance and label to
be queried (Qi et al., 2009; Vasisht et al., 2014).
Our work aims to learn a policy for choosing be-
tween queries that can use information from many
such indicators, but learns to combine them appro-
priately for a given task.

Thomason et al. (2017) define the setting of op-
portunistic active learning, and apply it to an in-
teractive task of grounding natural language de-
scriptions of objects. They compare two static
policies to demonstrate that using opportunistic
queries improves task performance. We try to
learn the optimal policy for this task using rein-
forcement learning, and compare to a policy simi-
lar to theirs.

Recently, there has been interest in using re-
inforcement learning to learn a policy for ac-
tive learning. Fang et al. (2017) use deep Q-
learning to acquire a policy that sequentially ex-
amines unlabeled examples and decides whether
or not to query for their labels; using it to im-
prove named entity recognition in low resource
languages. Also, Bachman et al. (2017) use meta-
learning to jointly learn a data selection heuristic,
data representation and prediction function for a
distribution of related tasks. They apply this to one
shot recognition of characters from different lan-
guages, and in recommender systems. In contrast
to these works, we learn a policy for a task that
contains both possible actions that are active learn-
ing queries, and actions that complete the cur-
rent task, thus resulting in a greater exploration-
exploitation trade-off.

More similar to our setup is that of Wood-
ward and Finn (2017) which uses reinforcement
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learning with a recurrent-neural-network-based Q-
function in a sequential one-shot learning task to
decide between predicting a label and acquiring
the true label at a cost. This setup also has a higher
cost than standard active learning where the test
set is separated out. This is a continuous task with-
out clearly separated interactions or episodes. In
our setting, each episode or interaction allows for
querying and requires completion of an interac-
tion, which further increases the trade-off between
model improvement and exploitation. Further, we
consider a multilabel setting, which increases the
number of actions at each decision step.

There are other works that employ various types
of turn-taking interaction to learn models for lan-
guage grounding. Some of these use a restricted
vocabulary (Cakmak et al., 2010; Kulick et al.,
2013), or additional knowledge of predicates (for
example that “red” is a color) (Mohan et al., 2012).
Others do not use active learning (Kollar et al.,
2013; Parde et al., 2015; De Vries et al., 2017; Yu
et al., 2017), or do not learn a policy that guides the
interaction (Vogel et al., 2010; Thomason et al.,
2016, 2017).

Also related to our work is the use of rein-
forcement learning in dialog tasks, such as slot-
filling and recommendation (Wen et al., 2015;
Pietquin et al., 2011), understanding natural lan-
guage instructions or commands (Padmakumar
et al., 2017; Misra et al., 2017), and open domain
conversation (Serban et al., 2016; Das et al., 2017).
These typically do not use active learning. In our
task, the policy needs to trade-off model improve-
ment against task completion.

3 Opportunistic Active Learning

Opportunistic Active Learning (OAL) is a setting
that incorporates active learning queries into inter-
active tasks. Let O = {o1, o2, . . . on} be a set of
examples, and M = {m1, m2, . . . mk} be super-
vised models trained for different concepts, using
these examples. For the problem of understand-
ing natural-language object descriptions, O cor-
responds to the set of objects, M corresponds to
the set of possible concepts that can be used to
describe the objects, for example their categories
(such as ball or bottle) or perceptual properties
(such as red or tall).

In each interaction, an agent is presented with
some subset OA ✓ O, and must make a decision
based on some subset of the models MA ✓ M .

Given a set of objects OA and a natural language
description l, MA would be the set of classifiers
corresponding to perceptual predicates present in
l. The decision made by the agent is a guess about
which object is being described by l. The agent
receives a score or reward based on this decision,
and needs to maximize expected reward across a
series of such interactions. In the task of object
retrieval, this is a 0/1 value indicating whether the
guess was correct, and the agent needs to maxi-
mize the average guess success rate.

During the interaction, the agent may also query
for the label of any of the examples present in the
interaction o 2 OA, for any model m 2 M . The
agent is said to be opportunistic when it chooses
to query for a label m /2MA, as this label will not
affect the decision made in the current interaction,
and can only help with future interactions. For
example, given a description “the red box”, ask-
ing whether an object is red, could help the agent
make a better guess, but asking whether an object
is round, would be an opportunistic query. Queries
have a cost, and hence the agent needs to trade-off
the number of queries with the success at guessing
across interactions.

The agent participates in a sequence of such in-
teractions, and the models improve from labels ac-
quired over multiple interactions. Thus the agent’s
expected reward per interaction is expected to im-
prove as more interactions are completed.

This setting differs from the traditional applica-
tion of active learning in the following key ways:

• The agent cannot query for the label of any
example from the unlabeled pool. It is re-
stricted to the set of objects available in the
current interaction, OA.

• The agent is evaluated on the reward per in-
teraction, rather than the final accuracy of the
models in M .

• The agent may make opportunistic queries
(for models m /2 MA) that are not relevant
to the current task.

Due to these differences, this setting provides
challenges not seen in most active learning sce-
narios:

• Since the agent never sees the entire pool
of unlabeled examples, it can neither choose
queries that are globally optimal, nor use
variance reduction strategies that still use
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near-optimal queries (such as sampling from
a beam of near globally optimal queries).

• Since the agent is evaluated on task comple-
tion, it must learn to trade-off finishing the
task with querying to improve the models.

• The agent needs to estimate the usefulness of
a model across multiple interactions, to iden-
tify good opportunistic queries.

4 Task Setup
We consider an interactive task where an agent
tries to learn to ground natural-language object
descriptions. Grounded language understand-
ing is the process of mapping natural-language
referring expressions to object referents in the
world (Thomason et al., 2016). We consider a
grounded-language problem based on object re-
trieval – given a free form natural-language de-
scription of an object, the agent needs to identify
which of a set of objects is best described by the
phrase (Thomason et al., 2016; Guadarrama et al.,
2014). In this work, objects are presented as im-
ages, but the methods are applicable to any feature
representation of objects. We consider a task of in-
teractive object retrieval where the agent is given
a natural-language object description, and allowed
to interact with the user before it attempts to guess
the object being referred to.

In each interaction, the agent is presented with
two sets of objects. The first set of objects is called
the active training set, and is to be used by the
agent to improve its model of object properties.
The second set of objects is called the active test
set, and the agent will have to retrieve an object
from this set. The agent is provided with a natural
language description of the object it is expected to
retrieve.

Before guessing, the agent is allowed to ask
queries of the following two types:

• Label queries - A yes/no question about
whether a predicate can be used to describe
one of the objects in the active training set,
e.g. “Is this object yellow?”.

• Example queries - Asking for an object, in the
available training set, that can be described
by a particular predicate, e.g. “Show me a
white object in this set.”. This is used for ac-
quiring positive examples since most predi-
cates tend to be sparse. 1

1Alternately, we could return all positive examples for the

Figure 1: A sample OAL interaction. Perceptual pred-
icates are marked in bold.

A sample interaction is shown in Figure 1. The
agent goes through a series of such interactions,
and needs to learn to maximize the number of cor-
rect guesses across interactions, without frustrat-
ing the user with too many queries. The separate
active training set and active test set ensures that
the agent needs to learn models for object descrip-
tors. If queries and guessing were performed on
the same set of objects, the agent could simply
query whether each specific object satisfies each
predicate in the description, and use this to guess.

In our experiments, we simulate such di-
alogs using the Visual Genome dataset (Krishna
et al., 2017); which contains images with regions
(crops) annotated with natural-language descrip-
tions. Bounding boxes of objects present in the
image are also annotated, along with attributes
of objects. Region descriptions, objects and at-
tributes are annotated using unrestricted natural
language, which leads to a diverse set of predi-
cates. Using the annotations, we can associate a

predicate in the active training set, but we chose to return a
single example to allow the agent to minimize the amount of
supervision obtained
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list of objects and attributes relevant to each im-
age region, and use these to answer queries from
the agent.

For each interaction, we uniformly sample 4 re-
gions to form the active test set, and 8 regions to
form the active training set. 2 One region is then
uniformly sampled from the active test set to be
the target object. Its description, from annotations
in the Visual Genome dataset, is provided to the
agent to be grounded. The objects and attributes
associated with active training regions are used to
answer queries. A predicate is labeled as being
applicable to a region if it is present in the list of
objects and attributes associated with the region.
In the rest of the paper, we use the terms object,
image, and region interchangeably.

5 Methodology

5.1 Perceptual Predicates and Classifiers
We assume that the description provided is a con-
junction of one-word predicates. Given a de-
scription, the agent tokenizes it and removes stop-
words. Each remaining word is stemmed and
treated as a perceptual predicate. This method al-
lows the agent to learn an open vocabulary of pred-
icates, but unable to handle multi-word predicates
or non-compositional phrases.

The agent learns a separate binary classifier
for each predicate, and we represent images with
a “deep” feature representation obtained from
the penultimate layer of the VGG network (Si-
monyan and Zisserman, 2014) pretrained on Im-
ageNet (Russakovsky et al., 2015). The agent has
no initial classifiers for any predicate, and learns
these classifiers purely from labels acquired dur-
ing interactions.

5.2 Grounding Descriptions
The learned perceptual classifiers are used to
ground natural language descriptions as follows.
Let p1, p2, . . . pk be the predicates obtained from
the natural language description. Let d(pi, o) 2
{�1, 1} be the decision from the classifier for
predicate pi for object o, and C(pi) be the esti-
mated F1 of the classifier for pi. 3 Then the best

2The regions in the dataset are divided into separate pools
from which the active training and active test sets are sam-
pled (described as classifier-training and classifier-test sets in
section 6.2), to ensure that the agent needs to learn classifiers
that generalize across objects.

3F1 is estimated by cross-validation on the labels acquired
for the predicate.

guess, from the objects present, is chosen using
the weighted sum of the decisions of the classi-
fiers, using their estimated F1 as a weight:

oguess = argmaxo2OA

kX

i=1

d(pi, o) ⇤ C(pi)

5.3 MDP Formulation

We model the task as a Markov Decision Process
(MDP). An MDP is a tuple hS, A, T, R, �i, where
S is a set of states, A is a set of actions, T is a
transition function, R is a reward function and �
is a discount factor. Each interaction is an episode
in the MDP. At any point, the agent is in a state
s 2 S, in our case consisting of the VGG features
of the images in the current interaction, the pred-
icates in the current description, and the agent’s
classifiers. The agent can choose from among ac-
tions in A, which include an action for guessing,
and an action for each possible query the agent can
make, including both label and example queries.
The guess action always terminates the episode,
and query actions transition the agent to a state
s0 2 S as one of the classifiers gets updated. The
agent gets a reward for each action taken. Query
actions have a small negative reward, and guessing
results is a large positive reward when the guess
is correct, and a large negative reward when the
guess is incorrect. In our experiments, we treat
the reward values as hyperparameters that can be
tuned. The best results were obtained with a re-
ward of 200 for a correct guess, -100 for an incor-
rect guess and -1 for each query.

5.4 Identifying Candidate Queries

In any interaction, the agent can make label or ex-
ample queries. In a label query, the agent can ask
for the label of any object for a specific predicate.
If OA is the set of objects present in the active
training set of the current interaction, and P is the
set of predicates that have been seen by the agent
in all interactions so far, then the set of possible
label queries is P ⇥ OA. Once the agent chooses
a predicate p and object o to be queried, it obtains
the corresponding label and can update its classi-
fier for p. In an example query, the agent asks for
a positive example for any predicate p 2 P . The
agent will either receive a positive label for p for
some object o 2 OA or learn that the label is neg-
ative 8 o 2 OA, and can appropriately update the
classifier for p.
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Since |P | grows across interactions as the agent
encounters more predicates in descriptions, the
number of candidate actions in a state increases
over time, so searching the entire space of pos-
sible queries can become intractable. Hence, we
identify a beam of promising queries that are then
provided as candidate actions for the policy to
choose among. Uncertainty sampling is a com-
mon method in pool-based active learning to iden-
tify the best example to improve a classifier. For
a given predicate p, we use this to choose the best
label query involving that predicate, picking that
object o 2 OA which is closest to the hyperplane
of the classifier for p.

However, it is more challenging to narrow down
the number of predicates. Thomason et al. (2017)
assume that an estimate of classifier accuracy is
available, which is comparable across classifiers.
They sample predicates with a probability in-
versely proportional to the estimated accuracy of
the classifier. However, if the space of possible
predicates is large, then this results in no classifier
obtaining a reasonable number of training exam-
ples. In this scenario, it is desirable to focus on
a small number of predicates, possibly stopping
the improvement on a predicate once the classi-
fier for it has been sufficiently improved. We sam-
ple queries from a distribution designed to capture
this intuition. The probability assigned to a pred-
icate by this distribution increases linearly, for es-
timated F1 below a threshold, and decreases lin-
early thereafter. 4 The number of queries sampled
is a hyperparameter. We obtain the best results by
sampling 3 queries of each type.

5.5 Baseline Static Policy

As a baseline, we use a static policy similar to that
used by Thomason et al. (2017). At each state,
a single label query and example query are sam-
pled. The agent asks a fixed number of queries be-
fore guessing. Thomason et al. (2017) use thresh-
olds that prevent queries from being asked when
there are no predicates whose classifiers have suf-
ficiently low estimated accuracy. Since we used a
dataset with a much larger number of predicates,
these thresholds were always crossed if the agent
had even one candidate query.

4The equation for this distribution with some further dis-
cussion on its design is included in the supplementary mate-
rial.

5.6 Policy Learning
We use the REINFORCE algorithm (Williams,
1992) to learn a policy for the MDP. The agent
learns a policy ⇡(a|s; ✓), parameterized with
weights ✓ that computes the probability of taking
action a in state s. Given a feature representation
f(s, a) for a state-action pair (s, a), the policy is
of the form:

⇡(a|s; ✓) =
e✓T f(s,a)

P
a0 e✓T f(s,a0)

where the denominator is a sum over all actions
possible in state s. The weights are updated using
a stochastic gradient ascent rule:

✓  ✓ + ↵r✓J(✓)

where J(✓) is the expected return from the pol-
icy according to the distribution over trajectories
induced by the policy.

The state consists of the predicates in the cur-
rent description, the candidate objects, and the cur-
rent classifiers. Since both the number of candi-
date objects and classifiers varies, and the latter is
quite large, it is necessary to identify useful fea-
tures for the task to obtain a vector representation
needed by most learning algorithms. In our prob-
lem setting, the number of candidate actions avail-
able to the agent in a given state is variable. Hence
we need to create features for state-action pairs,
rather than just states.

5.7 Features for Policy Learning
The object retrieval task consists of two parts –
identifying useful queries to improve classifiers,
and correctly guessing the image being referred to
by a given description. The current dialog length
is also provided to influence the trade-off between
guessing and querying.

5.7.1 Guess-success features
Let PA = {p1, p2, . . . pk} be the predicates ex-
tracted from the current description. For each
predicate p 2 PA, we have the estimated F1 of the
classifier C(p), and for each object o in the active
test set, we have a decision d(p, o) 2 {�1, 1} from
the classifier. We refer to s(p, o) = d(p, o) ⇤ C(p)
as the score of the classifier of p for object o. The
following features are used to predict whether the
current best guess is likely to be correct:

• Lowest, highest, second highest, and average
estimated F1 among classifiers of predicates
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in PA – learned thresholds on these values
can be useful to decide whether to trust the
guess.

• Highest score among regions in the active test
set, and the differences between this and the
second highest, and average scores respec-
tively – a good guess is expected to have a
high score to indicate relevance to the de-
scription, and substantial differences would
indicate that the guess is discriminative. Sim-
ilar features are also formed using the un-
weighted sum of decisions.

• An indicator of whether the two most confi-
dent classifiers agree on the decision of the
top scoring region, which increases the like-
lihood of its being correct.

We compared directly using these features to
training a regressor that uses them to predict the
probability of a successful guess, and then using
this as a higher-level policy feature. We found
no difference between the two methods and the
results reported directly use these features in the
vector provided to the policy learner.

5.7.2 Query-evaluation features
The following features are expected to be useful
in predicting whether it is useful to query for the
label of a particular predicate:

• Indicator of whether the predicate is new or
already has a classifier – this allows the pol-
icy to decide between strengthening exist-
ing classifiers or creating classifiers for novel
predicates.

• Current estimated F1 of the classifier for the
predicate – as there is more to be gained from
improving a poor classifier.

• Fraction of previous dialogs in which the
predicate has been used, and the agent’s suc-
cess rate in these – as there is more to be
gained from improving a frequently used
predicate but less if the agent already makes
enough correct guesses for it.

• Is the query opportunistic – as these will not
help the current guess.

Label queries also have an image region speci-
fied, and for these we have additional features that
use the VGG feature space in which the region is
represented for classification:

• Margin of the image region from the hyper-
plane of the classifier of the predicate – moti-
vated by uncertainty sampling.

• Average cosine distance of the image region
to others in the dataset – motivated by density
weighting to avoid outliers.

• Fraction of the k-nearest neighbors of the re-
gion that are unlabeled for this predicate –
motivated by density weighting to identify a
data point that can influence many labels.

6 Experimental Methodology

6.1 Dataset
The Visual Genome dataset contains a total of
108,077 images with 540,6592 annotated regions.
Since objects and attributes are annotated with
free-form text rather than from a fixed, pre-defined
vocabulary, there is considerable diversity in the
language used for annotation. There are 80,908
unique objects annotated and 44,235 attributes.
We assume that any objects that partially overlap
with a region are present in it, as these are usually
used in descriptions. Using the annotations, we
can associate a list of objects and attributes rele-
vant to each image region. We lower-case all an-
notations, remove special characters and perform
stemming to help normalize terms.

6.2 Sampling dialogs
We want the agent to learn a policy that is inde-
pendent of the actual predicates present at policy
training and policy test time. In order to be able to
evaluate this, we divide the set of possible regions
into policy training and policy test regions as fol-
lows. We select all objects and attributes present
in at least 1,000 regions. Half of these were ran-
domly assigned to the policy test set. All regions
that contain one of these objects or attributes are
assigned to the policy test set, and the rest to the
policy training set. Thus regions seen at test time
may contain predicates seen during training, but
will definitely contain at least one novel predicate.
Further, the policy training and policy test sets are
respectively partitioned into a classifier training
and classifier test set using a uniform 60-40 split.

During policy training, the active training set
of each dialog is sampled from the classifier-
training subset of the policy-training regions, and
the active test set of the dialog is sampled from
the classifier-test subset of the policy-training set.
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During policy testing, the active training set of
each dialog is sampled from the classifier training
subset of the policy test regions, and the active test
set of the dialog is sampled from the classifier test
subset of the policy test set.

6.3 Experiment phases
For efficiency, we run dialogs in batches, and per-
form classifier and policy updates at the end of
each batch. We use batches of 100 dialogs each.
Our experiment runs in 3 phases:

• Initialization – Since learning starting with a
random policy can be difficult, we first run
batches of dialogs on the policy training set
using the static policy from section 5.5, and
update the RL policy using states, actions and
rewards seen in these dialogs. This “super-
vised” learning phase is used to initialize the
RL policy.

• Training – We run batches of dialogs on the
policy training set using the RL policy, start-
ing it without any classifiers. In this phase,
the policy is updated using its own experi-
ence.

• Testing – We fix the parameters of the RL
policy, and run batches of dialogs on the pol-
icy test set. During this phase, the agent is
again reset to start with no classifiers. We
do this to ensure that performance improve-
ments seen at test time are purely from learn-
ing a strategy for opportunistic active learn-
ing, not from acquiring useful classifiers in
the process of learning the policy.

7 Experimental Results and Analysis

We initialize the policy with 10 batches of dialogs,
and then train on another 10 batches of dialogs,
both sampled from the policy training set. Fol-
lowing this, the policy weights are fixed, the agent
is reset to start with no classifiers, and we test on
10 batches of dialogs from the policy test set. Ta-
ble 1 compares the average success rate (fraction
of successful dialogs in which the correct object
is identified), and average dialog length (average
number of system turns) of the best learned policy,
and the baseline static policy on the final batch of
testing. We also compare the effect of ablating the
two main groups of features. The learned agent
guesses correctly in a significantly higher fraction

Policy Success rate Average Dialog Length
Learned 0.44 12.95
–Guess 0.37 6.12
–Query 0.35 6.16
Static 0.29 16

Table 1: Results on dialogs sampled from the policy
test set after 10 batches of classifier training. –Guess
and –Query are conditions with the guess and query
features, respectively, ablated. Boldface indicates that
the difference in that metric with respect to the Static
policy is statistically significant according to an un-
paired Welch t-test with p < 0.05.

of dialogs compared to the static agent, using a
significantly lower number of questions per dia-
log.

When either the group of guess or query fea-
tures is ablated, the success rate clearly decreases.
While the mean success rate still remains above
the baseline, the difference is no longer statisti-
cally significant. Further, at the end of the initial-
ization phase, the average dialog length in all three
conditions is about the same. In the two ablated
conditions, the dialog length does not increase to
become close to that of the static policy, which
suggests that the agent does not learn that asking
more queries improves dialog success. This is ex-
pected because the agent is either not able to eval-
uate the usefulness of queries, or the likelihood of
success of a guess. However, in the learned policy
with all features, the agent is able to identify a ben-
efit in asking queries, and utilizes them to improve
its success rate.

It is important to note that it is non-trivial to de-
cide how to trade-off dialog success with dialog
length. This should be decided for any given ap-
plication by comparing the cost of an error with
that of the user time involved in answering queries,
and the reward function should be set appropri-
ately based on this. Ideally, we would like to see
an increase in dialog success rate and a decrease
in dialog length, as is the case when comparing
the learned and static policies. However, depend-
ing on the application, it may also be beneficial to
see a smaller increase in success rate with a larger
decrease in dialog length, as is the case in the ab-
lated conditions.

We also explored ablating individual features.
We found that the effect of ablating most single
features is similar to that of ablating a group of fea-
tures. The mean success rate decreases compared
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to the full policy with all features. It remains bet-
ter than that of the static policy, but in most cases
the difference stops being statistically significant.
Among features for evaluating the guess, the re-
moval of the difference between the two highest
scores in the active test set has a fairly large ef-
fect, compared with the value of the highest score.
This is expected because for retrieval it is suf-
ficient if an object is simply scored higher than
the other candidates. Further, since classifiers im-
prove over time, the score threshold that indicates
a good guess changes, and hence would be diffi-
cult to learn. An interesting result is that removal
of features involving the predictions of the second
best classifier has more effect than that of the best
classifier. This is possibly because when noisy
classifiers are in use, support of multiple classi-
fiers is helpful. Among query evaluation features,
we find, unsurprisingly, that removal of the feature
providing the margin of the object in a label query
affects performance much more than removal of
features such as density and fraction of labeled
neighbors, which merely indicate whether the ob-
ject is an outlier. The full results of this experiment
are included in the supplementary material.

Qualitatively, we found that the dialog success
rate was higher for both short, and very long di-
alogs, with a decrease for dialogs of intermedi-
ate length. This suggests that longer dialogs are
used to accumulate labels via opportunistic off-
topic questions, as opposed to on-topic questions.
The learned policy still suffers from high variance
in dialog length suggesting that trading off task
completion against model improvement is a dif-
ficult decision to learn. We find that the labels
collected by the learned policy are more equitably
distributed across predicates than the static policy,
resulting in a tendency to have fewer classifiers of
low estimated F1. There is relatively little differ-
ence in the number of predicates for which clas-
sifiers are learned. This suggests that the policy
learns to focus on a few predicates, as the baseline
does, but learn all of these equally well, in contrast
to the baseline which has much higher variance in
the number of labels collected per predicate.

8 Future Work

It would be interesting to examine how a policy
learned using a dataset such as Visual Genome
generalizes to a different domain such as im-
ages captured by a robot operating in an indoor

environment, possibly with some fine-tuning us-
ing a smaller in-domain dataset. The simulation
could also potentially be improved using positive-
unlabeled learning methods (Liu et al., 2002; Li
and Liu, 2003) instead of assuming that an object
or attribute not labeled in an image region is not
present in the image. It would also be interesting
to compare the effectiveness of the opportunistic
active learning framework, as well as the policy
learning, across a variety of applications.

9 Conclusion

This paper has shown how to formulate an op-
portunistic active learning problem as a reinforce-
ment learning problem, and learn a policy that
can effectively trade-off opportunistic active learn-
ing queries against task completion. We evalu-
ated this approach on the task of grounded object
retrieval from natural language descriptions and
learn a policy that retrieves the correct object in
a larger fraction of dialogs than a previously pro-
posed static baseline, while also lowering average
dialog length.
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Abstract
Understanding and reasoning about cooking
recipes is a fruitful research direction to-
wards enabling machines to interpret procedu-
ral text. In this work, we introduce RecipeQA,
a dataset for multimodal comprehension of
cooking recipes. It comprises of approxi-
mately 20K instructional recipes with multi-
ple modalities such as titles, descriptions and
aligned set of images. With over 36K au-
tomatically generated question-answer pairs,
we design a set of comprehension and rea-
soning tasks that require joint understanding
of images and text, capturing the temporal
flow of events and making sense of procedu-
ral knowledge. Our preliminary results in-
dicate that RecipeQA will serve as a chal-
lenging test bed and an ideal benchmark for
evaluating machine comprehension systems.
The data and leaderboard are available at
http://hucvl.github.io/recipeqa.

1 Introduction
There is a rich literature in natural language pro-
cessing (NLP) and information retrieval on ques-
tion answering (QA) (Hirschman and Gaizauskas,
2001), but recently deep learning has sparked in-
terest in a special kind of QA, commonly referred
to as reading comprehension (RC) (Vanderwende,
2007). The aim in RC research is to build intelli-
gent systems with the abilities to read and under-
stand natural language text and answer questions
related to it (Burges, 2013). Such tests are ap-
pealing as they require joint understanding of the
question and the related passage (i.e. context), and
moreover, they can analyze many different types
of skills in a rather objective way (Sugawara et al.,
2017).

Despite the progress made in recent years, there
is still a significant performance gap between
humans and deep neural models in RC, and re-
searchers are pushing forward our understanding of

the limitations and capabilities of these approaches
by introducing new datasets. Existing tasks for RC
mainly differ in two major respects: the question-
answer formats, e.g. cloze (fill-in-the-blank), span
selection or multiple choice, and the text sources
they use, such as news articles (Hermann et al.,
2015; Trischler et al., 2017), fictional stories (Hill
et al., 2016), Wikipedia articles (Kočiský et al.,
2018; Hewlett et al., 2016; Rajpurkar et al., 2016)
or other web sources (Joshi et al., 2017). A popular
topic in computer vision closely related to RC is Vi-
sual Question Answering (VQA) in which context
takes the form of an image in the comprehension
task, where recent datasets have also been com-
piled, such as (Antol et al., 2015; Yu et al., 2015;
Johnson et al., 2017; Goyal et al., 2017), to name a
few.

More recently, research in QA has been ex-
tended to focus on the multimodal aspects of the
problem where different modalities are being ex-
plored. Tapaswi et al. (2016) introduced MovieQA
where they concentrate on evaluating automatic
story comprehension from both video and text. In
COMICS, Iyyer et al. (2017) turned to comic books
to test understanding of closure, transitions in the
narrative from one panel to the next. In AI2D (Kem-
bhavi et al., 2016) and FigureQA (Kahou et al.,
2018), the authors addressed comprehension of
scientific diagrams and graphical plots. Last but
not least, Kembhavi et al. (2017) has proposed
another comprehensive and challenging dataset
named TQA, which comprised of middle school
science lessons of diagrams and texts.

In this study, we focus on multimodal machine
comprehension of cooking recipes with images and
text. To this end, we introduce a new QA dataset
called RecipeQA that consists of recipe instructions
and related questions (see Fig. 1 for an example
text cloze style question). There are a handful of
reasons why understanding and reasoning about
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Text Cloze Style Question Context Modalities: Images and Descriptions of Steps

Recipe: Last-Minute Lasagna
1. Heat oven to 375 degrees F. Spoon a thin layer of sauce

over the bottom of a 9-by-13-inch baking dish.
2. Cover with a single layer of ravioli.
3. Top with half the spinach half the mozzarella and a third

of the remaining sauce.
4. Repeat with another layer of ravioli and the remaining

spinach mozzarella and half the remaining sauce.
5. Top with another layer of ravioli and the remaining sauce

not all the ravioli may be needed. Sprinkle with the
Parmesan.

6. Cover with foil and bake for 30 minutes. Uncover and
bake until bubbly, 5 to 10 minutes.

7. Let cool 5 minutes before spooning onto individual
plates.

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7

Question Choose the best text for the missing blank to correctly complete the recipe
Cover. . Bake. Cool, serve.

Answer A. Top, sprinkle B. Finishing touches C. Layer it up D. Ravioli bonus round

Figure 1: An illustrative text cloze style question (context, question and answer triplet). The context is
comprised of recipe description and images where the question is generated using the question titles. Each
paragraph in the context is taken from another step, as also true for the images. Bold answer is the correct
one.

recipes is interesting. Recipes are written with a
specific goal in mind, that is to teach others how
to prepare a particular food. Hence, they contain
immensely rich information about the real world.
Recipes consist of instructions, wherein one needs
to follow each instruction to successfully complete
the recipe. As a classical example in introductory
programming classes, each recipe might be seen as
a particular way of solving a task and in that regard
can also be considered as an algorithm. We believe
that recipe comprehension is an elusive challenge
and might be seen as important milestone in the
long-standing goal of artificial intelligence and ma-
chine reasoning (Norvig, 1987; Bottou, 2014).

Among previous efforts towards multimodal ma-
chine comprehension (Tapaswi et al., 2016; Kemb-
havi et al., 2016; Iyyer et al., 2017; Kembhavi et al.,
2017; Kahou et al., 2018), our study is closer to
what Kembhavi et al. (2017) envisioned in TQA.
Our task primarily differs in utilizing substantially
larger number of images – the average number of
images per recipe in RecipeQA is 12 whereas TQA
has only 3 images per question on average. More-
over, in our case, each image is aligned with the
text of a particular step in the corresponding recipe.
Another important difference is that TQA con-
tains mostly diagrams or textbook images whereas

RecipeQA consists of natural images taken by users
in unconstrained environments.

Some of the important characteristics of
RecipeQA are as follows:
• There are arbitrary numbers of steps in recipes

and images in steps, respectively.
• There are different question styles, each requiring

a specific comprehension skill.
• There exists high lexical and syntactic divergence

between contexts, questions and answers.
• Answers require understanding procedural lan-

guage, in particular keeping track of entities
and/or actions and their state changes.

• Answers may need information coming from
multiple steps (i.e. multiple images and multi-
ple paragraphs).

• Answers inherently involve multimodal under-
standing of image(s) and text.

To sum up, we believe RecipeQA is a challeng-
ing benchmark dataset which will serve as a test
bed for evaluating multimodal comprehension sys-
tems. In this paper, we present several statistical
analyses on RecipeQA and also obtain baseline
performances for a number of multimodal compre-
hension tasks that we introduce for cooking recipes.
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2 RecipeQA Dataset

The Recipe Question Answering (RecipeQA)
dataset is a challenging multimodal dataset that
evaluates reasoning over real-life cooking recipes.
It consists of approximately 20K recipes from
22 food categories, and over 36K questions. Fig. 2
shows an illustrative cooking recipe from our
dataset. Each recipe includes an arbitrary number
of steps containing both textual and visual elements.
In particular, each step of a recipe is accompanied
by a ‘title’, a ‘description’ and a set of illustra-
tive ‘images’ that are aligned with the title and the
description. Each of these elements can be con-
sidered as a different modality of the data. The
questions in RecipeQA explore the multimodal as-
pects of the step-by-step instructions available in
the recipes through a number of specific tasks that
are described in Sec. 3, namely textual cloze, visual
cloze, visual coherency and visual ordering.

2.1 Data Collection
We consider cooking recipes as the main data
source for our dataset. These recipes were col-
lected from Instructables1, which is a how-to web
site where users share all kinds of instructions in-
cluding but not limited to recipes.

We employed a set of heuristics that helped us
collect high quality data in an automatic manner.
For instance, while collecting the recipes, we down-
loaded only the most popular recipes by consid-
ering the popularity as an objective measure for
assessing the quality of a recipe. Our assumption
is that the mostly viewed recipes contain less noise
and include easy-to-understand instructions with
high-quality illustrative images.

In total, we collected about 20K unique recipes
from the food category of Instructables. We filtered
out non-English recipes using a language identifi-
cation (Lui and Baldwin, 2012), and automatically
removed the ones with unreadable contents such as
the ones that only contain recipe videos. Finally, as
a post processing step, we normalized the descrip-
tion text by removing non-ASCII characters from
the text.

2.2 Questions and Answers
For machine comprehension and reasoning, form-
ing the questions and the answers is crucial for
evaluating the ability of a model in understanding

1All materials from the instructables.com were down-
loaded in April 2018.

the content. Prior studies employed natural lan-
guage questions either collected via crowdsourc-
ing platforms such as SQuAD (Rajpurkar et al.,
2016) or generated synthetically as in CNN/Daily
Mail (Hermann et al., 2015). Using natural lan-
guage questions is a good approach in terms of
capturing human understanding, but crowdsourc-
ing is often too costly and does not scale well as
the size of the dataset grows. Synthetic question
generation is a low-cost solution, but the quality of
the generated questions is subject to question.

RecipeQA includes structured data about the
cooking recipes that consists of step-by-step in-
structions, which helps us generate questions in
a fully automatic manner without compromising
the quality. Our questions test the semantics of the
instructions of the recipes from different aspects
through the tasks described in Sec. 3. In particular,
we generate a set of multiple choice questions (the
number of choices is fixed as four) by following a
simple procedure which apply to all of our tasks
with slight modifications.

In order to generate question-answer-context
triplets, we first filtered out recipes that contain less
than 3 steps or more than 25 steps. We also ignored
the initial step of the recipes as our preliminary
analysis showed that the first step of the recipes
almost always is used by the authors to provide a
narrative, e.g. why they love making that particu-
lar food, or how it makes sense to prepare a food
for some occasion, and often is not relevant to the
recipe instructions. In addition, we automatically
removed some indicators such as step numbers that
explicitly emphasize temporal order from the step
titles while generating questions.

Given a task, we first randomly select a set of
steps from each recipe and construct our questions
and answers from these steps according to the task
at hand. In particular, we employ the modality that
the comprehension task is built upon to generate
the candidate answers and use the remaining con-
tent as the necessary context for our questions. For
instance, if the step titles are used within the candi-
date answers, the context becomes the descriptions
and the images of the steps. As the average number
of steps per recipe is larger than four, using this
strategy, we can generate multiple context-question-
answer triplets from a single recipe.

Candidate answers can be generated by selecting
the distractors at random from the steps of other
recipes. To make our dataset more challenging, we
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Intro Step 1: Ingredients Step 2: Prepping the Garlic,
Ginger, Onion, and Tomato

Step 3: Drain the Chickpeas Step 4: Prepping Lime and
Coriander

This Creamy Coconut Chickpea
Curry is an quick and easy to
prepare vegan and gluten free
Indian-cuisine-inspired dish, made
from fresh ingredients. All it
takes is about 5 minutes of prep
time and another 20 minutes
of cooking time and you have
yourself a delicious and healthy
dish. Deliciously satisfying!

1 can (796mL) of chickpea curry
1 can (400mL) of coconut milk
2 tomatoes 1 lime 2 stalks of
coriander 3 cloves of garlic 1 inch
knob of ginger 1 large yellow
onion 1/4 teaspoon ground
black pepper 1/2 teaspoon salt
2 teaspoon curry powder 1/2
teaspoon paprika Flavourless oil
like vegetable oil Tools: Cutting
board Knife Skillet

Remove the skin from the garlic,
ginger, and onion. I found it
easiest to use a spoon to scrape the
skin from the ginger. Mince the
garlic and ginger. Dice the onion
Dice the tomatoes. Once done, set
aside the garlic and ginger, onions,
and tomatoes on separate bowls
respectively.

Drain the water from the can
of chickpeas. Then run rinse
the chickpeas under cold water,
drain very well and leave aside.
My chickpeas came with the
transparent outer shells of the
beans, so I removed those as well,
then re-rinsed it before setting it
aside.

You can prep the lime and the
coriander while the curry is
cooking because you will have
time, but I find it easier to do all
the prepping at once and leave
the extra time for washing the
dishes. Slice the lime to 6 wedges,
these will be served with the curry.
Chop the leaves off from the
Coriander then roughly chop it to a
smaller size as it will be used for
garnishing.

Step 5: Cook the Onion,
Garlic, and Ginger

Step 6: Add the Spices Step 7: Add the Tomatoes Step 8: Add Chickpeas and
Coconut Milk

Step 9: Garnish and Serve

Heat the oil in a skillet using
medium heat and add in the diced
onions. Cook it until the onion
softens and becomes a translucent
colour. This takes around 2 to
3 minutes. Once the onions are
cooked, add your garlic and
ginger in and cook for another 90
seconds.

Add in all the spices (curry powder,
pepper, salt, and paprika) and stir
it for about 30 seconds. This will
cook the spices and infuse the
flavours of our spices together with
the other ingredients.

Add the tomatoes in and stir it
around until it is mixed with the
spices evenly. Then leave it to
cook for another 3 to 5 minutes
or until the tomatoes begin break
down and harden. The tomatoes
add a unique texture as well as a
bit of sweetness and tartness to the
dish.

Add the drained chickpeas to the
skillet with the can of coconut
milk. Stir it in until the curry
and the coconut milk becomes
uniformly mixed. Bring the heat
down to medium-low and cover it
for around 15 minutes to bring it to
a boil until the sauce thickens up.

Garnish the dish with coriander
and squeeze in a fresh lime on the
curry to complete the dish and
further elevate the flavour. Serve
with with rice and enjoy!

Figure 2: A recipe of ‘Creamy Coconut Chickpea Curry’ with 9 steps, taken from Instructables.

employ a different strategy and select the distrac-
tors from the relevant modalities (titles, descrip-
tions or images), which are not too far or too close
from the correct answer. Specifically, we employ
the following simple heuristic. We first find k near-
est neighbors (k = 100) from other recipes. We
then define an adaptive neighborhood by finding
the closest distance to the query and remove the
candidates that are too close. The remaining can-
didates are similar enough to be adversarial but
not too similar to semantically substitute for the
groundtruth. Finally, we randomly sample distrac-
tors from that pool. Details of the question gener-
ation procedure for each of the tasks are given in
Sec. 3.

2.3 Dataset Statistics

RecipeQA dataset contains approximately 20K
cooking recipes and over 36K question-answer
pairs divided into four major question types re-
flecting each of the task at hand. The data is split
into non-overlapping training, validation and test
sets so that one set does not include a recipe and/or
questions about that recipe which are available in
other sets. There are 22 different food categories

train valid test

# of recipes 15847 1963 1969
. . . avg. # of steps 5.99 6.01 6.00
. . . avg. # of tokens (titles) 17.79 17.40 17.67
. . . avg. # of tokens (descr.) 443.01 440.51 435.33
. . . avg. # of images 12.67 12.74 12.65

# of question-answers 29657 3562 3567
. . . textual cloze 7837 961 963
. . . visual cloze 7144 842 848
. . . visual coherence 7118 830 851
. . . visual ordering 7558 929 905

Table 1: RecipeQA dataset statistics.

across our dataset whose distribution is shown in
Fig. 3. While splitting the recipes into sets, we
take into account these categories so that all the
sets have a similar distribution of recipes across all
the categories. In Table 1, we show the detailed
statistics about our RecipeQA dataset. Moreover,
to visualize the token frequencies, we also provide
the word clouds of the titles and the descriptions
from the recipes in Fig. 4.
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Figure 3: Distribution of the food categories across
the RecipeQA.

3 Tasks

RecipeQA includes four different types of tasks:
(1) Textual cloze, (2) Visual cloze, (3) Visual coher-
ence, and (4) Visual ordering. Each of these tasks
requires different reasoning skills as discussed in
(Sugawara et al., 2017), and considers different
modalities in their contexts and candidate answer
sets. By modalities, we refer to the following pieces
of information: (i) titles of steps, (ii) descriptions
of steps and (iii) illustrative images of steps. While
generating the questions for these tasks, we rather
employ fixed templates as will be discussed below,
which helps us to automatically construct question-
answers pairs from the recipes with no human inter-
vention. Using these tasks, we can easily evaluate
complex relationships between different steps of a
recipe via their titles, their descriptions and/or their
illustrative images. Hence, our question-answers
pairs are multimodal in nature. In the following,
we provide a detailed description of each one of
these tasks and discuss our strategies while select-
ing candidate answers.

3.1 Textual Cloze

Textual cloze style questions test the ability to in-
fer missing text either in the title or in the step
description by taking into account the question’s
context which includes a set of illustrative images
besides text. While generating the question-answer
pairs for this task, we randomly select a step from
the candidate steps of a given recipe, hide its title
and description, and ask for identifying this text
amongst the multiple choices from the remaining
modalities. To construct the distractor answers, we
use the strategy in Sec. 2.2 that depends on the
WMD (Kusner et al., 2015) distance measure. In
Fig. 1, we provide a sample text cloze question
from RecipeQA generated automatically in this
way.

Step titles Step descriptions

Figure 4: Word clouds of the tokens for the titles
and the descriptions of the recipes from RecipeQA.

3.2 Visual Cloze

Visual cloze style questions test a skill similar to
that of textual cloze task with the difference that the
missing information in this task reside in the visual
domain. Here, just like the textual cloze task, for a
recipe we randomly select a step, hide its represen-
tative image, and ask to infer this image amongst
the multiple choices. The context for this task is all
textual and is in the form of a sequence of titles and
descriptions. To construct the distractor images,
we use Euclidean distances of 2048-d pool5 fea-
tures extracted from a ResNet-50 (He et al., 2016)
pre-trained on ImageNet classification task. We
show a sample visual cloze style question in Fig. 5
(second row).

3.3 Visual Coherence

Visual coherence style questions test the capabil-
ity to identify an incoherent image in an ordered
set of images given the titles and descriptions of
the corresponding recipe as the context. Hence, to
be successful at this task, a system needs to not
only understand the relations between candidate
steps, but also align and relate different modali-
ties existing in the context and the answers. While
generating the answer candidates for this task, we
randomly select a single representative image from
a single step and replace this image with a distrac-
tor image via employing the distractor selection
strategy used for visual cloze task. In Fig. 5 (third
row), we provide a sample visual coherence style
question from RecipeQA.

3.4 Visual Ordering

Visual ordering questions test the ability of a sys-
tem in finding a correctly ordered sequence given a
jumbled set of representative images of a recipe. As
in the previous visual tasks, the context of this task
consists of the titles and descriptions of a recipe. To
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Context Modalities: Titles and Descriptions of Steps

Recipe: Bacon Sushi
Step 1: What You’ll Need This recipe makes enough bacon sushi to feed 2 - 4 people. 2 x 500g(1 lb.) packages of bacon

(I chose an applewood smoked bacon, but any type would work). 3 tbsp. oil. 1 medium onion, finely diced. 1 1. . .
Step 2: Cooking the Bacon The bacon ”nori” will have to be partially cooked before it can be rolled with the risotto

filling. Preheat the oven to 350 degrees F. Lay half a package of bacon on the rack of the roasting pan, then bak. . .
Step 3: Making the Risotto Filling I once made risotto with sushi rice, since I had no Arborio rice on hand, and I decided

that the starchiness was similar in the two. My experiment was a success, and the resulting dish was just as deli. . .
Step 4: Jazzing Up the Risotto Risotto is a wonderfully customizable dish, and a quick search on the internet will result

in a multitude of variations. Here are two of my favorites: Asian mushroom risotto. 1 tbsp. oil. 1 package. . .
Step 5: Rolling the Sushi Cover the sushi rolling mat with a large piece of aluminum foil as protection from the risotto

and bacon grease. (You don’t want your next sushi dinner tasting like bacon. Or maybe you do...) Lay the stri. . .
Step 6: Baking and Slicing Preheat the oven to 350 degrees F. Place the aluminum foil-covered sushi rolls in the oven

and bake for 20 minutes. This will warm all the ingredients and crisp the bacon a little more. It will also melt a. . .
Step 7: And You’re Done! Serve the sushi with a light crispy vegetable side dish, such as refreshing cucumber sticks, or

a green salad. White wine makes an excellent compliment to the meal, especially if it is the same wine used in . . .
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Question Select the incoherent image in the following sequence of images

Answer A. B. C. D.
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n Question Choose the correct order of the images to make a complete recipe

(i) (ii) (iii) (iv)

Answer A. (iv)-(iii)-(ii)-(i) B. (iv)-(iii)-(i)-(ii) C. (i)-(ii)-(iii)-(iv) D. (ii)-(iv)-(i)-(iii)

Figure 5: Sample visual cloze, visual coherence and visual ordering style questions (context, question and
answer triplet) taken from the RecipeQA training set (Question Ids: 2000-3708-0-1-4-5, 3000-3708-2-3-4-
6, 4000-3708-1-2-3-6). Here, the context is comprised of step titles and descriptions where the questions
are generated using the images in the recipe. The correct answers are shown with green frames or in bold.

successfully complete this task, the system needs to
understand the temporal occurrence of a sequence
of recipe steps and infer temporal relations between
candidates, i.e. boiling the water first, putting the

spaghetti next, so that the ordered sequence of im-
ages aligns with the given recipe. To generate an-
swer choices, we simply use random permutations
of the illustrative images in the recipe steps. In
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Fig. 5 (last row), we illustrate this visual ordering
task through an example question. Here, we should
note that a similar task has been previously inves-
tigated by Agrawal et al. (2016) for visual stories
where the task is to order a jumbled set of aligned
image-description pairs.

4 Experiments

4.1 Data Preparation

Ingredient Detection. We employed the method
proposed in (Salvador et al., 2017) to detect recipe
ingredients. To learn more effective word embed-
dings, we transformed the ingredients with com-
pound words such as olive oil into single word
ingredients with a proper hyphenation as olive oil.

Textual Embeddings. We trained a distributed
memory model, namely Doc2Vec (Le and Mikolov,
2014) and used it to learn word level and document
level embeddings while encoding the semantic sim-
ilarity by taking into account the word order within
the provided context. In this way, we can represent
each word, sentence or paragraph by a fixed sized
vector. In our experiments, we employed 100-d
vectors to represent all of the textual modalities
(titles and descriptions). We made sure that the em-
beddings encode semantically useful information
by exploring nearest neighbors (see Fig. 6 for some
examples.)

Query Nearest Neighbor
Then add the green onion
and garlic.

Then add the white onion,
red pepper and garlic.

It will thicken some while it
cools

Some cornflour to thicken.

Slowly whisk in the milk,
scraping the bottom and
sides with a heatproof spat-
ula to make sure all the dry
ingredients are mixed in.

Stir the dry ingredients in, in-
crementally, mixing on low
speed and scraping with a
spatula after each addition.

Figure 6: Sample nearest neighbors from the em-
beddings by the trained Doc2Vec model.

Visual Features. We used the final activation of
the ResNet-50 (He et al., 2016) model trained on
the ImageNet dataset (Russakovsky et al., 2015) to
extract 2048-d dense visual representations. Then,
we further utilized an autoencoder to decrease the
dimension of the visual features to 100-d so that
they become compatible in size with the text em-
beddings.

4.2 Baseline Models

Neural Baselines. For our neural baselines, we
adapted the Impatient Reader model in (Hermann
et al., 2015), which was originally developed only
for the cloze style text comprehension questions
in the CNN/Daily Mail dataset. In our implemen-
tation, we used a uni-directional stacked LSTM
architecture with 3 layers, in which we feed the
context of the question to the network in a sequen-
tial manner. Particularly, we preserve the temporal
order of the steps of the recipe while feeding it
to the neural model, by mimicking the most com-
mon reading strategy – reading from top to bottom.
For the multimodal setting, since images are rep-
resented with vectors which are of the same size
with the text embeddings, we also feed the images
to the network in the same order they are presented
in the recipe.

In order to account for different question types,
we employ a modular architecture, which requires
small adjustments to be made for each task. For
instance, we place the candidate answers into query
for the cloze style questions or remove the candi-
date answer from the query for the visual coherence
type questions. In training our Impatient Reader
baseline model, we use a cosine similarity function
and employed the hinge ranking loss (Collobert
et al., 2011) as follows:

L = max{0, M � cos(q, a+) + cos(q, a�)} (1)

where M is a scalar denoting the margin, a+ repre-
sents the ground truth answer, and a� corresponds
to an incorrect answer which is sampled randomly
from the whole answer space. For all of our ex-
periments, we select M as 1.5 and employ a sim-
ple heuristic to prevent overfitting by following
an early stopping scheme with patience set to 10
against the validation set accuracy after the initial
epoch. For the optimizer, we use ADAM and set
the learning rate to 1e�3. The training took around
18 to 24 hours on GTX 1080Ti on a single GPU.
We did not perform any hyperparameter tuning.

Simple Baselines. We adapt the Hasty Student
model described in (Tapaswi et al., 2016), which
does not consider the provided context and simply
answers questions by only looking at the similari-
ties or the dissimilarities between the elements in
questions and the candidate answers.

For the textual close task, each candidate answer
is compared against the titles or descriptions of
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Visual Textual Visual Visual
Cloze Cloze Coherence Ordering

Hasty Student 27.35 26.89 65.80 40.88
Impatient Reader (Text only) – 28.03 – –
Impatient Reader (Multimodal) 27.36 29.07 28.08 26.74

Table 2: Results for simple and neural models on the test set of RecipeQA dataset.

the steps by using WMD (Kusner et al., 2015) dis-
tance, where such distances are averaged. Then,
the choice closest to all of the question steps is se-
lected as the final answer. For the visual cloze task,
a similar approach is carried out by considering
images instead of text using deep visual features.
For the visual coherence task, since the aim is to
find the incoherent image among other images, the
final answer is chosen as the most dissimilar one
to the remaining images on average. Lastly, for the
visual ordering task, first, the distances between
each consecutive image pair in a candidate order-
ing of the jumbled image set is estimated. Then,
each candidate ordering is scored based on the av-
erage of these pairwise distances and the choice
with the minimum average distance is set as the
final answer. In all these simple baseline models,
we use the cosine distance to rank the candidates.

4.3 Baseline Results
We report the performance of the baseline models
in Table 2 which indicates the ratio of correct an-
swers against the total questions in the test. For
the textual cloze, the comparison between text-only
and multimodal Impatient Reader models shows
that the additional visual modality helps the model
to understand the question better and to provide
more accurate answers. While for the cloze style
questions, the Impatient Reader outperforms the
Hasty student, for the visual coherence and visual
ordering style questions Hasty student gives way
better results. This demonstrates that better neural
models are needed to be able to effectively deal
with this kind of questions. Some qualitative exam-
ples are provided in the supplementary material.

5 Related Work

Question Answering has been studied extensively
in the literature. With the success of deep learning
approaches in question answering, comprehension
and reasoning aspects of the task has attracted re-
searchers to investigate QA as a medium to mea-
sure intelligence. Various datasets and methods

Dataset #Images #Questions Modality
COMICS 1.2M 750K Image/Text
MovieQA 408 14,944 Image/Video/Text
TQA 3,455 26,260 Image/Text

RecipeQA 250,730 36,786 Image/Text

Table 3: Comparison of the RecipeQA dataset to
other multimodal machine comprehension datasets.

have been proposed for measuring different aspects
of the comprehension and reasoning problem. Each
dataset has its own merits as well as weaknesses.
Recently, a thorough analysis by (Chen et al., 2016)
revealed that the required reasoning and inference
level was quite simple for CNN/Daily Mail dataset
(Hermann et al., 2015). To make reasoning task
more realistic, new datasets such as SQuAD (Ra-
jpurkar et al., 2016), NewsQA (Trischler et al.,
2017), MSMARCO (Nguyen et al., 2016), CLEVR
(Johnson et al., 2017), COMICS (Iyyer et al., 2017)
and FigureQA (Kahou et al., 2018) have been pro-
posed.

In the following, we briefly discuss the publicly
available datasets that are closely related to our
problem and provide an overview in Table 3.

The closest works to ours are (Iyyer et al.,
2017), (Tapaswi et al., 2016) and (Kembhavi et al.,
2017) where data multi-modality is the key as-
pect. COMICS dataset (Iyyer et al., 2017) focus
on comic book narratives and explore visual cloze
style questions, introducing a dataset consisting of
drawings from comic books. The dataset is con-
structed from 4K Golden Age (1938-1954) comic
books from the Digital Comics Museum and con-
tains 1.2M panels with 2.5M textboxes. Three tasks
are evaluated in this context, namely text cloze, vi-
sual cloze, character coherence. MovieQA dataset
(Tapaswi et al., 2016), comprises of 15K crowd-
sourced questions about 408 movies. It consists
of movie clips, subtitles, and snapshots, is about
comprehending stories about movies. TQA dataset
(Kembhavi et al., 2017), have 26K questions about
1K middle school science lessons with 3.5K im-
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ages, mostly of diagrams and aims at addressing
middle school knowledge acquisition using both
images and text. Since the audience is middle
school children, it requires limited reasoning.

RecipeQA substantially differentiates from the
previous work in the following way. Our dataset
consists of natural images that are taken by anony-
mous users in unconstrained environments, which
is a major diversion from COMICS and TQA
datasets.

It should also be noted that there has been a long
history of research involving cooking recipes. Re-
cent examples include parsing of recipes (Mal-
maud et al., 2014; Jermsurawong and Habash,
2015), aligning instructional text to videos (Mal-
maud et al., 2015; Sener et al., 2015), recipe
text generation (Kiddon et al., 2016), learning
cross-modal embeddings (Salvador et al., 2017),
tracking entities and action transformations in
recipes (Bosselut et al., 2018).

Finally, to our best knowledge, there is no dataset
focusing on “how-to” instructions or recipes; hence,
this work will be the first to serve multimodal com-
prehension of recipes having an arbitrary number
of steps aligned with multiple images and multiple
sentences.

6 Conclusion

We present RecipeQA, a dataset for multimodal
comprehension of cooking recipes, which consists
of roughly 20K cooking recipes with over 36K
context-question-answer triplets. To our knowl-
edge, RecipeQA is the first machine comprehen-
sion dataset that deals with understanding procedu-
ral knowledge in a multimodal setting. Each one of
the four question styles in our dataset is specifically
tailored to evaluate a particular skill and requires
connecting the dots between different modalities.
Results of our baseline models demonstrate that
RecipeQA is a challenging dataset and we plan
make it publicly available for other researchers to
promote the development of new methods for mul-
timodal machine comprehension. In the future,
we also intend to extend the dataset by collecting
natural language questions-answer pairs via crowd-
sourcing. We also hope that RecipeQA will serve
other purposes for related research problems on
cooking recipes as well.
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Abstract

Recent years have witnessed an increasing
interest in image-based question-answering
(QA) tasks. However, due to data limitations,
there has been much less work on video-based
QA. In this paper, we present TVQA, a large-
scale video QA dataset based on 6 popular
TV shows. TVQA consists of 152,545 QA
pairs from 21,793 clips, spanning over 460
hours of video. Questions are designed to be
compositional in nature, requiring systems to
jointly localize relevant moments within a clip,
comprehend subtitle-based dialogue, and rec-
ognize relevant visual concepts. We provide
analyses of this new dataset as well as sev-
eral baselines and a multi-stream end-to-end
trainable neural network framework for the
TVQA task. The dataset is publicly available
at http://tvqa.cs.unc.edu.

1 Introduction

Now that algorithms have started to produce rel-
evant and realistic natural language that can de-
scribe images and videos, we would like to under-
stand what these models truly comprehend. The
Visual Question Answering (VQA) task provides
a nice tool for fine-grained evaluation of such mul-
timodal algorithms. VQA systems take as input
an image (or video) along with relevant natural
language questions, and produce answers to those
questions. By asking algorithms to answer differ-
ent types of questions, ranging from object iden-
tification, counting, or appearance, to more com-
plex questions about interactions, social relation-
ships, or inferences about why or how something
is occurring, we can evaluate different aspects of a
model’s multimodal semantic understanding.

As a result, several popular image-based
VQA datasets have been introduced, includ-
ing DAQUAR (Malinowski and Fritz, 2014),
COCO-QA (Ren et al., 2015a), FM-IQA (Gao

et al., 2015), Visual Madlibs (Yu et al., 2015),
VQA (Antol et al., 2015), Visual7W (Zhu et al.,
2016), etc. In addition, multiple video-based QA
datasets have also been collected recently, e.g.,
MovieQA (Tapaswi et al., 2016), MovieFIB (Ma-
haraj et al., 2017a), PororoQA (Kim et al., 2017),
TGIF-QA (Jang et al., 2017), etc. However, there
exist various shortcomings for each such video
QA dataset. For example, MovieFIB’s video clips
are typically short (⇠4 secs), and focused on
purely visual concepts (since they were collected
from audio descriptions for the visually impaired);
MovieQA collected QAs based on text summaries
only, making them very plot-focused and less rele-
vant for visual information; PororoQA’s video do-
main is cartoon-based; and TGIF-QA used pre-
defined templates for generation on short GIFs.

With video-QA in particular, as opposed to
image-QA, the video itself often comes with as-
sociated natural language in the form of (subtitle)
dialogue. We argue that this is an important area
to study because it reflects the real world, where
people interact through language, and where many
computational systems like robots or other intel-
ligent agents will ultimately have to operate. As
such, systems will need to combine information
from what they see with what they hear, to pose
and answer questions about what is happening.

We aim to provide a dataset that merges the best
qualities from all of the previous datasets as well
as focus on multimodal compositionality. In par-
ticular, we collect a new large-scale dataset that is
built on natural video content with rich dynamics
and realistic social interactions, where question-
answer pairs are written by people observing both
videos and their accompanying dialogues, encour-
aging the questions to require both vision and lan-
guage understanding to answer. To further en-
courage this multimodal-QA quality, we ask peo-
ple to write compositional questions consisting
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What is on the couch behind Joey when he is at the 
counter?

A A chick
B A soccer ball
C A duck
D A pillow
E Janice's coat

What is Janice holding on to after Chandler sends 
Joey to his room?

A Chandler's tie
B Chandler's hands
C Her Breakfast
D Her coat
E Chandler's coffee cup.

00:00

Why does Joey want Chandler to kiss Janice when they are 
in the kitchen?

A Because Joey is glad that Chandler is happy
B Because Joey likes to watch people kiss
C    Because then she will leave  
D Because Joey thinks Janice is hot
E   Because then Chandler will move away from the toast.

00:00.755 --> 00:02.655  
(Chandler:) Go to your room!
00:06.961 --> 00:08.622 
(Janice:) I gotta go, I gotta go.

00:08.829 --> 00:10.057 
(Janice:) Not without a kiss.
00:10.264 --> 00:12.391 
(Chandler:) Maybe I won't kiss you so you'll stay.

00:12.600 --> 00:14.761 
(Joey:) Kiss her. Kiss her!
00:16.771 --> 00:19.137 
(Janice:) I‘ll see you later, sweetie. Bye, Joey.

00:39.327 --> 00:40.760 
(Chandler:) She makes me happy. 
00:41.596 --> 00:44.087 
(Joey:) Okay. All right.

…

00:1000:06 00:17 00:39 00:45 01:04

…

Figure 1: Examples from the TVQA dataset. All questions and answers are attached to 60-90 seconds long clips.
For visualization purposes, we only show a few of the most relevant frames here. As illustrated above, some
questions can be answered using subtitles or videos alone, while some require information from both modalities.

of two parts, a main question part, e.g. “What
are Leonard and Sheldon arguing about” and a
grounding part, e.g. “when they are sitting on the
couch”. This also leads to an interesting secondary
task of QA temporal localization.

Our contribution is the TVQA dataset, built on
6 popular TV shows spanning 3 genres: medical
dramas, sitcoms, and crime shows. On this data,
we collected 152.5K human-written QA pairs (ex-
amples shown in Fig.1). There are 4 salient ad-
vantages of our dataset. First, it is large-scale and
natural, containing 21,793 video clips from 925
episodes. On average, each show has 7.3 sea-
sons, providing long range character interactions
and evolving relationships. Each video clip is as-
sociated with 7 questions, with 5 answers (1 cor-
rect) for each question. Second, our video clips are
relatively long (60-90 seconds), thereby contain-
ing more social interactions and activities, mak-
ing video understanding more challenging. Third,
we provide the dialogue (character name + subti-
tle) for each QA video clip. Understanding the re-
lationship between the provided dialogue and the
question-answer pairs is crucial for correctly an-
swering many of the collected questions. Fourth,
our questions are compositional, requiring algo-
rithms to localize relevant moments (START and
END points are provided for each question).

With the above rich annotation, our dataset
supports three tasks: QA on the grounded clip,
question-driven moment localization, and QA on
the full video clip. We provide baseline experi-
ments on both QA tasks and introduce a state-of-
the-art language and vision-based model (leaving
moment localization for future work).

2 Related Work

Visual Question Answering: Several image-
based VQA datasets have recently been con-
structed, e.g., DAQUAR (Malinowski and Fritz,
2014), VQA (Antol et al., 2015), COCO-Q (Ren
et al., 2015a), FM-IQA (Gao et al., 2015), Vi-
sual Madlibs (Yu et al., 2015), Visual7W (Zhu
et al., 2016), CLEVR (Johnson et al., 2017),
etc. Additionally, several video-based QA datasets
have also been proposed, e.g. TGIF-QA (Jang
et al., 2017), MovieFIB (Maharaj et al., 2017b),
VideoQA (Zhu et al., 2017), LSMDC (Rohrbach
et al., 2015), TRECVID (Over et al., 2014),
MovieQA (Tapaswi et al., 2016), PororoQA (Kim
et al., 2017) and MarioQA (Mun et al., 2017).
However, none of these datasets provides a truly
realistic, multimodal QA scenario where both vi-
sual and language understanding are required to
answer a large portion of questions, either due to
unrealistic video sources (PororoQA, MarioQA)
or data collection strategy being more focused on
either visual (MovieFIB, VideoQA, TGIF-QA) or
language (MovieQA) sources. In comparison, our
TVQA collection strategy takes a directly multi-
modal approach to construct a large-scale, real-
video dataset by letting humans ask and answer
questions while watching TV-show videos with as-
sociated dialogues.
Text Question Answering: The related task of
text-based question answering has been exten-
sively explored (Richardson et al., 2013; Weston
et al., 2015; Rajpurkar et al., 2016; Hermann et al.,
2015; Hill et al., 2015). Richardson et al. (2013)
collected MCTest, a multiple choice QA dataset
intended for open-domain reading comprehension.
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With the same goal in mind, Rajpurkar et al.
(2016) introduced the SQuAD dataset, but their
answers are specific spans from long passages.
Weston et al. (2015) designed a set of tasks with
automatically generated QAs to evaluate the tex-
tual reasoning ability of artificial agents and Her-
mann et al. (2015); Hill et al. (2015) constructed
the cloze dataset on top of an existing corpus.
While questions in these text QA datasets are
specifically designed for language understanding,
TVQA questions require both vision understand-
ing and language understanding. Although meth-
ods developed for text QA are not directly appli-
cable to TVQA tasks, they can provide inspiration
for designing suitable models.
Natural Language Object Retrieval: Language
grounding addresses the task of object or mo-
ment localization in an image or video from a
natural language description. For image-based
object grounding, there has been much work on
phrase grounding (Plummer et al., 2015; Wang
et al., 2016b; Rohrbach et al., 2016) and referring
expression comprehension (Hu et al., 2016; Yu
et al., 2016; Nagaraja et al., 2016; Yu et al., 2017,
2018b). Recent work (Vasudevan et al., 2018)
extends the grounding task to the video domain.
Most recently, moment localization was proposed
in (Hendricks et al., 2017; Gao et al., 2017), where
the goal is to localize a short moment from a long
video sequence given a query description. Accu-
rate temporal grounding is a necessary step to an-
swering our compositional questions.

3 TVQA Dataset

3.1 Dataset Collection
We collected our dataset on 6 long-running TV
shows from 3 genres: 1) sitcoms: The Big
Bang Theory, How I Met Your Mother, Friends,
2) medical dramas: Grey’s Anatomy, House, 3)
crime drama: Castle. There are in total 925
episodes spanning 461 hours. Each episode was
then segmented into short clips. We first created
clips every 60/90 seconds, then shifted temporal
boudaries to avoid splitting subtitle sentences be-
tween clips. Shows that are mainly conversational
based, e.g., The Big Bang Theory, were segmented
into 60 seconds clips, while shows that are less
cerebral, e.g. Castle, were segmented into 90 sec-
onds clips. In the end, 21,793 clips were prepared
for QA collection, accompanied with subtitles and
aligned with transcripts to add character names. A

sample clip is shown in Fig. 1.
Amazon Mechanical Turk was used for VQA

collection on video clips, where workers were
presented with both videos and aligned named
subtitles, to encourage multimodal questions re-
quiring both vision and language understand-
ing to answer. Workers were asked to cre-
ate questions using a compositional-question
format: [What/How/Where/Why/...]
[when/before/after] . The second part of
each question serves to localize the relevant video
moment within a clip, while the first part poses a
question about that moment. This compositional
format also serves to encourage questions that re-
quire both visual and language understanding to
answer, since people often naturally use visual sig-
nals to ground questions in time, e.g. What was
House saying before he leaned over the bed? Dur-
ing data collection, we only used prompt words
(when/before/after) to encourage workers to pro-
pose the desired, complex compositional ques-
tions. There were no additional template con-
straints. Therefore, most of the language in the
questions is relatively free-form and complex.

Ultimately, workers pose 7 different questions
for each video clip. For each question, we asked
workers to annotate the exact video portion re-
quired to answer the question by marking the
START and END timestamps as in Krishna et al.
(2017). In addition, they provide 1 correct and
4 wrong answers for each question. Workers get
paid $1.3 for a single video clip annotation. The
whole collection process took around 3 months.

To ensure the quality of the questions and an-
swers, we set up an online checker in our collec-
tion interface to verify the question format, allow-
ing only questions that reflect our two-step for-
mat to be submitted. The collection was done in
batches of 500 videos. For each harvested batch,
we sampled 3 pairs of submitted QAs from each
worker and checked the semantic correctness of
the questions, answers, and timestamps.

3.2 Dataset Analysis

Multiple Choice QAs: Our QAs are multiple
choice questions with 5 candidate answers for
each question, for which only one is correct. Ta-
ble 1 provides statistics of the QAs based on the
first question word. On average, our questions
contain 13.5 words, which is fairly long compared
to other datasets. In general, correct answers tend
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QType #QA Q. Len. CA. Len. WA. Len.
what 84768 13.3 4.9 4.3
who 17654 13.4 3.1 3.0

where 17777 12.5 5.2 4.8
why 15798 14.5 9.0 7.7
how 13644 14.4 5.7 5.1

others 2904 15.2 4.9 4.7
total 152545 13.5 5.2 4.6

Table 1: Statistics for different question types based on
first question word. Q = question, CA = correct answer,
WA = wrong answer. Length is defined as the number
of words in the sentence.

Location (where)

Reasoning (why)

Person (who)

Action (what)
Object (what)

Abstract (what)

Others
Method (how)

10%

8.5%

6.5%
6%

21.5%

17.5% 15%

15%

Figure 2: Distribution of question types based on an-
swer types.

to be slightly longer than wrong answers. Fig. 2
shows the distribution of different questions types.
Note “what” (Abstract, Object, Action), “who”
(Person), “why” (Reasoning) and “where” (Loca-
tion) questions form a large part of our data.

The negative answers in TVQA are written by
human annotators. They are instructed to write
false but relevant answers to make the negatives
challenging. Alternative methods include sam-
pling negative answers from other questions’ cor-
rect answers, either based on semantic similar-
ity (Das et al., 2017; Jang et al., 2017) or ran-
domly (Antol et al., 2015; Das et al., 2017). The
former is prone to introducing paraphrases of the
ground-truth answer (Zhu et al., 2016). The latter
avoids the problem of paraphrasing, but generally
produces irrelevant negative choices. We show in
Table 8 that our human written negatives are more
challenging than randomly sampled negatives.
Moment Localization: The second part of our
question is used to localize the most relevant video
portion to answer the question. The prompt of
“when”, “after”, “before” account for 60.03%,
30.19% and 9.78% respectively of our dataset.
TVQA provides the annotated START and END
timestamps for each QA. We show the annotated

Figure 3: Distribution of localized segment lengths.
The majority of our questions have timestamp localized
segment with length less than 15 seconds.

Show Genre #Sea. #Epi. #Clip #QA
BBT sitcom 10 220 4,198 29,384
Friends sitcom 10 226 5,337 37.357
HIMYM sitcom 5 72 1,512 10,584
Grey medical 3 58 1,427 9,989
House medical 8 176 4,621 32,345
Castle crime 8 173 4,698 32,886
Total — 44 925 21,793 152,545

Table 2: Data Statistics for each TV show. BBT = The
Big Bang Theory, HIMYM = How I Met You Mother,
Grey = Grey’s Anatomy, House = House M.D., Epi =
Episode, Sea. = Season

Show Top unique nouns

BBT game, mom, laptop, water, store, dinner, book,
stair, computer, food, wine, glass, couch, date

Friends shop, kiss, hair, sofa, jacket, counter, coffee,
everyone, coat, chair, kitchen, baby, apartment

HIMYM bar, beer, drink, job, dad, sex, restaurant, wedding,
party, booth, dog, story, bottle, club, painting

Grey nurse, side, father, hallway, scrub, chart, wife,
window, life, family, chief, locker, head, surgery

House cane, team, blood, test, brain, pill, office, pain,
symptom, diagnosis, hospital, coffee, cancer, drug

Castle gun, victim, picture, case, photo, body, murder,
suspect, scene, crime, money, interrogation

Table 3: Top unique nouns in questions and correct an-
swers.

segment lengths in Fig. 3. We found most of the
questions rely on relatively short moments (less
than 15 secs) within a longer clip (60-90 secs).
Differences among our 6 TV Shows: The videos
used in our dataset are from 6 different TV shows.
Table 2 provides statistics for each show. A good
way to demonstrate the difference among ques-
tions from TV shows is to show their top unique
nouns. In Table 3, we present such an anal-
ysis. The top unique nouns in sitcoms (BBT,
Friends, HIMYM) are mostly daily objects, scenes
and actions, while medical dramas (Grey, House)
questions contain more medical terms, and crime
shows (Castle) feature detective terms. Although
similar, there are also notable differences among
shows in the same genre. For example, BBT con-
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Dataset V. Src. QType #Clips / #QAs Avg. Total Q. Src. Timestamp
Len.(s) Len.(h) text video annotation

MovieFIB (Maharaj et al., 2017a) Movie OE 118.5k / 349k 4.1 135 X - -
Movie-QA (Tapaswi et al., 2016) Movie MC 6.8k / 6.5k 202.7 381 X - X

TGIF-QA (Jang et al., 2017) Tumblr OE&MC 71.7k / 165.2k 3.1 61.8 X X -
Pororo-QA (Kim et al., 2017) Cartoon MC 16.1k / 8.9k 1.4 6.3 X X -
TVQA (our) TV show MC 21.8k / 152.5k 76.2 461.2 X X X

Table 5: Comparison of TVQA to various existing video QA datasets. OE = open-ended, MC = multiple-choices.
Q. Src. = Question Sources, it indicates where the questions are raised from. TVQA dataset is unique since its
questions are based on both text and video, with additional timestamp annotation for each of them. It is also
significantly larger than previous datasets in terms of total length of videos.

Character Top unique nouns

Sheldon Arthur, train, Kripke, flag, flash, Wil,
logo, Barry, superhero, Spock, trek, sword

Leonard Leslie, helium, robe, Dr, team, Kurt
university, key, chess, Stephen

Howard NASA, trick, van, language, summer,
letter, Mike, station, peanut, Missy

Raj Lucy, Claire, parent, music, nothing,
Isabella, bowl, sign, back, India, number

Penny basket, order, mail, mouth, cheesecake, factory
shower, pizza, cream, Alicia, waitress, ice

Amy Dave, meemaw, tablet, birthday, monkey, coat,
brain, ticket, laboratory, theory, lip, candle

Bernadette song, sweater, wedding, child, husband,
everyone, necklace, stripper, weekend, airport

Table 4: Top unique nouns for characters in BBT.

VQA source Human accuracy on test.
Question 31.84
Video and Question 61.73
Subtitle and Question 72.88
Video, Subtitle, and Question 89.41

Table 5: Human accuracy on test set based on different
sources. As expected, humans get the best performance
when given both videos and subtitles.

tains “game” and “laptop” while HIMYM contains
“bar” and “beer”, indicating the different major
activities and topics in each show. Additionally,
questions about different characters also mention
different words, as shown in Table 4.
Comparison with Other Datasets: Table 5
presents a comparison of our dataset to some
recently proposed video question answering
datasets. In terms of total length of videos, TVQA
is the largest, with a total of 461.2 hours of videos.
MovieQA (Tapaswi et al., 2016) is most similar
to our dataset, with both multiple choice questions
and timestamp annotation. However, their ques-
tions and answers are constructed by people pos-
ing questions from a provided plot summary, then
later aligned to the video clips, which makes most
of their questions text oriented.
Human Evaluation on Usefulness of Video and
Subtitle in Dataset: To gain a better understand-

ing of the roles of videos and subtitles in the our
dataset, we perform a human study, asking differ-
ent groups of workers to complete the QA task
in settings while observing different sources (sub-
sets) of information:

• Question only.
• Video and Question.
• Subtitle and Question.
• Video, Subtitle, and Question.

We made sure the workers that have written the
questions did not participate in this study and that
workers see only one of the above settings for
answering each question. Human accuracy on
our test set under these 4 settings are reported in
Table 5. As expected, compared to human ac-
curacy based only on question-answer pairs (Q),
adding videos (V+Q), or subtitles (S+Q) signifi-
cantly improves human performance. Adding both
videos and subtitles (V+S+Q) brings the accuracy
to 89.41%. This indicates that in order to answer
the questions correctly, both visual and textual un-
derstanding are essential. We also observe that
workers obtain 31.84% accuracy given question-
answer pairs only, which is higher than random
guessing (20%). We ascribe this to people’s prior
knowledge about the shows. Note, timestamp an-
notations are not provided in these experiments.

4 Methods

We introduce a multi-stream end-to-end trainable
neural network for Multi-Modal Video Question
Answering. Fig. 4 gives an overview of our model.
Formally, we define the inputs to the model as: a
60-90 second video clip V , a subtitle S, a question
q, and five candidate answers {ai}4

i=0.

4.1 Video Features
Frames are extracted at 3 fps. We run Faster R-
CNN (Ren et al., 2015b) trained on the Visual
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Question

+ Predicted
Answer ScoreSo

ftm
ax

LSTM

LSTM

Context
Matching

Context
Matching

LSTMFusion MaxPoolingRCNN

LSTM

a0 He tore up the folder 
…
a4 He pulled out a cell phone

FC

What did Sheldon do after 
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…
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will hear this.
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…
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Figure 4: Illustration of our multi-stream model for Multi-Modal Video QA. Our full model takes different con-
textual sources (regional visual features, visual concept features, and subtitles) along with question-answer pair as
inputs to each stream. For brevity, we only show regional visual features (upper) and subtitle (bottom) streams.

brown door, gold sign, red sign, woman, white shorts, 
green sweater, man, blue shirt, white basket, woman, 

gray pants, gray door, standing man, gray shirt, black pants

Figure 5: Faster R-CNN detection example. The de-
tected object labels and attributes can be viewed as a
description to the frame, which is potentially helpful to
answer a visual question.

Genome (Krishna et al., 2017) to detect object and
attribute regions in each frame. Both regional fea-
tures and predicted detection labels can be used as
model inputs. We also use ResNet101 (He et al.,
2016) trained on ImageNet (Deng et al., 2009) to
extract whole image features.
Regional Visual Features: On average, our
videos contain 229 frames, with 16 detections
per frame. It is not trivial to model such long
sequences. For simplicity, we follow (Anderson
et al., 2018; Karpathy and Fei-Fei, 2015) select-
ing the top-K regions1 from each detected label
across all frames. Their regional features are L2-
normalized and stacked together to form our vi-
sual representation V reg 2 R

nreg⇥2048. Here nreg

is the number of selected regions.
Visual Concept Features: Recent work (Yin and
Ordonez, 2017) found that using detected object

1Based on cross-validation, we find K=6 to perform best.

labels as input to an image captioning system gave
comparable performance to using CNN features
directly. Inspired by this work, we also experiment
with using detected labels as visual inputs. As
shown in Fig. 5, we are able to detect rich visual
concepts, including both objects and attributes,
e.g. ”white basket”, which could be used to an-
swer “What is Sheldon holding in his hand when
everyone is at the door”. We first gather detected
concepts over all the frames to represent concept
presence. After removing duplicate concepts, we
use GloVe (Pennington et al., 2014) to embed the
words. The resulting video representation is de-
noted as V cpt 2 R

ncpt⇥300, where ncpt is the num-
ber of unique concepts.
ImageNet Features: We extract the pooled
2048D feature of the last block of ResNet101.
Features from the same video clip are L2 normal-
ized and stacked, denoted as V img 2 R

nimg⇥2048,
where nimg is the number of frames extracted
from the video clip.

4.2 LSTM Encoders for Video and Text

We use a bi-directional LSTM (BiLSTM) to en-
code both textual and visual sequences. A subtitle
S, which contains a set of sentences, is flattened
into a long sequence of words and GloVe (Pen-
nington et al., 2014) is used to embed the words.
We stack the hidden states of the BiLSTM from
both directions at each timestep to obtain the sub-
title representation HS 2 R

nS⇥2d, where nS is
the number of subtitle words, d is the hidden size
of the BiLSTM (set to 150 in our experiments).
Similarly, we encode question Hq 2 R

nq⇥2d, can-
didate answers Hai 2 R

nai⇥2d, and visual con-
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cepts Hcpt 2 R
ncpt⇥2d. nq and nai are the num-

ber of words in question and answer ai, respec-
tively. Regional features V reg and ImageNet fea-
tures V img are first projected into word vector
space using a non-linear layer with tanh activation,
then encoded using the same BiLSTM to obtain
the regional representations Hreg 2 R

nreg⇥2d and
H img 2 R

nimg⇥2d, respectively.

4.3 Joint Modeling of Context and Query

We use a context matching module and BiLSTM
to jointly model the contextual inputs (subtitle,
video) and query (question-answer pair). The con-
text matching module is adopted from the context-
query attention layer from previous works (Seo
et al., 2017; Yu et al., 2018a). It takes context vec-
tors and query vectors as inputs and produces a set
of context-aware query vectors based on the simi-
larity between each context-query pair.

Taking the regional visual feature stream as
an example (Fig. 4 upper stream), where Hreg

is used as context input2. The question em-
bedding, Hq, and answer embedding, Hai , are
used as queries. After feeding context-query
pairs into the context matching module, we obtain
a video-aware-question representation, Greg,q 2
R

nreg⇥2d, and video-aware-answer representation,
Greg,ai 2 R

nreg⇥2d, which are then fused with
video context:

M reg,ai = [Hreg; Greg,q; Greg,ai ;

Hreg � Greg,q; Hreg � Greg,ai ],

where � is element-wise product. The fused fea-
ture, M reg,ai 2 R

nreg⇥10d, is fed into another
BiLSTM. Its hidden states, U reg,ai 2 R

nreg⇥10d,
are max-pooled temporally to get the final vec-
tor, ureg,ai 2 R

10d, for answer ai. We use a lin-
ear layer with softmax to convert {ureg,ai}4

i=0 into
answer probabilities. Similarly, we can compute
the answer probabilities given subtitle as context
(Fig. 4 bottom stream). When multiple streams
are used, we simply sum up the scores from each
stream as the final score (Wang et al., 2016a).

5 Experiments

For evaluation, we introduce several baselines and
compare them to our proposed model.

2For visual concept features and ImageNet features, we
simply replace Hreg with Hcpt or Himg as the context.

In all experiments, setup is as follows. We split
the TVQA dataset into 80% training, 10% valida-
tion, and 10% testing splits such that videos and
their corresponding QA pairs appear in only one
split. This results in 122,039 QA pairs for train-
ing, 15,253 QA pairs for validation, and 15,253
QA pairs for testing. We evaluate each model us-
ing multiple-choice question answering accuracy.

5.1 Baselines

Longest Answer: Table 1 indicates that the aver-
age length of the correct answers is longer than the
wrong ones; thus, our first baseline simply selects
the longest answer for each question.
Nearest Neighbor Search: In this baseline, we
use Nearest Neighbor Search (NNS) to compute
the closest answer to our question or subtitle.
We embed sentences into vectors using TFIDF,
SkipThought (Kiros et al., 2015), or averaged
GloVe (Pennington et al., 2014) word vectors, then
compute the cosine similarity for each question-
answer pair or subtitle-answer pair. For TFIDF,
we use bag-of-words to represent the sentences,
assigning a TFIDF value for each word.
Retrieval: Due to the size of TVQA, there may
exist similar questions and answers in the dataset.
Thus, we also implement a baseline two-step re-
trieval approach: given a question and a set of can-
didate answers, we first retrieve the most relevant
question in the training set, then pick the candi-
date answer that is closest to the retrieved ques-
tion’s correct answer. Similar approaches have
also been used in dialogue systems (Jafarpour and
Burges, 2010; Leuski and Traum, 2011), picking
the appropriate responses to an utterance from a
predefined human conversational corpus. Similar
to NNS, we use TFIDF, SkipThought, and GloVe
vectors with cosine similarity.

5.2 Results

Table 6 shows results from baseline methods and
our proposed neural model. Our main results
are obtained by using full-length video clips and
subtitles, without using timestamps (w/o ts). We
also run the same experiments using the localized
video and subtitle segment specified by the ground
truth timestamps (w/ ts). If not indicated explicitly,
the numbers described below are from the experi-
ments on full-length video clips and subtitles.
Baseline Comparison: Row 1 shows results of
the longest answer baseline, achieving 30.41%
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Video Test Accuracy
Method Feature w/o ts w/ ts

0 Random - 20.00 20.00
1 Longest Answer - 30.41 30.41
2 Retrieval-Glove - 22.48 22.48
3 Retrieval-SkipThought - 24.24 24.24
4 Retrieval-TFIDF - 20.88 20.88
5 NNS-Glove Q - 22.40 22.40
6 NNS-SkipThought Q - 23.79 23.79
7 NNS-TFIDF Q - 20.33 20.33
8 NNS-Glove S - 23.73 29.66
9 NNS-SkipThought S - 26.81 37.87
10 NNS-TFIDF S - 49.94 51.23
11 Our Q - 43.34 43.34
12 Our V+Q img 42.67 43.69
13 Our V+Q reg 42.75 44.85
14 Our V+Q cpt 43.38 45.41
15 Our S+Q - 63.14 66.23
16 Our S+V+Q img 63.57 66.97
17 Our S+V+Q reg 63.19 67.82
18 Our S+V+Q cpt 65.46 68.60

Table 6: Accuracy for different methods on TVQA test
set. Q = Question, S = Subtitle, V = Video, img =
ImageNet features, reg = regional visual features, cpt
= visual concept features, ts = timestamp annotation.
Human performance without timestamp annotation is
reported in Table 5.

(compared to random chance at 20%). As ex-
pected, the retrieval-based methods (row 2-4)
and the answer-question similarity based methods
(row 5-7) perform rather poorly, since no con-
texts (video or subtitle) are considered. When
using subtitle-answer similarity to choose correct
answers, Glove, SkipThought, and TFIDF based
approaches (row 8-10) all achieve significant im-
provement over question-answer similarity. No-
tably, TFIDF (row 10) answers 49.94% of the
questions correctly. Since our questions are raised
by people watching the videos, it is natural for
them to ask questions about specific and unique
objects/locations/etc., mentioned in the subtitle.
Thus, it is not surprising that TFIDF based similar-
ity between answer and subtitle performs so well.
Variants of Our Model: Rows 11-18 show re-
sults of our model with different contextual inputs
and features. The model that only uses question-
answer pairs (row 11) achieves 43.34% accuracy.
Compared to the subtitle model (row 15), adding
video as additional sources (row 16-18) improves
performance. Interestingly, adding video to the
question only model (row 11) do not work as well
(row 12-14). Our hypothesis is that the video fea-
ture streams may be struggling to learn models
for answering textual questions, which degrades

Q S+Q V+Q S+V+Q
img reg cpt img reg cpt

what (55.62%) 44.11 62.29 44.96 45.93 47.44 63.88 65.28 66.05
who (11.55%) 36.55 68.33 35.75 34.85 34.68 67.76 67.20 67.99

where (11.67%) 42.58 56.97 47.13 48.43 48.20 61.97 63.71 61.46
how (8.98%) 41.17 71.97 41.17 42.41 40.95 71.17 70.80 71.53

why (10.38%) 45.23 78.65 46.05 45.36 45.48 78.33 77.13 78.77
other (1.80%) 36.50 74.45 37.23 36.50 33.58 73.72 72.63 74.09

all (100%) 42.77 65.15 43.78 44.40 45.03 66.44 67.17 67.70

Table 7: Accuracy of each question type using differ-
ent models (w/ ts) on TVQA Validation set. Q = Ques-
tion, S = Subtitle, V = Video, img = ImageNet features,
reg = regional visual features, cpt = visual concept fea-
tures. The percentage of each question type is shown
in brackets.

their ability to answer visual questions. Overall,
the best performance is achieved by using all the
contextual sources, including subtitles and videos
(using concept features, row 18).
Comparison with Human Performance: Hu-
man performance without timestamp annotation
is shown in Table 5. When using only questions
(Table 6 row 11), our model outperforms humans
(43.34% vs 31.84%) as it has access to all statistics
of the questions and answers. When using videos
or subtitles or both, humans perform significantly
better than the models.
Models with Timestamp Annotation: Columns
under w/o ts and w/ ts show a comparison between
the same model using full-length videos/subtitles
and using timestamp localized videos/subtitles.
With timestamp annotation, the models perform
consistently better than their counterpart without
this information, indicating that localization is
helpful for question answering.
Accuracy for Different Question Types: To gain
further insight, we examined the accuracy of our
models on different question types on the vali-
dation set (results in Table 7), all models using
timestamp annotation. Compared to S+Q model,
S+V+Q models get the most improvements on
“what” and “where” questions, indicating these
questions require additional visual information.
On the other hand, adding video features did not
improve S+Q performance on questions relying
more on textual reasoning, e.g., “how” questions.
Human-Written Negatives vs. Randomly-
Sampled Negatives For comparison, we create a
new answer set by replacing the original human
written negative answers with randomly sampled
negative answers. To produce relevant negative
answers, for each question, negatives are sampled
(from the other QA pairs) within the same show.
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00:00.688 --> 00:03.989 
(Raj:)seemed like a chance to show off. 
00:06.360 --> 00:08.243 
There he is! 
00:08.245 --> 00:10.412 
(Raj:)There's my happy Hebraic homeboy.

What Raj and Howard are drinking when sat at the table ?

a0 Milk 
a1 Beer √
a2 Juice
a3 Vodka
a4 Carrot juice .

Where is House when Cuddy comes to talk to him about the irradiated 
badge ?
a0 Wilson 's room
a1 The cafeteria 
a2 His office 
a3 The radiology department √
a4 Cuddy 's office

00:36.402 --> 00:38.370
(Cuddy:)Problems in radiology. 
00:39.372 --> 00:42.739
(Cuddy:)A radiation dosimeter badge turned positive. 
00:42.842 --> 00:48.075
(Cuddy:)I could have a CT scanner …

00:11.019 --> 00:13.510 
(Rachel:)I'm not surprised. Have you seen them together?
00:13.722 --> 00:17.158 
(Rachel:)- They're really cute. 
00:18.293 --> 00:19.658 
(Joey:) Cute ? This is Janice ! You remember Janice?

How was Phoebe 's hair done when Joey walked in ?

a0 Phoebe 's hair was in a bun 
a1 Phoebe 's hair was down
a2 Phoebe ‘s hair was a half up do style √
a3 Phoebe 's hair was in a braid 
a4 Phoebe 's hair was up in a hat

01:04.288 --> 01:07.382 
(Professor Jason Byford:)People often call with research questions, so I 
try to be helpful. 
01:07.458 --> 01:09.178 
(Professor Jason Byford:)She wanted to know what these symbols 
meant.

Why does the professor say he met with Susannah when Castle and Beckett
are in his office ?
a0 She wanted to work on some research 
a1 She wanted to take his class
a2 She discovered a new symbol 
a3 She wanted to know the meaning of symbols √
a4 She needed him to translate some languages

(a) (b)

(c) (d)

Figure 6: Example predictions from our best model. Top row shows correct predictions, bottom row shows failure
cases. Ground truth answers are in green, and the model predictions are indicated by X. Best viewed in color.

Video Val Accuracy
Method N.A. Src. Feature w/o ts w/ ts
V+Q Rand cpt 84.64 85.01
S+Q Rand - 90.94 90.72
S+V+Q Rand cpt 91.55 92.00
V+Q Human cpt 43.03 45.03
S+Q Human - 62.99 65.15
S+V+Q Human cpt 64.70 67.70

Table 8: Accuracy on TVQA validation set with nega-
tive answers collected using different strategies. Nega-
tive Answer Source (N.A. Src.) indicates the collection
method of the negative answers. Q = Question, S =
Subtitle, V = Video, cpt = visual concept features, ts
= timestamp annotation. All the experiments are con-
ducted using the proposed multi-stream neural model.

Results are shown in Table 8. Performance on ran-
domly sampled negatives is much higher than that
of human written negatives, indicating that human
written negatives are more challenging.
Qualitative Analysis: Fig. 6 shows example pre-
dictions from our S+V+Q model (row 18) using
full-length video and subtitle. Fig. 6a and Fig. 6b
demonstrate its ability to solve both grounded
visual questions and textual reasoning question.
Bottom row shows two incorrect predictions. We
found that wrong inferences are mainly due to
incorrect language inferences and the model’s
lack of common sense knowledge. For example,
Fig. 6c, the characters are talking about radiology,
the model is distracted to believe they are in the
radiology department, while Fig. 6d shows a case
of questions that need common sense to answer,
rather than simply textual or visual cues.

6 Conclusion

We presented the TVQA dataset, a large-scale,
localized, compositional video question answer-
ing dataset. We also proposed two QA tasks
(with/without timestamps) and provided baseline
experiments as a benchmark for future compari-
son. Our experiments show both visual and textual
understanding are necessary for TVQA.

There is still a significant gap between the pro-
posed baselines and human performance on the
QA accuracy. We hope this novel multimodal
dataset and the baselines will encourage the com-
munity to develop stronger models in future work.
To narrow the gap, one possible direction is to en-
hance the interactions between videos and subti-
tles to improve multimodal reasoning ability. An-
other direction is to exploit human-object relations
in the video and subtitle, as we observe that a large
number of questions involve such relations. Addi-
tionally, temporal reasoning is crucial for answer-
ing the TVQA questions. Thus, future work also
includes integrating better temporal cues.
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Abstract

Localizing moments in a longer video via nat-
ural language queries is a new, challenging
task at the intersection of language and video
understanding. Though moment localization
with natural language is similar to other lan-
guage and vision tasks like natural language
object retrieval in images, moment localiza-
tion offers an interesting opportunity to model
temporal dependencies and reasoning in text.
We propose a new model that explicitly rea-
sons about different temporal segments in a
video, and shows that temporal context is im-
portant for localizing phrases which include
temporal language. To benchmark whether
our model, and other recent video localization
models, can effectively reason about tempo-
ral language, we collect the novel TEMPO-
ral reasoning in video and language (TEMPO)
dataset. Our dataset consists of two parts:
a dataset with real videos and template sen-
tences (TEMPO - Template Language) which
allows for controlled studies on temporal lan-
guage, and a human language dataset which
consists of temporal sentences annotated by
humans (TEMPO - Human Language).

1 Introduction

Consider the video and natural language query
in Figure 1 where we seek to localize the de-
sired moment in the video specified by the query.
Queries like “the girl bends down” require un-
derstanding objects and actions, but do not re-
quire reasoning about different video moments.
In contrast, queries like “the little girl talks af-
ter bending down” require reasoning about the
temporal relationship between different actions
(“talk” and “bend down”). Localizing natural lan-
guage queries in video is an important challenge,
recently studied in Hendricks et al. (2017) and
Gao et al. (2017) with applications in areas such
as video search and retrieval. We argue that to

⇤Work done at Adobe during LAH’s summer internship.

Query: The little girl talks after bending down.

Talk Bend Down Talk

Figure 1: We consider localizing video moments which
include temporal language. To properly localize “The
little girl talks after bending down” localization models
must understand how the action “talks” relates to the
action “bend down.”

properly localize queries with temporal language,
models must understand and reason about intra-
video context.

Reasoning about intra-video context is difficult
as we do not know a priori which moments should
be involved in the contextual reasoning and dif-
ferent queries may require reasoning about dif-
ferent contextual moments. For example, in “the
little girl talks after bending down”, the relevant
contextual moment “bending down” occurs just
before the target moment “the little girl talks”.
This is in contrast to the query “the little girl
talks before bending down” where the relevant
contextual moment occurs just after. A limita-
tion of current moment-localization models (Hen-
dricks et al., 2017; Gao et al., 2017) is they con-
sider query-independent video context when lo-
calizing moments. For example, when determin-
ing whether a proposed temporal region matches
a natural language query, Gao et al. (2017) con-
siders the proposed temporal region, as well as
video regions just before and after the proposed
region. Similarly, Hendricks et al. (2017) consid-
ers video context in the form of a global-context
feature which represents the entire video. While
both may implicitly include the appropriate con-
textual moment in their context feature, they do
not explicitly determine the relevant context for
the query.

To address this difficulty, we propose Moment
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Localization with Latent Context (MLLC) which
models video context as a latent variable. The la-
tent variable enables the model to attend to dif-
ferent video contexts conditioned on the specific
query/video pair, offering flexibility in the location
and length of the contextual moment and overcom-
ing the limitation of query-independent contextual
reasoning. We validate the importance of latent
context by showing that our model performs well
both on simple queries without temporal words
and more complex queries requiring temporal rea-
soning. Moreover, our formulation is generic and
unifies approaches in Hendricks et al. (2017) and
Gao et al. (2017), allowing us to ablate model
component choices, as well as which kind of video
context is best for localizing moments described
with temporal language.

Though datasets used for moment localization
in video (Hendricks et al., 2017; Regneri et al.,
2013; Sigurdsson et al., 2016) include temporal
language, as we will show, there is not enough
temporal language to effectively train and evalu-
ate models. We seek to extensively study this as-
pect, particularly with respect to temporal prepo-
sitions (Pratt-Hartmann, 2004). Thus, we col-
lect the TEMPOral reasoning in video and lan-
guage (TEMPO) dataset which builds off the re-
cently collected DiDeMo dataset (Hendricks et al.,
2017). The dataset consists of two parts: a
dataset with real videos and sentences created
with a template model (TEMPO - Template Lan-
guage (TL)), and a dataset with real videos and
newly collected user-provided temporal annota-
tions (TEMPO - Human Language (HL)). Consid-
ering template sentences allows us to create a large
dataset of sentences quickly for study of temporal
language in a controlled setting. The human lan-
guage data then allows us to see these trends trans-
fer to more complex human-language queries. For
data collection, we focus on the most common
temporal referring words naturally occurring in
language-and-video datasets.

Our contributions are twofold. (i) We are
the first to study models for temporal language
in video moment retrieval with natural language
queries. To this end, we introduce TEMPO which
includes examples of how humans use tempo-
ral language to refer to video moments. (ii) We
propose MLLC for moment localization which
treats video context as a latent variable and uni-
fies prior approaches for moment localization. Our

model outperforms prior work on TEMPO-TL
and TEMPO-HL as well as the original DiDeMo
dataset.

2 Related Work

Localizing Video Segments with Natural Lan-
guage. Prior work has considered aligning natu-
ral language with video, e.g., instructional videos
with transcribed text (Kiddon et al., 2015; Huang
et al., 2017; Malmaud et al., 2014, 2015). Our
work is most related to recent work in video mo-
ment retrieval with natural language (Gao et al.,
2017; Hendricks et al., 2017). Both works take a
natural language query and candidate video seg-
ment as input, and output a score for how well
the natural language phrase aligns with the video
segment. Gao et al. (2017) includes an additional
loss to regress to start and end-points, whereas
Hendricks et al. (2017) simplifies the problem
by choosing from a discrete set of video seg-
ments. Importantly, to represent a proposed video
segment, both models consider context features
around a moment: Hendricks et al. (2017) uses
global context by averaging features over an en-
tire input video, and Gao et al. (2017) incorpo-
rates features adjacent to the proposed video seg-
ment. We argue that to do proper temporal rea-
soning, pre-determined, query independent con-
text features may not cover all possible temporal
relations. Thus, we propose to model the context
as a latent variable, allowing our method to learn
which context moments to consider as a function
of the video and importantly, the query.

Both Gao et al. (2017) and Hendricks et al.
(2017) collect data to test their models; Gao
et al. (2017) considers the Charades (Sigurdsson
et al., 2016) and TACoS (Regneri et al., 2013)
datasets. While TACoS includes localized sen-
tences, Charades only has sentences and activ-
ity detection localizations, so a semi-automatic
method is used to align action detection annota-
tions to visual descriptions in Charades. Hen-
dricks et al. (2017) collected the Distinct Describ-
able Moment (DiDeMo) dataset, which consists
of Flickr (Thomee et al., 2016) videos with lo-
calized referring expressions. Both Charades and
DiDeMo contain a large set of diverse videos
(approximately 10,000 videos each). We chose
to base TEMPO on DiDeMo because it contains
more clip/sentence pairs (40,000 vs. 13,000), and
is focused on general videos which we believe is
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an interesting and useful scenario, rather than be-
ing restricted to indoor activities.

Temporal Language. Prior work on temporal lan-
guage processing has considered building explicit
logical frameworks to process temporal prepo-
sitions like “during” or “until” (Pratt-Hartmann
(2004), Konur (2008)). We do not derive a partic-
ular temporal logic, but rather learn to understand
temporal language in a data driven fashion. Fur-
thermore, we specifically consider how to under-
stand temporal words commonly used when refer-
ring to video content. Other work has modeled dy-
namics for words which represent a change of state
(e.g., “pick up”) ( Siskind (2001), Yu et al. (2015))
in limited environments. Though we limit the se-
lection of temporal words in our study, the natu-
ral language in our data is open-world describing
diverse events and how they relate to each other
in video. Interpretation of temporal expressions
in text (“The game happened on the 19th”) is a
widely studied task (Angeli et al. (2012), Zhong
et al. (2017)). Our work is distinctly different from
this line of work as we specifically study temporal
prepositions and how they refer to video.

Modeling Visual Relationships. A variety of pa-
pers have considered modeling spatial relation-
ships in natural images (Dai et al., 2017; Hu et al.,
2017; Peyre et al., 2017; Plummer et al., 2017).
Our approach is analogous to this in the temporal
domain; we hope to localize moments in videos.
CLEVR, a synthetic visual question answering
(VQA) dataset (Johnson et al., 2016), was cre-
ated to allow researchers to systematically study
the ability of models to perform complex reason-
ing. Our dataset is partially motivated by the suc-
cess of CLEVR to enable researchers to study rea-
soning abilities of different models in a controlled
setting. In contrast to CLEVR we consider a more
diverse visual input in the form of real videos.

In the video domain, the TGIF-QA (Jang et al.,
2017) and Mario-QA (Mun et al., 2016) datasets
provide opportunities to study temporal reason-
ing for the task of VQA. The TGIF-QA dataset
considers three types of temporal questions: be-
fore/after questions, repetition count, and deter-
mining a repeating action. Each question is ac-
companied by multiple choice answers. Videos
we consider are much longer (25-30s as opposed
to an average of 3.1s) which makes the use of
temporal reasoning much more important. The
MarioQA dataset is an additional VQA dataset de-

Score
Visual Feature 
Embedding (fV ) Similarity (fs )

Input Query:  The girl talks before she bends down.

Language Feature 
Embedding (fL )

Proposed 
Context

Input Video

Base Moment Proposed 
Context

Proposed 
Context

Figure 2: Our model, Moment Localization with Latent
Context (MLLC), takes a video and a text query as in-
put and outputs the moment in the video corresponding
to the query. MLLC considers many different context
moments (blue) for a specific base moment (green).

signed to gauge temporal reasoning of VQA sys-
tems. Both TGIF-QA and MarioQA datasets in-
clude template-based natural language queries. In
this paper, we consider synthetic queries similar to
TGIF-QA and MarioQA, but also include human
language queries. In addition, unlike the MarioQA
dataset, that consists of synthetic data constructed
from gameplay videos, our dataset consists of real
visual inputs, and includes temporal grounding of
natural language phrases. Finally, neither TGIF-
QA nor MarioQA include temporal localization.

3 Moment Localization with Latent
Context

Given a video v and natural-language query q de-
scribing a moment in the video, our goal is to
output the moment ⌧ =

�
⌧ (s), ⌧ (e)

�
where ⌧ (s)

and ⌧ (e) are temporal start and end points in the
video, respectively. In the following, we formulate
a generic, unified model which encompasses prior
approaches (Hendricks et al., 2017; Gao et al.,
2017). This allows us to explore and evaluate
trade offs for different model components and ex-
tensions which then leads to higher performance.
Unlike prior work, we consider a latent context
variable which enables our model to better reason
about temporal language.

Let the moment ⌧ corresponding to the text
query be the base moment and the set of other
video moments T⌧ be possible context moments
for ⌧ . We define a scoring function between
the video moment and natural-language query by
maximizing over all possible context moments
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⌧ 0 2 T⌧ ,

s� (v, q, ⌧) = max
⌧ 02T⌧

fS
�
fV

�
v, ⌧, ⌧ 0� , fL (q)

�
,

(1)
where fV and fL are functions computing features
over the video and language query, fS is a simi-
larity function, and � are model parameters. This
formulation is generic and trivially encompasses
the MCN and TALL formulations by letting the
set of possible context moments T⌧ be their re-
spective single-context moment. Figure 2 shows
the generic structure of our model.

With this formulation, we seek to answer the
following questions: (i) Which combination of
model components performs best for the moment-
retrieval task? Though our primary goal is localiz-
ing moments with temporal language, we believe a
good base moment retrieval model is important for
localizing moments with temporal language. (ii)
How best to incorporate context for moment re-
trieval with temporal language? We first detail the
different terms and outline different model design
choices, where design choices marked with bold-
italic font is ablated in Section 5. Components
which are used in our final proposed Moment Lo-
calization with Latent Context (MLLC) model and
prior models are summarized in Table 3.

Video feature fV . The video feature fV =
(g (v, ⌧) , g (v, ⌧ 0) , fT (⌧, ⌧ 0)) is a concatenation
of visual features for the base g (v, ⌧) and con-
text g (v, ⌧ 0) moments and endpoint features
fT (⌧, ⌧ 0). To compute visual features g for a
temporal region ⌧ , per-frame features are aver-
aged over the temporal region. Note that if the
context moment consists of more than one con-
tiguous temporal region, then the visual features
are computed over each contiguous temporal re-
gion and then concatenated (c.f., before/after con-
text in TALL, explained below). There are many
choices for visual features. TALL (Gao et al.,
2017) compares average fc7 features (extracted
from (Simonyan and Zisserman, 2014)) to features
extracted with C3D (Tran et al., 2015) and LSTM
features (Donahue et al., 2015). Surprisingly, C3D
features only outperform average fc7 features by
a small margin. We use the visual features used
in the MCN model (Hendricks et al., 2017), which
are similar to the fc7 features from (Gao et al.,
2017), but included motion features as well, com-
puted from optical flow (extracted with (Wang
et al., 2016)). We then pass the extracted visual

features through a MLP. Note that we learn sep-
arate embedding functions for RGB and optical
flow inputs and combine scores from different in-
put modalities using a late-fusion approach (Hen-
dricks et al., 2017).

Endpoint feature fT . Modeling temporal con-
text requires understanding how different tempo-
ral segments relate in time. Hendricks et al.
(2017) suggest including temporal endpoint fea-
tures (TEF) fT =

�
⌧ (s), ⌧ (e)

�
for the base mo-

ment which encode when the moment starts and
ends to better localize sentences which include
words like “first” and “last”. Note that TALL (Gao
et al., 2017) does not incorporate TEFs. In order
to understand temporal relationships, it is impor-
tant that models also include features which indi-
cate when a context moment occurs. In addition
to providing TEFs for base moments, we also ex-
periment with concatenating TEFs for context mo-
ments (conTEF) fT =

�
⌧ (s), ⌧ (e), ⌧ 0(s), ⌧ 0(e)�.

Language feature fL. Text queries are trans-
formed into a fixed-length vector with an
LSTM (Hochreiter and Schmidhuber, 1997). Be-
fore inputting words into the LSTM, they are em-
bedded in the Glove (Pennington et al., 2014) em-
bedding space. The final layer of the LSTM is
projected into the shared video-language embed-
ding space with a fully connected layer. Gao
et al. (2017) considers LSTM language features
and Skip-thought encoders. Our main goal is to
study how context impacts moment localization
with temporal language, so we use the LSTM fea-
tures used on the original DiDeMo dataset.

Similarity fS . Given video fV and language
fL features, we consider three ways to encode
similarity between the features. Like Hendricks
et al. (2017), we consider a distance-based sim-
ilarity fS =

�
|fV � fL|2

�
. Second, we con-

sider a fused-feature similarity (mult) where the
Hadamard product fV � fL between the two fea-
tures are passed to a MLP. We also explore unit
normalizing features before the Hadamard prod-
uct (normalized mult). Finally, we consider the
similarity (TALL similarity) which consists of
the concatenation (fV , fL, fV � fL, fV + fL) and
then passed to a MLP.

Context moments T⌧ . We consider three sets of
context moments. First, we consider the entire
video as the context moment (global) following
Hendricks et al. (2017). Second, we consider us-
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ing the moments just before and after the base mo-
ment (before/after). Finally, we consider using the
set of all possible moments (latent context) which
offers greatest flexibility in contextual reasoning.
Training loss. We consider two training losses.
The first loss is the MCN ranking loss which en-
courages positive moment/query pairs to have a
smaller distance in a shared embedding space than
negative moment/query pairs. To sample nega-
tive moment/sentence pairs, they consider nega-
tive moments within a specific video (called intra-
video negative moments) and negative moments in
different videos (called inter-video negative mo-
ments). This sampling strategy leads to a small
improvement in performance (approximately one
point on all metrics) when compared to just us-
ing intra-video negative moments. We also con-
sider the alignment loss used in TALL (TALL loss)
which is the sum of two log-logistic functions over
positive and negative training query/moment pairs
(intra-video negatives are used).
Supervising context moments. For the tempo-
ral sentences in our newly collected dataset (Sec-
tion 4), we have access to the ground-truth con-
text moment during training. Thus, we can con-
trast a weakly supervised setting in which we op-
timize over the unknown latent context moments
during learning and inference to a strongly super-
vised setting.
Implementation details. Candidate base and con-
text moments coincide to the pre-segmented five-
second segments used when annotating DiDeMo.
Moments may consist of any contiguous set of
five-second segments. For a 30-second video par-
titioned into six five-second segments, there are 21
possible moments. All models were implemented
in Caffe (Jia et al., 2014) and optimized with SGD.
Models were trained for ⇠ 90 epochs with an ini-
tial learning rate of 0.05, which decreases every 30
epochs. Code is publicly released⇤.

4 The TEMPO Dataset

We collect the TEMPOral reasoning in video and
language (TEMPO) dataset based off the recently
released DiDeMo dataset. Our dataset consists
of two parts: TEMPO - Template Language (TL)
and TEMPO - Human Language (HL). We create
TEMPO - TL using language templates to aug-
ment the original sentences in DiDeMo with tem-

⇤https://people.eecs.berkeley.edu/
˜lisa_anne/tempo.html

poral words. The template allows us to generate
a large number of sentences with known ground
truth base and context moments. However, tem-
plate language lacks the complexity of human lan-
guage, so we then collect an additional fully user-
constructed dataset, TEMPO - HL, consisting of
sentences that contain specific temporal words.

Temporal Words in Current Datasets. We
first analyze temporal words which occur in cur-
rent natural language moment retrieval datasets.
We consider temporal adjectives, adverbs, and
prepositions found both by closely analyzing
moment-localization datasets and consulting lists
containing words which belong to different parts
of speech. In particular, we rely on the prepo-
sition project (Litkowski and Hargraves, 2005)†

to scrape relevant temporal words. Table 2
shows example temporal words and the number
of times they occur in each dataset (TACoS (Reg-
neri et al., 2013), Charades (Gao et al., 2017),
DiDeMo (Hendricks et al., 2017)). Though all
moment localization datasets use temporal words,
they do not contain enough examples to reli-
ably train and evaluate current models. Addition-
ally, we observe that temporal words which are
frequently used when describing video segments
are different than those commonly used in text
without video grounding. For example, in Pratt-
Hartmann (2004), “during” is a common exam-
ple, but we observe that “during” is infrequently
used when describing video. Of temporal words,
we focus on the four most common words, “be-
fore”, “after”, “then”, and “while” when creating
our dataset.

TEMPO - Template Language. To construct
sentences in TEMPO-TL, we find adjacent mo-
ments in the DiDeMo dataset and fill in template
sentences for “before”, “after”, and “then” tempo-
ral words. For “before”, we use two templates: “X
before Y ” and “Before Y , X”, where X and Y
are sentences from the original DiDeMo dataset.
Likewise for “after”, we consider the templates
“X after Y ” and “After Y , X”. For “then” we
only consider one template, “X then Y .”

TEMPO - Human Language. Though the
template dataset is an interesting testbed for un-
derstanding temporal language, it is difficult to
replicate the interesting complexities in human
language. For example, when writing long sen-

†http://www.clres.com/prepositions.
html
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Endpoint Similarity Context Training Supervised
Feature Loss Temp. Context

TALL (Gao et al., 2017) None TALL sim. Before/After TALL loss None
MCN (Hendricks et al., 2017) TEF Distance-based Global Ranking None
MLLC (ours) conTEF Normalized mult Latent Ranking Strongly sup.

Table 1: Comparison of models. Bolded entries show our additions for localizing temporal language.

Dataset Before After Then While Yet During Until

TACoS 50 62 731 82 23 0 4
Charades 281 27 1873 1165 0 3 1
DiDeMo 198 119 1021 266 16 21 22

TEMPO - TL 23,842 23842 11921 - - - -
TEMPO - HL 6610 5495 5478 5425 - - -

Table 2: Word frequency of temporal words in natural
language moment localization datasets.

The adult hands the little boy a stick.

The adult hands the little boy a stick 
then they begin to walk.

The boy and adult stop before adult bends 
over and hands child a short stick.

Figure 3: Example sentences in TEMPO - HL. The top
sentence corresponds to the reference moment (shown
in green). The bottom sentences are newly collected
sentences which use temporal language.

tences with temporal prepositions, humans fre-
quently make use of language structure such as
coreference to form more cohesive statements.

To collect annotations, we follow the protocol
in Hendricks et al. (2017) and segment videos into
5-second temporal segments. After collecting de-
scriptions, we ensure descriptions are localizable
by asking other workers to localize each moment.
To collect data for “before”, “after”, and “then”,
we ask annotators to describe a segment in rela-
tion to a “reference” moment from the DiDeMo
dataset. For example, if the DiDeMo dataset in-
cludes a localized phrase like “the cat jumps”,
annotators write a sentence which refers to the
segment “the cat jumps” using a specific tempo-
ral word. We provide both the phrase (“the cat
jumps”) and the reference moment to annotators,
and the annotators provide a sentence describing a
new moment which references the reference mo-
ment.

TEMPO-HL includes unique properties which
are hard to replicate with template data. Figure 3

depicts the base moment provided to workers, as
well as descriptions from TEMPO-HL. In Fig-
ure 3, the description “The adult hands the little
boy the stick then they walk away” includes an
example of visual coreference (“they”). We note
that use of pronouns is much more prevalent in
TEMPO-HL, with 28.1% of sentences in TEMPO-
HL including pronouns (“he”, “she”, “it”) in con-
trast to 10.3% of sentences in the original DiDeMo
dataset. Additionally, annotators will refer to the
base moment with different language than orig-
inally used in the base moment (e.g., “the girl
waves at the camera” versus the base moment “the
girl looks at the camera and waves”) in order to
make their sentences more fluent.

5 Experiments

Evaluation Method. We follow the evaluation
protocol defined for the DiDeMo dataset (Hen-
dricks et al., 2017) over all possible combina-
tions of the five-second video segments. We re-
port rank at one (R@1), rank at five (R@5), and
mean intersection over union (mIOU) using their
aggregator over three out of the four human an-
notators. We compare our models on TEMPO-
TL, TEMPO-HL, and the DiDeMo dataset. When
training our models, we combine the DiDeMo
dataset with TEMPO-TL or TEMPO-HL. This en-
ables our model to concurrently learn to localize
the simpler DiDeMo sentences with more com-
plex TEMPO sentences.
Baselines. We compare to the two recently pro-
posed approaches for video moment localization:
MCN (Hendricks et al., 2017) and TALL (Gao
et al., 2017). We adapt the implementation of
TALL (Gao et al., 2017) to the DiDeMo dataset
in three ways. First, we do not include the tem-
poral localization loss required to regress to spe-
cific start and end points as DiDeMo, and thus also
TEMPO, is pre-segmented, so the model does not
need to compute exact start and end points. Sec-
ond, the original TALL model uses C3D features.
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For a fair comparison we train both models with
the same RGB and flow features extracted as was
done for the original MCN model. Finally, the
MCN model proposes temporal endpoint features
(TEF) to indicate when a proposed moment occurs
within a video. We train TALL with and without
the TEF and show that TEF improves performance
on the original DiDeMo dataset.
Ablations. To ablate our proposed latent context,
we compare to other models which share the same
MLLC base network. We consider the MLLC
model with global context and before/after con-
text. We also train a model with weakly supervised
(WS) latent context and strongly supervised (SS)
latent context. We also train models both with and
without context TEF (conTEF).
The MLLC Base Model. We first ablate our
MLLC base model (Table 3). We train our models
on TEMPO-TL and DiDeMo and evaluate on the
original DiDeMo dataset. All models are trained
with global context. We find that the ranking
loss is preferable on the DiDeMo dataset (com-
pare lines 1 and 2) and that TALL-similarity per-
forms better than the distance based similarity of
the MCN model (compare lines 1 and 5). A
simpler version of the TALL-similarity, in which
the concatenated element wise multiplication, ele-
ment wise sum, and concatenation is replaced by a
single normalized elementwise multiplication, in-
creases R@1 by almost one point and increases
mIoU by over two points (compare lines 5-7). We
call our best model the MLLC-Base model (line
7). Our MLLC-Base model performs better than
previous models (MCN line 1 and TALL line 3).

Model Similarity Training R@1 R@5 mIoU
Loss

1 MCN Dist.-based Ranking 26.63 73.38 41.14
2 MCN Dist.-based TALL 23.89 76.54 35.69
3 TALL TALL-sim. TALL 8.04 36.32 22.68
4 TALL w/TEF TALL-sim. TALL 23.56 72.74 35.58
5 MCN TALL-sim Ranking 27.52 79.07 41.48
6 MCN Mult Ranking 28.19 78.97 43.21
7 MLLC-Base Norm. Mult Ranking 28.37 78.64 43.65

Table 3: To select our base network, we consider
different variants on the two previously proposed mo-
ment retrieval methods, TALL (Gao et al., 2017) and
MCN (Hendricks et al., 2017). Results reported on val.

Results: TEMPO - TL. We first compare dif-
ferent moment localization models on TEMPO -
TL (Table 4). In particular, our model performs
well on “before” and “after” words. Additionally,

our MLLC model with global context outperforms
both the MCN model (Hendricks et al., 2017) and
the TALL (Gao et al., 2017) model when consid-
ering all sentence types, verifying the strength of
our base MLLC model.

Comparing MLLC with global context and
MLLC with before/after context (compare row 4
and 5), we note that before/after context is impor-
tant for localizing “before” and “after” moments.
However, our model with strong supervision (row
9) outperforms the model trained with before and
after context, suggesting that learning to reason
about which context moment is correct (as op-
posed to being explicitly provided with the con-
text before and after the moment) is beneficial.
We note that strong supervision (SS) outperforms
weak supervision (WS) (compare rows 7 and 9)
and that the context TEF is important for best per-
formance (compare rows 8 and 9).

We note that though the MLLC-global model
outperforms our full model for “then” on TEMPO-
TL, our full model performs better on then for
the TEMPO-HL (Table 6). One possibility is that
the “then” moments in TEMPO-TL do not re-
quire context to properly localize the moment. Be-
cause TEMPO-TL is constructed from DiDeMo
sentences, constituent sentence parts are refer-
ring. For example, given an example sentence
from TEMPO-TL (e.g., “The cross is seen for the
first time then window is first seen in room”), the
model does not need to reason about the ordering
of “cross seen for the first time” and “window is
seen for the first time” because both moments only
happen once in the video. In contrast, when con-
sidering the sentence “The adult hands the little
boy a stick then they begin to walk” (from Fig-
ure 3), “begin to walk” could refer to multiple
video moments. Consequently, our model must
reason about the temporal ordering of reference
moments to properly localize the video moment.

On TEMPO - TL, sentences differ from origi-
nal DiDeMo sentences solely because of the use
of temporal words. Thus, we can do a controlled
study of how well models understand temporal
words. If a model has good temporal reasoning,
then if it can localize a reference moment “the
dog jumps” it should be easier for the model to
localize the moment “the dog sits after the dog
jumps”. To test whether models are capable of
this, we look at only sentences in TEMPO - TL
where the model has correctly localized the cor-
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TEMPO - Template Language (TL)
DiDeMo Before After Then Average

R@1 mIoU R@1 mIoU R@1 mIoU R@1 mIoU R@1 R@5 mIoU

1 Frequency Prior 10.71 20.67 17.85 24.22 22.42 25.76 0.00 24.73 12.74 52.58 23.84
2 MCN 24.85 37.92 32.28 38.67 26.08 35.44 25.07 53.94 27.07 73.36 41.49
3 TALL 20.95 32.09 27.13 32.41 26.30 34.27 4.84 36.75 19.80 64.66 33.88
4 MLLC- Global 26.32 40.37 31.92 38.26 25.37 35.59 27.53 57.08 27.78 74.14 42.82
5 MLLC B/A 26.04 39.60 34.04 40.46 28.50 38.18 25.60 54.37 28.54 74.92 43.15
6 MLLC (WS) 26.57 40.99 30.56 37.64 24.76 35.10 26.95 56.49 26.95 74.18 42.55
7 MLLC (WS + conTEF) 25.87 40.37 32.01 39.51 24.31 33.94 24.98 55.22 26.79 74.04 42.27
8 MLLC (SS) 26.09 40.12 28.45 34.38 23.79 33.92 24.27 55.00 25.65 73.60 40.86
9 MLLC (SS + conTEF) 27.46 41.20 35.31 41.81 29.38 38.90 26.83 54.97 29.74 76.76 44.22

Table 4: Comparison of different model performance for different temporal words on TEMPO - TL on our test
set. We report scores for the three temporal words in TEMPO - TL as well as on the original DiDeMo dataset.
We find that our model performs best when considering all sentence types. B/A indicated before/after context, WS
indicates weak context supervision, and SS indicates strong context supervision.

Before After Then
Context R@1 mIoU R@1 mIoU R@1 mIoU

Global -1.07 -2.72 -7.59 -6.75 43.30 31.57
Before/After 2.77 2.03 11.47 12.08 42.92 29.09
Latent 7.78 37.55 8.58 10.39 50.09 33.64

Table 5: Difference between performance on full
dataset and set on which reference moments are local-
ized properly for different methods on TEMPO-TL.

responding context moment in DiDeMo (Table 5).
We report the difference in performance when con-
sidering only sentences in which temporal context
was properly localized and all sentences. On our
model, performance on all three temporal word
types increases when the context moment can be
properly localized. When considering global con-
text, performance on “before” and “after” actually
decreases, suggesting global context does not un-
derstand temporal reasoning well. Finally, even
when the context is correctly localized, there is
still ample room for improvement on all three sen-
tence types motivating future work on temporal
reasoning for moment retrieval.

Results: TEMPO - HL. Table 6 compares per-
formance on TEMPO - HL. We compare our best-
performing model from training on the TEMPO-
TL (strongly supervised MLLC and conTEF) to
prior work (MCN and TALL) and to MLLC with
global and before/after context. Performance on
TEMPO-HL is considerably lower than TEMPO-
TL suggesting that TEMPO-HL is harder than
TEMPO-TL.

On TEMPO - HL, we observe similar trends
as on TEMPO-TL. When considering all sentence

types, MLLC has the best performance across all
metrics. In particular, our model has the strongest
performance for all sentence types considering the
mIoU metric. In addition to performing better
on temporal words, our model also performs bet-
ter on the original DiDeMo dataset. As was seen
in TEMPO-TL, including before/after context per-
forms better than our model trained with global
context for both “before” and “after” words.

The final row of Table 6 shows an upper bound
in which the ground truth context is used at test
time instead of the latent context. We note that
results improve for “before”, “after”, and “then”,
suggesting that learning to better localize context
will improve results for these sentence types.

Localizing Context Fragments. TEMPO-HL
sentences can be broken into two parts: a base-
sentence fragment (which refers to the base mo-
ment), and a context-sentence fragment (which
refers to the context moment). For example, for
the sentence “The girl holds the ball before throw-
ing it,”, “the girl holds the ball” is the base frag-
ment and “throwing it” is the context fragment. A
majority of the “before” and “after” sentences in
TEMPO-HL are of the form “X before (or after)
Y ”, so we can determine a list of sentence frag-
ments by splitting sentences based on the tempo-
ral word. Given “before” and “after” sentences,
we determine the ground truth context fragment by
considering which reference moment was given to
annotators. We can then measure how well mod-
els localize context fragments. Table 7 compares
two approaches to localizing context fragments:
inputting just the context fragment into MLLC
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TEMPO - Human Language (HL)

DiDeMo Before After Then While Average
R@1 mIoU R@1 mIoU R@1 mIoU R@1 mIoU R@1 mIoU R@1 R@5 mIoU

Frequeny Prior 19.43 25.44 29.31 51.92 0.00 0.00 0.00 7.84 4.74 12.27 10.69 37.56 19.50
MCN 26.07 39.92 26.79 51.40 14.93 34.28 18.55 47.92 10.70 35.47 19.4 70.88 41.80
TALL + TEF 21.79 33.55 25.91 49.26 14.43 32.62 2.52 31.13 8.1 28.14 14.55 60.69 34.94
MLLC - Global 27.01 41.72 27.42 52.22 14.10 34.33 18.40 49.17 10.86 35.36 19.56 71.23 42.56
MLLC - B/A 26.47 40.39 31.95 55.89 14.93 34.78 17.36 47.52 11.32 35.52 20.40 70.97 42.82
MLLC (Ours) 27.38 42.45 32.33 56.91 14.43 37.33 19.58 50.39 10.39 35.95 20.82 71.68 44.57

MLLC (Ours)
Context Sup. Test

27.39 42.25 52.58 80.37 36.48 75.79 36.05 70.51 10.39 35.87 32.58 79.86 60.96

Table 6: Comparison of different model performance on TEMPO - HL on the test set. “MLLC - Global” indicates
our model with global context and “MLLC - B/A” indicated MLLC with before/after context.

Before After
R@1 mIoU R@1 mIoU

Context Fragment 25.16 32.94 23.05 27.64
Full Sentence 27.55 35.70 32.67 40.39

Table 7: Comparison of different methods to localize
context fragments (e.g., the text “she bends down” in
the sentence “the girl talks after she bends down”). We
compare localizing fragments with the MLLC model to
localizing fragments with the latent context considered
when localizing the whole query.

After zooming in to the dog, the dog darts across the grass and 
into the woods

The girl with a hat takes a drink before the girl without 
a hat waves.

Ground truth

Ground truth

Figure 4: Moment localization predictions on TEMPO
- HL using our model. In addition to the localized
query, we show the selected context segment (blue line)
that our model considers when localizing the query.

and reporting the context used by MLLC when in-
putting the entire query into our model. We find
that our model reliably selects the correct context
fragments, most likely because it can properly ex-
ploit temporal understanding of how the context
fragment relates to the base fragment.

Visualizing Context. In addition to a localized
query, we can also visualize which context mo-
ment the temporal query refers to. Figure 4 shows
predicted moments and their corresponding con-

text moments. For the query “The girl with a hat
takes a drink before the girl without a hat waves”,
the little girl in the hat drinks twice, but our model
correctly localizes the time she drinks before the
other girl waves. Likewise, for the moment “Af-
ter zooming in to the dog, the dog darts across the
grass and into the woods”, the dog darts towards
the woods twice (at the beginning of the video and
at the end). Our model properly localizes the mo-
ment when the dog runs towards the forest the sec-
ond time as well as the context fragment “zooming
in on dog” when localizing the moment.
Discussion. We show promising results on both
TEMPO-TL and TEMPO-HL, but there is po-
tential improvement for building better frame-
works for understanding temporal language. In
Table 6, strongly supervising context at test time
improves overall results, suggesting that models
which can better localize context text will outper-
form our current model. Though TEMPO and
DiDeMo have over 60,000 sentences combined,
visual content is quite diverse. Integrating out-
side data sources (e.g., image retrieval and cap-
tioning) could possibly improve results on mo-
ment localization, both with and without temporal
language queries. Additionally, in Table 5, even
when the MLLC model can properly localize con-
text, it does not always properly localize temporal
sentences indicating that improved temporal rea-
soning can also improve our results. We believe
our dataset, analysis, and method are an important
step towards better moment retrieval models that
effectively reason about temporal language.
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Abstract

Rare word representation has recently enjoyed
a surge of interest, owing to the crucial role
that effective handling of infrequent words
can play in accurate semantic understanding.
However, there is a paucity of reliable bench-
marks for evaluation and comparison of these
techniques. We show in this paper that the only
existing benchmark (the Stanford Rare Word
dataset) suffers from low-confidence annota-
tions and limited vocabulary; hence, it does
not constitute a solid comparison framework.
In order to fill this evaluation gap, we propose
CAmbridge Rare word Dataset (CARD-660),
an expert-annotated word similarity dataset
which provides a highly reliable, yet chal-
lenging, benchmark for rare word representa-
tion techniques. Through a set of experiments
we show that even the best mainstream word
embeddings, with millions of words in their
vocabularies, are unable to achieve perfor-
mances higher than 0.43 (Pearson correlation)
on the dataset, compared to a human-level
upperbound of 0.90. We release the dataset
and the annotation materials at https://
pilehvar.github.io/card-660/.

1 Introduction

Words in a corpus of natural language utterances
approximately follow a Zipfian distribution with
their majority, in the “long tail” of frequency dis-
tribution, occurring rarely. The prominent distri-
butional approach to semantic representation re-
lies on enormous occurrences for each individ-
ual word; therefore, it falls short of learning ac-
curate representations for rare words in the long
tail. Moreover, it is unreasonable to expect that
all words in the vocabulary of a language are ob-
served in a text corpus, even if it is massive in
size. Out-of-vocabulary (OOV) words pose one of
the major ongoing challenges for word embedding
techniques. Given that effective handling of rare

and OOV words is crucial to accurate natural lan-
guage understanding, several studies have focused
on the topic during the past few years, resulting in
a wide range of techniques.

However, despite the popularity of rare and sub-
word semantic representation, the field of research
has suffered from the lack of high quality generic
evaluation benchmarks. A task-based evaluation,
i.e., one which directly verifies the impact of rep-
resentation models in a downstream NLP system,
despite being very important, does not provide a
solid base for comparing different models, given
that small variations in the architecture, parameter
setting, or initialisation can lead to performance
differences. Moreover, such an evaluation would
reflect the “suitability” of representations for that
specific configuration and for that particular task,
and might not be conclusive for other settings.

As far as generic evaluation is concerned, exist-
ing benchmarks generally target frequent words.
An exception is the Stanford Rare Word (RW)
Similarity dataset (Luong et al., 2013) which has
been the standard evaluation benchmark for rare
word representation techniques for the past few
years. In Section 2.1, we will provide an in-depth
analysis of RW and highlight that crowdsourcing
the annotations, with no rigorous checkpoints, has
compromised the reliability of the dataset. This is
mainly reflected by the low inter-annotator agree-
ment (IAA), a performance ceiling which is easily
surpassed by many existing models.

To overcome this barrier and to fill the gap for a
reliable benchmark for the evaluation of subword
and rare word representation techniques, we in-
troduce a new dataset, called CARD-660: Cam-
bridge Rare Word Dataset. Compared to exist-
ing benchmarks, CARD-660 provides multiple ad-
vantages: (1) thanks to a manual curation by ex-
perts, we report IAA of around 0.90 (see Table 3)
which is substantially higher than those for exist-
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ing datasets; (2) word pairs are selected manually
from a wide range of domains and, unlike exist-
ing datasets, are not bound to a specific resource;
(3) word pairs in the dataset are balanced across
the similarity scale; and (4) the huge gap between
state of the art and IAA (more than 0.50 in terms
of Spearman correlation) promises a challenging
dataset with lots of potential for future research.

The paper is structured as follows. The follow-
ing Section covers the related work, highlighting
some of the issues with the RW dataset. Section 3
details the construction procedure for CARD-660.
In Section 4, we analyse the dataset from different
aspects, showing how it improves existing bench-
marks. Section 5 reports our evaluation of main-
stream word embeddings and recent word repre-
sentation techniques on the dataset. Finally, con-
cluding remarks are mentioned in Section 6.

2 Related Work

Word similarity datasets have been one of the old-
est, still most prominent, benchmarks for the eval-
uation and comparison of semantic representation
techniques. As a result, several word similar-
ity datasets have been constructed during the past
few decades; to name a few: RG-65 (Rubenstein
and Goodenough, 1965), WordSim-353 (Finkel-
stein et al., 2002), YP-130 (Yang and Powers,
2005), MEN-3K (Bruni et al., 2014), SimLex-999
(Hill et al., 2015), and SimVerb-3500 (Gerz et al.,
2016). Many of these English word similarity
datasets have been translated to other languages
to create frameworks for multilingual (Leviant
and Reichart, 2015) or crosslingual (Camacho-
Collados et al., 2017) semantic representation
techniques. However, these datasets mostly target
words that occur frequently in generic texts and,
as a result, are not suitable for the evaluation of
subword or rare word representation models.

One may opt for transforming a frequent-word
benchmarks into an artificial rare word dataset by
downsampling the dataset’s words in the underly-
ing training corpus (Sergienya and Schütze, 2015).
However, this benchmark might not properly sim-
ulate a real-world rare word representation sce-
nario (cf. Section 3.1).

2.1 Stanford RW Dataset

The Stanford Rare Word Similarity (RW) dataset
is an exception as it is dedicated to evaluating in-
frequent word representations. The dataset has

Figure 1: Distribution of relation types (“hypernymy”,
“similar to”, and others) across four quartiles (sorted
by gold similarity scores) of the Stanford Rare Word
Similarity dataset. The distribution of pairs with hy-
pernymy relation is almost uniform across the quartiles,
whereas one would expect many more pairs in the top
quartiles (Q4 and Q3), given the high semantic similar-
ity of hypernym-hyponyms.

been regarded as the de facto standard evaluation
benchmark for subword and rare word represen-
tation techniques. However, our analysis shows
that RW suffers from multiple issues: (1) skewed
distribution of the scores, (2) low-quality and in-
consistent scores, and as a consequence, (3) low
inter-annotator agreement.

The RW dataset comprises 2034 word pairs
(i.e., word1 – word2). Candidates for word1

were randomly sampled from Wikipedia docu-
ments, distributed across a wide range of frequen-
cies (from 5 to 10,000) to ensure the inclusion
of infrequent words. Given this automatic sam-
pling, a measure was required to avoid noisy or
junk words. To this end, a sampled word was
checked in WordNet (Fellbaum, 1998) and was in-
cluded only if it appeared in at least one synset.
Hence, the vocabulary of the dataset is bound to
that of WordNet. Words for word2 were randomly
picked from synsets that were directly connected
to a synset of word1, through various relations,
such as hypernymy, holonymy, and attributes.

2.1.1 Distribution of scores
These word pairs were assigned similarity scores
in [0, 10]. Given that all word pairs in the dataset
are semantically-related according to WordNet,
the scores form a skewed distribution biased to-
wards the upper bound (see Figure 2 and Section
4.1 for more details).

2.1.2 Consistency of annotations
The scoring of the pairs has been carried out
through crowdsourcing: (Amazon Mechanical)
Turkers have provided ten scores for each word
pair. The raters were restricted to only US-based
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workers and they were asked to self-certify them-
selves by indicating if they “knew” the word; this
was used to “discard unreliable pairs.” However,
our analysis of the dataset clearly indicates that
the above measures have not been adequate for
guaranteeing quality annotations. For instance,
the word bluejacket is paired with submariner in
the dataset. According to WordNet (v3.0), a sub-
mariner (“a member of the crew of a submarine”)
is a bluejacket (“a serviceman in the navy”; a
navy man, sailor), hence a hypernymy relation-
ship. One would expect a word to have high se-
mantic similarity with its hypernym. However, the
gold score for this pair is just 0.43 in the scale
[0, 10]. Other examples include “untruth” (a false
statement) vs. “statement” (again, with a hyper-
nymy relationship) with a low similarity of 1.22.
Apart from not being a rigorous evaluation, the
self-certification does not verify if the annotator
had knowledge of various possible meanings of
a word. For instance, decomposition could refer
to the analysis of vectors in algebra; but, when
paired with algebra, the assigned score is only
0.75. Such examples clearly indicate that the an-
notators were not aware of specialised senses of
some words (e.g., the algebraic meaning of de-
composition), despite “knowing” the word.

In fact, there are numerous such pairs in the
dataset. According to our estimate, 78% of the
2034 word pairs in the dataset are in a hypernymy
or similar to relationship. One would expect most
of these (semantically similar) pairs to have been
assigned high similarity scores which are closer
to the upper bound of the similarity scale [0, 10].
However, as shown in Figure 1, these pairs are
spread across the similarity scale, spanning from
complete unrelatedness (lower bound) to identical
semantics (synonymy). Having the words in the
dataset sorted by their assigned gold scores, re-
spectively, 66%, 79%, 83%, and 85% of the pairs
in the first to fourth quartiles contain either “hy-
pernymy” or “similar to” relations (whereas one
would expect most of these semantically-similar
pairs to appear in the top quartiles).

Additionally, the dataset suffers from incon-
sistent annotations. For instance, the two al-
most identical pairs tricolour-flag and tricolor-
flag were assigned substantially different scores,
i.e., 5.80 and 0.71, respectively. This inconsis-
tency is also reflected by high variances across an-
notators scores (cf. Section 4.3).

2.1.3 Inter-Annotator Agreement (IAA)
This validity metric reflects the homogeneity of
the annotators’ ratings and it is generally accepted
as the upper bound for machine performance. IAA
is widely used as a standard evaluation metric for
the quality of word similarity datasets. A low IAA
indicates a defective similarity scale or unreliable
annotations.

In the RW dataset, “up to 10” annotations have
been provided for the 2034 word pairs, each with
a similarity score in [0, 10] range. More precisely,
214 of the pairs are not provided with 10 scores,
with the minimum number of scores for a pair
being 7. The authors did not report IAA statis-
tics for this dataset. Given that the annotators are
not known for each pair in the released dataset, it
is not straightforward to compute IAA.1 Accord-
ing to a rough calculation, the average pairwise
Spearman correlation between annotators’ scores
is 0.40, which is a significantly low figure com-
pared to other existing word similarity datasets.
We report an impressive IAA of 0.89 for our
dataset (cf. Section 4.2).

3 The CARD-660 Dataset

3.1 Motivation
Due to a lack of reliable evaluation benchmarks,
research in rare word representation has often re-
sorted to artificial experimental setups such as
corpus downsampling (Sergienya and Schütze,
2015; Herbelot and Baroni, 2017; Lazaridou et al.,
2017). To this end, in order to simulate a rare
word scenario, the rare word representation model
is provided with only a limited number of occur-
rences for the target set of words, for instance by
means of replacing the dataset’s words with some
other sequences of characters (e.g., by augmenting
“UNK”, such as “skyglowUNK” for “skyglow”)
in the training corpus. The computed represen-
tations on the “downsampled” training data are
then either evaluated on a standard word similar-
ity dataset (Sergienya and Schütze, 2015), such
as RG-65, or compared against reference embed-
dings computed on a large training corpus (Herbe-
lot and Baroni, 2017; Lazaridou et al., 2017).

However, due to the following three rea-
sons, downsampling does not constitute a reliable

1The scores are further pruned down to only those that
were within one standard deviation of the mean. This results
in a further imbalanced set of scores, making the computation
of IAA more challenging.
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benchmark that can represent the challenging na-
ture of the task: (1) it is unable to control the im-
pact of second-order associations (words that fre-
quently co-occur with the downsampled word) and
cannot represent a real-world setting with novel
rare usages; (2) given that morphological varia-
tions of a word (such as plural forms) are kept
intact in this procedure, a subword technique can
easily resort to these forms to compute the em-
bedding for downsampled words; and (3) a con-
strained evaluation configuration in which the task
is to estimate the embedding for a (rare) word us-
ing one or few occurrences (contexts) of it, lim-
its the benchmark to a subset of corpus-based rare
word representation techniques only. Moreover,
the evaluation would require the comparison of
the computed embeddings for rare words with a
set of reference embeddings (computed on the full
data). This dependency limits the ability of the
benchmark in providing a direct evaluation of the
rare word representation technique, independently
from the impact of the model used to compute the
reference embeddings.

The CARD-660 dataset aims at filling the gap
for rigorous generic evaluation of rare word and
subword representation models. In what follows
in this section, we will detail the construction pro-
cedure of the dataset which was carefully planned
to guarantee a challenging and reliable dataset.

3.2 Construction Procedure

The following four-phase procedure was used to
construct the dataset:

(1) A set of 660 rare words were carefully se-
lected from a wide range of domains;

(2) For each of these initial words, a pairing
word was manually selected according to a
randomly sampled score from the similarity
scale (Section 3.2.2);

(3) All pairs were scored by 8 annotators;
(4) A final adjudication was performed to ad-

dress disagreements (Section 3.2.3).

3.2.1 Similarity scale
We adopted the five-point Likert scale used for the
annotation of the datasets in SemEval-2017 Task
2 (Camacho-Collados et al., 2017). The task re-
ported high IAA scores which reflects the well-
definedness and clarity of the scale. We provided

2http://www.fakenewschallenge.org

annotators with the concise guideline shown in Ta-
ble 1, along with several examples. Given the con-
tinuity of the scale, the annotators were given flex-
ibility to select values in between the five points,
whenever appropriate, with a step size of 0.5.

The annotators were asked in the guidelines to
make sure they were familiar with all common
meanings of the word (as defined by WordNet or
other online dictionaries). To facilitate the anno-
tation, the annotators were provided with the def-
initions of some of the words that were defined
in WordNet or named entities that had Wikipedia
pages. For others, we asked the annotators to
check the word in online dictionaries, such as
WordNet browser3 and Wiktionary4, or encyclo-
pediae, such as Wikipedia.

3.2.2 Word pair selection
Unlike previous work (Luong et al., 2013), we
did not rely on random sampling (pruned by fre-
quency) of initial words from a specific dictionary,
to prevent the dataset from being restricted to a
specific resource or vocabulary. Instead, we care-
fully hand-picked word pairs from a wide range
of domains. To construct the 660 pairs of the
dataset (each pair is denoted as w1 � w2), we
first picked 660 w1 words. Our aim was to have
a dataset that can ideally reflect the performance
of rare word representation techniques in down-
stream NLP tasks. To this end, we picked initial
words (w1s) from different common NLP datasets
and resources, listed in Table 2. For each text-
based resource, a frequency list was obtained and
rare words were carefully picked from the long tail
of the list, cross-checking the frequency of words
in the Google News dataset. For the other re-
sources (such as Wiktionary), we checked a word
against a large frequency list to ensure they are
not frequent words. The list was computed on the
2.8B token ukWaC+WaCkypedia corpus (Baroni
et al., 2009) and comprised 16.5M unique words.

In order to have a balanced distribution of
scores in the dataset, we first assigned random in-
teger scores in [0� 4] to the 660 initial w1s. Then,
with the corresponding score in mind, a pairing
word (w2) was selected for each w1. We show
in Section 4.1 that this strategy resulted in a uni-
formly distributed set of scores in the dataset.

The dataset comprises words from a wide range
of genres and domains, including slang in so-

3http://wordnetweb.princeton.edu/perl/webwn
4www.wiktionary.org
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Score Interpretation Example pair

4 Synonyms. The two words are different ways of referring to the same concept car automobile
3 Similar. The two words are of the same nature, but slightly different in details car truck
2 Related. The two words are closely related but they are not similar in their nature car driver
1 Same domain or slight relation. The two words have distant relationship car tarmac
0 Completely unrelated. The two words have nothing in common. car sky

Table 1: The five-point Likert similarity scale used for the annotation of the dataset.

Task. Resource

Text classification. BBC (Greene and Cunningham,
2006)
Sentiment analysis. IMDB (Maas et al., 2011), Multi-
Domain Sentiment Dataset (Blitzer et al., 2007)
Machine Translation. Europarl (Koehn, 2005)
Question Answering. AQUA-RAT (Ling et al., 2017),
SQuAD (Rajpurkar et al., 2016)
BioMedical (entity recognition). JNLPBA corpus (Kim
et al., 2004)
Social media. Twitter
Ontologies and online glossaries. WordNet, Wiktionary
Named entities. Freebase (Bollacker et al., 2008)
Veracity assessment. FakeNews2

Table 2: Various datasets and resources used for rare
word selection in CARD-660.

cial media (e.g., 2mrw and Mnhttn), named enti-
ties (e.g., Stephen Hawking and Ursa Major), and
domain specific terms (e.g., erythroleukemia and
NetMeeting). Moreover, to have a rigorous testbed
for subword representation techniques that empha-
sises the importance of semantic (rather than shal-
low) understanding of the words, the dataset con-
tains several word pairs that have similar surface
forms (hence, high string similarity) while being
semantically distant, e.g., infection-inflection and
currency-concurrency. There are also many com-
pound words (e.g., skyglow, musclebike, and log-
boat) which makes the dataset particularly inter-
esting for evaluating compositionality as well as
for subword representation techniques.

3.2.3 Scoring and adjudication
Once the 660 word pairs were manually selected
(by the first author), the initial scores were dis-
carded and the words were shuffled (vertically and
horizontally) to dispense any potential bias from
the initial round of creation. Then, the pairs were
assigned to 8 annotators (including all but first au-
thors) who independently scored each and every
pair according to the annotation guidelines (see
Section 3.2.1). All annotators were PhD gradu-

ates or students in Computational Linguistics or
related fields and were either native or fluent En-
glish speakers.

Once all pairs were scored by the annotators,
we checked for disagreements. This check was in-
tended to improve the dataset’s quality through re-
solving simple annotation mistakes. For each an-
notator, we marked the ith pair if for the assigned
score si: si � µi + 1 or si  µi � 1, where µi is
the average of the other seven annotators’ scores
for si. The annotator was then asked to (more
carefully) re-score the marked pair by checking
for its possible meanings. They were asked to
keep their initial score if not convinced otherwise.
The adjudication revealed that most disagreements
were due to an annotator having misread a word
or not been familiar with a specific meaning of it,
or missing annotations. By average, 13.8% of the
pairs were re-scored by each annotator.

4 Analysis

In this section we provide an analysis on the qual-
ity of CARD-660 from three different perspec-
tives: distribution of scores, inter-annotator agree-
ment, and consistency among annotators. We
benchmark CARD-660 against the Stanford RW
dataset and two standard word similarity datasets
(cf. Section 2): SimVerb-3500 (SV-3500) and
SimLex-999 (SL-999). The latter two datasets do
not target rare words; however, given that their
construction strategy is similar to that employed
for creating RW (based on crowdsourcing), we in-
cluded them in our analysis experiments to pro-
vide better insights. For the purpose of this evalu-
ation, all the datasets were scaled to [0,10] to make
them comparable.

4.1 Score Distribution
Figure 2 shows the distribution of pairs across the
similarity scale, for CARD-660 and the three other
datasets. As discussed in Section 2.1, RW is heav-
ily biased towards the upper bound of the similar-
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Figure 2: The distribution of word pairs across the four
quartiles of the similarity scale for different datasets.
A perfectly balanced dataset would have four equally
sized slices.

Figure 3: Annotation variance for word pairs across
different datasets. Average variance for CARD-660 is
1.47, which is significantly lower than those for SV-
3500 and RW: 5.64 and 6.34, respectively.

ity scale (with around 72% of the pairs in the up-
per half, i.e., [5, 10]). The skewed distribution in
this dataset can be attributed to the automatic word
pair selection from semantically-related words in
WordNet (cf. Section 2.1). SV-3500 and SL-
999 are skewed towards the lower bound, but to a
smaller degree (around 59% of the pairs in [0, 5)).
Thanks to the manual creation of CARD-660, we
have a balanced set of pairs across the similarity
scale (50-50% across the two halves).

4.2 Inter-Annotator Agreement
As mentioned in Section 2.1, IAA has been exten-
sively used as a quality metric for word similar-
ity datasets. Following standard practise, we mea-
sure two sets of IAA scores: (1) Pairwise is the
averaged pairwise correlation between all possible
rater pairings, and (2) Mean is the averaged corre-
lation of each rater against the average of others.

Table 3 reports IAA statistics for CARD-660.
Thanks to the manual scoring of the pairs by ex-
perts (as opposed to turkers), the IAA values for

Mean Pairwise

r ⇢ r ⇢

Initial 88.0±2.3 87.9±1.9 80.2±2.9 80.6±2.6
Final 93.5±1.4 93.1±1.2 88.9±1.7 88.9±1.7

Table 3: Inter-annotator agreement (IAA) scores be-
fore (initial) and after (final) adjudication (± standard
deviation). IAA is shown in terms of Pearson r and
Spearman ⇢ percentage correlations. The final scores
are representative of the dataset’s quality.

the dataset are very high, placing it among the best
word similarity datasets in the literature. This is
particularly interesting considering that, compared
to standard word similarity datasets which con-
tain mostly common words, our dataset comprises
words that are semantically difficult to annotate
due to their rare nature. The pairwise IAA score of
88.9 is significantly higher than the crowdsourced
RW, with the estimated pairwise IAA score of
around 40.0 (cf. Section 2.1). The same ap-
plies to other recent crowdsourced word similarity
datasets for common words which usually report
pairwise IAA scores below 70.0 (e.g., ⇢ = 67.0
for SL-999)5.

4.3 Consistency of Annotations

Despite being suitable for measuring linear rela-
tionships between scores, correlation cannot fully
reflect the consistency between annotators. Two
annotators can have perfect correlation, i.e., 1.0,
even if they consistently provide different scores
for the same pairs (therefore, having different av-
erage assigned scores). To check the consistency
among annotators, i.e., if they had the same inter-
pretation of the similarity scale, we compute vari-
ance across annotators for individual pairs.

The box and whisker (over scatter) plot in Fig-
ure 3 shows the distribution of annotator vari-
ances for the pairs in different datasets. Clearly,
the score variances for CARD-660 are signifi-
cantly lower than those for the two crowdsourced
datasets, i.e., SimVerb-3500 and RW.6 Specifi-
cally, for the majority of pairs in CARD-660 the
annotation variance is lower than the other two
datasets’ first quartile (bottom of the blue square

5SimVerb-3500 reports a pairwise ⇢ of 84.0; however, our
calculation did not agree with this figure. Personal communi-
cation with the authors revealed an issue in the computation
of their IAA. The correct figure is instead 61.2.

6We are not able to report results for SimLex-999 since
individual annotators’ scores are not released for this dataset.
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Embedding set |V | Missed words Missed pairs Pearson r Spearman ⇢

RW CARD RW CARD RW CARD RW CARD

Glove Wikipedia-Gigaword (300d) 400K 7% 55% 12% 74% 34.9 15.1 34.4 15.7
Glove Common Crawl - uncased (300d) 1.9M 1% 36% 1% 50% 36.5 29.2 37.7 27.6
Glove Common Crawl - cased (300d) 2.2M 1% 29% 2% 44% 44.0 33.0 45.1 27.3
Glove Twitter (200d) 1.2M 29% 60% 48% 79% 17.7 13.7 15.3 11.7
Word2vec GoogleNews (300d) 3M 6% 48% 10% 75% 43.8 13.5 45.3 7.4
Word2vec Freebase (1000d) 1.4M 100% 85% 100% 92% 0.0 17.3 0.0 4.6
Dependency-based Wikipedia (300d) 174K 22% 60% 36% 80% 17.4 6.4 19.7 3.3
LexVec Common Crawl (300d) 2M 1% 41% 1% 55% 47.1 25.9 48.8 18.5
LexVec Wikipedia-NewsCrawl (300d) 370K 8% 58% 14% 78% 35.6 11.8 34.8 7.8
ConceptNet Numberbatch (300d) 417K 5% 37% 10% 53% 53.0 36.0 53.7 24.7

ConceptNet + Word2vec Freebase 1.6M 1% 22% 2% 45% 44.0 42.6 45.1 31.3
Glove cased CC + Word2vec Freebase 3.4M 11% 21% 10% 39% 53.0 38.8 53.7 32.7

Table 4: Pearson r and Spearman ⇢ correlation percentage performance of mainstream pre-trained word em-
beddings on the RW and CARD-660 datasets. Column |V | shows the size of vocabulary for the corresponding
embedding set.

which splits the lower 25% of the data from the
top 75%). This indicates that our annotators had
significantly higher degrees of agreement, reflect-
ing the well-definedness of the similarity scale as
well as the reliability of expert-based annotation
(as opposed to crowdsourcing).

5 Evaluations

In the remainder of this paper, we provide two
sets of experiments to showcase the challenging
nature of our dataset. Specifically, in Section 5.1
we report the performance of common pretrained
word embeddings on CARD-660, and in Section
5.2 we provide experimental results for state-of-
the-art rare word representation techniques. In
all experiments, we used the cosine similarity for
comparing pairs of word embeddings.

5.1 Pre-trained Embeddings
As was mentioned earlier in the Introduction, it
is not possible to enumerate the entire vocabulary
of a natural language, even if massive corpora are
used. A challenging rare word benchmark should
ideally reflect this phenomenon. To verify this in
our dataset, we experimented with a set of com-
monly used word embeddings trained on corpora
with billions of tokens.

Table 4 provides correlation performance re-
sults for different embedding sets on the RW and
CARD-660 datasets. Specifically, we considered
different variants of Word2vec7 (Mikolov et al.,

7https://code.google.com/archive/p/word2vec/

2013) and Glove8 (Pennington et al., 2014), two
commonly-used word embeddings that are trained
on massively large text corpora; Dependency-
based embeddings9 (Levy and Goldberg, 2014)
which extends the Skip-gram model to han-
dle dependency-based contexts; LexVec10 (Salle
et al., 2016) which improves the Skip-gram model
to better handle frequent words; and ConceptNet
Numberbatch11 (Speer et al., 2017) which exploits
lexical knowledge from multiple resources, such
as Wiktionary and WordNet, and was the best per-
forming system in SemEval 2017 Task 2. In the
last two rows of the Table we also report results for
two hybrid embeddings constructed by combining
the pre-trained Freebase Word2vec, which mostly
comprises named entities, with two of the best
performing embeddings evaluated on the dataset.
Given that the word embeddings are not compara-
ble across two different spaces, we only compute
the similarity between a pair only if both words are
covered in the same space (with priority given to
the non-Freebase embedding).

As can be seen in the Table, many of the em-
beddings yield high coverage for the RW dataset,
with those trained on the Common Crawl (CC)
corpus providing near full coverage. This high-
lights the limited vocabulary of the dataset (which
is bound to that of WordNet). Also, many of

8https://nlp.stanford.edu/projects/glove/
9http://u.cs.biu.ac.il/⇠yogo/data/syntemb/deps.words.bz2

10https://github.com/alexandres/lexvec
11https://github.com/commonsense/

conceptnet-numberbatch
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the embeddings attain performance around 40.0 on
RW, which is higher than the estimated IAA of the
dataset. In contrast, CARD-660 proves to be sig-
nificantly more challenging, with the highest cov-
erage model (Glove CC and Word2vec Freebase
hybrid model) missing around 40% of the pairs.
Also, the best performance of 42.6 (r) and 32.7
(⇢) are substantially (around 50.0) lower than the
IAA for the dataset (see Table 3).

5.2 Rare Word Representation Techniques

Rare and unseen word representation has been an
active field of research during the past few years,
with many different techniques proposed. In this
experiment, we evaluate the performance of some
of recent models on our dataset. These techniques
can be broadly classified into two categories. The
first group exploits the knowledge encoded for a
rare word in external lexical resources (Section
5.2.1), whereas the second induces embeddings
for rare words by extending the semantics of its
subword units (Section 5.2.2).

5.2.1 Resource-based models
The basic assumption here is that a lexical re-
source, such as dictionary, provides high cover-
age for words in a language, even if they are rare.
Resource-based models usually rely on WordNet
as their external resource and estimate the em-
bedding for a rare word by exploiting different
types of lexical knowledge encoded for it in the re-
source. The definition centroid model of Lazari-
dou et al. (2017) takes WordNet word glosses (def-
initions) as semantic clue. An embedding is in-
duced for an unseen word by averaging the content
words’ embeddings in its definition.12 The defi-
nition LSTM strategy of Bahdanau et al. (2017)
extends the centroid model by encoding the def-
inition using an LSTM network (Hochreiter and
Schmidhuber, 1997), in order to better capture the
semantics and word order in the definition. Sem-
Land (Pilehvar and Collier, 2017) also uses Word-
Net, but takes a different approach which benefits
from the graph structure of WordNet. For an un-
seen word, SemLand extracts the set of its seman-
tically related words from WordNet and induces
an embedding for the unseen word by combining
pre-trained embeddings for the related words.

12The original model is multimodal (text and images).
Given that our focus is on texts, we follow Herbelot and Ba-
roni (2017) and use the text modality only.

5.2.2 Subword models

Resource-based models fall short of inducing em-
beddings for words that are not covered in the lex-
ical resource. Subword models alleviate this limi-
tation by breaking the word into its subword (Pin-
ter et al., 2017; Bojanowski et al., 2017) or mor-
phological units (Luong et al., 2013; Botha and
Blunsom, 2014; Soricut and Och, 2015) and in-
duce an embedding by composing the informa-
tion available for these. FastText (Bojanowski
et al., 2017) is one of the popular approaches of
this type. The model first splits the unseen word
into character ngrams (by default, 3- to 6-grams)
and then computes the unseen word’s embedding
as the centroid of the embeddings of these char-
acter n-grams (which are available as a result of a
specific training). We also report results for Mim-
ick (Pinter et al., 2017), one of the most recent
subword models. The technique learns a map-
ping function from strings to embeddings by train-
ing a Bi-LSTM network that encodes character se-
quences of a word to its pre-trained embedding.

5.3 Experimental Setup

We report results for the five techniques discussed
in Sections 5.2.2 and 5.2.1. We used two of
the best performing embedding sets, i.e., Glove
cased CC and ConceptNet Numberbatch, to train
the models (except FastText for which we use the
pre-trained WikiNews subword embeddings13). In
fact, the models were expected to provide im-
provements over these baseline embeddings by
filling their gaps for unseen words.

Mimick was trained with the default parame-
ters,14 except for the hidden units which we set
to 100, instead of the original 50, since the tar-
get embeddings in our experiments were larger
(300d compared to 128d of the original model).
For the Definition LSTM model, the input defini-
tions were represented as sequences of 50d word
embeddings, encoded using an LSTM layer of 100
units, and then passed to a dense layer with 300
neurons with linear activation function. The train-
ing was carried out with Mean Squared Error loss
and the RMSprop optimizer, for 100 epochs with
batch size 64.

13https://fasttext.cc/docs/en/english-vectors.html
14https://github.com/yuvalpinter/Mimick/
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Model Missed words Missed pairs Pearson r Spearman ⇢

RW CARD RW CARD RW CARD RW CARD

ConceptNet Numberbatch (300d) 5% 37% 10% 53% 53.0 36.0 53.7 24.7
+ Mimick (Pinter et al., 2017) 0% 0% 0% 0% 56.0 34.2 57.6 35.6
+ Definition centroid (Herbelot and Baroni, 2017) 0% 29% 0% 43% 59.1 42.9 60.3 33.8
+ Definition LSTM (Bahdanau et al., 2017) 0% 25% 0% 39% 58.6 41.8 59.4 31.7
+ SemLand (Pilehvar and Collier, 2017) 0% 29% 0% 43% 60.5 43.4 61.7 34.3

Glove Common Crawl - cased (300d) 1% 29% 2% 44% 44.0 33.0 45.1 27.3
+ Mimick (Pinter et al., 2017) 0% 0% 0% 0% 44.7 23.9 45.6 29.5
+ Definition centroid (Herbelot and Baroni, 2017) 0% 21% 0% 35% 43.5 35.2 45.1 31.7
+ Definition LSTM (Bahdanau et al., 2017) 0% 20% 0% 33% 24.0 23.0 22.9 19.6
+ SemLand (Pilehvar and Collier, 2017) 0% 21% 0% 35% 44.3 39.5 45.8 33.8

FastText (Bojanowski et al., 2017) 0% 3% 0% 5% 46.3 19.0 48.2 20.4

Table 5: Correlation performance of different rare and unseen word representation techniques on the Stanford RW
and CARD-660 datasets (the best performance in each batch shown in bold; the overall best underlined).

5.4 Experimental Results

Table 5 reports the performance of different rare
word representation techniques. Both pre-trained
embeddings outperform the IAA of RW, with
Glove covering 98% of the pairs. This severely
limits the room for further meaningful experi-
ments on the dataset. In contrast, on CARD-660
and similarly to the previous experiment, there are
substantial gaps between IAA (cf. Table 3) and
the best-performing models: SemLand and Mim-
ick, with the respective figures of 45.5 (r) and 53.3
(⇢). These gaps suggest a difficult dataset which
can serve future research in subword and rare word
representation as a reliable benchmark.

The definition centroid model proves effective,
despite its simplicity, whereas the WordNet-based
SemLand provides the best results in most of the
settings. Being constrained to the vocabulary of
WordNet, the RW dataset does not constitute a
challenging benchmark for WordNet-based mod-
els, with most of them providing near full cover-
age. However, these techniques are not as effec-
tive on our dataset, with the best WordNet-based
model still missing around 33% of the pairs (with
Glove pre-trained embeddings).

The CARD-660 dataset also proves a very diffi-
cult benchmark for subword models. Despite pro-
viding near full coverage, these models are unable
to consistently improve the pre-trained word em-
bedding baseline. This would suggest that the sim-
ple strategy of backing off to a word’s characters
might not always provide reliable means of esti-
mating its semantics (e.g., the single-morpheme
word galaxy, or the exocentric compound honey-

moon). The results encourage further research on a
more semantically-oriented handling of subwords,
through learning more effective splitting and com-
position techniques.

6 Conclusions

Thanks to a carefully designed procedure and an
expert-based curation, CARD-660 provides multi-
ple advantages over existing benchmarks, includ-
ing a very high IAA (average pairwise correlation
of around 0.90). A series of experiments was car-
ried out on the dataset, leading to two main con-
clusions: (1) the dataset proved a very challenging
benchmark, with the best pre-trained embedding
model still missing around 40% of the word pairs
and the best rare word representation model hardly
crossing into 40.0s (correlation performance); and
(2) knowledge-based models are not enough to
provide high coverage whereas subword models,
which provide near-full coverage, are not seman-
tically as effective. The significant gap between
state of the art and IAA (around 50.0) encourages
future research to take this dataset as a challeng-
ing, yet reliable, evaluation benchmark.
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Abstract
The goal of Word Sense Disambiguation
(WSD) is to identify the correct meaning of a
word in the particular context. Traditional su-
pervised methods only use labeled data (con-
text), while missing rich lexical knowledge
such as the gloss which defines the meaning
of a word sense. Recent studies have shown
that incorporating glosses into neural networks
for WSD has made significant improvement.
However, the previous models usually build
the context representation and gloss represen-
tation separately. In this paper, we find that
the learning for the context and gloss repre-
sentation can benefit from each other. Gloss
can help to highlight the important words in
the context, thus building a better context rep-
resentation. Context can also help to locate
the key words in the gloss of the correct word
sense. Therefore, we introduce a co-attention
mechanism to generate co-dependent repre-
sentations for the context and gloss. Fur-
thermore, in order to capture both word-level
and sentence-level information, we extend the
attention mechanism in a hierarchical fash-
ion. Experimental results show that our model
achieves the state-of-the-art results on several
standard English all-words WSD test datasets.

1 Introduction
Word Sense Disambiguation (WSD) is a cru-
cial task and long-standing problem in Natu-
ral Language Processing (NLP). Previous re-
searches mainly exploit two kinds of resources.
Knowledge-based methods (Lesk, 1986; Moro
et al., 2014; Basile et al., 2014) exploit the lexical
knowledge like gloss to infer the correct senses of
ambiguous words in the context. However, super-
vised feature-based methods (Zhi and Ng, 2010;
Iacobacci et al., 2016) and neural-based meth-
ods (Kågebäck and Salomonsson, 2016; Raganato
et al., 2017a) usually use labeled data to train one
or more classifiers.

Context As they often play football together,
they know each other quite well

Glosses
g1: participate in games or sports
g2: perform music on an instrument
g3: behave in a certain way

Table 1: An example of the context and three glosses
of different senses according to the target word “play”.
It shows that the words “games/sports” in the gloss g1

can help to highlight the important words “football” in
the context and ignore the words “know each other”
which are useless for distinguishing the sense of word
“play”. Meanwhile, the context can potentially help
to stress on the words “games/sports” of the gloss g1

which is actually the correct sense for the target word.

Although both lexical knowledge (especially
gloss) and labeled data are of great help for WSD,
previous supervised methods rarely take the inte-
gration of knowledge into consideration. To the
best of our knowledge, Luo et al. (2018) are the
first to directly incorporate the gloss knowledge
from WordNet into a unified neural network for
WSD. This model separately builds the context
representation and the gloss representation as dis-
tributed vectors and later calculates their similarity
in a memory network. However, we find that the
learning of the representations of the context and
gloss can contribute to each other. We use an ex-
ample to illustrate our ideas. Table 1 shows that
the red words are more important than the blue
words when distinguishing the sense of the tar-
get word. In other words, we should pay more at-
tention to the words which can “overlap” between
the context and the gloss when generating the rep-
resentations of context and gloss. Therefore, we
introduce a co-attention mechanism to model the
mutual influence between the representations of
context and gloss.

Moreover, we find that both word-level and
sentence-level information are crucial to WSD. As
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shown in Table 1, the local word “football” is cru-
cial for distinguishing the sense of word “play”.
However, in more complex sentences such as “In-
vestors played it carefully for maximum advan-
tage” 1, sentence-level information is necessary.
Therefore, we extend the co-attention model in a
hierarchical fashion to capture both the word-level
and sentence-level semantic information.

The main contributions are listed as follows.

• We propose a novel way to integrate gloss
knowledge into a neural network for WSD
via a co-attention mechanism in order to
build better representations of context and
gloss. In this way, our model can benefit from
both labeled data and lexical knowledge.

• We further extend the attention mechanism
into a hierarchical architecture, since both
word-level and sentence-level information
are crucial to disambiguating the word sense.

• We conduct a series of experiments, which
show that our models outperform the state-of-
the-art systems on several standard English
all-words WSD test datasets.

2 Related work

Lexical knowledge is a fundamental component
of Word Sense Disambiguation and provides
rich resources which are essential to associate
senses with words (Navigli, 2009). Unsupervised
knowledge-based methods have shown the effec-
tiveness of textual knowledge such as gloss (Lesk,
1986; Basile et al., 2014) and the structural knowl-
edge (Moro et al., 2014; Agirre et al., 2014) of
the lexical databases. However, the prime short-
coming of knowledge-based methods is that they
have worse performance than supervised methods,
but they have wider coverage for the polysemous
words, thanks to the use of large-scale knowledge
resources (Navigli, 2009).

There are many other tasks such as Chinese
Word Segmentation (Zhang et al., 2018), Lan-
guage Modeling (Ahn et al., 2016), and LSTMs
(Xu et al., 2016; Yang and Mitchell, 2017) show
that integrating knowledge and labeled data into
a unified system can achieve better performance
than other methods which only learn from large
scale labeled data. Therefore, it’s a promising and

1Play in the sentence means behave in a certain way.

challenging study to integrate labeled data and lex-
ical knowledge into a unified system.

A few recent studies of WSD have exploited
several ways to incorporate lexical resources into
supervised systems. In the field of traditional
feature-based methods (Chen et al., 2015; Rothe
and Schütze, 2015), they usually utilize knowl-
edge (to train word sense embeddings) as features
of the classifier like the support vector machine
(SVM). In the field of neural-based methods, Ra-
ganato et al. (2017a) regard lexical resource LEX
which is extracted from the WordNet as an aux-
iliary classification task, and propose a multi-task
learning framework for WSD and LEX. Luo et al.
(2018) integrate the context and glosses of the tar-
get word into a unified framework via a memory
network. It encodes the context and glosses of the
target word separately, and then models the se-
mantic relationship between the context vector and
gloss vector in the memory module. What’s more,
Luo et al. (2018) utilize much more knowledge
about gloss via its semantic relations such as hy-
pernymy and hyponymy in WordNet. All studies
listed above show that integrating lexical resources
especially gloss into supervised systems of WSD
can significantly improve the performance. There-
fore, we follow this direction and seek a new way
of better integrating gloss knowledge.

Instead of building representations for context
and gloss separately, we use the inner connection
between the gloss and the context to promote the
representation of each other. The interaction pro-
cess can be modeled by a co-attention mechanism
which has made great progress in the question an-
swering task (Xiong et al., 2016; Seo et al., 2016;
Hao et al., 2017; Lu et al., 2016). We are enlight-
ened by this iterative procedure and introduce it
into WSD. We then make some adaptations to the
output of the original co-attention model to get the
score of each word sense.

3 The Co-Attention Model for WSD

In this section, we first give an overview of the
CAN: co-attention neural network for WSD (Fig-
ure 1). And then, we extend it into a hierarchical
architecture HCAN (Figure 2).

3.1 Overview

The overall architecture of the proposed non-
hierarchical co-attention model is shown in Figure
1. It consists of three parts:
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Figure 1: The proposed co-attention neural network.

• Input Embedding Layer: First of all, we en-
code the input context and each gloss 2 into
distributed representations C and G, which
are also called embeddings in the paper. In
Figure 1, if C and G are word embeddings,
we call the model CANw in the paper. If C
and G are sentence embeddings, we call the
model CANs.

• Co-Attention Layer: Then, each co-
attention mechanism in this layer generates
a context vector and a gloss vector according
to the corresponding gloss and context rep-
resentations. The outputs of the co-attention
layer are N pairs of context vector and gloss
vector.

• Output Layer: Finally, the output layer
takes the N pairs of context vector and gloss
vector as inputs and calculates the score of
each word sense.

Figure 1 shows the non-hierarchical co-
attention model which generates either word-level
representations (CANw) or sentence-level repre-
sentations (CANs). Since both the word-level and
sentence-level representations can help to disam-
biguate the word sense, we extend CAN into a
hierarchical model, named as HCAN (Figure 2).
The extensions of each layer are listed as follows:

1. The input embedding layer is extended to
two sub-layers in the hierarchical architecture
which encodes both word-level and sentence-
level representations.

2. The co-attention layer is also extended to two
attention layers for capturing two different
levels’ attention.

2There are N glosses in total, where N is the sense num-
ber of the target word in the context.

3. The output layer merges the outputs of the
two levels’ co-attention layers and generates
a sense probability over all word senses.

Since the non-hierarchical model CAN is a
subset or a simplified version of the hierarchi-
cal model HCAN, the next sections are organized
to illustrate the hierarchical co-attention model
HCAN 3 shown in Figure 2.

3.2 Input Embedding Layer
We denote each input sentence (context or gloss)
as a sequence of words [x1, x2, . . . , xTx ], where
Tx is the length of the input sentence.

3.2.1 Word Embedding
After looking up a pre-trained word embedding
matrix Ew 2 R

dw⇥V , we transfer a one-hot vec-
tor xi into a dw-dimensional vector ei. We treat
[e1, e2, . . . , eTx ] as the word-level representations
of the sentence. Specifically, context’s word-level
representations are denoted as [ec

1, e
c
2, . . . , e

c
n] and

i-th gloss’s word-level representations are denoted
as [egi

1 , egi
2 , . . . , egi

m], where n and m represent the
max length of context and gloss.

3.2.2 Sentence Embedding
We utilize a bi-directional long short-term mem-
ory network (Bi-LSTM) to generate the hidden
states of the input sentence. Each hidden state hi is
computed by the concatenation of the forward hid-
den state�!hi , and backward hidden state �hi . So we
treat [h1, h2, . . . , hTx ] as the sentence-level repre-
sentations. Specifically, context’s sentence-level
representations are denoted as [hc

1, h
c
2, . . . , h

c
n] and

i-th gloss’s sentence-level representations are de-
noted as [hgi

1 , hgi
2 , . . . , hgi

m].

3.3 Co-Attention Layer
3.3.1 Co-Attention Mechanism
The right part of Figure 2 illustrates the co-
attention mechanism which is the most crucial part
of the model. The inputs are context representa-
tions C 2 R

d⇥n and gloss representations G 2
R

d⇥m, where d is the dimension of the input rep-
resentation vector. The outputs are the gloss-aware
context vector c 2 R

d and the context-aware gloss
vector g 2 R

d. Therefore, we can define the co-
attention mechanism as a function

(c, g) = CoAt(C, G) (1)
3CANw and CANs will also be expressed in Section 3.4.
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Figure 2: Hierarchical co-attention model for WSD.

Next, we give the detailed definition of the co-
attention mechanism function CoAt. We begin
to compute a similarity matrix A, in which each
element Aij indicates the similarity between i-th
context word and j-th gloss word. The similarity
matrix A is computed by

A = C>UG 2 R
n⇥m (2)

where U 2 R
d⇥d is a trainable parameter.

Based on the similarity matrix A, we can com-
pute the gloss-to-context attention matrix Ac and
context-to-gloss attention matrix Ag.

Gloss-to-Context Attention. Since each gloss
word may focus on different context words, we
can generate a context representation which is
aware of a particular gloss word. Note that each
element of A in the j-th column indicates the
similarity between j-th gloss word and each con-
text word. Thus, we can get the attention weight
for each context word through a softmax function
across the column of A:

Ac
:j = softmax(A:j) (3)

where A:j denotes j-th column of A and Ac
:j de-

notes j-th column of Ac 2 R
n⇥m.

Hence we can get the gloss-aware context rep-
resentations Ĉ by a product of the initial context
representations C and attention weight matrix Ac:

Ĉ = CAc 2 R
d⇥m (4)

Note that j-th column in Ĉ means the context
representation according to the j-th gloss word.

Therefore, we can get the final context vector c
by summing across the column of Ĉ:

c =
X

j

Ĉ:j 2 R
d (5)

Context-to-Gloss Attention. Conversely, each
context word may focus on different gloss words,
we can generate a gloss representation which is
aware of a particular context word. Since each el-
ement of A in the i-th row indicates the similarity
between i-th context word and each gloss word,
we can get the attention weight of each gloss word
through a softmax function across the row of A (or
across the column of A>)

Ag
:j = softmax(B:j) (6)

where B = A>, B:j denotes j-th column of B
(also j-th row of A) and Ag

:j denotes j-th column
of Ag 2 R

m⇥n.
Now we can get the context-aware gloss repre-

sentations in the same way as Equation 4:

Ĝ = GAg 2 R
d⇥n (7)

Note that j-th column in Ĝ denotes the gloss
representation according to j-th context word.
Therefore, we can get the final gloss vector g by
summing across the column of Ĝ:

g =
X

j

Ĝ:j 2 R
d (8)
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3.3.2 Word-Level Co-Attention Layer
Since there are N glosses according to N different
word senses, we use N independent co-attention
mechanisms in both word-level and sentence-level
co-attention layers. And each layer shares a same
parameter U in Equation 2. For i-th word-level
co-attention mechanism, the inputs are word em-
beddings of the context and i-th gloss (in Sec-
tion 3.2.1). Define Cw = [ec

1, e
c
2, . . . , e

c
n] and

Gw
i = [egi

1 , egi
2 , . . . , egi

m], thus the outputs of i-th
word-level co-attention mechanism are computed
as

(cw
i , gw

i ) = CoAt(Cw, Gw
i ) (9)

Inspired by the well-known Lesk algorithm
(Lesk, 1986) and its variants (Basile et al., 2014),
the score of the i-th word sense can be computed
as the similarity of the context vector cw

i and the
gloss vector gw

i :

�w
i = cw

i · gw
i (10)

The word-level context embedding vector ĉw

can be computed as the average of the N gloss-
aware context vectors cw

i :

ĉw =
1

N

NX

i=1

cw
i (11)

3.3.3 Sentence-Level Co-Attention Layer
Same to word-level co-attention layer, for the i-
th co-attention mechanism, the inputs of sentence-
level co-attention layer are Bi-LSTM hidden
states of context and the i-th gloss (in Sec-
tion 3.2.2). Define Cs = [hc

1, h
c
2, . . . , h

c
n] and

Gs
i = [hgi

1 , hgi
2 , . . . , hgi

m], thus the outputs of i-th
sentence-level co-attention mechanism are com-
puted as

(cs
i , g

s
i ) = CoAt(Cs, Gs

i ) (12)

Like Equation 10, we can also calculate a
sentence-level score for the i-th word sense by a
dot product of the context vector cs

i and the gloss
vector gs

i :
�s

i = cs
i · gs

i (13)

The sentence-level context embedding vector ĉs

is also computed as the average of N gloss-aware
context vectors cs

i :

ĉs =
1

N

NX

i=1

cs
i (14)

3.4 Output Layer
The output layer aims to calculate the scores of N
senses of the target word xt and finally outputs a
sense probability distribution over the N senses.
The final score of each sense is a weighted sum of
two values: µ and ⌫. µ is the similarity score of
gloss and context, which reveals the influence of
knowledge. ⌫ is generated by the context vector
through a linear projection layer, which reveals the
influence of labeled data. Finally, the probability
distribution ŷ over all the senses of the target word
is computed as

ŷ = softmax(�xtµ + (1� �xt)⌫))

where �xt 2 [0, 1] is the parameter for word xt.
For the non-hierarchical model CAN in Fig-

ure 1, the final score µ and ⌫ are generated only
by the outputs of the one level co-attention layer.
Specifically, for the word-level co-attention model
CANw:

µ = [�w
1 , �w

2 , . . . , �w
N ] (15)

⌫ = Wxt ĉ
w + bxt (16)

For the sentence-level co-attention model
CANs:

µ = [�s
1, �

s
2, . . . , �

s
N ] (17)

⌫ = Wxt ĉ
s + bxt (18)

For the hierarchical co-attention model HCAN
in Figure 2, the outputs of the word and sen-
tence level layer are merged together to generate
the final results. Therefore, the final similarity
score between i-th gloss and context is computed
as the weighted sum of word-level score �w

i and
sentence-level score �s

i :

�i = ↵�w
i + (1� ↵)�s

i (19)

Meanwhile, the final context embedding vector
is also generated by a combination of two lev-
els’ context embedding vector: ĉw and ĉs. In
order to transfer from word-level encoding space
to sentence-level encoding space, we introduce a
non-linear projection layer on top of the word-
level context vector ĉw. Therefore, the final con-
text embedding vector ĉ is generated by

ĉ = tanh(Wĉw + b) + ĉs (20)

In total, for the hierarchical co-attention model
HCAN:

µ = [�1, �2, . . . , �N ] (21)
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⌫ = Wxt ĉ + bxt (22)

It’s noteworthy that in Equation 16, 18 and 22,
each ambiguous word xt has its corresponding
weight matrix Wxt and bias bxt .

During training, all model parameters ✓ are
jointly learned by minimizing a cross-entropy loss
between ŷ and the true label y.

L(✓) = � 1

M

MX

i=1

NiX

j=1

yij log ŷij (23)

where M is the number of examples in the dataset,
Ni is the word sense number of i-th example, yij

and ŷij are the true and predict probability of the
i-th example belongs to j-th label.

4 Experiments and Evaluation

4.1 Datasets
Validation and Evaluation Datasets: We evalu-
ate our model on several English all-words WSD
datasets. For a fair comparison, we use the bench-
mark datasets proposed by Raganato et al. (2017b)
which include five standard all-words fine-grained
WSD datasets from the Senseval and SemEval
competitions:

• Senseval-2 (Edmonds and Cotton, 2001,
SE2): It consists of 2282 sense annotations,
including nouns, verbs, adverbs and adjec-
tives.

• Senseval-3 task 1 (Snyder and Palmer, 2004,
SE3): It consists of 1850 sense annotations
from three different domains (editorial, news
story and fiction), including nouns, verbs, ad-
verbs and adjectives.

• SemEval-07 task 17 (Pradhan et al., 2007,
SE7): It consists of 455 sense annotations of
nouns and verbs, which is the smallest among
the five datasets. Like Luo et al. (2018) and
Raganato et al. (2017a), we choose SE7 as
the validation set.

• SemEval-13 task 12 (Navigli et al., 2013,
SE13): It consists of 1644 sense annotations
from thirteen documents of various domains.
SE13 contains nouns only.

• SemEval-15 task 13 (Moro and Navigli,
2015, SE15): It’s the latest WSD dataset,
which consists of 1022 sense annotations
from three heterogeneous domains.

Training Dataset: SemCor 3.0 is the largest
manually annotated corpus for WSD, which was
also used by Luo et al. (2018), Raganato et al.
(2017a), Raganato et al. (2017b), Iacobacci et al.
(2016), Zhi and Ng (2010), etc. It consists of
226,036 sense annotations from 352 documents,
which includes nouns, verbs, adverbs and adjec-
tives.

Knowledge Base: The original WordNet ver-
sion of sense inventory for SemCor 3.0, SE2, SE3,
SE7, SE13, SE15 are 1.4, 1.7, 1.7.1, 2.1, 3.0
and 3.0, respectively. Raganato et al. (2017b)
map all the sense annotations in the training and
test datasets to WordNet 3.0 via a semi-automatic
method. Therefore, We choose WordNet 3.0 as the
sense inventory for extracting the gloss.

Data Noun Verb Adj Adv
SE2 1066 517 445 254
SE3 900 588 350 12
SE7 159 296 0 0
SE13 1644 0 0 0
SE15 531 251 160 80
SemCor 87002 88334 31753 18947

Table 2: Statistics of the different parts of speech
annotations in English all-words WSD train and test
datasets.

.

4.2 Settings

We use the validation set (SE7) to find the optimal
hyper parameters of our models: the word embed-
ding size dw, the hidden state size ds of LSTM,
the optimizer, etc. However, since there are no ad-
verbs and adjectives in SE7, we randomly sample
some adverbs and adjectives from training dataset
into SE7 for validation. We use the pre-trained
word embeddings 4. The hidden state size ds is
256. The mini-batch size is set to 32. The opti-
mizer is Adam (Kingma and Ba, 2014) with 0.001
initial learning rate. In order to avoid over-fitting,
we use dropout regularization on the outputs of
LSTM and set drop rate to 0.5. Orthogonal ini-
tialization is used for initialing weights in LSTM
and random uniform initialization with range [-
0.1, 0.1] is used for others. Training runs for up
to 50 epochs with early stopping if the validation
loss doesn’t improve within the last 5 epochs.

4We download the pre-trained word embeddings from
https://github.com/stanfordnlp/GloVe
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Test Datasets Concatenation of Test Datasets
System SE2 SE3 SE13 SE15 Noun Verb Adj Adv All
MFS baseline* 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
Leskext+emb (Basile et al., 2014) 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
Babelfy (Moro et al., 2014) 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4
IMS (Zhi and Ng, 2010)* 70.9 69.3 65.3 69.5 70.5 55.8 75.6 82.9 68.9
IMS+emb (Iacobacci et al., 2016)* 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
Bi-LSTM (Kågebäck and Salomonsson, 2016)* 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
Bi-LSTM+att.+LEX (Raganato et al., 2017a) 72.0 69.4 66.4 72.4 71.6 57.1 75.6 83.2 69.9
Bi-LSTM+att.+LEX+POS (Raganato et al., 2017a) 72.0 69.1 66.9 71.5 71.5 57.5 75.0 83.8 69.9
GAS (Linear) (Luo et al., 2018) 72.0 70.0 66.7 71.6 71.7 57.4 76.5 83.5 70.1
GAS (Concatenation) (Luo et al., 2018) 72.1 70.2 67.0 71.8 72.1 57.2 76.0 84.4 70.3
GASext (Linear) (Luo et al., 2018) 72.4 70.1 67.1 72.1 71.9 58.1 76.4 84.7 70.4
GASext (Concatenation) (Luo et al., 2018) 72.2 70.5 67.2 72.6 72.2 57.7 76.6 85.0 70.6
CANw 72.3 69.8 65.5 71.1 71.1 57.3 76.5 84.7 69.8
CANs 72.2 70.2 69.1 72.2 73.5 56.5 76.6 80.3 70.9
HCAN 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

Table 3: F1-score (%) for fine-grained English all-words WSD on the test sets. Bold font indicates best systems.
The * represents the systems which don’t use any lexical knowledge. The five blocks list the baseline, 2 knowledge-
based systems, 2 supervised feature-based systems, 7 neural-based systems and our models, respectively.

.

4.3 Results and Discussion

4.3.1 English all-words results
Table 3 shows the results on four test datasets and
different parts of speech. Note that all the systems
in Table 3 are trained on SemCor 3.0.

In the first block, we show the MFS baseline,
which simply selects the most frequent sense in
the training dataset.

In the second block, we show two lat-
est knowledge-based (unsupervised) systems.
Leskext+emb is a variant of the well-known Lesk
algorithm (Lesk, 1986) which computes the over-
lap of gloss and context as the score of word
sense. Babelfy (Moro et al., 2014) is a graph-
based system performed on BabelNet (Navigli and
Ponzetto, 2012). We can find that MFS is a strong
baseline for knowledge-based systems.

In the third block, we show two traditional su-
pervised systems which only learn from labeled
data based on manual designed features. IMS (Zhi
and Ng, 2010) is a flexible framework which trains
K SVM classifiers for K polysemous words. Its
variant IMS+emb (Iacobacci et al., 2016) adds
word embedding features into IMS. Both of them
train a dedicated classifier for each word individu-
ally. In other words, each target word has its own
parameters. Therefore, IMS+emb is a hard to beat
system for many neural networks which also only
uses labeled data but builds a unified system for all
the polysemous words.

In the fourth block, we show four latest neu-
ral networks. Except for Bi-LSTM (Kågebäck
and Salomonsson, 2016), which is a baseline for

neural models, the others all utilize not only
labeled data but also lexical knowledge. Bi-
LSTM+att.+LEX (Raganato et al., 2017a) and its
variant Bi-LSTM+att.+LEX+POS are multi-task
learning frameworks for WSD, POS tagging and
LEX with context self-attention mechanism. GAS
(Luo et al., 2018) is a gloss-augmented neural net-
work in an improved memory network paradigm.
The best neural network is GASext which extends
from GAS and uses more gloss knowledge via the
semantic relations in WordNet. 5

In the last block, we give the performance of our
proposed co-attention models for WSD. We can
see that our best model HCAN improves state-of-
the-art result by 0.5% on the concatenation of four
datasets. Even though we use less gloss knowl-
edge than the previous best system GASext, our
co-attention models can still get the best results
on three test datasets. For non-hierarchical mod-
els, CANs performs much better than the CANw,
which reveals that global sentence-level informa-
tion is much more useful than local word-level
information. Integration of these two levels’ in-
formation (HCAN) can further boost the perfor-
mance. What’s more, we find that our best model
HCAN performs best on all parts of speech, ex-
cept for adverbs. However, there are only 346 ex-
amples about adverbs which account for 5% of the
four test datasets, thus 1% drop on adverbs means
only 4 examples are wrongly classified which will
make little influence on the overall score.

5The released code can be found in https://github.
com/luofuli/word-sense-disambiguation
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Test Datasets Concatenation of Test Datasets
System SE2 SE3 SE13 SE15 Noun Verb Adj Adv All
Full Model 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1
No Attention 70.2 68.1 67.6 68.9 71.2 54.3 74.3 82.1 68.8
W/O Word-level Attention 71.5 70.4 68.2 71.7 72.7 57.1 75.3 81.8 70.5
W/O Sentence-level Attention 70.0 69.5 66.8 70.3 71.3 55.2 74.4 83.0 69.1
W/O Context2Gloss Attention 70.7 69.7 68.2 71.0 72.2 55.2 75.5 82.7 69.9
W/O Gloss2Context Attention 72.3 70.3 68.2 71.9 73.2 56.4 75.4 83.8 70.7

Table 4: Ablation study of the proposed model HCAN.
.

4.4 Ablation Study
In this part, we further discuss the impacts of the
components of our hierarchical model HCAN. In
order to ablate the co-attention mechanism, we re-
place the co-attention function CoAt in Equation
1 with a function Avg which simply calculates the
average of input representation vectors. Specifi-
cally, in function Avg, the outputs c =

P
j C:j

and g =
P

j G:j .
We re-train HCAN by ablating certain compo-

nents:

• No Attention: We totally replace the co-
attention function CoAt with Avg in both
word-level and sentence-level co-attention
layers. This is the baseline for comparison.

• W/O Word-level Attention: We replace the
word-level co-attention function CoAt with
Avg. Note that this ablation model is differ-
ent from CANs, for that the word-level rep-
resentation vector ĉw is used to calculate the
final score in this ablation model.

• W/O Sentence-level Attention: We replace the
sentence-level co-attention function CoAt
with Avg. Note that this ablation model is not
same as CANw, for the sentence-level repre-
sentation vector ĉs is also used to calculate
the final score in this ablation model.

• W/O Context2Gloss Attention: We remove
the attention of generating the context vector,
which means all elements in Ag are set to 1.

• W/O Gloss2Context Attention: We remove
the attention of generating the gloss vector,
which means all elements in Ac are set to 1.

Table 4 indicates the effectiveness of differ-
ent components in the proposed model HCAN. It
shows that without any attention mechanism, the
overall score declines 2.3%.

Ablated versions without word, sentence level
co-attention decline 0.6% and 2.0%, respectively.
It reveals that sentence-level co-attention mech-
anism seems much more important to HCAN,
which is consistent with the scores of CANs

and CANw. However, we find that the re-
sults of ablated versions without word-level and
sentence-level co-attention are worse than CANs

and CANw. We hypothesize that it is because that
the context and gloss vector generated from the
layer (or level) which doesn’t use attention mech-
anism may bring some noise to the final scores.

Without the context-to-gloss attention, the score
declines 1.2% on concatenation of the four test
datasets. Conversely, without the gloss-to-context
attention, the score declines 0.4%. It is proba-
bly due to that the context-to-gloss attention which
generates the context-aware gloss vector is more
direct to find out the correct word sense.

In conclusion, the results in Table 4 show that
all components in the proposed hierarchical co-
attention model HCAN can contribute to boosting
the performance of WSD.

5 Conclusions

In this paper, we investigate the problem of in-
corporating gloss knowledge into neural network
for Word Sense Disambiguation. We find that the
gloss can highlight the important words in the con-
text, and later contribute to the representation of
the context. Meanwhile, context can also help
to focus on the words in gloss of the right word
sense. Therefore, we propose a co-attention mech-
anism to model the gloss-to-context and context-
to-gloss attention. Furthermore, in order to cap-
ture not only local word-level features but also
global sentence-level features, we extend the co-
attention model into a hierarchical architecture.
The experimental results show that our proposed
models achieve the state-of-the-art results on sev-
eral standard English all-words WSD datasets.
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Abstract

We encounter metaphors every day, but only
a few jump out on us and make us stum-
ble. However, little effort has been devoted
to investigating more novel metaphors in com-
parison to general metaphor detection efforts.
We attribute this gap primarily to the lack of
larger datasets that distinguish between con-
ventionalized, i.e., very common, and novel
metaphors. The goal of this paper is to al-
leviate this situation by introducing a crowd-
sourced novel metaphor annotation layer for
an existing metaphor corpus. Further, we an-
alyze our corpus and investigate correlations
between novelty and features that are typically
used in metaphor detection, such as concrete-
ness ratings and more semantic features like
the Potential for Metaphoricity. Finally, we
present a baseline approach to assess novelty
in metaphors based on our annotations.

1 Introduction

Metaphors have received considerable interest in
NLP in recent years (see Shutova (2015)). Re-
search questions range from direct detection of
metaphors in text (linguistic metaphors) to find-
ing mappings between conceptual source and tar-
get domains (conceptual metaphors).

However, an important aspect of metaphors—
novelty—is often overlooked, or intentionally dis-
regarded. Consider the metaphors (bold) in the
following examples:

(1) We all live on tight budgets, but we still need
to have some fun.

(2) They were beginning to attract a penumbra
of gallery-goers, as though they were offering
a guided tour.

The metaphor tight budgets in (1) is an often used
collocation and therefore highly conventionalized.

While the basic senses of tight—e.g., being phys-
ically close together or firmly attached—conflict
with the more abstract budget, the metaphoric
use as meaning limited can be readily understood.
In contrast, the use of penumbra in (2) is more
creative and novel. Its literal meaning is “an
area covered by the outer part of a shadow.”1

Its metaphoric meaning is seldom encountered:
Shadows follow objects that cast them, and espe-
cially penumbras can be perceived as having fuzzy
outlines; attributes which are picked up by the
metaphorical sense of a rather unspecified group
of people following someone in differing vicinity.

Common linguistic metaphor definitions used
in NLP (Steen et al., 2010; Tsvetkov et al.,
2014) do not differentiate between convention-
alized and novel metaphors. Some even allow
for auxiliary verbs and prepositions to be anno-
tated as metaphors when they are not used in
their original sense (e.g., the non-spatially used
on in “She wrote a study on metaphors”). While
such cases can be filtered out rather easily from
any given corpus—e.g., by using POS tag and
lemma filters—many conventionalized metaphors
persist. Existing work avoids this problem par-
tially by only annotating certain grammatical con-
structions, such as adjective–noun or verb–object
relations (Shutova et al., 2016; Rei et al., 2017).
However, these too usually do not distinguish be-
tween conventionalized and novel metaphors.

Following Shutova (2015), we deem the dis-
tinction between conventionalized and novel
metaphors important, because the meaning of con-
ventionalized metaphors can usually be found in
dictionaries or other resources like WordNet—
novel metaphors on the other hand pose a more
difficult challenge. But the lack of resources incor-
porating this distinction leads to few researchers

1https://www.macmillandictionary.com/dictionary/
american/penumbra
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investigating novel metaphors, or the related mea-
sure of metaphoricity. They use small datasets
that have been manually annotated by experts (Del
Tredici and Bel, 2016), or focus crowdsourcing
studies on a small number of instances (Dunn,
2014). It is only recently that any work has in-
troduced larger-scale novel metaphor annotations
(Parde and Nielsen, 2018). In contrast to our ap-
proach, they collect annotations on a relation level
(see also Section 2).

Annotating metaphors is not an easy task, due
to the inherent ambiguity and subjectivity. There-
fore, we investigate approaches for annotating
novelty in metaphors, before closing the resource
gap for token-based annotations by creating a
layer of novelty scores.

Our contributions are the following:

(1) We augment an existing metaphor corpus
by assessing metaphor novelty on a token
level using crowdsourcing, enabling larger
research on novel metaphors,

(2) we analyze our corpus for correlation with
features used for general metaphor detection
or metaphoricity prediction, and

(3) we show that a baseline approach based on
features usually used for (binary) metaphor
detection can be useful for distinguishing
novel and conventionalized metaphors.

In Section 2, we first discuss annotation guide-
lines that have been used for existing datasets, as
well as prior work on novel metaphor detection
and crowdsourcing in NLP. This discussion is fol-
lowed by Section 3, where we detail the base cor-
pus and the crowdsourced creation of our annota-
tion layer. In Section 4, we describe our baseline
for detecting novel metaphors and its results. We
conclude in Section 5 with a summary of our con-
tributions, and an outlook of what our newly intro-
duced layer of annotations can enable.

2 Related Work

Annotating metaphors is a difficult task, because
there is no single definition that can be adhered to.
Instead, different researchers formulate their own
versions, which can vary quite substantially.

The Pragglejaz Group (2007) created influen-
tial metaphor annotation guidelines, the Metaphor
Identification Procedure (MIP). After reading a
text, an annotator assesses each token as being

used metaphorically or not; i.e., if the token has
a more basic meaning that can be understood in
comparison with the one it expresses in its current
context. More basic is described as being:

• More concrete; what they evoke is easier to
imagine, see, hear, feel, smell, and taste.

• Related to bodily action.

• More precise (as opposed to vague).

• Historically older.

They note that this basic meaning does not nec-
essarily have to be the most frequent one. An
extended version, MIPVU, was used to annotate
parts of the British National Corpus (BNC Consor-
tium, 2007, BNC), resulting in the VU Amsterdam
Metaphor Corpus (Steen et al., 2010, VUAMC).
Shutova and Teufel (2010) adapt the MIP as a pre-
requisite to annotating source and target domains
of metaphor—the metaphoric mapping—in parts
of the BNC.

Others use rather relaxed guidelines. Tsvetkov
et al. (2014) rely on intuitive definitions by their
annotators, not specifying metaphor more closely.
They ask their annotators to mark words that
“are used non-literally in the following sentences.”
Jang et al. (2015) provide a Wikipedia definition of
metaphor to users in a crowdsourcing study. Sub-
sequently, the users are tasked with annotating fo-
rum posts by deciding “whether the highlighted
word is used metaphorically or literally.”

A common trait of the listed works is that
they do not distinguish between nuances of
metaphoricity. Instead, they impose a binary
scheme (metaphoric/literal) on the rather diffuse
language phenomenon of metaphor. In contrast,
Dunn (2014) introduces a scalar measurement of
metaphoricity on a sentence level. He created a
corpus of 60 genre-diverse sentences with varying
levels of metaphoricity, which are rated in three
crowdsourcing experiments: a binary selection, a
ternary selection, and an ordering approach. The
mean value for each sentence is then used as the
metaphoricity value. Dunn (2014) uses this data to
derive a computational measure of metaphoricity,
which he then employs in an unsupervised system
to label metaphoric sentences in the VUAMC. The
evaluation, however, is only done on the binary la-
bels provided therein.

In a similar direction, Del Tredici and Bel
(2016) present their concept of Potential of
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genre tokens metaphors content tokens content metaphors novel metaphors

acprose 75,272 9,170 42,544 5,505 102
convrsn 57,249 3,841 22,019 1,774 25
fiction 54,115 5,349 26,935 3,174 94
news 51,672 7,580 29,346 4,727 132

total 238,308 25,940 120,844 15,180 353

Table 1: VUAMC corpus statistics. Content tokens include adjectives, adverbs, verbs (without have, be,
do), and nouns. For the purpose of this table, metaphors with a novelty score higher than T = 0.5 are
considered novel (the possible range is [–1,1]).

Metaphoricity (POM) of verbs. The POM de-
scribes the inherent potential of a verb to take on
a metaphoric meaning, derived from its distribu-
tional behavior. They infer that low-POM verbs
are only able to have low degrees of metaphoricity,
thus can only evoke conventionalized metaphors.
Therefore, they propose to exclude such low-POM
verbs from novel metaphor detection systems.

Haagsma and Bjerva (2016) use violations
of selectional preferences (Wilks, 1978) to find
novel metaphors. Selectional preferences describe
which semantic classes a verb prefers as its direct
object. Since they are often mined from large cor-
pora and based on frequency, they argue that this
feature is more suited for novel metaphor detec-
tion than for general detection of (also convention-
alized) metaphors. They evaluate their approach
on the VUAMC; however, they acknowledge that
their usage of this corpus is not optimal because it
contains many conventionalized metaphors.

Parde and Nielsen (2018) create a corpus of
novel metaphor annotations. For their crowd-
sourced annotation, they use a scale with four op-
tions. Unlike our approach, they annotate rela-
tions between words as novel or conventionalized.
On the one hand, this is a sensible approach be-
cause generally the context of a word determines
its metaphoricity (and indeed, its novelty in case
of metaphoric use). On the other hand, such anno-
tations lack the flexibility and ease of use of token-
based annotations for which the context is not de-
fined a priori.

We tackle the lack of data by annotating an ex-
isting corpus using crowdsourcing; i.e., by split-
ting up the task in many small chunks which
different, non-expert annotators are instructed to
complete. Crowdsourcing has been used for a va-
riety of annotation tasks in NLP, often using dif-
ferent study designs. Snow et al. (2008) obtain

good annotation results for five tasks with dif-
ferent setups: two tasks ask for numerical val-
ues (affect recognition, word similarity), two other
tasks require a binary decision (textual entailment
recognition, event ordering), and a final task pro-
vides three options for the annotators (word sense
disambiguation). Sukhareva et al. (2016) utilize
crowdsourcing to annotate semantic frames. They
design their task as a decision tree, with annotators
moving down the tree when annotating. Moham-
mad et al. (2016) use crowdsourcing for metaphor
and emotion annotation in order to investigate
their correlation. They employ an ordering ap-
proach to annotation, and only consider verbs that
already contain a metaphoric sense in WordNet.
Kiritchenko and Mohammad (2016) obtain anno-
tations for sentiment associations via crowdsourc-
ing. They use Best–Worst Scaling (Louviere and
Woodworth, 1990), an annotation approach which
creates scores from ranking annotations.

3 Corpus

To obtain a corpus of novel metaphor annotations,
we employ an existing metaphor corpus. This
can potentially reduce ambiguity for annotators
and allows us to focus on the creation of nov-
elty scores. We use the VU Amsterdam Metaphor
Corpus (Steen et al., 2010) as the base corpus
for our novelty annotations due to its compara-
bly large size and genre diversity. It is comprised
of over 200,000 tokens from four genres: aca-
demic, fiction, and news texts, and conversation
transcripts (Table 1). Further, reusing existing an-
notations enables us to only query annotators for
novelty of already annotated metaphors, instead of
having them analyze every token.

Using crowdsourcing (Amazon Mechanical
Turk), we first conduct a pilot study to choose
among four different annotations methods. We
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then employ the best method to collect annotations
and create an additional novelty score between 1
(novel) and �1 (conventionalized) for each token
labeled as metaphor in the VUAMC. Note that
non-content words like prepositions and auxiliary
verbs (have, be, do) are filtered out beforehand.
Our annotations/scores can be integrated into the
original VUAMC resource. We make the annota-
tions and scripts to embed them into the original
corpus publicly available.2

3.1 Pilot Study
Similar to Dunn (2014), we consider multiple an-
notation approaches. We compare them in a pilot
study using 210 metaphor tokens with their sen-
tence context, randomly chosen from the fiction
subcorpus. For the sake of a meaningful evalua-
tion, we ensured that 25% of these metaphorically
used tokens were novel metaphors. Before choos-
ing one approach for the entire corpus, we com-
pare the following four annotation approaches:

• binary annotation: crowd workers decide if
a given metaphoric token is used in a novel or
conventionalized way;

• scale annotation: crowd workers decide on
the novelty of a given metaphoric token on a
four-point scale, from very novel to very con-
ventionalized;

• scale annotation (no metaphor): crowd
workers decide on the “unusualness” of a
given token in its context on a four-point
scale, from I’ve never heard it before to I’m
using it everyday; without giving information
that the tokens represent metaphors;

• best–worst scaling: crowd workers pick the
most novel and the most conventionalized
metaphor from four samples.

Conceptually, the binary annotation should put
the least cognitive load on the annotator, resulting
in fast annotation times and efficient completion of
the task. However, this method does not allow for
nuances in annotation. Dunn (2014) counters this
problem by assigning as the score the percentage
of “metaphoric” labels for an instance. But this
solution is only feasible for smaller datasets, as
it requires many annotations per instance to yield
nuanced scores.

2https://github.com/UKPLab/
emnlp2018-novel-metaphors

IAA F1 avg assignment
completion time

binary 0.38 0.75 1:39 min
scale 0.32 0.75 1:04 min
scale w/o met. 0.16 0.67 2:10 min
BWS — 0.84 1:58 min

Table 2: Comparison of the approaches investi-
gated in the pilot study. Shown are inter-annotator
agreement (Krippendorff’s ↵, after mapping the
scale annotations to binary labels), evaluation
against our silver standard (F1), and average com-
pletion time for an assignment (in case of binary,
scale, and scale without metaphor this amounts to
one decision, for BWS to two). Note that there
is no IAA for the BWS approach because no two
tuples are the same.

The next two approaches, scale annotation and
scale annotation (no metaphor), try to mitigate
this problem by introducing four options to choose
from. We choose a scale of four instead of three
options to force the annotators to indicate a pref-
erence, rather than allowing a “neutral” answer.
The difference between both scale approaches is
in the guideline descriptions; for the second scale
approach (no metaphor), we remove any mention
of metaphor, and instead use paraphrases (e.g., in-
stead of “novel metaphor” we use “I have not seen
it before”). Our motivation behind this rephrasing
is that we want to avoid confusion especially with
regards to very conventionalized metaphors. By
strictly asking for novelty of the expression/usage,
we potentially simplify the task for the annotator.

The last approach uses best–worst scaling
(BWS, see also Section 2). It has the advantage
of not explicitly asking the annotator for a deci-
sion on a singular token/metaphor. Instead, they
are asked to compare (four) different metaphors
and select the most novel and the most conven-
tionalized. A disadvantage is the higher workload
for the annotator, since they have to read four sen-
tences for one assignment.

In Table 2, we give a short overview of inter-
annotator agreement (Krippendorff’s ↵), the av-
erage completion time of an assignment, and a
comparison with our semi-automatically created
silver standard (F1). The latter is built by using
the majority vote of all four methods; ties are re-
solved manually by looking into the individual an-
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notations. To obtain binary labels from the two
scale approaches for majority voting, we map the
two “more novel” options to novel, and the other
two options to conventionalized. For the BWS
approach, we first average the number of novel
metaphors from the other three methods. From
a sorted, decreasing list of BWS scores we then
mark this many metaphors as novel. We compare
against our own annotations as a sanity check.

Regarding completion time, we observe that the
scale method is the fastest by a wide margin. This
discrepancy is somewhat surprising, as the scale
method introduces two more options to consider
compared to the binary method. Apparently, these
additional, intermediate options make it easier for
annotators to come to a decision, especially for
edge cases. On the other hand, scale without
metaphors takes twice as long as the scale method.
The latter only differs from the former in its inclu-
sion of metaphor in the task description and the la-
bels, which we thus interpret as creating a setting
for the annotators where they may expect to have
some kind of intuition about the task, and thus are
more confident (and faster) in completing. Given
the long completion time in conjunction with the
lower F1 score and the very low IAA, it seems
clear that omitting the metaphor information and
using a more colloquial task description make the
scale annotation (no metaphor) by far the most dif-
ficult for workers to complete, resulting in the least
usable annotations. While best–worst scaling is
time consuming as well, it yields the best results
with regards to the silver standard (F1 = 0.84) by a
large margin. We thus choose BWS for annotating
the full corpus. Further details on the pilot study
can be found in Wieland (2018).

3.2 Corpus Creation

We design our guidelines (see Appendix A) to be
simple, but include redundancy in the description
to address frequent misunderstandings and ambi-
guities. We also explicitly mention idioms and
unrecognizable metaphors as cases of convention-
alized metaphors, because these were sources of
confusion in our pilot study. Unrecognizable here
means that a word is used in an established, com-
monly understood—but not the most concrete—
sense; e.g., hard in “She fought hard.” Addi-
tionally, the annotators are provided with example
metaphors of differing novelty.

After filtering out prepositions and auxiliary

verbs (have, be, do) using the POS tags supplied
by the VUAMC, we collect annotations covering
15,180 metaphors in total (Table 1). We only in-
clude workers located in the US. For creation of
the best–worst scaling tuples, and for aggregation
of the annotations, we use the scripts provided by
Kiritchenko and Mohammad (2016).3 We use a
best-worst scaling factor of 1.5 and four items per
tuple. Thus, each metaphor appears in six differ-
ent best-worst scaling comparisons. This results in
22,770 best–worst scaling items to be annotated.

3.3 Analysis
Overall statistics about our created annotations are
shown in Table 1 (along with the already existing
annotations). For the sake of this overview, we in-
troduce a threshold T = 0.5, and treat metaphors
with a BWS score equal to or above this thresh-
old as novel, metaphors with a BWS score below
the threshold as conventionalized. For example,
in this way the metaphor “[...] the artistic tem-
perament which kept her tight-coiled as a spring
[...]” (0.514) is treated as novel, while “To quench
[thirst] is more than to refresh [...]” (0.424) is
treated as conventionalized. However, since we
provide the scores, this threshold can be adjusted
to suit a given application. Note that, while novel
metaphors are arguably much more scarce than
conventionalized ones, BWS creates scores which
are approximately normally distributed, support-
ing our threshold choice.

Before we conduct a more in-depth analysis of
the annotated metaphors, we show some exam-
ples. In Table 3, we list four novel and four con-
ventionalized metaphors (as annotated). A good
example for a novel metaphor is the description
of “words [...] as a coat-hanger” in Table 3 (3).
This usage cannot be found in dictionaries, and
clearly constitutes creative language use. In con-
trast, the meaning to experience something bad of
to go through [a situation] (ibid., (7)), or the sense
to do/conduct of to get [something] done (ibid.,
(5)), are strongly conventionalized, as indicated by
their inclusion in dictionaries.4

We also group the tokens by lemma to exam-
ine if certain words are more likely to be used
in a novel metaphoric way. Inspecting the mean

3http://saifmohammad.com/WebPages/BestWorst.html
4e.g., https://www.macmillandictionary.com/dictionary/

american/go-through#go-through 7,
https://www.macmillandictionary.com/dictionary/american/
get#get 60
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no score metaphor in context

(1) 0.765 Ron Todd [...] warned that party leaders could not expect everybody to ‘goose-step’
in the same direction once the policy had been carried.

(2) 0.750 Westerns have a gladiatorial, timeless quality.
(3) 0.735 Allan Ahlberg says: ‘In the past, a lot of children’s books seemed to be the work

of talented illustrators whose pictures looked brilliant framed in a gallery, but when
you tried to read the book, there was nothing there, because the words started as a
coat-hanger to hang pictures on.’

(4) 0.727 thus one can and must say ... that each fight is the singularisation of all the circum-
stances of the social whole in movement and that by this singularisation, it incarnates
the enveloping totalization which the historical process is.

(5) �0.765 If the complaint is proved, a nuisance order is made requiring the defendant to get the
necessary work done.

(6) �0.765 Apart from some dark patches on the wall that he hadn’t noticed before, there was
nothing to see.

(7) �0.774 In relation to the sentence stem ‘A girl and her mother ...’, girls often produce responses
like ‘often go through a bad patch for a year but once they learn to understand each
other, become the best of friends’ or ‘can help each other with their problems’.

(8) �0.871 The analyst is then forced on the defensive, explaining why new features can not be
included because they are technically difficult or prohibitively expensive.

Table 3: Example uses of very novel and very conventionalized annotated metaphorical tokens (bold) in
sentence context, according to our aggregated annotations. Scores near 1 denote strong novelty, scores
near �1 indicate very conventionalized metaphors.

scores, we see the large conventionalization of
words such as get (�0.37), see (�0.35), or new
(�0.35). Examples for words used in a mostly
novel way are envelop (0.53), incarnate (0.50),
and thrust (0.46). In the following sections, we ex-
amine the correlations with frequency and POM,
which give further weight to the examples.

Further, we investigate how novelty is dis-
tributed over the different subcorpora (also see
Table 1). Somewhat expectedly, the metaphors
used in the academic subcorpus are mostly con-
ventionalized (1.9% novel metaphors). A larger
percentage of novel metaphors can be found in the
news (2.8%) and fiction (3.0%) subcorpora. The
conversation subcorpus shows the least amount
of novel metaphors (1.3%), which we interpret
as natural—more novel metaphors require some
amount of creativity to create, which is arguably
easier in writing. We also show the distribution of
novel metaphors across POS tags (Table 4). It is
striking that the verbs are least represented among
the novel metaphors, especially compared to their
overall metaphoric occurrence. In contrast, adjec-
tives/adverbs and nouns are more likely to be used
in a novel way.

POS tokens metaphors novel
metaphors

nouns 47,171 5,513 145
verbs 27,831 6,513 88
adj/adv 45,842 3,154 120

Table 4: Metaphor annotations grouped by POS
tags. For this overview, we treat metaphors with
a score above T = 0.5 as novel.

Correlation with Token Frequency We com-
pare how the token frequency is related to nov-
elty. Intuitively, words that are seldom used should
show a higher (average) novelty. In turn, we ex-
pect often used words to exhibit a wider range
of (already conventionalized) senses, thus having
lower (average) novelty. We obtain token fre-
quencies from a Wikipedia dump, and correlate
them with the mean novelty scores from our an-
notations (disregarding part-of-speech tags). The
relation in terms of Spearman’s rank correlation
is ⇢ = �0.60, which indicates a moderate anti-
correlation. This can also be observed in Figure 1:
while high frequency seems to hint at convention-
alized metaphors, low frequency is not necessarily
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Figure 1: Frequency. Relation between average
novelty score of metaphoric tokens and their fre-
quency in Wikipedia (correlation of ⇢ = �0.60).
Since we use the automatically created POS tags
from the VUAMC to filter out non-content tokens,
this can include erroneously tagged tokens. For an
improved overview, we manually filtered out the
five most frequent, incorrectly tagged tokens from
this plot (to, as, on, that, and this).

an indication of novelty of metaphoric use.
Two prominent exceptions are the tokens na-

tional and united (Figure 1, upper right). While
they show comparatively high novelty (both la-
beled as metaphorical only once in the VUAMC),
they appear surprisingly often in Wikipedia. An-
other artifact of using Wikipedia as the back-
ground corpus can be seen on the left: try is only
annotated as metaphoric in infinitive-compounds
that are decidedly conventionalized (e.g., “trying
to look”), yet it appears comparatively seldom in
Wikipedia. However, we chose to use Wikipedia
instead of the BNC in order to have an out-of-
domain comparison with a more contemporary,
larger background corpus.

Correlation with Concreteness The use of con-
creteness as a feature in automatic metaphor detec-
tion grounds in the Conceptual Metaphor Theory
(Lakoff and Johnson, 1980). In short, metaphors
are modeled as cognitive mappings between an of-
ten concrete source domain, and a usually more
abstract target domain. For example, in “He shot
down my arguments,” the more concrete domain
of ARMED CONFLICT (shot) is mapped to the
rather abstract domain DISCUSSION (argument).

To analyze the relation between novelty and
concreteness, we first extend the concreteness list

Figure 2: Concreteness. Relation between novelty
score of metaphoric tokens and their concreteness,
showing no discernible correlation (⇢ = 0.03). A
similar picture emerges if we only consider the
manually annotated tokens included in the origi-
nal concreteness list by Brysbaert et al. (2014).

by Brysbaert et al. (2014) using a technique sim-
ilar to Mohler et al. (2014). For a given token t,
we extract 20 approximate nearest neighbors nn(t)
from Google News Embeddings (Mikolov et al.,
2013) using Annoy.5 The concreteness value for t
is then computed by averaging its neighbors’ con-
creteness values from the concreteness list.

Subsequently, we calculate the correlation be-
tween the average novelty and the concreteness of
the lemmas. Both Pearson correlation (r = 0.04)
and Spearman’s rank correlation (⇢ = 0.03) are
close to zero and indicate no correlation (Fig-
ure 2). Thus, while concreteness has been shown
to work well as a feature to distinguish between lit-
eral and non-literal language in general (Beigman
Klebanov et al., 2014; Tsvetkov et al., 2014), it
does not seem useful for discerning between novel
and conventionalized metaphoric usage in partic-
ular. For example, the rather abstract now (1.48)
and the very concrete people (4.82) are assigned
similarly low novelty scores. On the other hand,
justice has a quite high novelty score (0.65), while
also being as abstract as now. One reason for this
non-correlation between concreteness and novelty
might be that the automatic induction of concrete-
ness ratings introduces too much noise. However,
an experiment where we only use tokens occur-
ring in the manually composed list (Brysbaert et
al., 2014) shows similarly low correlation. This
could be influenced by artifacts in the concrete-

5https://github.com/spotify/annoy
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Figure 3: POM. Relation between average nov-
elty score of verb lemmas and POM (correlation
of ⇢ = 0.52).

ness list: as laid out by Beigman Klebanov et al.
(2015), it exhibits some problems. For exam-
ple, it shows high variance in the annotated con-
creteness scores for various non-concrete adjec-
tives. But this does not explain the extent of the
non-correlation. We thus believe that our results
indeed indicate no relation between concreteness
and metaphor novelty. And indeed, if a difference
of concreteness between components of an expres-
sion hints at a metaphor, as is proposed by the con-
ceptual metaphor theory, then it is plausible that it
does not hint at novelty of the metaphoric expres-
sion at the same time. Consequently, we investi-
gate a feature with more semantic capacity in the
next subsection.

Correlation with POM The Potential for
Metaphoricity (POM) of verbs was introduced by
Del Tredici and Bel (2016) (Section 2). It denotes
the a priori chance of a verb to occur in highly
metaphoric contexts; in essence, it measures the
contextual flexibility of a verb. Generally, very
novel metaphors also display a high metaphoricity.
Therefore, we expect that low-POM verbs (i.e.,
verbs that occur similarly often in many different
contexts) exhibit a low novelty score on average
and low variance, while high-POM verbs should
show a higher average novelty score. The POM
can be regarded as a variant of selectional pref-
erence strength, which measures how strongly a
verb constrains its direct object in terms of seman-
tic classes. As such, we forgo an analysis of selec-
tional preference violations in favor of examining
the POM. Hovy et al. (2013) generalize the notion
of selectional preferences to other forms of gram-

matical relations. However, instead of generating
scores, they use dependency trees in an SVM with
tree kernels. The POM could be similarly gener-
alized to all POS tags, e.g., by including head and
dependent tokens as context.

We create the POM for all annotated verbs using
the same procedure as Del Tredici and Bel (2016).
First, we extract the context (i.e., subject and ob-
ject) for each occurrence of a verb from a large,
parsed corpus (Wikipedia). To compute context
vectors, the word embeddings (Levy and Gold-
berg, 2014) of subject and object are averaged (if
only one of the two is available, the embedding
for this token serves as the context). For each
verb, the context vectors are then clustered using
Birch clustering (Zhang et al., 1996). Finally, the
standard deviation between the sizes of the context
clusters denotes the POM of the verb.

As with our previous experiments, we com-
pute Spearman’s rank correlation between the
mean novelty scores of the verb lemmas and the
corresponding POMs. We arrive at Spearman’s
⇢ = 0.52, which indicates moderate correlation
(Figure 3). Verbs like pique (POM: 0.218) and slit
(0.134) are more often used in a novel metaphoric
way, while low-POM verbs show and see (both:
0.01) are only used as conventional metaphors.
Even though the correlation is only moderate, it
supports the WordNet-based evaluation by Del
Tredici and Bel (2016), who found that high-
POM verbs generally induced novel metaphoric
sentences. Note that their POM values are higher
because they optimize the clustering parameters,
which we leave at the default setting.

4 Baseline

While the main focus of this work is the analysis of
our new annotation layer, we also create a simple
baseline regression system for predicting the nov-
elty scores. We run the system using two configu-
rations: first with only word embeddings as input,
then augmented with frequency and POM scores.

4.1 System

We implement a single-layer BiLSTM for predict-
ing the novelty score. As input, we use a padded
11-token window (five before, five after the token)
of dependency-based word embeddings by Levy
and Goldberg (2014) that we also employed for
the POM computation. The BiLSTM layer has 50
dimensions and ReLu activation. Training is done
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in maximally 20 epochs, but can halt earlier due to
early stopping on the development set. The data
is split into training (50%), development (25%),
and test set (25%). We only conduct experiments
on verbs, so that we can compare the performance
when including additional features.

Following our analysis of typically used fea-
tures for metaphor detection in relation to novelty,
we incorporate the relative frequency of a token
into the model, to investigate if the substantial cor-
relation observed in Section 3.3 has an impact on
our regression experiments. Further, we include
the POM, as it also showed a moderate correlation
with novelty. Both additional features are concate-
nated with the respective word embeddings and
the resulting vectors are fed to the BiLSTM.

4.2 Results

We evaluate our results using mean absolute error
(MAE), and average it over 10 runs with different
random seeds. Recall that the possible values lie
between �1 and 1, leading to a possible MAE be-
tween 0 (best) and 2 (worst). The baseline results
over different runs are stable, we show the regres-
sion plot for one configuration in Figure 4.

The mean absolute error for the configuration
using only the embeddings is MAE = 0.166. In
contrast, we obtain MAE = 0.163 for the same
configuration when we add the frequency and the
POM features. Thus, while small, the latter model
shows improvements over the word embedding
baseline. As can be seen in the plot, there is
still much room for improvement (e.g., we did not
conduct extensive hyper-parameter optimization).
The network makes errors both in underestimat-
ing (“they can be seen as riddled with holes”)
and overestimating novelty (“veins branching off
it to form a network”). These errors are in many
cases independent from POM and frequency fea-
tures. Thus, while a better optimization (e.g., in
the clustering step when creating the POM) might
reduce estimation errors, we also need to consider
further features for metaphor novelty estimation.

5 Conclusion

We presented a new layer of novelty scores for
the VU Amsterdam Metaphor Corpus, created us-
ing crowdsourcing. To this end, we conducted
a pilot study to choose an appropriate method
for metaphor novelty annotation and found that
best–worst scaling outperformed binary and scale

Figure 4: Predicted and actual novelty score of
metaphoric tokens in the VUAMC for a base-
line configuration (word embeddings only, with-
out adding frequency and POM information).

methods. Our corpus analysis of typically used
features for metaphor detection showed no cor-
relation of novelty with concreteness. However,
we found substantial correlation with frequency
of tokens in a background corpus and with po-
tential for metaphoricity, a context-based a pri-
ori metaphoricity measure. Further, we created a
baseline to distinguish novel from conventional-
ized metaphors. For our approach, the latter two
features could improve results only slightly, indi-
cating a need for more sophisticated features.

Previous work in automatic metaphor process-
ing has largely focused on general detection of
linguistic and conceptual metaphors, mostly dis-
regarding the subject of novelty. Our corpus en-
ables new evaluation and training possibilities for
detecting the latter. In future work, we want to
develop more sophisticated methods to detect and
distinguish novel metaphors. For example, we
want to extend the notion of POM to nouns and
adjectives, and investigate other a priori measures
for metaphor novelty. Further, we want to jointly
detect metaphors and score their novelty. Another
interesting direction is to investigate the correla-
tion between perceived novelty and the existence
of dictionary definitions for metaphoric senses of
a token or expression.
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A Guidelines

This task is about metaphors. A metaphor is a figure of speech that describes one thing by mentioning
another thing. You can divide metaphors into two types: conventional and novel ones. In the
following texts some words are marked as metaphorical.
You will be given four metaphors and your task is to decide which metaphor is the most conventional
and which metaphor is the most novel.
Conventional metaphors are metaphors which are often used in everyday language.
In contrast novel metaphors which are usually not used in everyday language.
Please check the instructions and examples below before starting with the HIT!

Instructions and hints:

• Please read the whole context around the metaphors before deciding which metaphor is most
novel or most conventional.

• You have to answer two questions per task:

The first question is which metaphor is most conventional. That means you have to select
the metaphor which is the most common in everyday language.

The second question is which metaphor is the most novel. That means you have to select
the metaphor that is the most uncommon in everyday language.

• Expressions that are so common that you cannot recognize them as a metaphor are candidates
for the most conventional metaphor.

• Idioms are rather conventional metaphors.

• Each task is about four metaphors which are marked in red.

• The sentence which contain the metaphor are highlighted in bold letters.

• You have to fully complete all three tasks to get paid.

Examples:

1: “She gave him that idea.”

2: “I see the point.”
3: “Some books have to be tasted.”

4: “Time flies.”

• Answer: most conventional metaphor: gave (1); most novel metaphor: tasted (4).

• Explanation: “gave” is in the expression “to give someone an idea” so common that you can
barely see the metaphor, that means it is extremely conventional. “to taste books” in contrast is
a very uncommon use of the word “taste” and thus a novel metaphor. The other two metaphors
are idioms which are conventional but not as conventional as “to give someone an idea.”.

Figure 5: Annotation guidelines for best-worst scaling HITs.
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B Example of a Best-Worst Scaling HIT

Figure 6: Example of a best-worst scaling HIT, where annotators were asked to choose the most novel
and the most conventionalized metaphor among 4 instances.
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Abstract
Accurately and efficiently estimating word
similarities from text is fundamental in natural
language processing. In this paper, we propose
a fast and lightweight method for estimating
similarities from streams by explicitly count-
ing second-order co-occurrences. The method
rests on the observation that words that are
highly correlated with respect to such counts
are also highly similar with respect to first-
order co-occurrences. Using buffers of co-
occurred words per word to count second-
order co-occurrences, we can then estimate
similarities in a single pass over data without
having to do prohibitively expensive similar-
ity calculations. We demonstrate that this ap-
proach is scalable, converges rapidly, behaves
robustly under parameter changes, and that it
captures word similarities on par with those
given by state-of-the-art word embeddings.

1 Introduction
Word similarities play an integral part in many nat-
ural language processing applications. Improving
similarity estimates will therefore in turn poten-
tially improve a broad range of areas, including
word alignment (Songyot and Chiang, 2014), query
expansion (Diaz et al., 2016), simplification (Biran
et al., 2011), document classification (Arras et al.,
2017), lexical substitution (McCarthy and Navigli,
2009) and many more.

The prevalent approach to estimate similarities
is to first embed words in a vector space using tech-
niques such as word2vec (Mikolov et al., 2013a,b)
and GloVe (Pennington et al., 2014), and then cal-
culate the similarities between words as the simi-
larities between corresponding vectors. Finding all
significant similarities among a set of words in this
way, however, is computationally demanding due
to the large number of pairwise similarity calcula-
tions involved (scaling as the square of the vocabu-
lary size at worst). All-to-all similarity calculations

are in particular strenuous, if at all feasible, in a
streaming setting due to tight latency and memory
constraints.

In this paper we address this by proposing a
method that finds significant similarities without
calculating any similarities. This seemingly con-
tradictory feat is possible by explicitly counting
second-order co-occurrences (SOCOs for short)
and calculating correlations with respect to these.
Two words w and v are said to have a SOCO if
there is a third word u with whom both w and
v co-occur (not necessarily together). For exam-
ple, if the words hot and coffee co-occur at some
point in a corpus or stream, and hot and tea co-
occur at some other point in the same corpus or
stream, then coffee and tea have a SOCO relation
since they both co-occur with hot. The key obser-
vation then, as depicted in Fig. 1, is that words that
are highly correlated with respect to second-order
co-occurrences are highly similar with respect to
first-order co-occurrences. This relation enables us
to avoid pairwise similarity calculations altogether
and instead acquire similarities directly from the
SOCO counts.

The contribution of this paper is mainly twofold.
Firstly, we introduce an operational definition of
SOCO probabilities. To the best of our knowl-
edge, this has not been done before in this explicit
manner. Secondly, we apply this definition to effi-
ciently estimate word similarities from streams. In
practice we achieve this by keeping small buffers of
co-occurred words per context word, and then incre-
menting SOCO counts of new co-occurred words
and those in the buffer. Importantly, this enables
us to pass over data only once. To ensure scala-
bility in memory usage and runtime, approximate
SOCO counts are then maintained in a count-min
sketch table (Cormode and Muthukrishnan, 2005)
that keeps the algorithm lightweight.

The benefits of our approach are not only com-
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Figure 1: Diagram that describes the relationship be-
tween 1st and 2nd order co-occurrences. Instead of
first embedding words with regard to 1st order co-
occurrences and then calculating pairwise similarities
between word vectors, we acquire similarities by di-
rectly correlating words with respect to their explicit
2nd order co-occurrences (encompassing labels in bold-
face).

putational in allowing us to avoid both multi-pass
batch processing and the quadratic time complexity
that comes with pairwise similarity calculations.
Since the method is based on simple counting of
SOCOs, it is also completely transparent and in-
terpretable. By comparison, most first-order word
embeddings – word2vec and GloVe are again good
examples – are relatively opaque and difficult to
interpret. The simplicity of our method also makes
it straightforward to implement while having only
a handful of parameters to tune compared to preva-
lent embedding methods that typically involve a
large number hyperparameters.

The remainder of this paper is outlined as fol-
lows: Next we will relate our proposed method to
current approaches for calculating word similari-
ties. The method is described in Sec. 3, followed by
a complexity analysis in Sec. 4 where we theoret-
ically and experimentally show that our approach
indeed is suitable for stream mining. In Sec. 5, we
evaluate the method with respect to convergence,
accuracy and parameter sensitivity. The paper is
concluded in Sec. 6 with a summary and a discus-
sion on possible future directions.

2 Related work

The explicit use of second-order co-occurrences
has so far gained little attention in word similarity
mining. The typical approach is rather to express
word similarities as similarities between vector rep-
resentations that in turn are based on first-order
co-occurrences (this is also the case in (Islam and
Inkpen, 2006), despite the name of their approach1).

1In general, the term second-order co-occurrence is some-
times used in NLP to describe second-order representations

There is a large body of work in this area, predom-
inantly based on Harris’ distributional hypothesis
(Harris, 1954), from seminal approaches such as
LSA/LSI (Deerwester et al., 1990), HAL (Lund
and Burgess, 1996) and Random indexing (Kanerva
et al., 2000) and onward. See (Levy et al., 2015)
for an extensive review. A common approach then
is to represent words in terms of co-occurrence
correlations – e.g. using Pointwise mutual infor-
mation (PMI) (Church and Hanks, 1990) and vari-
ants thereof (Levy et al., 2015) – either explicitly
or through dimensionality reduction (Pennington
et al., 2014). Another prevalent approach is to gen-
erate vector representations based on prediction
tasks, where words are predicted from their con-
texts or vice versa; Continuous bag of words and
Skip-gram (Mikolov et al., 2013a,b) are prominent
examples. However, these methods are batch-based
and typically require multiple passes over data (3
to 50 training epochs in the case of word2vec, for
instance (Mikolov et al., 2013b)). Approaches
that are more suitable for streaming data have also
been developed, e.g. for calculating the most PMI-
correlated words per word (Durme and Lall, 2009)
and, more recently, neural network methods (pri-
marily based on Skip-gram) adapted to enable in-
cremental updating (Luo et al., 2015; Kaji and
Kobayashi, 2017; Bamler and Mandt, 2017; Peng
et al., 2017). Note though that in all of the above
cases vector representations capture first-order co-
occurrences. When using PMI for example, the
correlation between two words is high if they co-
occur more frequently than expected from chance,
but high correlation does not equate high similarity
(consider the words red and wine for example). Es-
timating word similarities would therefore require
the extra step of calculating similarities between
vectors, something that our approach bypasses by
explicitly counting SOCOs.

3 Method
3.1 Second-order co-occurrences
We define the SOCO probability of words w and v
as

P (w :v) :=
X

u2V
P (u)P (w|u)P (v|u), (1)

where w :v denotes a SOCO and V is the vocabu-
lary. That is, P (w : v) is the probability that two
based on first-order word vectors, such as in (Schütze, 1998).
This does not involve explicit SOCO counts as in our case
though.
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randomly selected words co-occurring with a ran-
domly selected word u are w and v. Since

P (w :v) =
X

u2V
P (w, u)P (v|u) (2)

=
X

u2V
P (w)P (u|w)P (v|u),

an alternative interpretation of SOCO is the chain
of randomly selecting a word w, one of its co-
occurring words u, and in turn one of its co-
occurring words v.

3.2 Correlation measure
Our ansatz is that two words have a high degree of
similarity if they are highly correlated with respect
to SOCO, since this would imply that the words
are relatively interchangeable in their respective
contexts. We quantify a SOCO correlation using
standard pointwise mutual information (PMI):

M(w :v) = log2
P (w :v)

P (w)P (v)
, (3)

where the denominator is the SOCO probability of
w and v given that they are independent of u, since
then

P (w :v) =
X

u2V
P (u)P (w)P (v). (4)

3.3 Estimating correlations
Making the simplifying assumptions that a stream
is stationary and that co-occurrence correlations
decay rapidly with word-to-word distance in the
stream (or corpus), we can estimate Eq. 3 in one
pass using counters of word occurrences and SO-
COs. See Fig. 2 for a schematic overview and
Algorithm 1 for a detailed description of our ap-
proach.

3.3.1 Co-occurrence buffers
Approximate SOCO counts are maintained by keep-
ing small buffers (on the order of 1 to 10 words)
of previously observed words with a given context.
The context of a word is here given by the position
relative to the word (say, -1 for the preceding word)
and the word occupying that position. For example,
if we observe the word fox in the sequence

The quick brown fox jumps over the lazy dog.

fox is added to the buffer of previously observed
words with context (-1, brown) (bear, bag and eyes

(a)

... d c b a b c a d d a c d ...

b:c c:d
b:d

b:d d:c
b:c

(b)

b
c

c
d

b
d
b

c
d

b
... d c b a b c a d d a c d ...

Second-order co-occurrences

Co-occurrence buffers

Subsequent

Preceding

Figure 2: (a) Words that share a context word (the word
a in this example) at a given position (as a preceding
and subsequent word, in blue and red, respectively) are
said to co-occur to the second order. For example, b
and c have a SOCO relation b : c since they both have
a as a subsequent word. (b) We count second-order co-
occurrences by keeping buffers of co-occurring words
for a given context. The buffer for context (1, a) is
shown above the sequence (i.e., when a occurs as a
subsequent word) and (-1, a) below the sequence (a
as a preceding word). Both buffers (implemented as
queues, where the most recent observations are stored)
are limited to two words in this example. Before a word
is added to a buffer, the second-order co-occurrence
counts of the word and the words in the buffer are in-
cremented. For instance, the counts of b :d and c :d are
incremented before the buffer [c, b] is updated to [d, c].

perhaps). Note that fox then has a SOCO relation
with the words in the buffer. The SOCO counters of
(fox, w) for all words w in the buffer are therefore
incremented (for (fox, bear) for instance) before
fox is added to the buffer. If the buffer is full – we
cap the number of prior words stored – the oldest
word is discarded prior to adding the new one.

The same procedure is performed for all context
positions in a sliding window of a given length (e.g.,
for positions {�2,�1, 1, 2} if we consider sym-
metric contexts in a five-word window). By simul-
taneously estimating word frequencies by counting
current words we can in this way incrementally
maintain estimates of M(w :v).

3.3.2 Probabilistic counting
Since the number of SOCOs may be very large, we
keep approximate counts of these using a count-
min sketch table (Cormode and Muthukrishnan,
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2005). The table, denoted d, has h rows and g
columns, where the rows are associated with h
pairwise independent hash functions, fi, and where
entries are initialized to 0. When a SOCO w : v
for words w and v is observed, each hash function
maps w : v to an index fi(w : v) of row i. Entry
(i, fi(w :v)) is then incremented by 1.

After populating d the approximate count of w :
v is given by the minimum count of the entries
(i, fi(w :v)):

c̃(w :v) = min
i

d(i, fi(w :v)). (5)

Note that c̃ may overestimate the true count c(w :v)
due to hash collisions (this is indeed what keeps
the data structure sublinear with respect to the num-
ber of SOCOs). To reduce overestimations we can
employ conservative updates by only updating an
entry (i, fi(w :v)) if it is exceeded by the current in-
cremented approximate SOCO count (Goyal et al.,
2012):

d(i, fi(w :v)) max {d(i, fi(w :v)), c̃(w :v)}.
(6)

This is the approach used in all experiments pre-
sented below.

3.3.3 Top-k correlations
Rather than storing all SOCO correlations, which is
infeasible for large vocabularies and wide context
ranges, we keep track of the k most correlated
words for each word in the vocabulary. We achieve
this scalably by adapting the approach proposed
by Durme and Lall for calculating first-order co-
occurrence correlations in streams (Durme and Lall,
2009). We keep track of occurred SOCOs in non-
overlapping meta-windows (on the order of 105

to 107 tokens long). For each meta-window, we
calculate PMIs for occurred SOCOs using exact
word counts (having a comparably small memory
footprint) and approximate SOCO counts, and then
update priority queues with the most similar words
per word accordingly. In this way the number of
SOCOs stored is kept approximately constant as
we consume the stream.

4 Complexity analysis

4.1 Time
For each token in the stream, updating word counts
takes constant time using an associative array. The
algorithm also goes through 2n context words,
where n is the context range. For each context

Algorithm 1 Estimate M(w :v) for stream
[s1, s2, ..., sm], vocabulary V , context range n,
buffer capacity r, meta-window size N and count-
min (C-m) table with h rows and g columns. Note
that m may approach infinity.

1: l {�n, ...,�1, 1, ..., n} {context positions}
2: c(w) 0; w 2 V {word counts}
3: di,j 0; i = 1, ..., g, j = 1, ..., h {C-m table}
4: tw 0 {total word count}
5: ts 0 {total SOCO count}
6: q(i, w) ;; w 2 V, i 2 l {context queues}
7: S(w) ;; w 2 V {similar word queues}
8: P ; {observed SOCOs}
9: for i = n + 1 to m� n do {consume stream}

10: c(si) c(si) + 1
11: tw tw + 1
12: for j 2 l do
13: for v 2 q(j, si+j), v 6= si do
14: P P [ {si :v}
15: d(si :v) d(si :v) + 1
16: ts ts + 1
17: end for
18: if |q(j, si+j)| = r then {buffer full}
19: q(j, si+j).dequeue() {discard oldest}
20: end if
21: q(j, si+j).enqueue(si) {add current}
22: end for
23: if i mod N = 0 then {meta-window ends}
24: for w 2 V do
25: P (w) c(w)/tw
26: end for
27: for w :v 2 P do
28: P (w :v) d(w :v)/ts
29: M = log2[P (w :v)/(P (w)P (v))]
30: Update S(w) with v and priority M
31: end for
32: P ; {clear observed SOCOs}
33: end if
34: end for

word, the count-min table that stores approximate
SOCO counts is updated at most r times, where
r is the maximum buffer size. Since each update
takes O(h) time for a count-min table with h rows
(a hash function is called for each row), the time
complexity for updating counters is O(nrh). Up-
dating a co-occurrence buffer, i.e. by inserting and
(possibly) deleting a word index in a queue, takes
O(1) time, and so the total time complexity per
token when consuming a meta-window is O(nrh).

Between meta-windows, we update the top cor-
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Figure 3: Runtime per token at stream position i
(Python implementation run on a MacBook Pro with
a 2.8 GHz Intel Core i7 processor and 16 GB of mem-
ory).

related words per word. We first update frequency
estimates of words, which takes O(|V|) time. For
each SOCO that has been observed in the meta-
window, |P| of them, we update the priority queues
with the most correlated words of the words in-
volved in the SOCOs. Each such update takes
O(log k), where the parameter k is the number
of most correlated words of a word.

Altogether, the time complexity is hence
O(nrh + |V|+|P| log k

N ) per token. Note that
n, r, h, k ⌧ |V|, |P|, where n, r, h and k are all
small fixed parameters (n ⇠ 1 to 10, r ⇠ 10,
k ⇠ 10 to 100 and h ⇠ 10 typically). Given
that the stream is roughly stationary (which has
been the case in our experiments), the size of P
is approximately constant. With a fixed vocabu-
lary and N , the runtime per token is therefore also
kept approximately constant. We confirm this ex-
perimentally, see Fig. 3, by running the algorithm
on English Wikipedia (as of March 7, 2015) us-
ing a context range of one (window size three), a
vocabulary constituted by the 104 most frequent
words, meta-windows of length 107 and five-word
co-occurrence buffers, a count-min table with 8
rows and 3.4 · 107 columns, and where the 10 most
similar words per word are stored. As expected,
the runtime per token increases initially as the co-
occurrence buffers are filled up, and then converges
towards a constant value.

4.2 Space
With regard to memory the algorithm requires that
we keep a co-occurrence buffer for each word
in the vocabulary and for each context position.

The space complexity of the buffers is therefore
O(nr|V|). In addition, there are |V| word coun-
ters and priority queues of size k for storing top-k
similar words, a count-min sketch table with gh
entries, where the fixed parameter g is the number
of columns in the count-min table, and a index pair
set of size |P| for storing occurred SOCOs that
have occurred in a meta-window. The total space
required is hence O((nr + k)|V| + gh + |P|).

For example, assume we have a vocabulary with
a million words, a context range of 5 (i.e., window
size 5+1+5), a buffer size of 10, a count-min table
with 3 · 108 columns and 8 rows, and that we keep
the 10 most similar words per word. We then need
to store 106 · 2 · 5 · 10 = 108 items in the co-
occurrence buffers. If each item requires 4 bytes
(a word index constituted by an unsigned integer),
the buffers take up 400 MB of space. Add to that
another 4 MB for the word counters (106 of them à
4 bytes), 40 MB (106 · 4 · 10 bytes) for the top 10
similar word indices per word and 9.6 GB (8 · 3 ·
108 ·4 bytes) for the count-min sketch table. Set the
meta-window length so that |P|  7.4 ·108 (taking
up a bit less than 6 GB of memory at most) and
we end up with a total footprint of approximately
16 GB – a memory requirement even met by many
present-day laptops.

5 Evaluation

5.1 Examples
In Table 1 we show a set of examples of the most
SOCO-correlated words per word as output by the
algorithm (using Wikipedia, a context range of 2,
buffer size of 10 and a count-min table with 8 rows
and 2.7 · 108 columns). Although the examples are
anecdotal, they illustrate that the method manages
to mine word similarities that make intuitive sense,
such that Wednesday is most similar to other days
in the week (interestingly, it is most similar to ad-
jacent days, Tuesday and Thursday) and yellow is
most similar to other colors, etc.

5.2 Convergence
It is crucial that the method converges within a
reasonable amount of time in order for it to be of
practical use. To test this we run the algorithm
and measure how the sets of top-k similar words
change as the stream progresses. We quantify these
changes using the Jaccard index between a word
set of a word w at position i in the stream, Si(w),
and the corresponding word set at �i tokens prior,
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musician increasing croatian wednesday scholar hermann coventry yellow

singer reducing yugoslav thursday scholars heinrich leicester purple
pianist growing serbian tuesday translator friedrich norwich pink
songwriter increased slovenian monday playwright wilhelm stoke orange
guitarist reduces croatia friday philosopher georg swansea blue
rapper reduce slovak saturday poet wolfgang cardiff red

Table 1: Examples of the most correlated words per word with respect to second-order co-occurrence.

SIMLEX SIMVERB MT-287 MT-771 WS-353

SOCO 0.41 0.25 0.59 0.56 0.71
FOCO 0.35 0.23 0.65 0.59 0.66
GLOVE 0.31 0.18 0.61 0.57 0.63
CBOW 0.34 0.22 0.66 0.57 0.69
SGM 0.41 0.32 0.67 0.60 0.72

Coverage 0.99 0.96 0.95 0.98 0.98

Table 2: Top rows: Spearman’s rank correlation coefficients for different methods and benchmarks. Bottom row:
fractions of benchmark word pairs covered by the methods and the corpus.
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Si��i(w). That is,

J(Si(w), Si��i(w)) =
|Si(w) \ Si��i(w)|
|Si(w) [ Si��i(w)| ,

(7)
where J = 1 if there is no change and the sets
are identical. As seen in Fig. 4, the top-k sets
converge as both the mean of J(Si(w), Si��i(w))
over words w tends towards one while the standard
deviation decreases. In this experiment, applied on
Wikipedia and a vocabulary of 104 words, the top
ten words per word were stored. Further, �i =
106 tokens, contexts of range one, a count-min
table with 8 rows and 3.4 · 107 columns, and co-

occurrence buffers of size five were used.

5.3 Accuracy
To quantitatively evaluate the accuracy of the
method, we use a collection of established word
similarity benchmarks: SimLex-999 (SIMLEX)
(Hill et al., 2015), SimVerb (SIMVERB) (Gerz
et al., 2016), MTurk-287 (MT-287) (Radinsky et al.,
2011), MTurk-771 (MT-771) (Halawi et al., 2012)
and WordSim (WS-353) (Finkelstein et al., 2001).
Each of these benchmarks contains a set of word
pairs and their similarities as judged by human
annotators. Comparing these word rankings with
rankings given by Eq. 3, we get an indication of
how well our method captures human notions of
similarity and relatedness. The agreement is quanti-
fied with the standard Spearman’s rank correlation
coefficient.

The results are also compared to the ranking
agreements for popular word embeddings – GloVe
(Pennington et al., 2014) (GLOVE), Continuous
Bag of words (CBOW) and Skip-gram (SGM)
(Mikolov et al., 2013a,b) – as well as for the point-
wise mutual information between regular first-order
co-occurrences (FOCO). In all these cases, word
similarities are given by the cosine similarity,

�(vi, vj) =
vi · vj

|vi|2|vj |2
, (8)

where vi and vj are vectors associated with words
i and j. All word embeddings are in 300 dimen-
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sions. Remaining parameters are set to default val-
ues, with the exception that no explicit word count
thresholding is used in order to avoid loss of bench-
mark words. (Applying thresholds at 3-5 occur-
rences gives comparable results as those reported
here, but for fewer word pairs.) For all benchmarks
the One billion word corpus2 (Chelba et al., 2013)
is used with a vocabulary consisting of the 3 · 104

most frequent words, except the Stanford CoreNLP
stopwords.3 A context range of 2, count-min tables
with 8 rows and 3.4 ·107 columns, and a buffer size
of 10 are used throughout. Since many word pairs
in the benchmarks are dissimilar we keep all SOCO
correlations for the benchmark word pairs in this
experiment. A small fraction of benchmark words
are either not present in the corpus or captured by
SOCO or the embedding methods due to sampling.
To ensure a fair comparison between methods, only
word pairs that are represented by all approaches
are therefore considered.

The results are summarized in Table 2, where we
note that the coverage (the fraction of benchmark
pairs represented) is high, from 95% for MT-287
to 99% for SIMLEX. The relative performance of
SOCO varies over benchmarks: in two out of five
cases the performance is roughly on par with SGM,
and compared to GLOVE, CBOW and FOCO, our
method performs best in three out of five bench-
marks. Thus the overall picture is that our approach
indeed is able to capture meaningful similarity re-
lations, and that it performs comparably to regular
first-order word embedding methods.

5.4 Parameter sensitivity

The algorithm has two key parameters: the co-
occurrence buffer capacity and the size of the count-
min sketch table. Since the approximation errors
induced by the latter is thoroughly analyzed in (Cor-
mode and Muthukrishnan, 2005) we will here focus
on how the buffer size influences similarity accu-
racy. Using the same corpus and benchmark suite
as in Sec. 5.3, we evaluate how the accuracy varies
with the buffer capacity. To again make a fair com-
parison, we then only include those benchmark
word-pairs that are covered in all experiments.

As seen in Fig. 5, the method is insensitive to the
buffer capacity size as the accuracy stays approx-
imately constant for buffers of sizes larger than 3.
This is also the case in relative terms: see Fig. 6

2http://www.statmt.org/lm-benchmark/
3https://stanfordnlp.github.io/CoreNLP/
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..

2

.

4

.

6

.

8

.

10

.

12

.

14

.

Buffer capacity
.

1.00

.

1.05

.

1.10

.

1.15

.

1.20

.

1.25

.

N
or
m
.c
or
re
la
tio

n
co
ef
fic

ie
nt

.

SIMLEX-999

.

SIMVERB

.

MT-287

.

MT-771

.

WS-353

Figure 6: Relative Spearman’s rank correlation coeffi-
cients with respect to correlations at buffer capacity 1
for different benchmarks and buffer capacities.

where we plot the accuracy relative to the accu-
racy for buffers of size 1. The improvement is then
largest for SIMLEX-999, where going from buffers
of size 1 to 15 yields an approximate difference
of 17% in accuracy. The relative accuracy, how-
ever, varies little from buffer capacity 3 and upward.
With regard to coverage, see Fig. 7, the buffer ca-
pacity has a significant effect up until buffer size 9,
after which the coverage settles at around 95-99%.

We can conclude that the method is robust with
regard to buffer capacity, resulting in predictable
and smooth changes in output, and that it suffices
to keep small buffers to maintain both accuracy and
coverage. Since the buffers in effect tend to store
the most frequent co-occurrences per word, these
results indicate that it is possible to accurately esti-
mate similarities using only salient co-occurrences.
This is also supported by Polajnar and Clark’s find-
ing (2014) that only a handful of the most frequent
context words yields the best results when estimat-
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ing similarities from co-occurrence frequencies.

6 Conclusions

We have presented a method for estimating word
similarities from corpora or streams using an ex-
plicit notion of SOCO. Our approach is simply
to count such co-occurrences and calculate cor-
relations between words with respect to these
counts. Words that are highly correlated are then
also highly similar with respect to first-order co-
occurrences. By using co-occurrence buffers and
count-min sketches for estimating SOCO counts,
the method keeps both the runtime per token and
memory usage constant while only needing one
pass over data. These properties makes our ap-
proach ideal for low-cost stream mining.

Despite its simplicity and modest computational
requirements, benchmark experiments show that
the method performs comparably to calculating
similarities between best-in-class word vectors.
This not only makes our approach a feasible al-
ternative for calculating word similarities on the
cheap, but in some cases it may be the only viable
option. Consider for instance an embedded sys-
tem in a decentralized machine learning or edge
computing scenario. Then real-time computing
constraints and scarce memory would rule out both
multi-pass word embeddings and pairwise simi-
larity calculations in favor of similarities readily
available from SOCO counts.

There are numerous possible future directions,
exploring correlation measures other than PMI be-
ing one. Also, by grouping words in concurrence
with finding top-k similar words per word, an ex-
tended method could be used for word cluster-

ing. Possible ways to find groups of inter-similar
words – constituting abstract concepts (Görnerup
et al., 2017) – is then to use label propagation on a
graph (Raghavan et al., 2007) (with words consti-
tuting vertices and the top-k similar words directed
edges), or agglomerative hierarchical clustering.
How to do this efficiently and scalably is currently
under study. Moreover, in this paper we have ex-
clusively considered text data and word similari-
ties. The method, however, is domain-agnostic and
may be applied on other types of data, in and be-
yond the NLP domain. There is a wide range of
potential application areas, presumably in every-
thing from biology and physics to social science
and economics – in essence in any domain where
objects co-occur and where these co-occurrences
carry some relevant information or meaning.
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Abstract

Distributional semantic models (DSMs) gen-
erally require sufficient examples for a word
to learn a high quality representation. This is
in stark contrast with human who can guess
the meaning of a word from one or a few
referents only. In this paper, we propose
Mem2Vec, a memory based embedding learn-
ing method capable of acquiring high quality
word representations from fairly limited con-
text. Our method directly adapts the represen-
tations produced by a DSM with a longterm
memory to guide its guess of a novel word.
Based on a pre-trained embedding space, the
proposed method delivers impressive perfor-
mance on two challenging few-shot word sim-
ilarity tasks. Embeddings learned with our
method also lead to considerable improve-
ments over strong baselines on NER and sen-
timent classification.

1 Introduction

Humans can learn a new word quickly from min-
imal exposure to its context, as in the following
example:

The Labrador runs happily towards me, barking
and wagging its tail.

Even this is the first time one hears about
Labrador, we can guess it should be an animal
or even further a dog easily, since it runs, barks
and has a tail. Such ability to efficiently acquire
representation from small data, namely fast map-
ping, is thought to be the hallmark of human in-
telligence that a cognitive plausible agent should
strive to reach (Xu and Tenenbaum, 2007; Lake
et al., 2015).

However, as the mainstream of text represen-
tation learning in NLP, most distributed seman-
tic models (DSMs) don’t fare well in tiny data
(Lazaridou et al., 2017; Herbelot and Baroni,

2017; Wang et al., 2016). Even if they have
learned a lot of words, they still need sufficient
examples to acquire a high-quality representation
for a novel word. This not only constitutes a
blow to DSM’s cognitive plausibility but also lim-
its its practical usage in NLP. Because plentiful
enough data is not always available, especially in
domain specific tasks. Even if a large corpora is at
hand, low-frequency words in it are still more than
highly frequent ones, according to the Zipfian dis-
tribution of natural language.

Given the above reasons, it’s desirable to build
a word embedding method capable of acquir-
ing high quality representations with limited con-
texts, i.e., few shot word representation learn-
ing. We take lessons from hypothesis constraint
(HC) theory to achieve this goal. HC is an in-
fluential proposal for human’s fast mapping (Xu
and Tenenbaum, 2007). It indicates that people
learn a new word by eliminating incorrect hy-
potheses about the word meaning, based on usage
of the target word and prior knowledge of con-
text words. This is instructive to us since embed-
ding a word in the high-dimensional vector space
also faces nearly unlimited candidate hypotheses
(Wang et al., 2018) . General DSMs can’t effi-
ciently handle these candidates, so they fall back
on multiple context examples to find the path,
while we propose to let a memory show the way.
We augment DSM with an longterm memory to
transfer knowledge from a large general domain
corpora to adapt the representation learning on the
small text. In context of the HC theory, we directly
constrain the hypothesis a DSM makes about the
target word by its current usage and prior knowl-
edge acquired from a large corpora. Experiments
show our method makes educated guess of a novel
word efficiently with fairly limited examples, just
as humans do in the fast mapping.

It’s worth noting that us attaching importance
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to few-shot word representation learning doesn’t
mean we need to learn words, no matter frequent
or rare, all in the few-shot way. DSMs have
done pretty well in frequent words learning with
large corpus. We augment a DSM with an ex-
ternal memory for few-shot representation learn-
ing, under the assumption that gradual acquisition
of frequent words plus fast learning of rare words
make an integrated word representation learning
scheme. Our ultimate goal is certainly an all-
round architecture that learns text representations
from any amount of data. We believe Mem2Vec,
which bridges the word representation learning
from big data to small text, will be a building block
of that ideal architecture.

The primary contribution of this work is a mem-
ory augmented word embedding model with a fast
adaptation mechanism, capable of learning rep-
resentations efficiently from tiny data. Experi-
mental results show that the proposed Mem2Vec
learns high quality target word representation with
both single informative sentence and a few casual
sentences as contexts. To show its performance
in downstream applications, Mem2Vec is used to
pre-train embeddings for three NER tasks and also
surpasses strong baselines. Since our model trans-
fers from general domain corpus to a target small
text, it is highly possible to face the problem of do-
main shift. Mem2vec is impressively competent in
tackling domain shift, as demonstrated in a series
of cross-domain sentiment classification tasks.

2 Related Work

Rare Word Embedding Acquiring representa-
tions for rare words has long been a well-known
challenge of natural language understanding (Her-
belot and Baroni, 2017; Wang and Zong, 2017).
Khodak et al. (2018) learn a linear transforma-
tion with pretrained word vectors and linear re-
gression, which can be efficient adapted for novel
words. Lazaridou et al. (2017) directly sum the
context embedding of a novel word as its represen-
tation, based on a pre-trained embedding space.
Though not explicitly stated, their idea actually
matches the HC theory. They constrain the hy-
pothesis solely within the current context of the
target word which we think is not enough. We con-
strain the hypothesis with memory and the con-
text. Another strand of solutions rely on auxil-
iary information, such as morphological structure
(Luong et al., 2013; Kisselew et al., 2015) and

external knowledge (Long et al., 2017). Lazari-
dou et al. (2013) derive morphologically complex
words from sub-word parts with phrase composi-
tion methods. Ling et al. (2015) read characters of
the rare word with a bidirectional LSTM to deal
with open vocabulary problem in language model-
ing and NER. Hill et al. (2016) learn an embedding
of a dictionary definition to match the pre-trained
headword vector, while Weissenborn (2017) re-
fines the word embeddings with explicit back-
ground knowledge from a commonsense knowl-
edge base. Different from this strand of work, our
method doesn’t fall back on auxiliary information.
We acquire knowledge from a large unlabeled gen-
eral domain corpora which is widely available.

Cross Domain Word Embedding The knowl-
edge accumulation phase of our model aims to
learn an embedding space from a large general
domain corpora. This is partially in line with
cross domain word embedding work. Among
these work, a strand of approach hypothesizes
that a word frequent in multiple domains should
mean nearly across these domains. Bollegala et al.
(2015) call such word pivot, share its embeddings
across domains and use them to predict the sur-
rounding non-pivots. Yang et al. (2017) selectively
incorporate source domain information to target
domain word embeddings with a word-frequency-
based regularization. These pivot-based methods
have delivered improvements on sentiment anal-
ysis and NER. However, they have a defect that
only limited target domain words benefit from the
knowledge transfer.

Memory based Meta Learning Memory aug-
mented neural networks (MANN) are widely used
in different tasks for efficient recall of experience
and fast adaptation to new knowledge (Bahdanau
et al., 2014; Merity et al., 2017; Miller et al., 2016;
Grave et al., 2017; Sprechmann et al., 2018; Wang
et al., 2017). Intuitively, Meta-learning, which
aims to train a model that quickly adapts to a new
task, should benefit from memory architecture,
and empirically it does do (Santoro et al., 2016;
Duan et al., 2016; Wang et al., 2016; Munkhdalai
and Yu, 2017; Kaiser et al., 2017). The memory
we use is closely related to (Kaiser et al., 2017),
but still get three major differences. First,they only
retrieve the single nearest neighbor from the mem-
ory while we retrieve an average of the K nearest
neighbors weighted by how they match the current
context. Second, they focus on supervised learn-
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Figure 1: The proposed model architecture. K and V respectively denotes the key and value vector of the memory.
# refers to equation(3). Left: Knowledge accumulation phase. The model learns word embeddings and store
prototypes in memory. Right: Fast Adaptation phase. Prototypes retrieved from memory with the given context
are combined with the context embedding to form the target word representation.

ing and don’t have a fast adaptation mechanism for
acquiring representation. Third, they update the
memory according to whether the returned value
is strictly the same as the target. However, syn-
onyms are common in natural language text. We
thus take a softer criterion and update the mem-
ory according to vector similarity between the ad-
dressed value and the target word embedding.

3 Methods

Our model in brief is a neural network based DSM
augmented by a longterm memory. As showed in
Fig.1, it operates in two consecutive phases, first
accumulating knowledge and then doing fast adap-
tation on new words, just as the human learning
process goes. In the knowledge acquisition phase,
we train the memory augmented DSM to learn a
semantic space. We also accumulate similar con-
texts of target words in the memory and gradually
form “prototype” representations. The pre-trained
embedding space and the saved prototypes are just
the knowledge acquired. The fast adaption phase
occurs when we need to learn a new word from
minimal context. In this phase, we directly com-
bine the context embedding and retrieve content
from the memory to form the target word repre-
sentation.

In the following sections, we will first introduce
the memory architecture and the content based ad-
dressing. We then detail how exactly our model
runs respectively in the knowledge accumulation
and fast adaption phase.

3.1 Memory Addressing
M is a non-parametric key-value memory which
stores a key-value pair (ki, vi) in each memory
slot i. Inspired by (Kaiser et al., 2017), we keep
an additional vector A tracking the age of slots.
The initial age of all is zero. So the whole mem-
ory M looks like (Km⇥ks, Vm, Am) where m de-
notes memory size and ks denotes key vector size.
Given a normalized query q, its nearest neighbor
in M is defined as any of the keys that maximize
the cosine similarity with q:

NN(q, M) = arg max
i

q · Ki. (1)

During training, a query to the memory M
searches k nearest neighbors which is a natural ex-
tension to (1):

(n1, ..., nk) = NNk(q, M). (2)

We take an average weighted by how the ad-
dressed memory slots match the query:

RK , RV =
KX

k=i

softmax(
q · M [nk]p

dk
) · M [nk].

(3)

This is actually a dot-product attention on the k
nearest neighbors. RK , RV are the final output of
the memory. Note that here we use softmax with
temperature T :

softmax(a) =
ea

T

⌃n
i=1

ei

T

. (4)

T is normally set to 1. Using a higher value for
T produces a softer probability distribution. We
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set different temperatures in the knowledge accu-
mulation and fast adaptation phase, which will be
detailed in the following subsections.

3.2 Knowledge Accumulation
Given a target word embedding tj with its context
embedding cj as input, we query the memory with
cj as (1)-(3) and retrieve Rk, RV . The semantic
relation between the current example and the re-
trieved content from memory is hoped to be con-
sistent from context to target words, so we derive
the following loss:

Lm =
X

tj ,cj2D

log� ((RK �RV ) · (cj � tj)) (5)

We also hope the target word representation fully
incorporates context information and stay far from
negative examples, so we also inherit the loss from
(Mikolov et al., 2013):

Ls =
X

tj ,cj2D

#(tj , cj)
⇣
log�(tj · cj)

+
kX

i=1

Ep⇠

i P (tj)[log� (tj ·�pi)]
⌘
,

(6)

where D denotes the whole corpora, and #(tj , cj)
means times the target and the context word co-
occur. The word pi is a negative sample sam-
pled from the distribution P (tj), as Mikolov et al.
(2013) do. We minimize the sum of Lm and Ls:

L = Lm + Ls (7)

Memory Update. After each query, we update a
memory slot according to how frequently the key
is addressed and how useful the addressed value
is. The update is done piecewise according to sim-
ilarity between the addressed values (Vn1 , ..., Vnk )
and the target word. For all the addressed values
Vni whose similarity to the target word is higher
than the threshold �, we only update its corre-
sponding key by taking a weighted average of the
current key and the query:

K[ni] 
q + K[ni]

||q + K[ni]||
. (8)

Otherwise, it means no addressed value correlates
enough with the target, we then choose memory
slots n0 with maximum age and rewrite the stored
items in it:

K[n0] q, V [n0] tj . (9)

The age of each updated slot will be reset to zero
while all other non-updated slots get incremented
by 1 in age. Memory updated in this way grad-
ually accumulates similar contexts of a word into
the same slot, which in another word, forms the
prototype representation of a word.

3.3 Fast Adaptation
Now we show how to poll the memory to effi-
ciently learn a new word representation from lim-
ited context. This is where the hypothesis con-
straint takes place. To be specific, given a new
word embedding t⇤j to be learned and its context
embedding c⇤

j , we retrieve memory relevant to c⇤
j

as (2)-(3) and get R⇤
K . Then we adapt context em-

bedding with the retrieved memory to form the tar-
get word representation:

t⇤j = ↵R⇤
K + (1� ↵)c⇤

j , (10)

where ↵ can be tuned a hyper-parameter or learned
with regression models. Actually we also try to
incorporate R⇤

V , but the aggregated prototype R⇤
K

seems to continuously perform better.
We here pay additional attention to the softmax

temperature T . T is emphasized since it condi-
tions how the model “treats” the retrieved memory.
Contexts are fairly limited in the few-shot case, so
how the retrieved memory is treated crucially af-
fects the quality of the learned representation. A
higher temperature leads to a softer attention dis-
tribution , which means the model will be more
likely to sample from all retrieved contents. A
lower temperature makes the model focus more on
the memory with highest similarity to the query.
We predict a slightly higher temperature will gen-
erally be better in the fast adaptation phase. Since
the HC theory points out that hypotheses are not
in strict mutual-exclusions, they overlap with each
other which corresponds to the higher-temperature
condition. We will test this in the experiments.

4 Few-shot Word Similarity Tasks

We test the proposed method on two few-shot
word similarity tasks. Fig.2 gives examples of the
two tasks. In the following subsections we will in-
troduce these datasets in detail and show the per-
formance of tested methods on these tasks.

4.1 Tasks and Datasets
Definitional Nonce Task We evaluate on the
Definitional Nonce dataset (Herbelot and Baroni,
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Nonce Definition
Provided Context : 
___ international  inc is an american multinational conglomerate company that produces a variety of 
commercial and consumer products  engineering services  and aerospace systems for a wide variety of 
customers  from private consumers to major corporations and governments
Ground Truth Word: Honeywell
Chimera-l2
Provided Context : 
1. Canned sardines and ____ between two slices of whole meal bread and thinly spread Flora Original.
2. Erm, ____, low fat dairy products, incidents of heart disease for those who have an olive oil rich diet.

Probe Words: rhubarb, onion, pear, strawberry, limousine, cushion
Human Response: 2.57,  4.43 ,  3.86,  3.71,  1.43,  2.14

Figure 2: Examples of the Nonce Definition and Chimera Task

2017) to simulate the process where a competent
speaker learns a novel word from one informative
sentence. 1000 words are included in the dataset
as targets, with 700 for training and 300 for test-
ing. Each target word corresponds to only one
sentence extracted from its Wikipedia definition as
context. All context sentences have been manually
checked to be definitional enough to describe the
corresponding target words. After tuning parame-
ters on training data, the model is required to learn
the target word representation with the provided
context in test set. Learned representations are as-
sessed by similarity to ground truth vectors pro-
duced in exposure to the whole corpora. We use
the Reciprocal Rank (RR) of the ground vector in
all nearest neighbors to the learnt representation
for fair comparison of different methods, follow-
ing Herbelot and Baroni (2017)’s settings. The
mean value of RR over all test instances in the
dataset is calculated as the final score.

Chimera Task Our second evaluation on the
Chimera dataset (Lazaridou et al., 2017) means to
simulate the case where a speaker learns the new
word in a more casual multi-sentence context, not
as highly informative as definitions in the Nonce
dataset. There are 3 sub-tasks in Chimera:L2, L4
and L6, respectively providing 2, 4, 6 sentences
as context to for each of the 330 instances in the
dataset. The tested model needs to learn target
word representation from the provided contexts.
The similarity between learned embeddings and
each of the probe words is measured and com-
pared to human judgments by Spearman corre-
lation. The final score is the average Spearman
across all test pairs.

4.2 Baselines

Our model is compared to several baselines, in-
cluding Word2Vec (Mikolov et al., 2013), GloVe
(Pennington et al., 2014), SUM (Lazaridou et al.,
2017) and N2V (Herbelot and Baroni, 2017).
Glove and Word2Vec are representatives of tra-
ditional DSMs. With them we want to test
how exactly traditional DSMs perform in the few
shot representation learning without any addi-
tional mechanism for small data. SUM and N2V
are proposed especially for learning on small cor-
pus. They adapt Word2Vec’s skip-gram structure
for incremental learning and show improvements
on the Chimera dataset. They partially match the
HC theory which Mem2Vec is based on. Note
that several rare word learning methods (Long
et al., 2017; Xu et al., 2014; Lazaridou et al.,
2013) that rely on auxiliary information don’t ap-
ply with most of our task settings. In the Nonce
and Chimera task, context for target word learn-
ing is strictly limited for fair comparison, so exter-
nal knowledge is banned. And the target word, as
showed in Fig.2, is just a slot which doesn’t pro-
vide any morphological hints, so sub-word meth-
ods are also excluded.

Both the above baselines and the proposed
Mem2Vec use a dump of Wikipedia to learn a fun-
damental semantic space. To be specific, N2V and
SUM use embeddings pre-trained by Word2Vec,
while Mem2Vec acquires prior-knowledge, all
from that Wiki corpora. We calculate correlation
with the similarity ratings in the MEN and SIM-
LEX dataset to verify if the pre-trained semantic
space is ready for use.
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Model
Task Nonce Chimera

MRR Med. Rank L2 ⇢ L4 ⇢ L6 ⇢
Word2Vec 0.00007 111012 0.1459 0.2457 0.2498

GloVe 0.00008 108002 0.1402 0.2397 0.2533
SUM 0.03686 861 0.3176 0.3534 0.3880
N2V 0.04907 623 0.3120 0.3628 0.3790

Mem2Vec 0.05416 518 0.3301 0.3717 0.3897

Table 1: Results of Nonce Definition and Chimera task. MRR and Med Rank respectively denotes mean reciprocal
rank and median rank of the ground truth word. ⇢ denotes precision.
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Figure 3: Performance of Nonce Definitional Task under different softmax temperature (left) and memory size
(right). The left figure is in semilog coordinate.

4.3 Results

Nonce Definition Task We show the results of
Nonce Definition Task in Table 1. Before ana-
lyzing the results we need to explain that MRR
achieved by the tested models seems pretty low.
This is no odd since matching the ground truth
word in a vocabulary of 210,512 sets a potentially
very large denominator in the reciprocal rank cal-
culation. Our model achieves an MRR of 0.05416,
which means the median rank of the true vector
is 518 in the challenging two hundred thousand
neighbors, surpassing all the baselines. N2V and
SUM also deliver satisfactory performance with
N2V working better. We are sorry to find that
the naive Word2Vec and GloVe totally fail in the
Nonce task, supporting the importance of adapting
traditional DSMs for few-shot word representation
learning.
Chimera Task The results on 3 chimera tasks
are shown in Table 1, too. Mem2vec out-performs
baselines in all the 3 context length settings. SUM
performs steadily well from Nonce to the Chimera
task, suggesting the effectiveness of constraining
hypothesis space with contexts. But the contin-
uous improvement of Mem2Vec over SUM con-
firms the advantage of our model, which incor-
porates “global” semantic information from the

memory with the local contexts. N2V also works
here but not as well as in the Nonce task, prob-
ably because the contexts in chimera are not as
informative. Such performance drop may indi-
cate N2V’s limited scalability to downstream NLP
tasks since not all real world texts are as informa-
tive as in Nonce Definition Task. We will test this
speculation with NER tasks in section 5.

4.4 Memory Parameter Analysis

We are interested to know how the two key param-
eters of memory, the softmax temperature T , and
the memory size influence the quality of learned
representations. We use the Nonce Definition task
as the testbed. While studying the influence of one
parameter, the other parameters are fixed. We run
the model for 3 times with each candidate parame-
ter and calculate the average precision as the final
score.
Softmax Temperature Fig.3 (left) shows task
performance under different softmax temperatures
in semilog coordinate. We are a little bit surprised
to find that it roughly fits a normal distribution
and a mid-high temperature leads to best perfor-
mance. A mid-high T means the model doesn’t
give too large or too small weights to certain re-
trieved memory. This meets the HC theory about
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how humans weight the constrained hypothesis.
We don’t just trust a single hypothesis, nor do we
treat all the hypotheses equally. The experiments
shows similar principle also applies to our model.
Memory Size Fig.3 (right) shows task perfor-
mance under different memory size. We find that
increasing the memory size does lead to improved
performance . But the improvements tend to be
minor after the memory size is larger than 20,000.
We owe it to the fact that we does not save spe-
cific examples, we accumulate similar contexts to-
gether in the memory to form prototypes. While
we retrieve the memory, prototypes can be com-
bined in different ways to represent multiple ex-
amples, thus a smaller memory can also work as
well as the bigger one.

5 Extrinsic Tasks

We hope that the learned representations not only
perform well on word similarity tasks but also ap-
ply to downstream NLP tasks. NER on domain
specific datasets is an ideal benchmark. Named
entities in these datasets are relatively low in fre-
quency and not well covered by general domain
corpus, tough for a traditional DSM to learn. Be-
sides, while transferring from general domain cor-
pus to a target small text, domain shift is a highly
possible issue. We test if Mem2Vec could tackle
the domain shift with a series of cross-domain sen-
timent analysis tasks.

5.1 Tasks and datasets

Domain Specific NER We use BioNLP11-
species (Kim et al., 2011), AnatEMs (Pyysalo
and Ananiadou, 2013) and NCBI-disease (Doğan
et al., 2014) dataset, respectively from taxonomy,
anatomy and pathology literatures. We train em-
beddings with tested methods to initialize the rec-
ognizer, whose performance then demonstrates
whether the tested models learn representations
well for rare words.
Cross Domain Sentiment Classification cross
domain sentiment classification on Amazon Re-
view dataset (Blitzer et al., 2007) is chosen as a
benchmark. This dataset includes reviews from
4 product categories: books, DVDs, kitchens and
electronics, suitable for the cross-domain setting.
Using one as source domain and one as the target,
we get 16 pairs for experiments. We train the clas-
sifier with source domain data and directly test it
on the target domain, using the pre-trained embed-

dings as input feature. Note that through this task
we also test how Mem2Vec performs when trans-
ferring from a small text, since in all the above ex-
periments we learn prior knowledge from a large
corpora.

5.2 Baselines

Except for the four baselines considered in word
similarity tasks, we also compare with DAREP
(Bollegala et al., 2015) and CRE (Yang et al.,
2017) in the NER and sentiment classification
tasks. They are both pivot-based methods for
cross domain embedding learning which fare well
in some downstream tasks. Besides we intro-
duce SCL(Blitzer et al., 2006), a well-cited cross-
domain sentiment analyser, as a baseline only for
the sentiment classification task.

For NER, we use pre-trained embeddings by the
tested methods as only input features for a LSTM-
CRF recognition model (Lample et al., 2016). We
simply mix the Wikipedia corpora with a dump of
PubMed as our source corpora. Note that N2V
and SUM can’t be directly used to pre-train em-
beddings for downstream tasks since they focus
on novel word learning. We thus explicitly divide
words which occur less than 5 times as rare words
while others as frequent words. N2V and SUM
learn the frequent words with Word2Vec and learn
the rare words in their own way. This setting also
applies to the sentiment classification task.

For sentiment classification, we use a multi-
layer perceptron (MLP) as the classifier, with one
hidden layer of 400 nodes, ReLu activation and
softmax output function.

5.3 Results

Named Entity Recognition Table 2 shows the
results of domain specific named entity recogni-
tion. Used for pre-training embeddings, Mem2Vec
achieves higher F1-score than all the baselines. It
first surpasses CRE and DAREP that only bring
slight improvements over Word2Vec. CRE and
DAREP are both methods which relies on words
with cooccurance patterns in source and target do-
main as the pivots for cross-domain transfer. This
indicates the advantage of Mem2Vec over the tra-
ditional word frequency based methods in fast
mapping cases where word cooccurrence pattern
is not clear.

Our improvements over the N2V and SUM are
more obvious than in the two word similarity
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Model
Task AnatEM BioNLP NCBI

P R F1 P R F1 P R F1
Word2Vec 76.12 69.80 72.82 73.13 54.79 62.64 75.22 75.37 74.39

GloVe 75.83 67.04 71.14 72.58 53.35 61.50 75.76 72.33 74.01
N2V 76.81 66.8 71.46 73.91 54.21 62.54 72.45 74.37 73.30
SUM 77.06 69.01 72.81 74.36 58.58 62.25 74.89 74.02 74.45

DAREP 79.03 67.95 73.07 77.18 54.19 63.67 78.76 75.60 77.15
CRE 80.04 67.90 73.47 76.74 56.98 65.40 78.98 76.63 77.79

Mem2Vec 81.23 67.90 73.96 76.70 57.81 65.92 79.56 76.63 78.06

Table 2: Results of domain specific Named Entity Recognition. P, R, F1 respectively denotes precision, recall and
F1 score
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Figure 4: Results of cross domain sentiment classification on Amazon Review dataset. B denotes books, D for
DVD, E for electronics, K for kitchen. B-K means B is the source domain and K is the target domain.

tasks. This again affirms our speculation that con-
straining hypothesis solely with the context is not
enough. In the setting of NER, the context of
one named entity is likely to be filled with other
named entities which are also low in frequency.
Directly summing the context as SUM does or tak-
ing risk to enlarge the window size as N2V may
lead to over-fitting. While every training step of
our method incorporates relative information from
all the experienced examples stored in the mem-
ory, alleviating the danger of learn representations
that over fits the local contexts.

In addition, it’s worth noting that parameter tun-
ing for N2V is no picnic. In our experiments, the
original settings: high learning rate, large window
size and short iteration span don’t lead to satisfac-
tory performance. More conservative parameter
selection gets N2V back in track but departs from
its fast mapping intention.

Sentiment Classification Fig.4 shows the re-
sults of Amazon Review sentiment classification.
Mem2Vec delivers impressive performance, beat-
ing all the baselines in 10 of the total 12 pairs, in-
cluding CRE and DAREP. This demonstrates the
advantage of the memory as a transfer medium
over the word- frequency based transfer of CRE
and DAREP. But CRE and DAREP are still strong
baselines in the cross domain task, surpassing SCL
by a large margin. N2V and SUM are built for
learning representation from small data, but they
don’t consider the possible domain discrepancy
when using pre-trained embeddings on the target
small text. So they don’t bring much improve-
ments over Word2Vec and GloVe. This also re-
minds us that to get the few-shot word represen-
tation learning methods in practical use, domain
shift should be properly addressed.
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6 Conclusion

We presented an integrated representation learn-
ing scheme which gradually learns from a big cor-
pora and quickly adapt on tiny data. It accumu-
lates knowledge with a long-term memory to adapt
the representation learning of a novel word, in the
few-shot learning case. Such adaptation means
to constrain the “guess” of a DSM for the novel
word according to the most relevant representa-
tion learning experience, inspired by hypothesis
constraint theory for fast mapping. Experiments
show the proposed method learns high quality rep-
resentation from both highly informative and less
definitional contexts in limited size. Pre-trained
embeddings with our model also lead to improve-
ments in Named Entity Recognition and sentiment
analysis.

This work is our effort towards an ideal word
representation learning scheme which learns from
any amount of data. In the future work, we will
explore more effective memory addressing and up-
dating approaches to boost the few-shot represen-
tation learning. We believe not all examples are
equally important and worth memorizing. Learn-
ing to memorize core examples should alleviate
the data-hungry of representation learning meth-
ods.
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Abstract

We present disambiguated skip-gram: a
neural-probabilistic model for learning multi-
sense distributed representations of words.
Disambiguated skip-gram jointly estimates a
skip-gram-like context word prediction model
and a word sense disambiguation model. Un-
like previous probabilistic models for learning
multi-sense word embeddings, disambiguated
skip-gram is end-to-end differentiable and can
be interpreted as a simple feed-forward neu-
ral network. We also introduce an effective
pruning strategy for the embeddings learned
by disambiguated skip-gram. This allows us
to control the granularity of representations
learned by our model. In experimental evalua-
tion disambiguated skip-gram improves state-
of-the are results in several word sense induc-
tion benchmarks.

1 Introduction

Distributed representations of words find applica-
tions in a broad range of tasks, from natural lan-
guage parsing (Socher et al., 2013) to image cap-
tioning (Karpathy and Fei-Fei, 2015). Their use-
fulness led to a renewed interest in word embed-
ding algorithms. The most popular algorithms
of this kind learn word vectors in an unsuper-
vised manner, e.g., from word contexts (Mikolov
et al., 2013a) or from statistics of word co-
occurrence (Pennington et al., 2014). Unsuper-
vised learning of word embeddings has a clear
advantage: both general and domain-specific text
corpora are available for a number of languages,
which greatly reduces the cost of training. That
said, unsupervised learning of word embeddings
comes with its own challenges. One of the most
important is word ambiguity: words in a natural
language often have more than one meaning. The
word mouse, for example, may mean a pointing
device or an animal. Word embedding algorithms

often do not recognize this language feature and
estimate only one vector representation per word.
This may lead to suboptimal word representations.

The main contribution of this work is disam-
biguated skip-gram: a neural-probabilistic model
for learning distributed representations of words
that capture word ambiguity. Disambiguated skip-
gram builds upon the skip-gram model introduced
by Mikolov et al. (2013a,b). Skip-gram constructs
word embeddings via an auxiliary prediction task:
given a word in a sentence, skip-gram attempts to
predict the surrounding words. To this end, skip-
gram defines a simple softmax model for the con-
ditional probability of observing a context word c
given the center word w:

p (c | w) =
ev

T
wuc

P
c02D evT

wuc0

, (1)

where D is the vocabulary. This log-bilinear
model assigns two embedding vectors to every
word w 2 D: an input embedding vector vw and
an output embedding vector uw. Skip-gram de-
fines the training objective for a single example as
the log-probability: log p (c | w). By maximizing
this objective, skip-gram estimates input and out-
put vectors that reflect semantic relations between
words that occur in similar contexts. The input
vectors are then used as word embeddings.

The main idea behind disambiguated skip-gram
is to jointly learn to disambiguate words and pre-
dict their contexts. We therefore extend skip-
gram with a parametric word sense disambigua-
tion model. This allows us to discover word senses
in an unsupervised manner, while preserving the
simplicity of the skip-gram approach. In particu-
lar, unlike previous probabilistic models for multi-
sense word embeddings, disambiguated skip-gram
can be seen as a simple feed-forward neural net-
work amendable to end-to-end training with back-
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propagation. Furthermore, disambiguated skip-
gram admits an effective pruning strategy for the
learned word sense embeddings. In particular,
we control the granularity of the learned repre-
sentations by penalizing the entropy of the prob-
ability distributions learned by the disambiguation
model. We then marginalize word sense probabil-
ities over the training examples and prune embed-
dings with low marginal probability.

We have carried out an extensive experimental
evaluation of disambiguated skip-gram. Our re-
sults demonstrate that the multi-sense word em-
beddings learned by disambiguated skip-gram im-
prove state-of-the-art results in the word sense in-
duction task.

2 Disambiguated skip-gram model

Let X = [w1, . . . , wn], where each wi 2 D, be a
sequence of words from a vocabulary D. By Cwi

we denote the context of the word wi in X . For
example, Cwi can be a set of words that are no fur-
ther than l positions from wi and are in the same
sentence as wi. To simplify notation we will usu-
ally omit the sequence index i and write w 2 X
for an element of the input sequence X and Cw

for its context. We will also use notation yw for
a vector y (from some set of vectors indexed by
the vocabulary words) corresponding to the word
w. Note that in this case we disregard the position
of w in X and use just the word as the index. In
particular, if some word w occurs multiple times
in X , all occurrences share a single vector yw.

Similarly to skip-gram, the disambiguated skip-
gram model constructs word embeddings by learn-
ing to predict context words c 2 Cw given the
center word w 2 X . However, disambiguated
skip-gram explicitly accounts for word ambiguity.
To this end, we represent each word d 2 D by
a set of k sense embedding vectors vdz , indexed
by z 2 {1, . . . k}, and an output embedding vec-
tor ud. We then parametrize the conditional prob-
ability p (c | w, z = j) of observing a word c in
the context of the word w in its j-th sense with
a softmax model similar to the original skip-gram
parametrization:

p (c | w, z = j) =
ev

T
wjuc

P
c02D ev

T
wjuc0

. (2)

Furthermore, in this work we assume that a sense
of the word w 2 X can be guessed from its con-

text Cw
1, i.e. that:

zw ⇠ p (z = j | w, Cw) , j = 1, . . . , k, (3)

where zw is an index of the sense of the word
w 2 X . Given this assumption, we parametrize
the probability distribution for zw using a softmax
model similar to Eq. 2. That is, for each word
d 2 D we introduce k sense disambiguation vec-
tors qds, s 2 {1, . . . , k}, and a context embed-
ding vector rd. The conditional probability that
the word w 2 X occurs in its j-th sense is then
modelled as:

p (z = j | w, Cw) =
eq

T
wj r̄w

P
s=1,...,k eqT

wsr̄w
, (4)

where r̄w is a vector representation of Cw. We rep-
resent Cw by an average of context embedding vec-
tors:

r̄w =
1

#Cw

X

c2Cw

rc. (5)

We can now define the training objective for a sin-
gle word w 2 X as the expected negative log-
likelihood of observing the context Cw under the
distribution of senses of the center word w:

L (�, w) =Ezw⇠p(z=j|w,Cw)"
� log

Y

c2Cw

p (c | w, z = zw)

#
,

(6)

with the parameters: � = {vdz,ud,qdz, rd|d 2
D, z = 1, . . . , k}.

The objective in Eq. 6 is inconvenient for
gradient-based optimization, because the expecta-
tion is taken with respect to a probability distri-
bution that is a function of model parameters. In
principle, we can estimate the gradient of this ob-
jective with the score function estimator (Glynn,
1990; Williams, 1992). Unfortunately, the score
function estimator suffers from a high variance,
even when used with a control variate. One can
also derive a low-variance unbiased gradient esti-
mator for certain probability distributions, by ex-
pressing the samples as a differentiable function
of model parameters and a random variable from
some independent fixed distribution (Kingma and
Welling, 2013). This approach is not directly ap-
plicable to our case, because categorical distribu-
tion do not admit reparametrization with a differ-
entiable function. That said, a simple and effective

1This assumption follows from an observation that two
different meanings of a given word will often have vastly dif-
ferent contexts.
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biased gradient estimator for an expectation with
respect to a categorical distribution was recently
proposed by Jang et al. (2016) and Maddison
et al. (2016). The basic idea is to reparametrize
the samples from the categorical distribution with
the Gumbel-Max trick (Gumbel, 1954) and then
approximate the non-differentiable max operator
with a softmax function with temperature hyper-
parameter. This can be seen as a reparametriza-
tion trick for a continuous relaxation to discrete
samples from the categorical distribution.

In our case, the samples from p (z = j | w, Cw)
take the form:

zwj =

8
>><

>>:

1
if j = arg max

s
(⇠s+

log p (z = s | w, Cw)),

0 otherwise,

where ⇠s are i.i.d. samples from the standard
Gumbel distribution f (0, 1). Note that the sam-
ples zw = [zw1, . . . , zwk] are now one-hot en-
coded. The continuous relaxation to zw is:

z̃w = [z̃wj (⇠1, . . . , ⇠k, Cw) | j = 1 . . . k] ,

z̃wj (⇠1, . . . , ⇠k, Cw) =

e[⇠j+log p(z=j|w,Cw)]/⌧

P
s=1,...,k e[⇠s+log p(z=s|w,Cw)]/⌧

,

(7)

where ⌧ is the temperature hyper-parameter.
When ⌧ ! 0, we recover the samples from
p (z = j | w, Cw). However, for ⌧ > 0 the sam-
ples z̃w are no longer discrete. In this case we
consider a relaxed sense embedding vector:

ṽw =
X

j=1,...,k

z̃wj (⇠1, . . . , ⇠k, Cw)vwj (8)

and model the conditional probability of observing
a word c in the context of the word w as:

p (c | w, ṽw) =
eṽ

T
wuc

P
c02D eṽT

wuc0

. (9)

Our training objective for a single word w 2 X
then takes the form:

L (�, w) =E⇠1,...,⇠k⇠f(0,1)"
� log

Y

c2Cw

p (c | w, ṽw)

#
.

(10)

The relaxed objective in Eq. 10 is tractable and
differentiable with respect to the parameters �.
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Figure 1: Disambiguated skip-gram model.

When ⌧ ! 0, it becomes equivalent to the ob-
jective in Eq. 6. In practice, we approximate the
expectation in Eq. 10 with a one-sample Monte
Carlo estimator. In these settings disambiguated
skip-gram can be seen as a simple feed-forward
neural network pictured in Fig. 1. During training,
the network jointly estimates a sense disambigua-
tion model (Eq. 4) and a context word prediction
model (Eq. 2), which we use to construct multi-
sense word embeddings.

2.1 Pruning word senses
The disambiguated skip-gram model is paramet-
ric, i.e. it allocates a fixed number of sense em-
bedding vectors to each word, even though dif-
ferent words have different number of discernible
senses. That said, we can prune the sense embed-
ding vectors by considering their probabilities ac-
cording to the learned disambiguation model. In
particular, after training we estimate the marginal
probability:

p (d, j) =
1

md

X

wi2X,
wi=d

p (z = j | wi, Cwi) (11)

for each word d 2 D and each sense index j 2
{1, . . . , k}. We then prune sense embedding vec-
tors with low marginal probability, e.g., p (d, j) <
0.05. The normalizing factor md in Eq. 11 is the
number of occurrences of the word d in X .
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The above pruning technique can be extended
to allow for an explicit control over the granular-
ity of the learned sense representations. To this
end, we use an entropy regularization term sim-
ilar to the one studied by Pereyra et al. (2017)
in classification networks. In disambiguated
skip-gram the granularity of the learned repre-
sentations is controlled by the disambiguation
model (Eq. 4). Therefore, we extend the objective
of our model (Eq. 10) by adding to it an entropy S
of the probability distribution p (z = j | w, Cw):

Lr (�, w) = L (�, w) + �S (�, w) , (12)

where:

S (�, w) =

�
kX

j=1

p (z = j | w, Cw) log p (z = j | w, Cw) .

The hyper-parameter �, which we further call en-
tropy cost, controls the strength of the regulariza-
tion and, in turn, the granularity of the learned
sense representations. In particular, � > 0 encour-
ages the model to learn more coarse-grained sense
representations, whereas � < 0 increases the gran-
ularity of the learned senses.

3 Related work

Algorithms for learning distributed multi-sense
representations of words have been a focus of sev-
eral recent works. Initial approaches to this task
relied on clustering word contexts. One of the first
algorithms of this kind was proposed by Huang
et al. (2012). They learn multi-sense word repre-
sentations in three steps. First, they estimate vec-
tor representations of words using a feed-forward
neural language model. Next, they calculate av-
erage word vector for each context in the training
corpus, cluster these context representations and
relabel each word in the corpus to a word sense
represented by the nearest cluster. Finally, they
train the language model on the relabelled corpus
and obtain vector representations for word senses.

Neelakantan et al. (2014) proposed the Multi-
Sense Skip-gram (MSSG) model, that jointly
learns context cluster prototypes and word sense
embeddings. Their model extends skip-gram by
maintaining context clusters for every word in the
vocabulary. Given a training example with a cen-
ter word w and its context representation c, they
infer the word sense for w by a hard assignment of

the context representation c to the cluster with the
nearest centroid. Afterwards, they perform a skip-
gram-like update on the vector representation of
the selected word sense and the output vectors of
the context words. Neelakantan et al. also pro-
posed a non-parametric version of MSSG (NP-
MSSG), in which the number of clusters, and in
turn the number of word senses, increases during
training. They use a simple heuristic to determine
the number of word senses: NP-MSSG allocates a
new sense for the center word w when the similar-
ity between the context representation c and the
nearest cluster centroid falls below some prede-
fined threshold. Neelakantan et al. demonstrated
that MSSG and NP-MSSG outperform the Huang
et al. algorithm on a contextual word similarity
task.

A disadvantage of the Huang et al. and Nee-
lakantan et al. algorithms is that they do not fol-
low a principled statistical approach, but instead
rely on hard clustering of context vectors. This
has been addressed in more recent algorithms,
which learn multi-sense word representations in a
probabilistic framework. Concurrent to Neelakan-
tan et al. work, Tian et al. (2014) proposed a
probabilistic Multi-Prototype Skip-Gram (MPSG)
model. MPSG extends the skip-gram model by
adding to each position in the input text a latent
variable that encodes the index of the word sense
at that position. Furthermore, for each word in
the vocabulary MPSG maintains a fixed number of
sense embedding vectors and a single output vec-
tor. These parameters define a softmax model for
the conditional probability of observing a context
word given the center word and the latent sense in-
dex. Finally, MPSG models the conditional prob-
ability of observing a context word given the cen-
ter word with a mixture model whose components
correspond to the senses of the center word. Tian
et al. derived an expectation maximization algo-
rithm for estimation of softmax parameters and
prior sense probabilities in their model. MPSG
was evaluated in a contextual word similarity task,
where its performance was similar to that of the
Huang et al. algorithm.

Bartunov et al. (2016) proposed the AdaGram
model, which can be seen as a non-parametric ver-
sion of MPSG. Similarly to MPSG, AdaGram in-
troduces latent variables for word sense indexes in
the input text. However, unlike MPSG, AdaGram
does not assume a fixed number of word senses.
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Instead, it defines the prior over word senses via
a Dirichlet process. As a result, AdaGram au-
tomatically learns the number of senses for all
words in the vocabulary. Unfortunately, defining
the prior over word senses via a Dirichlet pro-
cess gives an intractable model likelihood. Bar-
tunov et al. therefore optimize variational lower
bound of the AdaGram model likelihood using a
stochastic variational inference algorithm. Bar-
tunov et al. evaluated AdaGram performance on
several word sense induction benchmarks. They
demonstrated that AdaGram consistently outper-
forms MSSG, NP-MSSG and MPSG models in
these benchmarks. AdaGram has been recently
extended to handle parallel multilingual text cor-
pora (Upadhyay et al., 2017).

For the prediction of context words (Eq. 2) dis-
ambiguated skip-gram adopts the softmax model
used in MPSG. However, in contrast to the previ-
ous works, disambiguated skip-gram learns a para-
metric model for the conditional probability dis-
tribution over senses of the center word given the
context words (Eq. 4). This allows us to define the
training objective for disambiguated skip-gram as
the expected negative log-likelihood of observing
the context words under the distribution of senses
of the center word. We use a biased low-variance
gradient estimator for this objective, which en-
ables stable end-to-end training with backpropa-
gation.

The main goal of the AdaGram model is to auto-
matically discover the number of word senses for
the vocabulary words. This does not mean, how-
ever, that the number of senses learned by Ada-
Gram is independent of model hyper-parameters.
On the contrary, the number of senses learned
by AdaGram is directly controlled by the hy-
per parameter ↵ in the Dirichlet process used to
define the prior over word meanings (Bartunov
et al., 2016). Disambiguated skip-gram controls
the number of learned senses by penalizing the en-
tropy of the conditional probability distribution in
the sense disambiguation model (Eq. 12). The en-
tropy cost � in this approach performs a function
similar to the hyper-parameter ↵ in AdaGram.

In addition to the works discussed above, word
ambiguity was also modelled using topic mod-
els (Liu et al., 2015), large bi-directional language
models (Peters et al., 2018) or subword informa-
tion (Athiwaratkun et al., 2018). Also, Li and Ju-
rafsky (2015) evaluated multi-sense embeddings

in several downstream tasks. They found that
multi-sense embeddings improve performance in
tasks such as POS tagging or identification of se-
mantic relations. They also identify downstream
tasks which do not benefit from sense disambigua-
tion. In sentiment analysis, for example, word
sentiment usually does not depend on the inferred
sense.

4 Experiments

We conducted a number of experiments to eval-
uate the quality of multi-sense word embeddings
learned by disambiguated skip-gram. This section
reports results from our evaluation. First, we re-
port qualitative results from our model for several
polysemous words. We then compare the perfor-
mance of disambiguated skip-gram with several
competing algorithms on a set of word sense in-
duction tasks. Finally, we evaluate the effect of
the entropy cost on the learned representations.

It is worth noting that the quality of multi-
sense word embeddings was formerly assessed
in contextual word similarity experiments. How-
ever, Bartunov et al. (2016) demonstrated that con-
textual word similarity experiments do not reflect
the quality of multi-sense representations. In par-
ticular, the best performance in contextual word
similarity task is often achieved by the baseline
skip-gram model, which does not recognize word
senses. This can be attributed to the fact that
skip-gram objective directly optimizes similarity
of vector representations of words that appear
in similar contexts. Multi-sense models, on the
other hand, solve a harder task: they disambiguate
words in contexts and then model the similarities
between the discovered senses. Bartunov et al. fo-
cus, therefore, on the performance of multi-sense
embeddings in the word sense induction task. We
adopt their evaluation methodology in this work.

We trained our disambiguated skip-gram mod-
els on the Westbury Lab Wikipedia corpus (Shaoul
and Westbury, 2010). We optimized the models
using mini-batch stochastic gradient descend with
momentum.

4.1 Qualitative results

We begin our evaluation by presenting senses
discovered by disambiguated skip-gram for sev-
eral ambiguous words. For the demonstration we
trained four 300-dimensional models with three
sense embedding vectors allocated to each word
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Word � = 0.0 � = 0.25 � = 0.5
p Nearest neighbors p Nearest neighbors p Nearest neighbors

fox

0.52 nbc cbs network 0.60 nbc cbs abc 0.68 cbs nbc abc
syndication espn syndication network cable colmes

0.25 miller allen plummer 0.22 miller allen terry 0.18 allen russell miller
crowe buck russell soper turner berry

0.24 badger wolf coyote 0.18 badger squirrel weasel 0.14 badger marten raccoon
weasel marten raccoon marten beaver mink

net

0.41 ebitda earnings annualized 0.43 ebitda annualized jpy 0.77 ebitda deadweight isk
taxable depreciation deadweight gni annualized deducting

0.32 trawl streamline maximis- 0.33 trawl minimises maximis- 0.23 crossbar puck lob
ing minimises counteracts ing streamlines stickiness header dribbled

0.26 crossbar puck lob 0.24 crossbar puck lob 0sliothar offside offside dribbled

rock

0.41 band indie punk 0.7 alternative glam progre- 0.72 alternative punk indie
alternative supergroup ssive indie psychedelic glam progressive

0.34 punk rockabilly pop 0.17 boulder basalt outcrop 0.17 basalt boulders quart-
psychedelia funk quartzite cliffs zite cliff outcropping

0.26 boulder quartzite 0.13 granite bluff pine 0.11 pine bluff eagle
granite sandstone basalt pigeon ledge pigeon turtle

plant

0.45 flowering perennial 0.46 flowering grasses shrub 0.48 flowering shrub grasses
shrub grass fungus fungus herbaceous herbaceous fungus

0.38 refinery smelter petroche- 0.45 refinery factory megawatt 0.48 refinery factory smelter
mical processing factory smelter cogeneration megawatt sellafield

0.18 factory botanical labo- 0.08 weed planted shed 0.04ratory farm nurseryman grinder laboratory

mouse

0.47 mickey rabbit goofy 0.5 rat mice rodent 0.51 mice rodent rat
cat porky mus elegans mus elegans

0.35 cursor joystick trackball 0.49 rabbit goofy cat 0.49 rabbit goofy porky
touchpad touchscreen porky tigger tigger tweety

0.19 rodent vole shrew 0.01 0pygmy rat

apple

0.46 macintosh imac iigs 0.64 macintosh iigs imac 0.95 macintosh blackberry
iie iic iie iic iigs imac apricot

0.28 wozniak macworld 0.25 wozniak blackberry 0.04macintosh ipod sculley tomato potato popcorn

0.26 strawberry peach 0.11 peach pecan persimmon 0.01raspberry blueberry plum prune blueberry

table

0.40 sortable column lookup 0.48 sortable column lookup 0.66 sortable tray column
hashed tray tray hashed chairs buckets

0.38 foosball carom lang- 0.36 foosball ept languishing 0.31 standings ept foosball
uishing pool slipping pool leaderboard leaderboard ittf

0.22 sortable list alphabe- 0.16 sortable descending list 0.03tical descending brackets alphabetically please

Table 1: Nearest neighbors and marginal probabilities p of word sense embedding vectors discovered
by the disambiguated skip-gram model for several ambiguous words. Sense embedding vectors with a
marginal probability p < 0.05 are pruned from the learned model.

and the entropy cost � ranging from 0.0 to 0.5.
For each of the evaluated words sense embeddings
we calculated the cosine similarity to the remain-
ing words and selected 5 nearest neighbours. The
results are reported in Tab. 1.

Disambiguated skip-gram discovered main
meanings of our test words. For example, the
meanings discovered for the word fox correspond
to a broadcasting company, an animal and a fam-

ily name. The meanings discovered for the word
mouse correspond to a cartoon character, a com-
puter mouse and an animal.

Results in Tab. 1 also demonstrate that disam-
biguated skip-gram will often expose an internal
structure in a word meaning, if that meaning ap-
pears in different contexts. For example, disam-
biguated skip-gram learned two embeddings for
the word plant corresponding to its factory mean-
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ing: one related to heavy industry and one related
to a farm or a plant nursery. This is a consequence
of the fact that disambiguated skip-gram discovers
word senses using only the information about the
contexts in which these words occur. In particular,
it does not employ any supervision from an exter-
nal knowledge base. Bartunov et al. (2016) refer
to a related phenomenon in the AdaGram embed-
dings as the semantic resolution of the model.

4.2 Word-sense induction experiments
To compare disambiguated skip-gram with state-
of-the-art competing algorithms we assessed its
performance in a set of word sense induction
tasks. In this evaluation we follow the experi-
mental setup from (Bartunov et al., 2016), allow-
ing for direct comparison with the results reported
therein. In particular, we evaluated disambiguated
skip-gram on the datasets from the SemEval-2007
Task 2 competition (SE-2007), SemEval-2010
Task 14 competition (SE-2010), SemEval-2013
Task 13 competition (SE-2013) and the Wikipedia
Word-sense Induction (WWSI) dataset introduced
by Bartunov et al. The test datasets consist of
between 4664 and 36354 examples. Each ex-
ample provides a ground truth sense of a cen-
ter word and the context in which this sense ap-
peared. The goal is to recognize the sense of the
center word given the context. We use the prepro-
cessed versions of SE-2007, SE-2010 and WWSI
datasets made available by Bartunov et al. For the
SemEval-2013 Task 13 we use the original com-
petition dataset (Jurgens and Klapaftis, 2013) and
follow the preprocessing steps reported in (Bar-
tunov et al., 2016).

We use a simple procedure for resolving word
senses. That is, we average all sense embedding
vectors of all context words and select the sense
zw of the center word w whose embedding vector
is most similar to the average vector:

zw = arg max
j

cos (vwj , c̄w) , (13)

where:

c̄w = (k · #Cw)�1
X

c2Cw

kX

s=1

vcs. (14)

The intuition behind this procedure is that we ex-
pect the average to preserve a shared component
in the embedding vectors, namely embeddings for
senses related to the sense of the center word, and

cancel out embeddings of unrelated senses. In ad-
dition to averaging sense embedding vectors we
also experimented with averaging output vectors
of context words. However, this approach usually
gave slightly worse results.

Following Bartunov et al. (2016), we use ad-
justed rand index (Hubert and Arabie, 1985) to
compare ground truth senses for a given word with
the senses inferred from disambiguated skip-gram
embeddings. The final performance on a bench-
mark task is the average of adjusted rand index
values over all test words in the task.

For this evaluation we trained a 300-
dimensional disambiguated skip-gram model
with 5 sense embedding vectors allocated to
each word and no entropy cost (� = 0.0). The
comparison between our model and MSSG, NP-
MSSG, MPSG and AdaGram is reported in Tab. 2.
The results for MSSG, NP-MSSG, MPSG and
AdaGram are taken from Bartunov et al. (2016).
Multi-sense embedding vectors learned by
disambiguated skip-gram outperform baseline
methods on the SE-2007, SE-2010 and WWSI
benchmarks, and achieve the second best result on
the SE-2013 benchmark.

SE-2007 SE-2010 SE-2013 WWSI
MSSG 0.048 0.085 0.033 0.194

NP-MSSG 0.033 0.044 0.033 0.110
MPSG 0.044 0.077 0.014 0.160

AdaGram 0.069 0.097 0.061 0.286
Disamb. 0.077 0.117 0.045 0.292skip-gram

Table 2: Performance of multi-sense word embed-
ding methods in word sense induction tasks. The
reported performance metric is the adjusted rand
index averaged over all test words in the bench-
mark task. Results for all models except the dis-
ambiguated skip-gram (Disamb. skip-gram) are
taken from (Bartunov et al., 2016).

4.3 Effect of the entropy cost

Results reported in Tab. 1 demonstrate that the en-
tropy cost � (Eq. 12) indeed allows for pruning
senses learned by disambiguated skip-gram. In
particular, when the entropy cost increases, disam-
biguated skip-gram allocates more of the marginal
probability mass (Eq. 11) to the frequent mean-
ings of the modelled words and, in effect, learns
coarser representations.

For a quantitative evaluation of the effect of
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entropy cost on the learned representations we
trained 50-dimensional disambiguated skip-gram
models with � ranging from 0.0 to 1.0. All models
allocate 5 sense embedding vectors to every word
in the vocabulary. In Tab. 3 we report an average
number of senses per word with marginal prob-
ability p � 0.05, depending on the value of the
entropy cost. In Fig. 2 we also report histograms
of marginal probabilities for selected entropy cost
values.

Entropy cost 0.0 0.1 0.25 0.5 0.75 1.0
Avg. sense num. 4.7 4.3 3.7 3.2 2.8 2.5

Table 3: Average number of senses per word with
marginal probability p � 0.05, learned by disam-
biguated skip-gram models with different values
of the entropy cost.

Figure 2: Histograms of marginal probabilities of
word senses learned by disambiguated skip-gram
models with different values of the entropy cost.

Histograms in Fig. 2 confirm our observation
from the qualitative evaluation: when the en-
tropy cost increases, disambiguated skip-gram
learns more peaked distributions for the condi-
tional sense probability p (z = j | w, Cw). This
translates to coarser sense representations. In par-
ticular, the model with no entropy cost learned
an average of 4.7 senses per word with marginal
probability p � 0.05 (Tab. 3). This number de-
creases with an increasing entropy cost, reaching
an average of 2.5 senses per word for � = 1.0.

We also evaluated 50- and 300-dimensional
models with different entropy costs in the word
sense induction tasks. In each case we pruned
senses with marginal probability p < 0.05. Re-

Dim. Entropy SE SE SE WWSICost 2007 2010 2013

50
No 0.064 0.107 0.040 0.304

0.25 0.083 0.116 0.043 0.244
0.5 0.064 0.091 0.045 0.182

300
No 0.077 0.117 0.045 0.292

0.25 0.079 0.113 0.045 0.259
0.5 0.065 0.091 0.049 0.183

Table 4: Performance of disambiguated skip-gram
models with different entropy costs in the word
sense induction tasks. The reported performance
metric is the adjusted rand index averaged over all
test words in the benchmark task.

sults from this evaluation (Tab. 4) indicate that
the desired granularity of the learned sense rep-
resentations depends on the underlying task. In
the WWSI benchmark the best performing models
had no entropy cost, while in the SemEval tasks
small entropy cost usually improved results. The
results agree for both model dimensionalities.

5 Conclusions

In this work we developed disambiguated skip-
gram: a novel neural-probabilistic model for
learning multi-sense distributed representations
of words. Unlike previous probabilistic models
for multi-sense word embeddings, disambiguated
skip-gram is a simple feed-forward neural network
and can be trained end-to-end with backpropaga-
tion. In experimental evaluation disambiguated
skip-gram improved over the state-of-the-art re-
sults in three out of four benchmark datasets and
ranked second the fourth.

Disambiguated skip-gram optimizes expected
log-likelihood of the context prediction model un-
der the distribution of word senses parametrized
by the disambiguation model. We choose to opti-
mize this objective with a biased but low-variance
gradient estimator. However, parallel to this work
there has been a significant progress in gradient-
based training of models with discrete latent vari-
ables. Specifically, Tucker et al. (2017) pro-
posed an unbiased low-variance gradient estima-
tor, called REBAR, that is applicable to models
with categorical latent variables. REBAR may
allow to efficiently optimize the original disam-
biguated skip-gram objective (Eq. 6), instead of
the relaxed objective (Eq. 10). This may further
improve the quality of embeddings learned with
our approach.
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Abstract

During natural disasters and conflicts, infor-
mation about what happened is often con-
fusing, messy, and distributed across many
sources. We would like to be able to auto-
matically identify relevant information and as-
semble it into coherent narratives of what hap-
pened. To make this task accessible to neural
models, we introduce Story Salads, mixtures
of multiple documents that can be generated at
scale. By exploiting the Wikipedia hierarchy,
we can generate salads that exhibit challeng-
ing inference problems. Story salads give rise
to a novel, challenging clustering task, where
the objective is to group sentences from the
same narratives. We demonstrate that simple
bag-of-words similarity clustering falls short
on this task and that it is necessary to take into
account global context and coherence.

1 Introduction

When a natural disaster strikes or a conflict arises,
it is often hard to determine what happened. In-
formation is messy and confusing, spread out over
many messages, buried in irrelevant text, and even
conflicting. For example, when flight MH-17
crashed in Ukraine in 2014, there were initially
many theories of what happened, including a mis-
sile strike initiated by Russia-affiliated militants,
a missile strike by the Ukrainian military, and a
terrorist attack. There was no single coherent in-
terpretation of what happened, but multiple, messy
narratives, a story salad. We would like to be able
to automatically identify relevant information and
assemble it into coherent narratives of what hap-
pened. This task is also the subject of an upcoming
task at the Text Analysis Conference.1

Picking apart a story salad is a hard task that
could in principle make use of arbitrary amounts
of inference. But it is also a task in which coher-

1https://tac.nist.gov/2018/SM-KBP/
index.html

(A) Some of the prisoners were survivors of the Battle of Qala-i-Jangi
in Mazar-i-Sharif. (A) Chechnya came under the influence of warlords.
(B) The U.S. invaded Afghanistan the same year when several Taliban
prisoners were shot. (A) Russian federal troops entered Chechnya and
ended its independence. (A) The Russian casualties included at least
two commandos killed and 11 wounded. (B) The dead were buried in
the same grave under the authority of Commander Kamal.

Figure 1: A story salad involving two articles, about a
Russian military operation in Chechnya (A) and about
a U.S. operation in Afghanistan (B). These two articles
are topically similar but their mixture can still be dis-
entangled based on narrative coherence.

ence judgments could play a large role, the sim-
plest being topical coherence, but also narrative
coherence (Chambers and Jurafsky, 2008, 2009;
Pichotta and Mooney, 2016; Mostafazadeh et al.,
2017), overall textual coherence (Barzilay and La-
pata, 2008; Logeswaran et al., 2018), and coher-
ence in the description of entities. This makes it
an attractive task for neural models.

To make the task accessible to neural mod-
els, we propose a simple method for creating
simulated story salad data at scale: we mix to-
gether sentences from different documents. Fig-
ure 1 shows an example mixture of two arti-
cles from Wikipedia, one on the Russia-Chechnya
conflict and one on a conflict between the U.S.
and Afghanistan. By controlling how similar the
source documents are, we can flexibly adjust the
difficulty of the task. In particular, as we show be-
low, we can generate data that exhibits challenging
inference problems by exploiting the Wikipedia
category structure.2 While this data is still simpler
than story salads arising naturally, it approximates
the task, is sufficiently challenging for modeling,
and can be generated in large amounts.3

2In particular, while we do not focus on creating mixtures
with conflicting information, it can often be found in mixtures
created based on Wikipedia categories, as shown in Figure 2.

3The story salad data is available at http://www.
katrinerk.com/home/software-and-data/
picking-apart-story-salads-1. The Wikipedia
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We explore some initial models for our Story
Salad task. As the aim of the task is to group
story pieces into stories, we start with straight-
forward clustering based on topic similarity. But
topic similarity is clearly not enough to group the
right pieces together. For example, the two articles
in Figure 1 are both about armed conflicts, but the
Russia-Chechnya sentences in the example form
a group in contrast to the U.S.-Afghanistan sen-
tences. To model this, we learn sentence embed-
dings adapted to the clustering task and with ac-
cess to global information about the salad at hand.
We also test an extension where to decide whether
to group two sentences together, the model mu-
tually attends to the sentences during encoding in
order to better focus on the commonalities and dif-
ferences of these two sentences. Both extensions
lead to better models (6-13% improvement in ac-
curacy with a model incorporating both), confirm-
ing that the task requires more than just general
topical similarity. But there is much room for im-
provement, in particular on salads generated to be
more difficult, where performance is around 15
points lower than on arbitrary mixtures.

2 Related Work

Building on early work in script learning (Schank
and Abelson, 1977), Chambers and Jurafsky
(2008) introduce narrative schema and propose
the “narrative cloze” task where the modeling ob-
jective is to predict the event happening next. The
topic has since seen many extensions and vari-
ants coupled with increasingly sophisticated mod-
els (Chambers and Jurafsky, 2009) including neu-
ral networks (Granroth-Wilding and Clark, 2016;
Pichotta and Mooney, 2016; Mostafazadeh et al.,
2017). This line of work is related to story sal-
ads in that our aim of separating entangled narra-
tives in a document mixture also leverages within-
narrative coherence. Our work, however, is very
different from narrative cloze: (i) we group sen-
tences/events rather than predicting what happens
next; (ii) crucially, the narrative coherence in story
salads is in context, in that a narrative clustering is
only meaningful with respect to a particular doc-
ument mixture (see Section 5, 6), while in narra-
tive cloze the next event is predicted on a “global”

salads are available for download directly and we have
provided code to reconstruct the NYT salads from English
Gigaword 5 (available as LDC2003T05).

level.4

Working with labeled story salad examples,
we draw inspiration from previous work on su-
pervised clustering (Bilenko et al., 2004; Finley
and Joachim, 2005). We also take advantage of
the recent success of deep learning in leveraging
a continuous semantic space (Pennington et al.,
2014; Kiros et al., 2015; Mekala et al., 2017;
Wieting and Gimpel, 2017; Wieting et al., 2017)
for word/sentence/event encoding; neural compo-
nents for enhanced supervised clustering (Bilenko
et al., 2004), in particular LSTMs (Hochreiter and
Schmidhuber, 1997; Dai and Le, 2015), CNNs
(Kim, 2014; Conneau et al., 2017), and atten-
tion mechanisms (Bahdanau et al., 2015; Hermann
et al., 2015; Lin et al., 2017). By exploring our
ability to pick apart story salads with these state-
of-the-art NLP modeling tools, we attempt to (i)
show the value of the story salad task as a new
NLP task that warrants extensive research; (ii) un-
derstand the nature of the task and the challenges
it sets forth for NLP research in general.

The task of picking apart story salads is related
to the task of conversation disentanglement (El-
sner and Charniak, 2008; Wang and Oard, 2009;
Jiang et al., 2018), which is a clustering task of
dividing a transcript into a set of distinct conver-
sations. While superficially similar to our Story
Salad task, conversation disentanglement focuses
on dialogues and has many types of metadata
available, such as time stamps, discourse infor-
mation, and chat handles. Existing systems draw
heavily on this metadata. Another related task
is the distinction of on-topic and off-topic docu-
ments (Bekkerman and Crammer, 2008), which is
defined in terms of topical relatedness. In compar-
ison, the story salad task offers opportunities for
more in-depth reasoning, as we show below.

3 Data

Natural story salads arise when multiple messy
narratives exist to describe the same event or out-
come. Often this is because each contribution to
the explanation only addresses a small aspect of
the larger picture. We can directly simulate the
confusion this kind of discourse creates by taking
multiple narratives, cutting them into small pieces,
and mixing them together.

4The story salad task is more similar to multichoice narra-
tive cloze (Granroth-Wilding and Clark, 2016) in this regard,
but formulated categorically differently.
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Dataset Salads Total Words µ Words/Salad cos (test)

NYT 573,681 217,841,716 379.726 0.33
NYT-HARD 1,000 20,149 438.220 0.56
WIKI 500,000 197,175,135 394.350 0.35
WIKI-HARD 50,374 21,266,243 422.167 0.64

Table 1: Statistics of the datasets we present. The aver-
age topic cosine similarity scores (cos) between the two
narratives in document mixtures are computed from the
test sets. The NYT, WIKI and WIKI-HARD salads are di-
vided into 80%/20% train/test splits, while the smaller
NYT-HARD is treated entirely as test.

Data generation. Story salads are generated
by combining content from source documents and
randomizing the sentence order of the resulting
mixture. In order to ensure appropriately sized
salads, we require that each source document con-
tain at least eight sentences. Furthermore, to avoid
problematically large salads, we pull paragraphs
from source documents one at a time until the
eight sentence minimum is met. While this proce-
dure can be used to mix any number of documents,
we currently present mixtures of two documents.

We utilize two different corpora as sources for
story salad generation: (i) the subset of New
York Times articles presented within English Gi-
gaword (Graff and Cieri, 2003) and (ii) English
Wikipedia5 (Wikipedia contributors, 2004). An
overview of the datasets is available in Table 1.

Gigaword. From the New York Times subset
of Gigaword, we compiled a set of 573,681 mix-
tures we call NYT. Each mixture in this set is con-
structed from source articles pulled from the same
month and year. Because this temporal constraint
is the only restriction put on what articles can be
mixed, it is possible for a salad to be constructed
from topically disparate source documents (e.g., a
restaurant review and a political story). We intend
NYT to be relatively easy on the whole as a result
of this design choice.

However, it is also possible for articles about
dominant news stories and trends (e.g., the OJ
Simpson trial in the summer of 1994) to be mixed
as a result of the same temporal constraint. We
therefore pulled out a curated subset of NYT con-
sisting only of salads generated from highly top-
ically similar source documents which we call
NYT-HARD. This subset consists of the 1,000 sal-
ads where the source documents are most topically
similar. We calculate topic similarity scores by

5Wikipedia dump pulled on January 20, 2018.

computing the cosine similarity between the av-
erage word embeddings for each source document
(denoted cos hereafter)

cos(d) =
g(!1) · g(!2)

k g(!1) kk g(!2) k (1)

where !1 and !2 are the source documents, g is a
function that computes the average word embed-
ding of a document, and d is the salad under eval-
uation. The cos scores on the test portion of the
datasets are presented in Table 1.

Wikipedia. From Wikipedia, we present an ad-
ditional set of 500k salads constructed by combin-
ing random articles which we call WIKI.

We also leverage Wikipedia category member-
ship as a form of human-annotated topic informa-
tion. We use this to create a set of 50,374 salads,
henceforth called WIKI-HARD, by restricting the
domain of articles to only those appearing in cate-
gories containing the words conflict and war. Each
mixture in this set is generated from source arti-
cles from the same category in order to produce
highly difficult mixtures. We intend this to be a
challenge set in this domain as the constituent ar-
ticles for a given mixture are intentionally selected
to be closely related. While we have used the cate-
gory information to construct an intentionally very
difficult set for this paper, we note that this proce-
dure can be used to create sets of varying difficulty.

The fact that WIKI-HARD is generated from
human-annotated category labels differentiates it
from NYT-HARD in the source of its difficulty. Af-
ter manually reviewing 20 samples from each *-
HARD dataset, we found that NYT-HARD more fre-
quently contains salads that are impossible for hu-
mans to pick apart while WIKI-HARD more fre-
quently contains salads that are possible, though
challenging. In particular, in 9 out of 20 WIKI-
HARD salads we found that access to world knowl-
edge and inference would be beneficial. Never-
theless, the two *-HARD datasets are both high in
topic similarity (Table 1).

In Figure 2 we present sentences from a sample
WIKI-HARD salad that can be solved with world
knowledge. In this salad, we learn about two indi-
viduals. We can tell that Randle, born in 1855, is
unlikely to also have been enrolled in high school
in 1913 at the age of 58. We also learn that Randle
was a doctor, while Martins, the other individual,
was involved in theater. From this, we can deduce
that the individual who “also worked as a wrestler”
is more likely to be Martins than Randle.

1457



(A) John K. Randle was born on 1 February 1855, son of Thomas
Randle, a liberated slave from an Oyo village in the west of what is
now Nigeria. (B) In 1913 he was enrolled in Eko Boys High School
but dropped out. (B) Martins joined the theatre and from there took on
various theatre jobs to survive. (A) Born in Sierra Leone , he was one
of the first West Africans to qualify as a doctor in the United Kingdom.
(B) He also worked as a wrestler (known as “Black Butcher Johnson”).

Figure 2: A story salad from WIKI-HARD, sourced
from articles belonging to the Nigerian people of World
War I category. The sentences from this salad have
been rearranged for clearer presentation.

Event Representation. Finally, we explore a
form of document representation that has been
shown to be useful in narrative schema learning, a
related task. We include variants of NYT and NYT-
HARD with story salads consisting of event tuple
representations instead of natural language sen-
tence representations, as in Pichotta and Mooney
(2016). We label these variants as NYT-EVENT
and NYT-EVENT-HARD. Event tuples are in the
form <VERB, SUBJ, DOBJ, PREP, POBJ>,
where as many preposition and prepositional ob-
ject pairs as necessary are allowed.6

Summary. The story salads we present here
are, in the end, simpler than those that occur nat-
urally in the news or on social media: for one
thing, sentences drawn from a document written
by a single author should exhibit a high degree of
coherence. We have also shown that we can use
Wikipedia category annotations to produce large-
scale story salad datasets with customizable lev-
els of difficulty, enabling us to increase the diffi-
culty of the task as performance increases. In the
following section, we see that both our standard
and *-HARD mixtures are challenging for current
models. Furthermore, our WIKI-HARD dataset
contains salads featuring conflicting information
and is an attractive setting for building models
with deeper reasoning capabilities.

4 Models

We treat the story salad task as a narrative clus-
tering task where, in our dataset, each salad is
comprised of two clusters. Accordingly, the first
baselines we consider are standard clustering ap-
proaches.

Baselines. Our first baseline is a simple uni-
form baseline (hereafter UNIF), where we assign

6Event tuples are extracted via the extractor presented in
Cheng and Erk (2018), and copular verbs are not treated as
events, meaning that some sentences translate to null events.

all sentences in a document mixture to a single
cluster. Under UNIF the clustering accuracy is the
percentage of the majority-cluster sentences, e.g.
if a mixture has 7 sentences from one narrative and
3 from the other, then the accuracy is 0.7.

Additionally, we explore a family of base-
lines that consist of clustering off-the-shelf sen-
tence embeddings. We choose k-medoids7 (here-
after KM) as our clustering algorithm. For sen-
tence embeddings, we experimented with (i) aver-
aged 300D GloVe embeddings (Pennington et al.,
2014), which have been shown to produce surpris-
ingly strong performance in a variety of text clas-
sification tasks (Iyyer et al., 2015; Coates and Bol-
legala, 2018); (ii) skip-thought embeddings (Kiros
et al., 2015); and (iii) SCDV (Mekala et al., 2017),
a multisense-aware sentence embedding algorithm
which builds upon pretrained GloVe embeddings
using a Gaussian mixture model. Averaged GloVe
embeddings gave the best performance in our ex-
periments; to avoid clutter, we only report those
results henceforth.

Neural supervised clustering. Our baselines
work directly on sentence embeddings and there-
fore ignore the task-specific supervision available
in our labeled training data. Inspired by the work
in Bilenko et al. (2004) and Finley and Joachim
(2005) on supervised clustering, we aim to exploit
this supervision using a learned distance metric in
our clustering.8

Figure 3 shows our model, which produces a
distribution P (same | s1, s2, d): the probability
that two sentences s1 and s2 taken from document
mixture d are in the same cluster. We train this
model as a binary classifier on sampled pairs of
sentences to distinguish same-narrative sentence
pairs (positive examples) from different-narrative
pairs (negative examples). 1�P (same | s1, s2, d)
is then used by the clusterer as the pairwise dis-
tance metric. Given the pairwise distance between
all sentence pairs in a mixture, the KM algorithm

7K-medoids is chosen as a substitute for k-means because
the latter does not extend easily to our classifier-aided neu-
ral models: it does not work when only pairwise distances
are available. In empirical evaluation we found k-means and
k-medoids to produce very similar accuracy scores when us-
ing off-the-shelf embeddings. Experiments with hierarchical
agglomerative clustering (not reported here) showed it to per-
form worse than either method.

8In early experiments, another strong candidate we tried
is a joint model of a sentence autoencoder and a clustering
algorithm (Yang et al., 2017). However, this produces subpar
performance (weaker than the strongest baseline), due par-
tially to scalability issues in learning these jointly.
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seven died in the attack the U.S. called it terrorism

Attention Attention

seven died in the attack . the 
campaign has focused on 
healthcare . the U.S. called it 
terrorism . “ this bill provides 
better care to our veterans .” the 
president signed the bill last week 

CNN

Bilinear
ccz1

z1 z2

z2m1�2 m2�1

P (same | s1, s2, d)

Figure 3: BiLSTM sentence pair classifier to determine whether s1 and s2 are from the same narrative, augmented
with a mutual attention and a context reader. The three subcomponents — the BiLSTM, the mutual attention
mechanism, and the context reader — each produce vectors, denoted as z, m, c respectively. In the basic BILSTM
model, only z is fed to the bilinear layer (Eq. 2), while more sophisticated models incorporate the additional
mutual attention and context vectors.

can then be applied to cluster sentences into two
narratives.

Our classifier is a neural network model built
on top of LSTM sentence encoders, which per-
form well at similar text classification tasks (Dai
and Le, 2015; Liu et al., 2016).9 Denoting a sen-
tence as the list of embeddings of its constituent
words: s = {w1, . . . , wM}, we first encode it as a
sentence embedding z with a bidirectional LSTM
z = BiLSTM(s) and then compute the probability
score with a bilinear layer:

P (same | s1, s2) = �(zT
1 Wz2) (2)

This model corresponds to the green subset of Fig-
ure 3.

Stronger models. There are two additional ef-
fects we might want our model to capture. First,
whether two sentences are from the same narra-
tive cannot be determined globally: there aren’t
two “globally-contrasted”10 narratives (or bag-of-
words based topics) from which sentences are
sampled. In other words, sentences are always
(pairwise) compared in the context of the docu-
ment mixture from which they are drawn. Sec-
ond, we want to capture more in-depth interac-
tions between sentences: our sentence embedding
scheme for a sentence s1 should exploit its point

9Experiments with convolutional encoders here yielded
somewhat worse results.

10Two stories may be on the same topic and still form
clearly different narratives. For example, both narratives in
Figure 1 are regarding military conflict.

of comparison s2 and encode s1 with a view of
similarities to and differences with s2. This type
of technique has been useful in tasks like natural
language inference (NLI) (Bowman et al., 2015;
Peters et al., 2018).

To improve contextualization, we add a CNN-
based context encoder to the BiLSTM classifier:
the reader embeds the whole document salad at
hand into a vector. Formally, we compute c =
CNN(d), where in this case CNN denotes a single
convolution layer with max pooling in the style of
Kim (2014) and d is the concatenation of all sen-
tences in the mixture. This component is shown
in blue in Figure 3. The context vector c is then
appended to z and fed into the bilinear layer.

To capture the interaction between two sen-
tences in a pair, we employ a mutual attention
mechanism, which is similar to the attentive reader
(Hermann et al., 2015). Let ei,1...n denote the BiL-
STM outputs for the tokens of sentence i. Given
the encoding z1 of sentence s1, we compute atten-
tion weights and a representation of s2 as follows:

↵1!2 = softmaxj(z
>
1 e2,j)

m1!2 =
X

j

↵1!2,j e2,j

We compute m2!1 analogously. This process is
shown in purple in Figure 3. The m vectors are
used as additional inputs to the bilinear layer.

For comprehensive ablation, we experiment
with four variants of neural classifiers: (i) BiL-
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STM alone (BILSTM); (ii) BiLSTM + mutual at-
tention (BILSTM-MT); (iii) BiLSTM + context
(BILSTM-CTX); and (iv) BiLSTM + mutual atten-
tion and context (BILSTM-MT-CTX).

Event-based models. For the event-based vari-
ants of the datasets, NYT-EVENT and NYT-EVENT-
HARD, we build three models: (i) FFNN-BILSTM:
we input a sentence as a sequence of event em-
beddings rather than word embeddings as in BIL-
STM, where a feedforward layer maps the words
in an event tuple to an event embedding; (ii)
FFNN-BILSTM-MT-CTX: replacing the base BIL-
STM in (i) with our best model which is enhanced
with mutual attention and contextualization; (iii)
FFNN-BILSTM-MT-CTX-PRETRAIN: a variant of
(ii) that is based on the event embedding pretrain-
ing method11 described in Weber et al. (2018),
where events are encoded with a feedforward net
(same as (i)) and trained with a word2Vec-like ob-
jective, encouraging events that co-occur in the
same narrative to have more similar embeddings.

5 Experiments and Analysis

Experimental setup. To stave off sparsity, we
impose a vocabulary cut by using only the 100k
most frequent lemmas. To evaluate on NYT,
NYT-EVENT, WIKI and WIKI-HARD, we sample
20k unique salads (from their respective test por-
tions12) to use for both the sentence and event ver-
sions of the experiments. For WIKI-HARD, the
training combines the training portions of both
WIKI and WIKI-HARD. For NYT-HARD, we train
on the training portion of NYT and evaluate on
NYT-HARD in full as a test set.

All the neural components are constructed with
TensorFlow and use the same hyperparameters
across variants: a 2-layer BiLSTM, learning rate
1e-5 with Adam (Kingma and Ba, 2014), dropout
(Srivastava et al., 2014) rate 0.3 on all layers, and
Xavier initialization (Glorot and Bengio, 2010).
To create training pairs for the neural classifiers,
we randomly sample sentence pairs balanced be-
tween same-narrative and different-narrative pairs.
We train with a batch size of 32 and stop when an
epoch yields less than 0.001% accuracy improve-
ment on the validation set, which is 5% of mix-
tures sampled from the training data beforehand

11In Weber et al. (2018), a more complex tensor-based
model is applied. Using exactly same method in our experi-
ments we obtain weaker results.

12Test sets available with data release.

Model NYT WIKI NYT-HARD WIKI-HARD

UNIF 52.7 50.9 52.5 51.2
KM 76.4 74.9 59.8 60.4

BILSTM 78.5 76.2 55.3 59.8
BILSTM-MT 80.8 78.8 56.7 61.3
BILSTM-CTX 82.6 78.9 63.8 63.7
BILSTM-MT-CTX 84.9 81.8 68.0 66.6

Table 2: Clustering accuracy (CA) results from the sen-
tence based experiments. More sophisticated models
do better across all datasets, particularly on *-HARD
tasks, which are substantially more challenging.

(the models are not trained on the validation sam-
ple). For KM we use the default configurations of
off-the-shelf software.13

Evaluation. We evaluate all models in terms of
a clustering accuracy metric (hereafter CA), which
is a simple extension from the conventional ac-
curacy metric: we calculate the ratio of correctly
clustered sentences in a document mixture, aver-
aged over test mixtures. Given a document mix-
ture di, we call its component documents A and
B. Let pred be a function that does the cluster-
ing by mapping each sentence si,n of mixture di

to either A or B, and trueAB a function that re-
turns the original pseudo-labels (i.e. {A, B}) as
they are, and trueBA flips the pseudo-labels, i.e.
A ! B and B ! A. Then the clustering accuracy
for document di by pred is

CA(di,pred,true) = max{C(di,pred,trueAB),

C(di,pred,trueBA)}

C(di,pred,true) =

1
Ni

X

n

1[pred(si,n) = true(si,n)]

where si,n is the n-th sentence of mixture di.
Sentence based models. First we evaluate the

sentence based models. We first run the UNIF
baseline on all our datasets, where we obtain near-
50% clustering accuracy. This indicates that the
data are all balanced in the number of sentences in
the two narratives of the mixtures. We then run k-
medoids (KM) on sentence embeddings as a base-
line to compare to the classifier-aided models. The
results are summarized in Table 2.

We first observe that the KM is a strong baseline
and outperforms the supervised BILSTM system in
the harder settings. Adding the mutual attention
mechanism and contextualization, however, im-

13 github.com/letiantian/kmedoids
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Figure 4: Attention weight heatmaps for a random
sample with BILSTM-MT-CTX. Lighter color indicates
higher attention weights. The two heatmaps in the
same block are for the attention weights of one sen-
tence attending to the other. In (a), we see related con-
cepts being identified (video game and sega), while in
(b), we see a contrast (family station wagon and sega
group).

prove BILSTM substantially. In addition, the per-
formance boost from the two components seems
more or less orthogonal, as shown by the much
stronger accuracy of the combined model (i.e.
BILSTM-MT-CTX) than the models with a single
component (i.e. BILSTM-MT and BILSTM-CTX).
Overall, the large margin of KM and classifier-
aided models above the UNIF baseline indicates
that separating story salads is a valid task where
generalizable patterns can be exploited by ma-
chine learning techniques.

Why would the mutual attention mechanism
help? Plotting the attention weights of randomly
selected samples, we see distributionally similar
words being attended to in Figure 4a. Intuitively, a
BiLSTM compresses a sentence into a single vec-
tor, leading to information loss (Conneau et al.,
2018). Mutual attention enriches this represen-
tation by allowing us access to detailed informa-
tion in sentences at word-level resolution by cap-
turing lexical similarity. Even more interestingly,
we observe a synergistic effect between mutual
attention and contextualization: with the context
reader added, we see high attention weights on
words/phrases which bear little distributional sim-
ilarity but are important for connecting/contrasting
different narratives. For example, in Figure 4b,
sega group and family station wagon are selected

Type Model NYT WIKI

-CONTEXT
BILSTM �0.40⇤ �0.43⇤

BILSTM-MT �0.38⇤ �0.40⇤

+CONTEXT
BILSTM-CTX �0.31⇤ �0.30⇤

BILSTM-MT-CTX �0.27⇤ �0.25⇤

Table 3: Spearman’s ⇢ correlation between cluster-
ing accuracy (CA) and topic similarity (cos) in the
evaluation with NYT and WIKI. The p-values are all
below 0.01 (indicated by *). Contextualized models
(+CONTEXT) are more robust to high topic similarity
than their uncontextualized counterparts (-CONTEXT),
indicated by the lower negative correlation between
their accuracy and topic similarity.

by the attention, despite not having similar words
in the other sentences. These words are crucial in
identifying the two narratives in this mixture: one
is about a Japanese video game company, the other
is on vehicle manufacturing in the U.S.

Another observation is that all models see dras-
tic reduction in accuracy in the *-HARD version
of the data. In fact, the clustering accuracy corre-
sponds well with our topic similarity metric (cos,
Eq. 1; Table 1) across models. In addition, cos is
negatively correlated with clustering accuracy for
all mixtures (Table 3).

From the results we also see that contextualiza-
tion brings clear performance improvement. This
supports our hypothesis that the Story Salad task
is a nonstandard clustering task where the contrast
of two narratives is only meaningful in the con-
text of the particular mixture where they reside,
rather than on a corpus-general level. Taking the
example in Figure 1, the Russian-Chechnya and
the U.S.-Afghanistan narratives are contrasted in
that mixture, but one can easily imagine a mix-
ture where they are in the same narrative and are
contrasted to another narrative on business affairs.
Further, contextualized models are less vulnera-
ble to the performance reduction on mixtures with
high topic similarity: for one thing, contextualiza-
tion improves performance over the base BILSTM
on both regular and *-HARD datasets. Secondly,
computing the correlation between clustering ac-
curacy and topic similarity, we see a lower nega-
tive correlation for contextualized models, true for
both NYT and WIKI datasets (Table 3).

Event based models. While the accuracy
scores in the event based experiments are in gen-
eral lower than those in the sentence based (Ta-
ble 4), overall we observe the same pattern that
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Model NYT-EVENT NYT-EVENT-HARD

KM 64.7 55.3

FFNN-BILSTM 64.9 54.8
*-MT-CTX 66.8 59.1
*-MT-CTX-PRETRAIN 70.2 61.4

Table 4: Clustering accuracy (CA) results from the
event based experiments. *-MT-CTX is a short hand
for FFNN-BILSTM-MT-CTX. The same notation applies
for the following models.

mutual attention and contextualization contribute
substantially to the performance. More interest-
ingly, the performance reduction on the topically
highly similar *-HARD is more mild compared to
the sentence based experiments, which provides
initial evidence that event-based narrative encod-
ing allows the models to be more robust to dis-
traction by lexical overlap in topically similar nar-
ratives. Finally we see that the event pretraining
with Weber et al. (2018)’s technique brings addi-
tional improvement over a contextualized system.

The results open up a door for future work: (i)
our simple models do not make use of corefer-
ence, narrative schema or world knowledge, which
are intuitively promising components to introduce
(see, e.g., the salad in Figure 2); (ii) more so-
phisticated model architectures may help capture
the information missed by our models: moving
from the sentence version to the event version, we
lose many words which may have provided crucial
cues in the sentence-based experiments.

Error analysis. In order to understand the er-
rors made by each model, we performed a man-
ual analysis of a small sample of bad clusterings.
In a sample of 60 mixtures from NYT (test set),
we considered all clusterings for which accuracy
was less than 0.65. Among the 60 mixtures, the
base model had an accuracy this low for 27 mix-
tures, the BILSTM-MT and BILSTM-CTX model
had 13 low-accuracy mixtures each, and BILSTM-
MT-CTX had 3. Each mixture was manually an-
notated by 2 annotators as being sourced from (i)
thematically closely related documents (e.g., two
stories on the same political event), (ii) themati-
cally distinct documents (e.g., a political story and
a sports story), or (iii) cannot tell.

Our analysis showed that the base BILSTM
model has difficulty even in cases where the source
documents for the salad are thematically distinct.
This was the case in 9 of 27 bad clusterings. The
BILSTM-MT, BILSTM-CTX and BILSTM-MT-CTX

(A) lehman brothers be one of several investment bank eager to get
UNK hand on state asset, across the nation and in massachusetts (A)
former massachusetts governor william f. weld, a staunch supporter of
privatization during UNK administration, have UNK in the hall of the
state house, now as a corporate lawyer try to drum up support for the
sale of lucrative state asset. (B) officially, the rays option dukes, 22,
to class a vero beach and place UNK on the temporary inactive list,
where UNK will remain for an undetermined amount of time as UNK
undergo counseling. (B) UNK apparently will receive UNK $ 380,000
major-league salary .

Figure 5: An example of (preprocessed) sentences from
two unrelated documents being that have been clus-
tered into a single cluster by the base model. Docu-
ment (A) is an article about proposed privatization of
public assets, while Document (B) is an article about
happenings in Major League Baseball.

models not only have many fewer bad clusterings,
they also show low accuracy almost exclusively in
mixtures of related documents (2 cases of distinct
documents for BILSTM-CTX, none for BILSTM-
MT or BILSTM-MT-CTX). Figure 5 shows an ex-
ample of a bad clustering of two unrelated docu-
ments, produced by the base BILSTM model.

In a second study, we rated the same 60 sam-
ples by their difficulty for a human, focusing in
particular on mixtures that went from low perfor-
mance (0.5-0.65) in the BILSTM model to high
performance (0.8-1.0) in another model. For
BILSTM-CTX we find that only 2 out of 11 mix-
tures with such marked improvement over BIL-
STM were hard for humans; for BILSTM-MT only
1 out of 9 markedly improved mixtures was hard
for humans. But for BILSTM-MT-CTX, 8 out of
17 markedly improved mixtures were hard for hu-
mans, indicating that more sophisticated models
do better not only on easy but also on hard cases.

In a third small study, we compare NYT-HARD
and WIKI-HARD for their difficulty for humans,
looking at 20 mixtures each. Here, very inter-
estingly, we find more mixtures that are impos-
sible for humans in NYT-HARD (10 cases, exam-
ple in Figure 6) than WIKI-HARD (3 cases). This
presents a clear discrepancy between difficulty for
humans and difficulty for models: the models do
better on NYT-HARD which is harder for us. While
we would not want to draw strong conclusions
from a small sample, this hints at possibilities
of future work where world knowledge, which is
likely to be orthogonal to the information picked
up by the models, can be introduced to improve
performance (e.g. Wang et al. (2018)).

Note that unlike many other NLP tasks where
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(A) The most basic question face the country on energy be how to
keep supply and demand in line. The Democrats would say : “what
can UNK do to make good use of what UNK have get?” (B) Oil price
dominate the 31-minute news conference, hold here near pittsburgh.
(B) Vice President Al Gore hold UNK first news conference in 67 day
on Friday, defend UNK call for the release of oil from the govern-
ment’s stockpile and and vow that UNK would “confront friend and
foe alike” over the marketing of violent entertainment to child, despite
the million in donation UNK receive from Hollywood. (A) With oil
price up, consumer agitate and the winter heating season loom, Vice
President Al Gore and Gov. George W. Bush be go at UNK on en-
ergy policy, seek to draw sharp distinction over an issue on which both
candidate have political vulnerability. (B) On other topic, Gore say
UNK be not nervous about the upcoming debate, but be incredulous
when a reporter ask whether UNK be confident UNK have the elec-
tion lock up. (A) Bush, who criticize the decision as a political ploy
to drive down price just ahead of election day, be schedule to discuss
energy policy in a speech on Friday. (B) On Friday, Bush call Gore a
“flip-flopper”, say UNK proposal to tap into the reserve be a political
ploy.

Figure 6: Part of a story salad that is impossible for a
human to pick apart (source: NYT-HARD). “UNK” rep-
resents out-of-vocabulary tokens, and all the words are
lemmatized. Both narratives, i.e. (A) and (B) involve
the characters Al Gore and George Bush, and both are
on the topic of energy, with strongly overlapping vo-
cabulary.

human performance sets the ceiling for the best
achievable results (e.g. span-prediction based
question answering (Rajpurkar et al., 2016), where
all the information needed for the correct answer is
available in the input), successfully picking apart
narratives in a story salad may require consulting
an external knowledge base, which affords ma-
chine learning models a clear advantage over hu-
mans. For example, recognizing that Commander
Kamal is likely to be Afghani based on his name,
which is not knowledge every reader possesses,
would allow us to successfully cluster the sentence
with the U.S.-Afghanistan narrative rather than the
Russian-Chechnya narrative.

6 Conclusion

We have presented a technique to generate Story
Salads, mixtures of multiple narratives, at scale.
We have demonstrated that the difficulty of these
mixtures can be manipulated either based on doc-
ument similarity or based on human-created doc-
ument categories. This data gives rise to a chal-
lenging binary clustering task (but easily extended
to n-ary), where the aim is to group sentences that
come from the same original narrative. As coher-
ence plays an important role in this task, the task
is related to work on narrative schemas (Chambers
and Jurafsky, 2008; Pichotta and Mooney, 2016)

and textual coherence (Barzilay and Lapata, 2008;
Logeswaran et al., 2018). The automated and scal-
able data generation technique allows for the use
of neural models, which need large amounts of
training data.

Conducting a series of preliminary experiments
on the data with common unsupervised cluster-
ing algorithms (Cao and Yang, 2010) and vari-
ants of neural network-based (Kim, 2014; Dai and
Le, 2015; Liu et al., 2016) supervised clustering
(Bilenko et al., 2004; Finley and Joachim, 2005)
models, we have (i) verified the validity of the
task where generalizable patterns can be learned
through machine learning techniques; (ii) shown
that this is a nonstandard clustering task in which
the contrast between narratives is in context as op-
posed to global; (iii) found that there is a class of
mixtures that are doable for humans but very dif-
ficult for our current models, and that in particular
the category-based method creates a high propor-
tion of such mixtures.

Our work opens up a large number of directions
for future research. First, while our models obtain
strong results on simpler story salads, they have
low performance on more difficult mixtures with
high topical similarity. Second, there are many in-
tuitively promising sources of information that we
have not explored, such as coreference. And third,
our models rely on pairwise similarity-based co-
herence learning, which leads to the natural ques-
tion of whether structured prediction would im-
prove performance.
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Abstract
While one of the first steps in many NLP sys-
tems is selecting what pre-trained word em-
beddings to use, we argue that such a step is
better left for neural networks to figure out
by themselves. To that end, we introduce
dynamic meta-embeddings, a simple yet ef-
fective method for the supervised learning of
embedding ensembles, which leads to state-
of-the-art performance within the same model
class on a variety of tasks. We subsequently
show how the technique can be used to shed
new light on the usage of word embeddings in
NLP systems.

1 Introduction

It is no exaggeration to say that word embed-
dings have revolutionized NLP. From early dis-
tributional semantic models (Turney and Pantel,
2010; Erk, 2012; Clark, 2015) to deep learning-
based word embeddings (Bengio et al., 2003; Col-
lobert and Weston, 2008; Mikolov et al., 2013;
Pennington et al., 2014; Bojanowski et al., 2016),
word-level meaning representations have found
applications in a wide variety of core NLP tasks,
to the extent that they are now ubiquitous in the
field (Goldberg, 2016).

A sprawling literature has emerged about what
types of embeddings are most useful for which
tasks. For instance, there has been extensive work
on understanding what word embeddings learn
(Levy and Goldberg, 2014b), evaluating their per-
formance (Milajevs et al., 2014; Schnabel et al.,
2015; Bakarov, 2017), specializing them for cer-
tain tasks (Maas et al., 2011; Faruqui et al., 2014;
Kiela et al., 2015; Mrkšić et al., 2016; Vulić and
Mrkšić, 2017), learning sub-word level represen-
tations (Wieting et al., 2016; Bojanowski et al.,
2016; Lee et al., 2016), et cetera.

One of the first steps in designing many NLP
systems is selecting what kinds of word embed-

dings to use, with people often resorting to freely
available pre-trained embeddings. While this is of-
ten a sensible thing to do, the usefulness of word
embeddings for downstream tasks tends to be hard
to predict, as downstream tasks can be poorly cor-
related with word-level benchmarks. An alter-
native is to try to combine the strengths of dif-
ferent word embeddings. Recent work in so-
called “meta-embeddings”, which ensembles em-
bedding sets, has been gaining traction (Yin and
Schütze, 2015; Bollegala et al., 2017; Muromägi
et al., 2017; Coates and Bollegala, 2018). Meta-
embeddings are usually created in a separate pre-
processing step, rather than in a process that is dy-
namically adapted to the task. In this work, we ex-
plore the supervised learning of task-specific, dy-
namic meta-embeddings, and apply the technique
to sentence representations.

The proposed approach turns out to be highly
effective, leading to state-of-the-art performance
within the same model class on a variety of tasks,
opening up new areas for exploration and yielding
insights into the usage of word embeddings.

Why Is This a Good Idea? Our technique
brings several important benefits to NLP applica-
tions. First, it is embedding-agnostic, meaning
that one of the main (and perhaps most important)
hyperparameters in NLP pipelines is made obso-
lete. Second, as we will show, it leads to improved
performance on a variety of tasks. Third, and per-
haps most importantly, it allows us to overcome
common pitfalls with current systems:

• Coverage One of the main problems
with NLP systems is dealing with out-of-
vocabulary words: our method increases
lexical coverage by allowing systems to take
the union over different embeddings.

• Multi-domain Standard word embeddings
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are often trained on a single domain, such as
Wikipedia or newswire. With our method,
embeddings from different domains can be
combined, optionally while taking into ac-
count contextual information.

• Multi-modality Multi-modal information
has proven useful in many tasks (Baroni,
2016; Baltrušaitis et al., 2018), yet the ques-
tion of multi-modal fusion remains an open
problem. Our method offers a straight-
forward solution for combining information
from different modalities.

• Evaluation While it is often unclear how
to evaluate word embedding performance,
our method allows for inspecting the weights
that networks assign to different embeddings,
providing a direct, task-specific, evaluation
method for word embeddings.

• Interpretability and Linguistic Analysis
Different word embeddings work well on dif-
ferent tasks. This is well-known in the field,
but knowing why this happens is less well-
understood. Our method sheds light on which
embeddings are preferred in which linguistic
contexts, for different tasks, and allows us to
speculate as to why that is the case.

Outline In what follows, we explore dynamic
meta-embeddings and show that this method out-
performs the naive concatenation of various word
embeddings, while being more efficient. We apply
the technique in a BiLSTM-max sentence encoder
(Conneau et al., 2017) and evaluate it on well-
known tasks in the field: natural language infer-
ence (SNLI and MultiNLI; §4), sentiment analysis
(SST; §5), and image-caption retrieval (Flickr30k;
§6). In each case we show state-of-the-art per-
formance within the class of single sentence en-
coder models. Furthermore, we include an exten-
sive analysis (§7) to highlight the general useful-
ness of our technique and to illustrate how it can
lead to new insights.

2 Related Work

Thanks to their widespread popularity in NLP,
a sprawling literature has emerged about learn-
ing and applying word embeddings—much too
large to fully cover here, so we focus on previ-
ous work that combines multiple embeddings for
downstream tasks.

Maas et al. (2011) combine unsupervised em-
beddings with supervised ones for sentiment clas-
sification. Yang et al. (2016) and Miyamoto
and Cho (2016) learn to combine word-level and
character-level embeddings. Contextual represen-
tations have been used in neural machine trans-
lation as well, e.g. for learning contextual word
vectors and applying them in other tasks (McCann
et al., 2017) or for learning context-dependent rep-
resentations to solve disambiguation problems in
machine translation Choi et al. (2016).

Neural tensor skip-gram models learn to com-
bine word, topic and context embeddings (Liu
et al., 2015); context2vec (Melamud et al., 2016)
learns a more sophisticated context representation
separately from target embeddings; and Li et al.
(2016) learn word representations with distributed
word representation with multi-contextual mixed
embedding. Recent work in “meta-embeddings”,
which ensembles embedding sets, has been gain-
ing traction (Yin and Schütze, 2015; Bollegala
et al., 2017; Muromägi et al., 2017; Coates and
Bollegala, 2018)—here, we show that the idea can
be applied in context, and to sentence represen-
tations. Furthermore, these works obtain meta-
embeddings as a preprocessing step, rather than
learning them dynamically in a supervised set-
ting, as we do here. Similarly to Peters et al.
(2018), who proposed deep contextualized word
representations derived from language models and
which led to impressive performance on a variety
of tasks, our method allows for contextualization,
in this case of embedding set weights.

There has also been work on learning multi-
ple embeddings per word (Chen et al., 2014; Nee-
lakantan et al., 2015; Vu and Parker, 2016), includ-
ing a lot of work in sense embeddings where the
senses of a word have their own individual embed-
dings (Iacobacci et al., 2015; Qiu et al., 2016), as
well as on how to apply such sense embeddings in
downstream NLP tasks (Pilehvar et al., 2017).

The question of combining multiple word em-
beddings is related to multi-modal and multi-view
learning. For instance, combining visual features
from convolutional neural networks with word
embeddings has been examined (Kiela and Bottou,
2014; Lazaridou et al., 2015), see Baltrušaitis et al.
(2018) for an overview. In multi-modal semantics,
for instance, word-level embeddings from differ-
ent modalities are often mixed via concatenation
r = [↵u, (1� ↵)v] (Bruni et al., 2014). Here, we
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dynamically learn the weights to combine repre-
sentations. Recently, related dynamic multi-modal
fusion methods have also been explored (Wang
et al., 2018; Kiros et al., 2018). There has also
been work on unifying multi-view embeddings
from different data sources (Luo et al., 2014).

The usefulness of different embeddings as ini-
tialization has been explored (Kocmi and Bojar,
2017), and different architectures and hyperpa-
rameters have been extensively examined (Levy
et al., 2015). Problems with evaluating word em-
beddings intrinsically are well known (Faruqui
et al., 2016), and various alternatives for evaluat-
ing word embeddings in downstream tasks have
been proposed (e.g., Tsvetkov et al., 2015; Schn-
abel et al., 2015; Ettinger et al., 2016). For more
related work with regard to word embeddings and
their evaluation, see Bakarov (2017).

Our work can be seen as an instance of the well-
known attention mechanism (Bahdanau et al.,
2014), and its recent sentence-level incarnations of
self-attention (Lin et al., 2017) and inner-attention
(Cheng et al., 2016; Liu et al., 2016), where the at-
tention mechanism is applied within the same sen-
tence instead of for aligning multiple sentences.
Here, we learn (optionally contextualized) atten-
tion weights for different embedding sets and
apply the technique in sentence representations
(Kiros et al., 2015; Wieting et al., 2015; Hill et al.,
2016; Conneau et al., 2017).

3 Dynamic Meta-Embeddings

Commonly, NLP systems use a single type of
word embedding, e.g., word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) or Fast-
Text (Bojanowski et al., 2016). We propose giving
networks access to multiple types of embeddings,
allowing a network to learn which embeddings it
prefers by predicting a weight for each embedding
type, optionally depending on the context.

For a sentence of s tokens {tj}s
j=1, we have

n word embedding types, leading to sequences
{wi,j}s

j=1 2 R
di (i = 1, 2, . . . , n). We center

each type of word embedding to zero mean.

Naive baseline We compare to naive concate-
nation as a baseline. Concatenation is a sensible
strategy for combining different embedding sets,
because it provides the sentence encoder with all
of the information in the individual embeddings:

wCAT
j = [w1,j ,w2,j , . . . ,wn,j ].

The downside of concatenating embeddings and
giving that as input to an RNN encoder, however,
is that the network then quickly becomes ineffi-
cient as we combine more and more embeddings.

DME For dynamic meta-embeddings, we
project the embeddings into a common d0-
dimensional space by learned linear functions
w0

i,j = Piwi,j + bi (i = 1, 2, . . . , n) where
Pi 2 R

d0⇥di and bi 2 R
d0 . We then combine the

projected embeddings by taking the weighted sum

wDME
j =

nX

i=1

↵i,jw
0
i,j

where ↵i,j = g({w0
i,j}s

j=1) are scalar weights
from a self-attention mechanism:

↵i,j = g(w0
i,j) = �(a · w0

i,j + b) (1)

where a 2 R
d0 and b 2 R are learned parame-

ters and � is a softmax (or could be a sigmoid or
tanh, for gating). We also experiment with an Un-
weighted variant of this approach, that just sums
up the projections.

CDME Alternatively, we can make the self-
attention mechanism context-dependent, leading
to contextualized DME (CDME):

↵i,j = g({w0
i,j}s

j=1) = �(a · hj + b) (2)

where hj 2 R
2m is the jth hidden state of a BiL-

STM taking {w0
i,j}s

j=1 as input, a 2 R
2m and

b 2 R. We set m = 2, which makes the contextu-
alization very efficient.

Sentence encoder We use a standard bidi-
rectional LSTM encoder with max-pooling
(BiLSTM-Max), which computes two sets of s
hidden states, one for each direction:

�!
hj =

����!
LSTMj(w1,w2, . . . ,wj)

 �
hj =

 ����
LSTMj(wj ,wj+1, . . . ,ws)

The hidden states are subsequently concatenated
for each timestep to obtain the final hidden states,
after which a max-pooling operation is applied
over their components to get the final sentence rep-
resentation:

h = max({[
�!
hj ,
 �
hj ]}j=1,2,...,s)
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Model SNLI MNLI

InferSent (Conneau et al., 2017) 84.5 -
NSE (Munkhdalai and Yu, 2017) 84.6 -
G-TreeLSTM (Choi et al., 2017) 86.0 -
SSE (Nie and Bansal, 2017) 86.1 73.6
ReSan (Shen et al., 2018) 86.3 -

GloVe BiLSTM-Max (8.6M) 85.2±.3 70.0±.5
FastText BiLSTM-Max (8.6M) 85.2±.2 70.3±.3
Naive baseline (9.8M) 85.6±.3 71.1±.2
Naive baseline (61.3M) 86.0±.5 73.0±.2

Unweighted DME (8.6M) 86.3±.4 74.4±.2
DME (8.6M) 86.2±.2 74.4±.2
CDME (8.6M) 86.4±.3 74.1±.2

DME* (9.0M) 86.7±.2 74.3±.4
CDME* (9.0M) 86.5±.2 74.9±.5

Table 1: Accuracy scores on the Stanford Natural Lan-
guage Inference (SNLI) and MultiNLI Mismatched
(MNLI) tasks. DME=Dynamic Meta-Embeddings;
CDME=Contextualized Dynamic Meta-Embeddings;
*=multiple different embedding sets (see Section 4).
Number of parameters included in parenthesis. Results
averaged over five runs with different random seeds,
using a BiLSTM-Max sentence encoder.

4 Natural Language Inference

Natural language inference, also known as recog-
nizing textual entailment (RTE), is the task of clas-
sifying pairs of sentences according to whether
they are neutral, entailing or contradictive. In-
ference about entailment and contradiction is fun-
damental to understanding natural language, and
there are two established datasets to evaluate se-
mantic representations in that setting: SNLI (Bow-
man et al., 2015) and the more recent MultiNLI
(Williams et al., 2017).

The SNLI dataset consists of 570k human-
generated English sentence pairs, manually la-
beled for entailment, contradiction and neutral.
The MultiNLI dataset can be seen as an extension
of SNLI: it contains 433k sentence pairs, taken
from ten different genres (e.g. fiction, government
text or spoken telephone conversations), with the
same entailment labeling scheme.

We train sentence encoders with dynamic meta-
embeddings using two well-known and often-used
embedding types: FastText (Mikolov et al., 2018;
Bojanowski et al., 2016) and GloVe (Pennington
et al., 2014). Specifically, we make use of the
300-dimensional embeddings trained on a simi-
lar WebCrawl corpus, and compare three scenar-
ios: when used individually, when naively con-
catenated or in the dynamic meta-embedding set-
ting (unweighted, context-independent DME and

contextualized CDME). We also compare our ap-
proach against other models in the same class—in
this case, models that encode sentences individ-
ually and do not allow attention across the two
sentences.1 We include InferSent (Conneau et al.,
2017), which also makes use of a BiLSTM-Max
sentence encoder.

In addition, we include a setting where we
combine not two, but six different embedding
types, adding FastText wiki-news embeddings2,
English-German and English-French embeddings
from Hill et al. (2014), as well as the BOW2 em-
beddings from Levy and Goldberg (2014a) trained
on Wikipedia.

4.1 Implementation Details

The two sentences are represented individually us-
ing the sentence encoder. As is standard in the
literature, the sentence representations are subse-
quently combined using m = [u,v,u⇤v, |u�v|].
We train a two-layer classifier with rectifiers on
top of the combined representation. Notice that
there is no interaction (e.g., attention) between the
representations of u and v for this class of model.

We use 256-dimensional embedding projec-
tions, 512-dimensional BiLSTM encoders and an
MLP with 1024-dimensional hidden layer in the
classifier. The initial learning rate is set to 0.0004
and dropped by a factor of 0.2 when dev accuracy
stops improving, dropout to 0.2, and we use Adam
for optimization (Kingma and Ba, 2014). The loss
is standard cross-entropy.

For MultiNLI, which has no designated valida-
tion set, we use the in-domain matched set for vali-
dation and report results on the out-of-domain mis-
matched set.

4.2 Results

Table 1 shows the results. We report accuracy
scores averaged over five runs with different ran-
dom seeds, together with their standard deviation,
for the SNLI and MultiNLI datasets. We include
two versions of the naive baseline: one with a 512-
dimensional BiLSTM encoder; and a bigger one
with 2048 dimensions. Both naive baseline mod-
els outperform the single encoders that have only
GloVe or FastText embeddings. This shows how

1This is a common distinction, see e.g. the SNLI leader-
board at https://nlp.stanford.edu/projects/
snli/.

2See https://fasttext.cc/
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Model SST

Const. Tree LSTM (Tai et al., 2015) 88.0
DMN (Kumar et al., 2016) 88.6
DCG (Looks et al., 2017) 89.4
NSE (Munkhdalai and Yu, 2017) 89.7

GloVe BiLSTM-Max (4.1M) 88.0±.1
FastText BiLSTM-Max (4.1M) 86.7±.3
Naive baseline (5.4M) 88.5±.4

Unweighted DME (4.1M) 89.0±.2
DME (4.1M) 88.7±.6
CDME (4.1M) 89.2±.4

CDME*-Softmax (4.6M) 89.3±.5
CDME*-Sigmoid (4.6M) 89.8±.4

Table 2: Sentiment classification accuracy results on
the binary SST task. For DCG we compare against
their best single sentence model (Looks et al., 2017).
*=multiple different embedding sets (see Section 4).
Number of parameters included in parenthesis. Results
averaged over ten runs with different random seeds.

including more than one embeddings can help per-
formance. Next, we observe that the DME embed-
dings outperform the naive concatenation base-
lines, while having fewer parameters. Differences
between the three DME variants are small and not
significant, although we do note that we found the
highest maximum performance for the contextual-
ized version, which adds very few additional pa-
rameters. It is important to note that the imposi-
tion of weighting thus is not detrimental to perfor-
mance, which means that DME and CDME pro-
vide additional interpretability without sacrificing
performance.

Finally, we obtain results for using the six dif-
ferent embedding types (marked *), and show
that adding in more embeddings increases perfor-
mance further. To our knowledge, these numbers
constitute the state of the art within the model class
of single sentence encoders on these tasks.

5 Sentiment

To showcase the general applicability of the pro-
posed approach, we also apply it to a case where
we have to classify a single sentence, namely, sen-
timent classification. Sentiment analysis and opin-
ion mining have become important applications
for NLP research. We evaluate on the binary SST
task (Socher et al., 2013), consisting of 70k sen-
tences with a corresponding binary (positive or

Image Caption
Model | R@: 1 10 1 10

VSE++ 32.3 72.1 43.7 82.1

FastText (15M) 35.6 74.7 47.1 82.7
ImageNet (29M) 25.6 63.1 36.6 72.2
Naive (32M) 34.4 73.9 46.4 82.2

Unweighted DME (15M) 35.9 75.0 48.9 83.7
DME (15M) 36.5 75.5 49.7 83.6
CDME (15M) 36.5 75.6 49.0 83.8

Table 3: Image and caption retrieval results (R@1
and R@10) on Flickr30k dataset, compared to VSE++
baseline (Faghri et al., 2017). VSE++ numbers in the
table are with ResNet features and random cropping,
but no fine-tuning. Number of parameters included in
parenthesis; averaged over five runs with std omitted
for brevity.

negative) sentiment label.

5.1 Implementation Details

We use 256-dimensional embedding projections,
512-dimensional BiLSTM encoders and an MLP
with 512-dimensional hidden layer in the clas-
sifier. The initial learning rate is set to 0.0004
and dropped by a factor of 0.2 when dev accu-
racy stops improving, dropout to 0.5, and we use
Adam for optimization. The loss is standard cross-
entropy. We calculate the mean accuracy and stan-
dard deviation based on ten random seeds.

5.2 Results

Table 2 shows a similar pattern as we observed
with NLI: the naive baseline outperforms the
single-embedding encoders; the DME methods
outperform the naive baseline, with the contex-
tualized version appearing to work best. Finally,
we experiment with replacing � in Eq. 1 and 2
with a sigmoid gate instead of a softmax, and ob-
serve improved performance on this task, outper-
forming the comparable models listed in the table.
These results further strengthen the point that hav-
ing multiple different embeddings helps, and that
we can learn to combine those different embed-
dings efficiently, in interpretable ways.

6 Image-Caption Retrieval

An advantage of the proposed approach is that it
is inherently capable of dealing with multi-modal
information. Multi-modal semantics (Bruni et al.,
2014) often combines linguistic and visual repre-
sentations via concatenation with a global weight
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↵, i.e., v = [↵vling, (1� ↵)vvis]. In DME we in-
stead learn to combine embeddings dynamically,
optionally based on context. The representation
for a word then becomes grounded in the visual
modality, and we encode on the word-level what
things look like.

We evaluate this idea on the Flickr30k image-
caption retrieval task: given an image, retrieve the
correct caption; and vice versa. The intuition is
that knowing what something looks like makes it
easier to retrieve the correct image/caption. While
this work was under review, a related method was
published by Kiros et al. (2018), which takes a
similar approach but evaluates its effectiveness on
COCO and uses Google images. We obtain word-
level visual embeddings by retrieving relevant im-
ages for a given label from ImageNet in the same
manner as Kiela and Bottou (2014), taking the im-
ages’ ResNet-152 features (He et al., 2016) and
subsequently averaging those. We then learn to
combine textual (FastText) and visual (ImageNet)
word representations in the caption encoder used
for retrieving relevant images.

6.1 Implementation Details
Our loss is a max-margin rank loss as in VSE++
(Faghri et al., 2017), a state-of-the-art method
on this task. The network architecture is al-
most identical to that system, except that we use
DME (with 256-dimensional embedding projec-
tion) and a 1024-dimensional caption encoder. For
the Flickr30k images that we do retrieval over, we
use random cropping during training for data aug-
mentation and use a ResNet-152 for feature ex-
traction. We tune the sizes of the encoders and
use a learning rate of 0.0003 and a dropout rate of
0.1.

6.2 Results
Table 3 shows the results, comparing against
VSE++. First, note that the ImageNet-only em-
beddings don’t work as well as the FastText
ones, which is most likely due to poorer cover-
age. We observe that DME outperforms naive and
FastText-only, and outperforms VSE++ by a large
margin. These findings confirm the intuition that
knowing what things look like (i.e., having a word-
level visual representation) improves performance
in visual retrieval tasks (i.e., where we need to
find relevant images for phrases or sentences)—
something that sounds obvious but has not really
been explored before, to our knowledge. This

showcases DME’s usefulness for fusing embed-
dings in multi-modal tasks.

7 Discussion & Analysis

Aside from improved performance, an additional
benefit of learning dynamic meta-embeddings is
that they enable inspection of the weights that the
network has learned to assign to the respective em-
beddings. In this section, we perform a variety
of smaller experiments in order to highlight the
usefulness of the technique for studying linguis-
tic phenomena, determining appropriate training
domains and evaluating word embeddings. We
compute the contribution of each word embedding
type as follows:

�i,j =
k↵i,jw0

i,jk2Pn
k=1 k↵k,jw0

k,jk2

7.1 Visualizing Attention
Figure 1 shows the attention weights for a CDME
model trained on SNLI, using the aforementioned
six embedding sets. The sentence is from the
SNLI validation set. We observe that different em-
beddings are preferred for different words. The
figure is meant to illustrate possibilities for analy-
sis, which we turn to in the next section.

7.2 Linguistic Analysis
We perform a fine-grained analysis of the behav-
ior of DME on the validation set of SNLI. Fig-
ure 3 shows a breakdown of the average atten-
tion weights per part of speech. Figure 4 shows
a similar breakdown for open versus closed class.
The analysis allows us to make several interest-
ing observations: it appears that this model prefers
GloVe embeddings, followed by the two FastText
embeddings (trained on Wikipedia and Common
Crawl). For open class words (e.g., nouns, verbs,
adjectives and adverbs), those three embedding
types are strongly preferred, while closed class
words get more evenly divided attention. The em-
beddings from Levy and Goldberg (2014a) get low
weights, possibly because the method is comple-
mentary with FastText-wiki, which was trained on
a more recent version of Wikipedia.

We can further examine the attention weights
by analyzing them in terms of frequency and con-
creteness. We use Norvig’s Google N-grams cor-
pus frequency counts3 to divide the words into fre-

3http://norvig.com/mayzner.html
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Figure 1: Example visualization of a sentence from the SNLI dev set.

Figure 2: Concreteness weights (left) for Flickr30k model and Frequency weights (right) for SNLI model with
multiple embeddings. Visual ImageNet embeddings are preferred for more concrete words. GloVe is strongly
preferred for low-frequency words.

Figure 3: Pos tags and weights by embedding type.

quency bins. Figure 2 (right) shows the average
attention weights per frequency bin, ranging from
low to high. We observe a clear preference for
GloVe, in particular for low-frequency words. For
concreteness, we use the concreteness ratings from
Brysbaert et al. (2014). Figure 2 (left) shows the
average weights per concreteness bin for a model
trained on Flickr30k. We can clearly see that vi-
sual embeddings get higher weights as the words

Figure 4: Weights for open/closed class words.

become more and more concrete.
There are of course intricate relationships be-

tween concreteness, frequency, POS tags and
open/closed class words: closed class words are
often frequent and abstract, while open class
words could be more concrete, etc. It is beyond the
scope of the current work to explore these further,
but we hope that others will pursue this direction
in future work.

7.3 Multi-domain Embeddings
The MultiNLI dataset consists of various gen-
res. This allows us to inspect the applicability of
source domain data for a specific genre. We train
embeddings on three kinds of data: Wikipedia, the
Toronto Books Corpus (Zhu et al., 2015) and the
English OpenSubtitles4. We examine the atten-

4http://opus.nlpl.eu/OpenSubtitles.php
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Figure 5: Multi-domain weights on MultiNLI.

Model Levy LEAR SNLI

CDME 0.33 0.67 85.3±.9

Model GloVe Refined SST

CDME 0.59 0.41 89.0±.4

Table 4: Accuracy and learned weights on SNLI
using LEAR (Vulić and Mrkšić, 2017) or SST using
sentiment-refined embeddings using the specialization
method from Yu et al. (2017).

tion weights on the five genres in the in-domain
(matched) set, consisting of fiction; transcrip-
tions of spoken telephone conversations; govern-
ment reports, speeches, letters and press releases;
popular culture articles from the Slate Magazine
archive; and travel guides.

Figure 5 shows the average attention weights
for the three embedding types over the five gen-
res. We observe that Toronto Books, which con-
sists of fiction, is very appropriate for the fiction
genre, while Wikipedia is highly preferred for the
travel genre, perhaps because it contains a lot of
factual information about geographical locations.
The government genre makes more use of Open-
Subtitles. The spoken telephone genre does not
appear to prefer OpenSubtitles, which we might
have expected given that that corpus would con-
tain spoken dialogue, but Toronto books, which
does include written dialogue.

7.4 Specialization
The above shows that we can use DME to ana-
lyze different embeddings on a task. Given the
recent interest in the community in specializing,
retro-fitting and counter-fitting word embeddings
for given tasks, we examine whether the lexical-

level benefits of specialization extend to sentence-
level downstream tasks. After all, one of the
main motivations behind work on lexical entail-
ment is that it allows for better downstream tex-
tual entailment. Hence, we take the LEAR embed-
dings by Vulić and Mrkšić (2017), which do very
well on the HyperLex lexical entailment evalua-
tion dataset (Vulić et al., 2017). We compare their
best-performing embeddings against the original
embeddings that were used for specialization, de-
rived from the BOW2 embeddings of Levy and
Goldberg (2014a). Similarly, we use the technique
of Yu et al. (2017) for refining GloVe embeddings
for sentiment, and evaluate model performance on
the SST task.

Table 4 shows that LEAR embeddings get
high weights compared to the original source
embeddings (“Levy” in the table). Our analy-
sis showed that LEAR was particularly favored
for verbs (with average weights of 0.75). The
sentiment-refined embeddings were less useful,
with the original GloVe embeddings receiving
higher weights. These preliminary experiments
show how DME models can be used for analyz-
ing the performance of specialized embeddings in
downstream tasks.

Note that different weighting mechanisms
might give different results—we found that the
normalization strategy and the depth of the net-
work significantly influenced weight assignments
in our experiments with specialized embeddings.

7.5 Examining Contextualization

We examined models trained on SNLI and looked
at the variance of the attention weights per word
in the dev set. If contextualization is important
for getting the classification decision correct, then
we would expect big differences in the attention
weights per word depending on the context. Upon
examination, we only found relatively few differ-
ences. In part, this may be explained by the small
size of the dev set, but for the Glove+FastText
model we inspected there were only around twenty
words with any variance at all, which suggests that
the field needs to work on more difficult seman-
tic benchmark tasks. The words, however, where
characterized by their polysemy, in particular by
having both noun and verb senses. The follow-
ing words were all in the top 20 most context-
dependent words: mob, boards, winds, trains,
pitches, camp.
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8 Conclusion

We argue that the decision of which word em-
beddings to use in what setting should be left to
the neural network. While people usually pick
one type of word embeddings for their NLP sys-
tems and then stick with it, we find that dynami-
cally learned meta-embeddings lead to improved
results. In addition, we showed that the pro-
posed mechanism leads to better interpretability
and insightful linguistic analysis. We showed that
the network learns to select different embeddings
for different data, different domains and different
tasks. We also investigated embedding specializa-
tion and examined more closely whether contextu-
alization helps. To our knowledge, this work con-
stitutes the first effort to incorporate multi-modal
information on the language side of image-caption
retrieval models; and the first attempt at incorpo-
rating meta-embeddings into large-scale sentence-
level NLP tasks.

In future work, it would be interesting to ap-
ply this idea to different tasks, in order to explore
what kinds of embeddings are most useful for core
NLP tasks, such as tagging, chunking, named en-
tity recognition, parsing and generation. It would
also be interesting to further examine specializa-
tion and how it transfers to downstream tasks. Us-
ing this method for evaluating word embeddings
in general, and how they relate to sentence repre-
sentations in particular, seems a fruitful direction
for further exploration. In addition, it would be
interesting to explore how the attention weights
change during training, and if, e.g., introducing
entropy regularization (or even negative entropy)
might improve results or interpretability further.
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Abstract

Several recent studies have shown the bene-
fits of combining language and perception to
infer word embeddings. These multimodal
approaches either simply combine pre-trained
textual and visual representations (e.g. fea-
tures extracted from convolutional neural net-
works), or use the latter to bias the learning
of textual word embeddings. In this work,
we propose a novel probabilistic model to for-
malize how linguistic and perceptual inputs
can work in concert to explain the observed
word-context pairs in a text corpus. Our ap-
proach learns textual and visual representa-
tions jointly: latent visual factors couple to-
gether a skip-gram model for co-occurrence in
linguistic data and a generative latent variable
model for visual data. Extensive experimen-
tal studies validate the proposed model. Con-
cretely, on the tasks of assessing pairwise word
similarity and image/caption retrieval, our ap-
proach attains equally competitive or stronger
results when compared to other state-of-the-art
multimodal models.

1 Introduction

Continuous-valued vector representation of words
has been one of the key components in neural archi-
tectures for natural language processing (Mikolov
et al., 2013; Pennington et al., 2014; Levy and Gold-
berg, 2014). The main idea is based on the distribu-
tional hypothesis (Harris, 1954), which states that
words used in similar contexts have similar seman-
tic meanings. To this end, words are mapped to
points in an Euclidean space such that the displace-
ment between their coordinates (i.e., embeddings)
reflects similarity and difference in semantics (Pen-
nington et al., 2014). As such, word embeddings

⇤On leave from U of Southern California

have been shown to be useful in determining se-
mantic and syntactic similarity between individual
words (Mikolov et al., 2013; Baroni et al., 2014;
Levy et al., 2015), as well as in downstream NLP
tasks, e.g., sentiment analysis, question answering,
and coreference resolution, just to name a few.

Most existing approaches rely solely on text cor-
pora to infer word representations. While success-
ful, the embeddings produced by such models do
not necessarily reflect all inherent aspects of human
semantic knowledge, such as the perceptual aspect
(Feng and Lapata, 2010). This has motivated many
researchers to explore different ways to infuse vi-
sual information, often represented in the form of
pre-computed visual features, into word embed-
dings (Kiela and Bottou, 2014; Silberer et al., 2017;
Collell et al., 2017; Lazaridou et al., 2015). The
main theme is to take either the text embeddings,
or the visual features or both as such to derive mul-
timodal embeddings: through concatenation (Kiela
and Bottou, 2014), or by treating visual features as
regression targets (Lazaridou et al., 2015; Collell
et al., 2017).

Despite the success of these prior efforts in yield-
ing multimodal embeddings and applying them to
downstream NLP tasks, there are still several defi-
ciencies. In particular, the visual features (as such)
are not guaranteed to be suitable for the word em-
bedding task since they are typically optimized
independently for another objective (e.g., image
classification). Hence, fusing pre-computed word
representations and visual features may not be a
good strategy.

To address the above issues, we explore a new
way to integrate linguistic and perceptual infor-
mation. We develop a new model which jointly
learns word embeddings from text and extracts la-
tent visual information, from pre-computed visual
features, that could supplement the linguistic em-
beddings in modeling the co-occurrence of words
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and their contexts in a corpus. Instead of using
pre-trained visual features as it is or as regression
targets, we posit that they contain latent perceptual
information that could complement text in repre-
senting words.

More specifically, the proposed model consists
of two components. The visual component is an
unsupervised probabilistic model for learning latent
factors that generates the visual data. The linguistic
component is a revised SKIP-GRAM model in which
the text embeddings work in concert with the latent
visual factors to explain the occurrence of word-
context pairs in a corpus. One advantage of our
joint modeling is that it allows two-way interaction.
On one hand, the linguistic information can guide
the extraction of latent visual factors. On the other
hand, the extracted visual factors can improve the
modeling of word-context co-occurrences in text
data. Another appealing property of our model is its
natural ability to propagate perceptual information
to the embeddings of words lacking visual features
(e.g., abstract words) during learning.

We conduct extensive quantitative and qualita-
tive experiments to examine and understand the
effectiveness of our approach, on the tasks of word
similarity and image/caption retrieval. We show its
matching or stronger performance when compared
to other state-of-the-art approaches for learning
multimodal embeddings.

2 Our Approach

We start by introducing the problem setup and
notations. We then describe our model, namely
PIXIE (ProbabIlistic teXtual Image Embeddings),
for joint learning of word representations from text
and perceptual information.

2.1 Setup and Background

We are given a corpus of H tokens (words):
w1, . . . , wi, . . . , wH . From the corpus, we form
a collection of word-context pairs �w,c = (w, c),
such that w 2 Vw, c 2 Vc, with Vw and Vc denoting
respectively the word and context vocabularies. As
in most previous work, the contexts for word wi are
the words that surround it in a L-sized window. We
introduce the binary indicator variables ywc, such
that ywc = 1 if �w,c appears in our collection, and
ywc = 0 otherwise.

For some words with visual grounding (we will
refer to them as visual words), we have access to a
visual representation xw. In practice, we use con-

xw ywc vc

ewzw

✓

W C

Figure 1: Plate representation of our model PIXIE. The
model consists of a generative model for visual data
and a conditional model for text data. The latent visual
factors z and text embedding e jointly predict the word-
context pair’s label y.

volutional net features (see Section 4 for details).

SKIP-GRAM WITH NEGATIVE SAMPLING
(SGNS) The SGNS’s objective is to learn word
representations that are good at distinguishing
the observed pairs (ywc = 1) from non-observed
or “negative” pairs (ywc = 0), using logistic
regression. Formally, SGNS maximizes the
following log-likelihood:

P
w,c

[ywc log �(vT
c ew)+(1�ywc) log �(�v

T
c ew)], (1)

where �(·) is the sigmoid function, vc, ew denote
respectively the vectors for the context c and target
word w. The second term in (1) is intractable due
to the large number of possible negative pairs, and
is approximated by sampling N negative examples
{c0

i}N
i=1 for every observed pair of words and their

contexts. This gives rise to the following objective
function for each observed pair:

log �(vT
c ew) +

NX

i=1

log �(�v
T
c0

i
ew), (2)

where c0
i is a (negative) context that does not ap-

pear in the context of w (Mikolov et al., 2013). In
practice, criterion (2) is optimized in an online fash-
ion, by using Stochastic Gradient Descent (SGD)
over the observed pairs �wc in the corpus. Each
observed pair �wc typically occurs several times
in the corpus, therefore performing SGD over the
corpus amounts to weighting equation (2) by the
number of occurrence of each pair.

2.2 Joint Visual and Text Modeling
We now describe our model, namely PIXIE (Proba-
bIlistic teXtual Image Embeddings) illustrated in
Fig. 1, for joint learning of word representations
from textual and perceptual information.
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Formally, PIXIE is a probabilistic model of image
features x and word-context pairs’ labels y. Simi-
lar to SKIP-GRAM, PIXIE represents each word w
and context c with low dimensional embeddings
noted respectively ew 2 R

K and vc 2 R
K . PIXIE

further assumes latent visual factors, zw 2 R
K , for

each word’s visual representation xw. Next we de-
scribe the two main components of PIXIE, namely
textual and perceptual, in more details.

Perceptual Component Each visual vector xw

is drawn conditional on its latent representation
zw, i.e., xw ⇠ p✓(x|zw), with p✓(z) = N (0, I).
Since xw is real valued, we let p✓(xw|zw) be a
Gaussian parameterized by a generative neural net-
work (or decoder). That is,

p✓(xw|zw) = N (xw|µ✓(zw),⌃✓(zw)). (3)

For tractability purposes, ⌃✓ is restricted to be
diagonal. Moreover, both the co-variance ⌃✓(zw)
(its diagonal) and the mean µ✓ are the outputs of a
decoder network with parameters ✓ and input zw.

Textual Component To model the occur-
rence/absence of word-context pair �wc in the lin-
guistic corpus, we adopt a Bernoulli (Ber) model:

p(ywc| ew, vc, zw) = Ber(�[f(ew, vc, zw)]) (4)

The function f(·) defines how multimodal em-
beddings are fused. While many choices can be
experimented, we use the simple additive model:

f(ew, vc, zw) = v
T
c (ew + zw). (5)

For words without visual representation, we sim-
ply set the corresponding latent factors zw to the
zero vector. Note that, without the visual factors
zw, equation (4) reduces to the Skip-Gram with
negative sampling objective (1).

Joint Model The perceptual and the textual infor-
mation interact through the shared latent zw. The
joint model of the above two sources of information
takes the following form:

p(xw, ywc| ew, vc) =
R

p✓(zw)p✓(xw|zw)p(ywc| ew, vc, zw)dzw (6)

The intuition behind our joint formulation is to
let the textual information guide the extraction of
latent visual factors zw. Through equations (4)

and (5), the model will put high probability on fac-
tors zw reflecting patterns that can supplement the
linguistic embeddings ew in explaining the word-
context co-occurrences. Thus, the extracted latent
visual factors can contribute to improve the perfor-
mance on predicting the occurrence of a word and
its contexts in the linguistic corpus, which would
encourage the model to leverage the perceptual in-
formation. The underlying assumption here is to
infer visual and textual embeddings that can work
in concert to represent words.

Visual Information Propagation Equation (5)
implies that the embeddings z, e and v will af-
fect each other during the learning process. Inter-
estingly, if a non-visual word w1 shares a similar
context c with a visual word w2, then the factor
zw2 will affect ew1 via vc. In other words, our for-
mulation makes it possible to implicitly propagate
perceptual information from one word to another
through shared contexts. We illustrate this aspect
in our experiments.

2.3 Approximate Inference and Learning
Training PIXIE amounts to inferring the posterior
over the visual latent factors, p✓(z|x, y), as well
as finding the decoder’s parameters ✓, the word
and context embeddings, e and v, that maximize
the likelihood (6). However, as in many complex
probabilistic models, the likelihood (due to the
integral over z) and the posterior are intractable.
We therefore resort to approximation techniques.
More precisely, we rely on Variational Inference
(VI) (Blei et al., 2017). The idea of VI is to intro-
duce a tractable approximate posterior distribution
q�(z|x) (the variational distribution) and optimize
a lower bound on the likelihood, known as Evi-
dence Lower BOund (ELBO). The latter can be
written for each word w as follows:

Lw = Eq[log p✓(xw|zw) +
P
c

log p(ywc|ew, vc, zw)]

� KL(q�(zw|xw)kp✓(zw)) (7)

where KL(·k·) is the Kullback-Leibler divergence.
The variational distribution is chosen to be a multi-
variate Gaussian parameterized by an inference net-
work (or encoder) which takes x as input, namely

q�(zw|xw) = N (zw|µ�(xw),⌃�(xw)), (8)

where we drop the dependency on all ywc variables
to be computationally tractable. The pair of en-
coder and decoder neural networks gives rise to the
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interpretation of PIXIE’s visual component (formed
by z and x) as a probabilistic autoencoder. In fact,
if we drop the textual part in PIXIE, namely y, e and
v, then we recover the Variational Auto-Encoder
(VAE) (Kingma and Welling, 2013).

Lastly, we approximate the intractable (i) ex-
pectation with respect to q�(z|x) and the (ii)
sum over the negative pairs in (7), by relying on
a Monte Carlo estimator of L. Concretely, for
(ii) we use negative sampling as in (2). Con-
cerning (i), for every observed xw, we sample
{z

(j)
w }J

j=1 from q�(zw|xw) using the reparame-
terization trick (Kingma and Welling, 2013), i.e.,
z

(j)
w = µ�(xw) + ⌃�(xw)✏, with ✏ ⇠ N (0, I).

Then we approximate L with:

eLw =

1
J

P
j

log p✓(xw|z(j)
w ) � KL(q�(zw|xw)kp✓(zw))

+ 1
J

P
c,j

ywc log �[vT
c (ew + z

(j)
w )]

+ 1
J

P
c,j

NP
i=1

ywc log(�[�v
T
c0

i

(ew + z
(j)
w )]). (9)

The last two summands correspond to the familiar
conditional likelihood term in the SGNS model,
augmented with latent visual factors.

We optimize the objective (9) via SGD with re-
spect to both the encoder/decoder networks param-
eters (✓ and �) and the embeddings (e and v). We
evaluate the gradients of eL, with respect to ✓ and
� using backpropagation. Similarly, the gradient
with respect to e and v can be easily carried out
using automatic differentiation tools. Our learning
procedure is summarized in Algorithm 1.

Algorithm 1 Variational PIXIE
Input: x, y, sample sizes B and J
Steps:
Randomly initialize ✓, �, e and v
repeat

• Draw a minibatch W B of words: w(1), . . . , w(B)

• For each xw with w 2 W B , sample {z(j)
w }

J
j=1 from

q�(zw|xw) using the reparameterization trick. For each
observed pair �wc draw N negative examples {c0

i}
N
i=1.

• Compute the estimator eLW B  
P

w2W B
eLw

• Compute the gradient: G r✓,�,e,v
eLW B

• Use G to update ✓, �, e and v (e.g., with ADAM)
until convergence
return ✓, �, e and v

Inference Once the parameters of the model are
learned, for any given word with or without visual
representation, we can compute its multimodal em-
bedding. As a short hand, let the binary variable

mw denote whether or not the word w has a visual
representation. The multimodal embedding for w
can be written as

sw = ew + mwµ(xw), (10)

where µ(xw) = Eq(zw) is the output of the encod-
ing neural network, cf. Eq. (8).

In our experiments, we have also studied an al-
ternative way to compose multimodal embeddings
by concatenating the two vectors ew and µ(xw)

tw = [ew mwµ(xw)]. (11)

Note that for non-visual words, only zeros are ap-
pended to ew. One advantage of t over s is that
if one uses distances to measure similarity, t can
be seen as a simple summation of distances in two
different spaces (in terms of e and µ respectively).

3 Related Work

Combining language and perception has been re-
cently considered in various NLP tasks such as
machine translation (Calixto and Liu, 2017), visual
question generation (Mostafazadeh et al., 2016),
image captioning (Klein et al., 2015), etc. In this
work, we focus on learning word embeddings from
images and texts.

Multimodal embeddings have been studied in
several recent research work. One strategy is to
obtain word embeddings from linguistic data and
visual data independently and then proceed with
some kind of fusion steps. Kiela and Bottou (2014)
simply concatenates pre-trained linguistic word em-
beddings and visual features computed by convo-
lutional nets. Bruni et al. (2014) performs an addi-
tional step of dimensionality reduction via singular
value decomposition. Silberer et al. (2017) extend
on this work by feeding the linguistic embedding
and visual features into a stacked auto-encoder for
nonlinear dimensionality reduction. The above-
mentioned approaches perform a two-stage process
to derive multimodal representations (unimodal in-
ference followed by fusion) and have been evalu-
ated only on words for which both perceptual and
textual representations are available.

A standing question is how to propagate visual
information from words with visual features to
words lacking them (for instance, abstract words).
While the previous methods fall short on that, the
recent work by Collell et al. (2017) addresses this
challenge by learning a mapping from language to
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vision, using a set of words with known linguistic
embeddings and visual features. This mapping can
then be used to infer visual representations for new
words from their textual embeddings.

All the aforementioned methods rely on inde-
pendently pre-trained linguistic embeddings and
visual features. In this work, we propose a differ-
ent strategy, which consists in adapting those rep-
resentations so that the information can be fused in
earlier stages. In this respect, the closest work to
ours is (Lazaridou et al., 2015), which proposes to
augment the SKIP-GRAM objective function with
a term mapping the textual embeddings to the vi-
sual features. Crudely, the linguistic embeddings
must therefore predict both the text co-occurrences
and (pre-trained) visual features. We emphasize
two key differences with our approach. First, in-
stead of performing a regression or mapping from
the textual embeddings to the visual features, our
model learns to infer perceptual latent factors to
retain only the portion of visual information that
can supplement the linguistic embeddings in rep-
resenting words. Second, while Lazaridou et al.
(2015) combines two objectives, we use a joint
probabilistic model integrating both visual and text
information in a principled way. Specifically, our
model seeks latent factors that are good at explain-
ing the word-context co-occurrences. For instance,
a visual feature of (an image of) OCEAN often con-
tains information about SKY and BLUE — such
visual information could be beneficial to predict co-
occurrence of tokens in the context of OCEAN. This
desiderata further strengthens the learned embed-
dings to be visually grounded. In our experiments,
we show that our approach tends to group concrete
visually similar concepts together.

4 Experiments
In this section, we evaluate our model and contrast
it to other competing approaches on two different
tasks: word similarity and image/caption retrieval.

4.1 Setup
Text corpus We use the Text8 WIKIPEDIA cor-
pus1 containing over 17 million tokens. Text8 was
pre-processed to contain only letters and noncon-
secutive spaces. After removing infrequent words,
we obtain a vocabulary of 50, 000 unique words.

Image features We use the ImageNet dataset
(Russakovsky et al., 2015), including the fall Ima-

1http://mattmahoney.net/dc/textdata

geNet 2011 release (Deng et al., 2009). It contains
14, 188, 125 images organized according to 21, 842
synsets of WordNet (Fellbaum, 1998). Each synset
contains 600 images on average. To extract image
features, we rely on the Caffe toolkit (Jia et al.,
2014) and use the GoogLeNet convolutional neural
nets (Szegedy et al., 2015) pre-trained on the 1000
synsets of ILSVRC 2012. The 1024-dimensional
activation of the pooling units (before the softmax
layer) are then taken as our image features.

Visual representation of words For each word
in the vocabulary, we recover all the synsets that
it belongs to using the WordNet interface of the
NLTK module (Python) (Bird et al., 2009). We
then remove the synsets not covered by our Im-
ageNet dataset. This results in 9,713 words, out
of the 50,000 words in the vocabulary. For each
visual word, we randomly draw 1,000 distinct im-
ages in ImageNet. If the number of images for a
word is less than 1,000, we increase the coverage
using images belonging to the hypernyms of the
considered word’s synsets, as in (Kiela and Bottou,
2014). We then take the average of these features
as the word’s visual representation x.

Hyper-parameter setting For all models, we set
the dimension of linguistic and visual embeddings,
e and z, to 100, following many previous works.
In our model, the encoder/decoder neural networks
are implemented as one-hidden-layer neural nets
with 500 hidden units each. The dimensions of
the inputs and the outputs of the decoder neural
networks are 100 and 1, 024 respectively (1, 024
and 100 for the encoder). For the encoder, the
hidden units are hyperbolic tangent, and the output
units are linear. For the decoder, the hidden units
are hyperbolic while the outputs are sigmoid. For
SGNS, we set the window size L to 10 and the
number of negative samples to 64. Our model is
learned by Stochastic Gradient Descent using the
ADAM optimizer (Kingma and Ba, 2014) with a
learning rate set to 0.001.

Table 1: Datasets for the task of word similarity.
Datasets #word pairs

MEN (Bruni et al., 2014) 3000
EN-MC (Miller and Charles, 1991) 31

EN-RG (Rubenstein and Goodenough, 1965) 65
SimLex (Hill et al., 2015) 999

MTurk (Radinsky et al., 2011; Halawi et al., 2012) 287
WORDSIM (Finkelstein et al., 2001) 350

REL (Agirre et al., 2009) 150
SIM (Agirre et al., 2009) 200

SEMSIM (Silberer and Lapata, 2014) 5494
VISSIM (Silberer and Lapata, 2014) 5494
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Table 2: Results on word similarity task. Reported are the Spearman’s rank order correlation between model
prediction and human judgment (higher is better and bolds highlight the best methods). See text for details.

Semantic/taxonomic similarity General relatedness Visual similarity REL+SIM

Models
SEMSIM SimLex SIM EN-RG EN-MC MEN REL MTurk VISSIM WORDSIM

100% 98% 100% 39% 100% 44% 100% 72% 100% 73% 100% 54% 100% 53% 100% 26% 100% 98% 100% 39%
CNN - 0.49 - 0.41 - 0.49 - 0.54 - 0.46 - 0.54 - 0.20 - 0.18 - 0.53 - 0.28
VAE - 0.65 - 0.43 - 0.51 - 0.56 - 0.55 - 0.62 - 0.22 - 0.40 - 0.62 - 0.37

SGNS 0.50 0.50 0.33 0.35 0.66 0.66 0.60 0.55 0.60 0.52 0.65 0.67 0.56 0.51 0.65 0.63 0.38 0.38 0.61 0.60
CNN�SGNS† - 0.67 - 0.48 - 0.65 - 0.60 - 0.55 - 0.74 - 0.44 - 0.51 - 0.63 - 0.56
VAE�SGNS - 0.70 - 0.51 - 0.67 - 0.61 - 0.60 - 0.76 - 0.45 - 0.55 - 0.63 - 0.56

V-SGNS‡ 0.58 0.58 0.29 0.30 0.66 0.71 0.73 0.73 0.69 0.69 0.64 0.65 0.51 0.52 0.60 0.65 0.42 0.42 0.59 0.64
IV-SGNS§ (LINEAR) 0.49 0.50 0.31 0.33 0.55 0.61 0.58 0.56 0.59 0.65 0.60 0.62 0.41 0.38 0.57 0.71 0.36 0.37 0.46 0.51

IV-SGNS§ (NONLINEAR) 0.44 0.44 0.30 0.32 0.53 0.59 0.54 0.53 0.59 0.63 0.57 0.59 0.40 0.37 0.56 0.71 0.32 0.33 0.44 0.48
PIXIE+ 0.63 0.63 0.35 0.48 0.63 0.72 0.65 0.60 0.62 0.62 0.64 0.73 0.46 0.56 0.55 0.55 0.54 0.54 0.50 0.59
PIXIE� 0.71 0.71 0.39 0.53 0.68 0.71 0.73 0.73 0.69 0.71 0.68 0.76 0.52 0.59 0.60 0.59 0.60 0.61 0.58 0.65

†:(Kiela and Bottou, 2014), ‡: (Lazaridou et al., 2015), §: (Collell et al., 2017)

4.2 Task 1: Word Similarity

Datasets Word similarity is a common type of
evaluation task for measuring the effectiveness of
word embeddings. To this end, we retain 10 bench-
mark datasets consisting of pairs of words associ-
ated with similarity scores given by human judges.
Table 1 summarizes their basic properties. There
are different types of similarities being assessed.
SEMSIM, SimLex, SIM, EN-RG and EN-MC fo-
cus on semantic or taxonomic similarity — e.g.
CAR is similar to AUTOMOBILE. MEN, REL and
MTurk consider general relatedness — e.g. CAR is
related to GARAGE. VISSIM is about visual simi-
larity — e.g. GOOSE looks like SWAN. Note that
SIM and REL are the similarity and relatedness
subsets of the full WORDSIM dataset (Finkelstein
et al., 2001) respectively. VISSIM contains the
same word pairs as SEMSIM.

Competing models We benchmark our model
PIXIE against several strong uni- and multi-modal
models listed below:
• SGNS: Skip-Gram with Negative Sampling

(Mikolov et al., 2013). Without the visual com-
ponent, PIXIE reduces to SGNS. We can thus
assess the impact of the perceptual information
by comparing PIXIE to SGNS.

• VAE: Vatiational Auto-Encoder (Kingma and
Welling, 2013), which corresponds to the visual-
specific component of PIXIE.

• CNN: Visual features extracted from a convolu-
tional neural net as described in Section 4.1.

• CNN�SGNS (Kiela and Bottou, 2014): Concate-
nation of CNN and SKIP-GRAM embeddings.

• VAE�SGNS: Concatenation of VAE and SKIP-
GRAM embeddings.

• V-SGNS (Lazaridou et al., 2015): A multimodal
approach which augments SGNS with a term that
treats CNN visual features as regression targets.
Comparisons with V-SGNS will allow us to eval-
uate the impact of our modeling assumptions.

• IV-SGNS (Collell et al., 2017): Learns a mapping
from SGNS embeddings to CNN visual features.
Due to a large degree of discrepancies in experi-

mental setups across previously published methods
and results,2 we re-implemented all the baselines
and evaluate them under the same conditions.3 For
(Lazaridou et al., 2015), we implemented its model
“A” as model “B” is comparable according to the
original authors. For (Collell et al., 2017), we im-
plemented both linear and nonlinear variants.

Evaluation metrics We use the cosine to mea-
sure the similarity between word representations.
To assess the coherence between human ratings and
models’ predictions, we use the Spearman correla-
tion coefficient.

4.2.1 Main results
The results across different datasets are shown in
Table 2. We perform evaluations under two set-
tings: by considering (i) word similarity between
visual words only and (ii) between all words (col-
umn 100% in Table 2). For the models CNN, VAE
and their concatenation with SGNS embeddings,
the latter setting is not applicable. The two last
rows correspond to the multimodal embeddings
inferred from our model. In particular, PIXIE+

2For instance, Lazaridou et al. (2015) reports only 5,100
visual words, nearly half of what we have defined. Collell
et al. (2017) used pre-trained GloVe word vectors obtained
from a different corpus.

3For each method we use the hyper-parameters recom-
mended by the authors.
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(resp. PIXIE�) represents the multimodal embed-
dings built using Eq. (10) (resp. Eq. (11)).

Overall, we note that PIXIE� offers the best per-
formance in almost all situations. This provides
strong empirical support for the proposed model.
Below, we discuss the above results in more depth
to better understand them and characterize the cir-
cumstances in which our model performs better.

How relevant is our formulation? Except
PIXIE and V-SGNS, most of the multimodal compet-
ing methods rely on independently pre-computed
linguistic embeddings. As Table 2 shows, PIXIE
and V-SGNS are often the best performing multi-
modal models, which provides empirical evidence
that accounting for perceptual information while
learning word embeddings from text is beneficial.
Moreover, the superior performance of PIXIE� over
V-SGNS suggests that our model does a better job at
combining perception and language to learn word
representations.

Joint learning is beneficial PIXIE� outperforms
VAE�SGNS in almost all cases, which demonstrates
the importance of joint learning.

Where does our approach perform better?
On datasets that focus on semantic/taxonomic simi-
larity, our approach dominates all other methods.

On datasets focusing on general relatedness, our
approach obtains mixed results. While dominat-
ing other approaches on MEN, it tends to perform
worst than SGNS on MTurk and REL (under the
100% setting). One possible explanation is that
general relatedness tends to focus more on “ex-
trapolating” from one word to another word (such
as SWAN is related to LAKE), while our approach
better models more concrete relationships (such as
SWAN is related to GOOSE). The low performance
of CNN and VAE confirms this hypothesis.

On the VISSIM dataset focusing on visual simi-
larity, both CNN�SGNS and VAE�SGNS perform
the best, strongly suggesting that visual and linguis-
tic data are complementary. Our approach comes
very close to these two methods. Note that our
learning objective is to jointly explain visual fea-
tures and word-context co-occurrences. Thus, two
visually similar words, which never occur within
the same context, could be mapped into slightly
different directions in the latent space.

Visual Propagation Here we wish to evaluate
the ability of our model to propagate perceptual
information to words lacking visual features. To

Table 3: Spearman’s score on subsets of visual words.
The symbol (⇤) indicates the visual features for the sub-
set of 2K words have been ignored when training. Bold
highlights the best performing method. Blue color high-
lights the best performing model under the (⇤) setting.

Semantic/taxonomic Relatedness Visual REL

+SIM

models

SE
M

SI
M

Si
m

Le
x

SI
M

EN
-R

G

EN
-M

C

M
EN R
EL

M
Tu

rk

V
IS

SI
M

W
O

R
D

SI
M

SGNS 0.55 0.40 0.67 0.57 0.52 0.68 0.53 0.75 0.41 0.63

V-SGNS 0.61 0.32 0.72 0.71 0.69 0.69 0.52 0.75 0.44 0.66
IV-SGNS (LINEAR) 0.50 0.40 0.60 0.59 0.60 0.66 0.41 0.72 0.37 0.54

PIXIE� 0.71 0.59 0.72 0.73 0.71 0.77 0.57 0.74 0.60 0.62

V-SGNS(⇤) 0.58 0.29 0.72 0.68 0.61 0.67 0.44 0.76 0.43 0.60

IV-SGNS(⇤) 0.50 0.40 0.61 0.58 0.58 0.65 0.40 0.72 0.37 0.54

PIXIE�
(⇤) 0.60 0.43 0.72 0.65 0.60 0.70 0.56 0.76 0.45 0.63

this end, we randomly select a subset of 2, 000
words for which we have visual features, and we
train our model under two different settings: the
visual features of the selected 2K words (i) are
taken into account (PIXIE�), (ii) are ignored, i.e.
set to zero (PIXIE�

(⇤)). We then perform evalu-
ations, under the two settings, on the datasets of
Table 1 considering only pairs composed of words
in the above subset of 2K words. As baselines for
this experiment, we consider SGNS and the multi-
modal approaches which can propagate perceptual
information, namely V-SGNS and IV-SGNS, as well
as their outputs when the 2K visual features are
ignored (denoted by V-SGNS(⇤), and IV-SGNS(⇤)).

The results are given in Table 3. We observe that
PIXIE�

(⇤) outperforms SGNS in almost all cases.
Recall that, if we ignore the visual features for all
words, PIXIE reduces to SGNS. We can therefore at-
tribute the performance improvement of PIXIE�

(⇤)

over SGNS to the propagation of visual informa-
tion to the subset of 2K words. Compared to mul-
timodal methods, PIXIE�

(⇤) (resp. PIXIE�) per-
forms better than V-SGNS(⇤) (resp. V-SGNS) and
IV-SGNS(⇤) (resp. IV-SGNS) in almost situations.
This suggests that our formulation allows percep-
tual information to propagate better.

Table 4: Word pair cosine similarity computed based
on SGNS and PIXIE�

(⇤) embeddings.
Word pairs SGNS PIXIE�

(⇤)

(chicken, turkey) 0.35 0.55
(helicopter, jet) 0.63 0.76
(falcon, hawk) 0.49 0.70

(cathedral, chapel) 0.69 0.80
(cup, mug) 0.39 0.46
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Table 5: 10 nearest neighboring words to the query words in different embedding spaces generated by different
methods. Only "visual" words contain direct visual representations in our dataset. The concreteness score of each
query word is reported between parenthesis (see text for details).

Query word SGNS V-SGNS PIXIE�

V
is

ua
l goose (4.81) quail, pig, shark, gull, smoky, sooty, bald,

owl, guppy, bird
fowl, quail, duck, bat, bulldog, puppy,
warbler, blossom, wolfhound, crows

geese, duck, swans, swan, teal, loon, al-
batross, ostrich, gull, eider

brave (1.26)
courageous, young, man, fearless,
heroic, thief, horrible, adventures,
carefree, cowardly

heroes, valiant, ominous, wondrous, fear-
less, wanton, sabers, beast, excalibur,
carefree

bodyguard, wives, benefactors, woman-
izer, heroes, valiant, immortal, house-
wives, fearless, warrior

N
on

V
is

ua
l

birthstone (4.25)
heaviest, yeti, koala, snowfall, intrusions,
mourning, amalthea, gleaming, inciden-
tally, dolly

emerald, lily, lavender, earthy, olive, del-
icacy, acacia, belladonna, flower, poppy

beryl, emerald, lily, sandalwood, hula,
guinevere, pearls, holly, jasmine, jewels

savagery (1.73) swamp, man, crazy, madman, mysteri-
ous, thief, jeffrey, rage, mad, hardy

mad, zombies, beast, fabulous, mysteri-
ous, nightmare, ghosts, alien, mayhem,
bandits

cannibals, evil, legends, werewolves,
beast, haunting, ghosts, zombies, may-
hem, thrillers

In Table 4, we report the cosine similarity be-
tween 5 semantically/visually coherent word pairs
(from our subset of 2K words). Although the vi-
sual vectors of these words were removed during
training, the PIXIE’s word embeddings of each pair
correlate better as compared to their SGNS counter-
parts, which provides further support to the propa-
gation of visual information under PIXIE.

4.2.2 Qualitative analysis

Table 5 displays several qualitative examples of
word similarity. We have selected 4 words: goose,
brave, birthstone and savagery. The first two have
visual feature representations in our training dataset
and the last two do not. Furthermore, for each case,
we chose one concrete and one abstract word.4 For
each word, we identify their nearest neighbors in
the embedding space.

For the visual words, there is a noticeable differ-
ence between our method and others. For instance,
for word goose, SGNS expresses more “general”
relatedness and returns other animals like pig or
shark, while our approach is more specific and
tends to give visually similar neighbors by focusing
on goose looks-like birds. V-SGNS’s result is some-
what in between. On the abstract word brave, we
observe that PIXIE� tends to select more explicit
embodiments of the adjective brave than SGNS and
V-SGNS.

Moving towards the non-visual words, we do
not seem to find a consistent discrepancy pattern
between V-SGNS and PIXIE�, though, as for visual
words, both methods seem to select more explicit
exemplars compared to SGNS. For instance, for
the abstract word savagery, both multimodal ap-
proaches suggest cannibals and zombies.

4We rely on the concreteness ratings made available by
Brysbaert et al. (2014), ranging from 1 to 5.

Table 6: Results for image (I) $ sentence (S) retrieval.
Models

I ! S S ! I
K=1 K=5 K=10 K=1 K=5 K=10

SGNS 23.1 49.0 61.6 16.6 41.0 53.8
V-SGNS 21.9 51.7 64.2 16.2 42.0 54.8

IV-SGNS (LINEAR) 22.7 50.5 61.7 17.1 42.6 55.4
PIXIE+ 24.2 52.5 65.4 17.5 43.8 56.2
PIXIE� 25.7 55.7 67.7 18.4 44.9 56.9

4.3 Task 2: Image and Caption Retrieval
We now study the usefulness of the learned word
embeddings for the tasks of image and caption
retrieval. Our hypothesis is that multimodal word
embeddings will perform better for downstream
tasks involving multimodal information.

Experimental setup We use the Flickr30K
dataset (Young et al., 2014) containing 31,000 im-
ages and 155,000 sentences (5 captions per image).
The sentences describe the images. The task is to
identify the best sentence describing an image or
to identify the best image depicting a sentence. We
follow the data split setting provided by Karpathy
and Fei-Fei (2015), in which 1,000 images are used
for validation and 1,000 for testing. The rest is
used for training.

The retrieval models compute the proximity be-
tween the image features and the sentence em-
beddings. For image features, we use the pre-
computed features provided by Faghri et al. (2017),
which are extracted from the FC7 layer of VGG-19
(Simonyan and Zisserman, 2014). These 4,096-
dimensional features are then linearly mapped to
1,024-dimensional features. For sentences, we use
an one GRU-layer over the sequences of the word
embeddings, resulting in 1,024-dimensional sen-
tence embeddings.

We use a triplet loss to train the retrieval model
such that the inner product between the correspond-
ing image feature and the sentence is greater than
the inner products with incorrect sentences (or im-
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ages) (Kiros et al., 2014). The linear mapping and
the GRU layer are then optimized to minimize the
loss. We use the ADAM optimizer with the learn-
ing rate of 0.0002 and divide it by 10 every 15
epochs and we train the model for 30 epochs. Note
that we do not fine-tune either the original visual
feature or the word embeddings.

Results Table 6 summarizes the results. The eval-
uation metrics are accuracies at top-K (K=1, 5, or
10) retrieved sentences or images. Our model con-
sistently outperforms SGNS and other competing
multimodal methods, which provides additional
support for the benefits of our approach.

5 Conclusion

We propose PIXIE, a novel probabilistic model join-
ing textual and perceptual information to infer mul-
timodal word embeddings. In our model, both
linguistic and visual latent factors work in concert
to explain the co-occurrences of words and their
contexts in a corpus. Empirical results show that
our model achieves equally competitive or stronger
results when compared to state-of-the-art methods
for multimodal embeddings.

Currently our model relies on unsupervised
learning to infer visual factors. Explicit knowl-
edge of similar and dissimilar visual categories
could potentially disentangle latent factors better
for alignment with linguistic data. How to incor-
porate visual domain knowledge more explicitly
into the model would be an interesting direction
for future research. While we build on skip-gram,
the idea of PIXIE could be extended to other word
embedding models, e.g., Glove (Pennington et al.,
2014), ELMO (Peters et al., 2018), etc.
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Abstract

In this paper, we empirically evaluate the
utility of transfer and multi-task learning on
a challenging semantic classification task:
semantic interpretation of noun–noun com-
pounds. Through a comprehensive series of
experiments and in-depth error analysis, we
show that transfer learning via parameter ini-
tialization and multi-task learning via param-
eter sharing can help a neural classification
model generalize over a highly skewed distri-
bution of relations. Further, we demonstrate
how dual annotation with two distinct sets of
relations over the same set of compounds can
be exploited to improve the overall accuracy of
a neural classifier and its F1 scores on the less
frequent, but more difficult relations.

1 Introduction

Noun–noun compound interpretation is the task
of assigning semantic relations to pairs of nouns
(or more generally, pairs of noun phrases in
the case of multi-word compounds). For exam-
ple, given the nominal compound street protest,
the task of compound interpretation is to pre-
dict the semantic relation holding between street
and protest (a locative relation in this example).
Given the frequency of noun–noun compounds in
natural language – e.g. 3% of the tokens in the
British National Corpus (Burnard, 2000) are part
of noun–noun compounds (Ó Séaghdha, 2008) –
and its relevance to other natural language pro-
cessing (NLP) tasks such as question answering
and information retrieval (Nakov, 2008), noun–
noun compound interpretation has been the focus
of much work, in theoretical linguistics (Li, 1972;
Downing, 1977; Levi, 1978; Finin, 1980; Ry-
der, 1994), psycholinguistics (Gagné and Shoben,
1997; Marelli et al., 2017), and computational lin-
guistics (Lauer, 1995; Nakov, 2007; Ó Séaghdha
and Copestake, 2009; Girju et al., 2009; Kim and

Baldwin, 2013; Dima and Hinrichs, 2015). In
computational linguistics, noun–noun compound
interpretation is, by and large, approached as an
automatic classification problem. Hence several
machine learning (ML) algorithms and models
have been used to learn the semantics of nominal
compounds, including Maximum Entropy (Tratz
and Hovy, 2010), Support Vector Machines (Ó
Séaghdha and Copestake, 2013) and Neural Net-
works (Dima and Hinrichs, 2015; Vered and Wa-
terson, 2018). These models use information from
lexical semantics such as WordNet-based features
and distributional semantics such as word embed-
dings. Nonetheless, noun–noun compound inter-
pretation remains one of the more difficult NLP
problems because: 1) noun–noun compounding,
as a linguistic construction, is very productive and
2) the semantics of noun–noun compounds is not
easily derivable from the compounds’ constituents
(Vered and Waterson, 2018). Our work, in part,
contributes to advancing NLP research on noun–
noun compound interpretation through the use of
transfer and multi-task learning.

The interest in using transfer learning (TL) and
multi-task learning (MTL) in NLP has surged
over the past few years, showing ‘mixed’ results
depending on the so-called main and auxiliary
tasks involved, model architectures and datasets,
among other things (Collobert and Weston, 2008;
Mou et al., 2016; Søgaard and Goldberg, 2016;
Martı́nez Alonso and Plank, 2017; Bingel and
Søgaard, 2017). These ‘mixed’ results, coupled
with the fact that neither TL nor MTL has been
applied to noun–noun compounds interpretation
before, motivate our extensive empirical study on
the use of TL and MTL for compound interpreta-
tion, not only to supplement existing research on
the utility of TL and MTL for semantic NLP tasks
in general, but also to determine their benefits for
compound interpretation in particular.
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One of the primary motivations for using multi-
task learning is to improve generalization by
“leveraging the domain-specific information con-
tained in the training signals of related tasks”
Caruana (1997). In this work, we show that TL
and MTL can indeed be used as a kind of reg-
ularizer to learn to predict infrequent relations
given a highly skewed distribution of relations
from the noun–noun compound dataset of Fares
(2016) which is especially well suited for TL and
MTL experimentation as detailed in Section 3.

Our contributions can be summarized as:

1. Through careful result analysis, we find that
TL and MTL (mainly on the embedding
layer) do improve the overall accuracy and
the F1 scores of the less frequent relations in
a highly skewed dataset, in comparison to a
strong single-task learning baseline.

2. Even though our work focuses on TL and
MTL, to the best of our knowledge, we are
the first to report experimental results on the
comparatively recent dataset of Fares (2016).

2 Related Work

Noun–Noun Compound Interpretation Exist-
ing approaches to noun–noun compound interpre-
tation vary depending on the taxonomy of com-
pound relations as well as the machine learn-
ing models and features used to learn those rela-
tions. For example, Ó Séaghdha (2007) defines
a coarse-grained set of relations (viz. six rela-
tions based on theoretical work by Levi (1978)),
whereas Tratz and Hovy (2010) assume a con-
siderably more fine-grained taxonomy of 43 rela-
tions. Others question the very assumption that
noun–noun compounds are interpretable using a
finite, predefined set of relations (Downing, 1977;
Finin, 1980) and propose alternative paraphrasing-
based approaches (Nakov, 2007; Shwartz and Da-
gan, 2018). We here focus on the approaches
that cast the interpretation problem as a classi-
fication task over a finite predefined set of rela-
tions. A wide variety of machine learning models
have been already applied to learn this task, in-
cluding nearest neighbor classifiers using seman-
tic similarity based on lexical resources (Kim and
Baldwin, 2005), kernel-based methods like SVMs
using lexical and relational features (Ó Séaghdha
and Copestake, 2009), Maximum Entropy models
with a relatively large selection of lexical and sur-

face form features such as synonyms and affixes
(Tratz and Hovy, 2010) and, most recently, neu-
ral networks either solely relying on word embed-
dings to represent noun–noun compounds (Dima
and Hinrichs, 2015) or word embeddings and so-
called path embeddings (which encode informa-
tion about lemmas and part-of-speech tags, inter
alia) in a combined paraphrasing and classifica-
tion approach (Vered and Waterson, 2018). Of the
aforementioned studies, Tratz and Hovy (2010);
Dima and Hinrichs (2015); Vered and Waterson
(2018) have all used the same dataset by Tratz
and Hovy (2010). To the best of our knowledge,
TL and MTL have never been applied to com-
pound interpretation before, and in the following
we therefore review some of the previous work on
TL and MTL on other NLP tasks.

Transfer and Multi-Task Learning A number
of recent studies have presented comprehensive
experiments on the use of TL and MTL for a vari-
ety of NLP tasks including named entity recogni-
tion and semantic labeling (Martı́nez Alonso and
Plank, 2017), sentence-level sentiment classifica-
tion (Mou et al., 2016), super-tagging and chunk-
ing (Bingel and Søgaard, 2017) and semantic de-
pendency parsing (Peng et al., 2017). The com-
mon thread among the findings of these stud-
ies is that the benefits of TL and MTL largely
depend on the properties of the tasks at hand,
such as the skewedness of the data distribu-
tion (Martı́nez Alonso and Plank, 2017), the se-
mantic similarity between the source and target
tasks (Mou et al., 2016), the learning pattern of
the auxiliary and main tasks where “target tasks
that quickly plateau” benefit most from “non-
plateauing auxiliary tasks” (Bingel and Søgaard,
2017) and the “structural similarity” between the
tasks (Peng et al., 2017). In addition to the dif-
ference in the NLP tasks they experiment with,
the aforementioned studies assume slightly dif-
ferent definitions of TL and MTL (cf. Section 4).
Our work is similar in spirit to that of Peng et al.
(2017) in the sense that we use TL and MTL to
learn different ‘formalisms’ (semantic annotations
of noun–noun compounds in our case) on the same
dataset. However, our experimental setup is more
similar to the work by Mou et al. (2016) in that
we experiment with parameter initialization on all
the layers of the neural model and simultaneously
train one MTL model on two sets of relations (cf.
Section 5).
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3 Task Definition and Dataset

Given a set of labeled pairs of nouns, each a noun–
noun compound, the task is simply to learn to
classify the semantic relations holding between
each pair of compound constituents. The diffi-
culty of this task, obviously, depends on the label
set used and its distribution, among other things.
For all the experiments presented in this paper,
we adapt the noun–noun compounds dataset cre-
ated by Fares (2016) which consists of compounds
annotated with two different taxonomies of rela-
tions; in other words, for each noun–noun com-
pound there are two distinct relations, drawing on
different linguistic schools. The dataset was de-
rived from existing linguistic resources, such as
NomBank (Meyers et al., 2004) and the Prague
Czech-English Dependency Treebank 2.0 (Hajič
et al., 2012, PCEDT). Our motivation for using this
dataset is twofold: first, dual annotation with rela-
tions over the same underlying set of compounds
maximally enables TL and MTL perspectives; sec-
ond, alignment of two distinct annotation frame-
works over the same data facilitates contrastive
analysis and comparison across frameworks.

More specifically, we use a subset of the
dataset created by Fares (2016), by focusing on
type-based instances of so-called two-word com-
pounds.1 The original dataset by Fares (2016)
also includes multi-word compounds (i.e. com-
pounds consisting of more than two nouns) and
more than just one instance per compound type.
Furthermore, we define a three-way split of the
dataset; Table 1 presents the number of compound
types per split and the vocabulary size of each
split (i.e. the number of unique words in each
split); the latter is also broken down in terms of
words occurring in the right-most position (right
constituents) and the left-most position (left con-
stituents).2 Overall, the two label sets consists of
35 so-called PCEDT functors and 18 NomBank
argument and adjunct relations. As detailed in
Section 7.1, these label sets are far from being uni-
formly distributed.

Abstractly, many relations in PCEDT and
1Two-word compounds consist of two whitespace-

separated constituents. A single constituent, however, can
be a ‘simple’ noun (e.g. system) or a hyphenated noun (e.g.
land-ownership) leading to compounds like land-ownership
system. The representation of compounds with hyphenated
constituents is explained in Section 5.1

2We use the terms left and right constituents, instead of
modifier and head nouns, because the dataset does not make
explicit the notion of ‘headedness’.

Train Dev Test
Compounds 6932 920 1759
Vocab size 4102 1163 1772
Right constituents 2304 624 969
Left constituents 2405 618 985

Table 1: Characteristics of the noun–noun compound
dataset used in our experiments. The numbers in this
table correspond to a (sub)set of the dataset by Fares
(2016), see Section 3.

NomBank describe similar semantic concepts,
since they annotate the semantics of the same
text. For example, Fares (2016) reports that
the temporal and locative relations in NomBank
(ARGM-TMP and ARGM-LOC, respectively) and
their counterparts in PCEDT (TWHEN and LOC)
exhibit a relatively consistent behavior across
frameworks as they annotate many of the same
compounds. However, Fares (2016) also points
out that some abstractly similar relations do not
align well in practice; for example, the func-
tor AIM in PCEDT and the modifier argument
ARGM-PNC in NomBank express a somewhat
similar semantic concept (purpose) but the over-
lap between the sets of compounds they annotate
in practice is rather small. Nonetheless, it is plau-
sible to assume that the semantic similarity in the
label sets—whenever it exists—can be exploited
in the form of transfer and multi-task learning, not
least because the overall distribution of the rela-
tions in the two frameworks is different.

4 Transfer vs. Multi-Task Learning

In this section, we use the notations and definitions
by Pan and Yang (2010) to define our setup for
transfer and multi-task learning.

Our classification task T can be defined in terms
of all training pairs (X, Y ) and a probability dis-
tribution P (X), where X = xi, . . . , xN 2 X and
Y = yi, . . . , yN 2 Y; X is the input feature space,
Y is the set of all labels and N is the size of the
training data. A task’s domain D is defined by
{X , P (X)}. Our goal is to learn a function f(X)
that predicts Y based on the input features X . As-
suming two ML tasks, Ta and Tb, we would train
two models (i.e. learn two separate functions fa

and fb) to predict Ya and Yb in a single-task learn-
ing setup. However, if Ta and Tb are related some-
how, either explicitly or implicitly, TL and MTL
can improve the generalization of either task or
both (Caruana, 1997; Pan and Yang, 2010; Mou
et al., 2016). Two tasks are considered related
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when their domains, Da and Db, are similar but
their label sets are different Ya 6= Yb or when their
domains are different but their label sets are iden-
tical, i.e. Ya = Yb (Pan and Yang, 2010).3 As
such, noun–noun compound interpretation over
the dataset of Fares (2016) is a well suited candi-
date for TL and MTL, because the training exam-
ples are identical, i.e. XPCEDT = XNomBank, but
the label sets are different YPCEDT 6= YNomBank.

For the sake of clarity, we distinguish between
transfer learning and multi-task learning in this
paper, even though these two terms are at times
used somewhat interchangeably in the literature.
For example, what we call TL and MTL in this
paper are both referred to as transfer learning by
Mou et al. (2016). We define TL as using the pa-
rameters (i.e. weights in neural networks) of one
model trained on Ta to initialize another model for
Tb. Mou et al. (2016) refer to this method as “pa-
rameter initialization”.4 MTL, on the other hand,
here refers to training (parts of) the same model
to learn Ta and Tb, i.e. learning one set of param-
eters for both tasks. The idea is to train a sin-
gle model simultaneously on the two tasks where
one task is considered to introduce inductive bias
which would help the model generalize over the
main task. Note, however, that this does not nec-
essarily mean that we eventually want to use a sin-
gle model to predict both label sets in practice (cf.
Section 5.3).

5 Neural Classification Models

Here we present the neural classification models
used in our experiments. To isolate the effect of
TL and MTL, we first present a single-task learn-
ing model, which serves as our baseline model,
and then we use the same model to apply TL and
MTL.

5.1 Single-Task Learning Model

In our single-task learning (STL) setup, we train
and fine-tune a feed-forward neural network based
on the neural classifier proposed by Dima and Hin-
richs (2015), which consists of: 1) input layer, 2)
embedding layer, 3) hidden layer, and 4) output

3When the label sets are identical, TL practically becomes
a technique for domain adaptation. Though these two terms
have also been used interchangeably (Chung et al., 2018).

4Using pretrained word embeddings as input representa-
tion is in a sense a form of unsupervised transfer learning,
but in this work we focus on transfer learning based on su-
pervised learning.

layer. The input layer is simply two integers spec-
ifying the indices of a compound’s constituents in
the embedding layer where the word embedding
vectors are stored; the selected word embedding
vectors are then fed to a fully connected hidden
layer whose size is the same as the number of di-
mensions of the word embedding vectors. Finally,
a softmax function is applied on the output layer
and the most likely relation is selected.

The compound’s constituents are represented
using a 300-dimensional word embedding model
trained on an English Wikipedia dump (dated
February 2017) and English Gigaword Fifth Edi-
tion (Parker et al., 2011) using GloVe (Pennington
et al., 2014). The embedding model was trained
by Fares et al. (2017) who provide more details on
the hyperparameters used to train the embedding
model.5 When looking up a word in the embed-
ding model, if the word is not found we check if
the word is uppercased and look up the same word
in lowercase. If a word is hyphenated and is not
found in the embedding vocabulary, we split it on
the hyphen and average the vectors of its parts (if
they exist in the vocabulary). If after these steps
the word is still not found, we use a designated
vector for unknown words.

Architecture and Hyperparameters Our
choice of hyperparameters is motivated by several
rounds of experimentation on the single-task
learning model as well as the choices made by
Dima and Hinrichs (2015).

The weights of the embedding layer (i.e. the
word embeddings) are updated during training in
all the models. The optimization function we use
in all the models is Adaptive Moment Estimation,
known as Adam (Kingma and Ba, 2015) with ⌘ =
0.001 (the default learning rate). The loss function
is negative-log likelihood (aka categorical cross-
entropy). We use a Sigmoid activation function on
the hidden layer units. All the models are trained
using mini-batches of size five. The maximum
number of epochs is set to 50, but we also use an
early stopping criterion on the model’s accuracy
on the validation split (i.e. training is interrupted if
the validation accuracy doesn’t improve over five
consecutive epochs). We implement all the mod-
els in Keras with TensforFlow as backend. All the
TL and MTL models are trained with the same hy-
perparameters of the STL model.6

5vectors.nlpl.eu/repository
6github.com/ltgoslo/fun-nom
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5.2 Transfer Learning Models
Transfer learning in our experiments amounts to
training an STL model on PCEDT relations, for
example, and then using (some of) its weights to
initialize another model for NomBank relations.
Given the architecture of the neural classifier de-
scribed in Section 5.1, we identify three ways to
implement TL: 1) TLE: Transfer of the embed-
ding layer weights, 2) TLH: Transfer of the hid-
den layer weights, and 3) TLEH: Transfer of both
the embedding and hidden layer weights. Fur-
thermore, we distinguish between transfer learn-
ing from PCEDT to NomBank and vice versa; that
is, either task can be used as main task or auxil-
iary task. Hence, we either start by training on
NomBank and use the weights of the correspond-
ing transfer layer to initialize the PCEDT model or
the other way around. In total, this leads to six
setups, as shown in Table 2. Note that we do not
apply TL (or MTL) on the output layer because it
is task- or dataset-specific (Mou et al., 2016).

5.3 Multi-Task Learning Models
In MTL, we train one model simultaneously to
learn both PCEDT and NomBank relations, and
therefore all the MTL models have two objec-
tive functions and two output layers. We im-
plement two MTL setups: MTLE, which con-
sists of a shared embedding layer but two task-
specific hidden layers, and MTLF, which, apart
from the output layer, does not have task-specific
layers, i.e. both the embedding and hidden layers
are shared. We distinguish between the auxiliary
and main tasks based on which validation accu-
racy (NomBank’s or PCEDT’s) is monitored by
the early stopping criterion. Hence we end up with
a total of four MTL models as shown in Table 3.

6 Experimental Results

Tables 2 and 3 present the accuracies of the dif-
ferent TL and MTL models on the development
and test splits in NomBank and PCEDT. The top
row in both tables shows the accuracy of the STL
model. All the models were trained on the training
split only. There are several observations one can
draw from these tables. First, the accuracy of the
STL models drops when the models are evaluated
on the test split, whether on NomBank or PCEDT.
Second, all the TL models achieve better accuracy
on the test split of NomBank even though transfer
learning does not remarkably improve accuracy on

Model NomBank PCEDT
Dev Test Dev Test

STL 78.15 76.75 58.80 56.05
TLE 78.37 78.05 59.57 57.42
TLH 78.15 78.00 59.24 56.51
TLEH 78.48 78.00 59.89 56.68

Table 2: Accuracy (%) of the transfer learning models.

Model NomBank PCEDT
Dev Test Dev Test

STL 78.15 76.75 58.80 56.05
MTLE 77.93 78.45 59.89 56.96
MTLF 76.74 78.51 58.91 56.00

Table 3: Accuracy (%) of the MTL models.

the development split of the same dataset. The
MTL models, especially MTLF, have a negative
effect on the development accuracy of NomBank,
but we still see the same improvement, as in TL,
on the test split. Third, both the TL and MTL mod-
els exhibit less consistent effects on PCEDT (on
both the development and test splits) compared to
NomBank; for example, all the TL models lead
to about 1.25 points absolute improvement in ac-
curacy on NomBank, whereas in PCEDT TLE is
clearly better than the other two TL models (TLE
improves over the STL accuracy by 1.37 points).

Overall, the accuracy of the STL models drops
when evaluated on the test split of NomBank and
PCEDT (in comparison to their accuracy on the
development split); this might be an indicator of
overfitting, especially because we select the model
that performs best on the development split in our
stopping criterion. Both TL and MTL, on the other
hand, improve accuracy on the test splits, even
though the same stopping criterion was used for
STL, TL and MLT. We interpret this result as im-
provement in the models’ generalization ability.
However, given that these improvements are rel-
atively small, we next take a closer look at the re-
sults to understand if and how TL and MTL help.

7 Results Analysis

This section presents a systematic analysis of the
performance of the models based on insights from
the dataset used in the experiments as well as the
classification errors of the models. The discussion
in the following sections is based on the results
on the test split rather than the development split,
primarily because the former is larger in size.7

7One can also argue that result analysis on the test split is
stricter than on the validation split. While using an early stop-
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A0 A1 A2 A3 LOC MNR TMP
Count 132 1282 153 75 25 25 27
STL 49.82 87.54 45.78 60.81 28.57 29.41 66.67
TLE 55.02 87.98 41.61 60.14 27.91 33.33 63.83
TLH 54.81 87.93 42.51 60.00 25.00 35.29 65.31
TLEH 53.62 87.95 42.70 61.11 29.27 33.33 65.22
MTLE 54.07 88.34 42.86 61.97 30.00 28.57 66.67
MTLF 53.09 88.41 38.14 62.69 00.00 00.00 52.17

Table 4: Per-label F1 score on the NomBank test split.

7.1 Relation Distribution
To demonstrate the difficulty of the problem at
hand, we plot the distribution of the most frequent
relations in NomBank and PCEDT across the three
data splits in Figure 1. We find that almost 71.18%
of the relations in the NomBank training split are
of type ARG1 (proto-typical patient), and 52.20%
of the PCEDT relations are of type RSTR (an un-
derspecified adnominal modifier). Such highly
skewed distributions of the relations makes learn-
ing some of the other relations more difficult, if
not impossible in some cases. In fact, of the 15
NomBank relations observed in the test split, five
relations are never predicted by any of the STL,
TL and MTL models, and of the 26 PCEDT re-
lations observed in the test split only six are pre-
dicted. That said, the non-predicted relations are
extremely infrequent in the training split (e.g. 23
PCEDT functors occur less than 20 times in the
training split), and it is therefore questionable if
an ML model will be able to learn them under any
circumstances.

From this imbalanced distribution of relations,
it immediately follows that accuracy alone, as
evaluation measure, is not sufficient to identify the
best performing model. Therefore, in the follow-
ing section we report, and analyze, the F1 scores
of the predicted NomBank and PCEDT relations
across all the STL, TL and MTL models.

7.2 Per-Relation F1 Scores
Tables 4 and 5 show the per-relation F1 scores for
NomBank and PCEDT, respectively. Note that we
only include the results for the relations that are
actually predicted by at least one of the models.

We observe several interesting patterns in Ta-
bles 4 and 5. First, the MTLF model seems to be
confusing for both datasets: it leads to substan-

ping criterion based on the validation data can help prevent
overfitting on the training data, we still choose a model that
achieves the best accuracy on the validation split. In addition,
it’s unclear if early stopping helps when the validation split is
not fully representative of the problem (Prechelt, 2012).

ACT TWHEN APP PAT REG RSTR
Count 89 14 118 326 216 900
STL 43.90 42.11 22.78 42.83 20.51 68.81
TLE 49.37 70.97 27.67 41.60 30.77 69.67
TLH 53.99 62.07 25.00 43.01 26.09 68.99
TLEH 49.08 64.52 28.57 42.91 28.57 69.08
MTLE 54.09 66.67 24.05 42.03 27.21 69.31
MTLF 47.80 42.11 25.64 40.73 19.22 68.89

Table 5: Per-label F1 score on the PCEDT test split.

tially degraded F1 scores on four NomBank rela-
tions, including the locative modifier ARGM-LOC
and manner modifier ARGM-MNR (shortened to
LOC and MNR in Table 4) which the model is no
longer able to predict. The same model has the
worst F1 score, compared to all other models, for
two PCEDT relations, REG (which expresses a
circumstance) and PAT (patient). Given that the
MTLF model achieves the highest accuracy on the
NomBank test split (cf. Table 3), it becomes all
the more evident that mere accuracy scores are not
enough to judge the utility of TL and MTL for this
task (and dataset).

Second, with the exception of the MTLF model,
all the TL and MTL models consistently improve
the F1 score of all the PCEDT relations except
PAT. Most notably, the F1 scores of the relations
TWHEN and ACT see a remarkable boost, com-
pared to other PCEDT relations, when only the
embedding layer’s weights are shared (MTLE) or
transfered (TLE). This result can be partly ex-
plained by looking at the correspondence matrices
between NomBank arguments and PCEDT func-
tors shown in Tables 7 and 6, which show how
the PCEDT functors map to NomBank arguments
in the training split (Table 6) and the other way
around (Table 7). From Table 6, we see that 80%
of the compounds annotated as TWHEN in PCEDT
were annotated as ARGM-TMP in NomBank. In
addition, 47% of ACT (Actor) relations map to
ARG0 (Proto-Agent) in NomBank, even though
this mapping is not as clear as one would have
hoped, it is still relatively high if we consider how
other PCEDT relations map to ARG0. The cor-
respondence matrices also show that the assumed
theoretical similarities between the NomBank and
PCEDT relations do not always hold. Nonetheless,
even such ‘imperfect’ correspondence can provide
a ‘training signal’ that help the TL and MTL mod-
els learn relations such as TWHEN and ACT.

Since the TLE model outperforms STL on pre-
dicting REG by ten absolute points, we inspected
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Figure 1: Distribution of NomBank relations (left) and PCEDT relations (right)

all the REG compounds that were correctly classi-
fied by the TLE model but were misclassified by
the STL model and found that the latter misclassi-
fied them as RSTR which indicates that TL from
NomBank helps the TLE model recover from the
STL’s over-generalization in RSTR prediction.

The two NomBank relations that receive the
highest boost in F1 score (about five absolute
points) are ARG0 and ARGM-MNR, but the im-
provement in the latter relation corresponds to
only one more compound which might well be
predicted correctly by chance. Overall, TL and
MTL from NomBank to PCEDT is more helpful
than the other way around. One way to explain
this is considering the first rows in Tables 6 and
7, where we see that five PCEDT relations (includ-
ing the four most frequent ones) map to ARG1 in
NomBank in more than 60% of the cases for each
relation. This means that the weights learned to
predict PCEDT relations offer little or no inductive
bias for NomBank relations. Whereas if we con-
sider the mapping from NomBank to PCEDT, we
see that even though many NomBank arguments
map to RSTR in PCEDT the percentages are lower,
and hence the mapping is more ‘diverse’ (i.e. dis-
criminative) which seems to help the TL and MTL
models learn the less frequent PCEDT relations.

For completeness, we investigate why the
PCEDT functor AIM is never predicted even
though it is more frequent than TWHEN (cf.
Figure 1). We find that AIM is almost always mis-
classifed as RSTR by all the models. Furthermore,
we discover that AIM and RSTR have the highest
lexical overlap in the training set among all other
pairs of relations in PCEDT: 78.35% of the left
constituents and 73.26% of the right constituents
of the compounds annotated as AIM occur in other

RSTR PAT REG APP ACT AIM TWHEN
A1 0.70 0.90 0.78 0.62 0.47 0.65 0.10
A2 0.11 0.05 0.10 0.21 0.03 0.12 0.03
A0 0.06 0.01 0.04 0.13 0.47 0.07 -
A3 0.06 0.02 0.06 0.02 0.01 0.06 -
LOC 0.02 0.01 0.00 0.01 0.01 0.01 0.02
TMP 0.01 - 0.00 0.00 - - 0.80
MNR 0.02 0.00 0.00 - 0.01 - -
Count 3617 1312 777 499 273 116 59

Table 6: Correspondence matrix between PCEDT
functors and NomBank arguments. Slots with ‘-’ mean
zero, 0.00 is a very small number but not zero.

A1 A2 A0 A3 LOC TMP MNR
RSTR 0.51 0.54 0.47 0.63 0.66 0.36 0.78
PAT 0.24 0.09 0.03 0.08 0.07 - 0.05
REG 0.12 0.11 0.07 0.13 0.02 0.01 0.01
APP 0.06 0.14 0.13 0.03 0.05 0.01 -
ACT 0.03 0.01 0.26 0.01 0.03 - 0.03
AIM 0.02 0.02 0.02 0.02 0.01 - -
TWHEN 0.00 0.00 - - 0.01 0.46 -
Count 4932 715 495 358 119 103 79

Table 7: Correspondence matrix between NomBank
arguments and PCEDT functors.

compounds annotated as RSTR. This explains why
none of the models manage to learn the relation
AIM but raises a question about the models’ abil-
ity to learn relational representations; we pursue
this question further in Section 7.3.

Finally, to clearly demonstrate the benefits of
TL and MTL for NomBank and PCEDT, we re-
port the F1 macro-average scores in Table 8 (which
is arguably the appropriate evaluation measure for
imbalanced classification problems). Note that
the relations that are not predicted by any of the
models are not included in computing the macro-
average. From Table 8 it becomes crystal clear
that TL and MTL on the embedding layer yield re-
markable improvements for PCEDT with about 7–
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Model NomBank PCEDT
STL 52.66 40.15
TLE 52.83 48.34
TLH 52.98 46.52
TLEH 53.31 47.12
MTLE 53.21 47.23
MTLF 42.07 40.73

Table 8: Macro-average F1 score on the test split.

8 absolute points increase in macro-average F1, in
contrast to just 0.65 in the best case on NomBank.

7.3 Generalization on Unseen Compounds

Now we turn to analyze the models’ ability to
generalize over compounds unseen in the training
split. Recent work by Dima (2016) and Vered and
Waterson (2018) suggest that the gains achieved in
noun–noun compound interpretation using word
embeddings and somewhat similar neural classi-
fication models are in fact a by-product of lexical
memorization (Levy et al., 2015); in other words,
the classification models learn that a specific set
of nouns is a strong indicator of a specific rela-
tion. Therefore, in order to gauge the role of lexi-
cal memorization in our models also, we quantify
the number of unseen compounds that the STL, TL
and MTL models predict correctly.

We distinguish between ‘partly’ and ‘com-
pletely’ unseen compounds. A compound is con-
sidered ‘partly’ unseen if one of its constituents
(right or left) is not seen in the training data at all.
A completely unseen compound is one whose left
and right constituent are not seen in the training
data (i.e. completely unseen compounds are the
subset of compounds in the test split that have zero
lexical overlap with the training split). Overall, al-
most 20% of the compounds in the test split have
an unseen left constituent, about 16% of the com-
pounds have unseen right constituent and 4% are
completely unseen. In Table 9, we compare the
performance of the different models on these three
groups in terms of the proportion of compounds a
model misclassifies in each group.

From Table 9 we see that TL and MTL reduce
the NomBank generalization error in all cases, ex-
cept TLH and TLEH on completely unseen com-
pounds; the latter leads to higher generalization
error. The MTL models lead to the biggest er-
ror reduction across the three types of unseen
compounds; MTLE leads to about six points er-
ror reduction on compounds with unseen right
constituent and eleven points on completely un-

Model NomBank PCEDT
L R L&R L R L&R

Count 351 286 72 351 286 72
STL 27.92 39.51 50.00 45.01 47.55 41.67
TLE 25.93 36.71 48.61 43.87 47.55 41.67
TLH 26.21 38.11 50.00 46.15 49.30 47.22
TLEH 26.50 38.81 52.78 45.87 47.55 43.06
MTLE 24.50 33.22 38.89 44.44 47.20 43.06
MTLF 22.79 34.27 40.28 44.16 47.90 38.89

Table 9: Generalization error on the subset of unseen
compounds in the test split. L: Left constituent. R:
Right constituent. L&R: Completely unseen.

seen ones, and MTLF reduces the error on un-
seen left constituent by five points. Note, how-
ever, that these results have to be read together
with the Count row in Table 9 to get a complete
picture. For instance, an eleven-point decrease in
error on completely unseen compounds amounts
to eight compounds. In PCEDT, the largest error
reduction on unseen left constituents is 1.14 points
which amounts to four compounds, 0.35 (just one
compound) on unseen right constituents and 2.7
(or two compounds) on completely unseen com-
pounds.

Since we see larger reductions in the general-
ization error in NomBank, we manually inspect
the compounds that led to these reductions; i.e.
we inspect the distribution of relations in the set
of the correctly predicted unseen compounds. The
MTLE model reduces the generalization error on
completely unseen compounds by a total of eight
compounds compared to the STL model, but seven
of these compounds are annotated with ARG1
which is the most frequent relation in NomBank.
When it comes to the unseen right constituents, the
24 compounds MTLE improves on consist of 18
ARG1 compounds, 5 ARG0 compounds and one
ARG2 compound. We see a similar pattern upon
inspecting the gains of the TLE model; where most
of the improvement arises from predicting more
ARG1 and ARG0 correctly.

The majority of the partly or completely unseen
compounds that were misclassified by all models
are not of type ARG1 in NomBank or RSTR in
PCEDT. This, together with the fact that the cor-
rectly predicted unseen compounds are annotated
with the most frequent relations, indicate that the
classification models rely on lexical memorization
to learn the interpretation of compound relations.

Finally, to complement our understanding of the
effect of lexical memorization, we plot the ratio
of relation-specific constituents in NomBank and
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Figure 2: Ratio of relation-specific constituents in NomBank (left) and PCEDT (right).

PCEDT in Figure 2. We define relation-specific
constituents as left or right constituents that only
occur with one specific relation in the training
split, and their ratio is simply their proportion in
the overall set of left or right constituents per rela-
tion. Looking at Figure 2, we see that NomBank
relations have higher ratios of relation-specific
constituents in comparison to PCEDT, which ar-
guably makes learning the former comparatively
easier if the model is only to rely on lexical mem-
orization. Furthermore, ARGM-TMP in NomBank
and TWHEN in PCEDT stand out from other rela-
tions in Figure 2, which are also the two relations
with the second highest F1 score in their respec-
tive dataset—except in STL on PCEDT (cf. Ta-
bles 4 and 5). Lexical memorization is, therefore,
the most likely explanation of such relatively high
F1 scores. We also observe some correlation be-
tween lower ratios of relation-specific constituents
and relatively low F1 scores, e.g. APP and REG
in PCEDT. Based on these observations, we can-
not rule out that our models exhibit some degree
of lexical memorization effects, even though man-
ual result analysis also reveals ‘counter-examples’
where the models generalize and make correct pre-
dictions where lexical memorization is impossi-
ble.

8 Conclusion

Transfer and multi-task learning for NLP currently
receive a lot of attention, but for the time be-
ing there remains considerable uncertainty about
which task properties and experimental settings
actually are effective. In this work, we seek to
shed light on the utility of TL and MTL per-
spectives on the semantic interpretation of noun–
noun compounds. Through a comprehensive se-

ries of minimally contrasting experiments and in-
depth analysis of results and prediction errors, we
demonstrate the ability of both TL and MTL to
mitigate the challenges of class imbalance and
substantially improve prediction of low-frequency
relations. In a nutshell, our TL and in particular
MTL models make quantitatively and qualitatively
better predictions, especially so on the ‘hardest’
inputs involving at least one constituent not seen in
the training data—but clear indicators of remain-
ing ‘lexical memorization’ effects arise from our
error analysis of unseen compounds.

In general, transfer of representations or shar-
ing across tasks is most effective at the embed-
ding layers, i.e. the model-internal representation
of the two compound constituents involved. In
multi-task learning, full sharing of the model ar-
chitecture across tasks worsens the model’s ability
to generalize on the less frequent relations.

We experience the dataset by Fares (2016) as
an interesting opportunity for innovative neural
approaches to compound interpretation, as it re-
lates this sub-problem to broad-coverage semantic
role labeling or semantic dependency parsing in
PCEDT and NomBank. In future work, we plan
to incorporate other NLP tasks defined over these
frameworks to learn noun–noun compound inter-
pretation using TL and MTL. Such tasks include
semantic role labeling of nominal predicates in
NomBank annotations as well as verbal predicates
in PropBank (Kingsbury and Palmer, 2002).
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Abstract

Contextual word representations derived from
pre-trained bidirectional language models
(biLMs) have recently been shown to provide
significant improvements to the state of the
art for a wide range of NLP tasks. How-
ever, many questions remain as to how and
why these models are so effective. In this
paper, we present a detailed empirical study
of how the choice of neural architecture (e.g.
LSTM, CNN, or self attention) influences both
end task accuracy and qualitative properties of
the representations that are learned. We show
there is a tradeoff between speed and accuracy,
but all architectures learn high quality con-
textual representations that outperform word
embeddings for four challenging NLP tasks.
Additionally, all architectures learn represen-
tations that vary with network depth, from ex-
clusively morphological based at the word em-
bedding layer through local syntax based in the
lower contextual layers to longer range seman-
tics such coreference at the upper layers. To-
gether, these results suggest that unsupervised
biLMs, independent of architecture, are learn-
ing much more about the structure of language
than previously appreciated.

1 Introduction

Contextualized word embeddings (Peters et al.,
2018) derived from pre-trained bidirectional lan-
guage models (biLMs) have been shown to sub-
stantially improve performance for many NLP
tasks including question answering, entailment
and sentiment classification (Peters et al., 2018),
constituency parsing (Kitaev and Klein, 2018;
Joshi et al., 2018), named entity recognition (Pe-
ters et al., 2017), and text classification (Howard
and Ruder, 2018). Despite large gains (typical rel-
ative error reductions range from 10–25%), we do
not yet fully understand why or how these models

⇤These authors contributed equally to this work.

work in practice. In this paper, we take a step to-
wards such understanding by empirically studying
how the choice of neural architecture (e.g. LSTM,
CNN, or self attention) influences both direct end-
task accuracies and the types of neural represen-
tations that are induced (e.g. how do they encode
notions of syntax and semantics).

Previous work on learning contextual represen-
tations has used LSTM-based biLMs, but there is
no prior reason to believe this is the best possible
architecture. More computationally efficient net-
works have been introduced for sequence model-
ing including including gated CNNs for language
modeling (Dauphin et al., 2017) and feed forward
self-attention based approaches for machine trans-
lation (Transformer; Vaswani et al., 2017). As
RNNs are forced to compress the entire history
into a hidden state vector before making predic-
tions while CNNs with a large receptive field and
the Transformer may directly reference previous
tokens, each architecture will represent informa-
tion in a different manner.

Given such differences, we study whether more
efficient architectures can also be used to learn
high quality contextual vectors. We show em-
pirically that all three approaches provide large
improvements over traditional word vectors when
used in state-of-the-art models across four bench-
mark NLP tasks. We do see the expected tradeoff
between speed and accuracy between LSTMs and
the other alternatives, but the effect is relatively
modest and all three networks work well in prac-
tice.

Given this result, it is important to better un-
derstand what the different networks learn. In
a detailed quantitative evaluation, we probe the
learned representations and show that, in every
case, they represent a rich hierarchy of contex-
tual information throughout the layers of the net-
work in an analogous manner to how deep CNNs
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trained for image classification learn a hierarchy
of image features (Zeiler and Fergus, 2014). For
example, we show that in contrast to traditional
word vectors which encode some semantic infor-
mation, the word embedding layer of deep biLMs
focuses exclusively on word morphology. Mov-
ing upward in the network, the lowest contextual
layers of biLMs focus on local syntax, while the
upper layers can be used to induce more semantic
content such as within-sentence pronominal coref-
erent clusters. We also show that the biLM ac-
tivations can be used to form phrase representa-
tions useful for syntactic tasks. Together, these re-
sults suggest that large scale biLMs, independent
of architecture, are learning much more about the
structure of language than previous appreciated.

2 Contextual word representations from
biLMs

To learn contextual word representations, we fol-
low previous work by first training a biLM on a
large text corpus (Sec. 2.1). Then, the internal
layer activations from the biLM are transferred to
downstream tasks (Sec. 2.3).

2.1 Bidirectional language models
Given a sequence of N tokens, (t1, t2, ..., tN ), a
biLM combines a forward and backward language
model to jointly maximize the log likelihood of
both directions:

NX

k=1

( log p(tk | t1, . . . , tk�1;
�!
⇥)

+ log p(tk | tk+1, . . . , tN ;
 �
⇥) ) ,

where
�!
⇥ and

 �
⇥ are the parameters of the forward

and backward LMs respectively.
To compute the probability of the next token,

state-of-the-art neural LMs first produce a context-
insensitive token representation or word embed-
ding, xk, (with either an embedding lookup or in
our case a character aware encoder, see below).
Then, they compute L layers of context-dependent
representations

�!
h k,i where i 2 [1, L] using a

RNN, CNN or feed forward network (see Sec. 3).
The top layer output

�!
h k,L is used to predict the

next token using a Softmax layer. The backward
LM operates in an analogous manner to the for-
ward LM. Finally, we can concatenate the forward
and backward states to form L layers of contex-
tual representations, or context vectors, at each to-

ken position: hk,i = [
�!
h k,i;

 �
h k,i]. When training,

we tie the weights of the word embedding layers
and Softmax in each direction but maintain sepa-
rate weights for the contextual layers.

2.2 Character based language models
Fully character aware models (Kim et al., 2015)
are considerably more parameter efficient then
word based models but more computationally
expensive then word embedding based methods
when training. During inference, these differences
can be largely eliminated by pre-computing em-
beddings for a large vocabulary and only falling
back to the full character based method for rare
words. Overall, for a large English language news
benchmark, character aware models have slightly
better perplexities then word based ones, although
the differences tend to be small (Józefowicz et al.,
2016).

Similar to Kim et al. (2015), our character-to-
word encoder is a five-layer sub-module that first
embeds single characters with an embedding layer
then passes them through 2048 character n-gram
CNN filters with max pooling, two highway lay-
ers (Srivastava et al., 2015), and a linear projection
down to the model dimension.

2.3 Deep contextual word representations
After pre-training on a large data set, the internal
representations from the biLM can be transferred
to a downstream model of interest as contextual
word representations. To effectively use all of the
biLM layers, Peters et al. (2018) introduced ELMo
word representations, whereby all of the layers are
combined with a weighted average pooling oper-
ation, ELMok = �

PL
j=0 sjhk,j . The parameters

s are optimized as part of the task model so that it
may preferentially mix different types of contex-
tual information represented in different layers of
the biLM. In Sec. 4 we evaluate the relative ef-
fectiveness of ELMo representations from three
different biLM architectures vs. pre-trained word
vectors in four different state-of-the-art models.

3 Architectures for deep biLMs

The primary design choice when training deep
biLMs for learning context vectors is the choice
of the architecture for the contextual layers. How-
ever, it is unknown if the architecture choice is im-
portant for the quality of learned representations.
To study this question, we consider two alterna-
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Architecture # layers Perplexity # params. (M) Inference (ms)
1 sentence

Inference (ms)
64 sentences

LSTM 2 39.7 76 / 94 44 / 46 66 / 85
LSTM 4 37.5 151 / 153 85 / 86 102 / 118
Transformer 6 40.7 38 / 56 12 / 13 22 / 44
Gated CNN 16 44.5 67 / 85 9 / 11 29 / 55

Table 1: Characteristics of the different biLMs in this study. For each model, the table shows the number of layers
used for the contextual representations, the averaged forward and backward perplexities on the 1 Billion Word
Benchmark, the number of parameters (in millions, excluding softmax) and the inference speed (in milliseconds
with a Titan X GPU, for sentences with 20 tokens, excluding softmax). For the number of parameters and inference
speeds we list both the values for just the contextual layers and all layers needed to compute context vectors.

tives to LSTMs as described below. See the ap-
pendix for the hyperparameter details.

3.1 LSTM
Among the RNN variants, LSTMs have been
shown to provide state-of-the-art performance
for several benchmark language modeling tasks
(Józefowicz et al., 2016; Merity et al., 2018; Melis
et al., 2018). In particular, the LSTM with pro-
jection introduced by Sak et al. (2014) allows the
model to use a large hidden state while reducing
the total number of parameters.This is the archi-
tecture adopted by Peters et al. (2018) for com-
puting ELMo representations. In addition to the
pre-trained 2-layer biLM from that work,1 we also
trained a deeper 4-layer model to examine the im-
pact of depth using the publicly available training
code.2 To reduce the training time for this large
4-layer model, we reduced the number of parame-
ters in the character encoder by first projecting the
character CNN filters down to the model dimen-
sion before the two highway layers.

3.2 Transformer
The Transformer, introduced by Vaswani et al.
(2017), is a feed forward self-attention based ar-
chitecture. In addition to machine translation, it
has also provided strong results for Penn Treebank
constituency parsing (Kitaev and Klein, 2018) and
semantic role labeling (Tan et al., 2018). Each
identical layer in the encoder first computes a
multi-headed attention between a given token and
all other tokens in the history, then runs a position
wise feed forward network.

To adapt the Transformer for bidirectional lan-
guage modeling, we modified a PyTorch based

1http://allennlp.org/elmo
2https://github.com/allenai/bilm-tf

re-implementation (Klein et al., 2017)3 to mask
out future tokens for the forward language model
and previous tokens for the backward language
model, in a similar manner to the decoder mask-
ing in the original implementation. We adopted
hyper-parameters from the “base” configuration in
Vaswani et al. (2017), providing six layers of 512
dimensional representations for each direction.

Concurrent with our work, Radford et al. (2018)
trained a large forward Transformer LM and fine
tuned it for a variety of NLP tasks.

3.3 Gated CNN

Convolutional architectures have also been shown
to provide competitive results for sequence mod-
eling including sequence-to-sequence machine
translation (Gehring et al., 2017). Dauphin et al.
(2017) showed that architectures using Gated Lin-
ear Units (GLU) that compute hidden representa-
tions as the element wise product of a convolution
and sigmoid gate provide perplexities comparable
to large LSTMs on large scale language modeling
tasks.

To adapt the Gated CNN for bidirectional lan-
guage modeling, we closely followed the publicly
available ConvSeq2Seq implementation,4 modi-
fied to support causal convolutions (van den Oord
et al., 2016) for both the forward and backward di-
rections. In order to model a wide receptive field
at the top layer, we used a 16-layer deep model,
where each layer is a [4, 512] residual block.

3.4 Pre-trained biLMs

Table 1 compares the biLMs used in the remain-
der of this study. All models were trained on the 1

3http://nlp.seas.harvard.edu/2018/04/
03/attention.html

4https://github.com/pytorch/fairseq
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Architecture MultiNLI SRL Constituency
Parsing NER

GloVe 77.0 / 76.0 81.4 91.8 89.9 ± 0.35
LSTM 2-layer 79.6 / 79.3 84.6 93.9 91.7 ± 0.26
LSTM 4-layer 80.1 / 79.7 84.7 93.9 91.5 ± 0.12
Transformer 79.4 / 78.7 84.1 93.7 91.1 ± 0.26
Gated CNN 78.3 / 77.9 84.1 92.9 91.2 ± 0.14

Table 2: Test set performance comparison using different pre-trained biLM architectures. The performance metric
is accuracy for MultiNLI and F1 score for the other tasks. For MultiNLI, the table shows accuracy on both the
matched and mismatched portions of the test set.

Billion Word Benchmark (Chelba et al., 2014) us-
ing a sampled softmax with 8192 negative samples
per batch. Overall, the averaged forward and back-
ward perplexities are comparable across the mod-
els with values ranging from 37.5 for the 4-layer
LSTM to 44.5 for the Gated CNN. To our knowl-
edge, this is the first time that the Transformer has
been shown to provide competitive results for lan-
guage modeling. While it is possible to reduce
perplexities for all models by scaling up, our goal
is to compare representations across architectures
for biLMs of approximately equal skill, as mea-
sured by perplexity.

The Transformer and CNN based models are
faster than the LSTM based ones for our hyper-
parameter choices, with speed ups of 3-5X for the
contextual layers over the 2-layer LSTM model.5

Speed ups are relatively faster in the single ele-
ment batch scenario where the sequential LSTM
is most disadvantaged, but are still 2.3-3X for a
64 sentence batch. As the inference speed for the
character based word embeddings could be mostly
eliminated in a production setting, the table lists
timings for both the contextual layers and all lay-
ers of the biLM necessary to compute context vec-
tors. We also note that the faster architectures will
allow training to scale to large unlabeled corpora,
which has been shown to improve the quality of
biLM representations for syntactic tasks (Zhang
and Bowman, 2018).

4 Evaluation as word representations

In this section, we evaluate the quality of the
pre-trained biLM representations as ELMo-like
contextual word vectors in state-of-the-art mod-

5While the CNN and Transformer implementations are
reasonably well optimized, the LSTM biLM is not as it does
not use an optimized CUDA kernel due to the use of the pro-
jection cell.

els across a suite of four benchmark NLP tasks.
To do so, we ran a series of controlled trials by
swapping out pre-trained GloVe vectors (Penning-
ton et al., 2014) for contextualized word vectors
from each biLM computed by applying the learned
weighted average ELMo pooling from Peters et al.
(2018).6 Each task model only includes one type
of pre-trained word representation, either GloVe
or ELMo-like, this is a direct test of the transfer-
ability of the word representations. In addition,
to isolate the general purpose LM representations
from any task specific supervision, we did not fine
tune the LM weights.

Table 2 shows the results. Across all tasks,
the LSTM architectures perform the best. All ar-
chitectures improve significantly over the GloVe
only baseline, with relative improvements of 13%
– 25% for most tasks and architectures. The gains
for MultiNLI are more modest, with relative im-
provements over GloVe ranging from 6% for the
Gated CNN to 13% for the 4-layer LSTM. The re-
mainder of this section provides a description of
the individual tasks and models with details in the
Appendix.

4.1 MultiNLI

The MultiNLI dataset (Williams et al., 2018) con-
tains crowd sourced textual entailment annotations
across five diverse domains for training and an ad-
ditional five domains for testing. Our model is a
re-implementation of the ESIM sequence model
(Chen et al., 2017). It first uses a biLSTM to
encode the premise and hypothesis, then com-
putes an attention matrix followed by a local in-
ference layer, another biLSTM inference compo-
sition layer, and finally a pooling operation before

6Generally speaking, we found adding pre-trained GloVe
vectors in addition to the biLM representations provided a
small improvement across the tasks.
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Figure 1: Visualization of contextual similarity between all word pairs in a single sentence using the 4-layer
LSTM. The left panel uses context vectors from the bottom LSTM layer while the right panel uses the top LSTM
layer. Lighter yellow-colored areas have higher contextual similarity.

the output layer. With the 2-layer LSTM ELMo
representations, it is state-of-the-art for SNLI (Pe-
ters et al., 2018). As shown in Table 2, the LSTMs
perform the best, with the Transformer accura-
cies 0.2% / 0.6% (matched/mismatched) less then
the 2-layer LSTM. In addition, the contextual rep-
resentations reduce the matched/mismatched per-
formance differences showing that the biLMs can
help mitigate domain effects. The ESIM model
with the 4-layer LSTM ELMo-like embeddings
sets a new state-of-the-art for this task, exceeding
the highest previously published result by 1.3%
matched and 1.9% mismatched from Gong et al.
(2018).

4.2 Semantic Role Labeling

The Ontonotes 5.0 Dataset (Pradhan et al., 2013)
contains predicate argument annotations for a va-
riety of types of text, including conversation logs,
web data, and biblical extracts. For our model, we
use the deep biLSTM from He et al. (2017) who
modeled SRL as a BIO tagging task. With ELMo
representations, it is state-of-the-art for this task
(Peters et al., 2018). For this task, the LSTM based
word representations perform the best, with abso-
lute improvements of 0.6% of the 4-layer LSTM
over the Transformer and CNN.

4.3 Constituency parsing

The Penn Treebank (Marcus et al., 1993) contains
phrase structure annotation for approximately 40k
sentences sourced from the Wall Street Journal.
Our model is the Reconciled Span Parser (RSP;
Joshi et al., 2018), which, using ELMo representa-
tions, achieved state of the art performance for this
task. As shown in Table 2, the LSTM based mod-
els demonstrate the best performance with a 0.2%
and 1.0% improvement over the Transformer and
CNN models, respectively. Whether the explicit
recurrence structure modeled with the biLSTM in
the RSP is important for parsing is explored in Sec.
5.3.

4.4 Named entity recognition

The CoNLL 2003 NER task (Sang and Meul-
der, 2003) provides entity annotations for approx-
imately 20K sentences from the Reuters RCV1
news corpus. Our model is a re-implementation of
the state-of-the-art system in Peters et al. (2018)
with a character based CNN word representation,
two biLSTM layers and a conditional random field
(CRF) loss (Lafferty et al., 2001). For this task, the
2-layer LSTM performs the best, with averaged F1

0.4% - 0.8% higher then the other biLMs averaged
across five random seeds.
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Figure 2: t-SNE visualization of 3K random chunks
and 500 unlabeled spans (“NULL”) from the CoNLL
2000 chunking dataset.

5 Properties of contextual vectors

In this section, we examine the intrinsic properties
of contextual vectors learned with biLMs, focus-
ing on those that are independent of the architec-
ture details. In particular, we seek to understand
how familiar types of linguistic information such
as syntactic or coreferent relationships are repre-
sented throughout the depth of the network. Our
experiments show that deep biLMs learn represen-
tations that vary with network depth, from mor-
phology in the word embedding layer, to local syn-
tax in the lowest contextual layers, to semantic re-
lationships such as coreference in the upper layers.

We gain intuition and motivate our analysis by
first considering the inter-sentence contextual sim-
ilarity of words and phrases (Sec. 5.1). Then, we
show that, in contrast to traditional word vectors,
the biLM word embeddings capture little semantic
information (Sec. 5.2) that is instead represented
in the contextual layers (Sec. 5.3). Our analy-
sis moves beyond single tokens by showing that
a simple span representation based on the context
vectors captures elements of phrasal syntax.

5.1 Contextual similarity

Nearest neighbors using cosine similarity are a
popular way to visualize the relationships encoded
in word vectors and we can apply a similar method
to context vectors. As the biLMs use context vec-
tors to pass information between layers in the net-
work, this allows us to visualize how information
is represented throughout the network.

Intra-sentence similarity Fig. 1 shows the
intra-sentence contextual similarity between all
pairs of words in single sentence using the 4-

layer LSTM.7 From the figure, we make several
observations. First, the lower layer (left) cap-
tures mostly local information, while the top layer
(right) represents longer range relationships. Sec-
ond, at the lowest layer the biLM tends to place
words from the same syntactic constituents in sim-
ilar parts of the vector space. For example, the
words in the noun phrase “the new international
space station” are clustered together, similar to
“can not” and “The Russian government”.

In addition, we can see how the biLM is implic-
itly learning other linguistic information in the up-
per layer. For example, all of the verbs (“says”,
“can”, “afford”, “maintain”, “meet”) have high
similarity suggesting the biLM is capturing part-
of-speech information. We can also see some
hints that the model is implicitly learning to per-
form coreference resolution by considering the
high contextual similarity of “it” to “government”,
the head of “it”s antecedent span. Section 5.3 pro-
vides empirical support for these observations.

Span representations The observation that the
biLM’s context vectors abruptly change at syntac-
tic boundaries suggests we can also use them to
form representations of spans, or consecutive to-
ken sequences. To do so, given a span of S tokens
from indices s0 to s1, we compute a span repre-
sentation s(s0,s1),i at layer i by concatenating the
first and last context vectors with the element wise
product and difference of the first and last vectors:

s(s0,s1),i = [hs0,i;hs1,i;hs0,i � hs1,i;hs0,i � hs1,i].

Figure 2 shows a t-SNE (Maaten and Hin-
ton, 2008) visualization of span representations of
3,000 labeled chunks and 500 spans not labeled
as chunks from the CoNLL 2000 chunking dataset
(Sang and Buchholz, 2000), from the first layer of
the 4-layer LSTM. As we can see, the spans are
clustered by chunk type confirming our intuition
that the span representations capture elements of
syntax. Sec. 5.3 evaluates whether we can use
these span representations for constituency pars-
ing.

Unsupervised pronominal coref We hypothe-
size that the contextual similarity of coreferential
mentions should be similar, as in many cases it is
possible to replace them with their referent. If
true, we should be able to use contextual simi-
larity to perform unsupervised coreference reso-

7See appendix for visualizations of the other models.

1504



Figure 3: Various methods of probing the information stored in context vectors of deep biLMs. Each panel shows
the results for all layers from a single biLM, with the first layer of contextual representations at the bottom and last
layer at the top. From top to bottom, the figure shows results from the 4-layer LSTM, the Transformer and Gated
CNN models. From left to right, the figure shows linear POS tagging accuracy (%; Sec. 5.3), linear constituency
parsing (F1; Sec. 5.3), and unsupervised pronominal coreference accuracy (%; Sec. 5.1).

Representation Syntactic Semantic
GloVe 77.9 79.2
n-gram hash 72.3 0.5
LSTM 4-layer 74.2 11.5
Transformer 87.1 48.8
Gated CNN 83.6 26.3

Table 3: Accuracy (%) for word vector analogies.
In addition to the 300 dimension 840B GloVe vectors,
the table contains results from a character n-gram hash
and the context insensitive word embedding layer (xk)
from the biLMs.

lution. To test this, we designed an experiment
as follows. To rule out trivially high mention-
mention similarities due to lexical overlap, we re-
stricted to pronominal coreference resolution. We
took all sentences from the development set of the
OntoNotes annotations in the CoNLL 2012 shared
task (Pradhan et al., 2012) that had a third-person
personal pronoun8 and antecedent in the same sen-
tence (904 sentences), and tested whether a sys-
tem could identify the head word of the antecedent
span given the pronoun location. In addition, by
restricting to pronouns, systems are forced to rely
on context to form their representation of the pro-
noun, as the surface form of the pronoun is unin-
formative. As an upper bound on performance, the
state-of-the-art coreference model from Lee et al.
(2017)9 finds an antecedent span with the head
word 64% of the time. As a lower bound on per-
formance, a simple baseline that chooses the clos-
est noun occurring before the pronoun has an ac-

8he, him, she, her, it, them, they
9http://allennlp.org/models

Figure 4: Normalized layer weights s for the tasks in
Sec. 4. The vertical axis indexes the layer in the biLM,
with layer 0 the word embedding xk.

curacy of 27%, and one that chooses the first noun
in the sentence has an accuracy of 35%. If we add
an additional rule and further restrict to antecedent
nouns matching the pronoun in number, the accu-
racies increase to 41% and 47% respectively.

To use contextual representations to solve this
task, we first compute the mean context vector of
the smallest constituent with more then one word
containing the pronoun and subtract it from the
pronoun’s context vector. This step is motivated
by the above observation that local syntax is the
dominant signal in the contextualized word vec-
tors, and removing it improves the accuracies of
our method. Then, we choose the noun with the
highest contextual similarity to the adjusted con-
text vector that occurs before the pronoun and
matches it in number.

The right hand column of Fig. 3 shows the re-
sults for all layers of the biLMs. Accuracies for the
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models peak between 52% and 57%, well above
the baseline, with the Transformer overall hav-
ing the highest accuracy. Interestingly, accuracies
only drop 2-3% compared to 12-14% in the base-
line if we remove the assumption of number agree-
ment and simply consider all nouns, highlighting
that the biLMs are to a large extent capturing num-
ber agreement across coreferent clusters. Finally,
accuracies are highest at layers near the top of each
model, showing that the upper layer representa-
tions are better at capturing longer range corefer-
ent relationships then lower layers.

5.2 Context independent word representation
The word analogy task introduced in Mikolov
et al. (2013) are commonly used as intrinsic evalu-
ations of word vectors. Here, we use them to com-
pare the word embedding layer from the biLMs to
word vectors. The task has two types of analo-
gies: syntactic with examples such as “bird:birds
:: goat:goats”, and semantic with examples such
as “Athens:Greece :: Oslo:Norway”. Traditional
word vectors score highly on both sections. How-
ever, as shown in Table 3, the word embedding
layer xk from the biLMs is markedly different
with syntactic accuracies on par or better then
GloVe, but with very low semantic accuracies. To
further highlight this distinction, we also com-
puted a purely orthographically based word vec-
tor by hashing all character 1, 2, and 3-grams
in a word into a sparse 300 dimensional vector.
As expected, vectors from this method had near
zero accuracy in the semantic portion, but scored
well on the syntactic portion, showing that most of
these analogies can be answered with morphology
alone. As a result, we conclude that the word rep-
resentation layer in deep biLMs is only faithfully
encoding morphology with little semantics.

5.3 Probing contextual information
In this section, we quantify some of the anecdo-
tal observations made in Sec. 5.1. To do so, we
adopt a series of linear probes (Belinkov et al.,
2017) with two NLP tasks to test the contextual
representations in each model layer for each biLM
architecture. In addition to examining single to-
kens, we also depart from previous work by exam-
ining to what extent the span representations cap-
ture phrasal syntax.

Our results show that all biLM architectures
learn syntax, including span-based syntax; and
part-of-speech information is captured at lower

layers then constituent structure. When combined
with the coreference accuracies in Sec. 5.1 that
peak at even higher layers, this supports our claim
that deep biLMs learn a hierarchy of contextual
information.

POS tagging Peters et al. (2018) showed that
the contextual vectors from the first layer of the 2-
layer LSTM plus a linear classifier was near state-
of-the-art for part-of-speech tagging. Here, we
test whether this result holds for the other archi-
tectures. The second row of Fig. 3 shows tagging
accuracies for all layers of the biLMs evaluated
with the Wall Street Journal portion of Penn Tree-
bank (Marcus et al., 1993). Accuracies for all of
the models are high, ranging from 97.2 to 97.4,
and follow a similar trend with maximum values
at lower layers (bottom layer for LSTM, second
layer for Transformer, and third layer for CNN).

Constituency parsing Here, we test whether the
span representations introduced in Sec. 5.1 capture
enough information to model constituent struc-
ture. Our linear model is a very simple and in-
dependently predicts the constituent type for all
possible spans in a sentence using a linear clas-
sifier and the span representation. Then, a valid
tree is built with a greedy decoding step that rec-
onciles overlapping spans with an ILP, similar to
Joshi et al. (2018).

The third row in Fig. 3 shows the results. Re-
markably, predicting spans independently using
the biLM representations alone has F1 of near 80%
for the best layers from each model. For compari-
son, a linear model using GloVe vectors performs
very poorly, with F1 of 18.1%. Across all architec-
tures, the layers best suited for constituency pars-
ing are at or above the layers with maximum POS
accuracies as modeling phrasal syntactic structure
requires a wider context then token level syntax.
Similarity, the layers most transferable to parsing
are at or below the layers with maximum pronom-
inal coreference accuracy in all models, as con-
stituent structure tends to be more local than coref-
erence (Kuncoro et al., 2017).

5.4 Learned layer weights
Fig. 4 plots the softmax-normalized layer weights
s from each biLM, learned as part of the tasks in
Sec. 4. The SRL model weights are omitted as
they close to constant since we had to regularize
them to stabilize training. For constituency pars-
ing, s mirrors the layer wise linear parsing results,
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with the largest weights near or at the same lay-
ers as maximum linear parsing. For both NER and
MultiNLI, the Transformer focuses heavily on the
word embedding layer, xk, and the first contextual
layer. In all cases, the maximum layer weights
occur below the top layers as the most transfer-
able contextual representations tend to occur in the
middle layers, while the top layers specialize for
language modeling.

6 Related work

In addition to biLM-based representations, Mc-
Cann et al. (2017) learned contextualized vectors
with a neural machine translation system (CoVe).
However, as Peters et al. (2018) showed the biLM
based representations outperformed CoVe in all
considered tasks, we focus exclusively on biLMs.

Liu et al. (2018) proposed using densely con-
nected RNNs and layer pruning to speed up the use
of context vectors for prediction. As their method
is applicable to other architectures, it could also be
combined with our approach.

Several prior studies have examined the learned
representations in RNNs. Karpathy et al. (2015)
trained a character LSTM language model on
source code and showed that individual neurons
in the hidden state track the beginning and end of
code blocks. Linzen et al. (2016) assessed whether
RNNs can learn number agreement in subject-verb
dependencies. Our analysis in Sec. 5.1 showed
that biLMs also learn number agreement for coref-
erence. Kádár et al. (2017) attributed the activa-
tion patters of RNNs to input tokens and showed
that a RNN language model is strongly sensitive
to tokens with syntactic functions. Belinkov et al.
(2017) used linear classifiers to determine whether
neural machine translation systems learned mor-
phology and POS tags. Concurrent with our
work, Khandelwal et al. (2018) studied the role
of context in influencing language model predic-
tions, Gaddy et al. (2018) analyzed neural con-
stituency parsers, Blevins et al. (2018) explored
whether RNNs trained with several different ob-
jectives can learn hierarchical syntax, and Con-
neau et al. (2018) examined to what extent sen-
tence representations capture linguistic features.
Our intrinsic analysis is most similar to Belinkov
et al. (2017); however, we probe span represen-
tations in addition to word representations, evalu-
ate the transferability of the biLM representations
to semantic tasks in addition to syntax tasks, and

consider a wider variety of neural architectures in
addition to RNNs.

Other work has focused on attributing network
predictions. Li et al. (2016) examined the impact
of erasing portions of a network’s representations
on the output, Sundararajan et al. (2017) used a
gradient based method to attribute predictions to
inputs, and Murdoch et al. (2018) decomposed
LSTMs to interpret classification predictions. In
contrast to these approaches, we explore the types
of contextual information encoded in the biLM in-
ternal states instead of focusing on attributing this
information to words in the input sentence.

7 Conclusions and future work

We have shown that deep biLMs learn a rich hier-
archy of contextual information, both at the word
and span level, and that this is captured in three
disparate types of network architectures. Across
all architecture types, the lower biLM layers spe-
cialize in local syntactic relationships, allowing
the higher layers to model longer range relation-
ships such as coreference, and to specialize for
the language modeling task at the top most lay-
ers. These results highlight the rich nature of the
linguistic information captured in the biLM’s rep-
resentations and show that biLMs act as a gen-
eral purpose feature extractor for natural language,
opening the way for computer vision style feature
re-use and transfer methods.

Our results also suggest avenues for future
work. One open question is to what extent can
the quality of biLM representations be improved
by simply scaling up model size or data size? As
our results have show that computationally effi-
cient architectures also learn high quality repre-
sentations, one natural direction would be explor-
ing the very large model and data regime.

Despite their successes biLM representations
are far from perfect; during training, they have
access to only surface forms of words and their
order, meaning deeper linguistic phenomena must
be learned “tabula rasa”. Infusing models with
explicit syntactic structure or other linguistically
motivated inductive biases may overcome some
of the limitations of sequential biLMs. An alter-
nate direction for future work combines the purely
unsupervised biLM training objective with exist-
ing annotated resources in a multitask or semi-
supervised manner.

1507



References
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-

san Sajjad, and James R. Glass. 2017. What do neu-
ral machine translation models learn about morphol-
ogy? In ACL.

T. Blevins, O. Levy, and L. Zettlemoyer. 2018. Deep
RNNs Encode Soft Hierarchical Syntax. In ACL.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
INTERSPEECH.

Qian Chen, Xiao-Dan Zhu, Zhen-Hua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2017. Enhanced lstm
for natural language inference. In ACL.

Alexis Conneau, German Kruszewski, Guillaume
Lample, Loı̈c Barrault, and Marco Baroni. 2018.
What you can cram into a single vector: Probing
sentence embeddings for linguistic properties. In
ACL.

Yann Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In ICML.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? An
analysis. In NAACL.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2018. AllenNLP: A deep semantic natural language
processing platform. In ACL workshop for NLP
Open Source Software.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional se-
quence to sequence learning. In ICML.

Yichen Gong, Heng Luo, and Jian Zhang. 2018. Nat-
ural language inference over interaction space. In
ICLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In CVPR.

Luheng He, Kenton Lee, Mike Lewis, and Luke S.
Zettlemoyer. 2017. Deep semantic role labeling:
What works and what’s next. In ACL.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. In ACL.
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Abstract
Prepositions are highly polysemous, and their
variegated senses encode significant seman-
tic information. In this paper we match each
preposition’s left- and right context, and their
interplay to the geometry of the word vec-
tors to the left and right of the preposition.
Extracting these features from a large corpus
and using them with machine learning models
makes for an efficient preposition sense dis-
ambiguation (PSD) algorithm, which is com-
parable to and better than state-of-the-art on
two benchmark datasets. Our reliance on no
linguistic tool allows us to scale the PSD al-
gorithm to a large corpus and learn sense-
specific preposition representations. The cru-
cial abstraction of preposition senses as word
representations permits their use in down-
stream applications–phrasal verb paraphrasing
and preposition selection–with new state-of-
the-art results.

1 Introduction

English prepositions form a closed class show-
ing no inflectional variation and are some of the
most frequent words. A computational-linguistic
understanding of prepositions remains challeng-
ing owing to their highly polysemous nature and
frequent participation in idiomatic expressions
(Saint-Dizier, 2006). In this paper, we study the
problem of sense disambiguation for prepositions.

She blinked with confusion. (Manner & Mood)
He combines professionalism with humor. (Accompanier)

He washed a small red teacup with water. (Means)

Table 1: Examples showing polysemous behavior of
with and the TPP senses.

The highly polysemous nature of prepositions
drives several syntactic and semantic processes.
For instance, the preposition with has 18 senses
listed in The Preposition Project (TPP) (Litkowski

and Hargraves, 2005), examples of which, are
shown in Table 1. We notice that with indicates
an emotional state in with confusion and refers
to an accompanier in combine with, while it sug-
gests the idea of a tool or means in wash with wa-
ter. Thus, preposition sense disambiguation (PSD)
is vital for natural language understanding and a
closer look at the function of prepositions in spe-
cific contexts is an important computational step.

Previous approaches to PSD (for instance, (Ye
and Baldwin, 2007; Hovy et al., 2011)) have re-
lied on linguistic tools and resources (the mini-
mum of which involves dependency parsers and
POS taggers) to capture the crucial contextual in-
formation of prepositions. We depart from prior
art by using no linguistic resources or tools other
than a set of word representations (trained on a
large corpus). We interpret preposition senses as
groups of similar contexts, where each instance
of the preposition ‘sense’ is represented as a vec-
tor of context-dependent features. We find a sim-
ple feature extraction process that creatively har-
nesses the geometry of word representations and
contributes to a scalable PSD algorithm. Our al-
gorithm can reach near and even beat state-of-the-
art performance on two benchmark datasets (Se-
mEval 2007 and OEC); this is true in both unsu-
pervised and supervised PSD settings.

A PSD algorithm that efficiently scales to a
large corpus naturally paves the way for dis-
tributed representations of the preposition senses:
we enrich the corpus with sense-specific infor-
mation of prepositions using our PSD algorithm.
Next, we repurpose an off-the-shelf word repre-
sentation algorithm (Word2vec (Mikolov et al.,
2013)) to relearn word representations with the
key aspect that the length of the context surround-
ing the prepositions is crucially reduced. Sense-
specific preposition representations thus learnt
are strongly validated by using them in two
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applications–phrasal verb paraphrasing and prepo-
sition selection–using available datasets. We re-
leased our PSD system and paraphrasing dataset 1

available.
We summarize our contributions below:

• Novel Perspective of Preposition Behavior:
We provide a novel selectional aspect of the
context that best represents the sense of a
preposition, where we match classical ideas
from linguistics with the appropriate geome-
try of word embeddings. The standard view
focuses on the left context (attachment) and
the right context (complement) of the prepo-
sition; in this paper, we include the interplay
between these two elements via an appropri-
ate geometric representation.

• Resource-independent Disambiguation:
We rely only on a set of trained word repre-
sentations and no other language processing
tool, where almost all prior approaches have
included at least POS tagging and depen-
dency parsing. Our results are comparable
to, or better than, state-of-the-art on standard
benchmarks.

• Preposition Sense Representation Learn-
ing: To the best of our knowledge, this is
the first work on preposition sense represen-
tation. The power of our sense represen-
tation is reflected in the experimental com-
parisons with strong baseline approaches to
phrasal verb paraphrasing and preposition se-
lection, where we demonstrate the superiority
of our approach that uses sense representa-
tion of prepositions.

2 Related Works

We place our work in the context of related stud-
ies in preposition representation and Preposition
Sense Disambiguation: Preposition disambigua-
tion has been explored on the SemEval dataset
via various methods and external resources (part
of speech taggers, chunkers, dependency parsers,
named entity extractors, WordNet based super-
sense taggers and semantic role labelers) since
2007 (Yuret, 2007; Ye and Baldwin, 2007; Tratz
and Hovy, 2009; Hovy et al., 2011; Popescu et al.,
2007; Tratz and Hovy, 2011; Srikumar and Roth,

1https://github.com/HongyuGong/
PrepositionSenseDisambiguation.git

2013). Recently, (Gonen and Goldberg, 2016) use
a multilingual parallel corpus processed using se-
quence to sequence neural networks for prepo-
sition disambiguation and achieve an accuracy
within 5% of the state-of-the-art, which includes
(Litkowski, 2013; Hovy et al., 2010; Srikumar and
Roth, 2013). We note that we achieve the compa-
rable performance as (Gonen and Goldberg, 2016)
using only word embeddings.

Preposition Representation: Representation
learning is fundamental to machine learning mod-
els (Wu et al., 2018a,b; Xu et al., 2018). Word
embeddings such as Word2vec (Mikolov et al.,
2013) and GloVe (Pennington et al., 2014) have
been widely recognized for their ability to cap-
ture linguistic regularities (including syntactic and
semantic relations). On the other hand, no lin-
guistic property of their prepositional embeddings
is known; to the best of our knowledge, we pro-
pose the first sense-specific prepositional embed-
dings and demonstrate their linguistic regularities.
A recent unsupervised approach by Gong et al.
learns preposition representations to encode the
syntactics and semantics by capturing their attach-
ment and complement properties. Distantly re-
lated is (Hashimoto and Tsuruoka, 2015), which
learns embeddings of prepositions acting as verb
adjuncts by the factorization of a predicate tensor.
Similarly, (Belinkov et al., 2014) explores the use
of preposition representations optimized for the
task of prepositional phrase attachment, but do not
analyze their sense-specificity.

Sense-specific Representations: Several prior
studies have sought polysemy-aware alternatives
to word representations that take into account the
context of the target word, including (Erk and
Padó, 2008; Mitchell and Lapata, 2008; Reisinger
and Mooney, 2010a; Thater et al., 2011; Dinu
et al., 2012). More recently polysemy disambigua-
tion for word embeddings have been proposed us-
ing external resources such as WordNet (Rothe
and Schütze, 2015) or in an unsupervised way (Mu
et al., 2017; Song et al., 2016; Arora et al., 2016;
Neelakantan et al., 2014) with the latter two limit-
ing the number of senses and validated for only
nouns and verbs. The approach of (Neelakan-
tan et al., 2014) is roughly similar to our baseline
method using the average context vector. Our un-
supervised approach is similar to that in (Reisinger
and Mooney, 2010a), but limited to prepositions
and uses novel features described next.
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3 Preposition Sense Disambiguation

The key intuition behind our sense disambiguation
approach is the modern descriptive linguistic view
(Huddleston, 1984; DeCarrico, 2000): the sense
of a preposition in any sentence is driven by both
its attachment and its complement; classical pre-
scriptive linguistics had focused only on the latter
(Beal, 2004), pp. 110, (Cobbett, 1823), pp. 16,
(Lowth, 1762), pp. 8, 91.

Referring again to the examples in Table 1 we
point out that italicized words determine the sense
of “with.” In the first sentence, the word ‘confu-
sion,’ appearing as the right context of the prepo-
sition, is the complement of ‘with’, from which
we infer that ‘with’ encodes the sense of ‘manner’.
In the second sentence, the accompanier sense of
‘with’ is because of its governor (attachment), the
verb ‘combine’ appearing in the left context. In
the last sentence, the sense of ‘with’ is ‘by means
of’ and is determined by both the verb in its left
context and the argument in its right context. Con-
sider a new sentence with changed right context:
‘He washed a small cup with a handle.’ Here
‘with’ functions as an attribute. Again, changing
its left context we get the sentence ‘He asked for
a small cup with water’, where ‘with’ serves as an
attribute instead of encoding the sense of means.

That the left and right context and their inter-
play are critical to prepositional sense disambigua-
tion is also well established in the literature (Hovy
et al., 2011; Litkowski and Hargraves, 2007). We
match these linguistic properties to appropriate ge-
ometric objects within the space of word embed-
dings; the word embeddings are borrowed off-the-
shelf – this work uses word2vec. We describe this
next, focusing first on the left context, next on the
right context and then on their interplay.
Left context feature v` is the average of the vec-
tors of the left k` words (here k` is a parameter
roughly taking values 1 through 4). This simple
geometric operation is motivated by recent works
(Faruqui et al., 2015; Kenter et al., 2016; Yu et al.,
2014) representing a sentence by the average of
its constituent words robustly and successfully in
a variety of downstream settings. Although prior
work (Hovy et al., 2010) points out that fixed win-
dow sizes are insufficient, when compared to us-
ing specific syntactic features (e.g., POS tags and
dependency as done in prior works), we will see
that the semantic information embedded in word
vectors largely compensates for this limitation.

Right context feature vr is the average of the vec-
tors of the right kr words (here kr is a parameter
roughly taking values 1 through 4). This is identi-
cal to the method adopted for the left context.
We model the Context-interplay feature vinter to
geometrically relate to both the left and the right
contexts as follows. We choose it to be the vector
closest to both the subspace spanned by the left
context word vectors and that spanned by the right
context word vectors. This geometric representa-
tion appears crucial to capture the prepositional-
sense when the interplay between the contexts
matters decisively, as seen empirically in our ex-
tensive experiments.

Let v`
i and vr

j be the left- and the right context
word vectors respectively. A precise mathematical
definition of vinter is below:

vinter = argmin
v:kvk2=1

( min
a1,...,ak`

kv �
kX̀

i=1

aiv
`
ik2

2

+ min
b1,...,bkr

kv �
krX

j=1

bjv
r
jk2

2 ) , (1)

where {ai}k`
i=1 and {bj}kr

j=1 are scalars. It is easy
to find optimal {a⇤

i } and {b⇤
j} to solve the inner

minimization problem. We have a⇤
i =

vT v`
i

kv`
i k2 , and

b⇤
j =

vT vr
j

kvr
j k2 .

The minimization problem (1) is a quadratic op-
timization problem, so we can find a closed form
solution to the unit vector vinter. Suppose that we
stack context word vectors {v`

i} and {vr
j} as a ma-

trix Vd⇥(k`+kr), where d is the dimension of word
vectors. The optimal d�dimension vector vinter is
the first principal component of matrix V .
Unsupervised learning of the senses of a given
preposition is conducted by clustering its in-
stances represented as a concatenation of the three
feature vectors, while harnessing the large number
of instances of each preposition in the large Wiki-
Corpus (here we fix k` = kr = 2 and use k-means
clustering). If the features do capture the prepo-
sitional sense efficiently, then the same-sense in-
stances belong to the same cluster. Based on this
intuition, we label each cluster with the dominant
label of the training instances within this cluster.
Given a test instance, we assign it to the nearest
cluster (based on its Euclidean distance), and tag
it with the cluster label. We note that the preposi-
tion senses are not balanced in the training dataset
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leading to a situation where frequent senses dom-
inate more than one cluster. We address this by
setting the number of clusters k equal to twice the
number of senses and find that it separates the in-
frequent senses from frequent ones, about as well
as traditional approaches such as those based on
information criteria (Sugar and James, 2003) and
the elbow method (Ketchen Jr and Shook, 1996).
Supervised learning of the senses using the three
feature vectors was conducted based on the train-
ing examples provided in the benchmark PSD
datasets. We did this using the standard sup-
port vector machines (SVM) (Cortes and Vap-
nik, 1995), multilayer perceptron (MLP) (Glorot
and Bengio, 2010) and weighted k-nearest neigh-
bor (k-NN) (Andoni and Indyk, 2006) classifiers.
Each of these allows potentially different weight-
ing of the three features in a context dependent
way. The parameters were tuned to maximize the
disambiguation accuracy on the development set
provided in the benchmark PSD datasets. These
experiments are discussed in detail next.

4 Experiments on Sense Disambiguation

The PSD algorithms were validated on the general
sense disambiguation task using two datasets pro-
vided by TPP. We begin by introducing two bench-
marks: SemEval and OEC datasets.
The SemEval Dataset consists of 34 prepositions
instantiated by 24, 663 sentences covering 332
senses. Among them, 16, 557 sentences are used
as training instances (semtrain) and 8096 sen-
tences are test instances (semtest) for the prepo-
sition disambiguation task.
The OEC dataset consists of 7, 650 sentences col-
lected from the Oxford English Corpus. Since
these sentences included more prepositions than
those in the SemEval dataset, we chose 3, 587 sen-
tences that included the same 34 prepositions as
used in the SemEval task.
Word embeddings. The word embeddings we
used in our experiments were trained on the most
recent scrape of the English Wikipedia with the
Word2Vec CBOW model (Mikolov et al., 2013),
with dimension 300. The linear combination of
three vectors v`, vr and vinter is the feature to k-
NN classifier.
Unsupervised PSD was performed by clustering
the training instances fom the SemEval dataset us-
ing k-means. In the evaluation phase, each test in-
stance was assigned to the closest cluster, and its

sense was the dominant training sense within this
cluster. In Table 2 we report the disambiguation
accuracy on semtest, a new state-of-the-art result.
Supervised PSD was conducted by first conduct-
ing a 80/20 split of semtrain into training and
development sets. The disambiguation accuracy
calculated on both semtest and OEC datasets is
reported in Table 3, using standard off-the-shelf
classifiers. The sense disambiguation can be re-
garded as a multi-class classification problem. We
used the SVM classifier with a linear kernel and
its penalty parameter C as a tunable parameter,
the MLP classifier with one hidden layer, and the
number of neurons as a tunable parameter, and the
k-NN classifier (weighted k-NN), with the num-
ber of nearest neighbors and the feature weights
as tunable parameters (a linear combination of the
three vectors v`, vr and vinter was the feature in-
put to the k-NN classifier); all tunable parameters
were tuned using the development set. The out-
put dimension of these classifiers was the number
of senses of prepositions. Additionally, the con-
text window sizes k` and kr were parameters for
all the three classifiers, each tuned on the develop-
ment set.
Baseline. Recent works have shown that the aver-
age word embedding serves as a good represen-
tation of the compositional sentential semantics
(Faruqui et al., 2015; Kenter et al., 2016; Yu et al.,
2014), and this single feature – the average of all
context word vectors (both to the left and the right)
– serves as a natural baseline.
Results. In both the unsupervised and supervised
disambiguation settings, the best performance is
achieved by using all three features, v`, vr and vi.

As summarized in Table 2, our unsupervised
method achieves a 2.4% improvement over state-
of-art (Hovy et al., 2011). The results in the su-
pervised setting, tabulated in Table 3, reveal that
the weighted k-NN classifier performs best. De-
noting left, right and interplay features by `, r, i
respectively, Table 2 and 3 report our experimen-
tal results using only subset combinations of these
features on the two disambiguation tasks.

An ablation analysis of the features reveals
that the context-interplay feature is most benefi-
cial when testing on the OEC dataset, but on the
SemEval dataset, the left context feature appears
to be the most beneficial. A likely explanation
to this behavior is that several instances in sem-
train and semtest share the governors the prepo-
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System State-of-art
(Hovy et al., 2011)

k-means clustering
average (`, r) (`, i) (r, i) (`, r, i)

Accuracy 0.56 0.555 0.561 0.565 0.534 0.584

Table 2: Performance of the unsupervised PSD compared with the state-of-the-art. (`, i), (`, r) and (r, i) corre-
spond to feature ablation results.

SemEval Dataset OEC Dataset
Feature Type average (`, r) (`, i) (r, i) (`, r, i) average (`, r) (`, i) (r, i) (`, r, i)

SVM 0.712 0.765 0.775 0.700 0.782 0.305 0.330 0.333 0.325 0.351
MLP 0.712 0.758 0.780 0.704 0.777 0.322 0.353 0.353 0.347 0.375

Weighted k-NN 0.731 0.781 0.792 0.733 0.804 0.329 0.341 0.380 0.367 0.400

Table 3: Supervised disambiguation on SemEval and OEC datasets.

sitions attach to. Hence the left feature (encod-
ing the governor information) helps disambigua-
tion on semtest. The governors and complements
in OEC instances differ from those in semtrain.
Therefore, the context-interplay feature provides
more general context information than provided
by the left and right context features by themselves
for sense disambiguation on the OEC dataset.

A side-by-side comparison of the performance
of our supervised approach with prior approaches
is shown in Table 4. We note that the accuracy of
our system is significantly better than that of the
best PSD system in SemEval 2007 (11% higher
accuracy), and 8% higher on the OEC dataset. It
is noteworthy that while (Litkowski, 2013) fared
better than our system with the SemEval data,
our system outperformed (Litkowski, 2013) on the
OEC dataset. Also we achieve performance com-
parable to the recent work (Gonen and Goldberg,
2016) which had access to a multilingual transla-
tion corpus (and other linguistic tools).

4.1 Spatial Expression Disambiguation

Prepositions such as ‘in’ and ‘on’ are used to en-
code spatial relations between the point of attach-
ment and the complement of the preposition, but
their senses show diversity depending on the con-
text. For example, ‘on’ refers to the support from
above in the sentence clothes on the rack, while
it refers to support from below in clothes on the
desk. These are instances of a phenomenon in
natural language in which the mere concatena-
tion of lexical information is not sufficient to de-
rive the meaning of the phrase but the interactions
among the meanings of the words is to be con-
sidered (termed compositional distributional se-
mantic models (Marelli et al., 2014; Ritter et al.,
2015)). We hypothesize that the relative place-
ment of the objects involved in these phrases is

achieved by considering the spatial senses of the
prepositions involved, which in turn, is done by
considering the interaction of its contexts as done
by our approach. For this study, we focus on the
disambiguation of the spatial senses encoded us-
ing the prepositions ‘in’ and ‘on’.
Dataset. (Ritter et al., 2015) studied ways of com-
bining the meanings of the words in context to ar-
rive at the meaning of the phrase which included
spatial expressions using the prepositions ‘in’ and
‘on’. Their dataset consists of 420 training ex-
amples and 80 test examples, covering 5 types
of locative expressions and given a sentence, the
task is to arrive at the kind of locative expres-
sion encoded by the preposition. As examples,
the preposition in refers to full containment in the
sentence “an apple in the refrigerator”, whereas
it refers to partial containment in “finger in the
ring”. Similarly, the spatial relations represented
by the preposition on is classified into three cate-
gories: adhesion to vertical surface (e.g., “sign on
the building”), support by horizontal surface (e.g.,
“leaf on the ground”) and support from above
(e.g., “bat on the branch”). A key observation here
is that the spatial sense of the preposition (equiv-
alently, spatial category) is a function of the two
objects connected by the preposition.
Task. Given a sentence, we need to classify each
occurrence of the preposition to its spatial cate-
gory; for our study this is a fine-grained intra-
preposition sense disambiguation problem (intra-
sense because the sense is one of the spatial
senses, albeit different from the TPP senses).
Method. The very small size of the training set in
this experiment calls for a reduction in the feature
dimension. Accordingly, we use a weighted linear
combination of the three features used in our PSD
algorithm and the resulting feature is v = v` +
�vr + �vinter.
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Dataset System Resources Accuracy

SemEval

Our system English corpus 0.804
(Litkowski, 2013) lemmatizer, dependency parser, WordNet 0.86

(Srikumar and Roth, 2013) dependency parser, WordNet 0.85

(Gonen and Goldberg, 2016) multilingual corpus, aligner,
dependency parser 0.81

(Ye and Baldwin, 2007) chunker, dependency parser,
named entity extractor, WordNet 0.69

OEC Our system English corpus 0.40
(Litkowski, 2013) lemmatizer, dependency parser, WordNet 0.32

Table 4: Preposition disambiguation performance comparison on SemEval and OEC datasets.

sense 1 2 3 4
closest
words

backwards, reverse, angles,
diagonal, between, forward

wearing, dress, hats, dresses,
trousers, sleeves, pants, jacket

back, inside, underneath,
from, into, where, onto

where, near, from, at,
southern, northern, during

example in all directions,
move in, differ in dress in black, in leather, in size in the mail in the UK, in Argentina

TPP
sense Manner or Degree VariableQuality ThingEntered ThingEnclosed

Table 5: Example senses of the preposition “in”.

Recall that the hyperparameters � and � of the
k-NN classifier on the PSD task were tuned on the
(mismatched) SemEval development set. We then
generated the weighted features v = v` + �vr +
�vinter using the tuned values of �, � from the PSD
task. Classification within the spatial sense disam-
biguation is now conducted using a Multi-Layer
Perceptron (MLP) with the feature vector v.
Baseline. The state-of-the-art method (Ritter
et al., 2015) used the inclusion of the left and the
right noun vectors as features, which is equivalent
to adding the left and the right context features
with a context window size of 1 in our set-up; this
serves as our baseline.

Our method achieves an accuracy of 77%, a sig-
nificant improvement over the baseline accuracy
of 71% in (Ritter et al., 2015). We note that this
improvement is achieved even though we tuned
the hyperparameters � and � on the mismatched
(but relatively bigger) SemEval dataset. To com-
plete the comparison, we found (via grid search)
that the best �, � values result in only a slightly
higher accuracy of 79%. This performance adds
credence to the conclusion that the geometric fea-
tures (v`, vr, vinter) do indeed represent the prepo-
sition in its context efficiently and accurately.

5 Preposition Sense Representation

Thus far, we have empirically validated our dis-
ambiguation algorithm on standardized, but still
stylized, datasets. A more thorough analysis is
enabled by conducting preposition sense disam-

biguation on a very large unlabeled corpus. Such
is the goal of this section, where we scale our
lightweight PSD algorithm on a large corpus and
learn sense-specific prepositional representations.
The quality of the representations serves as an “ex-
trinsic” evaluation of our PSD algorithm; this val-
idation is done by repurposing datasets meant for
other tasks.

Standard embedding methods do not account
for the inherent polysemy in words. This is exac-
erbated in the case of prepositions. Indeed, to the
best of our knowledge, no linguistic properties of
the standard embeddings (say, word2vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014))
are known for preposition vectors. Recent works
that learn sense-specific embeddings use the dis-
tinct “topics” assumed by the senses of a given
word (as in (Rothe and Schütze, 2015) that explic-
itly uses WordNet senses) and have only been val-
idated with respect to nouns and verbs.

Below, we validate the quality of the resulting
sense representations in two tasks, where prepo-
sitional senses play an important role: (a) phrasal
verb paraphrasing, and (b) preposition selection.

5.1 Phrasal Verb Paraphrasing
Prepositions often act as a connection between
verbs and complements, carrying nontrivial se-
mantic information. We used the trained k-NN
classifier on TPP senses to label the prepositions in
the English Wikipedia corpus, and learned sense-
specific embeddings. These sense-specific repre-
sentations are readily interpretable in terms of the
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extensive-resources of TPP. Table 5 shows several
senses of “in” together with their nearest neigh-
bors in the vector space.

Embedding Global Simplex Sense
Accuracy 0.44 0.44 0.73

Table 6: Accuracy on phrasal verbs paraphrasing.

To validate the sense-specific preposition rep-
resentation, we infer the meaning of verb-particle
construction (VPC), such as climb down with
sense embeddings. This is a lexical paraphrasing
task of finding one word that captures the meaning
of VPC (e.g., climb down = descend).
Dataset. Because a dataset for paraphrasing of
VPCs was not available, we created one (which
is made available in the supplementary material).
It consists of 91 phrasal verbs, extracted from
the VPC datasets in (Baldwin, 2005), (McCarthy
et al., 2003) and the online Oxford dictionary2.

For each VPC instance, we first disambiguated
the preposition sense in the given context using
the supervised method described in Section 3. We
consider a linear approximation of phrasal embed-
dings under three settings:
(1) Sense-specific embedding, approximating the
representation of a VPC as the sum of the vectors
of its verb and its preposition with a specific sense.
Thus we have vsense

vp = vverb + vsense
prep .

(2) Global embedding baseline: vglobal
vp = vverb +

vglobal
prep , where vglobal

prep is the global preposition em-
bedding disregarding its sense.
(3) Simplex embedding baseline approximates the
phrasal embedding to be just the verb embedding,
i.e., vsimplex

vp = vverb.
For each approximate phrasal embedding

(vsense
vp , vglobal

vp , vsimplex
vp ), we list the nearest three

verbs (excluding the verb in the phrase) as its para-
phrase, with the distance measured by the cosine
similarity between the word vectors.

Two proficient English speakers set the gold
standard for whether the paraphrase was valid or
not (for polysemous verbs, we consider the verb
to be a valid paraphrase if it conveys the meaning
in any of its senses) and reconciled disagreements.
We used accuracy as the evaluation metric, which
is the percent of phrasal verbs with a valid para-
phrase among candidates.
Results. We note that sense representations are
able to capture the nuance of polysemous verb

2https://en.oxforddictionaries.com

Figure 1: Paraphrasing polysemous verb phrases.

phrases. As is shown in Fig. 1, the phrase “fight
for” has more than one meaning depending on the
sense of its preposition. In the expression “fight
for human rights”, for carries the sense of purpose.
Since the expression is semantically equivalent to
“defend human rights”, “defend” can paraphrase
the phrase “fight for”. In another context “fight
for the prize” where for is related with benefits,
“fight for” should be paraphrased as “win” and the
expression “win the prize” is similar to “fight for
the prize”.

Some examples of phrasal verbs and para-
phrases are shown in Table 7, with valid para-
phrases highlighted. We report the performance of
different embeddings in Table 6, where we notice
that paraphrasing with the preposition sense em-
bedding has a much higher accuracy than the two
baselines. This validates the sense-specific prepo-
sition embedding suggesting its use in automatic
paraphrasing of VPCs. Examples of paraphrases
are shown in Table 7. A more detailed analysis of
the results are in the appendix.

5.2 Preposition Selection
Given the polysemous and idiosyncratic nature
of prepositions, choosing a preposition to fit a
context can be a particularly challenging task for
non-native English learners. Not surprisingly,
preposition errors constitute the largest category
of grammatical errors made by English learners
(Chodorow et al., 2007). In this work, we show
how the sense representations adequately capture
the prepositional semantics, thus aiding preposi-
tion selection. Since TPP senses are fine-grained,
we limit the senses available to be concrete or ab-
stract by conflating the TPP senses to one of these
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sentence phrasal verb paraphrasing
sense global simplex

The teaching is carried on in the form of folklore. carried on conducted laid placed
he brought in new ideas in the discussion. brought in introduced came came

She could not keep from crying. keep from avoid get maintain
Without a word he leaned forward and switched on the engine. switched on starting shifted reverted

I have certainly been kicked in the teeth by those bastards. kicked in knocked throw knocked
I have chosen to block off the easy track and so turn it into a dead end. block off stopped cleared cleared
The Rishon Le Zion killings sparked off a wave of sympathy protests. sparked off ensued spurred ignited

Stanley put down his paper and glared at her. put down laid slammed brought

Table 7: Paraphrasing of phrasal verbs.

two types (Reisinger and Mooney, 2010b). For ex-
ample, “in a room” stands for the concrete sense
of the preposition ‘in’, while “in her heart” corre-
sponds to the abstract sense. In this part, we con-
sider two senses for each preposition.

Dataset. We used three datasets, which consist
of sentences marked with grammatical corrections
out of which we only chose those with preposition
errors. The Cambridge First Certificate in English
(FCE) dataset contains 60, 279 prepositions with
4.8% error, the CoNLL dataset has 3, 241 prepo-
sitions with 4.7% errors and the Stack Exchange
(SE) dataset has 15, 814 prepositions with 38.2%
error (Prokofyev et al., 2014). Owing to its size,
the FCE dataset was used for training, and the
other two were used for testing. For each sentence
with a preposition the task is to replace it with the
correct one if it is used incorrectly.

Method. We classify all occurrences of each
preposition sense into the two senses (abstract
and concrete) by using the unsupervised PSD ap-
proach described in Section 4 to cluster the avail-
able senses. Then the prepositions in Wikipedia
are labeled with one of the two senses, again us-
ing the unsupervised PSD approach. We then train
sense embeddings on the newly labeled corpus
with word2vec.

For a given sentence in the preposition selection
task, we first disambiguate the sense of the prepo-
sition by checking which cluster it is closest to.
The selection task is divided into preposition er-
ror detection and error correction. At the detection
stage, we decide whether a preposition is used ap-
propriately in the sentence. For this, we use as fea-
tures the cosine similarity between the preposition
sense embedding and the average word embedding
in the context (the context size is 3), the rank of the
preposition among all preposition choices with re-
spect to the cosine similarity just mentioned, and
the probability that the current preposition is re-

placed estimated from the training corpus. A de-
cision tree classifier is used with these features to
identify preposition errors.

At the second stage, we replace the current
preposition p with another one if an error was de-
tected at the first stage. Suppose that we consider
replacing preposition p with q. We first disam-
biguate preposition q’s sense given the context.
We then use preposition q’s sense embedding, the
left context vector v`, the right context vector vr,
the interplay vector vinter and the probability that q
takes the place of p in the training corpus as input
features to a two-layer MLP with 500 and 10 units
in each layer. The MLP outputs a scalar to esti-
mate how well the preposition q fits in p’s context.
The preposition with highest score is selected as
the replacement.

Baseline. The state-of-the-art on preposition
selection is one of the baselines, which makes use
of lexical statistics from a large corpus as well as
part-of-speech tags (Prokofyev et al., 2014). Also
to evaluate the advantage of preposition sense rep-
resentation over word representation, we have an-
other baseline which uses the same classifier but
the input features are the word embeddings in-
stead of sense embeddings. The word embeddings
were trained on Wikipedia English corpus with
word2vec CBOW model.

Result. We compare the sense embedding-
based approach against baselines in Table 8.
As we can see, the use of sense representation
achieves comparable performance to the state-of-
the-art without using external linguistic tools. It
also outperforms the baseline with word represen-
tation by a large margin.

6 Discussion

Resource-independence: Previous approaches to
PSD relied on a part-of-speech tagger or depen-
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Dataset Method Precision Recall F1 score

CoNLL
State-of-the-art 0.259 0.361 0.302

Word representation 0.156 0.158 0.157
Sense representation 0.279 0.283 0.281

SE
State-of-the-art 0.270 0.296 0.282

Word representation 0.245 0.259 0.252
Sense representation 0.281 0.297 0.289

Table 8: Performance in preposition selection.

dency parser to extract words modified by and
modifying a preposition. In general, these words
occur in the preposition’s local context. We have
allowed the context window to be a tunable pa-
rameter so that the classifier can learn to cover
informative words in the context, and thus effec-
tively captures the dependency information in a
resource-independent fashion.
Context feature: The context averaging ap-
proach, which disregards context word order, suf-
fers in accuracy compared to models that use left
and right context words. This indicates that infor-
mation about the word order relative to the prepo-
sition is useful in preposition disambiguation. Ad-
ditionally, our use of the context-interplay fea-
ture combines the information on both sides of the
preposition to infer its underlying sense.

Suppose that three expressions a cup of
medicine, professor of humanity and professor of
mathematics are in the training corpus, and the
senses of the preposition of are ‘contents’, ‘pos-
sessor’ and ‘field’. Given a test instance profes-
sor of medicine, it would be hard for the method
with only the left or the right feature to decide
the preposition sense since the test instance has
the same word as each of the training instance,
and their features in these two baselines are simi-
lar. However, the interplay vector in professor of
medicine is closer to that in “professor of mathe-
matics” than to other two training instances. The
interplay feature prompts that of refers to a field
(or species) instead of contents or possessor.
Data-driven insights into context dependence:
Knowing the weights on the context features in the
k-NN supervised PSD classifier, we can infer the
extent to which prepositions rely on the comple-
ment and the attachment. For example, we found
that in the case of the prepositions behind (occur-
ring in, “shut behind her”, “dip behind clouds”),
to (e.g., “testify to the depth”, “mumbling to him-
self”), and with (e.g., “amalgamated with her old

school”, and “rub with bare hands”), the verbs
they attach to strongly influence their sense. For
other prepositions such as during (e.g., “during the
incident”) and on (e.g., “on his hands”), the com-
plement noun has more influence on the senses
than governors.
Sense helps paraphrasing: We observe that
sense-specific preposition representation helps im-
prove phrasal verb paraphrasing greatly. Working
with the VPC dataset and the simplistic model of
compositionality, we interpret the results as pos-
itive indicators of the viability of using sense-
specific prepositional embeddings to paraphrase
verb-particle constructions. In the case of light
verbs, whose meaning is determined largely by the
particles they combine with, (e.g., come down ⇠
fall), a valid paraphrase is found in the top 3 can-
didates when the sense-specific representation is
used, and not when the simplex or the global rep-
resentation is used.

7 Conclusion

This paper studies the preposition sense disam-
biguation by encoding the attachment and comple-
ment properties into context features. The disam-
biguation method performs well on three standard
PSD tasks and readily scales to a large corpus. The
resulting sense-specific representations are shown
to capture semantics of preposition senses in our
quantitative analysis. They are also shown to aid
two downstream tasks: phrasal verb paraphrasing
and preposition selection.
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Abstract

Monolingual dictionaries are widespread and
semantically rich resources. This paper
presents a simple model that learns to com-
pute word embeddings by processing dictio-
nary definitions and trying to reconstruct them.
It exploits the inherent recursivity of dictio-
naries by encouraging consistency between the
representations it uses as inputs and the repre-
sentations it produces as outputs. The result-
ing embeddings are shown to capture seman-
tic similarity better than regular distributional
methods and other dictionary-based methods.
In addition, the method shows strong perfor-
mance when trained exclusively on dictionary
data and generalizes in one shot.

1 Introduction

Dense, low-dimensional, real-valued vector repre-
sentations of words known as word embeddings
have proven very useful for NLP tasks (Turian
et al., 2010). They can be learned as a by-product
of solving a particular task (Collobert et al., 2011).
Alternatively, one can pretrain generic embed-
dings based on co-occurrence counts or using an
unsupervised criterion such as predicting nearby
words (Bengio et al., 2003; Mikolov et al., 2013).
These methods implicitly rely on the distributional
hypothesis (Harris, 1954; Sahlgren, 2008), which
states that words that occur in similar contexts tend
to have similar meanings.

It is common to study the relationships captured
by word representations in terms of either simi-
larity or relatedness (Hill et al., 2016). “Coffee”
is related to “cup” as coffee is a beverage often
drunk in a cup, but “coffee” is not similar to “cup”
in that coffee is a beverage and cup is a container.
Methods relying on the distributional hypothesis
often capture relatedness very well, reaching hu-
man performance, but fare worse in capturing sim-

ilarity and especially in distinguishing it from re-
latedness (Hill et al., 2016).

It is useful to specialize word embeddings to fo-
cus on either relation in order to improve perfor-
mance on specific downstream tasks. For instance,
Kiela et al. (2015) report that improvements on
relatedness benchmarks also yield improvements
on document classification. In the other direction,
embeddings learned by neural machine translation
models capture similarity better than distributional
unsupervised objectives (Hill et al., 2014).

There is a wealth of methods that postprocess
embeddings to improve or specialize them, such
as retrofitting (Faruqui et al., 2014). On similarity
benchmarks, they are able to reach correlation co-
efficients close to inter-annotator agreements. But
these methods rely on additional resources such
as paraphrase databases (Wieting et al., 2016) or
graphs of lexical relations such as synonymy, hy-
pernymy, and their converse (Mrkšić et al., 2017).

Rather than relying on such curated lexical re-
sources that are not readily available for the ma-
jority of languages, we propose a method capa-
ble of improving embeddings by leveraging the
more common resource of monolingual dictionar-
ies.1 Lexical databases such as WordNet (Fell-
baum, 1998) are often built from dictionary defi-
nitions, as was proposed earlier by Amsler (1980).
We propose to bypass the process of explicitly
building a lexical database – during which infor-
mation is structured but information is also lost –
and instead directly use its detailed source: dictio-
nary definitions. The goal is to obtain better rep-
resentations for more languages with less effort.

The ability to process new definitions is also de-
sirable for future natural language understanding
systems. In a dialogue, a human might want to ex-
plain a new term by explaining it in his own words,

1See Appendix A for a list of online monolingual dictio-
naries.
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and the chatbot should understand it. Similarly,
question-answering systems should also be able to
grasp definitions of technical terms that often oc-
cur in scientific writing.

We expect the embedding of a word to rep-
resent its meaning compactly. For interpretabil-
ity purposes, it would be desirable to be able to
generate a definition from that embedding, as a
way to verify what information it captured. Case
in point: to analyse word embeddings, Noraset
et al. (2017) used RNNs to produce definitions
from pretrained embeddings, manually annotated
the errors in the generated definitions, and found
out that more than half of the wrong definitions
fit either the antonyms of the defined words, their
hypernyms, or related but different words. This
points in the same direction as the results of in-
trinsic evaluations of word embeddings: lexical
relationships such as lexical entailment, similar-
ity and relatedness are conflated in these embed-
dings. It also suggests a new criterion for evalu-
ating word representations, or even learning them:
they should contain the necessary information to
reproduce their definition (to some degree). In this
work, we propose a simple model that exploits this
criterion. The model consists of a definition au-
toencoder: an LSTM processes the definition of a
word to yield its corresponding word embedding.
Given this embedding, the decoder attempts to re-
construct the bag-of-words representation of the
definition. Importantly, to address and leverage
the recursive nature of dictionaries – the fact that
words that are used inside a definition have their
own associated definition – we train this model
with a consistency penalty that ensures proxim-
ity of the embeddings produced by the LSTM and
those that are used by the LSTM.

Our approach is self-contained: it yields good
representations when trained on nothing but dic-
tionary data. Alternatively, it can also leverage
existing word embeddings and is then especially
apt at specializing them for the similarity relation.
Finally, it is also extremely data-efficient, as it per-
mits to create representations of new words in one
shot from a short definition.

2 Model

2.1 Setting and motivation
We suppose that we have access to a dictionary
that maps words to one or several definitions. Def-
initions themselves are sequences of words. Our

hidden states
of LSTM

definition

input 
embeddings

output 
embeddings

definition 
embedding

min  reconstruction 
error

min consistency 
penalty

simple
language 

model

provide evidence forprove:

Figure 1: Overview of the CPAE model.

training criterion is built on the following princi-
ple: we want the model to be able to recover the
definition from which the representation was built.
This objective should produce similar embeddings
for words which have similar definitions. Our hy-
pothesis is that this will help capture semantic sim-
ilarity, as opposed to relatedness. Reusing the pre-
vious example, “coffee” and “cup” should get dif-
ferent representations in virtue of having very dif-
ferent definitions, while “coffee” and “tea” should
get similar representations as they are both defined
as beverages and plants.

We chose to compute a single embedding per
word in order to avoid having to disambiguate
word senses. Indeed, word sense disambiguation
remains a challenging open problem with mixed
success on downstream task applications (Navigli,
2009). Also, recent papers have shown that a sin-
gle word vector can capture polysemy and that
having several vectors per word is not strictly nec-
essary (Li and Jurafsky, 2015) (Yaghoobzadeh and
Schütze, 2016). Thus, when a word has several
definitions, we concatenate them to produce a sin-
gle embedding.

2.2 Autoencoder model

Let VD be the set of all words that are used in
definitions and VK the set of all words that are
defined. We let w 2 VK be a word and Dw =
(Dw,1, . . . , Dw,T ) be its definition, where Dw,t is
the index of a word in vocabulary VD. We en-
code such a definition Dw by processing it with an
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LSTM (Hochreiter and Schmidhuber, 1997).
The LSTM is parameterized by ⌦ and a matrix

E of size |VD| ⇥ m, whose ith row Ei contains an
m-dimensional input embedding for the ith word
of VD. These input embeddings can either be
learned by the model or be fixed to a pretrained
embedding. The last hidden state computed by
this LSTM is then transformed linearly to yield an
m-dimensional definition embedding h. Thus the
encoder whose parameters are ✓ = {E, ⌦, W, b}
computes this embedding h as

h = f✓(Dw) = W LSTME,⌦(Dw) + b.

The subsequent decoder can be seen as a condi-
tional language model trained by maximum likeli-
hood to regenerate definition Dw given definition
embedding h = f✓(Dw). We use a simple con-
ditional unigram model with a linear parametriza-
tion ✓0 = {E0, b0} where E0 is a |VD| ⇥ m matrix
and b0 is a bias vector. 2

We maximize the log-probability of definition
Dw under that model:

log p✓0(Dw|h) =
X

t

log p✓0(Dw,t|h)

=
X

t

log
e

D
E0

Dw,t
,h

E
+b0

Dw,t

P
k ehE0

k,hi+b0

k

(1)

where h, i denotes an ordinary dot product. We call
E0 the output embedding matrix. The basic au-
toencoder training objective to minimize over the
dictionary can then be formulated as

Jr(✓
0, ✓) = �

X

w2VK

log p✓0(Dw|f✓(Dw)).

2.3 Consistency penalty
We introduced 3 different embeddings: a) defini-
tion embeddings h, produced by the definition en-
coder, are the embeddings we are ultimately in-
terested in computing; b) input embeddings E are
used by the encoder as inputs; c) output embed-
dings E0 are compared to definition embeddings
to yield a probability distribution over the words
in the definition. We propose a soft weight-tying

2We have tried using a LSTM decoder but it didn’t yield
good representations. It might overfit because the set of dic-
tionary definitions is small. Also, using teacher forcing, we
condition on ground-truth words, making it easier to predict
the next words. More work is needed to address these issues.

scheme that brings the input embeddings closer
to the definition embeddings. We call this term
a consistency penalty because its goal is to to en-
sure that the embeddings used by the encoder (in-
put embeddings) and the embeddings produced by
the encoder (definition embeddings) are consistent
with each other. It is implemented as

Jp(✓) =
X

w2VD\VK

d(Ew, f✓(Dw))

where d is a distance. In our experiments, we
choose d to be the Euclidian distance. The penalty
is only applied to some words because VD 6= VK.
Indeed, some words are defined but are not used in
definitions and some words are used in definitions
but not defined. In particular, inflected words are
not defined. To balance the two terms, we intro-
duce two hyperparameters �, ↵ � 0 and the com-
plete objective is

J(✓0, ✓) = ↵Jr(✓
0, ✓) + �Jp(✓).

We call the model CPAE, for Consistency Pe-
nalized AutoEncoder when ↵ > 0 and � > 0 (see
Figure 1).3

The consistency penalty is a cheap proxy for
dealing with the circularity found in dictionary
definitions. We want the embeddings of the words
in definitions to be compositionally built from
their definition as well. The recursive process of
fetching definitions of words in definitions does
not terminate, because all words are defined using
other words. To counter that, our model uses input
embeddings that are brought closer to definition
embeddings and vice versa in an asynchronous
manner.

Moreover, if � is chosen large enough, then
Ew ⇡ f✓(Dw) after optimisation. This means that
the definition embedding for w is close enough
to the corresponding input embedding to be used
by the encoder for producing other definition em-
beddings for other words. In that case, the model
could enrich its vocabulary by computing embed-
dings for new words and consistently reusing them
as inputs for defining other words.

Finally, the consistency penalty can be used to
leverage pretrained embeddings and bootstrap the
learning process. For that purpose, the encoder’s
input embeddings E can be fixed to pretrained em-
beddings. These provide targets to the encoder but

3Our implementation is available at
https://github.com/tombosc/cpae
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also helps the encoder to produce better definition
embeddings in virtue of using input embeddings
that already contain meaningful information.

To summarize, the consistency penalty has sev-
eral motivations. Firstly, it deals with the fact that
the recursive process of building representation of
words out of definitions does not terminate. Sec-
ondly, it is a way to enrich the vocabulary with
new words dynamically. Finally, it is a way to in-
tegrate prior knowledge in the form of pretrained
embeddings.

In order to study the two terms of the objec-
tive in isolation, we introduce two special cases.
When � = 0 and ↵ > 0, the model reduces to AE
for Autoencoder. When ↵ = 0 and � > 0, we
retrieve Hill’s model, as presented by Hill et al.
(2015).4 Hill’s model is simply a recurrent en-
coder that uses pretrained embeddings as targets
so it only makes sense in the case we use fixed
pretrained embeddings.

3 Related work

3.1 Extracting lexical knowledge from
dictionaries

There is a long history of attempts to extract and
structure the knowledge contained in dictionaries.
Amsler (1980) studies the possibility of automat-
ically building taxonomies out of dictionaries, re-
lying on the syntactic and lexical regularities that
definitions display. One relation is particularly
straightforward to identify: it is the is a relation
that translates to hypernymy. Dictionary defini-
tions often contain a genus which is the hyper-
nym of the defined word, as well as a differentia
which differentiates the hypernym from the de-
fined word. For example, the word “hostage” is
defined as “a prisoner who is held by one party
to insure that another party will meet specified
terms”, where “prisoner” is the genus and the rest
is the differentia.

To extract such relations, early works by
Chodorow et al. (1985) and Calzolari (1984) use
string matching heuristics. Binot and Jensen
(1987) operate at the syntactic parse level to detect

4It is not exactly their model as we use Euclidian dis-
tance instead of the cosine distance or the ranking loss. They
also explore several variants where the input embeddings are
learned, which we didn’t find to produce any improvement.
We haven’t experimented with the ranking loss, but the cosine
distance does not seem to improve over Euclidian. Finally,
they also use a simple encoder that averages word vectors,
which we found to be inferior.

these relations. Whether based on the string rep-
resentation or the parse tree of a definition, these
rule-based systems have helped to create large lex-
ical databases. We aim to reduce the manual labor
involved in designing the rules and directly obtain-
ing representations from raw definitions.

3.2 Improving word embeddings using
lexical resources

Postprocessing methods for word embeddings use
lexical resources to improve already trained word
embeddings irrespective of how they were ob-
tained. When it is used with fixed pretrained em-
beddings, our method can be seen as a postpro-
cessing method.

Postprocessing methods typically have two
terms for trading off conservation of distributional
information that is brought by the original vec-
tors with the new information from lexical re-
sources. There are two main ways to preserve dis-
tributional information: Attract-Repel (Vulić and
Mrkšić, 2017), retrofitting (Mrkšić et al., 2017)
and our method control the distance between the
original vector and the postprocessed vector so
that the new vector does not drift too far away from
the original vector. Counter-Fitting (Mrkšić et al.,
2016) and dict2vec (Tissier et al., 2017) ensure
that the neighbourhood of a vector in the original
space is roughly the same as the neighbourhood in
the new space.

Finally, methods differ by the nature of the
lexical resources they use. To our knowledge,
dict2vec is the only technique that uses dictio-
naries. Other postprocessing methods use vari-
ous data from WordNet: sets of synonyms and
sometimes antonyms, hypernyms, and hyponyms.
For instance, Lexical Entailment Attract-Repel
(LEAR) uses all of these (Vulić and Mrkšić, 2017).
Other methods rely on paraphrase databases (Wi-
eting et al., 2016).

3.3 Dictionaries and word embeddings
We now turn to the most relevant works that in-
volve dictionaries and word embeddings.

Dict2vec (Tissier et al., 2017) combines the
word2vec skip-gram objective (predicting all the
words that appear in the context of a target word)
with a cost for predicting related words. These re-
lated words either form strong pairs or weak pairs
with the target word. Strong pairs have a greater
influence in the cost. They are pairs of words that
are in the neighbourhood of the target word in the
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original embedding, as well as pairs of words for
which the definitions make reference to each other.
Weak pairs are pairs of words where only one
word appears in the definition of the other. Un-
like dict2vec, our method can be used as either a
standalone or a postprocessing method (when used
with pretrained embeddings). It also focuses on
handling and leveraging the recursivity found in
dictionary definitions with the consistency penalty
whereas dict2vec ignores this aspect of the struc-
ture of dictionaries.

Besides dict2vec, Hill et al. (2015) train neu-
ral language models to predict a pretrained word
embedding given a definition. Their goal was
to learn a general-purpose sentence encoder use-
ful for downstream tasks. Noraset et al. (2017)
propose the task of generating definitions based
on word embeddings for interpretability purposes.
Our model unifies these two approaches into an
autoencoder. However, we have a different goal:
that of creating or improving word representa-
tions. Their methods assume that pretrained em-
beddings are available to provide either targets or
inputs, whereas our model is unsupervised, and
the use of pretrained embeddings is optional.

Bahdanau et al. (2017) present a related model
that produces embeddings from definitions such
that it improves performance on a downstream
task. By contrast our approach is used either
stand-alone or as as a postprocessing step, to pro-
duce general-purpose embeddings at a lesser com-
putational cost. The core novelty is the way we
leverage the recursive structure of dictionaries.

Finally, Herbelot and Baroni (2017) also aim at
learning representations for word embeddings in
a few shots. The method consists of fine-tuning
word2vec hyperparameters and can learn in one or
several passes, but it is not specifically designed to
handle dictionary definitions.

4 Experiments

4.1 Setup
We experiment on English to benefit from the
many evaluation benchmarks available. The dic-
tionary we use is that of WordNet (Fellbaum,
1998). WordNet contains graphs of linguistic re-
lations such as synonymy, antonymy, hyponymy,
etc. but also definitions. We emphasize that our
method trains exclusively on the definitions and is
thus applicable to any electronic dictionary.

However, in order to evaluate the quality of em-

beddings on unseen definitions, WordNet relations
comes in handy: we use the sets of synonyms to
split the dictionary into a train set and a test set,
as explained in Section 7. Moreover, WordNet has
a wide coverage and high quality, so we do not
need to aggregate several dictionaries as done by
Tissier et al. (2017). Finally, WordNet is explic-
itly made available for research purposes, there-
fore we avoid technical and legal difficulties asso-
ciated with crawling proprietary online dictionar-
ies.

We do not include part of speech tags that go
with definitions. WordNet does not contain func-
tion words but contains homonyms of function
words. We filter these out.

4.2 Similarity and relatedness benchmarks

Evaluating the learned representations is a com-
plex issue (Faruqui et al., 2016). Indeed, different
evaluation methods yield different rankings of em-
beddings: there is no single embedding that out-
performs others on all tasks (Schnabel et al., 2015)
and thus no single best evaluation method.

We focus on intrinsic evaluation methods. In
particular, we study how different models trade
off similarity and relatedness. We use benchmarks
which consist of pairs of words scored according
to some criteria. They vary in terms of annotation
guidelines, number of annotators, selection of the
words, etc. To evaluate our embeddings, we score
each pair by computing the cosine similarity be-
tween the corresponding word vectors. Then the
predicted scores and the ground truth are ranked
and the correlation between the ranks is measured
by Spearman’s ⇢. We leave aside analogy predic-
tion benchmarks as they suffer from many prob-
lems (Linzen, 2016; Rogers et al., 2017).

We adopt one of the methods proposed by
Faruqui et al. (2016) and use separate datasets for
model selection. We choose the development set
to be the development set of SimVerb3500 (Gerz
et al., 2016) and MEN (Bruni et al., 2014), the only
benchmarks with a standard train/test split.

We justified our emphasis on the similarity re-
lation in Section 1: capturing this relation remains
a challenge, and we hypothesize that dictionary
data should improve representations in that re-
spect. The model selection procedure reflects that
we want embeddings specialized in similarity. To
do that, we set the validation loss as a weighted
mean which weights SimVerb twice as MEN.
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4.3 Baselines

The objective function presented in section 2 gives
us 3 different models: CPAE, AE, and Hill’s
model. The objective of CPAE comprises the sum
of the objective of Hill’s model and of AE. We
compare the CPAE model to both of these to eval-
uate the individual contribution of the two terms to
the performance. In addition, when we use exter-
nal corpora to pretrain embeddings, we compare
these models to dict2vec and retrofitting. The hy-
perparameter search is described in Appendix C.

The test benchmarks for the similarity relation
includes SimLex999 (Hill et al., 2016) and more
particularly SimLex333, a challenging subset of
SimLex999 which contains only highly related
pairs but in which similarity scores vary a lot.
For relatedness, we use MEN (Bruni et al., 2014),
RG (Rubenstein and Goodenough, 1965), WS353
(Finkelstein et al., 2001), SCWS (Huang et al.,
2012), and MTurk (Radinsky et al., 2011; Halawi
et al., 2012). The evaluation is carried out by a
modified version of the Word Embeddings Bench-
marks project.5 Conveniently, all these bench-
marks contain mostly lemmas, so we do not suffer
too much from the problem of missing words.6

5 Results in the dictionary-only setting

In the first evaluation round, we train models only
using a single monolingual dictionary. This allows
us to check our hypothesis that dictionaries con-
tain information for capturing the similarity rela-
tion between words.

Our baselines are regular distributional mod-
els: GloVe (Pennington et al., 2014) and word2vec
(Mikolov et al., 2013). They are trained on the
concatenation of defined words with their defini-
tions.

Such a formatting introduces spurious co-
occurrences that do not otherwise appear in free
text. But these baselines are not designed for
dictionaries and cannot deal with their particular
structure.

We compare these models to the autoencoder
model without (AE) and with (CPAE) the consis-
tency penalty. In this setting, we cannot use Hill’s

5Original project available at
https://github.com/kudkudak/
word-embeddings-benchmarks, modified version
distributed with our code.

6Missing words are not removed from the dataset, but they
are assigned a null vector.

model as it requires pretrained embeddings as tar-
gets. We also trained an additional CPAE model
with pretrained word2vec embeddings trained on
the concatenated definitions. The results are pre-
sented in Table 1.

GloVe is outperformed by word2vec by a large
margin so we ignore this model in later experi-
ments. Word2vec captures more relatedness than
CPAE (+10.7 on MEN-t, +13.5 on MT, +13.2 on
WS353) but less similarity than CPAE. The differ-
ence in the nature of the relations captured is ex-
emplified by the scores on SimLex333. This sub-
set of SimLex999 focuses on pairs of words that
are very related but that can be either similar or
dissimilar. On this subset, CPAE fares better than
word2vec (+13.1).

The consistency penalty improves performance
on every dataset. This penalty provides targets
to the encoder, but these targets are themselves
learned and change during the learning process.
The exact dynamics of the system are unknown. It
can be seen as a regularizer because it puts strong
weight-sharing constraints on both types of em-
beddings. It also resembles bootstrapping in re-
inforcement learning, which consists of building
estimates of values functions on top of over esti-
mates (Sutton and Barto, 1998).

The last model is the CPAE model that uses
the word2vec embeddings pretrained on the dic-
tionary data. This combination not only equals
other models on some benchmarks but outper-
forms them, sometimes by a large margin (+6.3
on SimLex999 and +7.5 on SimVerb3500 com-
pared to CPAE, +6.1 on SCWS, +5.4 on MT
compared to word2vec). Thus, the two kinds of
algorithms are complementary through the differ-
ent relationships that they capture best. The pre-
training helps in two different ways, by providing
quality input embeddings and targets to the en-
coder. The pretrained word2vec targets are already
remarkably good. That is why the chosen con-
sistency penalty coefficient selected is very high
(� = 64). The model can pay a small cost and
deviate from the targets in order to encode infor-
mation about the definitions.

To sum up, dictionary data contains a lot of
data relevant to modeling the similarity relation-
ship. Autoencoder based models learn different
relationships than regular distributional methods.
The consistency penalty is a very helpful prior and
regularizer for dictionary data, as it always helps,
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Development Similarity Relatedness
SV-d MENd SL999 SL333 SV-t RG SCWS MENt MT 353

GloVe 12.0 54.8 19.8 -9.1 7.8 57.5 46.8 57.0 49.4 44.4
word2vec 35.2 62.3 34.5 16.0 36.4 65.7 54.5 59.9 56.1 61.9
AE 34.9 42.7 35.6 26.8 32.5 64.8 50.2 42.2 38.6 41.4
CPAE (� = 8) 42.8 48.5 39.5 29.1 34.8 67.1 54.3 49.2 42.6 48.7
CPAE-P (� = 64) 44.1 65.1 45.8 30.9 42.3 72.0 60.4 63.8 61.5 61.3

Table 1: Positive effect of the consistency penalty and word2vec pretraining. Spearman’s correlation coefficient
⇢ ⇥ 100 on benchmarks. Without pretraining, autoencoders (AE and CPAE) improve on similarity benchmarks
while capturing less relatedness than distributional methods. The consistency penalty (CPAE) helps even without
pretrained targets. Our method, combined with pretrained embeddings on the same dictionary data (CPAE-P),
significantly improves on every benchmark.

regardless of what relationship we focus on. Fi-
nally, our model can drastically improve embed-
dings that were trained on the same data but with
a different algorithm.

6 Improving pretrained embeddings

We have seen that CPAE with pretraining is very
efficient. But does this result generalizes to other
kind of pretraining data? To answer this ques-
tion, we experiment using embeddings pretrained
on the first 50 million tokens of a Wikipedia dump,
as well as the entire Wikipedia dump. We com-
pare our method to existing postprocessing meth-
ods such as dict2vec and retrofitting, which also
aims at improving embeddings with external lexi-
cal resources.

Retrofitting, which operates on graphs, is not
tailored for dictionary data, which consists in pairs
of words along with their definitions. We build a
graph where nodes are words and edges between
nodes correspond to the presence of one of the
words into the definition of another. Obviously,
we lose word order in the process.

The results for the small corpus are presented
in Table 2. By comparing Table 2 with Table
1, we see that word2vec does worse on similar-
ity than when trained on dictionary data, but bet-
ter on relatedness. Both dict2vec and retrofitting
improve with regards to word2vec on similarity
benchmarks and seem roughly on par. However,
dict2vec fails to improve on relatedness bench-
marks, whereas retrofitting sometimes improves
(as in RG, MEN, and MT), sometimes equals
(SCWS) and does worse (353).

We do an ablation study by comparing Hill’s
model and AE with CPAE. Recall that Hill’s
model lacks the reconstruction cost while AE
lacks the consistency penalty. Firstly, CPAE al-

ways improves over AE. Thus, we confirm the re-
sults of the previous section on the importance of
the consistency penalty. In that setting, it is more
obvious why this penalty helps, as it now pro-
vides pretrained targets to the encoder. Secondly,
CPAE improves over Hill on all similarity bench-
marks by a large margin (+12.2 on SL999, +13.7
on SL333, +16.1 on SV3500). It is sometimes
slightly worse on relatedness benchmarks (�3.3
on MEN-t, �5.6 on MT), other times better or
equal. We conclude that both terms of the CPAE
objective matter.

We see identical trends when using the full
Wikipedia dump. As expected, CPAE can still
improve over even higher quality embeddings by
roughly the same margins. The results are pre-
sented in Appendix D.

Remarkably, the best model among all our ex-
periments is CPAE in Table 1 and uses only the
dictionary data. This supports our hypothesis
that dictionaries contain similarity-specific infor-
mation.

7 Generalisation on unseen definitions

A model that uses definitions to produce word
representations is appealing because it could be
extremely data-efficient. Unlike regular distribu-
tional methods which iteratively refine their repre-
sentation as occurrences accumulate, such a model
could output a representation in one shot. We now
evaluate CPAE in a setting where some definitions
are not seen during training.

The dictionary is split into train, validation (for
early stopping) and test splits. The algorithm for
splitting the dictionary puts words in batches. It
ensures two things: firstly, that words which share
at least one definition are in the same batch, and
secondly, that each word in a batch is associated
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Development Similarity Relatedness
SV-d MEN-d SL999 SL333 SV-t RG SCWS MEN-t MT 353

word2vec 21.7 71.1 33.2 6.9 21.2 68.5 65.8 71.5 61.1 65.3
retrofitting 28.5 71.6 36.9 14.1 26.1 78.9 65.7 74.4 62.8 60.7
dict2vec 26.3 63.5 36.2 15.5 22.0 69.2 63.8 63.9 54.9 60.8
Hill 26.9 63.3 27.7 12.9 21.7 72.9 58.4 64.1 54.0 52.3
AE 33.5 47.0 33.1 20.4 32.5 66.0 52.0 46.4 40.2 43.7
CPAE (� = 4) 39.5 60.8 39.9 26.6 37.8 69.7 59.2 60.8 48.4 55.6

Table 2: Improving pretrained embeddings computed on a small corpus. Spearman’s correlation coefficient
⇢ ⇥ 100 on benchmarks. All methods use pretrained embeddings. All methods (except maybe Hill) manage
to improve the embeddings. Retrofitting outperforms dict2vec and efficiently specializes for relatedness. CPAE
outperforms AE and allows to trade off relatedness for similarity.

Similarity Relatedness
999 333 SV-t 353 MEN SCWS MT

All 36.5 27.7 36.9 43.7 48.8 53.2 41.5
Train 40.0 28.5 36.7 46.9 53.4 57.1 42.9
Test 27.5 25.4 38.5 42.5 44.1 40.3 39.1

Table 3: One pass generalisation. Spearman’s correlation coefficient ⇢⇥100 on benchmarks. The model is CPAE
(without pretrained embeddings). All: all pairs in the benchmarks. Train: pairs for which both words are in the
training or validation set. Test: pairs which contain at least one word in the test set. Correlation is lower for test
pairs but remains strong (⇢ > 0.3): the model has good generalisation abilities.

with all its definitions. We can then group batches
to build the training and the test sets such that the
test set does not contain synonyms of words from
the other sets. We sort the batches by the num-
ber of distinct definitions they contain. We use
the largest batch returned by the algorithm as the
training set: it contains mostly frequent and pol-
ysemous words. The validation and the test sets,
on the contrary, contain many multiword expres-
sions, proper nouns, and rarer words. More details
are given in Appendix B.1.

We train CPAE only on the train split of the
dictionary, with randomly initialized input embed-
dings. Table 3 presents the same correlation co-
efficients as in the previous tables but also dis-
tinguishes between two subsets of the pairs: the
pairs for which all the definitions were seen during
training (train) and the pairs for which at least one
word was defined in the test set (test). Unfortu-
nately, there are not enough pairs of words which
both appear in the test set to be able to compute
significant correlations. On small-sized bench-
marks, correlation coefficients are sometimes not
significant so we do not report them (when p-value
> 0.01).

The scores of CPAE on the test pairs are quite
correlated with the ground truth: except on Sim-
Lex999 and SCWS, there is no drop in correlation

coefficients between the two sets. The scores of
Hill’s model follow similar trends, but are lower
on every benchmark so we do not report them.
This shows that recurrent encoders are able to
generalize and produce coherent embeddings as a
function of other embeddings in one pass.

8 Conclusion and future work

We have focused on capturing the similarity rela-
tion. It is a challenging task which we have pro-
posed to solve using dictionaries, as definitions
seem to encode the relevant kind of information.

We have presented an alternative for learning
word embeddings that uses dictionary definitions.
As a definition autoencoder, our approach is self-
contained, but it can alternatively be used to im-
prove pretrained embeddings, and includes Hill’s
model (Hill et al., 2015) as a special case.

In addition, our model leverages the inherent re-
cursivity of dictionaries via a consistency penalty,
which yields significant improvements over the
vanilla autoencoder.

Our method outperforms dict2vec and
retrofitting on similarity benchmarks by a
quite large margin. Unlike dict2vec, our method
can be used as a postprocessing method which
does not require going through the original

1529



pretraining corpus, it has fewer hyperparameters,
and it generalises to new words.

We see several directions for future work.
Firstly, more work is needed to evaluate the rep-

resentations on other languages and tasks.
Secondly, solving downstream tasks requires

representations for the inflected words as well. We
have set aside this issue by focusing on bench-
marks involving lemmas. To address it in future
work, we might want to split word representa-
tions into a lexical and a morphological part. With
such a split representation, we could postprocess
only the lexical component, and all the words,
whether inflected or not, would benefit from this.
This seems desirable for postprocessing methods
in general and would make them more suitable for
synthetic languages.

Thirdly, dictionary defines every sense of
words, so we could produce one embedding per
sense (Chen et al., 2014) (Iacobacci et al., 2015).
This requires potentially complicated modifica-
tions to our model as we would need to disam-
biguate senses inside each definition. However,
some class of words might benefit a lot from such
representations, for example words that can be
used as different parts of speech.

Lastly, a more speculative direction could be
to study iterative constructions of the set of em-
beddings. As our algorithm can generalize in one
shot, we could start the training with a small set of
words and their definitions and iteratively broaden
the vocabulary and refine the representations with-
out retraining the model. This could be useful in
discovering a set of semantic primes from which
one can define all the other words (Wierzbicka,
1996).
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Abstract

We propose Odd-Man-Out, a novel task which
aims to test different properties of word repre-
sentations. An Odd-Man-Out puzzle is com-
posed of 5 (or more) words, and requires the
system to choose the one which does not be-
long with the others. We show that this simple
setup is capable of teasing out various proper-
ties of different popular lexical resources (like
WordNet and pre-trained word embeddings),
while being intuitive enough to annotate on a
large scale. In addition, we propose a novel
technique for training multi-prototype word
representations, based on unsupervised clus-
tering of ELMo embeddings, and show that it
surpasses all other representations on all Odd-
Man-Out collections.

1 Introduction

Correctly disambiguating the sense of a polyse-
mous word (e.g., “spring is a beautiful season”
versus “John was ready to spring into action”) is
a crucial part of various NLP tasks, such as trans-
lation, question answering, or textual entailment.
The state-of-the-art, and the de-facto common
practice for essentially all of these tasks, involves
neural networks (see (Goldberg, 2015) for a recent
survey), which are commonly initialized with pre-
trained word vectors, such as Word2Vec (Mikolov
et al., 2013a) or GloVe (Pennington et al., 2014).

These widely-used representations often signif-
icantly improve performance in downstream tasks,
as they are able to leverage large amounts of un-
structured data. However, most of the popular
collections of word embeddings assign only one
vector to each word, thus shifting the burden of
word disambiguation to deeper, task-specific lay-
ers, which commonly rely on data of much smaller
scales.

While there has been a significant body of work
around sense embeddings (i.e., embedding senses,

instead of lexical units), evaluating such repre-
sentations remains the subject of debate (Faruqui
et al., 2016; Gladkova and Drozd, 2016).

In this work, we propose a new evaluation task
called Odd-Man-Out. The goal of an Odd-Man-
Out puzzle is simple. Given a set of words1 like
cherry, orange, apple, grass, grape, the objec-
tive is to identify the word that does not belong
(here, the answer is grass, because it is not a
fruit). While there are often multiple relationships
among the words, we will show that non-experts
typically agree on the odd-man-out, and are able
to generate hard puzzles on a large scale, using a
novel crowdsourcing protocol.

Following the creation of this large test set,
we conduct a thorough analysis of the ability of
various lexical resources to correctly solve the
task. In doing so, we embrace the suggestion of
Gladkova and Drozd (2016), which argue for “a
shift from absolute ratings of word embeddings
towards more exploratory evaluations that would
aim not for generic scores, but for identification
of strengths and weaknesses of embeddings”, and
conduct rigorous analysis of each representation.
Overall, we find that all lexical resources are prone
to miss associations which are intuitive for hu-
mans, leaving ample room for future improve-
ment. Moreover, we show empirical evidence that
lexical resources that do not account for polysemy
are handicapped by this weakness.

Finally, we propose a new sense embedding
technique, which leverages the recent introduction
of ELMo embeddings (Peters et al., 2018) by per-
forming unsupervised clustering over a large un-
structured corpus. We show that this new resource
surpasses all other baselines on various Odd-Man-
Out datasets.

1In this paper, we use the term “word” loosely to also
include the multi-word expressions like “fire engine” and
“magnifying glass.”
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We make all our code and models publicly
available.2

2 Existing Evaluation Methods

In this section, we briefly survey some existing
evaluation methods for lexical resources, and dis-
cuss their pros and cons.

2.1 Word Similarity
The word similarity task (Rubenstein and Goode-
nough, 1965) has been a dominant approach to as-
sess word vector quality. In this task, systems are
required to score the similarity of two words on
a numeric scale, sometimes without context and
sometimes in a sentential context (Huang et al.,
2012). For instance, the pair (tiger, mammal) has
a similarity score of 6.85 (out of 10) on the Word-
Sim dataset (Finkelstein et al., 2001).

A common criticism (Faruqui et al., 2016; Glad-
kova and Drozd, 2016) of the word similarity task
is that “similarity” is subjective, and conflates
several different potential relationships between
words. For instance, (Faruqui et al., 2016) ques-
tions why the pair (cup, coffee) should be consid-
ered more similar than (car, train), as it is accord-
ing to the WordSim dataset.

Odd-man-out puzzles naturally disambiguate
the nebulous concept of “similarity”, because each
puzzle implicitly defines a specific relationship.
The words “car” and “train” may be similar, but
this similarity is irrelevant is the context of a puz-
zle like car, train, checkered flag, racetrack, pit
stop.

2.2 Analogies
Analogies like “king is to queen as man is to...”
(Mikolov et al., 2013b; Jurgens et al., 2012) are
related to the odd-man-out task. Analogies, how-
ever, are best suited to particular relationships,
such as hypernym→ hyponym (which are the sub-
ject of extensive research, e.g., (Shwartz et al.,
2016)), while odd-man-out puzzles can capture
a broader range of associations (see for instance,
the auto-racing puzzle from the previous section).
Analogies are also more subject to ambiguity,
since the premise can involve only two words. For
instance, the puzzle “cherry is to strawberry as
grass is to...” could refer to the fact that cherry and
strawberry are both fruits, both red, or both red

2https://github.com/gabrielStanovsky/
odd-man-out

fruits. Odd-man-out puzzles provide a simple way
of reducing ambiguity: adding more choices to the
puzzle.

2.3 Word Sense Disambiguation and
Induction

Word sense disambiguation (Navigli, 2009) is a
popular way to evaluate polysemous word rep-
resentations. The common criticism is that sys-
tems are rewarded based on their ability to classify
words according to a fixed inventory of senses,
whose granularity is regarded by some as too
coarse and others as too fine. An alternative is
word sense induction (Manandhar et al., 2010),
which allows systems to cluster word senses with-
out an agreed-upon sense inventory. However,
there is not an obvious evaluation metric. The two
metrics used in SemEval 2010 Task 14 (Manand-
har et al., 2010) yielded highly divergent system
rankings.

2.4 Word Context Relevance
A recent evaluation method is Word Context Rel-
evance (Arora et al., 2016; Sun et al., 2017a).
The task is to identify whether a particular bag of
words is “relevant” to a target word. For instance,
“tie” is considered relevant to the bag “winner,
score, tied, completion, identical, results, sports,”
but irrelevant to the bag “domestic, hog, pig, culi-
nary, eaten, cooked, fat”. This task has the attrac-
tiveness of being a simple binary evaluation, but
demands only that a model can identify a broad
sense of relatedness, not the ability to pinpoint
specific relationships.

2.5 Lexical Substitution
Lexical substitution tasks (McCarthy and Navigli,
2007; Biemann, 2013; Kremer et al., 2014), in
which the task is to determine whether one word
can replace another word in a particular context,
are effective, but are restricted in the kind of rela-
tionships they can test (mainly synonymy).

3 Odd Man Out Datasets

In this section, we describe the creation of several
Odd-Man-Out datasets. We begin by describing
a small-scale, curated annotation, then show how
to scale the annotation using crowdsourcing tech-
niques. In the subsequent sections, we use these
datasets to explore the properties of a wide array
of lexical resources.
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3.1 Expert annotation

To create our first odd-man-out datasets, we used
categories from the card game Anomia.3 Anomia
is a slapjack-style game in which players attempt
to name instances of a particular category as
quickly as possible. Categories include: “percus-
sion instrument”, “Mexican food”, and “Michael
Jackson song”. A team of 4 people, trained in-
house, created one odd-man-out puzzle for each
category, yielding a total of 404 puzzles. For in-
stance, the puzzle corresponding to “percussion
instrument” is clarinet, drum, xylophone, tam-
bourine, cymbals, where clarinet is the odd-man-
out. The puzzle-writing team attempted to make
the odd-man-out similar to the category, e.g. clar-
inet is a musical instrument but not a percussion
instrument.

We divided the puzzles into 2 sets, one for
puzzles comprised of common words (like the
“percussion instruments” example above), and
one for puzzles comprised of proper nouns
(like the puzzle derived from the category
“Michael Jackson songs”). Each set contained
exactly 202 puzzles. We further divided each
of these sets into a development set (used
for error analysis) of size 100 and a test set
of size 102. Henceforth, we will refer to
these four datasets as ANOMIACOMMONDEV,
ANOMIACOMMONTEST,ANOMIAPROPERDEV,
andANOMIAPROPERTEST.

There are two potential pitfalls in creating these
puzzles. First, the underlying category may not
be detectable by humans. Second, we may inad-
vertently create an ambiguous puzzle with multi-
ple odd-men-out. For instance, given the category
“vegetables”, we might create the puzzle grass,
celery, cucumber, carrot, lettuce, for which the
intended odd-man-out is grass, but the answer
carrot is also a reasonable odd-man-out for the
category “things that are green.”

To ensure the answerability of our puzzles, we
administered the ANOMIACOMMONDEV to five
college-educated individuals, three of whom were
native English speakers. Both groups did well.
The native speakers averaged 95.3% accuracy,
while the non-native speakers averaged 91.5%.

3https://boardgamegeek.com/boardgame/142271/anomia-
party-edition

3.2 Crowdsourcing

Following the success of the curated annotation, as
described above, we devised a crowdsourcing pro-
tocol to achieve annotation at a much larger scale.
In this section, we describe this protocol and show
that the Odd-Man-Out task is intuitive enough to
be collected and annotated with high agreement by
non-trained annotators, using a small expert seed
annotation. This enables us to efficiently obtain
a large set of 500K hard “training” samples on a
small budget of $400. Finally, we also validate
a set of 1000 puzzles, which we use in following
sections for testing purposes.

Crowdsourcing protocol Our semi-automatic
crowdsourcing protocol starts from a seed set of
about 250 polysemous words,4 and is composed
of the following three consecutive stages:

1. Seed categorization (expert): given a poly-
semous word w, we ask expert annotators to
come up with at least two categories c1, c2,
which describe w. For example, given w =
“bat”, the corresponding categories can be
c1 = “nocturnal mammal” and c2 = “baseball
instrument”. This categorization was per-
formed by the authors of this paper, and was
done in about 3 person hours.

2. Category expansion (crowdsourced):
Given a seed word and a corresponding
category (w, c) turkers are asked to provide
five more examples of the category c , which
are similar to, but different than, w. For
example, given (“bat”, “nocturnal mammal”)
turkers are expected to provide examples
such as “beaver”, “badger”, or “hedgehog”,
while for (“bat”, “baseball instrument”),
proper answers include “ball” or “cap”. We
used the Amazon Mechanical Turk (AMT)5

platform, paying 15¢ per elicitation.

3. Puzzle creation (automatic): For each poly-
semous seed word w, belonging to categories
c1, c2, we automatically create Odd-Man-Out
puzzles by concatenating to w each possi-
ble combination of three words from c1 (c2),
while the intended odd-man-out is any word
from c2 (c1). For example, using the previous

4https://en.wikipedia.org/wiki/List_
of_true_homonyms, following (Sun et al., 2017b).

5https://www.mturk.com
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seed word and categories, we get the follow-
ing puzzle: (“cap”, “bat”, “beaver”, “bad-
ger”, “hedgehog”). Creating puzzles by com-
bining words from c1 and c2 in this manner
ensures that task is challenging, as it requires
to disambiguate the polysemous word (e.g.,
“bat”).

Performing the process described above with the
249 polysemous seed words yielded a large cor-
pus of 497,365 puzzles, thanks to the combina-
tion process, with a vocabulary of 1,312 differ-
ent words. To create a gold high quality test
corpus, and to assess the validity of this semi-
automatic process, we sampled 1000 puzzles and
administered each puzzle to three annotators on
AMT, paying 6¢ per response. We found that
for 84.3% of the instances there was a major-
ity vote agreement on the intended odd-man-out
word. We refer to this set of 843 puzzles as
CROWDSOURCED843. Table 1 shows examples
of the crowdsourced puzzles.

From an examination of turkers disagreement,
we can attribute the vast majority to noise in one of
the annotation stages, e.g., turkers which provide
examples of the wrong sense of the seed word, re-
sulting in invalid puzzles (where all of the words
belong to the same category), or turkers marking
the wrong odd-man-out, thus invalidating an oth-
erwise correct puzzle.

Overall, the cost of the annotation and valida-
tion was below $500, for a large high-quality an-
notated resource and a smaller gold standard test
corpus. Both corpora are made available.6

4 Taxonomy-Based Solvers

In this section, we show how to create odd-man-
out solvers for taxonomies like WordNet (Miller,
1992).

Define a taxonomy as a triple (V,E,L), where
(V,E) is a directed acyclic graph, and L maps
each vertex V to a string. A simple example is
shown in Figure 1, where the each vertex v is la-
beled with L(v).

We create an odd-man-out solver from a taxon-
omy as follows:

• The specificity of a vertex v is defined as the
reciprocal of the number of its descendants.

6https://github.com/gabrielStanovsky/
odd-man-out

Category Puzzle
construction crane, pelican, excavator,

hoist, upraise
guitar part fret, crying, inlays,

truss rod, neck
alcoholic drinks gin, poker, vodka,

tequila, wine
card games gin, vodka, bridge

canasta, uno

Table 1: Selection of examples from the crowd-
sourced Odd-Man-Out dataset. The polysemous
seed word appears in bold, while the correct an-
swer is in italics. The last two examples demon-
strate how a polysemous word (gin) can partici-
pate in two different puzzles.

Figure 1: Example taxonomy.

For instance, the specificity of any leaf in Fig-
ure 1 is 1, while the specificity of the vertex
labeled “element” is 1

6 .

• Given an odd-man-out puzzle w1, ...,wn, the
explanation of word wk is the vertex v of
highest specificity such that: (i) for each
word wj such that j �= k, there exists some
descendent v′ of v where L(v′) = wj , (ii)
there does not exist a descendent v′ of v such
that L(v′) = wk. For instance, the explana-
tion of helium with respect to the puzzle he-
lium, mercury, lead, silver, gold is the node
labeled “metallic element.”

• If some word does not have an explanation,
or if there is no word whose explanation is
uniquely most specific, then the solver ab-
stains from answering. Otherwise, the solver
returns the word with the most specific expla-
nation.

Using WordNet 3.0 (Miller, 1992; Fellbaum,
1998) as the taxonomy, the solver correctly solves
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Puzzle Explanation
chicken, screwdriver, margarita, mixed drink

mimosa, daiquiri
silver, steel, brass, alloy

bronze, pewter
canoe, school, flock, animal group

herd, pack
nightgown, afternoon, morning, abstraction

evening, midnight
king, president, queen, leader

prince, princess
dinghy, crab, boat, travel (verb)

canoe, raft

Table 2: Some of the WordNet solver’s answers
and explanations on ANOMIACOMMONDEV. The
solver’s answer is in bold, while the correct answer
is in italics.

40.6% of the ANOMIACOMMON puzzles, answer-
ing incorrectly for 13.4% and abstaining for 46.0%
of the puzzles. Unsurprisingly (since WordNet
focuses on common words), the WordNet solver
gets only 1 out of 202 ANOMIAPROPER puz-
zles, abstaining from all the rest. On CROWD-
SOURCED843, the solver correctly solves 22.0%
of the puzzles, answering 15.1% incorrectly and
abstaining from the rest.

4.1 Error Analysis

A nice property of the taxonomy-based solver is
that it provides an explanation for its answer (i.e.
the “explanation” vertex defined above). In Ta-
ble 2, we show some of the WordNet solver’s an-
swers and explanations (specifically we show the
name of the WordNet synset corresponding to the
explanation vertex). For 85.4% of its correct an-
swers, the solver also returns the correct expla-
nation (like the “mixed drink,” “alloy,” and “ani-
mal group” explanations). In the handful of cases
when it does not, it finds either an incorrect or
an overly vague explanation (like the “abstraction”
explanation) that still results in the correct answer.

Typically, the incorrect answers result from in-
completeness in the WordNet taxonomy. For
instance, the word “king” is not a hyponym
of “leader,” even though “president,” “queen,”
“prince,” and “princess” all are. In the bottom-
most puzzle of Table 2, the error results from
“raft” not being considered a watercraft (or a con-

veyance of any kind) by WordNet. Because of
this, the solver finds a more tenuous connection
between “crab” and three of the other words, lever-
aging a rare sense of “crab” as a verb meaning “to
move like a crab.”

5 Embedding-Based Solvers

In this section, we create odd-man-out solvers
from collections of word embeddings. Specifi-
cally, we experiment with two types of embed-
dings: (1) traditional word embeddings, which
map words to a single vector representation (Sub-
section 5.2), and (2) sense embeddings, which
map words to a set of vectors, each pertaining to a
different sense of the word (Subsection 5.3).

5.1 Embedding Evaluation Framework
For the sake of comparison, we use a common
framework to create odd-man-out solvers based
on traditional word embeddings and sense embed-
dings. In this framework, given n puzzle options,
we find the subset of n−1 words of maximal simi-
larity (given some similarity score), and return the
excluded word as the odd-man-out.

Specifically, define an embedding as a function
that maps every word to a set (possibly empty)
of real vectors. Note that this definition is gen-
eral enough to allow for sense embeddings as well
as traditional word embeddings, for which the re-
turned sets are either singletons or the empty set
(in case the word is not in the embedding’s vocab-
ulary).

Next, given a similarity score � that maps any
vector pair to a real number and an embedding E,
define the cohesion �,E of a set of words W as:

�,E(W ) = max
v1∈E(w1),...,vn∈E(wn)

�
1≤i<j≤n

�(vi, vj)

(1)
Cohesion is undefined if any word w ∈W maps to
the empty set. Throughout this paper we employ
the widely used cosine similarity as our similiarity
score.

Finally, given an embedding E and puzzle W =
�w1, ...,wn�, we create an odd-man-out solver as
follows:

1. If E(wi) is the empty set for any puzzle
choice wi ∈W , then the solver abstains from
answering.

2. Otherwise, the solver returns the word ŵ ∈
W whose omission from the puzzle word set
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Embedding Map Training AnomiaCommon AnomiaProper Crowdsourced
Tokens C W A C W A C W A

ELMo clusters (K = 5) 1B + 2B∗ 76.7 13.9 9.4 42.6 17.8 39.6 55.5 18.8 25.6
w2v.googlenews 100B 61.9 25.2 12.9 40.1 14.9 45.0 46.3 28.8 24.9

glove.commoncrawl2 840B 60.9 23.8 15.4 32.2 14.4 53.5 47.1 28.4 24.6
glove.commoncrawl1 42B 57.4 29.2 13.4 30.7 17.8 51.5 40.1 36.3 23.7

glove.wikipedia 6B 54.5 24.3 21.3 29.2 10.9 59.9 42.7 29.0 28.4
Neelakantan 1B 35.2 25.7 39.1 18.3 14.4 67.3 32.6 27.3 40.2
w2v.freebase 100B 22.3 28.7 49.0 34.2 14.9 51.0 9.9 11.3 78.3

WordNet - 40.6 13.4 46.0 0.5 0.0 99.5 22.0 15.1 63.0

Table 3: Performance (%Correct, %Wrong, %Abstained) of the different odd-man-out solvers on the
ANOMIATEST and crowdsourcing datasets, using different vector directories. ∗ We used ELMo clusters
pretrained on 1B tokens and clustered on a 2B token Wikipedia dump.

yields maximal cohesion:

ŵ = argmax
wi∈W

�(W � {wi}) (2)

5.2 Word Embeddings Solvers
Table 3 shows the results of embedding-based
solvers on the Anomia and crowdsourced datasets,
using several different pre-trained embedding
maps. We find the best performance on
ANOMIACOMMON and ANOMIAPROPER using
the word2vec vectors trained on 100 billion tokens
from the Google News corpus.7

An analysis of the best embedding-based
solver (w2v.googlenews) on ANOMIACOMMON-
DEV shows that a high proportion of incorrect an-
swers were polysemous (20 out of the 27 incor-
rect answers). A selection of these are shown
in Table 4. We observe that for the “cocktails”
puzzle, the word2vec solver zeroes in on “screw-
driver” (whose dominant sense is the tool, not the
cocktail), and for the “types of lettuce” puzzle, the
solver selects “iceberg” (whose dominant sense is
“large floating block of ice,” not the lettuce).

To provide additional evidence of this bias, we
came up with 5 cocktails whose dominant sense is
the cocktail itself (mint julep, mai tai, mojito, mar-
tini, and bloody mary) and 5 polysemous cocktails
(old fashioned, hurricane, cosmopolitan, zombie,
and Manhattan). We then replaced “screwdriver”
in the “cocktails” puzzle with each of these op-
tions and solved the resulting puzzle with the
w2v.googlenews solver. In all 5 monosemous in-
stances, the correct answer of “chicken” was se-
lected. In 4 of the 5 polysemous instances (the

7https://code.google.com/archive/p/word2vec

exception being “Manhattan”), the polysemous re-
placement was selected. We repeated this exper-
iment with the “groups of animals” puzzle, and
again all 5 monosemous replacements yielded the
correct answer, while 3 of 5 polysemous replace-
ments were incorrectly chosen by the solver.

In a more rigorous experiment, we randomly
generated 500 puzzles in the following way. Given
a category (hyponym), we came up with 10 in-
stances (hypernyms) of that category. For ex-
ample, the category “type of transport” yielded:
train, car, bus, airplane, helicopter, boat, ferry,
taxi, tram, and monorail. We did this for 10 cate-
gories, yielding a total of 100 words. From these
10 lists, we randomly generated 500 puzzles by
sampling 4 words from one list and 1 word from
another. We call this puzzle set HYPERNYMS500.

The w2v.googlenews solver performs impres-
sively on HYPERNYMS500, getting 90.8% cor-
rect, with only 46 incorrect answers (and no ab-
stentions). Tellingly however, only 3 words are
responsible for 67% of the incorrect answers: saw
(as a kind of tool), lead (as a kind of metal), and
rose (as a kind of flower). All three of these
words have at least one dominant alternate sense.
Given that there are 100 possible incorrect answers
(which all appear with roughly equal frequency in
the puzzles), the fact that only 3 of them com-
prise 67% of the incorrect answers suggests that
the inability of vector directories to model multi-
ple senses is an Achilles heel.

5.3 ELMo Sense Vectors
The previous analysis suggests that embeddings
that explicitly model multiple senses may be im-
portant for the odd-man-out task. In this section,
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Category Puzzle
cocktails screwdriver, chicken, margarita

mimosa, daiquiri
mammals bear, cobra, cat

dog, leopard
nocturnal bat, robin, owl
animals raccoon, coyote
military private, judo, general

ranks corporal, colonel
whales blue, grizzly, humpback

orca, beluga
groups of school, canoe, flock
animals herd, pack

shades of navy, amber, cobalt
blue azure, sky

aquatic seal, horse, whale
animals manatee, dolphin

bird tweet, snore, chirp
sounds cluck, quack
types of iceberg, serrano, romaine
lettuce butterhead, bibb

political green, garden, democratic
parties republican, libertarian

Table 4: Selection of errors made by the
w2v.googlenews solver on ANOMIACOMMON-
DEV, indicating a tendency to choose polysemous
words as the odd-man-out. The incorrect selection
is in bold, while the correct answer is in italics.

we investigate this further.

Background: sense vectors There is a signif-
icant literature on how to learn a one-to-many
mapping from words to vector representations.
An early paradigm (Reisinger and Mooney, 2010;
Huang et al., 2012; Liu et al., 2015; Wu and
Giles, 2015) took a 2-pass approach. First, they
clustered contexts of a target word like “bank.”
For instance, “the bank had an ATM” and “I got
money from the bank” might fall into one cluster,
while “I fished at the river bank” might fall into
a second cluster. Second, they annotated each in-
stance of the target word with its sense cluster and
then learned a standard one-to-one vector map-
ping from the annotated corpus. For instance, they
would learn vector representations using the sen-
tences “the bank-1 had an ATM,” “I got money
from the bank-1,” and “I fished at the river bank-
2.” Other researchers (Neelakantan et al., 2014;
Tian et al., 2014; Chen et al., 2014; Li and Juraf-

sky, 2015; Bartunov et al., 2016) focused on mod-
ifying the vector learning model itself, typically
the skip-gram model (Mikolov et al., 2013b), to
directly learn multiple embeddings for each word.
Additional work focused on using the technique
of retrofitting (Faruqui et al., 2014) to adapt pre-
trained word vectors into sense vectors using aux-
iliary resources like WordNet (Jauhar et al., 2015)
or parallel corpora (Ettinger et al., 2016). Other
work (Guo et al., 2014; Suster et al., 2016; Upad-
hyay et al., 2017) used parallel corpora as the main
signal for learning sense vectors.

Background: ELMo Recently, Peters et al.
(2018) introduced the concept of Embeddings
from Language Models (ELMo). ELMo dynam-
ically represents each word based on the con-
text with which it appears, achieved by repre-
senting a word in a sentence using its represen-
tation from a pretrained bidirectional Language
Model (biLM), encoded using a bi-directional
RNN (Schuster and Paliwal, 1997). Subsequently,
the same word may get different representations
in different contexts. For example, the represen-
tation of “bank” may differ between “She fished
by the river bank” and “She deposited her check
at the nearest bank”. While ELMo embeddings
were recently proven extremely beneficial in vari-
ous sentence-level tasks (e.g., semantic role label-
ing, question answering, and textual entailment),
many lexical tasks require the interpretation of
words out of context, to which ELMo cannot be
readily applied. We suggest to port ELMo’s effec-
tiveness back to the context-free setting, and pro-
pose a first approach for doing so.

Unsupervised ELMo clustering We compute
pre-trained ELMo embedding (using the Al-
lenNLP framework (Gardner et al., 2018)) in con-
text of sentences in a large corpus C, while record-
ing the observed representation rw,s ∈ R

d of each
word w, along with the corresponding context in
which it appeared, i.e., the sentence s ∈ C. The
result of this process is an embedding space per
word, rw = {rw,s � s ∈ C,w ∈ s}. Ideally, simi-
lar senses of w would appear in similar contexts,
and would therefore be closer in rw, while differ-
ent senses would be further apart. Following this
intuition, we cluster each word to K clusters, us-
ing the k-means algorithm (Lloyd, 1982), whereby
every vector in a cluster is interpreted as pertain-
ing to the same sense of w. We collect the centroid

1539



Figure 2: An example of a 2d projection of an
ELMo embedding space for the word “bat” with
4 senses (denoted by different colors). Two exam-
ple sentence excerpts appear next to their respec-
tive cluster.

vector wi (where 1 ≤ i ≤ K) of each cluster as a
“sense vector” of w. Using K = 1, we get a sin-
gle representation per word, averaging the differ-
ent senses of w, comparable to “traditional“ word
embeddings. Conversely, we can get senses of ar-
bitrarily fine granularity by increasing the number
of clusters. These sense representations can then
be readily plugged in to the embedding solver, as
described in Subsection 5.1. We computed the
sense vectors using a 2 billion token (97 Million
sentences) Wikipedia dump from January 2018,
which was extracted using WikiExtractor,8 and
tokenized with the SpaCy 2.0 toolkit (Honnibal
and Montani, 2017).9 These pre-computed vec-
tors, which are readily applicable for other tasks,
are made publicly available. Figure 2 depicts the
resulting embedding space and clustering for the
word “bat”.

Evaluation We start by estimating an ideal
value for K (the number of clusters). In Fig-
ure 3 we evaluate the performance of the ELMo
clustering method on the expert development set,
using different values for K, compared to the
second best performing vectors on that dataset
(Word2Vec). Several observations can be made
based on this analysis. First, using K = 1,
Word2Vec outperforms ELMo. This may be ex-
plained due to Word2Vec’s larger training set
(100B tokens versus only 1B). However, as K in-
creases, ELMo clusters outperform the baseline,

8https://github.com/attardi/
wikiextractor

9https://spacy.io
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Figure 3: Performance of the ELMo cluster model
(blue line) by the varying number of cluster
(K), compared to the best performing baseline
(word2vec), in the red horizontal line.

reaching its maximum performance at K = 5, in-
dicating that a finer level of sense granularity is
beneficial for focusing on the intended word sense.
Inversely, having too many clusters hurts perfor-
mance. This may be due to over-specification,
harming the sense generalization obtained by a
smaller number of clusters. Based on this tun-
ing, we fixed the value of K to 5, and repeated
the experiments from Section 5 (see the first row
in Table 3). ELMo sense vectors clearly outper-
form all previous baselines on all Odd-Man-Out
datasets. This improved performance can be at-
tributed both to ELMo’s better ability to capture
context, as well as to the finer sense representa-
tion, as opposed to the single representation per
word in most of the other baselines. We also evalu-
ated another publicly available collection of sense
embeddings (Neelakantan et al., 2014), but it did
not perform on par with solvers based on conven-
tional single-sense embeddings.

6 Discussion: Hypernyms vs. Other
Associations

The attentive reader may have wondered why the
w2v.googlenews solver performed so much bet-
ter on the HYPERNYMS dataset (over 90% cor-
rect) than on the ANOMIACOMMON dataset (ap-
proximately 62% correct). Hypothesizing that
embedding-based solvers can identify hypernym-
hyponym relationships more easily than other
associations, we created another odd-man-out
dataset using the same methodology as HYPER-
NYMS.

This time, given a color, we came up with 8 to
13 objects that are typically associated with that
color. For example, the category “yellow” yielded
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(among others): taxi, canary, corn kernel, daffodil,
lemon, sun, and school bus. We did this for 10 col-
ors. From these 10 lists, we again randomly gen-
erated 500 puzzles by sampling 4 words from one
list and 1 word from another. We call this puzzle
set COLORS500.

The w2v.googlenews solver performed consid-
erably worse on COLORS500 than on HYPER-
NYMS500. Out of the puzzles it attempted, it
guessed only 30% correctly (compared to the ran-
dom chance baseline of 20%). There are several
possible reasons why this dataset may be more
difficult for an embedding-based solver. Possibly
colors are not easily identifiable using embeddings
built from language cues (maybe people do not of-
ten explicitly talk about how lemons are yellows).
But perhaps it is also true that using the cosine
similarity of the embeddings is not a good way to
spot non-fundamental properties (like color) that
link a group of words. We leave open how best to
identify more oblique relationships.

7 Conclusion

We presented a new task for the evaluation of lexi-
cal resources, the Odd-Man-Out task. We showed
that the task can be annotated reliably on a large
scale. Following the creation of several Odd-Man-
Out datasets, we conducted analyses showing that
current word representations are suboptimal, espe-
cially in the presence of polysemous words. We
concluded with a novel ELMo clustering sense-
embedding technique which surpasses all base-
lines on the Odd-Man-Out task.
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Abstract

Simile is a special type of metaphor, where
comparators such as like and as are used to
compare two objects. Simile recognition is
to recognize simile sentences and extract sim-
ile components, i.e., the tenor and the vehi-
cle. This paper presents a study of simile
recognition in Chinese. We construct an anno-
tated corpus for this research, which consists
of 11.3k sentences that contain a compara-
tor. We propose a neural network framework
for jointly optimizing three tasks: simile sen-
tence classification, simile component extrac-
tion and language modeling. The experimen-
tal results show that the neural network based
approaches can outperform all rule-based and
feature-based baselines. Both simile sentence
classification and simile component extraction
can benefit from multitask learning. The for-
mer can be solved very well, while the latter is
more difficult.

1 Introduction

A metaphor is a figure of speech that describes
an object or action in a way that isn’t literally
true. Metaphors are common in human lan-
guage. Shutova and Teufel (2010) reported that
241 among 760 sentences in an annotated corpus
contain a metaphor. The use of metaphors helps to
explain an idea or realize rhetorical effects through
an analogical procedure. Metaphor analysis has
been drawn more attention for expanding current
natural language processing (NLP) to high-level
semantic tasks (Carbonell, 1980).

Metaphors reflect creative thought of humans.
On the other hand, inferring the meaning of a
metaphor has to integrate background knowledge,
which makes it difficult to automatically recog-
nize metaphors in language. Previous work on

⇤corresponding author

metaphor recognition mainly depends on linguis-
tic cues (Goatly, 2011) and selectional preference
violation on a pair of concepts (Fass, 1991) or
their domains (Mason, 2004). The domains can
be created by knowledge bases such as WordNet
(Mason, 2004) or based on automatic clustering
(Shutova et al., 2010).

In this paper, we focus on a special type of
metaphor—simile. A simile is a figure of speech
that directly compares two things using connect-
ing words such as like, as, than in English and
“�” or “��” in Chinese. Due to the use of such
comparators, it is much easier to locate similes
compared with locating other types of metaphors.
As a result, it is possible to collect and annotate
large scale of simile sentences and investigate data
driven simile recognition. This task is to find sim-
ile sentences and extract simile components, i.e.,
the tenor and the vehicle. The mined simile struc-
tures can potentially be used to support general
metaphor analysis, where large scale training data
is lacking.

However, simile recognition is still challenging
due to the diversity of syntactic roles of a word
and the distinction between metaphorical and lit-
eral comparisons. As shown in Table 1, a sentence
containing a comparator may not trigger a simile.
It is necessary to analyze the relationship between
meanings of concepts. And It is also difficult to
define a complete set of rules to extract the objects
to be compared with high accuracy and coverage.

This paper presents an end-to-end neural net-
work framework for simile sentence recognition.
Specifically, we make following contributions:

• We build a dataset consisting of 11.3k sen-
tences containing a frequently used compara-
tor “�” for simile recognition in Chinese,
which can support data-driven approaches.
In contrast to English, datasets on simile or
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1. Ÿ*[iP]tenor �������[�]vehicle

This [boy]tenor is as strong as a [bull]vehicle Simile
2. Ÿ*iP�������
The boy looks like his father Literal
3. ÷����Ñ��,���/��÷�Å�«
He patted his uncle as if telling him not to be sad Literal
4. ���÷Ÿ7Ñf��îÂ����
The students like him should work even harder Literal

Table 1: Sentences that contain the comparator “�”.

metaphor analysis are relatively less in Chi-
nese. This dataset provides a new resource
for related research. 1

• We propose a neural multitask learning
framework jointly optimizing three tasks:
simile sentence classification, simile compo-
nent extraction and language modeling. Sim-
ile classification is to determine whether a
sentence with a comparator contains a sim-
ile, without knowing exactly what the tenor
and the vehicle are. Simile component ex-
traction aims to locate the tenor and the vehi-
cle in a simile sentence. Intuitively, the two
tasks should benefit each other. We design
our model to enhance interactions between
the two tasks. We also borrow the idea of
Rei (2017) by incorporating a language mod-
eling task, which attempts to predict neigh-
bor words. All three tasks consider the whole
sentence so that rich context information is
involved.

• We conduct comprehensive experiments.
The results demonstrate that the neural end-
to-end framework is superior to feature-
based and rule-based baselines and every sin-
gle model can benefit from multitask learn-
ing. Simile sentence classification can be
solved very well, while simile component ex-
traction is more chellenging. With multi-
task learning enhanced classifier and extrac-
tor, a classification-then-extraction method
achieves the best performance for simile
component extraction.

2 Related Work

2.1 Metaphor/Simile Analysis
Metaphor analysis becomes active in recent years.
The tasks include metaphor recognition, metaphor

1The dataset is at https://github.com/cnunlp/
Chinese-Simile-Recognition-Dataset

explanation and metaphor generation (Shutova
et al., 2013; Veale, 1995; Jang et al., 2016).

Simile is a special type of metaphor with
the comparator and it is relatively easier to lo-
cate metaphorical parts. Niculae and Danescu-
Niculescu-Mizil (2014) aimed to distinguish a
comparison from figurative or literal in product re-
views using a series of linguistic cues as features.
It is similar to simile sentence classification. So
we take it as a baseline. In their work, they as-
sumed that the components can be correctly rec-
ognized. In our work, we use an automated com-
ponent extractor instead.

Syntactic patterns are often used for extracting
potential simile components and semantic analy-
sis is then used to distinguish similes from literal
comparisons (Niculae and Yaneva, 2013; Niculae,
2013). The main limitation is that such pattern
based method is difficult to deal with sentences
with complex structures. As a result, the coverage
is relatively small.

Qadir et al. (2016) used syntactic structures,
dictionary definitions, statistical cooccurrence,
and word embedding vectors to infer implicit
properties in similes. Qadir et al. (2015) also built
a classifier with lexical features, semantic features,
and sentiment features to infer the affective polar-
ity of simile in twitters. Veale and Hao (2007) and
Veale (2012a) utilized knowledge generated by
similes to deal with metaphor and irony, and Veale
(2012b) built a lexical stereotype model from sim-
iles. These work demonstrates the wide applica-
tions of simile recognition.

In Chinese, Li et al. (2008) proposed a feature-
based method for simile recognition. Their evalu-
ation was done on a small dataset. The annotated
data in this work is much larger.

2.2 Multitask Learning for NLP

Many researchers have proposed to jointly learn
multiple tasks with shared representations (Col-
lobert and Weston, 2008). Improvements are
reported on joint models between closely re-
lated tasks, such as text classification (Liu et al.,
2016), POS tagging and parsing (Zhang and
Weiss, 2016), parsing and named entity recogni-
tion (NER) (Finkel and Manning, 2010), NER and
linking (Luo et al., 2015), extraction of entities and
relations (Miwa and Bansal, 2016). Bingel and
Søgaard (2017) offered a systematic view of re-
lations between different tasks.
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3 Task and Data

3.1 Task Description
A metaphor is as a matter of cross-domain map-
pings in conceptual structure which are expressed
in language. Lakoff and Johnson (2008) explains
it as a mapping between the target and the source,
corresponding to the terms tenor and vehicle. The
tenor is the subject to which attributes are as-
cribed, while the vehicle is the object whose at-
tributes are borrowed.

Simile can be seen as a special type of
metaphor, which is signaled by explicit markers
such as like or as in English and “�” or “��”
in Chinese. We call such words comparators
(Hanks, 2012). Notice that a sentence containing
a comparator doesn’t guarantee that it is a simile
sentence. Consider the examples in Table 1. All
sentences contain the comparator “�”. The first
two sentences form comparison structures, but the
first one triggers a cross-domain concept mapping,
while the second one is a literal comparison. The
word “�” in the third sentence means as if, rather
than forming a comparison, and the comparator in
the fourth sentence is to give examples.

Simile Recognition task can be defined as:
Given a sentence containing a comparator, deter-
mine whether it is a simile sentence, if so, extract
the tenor and the vehicle from it.

Simile recognition involves two subtasks.
Simile Sentence Classification (SC). For a sen-

tence containing a comparator, determine whether
the comparator triggers a metaphorical compari-
son, in another word, whether the sentence is a
simile sentence.

Simile Component Extraction (CE). For a
simile sentence, extract text spans that are corre-
sponding to the tenor and the vehicle objects re-
spectively.

Both tasks have a realistic significance. Sim-
ile can be seen as a rhetorical device for making
thoughts or expressions more vivid. Simile sen-
tence classification could be used to provide a sig-
nal to evaluate rhetorical effects of writings. Sim-
ile component extraction is potentially useful for
building cognitive knowledge base.

3.2 Data
We construct a dataset from Chinese student es-
says written in Mandarin Chinese. We focus on
the comparator “�”, which is the most often used
simile comparator in Chinese. The data annotation

involves the following steps: (1) we sampled sen-
tences that contain the word “�” from a sentence
index built on more than 20,000 student essays; (2)
we asked two annotators to label every sentence
as a simile sentence or not; (3) the annotators fur-
ther annotated boundaries of simile components,
the tenor and the vehicle, in simile sentences.

Two points are important for annotation: (1) the
definition of simile and (2) the boundary of simile
components.

We desire that a simile sentence should satisfy
at least two standards. First, there exists explicit
tenor and vehicle, which are from different seman-
tic domains. Second, the tenor and vehicle should
have similar properties. We provided a manual and
positive/negative examples to annotators. Even so,
there are still fuzzy cases. The two annotators first
labeled a sample of 200 sentences independently
and then we measured their agreement and asked
them to discuss the disagreements. After discus-
sion, they labeled another set of sampled sentences
to check whether they really reached a consen-
sus. This process iterated several times. Their fi-
nal inner-annotator agreement on simile sentence
classification can reach to 91%. Finally, they la-
beled all sentences in the whole dataset.

Next, the annotators should further label simile
components in simile sentences, which are usually
noun phrases. Boundaries of simile components
are required to be annotated as compact as pos-
sible until they can’t be simplified any more. In
most cases, we asked the annotators to label the
head noun phrase without a modifier. A modi-
fier often plays a role as a shared property. For
example, in the sentence 7iÑ���*¢�
ú(The boy’s face is like a red apple), �(face)
and �ú(apple) would be annotated as the tenor
and vehicle respectively, while7iÑ(boy’s) and
¢(red) are not included. In contrast, in the sen-
tence)��iPÑ���1�(The weather is
like a child’s face, which changes unpredictably),
iPÑ�(child’s face) is preferred to�(face) as
a component, because�(face) alone can’t capture
the property well. We used one annotator’s anno-
tation of 200 sentences as the gold answer and the
other’s annotation as the prediction to computer
the F1 score, which is 93.57% on all components
and 90.7% on tenors and 96.47% on vehicles.

Table 2 shows the basic statistics of our dataset.

1545



Word embeddings

树叶
(the leaf)

像
(is like)

蝴蝶
(a butterfly)

ts o vs

Bi-LSTM

Hidden layer

Label representation

CRF layer

Labels

Words

Shared representation

Simile or not

+

<s> </s>像 树叶 蝴蝶 像

A
tt

en
ti

on
ve
ct
or

Bi-LSTM

Sentence representation

Labeling 
connection

Bi-LSTM

Backward
Forward

SoftmaxSimile component extraction

Simile sentence classification

Language modeling

Predicting 
the next 
words

Figure 1: The proposed multitask learning framework, which jointly optimizes three tasks.

#Sentence 11337
#Simile sentence 5088
#Literal sentence 6249
#Token 334k
#Tenor 5183
#Vehicle 5119
#Unique tenor concept 1680
#Unique vehicle concept 1972
#Tenor-vehicle pair 5214
#Unique tenor-vehicle pair 4521
Avg. #token per tenor 1.033
Avg. #token per vehicle 1.056
Avg. #token per sentence 29.47
Avg. #pair per simile sentence 1.024

Table 2: Statistics of the annotated simile dataset

4 Multitask Learning Approach

4.1 Motivation

Intuitively, the two subtasks in simile recognition
can benefit each other and the interactions between
them should not be ignored. If the component ex-
tractor knows that a sentence contains a simile, it
would be more confident to extract the tenor and
the vehicle. On the other hand, if the component
extractor tells the classifier that the tenor and the
vehicle likely exist, the classifier gets additional
information for decision.

Therefore, we propose a multitask learning ap-
proach to combine them. Our approach jointly op-
timizes three tasks: simile sentence classification,
simile component extraction and language model-
ing. Language modeling is used as auxiliary task,
which can help capture local information. Figure 1

illustrates the main framework, which is based on
neural networks. We will first explain the repre-
sentation layers that are shared by multiple tasks,
and then introduce separate prediction layers for
individual tasks.

4.2 Shared Representation
Word embedding layer. We first map words to
dense distributed word embeddings. Since our
dataset is not so large, we make use of pre-trained
word embeddings, which are trained on a much
larger corpus with Word2Vec toolkit (Mikolov
et al., 2013).
Sentence representation layer. Recurrent neu-
ral networks (RNNs) have become the natural
choice for handling sequential data to capture
long-range dependencies. Given a sentence X =
(x1, x2, ..., xn) containing n words as an input, the
RNNs produce H = (h1, h2, ..., hn) as the hid-
den states to represent the semantic of partial se-
quence so far. Recently, Long Short Term Mem-
ory (LSTM) model (Hochreiter and Schmidhuber,
1997) has been proved more effective in various
NLP tasks. Therefore, we use LSTM as the basic
memory cell. At time step t, LSTM takes the hid-
den state from the previous time step and the word
embedding from the current step as input, and pro-
duces a new hidden state, as shown in Formula 1.

�!
ht = LSTM(xt, LSTM(

��!
ht�1)) (1)

The LSTM architecture is sensitive to word or-

1546



der, and the bidirectional LSTM (Schuster and
Paliwal, 2002) allows model to look arbitrarily far
at both the past and the future for the sake of
grasping the whole sentence. Noted the forward
LSTM as

�!
h , and the backward as

 �
h . Bidirec-

tional LSTM concatenates the forward and back-
ward states as the representation at the tth time
step, i.e., ht =

h�!
ht ;
 �
ht

i
.

4.3 Task 1: Simile Component Extraction

We view simile component extraction as a se-
quence labeling problem. We convert the anno-
tated dataset to IOBES scheme (indicating Inside,
Outside, Beginning, Ending, Single) (Ratinov and
Roth, 2009). We use different prefixes to distin-
guish the tenor and the vehicle components. For
example, tb and vb indicate the beginning of a
tenor and a vehicle respectively.

4.3.1 Neural Sequence Labeling Model
Conditional Random Field (CRF) (Lafferty et al.,
2001) is a standard solution in such scenario to
exploit the dependency among labels.To further
make use of the dense representation of words, we
build a CRF layer on the shared representation lay-
ers following (Lample et al., 2016).

Formally, H = (h1, h2, ..., hn) is a sequence of
hidden states produced by the bidirectional LSTM
for a sentence X and y = (y1, y2, ..., yn) is the tag
sequence, yi 2 L and |L| = k. Define  (H, y) as
the score of the sequence.

 (H, y) =
nX

t=0

Ayt,yt+1 +
nX

t=1

Pt,yt (2)

where A 2 R
k⇥k is a transition matrix and

Ayt,yt+1 records the score of a transition from cur-
rent label yt to next label yt+1; P = (p1, ..., pn) 2
R

n⇥k is the emission matrix and Pt,yt represents
the score of assigning tag yt to xt.

Here, ht is the tth hidden state that is as
assigned by the bidirectional LSTM. It is first
mapped to a hidden layer through a feedforward
layer. After a non-linear activation transition
tanh, the output of the hidden layer is mapped to
a k-dimension vector pt, through another feedfor-
ward layer.

pt = Wp · tanh (Wtht) (3)

where Wt and Wp are parameter matrixes. pt can
be seen as a tag score vector given the current word
without considering context words.

Taking the whole state sequence into account,
the probability of tag sequence y given sentence
X is:

p(y|H) =
 (H, y)P
ey2Y e (H,ey)

(4)

where Y indicates all possible sequences. Learn-
ing algorithm attempts to optimize the model by
maximizing the log-likelihood of correct tag se-
quence. Thus, the loss function is

Ece = �log(p(y|H))

= � (H, y) + log
X

ey2Y

e (H,ey) (5)

4.4 Task 2: Simile Sentence Classification
The second task is simile sentence classification.
To fully exploit contextual information, we con-
sider all words in a sentence. For each word, in-
stead of using hidden state ht only, we combine ht

and its score vector pt as a representation st:

st = [ht; pt]

Since pt is directly related to the component
extraction task, this labeling connection operation
increases the interaction between the two tasks.

However, words in a sentence should not con-
tribute the same for classification. Intuitively, the
words corresponding to the tenor or the vehicle
or near comparators should be more important.
Therefore, we introduce the attention mechanism,
which was firstly proposed for neural machine
translation (Bahdanau et al., 2014).

Given the sequence of expanded word represen-
tations S = (s1, s2, ..., sn), the attention vector is
computed via:

↵ = softmax (tanh (W↵S)) (6)

where W↵ is a parameter matrix. The semantic
representation of the sentence is:

r = ↵T · S (7)

This representation is fed into an activation and
a softmax layer to generate the probability dis-
tribution. The loss function is the negative log-
likelihood of the correct classification tag:

Esc = � log (p (y|s)) . (8)
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4.5 Task 3: Language Modeling
Although LSTM can capture long dependencies,
simile structure may be more related to local con-
texts. In many cases, the comparator and the ve-
hicle are near, and similes often have some collo-
cations involving the comparator such as “�...�
7(the same as)” or “1�(just like)”. As a result,
we attempt to emphasize such local information.

Inspired by (Rei, 2017), we also incorporate
language modeling as an auxiliary task. For each
word, we let the model predict the next word. In
our case, the representation of each word ht is
firstly mapped into a low dimension vector space
through a nonlinear transform.

�!mt = tanh
⇣��!
Wm ·

�!
ht

⌘
(9)

And the vehicle word is predicted by maximizing
the probability of the specific next word, which is
generated by a softmax layer.

P (wt+1|�!mt) = softmax
⇣�!
Wq ·�!mt

⌘
(10)

where, �!mt indicates the forward language model-
ing specific features. Wm, Wq are trainable pa-
rameters.

The loss function for a sequence is defined as
the sum of the negative log-likelihood of the pre-
dicted words.

��!
Elm = �

n�1X

t=1

log (P (wt+1|�!mt)) (11)

We can also predict the previous words in the
same way and get another loss function noted as ��
Elm. The losses in double direction are summed
to be the loss function for language modeling task.

Elm =
��!
Elm +

 ��
Elm (12)

4.6 The Final Loss Function
The final loss function for each sentence is a
weighted sum of task-specific loss functions.

E = � · Elm + � · Ece + ✏ · Esc (13)

where �, �, ✏ are non-negative weights, which are
used to control the importance of three tasks. In
experiments, they are hyper-parameters assigned
beforehand, and we constrain the sum of �, � and
✏ to one.

5 Evaluation

5.1 Settings
The dataset is randomly divided into 5 folds, 4
of which are used as training set and validation
set (80% for training, 20% for validation), and
the rest one fold is used as test set. All models
were trained on the training set. The best hyper-
parameters were gained based on the results on the
validation set. The results reported were all evalu-
ated on the test set.

We conduct word segmentation, part-of-speech
(POS) tagging and dependency parsing with HIT-
LTP2.The word embeddings were pre-trained us-
ing Word2Vec (Mikolov et al., 2013), on a large
essay corpus crawled from the web. We adopt the
Theano framework (Theano Development Team,
2016) to implement neural network models.

The dimension of word embeddings is 50. The
hidden size of LSTM is 128 for each direction.
The dimension of activation layers for component
extraction, simile sentence classification and lan-
guage modeling are set to 64, 32 and 64 respec-
tively. A dropout layer (Srivastava et al., 2014)
is used between the word embedding layer and
the bidirectional LSTM layer with the probabil-
ity of 0.5. Moreover, early stopping (Prechelt,
1998) is adopted to finish the learning process.
The AdaDelta (Zeiler, 2012) strategy is used for
parameter optimization with a learning rate of 1.0.

5.2 Evaluating Simile Sentence Classification
5.2.1 Comparisons
We compare the following systems.

Feature based approaches. With manually de-
signed features, we build two Random Forest clas-
sifiers to determine whether a sentence contains a
simile. Baseline1 follows (Niculae and Danescu-
Niculescu-Mizil, 2014). It first extracts candidate
simile components and then uses a classifier to de-
termine whether they form a simile. We adopt
our best neural component extractor (will be in-
troduced in Section 5.3.1) to extract components.
The classifier uses features including: (1) bag-of-
words; (2) corresponding occurrence within con-
stituents; (3) word embeddings of extracted com-
ponents. Niculae and Danescu-Niculescu-Mizil
(2014) also used domain specific information and
lexicon knowledge, which our data lacks. Base-
line2 is based on (Li et al., 2008), which doesn’t

2https://github.com/HIT-SCIR/pyltp
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Model Simile Classification
P R F1

Baseline1 0.6523 0.4752 0.5498
Baseline2 0.7661 0.7832 0.7745
Singletask (SC) 0.7751 0.8895 0.8284
Multitask (SC+CE) 0.8056 0.8886 0.8450
Multitask (SC+LM) 0.8021 0.9105 0.8525
Multitask (SC+CE+LM) 0.8084 0.9220 0.8615

Table 3: Experimental results on simile sentence clas-
sification. SC: simile sentence classification; CE: com-
ponent extraction; LM: language modeling.

need to identify components beforehand. The fea-
tures include: (1) the tokens and POS tags of the
words around the comparator within a fixed win-
dow (set to 5 in experiments); (2) the tokens, POS
tags and dependency relation tags of the words that
have dependency relations with the comparator.

Singletask(SC). This system is a simplified ver-
sion of our proposed model in Section 4 by consid-
ering the simile sentence classification task only.

Multitask learning approaches. The full ar-
chitecture is described in Section 4. To see their
contributions, we add simile component extrac-
tion, language modeling and their combination in-
crementally.

5.2.2 Results
Table 3 shows the performance of the systems.
The results are reported with the precision (P), re-
call (R), and their harmonic mean F1 score (F1).

The two feature based methods perform differ-
ently. Baseline1 performs poorly. The reason may
be that the classification depends on the perfor-
mance of component extraction, while even our
best component extractor performs far from per-
fect, which brings error propagation. In addition,
classifying with component related features only
ignores much context, which further decreases the
performance. Baseline2 considers context win-
dows and outperforms baseline1 largely. This con-
firms our intuition that context information im-
plies the semantic of simile expression.

Furthermore, we have other observations: (1)
neural network based approaches largely outper-
form feature-based classifiers;(2) multitask learn-
ing approaches outperform every single task ap-
proach and other baselines. Both the component
extraction and the language modeling task con-
tribute for simile sentence classification. Com-
ponent extraction improves the precision and lan-
guage modeling improves both the precision and
the recall. Combining them together can achieve

the best performance. The improvement of F1

score can reach to 3.3% compared with the best
single task model.

5.3 Evaluating Simile Component Extraction
5.3.1 Comparisons
We compare the following systems for simile com-
ponent extraction.

Rule based approach. We follow (Niculae and
Yaneva, 2013) to design syntactic patterns for ex-
traction. We convert the original patterns to fit the
outputs of the parser we used.

CRF model. Since we view component extrac-
tion as a sequence labeling problem, a CRF model
with manually designed feature templates is used
as a baseline. Feature template is designed for ev-
ery word. The features include the tokens and their
POS tags within a fixed context window (set to 5
in experiments). We also use dependency parsing
based features to capture dependencies between
words.

Singletask(CE). We remove the simile classi-
fication and language modeling modules from the
multitask learning framework introduced in Sec-
tion 4 to build an end-to-end single task compo-
nent extractor.

Pipeline approaches. Pipeline approaches
first classify a sentence as simile or not,
and then extract components from simile sen-
tences. We investigate two combinations:
RandomForest!CRF, we use baseline2 for sen-
tence classification and CRF for component ex-
traction; SingleSC!SingleCE, we use neural net-
work based single task sentence classifier and
component extractor.

Multitask learning approaches. We exploit
simile sentence classification and language mod-
eling modules to enhance component extraction in
our multitask learning framework.

5.3.2 Results and Discussion
A component (i.e., the tenor or the vehicle) is
judged to be correct only if both the boundary and
the tag exactly match the gold answer. For a sim-
ile sentence, we should extract both the tenor and
the vehicle rather than only partial components.
Therefore, we use pair-wise level precision (P), re-
call (R) and F1 score (F1) for evaluation. A tenor-
vehicle pair is viewed as correct only if both com-
ponents are correct.

Table 4 shows the results of various systems and
settings on two test sets. The first dataset consists
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Model Gold simile sentences Whole test set
P R F1 P R F1

Rule based 0.4094 0.1805 0.2505 —
CRF 0.5619 0.5907 0.5760 0.3157 0.3698 0.3406
Singletask (CE) 0.7297 0.7854 0.7564 0.5580 0.6489 0.5998
RandomForest ! CRF — 0.4591 0.4980 0.4778
SingleSC ! SingleCE — 0.5720 0.7074 0.6325
Multitask (CE+SC) — 0.5409 0.6400 0.5861
Multitask (CE+LM) 0.7530 0.7876 0.7699 0.5741 0.7015 0.6306
Multitask (CE+SC+LM) — 0.5599 0.6989 0.6211
Optimized pipeline — 0.6160 0.7361 0.6707

Table 4: Experimental results on component extraction. Experiments on dataset of simile sentences assume that
the sentence classifier is perfect. CE: component extraction; SC: simile sentence classification; LM: language
modeling.

of all manually labeled simile sentences in the test
set and the second dataset is the whole test set. We
want to compare how component extraction sys-
tems work when they know whether a sentence
contains a simile or not. We report and discuss
the results from the following aspects.

The effect of simile sentence classification.
First, we can compare the results in the middle
column and the rightmost column in Table 4. It is
clear that the component extraction systems work
much better when they know whether a sentence
contains a simile or not. Second, we can see that
both pipelines (the feature-based and the neural
network based) achieve a better performance com-
pared with extracting components directly using
either the CRF model or the neural single task
model. Third, Multitask(CE+SC) doesn’t bring
significant improvements compared with the sin-
gle task neural model. These observations indi-
cate that simile sentence classification is suitable
to be a pre-processing for simile component clas-
sification. It is necessary to further study how to
use high level predictions (sentence classification)
to learn better representations for consistently im-
proving local predictions (simile component ex-
traction).

Rule based, feature-based and neural mod-
els. We can see that even on gold simile sentences,
the rule based method doesn’t work well. The
poor performance of the rule based approach is
due to the following reasons. First, the rule-based
method is difficult to deal with complex sentence
structures. It often fails when there are multiple
subordinate clauses. Second, the comparator “�”
in Chinese has multiple syntactic roles, sometimes
is used as a verb, sometimes is used as a preposi-
tion. Third, the accuracy of Chinese dependency
parser still has room to be improved.

The CRF method performs significantly bet-
ter, because it considers more contextual signals.
Our neural single task model achieves large im-
provements on both datasets. This verifies the
effectiveness of the end-to-end approach. Neu-
ral models can see a long range of context and
learn features automatically. The word embed-
dings learned on external resources implicitly have
semantic domain information, which is not only
useful for generalization but also important for fig-
urative language processing.

The effect of language modeling. Surpris-
ingly, using language modeling as an auxiliary
task is very useful, especially when dealing with
noisy sentences. It gains a 1.3% F1 improvement
on the gold simile sentences due to the improve-
ment on the precision and a 3% F1 improvement
on the whole test set due to a large improvement
on the recall. Generally, language modeling may
help learn better task specific representations, es-
pecially when data size is limited (Rei, 2017). An-
other reason may be that language modeling aims
to make local predictions, the same as simile com-
ponent extraction. Additional information from
the same level may be more useful.

Some observations help understand the effect of
language modeling. Figure 2 illustrates the rel-
ative distance of tenors and vehicles to the com-
parator. Both tenors and vehicles tend to occur
near the comparator and have a clear preference
on which side of the comparator. Tenors are more
dispersed compared with vehicles, which may in-
crease the difficulty. As shown in Table 5, the per-
formance on identifying tenors is obviously worse
than identifying vehicles in both settings.

Figure 3 shows the distribution of extracted
components by two settings on the whole test set.
We can see that with language modeling, Mul-
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Model Tenor Vehicle
P R F1 P R F1

Singletask(CE) 0.7156 0.6935 0.7044 0.7789 0.8313 0.8043
Multitask (CE+LM) 0.6792 0.7881 0.7296 0.7393 0.9026 0.8128

Table 5: Experimental results on identifying individual types of components.

titask(CE+LM) makes predictions more aggres-
sively compared with Singletask(CE) and tends to
recognize more nearby components. We also ob-
serve that Multitask(CE+LM) identifies more cor-
rect UNK components, which are out of vocabu-
lary or low frequency concepts. This means that
language modeling leads the model to consider
more local contextual patterns.

Figure 2: Relative distance of tenors and vehicles to the
comparator in the dataset.

Figure 3: The distribution of extracted simile compo-
nents on the whole test set.

Optimized Pipeline. According to the results and
analysis, we can summarize that (1) simile sen-
tence classification can achieve good performance
by jointly optimizing three tasks; (2) simile com-
ponents can be improved with language modeling
as an auxiliary task; (3) simile sentence classifi-
cation is suitable to be used as a pre-precessing
for simile component classification. Therefore, we
could build an optimized pipeline. We first use the
enhanced simile sentence classifier to filter simile

sentences and then use the enhanced component
extractor to extract tenors and vehicles. As shown
in Table 4, the optimized pipeline performs better
than the strongest multitask learning setting.

However, in all settings, the precision scores
are lower compared with the recall scores. This
indicates that compared with identifying surface
patterns, distinguishing metaphorical from lit-
eral meanings is much harder and more external
knowledge should be incorporated.

6 Conclusion

This paper presented a study on simile recogni-
tion by exploiting neural networks. We construct
a manually annotated dataset for advancing the re-
search on simile analysis in Chinese. We propose
a multitask learning framework, which jointly op-
timizes three tasks: simile sentence classification,
simile component extraction and language model-
ing. The experimental results demonstrate the ef-
fectiveness of proposed approaches. It shows that
simile sentence classification and simile compo-
nent extraction both benefit from multitask learn-
ing. Simile sentence classification can achieve a
high performance and simile component extrac-
tion still has a lot of room to improve.

In future, we plan to extend this work in several
aspects: (1) enrich the simile component struc-
ture by adding shared properties or events so that
the extracted structures would be more useful for
metaphor processing; (2) improve representation
learning for recognition by incorporating external
knowledge; (3) apply simile recognition to study
the use of figurative language in writings.
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Abstract

Many tasks in natural language processing in-
volve comparing two sentences to compute
some notion of relevance, entailment, or sim-
ilarity. Typically, this comparison is done ei-
ther at the word level or at the sentence level,
with no attempt to leverage the inherent struc-
ture of the sentence. When sentence structure
is used for comparison, it is obtained during a
non-differentiable pre-processing step, leading
to propagation of errors. We introduce a model
of structured alignments between sentences,
showing how to compare two sentences by
matching their latent structures. Using a struc-
tured attention mechanism, our model matches
candidate spans in the first sentence to can-
didate spans in the second sentence, simulta-
neously discovering the tree structure of each
sentence. Our model is fully differentiable
and trained only on the matching objective.
We evaluate this model on two tasks, entail-
ment detection and answer sentence selection,
and find that modeling latent tree structures re-
sults in superior performance. Analysis of the
learned sentence structures shows they can re-
flect some syntactic phenomena.

1 Introduction

There are many tasks in natural language process-
ing that require matching two sentences: natural
language inference (Bowman et al., 2015; Nangia
et al., 2017) and paraphrase detection (Wang et al.,
2017b) are classification tasks over sentence pairs,
and question answering often requires an align-
ment between a question and a passage of text that
may contain the answer (Tan et al., 2016a; Ra-
jpurkar et al., 2016; Joshi et al., 2017).

Most neural models for these tasks perform
comparisons between the two sentences either at

⇤Work done during an internship at Allen Institute for
Artificial Intelligence.

the word level (Parikh et al., 2016), or at the sen-
tence level (Bowman et al., 2015). Word-level
comparisons ignore the inherent structure of the
sentences being compared, at best relying on a re-
current neural network such as an LSTM (Hochre-
iter and Schmidhuber, 1997) to incorporate some
amount of context from neighboring words into
each word’s representation. Sentence-level com-
parisons can incorporate the structure of each sen-
tence individually (Bowman et al., 2016; Tai et al.,
2015), but cannot easily compare substructures
between the sentences, as these are all squashed
into a single vector. Some models do incorporate
sentence structure by comparing subtrees between
the two sentences (Zhao et al., 2016; Chen et al.,
2017), but require pipelined approaches where a
parser is run in a non-differentiable preprocessing
step, losing the benefits of end-to-end training.

In this paper we propose a method, which we
call structured alignment networks, to perform
comparisons between substructures in two sen-
tences, in a more interpretable way, and without
relying on an external, non-differentiable parser.
We use a structured attention mechanism (Kim
et al., 2017; Liu and Lapata, 2018) to compute a
structured alignment between the two sentences,
jointly learning a latent tree structure for each sen-
tence and aligning spans between the two sen-
tences.

Our method constructs a CKY chart for each
sentence using the inside-outside algorithm (Man-
ning et al., 1999), which is fully differentiable (Li
and Eisner, 2009; Gormley et al., 2015). This chart
has a node for each possible span in the sentence,
and a score for the likelihood of that span being
a constituent in a parse of the sentence, marginal-
ized over all possible parses. We take these two
charts and find alignments between them, repre-
senting each span in each sentence with structured
attention over spans in the other sentence. These
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span representations, weighted by the span’s like-
lihood, are then used to compare the two sen-
tences. In this way, we can perform compar-
isons between sentences by leveraging their in-
ternal structure in an end-to-end, fully differen-
tiable model, trained only on one final objective.
Our model helps obtain more precise representa-
tions of the sentence pair, with the learned tree
structures and the alignment between them, and
provides better interpretability, which most neural
models lack in sentence matching tasks.

We evaluate this model on two sentence com-
parison datasets: SNLI (Bowman et al., 2015) and
TREC-QA (Voorhees and Tice, 2000). We find
that comparing sentences at the span level consis-
tently outperforms comparing at the word level.
Additionally, the learned sentence structures rep-
resent well-formed trees that reflect some syntac-
tic phenomena.

2 Word-level Comparison Baseline

We first describe a common word-level compari-
son model, called decomposable attention (Parikh
et al., 2016). This model was first proposed for
the natural language inference task, but similar
mechanisms have been used in many other tasks,
such as for aligning question and passage words
in the bi-directional attention model for ques-
tion answering (Seo et al., 2017). This model
serves as our main point of comparison, as our
latent tree matching model simply replaces the
word-level comparisons in decomposable atten-
tion model with span comparisons.

The decomposable attention model consists of
three steps: attend, compare, and aggregate. As
input, the model takes two sentences a and b
represented by sequences of word embeddings
[a1, · · · , am] and [b1, · · · , bn]. In the attend step,
the model computes attention scores for each pair
of words across the two input sentences and nor-
malizes them as a soft alignment from a to b (and
vice versa):

eij = F1(ai)
T F1(bj) (1)

Bi =
nX

j=1

exp(eij)Pn
k=1 exp(eik)

bj (2)

Aj =
mX

i=1

exp(eij)Pm
k=1 exp(ekj)

ai (3)

where F1 is a feed-forward neural network, Bi is
the weighted summation of the words in b that are

softly aligned to word ai and vice versa for Aj .
In the compare step, the input vectors ai and

bj are concatenated with their corresponding at-
tended vector Bi and Aj , and fed into a feed-
forward neural network, giving a comparison be-
tween each word and the words it aligns to in the
other sentence:

vai = F2([ai, Bi]) 8i 2 [1, · · · , m] (4)
vbj = F2([bj , Aj ]) 8j 2 [1, · · · , n] (5)

The aggregate step is a simple summation of
vai and vbj for each word in sentence a and b,
and the two resulting fixed-length vectors are con-
catenated and fed into a linear layer with Wy as
the weight matrix, followed by a softmax layer for
predicting the distribution y:

va =
mX

i=1

vai vb =
nX

j=1

vbj (6)

y = softmax(Wy[va, vb])) (7)

The decomposable attention model completely
ignores the order and context of words in the se-
quence. There are some efforts to strengthen the
decomposable attention model with a recurrent
neural network (Liu and Lapata, 2018) or intra-
sentence attention (Parikh et al., 2016). However,
these models amount to simply changing the input
vectors a and b, and still only perform a word-
level alignment between the two sentences.

3 Structured Alignment Networks

Language is inherently tree structured, and the
meaning of sentences comes largely from compos-
ing the meanings of subtrees (Chomsky, 2002). It
is natural, then, to compare the meaning of two
sentences by comparing their substructures (Mac-
Cartney and Manning, 2009). For example, when
determining the relationship between two sen-
tences in Figure 1, the ideal units of comparison
are spans determined by subtrees: “is in Seattle”
compared to “based in Washington state”.

The challenge with comparing spans drawn
from subtrees is that the tree structure of the sen-
tence is latent and must be inferred, either dur-
ing pre-processing or in the model itself. In this
section we present a model that operates on the
latent tree structure of each sentence, comparing
all possible spans in one sentence with all possi-
ble spans in the second sentence, weighted by how
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A: the headquarter of BOEING is in Seattle      

B: Boeing is a company based in Washington state

Figure 1: Example span alignments of a sen-
tence pair, where different colors indicate match-
ing spans. Note that some spans overlap, which
cannot happen in a single tree; our model consid-
ers all possible span comparisons, weighted by the
spans’ marginal likelihood.

likely each span is to appear as a constituent in a
parse of the sentence. We use the non-terminal
nodes of a binary constituency parse to represent
spans. Because of this choice of representation,
we can use the nodes in a CKY parsing chart to ef-
ficiently marginalize span likelihood over all pos-
sible parses for each sentence, and compare nodes
in each sentence’s chart.

3.1 Learning Latent Constituency Trees
A constituency parser can be partially formal-
ized as a graphical model with the following
cliques (Klein and Manning, 2004): the latent
variables cikj 2 0, 1 for all i < j, indicating
whether the span from the i-th token to the j-th
token (spanij) is a constituency node built from
the merging of sub-node spanik and span(k+1)j .
Given a sentence x = [xi, · · · , xn], the probability
of a tree z is,

p(z|x) =

Q
cikj2z p(cikj = 1)

P
z02Z

Q
cikj2z0 p(cikj = 1)

(8)

where Z represents all possible constituency trees
for x.

The parameters for the graph-based CRF con-
stituency parser are �ikj reflecting the scores of
spanij forming a binary constituency node with k
as the splitting point. It is possible to calcu-
late the marginal probability of each constituency
node p(cijk = 1|x) using the inside-outside algo-
rithm (Klein and Manning, 2003). Although the
inside-outside algorithm is constrained to gener-
ate a binary tree, this is not a severe limitation,
as most structures can be easily binarized (Finkel
et al., 2008).

In a typical constituency parser, the score �ikj is
parameterized according to the production rules of
a grammar, e.g., with normalized categorical dis-
tributions for each non-terminal. Our unlabeled
grammar effectively has only a single production

 

wi wk-1 wk wj

wk wi-1 wi wjw1 wn

 

 

(a) Inside pass

 

wi wk-1 wk wj

wk wi-1 wi wjw1 wn

 

 

(b) Outside pass

Figure 2: The inside-outside algorithm. (a) is the
process for calculating the inside score ↵ij . Three
yellow spaces indicate ↵i(k�1), ↵kj and �ikj . (b)
is a part of the process for calculating the outside
score �ij , with target span spanij as the right child
of a non-terminal. The blue space indicates �kj

and two yellow spaces indicate ↵k(i�1) and �kij .

rule, however, we parameterize these scores as bi-
linear functions operating on the representations
of the two subtrees being merged. For the in-
side pass, as illustrated in Figure 2a, the inside
score ↵ij for span from position i to j is marginal-
ized over the splitting points k:

�ikj = sp
T
ikWsp(k+1)j (9)

↵ij =
X

i < k  j

�ikj↵i(k�1)↵kj (10)

where spij 2 R
d is the representation for the span,

and W 2 R
d⇤d is the weight matrix. This process

is calculated recursively from bottom to root, gen-
erating the score for each possible constituent.

For the outside pass, the outside score �ij is:

�ij =
X

1k<i

�kij↵k(i�1)�kj

+
X

j<kn

�ijk↵(j+1)k�ik (11)

where the first term is the score for spanij be-
ing the right child on a non-terminal node and the
second term is the score for spanij being the left
child. In Figure 2b, we illustrate the outside pro-
cess with the target span spanij being the right
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child of a non-terminal node. This process is cal-
culated recursively from root to bottom.

The normalized marginal probability ⇢ij for
each span spanij , where 1  i < n, i < j  n
can be calculated by:

⇢ij = ↵ij�ij/↵0n (12)

To compute the representations of all pos-
sible spans, we use Long Short-Term Mem-
ory Neural Networks (LSTMs; Hochreiter and
Schmidhuber 1997) with max-pooling and mi-
nus features (Cross and Huang, 2016; Liu
and Lapata, 2017). We represent each sen-
tence as a sequence of word embeddings
[wsos, w1, · · · , wt, · · · , wn, weos] and run a bidi-
rectional LSTM to obtain the output vectors.
ht = [~ht, ~ht] is the output vector for the tth word,
and ~ht and ~ht are the output vectors from the for-
ward and backward directions, respectively. We
represent a constituent from position i to j with a
span vector spij :

sp
maxpool
ij = max(hi, · · · , hj) (13)

sp
minus
ij = [~hj � ~hi�1, ~hi � ~hj+1] (14)

spij = [sp
maxpool
ij , sp

minus
ij ] (15)

where max(xi, · · · , xj) is the max-pooling oper-
ation over the sequence of output vectors within
this constituent.

After applying the parsing process on two sen-
tences, we obtain the marginal probabilities for
all potential spans of the two constituency trees,
which can then be used for aligning.

3.2 Learning Structured Alignments
After learning latent constituency trees for each
sentence, we are able to perform span-level com-
parisons between the two sentences, instead of
the word-level comparisons done by the decom-
posable attention model. The structure of these
two comparison models is the same, but the ba-
sic elements of our structured alignment model are
spans instead of words, and the marginal proba-
bilities obtained from the inside-outside algorithm
are used as a re-normalization value for incorpo-
rating structural information into the alignments.

For sentence a, we have the representation sp
a
ij

for each spanij and its marginal probability ⇢
a
ij .

And for sentence b, we also get sp
b
ij and ⇢

b
ij . The

attention scores are computed between all pairs of

spans across the two sentences, and the attended
vectors can be calculated as:

eij,kl = F1(sp
a
ij)

T F1(sp
b
kl) (16)

Bij =
nX

k=1

nX

l=k

exp(eij,kl + ln(⇢b
kl))

nP
s=1

nP
t=s

exp(eij,st + ln(⇢b
st))

sp
b
kl

(17)

Akl =
mX

i=1

mX

j=i

exp(eij,kl + ln(⇢a
ij))

mP
s=1

mP
t=s

exp(est,kl + ln(⇢a
st))

sp
a
ij

(18)

Then, the span vectors are concatenated with
the attended vectors and fed into a feed-forward
neural network:

v
a
ij = F2([sp

a
ij , Bij ]) (19)

v
b
kl = F2([sp

b
kl, Akl]) (20)

To aggregate these vectors, instead of using di-
rect summation, we apply weighted summation
with the marginal probabilities as weights:

va =
mX

i=1

mX

j=i

⇢
a
ijv

a
ij ; vb =

nX

k=1

nX

l=1

⇢
b
klv

b
kl (21)

where ⇢
a and ⇢

b work like the self-attention mech-
anism of (Lin et al., 2017) to replace the summa-
tion pooling step. We use a softmax function to
compute the predicted distribution y of the input
sentence pair:

y = softmax(Wy[va, vb]) (22)

4 Experiments

We evaluate our structured alignment model on
two natural language matching tasks: question an-
swering as sentence selection and natural language
inference. We view our approach as a module for
replacing the widely-used word-level alignment
which can be plugged into other neural models.
For that reason, our experiments are not intended
to show performance improvements over state-of-
the-art neural network architectures. Rather our
evaluation studies aim to address three questions:
(a) whether our methods can be trained effectively
in an end-to-end fashion; (b) whether they yield
improvements over standard word-level alignment
models; and (c) whether they can learn plausible
latent constituency tree structures.
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Models MAP MRR
Word-level Attention 0.764 0.842
Simple Span Alignment 0.772 0.851
Simple Span Alignment + External Parser 0.780 0.846
Structured Alignment (Shared Parameters) 0.780 0.860
Structured Alignment (Separated Parameters) 0.786 0.860
QA-LSTM (Tan et al., 2016b) 0.730 0.824
Attentive Pooling Network (Santos et al., 2016) 0.753 0.851
Pairwise Word Interaction (He and Lin, 2016) 0.777 0.836
Lexical Decomposition and Composition (Wang et al., 2016) 0.771 0.845
Noise-Contrastive Estimation (Rao et al., 2016) 0.801 0.877
BiMPM (Wang et al., 2017b) 0.802 0.875

Table 1: Results of our models (top) and previously proposed systems (bottom) on the TREC-QA test set.

For both tasks, we initialize our model
with 300D 840B GloVe word embeddings (Pen-
nington et al., 2014). The hidden size for the BiL-
STM is 150. The feed-forward networks F1 and
F2 are two-layer perceptrons with ReLU as the
hidden activation function and the size of the hid-
den and output layers is set to 300. All hyper-
parameters are selected based on the model’s per-
formance on the development set.

4.1 Answer Sentence Selection
We first study the effectiveness of our model for
answer sentence selection tasks. Given a question,
answer sentence selection aims to rank a list of
candidate answer sentences based on their related-
ness to the question. We experiment on the TREC-
QA dataset (Wang et al., 2007), in which all ques-
tions with only positive or negative answers are
removed. This leaves us with 1,162 training ques-
tions, 65 development questions and 68 test ques-
tions. Experimental results are listed in Table 1.
We measure performance by the mean average
precision (MAP) and mean reciprocal rank (MRR)
using the standard TREC evaluation script.

In the first block of Table 1, we compare our
model and variants thereof against several base-
lines. The first baseline is the Word-level De-
composable Attention model strengthened with a
bidirectional LSTM for obtaining a contextualized
representation for each word. The second baseline
is a Simple Span Alignment model; we use an MLP
layer over the LSTM outputs to calculate the un-
normalized scores and replace the inside-outside
algorithm with a simple softmax function to ob-
tain the probability distribution over all candidate

spans. We also introduce a pipelined baseline
where we extract constituents from trees parsed by
the CoreNLP (Manning et al., 2014) constituency
parser, and use the Simple Span Alignment model
to only align these constituents.

As shown in Table 1, we use two variants of the
Structured Alignment model, since the structure of
the question and the answer sentence may be dif-
ferent; the first model shares parameters across the
question and the answer for computing the struc-
tures, while the second one uses separate param-
eters. We view the sentence selection task as a
binary classification problem and the final ranking
is based on the predicted probability of the sen-
tence containing the correct answer (positive la-
bel). We apply dropout to the output of the BiL-
STM with dropout ratio set to 0.2. All param-
eters (including word embeddings) are updated
with AdaGrad (Duchi et al., 2011), and the learn-
ing rate is set to 0.05.

Table 1 (second block) also reports the perfor-
mance of various comparison systems and state-
of-the-art models. As can be seen, on both MAP
and MRR metrics, structured alignment models
perform better than the decomposable attention
model, showing that structural bias is helpful for
matching a question to the correct answer sen-
tence. We also observe that using separate param-
eters achieves higher scores on both metrics. The
simple span alignment model obtains results simi-
lar to the decomposable attention model, suggest-
ing that the shallow softmax distribution is ineffec-
tive for capturing structural information and may
even introduce redundant noise. The pipelined
model with an external parser also slightly im-
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Models Accuracy # Parameters
Word-level Attention 85.8 1.1M
Simple Span Alignment 85.4 1.26M
Simple Span Alignment + External Parser 85.6 1.17M
Structured Alignment 86.3 1.44M
Classifier with handcrafted features (Bowman et al., 2015) 78.2 -
LSTM encoders (Bowman et al., 2015) 80.6 3.0M
LSTM with inter-attention (Rocktäschel et al., 2016) 83.5 252K
Matching LSTMs (Wang and Jiang, 2015) 86.1 1.9M
LSTMN with deep attention fusion (Cheng et al., 2016) 86.3 3.4M
Enhanced BiLSTM Inference Model (Chen et al., 2016) 88.0 4.3M
Densely Interactive Inference Network (Gong et al., 2017) 88.0 -

Table 2: Test accuracy (%) on the SNLI dataset. Wherever available we also provide the number of
parameters (excluding embeddings).

proves upon the baseline, but still cannot outper-
form the end-to-end trained structured alignment
model which achieves results comparable with
several strong baselines with fewer parameters. As
mentioned earlier, our model could be used as a
plug-in component for other more complex mod-
els, and may boost their performance by modeling
the latent structures. At the same time, the struc-
tured alignment can provide better interpretability
for sentence matching tasks, which is a defect of
most neural models.

4.2 Natural Language Inference
The second task we consider is natural language
inference, where the input is a pair of premise
and hypothesis sentences, and the goal is to pre-
dict whether the premise entails the hypothesis,
contradicts the hypothesis, or neither. For this
task, we use the Stanford NLI dataset (Bowman
et al., 2015). After removing sentences with un-
known labels, we obtain 549,367 pairs for train-
ing, 9,842 for development and 9,824 for testing.

We compare our model against the same base-
lines used in the question answering task. All
parameters (including word embeddings) are up-
dated with AdaGrad (Duchi et al., 2011), and the
learning rate is set to 0.05. Dropout is used with
ratio 0.2. The structured alignment model in this
experiment uses shared parameters for computing
latent tree structures, since both the premise and
hypothesis are declarative sentences.

The results of our experiments are shown in
Table 2. Similar to the answer selection task,
the tree matching model outperforms the decom-
posable model. Our structured alignment model

gains 0.5% in accuracy over the baseline word-
level comparison model without any additional an-
notation, simply from introducing a structural bias
in the alignment between the sentences. Simple
span alignment, however, is not helpfult and even
slightly degrades the performance over the word-
level model.

4.3 Analysis of Learned Tree Structures
In this section, we give a brief qualitative analysis
of the learned tree structures. We present the CKY
charts for two randomly-selected sentence pairs in
the SNLI test set in Figure 3. Recall that the CKY
chart shows the likelihood of each span appear-
ing as a constituent in the parse of the sentence,
marginalized over all possible parses. By visu-
alizing these span probabilities, we can see that
the model learns structures which correspond to
known syntactic structures.

In subfigure (a), we can see that band is play-
ing is a very-likely span, as is at a large venue.
In subfigure (b), the phrases performing at a lo-
cal bar and at a local bar or club also receive
high probabilities. For the second sentence pair,
we see that the model can even resolve some at-
tachment ambiguities correctly. The prepositional
phrase with green feathers, has a very low score
for being attached to women. Instead, the model
prefers to attach it to lingerie, forming the span
lingerie with green feathers. We also present the
top-5 spans and their alignments in subfigures (c)
and (d), which can be used to interpret model de-
cisions for sentence matching tasks.

The analysis above and our experimental re-
sults in the previous section suggest that our
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Figure 3: (a), (b), (d), and (e) are CKY charts showing marginalized span probabilities for sentence pairs
in the SNLI test set. Each cell uses depth of the color to represent the probability of the span (from
the i-th word to the j-th word) forming a proper constituent. (c) and (f) are the alignments of the top-5
spans from hypothesis sentence to the premise sentence, where the boldness of the lines indicates the
probability of spans being aligned.

model is able to learn tree structures which are
closely related to syntax, and in addition reflect
the semantic-level characteristics of the task at
hand. In both question answering and natural
language inference tasks, we observe that struc-
tured alignment leads to performance improve-
ments over word-level models. This is in con-
trast to prior work (Williams et al., 2017), where
the discovery of tree structures based on a seman-
tic objective is not helpful. Although we use the
same supervision signal in our model, a difference
between the two approaches is that they are try-
ing to learn tree structures for each sentence in-
dependently, performing comparisons at the sen-
tence level only. Comparing spans directly forces
the model to induce trees with comparable con-
stituents, giving the model a stronger inductive
bias.

Although our main goal is not to induce a gram-
mar, we perform some simple experiments to com-
pare the learned latent trees with parser-generated
ones. We parse the sentences in both test-sets
with the CoreNLP (Manning et al., 2014) con-

stituency parser to obtain silver trees. Based on
the parsing part of the trained structured align-
ment model, we compute the marginal probabil-
ities of test sentences and feed them into CKY al-
gorithm (Younger, 1967) to find the most likely
constituency trees. We then convert both silver
and latent trees to sets of constituent brackets,
and calculate the accuracy of the learned brack-
ets against the silver parses. We use different
combinations of training- and test-sets to examine
the transferability of the learned tree structures.
The results are shown in Table 3. We can see
that although our model does not have any tree-
structured input during training, it can still outper-
form the left-branching (LB) and right-branching
baselines (RB) and achieve some consistency with
the parser generated trees.

5 Related Work

Sentence comparison models The Stanford
natural language inference dataset (Bowman et al.,
2015), and the expanded multi-genre natural lan-
guage inference dataset (Nangia et al., 2017), are
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tested on
trained on SNLI TREC LB RB

SNLI 15.1 10.7 12.8 6.0
TREC 12.3 11.4 10.5 3.2

Table 3: Brackets accuracy of latent learned trees
against silver trees from CoreNLP parser. We
show the transferability of the learned parser by
applying it on a test-set different from the training-
set. For example, we train the structured align-
ment model on the TREC-QA data, and apply it
on SNLI to obtain the tree distributions. LB and
RB are left- and right-branching baselines.

the most well-known recent sentence comparison
tasks. The literature on this comparison task is
far too extensive to include here, although the re-
cent shared task on Multi-NLI gives a good sur-
vey of sentence-level comparison models (Nan-
gia et al., 2017). Some of these models use sen-
tence structures, which are obtained either in a la-
tent fashion (Bowman et al., 2016) or during pre-
processing (Zhao et al., 2016), but they squash all
of the structure into a single vector, losing the abil-
ity to easily compare substructures between the
two sentences.

For models doing a word-level comparison,
the decomposable attention model (Parikh et al.,
2016), which we have discussed already in this pa-
per, is the most salient example, although many
similar models exist in the literature (Chen et al.,
2017; Wang et al., 2017b). The idea of word-level
alignments between a question and a passage is
also pervasive in the recent question answering lit-
erature (Seo et al., 2017; Wang et al., 2017a).

Finally, and most similar to our approach, sev-
eral models have been proposed that directly
compare subtrees between two sentences (Chen
et al., 2017; Zhao et al., 2016). However, all of
these models are pipelined; they obtain the sen-
tence structure in a non-differentiable preprocess-
ing step, losing the benefits of end-to-end train-
ing. Ours is the first model to allow comparison
between latent tree structures, trained end-to-end
on the comparison objective.

Structured attention While it has long been
known that inference in graphical models is dif-
ferentiable (Li and Eisner, 2009; Domke, 2011),
and using inference in, e.g., a CRF (Lafferty et al.,
2001) as the last layer in a neural network is com-
mon practice (Liu and Lapata, 2017; Lample et al.,

2016), the use of inference algorithms as interme-
diate layers in end-to-end neural networks is a re-
cent development. Kim et al. (2017) were the first
to use inference to compute structured attentions
over latent sentence variables, inducing tree struc-
tures trained on the end-to-end objective. Liu and
Lapata (2018) showed how to do this more effi-
ciently, although their work is still limited to struc-
tured attention over a single sentence. Our model
is the first to include latent structured alignments
between two sentences.

Grammar Induction Unsupervised grammar
induction is a well-studied problem (Cohen and
Smith, 2009). The most recent work in this di-
rection was the Neural E-DMV model of Jiang
et al. (2016). While our goal is not to induce a
grammar, we do produce a probabilistic grammar
as a byproduct of our model. Our results suggest
that training on more complex objectives may be
a good way to pursue grammar induction in the
future; forcing the model to construct consistent,
comparable subtrees between the two sentences is
a strong signal for grammar induction. Very re-
cently, a few models attempt to infer latent depen-
dency tree structures with neural models in sen-
tence modeling tasks (Yogatama et al., 2017; Choi
et al., 2018).

6 Conclusions

In this paper we have considered the problem of
comparing two sentences in natural language pro-
cessing models. We have shown how to move
beyond word- and sentence-level comparison to
comparing spans between two sentences, without
the need for an external parser. Through experi-
ments on sentence comparison datasets, we have
seen that span comparisons consistently outper-
form word-level comparisons, with no additional
supervision. The proposed model can be trained
effectively, in an end-to-end fashion and is able to
induce plausible tree structures.

Our results have several implications for future
work. First, the success of span comparisons over
word-level comparisons suggests that it may be
advantageous to include such comparisons in more
complex models, either for comparing two sen-
tences directly, or as intermediate parts of models
for more complex tasks, such as reading compre-
hension. Second, our model’s ability to infer trees
from a semantic objective is intriguing, and sug-
gestive of future opportunities in grammar induc-
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tion research. The use of the inside-outside algo-
rithm unavoidably renders the full model er (by 5–
8 times) compared to the decomposable attention
model. We hope to find a more efficient way to
accelerate this dynamic programming method on
a GPU.
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Abstract

This paper presents a new deep learning archi-
tecture for Natural Language Inference (NLI).
Firstly, we introduce a new architecture where
alignment pairs are compared, compressed and
then propagated to upper layers for enhanced
representation learning. Secondly, we adopt
factorization layers for efficient and expressive
compression of alignment vectors into scalar
features, which are then used to augment the
base word representations. The design of our
approach is aimed to be conceptually simple,
compact and yet powerful. We conduct exper-
iments on three popular benchmarks, SNLI,
MultiNLI and SciTail, achieving competitive
performance on all. A lightweight parameteri-
zation of our model also enjoys a ⇡ 3 times re-
duction in parameter size compared to the ex-
isting state-of-the-art models, e.g., ESIM and
DIIN, while maintaining competitive perfor-
mance. Additionally, visual analysis shows
that our propagated features are highly inter-
pretable.

1 Introduction

Natural Language Inference (NLI) is a pivotal
and fundamental task in language understanding
and artificial intelligence. More concretely, given
a premise and hypothesis, NLI aims to detect
whether the latter entails or contradicts the former.
As such, NLI is also commonly known as Recog-
nizing Textual Entailment (RTE). NLI is known
to be a significantly challenging task for machines
whose success often depends on a wide repertoire
of reasoning techniques.

In recent years, we observe a steep improve-
ment in NLI systems, largely contributed by the
release of the largest publicly available corpus for
NLI - the Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015) which com-
prises 570K hand labeled sentence pairs. This has

improved the feasibility of training complex neu-
ral models, given the fact that neural models often
require a relatively large amount of training data.

Highly competitive neural models for NLI are
mostly based on soft-attention alignments, popu-
larized by (Parikh et al., 2016; Rocktäschel et al.,
2015). The key idea is to learn an alignment of
sub-phrases in both sentences and learn to com-
pare the relationship between them. Standard
feed-forward neural networks are commonly used
to model similarity between aligned (decomposed)
sub-phrases and then aggregated into the final pre-
diction layers.

Alignment between sentences has become a sta-
ple technique in NLI research and many recent
state-of-the-art models such as the Enhanced Se-
quential Inference Model (ESIM) (Chen et al.,
2017b) also incorporate the alignment strategy.
The difference here is that ESIM considers a non-
parameterized comparison scheme, i.e., concate-
nating the subtraction and element-wise product
of aligned sub-phrases, along with two original
sub-phrases, into the final comparison vector. A
bidirectional LSTM is then used to aggregate the
compared alignment vectors.

This paper presents a new neural model for
NLI. There are several new novel components
in our work. Firstly, we propose a compare,
compress and propagate (ComProp) architecture
where compressed alignment features are propa-
gated to upper layers (such as a RNN-based en-
coder) for enhancing representation learning. Sec-
ondly, in order to achieve an efficient propaga-
tion of alignment features, we propose alignment
factorization layers to reduce each alignment vec-
tor to a single scalar valued feature. Each scalar
valued feature is used to augment the base word
representation, allowing the subsequent RNN en-
coder layers to benefit from not only global but
also cross sentence information.
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There are several major advantages to our pro-
posed architecture. Firstly, our model is relatively
compact, i.e., we compress alignment feature vec-
tors and augment them to word representations in-
stead. This is to avoid large alignment (or match)
vectors being propagated across the network. As a
result, our model is more parameter efficient com-
pared to ESIM since the width of the middle layers
of the network is now much smaller. To the best of
our knowledge, this is the first work that explicitly
employs such a paradigm.

Secondly, the explicit usage of compression en-
ables improved interpretabilty since each align-
ment pair is compressed to a scalar and hence,
can be easily visualised. Previous models such
as ESIM use subtractive operations on alignment
vectors, edging on the intuition that these vectors
represent contradiction. Our model is capable of
visually demonstrating this phenomena. As such,
our design choice enables a new way of deriving
insight from neural NLI models.

Thirdly, the alignment factorization layer is ex-
pressive and powerful, combining ideas from stan-
dard machine learning literature (Rendle, 2010)
with modern neural NLI models. The factoriza-
tion layer tries to decompose the alignment vector
(constructed from the variations of a � b, a � b
and [a; b]), learning higher-order feature interac-
tions between each compared alignment. In other
words, it models the second-order (pairwise) in-
teractions between each feature in every align-
ment vector using factorized parameters, allow-
ing more expressive comparison to be made over
traditional fully-connected layers (FC). Moreover,
factorization-based models are also known to be
able to model low-rank structure and reduce risks
of overfitting. The effectiveness of the factor-
ization alignment over alternative baselines such
as feed-forward neural networks is confirmed by
early experiments.

The major contributions of this work are sum-
marized as follows:

• We introduce a Compare, Compress and
Propagate (ComProp) architecture for NLI.
The key idea is to use the myriad of gener-
ated comparison vectors for augmentation of
the base word representation instead of sim-
ply aggregating them for prediction. Sub-
sequently, a standard compositional encoder
can then be used to learn representations from
the augmented word representations. We

show that we are able to derive meaningful
insight from visualizing these augmented fea-
tures.

• For the first time, we adopt expressive fac-
torization layers to model the relationships
between soft-aligned sub-phrases of sentence
pairs. Empirical experiments confirm the ef-
fectiveness of this new layer over standard
fully connected layers.

• Overall, we propose a new neural model
- CAFE (ComProp Alignment-Factorized
Encoders) for NLI. Our model achieves state-
of-the-art performance on SNLI, MultiNLI
and the new SciTail dataset, outperform-
ing existing state-of-the-art models such as
ESIM. Ablation studies confirm the effec-
tiveness of each proposed component in our
model.

2 Related Work

Natural language inference (or textual entailment
recognition) is a long standing problem in NLP
research, typically carried out on smaller datasets
using traditional methods (Maccartney, 2009; Da-
gan et al., 2006; MacCartney and Manning, 2008;
Iftene and Balahur-Dobrescu, 2007).

The relatively recent creation of 570K human
annotated sentence pairs (Bowman et al., 2015)
have spurred on many recent works that use neu-
ral networks for NLI. Many advanced neural ar-
chitectures have been proposed for the NLI task,
with most exploiting some variants of neural at-
tention which learn to pay attention to important
segments in a sentence (Parikh et al., 2016; Chen
et al., 2017b; Wang and Jiang, 2016b; Rocktäschel
et al., 2015; Yu and Munkhdalai, 2017a).

Amongst the myriad of neural architectures pro-
posed for NLI, the ESIM (Chen et al., 2017b)
model is one of the best performing models.
The ESIM, primarily motivated by soft subphrase
alignment in (Parikh et al., 2016), learns align-
ments between BiLSTM encoded representations
and aggregates them with another BiLSTM layer.
The authors also propose the usage of subtractive
composition, claiming that this helps model con-
tradictions amongst alignments.

Compare-Aggregate models are also highly
popular in NLI tasks. While this term was coined
by (Wang and Jiang, 2016a), many prior NLI mod-
els follow this design (Wang et al., 2017; Parikh
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et al., 2016; Gong et al., 2017; Chen et al., 2017b).
The key idea is to aggregate matching features
and pass them through a dense layer for predic-
tion. (Wang et al., 2017) proposed BiMPM, which
adopts multi-perspective cosine matching across
sequence pairs. (Wang and Jiang, 2016a) proposed
a one-way attention and convolutional aggregation
layer. (Gong et al., 2017) learns representations
with highway layers and adopts ResNet for learn-
ing features over an interaction matrix.

There are several other notable models for NLI.
For instance, models that leverage directional self-
attention (Shen et al., 2017) or Gumbel-Softmax
(Choi et al., 2017). DGEM is a graph based at-
tention model which was proposed together with
a new entailment challenge dataset, SciTail (Khot
et al., 2018). Pretraining have been known to
also be highly useful in the NLI task. For in-
stance, contextualized vectors learned from ma-
chine translation (McCann et al., 2017) (CoVe) or
language modeling (Peters et al., 2018) (ELMo)
have showned to be able to improve performance
when integrated with existing NLI models.

Our work compares and compresses alignment
pairs using factorization layers which leverages
the rich history of standard machine learning liter-
ature. Our factorization layers incorporate highly
expressive factorization machines (FMs) (Rendle,
2010) into neural NLI models. In standard ma-
chine learning tasks, FMs remain a very competi-
tive choice for learning feature interactions (Xiao
et al., 2017) for both standard classification and
regression problems. Intuitively, FMs are adept at
handling data sparsity (typically interactions) by
using factorized parameters to approximate a fea-
ture matching matrix. This makes it suitable in our
model architecture since feature interaction be-
tween subphrase alignment pairs is typically very
sparse as well.

A recent work (Beutel et al., 2018) reports an
interesting empirical study pertaining to the abil-
ity of standard FC layers and their ability to model
‘cross features’ (or multiplicative features). Their
overall finding suggests that while standard ReLU
FC layers are able to approximate 2-way or 3-way
features, they are extremely inefficient in doing so
(requiring either very wide or deep layers). This
further motivates the usage of FMs in this work
and is well aligned with our empirical results, i.e.,
strong competitive performance with reasonably
small parameterization.

3 Our Proposed Model
In this section, we provide a layer-by-layer de-
scription of our model architecture. Our model ac-
cepts two sentences as an input, i.e., P (premise)
and H (hypothesis). Figure 1 illustrates a high-
level overview of our proposed model architec-
ture.

- ⨀
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Alignment
Factorization

Augmentation
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Hypothesis

Premise

Hypothesis
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Propagate
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Hypothesis

Input 
Encoding

Figure 1: High level overview of our proposed architecture
(best viewed in color). Alignment vectors are compressed
and then propagated to upper representation learning layers
(RNN encoders). Intra-attention is omitted in this diagram
due to the lack of space.

3.1 Input Encoding Layer
This layer aims to learn a k-dimensional repre-
sentation for each word. Following (Gong et al.,
2017), we learn feature-rich word representations
by concatenating word embeddings, character em-
beddings and syntactic (part-of-speech tag) em-
beddings (provided in the datasets). Character rep-
resentations are learned using a convolutional en-
coder with max pooling function and is commonly
used in many relevant literature (Wang et al., 2017;
Chen et al., 2017c).

Highway Encoder Subsequently, we pass each
concatenated word vector into a two layer high-
way network (Srivastava et al., 2015) in order to
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learn a k-dimensional representation. Highway
networks are gated projection layers which learn
adaptively control how much information is being
carried to the next layer. Our strategy is similar
to (Parikh et al., 2016) which trains the projection
layer in place of tuning the embedding matrix. The
usage of highway layers over standard projection
layers is empirically motivated. However, an in-
tuition would be that the gates in this layer adapt
to learn the relative importance of each word to
the NLI task. Let H(.) and T (.) be single layered
affine transforms with ReLU and sigmoid activa-
tion functions respectively. A single highway net-
work layer is defined as:

y = H(x, WH) · T (x, WT ) + C · x (1)

where C = (1�T (x, WT )) and WH , WT 2 R
r⇥d

Notably, the dimensions of the affine transform
might be different from the size of the input vector.
In this case, an additional nonlinear transform is
used to project x to the same dimensionality. The
output of this layer is P̄ 2 R

k⇥`P (premise) and
H̄ 2 R

k⇥`H (hypothesis), with each word con-
verted to a r-dimensional vector.

3.2 Soft-Attention Alignment Layer

This layer describes two soft-attention alignment
techniques that are used in our model.

Inter-Attention Alignment Layer This layer
learns an alignment of sub-phrases between P̄ and
H̄ . Let F (.) be a standard projection layer with
ReLU activation function. The alignment matrix
of two sequences is defined as follows:

eij = F (p̄i)
> · F (h̄j) (2)

where E 2 R
`p⇥`h and p̄i, h̄j are the i-th and j-th

word in the premise and hypothesis respectively.

�i =

`pX

j=1

exp(eij)
P`p

k=1 exp(eik)
p̄j (3)

↵j =
`hX

i=1

exp(eij)P`h
k=1 exp(ekj)

h̄i (4)

where �i is the sub-phrase in P̄ that is softly
aligned to hi. Intuitively, �i is a weighted sum
across {pj}`p

j=1, selecting the most relevant parts
of P̄ to represent hi.

Intra-Attention Alignment Layer This layer
learns a self-alignment of sentences and is applied
to both P̄ and H̄ independently. For the sake of
brevity, let S̄ represent either P̄ or H̄ , the intra-
attention alignment is computed as:

s0
i =

`pX

j=1

exp(fij)
P`p

k=1 exp(fik)
s̄j (5)

where fij = G(s̄i)> · G(s̄j) and G(.) is a non-
linear projection layer with ReLU activation func-
tion. The intra-attention layer models similarity
of each word with respect to the entire sentence,
capturing long distance dependencies and ‘global’
context of the entire sentence.

3.3 Alignment Factorization Layer
This layer aims to learn a scalar valued feature
for each comparison between aligned sub-phrases.
Firstly, we introduce our factorization operation,
which lives at the core of our neural model.

Factorization Operation Given an input vector
x, the factorization operation (Rendle, 2010) is de-
fined as:

Z(x) = w0 +
nX

i=1

wi xi +
nX

i=1

nX

j=i+1

hvi, vji xi xj

(6)

where Z(x) is a scalar valued output, h.; .i is the
dot product between two vectors and w0 is the
global bias. Factorization machines model low-
rank structure within the matching vector produc-
ing a scalar feature. The parameters of this layer
are w0 2 R, w 2 R

r and v 2 R
r⇥k. The first termPn

i=1 wi xi is simply a linear term. The second
term

Pn
i=1

Pn
j=i+1hvi, vji xi xj captures all pair-

wise interactions in x (the input vector) using the
factorization of matrix v.

Inter-Alignment Factorization This operation
compares the alignment between inter-attention
aligned representations, i.e., (�i, hi) and (↵j , pj).
Let (a, b) represent an alignment pair, we apply
the following operations:

yc = Z([a; b]) ; ys = Z(a � b) ; ym = Z(a � b)
(7)

where yc, ys, ym 2 R, Z(.) is the factorization op-
eration, [.; .] is the concatenation operator and � is
the element-wise multiplication. The intuition of
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modeling subtraction is targeted at capturing con-
tradiction. However, instead of simply concate-
nating the extra comparison vectors, we compress
them using the factorization operation. Finally, for
each alignment pair, we obtain three scalar-valued
features which map precisely to a word in the se-
quence.

Intra-Alignment Factorization Next, for each
sequence, we also apply alignment factorization
on the intra-aligned sentences. Let (s, s0) repre-
sent an intra-aligned pair from either the premise
or hypothesis, we compute the following opera-
tions:

vc = Z([s; s0]) ; vs = Z(s � s0) ; vm = Z(s � s0)
(8)

where vc, vs, vm 2 R and Z(.) is the factoriza-
tion operation. Applying alignment factorization
to intra-aligned representations produces another
three scalar-valued features which are mapped to
each word in the sequence. Note that each of the
six factorization operations has its own parame-
ters but shares them amongst all words in the sen-
tences.

3.4 Propagation and Augmentation
Finally, the six factorized features are then aggre-
gated1 via concatenation to form a final feature
vector that is propagated to upper representation
learning layers via augmentation of the word rep-
resentation P̄ or H̄ .

ui = [si; f
i
intra; f

i
inter] (9)

where si is i-th word in P̄ or H̄ , and f i
intra and

f i
inter are the intra-aligned [vc; vs; vm] and inter-

aligned [yc; ys; ym] features for the i-th word in the
sequence respectively. Intuitively, f i

intra augments
each word with global knowledge of the sen-
tence and f i

inter augments each word with cross-
sentence knowledge via inter-attention.

3.5 Sequential Encoder Layer
For each sentence, the augmented word represen-
tations u1, u2, . . . u` are then passed into a sequen-
tial encoder layer. We adopt a standard vanilla
LSTM encoder.

hi = LSTM(u, i), 8i 2 [1, . . . `] (10)
1Following (Parikh et al., 2016), we may also concatenate

the intra-aligned vector to ui which we found to have speed
up convergence.

where ` represents the maximum length of the se-
quence. Notably, the parameters of the LSTM are
siamese in nature, sharing weights between both
premise and hypothesis. We do not use a bidi-
rectional LSTM encoder, as we found that it did
not lead to any improvements on the held-out set.
A logical explanation would be because our word
representations are already augmented with global
(intra-attention) information. As such, modeling
in the reverse direction is unnecessary, resulting in
some computational savings.

Pooling Layer Next, to learn an overall repre-
sentation of each sentence, we apply a pooling
function across all hidden outputs of the sequential
encoder. The pooling function is a concatenation
of temporal max and average (avg) pooling.

x = [max([h1, · · · h`]); avg([h1, · · · h`])] (11)

where x is a final 2k-dimensional representation
of the sentence (premise or hypothesis). We also
experimented with sum and avg standalone pool-
ings and found sum pooling to be relatively com-
petitive.

3.6 Prediction Layer

Finally, given a fixed dimensional representation
of the premise xp and hypothesis xh, we pass
their concatenation into a two-layer h-dimensional
highway network. Since the highway network has
been already defined earlier, we omit the techni-
cal details here. The final prediction layer of our
model is computed as follows:

yout = H2(H1([xp; xh; xp � xh; xp � xh]))
(12)

where H1(.), H2(.) are highway network layers
with ReLU activation. The output is then passed
into a final linear softmax layer.

ypred = softmax(WF · yout + bF ) (13)

where WF 2 R
h⇥3 and bF 2 R

3. The network
is then trained using standard multi-class cross en-
tropy loss with L2 regularization.

4 Experiments

In this section, we describe our experimental setup
and report our experimental results.
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Model Params Train Test
Single Model (w/o Cross Sentence Attention)

300D Gumbel TreeLSTM (Choi et al., 2017) 2.9M 91.2 85.6
300D DISAN (Shen et al., 2017) 2.4M 91.1 85.6
300D Residual Stacked Encoders (Nie and Bansal, 2017) 9.7M 89.8 85.7
600D Gumbel TreeLSTM (Choi et al., 2017) 10M 93.1 86.0
300D CAFE (w/o CA) 3.7M 87.3 85.9

Single Models
100D LSTM with attention (Rocktäschel et al., 2015) 250K 85.3 83.5
300D mLSTM (Wang and Jiang, 2016b) 1.9M 92.0 86.1
450D LSTMN + deep att. fusion (Cheng et al., 2016) 3.4M 88.5 86.3
200D DecompAtt + Intra-Att (Parikh et al., 2016) 580K 90.5 86.8
300D NTI-SLSTM-LSTM (Yu and Munkhdalai, 2017b) 3.2M 88.5 87.3
300D re-read LSTM (Sha et al., 2016) 2.0M 90.7 87.5
BiMPM (Wang et al., 2017) 1.6M 90.9 87.5
448D DIIN (Gong et al., 2017) 4.4M 91.2 88.0
600D ESIM (Chen et al., 2017b) 4.3M 92.6 88.0
150D CAFE (SUM+2x200D MLP) 750K 88.2 87.7
200D CAFE (SUM+2x400D MLP) 1.4M 89.4 88.1
300D CAFE (SUM+2x600D MLP) 3.5M 89.2 88.3
300D CAFE (AVGMAX+300D HN) 4.7M 89.8 88.5

Ensemble Models
600D ESIM + 300D Tree-LSTM (Chen et al., 2017b) 7.7M 93.5 88.6
BiMPM (Wang et al., 2017) 6.4M 93.2 88.8
448D DIIN (Gong et al., 2017) 17.0M 92.3 88.9
300D CAFE (Ensemble) 17.5M 92.5 89.3

External Resource Models
BiAttentive Classification + CoVe + Char (McCann et al., 2017) 22M 88.5 88.1
KIM (Chen et al., 2017a) 4.3M 94.1 88.6
ESIM + ELMo (Peters et al., 2018) 8.0M 91.6 88.7
200D CAFE (AVGMAX + 200D MLP) + ELMo 1.4M 89.5 89.0

Table 1: Performance comparison of all published models on the SNLI benchmark.

4.1 Experimental Setup

To ascertain the effectiveness of our models, we
use the SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2017) benchmarks which are stan-
dard and highly competitive benchmarks for the
NLI task. We also include the newly released Sc-
iTail dataset (Khot et al., 2018) which is a binary
entailment classification task constructed from sci-
ence questions. Notably, SciTail is known to be a
difficult dataset for NLI, made evident by the low
accuracy scores even though it is binary in nature.

SNLI The state-of-the-art competitors on this
dataset are the BiMPM (Wang et al., 2017), ESIM
(Chen et al., 2017b) and DIIN (Gong et al., 2017).
We compare against competitors across three set-
tings. The first setting disallows cross sentence at-

tention. In the second setting, cross sentence is
allowed. The last (third) setting is a comparison
between model ensembles while the first two set-
tings only comprise single models. Note that we
consider the 1st setting to be relatively less impor-
tant (since our focus is not on the encoder itself)
but still report the results for completeness.

MultiNLI We compare on two test sets
(matched and mismatched) which represent in-
domain and out-domain performance. The main
competitor on this dataset is the ESIM model, a
powerful state-of-the-art SNLI baseline. We also
compare with ESIM + Read (Weissenborn, 2017).

SciTail This dataset only has one official setting.
We compare against the reported results of ESIM
(Chen et al., 2017b) and DecompAtt (Parikh et al.,
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2016) in the original paper. We also compare with
DGEM, the new model proposed in (Khot et al.,
2018).

Across all experiments and in the spirit of fair
comparison, we only compare with works that (1)
do not use extra training data and (2) do not use
external resources (such as external knowledge
bases, etc.). However, for the sake of complete-
ness, we still report their scores2 (McCann et al.,
2017; Chen et al., 2017a; Peters et al., 2018).

4.2 Implementation Details
We implement our model in TensorFlow (Abadi
et al., 2015) and train them on Nvidia P100 GPUs.
We use the Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 0.0003. L2
regularization is set to 10�6. Dropout with a
keep probability of 0.8 is applied after each fully-
connected, recurrent or highway layer. The batch
size is tuned amongst {128, 256, 512}. The num-
ber of latent factors k for the factorization layer is
tuned amongst {5, 10, 50, 100, 150}. The size of
the hidden layers of the highway network layers
are set to 300. All parameters are initialized with
xavier initialization. Word embeddings are pre-
loaded with 300d GloVe embeddings (Pennington
et al., 2014) and fixed during training. Sequence
lengths are padded to batch-wise maximum. The
batch order is (randomly) sorted within buckets
following (Parikh et al., 2016).

4.3 Experimental Results
Table 1 reports our results on the SNLI bench-
mark. On the cross sentence (single model set-
ting), the performance of our proposed CAFE
model is extremely competitive. We report the test
accuracy of CAFE at different extents of parame-
terization, i.e., varying the size of the LSTM en-
coder, width of the pre-softmax hidden layers and
final pooling layer. CAFE obtains 88.5% accu-
racy on the SNLI test set, an extremely compet-
itive score on the extremely popular benchmark.
Notably, competitive results can be also achieved
with a much smaller parameterization. For exam-
ple, CAFE also achieves 88.3% and 88.1% test
accuracy with only 3.5M and 1.5M parameters

2Additionally, we added ELMo (Peters et al., 2018) to our
CAFE model at the embedding layer. We report CAFE +
ELMo under external resource models. This was done post
review after EMNLP. Due to resource constraints, we did not
train CAFE + ELMo ensembles but a single run (and sin-
gle model) of CAFE + ELMo already achieves 89.0 score on
SNLI.

respectively. This outperforms the state-of-the-
art ESIM and DIIN models with only a fraction
of the parameter cost. At 88.1%, our model has
about three times less parameters than ESIM/DIIN
(i.e., 1.4M versus 4.3M/4.4M). Moreover, our
lightweight adaptation achieves 87.7% with only
750K parameters, which makes it extremely per-
formant amongst models having the same amount
of parameters such as the decomposable attention
model (86.8%).

Finally, an ensemble of 5 CAFE models
achieves 89.3% test accuracy, the best test scores
on the SNLI benchmark to date3. Overall, we
believe that the good performance of our CAFE
can be attributed to (1) the effectiveness of the
ComProp architecture (i.e., providing word rep-
resentations with global and local knowledge for
better representation learning) and (2) the expres-
siveness of alignment factorization layers that are
used to decompose and compare word alignments.
More details are given at the ablation study. Fi-
nally, we emphasize that CAFE is also relatively
lightweight, efficient and fast to train given its per-
formance. A single run on SNLI takes approxi-
mately 5 minutes per epoch with a batch size of
256. Overall, a single run takes ⇡ 3 hours to get
to convergence.

MultiNLI SciTail
Model Match Mismatch -
Majority 36.5 35.6 60.3
NGRAM# - - 70.6
CBOW[ 65.2 64.8 -
BiLSTM[ 69.8 69.4 -
ESIM#,[ 72.4 72.1 70.6
DecompAtt# - - - 72.3
DGEM# - - 70.8
DGEM + Edge# - - 77.3
ESIM† 76.3 75.8 -
ESIM + Read† 77.8 77.0 -
CAFE 78.7 77.9 83.3
CAFE Ensemble 80.2 79.0 -

Table 2: Performance comparison (accuracy) on MultiNLI
and SciTail. Models with †, # and [ are reported from (Weis-
senborn, 2017), (Khot et al., 2018) and (Williams et al., 2017)
respectively.

Table 2 reports our results on the MultiNLI and
SciTail datasets. On MultiNLI, CAFE signifi-
cantly outperforms ESIM, a strong state-of-the-art
model on both settings. We also outperform the
ESIM + Read model (Weissenborn, 2017). An en-
semble of CAFE models achieve competitive re-

3As of 22nd May 2018, the deadline of the EMNLP sub-
misssion.
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sult on the MultiNLI dataset. On SciTail, our pro-
posed CAFE model achieves state-of-the-art per-
formance. The performance gain over strong base-
lines such as DecompAtt and ESIM are ⇡ 10% �
13% in terms of accuracy. CAFE also outperforms
DGEM, which uses a graph-based attention for
improved performance, by a significant margin of
5%. As such, empirical results demonstrate the
effectiveness of our proposed CAFE model on the
challenging SciTail dataset.

4.4 Ablation Study

Match Mismatch
Original Model 79.0 78.9
(1a) Rm FM for 1L-FC 77.7 77.9
(1b) Rm FM for 1L-FC (ReLU) 77.3 77.5
(1c) Rm FM for 2L-FC (ReLU) 76.6 76.4
(2) Remove Char Embed 78.1 78.3
(3) Remove Syn Embed 78.3 78.4
(4) Remove Inter Att 75.2 75.6
(5) Replace HW Pred. with FC 77.7 77.9
(6) Replace HW Enc. with FC 78.7 78.7
(7) Remove Sub Feat 77.9 78.3
(8) Remove Mul Feat 78.7 78.6
(9) Remove Concat Feat 77.9 77.6
(10) Add Bi-directional 78.3 78.4

Table 3: Ablation study on MultiNLI development sets. HW
stands for Highway.

Table 3 reports ablation studies on the MultiNLI
development sets. In (1), we replaced all FM
functions with regular full-connected (FC) layers
in order to observe the effect of FM versus FC.
More specifically, we experimented with several
FC configurations as follows: (a) 1-layer linear,
(b) 1-layer ReLU (c) 2-layer ReLU. The 1-layer
linear setting performs the best and is therefore re-
ported in Table 3. Using ReLU seems to be worse
than nonlinear FC layers. Overall, the best com-
bination (option a) still experienced a decline in
performance in both development sets.

In (2-3), we explore the utility of using charac-
ter and syntactic embeddings, which we found to
have helped CAFE marginally. In (4), we remove
the inter-attention alignment features, which natu-
rally impact the model performance significantly.
In (5-6), we explore the effectiveness of the high-
way layers (in prediction layers and encoding lay-
ers) by replacing them to FC layers. We observe
that both highway layers have marginally helped
the overall performance. Finally, in (7-9), we re-
move the alignment features based on their com-
position type. We observe that the Sub and Concat
compositions were more important than the Mul

composition. However, removing any of the three
will result in some performance degradation. Fi-
nally, in (10), we replace the LSTM encoder with
a BiLSTM, observing that adding bi-directionality
did not improve performance for our model.

4.5 Linguistic Error Analysis
We perform a linguistic error analysis using
the supplementary annotations provided by the
MultiNLI dataset. We compare against the model
outputs of the ESIM model across 13 categories of
linguistic phenenoma (Williams et al., 2017). Ta-
ble 4 reports the result of our error analysis. We
observe that our CAFE model generally outper-
forms ESIM on most categories.

Matched Mismatched
ESIM CAFE ESIM CAFE

Conditional 100 70 60 85
Word overlap 50 82 62 87
Negation 76 76 71 80
Antonym 67 82 58 80
Long Sentence 75 79 69 77
Tense Difference 73 82 79 89
Active/Passive 88 100 91 90
Paraphrase 89 88 84 95
Quantity/Time 33 53 54 62
Coreference 83 80 75 83
Quantifier 69 75 72 80
Modal 78 81 76 81
Belief 65 77 67 83

Table 4: Linguistic Error Analysis on MultiNLI dataset.

On the mismatched setting, CAFE outperforms
ESIM in 12 out of 13 categories, losing only in
one percentage point in Active/Passive category.
On the matched setting, CAFE is outperformed by
ESIM very marginally on coreference and para-
phrase categories. Despite generally achieving
much superior results, we noticed that CAFE per-
forms poorly on conditionals4 on the matched set-
ting. Measuring the absolute ability of CAFE, we
find that CAFE performs extremely well in han-
dling linguistic patterns of paraphrase detection
and active/passive. This is likely to be attributed
by the alignment strategy that CAFE and ESIM
both exploits.

4.6 Interpreting and Visualizing with CAFE
Finally, we also observed that the propagated fea-
tures are highly interpretable, giving insights to
the inner workings of the CAFE model. Figure 2
shows a visualization of the feature values from
an example in the SNLI test set. The ground

4This only accounts for 5% of samples.
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Figure 2: Visualization of six Propagated Features (Best viewed in color). Legend is denoted by {inter,intra} followed by the
operations mul, sub or cat (concat).

truth is contradiction. Based on the above ex-
ample we make several observations. Firstly, in-
ter mul features mostly capture identical words (or
semantically similar words), i.e., inter mul fea-
tures for ‘river’ spikes in both sentences. Sec-
ondly, inter sub spikes on conflicting words that
might cause contradiction, e.g., ‘sedan’ and ‘land
rover’ are not the same vehicle. Another inter-
esting observation is that we notice the inter sub
features for driven and stuck spiking. This also
validates the observation of (Chen et al., 2017b),
which shows what the sub vector in the ESIM
model is looking out for contradictory informa-
tion. However, our architecture allows the inspec-
tion of these vectors since they are compressed via
factorization, leading to larger extents of explain-
ability - a quality that neural models inherently
lack. We also observed that intra-attention (e.g.,
intra cat) features seem to capture the more impor-
tant words in the sentence (‘river’, ‘sedan’, ‘land
rover’).

5 Conclusion

We proposed a new neural architecture, CAFE
for NLI. CAFE achieves very competitive perfor-
mance on three benchmark datasets. Extensive
ablation studies confirm the effectiveness of FM
layers over FC layers. Qualitatively, we show
how different compositional operators (e.g., sub
and mul) behave in NLI task and shed light on
why subtractive composition helps in other mod-
els such as ESIM.
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Abstract

Attention-based neural models have achieved
great success in natural language inference
(NLI). In this paper, we propose the Con-
volutional Interaction Network (CIN), a gen-
eral model to capture the interaction between
two sentences, which can be an alternative
to the attention mechanism for NLI. Specif-
ically, CIN encodes one sentence with the
filters dynamically generated based on an-
other sentence. Since the filters may be de-
signed to have various numbers and sizes, CIN
can capture more complicated interaction pat-
terns. Experiments on three very large datasets
demonstrate CIN’s efficacy.

1 Introduction

Natural language inference (NLI) is a pivotal and
challenging natural language processing (NLP)
task. The goal of NLI is to identify the logical
relationship (entailment, neutral, or contradiction)
between a premise and a corresponding hypothe-
sis. Generally, NLI is also related to many other
NLP tasks under the paradigm of semantic match-
ing of two texts, such as question answering Hu
et al. (2014); Wan et al. (2016) and information
retrieval Liu et al. (2015), and so on. An essential
challenge is to capture the semantic relevance of
two sentences. Due to the semantic gap (or lexical
chasm) problem, natural language inference is still
a challenging problem.

Recently, deep learning is raising a substan-
tial interest in natural language inference and has
achieved some great progresses Hu et al. (2014);
Parikh et al. (2016); Chen et al. (2017a). To
model the complicated semantic relationship be-
tween two sentences, previous models heavily uti-
lize various attention mechanism Bahdanau et al.

⇤ Corresponding Author.
† Contribution during internship at Fudan University.

(2014); Vaswani et al. (2017) to build the interac-
tion at different granularity (word, phrase and sen-
tence level), such as ABCNN Yin et al. (2016),
Attention LSTM Rocktäschel et al. (2015), bi-
directional attention LSTM Chen et al. (2017a),
and so on. While attention is very successful in
natural language inference, its mechanism is quite
simple and can be regarded as a weighted sum
of the target vectors. This paradigm results in a
lack of flexibility in more complicated interaction
model.

In this paper, we propose a new interaction
module, called Convolutional Interaction Network
(CIN), which can serve as an alternative module
of attention mechanism. Specifically, CIN utilizes
convolutional neural network to extract the valued
features (or representations) from sentences. In
the case of NLI, whether a feature of one sentence
being important depends on another sentence. In-
spired by the idea of using one network to gen-
erate the parameters of another network Ha et al.
(2016a); De Brabandere et al. (2016), we intro-
duce a filter generation network to dynamically
generate convolutional filters. Each sentence is
convolved by a dynamically generated filter by
another sentence. Thus, the convolved features
of one sentence can be regarded as context-aware
representations under the influence of another sen-
tence.

The contributions of this paper can be summa-
rized as follows.

1. CIN is a new interaction model, invented as
an alternative module to the attention model.
CIN can also capture both the intra- or inter-
interactions of two sentences.

2. Compared to attention model, CIN is more
general and flexible to capture the compli-
cated interaction. As discussed in Section
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3.3, the attention model is approximately
equivalent to a special case of CIN.

3. We perform extensive empirical studies on
three very large datasets. Experiment results
demonstrate that our proposed architecture is
effective for natural language inference.

2 Attentive Interaction for Natural
Language Inference

Currently, the dominative method for natural lan-
guage inference is to use attention mechanism to
model the interaction between two sentence.

Given two input sentences x =
[x1, x2, · · · , xm] and y = [y1, y2, · · · , yn]
with length m and n respectively, we first encode
them into two vectorial sequences

X = [x1,x2, · · · ,xm] 2 R
d⇥m, (1)

Y = [y1,y2, · · · ,yn] 2 R
d⇥n. (2)

The encoder usually consists of one or several
CNN/RNN layers to get the context-aware token
representations.

To capture the interaction between two sen-
tence, various neural attentions can be used, such
as sentence2word attention Rocktäschel et al.
(2015), word2word attention Parikh et al. (2016);
Chen et al. (2017a).

Word2word Attentive Interaction The
word2word attention captures the dependency
between two words xi and yj from the concerned
two sentences respectively. The word2word
attention computes a similarity matrix M , in
which each element mi,j is the alignment score
between xi and yj .

mi,j = f(xi,yj), 1  i  m, 1  j  n, (3)

where f is a score function.
There are two most prevalent attention func-

tions: multiplicative attention and additive atten-
tion. Multiplicative attention is:

f(xi,yj) = xT
i yj . (4)

Additive attention computes a compatibility func-
tion by a feed-forward network with a single hid-
den layer.

f(xi,yj) = w>�(W1xi + W2yj + b), (5)

where w, W1, W2 and b are learnable parame-
ters.

While these two kinds of attentions have similar
performance, the multiplicative attention is more
popular in practice since it requires less computa-
tion power and have less memory demand with op-
timized matrix multiplication. With multiplicative
attention, we can compute the mimic representa-
tions for both X and Y .

X̄ = Y softmax(Y TX) 2 R
d⇥m, (6)

Ȳ = Xsoftmax(XTY ) 2 R
d⇥n, (7)

where softmax(·) is column-wise normalization
function. Each vector x̄i 2 X̄ is called as
mimic vector, which is a weighted summation of
{yj}n

j=1. Intuitively, the mimic vector x̄i provides
the related information of token xi extracted from
sentence Y .

Prediction After interaction, a prediction mod-
ule is used to aggregate the interaction informa-
tion and extract the fix-length representation of
two sentences. Finally, the final sentence repre-
sentations are fed into a feed-forward network to
predict the relationship between two sentences.

3 Convolutional Interaction Network

In this section, we propose a new interaction
method by utilizing dynamic convolutional filters,
called Convolutional Interaction Network (CIN).
CIN can serve as an alternative module of atten-
tion mechanism.

We first briefly introduce how the convolution
works over text sequence, then describe the pro-
posed model and its connection to attention model.

3.1 Convolution over Sequence
Convolution is an effective operation in deep neu-
ral networks, which convolves the input with a set
of filters to extract non-linear compositional fea-
tures. Although originally designed for computer
vision, convolutional models have subsequently
shown to be effective for NLP and have achieved
excellent performance in sentence modeling Kim
(2014); Kalchbrenner et al. (2014), and other tra-
ditional NLP tasks Hu et al. (2014); Zeng et al.
(2014); Gehring et al. (2017).

Given a sentence representation X =
[x1,x2, · · · ,xm] 2 R

d⇥m, a convolutional
filter W (f) 2 R

d⇥kd, the convolution process is
defined as

x
0

i = f
⇣
W (f)[xi�[k/2], · · · ,xi+[k/2]] + b

(f)
⌘

, (8)
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Figure 1: Convolutional Interaction Network. ⌦
denotes the convolution operation.

where f(·) is a non-linear activation function, such
as ReLU, k indicates the size of convolution win-
dow, and b(f) 2 R

d is a bias vector.
The convolution can be abbreviated as

X 0 = f(W (f) ⌦ X) 2 R
d⇥m, (9)

where ⌦ denotes the convolutional operation. To
ensure the output of convolution has equal length
as to the input, we pad [k

2 ] zero vectors on both
sides of the input.

3.2 Convolutional Interaction Network
Convolution is very effective when it comes to
extracting useful features from a sentence. But
for NLI, whether a word (or feature) being im-
portant in one sentence depends on another sen-
tence. Therefore, a better convolution operation
should have the ability to extract substantial fea-
tures from one sentence according to another sen-
tence. Thus, the convolutional filter should be
dynamically changeable. Inspired by Jia et al.
(2016); Ha et al. (2016b), we propose a filter gen-
eration network (FGN) to generate a dynamical
filter, which is used to extract the context-aware
information.

Given two sentences x, y, and their representa-
tions X = [x1,x2, · · · ,xm] 2 R

d⇥m and Y =
[y1,y2, · · · ,yn] 2 R

d⇥n, the filter for each sen-
tence is generated according to the other sentence
by

W (f)
x = FGN(X) 2 R

d⇥⌧d, (10)

W (f)
y = FGN(Y ) 2 R

d⇥⌧d, (11)

where ⌧ is the width of filter, FGN(·) is the filter
generation network. A detailed implementation of
FGN is presented in Section 3.4.

Now we can convolve the two sentences with
the generated filters.

X̄ = f(W (f)
y ⌦ X) 2 R

d⇥m, (12)

Ȳ = f(W (f)
x ⌦ Y ) 2 R

d⇥n, (13)

where the attained matrix X̄ and Ȳ can be re-
garded as the context-aware representation of sen-
tences x and y, depending on each other.

Figure 1 gives an illustration of CIN.

3.3 Connection to Attentive Interaction
CIN is more general than attention model. Assum-
ing that we set k = 1 and FGN to be a function of
FGN(X) = XXT, Eq. (12) and (13) of CIN can
be written as

X̄ = (Y Y T)X = Y (Y TX), (14)
Ȳ = (XXT)Y = X(XTY ). (15)

Compared to Eq. (6) and (7), under the above
assumption, CIN is equivalent to the word2word
multiplicative attention model without softmax
normalization.

3.4 An Implementation of Filter Generation
Network (FGN)

To generate the dynamic filters, the key factor
is how to choose the filter generation network
FGN(·) in Eq. (10) and (11). Although many so-
phisticated networks can be employed, we give an
simple implementation in this paper.

For ease of presentation, we only describe how
we generate dynamical filter according to sentence
x. The same procedure is utilized for sentence y.

Firstly, we summarize the information of sen-
tence x with an over-time k-max pooling on X ,

Ux = ReLU(Wu ⌦ X) 2 R
d⇥m, (16)

z1:k
x = k-max(Ux) 2 R

d⇥k, (17)

where Ux is a non-linear transformation of X by
convolution filter Wu 2 R

d⇥d. The idea of k-max
pooling is to capture the most important features
(the k highest values) from sentence X .

Then we generate k filters W j
x for j = 1, · · · , k

by

W j
x = ReLU

�
Pdiag(zj

x)Q + B
�
, (18)
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where P 2 R
d
k ⇥d, Q 2 R

d⇥⌧d and B 2 R
d
k ⇥⌧d

are learnable parameters.
The final filter is obtained by concatenating the

k generated filters,

W (f)
x = [W 1

x ; W 2
x ; · · · ; W k

x ] 2 R
d⇥⌧d. (19)

Similar to x, we can also obtain the dynamic
filters W (f)

y according to the sentence y.

4 Incorporating CIN into a Deep
Network Architecture for NLI

Our overall network architecture for NLI is based
on a successful model proposed by Chen et al.
(2017a). The major difference is that we use CIN
to capture the interaction, instead of bi-directional
attention.

The network architecture consists of three com-
ponents: (1) an encoding layer; (2) convolutional
interaction layers; (3) a prediction layer. Figure 2
gives an illustration.

4.1 Encoding Layer

The input of natural language inference task is a
pair of sentences x and y. Since each word in a
sentence is a symbol that can not be directly pro-
cessed by neural networks, we need first map each
word to a d dimensional embedding vector.

Thus, the two sentences are mapped to two ma-
trix Ex 2 R

de⇥m and Ey 2 R
de⇥n respectively.

We also use syntactical and lexical information
such as part of speech tagging information, ex-
act match feature and character representation. In
this paper, exact match value of each word is set
to 1(default to be 0) if the word concerned share
the same stem or lemma with any word in coun-
terpart sentence. Character representation of the
word is obtained using a convolution neural net-
work followed by a max pooling along sequence
length dimension as same as Kim (2014). The fi-
nal representation of word is a concatenation of
word embedding, character encoded vector, POS
tagging embedding and exact match feature. Both
character embedding and POS tagging embedding
are randomly initialized. All embeddings are up-
dated during training.

We use bi-directional LSTM (BiLSTM)
Hochreiter and Schmidhuber (1997) to in-
corporate the forward and backward context
information of sequence. Thus, we can get the

avg max avg max

FNN

p(·|X,Y)

En
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Figure 2: The overall network architecture for nat-
ural language inference. The Nx means the num-
ber of the stacking interaction layers.

phrase-level encoding of two input sentences,

X = [Bi-LSTM(Ex); Ex], (20)
Y = [Bi-LSTM(Ey); Ey], (21)

where X 2 R
d⇥m and Y 2 R

d⇥n are the phrase-
level encoding representation of sentence x and y
respectively.

4.2 Convolutional Interaction Layers
In the interaction layers, we use our proposed CIN
to model the interaction between two sentences.

We first dynamically generate context-aware fil-
ters W (f)

x and W (f)
y based on the sentence encod-

ings X and Y respectively, which are further used
for both intra-sentence and inter-sentence interac-
tion.

Intra-Sentence Interaction The intra-sentence
convolutional interaction is to convolve one sen-
tence by the filter generated by itself.

Xintra = f(W (f)
x ⌦ X), (22)

Yintra = f(W (f)
y ⌦ Y ), (23)

The role of the intra-sentence convolutional in-
teraction is the same as self-attention Shen et al.
(2017), which is also very useful in NLI.

Inter-Sentence Interaction The inter-sentence
interaction takes filters generated from the coun-
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terpart sentence to convolve the inputs.

Xinter = f(W (f)
x ⌦ Y ), (24)

Yinter = f(W (f)
y ⌦ X), (25)

The inter-sentence convolutional interaction
plays a role similar to the cross-attention between
two sentences.

Fusion Layer After CIN, we can fuse two kinds
of context-aware representations of each sentence.
For sentence x, the Xintra and Xinter represent
the extracted features under consideration of in-
formation of itself and sentence y respectively.

To efficiently utilize Xintra and Xinter, a fusion
layer is used. We use the comparing operation pro-
posed in Chen et al. (2017a) to fuse the two kinds
of representation. Let ui and vi be intra and in-
ter attentive vector of the i-th word in sentence x,
a heuristic and effective composition operator is
used to combine two vectors.

x̄(c)
i = [ui;vi;ui � vi;ui � vi; |ui � vi|], (26)

x(c)
i = ReLU(Wcx̄

c
i + Wxxi + bc), (27)

Thus, we can obtain two fused representations
X(c) and Y (c) for two sentences, which are fur-
ther fed into the prediction layer or another stacked
interaction layer. The interaction layers can be
stacked for Nx times to capture the complicated
matching information.

4.3 Prediction Layer
After interaction layers, an aggregation layer is
employed to aggregate the two sequences of fus-
tion vectors X(c) and Y (c) into a fixed-length
matching vectors. The aggregation component
usually consists of another BiLSTM layer and a
following pooling layer. We then perform max
pooling over time for both X(c) and Y (c) to get
two fix representation vector for two sentences, p
and h:

p = max(X(c)), (28)

h = max(Y (c)), (29)

where the functions max is the max pooling oper-
ations over time steps.

Finally, the pooled vectors are composed as one
relation vector and fed into a feed-forward net-
work to predict the relationship between two sen-
tences. Specially, the two-layer feed-forward net-
work has one hidden layers with tanh activation

Train Dev Test Len(P) Len(H) Vocab

SNLI 549K 9.8K 9.8K 14 8 36K
MultiNLI1 392K 9.8K 9.8K 22 11 85K
MultiNLI2 392K 9.8K 9.8K 22 11 85K

Quora 384K 10K 10K 12 12 107K

Table 1: Statistics of three datasets: SNLI,
MultiNLI, Quora. Len(P) and Len(H) refer to
the average length of two sentences. MultiNLI1

and MultiNLI2 indicate the in-domain and cross-
domain datasets.

and softmax output layer in our experiments.

m = [p;h;p � h;p ⇤ h; |p � h|], (30)
p(·|x, y) = FNN(m). (31)

5 Training

Given a trainset {x(i), y(i), t(i)}N
i=1, the objective

is to minimize a cross entropy loss J (✓):

J (✓)=� 1

N

X

i

log p(t(i)|x(i), y(i))+�||✓||22, (32)

where ✓ represents all the connection weights.
We use the Adam optimizer Kingma and Ba

(2014) with an initial learning rate of 0.0004. De-
fault L2 regularization � is set to 10�6. To avoid
overfitting, dropout is applied after each fully con-
nected, recurrent or convolutional layer.

Initialization We take advantage of pre-trained
word embeddings such as Glove Pennington et al.
(2014) to transfer more knowledge from vast un-
labeled data. For the words that don’t appear in
Glove, we randomly initialize their embeddings
from a normal distribution with mean 0.0 and stan-
dard deviation 0.1.

The network weights are initialized with Xavier
normalization Glorot and Bengio (2010) to main-
tain the variance of activations throughout the for-
ward and backward passes. Biases are uniformly
set to zero when the network is constructed.

5.1 Datasets

To make quantitative evaluation, our model was
evaluated on three well known datasets: Stan-
ford Natural Language Inference dataset (SNLI),
MultiNLI dataset and Quora Question pair dataset
(Quora). Detailed statistical information of these
datasets is shown in Table 1.
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Models Train Test

Handcrafted features (Bowman et al., 2015) 99.7 78.2

LSTM with attention (Rocktäschel et al., 2015) 85.3 83.5
Match-LSTM (Wang and Jiang, 2016) 92.0 86.1
Decomposable attention model (Parikh et al., 2016) 90.5 86.8
BiMPM (Zhiguo Wang, 2017) 90.9 87.5
NTI-SLSTM-LSTM (Munkhdalai and Yu, 2017) 88.5 87.3
Re-read LSTM (Sha et al., 2016) 90.7 87.5
DIIN (Gong et al., 2017) 91.2 88.0
ESIM (Chen et al., 2017a) 92.6 88.0
CIN 93.2 88.0

ESIM (Chen et al., 2017a) (Ensemble) 93.5 88.6
BiMPM (Zhiguo Wang, 2017) (Ensemble) 93.2 88.8
DIIN (Gong et al., 2017) (Ensemble) 92.3 88.9
CIN (Ensemble) 94.3 89.1

Table 2: Performance on SNLI dataset.

SNLI The SNLI corpus Bowman et al. (2015)
consists of 570,152 sentence pairs. Each sentence
pair is labeled as one of entailment, contradiction
and neutral relation.

MultiNLI Orgnized the same as SNLI,
MultiNLI corpus Williams et al. (2017) is another
dataset for NLI, it contains 433,000 sentence
pairs. Like SNLI, each pair is labeled with one
of entailment, contradiction and neutral label.
Difference between MultiNLI and SNLI is that,
MultiNLI have in-domain test set and develop-
ment set as well as an out-of-domain test and
development set.

Quora The Quora Question pair dataset have
over 400k question pairs, each question pair is as-
signed with a binary label to indicate if the pair are
paraphrase to each other. We evaluate our model
on the data which was previously partitioned by
Zhiguo Wang (2017)

5.2 Overall Results
We use the accuracy to evaluate the performance
of our convolutional interaction network (CIN)
and other models on SNLI, MultiNLI and Quora.

SNLI Table 2 shows the results of different
models on the train set and test set of SNLI. The
first row gives a baseline model with handcrafted
features presented by Bowman et al. (2015). All
the other models are attention-based neural net-
works. Wang and Jiang (2016) exploits the long

short-term memory (LSTM) for NLI. Parikh et al.
(2016) uses attention to decompose the problem
into subproblems that can be solved separately.
Chen et al. (2017a) incorporates the chain LSTM
and tree LSTM jointly. Zhiguo Wang (2017) pro-
poses a bilateral multi-perspective matching for
NLI.

In Table 2, the second block gives the single
models. As we can see, our proposed model
CIN achieves 88.0% in accuracy on SNLI test set.
Compared to the previous work, CIN obtains com-
petitive performance.

To further improve the performance of NLI sys-
tems, researchers have built ensemble models. En-
semble systems obtained the best performance on
SNLI. Our ensemble model obtains 89.1% in ac-
curacy and outperforms the current state-of-the-art
model.

Overall, single model of CIN performs compet-
itively well and outperforms the previous models
on ensemble scenarios for the natural language in-
ference task.

MultiNLI Table 3 shows the performance of
different models on MultiNLI. The original aim of
this dataset is to evaluate the quality of sentence
representations. Recently this dataset is also used
to evaluate the interaction model involving atten-
tion mechanism.

The first line of Table 3 gives a baseline model
without interaction. The second block of Table 3
gives the attention-based models. The proposed
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Models Match Mismatch

BiLSTM
(Williams et al., 2017) 67.0 67.6

InnerAtt
(Balazs et al., 2017) 72.1 72.1

ESIM
(Chen et al., 2017a) 72.3 72.1

Gated-Att BiLSTM
(Chen et al., 2017b) 73.2 73.6

ESIM
(Chen et al., 2017a) 76.3 75.8

CIN 77.0 77.6

Table 3: Performance on MultiNLI test set.

Models Test

Siamese-CNN 79.60
Multi-Perspective CNN 81.38
Siamese-LSTM 82.58
Multi-Perspective-LSTM 83.21
L.D.C 85.55
BiMPM (Zhiguo Wang, 2017) 88.17

CIN 88.62

Table 4: Performance on Quora question pair
dataset.

model, CIN, achieves the accuracies of 77.0% and
77.6% on the match and mismatch test sets respec-
tively. The results show that our model outper-
forms the other models.

Quora Table 4 shows the performance of differ-
ent models on the Quora test set. The baselines
on Table 4 are all implemented in Zhiguo Wang
(2017). The Siamese-CNN model and Siamese-
LSTM model encode sentences with CNN and
LSTM respectively, and then predict the re-
lationship between them based on the cosine
similarity. Multi-Perspective-CNN and Multi-
Perspective-LSTM are transformed from Siamese-
CNN and Siamese-LSTM respectively by replac-
ing the cosine similarity calculation layer with
their multi-perspective cosine matching function.
The L.D.C is a general compare-aggregate frame-
work that performs word-level matching followed
by a aggregation of convolution neural networks.
As we can see, our model outperforms the base-

Models Dev Test

CIN 88.6 88.0
Remove whole interaction 85.6 85.1
Remove intra-attention 88.1 87.7

Table 5: Ablation experiment on SNLI dataset.

Premise

(1) A girl playing a violin along with a group of people
(2) A girl playing a violin along with a group of people

Hypothesis

(1) A girl is playing an instrument .
(2) A girl is playing an instrument .

Table 6: Gradient visualization of premise and hy-
pothesis. (1) Gradient scale of X , Y on encoding
layer. (2) Gradient scale of X(c), Y (c) on first CIN
layer. Darker color corresponds to a higher scale
of gradient, and implies a higher contribution to
the final prediction.

lines and achieve 88.62% in the test sets of Quora
corpus.

5.3 Model Ablation
To better understand the performance of our
model, we analyze the effect of each key compo-
nent of the proposed model. As illustrated in Table
5, the first row is the full CIN model. By dropping
convolutional interaction layers, the performance
decreases to 85.1% on the test set, which indi-
cate the interaction information is crucial for NLI.
By just dropping intra-attention layer, the perfor-
mance decreases to 87.7% on the test set. Accord-
ing to the results, all of the components positively
contribute to the final performance.

5.4 Case Study
To give an intuitive understanding of how our
model works, we give an analysis on the follow-
ing case from the test set.

Premise: A girl playing a violin along with a
group of people.
Hypothesis: A girl is playing an instrument.
Label: Entailment.
The visualization results are produced from

model with two stacked CINs. X , Y is the hid-
den states at encoding layer, and X(c), Y (c) is the
hidden states at first CIN layer. For a hidden state
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Figure 3: A visualization of word to word correla-
tion. Darker color correspond to a higher correla-
tion. (a) Correlation of XTY at encoder layer. (b)
Correlation of X(c)TY (c) at first CIN layer.

xi of word xi, we can calculate its gradient scale
|| @J

@xi
||2 to show its contribution to final prediction.

Table 6 shows the gradient scales of hidden
states of each word in the encoding layer and the
first CIN layer. As we can see, some phrases (like
playing a violin and playing an instrument) in-
stead of isolated words (like violin and instrument)
become more focused after a CIN layer. It implies
CIN could capture some higher level patterns.

Figure 3 gives a visualization of correlations
of hidden states of two sentences. (a) shows the
correlations after the encoding layer, the same
words are most correlated. This is because em-
bedding layer and encoding layer are shared be-
tween premise and hypothesis. (b) shows the cor-
relations after the first CIN layer, the correlation
exists between phrases {playing a violin vs. play-
ing an instrument}, instead of the same words.
The interaction layer connects playing in Premise
to Hypothesis instrument, and connects playing in
Hypothesis to Premise violin. Thus, the correla-
tion between instrument in Hypothesis and violin
in Premise are boosted, as we know these are im-
portant to reasoning.

6 Related Work

There are mainly two threads of work related to
ours.

One thread of work is using attention-based
model for natural language inference (NLI). NLI
has been widely investigated for many years. Ben-

efiting from the development of deep learning and
the availability of large-scale annotated datasets,
deep neural models have achieved great success.
Rocktäschel et al. (2015) firstly use LSTM with
attention for text matching task. Wang and Jiang
(2016) use word-by-word attention to exploit the
word-level match. Parikh et al. (2016) propose a
new framework to model the relationship between
two sentences using interact-compare-aggregate
architecture. Chen et al. (2017a) incorporates the
chain LSTM and tree LSTM jointly. Zhiguo Wang
(2017) use self-attention mechanism to capture
contextual information from the whole sentence.

Unlike the above models, we use an alternative
model to capture the complicate interaction infor-
mation of two sentences.

Another thread of work is the idea of using one
network to generate the parameters of another net-
work. De Brabandere et al. (2016) proposed the
dynamic filter network to implicitly learn a variety
of filtering operations. Ha et al. (2016a) proposed
the model hypernetwork, which uses a small net-
work to generate the weights for a larger network.

Unlike these models, our dynamical filter is em-
ployed for interaction. Therefore, a filter genera-
tion function is proposed to capture the related in-
tra and inter dependent information of a sentence
pair.

7 Conclusion

In this paper, we propose an alternative interaction
model, Convolutional Interaction Network (CIN),
for natural language inference. CIN utilizes the
dynamic convolutional filters to model the inter-
action between two sentences. Specifically, each
sentence is convolved by dynamical filters gener-
ated based on another sentence. CIN is more gen-
eral and flexible since the filters may have various
numbers and sizes, thereby capturing more com-
plicated interaction patterns. Experiments on three
very large datasets demonstrate the efficacy of our
proposed model.

In future work, we hope to improve the extensi-
bility of CIN and apply it to other NLP tasks, such
as machine comprehension.
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Abstract

State of the art models using deep neural
networks have become very good in learn-
ing an accurate mapping from inputs to out-
puts. However, they still lack generalization
capabilities in conditions that differ from the
ones encountered during training. This is even
more challenging in specialized, and knowl-
edge intensive domains, where training data
is limited. To address this gap, we introduce
MedNLI1 – a dataset annotated by doctors,
performing a natural language inference task
(NLI), grounded in the medical history of pa-
tients. We present strategies to: 1) leverage
transfer learning using datasets from the open
domain, (e.g. SNLI) and 2) incorporate do-
main knowledge from external data and lexi-
cal sources (e.g. medical terminologies). Our
results demonstrate performance gains using
both strategies.

1 Introduction

Natural language inference (NLI) is the task of
determining whether a given hypothesis can be
inferred from a given premise. This task, for-
merly known as recognizing textual entailment
(RTE) (Dagan et al., 2006) has long been a popular
task among researchers. Moreover, contribution
of datasets from past shared tasks (Dagan et al.,
2009), and recent research (Bowman et al., 2015;
Williams et al., 2018) have pushed the boundaries
for this seemingly simple, but challenging prob-
lem.

The Stanford Natural Language Inference
(SNLI) dataset (Bowman et al., 2015) is a large,
high quality dataset and serves as a benchmark to
evaluate NLI systems. However, it is restricted
to a single text genre (Flickr image captions) and
mostly consists of short and simple sentences. The

⇤ Work done during an internship at IBM Research
1https://jgc128.github.io/mednli/

MultiNLI corpus (Williams et al., 2018) which in-
troduced NLI corpora from multiple genres (e.g.
fiction, travel) was a welcome step towards ad-
dressing these limitations. MultiNLI offers diver-
sity in linguistic phenomena, which makes it more
challenging.

Following these efforts, we explore the prob-
lem of NLI in the clinical domain. Language in-
ference in specialized domains such as medicine
is extremely complex and remains unexplored by
the machine learning community. Moreover, since
this domain has a distinct sublanguage (Friedman
et al., 2002), clinical text also presents unique
challenges (abbreviations, inconsistent punctua-
tion, misspellings, etc.) that differentiate it from
open-domain data (Meystre et al., 2008).

In this paper, we address these gaps and make
the following contributions:

• Introduce MedNLI - a new, publicly avail-
able, expert annotated dataset for NLI in the
clinical domain.

• A systematic comparison of several state-of-
the-art open domain models on MedNLI.

• A study of transfer learning techniques from
the open domain to the clinical domain.

• Techniques for incorporating domain-
specific knowledge from knowledge bases
(KB) and domain specific data into neural
networks.

2 The MedNLI dataset

Let us recall the procedure followed for creating
the SNLI dataset: annotators were presented with
captions for a Flickr photo (the premise) without
the photos themselves. They were asked to write
three sentences (hypotheses): 1) A clearly true de-
scription of the photo, 2) A clearly false descrip-
tion, and 3) A description that might be true or
false. This procedure produces three training pairs
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# Premise Hypothesis Label

1 ALT , AST , and lactate were elevated as noted
above

patient has abnormal lfts entailment

2 Chest x-ray showed mild congestive heart failure The patient complains of cough neutral
3 During hospitalization , patient became progres-

sively more dyspnic requiring BiPAP and then a
NRB

The patient is on room air contradiction

4 She was not able to speak , but appeared to com-
prehend well

Patient had aphasia entailment

5 T1DM : x 7yrs , h/o DKA x 6 attributed to poor
medication compliance , last A1c [ ** 3-23 ** ] :
13.3 % 2

The patient maintains strict glucose control contradiction

6 Had an ultimately negative esophagogastroduo-
denoscopy and colonoscopy

Patient has no pain neutral

7 Aorta is mildly tortuous and calcified . the aorta is normal contradiction

Table 1: Examples from the development set of MedNLI

of sentences for each premise with three differ-
ent labels: entailment, contradiction, and neutral,
respectively. In order to produce a comparable
dataset, we used the same approach adjusted for
the clinical domain.

2.1 Premise sampling and hypothesis
generation

As the source of premise sentences, we used the
MIMIC-III v1.3 (Johnson et al., 2016) database.
With de-identified records of 38,597 patients, it is
the largest repository of publicly available clini-
cal data. Along with medications, lab values, vital
signs, etc. MIMIC-III contains 2,078,705 clinical
notes written by healthcare professionals in En-
glish. The hypothesis sentences were generated by
clinicians.

Clinical notes are typically organized into
sections such as Chief Complaint, Past
Medical History, Physical Exam,
Impression, etc. These sections can be easily
identified since the formatting for associated
section headers often resembles capital letters,
followed by a colon. The clinicians in our team
suggested Past Medical History to be the
most informative section of a clinical note, from
which critical inferences can be drawn about the
patient.

Therefore, we segmented these notes into sec-
tions using a simple rule based program capturing
the formatting of these section headers. We ex-
tracted the Past Medical History section
and used a sentence splitter trained on biomedical
articles (Lingpipe, 2008) to get a pool of candi-
date premises. We then randomly sampled a sub-
set from these candidates and presented them to

You will be shown a sentence from the Past
Medical History section of a de-identified clinical
note. Using only this sentence, your knowledge about
the field of medicine, and common sense:

• Write one alternate sentence that is definitely a
true description of the patient. Example, for the
sentence “Patient has type II diabetes” you could
write “Patient suffers from a chronic condition“

• Write one alternate sentence that might be a true
description of the patient. Example, for the sen-
tence “Patient has type II diabetes” you could
write “Patient has hypertension”

• Write one sentence that is definitely a false de-
scription of the patient. Example, for the sentence
“Patient has type II diabetes” you could write
“The patient’s insulin levels are normal without
any medications.”

Figure 1: Annotation prompt shown to clinicians

the clinicians for annotation. Figure 1 shows the
exact prompt shown to the clinicians for the anno-
tation task. SNLI annotations are grounded since
they are associated with captions of the same im-
age. We seek to achieve the same goal by ground-
ing the annotations against the medical history of
the same patient.

As discussed earlier, examples shown in Table 1
depict unique challenges that involve reasoning
over domain-specific knowledge. For instance, the
first three examples require the knowledge about
clinical terminology. The fourth example requires
awareness of medications and the last example
elicits knowledge about radiology images. We
make the MedNLI dataset available2 through the

2https://jgc128.github.io/mednli/
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MIMIC-III derived data repository. Thus, any in-
dividual certified to access MIMIC-III can also ac-
cess MedNLI.

2.2 Annotation collection

Conclusions in the clinical domain are known to
be context dependent and a source of multiple un-
certainties (Han et al., 2011). We had to ensure
that such subjective interpretations do not result
in annotation conflicts affecting the quality of the
dataset. To ensure agreement, we worked with
clinicians and generated annotation guidelines for
a pilot study. Two board certified radiologists
worked on the annotation task, and were presented
with the 100 unique premises each.

Some premises, often marred by de-
identification artifacts, did not contain any
information from which useful inferences could
be drawn, e.g. This was at the end of
[**Month (only) 1702**] of this
year. Such sentences were deemed as invalid
for the task and discarded based on clinician
judgment. The MIMIC-III dataset contains many
de-identification artifacts associated with dates
and names (persons and places) which also makes
MedNLI more challenging.

After discarding 16 premises, the result of hy-
pothesis generation was a set of 552 pairs. To
calculate agreement, we presented pairs generated
by one clinician, and sought annotations from the
other clinician, determining if the inference was
“Definitely true”, “Maybe true”, or “Definitely
false” (Bowman et al., 2015). Comparison of
these annotations resulted in a Cohen’s kappa of
 = 0.78. While this is substantial if not perfect
agreement by itself (McHugh, 2012), it is particu-
larly good given the challenging nature of NLI and
the complexity of the domain.3

On reviewing the annotations, we found that la-
beling differences between “Definitely true” and
“Maybe true” were the major source of disagree-
ment. This was primarily because one clinician
would think of a scenario that is generally true,
while the other would think of assumptions (e.g.
patient might be lying, or patient might be preg-
nant) when it would not.

A discussion with clinicians concluded that the
annotation guideline was clear and any person
with a formal background of medicine should be

3Rajpurkar et al. (2017) report F1 < 0.45 for four radiol-
ogists when compared among themselves

able to complete the task successfully. To generate
the final dataset, we recruited two additional clin-
icians, both board certified medical students pur-
suing their residency programs. Unlike SNLI, we
did not collect multiple annotations per sentence
pair because of the time and funding constraints.

2.3 Dataset statistics
Together, the four clinicians worked on a total of
4,683 premises over a period of six weeks. The re-
sulting dataset consists of 14,049 unique sentence
pairs. Following Bowman et al. (2015), we split

Dataset size
Training pairs 11232
Development pairs 1395
Test pairs 1422

Average sentence length in tokens
Premise 20.0
Hypothesis 5.8

Maximum sentence length in tokens
Premise 202
Hypothesis 20

Table 2: Key statistics of the dataset

the dataset into training, development, and testing
subsets and ensured that no premise was overlap-
ping between the three subsets. Table 2 presents
key statistics of MedNLI.

3 Models

To establish a baseline performance on MedNLI,
we experimented with a feature-based system. To
further explore the performance of modern neural
networks-based systems, we experimented several
models of various degrees of complexity: Bag of
Words (BOW), InferSent (Conneau et al., 2017)
and ESIM (Chen et al., 2017). Note that our goal
here is not to outperform existing models, but to
explore the relative gain of the proposed methods,
and compare them to a baseline. We used the same
set of hyperparameters in all models to ensure that
any difference in performance is exclusively due
to the algorithms.

Feature-based system We used a gradient
boosting classifier incorporating a variety of hand
crafted features. Apart from standard NLP fea-
tures, we also infused clinical knowledge from the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004). Each terminology in the UMLS
can be viewed as a graph where nodes represent
medical concepts, and edges represent relations
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between them. These are canonical relationships
found in ontologies such as IS A and SYNONYMY.
For instance, diabetes IS A disorder of the en-
docrine system. The domain specific features we
added to the model represent similarity between
UMLS concepts from the premise and the hypoth-
esis, based how close they appear in the UMLS
graph (Pedersen et al., 2007). Following (Shiv-
ade et al., 2015; Pedersen et al., 2007) we used the
SNOMED-CT terminology in our experiments.

The groups below summarize the feature sets
used in our model (35 features in total):

1. BLEU score
2. Number of tokens (e.g. min, max, difference)
3. Negations (e.g. keywords such as no, do not)
4. TF-IDF similarity (e.g. cosine, euclidean)
5. Edit distances (e.g. Levenshtein)
6. Embedding similarity (e.g. cosine, eu-

clidean)
7. UMLS similarity features (e.g. shortest path

distance between UMLS concepts)

Bag of words We use a bag-of-words (BOW)
model as a simple baseline for the NLI task: the
Sum of words model by Bowman et al. (2015) with
a small modification. While Bowman et al. (2015)
use tanh as the activation function in the model,
we use ReLU, since it trained faster and achieved
better results (Glorot et al., 2011). In order to rep-
resent an input sentence as a single vector, this
architecture simply sums up the vectors of indi-
vidual tokens. The premise and hypothesis vec-
tors are then concatenated and passed through a
multi-layer neural network. Recent work shows
that even this straightforward approach encodes a
non-trivial amount of information about the sen-
tence (Adi et al., 2017).

InferSent InferSent (Conneau et al., 2017) is
a model for sentence representation that demon-
strated close to state-of-the-art performance across
a number of tasks in NLP (including NLI) and
computer vision. The main differences from the
BOW model are as follows:

• A bidirectional LSTM encoder of input sen-
tences and a max-pooling operation over
timesteps are used to get a vector for the
premise (p) and for the hypothesis (h);

• A more complex scheme of interaction be-
tween the vectors p and h to get a single vec-
tor z that contains all the information needed

to produce a decision about the relationship
between the input sentences: z = [p, h, |p �
h|, p ⇤ h].

ESIM The ESIM model, developed by Chen
et al. (2017), is shown in Figure 2. It is a fairly
complex model that makes use of two bidirec-
tional LSTM networks. The basic idea of ESIM
is as follows:

• The first LSTM produces a sequence of hid-
den states.

• Pairwise attention matrix e is computed be-
tween all tokens in the premise and the hy-
pothesis to produce new sequences of “at-
tended” hidden states, which are then fed into
the second LSTM.

• Max and average pooling are performed over
the output of the LSTMs.

• The output of the pooling operations is com-
bined in a way similar to the InferSent model.

Figure 2: ESIM model. Dashed blocks illustrate
the knowledge-directed attention matrix and the
corresponding vectors (see Section 4.2.2 for de-
tails).
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The three aforementioned models exemplify the
architectures that are, perhaps, the most widely
used for NLI task, spanning from simple bag-of-
words approaches to complicated models with Bi-
LSTM and inter-sentence attention. We addition-
ally experimented with a plain Bi-LSTM model as
well as GRU (Cho et al., 2014), but since their per-
formance was not remarkable (in the same range
as BOW) we do not report it here.

4 Transfer learning

Given the existence of larger general-domain NLI
datasets such as SNLI and MultiNLI, it stands to
reason to try to leverage them to improve the per-
formance in the clinical domain. Transfer learning
has been shown to improve performance on vari-
ety of tasks such as: machine translation on low-
resource languages (Zoph et al., 2016) and also
some tasks from the bio-medical domain in par-
ticular (Sahu and Anand, 2017; Lee et al., 2018).
To see if a corresponding boost would be possi-
ble for the NLI task, we investigated three com-
mon transfer learning techniques on the MedNLI
dataset using SNLI and five different genres from
MultiNLI.

Direct transfer is the simplest method of trans-
fer learning. After training a model on a large
source domain dataset, the model is directly tested
on the target domain dataset. If the source and the
target domains are similar to some extent, one can
achieve a reasonable accuracy by simply applying
a model pre-trained on the source domain to the
target domain. In our case the source domain is
general domain in SNLI and the various genres in
MultiNLI, and the target domain is clinical.

Sequential transfer is the most widely used
technique. After pre-training the model on a large
source domain, the model is further fine-tuned us-
ing the smaller training data of the target domain.
The assumption is that while the model would
learn domain-specific features, it would also learn
some domain-independent features that will be
useful for the target domain. Furthermore, the
fine-tuning process would affect the learned fea-
tures from the source domain and make them more
suitable for the target domain.

Multi-target transfer is a more complex
method involving separation of the model into
three components (or layers):

• The shared component is trained on both the
source and target domains;

• The source domain component is trained only
during the pre-training phase and does not
participate in the prediction of the target do-
main;

• The target domain component is trained dur-
ing the fine-tuning stage and it produces the
predictions together with the shared compo-
nent.

The motivation for multi-target transfer is that
performance should be improved by splitting
deeper layers of the model into domain-specific
parts and having a shared block early in the
network, where it presumably learns domain-
independent features.

4.1 Word embeddings
Another way to improve the accuracy on the tar-
get domain is to use domain-specific word embed-
dings instead of, or, in addition to, open-domain
ones. For example, Stanovsky et al. (2017)
achieved state of the art results on the task of
recognizing Adverse Drug Reaction using graph-
based embeddings trained on the “Drugs” and
“Diseases” categories from DBpedia (Lehmann
et al., 2015), as well as embeddings trained on
web-pages categorized as “medical domain”.

We experimented with the following publicly
available general-domain word embeddings:

• GloVe[CC]: GloVe embeddings (Pennington
et al., 2014), trained on Common Crawl4.

• fastText[Wiki]: fastText embeddings (Bo-
janowski et al., 2017), trained on Wikipedia.

• fastText[CC]: fastText embeddings, trained
on Common Crawl.

Furthermore, we trained fastText embeddings
on the following domain-specific corpora:

• fastText[BioASQ]:A collection of PubMed
abstracts from the BioASQ challenge
data (Tsatsaronis et al., 2015). This data
includes abstracts from 12,834,585 scientific
articles from the biomedical domain.

• fastText[MIMIC-III]: Clinical notes for pa-
tients from the MIMIC-III database (Johnson
et al., 2016): 2,078,705 notes with 320 tokens
in each on average.

Finally, we experimented with initializing word
embeddings with pre-trained vectors from general

4http://commoncrawl.org/
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domain and further training on a domain-specific
corpus:

• GloVe[CC] → fastText[BioASQ]: GloVe embed-
dings for initialization, and the BioASQ data
for fine-tuning.

• GloVe[CC] → fastText[BioASQ] →
fastText[MIMIC-III]: GloVe embeddings
for initialization, and two consequent fine-
tuning using the BioASQ and MIMIC-III
data.

• fastText[Wiki] → fastText[MIMIC-III]: fastText
Wikipedia embeddings for initialization, and
the MIMIC-III data for fine-tuning.

Experiments using other approaches to word
embeddings, such as word2vec (Mikolov et al.,
2013) and CoVe (McCann et al., 2017) did not
show any gains. All the above trained embeddings
are available for download.

4.2 Knowledge integration
Since understanding medical texts requires
domain-specific knowledge, we experimented
with different ways of incorporating such knowl-
edge into the systems. First, we can modify
the input to the system so it carries a portion
of clinical information. Second, we can modify
the model itself, integrating domain knowledge
directly into it.

The UMLS is the largest, publicly available,
and regularly updated database of medical ter-
minologies, concepts, and relationships between
them. It can be viewed as a graph where clini-
cal concepts are nodes, connected by edges rep-
resenting relations, such as synonymy, parent-
child, etc. Following past work, we restricted to
the SNOMED-CT terminology in UMLS and ex-
perimented with two techniques for incorporating
knowledge: retrofitting and attention.

4.2.1 Retrofitting
Retrofitting (Faruqui et al., 2015) modifies pre-
trained word embeddings based on an ontology.
The basic idea is to try to bring the representations
of the concepts that are connected in the ontology
closer to one another in vector space. The authors
showed that retrofitting using WordNet (Fellbaum,
1998) synsets improves accuracy on several word-
level tasks, as well as sentiment analysis.

4.2.2 Knowledge-directed attention
Attention proved to be a useful technique for
many NLP tasks, starting from machine transla-

tion (Bahdanau et al., 2015) to parsing (Vinyals
et al., 2015) and NLI itself (Parikh et al., 2016;
Rocktäschel et al., 2016). In most models (includ-
ing the ESIM model that we use in our experi-
ments) attention is learned in an end-to-end fash-
ion. However, if we have knowledge about rela-
tionships between concepts, we could leverage it
to explicitly tell the model to attend to specific
concepts during the processing of the input sen-
tence.

For example, there is an edge in SNOMED-CT
from the concept Lung consolidation to Pneumo-
nia. Using this information, during the processing
of a sentence pair

• Premise The patient has pneumonia.
• Hypothesis The patient has a lung disease.

the model could attend to the token lung while pro-
cessing pneumonia.

We propose to integrate this knowledge in a
way similar to how attention is used in the ESIM
model. Specifically, we calculate the attention ma-
trix e 2 R

n⇥m between all pairs of tokens ai

and bj in the inputs sentences, where n is the
length of the hypothesis and m is the length of
the premise. The value in each cell reflects the
length of the shortest path lij between the corre-
sponding concepts of the premise and the hypoth-
esis in SNOMED-CT (the shorter is the path, the
higher is the value).

This process could be informally described as
follows: each token ãi of the premise is a weighted
sum of relevant tokens bj of the hypothesis, ac-
cording to the medical ontology, and vice versa.
This enables the medical domain knowledge to be
integrated directly into the system.

We used the original tokens ai as well as the
attended ãi inside the model for both InferSent and
ESIM. For InferSent, we simply concatenate them
across the time dimension:

â = [a1, a2, . . . , an, ã1, ã2, . . . , ãn]

where n is the length of the inputs sequence. For
the ESIM model, we concatenate ai and ãi before
passing them to the composition layer (see Fig-
ure 2 and Section 3.3 in the original paper (Chen
et al., 2017)). This enables the model to learn
the relative importance of both the token and the
knowledge directed attention.
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Set Features BOW InferSent ESIM

Dev 51.9 71.9 76.0 74.4
Test 51.9 70.2 73.5 73.1

Table 3: Baseline accuracy on the development and
the test set of MedNLI for different models.

5 Results and discussion

We implemented all models using PyTorch5 and
trained them with the Adam optimizer (Kingma
and Ba, 2015) until the validation loss showed
no improvement for 5 epochs. The epoch with
the lowest loss on the validation set was selected
for testing. We used the GloVe word embed-
dings (Pennington et al., 2014) in all experiments,
except for subsection 5.3. In all experiments we
report the average result of 6 different runs, with
the same hyperparameters and different random
seeds. Medical concepts in SNOMED-CT were
identified in the premise and hypothesis sentences
using Metamap (Aronson and Lang, 2010). The
code for all experiments is publicly available.6

5.1 Baselines
Table 3 shows the baseline results: the perfor-
mance of a model when trained and tested on
the MedNLI dataset. The feature-based system
performed the worst. As for neural networks-
based systems, the BOW model showed the low-
est performance on the both development and test
sets. The InferSent model, in contrast, achieved
the highest accuracy, despite ESIM outperform-
ing it on SNLI. This could be attributed to the
fact that ESIM has twice as many parameters as
InferSent, and so InferSent overfits less to the
smaller MedNLI dataset.

5.2 Transfer learning
As expected, Table 4 shows that direct transfer
is worse than the baseline but is still better than a
random baseline of 33.3%. Sequential and multi-
target transfer learning, in contrast, yields a con-
siderable gain for all the models. The maximum
gain is 2.4%, 0.9%, and 0.3% for the BOW, In-
ferSent, and ESIM models correspondingly.

Second, note that the biggest SNLI domain gave
the most boost in only two out of six cases, imply-
ing that the size of the domain should not be the

5https://pytorch.org/
6https://jgc128.github.io/mednli/

most important factor in choosing the source do-
main for transfer learning. The best accuracy for
all the models was obtained with the “slate” do-
main from MultiNLI corpus with sequential trans-
fer (note, however, that the accuracy of ESIM is
actually lower than the baseline accuracy). This
is consistent with observations of Williams et al.
(2018). Finally, although some domains are better
for particular transfer learning methods with par-
ticular models, there is no single combination that
works for all cases.

5.3 Word embeddings

Table 5 shows that simply using of the embed-
dings trained on the MIMIC-III notes significantly
increases the accuracy for all the models. Fur-
thermore, the InferSent models achieves a 3.1%
boost with the fastText Wikipedia embeddings,
fine-tuned on the MIMIC-III data. Note that the
results fastText[Wiki] are worse than the baseline
GloVe[CC] for all models, which could be due to
the source corpus size. However, the results on
BioASQ are worse than on MIMIC-III, despite the
significantly larger corpus of the BioASQ embed-
dings. Overall, our experiments show the bene-
fit of domain-specific rather than general-domain
word embeddings.

5.4 Knowledge integration

5.4.1 Retrofitting
Table 6 shows that retrofitting only hurts the per-

formance. This is in contrast with the results of
the original study, where retrofitting was bene-
ficial not only for word-level tasks but also for
tasks such as sentiment analysis (Faruqui et al.,
2015). We hypothesize that although WordNet
and UMLS are structurally similar, significant dif-
ferences in the content (Burgun and Bodenrei-
der, 2001) might be the reason for these results.
Retrofitting should be more useful when it is used
on a WordNet-like database where the main rela-
tion is synonymy, and tested on tasks such as word
similarity tests or sentiment analysis. The UMLS
semantic network is more complex and contains
relations that may not be suitable for retrofitting.

Moreover, retrofitting works only on directly
related concepts in a knowledge graph (although
it might affect, to some extent, indirectly related
concepts by transitivity). However, as Figure 3
shows, UMLS contains few training pairs that
have such concepts (namely, pairs with a path of
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Source domain Direct transfer Sequential transfer Multi-target transfer
BOW InferSent ESIM BOW InferSent ESIM BOW InferSent ESIM

snli -21.8 -24.2 -22.8 1.8 -1.8 -2.5 2.4 -2.5 -0.7
fiction -21.6 -25.6 -21.4 1.3 0.4 -0.5 1.4 0.1 0.3
government -23.8 -27.2 -26.2 1.0 0.8 -0.7 1.3 0.2 0.2
slate -23.2 -25.7 -21.6 1.9 0.9 -0.2 1.1 0.6 -0.1
telephone -25.7 -27.3 -25.6 1.7 -0.2 -1.1 1.2 0.4 -0.1
travel -25.4 -29.1 -23.5 1.6 0.0 -0.7 0.2 -0.3 0.1

Table 4: Absolute gain in accuracy with respect to the baseline (see Table 3) on the MedNLI test set for
different transfer learning modes. Bold indicates the best source domain for each model and transfer.

Embeddings BOW InferSent ESIM

fastText[Wiki] -3.5 -3.5 -4.4
fastText[CC] (600B) -0.6 1.3 -0.3
fastText[BioASQ] (2.3B) 0.5 0.6 0.2
fastText[MIMIC-III] (0.8B) 1.1 2.3 1.2
GloVe[CC] → fastText[BioASQ] 0.2 0.7 1.4
GloVe[CC] → fastText[BioASQ] → fastText[MIMIC-III] 0.9 2.7 1.8
fastText[Wiki] → fastText[MIMIC-III] 0.1 3.1 1.7

Table 5: Absolute gain in accuracy with respect to
the baseline (GloVe[CC]) for different word embed-
dings (the number in parentheses reflects the num-
ber of tokens in the corresponding training cor-
pora).

length 1). In contrast, the lengths of the shortest
path in SNLI using WordNet fall close to 1. This
suggests that the medical inferences represented in
MedNLI requires more complex reasoning, typi-
cally involving multiple steps.

As a sanity check, we applied retrofitting to
the GloVe embeddings and tested the InferSent
model on the “fiction” domain from the MultiNLI
corpus. We used the code and lexicons pro-
vided by Faruqui et al. (2015) and confirmed that
retrofitting hurts the performance in that case as
well.

BOW InferSent ESIM

-1.7 -2.0 -2.7

Table 6: Absolute gain in accuracy using
retrofitting for MedNLI.

5.4.2 Knowledge-directed attention
To evaluate the potential of knowledge-directed
attention, let us consider its effect on a base-
line embedding (GloVe[CC]) and a fastText em-
bedding trained on MIMIC-III (fastText[MIMIC-III])
that showed good performance in section 5.3.

Knowledge-directed attention showed positive
effect with the InferSent model on GloVe[CC] (0.3

N
o

pa
th

Figure 3: Lengths of the shortest paths between
concepts in the premise and the hypothesis. 0 in-
dicates that they contain the same concept.

gain), and was not detrimental to ESIM. How-
ever, in case of the fastText[MIMIC-III] embeddings
knowledge-directed attention was beneficial to
both models, as shown in Table 7. Note that while
retrofitting can use only direct relations during the
training process, our method incorporates infor-
mation about relationships of any length, which is
a necessity (as evident from Figure 3).

Embedding InferSent ESIM

GloVe[CC] 0.3 0.0
fastText[MIMIC-III] 0.2 0.3

Table 7: Absolute gain in accuracy using
knowledge-directed attention.

6 Error analysis

The neutral class is the hardest to recognize for
all models. Majority errors stem from confusion
between entailment and the neutral class. Use of
domain-specific embeddings trained on MIMIC-
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Category Premise Hypothesis Predicted Expected

Numerical Reasoning WBC 12 , Hct 41 . WBC slightly elevated contradiction entailment

World Knowlegde No known sick contacts No recent travel entailment neutral

Abbreviations No CP or fevers. Patient has no angina neutral entailment

Medical Knowledge EKG showed T-wave depres-
sion in V3-5, with no prior
EKG for comparison.

Patient has a normal EKG neutral contradiction

Negations Head CT was negative for
bleed.

The patient has intracranial
hemorrhage

neutral contradiction

Table 8: Representative errors made by different models

III result in gains which are equally distributed
across all three classes. Interestingly, gains from
knowledge-directed attention stem mostly (60%)
from the neutral class. Moreover, 87% of these
neutral predictions were predicted as entailment
before adding the knowledge directed attention.

We categorized the errors made by all the mod-
els in four broad categories. Table 8 outlines rep-
resentative errors made by most models in these
categories. Numerical reasoning such as abnor-
mal lab value ! disease or abnormal vital sign
! finding are very hard for a model to learn un-
less it has seen multiple instances of the same nu-
merical value.7 The first step is to learn what val-
ues are abnormal and the next is to actually per-
form the inference. Many inferences require world
knowledge that could be deemed close to open do-
main NLI. While these are very subtle, some are
quite domain specific (e.g. emergency admission
9 planned visit). Abbreviations are ubiquitously
found in clinical text. While some are standard
and therefore frequent, clinicians tend to use non
standard abbreviations making inference harder.
Finally, many inferences are at the core of rea-
soning with clinical knowledge. While training
on large datasets maybe a natural but impractical
solution, this is an open research problem for re-
searchers in the community.

7 Limitations
Unlike SNLI and MultiNLI, each example in the
MedNLI dataset was single annotated. However,
this was the best we could do in the limited time
and resources available. Very recently Gururan-
gan et al. (2018) discovered annotation artifacts in
NLI datasets. Since we followed the exact same
process, we found them to be present in MedNLI
as well. The premise-oblivious text-classifier that

7The symbol ! represents entailment relationship

achieves 67.0 F1 on SNLI, and 53.9 on Multi-NLI
achieves 61.9 on MedNLI.

8 Conclusion

We have presented MedNLI, an expert annotated,
public dataset for natural language inference in the
clinical domain. To the best of our knowledge,
MedNLI is the first dataset of its kind. Our ex-
periments with several state-of-the-art models pro-
vide a strong baseline for this dataset. Our work
compliments the current efforts in NLI by present-
ing thorough experiments for the specialized and
knowledge intensive field of medicine. We also
demonstrated that a simple use of domain-specific
word embeddings provides a performance boost.
Finally, we also presented a method for integrat-
ing domain ontologies into the training regime of
models. We hope the released code and dataset
with clear benchmarks help advance research in
clinical NLP and the NLI task.
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Abstract

We study how to learn a semantic parser
of state-of-the-art accuracy with less super-
vised training data. We conduct our study on
WikiSQL, the largest hand-annotated seman-
tic parsing dataset to date. First, we demon-
strate that question generation is an effective
method that empowers us to learn a state-of-
the-art neural network based semantic parser
with thirty percent of the supervised training
data. Second, we show that applying question
generation to the full supervised training data
further improves the state-of-the-art model. In
addition, we observe that there is a logarithmic
relationship between the accuracy of a seman-
tic parser and the amount of training data.

1 Introduction

Semantic parsing aims to map a natural language
utterance to an executable program (logical form)
(Zelle and Mooney, 1996; Wong and Mooney,
2007; Zettlemoyer and Collins, 2007). Recently,
neural network based approaches (Dong and Lap-
ata, 2016; Jia and Liang, 2016; Xiao et al., 2016;
Guu et al., 2017; Dong et al., 2018) have achieved
promising performance in semantic parsing. How-
ever, neural network approaches are data hungry,
which performances closely correlate with the vol-
ume of training data. In this work, we study the in-
fluence of training data on the accuracy of neural
semantic parsing, and how to train a state-of-the-
art model with less training data.

We conduct the study on WikiSQL (Zhong
et al., 2017), the largest hand-annotated semantic
parsing dataset which is larger than other datasets
in terms of both the number of logical forms and
the number of schemata. The task is to map a nat-
ural language question to a SQL query. We use a

⇤ Work done while this author was an intern at Microsoft
Research.

state-of-the-art end-to-end semantic parser based
on neural networks (detailed in Section 3), and
vary the number of supervised training instances.
Results show that there is a logarithmic relation-
ship between accuracy and the amount of training
data, which is consistent with the observations in
computer vision tasks (Sun et al., 2017).

We further study how to achieve state-of-the-art
parsing accuracy with less supervised data, since
annotating a large scale semantic parsing dataset
requires funds and domain expertise. We achieve
this through question generation, which generates
natural language questions from SQL queries. Our
question generation model is based on sequence-
to-sequence learning. Latent variables (Cao and
Clark, 2017) are introduced to increase the diver-
sity of generated questions. The artificially gener-
ated question-SQL pairs can be viewed as pseudo-
labeled data, which can be combined with a small
amount of human-labeled data to train the seman-
tic parser.

Results on WikiSQL show that the state-of-the-
art logical form accuracy drops from 60.7% to
53.7% with only thirty percent of training data,
while increasing to 61.0% when we combine the
pseudo-labeled data generated from the question
generation model. Applying the question genera-
tion model to full training data brings further im-
provements with 3.0% absolute gain. We further
conduct a transfer learning experiment that applies
our approach trained on WikiSQL to WikiTable-
Questions (Pasupat and Liang, 2015). Results
show that incorporating generated instances im-
proves the state-of-the-art neural semantic parser
(Krishnamurthy et al., 2017).

2 Overview of the Approach

Our task aims to map a question to a SQL query,
which is executable over a table to yield the an-
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swer. Formally, the task takes a question q and a
table t consisting of n column names and n ⇥m
cells as the input, and outputs a SQL query y. In
this section, we describe an overview of our ap-
proach, which is composed of several components.

SQL Sampler

SELECT MAX bronze WHERE silver > 2.0

1. what is the highest number of bronze medals when silver 
is larger than 2.0 ? 

2. if the silver is larger than 2.0 , what is the highest 
amount of bronze medals ?

Rank Nation Gold Silver Bronze
1 France 4 1 3
2 Great Britain 2 0 1
3 Germany 1 1 2
4 Belgium 1 1 1
5 Japan 0 2 1

Generated dataSupervised data

Semantic parser

SQL-to-Question

Model Training

Figure 1: An overview of our approach that improves
semantic parsing with question generation.

Figure 1 gives an overview of our approach.
First, given a table, a SQL query sampler is used
to sample valid, realistic, and representative SQL
queries. Second, a question generation compo-
nent takes SQL queries as inputs to obtain natu-
ral language questions. Here, the question gen-
eration model is learnt from a small-scale super-
vised training data that consists of SQL-question
pairs. Lastly, the generated question-SQL pairs
are viewed as the pseudo-labeled data, which are
combined with the supervised training data to train
the semantic parser.

Since we conduct the experiment on WikiSQL
dataset, we follow Zhong et al. (2017) and use
the same template-based SQL sampler, as summa-
rized in Table 1. The details about the semantic
parser and the question generation model will be
introduced in Sections 3 and Section 4, respec-
tively.

3 Semantic Parsing Model

We use a state-of-the-art end-to-end semantic
parser (Sun et al., 2018) that takes a natural lan-
guage question as the input and outputs a SQL

Format of a Sampled SQL Query
SELECT agg op agg col From table WHERE
cond1 col cond1 op cond1 AND cond2 col ...

Sampling Rules
Variable Sampling range
agg col
or
cond col

The aggregation column agg col and the
condition column cond col can be one of
columns in the table.

agg op The aggregation operator agg op can be
empty or COUNT. If the type of agg col is
numeric, agg op can additionally be one of
MAX and MIN.

cond op The condition operator cond op is =. If the
type of cond col is numeric, cond op can
additionally be one of > and <.

cond The condition value cond can be any cell
value under the cond col. If the type of
cond col is numeric, cond can be numer-
ical value sampled from minimum value to
maximum value in the cond col.

Filter Rules
1.The condition will be removed if doing the action
does not change the execution result.
2.We only save the sampled SQL queries that pro-
duce non-empty result set.

Table 1: The SQL sampler of (Zhong et al., 2017).

query, which is executed on a table to obtain the
answer. To make the paper self-contained, we
briefly describe the approach in this section.

The semantic parser is abbreviated as STAMP,
which is short for Syntax- and Table- Aware se-
Mantic Parser. Based on the encoder-decoder
framework, STAMP takes a question as the input
and generates a SQL query. It extends pointer net-
works (Zhong et al., 2017; Vinyals et al., 2015) by
incorporating three “channels” in the decoder, in
which the column channel predicts column names,
the value channel predicts table cells and the SQL
channel predicts SQL keywords. An additional
switching gate selects which channel to be used
for generation. In STAMP, the probability of a to-
ken to be generated is calculated as Equation 1,
where pz(·) is the probability of the channel zt to
be chosen, and pw(·) is the probability distribution
of generating a word yt from the selected channel.

p(yt|y<t, x) =
X

zt

pw(yt|zt, y<t, x)pz(zt|y<t, x)

(1)
Specifically, the encoder takes a question as the

input, uses bidirectional RNN with GRU cells to
compute the hidden states, and feeds the concate-
nation of both ends as the initial state of the de-
coder. The decoder has another GRU to calculate
the hidden states.

Each channel is implemented with an atten-
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tional neural network. In the SQL channel, the
input of the attention module includes the decoder
hidden state and the embedding of the SQL key-
word to be calculated (i.e. esql

i ).

psql
w (i) / exp(Wsql[h

dec
t ; esql

i ]) (2)

In the column channel, the vector of a column
name includes two parts, as given in Equation 3.
The first vector (hcol

i ) is calculated with a bidirec-
tional GRU because a column name might contain
multiple words. The second vector is a question-
aware cell vector, which is weighted averaged over
the cell vectors belonging to the column. Cell
vectors (hcell

i ) are also obtained by a bidirectional
GRU. The importance of a cell is measured by the
number of co-occurred question words, which is
further normalized through a softmax function to
yield the final weight ↵cell

j 2 [0, 1].

pcol
w (i) / exp(Wcol[h

dec
t ; hcol

i ;
X

j2coli

↵cell
j hcell

j ])

(3)
In the value channel, the model has two distri-

butions and weighted average them as Equation
4. Similar to psql(·), a standard cell distribution
p̂cell

w (·) is calculated over the cells belonging to
the last predicted column name. They incorpo-
rate an additional probability distribution ↵cell(·)
based on the aforementioned word co-occurrence.
The hyper parameter � is tuned on the dev set.

pcell
w (j) = �p̂cell

w (j) + (1� �)↵cell
j (4)

Please see more details on model training and
inference in Sun et al. (2018).

4 Question Generation Model

In this section, we present our SQL-to-question
generation approach, which takes a SQL query as
the input and outputs a natural language question.
Our approach is based on sequence-to-sequence
learning (Sutskever et al., 2014; Bahdanau et al.,
2015). In order to replicate rare words from SQL
queries, we adopt the copying mechanism. In ad-
dition, we incorporate latent variables to increase
the diversity of generated questions.

4.1 Encoder-Decoder
Encoder: A bidirectional RNN with gated re-
current unit (GRU) (Cho et al., 2014) is used
as the encoder to read a SQL query x =
(x1, ..., xT ). The forward RNN reads a SQL query

in a left-to-right direction, obtaining hidden states
(
�!
h1, ...,

�!
hT ). The backward RNN reads reversely

and outputs (
 �
h1, ...,

 �
hT ). We then get the final rep-

resentation (h1, ..., hT ) for each word in the query,
where hj = [

�!
hj ;
 �
hj ]. The representation of the

source sentence hx = ([
�!
hT ;
 �
h1]) is used as initial

hidden state of the decoder.

Decoder: We use a GRU with an attention
mechanism as the decoder. At each time-step t,
the attention mechanism obtains the context vector
ct that is computed same as the multiplicative at-
tention (Luong et al., 2015). Afterwards, the con-
catenation of the context vector, the embedding of
the previously predicted word yt�1, and the last
hidden state st�1 is fed to the next step.

st = GRU(st�1, yt�1, ct) (5)

After obtaining hidden states st, we adopt the
copying mechanism that predicts a word from the
target vocabulary or from the source sentence (de-
tailed in Subsection 4.2).

4.2 Incorporating Copying Mechanism
In our task, the generated question utterances typi-
cally include informative yet low-frequency words
such as named entities or numbers. Usually, these
words are not included in the target vocabulary but
come from SQL queries. To address this, we fol-
low CopyNet (Gu et al., 2016) and incorporate a
copying mechanism to select whether to generate
from the vocabulary or copy from SQL queries.

The probability distribution of generating the
t-th word is calculated as Equation 6, where
 g(·) and  c(·) are scoring functions for gener-
ating from the vocabulary ⌫ and copying from the
source sentence x, respectively.

p(yt|y<t, x) =
e g(yt) + e c(yt)

P
v2⌫ e g(v) +

P
w2x e c(w)

(6)
The two scoring functions are calculated as fol-

lows, where Wg and Wc are model parameters, vi

is the one-hot indicator vector for yi and hi is the
hidden state of word yi in the source sentence.

 g(yi) = vT
i Wgst

 c(yi) = tanh(hi
T Wc)st

(7)

4.3 Incorporating Latent Variable
Increasing the diversity of generated questions is
very important to improve accuracy, generaliza-
tion, and stability of the semantic parser, since this
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increases the mount of training data and produces
more diverse questions for the same intent. In this
work, we incorporate stochastic latent variables
(Cao and Clark, 2017; Serban et al., 2017) to the
sequence-to-sequence model in order to increase
question diversity.

Specifically, we introduce a latent variable z ⇠
p(z), which is a standard Gaussian distribution
N (0, In) in our case, and calculate the likelihood
of a target sentence y as follows:

p(y|x) =

Z

z
p(y|z, x)p(z) dz (8)

We maximize the evidence lower bound
(ELBO), which decomposes the loss into two
parts, including (1) the KL divergence between
the posterior distribution and the prior distribution,
and (2) a cross-entropy loss between the generated
question and the ground truth.

logp(y|x) � �DKL(Q(z|x, y)||p(z))

+Ez⇠Qlogp(y|z, x) (9)

The KL divergence in Equation 9 is calculated as
follow, where n is the dimensionality of z.

DKL(Q(z|x, y)||p(z)) =

� 1

2

nX

j=1

(1 + log(�2
j )� µ2

j � �2
j )

(10)

Q(z|x, y) is a posterior distribution with Gaussian
distribution. The mean µ and standard deviation
� are calculated as follows, where hx and hy are
representations of source and target sentences in
the encoder, respectively. Similar to hx, hy is ob-
tained by encoding the target sentence.

µ = Wµ[hx; hy] + bµ

log(�2) = W�[hx; hy] + b�
(11)

4.4 Training and Inference
At the training phase, we sample z from Q(z|x, y)
using the re-parametrization trick (Kingma and
Welling, 2014), and concatenate the source last
hidden state hx and z as the initial state of the de-
coder. Since the model tends to ignore the latent
variables by forcing the KL divergence to 0 (Bow-
man et al., 2016), we add a variable weight to the
KL term during training. At the inference phase,
the model will generate different questions by first
sampling z from p(z), concatenating hx and z as

the initial state of the decoder, and then decoding
deterministically for each sample.

Here, we list our training details. We set the di-
mension of the encoder hidden state as 300, and
the dimension of the latent variable z as 64. We
use dropout with a rate of 0.5, which is applied to
the inputs of RNN. Model parameters are initial-
ized with uniform distribution, and updated with
stochastic gradient decent. Word embedding val-
ues are initialized with Glove vectors (Pennington
et al., 2014). We set the learning rate as 0.1 and
the batch size as 32. We tune hyper parameters
on the development, and use beam search in the
inference process.

5 Experiment

We conduct experiments on the WikiSQL dataset1

(Zhong et al., 2017). WikiSQL is the largest hand-
annotated semantic parsing dataset which is an
order of magnitude larger than other datasets in
terms of both the number of logical forms and
the number of schemata (tables). WikiSQL is
built by crowd-sourcing on Amazon Mechanical
Turk, including 61,297 examples for training, and
9,145/17,284 examples for development/testing.
Each instance consists of a natural language ques-
tion, a SQL query, a table and a result. Here, we
follow Zhong et al. (2017) to use two evaluation
metrics. One is logical form accuracy (Acclf ),
which measures the percentage of exact string
match between the generated SQL queries and the
ground truth SQL queries. Since different logical
forms might obtain the same result, another metric
is execution accuracy (Accex), which is the per-
centage of the generated SQL queries that result
in the correct answer.

5.1 Impact of Data Size
We study how the number of training instances af-
fects the accuracy of semantic parsing.

In this experiment, we randomly sample 20 sub-
sets of examples from the WikiSQL training data,
incrementally increased by 3K examples (about
1/20 of the full WikiSQL training data). We use
the same training protocol and report the accuracy
of the STAMP model on the dev set. Results are
given in Figure 2. It is not surprising that more
training examples bring higher accuracy. Interest-
ingly, we observe that both accuracies of the neu-
ral network based semantic parser grow logarith-

1https://github.com/salesforce/WikiSQL
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Methods Training Data Dev Test
Acclf Accex Acclf Accex

Attentional Seq2Seq 100% 23.3% 37.0% 23.4% 35.9%
Aug.PntNet (Zhong et al., 2017) 100% 44.1% 53.8% 43.3% 53.3%
Aug.PntNet (re-implemented by us) 100% 51.5% 58.9% 52.1% 59.2%
Seq2SQL (Zhong et al., 2017) 100% 49.5% 60.8% 48.3% 59.4%
SQLNet (Xu et al., 2017) 100% – 69.8% – 68.0%
STAMP 30% 54.6% 69.7% 53.7% 68.9%
STAMP + QG 30% 61.6% 74.4% 61.2% 73.9%
STAMP 100% 61.5% 74.8% 60.7% 74.4%
STAMP + QG 100% 64.3% 76.5% 63.7% 75.5%

Table 2: Performance of different approaches on the WikiSQL dataset. The two evaluation metrics are logical
form accuracy (Acclf ) and execution accuracy (Accex). The settings of the training data represent the proportion
of supervised data we use.

Figure 2: Semantic parsing accuracies of the STAMP
model on WikiSQL. The x-axis is the training data
size in log-scale, and the y-axis includes two evalua-
tion metrics Acclf and Accex.

mically as training data expands, which is consis-
tent with the observations in computer vision tasks
(Sun et al., 2017).

5.2 Model Comparisons
We report the results of existing methods on Wik-
iSQL, and demonstrate that question generation is
an effective way to improve the accuracy of se-
mantic parsing. Zhong et al. (2017) implement
several methods, including Attentional Seq2Seq,
which is a basic attentional sequence-to-sequence
learning baseline; Aug.PntNet, which is an aug-
mented pointer network in which words of the tar-
get sequence come from the source sequence; and
Seq2SQL which extends Aug.PntNet by further
learning two separate classifiers for SELECT ag-
gregator and SELECT column. Xu et al. (2017)

develop SQLNet, which uses two separate mod-
els to predict SELECT and WHERE clauses, re-
spectively, and introduce a sequence-to-set neural
network to predict the WHERE clause. STAMP
stands for the semantic parser which has been de-
scribed in Section 3.

From Table 2, we can see that STAMP performs
better than existing systems when trained on the
full WikiSQL training dataset, achieving state-of-
the-art execution accuracy and logical form ac-
curacy on WikiSQL. We further conduct exper-
iments to demonstrate the effectiveness of our
question generation driven approach. We run the
entire pipeline (STAMP+QG) with different per-
centages of training data. The second column
“Training Data” in Table 2 and the x-axis in Fig-
ure 3 represent the proportion of WikiSQL train-
ing data we use for training the QG model and se-
mantic parser. That is to say, STAMP +QG with
30% means that we sample 30% WikiSQL train-
ing data to train the QG model, and then combine
QG generated data and exactly the same 30% Wik-
iSQL training data we sampled before to train the
semantic parser. In this experiment, we sample
five SQL queries for each table in the training data,
resulting in 43.5K SQL queries. Applying the QG
model on these SQL queries, we get 92.8K SQL-
question pairs. From Figure 3, we see that accu-
racy increases as the amount of supervised training
data expands. Results show that QG empowers the
STAMP model to achieve the same accuracy on
WikiSQL dataset with 30% of the training data.
Applying QG to the STAMP model under the full
setting brings further improvements, resulting in
new state-of-the-art accuracies.
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Methods Dev Test
Accsel Accagg Accwhere Accsel Accagg Accwhere

Aug.PntNet (re-implemented by us) 80.9% 89.3% 62.1% 81.3% 89.7% 62.1%
Seq2SQL (Zhong et al., 2017) 89.6% 90.0% 62.1% 88.9% 90.1% 60.2%
SQLNet (Xu et al., 2017) 91.5% 90.1% 74.1% 90.9% 90.3% 71.9%
STAMP 89.4% 89.5% 77.1% 88.9% 89.7% 76.0%
STAMP+QG 89.7% 90.1% 79.8% 89.1% 90.2% 79.0%

Table 3: Fine-grained accuracies on the WikiSQL dev and test sets. Logical form accuracy (Acclf ) is evaluated
on SELECT column (Accsel) , SELECT aggregator (Accagg), and WHERE clause (Accwhere), respectively. All
these models are trained on the full WikiSQL training data.

Figure 3: Accuracies of STAMP+QG with different
portions of supervised data. Dashed lines are Acclf

and Accex of STAMP on the full training data.

5.3 Fine-grained Accuracies

Since SQL queries in WikiSQL consist of SE-
LECT column, SELECT aggregator, and WHERE
clause, we report fine-grained accuracies with re-
gard to these aspects, respectively.

From Table 3, we observe that the main ad-
vantage of STAMP+QG over STAMP comes from
the prediction of the WHERE clause, which is
also the main challenge of the WikiSQL dataset.
We further analyze STAMP and STAMP+QG on
the WHERE clause by splitting the dev and test
sets into three groups according to the number of
conditions in the WHERE clause. From Table 4,
we see that combining QG is helpful when the
number of WHERE conditions is more than one.
The main reason is that dominant instances in the
WikiSQL training set have only one WHERE con-
dition, as shown in Table 5, thus the model might
not have memorized enough patterns for the other
two limited-data groups. Therefore, the pseudo-
labeled instances generated by our SQL sampler

and QG approach are more precious to the limited-
data groups (i.e #where =2 and #where�3).

#where STAMP STAMP+QG
dev test dev test

= 1 80.9% 80.2% 81.5% 80.9%
= 2 65.1% 65.4% 68.3% 66.9%
� 3 44.1% 48.2% 53.4% 51.9%

Table 4: Execution accuracy (Accex) on different
groups of WikiSQL dev and test sets.

#where supervised data generated data
= 1 69.1% 55.4%
= 2 24.1% 33.0%
� 3 6.1% 11.4%

Table 5: Distribution of the number of WHERE condi-
tions in supervised and generated data.

5.4 Influences of Different QG Variations
To better understand how various components in
our QG model impact the overall performance, we
study different QG model variations. We use three
evaluation metrics, including two accuracies and
BLEU score (Papineni et al., 2002). The BLEU
score evaluates the question generation.

Methods Scale BLEU Acclf Accex

s2s 30% 20.6 59.0% 72.1%
s2s+lv 30% 22.1 60.0% 72.3%
s2s+cp 30% 29.6 60.8% 73.5%
s2s+cp+lv 30% 29.5 61.2% 73.9%
s2s 100% 26.0 62.6% 74.9%
s2s+lv 100% 26.3 63.0% 75.3%
s2s+cp 100% 31.5 63.2% 75.6%
s2s+cp+lv 100% 31.6 63.7% 75.5%

Table 6: Performances of different question generation
variations.
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SQL SELECT COUNT 2nd leg WHERE aggregate = 7-2
Question (ground truth) what is the total number of 2nd leg where aggregate is 7-2
Question (s2s + cp) how many 2nd leg with aggregate being 7-2

Question (s2s + cp + lv)
(1) what is the total number of 2nd leg when the aggregate is 7-2 ?
(2) how many 2nd leg with aggregate being 7-2
(3) name the number of 2nd leg for 7-2

Table 7: Generated examples from different question generation model variations.

Results are shown in Table 6, in which s2s rep-
resents the basic attentional sequence-to-sequence
learning model (Luong et al., 2015), cp means the
copying mechanism, and lv stands for the latent
variable. We can see that incorporating a latent
variable improves QG model performance, espe-
cially in limit-supervision scenarios. This is con-
sistent with our intuition that the performance of
the QG model is improved by incorporating the
copying mechanism, since rare words of great im-
portance mainly come from the input sequence.

To better understand the impact of incorporating
a latent variable, we show examples generated by
different QG variations in Table 7. We can see
that incorporating a latent variable empowers the
model to generate diverse questions for the same
intent.

5.5 Transfer Learning on
WikiTableQuestions

In this part, we conduct an extensional experi-
ment on WikiTableQuestions2 (Pasupat and Liang,
2015) in a transfer learning scenario to verify the
effectiveness of our approach. WikiTableQues-
tions contains 22,033 complex questions on 2,108
Wikipedia tables. Each instance consists of a nat-
ural language question, a table and an answer. Fol-
lowing Pasupat and Liang (2015), we report devel-
opment accuracy which is averaged over the first
three 80-20 training data splits. Test accuracy is
reported on the train-test data.

In this experiment, we apply the QG model
learnt from WikiSQL to improve the state-of-the-
art semantic parser (Krishnamurthy et al., 2017)
on this dataset. Different from WikiSQL, this
dataset requires question-answer pairs for training.
Thus, we generate question-answer pairs by fol-
low steps. We first sample SQL queries on the ta-
bles from WikiTableQuestions, and then use our
QG model to generate question-SQL pairs. After-

2https://nlp.stanford.edu/software/
sempre/wikitable/

wards, we obtain question-answer pairs by execut-
ing SQL queries. The generated question-answer
pairs will be combined with the original Wik-
iTableQuestions training data to train the model.

Dev Test
Pasupat and Liang (2015) 37.0% 37.1%
Neelakantan et al. (2016) 37.5% 37.7%
Haug et al. (2017) - 38.7%
Zhang et al. (2017) 40.4% 43.7%
STAMP (WikiSQL) - 14.5%
STAMP (WikiSQL) + QG - 15.2%
NSP 41.9% 43.8%
NSP + QG 42.2% 44.2%

Table 8: Accuracy (Accex) of different approaches on
WikiTableQuestion dev and test sets.

Results are shown in Table 8, in which NSP is
short for the state-of-the-art neural semantic parser
(Krishnamurthy et al., 2017). Since the train-test
data used in NSP is different from others, we re-
train the NSP under the same protocol. STAMP
(WikiSQL) means that the STAMP model trained
on WikiSQL is directly tested on WikiTableQues-
tions. Despite applying QG slightly improves
STAMP in this setting, the low accuracy reflects
the different question distribution between these
two datasets. In the supervised learning setting,
we can see that incorporating QG further improves
the accuracy of NSP from 43.8% to 44.2%.

5.6 Discussion

To better understand the limitations of our QG
model, we analyze a randomly selected set of 100
questions. We observe that 27% examples do not
correctly express the meanings of SQL queries,
among which the majority of them miss infor-
mation from the WHERE clause. This problem
might be mitigated by incorporating a dedicated
encoder/decoder that takes into account the SQL
structure. Among the other 73% of examples that
correctly express SQL queries, there are two po-
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tential directions to make further improvements.
The first direction is to leverage table information
such as the type of a column name or column-cell
correlations. For instance, without knowing that
cells under the column name “built” are all build-
ing years, the model hardly predicts a question
“what is the average building year for superb?”
for “SELECT AVG built WHERE name = superb”.
The second direction is to incorporate common
knowledge, which would help the model to pre-
dict the earliest week rather than the lowest week.

6 Related Work

Semantic Parsing. Semantic parsing is a fun-
damental problem in NLP that maps natural lan-
guage utterances to logical forms, which could be
executed to obtain the answer (denotation) (Zettle-
moyer and Collins, 2005; Liang et al., 2011; Be-
rant et al., 2013; Krishnamurthy and Kollar, 2013;
Pasupat and Liang, 2016; Iyer et al., 2017). Exist-
ing works can be classified into three areas, includ-
ing (1) the language of the logical form, e.g. first-
order logic, lambda calculus, lambda dependency-
based compositional semantics (lambda DCS) and
structured query language (SQL); (2) the form of
the knowledge base, e.g. facts from large collabo-
rative knowledge bases, semi-structured tables and
images; and (3) the supervision used for learning
the semantic parser, e.g. question-denotation pairs
and question-logical form pairs. In this work, we
regard the table as the knowledge base, which is
critical for accessing relational databases with nat-
ural language, and also for serving information re-
trieval for structured data. We use SQL as the logi-
cal form, which has a broad acceptance to the pub-
lic. In terms of supervision, this work uses a small
portion of question-logical form pairs to initialize
the QA model and train the QG model, and incor-
porate more generated question-logical form pairs
to further improve the QA model.

Question Generation Our work also relates to
the area of question generation, which has drawn
plenty of attention recently partly influenced by
the remarkable success of neural networks in text
generation. Studies in this area are classified based
on the definition of the answer, including a sen-
tence (Heilman, 2011), a topic word (Chali and
Hasan, 2015), a fact (including a subject, a relation
phrase and an object) from knowledge bases (Ser-
ban et al., 2016), an image (Mostafazadeh et al.,
2016), etc. Recent studies in machine reading

comprehension generate questions from an answer
span and its context from the document (Du et al.,
2017; Golub et al., 2017). Wang et al. (2015) first
generate logical forms, and then use AMTurkers
to paraphrase them to get natural language ques-
tions. Iyer et al. (2017) use a template-based ap-
proach based on the Paraphrase Database (Gan-
itkevitch et al., 2013) to generate questions from
SQL. In this work, we generate questions from
logical forms, in which the amount of information
from two directions are almost identical. This dif-
fers from the majority of existing studies because
a question typically conveys less semantic infor-
mation than the answer.

Improving QA with QG This work also relates
to recent studies that uses a QG model to improve
the performance of a discriminative QA model
(Wang et al., 2017; Yang et al., 2017; Duan et al.,
2017; Konstas et al., 2017). The majority of these
works generate a question from an answer, while
there also exists a recent work (Dong et al., 2017)
that generates a question from a question through
paraphrasing. In addition, Tang et al. (2017) con-
sider QA and QG as dual tasks, and further im-
prove the QG model in a dual learning framework.
These works fall into three categories: (1) regard-
ing the artificially generated results as additional
training instances (Yang et al., 2017; Golub et al.,
2017); (2) using generated questions to calculate
additional features (Duan et al., 2017; Dong et al.,
2017); and (3) using the QG results as additional
constraints in the training objectives (Tang et al.,
2017). This work belongs to the first direction.
Our QG approach takes a logical form as the input,
and considers the diversity of generated questions
by incorporating latent variables.

7 Conclusion

In this paper, we observe the logarithmic relation-
ship between the accuracy of a semantic parser
and the amount of training data, and present an ap-
proach that improves neural semantic parsing with
question generation. We show that question gen-
eration helps us obtain a state-of-the-art neural se-
mantic parser with less supervised data, and fur-
ther improves the state-of-the-art model with full
annotated data on WikiSQL and WikiTableQue-
sions datasets. In future work, we would like to
make use of table information and external knowl-
edge to improve our QG model. We also plan to
apply the approach to other tasks.
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Abstract
Recent research proposes syntax-based ap-
proaches to address the problem of gener-
ating programs from natural language spec-
ifications. These approaches typically train
a sequence-to-sequence learning model using
a syntax-based objective: maximum likeli-
hood estimation (MLE). Such syntax-based
approaches do not effectively address the goal
of generating semantically correct programs,
because these approaches fail to handle Pro-
gram Aliasing, i.e., semantically equivalent
programs may have many syntactically differ-
ent forms. To address this issue, in this pa-
per, we propose a semantics-based approach
named SemRegex. SemRegex provides solu-
tions for a subtask of the program-synthesis
problem: generating regular expressions from
natural language. Different from the existing
syntax-based approaches, SemRegex trains the
model by maximizing the expected semantic
correctness of the generated regular expres-
sions. The semantic correctness is measured
using the DFA-equivalence oracle, random test
cases, and distinguishing test cases. The ex-
periments on three public datasets demonstrate
the superiority of SemRegex over the existing
state-of-the-art approaches.

1 Introduction
Translating natural language (NL) descriptions
into executable programs is a fundamental prob-
lem for computational linguistics. An end user
may have difficulty to write programs for a certain
task, even when the task is already specified in NL.
For some tasks, even for developers, who have ex-
perience in writing programs, it can be time con-
suming and error prone to write programs based
on the NL description of the task. Naturally, au-
tomatically synthesizing programs from NL can
help alleviate the preceding issues for both end
users and developers.

Recent research proposes syntax-based ap-
proaches to address some tasks of this problem

in different domains, such as regular expressions
(regex) (Locascio et al., 2016), Bash scripts (Lin
et al., 2017), and Python programs (Yin and Neu-
big, 2017). These approaches typically train a
sequence-to-sequence learning model using max-
imum likelihood estimation (MLE). Using MLE
encourages the model to output programs that are
syntactically similar with the ground-truth pro-
grams in the training set. However, such syntax-
based training objective deviates from the goal
of synthesizing semantically equivalent programs.
Specifically, these syntax-based approaches fail to
handle the problem of Program Aliasing (Bunel
et al., 2018), i.e., a semantically equivalent
program may have many syntactically different
forms. Table 1 shows some examples of the Pro-
gram Aliasing problem. Both Program 1 and
Program 2 are desirable outputs for the given
NL specification but one of them is penalized by
syntax-based approaches if the other one is used
as the ground truth, compromising the overall ef-
fectiveness of these approaches.

In this paper, we focus on generating regu-
lar expressions from NL, an important task of
the program-synthesis problem, and propose Sem-
Regex, a semantics-based approach to generate
regular expressions from NL specifications. Regu-
lar expressions are widely used in various applica-
tions, and “regex” is one of the most common tags
in Stack Overflow1 with more than 190, 000 re-
lated questions. The huge number of regex-related
questions indicates the importance of this task.

Different from the existing syntax-based ap-
proaches, SemRegex alters the syntax-based train-
ing objective of the model to a semantics-based
objective. To encourage the translation model to
generate semantically correct regular expressions,
instead of MLE, SemRegex trains the model by
maximizing the expected semantic correctness of

1https://stackoverflow.com/questions/
tagged/regex
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Table 1: Examples of Program Aliasing: for each NL specification, Program 2 is semantically equivalent
to Program 1; however, if Program 1 is the ground truth in the training set, Program 2 is penalized by
syntax-based approaches although it is a desirable program.

Domain NL Specification Program 1 Program 2

Regex Match lines that start with an uppercase
vowel and end with ‘X’ ([AEIOUaeiou]&[A-Z]).*X ([AEIOU].*)&(.*X)

Bash Rename file ‘f1’ to ‘f1.txt’ mv ’f1’ ’f1.txt’ cp ’f1’ ’f1.txt’; rm ’f1’

Python Assign the greater value of ‘a’ and
‘b’ to variable ‘c’ c = a if a > b else b c = [b, a][a > b]

generated regular expressions. We follow the tech-
nique of policy gradient (Williams, 1992) to esti-
mate the gradients of the semantics-based objec-
tive and perform optimization.

The measurement of semantic correctness
serves as a key part in the semantics-based objec-
tive, which should represent the semantics of pro-
grams. In this paper, we convert a regular expres-
sion to a minimal Deterministic Finite Automaton
(DFA). Such conversion is based on the insight
that semantically equivalent regular expressions
have the same minimal DFAs. We define the se-
mantic correctness of a generated regular expres-
sion as whether its corresponding minimal DFA is
the same as the ground truth’s minimal DFA.

When our approach is applied on domains other
than regular expressions such as Python programs
and Bash scripts, a perfect equivalence oracle such
as minimal DFAs may not be feasibly available.
To handle a more general case, we propose cor-
rectness assessment based on test cases for regu-
lar expression; such correctness assessment can be
easily generalized for other tasks of program syn-
thesis. Concretely, we generate test cases to rep-
resent semantics of the ground truth. For a gen-
erated regular expression, we assess its semantic
correctness by checking whether it can pass all
the test cases. However, a regular expression may
have infinite positive (i.e., matched) or negative
(i.e., unmatched) string examples; thus, we can-
not perfectly represent the semantics. To use lim-
ited string examples to differentiate whether a gen-
erated regular expression is semantically correct
or not, we propose an intelligent strategy for test
generation to generate distinguishing test cases in-
stead of just using random test cases.

We evaluate SemRegex on three public datasets:
NL-RX-Synth, NL-RX-Turk (Locascio et al.,
2016), and KB13 (Kushman and Barzilay, 2013).
We compare SemRegex with the existing state-of-
the-art approaches on the task of generating regu-
lar expressions from NL specifications. Our evalu-
ation results show that SemRegex outperforms the

start-of-the-art approaches on all of three datasets.
The evaluation results confirm that by maximizing
semantic correctness, the model can output more
correct regular expressions even when the regu-
lar expressions are syntactically different from the
ground truth.

In summary, this paper makes the follow-
ing three main contributions. (1) We pro-
pose a semantics-based approach to optimize the
semantics-based objective for the task of gener-
ating regular expressions from NL specifications.
(2) We introduce the measurement of semantic
correctness based on test cases, and propose a
strategy to generate distinguishing test cases, in
order to better measure the semantic correctness
than using random test cases. (3) We evaluate our
approach on three public datasets. The evaluation
results show that our approach outperforms the ex-
isting state-of-the-art on all of the three datasets.

2 Problem Formulation

Consider the problem of automatically generating
a regular expression R given an NL specification
S as an input. Let S = s1, s2, . . . , sm denote the
NL specification, where si represents a word in
the vocabulary; let R = r1, r2, . . . , rn denote the
regular expression, where ri is a valid character in
the regular expression.

We assume that we have a training set consist-
ing of K NL and regular expression pairs:

D =
n

(S(i), R(i))
o

i=1..K

Given an NL specification, it is possible to have
multiple regular expressions fitting the specifica-
tion. In the training set, only one regular expres-
sion is provided for each NL specification.

3 SemRegex Approach

In this section, we illustrate our SemRegex ap-
proach in detail. First, we introduce our model,
which is a sequence-to-sequence learning model.
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Next, we alter the standard Maximum Likelihood
Estimation (MLE) objective to maximize semantic
correctness. We leverage policy gradient to train
the model with the semantics-based objective. Fi-
nally, we discuss how to measure semantic cor-
rectness.

3.1 Model

It is natural to apply a machine-translation model
on the program-synthesis problem. We follow a
previous attempt (Locascio et al., 2016) to use a
sequence-to-sequence learning model (Sutskever
et al., 2014) augmented with the attention mech-
anism (Bahdanau et al., 2014). The model con-
sists of an encoder network and a decoder net-
work. In both the encoder network and decoder
network, we use LSTM (Hochreiter and Schmid-
huber, 1997) units that can be summarized as fol-
low:

it = �(Wixt + Uiht�1 + bi)

ft = �(Wfxt + Ufht�1 + bf )

ot = �(Woxt + Uoht�1 + bo)

c̃t = �(Wcxt + Ucht�1 + bc)

ct = ft � ct�1 + it � c̃t

ht = ot � �(ct)

where � is the sigmoid function, � is the hy-
perbolic tangent function, and � is the element-
wise multiplication; weight matrices W and U
along with biases b are learnable parameters of the
model. In the encoder network, the input xt is an
embedding vector of the word st in the NL input
sequence. In the decoder network, the input xt

is an embedding vector of the previous character
rt�1 in the output regular expression. The hid-
den vectors ht of the encoder network are fed into
an attention layer (Bahdanau et al., 2014) to out-
put an overall representation of the input sentence
considering the output position. The hidden vec-
tors ht of the decoder network are fed into a dense
layer zt = Wzht, where zt holds the dimension of
the vocabulary size of the regular expression. zt

is the output of the decoder network to predict the
output character rt = arg maxj zt,j .

A softmax function is applied on zt to obtain
a probability distribution on output character can-
didates. The probability of character j at output
position t is as follow:

p(rt = j|r<t, S) =
ezt,j

P
j0 ezt,j0

3.2 Training
Let ✓ represent all learnable parameters in the
model. We discuss two objective functions of ✓
to train the model.
Maximum Likelihood Estimation (MLE). A
sequence-to-sequence learning model learns the
distribution of regular expressions R given an in-
put NL sentence S:

p✓(R|S) =
TY

t=1

p✓(rt|r<t, S)

By default, the sequence-to-sequence learn-
ing model uses maximum likelihood estimation
(MLE) for training, i.e., maximizing the likelihood
of mapping the input sequence to the output se-
quence for each pair in the training set. Specif-
ically, the optimal parameters ✓⇤ are obtained as
follow:

✓⇤ = arg max
✓

Y

(S(i),R(i))2D

p✓(R
(i)|S(i))

= arg max
✓

X

(S(i),R(i))2D

log p✓(R
(i)|S(i))

Gradient descent is used to search out optimal pa-
rameters ✓⇤.

However, MLE fails to consider the fact that
semantically equivalent regular expressions might
be syntactically different. The MLE objective
function forces the model to generate syntactically
similar regular expressions, but penalizes semanti-
cally equivalent and syntactically different regular
expressions. Such a syntax-based training objec-
tive does not fit our task’s objective (i.e., generat-
ing any semantically correct regular expression).
Maximizing Semantic Correctness. To encour-
age the model to generate any semantically correct
regular expression, we alter the MLE training ob-
jective function to maximize semantic correctness.

For an NL specification, we define a reward of a
predicted regular expression r(R) as its semantic
correctness (we discuss how to measure the cor-
rectness later in this section). We encourage the
model to generate regular expressions to maximize
expected rewards instead of MLE. Concretely, we
train the model parameters ✓ to maximize the fol-
lowing objective function:

J(✓) =
X

(S(i),R(i))2D

ER⇠p✓(·|S(i))r(R)

=
X

(S(i),R(i))2D

X

R

p✓(R|S(i))r(R)
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However, to compute the expected reward, we
need to go over all possible regular expressions,
and the number of all possible regular expressions
is infinite. To address this problem, we use the
Monte Carlo estimate as the approximation of the
expected value. Specifically, M regular expres-
sions R1, . . . , RM are sampled following the out-
put probability of the model. We average the re-
ward of each sample to estimate the expected re-
ward:

J(✓) ⇡
X

(S(i),R(i))2D

MX

j=1

1

M
r(Rj),

where Rj ⇠ p✓(·|S(i))

In order to compute the gradient of the expected
reward and to maximize the objective using gra-
dient descent, we employ the REINFORCE tech-
nique of policy gradient (Williams, 1992), which
is based on the following estimation:

r✓J(✓) ⇡
X

(S(i),R(i))2D

MX

j=1

1

M
r(Rj)r✓ log p✓(Rj |S(i)),

where Rj ⇠ p✓(·|S(i))

In practice, we subtract the mean reward of all
samples to reduce the variance of estimated gradi-
ent (Williams, 1992). The final gradient estimate
is as follow:

r✓J(✓) ⇡
X

(S(i),R(i))2D

MX

j=1

1

M
r̃(Rj)r✓ log p✓(Rj |S(i)),

where r̃(Rj) = r(Rj)�
MX

j0=1

1

M
r(Rj0)

The overall training algorithm is summarized in
Algorithm 1. We initialize ✓ by pre-training the
model using MLE on the training set. For each
pair in training set, we sample M regular expres-
sions to estimate the gradient.

3.3 Measurement of Semantic Correctness
In this paper, we propose two types of measuring
semantic correctness based on minimal DFAs and
test cases, respectively.
Minimal DFAs. We convert a regular expres-
sion to a minimal DFA and utilize the fact
that equivalent regular expressions have the same

Algorithm 1: Policy-gradient method to
maximize semantic correctness
Input: Training set: D =

�
(S(i), R(i))

 

1 Initilize ✓ from pretrained model using
MLE on D ;

2 for each epoch do
3 for (S(i), R(i)) 2 D do
4 Sample R1, . . . , RM using current

model ;
5 Get rewards r(R1), . . . , r(RM ) ;
6 Estimater✓J(✓) using (3.2) ;
7 Update ✓ using r✓J(✓) by gradient

descent ;
8 end
9 end

s0 s1 s2
A,B

6=X

X

(a)

Path String example

s0
A�! s1

X�! s2 AX

s0
B�! s1

K�! s1
X�! s2 BKX

s0
B�! s1

X�! s2 BX
(b)

Figure 1: Minimal DFA converted from
“([ABab]&[A-Z]).*X” and generated
string examples, where s0 represents the start state
and s2 is the only accept state.

minimal DFAs even when they are syntacti-
cally different (Hopcroft et al., 1979). For
example, the minimal DFA of regular expres-
sion “([ABab]&[A-Z]).*X” is shown in Fig-
ure 1(a). A syntactically different regular expres-
sion “((A|B).*)&(.*X)” can be converted to
the same minimal DFA as shown in Figure 1(a),
indicating that these two regular expressions are
semantically equivalent.

We check whether two regular expressions are
equivalent by checking whether their correspond-
ing minimal DFAs are the same. When the policy-
gradient method is performed, if a sampled regu-
lar expression R is equivalent to the ground truth,
then r(R) = 1; otherwise r(R) = 0.
Test Cases. A perfect equivalence oracle such
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as using the minimal DFA may not be feasibly
available for some tasks, e.g., when our approach
is applied on other domains such as generating
Bash scripts and Python programs. To handle a
more general case, we propose correctness mea-
surement based on test cases. We generate test
cases (i.e., inputs and expected outputs) and check
whether a program can pass the test cases that are
generated from the ground truth to approximately
check whether the program and the ground truth
are equivalent.

Given a regular expression R, we generate test
cases that contain positive (acceptable/matched)
and negative (unacceptable/unmatched) string ex-
amples. Here we consider only positive exam-
ples because negative examples can be obtained
by generating positive examples of its complement
regular expression⇠R. To generate positive string
examples from regular expression R, we convert
R to its corresponding minimal DFA. Each posi-
tive string example corresponds to a path from the
start state of the minimal DFA to any accept state2,
and vice versa. Thus, we generate paths randomly
from the start state to any accept state, and convert
the paths to their corresponding strings as shown
in Figure 1(b). To generate distinct string exam-
ples, we aim to generate paths to cover as many
transitions as possible. In particular, we mask all
transitions that have been covered by previously
generated paths. When we generate a new path,
the not-covered transitions have higher priority to
be explored than covered ones.

Because complex regular expressions may ac-
cept/match or reject/unmatch infinite string ex-
amples, we augment random generation with a
new strategy to generate distinguishing test cases
to better represent the semantics. Considering
that the generated test cases are used to check
whether a Monte-Carlo sampled regular expres-
sion is equivalent to the ground truth in the policy-
gradient method, only test cases that can differen-
tiate an incorrect sample and the ground truth are
useful. Based on such insight, we give preference
to test cases that differentiate Monte-Carlo sam-
ples and the ground truth. A challenge here is that
we do not know the samples before performing
the policy-gradient method. However, we find that
there is a high chance to get the same samples re-
peatedly when the model is pre-trained using MLE
on the training set, because sampling is following
the distribution learned by the pre-trained model.
Based on the observation, we use the Beam Search

2A DFA has one start state and a set of accept states.

algorithm on the pre-trained model to obtain B
most likely samples R̂1, . . . , R̂B . We generate
string examples that can differentiate these sam-
ples and the ground truth, named as distinguishing
string examples. For each R̂ and ground truth R,
we construct a new regular expression R&(⇠R̂),
and generate its string examples that can differen-
tiate R and R̂.

The overall idea of our strategy for generating
string examples is shown in Algorithm 2. Once
we have a set of positive and negative string exam-
ples, we define the reward of a regular expression
as r(R) = 1 if it can pass all the test cases, and
r(R) = 0 otherwise.

When extending SemRegex on other languages
where a perfect equivalence oracle is not available,
it is desirable to use a technique to generate test
cases for a program. There exist techniques (dis-
cussed in Section 5) to generate test cases for a
general executable program.

Algorithm 2: Generating distinguishing
test cases for regular expressions
Input: Training set: D =

�
(S(i), R(i))

 
,

the number of examples to generate:
T , and a pre-trained model

Output: Positive and negative example
sets P(i) and N (i)

1 for (S(i), R(i)) 2 D do
2 P(i)  ; ;
3 N (i)  ; ;
4 Beam search on pre-trained model to

obtain R̂1, . . . , R̂B ;
5 repeat
6 Randomly pick a j in [1, B] ;
7 Rp  R(i)&(⇠R̂j) ;
8 Rn  (⇠R(i))&R̂j ;
9 Generate an example p from Rp ;

10 Generate an example n from Rn ;
11 P(i)  P(i) [ {p} ;
12 N (i)  N (i) [ {n} ;
13 until |P(i)| � T && |N (i)| � T ;
14 end

4 Experiments

We evaluate the effectiveness of SemRegex by
comparing it to the state-of-the-art approaches.
We also study how using different measurements
of correctness impacts the effectiveness of Sem-
Regex.
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4.1 Experiment Setup
Datasets. We conduct our experiments on three
public datasets for the task of generating regular
expressions from NL specifications.

• KB13. KB13 (Kushman and Barzilay, 2013)
includes 824 pairs of NL and regular expres-
sion. When conducting data labeling, label-
ing workers are asked to generate the NL
specifications to capture a subset of the lines
in a file. Then programmers are asked to gen-
erate regular expressions for these NL speci-
fications written by the labeling workers. We
split the data into 75% training and 25% test-
ing sets, following what the authors of KB13
do.

• NL-RX-Synth. NL-RX-Synth (Locascio
et al., 2016) is a synthetic dataset much larger
than KB13. Its authors define a small gram-
mar for parsing regular expressions to NL.
The grammar is used to stochastically gener-
ate 10, 000 regular expressions and their cor-
responding synthetic NL specifications. We
split the pairs into 65% training, 10% devel-
opment, and 25% testing sets, following what
the authors of NL-RX-Synth do.

• NL-RX-Turk. NL-RX-Turk (Locascio et al.,
2016) comes from the NL-RX-Synth dataset.
Instead of directly using synthetic NL de-
scriptions in the dataset, the authors of NL-
RX-Turk ask labeling workers to paraphrase
the synthetic specifications. The dataset also
consists of 10, 000 pairs of NL and regular
expression. We split the pairs into 65% train-
ing, 10% development, and 25% testing sets,
following what the authors of NL-RX-Turk
do.

Training Setting. We use a two-layer stacked
LSTM architecture in both the encoder and de-
coder networks. The dimensions of encoder and
decoder hidden states are set to 256. We use ran-
dom embedding layers with the dimension of 128
for both input and output words. We also tune
our hyper-parameters on the development set. The
best results are obtained when the learning rate
= 0.001 and the batch size = 25. We use the
Monte-Carlo method to sample M = 10 regular
expressions to estimate the gradient. To generate
distinguishing string examples, we perform Beam
Search to obtain B = 10 most likely samples. Be-
fore performing the policy-gradient method, we

pre-train the model using MLE for 100 epochs.
Then we train the model for 40 epochs using
the policy-gradient method, and choose the model
with the best effectiveness on the development set.
Our model is implemented in TensorFlow (Abadi
et al., 2016).

4.2 Results and Analysis
Comparison Results. We demonstrate the ef-
fectiveness of our approach by comparing it
to the existing approaches including Semantic-
Unify (Kushman and Barzilay, 2013) and Deep-
Regex(MLE) (Locascio et al., 2016). We also
compare the results of our approach with differ-
ent measurements of semantic correctness. Ta-
ble 2 shows the comparison results of different ap-
proaches, with detailed discussion as follows.

• Semantic-Unify. Semantic-Unify (Kushman
and Barzilay, 2013) learns to parse NL to
regular expressions. Similarly, DFA equiv-
alence is applied as a semantic unification
when training the parser.

• Deep-Regex(MLE). Deep-
Regex(MLE) (Locascio et al., 2016)
regards the problem as a black-box task of
machine translation without utilizing any
domain knowledge of regular expressions. A
syntax-based objective (MLE) is used to train
the model. To the best of our knowledge,
Deep-Regex(MLE) is the state-of-the-art
approach on these three datasets.

• SemRegex(DFA Oracle). In SemRegex
(DFA Oracle), we use the oracle of DFA
equivalence to measure semantic correctness.
SemRegex(DFA Oracle) outperforms Deep-
Regex(MLE), the existing state-of-the-art ap-
proach, by an accuracy increase of 12.6%
on KB13, 2.9% on NL-RX-Synth, and 4.1%
on NL-RX-Turk, respectively. Compared
to Deep-Regex(MLE), the results demon-
strate the effectiveness of maximizing se-
mantic correctness during the training phase.
SemRegex(DFA Oracle) shows more im-
provement on the KB13 dataset over Deep-
Regex(MLE) than on other datasets. Such re-
sult indicates that supervised learning based
on MLE is less effective to learn from a
small training set. When the policy-gradient
method is used, Monte-Carlo samples can
provide more information beyond only train-
ing samples especially on a small training set;
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Table 2: Effectiveness comparison of different approaches (using DFA-equivalence accuracy as metrics)

Approach KB13 NL-RX-Synth NL-RX-Turk
Semantic-Unify 65.5% 46.3% 38.6%
Deep-Regex(MLE) 65.6% 88.7% 58.2%
SemRegex(DFA Oracle) 78.2% 91.6% 62.3%
SemRegex(Distinguishing Test Cases) 77.5% 90.2% 61.3%
SemRegex(Random Test Cases) 66.5% 90.2% 59.5%

such more information significantly improves
the effectiveness.

• SemRegex(Distinguishing Test Cases).
When we do not have access to an oracle
such as DFA equivalence, we can generate
test cases to define semantic correctness.
SemRegex(Distinguishing Test Cases) uses
Algorithm 2 to generate distinguishing test
cases (10 positive examples and 10 negative
examples) that differentiate the results re-
turned by Beam Search and the ground truth.
The results show that by using distinguishing
test cases, SemRegex(Distinguishing Test
Cases) outperforms Deep-Regex(MLE), an
existing syntax-based approach, on all of
three datasets. Meanwhile, the effectiveness
of SemRegex(Distinguishing Test Cases)
drops no more than 1.4% on accuracy
compared to SemRegex(DFA Oracle). Such
result indicates that limited distinguishing
test cases generated by the proposed strategy
can well represent the semantics.

• SemRegex(Random Test Cases). Sem-
Regex(Random Test Cases) generates ran-
dom test cases instead of distinguishing
test cases. It outperforms the exist-
ing approaches (Semantic-Unify and Deep-
Regex(MLE)) because random test cases can
still represent the semantics and differenti-
ate some inequivalent regular expressions.
Compared to SemRegex(Distinguishing Test
Cases), its effectiveness shows a big drop
on KB13 and a slight drop on NL-RX-Turk.
Such results indicate the benefit of distin-
guishing test cases over random test cases.

Effectiveness of Semantics-Based Objective. To
understand the effect of using a semantics-based
learning objective, we record the semantic accu-
racy (DFA equivalence) and syntactic accuracy
(exact-match) on the NL-RL-Turk testing set af-
ter each epoch as shown in Figure 2. During pre-
training (epochs 1 to 100), we use MLE to train the
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Figure 2: Semantic accuracy (DFA equivalence)
and syntactic accuracy (exact-match) on the NL-
RL-Turk testing set after each epoch. The training
objective is replaced to maximize expected cor-
rectness after 100 epochs. The correctness is mea-
sured by the DFA-equivalence oracle in this figure.

model to increase both semantic accuracy and syn-
tactic accuracy iteratively. Then, we alter the train-
ing objective to maximize the expected semantic
correctness. We notice that while semantic accu-
racy continues increasing for about 10%, the syn-
tactic accuracy does not show a significant growth
after pre-training. Such result indicates that the
model is no longer encouraged to generate regular
expressions that are syntactically equivalent to the
ground truths. Instead, the model learns to gener-
ate semantically correct regular expressions.
Analysis of Semantic Correctness Based on Test
Cases. The correctness measurements based on
test cases serve as an approximate oracle. Figure 3
shows an example of how the approximate oracle
helps make improvement. Furthermore, we evalu-
ate how the correctness based on test cases is close
to the DFA-equivalence oracle. In Monte-Carlo
estimate, we count the samples with the approxi-
mate oracle that equals to the minimal DFA oracle.
When using random test cases, there are 89.8%
samples with the approximate oracle that equals to
the minimal DFA oracle. When using distinguish-
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R3:(([0-9]){2,})(.*)

R1:(([0-9])(.+)){2,} Pos: ”74i”

R2:([0-9])((.*){2,})

S: Strings that begin with at least two digits

Neg: ”8aa”

Figure 3: An example of how test cases help with
training. At the beginning of the policy-gradient
method, the model outputs an incorrect answer
R1, which cannot pass a positive test case. R1 gets
penalized because it receives a reward 0. Then the
model changes to output an incorrect answer R2,
which cannot pass a negative test case. Similarly,
R2 gets penalized as training continues. R3 re-
ceives a reward 1 because it passes all test cases,
resulting in an increase of its likelihood from the
model in iterations. Finally, the model outputs the
correct answer R3.

ing test cases, such percentage increases to 96.3%.
Such result illustrates that test cases are able to ap-
proximately check the semantic equivalence even
when the test cases are generated randomly. The
result also suggests that distinguishing test cases
represent the semantics more effectively than ran-
dom test cases.
Impact of the Number of Test Cases. We study
how the number of test cases impacts the effective-
ness. We enumerate the number of distinguishing
or random positive/negative string examples from
T = 1 to T = 10 to show the impact on the ef-
fectiveness (T = 0 refers to using MLE to train
the model). As shown in Figure 4, when more dis-
tinguishing test cases are used, higher accuracy is
reached. However, more random test cases make
limited improvement.

5 Related Work
Program Synthesis. Our work falls into the gen-
eral topic of program synthesis. Program syn-
thesis is the problem of automatically generating
programs from high-level specifications (Gulwani
et al., 2017). There has been a lot of progress made
in this area, classified based on (1) the form of
specifications, e.g., NL descriptions (Yin and Neu-
big, 2017; Guu et al., 2017; Lin et al., 2017; Kr-
ishnamurthy and Mitchell, 2012; Liu et al., 2018),
input-output examples (Balog et al., 2017; Chen
et al., 2018; Kalyan et al., 2018), and hybrid of the
two preceding types of specifications (Manshadi
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Figure 4: Impact of the number of distinguishing
or random test cases on accuracy on the KB13
dataset.

et al., 2013; Raza et al., 2015); (2) the program-
ming languages, e.g., LISP (Biermann, 1978),
Python (Yin and Neubig, 2017; Rabinovich et al.,
2017), SQL (Zhong et al., 2017; Sun et al., 2018),
and Domain-Specific Languages (DSL) such as
FlashFill (Gulwani, 2011). In this paper, we focus
on an important subtask of the program-synthesis
problem: generating regular expressions from NL.
Generating Regular Expressions. Recent re-
search has attempted to automatically generate
regular expressions from NL specifications. Ranta
(1998) propose a rule-based approach to build
an NL interface for regular expressions. Kush-
man and Barzilay (2013) develop an approach for
learning a probabilistic grammar model to parse an
NL description into a regular expression. Locas-
cio et al. (2016) regard the problem as a black-box
task of machine translation, and train a sequence-
to-sequence learning model to address the prob-
lem. There exists also a lot of work focusing on
generating regular expressions from string exam-
ples. Recent work typically uses an evolutionary
algorithm to address the problem (Svingen, 1998;
Cetinkaya, 2007; Bartoli et al., 2012, 2016).

Inspired by our previous study (Zhong et al.,
2018), in this paper, we leverage the help of string
examples generated from ground truths to im-
prove the state of the art for the problem of gen-
erating regular expressions from NL. Compared
with previous state-of-the-art approaches (Locas-
cio et al., 2016) that maximize the likelihood of
ground truths in the training set, SemRegex lever-
ages the policy-gradient method to encourage the
model to generate semantically correct regular ex-
pressions.
Generating Test Cases. When SemRegex is ap-
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plied on domains other than synthesizing regu-
lar expressions, a perfect equivalence oracle such
as using the minimal DFA may not be feasi-
bly available. In order to handle a more gen-
eral case, we propose to generate test cases from
the ground truths to measure the semantic cor-
rectness of a program candidate. State-of-the-art
test-generation techniques are typically based on
Dynamic Symbolic Execution (DSE) (Godefroid
et al., 2005). Given a program that we want to
generate test cases for, DSE executes the program
for some seed test cases, and at the same time
collects symbolic constraints from branch state-
ments along the execution path. Then DSE gen-
erates new test cases to cover different branches
in iterations by flipping a branching node in previ-
ous execution path. In this way, DSE is able to
generate test cases that can be used to approxi-
mately check the semantic equivalence. Further-
more, DSE can effectively generate distinguishing
test cases for two executable programs by relating
these two programs in a single execution (Taneja
and Xie, 2008). Various DSE tools have been im-
plemented for different programming languages,
such as PyExZ3 (Python) (Ball and Daniel, 2015),
JPF-SE (Java) (Anand et al., 2007), Pex (C#) (Till-
mann and De Halleux, 2008; Tillmann et al., 2014;
Li et al., 2009), and CUTE (C) (Sen et al., 2005).

6 Conclusion

We have proposed SemRegex, a semantics-based
approach to generate regular expressions from NL
specifications. SemRegex trains a sequence-to-
sequence model by maximizing the expected se-
mantic correctness. We measure the semantic cor-
rectness using the DFA-equivalence oracle, ran-
dom test cases, and distinguishing test cases. Our
evaluation results show that SemRegex outper-
forms the existing start-of-the-art approaches on
three public datasets.
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Abstract

Building a semantic parser quickly in a new
domain is a fundamental challenge for conver-
sational interfaces, as current semantic parsers
require expensive supervision and lack the
ability to generalize to new domains. In this
paper, we introduce a zero-shot approach to
semantic parsing that can parse utterances in
unseen domains while only being trained on
examples in other source domains. First,
we map an utterance to an abstract, domain-
independent, logical form that represents the
structure of the logical form, but contains
slots instead of KB constants. Then, we re-
place slots with KB constants via lexical align-
ment scores and global inference. Our model
reaches an average accuracy of 53.4% on 7
domains in the OVERNIGHT dataset, substan-
tially better than other zero-shot baselines, and
performs as good as a parser trained on over
30% of the target domain examples.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage utterances into executable logical forms, is
a key paradigm in developing conversational inter-
faces (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Kwiatkowski et al., 2011; Berant
and Liang, 2015). The recent success of conver-
sational interfaces such as Amazon Alexa, Google
Assistant, Apple Siri, and Microsoft Cortana has
led to soaring interest in developing methodolo-
gies for training semantic parsers quickly in any
new domain and from little data.

Prior work focused on alleviating data collec-
tion by training from weak supervision (Clarke
et al., 2010; Liang et al., 2011; Kwiatkowski et al.,
2013; Artzi and Zettlemoyer, 2013), or develop-
ing protocols for fast data collection through para-
phrasing (Berant and Liang, 2014; Wang et al.,
2015) or a human-in-the-loop (Iyer et al., 2017).

What QA related papers were published during 2018?

What ENT ADJ NOUN were VERB during DATE?

$REL.$ENT ⊓ Type.$ENT_TYPE ⊓ $REL_DATE.$DATE
(1
)
D
el
ex

.
(2
)
M
ap

st
ru
ct
u
re

(4
)
In
fe
r

(3
)
A
li
gn

… …
c1 slocal(related,c1)
Author 0.57

Field 0.5

Venue 0.34

c3 slocal(papers,c3)
Article 0.88

Venue 0.43

Person 0.15

Field.QA ⊓ Type.Article ⊓ PubYear.2018

Figure 1: A test utterance is delexicalized (1) and
mapped to its abstract logical form (2). Slots (“$” vari-
ables) are then aligned to the abstract utterance (3), and
are filled with the top assignment in terms of local and
global scores (4). Logical forms throughout this paper
are in �-DCS (Liang, 2013).

However, all these approaches rely on supervised
training data in the target domain and ignore data
collected previously for other domains.

In this paper, we propose an alternative, zero-
shot approach to semantic parsing, where no la-
beled or unlabeled examples are provided in the
target domain, but annotated examples from other
domains are available. This is a challenging setup
as in semantic parsing each dataset is associated
with its own knowledge-base (KB) and thus all
target domain KB constants (relations and entities)
are unobserved at training time. Moreover, this is a
natural use-case as more and more conversational
interfaces are developed in multiple domains.

Our approach is motivated by recent work
(Herzig and Berant, 2017; Su and Yan, 2017; Fan
et al., 2017; Richardson et al., 2018) that showed
that while the lexicon and KB constants in dif-
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ferent domains vary, the structure of language
composition repeats across domains. Therefore,
we propose that by abstracting away the domain-
specific lexical items of an utterance, we can learn
to map the structure of an abstract utterance to
an abstract logical form that does not include any
domain-specific KB constants, using data from
other domains only.

Figure 1 illustrates this approach. A test ut-
terance in the target domain is delexicalized and
mapped to an abstract, domain-independent repre-
sentation, where some content words are replaced
by abstract tokens (step 1). Then, a structure-
mapping model maps this representation into an
abstract logical form that contains slots instead of
KB constants (step 2). A major technical chal-
lenge at this point is to replace slots in the ab-
stract logical form with KB constants from the tar-
get domain. We show that it is possible to learn a
domain-independent lexical alignment model that
aligns each slot to a word in the original utterance
(step 3). This alignment, combined with a global
inference procedure (step 4) allows one to find the
best assignment of KB constants and produce a fi-
nal logical form. Importantly, both of our models
are trained from data in other domains only.

We show that our zero-shot framework parses 7
different unseen domains from the OVERNIGHT
dataset with an average denotation accuracy of
53.4%. This result dramatically outperforms
several natural baselines, and achieves the same
result as training a parser on over 30% of the
fully supervised target domain examples. To
our knowledge, this work is the first to train a
zero-shot semantic parser that can handle unseen
domains. All our code is available at https:
//github.com/jonathanherzig/
zero-shot-semantic-parsing.

2 Background

Neural Semantic Parsing Sequence-to-
sequence models (Sutskever et al., 2014) were
recently proposed for semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016). In this
setting, a sequence of input language tokens
x1, . . . , xm is mapped to a sequence of output
logical tokens z1, . . . , zn. We briefly review the
model by Jia and Liang (2016), which we use as
part of our framework, and also as a baseline.

The encoder is a BiLSTM (Hochreiter and
Schmidhuber, 1997) that converts x1, . . . , xm into

a sequence of context sensitive states. The
attention-based decoder (Bahdanau et al., 2015;
Luong et al., 2015) is an LSTM language model
additionally conditioned on the encoder states.
Formally, the decoder is defined by:

p(zj = w | x, z1:j�1) / exp(U [sj , cj ]),

sj+1 = LSTM([�(out)(zj), cj ], sj),

where sj are decoder states, U and the embed-
ding function �(out) are the decoder parameters,
and the context vector, cj , is the result of global
attention (Luong et al., 2015). We also employ
attention-based copying (Jia and Liang, 2016), but
omit details for brevity.

Semantic Parsing over Multiple KBs Re-
cently, Herzig and Berant (2017), Su and Yan
(2017) and Fan et al. (2017) proposed to exploit
structural regularities in language across differ-
ent domains. These works pooled together ex-
amples from multiple datasets in different do-
mains, each corresponding to a separate KB, and
trained a single sequence-to-sequence model over
all examples, sharing parameters across domains.
They showed that this substantially improves pars-
ing accuracy. While these works implicitly cap-
ture linguistic regularities across domains, they
rely on annotated data in the target domain. We,
conversely, explicitly decouple structure mapping
from the assignment of KB constants, and thus can
tackle the zero-shot setting where no target do-
main examples are available. This is the focus of
the next section.

3 Zero-Shot Semantic Parsing

3.1 Overview
Following the empirical success of sharing struc-
tural information between different semantic pars-
ing domains, we propose in this paper to take a
more radical approach and to explicitly decouple
semantic parsing into a structure mapping model
and a lexicon mapping model. We now provide
an overview of our approach and explain how this
decoupling facilitates zero-shot semantic parsing.

We assume access to D different source do-
mains, where for every domain d we receive a
KB Kd, and a training set of pairs of utterances
and logical forms {(xi, zi)}Nd

i=1. We further as-
sume a lexicon L that maps each KB constant
in Kd to a short phrase that describes it (e.g.,
L(PubYear)!“publication year”), as in Wang
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Unsupervised aligner Delexicalizer

Aligner learner

Training examples from D source domains

Noisy alignments

Restaurant with best rating

argmax(Type.Rest,Rating)
…

{NOUN with best NOUN,
argmax(Type.$ENT_TYPE,$REL)}
…

Abstract examples

Structure mapper learner

Aligner Structure mapper

{“Restaurant with best rating”, argmax(Type.Rest,Rating)}
{“Housing in London”, Type.Housing⊓Location.London}
…

…

… …

Figure 2: Training flow. Examples in source domains
are delexicalized. Abstract examples are used to train
both the structure mapper learner and aligner learner,
where the aligner learner uses noisy alignments as la-
bels.

et al. (2015). Finally, we assume a pre-trained,
static, embedding function �(w) 2 R

f for every
word w, used to measure cross-domain lexical se-
mantic similarity. Our goal is to train a seman-
tic parser that maps a new utterance x to the cor-
rect logical form z from a new domain dnew given
Kdnew .

Figure 2 describes the flow of our training
procedure: we first employ a simple rule-based
method to transform training examples to an ab-
stract representation, where content words (in ut-
terances) and KB constants (in logical forms) are
delexicalized. We then train the following two
models that decouple structure from lexicon (a)
The structure mapper that maps abstract utterances
to abstract logical forms. (b) The aligner that pro-
vides an alignment from abstract logical form to-
kens to abstract utterance tokens. Training the
aligner is challenging because no gold alignments
between the abstract utterance and abstract logi-
cal form are available. To overcome this chal-
lenge we propose a distillation strategy: we obtain
noisy supervision by training a state-of-the-art un-
supervised alignment model on the D source do-
mains. Then, we train a second supervised align-
ment model that receives abstract utterances, ab-
stract logical forms, and target noisy alignments as
input and learns to predict the noisy alignments.

Once the two models are trained, we can tackle
a new domain without training examples (Fig-
ure 1). Given an utterance from the target domain,
we first abstract it using the delexicalizer, and then
predict its abstract structure using the structure

Lexical representation
“What meetings have no more than 3 attendees?”
Type.Meeting uR[�x.count(Attendee.x)]..3
“Which recipe needs no more than two ingredients?”
Type.Recipe uR[�x.count(IngredientOf.x)]..2

Abstract representation
“What NOUN have no more than NUM NOUN?”
Type.$ENT TYPE uR[�x.count($REL.x)]..$NUM
“Which NOUN VERB no more than NUM NOUN.”
Type.$ENT TYPE uR[�x.count($REL.x)]..$NUM

Figure 3: Examples in different domains (CALENDAR
and RECIPES) in their original and abstract represen-
tations. A similar structural regularity (a comparative
structure) maps to an identical abstract logical form.

mapper. We treat delexicalized logical form to-
kens as slots to be filled with KB constants. Candi-
date assignments are then scored locally according
to the semantic similarity of a KB constant (repre-
sented by its entry value in the lexicon L) to words
the slot aligns to according to the aligner. For this
we use the pre-trained embedding function �(·) as
the only cross-domain information. Finally, we
choose a final assignment of KB constants by ex-
actly maximizing a global scoring function, which
takes into account both local alignment scores as
well as global constraints.

We next describe in detail the four compo-
nents of our framework: the delexicalizer, struc-
ture mapper, aligner, and inference procedure.

3.2 Delexicalizer

The goal of the delexicalizer is to strip utterances
and logical forms from their domain-specific com-
ponents and preserve domain-independent parts.
We note that it is possible that some words contain
both domain-specific and domain-general aspects
(“cheapest”). However, we conjecture that it is
possible to decompose examples in a manner that
enables zero-shot semantic parsing.

The output of the delexicalizer is an abstract
representation that should manifest structural lin-
guistic regularities across domains (Figure 3). For
example, a comparative structure will correspond
to the same abstract logical form in different do-
mains. In this representation, used as input to our
models, content words and KB constants are trans-
formed to an abstract type. This rule-based pre-
processing step is applied to all D source domain
training examples (utterances and logical forms),
and to target domain utterances at test time. We
now describe the process of delexicalization.
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Source Category Abstract Type Examples
Utterance Noun NOUN “cuisines”, “housing”, “time”

Verb VERB “published”, “born”, “posted”
Adjective ADJ “high”, “cooking”, “monthly”
Number NUM “4”, “three”
Date DATE “2018”, “january 2nd”
Entity ENT “midtown”, “alice”, “dinner”

Logical Form Number $NUM 1,2,3

Date $DATE 1 6 2018

Entity $ENT MidtownWest, CentralOffice

Entity type $ENT TYPE Person, Location, Recipe

Numerical entity $ENT NUM Rent, Size, CookingTime

Binary relation $REL Author, Attendee

Unary relation $REL UNARY AllowsCats, WonAward

Numerical relation $REL NUM Height, Length, StarRating

Date relation $REL DATE PostingDate, PubYear

Table 1: Categories of content words and KB constants,
and their corresponding abstract type notation.

Utterances Table 1 describes the full list of ab-
straction rules. We delexicalize several categories
of content words and keep function words, which
describe the utterance structure, in their lexical-
ized form. Specifically, any verb1 whose lemma
is not “be” or “do” is delexicalized. All nouns
are delexicalized, except for a small vocabulary
of three words (“average”, “total”, and “num-
ber”), which denote a domain-general operation.
Adjectives tend to distribute more evenly between
domain-specific words and domain-general words,
thus discriminating them is harder (e.g., “out-
door”, “wide” and “cooking” are domain-specific
words while “minimum”, “same” and “many” are
domain-general words). Thus, we take a statistical
approach and only delexicalize adjectives that are
unique to the domain (i.e., did not appear in the
training set of any other source domain). We also
delexicalize dates and numbers, and identify enti-
ties in the utterance by string matching against the
entities in the KB. These are then delexicalized to
their corresponding abstract type (Table 1).

Logical Forms We delexicalize all KB con-
stants to their abstract type, which is given as part
of the KB schema (Table 1).

3.3 Structure Mapper
As a first step towards predicting the lexical logi-
cal form, we map an abstract utterance, to an ab-
stract logical form. The model is the neural se-
mantic parser described in Section 2, only here
the input and output are the abstract examples in
all D domains, which the delexicalizer outputs.
The model utilizes a single encoder-decoder pair
shared across all domains. As Figure 3 suggests,
the model should learn, e.g., that a noun modified

1Numbers, dates and part-of-speech tags are extracted us-
ing Stanford CoreNLP (Manning et al., 2014).

NUMBERwhat has Type $ENT_TYPE.NOUN

… …

… …

A
li
gn
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en
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en
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d
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A
b
stract  logical
form
 en
cod
er

P"#$%&(( |$ENT_TYPE)

Figure 4: The aligner model. Alignments are derived
by comparing the slot hidden state against all utterance
hidden states.

by a wh-question often maps to $ENT TYPE, and
that “no more than” maps to the  operator.

3.4 Aligner

The output of the structure mapper is an abstract
logical form that contains slots instead of KB con-
stants. To predict a complete logical form, we
must assign a KB constant to each slot.

We observe that the description of a KB con-
stant that appears in the logical form (Article) is
often semantically similar to some word in the ut-
terance (“paper”). Thus, we can obtain signal for
the identity of a KB constant by solving an align-
ment problem: each slot can be aligned to words in
the utterance that have similar meaning to that of
the gold KB constant. Naturally, in some cases a
KB constant is not semantically similar to any ut-
terance word (e.g., the relation Field in Figure 1),
which we will mediate by using a global inference
procedure (Section 3.5).

Thus, our goal is to learn a model that given
an abstract utterance-logical form pair (xabs, zabs)
produces an alignment matrix A, where Aij corre-
sponds to the alignment probability p(xabs

j | zabs
i ).

A central challenge is that no gold alignments are
provided in any domain. Therefore, we adopt a
“distillation approach”, where we train a super-
vised model over abstract examples to mimic the
predictions of an unsupervised model that has ac-
cess to the full lexicalized examples.

Specifically, we use a standard unsupervised
word aligner (Dyer et al., 2013), which takes all
lexicalized examples {(xi, zi)}Nd

i=1 in all D do-
mains and produces an Alignment matrix A⇤ for
every example, where A⇤

ij = 1 iff token i in the
logical form is aligned to token j in the utterance.
Then, we treat A⇤ as gold alignments and gener-
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ate examples (xabs, zabs, A⇤) to train the aligner.
Learning alignments over abstract representations
is possible, as a slot in a specific context tends to
align to specific types of abstract words (e.g., Fig-
ure 3 suggests that a relation that is aggregated, of-
ten aligns to the NOUN that appears after the NUM
in the abstract utterance).

We now present our alignment model, de-
picted in Figure 4. The model uses two differ-
ent BiLSTMs to encode xabs and zabs to their con-
text sensitive states b1, . . . , bm and s1, . . . , sn re-
spectively. We model the alignment probability
palign(xabs

j | zabs
i ) with a bi-linear form similar to

attention (Luong et al., 2015):

eij = sT
i Wbj ,

palign(x
abs
j | zabs

i ) =
exp(eij)Pm

j0=1 exp(eij0)
,

where the parameters W are learned during train-
ing. We train the model to minimize the negative
log-likelihood of gold alignments while consider-
ing only alignments of slots (since we only align
slots at test time). The cross-entropy loss for a
training example (xabs, zabs, A⇤) is then given by:

�
nX

i:i2Sz

mX

j=1

A⇤
ij log palign(x

abs
j | zabs

i ),

where Sz are the slot indices in zabs.
Our model can be viewed as an attention model,

dedicated to aligning logical form tokens to utter-
ance tokens. Using a separate alignment model
rather than the attention weights of the structure
mapper has two advantages: First, alignments are
generated given the entire generated sequence zabs

rather than just a prefix. Second, our model fo-
cuses its capacity on the alignment task with-
out worrying about generation of zabs. In Sec-
tion 4, we will demonstrate that training a dedi-
cated aligner substantially improves performance.

3.5 Inference

The aligner provides a distribution over utterance
tokens for every slot in the abstract logical form.
To compute the final logical form, we must re-
place each slot with a KB constant. Formally, let
(zabs

j1
, . . . , zabs

jl
) be the sequence of slots in zabs and

denote them for simplicity as y = (y1, . . . , yl).
Our goal is to predict a sequence of KB constants
c = (c1, . . . , cl), where each ci is chosen from a

candidate set C(yi) that is determined by the ab-
stract token yi according to Table 1 (e.g., if yi is
$REL, then C(yi) is the set of binary relations).

Our scoring function depends on alignments
computed by the aligner. However, because slots
are independent in the aligner, we introduce a few
global constraints that capture the dependence be-
tween different slots. Formally, we wish to find
c⇤ that maximizes the following scoring function,
which depends on the utterance x, the slot se-
quence y, the abstract logical form zabs, the align-
ment matrix A and the embedding function �:

arg max
c

lX

i=1

�
slocal(ci, yi, x, A, �)

�
+ sglobal(c, z

abs).

We now describe our scoring functions in detail.

Local Score Because inference is applied only
at test time, we have access to the lexicalized ut-
terance and not only the abstract one. Thus, the
aligner outputs a distribution over words for a slot
y (e.g., in Figure 1, $REL DATE aligns with high
probability to VERB, which corresponds to the
word “published”). Each word, in turn, has dif-
ferent semantic similarity to each KB constant in
C(y). Intuitively, we would like to assign a KB
constant that has high similarity with words the
slot is aligned to. Thus, we define slocal of a KB
constant ci for every slot yi to be its expected se-
mantic similarity under the alignment distribution:

slocal(ci, yi, x, A, �) = Ex⇠palign(xabs|yi)[sim�(x, ci)]

=
mX

j=1

palign(x
abs
j | yi) · sim�(xj , ci).

We define sim�(xj , ci) to be the cosine simi-
larity between the embedding �(xj) and the em-
bedding �(ci) (scaled to the range [0,1]), where
�(ci) is defined to be the average embedding
of all words in L(ci), that is, sim(xj , ci) =
1+cos(�(xj),�(ci))

2 .

Global Score Utilizing only a local scoring
function raises several concerns. First, slots
are treated independently and dependencies be-
tween slots are ignored, which might result in
a final logical form that is globally inconsistent.
For example, we could generate the logical form
Birthplace.ComputerScience, which is seman-
tically dubious. Second, some KB constants do
not align to any word in the utterance and appear
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in the logical form only implicitly. For example,
the logical form in Figure 1 contains the Field re-
lation, however “field” is implicit in the utterance.
Therefore, we define exeK(z) to be true iff z exe-
cutes against K without errors, and define a global
score that prevents assignments c that result in a
logical form z such that exeK(z) is false.

Moreover, we can use similar constraints to pre-
vent logical forms that are highly unlikely accord-
ing to our prior knowledge. Specifically, we define
once(z) to be true iff each date, named entity, and
number in the logical form z appear exactly once.
We then define a global score that prevents logical
forms in which once(z) is false. Empirically, we
find such assignments to be mostly wrong (e.g.,
Type.Article u (Field.QA t Field.QA)).

Formally, our scoring function is defined as:

sglobal(c, z
abs) =

⇢
0 exeK(zabs

|c), once(zabs
|c)

�1 otherwise,

where zabs|c is the result of assigning the KB con-
stants c to the slots in zabs.

Inference Algorithm. While each local scoring
function can be efficiently maximized indepen-
dently, the global constraints that depend on the
entire assignment c make inference more compli-
cated. However, because the global scoring func-
tion introduces hard constraints, an exact and effi-
cient inference algorithm is still possible. Our in-
ference algorithm generates solutions one-by-one
sorted by the local scoring function only. Then, it
checks for each one whether it satisfies the global
constraints defined by sglobal, and stops once a sat-
isfying solution is found, which is guaranteed to
maximize our scoring function. While in the worst
case, this procedure is exponential in the size of
c, in practice solutions are found after only a few
steps. We also always halt after T steps if a solu-
tion has not been found.

Algorithm 1 describes the details of our in-
ference procedure. We define cands to be a
data structure that contains l lists of candidate
KB constants (a list for each slot), sorted ac-
cording to the local scoring function slocal in de-
scending order. Additionally, getAssign(cands, a)
is a function that accesses cands, and retrieves
the assignment with indices a. For example,
getAssign(cands, {0}l) retrieves the top scoring
local assignment. Last, we define ainc(i) to be the
indices a, where ai is incremented by 1.

Algorithm 1 Exact inference algorithm
Input: cands, T
Output: c⇤ - the top scoring assignment
1: horizon ; . Max heap
2: ainit  {0}

l

3: push(horizon, ainit)
4: for t 1 to T do
5: a pop(horizon)
6: c getAssign(cands, a)
7: if sglobal(c, z

abs) = 0 then
8: return c
9: for i 1 to l do

10: push(horizon, ainc(i))

11: return NULL

The algorithm proceeds as follows. First we
initialize a maximum heap horizon into which
we will dynamically push candidate assignments.
Then, we iteratively pop the best current assign-
ment from the heap, and check if it satisfies the
global constraints. If it does, we return this assign-
ment and stop. Otherwise, we generate the next
possible candidates, one from each list (there is no
need to add more than one because candidates are
sorted). If no satisfying assignment is found af-
ter T steps, we return NULL. It is easy to show
that when the algorithm returns an assignment it is
guaranteed to be the one that maximizes our global
scoring function.

4 Experiments

4.1 Experimental Setup

Data We evaluated our method on the
OVERNIGHT semantic parsing dataset, which
contains 13, 682 examples of language utterances
paired with logical forms across eight domains,
which were chosen to explore diverse types of
language phenomena. As described, our approach
depends on having linguistic regularities repeat
across domains. However two domains contain
logical forms that are based on neo-davidsonian
semantics for treating events with multiple argu-
ments. Since such logical forms are completely
absent in six domains, it is not possible for our
method to generalize to those in our zero-shot
approach. Therefore, we do not evaluate on the
BASKETBALL domain, in which 98% of the
examples contain such logical forms, and omit all
examples (68%) that contain such logical forms
in the SOCIAL domain. We evaluated on the
same train/test split as Wang et al. (2015), using
the same accuracy metric, i.e., the proportion
of questions for which the denotations of the
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Model Blocks Calendar Housing Publications Recipes Restaurants Social Avg.
INLEX 59.9 73.8 72.0 79.5 79.2 76.2 83.4 74.8
INABSTRACT 39.6 57.7 51.9 59.6 66.2 68.4 66.1 58.5
CROSSLEX 0.0 0.0 0.5 0.0 1.4 1.2 1.0 0.6
CROSSLEXREP 6.5 1.8 2.6 1.9 16.7 6.6 1.7 5.4
ZEROSHOT 28.3 53.6 52.4 55.3 60.2 61.7 62.4 53.4

Table 2: Test accuracy for all models on all domains.

In-domain Cross-domain
Lexical INLEX CROSSLEX

Abstract INABSTRACT ZEROSHOT

Table 3: Evaluated models.

predicted and gold logical forms are equal. We
additionally used the lexicon L they provided
with descriptions for KB constants.

Evaluated Models We evaluated different mod-
els (Table 3) according to the following two at-
tributes. Firstly, whether the model is trained on
target domain data (in-domain) or on source do-
mains data only (cross-domain). Secondly, we
trained the neural semantic parser described in
Section 2 over the lexical data representation (lex-
ical), or in comparison trained our model over the
abstract representation (abstract).

As CROSSLEX can not generate KB constants
unseen during training, we additionally imple-
mented CROSSLEXREP. In this model, we added
an additional step that modifies the output of
CROSSLEX: we replaced a generated KB constant
with its most similar KB constant from the target
KB that also shares its abstract type.

Implementation Details In all experiments, for
our embedding function �(·), we used pre-trained
GloVe (Pennington et al., 2014) vectors with di-
mension 300. In a single experiment we consid-
ered one domain as the target domain, while other
domains were the source domains (and repeated
for all domains). For INLEX, CROSSLEX and
CROSSLEXREP we used exactly the same exper-
imental setup as Jia and Liang (2016). For our
zero-shot model, we used 20% of the training data
as a development set for tuning hyper-parameters.
We first tuned parameters for the structure mapper,
and used the best setting for tuning the aligner.

We provide the list of hyper-parameters and
their values for our zero-shot framework. Struc-
ture mapper: number of epochs (22, using early
stopping), hidden unit dimension (300), word vec-
tor dimension (100), learning rate (0.1 with SGD

optimizer), L2 regularization (0.001). At test time,
we used beam search with beam size 5, and then
picked the highest-scoring logical form that we
could infer an assignment for. Aligner: num-
ber of epochs (30, using early stopping), hid-
den unit dimension (250), word vector dimen-
sion (100), learning rate (0.0002 with Adam op-
timizer), dropout rate over hidden states (0.4).
For both models, word vectors are updated during
training. Inference: we used T = 500 steps, after
which we halted.

4.2 Results

We trained all models above and evaluated on the
test set for all seven domains. Results show (Ta-
ble 2) that ZEROSHOT substantially outperforms
other zero-shot baselines. CROSSLEX performs
poorly, as it can only generate KB constants seen
during training. CROSSLEXREP performs better,
as it can generate KB constants from the target
domain, however, generating the correct constant
usually fails. This highlights the challenge in the
zero-shot semantic parsing setting.

For baselines trained on target domain data, IN-
LEX (re-implementation of (Jia and Liang, 2016))
achieved average accuracy of 74.8, which is com-
parable to the 74.4 average accuracy they report on
our seven domains. Training on the target domain
with our method INABSTRACT achieved 58.5%
average accuracy, which shows that while the ab-
stract representation in our framework loses some
valuable information, it is still successful. Impor-
tantly, the performance of ZEROSHOT (53.4%) is
only slightly lower than INABSTRACT, showing
that our model degrades gracefully and generalizes
well across domains compared to CROSSLEX.

Model Ablations We now measure the effect of
different components of our framework on deno-
tation accuracy. We examined the effect of remov-
ing components completely, or replacing them
with simpler ones. Thus, the following ablated
models can be viewed as additional baselines.
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Model Blocks Calendar Housing Publications Recipes Restaurants Social Avg.
ZEROSHOT 29.2 60.4 57.3 47.7 59.5 63.0 64.0 54.5
-GLOBALHEUR 29.2 60.4 56.7 46.9 60.1 46.0 62.2 51.6
-ALIGNER 22.6 57.5 52.7 46.9 58.4 43.0 60.4 48.8
-INFERENCE 28.2 51.5 44.7 43.0 42.2 44.5 45.8 42.8
-ALIGNER,INFERENCE 20.4 38.8 32.7 37.5 37.0 15.5 36.9 31.2

Table 4: Development accuracy for all ablations.

1. -ALIGNER: Replacing the alignment distribu-
tion from the aligner with alignment distribu-
tion from the decoder of the structure mapper.

2. -INFERENCE: Discarding the global scoring
function and maximizing each slot indepen-
dently.

3. -ALIGNER,INFERENCE: Discarding both of
our main technical contributions.

4. -GLOBALHEUR: Discarding the global infer-
ence heuristics (denoted as once(z)).

Table 4 shows that ablating each of the compo-
nents hurts performance. Discarding our two main
technical contributions results in 31.2% accuracy
compared to 54.5% in the full model. Performing
inference with global constraints dramatically im-
prove performance, showing that using the align-
ment model alone results often in incoherent log-
ical forms. Our dedicated aligner also improves
performance compared to alignments learned by
the decoder of the structure mapper. This is pro-
nounced without global constraints (a drop from
42.8% to 31.2%), but is less severe when global
inference is used (a drop from 54.5% to 48.8%).

Intrinsic Analysis While we evaluated perfor-
mance above via denotation accuracy, we now
evaluate our framework’s modules with different
metrics (on the development set). We evaluated
the structure mapper by measuring the exact match
of the top candidate in the beam to the gold ab-
stract logical form (49.1%). We further evaluated
the aligner by measuring alignment accuracy for
top candidate alignments, in comparison to the un-
supervised aligner output (72.9%).

Finally, we measured inference performance in
the following ways. The fraction of cases where
inference succeeded within T steps is 70% (as
some predicted abstract logical forms are not valid
in terms of their syntax), and the average number
of steps in case of success (3.67 steps). In ad-
dition, the fraction of correct global assignments
given an abstract logical form that exactly matches
the gold one is 77.0%. To conclude, results show
that the structure mapping problem is harder than
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Figure 5: Learning curve for INLEX, compared to ZE-
ROSHOT average performance.

slot filling, for which we learned good alignments
and performed fast and mostly accurate inference.

Valuation To estimate the value of our zero-
shot framework in terms of target domain exam-
ples, we plot a learning curve (Figure 5) that
shows development set average accuracy for IN-
LEX (trained on target domain data). In compar-
ison, ZEROSHOT utilizes no target domain data,
thus it is fixed. As Figure 5 shows, our frame-
work’s value is equal to 30% of the target do-
main training data. In our setting this equals to
400 examples manually-annotated with full log-
ical forms. Note that this value is gained every
time a semantic parser for a new domain is needed.
Moreover, our parser can be used as an initial sys-
tem, deployed to begin training from user interac-
tion directly.

Limitations We now outline some of the lim-
itations of our approach for zero-shot semantic
parsing. We hypothesized that language regular-
ities repeat across domains, however as mentioned
above, neo-davidsonian semantics occurs mostly
in one domain in the OVERNIGHT dataset and thus
we were not able to generalize to it. Our parser
also obtained low accuracy in BLOCKS. This do-
main contains mostly spatial language, different
from other domains in OVERNIGHT. Specifically,
prepositions, which we did not lexicalize map to
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relations in the KB (e.g., “below” and “above”
map to the relations Below and Above). This shows
the challenge involved in decomposing the struc-
ture from the lexicon with rules. In addition, since
some spatial relations in this domain are seman-
tically similar (Length, Width and Height), we
found it hard to rank them correctly during infer-
ence. This stresses that in our framework, we as-
sume KB constants to be sufficiently distinguish-
able in the pre-trained embedding space, which is
not always the case.

5 Related Work

While zero-shot executable semantic parsing is
still under-explored, some works focused on the
open-vocabulary setting which handles unseen re-
lations by replacing a formal KB with a probabilis-
tic database learned from a text corpus (Choi et al.,
2015; Gardner and Krishnamurthy, 2017).

Our abstract utterance representation is related
to other attempts to generate intermediate rep-
resentations that improve generalization such as
dependency trees (Reddy et al., 2016), syntactic
CCG parses (Krishnamurthy and Mitchell, 2015),
abstract templates (Abujabal et al., 2017; Goldman
et al., 2018) or masked enitites (Dong and Lapata,
2016). Our abstract logical form representation is
similar to that Dong and Lapata (2018) used in to
guide the decoding of the full logical form. The
main difference with our work is that we focus on
a comprehensive abstract representation tailored
for zero-shot semantic parsing.

It is worth mentioning other work that inspected
various aspects of zero-shot parsing. Bapna et al.
(2017) focused on frame semantic parsing, and as-
sumed that relations appear across different do-
mains to learn a better mapping in the target do-
main. Also in frame semantic parsing, Ferreira
et al. (2015) utilized word embeddings to map
words to unseen KB relations. Finally, Lake and
Baroni (2017) inspected whether neural semantic
parsers can handle types of compositionality that
were unseen during training. The main difference
between their work and ours is that we focus on
a scenario where a compositional logical form is
generated, but the target KB constants do not ap-
pear in any of the source domains.

6 Conclusion

In this paper we address the challenge of zero-
shot semantic parsing. We introduce a model that

can parse utterances in unseen domains by decou-
pling structure mapping from lexicon mapping,
and demonstrate its success on 7 domains from the
OVERNIGHT dataset.

In future work, we would like to automatically
learn a delexicalizer from data, tackle zero-shot
parsing when the structure distribution in the tar-
get domain is very different from the source do-
mains, and apply our framework to datasets where
only denotations are provided.
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Abstract
We present a simple and accurate span-based
model for semantic role labeling (SRL). Our
model directly takes into account all possible
argument spans and scores them for each label.
At decoding time, we greedily select higher
scoring labeled spans. One advantage of our
model is to allow us to design and use span-
level features, that are difficult to use in token-
based BIO tagging approaches. Experimental
results demonstrate that our ensemble model
achieves the state-of-the-art results, 87.4 F1
and 87.0 F1 on the CoNLL-2005 and 2012
datasets, respectively.

1 Introduction

Semantic Role Labeling (SRL) is a shallow se-
mantic parsing task whose goal is to recognize
the predicate-argument structure of each predicate.
Given a sentence and a target predicate, SRL sys-
tems have to predict semantic arguments of the
predicate. Each argument is a span, a unit that
consists of one or more words. A key to the ar-
gument span prediction is how to represent and
model spans.

One popular approach to it is based on BIO
tagging schemes. State-of-the-art neural SRL
models adopt this approach (Zhou and Xu, 2015;
He et al., 2017; Tan et al., 2018). Using features
induced by neural networks, they predict a BIO tag
for each word. Words at the beginning and inside
of argument spans have the “B” and “I” tags, and
words outside argument spans have the tag “O.”
While yielding high accuracies, this approach re-
constructs argument spans from the predicted BIO
tags instead of directly predicting the spans.

Another approach is based on labeled span pre-
diction (Täckström et al., 2015; FitzGerald et al.,
2015). This approach scores each span with its la-
bel. One advantage of this approach is to allow
us to design and use span-level features, that are

difficult to use in BIO tagging approaches. How-
ever, the performance has lagged behind that of the
state-of-the-art BIO-based neural models.

To fill this gap, this paper presents a simple
and accurate span-based model. Inspired by recent
span-based models in syntactic parsing and coref-
erence resolution (Stern et al., 2017; Lee et al.,
2017), our model directly scores all possible la-
beled spans based on span representations induced
from neural networks. At decoding time, we
greedily select higher scoring labeled spans. The
model parameters are learned by optimizing log-
likelihood of correct labeled spans.

We evaluate the performance of our span-based
model on the CoNLL-2005 and 2012 datasets
(Carreras and Màrquez, 2005; Pradhan et al.,
2012). Experimental results show that the span-
based model outperforms the BiLSTM-CRF
model. In addition, by using contextualized word
representations, ELMo (Peters et al., 2018), our
ensemble model achieves the state-of-the-art
results, 87.4 F1 and 87.0 F1 on the CoNLL-2005
and 2012 datasets, respectively. Empirical analy-
sis on these results shows that the label prediction
ability of our span-based model is better than that
of the CRF-based model. Another finding is that
ELMo improves the model performance for span
boundary identification.

In summary, our main contributions include:

• A simple span-based model that achieves the
state-of-the-art results.

• Quantitative and qualitative analysis on
strengths and weaknesses of the span-based
model.

• Empirical analysis on the performance gains
by ELMo.

Our code and scripts are publicly available.1

1https://github.com/hiroki13/span-based-srl.
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2 Model

We treat SRL as span selection, in which we select
appropriate spans from a set of possible spans for
each label. This section formalizes the problem
and provides our span selection model.

2.1 Span Selection Problem
Problem Setting
Given a sentence that consists of T words w1:T =
w1, · · · , wT and the target predicate position in-
dex p, the goal is to predict a set of labeled spans
Y = {hi, j, rik}|Y |

k=1.

Input : X = {w1:T , p},

Output : Y = {hi, j, rik}|Y |
k=1 .

Each labeled span hi, j, ri consists of word indices
i and j in the sentence (1  i  j  T ) and a
semantic role label r 2 R.

One simple method to predict Y is to select the
highest scoring span (i, j) from all possible spans
S for each label r,

argmax
(i,j)2S

SCOREr(i, j), r 2 R . (1)

Function SCOREr(i, j) returns a real value for
each span (i, j) 2 S (described in Section 2.2 in
more detail). The number of possible spans S in
the input sentence w1:T is T (T+1)

2 , and S is defined
as follows,

S = {(i, j) | i, j 2 {1, · · · , T}, i  j} .

Note that some semantic roles may not appear in
the sentence. To deal with the absence of some
labels, we define the predicate position span (p, p)
as a NULL span and train a model to select the
NULL span when there is no span for the label.2

Example
Consider the following sentence with the set of
correct labeled spans Y .

She1 kept2 a3 cat4
[ A0 ] [ A1 ]

Y = { h1, 1,A0i, h3, 4,A1i,
h2, 2,A2i, · · · , h2, 2,TMPi }

2Since the predicate itself can never be an argument of its
own, we define the position as the NULL span.

The input sentence is w1:4 = “She kept a cat”, and
the target predicate position is p = 2. The correct
labeled span h1, 1,A0i indicates that the A0 ar-
gument is “She”, and h3, 4,A1i indicates that the
A1 argument is “a cat”. The other labeled spans
h2, 2, ⇤i indicate there are no arguments.

All the possible spans in this sentence are as fol-
lows,

Sw1:4 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2),

(2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} ,

where the predicate span (2, 2) is treated as the
NULL span. Among these candidates, we select
the highest scoring span for each label. As a result,
we can obtain correct labeled spans Y .

2.2 Scoring Function
As the scoring function for each span in Eq. 1,
we model normalized distribution over all possi-
ble spans S for each label r,

SCOREr(i, j) = P✓(i, j | r)

=
exp(F✓(i, j, r))X

(i0,j0)2S
exp(F✓(i

0, j0, r))
, (2)

where function F✓ returns a real value.
We train the parameters ✓ of F✓ on a training set,

D = {(X(n), Y (n))}|D|
n=1 ,

X = {w1:T , p} ,

Y = {hi, j, rik}|Y |
k=1 .

To train the parameters ✓ of F✓, we minimize the
cross-entropy loss function,

L(✓) =
X

(X,Y )2D
`✓(X, Y ) , (3)

`✓(X, Y ) =
X

hi,j,ri2Y

log P✓(i, j|r) ,

where function `✓(X, Y ) is a loss for each sample.

2.3 Function F✓

Function F✓ in Eq. 2 consists of three types of
functions; the base feature function fbase, the span
feature function fspan and the labeling function
flabel as follows,

h1:T = fbase(w1:T , p) , (4)
hs = fspan(h1:T , s) , (5)

F✓(i, j, r) = flabel(hs, r) . (6)
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Firstly, fbase calculates a base feature vector ht for
each word wt 2 w1:T . Then, from a sequence of
the base feature vectors h1:T , fspan calculates a
span feature vector hs for a span s = (i, j). Fi-
nally, using hs, flabel calculates the score for the
span s = (i, j) with a label r.

Each function in Eqs. 4, 5 and 6 can arbitrarily
be defined. In Section 3, we describe our functions
used in this paper.

2.4 Inference
The simple argmax inference (Eq. 1) selects one
span for each label. While this argmax inference
is computationally efficient, it faces the following
two problematic issues.

(a) The argmax inference sometimes selects spans
that overlap with each other.

(b) The argmax inference cannot select multiple
spans for one label.

In terms of (a), for example, when h1, 3,A0i and
h2, 4,A1i are selected, a part of these two spans
overlaps. In terms of (b), consider the following
sentence.

He came to the U.S. yesterday at 5 p.m.
[A0] [ A4 ] [ TMP ] [ TMP ]

In this example, the label TMP is assigned to the
two spans (“yesterday” and “at 5 p.m.”). Semantic
role labels are mainly categorized into (i) core la-
bels or (ii) adjunct labels. In the above example,
the labels A0 and A4 are regarded as core labels,
which indicate obligatory arguments for the pred-
icate. In contrast, the labels like TMP are regarded
as adjunct labels, which indicate optional argu-
ments for the predicate. As the example shows,
adjunct labels can be assigned to multiple spans.

To deal with these issues, we use a greedy
search that keeps the consistency among spans
and can return multiple spans for adjunct labels.
Specifically, we greedily select higher scoring la-
beled spans subject to two constraints.

Overlap Constraint: Any spans that overlap
with the selected spans cannot be selected.

Number Constraint: While multiple spans can
be selected for each adjunct label, at most one
span can be selected for each core label.

As a precise description of this algorithm, we de-
scribe the pseudo code and its explanation in Ap-
pendix A.
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Figure 1: Overall architecture of our BiLSTM-span
model.

3 Network Architecture
To compute the score for each span, we have intro-
duced three functions (fbase, fspan, flabel) in Sec-
tion 2.3. As an instantiation of each function, we
use neural networks. This section describes our
neural networks for each function and the overall
network architecture.

3.1 BiLSTM-Span Model
Figure 1 illustrates the overall architecture of our
model. The first component fbase uses bidirec-
tional LSTMs (BiLSTMs) (Schuster and Paliwal,
1997; Graves et al., 2005, 2013) to calculate the
base features. From the base features, the second
component fspan extracts span features. Based
on them, the final component flabel calculates the
score for each labeled span. In the following, we
describe these three components in detail.

Base Feature Function
As the base feature function fbase, we use BiL-
STMs,

fbase(w1:T , p) = BILSTM(w1:T , p) .

There are some variants of BiLSTMs. Following
the deep SRL models proposed by Zhou and Xu
(2015) and He et al. (2017), we stack BiLSTMs
in an interleaving fashion. The stacked BiLSTMs
process an input sequence in a left-to-right man-
ner at odd-numbered layers and in a right-to-left
manner at even-numbered layers.
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The first layer of the stacked BiLSTMs receives
word embeddings xword 2 R

dword and predicate
mark embeddings xmark 2 R

dmark . As the word
embeddings, we can use existing word embed-
dings. The mark embeddings are created from the
mark feature which has a binary value. The value
is 1 if the word is the target predicate and 0 other-
wise. For example, at the bottom part of Figure 1,
the word “bought” is the target predicate and as-
signed 1 as its mark feature.

Receiving these inputs, the stacked BiLSTMs
calculates the hidden states until the top layer. We
use these hidden states as the input feature vectors
h1:T for the span feature function fspan (Eq. 5).
Each vector ht 2 h1:T has dhidden dimensions.
We provide a detailed description of the stacked
BiLSTMs in Appendix B.

Span Feature Function
From the base features induced by the BiLSTMs,
we create the span feature representations,

fspan(h1:T , s) = [hi + hj ;hi � hj ] , (7)

where the addition and subtraction features of the
i-th and j-th hidden states are concatenated and
used as the feature for a span s = (i, j). The re-
sulting vector hs is a 2dhidden dimensional vector.

The middle part of Figure 1 shows an example
of this process. For the span (3, 5), the span fea-
ture function fspan receives the 3rd and 5th fea-
tures (h3 and h5). Then, these two vectors are
added, and the 5th vector is subtracted from the
3rd vector. The resulting vectors are concatenated
and given to the labeling function flabel.

Our design of the span features is inspired by
the span (or segment) features used in syntac-
tic parsing (Wang and Chang, 2016; Stern et al.,
2017; Teranishi et al., 2017). While these neural
span features cannot be used in BIO-based SRL
models, they can easily be incorporated into span-
based models.

Labeling Function
Taking a span representation hs as input, the la-
beling function flabel returns the score for the span
s = (i, j) with a label r. Specifically, we use the
following labeling function,

flabel(hs, r) = W[r] · hs , (8)

where W 2 R
|R|⇥2dhidden has a row vector associ-

ated with each label r, and W[r] denotes the r-th

row vector. As the result of the inner product of
W[r] and hs, we obtain the score for a span (i, j)
with a label r.

The upper part of Figure 1 shows an example
of this process. The span representation hs for the
span s = (3, 5) is created from addition and sub-
traction of h3 and h5. Then, we calculate the inner
product of hs and W[r]. The score for the label
A0 is 2.1, and the score for the label A1 is 3.7. In
the same manner, by calculating the scores for all
the spans S and labels R, we can obtain the score
matrix (at the top part of Figure 1).

3.2 Ensembling
We propose an ensemble model that uses span
representations from multiple models. Each base
model trained with different random initializations
has variance in span representations. To take ad-
vantage of it, we introduce a variant of a mixture
of experts (MoE) (Shazeer et al., 2017), 3

hmoe
s = Wmoe

s ·
MX

m=1

↵m h(m)
s , (9)

fmoe
label(h

moe
s , r) = Wmoe[r] · hmoe

s . (10)

Firstly, we combine span representations h(m)
s

from each model m 2 {1, · · · , M}. Wmoe
s is

a parameter matrix and {↵m}M
m=1 are trainable,

softmax-normalized parameters. Then, using the
combined span representation hmoe

s , we calculate
the score in the same way as Eq. 8. We use the
same greedy search algorithm used for our base
model (Section 2.4).

During training, we update only the
parameters of the ensemble model, i.e.,
{Wmoe

s ,Wmoe, {↵m}M
m=1}. That is, we fix

the parameters of each trained model m. As the
loss function, we use the cross-entropy (Eq. 3).

4 Experiments
4.1 Datasets
We use the CoNLL-2005 and 2012 datasets4. We
follow the standard train-development-test split
and use the official evaluation script5 from the
CoNLL-2005 shared task on both datasets.

3One popular ensemble model for SRL is the product of
experts (PoE) model (FitzGerald et al., 2015; He et al., 2017;
Tan et al., 2018). In our preliminary experiments, we tried
the PoE model but it did not improve the performance.

4We use the version of OntoNotes downloaded at:
http://cemantix.org/data/ontonotes.html.

5The script can be downloaded at:
http://www.lsi.upc.edu/ srlconll/soft.html
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Development Test WSJ Test Brown Test ALL
EMB MODEL P R F1 P R F1 P R F1 P R F1

SENNA
CRF 81.7 81.3 81.5 83.3 82.5 82.9 72.6 70.0 71.3 81.9 80.8 81.4
SPAN 83.6 81.4 82.5 84.7 82.3 83.5 76.0 70.4 73.1 83.6 80.7 82.1
SPAN (Ensemble) 85.6 82.6 84.1 86.6 83.6 85.1 78.2 71.8 74.8 85.5 82.0 83.7

ELMO
CRF 86.6 86.8 86.7 87.4 87.3 87.3 78.5 78.3 78.4 86.2 86.1 86.1
SPAN 87.4 86.3 86.9 88.2 87.0 87.6 79.9 77.5 78.7 87.1 85.7 86.4
SPAN (Ensemble) 88.0 86.9 87.4 89.2 87.9 88.5 81.0 78.4 79.6 88.1 86.6 87.4

Table 1: Experimental results on the CoNLL-2005 dataset, in terms of precision (P), recall (R) and F1. The bold
numbers denote the highest precision, recall and F1 scores among all the models.

Development Test
EMB MODEL P R F1 P R F1

SENNA
CRF 82.8 81.9 82.4 82.9 81.9 82.4
SPAN 84.3 81.5 82.9 84.4 81.7 83.0
SPAN (Ensemble) 86.0 83.0 84.5 86.1 83.3 84.7

ELMO
CRF 86.1 85.8 85.9 86.0 85.7 85.9
SPAN 87.2 85.5 86.3 87.1 85.3 86.2
SPAN (Ensemble) 88.6 85.7 87.1 88.5 85.5 87.0

Table 2: Experimental results on the CoNLL-2012 dataset.

CoNLL-05 CoNLL12
WSJ Brown ALL
SINGLE MODEL

ELMO-SPAN 87.6 78.7 86.4 86.2
He+ 18 87.4 80.4 - 85.5
Peters+ 18 - - - 84.6
Strubell+ 18 83.9 72.6 - -
Tan+ 18 84.8 74.1 83.4 82.7
He+ 17 83.1 72.1 81.6 81.7
Zhou+ 15 82.8 69.4 81.1 81.3
FitzGerald+ 15 79.4 71.2 - 79.6
Täckström+ 15 79.9 71.3 - 79.4
Toutanova+ 08 79.7 67.8 - -
Punyakanok+ 08 79.4 67.8 77.9 -

ENSEMBLE MODEL
ELMO-SPAN 88.5 79.6 87.4 87.0
Tan+ 18 86.1 74.8 84.6 83.9
He+ 17 84.6 73.6 83.2 83.4
FitzGerald+ 15 80.3 72.2 - 80.1
Toutanova+ 08 80.3 68.8 - -
Punyakanok+ 08 79.4 67.8 77.9 -

Table 3: Comparison with existing models. The num-
bers denote F1 scores on each test set.

4.2 Baseline Model
For comparison, as a model based on BIO tag-
ging approaches, we use the BiLSTM-CRF model
proposed by Zhou and Xu (2015). The BiLSTMs
for the base feature function fbase are the same as
those used in our BiLSTM-span model.

4.3 Model Setup
As the base function fbase, we use 4 BiLSTM
layers with 300 dimensional hidden units. To
optimize the model parameters, we use Adam
(Kingma and Ba, 2014). Other hyperparameters
are described in Appendix C in detail.

Word Embeddings
Word embeddings have a great influence on SRL
models. To validate the model performance, we
use two types of word embeddings.

• Typical word embeddings, SENNA6

(Collobert et al., 2011)
• Contextualized word embeddings, ELMo7

(Peters et al., 2018)

SENNA and ELMo can be regarded as different
types of embeddings in terms of the context sensi-
tivity. SENNA and other typical word embeddings
always assign an identical vector to each word re-
gardless of the input context. In contrast, ELMo
assigns different vectors to each word depending
on the input context. In this work, we use these
word embeddings that have different properties.8

These embeddings are fixed during training.

Training
As the objective function, we use the cross-
entropy L✓ in Eq. 3 with L2 weight decay,

L✓ =
X

(X,Y )2D
`✓(X, Y ) +

�

2
||✓||2 , (11)

where the hyperparameter � is the coefficient gov-
erning the L2 weight decay.

6http://ronan.collobert.com/senna/
7http://allennlp.org/elmo
8In our preliminary experiments, we also used the GloVe

embeddings (Pennington et al., 2014), but the performance
was worse than SENNA.
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4.4 Results
We report averaged scores across five different
runs of the model training.

Tables 1 and 2 show the experimental results
on the CoNLL-2005 and 2012 datasets. Over-
all, our span-based ensemble model using ELMo
achieved the best F1 scores, 87.4 F1 and 87.0 F1
on the CoNLL-2005 and CoNLL-2012 datasets,
respectively. In comparison with the CRF-based
single model, our span-based single model con-
sistently yielded better F1 scores regardless of
the word embeddings, SENNA and ELMO. Al-
though the performance difference was small be-
tween these models using ELMO, it seems natural
because both models got much better results and
approached to the performance upper bound.

Table 3 shows the comparison with existing
models in F1 scores. Our single and ensemble
models using ELMO achieved the best F1 scores
on all the test sets except the Brown test set.

5 Analysis

To better understand our span-based model, we ad-
dressed the following questions and obtained the
following findings.

Questions
(a) What are strengths and weaknesses of our

span-based model compared with the CRF-
based model?

(b) What aspect of SRL does ELMo improve?

Findings
(a) While the CRF-based model is better at span

boundary identification (Section 5.1), the
span-based model is better at label prediction,
especially for A2 (Section 5.2).

(b) ELMo improves the model performance for
span boundary identification (Section 5.1).

In addition, we have conducted qualitative analy-
sis on span and label representations learned in the
span-based model (Section 5.3).

5.1 Performance for Span Boundary
Identification

We analyze the results predicted by the single
models. We evaluate F1 scores only for the span
boundary match, shown by Table 4. We regard a
predicted boundary hi, j, ⇤i as correct if it matches
the gold annotation regardless of its label.

CoNLL-05 CoNLL-12
EMB MODEL F1 diff F1 diff

SENNA
SPAN 86.6 -0.4 87.3 -0.6CRF 87.0 87.9

ELMO
SPAN 90.5 -0.7 90.3 -0.6CRF 91.2 90.9

Table 4: F1 scores only for span boundary match.

CoNLL-05 CoNLL-12
EMB MODEL Acc. diff Acc. diff

SENNA
SPAN 95.3 +1.5 95.1 +1.5CRF 93.8 93.6

ELMO
SPAN 96.1 +0.9 95.7 +1.3CRF 95.2 94.4

Table 5: Accuracies only for semantic role labels.

On both datasets, the CRF-based models
achieved better F1 than that of the span-based
models. Also, compared with SENNA, ELMO
yielded much better F1 by over 3.0. This suggests
that a factor of the overall SRL performance gain
by ELMO is the improvement of the model ability
to identify span boundaries.

5.2 Performance for Label Prediction

We analyze labels of the predicted results. For la-
beled spans whose boundaries match the gold an-
notation, we evaluate the label accuracies. As Ta-
ble 5 shows, the span-based models outperformed
the CRF-based models. Also, interestingly, the
performance gap between SENNA and ELMO was
not so big as that for span boundary identification.

Label-wise Performance

Table 6 shows F1 scores for frequent labels on
the CoNLL-2005 and 2012 datasets. For A0 and
A1, the performances of the CRF-based and span-
based models were almost the same. For A2, the
span-based models outperformed the CRF-based
model by about 1.0 F1 on the both datasets. 9

Label Confusion Matrix

Figure 2 shows a confusion matrix for labeling er-
rors of the span-based model using ELMo.10 Fol-
lowing He et al. (2017), we only count predicted
arguments that match the gold span boundaries.

9The PNC label got low scores on the CoNLL-2012
dataset in Table 6. Almost all the gold PNC (purpose) la-
bels are assigned to only the news article domain texts of the
CoNLL-2012 dataset. The other 6 domain texts have no or
very few PNC labels. This can lead to the low performance.

10We have observed the same tendency of labeling confu-
sions between the models using ELMo and SENNA.
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CoNLL-2005 CoNLL-2012
SENNA ELMO SENNA ELMO

Label CRF SPAN CRF SPAN CRF SPAN CRF SPAN
A0 89.9 90.2 93.0 93.2 89.9 90.0 92.5 92.5
A1 83.2 83.8 89.1 89.2 84.7 85.1 88.7 89.0
A2 70.9 73.1 80.0 81.2 78.6 79.4 83.2 84.2
A3 64.4 71.2 78.8 78.5 61.9 62.9 69.0 70.7
ADV 59.3 61.9 68.1 67.0 63.2 63.7 67.5 67.0
DIR 43.2 47.3 56.6 54.5 54.1 52.0 61.1 59.7
LOC 58.2 60.5 68.1 68.3 65.8 65.0 72.0 72.0
MNR 61.4 61.3 66.5 67.7 64.4 65.7 70.5 71.1
PNC 57.3 60.2 68.8 67.7 18.5 13.7 20.2 16.1
TMP 81.8 82.7 86.1 86.0 82.2 82.3 86.1 86.2
Overall 81.5 82.5 86.7 86.9 82.4 82.9 85.9 86.3

Table 6: F1 Scores for frequent labels on the development set of the CoNLL-2005 and 2012 datasets.

A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP
A0

A1

A2

A3

ADV

DIR

LOC

MNR

PNC

TMP

pred / gold

Figure 2: Confusion matrix for labeling errors of our
span-based model using ELMo. Each cell shows the
percentage of predicted labels for each gold label.

The span-based model confused A0 and A1 ar-
guments the most. In particular, the model con-
fused them for ergative verbs. Consider the fol-
lowing two sentences:

People start their own business ...
[ A0 ]

.. Congress has started to jump on ...
[ A1 ]

where the constituents located at the syntactic sub-
jective position fulfill a different role A0 or A1 ac-
cording to their semantic properties, such as ani-
macy. Such arguments are difficult for SRL mod-
els to correctly identify.

Another point is the confusions of A2 with DIR
and LOC. As He et al. (2017) pointed out, A2 in
a lot of verb frames represents semantic relations
such as direction or location, which can cause the
confusions of A2 with such location-related ad-
juncts. To remedy these two problematic issues, it
can be a promising approach to incorporate frame
knowledge into SRL models by using verb frame
dictionaries.

“· · · toy makers to move [ across the border ] .”
GOLD:A2
PRED:DIR

Nearest neighbors of “across the border”
1 DIR across the Hudson
2 DIR outside their traditional tony circle
3 DIR across the floor
4 DIR through this congress
5 A2 off their foundations
6 DIR off its foundation
7 DIR off the center field wall
8 A3 out of bed
9 A2 through cottage rooftops

10 DIR through San Francisco

Table 7: Example of the CoNLL-2005 development
set, in which our model misclassified the label for the
span “across the border”. We collect 10 nearest neigh-
bors of this span from the training set.

5.3 Qualitative Analysis on Our Model

On Span Representations

Our span-based model computes and uses span
representations (Eq. 7) for label prediction. To
investigate a relation between the span represen-
tations and predicted labels, we qualitatively ana-
lyze nearest neighbors of each span representation
with its predicted label. Specifically, for each pre-
dicted span in the development set, we collect 10
nearest neighbor spans with their gold labels from
the training set.

Table 7 shows 10 nearest neighbors of a span
“across the border” for the predicate “move”. The
label of this span was misclassified, i.e., the pre-
dicted label is DIR but the gold is A2. Looking
at its nearest neighbor spans, they have different
gold labels, such as DIR, A2 and A3. Like this
case, we have observed that spans with a misclas-
sified label often have their nearest neighbors with
inconsistent labels.

1636



Figure 3: Label embedding distribution of our span-
based model.

On Label Embeddings
We analyze the label embeddings in the labeling
function (Eq. 8). Figure 3 shows the distribution
of the learned label embeddings. The adjunct la-
bels are close to each other, which are likely to
be less discriminative. Also, the core label A2
is close to the adjunct label DIR, which are often
confused by the model. To enhance the discrim-
inative power, it is promising to apply techniques
that keep label representations far away from each
other (Wen et al., 2016; Luo et al., 2017).

6 Related Work

6.1 Semantic Role Labeling Tasks
Automatic SRL has been widely studied
(Gildea and Jurafsky, 2002). There have been two
main styles of SRL.

• FrameNet-style SRL (Baker et al., 1998)
• PropBank-style SRL (Palmer et al., 2005)

In this paper, we have tackled PropBank-style
SRL.11

In PropBank-style SRL, there have been two
main task settings.

• Span-based SRL: CoNLL-2004 and 2005
shared tasks (Carreras and Marquez, 2004;
Carreras and Màrquez, 2005)

• Dependency-based SRL: CoNLL-2008 and
2009 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009)

11Detailed descriptions on FrameNet-style and PropBank-
style SRL can be found in Baker et al. (1998); Das et al.
(2014); Kingsbury and Palmer (2002); Palmer et al. (2005).

He hit the ball with the bat

A0 A1

A2

A0 A1
A2

Figure 4: Example of dependency-based SRL (the up-
per part) and span-based SRL (the lower part).

Figure 4 illustrates an example of span-based
and dependency-based SRL. In dependency-based
SRL (at the upper part of Figure 4), the correct
A2 argument for the predicate “hit” is the word
“with”. On one hand, in span-based SRL (at the
lower part of Figure 4), the correct A2 argument is
the span “with the bat”.

For span-based SRL, the CoNLL-2004 and
2005 shared tasks (Carreras and Marquez, 2004;
Carreras and Màrquez, 2005) provided the task
settings and datasets. In the task settings, various
SRL models, from traditional pipeline mod-
els to recent neural ones, have been proposed
and competed with each other (Pradhan et al.,
2005; He et al., 2017; Tan et al., 2018). For
dependency-based SRL, the CoNLL-2008
and 2009 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009) provided the task settings
and datasets. As in span-based SRL, recent
neural models achieved high-performance in
dependency-based SRL (Marcheggiani et al.,
2017; Marcheggiani and Titov, 2017; He et al.,
2018b; Cai et al., 2018). This paper focuses on
span-based SRL.

6.2 BIO-based SRL Models
Span-based SRL can be solved as BIO sequen-
tial tagging (Hacioglu et al., 2004; Pradhan et al.,
2005; Màrquez et al., 2005).

Neural models State-of-the-art SRL models
use neural networks based on the BIO tagging
approach. The pioneering neural SRL model
was proposed by Collobert et al. (2011). They
use convolutional neural networks (CNNs) and
CRFs. Instead of CNNs, Zhou and Xu (2015)
and He et al. (2017) used stacked BiLSTMs and
achieved strong performance without syntactic in-
puts. Tan et al. (2018) replaced stacked BiLSTMs
with self-attention architectures. Strubell et al.
(2018) improved the self-attention SRL model by
incorporating syntactic information.
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Word representations Typical word represen-
tations, such as SENNA (Collobert et al., 2011)
and GloVe (Pennington et al., 2014), have been
used and contributed to the performance im-
provement (Collobert et al., 2011; Zhou and Xu,
2015; He et al., 2017). Recently, Peters et al.
(2018) integrated contextualized word represen-
tation, ELMo, into the model of He et al. (2017)
and improved the performance by 3.2 F1 score.
Strubell and McCallum (2018) also integrated
ELMo into the model of Strubell et al. (2018) and
reported the performance improvement.

6.3 Span-based SRL Models

Another line of approaches to SRL is labeled span
modeling (Xue and Palmer, 2004; Koomen et al.,
2005; Toutanova et al., 2005).

Typical models Typically, in this approach,
models firstly identify candidate argument spans
(argument identification) and then classify each
span into one of the semantic role labels (argu-
ment classification). For inference, several ef-
fective methods have been proposed, such as
structural constraint inference by using integer
linear programming (Punyakanok et al., 2008) or
dynamic programming (Täckström et al., 2015;
FitzGerald et al., 2015).

Recent span-based model A very recent work,
He et al. (2018a), proposed a span-based SRL
model similar to our model. They also used BiL-
STMs to induce span representations in an end-
to-end fashion. A main difference is that while
they model P(r|i, j), we model P(i, j|r). In other
words, while their model seeks to select an ap-
propriate label for each span (label selection), our
model seeks to select appropriate spans for each
label (span selection). This point distinguishes be-
tween their model and ours.

FrameNet span-based model For FrameNet-
style SRL, Swayamdipta et al. (2017) used a
segmental RNN (Kong et al., 2016), combin-
ing bidirectional RNNs with semi-Markov CRFs
(Sarawagi and Cohen, 2004). Their model com-
putes span representations using BiLSTMs and
learns a conditional distribution over all possible
labeled spans of an input sequence. Although we
cannot compare our results with theirs, we can re-
gard that our model is simpler and effective for
PropBank-style SRL.

6.4 Span-based Models in Other NLP Tasks
In syntactic parsing, Wang and Chang (2016) pro-
posed an LSTM-based sentence segment embed-
ding method named LSTM-Minus. Stern et al.
(2017); Kitaev and Klein (2018) incorporated the
LSTM Minus into their parsing model and
achieved the best results in constituency pars-
ing. In coreference resolution, Lee et al. (2017,
2018) presented an end-to-end coreference reso-
lution model, which considers all spans in a docu-
ment as potential mentions and learn distributions
over possible antecedents for each. Our model can
be regarded as an extension of their model.

7 Conclusion and Future Work

We have presented a simple and accurate span-
based model. We treat SRL as span selection
and our model seeks to select appropriate spans
for each label. Experimental results have demon-
strated that despite the simplicity, the model out-
performs a strong BiLSTM-CRF model. Also, our
span-based ensemble model using ELMo achieves
the state-of-the-art results on the CoNLL-2005
and 2012 datasets. Through empirical analysis, we
have obtained some interesting findings. One of
them is that the span-based model is better at label
prediction compared with the CRF-based model.
Another one is that ELMo improves the model
performance for span boundary identification.

An interesting direction for future work con-
cerns evaluating span representations from our
span-based model. Since the investigation on
the characteristics of the representations can lead
to interesting findings, it is worthwhile evaluat-
ing them intrinsically and extrinsically. Another
promising direction is to explore methods of incor-
porating frame knowledge into SRL models. We
have observed that a lot of label confusions arise
due to the lack of such knowledge. The use of
frame knowledge to reduce these confusions is a
straightforward approach.
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A Span-Consistent Greedy Search

Algorithm 1 Span-Consistent Greedy Search
1: Input: Score Matrix M 2 R

|R|⇥|S|,
2: Predicate Position Index p
3: Core Label Set R(core)

4: spans �
5: used cores �
6: U  {(i, j, r, score) 2 flatten(M)}
7: U  filter(U , p)
8: for (i, j, r, score) 2 sort(U) do
9: if r /2 used cores and

10: is overlap((i, j), spans) is False then
11: spans spans [ {hi, j, ri}
12: if r 2 R(core) then
13: used cores used cores [ {r}
14: return spans

Algorithm 1 describes the pseudo code of the
greedy search algorithm introduced in Section 2.4.
This algorithm receives the three inputs (line 1-3).
M is the score matrix illustrated at the top part of
Figure 1 in Section 3. Each cell of the matrix rep-
resents the score of each span. p is a target predi-
cate position index. R(core) is the set of core labels.
At line 4, the variable “spans” is initialized. This
variable stores the selected spans to be returned as
the output. At line 5, the variable “used cores” is
initialized. This variable keeps track of the already
selected core labels.

At line 6, the score matrix M is converted to
tuples, (i, j, r, score), by the function flatten(·).
These tuples are stored in the variable U . At line 7,
from U , we remove the tuples that fall into any
one of the followings, (i) the tuples whose bound-
ary (i, j) overlaps with the predicate position p or
(ii) the tuples whose score is lower than that of the
predicate span tuples. In terms of (i), since spans
whose boundary (i, j) overlaps with the predi-
cate position, i  p  j, can never be a cor-
rect argument, we remove such tuples. In terms
of (ii), we remove the tuples (⇤, ⇤, r, score) whose
score is lower than that of the predicate span tuple
(p, p, r, score). In Section 2, we define the predi-
cate span (p, p) as the NULL span, implying that
we can regard the spans whose score is lower than
that of the NULL span as an inappropriate argu-
ment. Thus, we remove such tuples from the set
of the candidates U .

The main processing starts from line 8. Based
on the scores, the function sort(·) sorts the tuples

(i, j, r, score) in a descending order. At line 9-10,
there are constraints for output spans. At line 9,
“r /2 used cores” represents the constraint that at
most one span can be selected for each core label.
At line 10, the function is overlap(·) takes as input
a span (i, j) and the set of the selected spans, and
returns the boolean value (“True” or “False”) that
represents whether the span overlaps with any one
of the selected spans or not.

At line 11, the span is added to the set of the
selected spans. At line 12-13, if the label r is in-
cluded in the core labels R(core), the label is added
to “used cores”. At line 14, as the final output, the
set of the selected spans “spans” is returned.

B BiLSTMs

As the base feature function fbase (Eq. 4 in Sec-
tion 2.3), we use BiLSTMs,

fbase(w1:T , p) = BILSTM(w1:T , p) .

In particular, we use the stacked BiLSTMs
in an interleaving fashion (Zhou and Xu, 2015;
He et al., 2017). The stacked BiLSTMs process an
input sequence in a left-to-right manner for odd-
numbered layers and in a right-to-left manner for
even-numbered layers.

The stacked BiLSTMs consist of L layers. The
hidden state in each layer ` 2 {1, · · · , L} is cal-
culated as follows,

h(`)
t =

(
LSTM(`)(x(`)

t , h(`)
t�1) (` = odd)

LSTM(`)(x(`)
t , h(`)

t+1) (` = even) .

Both of the odd- and even-numbered layers re-
ceive x(`)

t as the first input of the LSTM. For the
second input, odd-numbered layers receive h(`)

t�1,
whereas even-numbered layers receive h(`)

t+1.
Between the LSTM layers, we use the following

connection (Zhou and Xu, 2015),

x(`+1)
t = ReLU(W(`) · [x(`)

t ;h(`)
t ]) .

Here, we firstly concatenate x(`)
t and h(`)

t , and
then calculate the inner product of the concate-
nated vector and the parameter matrix W(`) with
the rectified linear units (ReLU). As a result, we
obtain the input representation x(`+1)

t for the next
(` + 1-th) LSTM layer.

In the first layer, LSTM(1) receives an input fea-
ture vector x(1)

t . Following He et al. (2017), we

1641



create this vector by concatenating a word embed-
ding and predicate mark embedding,

x(1)
t = [xword

t ;xmark
t ] ,

where xword 2 R
dword and xmark 2 R

dmark . The
mark embedding is created from the binary mark
feature. The value is 1 if the word is the target
predicate and 0 otherwise.

After the L-th LSTM layer runs, we obtain
x(L+1)

1:T = x(L+1)
1 , · · · ,x(L+1)

T . We use them as
the input of the span feature function fspan (Eq. 5
in Section 2.3), i.e., h1:T = x(L+1)

1:T . Each vector
ht 2 h1:T has dhidden dimensions.

C Hyperparameters

Name Value

Word Embedding dword 50-dimensional SENNA
1024-dimensional ELMo

Mark Embedding dmark 50-dimensional vector
LSTM Layers L 4
LSTM Hidden Units dhidden 300 dimensions
Mini-batch Size 32
Optimization Adam
Learning Rate 0.001
L2 Regularization � 0.0001
Dropout Ratio for BiLSTMs 0.1
Dropout Ratio for ELMo 0.5

Table 8: Hyperparameters for our span-based model.

C.1 Span-based Model
Table 8 lists the hyperparameters used for our
span-based model.

Word representation setup As word embed-
dings xword, we use two types of embeddings, (i)
SENNA (Collobert et al., 2011), 50-dimensional
word vectors (dword = 50), and (ii) ELMo
(Peters et al., 2018), 1024-dimensional vectors
(dword = 1024). During training, we fix these
word embeddings (not update them). As predi-
cate mark embeddings xmark, we use randomly
initialized 50-dimensional vectors (dmark = 50).
During training, we update them.

Network setup As the base feature function
fbase, we use 4 stacked BiLSTMs (2 forward and
2 backward LSTMs) with 300-dimensional hid-
den units (dhidden = 300). Following He et al.
(2017), we initialize all the parameter matrices
in BiLSTMs with random orthonormal matrices
(Saxe et al., 2013). Other parameters are initial-
ized following Glorot and Bengio (2010), and bias
parameters are initialized with zero vectors.

Regularization We set the coefficient � for the
L2 weight decay (Eq. 11 in Section 4.3) to 0.0001.
We apply dropout (Srivastava et al., 2014) to the
input vectors of each LSTM with dropout ratio of
0.1 and the ELMo embeddings with dropout ratio
of 0.5.

Training To optimize the parameters, we use
Adam (Kingma and Ba, 2014) with �1 = 0.9 and
�2 = 0.999. The learning rate is initialized to
0.001. After training 50 epochs, we halve the
learning rate every 25 epochs. Parameter updates
are performed in mini-batches of 32. The num-
ber of training epochs is set to 100. We save the
parameters that achieve the best F1 score on the
development set and evaluate them on the test set.
Training our model on the CoNLL-2005 training
set takes about one day and on the CoNLL-2012
training set takes about two days on a single GPU,
respectively.

C.2 Ensemble Model
Our ensemble model uses span representations
h(m)

s from base models m 2 {1, · · · , M} (Sec-
tion 3.2). We use 5 base models (M = 5) learned
over different runs. Note that, during training, we
fix the parameters of the five base models and up-
date only the parameters of the ensemble model.

Network setup The parameter matrix Wmoe
s

(Eq. 9 in Section 3.2) is initialized with the iden-
tity matrix. The scalar parameters {↵m}M

m=1

(Eq. 9) are initialized with 0. Each row vector
Wmoe[r] of the parameter matrix Wmoe (Eq. 10)
is initialized with the averaged vector over the
row vectors W(m)[r] of each model m, i.e.,
1
M

PM
m=1 W(m)[r].

Training To optimize the parameters, we use
Adam with �1 = 0.9 and �2 = 0.999. The learn-
ing rate is set to 0.0001. Parameter updates are
performed in mini-batches of 8. The number of
training epochs is set to 20. We save the parame-
ters that achieve the best F1 score on the develop-
ment set and evaluate them on the test set. Train-
ing one ensemble model on the CoNLL-2005 and
2012 training sets takes about one day on a single
GPU.
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Abstract

Source code is rarely written in isolation. It de-
pends significantly on the programmatic con-
text, such as the class that the code would re-
side in. To study this phenomenon, we intro-
duce the task of generating class member func-
tions given English documentation and the pro-
grammatic context provided by the rest of the
class. This task is challenging because the de-
sired code can vary greatly depending on the
functionality the class provides (e.g., a sort
function may or may not be available when we
are asked to “return the smallest element” in a
particular member variable list). We introduce
CONCODE, a new large dataset with over
100,000 examples consisting of Java classes
from online code repositories, and develop a
new encoder-decoder architecture that models
the interaction between the method documen-
tation and the class environment. We also
present a detailed error analysis suggesting
that there is significant room for future work
on this task.

1 Introduction

Natural language can be used to define complex
computations that reuse the functionality of rich,
existing code bases. However, existing approaches
for automatically mapping natural language (NL)
to executable code have considered limited lan-
guage or code environments. They either assume
fixed code templates (i.e., generate only parts of
a method with a predefined structure; Quirk et al.,
2015), a fixed context (i.e., generate the body of
the same method within a single fixed class; Ling
et al., 2016), or no context at all (i.e., generate code
tokens from the text alone; Oda et al., 2015). In
this paper, we introduce new data and methods for
learning to map language to source code within the
context of a real-world programming environment,
with application to generating member functions

public class SimpleVector implements Serializable {
  double[] vecElements;
  double[] weights;

    NL Query: Adds a scalar to this vector in place. 
    Code to be generated automatically:
  public void add(final double arg0) {
    for (int i = 0; i < vecElements.length; i++){

  vecElements[i] += arg0;
}

  }

    NL Query: Increment this vector 
    Code to be generated automatically:
  public void inc() {
    this.add(1); 
  }
}

Figure 1: Code generation based on the class environment
and method documentation. The figure shows a class where
the programmer wants to automatically generate the add

method from documentation, assuming the rest of the class
is already written. The system needs to understand that
vecElements is the vector to be augmented, and that the
method must take in a scalar parameter as the element to
be added. The model also needs to disambiguate between the
member variables vecElements and weights.

from documentation for automatically collected
Java class environments.

The presence of rich context provided by an ex-
isting code environment better approximates the
way programmers capitalize on code re-use, and
also introduces new language understanding chal-
lenges. Models must (a) map the NL to environ-
ment variables, library API calls and user-defined
methods found elsewhere in the class based on their
names, types and signatures, and (b) decide on the
structure of the resulting code. For example, in
Figure 1, to generate the method inc() from the
corresponding NL, Increment this vector, it is cru-
cial to know of the existence of class method add().
This helps us decide if it should directly call add()
or generate the method from scratch by iterating
through the vecElements array and incrementing
each element. Similarly, for generating the add()

method, the code needs to use the class variable
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vecElements correctly. Overall, the code environ-
ment provides rich information relating to the intent
of the developer, and can be used to considerably
reduce ambiguity in the NL documentation.

To learn such a code generator, we use a special-
ized neural encoder-decoder model that (a) encodes
the NL together with representations based on sub-
word units for environment identifiers (member
variables, methods) and data types, and (b) decodes
the resulting code using an attention mechanism
with multiple steps, by first attending to the NL,
and then to the variables and methods, thus also
learning to copy variables and methods. This two-
step attention helps the model to match words in
the NL with representations of the identifiers in the
environment. Rather than directly generating the
output source code tokens (Dong and Lapata, 2016;
Iyer et al., 2017), the decoder generates produc-
tion rules from the grammar of the target program-
ming language similar to Rabinovich et al. (2017),
Yin and Neubig (2017), and Krishnamurthy et al.
(2017) and therefore, guarantees the syntactic well-
formedness of the output.

To train our model, we collect and release CON-
CODE, a new dataset comprising over 100,000
(class environment, NL, code) tuples by gather-
ing Java files containing method documentation
from public Github repositories. This is an or-
der of magnitude larger than existing datasets that
map NL to source code for a general purpose lan-
guage (MTG from Ling et al. (2016) has 13k ex-
amples), contains a larger variety of output code
templates than existing datasets built for a specific
domain, and is the first to condition on the envi-
ronment of the output code. Also, by design, it
contains examples from several domains, thus in-
troducing open-domain challenges of new identi-
fiers during test time (some e.g. class environments
are LookupCommand, ColumnFileReader and Im-
ageSequenceWriter). Our model achieves an ex-
act match accuracy of 8.6% and a BLEU score (a
metric for partial credit; Papineni et al., 2002) of
22.11, outperforming retrieval and recent neural
methods. We also provide an extensive ablative
analysis, quantifying the contributions that come
from the context and the model, and suggesting
that our work opens up various areas for future
investigation.

Adds a scalar to this vector in place
NL query:

Variables: [Type, Name]
double[] vecElements
double[] weights

Methods: [Return Type, Name, ParameterList]
void inc ()
float dotProduct (SimpleVector other)
float multiply(float scalar)

Environment

public void add(final double arg0) {
    for (int i = 0; i < vecElements.length(); i++){

  vecElements[i] += arg0;
}

 }

MemberDeclaration-->MethodDeclaration
MethodDeclaration-->
    TypeTypeOrVoid IdentifierNT FormalParameters 
     MethodBody
TypeTypeOrVoid-->void
IdentifierNT-->add
FormalParameters-->( FormalParameterList )
FormalParameterList-->FormalParameter
   … 
Primary-->IdentifierNT
IdentifierNT-->i
Nt_68-->+=
Expression-->Primary
Primary-->IdentifierNT
IdentifierNT-->arg0

Source code:

AST Derivation:

Figure 2: Our task involves generating the derivation of the
source code of a method based on the NL documentation, class
member variables (names and data types), and other class
member methods (method names and return types), which
form the code environment.

2 Task Definition
We introduce the task of generating source code
from NL documentation, conditioned on the class
environment the code resides in. The environment
comprises two lists of entities: (1) class member
variable names with their data types (for example,
double[] vecElements as seen in Figure 2), and
(2) member function names together with their re-
turn types (for example, void inc()).1 Formally,
let q(i), a(i) denote the NL and source code respec-
tively for the ith training example, where a(i) is a
sequence of production rules that forms the deriva-
tion of its underlying source code. The environ-
ment comprises a list of variables names v(i)

1..|v(i)|
and their corresponding types t(i)1..|t(i)|, as well as
method names m(i)

1..|m(i)| and their return types
1The method parameters and body can be used as well but

we leave this to future work.
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r(i)
1..|r(i)|. Our goal is to generate the derivation of

a(i) given q(i) and the environment (see Figure 2).

3 Models

We evaluate a number of encoder-decoder models
that generate source code derivations from NL and
the class environment. Our best model encodes all
environment components broken down into sub-
word units (Sennrich et al., 2016) separately, using
Bi-LSTMs and decodes these contextual represen-
tations to produce a sequence of valid production
rules that derive syntactically valid source code.
The decoder also uses a two-step attention mecha-
nism to match words in the NL with environment
components, and then uses a supervised copy mech-
anism (Gu et al., 2016a) to incorporate environment
elements in the resulting code. We describe this
architecture below.

3.1 Encoder

The encoder computes contextual representations
of the NL and each component in the environment.
Each word of the NL, qi, is embedded into a high
dimensional space using Identifier matrix I (de-
noted as qi) followed by the application of a n-
layer bidirectional LSTM (Hochreiter and Schmid-
huber, 1997). The hidden states of the last layer
(h1, · · · , hz) are passed on to the attention layer,
while the hidden states at the last token are used to
initialize the decoder.

h1, · · · , hz = BiLSTM(q1, . . . ,qz)

To encode variables and methods, the variable types
(ti) and method return types (ri) are embedded us-
ing a type matrix T (denoted as ti and ri). To
encode the variable and method names (vi, mi),
they are first split based on camel-casing, and each
component is embedded using I , represented as
vi1, . . . ,vij and mi1, . . . ,mik. The encoded rep-
resentation of the variable and method names is the
final hidden state of the last layer of a Bi-LSTM
over these embeddings (vi and mi). Finally, a 2-
step Bi-LSTM is executed on the concatenation
of the variable type embedding and the variable
name encoding. The corresponding hidden states
form the final representations of the variable type
and the variable name (t̂i, v̂i) and are passed on
to the attention mechanism. Method return types
and names are processed identically using the same

Variable encoding double[ ] 

vecElements

Method encoding

vec elements

float 

dotProduct dot product

NL documentation

…Ad
ds

a sc
ala

r

to pl
ac

e

(decoder init)

En
vir

on
m

en
t A

tte
nt

io
n

Bi-LSTM stack

(a)
NL Attention

(b)

Figure 3: The encoder creates contextual representations
of the NL (a), the variables and the methods (b). Variable
(method) names are split based on camel-casing and encoded
using a BiLSTM. The variable (method) type and name are
further contextualized using another BiLSTM.

Bi-LSTMs and embedding matrices (r̂i, m̂i).

ti = tiT ; vij = vijI

ri = riT ; mik = mikI

vi = BiLSTM(vi1, . . . ,vij)

mi = BiLSTM(mi1, . . . ,mik)

t̂i, v̂i = BiLSTM(ti,vi)

r̂i, m̂i = BiLSTM(ri,mi)

Figure 3 shows an example of the encoder.

3.2 Decoder
We represent the source code to be produced as a
sequence of production rules (at at step t), with a
non-terminal nt on the left hand side and a com-
bination of terminal and non-terminal symbols on
the right hand side (see Figure 2). The first non-
terminal is MemberDeclaration. Subsequently, ev-
ery non-terminal is expanded in a depth first left
to right fashion, similar to Yin and Neubig (2017).
The probability of a source code snippet is decom-
posed as a product of the conditional probability
of generating each step in the sequence of rules
conditioned on the previously generated rules. Our
decoder is an LSTM-based RNN that produces a
context vector ct at each time step, which is used
to compute a distribution over next actions.

p(at|a<t) / exp(Wntct) (1)

1645



Here, Wnt is a |nt| ⇥ H matrix, where |nt| is the
total number of unique production rules that nt can
be expanded to. The context vector ct is computed
using the hidden state st of an n-layer decoder
LSTM cell and attention vectors over the NL and
the context (zt and et), as described below.

Decoder LSTM The decoder uses an n-layer
LSTM whose hidden state st is computed based
on the current non-terminal nt to be expanded, the
previous production rule at�1, the parent produc-
tion rule par(nt) that produced nt, the previous
decoder LSTM state st�1, and the decoder state of
the LSTM cell that produced nt, denoted as snt .

st = LSTM(nt, at�1, par(nt), st�1, snt) (2)

We use an embedding matrix N to embed nt and
matrix A to embed at�1 and par(nt). If at�1 is a
rule that generates a terminal node that represents
an identifier or literal, it is represented using a spe-
cial rule IdentifierOrLiteral to collapse all these
rules into a single previous rule.

Two-step Attention At time step t, the decoder
first attends to every token in the NL representation,
hi, using the current decoder state, st, to compute
a set of attention weights ↵t, which are used to
combine hi into an NL context vector zt. We use a
general attention mechanism (Luong et al., 2015),
extended to perform multiple steps.

↵t,i =
exp(sT

t Fhi)P
i exp(sT

t Fhi)

zt =
X

i

↵t,ihi

The context vector zt is used to attend over ev-
ery type (return type) and variable (method) name
in the environment, to produce attention weights
�t that are used to combine the entire context
x = [t : v : r : m] into an environment context vec-
tor et.2

�t,j =
exp(zT

t Gxj)P
j exp(zT

t Gxj)

et =
X

j

�t,jxj

Finally, ct is computed using the decoder state and
both context vectors zt and et:

ct = tanh(Ŵ [st : zt : et])
2“:” denotes concatenation.

LSTM

st�1

placeinvectorthistoscalaraAdds

st

vecElements

Attention over NL query

Attention over Environment

FormalParameters (nt)

IdentifierNt—>identifier(at�1)

MethodDeclaration —> 
 TypeTypeOrVoid IdentifierNT 
 FormalParameters MethodBody

(par(nt))

snt

(↵t)

zt

(�t)

et
Ŵ

stzt
ct

�t
Copy 

Mechanism

FormalParameters —> 
   ( formalParameterList )

double[ ] floatinc()void dotProduct()

FormalParameters -> ()

Figure 4: The hidden state st of our decoder is a function
of the previous hidden state, current non-terminal, previous
production rule, parent rule, and the parent hidden state. st is
used to attend on the NL and compress it into zt, which is then
used to attend over the environment variables and methods
to generate et. The decoder uses all these context vectors
to produce a distribution over valid right hand side values of
the current non-terminal, and also learns to copy from the
environment.

Supervised Copy Mechanism Since the class
environment at test time can belong to previously
unseen new domains, our model needs to learn to
copy variables and methods into the output. We
use the copying technique of Gu et al. (2016a) to
compute a copy probability at every time step t
using vector b of dimensionality H .

copy(t) = �(bT ct)

Since we only require named identifiers or user
defined types to be copied, both of which are pro-
duced by production rules with nt as IdentifierNT,
we make use of this copy mechanism only in this
case. Identifiers can be generated by directly gen-
erating derivation rules (see equation 1), or by
copying from the environment. The probability
of copying an environment token xj , is set to be
the attention weights �t,j computed earlier, which
attend exactly on the environment types and names
which we wish to be able to copy. The copying
process is supervised by preprocessing the produc-
tion rules to recognize identifiers that can be copied
from the environment, and both the generation and
the copy probabilities are weighted by 1 � copy(t)
and copy(t) respectively. The LSTM decoder with
attention mechanism is illustrated in Figure 4.

3.3 Baseline Models
Retrieval We evaluate a retrieval baseline, where
the output source code for a test example is the
training example source code whose NL is closest
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in terms of cosine similarity to the test NL using
a tf-idf representation. We then replace all occur-
rences of environment variables and methods in the
chosen training source code with similarly typed
variables and methods from the environment of the
test example, and we break ties randomly.

Seq2seq We evaluate a Seq2Seq baseline by rep-
resenting the NL and context as a sequence formed
by the concatenation of the NL, the variables and
the methods with separators between them. The
variables (methods) are represented with the type
(return type) followed by the name, with a differ-
ent separator between them. The encoder is an
n-layer LSTM which initializes an LSTM-based
decoder using its final hidden states. The decoder
uses an attention mechanism (Luong et al., 2015)
over the encoder states to produce a conditional
distribution over the next source code token (not
production rule) given all the previous tokens. We
replace UNK tokens in the output with source to-
kens having the most attention weight. We also
attempted to evaluate the Seq2Tree model of Dong
and Lapata (2016) but the redundancy in the model
resulted in extremely long output sequences which
did not scale. Experiments on a smaller dataset
gave comparable results to Seq2seq.

Seq2prod This baseline corresponds to the ac-
tion sequence model by Yin and Neubig (2017),
with a BiLSTM over a sequence representation of
the NL and context (same as Seq2seq), and a de-
coder that learns to generate a derivation of the
AST of the underlying source code, similar to our
model. The decoder uses the same attention mech-
anism as the Seq2seq, however, it uses supervised
copying from the entire input sequence to handle
unknown words encountered during testing.

4 CONCODE

We built a new dataset (CONCODE) from pub-
lic Java projects on Github that contains environ-
ment information together with NL (Javadoc-style
method comments) and code tuples. We gather Java
files from ⇠33,000 repositories, which are then
split into train, development, and test sets based on
repository, rather than purely randomly. Dividing
based on the repository keeps the domains in the
test set separate from the training set, therefore pro-
viding near zero-shot conditions that should truly
test the ability of models to generalize to associate
unseen NL tokens with previously unseen environ-

Count

Train 100,000
Valid/Test 2,000/2,000
Average NL Length 13.73
Average Code Characters 119
Average Code Tokens 26.3
Average # Environment Variables 4.89
Average # Environment Methods 10.95

Average AST Nodes 79.6
# Node Types 153
# Production Rules 342*

% Getters 16.74%
% Setters 3.39%
% using Class Variables 68%
% using Class Methods 16.2%
% Unknown Types 7.65%

Table 1: Statistics of our dataset of (NL, context and code)
tuples collected from Github. *Does not include rules that
generate identifiers.

ment variables and methods. We also remove all
examples from the development and test sets where
the NL is exactly present in the training set. We
further eliminate all Java classes that inherit from
parent classes, since the resulting code may use
variables and methods inherited from parent classes
that reside in separate source files. While this is an
important and interesting feature, we leave it for
future work.

Every method that contains a Javadoc comment
is treated as a training example. The Javadoc com-
ment forms the NL, the method body is the target
code to be generated, and all member variables,
as well as other member method signatures are
extracted and stored as part of the context. The
Javadoc is preprocessed by stripping special sym-
bols such as @link, @code, @inheritDoc and spe-
cial fields such as @params. Methods that do not
parse are eliminated and the rest are pre-processed
by renaming locally defined variables canonically,
beginning at loc0 and similarly for arguments, start-
ing with arg0. We also replace all method names
with the word function since it doesn’t affect the
semantics of the resulting program. Generating
informative method names has been studied by Al-
lamanis et al. (2015a). We replace all string literals
in the code with constants as they are often debug
messages. Finally, we use an ANTLR java gram-
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mar3 that is post-processed by adding additional
non-terminals and rules to eliminate wildcard sym-
bols in the grammar, in order to convert the source
code into a sequence of production rules. The re-
sulting dataset contains 100,000 examples for train-
ing, and 2000 examples each for development and
testing, respectively. Table 1 summarizes the vari-
ous statistics. We observe that on average, an envi-
ronment contains ⇠5 variables and ⇠11 methods.
Around 68% of the target code uses class member
variables, and 16% of them use member methods,
from the environment. Based on a frequency cut-
off of 2 on the training set, we find that 7% of the
types in the development set code are unknown,
hence they need to be copied from the environment.
Since CONCODE is extracted from a diverse set
of online repositories, there is a high variety of
code templates in the dataset compared to existing
datasets. For example, a random baseline on the
Hearthstone card game dataset (Ling et al., 2016)
gives a BLEU score of 40.3, but only a score of
10.2 on CONCODE. We plan to release all code
and data from this work.4

5 Experimental Setup

We restrict all models to examples where the length
of the combination of the NL and the context is at
most 200 tokens and the length of the output source
code is at most 150 tokens. Source NL tokens are
lower-cased, camel-cased identifiers are split and
lower-cased, and are used together with the original
version. The vocabulary for identifiers uses a fre-
quency threshold of 7, resulting in a vocabulary of
32, 600 tokens. The types vocabulary uses a thresh-
old of 2 resulting in 22, 324 types. We include all
153 non-terminals and 342 previous rules. We use
a threshold of 2 for output production rules to filter
out the long tail of rules creating identifiers and lit-
erals, resulting in 18, 135 output rules. Remaining
values are replaced with the UNK symbol.

Hyperparameters We use an embedding size H
of 1024 for identifiers and types. All LSTM cells
use 2-layers and a hidden dimensionality of 1024
(512 on each direction for BiLSTMs). We use an
embedding size of 512 for encoding non-terminals
and rules in the decoder. We use dropout with
p = 0.5 in between LSTM layers and at the output
of the decoder over ct. We train our model for 30
epochs using mini-batch gradient descent with a

3
https://github.com/antlr/grammars-v4

4
https://github.com/sriniiyer/concode

Model Exact BLEU

Retrieval 2.25 (1.65) 20.27 (18.15)
Seq2Seq 3.2 (2.9) 23.51 (21.0)
Seq2Prod 6.65 (5.55) 21.29 (20.55)
Ours 8.6 (7.05) 22.11 (21.28)

Table 2: Exact match accuracy and BLEU score (for par-
tial credit) on the test (development) set, comprising 2000
examples from previously unseen repositories.

Model Exact BLEU

Ours 7.05 21.28
-Variables 1.6 20.78
-Methods 6.2 21.74
-Two step attention 5.75 17.2
-Camel-case encoding 5.7 21.83

Table 3: Ablation of model features on the development set.

batch size of 20, and we use Adam (Kingma and
Ba, 2015) with an initial learning rate of 0.001 for
optimization. We decay our learning rate by 80%
based on performance on the development set after
every epoch.

Inference and Metrics Inference is done by first
encoding the NL and context of the test exam-
ple. We maintain a stack of symbols starting with
the non-terminal, MemberDeclaration, and at each
step, a non-terminal (terminals are added to the out-
put) is popped off the stack to run a decoding step
to generate the next set of symbols to push onto
the stack. The set of terminals generated along the
way forms the output source code. We use beam
search and maintain a ranked list of partial deriva-
tions (or code tokens for Seq2seq) at every step to
explore alternate high-probability derivations. We
use a beam size of 3 for all neural models. We
copy over source tokens whenever preferred by the
model output. We restrict the output to 150 tokens
or 500 production rules.

To evaluate the quality of the output, we use Ex-
act match accuracy between the reference and gen-
erated code. As a measure of partial credit, we also
compute the BLEU score (Papineni et al., 2002),
following recent work on code generation (Ling
et al., 2016; Yin and Neubig, 2017). BLEU is an
n-gram precision-based metric that will be higher
when more subparts of the predicted code match
the provided reference.
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NL: Returns the execution data store with 
data for all loaded classes.

Variables:
SessionInfoStore sessionInfos
ExecutionDataStore executionData

Methods:
void load
SessionInfoStore getSessionInfoStore
void save

Code:
ExecutionDataStore function () { 
  return executionData ; 
}

NL: Convert mixed case to underscores.

Variables: 
NamingStrategy INSTANCE;
Methods:
String classToTableName
String collectionTableName
String tableName
String columnName
String addUnderscores

Code:
String function (String arg0) { 
   return addUnderscores (arg0);
}

NL: Gets the value of the tags property. This 
accessor method returns a reference to the 
live list, not a snapshot.

Variables:
String validationPattern;
List<String> tags;
Methods:
String getValidationPattern
void setValidationPattern

Code:
List <String> function() { 
  if ( tags == null ) { 
    tags = new ArrayList <String>();} 
  return this.tags; }

NL: Skips the next char

Variables:
String str;
int pos

Methods:
char ch()
int pos()
int length()
int gatherInt()
boolean hasNext()

Code:
void function () { 
  pos ++ ; 
}

NL: Return a library that loads the core from 
code.jquery.com

Prediction:
JQueryLibrary function
   (String arg0) { 
  return new JQueryLibrary ( arg0 ) ; 
}
Reference:
JQueryLibrary function(String arg0) { 
  return new JQueryLibrary ( 
      BASE_RESOURCE_URL + “string" + 
        arg0 + “string" ) ; 
}

NL: Clear the update 
-timestamps data.

Variables:
boolean DEBUG_ENABLED
String REGION_NAME
TimestampsRegion region

Prediction:
void function() { 
  region.clear() ; 
}
Reference:
void function() { 
  region.evictAll(); 
}Prediction:

List < ? > function ( ) { 
  return iTransformers ; }

NL: Empty the violations list

Variables:
long numPptEntries
List<Violation> violations

Prediction:
void function() { 
  violations.clear() ;
}
Reference:
void function () { 
 violations = 
  new ArrayList<Violation>(); 
}

NL: Returns true if this registry maps 
one or more keys to the specified value.

Variables:
Map _values
Map _register
Methods:
IWidgetIdentifier get
WidgetLocator add

Prediction:
boolean function
  (IWidgetIdentifier arg0) { 
  return _values.contains(arg0); 
}
Reference:
boolean function
  (IWidgetIdentifier arg0) { 
  return _register.containsValue(arg0); 
}

(a) (b) (c)

Reference:
Transformer [ ] function ( ) { 
  return iTransformers ; }

(d)

(e) (f)

(g)

(h)

(i)

Figure 5: Analysis of our model output on development set examples. Some environment variables and methods are omitted for
space. (a)-(d) represent cases where the model exactly produced the reference output. (e)-(g) are cases where the model output is
very reasonable for a practical setting. In (f), the model produces a better solution than the reference. In (h), the context lacks
information to produce the reference code. The model chooses the wrong element in (i) and could be improved by better encoder
representations.

6 Results

We present results for the context based code gen-
eration task on the test and dev sets in Table 2.
Our model outperforms all baselines and achieves
a gain of 1.95% exact match accuracy and 0.82
BLEU points, with respect to the next best models.
The combination of independently encoding sub-
word units and applying a two-step attention mech-
anism helps the model learn to better associate the
correct variables/methods from the context and the
language in the NL. Figure 5 (a) shows an example
output of our model, which produces code structure
intermixed with member variables (tags). In (b) our
model learns to call method addUnderscores (an
UNK in the vocabulary) with its correct return type
(String). Similarly, in (d) our model also suc-
cessfully learns to use a previously unseen type
(ExecutionDataStore) when making use of the
corresponding variable. (c) is an example of where
the NL does not directly refer to the variable to be
used. The mismatch between dev and test results is
because we ensure that the dev and test examples
come from non-overlapping Github repositories,
resulting in different distributions.

Using a constrained decoder that generates syn-

tax tree rules instead of tokens leads to signifi-
cant gains in terms of exact match score (6.65 for
Seq2prod vs 3.2 for Seq2seq), and shows that this
is an important component of code generation sys-
tems. Seq2prod, however, fails on examples (b)-(d),
since it is harder to learn to match the NL tokens
with environment elements. Finally, all neural mod-
els outperform the retrieval baseline with member
substitution.

To understand which components of the data
and the model contribute most to the output, we
perform an ablation study on the development set
(Table 3). Removing the variables leads to a sig-
nificant hit in exact match accuracy since 68% of
examples (Table 1) refers to class variables; a simi-
lar but smaller reduction is incurred by removing
methods. The presence of these components makes
this task more challenging and also more aligned
with programming scenarios in practice. Remov-
ing the two-step attention mechanism leads to a
1.3% drop in accuracy since the attention on the
NL is unable to interact with the attention on the
environment variables/methods. Removing camel-
case encoding leads to a small drop mainly because
many variable (method) names are single words.
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Category Fraction

Totally Wrong 62%
Marginally Correct 9%
Mostly Correct 16%
Exact Match 11%
Semantically Equivalent 2%

Table 4: Qualitative distribution of errors on the development
set.

7 Error Analysis

Subfigures 5(e)-(i) show cases where our model
output did not exactly match the reference. In (e)-
(g), the model output is semantically equivalent to
the reference and is a very reasonable prediction
in a practical setting. For example, in (e) the only
difference between the prediction and the reference
is the string concatenations to the url. Interestingly,
in example (f) the prediction is a cleaner way to
achieve the same effect as the reference, and this is
a great example of the application of these models
for suggesting standard and efficient code. Un-
fortunately, our model is penalized by the exact
match metric here. Similarly, in (g), the model uses
a generic list (List<?>) in place of the specific
type (Transformer[]). Example (h) demonstrates
a case where the model is unaware of methods that
can be called on class members (specifically that
evictAll is a member of the TimestampsRegion

class), and requires augmenting the environment
with additional member type documentation, which
we believe will be an important area for future
work. Example (i) calls for richer encoder repre-
sentations, since our model incorrectly uses the
values variable instead of register, as it is un-

able to associate the word “registry” with the right
elements.

We further perform a qualitative analysis of 100
predictions on our development set (Table 4) and
find that there is significant room for improvement
with 71% of the predictions differing significantly
from their references. 16% of the predictions are
very close to their references with the difference
being 1-2 tokens, while 11% are exactly correct.
2% of the predictions were semantically equivalent
but not exactly equal to their references.

8 Related Work

There is significant existing research on mapping
NL directly to executable programs in the form
of logical forms (Zettlemoyer and Collins, 2005),

�-DCS (Liang et al., 2013), regular expressions
(Kushman and Barzilay, 2013; Locascio et al.,
2016), database queries (Iyer et al., 2017; Zhong
et al., 2017) and general purpose programs (Balog
et al., 2016; Allamanis et al., 2015b). Ling et al.
(2016) generate Java and Python source code from
NL for card games, conditioned on categorical card
attributes. Manshadi et al. (2013) generate code
based on input/output examples for applications
such as database querying. Gu et al. (2016b) use
neural models to map NL queries to a sequence of
API calls, and Neelakantan et al. (2015) augment
neural models with a small set of basic arithmetic
and logic operations to generate more meaning-
ful programs. In this work, we introduce a new
task of generating programs from NL based on the
environment in which the generated code resides,
following the frequently occurring pattern in large
repositories where the code depends on the types
and availability of variables and methods in the
environment.

Neural encoder-decoder models have proved ef-
fective in mapping NL to logical forms and also for
directly producing general purpose programs. Ling
et al. (2016) use a sequence-to-sequence model
with attention and a copy mechanism to gener-
ate source code. Instead of directly generating
a sequence of code tokens, recent methods focus
on constrained decoding mechanisms to generate
syntactically correct output using a decoder that
is either grammar-aware or has a dynamically-
determined modular structure paralleling the struc-
ture of the abstract syntax tree (AST) of the code
(Dong and Lapata, 2016; Rabinovich et al., 2017;
Krishnamurthy et al., 2017; Yin and Neubig, 2017).
Our model also uses a grammar-aware decoder
similar to Yin and Neubig (2017) to generate syn-
tactically valid parse trees, augmented with a two-
step attention mechanism (Chen et al., 2016), fol-
lowed by a supervised copying mechanism (Gu
et al., 2016a) over the class environment.

Recent models for mapping NL to code have
been evaluated on datasets containing highly tem-
plated code for card games (Hearthstone & MTG;
Ling et al., 2016), or manually labeled per-line
comments (DJANGO; Oda et al., 2015). These
datasets contain ⇠20,000 programs with short tex-
tual descriptions possibly paired with categorical
data, whose values need to be copied onto the re-
sulting code from a single domain. In this work, we
collect a new dataset of over 100,000 NL and code
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pairs, together with the corresponding class envi-
ronment. Each environment and NL describe a spe-
cific domain and the dataset comprises thousands
of different domains, that poses additional chal-
lenges. Having an order of magnitude more data
than existing datasets makes training deep neural
models very effective, as we saw in the experimen-
tal evaluation. While massive amounts of Github
code have been used before for creating datasets
on source code only (Allamanis and Sutton, 2013,
2014; Allamanis et al., 2016), we instead extract
from Github a dataset of NL and code with an em-
phasis on context, in order to learn to map NL to
code within a class.

9 Conclusion

In this paper, we introduce new data and methods
for learning to generate source code from language
within the context of a real-world code base. To
train models for this task, we collect and release
CONCODE, a large new dataset of NL, code, and
context tuples from online repositories, featuring
code from a variety of domains. We also introduced
a new encoder decoder model with a specialized
context encoder which outperforms strong neural
baselines by 1.95% exact match accuracy. Finally,
analysis suggests that even richer models of pro-
grammatic context could further improve these re-
sults.
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Abstract

Most existing studies in text-to-SQL tasks do
not require generating complex SQL queries
with multiple clauses or sub-queries, and gen-
eralizing to new, unseen databases. In this
paper we propose SyntaxSQLNet, a syntax
tree network to address the complex and cross-
domain text-to-SQL generation task. Syn-
taxSQLNet employs a SQL specific syntax
tree-based decoder with SQL generation path
history and table-aware column attention en-
coders. We evaluate SyntaxSQLNet on a
new large-scale text-to-SQL corpus containing
databases with multiple tables and complex
SQL queries containing multiple SQL clauses
and nested queries. We use a database split set-
ting where databases in the test set are unseen
during training. Experimental results show
that SyntaxSQLNet can handle a significantly
greater number of complex SQL examples
than prior work, outperforming the previous
state-of-the-art model by 9.5% in exact match-
ing accuracy. To our knowledge, we are the
first to study this complex text-to-SQL task.
Our task and models with the latest updates
are available at https://yale-lily.
github.io/seq2sql/spider.

1 Introduction

Text-to-SQL task is one of the most important sub-
task of semantic parsing in natural language pro-
cessing (NLP). It maps natural language sentences
to corresponding SQL queries.

In recent years, some state-of-the-art methods
with Seq2Seq encoder-decoder architectures are
able to obtain more than 80% exact matching ac-
curacy on some complex text-to-SQL benchmarks
such as ATIS and GeoQuery. These models seem
to have already solved most problems in this area.

However, as (Finegan-Dollak et al., 2018) show,
because of the problematic task definition in the
traditional datasets, most of these models just
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Figure 1: To address the complex text-to-SQL gener-
ation task, SyntaxSQLNet employs a tree-based SQL
generator. For example, our model can systematically
generate a nested query as illustrated above.

learn to match semantic parsing results, rather than
truly learn to understand the meanings of inputs
and generalize to new programs and databases.
More specifically, most existing complex text-to-
SQL datasets have less than 500 SQL labels. They
are expanded by paraphrasing 4-10 questions for
each SQL query. Under the standard train and
test split (Zettlemoyer and Collins, 2005), most
queries in the test set also appear in the train
set. The WikiSQL dataset recently developed
by (Zhong et al., 2017) is much larger and does
use different databases for training and testing,
but it only contains very simple SQL queries and
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database schemas.
To address those issues in the current semantic

parsing datasets, Yu et al. (2018b) have developed
a large-scale human labeled text-to-SQL dataset
consisting of about 6,000 complex SQL queries
and 200 databases with multiple tables. This
dataset defines a new complex and cross-domain
text-to-SQL task that requires models to general-
ize well to both new SQL queries and databases.
The task cannot be solved easily without truly un-
derstanding the semantic meanings of the input
questions.

In this paper, we propose SyntaxSQLNet, a
SQL specific syntax tree network to address the
aforementioned task. Specifically, to generate
complex SQL queries with multiple clauses, selec-
tions and sub-queries, we develop a syntax tree-
based decoder with SQL generation path history.
To make our model learn to generalize to new
databases with new tables and columns, we also
develop a table-aware column encoder. Our con-
tributions are as follows:
• We propose SQL specific syntax tree networks

for the complex and cross-domain text-to-SQL
task, which is even able to solve nested queries
on new, unseen databases. We are the first to
develop a methodology for this challenging se-
mantic parsing task.

• We introduce a SQL specific syntax tree-based
decoder with SQL path history and table-aware
column attention encoders. Even with no hyper-
parameter tuning, our model can significantly
outperform the previous best models, with 4.8%
boost in exact matching accuracy. Error anal-
ysis shows that our model is able to general-
ize, and solve much more complex (e.g., nested)
queries in unseen databases than prior work.

• We also develop a cross-domain data augmen-
tation method to generate more diverse training
examples across databases, which further im-
proves the exact matching accuracy by 7.5%.
As a result, our model achieves 22.0% accuracy,
a 12.3% total improvement compared with the
previous best models.

2 Related Work

Semantic parsing maps natural language to formal
meaning representations. There are a range of rep-
resentations, such as logic forms and executable
programs (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Wong and Mooney, 2007; Das

et al., 2010; Liang et al., 2011; Banarescu et al.,
2013; Artzi and Zettlemoyer, 2013; Reddy et al.,
2014; Berant and Liang, 2014; Pasupat and Liang,
2015).

As a sub-task of semantic parsing, the text-to-
SQL problem has been studied for decades (War-
ren and Pereira, 1982; Popescu et al., 2003a, 2004;
Li et al., 2006; Giordani and Moschitti, 2012;
Wang et al., 2017b). The methods proposed in
the database community (Li and Jagadish, 2014;
Yaghmazadeh et al., 2017) tend to involve hand
feature engineering and user interactions with the
systems. In this work, we focus on recent neu-
ral network-based approaches (Yin et al., 2016;
Zhong et al., 2017; Xu et al., 2017; Wang et al.,
2017a; Iyer et al., 2017). Dong and Lapata (2016)
introduce a sequence-to-sequence (seq2seq) ap-
proach to converting texts to logical forms. Most
previous work focuses on a specific table schema.
Zhong et al. (2017) publish the WikiSQL dataset
and propose a seq2seq model with reinforcement
learning to generate SQL queries. Xu et al. (2017)
further improve the results on the WikiSQL task
by using a SQL-sketch based approach employ-
ing a sequence-to-set model. Dong and Lap-
ata (2018) propose a coarse-to-fine model which
achieves the new state-of-the-art performances on
several datasets including WikiSQL. Their model
first generate a sketch of the target program. Then
the model fills in missing details in the sketch.

Our syntax tree-based decoder is related to re-
cent work that exploits syntax information for
code generation tasks (Yin and Neubig, 2017; Ra-
binovich et al., 2017). Yin and Neubig (2017)
introduce a neural model that transduces a nat-
ural language statement into an abstract syntax
tree (AST). While they format the generation pro-
cess as a seq2seq decoding of rules and tokens,
our model uses a module for each grammar com-
ponent, and calls them recursively to generate a
SQL syntax tree. Similarly, Rabinovich et al.
(2017) propose abstract syntax networks that use
a collection of recursive modules for decoding.
Our model differs from theirs in the following
points. First, we exploit a SQL specific grammar
instead of AST. AST-based models have to pre-
dict many non-terminal rules before predicting the
terminal tokens, involving more steps. Whereas,
our SQL-specific grammar enables direct predic-
tion of SQL tokens. Second, our model uses dif-
ferent sequence-to-set modules to avoid the “or-
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dering issue” (Xu et al., 2017) in many code gen-
eration tasks. Third, different from (Rabinovich
et al., 2017), we pass a pre-order traverse of SQL
decoding history to each module. This provides
each module with important dependence informa-
tion: e.g., if a SQL query has GROUP BY, it is
very likely that the grouped column have appeared
in SELECT too.

In addition to the distinction in model design,
our work differs from theirs in the data and task
definition. They aim to develop general syn-
tax model for code generation via abstract syn-
tax trees. Instead, we are interested in solving the
complex and cross-domain SQL query generation
problem; this motivates us to take advantage of
SQL specific syntax for decoding, which guides
systematic generation of complex SQL queries.

3 Problem Formulation

This work aims to tackle the complex text-to-SQL
task that involves multiple tables, SQL clauses and
nested queries. Further, we use separate databases
for training and testing, aiming to develop models
that generalize to new databases.

Dataset. We use Spider (Yu et al., 2018b) as
the main dataset, which contains 10,181 ques-
tions, 5,693 unique complex SQL queries, and 200
databases with multiple tables.

Task and Challenges.

• The dataset contains a large number of complex
SQL labels, which involve more tables, SQL
clauses, and nested queries than prior datasets
such as WikiSQL. Existing models developed
for the WikiSQL task cannot handle those com-
plex SQL queries in the Spider dataset.

• The dataset contains 200 databases (⇠138 do-
mains), and different databases are used for
training and testing. Unlike most previous se-
mantic parsing tasks (e.g., ATIS), this task re-
quires models to generalize to new, unseen
databases.

In sum, we train and test models on different com-
plex SQL queries from different databases in this
task. This aims to ensure that models can make
the correct prediction only when they truly under-
stand the meaning of the questions under the given
database, rather than by mere memorization.
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Figure 2: Our modules and SQL grammar used in de-
coding process. A round symbol represents a SQL to-
kens, a table column, etc. A square symbol indicates a
module that predicts the next SQL token from its cor-
responding token instances with the same color.

4 Methodology

Similar to (Rabinovich et al., 2017), our model
structures the decoder as a collection of recursive
modules. However, as we discussed in the re-
lated work section, we make use of a SQL specific
grammar to guide the decoding process, which al-
lows us to take advantage of SQL queries’ well-
defined structure. 1

4.1 Module Overview
Our model decomposes the SQL decoding process
into 9 modules to handle the prediction of differ-
ent SQL components such as keywords, operators,
and columns. We provide the overview in this sec-
tion and more details in later sections.

Figure 2 illustrates our modules and SQL gram-
mar used in decoding process. A round symbol
represents a SQL token, such as SELECT, WHERE,
a table column, etc. A square symbol indicates
a module that predicts the next SQL token from
its corresponding token instances with the same
color. Specifically, we have the following mod-
ules.

• IUEN Module, predicting INTERCEPT,
1Please check out our website for the latest updates

on the model at https://yale-lily.github.io/
seq2sql/spider
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UNION, EXCEPT, and NONE, which deter-
mines if we need to call itself again to gen-
erate nested queries.

• KW Module, predicting keywords from
WHERE, GROUP BY, and ORDER BY. All
queries in our dataset have SELECT.

• COL Module, predicting table columns.

• OP Module, for =, >, <, >=, <=, ! =,
LIKE, NOT IN, IN, BETWEEN.

• AGG Module, predicting aggregators from
MAX, MIN, SUM, COUNT, AVG, and NONE.

• Root/Terminal Module, predicting the ROOT
of a new subquery or terminal value. It also
enables our model to generate nested queries.

• AND/OR Module, predicting the presence of
AND or OR operator between two conditions.

• DESC/ASC/LIMIT Module, predicting the
keywords associated with ORDER BY. It is
invoked only when ORDER BY is predicted
before.

• HAVING Module, predicting the presence of
HAVING for GROUP BY clause. It is invoked
only when GROUP BY is predicted earlier.

4.2 SQL Grammar
In order to structure our decoder to generate com-
plex queries, we consider a SQL grammar. It
determines which module to be invoked at each
recursive decoding step. Figure 2 illustrates our
SQL grammar. During decoding process, given
the current SQL token and the SQL history (the
tokens we have gone over to reach the current to-
ken), we determine which module to invoke, and
predict the next SQL token to generate.

To invoke some modules such as HAVING and
OP during decoding, we not only check the type
of current token instance but also see whether
the type of the previously decoded SQL token
is GROUP for HAVING module, and WHERE or
HAVING for OP module.

In the grammar, IUEN and Root/Terminal mod-
ules are able to generate ROOT, which can activate
IUEN module again. In this way, our model can
recursively generate nested subqueries, and can
also predict two or more subqueries in queries that
have EXCEPT, INTERSECT, and UNION.

4.3 Input Encoder
Our inputs of each module consist of three types of
information: question, table schema, and current

SQL decoding history path. We encode a question
sentence by a bi-directional LSTM, BiLSTMQ.
We encode table schema and history path in the
manners described below.

4.3.1 Table-Aware Column Representation
In order to generalize to new databases in testing,
it is important to make our model learn to obtain
necessary information from a database schema.
While SQLNet (Xu et al., 2017) only needed
the column names as WikiSQL dataset only con-
tained one table per question-SQL pair, Spider’s
databases contain multiple tables. To address this
setting, we propose to use both table and column
names to construct column embeddings.

Specifically, given a database, we first obtain
embedding for each table by taking the average
embedding of the words constituting the table
name (e.g., for table name student id, we av-
erage the word embeddings for student and
id). Next, for each column, we obtain the ini-
tial column name embedding in the same man-
ner, and then concatenate the corresponding ta-
ble embedding, and the type information of the
column (string, or number, primary/foreign key)
in a way similar to (Yu et al., 2018a) to pro-
duce a column embedding. On top, we apply an-
other level of BiLSTM (BiLSTMCOL) that con-
nects all columns in the database, to obtain high-
level column embeddings. This way, our encoding
scheme can effectively capture both the global (ta-
ble names) and local (column names and types)
information in the database schema to understand
the question in the context of the given database.

Similarly to (Yu et al., 2018a), while the the
order of column names or table names does not
matter in practice, the use of BiLSTM performed
better than the direct use of input column embed-
dings.

4.3.2 SQL Decoding History
In addition to question and column information,
we also pass the SQL query’s current decoding
history as an input to each module. This enables us
to use the information of previous decoding states
to predict the next SQL token. For example, in
Figure 1, the COL module would be more likely
to predict salary in the subquery by consider-
ing the path history which contains salary for
HAVING, and SELECT in the main query.

In contract, each module in SQLNet does
not consider the previous decoded SQL history.
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Hence, if directly applied to our recursive SQL de-
coding steps, each module would just predict the
same output every time it is invoked. By passing
the SQL history, each module is able to predict
a different output according to the history every
time it is called during the recursive SQL genera-
tion process. Also, the SQL history can improve
the performance of each module on long and com-
plex queries because the history helps the model
capture the relations between clauses.

Predicted SQL history is used during test decod-
ing. For training, we first traverse each node in the
the gold query tree in pre-order to generate gold
SQL path history for each training example used
in different modules.

4.3.3 Attention for Input Encoding
For each module, like SQLNet, we apply the at-
tention mechanism to encode question representa-
tion. We also employs this technique on SQL path
history encoding. The specific formulas used are
described in the next section.

4.4 Module Details
Similarly to SQLNet (Xu et al., 2017), we em-
ploy a sketch-based approach for each module.
We apply a seq2set prediction framework intro-
duced by (Xu et al., 2017), to avoid the order is-
sue that happens in seq2seq based models for SQL
generation. For example, in Figure 1, SELECT
salary, dept name is the same as SELECT
dept name, salary. The traditional seq2seq
decoder generates each of them one by one in or-
der; hence the model could get penalized even if
the prediction and gold label are the same as sets.
To avoid this problem, SQLNet predicts them to-
gether in one step so that their order does not affect
the model’s training process. For instance, in Fig-
ure 1, our model invokes the COL module to pre-
dict salary and dept name and push to stack
at the same time. However, SQLNet trains each
modules independently, so no information passes
through each component.

We first describe how to compute the condi-
tional embedding H1/2 of an embedding H1 given
another embedding H2:

H1/2 = softmax(H1WH>
2 )H1.

Here W is a trainable parameter. Moreover, we
get a probability distribution from a given score
matrix U by

P(U) = softmax (Vtanh(U)) ,

where V is a trainable parameter.
We denote the hidden states of LSTM on ques-

tion embeddings, path history, and columns em-
beddings as HQ, HHS, and HCOL respectively. In
addition, we denote the hidden states of LSTM
on multiple keywords embeddings and keywords
embeddings as HMKW and HKW respectively. Fi-
nally, we use W to denote trainable parameters
that are not shared between modules. The output
of each module is computed as follows:

IUEN Module In the IUEN module, since
only one of the multiple keywords from
{INTERCEPT,UNION,EXCEPT,NONE} will be
used, we compute the probabilities by

PIUEN = P
⇣
W1H>

Q/MKW + W2H>
HS/MKW + W3H>

MKW

⌘

KW Module In the KW module, we first
predict the number of keywords in the SQL
query and then predict the keywords from
{SELECT,WHERE,GROUP BY,ORDER BY}.

P num
KW = P

⇣
Wnum

1 Hnum
Q/KW

> + Wnum
2 Hnum

HS/KW
>
⌘

P val
KW = P

⇣
Wval

1 Hval
Q/KW

>
+ Wval

2 Hval
HS/KW

>
+ Wval

3 HKW
>
⌘

COL Module Similarly, in the COL module, we
first predict the number of columns in the SQL
query and then predict which ones to use.

P num
COL = P

⇣
Wnum

1 Hnum
Q/COL

> + Wnum
2 Hnum

HS/COL
>
⌘

P val
COL = P

⇣
Wval

1 Hval
Q/COL

>
+ Wval

2 Hval
HS/COL

>
+ Wval

3 HCOL
>
⌘

OP Module In the OP module, for each pre-
dicted column from the COL module that is in
the WHERE clause, we first predict the num-
ber of operators on it then predict which op-
erators to use from {=, >, <, >=, <=, !=
, LIKE, NOTIN, IN, BETWEEN}. We use HCS
to denote the embedding of one of the predicted
columns from the COL module.

P num
OP = P

⇣
Wnum

1 Hnum
Q/CS

> + Wnum
2 Hnum

HS/CS
> + Wnum

3 HCS
>
⌘

P val
OP = P

⇣
Wval

1 Hval
Q/CS

>
+ Wval

2 Hval
HS/CS

>
+ Wval

3 HCS
>
⌘

AGG Module In the AGG module, for each pre-
dicted column from the COL module that is in the
SELECT clause, we first predict the number of ag-
gregators on it then predict which aggregators to
use from {MAX,MIN,SUM,COUNT,AVG,NONE}

P num
AGG = P

⇣
Wnum

1 Hnum
Q/CS

> + Wnum
2 Hnum

HS/CS
> + Wnum

3 HCS
>
⌘

P val
AGG = P

⇣
Wval

1 Hval
Q/CS

>
+ Wval

2 Hval
HS/CS

>
+ Wval

3 HCS
>
⌘

Root/Terminal Module To predict nested sub-
queries, we add a module to predict if there is a
new “ROOT” after an operator, which allows the
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model to decode queries recursively. For each pre-
dicted column from the COL module that is in
the WHERE clause, we first call OP module, and
then predict whether the next decoding step is a
“ROOT” node or a value terminal node by

PRT = P
⇣
W1H>

Q/CS + W2H>
HS/CS + W3H>

CS

⌘

AND/OR Module For each condition column
predicted from the COL module with number big-
ger than 1, we predict from {AND,OR} by

PAO = P
⇣
W1H

>
Q + W2H

>
HS

⌘

DESC/ASC/LIMIT Module In the DAL mod-
ule, for each predicted column from the COL mod-
ule that is in the ORDER BY clause, we predict
from {DESC,ASC, DESC LIMIT,ASC LIMIT} by

PDAL = P
⇣
W1H>

Q/CS + W2H>
HS/CS + W3H>

CS

⌘

HAVING Module In the HAVING module, for
each predicted column from the COL module that
is in the GROUP BY clause, we predict whether it
is in the HAVING clause by

PHAVING = P
⇣
W1H>

Q/CS + W2H>
HS/CS + W3H>

CS

⌘

4.5 Recursive SQL Generation
The SQL generation process is a process of ac-
tivating different modules recursively. As illus-
trated in Figure 2, we employ a stack to organize
our decoding process. At each decoding step, we
pop one SQL token instance from the stack, and
invoke a module based on the grammar to predict
the next token instance, and then push the pre-
dicted instance into the stack. The decoding pro-
cess continues until the stack is empty.

More specifically, we initialize a stack with only
ROOT at the first decoding step. At the next step,
the stack pops ROOT. As illustrated in Figure 2,
ROOT actives the IUEN module to predict if there
is EXCEPT, INTERSECT or UNION. If so, there
are two subqueries to be generated in the next
step. If the model predicts NONE instead, it will
be pushed into the stack. The stack pops NONE at
next step. For example, in Figure 2, the current
popped token is SELECT, which is a instance of
keyword (KW) type. It calls the COL module to
predict a column name, which will be pushed to
the stack.

4.6 Data Augmentation
Even though Spider already has a significantly
larger number of complex queries than existing

datasets, the number of training examples for
some complex SQL components is still limited. A
widely used way is to conduct data augmentation
to generate more training examples automatically.
Many studies (Berant and Liang, 2014; Iyer et al.,
2017; Su and Yan, 2017) have shown that data
augmentation can bring significant improvement
in performance. In prior work, data augmentation
was typically performed within a single domain
dataset. We propose a cross-domain data augmen-
tation method to expand our training data for com-
plex queries. Cross-domain data augmentation is
more difficult than the in-domain setting because
question-program pairs tend to have domain spe-
cific words and phrases. To tackle this issue, we
first create a list of universal patterns for question-
SQL pairs, based on the human labeled pairs from
all the different training databases in Spider. To do
so, we use a script to remove (and later fill in) all
the table/column names and value tokens in the la-
beled question-SQL pairs, and then group together
the same SQL query patterns. Consequently, each
SQL query pattern has a list of about 5-20 corre-
sponding questions. In our task, we want to gen-
erate more complex training examples. Thus, we
filter out simple SQL query patterns by measur-
ing the length and the number of SQL keywords
used. We obtain about 280 different complex SQL
query patterns from the 4,000+ SQL labels in the
train set of our corpus. We then select the 50 most
frequent complex SQL patterns that contain multi-
ple SQL components and nested subqueries. After
this, we manually edit the selected SQL patterns
and their corresponding list of questions to make
sure that the table/column/value slots in the ques-
tions have one-to-one correspondence to the slots
in the corresponding SQL query. For each slot, we
also add column type or table information. Thus,
for example, columns with string type do not ap-
pear in the column slot with integer type during
data augmentation (i.e., slot refilling) process. In
this way, our question-SQL patterns are generated
based on existing human labeled examples, which
ensures that the generated training examples are
natural.

Once we have the one-to-one slot mapping be-
tween questions and SQL queries, we apply a
script that takes a new database schema with type
information and generates new question-SQL ex-
amples by filling empty slots. Specifically, for
each database in WikiSQL, we first randomly sam-
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ple 10 question-SQL patterns. We randomly sam-
ple columns from the database schema based on
its type: for example, if the slot type in the pat-
tern is “number”, and then we only sample from
columns with “real” type in the current database.
We then refill the slots in both the question and
SQL query with the selected column names. Sim-
ilarly, we also refill table/value slots.

By this data augmentation method, we finally
obtain about 98,000 question and SQL pairs using
about 18,000 WikiSQL databases with one single
table. Additionally, we also use the original Wik-
iSQL training dataset in experiments.

5 Experiments

Dataset In our experiments, we use Spider (Yu
et al., 2018b), the new large-scale human an-
notated text-to-SQL dataset with complex SQL
queries and cross-domain databases. In addition to
their originally annotated data, their training split
includes 752 queries and 1659 questions from six
existing datasets: Restaurants (Tang and Mooney,
2001; Popescu et al., 2003b), GeoQuery (Zelle and
Mooney, 1996), Scholar (Iyer et al., 2017), Aca-
demic (Li and Jagadish, 2014), Yelp and IMDB
(Yaghmazadeh et al., 2017). In total, this dataset
consists of 11,840 questions, 6,445 unique com-
plex SQL queries, and 206 databases with multi-
ple tables. We follow (Yu et al., 2018b), and use
130, 36, 40 databases for train, development, test,
respectively (randomly split).

5.1 Evaluation

We use evaluation metrics including SQL Compo-
nent matching and Exact matching. To compute
the component matching scores, we first decom-
pose predicted queries on SQL clauses including
SELECT, WHERE, GROUP BY, ORDER BY, and
KEYWORDS separately. After that, we evaluate
each predicted clause and the ground truth as bags
of several sub-components, and check whether or
not these two sets of components match exactly.
F1 scores are reported for each of the above 5
clauses. Exact matching score is 1 if the model
predicts all clauses correctly for a given example.

To better understand model performance on
different queries, (Yu et al., 2018b) divide SQL
queries into 4 levels: easy, medium, hard, extra
hard. The definition of difficulty is based on the
number of SQL components, selections, and con-
ditions. Queries that contain more SQL keywords

are considered harder.

5.2 Experimental Settings
Our model is implemented in PyTorch (Paszke
et al., 2017). We build each module based on the
TypeSQL (Yu et al., 2018a) implementation. We
use pre-trained GloVe (Pennington et al., 2014)
embeddings for all question, SQL history, and
schema tokens. All word embeddings are fixed.
For each experiment, the dimension and dropout
rate of all hidden layers is set to 120 and 0.3 re-
spectively. We use Adam (Kingma and Ba, 2015)
with the default hyperparameters for optimization,
with a batch size of 64. The same loss functions in
(Xu et al., 2017) are used.

• Training data: Spider (plus examples from
6 existing datasets) + WikiSQL + data aug-
mentation

• Model architecture: history path + table-
aware column encoding

We will conduct ablation studies to analyze the ef-
fect of each of the proposed techniques.

5.3 Baseline Models
To demonstrate the efficacy of our model in ad-
dressing the complex, cross-domain text-to-SQL
task, we compare the performance of our model
with several previous state-of-the-art models in the
text-to-SQL task. As the dataset and task defini-
tion used in this work are fundamentally different
from prior work using datasets such as GeoQuery,
WikiSQL, we adapted these models to our task in
the same way as (Yu et al., 2018b). Specifically:

Seq2Seq with Attention or Copying In order to
make the models aware of the table schema infor-
mation, Yu et al. (2018b) pass the models with a
vocabulary that contains SQL keywords and col-
umn names of the given database.

(Iyer et al., 2017) Iyer et al. (2017) apply an
attention based seq2seq model similar to (Luong
et al., 2015) to text-to-SQL tasks. Yu et al. (2018b)
adapt their model without user interaction to the
task.

SQLNet & TypeSQL Xu et al. (2017) intro-
duce SQLNet, which employs a column attention
mechanism and a sketch-based method to gener-
ates SQL queries as a slot-filling task. Yu et al.
(2018a) improves SQLNet by utilizing word types
extracted from a knowledge graph or table content
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Method Easy Medium Hard Extra Hard All
Seq2Seq 17.9% 2.7% 1.3% 0.6% 5.4%
Seq2Seq+Attention (Dong and Lapata, 2016) 17.9% 2.9% 1.8% 1.3% 5.7%
Seq2Seq+Copying 15.1% 3.4% 1.0% 1.3% 5.2%
Iyer et al. (2017) 7.9% 2.1% 1.3% 1.1% 3.1%
SQLNet (Xu et al., 2017) 23.7% 5.9% 2.3% 0.3% 8.3%
TypeSQL (Yu et al., 2018a) 29.6% 6.1% 2.3% 0.3% 9.7%
SyntaxSQLNet 43.1% 19.2% 17.8% 4.8% 22.0%
-augment 36.9% 16.7% 9.5% 1.6% 17.6%
-wikiSQL -augment 34.1% 11.2% 9.0% 2.2% 14.5%
-table -wikiSQL -augment 30.1% 7.3% 4.5% 1.9% 10.9%
-history -table -wikiSQL -augment 18.8% 4.5% 0.0% 0.0% 6.1%

Table 1: Exact match accuracy on SQL queries with different hardness levels.

Method SELECT WHERE GROUP BY ORDER BY KEYWORDS
Seq2Seq 13.7% 3.7% 3.2% 4.9% 8.9%
Seq2Seq+Attention 14.0% 5.0% 3.2% 6.1% 9.4%
Seq2Seq+Copying 12.0% 2.7% 5.2% 6.9% 6.7%
Iyer et al. (2017) 6.3% 1.9% 3.0% 3.6% 3.5%
SQLNet 24.0% 18.0% 11.8% 47.1% 61.9%
TypeSQL 36.2% 14.7% 6.4% 49.5% 59.4%
SyntaxSQLNet 48.2% 31.6% 28.9% 58.4% 68.9%
-augment 45.3% 29.2% 22.0% 47.3% 67.5%
-wikiSQL -augment 39.0% 20.6% 17.1% 50.2% 65.8%
-table -wikiSQL -augment 29.0% 15.0% 13.1% 45.5% 67.0%
-history -table -wikiSQL -augment 18.6% 10.5% 4.1% 30.0% 49.1%

Table 2: F1 scores of Component Matching on all SQL queries.

to help the model better understand entities and
numbers in natural language inputs. As they are
originally designed for WikiSQL, to conduct ex-
periments on Spider, Yu et al. (2018b) extend their
SELECT and WHERE modules to other SQL com-
ponents.

6 Results and Discussion

Table 1 presents our test results on the Spider
dataset with database splitting. Our model with
full history and data augmentation achieves 22.0%
exact matching on all SQL queries, which is a
12.3% absolute increase compared to the previous
best model, TypeSQL.

6.1 Comparison with Baselines

Even though our individual modules are similar to
SQLNet and TypeSQL, our syntax-aware decoder
allows the modules to incorporate the SQL decod-
ing history, which helps to achieve a significant
gain in exact matching for queries of all hardness
levels. Specifically, even without our data aug-
mentation technique, SyntaxSQLNet outperforms
the previous best, TypeSQL, by 5%. This result

suggests that the syntax and history information is
beneficial for this complex text-to-SQL task.

Moreover, the tree-based decoder enables Syn-
taxSQLNet to systematically generate nested
queries, boosting the performance for Hard/Extra
Hard. As Table 1 shows, SyntaxSQLNet achieves
particularly high scores 17.8% and 4.8% for Hard
and Extra Hard, which contain nested queries. The
Seq2Seq models suffer from generating ungram-
matical queries, yielding very low exact matching
accuracy on Hard and Extra Hard SQL queries. In
contrast, our model generates valid SQL queries
by enforcing the syntax.

For the detailed component matching results in
Table 2, our model consistently outperforms other
previous work by significant margins. Specifi-
cally, our model improve F1 score for most of the
SQL components by more than 10%.

6.2 Ablation Study
In order to understand the techniques that are re-
sponsible for the performance of our model, we
perform an ablation study where we remove one of
the proposed techniques from our model at a time.
The exact match scores are shown in the same ta-
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bles as other baselines.

6.2.1 Data Augmentation

Our model’s exact matching performance on all
queries drops 4.4% by excluding data augmen-
tation technique. This drop is particularly large
for GROUP BY and ORDER BY components (Ta-
ble 2), for which the original Spider dataset has
a relatively small number of training examples.
Thus, our cross-domain data augmentation tech-
nique significantly benefits the model performance
by extending to a much larger training dataset.

6.2.2 SQL Decoding History

In order to gain more insight into how our SQL
decoding history addresses complex SQL, we re-
port our model’s performance without SQL path
history. As shown in the Table 1, the model’s per-
formance drops about 4.8% on exacting matching
metric without the SQL history input. More im-
portantly, its performance on hard and extra hard
SQL queries decreases to 0%. This indicates that
our model is able to predict nested queries thanks
to the SQL decoding history.

6.2.3 Column Encoding

To see how our table-aware column encoding af-
fects performance of our model, we also report
the model’s result without using table information
for our column encoding. After excluding the ta-
ble embedding from column embeddings, the test
performance goes down by about 4%. This drop
is especially large for Medium/Hard SQL queries
and SELECT component, where the correct col-
umn prediction is a key. This result shows that the
table-aware encoding is very important to predict
the correct columns in unseen, complex dasebases
(with many foreign keys).

7 Conclusion

In this paper, we presented a syntax tree-based
model to address complex and cross-domain text-
to-SQL task. Utilizing a SQL specific syntax de-
coder, as well as SQL path history and table-aware
column attention encoders, our model outperforms
previous work by a significant margin. The ab-
lation study demonstrates that our proposed tech-
niques are able to predict nested, complex SQL
queries correctly even for unseen databases.
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Abstract

We introduce the task of cross-lingual decom-
positional semantic parsing: mapping content
provided in a source language into a decom-
positional semantic analysis based on a tar-
get language. We present: (1) a form of de-
compositional semantic analysis designed to
allow systems to target varying levels of struc-
tural complexity (shallow to deep analysis),
(2) an evaluation metric to measure the simi-
larity between system output and reference se-
mantic analysis, (3) an end-to-end model with
a novel annotating mechanism that supports
intra-sentential coreference, and (4) an evalu-
ation dataset on which our model outperforms
strong baselines by at least 1.75 F1 score.

1 Introduction

We are concerned here with representing the se-
mantics of multiple natural languages in a sin-
gle semantic analysis. Renewed interest in se-
mantic analysis has led to a surge of proposed
new frameworks, e.g., GMB (Basile et al., 2012),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013), and UDS (White et al.,
2016), as well as further calls to attend to existing
efforts, e.g., Episodic Logic (EL) (Schubert and
Hwang, 2000; Schubert, 2000; Hwang and Schu-
bert, 1994; Schubert, 2014), or Discourse Repre-
sentation Theory (Kamp, 1981; Heim, 1988).

Many of these efforts are limited to the analysis
of English, but with a number of exceptions, e.g.,
recent efforts by Bos et al. (2017), ongoing efforts
in Minimal Recursion Semantics (MRS) (Copes-
take et al., 1995), multilingual FrameNet anno-
tation and parsing (Fung and Chen, 2004; Padó
and Lapata, 2005), among others. For many lan-
guages, semantic analysis cannot be performed di-
rectly, owing to a lack of training data. While
there is active work in the community focused on
rapid construction of resources for low resource

languages (Strassel and Tracey, 2016), it remains
an expensive and perhaps infeasible solution to as-
sume in-language annotated resources for devel-
oping semantic parsing technologies. In contrast,
bitext is easier to get: it occurs often without re-
searcher involvement,1 and even when not avail-
able, it may be easier to find bilingual speakers
that can translate a text, than it is to find experts
that will create in-language semantic annotations.
In addition, we are simply further along in being
able to automatically understand English than we
are other languages, resulting from the bias in in-
vestment in English-rooted resources.

Therefore, we propose the task of cross-lingual
decompositional semantic parsing, which aims at
transducing a sentence in the source language
(e.g., Chinese sentence in Fig. 1b) into a de-
compositional semantic analysis derived based on
English, via bitext. The efforts of decomposi-
tional semantics (White et al., 2016) focus on ap-
proaches to annotating meaning based on fine-
grained scalar judgments which reflect the ambi-
guity of language, and the underspecification of
meaning in context. Our contributions include:
(1) A form of decompositional semantic analysis
allowing systems to target varying levels of struc-
tural complexity.
(2) An evaluation metric to measure the similarity
between system and reference semantic analysis.
(3) An encoder-decoder model for cross-lingual
decompositional semantic parsing. With a coref-
erence annotating mechanism, the model solves
intra-sentential coreference explicitly.
(4) The first evaluation dataset for cross-lingual
decompositional semantic parsing.2

Experiments demonstrate our model achieves
38.78% F1, outperforming strong baselines.

1For example, owing to a government decree.
2http://decomp.io
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(a) UDS graph representation.

“30 people were reported dead in one block of flats which was hit by a storm surge.”
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(b) Chinese sentence with Leipzig gloss.

Figure 1: Input and output of cross-lingual decompositional semantic parsing.

2 Semantic Analysis

The goal of cross-lingual decompositional seman-
tic parsing is to provide a semantic analysis which
can be used for various types of deep and shal-
low processing on the target language side. Many
forms of semantic analysis are potentially suitable
for this goal, e.g., AMR (Banarescu et al., 2013),
UCCA (Abend and Rappoport, 2013), and Uni-
versal Decompositional Semantics (White et al.,
2016). Here we choose Universal Decomposi-
tional Semantics (UDS), but note that our ap-
proach is applicable to other potential graph se-
mantic formalisms.

The reasons for choosing UDS are three-fold:
(1) Compatibility: UDS relates to Robust Min-
imal Recursion Semantics (RMRS) (Copestake,
2007), aiming for a maximal degree of semantic
compatibility. With UDS, shallow analysis, such
as predicate-argument extraction (Zhang et al.,
2017a), can be regarded as producing a seman-
tics which is underspecified and reusable with re-
spect to deeper analysis, such as lexical seman-
tics and inference (White et al., 2016). (2) Ro-
bustness and Speed: There exists a robust frame-
work, PredPatt (White et al., 2016), for auto-
matically creating UDS from raw sentences and
their Universal Dependencies. PredPatt has been

shown to be fast and accurate enough to process
large volumes of text (Zhang et al., 2017c). (3)
Cross-lingual validity: PredPatt is based purely
on non-lexical and linguistically well-founded pat-
terns from Universal Dependencies, which is de-
signed to be cross-linguistically consistent.

There are three forms to represent UDS:
flat, graph, or linearized representations. They
are created for different purposes, and are
inter-convertible. Flat representation relates to
RMRS (Copestake, 2007), and we defer its de-
scription to Appendix A.

2.1 Graph Representation
The graph representation as shown in Fig. 1a is
developed to improve ease of readability, parser
evaluation, and integration with lexical semantics.
The structure of the graph representation is a tuple
G = hV, Ei: a set of variables V (e.g., p1 and x),
and a set of edges E. There are 3 types of edges:
(1) Argument edges describe argument relations
between variable pairs. Deeper analysis such as
Semantic Proto-Role (SPR) properties (Reisinger
et al., 2015) can be attached to argument edges.
SPR analysis can be considered as a scalar re-
gression problem (White et al., 2016), where each
predicate-argument pair is annotated with scalar
values for different SPR properties. (2) Instance
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 in Biloxih) (30 peopleh) were reportedh (      deadh (in one blockh of flats) ) ] [      was hith (by a storm surgeh) ]

COREF COREF

Figure 2: UDS linearized representation. Deeper analysis such as SPR and factuality is not shown.

edges describe instances of variables in the target
language. The subscript “h” indicates the syntac-
tic head of an instance. (3) Attribute edges are
unary, which describe various attributes of vari-
ables, such as event factuality (Saurı́ and Puste-
jovsky, 2009) and word senses (Miller, 1995). The
graph representation can be viewed as an under-
specified version of Dependency Minimal Recur-
sion Semantics (DMRS) (Copestake, 2009) due to
the underspecification of scope. Different from
DMRS, the graph representation is linked cleanly
to Universal Dependency syntax via PredPatt.

2.2 Linearized Representation
The linearized representation aims to facilitate
learning of semantic parsers. Recently parsers
based on RNN that make use of linearized rep-
resentation have achieved state-of-the-art perfor-
mance in constituency parsing (Choe and Char-
niak, 2016), logical form prediction (Dong and La-
pata, 2016; Jia and Liang, 2016), and AMR pars-
ing (Barzdins and Gosko, 2016; Peng et al., 2017).
There was also work on predicting linearized
semantic representations before RNN based ap-
proaches (Wong and Mooney, 2006).

Fig. 2 shows an example of UDS linearized
representation. Intra-sentential coreference occurs
when an instance refers to an antecedent, where
we replace the instance with a special symbol “•”
and add a COREF link between “•” and its an-
tecedent. The linearized representation can be
viewed as a sequence of tokens with a list of
COREF links. Brackets, parentheses, and the spe-
cial symbol “•” are all considered as tokens in this
representation. The COREF links are drawn as a vi-
sual convenience, and the actual linearized repre-
sentation achieves this via co-indexing, and is thus
fully linear. We describe the procedure of convert-
ing graph representation to linearized representa-
tion in Appendix B.

3 Related Work

Our work synthesizes two strands of research, se-
mantic analysis and cross-lingual learning.

The semantic analysis targeted in this work is
akin to that of Hobbs (2003), but our eventual goal

is to transduce texts from arbitrary human lan-
guages into a “...broad, language-like, inference-
enabling [semantic representation] in the spirit
of Montague...” (Schubert, 2015). Unlike efforts
such as by Schubert and colleagues that directly
target such an analysis, we are pursuing a strat-
egy that incrementally increases the complexity of
the target analysis in accordance with our ability to
fashion models capable of producing it.3 Embrac-
ing underspecification in the name of tractability
is exemplified by MRS (Copestake et al., 2005;
Copestake, 2009), the so-called slacker semantics,
and we draw inspiration from that work. Anal-
yses such as AMR (Banarescu et al., 2013) also
make use of underspecification, but usually this is
only implicit: certain aspects of meaning are sim-
ply not annotated. Unlike AMR, but akin to de-
cisions made in PropBank (Palmer et al., 2005)
(which forms the majority of the AMR ontologi-
cal backbone), we target an analysis with a close
correspondence to natural language syntax. Un-
like interlingua (Mitamura et al., 1991; Dorr and
Habash, 2002) that maps the source language into
an intermediate analysis, and then maps it into the
target language, we are not concerned with gen-
erating text from the semantic analysis. Substan-
tial prior work on semantic analyses exists, includ-
ing HPSG-based analyses (Copestake et al., 2005),
CCG-based analyses (Steedman, 2000; Baldridge
and Kruijff, 2002; Bos et al., 2004), and Universal
Dependencies based analyses (White et al., 2016;
Reddy et al., 2017). See (Schubert, 2015; Abend
and Rappoport, 2017) for further discussion.

Cross-lingual learning has previously been ap-
plied to various NLP tasks. Yarowsky et al.
(2001); Padó and Lapata (2009); Evang and
Bos (2016); Faruqui and Kumar (2015) focused
on projecting existing annotations on source-
language text to the target language. Zeman and
Resnik (2008); Ganchev et al. (2009); McDon-
ald et al. (2011); Naseem et al. (2012); Wang and
Manning (2014) enabled model transfer by shar-

3E.g., in Fig. 1a we recognize “by a storm surge” as an
initial structural unit, with multiple potential analysis, which
may be further refined based on the capabilities of a given
cross-lingual semantic parser.
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ing features or model parameters for different lan-
guages. Sudo et al. (2004); Zhang et al. (2017a,b);
Mei et al. (2018) worked on cross-lingual informa-
tion extraction and demonstrated the advantages of
end-to-end learning. In this work, we explore end-
to-end cross-lingual learning.

4 Evaluation Metric S

UDS can be represented in three forms. Evalu-
ating such forms is crucial to the development of
parsing algorithms. However, there is no method
directly available for evaluation. Related meth-
ods come from semantic parsing, whose results
are mainly evaluated in three ways: (1) task cor-
rectness (Tang and Mooney, 2001), which evalu-
ates on a specific NLP task that uses the parsing
results; (2) whole-parse correctness (Zettlemoyer
and Collins, 2005), which counts the number of
parsing results that are completely correct; and (3)
Smatch (Cai and Knight, 2013), which computes
the number of exactly matched edges between two
semantic structures.

Nevertheless, our task needs an evaluation met-
ric that can be used regardless of specific tasks
or domains, and is able to differentiate two UDS
graph representations with similar instances, SPR
analysis, or attributes. We design an evaluation
metric S that computes the similarity between two
graph representations.

As described in Section 2.1, the graph repre-
sentation is a tuple G = (V, E). For two graphs
G1 = (V1, E1) and G2 = (V2, E2), we define the
score S as the maximum soft edge matching score
between G1 and G2:

S(G1, G2) = max
m2M

⇥ X

(e
(i)
1 ,e

(j)
2 )2P

fT (e(i)
1 , e(j)

2 )
⇤

where m is a mapping from variables in V1 to vari-
ables in V2. Given a mapping m, P is a set of edge
pairs: for each pair (e(i)

1 , e(j)
2 ), variables(s) in e(i)

1

are mapped to variables(s) in e(j)
2 via m. fT com-

putes the matching score for a pair of edges be-
longing to type T 2 {ARG, INST, ATTR}. The
matching score is normalized to [0, 1].

The precision and recall are computed by
S(G1, G2)/|E1|, and S(G1, G2)/|E2| respectively.

In this work, fARG = fATTR = e�MAE, where
MAE computes the mean absolute error between
two set of scores s1 and s2:

Pn
i |s(i)

1 � s(i)
2 |/n.

fINST = BLEU (Papineni et al., 2002) which com-
pute the BLEU score of an instance pair.4

Finding an optimal variable mapping m that
yields the highest S is NP-complete. We instead
adopt a strategy used in Smatch (Cai and Knight,
2013) that does a hill-climbing search with smart
initialization plus 4 random restarts, and has been
shown to give the best trade-off between accuracy
and speed. Smatch for evaluating semantic struc-
tures can be considered as a special case of S,
where fT = �, the Kronecker delta.

5 Model

We formulate the task of cross-lingual decompo-
sitional semantic parsing as a joint problem of
sequence-to-sequence learning, coreference res-
olution and decompositional semantic analysis.
The input is a sentence X in the source language,
e.g., the Chinese sentence in Fig. 1b. The out-
put is a UDS linearized representation (Y, C, D)
based on the target language: Y is a sequence of
tokens; C is a set of COREF links; and D is a set of
scores for decompositional analysis, such as SPR
and factuality.

The goal is to learn a conditional probability
distribution P (Y, C, D|X) whose most likely con-
figuration, given the input sentence, outputs the
true UDS linearized representation with decom-
positional analysis. While the standard encoder-
decoder framework shows the state-of-the-art per-
formance in sequence-to-sequence learning (Choe
and Charniak, 2016; Jia and Liang, 2016; Barzdins
and Gosko, 2016), it cannot directly solve intra-
sentential conference and decompositional seman-
tic analyses in our task. To achieve this goal,
we propose an encoder-decoder architecture in-
corporated with a coreference annotating mech-
anism5 and decompositional analysis. As illus-
trated in Fig. 3, Encoder transforms the input se-
quence into hidden states; Decoder reads the hid-
den states, and then at each time step generates
a token and creates its COREF link; Decomposi-
tional Analysis, based on the decoder output, per-
forms SPR analysis for predicate-argument pairs,
and factuality analysis for predicates.

4Future work could consider, e.g., a modified BLEU that
considers Levenshtein distance between tokens for a more ro-
bust partial-scoring in the face of transliteration errors.

5Similar coreference mechanism has been proposed by Ji
et al. (2017).
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Figure 3: Illustration of the model architecture.

5.1 Encoder
The encoder employs a bidirectional recurrent
neural network (Schuster and Paliwal, 1997) with
LSTM units (Hochreiter and Schmidhuber, 1997).
It encodes the input X = x1, . . . , xN

6 into a se-
quence of hidden states h = h1, . . . , hN . Each
hidden state hi is a concatenation of a left-to-right
hidden state

�!
hi and a right-to-left hidden state

 �
hi ,

5.2 Decoder
Given the encoder hidden states, the decoder pre-
dicts the linearized representation (as shown in
Fig. 2) according to the conditional probability
P (Y, C | X) which is decomposed as a product
of the decoding probabilities at each time step t:

P (Y, C | X) =
MY

t=1

P (yt, ct | y<t, c<t, X) (1)

where yt is the decoded token at time step t, and
ct is the source of the COREF link for yt, i.e., the
antecedent of yt. The set of possible antecedents
of yt is A(t) = {✏, y1, . . . , yt�1}: a dummy an-
tecedent ✏ and all preceding tokens. ✏ represents a
scenario, where the token is not a special symbol
“•”, and it refers to none of the preceding tokens.

6For simplicity, we use X (and Y ) to represent both to-
kens as well as their word embeddings.

y<t and c<t are the preceding tokens and their an-
tecedents. We omit y<t and c<t from the notation
when the context is unambiguous.

The decoding probability at each time step t is
decomposed as

P (yt, ct) = P (yt)P (ct|yt) (2)

where P (yt) is the token generation probability,
and P (ct|yt) is the antecedent probability.
Token Generation: The probability distribution
of the generated token yt is defined as

P (yt) = softmax(FFNNg(st, at)) (3)

where FFNNg is a two-layer feed-forward neural
network over the decoder hidden state st and the
attention-weighted vector at. st is computed by

st = RNN(yt�1, st�1), (4)

where RNN is a recurrent neural network using
LSTM. at is computed by the attention mechanism
(Bahdanau et al., 2014; Luong et al., 2015),

at =
NX

i

↵t,ihi, (5)

↵t,i =
exp (s>

t (Wahi + ba)))PN
j=1 exp (s>

t (Wahj + ba))
, (6)

where Wa is a transform matrix and ba is a bias.
Coref Link: The probability of yt referring to the
preceding token yk, i.e., ct = yk, is defined as

P (ct = yk|yt) =
exp (SCORE(yt, yk))P

y0

k2A(t) exp (SCORE(yt, yk0))
,

(7)

SCORE(yt, yk) is a pairwise score for a COREF link
from yk to yt, defined as:

SCORE(yt, yk) = sc(yt) + sp(yk) + sa(yt, yk)
(8)

There are three factors in this pairwise score,
which is akin to Lee et al. (2017): (1) sc(yt),
whether yt should refer to a preceding instance;
(2) sp(yk), whether yk shoud be a candidate
source of such a coreference; and (3) sa(yt, yk),
whether yk is an antecedent of yt.

Fig. 4 shows the details of the scoring architec-
ture. At the core of the three factors are vector
representations �(yt) for each token yt, which is
described in detail in the following section. Given
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Figure 4: Scoring architecture in the copy mech-
anism between a preceding token yk and the cur-
rently considered token yt.

the currently considered token yt and a preceding
token yk, the scoring functions above are com-
puted via standard feed-foward neural networks:

sc(yt) =wc · FFNNc(�(yt)) (9)
sp(yk) =wp · FFNNp(�(yk)) (10)

sa(yt, yk) =wa · FFNNa
�
[�(yt), �(yk

�
,

�(yt) � �(yk)]) (11)

where · denotes dot product, � denotes element-
wise multiplication, and FFNN denotes a two-layer
feed-foward neural network over the input. The in-
put of FFNNa is a concatenation of vector represen-
tations �(yt) and �(yk), and their explicit element-
wise similarity �(yt) � �(yk).
Token representations: To accurately predict
COREF link scores as well as decompositional
analysis (which is described in the following sec-
tion), we consider three types of information in
each token representation �(yt): (1) the token it-
self yt, (2) on the decoder side, the preceding con-
text y<t, and (3) on the encoder side, the input se-
quence X = x1, . . . , xN .

The lexical information of the token itself yt

is represented by its word embedding et. The
preceding context y<t is encoded by the decoder
RNN in Equation (4). We use the decoder hidden
state st to represent the preceding context informa-
tion. The encoder-side context is represented by
an attention-weighted weight at defined in Equa-
tion (6). All the above information is concatenated
to produce the final token representation �(yt):

�(yt) = [et, st, at] (12)

5.3 Decompositional Analyses
The decompositional analyses D contains scores
for Semantic Proto-Role (SPR) properties DSPR,
and scores for event factuality DFACT.

SPR: Given a predicate-argument pair (yi, yj), we
denote the score for SPR property p as D

(yi,yj)
SPRp

.
As shown in Fig. 3, we concatenate the token rep-
resentations of predicate and argument head to-
kens �(yi) and �(yj) as the input to a SPR mod-
ule. We employ the state-of-the-art SPR module
in Rudinger et al. (2018a), defined as:

D̂
(yi,yj)
SPRp

= WSPRpReLU(Wshared[�(yi), �(yj)])
(13)

where Wshared is the weight matrix shared across
all properties. WSPRp is the weight matrix for SPR
property p. Then, the log-likelihood of the score of
SPR property p is defined as the negative L2 loss,
i.e., �|D̂(yi,yj)

SPRp
�D

(yi,yj)
SPRp

|2.
Factuality: We consider predicting event factual-
ity as a scalar regression problem (White et al.,
2016), and denote the factuality score of predicate
yk as D(yk)

FACT. As shown in Fig. 3, we take the to-
ken representation of predicate head token �(yk)
as the input to the state-of-the-art factuality mod-
ule (Rudinger et al., 2018c):

D̂(yk)
FACT = V2ReLU (V1�(yk) + b1) + b2, (14)

where V1 and V2 are weight matrices, and b1 and
b2 are biases. The log-likelihood of factuality
score is defined as negative of the Huber loss (Hu-
ber, 1964) with � = 1.

We assume conditional independence among
decompositional analysis:

P (D|X, Y, C) =
Y

(yi,yj)

Y

p

(D
(yi,yj)
SPRp

|X, Y, C)

Y

yk

P (D(yk)
FACT|X, Y, C) (15)

5.4 Learning
Given the input sentence X , the output sequence
of tokens Y , and the COREF links C, and the de-
compositional analysis D, the objective is to min-
imize the below negative log-likelihood:

L =� log P (Y, C, D|X)

=�
MX

t=1

[µ1 log P (yt) + µ2 log P (ct|yt)]�

µ3 log P (D|X, Y, C)

To increase the convergence rate, we pretrain
the model by setting the weights µ1 = 1 and
µ2 = µ3 = 0 to only optimize the token gener-
ation accuracy. After the model converges, we set
µ2 = µ3 = 1 and lower µ1 = 0.1.
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S metric BLEUINST MAESPR MAEFACT
Precision Recall F1

Pipeline 35.08 30.10 32.39 15.03 N/A N/A
Variant (a) 39.31 32.93 35.84 16.74 0.75 1.11
Variant (b) 42.76 33.20 37.38 17.71 0.74 1.14
Variant (c) 41.74 33.28 37.03 18.01 0.80 1.14
Our model 45.33 33.88 38.78 19.61 0.71 1.06

Table 1: Evaluation of results on the test set.
(In-domain test results are shown in Appendix D.)

6 Experiments

We now describe the evaluation data, baselines,
and experimental results. Hyperparameter settings
are reported in Appendix C.

6.1 Data
We choose Chinese as the source language and En-
glish as the target language. For test, we selected
270 sentences from the Universal Dependencies
(UD) English Treebank (Silveira et al., 2014) test
set, which have human-annotated SPR (White
et al., 2016) and factuality (Rudinger et al., 2018c)
analyses. We then created linearized represen-
tations for these sentences using PredPatt based
on their gold UD syntax. Meanwhile, the Chi-
nese translations of these sentences were created
by crowdworkers on Amazon Mechanical Turk.
The test dataset will be released upon publica-
tion. For training, we first collected about 1.8M
Chinese-English sentence bitexts from the GALE
project (Cohen, 2007), then tokenized Chinese
sentences with Stanford Word Segmenter (Chang
et al., 2008). We created linearized representa-
tions for English sentences using PredPatt based
on automatic UD syntax generated by SyntaxNet
Parser (Andor et al., 2016), and added SPR and
factuality annotations using the state-of-the-art
models (Rudinger et al., 2018b,c) trained on SPR
v2.x and It-happened v2.0 respectively.7 We hold
out 20K training sentences for validation and in-
domain test. Table 2 reports the dataset statistics.

6.2 Variants
We evaluate our model described in Section 5 and
three variants: (a) We replace the coreference an-
notating mechanism by randomly choosing an an-

7Both datasets are available at http://decomp.net

No. sents Source

Train 1,879,172 GALE
Validation 10,000 GALE
In-domain Test 10,000 GALE
Test 270 UD Treebank

Table 2: Statistics of the evaluation data.

tecedent from all preceding instances. (b) We pre-
process the data by replacing the special symbol
“•” with the syntactic head of its antecedent. Dur-
ing training and testing, we replace the corefer-
ence annotating mechanism with a heuristic that
solves coreference by randomly choosing an an-
tecedent among preceding instances which have
the same syntactic head. (c) We remove the
decoder-side information in the token representa-
tion �(yt) defined in Equation (12) and only keep
the encoder-side information at. We also include
a Pipeline approach where Chinese sentences are
first translated into English by a neural machine
translation system (Klein et al., 2017) and are then
annotated by a UD parser (Andor et al., 2016). The
UDS linearized representation of Pipeline are cre-
ated by PredPatt based the automatic UD parses.

6.3 Results
Table 1 reports the experimental results on the test
set. Results on the in-domain test set are simi-
lar and shown in Appendix D. In Table 1, S met-
ric (defined in Section 4) measures the similarity
between predicted and reference graph represen-
tations. Based on the optimal variable mapping
provided by the S metric, we are able to eval-
uate our model and the variants in different as-
pects: BLEUINST measures the BLEU score of
all matched instance edges; MAESPR measures the
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mean absolute error of SPR property scores of all
matched argument edges; and MAEFACT measures
the mean absolute error of factuality scores of all
matched attribute edges.

Overall, our proposed model outperforms the
variants in every aspect. Variants (a) and (b) use
simple heuristics to solve coreference, and achieve
reasonable results: they both employ sequence-to-
sequence models to predict graph representations,
which can be considered a replica of state-of-
the-art approaches for structured prediction (Choe
and Charniak, 2016; Barzdins and Gosko, 2016;
Peng et al., 2017). Compared to our model which
employs the coreference annotating mechanism,
these two variants suffer notable loss in the pre-
cision of S metric. As a result, their performance
drops on the other metrics. Variant (c) only uses
the encoder-side information for token representa-
tion, resulting in significant loss in MAESPR and
MAEFACT. In the pipeline approach, each compo-
nent is trained independently. During test, resid-
ual errors from each component are propagated
through the pipeline. As expected, it shows a sig-
nificant performance drop.

Precision Recall F1

Variant (a) 10.38 31.23 15.58
Variant (b) 88.42 50.59 64.36
Variant (c) 84.12 35.99 50.41
Our model 96.63 97.62 97.12

Table 3: Coreference evaluation (MUC) based on
forced decoding.

Coreference occurs 589 times in the test set. To
evaluate the coreference accuracy of our model,
we force the decoder to generate the reference tar-
get sequence, and only predict coreference via the
copy mechanism, or its variants. In Table 3, we
report the precision, recall, and F1 for the stan-
dard MUC using the official coreference scorer
of the CoNLL-2011/2012 shared tasks (Pradhan
et al., 2014). Since coreference in our setup oc-
curs at the sentence level, our model achieves high
performance. Variant (a) randomly choosing an-
tecedents performs poorly, whereas variant (b),
which solves coreference only based on syntactic
heads, achieves a relatively high score. Variant (c)
demonstrates that only using encoder-side infor-
mation in the coreference annotating mechanism
leads a significant performance drop.

Our
Model

Monolingual
SOTA

awareness 0.852 0.879
change location 0.491 0.492
change possession 0.448 0.488
changed 0.307 0.352
change state 0.362 0.373
existed after 0.426 0.478
existed before 0.602 0.618
existed during 0.336 0.358
instigation 0.597 0.59
partitive 0.317 0.359
sentient 0.849 0.88
volition 0.818 0.837
was for benefit 0.566 0.578
was used 0.268 0.203

Table 4: Pearson coefficient of each SPR property.

Since our model and the state-of-the-art mono-
lingual SPR model (Rudinger et al., 2018c) use
the same test set, we are able to compare the per-
formance of our model against the monolingual
model by forcing the decoder and the coreference
mechanism to create the reference graph repre-
sentation and only predicting the SPR property
scores. Table 4 shows the Pearson coefficient of
each SPR property. While our model only has the
access to the sentence in the source language dur-
ing the encoding stage,8 the performance is com-
parable to the state-of-the-art monolingual model.

7 Conclusions

We introduce the task of cross-lingual decomposi-
tional semantic parsing, which maps content pro-
vided in a source language into decompositional
analysis based on a target language. We present:
UDS graph/linearized representations as the tar-
get semantic interface, the S metric for evalua-
tion, and the Chinese-English decompositional se-
mantic parsing dataset. We propose an end-to-
end learning approach with a coreference anno-
tating mechanism which outperforms three strong
baselines. We separately evaluate the coreference
mechanism and SPR prediction, showing promis-
ing results. The representations for cross-lingual
decompositional semantics, the evaluation metric,
and the evaluation dataset provided in this work

8The state-of-the-art monolingual SPR model directly en-
codes the sentence in the target language.
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will be beneficial to the increasing interests in se-
mantic analysis and cross-lingual applications.
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Abstract

As humans, we often rely on language to learn
language. For example, when corrected in a
conversation, we may learn from that correc-
tion, over time improving our language flu-
ency. Inspired by this observation, we pro-
pose a learning algorithm for training semantic
parsers from supervision (feedback) expressed
in natural language. Our algorithm learns a
semantic parser from users’ corrections such
as “no, what I really meant was before his
job, not after”, by also simultaneously learn-
ing to parse this natural language feedback in
order to leverage it as a form of supervision.
Unlike supervision with gold-standard logical
forms, our method does not require the user to
be familiar with the underlying logical formal-
ism, and unlike supervision from denotation,
it does not require the user to know the correct
answer to their query. This makes our learning
algorithm naturally scalable in settings where
existing conversational logs are available and
can be leveraged as training data. We con-
struct a novel dataset of natural language feed-
back in a conversational setting, and show that
our method is effective at learning a semantic
parser from such natural language supervision.

1 Introduction

Semantic parsing is a problem of mapping a natu-
ral language utterance into a formal meaning rep-
resentation, e.g., an executable logical form (Zelle
and Mooney, 1996). Because the space of all logi-
cal forms is large but constrained by an underlying
structure (i.e., all trees), the problem of learning a
semantic parser is commonly formulated as an in-
stance of structured prediction.

Historically, approaches based on supervised
learning of structured prediction models have
emerged as some of the first and still remain com-
mon in the semantic parsing community (Zettle-

⇤ Work done while at Carnegie Mellon University.

moyer and Collins, 2005, 2009; Kwiatkowski
et al., 2010). A well recognized practical chal-
lenge in supervised learning of structured mod-
els is that fully annotated structures (e.g., logical
forms) that are needed for training are often highly
labor-intensive to collect. This problem is further
exacerbated in semantic parsing by the fact that
these annotations can only be done by people fa-
miliar with the underlying logical language, mak-
ing it challenging to construct large scale datasets
by non-experts.

Over the years, this practical observation has
spurred many creative solutions to training seman-
tic parsers that are capable of leveraging weaker
forms of supervision, amenable to non-experts.
One such weaker form of supervision relies on
logical form denotations (i.e, the results of a logi-
cal form’s execution) – rather than the logical form
itself, as “supervisory” signal (Clarke et al., 2010;
Liang et al., 2013; Berant et al., 2013; Pasupat and
Liang, 2015; Liang et al., 2016; Krishnamurthy
et al., 2017). In Question Answeing (QA), for
example, this means the annotator needs only to
know the answer to a question, rather than the full
SQL query needed to obtain that answer. Para-
phrasing of utterances already annotated with log-
ical forms is another practical approach to scale up
annotation without requiring experts with a knowl-
edge of the underlying logical formalism (Berant
and Liang, 2014; Wang et al., 2015).

Although these and similar methods do reduce
the difficulty of the annotation task, collecting
even these weaker forms of supervision (e.g., de-
notations and paraphrases) still requires a dedi-
cated annotation event, that occurs outside of the
normal interactions between the end-user and the
semantic parser1. Furthermore, expert knowledge
may still be required, even if the underlying logi-

1although in some cases existing datasets can be leveraged
to extract this information
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Before [September 10th], how many places was
[Brad] employed?

find employment [Brad] had, prior to [September 10th]

Yes, but I also want you to count how many placed Brad 
was employed at.

User Utterance

System NLG

User Feedback

Figure 1: Example (i) user’s original utterance, (ii)
confirmation query generated by inverting the original
parse, (iii) user’s generated feedback towards the con-
firmation query (i.e., original parse) .

cal form does not need to be given by the annotator
(QA denotations, for example, require the annota-
tor to know the correct answer to the question – an
assumption which doesn’t hold for end-users who
asked the question with the goal of obtaining the
answer). In contrast, our goal is to leverage natural
language feedback and corrections that may occur
naturally as part of the continuous interaction with
the non-expert end-user, as training signal to learn
a semantic parser.

The core challenge in leveraging natural lan-
guage feedback as a form of supervision in train-
ing semantic parsers, however, is the challenge of
correctly parsing that feedback to extract the su-
pervisory signal embedded in it. Parsing the feed-
back, just like parsing the original utterance, re-
quires its own semantic parser trained to inter-
pret that feedback. Motivated by this observa-
tion, our main contribution in this work is a semi-
supervised learning algorithm that learns a task
parser (e.g., a question parser) from feedback ut-
terances while simultaneously learning a parser to
interpret the feedback utterances. Our algorithm
relies only on a small number of annotated logical
forms, and can continue learning as more feedback
is collected from interactions with the user.

Because our model learns from supervision that
it simultaneously learns to interpret, we call our
approach learning to learn semantic parsers from
natural language supervision.

2 Problem Formulation

Formally, the setting proposed in this work can be
modelled as follows: (i) the user poses a natural
language input ui (e.g., a question) to the system,
(ii) the system parses the user’s utterance ui, pro-
ducing a logical form ŷi, (iii) the system commu-
nicates ŷi to the user in natural language in the
form of a confirmation (i.e., “did you mean . . . ”),
(iv) in response to the system’s confirmation, the
user generates a feedback utterance fi, which may

be a correction of ŷi expressed in natural language.
The observed variables in a single interaction are
the task utterance ui, the predicted task logical
form ŷi and the user’s feedback fi; the true logical
form yi is hidden. See Figure 1 for an illustration.

A key observation that we make from the above
formulation is that learning from such interactions
can be effectively done in an offline (i.e., non-
interactive) setting, using only the logs of past in-
teractions with the user. Our aim is to formulate
a model that can learn a task semantic parser (i.e.,
one parsing the original utterance u) from such in-
teraction logs, without access to the true logical
forms (or denotations) of the users’ requests.

2.1 Modelling conversational logs

Formally, we propose to learn a semantic parser
from conversational logs represented as follows:

D = {(ui, ŷi, fi)}i,...,N

where ui is the user’s task utterance (e.g., a ques-
tion), ŷi is the system’s original parse (logical
form) of that utterance, fi is the user’s natural lan-
guage feedback towards that original parse and N
is the number of dialog turns in the log. Note that
the original parse ŷi of utterance ui could come
from any semantic parser that was deployed at the
time the data was logged – there are no assump-
tions made on the source of how ŷi was produced.

Contrast this with the traditional learning set-
tings for semantic parsers, where the user (or an-
notator) provides the correct logical form yi or the
execution of the correct logical form JyiK (deno-
tation) (Table 1). In our setting, instead of the
correct logical form yi, we only have access to
the logical form produced by whatever semantic
parser was interacting with the user at the time the
data was collected, i.e., ŷi is not necessarily the
correct logical form (though it could be). In this
work, however, we focus only on corrective feed-
back (i.e., cases where ŷ 6= y) as our main objec-
tive is to evaluate the ability to interpret rich natu-
ral language feedback (which is only given when
the original parse is incorrect). Our key hypothesis
in this work is that although we do not observe yi

directly, combining ŷi with the user’s feedback fi

should be sufficient to get a better estimate of the
correct logical form (closer to yi), which we can
then leverage as a “training example” to improve
the task parser (and the feedback parser).
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Supervision Dataset
Full logical forms {(ui, yi)}i,...,N

Denotations {(ui, JyiK)}i,...,N

Binary feedback {(ui, Jŷi = yiK)}i,...,N

NL feedback (this work) {(ui, ŷi, fi)}i,...,N

Table 1: Different types of supervision used in litera-
ture for training semantic parsers, and the correspond-
ing data needed for each type of supervision. Notation
used in the table: u corresponds to user utterance (lan-
guage), y corresponds to a gold-standard logical form
parse of u, ŷ corresponds to a predicted logical form,
J·K is the result of executing an expression inside the
brackets and f is the user’s feedback expressed in nat-
ural language in the context of an utterance and a pre-
dicted logical form.

3 Natural Language Supervision

3.1 Learning problem formulation
In this section, we propose a learning algorithm for
training a semantic parser from natural language
feedback. We will use the terms task parser and
feedback parser to refer to the two distinct parsers
used for parsing the user’s original task utterance
(e.g., question) and parsing the user’s follow-up
feedback utterance respectively. Our learning al-
gorithm does not assume any specific underlying
model for the two parsers aside from the require-
ment that each parser specifies a probability distri-
bution over logical forms given the utterance (for
the task parser) and the utterance plus feedback
(for the feedback parser):

Task Parser: P (y | u; ✓t)
Feedback Parser: P (y | u, f, ŷ; ✓f )

where ✓t and ✓f parametrize the task and feedback
parsers respectively. Note that the key distinction
between the task and feedback parser models is
that in addition to the user’s original task utterance
u, the feedback parser also has access to the user’s
feedback utterance f , and the original parser’s pre-
diction ŷ. We now introduce a joint model that
combines task and feedback parsers in a way that
encourages the two models to agree:

P (y | u, f, ŷ; ✓t, ✓f ) =
1
Z

P (y | u; ✓t)| {z }
task parser

P (y | u, f, ŷ; ✓f )
| {z }

feedback parser

At training time, our objective is to maximize the
above joint likelihood by optimizing the parser pa-
rameters ✓t and ✓f of the task and feedback parsers
respectively. The intuition behind optimizing the
joint objective is that it encourages the “weaker”
model that does not have access to the feedback

utterance to agree with the “stronger” model that
does (i.e., using the feedback parser’s prediction as
a noisy “label” to bootstrap the task parser), while
conversely encouraging a more “complex” model
to agree with a “simpler” model (i.e., using the
simpler task parser model as a “regularizer” for the
more complex feedback parser; note that the feed-
back parser generally has higher model complex-
ity compared to the task parser because it incorpo-
rates additional parameters to account for process-
ing the feedback input).2 Note the feedback parser
output is not simply the meaning of the feed-
back utterance in isolation, but instead the revised
semantic interpretation of the original utterance,
guided by the feedback utterance. In this sense,
the task faced by the feedback parser is to both de-
termine the meaning of the feedback, and to apply
that feedback to repair the original interpretation
of ui. Note that this model is closely related to
co-training (Blum and Mitchell, 1998) (and more
generally multi-view learning (Xu et al., 2013))
and is also a special case of a product-of-experts
(PoE) model (Hinton, 1999).

3.2 Learning

The problem of maximizing the joint-likelihood
P (y | u, f, ŷ; ✓t, ✓f ) can be approached as a stan-
dard problem of maximum likelihood estimation
in the presence of latent variables (i.e., unob-
served logical form y), suggesting the application
of the Expectation Maximization (EM) algorithm
for learning parameters ✓t and ✓f . The direct ap-
plication of EM in our setting, however, is faced
with a complication in the E-step. Because the
hidden variables (logical forms y) are structured,
computing the posterior over the space of all log-
ical forms and taking the expectation of the log-
likelihood with respect to that posterior is gener-
ally intractable (unless we assume certain factor-
ized forms for the logical form likelihood).

Instead, we propose to approximate the E-step
by replacing the expectation of the log joint-
likelihood with its point estimate, using the maxi-
mum a posteriori (MAP) estimate of the posterior
over logical forms y to obtain that estimate (this
is sometimes referred to as “hard-EM”). Obtain-
ing the MAP estimate of the posterior over log-

2Note that in practice, to avoid locally optimal degenerate
solutions (e.g., where the feedback parser learns to trivially
agree with the task parser by learning to ignore the feedback),
some amount of labeled logical forms would be required to
pre-train both models.
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ical forms may itself be a difficult optimization
problem, and the specific algorithm for obtaining
it would depend on the internal models of the task
and the feedback parser.

As an alternative, we propose a simple, MCMC
based algorithm for approximating the MAP esti-
mate of the posterior over logical forms, that does
not require access to the internals of the parser
models, i.e., allowing us to conveniently treat both
parsers as “black boxes”. The only assumption
that we make is that it’s easy to sample logi-
cal forms from the individual parsers (though not
necessarily from the joint model), as well as to
compute the likelihoods of those sampled logical
forms under at least one of the models.

We use Metropolis Hastings to sample from
the posterior over logical forms, using one of the
parser models as the proposal distribution. Specif-
ically, if we choose the feedback parser as the pro-
posal distribution, and initialize the Markov Chain
with a logical form sampled from the task parser,
it can be shown that the acceptance probability r
for the first sample conveniently simplifies to the
following expression:

r = min

✓
1,

P (ŷf | u, ✓t)
P (ŷt | u, ✓t)

◆
(1)

where ŷt and ŷf are logical forms sampled from
the task and feedback parsers respectively. In-
tuitively the above expression compares the like-
lihood of the logical form proposed by the task
parser to the likelihood of the logical form pro-
posed by the feedback parser, but with both likeli-
hoods computed under the same task parser model
(making the comparison fair). The proposed parse
is then accepted with a probability proportional to
that ratio. See Algorithm 2 for details.

Finally, given this MAP estimate of y, we can
perform optimization over the parser parameters
✓t and ✓f using a single step with stochastic gradi-
ent descent before re-estimating the latent logical
form y. We also approximate the gradients of each
parser model by ignoring the gradient terms asso-
ciated with the log of the normalizer Z. 3

3.3 Task Parser Model
Our task parser model is implemented based
on existing attention-based encoder-decoder mod-

3We have experimented with a sampling based approxi-
mation of the true gradients with contrastive divergence (Hin-
ton, 2002), however, found that our approximation works suf-
ficiently well empirically. See Algorithm 1 for more details
of the complete algorithm.

Algorithm 1: Semantic Parser Training from Natural
Language Supervision

Input : D = {(ui, ŷi, fi)}1,...,N

Output : Task parser parameters ✓t; Feedback parser
parameters ✓f

Parameter: Number of training epochs T
for t = 1 to T do

for i = 1 to N do
ŷf

i  MH-MAP (ui, ŷi, fi, ✓t, ✓f ) ;
r✓t  r log P (ŷf

i | ui; ✓t) ;
r✓f  r log P (ŷf

i | ui, fi, ŷi; ✓f ) ;
✓t  SGD (✓t,r✓t) ;
✓f  SGD (✓f ,r✓f ) ;

end
end

Algorithm 2: Metropolis Hastings-based MAP estima-
tion of latent semantic parse

Input : u, ŷ, f , ✓t, ✓f

Output : latent parse ŷf

Parameter: Number of sampling iterations N
Function MH-MAP(u, ŷ, f , ✓t, ✓f):

samples [ ]
// sample parse from task parser
Sample ŷt ⇠ P (y | u, ✓t)
ŷcurr  ŷt

for i = 1 to N do
// sample parse from feedback parser
Sample ŷf ⇠ P (y | u, f, ŷ, ✓f )

r  min
⇣
1,

P (ŷf |u,✓t)

P (ŷcurr|u,✓t)

⌘

Sample accept ⇠ Bernoulli(r)
if accept then

pt  P (ŷf | u, ✓t)
pf  P (ŷf | u, f, ŷ, ✓f )
samples[ŷf ] pt · pf

ŷcurr  ŷf

end
end
ŷf
 argmax samples

return ŷf

els (Bahdanau et al., 2014; Luong et al., 2015).
The encoder takes in an utterance (tokenized) u
and computes a context-sensitive embedding hi

for each token ui using a bidirectional Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), where hi is computed as the
concatenation of the hidden states at position i
output by the forward LSTM and the backward
LSTM. The decoder generates the output logical
form y one token at a time using another LSTM.
At each time step j, it generates yj based on the
current LSTM hidden state sj , a summary of the
input context cj , and attention scores aji, which
are used for attention-based copying as in (Jia and
Liang, 2016). Specifically,

p(yj = w, w 2 Vout|u, y1:j�1) / exp (Wo[sj ; cj ])
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p(yj = ui|u, y1:j�1) / exp (aji)

where yj = w denotes that yj is chosen from the
output vocabulary Vout; yj = ui denotes that yj

is a copy of ui; aji = sT
j Wahi is an attention

score on the input word ui; cj =
P

i ↵ihi, ↵i /
exp (aji) is a context vector that summarizes the
encoder states; and Wo and Wa are matrix parame-
ters to be learned. After generating yj , the decoder
LSTM updates its hidden state sj+1 by taking as
input the concatenation of the embedding vector
for yj and the context vector cj .

An important problem in semantic parsing for
conversation is resolving references of people and
things mentioned in the dialog context. Instead of
treating coreference resolution as a separate prob-
lem, we propose a simple way to resolve it as a part
of semantic parsing. For each input utterance, we
record a list of previously-occurring entity men-
tions m = {m1, ..., mL}. We consider entity men-
tions of four types: persons, organizations, times,
and topics. The encoder now takes in an utterance
u concatenated with m4, and the decoder can gen-
erate a referenced mention through copying.

The top parts of Figure 7 and Figure 8 visualize
the attention mechanism of the task parser, where
the decoder attends to both the utterance and the
conversational context during decoding. Note that
the conversational context is only useful when the
utterance contains reference mentions.

3.4 Feedback Parser Model
Our feedback parser model is an extension of the
encoder-decoder model in the previous section.
The encoder consists of two bidirectional LSTMs:
one encodes the input utterance u along with the
history of entity mentions m and the other encodes
the user feedback f . At each time step j during
decoding, the decoder computes attention scores
over each word ui in utterance u as well as each
feedback word fk based on the decoder hidden
state sj , the context embedding bk output by the
feedback encoder, and a learnable weight matrix
We: ejk = sT

j Webk. The input context vector cj

in the previous section is updated by adding a con-
text vector that attends to both the utterance and
the feedback:

c0
j =

X

i

↵ihi +
X

k

�kbk

4The mentions are ordered based on their types and each
mention is wrapped by special boundary symbols [ and ].

where ↵i / exp(aji) and �k / exp(ejk). Ac-
cordingly, the decoder is allowed to copy words
from the feedback:

p(yj = fk|u, f, y1:j�1) / exp (ejk)

The bottom parts of Figure 7 and Figure 8 vi-
sualize the attention mechanism of the feedback
parser, where the decoder attends to the utterance,
the conversational context, and the feedback dur-
ing decoding.

Note that our feedback model does not explic-
itly incorporate the original logical form ŷ that the
user was generating their feedback towards. We
experimented with a number of ways to incorpo-
rate ŷ in the feedback parser model, but found it
most effective to instead use it during MAP infer-
ence for the latent parse y. In sampling a logical
form in Algorithm 2, we simply reject the sample
if the sampled logical form matches ŷ.

4 Dataset
In this work we focus on the problem of semantic
parsing in a conversational setting and construct a
new dataset for this task. Note that a parser is re-
quired to resolve references to the conversational
context during parsing, which in turn may further
amplify ambiguity and propagate errors to the fi-
nal logical form. Conveniently, the same conver-
sational setting also offers a natural channel for
correcting such errors via natural language feed-
back users can express as part of the conversation.

4.1 Dataset construction
We choose conversational search in the domain of
email and biographical research as a setting for our
dataset. Large enterprises produce large amounts
of text during daily operations, e.g., emails, re-
ports, and meeting memos. There is an increasing
need for systems that allow users to quickly find
information over text through search. Unlike reg-
ular tasks like booking airline tickets, search tasks
often involve many facets, some of which may or
may not be known to the users when the search be-
gins. For example, knowing where a person works
may triggers a followup question about whether
the person communicates with someone internally
about certain topic. Such search tasks will often
be handled most naturally through dialog.

Figure 1 shows example dialog turns containing
the user’s utterance (question) u, system’s confir-
mation of the original parse ŷ, and the user’s feed-
back f . To simplify and scale data collection, we
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decouple the dialog turns and collect feedback for
each dialog turn in isolation. We do that by show-
ing a worker on Mechanial Turk the original utter-
ance u, the system’s natural language confirmation
generated by inverting the original logical form
ŷ, and the dialog context summarized in a table.
See Figure 2 for a screenshot of the Mechanical
Turk interface. The dialog context is summarized
by the entities (of types person, organization, time
and topic) that were mentioned earlier in the con-
versation and could be referenced in the original
question u shown on the screen5. The worker is
then asked to type their feedback given (u, ŷ) and
the dialog context displayed on the screen. Turkers
are instructed to write a natural language feedback
utterance that they might otherwise say in a real
conversation when attempting to correct another
person’s incorrect understanding of their question.

We recognize that our data collection process
results in only an approximation of a true multi-
turn conversation, however we find that this ap-
proach to data collection offers a convenient trade-
off for collecting a large number of controlled and
diverse context-grounded interactions. Qualita-
tively we find that turkers are generally able to
imagine themselves in the hypothetical ongoing
dialog, and are able to generate realistic contextual
feedback utterances using only the context sum-
mary table provided to them.

The initial dataset of questions paired with orig-
inal logical form parses {ui, ŷi}1,...,N that we use
to solicit feedback from turkers, is prepared of-
fline. In this separate offline task we collect a
dataset of 3556 natural language questions, anno-
tated with gold standard logical forms, in the same
domain of email and biographical research. We
parse each utterance in this dataset with a float-
ing grammar-based semantic parser trained using
a structured perceptron algorithm (implemented in
SEMPRE (Berant et al., 2013)) on a subset of the
questions. We then construct the dataset for feed-
back collection by sampling the logical form ŷ
from the first three candidate parses in the beam
produced by the grammar-based parser. We use
this grammar-based parser intentionally as a very
different model from the one that we would ulti-
mately train (LSTM-based parser) on the conver-
sational logs produced by the original parser.

We retain 1285 out of the 3556 annotated ques-

5zero or more of the context entities may actually be ref-
erenced in the original utterance

Figure 2: Screenshot of the Mechanical Turk web in-
terface used to collect natural language feedback.

tions to form a test set. The rest 2271 questions we
pair with between one and three predicted parses ŷ
sampled from the beam produced by the grammar-
based parser, and present each pair of original ut-
terance and predicted logical form (ui, ŷi) to a
turker who then generates a feedback utterance
fi. In total, we collect 4321 question/original
parse/feedback triples (ui, ŷi, fi) (averaging ap-
proximately 1.9 feedback utterances per question).

5 Experiments

The key hypothesis that we aim to evaluate in our
experiments is whether natural language feedback
is an effective form of supervision for training a
semantic parser. To achieve this goal, we control
and measure the effect that the number of feedback
utterances used during training has on the resulting
performance of the task semantic parser on a held-
out test set. Across all our experiments we also use
a small seed training set (300 questions) that con-
tains gold-standard logical forms to pre-train the
task and feedback parsers. The number of “unla-
beled” questions6 (i.e., questions not labeled with
gold standard logical forms but that have natural
language feedback) ranges from 300, 500, 1000 to
1700 representing different experimental settings.
For each experimental setting, we rerun the exper-
iment 10 times, re-sampling the questions in both
the training and unlabeled sets, and report the aver-
aged results. The test-set remains fixed across all
experiments and contains 1285 questions labeled
with gold-standard logical forms. The implemen-
tation details for the task parser and the feedback
parser are included in the appendix.

6Note that from hereon we will refer to the portion of the
data that contains natural language feedback as the only form
of supervision as “unlabeled data”, to emphasize that it is not
labeled with gold standard logical forms (in contrast to the
seed training set).
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5.1 Models and evaluation metrics

In our evaluations, we compare the following four
models:

• MH (full model) Joint model described in Sec-
tion 3 and in Algorithm 1 (using Metropolis
Hastings-based MAP inference described in Al-
gorithm 2).

• MH (no feedback) Same as the full model, ex-
cept we ignore the feedback f and the origi-
nal logical form ŷ information in the feedback
model. Effectively, this reduces the model of
the feedback parser to that of the task parser.
Because during training, both models would be
initialized differently, we may still expect the re-
sulting model averaging effects to aid learning.

• MH (no feedback + reject ŷ) Same as the
above baseline without feedback, but we in-
corporate the knowledge of the original logical
form ŷ during training. We incorporate ŷ using
the same method as described in Section ??.

• Self-training Latent logical form inference is
performed using only the task parser (using
beam search). Feedback utterance f and orig-
inal logical form ŷ are ignored. Task parser pa-
rameters ✓t are updated in the same way as in
Algorithm 1.

Note that all models are exposed to the same train-
ing seed set, and differ only in the way they take
advantage of the unlabeled data. We perform two
types of evaluations of each model:

• Generalization performance we use the
learned task parser to make predictions on held-
out data. This type of evaluation tests the ability
of the parser trained with natural language feed-
back to generalize to unseen utterances.

• Unlabeled data performance we use the
learned task parser to make predictions on the
unlabeled data that was used in training it. Note
that for each experimental condition, we per-
form this evaluation only on the portion of
the unlabeled data that was used during train-
ing. This ensures that this evaluation tests
the model’s ability to “recover” correct logical
forms from the questions that have natural lan-
guage feedback associated with them.

6 Results

6.1 Generalization performance
Figure 3a shows test accuracy as a function of
the number of unlabeled questions (i.e., ques-
tions containing only feedback supervision with-
out gold standard logical forms) used during train-
ing, across all four models. As expected, using
more unlabeled data generally improves general-
ization performance. The self-training baseline
is the only exception, where performance starts
to deteriorate as the ratio of unlabeled to labeled
questions increases beyond a certain point. This
behavior is not necessarily surprising – when the
unlabeled examples significantly outnumber the
labeled examples, the model may more easily veer
away to local optima without being strongly regu-
larized by the loss on the small number of labeled
examples.

Interestingly, the MH (no feedback) baseline
is very similar to self-training, but has a signifi-
cant performance advantage that does not deterio-
rate with more unlabeled examples. Recall that the
MH (no feedback) model modifies the full model
described in Algorithm 1 by ignoring the feedback
f and the original logical form ŷ in the feedback
parser model P (y | u, ŷ, f ; ✓f ). This has the ef-
fect of reducing the model of the feedback parser
into the model of the task parser P (y | u; ✓t). The
training on unlabeled data proceeds otherwise in
the same way as described in Algorithm 1. As a
result, the principle behind the MH (no feedback)
model is the same as that behind self-training, i.e.,
a single model learns from its own predictions.
However, different initializations of the two copies
of the task parser, and the combined model averag-
ing appears to improve the robustness of the model
sufficiently to keep it from diverging as the amount
of unlabeled data is increased.

The MH (no feedback + reject ŷ) baseline also
does not observe the feedback utterance f , but
incorporates the knowledge of the original parse
ŷ. As described in Section ??, this knowledge is
incorporated during MAP inference of the latent
parse, by rejecting any logical form samples that
match ŷ. As expected, incorporating the knowl-
edge of ŷ improves the performance of this base-
line over the one that does not.

Finally, the full model that incorporates both,
the feedback utterance f and the original logical
form ŷ outperforms the baselines that incorporate
only some of that information. The performance
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gain over these baselines grows as more ques-
tions with natural language feedback supervision
are made available during training. Note that both
this and the MH (no feedback + reject ŷ) model
incorporate the knowledge of the original logical
form ŷ, however, the performance gain from in-
corporating the knowledge of ŷ without the feed-
back is relatively small, indicating that the gains
from the model that observes feedback is primar-
ily from its ability to interpret it.

6.2 Performance on unlabeled data
Figure 3b shows accuracy on the unlabeled data,
as a function of the number of unlabeled ques-
tions used during training, across all four models.
The questions used in evaluating the model’s ac-
curacy on unlabeled data are the same unlabeled
questions used during training in each experimen-
tal condition. The general trend and the relation-
ship between baselines is consistent with the gen-
eralization performance on held-out data in Fig-
ure 3a. One of the main observations is that accu-
racy on unlabeled training examples remains rela-
tively flat, but consistently high (> 80%), across
all models regardless of the amount of unlabeled
questions used in training (within the range that
we experimented with). This suggests that while
the models are able to accurately recover the un-
derlying logical forms of the unlabeled questions
regardless of the amount of unlabeled data (within
our experimental range), the resulting generaliza-
tion performance of the learned models is signif-
icantly affected by the amount of unlabeled data
(more is better).

6.3 Effect of feedback complexity on
performance

Figure 4 reports parsing accuracy on unlabeled
questions as a function of the number of correc-
tions expressed in the feedback utterance paired
with that question. Our main observation is that
the performance of the full model (i.e., the joint
model that uses natural language feedback) deteri-
orates for questions that are paired with more com-
plex feedback (i.e., feedback containing more cor-
rections). Perhaps surprisingly, however, is that
all models (including those that do not incorporate
feedback) deteriorate in performance for questions
paired with more complex feedback. This is ex-
plained by the fact that more complex feedback
is generally provided for more difficult-to-parse
questions. In Figure 4, we overlay the parsing per-

formance with the statistics on the average length
of the target logical form (number of predicates).

A more important take-away from the results in
Figure 4, is that the model that takes advantage of
natural language feedback gains an even greater
advantage over models that do not use feedback
when parsing more difficult questions. This means
that the model is able to take advantage of more
complex feedback (i.e., with more corrections)
even for more difficult to parse questions.
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Figure 3: (a) Parsing accuracy on held-out questions
as a function of the number of unlabeled questions
used during training. (b) Parsing accuracy on unla-
beled questions as a function of the number of unla-
beled questions used during training. In both panels,
all parsers were initialized using 300 labeled examples
consisting of questions and their corresponding logical
form.

7 Related Work

Early semantic parsing systems map natural lan-
guage to logical forms using inductive logical
programming (Zelle and Mooney, 1996). Mod-
ern systems apply statistical models to learn from
pairs of sentences and logical forms (Zettlemoyer
and Collins, 2005, 2009; Kwiatkowski et al.,
2010). As hand-labeled logical forms are very
costly to obtain, different forms of weak super-
vision have been explored. Example works in-
clude learning from pairs of sentences and an-
swers by querying a database (Clarke et al., 2010;
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Figure 4: Parsing accuracy on unlabeled questions, par-
titioned by feedback complexity (i.e., number of cor-
rections expressed in a single feedback utterance).

Liang et al., 2013; Berant et al., 2013; Pasupat
and Liang, 2015; Liang et al., 2016; Krishna-
murthy et al., 2017); learning from indirect super-
vision from a large-scale knowledge base (Reddy
et al., 2014; Krishnamurthy and Mitchell, 2012);
learning from conversations of systems asking
for and confirming information (Artzi and Zettle-
moyer, 2011; Thomason et al., 2015; Padmakumar
et al., 2017); and learning from interactions with
a simulated world environment (Branavan et al.,
2009; Artzi and Zettlemoyer, 2013; Goldwasser
and Roth, 2014; Misra et al., 2015). The supervi-
sion used in these methods is mostly in the form of
binary feedback, partial logical forms (e.g., slots)
or execution results. In this paper, we explore a
new form of supervision – natural language feed-
back. We demonstrate that such feedback not only
provides rich and expressive supervisory signals
for learning but also can be easily collected via
crowd-sourcing. Recent work (Iyer et al., 2017)
trains an online language-to-SQL parser from user
feedback. Unlike our work, their collected feed-
back is structured and is used for acquiring more
labeled data during training. Our model jointly
learns from questions and feedback and can be
trained with limited labeled data.

There has been a growing interest on machine
learning from natural language instructions. Much
work has been done in the setting where an au-
tonomous agent learns to complete a task in an
environment, for example, learning to play games
by utilizing text manuals (Branavan et al., 2012;
Eisenstein et al., 2009; Narasimhan et al., 2015)
and guiding policy learning using high-level hu-
man advice (Kuhlmann et al., 2004; Squire et al.,
2015; Harrison et al., 2017). Recently, natural lan-
guage explanations have been used to augment la-

beled examples for concept learning (Srivastava
et al., 2017) and to help induce programs that solve
algebraic word problems (Ling et al., 2017). Our
work is similar in that natural language is used as
additional supervision during learning, however,
our natural language annotations consist of user
feedback on system predictions instead of expla-
nations of the training data.

8 Conclusion and Future Work

In this work, we proposed a novel task of learning
a semantic parser directly from end-users’ open-
ended natural language feedback during a conver-
sation. The key advantage of being able to learn
from natural language feedback is that it opens the
door to learning continuously through natural in-
teractions with the user, but it also presents a chal-
lenge of how to interpret such feedback. In this
work we introduced an effective approach that si-
multaneously learns two parsers: one parser that
interprets natural language questions and a second
parser that also interprets natural language feed-
back regarding errors made by the first parser.

Our work is, however, limited to interpreting
feedback contained in a single utterance. A natural
generalization of learning from natural language
feedback is to view it as part of an integrated dia-
log system capable of both interpreting feedback
and asking appropriate questions to solicit this
feedback (e.g., connecting to the work by (Pad-
makumar et al., 2017)). We hope that the prob-
lem we introduce in this work, together with the
dataset that we release, inspires the community to
develop models that can learn language (e.g., se-
mantic parsers) through flexible natural language
conversation with end users.
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Figure 5: A histogram of the number of corrections
expressed in a natural language feedback utterance in
our data (0 corrections means that the user affirmed the
original parse as correct). We partition the feedback ut-
terances according to whether the original parse ŷ that
the feedback was provided towards is known to be cor-
rect (i.e., matches the gold standard logical form parse).

A Analysis of natural language feedback

The dataset we collect creates a unique opportu-
nity to study the nature and the limitations of the
corrective feedback that users generate in response
to an incorrect parse. One of our hypotheses stated
in Section 1 is that natural language affords users
to express richer feedback than for example possi-
ble with binary (correct/incorrect) mechanism, by
allowing users to explicitly refer to and fix what
they see as incorrect with the original prediction.
In this section we analyze the feedback utterances
in our dataset to gain deeper insight into the types
of feedback users generate, and the possible limi-
tations of natural language as a source of supervi-
sion for semantic parsers.

Figure 5 breaks down the collected feedback by
the number of corrections expressed in the feed-
back utterance. The number of corrections ranges
from 0 (no corrections, i.e., worker considers the
original parse ŷ to be the correct parse of u) to
more than 3 corrections.7 The number of correc-
tions is self-annotated by the workers who write
the feedback – we instruct workers to count a cor-
rection constrained to a single predicate or a single
entity as a single correction, and tally all such cor-
rections in their feedback utterance after they have

7Note that in cases where the user indicates that they made
0 corrections, the feedback utterance that they write is often
a variation of a confirmation such as “that’s right” or “that’s
correct”
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Figure 6: Analysis of noise in feedback utterances con-
tained in our dataset. Feedback false positives refers
to feedback that incorrectly identifies the wrong origi-
nal parse ŷ as correct. Feedback false negatives refers
to feedback that incorrectly identifies a correct original
parse ŷ as wrong. Users are more likely to generate
false positives (i.e., miss the error) in their feedback
for parses of more complex utterances (as measured by
the number of predicates in the gold-standard logical
form).

written it8. Because we also know the ground truth
of whether the original parse ŷ (i.e., parse that the
user provided feedback towards) was correct (i.e.,
ŷ matches gold standard parse y), we can partition
the number of corrections by whether the origi-
nal parse ŷ was correct (green bars in Figure 5)
or incorrect (red bars), allowing us to evaluate the
accuracy of some of the feedback.

From Figure 5, we observe that users provide
feedback that ranges in the number of corrections,
with the majority of feedback utterances making
one correction to the original logical form ŷ (only
4 feedback utterances expressed more than 3 cor-
rections). Although we do not have gold-standard
annotation for the true number of errors in the
original logical form ŷ, we can nevertheless ob-
tain some estimate of the noise in natural language
feedback by analyzing cases where we know that
the original logical form ŷ was correct, yet the user
generated feedback with at least one correction.
We will refer to such feedback instances as feed-
back false negatives. Similarly, cases where the
original logical form ŷ is incorrect, yet the user
provided no corrections in their feedback, we re-
fer to as feedback false positives. The number of
feedback false negatives and false positives can be

8we give these instructions to workers in an easy to un-
derstand explanation without invoking technical jargon
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obtained directly from Figure 5. Generally, we ob-
serve that users are more likely to provide more
false negatives (⇡ 4% of all feedback) than false
positives (⇡ 1%) in the feedback they generate.

It is also instructive to consider what factors
may contribute to the observed noise in user gener-
ated natural language feedback. Our hypothesis is
that more complex queries (i.e., longer utterances
and longer logical forms) may result in a greater
cognitive load to identify and correct the error(s)
in the original parse ŷ. In Figure 6 we investigate
this hypothesis by decomposing the percentage of
feedback false positives and false negatives as a
function of the number of predicates in the gold
standard logical form (i.e., one that the user is try-
ing to recover by making corrections in the origi-
nal logical form ŷ). Our main observation is that
users tend to generate more false positives (i.e.,
incorrectly identify an originally incorrect logical
form ŷ as correct) when the target logical form is
longer (i.e., the query utterance u is more com-
plex). The number of false negatives (i.e., incor-
rectly identifying a correct logical form as incor-
rect) is relatively unaffected by the complexity of
the query (i.e., number of predicates in the tar-
get logical form). One conclusion that we can
draw from this analysis is that we can expect user-
generated feedback to miss errors in more com-
plex queries, and models that learn from users’
natural language feedback need to have a degree
of robustness to such noise.

B Implementation Details

We tokenize user utterances (questions) and feed-
back using the Stanford CoreNLP package. In all
experiments, we use 300-dimensional word em-
beddings, initialized with word vectors trained us-
ing the Paraphrase Database PPDB (Wieting et al.,
2015), and we use 128 hidden units for LSTMs.
All parameters are initialized uniformly at ran-
dom. We train all the models using Adam with
initial learning rate 10�4 and apply L2 gradient
norm clipping with a threshold of 10. In all the
experiments, we pre-train the task parser and the
feedback parser for 20 epochs, and then switch
to semi-supervised training for 10 epochs. Pre-
training takes roughly 30 minutes and the semi-
supervised training process takes up to 7 hours on
a Titan X GPU.
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Figure 7: Visualization of the attention mechanism in the task parser (top) and the feedback parser (bottom) for
parsing the same utterance. We partition the input to the parser into three groups: the original utterance u being
parsed (blue), the conversational context (green) and the feedback utterance f (red). This example was parsed
incorrectly before incorporating feedback, but parsed correctly after its incorporation.
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Figure 8: Visualization of the attention mechanism in the task parser (top) and the feedback parser (bottom) for
parsing the same utterance. We partition the input to the parser into three groups: the original utterance u being
parsed (blue), the conversational context (green) and the feedback utterance f (red). This example was parsed
incorrectly before incorporating feedback, but parsed correctly after its incorporation.
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Abstract

This paper introduces the SURFACE CON-
STRUCTION LABELING (SCL) task, which ex-
pands the coverage of Shallow Semantic Pars-
ing (SSP) to include frames triggered by com-
plex constructions. We present DeepCx, a neu-
ral, transition-based system for SCL. As a test
case for the approach, we apply DeepCx to
the task of tagging causal language in English,
which relies on a wider variety of construc-
tions than are typically addressed in SSP. We
report substantial improvements over previous
tagging efforts on a causal language dataset.
We also propose ways DeepCx could be ex-
tended to still more difficult constructions and
to other semantic domains once appropriate
datasets become available.

1 Introduction

Shallow semantic parsing (SSP) aims to tag the trig-
gers of semantic relations and the phrases between
which those relations hold. However, words are not
the only bearers of relational meaning: multi-word
expressions (MWEs) and even arbitrarily complex
constructions can express relations and evoke se-
mantic frames (see, e.g., Fillmore et al., 2012). For
example, causation, concession, and comparison
are frequently expressed using complex construc-
tions (see Table 1). MWE research has made strides
in identifying MWE strings (see, e.g., Baldwin and
Kim, 2010), but little work has addressed tagging
arguments of such constructional triggers; many
of the examples in Table 1 remain a challenge for
conventional SSP.

This paper introduces the broader task of SUR-
FACE CONSTRUCTION LABELING (SCL; §3). Like
SSP, SCL aims to tag the surface elements of a
sentence that express and participate in relational
meanings. But in SCL, triggers are not just words
or lexical units, but instances of constructions of
the sort described by CONSTRUCTION GRAMMAR

(1) WE must regulate to inhibit unsound practices.
(2) THIS opens the way to applying the law more widely.
(3) Judy’s comments were SO OFFENSIVE that I left.

(4) We headed out in spite of the bad weather.
(5) We value any contribution, no matter its size.
(6) Strange as it seems, there’s been a run of crazy dreams!

(7) More boys wanted to play than girls.
(8) Andrew is as annoying as he is useless.
(9) I’m poorer than I’d like.

Table 1: Examples of causal (1–3), concessive (4–
6), and comparative (7–9) constructions, with triggers
bolded. Arguments of causal examples are annotated
as in the BECAUSE annotation scheme, with CAUSES
in blue small caps, effects in red italics, and means in
purple typewriter text.

(CxG; Fillmore et al., 1988; Goldberg, 1995): arbi-
trarily complex sets of tokens that carry meaning.
These constructions can consist of single words,
fixed MWEs, gappy MWEs, or even grammatical
patterns.

We propose a transition system for SCL that can
tag multi-word, possibly gappy sequences of to-
kens as triggers and arguments (§4). As a test case
for the approach, we address English causal lan-
guage, a valuable target for semantic analysis in
its own right. (Extensions to arbitrary frame and
role types would be straightforward with appropri-
ate data; see §8.) The transitions can handle most
types of constructions, including those with multi-
ple arguments, missing arguments, and even trig-
gers that overlap or are interleaved with arguments.
We present DeepCx, a neural network that tags
causal language using this transition system (§5).
We also describe experiments applying DeepCx to
the BECAUSE corpus (§6), showing that DeepCx
significantly outperforms prior construction-based
work on predicting causal frames (§7). Finally, we
discuss how the transition system and tagger model
could be adapted to more difficult SCL tasks (§8).
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2 Background and related work

2.1 Shallow semantic parsing
SCL of course inherits from SSP, which has a vener-
able tagging tradition. For PropBank data, dozens
of taggers have been developed (see Carreras and
Màrquez, 2004, 2005; Surdeanu et al., 2008; Hajič
et al., 2009). These typically focus on argument tag-
ging, since PropBank triggers are readily identified
by their POS tags. One popular design is a multi-
stage pipeline that identifies argument spans and
then labels them. Another alternative is BIO-style
classification of argument words, either with con-
ventional classifiers or with neural networks (e.g.,
Collobert et al., 2011; Foland and Martin, 2015).
More recent systems (e.g., Täckström et al., 2015;
Roth and Lapata, 2016) use neural networks to
score and label possible argument spans or heads.

FrameNet-based tagging is more difficult, as trig-
gers must be identified and disambiguated. Many
FrameNet taggers have taken a pipeline approach
(see, e.g., Baker et al., 2007; Das et al., 2014) in
which targets are first identified with a whitelist
or simple rules. They are then assigned frames,
which determine the available frame elements, and
finally the frame elements are identified and la-
beled. Again, neural networks have also been used
to score argument spans and heads (Täckström
et al., 2015; FitzGerald et al., 2015; Roth, 2016).

Systems in both paradigms are constrained by
their underlying representations. PropBank cov-
ers only verbs and certain nominal and adjectival
predicates. FrameNet’s frame-evoking elements
are broader, including verbs, prepositions, adverbs,
conjunctions, and even some MWEs, but must
still be single words or MWEs that act like words.
As Table 1 demonstrates, some semantic domains,
such as causality, demand a more flexible approach.

2.2 Construction grammar
CxG, which posits that the fundamental units of
language are CONSTRUCTIONS—pairings of mean-
ings with arbitrary linguistic forms. For instance,
so X that Y (example 3) is characterized by a sin-
gle construction, where the form is so hadjective
Xi hfinite clausal complement Y i and the mean-
ing is X to an extreme that causes Y . Follow-
ing Dunietz et al. (2017a,b), we borrow two core
insights of CxG: first, that morphemes, words,
MWEs, and grammar are all on equal footing as
“learned pairings of form and function” (Goldberg,
2013); and second, that constructions pair patterns

of surface forms directly with meanings. Thus,
we can tag any surface realizations of construc-
tions as meaning-bearing triggers (hence “surface
construction labeling”).

2.3 Causal language
To test the SCL approach, we examine causal lan-
guage, which conveys essential semantic informa-
tion and is especially rich in constructional triggers.

Our data representation for causal language
comes from the BECAUSE 2.1 corpus (Dunietz
et al., 2017b), which focuses on what causal mean-
ings are explicitly stated in the text. It defines
causal language as any construction which presents
one event, state, action, or entity as promoting
or hindering another, and which includes at least
one lexical trigger to anchor the annotation. For
each instance of causal language, up to three spans
are annotated: the causal connective (the trigger
of the causal relation), the cause span, the effect
span, and occasionally a means span (if a means
by which the cause produces the effect is specified).
See Table 1 for examples of analyses of causal lan-
guage under the BECAUSE scheme. The corpus
includes 4,867 sentences (123,674 tokens) of news
articles and Congressional hearing transcripts fully
annotated for causal language.

The only prior work on construction-based se-
mantic parsing that we know of is Causeway (Duni-
etz et al., 2017a), also based on the BECAUSE cor-
pus. Causeway detects causal connectives using
lexico-syntactic patterns, then applies heuristics
and classifiers to tag arguments and remove false
positives. It achieves moderate performance, but
requires extensive tuning and feature engineering.

2.4 Transition-based systems
Transition-based systems have primarily been used
for dependency parsing (e.g., Nivre et al., 2007;
Nivre, 2008; Chen et al., 2014; Choi and Palmer,
2011a). Indeed, our system borrows many imple-
mentation elements from Dyer et al. (2015), who
describe a shift-reduce parser that embeds the stack
and buffer as LSTMs. This parser employs the
novel STACK LSTM data structure—an LSTM
augmented with a stack pointer, enabling it to be
rewound to a previous state.

Transition systems have been developed for se-
mantic tasks, as well. Titov et al. (2009), Hender-
son et al. (2008), and Swayamdipta et al. (2016)
explore extensions of dependency parsing that in-
terleave semantic parsing actions with syntactic
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parsing actions. Google’s SLING (Ringgaard et al.,
2017) applies a custom-designed transition scheme
for frame-based parsing and coreference resolution.
Vilares and Gómez-Rodríguez (2018) develop a
transition system for Abstract Meaning Representa-
tion parsing, and TUPA (Hershcovich et al., 2017)
does the same for Universal Conceptual Cognitive
Annotation. Both can handle discontinuous or reen-
trant graph structures. Most directly relevant to
DeepCx is Choi and Palmer’s (2011b) work, which
defines a novel transition system for PropBank pars-
ing. Our similar scheme for parsing causal con-
structions builds on this one, extending it for cases
where the spans are not contiguous.

3 The SCL task for causal language

An SCL task closely resembles an SSP task, except
that the triggers can be complex constructions. As a
corollary, the arguments can also be discontinuous
and/or overlap with each other or the trigger.

In the case of causal language, we define the
task as reproducing the core elements of the BE-
CAUSE scheme: connective, cause, effect, and
means spans. Following Dunietz et al. (2017a),
we split the task into two parts: discovering causal
connectives (connective discovery) and delimit-
ing and labeling the arguments (argument ID).
Producing the additional metadata that BECAUSE
records for each instance is left to future work.

Each span is defined as a set of tokens. This
excludes sublexical constructions; we return to this
limitation in §8.

4 Transition system

Like Choi and Palmer, DeepCx’s transition system
first searches for a connective word, and once it has
found one, compares it with each word to the right
and to the left. In each comparison, it selects a tran-
sition that labels the word as unrelated to the cur-
rent connective word, as another connective word
(or FRAGMENT), or as a member of some argument
span(s). Once all words have been compared to the
current connective, the system advances to the next
possible initial connective word. In the worst case,
then, each sentence takes O(n2) transitions.

Table 2 gives the full set of transitions. The tran-
sitions act on a state tuple (�1, �2, a, �3, �4, s, A).
a is the index of the current possible “connective
anchor”—the word being tentatively treated as the
initial (i.e., leftmost) word of a connective. �1 is
the list of word indices to a’s left that have not

yet been compared with it, and �2 represents the
words to the left of a that have already been com-
pared. Likewise, �3 and �4 contain the indices of
compared and uncompared words, respectively, to
the right. Thus, words move from �1 to �2 and
from �4 to �3 as they are compared with a. s is a
boolean indicating whether we are currently com-
paring words in the sentence to a, i.e., whether
a has been confirmed as a connective anchor. A
is a set of partially-constructed causal language
instances. Each instance consists of a set of con-
nective word indices plus one set of argument word
indices for each argument type. For formal descrip-
tion, we represent A as a set of labeled arcs. The
head a of each arc is the connective anchor of a
causal language instance i (an arbitrary identifier).
The label of the arc indicates what role the tail t
plays with respect to i: Cause, Effect, or Means if t
is a member of the corresponding argument span,
and Frag if t is a connective fragment other than a.

As the algorithm scans from left to right, it as-
signs a to each word index in turn. If it decides a
is not a connective anchor, it issues a NO-CONN
and moves on. If a is deemed to start a connective,
a new instance is initialized with a NEW-CONN.
DeepCx proceeds to compare a with each word to
its left, in right-to-left order (i.e., starting from
the closest word), then each word to the right
(in left-to-right order). For each comparison, it
issues a LEFT/RIGHT-ARC, CONN-FRAG, or NO-
ARC, depending on whether the comparison word
is deemed part of an argument, part of the connec-
tive, or neither. For simplicity, we always consider
the leftmost connective word to anchor the connec-
tive, so all CONN-FRAG transitions occur between
a connective word and a word to its right. After
all words have been compared with a (i.e., once �1

and �4 are empty), an automatic SHIFT transition
advances a to the next connective anchor candidate.

The initial state is: �1 = �2 = �3 = [ ], a = 1,
�4 = [w1 . . wn], s = f, and A = ?, where wi

is the ith word in the sentence. The algorithm
terminates when a = n and either �3 = �4 = [ ] or
s is false—i.e., when no words remain to a’s right,
and either a is not a connective anchor or all words
in the sentence have been compared with it. An
example transition sequence is shown in Table 3.

Some transitions have preconditions, shown in-
line Table 2 in a smaller font. In addition, several
transitions have constraints on their ordering to en-
sure semantic well-formedness. These constraints
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Transition schema Effect and preconditions

NO-CONN (�1, �2= [ ], a, �3= [ ], [w | �4], s=f, A) ) ([�1 | a], �2, w, �3, �4, s, A)

NEW-CONN (�1, �2, a, �3, �4, s=f, A) ) (�1, �2, a, �3, �4, t, A)

NO-ARC-LEFT ([�1 | w], �2, a, �3= [ ], �4, s=t, A) ) (�1, [w | �2], a, �3, �4, s, A)

NO-ARC-RIGHT (�1= [ ], �2, a, �3, [w | �4], s=t, A) ) (�1, �2, a, [�3 | w], �4, s, A)

LEFT-ARCx ([�1 | w], �2, a, �3= [ ], �4, s=t, A) ) (�1, [w | �2], a, �3, �4, s, A [ {a
xi
//w})

RIGHT-ARCx (�1= [ ], �2, a, �3, [w | �4], s=t, A) ) (�1, �2, a, [�3 | w], �4, s, A [ {a
xi
//w})

CONN-FRAG (�1= [ ], �2, a 6= w, �3, [w | �4], s=t, A) ) (�1, �2, a, �3, [w | �4], s=t, A [ {a
FRAGi
//w})

SHIFT (�1= [ ], �2, a, [w|�3], �4= [ ], s=t, A) ) (�2, [ ], w, [ ], �3, f, A)

SPLIT See text (§4.1)

Table 2: The DeepCx transitions. Pre- and post-transition states are expressed as tuples (�1, �2, a, �3, �4, s, A). x
stands for Cause, Effect, Means, or any combination thereof. i indicates the instance under construction; thus, xi

denotes an argument or fragment arc of instance i. Elements changed by the transition are bolded. Preconditions
(small font in the starting states) enforce a consistent transition order by delaying rightward actions until all leftward
actions are completed.

Transition �1 �2 a �3 �4 s A

– [ ] [ ] 1 [ ] [1 . . 7] f ?

NO-CONN [1] [ ] 2 [ ] [2 . .7] f ?

NO-CONN [1,2] [ ] 3 [ ] [3 . .7] f ?

NO-CONN [1 . .3] [ ] 4 [ ] [4 . .7] f ?

NEW-CONN [1 . . 3] [ ] 4 [ ] [4 . . 7] t {because4 (•, •)}

LEFT-ARCEffect [1,2] [3] 4 [ ] [4 . . 7] t {because4 (moved3, •)}

LEFT-ARCEffect [1] [2,3] 4 [ ] [4 . . 7] t {because4 (they2 moved3, •)}

NO-ARC-LEFT [ ] [1 . .3] 4 [ ] [4 . . 7] t {because4 (they2 moved3, •)}

NO-ARC-RIGHT [ ] [1 . . 3] 4 [4] [5 . .7] t {because4 (they2 moved3, •)}

CONN-FRAG [ ] [1 . . 3] 4 [4,5] [6,7] t {because4/of5 (they2 moved3, •)}

RIGHT-ARCCause [ ] [1 . . 3] 4 [4 . .6] [7] t
�
because4/of5 (they2 moved3, the6)

 

RIGHT-ARCCause [ ] [1 . . 3] 4 [4 . .7] [ ] t
�
because4/of5 (they2 moved3, the6 schools7)

 

SHIFT [1 . .4] [ ] 5 [ ] [5 . .7] f
�
because4/of5 (they2 moved3, the6 schools7)

 

NO-CONN [1 . .5] [ ] 6 [ ] [6,7] f
�
because4/of5 (they2 moved3, the6 schools7)

 

NO-CONN [1 . .6] [ ] 7 [ ] [7] f
�
because4/of5 (they2 moved3, the6 schools7)

 

NO-CONN – – – – – – –

Table 3: The sequence of oracle transitions and states for Well1, they2 moved3 because4 of5 the6 schools7. Elements
altered by the transition are bolded. Causal language instances are notated as connective(Cause, Effect).

are listed in the supplementary material (§A.3).

4.1 SPLIT transitions

In BECAUSE, a word from one connective can also
be part of another connective. This most often oc-
curs with conjoined arguments where portions of
the connective are repeated. For example, in it’ll
take luck for us to succeed or even to survive, suc-
ceed and survive are considered Effects of two dif-
ferent causal instances whose connectives share the
for. The SPLIT action handles such cases by com-
pleting the current causal language instance and
starting a new one, copying all connective and ar-
gument words up to the repeated connective word.

4.2 Differences from Choi and Palmer
Our scheme differs fourfold from Choi and Palmer:

1. They assume oracle PropBank predicates.
DeepCx, lacking oracle connectives, starts new
causal language instances with NEW-CONNs,
and adds s to the state to track whether such a
transition has occurred.

2. Unlike PropBank, BECAUSE allows a connec-
tive to include multiple content words. Our sys-
tem therefore adds a CONN-FRAG transition.

3. A connective word can be part of an argument—
e.g., in enough food to live, the connective and
Cause both include enough. DeepCx therefore
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compares each connective anchor with itself.
(This is why for each new connective anchor a,
�4 starts out with a as its first element. It is also
why the CONN-FRAG action does not advance to
the next potential argument word: a connective
fragment can be part of an argument.)

4. PropBank never posits two predicates for a sin-
gle verb, but in BECAUSE, multiple connectives
can share a connective word. This case is han-
dled by the new SPLIT transition (see §4.1).

5 DeepCx neural network architecture

Given the experience of previous shallow seman-
tic parsers (e.g., Roth, 2016), we expected perfor-
mance to depend heavily on syntactic information.
We therefore built our system on top of Dyer et al.’s
LSTM parser, allowing us to directly incorporate
the parser’s embeddings. For example, a token’s
embedding can incorporate the parser’s internal
embedding of the subtree rooted at that token.

At each step, the network computes a high-di-
mensional state vector summarizing the internal
data structures. That state feeds into a k-dimen-
sional output layer, where k is the number of transi-
tion types seen in training. Each vector component
is the predicted log probability that the correspond-
ing transition should come next. At test time, the
highest-scoring predicted action is taken; in train-
ing, gold-standard actions are executed instead.

Figure 1 shows a schematic of the neural network
structure. We elaborate on its components below.

5.1 Final state and prediction layers
Beyond �1�4, the inputs to the state vector are:

• h, the history of actions so far for the sentence.

• d, the path in the dependency parse tree between
anchor a and the token being compared with it.

• The lists of tokens making up the connective (o),
Cause (c), Effect (e), and Means (m) spans for
the causal instance currently under construction.

The parser state s at each timestep is defined as:

s = max {0,Ws [�1; �2;a; �3; �4;

o; c; e;m;d;h] + bs} ,

where bs is a bias term, W is a learned parameter
matrix, and any other bold variable x indicates an
embedding of a variable x (described in §5.2). max
indicates a component-wise ReLU.

The predicted probability of each transition T is
computed from s using a softmax unit:

p (T | s) = exp
⇣
g>

T s + qT

⌘
/z,

where gT is a learned embedding of T , qT is a bias
for T , and z is a normalizing constant.

5.2 Embedding the inputs to the state
5.2.1 Embedding a token
Following Dyer et al. (2015), each token t is repre-
sented as a concatenation of three vector inputs:

• w̃t, a fixed word embedding for t’s surface form.

• wt, a small additional word embedding of t,
which allows the network to learn task-specific
representations of words related to causality.
This is the only component of a token’s repre-
sentation that is trained specifically for this task
(i.e., that does not use an embedding from a pre-
trained language model or a syntactic parsing
model).

• pt, the LSTM parser’s internal embedding of the
POS tag it assigned to t in preprocessing.

The concatenation is passed through a linear
transformation V (with a bias bt) and a ReLU:

t = max {0,V [w̃t;wt;pt] + bt}

5.2.2 Embedding a list of tokens
For each input to the final state vector that is a list
of tokens, we add an LSTM cell to the network.

For the spans of the instance under construction—
i.e., the connective, Cause, Effect, and Means
spans—embedding token lists is straightforward:
whenever a transition adds a token to one of these
lists, that token’s embedding is added to the cor-
responding LSTM’s input sequence. The LSTM’s
updated output is then used for all subsequent ac-
tions until another transition modifies the span.

The procedure for embedding the �’s is more in-
volved. As transitions are taken, tokens may need
to be moved between lists—e.g., the argument to-
ken is moved from �1 to �2 after a LEFT-ARC tran-
sition, and the connective anchor token is moved
from �4 to �1 on a NO-CONN.

We implement these transfers using stack
LSTMs. Initially, all tokens’ embeddings are input
to �4, but in reverse order, so that the leftmost to-
ken is added last. Then, whenever �4’s leftmost to-
ken t is to be moved—i.e., on a SHIFT, NO-CONN,
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Figure 1: Schematic of the overall neural network architecture. Each lone box represents a vector. Stacked boxes
represent LSTMs: at any given time, the state is a single vector, but that state encodes a series of inputs.

RIGHT-ARC, or NO-ARC-RIGHT—the �4 LSTM is
rewound one step to its state before t was added.
Storing �4 in reverse order offers the added benefit
of tokens closer to the anchor holding greater sway,
since LSTMs favor recently added inputs.

�1 and �2 are a mirror image of �4 and �3, re-
spectively. Tokens are added to �1 on either a
SHIFT or a NO-CONN. Thus, the �1 LSTM ends up
representing an in-order list of tokens up to the cur-
rent a. If a is then flagged as a connective anchor,
tokens to its left are moved from �1 to �2 as they
are compared. The rightmost token t in �1 is the
first to be compared, so the �1 LSTM is rewound
to remove t. t’s embedding is then added to �2,
leaving �2 with a reversed list of compared tokens.

5.2.3 Embedding a dependency path
The syntactic relationship between the connective
anchor a and a candidate argument word t is given
to the network as a DEPENDENCY PATH—the series
of labels on the dependency arcs between a and t.
For instance, consider the dependency parse below:

I worry because I care
nsubj

advcl

nsubj
mark

Here, the path from the first I to because would

be # nsubj
oo # advcl

// # mark
//#, where the blank

nodes take the place of the words I, worry, care,
and because in the dependency graph.

To embed a dependency path, we again use the
output of an LSTM cell, where each input is an
embedding of a dependency label: for a label x, we
directly use the LSTM parser’s embedding for the

syntactic parse action LEFT-ARC(x), if available,
or RIGHT-ARC(x) otherwise. We add one extra bit
to each arc’s embedding to indicate whether it was
traversed forward or backward in this path.1

5.2.4 Embedding the action history
During training, DeepCx learns vector representa-
tions of each action. To embed the action history,
these action embeddings are fed as inputs into yet
another LSTM cell. This LSTM’s output is the
embedding of the history thus far.

5.3 Implementation details

DeepCx is implemented using a refactored version
of the LSTM parser codebase that performs iden-
tically to the original.2 The neural network frame-
work, which also underlies the LSTM parser, is an
early version of DyNet (Neubig et al., 2017). The
LSTM parser model is pretrained on the usual Penn
Treebank (Marcus et al., 1994) sections (training:
02–21; development: 22).

For w̃, we use the same “structured skip n-
gram” word embeddings as the LSTM parser. See
Dyer et al. (2015) for details about the embedding
approach, hyperparameters, and training corpora.
DeepCx gives no special treatment to out-of-vocab-
ulary items, other than using the 0 vector for words
not included in the pretrained embeddings.

1This embedding is similar to that proposed by Roth and
Lapata (2016). However, their dependency paths include the
words encountered along the way and their POS tags. We
experimented with adding these elements to our dependency
paths, but found that they consistently reduced performance.

2https://github.com/clab/lstm-parser/
tree/easy-to-use.
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The code for DeepCx is available on GitHub.3

5.3.1 Dimensionalities
The pretrained LSTM parser model uses the same
dimensionalities as the original LSTM parser.

Token embeddings are 48-dimensional; w is 10-
dimensional. The remaining DeepCx neural net-
work dimensionalities used in the experiments re-
ported below are shown in Figure 1. All LSTM
cells use two layers of LSTMs before the final
output. These values were chosen as an intuitive
balance between values that worked well for other
projects and what we could reasonably expect to
train with the amount of data we have. Early exper-
iments showed little sensitivity to dimensionality.

6 Experiments

6.1 Experimental setup and training setup
Due to the small corpus size, all experiments use
20-fold cross-validation, split by sentence. Within
each fold, the available data—i.e., everything but
the fold’s held-out test set—is randomized, then
split into 80% training and 20% development. Af-
ter each sentence has been fed through the network,
taking gold-standard transitions (see §5), backprop-
agation is run on all predictions for the sentence.
Development set performance is evaluated every
2500 sentences. After each epoch, the training and
development sets are re-randomized and re-split.4

Training ends when either the connective-level F1

score5 on the development data hits 0.999 or 85%
of the past five epochs’ evaluations have yielded
lower scores than their immediate predecessors.
All systems used the same folds. See the supple-
mentary materials (§A.4) for training parameters.

6.2 Network variants tested in experiments
Ablation studies In addition to the vanilla con-
figuration described above, we examined which
non-essential model components contribute to per-
formance. We were particularly interested in the
effects of parse information. We tested eliminating
the following components of the DeepCx model:
(1) w, the task-specific word embeddings, which

3https://github.com/duncanka/
lstm-causality-tagger.

4Reusing the development data means the network can end
up memorizing. However, early experiments with dedicated
development data showed lower scores, presumably because
too much training data was lost from each fold. Of course, our
final evaluation is still performed on the fold’s held-out data.

5For the experiment with oracle connectives, action-level
prediction accuracy is used instead of F1 score.

could contribute to overfitting; (2) a, the action
history; and (3) d, the parse path between the con-
nective anchor and the current comparison token.

Argument identification alone DeepCx has no
separate argument tagging phase, so we tested per-
formance on the subtask of argument identification
by providing DeepCx with oracle transitions only
for actions that act on the connective—i.e., NO-
CONN, NEW-CONN, CONN-FRAG, and SPLIT. The
system was then responsible for deciding between
NO-ARC, LEFT-ARC, and RIGHT-ARC transitions.

Restricting generalization One of the strengths
of the transition-based approach is its ability to rec-
ognize previously unseen forms of causal language
that resemble known connectives semantically and/
or linguistically. Given our relatively small dataset,
however, it seemed possible that the system would
not have enough data to make meaningful gener-
alizations. We therefore tested a variant where
DeepCx would refuse to allow a test-time NEW-
CONN or CONN-FRAG transition unless adding the
putative connective word would match the initial
word sequence of some connective seen in training.

6.3 Evaluation metrics
For connective discovery we measure precision,
recall, and F1, requiring connectives to match ex-
actly. For argument ID, we split metrics for Causes
and Effects (we omit Means, as there are too few in
the corpus to evaluate reliably). For each argument
type, we report F1 of connective/argument pairs,
where matches must match exactly; F1 of connec-
tive/argument pairs, where half of the larger span’s
tokens must match; and the average Jaccard index
for gold vs. predicted spans, given a correct con-
nective. Punctuation is excluded from evaluation.

Jaccard indices convey how close argument tag-
ging is when it does not match exactly. This metric
is computed only over true positive connectives,
as argument overlap cannot be evaluated automati-
cally for false positives. Thus, Jaccard indices are
not directly comparable between systems—they
represent how well argument ID works given the
previous stage, rather than in an absolute sense.

7 Results and analysis

Results are shown in Table 4. For comparison, we
also report on the best Causeway configurations.

All significance tests below are paired, two-
tailed t-tests on the results from all 20 folds.
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Connectives Causes Effects
System variant P R F1 F1 F1@.5 J F1 F1@.5 J

Best Causeway-S 62.8 46.2 53.1 37.9 42.5 81.0 24.8 38.7 73.3
Best Causeway-L 63.4 45.1 52.5 38.8 43.5 83.7 30.4 40.7 78.4

Vanilla DeepCx 63.4 55.8 59.2 43.9 50.6 83.0 41.0 51.7 82.2
No w 62.7 56.2 59.1 42.8 49.0 81.9 41.8 51.7 82.5
No d 62.7 56.5 59.2 42.7 49.1 80.9 39.6 51.1 80.5
No a 61.3 54.1 57.3 40.3 48.3 81.6 36.9 50.4 81.1

No novel connectives 65.4 56.5 60.5 44.7 51.0 82.6 42.8 52.6 82.1
Oracle connectives – – – 73.5 80.9 79.7 67.8 82.8 80.7

Table 4: Results for all variants of DeepCx tested. As before, J indicates Jaccard index. For P /R/F1 scores, the
best non-oracle results are bolded, and the best results within each of the top two sections are italicized.

7.1 Overall performance
The results show the DeepCx transition system to
be a promising approach for SCL.

The vanilla configuration unmistakably eclipses
Causeway at connective discovery with a margin of
6.1 F1 points, driven primarily by recall. Both F1

scores have high standard deviations across folds
(3.6–4.7 points), but the scores covary; some folds
are simply harder. DeepCx usually leads Cause-
way by at least 5 points, making the difference
highly statistically significant (p ⌧ 0.001). The
gap comes primarily from recall, where DeepCx
averages 9.6–10.7 points higher than Causeway. 6

On end-to-end argument identification, DeepCx
again outperforms Causeway, particularly on recall,
with a 5–6-point gap in F1. The Jaccard indices for
Causes and Effects are in the low 80’s, indicating
extensive overlap with gold-standard spans. They
are on par with Causeway for Causes and higher for
Effects, despite the fact that DeepCx’s higher recall
gives it more chances to be docked for mismatches.

7.2 Argument identification alone
Argument ID scores remain high when oracle con-
nectives are provided. Naturally, the end-to-end
argument scores improve dramatically compared
to non-oracle connectives, but the more important
question is what fraction of the previous errors re-
main when connective discovery is no longer a
source of error. With oracle connectives, DeepCx
achieves 73.5% F1 on Causes and 67.8% on Effects,
implying that the vanilla configuration’s argument
error was split roughly half and half between con-
nective discovery failures and argument ID failures.

However, the F1 metrics reflect exact span
matches; it is counted as a mismatch if even a

6Recall should perhaps have even been higher: in at least
three cases, DeepCx was penalized for correctly flagging con-
nectives that had been missed by annotators.

single word is off. Because in this experiment the
system’s entire task is to tag arguments, the Jac-
card indices give an absolute measure of overlap
between predicted and gold argument spans. By
that measure, the neural network’s treatment of ar-
gument identification transitions looks quite robust.
Jaccard indices do drop by a few points compared
to non-oracle connectives, as expected: with the
oracle, arguments are evaluated for every gold-stan-
dard instance, including more difficult ones that the
vanilla configuration misses. But despite the more
exhaustive assessment, DeepCx maintains Jaccard
indices of ⇠80% for Causes and Effects.

7.3 Model ablation studies
No pieces of the model beyond the bare essentials
improved connective scores. Removing these com-
ponents did marginally lower argument ID scores,
but few differences were statistically significant.

The meager effects of parse paths came as a
surprise; indeed, our reason for building on the
LSTM parser was to lean on its parse embeddings.
That these paths made little difference suggests that
the bulk of the information they provide is available
in some isomorphic form from simpler inputs.

7.4 Constraining to known connectives
Constraining DeepCx to known connectives yields
an interesting tradeoff. On the one hand, it boosts
precision (p < 0.036) and raises F1 slightly (p <
0.09). Inspecting the vanilla system’s outputs ac-
centuates the risks of letting it run wild inventing
connectives: its odder proposals included an unfair
effort to, is insanity, eight, and the dollar sign.

On the other hand, some generalizations were
surprisingly perceptive. For instance, the phrase
allowing states greater opportunity to regulate was
not marked by annotators because allowing here
seems to mean “providing.” But DeepCx proposed
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allowing opportunity to as a connective—a plausi-
ble candidate for annotation. Elsewhere DeepCx
tagged catalyst for and fuel (as in fueled skepti-
cism), both arguably annotator omissions.

Ultimately, then, whether to permit novel con-
nectives depends on the user’s prioritization of pre-
cision, recall, and discovery.

8 What’s needed for other constructions
and domains?

Although the DeepCx transitions were designed for
BECAUSE, it would be straightforward, given ap-
propriate corpora, to extend the transition scheme
and model structure to arbitrary frames and role la-
bels as in PropBank and FrameNet. The scheme’s
arc transitions would need variants for each possi-
ble role type, as is standard in existing transition-
based SSP (e.g., SLING, Choi and Palmer). Like-
wise, NEW-CONN could be changed to NEW-
CONN(frame); the space of arc transitions for con-
structing the rest of that instance could then be
pruned to those relevant to the frame. As for the
tagger state, there are several straightforward ways
to modify it for open-ended role and frame labels.
One option is to represent each instance’s argu-
ments as a list of hrole label, list of tokensi tuples,
and to add a frame label variable that is embedded
as part of the state. Alternatively, we could fol-
low SLING in providing the tagger a list of h frame
label, role label, tokeni tuples.

Applying SCL to domains beyond causality
would be particularly useful for relations like com-
parison and concession (see Table 1), where com-
plex constructions abound. But as Fillmore et al.
(2012) observe, many frames possess the odd non-
lexical-unit trigger. For example, the Motion frame
can be evoked by the “verb-way” construction
(sang our way across Europe), and Measurement
by the abstract pattern hnumberi huniti hnouni (as
in twelve-inch-thick). Expanding SSP to cover con-
structions would allow parsing these cases, which
are individually rare but collectively form a fat tail
of frame instances.

DeepCx already covers most constructional
quirks that interfere with SSP, including discontin-
uous trigger and argument spans, overlaps between
arguments, overlaps between trigger words and
arguments, and overlaps between triggers. Still,
several extensions might be needed for the full
gamut of arbitrary constructions. Most notably,
our scheme operates on words, but plenty of con-

structions are sub-lexical (e.g., the comparative -er).
One solution would be to operate on morphemes in-
stead. Unfortunately, tagging would then be subject
to errors in morphological analysis, and morpheme-
or character-based embeddings would be needed.
A simpler but less elegant solution would be to
tag the entire word containing the morpheme (e.g.,
bigger) as part of the construction.

A second challenge is constructions with no lex-
ical trigger, as in I can’t come; I have rehearsal.
The simplest fix would be to add a JUXT transition
as a sibling of NEW-CONN. This transition would
anchor a new relation instance at the boundary be-
tween the words currently being compared, indi-
cating that the mere juxtaposition of two argument
spans conveys a relation between them.

Cross-sentential constructions—e.g., discourse
connectives whose arguments can be in another
sentence—pose a third challenge: our sentence-
oriented scheme ignores sentential juxtaposition
and cross-sentential grammatical relations as con-
struction possibilities. While it would not be too
difficult to alter the scheme to allow, say, argu-
ments in the previous k sentences, it might make
randomized training more difficult.

Finally, SPLITs make strong assumptions about
how two connectives sharing words will interact.
Constructions violating these assumptions may re-
quire more drastic surgery on the scheme.

9 Contributions and takeaways

This paper has introduced surface construction la-
beling as an expansion of shallow semantic parsing.
It has also presented DeepCx, a neural transition
framework unifying connective discovery and argu-
ment ID for causal constructions. DeepCx achieves
strong performance on parsing such constructions.
Although the transition system targets causal lan-
guage, its flexibility makes it promising for other
domains, as well. We hope DeepCx will inspire
further work on SCL. This includes applying more
sophisticated tagging techniques such as bidirec-
tional LSTMs, attention, and dynamic oracles, but
most importantly developing new data and tasks to
which the approach can be applied.
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Abstract
WikiSQL is a newly released dataset for study-
ing the natural language sequence to SQL
translation problem. The SQL queries in Wik-
iSQL are simple: Each involves one relation
and does not have any join operation. De-
spite of its simplicity, none of the publicly
reported structured query generation models
can achieve an accuracy beyond 62%, which
is still far from enough for practical use. In
this paper, we ask two questions, “Why is the
accuracy still low for such simple queries?”
and “What does it take to achieve 100% ac-
curacy on WikiSQL?” To limit the scope of
our study, we focus on the WHERE clause in
SQL. The answers will help us gain insights
about the directions we should explore in or-
der to further improve the translation accuracy.
We will then investigate alternative solutions
to realize the potential ceiling performance on
WikiSQL. Our proposed solution can reach up
to 88.6% condition accuracy on the WikiSQL
dataset.

1 Introduction

A large amount of world’s data is stored in re-
lational databases, which require users to master
structured query languages such as SQL to query
data. It might not be convenient for many users
who do not have programming background. To-
wards removing this huge barrier between non-
expert users and data, building reliable natural lan-
guage interfaces to databases has been a long-
standing open problem (Woods, 1973; Androut-
sopoulos et al., 1995; Popescu et al., 2003).

Recently, there is a renewed interest in natu-
ral language interfaces to databases due to the
advance in deep learning and the new release
of large-scale annotated data such as WikiSQL
(Zhong et al., 2017). WikiSQL includes a large
collection of questions and their corresponding
SQL queries. While the queries in WikiSQL are

quite simple: Each involves one relation and does
not have join operations, none of the publicly
reported SQL generation models (Zhong et al.,
2017; Xu et al.) can achieve an accuracy beyond
62%, which is far from enough for practical use.
It is not clear yet what level of parsing capabilities
are needed to achieve high performance, ideally
close to 100% accuracy, on this task.

In this paper, we aim to figure out the level
of language understanding required to perform
well on the WikiSQL task. Specifically, we fo-
cus on the WHERE clause generation, which is the
most challenging part of this task as reported in
(Xu et al.): The accuracies for other clauses like
SELECT and AGGREGATE are over 90% whereas
the accuracy for WHERE is only around 70%. We
aim to conduct the following two studies: (i) Un-
derstanding the difficulties of the task and (ii) In-
vestigating alternative solutions to realize the po-
tential ceiling performance.

To this end, we first conduct a careful analysis
on a subset of the WikiSQL data to identify the
main challenges. This analysis leads to two im-
portant observations: (i) ⇠17% of the questions
are either too ambiguous (hard) or require exter-
nal knowledge to answer, (ii) ⇠68% of the ques-
tions can be answered by exact match or simple
paraphrasing, however we surprisingly find that
the current best system (Xu et al.) can only get
less than 80% accuracy on such simple questions.
Deeper analysis on the second observation leads
to the conclusion that most of the errors in this
category are due to wrongly generated condition
values as shown by the example in Figure 1. One
can resort to soft/hard look-up based approaches
over table content as in previous work (Mou et al.,
2017; Iyer et al., 2017) or user interaction (which
is also applicable to the first observation) to more
accurately recognize the entities in questions for
better condition value generation.
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Which award has the category of the best 
direction of a musical?

Table Question:

1986 Tony Award Best Musical Best Musical Nominated

1986 Tony Award Best Direction of a Musical Bob Fosse Nominated

1986 Tony Award Best Choreography Bob Fosse Won

1986 Drama Desk 
Award

Outstanding Actor in a 
Musical

Cleavant 
Derricks Nominated

1986 Drama Desk 
Award

Outstanding Director of a 
Musical Bob Fosse Nominated

1986 Drama Desk 
Award Outstanding Choreography Bob Fosse Won

Correct SQL:
SELECT award
WHERE category = best direction of a musical

SQLNet Prediction:
SELECT award
WHERE category = the best direction award a musical

Figure 1: An example from WikiSQL. SQLNet makes a wrong prediction on the condition value of the WHERE clause.

As a second contribution, we propose to use ta-
ble content as additional data source to address
the aforementioned wrongly generated condition
value problem, and investigate solutions to real-
ize the potential performance limit (upper bound)
on WikiSQL. Note that neither Seq2SQL (Zhong
et al., 2017) nor SQLNet (Xu et al.) utilize table
content. However, we show that it is not straight-
forward to achieve a high accuracy even in the sce-
nario where table content is available as an op-
timal external knowledge through our model ab-
lation results and error analysis. We demonstrate
that our proposed solutions can reach up to 88.6%
WHERE condition accuracy, almost matching the
performance on SELECT and AGGREGATE.

2 Background

The WikiSQL dataset introduced in (Zhong et al.,
2017) is created from a large number of tables ex-
tracted from Wikipedia, employing Amazon Me-
chanical Turk for annotation. An example from
the dataset is provided in Figure 1: It consists of a
table t, a SQL query s, and its corresponding nat-
ural language question q. There can be multiple
conditions in the WHERE clause of a SQL query,
each of which consists of a table column, an oper-
ator (=, <, >, etc.), and a condition value.

Instead of asking annotators to write SQL
queries for given questions and tables, the authors
(Zhong et al., 2017) facilitate the annotation pro-
cess by paraphrasing generated questions. This
raises concerns that the resulting dataset is limited
to only simple queries. We acknowledge this con-
cern. However, it is still a large, valuable dataset
towards the goal of building ultimate natural lan-
guage interfaces to databases. If the existing or
newly proposed solutions can not solve this task
with high accuracy, how can we advance to more
complicated ones? Any insight and solution to this
task can help us build more advanced SQL synthe-
sis algorithms in future.

3 WikiSQL Data Analysis

In this section, we aim to deliver a thorough anal-
ysis of the WikiSQL dataset. (Zhong et al., 2017;
Xu et al.) made an assumption that only table
schema is available to the model, and table content
(i.e., table cell values) is not available. We want to
answer the following question: As the dataset cre-
ation process involves several heuristics and pre-
defined templates to simplify the annotation task,
what kind of capabilities does it still require to an-
swer the resulting questions successfully? To this
end, we randomly sample 100 examples from the
development set of WikiSQL for analysis.

3.1 Categorization

We manually categorize these 100 examples in
terms of the capability needed to predict the cor-
rect WHERE clause as described below. We also
provide illustrative examples for each category in
Table 1. If an example belongs to multiple cate-
gories, we include it in all the categories that ap-
ply. In Table 2, we present the break down of the
examples over these categories.
Exact match. For each condition in the SQL
query, its column name appears in the question
around the neighborhood of its condition value
with exactly the same surface form.
Paraphrase. For at least one of the conditions in
the SQL query, its column name is paraphrased in
the question, hence the inference requires certain
paraphrasing capabilities.
Partial clue. For at least one of the conditions
in the SQL query, its column name is not explic-
itly mentioned in the question, not even in para-
phrased form. However, there are still partial se-
mantic clues for inference.
External knowledge. For at least one of the con-
ditions in the SQL query, there is no clue in the
question to infer its column name. Inferring this
column name from the question requires exter-
nal knowledge regarding the type of its condition
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Category Question Pseudo SQL Query Table Columns

EXACT MATCH In what state was the electorate
fowler?

SELECT state
WHERE electorate EQL fowler

member, party, elec-
torate, state, term in of-
fice

PARAPHRASE What was the date of the game
after week 5 against the Hous-
ton Oilers?

SELECT date
WHERE week GT 5
AND opponent EQL houston oilers

week, date, opponent,
result, attendance

PARTIAL CLUE Who had the most points in the
game on March 7?

SELECT high points
WHERE date EQL march 7

game, date, team,
score, high points, ...

EXTERNAL-
KNOWLEDGE

Name the callback date for
amway arena

SELECT callback date
WHERE audition venue EQL amway arena

episode air data, au-
dition city, audition
venue, callback date, ...

AMBIGUOUS List the branding for krca-tv SELECT branding
WHERE callsign EQL krca-tv

branding, callsign,
channel, power (kw), ...

Table 1: Representative examples for each category. EQL and GT correspond to the = and > operators. Highlighted parts of
the question and the pseudo SQL query are provided to indicate clues for the category.

Category # Questions Percentage
EXACT MATCH 59 54.1%
PARAPHRASE 16 14.7%
PARTIAL CLUE 15 13.8%
EXTERNAL KNOWLEDGE 11 10.1%
AMBIGUOUS 8 7.3%

Table 2: Number of examples in different categories.
Category Seq2set+CA Seq2set+CA+WE
EXACT MATCH 67.8% 72.9%
PARAPHRASE 75.0% 68.8%
PARTIAL CLUE 80.0% 80.0%
EXTERNAL KNOWLEDGE 54.6% 45.5%
AMBIGUOUS 37.5% 37.5%
TOTAL 67.0% 67.9%

Table 3: Accuracy breakdown of SQLNet.

value that can be detected from the question.
Ambiguous. For this category, even with the ex-
ternal knowledge it is almost impossible (even for
humans) to confidently infer the correct condition
column from the question.

3.2 Performance Breakdown of SQLNet

In Table 3, we show the performance breakdown
of SQLNet (Xu et al.), the state-of-the-art model
for WikiSQL, on the selected 100 examples. It
has two variants with comparable performance, so
we show both of them. As expected, both variants
of SQLNet perform poorly on examples that are
either too ambiguous or require external knowl-
edge. However, it is surprising that the accuracy
on examples that need only exact matching or sim-
ple paraphrasing is also not very high, especially
considering the paraphrasing capabilities of deep
learning models gained from distributed represen-
tations. We find that most of these errors are
due to wrongly generated condition values as il-
lustrated in Figure 1, where SQLNet fails to even

produce a valid phrase. This is indeed important
prior knowledge that can be effectively outsourced
by resorting to soft/hard look-up based approaches
(Mou et al., 2017; Iyer et al., 2017) instead of fully
relying on models to precisely generate it.

The above observations exhibit an opportunity
to incorporate external knowledge in the condition
generation process. We opt to use the table content
as the knowledge source to address the wrong con-
dition value problem, which is not used in the ex-
isting models (Zhong et al., 2017; Xu et al.). Next
we will show that it is not trivial to leverage table
content.

4 Our Solutions

As motivated in the previous sections, our main
objective here is to investigate solutions to re-
alize the potential ceiling performance on Wik-
iSQL when using the table content as an additional
knowledge source. We first describe an attentional
RNN-based model that serves as our baseline, and
propose several variants for WHERE clause gener-
ation, each addressing a specific weakness.

4.1 Task Formulation

Given a question q and a table t, our objective is
to generate the WHERE clause of the SQL query
corresponding to the question. In addition, we as-
sume that the table t can be queried while gen-
erating the WHERE clause. Each condition in
the WHERE clause is represented as a triple of
(COLUMN,OP,VALUE). SQLNet (Xu et al.) gen-
erates each of these individual components by first
predicting COLUMN and OP, and then generating
VALUE using pointer networks (Vinyals et al.). In
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Figure 2: Model overview.

contrast, we propose a two step approach to tackle
this problem in the reverse way, taking advantage
of the content of table t as additional knowledge:
(i) Generate the condition VALUE from the ques-
tion, and (ii) predict which COLUMN and OP apply
to this VALUE.

4.1.1 Candidate Generation
Our objective in candidate generation process is
to produce a set of (COLUMN,VALUE) pairs from
question q and table t, where VALUE is an n-gram
in q and COLUMN is a column in t. Similar to prior
work (Zhong et al., 2017; Xu et al.), we assume
that VALUE occurs in the question.

We first generate the set N of all n-grams from
the question. Then, for each candidate v 2 N
and each column c 2 t, we query table t to check
whether value v is contained in any row of col-
umn c. Then, we create a set C = {(c, v) : v 2 c}
of (COLUMN,VALUE) pairs as our final candidates
for the WHERE clause. We note here that VALUE
may not necessarily be an n-gram in question
for other potential external knowledge or NLIDB
tasks. In such scenarios, we can alternatively re-
sort to soft look-up based approaches like the ones
proposed in (Mou et al., 2017; Bordes et al., 2015).

4.1.2 Condition Prediction
Given a question q, SQL table t, and a set C of
(COLUMN,VALUE) pair as candidates for WHERE
clause, our objective is to learn two mappings:

fcond :(q, c, v) 7! {0, 1} (1)
fop :(q, c, v) 7! {=, >, <} (2)

where fcond determines whether to select (c, v) 2
C as a condition in WHERE clause and fop pre-
dicts the operator OP 2 {=, >, <}. These two
mappings together can fully determine the final
WHERE clause. Note that there can be multiple
conditions in the WHERE clause.

4.2 Model Overview
We design a neural network model (Figure 2) to
instantiate the mappings fcond and fop. We first
describe the general structure of the model, con-
sisting of the following steps:
Value Context. We define value context as the
context of the value in the question for a given pair
of question q and value v. Later the question en-
coder will condition on this information to make
predictions. We will investigate different options
for value context in Section 4.3. For now, we de-
fine it as a transformation gcontext which maps each
(q, v) to its value context.
Value Abstraction. Inspired by (Yavuz et al.,
2016), we define value abstraction as a trans-
formation gabstract that replaces the surface form
of VALUE in the question with a single token
ENTITY. For the running example in Figure 1,
applying value abstraction maps the question to
“Which award has the category of the ENTITY?”
It further informs the question encoder regarding
the location of the VALUE in the question.
Encoding. Given question q = (q1, q2, . . . , qm),
column c = (c1, c2, . . . , cn), and value v =
(v1, v2, . . . , vk). Before encoding, we first apply
the aforementioned textual transformations and
obtain value context

q0 = (q0
1, q

0
2, . . . , q

0
l) = gcontext � gabstract(q, v).

We first encode all the words into a vector space
using an embedding matrix E 2 R

d⇥|V|, where
V denotes the vocabulary and d is the embedding
dimension. Let q0

i denote the embedding of word
q0
i. To obtain the contextual embeddings, we use a

bi-directional LSTM with hidden unit size h:
�!
hq

i = LSTMq
fwd(
�!
hq

i�1,q
0
i) (3)

 �
hq

i = LSTMq
bwd(
 �
hq

i+1,q
0
i) (4)

with
�!
h 0 = 0 and

 �
h l+1 = 0. We com-

bine forward and backward contextual embed-
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dings for each word in the question to obtain hq
i =

concat(
�!
hq

i,
 �
hq

i) 2 R
2h.

Similarly, we obtain the contextual embedding
hcol

j 2 R
2h for each word cj in column c with

another bi-directional LSTM but shared word em-
bedding matrix.
Distilled Attention. The objective of this step is
to distill the most relevant information from both
the value context and the column for the final pre-
diction. We first compute the attention score of
each word cj 2 c on the words q0

i 2 q0:

S(col!q)
j,i = hcol

j W(col!q)hq
i (5)

P (col!q)
j = softmaxi S(col!q)

j,i (6)

where W(col!q) 2 R
2h⇥2h is a model parameter

to be learned and P (col!q)
j 2 R

l represents an at-
tention probability distribution of word cj over the
words of value context q0. Let P (col!q) 2 R

n⇥l

denote the column-wise concatenation of P (col!q)
j

indicating the unified representation of attention
matrix from column words onto value context.
Similarly, we compute the attention from value
context (question) to column and get P (q!col) 2
R

l⇥n.
The intuition behind distilled attention is to al-

low two-way comparison to clean up the attention
weights. To exemplify this point better, consider
a scenario where a word cj 2 c attends on a word
q0
i 2 q0 with high probability, but q0

i is much more
relevant to another word cj0 2 c. We leverage
reverse attention P (q!col) to distill the attention
weights of column words on the value context. To
this end, we define distilled attention weights as

P = (P (q!col))> � P (col!q) (7)

where P 2 R
n⇥l becomes our final attention

weights and � indicates the Hadamard product.
Value Context and Column Representations.
Having defined how the encodings and attention
weights are computed, we now describe the final
value context and column representations. First,
we compute a value context vector for each word
cj 2 c using the distilled attention weights by

h(q!col)
j =

lX

i=1

Pj,i hq
i (8)

and fuse it with the corresponding column context
vector by

hcond
j = tanh(Wcond

0 hcol
j + Wcond

1 h(q!col)
j ) (9)

hop
j = tanh(Wop

0 hcol
j + Wop

1 h(q!col)
j ) (10)

where Wcond
0 ,Wcond

1 ,Wop
0 ,Wop

1 2 R
2h⇥2h are

trainable model parameters. Finally, we apply a
pooling layer to obtain fixed-size representations

hcond =
1

n

X

j

hcond
j and hop =

1

n

X

j

hop
j (11)

for condition and operator predictions.
Prediction. So far we have obtained two differ-
ent representations hcond 2 R

2h and hop 2 R
2h as

the latent unified representations of question, col-
umn, and value triple (q, c, v). We than use these
representations to make the final predictions:

pcond = softmax(Ucond hcond) 2 R
2 (12)

pop = softmax(Uop hop) 2 R
3 (13)

where Ucond 2 R
2⇥2h and Uop 2 R

3⇥2h are
model parameters. The final prediction mappings
are then defined as:

fcond(q, c, v) = arg max
i

pcond
i (14)

fop(q, c, v) = arg max
i

pop
i (15)

Training Objective. Let T = {(q, c, v, l, o)} de-
note a set of training tuples where l 2 {0, 1} de-
notes whether to include a condition with (c, v) as
(COLUMN,VALUE) pair and if so, o 2 {=, >, <}
indicates which OP to apply. Our loss function
consists of two components:

J(⇥) = Jcond(⇥) + l Jop(⇥) (16)

where Jcond(⇥) = � log(pcond
l ) and Jop(⇥) =

� log(pop
o ) are simply negative log-likelihood

losses for condition and operator predictions.
Inference. We also employ an inference schema
where we make a simple assumption that a con-
dition value v may be a part of only one condi-
tion. Hence, we group candidate {(c, v)} pairs
by value v, and create a candidate column set
Cv : {c : (c, v)} for each unique candidate value
v. Based on the probabilities pcond(c, v) computed
by the trained model, we select the column c 2 Cv

with the maximum probability for each candidate
value v, hence form the set of (COLUMN,VALUE)
pairs to be included in condition this way.

4.3 Model Variants
In this section, we discuss variants of our model
with different choices for the value context. Con-
sider the running example in Figure 1 and assume
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p1’ = smaller than 0.5

p2’ = a large end QPs3

p3’ = has NP

s2

s1

Figure 3: Partial view of parse tree for question “Which ta-
per/ft that has a Large end smaller than 0.5” illustrating parse
tree based value contexts.

hypothetically that award is a candidate condi-
tion column for value best direction of a musi-
cal. When we use the whole question as the value
context, eliminating award from being a condition
COLUMN for this VALUE becomes very challeng-
ing for the model as it is not informed enough re-
garding the finer context of the value.

4.3.1 Base Model
The base model simply uses identity mapping for
value context. More precisely, we use the whole
question as the context for the candidate condition
VALUE. So, gcontext(q, v) = q.

4.3.2 Window-based model
The objective of window-based model is to get
value contexts that can provide more clean con-
text information by leveraging the context window
around the candidate value. In this case, we first
identify the span [start, end] for value v in the
question q. Based on its span and a predetermined
context window size w, we define gcontext(q, v) =
(qstart�w, . . . , qstart, . . . , qend, . . . , qend+w).

4.3.3 Parse tree-based model
We also analyze a simple parse tree based model
that hierarchically split up the value context into
multiple contexts based on the constituency parse
tree of the question. To motivate this, consider the
question in Figure 3. Window-based value con-
text for 0.5 is “a large end smaller than ENTITY”
and candidate table columns to apply this value are
“large end” and “small end”. Based on this con-
text, a model will likely assign a higher probability
to “large end” than “small end”. The syntactic
structure of the question can potentially help re-
duce such ambiguities.

Parse tree-based value contexts. As highlighted
in Figure 3, we use nested phrase-level subtrees
that contain the candidate VALUE. Moreover, to
better inform the model regarding the type of
phrases, we use phrase level constituent tags of
subtrees in two ways: (i) to inform the parent tree
with the type of its subtree containing candidate
VALUE, (ii) to apply a tag-specific affine transfor-
mation on phrase representations. To this end, we
first select the r-lowest subtrees s1 ⇢ s2 ⇢ . . . ⇢
sr of the question’s parse tree containing VALUE
along with their corresponding phrase-level con-
stituency tags1 t1, t2, . . . , tr, respectively. We then
iteratively form multiple values contexts as nested
phrases of p0

1, p
0
2, . . . , p

0
r shown in Figure 3 as fol-

lows: (i) p0
1 is equal to the phrase formed by the

words at the leaf nodes of subtree s1, and then
(ii) iteratively form p0

i as the phrase formed by
the words under subtree si by replacing its sub-
phrase corresponding to subtree si�1 with its con-
stituency tag ti�1 for i > 1.
Modifications to General Model. We now de-
scribe how the general model defined in Section
4.2 is adapted to accommodate the multiple nested
value contexts of different types. In this process,
we aim to capture two types of important infor-
mation: (i) syntactic phrase-level types of value
contexts, and (ii) their distance to VALUE.

We first compute a value context vector
h(q!col)

j,k 2 R
2h for each word cj 2 c and each

value context p0
k as in Eq. 8 using the same en-

coding and attention mechanisms. However, we
replace the affine transformation layers defined in
Eq. 9 and 10 with tag and distance specific ones
as follows:

hcond
j = tanh(Wcond

0 hcol
j +

1

r

rX

k=1

Wcond
k,tk

h(q!col)
j,k )

(17)

hop
j = tanh(Wop

0 hcol
j +

1

r

rX

k=1

Wop
k,tk

h(q!col)
j,k )

(18)

where Wcond
0 ,Wcond

k,tk
,Wop

0 ,Wop
k,tk
2 R

d⇥2h for
k = 1, 2, . . . , r are model parameters. It is impor-
tant to note here that k determines the distance of
value context to VALUE and tk indicates its tag,
effectively making the fusion layers above tag and

1We use the Penn treebank annotation conven-
tions that are described in Bies et al. (1995) at
http://languagelog.ldc.upenn.edu/myl/PennTreebank1995.pdf
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Model Dev Test
No External Knowledge
SEQ2SQL (Zhong et al., 2017) 62.1% 60.2%
SQLNET-(Seq2Set + CA) 72.1% 70.0%
SQLNET-(Seq2Set + CA + WE) 74.1% 71.9%
SQLNET*-(Seq2Set + CA) 72.3% 70.9%
SQLNET*-(Seq2Set + CA + WE) 73.8% 71.7%
In Our Scenario
SQLNET*-(Seq2Set + CA) 82.2% 80.9%
SQLNET*-(Seq2Set + CA + WE) 83.5% 81.8%
STAMP + RL (Sun et al., 2018) 77.3% 76.3%
TYPESQL + TC (w/ Freebase) (Yu et al., 2018) 92.8% 87.9%
OUR BASELINE 77.2% 77.1%
SQLMASTER 84.8% 83.9%
SQLMASTER + VA 86.2% 86.1%
SQLMASTER (Window-Based) 87.4% 87.1%
SQLMASTER (Window-Based) + VA 87.9% 87.6%
SQLMASTER (Tree-Based) 88.7% 88.3%
SQLMASTER (Tree-Based) + VA 88.9% 88.6%
OUR UPPERBOUND 92.1% 91.4%

Table 4: WHERE clause accuracy. +VA denotes that Value
Abstraction is applied. SQLNET* refers to our reimplemen-
tation of SQLNet. SQLMASTER refers to our proposed mod-
els. Only TYPESQL + TC leverages Freebase on top of table
content among the models reported in our scenario. WHERE
clause accuracy of TYPESQL (w/o Freebase) is not reported.

distance specific. The rest of the model exactly
follows the Eq. from 11 through 15 with the same
training objective and inference schemes.

5 Experiments

In this section, we discuss the details of the exper-
iments and present our main results.

5.1 Training Details

For training our neural networks, we only keep the
words appearing at least 3 times in the whole train-
ing data and the rest of the words are replaced with
UNK token. Word embeddings are initialized with
pretrained GloVe (Pennington et al., 2014) vec-
tors2, and updated during the training. We take
the dimension of word embeddings and the size of
LSTM hidden layer both equal to 100. The model
parameters are optimized using Adam (Kingma
and Ba, 2015) with batch size of 32 and a decaying
learning rate starting with 0.001. We apply gradi-
ent clipping to 5 when its norm exceeds this value.
We use early stopping based on the model accu-
racy on the development set. We report our results
with a model snapshot achieving the best accuracy
on the development set. Our models are imple-
mented in tensorflow (Abadi et al., 2016). The
code is available at https://github.com/
semihyavuzz/sql_master.

2More specifically, we use 100D vectors from
http://nlp.stanford.edu/data/glove.6B.zip

Model Dev Test
SQLNET (Xu et al.) 63.2% 61.3%
DIALSQL (Gur et al., 2018) 70.9% 69.0%
TYPESQL (w/o Freebase) (Yu et al., 2018) 66.5% 64.9%
TYPESQL + TC (w/ Freebase) (Yu et al., 2018) 79.2% 75.4%
SQLMASTER (Ours, w/o Freebase) 73.1% 72.4%

Table 5: Full query-match (QM) accuracy. For SQLMAS-
TER, we combine our WHERE clause predictions with the
SELECT and AGGREGATE clause predictions of SQLNet.
QM result for TYPESQL + TC (w/o Freebase) is not reported.

5.2 Main Results

In Table 4, we present our main results in com-
parison with the related works. BASELINE refers
to a baseline for our models where the WHERE
clause accuracy is computed by assuming that
each candidate (COLUMN,VALUE) pair is in-
cluded with corresponding OP being equality. On
the other hand, UPPERBOUND accuracy is com-
puted by assuming fcond and fop makes 100% cor-
rect mapping of whether to include a candidate
(COLUMN,VALUE) pair and which OP to apply on
this condition. In other words, errors in UPPER-
BOUND exist due to wrong candidate generation.

As shown in Table 4, our models surpass the
previous results by a large margin as well as its
variants improving upon each other. A portion of
these improvements definitely come from assum-
ing and using the table itself as the optimal ex-
ternal knowledge. Acknowledging this fact, we
make the following more important conclusions
from Table 4, 5, and 6: (i) Comparison of the
performance results across scenarios (SQLNET vs.
SQLMASTER or TYPESQL) reveals that there is
a large room for improvement when an external
knowledge base is used, (ii) Comparison of our
own models with its variants demonstrates that
each component/extension incorporated brings a
considerable performance improvement, justify-
ing its potential power to be used in other re-
lated NLP tasks, (iii) Comparing our models with
SQLNET and TYPESQL+TC within our scenario
provides further clues/justifications towards effec-
tiveness of our proposed Tree-Based model, (iv)
SQLMASTER performs comparably to TYPESQL
+ TC (Yu et al., 2018) on WHERE condition pre-
dictions despite the fact that we do not use Free-
base, which is exploited in (Yu et al., 2018) to
identify named entities of certain Freebase types
(e.g., person, place, country, organization, sport),
(v) Our SQLMASTER (Tree-Based) + VA model
achieves 88.6% on test portion of WikiSQL, which
almost reaches the upper bound of 91.4%, demon-
strating a great promise for future work in this do-
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Category SQLNET SQLMASTER

EXACT MATCH 72.9% 86.4%
PARAPHRASE 68.8% 93.8%
PARTIAL CLUE 80.0% 93.3%
EXTERNAL KNOWLEDGE 45.5% 90.9%
AMBIGUOUS 37.5% 75.0%
TOTAL 67.9% 88.1%

Table 6: Accuracy breakdown of SQLNET compared to
SQLMASTER over the categories obtained by hand-analysis
on the randomly selected examples as explained in Section 3.

main, and finally (vi) When the performance of
our model is compared to SQLNET over the cat-
egories as shown in Table 6, we observe that it
consistently improves the performance of over all
the categories, but most noticeably on EXTERNAL
KNOWLEDGE and AMBIGUOUS ones which were
the main categories inspiring this work and pro-
posed approaches motivated by the analysis pro-
vided in Section 3.
Evaluation in Our Scenario. We adapt SQL-
Net (Xu et al.) results to our scenario via a post-
processing step as follows: For each of their pre-
dicted condition in WHERE clause, if column c and
operator o are both correct, but value v is wrong,
then we replace this value with the one in our gen-
erated candidates that maps to the column c when
the mapping is unique (only one value maps to c).

5.3 Error Analysis
In this section, we provide an error analysis of our
models to better understand what are the remain-
ing challenges to achieve UPPERBOUND perfor-
mance. To this end, we analyzed 100 randomly
sampled examples from development set on which
our best model fails. 41% of these errors are due
to our models not being able to perform a good se-
mantic understanding of the value context. 36%
of the errors correspond to ambiguous questions
that lack sufficient information to disambiguate
between correct and wrong column. A good rep-
resentative example for this category is “Who was
the director of king’s speech?”, where our model
predicts “winner and nominees” column for the
condition value “king’s speech” while the correct
column is “original title”. The remaining 18% and
5% of the errors are caused by sparsity of column
names and wrong labelling problems, respectively.

6 Related Work

Research on natural language interfaces to
databases (NLIDBs) and semantic parsing has
spanned several decades. Early rule-based

NLIDBs (Woods, 1973; Androutsopoulos et al.,
1995; Popescu et al., 2003) employ carefully de-
signed rules to map natural language questions to
formal representations like SQL queries. While
having a high precision, rule-based systems are
brittle when facing with language variations and
usually only admit inputs from a restricted vo-
cabulary. The rise of statistical models (Zettle-
moyer and Collins, 2005; Kate et al., 2005; Berant
et al., 2013) and neural network models (Yih et al.,
2015; Dong and Lapata, 2016; Sun et al., 2016;
Zhong et al., 2017; Xu et al.) has enabled NLIDBs
that are more robust to language variations. Such
systems allow users to formulate questions with
greater flexibility instead of having to probe and
adapt to the boundary of rule-based systems.

Along with the advance in modeling is the de-
velopment of benchmarks for training and test-
ing NLIDB models. Early benchmarks are mostly
curated by experts (Zelle and Ray, 1996; Zettle-
moyer and Collins, 2007). State-of-the-art models
(Dong and Lapata, 2016) have achieved a high ac-
curacy of 80% to 90% on these benchmarks. In
the recent years, a number of large-scale, crowd-
sourced benchmarks have been constructed with
the goal to train and test NLIDBs in a more
real-world setting, notably WebQuestions (Berant
et al., 2013) and GraphQuestions (Su et al., 2016)
for knowledge bases, and WikiSQL (Zhong et al.,
2017) for SQL queries to relational databases. The
best accuracies on these benchmarks are still far
from enough for real use, typically in the range of
20% to 60%.

Besides releasing WikiSQL, Zhong et al. (2017)
propose an approach (Seq2SQL) to solve this
task. Seq2SQL leverages the pointer-networks
(Vinyals et al.) to generate linearized SQL queries
token-by-token using the input question and ta-
ble schema. They report significant performance
improvement over (Dong and Lapata, 2016), a
generic sequence-to-tree approach proposed for
semantic parsing. More recently, Xu et al. propose
a sketch-based sequence-to-set approach (SQL-
Net) eliminating sequence-to-sequence structure
employed in (Zhong et al., 2017), when the order
does not matter. In our work, we provide a careful
analysis of SQLNet results to better understand the
limitations of this model on the WikiSQL task. In-
spired by this analysis, we propose novel solutions
to realize close to upper-bound condition accuracy
in the scenario where SQL table is available as an
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optimal external knowledge. Another recent work
(Yu et al., 2018) also focuses on using external
knowledge (Freebase) along with the table content
to generate SQL queries in a type aware fashion.
A concurrent line of related work exploits graph-
to-sequence neural models with the aim to better
exploit syntactic information in the input question
(Xu et al., 2018a,b). On the other hand, Gur et al.
(2018) takes an orthogonal approach and intro-
duces a dialogue-based query refinement mecha-
nism where a candidate SQL query (generated by
any black-box model) is refined by interactively
validating and updating modular segments of the
query with users. The authors show that by having
successful interactions with users, not only the ac-
curacy of the candidate queries can be improved
but also new insights into limitations of current
query generation systems can be gained.

There are also a number of recent studies on
semantic parsing for semi-structured tables. For
example, Pasupat and Liang (2015) develop the
WikiTableQuestions benchmark, where the task is
to find table cells in HTML table to answer ques-
tions, while Jauhar et al. (2016) focus on multi-
choice questions. On the other hand, Sun et al.
(2016) study how to answer user questions with
table cells from millions of HTML tables. These
studies directly find cells of semi-structured tables
as answers, instead of generating SQL queries for
relational databases.

7 Conclusion

In this paper, we thoroughly analyzed the recently
released WikiSQL dataset and the performance
breakdown of SQLNet. Through the analysis, we
identified an opportunity/need to further explore
the potentials of incorporating external knowledge
in the structured query generation process. In this
direction, we developed alternative solutions to
explore the potential performance limits for this
task in the scenario where table content can be
used. We showed that our proposed systems can
reach up to 88.6% accuracy in condition genera-
tion and provided a discussion regarding what the
remaining challenges were through an error anal-
ysis. We consider solving the WikiSQL task as a
necessary preliminary step towards realizing natu-
ral language interfaces to databases in full fledge.
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Abstract
This paper introduces a simple yet effective
transition-based system for Abstract Mean-
ing Representation (AMR) parsing. We argue
that a well-defined search space for a transi-
tion system is crucial for building an effective
parser. We propose to conduct the search in
a refined search space based on a new com-
pact AMR graph and an improved oracle. Our
end-to-end parser achieves the state-of-the-art
performance on various datasets with minimal
additional information.1

1 Introduction
Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism that captures
the semantics of a sentence with a rooted directed
graph, in which nodes represent the concepts and
edges represent the relations between concepts.
An example AMR graph together with its corre-
sponding sentence are illustrated in Figure 1.

AMR parsing, the task of transforming a sen-
tence into its AMR graph, is a challenging task
as it requires the parser to learn to predict not
only concepts, which consist of predicates, lem-
mas, named entities, wiki-links and co-references,
but also a large number of relation types based
on relatively sparse training data (Peng et al.,
2017). Given the challenges, many state-of-the-art
AMR parsers employ various external resources
and adopt a pipeline approach (Flanigan et al.,
2016; Wang and Xue, 2017; Foland and Martin,
2017; van Noord and Bos, 2017). Recently, Da-
monte et al. (2016); Ballesteros and Al-Onaizan
(2017); Peng et al. (2018) have successfully devel-
oped AMR parsers in an end-to-end fashion using
a transition-based approach.

The transition-based approach (Yamada and
Matsumoto, 2003; Nivre, 2003, 2004) has been

1Dynet (Neubig et al., 2017) is used to implement our
parser. We make the supplementary material and code avail-
able at http://statnlp.org/research/sp
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It seems that he knows under the population changes 
( if it continues ) that United Kingdom will not unite.
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-
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Figure 1: An example AMR graph for a sentence.

popular among many NLP tasks, including syn-
tactic parsing (Zhang and Clark, 2011; Chen and
Manning, 2014), named entity recognition (Lam-
ple et al., 2016), and semantic parsing (Cheng
et al., 2017). Different from the graph-based ap-
proach for structured prediction (e.g., conditional
random fields (Lafferty et al., 2001)), such an ap-
proach is able to maintain a good balance be-
tween efficiency and accuracy (Nivre and McDon-
ald, 2008), and has achieved state-of-the-art re-
sults on a number of tasks (Swayamdipta et al.,
2016; Shi et al., 2017; Cheng et al., 2017).

While the transition-based approach is promis-
ing for AMR parsing, existing transition-based
AMR parsers still cannot attain the state-of-the-
art results on such a task. We observe that the
key to the development of an effective transition-
based system is a properly defined search space,
and argue that the search space used in existing
transition systems needs to be refined. Inspired
by (Wang et al., 2015), we design a new compact
AMR graph representation. Transition actions de-
signed based on such a compact graph enable our
parser to generate the target structure with fewer
actions and to better capture the correspondence
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between concepts and tokens in the sentence.
Oracle, the algorithm used at the training time

for specifying the action sequence that can re-
cover the gold AMR graph, is also crucial for the
transition-based system. A good oracle will be
able to teach the parser how to find a proper path in
the search space. The oracle requires alignment in-
formation between words and concepts. We iden-
tify limitations associated with current practice for
finding such alignment information, and propose a
new approach that integrates both rules and unsu-
pervised learning.

Experiments show that our system that makes
use of POS tags as the only external resource per-
forms competitively on benchmark datasets. To
the best of our knowledge, the parser achieves
the highest score on the standard LDC2014T12
dataset. Our parser also yields competitive scores
on the LDC2015E86 dataset and the more recent
LDC2017T10 dataset. On the popular newswire
section of LDC2014T12 dataset, our parser out-
performs the previous best system by around 3
points in terms of F1 measure.

2 Related Work

Since the AMR graph encodes rich information,
it has been explored for many downstream appli-
cations such as language generation (Song et al.,
2016), information extraction (Huang et al., 2016)
and machine comprehension (Sachan and Xing,
2016). Currently, most parsers can be categorized
into 4 classes: 1) Tree: such approaches incre-
mentally convert a dependency tree into its cor-
responding AMR graph (Wang et al., 2015; Good-
man et al., 2016; Barzdins and Gosko, 2016); 2)
Graph: the graph-based models calculate scores
of edges and then use a maximum spanning con-
nected subgraph algorithm to select edges that
will constitute the graph (Werling et al., 2015;
Flanigan et al., 2016); 3) Seq2seq: the mod-
els adapted from sequence-to-sequence (Sutskever
et al., 2014) methods (Peng et al., 2017; Konstas
et al., 2017); 4) Transition: the transition-based
methods, whose input is the plain text sentence
and the output is the corresponding graph (Zhou
et al., 2016; Damonte et al., 2016; Ballesteros and
Al-Onaizan, 2017; Peng et al., 2018).

Apart from these models, Peng et al. (2015)
introduce a synchronous hyperedge replacement
grammar solution. Pust et al. (2015) regard the
task as a machine translation problem, while Artzi
et al. (2015) adapt combinatory categorical gram-

mar (Steedman and Baldridge, 2011) for it. Foland
and Martin (2017) decompose the parsing task
into many subtasks. Then they use multiple bidi-
rectional LSTMs for identifying different types
of concepts and relations and iteratively combine
these components to form the AMR graph.

Because the mapping between AMR concepts
and tokens in the input sentence is latent, exter-
nal aligners have been developed for training pur-
pose. The most popular aligner is JAMR (Flanigan
et al., 2016), which greedily aligns input tokens to
graph fragments by using a static template. An-
other aligner is ISI (Pourdamghani et al., 2014),
which is a statistical approach that borrows tech-
niques from statistical machine translation.

3 Approach

We adopt a transition-based approach for AMR
parsing. We first propose a new compact represen-
tation for AMR graph. Based on our new repre-
sentation, we further present a novel technique for
constructing the action sequence used for training
our model. As we will see later, both newly intro-
duced techniques are crucial for building an im-
proved transition-based system within our refined
search space.

3.1 Compact AMR Graph
Inspired by (Wang et al., 2015), we design a rep-
resentation called compact AMR graph to simplify
concepts and relations of an AMR graph, which
makes the learning of our transition system eas-
ier. The construction of our compact AMR graph
involves removing concepts and relations from an
original AMR graph.
Remove Concepts: First we categorize AMR
concepts into 2 types:

• Lexical: concepts which are converted di-
rectly from tokens in the sentence into cer-
tain expressions ranging from predicates with
sense tags, lemmas to tokens with quotation
marks. One example is the concept seem-01
shown in Figure 1, which is converted from
the token seems with 01 as the sense tag.

• Non-Lexical: concepts which are invoked by
their child concepts rather than from tokens
in the sentence directly. Examples include
country and name in Figure 1.2

A non-lexical concept is invoked by its child
concepts, while a lexical concept corresponds to

2A list of non-lexical concepts are provided in the supple-
mentary material.
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Figure 2: The compact AMR graph for the example in
Figure 1.

a certain token in the input sentence. Inspired by
(Lu et al., 2008) which learns a semantic parser by
aligning words and semantic units, we compress
a subgraph rooted by a non-lexical concept into a
new concept, which directly corresponds to a con-
tiguous span in the sentence.

For example, a subgraph that consists of
non-lexical concepts: country, name and lexi-
cal concepts “United”, “Kingdom” in Figure 1
can be compressed into one non-lexical concept
ENcountry, which can be aligned to the span
“United Kingdom” in the input sentence as shown
in Figure 2.

Removing concepts in the graph enables the
parser to build it with fewer actions. Empiri-
cally we find that 9% fewer actions are required in
LDC2015E86 on average. Also, all concepts can
be invoked by a contiguous span in the sentence,
which helps the parser to capture the correspon-
dence between concepts and tokens better.
Remove Relations: We also refine the search
space by eliminating certain relations in the orig-
inal AMR graph. The number of relation types is
relatively large in the AMR corpus, which leads
to a large search space. In order to introduce reen-
trancy3, attached concepts have to stay in the stack
rather than being removed as in most of transition-
based AMR parsers.

Take cause-01 shown in the Figure 1 as an
example, which is a reentrancy node headed by
know-01 and continue-01. After it has been at-
tached to its parent know-01 and child change-01,
it still needs to stay in the stack and wait for an-
other relation headed by continue-01. These two
concepts are potentially far away from each other
in the input sentence, which means cause-01 has

3One concept can participate in multiple relations as con-
cept country in Figure 1.

to stay in the stack for a long time. In general, the
longer a word has to wait to get assigned the more
opportunities there are for something to go awry
(Manning and Schütze, 1999).

During the testing phase, the parser does not
know whether cause-01 is a reentrancy node.
Therefore, the parser needs to add all possible re-
lation attachment actions (nearly half of the action
space) into the valid action set as long as cause-01
exists in the stack, which makes the parser harder
to train.

Thus, we define several properties that the com-
pact graph should respect to further refine the
search space4:

• Acyclicity: cycles are forbidden. The rela-
tion ARG0 between cause-01 and continue-
01 shown in Figure 1 is removed in the com-
pact AMR graph Figure 2.

• Simple: for each parent-child concept pair,
only one relation is attached. There exist two
relations ARG0 and ARG1 between concepts
unite and country shown in Figure 1. One of
them is removed in Figure 2.

• Non-terminal restricted: only a subset of
concepts are allowed to have children. For
example, lexical concept – in Figure 1 can
only be a terminal node in the compact AMR
graph, which means that it can be removed
from the stack once it has been attached.

• Reentrancy restricted: reentrancy is forbid-
den for certain concepts, which means these
concepts only have one parent concept. An
example is that lexical concepts – cannot be
reentrancy in the compact AMR graph.

After incorporating these constraints, relation
attachment actions are forbidden at many states,
which refines the search space. Even though such
constraints might prevent us from generating some
valid AMR graphs, in practice we can convert
the compact AMR graph back to the AMR graph
without much loss5.

3.2 Oracle
Another key to successful search is the oracle, an
algorithm that produces a sequence of actions that
lead to the gold AMR graph. The action sequence
generated by the oracle is significant as it tells

4In practice, we impose constraints on the valid action set
of the parser for each state to ensure the growing structure
always respect these properties. Details are provided in sup-
plementary material.

595% of graphs in the training set of LDC2015E86 dataset
satisfy these constraints, which means no relation needs to be
removed for most of the graphs.
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Figure 3: An alignment example for a sentence that has two identical tokens internet and the relation arcs between
concepts if we put them on a semi-plane.

the model which actions should be taken during
training. The oracle requires, as input, the align-
ment between tokens in the sentences and con-
cepts in the graph. Almost all prior transition-
based parsers have used the JAMR aligner for
identifying such alignment information. However,
we find that the JAMR aligner suffers from two
issues, which may lead to errors that may be prop-
agated to the parser through the oracle.
Non-Projectivity Caused by Alignment Error:
Consider a sentence that has two identical tokens–
internet. Figure 3 illustrates the alignments be-
tween concepts and tokens. Since our parser pre-
dicts the concepts from left to right, we can draw
edges between aligned concepts on a semi-plane
to verify whether it has crossing arcs.

If the alignment is correct, the AMR graph is
projective as shown at the top right of Figure 3.
However, the JAMR is a rule-based aligner, which
uses a set of heuristics to do fuzzy matching.
Its matching mechanism tends to make mistakes
when there exist multiple identical words. Such
alignment errors may lead to crossing arcs that our
parser may not be able to handle.

Assume an alignment error occurs as illustrated
in the bottom right of Figure 3. Such an error
will force the parser to attach relations between
wrong concepts. Sometimes these concepts are far
from each other, which potentially leads to more
crossing arcs. For example, ARG1 is attached to
the wrong internet, causing the undesired cross-
ing arc.
Empty Alignments:Another issue is that as the
corpus gets larger, the JAMR aligner yields more
empty alignments as shown in Table 3. Since the
set of matching rules is static, unseen patterns in a
larger corpus may result in sub-optimal alignment
information.
Hybrid Aligner: In order to address these issues,
we first try the ISI aligner (Pourdamghani et al.,
2014). According to preliminary results (Table 3),
we find that the performance of such an unsuper-

vised model is not as good as the JAMR aligner
when aligning relation and non-lexical concepts.
Therefore, we propose a hybrid aligner, which
combines unsupervised learning and rule-based
strategy6.

JAMR does not consider information about the
structure whereas the unsupervised models can
capture locality (Wang and Xue, 2017) – the as-
sumption that words that are adjacent in the source
sentence tend to align to words that are closer in
the target sentence (Vogel et al., 1996). Struc-
tural information can also be incorporated into the
model to allow it to capture locality beyond lin-
earity (Wang and Xue, 2017). This property of the
unsupervised aligner can alleviate the problem of
non-projectivity caused by alignment error. Sim-
ilar to what is done in the JAMR aligner, we also
design rules based on properties of AMR graphs
to improve alignments of non-lexical concepts.

In the preprocessing stage of the hybrid aligner,
we remove all relations. As non-lexical concepts
can be aligned to their child concepts in the com-
pact graph, we then remove all non-lexical con-
cepts. Our unsupervised method is based on IBM
word alignment models (Brown et al., 1993).

In the postprocessing stage, we align non-
lexical concepts iteratively to the same span that
its child concepts are aligned to. For example,
non-lexical concepts country and name shown
in Figure 1 are removed in preprocessing. Dur-
ing postprocessing, their alignments come from
child concepts “United” and “Kingdom”, they are
aligned to the 16th token “United” and the 17th
token “Kingdom” respectively. Therefore, non-
lexical concepts country and name can be aligned
to the span 16-17, which is “United Kingdom”.

3.3 Transition System
The transition system consists of a stack S con-
taining words that have been processed, a buffer

6Details of the rules and how to apply them in the hybrid
aligner are provided in the supplementary material.
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Action Statet ! Statet+1

SHIFT (S, u|B) ! (u|S, B)
REDUCE (u|S, B) ! (S, B)

RIGHTLABEL(r) (u|S, v|B) ! (gr(u, v, r)|S, v|B)
LEFTLABEL(r) (u|S, v|B) ! (u|S, gr(v, u, r)|B)

SWAP (u, v|S, B) ! (v, u|S, B)
MERGE (u|S, v|B) ! (S, gm(u, v)|B)
PRED(n) (S, u|B) ! (S, n|B)

ENTITY(`) (S, u|B) ! (S, g`(u, `)|B)
GEN(n) (S, u|B) ! (S, u, n|B)

Table 1: Definition of actions. (u|S)/(u, v|S): item u
(or u, v) is at the top of the stack. gr, gm and g� repre-
sent composition functions described in Section 4.3.

B containing words to be processed. Initially, S1

is empty and B1 contains the whole input sentence
and a end-of-sentence symbol at the end. Execu-
tion ends on time step t such that Bt is empty and
St contains a single structure.

Motivated by (Henderson et al., 2013; Balles-
teros and Al-Onaizan, 2017), we design 9 types of
actions summarized in Table 1. An example for
parsing a sentence into its compact AMR graph
shown in Figure 4 is provided in Table 2.

• SHIFT: removes an item from the front of
the buffer and pushes it to the stack.

• REDUCE: pops the item on top of the stack.
• RIGHTLABEL(r): creates a relation arc

from the item on top of the stack to the item at
the front of the buffer. Since these two items
are not removed, they can be attached by an-
other relation arc in the future. Therefore,
reentrancy is allowed.

• LEFTLABEL(r): creates a relation in the
reverse direction as RIGHTLABEL.

• SWAP: swaps the top two items on the stack.
This action allows non-projective relations
(Nivre, 2009) and helps to introduce reen-
trancy. Repetitive SWAP actions are disal-
lowed to avoid infinite swapping.

• PRED(n): predicts the predicate and lemma
concepts corresponding to the item at the
front of the buffer. This action requires a
look-up table M generated during the train-
ing phase. For example, meet is mapped to
concepts such as meet, meet-01 and meet-02
in M . If the token meet is at the front of the
buffer, then we add all its corresponding con-
cepts based on M to the valid action sets.

• MERGE: removes the item at the front of the
buffer and the item on top of the stack, then
a composition function is applied to merge
them into a new item. The item will be
pushed back to the front of the buffer. This

ARG0- of

r oot

ARG1 ARG2

domai n

per son

have- or g- r ol e- 91

ENcount r y of f i c i al

ROOT

ENper son

Iftik Ahmed is Pakistani official.

Figure 4: An example sentence with its compact AMR
graph.

action serves to generate non-lexical con-
cepts, whose corresponding span is larger
than two. For example, if “Iftik” is on top
of the stack and “Ahmed” is at the front of
the buffer, a MERGE action will be applied.
This action can be applied recursively if the
span is larger than two.

• ENTITY(`): pops the item at the front of the
buffer, and labels it with an entity label. This
action is designed for named entities in non-
lexical concepts. For example, after merging
“Iftik” and “Ahmed”, ENTITY(ENperson)
will be used to label the item.

• GEN(n): creates a non-lexical concept in-
voked by the item at the front of the buffer,
which can be any type of concept or com-
posed representation after MERGE transi-
tion. Then the non-lexical concept is pushed
back to the buffer right after the item. This
action can be applied recursively. An ex-
ample is that concept have-org-role-91 is in-
voked by official. If token official is at the
front of the buffer, GEN(have-org-role-91)
will be applied.

4 Stack LSTMs

A classifier is required to decide which action to
take at each time step, given the current state.

4.1 Stack LSTMs for AMR parsing
Stack LSTMs (Dyer et al., 2015) are LSTMs
(Hochreiter and Schmidhuber, 1997) that allow
stack operations. Using stack LSTMs, each state
can be represented using the contents of the stack,
buffer and a list with the history of actions.

Let st, bt and at denote the summaries of stack,
buffer and the history of actions at time step t re-
spectively. The parser state yt is given by:

yt = max{0,W[st;bt;at] + d} (1)
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Action Stack Buffer Concept/Relation
Iftik, Ahmed, is, Pakistani, official, $ -

SHIFT Iftik Ahmed, is, Pakistani, official, $ -
MERGE (Iftik, Ahmed), is, Pakistani, official, $ -
ENTITY (ENperson) ENperson, is, Pakistani, official, $ ENperson
SHIFT ENperson is, Pakistani, official, $ -
SHIFT ENperson, is Pakistani, official, $ -
ENTITY (ENcountry) ENperson, is ENcountry, official, $ ENcountry
REDUCE ENperson ENcountry, official, $ -
SHIFT ENperson, ENcountry official, $ -
GEN (person) ENperson, ENcountry official, person, $ person
GEN (have-org-role-91) ENperson, ENcountry official, have-org-role-91, person, $ have-org-role-91
PRED (o�cial) ENperson, ENcountry o�cial, have-org-role-91, person, $ o�cial
SHIFT ENperson, ENcountry, official have-org-role-91, person, $ -
LEFTLABEL (ARG2) ENperson, ENcountry, official have-org-role-91, person, $ have-org-role-91

ARG2���!o�cial
REDUCE ENperson, ENcountry have-org-role-91, person, $ -
LEFTLABEL (ARG1) ENperson, ENcountry have-org-role-91, person, $ have-org-role-91

ARG1���!ENcountry
REDUCE ENperson have-org-role-91, person, $ -
SHIFT ENperson, have-org-role-91 person, $ -
LEFTLABEL (ARG0-of) ENperson, have-org-role-91 person, $ person

ARG0�of������!have-org-role-91
SWAP have-org-role-91, ENperson person, $ -
LEFTLABEL (domain) have-org-role-91, ENperson person, $ person

domain����!ENperson
REDUCE have-org-role-91 person, $ -
SHIFT have-org-role-91, person $ -
PRED (ROOT) have-org-role-91, person ROOT ROOT

LEFTLABEL (root) have-org-role-91, person ROOT ROOT
root��!person

REDUCE have-org-role-91 ROOT -
REDUCE ROOT -
SHIFT ROOT -

Table 2: Example action sequence for parsing the sentence: Iftik Ahmed is Pakistani official. Here $ is the end-of-
sentence symbol.

where W is a learned parameter matrix, and d is
a bias term. To learn a better representation, we
apply the attention mechanism (Bahdanau et al.,
2014) to the words the buffer contains. After get-
ting the representation, we can use it to compute
the probability of the next action:

p(z|yt) =
exp(g>

zt
yt + qzt)P

z02A exp(g>
z0yt + qz0 )

(2)

where gz is a vector representing the embedding of
the action z and qz is a bias term. The set A repre-
sents the valid action set in each time step. This set
varies for different parsing states due to the con-
straints we made for the compact AMR graph.

4.2 Representations and UNK strategy
Following (Dyer et al., 2015), we concatenate
three vector representations: pretrained word vec-
tor (Ling et al., 2015), learned word vector and
learned vector for the POS tag, followed by a lin-
ear map to get the representation of each input to-
ken. For relation label representations and gener-
ated concepts, we simply use the learned embed-
ding of the parser action that was applied to con-
struct the relation.

Dyer et al. (2015) show that these represen-
tations can deal flexibly with out-of-vocabulary
(OOV) words7. We extend this UNK strategy to

7Both OOV words in the parsing data and OOV words in
the pretraining language model can be represented.

AMR parsing. Apart from stochastically replac-
ing (with p = 0.2) each singleton in the train-
ing data, we also replace the original PRED(n)
as PRED(UNK) if the token should be selected
as a concept. At the postprocessing stage, if an
AMR concept is generated by PRED(UNK) we
will use its lemma form for nouns or the most fre-
quent sense for verbs to replace the “UNK” place-
holder. This strategy makes the classifier trained
not only to predict whether an OOV word should
be selected as an AMR concept but also to predict
the correct concept for the in-vocabulary word.

4.3 Composition Functions
We use recursive neural networks (Socher et al.,
2013) to compute the representations of partially
constructed structures.

For relation attachments, a composition func-
tion gr is used to combine representations of AMR
parent concept (h), child concept (d) and the cor-
responding relation label (r) as:

gr(h,d, r) = tanh(Ur[h;d; r] + br) (3)

where Ur and br are parameters in the model, as
Um, bm, U` and b` in equation (4) and (5).

For generated non-lexical concepts, if terminal
concepts are lexical concepts as shown in Figure 4
we will use a composition function gm to get their
(c1 and c2) merged representation:

gm(c1, c2) = tanh(Um[c1; c2] + bm) (4)
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“United”

ENcountry Lexical 
Concept

Lexical 
Concept

Entity 
Label

“States”

Figure 5: Example of a partial structure rooted by
a non-lexical concept. “United” and “States” are
merged by gm. Then g� is applied to combine the
merged representation and the label representation of
ENcompany to arrive at the final representation.

Next, another composition function g` is ap-
plied to get the representation of the labeled gen-
erated concept (e and its entity label l):

g`(e, l) = tanh(U`[e; l] + b`) (5)

5 Experiments and Results

We first evaluate the effectiveness of our hy-
brid aligner. Then we report the final results
by incorporating it into our parser. We con-
duct experiments on the datasets LDC2014T12,
LDC2015E86 and LDC2017T10. The newswire
section of LDC2014T12 is popular so we also re-
port the performance on it. All AMR parsing
results are evaluated by using Smatch (Cai and
Knight, 2013).

5.1 Aligner Evaluation
As the hybrid aligner is designed to tackle non-
projectivity caused by alignment error and null
alignment, our experiments focus on these aspects.
Non-Projectivity Issue: From Table 3, we find
that the percentage of graphs that our hybrid
aligner cannot recover is significantly less on these
datasets when compared to the use of the JAMR
and ISI aligners. We find that the percentage drops
less on LDC2017T10. The reason behind this is
that many AMR concepts do not have alignments
(11.1%) if we use JAMR aligner. The probabil-
ity of crossing arcs drops owing to the decrease
of identified concepts. The ISI aligner shares the
same issue. It yields the lowest crossing arcs rate
since lots of concepts are not aligned.
Empty Alignment Issue: On the other hand,
our hybrid aligner yields less empty alignments.
This potentially helps our parser to achieve bet-
ter performance, since it predicts lexical concepts
solely relying on the look-up table generated by
the aligner. If we do not have alignment between
a certain token and its concept on the training set,

Dataset Aligner F1(%) CR(%) Null(%)

2014N JAMR 92.70 14.4 05.1
Hybrid 96.12 08.8 02.0

2014 JAMR 89.99 16.9 07.0
Hybrid 95.27 10.5 02.6

2015
JAMR 86.23 16.5 08.9
Hybrid 93.05 11.9 02.9

ISI 71.92 03.4 20.1

2017 JAMR 84.41 13.6 11.1
Hybrid 92.69 10.2 03.4

ISI 75.31 03.2 18.2

Table 3: Alignment results evaluation. F1 indicates the
final score obtained by the action sequence generated
by the aligner during training process. CR(%) indi-
cates the portion that the parser cannot handle because
of non-projectivity. Null(%) indicates the percentage of
AMR concepts that are not aligned. As the ISI align-
ments did not include in the LDC2014T12, we can not
compare on this dataset.

the parser is less likely to predict that token as a
concept during the testing phase.

Improvements on these two aspects allow the
aligner to yield better action sequences for the pur-
poses of training our parser. From Table 3, we can
see that if we follow the action sequence gener-
ated by the hybrid aligner, our parser will achieve
a higher Smatch score consistently. Improvement
gain gets larger as the corpus gets larger.

5.2 Parser Evaluation

Then we evaluate our parser on the same datasets.
As illustrated in Table 4, most models incorpo-
rate additional features such as dependency trees,
named entities, non-lexical role labels and external
corpora. As stack LSTMs use POS tags to get the
representation of the input, our parser does not use
external resources other than POS tags obtained
by using NLTK (Loper and Bird, 2002). We also
try to evaluate our parser by removing the POS
tags. The performance drops around 1.2 F1 points
on average. POS tags help the parser to select the
correct sense when PRED action is applied.
Comparison with other parsers: Currently, all
state-of-the-art models either have a relatively
high complexity or adopt a pipeline approach.
Wang and Xue (2017) incorporate a module called
Factor Concept Labels consisting of Bi-LSTMs
and CNN based on CAMR (Wang et al., 2016).
Another popular parser is JAMR (Flanigan et al.,
2016). The relation identification stage of JAMR
has the complexity of O(|V |2 log |V |), where |V |
is the number of concepts. RIGA (Barzdins and
Gosko, 2016) is an ensemble system that com-
bines CAMR and seq2seq model. Johnson et al.
(2018) view AMR graph as the structure AM alge-
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Parser Type Features Pipeline F1(%)
POS DEP NER SRL Other 2014N 2014 2015 2017

Flanigan et al. (2014) Graph
p p

× × No Yes 59.0±0.6 58.0±0.6 -0±0.6 -0±0.6
Flanigan et al. (2016) Graph

p p p
× No Yes -0±0.6 66.0±0.6 67.0±0.6 -0±0.6

Werling et al. (2015) Graph
p p p

× No Yes 62.0±0.6 -0±0.6 -0±0.6 -0±0.6
Artzi et al. (2015) Others

p
× × × No Yes 67.0±0.6 -0±0.6 -0±0.6 -0±0.6

Pust et al. (2015) Others × ×
p

× Word Yes -0±0.6 67.1±0.6 -0±0.6 -0±0.6
Zhou et al. (2016) Transition

p p p p
No No 71.0±0.6 66.0±0.6 -0±0.6 -0±0.6

Damonte et al. (2016) Transition
p p p p

No No -0±0.6 64.0±0.6 64.0±0.6 -0±0.6
Goodman et al. (2016) Tree

p
×

p
× No Yes 70.0±0.6 -0±0.6 64.0±0.6 -0±0.6

Barzdins and Gosko (2016) Tree
p p p

× No Yes -0±0.6 -0±0.6 67.2±0.6 -0±0.6
Wang et al. (2015) Tree

p p p
× No Yes 70.0±0.6 66.5±0.6 -0±0.6 -0±0.6

Wang et al. (2016) Tree
p p p p

No Yes -0±0.6 66.5±0.6 67.3±0.6 -0±0.6
Wang and Xue (2017) Tree

p p p p
No Yes -0±0.6 68.1±0.6 68.1±0.6 -0±0.6

Peng et al. (2017) Seq2seq × × × × No No -0±0.6 -0±0.6 52.0±0.6 -0±0.6
Konstas et al. (2017) Seq2seq × ×

p
× Giga No -0±0.6 -0±0.6 62.1±0.6 -0±0.6

Ballesteros and Al-Onaizan (2017) Transition
p p

× × No No 69.0±0.6 64.0±0.6 -0±0.6 -0±0.6
Foland and Martin (2017) Others × ×

p
× No Yes -0±0.6 -0±0.6 70.7±0.2 -0±0.6

Buys and Blunsom (2017) Seq2seq
p

×
p

× No No -0±0.6 -0±0.6 -0±0.6 61.9±0.6
van Noord and Bos (2017) Seq2seq

p
× × × Silver No -0±0.6 -0±0.6 68.5±0.6 71.0±0.6

Peng et al. (2018) Transition
p p

× × No No -0±0.6 -0±0.6 64.0±0.6 -0±0.6
Vilares and Gómez-Rodrı́guez (2018) Transition

p p p
× No No -0±0.6 -0±0.6 64.0±0.6 -0±0.6

Lyu and Titov (2018) Others
p

×
p

× No Yes -0±0.6 -0±0.6 73.7±0.2 74.4±0.2
Johnson et al. (2018) Tree

p
×

p
× No No -0±0.6 -0±0.6 70.2±0.3 71.0±0.5

This work (full model) Transition
p

× × × No No 74.0±0.5 68.3±0.4 68.7±0.3 69.8±0.3
0no compact AMR graph Transition

p
× × × No No 72.1±0.6 66.7±0.6 67.2±0.6 68.9±0.6

0JAMR aligner Transition
p

× × × No No 72.6±0.6 65.4±0.6 65.8±0.6 66.3±0.6
0no compact AMR graph, JAMR aligner Transition

p
× × × No No 70.3±0.6 63.9±0.6 64.6±0.6 65.3±0.6

0no UNK strategy Transition
p

× × × No No 72.2±0.6 66.4±0.6 67.2±0.6 68.8±0.6
0no POS Transition × × × × No No 72.4±0.6 66.9±0.6 67.3±0.6 68.8±0.6

Table 4: Comparison with other parsers on LDC2014T12, LDC2015E86 and LDC2017T10 datasets. 2014N refers
to the newswire section of LDC2014T12. We categorize parsers based on their types as discussed in Section 2.
We also list down the features used by each system. POS: POS tags; DEP: dependency trees; NER: named
entities; SRL: semantic role labels. Other features include: Word (WordNet for concept identification), GIGA
(20M unlabeled Gigaword), and Silver (100k additional training pairs created by using CAMR and JAMR). “JAMR
aligner” indicates that the parser is trained by action sequence generated by the JAMR aligner. “no UNK strategy”
shows results without our UNK strategy. “no compact AMR graph” shows results without constraints on the
compact AMR graph. Following several previous work, we also report standard deviation for the full model.

bra defined in (Groschwitz et al., 2017). Since AM
algebra can be viewed as dependency trees over
the sentence, they can train a dependency parser
to map the sentence into this structure. Different
from the structure used in CAMR (Wang et al.,
2015), this structure can be directly transformed
to AMR graph by using postprocessing rather than
relying on another transition-based system. The
complexity of their projective decoder is O(n5),
where n is the length of the sentence. Zhou et al.
(2016) is also a transition-based parser, which
adopts and improves beam search strategy. In con-
trast, our system does not use a beam, but we an-
ticipate improved results when a beam is used.

For seq2seq models, they generally require less
features and build the AMR graph in an end-to-end
way. However, these models usually suffer from
data sparsity issue (Peng et al., 2017). In order
to address this issue, these models utilize external
corpora. Konstas et al. (2017) achieves 62.1 score
by using 20M unlabeled Gigaword sentences for
paired training. van Noord and Bos (2017) use an
additional training corpus of 100k sentences called
Silver generated by an ensemble system consisting
of JAMR and CAMR parsers. Without training

on this additional dataset, the performance of their
model is 64.0 on LDC2015E86.

Our end-to-end parser has linear time com-
plexity and it exhibits competitive results on the
datasets with only POS tags as additional features.
Foland and Martin (2017) only use named entities
as an external resource and they report the second
highest F1 on LDC2015E86. Their system also
adopts a pipeline approach. The concept identi-
fication phase requires 5 different LSTMs to dis-
cover different kinds of concepts based on care-
fully designed features. Then they connect these
components into a single graph. Unlike previ-
ous work, the very recent work by Lyu and Titov
(2018) treat the alignments as latent variables in
a joint probabilistic model, which improves the
parsing performance substantially. They report the
highest scores on LDC2015E86 and LDC2017T10
datasets. Their parser requires 5 different BiL-
STMs for concept identification, alignment pre-
diction, relation identification and root identifica-
tion. Though our parser constructs the AMR graph
in an end-to-end fashion, it can achieve 68.7 and
69.8 Smatch score respectively on the same test set
with a simple architecture.
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Metric LDC2015E86 LDC2017T10
W’15 F’16 D’16 V’18 J’18 Ours vN’17 L’18 J’18 Ours

Smatch 67 67 64 64 70 69 71 74 71 70
Unlabeled 69 69 69 68 73 72 74 77 74 73
No WSD 64 68 65 65 71 69 72 76 72 71
Reentrancies 41 42 41 44 46 46 52 52 49 49
Concepts 80 83 83 83 83 83 82 86 86 84
Named Ent. 75 79 83 83 79 80 79 86 78 80
Wikification 00 75 64 70 71 68 65 76 71 70
Negations 18 45 48 47 52 49 62 58 57 48
SRL 60 60 56 57 63 61 66 70 64 63

Table 5: Detailed results for the LDC2015E86 and LDC2017T10 test set. W’15 is Wang et al. (2015)’s parser. F’16
is Flanigan et al. (2016)’s parser, D’16 is Damonte et al. (2016)’s parser. V’18 is Vilares and Gómez-Rodrı́guez
(2018)’s parser. J’18 is Johnson et al. (2018)’s parser. vN’17 is van Noord and Bos (2017)’s parser with 100K
additional training pairs. L’18 is Lyu and Titov (2018)’s parser.

In order to investigate how our parser performs
on predicting Named Entities, Reentrancies, Con-
cepts, Negations, etc, we also use the fine-grained
evaluation tool (Damonte et al., 2016) and com-
pare to systems which reported these scores. The
results are shown in Table 5. We obtain rela-
tively high results for Concepts, Named Entities
and Wikification. Also, we achieve good perfor-
mance on reentrancy identification though we re-
move many reentrant edges during training. This
indicates that the compact AMR graph encodes
necessary information. On the other hand, our
model does not perform so well on predicating
Negations. We believe one reason is that our
parser is a word-level model. It is hard for it to
capture morphological features such as prefixes
“un”, “in”, “il”, etc. We anticipate better perfor-
mance when the character-based representations
are used.
Does the compact AMR graph help: In order to
better investigate the effect of different modules
used in the parser, we also evaluate our parser by
removing certain modules. Because our transition
system is built based on the compact AMR graph,
we could not evaluate the parser by isolating this
representation completely. Therefore, we choose
to remove some constraints defined on the com-
pact AMR graph to investigate its effect. We can
see that our representation improves the perfor-
mance of our parser on three datasets, which indi-
cates that a refined search space is beneficial to our
system. When our parser is trained on the action
sequence generated by the JAMR aligner as pre-
vious models, it still achieves a competitive score
especially on the newswire section.
Impact of the hybrid aligner: Experiments
also illustrate that the hybrid aligner consistently
helps our parser. When we train our parser
by using the action sequence generated by the

JAMR aligner, we still achieve competitive re-
sults on the newswire section. However, the per-
formance drops as the corpus gets larger. The
largest drop occurs when we apply the parser on
LDC2017T10, on which correct senses of predi-
cates cannot be selected for many unseen words.
We hypothesize that it is because the quality
of alignment degrades as the corpus gets larger,
which prevents the parser from learning how to
find a good path in the search space during train-
ing. The hybrid aligner can alleviate this issue by
generating a look-up table that has broader cov-
erage. After incorporating the hybrid aligner, our
parser achieves the best results of 68.3 on the full
test set of LDC2014T12.

6 Conclusion and Future Work

We present a novel transition-based system which
refines the search space. Experiments show that
our parser is able to achieve state-of-the-art per-
formance with a simple architecture and minimal
additional resources. We believe our end-to-end
system is helpful in practical settings. In the fu-
ture, we would also like to investigate if it is possi-
ble for alignments to be treated as latent variables,
which can be learned in a joint manner within the
current framework.
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Abstract

Depending on the surrounding context, an id-
iomatic expression may be interpreted figu-
ratively or literally. This paper proposes an
unsupervised learning method for recognizing
the intended usages of idioms. We treat the
possible usages as a latent variable in proba-
bilistic models and train them in a linguisti-
cally motivated feature space. Crucially, we
show that distributional semantics serves as a
helpful heuristic for formulating a literal us-
age metric to estimate the likelihood that the
idiom is intended literally. This information
can then guide the unsupervised training pro-
cess for the probabilistic models. Experiments
show that our overall model performs compet-
itively against supervised methods.

1 Introduction

Many idiomatic expressions may be interpreted
both figuratively or literally. Their intended us-
ages depend on how they fit with their contexts.
For example, the idiom ”spill the beans” is used
figuratively in the first instance below, and liter-
ally in the second:

(1) [fig.] The beans have been spilled.
From what I’ve read on Twitter I could
probably fill out the forms and submit
it to the FISA court. I don’t know what
the big secret is.1

(2) [lit.] Spill the beans, flip the
fruit, bust open a box of hot pockets.
Make a general mess of the kitchen.2

This type of ambiguity is commonplace – prior
work suggests that about half out of a sample of

1https://twitter.com/BTeboe/status/
958792419302100993

2https://twitter.com/DukeRaccoon/
status/477530732173471744

60 idioms have a clear literal meaning as well as
a figurative one (Fazly et al., 2009). Being able
to distinguish the intended usage of an idiom in
context has been shown to benefit many natural
language processing (NLP) applications, e.g., ma-
chine translation and sentiment analysis (Salton
et al., 2014; Williams et al., 2015).

While supervised models for idiom usage
recognition have had some successes, they require
appropriately annotated training examples (Peng
et al., 2014; Byrne et al., 2013; Liu and Hwa,
2017). A more challenging problem is to recog-
nize idiom usages without a dictionary or some
annotated examples (Korkontzelos et al., 2013).
Some previous unsupervised models tried to ex-
ploit linguistic differences in usages. For exam-
ple, Fazly et al.(2009) observed that an idiom ap-
pearing in its canonical form is usually used fig-
uratively; Sporleder and Li(2009) relied on the
break in lexical coherence between the idioms and
the context to signal a figurative usage. These
heuristics, however, are not always applicable be-
cause the distinctions they depend upon may not
be present or obvious. To improve generaliza-
tion across different idioms and usage contexts,
we need a more reliable heuristic, and appropri-
ately incorporate it into an unsupervised learning
framework.

We propose a heuristic that differentiates usages
based on distributional semantics (Harris, 1954;
Turney and Pantel, 2010). Our key insight is that
when an idiom is used literally, its relationship
with its context is more predictable than when it is
used figuratively. This is because the literal mean-
ing of an idiom is compositional (Katz and Gies-
brecht, 2006), and the constituent words that make
up the idiom are also meant literally. For exam-
ple, in instance (2), spill is meant literally and can
take on objects other than beans; moreover, one of
the context words, mess, can often be seen to co-
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occur with spill in other text, even without beans.
Our strategy is to represent an idiom’s literal usage
in terms of the word embeddings of the idiom’s
constituent words and other words they frequently
co-occur with. Then, for any instance in which the
idiom’s usage is not known, we only need to deter-
mine the semantic similarity between that instance
and the idiom’s literal representation. We define a
literal usage metric that estimates the likelihood
that an instance would be labeled ”literal”.

While the literal usage metric captures the dis-
tributional semantic information of the context, we
find that some other linguistic cues are also sig-
nificant for usage detection (such as whether the
subject of the sentence is a person); therefore, we
allow our model to further refine through unsu-
pervised methods. Specifically, we treat the usage
(figurative or literal) as a hidden variable in proba-
bilistic latent variable models, and we define a set
of features that are linguistically relevant for idiom
usage detection as observables. We integrate our
literal usage metric with the latent variable mod-
els by treating the metric outputs as soft labels to
guide the latent variable models toward grouping
by usages.

We hypothesize that unsupervised learning in
a more linguistically motivated feature space, in-
formed by soft labels from a semantically driven
metric, will produce more robust classifiers. We
conduct experiments comparing our approach
against other supervised and unsupervised base-
lines. Results suggest that our approach achieves
performances that are competitive to supervised
models.

2 Related Work

Despite the common perception that idioms are
mainly used figuratively, many can also be meant
literally. A number of models have been pro-
posed in the literature to recognize an idiom’s us-
ages under different context. Many rely on spe-
cific linguistic property to draw a clear-cut deci-
sion boundary between literal and figurative us-
ages. For example, Fazly et al. (2009) proposed
a method that relies on the concept of canonical
form. Based on the observation that while literal
usages are less syntactically restricted, figurative
usages tend to occur in a small number of canon-
ical form(s). As shown in the examples above,
however, this rule of thumb does not always hold.
Sporleder and Li (2009) proposed a method by

building a cohesion graph to include all content
words in the context; if removing the idiom im-
proves cohesion, they assume the instance is figu-
rative. Later, Li and Sporleder (2009) used their
cohesion graph method to label a subset of the
test data with high confidence. This subset is then
passed on as training data to the supervised classi-
fier, which then labels the remainder of the dataset.

When manually annotated examples are avail-
able, supervised classifiers are effective. Rajani
et al. (2014) extracted all non-stop-words in the
context and used them as ”bag of words” fea-
tures to train a L2 regularized Logistic Regres-
sion (L2LR) classifier (Fan et al., 2008). As local
context of an idiom holds clues for discriminat-
ing between its literal and figurative usages, Liu
and Hwa (2017) find that context representation
also plays a significant role in idiom usage recog-
nition. They took an adaptive approach, applying
supervised ensemble learning over three classifiers
based on different context representations (Peng
et al., 2014; Birke and Sarkar, 2006; Rajani et al.,
2014).

3 Our Approach

Given a target idiomatic expression and a collec-
tion of instances in which the idiom occurs, our
proposed system (Figure 1) determines whether
the idiom in each instance is meant figuratively
or literally. We first build a Literal Usage Rep-
resentation for each idiom by leveraging the dis-
tributional semantics of its constituents (Sec 3.1).
Given an instance of idiom, we can determine its
usage by the semantic similarity between the con-
text of the instance and the Literal Usage Repre-
sentation. We define a Literal Usage Metric to
transform the semantic similarity score into soft
label, i.e., an initial rough estimation of the in-
stance’s usage (Sec 3.2). Finally, we treat the soft
labels as distant supervision for downstream prob-
abilistic latent variable models, in which the us-
ages are considered as the hidden variables and are
represented over a set of features.

3.1 Literal Usage Representation

An idiom co-occurs with different sets of words
depending on whether it is meant literally or fig-
uratively. For example, when used literally, get
wind is more likely to co-occur with words such
as rain, storm or weather; in contrast, when used
figuratively, it frequently co-occurs with rumor or
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Figure 1: An overview of our unsupervised idiom usage recognition model

story, etc. Comparing the two sets of words asso-
ciated with the idiom, we see that the literal set of
words also tend to co-occur with just wind, a con-
stituent word within the idiom. Therefore, even
without annotated data or dictionary, we may still
approximate a representation for the literal mean-
ing of an idiom by the idiom’s constituent words
and their semantic relationship to other words. To
do so, we begin by initializing a literal meaning
set to just the idiom’s main constituent words3; we
then grow the set by adding two types of semanti-
cally related words. First, we look for co-occuring
words in a large textual corpus (e.g., (David et al.,
2005)): for each constituent word w, we randomly
sample s sentences that contain w from the corpus;
we extract the top n most frequent words (exclud-
ing stop words) and add them to the literal mean-
ing set. Second, we look for words that are se-
mantically close in a word embedding space: we
train a continuous bag-of-words (CBOW) embed-
ding model (Mikolov et al., 2013) and add addi-
tional t words that are the most related to w using
cosine similarity.

All together, the literal usage representation is a
collection of vectors, i.e., the embeddings of the
words in the final extended literal meaning set.
The size of the set depends on parameters s, n,
and t; if the chosen values are too small, we do not
end up with a word collection that is representative
enough; if the numbers are too large, we would
only be wasting computing resources chasing Zip-
fian tails. Parameter setting choices are discussed
further in the experiment section.

3We observe that the nouns tend to be the most indicative
of the idiom’s literal meaning, but if the idiom does not con-
tain any noun, we back off to any constituent word that is not
a stop word.

3.2 Literal Usage Metrics
Among all the instances to be classified, we expect
the context words of the literal cases to be more
semantically close to the literal usage representa-
tion we just formed. Let L denote the set of words
in the literal usage representation for the target id-
iom. For each instance, let C be the set of non-stop
context words in the instance. We calculate s, the
semantic similarity score between the context of
the instance and the literal usage representation as
follows:

s =
1

|C|
X

c2C

1

|L|
X

l2L

sim(c, l) (1)

where c denotes a word in C, l denotes a word
in L and sim(c, l) refers to the cosine similarity
between the word embeddings of c and l.

Let S = {s1, s2, ...sn} be the set of semantic
similarity scores for all the instances we wish to
classify. Instances with higher scores are more
likely to use the idiom literally. A naive literal
usage metrics is to choose a predefined thresh-
old for all idioms and label all the instances with
score above the threshold as literal usages. This
approach is unlikely to work well in practice. As
noted by previous work, idioms have different lev-
els of semantic analyzability (Gibbs et al., 1989;
Cacciari and Levorato, 1998). When an idiom has
a high degree of semantic analyzability, its contex-
tual words will be more semantically close to the
literal usage representation, thus a higher thresh-
old is needed.

In this work, we select a different decision
threshold for each idiom adaptively based on
the similarity scores distribution. And most im-
portantly, rather than generate a hard label, we
transform these scores into a probabilistic metric,
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where 0 means the usage in the instance is almost
certainly figurative while 1.0 means it is literal.

We propose a metric based on the principle of
Minimum Variance (MinV). That is, we first sort
the scores in S and choose the threshold (from
these scores) that minimizes the sum of variances
of the two resulting clusters. For each instance i,
we then apply the following metric to estimate the
probability that the idiom in instance i is meant
literally based on its semantic similarity score si :

Pri =
1

1 + e�k⇤(si�t)
(2)

where k is a constant weighting factor and t in-
dicates the learned threshold. The intuition is that
the larger the difference between si and the thresh-
old is, the more likely the instance i is literal; the
probability of literal usage is not linearly corre-
lated to the difference, we use the sigmoid func-
tion to account for this non-linearity. We incorpo-
rate k to scale the value of the difference since it is
generally very small (close to 0). Without k, all the
Pr values gravitate toward 0.5, rendering the soft
label being equivalent to random guess. We set k
to 5 for all the idioms based on a development set.

3.3 Heuristically Informed Usage
Recognition

The soft label, generated by MinV (the literal us-
age metric), captures the distributional semantic
information of the context. In practice, there are
a variety of other linguistic features which are also
informative of the intended usage of idiom. We
explore probabilistic latent variable models over a
collection of features that are linguistically rele-
vant for idiom usage detection. The soft label is
integrated into the unsupervised learning of hid-
den usages as a distant supervision. In this section,
we will describe the proposed features in the latent
variable models and how we integrate the soft la-
bel into the learning process.

3.3.1 Latent Variable Models
To predict an idiom’s usage in instances, we con-
sider two representative probabilistic latent vari-
able models: Latent Dirichlet Allocation (LDA)
(Blei et al., 2003)4 and unsupervised Naive Bayes
(NB). For both models, the latent variable is the id-
iom usage (figurative vs. literal); the observables

4Although originally conceived for modeling document
content, LDA can be applied to any kind of discrete input

are linguistic features that can be extracted from
the instances, described below:

Subordinate Clause We encode a binary fea-
ture indicating whether the target expression is fol-
lowed by a subordinate clause (the Stanford Parser
(Chen and Manning, 2014) is used). This feature is
useful for some idioms such as in the dark. It usu-
ally suggests a figurative usage as in You’ve kept
us totally in the dark about what happened that
night.

Selectional Preference Violation of selectional
preference is normally a signal of figurative usage
(e.g., having an abstract entity as the subject of
play with fire). We encode this feature if the head
word of the idiom is a verb and focus on the sub-
ject of the verb. We apply Stanford Name Entity
tagger (Finkel et al., 2005) with 3 classes (”Loca-
tion”, ”Person”, ”Organization”) on the sentence
containing the idiom. If the subject is labeled as an
Entity, its class will be encoded in the feature vec-
tor. Pronouns such as ”I” and ”he” also indicate
the subject is a ”Person”. However, they are nor-
mally not tagged by Stanford Name Entity tagger.
To overcome this issue, we add Part-of-Speech of
the subject into the feature vector.

Abstractness Abstract words refer to things
which are hard to perceive directly with our
senses. Abstractness has been shown to be useful
in the detection of metaphor, another type of figu-
rative language (Turney et al., 2011). A figurative
usage of an idiomatic phrase may have relatively
more abstract contextual words. For example, in
the sentence She has lived life in the fast lane, the
word life is considered as an abstract word. This
is a useful indicator that in the fast lane is used
figuratively. We use the MRC Psycholinguistic
Database Machine Usable Dictionary (Coltheart,
1981) which contains a list of 4295 words with
their abstractness measure between 100 and 700.
We calculate the average abstractness score for all
the contextual words (with stop words being re-
moved) in the sentence containing the idiom. The
score is then transformed into categorical feature
to overcome sparsity problem based on the follow-
ing criteria: concrete (450 - 700), medium (350 -
450), abstract (100 - 350).

Neighboring Words Words preceding and fol-
lowing the idiomatic expression can be very in-
formative in terms of usage recognition. For ex-
ample, words such as relax or shower before the
idiom in hot water often signal a literal usage.
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Part-of-Speech of the Neighboring Words
Class of neighboring words might be useful as
well. For example, a pronoun preceding dog’s age
generally indicates a literal usage, as in I think my
dog’s age is starting to catch up. She sometimes
needs help to jump on to my bed, while a deter-
miner usually marks a figurative usage, as in It’s
been a dog’s age since I’ve used Twitter.

3.3.2 Incorporating Soft Label into Usage
Recognition

Given a collection of instances and their features,
either LDA or NB can separate the instances into
two groups (hopefully, by usages), but it does not
associate the right label (i.e., ”figurative” or ”lit-
eral”) to the groups. We do not want to rely on
any manual annotations for this step. Therefore,
we integrate the automatically generated soft la-
bels (based on MinV, our literal usage metric) into
the unsupervised learning procedure as a weak
form of supervision. Formally, we want to es-
timate each instance’s posterior distribution over
(literal/figurative) usages ✓du and usage-feature
distribution �uf . For LDA, we derive a Gibbs
sampling algorithm which incorporates the soft la-
bel into the learning procedure. We refer it as in-
formed Gibbs sampling (infGibbs). For unsuper-
vised naive Bayes model, we adapt the classical
Expectation-Maximization algorithm to integrate
the soft label. We refer it as informed Expectation-
Maximization (infEM).

Informed Gibbs Sampling The Gibbs sam-
pling algorithm (Griffiths and Steyvers, 2004)
used in traditional LDA initializes each word to-
ken a random hidden topic. The system needs to
interpret the learned topics post-hoc, e.g., by hu-
man annotation. In our case, for each feature f
in each instance, an initial random usage biased
by the instance’s soft label is assigned to f (i.e., a
Bernoulli trial). Since the soft label explicitly en-
codes an instance’s literal and figurative usage dis-
tribution, we do not need to interpret the learned
usages at the end of the algorithm. Based on these
assignments, we build a feature-usage counting
matrix CFU and instance-usage counting matrix
CDU with dimensions |F | ⇥ 2 and |D| ⇥ 2 re-
spectively (|F | is the feature size and |D| is the
number of instances): CFU

i,j is the count of fea-
ture i assigned to usage j; CDU

d,j is the count of
features assigned to usage j in instance d. Then
for each feature f in each instance, we resample a
new usage for f and matrices CFU and CDU will

be updated accordingly. This step will be repeated
for T times. The resampling equation is:

p(ui = j|u�i, f) / pj · C
fi
�i,j+�

C
(⇤)
�i,j+|F |�

· C
di
�i,j+↵

C
di
�i,⇤+|U |↵

(3)
where i indexes features in the instance d, j is
an index into literal and figurative usages, ⇤ in-
dicates a summation over that dimension and �
means excluding the corresponding instance. The
first factor pj is the soft label encoding prior us-
age distribution. The second factor represents the
probability of feature f under usage j (Cfi

�i,j is
the count of the feature f assigned to usage j,
excluding the current usage assignment ui). The
third factor represents the probability of usage j in
the current instance (Cdi

�i,j is the count of linguis-
tic features which are assigned to usage j in the
current instance, excluding the current feature f ).
The value of |U | is 2, representing the number of
usages (i.e., figurative and literal). ↵ and � are the
hyper-parameters from the Dirichlet priors (we set
both of them to 1). The core idea of Equation 3 is
to integrate both distribution semantic information
(soft label, the first factor) and linguistically mo-
tivated features (the second and third factors) into
the inference procedure.

The matrices of CFU and CDU from the last
10% ⇤ T iterations are averaged and then nor-
malized to approximate the true usage-feature dis-
tribution �uf and instance-usage distribution ✓du

respectively. The final result is determined by
✓du, i.e., assigning each instance with the usage
of probability higher than 0.5. We do average to
have a more stable result because an accidental
bad sampling would affect our model negatively
if we only use the CFU and CDU from the last
iteration. This procedure is important for some id-
ioms if their feature space is sparse. The iteration
number T is set to 500 based on a development set.

Informed Expectation Maximization Com-
bining a Naive Bayes classifier with the EM algo-
rithm has been widely used in text classification
and word sense disambiguation (Hristea, 2013;
Nigam et al., 2000). In our case, we want to con-
struct a model to recover the missing literal and
figurative labels of the instances of the target id-
iom. This section describes two extensions to the
basic EM algorithm for idiom usage recognition.
The extensions help improve parameter estimation
by taking the automatically learned soft labels into
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consideration.
Our informed EM method extends a basic ver-

sion for NB (Hristea, 2013), where the initial pa-
rameter values ✓du and �uf are chosen randomly.
At each iteration, the E-step of the algorithm esti-
mates the expectations of the missing values (i.e.
the literal and figurative usage) given the latest it-
eration of the model parameters; the M-step max-
imizes the likelihood of the model parameters us-
ing the previously-computed expectations of the
missing values. As we’ve done with extending
Gibbs sampling for LDA, we also perform two
similar adaptations on conventional EM for NB
to incorporate soft labels. First, we assign each
instance an initial usage distribution ✓du directly
using the soft label, and then initialize the usage-
feature distribution �uf using these assignments.
We refer it as informed initialization. Second, in
the E-step, we multiply the expectation result of
the basic EM with the soft label as the new ex-
pected usage for each instance (i.e., updating ✓du).
The M-step is the same as basic EM to update the
usage-feature distribution �uf .

4 Evaluation

We conduct experiments to address three ques-
tions:

1. How effective is our overall approach? How
does it compare against previous work?

2. How effective is our literal usage metric (i.e.,
MinV) compared to other heuristics?

3. How effective is our literal usage metric at
informing downstream learning processes?

4.1 Experimental Setup

Models Our main experiments will evaluate the
two variants of the proposed fully unsupervised
model as described in section 3: MinV+infGibbs
and MinV+infEM. We report the average per-
formance of our models over 5 runs. Perform-
ing multiple runs is necessary because we have
a sampling process. They are compared with
three baseline unsupervised models: Sporleder
and Li (2009), Li and Sporleder (2009)5 and Fazly
et al. (2009); and two baseline supervised models:
Rajani et al. (2014) and Liu and Hwa (2017) (us-
ing 5-fold cross validation).

5We replace Normalized Google Distance (NGD) with
word embeddings to measure the semantic relatedness be-
tween words due to the query frequency restriction on the
API of NGD.

Parameter setting Recall that in order to build
the literal usage representation of an idiom, we
need to sample s sentences that contain each con-
stituent word w from an external corpus; extract
from them the top n most frequently co-occurring
words with w; then separately find t words that
are semantically similar to w using word embed-
dings. To set parameters with values in reasonable
ranges, we evaluated MinV on a small develop-
ment set. We picked 10 idioms that are differ-
ent from the evaluation set, scraped 50 instances
from the web for each idiom, and labeled them
ourselves. We find that s >= 100, n=10, and t=5
yield good results.

We use the gensim toolkit (Řehůřek and Sojka,
2010) and train our word embedding model using
the continuous bag of word model on Text8 Cor-
pus6. Negative sampling is applied as the training
method; the min count is set to 2. For the other
parameters, we use the default settings in gensim.
Evaluative Data Our goal is to compare all the
methods under two public available corpora: Se-
mEval 2013 Task 5B corpus (Korkontzelos et al.,
2013), which is used by prior supervised meth-
ods (Liu and Hwa, 2017; Rajani et al., 2014)
and verb–noun combination (VNC) dataset (Cook
et al., 2008), which is used by a prior unsupervised
method (Fazly et al., 2009). However, there are
some methods-datasets conflicts that have to be re-
solved. Because the idioms in the SemEval dataset
are all in their canonical forms, and because the id-
ioms are not restricted to the verb-noun combina-
tion, we cannot evaluate the method by Fazly et al.
on this dataset (as their method is tailored to verb-
noun combination). Some idioms from the VNC
dataset are almost always used figuratively (or lit-
erally), which presents a problem for supervised
methods. To facilitate full comparisons, we select
the subset of idioms from the VNC corpus whose
number of literal and figurative instances are both
higher than 10. A summary of the two corpora is
shown in Table 1. Note that each instance in Se-
mEval corpus has about 3⇠5 sentences; for con-
sistency, we use 3 sentences as the context: the
sentence with the target idiom and two neighbor-
ing sentences.
Evaluation metric Following the convention in
prior works, we report the F-score for the recogni-
tion of figurative usages and the overall accuracy.

6From http://mattmahoney.net/dc/text8.
zip
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SemEval VNC
# of Idiom 10 11
# of Literal 1185 239

# of Figurative 1186 470
Idiom Type Mixture Verb-Noun

Syntactic Form Canonical Mixture
Context Size 3 ⇠ 5 Sentences 1 Sentence

Table 1: Statistics of the two corpora

4.2 The Performance of Our Full Models
Table 2 shows the result of our models and the
other comparative methods. Our proposed mod-
els show consistent performance across the two
corpora, outperforming the unsupervised base-
lines from Sporleder and Li (2009), Li and
Sporleder (2009) and the supervised model from
Rajani et al. (2014). Moreover, there is no statisti-
cal significance in the F-score difference between
the supervised ensemble model from Liu and Hwa
(2017) and our models.

On the VNC corpus, our models have compa-
rable average scores as that of Fazly et al. (2009);
our scores are more stable across different idioms.
While the method of Fazly et al. is nearly perfect
for some idioms (0.98 on ”take heart”), it performs
poorly for others (e.g., 0.33 on ”pull leg”). Their
algorithm has trouble with idioms whose canoni-
cal and non-canonical forms can appear frequently
both in literal and figurative usages.

4.3 Effectiveness of MinV
The core of our approach is MinV, the literal us-
age metric we developed to generate soft labels to
guide the unsupervised learning. This experiment
examines its effectiveness by creating usage clas-
sifications directly from it (i.e., if MinV predicts
a probability of >0.5, predict ”literal”). We com-
pare MinV against two alternative heuristics.

MinV is based on two core ideas. First, if an
idiom is used figuratively, we expect to see a big
difference (low similarity scores) between its con-
text and the semantic representation of idiom’s lit-
eral usage. The idea is similar to that of Sporleder
and Li (2009), but they relied on lexical chain
instead of distributional semantics. Second, in-
stead of choosing a predefined threshold to sep-
arate the raw semantic similarity scores, we se-
lect a different decision threshold for each idiom
adaptively based on the distribution of the scores.
So as an alternative, we compare MinV against a
Fixed-Threshold heuristic that labels an instance
as ”literal” if its raw score is higher than some

global threshold (set to 0.346 based on develop-
ment data).

In Table 3, we observe that Minv outperforms
both Sporleder and Li’s model as well as Fixed-
Threshold, but using MinV by itself is not suffi-
cient. It has great fluctuations, e.g., the F-Score
for individual idioms varies from 0.43 to 0.88. Re-
call that MinV +infGibbs has a smaller fluctuation
across different idioms in Table 2. These results
suggest that the subsequent learning process is ef-
fective.

Through error analysis, we find two major fac-
tors contributing to the performance fluctuation.
First, the context itself could be misleading. An
error case of play ball by MinV is:

All 10-year-old Minnie Cruttwell wants to do is
play with the boys , but the Football Association
are not playing ball. She is a member of a mixed
team called Balham Blazers , but the FA say she
must join a girls’ team when she is 12.

The context words in bold (which are related to
the word ”ball”) mislead MinV to predict a ”lit-
eral” usage when it is actually a ”figurative” usage
(since an organization such as the Football Asso-
ciation cannot literally play ball). Second, not all
content words in the context are relevant for dis-
tinguishing the idiom’s usage. A future direction
is to prune contextual words more intelligently.

4.4 Integration of MinV into Learning

We have argued that an advantage of using a met-
ric with a probabilistic interpretation instead of
a binary class heuristic is that its scores can be
incorporated into subsequent learning models as
soft labels. In this set of experiments, we evaluate
the impact of the metric on the learning methods.
First, we consider unsupervised learning without
input from the literal usage metric. We cluster
the instances with the original Gibbs sampling and
EM algorithms and then label the two clusters with
the majority usage within the clusters. Second,
we explore using the information from the literal
usage metric as ”noisy gold standard” to perform
supervised training on a nearest neighbors (NN)
classifier. Specifically, the literal and figurative
instances labeled by MinV with high confidence
(top 30%) are used as example set. Then for each
test instance, we calculate its cosine similarity (in
feature space) to the literal and figurative example
sets and assign the label of the closest set. We refer
this model as MinV +NN.
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SemEval VNC
Type Model Avg. Ffig Avg.Acc Avg. Ffig Avg.Acc

Unsupervised Sporleder & Li 0.58* (0.42 ⇠ 0.72) 0.52*(0.32 ⇠ 0.7) 0.61* (0.46 ⇠ 0.73) 0.57*(0.41 ⇠ 0.75)
Li & Sporleder 0.64* (0.41 ⇠ 0.76) 0.62*(0.43 ⇠ 0.71) 0.67* (0.48 ⇠ 0.77) 0.66*(0.52 ⇠ 0.77)

Fazly et al. - - 0.73 (0.33 ⇠ 0.98) 0.74 (0.35 ⇠ 0.98)
Supervised Rajani et al. 0.71* (0.54 ⇠ 0.83) 0.75(0.67 ⇠ 0.81) 0.69* (0.49 ⇠ 0.8) 0.7*(0.6 ⇠ 0.79)

Liu & Hwa 0.77 (0.68 ⇠ 0.85) 0.77(0.71 ⇠ 0.85) 0.75 (0.65 ⇠ 0.88) 0.75(0.67 ⇠ 0.89)
Our Model MinV + infGibbs 0.75 (0.64 ⇠ 0.91) 0.74(0.63 ⇠ 0.87) 0.73 (0.64 ⇠ 0.86) 0.75(0.66 ⇠ 0.83)

MinV + infEM 0.73 (0.58 ⇠ 0.88) 0.73(0.61 ⇠ 0.85) 0.72 (0.62 ⇠ 0.87) 0.72(0.6 ⇠ 0.84)

Table 2: The performances of different models. Avg. Ffig denotes average figurative F-score, Avg.Acc
denotes average accuracy. We report the range in the parenthesis. * indicates the difference is significant
with our MinV+ infGibbs model at the 95% confidence level. Since the method from Fazly et al. (2009)
restricted their experiment to VNC type, we only report their performance on the VNC corpus.

Model Avg. Ffig Avg.Acc
Fixed-Threshold 0.6 (0.23 ⇠ 0.82) 0.62 (0.47 ⇠ 0.83)

MinV 0.66 (0.43 ⇠ 0.88) 0.65 (0.51 ⇠ 0.89)
Sporleder & Li 0.59 (0.42 ⇠ 0.73) 0.54(0.32 ⇠ 0.75)

Table 3: A comparison of classifying by different
heuristics. Results are averaged across all the id-
ioms in the two corpora.

Model Avg. Ffig Avg.Acc
Gibbs 0.58 (0.31 ⇠ 0.78) 0.57 (0.4 ⇠ 0.78)
EM 0.56 (0.31 ⇠ 0.71) 0.6 (0.42 ⇠ 0.77)

MinV+NN 0.68 (0.41 ⇠ 0.83) 0.67 (0.55 ⇠ 0.86)

Table 4: The performance of MinV+NN and mod-
els without soft label on all the idioms in the two
corpora

Table 4 shows the performances of the new
models, which are all worse than our full models
MinV +infGibbs and MinV +infEM. This high-
lights the advantage of integrating distributional
semantic information and local features into one
single learning procedure. Without the informed
prior (encoded by the soft labels), the Gibbs sam-
pling and EM algorithms only seek to maximize
the probability of the observed data, and may fail
to learn the underlying usage structure.

The model MinV +NN is not as competitive as
our full models. It is too sensitive to the selected
instances. Even though the training examples are
instances that MinV is the most confident about,
there are still mislabelled instances. These ”noisy
training examples” would lead the NN classifier
to make unreliable predictions. In contrast, our
unsupervised learning is less sensitive to the per-
formance of MinV; it can achieve a decent perfor-
mance for an idiom even when the quality of the
soft labels is poor. For example, when using MinV
as a stand-alone model for break a leg, its figura-

Figure 2: The performance of MinV+infGibbs on
the idiom ”break a leg”

tive F-score is only 0.43, but through further train-
ing, the full model MinV+infGibbs achieves 0.64.
Fig. 2 shows the training curve. A possible rea-
son for this phenomenon is that the soft label is
integrated into the learning process by biasing the
sampling procedure (see Equation 3). We only en-
courage our model to follow the distributional se-
mantic evidence captured by soft label and do not
force it. So if there are strong evidences encoded
by the linguistically motivated features in the in-
stances to overcome the soft label it still has the
freedom to do so.

5 Conclusion

We have presented an unsupervised method for id-
iom usage recognition built upon the heuristic that
instances that use the idiom literally are semanti-
cally closer to constituent words of the idiom. Ex-
perimental results on two different corpora suggest
that our models are competitive against supervised
methods and prior unsupervised methods.
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Abstract

The point of departure of this article is the
claim that sense-specific vectors provide an
advantage over normal vectors due to the pol-
ysemy that they presumably represent. This
claim is based on performance gains observed
in gold standard evaluation tests such as word
similarity tasks. We demonstrate that this
claim, at least as it is instantiated in prior art, is
unfounded in two ways. Furthermore, we pro-
vide empirical data and an analytic discussion
that may account for the previously reported
improved performance. First, we show that
ground-truth polysemy degrades performance
in word similarity tasks. Therefore word sim-
ilarity tasks are not suitable as an evaluation
test for polysemy representation. Second, ran-
dom assignment of words to senses is shown
to improve performance in the same task. This
and additional results point to the conclusion
that performance gains as reported in previous
work may be an artifact of random sense as-
signment, which is equivalent to sub-sampling
and multiple estimation of word vector rep-
resentations. Theoretical analysis shows that
this may on its own be beneficial for the esti-
mation of word similarity, by reducing the bias
in the estimation of the cosine distance.

1 Introduction

Polysemy is a fundamental feature of natural lan-
guages, which typically have many polysemic
words. Chair, for example, can refer to either
a piece of furniture or to a person in charge of
a meeting. Therefore both theoretical linguis-
tics and computational linguistics seek to establish
principled methods of identifying the senses that
together constitute the meaning of words.

It is commonly assumed or claimed that stan-
dard word embeddings are unable to capture poly-
semy (Iacobacci et al., 2015), which results in sub-
optimal performance in gold standard evaluation

tests such as word similarity tasks, and potentially
hamper performance in downstream tasks. The
corollary assumption is that sense-specific repre-
sentations will lead to improved performance on
these evaluation tests. This assumption is concep-
tually attractive, since it makes sense that sense-
specific representations are more accurate than
global representations which conflate the differ-
ent senses of a word into a single representation.
For example, in translating ’chair,’ it is reasonable
that performance should improve if the two senses
are represented separately. This view is supported
by several studies (Huang et al., 2012; Neelakan-
tan et al., 2014; Chen et al., 2014; Li and Juraf-
sky, 2015; Iacobacci et al., 2015; Mancini et al.,
2017), which argue that sense-specific representa-
tions lead to improved performance in word simi-
larity tasks.

Ideally, such claims about polysemy should be
evaluated using a gold standard evaluation set that
is tailored specifically for polysemous words. As
this set does not exist, tasks involving word sim-
ilarity tests have been used as a proxy (see Sec-
tion 2). The underlying hypothesis is that enrich-
ing word vector representations with polysemic
information should express itself in performance
gains in these tasks. However, this hypothesis has
never been tested directly, and the ability of word
similarity tasks to directly benefit from polysemic
information must first be validated if they are to
serve as genuine evaluation sets in polysemy re-
search. Until then, the validity of any reported
positive effects of sense-specific representations
on evaluation tests is to be treated with caution.

In this paper our first aim is to assess the validity
of word similarity tasks as proper evaluation tests
for polysemic word representations. We use two
independent corpora in order to obtain polysemic
vectors: (i) a sense-annotated corpus, and (ii) an
artificially-induced annotated corpus, constructed
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by using an established method that we modify for
our purposes. Surprisingly, our analyses show that
even the most accurate sense-specific word vectors
do not improve performance. In fact, peak perfor-
mance is achieved when polysemic information is
ignored, i.e., when all different annotated senses
are collapsed to a single word, as they naturally
appear in a text. These counter-intuitive results in-
dicate that the word similarity tasks are not a suit-
able test to evaluate polysemic representations.

Although these negative results point to the in-
adequacy of the evaluation test, they also stress
a necessary critical analysis of the sense-specific
vectors. Specifically, they give rise to the follow-
ing question: why might previously reported poly-
semic representations show superior performance
in these inadequate evaluation tests?

One explanation for the reported effects may lie
in an inherent property of sense-specific represen-
tations. The procedure of assigning a word oc-
currence to a particular sense amounts to a sam-
pling procedure. This sampling procedure itself,
regardless of its validity (whether its sense assign-
ments are correct or not), may be the true source
of the reported performance gains. To test this hy-
pothesis, we created a control condition in which
word occurrences are randomly assigned to dif-
ferent senses. Determining that an effect is at-
tributable to genuine polysemy can only be estab-
lished if a similar effect is lacking or significantly
reduced in this control condition.

We demonstrate that performance gains are in-
deed obtained for a corpus with randomly assigned
senses. In addition, we modify two models for
sense-specific polysemy representation (Li and Ju-
rafsky, 2015; Mancini et al., 2017) to randomly
assign words to senses, and observe that the effect
size remains unchanged between the original and
random conditions.

In support of our empirical findings, we discuss
the difficulty of obtaining an unbiased estimator
for the cosine distance between two normalized
random variable vectors. This distance is the ba-
sis of all word similarity tasks that serve to evalu-
ate performance, and thus it may provide a partial
explanation for the empirical findings, under the
assumption that words are better represented as a
population of vectors. Specifically, the true source
of the reported performance gains may be an arti-
fact of a purely statistical benefit that derives from
the assignment of words to particular senses, or

separate sub-samples, which subsequently reduces
the bias of the similarity estimator.

We thus identify two independent pitfalls in
NLP research on polysemy representation. First,
the inadequacy of currently-used evaluation tests
to properly assess polysemic representations. And
second, the essence of polysemic representations,
whose reported benefits might not come from pol-
ysemic information per se, but rather from other
unrelated sources.

2 Background

Previous attempts to use polysemic information
for enriching word representation used normal
unannotated corpora, and therefore disambiguated
the different senses of words before exploiting any
sense-specific information. Prior art has either
taken an automatic approach to detect word senses
based on the statistics extracted from texts (Huang
et al., 2012; Neelakantan et al., 2014; Li and Juraf-
sky, 2015), or relied on external lexical resources
(e.g., WordNet or BabelNet) which guarantee that
the detected senses are mapped to true sense dis-
tinctions in natural language (Chen et al., 2014;
Iacobacci et al., 2015; Mancini et al., 2017). Im-
portantly, both types of models report marked per-
formance gains in evaluation tests.

This kind of approach produces (i) global vec-
tors that represent a word’s meaning as a single
vector (with no subdivision into distinct senses),
as well as (ii) sense-specific vectors representing
individual senses of words, determined in the dis-
ambiguation step, as separate vectors. For exam-
ple, such approaches would represent the mean-
ing of chair as a single vector, as well as distinct
vectors for each of its multiple senses, e.g., ”chair
(person)” and ”chair (furniture)”.

In order to evaluate performance, the vectors
created by the models are standardly evaluated
using word similarity tasks (the most common
are WordSim-353 (Finkelstein et al., 2001) and
Stanford’s Contextual Word Similarities (SCWS)
(Huang et al., 2012)). These tasks comprise pairs
of words and the similarity scores assigned to them
by human annotators. For example, the similar-
ity between table and chair might be rated as 0.8
(i.e., human annotators found these words to be
very similar, but not perfectly so), while the sim-
ilarity between table and tree might be rated as
0.3 (not very similar). The embedding models
produce similarity scores for each word pair by
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computing the cosine-distance between the word
vectors for each pair. The model’s performance
is then evaluated as the rank-order similarity in
the order of pairs (Spearman correlation) between
the human annotators’ scores and the scores pro-
duced by the model. In line with the assumption
discussed above, one would predict that the rank-
order similarity produced by the sense-specific
vectors should outperform the one produced by
the global vectors. In particular, more accurate
sense-specific vectors should produce better re-
sults in these tasks; conversely, better performance
on these tasks is interpreted as indicating that pol-
ysemy has been captured more accurately. We di-
rectly test these two predictions in this paper.

Computing word similarity is straightforward
when each word is represented as a single vec-
tor, but it is less so when the meaning of a pol-
ysemic word is represented by multiple sense-
specific vectors. This problem of matching the
senses relevant for a specific word pair, i.e., match-
ing the ”person” sense of chair with the correct
sense of the word meeting, poses a major hurdle
for meaningful comparison, and has been tack-
led in three different ways: (i) average over all
similarity scores between all the different possi-
ble pairs; (ii) weighted average over these scores
according to the probability of senses assigned by
the disambiguation model; or (iii) selection of the
most suitable sense according to the disambigua-
tion model, and using only the corresponding sim-
ilarity score.

Intuitively, the third approach should outper-
form the others, as it is based on the clearest
distinction between the relevant and non-relevant
senses. However, this naı̈ve prediction is not sup-
ported by previous studies. Rather, the best results
are usually obtained for average and weighted av-
erage, followed by global (ignoring polysemy),
while selection falls far behind the others. This
counter-intuitive finding suggests that the ob-
served benefit may be less related to sense disam-
biguation than previously supposed1.

3 Task validation

Generally, before any task can be used as an eval-
uation testbed for polysemy discovery algorithms

1Iacobacci et al. (2015) and Mancini et al. (2017) only
reported results on selection, for which they found perfor-
mance gains. For consistent comparison with other models
we report average (but using their code), noting that it also
provides performance gains over global vectors.

or polysemous representations, we argue that the
task itself should be validated as suitable (or not)
for the intended purpose. We propose the fol-
lowing task validation methodology: (i) Start by
identifying a corpus where polysemic information
is known for a significant number of words. (ii)
Compute two sets of word representations: A1

- which computes a single representation for all
words in the corpus, and A2 - which computes
multiple representations for each polysemic word
in the corpus based on the different known senses
of the word. (iii) Evaluate the task using the two
representation sets A1 and A2. Only if significant
performance gains can be shown when using A2

as compared to A1, the task can be used to evalu-
ate polysemy representation.

3.1 Polysemy induction

A major drawback of the proposed methodology
is that such annotated corpora are scarce, and
the largest among them are still small (OntoNotes
(Weischedel et al., 2013) comprises 1.5 million
words, cf. unannotated corpora (e.g. Wikipedia)
which are about 1000 times larger). We therefore
articulate a methodology to generate a task vali-
dation test from any corpus and evaluation task,
even without prior annotation of polysemy, that is
based on the pseudo-words approach (Gale et al.,
1992; Pilehvar and Navigli, 2014).

More specifically, we induce polysemy in a nat-
ural corpus by pairing words, and collapsing ev-
ery pair of words into a single word-form while
keeping their ”original identity” as polysemy an-
notation. For example ring and table may be col-
lapsed to a single word with two senses, table1 and
table2 respectively. The new corpus is polysemic
with respect to the collapsed words, while all other
words keep a single sense. This corpus has most
of the features of a natural corpus, but unlike most
natural corpora (and all large corpora), it contains
polysemy annotation. Subsequently, the relevant
items in the word similarity tasks are collapsed in
the same way, making the items polysemous, and
thus the tasks suitable as validation tests.

With these polysemy-induced corpus and word
similarity tasks, we follow the methodology for
task validation described above. Only if a model
that is based on multiple representations per pol-
ysemous word leads to a significant performance
gain in the task as compared to a model with sin-
gle representation for each word then the task un-
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der examination should be considered adequate to
evaluate the utility of polysemy representation of
word senses.

3.2 Methods

Word embedding model word2vec-SkipGram
model (Mikolov et al., 2013) is used to obtain
vector representations for words and senses. The
model is separately trained over the corpus: first
producing sense-specific vectors according to the
annotated senses, and next producing global vec-
tors by ignoring the annotated senses and col-
lapsing all their occurrences to a single word.
Throughout the analyses we use an embedding
size of 300d, a window size of 5 words from each
side of the target word, negative-sampling of 5
words, and an initial learning rate of 0.025.

Sense-annotated corpus We use OntoNotes
(Weischedel et al., 2013), the largest available cor-
pus annotated for word senses. This allows us to
circumvent the problem of first disambiguating the
words’ senses, and thus to directly test the util-
ity of using polysemic information in word vec-
tor representations. The corpus contains 1.5 mil-
lion English tokens, comprising about 50k English
word types, of which 8675 word types are sense-
annotated. Because the annotation is not uniform
throughout the corpus (words are not annotated
every time they appear), which can bias the anal-
ysis described below, we extract a subset of the
corpus by removing sentences where polysemous
words are not annotated, thus removing 40% of the
corpus. Stopwords as well as words occurring less
than 10 times are ignored by the word embedding
models. All words are lowercased.

Sense-induced corpus Wikipedia dump
(04/2017) is the original corpus from which a pol-
ysemic version is induced. We separately used a
list of semantically-aware pseudowords (Pilehvar
and Navigli, 2013), in addition to random pairs
from the 6000 most frequent words to collapse
them into a single word-form (see Section 3.1).
Stopwords and infrequent words (<300 tokens)
are ignored by the word embedding models.

Evaluation Polysemic word representations are
evaluated on the two word similarity tasks de-
scribed. Crucially, the problem of matching the
relevant sense in these tests (described in Sec-
tion 2) is tackled by taking the average of the

sense-specific representations and comparing it to
the global word representations2.

3.3 Results

Results clearly demonstrate that global represen-
tations are significantly superior to sense-specific
representations in both evaluation tests and across
corpora, as shown in Table 1 and Figure 1.

OPTIMAL GLOBAL AVERAGE
WS-353
OntoNotes 44.7 41.3
Induced Rand. 70 68.7 66.4
Induced S.A. 70 70.2 67.1
SCWS
OntoNotes 64.0 62.6
Induced Rand. 66 64.3 55.2
Induced S.A. 66 65.9 65.7

Table 1: Word similarity scores for OntoNotes and
induced-polysemy Wikipedia. OPTIMAL: performance
obtained for the original Wikipedia (apply only for
the induced method), GLOBAL: sense information
ignored, AVERAGE: sense-specific vectors averaged.
S.A. & Rand.: pairing methods for polysemy induc-
tion, semantically-aware and random, respectively.

The critical comparison between the global
and average conditions is expected to show bet-
ter performance for the latter under the assump-
tion that polysemic information improves perfor-
mance. This difference (marked as actual gain
in Figure 1), surprisingly shows an opposite out-
come, which means that word similarity tasks fail
to demonstrate the value of polysemy representa-
tion in improving performance.

Complementarily, we report performance for
the optimal condition. In this condition, word sim-
ilarity scores are obtained for a model that was
trained on the the original Wikipedia corpus (be-
fore polysemy induction), and thus represents an
upper bound for the performance of any polysemy
model that would be trained on an induced poly-
semy version of the same corpus (i.e., the max-
imum ideal gain a model can achieve over its
global vectors). The fact that performance is high-
est for that condition is thus expected, and reas-
sures us that the induced polysemy procedure has
worked as planned for both kinds of induction.

Overall, our results points to a failure of poly-
semy models to improve performance over global
vectors by averaging sense-specific vectors. This
worsening in performance of the sense-specific

2Recall that average was reported to be one of the best
performing matching methods is previous work.
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vectors stands in marked contrast to previous stud-
ies which reported performance gains (see Table 2
and Reported gains in Figure 1).

GLOBAL AVERAGE
WS-353
Huang (2012) 22.8 71.3
Neelakantan (2014) 69.2 70.9
Li (2015)* 61.0 67.8
Mancini (2017)* 49.1 55.6
SCWS
Huang (2012) 58.6 62.8
Neelakantan (2014) 65.5 67.2
Chen (2014) 64.2 66.2
Li (2015) 64.6 66.4
Mancini (2017) * 57.2 62.1

Table 2: Previously reported results in word similarity
tasks. *Reproduced (see section 4.1) where consistent
comparison on the same tasks is not originally reported.

Figure 1: Summary of results in Tables 1, 2, show-
ing performance gains across conditions. Ideal gain:
max. performance gains using fully annotated corpus
with perfect sense matching, Actual gain: de-facto gain
(global - average), and Reported gains: previous re-
ported results. Color (dark and white) marks the tasks.

3.4 Discussion
The main result described above is negative,
demonstrating that word similarity tasks are
not suitable to evaluate polysemy representation.
However, the methodology we proposed for poly-
semy induction constitutes a positive contribution,
as it can be used to effectively test any task for its
utility in the evaluation of polysemy representa-
tion while using any corpora. This may aid in find-
ing tasks which are more suitable to serve as gold
standard evaluation tests for polysemy. Moreover,
the use of polysemy induction for these purposes
adds yet another type of control to the NLP tool-
box; such controls are scarcely implemented in
NLP studies (but see Dubossarsky et al. (2017)).

Importantly, the inability of the induced pol-

ysemy models to produce positive performance
gains as reported in prior art may indicate that
these reported gains do not reflect benefits from
true polysemy, but rather from an unknown factor
that boosts performance.

4 The statistical signature of polysemy

In order to further investigate the reason for the
lack of performance gains, we analyzed the prop-
erties of the sense-specific vectors in the induced
polysemy conditions, and compared them to those
obtained by previous studies.

We looked at the pairwise similarity between
the different sense-specific representations of the
same word. We start from the observation that pol-
ysemy is inherently defined by word senses that
are distinguishable from each other. Importantly,
we compared the models that did not produce per-
formance gains in word similarity tasks to those
which did report such gains.

4.1 Analysis and results
We tested four sets of sense-specific representa-
tions: two from our polysemy induction models
(see Section 3.2) and two from Li and Jurafsky
(2015)3 and Mancini et al. (2017)4 which reported
performance gains. For each word in each set,
the average cosine-distance between its different
sense-specific vectors is computed. The distribu-
tion of these average distances within a specific
set is defined as its ”polysemic signature”, which
is then compared across sets.

The results shown in Figure 2 reveal marked dif-
ferences in the polysemic signature between the
four sets. A high polysemic signature is seen
for the two induced polysemy sets, which are the
only sets with guaranteed semantically different
senses. In these sets, the polysemy model that
is based on the random pairing of words has a
higher polysemic signature than the one based on
semantically-aware pairing. This is well expected,
as semantically-aware pseudowords are designed
to simulate ”true polysemy” in which the differ-
ent senses of a word are still semantically related,
unlike random pairing which produces a ”coarse”
distinction more similar to homonymy (Pilehvar
and Navigli, 2014).

The critical comparison to the two sets of pol-
ysemy models that did find performance gains

3https://github.com/jiweil/mutli-sense-embedding
4http://lcl.uniroma1.it/sw2v/

1736



Figure 2: Density distribution of polysemic signatures
for the four sets, see text for details.

shows that these models exhibit a smaller pol-
ysemic signature, as the different senses seem
to be more similar to one another. Crucially,
even the polysemic signature of Mancini et al.
(2017), which exhibit an intermediate polysemic
signature, shows greater similarity in its senses as
compared to the sense-aware polysemy induction
model, which presumably represents a more subtle
(and ecological) model for polysemy.

4.2 Discussion

The broader implications of these results on our
research hypothesis can be understood in the con-
text of the findings reported in Section 3.3. The re-
sults described in Figure 1 demonstrate a marked
difference between previously reported gains and
the actual gain condition which shows a worsen-
ing of performance in the same task when poly-
semic information is included. The results demon-
strated in Figure 2 can be described as a negative
image of those presented in Figure 1. Specifically,
the actual gain condition of the induced-polysemy
has the largest polysemic signature as compared to
the other conditions.

Together, these results indicate that the con-
dition that demonstrates polysemy most clearly
shows the poorest performance in the evaluation
tests. The converse is also true: the conditions
that diverge from the clearest polysemic represen-
tation show heightened performance in the evalua-
tion tests. A gold standard for polysemy represen-
tation should entail that given optimal vector rep-
resentations, performance on the evaluation tests
would be optimal, and vice versa. Since our results
demonstrate that the directions of optimal vector
representation and optimal test performance are
opposite, we are led to the following conclusions:

First, polysemy models which provide improve-
ment in word similarity tasks may not necessarily
be suitable for polysemous vector representations.
Second, word similarity tasks are not suitable eval-
uation tests for polysemy representation.

5 Theoretical discussion

In this section we recall and analyze some proper-
ties of the cosine distance, and describe how they
may partially account for the empirical observa-
tions discussed in this article. The crucial point is
to model the contextual representation of words as
a distribution over some vector space.

Let Xi denote the random variable which cap-
tures the contextual representation of word i. Let
{X l

i , X
l
j 2 R

d}L
l=1 denote a sample of such rep-

resentations for words i, j respectively, where L
denotes the sample size. d corresponds to the di-
mension of the vector space when using word2vec
representations, or the number of words in the dic-
tionary when using explicit representations (e.g.,
PPMI) (see Section 3.2). To simplify the analysis,
we further assume that kX lk = 1 8l.

The similarity between two words i, j can be
plausibly measured (as customarily done) by the
cosine distance between their contextual represen-
tations, namely, E [XiXj ]:

E [XiXj ] = E [Xi] E [Xj ] + cov(Xi, Xj) (1)

Thus the average distance is not equivalent to
the distance between the average representations
alone, but has to include an additional bias term
- cov(Xi, Xj) - which reflects the statistical de-
pendence between the two vector representations
Xi, Xj . This term is significant, because the con-
textual representation of two words is likely to
exhibit strong dependence, especially when the
words are more similar.

This is where the problem lies. In the process of
generating words’ representations, we start from
a sample of sentences and generate a single rep-
resentation. This representation is essentially our
estimate of E [Xi] for word i. When multiplying
two such representations in order to compute the
cosine distance between them, we obtain an esti-
mate for E [Xi] E [Xj ], which is not a good esti-
mate for E [XiXj ] because of the bias term in (1).

Ideally, in order to provide an unbiased esti-
mate of E [XiXj ], we should divide the sample
of sentences into mini-batches, compute the ap-
propriate contextual representation for both words
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i, j from each mini-batch, and then directly esti-
mate E [XiXj ] by taking the average multiplica-
tion of the corresponding representations in each
mini-batch. Interestingly, in the process of gen-
erating polysemous representations, whether rely-
ing on true polysemy or arbitrary polysemy, we
essentially accomplish the same goal: for each
word, a mini-batch is replaced by the subset of
sentences in which only one of the word’s mean-
ings is present5.

If sense matching (see Section 2) is achieved by
way of average or weighted average, it implies
that our estimate of word similarity should im-
prove with the number of senses used in the analy-
sis, especially when the assignment is arbitrary. Of
course, any improvement is hampered by the dete-
rioration in the quality of the contextual represen-
tation computed from the smaller mini-batch sam-
ple, and therefore improvement is only expected
for a small number of real or artificial ”senses”.

6 Performance gains revisited

The empirical findings presented so far converge
on the conclusion that the performance gains re-
ported in prior art may not stem from the utility
of polysemic information, as previously claimed,
but are the result of an alternative source. In the
theoretical discussion we argue that random sense
annotation is equivalent to sub-sampling and mul-
tiple estimation of contextual vector representa-
tions, and that this alone may be beneficial for the
task performance of word similarity. It is reason-
able to conclude that these repeated sampling pro-
cedures may have produced the reported perfor-
mance gains. Here we test this hypothesis directly.

We propose a simple control condition, in
which senses are randomly assigned to words in
a corpus, and sense-specific vectors are produced
in the same way as before. Determining that an ef-
fect is reliably attributed to genuine polysemy can
only be established if a similar effect is lacking or
significantly reduced in this control condition.

6.1 Random sense assignment
We achieve random sense assignments in 2 ways:

Sampling from a known distribution. For the
entire corpus and vocabulary (100k words, and
note that Neelakantan et al. (2014) and Li and
Jurafsky (2015) also took this entire vocabulary

5For the purpose of this discussion we ignore sentences in
which a word appears more than once.

approach), we assigned senses at random from a
categorical distribution under two conditions. In
the first we used a uniform prior which produced
equal sense probabilities for each word, and in
the second condition we used a biased prior in
which one sense predominates. We also experi-
mented with different number of senses per word.
We found that the results differed only slightly be-
tween the conditions and across the different num-
ber of senses. The same regular embedding model
was trained as before.

Sampling from an unknown distribution. To
test the hypothesis more directly against the sense
distributions used in prior work, we reproduced
sense-specific vectors of two models using their
code: (1) for Li and Jurafsky (2015) we kept their
Chinese-Restaurant-Process probabilistic mecha-
nism, where senses are assigned to words based
on the similarity of their contexts. We only shuf-
fled the elements of the final vector of sense as-
signments produced by the model, and (2) for
Mancini et al. (2017) we shuffled between the
sense tags of each word in their original sense-
annotated Wikipedia. For further comparisons we
used the original code unchanged to reproduce an-
other set of global and sense-specific vectors for
each model separately to serve as a baseline.

6.2 Performance boost due to word sampling
Table 3 shows the results of these simulations.
Regular embedding with random sense assign-
ments shows marked performance gains of the
sense-specific vectors over the global vectors. In
fact, the effect reported in Neelakantan et al.
(2014) (which report the highest score in the
SCWS task, see Table 2) is replicated almost ex-
actly, perhaps due to the fact that they also used
a fixed number of senses for each word as we did
in this simulation. Furthermore, the reanalysis of
previous models lead to almost identical results in
the original and random conditions, which means
that randomly assigning words to senses does not
weaken the effect.

Together, these three control simulations clearly
show that an effect of the same magnitude as pre-
viously reported in several studies emerges under
random sense assignment. Therefore, our find-
ings strongly undermine the assumption that the
reported effects are in any way related to actual
polysemy, and strongly suggests that it is repeated
sub-sampling that boosts performance.
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ORIGINAL RANDOM
GLOB. AVE. GLOB. AVE.

WS-353
Regular embd 70 69.8
Li (2015) 61.0 67.8 60.5 68.2
Mancini (2017) 49.1 55.6 58.3 64.5
SCWS
Regular embd 65.7 67.3
Li (2015) 58.9 66.2 57.4 66.2
Mancini (2017) 57.2 62.1 62.4 65.2

Table 3: Word similarity scores for random sense as-
signments, compared to the original (where available).

7 Summary and Discussion

Here we investigate the common-held view that
polysemy representation improves performance.
Specifically, we question the validity of word sim-
ilarity tasks as a suitable evaluation test that would
allow drawing such conclusions. To test the claim
that resolving the polysemy of words improves
performance in these tasks, as was repeatedly re-
ported in prior art, we used real-world polysemy
in two independent conditions: (i) a human sense-
annotated corpus and (ii) a corpus in which poly-
semy was induced in a controlled artificial fashion.
In both conditions, the performance in word sim-
ilarity tasks deteriorated. We claim that this neg-
ative finding alone may suffice to determine that
word similarity tasks are not suitable tests for eval-
uating polysemy representation.

However, if the word similarity task is inade-
quate to evaluate polysemy, why would it show
high gains for polysemic representations as re-
ported in many previous studies? To investigate
this question we first ask whether polysemic infor-
mation per se is required to drive such effects, or
whether these effects are artificially caused by the
procedures by which polysemous representations
are created. To test this, we set out to demonstrate
that even representations that bear no genuine pol-
ysemic information could nonetheless yield im-
proved performance due to a methodological arti-
fact. We thus created control conditions, in which
we randomly assign word occurrences to senses,
and found that randomly-produced sense-specific
vectors indeed show marked improvements in per-
formance. Since this effect cannot stem from poly-
semy (which is lacking in these conditions), it may
only be the result of a methodological artifact - the
sampling procedure entailed by the assignment of
words to senses.

The existence of a sampling artifact is supported

by our theoretical discussion, showing that multi-
ple vector sampling can lower the bias of the es-
timator of the cosine distance between two vecto-
rial random variables. The underlying assumption
is that a better model for contextual word repre-
sentation should employ a population of vectors.
Interestingly, the conclusion that word vectors are
better if constructed from multiple representations
might apply to word vectors in general, and not
just to sense-specific vectors. However, such a
claim is outside the scope of this study and re-
mains for future research.

This account is further supported by our pol-
ysemic signature analysis, which shows that the
similarity between the senses in the polysemic
models that produced performance gains is greater
than in the models that did not produce this effect
(the polysemy-induced models). This finding is in
line with the sampling artifact account, as sense-
specific vectors which are based on random sense
assignments are expected to be more similar com-
pared to sense-specific vectors which are based on
true polysemic distinctions.

We stress that our analysis does not argue for
or against the accuracy of sense-specific vectors
in capturing true polysemy (other tests exist for
that purpose). Instead, it focuses only on the true
source of previously reported performance gains
of this kind of representation, and on the validity
of word similarity tasks for their evaluation.

All in all, we provide converging evidence, both
experimental and theoretical, that word similarity
tasks do not provide a marker for the utility of pol-
ysemic information. Rather, performance gains in
word similarity tasks are an artifact of the proce-
dure by which polysemic representations are cre-
ated. These conclusions join a general skepticism
expressed in the literature about the use of word
similarity tasks for the evaluation of word vectors
(Hill et al., 2015; Avraham and Goldberg, 2016;
Batchkarov et al., 2016; Faruqui et al., 2016).

Essentially, our findings mean that there is no
solid empirical foundation to the claim that poly-
semic information improves performance in eval-
uation tests. In fact, they corroborate the general
impression that polysemic representation does not
improve performance on most downstream tasks
(Li and Jurafsky, 2015). It may be the case that
sense-specific vectors can or will show height-
ened performance on evaluation tests, or improve
downstream tasks. This, however, will have to be
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demonstrated on the basis of tasks whose suitabil-
ity has been properly validated. Moreover, any ef-
fects reported will have to be supported by demon-
strating that these effects are absent or strongly
reduced in a properly articulated condition that
should control for the sampling artifact.

Critically, until a reliable evaluation test exists,
research on polysemic word representation is se-
riously hampered. In fact, a re-evaluation of past
models would be in place, as both ”positive” and
”negative” results that were previously reported
are in fact invalid.
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Abstract

Semantic graphs, such as WordNet, are re-
sources which curate natural language on two
distinguishable layers. On the local level,
individual relations between synsets (seman-
tic building blocks) such as hypernymy and
meronymy enhance our understanding of the
words used to express their meanings. Glob-
ally, analysis of graph-theoretic properties of
the entire net sheds light on the structure of
human language as a whole. In this pa-
per, we combine global and local properties
of semantic graphs through the framework of
Max-Margin Markov Graph Models (M3GM),
a novel extension of Exponential Random
Graph Model (ERGM) that scales to large
multi-relational graphs. We demonstrate how
such global modeling improves performance
on the local task of predicting semantic rela-
tions between synsets, yielding new state-of-
the-art results on the WN18RR dataset, a chal-
lenging version of WordNet link prediction in
which “easy” reciprocal cases are removed. In
addition, the M3GM model identifies multire-
lational motifs that are characteristic of well-
formed lexical semantic ontologies.

1 Introduction

Semantic graphs, such as WordNet (Fellbaum,
1998), encode the structural qualities of language
as a representation of human knowledge. On
the local level, they describe connections between
specific semantic concepts, or synsets, through in-
dividual edges representing relations such as hy-
pernymy (‘is-a’) or meronymy (‘is-part-of’); on
the global level, they encode emergent regular
properties in the induced relation graphs. Local
properties have been subject to extensive study in
recent years via the task of relation prediction,
where individual edges are found based mostly on

catamaran

boat

(a)

cat

mammalboat

(b)

cat

mammaltabby

(c)

Figure 1: Probable (a) and improbable (b-c) structures
in a hypothetical hypernym graph.

distributional methods that embed synsets and re-
lations into a vector space (e.g. Socher et al., 2013;
Bordes et al., 2013; Toutanova and Chen, 2015;
Neelakantan et al., 2015). In contrast, while the
structural regularity and significance of global as-
pects of semantic graphs is well-attested (Sigman
and Cecchi, 2002), global properties have rarely
been used in prediction settings. In this paper, we
show how global semantic graph features can fa-
cilitate in local tasks such as relation prediction.

To motivate this approach, consider the hypo-
thetical hypernym graph fragments in Figure 1: in
(a), the semantic concept (synset) ‘catamaran’ has
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a single hypernym, ‘boat’. This is a typical prop-
erty across a standard hypernym graph. In (b), the
synset ‘cat’ has two hypernyms, an unlikely event.
While a local relation prediction model might mis-
take the relation between ‘cat’ and ‘boat’ to be
plausible, for whatever reason, a high-order graph-
structure-aware model should be able to discard it
based on the knowledge that a synset should not
have more than one hypernym. In (c), an impossi-
ble situation arises: a cycle in the hypernym graph
leads each of the participating synsets to be pre-
dicted by transitivity as its own hypernym, con-
trary to the relation’s definition. However, a purely
local model has no explicit mechanism for reject-
ing such an outcome.

In this paper, we examine the effect of global
graph properties on the link structure via the
WordNet relation prediction task. Our hypothe-
sis is that features extracted from the entire graph
can help constrain local predictions to structurally
sound ones (Guo et al., 2007). Such features are
often manifested as aggregate counts of small sub-
graph structures, known as motifs, such as the
number of nodes with two or more outgoing edges,
or the number of cycles of length 3. Returning to
the example in Figure 1, each of these features will
be affected when graphs (b) and (c) are evaluated,
respectively.

To estimate weights on local and global graph
features, we build on the Exponential Random
Graph Model (ERGM), a log-linear model over
networks utilizing global graph features (Holland
and Leinhardt, 1981). In ERGMs, the likeli-
hood of a graph is computed by exponentiating a
weighted sum of the features, and then normaliz-
ing over all possible graphs. This normalization
term grows exponentially in the number of nodes,
and in general cannot be decomposed into smaller
parts. Approximations are therefore necessary to
fit ERGMs on graphs with even a few dozen nodes,
and the largest known ERGMs scale only to thou-
sands of nodes (Schmid and Desmarais, 2017).
This is insufficient for WordNet, which has an or-
der of 105 nodes.

We extend the ERGM framework in several
ways. First, we replace the maximum likelihood
objective with a margin-based objective, which
compares the observed network against alternative
networks; we call the resulting model the Max-
Margin Markov Graph Model (M3GM), draw-
ing on ideas from structured prediction (Taskar

et al., 2004). The gradient of this loss is ap-
proximated by importance sampling over candi-
date negative edges, using a local relational model
as a proposal distribution. The complexity of each
epoch of estimation is thus linear in the num-
ber of edges, making it possible to scale up to
the 105 nodes in WordNet.1 Second, we address
the multi-relational nature of semantic graphs, by
incorporating a combinatorial set of labeled mo-
tifs. Finally, we link graph-level relational features
with distributional information, by combining the
M3GM with a dyad-level model over word sense
embeddings.

We train M3GM as a re-ranker, which we ap-
ply to a a strong local-feature baseline on the
WN18RR dataset (Dettmers et al., 2018). This
yields absolute improvements of 3-4 points on all
commonly-used metrics. Model inspection re-
veals that M3GM assigns importance to features
from all relations, and captures some interesting
inter-relational properties that lend insight into the
overall structure of WordNet.2

2 Related Work

Relational prediction in semantic graphs. Re-
cent approaches to relation prediction in semantic
graphs generally start by embedding the seman-
tic concepts into a shared space and modeling re-
lations by some operator that induces a score for
an embedding pair input. We use several of these
techniques as base models (Nickel et al., 2011;
Bordes et al., 2013; Yang et al., 2014); detailed
description of these methods is postponed to Sec-
tion 3.2. Socher et al. (2013) generalize over the
approach of Nickel et al. (2011) by using a bilinear
tensor which assigns multiple parameters for each
relation; Shi and Weninger (2017) project the node
embeddings in a translational model similar to that
of Bordes et al. (2013); Dettmers et al. (2018)
apply a convolutional neural network by reshap-
ing synset embeddings to 2-dimensional matrices.
None of these embedding-based approaches incor-
porate structural information; in general, improve-
ments in embedding-based methods are expected
to be complementary to our approach.

1Although in principle the number of edges could grow
quadratically with the number of nodes, Steyvers and Tenen-
baum (2005) show that semantic graphs like WordNet tend to
be very sparse, so that the number of observed edges grows
roughly linearly with the number of nodes.

2Our code is available at http://www.github.
com/yuvalpinter/m3gm.
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Some recent works compose single edges into
more intricate motifs, such as Guu et al. (2015),
who define a task of path prediction and com-
pose various functions to solve it. They find
that compositionalized bilinear models perform
best on WordNet. Minervini et al. (2017) train
link-prediction models against an adversary that
produces examples which violate structural con-
straints such as symmetry and transitivity. An-
other line of work builds on local neighborhoods
of relation interactions and automatic detection
of relations from syntactically parsed text (Riedel
et al., 2013; Toutanova et al., 2015). Schlichtkrull
et al. (2017) use Graph Convolutional Networks
to predict relations while considering high-order
neighborhood properties of the nodes in question.
In general, these methods aggregate information
over local neighborhoods, but do not explicitly
model structural motifs.

Our model introduces interaction features be-
tween relations (e.g., hypernyms and meronyms)
for the goal of relation prediction. To our knowl-
edge, this is the first time that relation interac-
tion is explicitly modeled into a relation predic-
tion task. Within the ERGM framework, Lu et al.
(2010) train a limited set of combinatory path fea-
tures for social network link prediction.

Scaling exponential random graph models.
The problem of approximating the denominator
of the ERGM probability has been an active re-
search topic for several decades. Two com-
mon approximation methods exist in the litera-
ture. In Maximum Pseudolikelihood Estima-
tion (MPLE; Strauss and Ikeda, 1990), a graph’s
probability is decomposed into a product of the
probability for each edge, which in turn is com-
puted based on the ERGM feature difference be-
tween the graph excluding the edge and the full
graph. Monte Carlo Maximum Likelihood Esti-
mation (MCMLE; Snijders, 2002) follows a sam-
pling logic, where a large number of graphs is ran-
domly generated from the overall space under the
intuition that the sum of their scores would give
a good approximation for the total score mass.
The probability for the observed graph is then es-
timated following normalization conditioned on
the sampling distribution, and its precision in-
creases as more samples are gathered. Recent
work found that applying a parametric bootstrap
can increase the reliability of MPLE, while re-
taining its superiority in training speed (Schmid

and Desmarais, 2017). Despite this result, we
opted for an MCMLE-based approach for M3GM,
mainly due to the ability to keep the number of
edges constant in each sampled graph. This prop-
erty is important in our setup, since local edge
scores added or removed to the overall graph score
can occasionally dominate the objective function,
giving unintended importance to the overall edge
count.

3 Max-Margin Markov Graph Models

Consider a graph G = (V, E), where V is a set
of vertices and E = {(si, ti)}|E|

i=1 is a set of di-
rected edges. The ERGM scoring function defines
a probability over G|V |, the set of all graphs with
|V | nodes. This probability is defined as a log-
linear function,

PERGM(G) /  ERGM(G) = exp
�
✓

T f(G)
�
, (1)

where f is a feature function, from graphs to a vec-
tor of feature counts. Features are typically counts
of motifs — small subgraph structures — as de-
scribed in the introduction. The vector ✓ is the
parameter to estimate.

In this section we discuss our adaptation of this
model to the domain of semantic graphs, leverag-
ing their idiosyncratic properties. Semantic graphs
are composed of multiple relation types, which the
feature space needs to accommodate; their nodes
are linguistic constructs (semantic concepts) as-
sociated with complex interpretations, which can
benefit the graph representation through incorpo-
rating their embeddings in Rd into a new scoring
model. We then present our M3GM framework
to perform reliable and efficient parameter estima-
tion on the new model.

3.1 Graph Motifs as Features
Based on common practice in ERGM feature ex-
traction (e.g., Morris et al., 2008), we select the
following graph features as a basis:

• Total edge count;

• Number of cycles of length k, for k 2 {2, 3};

• Number of nodes with exactly k outgoing (in-
coming) edges, for k 2 {1, 2, 3};

• Number of nodes with at least k outgoing
(incoming) edges, for k 2 {1, 2, 3};

• Number of paths of length 2;
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• Transitivity: the proportion of length-2 paths
u ! v ! w where an edge u ! w also
exists.

Semantic graphs are multigraphs, where multi-
ple relationships (hypernymy, meronymy, deriva-
tion, etc.) are overlaid atop a common set of
nodes. For each relation r in the relation inven-
tory R, we denote its edge set as Er, and rede-
fine E =

S
r2R Er, the union of all labeled edges.

Some relations do not produce a connected graph,
while others may coincide with each other fre-
quently, possibly in regular but intricate patterns:
for example, derivation relations tend to occur be-
tween synsets in the higher, more abstract levels
of the hypernym graph. We represent this com-
plexity by expanding the feature space to include
relation-sensitive combinatory motifs. For each
feature template from the basis list above, we ex-
tract features for all possible combinations of re-
lation types existing in the graph. Depending on
the feature type, these could be relation single-
tons, pairs, or triples; they may be order-sensitive
or order-insensitive. For example:

• A combinatory ‘transitivity’ feature will
be extracted for the proportion of paths
u

hypernym������! v
meronym������! w where an edge

u
has part�����! w also exists.

• A combinatory ‘2-outgoing’ feature will be
extracted for the number of nodes with ex-
actly one derivation and one has part.

The number of features thus scales in O(|R|K)
for a feature basis which involves up to K edges
in any feature, and so our 17 basis features (with
K = 3) generate a combinatory feature set with
roughly 3,000 features for the 11-relation version
of WordNet used in our experiments (see Sec-
tion 4.1).

3.2 Local Score Component
In classical ERGM application domains such as
social media or biological networks, nodes tend
to have little intrinsic distinction, or at least lit-
tle meaningful intrinsic information that may be
extracted prior to applying the model. In seman-
tic graphs, however, the nodes represent synsets,
which are associated with information that is both
valuable to predicting the graph structure and ap-
proximable using unsupervised techniques such as
embedding into a common d-dimensional vector

space based on copious amounts of available data.
We thus modify the traditional scoring function
from eq. (1) to include node-specific information,
by introducing a relation-specific association op-
erator A(r) : V ⇥ V ! R:

 ERGM+(G) =

= exp

0

@✓
T f(G) +

X

r2R

X

(s,t)2Er

A(r)(s, t)

1

A .

(2)

The association operator generalizes various
models from the relation prediction literature:

TransE (Bordes et al., 2013) embeds each rela-
tion r into a vector in the shared space, rep-
resenting a ‘difference’ between sources and
targets, to compute the association score un-
der a translational objective,

A(r)
TRANSE(s, t) = �kes + er � etk.

BiLin (Nickel et al., 2011) embeds relations into
full-rank matrices, computing the score by a
bilinear multiplication,

A(r)
BILIN(s, t) = e

T
s Wret.

DistMult (Yang et al., 2014) is a special case of
BiLin where the relation matrices are diago-
nal, reducing the computation to a ternary dot
product,

A(r)
DISTMULT(s, t) = hes, er, eti =

dX

i=1

esi eri eti .

3.3 Parameter Estimation
The probabilistic formulation of ERGM requires
the computation of a normalization term that sums
over all possible graphs with a given number of
nodes, GN . The set of such graphs grows at a
rate that is super-exponential in the number of
nodes, making exact computation intractable even
for networks that are orders of magnitude smaller
than semantic graphs like WordNet. One solution
is to approximate probability using a variant of
the Monte Carlo Maximum Likelihood Estimation
(MCMLE) produce,

log P (G) ⇡ log (G) � log
|G|V ||
M

MX

G̃⇠G|V |

 (G̃),

(3)
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where M is the number of networks G̃ sampled
from G|V |, the space of all (multirelational) edge
sets on nodes V . Each G̃ is referred to as a nega-
tive sample, and the goal of estimation is to assign
low scores to these samples, in comparison with
the score assigned to the observed network G.

Network samples can be obtained using edge-
wise negative sampling. For each edge s

r�! t in
the training network G, we remove it temporar-
ily and consider T alternative edges, keeping the
source s and relation r constant, and sampling a
target t̃ from a proposal distribution Q. Every
such substitution produces a new graph G̃,

G̃ =G [ {s
r�! t̃} \ {s

r�! t}. (4)

Large-margin objective. Rather than approxi-
mating the log probability, as in MCMLE estima-
tion, we propose a margin loss objective: the log
score for each negative sample G̃ should be below
the log score for G by a margin of at least 1. This
motivates the hinge loss,

L(⇥, G̃; G) =
⇣
1 � log ERGM+(G)

+ log ERGM+(G̃)
⌘

+
, (5)

where (x)+ = max(0, x). Recall that the scoring
function  ERGM+ includes both the local associa-
tion score for the alternative edge and the global
graph features for the resulting graph. However,
it is not necessary to recompute all association
scores; we need only subtract the association score
for the deleted edge s

r�! t, and add the association
score for the sampled edge s

r�! t̃.
The overall loss function is the sum over N =

|E|⇥T negative samples, {G̃(i)}N
i=1, plus an L2

regularizer on the model parameters,

L(⇥; G) = �||⇥||22+
NX

i=1

L(⇥, G̃(i)). (6)

Proposal distribution. The proposal distribu-
tion Q used to sample negative edges is defined
to be proportional to the local association scores
of edges not present in the training graph:

Q(t̃ | s, r, G) /
(

0 s
r�! t̃ 2 G

A(r)(s, t̃) s
r�! t̃ /2 G .

(7)

By preferring edges that have high association
scores, the negative sampler helps push the M3GM
parameters away from likely false positives.

4 Relation Prediction

We evaluate M3GM on the relation graph edge pre-
diction task.3 Data for this task consists of a set
of labeled edges, i.e. tuples of the form (s, r, t),
where s and t denote source and target entities, re-
spectively. Given an edge from an evaluation set,
two prediction instances are created by hiding the
source and target side, in turn. The predictor is
then evaluated on its ability to predict the hidden
entity, given the other entity and the relation type.4

4.1 WN18RR Dataset
A popular relation prediction dataset for WordNet
is the subset curated as WN18 (Bordes et al., 2013,
2014), containing 18 relations for about 41,000
synsets extracted from WordNet 3.0. It has been
noted that this dataset suffers from considerable
leakage: edges from reciprocal relations such as
hypernym / hyponym appear in one direction in
the training set and in the opposite direction in
dev / test (Socher et al., 2013; Dettmers et al.,
2018). This allows trivial rule-based baselines to
achieve high performance. To alleviate this con-
cern, Dettmers et al. (2018) released the WN18RR
set, removing seven relations altogether. However,
even this dataset retains four symmetric relation
types: also see, derivationally related form, simi-
lar to, and verb group. These symmetric relations
can be exploited by defaulting to a simple rule-
based predictor.

4.2 Metrics
We report the following metrics, common in rank-
ing tasks and in relation prediction in particular:
MR, the Mean Rank of the desired entity; MRR,
Mean Reciprocal Rank, the main evaluation met-
ric; and H@k, the proportion of Hits (true entities)
found in the top k of the lists, for k 2 {1, 10}.
Unlike some prior work, we do not type-restrict
the possible relation predictions (so, e.g., a verb
group link may select a noun, and that would count
against the model).

4.3 Systems
We evaluate a single-rule baseline, three associ-
ation models, and two variants of the M3GM re-

3Sometimes referred to as Knowledge Base Completion,
e.g. in Socher et al. (2013).

4We follow prior work in excluding the following from
the ranked lists: the known entity (no self loops); entities
from the training set which fit the instance; other entities in
the evaluation set.
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ranker trained on top of the best-performing asso-
ciation baseline.

4.3.1 RULE

We include a single-rule baseline that predicts a
relation between s and t in the evaluation set if
the same relation was encountered between t and
s in the training set. All other models revert to this
baseline for the four symmetric relations.

4.3.2 Association Models
The next group of systems compute local scores
for entity-relation triplets. They all encode enti-
ties into embeddings e. Each of these systems, in
addition to being evaluated as a baseline, is also
used for computing association scores in M3GM,
both in the proposal distribution (see Section 3.3)
and for creating lists to be re-ranked (see below):
TRANSE, BILIN, DISTMULT. For detailed de-
scriptions, see Section 3.2.

4.3.3 Max-Margin Markov Graph Model
The M3GM is applied as a re-ranker. For each
relation and source (target), the top K candidate
targets (sources) are retrieved based on the local
association scores. Each candidate edge is intro-
duced into the graph, and the score  ERGM+(G) is
used to re-rank the top-K list.

We add a variant to this protocol where the
graph score and association score are weighted by
↵ and 1 � ↵, repsectively, before being summed.
We tune a separate ↵r for each relation type, us-
ing the development set’s mean reciprocal rank
(MRR). These hyperparameter values offer further
insight into where the M3GM signal benefits rela-
tion prediction most (see Section 6).

Since we do not apply the model to the symmet-
ric relations (scored by the RULE baseline), they
are excluded from the sampling protocol described
in eq. (5), although their edges do contribute to the
combinatory graph feature vector f .

Our default setting backpropagates loss into
only the graph weight vector ✓. We experiment
with a model variant which backpropagates into
the association model and synset embeddings as
well.

4.4 Synset Embeddings
For the association component of our model, we
require embedding representations for WordNet
synsets. While unsupervised word embedding
techniques go a long way in representing word-
forms (Collobert et al., 2011; Mikolov et al., 2013;

Pennington et al., 2014), they are not immediately
applicable to the semantically-precise domain of
synsets. We explore two methods of transforming
pre-trained word embeddings into synset embed-
dings.

Averaging. A straightforward way of using
word embeddings to create synset embeddings is
to collect the words representing the synset as sur-
face form within the WordNet dataset and aver-
age their embeddings (Socher et al., 2013). We
apply this method to pre-trained GloVe embed-
dings (Pennington et al., 2014) and pre-trained
FastText embeddings (Bojanowski et al., 2017),
averaging over the set of all wordforms in all
lemmas for each synset, and performing a case-
insensitive query on the embedding dictionary.
For example, the synset ‘determine.v.01’ lists the
following lemmas: ‘determine’, ‘find’, ‘find out’,
‘ascertain’. Its vector is initialized as

1

5
(edetermine + 2 · efind + eout + eascertain).

AutoExtend retrofitting + Mimick. AutoEx-
tend is a method developed specifically for em-
bedding WordNet synsets (Rothe and Schütze,
2015), in which pre-trained word embeddings are
retrofitted to the tripartite relation graph connect-
ing wordforms, lemmas, and synsets. The re-
sulting synset embeddings occupy the same space
as the word embeddings. However, some Word-
Net senses are not represented in the underlying
set of pre-trained word embeddings.5 To handle
these cases, we trained a character-based model
called MIMICK, which learns to predict embed-
dings for out-of-vocabulary items based on their
spellings (Pinter et al., 2017). We do not modify
the spelling conventions of WordNet synsets be-
fore passing them to Mimick, so e.g. ‘mask.n.02’
(the second synset corresponding to ‘mask’ as a
noun) acts as the input character sequence as is.

Random initialization. In preliminary exper-
iments, we attempted training the association
models using randomly-initialized embeddings.
These proved to be substantially weaker than
distributionally-informed embeddings and we do
not report their performance in the results section.
We view this finding as strong evidence to support
the necessity of a distributional signal in a type-
level semantic setup.

5We use the out-of-the-box vectors supplied in http://
www.cis.lmu.de/˜sascha/AutoExtend.
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System MR MRR H@10 H@1

RULE 13396 35.26 35.27 35.23

1 DISTMULT 1111 43.29 50.73 39.67
2 BILIN 738 45.36 52.93 41.37
3 TRANSE 2231 46.07 55.65 41.41

4 M3GM 2231 47.94 57.72 43.26
5 M3GM↵r

2231 48.30 57.59 43.78

Table 1: Results on development set (all metrics ex-
cept MR are x100). M3GM lines use TRANSE as their
association model. In M3GM↵r

, the graph component
is tuned post-hoc against the local component per rela-
tion.

4.5 Setup
Following tuning experiments, we train the associ-
ation models on synset embeddings with d = 300,
using a negative log-likelihood loss function over
10 negative samples and iterating over symmetric
relations once every five epochs. We optimize the
loss using AdaGrad with ⌘ = 0.01, and perform
early stopping based on the development set mean
reciprocal rank. M3GM is trained in four epochs
using AdaGrad with ⌘ = 0.1. We set M3GM’s re-
rank list size K = 100 and, following tuning, the
regularization parameter � = 0.01 and negative
sample count per edge T = 10. Our models are
all implemented in DyNet (Neubig et al., 2017).

5 Results

Table 1 presents the results on the development
set. Lines 1-3 depict the results for local mod-
els using averaged FastText embedding initializa-
tion, showing that the best performance in terms of
MRR and top-rank hits is achieved by TRANSE.
Mean Rank does not align with the other metrics;
this is an interpretable tradeoff, as both BILIN
and DISTMULT have an inherent preference for
correlated synset embeddings, giving a stronger
fallback for cases where the relation embedding
is completely off, but allowing less freedom for
separating strong cases from correlated false posi-
tives, compared to a translational objective.

Effect of global score. There is a clear advan-
tage to re-ranking the top local candidates using
the score signal from the M3GM model (line 4).
These results are further improved when the graph
score is weighted against the association compo-
nent per relation (line 5). We obtain similar im-
provements when re-ranking the predictions from
DISTMULT and BILIN.

System MR MRR H@10 H@1

RULE 13396 35.26 35.26 35.26

COMPLEX† 5261 44 51 41
CONVE† 5277 46 48 39
CONVKB† 2554 24.8 52.5

TRANSE 2195 46.59 55.55 42.26

M3GM↵r
2193 49.83 59.02 45.37

Table 2: Main results on test set. † These models were
not re-implemented, and are reported as in Nguyen
et al. (2018) and in Dettmers et al. (2018).

The M3GM training procedure is not useful in
fine-tuning the association model via backprop-
agation: this degrades the association scores for
true edges in the evaluation set, dragging the re-
ranked results along with them to about a 2-point
drop relative to the untuned variant.

Table 2 shows that our main results transfer onto
the test set, with even a slightly larger margin.
This could be the result of the greater edge density
of the combined training and dev graphs, which
enhance the global coherence of the graph struc-
ture captured by M3GM features. To support this
theory, we tested the M3GM model trained on only
the training set, and its test set performance was
roughly one point worse on all metrics, as com-
pared with the model trained on the training+dev
data.

Synset embedding initialization. We trained
association models initialized on AutoEx-
tend+Mimick vectors (see Section 4.4). Their
performance, inferior to averaged FastText vec-
tors by about 1-2 MRR points on the dev set, is
somewhat at odds with findings from previous
experiments on WordNet (Guu et al., 2015). We
believe the decisive factor in our result is the size
of the training corpus used to create FastText
embeddings, along with the increase in resulting
vocabulary coverage. Out of 124,819 lemma
tokens participating in 41,105 synsets, 118,051
had embeddings available (94.6%; type-level cov-
erage 88.1%). Only 530 synsets (1.3%) finished
this initialization process with no embedding and
were assigned random vectors. AutoExtend, fit
for embeddings from Mikolov et al. (2013) which
were trained on a smaller corpus, offers a weaker
signal: 13,377 synsets (32%) had no vector and
needed Mimick initialization.
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Positive

1 s
member meronym
������������! t

2 s
has part
�����! t

3 s
hypernym
������! t

derivationally related form
������������������! u

Negative

4 s
hypernym
������! t

5 s
hypernym
 ������! t

6 s
member meronym
������������! t

instance hypernym
�������������! u

7 s1
has part
�����! t

verb group
 ������� s2

Table 3: Select heavyweight features (motifs) follow-
ing best dev set training using M3GM. Circled nodes
count towards the motif.

6 Graph Analysis

As a consequence of the empirical experiment, we
aim to find out what M3GM has learned about
WordNet. Table 3 presents a sample of top-
weighted motifs. Lines 1 and 2 demonstrate that
the model prefers a broad scattering of targets
for the member meronym and has part relations6,
which are flat and top-downwards hierarchical, re-
spectively, while line 4 shows that a multitude of
unique hypernyms is undesired, as expected from
a bottom-upwards hierarchical relation. Line 5 en-
forces the asymmetry of the hypernym relation.

Lines 3, 6, and 7 hint at deeper interactions
between the different relation types. Line 3
shows that the model assigns positive weights
to hypernyms which have derivationally-related
forms, suggesting that the derivational equivalence
classes in the graph tend to exist in the higher,
more abstract levels of the hypernym hierarchy,
as noted in Section 3.1. Line 6 captures a se-
mantic conflict: synsets located in the lower, spe-
cific levels of the graph can be specified either
as instances of abstract concepts7, or as members
of less specific concrete classes, but not as both.
Line 7 may have captured a nodal property – since
part of is a relation which holds between nouns,
and verb group holds between verbs, this negative
weight assignment may be the manifestation of a
part-of-speech uniqueness constraint. In addition,
in features 3 and 7 we see the importance of sym-
metric relations (here derivationally related form

6Example edges: ‘America’ ! ‘American’, ‘face’ !
‘mouth’, respectively.

7Example instance hypernym edge: ‘Rome’! ‘national
capital’.

Source Relation Correct Outranking
target local target(s)

indian lettuce hypernym herb garden lettuce
austria has part vienna germany,

hungary, france,
european union

Table 4: Successful M3GM re-ranking examples.

Relation r ↵r Relation r ↵r

mem. of domain usage 0.78 hypernym 0.64
mem. of domain region 0.77 domain topic of 0.38
member meronym 0.67 has part 0.33
instance hypernym 0.65

Table 5: Graph score weights found for relations on
the dev set. Zero means graph score is not considered
at all for this relation, one means only it is considered.

and verb group, respectively), which manage to be
represented in the graph model despite not being
directly trained on.

Table 4 presents examples of relation targets
successfully re-ranked thanks to these features.
The first false connection created a new unique
hypernym, ‘garden lettuce’, downgraded by the
graph score through incrementing the count of
negatively-weighted feature 4. In the second case,
‘vienna’ was brought from rank 10 to rank 1
since it incremented the count for the positively-
weighted feature 2, whereas all targets ranked
above it by the local model were already has part-
s, mostly of ‘europe’.

The ↵r values weighing the importance of
M3GM scores in the overall function, found per
relation through grid search over the develop-
ment set, are presented in Table 5. It appears
that for all but two relations, the best-performing
model preferred the signal from the graph features
to that from the association model (↵r > 0.5).
Based on the surface properties of the different
relation graphs, the decisive factor seems to be
that synset domain topic of and has part pertain
mostly to very common concepts, offering good
local signal from the synset embeddings, whereas
the rest include many long-tail, low-frequency
synsets that require help from global features to
detect regularity.
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7 Conclusion

This paper presents a novel method for reasoning
about semantic graphs like WordNet, combining
the distributional coherence between individual
entity pairs with the structural coherence of net-
work motifs. Applied as a re-ranker, this method
substantially improves performance on link pre-
diction. Our analysis of results from Table 3, lines
6 and 7, suggests that adding graph motifs which
qualify their adjacent nodes in terms of syntactic
function or semantic category may prove useful.

From a broader perspective, M3GM can do more
as a probabilistic model than predict individual
edges. For example, consider the problem of link-
ing a new entity into a semantic graph, given only
the vector embedding. This task involves adding
multiple edges simultaneously, while maintaining
structural coherence. Our model is capable of
scoring bundles of new edges, and in future work,
we plan to explore the possibility of combining
M3GM with a search algorithm, to automatically
extend existing knowledge graphs by linking in
one or more new entities.

We also plan to explore multilingual applica-
tions. To some extent, the structural parameters
estimated by M3GM are not specific to English:
for example, hypernymy cannot be symmetric in
any language. If the structural parameters esti-
mated from English WordNet are transferable to
other languages, then the combination of M3GM
and multilingual word embeddings could facilitate
the creation and extension of large-scale semantic
resources across many languages (Fellbaum and
Vossen, 2012; Bond and Foster, 2013; Lafourcade,
2007).
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Abstract

Adjectives like warm, hot, and scalding all de-
scribe temperature but differ in intensity. Un-
derstanding these differences between adjec-
tives is a necessary part of reasoning about nat-
ural language. We propose a new paraphrase-
based method to automatically learn the rela-
tive intensity relation that holds between a pair
of scalar adjectives. Our approach analyzes
over 36k adjectival pairs from the Paraphrase
Database under the assumption that, for exam-
ple, paraphrase pair really hot $ scalding sug-
gests that hot < scalding. We show that com-
bining this paraphrase evidence with existing,
complementary pattern- and lexicon-based ap-
proaches improves the quality of systems for
automatically ordering sets of scalar adjectives
and inferring the polarity of indirect answers to
yes/no questions.

1 Introduction

Semantically similar adjectives are not fully inter-
changeable in context. Although hot and scald-
ing are related, the statement “the coffee was hot”
does not imply the coffee was scalding. Hot and
scalding are scalar adjectives that describe tem-
perature, but they are not interchangeable because
they vary in intensity. A native English speaker
knows that their relative intensities are given by
the ranking hot < scalding. Understanding this
distinction is important for language understand-
ing tasks such as sentiment analysis (Pang et al.,
2008), question answering (de Marneffe et al.,
2010), and textual inference (Dagan et al., 2006).

Existing lexical resources such as WordNet
(Miller, 1995; Fellbaum, 1998) do not include the
relative intensities of adjectives. As a result, there
have been efforts to automate the process of learn-
ing intensity relations (e.g. Sheinman and Toku-
naga (2009), de Melo and Bansal (2013), Wilkin-
son (2017), etc.). Many existing approaches rely

particularly pleased $ ecstatic
quite limited $ restricted
rather odd $ crazy
so silly $ dumb
completely mad $ crazy

Figure 1: Examples of paraphrases from PPDB of the
form RB JJu $ JJv which can be used to infer pairwise
intensity relationships (JJu < JJv).

on pattern-based or lexicon-based methods to pre-
dict the intensity ranking of adjectives. Pattern-
based approaches search large corpora for lexical
patterns that indicate an intensity relationship –
for example, “not just X, but Y” implies X < Y.
As with pattern-based approaches for other tasks
(such as hypernym discovery (Hearst, 1992)), they
are precise but have relatively sparse coverage
of comparable adjectives, even when using web-
scale corpora (de Melo and Bansal, 2013; Rup-
penhofer et al., 2014). Lexicon-based approaches
employ resources that map an adjective to a real-
valued number that encodes both intensity and po-
larity (e.g. good might map to 1 and phenomenal
to 5, while bad maps to -1 and awful to -3). They
can also be precise, but may not cover all adjec-
tives of interest.

We propose paraphrases as a new source of ev-
idence for the relative intensity of scalar adjec-
tives. A paraphrase is a pair of words or phrases
with approximately similar meaning, such as re-
ally great $ phenomenal. Adjectival paraphrases
can be exploited to uncover intensity relation-
ships. A paraphrase pair of the above form, where
one phrase is composed of an intensifying ad-
verb and an adjective (really great) and the other
is a single-word adjective (phenomenal), provides
evidence that great < phenomenal. By drawing
this evidence from large, automatically-generated
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paraphrase resources like the Paraphrase Database
(PPDB) 1 (Ganitkevitch et al., 2013; Pavlick et al.,
2015), it is possible to obtain high-coverage pair-
wise adjective intensity predictions at reasonably
high accuracy.

We demonstrate the usefulness of paraphrase
evidence for inferring relative adjective intensity
in two tasks: ordering sets of adjectives along an
intensity scale, and inferring the polarity of indi-
rect answers to yes/no questions. In both cases, we
find that combining the relatively noisy, but high-
coverage, paraphrase evidence with more precise
but low-coverage pattern- or lexicon-based evi-
dence improves overall quality.

2 Related Work

Noting that adding adjective intensity relations to
WordNet (Miller, 1995; Fellbaum, 1998) would be
useful, Sheinman et al. (2013) propose a system
for automatically extracting sets of same-attribute
adjectives from WordNet ‘dumbbells’ – consisting
of two direct antonyms at the poles and satellites
of synonymous/related adjectives incident to each
antonym (Gross and Miller, 1990) – and ordering
them by intensity. The annotations, however, are
not in WordNet as of its latest version (3.1).

Work on adjective intensity generally focuses
on two related tasks: clustering adjectives based
on the attributes they modify, and ranking same-
attribute adjectives by intensity. With respect to
the former, common approaches involve cluster-
ing adjectives by their contexts (Hatzivassiloglou
and McKeown, 1993; Shivade et al., 2015). We do
not focus on the clustering task in this paper, but
concentrate on the ranking task.

Approaches to the task of ranking scalar ad-
jectives by their intensity mostly fall under the
paradigms of pattern-based or lexicon-based ap-
proaches. Pattern-based approaches work by ex-
tracting lexical (Sheinman and Tokunaga, 2009;
de Melo and Bansal, 2013; Sheinman et al., 2013)
or syntactic (Shivade et al., 2015) patterns indica-
tive of an intensity relationship from large corpora.
For example, the patterns “X, but not Y” and “not
just X but Y” provide evidence that X is an adjec-
tive less intense than Y.

Lexicon-based approaches are derived from the
premise that adjectives can provide information
about the sentiment of a text (Hatzivassiloglou and
McKeown, 1993). These methods draw upon a

1www.paraphrase.org

lexicon that maps adjectives to real-valued scores
encoding both sentiment polarity and intensity.
The lexicon might be compiled automatically – for
example, from analyzing adjectives’ appearance in
star-valued product or movie reviews (de Marn-
effe et al., 2010; Rill et al., 2012; Sharma et al.,
2015; Ruppenhofer et al., 2014) – or manually. In
our experiments we utilize the manually-compiled
SO-CAL lexicon (Taboada et al., 2011).

Our paraphrase-based approach to inferring rel-
ative adjective intensity is based on paraphrases
that combine adjectives with adverbial modifiers.
A tangentially related approach is Collex (Rup-
penhofer et al., 2014), which is motivated by the
intuition that adjectives with extreme intensities
are modified by different adverbs from adjectives
with more moderate intensities: extreme adverbs
like absolutely are more likely to modify extreme
adjectives like brilliant than are moderate adverbs
like very. Unlike Collex, which requires pre-
determined sets of ‘end-of-scale’ and ‘normal’ ad-
verbial modifiers, our approach learns the identity
and relative importance of intensifying adverbs.

Relative intensity is just one of several dimen-
sions of gradable adjective semantics. In addi-
tion to intensity scales, a comprehensive model
of scalar adjective semantics might also incorpo-
rate notions of intensity range (Morzycki, 2015),
adjective class (Kamp and Partee, 1995), and
scale membership according to meaning (Hatzi-
vassiloglou and McKeown, 1993). In this paper
we take the position that relative intensity is worth
studying on its own because it is an important
component of adjective semantics, usable directly
for some NLP tasks such as sentiment analysis
(Pang et al., 2008), and as part of a more com-
prehensive model for other tasks like question an-
swering (de Marneffe et al., 2010).

3 Paraphrase-based Intensity Evidence

Adjectival paraphrases provide evidence about the
relative intensity of adjectives. A paraphrase of the
form RB JJu $ JJv – where one phrase is com-
prised of an adjective modified by an intensifying
adverb (RB JJu), and the other is a single-word
adjective (JJv) – is evidence that the first adjective
is less intense than the second (JJu < JJv). We
propose a new method for encoding this evidence
and using it to make pairwise adjective intensity
predictions. First, a graph (JJGRAPH) is formed
to represent over 36k adjectival paraphrases hav-
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Round 1 very hard $ harder
kinda hard $ harder

so hard $ harder
pretty hard $ harder

+
Round 2 very pleasant $ delightful

kinda hard $ tricky
so wonderful $ brilliant

pretty simple $ plain
+

Round 3 more pleasant $ delightful
really hard $ tricky
truly wonderful $ brilliant
quite simple $ plain

Figure 2: Bootstrapping process for identifying inten-
sifying adverbs. The adverbs found in Rounds 1 and 3
are used to build intensifying edges in JJGRAPH.

ing the specified form. Next, data in the graph are
used to make pairwise adjective intensity predic-
tions.

3.1 Identifying Intensifying Adverbs
In JJGRAPH, nodes are adjectives, and each di-
rected edge (JJu ��!

RB
JJv) corresponds to an adjec-

tival paraphrase of the form (RB JJu $ JJv) – for
example, (very tall $ large) – where one ‘phrase’
(JJv) is an adjective and the other (RB JJu) is an
adjectival phrase containing an adverb and adjec-
tive (see Figure 1 for examples).

Adverbs in PPDB can be intensifying or de-
intensifying. An intensifying adverb (e.g. very,
totally) strengthens the adjectives it modifies. In
contrast, a de-intensifying adverb (e.g. slightly,
somewhat) weakens the adjectives it modifies.
Since edges in JJGRAPH ideally point in the di-
rection of increasing intensity, the first step in the
process of creating JJGRAPH is to identify a set of
adverbs that are likely intensifiers to be included
as edges.

For this purpose, we generate a set R of likely
intensifying adverbs within PPDB using a boot-
strapping approach (Figure 2). The process starts
with a small seed set of adjective pairs having a
known intensity relationship. The seeds are pairs
(ju, jv) from PPDB-XXL2 such that ju is a base-
form adjective (e.g. hard), and jv is its compar-
ative or superlative form (e.g. harder or hard-
est). Using the seeds, we identify intensifying ad-

2PPDB comes in six increasingly large sizes from S to
XXXL; larger collections have wider coverage but lower pre-
cision. Our work uses XXL.

verbs by finding adjectival paraphrases in PPDB
of the form (riju $ jv); because ju < jv, ad-
verb ri is inferred to be intensifying (Round 1).
All such ri are added to initial adverb set R1.
The process continues by extracting paraphrases
(riju0 $ jv0) with ri 2 R1, indicating additional
adjective pairs (ju0 , jv0) with intensity direction in-
ferred by ri (Round 2). Finally, the adjective pairs
extracted in this second iteration are used to iden-
tify additional intensifying adverbs R3, which are
added to the final set R = R1 [ R3 (Round 3).

In all, this process generates a set of 610 ad-
verbs. Examination of the set shows that the
process does capture many intensifying adverbs
like very and abundantly, and excludes many de-
intensifying adverbs appearing in PPDB like far
less and not as. However, due to the noise in-
herent in PPDB itself and in the bootstrapping
process, there are also a few de-intensifying ad-
verbs included in R (e.g. hardly, kind of ) as well
as adverbs that are neither intensifying nor de-
intensifying (e.g. ecologically). It will be impor-
tant to take this noise into consideration when us-
ing JJGRAPH to make pairwise intensity predic-
tions.

3.2 Building JJGRAPH

JJGRAPH is built by extracting all 36,756 adjec-
tival paraphrases in PPDB of the specified form,
where the adverb belongs to R. The resulting
graph has 3,704 unique adjective nodes. JJGRAPH
is a multigraph, as there are frequently multiple
intensifying relationships between pairs of adjec-
tives. For example, the paraphrases (pretty hard $
tricky) and (really hard $ tricky) are both present
in PPDB. There can also be contradictory or cyclic
edges in JJGRAPH, as in the example depicted
in the JJGRAPH subgraph in Figure 3, where the
adverb really connects tasty to lovely and vice
versa. Self-edges are allowed (e.g. (really hard
$ hard)).

3.3 Pairwise Intensity Prediction
Examining the directed adverb edges between two
adjectives ju and jv in JJGRAPH provides evi-
dence about the relative intensity relationship be-
tween them. However, it has just been noted
that JJGRAPH is noisy, containing both contra-
dictory/cyclic edges and adverbs that are not uni-
formly intensifying. Rather than try to eliminate
cycles, or manually annotate each adverb with a
weight corresponding to its intensity and polarity
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Figure 3: A subgraph of JJGRAPH, depicting its di-
rected graph structure.

(Ruppenhofer et al., 2015; Taboada et al., 2011),
we aim to learn these weights automatically in the
process of predicting pairwise intensity.

Given adjectives (ju, jv), we build a classifier
that outputs a score from 0 to 1 indicating the pre-
dicted likelihood that ju< jv. Its binary features
correspond to adverb edges from ju to jv and from
jv to ju in JJGRAPH. The feature space includes
only adverbs from R that appear at least 10 times
in JJGRAPH, resulting in features for m = 259
unique adverbs in each direction (i.e. from ju to
jv and vice versa) for 2m = 518 binary features
total. Note that while all adverb features corre-
spond to predicted intensifiers from R, there are
some features that are actually de-intensifying due
to the noise inherent in the bootstrapping process
(Section 3.1).

We train the classifier on all 36.7k edges in JJ-
GRAPH, based on a simplifying assumption that
all adverbs in R are indeed intensifiers. For each
adjective pair (ju, jv) with one or more direct
edges from ju to jv, a positive training instance
for pair (ju, jv) and a negative training instance
for pair (jv, ju) are added to the training set. A
logistic regression classifier is trained on the data,
using elastic net regularization and 10-fold cross
validation to tune parameters.

The model parameters output by the training
process are in a feature weights vector w 2 R

2m

(with no bias term) which can be used to generate
a paraphrase-based score for each adjective pair:

scorepp(ju, jv) =
1

1 + exp�wxuv
� 0.5 (1)

where xuv is the binary feature vector for adjec-
tive pair (ju, jv). The decision boundary 0.5 is
subtracted from the sigmoid activation function so
that pairs predicted to have the directed relation
ju< jv will have a positive score, and those pre-
dicted to have the opposite directional relation will

have a negative score. Pairs with no connecting
edges in JJGRAPH score 0.

4 Other Intensity Evidence

Our experiments compare the proposed para-
phrase approach with existing pattern- and
lexicon-based approaches.

4.1 Pattern-based Evidence
We experiment with the pattern-based approach of
de Melo and Bansal (2013). Given a pair of adjec-
tives to be ranked by their intensity, de Melo and
Bansal (2013) cull intensity patterns from Google
n-Grams (Brants and Franz, 2009) as evidence of
their intensity order. Specifically, they identify 8
types of weak-strong patterns (e.g. “X, but not Y”)
and 7 types of strong-weak patterns (e.g. “not X,
but still Y”) that are used as evidence about the di-
rectionality of the intensity relationship between
adjectives. Given an adjective pair (ju, jv), an
overall pattern-based weak-strong score is calcu-
lated:

scorepat(ju, jv) =
(Wu � Su) � (Wv � Sv)

count(ju) · count(jv)
(2)

where Wu and Su quantify the pattern evidence
for the weak-strong and strong-weak intensity re-
lations respectively for the pair (ju, jv), and Wv

and Sv quantify the pattern evidence for the pair
(jv, ju). Wu and Su are calculated as:

Wu =
1

P1

X

p12Pws

count(p1(ju, jv))

Su =
1

P2

X

p22Psw

count(p2(ju, jv))
(3)

Wv and Sv are calculated similarly by swapping
the places of ju and jv. For example, given
pair (good, great), Wu might incorporate evidence
from patterns “good, but not great” and “not only
good but great”, while Sv might incorporate evi-
dence from the pattern “not great, just good”. Pws

denotes the set of weak-strong patterns, Psw de-
notes the set of strong-weak patterns, and P1 and
P2 give the total counts of all occurrences of any
pattern in Pws and Psw respectively. The score is
normalized by the frequencies of ju and jv in or-
der to avoid bias due to high-frequency adjectives.
As with the paraphrase-based scoring mechanism
(Equation 1), scores output by this method can be
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positive or negative, with positive scores being in-
dicative of a weak-strong relationship from ju to
jv. Note that score(ju, jv) = �score(jv, ju).

4.2 Lexicon-based Evidence
We use the manually-compiled SO-CAL3 lexicon
as our third, lexicon-based method for inferring
intensity. The SO-CAL lexicon assigns an inte-
ger weight in the range [�5, 5] to 2,826 adjectives.
The sign of the weight encodes sentiment polar-
ity (positive or negative), and the value encodes
intensity (e.g. atrocious, with a weight of -5, is
more intense than unlikable, with a weight of -3).
SO-CAL is used to derive a pairwise intensity pre-
diction for adjectives (ju,jv) as follows:

scoresocal(ju, jv) = |L(jv)| � |L(ju)|,
iff sign(ju) = sign(jv)

(4)

where L(jv) gives the lexicon weight for jv. Note
that scoresocal is computed only for adjectives
having the same polarity direction in the lexicon;
otherwise the score is undefined. This is because
adjectives belonging to different half scales, such
as freezing and steaming, are frequently incom-
parable in terms of intensity (de Marneffe et al.,
2010).

4.3 Combining Evidence
While the pattern-based and lexicon-based pair-
wise intensity scores are known to be precise
but low-coverage (de Melo and Bansal, 2013;
Ruppenhofer et al., 2015), we expect that the
paraphrase-based score will produce higher cov-
erage at lower accuracy. Thus we also experiment
with scoring methods that combine two or three
score types. When combining two metrics x and
y to generate a score for a pair (ju, jv), we simply
use the first metric x if it can be reliably calculated
for the pair, and back off to metric y otherwise.
More formally, the combined score for metrics x
and y is given by:

scorex+y(ju, jv) = ↵x · gx(scorex(ju, jv))

+ (1 � ↵x) · gy(scorey(ju, jv))

(5)

where ↵x 2 {0, 1} is a binary indicator corre-
sponding to the condition that scorex can be re-
liably calculated for the adjective pair, and gx(·) is
a scaling function (see below). If ↵x = 1, then

3https://github.com/sfu-discourse-lab/
SO-CAL

scorex is used. Otherwise, if ↵x = 0, then we de-
fault to scorey. When combining three metrics x,
y, and z, the combined score is given by:

scorex+y+z(ju, jv) = ↵x · gx(scorex(ju, jv))

+ (1 � ↵x) · scorey+z(ju, jv)

(6)

The criteria for having ↵x = 1 varies depend-
ing on the metric type. For pattern-based evidence
(x=‘pat’), ↵x = 1 when adjectives ju and jv ap-
pear together in any of the intensity patterns culled
from Google n-grams (e.g. “ju, but not jv” exists).
For lexicon-based evidence (x=‘socal’), ↵x = 1
when both ju and jv are in the SO-CAL vocab-
ulary, and have the same polarity (i.e. are both
positive or both negative). For paraphrase-based
evidence (x=‘pp’), ↵x = 1 when ju and jv have
one or more edges directly connecting them in JJ-
GRAPH.

Since the metrics to be combined may have dif-
ferent ranges, we use a scaling function gx(·) to
make the scores output by each metric directly
comparable:

gx(w) = sign(w) ·
✓

log(|w|) � µx

�x
+ �x

◆
(7)

where µx and �x are the estimated population
mean and standard deviation of log(scorex) (es-
timated over all adjective pairs in the dataset), and
�x is an offset equal to at least 5�x.

5 Ranking Adjective Sets by Intensity

The first experimental application for the differ-
ent paraphrase evidence is an existing model for
predicting a global intensity ordering within a set
of adjectives. Global ranking models are useful
for inferring intensity comparisons between adjec-
tives for which there is no explicit evidence. For
example, in ranking three adjectives like warm,
hot, and scalding, there may be direct evidence
indicating warm < hot and hot < scalding, but
no way of directly comparing warm to scalding.
Global ranking models infer that warm < scalding
based on evidence from the other adjective pairs in
the scale.

5.1 Global Ranking Model
We adopt the mixed-integer linear programming
(MILP) approach of de Melo and Bansal (2013)
for generating a global intensity ranking. This
model takes a set of adjectives A = {a1, . . . , an}
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Dataset # of
Scales

Min/Max/Mean
Scale Size

# of Unordered
(unequal) Pairs

Example Scale

deMelo 87 3 / 8 / 3.90 524 (466) {clean} < {spotless, immaculate}
Crowd 79 2 / 8 / 3.18 293 (250) {low} < {limited} < {scarce}
Wilkinson 21 2 / 5 / 2.81 61 (61) {dry} < {arid} < {parched}

Table 1: Characteristics of the scalar adjective datasets used for evaluation. The deMelo scale example shows an
instance of an equally-intense pair (spotless, immaculate).

and directed, pairwise adjective intensity scores
score(ai, aj) as input, and assigns each adjective
ai a place along a linear scale xi 2 [0, 1]. The ad-
jectives’ assigned values define the global order-
ing. If the predicted weights used as input are in-
consistent, containing cycles, the model resolves
these by choosing the globally optimal solution.

Recall that all pairwise scoring metrics produce
a positive score for adjective pair (ju, jv) when it
is likely that ju< jv, and a negative score other-
wise. Consequently, the MILP approach should
result in xu < xv when score(ju, jv) is positive,
and xu > xv otherwise. This goal is achieved by
maximizing the objective function:

X

u,v

sign(xv � xu) · score(ju, jv) (8)

de Melo and Bansal (2013) propose a MILP for-
mulation for maximizing this objective, which
we utilize in our experiments. Note that while
de Melo and Bansal (2013) incorporate synonymy
evidence from WordNet in their ranking method,
we do not implement this part of the model.

5.2 Experiments
We experiment with using each of the paraphrase-,
pattern-, and lexicon-based pairwise scores as in-
put to the global ranking model in isolation. To
examine how the scoring methods perform when
used in combination, we also test all possible com-
binations of 2 and 3 scores.

Experiments are run over three distinct test sets
(Table 1). Each dataset contains ordered sets of
scalar adjectives belonging to the same scale. In
general, scalar adjectives describing the same at-
tribute can be ordered along a full scale (e.g. freez-
ing to sweltering), or a half scale (warm to swel-
tering); all three test sets group adjectives into half
scales. The three datasets are described here, and
their characteristics are given in Table 1.
deMelo (de Melo and Bansal, 2013)4. 87 adjective

4http://demelo.org/gdm/intensity/

sets are extracted from WordNet ‘dumbbell’ struc-
tures (Gross and Miller, 1990), and partitioned
into half-scale sets based on their pattern-based
evidence in the Google N-Grams corpus (Brants
and Franz, 2009). Sets are manually annotated for
intensity relations (<, >, and =).
Wilkinson (Wilkinson and Oates, 2016). Twelve
adjective sets are generated by presenting crowd
workers with small seed sets (e.g. huge, small, mi-
croscopic), and eliciting similar adjectives. Sets
are automatically cleaned for consistency, and
then annotated for intensity by crowd workers.
While the original dataset contains full scales, we
manually sub-divide these into 21 half-scales for
use in this study. Details on the modification from
full- to half-scales are in the Supplemental Mate-
rial.
Crowd. We also crowdsourced a new set of adjec-
tive scales with high coverage of the PPDB vocab-
ulary. In a three-step process, we first asked crowd
workers whether pairs of adjectives describe the
same attribute (e.g. temperature) and therefore
should belong along the same scale. Second, sets
of same-scale adjectives were refined over multi-
ple rounds. Finally, workers ranked the adjectives
in each set by intensity. The final dataset includes
293 adjective pairs along 79 scales.

We measure the agreement between the gold
standard ranking of adjectives along each scale
and the predicted ranking using three commonly-
used metrics:
Pairwise accuracy. For each pair of adjectives
along the same scale, we compare the predicted
ordering of the pair after global ranking (<, >, or
=) to the gold-standard ordering of the pair, and
report overall accuracy of the pairwise predictions.
Kendall’s tau (⌧b). This metric computes the
rank correlation between the predicted (rP (J))
and gold-standard (rG(J)) ranking permutations
of each adjective scale J , incorporating a correc-
tion for ties. Values for ⌧b range from �1 to 1,
with extreme values indicating a perfect negative
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Score Accuracy
(before ranking)

Global Ranking Results

Test Set Score Type Coverage Pairwise
Acc.

Pairwise
Acc.

Avg. ⌧b ⇢ Example Predicted Scale

deMelo
scorepat 0.48 0.844 0.650 0.633 0.583 {clean} < {spotless, immaculate}*
scorepp 0.33 0.458 0.307 0.071 0.090 {immaculate, clean} < {spotless}
scoresocal 0.28 0.546 0.246 0.110 0.019 {clean} < {spotless} < {immaculate}
scorepat+socal 0.61 0.757 0.653 0.609 0.533 {clean} < {spotless} < {immaculate}
scorepat+socal+pp 0.70 0.722 0.644 0.564 0.482 {clean} < {spotless} < {immaculate}

Crowd
scorepat 0.11 0.784 0.321 0.203 0.221 {limited, low, scarce}
scorepp 0.74 0.676 0.597†† 0.437† 0.405 {low} < {limited} < {scarce}*
scoresocal 0.35 0.757 0.421 0.342 0.293 {limited, low, scarce}
scoresocal+pp 0.81 0.687 0.621†† 0.470†† 0.465 {low} < {limited} < {scarce}*
scoresocal+pat+pp 0.82 0.694 0.639†† 0.495†† 0.480 {low} < {limited} < {scarce}*

Wilkinson
scorepat 0.44 0.852 0.475 0.441 0.435 {quick} < {speedy, fast}
scorepp 0.80 0.753 0.639 0.419 0.450 {quick} < {fast} < {speedy}*
scoresocal 0.31 0.895 0.312 0.317 0.422 {fast} < {speedy} < {quick}
scorepat+pp 0.89 0.833 0.738†† 0.605 0.564 {quick} < {fast} < {speedy}*
scorepat+socal+pp 0.89 0.833 0.754†† 0.638 0.611 {quick} < {fast} < {speedy}*

††: p  .01 †: p  .05

Table 2: Pairwise relation prediction and global ranking results for each score type in isolation, and for the best-
scoring combinations of 2 and 3 score types on each dataset. For the global ranking accuracy and average ⌧b

results, we denote with the † symbol scores for metrics incorporating paraphrase-based evidence that significantly
out-perform both scorepat and scoresocal under the paired Student’s t-test, using the Anderson-Darling test to
confirm that scores conform to a normal distribution (Fisher, 1935; Anderson and Darling, 1954; Dror et al.,
2018). Example output is also given, with correct rankings starred.

or positive correlation, and a value of 0 indicating
no correlation between predicted and gold rank-
ings. We report ⌧b as a weighted average over
scales in each dataset, where weights correspond
to the number of adjective pairs in each scale.
Spearman’s rho (⇢). We report the Spearman’s
⇢ rank correlation coefficient between predicted
(rP (J)) and gold-standard (rG(J)) ranking per-
mutations. For each dataset, we calculate this met-
ric just once by treating each adjective in a partic-
ular scale as a single data point, and calculating an
overall ⇢ for all adjectives from all scales.

5.3 Experimental Results
The results of the global ordering experiment, re-
ported in Table 2, are organized as follows: Score
Accuracy pertains to performance of the scoring
methods alone – prior to global ranking – while
Global Ranking Results pertains to performance
of each scoring method as used in the global
ranking algorithm. Within Score Accuracy there
are two metrics. Coverage gives the percent of
unique same-scale adjective pairs from the test
set that can be directly scored using the given
method. For scorepat, covered pairs are all those
that appear together in any recognized pattern;

for scorepp, covered pairs are those directly con-
nected in JJGRAPH by one or more direct edges;
for scoresocal, covered pairs are all those for which
both adjectives are in the SO-CAL lexicon and
the metric is defined. Pairwise Accuracy gives
the accuracy of the scoring method (before global
ranking) on just the covered pairs, meaning that
the subset of pairs scored by each method varies.
Within Global Ranking Results, we report pair-
wise accuracy, weighted average ⌧b, and ⇢ calcu-
lated over all pairs after ranking – including both
pairs that are covered by the scoring method, and
those whose pairwise intensity relationship has
been inferred by the ranking algorithm.

The results indicate that the pairwise score
accuracies (before ranking) for scorepat and
scoresocal are higher than those of scorepp for all
datasets, but that their coverage is relatively lim-
ited. The one exception is the deMelo dataset,
where scorepat has high coverage because the
dataset was compiled specifically by finding ad-
jective pairs that matched lexical patterns in the
corpus. For all datasets, highest coverage is
achieved using one of the combined metrics that
incorporates paraphrase-based evidence.

The impact of these trends is visible on the
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Global Ranking Results. When using pairwise
intensity scores to compute the global ranking,
higher coverage by a metric drives better results,
as long as the metric’s accuracy is reasonably
high. Thus the paraphrase-based scorepp, with
its high coverage, gets better global ranking re-
sults than the other single-method scores for two
of the three datasets. Further, we find that boost-
ing coverage with a combined metric that incor-
porates paraphrase evidence produces the highest
post-ranking pairwise accuracy scores overall for
all three datasets, and the highest average ⌧b and
⇢ on the Crowd and Wilkinson datasets. We con-
clude that incorporating paraphrase evidence can
improve the quality of this model for ordering ad-
jectives along a scale because it gives high cover-
age with reasonably high quality.

The performance trends on the deMelo dataset
differ from those on the Crowd and Wilkinson
datasets. In particular, scorepp and scoresocal have
substantially lower pre-ranking pairwise accuracy
on the pairs they cover in the deMelo dataset
than they do for Crowd and Wilkinson: scorepp
has an accuracy of just 0.458 on covered pairs
in the deMelo dataset, compared with 0.676 and
0.753 on the Crowd and Wilkinson datasets, and
score differences for scoresocal are similar. The
near-random prediction accuracies of scorepp and
scoresocal on deMelo before ranking lead to near-
zero correlation values on this dataset after global
ranking. To explore possible reasons for these re-
sults, we assessed the level of human agreement
with each dataset in terms of pairwise accuracy.
For each test set, we asked five crowd workers
to classify the intensity direction for each adjec-
tive pair (ju, jv) in all scales as less than (<),
greater than (>), or equal (=). We found that
humans agreed with the ‘gold standard’ direction
65% of the time on the Bansal dataset, versus 70%
of the time on the Crowd and Wilkinson datasets.
It is possible that the more difficult nature of the
Bansal dataset, coupled with its method of compi-
lation (i.e. favoring adjective pairs that co-occur
with pre-defined intensity patterns), lead to the
lower coverage and lower accuracy of scorepp and
scoresocal on this dataset.

6 Indirect Question Answering

The second task that we address is answering indi-
rect yes or no questions. de Marneffe et al. (2010)
observed that answers to such polar questions fre-

quently omit an explicit yes or no response. In
some cases the implied answer depends on the rel-
ative intensity of adjective modifiers in the ques-
tion and answer. For example, in the exchange:

Q: Was he a successful ruler?
A: Oh, a tremendous ruler.

the implied answer is yes, which is inferred be-
cause successful  tremendous in terms of relative
intensity. Conversely, in the exchange:

Q: Does it have a large impact?
A: It has a medium-sized impact.

the implied answer is no because large > medium-
sized.

de Marneffe et al. (2010) compiled an evalua-
tion set for this task by extracting 123 examples of
such indirect question-answer pairs (IQAP) from
dialogue corpora. In each exchange, the implied
answer (annotated by crowd workers to be yes
or no5) depends on the relative intensity relation-
ship between modifiers in the question and answer
texts. In their original paper, the authors utilize an
automatically-compiled lexicon to make a polarity
prediction for each IQAP.

6.1 Predicting Answer Polarity

Our goal is to see whether paraphrase-based
scores are useful for predicting the polarity of an-
swers in the IQAP dataset. As before, we com-
pare the quality of predictions made using the
paraphrase-based evidence with predictions made
using pattern-based, lexicon-based, and combined
scoring metrics.

To use the pairwise scores for inference, we em-
ploy a decision procedure nearly identical to that
of de Marneffe et al. (2010). If jq and ja are
scorable (i.e. have a scorable intensity relationship
along the same half-scale), then jq ja implies
the answer is yes (first example above), and jq>
ja implies the answer is no (second example). If
the pair of adjectives is not scorable, then the pre-
dicted answer is no, as the pair could be antonyms
or completely unrelated. If either jq or ja is miss-
ing from the scoring vocabulary, the adjectives are
impossible to compare and therefore the predic-
tion is uncertain. The full decision procedure is
given in Figure 4.

5The original dataset contains two additional examples
where the answer is annotated as uncertain, but de Marneffe
et al. (2010) exclude them from the results and so do we.
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Given: A dialogue exchange consisting of a polar ques-
tion and answer, where the answer depends on the rel-
ative intensities of distinct modifiers jq and ja in the
question and answer respectively:

1. if jq or ja are missing from the score vocabulary,
predict “UNCERTAIN”

2. else, if score(JJq, JJa) is undefined, predict
“NO”

3. else, if score(JJq, JJa) � 0, predict “YES”

4. else, predict “NO”

5. If the question or answer contains negation, map
a “YES” answer to “NO and a “NO” answer to
“YES”

Figure 4: Decision procedure for using pairwise inten-
sity scores for predicting polarity of an IQAP instance,
based on de Marneffe et al. (2010).

6.2 Experiments
The decision procedure in Figure 4 is carried out
for the 123 IQAP instances in the dataset, vary-
ing the score type. We report the accuracy, and
macro-averaged precision, recall, and F1-score of
the 85 yes and 38 no instances, in Table 3 along-
side the percent of instances with adjectives out
of vocabulary. Only the combined scores for the
two best-scoring combinations, scoresocal+pp and
scoresocal+pat+pp, are reported.

Method %OOV Acc. P R F

all-“YES” .00 .691 .346 .500 .409

deMarneffe (2010) .02 .610 .597 .594 .596

scoresocal .33 .504 .710 .481 .574
scorepp .09 .496 .568 .533 .550
scorepat .07 .407 .524 .491 .507

scoresocal+pp .09 .634 .690 .663 .676
scoresocal+pat+pp .06 .642 .684 .683 .684

Table 3: Accuracy and macro-averaged precision (P),
recall (R), and F1-score (F) over yes and no responses
on 123 question-answer pairs. The percent of pairs hav-
ing one or both adjectives out of the score vocabulary
is listed as %OOV.

The simplest baseline of predicting all answers
to be “YES” gets highest accuracy in this imbal-
anced test set, but all score types perform better
than the all-“YES” baseline in terms of precision
and F1-score. Bouyed by its high precision, the
scoresocal – which is derived from a manually-
compiled lexicon – scored higher than scorepp
and scorepat. But it mis-predicted 33% of pairs

as uncertain because of its limited overlap with
the IQAP vocabulary. Meanwhile, scorepp had
relatively high coverage and a mid-level F-score,
while scorepat scored poorly on this dataset due
to its sparsity; while all modifiers in the IQAP
dataset are in the Google N-grams vocabulary,
most do not have observed patterns and there-
fore return predictions of “NO” (item 2 in Fig-
ure 4). As in the global ranking experiments, the
paraphrase-based evidence is complementary to
the lexicon-based evidence, and thus the combined
scoresocal+pp and scoresocal+pat+pp produce signifi-
cantly better accuracy than any score in isolation
(McNemar’s test, p < .01), and also out-perform
the original expected ranking method of de Marn-
effe et al. (2010) (although they do not beat the
best-reported score on this dataset, F-score=0.706
(Kim and de Marneffe, 2013)).

7 Conclusion

We have proposed adjectival paraphrases as
a new source of evidence for predicting in-
tensity relationships between scalar adjectives.
While paraphrase-based intensity evidence pro-
duces pairwise predictions that are less precise
than those produced by pattern- or lexicon-based
evidence, the coverage is substantially higher.
Thus paraphrases can be successfully used as a
complementary source of information for reason-
ing about adjective intensity. We will publish the
JJGRAPH resource, datasets, and code upon pub-
lication.
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Abstract

In this paper, we propose a new kernel-based
co-occurrence measure that can be applied to
sparse linguistic expressions (e.g., sentences)
with a very short learning time, as an alter-
native to pointwise mutual information (PMI).
As well as deriving PMI from mutual infor-
mation, we derive this new measure from
the Hilbert–Schmidt independence criterion
(HSIC); thus, we call the new measure the
pointwise HSIC (PHSIC). PHSIC can be in-
terpreted as a smoothed variant of PMI that
allows various similarity metrics (e.g., sen-
tence embeddings) to be plugged in as ker-
nels. Moreover, PHSIC can be estimated by
simple and fast (linear in the size of the data)
matrix calculations regardless of whether we
use linear or nonlinear kernels. Empirically, in
a dialogue response selection task, PHSIC is
learned thousands of times faster than an RNN-
based PMI while outperforming PMI in accu-
racy. In addition, we also demonstrate that PH-
SIC is beneficial as a criterion of a data selec-
tion task for machine translation owing to its
ability to give high (low) scores to a consistent
(inconsistent) pair with other pairs.

1 Introduction

Computing the co-occurrence strength between two
linguistic expressions is a fundamental task in natu-
ral language processing (NLP). For example, in col-
location extraction (Manning and Schütze, 1999),
word bigrams are collected from corpora and then
strongly co-occurring bigrams (e.g., “New York”)
are found. In dialogue response selection (Lowe
et al., 2015), pairs comprising a context and its
response sentence are collected from dialogue cor-
pora and the goal is to rank the candidate responses
for each given context sentence. In either case, a set
of linguistic expression pairs D = {(xi, yi)}n

i=1 is
first collected and then the co-occurrence strength
of a (new) pair (x, y) is computed.

Robustness Learning
to Sparsity Time

PMI

log
n · c(x, y)P

y0c(x, y0)
P

x0c(x0, y)
Eq. 1 XXX

log
bPRNN(y|x)
bPRNN(y)

Eq. 2 XXX

PHSIC
(�(x)��(x))> bCXY ( (y)� (y)) Sec. 5.1 XXX XXX

(a�a)> bCICD(b�b) Sec. 5.2 XXX XXX

Table 1: The proposed co-occurrence norm, PHSIC,
eliminates the trade-off between robustness to data
sparsity and learning time, which PMI has (Section 1).

Pointwise mutual information (PMI) (Church
and Hanks, 1989) is frequently used to model
the co-occurrence strength of linguistic expression
pairs. There are two typical types of PMI esti-
mation (computation) method. One is a counting-
based estimator using maximum likelihood esti-
mation, sometimes with smoothing techniques, for
example,

dPMIMLE(x, y; D)= log
n · c(x, y)P

y0c(x, y0)
P

x0c(x0, y)
,

(1)

where c(x, y) denotes the frequency of the
pair (x, y) in given data D. This is easy to compute
and is commonly used to measure co-occurrence
between words, such as in collocation extraction1;
however, when data D is sparse, i.e., when x or
y is a phrase or sentence, this approach is unre-
alistic. The second method uses recurrent neural
networks (RNNs). Li et al. (2016) proposed to em-
1 In collocation extraction, simple counting c(x, y) /

bP(x, y), rather than PMI, ranks undesirable function-word
pairs (e.g., “of the”) higher (Manning and Schütze, 1999).
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ploy PMI to suppress dull responses for utterance
generation in dialogue systems2. They estimated
P(y) and P(y|x) using RNN language models and
estimated PMI as follows:

dPMIRNN(x, y; D) = log
bPRNN(y|x)
bPRNN(y)

. (2)

This way of estimating PMI is applicable to sparse
language expressions; however, learning RNN lan-
guage models is computationally costly.

To eliminate this trade-off between robustness
to data sparsity and learning time, in this study we
propose a new kernel-based co-occurrence mea-
sure, which we call the pointwise Hilbert–Schmidt
independence criterion (PHSIC) (see Table 1). Our
contributions are as follows:
• We formalize PHSIC, which is derived from

HSIC (Gretton et al., 2005), a kernel-based de-
pendence measure, in the same way that PMI is
derived from mutual information (Section 3).

• We give an intuitive explanation why PHSIC is
robust to data sparsity. PHSIC is a “smoothed
variant of PMI”, which allows various similarity
metrics to be plugged in as kernels (Section 4).

• We propose fast estimators of PHSIC, which are
reduced to a simple and fast matrix calculation
regardless of whether we use linear or nonlinear
kernels (Section 5).

• We empirically confirmed the effectiveness of
PHSIC, i.e., its robustness to data sparsity and
learning time, in two different types of experi-
ment, a dialogue response selection task and a
data selection task for machine translation (Sec-
tion 6).

2 Problem Setting

Let X and Y denote random variables on X and Y ,
respectively. In this paper, we deal with the tasks
of taking a set of linguistic expression pairs

D = {(xi, yi)}n
i=1 ⇠

i.i.d.
PXY , (3)

which is regarded as a set of i.i.d. samples drawn
from a joint distribution PXY , and then measuring
the “co-occurrence strength” for each given pair
(x, y) 2 X ⇥ Y . Such tasks include collocation
extraction and dialogue response selection (Sec-
tion 1).
2 In dialogue response selection or generation, a simple con-
ditional probability bP(y|x), rather than PMI, ranks dull re-
sponses (e.g., “I don’t know.”) higher (Li et al., 2016).

3 Pointwise HSIC

In this section, we give the formal definition of
PHSIC, a new kernel-based co-occurrence measure.
We show a summary of this section in Table 2.
Intuitively, PHSIC is a “kernelized variant of PMI.”

3.1 Dependence Measure
As a preliminary step, we introduce the simple con-
cept of dependence (see Dependence Measure in
Table 2). Recall that random variables X and Y
are independent if and only if the joint probabil-
ity density PXY and the product of the marginals
PXPY are equivalent. Therefore, we can measure
the dependence between random variables X and
Y via the difference between PXY and PXPY .

Both the mutual information and the Hilbert–
Schmidt independence criterion, to be described
below, are such dependence measures.

3.2 MI and PMI
We briefly review the well-known mutual informa-
tion and PMI (see MI & PMI in Table 2).

The mutual information (MI)3 between two ran-
dom variables X and Y is defined by

MI(X, Y ) := KL[PXY kPXPY ] (4)

(Cover and Thomas, 2006), where KL[·k·] de-
notes the Kullback–Leibler (KL) divergence. Thus,
MI(X,Y ) is the degree of dependence between X
and Y measured by the KL divergence between
PXY and PXPY .

Here, by definition of the KL divergence, MI can
be represented in the form of the expectation over
PXY , i.e., the summation over all possible pairs
(x, y) 2 X ⇥Y:

MI(X, Y ) = E
(x,y)

"
log

PXY (x, y)

PX(x)PY (y)

#
. (5)

The shaded part in Equation (5) is actually the
pointwise mutual information (PMI) (Church and
Hanks, 1989):

PMI(x, y; X,Y ) := log
PXY (x, y)

PX(x)PY (y)
. (6)

Therefore, PMI(x, y) can be thought of as the con-
tribution of (x, y) to MI(X, Y ).
3 Conventionally, mutual information is denoted by I(X; Y );
in this paper, however, for notational consistency, mutual
information is denoted by MI(X, Y ).
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Dependence Measure Co-occurrence Measure
the dependence between X and Y the contribution of (x, y)
(the difference between PXY and PXPY ) to the dependence between X and Y

MI & PMI

MI(X, Y ) = KL[PXY kPXPY ]

= E
(x,y)

"
log

PXY (x, y)
PX(x)PY (y)

#
PMI(x, y; X, Y )

= log
PXY (x, y)

PX(x)PY (y)

HSIC & PHSIC

HSIC(X, Y ; k, `) = MMD2
k,`[PXY ,PXPY ]

= E
(x,y)

h
(�(x) � mX)>CXY ( (y) � mY )

i

= E
(x,y)

h
E

(x0,y0)
[ek(x, x0)è(y, y0)]

i

PHSIC(x, y; X, Y, k, `)

= (�(x) � mX)>CXY ( (y) � mY )

= E
(x0,y0)

[ek(x, x0)è(y, y0)]

Table 2: Relationship between the mutual information (MI), the pointwise mutual information (PMI), the Hilbert–
Schmidt independence criterion (HSIC), and the pointwise HSIC (PHSIC). As well as defining PMI as the contri-
bution to MI, we define PHSIC as the contribution to HSIC. In short, PHSIC is a “kernelized PMI” (Section 3).

3.3 HSIC and PHSIC
As seen in the previous section, PMI can be derived
from MI. Here, we consider replacing MI with the
Hilbert–Schmidt independence criterion (HSIC).
Then, in analogy with the relationship between
PMI and MI, we derive PHSIC from HSIC (see
HSIC & PHSIC in Table 2).

Let k : X ⇥ X ! R and ` : Y ⇥ Y ! R

denote positive definite kernels on X and Y , re-
spectively (intuitively, they are similarity func-
tions between linguistic expressions). The Hilbert–
Schmidt independence criterion (HSIC) (Gretton
et al., 2005), a kernel-based dependence measure,
is defined by

HSIC(X, Y; k, `) :=MMD2
k,`[PXY ,PXPY ], (7)

where MMD[·, ·] denotes the maximum mean dis-
crepancy (MMD) (Gretton et al., 2012), which
measures the difference between random vari-
ables on a kernel-induced feature space. Thus,
HSIC(X, Y ; k, `) is the degree of dependence be-
tween X and Y measured by the MMD between
PXY and PXPY , while MI is measured by the KL
divergence (Equation (4)).

Analogous to MI in Equation (5), HSIC can be
represented in the form of the expectation on PXY
by a simple deformation:

HSIC(X, Y ; k, `)

= E
(x,y)

h
(�(x)�mX)>CXY ( (y)�mY )

i
(8)

= E
(x,y)

h
E

(x0,y0)
[ek(x, x0)è(y, y0)]

i
, (9)

where

�(x) := k(x, ·),  (y) := `(y, ·), (10)

mX := Ex[�(x)], mY := Ey[ (y)], (11)

CXY := E
(x,y)

h
(�(x) � mX)( (y) � mY )>

i
, (12)

ek(x, x0) := k(x, x0) � Ex0 [k(x, x0)]

� Ex[k(x, x0)] + Ex,x0 [k(x, x0)]. (13)

At first glance, these equations are somewhat com-
plicated; however, the estimators of PHSIC we
actually use are reduced to a simple matrix calcula-
tion in Section 5. Unlike MI in Equation (5), HSIC
has two representations: Equation (8) is the repre-
sentation in feature space and Equation (9) is the
representation in data space.

Similar to the relationship between MI and PMI
(Section 3.2), we define the pointwise Hilbert–
Schmidt independence criterion (PHSIC) by the
shaded parts in Equations (8) and (9):

PHSIC(x, y; X, Y, k, `)

:= (�(x) � mX)>CXY ( (y) � mY ) (14)

= E
(x0,y0)

[ek(x, x0)è(y, y0)] . (15)

Namely, PHSIC(x, y) is defined as the contribu-
tion of (x, y) to HSIC(X,Y ).

In summary, we define PHSIC such that
“MI:PMI = HSIC:PHSIC” holds (see Table 2).

4 PHSIC as Smoothed PMI

This section gives an intuitive explanation for the
first feature of PHSIC, i.e., the robustness to data
sparsity, using Table 3. In short, we show that
PHSIC is a “smoothed variant of PMI.”

First, the maximum likelihood estimator of PMI
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add scores deduct scores

[PMI(x, y; D) = log
n ·

P
i I[x=xi ^ y=yi]P

i I[x=xi]
P

i I[y=yi]

( x , y )

= =

D = {. . . , ( xi , yi ), . . . }

( x , y ) ( x , y )

= 6= 6= =

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

\PHSIC(x, y; D, k, `) = 1
n

P
i
bek(x, xi)

bè(y, yi)
( x , y ) ( x , y )

⇡ ⇡ 6⇡ 6⇡

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

( x , y ) ( x , y )

⇡ 6⇡ 6⇡ ⇡

{. . . , ( xi , yi ), . . . ,( xi , yi ), . . . }

Table 3: Comparison of estimators of PMI and PHSIC in terms of methods of matching the given (x, y) and the
observed (xi, yi) in D. PMI matches them in an exact manner, while PHSIC smooths the matching using kernels.
Therefore, PHSIC is expected to be robust to data sparsity (Section 4).

in Equation (1) can be rewritten as

dPMI(x, y;D)= log
n ·

P
iI[x=xi ^ y=yi]P

iI[x=xi]
P

iI[y=yi]
, (16)

where I[condition] = 1 if the condition is true and
I[condition] = 0 otherwise. According to Equa-
tion (16), dPMI(x, y) is the amount computed by
repeating the following operation (see the first row
in Table 3):

collate the given (x, y) and the observed
(xi, yi) in D in order, and add the scores if
(x, y) and (xi, yi) match exactly or deduct
the scores if either the x side or the y side
(but nor both) matches.

Moreover, an estimator of PHSIC in data space
(Equation (15)) is

\PHSIC(x, y; D, k, `)= 1
n

P
i
bek(x, xi)

bè(y, yi) ,

(17)

where bek(·, ·) and bè(·, ·) are similarity functions cen-
tered on the data4. According to Equation (17),
\PHSIC(x, y) is the amount computed by repeat-

ing the following operation (see the second row in
Table 3):

collate the given (x, y) and the observed
(xi, yi) in D in order, and add the scores if
the similarities on the x and y sides are both
higher (both bek(x, xi) > 0 and bè(y, yi) > 0
hold)5 or deduct the scores if the similarities
on either the x or y sides are similar but
those on the other side are not similar.

4 To be exact, bek(x, x0) := k(x, x0) �
1
n

Pn
j=1 k(x, xj) �

1
n

Pn
i=1 k(xi, x

0) + 1
n2

Pn
i=1

Pn
j=1 k(xi, xj), which is an

estimator of the centered kernel ek(x, x0) in Equation (13).
5 In addition, the scores are added if the similarity on the x

side and that on the y side are both lower, that is, if bek(x, xi) <

0 and bè(y, yi) < 0 hold.

As described above, when comparing the esti-
mators of PMI and PHSIC from the viewpoint of
“methods of matching the given (x, y) and the ob-
served (xi, yi),” it is understood that PMI matches
them in an exact manner, while PHSIC smooths
the matching using kernels (similarity functions).

With this mechanism, even for completely un-
known pairs, it is possible to estimate the co-
occurrence strength by referring to observed pairs
through the kernels. Therefore, PHSIC is expected
to be robust to data sparsity and can be applied to
phrases and sentences.

Available Kernels for PHSIC In NLP, a vari-
ety of similarity functions (i.e., positive definite
kernels) are available. We can freely utilize such
resources, such as cosine similarity between sen-
tence embeddings. For a more detailed discussion,
see Appendix A.

5 Empirical Estimators of PHSIC

Recall that we have two types of empirical esti-
mator of PMI, the maximum likelihood estimator
(Equation (1)) and the RNN-based estimator (Equa-
tion (2)). In this section, we describe how to rapidly
estimate PHSIC from data. When using the linear
kernel or cosine similarity (e.g., cosine similarity
between sentence embeddings), PHSIC can be ef-
ficiently estimated in feature space (Section 5.1).
When using a nonlinear kernel such as the Gaussian
kernel, PHSIC can also be estimated efficiently in
data space via a simple matrix decomposition (Sec-
tion 5.2).

5.1 Estimation Using Linear Kernel or Cosine
When using the linear kernel or cosine similarity,
the estimator of PHSIC in feature space (14) is as
follows:
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\PHSICfeature(x, y; D, k, `)

= (�(x)��(x))> bCXY ( (y)� (y)) , (18)

where

�(x) =

(
x (k(x, x0) = x>x0)
x/kxk (k(x, x0) = cos(x, x0))

, (19)

�(x) :=
1

n

nX

i=1

�(xi),  (y) :=
1

n

nX

i=1

 (yi), (20)

bCXY :=
1

n

nX

i=1

�(xi) (yi)
>� �(x) (y)

>
. (21)

Generally in kernel methods, a feature map �(·)
induced by a kernel k(·, ·) is unknown or high-
dimensional and it is difficult to compute estimated
values in feature space6. However, when we use
the linear kernel or cosine similarity, feature maps
can be explicitly determined (Equation (19)).

Computational Cost When learning Equa-
tion (18) with feature maps � : X ! R

d and
 : Y ! R

d, computing the vectors �(x), (y) 2
R

d and the matrix bCXY 2 R
d⇥d takes O(nd2)

time and O(nd) space (linear in the size of the
input, n). When estimating PHSIC(x, y), com-
puting �(x), (y) 2 R

d and Equation (18) takes
O(d2) time (constant; does not depend on the size
of the input, n).

5.2 Estimation Using Nonlinear Kernels
When using a nonlinear kernel such as the Gaussian
kernel, it is necessary to estimate PHSIC in data
space. Using a simple matrix decomposition, this
can be achieved with the same computational cost
as the estimation in feature space. See Appendix B
for a detailed derivation.

6 Experiments

In this section, we provide empirical evidence for
the greater effectiveness of PHSIC than PMI, i.e.,
a very short learning time and robustness to data
sparsity. Among the many potential applications
of PHSIC, we choose two fundamental scenarios,
(re-)ranking/classification and data selection.
• In the ranking/classification scenario (measuring

the co-occurrence strength of new data pairs with
reference to observed pairs), PHSIC is applied

6 One of the characteristics of kernel methods is that an in-
tractable estimation in feature space is replaced with an effi-
cient estimation in data space.

as a criterion for the dialogue response selection
task (Section 6.2).

• In the data selection/filtering scenario (ordering
the entire set of observed data pairs according
to the co-occurrence strength), PHSIC is also
applied as a criterion for data selection in the
context of machine translation (Section 6.3).

6.1 PHSIC Settings
To take advantage of recent developments in rep-
resentation learning, we used several pre-trained
models for encoding sentences into vectors and
several kernels between these vectors for PHSIC.

Encoders As sentence encorders, we used two
pre-trained models without fine-tuning. First, the
sum of the word vectors effectively represents a
sentence (Mikolov et al., 2013a):

x=
P

w2xvec(w), y=
P

w2yvec(w). (22)

For vec(·), we used the pre-trained fastText

model7, which is a high-accuracy and popular word
embedding model (Bojanowski et al., 2017); mod-
els in 157 languages are publicly distributed (Grave
et al., 2018). Second, we also used a DNN-based
sentence encoder, called the universal sentence en-
coder (Cer et al., 2018), which utilizes the deep
averaging network (DAN) (Iyyer et al., 2015). The
pre-trained model for English sentences we used is
publicly available8.

Kernels As kernels between these vectors, we
used cosine similarity (cos)

k(x, x0) = cos(x, x0) (23)

and the Gaussian kernel (also known as the radial
basis function kernel; RBF kernel)

k(x, x0) = exp

✓
�kx � x

0k2
2

2�2

◆
, (24)

and similarly for `(y, y0). The experiments are ran
with hyperparameter � = 1.0 for the RBF kernel,
and d = 100 for incomplete Cholesky decomposi-
tion (for more detail, see Section B).

6.2 Ranking: Dialogue Response Selection
In the first experiment, we applied PHSIC as a
ranking criterion of the task of dialogue response
7

https://fasttext.cc/docs/en/english-vectors.

html, https://fasttext.cc/docs/en/crawl-vectors.

html

8
https://www.tensorflow.org/hub/modules/google/

universal-sentence-encoder/1
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selection (Lowe et al., 2015); in the task, pairs com-
prising a context (previous utterance sequence) and
its response are collected from dialogue corpora
and the goal is to rank the candidate responses for
each given context sentence.

The task entails sentence sequences (very sparse
linguistic expressions); moreover, Li et al. (2016)
pointed out that (RNN-based) PMI has a positive
impact on suppressing dull responses (e.g., “I don’t
know.”) in dialogue systems. Therefore, PHSIC,
another co-occurrence measure, is also expected
to be effective for this. With this setting, where
the validity of PMI is confirmed, we investigate
whether PHSIC can replace RNN-based PMI in
terms of both learning time and robustness to data
sparsity.

Experimental Settings

Dataset For the training data, we gathered ap-
proximately 5 ⇥ 105 reply chains from Twitter, fol-
lowing Sordoni et al. (2015)9. In addition, we ran-
domly selected {103, 104, 105} reply chains from
that dataset. Using these small subsets, we con-
firmed the effect of the difference in the size of the
training set (data sparseness) on the learning time
and predictive performance.

For validation and test data, we used a small
(approximately 2000 pairs each) but highly reliable
dataset created by Sordoni et al. (2015)10, which
consists only of conversations given high scores
by human annotators. Therefore, this set was not
expected to include dull responses.

For each dataset, we converted each context-
message-response triple into a context-response
pair by concatenating the context and message fol-
lowing Li et al. (2016). In addition, to convert the
test set (positive examples) to ten-choice multiple-
choice questions, we shuffled the combinations of
context and response to generate pseudo-negative
examples.

Evaluation Metrics We adopted the following
evaluation metrics for the task: (i) ROC-AUC (the
area under the receiver operating characteristic
curve), (ii) MRR (the mean reciprocal rank), and
(iii) Recall@{1,2}.

9 We collected tweets after 2017 for our training set to avoid
duplication with the test set, which contains tweets from the
year 2012.
10

https://www.microsoft.com/en-us/download/

details.aspx?id=52375

Config
Size of Training Set n

103 104 105 5⇥105

Dim. Init.

R
N

N
-P

M
I 300 fastText

Total 20.6 99.2 634.3 4042.5
bP(y) 8.0 23.6 294.6 1710.1
bP(y|x) 12.6 75.6 339.7 2332.4

1200 fastText

Total 49.0 162.0 1751.3 13054.9
bP(y) 16.3 57.2 671.0 5512.1
bP(y|x) 32.7 104.8 1080.3 7542.8

PH
SI

C

Encoder Kernel
fastText cos 0.0 0.1 0.5 2.8

DAN cos 0.0 0.1 0.4 1.8

Table 4: Learning time [s] for each model and each
size of training set for the dialogue response task. Each
row denotes a model; each column denotes the num-
ber of training data n. The text appended to each base-
line model denotes the number of dimension of hidden
layers (Dim.) and the method of initialization the em-
bedding layer (Init.). The text appended to each pro-
posed model denotes the pre-trained models used to en-
code sentences into vectors (Encoder) and the kernel
between these vectors (Kernel). The best result (the
shortest learning time) in each column is in bold.

Experimental Procedure We used the follow-
ing procedure: (i) train the model with a set of
context-response pairs D = {(xi, yi)}n

i=1; (ii) for
each context sentence x in the test data, rank the
candidate responses {yj}10

j=1 by the model; and (iii)
report three evaluation metrics.

Baseline Measures As baseline measures, both
(1) an RNN language model bPRNN(y) (Mikolov
et al., 2010) and (2) a conditional RNN language
model bPRNN(y|x) (Sutskever et al., 2014) were
trained, and (3) PMI based on these language mod-
els, RNN-PMI, was also used for experiments (see
Equation (2)). We trained these models with all
combinations of the following settings: (a) the num-
ber of dimensions of the hidden layers being 300
or 1200 and (b) the initialization of the embed-
ding layer being random (uniform on [�0.1, 0.1])
or fastText. For more detailed settings, see Ap-
pendix C.

Experimental Results
Learning Time Table 4 shows the experimental
results of the learning time11. Regardless of the
size of the training set n, the learning time for

11 The computing environment was as follows:
(i) CPU: Xeon E5-1650-v3 (3.5 GHz, 6 Cores);
(ii) GPU: GTX 1080 (8 GB).
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PHSIC is much shorter than that of the RNN-based
method. For example, even when the size of the
training set n is 5 ⇥ 105, PHSIC is approximately
1400–4000 times faster than RNN-based PMI. This
is because the estimators of PHSIC are reduced
to a deterministic and efficient matrix calculation
(Section 5), whereas neural network-based models
involve the sequential optimization of parameters
via gradient descent methods.

Robustness to Data Sparsity Table 5 shows
the experimental results of the predictive perfor-
mance. When the size of the training data is small
(n=103, 104), that is, when the data is extremely
sparse, the predictive performance of PHSIC hardly
deteriorates while that of PMI rapidly decays as the
number of data decreases. This indicates that PH-
SIC is more robust to data sparsity than RNN-based
PMI owing to the effect of kernels. Moreover, PH-
SIC with the simple cosine kernel outperforms the
RNN-based model regardless of the number of data,
while the learning time of PHSIC is thousands of
times shorter than those of the baseline methods
(Section 6.2).

Additionally we report Spearman’s rank correla-
tion coefficient between models to verify whether
PHSIC shows similar behavior to PMI. See Ap-
pendix D for more detail.

6.3 Data Selection for Machine Translation
The aim of our second experiment was to demon-
strate that PHSIC is also beneficial as a criterion
of data selection. To achieve this, we attempted
to apply PHSIC to a parallel corpus filtering task
that has been intensively discussed in recent (neu-
ral) machine translation (MT, NMT) studies. This
task was first adopted as a shared task in the third
conference on machine translation (WMT 2018)12.

Several existing parallel corpora, especially
those automatically gathered from large-scale text
data, such as the Web, contain unacceptable
amounts of noisy (low-quality) sentence pairs that
greatly affect the translation quality. Therefore,
the development of an effective method for paral-
lel corpus filtering would potentially have a large
influence on the MT community; discarding such
noisy pairs may improve the translation quality and
shorten the training time.

We expect PHSIC to give low scores to excep-
tional sentence pairs (misalignments or missing
12

http://www.statmt.org/wmt18/

parallel-corpus-filtering.html

translations) during the selection process because
PHSIC assigns low scores to pairs that are highly
inconsistent with other pairs (see Section 4). Note
that applying RNN-based PMI to a parallel corpus
selection task is unprofitable since obtaining RNN-
based PMI also has an identical computational cost
for training a sequence-to-sequence model for MT,
and thus, we cannot expect a reduction of the total
training time.

Experimental Settings

Dataset We used the ASPEC-JE corpus13, which
is an official dataset used for the MT-evaluation
shared task held in the fourth workshop on Asian
translation (WAT 2017)14 (Nakazawa et al., 2017).
ASPEC-JE consists of approximately three million
(3M) Japanese–English parallel sentences from sci-
entific paper abstracts. As discussed by Kocmi
et al. (2017), ASPEC-JE contains many low-quality
parallel sentences that have the potential to signifi-
cantly degrade the MT quality. In fact, they empir-
ically revealed that using only the reliable part of
the training parallel corpus significantly improved
the translation quality. Therefore, ASPEC-JE is
a suitable dataset for evaluating the data selection
ability.

Model For our data selection evaluation, we se-
lected the Transformer architecture (Vaswani et al.,
2017) as our baseline NMT model, which is widely-
used in the NMT community and known as one of
the current state-of-the-art architectures. We uti-
lized fairseq

15, a publicly available tool for neu-
ral sequence-to-sequence models, for building our
models.

Experimental Procedure We used the follow-
ing procedure for this evaluation: (1) rank all paral-
lel sentences in a given parallel corpus according
to each criterion, (2) extract the top K ranked par-
allel sentences, (3) train the NMT model using the
extracted parallel sentences, and (4) evaluate the
translation quality of the test data using a typical
MT automatic evaluation measure, i.e., BLEU (Pa-
pineni et al., 2002)16. In our experiments we evalu-
ated PHSIC with K = 0.5M and 1M.

13
http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

14
http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2017/

15
https://github.com/pytorch/fairseq

16 We used multi-bleu.perl in the Moses tool (https://
github.com/moses-smt/mosesdecoder).
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Models Config
Size of Training Set n

103 104 105 5 ⇥ 105

Chance Level .50; .29; .10, .20 .50; .29; .10, .20 .50; .29; .10, .20 .50; .29; .10, .20

Dim. Init.
bPRNN(y) 1200 fastText .50; .29; .10, .21 .50; .30; .11, .21 .50; .30; .10, .21 .50; .30; .13, .25

bPRNN(y|x) 1200 fastText .50; .29; .10, .21 .50; .30; .10, .21 .52; .31; .11, .23 .54; .32; .13, .25

RNN-PMI
300 random .51; .30; .10, .21 .51; .30; .11, .22 .58; .35; .14, .29 .69; .46; .25, .42

fastText .51; .29; .09, .20 .56; .34; .15, .25 .66; .41; .20, .36 .76; .56; .36, .54

1200 random .50; .29; .11, .20 .51; .30; .10, .19 .57; .35; .14, .29 .70; .47; .26, .44
fastText .51; .30; .11, .20 .52; .32; .13, .23 .65; .42; .21, .36 .75; .54; .34, .52

Encoder Kernel

PHSIC
fastText cos .61; .38; .17, .33 .62; .40; .19, .34 .62; .40; .19, .34 .62; .40; .19, .34

DAN cos .77; .58; .40, .56 .78; .57; .39, .56 .78; .58; .41, .57 .78; .58; .40, .57

Table 5: Predictive performance for each model and each training set size for the dialogue response selection
task: ROC-AUC; MRR; Recall@1,2. The best result in each column is in bold. The other notation is the same as in
Table 4.

Selection Criteria
# of Selected Data K

0.5M 1M 3M

(all the training set) - - 41.02

Random 34.26 39.82 -

fast align 38.63 40.56 -

Encoder Kernel
PHSIC fastText RBF 38.95 40.95 -

Table 6: BLEU scores with the Transformer for each
data selection criterion and each size of selected data
K for the parallel corpus filtering task.“Random” rep-
resents the baseline method of selecting sentences at
random.

Baseline Measure As a baseline measure, we
utilize a publicly available script17 of fast align
(Dyer et al., 2013), which is one of the state-of-the-
art word aligner. We firstly used the fast align
for the training set D = {(xi, yi)}i to obtain
the word alignment between each sentence pair
(xi, yi), i.e., a set of aligned word pairs with its
probabilities. We then computed the co-occurrence
score of (xi, yi) with sentence-length normaliza-
tion, i.e., the average log probability of aligned
word pairs.

Experimental Results
Table 6 shows the results of our data selection eval-
uation. It is common knowledge in NMT that more
data gives better performance in general. However,
we observed that PHSIC successfully extracted ben-
eficial parallel sentences from the noisy parallel
17

https://github.com/clab/fast align

corpus; the result using 1M data extracted from the
3M corpus by PHSIC was almost the same as that
using 3M data (the decrease in the BLEU score
was only 0.07), whereas that by random extraction
reduced the BLEU score by 1.20.

This was actually a surprising result because PH-
SIC utilizes only monolingual similarity measures
(kernels) without any other language resources.
This indicates that PHSIC can be applied to a lan-
guage pair poor in parallel resources. In addition,
the surface form and grammatical characteristics
between English and Japanese are extremely differ-
ent18; therefore, we expect that PHSIC will work
well regardless of the similarity of the language
pair.

7 Related Work

Dependence Measures Measuring indepen-
dence or dependence (correlation) between two
random variables, i.e., estimating dependence
from a set of paired data, is a fundamental task in
statistics and a very wide area of data science. To
measure the complex nonlinear dependence that
real data has, we have several choices.

First, information-theoretic MI (Cover and
Thomas, 2006) and its variants (Suzuki et al., 2009;
Reshef et al., 2011) are the most commonly used
dependence measures. However, to the best of our
knowledge, there is no practical method of com-
puting MIs for large-multi class high-dimensional
18 For example, word order; English is an SVO (subject-verb-
object) language and Japanese is an SOV (subject-object-verb)
language.
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(having a complex generative model) discrete data,
such as sparse linguistic data.

Second, several kernel-based dependence mea-
sures have been proposed for measuring nonlin-
ear dependence (Akaho, 2001; Bach and Jordan,
2002; Gretton et al., 2005). The reason why kernel-
based dependence measures work well for real
data is that they do not explicitly estimate den-
sities, which is difficult for high-dimensional data.
Among them, HSIC (Gretton et al., 2005) is pop-
ular because it has a simple estimation method,
which is used for various tasks such as feature se-
lection (Song et al., 2012), dimensionality reduc-
tion (Fukumizu et al., 2009), and unsupervised ob-
ject matching (Quadrianto et al., 2009; Jagarlamudi
et al., 2010). We follow this line.

Co-occurrence Measures First, In NLP, PMI
(Church and Hanks, 1989) and its variants (Bouma,
2009) are the de facto co-occurrence measures be-
tween dense linguistic expressions, such as words
(Bouma, 2009) and simple narrative-event expres-
sions (Chambers and Jurafsky, 2008). In recent
years, positive PMI (PPMI) has played an impor-
tant role as a component of word vectors (Levy and
Goldberg, 2014).

Second, there are several studies in which the
pairwise ranking problem has been solved by us-
ing deep neural networks (DNNs) in NLP. Li et al.
(2016) proposed a PMI estimation using RNN lan-
guage models; this was used as a baseline model
in our experiments (see Section 6.2). Several
studies have used DNN-based binary classifiers
modeling P(C = positive | (x, y)) to solve the
given ranking problem directly (Hu et al., 2014;
Yin et al., 2016; Mueller and Thyagarajan, 2016)
(these networks are sometimes called Siamese neu-
ral networks). Our study focuses on comparing
co-occurrence measures. It is unknown whether
Siamese NNs capture the co-occurrence strength;
therefore we did not deal with Siamese NNs in this
paper.

Finally, to the best of our knowledge, Yokoi et al.
(2017)’s paper is the first study that suggested con-
verting HSIC to a pointwise measure. The present
study was inspired by their suggestion; here, we
have (i) provided a formal definition (population)
of PHSIC; (ii) analyzed the relationship between
PHSIC and PMI; (iii) proposed linear-time estima-
tion methods; and (iv) experimentally verified the
computation speed and robustness to data sparsity
of PHSIC for practical applications.

8 Conclusion

The NLP community has commonly employed
PMI to estimate the co-occurrence strength be-
tween linguistic expressions; however, existing
PMI estimators have a high computational cost
when applied to sparse linguistic expressions
(Section 1). We proposed a new kernel-based
co-occurrence measure, the pointwise Hilbert–
Schmidt independent criterion (PHSIC). As well
as defining PMI as the contribution to mutual in-
formation, PHSIC is defined as the contribution to
HSIC; PHSIC is intuitively a “kernelized variant of
PMI” (Section 3). PHSIC can be applied to sparse
linguistic expressions owing to the mechanism of
smoothing by kernels. Comparing the estimators
of PMI and PHSIC, PHSIC can be interpreted as
a smoothed variant of PMI, which allows various
similarity metrics to be plugged in as kernels (Sec-
tion 4). In addition, PHSIC can be estimated in
linear time owing to the efficient matrix calculation,
regardless of whether we use linear or nonlinear
kernels (Section 5). We conducted a ranking task
for dialogue systems and a data selection task for
machine translation (Section 6). The experimen-
tal results show that (i) the learning of PHSIC was
completed thousands of times faster than that of the
RNN-based PMI while outperforming it in ranking
accuracy (Section 6.2); and (ii) even when using a
nonlinear kernel, PHSIC can be applied to a large
dataset. Moreover, PHSIC reduces the amount of
training data to one third without sacrificing the
output translation quality (Section 6.3).

Future Work Using the PHSIC estimator in fea-
ture space (Equation (18)), we can generate the
most appropriate  (y) for a given �(x) (uniquely,
up to scale). That is, if a DNN-based sentence de-
coder is used, y (a sentence) can be restored from
 (y) (a feature vector) so that generative models
of strong co-occurring sentences can be realized.

Acknowledgments

We are grateful to anonymous reviewers for their
helpful comments. We also thank Weihua Hu for
useful discussions, Kenshi Yamaguchi for collect-
ing data, and Paul Reisert for proofreading. This
work was supported in part by JSPS KAKENHI
Grant Number JP15H01702 and JST CREST Grant
Number JPMJCR1513, Japan.

1771



References
Shotaro Akaho. 2001. A kernel method for canonical

correlation analysis. In IMPS, pages 1–7.

Francis R. Bach and Michael I. Jordan. 2002. Kernel
Independent Component Analysis. JMLR, 3(Jul):1–
48.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. TACL, 5:135–146.

Gerlof Bouma. 2009. Normalized (Pointwise) Mutual
Information in Collocation Extraction. In GSCL,
pages 31–40.

Razvan C Bunescu and Raymond J Mooney. 2006.
Subsequence Kernels for Relation Extraction. In
NIPS, pages 171–178.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal Sentence Encoder. CoRR,
abs/1803.1.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised Learning of Narrative Event Chains. In ACL,
pages 789–797.

Kenneth Ward Church and Patrick Hanks. 1989. Word
Association Norms, Mutual Information, and Lexi-
cography. In ACL, pages 76–83.

Michael Collins and Nigel Duffy. 2002. Convolution
Kernels for Natural Language. In NIPS, pages 625–
632.

Thomas M. Cover and Joy A. Thomas. 2006. Elements
of Information Theory. John Wiley & Sons.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
Sequence Learning. In NIPS, pages 3079–3087.

Chris Dyer, Victor Chahuneau, and Noah A Smith.
2013. A Simple, Fast, and Effective Reparameteri-
zation of IBM Model 2. In NAACL-HLT, pages 644–
648.

Shai Fine and Katya Scheinberg. 2001. Efficient SVM
Training Using Low-Rank Kernel Representations.
JMLR, 2(Dec):243–264.

Kenji Fukumizu, Francis R. Bach, and Michael I. Jor-
dan. 2009. Kernel dimension reduction in regres-
sion. Annals of Statistics, 37(4):1871–1905.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
Word Vectors for 157 Languages. In LREC, pages
3483–3487.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch,
Bernhard Schölkopf, and Alexander Smola. 2012. A
Kernel Two-Sample Test. JMLR, 13(Mar):723–773.

Arthur Gretton, Olivier Bousquet, Alex Smola, and
Bernhard Schölkopf. 2005. Measuring Statistical
Dependence with Hilbert-Schmidt Norms. In ALT,
pages 63–77.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning Distributed Representations of Sentences
from Unlabelled Data. In NAACL-HLT, pages 1367–
1377.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional Neural Network Archi-
tectures for Matching Natural Language Sentences.
In NIPS, pages 2042–2050.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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A Available Kernels for PHSIC

Similarity between Sentence Vectors A variety
of vector representations of phrases and sentences
based on the distributional hypothesis have recently
been proposed, including sentence encoders (Kiros
et al., 2015; Dai and Le, 2015; Iyyer et al., 2015;
Hill et al., 2016; Cer et al., 2018) and the sum of
word embeddings; it is known as additive composi-
tionality (Mitchell and Lapata, 2010; Mikolov et al.,
2013a; Wieting et al., 2015) that we can express
the meaning of phrases and sentences well with
the sum of word vectors (e.g., word2vec (Mikolov
et al., 2013b), GloVe (Pennington et al., 2014), and
fastText (Bojanowski et al., 2017)). Note that var-
ious pre-trained models of sentence encoders and
word embeddings have also been made available.

The cosine of these vectors, which is a positive
definite kernel, can be used as a convenient and
highly accurate similarity function between phrases
or sentences. Other major kernels can also be used,
such as the RBF kernel, the Laplacian kernel, and
polynomial kernels.

Structured Kernels Various structured kernels
for NLP, such as tree kernels, which capture fine
structure of sentences such as syntax, were devised
in the support vector machine era (Collins and
Duffy, 2002; Bunescu and Mooney, 2006; Mos-
chitti, 2006).

Combinations We can freely combine the previ-
ously mentioned kernels because the sum and the
product of positive definite kernels are also posi-
tive definite kernels (Shawe-Taylor and Cristianini,
2004, Proposition 3.22).

B Derivation of Fast PHSIC Estimation
in Data Space

Although estimators of HSIC and PHSIC depend
on kernels k, ` and data D, hereinafter, we use the
following notation for the sake of simplicity:

\HSIC(X, Y ) := \HSIC(X, Y ; D, k, `), (25)
\PHSIC(x, y) := \PHSIC(x, y; D, k, `). (26)

Naı̈ve Estimation Fist, an estimator of PHSIC
in the data space (15) is

\PHSICkernel(x, y)=(k � k)>( 1
nH)(` � `), (27)

where k := (k(x, x1), . . . , k(x, xn))> 2 R
n, so

as `; and vector k := 1
nK1 denotes empirical

mean of {ki}n
i=1, so as `. This estimation has a

large computational cost. When learning, comput-
ing the vectors k, ` takes O(n2) time and O(n)
space. When estimating PHSIC, computing k, `
and multiplying the matrix 1

nH takes O(n) time.

Fast Estimation via Incomplete Cholesky De-
composition Equation (27) has a large compu-
tational cost because it is necessary to construct
the Gram matrices K and L 2 R

n⇥n. In kernel
methods, several methods have been proposed for
approximating Gram matrices at low cost with-
out constructing them explicitly, such as incom-
plete Cholesky decomposition (Fine and Schein-
berg, 2001).

By incomplete Cholesky decomposition, from
data points {x1, . . . , xn} ✓ X and a positive def-
inite kernel k : X ⇥ X ! R, a matrix A =
(a1, . . . , an)> 2 R

n⇥d (d ⌧ n) can be obtained
with O(nd2) time complexity. This makes it possi-
ble to approximate the Gram matrix K by vectors
ai 2 R

d without configuring the entire of K:

a
>
i aj ⇡ k(xi, xj) (28)

AA> ⇡ K. (29)

Also, for HSIC, an efficient approximation
method utilizing incomplete Cholesky decompo-
sition has been proposed (Gretton et al., 2005,
Lemma 2):

\HSICICD(X, Y ) =
1

n2
k(HA)>Bk2

F, (30)

where A = (a1, . . . , an)> 2 R
n⇥d is a matrix

satisfying AA> ⇡ K computed via incomplete
Cholesky decomposition, so as B (BB> ⇡ L).
Equation (30) can be represented in the form of the
expectation on data points:

\HSICICD(X, Y )=
1

n

nX

i=1

h
(ai�a)> bCICD(bi�b)

i

(31)
bCICD :=

1

n
(HA)>B 2 R

d⇥d, (32)

where vector a := 1
nA>1 2 R

d denotes empirical
mean of {ai}n

i=1, so as b := 1
nB>1.

Recall that PHSIC(x, y) is the contribution of
(x, y) to HSIC(X, Y ) (see Section 3.3); PHSIC
then can be efficiently estimated by the shaded part
of Equation (31):

\PHSICICD(x, y)= (a�a)> bCICD(b�b) . (33)

Here, the vector a 2 R
d corresponding to the new

x can be calculated by “performing from halfway”
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Models Config
(A) (B) (C) (D)

Dim. Init.

RNN-PMI
300 fastText (A) – .42 .12 .27

1200 fastText (B) .42 – .12 .26

Encoder Kernel

PHSIC
fastText cos (C) .12 .12 – .16

DAN cos (D) .27 .26 .16 –

Table 7: Spearman’s ⇢ between the co-occurrence
scores computed by the models in the dialogue re-
sponse selection task (Section 6.2). The size of training
set n is 5 ⇥ 105. The other notation is the same as in
Table 4.

on the incomplete Cholesky decomposition algo-
rithm. Let x(1), . . . , x(d) denote the dominant xis
adopted during decomposition algorithm. The jth
element of a can be computed as follows:

a[j]=
h
k(x, x(j)) �

j�1X

m=1

a[m]Ajm

i
/ Ajj , (34)

so as b 2 R
d corresponding to the new y. The

estimation via incomplete Cholesky decomposi-
tion (33) is extremely efficient compared to the
naive estimation (27); Equation (33)’s computa-
tional complexity is equivalent to the estimation in
the feature space (18).

C Detailed Settings for Learning RNNs

Detailed settings for learning RNNs used in this
research are as follows.
• Hidden layers: single layer LSTMs (Hochreiter

and Schmidhuber, 1997)
• Vocabulary: words with a frequency: 10 or more

(n = 5 ⇥ 105), 2 or more (otherwise)
• Dropout rate: 0.1 (300-dim), 0.3 (1200-dim)
• Batch size: 64
• Max epoch number: 5 (n = 5 ⇥ 105), 30 (other-

wise)
• Deep learning framework: Chainer (Tokui et al.,

2015)

D Correlation Between Models
in Dialogue Response Selection Task

Table D shows Spearman’s rank correlation coef-
ficient (Spearman’s ⇢) between the co-occurrence
scores on the test set computed by the models in the
dialogue response selection task (Section 6.2). This
shows that the behavior of RNN-based PMI and

PHSIC are considerably different. Furthermore, in-
terestingly, the behavior of PHSICs using different
kernels is also different. Possible reasons for these
observations are as follows: (1) the difference in
the dependence measures (MI or HSIC) on which
each model is based; (2) the validity or numerical
stability of estimating PMI with RNN language
models; and (3) differences in the behavior of PH-
SIC originating from differences in the plugged in
kernels. A more detailed analysis of the compati-
bility between tasks and measures (or kernels) is
attractive future work.
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Abstract

Conventional solutions to automatic related
work summarization rely heavily on human-
engineered features. In this paper, we develop
a neural data-driven summarizer by leverag-
ing the seq2seq paradigm, in which a joint
context-driven attention mechanism is pro-
posed to measure the contextual relevance
within full texts and a heterogeneous bibliog-
raphy graph simultaneously. Our motivation
is to maintain the topic coherency between a
related work section and its target document,
where both the textual and graphic contexts
play a big role in characterizing the relation-
ship among scientific publications accurately.
Experimental results on a large dataset show
that our approach achieves a considerable im-
provement over a typical seq2seq summarizer
and five classical summarization baselines.

1 Introduction

In scientific fields, scholars need to contextualize
their contribution to help readers acquire an un-
derstanding of their research papers. For this pur-
pose, the related work section of an article serves
as a pivot to connect prior domain knowledge, in
which the innovation and superiority of current
work are displayed by a comparison with previ-
ous studies. While citation prediction can assist
in drafting a reference collection (Nallapati et al.,
2008), consuming all these papers is still a labo-
rious job, where authors must read every source
document carefully and locate the most relevant
content cautiously.

As a solution in saving authors’ efforts, auto-
matic related work summarization is essentially
a topic-biased multi-document problem (Cong
and Kan, 2010), which relies heavily on human-
engineered features to retrieve snippets from the
references. Most recently, neural networks enable

⇤ Corresponding author

a data-driven architecture sequence-to-sequence
(seq2seq) for natural language generation (Bah-
danau et al., 2014, 2016), where an encoder reads
a sequence of words/sentences into a context vec-
tor, from which a decoder yields a sequence of
specific outputs. Nonetheless, compared to sce-
narios like machine translation with an end-to-end
nature, aligning a related work section to its source
documents is far more challenging.

To address the summarization alignment, for-
mer studies try to apply an attention mechanism
to measure the saliency/novelty of each candidate
word/sentence (Tan et al., 2017), with the aim of
locating the most representative content to retain
primary coverage. However, toward summarizing
a related work section, authors should be more cre-
ative when organizing text streams from the refer-
ence collection, where the selected content ought
to highlight the topic bias of current work, rather
than retell each reference in a compressed but bal-
anced fashion. This motivates us to introduce the
contextual relevance and characterize the relation-
ship among scientific publications accurately.

Generally speaking, for a pair of documents, a
larger lexical overlap often implies a higher sim-
ilarity in their research backgrounds. Yet such a
hypothesis is not always true when sampling con-
tent from multiple relevant topics. Take “DSSM”1

as an example, from viewpoint of the abstract sim-
ilarity, those references investigating “Information
Retrieval”, “Latent Semantic Model” or “Click-
through Data Mining” could be of more impor-
tance in correlation and should be greatly sampled
for the related work section. But in reality, this ar-
ticle spends a bit larger chunk of texts (about 58%)
to elaborate “Deep Learning” during the litera-
ture review, which is quite difficult for machines
to grasp the contextual relevance therein. In addi-

1Learning deep structured semantic models for web
search using clickthrough data (Huang et al., 2013)
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tion, other situations like emerging new concepts
also suffer from the terminology variation or para-
phrasing in varying degrees.

In this study, we utilize a heterogeneous bibli-
ography graph to embody the relationship within a
scalable scholarly database. Over the recent past,
there is a surge of interest in exploiting diverse re-
lations to analyze bibliometrics, ranging from lit-
erature recommendation (Yu et al., 2015) to topic
evolvement (Jensen et al., 2016). In a graphi-
cal sense, interconnected papers transfer the credit
among each other directly/indirectly through vari-
ous patterns, such as paper citation, author collab-
oration, keyword association and releasing on se-
ries of venues, which constitutes the graphic con-
text for outlining concerned topics. Unfortunately,
a variety of edge types may pollute the information
inquiry, where a slice of edges are not so important
as the others on sampling content. Meanwhile,
most existing solutions in mining heterogeneous
graphs depend on the human supervision, e.g., hy-
peredge (Bu et al., 2010) and metapath (Swami
et al., 2017). This is usually not easy to access due
to the complexity of graph schemas.

Our contribution is threefold: First, we explore
the edge-type usefulness distribution (EUD) on
a heterogeneous bibliography graph, which en-
ables the relationship discovery (between any pair
of papers) for sampling the interested informa-
tion. Second, we develop a novel seq2seq summa-
rizer for the automatic related work summariza-
tion, where a joint context-driven attention mech-
anism is proposed to measure the contextual rel-
evance within both textual and graphic contexts.
Third, we conduct experiments on 8,080 papers
with native related work sections, and experimen-
tal results show that our approach outperforms
a typical seq2seq summarizer and five classical
summarization baselines significantly.

2 Related Work

This study touches on several strands of research
within automatic related work summarization and
seq2seq summarizer as follows.

The idea of creating a related work section au-
tomatically is pioneered by Cong and Kan (2010)
who design two rule-based strategies to extract
sentences for general and detailed topics respec-
tively. Subsequently, Hu and Wan (2014) exploit
probabilistic latent semantic indexing to split can-
didate texts into different topic-biased parts, then

Authors Number of papers
Cong and Kan (2010) 20
Hu and Wan (2014) 1,050

Widyantoro and Amin (2014) 50
Chen and Hai (2016) 3

Table 1: Data scales of previous studies on automatic
related work summarization.

apply several regression models to learn the im-
portance of each sentence. Similarly, Widyan-
toro and Amin (2014) transform the summariza-
tion problem into classifying rhetorical categories
of sentences, where each sentence is represented
as a feature vector containing word frequency, sen-
tence length and etc. Most recently, Chen and
Hai (2016) construct a graph of representative key-
words, in which a minimum steiner tree is figured
out to guide the summarization as finding the least
number of sentences to cover the discriminated
nodes. In general, compared to traditional sum-
maries, the automatic related work summarization
receives less concerns over the past. However,
these existing solutions cannot work without man-
ual intervention, which limits the application scale
to an extremely small size (see Table 1).

The earliest seq2seq summarizer stems from
Rush et al. (2015) which utilizes a feed-forward
network for compressing sentences, and later is
expanded by Chopra et al. (2016) with a recur-
rent neural network (RNN). On this basis, Nalla-
pati et al. (2016a,c) and Chen et al. (2016) both
present a set of RNN-based models to address var-
ious aspects of abstractive summarization. Typ-
ically, Cheng and Lapata (2016) propose a gen-
eral seq2seq summarizer, where an encoder learns
the representation of documents while a decoder
generates each word/sentence using an attention
mechanism. With further research, Nallapati et al.
(2016b) extend the sentence compression by try-
ing a hierarchical attention architecture and a lim-
ited vocabulary during the decoding phase. Next,
Narayan et al. (2017) leverage the side information
as an attention cue to locate focus regions for sum-
maries. Recently, inspired by PageRank, Tan et al.
(2017) introduce a graph-based attention mecha-
nism to tackle the saliency problem. Nonetheless,
these methods all discuss the single-document sce-
nario, which is far from the nature of automatic
related work summarization.

In this study, derived from the general seq2seq
summarizer of Cheng and Lapata (2016), we pro-
pose a joint context-driven attention mechanism to
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measure the contextual relevance within full texts
and a heterogeneous bibliography graph simulta-
neously. To our best knowledge, we make the first
attempt to develop a neural data-driven solution
for the automatic related work summarization, and
the practice of using the joint context as an atten-
tion cue is also less explored to date. Besides, this
study is launched on a dataset with up to 8,080 pa-
pers, which is much greater than previous studies
and makes our results more convincing.

Since text summarization via word-by-word
generation is not mature at present (Cheng and
Lapata, 2016; Nallapati et al., 2016b; Tan et al.,
2017), we adopt the extractive sentential fashion
for our summarizer, where a related work section
is created by extracting and linking sentences from
a reference collection. Meanwhile, this study fol-
lows the mode of Cong and Kan (2010) who as-
sume that the collection is given as part of the in-
put, and do not consider the citation sentences of
each reference.

3 Methodology

3.1 Problem Formulation

To adapt the seq2seq paradigm, we formulate the
automatic related work summarization into a se-
quential text generation problem as follows.

Given an unedited paper t (target document)
and its n-size reference collection Rt = {rt1:n},
we draw up a related work section for t by select-
ing sentences from Rt. To be specific, each refer-
ence (source document) will be traversed one time
sequentially, and without loss of generality, in the
descending order of their significance to t. Con-
sequently, all sentences to be selected are concate-
nated into an m-length sequence St = {st1:m} to
feed the summarizer. For each candidate sentence
stj , once being visited, a label ytj 2 {0, 1} will
be determined synchronously based on whether
or not this sentence should be covered into the
output. Our objective is to maximize the log-
likelihood probability of observed labels Yt =
{yt1:m} under Rt, St and summarizer parameters
✓, as shown below.

max
mX

j=1

log Pr(ytj | Rt; St; ✓) (1)

author

paper

keywordvenue

written by cite

publish

contribute

contribute
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Figure 1: Heterogeneous bibliography graph.

3.2 Random Walk on Heterogeneous
Bibliography Graph

Prior works have illustrated that one of the most
promising channels for information recommen-
dation is the community network (Guo and Liu,
2015). In this study, we verify this hypothesis to-
ward the content sampling of scientific summa-
rization, by investigating heterogeneous relations
among different kinds of objects such as papers,
authors, keywords and venues.

For measuring the relationship among scien-
tific publications, we introduce a directed graph
G = (V, E) to contain various bibliographical con-
nections, as shown in Figure 1, which involves
four objects and ten edge types in total. Each edge
ej,i 2 E is assigned a value ⇡(ej,i)

z 2 [0, 1] to indi-
cate the transition probability between two nodes
vj , vi 2 V, where ⇡(ej,i) 2 R returns the un-
known edge-type usefulness of ej,i, and z 2 R

is a normalizing weight. For most of edge types,
we model the weight as one divided by the number
of outgoing links of the same kind. But regarding
the “contribution” category, the weight modeling
is accomplished by PageRank with Priors (White
and Smyth, 2003). Note that different edge types
usually take very uneven importance in one partic-
ular task (Yu et al., 2015), and it is quite difficult
to enable the classical heterogeneous graph min-
ing without expert defined paths for random walk
(Bu et al., 2010; Swami et al., 2017).

In this study, we propose an unsupervised ap-
proach to capture the connectivity diversity, by in-
troducing an optimal EUD for navigating random
walkers on the heterogeneous bibliography graph.
Given a target document t, the optimized useful-
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ness assignment can help those walkers lock a top-
n recommendation R̄t to best match the reference
collection Rt, as shown in Eq. 2. On this basis, a
well-performing algorithm node2vec (Grover and
Leskovec, 2016) is adopted to conduct an unsuper-
vised random walk to vectorize every node 8v⇤ 2
V into a d-dimensional embedding '(v⇤) 2 R

d so
that any edge 8e⇤ 2 E can be calculated there-
from. Specifically, we employ evolutionary algo-
rithm (EA) to tune the EUD, which enjoys advan-
tages over conventional gradient methods in both
convergence speed and accuracy.

arg max
X

t

nX

j=1

log Pr(rtj 2 R̄t | EUD) (2)

EA Setup We use an array of real numbers x1:10

to code an individual in the population, where
xj 2 [0, 1] denotes the usefulness of j-th edge
type. Given an EUD, PageRank (Page, 1998) runs
on graph to infer the relative importance of each
node for each target document, and a fitness func-
tion is applied to judge how well this EUD satis-
fies locating the ground truth references as Eq. 3,
in which if rtj belongs to R̄t, then ↵(rtj , R̄t) 2 N

returns the ranking of rtj within R̄t, and otherwise
a big penalty coefficient to prevent irrelevant ref-
erences to be recommended. Like most other op-
timizations, this procedure starts with a randomly
generated population.

max
1

P
t

Pn
j=1

���j � ↵(rtj , R̄t)
���

(3)

EA Operator We choose the operator from dif-
ferential evolution (Das and Suganthan, 2011) to
generate offsprings for each individual. The basic
idea is to utilize the difference between different
individuals to disturb each trial object. First, three
distinct individuals xr1

1:10, x
r2
1:10, x

r3
1:10 are sampled

randomly from current population to create a vari-
ant xvar

1:10, as shown in Eq. 4, where f 2 R in-
dicates the scaling factor. Next, xvar

1:10 is crossed
with a trial object xtri

1:10 to build a hybrid one xhyb
1:10

as Eq. 5, in which c 2 [0, 1] denotes the crossover
factor and u 2 [0, 1] represents an uniform random
number. At last, the fitnesses of xtri

1:10 and x
hyb
1:10 are

compared, and the better one will be saved as the
offspring into a new round of evolution.

xvar
j = xr1

j + f ⇥ (xr2
j � xr3

j ) (4)

x
hyb
j =

8
<

:
xvar

j , if u  c

xtri
j , otherwise

(5)

3.3 Neural Extractive Summarization
As Figure 2 shows, we model our seq2seq summa-
rizer with a hierarchical encoder and an attention-
based decoder, as described below.
Hierarchical Encoder Our encoder consists of
two major layers, namely a convolutional neu-
ral network (CNN) and a long-short-term mem-
ory (LSTM)-based RNN. Specifically, the CNN
deals with word-level texts to derive sentence-
level meanings, which are then taken as inputs to
the RNN for handling longer-range dependency
within lager units like a paragraph and even a
whole paper. This conforms to the nature of docu-
ment that is composed from words, sentences and
higher levels of abstraction (Narayan et al., 2017).

Consider a sentence of p words stj = {wtj,1:p},
where each word wtj,i can be represented by a d-
dimensional embedding �(wtj,i) 2 R

d. Previ-
ous studies have illustrated the strength of CNN
in presenting sentences, because of its capability
to learn compressed expressions and address sen-
tences with variable lengths (Kim, 2014). First, a
convolution kernel k 2 R

d⇥q⇥d is applied to each
possible window of q words to construct a list of
feature maps as:

gtj,i = tanh
�
k ⇥ �(wtj,i:i+q�1) + b

�
(6)

where b 2 R
d denotes the bias term. Next, max-

over-time pooling (Collobert et al., 2011) is per-
formed on all generated features to obtain the sen-
tence embedding as:

�(stj ) = max
1id

�
gtj,1:p�q+1[i, :]

�
(7)

where [i, :] denotes the i-th row of matrix. Given
a sequence of sentences St = {st1:m}, we then
take the RNN to yield an equal-length array of
hidden states, in which LSTM has proved to al-
leviate the vanishing gradient problem when train-
ing long sequences (Hochreiter and Schmidhuber,
1997). Each hidden state can be viewed as a lo-
cal representation with focusing on current and
former sentences together, which is updated as:
htj = LSTM

�
�(stj ), h

t
j�1

�
2 R

d.
In practice, we use multiple kernels with various

widths to produce a group of embeddings for each
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Figure 2: Framework of our seq2seq summarizer.

sentence, and average them to capture the infor-
mation inside different n-grams. As Figure 2 (bot-
tom) shows, the sentence stj involves six words,
and two kernels of widths two (orange) and three
(green) abstract a set of five and four feature maps
respectively. Meanwhile, since rhetorical struc-
ture theory (Mann and Thompson, 2009) points
out that association must exist in any two parts of
coherent texts, RNN is only applicable to manage
the sentence relation within a single document, be-
cause we cannot expect the dependency between
two sections from different references.

Attention-based Decoder Our decoder labels
each sentence stj as 0/1 sequentially, according to
whether it is salient or novel enough, plus if rele-
vant to the target document t or not. As shown in
Figure 2 (top), the binary decision ytj is made by
both the hidden state htj and the context vector h̄tj
from an attention mechanism (grey background).
In particular, this attention (red dash line) is acted
as an intermediate stage to determine which sen-
tences to highlight so as to provide the contextual
information for current decision (Bahdanau et al.,
2014). Given Ht = {ht1:m}, this decoder returns

the probability of ytj = 1 as below:

Pr(ytj = 1 | Rt; St; ✓) = sigmoid
�
�(htj , h̄

t
j )

�
(8)

h̄tj =
mX

i=1

aj,ih
t
i (9)

where �(htj , h̄
t
j ) 2 R denotes a fully connected

layer with as input the concatenation of htj and h̄tj ,
and aj,i 2 [0, 1] is the attention weight indicating
how much the supporting sentence sti contributes
to extracting the candidate one stj .

Apart from saliency and novelty two traditional
attention factors (Chen et al., 2016; Tan et al.,
2017), we focus on the contextual relevance within
both textual and graphic contexts to distinguish the
relationship from near to far, as shown in Eq. 10
and Eq. 11. To be specific: 1) htTj Wsh

t
i repre-

sents the saliency of sti to stj ; 2) �dtTj Wnh
t
i indi-

cates the novelty of sti to the dynamic output dtj ;
3) �(t)TWth

t
i denotes the relevance of sti to t

from the textual context; 4) '(t)TWg'(hti ) refers
to the relevance from the graphic context. More
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concretely, W⇤ 2 R
d characterizes the learnable

matrix, �(t) returns the average of hidden states
from t, '(t) and '(hti ) return the node embed-
dings of both t and the source document that hti
belongs to respectively. Note that �(·) and '(·)
represent two distinct embedding spaces, where
the former reflects the lexical collocations of cor-
pus, and the latter embodies the connectivity pat-
terns of associated graph.

aj,i = htTj Wsh
t
i # saliency

�dtTj Wnh
t
i # novelty

+�(t)TWth
t
i # relevance1

+'(t)TWg'(hti ) # relevance2

(10)

dtj =
j�1X

i=1

Pr(ytj = 1 | Rt; St; ✓) ⇥ hti (11)

The basic idea behind our attention mechanism
is as follows: if a supporting sentence more re-
sembles a candidate one, or overlaps less with the
dynamic output, or is more relevant to the target
document, then it can provide more contextual in-
formation to facilitate current decision on being
extracted or not, thereby taking a higher weight in
the generated context vector. This innovative at-
tention will guide our goal related work section to
maximize the representativeness of selected sen-
tences (saliency & novelty), while minimizing the
semantic distance to the target document (rele-
vance). This is consistent with the way that schol-
ars consume a reference collection, with the min-
max objective in their minds.

4 Experiment

4.1 Experimental Setup
This section presents the experimental setup for
assessing our approach, including 1) dataset used
for training and testing, 2) implementation details,
3) contrast methods and evaluation metrics.
Dataset We conduct experiments on a dataset2

created from the ACM digital library, where meta-
data and full texts are derived from PDF files. To
be detailed, this dataset includes 371,891 papers,

2To help readers reproduce the experiment outcome, we
share part of the experiment data while the copyrighted infor-
mation is removed. https://github.com/kuadmu/
2018EMNLP

779,810 authors, 9,204 keywords and 807 venues
in total. Note that we ignore the keyword with
frequency below a certain threshold, and adopt
greedy matching of Guo et al. (2013) to generate
pseudo keywords for papers lacking topic descrip-
tions. For each target document, the references
are traversed by the descending order of the cited
number in related work section (primary) and in
full paper (secondary) successively. We first ap-
ply a series of pre-processings such as lowercasing
and stemming to standardize candidate sentences,
then remove those which are too short/long (< 7
or > 80 words). On this basis, a total of 8,080
papers are selected to evaluate our approach, each
containing more than 15 references found in the
dataset and a related work section of at least 500
words. But as for the heterogeneous bibliography
graph, all source data have to be imported to en-
sure the structural integrity of communities. Be-
sides, this graph should be constructed year-by-
year to preclude the effect of later publications on
earlier ones.

Implementation We use Tensorflow for imple-
mentation, where both the dimensions of embed-
ding and hidden state are equally 128. For the
CNN, word2vec (Mikolov et al., 2013) is utilized
to initialize the word embeddings, which can be
further tuned during the training phase. Mean-
while, we follow the work of Kim (2014) to ap-
ply a list of kernels with widths {3, 4, 5}. As for
the RNN, each LSTM module is set to one single
layer, and all input documents are padded to the
same length, along with a mark to indicate the real
number of sentences. Based on these settings, we
train our summarizer using Adam with the default
in Kingma and Ba (2014), and perform mini-batch
cross-entropy training with a batch of one target
document for 20 epochs.

To create training data for our summarizer, each
reference needs to be annotated with the ground
truth in advance, i.e., candidate sentences are
tagged with 0/1 for indicating summary-worthy or
not. Specifically, we follow a heuristic practice of
Cao et al. (2016) and Nallapati et al. (2016b) to
compute ROUGE-2 score (Lin and Hovy, 2003)
for each sentence, in terms of the native related
work sections (gold standards). Next, those sen-
tences with high scores are chosen as the positive
samples, and the rest as the negative ones, such
that the total score of selected sentences is max-
imized with respect to the gold standard. As for
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testing, we relax the number of sentences to be se-
lected, and focus on the classification probability
from Eq. 8. In this study, cross validation is ap-
plied to split the dataset into ten parts equally at
random, in which nine are used for training and
the other one for testing.
Evaluation We adopt the widely used toolkit
ROUGE (Lin and Hovy, 2003) to evaluate the
summarization performance automatically. In par-
ticular, we report ROUGE-1 and ROUGE-2 (uni-
gram and bigram overlapping) as a way to assess
the informativeness, and ROUGE-L (the longest
common subsequence) as a means to assess the
fluency, in terms of fixed bytes of gold standards.

To validate the proposed attention mecha-
nism, we compare our approach (denoted as
P.S+N+Rteg+EUD) against six variants, including: 1)
P.void: a plain seq2seq summarizer without atten-
tions; 2) P.S: use the saliency as an only atten-
tion factor; 3) P.S+N: leverage both the saliency
and novelty; 4) P.S+N+Rt: incorporate the relevance
from the textual context; 5) P.S+N+Rtog: gain the
relevance from the graphic context of a homo-
geneous citation graph; 6) P.S+N+Rteg: utilize the
heterogeneous bibliography graph, but with each
edge type the same usefulness.

In addition, we also select six representative
summarization methods as a benchmark group.
The first one is the general seq2seq summarizer
by Cheng and Lapata (2016), denoted as Point-
erNet, which employs an attention mechanism to
extract sentences directly after reading them. Fol-
lowing are five classical generic solutions, includ-
ing: 1) Luhn (Luhn, 1958): a heuristic summa-
rization based on word frequency and distribu-
tion; 2) MMR (Carbonell and Goldstein, 1998): a
diversity-based re-ranking to produce summaries;
3) LexRank (Erkan et al., 2004): a graph-based
summary technique inspired by PageRank and
HITS; 4) SumBasic (Nenkova and Vanderwende,
2005): a frequency-based summarizer with du-
plication removal; 5) NltkSum (Acanfora et al.,
2014): a natural language tookit (NLTK)-based
implementation for summarization.

For clarity, Luhn, LexRank and SumBasic are
analogous to the work of Hu and Wan (2014)
which extracts sentences scoring the highest in
significance, and they are also contrasted in the
latest studies on neural summarizers (Chen et al.,
2016; Tan et al., 2017). Meanwhile, MMR often
serves as a part/post-processing of existing tech-

niques to avoid the redundancy (Cohan and Go-
harian, 2017), and we introduce NltkSum to inves-
tigate the impact of grammatical/semantic analy-
sis to the automatic related work summarization.
Note that former studies specially for this task re-
quire extensive human involvements (see Table 1),
thus we cannot apply them to such a large dataset
of this study.

4.2 Results and Discussion
Table 2 reports the evaluation comparison over
ROUGE metrics. From the top half, all scores ap-
pear a gradual upward trend with incorporation of
saliency, novelty, relevance (from both textual and
graphic contexts) and EUD into consideration one
after another, which demonstrates the validity of
our attention mechanism for summarizing related
work sections. To be specific, we further reach the
following conclusions:

1) P.void vs. P.S vs. P.S+N: Both saliency and
novelty are two effective factors to locate the re-
quired content for summaries, which is consistent
with prior studies.

2) P.S+N vs. P.S+N+Rt: Contextual relevance does
contribute to address the alignment between a re-
lated work section and its source documents.

3) P.S+N+Rt vs. P.S+N+Rtog: Textual context alone
cannot provide entire evidence to characterize the
relationship among scientific publications exactly.

4) P.S+N+Rtog vs. P.S+N+Rteg: Heterogeneous bib-
liography graph involves richer contextual infor-
mation than a homogeneous citation graph.

5) P.S+N+Rteg vs. P.S+N+Rteg+EUD: EUD plays an
indispensable role in organizing accurate contex-
tual relevance on a heterogeneous graph.

Figure 3: Number of extracted words on each reference
cluster under different attention factors.

Continuing the “DSSM”, Figure 3 visualizes
the number of extracted words on each reference
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Methods ROUGE-1 ROUGE-2 ROUGE-L
P.void 26.85* 6.38* 14.22*
P.S 26.98* 6.48* 14.36*
P.S+N 27.29* 6.65* 14.43*
P.S+N+Rt 27.63* 6.72* 14.46*
P.S+N+Rtog 27.82* 7.00* 14.55*
P.S+N+Rteg 28.56* 7.40 14.70*
P.S+N+Rteg+EUD 29.18 7.63 14.89
Luhn 25.76* 5.08* 13.50*
MMR 25.55* 5.14* 13.99*
LexRank 25.07* 5.12* 13.95*
SumBasic 28.01* 5.44* 13.93*
NltkSum 28.07* 6.36* 14.87
PointerNet 27.06* 6.53* 14.41*

* indicates Wilcoxon signed-rank test p < 0.01, compared with P.S+N+Rteg+EUD

Table 2: Rouge evaluation (%) on 8,080 papers from ACM digital library.

cluster3 under different attention factors. It can
be seen that only after adding the relevance es-
pecially that from the graphic context into atten-
tions, our summarizer can correctly sample the
content from “Deep Learning” (yellow line), and
eliminate that originated from “Other Sources” by
a big margin (green line). As this example falls
into the methodology transferring, a host of its in-
volved word collocations are not idiomatic com-
binations yet, such as “Deep Neural Network” co-
occurs with “Clickthrough Data” that is more fre-
quently related to “Latent Semantic Analysis” at
that time, which results in a somewhat biased tex-
tual context. By contrast, the graphic context will
suffer less from this bias because it characterizes
the connectivity patterns (real-time setup) instead
of n-gram statistics, thus offering a more robust
measure for the contextual relevance.

The bottom half of Table 2 illustrates the superi-
ority of our approach over six representative sum-
marization methods. Above all, Luhn, LexRank
and MMR three summarizers that simply exploit
shallow text features (word frequency and asso-
ciated sentence similarity) to measure either sig-
nificance or redundancy fall far behind the plain
variant P.void, which partly reflects the strength
of seq2seq paradigm in summarizing a related
work section. Second, with combination of sig-
nificance and redundancy, SumBasic achieves a
drastic increase on ROUGE-1 and a mild raise on

3We pack the references cited in the same subsection of
the related work section as one reference cluster.

ROUGE-2 respectively, but it still cannot improve
ROUGE-L marginally. This is because simple
text statistics cannot present deeper levels of natu-
ral language understanding to catch larger-grained
units of co-occurrence. Third, NltkSum benefits
from a NLTK library so as to access grammati-
cal/semantic supports, thereby having the best in-
formativeness (ROUGE-1 and ROUGE-2) among
the five generic baselines, and meanwhile a com-
parable fluency (ROUGE-L) with our approach.
Finally, as a deep learning solution, although
PointerNet takes both hidden states and previously
labeled sentences into account, at each decoding
step it focuses on only current and just one pre-
vious sentences, lacking a comprehensive consid-
eration on saliency, novelty and more importantly
the contextual relevance (< P.S+N).

To better verify the summarization perfor-
mance, we also conduct a human evaluation on
35 papers containing more than 30 references in
the dataset. We assign a number of raters to com-
pare each generated related work section against
the gold standard, and judge by three independent
aspects as: 1) How compliant is the related work
section to the target document? 2) How intuitive
is the related work section for readers to grasp the
key content? 3) How useful is the related work
section for researchers to prepare their final liter-
ature reviews? Note that we do not allow any ties
during the comparison, and each property is as-
sessed with a 5-point scale of 1 (worst) to 5 (best).

Table 3 displays how often raters rank each
summarizer as the 1st, 2nd and so on, in terms of
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Methods 1st 2nd 3rd 4th 5th 6th 7th Mean Ranking
Luhn 0.04 0.07 0.09 0.13 0.17 0.23 0.29 5.26
MMR 0.05 0.07 0.11 0.16 0.19 0.22 0.20 4.82
LexRank 0.06 0.09 0.11 0.14 0.17 0.19 0.27 4.93
SumBasic 0.09 0.13 0.18 0.18 0.18 0.15 0.10 4.10
NltkSum 0.21 0.21 0.20 0.15 0.10 0.07 0.04 3.00
PointerNet 0.14 0.20 0.18 0.15 0.13 0.11 0.08 3.54
P.S+N+Rteg+EUD 0.40 0.22 0.14 0.09 0.06 0.04 0.02 2.34

Table 3: Human evaluation (proportion) on 35 papers with more than 30 references in the dataset.

best-to-worst. Specifically, our approach comes
the 1st on 40% of the time, which is followed
by NltkSum that is considered the best on 21%
of the time (almost half of ours), and Pointer-
Net with quite equal proportions on each rank-
ing. Furthermore, the other four summarizers ac-
count for obviously lower ratings in general. To
attain the statistical significance, one-way analy-
sis of variance (ANOVA) is performed on the ob-
tained ratings, and the results show that our ap-
proach is better than all six contrast methods sig-
nificantly (p < 0.01), which means that the con-
clusion drawn by Table 2 is sustained.

5 Conclusion

In this paper, we highlight the contextual rele-
vance for the automatic related work summariza-
tion, and analyze the graphic context to charac-
terize the relationship among scientific publica-
tions accurately. We develop a neural data-driven
summarizer by leveraging the seq2seq paradigm,
where a joint context-driven attention mechanism
is proposed to measure the contextual relevance
within full texts and a heterogeneous bibliogra-
phy graph simultaneously. Extensive experiments
demonstrate the validity of the proposed attention
mechanism, and the superiority of our approach
over six representative summarization baselines.

In future work, an appealing direction is to or-
ganize the selected sentences in a logical fashion,
e.g., by leveraging a topic hierarchy tree to deter-
mine the arrangement of the related work section
(Cong and Kan, 2010). We also would like to take
the citation sentences of each reference into con-
sideration, which is another concise and univer-
sal data source for scientific summarization (Chen
and Hai, 2016; Cohan and Goharian, 2017). At the
end of this paper, we believe that extractive meth-
ods are by no means the final solutions for litera-
ture review generation due to plagiarism concerns,

and we are going to put forward a fully abstractive
version in further studies.
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Abstract

Information selection is the most important
component in document summarization task.
In this paper, we propose to extend the basic
neural encoding-decoding framework with an
information selection layer to explicitly model
and optimize the information selection pro-
cess in abstractive document summarization.
Specifically, our information selection layer
consists of two parts: gated global informa-
tion filtering and local sentence selection. Un-
necessary information in the original docu-
ment is first globally filtered, then salient sen-
tences are selected locally while generating
each summary sentence sequentially. To op-
timize the information selection process di-
rectly, distantly-supervised training guided by
the golden summary is also imported. Exper-
imental results demonstrate that the explicit
modeling and optimizing of the information
selection process improves document summa-
rization performance significantly, which en-
ables our model to generate more informative
and concise summaries, and thus significantly
outperform state-of-the-art neural abstractive
methods.

1 Introduction

Document summarization is the task of generat-
ing a fluent and condensed summary for a docu-
ment while retaining the gist information. There
are two prominent approaches: extractive methods
and abstractive methods. Extractive methods gen-
erate summary for a document by directly select-
ing salient sentences from the original document.
On the contrary, abstractive methods synthesize
information from the input document to generate
summary using arbitrary words and expressions -
as human usually do. Recent neural models en-
able an end-to-end framework for natural language

⇤This work was done while the first author was doing in-
ternship at Baidu Inc.

generation, which inspires the research on abstrac-
tive document summarization.

Most existing work directly apply the neu-
ral encoding-decoding framework, which first
encodes the input into an abstract representa-
tion and then decodes the output based on the
encoded information. Although the encoding-
decoding framework has achieved huge success
on some text generation tasks like machine trans-
lation (Bahdanau et al., 2014) and image caption
(Vinyals et al., 2015), the performance on abstrac-
tive document summarization is much less con-
vincing. Since document summarization is a spe-
cial natural language generation task that requires
information selection, the performance of current
neural abstractive methods even has a considerable
gap from extractive methods.

The most essential prerequisite for a practical
document summarization system is that the gen-
erated summary must contain the salient informa-
tion of the original document. Since a document is
a long sequence of multiple sentences, both global
document information and local inter-sentence re-
lations need to be properly modeled in the infor-
mation selection process. Although the encoding-
decoding framework has implicitly modeled the
information selection process via end-to-end train-
ing, we argue that abstractive document summa-
rization shall benefit from explicitly modeling and
optimizing it by capturing both the global doc-
ument information and local inter-sentence rela-
tions.

In this paper, we propose to extend the
encoding-decoding framework to model the in-
formation selection process explicitly. We treat
the document summarization as a three-phase
task: document encoding, information selection
and summary decoding. Correspondingly, our
model consists of three layers: a document en-
coder layer, an information selection layer and a
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Figure 1: Our abstractive document summarization model,
which mainly consists of three layers: document encoder
layer (the top part), information selection layer (the middle
part) and summary decoder layer (the bottom part).

summary decoder layer, as shown in Figure 1.
In our model, both the document and summary
are processed sentence by sentence, to better cap-
ture the inter-sentence relations. The informa-
tion selection layer consists of two parts: gated
global information filtering and local sentence se-
lection. Unnecessary information in the original
document are first globally filtered by a gated net-
work, then important sentences are selected lo-
cally while generating each summary sentence se-
quentially. Moreover, we propose to optimize
the information selection process with distantly-
supervised training. Our proposed method com-
bines the strengths of extractive methods and ab-
stractive methods, which is able to tackle the fac-
tors of saliency, non-redundancy, coherence and
fluency under a unified framework. We conduct
extensive experiments on benchmark datasets and
the results demonstrate that the explicit modeling
and distantly-supervised optimizing of the infor-
mation selection process improves document sum-
marization performance significantly, which en-
ables our model to significantly outperforms pre-
vious state-of-the-art neural abstractive methods.

2 Our Model

As shown in Figure 1, our model consists of a hi-
erarchical document encoder, an information se-
lection layer and an attention-equipped decoder.
Firstly, the hierarchical encoder encodes the doc-
ument sentence by sentence, and word by word
in each sentence. Then the information selection
layer selects and filters the sentence representa-

tions based on the global document representation.
A sentence selection RNN is used to select salient
and relevant sentences while generating each sum-
mary sentence sequentially based on the tailored
sentence representations. At last, the summary de-
coder produces the output summary to paraphrase
and generalize the selected sentences.

In the following, we denote hi, hi,j as the hid-
den state of the i-th sentence and the j-th word of
the i-th sentence in the document encoder part, re-
spectively. In the information selection and sum-
mary decoder part, we denote h0

t, h0
t,k as the hid-

den state of the t-th summary sentence and the
k-th word in the t-th summary sentence, respec-
tively.

2.1 Document Encoder
A document d is a sequence of sentences d =
{si}, and each sentence is a sequence of words
si = {wi,j}. A hierarchical encoder, which con-
sists of two levels: word level and sentence level
similar to (Nallapati et al., 2016), is used to encode
the document from both word and sentence level.

The word-level encoder is a bidirectional Gated
Recurrent Unit (GRU) (Chung et al., 2014), which
encodes the words of a sentence into sentence rep-
resentation. The word encoder sequentially up-
dates its hidden state after receiving a word, which
is formulated as:

hi,j = BiGRU(hi,j�1, ei,j) (1)

where hi,j and ei,j denotes the hidden state and
embedding of word wi,j , respectively.

The concatenation of the forward and backward
final hidden states in the word-level encoder is in-
dicated as the vector representation xi of the sen-
tence si, which is used as input to the sentence-
level encoder. The sentence encoder is also a bidi-
rectional GRU, which updates its hidden state after
receiving each sentence representation by:

hi = BiGRU(hi�1, xi) (2)

where hi denotes the hidden state of sentence si.
The concatenation of the forward and backward

final states in the sentence-level encoder is used as
the vector representation of document d̂.

2.2 Information Selection
Document summarization is a special natural lan-
guage generation task which requires information
compression. It needs to remove the unnecessary
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information and select salient information from
the input document to produce a condensed sum-
mary. However, it is difficult for the basic encoder-
decoder framework to learn the process of salient
information selection, which has also been noticed
by several previous work (Tan et al., 2017a,b). To
tackle the challenge, we extend the basic encoder-
decoder framework by adding an information se-
lection layer to model the information selection
process explicitly. Our information selection layer
consists of two parts: gated global information fil-
tering that used to remove the unnecessary infor-
mation of a document, and local sentence selection
that used to select salient sentences from a docu-
ment sequentially to produce summary sentences.

Gated Global Information Filtering
Inspired by studies on how human write text sum-
maries by first skimming the document and delet-
ing unnecessary material (Brown and Day, 1983),
we design a gated global information filtering net-
work to filter unnecessary information of a doc-
ument based on the global document representa-
tion before the summary decoder generates sum-
mary. Concretely, the gated information filtering
network makes use of the document representa-
tion d̂, which represents the global information of
a document, to filter sentences based on the sen-
tence representation hi.

For each source sentence si, the gate network
takes the document representation d̂ and sentence
representation hi as inputs to compute the gate
vector gi:

gi = �(Wghi + Ugd̂ + bg) (3)

where Wg and Ug denote weight matrices, bg the
bias vector, and � the sigmoid activation function.

Then each sentence si can be filtered by the gate
vector gi as follows:

fi = hi � gi (4)

where fi indicates the representation of sen-
tence si after information filtering, and � denotes
element-wise multiplication.

Note that, we filter sentences in micro semantic
dimensions rather than filtering whole sentences.
The tailored sentence representations are used as
input to the sentence selection network and sum-
mary decoder, which can help to detect salient sen-
tences and improve informativeness of the gener-
ated summary.

Local Sentence Selection
We explicitly model the local sentence selection
process which selects several target sentences to
generate a summary sentence. Concretely, we ap-
ply a RNN layer to sequentially select target sen-
tences for each summary sentence, shown as in
Figure 1. The sentence-selection RNN uses the
document representation d̂ as initial state h

0

0, and
sequentially predicts the sentence selection vector
↵t as follows:

↵i
t =

e�(fi,h0

t)

P
l e

�(fl,h0

t)
(5)

�(fi, h
0
t) = vT tanh(Wffi + Whh0

t + b). (6)

where ↵i
t indicates the weight of source sentence

si when generating the t-th summary sentence,
and h

0

t denotes the hidden state of sentence selec-
tion layer when generating the t-th summary sen-
tence. v, Wf and Wh are weight matrices, and b
is the bias vector. Note that, the sentence selec-
tion vector ↵t is computed based on the tailored
sentence representation fi.

The sentence-selection RNN uses a single uni-
directional GRU, which updates its state by:

h
0

t = GRU(h
0

t�1, x
0

t) (7)

where x
0

t denotes the input of current sentence-
selection step. x

0

t combines both the previous sen-
tence selection vector ↵t�1 and the encoded repre-
sentation of previous generated sentence r

0

t�1 by
x

0

t = tanh(Wrr
0

t�1 + W↵↵t�1 + bx), where Wr,
W↵, and bx denote learnable parameters.

The representation of the selected source sen-
tences is computed by:

qt =
X

j

↵j
tfj (8)

which is used as initial state of the summary de-
coder to generate a summary sentence to para-
phrase and generalize the selected sentences.

2.3 Summary Decoder
On top of the document encoder and the informa-
tion selection layer, we use GRU with attention
as the summary decoder to realize each summary
sentence word by word.

At each word decoding step k in the t-th sum-
mary sentence, the GRU reads the previous word
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embedding et,k�1 and context vector ct,k�1 as in-
puts to compute the new hidden state h

0

t,k by:

h
0

t,k = GRU(h
0

t,k�1, ct,k�1, et,k�1) (9)

We import attention mechanism to help locate
relevant words to be copied or paraphrased within
the selected source sentences in each word genera-
tion step. The attention distribution �i

t,k of the kth
word of the tth summary sentence over the sen-
tences in the ith document can be computed as:

�i,j
t,k = ↵i

t
e�(hi,j ,h0

t,k)

P
l e

�(hi,l,h0

t,k)
(10)

where ↵i
t denotes the weight of the ith source

sentence, used to normalize the word attention
distributions. Then the word-level context vec-
tor when generating the kth word at the tth sen-
tence generation step can be computed as: ct,k =P

i

P
j �i,j

t,khi,j , which is also incorporated into
the word decoder.

At each word generation step, the vocabulary
distribution is calculated from the context vector
ct,k and the decoder state h

0

t,k by:

Pvocab(w
0

t,k) = softmax(Wv(Wc[h
0
t,k, ct,k] + bc) + bv)

(11)
where Wv and Wc are learned parameters. The
copy mechanism based on the word attention is
also imported into the decoder to alleviate the
OOV problems as in (See et al., 2017).

2.4 Model Learning with Distant Supervision
Despite the end-to-end training for the perfor-
mance of generated summary, we also directly
optimize the sentence selection decisions by im-
porting supervision for the sentence selection vec-
tor ↵t in Equation 5. While there is no ex-
plicit supervision for sentence selection, we define
a simple approach for labeling sentences based
on the reference summaries. To simulate the
sentence selection process on human-written ab-
stracts, we compute the words-matching similari-
ties (based on TF-IDF cosine similarity) between
a reference-summary sentence and corresponding
source document sentences and normalize them
into distantly-labelled sentence selection vector
pt. Then the sentence selection loss is defined as:

losssel =
X

t

DKL(↵t, pt) (12)

where DKL(↵t, pt) indicates the KL-divergence
between distribution ↵t and pt. The sentence se-
lection loss is imported into the final loss func-
tion to be optimized with the summary generation
component together.

The loss function L of the model is the mix
of the negative log-likelihood of generating sum-
maries over training set T , and the sentence selec-
tion loss of distantly-supervised training:

L =
X

(X,Y )2T
�logP (Y |X; ✓) + �losssel (13)

where � is a hyper-parameter tuned on the vali-
dation set. (X, Y ) denotes a document-summary
pair in the training set.

3 Experiments

3.1 Dataset
We conduct our experiments on a large-scale cor-
pus of CNN/DailyMail, which has been widely
used for exploration on summarizing documents
with multi-sentence summaries. The corpus are
originally constructed in (Hermann et al., 2015) by
collecting human generated highlights from news
stories in the CNN and DailyMail Website, which
contains input document of about 800 tokens on
average and multi-sentence summaries of up to
200 tokens. We use the same version of data with
(See et al., 2017), which totally has 280,125 train-
ing pairs, 13,367 validation pairs and 11,489 test
pairs after discarding the examples with empty ar-
ticle text. Some of previous work (Nallapati et al.,
2016, 2017; Paulus et al., 2017; Tan et al., 2017a)
use the anonymized version of data, which has
been pre-processed to replace each named entity
with an unique identifier. By contrast, we use the
non-anonymized data similar to (See et al., 2017),
which is a more favorable and challenging prob-
lem because it requires no pre-processing.

3.2 Implementation Details
Model Parameters For all experiments, the
word-level encoder and summary decoder both
use 256-dimensional hidden states, and the
sentence-level encoder and sentence selection net-
work both use 512-dimensional hidden states. We
use pre-trained Glove (Pennington et al., 2014)
vector for initialization of word embeddings. The
dimension of word embeddings is 100, which will
be further trained in the model. We use a vocab-
ulary of 50k words for both encoder and decoder.
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Method Rouge-1 Rouge-2 Rouge-L
Lead-3 40.34 17.70 36.57
SummaRuNNer-abs 37.5 14.5 33.4
SummaRuNNer 39.6 16.2 35.3
Seq2seq-baseline 36.64 15.66 33.42
ABS-temp-attn 35.46 13.30 32.65
Graph-attention 38.1 13.9 34.0
Deep-reinforced 39.87 15.82 36.90
Coverage 39.53 17.28 36.38
Our Model 41.54 18.18 36.47

Table 1: Rouge F1 scores on the test set. All our ROUGE
scores have a 95% confidence interval of at most ±0.25

as reported by the official ROUGE script.

We use dropout (Srivastava et al., 2014) with prob-
ability p = 0.5. After tuning on the validation set,
parameter � is set as 0.2.
Model Training We use Adagrad (Duchi et al.,
2011) algorithm with learning rate 0.1 and an ini-
tial accumulator value of 0.1 to optimize the model
parameters ✓. During training, we use gradient
clipping with a maximum gradient norm of 2. Our
model is trained on a single Tesla K40m GPU with
a batch size of 16 and an epoch is set contain-
ing 10,000 randomly sampled documents. Con-
vergence is reached within 300 epochs.
Hierarchical Beam Search To improve informa-
tion correctness and avoid redundancy during the
summary decoding process, we use the hierarchi-
cal beam search algorithm with reference mecha-
nism (Tan et al., 2017a) to generate multi-sentence
summaries. Similar to (Tan et al., 2017a), the
beam sizes for word decoder and sentence decoder
are 15 and 2, respectively.

3.3 Baselines

We compare our system with the results of state-
of-the-art neural summarization approaches re-
ported in recent papers, which contain both ab-
stractive models and extractive models. The ex-
tractive models include SummaRuNNer (Nalla-
pati et al., 2017), while SummaRuNNer-abs is
similar to SummaRuNNer but is trained directly
on the abstractive summaries. Lead-3 is a strong
extractive baseline which uses the first 3 sentences
of the document as summary. The abstractive
models include:

1) Seq2seq-baseline, which uses the basic
seq2seq encoder-decoder structure with at-
tention mechanism and incorporates with the
copy mechanism as in (See et al., 2017).

2) ABS-temp-attn (Nallapati et al., 2016),
which uses Temporal Attention on the

Method Informat. Concise Coherent Fluent
Lead-3 3.49⇤ 3.19⇤ 3.86 4.07⇤

Seq2seq-b. 3.11⇤ 2.95⇤ 3.08⇤ 3.51⇤

Coverage 3.41⇤ 3.25⇤ 3.37 3.72
Our Model 3.76 3.49 3.65 3.80

Table 2: Human evaluation results. ⇤ indicates the difference
between Our Model and other models are statistic significant
(p < 0.1) by two-tailed t-test.

seq2seq architecture to overcome the repeti-
tion problem.

3) Graph-attention (Tan et al., 2017a), which
uses a graph-ranking based attention mecha-
nism based on a hierarchical architecture to
identify important source sentences.

4) Deep-reinforced (Paulus et al., 2017), which
trains the seq2seq encoder-decoder model
with reinforcement learning techniques.

5) Coverage (See et al., 2017), which is an ex-
tension of the Seq2seq-baseline model by im-
porting coverage mechanism to control repe-
titions in summary.

3.4 Evaluation
ROUGE Evaluation
We evaluate our models with the standard ROUGE
metric (Lin, 2004) and obtain ROUGE scores
using the pyrouge package. Results in Ta-
ble 1 show that our method has significant im-
provement over state-of-the-art neural abstractive
baselines as well as extractive baselines. Note
that, the Deep-reinforced model achieves the best
ROUGE-L performance because it directly opti-
mizes the ROUGE-L metric. Comparing with
the current state-of-the-art model Coverage, our
model achieves significant better performance on
ROUGE-1 and ROUGE-2 metrics, and compa-
rable performance on ROUGE-L metric, which
demonstrates that our model is more effective in
selecting salient information from a document to
produce an informative summary while keeping
the ability to generate fluent and correct sentences.

Human Evaluation with Case Analysis
In addition to the ROUGE evaluation, we also con-
ducted human evaluation on 50 random samples
from CNN/DailyMail test set and compared the
summaries generated by our method with the out-
puts of Lead-3, Seq2seq-baseline and Coverage.
Three data annotators were asked to compare the
generated summaries with the human summaries,
and assess each summary from four independent
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Gold Reference: faith and hope howie were born with one body and two faces on may
8 .
they tragically died in hospital just 19 days after they were born .
parents simon howie and renee young visit their grave at pinegrove in western sydney
fortnightly .
they arrived on thursday to find the grave bare of all the girls ’ mementos .
staff had cleared entire baby section and thrown belongings in rubbish .
Seq2Seq-baseline: faith and hope howie were dubbed the miracle twins when they
were born on may 8 last year with one body and two faces due to an extremely rare
condition known as disrosopus .
faith and hope howie were dubbed the miracle twins when they were born on may 8
last year with one body and two faces due to an extremely rare condition known as
disrosopus .
faith and hope howie were dubbed the miracle twins when they were born on may 8
last year with one body and two faces due to an extremely rare condition known as
disrosopus .
Coverage: faith and hope howie were dubbed the miracle twins when they were born
on may 8 last year with one body and two faces due to an extremely rare condition
known as disrosopus .
they died in hospital less than a month after they were born and their parents , simon
howie and renee young , laid them to rest at pinegrove memorial park in sydney ’s west.
Our Model: faith and hope howie were dubbed the miracle twins when they were born
on may 8 last year with one body and two faces due to an extremely rare condition
known as disrosopus.
they died in hospital less than a month after they were born and their parents , simon
howie and renee young , laid them to rest at pinegrove memorial park in sydney ’s west.
family members have visited the grave every week to leave mementos and flowers for
faith and hope , but when mr howie and ms young arrived on thursday they found the
site completely bare .

Table 3: Examples of generated summaries. The Seq2Seq-
baseline model generates repeated sentences and loses salient
information. The Coverage model reduces repetitions, but
also loses salient information. Our model can select more
salient information from the original document and generate
more informative summary.

perspectives: (1) Informative: How informative
the summary is? (2) Concise: How concise the
summary is? (3) Coherent: How coherent (be-
tween sentences) the summary is? (4) Fluent:
How fluent, grammatical the sentences of a sum-
mary are? Each property is assessed with a score
from 1(worst) to 5(best) by three annotators. The
average results are presented in Table 2.

The results show that our model consistently
outperforms the Seq2seq-baseline model and the
previous state-of-the-art method Coverage. An
example of comparison of the generated sum-
maries by our model with the two abstractive mod-
els (w.r.t the reference summary) is shown in Ta-
ble 31. The summary generated by Seq2Seq-
Baseline usually contains repetition of sentences,
which seriously affects its informativeness, con-
ciseness as well as coherence. For example, the
sentence “faith and hope howie were dubbed the
miracle twins when they were born ...” is repeated
three times in Table 3. The Coverage model effec-
tively alleviates the information repetition prob-
lem, however, it loses some salient information
that should be included in the summary. For ex-
ample, the information about “mementos” and
“family members visit the grave” is lost in the
example shown in Table 3. The summary gen-
erated by our method obviously contains more

1More examples are shown in the supplementary material

(a) Gold Reference

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20
O1
O2
O3
O4
O5

(d) Our Model

O1
O2
O3

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

(c) Coverage

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20
O1
O2

(b) Seq2Seq-baseline

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20
O1
O2
O3

Figure 2: Visualization of sentence selection vectors. Ii

and Oi indicate the i-th sentence of the input and output,
respectively. Obviously, our model can detect more salient
sentences that are included in the reference summary.

salient information, which shows the effective-
ness of the information selection component in
our model. According to the results in Table
2, the sentence-level modeling of document and
summary in our model also makes the gener-
ated summaries achieve better inter-sentence co-
herence. Compared with the strong extractive
baseline Lead-3, our model is able to generate
more informative and concise summaries, which
shows the advantage of abstractive methods. The
fluency scores also show the good ability of our
model to generate fluent and grammatical sen-
tences. The human evaluation results demonstrate
that our model is able to generate more infor-
mative, concise and coherent summaries than the
baselines.

The visualization of the sentence selection vec-
tors of the gold reference summary and the three
abstractive models when generating the presented
examples in Table 3 are shown in Figure 22. The
figure shows that Seq2Seq-baseline fails to detect
all important source sentences and attend to the
same sentences repeatedly, which result in gen-
erating repeated summary sentences. Coverage
learns to reduce repetitions, but fails to detect all
the salient information. Obviously, our method
is more effective in selecting salient and rele-
vant source sentences from the document to gener-
ate more informative summary. Furthermore, our

2The sentence selection vectors of the Seq2seq-baseline
mode and the Coverage model are computed by summing the
attention weights of all words in each sentence and then nor-
malized across sentences.
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Method Rouge-1 Rouge-2 Rouge-L
Our Model 41.54 18.18 36.47

– distS 40.02 17.54 34.87
– distS&gateF 39.26 16.96 33.92
– infoSelection 36.64 15.66 33.42

Table 4: Comparison results of removing different compo-
nents of our method.

method tends to focus on different sets of source
sentences when generating different summary sen-
tences. The results verify that the information se-
lection component in our model significantly im-
proves the information selection process in docu-
ment summarization.

4 Discussion

In this section, we first validate the effective-
ness of each component of our model, then com-
pare the performance of information selection of
our method with several extractive methods, and
finally analyze the effects of golden summary
length on the performance of our model.

4.1 Model Validation

To further verify the effectiveness of each compo-
nent in our model, we conduct several ablation ex-
periments. “– distS” denotes removing the distant
supervision for sentence selection (set � as 0). “–
distS&gateF” denotes removing both the distant
supervision for sentence selection training and the
global gated information filtering component. “–
infoSelection” denotes removing the whole infor-
mation selection layer and do not explicitly mod-
eling the information selection process, which is
actually the Seq2seq-baseline model.

Results on the test set are shown in Table 4. Our
method much outperforms all the comparison sys-
tems and removing each component of our model
one by one will leads to sustained significant per-
formance declining, which verifies the effective-
ness of each component in our model. The global
gated information filtering network removes un-
necessary information from the original document
and helps generate more informative summary.
The distantly-supervised training for sentence se-
lection decisions helps the model learn to detect
important and relevant source sentences for each
summary sentence. The results verify that explic-
itly modeling the information selection process
significantly improves the document summariza-
tion performance.

Method Rouge-1 Rouge-2 Rouge-L
SummaRuNNer-abs 37.5 14.5 33.4
SummaRuNNer 39.6 16.2 35.3
OurExtractive 40.41 18.30 36.30
– distS 37.06 16.55 33.23
– distS&gateF 36.25 16.22 32.59

Table 5: Comparsion results of sentence selection.

length Method Rouge-1 Rouge-2 Rouge-
L

< 75 Our Mod. 39.90 16.91 35.19
(81.82%) Coverage 38.90 16.81 35.82
[75, 100) Our Mod. 47.13 22.44 40.81
(12.64%) Coverage 42.89 19.72 39.41
[100, 125) Our Mod. 50.49 24.23 43.68
(4.00%) Coverage 41.78 19.00 38.41
> 125 Our Mod. 50.25 23.98 41.19
(1.54%) Coverage 39.57 17.93 36.33

Table 6: Comparison results w.r.t different length of refer-
ence summary. < 75 indicates the reference summary has
less than 75 words (occupy 81.82% of test set), [75, 100) de-
notes the number of words in reference summary is between
75 and 100 (occupy 12.64% of test set).

4.2 Effectiveness of Information Selection
To verify the performance of sentence selection in
our model, we add a comparison system OurEx-
tractive which is almost the same as our model,
but replaces the summary decoder by a sentence
extractor. The sentence extractor extracts the
source sentence with the largest weight in each
sentence generation step. “– distS” denotes re-
moving the distant supervision for sentence selec-
tion training in our model. “– distS&gateF” de-
notes removing both the distant supervision for
sentence selection training and the gated global in-
formation filtering component.

Results in Table 5 show that our simple extrac-
tive method OurExtractive significantly outper-
forms state-of-the-art neural extractive baselines,
which demonstrates the effectiveness of the infor-
mation selection component in our model. More-
over, OurExtractive significantly outperforms the
two comparison systems which remove different
components of our model one by one. The results
show that both the gated global information filter-
ing and distant supervision training are effective
for improving information selection in document
summarization. Our proposed method effectively
combines the strengths of extractive methods and
abstractive methods into a unified framework.

4.3 Effects of Summary Length
We further compare our method with the Cov-
erage model by evaluating them on the test set
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with different length of golden reference sum-
maries. The results are shown in Table 6, which
demonstrate that our method is better at gener-
ating long summary for long document. As the
golden summary becoming longer, our system will
obtain larger advantages over the baseline (from
+1.0 Rouge-1, +0.1 Rouge-2 and -0.63 Rouge-L
for summary less than 75 words, rising to +10.68
Rouge-1, +6.05 Rouge-2 and +4.86 Rouge-L for
summaries more than 125 words). The results
also verify that our method is more effective in se-
lecting salient information from documents, espe-
cially for long documents.

5 Related Work

Existing exploration on document summarization
mainly can be categorized to extractive methods
and abstractive methods.

5.1 Extractive Summarization Methods
Neural networks have been widely investigated on
extractive document summarization task. Earlier
work attempts to use deep learning techniques to
improve sentence ranking or scoring (Cao et al.,
2015a,b; Yin and Pei, 2015). Some recent work
solves the sentence extraction and document mod-
eling in an end-to-end framework. Cheng and La-
pata (2016) propose an encoder-decoder approach
where the encoder hierarchically learns the rep-
resentation of sentences and documents while an
attention-based sentence extractor extracts salient
sentences sequentially from the original docu-
ment. Nallapati et al. (2017) propose a recur-
rent neural network-based sequence-to-sequence
model for sequential labelling of each sentence in
the document. Neural models are able to lever-
age large-scale corpora and achieve better perfor-
mance than traditional methods.

5.2 Abstractive Summarization Methods
As the seq2seq learning with neural networks
achieve huge success in sequence generation tasks
like machine translation, it also shows great po-
tential in text summarization area, especially for
abstractive methods. Some earlier researches stud-
ied the use of seq2seq learning for abstractive sen-
tence summarization (Takase et al., 2016; Rush
et al., 2015; Chopra et al., 2016). These models
are trained on a large corpus of news documents
which are usually shortened to be the first one or
two sentences, and their headlines.

Later, some work explored the seq2seq mod-
els on document summarization, which produce
a multi-sentence summary for a document. The
seq2seq models usually exhibit some undesir-
able behaviors, such as inaccurately reproduc-
ing factual details, unable to deal with out-of-
vocabulary (OOV) words and repetitions. To
alleviate these issues, copying mechanism (Gu
et al., 2016; Gulcehre et al., 2016; Nallapati et al.,
2016) has been incorporated into the encoder-
decoder architecture. Distraction-based attention
model (Chen et al., 2016) and coverage mecha-
nism (See et al., 2017) have also been investi-
gated to alleviate the repetition problem. To better
train the seq2seq model on tasks with long docu-
ments and multi-sentence summaries, a deep rein-
forced model was proposed to combine the stan-
dard words predication with teacher forcing learn-
ing and the global sequence prediction training
with reinforcement learning (Paulus et al., 2017).
Recently, Tan et al. (2017a) propose to leverage
the hierarchical encoder-decoder architecture on
generating multi-sentence summaries, and incor-
porate sentence-ranking into the summary gener-
ation process based on the graph-based attention
mechanism. Different from these neural-based
work, our model explicitly models the informa-
tion selection process in document summarization
by extending the encoder-decoder framework with
an information selection layer. Our model cap-
tures both the global document information and
local inter-sentence relations, and optimize the in-
formation selection process directly via distantly-
supervised training, which effectively combines
the strengths of extractive methods and abstractive
methods.

6 Conclusion

In this paper, we have analyzed the necessity of ex-
plicitly modeling and optimizing of the informa-
tion selection process in document summarization,
and verified its effectiveness by extending the ba-
sic neural encoding-decoding framework with an
information selection layer and optimizing it with
distantly-supervised training. Our information se-
lection layer consists of a gated global informa-
tion filtering network and a local RNN sentence
selection network. Experimental results demon-
strate that both of them are effective for help-
ing select salient information during the summary
generation process, which significantly improves
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the document summarization performance. Our
model combines the strengths of extractive meth-
ods and abstractive methods, which can gener-
ate more informative and concise summaries, and
thus achieves state-of-the-art abstractive document
summarization performance and is also competi-
tive with state-of-the-art extractive models.
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Abstract
We introduce extreme summarization, a new
single-document summarization task which
does not favor extractive strategies and calls
for an abstractive modeling approach. The
idea is to create a short, one-sentence news
summary answering the question “What is the
article about?”. We collect a real-world, large
scale dataset for this task by harvesting online
articles from the British Broadcasting Corpo-
ration (BBC). We propose a novel abstrac-
tive model which is conditioned on the ar-
ticle’s topics and based entirely on convolu-
tional neural networks. We demonstrate exper-
imentally that this architecture captures long-
range dependencies in a document and recog-
nizes pertinent content, outperforming an or-
acle extractive system and state-of-the-art ab-
stractive approaches when evaluated automat-
ically and by humans.1

1 Introduction
Automatic summarization is one of the central
problems in Natural Language Processing (NLP)
posing several challenges relating to understand-
ing (i.e., identifying important content) and gener-
ation (i.e., aggregating and rewording the identi-
fied content into a summary). Of the many sum-
marization paradigms that have been identified
over the years (see Mani, 2001 and Nenkova and
McKeown, 2011 for a comprehensive overview),
single-document summarization has consistently
attracted attention (Cheng and Lapata, 2016; Dur-
rett et al., 2016; Nallapati et al., 2016, 2017; See
et al., 2017; Tan and Wan, 2017; Narayan et al.,
2017; Fan et al., 2017; Paulus et al., 2018; Pa-
sunuru and Bansal, 2018; Celikyilmaz et al., 2018;
Narayan et al., 2018a,b).

Neural approaches to NLP and their ability
to learn continuous features without recourse to

1Our dataset, code, and demo are available at: https:
//github.com/shashiongithub/XSum.

SUMMARY: A man and a child have been killed
after a light aircraft made an emergency landing
on a beach in Portugal.
DOCUMENT: Authorities said the incident took
place on Sao Joao beach in Caparica, south-west
of Lisbon.
The National Maritime Authority said a middle-
aged man and a young girl died after they were un-
able to avoid the plane.
[6 sentences with 139 words are abbreviated from
here.]
Other reports said the victims had been sunbathing
when the plane made its emergency landing.
[Another 4 sentences with 67 words are abbreviated
from here.]
Video footage from the scene carried by local
broadcasters showed a small recreational plane
parked on the sand, apparently intact and sur-
rounded by beachgoers and emergency workers.
[Last 2 sentences with 19 words are abbreviated.]

Figure 1: An abridged example from our extreme sum-
marization dataset showing the document and its one-
line summary. Document content present in the sum-
mary is color-coded.

pre-processing tools or linguistic annotations have
driven the development of large-scale document
summarization datasets (Sandhaus, 2008; Her-
mann et al., 2015; Grusky et al., 2018). How-
ever, these datasets often favor extractive models
which create a summary by identifying (and sub-
sequently concatenating) the most important sen-
tences in a document (Cheng and Lapata, 2016;
Nallapati et al., 2017; Narayan et al., 2018b). Ab-
stractive approaches, despite being more faithful
to the actual summarization task, either lag behind
extractive ones or are mostly extractive, exhibiting
a small degree of abstraction (See et al., 2017; Tan
and Wan, 2017; Paulus et al., 2018; Pasunuru and
Bansal, 2018; Celikyilmaz et al., 2018).

In this paper we introduce extreme summariza-
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tion, a new single-document summarization task
which is not amenable to extractive strategies and
requires an abstractive modeling approach. The
idea is to create a short, one-sentence news sum-
mary answering the question “What is the article
about?”. An example of a document and its ex-
treme summary are shown in Figure 1. As can be
seen, the summary is very different from a head-
line whose aim is to encourage readers to read the
story; it draws on information interspersed in vari-
ous parts of the document (not only the beginning)
and displays multiple levels of abstraction includ-
ing paraphrasing, fusion, synthesis, and inference.
We build a dataset for the proposed task by har-
vesting online articles from the British Broadcast-
ing Corporation (BBC) that often include a first-
sentence summary.

We further propose a novel deep learning model
which we argue is well-suited to the extreme sum-
marization task. Unlike most existing abstrac-
tive approaches (Rush et al., 2015; Chen et al.,
2016; Nallapati et al., 2016; See et al., 2017; Tan
and Wan, 2017; Paulus et al., 2018; Pasunuru and
Bansal, 2018; Celikyilmaz et al., 2018) which rely
on an encoder-decoder architecture modeled by
recurrent neural networks (RNNs), we present a
topic-conditioned neural model which is based en-
tirely on convolutional neural networks (Gehring
et al., 2017b). Convolution layers capture long-
range dependencies between words in the docu-
ment more effectively compared to RNNs, allow-
ing to perform document-level inference, abstrac-
tion, and paraphrasing. Our convolutional encoder
associates each word with a topic vector capturing
whether it is representative of the document’s con-
tent, while our convolutional decoder conditions
each word prediction on a document topic vector.

Experimental results show that when evaluated
automatically (in terms of ROUGE) our topic-
aware convolutional model outperforms an oracle
extractive system and state-of-the-art RNN-based
abstractive systems. We also conduct two human
evaluations in order to assess (a) which type of
summary participants prefer and (b) how much
key information from the document is preserved
in the summary. Both evaluations overwhelmingly
show that human subjects find our summaries
more informative and complete. Our contributions
in this work are three-fold: a new single docu-
ment summarization dataset that encourages the
development of abstractive systems; corroborated

by analysis and empirical results showing that
extractive approaches are not well-suited to the
extreme summarization task; and a novel topic-
aware convolutional sequence-to-sequence model
for abstractive summarization.

2 The XSum Dataset

Our extreme summarization dataset (which we
call XSum) consists of BBC articles and ac-
companying single sentence summaries. Specif-
ically, each article is prefaced with an introduc-
tory sentence (aka summary) which is profession-
ally written, typically by the author of the arti-
cle. The summary bears the HTML class “story-
body introduction,” and can be easily identified
and extracted from the main text body (see Fig-
ure 1 for an example summary-article pair).

We followed the methodology proposed in Her-
mann et al. (2015) to create a large-scale dataset
for extreme summarization. Specifically, we col-
lected 226,711 Wayback archived BBC articles
ranging over almost a decade (2010 to 2017) and
covering a wide variety of domains (e.g., News,
Politics, Sports, Weather, Business, Technology,
Science, Health, Family, Education, Entertain-
ment and Arts). Each article comes with a unique
identifier in its URL, which we used to randomly
split the dataset into training (90%, 204,045), val-
idation (5%, 11,332), and test (5%, 11,334) set.
Table 1 compares XSum with the CNN, Daily-
Mail, and NY Times benchmarks. As can be seen,
XSum contains a substantial number of training
instances, similar to DailyMail; documents and
summaries in XSum are shorter in relation to other
datasets but the vocabulary size is sufficiently
large, comparable to CNN.

Table 2 provides empirical analysis supporting
our claim that XSum is less biased toward ex-
tractive methods compared to other summariza-
tion datasets. We report the percentage of novel
n-grams in the target gold summaries that do not
appear in their source documents. There are 36%
novel unigrams in the XSum reference summaries
compared to 17% in CNN, 17% in DailyMail, and
23% in NY Times. This indicates that XSum
summaries are more abstractive. The proportion
of novel constructions grows for larger n-grams
across datasets, however, it is much steeper in
XSum whose summaries exhibit approximately
83% novel bigrams, 96% novel trigrams, and
98% novel 4-grams (comparison datasets display
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Datasets # docs (train/val/test) avg. document length avg. summary length vocabulary size
words sentences words sentences document summary

CNN 90,266/1,220/1,093 760.50 33.98 45.70 3.59 343,516 89,051
DailyMail 196,961/12,148/10,397 653.33 29.33 54.65 3.86 563,663 179,966
NY Times 589,284/32,736/32,739 800.04 35.55 45.54 2.44 1,399,358 294,011
XSum 204,045/11,332/11,334 431.07 19.77 23.26 1.00 399,147 81,092

Table 1: Comparison of summarization datasets with respect to overall corpus size, size of training, validation, and
test set, average document (source) and summary (target) length (in terms of words and sentences), and vocabulary
size on both on source and target. For CNN and DailyMail, we used the original splits of Hermann et al. (2015)
and followed Narayan et al. (2018b) to preprocess them. For NY Times (Sandhaus, 2008), we used the splits and
pre-processing steps of Paulus et al. (2018). For the vocabulary, we lowercase tokens.

Datasets % of novel n-grams in gold summary LEAD EXT-ORACLE
unigrams bigrams trigrams 4-grams R1 R2 RL R1 R2 RL

CNN 16.75 54.33 72.42 80.37 29.15 11.13 25.95 50.38 28.55 46.58
DailyMail 17.03 53.78 72.14 80.28 40.68 18.36 37.25 55.12 30.55 51.24
NY Times 22.64 55.59 71.93 80.16 31.85 15.86 23.75 52.08 31.59 46.72
XSum 35.76 83.45 95.50 98.49 16.30 1.61 11.95 29.79 8.81 22.65

Table 2: Corpus bias towards extractive methods in the CNN, DailyMail, NY Times, and XSum datasets. We show
the proportion of novel n-grams in gold summaries. We also report ROUGE scores for the LEAD baseline and the
extractive oracle system EXT-ORACLE. Results are computed on the test set.

around 47–55% new bigrams, 58–72% new tri-
grams, and 63–80% novel 4-grams).

We further evaluated two extractive methods on
these datasets. LEAD is often used as a strong
lower bound for news summarization (Nenkova,
2005) and creates a summary by selecting the first
few sentences or words in the document. We ex-
tracted the first 3 sentences for CNN documents
and the first 4 sentences for DailyMail (Narayan
et al., 2018b). Following previous work (Dur-
rett et al., 2016; Paulus et al., 2018), we obtained
LEAD summaries based on the first 100 words for
NY Times documents. For XSum, we selected the
first sentence in the document (excluding the one-
line summary) to generate the LEAD. Our second
method, EXT-ORACLE, can be viewed as an up-
per bound for extractive models (Nallapati et al.,
2017; Narayan et al., 2018b). It creates an ora-
cle summary by selecting the best possible set of
sentences in the document that gives the highest
ROUGE (Lin and Hovy, 2003) with respect to the
gold summary. For XSum, we simply selected the
single-best sentence in the document as summary.

Table 2 reports the performance of the two ex-
tractive methods using ROUGE-1 (R1), ROUGE-
2 (R2), and ROUGE-L (RL) with the gold sum-
maries as reference. The LEAD baseline performs
extremely well on CNN, DailyMail and NY Times
confirming that they are biased towards extrac-
tive methods. EXT-ORACLE further shows that
improved sentence selection would bring further

performance gains to extractive approaches. Ab-
stractive systems trained on these datasets often
have a hard time beating the LEAD, let alone EXT-
ORACLE, or display a low degree of novelty in
their summaries (See et al., 2017; Tan and Wan,
2017; Paulus et al., 2018; Pasunuru and Bansal,
2018; Celikyilmaz et al., 2018). Interestingly,
LEAD and EXT-ORACLE perform poorly on XSum
underlying the fact that it is less biased towards
extractive methods.

In line with our findings, Grusky et al. (2018)
have recently reported similar extractive biases in
existing datasets. They constructed a new dataset
called “Newsroom” which demonstrates a high di-
versity of summarization styles. XSum is not di-
verse, it focuses on a single news outlet (i.e., BBC)
and a unifrom summarization style (i.e., a single
sentence). However, it is sufficiently large for neu-
ral network training and we hope it will spur fur-
ther research towards the development of abstrac-
tive summarization models.

3 Convolutional Sequence-to-Sequence
Learning for Summarization

Unlike tasks like machine translation and para-
phrase generation where there is often a one-to-
one semantic correspondence between source and
target words, document summarization must dis-
till the content of the document into a few im-
portant facts. This is even more challenging for
our task, where the compression ratio is extremely
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Figure 2: Topic-conditioned convolutional model for
extreme summarization.

high, and pertinent content can be easily missed.
Recently, a convolutional alternative to se-

quence modeling has been proposed showing
promise for machine translation (Gehring et al.,
2017a,b) and story generation (Fan et al., 2018).
We believe that convolutional architectures are at-
tractive for our summarization task for at least two
reasons. Firstly, contrary to recurrent networks
which view the input as a chain structure, convo-
lutional networks can be stacked to represent large
context sizes. Secondly, hierarchical features can
be extracted over larger and larger contents, al-
lowing to represent long-range dependencies effi-
ciently through shorter paths.

Our model builds on the work of Gehring et al.
(2017b) who develop an encoder-decoder archi-
tecture for machine translation with an attention
mechanism (Sukhbaatar et al., 2015) based exclu-
sively on deep convolutional networks. We adapt
this model to our summarization task by allow-
ing it to recognize pertinent content (i.e., by fore-
grounding salient words in the document). In par-
ticular, we improve the convolutional encoder by
associating each word with a vector representing
topic salience, and the convolutional decoder by

conditioning each word prediction on the docu-
ment topic vector.

Model Overview At the core of our model is
a simple convolutional block structure that com-
putes intermediate states based on a fixed num-
ber of input elements. Our convolutional encoder
(shown at the top of Figure 2) applies this unit
across the document. We repeat these operations
in a stacked fashion to get a multi-layer hierarchi-
cal representation over the input document where
words at closer distances interact at lower lay-
ers while distant words interact at higher layers.
The interaction between words through hierarchi-
cal layers effectively captures long-range depen-
dencies.

Analogously, our convolutional decoder (shown
at the bottom of Figure 2) uses the multi-layer
convolutional structure to build a hierarchical rep-
resentation over what has been predicted so far.
Each layer on the decoder side determines use-
ful source context by attending to the encoder
representation before it passes its output to the
next layer. This way the model remembers which
words it previously attended to and applies multi-
hop attention (shown at the middle of Figure 2) per
time step. The output of the top layer is passed to
a softmax classifier to predict a distribution over
the target vocabulary.

Our model assumes access to word and docu-
ment topic distributions. These can be obtained by
any topic model, however we use Latent Dirichlet
Allocation (LDA; Blei et al. 2003) in our exper-
iments; we pass the distributions obtained from
LDA directly to the network as additional input.
This allows us to take advantage of topic modeling
without interfering with the computational advan-
tages of the convolutional architecture. The idea
of capturing document-level semantic information
has been previously explored for recurrent neural
networks (Mikolov and Zweig, 2012; Ghosh et al.,
2016; Dieng et al., 2017), however, we are not
aware of any existing convolutional models.

Topic Sensitive Embeddings Let D denote a
document consisting of a sequence of words
(w1, . . . , wm); we embed D into a distributional
space x = (x1, . . . , xm) where xi 2 R

f is a col-
umn in embedding matrix M 2 R

V ⇥f (where V is
the vocabulary size). We also embed the absolute
word positions in the document p = (p1, . . . , pm)
where pi 2 R

f is a column in position matrix
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P 2 R
N⇥f , and N is the maximum number of

positions. Position embeddings have proved use-
ful for convolutional sequence modeling (Gehring
et al., 2017b), because, in contrast to RNNs, they
do not observe the temporal positions of words
(Shi et al., 2016). Let tD 2 R

f 0 be the topic dis-
tribution of document D and t0 = (t01, . . . , t

0
m)

the topic distributions of words in the document
(where t0i 2 R

f 0). During encoding, we represent
document D via e = (e1, . . . , em), where ei is:

ei = [(xi + pi); (t
0
i ⌦ tD)] 2 R

f+f 0

,

and ⌦ denotes point-wise multiplication. The
topic distribution t0i of word wi essentially cap-
tures how topical the word is in itself (local con-
text), whereas the topic distribution tD represents
the overall theme of the document (global con-
text). The encoder essentially enriches the context
of the word with its topical relevance to the docu-
ment.

For every output prediction, the decoder esti-
mates representation g = (g1, . . . , gn) for previ-
ously predicted words (w0

1, . . . , w
0
n) where gi is:

gi = [(x0
i + p0

i); tD] 2 R
f+f 0

,

x0
i and p0

i are word and position embeddings of
previously predicted word w0

i, and tD is the topic
distribution of the input document. Note that the
decoder does not use the topic distribution of w0

i as
computing it on the fly would be expensive. How-
ever, every word prediction is conditioned on the
topic of the document, enforcing the summary to
have the same theme as the document.

Multi-layer Convolutional Structure Each
convolution block, parametrized by W 2 R

2d⇥kd

and bw 2 R
2d, takes as input X 2 R

k⇥d which
is the concatenation of k adjacent elements
embedded in a d dimensional space, applies one
dimensional convolution and returns an output
element Y 2 R

2d. We apply Gated Linear Units
(GLU, v : R

2d ! R
d, Dauphin et al. 2017)

on the output of the convolution Y . Subsequent
layers operate over the k output elements of the
previous layer and are connected through residual
connections (He et al., 2016) to allow for deeper
hierarchical representation. We denote the output
of the `th layer as h` = (h`

1, . . . , h
`
n) for the

decoder network, and z` = (z`
1, . . . , z

`
m) for the

encoder network.

Multi-hop Attention Our encoder and decoder
are tied to each other through a multi-hop attention
mechanism. For each decoder layer `, we compute
the attention a`

ij of state i and source element j as:

a`
ij =

exp(d`
i · zu

j )
Pm

t=1 exp(d`
i · zu

t )
,

where d`
i = W `

dh`
i + b`

i + gi is the decoder state
summary combining the current decoder state h`

i
and the previous output element embedding gi.
The vector zu is the output from the last encoder
layer u. The conditional input c`

i to the current
decoder layer is a weighted sum of the encoder
outputs as well as the input element embeddings
ej :

c`
i =

mX

j=1

a`
ij(z

u
j + ej).

The attention mechanism described here per-
forms multiple attention “hops” per time step and
considers which words have been previously at-
tended to. It is therefore different from single-step
attention in recurrent neural networks (Bahdanau
et al., 2015), where the attention and weighted sum
are computed over zu only.

Our network uses multiple linear layers to
project between the embedding size (f + f 0) and
the convolution output size 2d. They are applied
to e before feeding it to the encoder, to the final
encoder output zu, to all decoder layers h` for the
attention score computation, and to the final de-
coder output hL before the softmax. We pad the
input with k �1 zero vectors on both left and right
side to ensure that the output of the convolutional
layers matches the input length. During decoding,
we ensure that the decoder does not have access
to future information; we start with k zero vectors
and shift the covolutional block to the right after
every prediction. The final decoder output hL is
used to compute the distribution over the target vo-
cabulary T as:

p(yi+1|y1, . . . , yi, D, tD, t0) =

softmax(Woh
L
i + bo) 2 R

T .

We use layer normalization and weight initializa-
tion to stabilize learning.

Our topic-enhanced model calibrates long-
range dependencies with globally salient con-
tent. As a result, it provides a better alter-
native to vanilla convolutional sequence models
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(Gehring et al., 2017b) and RNN-based summa-
rization models (See et al., 2017) for capturing
cross-document inferences and paraphrasing. At
the same time it retains the computational advan-
tages of convolutional models. Each convolution
block operates over a fixed-size window of the in-
put sequence, allowing for simultaneous encod-
ing of the input, ease in learning due to the fixed
number of non-linearities and transformations for
words in the input sequence.

4 Experimental Setup

In this section we present our experimental setup
for assessing the performance of our Topic-aware
Convolutional Sequence to Sequence model
which we call T-CONVS2S for short. We dis-
cuss implementation details and present the sys-
tems used for comparison with our approach.

Comparison Systems We report results with
various systems which were all trained on the
XSum dataset to generate a one-line summary
given an input news article. We compared
T-CONVS2S against three extractive systems: a
baseline which randomly selects a sentence from
the input document (RANDOM), a baseline which
simply selects the leading sentence from the docu-
ment (LEAD), and an oracle which selects a single-
best sentence in each document (EXT-ORACLE).
The latter is often used as an upper bound for ex-
tractive methods. We also compared our model
against the RNN-based abstractive systems intro-
duced by See et al. (2017). In particular, we ex-
perimented with an attention-based sequence to
sequence model (SEQ2SEQ), a pointer-generator
model which allows to copy words from the source
text (PTGEN), and a pointer-generator model with
a coverage mechanism to keep track of words that
have been summarized (PTGEN-COVG). Finally,
we compared our model against the vanilla convo-
lution sequence to sequence model (CONVS2S) of
Gehring et al. (2017b).

Model Parameters and Optimization We did
not anonymize entities but worked on a lower-
cased version of the XSum dataset. During train-
ing and at test time the input document was trun-
cated to 400 tokens and the length of the summary
limited to 90 tokens.

The LDA model (Blei et al., 2003) was trained
on XSum documents (training portion). We there-
fore obtained for each word a probability distribu-

T1: charge, court, murder, police, arrest, guilty, sen-
tence, boy, bail, space, crown, trial

T2: church, abuse, bishop, child, catholic, gay,
pope, school, christian, priest, cardinal

T3: council, people, government, local, housing,
home, house, property, city, plan, authority

T4: clinton, party, trump, climate, poll, vote, plaid,
election, debate, change, candidate, campaign

T5: country, growth, report, business, export, fall,
bank, security, economy, rise, global, inflation

T6: hospital, patient, trust, nhs, people, care, health,
service, staff, report, review, system, child

Table 3: Example topics learned by the LDA model on
XSum documents (training portion).

tion over topics which we used to estimate t0; the
topic distribution tD can be inferred for any new
document, at training and test time. We explored
several LDA configurations on held-out data, and
obtained best results with 512 topics. Table 3
shows some of the topics learned by the LDA
model.

For SEQ2SEQ, PTGEN and PTGEN-COVG, we
used the best settings reported on the CNN and
DailyMail data (See et al., 2017).2 All three mod-
els had 256 dimensional hidden states and 128 di-
mensional word embeddings. They were trained
using Adagrad (Duchi et al., 2011) with learning
rate 0.15 and an initial accumulator value of 0.1.
We used gradient clipping with a maximum gradi-
ent norm of 2, but did not use any form of regular-
ization. We used the loss on the validation set to
implement early stopping.

For CONVS2S3 and T-CONVS2S, we used 512
dimensional hidden states and 512 dimensional
word and position embeddings. We trained our
convolutional models with Nesterov’s accelerated
gradient method (Sutskever et al., 2013) using a
momentum value of 0.99 and renormalized gra-
dients if their norm exceeded 0.1 (Pascanu et al.,
2013). We used a learning rate of 0.10 and once
the validation perplexity stopped improving, we
reduced the learning rate by an order of magnitude
after each epoch until it fell below 10�4. We also
applied a dropout of 0.2 to the embeddings, the
decoder outputs and the input of the convolutional
blocks. Gradients were normalized by the number
of non-padding tokens per mini-batch. We also

2We used the code available at https://github.
com/abisee/pointer-generator.

3We used the code available at https://github.
com/facebookresearch/fairseq-py.
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used weight normalization for all layers except for
lookup tables.

All neural models, including ours and those
based on RNNs (See et al., 2017) had a vocabu-
lary of 50,000 words and were trained on a sin-
gle Nvidia M40 GPU with a batch size of 32 sen-
tences. Summaries at test time were obtained us-
ing beam search (with beam size 10).

5 Results

Automatic Evaluation We report results us-
ing automatic metrics in Table 4. We evalu-
ated summarization quality using F1 ROUGE (Lin
and Hovy, 2003). Unigram and bigram overlap
(ROUGE-1 and ROUGE-2) are a proxy for assess-
ing informativeness and the longest common sub-
sequence (ROUGE-L) represents fluency.4

On the XSum dataset, SEQ2SEQ outperforms
the LEAD and RANDOM baselines by a large
margin. PTGEN, a SEQ2SEQ model with a
“copying” mechanism outperforms EXT-ORACLE,
a “perfect” extractive system on ROUGE-2 and
ROUGE-L. This is in sharp contrast to the perfor-
mance of these models on CNN/DailyMail (See
et al., 2017) and Newsroom datasets (Grusky et al.,
2018), where they fail to outperform the LEAD.
The result provides further evidence that XSum
is a good testbed for abstractive summarization.
PTGEN-COVG, the best performing abstractive
system on the CNN/DailyMail datasets, does not
do well. We believe that the coverage mecha-
nism is more useful when generating multi-line
summaries and is basically redundant for extreme
summarization.

CONVS2S, the convolutional variant of
SEQ2SEQ, significantly outperforms all
RNN-based abstractive systems. We hypoth-
esize that its superior performance stems from
the ability to better represent document content
(i.e., by capturing long-range dependencies).
Table 4 shows several variants of T-CONVS2S
including an encoder network enriched with in-
formation about how topical a word is on its own
(enct0) or in the document (enc(t0,tD)). We also
experimented with various decoders by condition-
ing every prediction on the topic of the document,
basically encouraging the summary to be in the
same theme as the document (dectD ) or letting
the decoder decide the theme of the summary.

4We used pyrouge to compute all ROUGE scores, with
parameters “-a -c 95 -m -n 4 -w 1.2.”

Models R1 R2 RL
Random 15.16 1.78 11.27
LEAD 16.30 1.60 11.95
EXT-ORACLE 29.79 8.81 22.66
SEQ2SEQ 28.42 8.77 22.48
PTGEN 29.70 9.21 23.24
PTGEN-COVG 28.10 8.02 21.72
CONVS2S 31.27 11.07 25.23
T-CONVS2S (enct0 ) 31.71 11.38 25.56
T-CONVS2S (enct0 , dectD

) 31.71 11.34 25.61
T-CONVS2S (enc(t0,tD)) 31.61 11.30 25.51
T-CONVS2S (enc(t0,tD), dectD

) 31.89 11.54 25.75

Table 4: ROUGE results on XSum test set. We re-
port ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L
(RL) F1 scores. Extractive systems are in the upper
block, RNN-based abstractive systems are in the mid-
dle block, and convolutional abstractive systems are in
the bottom block.

Models
% of novel n-grams in generated summaries
unigrams bigrams trigrams 4-grams

LEAD 0.00 0.00 0.00 0.00
EXT-ORACLE 0.00 0.00 0.00 0.00
PTGEN 27.40 73.33 90.43 96.04
CONVS2S 31.26 79.50 94.28 98.10
T-CONVS2S 30.73 79.18 94.10 98.03
GOLD 35.76 83.45 95.50 98.49

Table 5: Proportion of novel n-grams in summaries
generated by various models on the XSum test set.

Interestingly, all four T-CONVS2S variants out-
perform CONVS2S. T-CONVS2S performs best
when both encoder and decoder are constrained
by the document topic (enc(t0,tD),dectD ). In the
remainder of the paper, we refer to this variant as
T-CONVS2S.

We further assessed the extent to which various
models are able to perform rewriting by generating
genuinely abstractive summaries. Table 5 shows
the proportion of novel n-grams for LEAD, EXT-
ORACLE, PTGEN, CONVS2S, and T-CONVS2S.
As can be seen, the convolutional models exhibit
the highest proportion of novel n-grams. We
should also point out that the summaries being
evaluated have on average comparable lengths;
the summaries generated by PTGEN contain 22.57
words, those generated by CONVS2S and T-
CONVS2S have 20.07 and 20.22 words, respec-
tively, while GOLD summaries are the longest
with 23.26 words. Interestingly, PTGEN trained
on XSum only copies 4% of 4-grams in the source
document, 10% of trigrams, 27% of bigrams, and
73% of unigrams. This is in sharp contrast to PT-
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EXT-ORACLE Caroline Pidgeon is the Lib Dem candidate, Sian Berry will contest the election for
the Greens and UKIP has chosen its culture spokesman Peter Whittle.

[34.1, 20.5, 34.1]

PTGEN UKIP leader Nigel Goldsmith has been elected as the new mayor of London to elect
a new conservative MP.

[45.7, 6.1, 28.6]

CONVS2S London mayoral candidate Zac Goldsmith has been elected as the new mayor of
London.

[53.3, 21.4, 26.7]

T-CONVS2S Former London mayoral candidate Zac Goldsmith has been chosen to stand in the
London mayoral election.

[50.0, 26.7, 37.5]

GOLD Zac Goldsmith will contest the 2016 London mayoral election for the conservatives,
it has been announced.

Questions (1) Who will contest for the conservatives? (Zac Goldsmith)
(2) For what election will he/she contest? (The London mayoral election)

EXT-ORACLE North-east rivals Newcastle are the only team below them in the Premier League
table.

[35.3, 18.8, 35.3]

PTGEN Sunderland have appointed former Sunderland boss Dick Advocaat as manager at
the end of the season to sign a new deal.

[45.0, 10.5, 30.0]

CONVS2S Sunderland have sacked manager Dick Advocaat after less than three months in
charge.

[25.0, 6.7, 18.8]

T-CONVS2S Dick Advocaat has resigned as Sunderland manager until the end of the season. [56.3, 33.3, 56.3]
GOLD Dick Advocaat has resigned as Sunderland boss, with the team yet to win in the

Premier League this season.
Questions (1) Who has resigned? (Dick Advocaat)

(2) From what post has he/she resigned? (Sunderland boss)
EXT-ORACLE The Greater Ardoyne residents collective (GARC) is protesting against an agree-

ment aimed at resolving a long-running dispute in the area.
[26.7, 9.3, 22.2]

PTGEN A residents’ group has been granted permission for GARC to hold a parade on the
outskirts of Crumlin, County Antrim.

[28.6, 5.0, 28.6]

CONVS2S A protest has been held in the Republic of Ireland calling for an end to parading
parading in North Belfast.

[42.9, 20.0, 33.3]

T-CONVS2S A protest has been held in North Belfast over a protest against the Orange Order in
North Belfast.

[45.0, 26.3, 45.0]

GOLD Church leaders have appealed to a nationalist residents’ group to call off a protest
against an Orange Order parade in North Belfast.

Questions (1) Where is the protest supposed to happen? (North Belfast)
(2) What are they protesting against? (An Orange Order parade)

Table 6: Example output summaries on the XSum test set with [ROUGE-1, ROUGE-2 and ROUGE-L] scores,
goldstandard reference, and corresponding questions. Words highlighted in blue are either the right answer or
constitute appropriate context for inferring it; words in red lead to the wrong answer.

GEN trained on CNN/DailyMail exhibiting mostly
extractive patterns; it copies more than 85% of 4-
grams in the source document, 90% of trigrams,
95% of bigrams, and 99% of unigrams (See et al.,
2017). This result further strengthens our hypoth-
esis that XSum is a good testbed for abstractive
methods.

Human Evaluation In addition to automatic
evaluation using ROUGE which can be mislead-
ing when used as the only means to assess the in-
formativeness of summaries (Schluter, 2017), we
also evaluated system output by eliciting human
judgments in two ways.

In our first experiment, participants were asked
to compare summaries produced from the EXT-
ORACLE baseline, PTGEN, the best performing
system of See et al. (2017), CONVS2S, our
topic-aware model T-CONVS2S, and the human-
authored gold summary (GOLD). We did not in-
clude extracts from the LEAD as they were signifi-

cantly inferior to other models.
The study was conducted on the Amazon Me-

chanical Turk platform using Best-Worst Scaling
(BWS; Louviere and Woodworth 1991; Louviere
et al. 2015), a less labor-intensive alternative to
paired comparisons that has been shown to pro-
duce more reliable results than rating scales (Kir-
itchenko and Mohammad, 2017). Participants
were presented with a document and summaries
generated from two out of five systems and were
asked to decide which summary was better and
which one was worse in order of informativeness
(does the summary capture important information
in the document?) and fluency (is the summary
written in well-formed English?). Examples of
system summaries are shown in Table 6. We ran-
domly selected 50 documents from the XSum test
set and compared all possible combinations of two
out of five systems for each document. We col-
lected judgments from three different participants
for each comparison. The order of summaries was
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Models Score QA
EXT-ORACLE -0.121 15.70
PTGEN -0.218 21.40
CONVS2S -0.130 30.90
T-CONVS2S 0.037 46.05
GOLD 0.431 97.23

Table 7: System ranking according to human judg-
ments and QA-based evaluation.

randomized per document and the order of docu-
ments per participant.

The score of a system was computed as the
percentage of times it was chosen as best mi-
nus the percentage of times it was selected as
worst. The scores range from -1 (worst) to 1
(best) and are shown in Table 7. Perhaps unsur-
prisingly human-authored summaries were con-
sidered best, whereas, T-CONVS2S was ranked
2nd followed by EXT-ORACLE and CONVS2S.
PTGEN was ranked worst with the lowest score
of �0.218. We carried out pairwise compar-
isons between all models to assess whether sys-
tem differences are statistically significant. GOLD
is significantly different from all other systems
and T-CONVS2S is significantly different from
CONVS2S and PTGEN (using a one-way ANOVA
with posthoc Tukey HSD tests; p < 0.01). All
other differences are not statistically significant.

For our second experiment we used a question-
answering (QA) paradigm (Clarke and Lapata,
2010; Narayan et al., 2018b) to assess the degree
to which the models retain key information from
the document. We used the same 50 documents
as in our first elicitation study. We wrote two
fact-based questions per document, just by reading
the summary, under the assumption that it high-
lights the most important content of the news ar-
ticle. Questions were formulated so as not to re-
veal answers to subsequent questions. We cre-
ated 100 questions in total (see Table 6 for exam-
ples). Participants read the output summaries and
answered the questions as best they could with-
out access to the document or the gold summary.
The more questions can be answered, the better the
corresponding system is at summarizing the docu-
ment as a whole. Five participants answered ques-
tions for each summary.

We followed the scoring mechanism introduced
in Clarke and Lapata (2010). A correct answer
was marked with a score of one, partially correct
answers with a score of 0.5, and zero otherwise.
The final score for a system is the average of all

its question scores. Answers again were elicited
using Amazon’s Mechanical Turk crowdsourcing
platform. We uploaded the data in batches (one
system at a time) to ensure that the same partic-
ipant does not evaluate summaries from different
systems on the same set of questions.

Table 7 shows the results of the QA evaluation.
Based on summaries generated by T-CONVS2S,
participants can answer 46.05% of the questions
correctly. Summaries generated by CONVS2S,
PTGEN and EXT-ORACLE provide answers to
30.90%, 21.40%, and 15.70% of the questions, re-
spectively. Pairwise differences between systems
are all statistically significant (p < 0.01) with
the exception of PTGEN and EXT-ORACLE. EXT-
ORACLE performs poorly on both QA and rating
evaluations. The examples in Table 6 indicate that
EXT-ORACLE is often misled by selecting a sen-
tence with the highest ROUGE (against the gold
summary), but ROUGE itself does not ensure that
the summary retains the most important informa-
tion from the document. The QA evaluation fur-
ther emphasizes that in order for the summary to
be felicitous, information needs to be embedded in
the appropriate context. For example, CONVS2S
and PTGEN will fail to answer the question “Who
has resigned?” (see Table 6 second block) de-
spite containing the correct answer “Dick Advo-
caat” due to the wrong context. T-CONVS2S is
able to extract important entities from the docu-
ment with the right theme.

6 Conclusions

In this paper we introduced the task of “extreme
summarization” together with a large-scale dataset
which pushes the boundaries of abstractive meth-
ods. Experimental evaluation revealed that mod-
els which have abstractive capabilities do better on
this task and that high-level document knowledge
in terms of topics and long-range dependencies
is critical for recognizing pertinent content and
generating informative summaries. In the future,
we would like to create more linguistically-aware
encoders and decoders incorporating co-reference
and entity linking.
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Abstract

Abstractive text summarization aims to
shorten long text documents into a human
readable form that contains the most important
facts from the original document. However,
the level of actual abstraction as measured
by novel phrases that do not appear in the
source document remains low in existing
approaches. We propose two techniques to
improve the level of abstraction of generated
summaries. First, we decompose the decoder
into a contextual network that retrieves
relevant parts of the source document, and a
pretrained language model that incorporates
prior knowledge about language generation.
Second, we propose a novelty metric that is
optimized directly through policy learning to
encourage the generation of novel phrases.
Our model achieves results comparable to
state-of-the-art models, as determined by
ROUGE scores and human evaluations, while
achieving a significantly higher level of
abstraction as measured by n-gram overlap
with the source document.

1 Introduction

Text summarization concerns the task of com-
pressing a long sequence of text into a more con-
cise form. The two most common approaches to
summarization are extractive (Dorr et al., 2003;
Nallapati et al., 2017), where the model extracts
salient parts of the source document, and abstrac-
tive (Paulus et al., 2017; See et al., 2017), where
the model not only extracts but also concisely
paraphrases the important parts of the document
via generation. We focus on developing a sum-
marization model that produces an increased level
of abstraction. That is, the model produces con-
cise summaries without only copying long pas-
sages from the source document.

⇤ Work performed while at Salesforce Research.

A high quality summary is shorter than the orig-
inal document, conveys only the most important
and no extraneous information, and is semanti-
cally and syntactically correct. Because it is dif-
ficult to gauge the correctness of the summary,
evaluation metrics for summarization models use
word overlap with the ground-truth summary in
the form of ROUGE (Lin, 2004) scores. However,
word overlap metrics do not capture the abstrac-
tive nature of high quality human-written sum-
maries: the use of paraphrases with words that do
not necessarily appear in the source document.

The state-of-the-art abstractive text summariza-
tion models have high word overlap performance,
however they tend to copy long passages of
the source document directly into the summary,
thereby producing summaries that are not abstrac-
tive (See et al., 2017).

We propose two general extensions to summa-
rization models that improve the level of abstrac-
tion of the summary while preserving word over-
lap with the ground-truth summary. Our first con-
tribution decouples the extraction and generation
responsibilities of the decoder by factoring it into
a contextual network and a language model. The
contextual network has the sole responsibility of
extracting and compacting the source document
whereas the language model is responsible for the
generation of concise paraphrases. Our second
contribution is a mixed objective that jointly op-
timizes the n-gram overlap with the ground-truth
summary while encouraging abstraction. This is
done by combining maximum likelihood estima-
tion with policy gradient. We reward the policy
with the ROUGE metric, which measures word
overlap with the ground-truth summary, as well
as a novel abstraction reward that encourages the
generation of words not in the source document.

We demonstrate the effectiveness of our con-
tributions on a encoder-decoder summarization
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Article

(cnn) to allay possible concerns, boston prosecutors released video friday of the shooting of a police officer last month that
resulted in the killing of the gunman. the officer wounded, john moynihan, is white. angelo west, the gunman shot to death
by officers, was black. after the shooting, community leaders in the predominantly african-american neighborhood of (...)

Human-written summary

boston police officer john moynihan is released from the hospital. video shows that the man later shot dead by police in
boston opened fire first. moynihan was shot in the face during a traffic stop.

Generated summary (See et al., 2017)

boston prosecutors released video friday of the shooting of a police officer last month. the gunman shot to death by officers ,
was black . one said the officers were forced to return fire. he was placed in a medically induced coma at a boston hospital.

Generated summary (Liu et al., 2018)

boston prosecutors released video of the shooting of a police officer last month . the shooting occurred in the wake of the
boston marathon bombing. the video shows west sprang out and fired a shot with a pistol at officer’s face.

Our summary (ML+RL ROUGE+Novel, with LM)

new: boston police release video of shooting of officer , john moynihan. new: angelo west had several prior gun convictions ,
police say. boston police officer john moynihan, 34, survived with a bullet wound . he was in a medically induced coma at
a boston hospital , a police officer says.

Table 1: Summaries generated by different models for the same CNN/Daily Mail article. The highlighted
spans indicate phrases of 3 tokens or more that are copied word-by-word from the original article.

model. Our model obtains state-of-the-art
ROUGE-L scores, and ROUGE-1 and ROUGE-2
performance comparable to state-of-the-art meth-
ods on the CNN/DailyMail dataset. Moreover,
we significantly outperform all previous abstrac-
tive approaches in our abstraction metrics. Ta-
ble 1 shows a comparison of summaries gener-
ated by our model and previous abstractive mod-
els, showing less copying and more abstraction in
our model.

2 Model

2.1 Base Model and Training Objective
The base model follows the encoder-decoder
architecture with temporal attention and intra-
attention proposed by Paulus et al. (2017). Let
E 2 R

n⇥demb denote the matrix of demb dimen-
sional word embeddings of the n words in the
source document. The encoding of the source doc-
ument henc is computed via a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) whose out-
put has dimension dhid.

henc = BiLSTM (E) 2 R
n⇥dhid

(1)

The decoder uses temporal attention over the
encoded sequence that penalizes input tokens that
previously had high attention scores. Let hdec

t de-
note the decoder state at time t. The temporal at-

tention context at time t, ctmp
t , is computed as

stmp
ti =

⇣
hdec

t

⌘
|

W tmphenc
i 2 R (2)

qtmp
ti =

exp(stmp
ti )

Pt�1
j=1 exp(stmp

ji )
2 R (3)

↵tmp
ti =

qtmp
tiPn

j=1 qtmp
tj

2 R (4)

ctmp
t =

nX

i=1

↵tmp
ti henc

i 2 R
dhid

(5)

where we set qtmp
ti to exp(stmp

ti ) for t = 1.
The decoder also attends to its previous states

via intra-attention over the decoded sequence. The
intra-attention context at time t, cint

t , is computed
as

sint
ti =

⇣
hdec

t

⌘
|

W inthdec
i 2 R (6)

cint
t =

t�1X

i=1

 
sint
tiPn

j=1 sint
tj

!
hdec

i 2 R
dhid

(7)

The decoder generates tokens by interpolating
between selecting words from the source docu-
ment via a pointer network as well as selecting
words from a fixed output vocabulary. Let zt de-
note the ground-truth label as to whether the tth
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Figure 1: The network architecture with the decoder factorized into separate contextual and language
models. The reference vector, composed of context vectors ctmp

t , cint
t , and the hidden state of the con-

textual model hdec
t , is fused with the hidden state of the language model and then used to compute the

distribution over the output vocabulary.

output word should be generated by the selecting
from the output vocabulary as opposed to from the
source document. We compute p(zt), the proba-
bility that the decoder generates from the output
vocabulary, as

rt = [hdec
t ; ctmp

t ; cint
t ] 2 R

3dhid (8)
p(zt) = sigmoid(W zrt + bz) 2 R (9)

The probability of selecting the word yt from a
fixed vocabulary at time step t is defined as

pgen(yt) = softmax (W genrt + bgen) (10)

We set pcp(yt), the probability of copying the
word yt from the source document, to the temporal
attention distribution ↵tmp

t . The joint probability
of using the generator and generating the word yt

at time step t, p(zt, yt), is then

p(zt, yt) = p(yt | zt)p(zt) (11)

the likelihood of which is

log p(zt, yt) = log p(yt | zt) + log p(zt)

= zt log pgen(yt) + (1 � zt) log pcp(yt)

+ zt log p(zt) + (1 � zt) log (1 � p (zt))

= zt (log pgen(yt) + log p(zt))

+ (1 � zt) (log pcp(yt) + log (1 � p (zt)))

(12)

The objective function combines maximum
likelihood estimation with policy learning. Let
m denote the length of the ground-truth summary,
The maximum likelihood loss Lml is computed as

Lml = �
mX

t=1

log p(zt, yt) (13)

Policy learning uses ROUGE-L as its reward
function and a self-critical baseline using the
greedy decoding policy (Rennie et al., 2016). Let
ysam denote the summary obtained by sampling
from the current policy p, ygre and zgre the sum-
mary and generator choice obtained by greed-
ily choosing from p(zt, yt), R(y) the ROUGE-L
score of the summary y, and ⇥ the model parame-
ters. The policy learning loss is
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R̂ = R (ysam) � R (ygre) (14)
Lpg = �E zsam ⇠p(z),

ysam ⇠p(y|z)

[R̂] (15)

where we use greedy predictions by the model
according to eq. (13) as a baseline for variance
reduction. The policy gradient, as per Schulman
et al. (2015), is

r⇥Lpg ⇡ �R̂
mX

t=1

r⇥ log p (zsam
t , ysam

t ) (16)

The final loss is a mixture between the maxi-
mum likelihood loss and the policy learning loss,
weighted by a hyperparameter �.

L = (1 � �)Lml + �Lpg (17)

2.2 Language Model Fusion
The decoder is an essential component of the base
model. Given the source document and the pre-
viously generated summary tokens, the decoder
both extracts relevant parts of the source document
through the pointer network as well as composes
paraphrases from the fixed vocabulary. We decou-
ple these two responsibilities by augmenting the
decoder with an external language model. The lan-
guage model assumes responsibility of generating
from the fixed vocabulary, and allows the decoder
to focus on attention and extraction. This decom-
position has the added benefit of easily incorporat-
ing external knowledge about fluency or domain
specific styles via pre-training the language model
on a large scale text corpora.

The architecture of our language model is based
on Merity et al. (2018). We use a 3-layer unidirec-
tional LSTM with weight-dropped LSTM units.

Let et denote the embedding of the word gen-
erated during time step t. The hidden state of the
language model at the l-th layer is

hlm
l,t = LSTMlm

3

⇣
et�1, h

lm
l,t�1

⌘
(18)

At each time step t, we combine the hidden state
of the last language model LSTM layer, hlm

3,t, with
rt defined in eq. (8) in a fashion similar to Sriram
et al. (2017). Let � denote element-wise multi-
plication. We use a gating function whose output

gt filters the content of the language model hidden
state.

ft = sigmoid
⇣
W lm[rt; h

lm
3,t] + blm

⌘
(19)

gt = W fuse([rt; gt � hlm
3,t]) + bfuse (20)

hfuse
t = ReLU (gt) (21)

We then replace the output distribution of the
language model pgen (yt) in eq. 10 with

pgen (yt) = softmax
⇣
W genhfuse

t + bgen
⌘

(22)

2.3 Abstractive Reward
In order to produce an abstractive summary, the
model cannot exclusively copy from the source
document. In particular, the model needs to parse
large chunks of the source document and create
concise summaries using phrases not in the source
document. To encourage this behavior, we pro-
pose a novelty metric that promotes the generation
of novel words.

We define a novel phrase in the summary as one
that is not in the source document. Let ng (x, n)
denote the function that computes the set of unique
n-grams in a document x, xgen the generated sum-
mary, xsrc the source document, and ksk the num-
ber of words in s. The unnormalized novelty met-
ric N is defined as the fraction of unique n-grams
in the summary that are novel.

N (xgen, n) =
kng (xgen, n) � ng (xsrc, n)k

kng (xgen, n)k (23)

To prevent the model for receiving high nov-
elty rewards by outputting very short summaries,
we normalize the metric by the length ratio of the
generated and ground-truth summaries. Let xgt

denote the ground-truth summary. We define the
novelty metric as

Rnov (xgen, n) = N (xgen, n)
kxgenk
kxgtk (24)

We incorporate the novelty metric as a reward
into the policy gradient objective in eq. (15),
alongside the original ROUGE-L metric. In doing
so, we encourage the model to generate summaries
that both overlap with human written ground-truth
summaries as well as incorporate novel words not
in the source document:
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R (y) = �rouRrou (ysam) + �novRnov (ysam) (25)

where �rou and �nov are hyperparameters that
control the weighting of each reward.

3 Experiments

3.1 Datasets

We train our model on the CNN/Daily Mail dataset
(Hermann et al., 2015; Nallapati et al., 2016). Pre-
vious works on abstractive summarization either
use an anonymized version of this dataset or the
original article and summary texts. Due to these
different formats, it is difficult to compare the
overall ROUGE scores and performance between
each version. In order to compare against previ-
ous results, we train and evaluate on both versions
of this dataset. For the anonymized version, we
follow the pre-processing steps described in Nal-
lapati et al. (2016), and the pre-processing steps of
See et al. (2017) for the the full-text version.

We use named entities and the source document
to supervise the model regarding when to use the
pointer and when to use the generator (e.g. zt

in eq. (13). Namely, during training, we teach
the model to point from the source document if
the word in the ground-truth summary is a named
entity, an out-of-vocabulary word, or a numerical
value that is in the source document. We obtain the
list of named entities from Hermann et al. (2015).

3.2 Language Models

For each dataset version, we train a language
model consisting of a 400-dimensional word em-
bedding layer and a 3-layer LSTM with each layer
having a hidden size of 800 dimensions, except
the last input layer which has an output size of
400. The final decoding layer shares weights with
the embedding layer (Inan et al., 2017; Press and
Wolf, 2016). We also use DropConnect (Wan
et al., 2013) in the hidden-to-hidden connections,
as well as the non-monotonically triggered asyn-
chronous gradient descent optimizer from Merity
et al. (2018).

We train this language model on the CNN/Daily
Mail ground-truth summaries only, following the
same training, validation, and test splits as our
main experiments.

3.3 Training details

The two LSTMs of our bidirectional encoder are
200-dimensional, and out decoder LSTM is 400-
dimensional. We restrict the input vocabulary for
the embedding matrix to 150,000 tokens, and the
output decoding layer to 50,000 tokens. We limit
the size of input articles to the first 400 tokens, and
the summaries to 100 tokens. We use scheduled
sampling (Bengio et al., 2015) with a probability
of 0.25 when calculating the maximum-likelihood
training loss. We also set n = 3 when computing
our novelty reward Rnov(xgen, n). For our final
training loss using reinforcement learning, we set
� = 0.9984, �rou = 0.9, and �nov = 0.1. Finally,
we use the trigram repetition avoidance heuristic
defined by Paulus et al. (2017) during beam search
decoding to ensure that the model does not output
twice the same trigram in a given summary, reduc-
ing the amount of repetitions.

3.4 Novelty baseline

We also create a novelty baseline by taking the
outputs of our base model, without RL training
and without the language model, and inserting ran-
dom words not present in the article after each
summary token with a probability r = 0.0005.
This baseline will intuitively have a higher per-
centage of novel n-grams than our base model out-
puts while being very similar to these original out-
puts, hence keeping the ROUGE score difference
relatively small.

4 Results

4.1 Quantitative analysis

We obtain a validation and test perplexity of 65.80
and 66.61 respectively on the anonymized dataset,
and 81.13 and 82.98 on the full-text dataset with
the language models described in Section 3.2.

The ROUGE scores and novelty scores of our
final summarization model on both versions of the
CNN/Daily Mail dataset are shown in Table 2. We
report the ROUGE-1, ROUGE-2, and ROUGE-
L F-scores as well as the percentage of novel n-
grams, marked NN-n, in the generated summaries,
with n from 1 to 4. Results are omitted in cases
where they have not been made available by pre-
vious authors. We also include the novel n-gram
scores for the ground-truth summaries as a com-
parison to indicate the level of abstraction of hu-
man written summaries.
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Model R-1 R-2 R-L NN-1 NN-2 NN-3 NN-4

anonymized

Ground-truth summaries - - - 14.40 52.07 71.63 80.84
ML+RL, intra-attn (Paulus et al., 2017) 39.87 15.82 36.9 1.04 10.86 21.53 29.27

ML+RL ROUGE+Novel, with LM (ours) 40.02 15.53 37.44 3.54 21.91 37.48 47.13

full-text

Ground-truth summaries - - - 13.55 49.97 70.32 80.02
Pointer-gen + coverage (See et al., 2017) 39.53 17.28 36.38 0.07 2.24 6.03 9.72
SumGAN (Liu et al., 2018) 39.92 17.65 36.71 0.22 3.15 7.68 11.84
RSal (Pasunuru and Bansal, 2018) 40.36 17.97 37.00 - 2.37 6.00 9.50
RSal+Ent RL (Pasunuru and Bansal, 2018) 40.43 18.00 37.10 - - - -

ML+RL ROUGE+Novel, with LM (ours) 40.19 17.38 37.52 3.25 17.21 30.46 39.47

Table 2: Comparison of ROUGE (R-) and novel n-gram (NN-) test results for our model and other
abstractive summarization models on the CNN/Daily Mail dataset.

Even though our model outputs significantly
fewer novel n-grams than human written sum-
maries, it has a much higher percentage of
novel n-grams than all the previous abstrac-
tive approaches. It also achieves state-of-the-art
ROUGE-L performance on both dataset versions,
and obtains ROUGE-1 and ROUGE-2 scores close
to state-of-the-art results.

4.2 Ablation study
In order to evaluate the relative impact of each of
our individual contributions, we run ablation stud-
ies comparing our model ablations against each
other and against the novelty baseline. The re-
sults of these different models on the validation
set of the anonymized CNN/Daily Mail dataset
are shown in Table 3. Results show that our base
model trained with the maximum-likelihood loss
only and using the language model in the de-
coder (ML, with LM) has higher ROUGE scores,
novel unigrams, and novel bigrams scores than
our base model without the language model (ML).
ML with LM also beats the novelty baseline
for these metrics. When training these models
with reinforcement learning using the ROUGE
reward (ML+RL ROUGE and ML+RL ROUGE
with LM), the model with language model obtains
higher ROUGE-1 and ROUGE-2 scores. How-
ever, it also loses its novel unigrams and bigrams
advantage. Finally, using the mixed ROUGE and
novelty rewards (ML+RL ROUGE+Novel) pro-
duces both higher ROUGE scores and more novel
unigrams with the language model than without

it. This indicates that the combination of the lan-
guage model in the decoder and the novelty reward
during training makes our model produce more
novel unigrams while maintaining high ROUGE
scores.

4.3 ROUGE vs novelty trade-off
In order to understand the correlation between
ROUGE and novel n-gram scores across different
architectures, and to find the model type that gives
the best trade-off between each of these metrics,
we plot the ROUGE-1 and novel unigram scores
for the five best iterations of each model type on
the anonymized dataset, as well as the ROUGE-2
and novel bigram scores on a separate plot. We
also include the novelty baseline described in Sec-
tion 4.2 for values of r between 0.005 and 0.035.
For each model type, we indicate the Pareto fron-
tier by a line plot (Ben-Tal, 1980), illustrating
which models of a given type give the best combi-
nation of ROUGE and novelty scores. These plots
are shown in Figure 2.

These plots show that there exist an inverse cor-
relation between ROUGE and novelty scores in all
model types, illustrating the challenge of choosing
a model that performs well in both. Given that, our
final model (ML+RL ROUGE+Novel, with LM)
provides the best trade-off of ROUGE-1 scores
compared to novel unigrams, indicated by the
higher Pareto frontier in the first plot. Similarly,
our final model gives one of the best trade-offs of
ROUGE-2 scores to novel bigrams, even though
the same model without LM produces more novel
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Model R-1 R-2 R-L NN-1 NN-2 NN-3 NN-4

ML 39.21 15.47 36.27 2.47 14.1 25.35 33.46
ML with nov. baseline, r = 0.0005 38.62 15.06 35.75 3.12 14.96 26.45 34.76
ML with LM 39.43 15.68 36.45 3.36 15.25 26.06 33.57

ML+RL ROUGE 41.02 16.62 38.13 2.2 12.88 24.16 32.5
ML+RL ROUGE, with LM 41.06 16.84 38.01 2.06 10.9 19.78 26.33

ML+RL ROUGE+Novel 40.61 15.84 38.06 3.19 22.79 39.9 50.61
ML+RL ROUGE+Novel, with LM 40.72 15.95 38.14 3.49 21.89 37.31 46.85

Table 3: Ablation study on the validation set of the anonymized CNN/Daily Mail dataset.

Figure 2: ROUGE and novel n-grams results on the anonymized validation set for different runs of each
model type. Lines indicates the Pareto frontier for each model type.

bigrams with a lower ROUGE-2 score.

4.4 Qualitative evaluation
In order to ensure the quality of our model outputs,
we ask 5 human evaluators to rate 100 randomly
selected full-text test summaries, giving them two
scores from 1 to 10 respectively for readability
and relevance given the original article. We also
include the full-text test outputs from See et al.
(2017) and Liu et al. (2018) for comparison. Eval-
uators are shown different summaries correspond-
ing to the same article side by side without be-
ing told which models have generated them. The
mean score and confidence interval at 95% for
each model and each evaluation criterion are re-
ported in Table 4. These results show that our
model matches the relevance score of See et al.
(2017) and Liu et al. (2018), but is slightly infe-
rior to them in terms of readability.

5 Related work

Text summarization. Existing summarization
approaches are usually either extractive or abstrac-

tive. In extractive summarization, the model se-
lects passages from the input document and com-
bines them to form a shorter summary, some-
times with a post-processing step to ensure fi-
nal coherence of the output (Neto et al., 2002;
Dorr et al., 2003; Filippova and Altun, 2013; Col-
menares et al., 2015; Nallapati et al., 2017). While
extractive models are usually robust and produce
coherent summaries, they cannot create concise
summaries that paraphrase the source document
using new phrases.

Abstractive summarization allows the model to
paraphrase the source document and create con-
cise summaries with phrases not in the source
document. The state-of-the-art abstractive sum-
marization models are based on sequence-to-
sequence models with attention (Bahdanau et al.,
2015). Extensions to this model include a self-
attention mechanism (Paulus et al., 2017) and an
article coverage vector (See et al., 2017) to prevent
repeated phrases in the output summary. Different
training procedures have also been used improve
the ROUGE score (Paulus et al., 2017) or textual
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Model Readability Relevance

Pointer-gen + coverage (See et al., 2017) 6.76 ± 0.17 6.73 ± 0.17
SumGAN (Liu et al., 2018) 6.79 ± 0.16 6.74 ± 0.17

ML+RL ROUGE+Novel, with LM 6.35 ± 0.19 6.63 ± 0.18

Table 4: Mean and confidence interval at 95% of human evaluation scores on the full-text test outputs.
Individual summaries are rated from 1 to 10, a higher score indicating higher quality, for readability and
relevance separately.

entailment (Pasunuru and Bansal, 2018) with rein-
forcement learning; as well as generative adversar-
ial networks to generate more natural summaries
(Liu et al., 2018).

Several datasets have been used to train and
evaluate summarization models. The Gigaword
(Graff and Cieri, 2003) and some DUC datasets
(Over et al., 2007) have been used for headline
generation models (Rush et al., 2015; Nallapati
et al., 2016), where the generated summary is
shorter than 75 characters. However, generating
longer summaries is a more challenging task, es-
pecially for abstractive models. Nallapati et al.
(2016) have proposed using the CNN/Daily Mail
dataset (Hermann et al., 2015) to train models for
generating longer, multi-sentence summaries up to
100 words. The New York Times dataset (Sand-
haus, 2008) has also been used as a benchmark for
the generation of long summaries (Durrett et al.,
2016; Paulus et al., 2017).

Training strategies for sequential models. The
common approach to training models for sequence
generation is maximum likelihood estimation with
teacher forcing. At each time step, the model is
given the previous ground-truth output and pre-
dicts the current output. The sequence objective
is the accumulation of cross entropy losses from
each time step.

Despite its popularity, this approach for se-
quence generation is suboptimal due to exposure
bias (Huszar, 2015) and loss-evaluation mismatch
(Wiseman and Rush, 2016). Goyal et al. (2016)
propose one way to reduce exposure bias by ex-
plicitly forcing the hidden representations of the
model to be similar during training and infer-
ence. Bengio et al. (2015) and Wiseman and
Rush (2016) propose an alternate method that ex-
poses the network to the test dynamics during
training. Reinforcement learning methods (Sutton
and Barto, 1998), such as policy learning (Sutton

et al., 1999), mitigate the mismatch between the
optimization objective and the evaluation metrics
by directly optimizing evaluation metrics. This
approach has led to consistent improvements in
domains such as image captioning (Zhang et al.,
2017) and abstractive text summarization (Paulus
et al., 2017).

A recent approach to training sequential models
utilizes generative adversarial networks to improv-
ing the human perceived quality of generated out-
puts (Fedus et al., 2018; Guimaraes et al., 2017;
Liu et al., 2018). Such models use an additional
discriminator network that distinguishes between
natural and generated output to guide the genera-
tive model towards outputs akin to human-written
text.

6 Conclusions

We introduced a new abstractive summarization
model which uses an external language model in
the decoder, as well as a new reinforcement learn-
ing reward to encourage summary abstraction. Ex-
periments on the CNN/Daily Mail dataset show
that our model generates summaries that are much
more abstractive that previous approaches, while
maintaining high ROUGE scores close to or above
the state of the art. Future work could be done on
closing the gap to match human levels of abstrac-
tion, which is still very far ahead from our model
in terms of novel n-grams. Including mechanisms
to promote paraphrase generation in the summary
generator could be an interesting direction.
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Abstract

We carry out experiments with deep learning
models of summarization across the domains
of news, personal stories, meetings, and medi-
cal articles in order to understand how content
selection is performed. We find that many so-
phisticated features of state of the art extractive
summarizers do not improve performance over
simpler models. These results suggest that it
is easier to create a summarizer for a new do-
main than previous work suggests and bring
into question the benefit of deep learning mod-
els for summarization for those domains that
do have massive datasets (i.e., news). At the
same time, they suggest important questions
for new research in summarization; namely,
new forms of sentence representations or ex-
ternal knowledge sources are needed that are
better suited to the sumarization task.

1 Introduction

Content selection is a central component in many
natural language generation tasks, where, given a
generation goal, the system must determine which
information should be expressed in the output text
(Gatt and Krahmer, 2018). In summarization,
content selection is usually accomplished through
sentence (and, occasionally, phrase) extraction.
Despite being a key component of both extrac-
tive and abstractive summarization systems, it is
is not well understood how deep learning models
perform content selection with only word and sen-
tence embedding based features as input. Non-
neural network approaches often use frequency
and information theoretic measures as proxies for
content salience (Hong and Nenkova, 2014), but
these are not explicitly used in most neural net-
work summarization systems.

In this paper, we seek to better understand how
deep learning models of summarization perform
content selection across multiple domains (§ 4):

news, personal stories, meetings, and medical
articles (for which we collect a new corpus).1 We
analyze several recent sentence extractive neural
network architectures, specifically considering the
design choices for sentence encoders (§ 3.1) and
sentence extractors (§ 3.2). We compare Recurrent
Neural Network (RNN) and Convolutional Neural
Network (CNN) based sentence representations
to the simpler approach of word embedding aver-
aging to understand the gains derived from more
sophisticated architectures. We also question the
necessity of auto-regressive sentence extraction
(i.e. using previous predictions to inform future
predictions), which previous approaches have
used (§ 2), and propose two alternative models
that extract sentences independently.

Our main results (§ 5) reveal:

1. Sentence position bias dominates the learn-
ing signal for news summarization, though
not for other domains.2 Summary quality
for news is only slightly degraded when con-
tent words are omitted from sentence embed-
dings.

2. Word embedding averaging is as good or bet-
ter than either RNNs or CNNs for sentence
embedding across all domains.

3. Pre-trained word embeddings are as good, or
better than, learned embeddings in five of six
datasets.

4. Non auto-regressive sentence extraction per-
forms as good or better than auto-regressive
extraction in all domains.

Taken together, these and other results in the pa-
per suggest that we are over-estimating the abil-

1Data preprocessing and implementation code can be
found here: https://github.com/kedz/nnsum/
tree/emnlp18-release

2This is a known bias in news summarization (Nenkova,
2005).

1818



ity of deep learning models to learn robust and
meaningful content features for summarization. In
one sense, this might lessen the burden of apply-
ing neural network models of content to other do-
mains; one really just needs in-domain word em-
beddings. However, if we want to learn something
other than where the start of the article is, we will
need to design other means of sentence represen-
tation, and possibly external knowledge represen-
tations, better suited to the summarization task.

2 Related Work

The introduction of the CNN-DailyMail corpus by
Hermann et al. (2015) allowed for the applica-
tion of large-scale training of deep learning mod-
els for summarization. Cheng and Lapata (2016)
developed a sentence extractive model that uses a
word level CNN to encode sentences and a sen-
tence level sequence-to-sequence model to predict
which sentences to include in the summary. Sub-
sequently, Nallapati et al. (2017) proposed a dif-
ferent model using word-level bidirectional RNNs
along with a sentence level bidirectional RNN for
predicting which sentences should be extracted.
Their sentence extractor creates representations of
the whole document and computes separate scores
for salience, novelty, and location. These works
represent the state-of-the-art for deep learning-
based extractive summarization and we analyze
them further in this paper.

Other recent neural network approaches in-
clude, Yasunaga et al. (2017), who learn a graph-
convolutional network (GCN) for multi-document
summarization. They do not closely examine the
choice of sentence encoder, which is one of the
focuses of the present paper; rather, they study the
best choice of graph structure for the GCN, which
is orthogonal to this work.

Non-neural network learning-based approaches
have also been applied to summarization. Typi-
cally they involve learning n-gram feature weights
in linear models along with other non-lexical word
or structural features (Berg-Kirkpatrick et al.,
2011; Sipos et al., 2012; Durrett et al., 2016).
In this paper, we study representation learning in
neural networks that can capture more complex
word level feature interactions and whose dense
representations are more compatible with current
practices in NLP.

The previously mentioned works have focused
on news summarization. To further understand the

content selection process, we also explore other
domains of summarization. In particular, we ex-
plore personal narrative summarization based on
stories shared on Reddit (Ouyang et al., 2017),
workplace meeting summarization (Carletta et al.,
2005), and medical journal article summarization
(Mishra et al., 2014).

While most work on these summarization
tasks often exploit domain-specific features (e.g.
speaker identification in meeting summarization
(Galley, 2006; Gillick et al., 2009)), we purpose-
fully avoid such features in this work in order to
understand the extent to which deep learning mod-
els can perform content selection using only sur-
face lexical features. Summarization of academic
literature (including medical journals), has long
been a research topic in NLP (Kupiec et al., 1995;
Elhadad et al., 2005), but most approaches have
explored facet-based summarization (Jaidka et al.,
2017), which is not the focus of our work.

3 Methods

The goal of extractive text summarization is to se-
lect a subset of a document’s text to use as a sum-
mary, i.e. a short gist or excerpt of the central con-
tent. Typically, we impose a budget on the length
of the summary in either words or bytes. In this
work, we focus on sentence extractive summariza-
tion, where the basic unit of extraction is a sen-
tence and impose a word limit as the budget.

We model the sentence extraction task as a se-
quence tagging problem, following (Conroy and
O’Leary, 2001). Specifically, given a document
containing n sentences s1, . . . , sn we generate a
summary by predicting a corresponding label se-
quence y1, . . . , yn 2 {0, 1}n, where yi = 1 in-
dicates the i-th sentence is to be included in the
summary. Each sentence is itself a sequence of
word embeddings si = w(i)

1 , . . . , w(i)
|si| where |si|

is the length of the sentence in words. The word
budget c 2 N enforces a constraint that the total
summary word length

Pn
i=1 yi · |si|  c.

For a typical deep learning model of extractive
summarization there are two main design deci-
sions: a) the choice of sentence encoder which
maps each sentence si to an embedding hi, and b)
the choice of sentence extractor which maps a se-
quence of sentence embeddings h = h1, . . . , hn to
a sequence of extraction decisions y = y1, . . . , yn.
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Figure 1: Sentence extractor architectures: a) RNN, b) Seq2Seq, c) Cheng & Lapata, and d) SummaRunner. TheL
indicates attention. Green blocks repesent sentence encoder output and red blocks indicates learned “begin

decoding” embeddings. Vertically stacked yellow and orange boxes indicate extractor encoder and decoder hidden
states respectively. Horizontal orange and yellow blocks indicate multi-layer perceptrons. The purple blocks
represent the document and summary state in the SummaRunner extractor.

3.1 Sentence Encoders

We experiment with three architectures for map-
ping sequences of word embeddings to a fixed
length vector: averaging, RNNs, and CNNs. Hy-
perparameter settings and implementation details
can be found in Appendix A.

Averaging Encoder Under the averaging en-
coder, a sentence embedding h is simply the aver-
age of its word embeddings, i.e. h = 1

|s|
P|s|

i=1 wi.

RNN Encoder When using the RNN sentence
encoder, a sentence embedding is the concatena-
tion of the final output states of a forward and
backward RNN over the sentence’s word embed-
dings. We use a Gated Recurrent Unit (GRU) for
the RNN cell (Chung et al., 2014).

CNN Encoder The CNN sentence encoder uses
a series of convolutional feature maps to encode
each sentence. This encoder is similar to the con-
volutional architecture of Kim (2014) used for
text classification tasks and performs a series of
“one-dimensional” convolutions over word em-
beddings. The final sentence embedding h is a
concatenation of all the convolutional filter out-
puts after max pooling over time.

3.2 Sentence Extractors

Sentence extractors take sentence embeddings
h1:n and produce an extract y1:n. The sentence
extractor is essentially a discriminative classi-
fier p(y1:n|h1:n). Previous neural network ap-
proaches to sentence extraction have assumed

an auto-regressive model, leading to a semi-
Markovian factorization of the extractor probabil-
ities p(y1:n|h) =

Qn
i=1 p(yi|y<i, h), where each

prediction yi is dependent on all previous yj for
all j < i. We compare two such models pro-
posed by Cheng and Lapata (2016) and Nallap-
ati et al. (2017). A simpler approach that does
not allow interaction among the y1:n is to model
p(y1:n|h) =

Qn
i=1 p(yi|h), which we explore in

two proposed extractor models that we refer to as
the RNN and Seq2Seq extractors. Implementation
details for all extractors are in Appendix B.

Previously Proposed Sentence Extractors We
consider two recent state-of-the-art extractors.

The first, proposed by Cheng and Lapata
(2016), is built around a sequence-to-sequence
model. First, each sentence embedding3 is fed into
an encoder side RNN, with the final encoder state
passed to the first step of the decoder RNN. On
the decoder side, the same sentence embeddings
are fed as input to the decoder and decoder out-
puts are used to predict each yi. The decoder input
is weighted by the previous extraction probability,
inducing the dependence of yi on y<i. See Fig-
ure 1.c for a graphical layout of the extractor.

Nallapati et al. (2017) proposed a sentence ex-
tractor, which we refer to as the SummaRunner
Extractor, that factorizes the extraction probabil-
ity into contributions from different sources. First,
a bidirectional RNN is run over the sentence em-

3Cheng and Lapata (2016) used an CNN sentence en-
coder with this extractor architecture; in this work we pair the
Cheng & Lapata extractor with several different encoders.
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beddings4 and the output is concatenated. A repre-
sentation of the whole document is made by aver-
aging the RNN output. A summary representation
is also constructed by taking the sum of the pre-
vious RNN outputs weighted by their extraction
probabilities. Extraction predictions are made us-
ing the RNN output at the i-th step, the document
representation, and i-th version of the summary
representation, along with factors for sentence lo-
cation in the document. The use of the iteratively
constructed summary representation creates a de-
pendence of yi on all y<i. See Figure 1.d for a
graphical layout.

Proposed Sentence Extractors We propose
two sentence extractor models that make a
stronger conditional independence assumption
p(y|h) =

Qn
i=1 p(yi|h), essentially making inde-

pendent predictions conditioned on h.

RNN Extractor Our first proposed model is
a very simple bidirectional RNN based tagging
model. As in the RNN sentence encoder we use
a GRU cell. The forward and backward outputs
of each sentence are passed through a multi-layer
perceptron with a logsitic sigmoid output to pre-
dict the probability of extracting each sentence.
See Figure 1.a for a graphical layout.

Seq2Seq Extractor One shortcoming of the
RNN extractor is that long range information from
one end of the document may not easily be able
to affect extraction probabilities of sentences at
the other end. Our second proposed model, the
Seq2Seq extractor mitigates this problem with an
attention mechanism commonly used for neural
machine translation (Bahdanau et al., 2014) and
abstractive summarization (See et al., 2017). The
sentence embeddings are first encoded by a bidi-
rectional GRU. A separate decoder GRU trans-
forms each sentence into a query vector which
attends to the encoder output. The attention
weighted encoder output and the decoder GRU
output are concatenated and fed into a multi-layer
perceptron to compute the extraction probability.
See Figure 1.b for a graphical layout.

4 Datasets

We perform our experiments across six corpora
from varying domains to understand how differ-

4Nallapati et al. (2017) use an RNN sentence encoder with
this extractor architecture; in this work we pair the Sum-
maRunner extractor with different encoders.

Dataset Train Valid Test Refs

CNN/DM 287,113 13,368 11,490 1
NYT 44,382 5,523 6,495 1.93
DUC 516 91 657 2

Reddit 404 24 48 2
AMI 98 19 20 1

PubMed 21,250 1,250 2,500 1

Table 1: Sizes of the training, validation, test splits for
each dataset and the average number of test set human
reference summaries per document.

ent biases within each domain can affect content
selection. The corpora come from the news do-
main (CNN-DailyMail, New York Times, DUC),
personal narratives domain (Reddit), workplace
meetings (AMI), and medical journal articles
(PubMed). See Table 1 for dataset statistics.

CNN-DailyMail We use the preprocessing and
training, validation, and test splits of See et al.
(2017). This corpus is a mix of news on differ-
ent topics including politics, sports, and entertain-
ment.

New York Times The New York Times (NYT)
corpus (Sandhaus, 2008) contains two types of ab-
stracts for a subset of its articles. The first sum-
mary is an archival abstract and the second is a
shorter online teaser meant to entice a viewer of
the webpage to click to read more. From this col-
lection, we take all articles that have a concate-
nated summary length of at least 100 words. We
create training, validation, and test splits by parti-
tioning on dates; we use the year 2005 as the val-
idation data, with training and test partitions in-
cluding documents before and after 2005 respec-
tively.

DUC We use the single document summariza-
tion data from the 2001 and 2002 Document
Understanding Conferences (DUC) (Over and
Liggett, 2002). We split the 2001 data into train-
ing and validation splits and reserve the 2002 data
for testing.

AMI The AMI corpus (Carletta et al., 2005) is a
collection of real and staged office meetings anno-
tated with text transcriptions, along with abstrac-
tive summaries. We use the prescribed splits.
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Extractor Enc. CNN/DM NYT DUC 2002 Reddit AMI PubMed
M R-2 M R-2 M R-2 M R-2 M R-2 M R-2

Lead – 24.1 24.4 30.0 32.3 25.1 21.5 20.1 10.9 12.3 2.0 15.9 9.3

RNN
Avg. 25.2 25.4 29.8 34.7 26.8 22.7 20.4 11.4 17.0 5.5 19.8 17.0
RNN 25.1 25.4 29.6 34.9 26.8 22.6 20.2 11.4 16.2 5.2 19.7 16.6
CNN 25.0 25.1 29.0 33.7 26.7 22.7 20.9 12.8 14.4 3.2 19.9 16.8

Seq2Seq
Avg. 25.2 25.6 30.5 35.7 27.0 22.8 20.9 13.6 17.0 5.5 20.1 17.7
RNN 25.1 25.3 30.2 35.9 26.7 22.5 20.5 12.0 16.1 5.3 19.7 16.7
CNN 25.0 25.1 29.9 35.1 26.7 22.7 20.7 13.2 14.2 2.9 19.8 16.9

Cheng
&

Lapata

Avg. 25.0 25.3 30.4 35.6 27.1 23.1 20.9 13.6 16.7 6.1 20.1 17.7
RNN 25.0 25.0 30.3 35.8 27.0 23.0 20.3 12.6 16.3 5.0 19.7 16.7
CNN 25.2 25.1 29.9 35.0 26.9 23.0 20.5 13.4 14.3 2.8 19.9 16.9

Summa
Runner

Avg. 25.1 25.4 30.2 35.4 26.7 22.3 21.0 13.4 17.0 5.6 19.9 17.2
RNN 25.1 25.2 30.0 35.5 26.5 22.1 20.9 12.5 16.5 5.4 19.7 16.5
CNN 24.9 25.0 29.3 34.4 26.4 22.2 20.4 12.3 14.5 3.2 19.8 16.8

Oracle – 31.1 36.2 35.3 48.9 31.3 31.8 24.3 16.2 8.1 3.9 24.1 25.0

Table 2: METEOR (M) and ROUGE-2 recall (R-2) results across all extractor/encoder pairs. Results that are
statistically indistinguishable from the best system are shown in bold face.

Reddit Ouyang et al. (2017) collected a corpus
of personal stories shared on Reddit5 along with
multiple extractive and abstractive summaries. We
randomly split this data using roughly three and
five percent of the data validation and test respec-
tively.

PubMed We created a corpus of 25,000 ran-
domly sampled medical journal articles from the
PubMed Open Access Subset6. We only included
articles if they were at least 1000 words long and
had an abstract of at least 50 words in length. We
used the article abstracts as the ground truth hu-
man summaries.

4.1 Ground Truth Extract Summaries

Since we do not typically have ground truth ex-
tract summaries from which to create the labels
yi, we construct gold label sequences by greedily
optimizing ROUGE-1, using the algorithm in Ap-
pendix C. We choose to optimize for ROUGE-1
rather than ROUGE-2 similarly to other optimiza-
tion based approaches to summarization (Sipos
et al., 2012; Durrett et al., 2016) which found this
to be the easier target to learn.

5www.reddit.com
6https://www.ncbi.nlm.nih.gov/pmc/

tools/openftlist/

5 Experiments

We evaluate summary quality using ROUGE-2
recall (Lin, 2004); ROUGE-1 and ROUGE-LCS
trend similarity in our experiments. We use tar-
get word lengths of 100 words for news, and
75, 290, and 200 for Reddit, AMI, and PubMed
respectively. We also evaluate using METEOR
(Denkowski and Lavie, 2014).7 Summaries are
generated by extracting the top ranked sentences
by model probability p(yi = 1|y<i, h), stopping
when the word budget is met or exceeded. We
estimate statistical significance by averaging each
document level score over the five random initial-
izations. We then test the difference between the
best system on each dataset and all other systems
using the approximate randomization test (Riezler
and Maxwell, 2005) with the Bonferroni correc-
tion for multiple comparisons, testing for signifi-
cance at the 0.05 level.

5.1 Training
We train all models to minimize the weighted neg-
ative log-likelihood

L = �
X

s,y2D
h=enc(s)

nX

i=1

!(yi) log p (yi|y<i, h)

7We use the default settings for METEOR and use remove
stopwords and no stemming options for ROUGE, keeping de-
faults for all other parameters.
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Ext. Emb. CNN/DM NYT DUC Reddit AMI PubMed

Seq2Seq Fixed 25.6 35.7 22.8 13.6 5.5 17.7
Learn 25.3 (0.3) 35.7 (0.0) 22.9 (-0.1) 13.8 (-0.2) 5.8 (-0.3) 16.9 (0.8)

C&L Fixed 25.3 35.6 23.1 13.6 6.1 17.7
Learn 24.9 (0.4) 35.4 (0.2) 23.0 (0.1) 13.4 (0.2) 6.2 (-0.1) 16.4 (1.3)

Summa
Runner

Fixed 25.4 35.4 22.3 13.4 5.6 17.2
Learn 25.1 (0.3) 35.2 (0.2) 22.2 (0.1) 12.6 (0.8) 5.8 (-0.2) 16.8 (0.4)

Table 3: ROUGE-2 recall across sentence extractors when using fixed pretrained embeddings or when embeddings
are updated during training. In both cases embeddings are initialized with pretrained GloVe embeddings. All ex-
tractors use the averaging sentence encoder. When both learned and fixed settings are bolded, there is no signifcant
performance difference. RNN extractor is omitted for space but is similar to Seq2Seq. Difference in scores shown
in parenthesis.

Ablation CNN/DM NYT DUC Reddit AMI PubMed
all words 25.4 34.7 22.7 11.4 5.5 17.0
-nouns 25.3† (0.1) 34.3† (0.4) 22.3† (0.4) 10.3† (1.1) 3.8† (1.7) 15.7† (1.3)
-verbs 25.3† (0.1) 34.4† (0.3) 22.4† (0.3) 10.8 (0.6) 5.8 (-0.3) 16.6† (0.4)

-adj/adv 25.3† (0.1) 34.4† (0.3) 22.5 (0.2) 9.5† (1.9) 5.4 (0.1) 16.8† (0.2)
-function 25.2† (0.2) 34.5† (0.2) 22.9† (-0.2) 10.3† (1.1) 6.3† (-0.8) 16.6† (0.4)

Table 4: ROUGE-2 recall after removing nouns, verbs, adjectives/adverbs, and function words. Ablations are
performed using the averaging sentence encoder and the RNN extractor. Bold indicates best performing system. †
indicates significant difference with the non-ablated system. Difference in score from all words shown in paren-
thesis.

over the training data D using stochastic gradient
descent with the ADAM optimizer (Kingma and
Ba, 2014). !(0) = 1 and !(1) = N0/N1 where
Ny is the number of training examples with label
y. We trained for a maximum of 50 epochs and the
best model was selected with early stopping on the
validation set according to ROUGE-2. Each epoch
constitutes a full pass through the dataset. The av-
erage stopping epoch was: CNN-DailyMail, 16.2;
NYT, 21.36; DUC, 37.11; Reddit, 36.59; AMI,
19.58; PubMed, 19.84. All experiments were re-
peated with five random initializations. Unless
specified, word embeddings were initialized using
pretrained GloVe embeddings (Pennington et al.,
2014) and we did not update them during training.
Unknown words were mapped to a zero embed-
ding. See Appendix D for more optimization and
training details.

5.2 Baselines
Lead As a baseline we include the lead sum-
mary, i.e. taking the first x words of the docu-
ment as summary, where x is the target summary
length for each dataset (see the first paragraph of
§ 5). While incredibly simple, this method is still a
competitive baseline for single document summa-

rization, especially on newswire.

Oracle To measure the performance ceiling, we
show the ROUGE/METEOR scores using the ex-
tractive summary which results from greedily op-
timizing ROUGE-1. I.e., if we had clairvoyant
knowledge of the human reference summary, the
oracle system achieves the (approximate) maxi-
mum possible ROUGE scores. See Appendix C
for a detailed description of the oracle algorithm.

5.3 Results

The results of our main experiment comparing the
different extractors/encoders are shown in Table 2.
Overall, we find no major advantage when us-
ing the CNN and RNN sentence encoders over
the averaging encoder. The best performing en-
coder/extractor pair either uses the averaging en-
coder (five out of six datasets) or the differences
are not statistically significant.

When looking at extractors, the Seq2Seq extrac-
tor is either part of the best performing system
(three out of six datasets) or is not statistically dis-
tinguishable from the best extractor.

Overall, on the news and medical journal do-
mains, the differences are quite small with the dif-
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Ext. Order CNN/DM NYT DUC Reddit AMI PubMed

Seq2Seq In-Order 25.6 35.7 22.8 13.6 5.5 17.7
Shuffled 21.7 (3.9) 25.6 (10.1) 21.2 (1.6) 13.5 (0.1) 6.0 (-0.5) 14.9 (2.8)

Table 5: ROUGE-2 recall using models trained on in-order and shuffled documents. Extractor uses the averag-
ing sentence encoder. When both in-order and shuffled settings are bolded, there is no signifcant performance
difference. Difference in scores shown in parenthesis.

Hurricane Gilbert swept toward the Dominican Republic
Sunday, and the Civil Defense alerted its heavily populated
south coast to prepare for high winds, heavy rains and high
seas. The storm was approaching from the southeast with
sustained winds of 75 mph gusting to 92 mph. An estimated
100,000 people live in the province, including 70,000 in the
city of Barahona, about 125 miles west of Santo Domingo.
On Saturday, Hurricane Florence was downgraded to a
tropical storm and its remnants pushed inland from the
U.S. Gulf Coast. Tropical Storm Gilbert formed in the east-
ern Caribbean and strengthened into a hurricane Saturday
night.

Hurricane Gilbert swept toward the Dominican Republic
Sunday, and the Civil Defense alerted its heavily populated
south coast to prepare for high winds, heavy rains and high
seas. The storm was approaching from the southeast with
sustained winds of 75 mph gusting to 92 mph. An esti-
mated 100,000 people live in the province, including 70,000
in the city of Barahona, about 125 miles west of Santo
Domingo. Tropical Storm Gilbert formed in the eastern
Caribbean and strengthened into a hurricane Saturday night.
Strong winds associated with the Gilbert brought coastal
flooding, strong southeast winds and up to 12 feet feet to
Puerto Rico’s south coast.

Table 6: Example output of Seq2Seq extractor (left) and Cheng & Lapata Extractor (right). This is a typical
example, where only one sentence is different between the two (shown in bold).

ferences between worst and best systems on the
CNN/DM dataset spanning only .56 of a ROUGE
point. While there is more performance variability
in the Reddit and AMI data, there is less distinc-
tion among systems: no differences are significant
on Reddit and every extractor has at least one con-
figuration that is indistinguishable from the best
system on the AMI corpus. This is probably due
to the small test size of these datasets.

Word Embedding Learning Given that learn-
ing a sentence encoder (averaging has no learned
parameters) does not yield significant improve-
ment, it is natural to consider whether learning
word embeddings is also necessary. In Table 3
we compare the performance of different extrac-
tors using the averaging encoder, when the word
embeddings are held fixed or learned during train-
ing. In both cases, word embeddings are initial-
ized with GloVe embeddings trained on a combi-
nation of Gigaword and Wikipedia. When learn-
ing embeddings, words occurring fewer than three
times in the training data are mapped to an un-
known token (with learned embedding).

In all but one case, fixed embeddings are as
good or better than the learned embeddings. This
is a somewhat surprising finding on the CNN/DM
data since it is reasonably large, and learning em-
beddings should give the models more flexibility
to identify important word features.8 This sug-

8The AMI corpus is an exception here where learning

gests that we cannot extract much generalizable
learning signal from the content other than what
is already present from initialization. Even on
PubMed, where the language is quite different
from the news/Wikipedia articles the GloVe em-
beddings were trained on, learning leads to signif-
icantly worse results.

POS Tag Ablation It is also not well explored
what word features are being used by the encoders.
To understand which classes of words were most
important we ran an ablation study, selectively
removing nouns, verbs (including participles and
auxiliaries), adjectives & adverbs, and function
words (adpositions, determiners, conjunctions).
All datasets were automatically tagged using the
spaCy part-of-speech (POS) tagger9. The em-
beddings of removed words were replaced with
a zero vector, preserving the order and position
of the non-ablated words in the sentence. Abla-
tions were performed on training, validation, and
test partitions, using the RNN extractor with av-
eraging encoder. Table 4 shows the results of the
POS tag ablation experiments. While removing
any word class from the representation generally
hurts performance (with statistical significance),
on the news domains, the absolute values of the

does lead to small performance boosts, however, only in the
Seq2Seq extractor is this diference significant; it is quite pos-
sible that this is an artifact of the very small test set size.

9https://github.com/explosion/spaCy
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differences are quite small (.18 on CNN/DM, .41
on NYT, .3 on DUC) suggesting that the model’s
predictions are not overly dependent on any par-
ticular word types. On the non-news datasets, the
ablations have a larger effect (max differences are
1.89 on Reddit, 2.56 on AMI, and 1.3 on PubMed).
Removing nouns leads to the largest drop on AMI
and PubMed. Removing adjectives and adverbs
leads to the largest drop on Reddit, suggesting the
intensifiers and descriptive words are useful for
identifying important content in personal narra-
tives. Curiously, removing the function word POS
class yields a significant improvement on DUC
2002 and AMI.

Document Shuffling Sentence position is a
well known and powerful feature for news sum-
marization (Hong and Nenkova, 2014), owing to
the intentional lead bias in the news article writ-
ing10; it also explains the difficulty in beating the
lead baseline for single-document summarization
(Nenkova, 2005; Brandow et al., 1999). In exam-
ining the generated summaries, we found most of
the selected sentences in the news domain came
from the lead paragraph of the document. This
is despite the fact that there is a long tail of sen-
tence extractions from later in the document in the
ground truth extract summaries (31%, 28.3%, and
11.4% of DUC, CNN/DM, and NYT training ex-
tract labels come from the second half of the doc-
ument). Because this lead bias is so strong, it is
questionable whether the models are learning to
identify important content or just find the start of
the document. We conduct a sentence order exper-
iment where each document’s sentences are ran-
domly shuffled during training. We then evalu-
ate each model performance on the unshuffled test
data, comparing to the model trained on unshuf-
fled data; if the models trained on shuffled data
drop in performance, then this indicates the lead
bias is the relevant factor.

Table 5 shows the results of the shuffling ex-
periments. The news domains and PubMed suffer
a significant drop in performance when the docu-
ment order is shuffled. By comparison, there is no
significant difference between the shuffled and in-
order models on the Reddit domain, and shuffling
actually improves performance on AMI. This sug-
gest that position is being learned by the models
in the news/journal article domain even when the

10https://en.wikipedia.org/wiki/
Inverted_pyramid_(journalism)

model has no explicit position features, and that
this feature is more important than either content
or function words.

6 Discussion

Learning content selection for summarization in
the news domain is severely inhibited by the lead
bias. The summaries generated by all systems de-
scribed here–the prior work and our proposed sim-
plified models–are highly similar to each other and
to the lead baseline. The Cheng & Lapata and
Seq2Seq extractors (using the averaging encoder)
share 87.8% of output sentences on average on the
CNN/DM data, with similar numbers for the other
news domains (see Table 6 for a typical example).
Also on CNN/DM, 58% of the Seq2Seq selected
sentences also occur in the lead summary, with
similar numbers for DUC, NYT, and Reddit. Shuf-
fling reduces lead overlap to 35.2% but the overall
system performance drops significantly; the mod-
els are not able to identify important information
without position.

The relative robustness of the news domain to
part of speech ablation also suggests that models
are mostly learning to recognize the stylistic fea-
tures unique to the beginning of the article, and not
the content. Additionally, the drop in performance
when learning word embeddings on the news do-
main suggests that word embeddings alone do not
provide very generalizable content features com-
pared to recognizing the lead.

The picture is rosier for non-news summariza-
tion where part of speech ablation leads to larger
performance differences and shuffling either does
not inhibit content selection significantly or leads
to modest gains. Learning better word-level rep-
resentations on these domains will likely require
much larger corpora, something which might re-
main unlikely for personal stories and meetings.

The lack of distinction among sentence en-
coders is interesting because it echoes findings in
the generic sentence embedding literature where
word embedding averaging is frustratingly diffi-
cult to outperform (Iyyer et al., 2015; Wieting
et al., 2015; Arora et al., 2016; Wieting and Gim-
pel, 2017). The inability to learn useful sen-
tence representations is also borne out in the Sum-
maRunner model, where there are explicit similar-
ity computations between document or summary
representations and sentence embeddings; these
computations do not seem to add much to the per-
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formance as the Cheng & Lapata and Seq2Seq
models which lack these features generally per-
form as well or better. Furthermore, the Cheng
& Lapata and SummaRunner extractors both con-
struct a history of previous selection decisions to
inform future choices but this does not seem to sig-
nificantly improve performance over the Seq2Seq
extractor (which does not). This suggests that we
need to rethink or find novel forms of sentence
representation for the summarization task.

A manual examination of the outputs revealed
some interesting failure modes, although in gen-
eral it was hard to discern clear patterns of be-
haviour other than lead bias. On the news domain,
the models consistently learned to ignore quoted
material in the lead, as often the quotes provide
color to the story but are unlikely to be included in
the summary (e.g. “It was like somebody slugging
a punching bag.”). This behavior was most likely
triggered by the presence of quotes, as the quote
attributions, which were often tokenized as sep-
arate sentences, would subsequently be included
in the summary despite also not containing much
information (e.g. Gil Clark of the National Hurri-
cane Center said Thursday).

7 Conclusion

We have presented an empirical study of deep
learning based content selection algorithms for
summarization. Our findings suggest such mod-
els face stark limitations on their ability to learn
robust features for this task and that more work is
needed on sentence representation for summariza-
tion.

8 Acknowledgements

The authors would like to thank the anonymous re-
viewers for their valuable feedback. Thanks goes
out as well to Chris Hidey for his helpful com-
ments.

This research is based upon work supported in
part by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via contract # FA8650-
17-C-9117. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute

reprints for governmental purposes notwithstand-
ing any copyright annotation therein.

References
Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.

A simple but tough-to-beat baseline for sentence em-
beddings.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 481–490. As-
sociation for Computational Linguistics.

Ronald Brandow, Karl Mitze, and Lisa Rau. 1999.
Automatic condensation of electronic publications
by sentence selection. In Jan Fagerberg, David C.
Mowery, and Richard R. Nelson, editors, Advances
in Automatic Text Summarization, chapter 19, pages
293–303. MIT Press, Oxford.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, et al. 2005. The ami meeting corpus:
A pre-announcement. In International Workshop
on Machine Learning for Multimodal Interaction,
pages 28–39. Springer.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
arXiv preprint arXiv:1603.07252.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

John M Conroy and Dianne P O’Leary. 2001. Text
summarization via hidden markov models. In Pro-
ceedings of the 24th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 406–407. ACM.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-based single-document summariza-
tion with compression and anaphoricity constraints.
arXiv preprint arXiv:1603.08887.

Noemie Elhadad, M-Y Kan, Judith L Klavans, and
KR McKeown. 2005. Customization in a unified
framework for summarizing medical literature. Ar-
tificial intelligence in medicine, 33(2):179–198.

1826



Michel Galley. 2006. A skip-chain conditional ran-
dom field for ranking meeting utterances by impor-
tance. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Process-
ing, pages 364–372. Association for Computational
Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65–170.

Dan Gillick, Korbinian Riedhammer, Benoit Favre, and
Dilek Hakkani-Tur. 2009. A global optimization
framework for meeting summarization. In Acous-
tics, Speech and Signal Processing, 2009. ICASSP
2009. IEEE International Conference on, pages
4769–4772. IEEE.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth in-
ternational conference on artificial intelligence and
statistics, pages 249–256.

Karl Moritz Hermann, Tomáš Kočiský, Edward
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Abstract
Network embeddings, which learn low-
dimensional representations for each vertex in
a large-scale network, have received consider-
able attention in recent years. For a wide range
of applications, vertices in a network are typi-
cally accompanied by rich textual information
such as user profiles, paper abstracts, etc. We
propose to incorporate semantic features into
network embeddings by matching important
words between text sequences for all pairs of
vertices. We introduce a word-by-word align-
ment framework that measures the compati-
bility of embeddings between word pairs, and
then adaptively accumulates these alignment
features with a simple yet effective aggrega-
tion function. In experiments, we evaluate
the proposed framework on three real-world
benchmarks for downstream tasks, including
link prediction and multi-label vertex classi-
fication. Results demonstrate that our model
outperforms state-of-the-art network embed-
ding methods by a large margin.

1 Introduction

Networks are ubiquitous, with prominent exam-
ples including social networks (e.g., Facebook,
Twitter) or citation networks of research papers
(e.g., arXiv). When analyzing data from these
real-world networks, traditional methods often
represent vertices (nodes) as one-hot representa-
tions (containing the connectivity information of
each vertex with respect to all other vertices), usu-
ally suffering from issues related to the inherent
sparsity of large-scale networks. This results in
models that are not able to fully capture the re-
lationships between vertices of the network (Per-
ozzi et al., 2014; Tu et al., 2016). Alternatively,
network embedding (i.e., network representation
learning) has been considered, representing each
vertex of a network with a low-dimensional vec-
tor that preserves information on its similarity rel-

This paper 
investigates random 
walk graphs in high 
dimensional space.

We propose an 
algorithm for 
multidimensional
random walk 
problems.

citation

Figure 1: Example of the text information (abstracts)
associated to two papers in a citation network. Key
words for matching are highlighted.

ative to other vertices. This approach has attracted
considerable attention in recent years (Tang and
Liu, 2009; Perozzi et al., 2014; Tang et al., 2015;
Grover and Leskovec, 2016; Wang et al., 2016;
Chen et al., 2016; Wang et al., 2017a; Zhang et al.,
2018).

Traditional network embedding approaches fo-
cus primarily on learning representations of ver-
tices that preserve local structure, as well as inter-
nal structural properties of the network. For in-
stance, Isomap (Tenenbaum et al., 2000), LINE
(Tang et al., 2015), and Grarep (Cao et al., 2015)
were proposed to preserve first-, second-, and
higher-order proximity between nodes, respec-
tively. DeepWalk (Perozzi et al., 2014), which
learns vertex representations from random-walk
sequences, similarly, only takes into account struc-
tural information of the network. However, in real-
world networks, vertices usually contain rich tex-
tual information (e.g., user profiles in Facebook,
paper abstracts in arXiv, user-generated content on
Twitter, etc.), which may be leveraged effectively
for learning more informative embeddings.

To address this opportunity, Yang et al. (2015)
proposed text-associated DeepWalk, to incorpo-
rate textual information into the vectorial rep-
resentations of vertices (embeddings). Sun
et al. (2016) employed deep recurrent neural net-
works to integrate the information from vertex-

1829



associated text into network representations. Fur-
ther, Tu et al. (2017) proposed to more effectively
model the semantic relationships between vertices
using a mutual attention mechanism.

Although these methods have demonstrated per-
formance gains over structure-only network em-
beddings, the relationship between text sequences
for a pair of vertices is accounted for solely
by comparing their sentence embeddings. How-
ever, as shown in Figure 1, to assess the simi-
larity between two research papers, a more effec-
tive strategy would compare and align (via local-
weighting) individual important words (keywords)
within a pair of abstracts, while information from
other words (e.g., stop words) that tend to be
less relevant can be effectively ignored (down-
weighted). This alignment mechanism is diffi-
cult to accomplish in models where text sequences
are first embedded into a common space and then
compared in pairs (He and Lin, 2016; Parikh et al.,
2016; Wang and Jiang, 2017; Wang et al., 2017b;
Shen et al., 2018a).

We propose to learn a semantic-aware Net-
work Embedding (NE) that incorporates word-
level alignment features abstracted from text se-
quences associated with vertex pairs. Given a
pair of sentences, our model first aligns each word
within one sentence with keywords from the other
sentence (adaptively up-weighted via an atten-
tion mechanism), producing a set of fine-grained
matching vectors. These features are then ac-
cumulated via a simple but efficient aggregation
function, obtaining the final representation for the
sentence. As a result, the word-by-word alignment
features (as illustrated in Figure 1) are explicitly
and effectively captured by our model. Further, the
learned network embeddings under our framework
are adaptive to the specific (local) vertices that are
considered, and thus are context-aware and espe-
cially suitable for downstream tasks, such as link
prediction. Moreover, since the word-by-word
matching procedure introduced here is highly par-
allelizable and does not require any complex en-
coding networks, such as Long Short-Term Mem-
ory (LSTM) or Convolutional Neural Networks
(CNNs), our framework requires significantly less
time for training, which is attractive for large-scale
network applications.

We evaluate our approach on three real-world
datasets spanning distinct network-embedding-
based applications: link prediction, vertex classi-

fication and visualization. We show that the pro-
posed word-by-word alignment mechanism effi-
ciently incorporates textual information into the
network embedding, and consistently exhibits su-
perior performance relative to several competi-
tive baselines. Analyses considering the extracted
word-by-word pairs further validate the effective-
ness of the proposed framework.

2 Proposed Methods

2.1 Problem Definition
A network (graph) is defined as G = {V , E},
where V and E denote the set of N vertices
(nodes) and edges, respectively, where elements
of E are two-element subsets of V . Here we
only consider undirected networks, however, our
approach (introduced below) can be readily ex-
tended to the directed case. We also define W ,
the symmetric R

N⇥N matrix whose elements, wij ,
denote the weights associated with edges in V ,
and T , the set of text sequences assigned to each
vertex. Edges and weights contain the structural
information of the network, while the text can
be used to characterize the semantic properties of
each vertex. Given network G, with the network
embedding we seek to encode each vertex into a
low-dimensional vector h (with dimension much
smaller than N ), while preserving structural and
semantic features of G.

2.2 Framework Overview
To incorporate both structural and semantic infor-
mation into the network embeddings, we specify
two types of (latent) embeddings: (i) hs, the struc-
tural embedding; and (ii) ht, the textual embed-
ding. Specifically, each vertex in G is encoded
into a low-dimensional embedding h = [hs; ht].
To learn these embeddings, we specify an objec-
tive that leverages the information from both W

and T , denoted as

L =
X

e2E

Lstruct(e) + Ltext(e) + Ljoint(e) , (1)

where Lstruct, Ltext and Ljoint denote structure,
text, and joint structure-text training losses, re-
spectively. For a vertex pair {vi, vj} weighted by
wij , Lstruct(vi, vj) in (1) is defined as (Tang et al.,
2015)

Lstruct(vi, vj) = wij log p(hi
s|hj

s) , (2)
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where p(hi
s|hj

s) denotes the conditional proba-
bility between structural embeddings for vertices
{vi, vj}. To leverage the textual information in T ,
similar text-specific and joint structure-text train-
ing objectives are also defined

Ltext(vi, vj) = wij↵1 log p(hi
t|h

j
t ) , (3)

Ljoint(vi, vj) = wij↵2 log p(hi
t|hj

s) (4)

+ wij↵3 log p(hi
s|h

j
t ) , (5)

where p(hi
t|h

j
t ) and p(hi

t|hj
s) (or p(hi

s|h
j
t )) de-

note the conditional probability for a pair of text
embeddings and text embedding given structure
embedding (or vice versa), respectively, for ver-
tices {vi, vj}. Further, ↵1, ↵2 and ↵3 are hyper-
parameters that balance the impact of the different
training-loss components. Note that structural em-
beddings, hs, are treated directly as parameters,
while the text embeddings ht are learned based on
the text sequences associated with vertices.

For all conditional probability terms, we follow
Tang et al. (2015) and consider the second-order
proximity between vertex pairs. Thus, for vertices
{vi, vj}, the probability of generating hi condi-
tioned on hj may be written as

p(hi|hj) =
exp

⇣
h

jT
h

i
⌘

PN
k=1 exp

⇣
h

jT
h

k
⌘ . (6)

Note that (6) can be applied to both structural and
text embeddings in (2) and (3).

Inspired by Tu et al. (2017), we further as-
sume that vertices in the network play different
roles depending on the vertex with which they
interact. Thus, for a given vertex, the text em-
bedding, ht, is adaptive (specific) to the vertex
it is being conditioned on. This type of context-
aware textual embedding has demonstrated supe-
rior performance relative to context-free embed-
dings (Tu et al., 2017). In the following two
sections, we describe our strategy for encoding
the text sequence associated with an edge into its
adaptive textual embedding, via word-by-context
and word-by-word alignments.

2.3 Word-by-Context Alignment
We first introduce our base model, which re-
weights the importance of individual words within
a text sequence in the context of the edge be-
ing considered. Consider text sequences associ-
ated with two vertices connected by an edge, de-

Affinity

Matrix
Alignment Alignment

Aggregation Aggregation

ℎ"
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Figure 2: Schematic of the proposed fine-grained word
alignment module for incorporating textual information
into a network embedding. In this setup, word-by-word
matching features are explicitly abstracted to infer the
relationship between vertices.

noted ta and tb and contained in T . Text se-
quences ta and tb are of lengths Ma and Mb, re-
spectively, and are represented by Xa 2 R

d⇥Ma

and Xb 2 R
d⇥Mb , respectively, where d is the di-

mension of the word embedding. Further, x
(i)
a de-

notes the embedding of the i-th word in sequence
ta.

Our goal is to encode text sequences ta and tb

into counterpart-aware vectorial representations
ha and hb. Thus, while inferring the adaptive tex-
tual embedding for sentence ta, we propose re-
weighting the importance of each word in ta to
explicitly account for its alignment with sentence
tb. The weight ↵i, corresponding to the i-th word
in ta, is generated as:

↵i =
exp(tanh(W1cb + W2x

(i)
a ))

PMa
j=1 exp(tanh(W1cb + W2x

(j)
a ))

, (7)

where W1 and W2 are model parameters and
cb =

PMb
i=1 x

b
i is the context vector of sequence

tb, obtained by simply averaging over all the word
embeddings in the sequence, similar to fastText
(Joulin et al., 2016). Further, the word-by-context
embedding for sequence ta is obtained by taking
the weighted average over all word embeddings

ha =
PMa

i=1↵ix
(i)
a . (8)

Intuitively, ↵i may be understood as the relevance
score between the ith word in ta and sequence tb.
Specifically, keywords within ta, in the context of
tb, should be assigned larger weights, while less
important words will be correspondingly down-
weighted. Similarly, hb is encoded as a weighted
embedding using (7) and (8).
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2.4 Fine-Grained Word-by-Word Alignment
With the alignment in the previous section, word-
by-context matching features ↵i are modeled;
however, the word-by-word alignment information
(fine-grained), which is key to characterize the re-
lationship between two vertices (as discussed in
the above), is not explicitly captured. So moti-
vated, we further propose an architecture to explic-
itly abstract word-by-word alignment information
from ta and tb, to learn the relationship between
the two vertices. This is inspired by the recent
success of Relation Networks (RNs) for relational
reasoning (Santoro et al., 2017).

As illustrated in Figure 2, given two input em-
bedding matrices Xa and Xb, we first compute
the affinity matrix A 2 R

Mb⇥Ma , whose elements
represent the affinity scores corresponding to all
word pairs between sequences ta and tb

A = XT
b Xa . (9)

Subsequently, we compute the context-aware ma-
trix for sequence tb as

Ab = softmax(A) , eXb = XbAb , (10)

where the softmax(·) function is applied column-
wise to A, and thus Ab contains the attention
weights (importance scores) across sequence tb

(columns), which account for each word in se-
quence ta (rows). Thus, matrix eXb 2 R

d⇥Ma

in (10) constitutes an attention-weighted embed-
ding for Xb. Specifically, the i-th column of eXb,
denoted as ex(i)

b , can be understood as a weighted
average over all the words in tb, where higher at-
tention weights indicate better alignment (match)
with the i-th word in ta.

To abstract the word-by-word alignments, we
compare x

(i)
a with ex(i)

b , for i = 1, 2, ..., Ma, to
obtain the corresponding matching vector

m
(i)
a = falign

⇣
x

(i)
a , ex(i)

b

⌘
, (11)

where falign(·) represents the alignment function.
Inspired by the observation in Wang and Jiang
(2017) that simple comparison/alignment func-
tions based on element-wise operations exhibit ex-
cellent performance in matching text sequences,
here we use a combination of element-wise sub-
traction and multiplication as

falign(x
(i)
a , ex(i)

a ) = [x(i)
a � ex(i)

a ; x(i)
a � ex(i)

a ] ,

where � denotes the element-wise Hadamard
product, then these two operations are concate-
nated to produce the matching vector m

(i)
a . Note

these operators may be used individually or com-
bined as we will investigate in our experiments.

Subsequently, matching vectors from (11) are
aggregated to produce the final textual embedding
h

a
t for sequence ta as

h
a
t = faggregate

⇣
m

(1)
a , m(2)

a , ..., m(Ma)
a

⌘
, (12)

where faggregate denotes the aggregation function,
which we specify as the max-pooling pooling op-
eration. Notably, other commutative operators,
such as summation or average pooling, can be
otherwise employed. Although these aggregation
functions are simple and invariant to the order of
words in input sentences, they have been demon-
strated to be highly effective in relational reason-
ing (Parikh et al., 2016; Santoro et al., 2017). To
further explore this, in Section 5.3, we conduct
an ablation study comparing different choices of
alignment and aggregation functions.

The representation hb can be obtained in a simi-
lar manner through (9), (10), (11) and (12), but re-
placing (9) with A = XT

a Xb (its transpose). Note
that this word-by-word alignment is more com-
putationally involved than word-by-context; how-
ever, the former has substantially fewer parame-
ters to learn, provided we no longer have to esti-
mate the parameters in (7).

2.5 Training and Inference
For large-scale networks, computing and optimiz-
ing the conditional probabilities in (1) using (6) is
computationally prohibitive, since it requires the
summation over all vertices V in G. To address
this limitation, we leverage the negative sampling
strategy introduced by Mikolov et al. (2013), i.e.,
we perform computations by sampling a subset of
negative edges. As a result, the conditional in (6)
can be rewritten as:

p(hi|hj) = log �
⇣
h

jT
h

i
⌘

+
KX

i=1

Ehi⇠P (v)

h
log �

⇣
�h

jT
h

i
⌘i

,

where �(x) = 1/(1 + exp(�x)) is the sigmoid
function. Following Mikolov et al. (2013), we set
the noise distribution P (v) / d3/4

v , where dv is the
out-degree of vertex v 2 V . The number of nega-
tive samples K is treated as a hyperparameter. We
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use Adam (Kingma and Ba, 2014) to update the
model parameters while minimizing the objective
in (1).

3 Related Work

Network embedding methods can be divided into
two categories: (i) methods that solely rely on the
structure, e.g., vertex information; and (ii) meth-
ods that leverage both the structure the network
and the information associated with its vertices.

For the first type of models, DeepWalk (Perozzi
et al., 2014) has been proposed to learn node rep-
resentations by generating node contexts via trun-
cated random walks; it is similar to the concept
of Skip-Gram (Mikolov et al., 2013), originally
introduced for learning word embeddings. LINE
(Tang et al., 2015) proposed a principled objective
to explicitly capture first-order and second-order
proximity information from the vertices of a net-
work. Further, Grover and Leskovec (2016) in-
troduced a biased random walk procedure to gen-
erate the neighborhood for a vertex, which infers
the node representations by maximizing the like-
lihood of preserving the local context information
of vertices. However, these algorithms generally
ignore rich heterogeneous information associated
with vertices. Here, we focus on incorporating tex-
tual information into network embeddings.

To learn semantic-aware network embeddings,
Text-Associated DeepWalk (TADW) (Yang et al.,
2015) proposed to integrate textual features into
network representations with matrix factoriza-
tion, by leveraging the equivalence between Deep-
Walk and matrix factorization. CENE (Content-
Enhanced Network Embedding) (Sun et al., 2016)
used bidirectional recurrent neural networks to ab-
stract the semantic information associated with
vertices, which further demonstrated the advan-
tages of employing textual information. To cap-
ture the interaction between sentences of vertex
pairs, Tu et al. (2017) further proposed Context-
Aware Network Embedding (CANE), that em-
ploys a mutual attention mechanism to adaptively
account for the textual information from neigh-
boring vertices. Despite showing improvement
over structure-only models, these semantic-aware
methods cannot capture word-level alignment in-
formation, which is important for inferring the re-
lationship between node pairs, as previously dis-
cussed. In this work, we introduce a Word-
Alignment-based Network Embedding (WANE)

framework, which aligns and aggregates word-by-
word matching features in an explicit manner, to
obtain more informative network representations.

4 Experimental Setup

Datasets We investigate the effectiveness of the
proposed WANE model on two standard network-
embedding-based tasks, i.e., link prediction and
multi-label vertex classification. The following
three real-world datasets are employed for quan-
titative evaluation: (i) Cora, a standard paper ci-
tation network that contains 2,277 machine learn-
ing papers (vertices) grouped into 7 categories and
connected by 5,214 citations (edges) (ii) HepTh,
another citation network of 1,038 papers with ab-
stract information and 1,990 citations; (iii) Zhihu,
a network of 10,000 active users from Zhihu, the
largest Q&A website in China, where 43,894 ver-
tices and descriptions of the Q&A topics are avail-
able. The average lengths of the text in the three
datasets are 90, 54, and 190, respectively. To
make direct comparison with existing work, we
employed the same preprocessing procedure1 of
Tu et al. (2017).

Training Details For fair comparison with
CANE (Tu et al., 2017), we set the dimension of
network embedding for our model to 200. The
number of negative samples K is selected from
{1, 3, 5} according to performance on the valida-
tion set. We set the batch size as 128, and the
model is trained using Adam (Kingma and Ba,
2014), with a learning rate of 1 ⇥ 10�3 for all pa-
rameters. Dropout regularization is employed on
the word embedding layer, with rate selected from
{0.5, 0.7, 0.9}, also on the validation set. Our
code will be released to encourage future research.

Baselines To evaluate the effectiveness of our
framework, we consider several strong baseline
methods for comparisons, which can be catego-
rized into two types: (i) models that only ex-
ploit structural information: MMB (Airoldi et al.,
2008), DeepWalk (Perozzi et al., 2014), LINE
(Tang et al., 2015), and node2vec (Grover and
Leskovec, 2016). (ii) Models that take both
structural and textual information into account:
Naive combination (which simply concatenates
the structure-based embedding with CNN-based
text embeddings, as explored in (Tu et al., 2017),
TADW (Yang et al., 2015), CENE (Sun et al.,

1https://github.com/thunlp/CANE
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%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9

DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3
LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3

node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2
Naive combination 72.7 82.0 84.9 87.0 88.7 91.9 92.4 93.9 94.0

TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9
CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7
WANE 86.1 90.9 92.3 93.1 93.4 94.5 95.1 95.4 95.9

WANE-wc 88.7 92.1 92.9 94.4 94.8 95.1 95.7 96.5 97.4
WANE-ww 91.7 93.3 94.1 95.7 96.2 96.9 97.5 98.2 99.1

Table 1: AUC scores for link prediction on the Cora dataset.

%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 54.6 57.9 57.3 61.6 66.2 68.4 73.6 76.0 80.3

DeepWalk 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0
LINE 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6

node2vec 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2
Naive combination 78.7 82.1 84.7 88.7 88.7 91.8 92.1 92.0 92.7

TADW 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7
CENE 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2
CANE 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3
WANE 88.5 90.7 91.1 92.6 93.5 94.2 94.9 95.3 95.8

WANE-wc 90.1 91.4 91.9 94.1 95.3 95.9 96.5 96.9 97.2
WANE-ww 92.3 94.1 95.7 96.7 97.5 97.5 97.7 98.2 98.7

Table 2: AUC scores for link prediction on the HepTh dataset.

2016), and CANE (Tu et al., 2017). It is worth not-
ing that unlike all these baselines, WANE explic-
itly captures word-by-word interactions between
text sequence pairs.

Evaluation Metrics We employ AUC (Hanley
and McNeil, 1982) as the evaluation metric for
link prediction, which measures the probability
that vertices within an existing edge, randomly
sampled from the test set, are more similar than
those from a random pair of non-existing vertices,
in terms of the inner product between their corre-
sponding embeddings.

For multi-label vertex classification and to en-
sure fair comparison, we follow Yang et al. (2015)
and employ a linear SVM on top of the learned
network representations, and evaluate classifica-
tion accuracy with different training ratios (vary-
ing from 10% to 50%). The experiments for each
setting are repeated 10 times and the average test
accuracy is reported.

5 Experimental Results

We experiment with three variants for our WANE
model: (i) WANE: where the word embeddings
of each text sequence are simply average to ob-
tain the sentence representations, similar to (Joulin
et al., 2016; Shen et al., 2018c). (ii) WANE-

wc: where the textual embeddings are inferred
with word-by-context alignment. (iii) WANE-ww:
where the word-by-word alignment mechanism is
leveraged to capture word-by-word matching fea-
tures between available sequence pairs.

5.1 Link Prediction
Table 1 presents link prediction results for all mod-
els on Cora dataset, where different ratios of edges
are used for training. It can be observed that when
only a small number of edges are available, e.g.,
15%, the performances of structure-only methods
is much worse than semantic-aware models that
have taken textual information into consideration
The perfromance gap tends to be smaller when a
larger proportion of edges are employed for train-
ing. This highlights the importance of incorporat-
ing associated text sequences into network embed-
dings, especially in the case of representing a rela-
tively sparse network. More importantly, the pro-
posed WANE-ww model consistently outperforms
other semantic-aware NE models by a substantial
margin, indicating that our model better abstracts
word-by-word alignment features from the text se-
quences available, thus yields more informative
network representations.

Further, WANE-ww also outperforms WANE or
WANE-wc on a wide range of edge training pro-
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%Training Edges 15% 25% 35% 45% 55% 65% 75% 85% 95%
MMB 51.0 51.5 53.7 58.6 61.6 66.1 68.8 68.9 72.4

DeepWalk 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8
LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1

node2vec 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5
Naive combination 55.1 56.7 58.9 62.6 64.4 68.7 68.9 69.0 71.5

TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8
CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4
WANE 52.1 56.6 60.7 64.2 67.5 69.1 71.3 72.8 73.9

WANE-wc 55.2 59.9 64.2 68.1 71.3 73.4 75.6 76.3 78.8
WANE-ww 58.7 63.5 68.3 71.9 74.9 77.0 79.7 80.0 82.6

Table 3: AUC scores for link prediction on the Zhihu dataset.

(a) falign (b) faggregate (c) vertex classification
Figure 3: (a, b) Ablation study on the choice of different alignment and aggregation functions. (c) Test accuracy
of supervised vertex classification on the Cora dataset.

portions. This suggests that: (i) adaptively as-
signing different weights to each word within a
text sequence (according to its paired sequence)
tends to be a better strategy than treating each
word equally (as in WANE). (ii) Solely consid-
ering the context-by-word alignment features (as
in WANE-wc) is not as efficient as abstracting
word-by-word matching information from text se-
quences. We observe the same trend and the supe-
riority of our WANE-ww models on the other two
datasets, HepTh and Zhihu datasets, as shown in
Table 2 and 3, respectively.

5.2 Multi-label Vertex Classification

We further evaluate the effectiveness of proposed
framework on vertex classification tasks with the
Cora dataset. Similar to Tu et al. (2017), we gen-
erate the global embedding for each vertex by tak-
ing the average over its context-aware embeddings
with all other connected vertices. As shown in Fig-
ure 3(c), semantic-aware NE methods (including
naive combination, TADW, CENE, CANE) ex-
hibit higher test accuracies than semantic-agnostic
models, demonstrating the advantages of incor-
porating textual information. Moreover, WANE-
ww consistently outperforms other competitive
semantic-aware models on a wide range of labeled
proportions, suggesting that explicitly capturing
word-by-word alignment features is not only use-

ful for vertex-pair-based tasks, such as link pre-
diction, but also results in better global embed-
dings which are required for vertex classification
tasks. These observations further demonstrate that
WANE-ww is an effective and robust framework
to extract informative network representations.

Semi-supervised classification We further con-
sider the case where the training ratio is less than
10%, and evaluate the learned network embedding
with a semi-supervised classifier. Following Yang
et al. (2015), we employ a Transductive SVM
(TSVM) classifier with a linear kernel (Joachims,
1998) for fairness. As illustrated in Table 4, the
proposed WANE-ww model exhibits superior per-
formances in most cases. This may be due to the
fact that WANE-ww extracts information from the
vertices and text sequences jointly, thus the ob-
tained vertex embeddings are less noisy and per-
form more consistently with relatively small train-
ing ratios (Yang et al., 2015).

5.3 Ablation Study
Motivated by the observation in Wang and Jiang
(2017) that the advantages of different functions
to match two vectors vary from task to task, we
further explore the choice of alignment and ag-
gregation functions in our WANE-ww model. To
match the word pairs between two sequences, we
experimented with three types of operations: sub-
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Figure 4: t-SNE visualization of the learned network
embeddings on the Cora dataset.

traction, multiplication, and Sub & Multi (the con-
catenation of both approaches). As shown in Fig-
ure 3(a) and 3(b), element-wise subtraction tends
to be the most effective operation performance-
wise on both Cora and Zhihu datasets, and per-
forms comparably to Sub & Multi on the HepTh
dataset. This finding is consistent with the results
in Wang and Jiang (2017), where they found that
simple comparison functions based on element-
wise operations work very well on matching text
sequences.

In terms of the aggregation functions, we com-
pare (one-layer) CNN, mean-pooling, and max-
pooling operations to accumulate the matching
vectors. As shown in Figure 3(b), max-pooling
has the best empirical results on all three datasets.
This may be attributed to the fact that the max-
pooling operation is better at selecting impor-
tant word-by-word alignment features, among all
matching vectors available, to infer the relation-
ship between vertices.

5.4 Qualitative Analysis

Embedding visualization To visualize the
learned network representations, we further em-
ploy t-SNE to map the low-dimensional vectors of
the vertices to a 2-D embedding space. We use the
Cora dataset because there are labels associated
with each vertex and WANE-ww to obtain the
network embeddings.

As shown in Figure 4 where each point indicates
one paper (vertex), and the color of each point in-
dicates the category it belongs to, the embeddings
of the same label are indeed very close in the 2-D
plot, while those with different labels are relatively
farther from each other. Note that the model is
not trained with any label information, indicating
that WANE-ww has extracted meaningful patterns
from the text and vertex information available.

Baseline Models 1% 3% 7% 10%
Text Only 33.0 43.0 57.1 62.8

Naive Combination 67.4 70.6 75.1 77.4
TADW 72.1 77.0 79.1 81.3
CENE 73.8 79.1 81.5 84.5
CANE 72.6 78.2 80.4 83.4

WANE-ww (ours) 73.4 79.6 82.7 85.1
Table 4: Semi-supervised vertex classification results
on the Cora dataset.

Case study The proposed word-by-word align-
ment mechanism can be used to highlight the most
informative words (and the corresponding match-
ing features) wrt the relationship between ver-
tices. We visualize the norm of matching vec-
tor obtained in (11) in Figure 5 for the Cora
dataset. It can be observed that matched key
words, e.g., ‘MCMC’, ‘convergence’, between the
text sequences are indeed assigned higher values
in the matching vectors. These words would be se-
lected preferentially by the final max-pooling ag-
gregation operation. This indicates that WANE-
ww is able to abstract important word-by-word
alignment features from paired text sequences.

(a) Sentence pairs associated with Edge #1

(b) Sentence pairs associated with Edge #2

Figure 5: Visualization of the word-level matching vec-
tors. Darker shades represent larger values of the norm
of m

(i) at each word position.

6 Conclusions

We have presented a novel framework to in-
corporate the semantic information from vertex-
associated text sequences into network embed-
dings. An align-aggregate framework is intro-
duced, which first aligns a sentence pair by captur-
ing the word-by-word matching features, and then
adaptively aggregating these word-level alignment
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information with an efficient max-pooling func-
tion. The semantic features abstracted are fur-
ther encoded, along with the structural informa-
tion, into a shared space to obtain the final net-
work embedding. Compelling experimental re-
sults on several tasks demonstrated the advantages
of our approach. In future work, we aim to lever-
age abundant unlabeled text data to abstract more
informative sentence representations (Dai and Le,
2015; Zhang et al., 2017; Shen et al., 2017; Tang
and de Sa, 2018) . Another interesting direction
is to learn binary and compact network embed-
ding, which could be more efficient in terms of
both computation and memory, relative to its con-
tinuous counterpart (Shen et al., 2018b).
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Abstract

Convolutional neural networks (CNNs) have
recently emerged as a popular building block
for natural language processing (NLP). De-
spite their success, most existing CNN mod-
els employed in NLP share the same learned
(and static) set of filters for all input sentences.
In this paper, we consider an approach of us-
ing a small meta network to learn context-
aware convolutional filters for text processing.
The role of meta network is to abstract the
contextual information of a sentence or doc-
ument into a set of input-aware filters. We fur-
ther generalize this framework to model sen-
tence pairs, where a bidirectional filter gen-
eration mechanism is introduced to encapsu-
late co-dependent sentence representations. In
our benchmarks on four different tasks, includ-
ing ontology classification, sentiment analy-
sis, answer sentence selection, and paraphrase
identification, our proposed model, a modified
CNN with context-aware filters, consistently
outperforms the standard CNN and attention-
based CNN baselines. By visualizing the
learned context-aware filters, we further vali-
date and rationalize the effectiveness of pro-
posed framework.

1 Introduction

In the last few years, convolutional neural net-
works (CNNs) have demonstrated remarkable
progress in various natural language process-
ing applications (Collobert et al., 2011), includ-
ing sentence/document classification (Kim, 2014;
Zhang et al., 2015; Wang et al., 2018), text se-
quence matching (Hu et al., 2014; Yin et al., 2016;
Shen et al., 2017), generic text representations
(Gan et al., 2016; Tang et al., 2018), language
modeling (Dauphin et al., 2017), machine trans-
lation (Gehring et al., 2017) and abstractive sen-
tence summarization (Gehring et al., 2017). CNNs
are typically applied to tasks where feature extrac-

tion and a corresponding supervised task are ap-
proached jointly (LeCun et al., 1998). As an en-
coder network for text, CNNs typically convolve
a set of filters, of window size n, with an input-
sentence embedding matrix obtained via word2vec
(Mikolov et al., 2013) or Glove (Pennington et al.,
2014). Different filter sizes n may be used within
the same model, exploiting meaningful semantic
features from different n-gram fragments.

The learned weights of CNN filters, in most
cases, are assumed to be fixed regardless of the in-
put text. As a result, the rich contextual informa-
tion inherent in natural language sequences may
not be fully captured. As demonstrated in Cohen
and Singer (1999), the context of a word tends to
greatly influence its contribution to the final super-
vised tasks. This observation is consistent with the
following intuition: when reading different types
of documents, e.g., academic papers or newspaper
articles, people tend to adopt distinct strategies for
better and more effective understanding, leverag-
ing the fact that the same words or phrases may
have different meaning or imply different things,
depending on context.

Several research efforts have sought to incor-
porate contextual information into CNNs to adap-
tively extract text representations. One common
strategy is the attention mechanism, which is typ-
ically employed on top of a CNN (or Long Short-
Term Memory (LSTM)) layer to guide the extrac-
tion of semantic features. For the embedding of a
single sentence, Lin et al. (2017) proposed a self-
attentive model that attends to different parts of a
sentence and combines them into multiple vector
representations. However, their model needs con-
siderably more parameters to achieve performance
gains over traditional CNNs. To match sentence
pairs, Yin et al. (2016) introduced an attention-
based CNN model, which re-weights the convo-
lution inputs or outputs, to extract interdepen-

1839



dent sentence representations. Wang et al. (2016);
Wang and Jiang (2017) explore a compare and ag-
gregate framework to directly capture the word-
by-word matching between two paired sentences.
However, these approaches suffer from the prob-
lem of high matching complexity, since a simi-
larity matrix between pairwise words needs to be
computed, and thus it is computationally ineffi-
cient or even prohibitive when applied to long sen-
tences (Mou et al., 2016).

In this paper, we propose a generic approach to
learn context-aware convolutional filters for nat-
ural language understanding. In contrast to tra-
ditional CNNs, the convolution operation in our
framework does not have a fixed set of filters, and
thus provides the network with stronger model-
ing flexibility and capacity. Specifically, we intro-
duce a meta network to generate a set of context-
aware filters, conditioned on specific input sen-
tences; these filters are adaptively applied to either
the same (Section 3.2) or different (Section 3.3)
text sequences. In this manner, the learned filters
vary from sentence to sentence and allow for more
fine-grained feature abstraction.

Moreover, since the generated filters in our
framework can adapt to different conditional infor-
mation available (labels or paired sentences), they
can be naturally generalized to model sentence
pairs. In this regard, we propose a novel bidirec-
tional filter generation mechanism to allow inter-
actions between sentence pairs while constructing
context-aware representations.

We investigate the effectiveness of our Adap-
tive Context-sensitive CNN (ACNN) framework
on several text processing tasks: ontology classi-
fication, sentiment analysis, answer sentence se-
lection and paraphrase identification. We show
that the proposed methods consistently outper-
forms the standard CNN and attention-based CNN
baselines. Our work provides a new perspective
on how to incorporate contextual information into
text representations, which can be combined with
more sophisticated structures to achieve even bet-
ter performance in the future.

2 Related Work

Learning deep text representations has attracted
much attention recently, since they can potentially
benefit a wide range of NLP applications (Col-
lobert et al., 2011; Kim, 2014; Wang et al., 2017a;
Shen et al., 2018a; Tang and de Sa, 2018; Zhang

et al., 2018). CNNs have been extensively in-
vestigated as the encoder networks of natural lan-
guage. Our work is in line with previous efforts
on improving the adaptivity and flexibility of con-
volutional neural networks (Jeon and Kim, 2017;
De Brabandere et al., 2016). Jeon and Kim (2017)
proposed to enhance the transformation modeling
capacity of CNNs by adaptively learning the filter
shapes through backpropagation. De Brabandere
et al. (2016) introduced an architecture to gen-
erate the future frames conditioned on given im-
age(s), by adapting the CNN filter weights to the
motion within previous video frames. Although
CNNs have been widely adopted in a large number
of NLP applications, improving the adaptivity of
vanilla CNN modules has been considerably less
studied. To the best of our knowledge, the work
reported in this paper is the first attempt to develop
more flexible and adjustable CNN architecture for
modeling sentences.

Our use of a meta network to generate pa-
rameters for another network is directly inspired
by the recent success of hypernetworks for text-
generation tasks (Ha et al., 2017), and dynamic
parameter-prediction for video-frame generation
(De Brabandere et al., 2016). In contrast to
these works that focus on generation problems,
our model is based on context-aware CNN fil-
ters and is aimed at abstracting more informa-
tive and predictive sentence features. Most sim-
ilar to our work, Liu et al. (2017) designed a
meta network to generate compositional functions
over tree-structured neural networks for encapsu-
lating sentence features. However, their model is
only suitable for encoding individual sentences,
while our framework can be readily generalized
to capture the interactions between sentence pairs.
Moreover, our framework is based on CNN mod-
els, which is advantageous due to fewer parame-
ters and highly parallelizable computations rela-
tive to sequential-based models.

3 Model

3.1 Basic CNN for text representations
The CNN architectures in (Kim, 2014; Collobert
et al., 2011) are typically utilized for extracting
sentence representations, by a composition of a
convolutional layer and a max-pooling operation
over all resulting feature maps. Let the words of a
sentence of length T (padded where necessary) be
x1, x2, ... , xT . The sentence can be represented
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as a matrix X 2 R
d⇥T , where each column rep-

resents a d-dimensional embedding of the corre-
sponding word.

In the convolutional layer, a set of filters with
weights W 2 R

K⇥h⇥d is convolved with ev-
ery window of h words within the sentence,
i.e., {x1:h, x2:h+1, . . . , xT�h+1:T }, where K is the
number of output feature maps (and filters). In this
manner, feature maps p for these h-gram text frag-
ments are generated as:

pi = f(W ⇥ xi:i+h�1 + b) (1)

where i = 1, 2, ..., T � h + 1 and ⇥ denotes
the convolution operator at the ith shift location.
Parameter b 2 R

K is the bias term and f(·) is
a non-linear function, implemented as a rectified
linear unit (ReLU) in our experiments. The out-
put feature maps of the convolutional layer, i.e.,
p 2 R

K⇥(T�h+1) are then passed to the pooling
layer, which takes the maximum value in every
row of p, forming a K-dimensional vector, z. This
operation attempts to keep the most salient feature
detected by every filter and discard the information
from less fundamental text fragments. Moreover,
the max-over-time nature of the pooling operation
(Collobert et al., 2011) guarantees that the size of
the obtained representation is independent of the
sentence length.

Note that in basic CNN sentence encoders, fil-
ter weights are the same for different inputs, which
may be suboptimal for feature extraction (De Bra-
bandere et al., 2016), especially in the case where
conditional information is available.

3.2 Learning context-sensitive filters

The proposed architecture to learn context-
sensitive filters is composed of two principal mod-
ules: (i) a filter generation module, which pro-
duces a set of filters conditioned on the input sen-
tence; and (ii) an adaptive convolution module,
which applies the generated filters to an input sen-
tence (this sentence may be either the same as or
different from the first input, as discussed further
in Section 3.3). The two modules are jointly differ-
entiable, and the overall architecture can be trained
in an end-to-end manner. Since the generated fil-
ters are sample-specific, our ACNN feature extrac-
tor for text tends to have stronger predictive power
than a basic CNN encoder. The general ACNN
framework is shown schematically in Figure 1.

Convolution
module

Context-aware Filters

Convolution
module

Filter generation
module

I     ’ll     go  back and  try  other dishes

!

"
Figure 1: The general ACNN framework. Notably, the input
sentences to filter generating module and convolution module
could be different (see Section 3.3).

Filter generation module Instead of utilizing
fixed filter weights W for different inputs (as (1)),
our model generates a set of filters conditioned
on the input sentence X . Given an input X , the
filter-generation module can be implemented, in
principle, as any deep (differentiable) architecture.
However, in order to handle input sentences of
variable length common in natural language, we
design a generic filter generation module to pro-
duce filters with a predefined size.

First, the input X is encapsulated into a fixed-
length vector (code) z with the dimension of l,
via a basic CNN model, where one convolutional
layer is employed along with the pooling opera-
tion (as described in Section 3.1). On top of this
hidden representation z, a deconvolutional layer,
which performs transposed operations of convolu-
tions (Radford et al., 2016), is further applied to
produce a unique set of filters for X (as illustrated
in Figure 1):

z = CNN(X;✓e), (2)
f = DCNN(z;✓d) , (3)

where ✓e and ✓d are the learned parameters in
each layer of the filter-generating module, respec-
tively. Specifically, we convolve z with a filter
of size (fs, l, kx, ky), where fs is the number
of generated filters and the kernel size is (kx, ky).
The output will be a tensor of shape (fs, kx, ky).
Since the dimension of hidden representation z is
independent of input-sentence length, this frame-
work guarantees that the generated filters are of
the same shape and size for every sentence. Intu-
itively, the encoding part of filter generation mod-
ule abstracts the information from sentence X into
z. Based on this representation, the deconvolu-
tional up-sampling layer determines a set of fixed-
size, fine-grained filters f for the specific input.
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Adaptive convolution module The adaptive
convolution module takes as inputs the generated
filters f and an input sentence. This sentence and
the input to the filter-generation module may be
identical (as in Figure 1) or different (as in Fig-
ure 2). With the sample-specific filters, the input
sentence is adaptively encoded, again, via a basic
CNN architecture as in Section 3.1, i.e., one con-
volutional and one pooling layer. Notably, there
are no additional parameters in the adaptive con-
volution module (no bias term is employed).

Our ACNN framework can be seen as a gen-
eralization of the basic CNN, which can be rep-
resented as an ACNN by setting the outputs of
the filter-generation module to a constant, regard-
less of the contextual information from input sen-
tence(s). Because of the learning-to-learn (Thrun
and Pratt, 2012) nature of the proposed ACNN
framework, it tends to have greater representa-
tional power than the basic CNN.

3.3 Extension to text sequence matching

Considering the ability of our ACNN framework
to generate context-aware filters, it can be nat-
urally generalized to the task of text sequence
matching. In this section, we will describe the
proposed Adaptive Question Answering (AdaQA)
model in the context of answer sentence selection
task. Note that the corresponding model can be
readily adapted to other sentence matching prob-
lems as well (see Section 5.2).

Given a factual question q (associated with a list
of candidate answers {a1, a2, . . . , am} and their
corresponding labels y = {y1, y2, . . . , ym}), the
goal of the model is to identify the correct answers
from the set of candidates. For i = 1, 2, . . . , m, if
ai correctly answers q, then yi = 1, and other-
wise yi = 0. Therefore, the task can be cast as a
classification problem where, given an unlabeled
question-answer pair (qi, ai), we seek to predict
the judgement yi.

Conventionally, a question q and an answer a
are independently encoded by two basic CNNs
to fixed-length vector representations, denoted hq

and ha, respectively. They are then directly em-
ployed to predict the judgement y. This strategy
could be suboptimal, since no communication (in-
formation sharing) occurs between the question-
answer pair until the top prediction layer. Intu-
itively, while the model is inferring the representa-
tion for a question, if the meaning of the answer is

Question Answer

Convolution
module

Convolution
module

Question embedding Answer embedding

Context-aware Filters
Context-aware Filters

!

"

Convolution
module

Convolution
module

Filter generation
module

Filter generation
module

Matching module

Figure 2: Schematic description of Adaptive Question An-
swering (AdaQA) model.

taken into account, those features that are relevant
for final prediction are more likely to be extracted.
So motivated, we propose an adaptive CNN-based
question-answer (AdaQA) model for this problem.
The AdaQA model can be divided into three mod-
ules: filter generation, adaptive convolution, and
matching modules, as depicted schematically in
Figure 2. Assume there is a question-answer pair
to be matched, represented by word-embedding
matrices, i.e. Q 2 R

Tq⇥d and A 2 R
Ta⇥d, where

d is the embedding dimension and Tq and Ta are
respective sentence lengths. First, they are passed
to two filter-generation modules, to produce two
sets of filters that encapsulate features of the cor-
responding input sentences. Similar to the setup in
Section 3.2, we also employ a two-step process to
produce the filters. For a question Q, the generat-
ing process is:

zq = CNN(Q;✓q
e), (4)

f q = DCNN(zq;✓
q
d) (5)

where CNN and DCNN denote the basic CNN unit
and deconvolution layer, respectively, as discussed
in Section 2.1. Parameters ✓q

e and ✓q
d are to be

learned. The same process can be utilized to pro-
duce encodings za and filters fa for the answer
input, A, with parameters ✓a

e and ✓a
d, respectively.

The two sets of filter weights are then passed to
adaptive convolution modules, along with Q and
A, to obtain the extracted question and answer
embeddings. That is, the question embedding is
convolved with the filters produced by the answer
and vise versa ( q and  a are the bias terms to
be learned). The key idea is to abstract informa-
tion from the answer (or question) that is perti-
nent to the corresponding question (or answer).
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Compared to a Siamese CNN architecture (Brom-
ley et al., 1994), our model selectively encapsu-
lates the most important features for judgement
prediction, removing less vital information. We
then employ the question and answer representa-
tions hq 2 R

nh , ha 2 R
nh as inputs to the match-

ing module (where nh is the dimension of ques-
tion/answer embeddings). Following Mou et al.
(2016), the matching function is defined as:

t = [hq; ha; hq � ha; hq � ha] (6)
p(y = 1|hq, ha) = MLP(t;⌘0) (7)

where � and � denote an element-wise sub-
traction and element-wise product, respectively.
[ha; hb] indicates that ha and hb are stacked as
column vectors. The resulting matching vector
t 2 R

4nh is then sent through an MLP layer (with
sigmoid activation function and parameters ⌘0 to
be learned) to model the desired conditional dis-
tribution p(yi = 1|hq, ha).

Notably, we share the weights of filter gener-
ating networks for both the question and answer,
so that the model adaptivity for answer selection
can be improved without an excessive increase in
the number of parameters. All three modules in
AdaQA model are jointly trained end-to-end. Note
that the AdaQA model proposed can be readily
adapted to other sentence matching tasks, such as
paraphrase identification (see Section 5.2).

3.4 Connections to attention mechanism
The adaptive context-aware filter generation
mechanism proposed here bears close resem-
blance to attention mechanism (Yin et al., 2016;
Bahdanau et al., 2015; Xiong et al., 2017) widely
adopted in the NLP community, in the sense that
both methods intend to incorporate rich contextual
information into text representations. However, at-
tention is typically operated on top of the hidden
units preprocessed by CNN or LSTM layers, and
assigns different weights to each unit according to
a context vector. By contrast, in our context-aware
filter generation mechanism, the contextual infor-
mation is inherently encoded into the convolu-
tional filters, which directly interact with the input
sentence during the convolution encoding opera-
tion. Notably, according to our experiments, the
proposed filter generation module can be readily
combined with (standard) attention mechanisms
to further enhance the modeling expressiveness of
CNN encoder.

Dataset # train/ test average #w vocabulary
Yelp P. 560k/ 38k 138 25,709

DBpedia 560k/ 70k 56 21,666
WikiQA 20,360/ 2,352 7/ 26 10,000
SelQA 66,438/ 19,435 8/ 24 20,000
Quora 390k/ 5,000 13/ 13 20,000

Table 1: Dataset statistics.

4 Experimental Setup

Datasets We investigate the effectiveness of the
proposed ACNN framework on both document
classification and text sequence matching tasks.
Specifically, we consider two large-scale docu-
ment classification datasets: Yelp Reviews Polar-
ity, and DBPedia ontology datasets (Zhang et al.,
2015). For Yelp reviews, we seek to predict a
binary label (positive or negative) regarding one
review about a restaurant. DBpedia is extracted
from Wikipedia by crowd-sourcing and is catego-
rized into 14 non-overlapping ontology classes, in-
cluding Company, Athlete, Natural Place, etc. We
sample 15% of the training data as the validation
set, to select hyperparameters for our models and
perform early stopping. For sentence matching,
we evaluate the AdaQA model on two datasets for
open-domain question answering: WikiQA (Yang
et al., 2015) and SelQA (Jurczyk et al., 2016).
Given a question, the task is to rank the corre-
sponding candidate answers, which, in the case of
WikiQA, are sentences extracted from the sum-
mary section of a related Wikipedia article. To
facilitate comparison with existing results (Yin
et al., 2016; Yang et al., 2015; Shen et al., 2018b),
we truncate the candidate answers to a maximum
length of 40 tokens for all experiments on the
WikiQA dataset. We also consider the task of
paraphrase identification with the Quora Question
Pairs dataset, with the same data splits as in (Wang
et al., 2017b). A summary of all datasets is pre-
sented in Table 1.

Training Details For the document classifica-
tion experiments, we randomly initialize the word
embeddings uniformly within [�0.001, 0.001] and
update them during training. For the generated
filters, we set the window size as h = 5, with
K = 100 feature maps (the dimension of z is
set as 100). For direct comparison, we employ
the same filter shape/size settings as in our ba-
sic CNN implementation. A one-layer architec-
ture is utilized for both the CNN baseline and the
ACNN model, since we did not observe significant
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performance gains with a multilayer architecture.
The minibatch size is set as 128, and a dropout
rate of 0.2 is utilized on the embedding layer. We
observed that a larger dropout rate (e.g., 0.5) will
hurt performance on document classifications and
make training significantly slower.

For the sentence matching tasks, we initialized
the word embeddings with 50-dimensional Glove
(Pennington et al., 2014) word vectors pretrained
from Wikipedia 2014 and Gigaword 5 (Penning-
ton et al., 2014) for all model variants. As for
the filters, we set the window size as h = 5,
with K = 300 feature maps. As described in
Section 3.3, the vector t, output from the match-
ing module, is fed to the prediction layer, imple-
mented as a one-layer MLP followed by the sig-
moid function. We use Adam (Kingma and Ba,
2014) to train the models, with a learning rate of
3 ⇥ 10�4. Dropout (Srivastava et al., 2014), with
a rate of 0.5, is employed on the word embed-
ding layer. The hyperparameters are selected by
choosing the best model on the validation set. All
models are implemented with TensorFlow (Abadi
et al., 2016) and are trained using one NVIDIA
GeForce GTX TITAN X GPU with 12GB mem-
ory.

Baselines For document classification, we con-
sider several baseline models: (i) ngrams (Zhang
et al., 2015), a bag-of-means method based
on TFIDF representations built by choosing the
500,000 most frequent n-grams (up to 5-grams)
from the training set and use their correspond-
ing counts as features; (ii) small/large word CNN
(Zhang et al., 2015): 6 layer word-based convo-
lutional networks, with 256/1024 features at each
layer, denoted as small/large, respectively; (iii)
deep CNN (Conneau et al., 2016): deep con-
volutional neural networks with 9/17/29 layers.
To evaluate the effectiveness of proposed AdaQA
model, we compare it with several CNN-based
sequence matching baselines, including Vanilla
CNN (Jurczyk et al., 2016; Santos et al., 2017), at-
tentive pooling networks (dos Santos et al., 2016),
and ABCNN (Yin et al., 2016) (where an attention
mechanism is employed over the two sentence rep-
resentations).

Evaluation Metrics For document categoriza-
tion and paraphrase identification tasks, we em-
ploy the percentage of correct predictions on the
test set to evaluate and compare different models.

Model Yelp P. DBpedia
CNN-based Baseline Models

ngrams⇤ 4.36 1.37
ngrams TFIDF⇤ 4.56 1.31

Small word CNN⇤ 5.54 1.85
Large word CNN⇤ 4.89 1.72

Self-attentive Embedding ‡ 3.92 1.14
Deep CNN (9 layer)† 4.88 1.35

Deep CNN (17 layer)† 4.50 1.40
Deep CNN (29 layer)† 4.28 1.29

Our Implementations
S-CNN 14.48 22.35

S-ACNN 6.41 5.16
M-CNN 4.58 1.66

M-ACNN 3.89 1.07

Table 2: Test error rates on document classification tasks (in
percentages). S-model indicates that the model has one single
convolutional filter, while M-model indicates that the model
has multiple convolutional filters. Results marked with ⇤ are
reported by (Zhang et al., 2015), † are reported by (Conneau
et al., 2016), and ‡ are reported by (Lin et al., 2017).

For the answer sentence selection task, mean av-
erage precision (MAP) and mean reciprocal rank
(MRR) are utilized as the corresponding evalua-
tion metrics.

5 Experimental Results

5.1 Document Classification
To explicitly explore whether our ACNN model
can leverage the input-aware filter weights for bet-
ter sentence representation, we perform a compar-
ison between the basic CNN and ACNN models
with only a single filter, which are denoted as S-
CNN, S-ACNN, respectively (this setting may not
yield best overall performance, since only a sin-
gle filter is used, but it allows us to isolate the im-
pact of adaptivity). As illustrated in Table 2, S-
ACNN significantly outperforms S-CNN on both
datasets, demonstrating the advantage of the filter-
generation module in our ACNN framework. As
a result, with only one convolutional filter and
thus very limited modeling capacity, our S-ACNN
model tends to be much more expressive than the
basic CNN model, due to the flexibility of apply-
ing different filters to different sentences.

We further experiment on both ACNN and CNN
models with multiple filters. The corresponding
document categorization accuracies are presented
in Table 2. Although we only use one convolu-
tion layer for our ACNN model, it already out-
performs other CNN baseline methods with much
deeper architectures. Moreover, our method ex-
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Model MAP MRR
CNN-based Baseline Models

bigram CNN + Cnt⇤ 0.6520 0.6652
Attentive Pooling Network 0.6886 0.6957

ABCNN 0.6921 0.7127
Our Implementations

CNN 0.6752 0.6890
ACNN (self-adaptive) 0.6897 0.7032

AdaQA (one-way) 0.7005 0.7161
AdaQA (two-way) 0.7107 0.7304

AdaQA (two-way) + att. 0.7325 0.7428

Table 3: Results of our models on WikiQA dataset, com-
pared with previous CNN-based methods.

hibits higher accuracy than n-grams, which is a
very strong baseline as shown in (Zhang et al.,
2015). We attribute the superior performance
of the ACNN framework to its stronger (adap-
tive) feature-extraction ability. Moreover, our M-
ACNN also achieves slightly better performance
than self-attentive sentence embeddings proposed
in Lin et al. (2017), which requires significant
more parameters than our method.

Effect of number of filters To further demon-
strate that the performance gains in document cat-
egorization experiments originates from the im-
proved adaptivity of our ACNN framework, we
implement the basic CNN model with different
numbers of filter sizes, ranging from 1 to 1000.
As illustrated in Figure 3(a), when the filter size
is larger than 100, the test accuracy of the stan-
dard CNN model does not show any noticeable
improvement with more filters. More importantly,
even with a filter size of 1000, the classification
accuracy of the CNN is worse than that of the
ACNN model with the filter number restricted to
100. Given these observations, we believe that the
boosted categorization accuracy does come from
the improved flexibility and thus better feature ex-
traction of our ACNN framework.

5.2 Answer Sentence Selection
To elucidate the role of different parts (modules) in
our AdaQA model, we implement several model
variants for comparison: (i) a “vanilla” CNN
model that independently encodes two sentence
representations for matching; (ii) a self-adaptive
ACNN-based model where the question/answer
sentence generates adaptive filters only to con-
volve with the input itself; (iii) a one-way ACNN
model where only the answer sentence represen-
tation is extracted with adaptive filters, which

Model MAP MRR
CNN-based Baseline Models

CNN: baseline⇤ 0.8320 0.8420
CNN: average + word⇤ 0.8400 0.8494

CNN: aver + emb⇤ 0.8466 0.8568
CNN: hinge loss‡ 0.8758 0.8812

CNN-DAN‡ 0.8655 0.8730
Our Implementations

CNN 0.8644 0.8720
ACNN (self-adaptive) 0.8739 0.8801

AdaQA (one-way) 0.8823 0.8889
AdaQA (two-way) 0.8914 0.8983

AdaQA (two-way) + att. 0.9021 0.9103

Table 4: Results of our models on SelQA dataset, compared
with previous CNN-based methods. Results marked with ⇤

are from (Jurczyk et al., 2016), and marked with ‡ are from
(Santos et al., 2017).

are generated conditioned on the question; (iv)
a two-way AdaQA model as described in Sec-
tion 2.4, where both sentences are adaptively en-
coded, with filters generated conditioned on the
other sequence; (v) considering that the proposed
filter generation mechanism is complementary to
the attention layer typically employed in sequence
matching tasks (see Section 3.4), we experiment
with another model variant that combines the pro-
posed context-aware filter generation mechanism
with the multi-perspective attention layer intro-
duced in (Wang et al., 2017b).

Tables 3 and 4 show experimental results of
our models on WikiQA and SelQA datasets, along
with other state-of-the-art methods. Note that the
self-adaptive ACNN model variant, which gen-
erates filters only for the input itself (without
any interactions before the top matching module),
slightly outperforms the vanilla CNN Siamese
model. Combined with the results in document
categorization experiments, we believe that our
ACNN framework, in its simplest form, can be uti-
lized as a powerful feature extractor for transform-
ing natural language sentences into fixed-length
vectors. More importantly, our two-way AdaQA
model exhibits superior results compared with the
one-way variant as well as other CNN-based base-
line models on the WikiQA dataset. This obser-
vation indicates that the bidirectional filter gener-
ation mechanism is strongly associated with the
performance gains. While combined with the
multi-perspective attention layers, adopted after
the ACNN encoding layer, our two-way AdaQA
model achieves even better performance. This
suggests that the proposed strategy is complemen-
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Figure 3: Comprehensive study of the proposed ACNN framework, including (a) the number of filters (Yelp dataset), and (b)
performance vs question types (WikiQA dataset), and (c) t-SNE visualization of learned filter weights (DBpedia dataset).

Model Accuracy
Siamese-CNN 0.7960

Multi-Perspective-CNN 0. 8138
AdaQA (two-way) 0.8516

AdaQA (two-way) + att. 0.8794

Table 5: Results on the Quora Question Pairs dataset.

tary, in terms of the incorporation of rich contex-
tual information, to the standard attention mech-
anism. The same trend is also observed on the
SelQA dataset (as shown in Table 4), which is a
much larger dataset than WikiQA.

Notably, our model yields significantly bet-
ter results than an attentive pooling network and
ABCNN (attention-based CNN) baselines. We at-
tribute the improvement to two potential advan-
tages of our AdaQA model: (i) for the two pre-
vious baseline methods, the interaction between
question and answer takes place either before or
after convolution. However, in our AdaQA model,
the communication between two sentences is in-
herent in the convolution operation, and thus can
provide the abstracted features with more flexibil-
ity; (ii) the bidirectional filter generation mecha-
nism in our AdaQA model generates co-dependent
representations for the question and candidate an-
swer, which could enable the model to recover
from initial local maxima corresponding to incor-
rect predictions (Xiong et al., 2017).

Paragraph Identification Considering that the
proposed AdaQA model can be readily general-
ized to other text sequence matching problems,
we further evaluate the proposed framework on
the paraphrase identification task with the Quora
question pairs dataset. To ensure a fair compari-
son, we employ the same data splits as in (Wang
et al., 2017b). As illustrated in Table 5, our two-
way AdaQA model again exhibits superior perfor-
mances compared with basic CNN models (as re-
ported in (Wang et al., 2017b)).

5.3 Discussion
Reasoning ability To associate the improved
answer sentence selection results with the reason-
ing capabilities of our AdaQA model, we further
categorize the questions in the WikiQA test set
into 5 types containing: ‘What’, ‘Where’, ‘How’,
‘When’ or ‘Who’. We then calculate the MAP
scores of the basic CNN and our AdaQA model
on different question types. Similar to the find-
ings in (Miao et al., 2016), we observe that the
‘How’ question is the hardest to answer, with the
lowest MAP scores. However, our AdaQA model
improves most over the basic CNN on the ‘How’
type question, see Figure 3(b). Further compar-
ing our results with NASM in (Miao et al., 2016),
our AdaQA model (with a MAP score of 0.579)
outperforms their reported ‘How’ question MAP
scores (0.524) by a large margin, indicating that
the adaptive convolutional filter-generation mech-
anism improves the model’s ability to read and
reason over natural language sentences.

Filter visualization To better understand what
information has been encoded into our context-
aware filters, we visualize one of the filters for
sentences within the test set (on the DBpedia
dataset) with t-SNE. The corresponding results are
shown in Figure 3(c). It can be observed that the
filters for documents with the same label (ontol-
ogy) are grouped into clusters, indicating that for
different types of document, ACNN has leveraged
distinct convolutional filters for better feature ex-
traction.

6 Conclusions
We presented a context-aware convolutional filter-
generation mechanism, introducing a meta net-
work to adaptively produce a set of input-aware
filters. In this manner, the filter weights vary from
sample to sample, providing the CNN encoder net-
work with more modeling flexibility and capacity.
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This framework is further generalized to model
question-answer sentence pairs, leveraging a two-
way feature abstraction process. We evaluate our
models on several document-categorization and
sentence matching benchmarks, and they consis-
tently outperform the standard CNN and attention-
based CNN baselines, demonstrating the effective-
ness of our framework.
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Abstract

We explore several new models for document
relevance ranking, building upon the Deep
Relevance Matching Model (DRMM) of Guo
et al. (2016). Unlike DRMM, which uses
context-insensitive encodings of terms and
query-document term interactions, we inject
rich context-sensitive encodings throughout
our models, inspired by PACRR’s (Hui et al.,
2017) convolutional n-gram matching fea-
tures, but extended in several ways including
multiple views of query and document inputs.
We test our models on datasets from the
BIOASQ question answering challenge (Tsat-
saronis et al., 2015) and TREC ROBUST 2004
(Voorhees, 2005), showing they outperform
BM25-based baselines, DRMM, and PACRR.

1 Introduction

Document relevance ranking, also known as ad-
hoc retrieval (Harman, 2005), is the task of rank-
ing documents from a large collection using the
query and the text of each document only. This
contrasts with standard information retrieval (IR)
systems that rely on text-based signals in con-
junction with network structure (Page et al., 1999;
Kleinberg, 1999) and/or user feedback (Joachims,
2002). Text-based ranking is particularly impor-
tant when (i) click-logs do not exist or are small,
and (ii) the network structure of the collection is
non-existent or not informative for query-focused
relevance. Examples include various domains in
digital libraries, e.g., patents (Azzopardi et al.,
2010) or scientific literature (Wu et al., 2015; Tsat-
saronis et al., 2015); enterprise search (Hawking,
2004); and personal search (Chirita et al., 2005).

We investigate new deep learning architectures
for document relevance ranking, focusing on term-
based interaction models, where query terms (q-
terms for brevity) are scored relative to a docu-

q1 q2 q3

Doc-Aware Query
Term Encodings

Document Terms

Dense Layers

Term Score Aggregation
Term Gating

Relevance Score

Doc-Query Interaction

d1 d2 … dm

Figure 1: Illustration of DRMM (Guo et al., 2016) for a
query of three terms and a document of m terms.

ment’s terms (d-terms) and their scores are aggre-
gated to produce a relevance score for the docu-
ment. Specifically, we use the Deep Relevance
Matching Model (DRMM) of Guo et al. (2016)
(Fig. 1), which was shown to outperform strong
IR baselines and other recent deep learning meth-
ods. DRMM uses pre-trained word embeddings
for q-terms and d-terms, and cosine similarity his-
tograms (outputs of ⌦ in Fig. 1), each capturing
the similarity of a q-term to all the d-terms of a
particular document. The histograms are fed to
an MLP (dense layers of Fig. 1) that produces the
(document-aware) score of each q-term. Each q-
term score is then weighted using a gating mech-
anism (topmost box nodes in Fig. 1) that exam-
ines properties of the q-term to assess its impor-
tance for ranking (e.g., common words are less im-
portant). The sum of the weighted q-term scores
is the relevance score of the document. This ig-
nores entirely the contexts where the terms occur,
in contrast to recent position-aware models such
as PACRR (Hui et al., 2017) or those based on re-
current representations (Palangi et al., 2016).

In order to enrich DRMM with context-sensitive
representations, we need to change fundamentally
how q-terms are scored. This is because rich
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context-sensitive representations – such as input
term encodings based on RNNs or CNNs – require
end-to-end training and histogram construction is
not differentiable. To account for this we inves-
tigate novel query-document interaction mecha-
nisms that are differentiable and show empirically
that they are effective ways to enable end-to-end
training of context-sensitive DRMM models. This
is the primary contribution of this paper.

Overall, we explore several extensions to
DRMM, including: PACRR-like convolutional n-
gram matching features (§3.1); context-sensitive
term encodings (§3.2); query-focused attention-
based document representations (§3.3); pooling to
reward denser term matches and turn rich term
representations into fixed-width vectors (§3.4);
multiple views of terms, e.g., context sensitive, in-
sensitive, exact matches (§3.5).

We test our models on data from the BIOASQ
biomedical question answering challenge (Tsat-
saronis et al., 2015) and TREC ROBUST 2004
(Voorhees, 2005), showing that they outper-
form strong BM25-based baselines (Robertson and
Zaragoza, 2009), DRMM, and PACRR.1

2 Related Work

Document ranking has been studied since the
dawn of IR; classic term-weighting schemes were
designed for this problem (Sparck Jones, 1988;
Robertson and Sparck Jones, 1988). With the
advent of statistical NLP and statistical IR, prob-
abilistic language and topic modeling were ex-
plored (Zhai and Lafferty, 2001; Wei and Croft,
2006), followed recently by deep learning IR
methods (Lu and Li, 2013; Hu et al., 2014; Palangi
et al., 2016; Guo et al., 2016; Hui et al., 2017).

Most document relevance ranking methods fall
within two categories: representation-based, e.g.,
Palangi et al. (2016), or interaction-based, e.g.,
Lu and Li (2013). In the former, representations
of the query and document are generated inde-
pendently. Interaction between the two only hap-
pens at the final stage, where a score is gener-
ated indicating relevance. End-to-end learning
and backpropagation through the network tie the
two representations together. In the interaction-
based paradigm, explicit encodings between pairs
of queries and documents are induced. This al-

1The code and data of our experiments, including word
embeddings, are available at https://github.com/
nlpaueb/deep-relevance-ranking.

lows direct modeling of exact- or near-matching
terms (e.g., synonyms), which is crucial for rele-
vance ranking. Indeed, Guo et al. (2016) showed
that the interaction-based DRMM outperforms pre-
vious representation-based methods. On the other
hand, interaction-based models are less efficient,
since one cannot index a document representation
independently of the query. This is less important,
though, when relevance ranking methods rerank
the top documents returned by a conventional IR
engine, which is the scenario we consider here.

One set of our experiments ranks biomedical
texts. Several methods have been proposed for
the BIOASQ challenge (Tsatsaronis et al., 2015),
mostly based on traditional IR techniques. The
most related work is of Mohan et al. (2017), who
use a deep learning architecture. Unlike our work,
they focus on user click data as a supervised sig-
nal, and they use context-insensitive representa-
tions of document-query interactions. The other
dataset we experiment with, TREC ROBUST 2004
(Voorhees, 2005), has been used extensively to
evaluate traditional and deep learning IR methods.

Document relevance ranking is also related to
other NLP tasks. Passage scoring for question an-
swering (Surdeanu et al., 2008) ranks passages by
their relevance to the question; several deep net-
works have been proposed, e.g., Tan et al. (2015).
Short-text matching/ranking is also related and
has seen recent deep learning solutions (Lu and
Li, 2013; Hu et al., 2014; Severyn and Moschitti,
2015). In document relevance ranking, though,
documents are typically much longer than queries,
which makes methods from other tasks that con-
sider pairs of short texts not directly applicable.

Our starting point is DRMM, to which we add
richer representations inspired by PACRR. Hence,
we first discuss DRMM and PACRR further.

2.1 DRMM
We have already presented an overview of DRMM.
For gating (topmost box nodes of Fig. 1), Guo
et al. (2016) use a linear self-attention:

gi = softmax
⇣
wT

g �g(qi); q1, . . . , qn

⌘

where �g(qi) is the embedding e(qi) of the i-th q-
term, or its IDF, idf(qi), and wg is a weights vector.
Gating aims to weight the (document-aware) score
of each q-term (outputs of dense layers in Fig. 1)
based on the importance of the term. We found
that �g(qi) = [e(qi); idf(qi)], where ‘;’ is concate-
nation, was optimal for all DRMM-based models.
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Figure 2: PACRR (Hui et al., 2017) and PACRR-DRMM.

The crux of the original DRMM are the bucketed
cosine similarity histograms (outputs of ⌦ nodes
in Fig. 1), each capturing the similarity of a q-term
to all the d-terms. In each histogram, each bucket
counts the number of d-terms whose cosine sim-
ilarity to the q-term is within a particular range.
Consider a document with three terms, with co-
sine similarities, s, to a particular q-term qi 0.5,
0.1, �0.3, respectively. If we used two buckets
�1  s < 0 and 0  s  1, then the input to the
dense layers for qi would be h1, 2i. The fixed num-
ber of buckets leads to a fixed-dimension input
for the dense layers and makes the model agnos-
tic to different document and query lengths – one
of DRMM’s main strengths. The main disadvan-
tage is that bucketed similarities are independent
of the contexts where terms occur. A q-term ‘regu-
lated’ will have a perfect match with a d-term ‘reg-
ulated’, even if the former is ‘up regulated’ and the
latter is ‘down regulated’ in context. Also, there is
no reward for term matches that preserve word or-
der, or multiple matches within a small window.

2.2 PACRR
In PACRR (Hui et al., 2017), a query-document
term similarity matrix sim is computed (Fig. 2A).
Each cell (i, j) of sim contains the cosine similar-
ity between the embeddings of a q-term qi and a d-
term dj . To keep the dimensions lq⇥ld of sim fixed
across queries and documents of varying lengths,
queries are padded to the maximum number of q-
terms lq, and only the first ld terms per document
are retained.2 Then, convolutions (Fig. 2A) of dif-
ferent kernel sizes n ⇥ n (n = 2, . . . , lg) are ap-
plied to sim to capture n-gram query-document
similarities. For each size n ⇥ n, multiple ker-

2We use PACRR-firstk, which Hui et al. (2017) recommend
when documents fit in memory, as in our experiments.

nels (filters) are used. Max pooling is then applied
along the dimension of the filters (max value of
all filters), followed by row-wise k-max pooling
to capture the strongest k signals between each q-
term and all the d-terms. The resulting matrices
are concatenated into a single matrix where each
row is a document-aware q-term encoding; the IDF
of the q-term is also appended, normalized by ap-
plying a softmax across the IDFs of all the q-terms.
Following Hui et al. (2018), we concatenate the
rows of the resulting matrix into a single vector,
which is passed to an MLP (Fig. 2A, dense layers)
that produces a query-document relevance score.3

The primary advantage of PACRR over DRMM
is that it models context via the n-gram convo-
lutions, i.e., denser n-gram matches and matches
preserving word order are encoded. However, this
context-sensitivity is weak, as the convolutions
operate over the similarity matrix, not directly on
terms or even term embeddings. Also, unlike
DRMM, PACRR requires padding and hyperparam-
eters for maximum number of q-terms (lq) and d-
terms (ld), since the convolutional and dense lay-
ers operate over fixed-size matrices and vectors.
On the other hand, PACRR is end-to-end trainable
– though Hui et al. (2017) use fixed pre-trained
embeddings – unlike DRMM where the bucketed
histograms are not differentiable.

3 New Relevance Ranking Models

3.1 PACRR-DRMM
In a DRMM-like version of PACRR, instead of us-
ing an MLP (dense layers, Fig. 2A) to score the
concatenation of all the (document-aware) q-term
encodings, the MLP independently scores each q-
term encoding (the same MLP for all q-terms,
Fig. 2B); the resulting scores are aggregated via
a linear layer. This version, PACRR-DRMM, per-
forms better than PACRR, using the same number
of hidden layers in the MLPs. Likely this is due to
the fewer parameters of its MLP, which is shared
across the q-term representations and operates on
shorter input vectors. Indeed, in early experiments
PACRR-DRMM was less prone to over-fitting.

In PACRR-DRMM, the scores of the q-terms
(outputs of dense layers, Fig. 2B) are not weighted
by a gating mechanism, unlike DRMM (Fig. 1).
Nevertheless, the IDFs of the q-terms, which are
appended to the q-term encodings (Fig. 2B), are a

3Hui et al. (2017) used an additional LSTM, which was
later replaced by the final concatanation (Hui et al., 2018).
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form of term-gating (shortcut passing on informa-
tion about the terms, here their IDFs, to upper lay-
ers) applied before scoring the q-terms. By con-
trast, in DRMM (Fig. 1) term-gating is applied after
q-term scoring, and operates on [e(qi); idf(qi)].

3.2 Context-sensitive Term Encodings
In their original incarnations, DRMM and PACRR
use pre-trained word embeddings that are insen-
sitive to the context of a particular query or doc-
ument where a term occurs. This contrasts with
the plethora of systems that use context-sensitive
word encodings (for each particular occurrence of
a word) in virtually all NLP tasks (Bahdanau et al.,
2014; Plank et al., 2016; Lample et al., 2016). In
general, this is achieved via RNNs, e.g., LSTMs
(Gers et al., 2000), or CNNs (Bai et al., 2018).

In the IR literature, context-sensitivity is typi-
cally viewed through two lenses: term proximity
(Büttcher et al., 2006) and term dependency (Met-
zler and Croft, 2005). The former assumes that
the context around a term match is also relevant,
whereas the latter aims to capture when multiple
terms (e.g., an n-gram) must be matched together.
An advantage of neural network architectures like
RNNs and CNNs is that they can capture both.

In the models below (§§3.3–3.4), an encoder
produces the context-sensitive encoding of each q-
term or d-term from the pre-trained embeddings.
To compute this we use a standard BILSTM encod-
ing scheme and set the context-sentence encod-
ing as the concatenation of the last layer’s hidden
states of the forward and backward LSTMs at each
position. As is common for CNNs and even re-
cent RNN term encodings (Peters et al., 2018), we
use the original term embedding e(ti) as a resid-
ual and combine it with the BILSTM encodings.
Specifically, if�!h (ti) and �h (ti) are the last layer’s
hidden states of the left-to-right and right-to-left
LSTMs for term ti, respectively, then we set the
context-sensitive term encoding as:

c(ti) = [
�!
h (ti) + e(ti);

 �
h (ti) + e(ti)] (1)

Since we are adding the original term embedding
to each LSTM hidden state, we require the dimen-
sionality of the hidden layers to be equal to that
of the original embedding. Other methods were
tried, including passing all representations through
an MLP, but these had no effect on performance.

This is an orthogonal way to incorporate context
into the model relative to PACRR. PACRR creates

a query-document similarity matrix and computes
n-gram convolutions over the matrix. Here we in-
corporate context directly into the term encodings;
hence similarities in this space are already context-
sensitive. One way to view this difference is the
point at which context enters the model – directly
during term encoding (Eq. 1) or after term similar-
ity scores have been computed (PACRR, Fig. 2).

3.3 ABEL-DRMM
Using the context-sensitive q-term and d-term en-
codings of §3.2 (Eq. 1), our next extension to
DRMM is to create document-aware q-term encod-
ings that go beyond bucketed histograms of cosine
similarities, the stage in Fig. 1 indicated by⌦. We
focus on differentiable encodings to facilitate end-
to-end training from inputs to relevance scores.

Figure 3 shows the sub-network that computes
the document-aware encoding of a q-term qi in the
new model, given a document d = hd1, . . . , dmi
of m d-terms. We first compute a dot-product4

attention score ai,j for each dj relative to qi:

ai,j = softmax
⇣
c(qi)

T c(dj); d1, . . . , dm

⌘
(2)

where c(t) is the context-sensitive encoding of t
(Eq. 1). We then sum the context-sensitive encod-
ings of the d-terms, weighted by their attention
scores, to produce an attention-based representa-
tion dqi of document d from the viewpoint of qi:

dqi =
X

j

ai,j c(dj) (3)

The Hadamard product (element-wise multiplica-
tion, �) between the (L2-normalized) document
representation dqi and the q-term encoding c(qi)
is then computed and used as the fixed-dimension
document-aware encoding �H(qi) of qi (Fig. 3):

�H(qi) =
dqi

||dqi ||
� c(qi)

||c(qi)||
(4)

The ⌦ nodes and lower parts of the DRMM net-
work of Fig. 1 are now replaced by (multiple
copies of) the sub-network of Fig. 3 (one copy
per q-term), with the � nodes replacing the ⌦
nodes. We call the resulting model Attention-
Based ELement-wise DRMM (ABEL-DRMM).

Intuitively, if the document contains one or
more terms dj that are similar to qi, the attention

4Dot-products have a larger range than other similarity
functions, encouraging low entropy attention distributions.
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Figure 3: ABEL-DRMM sub-net. From context-aware
q-term and d-term encodings (Eq. 1), it generates fixed-
dimension document-aware q-term encodings to be
used in DRMM (Fig. 1, replacing ⌦ nodes).

mechanism will have emphasized mostly those
terms and, hence, dqi will be similar to c(qi),
otherwise not. This similarity could have been
measured by the cosine similarity between dqi

and c(qi), but the cosine similarity assigns the
same weight to all the dimensions, i.e., to all the
(L2 normalized) element-wise products in �H(qi),
which cosine similarity just sums. By using the
Hadamard product, we pass on to the upper layers
of DRMM (the dense layers of Fig. 1), which score
each q-term with respect to the document, all the
(normalized) element-wise products of �H(qi), al-
lowing the upper layers to learn which element-
wise products (or combinations of them) are im-
portant when matching a q-term to the document.

Other element-wise functions can also be used
to compare dqi to c(qi), instead of the Hadamard
product (Eq. 4). For example, a vector contain-
ing the squared terms of the Euclidean distance
between dqi and c(qi) could be used instead of
�H(qi). This change had no effect on ABEL-
DRMM’s performance on development data. We
also tried using [dqi ; c(qi)] instead of �H(qi), but
performance on development data deteriorated.

ABEL-DRMM is agnostic to document length,
like DRMM. ABEL-DRMM, however, is trainable
end-to-end, unlike the original DRMM. Still, both
models do not reward higher density matches.

3.4 POSIT-DRMM

Ideally, we want models to reward both the maxi-
mum match between a q-term and a document, but
also the average match (between several q-terms
and the document) to reward documents that have
a higher density of matches. The document-aware
q-term scoring of ABEL-DRMM does not account
for this, as the attention summation hides whether
a single or multiple terms were matched with high
similarity. We also want models to be end-to-end
trainable, like ABEL-DRMM.

Figure 4 (context-sensitive box) outlines a sim-
ple network that produces document-aware q-
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Figure 4: POSIT-DRMM with multiple views (+MV).
Three two-dimensional document-aware q-term encod-
ings, one from each view, are produced, concatenated,
and used in DRMM (Fig. 1, replacing ⌦ nodes).

term encodings, replacing the ABEL-DRMM sub-
network of Fig. 3 in the DRMM framework. We
call the resulting model POoled SImilariTy DRMM
(POSIT-DRMM). As in ABEL-DRMM, we compute
an attention score ai,j for each dj relative to qi,
now using cosine similarity (cf. Eq. 2):

ai,j =
c(qi)T c(dj)

||c(qi)|| ||c(dj)||
(5)

However, we do not use the ai,j scores to compute
a weighted average of the encodings of the d-terms
(cf. Eq. 3), which is also why there is no softmax
in ai,j above (cf. Eq. 2).5 Instead, we concatenate
the attention scores of the m d-terms:

ai = hai,1, . . . , ai,j , . . . , ai,miT

and we apply two pooling steps on ai to create a 2-
dimensional document-aware encoding �P (qi) of
the q-term qi (Fig. 4). First max-pooling, which
returns the single best match of qi in the docu-
ment. Then average pooling over a k-max-pooled
version of ai, which represents the average simi-
larity for the top k matching terms:

�P (qi) =
D

max(ai), avg
⇣

k-max(ai)
⌘ET

POSIT-DRMM has many fewer parameters than
the other models. The input to the upper q-
term scoring dense layers of the DRMM framwork
(Fig. 1) for ABEL-DRMM has the same dimension-
ality as pre-trained term embeddings, on the order
of hundreds. By contrast, the input dimensionality
here is 2. Hence, POSIT-DRMM does not require
deep dense layers, but uses a single layer (depth
1). More information on hyperparameters is pro-
vided in Appendix A (supplementary material).

POSIT-DRMM is closely related to PACRR (and
PACRR-DRMM). Like POSIT-DRMM, PACRR first

5The ai,js still need to be normalized for input to the up-
per layers, but they do not need to be positive summing to
1. This is why we use cosine similarity in Eq. 5 instead of
dot-products combined with softmax of Eq. 2.
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computes cosine similarities between all q-terms
and d-terms (Fig. 2). It then applies n-gram con-
volutions to the similarity matrix to inject context-
awareness, and then pooling to create document-
aware q-term representations. Instead, POSIT-
DRMM relies on the fact that the term encodings
are now already context sensitive (Eq. 1) and thus
skips the n-gram convolutions. Again, this is a
choice of when context is injected – during term
encoding or after computing similarity scores.

Mohan et al.’s work (2017) is related in the
sense that for each q-term, document-aware en-
codings are built over the best matching (Eu-
clidean distance) d-term. But again, term encod-
ings are context-insensitive pre-trained word em-
beddings and the model is not trained end-to-end.

3.5 Multiple Views of Terms (+MV)
An extension to ABEL-DRMM and POSIT-DRMM
(or any deep model) is to use multiple views of
terms. The basic POSIT-DRMM produces a two-
dimensional document-aware encoding of each q-
term (Fig. 4, context-sensitive box) viewing the
terms as their context-sensitive encodings (Eq. 1).
Another two-dimensional document-aware q-term
encoding can be produced by viewing the terms
directly as their pre-trained embeddings without
converting them to context-sensitive encodings
(Fig. 4, context-insensitive box). A third view uses
one-hot vector representations of terms, which al-
lows exact term matches to be modeled, as op-
posed to near matches in embedding space. Con-
catenating the outputs of the 3 views, we obtain
6-dimensional document-aware q-term encodings,
leading to a model dubbed POSIT-DRMM+MV. An
example of this multi-view document-aware query
term representation is given in Fig. 5 for a query-
document pair from BIOASQ’s development data.

The multi-view extension of ABEL-DRMM
(ABEL-DRMM+MV) is very similar, i.e., it uses
context-sensitive term encodings, pre-trained term
embeddings, and one-hot term encodings in its
three views. The resulting three document-aware
q-term embeddings can be summed or concate-
nated, though we found the former more effective.

3.6 Alternative Network Structures
The new models (§§3.1–3.5) were selected by ex-
perimenting on development data. Many other ex-
tensions were considered, but not ultimately used
as they were not beneficial empirically, includ-
ing deeper and wider RNNs or CNN encoders (Bai

et al., 2018); combining document-aware encod-
ings from all models; different attention mecha-
nisms, e.g., multi-head (Vaswani et al., 2017).

Pointer Networks (Vinyals et al., 2015) use the
attention scores directly to select an input compo-
nent. POSIT-DRMM does this via max and aver-
age pooling, not argmax. We implemented Pointer
Networks – argmax over ABEL-DRMM attention to
select the best d-term encoding – but empirically
this was similar to ABEL-DRMM. Other architec-
tures considered in the literature include the K-
NRM model of Xiong et al. (2017). This is similar
to both ABEL-DRMM and POSIT-DRMM in that it
can be viewed as an end-to-end version of DRMM.
However, it uses kernels over the query-document
interaction matrix to produce features per q-term.

The work of Pang et al. (2017) is highly related
and investigates many different structures, specif-
ically aimed at incorporating context-sensitivity.
However, unlike our work, Pang et al. first ex-
tract contexts (n-grams) of documents that match
q-terms. Multiple interaction matrices are then
constructed for the entire query relative to each
of these contexts. These document contexts may
match one or more q-terms allowing the model to
incorporate term proximity. These interaction ma-
trices can also be constructed using exact string
match similar to POSIT-DRMM+MV.

4 Experiments
We experiment with ad-hoc retrieval datasets with
hundreds of thousands or millions of documents.
As deep learning models are computationally ex-
pensive, we first run a traditional IR system6 using
the BM25 score (Robertson and Zaragoza, 2009)
and then re-rank the top N returned documents.

4.1 Methods Compared
All systems use an extension proposed by Sev-
eryn and Moschitti (2015), where the relevance
score is combined via a linear model with a set
of extra features. We use four extra features: z-
score normalized BM25 score; percentage of q-
terms with exact match in the document (regular
and IDF weighted); and percentage of q-term bi-
grams matched in the document. The latter three
features were taken from Mohan et al. (2017).

In addition to the models of §§2.1, 2.2, 3.1–3.5,
we used the following baselines: Standard Okapi

6We used Galago (http://www.lemurproject.
org/galago.php, v.3.10). We removed stop words and
applied Krovetz’s stemmer (Krovetz, 1993).
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BM25 (BM25); and BM25 re-ranked with a linear
model over the four extra features (BM25+extra).
These IR baselines are very strong and most re-
cently proposed deep learning models do not beat
them.7 DRMM and PACRR are also strong base-
lines and have shown superior performance over
other deep learning models on a variety of data
(Guo et al., 2016; Hui et al., 2017).8

All hyperparameters were tuned on develop-
ment data and are available in Appendix A. All
models were trained using Adam (Kingma and Ba,
2014) with batches containing a randomly sam-
pled negative example per positive example9 and a
pair-wise loss. As the datasets contain only docu-
ments marked as relevant, negative examples were
sampled from the top N documents (returned by
BM25) that had not been marked as relevant.

We evaluated the models using the TREC ad-hoc
retrieval evaluation script10 focusing on MAP, Pre-
cision@20 and nDCG@20 (Manning et al., 2008).
We trained each model five times with different
random seeds and report the mean and standard
deviation for each metric on test data; in each run,
the model selected had the highest MAP on the de-
velopment data. We also report results for an ora-
cle, which re-ranks the N documents returned by
BM25 placing all human-annotated relevant doc-
uments at the top. To test for statistical signif-
icance between two systems, we employed two-
tailed stratified shuffling (Smucker et al., 2007;
Dror et al., 2018) using the model with the highest
development MAP over the five runs per method.

4.2 BioASQ Experiments

Our first experiment used the dataset of the
document ranking task of BIOASQ (Tsatsaronis
et al., 2015), years 1–5.11 It contains 2,251 En-
glish biomedical questions, each formulated by a
biomedical expert, who searched (via PubMed12)
for, and annotated relevant documents. Not all rel-
evant documents were necessarily annotated, but
the data includes additional expert relevance judg-

7See, for example, Table 2 of Guo et al. (2016).
8For PACRR/PACRR-DRMM, we used/modified the code

released by Hui et al. (2017, 2018). We use our own im-
plementation of DRMM, which performs roughly the same as
Guo et al. (2016), though the results are not directly compa-
rable due to different random partitions of the data.

9We limit positive examples to be in the top N documents.
10https://trec.nist.gov/trec_eval/ (v9.0)
11http://bioasq.org/.
12https://www.ncbi.nlm.nih.gov/pubmed/

ments made during the official evaluation.13

The document collection consists of approx.
28M ‘articles’ (titles and abstracts only) from the
‘MEDLINE/PubMed Baseline 2018’ collection.14

We discarded the approx. 10M articles that con-
tained only titles, since very few of these were an-
notated as relevant. For the remaining 18M arti-
cles, a document was the concatenation of each
title and abstract. Consult Appendix B for further
statistics of the dataset. Word embeddings were
pre-trained by applying word2vec (Mikolov et al.,
2013) (see Appendix A for hyper-parameters) to
the 28M ‘articles’ of the MEDLINE/PubMed col-
lection. IDF values were computed over the 18M
articles that contained both titles and abstracts.

The 1,751 queries of years 1–4 were used for
training, the first 100 queries of year 5 (batch 1)
for development, and the remaining 400 queries of
year 5 (batches 2–5) as test set. We set N = 100,
since even using only the top 100 documents of
BM25, the oracle scores are high. PubMed arti-
cles published after 2015 for the training set, and
after 2016 for the development and test sets, were
removed from the top N (and replaced by lower
ranked documents up to N ), as these were not
available at the time of the human annotation.

Table 1 reports results on the BIOASQ test set,
averaged over five runs as well as the single best
run (by development MAP) with statistical signif-
icance. The enhanced models of this paper per-
form better than BM25 (even with extra features),
PACRR, and DRMM. There is hardly any differ-
ence between PACRR and DRMM, but our combi-
nation of the two (PACRR-DRMM) surpasses them
both on average, though the difference is statisti-
cally significant (p < 0.05) only when comparing
to PACRR. Models that use context-sensitive term
encodings (ABEL-DRMM, POSIT-DRMM) outper-
form other models, even PACRR-style models that
incorporate context at later stages in the network.
This is true both on average and by statistical sig-
nificance over the best run. The best model on av-
erage is POSIT-DRMM+MV, though it is not signif-
icantly different than POSIT-DRMM.

4.3 TREC Robust 2004 Experiments
Our primary experiments were on the BIOASQ
dataset as it has one of the largest sets of queries

13Our results are, thus, not comparable to those of partici-
pating systems, since experts did not consider our outputs.

14See https://www.nlm.nih.gov/databases/
download/pubmed_medline.html.
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AVERAGE OVER FIVE RUNS WITH STD. DEV.
System MAP P@20 nDCG@20

Traditional IR Baselines
BM25 46.1 ± .0 25.5 ± .0 55.4 ± .0
BM25+extra 48.7 ± .0 26.6 ± .0 58.1 ± .0

Deep Learning Baselines
PACRR 49.1 ± .2 27.1 ± .1 58.5 ± .2
DRMM 49.3 ± .2 27.2 ± .2 58.5 ± .3

Deep Learning with Enhanced Interactions
PACRR-DRMM 49.9 ± .1 27.4 ± .1 59.3 ± .1
ABEL-DRMM 50.3 ± .2 27.5 ± .1 59.6 ± .2

+MV 50.4 ± .2 27.4 ± .2 59.7 ± .3
POSIT-DRMM 50.7 ± .2 27.8 ± .1 60.1 ± .2

+MV 51.0 ± .1 27.9 ± .1 60.3 ± .2

Oracle 72.8 ± .0 37.5 ± .0 80.7 ± .0

BEST RUN WITH STAT. SIG.
System MAP P@20 nDCG@20

Traditional IR Baselines
BM25 46.1 25.5 55.4
BM25+extra 48.7 (1) 26.6 (1) 58.1 (1)

Deep Learning Baselines
PACRR 49.1 (1) 27.0 (1-2) 58.6 (1)

DRMM 49.3 (1-2) 27.1 (1-2) 58.8 (1-2)

Deep Learning with Enhanced Interactions
PACRR-DRMM 50.0 (1-3) 27.3 (1-2) 59.4 (1-3)

ABEL-DRMM 50.2 (1-4) 27.5 (1-4) 59.4 (1-3)

+MV 50.5 (1-4) 27.6 (1-4) 59.8 (1-4)

POSIT-DRMM 50.7 (1-4,6) 27.9 (1-7) 60.1 (1-4,6)

+MV 51.0 (1-7) 27.7 (1-4) 60.3 (1-7)

Oracle 72.8 37.5 80.7

Table 1: Performance on BIOASQ test data. Statistically significant (p < 0.05) difference from BM251;
BM25+extra2; PACRR3; DRMM4; PACRR-DRMM5; ABEL-DRMM6; ABEL-DRMM+MV7.

AVERAGE OVER FIVE RUNS WITH STD. DEV.
System MAP P@20 nDCG@20

Traditional IR Baselines
BM25 23.8 ± .0 35.4 ± .0 42.5 ± .0
BM25+extra 25.0 ± .0 36.7 ± .0 43.2 ± .0

Deep Learning Baselines
PACRR 25.8 ± .2 37.2 ± .4 44.3 ± .4
DRMM 25.6 ± .6 37.0 ± .8 44.4 ± .6

Deep Learning with Enhanced Interactions
PACRR-DRMM 25.9 ± .4 37.3 ± .7 44.4 ± .7
ABEL-DRMM 26.3 ± .4 38.0 ± .6 45.6 ± .4

+MV 26.5 ± .4 38.0 ± .5 45.5 ± .4
POSIT-DRMM 27.0 ± .4 38.3 ± .6 45.7 ± .5

+MV 27.2 ± .3 38.6 ± .6 46.1 ± .4

Oracle 68.0 ± .0 82.1 ± .0 93.1 ± .0

BEST RUN WITH STAT. SIG.
System MAP P@20 nDCG@20

Traditional IR Baselines
BM25 23.8 35.4 42.5
BM25+extra 25.0 (1) 36.7 (1) 43.2 (1)

Deep Learning Baselines
PACRR 25.8 (1-2) 37.4 (1-2) 44.5 (1-2)

DRMM 25.9 (1-2) 37.2 (1-2) 44.4 (1-2)

Deep Learning with Enhanced Interactions
PACRR-DRMM 25.9 (1-2) 37.6 (1-2,4) 44.5 (1-2)

ABEL-DRMM 26.1 (1-5) 38.0 (1-5) 45.4 (1-5)

+MV 26.4 (1-6) 38.2 (1-5) 45.8 (1-6)

POSIT-DRMM 27.1 (1-7) 38.8 (1-7) 46.2 (1-7)

+MV 27.1 (1-7) 38.9 (1-7) 46.4 (1-7)

Oracle 68.0 82.1 93.1

Table 2: Performance on TREC ROBUST test data. Statistically significant (p < 0.05) difference from BM251;
BM25+extra2; PACRR3; DRMM4; PACRR-DRMM5; ABEL-DRMM6; ABEL-DRMM+MV7.

(with manually constructed relevance judgments)
and document collections, making it a particularly
realistic dataset. However, in order to ground our
models in past work we also ran experiments on
TREC ROBUST 2004 (Voorhees, 2005), which is a
common benchmark. It contains 250 queries15 and
528K documents. As this dataset is quite small,
we used a 5-fold cross-validation. In each fold,
approx. 3

5 of the queries were used for training, 1
5

for development, and 1
5 for testing. We applied

word2vec to the 528K documents to obtain pre-
trained embeddings. IDF values were computed
over the same corpus. Here we used N = 1000,
as the oracle scores for N = 100 were low.

Table 2 shows the TREC ROBUST results,
which largely mirror those of BIOASQ. POSIT-
DRMM+MV is still the best model, though again
not significantly different than POSIT-DRMM. Fur-
thermore, ABEL-DRMM and POSIT-DRMM are
clearly better than the deep learning baselines,16

15We used the ‘title’ fields of the queries.
16The results we report for our implementation of DRMM

are slightly different than those of Guo et al. (2016). There

but unlike BIOASQ, there is no statistically signif-
icant difference between PACRR-DRMM and the
two deep learning baselines. Even though the
scores are quite close (particularly MAP) both
ABEL-DRMM and POSIT-DRMM are statistically
different from PACRR-DRMM, which was not the
case for BIOASQ. ABEL-DRMM+MV is signifi-
cantly different than ABEL-DRMM on the best run
for MAP and nDCG@20, unlike BIOASQ where
there was no statistically significant difference be-
tween the two methods. However, on average over
5 runs, the systems show little difference.

5 Discussion
An interesting question is how well the deep mod-
els do without the extra features. For BIOASQ,
the best model’s (POSIT-DRMM+MV) MAP score
drops from 48.1 to 46.2 on the development set,
which is higher than the BM25 baseline (43.7),
but on-par with BM25+EXTRA (46.0). We should
are a number of reasons for why this might be the case: there
is no standard split of the data; non-standard preprocessing
of the documents; the original DRMM paper reranks the top
documents returned by Query Likelihood and not BM25.
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Figure 5: Left: Cosine similarities (POSIT-DRMM attention) of query and document terms, with context-sensitive,
context-insensitive, and exact match views of the terms (top to bottom). Document truncated to 50 words. White
is stronger. Right: Corresponding POSIT-DRMM+MV 6-dimensional document-aware query term encodings.

Figure 6: POSIT-DRMM+MV 6-dimensional document-
aware q-term encodings for ‘Does autophagy induce
apoptosis defense?’ and the same document as Fig. 5.

note, however, that on this set, the DRMM baseline
without the extra features (which include BM25)
is actually lower than BM25 (MAP 42.5), though it
is obviously adding a useful signal, since DRMM
with the extra features performs better (46.5).

We also tested the contribution of context-
sensitive term encodings (Eq. 1). Without them,
i.e., using directly the pre-trained embeddings,
MAP on BIOASQ development data dropped from
47.6 to 46.3, and from 48.1 to 47.0 for ABEL-
DRMM and POSIT-DRMM, respectively.

Fig. 5 shows the cosine similarities (attention
scores, Eq. 5) between q-terms and d-terms, using
term encodings of the three views (Fig. 4), for a
query “Does Vitamin D induce autophagy?” and
a relevant document from the BIOASQ develop-
ment data. POSIT-DRMM indeed marks this as rel-
evant. In the similarities of the context-insensitive
view (middle left box) we see multiple matches
around ‘vitamin d’ and ‘induce autophagy’. The
former is an exact match (white squares in lower
left box) and the latter a soft match. The context-
sensitive view (upper left box) smooths things out
and one can see a straight diagonal white line
matching ‘vitamin d induce autophagy’. The right
box of Fig. 5 shows the 6 components (Fig. 4) of
the document-aware q-term encodings. Although

some terms are not matched exactly, the con-
text sensitive max and average pooled components
(two left-most columns) are high for all q-terms.
Interestingly, ‘induce’ and ‘induces’ are not an ex-
act match (leading to black cells for ‘induce’ in
the two right-most columns) and the correspond-
ing context-insensitive component of (third cell
from left) is low. However, the two components of
the context-sensitive view (two left-most cells of
‘induce’) are high, esp. the max-pooling compo-
nent (left-most).Finally, ‘vitamin d’ has multiple
matches leading to a high average k-max pooled
value, which indicates that the importance of that
phrase in the document.

Fig. 6 shows the 6 components of the document-
aware q-term encodings for another query and
the same document, which is now irrelevant. In
the max pooling columns of the exact match and
context-insensitive view (columns 3, 5), the val-
ues look quite similar to those of Fig. 5. However,
POSIT-DRMM scores this query-document pair low
for two reasons. First, in the average-k-max pool-
ing columns (columns 2, 4, 6) we get lower values
than Fig. 5, indicating that there is less support for
this pair in terms of density. Second, the context
sensitive values (columns 1, 2) are much worse,
indicating that even though many exact matches
exist, in context, the meaning is not the same.

We conclude by noting there is still quite a large
gap between the current best models and the oracle
re-ranking scores. Thus, there is head room for
improvements through more data or better models.
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Stefan Büttcher, Charles LA Clarke, and Brad Lush-
man. 2006. Term proximity scoring for ad-hoc re-
trieval on very large text collections. In Proceedings
of the 29th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 621–622. ACM.

Paul Alexandru Chirita, Rita Gavriloaie, Stefania
Ghita, Wolfgang Nejdl, and Raluca Paiu. 2005. Ac-
tivity based metadata for semantic desktop search.
In European Semantic Web Conference, pages 439–
454, Heraklion, Greece.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A.
Cummins. 2000. Learning to forget: Contin-
ual prediction with LSTM. Neural Computation,
12(10):2451–2471.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model
for ad-hoc retrieval. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 55–64, Indi-
anapolis, IN.

Donna K Harman. 2005. The TREC ad hoc experi-
ments. Technical report, National Institute of Stan-
dards and Technology (NIST).

David Hawking. 2004. Challenges in enterprise search.
In Proceedings of the 15th Australasian Database
Conference-Volume 27, pages 15–24, Dunedin, New
Zealand.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences. In
Advances in Neural Information Processing Systems
27, pages 2042–2050.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
de Melo. 2017. PACRR: A position-aware neural IR
model for relevance matching. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1049–1058, Copenhagen,
Denmark.

Kai Hui, Andrew Yates, Klaus Berberich, and Gerard
de Melo. 2018. Co-PACRR: A context-aware neural
IR model for ad-hoc retrieval. In Proceedings of the
11th ACM International Conference on Web Search
and Data Mining, pages 279–287, Marina Del Rey,
CA.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the 8th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 133–142,
Edmonton, Canada.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jon M. Kleinberg. 1999. Authoritative sources in
a hyperlinked environment. Journal of the ACM
(JACM), 46(5):604–632.

Robert Krovetz. 1993. Viewing morphology as an in-
ference process. In Proceedings of the 16th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
191–202, Pittsburgh, PA.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270, San Diego, CA.

Zhengdong Lu and Hang Li. 2013. A deep architec-
ture for matching short texts. In Proceedings of the
26th International Conference on Neural Informa-
tion Processing Systems - Volume 1, pages 1367–
1375, Lake Tahoe, NV.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

Donald Metzler and W Bruce Croft. 2005. A markov
random field model for term dependencies. In Pro-
ceedings of the 28th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 472–479. ACM.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, pages 3111–3119, Lake Tahoe, Nevada.

1858



Sunil Mohan, Nicolas Fiorini, Sun Kim, and Zhiyong
Lu. 2017. Deep learning for biomedical information
retrieval: Learning textual relevance from click logs.
In BioNLP 2017, pages 222–231.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
Rabab Ward. 2016. Deep sentence embedding using
long short-term memory networks: Analysis and ap-
plication to information retrieval. IEEE/ACM Trans-
actions on Audio, Speech and Language Processing
(TASLP), 24(4):694–707.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jing-
fang Xu, and Xueqi Cheng. 2017. Deeprank: A
new deep architecture for relevance ranking in infor-
mation retrieval. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Man-
agement, pages 257–266. ACM.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), volume 1,
pages 2227–2237.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 412–418,
Berlin, Germany.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3(4):333–389.

Stephen E. Robertson and Karen Sparck Jones. 1988.
Document retrieval systems. chapter Relevance
Weighting of Search Terms, pages 143–160. Taylor
Graham Publishing, London, UK.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
373–382, Santiago, Chile.

Mark D Smucker, James Allan, and Ben Carterette.
2007. A comparison of statistical significance tests
for information retrieval evaluation. In Proceed-
ings of the sixteenth ACM conference on Conference
on information and knowledge management, pages
623–632. ACM.

Karen Sparck Jones. 1988. Document retrieval sys-
tems. chapter A Statistical Interpretation of Term
Specificity and Its Application in Retrieval, pages
132–142. Taylor Graham Publishing, London, UK.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2008. Learning to rank answers on large
online QA collections. In Proceedings of the 46th
Annual Meeting for the Association for Computa-
tional Linguistics: Human Language Technologies
(ACL-08: HLT), pages 719–727, Columbus, OH.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2015. LSTM-based deep learning models
for non-factoid answer selection. arXiv preprint
arXiv:1511.04108.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R. Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, Yannis Almirantis, John Pavlopoulos, Nico-
las Baskiotis, Patrick Gallinari, Thierry Artiéres,
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Abstract
The existing studies in cross-language infor-
mation retrieval (CLIR) mostly rely on general
text representation models (e.g., vector space
model or latent semantic analysis). These
models are not optimized for the target re-
trieval task. In this paper, we follow the suc-
cess of neural representation in natural lan-
guage processing (NLP) and develop a novel
text representation model based on adversarial
learning, which seeks a task-specific embed-
ding space for CLIR. Adversarial learning is
implemented as an interplay between the gen-
erator process and the discriminator process.
In order to adapt adversarial learning to CLIR,
we design three constraints to direct repre-
sentation learning, which are (1) a matching
constraint capturing essential characteristics of
cross-language ranking, (2) a translation con-
straint bridging language gaps, and (3) an ad-
versarial constraint forcing both language and
source invariant to be reached more efficiently
and effectively. Through the joint exploita-
tion of these constraints in an adversarial man-
ner, the underlying cross-language semantics
relevant to retrieval tasks are better preserved
in the embedding space. Standard CLIR ex-
periments show that our model significantly
outperforms state-of-the-art continuous space
models and approaches the strong machine
translation and monolingual baselines.

1 Introduction

Text representation is a crucial problem in most
natural language processing (NLP) and informa-
tion retrieval (IR) tasks. In monolingual IR, early
research works mostly use vector space models for
query-document semantic matching (Salton et al.,
1975), which suffer from the problem of syn-
onymy and polysemy. In order to bridge the lexical
gaps, latent semantic models such as latent seman-
tic analysis (LSA) (Deerwester et al., 1990) have
been proposed to abstract away from surface text

forms to approximate semantics. More recently,
text representation learned with neural networks
is attracting increasing attention of the IR commu-
nity (Mitra and Craswell, 2017) and positive re-
sults have been reported on various evaluation data
sets (Fan et al., 2018).

Compared to the prosperity in monolingual IR,
there have been less advancements in CLIR where
documents are written in a language different from
that of queries. In addition to document ranking,
CLIR models need to cross the language barri-
ers, which makes the task intuitively more difficult
than monolingual IR. Traditional approaches re-
duce CLIR to its monolingual counterpart via per-
forming some way of translation on queries or/and
documents. The typical translation process is per-
formed with either off-the-shelf machine trans-
lation (MT) systems or multilingual dictionaries
(Nie, 2010). However, MT based approaches are
far from being a suitable solution for solving CLIR
problems (refer to detailed analysis in (Zhou et al.,
2012)). Dictionary-based approaches suffer from
the same problem of lexical gaps as in the mono-
lingual case (Gupta et al., 2017). An efficient
cross-language representation is in need for CLIR,
which is expected to be able to cross both the lan-
guage and lexical gaps.

The most intuitive idea one can have so as to
represent text in cross-language settings is to ex-
tend those models in monolingual environment.
For instance, we note studies such as the exten-
sion of LSA in (Littman et al., 1998), the ex-
tension of principle component analysis (PCA) in
(Platt et al., 2010), the extension of autoencoder
model in (Chandar et al., 2014), and the extension
of word2vec (Mikolov et al., 2013) in (Vulić and
Moens, 2015). These approaches construct cross-
language and semantic-rich representation of text,
which can be applied to CLIR directly. However,
all the models listed here aim to learn general text
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representation where the objective is to capture
term proximity rather than relevance that is essen-
tial for retrieval task (Zamani and Croft, 2017). A
recent work (Gupta et al., 2017) tries to learn task-
specific representation for CLIR. However, their
model only captures ranking signals in monolin-
gual settings, which does not necessarily general-
ize well in CLIR.

In this paper, we propose to learn task-specific
text representation for CLIR via a novel adversar-
ial learning framework. Following the convention
in generative adversarial networks (GAN) (Good-
fellow et al., 2014), our representation learning
model is realized as an interplay between two pro-
cesses, an embedding generator (G) and an ad-
versarial discriminator (D), conducted as a min-
max game. With the GAN framework, we de-
sign three constraints to direct the representation
learning process. CLIR is essentially a rank-
ing problem and we develop a matching con-
straint to make sure that documents can be ranked
in the right order given a query in another lan-
guage. The matching constraint considers both
cross-language and monolingual pairwise rank-
ing signals, which is superior to previous studies
(e.g., (Gupta et al., 2017)) only considering mono-
lingual matching signals. Meanwhile, a transla-
tion constraint is imposed on the latent representa-
tion to bridge the language gaps. These two con-
straints direct the encoding networks to generate
a language-invariant and task-specific representa-
tion in the embedding space. Lastly, an adversarial
constraint is proposed to force both language and
source invariant to be reached more efficiently and
effectively. Through the joint exploitation of these
constraints in an adversarial manner, the embed-
ding space being optimal for CLIR will then result
through the convergence of this process. Compre-
hensive CLIR experiments reveal that our model is
superior to state-of-the-art continuous space mod-
els and approaches the machine translation and
monolingual baselines.

2 Related work

Text representation has been a long-standing re-
search question in IR. Classic methods such as
vector space model are not able to deal with lexi-
cal gaps between queries and documents, resulting
in inferior retrieval performance. Latent semantic
approaches such as LSA (Deerwester et al., 1990)
and latent dirichlet allocation (LDA) (Blei et al.,

2003) abstract away from surface text forms to al-
leviate sparsity and approximate semantics. More
recently, learning based approaches with neural
networks have gained great success in NLP (Ba-
roni et al., 2014) and started to attract increasing
interests of the IR community. In terms of word
level embedding, word2vec (Mikolov et al., 2013)
and Glove (Pennington et al., 2014) are two mod-
els that have been cited frequently in recent litera-
ture. These two models provide semantic-rich rep-
resentations to bridge lexical gaps between queries
and documents, which have been used broadly in
neural IR studies (Ganguly et al., 2015; Zheng and
Callan, 2015; Zamani and Croft, 2016).

The above studies deal with monolingual text
representation, which are related to the cross-
language models presented below. As for CLIR,
typical approaches reduce CLIR to its monolin-
gual counterparts via performing some way of
translation. Machine translation systems such as
Google translator1 have been widely used to trans-
late queries or documents, which serve as a de-
fault and convenient translation option in CLIR.
It is however far from being a suitable solution
for solving CLIR problems (a detailed analysis
can be found in (Zhou et al., 2012)). An alter-
native solution is to rely on multilingual dictio-
naries to perform lexicon-level translation, which
is mostly in combination with either language
modeling strategy (Kraaij et al., 2003) or query
structuring framework (Pirkola, 1998). However,
dictionary-based methods still suffer from the lex-
ical gap problem which reduces their performance
in CLIR.

In fact, researchers have extended the models
in monolingual settings and developed continu-
ous space models for cross-language tasks to cap-
ture rich semantics. These cross-language exten-
sions can be applied to CLIR directly. For in-
stance, Littman et al. (1998) extend LSA to its
cross-language version CL-LSA by concatenating
document-term matrix of parallel data which acts
as dual-language documents to be learned by LSA.
Such a methodology leads to a dual-language se-
mantic space in which terms from both languages
are represented. Vinokourov et al. (2002) use
parallel data to find most likely correlations be-
tween projected vectors based on canonical com-
ponent analysis technique. The OPCA model
(Platt et al., 2010) starts with the basic model

1https://translate.google.com
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PCA that is then made discriminative by encour-
aging comparable document pairs to have simi-
lar vector representation. Compared to CL-LSA,
OPCA avoids the use of artificial concatenated
documents. More recently, neural models have
been employed to learn cross-language represen-
tations. For instance, autoencoder is extended to
a bilingual version BAE in (Chandar et al., 2014)
which learns vectorial word representations from
aligned sentences. Yih et al. (2011) develop S2Net
to learn a projection matrix to map the correspond-
ing term vectors into a latent space where simi-
lar documents are close. S2Net is implemented
with Siamese neural network framework. Vulić
and Moens (2015) first merge two documents from
the aligned document pair in a comparable corpus
and then train word2vec on the pseudo-bilingual
document to obtain cross-language embeddings.
The above approaches learn general text represen-
tation that captures term proximity rather than rel-
evance which is important for retrieval task (Za-
mani and Croft, 2017). A recent work (Gupta
et al., 2017) tries to learn task-specific embeddings
for CLIR. However, it learns ranking signals by
preserving pairwise ranking in monolingual set-
tings prior to a transfer learning process to another
language, which does not necessarily generalize
well in CLIR.

One can find from above analysis that, most
existing approaches, either based on neural net-
works or not, learn general embeddings irrelevant
to CLIR. We argue that task-specific embeddings
are superior, a fact that is inspired by monolin-
gual IR studies and that will actually be validated
by CLIR experiments in this paper. To this end,
we will learn cross-language and task-specific em-
beddings for CLIR via a novel text representation
model based on adversarial learning (Goodfellow
et al., 2014).

3 Representation learning framework

We will present in this section a neural represen-
tation learning framework for CLIR. As discussed
before, the framework is realized based on adver-
sarial learning as an interplay between the genera-
tor process and the discriminator process. We will
develop three constraints, namely a matching con-
straint, a translation constraint and an adversarial
constraint, to direct the learning of cross-language
and target-specific text embeddings. For ease of
presentation, let us assume in CLIR we have a

NNdim

xqt

zqt

NNdim

xdt

zdt

NNdim

xqs

zqs

matching loss 
(monolingual)

matching loss 
(cross-language)

adversarial
loss

NNadv

translation loss

LSTM LSTM LSTM

Figure 1: Text representation learning model for CLIR
with adversarial framework.

source language query qs and a target language
document dt. The translation of qs in the target
language is qt. The learning framework is illus-
trated in figure 1, which consists of an adversar-
ial network NNadv, three dimension adaptation
networks NNdim and three encoding networks re-
spectively for qt, dt and qs.

3.1 Text representation networks
There have been various approaches one can use
to encode sentences/documents into dense vectors.
For instance, models based on convolutional neu-
ral networks (Kalchbrenner et al., 2014) and mod-
els based on recurrent neural networks (Liu et al.,
2016) have been popular choices.

In order to map queries and documents into
the embedding space, we make use of recurrent
neural network with the long short-term memory
(LSTM) architecture that can deal with vanishing
and exploring gradient problems (Hochreiter and
Schmidhuber, 1997). We present here derivation
details of LSTM for clarification sake. The LSTM
framework consists of several gates to control the
cell state in the network. Firstly, a forget gate f (a
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sigmoid layer) functions according to:

f ⌧ = �(Wf · [h⌧�1, x⌧ ] + bf )

Then, an input gate i (a sigmoid layer) and a tanh
layer work together as follows:

i⌧ = �(Wi · [h⌧�1, x⌧ ] + bi)

eC⌧ = tanh(Wc · [h⌧�1, x⌧ ] + bc)

With the forget gate f , the input gate i and the new
value eC, one can update the cell state C as:

C⌧ = f ⌧ ⇤ C⌧�1 + i⌧ ⇤ eC⌧

Lastly, an output gate o (a sigmoid layer) outputs:

o⌧ = �(Wo · [h⌧�1, x⌧ ] + bo)

h⌧ = o⌧ ⇤ tanh(C⌧ )

In above equations, x⌧ is the input at time step ⌧ .
h⌧ and h⌧�1 denote the hidden states at time steps
⌧ and ⌧ � 1. All W and b are parameters. For
brevity, we can write the update process as:

h⌧ = LSTM(h⌧�1, x⌧ )

Given a text sequence x = (x1, x2, . . . , xl),
typical methods take the output hl of LSTM at
the last time step l as the concentrated represen-
tation of the whole sequence x (Sutskever et al.,
2014). Since queries in IR tasks tend to be short
and noisy, we make use of Bidirectional LSTM
with pooling (Tan et al., 2015) to obtain a more
effective text representation from all the hidden
states h1:l. The sequence x is fed from left to right
into LSTMa and from right to left into LSTMb.
The new hidden state h⌧

ab at time step ⌧ is obtained
by concatenating the hidden states of LSTMa and
LSTMb at their respective time step ⌧ . Since
max-pooling has been proven to be efficient in
similar tasks (Tan et al., 2015), the latent repre-
sentation zx of x can be formulated as:

zx = NNdim(MaxPooling(h1:l
ab ))

where x can be qs, qt or dt. NNdim is designed
to adapt the output dimension and to allow further
flexibility for representation learning.

3.2 Matching constraint and Translation
constraint

Document ranking is the central problem in both
monolingual IR and CLIR tasks. CLIR differs it-
self from its monolingual counterpart in that the

language gap needs to be crossed prior to the re-
trieval process. Since the choice of translation
strategies (query, document or both) affects the de-
sign of other components in our model, we will
discuss the translation constraint in section 3.2.1
prior to matching constraints in sections 3.2.2 and
3.2.3.

3.2.1 Translation constraint
The translation constraint is developed to mini-
mize the differences between a pair of parallel
texts, which serves as a basic requirement in the
translation scenario. Such a constraint directs the
learning of language-invariant text representation
for CLIR. We follow the arguments in previous
studies (Vilares et al., 2016) and choose to trans-
late queries in our model, since it is computation-
ally expensive to translate large-scale document
collections in practice. In this paper, we directly
employ Google translator to translate queries,
which is a popular choice for machine transla-
tion that leads to state-of-the-art translation per-
formance. The translation constraint is then im-
posed on the embedding vectors zqs and zqt of the
queries qs and qt. The translation loss Ltra on a set
QP of query pairs can be defined with the squared
L2 norm, which is:

Ltra =
X

(qs,qt)2QP

kzqs � zqtk2
2

3.2.2 Cross-language matching constraint
The matching constraint captures essential charac-
teristics of cross-language ranking. Following the
practice in learning to rank (Liu, 2009), we model
document ranking in the pairwise style where the
relevance information is in the form of preferences
between pairs of documents with respect to in-
dividual queries. In the model for CLIR, since
we have matching signals from both monolingual
text pairs and cross-language text pairs, the model
can benefit from complementary knowledge from
two resources. The monolingual pairwise match-
ing constraint will be introduced in section 3.2.3.

Similar to neural models in monolingual set-
tings (Huang et al., 2013), the cross-language pair-
wise matching constraint is placed on top of the
embedding vectors of source language query and
target language documents. In figure 1, let us as-
sume xqs has a relevant document xdt+ and an
irrelevant document xdt� according to annotated
text pairs. In training, the positive sample xdt+
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for xqs can be chosen as the most relevant texts
according to annotation, and the negative sample
xdt� is picked randomly from the data collection.
The cross-language matching constraint encour-
ages the hidden representation of xdt+ to be near
to the hidden representation of xqs in the semantic-
rich embedding space. Meanwhile, it asks the hid-
den representation of xdt� to be far from that of
xqs . We follow typical neural IR models and make
use of cosine as the distance measure of hidden
vectors. The probability that dt+ is ranked higher
than dt� given qs can be derived as:

P̂ (qs) = �[�c · (cos(zqs , zdt+) � cos(zqs , zdt�))]

where � is the sigmoid function with a hyper-
parameter �c controlling its shape. The cross-
language matching loss Lmatc on cross-language
triplet set QDc can be defined with cross-entropy
loss as:

Lmatc =
X

(qs,dt+,dt�)2QDc

CE[P (qs), P̂ (qs)]

where CE denotes the cross-entropy operator be-
tween two distributions and P (qs) is the actual
counterpart of P̂ (qs) estimated from annotation
with a strategy similar to that in (Dehghani et al.,
2017).

3.2.3 Monolingual matching constraint
The monolingual matching constraint Lmatm can
be built in a way similar to that of Lmatc. Lmatm

is imposed on a set QDm of monolingual triplet
(qt, dt+, dt�) as:

Lmatm =
X

(qt,dt+,dt�)2QDm

CE[P (qt), P̃ (qt)]

where P (qt) is the actual counterpart of P̃ (qt) es-
timated from annotation. P̃ (qt) denotes the prob-
ability that dt+ is ranked higher than dt� given qt.
It can be computed with the sigmoid function as:

P̃ (qt) = �[�m · (cos(zqt , zdt+) � cos(zqt , zdt�))]

where �m is a hyper-parameter.

3.2.4 Embedding generator constraint
Since our model is implemented with adversar-
ial framework, we propose to model the repre-
sentation generator G, which embodies the pro-
cess of language-invariant and task-specific em-
bedding of queries and documents into a latent

subspace, under a combination of three constraints
introduced above. The translation constraint aims
to guarantee language invariant when translating
queries. The cross-language matching constraint
explicitly captures cross-language ranking signals
from cross-language text pairs. The monolin-
gual matching constraint takes monolingual rank-
ing into account so as to complement the cross-
language ranking signals.

Combing the three constraints above, we obtain
a comprehensive constraint that should be obeyed
by the embedding generator process. With the
regularization term Lreg equaling to the sum of
Frobenius norms of all weight matrices in the text
embedding phase, we can write the embedding
generator constraint LG as:

LG(✓G) = �1 ·Ltra+�2 ·Lmatc+�3 ·Lmatm+Lreg

where ✓G denotes the set of parameters in the
generator networks, and �1, �2, �3 are hyper-
parameters.

3.3 Adversarial constraint
We will introduce the adversarial constraint in this
part. GAN (Goodfellow et al., 2014) simultane-
ously trains a generative model G and a disrim-
inative model D in a competing way. G gener-
ates samples from a source of noise w that satisfies
w ⇠ Pn(w) and tries to capture the real data dis-
tribution Pr. D learns to distinguish between the
generated samples from G and the true data sam-
pled from Pr (in practice, from training data). The
training procedure for G is to try its best to fool
D. Let us assume that G generates samples satis-
fying the distribution Pg that is implicitly decided
by G(w). The GAN value function V (G, D) on
which D and G play the minmax game can be writ-
ten as:

min
G

max
D

V (D, G) =Ex⇠Pr [log D(x)] (1)

+ Ex⇠Pg [log(1 � D(x))]

Theoretical analysis has indicated that playing the
minmax game as above amounts to minimizing the
Jensen-Shannon divergence between Pg and Pr.

We follow the general idea of GAN and de-
velop an adversarial component on top of the em-
bedding space in figure 1. We note that GAN
has been used in representation learning in a sim-
ilar way as in (Bousmalis et al., 2016; Liu et al.,
2017). In our model in figure 1, the adversar-
ial component NNadv acts as the discriminator D
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which tries its best to detect whether the embed-
ding vector z is encoded from xqt , xdt or xqs . In
this paper, NNadv is implemented as a neural net-
work with a softmax output layer. The output of
NNadv then corresponds to a probability distri-
bution vector over the input sources. Let us de-
note the ground truth label of the current input z
to NNadv as lz which indicates the source that z
is encoded from. We can adjust equation 1 to our
settings and obtain the adversarial loss Ladv on a
query set Qt and a document set Dt in the target
language, as well as a query set Qs in the source
language, which can be written as:

Ladv = min
G

max
D

X

x2Qt,Dt,Qs

log NNadv(zx) � lzx

where � is the inner product operator.

3.4 Training procedure

Following the training convention of GAN (Good-
fellow et al., 2014), the process of learning the
language-invariant and task-specific text represen-
tation for CLIR should be conducted by jointly
minimizing the generator constraint LG and the
adversarial loss Ladv, which leads us to the com-
bined objective function L as:

L = LG + Ladv

According to the rule of playing the minmax
game in GAN, G tries its best to maximize the
probability that D makes a mistake and D tries
its best to distinguish between real data and gen-
erated data (in our case, various input sources).
The theoretical requirement behind GAN that D is
maintained near its optimal solution as long as G
changes slowly enough motivates us to update the
discriminator part k steps per update of the gen-
erator part in the iterative optimization process.
Based on these discussions, the minmax optimiza-
tion process can be derived as:

1. Optimize D when fixing G through:
✓̂D = arg max✓D

L(✓̂G, ✓D)

2. Optimize G when fixing D through:
✓̂G = arg min✓G

L(✓G, ✓̂D)

The optimization can be implemented with
mini-batch gradient ascent (for ✓D) and descent
(for ✓G).

4 Experiments and results

In this section, we conduct CLIR experiments so
as to compare our text representation model with
several other models.

4.1 Data sets
4.1.1 CLIR evaluation sets
To perform CLIR experiments, we rely on broadly
used data sets released in the bilingual tasks of
the cross-language evaluation forum (CLEF) 2. We
choose to use the data from the year 2000 to 2004.
Table 1 lists the characteristics of the data set,
which include number of documents (Nd), num-
ber of distinct words (Nw), the average document
length (DLavg) and the number of queries (Nq)
in each task. We use source language queries in
French (Fr), German (De) and Italian (It) to re-
trieve target language documents in English (En).
Queries from year 2000 to 2002 are combined to
a single task in table 1 since they have the same
target set.

Table 1: CLIR dataset statistics (k = thousand).
Dataset Nd Nw DLavg Nq

CLEF00-02 113k 173k 311 140
CLEF03 169k 233k 284 60
CLEF04 56k 120k 231 50

4.1.2 Training set
In order to train the representation learning model,
we need to construct a data set consisting of anno-
tated text pairs. We combine AOL queries (Pass
et al., 2006) and a set of news titles downloaded
from the news sites3 to constitute training query
set of diversity. Following the previous work
(Gupta et al., 2017), we sample a balanced subset
(1M) from such query set and use these queries to
retrieve the data collection with BM25. For each
training query, we take the top retrieved texts as
positive samples, and the negative samples are se-
lected randomly from the data collection. In addi-
tion to the pseudo-labeled text pairs of low quality,
we combine the LETOR4.0 dataset (Qin and Liu,
2013) that is developed for evaluating learning to
rank models. The LETOR4.0 dataset consists of
relevance judgments of higher quality compared to

2http://www.clef-initiative.eu
3We fetch 2.8M web pages from several news web-

sites such as ChinaDaily (www.chinadaily.com.cn) and Xin-
huaNews (www.xinhuanet.com).
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pseudo-labeled data. The two data resources can
complement each other in the training process.

In our experiments, the pseudo-labeled data is
used to train the whole model and the LETOR
dataset is employed to fine tune the parameters rel-
evant to the source queries and target documents
which are more important for the cross-language
retrieval task.

4.2 Experimental settings
4.2.1 Experimental setup
The terms are initialized as the 512d word2vec
vectors trained on Wikipedia dump corpus4. The
term embeddings are fed into the LSTM model
of which the hidden unit number is chosen from
{64, 128, 256, 512}. The adversarial network
NNadv is as a three-layer feed-forward network
with softmax on top of the last layer. NNdim

is implemented as a feed-forward network with
layer dimension chosen from {32, 64, 128, 256}
and hidden layer number chosen from {1, 2}. The
values of hyper-parameters �1, �2 and �3 are cho-
sen from {0.01, 0.1, 1, 10, 100}. The learning rate
is selected from {10�1, 10�2, 10�3, 10�4, 10�5}.
Those hyper-parameters are tuned on the valida-
tion set which is 20% of the training queries ran-
domly selected.

For evaluation, we present results in terms of
mean average precision (MAP). Statistically sig-
nificant differences between various models are
determined using the paired t-test with p < 0.05.

4.2.2 Baseline approaches
We make use of three categories of baselines for
CLIR experiments.

1. Monolingual run (MON): a baseline with tar-
get language queries that are strictly parallel
to source language queries.

2. Machine translation (MT): a baseline
with target-language queries translated by
machine translation system from source-
language queries.

3. Cross-language text representation models:
baselines that rely on continuous space mod-
els for cross-language text representation.
We make use here of S2Net (Yih et al., 2011),
BAE (Chandar et al., 2014), and XCNN
(Gupta et al., 2017) for the CLIR task.

4https://dumps.wikimedia.org

4.3 Results and analysis

4.3.1 Comparisons to state-of-the-art
Table 2 lists the experimental results on CLEF
dataset for our model (the column OURS) and
all baseline models. There are three data collec-
tions and three language pairs, amounting to nine
cross-language retrieval tasks. Except the strong
baselines MON and MT, our model shows the
best overall performance among all CLIR strate-
gies. Indeed, our model outperforms all continu-
ous space baselines (i.e., S2Net, BAE and XCNN)
with statistical significance in almost all cases.
Our model decreases slightly from the strong MT
baseline in most retrieval tasks with only one
degradation being significant on 03(De-En). Fur-
thermore, one can find that our model approaches
the monolingual baseline very much in all re-
trieval tasks with all MAP ratios around or over
90%. In our experiments, we have not performed
comparisons to CL-LSA (Littman et al., 1998)
and its variant OPCA (Platt et al., 2010), because
they have been consistently outperformed by other
CLIR strategies with a large margin (Schauble and
Sheridan, 1997; Nie, 2010; Vulić et al., 2011).

Among all continuous space baselines, the
most recent model XCNN shows the best perfor-
mance. XCNN always outperforms linear projec-
tion methods S2Net with significance. It also sig-
nificantly outperforms the non-linear model BAE
in all cases. This is coincident with previous
conclusions in (Gupta et al., 2017) due to the
fact that XCNN learns target-specific representa-
tion for CLIR but the other models do not. Our
model also tries to learn task-specific represen-
tation for CLIR, which significantly outperforms
XCNN in most cases according to the results in
table 2. The reasons might be that (1) our method
is modeled in a more effective adversarial learn-
ing framework. (2) we explicitly capture cross-
language ranking signals in embedding genera-
tor in addition to monolingual ranking signals
used in XCNN. (3) our model can jointly capture
the translation knowledge and document ranking
knowledge in a unified framework.

4.3.2 Variant of our model
Our model can be customized easily by altering
the constraints to direct the representation learn-
ing process. Since the specificity of our model
comes from the adversarial learning framework
that has never been investigated in CLIR, we re-
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Table 2: Retrieval performance (MAP scores) of all models on CLEF collections. +(m/x) or �(m/x) indicates
that the improvements or degradations with respect to MT/XCNN are statistically significant. The highest value in
each row (except the MON and MT baselines) is marked in bold. The percentages in the last column denote the
MAP ratio of our model with respect to the MON baseline.

Data Lang MON MT S2Net BAE XCNN OURS PROP

00-02
Fr-En 0.469 0.431 0.330�m

�x 0.369�m
�x 0.401�m 0.424+x 90.4%

De-En 0.469 0.447 0.341�m
�x 0.381�m

�x 0.420�m 0.435+x 92.8%
It-En 0.469 0.439 0.339�m

�x 0.374�m
�x 0.409�m 0.426+x 90.8%

03
Fr-En 0.498 0.471 0.352�m

�x 0.383�m
�x 0.431�m 0.456+x 91.6%

De-En 0.498 0.462 0.358�m
�x 0.390�m

�x 0.430�m 0.439�m 88.2%
It-En 0.498 0.468 0.367�m

�x 0.395�m
�x 0.439�m 0.467+x 93.8%

04
Fr-En 0.517 0.483 0.378�m

�x 0.402�m
�x 0.442�m 0.470+x 90.9%

De-En 0.517 0.482 0.382�m
�x 0.419�m

�x 0.447�m 0.473+x 91.5%
It-En 0.517 0.477 0.385�m

�x 0.411�m
�x 0.458 0.481+x 93.0%

move the constraint Ladv from the original model
M and obtain the variant Madv. In this case, Madv

can be optimized with standard mini-batch gradi-
ent descent approach, without playing the minmax
game. We redo above CLIR experiments with the
same settings as above and obtain the retrieval re-
sults of Madv in table 3.

Table 3: Retrieval performance (MAP scores) of the
variant Madv on CLEF collections. + or � indicates
that the improvements or degradations with respect to
our original model M are statistically significant. The
higher value in each row is marked in bold.

Data Lang M Madv

00-02
Fr-En 0.424 0.412�

De-En 0.435 0.418�

It-En 0.426 0.424

03
Fr-En 0.456 0.440�

De-En 0.439 0.435
It-En 0.467 0.448�

04
Fr-En 0.470 0.453�

De-En 0.473 0.465
It-En 0.481 0.469

From the results one can find that when remov-
ing the adversarial component from the original
model, Madv decreases from the original model
M in all retrieval tasks. The differences that are
significant appear in 5 out of 9 retrieval tasks.
The results demonstrate that learning generator
and discriminator in a competing style within the
adversarial learning framework leads to represen-
tation of higher quality, which eventually supports
efficient CLIR. If we compare the variant Madv

with the XCNN model in table 2, we find that
Madv still performs better than XCNN in most

cases. Such a comparison implicitly indicates
that the joint exploitation of monolingual match-
ing constraint, cross-language matching constraint
and translation constraint in a single model is
more efficient than using them separately as in the
XCNN model.

5 Conclusions

In this paper, we propose a novel text representa-
tion approach for CLIR based on the adversarial
learning framework. The learning framework is
implemented as an interplay between an embed-
ding generator process and an adversarial discrim-
inator process, which leads to an optimal represen-
tation that is both language invariant and domain
specific. The embedding generator is learned such
that it explicitly considers both cross-language and
monolingual pairwise ranking signals. In this way,
it can ensure that the learned embeddings bene-
fit from both sources and are directly optimized
for CLIR. To the best of our knowledge, it is the
first time adversarial learning has been applied to
CLIR. Experiments on various language pairs in
CLEF data collection show that our model is sig-
nificantly better than other latent semantic models
for CLIR. Indeed, our model approaches the per-
formance of machine translation and monolingual
baselines.
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Abstract

Knowledge of the creation date of documents
facilitates several tasks such as summarization,
event extraction, temporally focused informa-
tion extraction etc. Unfortunately, for most
of the documents on the Web, the time-stamp
metadata is either missing or can’t be trusted.
Thus, predicting creation time from document
content itself is an important task. In this
paper, we propose Attentive Deep Document
Dater (AD3), an attention-based neural docu-
ment dating system which utilizes both con-
text and temporal information in documents
in a flexible and principled manner. We per-
form extensive experimentation on multiple
real-world datasets to demonstrate the effec-
tiveness of AD3 over neural and non-neural
baselines.

1 Introduction

Many natural language processing tasks require
document creation time (DCT) information as a
useful additional metadata. Tasks such as infor-
mation retrieval (Li and Croft, 2003; Dakka et al.,
2008), temporal scoping of events and facts (Al-
lan et al., 1998; Talukdar et al., 2012b), document
summarization (Wan, 2007) and analysis (de Jong
et al., 2005a) require precise and validated cre-
ation time of the documents. Most of the docu-
ments obtained from the Web either contain DCT
that cannot be trusted or contain no DCT informa-
tion at all (Kanhabua and Nørvåg, 2008). Thus,
predicting the time of these documents based on
their content is an important task, often referred to
as Document Dating.

A few generative approaches (de Jong et al.,
2005b; Kanhabua and Nørvåg, 2008) as well as a
discriminative model (Chambers, 2012) have been
previously proposed for this task. Kotsakos et al.
(2014) employs term-burstiness resulting in im-
proved precision on this task.

Recently proposed NeuralDater (Vashishth
et al., 2018) uses a graph convolution network
(GCN) based approach for document dating, out-
performing all previous models by a significant
margin. NeuralDater extensively uses the syntac-
tic and temporal graph structure present within the
document itself. Motivated by NeuralDater, we
explicitly develop two different methods: a) Atten-
tive Context Model, and b) Ordered Event Model.
The first component tries to accumulate knowl-
edge across documents, whereas the latter uses the
temporal structure of the document for predicting
its DCT.

Motivated by the effectiveness of attention
based models in different NLP tasks (Yang et al.,
2016a; Bahdanau et al., 2014), we incorporate at-
tention in our method in a principled fashion. We
use attention not only to capture context but also
for feature aggregation in the graph convolution
network (Hamilton et al., 2017). Our contributions
are as follows.

• We propose Attentive Deep Document Dater
(AD3), the first attention-based neural model
for time-stamping documents.

• We devise a novel method for label based
attentive graph convolution over directed
graphs and use it for the document dating
task.

• Through extensive experiments on multiple
real-world datasets, we demonstrate AD3’s
effectiveness over previously proposed meth-
ods.

AD3 source code and datasets
used in the paper are available at
https://github.com/malllabiisc/AD3

2 Related Work
Document Time-Stamping: Initial attempts
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Figure 1: Two proposed models a) Ordered Event Model (left) and b) Attentive Context Model (right), where wi are the words
of a document (D), ei are the words signifying events and ti are the temporal tokens as detected in the document. Both models use
Bi-LSTM and S-GCN (Syntactic-GCN, see Section 3.2.2) in the initial part of their pipeline. Ordered Event Model (OE-GCN)
uses a label based attentive graph convolutional network for encoding the DCT, whereas Attentive Context Model (AC-GCN)
uses a word attention based model to encode the document. ↵i(8 i 2 [1, n]) denotes attention over the words of document and
↵a, ↵b and ↵s denote attention over nodes connected with edge labels AFTER, BEFORE and SIMULTANEOUS, respectively.
OE-GCN provides the probability scores over the years given the encoded DCT, while AC-GCN provides the probability scores
given the context of the document. Both the models are trained separately.

made for document time-stamping task include
statistical language models proposed by de Jong
et al. (2005b) and Kanhabua and Nørvåg (2008).
(Chambers, 2012) use temporal and hand-crafted
features extracted from documents to predict DCT.
They propose two models, one of which learns the
probabilistic constraints between year mentions
and the actual creation time, whereas the other one
is a discriminative model trained on hand-crafted
features. Kotsakos et al. (2014) propose a term-
burstiness (Lappas et al., 2009) based statistical
method for the task. Vashishth et al. (2018) pro-
pose a deep learning based model which exploits
the temporal and syntactic structure in documents
using graph convolutional networks (GCN).

Event Ordering System: The task of extract-
ing temporally rich events and time expressions
and ordering between them is introduced in the
TempEval challenge (UzZaman et al., 2013; Ver-
hagen et al., 2010). Various approaches (Mc-
Dowell et al., 2017; Mirza and Tonelli, 2016)
made for solving the task use sieve-based archi-

tectures, where multiple classifiers are ranked ac-
cording to their precision and their predictions
are weighted accordingly resulting in a temporal
graph structure. A method to extract temporal
ordering among relational facts was proposed in
(Talukdar et al., 2012a).

Graph Convolutional Network (GCN): GCN
(Kipf and Welling, 2016) is the extension of con-
volutional networks over graphs. In different NLP
tasks such as semantic-role labeling (Marcheg-
giani and Titov, 2017), neural machine transla-
tion (Bastings et al., 2017), and event detection
(Nguyen and Grishman, 2018), GCNs have proved
to be effective. We extensively use GCN for cap-
turing both syntactic and temporal aspect of the
document.

Attention Network: Attention networks have
been well exploited for various tasks such as doc-
ument classification (Yang et al., 2016b), question
answering (Yang et al., 2016a), machine transla-
tion (Bahdanau et al., 2014; Vaswani et al., 2017).
Recently, attention over graph structure has been
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shown to work well by Veličković et al. (2018).
Taking motivation from them, we deploy an atten-
tive convolutional network on temporal graph for
the document dating problem.

3 Background: GCN & NeuralDater
The task of document dating can be modeled as
a multi-class classification problem. Following
prior work, we shall focus on DCT prediction at
the year-granularity in this paper. In this section,
we summarize the previous state-of-the-art model
NeuralDater (Vashishth et al., 2018), before mov-
ing onto our method. An overview of graph convo-
lutional network (GCN) (Kipf and Welling, 2016)
is also necessary as it is used in NeuralDater as
well as in our model.

3.1 Graph Convolutional Network
GCN for Undirected Graph: Consider an undi-
rected graph, G = (V, E), where V and E are the
set of n vertices and set of edges respectively. Ma-
trix X 2 R

n⇥m, whose rows are input represen-
tation of node u, where xu 2 R

m, 8 u 2 V , is
the input feature matrix. The output hidden repre-
sentation hv 2 R

d of a node v after a single layer
of graph convolution operation can be obtained by
considering only the immediate neighbours of v,
as formulated in (Kipf and Welling, 2016). In or-
der to capture information at multi-hop distance,
one can stack layers of GCN, one over another.
GCN for Directed Graph: Consider a labelled
edge from node u to v with label l(u, v), denoted
collectively as (u, v, l(u, v)). Based on the as-
sumption that information in a directed edge need
not only propagate along its direction, Marcheg-
giani and Titov (2017) added opposite edges viz.,
for each (u, v, l(u, v)), (v, u, l(u, v)�1) is added
to the edge list. Self loops are also added for
passing the current embedding information. When
GCN is applied over this modified directed graph,
the embedding of the node v after kth layer will
be,

hk+1
v = f

0

@
X

u2N (v)

⇣
W k

l(u,v)h
k
u + bk

l(u,v)

⌘
1

A .

We note that the parameters W k
l(u,v) and bk

l(u,v)

in this case are edge label specific. hk
u is the input

to the kth layer. Here, N (v) refers to the set of
neighbours of v, according to the updated edge list
and f is any non-linear activation function (e.g.,
ReLU: f(x) = max(0, x)).

3.2 NeuralDater
In this sub-section, we provide a brief overview
of the components of the NeuralDater (Vashishth
et al., 2018). Given a document D with n tokens
w1, w2, · · · wn, NeuralDater extracts a temporally
rich embedding of the document in a principled
way as explained below:

3.2.1 Context Embedding
Bi-directional LSTM is employed for embedding
each word with its context. The GloVe represen-
tation of the words X 2 R

n⇥k is transformed to a
context aware representation Hcntx 2 R

n⇥k to get
the context embedding. This is essentially shown
as the Bi-LSTM in Figure 1.

3.2.2 Syntactic Embedding
In this step, the context embeddings are further
processed using GCN over the dependency parse
tree of the sentences in the document, in order
to capture long range connection among words.
The syntactic dependency structure is extracted by
Stanford CoreNLP’s dependency parser (Manning
et al., 2014). NeuralDater follows the same for-
mulation of GCN for directed graph as described
in Section 3.1, where additional edges are added
to the graph to model the information flow. Again
following (Marcheggiani and Titov, 2017), Neu-
ralDater does not allocate separate weight matri-
ces for different types of dependency edge labels,
rather it considers only three type of edges: a)
edges that exist originally, b) the reverse edges that
are added explicitly, and c) self loops. The S-GCN
portion of Figure 1 represents this component.

More formally, Hcntx 2 R
n⇥k is transformed

to Hsyn 2 R
n⇥ksyn by applying S-GCN.

3.2.3 Temporal Embedding
In this layer, NeuralDater exploits the Event-Time
graph structure present in the document. CATENA
(Mirza and Tonelli, 2016), current state-of-the-art
temporal and causal relation extraction algorithm,
produces the temporal graph from the event time
annotation of the document. GCN applied over
this Event-Time graph, namely T-GCN, chooses
nT number of tokens out of total n tokens from the
document for further revision in their embeddings.
Note that T is the total number of events and time
mentions present in the document. A special node
DCT is added to the graph and its embedding is
jointly learned. Note that this layer learns both
label and direction specific parameters.
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3.2.4 Classifier
Finally, the DCT embedding concatenated with
the average pooled syntactic embedding is fed to
a softmax layer for classification. This whole pro-
cedure is trained jointly.

4 Attentive Deep Document Dater
(AD3): Proposed Method

In this section, we describe Attentive Deep Doc-
ument Dater (AD3), our proposed method. AD3
is inspired by NeuralDater, and shares many of its
components. Just like in NeuralDater, AD3 also
leverages two main types of signals from the doc-
ument – syntactic and event-time – to predict the
document’s timestamp. However, there are crucial
differences between the two systems. Firstly, in-
stead of concatenating embeddings learned from
these two sources as in NeuralDater, AD3 treats
these two models completely separate and com-
bines them at a later stage. Secondly, unlike Neu-
ralDater, AD3 employs attention mechanisms in
each of these two models. We call the result-
ing models Attentive Context Model (AC-GCN)
and Ordered Event Model (OE-GCN). These two
models are described in Section 4.1 and Section
4.2, respectively.

4.1 Attentive Context Model (AC-GCN)
Recent success of attention-based deep learning
models for classification (Yang et al., 2016b),
question answering (Yang et al., 2016a), and ma-
chine translation (Bahdanau et al., 2014) have mo-
tivated us to use attention during document dating.
We extend the syntactic embedding model of Neu-
ralDater (Section 3.2.2) by incorporating an atten-
tive pooling layer. We call the resulting model AC-
GCN. This model (right side in Figure 1) has two
major components.

• Context Embedding and Syntactic Em-
bedding: Following NeuralDater, we used
Bi-LSTM and S-GCN to capture context and
long-range syntactic dependencies in the doc-
ument (Please refer to Section 3.2.1, Section
3.2.2 for brief description). The syntactic
embedding, Hsyn 2 R

n⇥ksyn is then fed to
an Attention Network for further processing.
Note that, ksyn is the dimension of the out-
put of Syntactic-GCN and n is the number of
tokens in the document.

• Attentive Embedding: In this layer, we

learn the representation for the whole docu-
ment through word level attention network.
We learn a context vector, us 2 R

s with re-
spect to which we calculate attention for each
token. Finally, we aggregate the token fea-
tures with respect to their attention weights
in order to represent the document. More for-
mally, let hsyn

t 2 R
ksyn be the syntactic rep-

resentation of the tth token in the document.
We take non-linear projection of it in R

s with
Ws 2 R

s⇥ksyn . Attention weight ↵t for tth

token is calculated with respect to the context
vector uT

t as follows.

ut = tanh(Wsh
syn
t ),

↵t =
exp(uT

t us)P
t exp(uT

t us)
.

Finally, the document representation for the
AC-GCN is computed as shown below.

dAC�GCN =
X

t

↵th
syn
t

This representation is fed to a softmax layer
for the final classification.

The final probability distribution over years pre-
dicted by the AC-GCN is given below.

PAC�GCN(y|D) = Softmax(W · dAC�GCN + b).

4.2 Ordered Event Model (OE-GCN)
The OE-GCN model is shown on the left side of
Figure 1. Just like in AC-GCN, context and syn-
tactic embedding is also part of OE-GCN. The
syntactic embedding is fed to the Attentive Graph
Convolution Network (AT-GCN) where the graph
is obtained from the time-event ordering algorithm
CATENA (Mirza and Tonelli, 2016). We describe
these components in detail below.

4.2.1 Temporal Graph
We use the same process used in NeuralDater
(Vashishth et al., 2018) for procuring the Temporal
Graph from the document. CATENA (Mirza and
Tonelli, 2016) generates 9 different temporal links
between events and time expressions present in
the document. Following Vashishth et al. (2018),
we choose 5 most frequent ones - AFTER, BE-
FORE, SIMULTANEOUS, INCLUDES, and IS
INCLUDED – as labels. The temporal graph
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is constructed from the partial ordering between
event verbs and time expressions.

Let ET be the edge list of the Temporal
Graph. Similar to (Marcheggiani and Titov, 2017;
Vashishth et al., 2018), we also add reverse edges
for each of the existing edge and self loops for
passing current node information as explained in
Section 3.1. The new edge list E 0

T is shown below.

E 0
T = ET [ {(j, i, l(i, j)�1) | (i, j, l(i, j)) 2 ET}

[ {(i, i, self) | i 2 V)}.

The reverse edges are added with reverse labels
like AFTER�1, BEFORE�1 etc . Finally, we get
10 labels for our temporal graph and we denote the
set of edge labels by L.

4.2.2 Attentive Graph Convolution
(AT-GCN)

Since the temporal graph is automatically gener-
ated, it is likely to have incorrect edges. Ide-
ally, we would like to minimize the influence of
such noisy edges while computing temporal em-
bedding. In order to suppress the noisy edges in
the Temporal Graph and detect important edges
for reasoning, we use attentive graph convolu-
tion (Hamilton et al., 2017) over the Event-Time
graph. The attention mechanism learns the aggre-
gation function jointly during training. Here, the
main objective is to calculate the attention over
the neighbouring nodes with respect to the current
node for a given label. Then the embedding of
the current node is updated by mixing neighbour-
ing node embedding according to their attention
scores. In this respect, we propose a label-specific
attentive graph convolution over directed graphs.

Let us consider an edge in the temporal graph
from node i to node j with type l, where l 2 L and
L is the label set. The label set L can be divided
broadly into two coarse labels as done in Section
3.2.2. The attention weights are specific to only
these two type of edges to reduce parameter and
prevent overfitting. For illustration, if there exists
an edge from node i to j then the edge types will
be,

• L(i, j) =! if (i, j, l(i, j)) 2 E 0

T ,
i.e., if the edge is an original event-time edge.

• L(i, j) = if (i, j, l(i, j)�1) 2 E 0

T ,
i.e., if the edge is added later.

First, we take a linear projection (W atten
L(i,j) 2

R
F⇥ksyn) of both the nodes in R

F in order to map

beforebefore

abefore

Figure 2: Attentive Graph Convolution (AT-GCN). In this
layer, we learn attention weights for every edge based on la-
bel and direction. The attention weights are learnt using a
context vector. The final representation of every node is a
summation of weighted convolution over neighboring nodes
based on labels.

both of them in the same direction-specific space.
The concatenated vector [W atten

L(i,j) ⇥ hi; W atten
L(i,j) ⇥

hj ], signifies the importance of the node j w.r.t.
node i. A non linear transformation of this con-
catenation can be treated as the importance feature
vector between i and j.

eij = tanh[W atten
L(i,j) ⇥ hi; W

atten
L(i,j) ⇥ hj ].

Now, we compute the attention weight of node j
for node i with respect to a direction-specific con-
text vector aL(i,j) 2 R

2F , as follows.

↵l(i,j)
ij =

exp
⇣
aT

L(i,j)eij

⌘

P

k2N l(i,·)
i

exp
⇣
aT

L(i,j)eik

⌘ ,

where, ↵l(i,j)
ij = 0 if node i and j is not con-

nected through label l. N l(i,·) denotes the sub-
set of the neighbourhood of node i with label l
only. Please note that, although the linear trans-
form weight (W atten

L(i,j) 2 R
F⇥ksyn) is specific to

the coarse labels L, but for each finer label l 2 L
we get these convex weights of attentions. Figure
2 illustrates the above description w.r.t. edge type
BEFORE.
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Figure 3: Variation of validation accuracy with � (for APW
dataset). We observe that AC-GCN and OE-GCN are both
important for the task as we get optimal � = 0.52.

Finally, the feature aggregation is done accord-
ing to the attention weights. Prior to that, another
label specific linear transformation is taken to per-
form the convolution operation. Then, the updated
feature for node i is calculated as follows.

hk+1
i = f

⇣P
l2L

P
j2N l(i,·)

i
↵l(i,j)

ij

�
Wl(i,j)hj + bl(i,j)

�⌘
.

where, ↵ii = 1, N l(i,·) denotes the subset of the
neighbourhood of node i with label l only. Note
that, ↵l(i,j)

ij = 0 when j /2 N l(i,·). To illustrate for-
mally, from Figure 2, we see that weight ↵1 and ↵2

is calculated specific to label type BEFORE and
the neighbours which are connected through BE-
FORE is being multiplied with Wbefore prior to
aggregation in the ReLU block.

Now, after applying attentive graph convolu-
tion network, we only consider the representa-
tion of Document Creation Time (DCT), hDCT ,
as the document representation itself. hDCT is
now passed through a fully connected layer prior
to softmax. Prediction of the OE-GCN for the doc-
ument D will be given as

POE�GCN(y|D) = Softmax(W · dDCT + b).

4.3 AD3: Attentive Deep Document Dater

In this section, we propose an unified model by
mixing both AC-GCN and OE-GCN. Even on val-
idation data, we see that performance of both the
models differ to a large extent. This significant
difference (McNemar test p < 0.000001) moti-
vated the unification. We take convex combina-
tion of the output probabilities of the two models

Datasets # Docs Start Year End Year

APW 675k 1995 2010
NYT 647k 1987 1996

Table 1: Details of datasets used. Please refer Section 5 for
details.

as shown below.

Pjoint(y|D) = �PAC�GCN(y|D)

+ (1� �)POE�GCN(y|D).

The combination hyper-parameter � is tuned
on the validation data. We obtain the value of
� to be 0.52 (Figure 3) and 0.54 for APW and
NYT datasets, respectively. This depicts that the
two models are capturing significantly different
aspects of documents, resulting in a substantial
improvement in performance when combined.

5 Experimental Setup

Dataset: Experiments are carried out on the Asso-
ciated Press Worldstream (APW) and New York
Times (NYT) sections of the Gigaword corpus
(Parker et al., 2011). We have used the same 8:1:1
split as Vashishth et al. (2018) for all the models.
For quantitative details please refer to Table 1.

Evaluation Criteria: In accordance with prior
work (Chambers, 2012; Kotsakos et al., 2014;
Vashishth et al., 2018) the final task is to predict
the publication year of the document. We give a
brief description of the baselines below.

Baseline Methods:

• MaxEnt-Joint (Chambers, 2012): This
method engineers several hand-crafted tem-
porally influenced features to classify the
document using MaxEnt Classifier.

• BurstySimDater (Kotsakos et al., 2014):
This is a purely statistical method which uses
lexical similarity and term burstiness (Lappas
et al., 2009) for dating documents in arbitrary
length time frame. For our experiments, we
used a time frame length of 1 year.

• NeuralDater (Vashishth et al., 2018): This is
the first deep neural network based approach
for the document dating task. Details are pro-
vided in Section 3.2.
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Figure 4: Mean absolute deviation (in years; lower is bet-
ter) between a model’s top prediction and the true year in
the APW dataset. We find that all of our proposed methods
outperform the previous state-of-the-art NeuralDater. Please
refer to Section 6.1 for details.

Method APW NYT

BurstySimDater 45.9 38.5
MaxEnt-Joint 52.5 42.5
NeuralDater 64.1 58.9

Attentive NeuralDater [6.2] 66.2 60.1
OE-GCN [4.2] 63.9 58.3
AC-GCN [4.1] 65.6 60.3

AD3 [4.3] 68.2 62.2

Table 2: Accuracy (%) of different methods on the APW
and NYT datasets for the document dating problem (higher
is better). The unified model significantly outperforms all
previous models.

Israel's consumer price index increased by 1.2 percent 
 in December, bringing the overall inflation rate for 1995 
to 8.1 percent, well within the government's target rate 
for the year, officials said Friday. Israel radio said that  
it was the lowest annual inflation rate in twenty years.

Figure 5: Visualization of the attention of AC-GCN. AC-
GCN captures the intuitive tokens as seen in the figure.
Darker shade implies higher attention. The correct DCT is
1996.

Hyperparameters: We use 300-dimensional
GloVe embeddings and 128-dimensional hidden
state for both GCNs and BiLSTM with 0.8
dropout. We use Adam (Kingma and Ba, 2014)
with 0.001 learning rate for training. For OE-GCN
we use 2-layers of AT-GCN. 1-layer of S-GCN is
used for both the models.

6 Results

6.1 Performance Analysis

In this section, we compare the effectiveness of
our method with that of prior work. The deep
network based NeuralDater model in (Vashishth
et al., 2018) outperforms previous feature engi-

Method Accuracy

T-GCN of NeuralDater 61.8
OE-GCN 63.9

S-GCN of NeuralDater 63.2
AC-GCN 65.6

Table 3: Accuracy (%) comparisons of component models
with and without Attention. This results show the effective-
ness of both word attention and Graph Attention for this task.
Please see Section 6.2 for more details.

DCT
Inc

rea
se

d

Brin
gin

g

Said Frid
ay

20
 ye

ars

Ann
ua

l

Dec
em

be
r

19
95

DCT

Increased

Bringing

Said

Friday

20 years

Annual

December

1995

…
..

… ………………………

…..

…

…

…

…

…

…

…

…

…

Figure 6: Visualization of the average edge attention of
the temporal graph as learnt by OE-GCN for the document
shown in Figure 5. Darker color implies higher attention.
The correct DCT is 1996.

neered (Chambers, 2012) and statistical methods
(Kotsakos et al., 2014) by a large margin. We ob-
serve a similar trend in our case. Compared to
the state-of-the-art model NeuralDater, we gain,
on an average, a 3.7% boost in accuracy on both
the datasets (Table 2).

Among individual models, OE-GCN performs
at par with NeuralDater, while AC-GCN outper-
forms it. The empirical results imply that AC-
GCN by itself is effective for this task. The rela-
tively worse performance of OE-GCN can be at-
tributed to the fact that it only focuses on the
Event-Time information and leaves out most of
the contextual information. However, it captures
various different (p < 0.000001, McNemar’s test,
2-tailed) aspects of the document for classifica-
tion, which motivated us to propose an ensemble
of the two models. This explains the significant
boost in performance of AD3 over NeuralDater as
well as the individual models. It is worth mention-
ing that although AC-GCN and OE-GCN do not
provide significant boosts in accuracy, their pre-
dictions have considerably lower mean-absolute-
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deviation as shown in Figure 4.
We concatenated the DCT embedding provided

by OE-GCN with the document embedding pro-
vided by AC-GCN and trained in an end to end
joint fashion like NeuralDater. We see that even
with a similar training method, the Attentive Neu-
ralDater model on an average, performs 1.6% bet-
ter in terms of accuracy, once again proving the ef-
ficacy of attention based models over normal mod-
els.

6.2 Effectiveness of Attention

Attentive Graph Convolution (Section 4.2.2)
proves to be effective for OE-GCN, giving a 2%
accuracy improvement over non-attentive T-GCN
of NeuralDater (Table 3). Similarly the efficacy of
word level attention is also prominent from Table
3.
We have also analyzed our models by visualiz-
ing attentions over words and attention over graph
nodes. Figure 5 shows that AC-GCN focuses on
temporally informative words such as ”said” (for
tense) or time mentions like “1995”, alongside im-
portant contextual words like “inflation”, “Israel”
etc. For OE-GCN, from Figure 6 we observe that
“DCT” and time-mention ‘1995’ grabs the high-
est attention. Attention between “DCT” and other
event verbs indicating past tense are quite promi-
nent, which helps the model to infer 1996 (which
is correct) as the most likely time-stamp of the
document. These analyses provide us with a good
justification for the performance of our attentive
models.

7 Discussion

Apart from empirical improvements over previ-
ous models, we also perform a qualitative analy-
sis of the individual models. Figure 7 shows that
the performance of AC-GCN improves with the
length of documents, thus indicating that richer
context leads to better model prediction. Figure
8 shows how the performance of OE-GCN im-
proves with the number of event-time mentions in
the document, thus further reinforcing our claim
that more temporal information improves model
performance.

Vashishth et al. (2018) reported that their model
got confused by the presence of multiple mislead-
ing time mentions. AD3 overcomes this limitation
using attentive graph convolution, which success-
fully filters out noisy time mentions as is evident
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Figure 7: Variation of validation accuracy (%) with respect
to length of documents (for APW dataset) for AC-GCN. Doc-
uments having more than 100 tokens are selected for this
analysis. Please see Section 7.
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Figure 8: Variation of validation accuracy (%) with number
of event-time mentions in documents (for APW dataset) for
OE-GCN. Documents with more than 100 tokens are selected
for this analysis. Please see Section 7.

from Figure 8.

8 Conclusion

We propose AD3, an ensemble model which ex-
ploits both syntactic and temporal information in
a document explicitly to predict its creation time
(DCT). To the best of our knowledge, this is the
first application of attention based deep models
for dating documents. Our experimental results
demonstrate the effectiveness of our model over all
previous models. We also visualize the attention
weights to show that the model is able to choose
what is important for the task and filter out noise
inherent in language. As part of future work, we
would like to incorporate external knowledge as
a side information for improved time-stamping of
documents.
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Abstract
Cross-lingual or cross-domain correspon-
dences play key roles in tasks ranging from
machine translation to transfer learning. Re-
cently, purely unsupervised methods operating
on monolingual embeddings have become ef-
fective alignment tools. Current state-of-the-
art methods, however, involve multiple steps,
including heuristic post-hoc refinement strate-
gies. In this paper, we cast the correspon-
dence problem directly as an optimal trans-
port (OT) problem, building on the idea that
word embeddings arise from metric recovery
algorithms. Indeed, we exploit the Gromov-
Wasserstein distance that measures how sim-
ilarities between pairs of words relate across
languages. We show that our OT objective
can be estimated efficiently, requires little or
no tuning, and results in performance compa-
rable with the state-of-the-art in various unsu-
pervised word translation tasks.

1 Introduction
Many key linguistic tasks, within and across lan-
guages or domains, including machine translation,
rely on learning cross-lingual correspondences be-
tween words or other semantic units. While the as-
sociated alignment problem could be solved with
access to large amounts of parallel data, broader
applicability relies on the ability to do so with
largely mono-lingual data, from Part-of-Speech
(POS) tagging (Zhang et al., 2016), dependency
parsing (Guo et al., 2015), to machine translation
(Lample et al., 2018). The key subtask of bilingual
lexical induction, for example, while long stand-
ing as a problem (Fung, 1995; Rapp, 1995, 1999),
has been actively pursued recently (Artetxe et al.,
2016; Zhang et al., 2017a; Conneau et al., 2018).

Current methods for learning cross-domain cor-
respondences at the word level rely on distributed
representations of words, building on the observa-
tion that mono-lingual word embeddings exhibit

similar geometric properties across languages
Mikolov et al. (2013). While most early work
assumed some, albeit minimal, amount of paral-
lel data (Mikolov et al., 2013; Dinu et al., 2014;
Zhang et al., 2016), recently fully-unsupervised
methods have been shown to perform on par
with their supervised counterparts (Conneau et al.,
2018; Artetxe et al., 2018). While successful, the
mappings arise from multiple steps of process-
ing, requiring either careful initial guesses or post-
mapping refinements, including mitigating the ef-
fect of frequent words on neighborhoods. The as-
sociated adversarial training schemes can also be
challenging to tune properly (Artetxe et al., 2018).

In this paper, we propose a direct optimization
approach to solving correspondences based on re-
cent generalizations of optimal transport (OT). OT
is a general mathematical toolbox used to evalu-
ate correspondence-based distances and establish
mappings between probability distributions, in-
cluding discrete distributions such as point-sets.
However, the nature of mono-lingual word embed-
dings renders the classic formulation of OT inap-
plicable to our setting. Indeed, word embeddings
are estimated primarily in a relational manner to
the extent that the algorithms are naturally in-
terpreted as metric recovery methods (Hashimoto
et al., 2016). In such settings, previous work
has sought to bypass this lack of registration by
jointly optimizing over a matching and an or-
thogonal mapping (Rangarajan et al., 1997; Zhang
et al., 2017b). Due to the focus on distances rather
than points, we instead adopt a relational OT for-
mulation based on the Gromov-Wasserstein dis-
tance that measures how distances between pairs
of words are mapped across languages. We show
that the resulting mapping admits an efficient so-
lution and requires little or no tuning.

In summary, we make the following contribu-
tions:
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• We propose the use of the Gromov-
Wasserstein distance to learn correspon-
dences between word embedding spaces
in a fully-unsupervised manner, leading to
a theoretically-motivated optimization prob-
lem that can be solved efficiently, robustly, in
a single step, and requires no post-processing
or heuristic adjustments.

• To scale up to large vocabularies we realize
an extended mapping to words not part of the
original optimization problem.

• We show that the proposed approach per-
forms on par with state-of-the-art neural net-
work based methods on benchmark word
translation tasks, while requiring a frac-
tion of the computational cost and/or hyper-
parameter tuning.

2 Problem Formulation

In the unsupervised bilingual lexical induction
problem we consider two languages with vocabu-
laries Vx and Vy, represented by word embeddings
X = {x(i)}n

i=1 and Y = {y(j)}m
j=1, respectively,

where x(i) 2 X ⇢ R
dx corresponds to wx

i 2 Vx

and y(j) 2 Y ⇢ R
dy to wy

j 2 Vy. For simplicity,
we let m = n and dx = dy, although our meth-
ods carry over to the general case with little or no
modifications. Our goal is to learn an alignment
between these two sets of words without any par-
allel data, i.e., we learn to relate x(i) $ y(j) with
the implication that wx

i translates to wy
j .

As background, we begin by discussing the
problem of learning an explicit map between em-
beddings in the supervised scenario. The associ-
ated training procedure will later be used for ex-
tending unsupervised alignments (Section 3.2).

2.1 Supervised Maps: Procrustes
In the supervised setting, we learn a map T : X !
Y such that T (x(i)) ⇡ y(j) whenever wy

j is a
translation of wx

i . Let X and Y be the matrices
whose columns are vectors x(i) and y(j), respec-
tively. Then we can find T by solving

min
T2F
kX� T (Y)k2F (1)

where k · kF is the Frobenius norm kAkF =qP
i,j |aij |2. Naturally, both the difficulty of

finding T and the quality of the resulting align-
ment depend on the choice of space F . A classic

approach constrains T to be orthonormal matrices,
i.e., rotations and reflections, resulting in the or-
thogonal Procrustes problem

min
P2O(n)

kX�PYk2F (2)

where O(n) = {P 2 R
n⇥n | P>P = I}.

One key advantage of this formulation is that
it has a closed-form solution in terms of a sin-
gular value decomposition (SVD), whereas for
most other choices of constraint set F it does
not. Given an SVD decomposition U⌃V> of
XY>, the solution to problem (2) is P⇤ = UV>

(Schönemann, 1966). Besides obvious compu-
tational advantage, constraining the mapping be-
tween spaces to be orthonormal is justified in the
context of word embedding alignment because
orthogonal maps preserve angles (and thus dis-
tances), which is often the only information used
by downstream tasks (e.g., for nearest neighbor
search) that rely on word embeddings. (Smith
et al., 2017) further show that orthogonality is re-
quired for self-consistency of linear transforma-
tions between vector spaces.

Clearly, the Procrustes approach only solves the
supervised version of the problem as it requires a
known correspondence between the columns of X
and Y. Steps beyond this constraint include using
small amounts of parallel data (Zhang et al., 2016)
or an unsupervised technique as the initial step
to generate pseudo-parallel data (Conneau et al.,
2018) before solving for P.

2.2 Unsupervised Maps: Optimal Transport
Optimal transport formalizes the problem of find-
ing a minimum cost mapping between two point
sets, viewed as discrete distributions. Specifically,
we assume two empirical distributions over em-
beddings, e.g.,

µ =
nX

i=1

pi�x(i) , ⌫ =
mX

j=1

qj�y(i) (3)

where p and q are vectors of probability weights
associated with each point set. In our case, we
usually consider uniform weights, e.g., pi = 1/n
and qj = 1/m, although if additional information
were provided (such as in the form of word fre-
quencies), those could be naturally incorporated
via p and q (see discussion at the end of Section
3). We find a transportation map T realizing

inf
T

⇢Z

X
c(x, T (x))dµ(x) | T#µ = ⌫

�
, (4)
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where the cost c(x, T (x)) is typically just kx �
T (x)k and T#µ = ⌫ implies that the source points
must exactly map to the targets. However, such a
map need not exist in general and we instead fol-
low a relaxed Kantorovich’s formulation. In this
case, the set of transportation plans is a polytope:

⇧(p,q) = {� 2 R
n⇥m
+ | �1n = p, �>1n = q}.

The cost function is given as a matrix C 2 R
n⇥m,

e.g., Cij = kx(i) � y(j)k. The total cost incurred
by � is h�, Ci :=

P
ij �ijCij . Thus, the discrete

optimal transport (DOT) problem consists of find-
ing a plan � that solves

min
�2⇧(p,q)

h�,Ci. (5)

Problem (5) is a linear program, and thus can be
solved exactly in O(n3 log n) with interior point
methods. However, regularizing the objective
leads to more efficient optimization and often bet-
ter empirical results. The most common such reg-
ularization, popularized by Cuturi (2013), involves
adding an entropy penalization:

min
�2⇧(p,q)

h�,Ci � �H(�). (6)

The solution of this strictly convex optimization
problem has the form �⇤ = diag (a)K diag (b),
with K = e�C

� (element-wise), and can be ob-
tained efficiently via the Sinkhorn-Knopp algo-
rithm, a matrix-scaling procedure which itera-
tively computes:

a p↵Kb and b q↵K>a, (7)

where ↵ denotes entry-wise division. The deriva-
tion of these updates is immediate from the form
of �⇤ above, combined with the marginal con-
straints �1n = p, �>1n = q (Peyré and Cuturi,
2018).

Although simple, efficient and theoretically-
motivated, a direct application of discrete OT for
unsupervised word translation is not appropriate.
One reason is that the mono-lingual embeddings
are estimated in a relative manner, leaving, e.g.,
an overall rotation unspecified. Such degrees of
freedom can dramatically change the entries of the
cost matrix Cij = kx(i) � y(j)k and the resulting
transport map. One possible solution is to simulta-
neously learn an optimal coupling and an orthog-
onal transformation (Zhang et al., 2017b). The
transport problem is then solved iteratively, using

Cij = kx(i) � Py(j)k, where P is in turn cho-
sen to minimize the transport cost (via Procrustes).
While promising, the resulting iterative approach
is sensitive to initialization, perhaps explaining
why Zhang et al. (2017b) used an adversarially
learned mapping as the initial step. The compu-
tational cost can also be prohibitive (Artetxe et al.,
2018) though could be remedied with additional
development.

We adopt a theoretically well-founded gener-
alization of optimal transport for pairs of points
(their distances), thus in line with how the embed-
dings are estimated in the first place. We explain
the approach in detail in the next Section.

3 Transporting across unaligned spaces

In this section we introduce the Gromov-
Wasserstein distance, describe an optimization al-
gorithm for it, and discuss how to extend the ap-
proach to out-of-sample vectors.

3.1 The Gromov Wasserstein Distance

The classic optimal transport requires a distance
between vectors across the two domains. Such
a metric may not be available, for example,
when the sample sets to be matched do not be-
long to the same metric space (e.g., different
dimension). The Gromov-Wasserstein distance
(Mémoli, 2011) generalizes optimal transport by
comparing the metric spaces directly instead of
samples across the spaces. In other words, this
framework operates on distances between pairs of
points calculated within each domain and mea-
sures how these distances compare to those in the
other domain. Thus, it requires a weaker but easy
to define notion of distance between distances, and
operates on pairs of points, turning the problem
from a linear to a quadratic one.

Formally, in its discrete version, this framework
considers two measure spaces expressed in terms
of within-domain similarity matrices (C,p) and
(C0,q) and a loss function defined between simi-
larity pairs: L : R ⇥ R ! R, where L(Cik, C 0

jl)
measures the discrepancy between the distances
d(x(i),x(k)) and d0(y(j),y(l)). Typical choices for
L are L(a, b) = 1

2(a � b)2 or L(a, b) = KL(a|b).
In this framework, L(Cik, C 0

jl) can also be under-
stood as the cost of “matching” i to j and k to l.

All the relevant values of L(·, ·) can be put in
a 4-th order tensor L 2 R

N1⇥N1⇥N2⇥N2 , where
Lijkl = L(Cik, C 0

jl). As before, we seek a cou-
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Figure 1: The Gromov-Wasserstein distance is well suited for the task of cross-lingual alignment be-
cause it relies on relational rather than positional similarities to infer correspondences across domains.
Computing it requires two intra-domain similarity (or equivalently cost) matrices (left & center), and it
produces an optimal coupling of source and target points with minimal discrepancy cost (right).

pling � specifying how much mass to transfer be-
tween each pair of points from the two spaces. The
Gromov-Wasserstein problem is then defined as
solving

GW(C,C0,p,q) = min
�2⇧(p,q)

X

i,j,k,l

Lijkl�ij�kl (8)

Compared to problem (5), this version is sub-
stantially harder since the objective is now not
only non-linear, but non-convex too.1 In addi-
tion, it requires operating on a fourth-order ten-
sor, which would be prohibitive in most settings.
Surprisingly, this problem can be optimized ef-
ficiently with first-order methods, whereby each
iteration involves solving a traditional optimal
transport problem (Peyré et al., 2016). Fur-
thermore, for suitable choices of loss function
L, Peyré et al. (2016) show that instead of the
O(N2

1 N2
2 ) complexity implied by naive fourth-

order tensor product, this computation reduces to
O(N2

1 N2 + N1N2
2 ) cost. Their approach con-

sists of solving (5) by projected gradient descent,
which yields iterations that involve projecting onto
⇧(p,q) a pseudo-cost matrix of the form

Ĉ�(C,C0, �) = Cxy � h1(C)�h2(C
0)> (9)

where

Cxy = f1(C)p1>
m + 1nq

>f2(C
0)>

and f1, f2, h2, h2 are functions that depend on the
loss L. We provide an explicit algorithm for the
case L = L2 at the end of this section.

1In fact, the discrete (Monge-type) formulation of the
problem is essentially an instance of the well-known (and
NP-hard) quadratic assignment problem (QAP).

Once we have solved (8), the optimal trans-
port coupling �⇤ provides an explicit (soft) match-
ing between source and target samples, which for
the problem of interest can be interpreted as a
probabilistic translation: for every pair of words
(w(i)

src, w
(j)
trg), �⇤

ij provides a likelihood that these
two words are translations of each other. This
itself is enough to translate, and we show in
the experiments section that �⇤ by itself, with-
out any further post-processing, provides high-
quality translations. This stands in sharp con-
trast to mapping-based methods, which rely on
nearest-neighbor computation to infer transla-
tions, and thus become prone to hub-word effects
which have to be mitigated with heuristic post-
processing techniques such as Inverted Softmax
(Smith et al., 2017) and Cross-Domain Similarity
Scaling (CSLS) (Conneau et al., 2018). The trans-
portation coupling �, being normalized by con-
struction, requires no such artifacts.

The Gromov-Wasserstein problem (8) pos-
sesses various desirable theoretical properties, in-
cluding the fact that for a suitable choice of the
loss function it is indeed a distance:

Theorem 3.1 (Mémoli 2011). With the choice
L = L2, GW

1
2 is a distance on the space of metric

measure spaces.

Solving problem (8) therefore yields a fas-
cinating accompanying notion: the Gromov-
Wasserstein distance between languages, a mea-
sure of semantic discrepancy purely based on the
relational characterization of their word embed-
dings. Owing to Theorem 3.1, such values can be
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interpreted as distances, so that, e.g., the triangle
inequality holds among them. In Section 4.4 we
compare various languages in terms of their GW-
distance.

Finally, we note that whenever word frequency
counts are available, those would be used for p
and q. If they are not, but words are sorted ac-
cording to occurrence (as they often are in popu-
lar off-the-shelf embedding formats), one can es-
timate rank-probabilities such as Zipf power laws,
which are known to accurately model multiple lan-
guages (Piantadosi, 2014). In order to provide a
fair comparison to previous work, throughout our
experiments we use uniform distributions so as
to avoid providing our method with additional in-
formation not available to others.

3.2 Scaling Up
While the pure Gromov-Wasserstein approach
leads to high quality solutions, it is best suited
to small-to-moderate vocabulary sizes,2 since its
optimization becomes prohibitive for very large
problems. For such settings, we propose a two-
step approach in which we first match a subset
of the vocabulary via the optimal coupling, after
which we learn an orthogonal mapping through a
modified Procrustes problem. Formally, suppose
we solve problem (8) for a reduced matrices X1:k

and Yi:k consisting of the first columns k of X
and Y, respectively, and let �⇤ be the optimal
coupling. We seek an orthogonal matrix that best
recovers the barycentric mapping implied by �⇤.
Namely, we seek to find P which solves:

min
P2O(n)

kX�⇤ �PYk22 (10)

Just as problem (2), it is easy to show that this
Procrustes-type problem has a closed form solu-
tion in terms of a singular value decomposition.
Namely, the solution to (10) is P⇤ = UV>, where
U⌃V⇤ = X1:m�⇤Y>

1:m. After obtaining this pro-
jection, we can immediately map the rest of the
embeddings via ŷ(j) = P⇤y(j).

We point out that this two-step procedure re-
sembles that of Conneau et al. (2018). Both ul-
timately produce an orthogonal mapping obtained
by solving a Procrustes problems, but they differ
in the way they produce pseudo-matches to allow
for such second-step: while their approach relies

2As shown in the experimental section, we are able to run
problems of size in the order of |Vs| ⇡ 105

⇡ |Vt| on a single
machine without relying on GPU computation.

Algorithm 1 Gromov-Wasserstein Computation
for Word Embedding Alignment

Input: Source and target embeddings X, Y.
Regularization �. Probability vectors p,q.
// Compute intra-language similarities
Cs  cos(X,X), Ct  cos(Y,Y)
Cst  C2

sp
>
m + nq(C2

t )
>

while not converged do
// Compute pseudo-cost matrix (Eq. (9))
Ĉ�  Cst � 2Cs�C>

t

// Sinkhorn iterations (Eq. (7))
a , K exp{�Ĉ�/�}
while not converged do

a p↵Kb, b q↵K>a
end while
� diag (a)K diag (b)

end while
// Optional step: Learn explicit projection
U, ⌃,V>  SVD(X�Y>)
P = UV>

return �,P

on an adversarially-learned transformation, we use
an explicit optimization problem.

We end this section by discussing parameter and
configuration choices. To leverage the fast algo-
rithm of Peyré et al. (2016), we always use the L2

distance as the loss function L between cost ma-
trices. On the other hand, we observed throughout
our experiments that the choice of cosine distance
as the metric in both spaces consistently leads to
better results, which agrees with common wis-
dom on computing distances between word em-
beddings. This leaves us with a single hyper-
parameter to control: the entropy regularization
term �. By applying any sensible normalization
on the cost matrices (e.g., dividing by the mean
or median value), we are able to almost entirely
eliminate sensitivity to that parameter. In prac-
tice, we use a simple scheme in all experiments:
we first try the same fixed value (� = 5⇥ 10�5),
and if the regularization proves too small (by lead-
ing to floating point errors), we instead use � =
1⇥ 10�4. We never had to go beyond these two
values in all our experiments. We emphasize that
at no point we use train (let alone test) supervision
available with many datasets—model selection is
done solely in terms of the unsupervised objective.
Pseudocode for the full method (with L = L2 and
cosine similarity) is shown here as Algorithm 1.
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(a) EN!FR, 15K words, � = 5 · 10�4 (b) EN!FR, 15K words, � = 10�4 (c) EN!RU, 15K words, � = 10�4

Figure 2: Training dynamics for the Gromov-Wasserstein alignment problem. The algorithm prov-
ably makes progress in each iteration, and the objective (red dashed line) closely follows the metric of
interest (translation accuracy, not available during training). More related languages (e.g., EN !FR in
2b,2a) lead to faster optimization, while more distant pairs yield slower learning curves (EN!RU, 2c).

4 Experiments

Through this experimental evaluation we seek
to: (i) understand the optimization dynamics of
the proposed approach (§4.2), evaluate its perfor-
mance on benchmark cross-lingual word embed-
ding tasks (§4.3), and (iii) qualitatively investi-
gate the notion of distance-between-languages it
computes (§4.4). Rather than focusing solely on
prediction accuracy, we seek to demonstrate that
the proposed approach offers a fast, principled,
and robust alternative to state-of-the-art multi-step
methods, delivering comparable performance.

4.1 Evaluation Tasks and Methods
Datasets We evaluate our method on two stan-
dard benchmark tasks for cross-lingual embed-
dings. First, we consider the dataset of Conneau
et al. (2018), which consists of word embeddings
trained with FASTTEXT (Bojanowski et al., 2017)
on Wikipedia and parallel dictionaries for 110 lan-
guage pairs. Here, we focus on the language
pairs for which they report results: English (EN)
from/to Spanish (ES), French (FR), German (DE),
Russian (RU) and simplified Chinese (ZH). We do
not report results on Esperanto (EO) as dictionar-
ies for that language were not provided with the
original dataset release.

For our second set of experiments, we con-
sider the—substantially harder3—dataset of (Dinu
et al., 2014), which has been extensively compared
against in previous work. It consists of embed-
dings and dictionaries in four pairs of languages;
EN from/to ES, IT, DE, and FI (Finnish).

3We discuss the difference in hardness of these two bench-
mark datasets in Section 4.3.

Methods To see how our fully-unsupervised
method compares with methods that require
(some) cross-lingual supervision, we follow (Con-
neau et al., 2018) and consider a simple but strong
baseline consisting of solving a procrustes prob-
lem directly using the available cross-lingual em-
bedding pairs. We refer to this method sim-
ply as PROCRUSTES. In addition, we compare
against the fully-unsupervised methods of Zhang
et al. (2017a), Artetxe et al. (2018) and Conneau
et al. (2018).4 As proposed by the latter, we
use CSLS whenever nearest neighbor search is re-
quired, which has been shown to improve upon
naive nearest-neighbor retrieval in multiple work.

4.2 Training Dynamics of G-W
As previously mentioned, our approach involves
only two optimization choices, one of which is
required only for very large settings. When run-
ning Algorithm 1 for the full set of embeddings is
infeasible (due to memory limitations), one must
decide what fraction of the embeddings to use
during optimization. In our experiments, we use
the largest possible size allowed by memory con-
straints, which was found to be K = 20, 000 for
the personal computer we used.

The other—more interesting—optimization
choice involves the entropy regularization pa-
rameter � used within the Sinkhorn iterations.
Large regularization values lead to denser optimal
coupling �⇤, while less regularization leads to
sparser solutions,5 at the cost of a harder (more

4Despite its relevance, we do not include the OT-based
method of Zhang et al. (2017b) in the comparison because
their implementation required use of proprietary software.

5In the limit �! 0, when n = m, the solution converges
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EN-ES EN-FR EN-DE EN-IT EN-RU

Supervision Time !  !  !  !  !  

PROCRUSTES 5K words 3 77.6 77.2 74.9 75.9 68.4 67.7 73.9 73.8 47.2 58.2
PROCRUSTES + CSLS 5K words 3 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7
(Conneau et al., 2018) None 957 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 52.4 61.4

G-W (� = 10�4) None 70 78.3 79.5 79.3 78.3 69.6 66.9 75.3 74.1 26.1 35.4
G-W (� = 10�5) None 37 81.7 80.4 81.3 78.9 71.9 72.8 78.9 75.2 45.1 43.7

Table 1: Performance (P@1) of unsupervised and minimally-supervised methods on the dataset of Con-
neau et al. (2018). The time columns shows the average runtime in minutes of an instance (i.e., one
language pair) of the method in this task on the same quad-core CPU machine.

non-convex) optimization problem.
In Figure 2 we show the training dynamics of

our method when learning correspondences be-
tween word embeddings from the dataset of Con-
neau et al. (2018). As expected, larger values
of � lead to smoother improvements with faster
runtime-per-iteration, at a price of some drop in
performance. In addition, we found that comput-
ing GW distances between closer languages (such
as EN and FR) leads to faster convergence than for
more distant ones (such as EN and RU, in Fig. 2c).

Worth emphasizing are three desirable opti-
mization properties that set apart the Gromov-
Wasserstein distance from other unsupervised
alignment approaches, particularly adversarial-
training ones: (i) the objective decreases mono-
tonically (ii) its value closely follows the true
metric of interest (translation, which naturally is
not available during training) and (iii) there is no
risk of degradation due to overtraining, as is the
case for adversarial-based methods trained with
stochastic gradient descent (Conneau et al., 2018).

4.3 Benchmark Results

We report the results on the dataset of Conneau
et al. (2018) in Table 1. The strikingly high per-
formance of all methods on this task belies the
hardness of the general problem of unsupervised
cross-lingual alignment. Indeed, as pointed out
by Artetxe et al. (2018), the FASTTEXT embed-
dings provided in this task are trained on very
large and highly comparable—across languages—
corpora (Wikipedia), and focuses on closely re-
lated pairs of languages. Nevertheless, we carry
out experiments here to have a broad evaluation of
our approach in both easier and harder settings.

Next, we present results on the more challeng-

to a permutation matrix, which gives a hard-matching solu-
tion to the transportation problem (Peyré and Cuturi, 2018).

Figure 3: Top: Word embeddings trained on non-
comparable corpora can lead to uneven distribu-
tions of pairwise distances as shown here for the
EN-FI pair of (Dinu et al., 2014). Bottom: Nor-
malizing the cost matrices leads to better optimiza-
tion and improved performance.

ing dataset of (Dinu et al., 2014) in Table 2. Here,
we rely on the results reported by (Artetxe et al.,
2018) since by the time of writing the present work
their implementation was not available yet.

Part of what makes this dataset hard is the wide
discrepancy between word distance across lan-
guages, which translates into uneven distance ma-
trices (Figure 3), and in turn leads to poor results
for G-W. To account for this, previous work has
relied on an initial whitening step on the embed-
dings. In our case, it suffices to normalize the
pairwise similarity matrices to the same range to
obtain substantially better results. While we have
observed that careful choice of the regularization
parameter � can obviate the need for this step, we
opt for the normalization approach since it allows
us to optimize without having to tune �.

We compare our method (with and without nor-
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EN-IT EN-DE EN-FI EN-ES

P@1 Time P@1 Time P@1 Time P@1 Time

(Zhang et al., 2017a)† 0 46.6 0 46.0 0.07 44.9 0.07 43.0
(Conneau et al., 2018)† 45.40 46.1 47.27 45.4 1.62 44.4 36.20 45.3
(Artetxe et al., 2018)† 48.53 8.9 48.47 7.3 33.50 12.9 37.60 9.1

G-W 44.4 35.2 37.83 36.7 6.8 15.6 12.5 18.4
G-W + NORMALIZE 49.21 36 46.5 33.2 18.3 42.1 37.60 38.2

Table 2: Results of unsupervised methods on the dataset of Dinu et al. (2014) with runtimes in min-
utes. Those marked with † are from (Artetxe et al., 2018). Note that their runtimes correspond to GPU
computation, while ours are CPU-minutes, so the numbers are not directly comparable.

malization) against alternative approaches in Ta-
ble 2. Note that we report the runtimes of Artetxe
et al. (2018) as-is, which are obtained by running
on a Titan XP GPU, while our runtimes are, as be-
fore, obtained purely by CPU computation.

4.4 Qualitative Results
As mentioned earlier, Theorem 3.1 implies that the
optimal value of the Gromov-Wasserstein problem
can be legitimately interpreted as a distance be-
tween languages, or more explicitly, between their
word embedding spaces. This distributional no-
tion of distance is completely determined by pair-
wise geometric relations between these vectors. In
Figure 4 we show the values GW(Cs,Ct,p,q)
computed on the FASTTEXT word embeddings of
Conneau et al. (2018) corresponding to the most
frequent 2000 words in each language.

Overall, these distances conform to our intu-
itions: the cluster of romance languages exhibits
some of the shortest distances, while classical Chi-
nese (ZH) has the overall largest discrepancy with
all other languages. But somewhat surprisingly,
Russian is relatively close to the romance lan-
guages in this metric. We conjecture that this
could be due to Russian’s rich morphology (a trait
shared by romance languages but not English).
Furthermore, both Russian and Spanish are pro-
drop languages (Haspelmath, 2001) and share syn-
tactic phenomena, such as dative subjects (Moore
and Perlmutter, 2000; Melis et al., 2013) and dif-
ferential object marking (Bossong, 1991), which
might explain why ES is closest to RU overall.

On the other hand, English appears remarkably
isolated from all languages, equally distant from
its germanic (DE) and romance (FR) cousins. In-
deed, other aspects of the data (such as corpus
size) might be underlying these observations.
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Figure 4: Pairwise language Gromov-Wasserstein
distances obtained as the minimal transportation
cost (8) between word embedding similarity ma-
trices. Values scaled by 102 for easy visualization.

5 Related Work

Study of the problem of bilingual lexical induction
goes back to Rapp (1995) and Fung (1995). While
the literature on this topic is extensive, we focus
here on recent fully-unsupervised and minimally-
supervised approaches, and refer the reader to one
of various existing surveys for a broader panorama
(Upadhyay et al., 2016; Ruder et al., 2017).

Methods with coarse or limited parallel data.
Most of these fall in one of two categories: meth-
ods that learn a mapping from one space to
the other, e.g., as a least-squares objective (e.g.,
(Mikolov et al., 2013)) or via orthogonal transfor-
mations Zhang et al. (2016); Smith et al. (2017);
Artetxe et al. (2016), and methods that find a com-
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mon space on which to project both sets of embed-
dings (Faruqui and Dyer, 2014; Lu et al., 2015).

Fully Unsupervised methods. Conneau et al.
(2018) and Zhang et al. (2017a) rely on adversarial
training to produce an initial alignment between
the spaces. The former use pseudo-matches de-
rived from this initial alignment to solve a Pro-
crustes (2) alignment problem. Our Gromov-
Wasserstein framework can be thought of as pro-
viding an alternative to these adversarial training
steps, albeit with a concise optimization formula-
tion and producing explicit matches (via the op-
timal coupling) instead of depending on nearest
neighbor search, as the adversarially-learnt map-
pings do.

Zhang et al. (2017b) also leverage optimal
transport distances for the cross-lingual embed-
ding task. However, to address the issue of non-
alignment of embedding spaces, their approach
follows the joint optimization of the transportation
and procrustes problem as outlined in Section 2.2.
This formulation makes an explicit modeling as-
sumption (invariance to unitary transformations),
and requires repeated solution of Procrustes prob-
lems during alternating minimization. Gromov-
Wasserstein, on the other hand, is more flexible
and makes no such assumption, since it directly
deals with similarities rather than vectors. In the
case where it is required, such an orthogonal map-
ping can be obtained by solving a single procrustes
problem, as discussed in Section 3.2.

6 Discussion and future work

In this work we provided a direct optimization
approach to cross-lingual word alignment. The
Gromov-Wasserstein distance is well-suited for
this task as it performs a relational comparison of
word-vectors across languages rather than word-
vectors directly. The resulting objective is concise,
and can be optimized efficiently. The experimen-
tal results show that the resulting alignment frame-
work is fast, stable and robust, yielding near state-
of-the-art performance at a computational cost or-
ders of magnitude lower than that of alternative
fully unsupervised methods.

While directly solving Gromov-Wasserstein
problems of reasonable size is feasible, scaling up
to large vocabularies made it necessary to learn an
explicit mapping via Procrustes. GPU computa-
tions or stochastic optimization could help avoid
this secondary step.
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Abstract
Deep learning has emerged as a versatile tool
for a wide range of NLP tasks, due to its supe-
rior capacity in representation learning. But its
applicability is limited by the reliance on anno-
tated examples, which are difficult to produce
at scale. Indirect supervision has emerged as a
promising direction to address this bottleneck,
either by introducing labeling functions to au-
tomatically generate noisy examples from un-
labeled text, or by imposing constraints over
interdependent label decisions. A plethora of
methods have been proposed, each with re-
spective strengths and limitations. Probabilis-
tic logic offers a unifying language to repre-
sent indirect supervision, but end-to-end mod-
eling with probabilistic logic is often infea-
sible due to intractable inference and learn-
ing. In this paper, we propose deep proba-
bilistic logic (DPL) as a general framework
for indirect supervision, by composing prob-
abilistic logic with deep learning. DPL mod-
els label decisions as latent variables, repre-
sents prior knowledge on their relations using
weighted first-order logical formulas, and al-
ternates between learning a deep neural net-
work for the end task and refining uncertain
formula weights for indirect supervision, us-
ing variational EM. This framework subsumes
prior indirect supervision methods as special
cases, and enables novel combination via infu-
sion of rich domain and linguistic knowledge.
Experiments on biomedical machine reading
demonstrate the promise of this approach.

1 Introduction
Deep learning has proven successful in a wide
range of NLP tasks (Bahdanau et al., 2014; Bengio
et al., 2003; Clark and Manning, 2016; Hermann
et al., 2015; Sutskever et al., 2014). The versatility
stems from its capacity of learning a compact rep-
resentation of complex input patterns (Goodfellow

⇤This work was conducted at Microsoft Research.

Deep Learning

Probabilistic Logic

Knowledge

Virtual Evidence

Latent Variable

Indirect Supervision

Figure 1: Deep Probabilistic Logic: A general
framework for combining indirect supervision
strategies by composing probabilistic logic with
deep learning. Learning amounts to maximizing
conditional likelihood of virtual evidence given in-
put by summing up latent label decisions.

et al., 2016). However, success of deep learning is
bounded by its reliance on labeled examples, which
are expensive and time-consuming to produce. In-
direct supervision has emerged as a promising di-
rection for breaching the annotation bottleneck.
A powerful paradigm is joint inference (Chang
et al., 2007; Poon and Domingos, 2008; Druck
et al., 2008; Ganchev et al., 2010), which leverages
linguistic and domain knowledge to impose con-
straints over interdependent label decisions. More
recently, another powerful paradigm, often loosely
called weak supervision, has gained in popularity.
The key idea is to introduce labeling functions to
automatically generate (noisy) training examples
from unlabeled text. Distant supervision is a promi-
nent example that used existing knowledge bases
for this purpose (Craven and Kumlien, 1999; Mintz
et al., 2009). Data programming went further by
soliciting labeling functions from domain experts
(Ratner et al., 2016; Bach et al., 2017).

Indirect-supervision methods have achieved re-
markable successes in a number of NLP tasks, but
they also exhibit serious limitations. Distant su-
pervision often produces incorrect labels, whereas
labeling functions from data programming vary in
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The deletion mutation on exon-19 of EGFR gene was present in 16
patients, while the L858E point mutation on exon-21 was noted in 10.

All patients were treated with gefitinib and showed a partial response.

TREAT(Gefitinib, EGFR, L858E)

Figure 2: Example of cross-sentence relation extrac-
tion for precision cancer treatment.

quality and coverage, and may contradict with each
other on individual instances. Joint inference incurs
greater modeling complexity and often requires
specialized learning and inference procedures.

Since these methods draw on diverse and often
orthogonal sources of indirect supervision, com-
bining them may help address their limitations and
amplify their strengths. Probabilistic logic offers an
expressive language for such an integration, and is
well suited for resolving noisy and contradictory in-
formation (Richardson and Domingos, 2006). Un-
fortunately, probabilistic logic generally incurs in-
tractable learning and inference, often rendering
end-to-end modeling infeasible.

In this paper, we propose deep probabilistic
logic (DPL) as a unifying framework for indirect
supervision (Figure 1). Specifically, we made four
contributions. First, we introduce a modular design
to compose probabilistic logic with deep learning,
with a supervision module that represents indirect
supervision using probabilistic logic, and a predic-
tion module that performs the end task using a deep
neural network. Label decisions are modeled as
latent variables and serve as the interface between
the two modules.

Second, we show that all popular forms of indi-
rect supervision can be represented in DPL by gen-
eralizing virtual evidence (Subramanya and Bilmes,
2007; Pearl, 2014). Consequently, these diverse
methods can be easily combined within a single
framework for mutual amplification.

Third, we show that our problem formulation
yields a well-defined learning objective (maximiz-
ing conditional likelihood of virtual evidence). We
proposed a modular learning approach by decom-
posing the optimization over the supervision and
prediction modules, using variational EM, which
enables us to apply state-of-the-art methods for
probabilistic logic and deep learning.

Finally, we applied DPL to biomedical machine
reading (Quirk and Poon, 2017; Peng et al., 2017).
Biomedicine offers a particularly attractive appli-
cation domain for exploring indirect supervision.
Biomedical literature grows by over one million

each year1, making it imperative to develop ma-
chine reading methods for automating knowledge
curation (Figure 2). While crowd sourcing is hardly
applicable, there are rich domain knowledge and
structured resources to exploit for indirect supervi-
sion. Using cross-sentence relation extraction and
entity linking as case studies, we show that distant
supervision, data programming, and joint inference
can be seamlessly combined in DPL to substan-
tially improve machine reading accuracy, without
requiring any manually labeled examples.2

2 Related Work
Distant supervision This paradigm was first in-
troduced for binary relation extraction (Craven and
Kumlien, 1999; Mintz et al., 2009). In its simplest
form, distant supervision generates a positive exam-
ple if an entity pair with a known relation co-occurs
in a sentence, and samples negative examples from
co-occurring entity pairs not known to have the
given relation. It has recently been extended to
cross-sentence relation extraction (Quirk and Poon,
2017; Peng et al., 2017). In principle, one simply
looks beyond single sentences for co-occurring en-
tity pairs. However, this can introduce many false
positives and prior work used a small sliding win-
dow and filtering (minimal-span) to mitigate train-
ing noise. Even so, accuracy is relatively low. Both
Quirk and Poon (2017) and Peng et al. (2017) used
ontology-based string matching for entity linking,
which also incurs many false positives, as biomed-
ical entities are highly ambiguous (e.g., PDF and
AAAS are gene names). Distant supervision for
entity linking is relatively underexplored, and prior
work generally focuses on Freebase entities, where
links to the corresponding Wikipedia articles are
available for learning (Huang et al., 2015).

Data Programming Instead of annotated exam-
ples, domain experts are asked to produce labeling
functions, each of which assigns a label to an in-
stance if the input satisfies certain conditions, of-
ten specified by simple rules (Ratner et al., 2016).
This paradigm is useful for semantic tasks, as high-
precision text-based rules are often easy to come
by. However, there is no guarantee on broad cover-
age, and labeling functions are still noisy and may
contradict with each other. The common denois-
ing strategy assumes that labeling functions make
random mistakes, and focuses on estimating their

1http://ncbi.nlm.nih.gov/pubmed
2The DPL code and datasets will be made available at

http://hanover.azurewebsites.net.
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accuracy and correlation (Ratner et al., 2016; Bach
et al., 2017). A more sophisticated strategy also
models instance-level labels and uses instance em-
bedding to estimate instance-level weight for each
labeling function (Liu et al., 2017).

Joint Inference Distant supervision and data pro-
gramming focus on infusing weak supervision on
individual labels. Additionally, there is rich linguis-
tic and domain knowledge that does not specify
values for individual labels, but imposes hard or
soft constraints on their joint distribution. For ex-
ample, if two mentions are coreferent, they should
agree on entity properties (Poon and Domingos,
2008). There is a rich literature on joint infer-
ence for NLP applications. Notable methodologies
include constraint-driven learning (Chang et al.,
2007), general expectation (Druck et al., 2008),
posterior regularization (Ganchev et al., 2010), and
probabilistic logic (Poon and Domingos, 2008).
Constraints can be imposed on relational instances
or on model expectations. Learning and inference
are often tailor-made for each approach, including
beam search, primal-dual optimization, weighted
satisfiability solvers, etc. Recently, joint inference
has also been used in denoising distant supervi-
sion. Instead of labeling all co-occurrences of an
entity pair with a known relation as positive exam-
ples, one only assumes that at least one instance is
positive (Hoffmann et al., 2011; Lin et al., 2016).

Probabilistic Logic Probabilistic logic com-
bines logic’s expressive power with graphical
model’s capability in handling uncertainty. A repre-
sentative example is Markov logic (Richardson and
Domingos, 2006), which define a probability distri-
bution using weighted first-order logical formulas
as templates for a Markov model. Probabilistic
logic has been applied to incorporating indirect su-
pervision for various NLP tasks (Poon and Domin-
gos, 2007, 2008; Poon and Vanderwende, 2010),
but its expressive power comes at a price: learning
and inference are generally intractable, and end-to-
end modeling often requires heavy approximation
(Kimmig et al., 2012). In DPL, we limit the use
of probabilistic logic to modeling indirect supervi-
sion in the supervision module, leaving end-to-end
modeling to deep neural network in the prediction
module. This alleviates the computational chal-
lenges in probabilistic logic, while leveraging the
strength of deep learning in distilling complex pat-
terns from high-dimension data.

Knowledge-Rich Deep Learning Infusing
knowledge in neural network training is a long-
standing challenge in deep learning (Towell and
Shavlik, 1994). Hu et al. (2016a,b) first used
logical rules to help train a convolutional neural
network for sentiment analysis. DPL draws
inspiration from their approach, but is more
general and theoretically well-founded. Hu et al.
(2016a,b) focused on supervised learning and
the logical rules were introduced to augment
labeled examples via posterior regularization
(Ganchev et al., 2010). DPL can incorporate
both direct and indirect supervision, including
posterior regularization and other forms of indirect
supervision. Like DPL, Hu et al. (2016b) also
refined uncertain weights of logical rules, but they
did it in a heuristic way by appealing to symmetry
with standard posterior regularization. We provide
a novel problem formulation using generalized
virtual evidence, which shows that their heuristics
is a special case of variational EM and opens up
opportunities for other optimization strategies.

Deep generative models also combine deep learn-
ing with probabilistic models, but focus on un-
covering latent factors to support generative mod-
eling and semi-supervised learning (Kingma and
Welling, 2013; Kingma et al., 2014). Knowledge
infusion is limited to introducing structures among
the latent variables (e.g., Markov chain) (Johnson
et al., 2016). In DPL, we focus on learning a dis-
criminative model for predicting the latent labels,
using a probabilistic model defined by probabilistic
logic to inject indirect supervision.

3 Deep Probabilistic Logic

In this section, we introduce deep probabilistic
logic (DPL) as a unifying framework for indirect
supervision. Label decisions are modeled as la-
tent variables. Indirect supervision is represented
as generalized virtual evidence, and learning maxi-
mizes the conditional likelihood of virtual evidence
given input. We first review the idea of virtual evi-
dence and show how it can be generalized to rep-
resent any form of indirect supervision. We then
formulate the learning objective and show how it
can be optimized using variational EM.

Given a prediction task, let X denote the set of
possible inputs and Y the set of possible outputs.
The goal is to train a prediction module  (x, y)
that scores output y given input x. Without loss
of generality, we assume that  (x, y) defines the
conditional probability P (y|x) using a deep neural
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network with a softmax layer at the top. Let X =
(X1, · · · , XN ) denote a sequence of inputs and
Y = (Y1, · · · , YN ) the corresponding outputs. We
consider the setting where Y are unobserved, and
 (x, y) is learned using indirect supervision.

Virtual evidence Pearl (Pearl, 2014) first intro-
duced the notion of virtual evidence, which has
been used to incorporate label preference in semi-
supervised learning (Reynolds and Bilmes, 2005;
Subramanya and Bilmes, 2007; Li, 2009) and
grounded learning (Parikh et al., 2015). Suppose
we have a prior belief on the value of y, it can be
represented by introducing a binary variable v as
a dependent of y such that P (v = 1|y = l) is
proportional to the prior belief of y = l. v = 1
is thus an observed evidence that imposes soft
constraints over y. Direct supervision (i.e., ob-
served label) for y is a special case when the belief
is concentrated on a specific value y = l⇤ (i.e.,
P (v = 1|y = l) = 0 for any l 6= l⇤). The virtual
evidence v can be viewed as a reified variable for
a potential function �(y) / P (v = 1|y). This en-
ables us to generalize virtual evidence to arbitrary
potential functions �(X, Y ) over the inputs and
outputs. In the rest of the paper, we will simply
refer to the potential functions as virtual evidences,
without introducing the reified variables explicitly.

DPL Let K = (�1, · · · ,�V ) be a set of virtual
evidence derived from prior knowledge. DPL com-
prises of a supervision module over K and a predic-
tion module over all input-output pairs (Figure 1),
and defines a probability distribution:

P (K, Y |X) /
Y

v

�v(X, Y ) ·
Y

i

 (Xi, Yi)

Without loss of generality, we assume that vir-
tual evidences are log-linear factors, which can be
compactly represented by weighted first-order log-
ical formulas (Richardson and Domingos, 2006).
Namely, �v(X, Y ) = exp(wv · fv(X, Y )), where
fv(X, Y ) is a binary feature represented by a first-
order logical formula. A hard constraint is the
special case when wv = 1 (in practice, it suffices
to set it to a large number, e.g., 10). In prior use of
virtual evidence, wv’s are generally pre-determined
from prior knowledge. However, this may be sub-
optimal. Therefore, we consider a general Bayesian
learning setting where each wv is drawn from a pre-
specified prior distribution wv ⇠ P (wv|↵v). Fixed
wv amounts to the special case when the prior is
concentrated on the preset value. For uncertain

wv’s, we can compute their maximum a posteriori
(MAP) estimates and/or quantify the uncertainty.

Distant supervision Virtual evidence for distant
supervision is similar to that for direct supervision.
For example, for relation extraction, distant super-
vision from a knowledge base of known relations
will set fKB(Xi, Yi) = I[In-KB(Xi, r)^Yi = r],
where In-KB(Xi, r) is true iff the entity tuple in
Xi is known to have relation r in the KB.

Data programming Virtual evidence for data
programming is similar to that for distant super-
vision: fL(Xi, Yi) = I[L(Xi) = Yi], where L(Xi)
is a labeling function provided by domain experts.
Labeling functions are usually high-precision rules,
but errors are still common, and different functions
may assign conflicting labels to an instance. Exist-
ing denoising strategy assumes that each function
makes random errors independently, and resolves
the conflicts by weighted votes (Ratner et al., 2016).
In DPL, this can be done by simply treating error
probabilities as uncertain parameters and inferring
them during learning.

Joint inference Constraints on instances or
model expectations can be imposed by introduc-
ing the corresponding virtual evidence (Ganchev
et al., 2010) (Proposition 2.1). The weights
can be set heuristically (Chang et al., 2007;
Mann and McCallum, 2008; Poon and Domin-
gos, 2008) or iteratively via primal-dual methods
(Ganchev et al., 2010). In addition to instance-
level constraints, DPL can incorporate arbitrary
high-order soft and hard constraints that cap-
ture the interdependencies among multiple in-
stances. For example, identical mentions in prox-
imity probably refer to the same entity, which
is useful for resolving ambiguous mentions by
leveraging their unambiguous coreferences (e.g.,
an acronym in apposition of the full name).
This can be represented by the virtual evidence
fJoint(Xi, Yi, Xj , Yj) = I[Coref(Xi, Xj) ^ Yi =
Yj ], where Coref(Xi, Xj) is true iff Xi and Xj

are coreferences. Similarly, the common de-
noising strategy for distant supervision replaces
the mention-level constraints with type-level con-
straints (Hoffmann et al., 2011). Suppose that
XE ⇢ X contains all Xi’s with co-occurring entity
tuple E. The new constraints simply impose that,
for each E with known relation r 2 KB, Yi = r
for at least one Xi 2 XE . This can be represented
by a high-order factor on (Xi, Yi : Xi 2 XE).
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Algorithm 1 DPL Learning
Input: Virtual evidences K = �1:V , deep neu-
ral network  , inputs X = (X1, · · · , XN ), un-
observed outputs Y = (Y1, · · · , YN ).
Output: Learned prediction module  ⇤

Initialize: �0 ⇠ priors,  0 ⇠ uniform.
for t = 1 : T do
qt(Y ) arg min

q
DKL(

Y

i

qi(Yi) ||

Y

v

�t�1
v (X, Y ) ·

Y

i

 t�1(Xi, Yi))

�t
 arg min

�
DKL(qt(Y ) ||

Y

v

�v(X, Y ))

 t
 arg min

 
DKL(qt(Y ) ||

Y

i

 (Xi, Yi))

end for
return  ⇤ =  T .

Parameter learning Learning in DPL maxi-
mizes the conditional likelihood of virtual evi-
dences P (K|X). We can directly optimize this
objective by summing out latent Y to compute the
gradient and run backpropagation. In this paper,
however, we opted for a modular approach using
variational EM. See Algorithm 1.

In the E-step, we compute a variational approx-
imation q(Y ) =

Q
i qi(Yi) by minimizing its

KL divergence with P (Y |K, X), which amounts
to computing marginal probabilities qi(Yi) =
P (Yi|K, X) =

P
Y�i

P (Yi, Y�i|K, X), with cur-
rent parameters �, . This is a standard probabilis-
tic inference problem. Exact inference is generally
intractable, but there are a plethora of approximate
inference methods that can efficiently produce an
estimate. We use loopy belief propagation (Murphy
et al., 1999) in this paper, by conducting message
passing in P (K, Y |X) iteratively. Note that this
inference problem is considerably simpler than end-
to-end inference with probabilistic logic, since the
bulk of the computation is encapsulated by  .

Inference with high-order factors of large size
can be challenging, but there is a rich body of lit-
erature for handling such structured factors in a
principled way. In particular, in distant supervision
denoising, we alter the message passing schedule
so that each at-least-one factor will compute mes-
sages to its variables jointly by renormalizing their
current marginal probabilities with noisy-or (Keith
et al., 2017), which is essentially a soft version of
dual decomposition (CarøE and Schultz, 1999).

In the M-step, we treat the variational approxi-
mation qi(Yi) as probabilistic labels, and use them
to optimize � and  via standard supervised learn-
ing, which is equivalent to minimizing the KL

0.5  Relation in Toy KB (distant supervision)
3.2  No more than one “et al.” (data programming)
10   Relation holds for at least one instance (joint inference)

Patients with EGFR mutations show
partial response to gefitinib.

Horn et al., 2001. Activities of gefitinib in NSCLC patients. J Clin Onco.
Zhang et al., 2006. Resistant mechanisms of EGFR mutations. J Thorac Onco.

<gefitinib, EGFR>

Toy KB
Y1 Y2

X1 X2

Y1 Y2 P(K,Y|X)  P(K, Y|X)
T T exp(0.52+3.21+101) = exp(14.2) 0.04
T F exp(0.52+3.22+101) = exp(17.4) 0.94
F T exp(0.51+3.21+101) = exp(13.7) 0.02
F F exp(0.50+3.22+100) = exp(6.4) 0

K

By combining distant supervision, data
programming, and joint inference, DPL 
derives more accurate indirect supervision
by inferring that the drug-gene relation 
likely holds in X1 but not in X2.

Figure 3: Example of DPL combining various in-
direct supervision using probabilistic logic. The
prediction module is omitted to avoid clutter.

divergence between the probabilistic labels and
the conditional likelihood of Y given X under
the supervision module (�) and prediction mod-
ule ( ), respectively. For the prediction module,
this optimization reduces to standard deep learn-
ing. Likewise, for the supervision module, this
optimization reduces to standard parameter learn-
ing for log-linear models (i.e., learning all wv’s
that are not fixed). Given the probabilistic labels,
it is a convex optimization problem with a unique
global optimum. Here, we simply use gradient
descent, with the partial derivative for wv being
E�(Y,X) [fv(X, Y )]�Eq(Y ) [fv(X, Y )]. For a tied
weight, the partial derivative will sum over all fea-
tures that originate from the same template. The
second expectation can be done by simple counting.
The first expectation, on the other hand, requires
probabilistic inference in the graphical model. But
it can be computed using belief propagation, simi-
lar to the E-step, except that the messages are lim-
ited to factors within the supervision module (i.e.,
messages from  are not longer included). Con-
vergence is usually fast, upon which the marginal
for each Yi is available, and E�(Y,X) [fv(X,Y )]
is simply the fraction of Y that renders fv(X, Y )
to be true. Again, this parameter learning prob-
lem is much simpler than end-to-end learning with
probabilistic logic, as it focuses on refining uncer-
tain weights for indirect supervision, rather than
learning complex input patterns for label prediction
(handled in deep learning).

Example Figure 3 shows a toy example on how
DPL combines various indirect supervision for pre-
dicting drug-gene interaction (e.g., gefitinib can be
used to treat tumors with EGFR mutations). Indi-
rect supervision is modeled by probabilistic logic,
which defines a joint probability distribution over
latent labeling decisions for drug-gene mention
pairs in unlabeled text. Here, distant supervision
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prefers classifying mention pairs of known rela-
tions, whereas the data programming formula op-
poses classifying instances resembling citations,
and the joint inference formula ensures that at least
one mention pair of a known relation is classified as
positive. Formula weight signifies the confidence
in the indirect supervision, and can be refined itera-
tively along with the prediction module.

Handling label imbalance One challenge for
distant supervision is that negative examples are of-
ten much more numerous. A common strategy is to
subsample negative examples to attain a balanced
dataset. In preliminary experiments, we found that
this was often suboptimal, as many informative
negative examples were excluded from training.
Instead, we restored the balance by up-weighting
positive examples. In DPL, an additional challenge
is that the labels are probabilistic and change over
iterations. In this paper, we simply used hard EM,
with binary labels set using 0.5 as the probability
threshold, and the up-weighting coefficient recal-
culated after each E-step.

4 Biomedical Machine Reading

There is a long-standing interest in biomedical ma-
chine reading (e.g., Morgan et al. (2008); Kim
et al. (2009)), but prior studies focused on super-
vised approaches. The advent of big biomedical
data creates additional urgency for developing scal-
able approaches that can generalize to new reading
tasks. For example, genome sequencing cost has
been dropping faster than Moore’s Law, yet on-
cologists can only evaluate tumor sequences for a
tiny fraction of patients, due to the bottleneck in
assimilating relevant knowledge from publications.
Recently, Peng et al. (2017) formulated precision
oncology machine reading as cross-sentence rela-
tion extraction (Figure 2) and developed the state-
of-the-art system using distant supervision. While
promising, their results still leave much room to
improve. Moreover, they used heuristics to heavily
filter entity candidates, with significant recall loss.

In this section, we use cross-sentence relation
extraction as a case study for combining indirect
supervision using deep probabilistic logic (DPL).
First, we show that DPL can substantially improve
machine reading accuracy in a head-to-head com-
parison with Peng et al. (2017), using the same
entity linking method. Next, we apply DPL to en-
tity linking itself and attain similar improvement.
Finally, we consider further improving the recall

by removing the entity filter. By applying DPL
to joint entity linking and relation extraction, we
more than doubled the recall in relation extraction
while attaining comparable precision as Peng et al.
(2017) with heavy entity filtering.
Evaluation Comparing indirect supervision
methods is challenging as there is often no
annotated test set for evaluating precision and
recall. In such cases, we resort to the standard
strategy used in prior work by reporting sample
precision (estimated proportion of correct system
extractions) and absolute recall (estimated number
of correct system extractions). Absolute recall is
proportional to recall and can be used to compare
different systems (modulo estimation errors).
Datasets We used the same unlabeled text as
Peng et al. (2017), which consists of about one mil-
lion full text articles in PubMed Central (PMC)3.
Tokenization, part-of-speech tagging, and syntac-
tic parsing were conducted using SPLAT (Quirk
et al., 2012), and Stanford dependencies (de Marn-
effe et al., 2006) were obtained using Stanford
CoreNLP (Manning et al., 2014). For entity ontolo-
gies, we used DrugBank4 and Human Gene Ontol-
ogy (HUGO)5. DrugBank contains 8257 drugs; we
used the subset of 599 cancer drugs. HUGO con-
tains 37661 genes. For knowledge bases, we used
the Gene Drug Knowledge Database (GDKD) (Di-
enstmann et al., 2015) and the Clinical Interpre-
tations of Variants In Cancer (CIVIC)6. Together,
they contain 231 drug-gene-mutation triples, with
76 drugs, 35 genes and 123 mutations.
4.1 Cross-sentence relation extraction
Let e1, · · · , em be entity mentions in text T . Re-
lation extraction can be formulated as classifying
whether a relation R holds for e1, · · · , em in T .
To enable a head-to-head comparison, we used the
same cross-sentence setting as Peng et al. (2017),
where T spans up to three consecutive sentences
and R represents the ternary interaction over drugs,
genes, and mutations (whether the drug is relevant
for treating tumors with the given gene mutation).
Entity linking In this subsection, we used the
entity linker from Literome (Poon et al., 2014) to
identify drug, gene, and mutation mentions, as in
Peng et al. (2017). This entity linker first identi-
fies candidate mentions by matching entity names

3www.ncbi.nlm.nih.gov/pmc
4www.drugbank.ca
5www.genenames.org
6civic.genome.wustl.edu
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Distant Supervision: GDKD, CIVIC
Data Programming (Entity)
Mention matches entity name exactly.
Mention not a stop word.
Mention not following figure designation.
Mention’s POS tags indicate it is a noun.
Data Programming (Relation)
Less than 30% of words are numbers in each sentence.
No more than three consecutive numbers.
No more than two “et al”.
No more than three tokens start with uppercase.
No more than three special characters.
No more than three keywords indicative of table or figure.
Entity mentions do not overlap.
Joint Inference: Relation holds in at least one instance.

Table 1: DPL combines three indirect supervision
strategies for cross-sentence relation extraction

or synonyms in domain ontologies, then applies
heuristics to filter candidates. The heuristics are
designed to enhance precision, at the expense of
recall. For example, one heuristics would filter can-
didates of length less than four, which eliminates
key cancer genes such as ER or AKT.

Prediction module We used the same graph
LSTM as in Peng et al. (2017) to enable head-to-
head comparison on indirect supervision strategies.
Briefly, a graph LSTM generalizes a linear-chain
LSTM by incorporating arbitrary long-ranged de-
pendencies, such as syntactic dependencies, dis-
course relations, coreference, and connections be-
tween roots of adjacent sentences. A word might
have precedents other than the prior word, and its
LSTM unit is expanded to include a forget gate for
each precedent. See Peng et al. (2017) for details.

Supervision module We used DPL to combine
three indirect supervision strategies for cross-
sentence relation extraction (Table 1). For distant
supervision, we used GDKD and CIVIC as in Peng
et al. (2017). For data programming, we intro-
duced labeling functions that aim to correct entity
and relation errors. Finally, we incorporated joint
inference among all co-occurring instances of an
entity tuple with the known relation by imposing
the at-least-one constraint (i.e., the relation holds
for at least one of the instances). For development,
we sampled 250 positive extractions from DPL us-
ing only distant supervision (Peng et al., 2017) and
excluded them from future training and evaluation.

Experiment results We compared DPL with the
state-of-the-art system of Peng et al. (2017). We
also conducted ablation study to evaluate the im-
pact of indirect-supervision strategies. For a fair
comparison, we used the same probability thresh-

System Prec. Abs. Rec. Unique
Peng 2017 0.64 6768 2738
DPL + EMB 0.74 8478 4821
DPL 0.73 7666 4144

� DS 0.29 7555 4912
� DP 0.67 4826 2629
� DP (ENTITY) 0.70 7638 4074
� JI 0.72 7418 4011

Table 2: Comparison of sample precision and abso-
lute recall (all instances and unique entity tuples)
in test extraction on PMC. DPL + EMB is our full
system using PubMed-trained word embedding,
whereas DPL uses the original Wikipedia-trained
word embedding in Peng et al. (2017). Ablation:
DS (distant supervision), DP (data programming),
JI (joint inference).

Pred. Mod. Prec. Abs. Rec. Unique
BiLSTM 0.60 6243 3427
Graph LSTM 0.73 7666 4144

Table 3: Comparison of sample precision and abso-
lute recall (all instances and unique entity tuples) in
test extraction on PMC. Both use same indirect su-
pervision and Wikipedia-trained word embedding.

old in all cases (an instance is classified as positive
if the normalized probability score is at least 0.5).
For each system, sample precision was estimated
by sampling 100 positive extractions and manually
determining the proportion of correct extractions by
an author knowledgeable about this domain. Ab-
solute recall is estimated by multiplying sample
precision with the number of positive extractions.

Table 2 shows the results. DPL substantially out-
performed Peng et al. (2017), improving sample
precision by ten absolute points and raising abso-
lute recall by 25%. Combining disparate indirect
supervision strategies is key to this performance
gain, as evident from the ablation results. While dis-
tant supervision remained the most potent source
of indirect supervision, data programming and joint
inference each contributed significantly. Replacing
out-of-domain (Wikipedia) word embedding with
in-domain (PubMed) word embedding (Pyysalo
et al., 2013) also led to a small gain.

Peng et al. (2017) only compared graph LSTM
and linear-chain LSTM in automatic evaluation,
where distant-supervision labels were treated as
ground truth. They found significant but relatively
small gains by graph LSTM. We conducted ad-
ditional manual evaluation comparing the two in
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Distant Supervision: HGNC
Data Programming
No verbs in POS tags.
Mention not a common word.
Mention contains more than two characters or one word.
More than 30% of characters are upper case.
Mention contains both upper and lower case characters.
Mention contains both character and digit.
Mention contains more than six characters.
Dependency label from mention to parent indicative of
direct object.
Joint Inference
Identical mentions nearby probably refer to the same entity.
Appositive mentions probably refer to the same entity.
Nearby mentions that match synonyms of same entity prob-
ably refer to the given entity.

Table 4: DPL combines three indirect supervision
strategies for entity linking.

DPL. Surprisingly, we found rather large perfor-
mance difference, with graph LSTM outperform-
ing linear-chain LSTM by 13 absolute points in
precision and raising absolute recall by over 20%
(Table 3). This suggests that Peng et al. (2017)
might have underestimated the performance gain
by graph LSTM using automatic evaluation.
4.2 Entity linking
Let m be a mention in text and e be an entity in an
ontology. The goal of entity linking is to predict
Link(m, e), which is true iff m refers to e, for every
candidate mention-entity pair m, e. We focus on
genes in this paper, as they are particularly noisy.
Prediction module We used BiLSTM with at-
tention over the ten-word windows before and after
a mention. The embedding layer is initialized by
word2vec embedding trained on PubMed abstracts
and full text (Pyysalo et al., 2013). The word em-
bedding dimension was 200. We used 5 epochs
for training, with Adam as the optimizer. We set
learning rate to 0.001, and batch size to 64.
Supervision module As in relation extraction,
we combined three indirect supervision strategies
using DPL (Table 4). For distant supervision, we
obtained all mention-gene candidates by matching
PMC text against the HUGO lexicon. We then
sampled a subset of 200,000 candidate instances as
positive examples. We sampled a similar number
of noun phrases as negative examples. For data
programming, we introduced labeling functions
that used mention characteristics (longer names
are less ambiguous) or syntactic context (genes are
more likely to be direct objects and nouns). For
joint inference, we leverage linguistic phenomena
related to coreference (identical, appositive, or syn-
onymous mentions nearby are likely coreferent).

System Acc. F1 Prec. Rec.
String Match 0.18 0.31 0.18 1.00
DS 0.64 0.71 0.62 0.83
DS + DP 0.66 0.71 0.62 0.83
DS + DP + JI 0.70 0.76 0.68 0.86

Table 5: Comparison of gene entity linking results
on a balanced test set. The string-matching base-
line has low precision. By combining indirect su-
pervision strategies, DPL substantially improved
precision while retaining reasonably high recall.

F1 Precision Recall
GNormPlus 0.78 0.74 0.81
DPL 0.74 0.68 0.80

Table 6: Comparison of gene entity linking results
on BioCreative II test set. GNormPlus is the state-
of-the-art system trained on thousands of labeled
examples. DPL used only indirect supervision.

Experiment results For evaluation, we anno-
tated a larger set of sample gene-mention candi-
dates and then subsampled a balanced test set of
550 instances (half are true gene mentions, half
not). These instances were excluded from train-
ing and development. Table 5 compares system
performance on this test set. The string-matching
baseline has a very low precision, as gene mentions
are highly ambiguous, which explains why Peng
et al. (2017) resorted to heavy filtering. By combin-
ing indirect supervision strategies, DPL improved
precision by over 50 absolute points, while retain-
ing a reasonably high recall (86%). All indirect
supervision strategies contributed significantly, as
the ablation tests show. We also evaluated DPL on
BioCreative II, a shared task on gene entity linking
(Morgan et al., 2008). We compared DPL with
GNormPlus (Wei et al., 2015), the state-of-the-art
supervised system trained on thousands of labeled
examples in BioCreative II training set. Despite us-
ing zero manually labeled examples, DPL attained
comparable F1 and recall (Table 6). The difference
is mainly in precision, which indicates opportuni-
ties for more indirect supervision.

4.3 Joint entity and relation extraction
An important use case for machine reading is to
improve knowledge curation efficiency by offering
extraction results as candidates for curators to vet.
The key to practical adoption is attaining high recall
with reasonable precision (Peng et al., 2017). The
entity filter used in Peng et al. (2017) is not ideal in
this aspect, as it substantially reduced recall. In this
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System Prec Abs. Rec. Unique
Peng 2017 0.31 11481 5447
DPL (RE) 0.52 17891 8534
+ EL (TRN) 0.55 21881 11047
+ EL (TRN/TST) 0.61 20378 10291

Table 7: Comparison of sample precision and abso-
lute recall (all instances and unique entity tuples)
when all gene mention candidates are considered.
Peng et al. (2017) used distant supervision only.
RE: DPL relation extraction. EL: using DPL entity
linking in RE training (TRN) and/or test (TST).

Gene Drug Mut. Gene-Mut. Relation
27% 4% 20% 45% 24%

Table 8: Error analysis for DPL relation extraction.

subsection, we consider replacing the entity filter
by the DPL entity linker Table 7. Specifically, we
added one labeling function to check if the entity
linker returns a normalized probability score above
pTRN for gene mentions, and filtered test instances if
the gene mention score is lower than pTST. We set
pTRN = 0.6 and pTST = 0.3 from preliminary exper-
iments. The labeling function discouraged learning
from noisy mentions, and the test-time filter skips
an instance if the gene is likely wrong. Not sur-
prisingly, without entity filtering, Peng et al. (2017)
suffered large precision loss. All DPL versions
substantially improved accuracy, with significantly
more gains using the DPL entity linker.

4.4 Discussion
Scalability DPL is efficient to train, taking
around 3.5 hours for relation extraction and 2.5
hours for entity linking in our PubMed-scale ex-
periments, with 25 CPU cores (for probabilistic
logic) and one GPU (for LSTM). For relation ex-
traction, the graphical model of probabilistic logic
contains around 7,000 variables and 70,000 factors.
At test time, it is just an LSTM, which predicted
each instance in less than a second. In general, DPL
learning scales linearly in the number of training
instances. For distant supervision and data pro-
gramming, DPL scales linearly in the number of
known facts and labeling functions. As discussed
in Section 3, joint inference with high-order factors
is more challenging, but can be efficiently approx-
imated. For inference in probabilistic logic, we
found that loopy belief propagation worked reason-
ably well, converging after 2-4 iterations. Overall,
we ran variational EM for three iterations, using ten
epochs of deep learning in each M-step. We found

Janjigian YY, Groen HJ, Horn L, Smit EF, Fu Y, Wang F et al. (2011) 
Activity and tolerability of afatinib (BIBW 2992) and cetuximab in 
NSCLC patients with acquired resistance to erlotinib or gefitinib. J Clin 
Oncol 29 ( suppl ): abstr 7525 14. Fujita Y Suda K Kimura H 
Matsumoto K Arao T Nagai T Highly sensitive detection of EGFR
T790M mutation using colony hybridization predicts favorable 
prognosis of patients with lung cancer harboring activating EGFR 
mutation J Thorac Oncol 2012

E19 deletion ALK Solid Signet ring cells Intracytoplasmic No - Crizotinib -
AWDa e 12 F/66 Never Adrenal/B M1 ( IV ) E20 R803W ALK Solid No No No
+d Erlotinib PD AWDa 0.7 EGFR, epidermal growth factor receptor; PFS, 
progression-free survival; M , male; PY, pack-year; R, resection; E , exon; 
KRAS, v-Ki-ras2.

Figure 4: Example of relation-extraction errors cor-
rected by DPL with additional indirect supervision.

these worked well in preliminary experiments and
used the same setting in all final experiments.

Accuracy To understand more about DPL’s per-
formance gain over distant supervision, we manu-
ally inspected some relation-extraction errors fixed
by DPL after training with additional indirect super-
vision. Figure 4 shows two such examples. While
some data programming functions were introduced
to prevent errors stemming from citations or flat-
tened tables, none were directly applicable to these
examples. This shows that DPL can generalize
beyond the original indirect supervision.

While the results are promising, there is still
much to improve. Table 8 shows estimated preci-
sion errors for relation extraction by DPL. (Some
instances have multiple errors.) Entity linking can
incorporate more indirect supervision. Joint entity
linking and relation extraction can be improved by
feeding back extraction results to linking. Improve-
ment is also sorely needed in classifying mutations
and gene-mutation associations. The prediction
module can also be improved, e.g., by adding atten-
tion to graph LSTM. DPL offers a flexible frame-
work for exploring all these directions.

5 Conclusion

We introduce DPL as a unifying framework for indi-
rect supervision, by composing probabilistic logic
with deep learning. Experiments on biomedical
machine reading show that this enables novel com-
bination of disparate indirect supervision method-
ologies, resulting in substantial gain in accuracy.
Future directions include: combining DPL with
deep generative models; exploring alternative opti-
mization strategies; applications to other domains.
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Abstract

Attention-based models are successful when
trained on large amounts of data. In this paper,
we demonstrate that even in the low-resource
scenario, attention can be learned effectively.
To this end, we start with discrete human-
annotated rationales and map them into contin-
uous attention. Our central hypothesis is that
this mapping is general across domains, and
thus can be transferred from resource-rich do-
mains to low-resource ones. Our model jointly
learns a domain-invariant representation and
induces the desired mapping between ratio-
nales and attention. Our empirical results val-
idate this hypothesis and show that our ap-
proach delivers significant gains over state-of-
the-art baselines, yielding over 15% average
error reduction on benchmark datasets.1

1 Introduction

Attention-based models have become architec-
tures of choice for many NLP tasks. In addi-
tion to significant performance gains, these mod-
els are attractive, as attention is often used as a
proxy for human interpretable rationales. Their
success, however, is conditioned on access to large
amounts of training data. To make these mod-
els applicable in low-resource scenarios, we utilize
this connection in the opposite direction. Specif-
ically, we propose an approach to map human ra-
tionales to high-performing attention, and use this
attention to guide models trained in low-resource
scenarios.

The notions of rationale and attention are
closely related. Both of them highlight word im-
portance for the final prediction. In the case of
rationale, the importance is expressed as a hard
selection, while attention provides a soft distribu-
tion over the words. Figure 1 illustrates this re-
latedness. One obvious approach to improve low-

1Our code and data are available at https://github.
com/YujiaBao/R2A.

Task: Hotel location label: negative

a nice and clean hotel to stay for business and leisure
. but the location is not good if you need public
transport . it took too long for transport and waiting
for bus . but the swimming pool looks good .

Task: Beer aroma label: positive

poured a deep brown color with little head that
dissipated pretty quickly . aroma is of sweet
maltiness with chocolate and caramel notes . flavor
is also of chocolate and caramel maltiness . mouthfeel
is good a bit on the thick side . drinkability is ok . this
is to be savored not sessioned .

Figure 1: Examples of rationales versus oracle at-
tention. Words are highlighted according to their
relative attention scores. Human rationales are
shown in bold with underlines.

resource performance is to directly use human ra-
tionales as a supervision for attention generation.
The implicit assumption behind this method is that
machine-generated attention should mimic human
rationales. However, rationales on their own are
not adequate substitutes for machine attention. In-
stead of providing a soft distribution, human ratio-
nales only provide the binary indication about rel-
evance. Furthermore, rationales are subjectively
defined and often vary across annotators. Finally,
human rationales are not customized for a given
model architecture. In contrast, machine attention
is always derived as a part of a specific model ar-
chitecture.

To further understand this connection, we em-
pirically compare models informed by human ra-
tionales and those by high-quality attention. To
obtain the latter, we derive an “oracle” attention
using a large amount of annotations. This “ora-
cle” attention is then used to guide a model that
only has access to a small subset of this training
data. Not only does this model outperform the
oracle-free variant, but it also yields substantial
gains over its counterpart trained with human ra-
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tionales — 89.98 % vs 85.22 % average accuracy
on three aspects of hotel review (see Section 4 for
details). In practice, however, this “oracle” atten-
tion is not available. To employ this method, we
need to find a way to obtain a substitute for the
“oracle” attention.

In this paper, we show how to achieve this goal
using rationales. Specifically, we learn a map-
ping from human rationales to high-quality atten-
tion (R2A). We hypothesize that this mapping is
generalizable across tasks and thus can be trans-
ferred from resource-rich tasks.2 Figure 1 illus-
trates that in both tasks, attention weighs ratio-
nale words in a similar fashion: highlighting task-
specific nouns and adjectives, while downplaying
functional words. To learn and apply this mapping
we need access to rationales in both source and tar-
get tasks. In the target task, we assume rationales
are provided by humans. In the source task(s), col-
lecting rationales at scale is infeasible. Therefore,
we use machine-generated rationales (Lei et al.,
2016) as a proxy.

Our R2A model consists of three components.
The first one is an attention-based model for the
source task(s) that provides supervision for at-
tention generation. The second component fo-
cuses on learning a domain-invariant representa-
tion to support transfer. The third component
combines this invariant representation and ratio-
nales together to generate the attention. These
three components are trained jointly to optimize
the overall objective. Once the model is trained,
we apply it to the target task to generate attention
from human rationales. This attention is conse-
quently used to supervise the training of the target
classifier.

We evaluate our approach on two transfer set-
tings: aspect transfer within single domain and do-
main transfer across multiple domains. Our exper-
iments demonstrate that our approach delivers sig-
nificant performance improvements over the base-
lines. For instance, the average error reduction
over the best baseline in domain transfer is over
15%. In addition, both qualitative and quantitative
analyses confirm that our R2A model is capable of
generating high-quality attention for target tasks.

2In this paper, we consider a more general setting where
one domain contains multiple tasks. Also, we assume having
one source domain. However, our proposed method is a gen-
eral framework and can be easily adapted to problems with
multiple source domains.

2 Related Work

Attention-based models Attention has been
shown to be effective when the model is trained
on large amounts of training data (Bahdanau et al.,
2014; Luong et al., 2015; Rush et al., 2015; Yang
et al., 2016; Lin et al., 2017; Chen et al., 2017;
Vaswani et al., 2017). In this setting, typically
no additional supervision is required for learn-
ing the attention. Nevertheless, further refining
attention by extra supervision has been shown
to be beneficial. Examples include using word
alignments to learn attention in neural machine
translation (Liu et al., 2016), employing argu-
ment words to supervise attention in event de-
tection (Liu et al., 2017), utilizing linguistically-
motivated annotations to guide attention in con-
stituency parsing (Kamigaito et al., 2017). These
supervision mechanisms are tailored to specific
applications. In contrast, our approach is based on
the connection between rationales and attention,
and can be used for multiple applications.

Rationale-based models Zaidan et al. (2007)
was the first to explore the value of rationales
in low-resource scenarios. They hypothesize that
the model confidence should decrease when the
rationale words are removed from the inputs,
and validate this idea for linear models. Recent
work (Zhang et al., 2016) explores the potential
of integrating rationales with more complex neu-
ral classifiers. In their model, human rationales
are directly used to guide the sentence-level atten-
tion for a CNN-based classifier. To reach good
performance, their model still requires a sufficient
amount of training data. Our work differs from
theirs as we discern the intrinsic difference be-
tween human rationales and machine attention.
Moreover, we learn a model to map human ratio-
nales into high-quality attention so as to provide a
richer supervision for low-resource models.

Transfer learning When labeled data on the tar-
get task is available, existing approaches typically
transfer the knowledge by either fine-tuning an
encoder trained on the source tasks(s) (Conneau
et al., 2017; Peters et al., 2018) or multi-task learn-
ing on all tasks with a shared encoder (Collobert
et al., 2011). In this paper, we explore the trans-
ferability of the task-specific attention through hu-
man rationales. We believe this will further assist
learning in low-resource scenarios.

Our work is also related to unsupervised domain
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adaptation, as the R2A model has never seen any
target annotations during training. Existing meth-
ods commonly adapt the classifier by aligning the
representations between the source and target do-
mains (Glorot et al., 2011; Chen et al., 2012; Zhou
et al., 2016; Ganin et al., 2016; Zhang et al., 2017).
In contrast, our model adapts the mapping from ra-
tionales to attention; thus after training, it can be
applied to different target tasks.

3 Method

Problem formulation We assume that we have
N source tasks {Si}N

i=1, where each of them has
sufficient amounts of labeled examples. Using ex-
isting methods (Lei et al., 2016), we can gener-
ate rationales for each source example automati-
cally (see Appendix 1 for details). In the target
task T , we only have a limited amount of labeled
examples with large amounts of unlabeled data.
For those labeled examples, we assume access to
human-annotated rationales.

Overview Our goal is to improve classification
performance on the target task by learning a map-
ping from human rationales to high-quality ma-
chine attention (R2A). Given the scarcity of our
target data, we learn this mapping on resource rich
tasks where high-quality attention can be readily
obtained during training. Next, the mapping be-
tween rationales and attention derived from the
source tasks is exported into the target task. To
enable this transfer, models have to operate over
an invariant representation which we construct via
an adversarial objective. Once the mapping is de-
rived, we can translate human rationales in the tar-
get task into high-quality attention. This generated
attention is then used to provide additional training
signal for an attention-based classifier for the tar-
get task. The overall pipeline is shown in Figure 2.

Alternatively, we can view the R2A mapping as
a meta model that produces a prior over the atten-
tion distribution across different tasks.

Model architecture Figure 3 illustrates the ar-
chitecture of our R2A model, which consists of
three components.

• Multi-task learning In order to learn the R2A
mapping, we need annotation for the attention.
This module generates high-quality attention as
an intermediate result by minimizing the predic-
tion error on the source tasks (Section 3.1).

unlabeled target data

R2A

labeled target data
with rationales

labeled target data with
R2A-generated attention

R2A

labeled target data with
R2A-generated attention

target classifier

Step 1: Training R2A

Step 2: R2A inference

Step 3: Training  target classifier

labeled source data
with rationales

Figure 2: Overall pipeline of our approach (Sec-
tion 3.4). The R2A mapping is learned from la-
beled source data and unlabeled target data. Then
we applied it to the target task to derive attention
based on human rationales. Finally, a target clas-
sifier is trained under the supervision of both the
annotated labels and the R2A-generated attention.

• Domain-invariant encoder This module
aims to transform the contextualized represen-
tation obtained from the first module into a
domain-invariant version. We achieve this goal
through domain adversarial training over the
source data and the unlabeled target data (Sec-
tion 3.2).

• Attention generation This module learns to
predict the intermediate attention obtained from
the first module based on the domain-invariant
representation and the rationales (Section 3.3).

3.1 Multi-task learning
The goal of the multi-task learning module is to
learn good attention for each source task. This
learned attention will be used later to supervise the
attention generation module. This module takes
the input text from the source tasks and predicts
the labels. To accomplish the previously stated
goal, we minimize the prediction error over all la-
beled source data.

Let (xt, yt) be a training instance from any
source task t 2 {S1, . . . SN}. We first en-
code the input sequence xt into hidden states:
ht = enc(xt), where enc is a bi-directional
LSTM (Hochreiter and Schmidhuber, 1997) that
is shared across all source tasks. For each position
i, the dense vector ht

i encodes the content and con-
text information of the word xt

i. We then pass the
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<latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit> hT
<latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit>

attS1
<latexit sha1_base64="a4fhsVOMH+X1jZlL9JvExfugwus=">AAACDnicbVC7TsMwFHXKq5RXgJEloqrEVCUICdgqsTAWQR9SGyLHdVqrjhPZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xY84U2Pa3UVlZXVvfqG7WtrZ3dvfM/YOuihJJaIdEPJJ9HyvKmaAdYMBpP5YUhz6nPX96lfu9ByoVi8QdzGLqhngsWMAIBi15ZmMYYpjIMC1uP0gxQJbdz58E8/Q285zMM+t20y5gLROnJHVUou2ZX8NRRJKQCiAcKzVw7BjcFEtghNOsNkwUjTGZ4jEdaCpwSJWbFutkVkMrIyuIpD4CrEL93ZHiUKlZ6OvKfEq16OXif94ggeDCTZmIE6CCzD8KEm5BZOXZWCMmKQE+0wQTyfSsFplgiQnoBGs6BGdx5WXSPW06dtO5Oau3Lss4qugIHaMT5KBz1ELXqI06iKBH9Ixe0ZvxZLwY78bHvLRilD2H6A+Mzx8vF51n</latexit><latexit sha1_base64="a4fhsVOMH+X1jZlL9JvExfugwus=">AAACDnicbVC7TsMwFHXKq5RXgJEloqrEVCUICdgqsTAWQR9SGyLHdVqrjhPZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xY84U2Pa3UVlZXVvfqG7WtrZ3dvfM/YOuihJJaIdEPJJ9HyvKmaAdYMBpP5YUhz6nPX96lfu9ByoVi8QdzGLqhngsWMAIBi15ZmMYYpjIMC1uP0gxQJbdz58E8/Q285zMM+t20y5gLROnJHVUou2ZX8NRRJKQCiAcKzVw7BjcFEtghNOsNkwUjTGZ4jEdaCpwSJWbFutkVkMrIyuIpD4CrEL93ZHiUKlZ6OvKfEq16OXif94ggeDCTZmIE6CCzD8KEm5BZOXZWCMmKQE+0wQTyfSsFplgiQnoBGs6BGdx5WXSPW06dtO5Oau3Lss4qugIHaMT5KBz1ELXqI06iKBH9Ixe0ZvxZLwY78bHvLRilD2H6A+Mzx8vF51n</latexit><latexit sha1_base64="a4fhsVOMH+X1jZlL9JvExfugwus=">AAACDnicbVC7TsMwFHXKq5RXgJEloqrEVCUICdgqsTAWQR9SGyLHdVqrjhPZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xY84U2Pa3UVlZXVvfqG7WtrZ3dvfM/YOuihJJaIdEPJJ9HyvKmaAdYMBpP5YUhz6nPX96lfu9ByoVi8QdzGLqhngsWMAIBi15ZmMYYpjIMC1uP0gxQJbdz58E8/Q285zMM+t20y5gLROnJHVUou2ZX8NRRJKQCiAcKzVw7BjcFEtghNOsNkwUjTGZ4jEdaCpwSJWbFutkVkMrIyuIpD4CrEL93ZHiUKlZ6OvKfEq16OXif94ggeDCTZmIE6CCzD8KEm5BZOXZWCMmKQE+0wQTyfSsFplgiQnoBGs6BGdx5WXSPW06dtO5Oau3Lss4qugIHaMT5KBz1ELXqI06iKBH9Ixe0ZvxZLwY78bHvLRilD2H6A+Mzx8vF51n</latexit><latexit sha1_base64="a4fhsVOMH+X1jZlL9JvExfugwus=">AAACDnicbVC7TsMwFHXKq5RXgJEloqrEVCUICdgqsTAWQR9SGyLHdVqrjhPZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xY84U2Pa3UVlZXVvfqG7WtrZ3dvfM/YOuihJJaIdEPJJ9HyvKmaAdYMBpP5YUhz6nPX96lfu9ByoVi8QdzGLqhngsWMAIBi15ZmMYYpjIMC1uP0gxQJbdz58E8/Q285zMM+t20y5gLROnJHVUou2ZX8NRRJKQCiAcKzVw7BjcFEtghNOsNkwUjTGZ4jEdaCpwSJWbFutkVkMrIyuIpD4CrEL93ZHiUKlZ6OvKfEq16OXif94ggeDCTZmIE6CCzD8KEm5BZOXZWCMmKQE+0wQTyfSsFplgiQnoBGs6BGdx5WXSPW06dtO5Oau3Lss4qugIHaMT5KBz1ELXqI06iKBH9Ixe0ZvxZLwY78bHvLRilD2H6A+Mzx8vF51n</latexit> attSN

<latexit sha1_base64="mYXHwQbX3SntojVLYYnlZf+pg5c=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqgQhAVslFiZUBH1IbYgc12mtOg/ZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xYsEVWNa3sbS8srq2Xtmobm5t7+yae/sdFSWSsjaNRCR7HlFM8JC1gYNgvVgyEniCdb3JZe53H5hUPArvYBozJyCjkPucEtCSa9YHAYGxDNLi9vyUAGTZ/exJiUhvM/c6c82a1bAK4EVil6SGSrRc82swjGgSsBCoIEr1bSsGJyUSOBUsqw4SxWJCJ2TE+pqGJGDKSYt1MlzXyhD7kdQnBFyovztSEig1DTxdmU+p5r1c/M/rJ+CfOykP4wRYSGcf+YnAEOE8GzzkklEQU00IlVzPiumYSEJBJ1jVIdjzKy+SzknDthr2zWmteVHGUUGH6AgdIxudoSa6Qi3URhQ9omf0it6MJ+PFeDc+ZqVLRtlzgP7A+PwBWyidhA==</latexit><latexit sha1_base64="mYXHwQbX3SntojVLYYnlZf+pg5c=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqgQhAVslFiZUBH1IbYgc12mtOg/ZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xYsEVWNa3sbS8srq2Xtmobm5t7+yae/sdFSWSsjaNRCR7HlFM8JC1gYNgvVgyEniCdb3JZe53H5hUPArvYBozJyCjkPucEtCSa9YHAYGxDNLi9vyUAGTZ/exJiUhvM/c6c82a1bAK4EVil6SGSrRc82swjGgSsBCoIEr1bSsGJyUSOBUsqw4SxWJCJ2TE+pqGJGDKSYt1MlzXyhD7kdQnBFyovztSEig1DTxdmU+p5r1c/M/rJ+CfOykP4wRYSGcf+YnAEOE8GzzkklEQU00IlVzPiumYSEJBJ1jVIdjzKy+SzknDthr2zWmteVHGUUGH6AgdIxudoSa6Qi3URhQ9omf0it6MJ+PFeDc+ZqVLRtlzgP7A+PwBWyidhA==</latexit><latexit sha1_base64="mYXHwQbX3SntojVLYYnlZf+pg5c=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqgQhAVslFiZUBH1IbYgc12mtOg/ZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xYsEVWNa3sbS8srq2Xtmobm5t7+yae/sdFSWSsjaNRCR7HlFM8JC1gYNgvVgyEniCdb3JZe53H5hUPArvYBozJyCjkPucEtCSa9YHAYGxDNLi9vyUAGTZ/exJiUhvM/c6c82a1bAK4EVil6SGSrRc82swjGgSsBCoIEr1bSsGJyUSOBUsqw4SxWJCJ2TE+pqGJGDKSYt1MlzXyhD7kdQnBFyovztSEig1DTxdmU+p5r1c/M/rJ+CfOykP4wRYSGcf+YnAEOE8GzzkklEQU00IlVzPiumYSEJBJ1jVIdjzKy+SzknDthr2zWmteVHGUUGH6AgdIxudoSa6Qi3URhQ9omf0it6MJ+PFeDc+ZqVLRtlzgP7A+PwBWyidhA==</latexit><latexit sha1_base64="mYXHwQbX3SntojVLYYnlZf+pg5c=">AAACDnicbVC7TsMwFHV4lvIKMLJYVJWYqgQhAVslFiZUBH1IbYgc12mtOg/ZN0hVlC9g4VdYGECIlZmNv8FJM0DLkSwfn3OvfO/xYsEVWNa3sbS8srq2Xtmobm5t7+yae/sdFSWSsjaNRCR7HlFM8JC1gYNgvVgyEniCdb3JZe53H5hUPArvYBozJyCjkPucEtCSa9YHAYGxDNLi9vyUAGTZ/exJiUhvM/c6c82a1bAK4EVil6SGSrRc82swjGgSsBCoIEr1bSsGJyUSOBUsqw4SxWJCJ2TE+pqGJGDKSYt1MlzXyhD7kdQnBFyovztSEig1DTxdmU+p5r1c/M/rJ+CfOykP4wRYSGcf+YnAEOE8GzzkklEQU00IlVzPiumYSEJBJ1jVIdjzKy+SzknDthr2zWmteVHGUUGH6AgdIxudoSa6Qi3URhQ9omf0it6MJ+PFeDc+ZqVLRtlzgP7A+PwBWyidhA==</latexit>

X
i
↵S1

i hS1
i

<latexit sha1_base64="pT7eyq3teFGlO01wKMXGC2o/WGk=">AAACJXicbVDLSgNBEJyNrxhfqx69DAbBU9iVgB48BLx4jGgekF2X3skkGTIzu8zMCmHJz3jxV7x4MIjgyV9x8jhoYkFDUdVNd1eccqaN5305hbX1jc2t4nZpZ3dv/8A9PGrqJFOENkjCE9WOQVPOJG0YZjhtp4qCiDltxcObqd96okqzRD6YUUpDAX3JeoyAsVLkXgc6E4FMOBPM6IjhAHg6gIg95oEAMyDA8/tx5I/xYFWL3LJX8WbAq8RfkDJaoB65k6CbkExQaQgHrTu+l5owB2UY4XRcCjJNUyBD6NOOpRIE1WE++3KMz6zSxb1E2ZIGz9TfEzkIrUcitp3TK/WyNxX/8zqZ6V2FOZNpZqgk80W9jGOT4GlkuMsUJYaPLAGimL0VkwEoIMYGW7Ih+Msvr5LmRcX3Kv5dtVyrLuIoohN0is6Rjy5RDd2iOmoggp7RK3pHE+fFeXM+nM95a8FZzByjP3C+fwDa4qah</latexit><latexit sha1_base64="pT7eyq3teFGlO01wKMXGC2o/WGk=">AAACJXicbVDLSgNBEJyNrxhfqx69DAbBU9iVgB48BLx4jGgekF2X3skkGTIzu8zMCmHJz3jxV7x4MIjgyV9x8jhoYkFDUdVNd1eccqaN5305hbX1jc2t4nZpZ3dv/8A9PGrqJFOENkjCE9WOQVPOJG0YZjhtp4qCiDltxcObqd96okqzRD6YUUpDAX3JeoyAsVLkXgc6E4FMOBPM6IjhAHg6gIg95oEAMyDA8/tx5I/xYFWL3LJX8WbAq8RfkDJaoB65k6CbkExQaQgHrTu+l5owB2UY4XRcCjJNUyBD6NOOpRIE1WE++3KMz6zSxb1E2ZIGz9TfEzkIrUcitp3TK/WyNxX/8zqZ6V2FOZNpZqgk80W9jGOT4GlkuMsUJYaPLAGimL0VkwEoIMYGW7Ih+Msvr5LmRcX3Kv5dtVyrLuIoohN0is6Rjy5RDd2iOmoggp7RK3pHE+fFeXM+nM95a8FZzByjP3C+fwDa4qah</latexit><latexit sha1_base64="pT7eyq3teFGlO01wKMXGC2o/WGk=">AAACJXicbVDLSgNBEJyNrxhfqx69DAbBU9iVgB48BLx4jGgekF2X3skkGTIzu8zMCmHJz3jxV7x4MIjgyV9x8jhoYkFDUdVNd1eccqaN5305hbX1jc2t4nZpZ3dv/8A9PGrqJFOENkjCE9WOQVPOJG0YZjhtp4qCiDltxcObqd96okqzRD6YUUpDAX3JeoyAsVLkXgc6E4FMOBPM6IjhAHg6gIg95oEAMyDA8/tx5I/xYFWL3LJX8WbAq8RfkDJaoB65k6CbkExQaQgHrTu+l5owB2UY4XRcCjJNUyBD6NOOpRIE1WE++3KMz6zSxb1E2ZIGz9TfEzkIrUcitp3TK/WyNxX/8zqZ6V2FOZNpZqgk80W9jGOT4GlkuMsUJYaPLAGimL0VkwEoIMYGW7Ih+Msvr5LmRcX3Kv5dtVyrLuIoohN0is6Rjy5RDd2iOmoggp7RK3pHE+fFeXM+nM95a8FZzByjP3C+fwDa4qah</latexit><latexit sha1_base64="pT7eyq3teFGlO01wKMXGC2o/WGk=">AAACJXicbVDLSgNBEJyNrxhfqx69DAbBU9iVgB48BLx4jGgekF2X3skkGTIzu8zMCmHJz3jxV7x4MIjgyV9x8jhoYkFDUdVNd1eccqaN5305hbX1jc2t4nZpZ3dv/8A9PGrqJFOENkjCE9WOQVPOJG0YZjhtp4qCiDltxcObqd96okqzRD6YUUpDAX3JeoyAsVLkXgc6E4FMOBPM6IjhAHg6gIg95oEAMyDA8/tx5I/xYFWL3LJX8WbAq8RfkDJaoB65k6CbkExQaQgHrTu+l5owB2UY4XRcCjJNUyBD6NOOpRIE1WE++3KMz6zSxb1E2ZIGz9TfEzkIrUcitp3TK/WyNxX/8zqZ6V2FOZNpZqgk80W9jGOT4GlkuMsUJYaPLAGimL0VkwEoIMYGW7Ih+Msvr5LmRcX3Kv5dtVyrLuIoohN0is6Rjy5RDd2iOmoggp7RK3pHE+fFeXM+nM95a8FZzByjP3C+fwDa4qah</latexit>

X
i
↵SN

i hSN
i

<latexit sha1_base64="J4fn7m3v959wDgbhcyht7C5E2bw=">AAACJXicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0MIiYGMlEc0H5M5jbrNJluzuHbt7QjjyZ2z8KzYWBhGs/Ctukis08cHA470ZZuZFCWfauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeK0AaJeazaEWjKmaQNwwyn7URREBGnrWh4PfVbT1RpFssHM0poIKAvWY8RMFYKy1e+ToUvY84EMzpk2AeeDCBkj5kvwAwI8Ox+HN6O8WBZC8sVt+rOgJeJl5MKylEPyxO/G5NUUGkIB607npuYIANlGOF0XPJTTRMgQ+jTjqUSBNVBNvtyjE+s0sW9WNmSBs/U3xMZCK1HIrKd0yv1ojcV//M6qeldBhmTSWqoJPNFvZRjE+NpZLjLFCWGjywBopi9FZMBKCDGBluyIXiLLy+T5lnVc6ve3Xmldp7HUURH6BidIg9doBq6QXXUQAQ9o1f0jibOi/PmfDif89aCk88coj9wvn8ANVem2w==</latexit><latexit sha1_base64="J4fn7m3v959wDgbhcyht7C5E2bw=">AAACJXicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0MIiYGMlEc0H5M5jbrNJluzuHbt7QjjyZ2z8KzYWBhGs/Ctukis08cHA470ZZuZFCWfauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeK0AaJeazaEWjKmaQNwwyn7URREBGnrWh4PfVbT1RpFssHM0poIKAvWY8RMFYKy1e+ToUvY84EMzpk2AeeDCBkj5kvwAwI8Ox+HN6O8WBZC8sVt+rOgJeJl5MKylEPyxO/G5NUUGkIB607npuYIANlGOF0XPJTTRMgQ+jTjqUSBNVBNvtyjE+s0sW9WNmSBs/U3xMZCK1HIrKd0yv1ojcV//M6qeldBhmTSWqoJPNFvZRjE+NpZLjLFCWGjywBopi9FZMBKCDGBluyIXiLLy+T5lnVc6ve3Xmldp7HUURH6BidIg9doBq6QXXUQAQ9o1f0jibOi/PmfDif89aCk88coj9wvn8ANVem2w==</latexit><latexit sha1_base64="J4fn7m3v959wDgbhcyht7C5E2bw=">AAACJXicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0MIiYGMlEc0H5M5jbrNJluzuHbt7QjjyZ2z8KzYWBhGs/Ctukis08cHA470ZZuZFCWfauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeK0AaJeazaEWjKmaQNwwyn7URREBGnrWh4PfVbT1RpFssHM0poIKAvWY8RMFYKy1e+ToUvY84EMzpk2AeeDCBkj5kvwAwI8Ox+HN6O8WBZC8sVt+rOgJeJl5MKylEPyxO/G5NUUGkIB607npuYIANlGOF0XPJTTRMgQ+jTjqUSBNVBNvtyjE+s0sW9WNmSBs/U3xMZCK1HIrKd0yv1ojcV//M6qeldBhmTSWqoJPNFvZRjE+NpZLjLFCWGjywBopi9FZMBKCDGBluyIXiLLy+T5lnVc6ve3Xmldp7HUURH6BidIg9doBq6QXXUQAQ9o1f0jibOi/PmfDif89aCk88coj9wvn8ANVem2w==</latexit><latexit sha1_base64="J4fn7m3v959wDgbhcyht7C5E2bw=">AAACJXicbVA9SwNBEN2LXzF+RS1tFoNgFe5E0MIiYGMlEc0H5M5jbrNJluzuHbt7QjjyZ2z8KzYWBhGs/Ctukis08cHA470ZZuZFCWfauO6XU1hZXVvfKG6WtrZ3dvfK+wdNHaeK0AaJeazaEWjKmaQNwwyn7URREBGnrWh4PfVbT1RpFssHM0poIKAvWY8RMFYKy1e+ToUvY84EMzpk2AeeDCBkj5kvwAwI8Ox+HN6O8WBZC8sVt+rOgJeJl5MKylEPyxO/G5NUUGkIB607npuYIANlGOF0XPJTTRMgQ+jTjqUSBNVBNvtyjE+s0sW9WNmSBs/U3xMZCK1HIrKd0yv1ojcV//M6qeldBhmTSWqoJPNFvZRjE+NpZLjLFCWGjywBopi9FZMBKCDGBluyIXiLLy+T5lnVc6ve3Xmldp7HUURH6BidIg9doBq6QXXUQAQ9o1f0jibOi/PmfDif89aCk88coj9wvn8ANVem2w==</latexit>

ŷS1
<latexit sha1_base64="wJsuhFix8BooNgt0JgtfvpbDS4Y=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCqJCOqt4MVjRfsBTQyT7aZdutmE3Y0QQi7+FS8eFPHqz/Dmv3HT5qCtDwYe780wMy9IGJXKtr+NpeWV1bX12kZ9c2t7Z9fc2+/KOBWYdHDMYtEPQBJGOekoqhjpJ4JAFDDSCybXpd97JELSmN+rLCFeBCNOQ4pBack3D90xqDwrHnI3AjXGwPK7wncK32zYTXsKa5E4FWmgCm3f/HKHMU4jwhVmIOXAsRPl5SAUxYwUdTeVJAE8gREZaMohItLLpw8U1olWhlYYC11cWVP190QOkZRZFOjO8ko575Xif94gVeGll1OepIpwPFsUpsxSsVWmYQ2pIFixTBPAgupbLTwGAVjpzOo6BGf+5UXSPWs6dtO5PW+0rqo4augIHaNT5KAL1EI3qI06CKMCPaNX9GY8GS/Gu/Exa10yqpkD9AfG5w+N55b5</latexit><latexit sha1_base64="wJsuhFix8BooNgt0JgtfvpbDS4Y=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCqJCOqt4MVjRfsBTQyT7aZdutmE3Y0QQi7+FS8eFPHqz/Dmv3HT5qCtDwYe780wMy9IGJXKtr+NpeWV1bX12kZ9c2t7Z9fc2+/KOBWYdHDMYtEPQBJGOekoqhjpJ4JAFDDSCybXpd97JELSmN+rLCFeBCNOQ4pBack3D90xqDwrHnI3AjXGwPK7wncK32zYTXsKa5E4FWmgCm3f/HKHMU4jwhVmIOXAsRPl5SAUxYwUdTeVJAE8gREZaMohItLLpw8U1olWhlYYC11cWVP190QOkZRZFOjO8ko575Xif94gVeGll1OepIpwPFsUpsxSsVWmYQ2pIFixTBPAgupbLTwGAVjpzOo6BGf+5UXSPWs6dtO5PW+0rqo4augIHaNT5KAL1EI3qI06CKMCPaNX9GY8GS/Gu/Exa10yqpkD9AfG5w+N55b5</latexit><latexit sha1_base64="wJsuhFix8BooNgt0JgtfvpbDS4Y=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCqJCOqt4MVjRfsBTQyT7aZdutmE3Y0QQi7+FS8eFPHqz/Dmv3HT5qCtDwYe780wMy9IGJXKtr+NpeWV1bX12kZ9c2t7Z9fc2+/KOBWYdHDMYtEPQBJGOekoqhjpJ4JAFDDSCybXpd97JELSmN+rLCFeBCNOQ4pBack3D90xqDwrHnI3AjXGwPK7wncK32zYTXsKa5E4FWmgCm3f/HKHMU4jwhVmIOXAsRPl5SAUxYwUdTeVJAE8gREZaMohItLLpw8U1olWhlYYC11cWVP190QOkZRZFOjO8ko575Xif94gVeGll1OepIpwPFsUpsxSsVWmYQ2pIFixTBPAgupbLTwGAVjpzOo6BGf+5UXSPWs6dtO5PW+0rqo4augIHaNT5KAL1EI3qI06CKMCPaNX9GY8GS/Gu/Exa10yqpkD9AfG5w+N55b5</latexit><latexit sha1_base64="wJsuhFix8BooNgt0JgtfvpbDS4Y=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCqJCOqt4MVjRfsBTQyT7aZdutmE3Y0QQi7+FS8eFPHqz/Dmv3HT5qCtDwYe780wMy9IGJXKtr+NpeWV1bX12kZ9c2t7Z9fc2+/KOBWYdHDMYtEPQBJGOekoqhjpJ4JAFDDSCybXpd97JELSmN+rLCFeBCNOQ4pBack3D90xqDwrHnI3AjXGwPK7wncK32zYTXsKa5E4FWmgCm3f/HKHMU4jwhVmIOXAsRPl5SAUxYwUdTeVJAE8gREZaMohItLLpw8U1olWhlYYC11cWVP190QOkZRZFOjO8ko575Xif94gVeGll1OepIpwPFsUpsxSsVWmYQ2pIFixTBPAgupbLTwGAVjpzOo6BGf+5UXSPWs6dtO5PW+0rqo4augIHaNT5KAL1EI3qI06CKMCPaNX9GY8GS/Gu/Exa10yqpkD9AfG5w+N55b5</latexit>

ŷSN
<latexit sha1_base64="9NW4BKchG5BNRC+qsvs3THOgjaU=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIqi7ghtXUtE+oIlhMp20QycPZm6EELLxV9y4UMStn+HOv3HSdqGtBy4czrmXe+/xE8EVWNa3UVlaXlldq67XNja3tnfM3b2OilNJWZvGIpY9nygmeMTawEGwXiIZCX3Buv74qvS7j0wqHkf3kCXMDckw4gGnBLTkmQfOiECeFQ+5ExIYUSLyu8K7KTyzbjWsCfAisWekjmZoeeaXM4hpGrIIqCBK9W0rATcnEjgVrKg5qWIJoWMyZH1NIxIy5eaTBwp8rJUBDmKpKwI8UX9P5CRUKgt93Vleqea9UvzP66cQXLg5j5IUWESni4JUYIhxmQYecMkoiEwTQiXXt2I6IpJQ0JnVdAj2/MuLpHPasK2GfXtWb17O4qiiQ3SETpCNzlETXaMWaiOKCvSMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/ufiXFg==</latexit><latexit sha1_base64="9NW4BKchG5BNRC+qsvs3THOgjaU=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIqi7ghtXUtE+oIlhMp20QycPZm6EELLxV9y4UMStn+HOv3HSdqGtBy4czrmXe+/xE8EVWNa3UVlaXlldq67XNja3tnfM3b2OilNJWZvGIpY9nygmeMTawEGwXiIZCX3Buv74qvS7j0wqHkf3kCXMDckw4gGnBLTkmQfOiECeFQ+5ExIYUSLyu8K7KTyzbjWsCfAisWekjmZoeeaXM4hpGrIIqCBK9W0rATcnEjgVrKg5qWIJoWMyZH1NIxIy5eaTBwp8rJUBDmKpKwI8UX9P5CRUKgt93Vleqea9UvzP66cQXLg5j5IUWESni4JUYIhxmQYecMkoiEwTQiXXt2I6IpJQ0JnVdAj2/MuLpHPasK2GfXtWb17O4qiiQ3SETpCNzlETXaMWaiOKCvSMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/ufiXFg==</latexit><latexit sha1_base64="9NW4BKchG5BNRC+qsvs3THOgjaU=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIqi7ghtXUtE+oIlhMp20QycPZm6EELLxV9y4UMStn+HOv3HSdqGtBy4czrmXe+/xE8EVWNa3UVlaXlldq67XNja3tnfM3b2OilNJWZvGIpY9nygmeMTawEGwXiIZCX3Buv74qvS7j0wqHkf3kCXMDckw4gGnBLTkmQfOiECeFQ+5ExIYUSLyu8K7KTyzbjWsCfAisWekjmZoeeaXM4hpGrIIqCBK9W0rATcnEjgVrKg5qWIJoWMyZH1NIxIy5eaTBwp8rJUBDmKpKwI8UX9P5CRUKgt93Vleqea9UvzP66cQXLg5j5IUWESni4JUYIhxmQYecMkoiEwTQiXXt2I6IpJQ0JnVdAj2/MuLpHPasK2GfXtWb17O4qiiQ3SETpCNzlETXaMWaiOKCvSMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/ufiXFg==</latexit><latexit sha1_base64="9NW4BKchG5BNRC+qsvs3THOgjaU=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIqi7ghtXUtE+oIlhMp20QycPZm6EELLxV9y4UMStn+HOv3HSdqGtBy4czrmXe+/xE8EVWNa3UVlaXlldq67XNja3tnfM3b2OilNJWZvGIpY9nygmeMTawEGwXiIZCX3Buv74qvS7j0wqHkf3kCXMDckw4gGnBLTkmQfOiECeFQ+5ExIYUSLyu8K7KTyzbjWsCfAisWekjmZoeeaXM4hpGrIIqCBK9W0rATcnEjgVrKg5qWIJoWMyZH1NIxIy5eaTBwp8rJUBDmKpKwI8UX9P5CRUKgt93Vleqea9UvzP66cQXLg5j5IUWESni4JUYIhxmQYecMkoiEwTQiXXt2I6IpJQ0JnVdAj2/MuLpHPasK2GfXtWb17O4qiiQ3SETpCNzlETXaMWaiOKCvSMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/ufiXFg==</latexit>

predS1
<latexit sha1_base64="M4lYrvt0V+eC2A/jQRiyDSazUFg=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxVQlCArZKLIxF0IfUhshxnNaq7US2g1RF+QMWfoWFAYRYWdn4G5y0A7QcyfLxuffI954gYVRpx/m2KkvLK6tr1fXaxubW9o69u9dRcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfFfXuA5GKxuJOTxLicTQUNKIYaSP59vGAIz2SPCvvIMqMO8zz++kbI5bd5r6b+3bdaTgl4CJxZ6QOZmj59tcgjHHKidCYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A0ViBPlZeU+OTwySgijWJojNCzV344McaUmPDCdxZRqvlaI/9X6qY4uvIyKJNVE4OlHUcqgjmERDgypJFiziSEIS2pmhXiEJMLaRFgzIbjzKy+SzmnDdRruzVm9eTmLowoOwCE4AS44B01wDVqgDTB4BM/gFbxZT9aL9W59TFsr1syzD/7A+vwB99qd0w==</latexit><latexit sha1_base64="M4lYrvt0V+eC2A/jQRiyDSazUFg=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxVQlCArZKLIxF0IfUhshxnNaq7US2g1RF+QMWfoWFAYRYWdn4G5y0A7QcyfLxuffI954gYVRpx/m2KkvLK6tr1fXaxubW9o69u9dRcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfFfXuA5GKxuJOTxLicTQUNKIYaSP59vGAIz2SPCvvIMqMO8zz++kbI5bd5r6b+3bdaTgl4CJxZ6QOZmj59tcgjHHKidCYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A0ViBPlZeU+OTwySgijWJojNCzV344McaUmPDCdxZRqvlaI/9X6qY4uvIyKJNVE4OlHUcqgjmERDgypJFiziSEIS2pmhXiEJMLaRFgzIbjzKy+SzmnDdRruzVm9eTmLowoOwCE4AS44B01wDVqgDTB4BM/gFbxZT9aL9W59TFsr1syzD/7A+vwB99qd0w==</latexit><latexit sha1_base64="M4lYrvt0V+eC2A/jQRiyDSazUFg=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxVQlCArZKLIxF0IfUhshxnNaq7US2g1RF+QMWfoWFAYRYWdn4G5y0A7QcyfLxuffI954gYVRpx/m2KkvLK6tr1fXaxubW9o69u9dRcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfFfXuA5GKxuJOTxLicTQUNKIYaSP59vGAIz2SPCvvIMqMO8zz++kbI5bd5r6b+3bdaTgl4CJxZ6QOZmj59tcgjHHKidCYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A0ViBPlZeU+OTwySgijWJojNCzV344McaUmPDCdxZRqvlaI/9X6qY4uvIyKJNVE4OlHUcqgjmERDgypJFiziSEIS2pmhXiEJMLaRFgzIbjzKy+SzmnDdRruzVm9eTmLowoOwCE4AS44B01wDVqgDTB4BM/gFbxZT9aL9W59TFsr1syzD/7A+vwB99qd0w==</latexit><latexit sha1_base64="M4lYrvt0V+eC2A/jQRiyDSazUFg=">AAACD3icbVC7TsMwFHXKq5RXgJHFogIxVQlCArZKLIxF0IfUhshxnNaq7US2g1RF+QMWfoWFAYRYWdn4G5y0A7QcyfLxuffI954gYVRpx/m2KkvLK6tr1fXaxubW9o69u9dRcSoxaeOYxbIXIEUYFaStqWakl0iCeMBINxhfFfXuA5GKxuJOTxLicTQUNKIYaSP59vGAIz2SPCvvIMqMO8zz++kbI5bd5r6b+3bdaTgl4CJxZ6QOZmj59tcgjHHKidCYIaX6rpNoL0NSU8xIXhukiiQIj9GQ9A0ViBPlZeU+OTwySgijWJojNCzV344McaUmPDCdxZRqvlaI/9X6qY4uvIyKJNVE4OlHUcqgjmERDgypJFiziSEIS2pmhXiEJMLaRFgzIbjzKy+SzmnDdRruzVm9eTmLowoOwCE4AS44B01wDVqgDTB4BM/gFbxZT9aL9W59TFsr1syzD/7A+vwB99qd0w==</latexit>

predSN
<latexit sha1_base64="i8MPa6TUYdxfbChqAhnSmATjGBI=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKkFIwFaJhQkVQR9SGyLHcVqrthPZDlIV5Q9Y+BUWBhBiZWXjb3DSDtByJMvH594j33uChFGlHefbWlhcWl5ZraxV1zc2t7btnd22ilOJSQvHLJbdACnCqCAtTTUj3UQSxANGOsHosqh3HohUNBZ3epwQj6OBoBHFSBvJt4/6HOmh5Fl5B1Fm3GGe30/eGLHsNvevc9+uOXWnBJwn7pTUwBRN3/7qhzFOOREaM6RUz3US7WVIaooZyav9VJEE4REakJ6hAnGivKzcJ4eHRglhFEtzhIal+tuRIa7UmAems5hSzdYK8b9aL9XRuZdRkaSaCDz5KEoZ1DEswoEhlQRrNjYEYUnNrBAPkURYmwirJgR3duV50j6pu07dvTmtNS6mcVTAPjgAx8AFZ6ABrkATtAAGj+AZvII368l6sd6tj0nrgjX17IE/sD5/ACP6nfA=</latexit><latexit sha1_base64="i8MPa6TUYdxfbChqAhnSmATjGBI=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKkFIwFaJhQkVQR9SGyLHcVqrthPZDlIV5Q9Y+BUWBhBiZWXjb3DSDtByJMvH594j33uChFGlHefbWlhcWl5ZraxV1zc2t7btnd22ilOJSQvHLJbdACnCqCAtTTUj3UQSxANGOsHosqh3HohUNBZ3epwQj6OBoBHFSBvJt4/6HOmh5Fl5B1Fm3GGe30/eGLHsNvevc9+uOXWnBJwn7pTUwBRN3/7qhzFOOREaM6RUz3US7WVIaooZyav9VJEE4REakJ6hAnGivKzcJ4eHRglhFEtzhIal+tuRIa7UmAems5hSzdYK8b9aL9XRuZdRkaSaCDz5KEoZ1DEswoEhlQRrNjYEYUnNrBAPkURYmwirJgR3duV50j6pu07dvTmtNS6mcVTAPjgAx8AFZ6ABrkATtAAGj+AZvII368l6sd6tj0nrgjX17IE/sD5/ACP6nfA=</latexit><latexit sha1_base64="i8MPa6TUYdxfbChqAhnSmATjGBI=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKkFIwFaJhQkVQR9SGyLHcVqrthPZDlIV5Q9Y+BUWBhBiZWXjb3DSDtByJMvH594j33uChFGlHefbWlhcWl5ZraxV1zc2t7btnd22ilOJSQvHLJbdACnCqCAtTTUj3UQSxANGOsHosqh3HohUNBZ3epwQj6OBoBHFSBvJt4/6HOmh5Fl5B1Fm3GGe30/eGLHsNvevc9+uOXWnBJwn7pTUwBRN3/7qhzFOOREaM6RUz3US7WVIaooZyav9VJEE4REakJ6hAnGivKzcJ4eHRglhFEtzhIal+tuRIa7UmAems5hSzdYK8b9aL9XRuZdRkaSaCDz5KEoZ1DEswoEhlQRrNjYEYUnNrBAPkURYmwirJgR3duV50j6pu07dvTmtNS6mcVTAPjgAx8AFZ6ABrkATtAAGj+AZvII368l6sd6tj0nrgjX17IE/sD5/ACP6nfA=</latexit><latexit sha1_base64="i8MPa6TUYdxfbChqAhnSmATjGBI=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCCmKkFIwFaJhQkVQR9SGyLHcVqrthPZDlIV5Q9Y+BUWBhBiZWXjb3DSDtByJMvH594j33uChFGlHefbWlhcWl5ZraxV1zc2t7btnd22ilOJSQvHLJbdACnCqCAtTTUj3UQSxANGOsHosqh3HohUNBZ3epwQj6OBoBHFSBvJt4/6HOmh5Fl5B1Fm3GGe30/eGLHsNvevc9+uOXWnBJwn7pTUwBRN3/7qhzFOOREaM6RUz3US7WVIaooZyav9VJEE4REakJ6hAnGivKzcJ4eHRglhFEtzhIal+tuRIa7UmAems5hSzdYK8b9aL9XRuZdRkaSaCDz5KEoZ1DEswoEhlQRrNjYEYUnNrBAPkURYmwirJgR3duV50j6pu07dvTmtNS6mcVTAPjgAx8AFZ6ABrkATtAAGj+AZvII368l6sd6tj0nrgjX17IE/sD5/ACP6nfA=</latexit>

↵S1
<latexit sha1_base64="Vq046X3xf992pwzuRuGjKOXW2JM=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigroruHFZ0T6gieFmOmmHTiZhZiKUmIW/4saFIm79DXf+jZM2C209MHA4517umRMkjEpl299GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPQCkIRRTtqKKkZ6iSAQBYx0g/FV4XcfiJA05ndqkhAvgiGnIcWgtOSbBy6wZAT3mRuBGmFg2W3uO7lv1u2GPYW1SJyS1FGJlm9+uYMYpxHhCjOQsu/YifIyEIpiRvKam0qSAB7DkPQ15RAR6WXT/Ll1rJWBFcZCP66sqfp7I4NIykkU6MkipZz3CvE/r5+q8MLLKE9SRTieHQpTZqnYKsqwBlQQrNhEE8CC6qwWHoEArHRlNV2CM//lRdI5bTh2w7k5qzcvyzqq6BAdoRPkoHPURNeohdoIo0f0jF7Rm/FkvBjvxsdstGKUO/voD4zPH1zolkc=</latexit><latexit sha1_base64="Vq046X3xf992pwzuRuGjKOXW2JM=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigroruHFZ0T6gieFmOmmHTiZhZiKUmIW/4saFIm79DXf+jZM2C209MHA4517umRMkjEpl299GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPQCkIRRTtqKKkZ6iSAQBYx0g/FV4XcfiJA05ndqkhAvgiGnIcWgtOSbBy6wZAT3mRuBGmFg2W3uO7lv1u2GPYW1SJyS1FGJlm9+uYMYpxHhCjOQsu/YifIyEIpiRvKam0qSAB7DkPQ15RAR6WXT/Ll1rJWBFcZCP66sqfp7I4NIykkU6MkipZz3CvE/r5+q8MLLKE9SRTieHQpTZqnYKsqwBlQQrNhEE8CC6qwWHoEArHRlNV2CM//lRdI5bTh2w7k5qzcvyzqq6BAdoRPkoHPURNeohdoIo0f0jF7Rm/FkvBjvxsdstGKUO/voD4zPH1zolkc=</latexit><latexit sha1_base64="Vq046X3xf992pwzuRuGjKOXW2JM=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigroruHFZ0T6gieFmOmmHTiZhZiKUmIW/4saFIm79DXf+jZM2C209MHA4517umRMkjEpl299GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPQCkIRRTtqKKkZ6iSAQBYx0g/FV4XcfiJA05ndqkhAvgiGnIcWgtOSbBy6wZAT3mRuBGmFg2W3uO7lv1u2GPYW1SJyS1FGJlm9+uYMYpxHhCjOQsu/YifIyEIpiRvKam0qSAB7DkPQ15RAR6WXT/Ll1rJWBFcZCP66sqfp7I4NIykkU6MkipZz3CvE/r5+q8MLLKE9SRTieHQpTZqnYKsqwBlQQrNhEE8CC6qwWHoEArHRlNV2CM//lRdI5bTh2w7k5qzcvyzqq6BAdoRPkoHPURNeohdoIo0f0jF7Rm/FkvBjvxsdstGKUO/voD4zPH1zolkc=</latexit><latexit sha1_base64="Vq046X3xf992pwzuRuGjKOXW2JM=">AAAB/3icbVDLSsNAFJ3UV62vqODGTbAIrkoigroruHFZ0T6gieFmOmmHTiZhZiKUmIW/4saFIm79DXf+jZM2C209MHA4517umRMkjEpl299GZWl5ZXWtul7b2Nza3jF39zoyTgUmbRyzWPQCkIRRTtqKKkZ6iSAQBYx0g/FV4XcfiJA05ndqkhAvgiGnIcWgtOSbBy6wZAT3mRuBGmFg2W3uO7lv1u2GPYW1SJyS1FGJlm9+uYMYpxHhCjOQsu/YifIyEIpiRvKam0qSAB7DkPQ15RAR6WXT/Ll1rJWBFcZCP66sqfp7I4NIykkU6MkipZz3CvE/r5+q8MLLKE9SRTieHQpTZqnYKsqwBlQQrNhEE8CC6qwWHoEArHRlNV2CM//lRdI5bTh2w7k5qzcvyzqq6BAdoRPkoHPURNeohdoIo0f0jF7Rm/FkvBjvxsdstGKUO/voD4zPH1zolkc=</latexit> ↵SN

<latexit sha1_base64="0kY5VTjLNA9EbGU7CoXBldtzehg=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEUHcFN66kon1AE8PNdNIOnUzCzEQoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cMydIGJXKtr+NhcWl5ZXVylp1fWNza9vc2W3LOBWYtHDMYtENQBJGOWkpqhjpJoJAFDDSCUaXhd95IELSmN+pcUK8CAachhSD0pJv7rvAkiHcZ24EaoiBZbe5f537Zs2u2xNY88QpSQ2VaPrml9uPcRoRrjADKXuOnSgvA6EoZiSvuqkkCeARDEhPUw4RkV42yZ9bR1rpW2Es9OPKmqi/NzKIpBxHgZ4sUspZrxD/83qpCs+9jPIkVYTj6aEwZZaKraIMq08FwYqNNQEsqM5q4SEIwEpXVtUlOLNfniftk7pj152b01rjoqyjgg7QITpGDjpDDXSFmqiFMHpEz+gVvRlPxovxbnxMRxeMcmcP/YHx+QOI+ZZk</latexit><latexit sha1_base64="0kY5VTjLNA9EbGU7CoXBldtzehg=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEUHcFN66kon1AE8PNdNIOnUzCzEQoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cMydIGJXKtr+NhcWl5ZXVylp1fWNza9vc2W3LOBWYtHDMYtENQBJGOWkpqhjpJoJAFDDSCUaXhd95IELSmN+pcUK8CAachhSD0pJv7rvAkiHcZ24EaoiBZbe5f537Zs2u2xNY88QpSQ2VaPrml9uPcRoRrjADKXuOnSgvA6EoZiSvuqkkCeARDEhPUw4RkV42yZ9bR1rpW2Es9OPKmqi/NzKIpBxHgZ4sUspZrxD/83qpCs+9jPIkVYTj6aEwZZaKraIMq08FwYqNNQEsqM5q4SEIwEpXVtUlOLNfniftk7pj152b01rjoqyjgg7QITpGDjpDDXSFmqiFMHpEz+gVvRlPxovxbnxMRxeMcmcP/YHx+QOI+ZZk</latexit><latexit sha1_base64="0kY5VTjLNA9EbGU7CoXBldtzehg=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEUHcFN66kon1AE8PNdNIOnUzCzEQoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cMydIGJXKtr+NhcWl5ZXVylp1fWNza9vc2W3LOBWYtHDMYtENQBJGOWkpqhjpJoJAFDDSCUaXhd95IELSmN+pcUK8CAachhSD0pJv7rvAkiHcZ24EaoiBZbe5f537Zs2u2xNY88QpSQ2VaPrml9uPcRoRrjADKXuOnSgvA6EoZiSvuqkkCeARDEhPUw4RkV42yZ9bR1rpW2Es9OPKmqi/NzKIpBxHgZ4sUspZrxD/83qpCs+9jPIkVYTj6aEwZZaKraIMq08FwYqNNQEsqM5q4SEIwEpXVtUlOLNfniftk7pj152b01rjoqyjgg7QITpGDjpDDXSFmqiFMHpEz+gVvRlPxovxbnxMRxeMcmcP/YHx+QOI+ZZk</latexit><latexit sha1_base64="0kY5VTjLNA9EbGU7CoXBldtzehg=">AAAB/3icbVDLSsNAFJ34rPUVFdy4CRbBVUlEUHcFN66kon1AE8PNdNIOnUzCzEQoMQt/xY0LRdz6G+78GydtFtp6YOBwzr3cMydIGJXKtr+NhcWl5ZXVylp1fWNza9vc2W3LOBWYtHDMYtENQBJGOWkpqhjpJoJAFDDSCUaXhd95IELSmN+pcUK8CAachhSD0pJv7rvAkiHcZ24EaoiBZbe5f537Zs2u2xNY88QpSQ2VaPrml9uPcRoRrjADKXuOnSgvA6EoZiSvuqkkCeARDEhPUw4RkV42yZ9bR1rpW2Es9OPKmqi/NzKIpBxHgZ4sUspZrxD/83qpCs+9jPIkVYTj6aEwZZaKraIMq08FwYqNNQEsqM5q4SEIwEpXVtUlOLNfniftk7pj152b01rjoqyjgg7QITpGDjpDDXSFmqiFMHpEz+gVvRlPxovxbnxMRxeMcmcP/YHx+QOI+ZZk</latexit>

hS1
<latexit sha1_base64="zJphWcrI///F6r+FVd7hTEABk4U=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEUHcFNy4r2ge0MUym03boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOZMacf5tkorq2vrG+XNytb2zu6eXd1vqyiRhLZIxCPZDbCinAna0kxz2o0lxWHAaSeYXOV+54FKxSJxp6cx9UI8EmzICNZG8u3q+D7th1iPCebpbea7mW/XnLozA1ombkFqUKDp21/9QUSSkApNOFaq5zqx9lIsNSOcZpV+omiMyQSPaM9QgUOqvHQWPUPHRhmgYSTNExrN1N8bKQ6VmoaBmcxTqkUvF//zeokeXngpE3GiqSDzQ8OEIx2hvAc0YJISzaeGYCKZyYrIGEtMtGmrYkpwF7+8TNqnddepuzdntcZlUUcZDuEITsCFc2jANTShBQQe4Rle4c16sl6sd+tjPlqyip0D+APr8wd+hZQb</latexit><latexit sha1_base64="zJphWcrI///F6r+FVd7hTEABk4U=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEUHcFNy4r2ge0MUym03boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOZMacf5tkorq2vrG+XNytb2zu6eXd1vqyiRhLZIxCPZDbCinAna0kxz2o0lxWHAaSeYXOV+54FKxSJxp6cx9UI8EmzICNZG8u3q+D7th1iPCebpbea7mW/XnLozA1ombkFqUKDp21/9QUSSkApNOFaq5zqx9lIsNSOcZpV+omiMyQSPaM9QgUOqvHQWPUPHRhmgYSTNExrN1N8bKQ6VmoaBmcxTqkUvF//zeokeXngpE3GiqSDzQ8OEIx2hvAc0YJISzaeGYCKZyYrIGEtMtGmrYkpwF7+8TNqnddepuzdntcZlUUcZDuEITsCFc2jANTShBQQe4Rle4c16sl6sd+tjPlqyip0D+APr8wd+hZQb</latexit><latexit sha1_base64="zJphWcrI///F6r+FVd7hTEABk4U=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEUHcFNy4r2ge0MUym03boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOZMacf5tkorq2vrG+XNytb2zu6eXd1vqyiRhLZIxCPZDbCinAna0kxz2o0lxWHAaSeYXOV+54FKxSJxp6cx9UI8EmzICNZG8u3q+D7th1iPCebpbea7mW/XnLozA1ombkFqUKDp21/9QUSSkApNOFaq5zqx9lIsNSOcZpV+omiMyQSPaM9QgUOqvHQWPUPHRhmgYSTNExrN1N8bKQ6VmoaBmcxTqkUvF//zeokeXngpE3GiqSDzQ8OEIx2hvAc0YJISzaeGYCKZyYrIGEtMtGmrYkpwF7+8TNqnddepuzdntcZlUUcZDuEITsCFc2jANTShBQQe4Rle4c16sl6sd+tjPlqyip0D+APr8wd+hZQb</latexit><latexit sha1_base64="zJphWcrI///F6r+FVd7hTEABk4U=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBVUlEUHcFNy4r2ge0MUym03boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIOZMacf5tkorq2vrG+XNytb2zu6eXd1vqyiRhLZIxCPZDbCinAna0kxz2o0lxWHAaSeYXOV+54FKxSJxp6cx9UI8EmzICNZG8u3q+D7th1iPCebpbea7mW/XnLozA1ombkFqUKDp21/9QUSSkApNOFaq5zqx9lIsNSOcZpV+omiMyQSPaM9QgUOqvHQWPUPHRhmgYSTNExrN1N8bKQ6VmoaBmcxTqkUvF//zeokeXngpE3GiqSDzQ8OEIx2hvAc0YJISzaeGYCKZyYrIGEtMtGmrYkpwF7+8TNqnddepuzdntcZlUUcZDuEITsCFc2jANTShBQQe4Rle4c16sl6sd+tjPlqyip0D+APr8wd+hZQb</latexit> hSN

<latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit><latexit sha1_base64="7UYblA1UmxqqLAYEfPd9s6LBAfQ=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokI6q7gxpVUtA9oY5hMJ+3QySTMTJQS8yluXCji1i9x5984abvQ1gMDh3Pu5Z45QcKZ0o7zbS0tr6yurZc2yptb2zu7dmWvpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdFn47QcqFYvFnR4n1IvwQLCQEayN5NuV4X3Wi7AeEsyz29y/zn276tScCdAicWekCjM0fPur149JGlGhCcdKdV0n0V6GpWaE07zcSxVNMBnhAe0aKnBElZdNoufoyCh9FMbSPKHRRP29keFIqXEUmMkipZr3CvE/r5vq8NzLmEhSTQWZHgpTjnSMih5Qn0lKNB8bgolkJisiQywx0aatsinBnf/yImmd1Fyn5t6cVusXszpKcACHcAwunEEdrqABTSDwCM/wCm/Wk/VivVsf09Ela7azD39gff4AqpaUOA==</latexit> hT
<latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit><latexit sha1_base64="5JsBHxSOWJHV6YMKzzOEyPe8Y+Q=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURoboruHFZoS9oY5lMJ+3QySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZU2Nre2d8q7lb39g8OqfXTcVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/u8393iOVikWirecx9UI8ESxgBGsjjezq9CEdhlhPCeZpO8tGds2pOwugdeIWpAYFWiP7aziOSBJSoQnHSg1cJ9ZeiqVmhNOsMkwUjTGZ4QkdGCpwSJWXLoJn6NwoYxRE0jyh0UL9vZHiUKl56JvJPKNa9XLxP2+Q6ODaS5mIE00FWR4KEo50hPIW0JhJSjSfG4KJZCYrIlMsMdGmq4opwV398jrpXtZdp+7eX9WaN0UdZTiFM7gAFxrQhDtoQQcIJPAMr/BmPVkv1rv1sRwtWcXOCfyB9fkDTwmTeA==</latexit>

Transformation Layer

hinv,S1
<latexit sha1_base64="sYwyXKWLx9uURr8q5xBPhcngcR8=">AAACEHicbVC7TsMwFHXKq5RXgJHFokIwoCpBSMBWiYWxCPqQ2hA5rtNatZ3IdipVUT6BhV9hYQAhVkY2/gYn7QAtV7J8fM698j0niBlV2nG+rdLS8srqWnm9srG5tb1j7+61VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5G17neHhOpaCTu9SQmHkcDQUOKkTaUbx8PH9IeR3oo+fQOwpSKcXZaPDBi6V3mu1nm21Wn5hQFF4E7A1Uwq4Zvf/X6EU44ERozpFTXdWLtpUhqihnJKr1EkRjhERqQroECcaK8tDCUwSPD9GEYSXOEhgX7eyJFXKkJD0xnvqaa13LyP62b6PDSMwbjRBOBpx+FCYM6gnk6sE8lwZpNDEBYUrMrxEMkEdYmw4oJwZ23vAhaZzXXqbm359X61SyOMjgAh+AEuOAC1MENaIAmwOARPINX8GY9WS/Wu/UxbS1Zs5l98Keszx96ZZ4T</latexit><latexit sha1_base64="sYwyXKWLx9uURr8q5xBPhcngcR8=">AAACEHicbVC7TsMwFHXKq5RXgJHFokIwoCpBSMBWiYWxCPqQ2hA5rtNatZ3IdipVUT6BhV9hYQAhVkY2/gYn7QAtV7J8fM698j0niBlV2nG+rdLS8srqWnm9srG5tb1j7+61VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5G17neHhOpaCTu9SQmHkcDQUOKkTaUbx8PH9IeR3oo+fQOwpSKcXZaPDBi6V3mu1nm21Wn5hQFF4E7A1Uwq4Zvf/X6EU44ERozpFTXdWLtpUhqihnJKr1EkRjhERqQroECcaK8tDCUwSPD9GEYSXOEhgX7eyJFXKkJD0xnvqaa13LyP62b6PDSMwbjRBOBpx+FCYM6gnk6sE8lwZpNDEBYUrMrxEMkEdYmw4oJwZ23vAhaZzXXqbm359X61SyOMjgAh+AEuOAC1MENaIAmwOARPINX8GY9WS/Wu/UxbS1Zs5l98Keszx96ZZ4T</latexit><latexit sha1_base64="sYwyXKWLx9uURr8q5xBPhcngcR8=">AAACEHicbVC7TsMwFHXKq5RXgJHFokIwoCpBSMBWiYWxCPqQ2hA5rtNatZ3IdipVUT6BhV9hYQAhVkY2/gYn7QAtV7J8fM698j0niBlV2nG+rdLS8srqWnm9srG5tb1j7+61VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5G17neHhOpaCTu9SQmHkcDQUOKkTaUbx8PH9IeR3oo+fQOwpSKcXZaPDBi6V3mu1nm21Wn5hQFF4E7A1Uwq4Zvf/X6EU44ERozpFTXdWLtpUhqihnJKr1EkRjhERqQroECcaK8tDCUwSPD9GEYSXOEhgX7eyJFXKkJD0xnvqaa13LyP62b6PDSMwbjRBOBpx+FCYM6gnk6sE8lwZpNDEBYUrMrxEMkEdYmw4oJwZ23vAhaZzXXqbm359X61SyOMjgAh+AEuOAC1MENaIAmwOARPINX8GY9WS/Wu/UxbS1Zs5l98Keszx96ZZ4T</latexit><latexit sha1_base64="sYwyXKWLx9uURr8q5xBPhcngcR8=">AAACEHicbVC7TsMwFHXKq5RXgJHFokIwoCpBSMBWiYWxCPqQ2hA5rtNatZ3IdipVUT6BhV9hYQAhVkY2/gYn7QAtV7J8fM698j0niBlV2nG+rdLS8srqWnm9srG5tb1j7+61VJRITJo4YpHsBEgRRgVpaqoZ6cSSIB4w0g5G17neHhOpaCTu9SQmHkcDQUOKkTaUbx8PH9IeR3oo+fQOwpSKcXZaPDBi6V3mu1nm21Wn5hQFF4E7A1Uwq4Zvf/X6EU44ERozpFTXdWLtpUhqihnJKr1EkRjhERqQroECcaK8tDCUwSPD9GEYSXOEhgX7eyJFXKkJD0xnvqaa13LyP62b6PDSMwbjRBOBpx+FCYM6gnk6sE8lwZpNDEBYUrMrxEMkEdYmw4oJwZ23vAhaZzXXqbm359X61SyOMjgAh+AEuOAC1MENaIAmwOARPINX8GY9WS/Wu/UxbS1Zs5l98Keszx96ZZ4T</latexit> hinv,SN

<latexit sha1_base64="jO9nIDyQgsa0oz7k4f/d/mEcC/M=">AAACEHicbVC7TsMwFHV4lvIKMLJYVAgGVCUICdgqsTChIuhDakPkuE5r1XYi26lURfkEFn6FhQGEWBnZ+BuctAO0XMny8Tn3yvecIGZUacf5thYWl5ZXVktr5fWNza1te2e3qaJEYtLAEYtkO0CKMCpIQ1PNSDuWBPGAkVYwvMr11ohIRSNxr8cx8TjqCxpSjLShfPto8JB2OdIDySd3EKZUjLKT4oERS+8y/ybLfLviVJ2i4Dxwp6ACplX37a9uL8IJJ0JjhpTquE6svRRJTTEjWbmbKBIjPER90jFQIE6UlxaGMnhomB4MI2mO0LBgf0+kiCs15oHpzNdUs1pO/qd1Eh1eeMZgnGgi8OSjMGFQRzBPB/aoJFizsQEIS2p2hXiAJMLaZFg2IbizludB87TqOlX39qxSu5zGUQL74AAcAxecgxq4BnXQABg8gmfwCt6sJ+vFerc+Jq0L1nRmD/wp6/MHppOeMA==</latexit><latexit sha1_base64="jO9nIDyQgsa0oz7k4f/d/mEcC/M=">AAACEHicbVC7TsMwFHV4lvIKMLJYVAgGVCUICdgqsTChIuhDakPkuE5r1XYi26lURfkEFn6FhQGEWBnZ+BuctAO0XMny8Tn3yvecIGZUacf5thYWl5ZXVktr5fWNza1te2e3qaJEYtLAEYtkO0CKMCpIQ1PNSDuWBPGAkVYwvMr11ohIRSNxr8cx8TjqCxpSjLShfPto8JB2OdIDySd3EKZUjLKT4oERS+8y/ybLfLviVJ2i4Dxwp6ACplX37a9uL8IJJ0JjhpTquE6svRRJTTEjWbmbKBIjPER90jFQIE6UlxaGMnhomB4MI2mO0LBgf0+kiCs15oHpzNdUs1pO/qd1Eh1eeMZgnGgi8OSjMGFQRzBPB/aoJFizsQEIS2p2hXiAJMLaZFg2IbizludB87TqOlX39qxSu5zGUQL74AAcAxecgxq4BnXQABg8gmfwCt6sJ+vFerc+Jq0L1nRmD/wp6/MHppOeMA==</latexit><latexit sha1_base64="jO9nIDyQgsa0oz7k4f/d/mEcC/M=">AAACEHicbVC7TsMwFHV4lvIKMLJYVAgGVCUICdgqsTChIuhDakPkuE5r1XYi26lURfkEFn6FhQGEWBnZ+BuctAO0XMny8Tn3yvecIGZUacf5thYWl5ZXVktr5fWNza1te2e3qaJEYtLAEYtkO0CKMCpIQ1PNSDuWBPGAkVYwvMr11ohIRSNxr8cx8TjqCxpSjLShfPto8JB2OdIDySd3EKZUjLKT4oERS+8y/ybLfLviVJ2i4Dxwp6ACplX37a9uL8IJJ0JjhpTquE6svRRJTTEjWbmbKBIjPER90jFQIE6UlxaGMnhomB4MI2mO0LBgf0+kiCs15oHpzNdUs1pO/qd1Eh1eeMZgnGgi8OSjMGFQRzBPB/aoJFizsQEIS2p2hXiAJMLaZFg2IbizludB87TqOlX39qxSu5zGUQL74AAcAxecgxq4BnXQABg8gmfwCt6sJ+vFerc+Jq0L1nRmD/wp6/MHppOeMA==</latexit><latexit sha1_base64="jO9nIDyQgsa0oz7k4f/d/mEcC/M=">AAACEHicbVC7TsMwFHV4lvIKMLJYVAgGVCUICdgqsTChIuhDakPkuE5r1XYi26lURfkEFn6FhQGEWBnZ+BuctAO0XMny8Tn3yvecIGZUacf5thYWl5ZXVktr5fWNza1te2e3qaJEYtLAEYtkO0CKMCpIQ1PNSDuWBPGAkVYwvMr11ohIRSNxr8cx8TjqCxpSjLShfPto8JB2OdIDySd3EKZUjLKT4oERS+8y/ybLfLviVJ2i4Dxwp6ACplX37a9uL8IJJ0JjhpTquE6svRRJTTEjWbmbKBIjPER90jFQIE6UlxaGMnhomB4MI2mO0LBgf0+kiCs15oHpzNdUs1pO/qd1Eh1eeMZgnGgi8OSjMGFQRzBPB/aoJFizsQEIS2p2hXiAJMLaZFg2IbizludB87TqOlX39qxSu5zGUQL74AAcAxecgxq4BnXQABg8gmfwCt6sJ+vFerc+Jq0L1nRmD/wp6/MHppOeMA==</latexit> hinv,T
<latexit sha1_base64="RosYzqfCunfdyr/sLm3ejJ3cOOM=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEgKoEIQFbJRbGIvUltaFyXKe1ajuR7VSqonwBC7/CwgBCrMxs/A1OmgFarmT5+Jx75XuOHzGqtON8W6W19Y3NrfJ2ZWd3b//APjzqqDCWmLRxyELZ85EijArS1lQz0oskQdxnpOtPbzO9OyNS0VC09DwiHkdjQQOKkTbU0K5NHpIBR3oi+eL2g4SKWXqePzBiSStN06FddepOXnAVuAWogqKaQ/trMApxzInQmCGl+q4TaS9BUlPMSFoZxIpECE/RmPQNFIgT5SW5nRTWDDOCQSjNERrm7O+JBHGl5tw3ndmSalnLyP+0fqyDa8/Yi2JNBF58FMQM6hBm2cARlQRrNjcAYUnNrhBPkERYmwQrJgR32fIq6FzUXafu3l9WGzdFHGVwAk7BGXDBFWiAO9AEbYDBI3gGr+DNerJerHfrY9FasoqZY/CnrM8fOMSdcA==</latexit><latexit sha1_base64="RosYzqfCunfdyr/sLm3ejJ3cOOM=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEgKoEIQFbJRbGIvUltaFyXKe1ajuR7VSqonwBC7/CwgBCrMxs/A1OmgFarmT5+Jx75XuOHzGqtON8W6W19Y3NrfJ2ZWd3b//APjzqqDCWmLRxyELZ85EijArS1lQz0oskQdxnpOtPbzO9OyNS0VC09DwiHkdjQQOKkTbU0K5NHpIBR3oi+eL2g4SKWXqePzBiSStN06FddepOXnAVuAWogqKaQ/trMApxzInQmCGl+q4TaS9BUlPMSFoZxIpECE/RmPQNFIgT5SW5nRTWDDOCQSjNERrm7O+JBHGl5tw3ndmSalnLyP+0fqyDa8/Yi2JNBF58FMQM6hBm2cARlQRrNjcAYUnNrhBPkERYmwQrJgR32fIq6FzUXafu3l9WGzdFHGVwAk7BGXDBFWiAO9AEbYDBI3gGr+DNerJerHfrY9FasoqZY/CnrM8fOMSdcA==</latexit><latexit sha1_base64="RosYzqfCunfdyr/sLm3ejJ3cOOM=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEgKoEIQFbJRbGIvUltaFyXKe1ajuR7VSqonwBC7/CwgBCrMxs/A1OmgFarmT5+Jx75XuOHzGqtON8W6W19Y3NrfJ2ZWd3b//APjzqqDCWmLRxyELZ85EijArS1lQz0oskQdxnpOtPbzO9OyNS0VC09DwiHkdjQQOKkTbU0K5NHpIBR3oi+eL2g4SKWXqePzBiSStN06FddepOXnAVuAWogqKaQ/trMApxzInQmCGl+q4TaS9BUlPMSFoZxIpECE/RmPQNFIgT5SW5nRTWDDOCQSjNERrm7O+JBHGl5tw3ndmSalnLyP+0fqyDa8/Yi2JNBF58FMQM6hBm2cARlQRrNjcAYUnNrhBPkERYmwQrJgR32fIq6FzUXafu3l9WGzdFHGVwAk7BGXDBFWiAO9AEbYDBI3gGr+DNerJerHfrY9FasoqZY/CnrM8fOMSdcA==</latexit><latexit sha1_base64="RosYzqfCunfdyr/sLm3ejJ3cOOM=">AAACDnicbVC7TsMwFHXKq5RXgJHFoqrEgKoEIQFbJRbGIvUltaFyXKe1ajuR7VSqonwBC7/CwgBCrMxs/A1OmgFarmT5+Jx75XuOHzGqtON8W6W19Y3NrfJ2ZWd3b//APjzqqDCWmLRxyELZ85EijArS1lQz0oskQdxnpOtPbzO9OyNS0VC09DwiHkdjQQOKkTbU0K5NHpIBR3oi+eL2g4SKWXqePzBiSStN06FddepOXnAVuAWogqKaQ/trMApxzInQmCGl+q4TaS9BUlPMSFoZxIpECE/RmPQNFIgT5SW5nRTWDDOCQSjNERrm7O+JBHGl5tw3ndmSalnLyP+0fqyDa8/Yi2JNBF58FMQM6hBm2cARlQRrNjcAYUnNrhBPkERYmwQrJgR32fIq6FzUXafu3l9WGzdFHGVwAk7BGXDBFWiAO9AEbYDBI3gGr+DNerJerHfrY9FasoqZY/CnrM8fOMSdcA==</latexit>

yS1
<latexit sha1_base64="OSGTY2ZEt6TUwQv6e/NdTuCXAA0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiQiqLuCG5cV7QPaGCbTSTt0MgkzEyXEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fPrO93ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPrwq/90CEpBG/U2lM3BCNOQ0oRkpLnllP77NhiNQEI5bd5p6Te2bDbtozWMvEKUkDSrQ982s4inASEq4wQ1IOHDtWboaEopiRvDZMJIkRnqIxGWjKUUikm82i59axVkZWEAn9uLJm6u+NDIVSpqGvJ4uUctErxP+8QaKCCzejPE4U4Xh+KEiYpSKr6MEaUUGwYqkmCAuqs1p4ggTCSrdV0yU4i19eJt3TpmM3nZuzRuuyrKMKh3AEJ+DAObTgGtrQAQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QOZWZQs</latexit><latexit sha1_base64="OSGTY2ZEt6TUwQv6e/NdTuCXAA0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiQiqLuCG5cV7QPaGCbTSTt0MgkzEyXEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fPrO93ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPrwq/90CEpBG/U2lM3BCNOQ0oRkpLnllP77NhiNQEI5bd5p6Te2bDbtozWMvEKUkDSrQ982s4inASEq4wQ1IOHDtWboaEopiRvDZMJIkRnqIxGWjKUUikm82i59axVkZWEAn9uLJm6u+NDIVSpqGvJ4uUctErxP+8QaKCCzejPE4U4Xh+KEiYpSKr6MEaUUGwYqkmCAuqs1p4ggTCSrdV0yU4i19eJt3TpmM3nZuzRuuyrKMKh3AEJ+DAObTgGtrQAQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QOZWZQs</latexit><latexit sha1_base64="OSGTY2ZEt6TUwQv6e/NdTuCXAA0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiQiqLuCG5cV7QPaGCbTSTt0MgkzEyXEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fPrO93ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPrwq/90CEpBG/U2lM3BCNOQ0oRkpLnllP77NhiNQEI5bd5p6Te2bDbtozWMvEKUkDSrQ982s4inASEq4wQ1IOHDtWboaEopiRvDZMJIkRnqIxGWjKUUikm82i59axVkZWEAn9uLJm6u+NDIVSpqGvJ4uUctErxP+8QaKCCzejPE4U4Xh+KEiYpSKr6MEaUUGwYqkmCAuqs1p4ggTCSrdV0yU4i19eJt3TpmM3nZuzRuuyrKMKh3AEJ+DAObTgGtrQAQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QOZWZQs</latexit><latexit sha1_base64="OSGTY2ZEt6TUwQv6e/NdTuCXAA0=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiQiqLuCG5cV7QPaGCbTSTt0MgkzEyXEfIobF4q49Uvc+TdO2iy09cDA4Zx7uWeOHzMqlW1/G5WV1bX1jepmbWt7Z3fPrO93ZZQITDo4YpHo+0gSRjnpKKoY6ceCoNBnpOdPrwq/90CEpBG/U2lM3BCNOQ0oRkpLnllP77NhiNQEI5bd5p6Te2bDbtozWMvEKUkDSrQ982s4inASEq4wQ1IOHDtWboaEopiRvDZMJIkRnqIxGWjKUUikm82i59axVkZWEAn9uLJm6u+NDIVSpqGvJ4uUctErxP+8QaKCCzejPE4U4Xh+KEiYpSKr6MEaUUGwYqkmCAuqs1p4ggTCSrdV0yU4i19eJt3TpmM3nZuzRuuyrKMKh3AEJ+DAObTgGtrQAQyP8Ayv8GY8GS/Gu/ExH60Y5c4B/IHx+QOZWZQs</latexit>

ySN
<latexit sha1_base64="Z35br9m301KpWJ3bm9K9rjdwNtU=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUQEdVdw40oq2ge0MUymk3boZBJmJkqI+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+NpaWV1bX1isb1c2t7Z1ds7bXkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uSz87gMRkkb8TqUxcUM04jSgGCkteWYtvc8GIVJjjFh2m3vXuWfW7YY9hbVInJLUoUTLM78GwwgnIeEKMyRl37Fj5WZIKIoZyauDRJIY4Qkakb6mHIVEutk0em4daWVoBZHQjytrqv7eyFAoZRr6erJIKee9QvzP6ycqOHczyuNEEY5nh4KEWSqyih6sIRUEK5ZqgrCgOquFx0ggrHRbVV2CM//lRdI5aTh2w7k5rTcvyjoqcACHcAwOnEETrqAFbcDwCM/wCm/Gk/FivBsfs9Elo9zZhz8wPn8AxWqUSQ==</latexit><latexit sha1_base64="Z35br9m301KpWJ3bm9K9rjdwNtU=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUQEdVdw40oq2ge0MUymk3boZBJmJkqI+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+NpaWV1bX1isb1c2t7Z1ds7bXkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uSz87gMRkkb8TqUxcUM04jSgGCkteWYtvc8GIVJjjFh2m3vXuWfW7YY9hbVInJLUoUTLM78GwwgnIeEKMyRl37Fj5WZIKIoZyauDRJIY4Qkakb6mHIVEutk0em4daWVoBZHQjytrqv7eyFAoZRr6erJIKee9QvzP6ycqOHczyuNEEY5nh4KEWSqyih6sIRUEK5ZqgrCgOquFx0ggrHRbVV2CM//lRdI5aTh2w7k5rTcvyjoqcACHcAwOnEETrqAFbcDwCM/wCm/Gk/FivBsfs9Elo9zZhz8wPn8AxWqUSQ==</latexit><latexit sha1_base64="Z35br9m301KpWJ3bm9K9rjdwNtU=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUQEdVdw40oq2ge0MUymk3boZBJmJkqI+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+NpaWV1bX1isb1c2t7Z1ds7bXkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uSz87gMRkkb8TqUxcUM04jSgGCkteWYtvc8GIVJjjFh2m3vXuWfW7YY9hbVInJLUoUTLM78GwwgnIeEKMyRl37Fj5WZIKIoZyauDRJIY4Qkakb6mHIVEutk0em4daWVoBZHQjytrqv7eyFAoZRr6erJIKee9QvzP6ycqOHczyuNEEY5nh4KEWSqyih6sIRUEK5ZqgrCgOquFx0ggrHRbVV2CM//lRdI5aTh2w7k5rTcvyjoqcACHcAwOnEETrqAFbcDwCM/wCm/Gk/FivBsfs9Elo9zZhz8wPn8AxWqUSQ==</latexit><latexit sha1_base64="Z35br9m301KpWJ3bm9K9rjdwNtU=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclUQEdVdw40oq2ge0MUymk3boZBJmJkqI+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+NpaWV1bX1isb1c2t7Z1ds7bXkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/uSz87gMRkkb8TqUxcUM04jSgGCkteWYtvc8GIVJjjFh2m3vXuWfW7YY9hbVInJLUoUTLM78GwwgnIeEKMyRl37Fj5WZIKIoZyauDRJIY4Qkakb6mHIVEutk0em4daWVoBZHQjytrqv7eyFAoZRr6erJIKee9QvzP6ycqOHczyuNEEY5nh4KEWSqyih6sIRUEK5ZqgrCgOquFx0ggrHRbVV2CM//lRdI5aTh2w7k5rTcvyjoqcACHcAwOnEETrqAFbcDwCM/wCm/Gk/FivBsfs9Elo9zZhz8wPn8AxWqUSQ==</latexit>

r̃S1
<latexit sha1_base64="1yyiKqM1XQGru2OLsRMQCKih/FY=">AAACAnicbVBNS8NAEJ3Ur1q/op7ES7AInkoignorePFY0X5AE8Nms2mXbjZhdyOUELz4V7x4UMSrv8Kb/8ZN24O2Phh4vDfDzLwgZVQq2/42KkvLK6tr1fXaxubW9o65u9eRSSYwaeOEJaIXIEkY5aStqGKklwqC4oCRbjC6Kv3uAxGSJvxOjVPixWjAaUQxUlryzQNXURaSXBT3uRsjNcSI5beF7xS+Wbcb9gTWInFmpA4ztHzzyw0TnMWEK8yQlH3HTpWXI6EoZqSouZkkKcIjNCB9TTmKifTyyQuFdayV0IoSoYsra6L+nshRLOU4DnRneaWc90rxP6+fqejCyylPM0U4ni6KMmapxCrzsEIqCFZsrAnCgupbLTxEAmGlU6vpEJz5lxdJ57Th2A3n5qzevJzFUYVDOIITcOAcmnANLWgDhkd4hld4M56MF+Pd+Ji2VozZzD78gfH5AyPDl9s=</latexit><latexit sha1_base64="1yyiKqM1XQGru2OLsRMQCKih/FY=">AAACAnicbVBNS8NAEJ3Ur1q/op7ES7AInkoignorePFY0X5AE8Nms2mXbjZhdyOUELz4V7x4UMSrv8Kb/8ZN24O2Phh4vDfDzLwgZVQq2/42KkvLK6tr1fXaxubW9o65u9eRSSYwaeOEJaIXIEkY5aStqGKklwqC4oCRbjC6Kv3uAxGSJvxOjVPixWjAaUQxUlryzQNXURaSXBT3uRsjNcSI5beF7xS+Wbcb9gTWInFmpA4ztHzzyw0TnMWEK8yQlH3HTpWXI6EoZqSouZkkKcIjNCB9TTmKifTyyQuFdayV0IoSoYsra6L+nshRLOU4DnRneaWc90rxP6+fqejCyylPM0U4ni6KMmapxCrzsEIqCFZsrAnCgupbLTxEAmGlU6vpEJz5lxdJ57Th2A3n5qzevJzFUYVDOIITcOAcmnANLWgDhkd4hld4M56MF+Pd+Ji2VozZzD78gfH5AyPDl9s=</latexit><latexit sha1_base64="1yyiKqM1XQGru2OLsRMQCKih/FY=">AAACAnicbVBNS8NAEJ3Ur1q/op7ES7AInkoignorePFY0X5AE8Nms2mXbjZhdyOUELz4V7x4UMSrv8Kb/8ZN24O2Phh4vDfDzLwgZVQq2/42KkvLK6tr1fXaxubW9o65u9eRSSYwaeOEJaIXIEkY5aStqGKklwqC4oCRbjC6Kv3uAxGSJvxOjVPixWjAaUQxUlryzQNXURaSXBT3uRsjNcSI5beF7xS+Wbcb9gTWInFmpA4ztHzzyw0TnMWEK8yQlH3HTpWXI6EoZqSouZkkKcIjNCB9TTmKifTyyQuFdayV0IoSoYsra6L+nshRLOU4DnRneaWc90rxP6+fqejCyylPM0U4ni6KMmapxCrzsEIqCFZsrAnCgupbLTxEAmGlU6vpEJz5lxdJ57Th2A3n5qzevJzFUYVDOIITcOAcmnANLWgDhkd4hld4M56MF+Pd+Ji2VozZzD78gfH5AyPDl9s=</latexit><latexit sha1_base64="1yyiKqM1XQGru2OLsRMQCKih/FY=">AAACAnicbVBNS8NAEJ3Ur1q/op7ES7AInkoignorePFY0X5AE8Nms2mXbjZhdyOUELz4V7x4UMSrv8Kb/8ZN24O2Phh4vDfDzLwgZVQq2/42KkvLK6tr1fXaxubW9o65u9eRSSYwaeOEJaIXIEkY5aStqGKklwqC4oCRbjC6Kv3uAxGSJvxOjVPixWjAaUQxUlryzQNXURaSXBT3uRsjNcSI5beF7xS+Wbcb9gTWInFmpA4ztHzzyw0TnMWEK8yQlH3HTpWXI6EoZqSouZkkKcIjNCB9TTmKifTyyQuFdayV0IoSoYsra6L+nshRLOU4DnRneaWc90rxP6+fqejCyylPM0U4ni6KMmapxCrzsEIqCFZsrAnCgupbLTxEAmGlU6vpEJz5lxdJ57Th2A3n5qzevJzFUYVDOIITcOAcmnANLWgDhkd4hld4M56MF+Pd+Ji2VozZzD78gfH5AyPDl9s=</latexit> r̃SN

<latexit sha1_base64="Ef79nizTi89tgVT/UF042Vo/NkA=">AAACAnicbVBNS8NAEJ34WetX1JN4CRbBU0lEUG8FL56kov2AJobNZtMu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tLCwuLa+sVtaq6xubW9vmzm5bJpnApIUTlohugCRhlJOWooqRbioIigNGOsHwsvQ7D0RImvA7NUqJF6M+pxHFSGnJN/ddRVlIclHc526M1AAjlt8W/nXhmzW7bo9hzRNnSmowRdM3v9wwwVlMuMIMSdlz7FR5ORKKYkaKqptJkiI8RH3S05SjmEgvH79QWEdaCa0oEbq4ssbq74kcxVKO4kB3llfKWa8U//N6mYrOvZzyNFOE48miKGOWSqwyDyukgmDFRpogLKi+1cIDJBBWOrWqDsGZfXmetE/qjl13bk5rjYtpHBU4gEM4BgfOoAFX0IQWYHiEZ3iFN+PJeDHejY9J64IxndmDPzA+fwBP1Jf4</latexit><latexit sha1_base64="Ef79nizTi89tgVT/UF042Vo/NkA=">AAACAnicbVBNS8NAEJ34WetX1JN4CRbBU0lEUG8FL56kov2AJobNZtMu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tLCwuLa+sVtaq6xubW9vmzm5bJpnApIUTlohugCRhlJOWooqRbioIigNGOsHwsvQ7D0RImvA7NUqJF6M+pxHFSGnJN/ddRVlIclHc526M1AAjlt8W/nXhmzW7bo9hzRNnSmowRdM3v9wwwVlMuMIMSdlz7FR5ORKKYkaKqptJkiI8RH3S05SjmEgvH79QWEdaCa0oEbq4ssbq74kcxVKO4kB3llfKWa8U//N6mYrOvZzyNFOE48miKGOWSqwyDyukgmDFRpogLKi+1cIDJBBWOrWqDsGZfXmetE/qjl13bk5rjYtpHBU4gEM4BgfOoAFX0IQWYHiEZ3iFN+PJeDHejY9J64IxndmDPzA+fwBP1Jf4</latexit><latexit sha1_base64="Ef79nizTi89tgVT/UF042Vo/NkA=">AAACAnicbVBNS8NAEJ34WetX1JN4CRbBU0lEUG8FL56kov2AJobNZtMu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tLCwuLa+sVtaq6xubW9vmzm5bJpnApIUTlohugCRhlJOWooqRbioIigNGOsHwsvQ7D0RImvA7NUqJF6M+pxHFSGnJN/ddRVlIclHc526M1AAjlt8W/nXhmzW7bo9hzRNnSmowRdM3v9wwwVlMuMIMSdlz7FR5ORKKYkaKqptJkiI8RH3S05SjmEgvH79QWEdaCa0oEbq4ssbq74kcxVKO4kB3llfKWa8U//N6mYrOvZzyNFOE48miKGOWSqwyDyukgmDFRpogLKi+1cIDJBBWOrWqDsGZfXmetE/qjl13bk5rjYtpHBU4gEM4BgfOoAFX0IQWYHiEZ3iFN+PJeDHejY9J64IxndmDPzA+fwBP1Jf4</latexit><latexit sha1_base64="Ef79nizTi89tgVT/UF042Vo/NkA=">AAACAnicbVBNS8NAEJ34WetX1JN4CRbBU0lEUG8FL56kov2AJobNZtMu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tLCwuLa+sVtaq6xubW9vmzm5bJpnApIUTlohugCRhlJOWooqRbioIigNGOsHwsvQ7D0RImvA7NUqJF6M+pxHFSGnJN/ddRVlIclHc526M1AAjlt8W/nXhmzW7bo9hzRNnSmowRdM3v9wwwVlMuMIMSdlz7FR5ORKKYkaKqptJkiI8RH3S05SjmEgvH79QWEdaCa0oEbq4ssbq74kcxVKO4kB3llfKWa8U//N6mYrOvZzyNFOE48miKGOWSqwyDyukgmDFRpogLKi+1cIDJBBWOrWqDsGZfXmetE/qjl13bk5rjYtpHBU4gEM4BgfOoAFX0IQWYHiEZ3iFN+PJeDHejY9J64IxndmDPzA+fwBP1Jf4</latexit> r̃T
<latexit sha1_base64="pSvt2gzGIVq1mU518hNpnqtubQI=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSEdRbwYvHCv2CJpbNZtsu3WzC7kQoIRf/ihcPinj1Z3jz37hpc9DWBwOP92aYmRckgmtwnG9rZXVtfWOzslXd3tnd27cPDjs6ThVlbRqLWPUCopngkrWBg2C9RDESBYJ1g8lt4XcfmdI8li2YJsyPyEjyIacEjDSwjz3gImSZyh8yLyIwpkRkrTwf2DWn7syAl4lbkhoq0RzYX14Y0zRiEqggWvddJwE/Iwo4FSyveqlmCaETMmJ9QyWJmPaz2QM5PjNKiIexMiUBz9TfExmJtJ5GgeksbtSLXiH+5/VTGF77GZdJCkzS+aJhKjDEuEgDh1wxCmJqCKGKm1sxHRNFKJjMqiYEd/HlZdK5qLtO3b2/rDVuyjgq6ASdonPkoivUQHeoidqIohw9o1f0Zj1ZL9a79TFvXbHKmSP0B9bnD+04lzg=</latexit><latexit sha1_base64="pSvt2gzGIVq1mU518hNpnqtubQI=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSEdRbwYvHCv2CJpbNZtsu3WzC7kQoIRf/ihcPinj1Z3jz37hpc9DWBwOP92aYmRckgmtwnG9rZXVtfWOzslXd3tnd27cPDjs6ThVlbRqLWPUCopngkrWBg2C9RDESBYJ1g8lt4XcfmdI8li2YJsyPyEjyIacEjDSwjz3gImSZyh8yLyIwpkRkrTwf2DWn7syAl4lbkhoq0RzYX14Y0zRiEqggWvddJwE/Iwo4FSyveqlmCaETMmJ9QyWJmPaz2QM5PjNKiIexMiUBz9TfExmJtJ5GgeksbtSLXiH+5/VTGF77GZdJCkzS+aJhKjDEuEgDh1wxCmJqCKGKm1sxHRNFKJjMqiYEd/HlZdK5qLtO3b2/rDVuyjgq6ASdonPkoivUQHeoidqIohw9o1f0Zj1ZL9a79TFvXbHKmSP0B9bnD+04lzg=</latexit><latexit sha1_base64="pSvt2gzGIVq1mU518hNpnqtubQI=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSEdRbwYvHCv2CJpbNZtsu3WzC7kQoIRf/ihcPinj1Z3jz37hpc9DWBwOP92aYmRckgmtwnG9rZXVtfWOzslXd3tnd27cPDjs6ThVlbRqLWPUCopngkrWBg2C9RDESBYJ1g8lt4XcfmdI8li2YJsyPyEjyIacEjDSwjz3gImSZyh8yLyIwpkRkrTwf2DWn7syAl4lbkhoq0RzYX14Y0zRiEqggWvddJwE/Iwo4FSyveqlmCaETMmJ9QyWJmPaz2QM5PjNKiIexMiUBz9TfExmJtJ5GgeksbtSLXiH+5/VTGF77GZdJCkzS+aJhKjDEuEgDh1wxCmJqCKGKm1sxHRNFKJjMqiYEd/HlZdK5qLtO3b2/rDVuyjgq6ASdonPkoivUQHeoidqIohw9o1f0Zj1ZL9a79TFvXbHKmSP0B9bnD+04lzg=</latexit><latexit sha1_base64="pSvt2gzGIVq1mU518hNpnqtubQI=">AAACAHicbVBNS8NAEN34WetX1IMHL4tF8FQSEdRbwYvHCv2CJpbNZtsu3WzC7kQoIRf/ihcPinj1Z3jz37hpc9DWBwOP92aYmRckgmtwnG9rZXVtfWOzslXd3tnd27cPDjs6ThVlbRqLWPUCopngkrWBg2C9RDESBYJ1g8lt4XcfmdI8li2YJsyPyEjyIacEjDSwjz3gImSZyh8yLyIwpkRkrTwf2DWn7syAl4lbkhoq0RzYX14Y0zRiEqggWvddJwE/Iwo4FSyveqlmCaETMmJ9QyWJmPaz2QM5PjNKiIexMiUBz9TfExmJtJ5GgeksbtSLXiH+5/VTGF77GZdJCkzS+aJhKjDEuEgDh1wxCmJqCKGKm1sxHRNFKJjMqiYEd/HlZdK5qLtO3b2/rDVuyjgq6ASdonPkoivUQHeoidqIohw9o1f0Zj1ZL9a79TFvXbHKmSP0B9bnD+04lzg=</latexit>

encr2a
<latexit sha1_base64="KknXR3tP7846achiLa2psuXq4iI=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFclaQI6q7gxmUF+4A2lsl00g6dmYSZiVBCFm78FTcuFHHrR7jzb5zELLT1wDCHc+7l3nuCmFGlXffLWlldW9/YrGxVt3d29/btg8OuihKJSQdHLJL9ACnCqCAdTTUj/VgSxANGesHsKvd790QqGolbPY+Jz9FE0JBipI00smtDjvRU8rT4gzAlAmfZXSqbKBvZdbfhFnCWiVeSOpRoj+zP4TjCCSdCY4aUGnhurP0USU0xI1l1mCgSIzxDEzIwVCBOlJ8WR2TOiVHGThhJ84R2CvV3R4q4UnMemMp8VbXo5eJ/3iDR4YWfUhEnOj+uGBQmzNGRkyfijKkkWLO5IQhLanZ18BRJhLXJrWpC8BZPXibdZsNzG97NWb11WcZRgRocwyl4cA4tuIY2dADDAzzBC7xaj9az9Wa9/5SuWGXPEfyB9fEN9mSY5A==</latexit><latexit sha1_base64="KknXR3tP7846achiLa2psuXq4iI=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFclaQI6q7gxmUF+4A2lsl00g6dmYSZiVBCFm78FTcuFHHrR7jzb5zELLT1wDCHc+7l3nuCmFGlXffLWlldW9/YrGxVt3d29/btg8OuihKJSQdHLJL9ACnCqCAdTTUj/VgSxANGesHsKvd790QqGolbPY+Jz9FE0JBipI00smtDjvRU8rT4gzAlAmfZXSqbKBvZdbfhFnCWiVeSOpRoj+zP4TjCCSdCY4aUGnhurP0USU0xI1l1mCgSIzxDEzIwVCBOlJ8WR2TOiVHGThhJ84R2CvV3R4q4UnMemMp8VbXo5eJ/3iDR4YWfUhEnOj+uGBQmzNGRkyfijKkkWLO5IQhLanZ18BRJhLXJrWpC8BZPXibdZsNzG97NWb11WcZRgRocwyl4cA4tuIY2dADDAzzBC7xaj9az9Wa9/5SuWGXPEfyB9fEN9mSY5A==</latexit><latexit sha1_base64="KknXR3tP7846achiLa2psuXq4iI=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFclaQI6q7gxmUF+4A2lsl00g6dmYSZiVBCFm78FTcuFHHrR7jzb5zELLT1wDCHc+7l3nuCmFGlXffLWlldW9/YrGxVt3d29/btg8OuihKJSQdHLJL9ACnCqCAdTTUj/VgSxANGesHsKvd790QqGolbPY+Jz9FE0JBipI00smtDjvRU8rT4gzAlAmfZXSqbKBvZdbfhFnCWiVeSOpRoj+zP4TjCCSdCY4aUGnhurP0USU0xI1l1mCgSIzxDEzIwVCBOlJ8WR2TOiVHGThhJ84R2CvV3R4q4UnMemMp8VbXo5eJ/3iDR4YWfUhEnOj+uGBQmzNGRkyfijKkkWLO5IQhLanZ18BRJhLXJrWpC8BZPXibdZsNzG97NWb11WcZRgRocwyl4cA4tuIY2dADDAzzBC7xaj9az9Wa9/5SuWGXPEfyB9fEN9mSY5A==</latexit><latexit sha1_base64="KknXR3tP7846achiLa2psuXq4iI=">AAACBHicbVDLSsNAFL3xWesr6rKbYBFclaQI6q7gxmUF+4A2lsl00g6dmYSZiVBCFm78FTcuFHHrR7jzb5zELLT1wDCHc+7l3nuCmFGlXffLWlldW9/YrGxVt3d29/btg8OuihKJSQdHLJL9ACnCqCAdTTUj/VgSxANGesHsKvd790QqGolbPY+Jz9FE0JBipI00smtDjvRU8rT4gzAlAmfZXSqbKBvZdbfhFnCWiVeSOpRoj+zP4TjCCSdCY4aUGnhurP0USU0xI1l1mCgSIzxDEzIwVCBOlJ8WR2TOiVHGThhJ84R2CvV3R4q4UnMemMp8VbXo5eJ/3iDR4YWfUhEnOj+uGBQmzNGRkyfijKkkWLO5IQhLanZ18BRJhLXJrWpC8BZPXibdZsNzG97NWb11WcZRgRocwyl4cA4tuIY2dADDAzzBC7xaj9az9Wa9/5SuWGXPEfyB9fEN9mSY5A==</latexit>

attr2a
<latexit sha1_base64="6kl81+pZ9yyfMck3w3HJxGxCAQU=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVZIiqLuCG5cV7APaWibTSTt0ZhJmboQSsnDjr7hxoYhbP8Kdf+MkzUJbDwxzOOde7r3HjzjT4LrfVmltfWNzq7xd2dnd2z+wD486OowVoW0S8lD1fKwpZ5K2gQGnvUhRLHxOu/7sOvO7D1RpFso7mEd0KPBEsoARDEYa2dWBwDBVIsl/P0gwQJreJ6qB05Fdc+tuDmeVeAWpoQKtkf01GIckFlQC4VjrvudGMEywAkY4TSuDWNMIkxme0L6hEguqh0l+ROqcGmXsBKEyT4KTq787Eiy0ngvfVGar6mUvE//z+jEEl8OEySgGKsliUBBzB0InS8QZM0UJ8LkhmChmdnXIFCtMwORWMSF4yyevkk6j7rl17/a81rwq4iijKjpBZ8hDF6iJblALtRFBj+gZvaI368l6sd6tj0VpySp6jtEfWJ8/E9WY9w==</latexit><latexit sha1_base64="6kl81+pZ9yyfMck3w3HJxGxCAQU=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVZIiqLuCG5cV7APaWibTSTt0ZhJmboQSsnDjr7hxoYhbP8Kdf+MkzUJbDwxzOOde7r3HjzjT4LrfVmltfWNzq7xd2dnd2z+wD486OowVoW0S8lD1fKwpZ5K2gQGnvUhRLHxOu/7sOvO7D1RpFso7mEd0KPBEsoARDEYa2dWBwDBVIsl/P0gwQJreJ6qB05Fdc+tuDmeVeAWpoQKtkf01GIckFlQC4VjrvudGMEywAkY4TSuDWNMIkxme0L6hEguqh0l+ROqcGmXsBKEyT4KTq787Eiy0ngvfVGar6mUvE//z+jEEl8OEySgGKsliUBBzB0InS8QZM0UJ8LkhmChmdnXIFCtMwORWMSF4yyevkk6j7rl17/a81rwq4iijKjpBZ8hDF6iJblALtRFBj+gZvaI368l6sd6tj0VpySp6jtEfWJ8/E9WY9w==</latexit><latexit sha1_base64="6kl81+pZ9yyfMck3w3HJxGxCAQU=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVZIiqLuCG5cV7APaWibTSTt0ZhJmboQSsnDjr7hxoYhbP8Kdf+MkzUJbDwxzOOde7r3HjzjT4LrfVmltfWNzq7xd2dnd2z+wD486OowVoW0S8lD1fKwpZ5K2gQGnvUhRLHxOu/7sOvO7D1RpFso7mEd0KPBEsoARDEYa2dWBwDBVIsl/P0gwQJreJ6qB05Fdc+tuDmeVeAWpoQKtkf01GIckFlQC4VjrvudGMEywAkY4TSuDWNMIkxme0L6hEguqh0l+ROqcGmXsBKEyT4KTq787Eiy0ngvfVGar6mUvE//z+jEEl8OEySgGKsliUBBzB0InS8QZM0UJ8LkhmChmdnXIFCtMwORWMSF4yyevkk6j7rl17/a81rwq4iijKjpBZ8hDF6iJblALtRFBj+gZvaI368l6sd6tj0VpySp6jtEfWJ8/E9WY9w==</latexit><latexit sha1_base64="6kl81+pZ9yyfMck3w3HJxGxCAQU=">AAACBHicbVDLSsNAFJ3UV62vqMtugkVwVZIiqLuCG5cV7APaWibTSTt0ZhJmboQSsnDjr7hxoYhbP8Kdf+MkzUJbDwxzOOde7r3HjzjT4LrfVmltfWNzq7xd2dnd2z+wD486OowVoW0S8lD1fKwpZ5K2gQGnvUhRLHxOu/7sOvO7D1RpFso7mEd0KPBEsoARDEYa2dWBwDBVIsl/P0gwQJreJ6qB05Fdc+tuDmeVeAWpoQKtkf01GIckFlQC4VjrvudGMEywAkY4TSuDWNMIkxme0L6hEguqh0l+ROqcGmXsBKEyT4KTq787Eiy0ngvfVGar6mUvE//z+jEEl8OEySgGKsliUBBzB0InS8QZM0UJ8LkhmChmdnXIFCtMwORWMSF4yyevkk6j7rl17/a81rwq4iijKjpBZ8hDF6iJblALtRFBj+gZvaI368l6sd6tj0VpySp6jtEfWJ8/E9WY9w==</latexit>

↵̂S1
<latexit sha1_base64="pdbJqYmckBKOVQWPXe3mCFd85bw=">AAACBXicbVBNS8NAEN3Ur1q/oh71ECyCp5KIoN4KXjxWtB/QxDDZbpqlm03Y3Qgl5OLFv+LFgyJe/Q/e/Ddu2h609cHA470ZZuYFKaNS2fa3UVlaXlldq67XNja3tnfM3b2OTDKBSRsnLBG9ACRhlJO2ooqRXioIxAEj3WB0VfrdByIkTfidGqfEi2HIaUgxKC355qEbgcpdYGkExX3uxqAiDCy/LXyn8M263bAnsBaJMyN1NEPLN7/cQYKzmHCFGUjZd+xUeTkIRTEjRc3NJEkBj2BI+ppyiIn08skXhXWslYEVJkIXV9ZE/T2RQyzlOA50Z3mlnPdK8T+vn6nwwsspTzNFOJ4uCjNmqcQqI7EGVBCs2FgTwILqWy0cgQCsdHA1HYIz//Ii6Zw2HLvh3JzVm5ezOKroAB2hE+Sgc9RE16iF2gijR/SMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/Xf+ZFA==</latexit><latexit sha1_base64="pdbJqYmckBKOVQWPXe3mCFd85bw=">AAACBXicbVBNS8NAEN3Ur1q/oh71ECyCp5KIoN4KXjxWtB/QxDDZbpqlm03Y3Qgl5OLFv+LFgyJe/Q/e/Ddu2h609cHA470ZZuYFKaNS2fa3UVlaXlldq67XNja3tnfM3b2OTDKBSRsnLBG9ACRhlJO2ooqRXioIxAEj3WB0VfrdByIkTfidGqfEi2HIaUgxKC355qEbgcpdYGkExX3uxqAiDCy/LXyn8M263bAnsBaJMyN1NEPLN7/cQYKzmHCFGUjZd+xUeTkIRTEjRc3NJEkBj2BI+ppyiIn08skXhXWslYEVJkIXV9ZE/T2RQyzlOA50Z3mlnPdK8T+vn6nwwsspTzNFOJ4uCjNmqcQqI7EGVBCs2FgTwILqWy0cgQCsdHA1HYIz//Ii6Zw2HLvh3JzVm5ezOKroAB2hE+Sgc9RE16iF2gijR/SMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/Xf+ZFA==</latexit><latexit sha1_base64="pdbJqYmckBKOVQWPXe3mCFd85bw=">AAACBXicbVBNS8NAEN3Ur1q/oh71ECyCp5KIoN4KXjxWtB/QxDDZbpqlm03Y3Qgl5OLFv+LFgyJe/Q/e/Ddu2h609cHA470ZZuYFKaNS2fa3UVlaXlldq67XNja3tnfM3b2OTDKBSRsnLBG9ACRhlJO2ooqRXioIxAEj3WB0VfrdByIkTfidGqfEi2HIaUgxKC355qEbgcpdYGkExX3uxqAiDCy/LXyn8M263bAnsBaJMyN1NEPLN7/cQYKzmHCFGUjZd+xUeTkIRTEjRc3NJEkBj2BI+ppyiIn08skXhXWslYEVJkIXV9ZE/T2RQyzlOA50Z3mlnPdK8T+vn6nwwsspTzNFOJ4uCjNmqcQqI7EGVBCs2FgTwILqWy0cgQCsdHA1HYIz//Ii6Zw2HLvh3JzVm5ezOKroAB2hE+Sgc9RE16iF2gijR/SMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/Xf+ZFA==</latexit><latexit sha1_base64="pdbJqYmckBKOVQWPXe3mCFd85bw=">AAACBXicbVBNS8NAEN3Ur1q/oh71ECyCp5KIoN4KXjxWtB/QxDDZbpqlm03Y3Qgl5OLFv+LFgyJe/Q/e/Ddu2h609cHA470ZZuYFKaNS2fa3UVlaXlldq67XNja3tnfM3b2OTDKBSRsnLBG9ACRhlJO2ooqRXioIxAEj3WB0VfrdByIkTfidGqfEi2HIaUgxKC355qEbgcpdYGkExX3uxqAiDCy/LXyn8M263bAnsBaJMyN1NEPLN7/cQYKzmHCFGUjZd+xUeTkIRTEjRc3NJEkBj2BI+ppyiIn08skXhXWslYEVJkIXV9ZE/T2RQyzlOA50Z3mlnPdK8T+vn6nwwsspTzNFOJ4uCjNmqcQqI7EGVBCs2FgTwILqWy0cgQCsdHA1HYIz//Ii6Zw2HLvh3JzVm5ezOKroAB2hE+Sgc9RE16iF2gijR/SMXtGb8WS8GO/Gx7S1Ysxm9tEfGJ8/Xf+ZFA==</latexit> ↵̂SN

<latexit sha1_base64="IgtaWdEFrvqsDCtb+VxkSpWY6vw=">AAACBXicbVBNS8NAEN34WetX1KMegkXwVBIR1FvBiyepaD+giWGy3TRLN5uwuxFKyMWLf8WLB0W8+h+8+W/ctD1o64OBx3szzMwLUkalsu1vY2FxaXlltbJWXd/Y3No2d3bbMskEJi2csER0A5CEUU5aiipGuqkgEAeMdILhZel3HoiQNOF3apQSL4YBpyHFoLTkmwduBCp3gaURFPe5G4OKMLD8tvCvC9+s2XV7DGueOFNSQ1M0ffPL7Sc4iwlXmIGUPcdOlZeDUBQzUlTdTJIU8BAGpKcph5hILx9/UVhHWulbYSJ0cWWN1d8TOcRSjuJAd5ZXylmvFP/zepkKz72c8jRThOPJojBjlkqsMhKrTwXBio00ASyovtXCEQjASgdX1SE4sy/Pk/ZJ3bHrzs1prXExjaOC9tEhOkYOOkMNdIWaqIUwekTP6BW9GU/Gi/FufExaF4zpzB76A+PzB4oQmTE=</latexit><latexit sha1_base64="IgtaWdEFrvqsDCtb+VxkSpWY6vw=">AAACBXicbVBNS8NAEN34WetX1KMegkXwVBIR1FvBiyepaD+giWGy3TRLN5uwuxFKyMWLf8WLB0W8+h+8+W/ctD1o64OBx3szzMwLUkalsu1vY2FxaXlltbJWXd/Y3No2d3bbMskEJi2csER0A5CEUU5aiipGuqkgEAeMdILhZel3HoiQNOF3apQSL4YBpyHFoLTkmwduBCp3gaURFPe5G4OKMLD8tvCvC9+s2XV7DGueOFNSQ1M0ffPL7Sc4iwlXmIGUPcdOlZeDUBQzUlTdTJIU8BAGpKcph5hILx9/UVhHWulbYSJ0cWWN1d8TOcRSjuJAd5ZXylmvFP/zepkKz72c8jRThOPJojBjlkqsMhKrTwXBio00ASyovtXCEQjASgdX1SE4sy/Pk/ZJ3bHrzs1prXExjaOC9tEhOkYOOkMNdIWaqIUwekTP6BW9GU/Gi/FufExaF4zpzB76A+PzB4oQmTE=</latexit><latexit sha1_base64="IgtaWdEFrvqsDCtb+VxkSpWY6vw=">AAACBXicbVBNS8NAEN34WetX1KMegkXwVBIR1FvBiyepaD+giWGy3TRLN5uwuxFKyMWLf8WLB0W8+h+8+W/ctD1o64OBx3szzMwLUkalsu1vY2FxaXlltbJWXd/Y3No2d3bbMskEJi2csER0A5CEUU5aiipGuqkgEAeMdILhZel3HoiQNOF3apQSL4YBpyHFoLTkmwduBCp3gaURFPe5G4OKMLD8tvCvC9+s2XV7DGueOFNSQ1M0ffPL7Sc4iwlXmIGUPcdOlZeDUBQzUlTdTJIU8BAGpKcph5hILx9/UVhHWulbYSJ0cWWN1d8TOcRSjuJAd5ZXylmvFP/zepkKz72c8jRThOPJojBjlkqsMhKrTwXBio00ASyovtXCEQjASgdX1SE4sy/Pk/ZJ3bHrzs1prXExjaOC9tEhOkYOOkMNdIWaqIUwekTP6BW9GU/Gi/FufExaF4zpzB76A+PzB4oQmTE=</latexit><latexit sha1_base64="IgtaWdEFrvqsDCtb+VxkSpWY6vw=">AAACBXicbVBNS8NAEN34WetX1KMegkXwVBIR1FvBiyepaD+giWGy3TRLN5uwuxFKyMWLf8WLB0W8+h+8+W/ctD1o64OBx3szzMwLUkalsu1vY2FxaXlltbJWXd/Y3No2d3bbMskEJi2csER0A5CEUU5aiipGuqkgEAeMdILhZel3HoiQNOF3apQSL4YBpyHFoLTkmwduBCp3gaURFPe5G4OKMLD8tvCvC9+s2XV7DGueOFNSQ1M0ffPL7Sc4iwlXmIGUPcdOlZeDUBQzUlTdTJIU8BAGpKcph5hILx9/UVhHWulbYSJ0cWWN1d8TOcRSjuJAd5ZXylmvFP/zepkKz72c8jRThOPJojBjlkqsMhKrTwXBio00ASyovtXCEQjASgdX1SE4sy/Pk/ZJ3bHrzs1prXExjaOC9tEhOkYOOkMNdIWaqIUwekTP6BW9GU/Gi/FufExaF4zpzB76A+PzB4oQmTE=</latexit>

↵̂T
<latexit sha1_base64="U8q2BFBUVU2646dTS3RjUIi6e6o=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIoN4KXjxW6Bc0sUy2m2bpZhN2N0IJAS/+FS8eFPHqn/Dmv3HT5qCtDwYe780wM89PGJXKtr+Nysrq2vpGdbO2tb2zu2fuH3RlnApMOjhmsej7IAmjnHQUVYz0E0Eg8hnp+ZObwu89ECFpzNtqmhAvgjGnAcWgtDQ0j9wQVOYCS0LI7zM3AhViYFk7z4dm3W7YM1jLxClJHZVoDc0vdxTjNCJcYQZSDhw7UV4GQlHMSF5zU0kSwBMYk4GmHCIivWz2Q26damVkBbHQxZU1U39PZBBJOY183VncKBe9QvzPG6QquPIyypNUEY7ni4KUWSq2ikCsERUEKzbVBLCg+lYLhyAAKx1bTYfgLL68TLrnDcduOHcX9eZ1GUcVHaMTdIYcdIma6Ba1UAdh9Iie0St6M56MF+Pd+Ji3Voxy5hD9gfH5AyVBmHE=</latexit><latexit sha1_base64="U8q2BFBUVU2646dTS3RjUIi6e6o=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIoN4KXjxW6Bc0sUy2m2bpZhN2N0IJAS/+FS8eFPHqn/Dmv3HT5qCtDwYe780wM89PGJXKtr+Nysrq2vpGdbO2tb2zu2fuH3RlnApMOjhmsej7IAmjnHQUVYz0E0Eg8hnp+ZObwu89ECFpzNtqmhAvgjGnAcWgtDQ0j9wQVOYCS0LI7zM3AhViYFk7z4dm3W7YM1jLxClJHZVoDc0vdxTjNCJcYQZSDhw7UV4GQlHMSF5zU0kSwBMYk4GmHCIivWz2Q26damVkBbHQxZU1U39PZBBJOY183VncKBe9QvzPG6QquPIyypNUEY7ni4KUWSq2ikCsERUEKzbVBLCg+lYLhyAAKx1bTYfgLL68TLrnDcduOHcX9eZ1GUcVHaMTdIYcdIma6Ba1UAdh9Iie0St6M56MF+Pd+Ji3Voxy5hD9gfH5AyVBmHE=</latexit><latexit sha1_base64="U8q2BFBUVU2646dTS3RjUIi6e6o=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIoN4KXjxW6Bc0sUy2m2bpZhN2N0IJAS/+FS8eFPHqn/Dmv3HT5qCtDwYe780wM89PGJXKtr+Nysrq2vpGdbO2tb2zu2fuH3RlnApMOjhmsej7IAmjnHQUVYz0E0Eg8hnp+ZObwu89ECFpzNtqmhAvgjGnAcWgtDQ0j9wQVOYCS0LI7zM3AhViYFk7z4dm3W7YM1jLxClJHZVoDc0vdxTjNCJcYQZSDhw7UV4GQlHMSF5zU0kSwBMYk4GmHCIivWz2Q26damVkBbHQxZU1U39PZBBJOY183VncKBe9QvzPG6QquPIyypNUEY7ni4KUWSq2ikCsERUEKzbVBLCg+lYLhyAAKx1bTYfgLL68TLrnDcduOHcX9eZ1GUcVHaMTdIYcdIma6Ba1UAdh9Iie0St6M56MF+Pd+Ji3Voxy5hD9gfH5AyVBmHE=</latexit><latexit sha1_base64="U8q2BFBUVU2646dTS3RjUIi6e6o=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIoN4KXjxW6Bc0sUy2m2bpZhN2N0IJAS/+FS8eFPHqn/Dmv3HT5qCtDwYe780wM89PGJXKtr+Nysrq2vpGdbO2tb2zu2fuH3RlnApMOjhmsej7IAmjnHQUVYz0E0Eg8hnp+ZObwu89ECFpzNtqmhAvgjGnAcWgtDQ0j9wQVOYCS0LI7zM3AhViYFk7z4dm3W7YM1jLxClJHZVoDc0vdxTjNCJcYQZSDhw7UV4GQlHMSF5zU0kSwBMYk4GmHCIivWz2Q26damVkBbHQxZU1U39PZBBJOY183VncKBe9QvzPG6QquPIyypNUEY7ni4KUWSq2ikCsERUEKzbVBLCg+lYLhyAAKx1bTYfgLL68TLrnDcduOHcX9eZ1GUcVHaMTdIYcdIma6Ba1UAdh9Iie0St6M56MF+Pd+Ji3Voxy5hD9gfH5AyVBmHE=</latexit>

(a) Multi-task learning (b) Domain-invariant Encoder

(c) Attention Generation

Llbl
<latexit sha1_base64="NEF/YqPluddztvu6ziO9+sPyFuk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIupKCGxcuKtgHtCFMppN26GQSZiZKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCDhTGnH+bZWVtfWNzYrW9Xtnd29fbt20FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLku/O4DlYrF4l5PE+pFeCRYyAjWRvLt2iDCekwwz25zP+MBz3277jScGdAycUtShxIt3/4aDGOSRlRowrFSfddJtJdhqRnhNK8OUkUTTCZ4RPuGChxR5WWz6Dk6McoQhbE0T2g0U39vZDhSahoFZrIIqha9QvzP66c6vPQyJpJUU0Hmh8KUIx2jogc0ZJISzaeGYCKZyYrIGEtMtGmrakpwF7+8TDpnDddpuHfn9eZVWUcFjuAYTsGFC2jCDbSgDQQe4Rle4c16sl6sd+tjPrpilTuH8AfW5w/a2JRc</latexit><latexit sha1_base64="NEF/YqPluddztvu6ziO9+sPyFuk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIupKCGxcuKtgHtCFMppN26GQSZiZKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCDhTGnH+bZWVtfWNzYrW9Xtnd29fbt20FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLku/O4DlYrF4l5PE+pFeCRYyAjWRvLt2iDCekwwz25zP+MBz3277jScGdAycUtShxIt3/4aDGOSRlRowrFSfddJtJdhqRnhNK8OUkUTTCZ4RPuGChxR5WWz6Dk6McoQhbE0T2g0U39vZDhSahoFZrIIqha9QvzP66c6vPQyJpJUU0Hmh8KUIx2jogc0ZJISzaeGYCKZyYrIGEtMtGmrakpwF7+8TDpnDddpuHfn9eZVWUcFjuAYTsGFC2jCDbSgDQQe4Rle4c16sl6sd+tjPrpilTuH8AfW5w/a2JRc</latexit><latexit sha1_base64="NEF/YqPluddztvu6ziO9+sPyFuk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIupKCGxcuKtgHtCFMppN26GQSZiZKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCDhTGnH+bZWVtfWNzYrW9Xtnd29fbt20FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLku/O4DlYrF4l5PE+pFeCRYyAjWRvLt2iDCekwwz25zP+MBz3277jScGdAycUtShxIt3/4aDGOSRlRowrFSfddJtJdhqRnhNK8OUkUTTCZ4RPuGChxR5WWz6Dk6McoQhbE0T2g0U39vZDhSahoFZrIIqha9QvzP66c6vPQyJpJUU0Hmh8KUIx2jogc0ZJISzaeGYCKZyYrIGEtMtGmrakpwF7+8TDpnDddpuHfn9eZVWUcFjuAYTsGFC2jCDbSgDQQe4Rle4c16sl6sd+tjPrpilTuH8AfW5w/a2JRc</latexit><latexit sha1_base64="NEF/YqPluddztvu6ziO9+sPyFuk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokIupKCGxcuKtgHtCFMppN26GQSZiZKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCDhTGnH+bZWVtfWNzYrW9Xtnd29fbt20FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLku/O4DlYrF4l5PE+pFeCRYyAjWRvLt2iDCekwwz25zP+MBz3277jScGdAycUtShxIt3/4aDGOSRlRowrFSfddJtJdhqRnhNK8OUkUTTCZ4RPuGChxR5WWz6Dk6McoQhbE0T2g0U39vZDhSahoFZrIIqha9QvzP66c6vPQyJpJUU0Hmh8KUIx2jogc0ZJISzaeGYCKZyYrIGEtMtGmrakpwF7+8TDpnDddpuHfn9eZVWUcFjuAYTsGFC2jCDbSgDQQe4Rle4c16sl6sd+tjPrpilTuH8AfW5w/a2JRc</latexit> Latt

<latexit sha1_base64="xwf0GIU+0C/K1Dk7Vamo2uvTZZ0=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXUnBjQsXFewD2hAm00k7dDIJMzdKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCARXIPjfFsrq2vrG5uVrer2zu7evl076Og4VZS1aSxi1QuIZoJL1gYOgvUSxUgUCNYNJteF331gSvNY3sM0YV5ERpKHnBIwkm/XBhGBMSUiu839jADkvl13Gs4MeJm4JamjEi3f/hoMY5pGTAIVROu+6yTgZUQBp4Ll1UGqWULohIxY31BJIqa9bBY9xydGGeIwVuZJwDP190ZGIq2nUWAmi6B60SvE/7x+CuGll3GZpMAknR8KU4EhxkUPeMgVoyCmhhCquMmK6ZgoQsG0VTUluItfXiads4brNNy783rzqqyjgo7QMTpFLrpATXSDWqiNKHpEz+gVvVlP1ov1bn3MR1escucQ/YH1+QPxn5Rr</latexit><latexit sha1_base64="xwf0GIU+0C/K1Dk7Vamo2uvTZZ0=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXUnBjQsXFewD2hAm00k7dDIJMzdKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCARXIPjfFsrq2vrG5uVrer2zu7evl076Og4VZS1aSxi1QuIZoJL1gYOgvUSxUgUCNYNJteF331gSvNY3sM0YV5ERpKHnBIwkm/XBhGBMSUiu839jADkvl13Gs4MeJm4JamjEi3f/hoMY5pGTAIVROu+6yTgZUQBp4Ll1UGqWULohIxY31BJIqa9bBY9xydGGeIwVuZJwDP190ZGIq2nUWAmi6B60SvE/7x+CuGll3GZpMAknR8KU4EhxkUPeMgVoyCmhhCquMmK6ZgoQsG0VTUluItfXiads4brNNy783rzqqyjgo7QMTpFLrpATXSDWqiNKHpEz+gVvVlP1ov1bn3MR1escucQ/YH1+QPxn5Rr</latexit><latexit sha1_base64="xwf0GIU+0C/K1Dk7Vamo2uvTZZ0=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXUnBjQsXFewD2hAm00k7dDIJMzdKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCARXIPjfFsrq2vrG5uVrer2zu7evl076Og4VZS1aSxi1QuIZoJL1gYOgvUSxUgUCNYNJteF331gSvNY3sM0YV5ERpKHnBIwkm/XBhGBMSUiu839jADkvl13Gs4MeJm4JamjEi3f/hoMY5pGTAIVROu+6yTgZUQBp4Ll1UGqWULohIxY31BJIqa9bBY9xydGGeIwVuZJwDP190ZGIq2nUWAmi6B60SvE/7x+CuGll3GZpMAknR8KU4EhxkUPeMgVoyCmhhCquMmK6ZgoQsG0VTUluItfXiads4brNNy783rzqqyjgo7QMTpFLrpATXSDWqiNKHpEz+gVvVlP1ov1bn3MR1escucQ/YH1+QPxn5Rr</latexit><latexit sha1_base64="xwf0GIU+0C/K1Dk7Vamo2uvTZZ0=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUQEXUnBjQsXFewD2hAm00k7dDIJMzdKifkUNy4UceuXuPNvnLRZaOuBgcM593LPnCARXIPjfFsrq2vrG5uVrer2zu7evl076Og4VZS1aSxi1QuIZoJL1gYOgvUSxUgUCNYNJteF331gSvNY3sM0YV5ERpKHnBIwkm/XBhGBMSUiu839jADkvl13Gs4MeJm4JamjEi3f/hoMY5pGTAIVROu+6yTgZUQBp4Ll1UGqWULohIxY31BJIqa9bBY9xydGGeIwVuZJwDP190ZGIq2nUWAmi6B60SvE/7x+CuGll3GZpMAknR8KU4EhxkUPeMgVoyCmhhCquMmK6ZgoQsG0VTUluItfXiads4brNNy783rzqqyjgo7QMTpFLrpATXSDWqiNKHpEz+gVvVlP1ov1bn3MR1escucQ/YH1+QPxn5Rr</latexit>

Llm
<latexit sha1_base64="WOSXzBi0ovgWx8mBeVgvwlzAHUg=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQVdScOPCRQX7gHYYMmmmDU0yQ5IplKF/4saFIm79E3f+jZl2Flo9EDiccy/35EQpZ9p43pdTWVvf2Nyqbtd2dvf2D9zDo45OMkVomyQ8Ub0Ia8qZpG3DDKe9VFEsIk670eS28LtTqjRL5KOZpTQQeCRZzAg2VgpddyCwGRPM8/t5mHMxD9261/AWQH+JX5I6lGiF7udgmJBMUGkIx1r3fS81QY6VYYTTeW2QaZpiMsEj2rdUYkF1kC+Sz9GZVYYoTpR90qCF+nMjx0LrmYjsZJFTr3qF+J/Xz0x8HeRMppmhkiwPxRlHJkFFDWjIFCWGzyzBRDGbFZExVpgYW1bNluCvfvkv6Vw0fK/hP1zWmzdlHVU4gVM4Bx+uoAl30II2EJjCE7zAq5M7z86b874crTjlzjH8gvPxDRwwk/E=</latexit><latexit sha1_base64="WOSXzBi0ovgWx8mBeVgvwlzAHUg=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQVdScOPCRQX7gHYYMmmmDU0yQ5IplKF/4saFIm79E3f+jZl2Flo9EDiccy/35EQpZ9p43pdTWVvf2Nyqbtd2dvf2D9zDo45OMkVomyQ8Ub0Ia8qZpG3DDKe9VFEsIk670eS28LtTqjRL5KOZpTQQeCRZzAg2VgpddyCwGRPM8/t5mHMxD9261/AWQH+JX5I6lGiF7udgmJBMUGkIx1r3fS81QY6VYYTTeW2QaZpiMsEj2rdUYkF1kC+Sz9GZVYYoTpR90qCF+nMjx0LrmYjsZJFTr3qF+J/Xz0x8HeRMppmhkiwPxRlHJkFFDWjIFCWGzyzBRDGbFZExVpgYW1bNluCvfvkv6Vw0fK/hP1zWmzdlHVU4gVM4Bx+uoAl30II2EJjCE7zAq5M7z86b874crTjlzjH8gvPxDRwwk/E=</latexit><latexit sha1_base64="WOSXzBi0ovgWx8mBeVgvwlzAHUg=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQVdScOPCRQX7gHYYMmmmDU0yQ5IplKF/4saFIm79E3f+jZl2Flo9EDiccy/35EQpZ9p43pdTWVvf2Nyqbtd2dvf2D9zDo45OMkVomyQ8Ub0Ia8qZpG3DDKe9VFEsIk670eS28LtTqjRL5KOZpTQQeCRZzAg2VgpddyCwGRPM8/t5mHMxD9261/AWQH+JX5I6lGiF7udgmJBMUGkIx1r3fS81QY6VYYTTeW2QaZpiMsEj2rdUYkF1kC+Sz9GZVYYoTpR90qCF+nMjx0LrmYjsZJFTr3qF+J/Xz0x8HeRMppmhkiwPxRlHJkFFDWjIFCWGzyzBRDGbFZExVpgYW1bNluCvfvkv6Vw0fK/hP1zWmzdlHVU4gVM4Bx+uoAl30II2EJjCE7zAq5M7z86b874crTjlzjH8gvPxDRwwk/E=</latexit><latexit sha1_base64="WOSXzBi0ovgWx8mBeVgvwlzAHUg=">AAAB+XicbVDLSgMxFL1TX7W+Rl26CRbBVZkRQVdScOPCRQX7gHYYMmmmDU0yQ5IplKF/4saFIm79E3f+jZl2Flo9EDiccy/35EQpZ9p43pdTWVvf2Nyqbtd2dvf2D9zDo45OMkVomyQ8Ub0Ia8qZpG3DDKe9VFEsIk670eS28LtTqjRL5KOZpTQQeCRZzAg2VgpddyCwGRPM8/t5mHMxD9261/AWQH+JX5I6lGiF7udgmJBMUGkIx1r3fS81QY6VYYTTeW2QaZpiMsEj2rdUYkF1kC+Sz9GZVYYoTpR90qCF+nMjx0LrmYjsZJFTr3qF+J/Xz0x8HeRMppmhkiwPxRlHJkFFDWjIFCWGzyzBRDGbFZExVpgYW1bNluCvfvkv6Vw0fK/hP1zWmzdlHVU4gVM4Bx+uoAl30II2EJjCE7zAq5M7z86b874crTjlzjH8gvPxDRwwk/E=</latexit>

Lwd
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Copy

Figure 3: Architecture of the R2A model. The model is comprised of (a) a multi-task learning compo-
nent, (b) a domain-invariant encoder, and (c) an attention generation component. Solid arrows denote
computations for training, while dotted arrows denote computations for inference.

sequence ht on to a task-specific attention module
to produce attention ↵t = attt(ht) as follows:

h̃t
i = tanh(W t

atth
t
i + bt

att),

↵t
i =

exp(hh̃t
i, q

t
att
i)

P
j exp(hh̃t

j , q
t
att
i)

,

where h·, ·i denotes inner product and W t
att

, bt
att

,
qt
att

are learnable parameters. We predict the la-
bel of xt using the weighted sum of its contex-
tualized representation: ŷt = predt(

P
i ↵

t
ih

t
i),

where predt is a task-specific multi-layer percep-
tron. We train this module to minimize the loss,
Llbl, between the prediction and the annotated la-
bel for all source tasks. We use cross entropy loss
for classification tasks and mean square loss for
regression tasks.

3.2 Domain-invariant encoder

Supplied with large amounts of source data and
unlabeled target data, this module has two goals:
1) learning a general encoder for both source and
target corpora, and 2) learning domain-invariant
representation. This module enables effective
transfer—especially in the presence of significant
variance between the source and target domains.
We achieve the first goal by optimizing a lan-
guage modeling objective and the second goal by
minimizing the Wasserstein distance between the
source and target distribution.

Let x be an input sequence, and h , [
�!
h ;
 �
h ]

be its corresponding contextualized representation
obtained from enc. Here,

�!
h and

 �
h denote

the output sequence of the forward and backward
LSTM, respectively. In order to support transfer,
enc should be general enough to effectively rep-
resent both source and target corpora. For this rea-
son, we ground the encoder by a language mod-
eling component (Bengio et al., 2003; Mikolov
et al., 2011). Specifically, we employ two Soft-
max classifiers to predict the word xi based on�!
h i�1 and

 �
h i+1 respectively. We minimize the

cross-entropy loss Llm over all source data and un-
labeled target data.

The representation h is domain-specific as it
is trained to encode useful features for language
modeling and the source tasks. To obtain an invari-
ant representation, we employ a transformation
layer and propose to align the transformed repre-
sentation so that it is not distinguishable whether it
comes from the source or the target. Specifically,
we transform the representation hi at each position
i linearly and obtain

hinv

i = Winvhi + binv,

where Winv and binv are learnable parameters.
We minimize the Wasserstein distance (Arjovsky
et al., 2017) between the distribution of hinv from
the source and the one from the target, denoted as
PS and PT , respectively. Since hinv is a sequence
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of variable length, L, we summarize it by its first
and last element via concatenation, [hinv

1 ; hinv

L ].
The training objective is defined as:

Lwd = sup
kfkLK

Ehinv⇠PS

h
f([hinv

1 ; hinv

L ])
i

� Ehinv⇠PT

h
f([hinv

1 ; hinv

L ])
i
,

where the supremum is over all K-Lipschitz scalar
functions f . Following Gulrajani et al. (2017), we
approximate f by a multi-layer perceptron, and
use gradient penalty to fulfill the Lipschitz con-
straint.

3.3 Attention generation
The goal of this module is to generate high-quality
attention for each task. This module combines
the domain-invariant representation together with
task-specific rationales as its input and predicts
task-specific attention scores. We minimize the
distance between the predicted attention and the
intermediate attention obtained from the multi-
task learning module.

For any source task t 2 {Si}N
i=1, we denote

rt as the task-specific rationales corresponding to
the input text xt, and denote hinv,t as the domain-
invariant representation of xt. For each position
i, we first concatenate rt

i with the frequency of xt
i

occurring as a rationale from all training examples
of this task. We denote this augmented sequence
as r̃t. This frequency term provides the unigram
likelihood of each word being a rationale for the
task. Then we employ a sequence encoder encr2a

and an attention module attr2a to predict the at-
tention scores:

ut = encr2a([hinv,t; r̃t]),

ũt
i = tanh(W r2a

att ut
i + br2a

att),

↵̂t
i =

exp(hũt
i, q

r2a
att
i)P

j exp(hũt
j , q

r2a
att
i)

,

where W r2a
att

, br2a
att

and qr2a
att

are learnable param-
eters, and both encr2a and attr2a are shareable
across all tasks. We minimize the distance be-
tween ↵̂t and the ↵t obtained from the first multi-
task learning module over all source data:

Latt =
X

(↵t,↵̂t),t2{Si}N
i=1

d(↵t, ↵̂t),

where d(·, ·) can be any distance metric. In this
paper, we consider a soft-margin cosine distance:

d(a, b) , max(0, 1� cos(a, b)� 0.1),

where cos(·, ·) denotes the cosine similarity.

3.4 Pipeline
Training R2A We train the three aforemen-
tioned modules jointly using both the source data
and the unlabeled target data. The overall objec-
tive is given by:

L = Llbl + �attLatt + �lmLlm + �wdLwd. (1)

The �s are hyper-parameters that control the im-
portance of each training objective and Ls repre-
sent the corresponding loss functions.

R2A inference Once the R2A model is trained,
we can generate attention for each labeled target
example based on its human-annotated rationales.

Training target classifier When testing the per-
formance on the target task, of course, we are nei-
ther provided with labels nor rationales. In order
to make predictions for the target task, we train
a new classifier under the supervision of both the
labels and the R2A-generated attention. Specifi-
cally, this target classifier shares the same archi-
tecture as the source one in the multi-task learning
module. We minimize the prediction loss, LT

lbl, on
the labeled target data together with the cosine dis-
tance, LT

att, between the R2A-generated attention
and the attention generated by this target classi-
fier. The joint objective for this target classifier is
defined as

L = LT
lbl + �T

attLT
att, (2)

where �T
att controls the importance of LT

att. For
better transfer, we initialize the encoder in the tar-
get classifier as enc from the trained R2A model.

4 Experimental Setup

4.1 Datasets
We evaluate our approach on two transfer settings:
transfer among aspects within the same domain
and transfer among different domains.

Aspect transfer We first consider the transfer
problem between multiple aspects of one domain:
beer review. We use a subset of the BeerAdvocate3

review dataset (McAuley et al., 2012) introduced
by Lei et al. (2016). This dataset contains reviews
with ratings (in the scale of [0, 1]) from three as-
pects of the beer: look, aroma and palate. We treat

3https://www.beeradvocate.com
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Beer
Aspects

Source
Train

Source
Dev

Target
Train‡

Target
Dev

Target
Test

Look 43,351 10,170 200 200 4,014
Aroma 39,825 8,772 200 200 4,212
Palate 30,041 7,152 200 200 3,804

Table 1: Statistics of the beer review dataset. ‡ de-
notes data with human-annotated rationales.

Hotel
Aspects

Target
Train‡

Target
Dev

Target
Test

Target
Unlabeled

Location 200 200 1,808 14,472
Cleanliness 200 200 12,684 14,472
Service 200 200 18,762 14,472

Table 2: Statistics of the hotel review dataset. ‡

denotes data with human-annotated rationales.

any two aspects as the source and the other one
as the target. We consider a classification setting
for each target task. Specifically, reviews with rat-
ings  0.4 are labeled as negative and those with
� 0.6 are labeled as positive. We form our dataset
by randomly selecting an equal number of positive
and negative examples. Then we randomly select
200 examples and ask human annotators to pro-
vide rationales (see Appendix 2 for details). These
200 examples are treated as our labeled training
data for the target aspect. Unlabeled target data is
not required since both source and target tasks are
from the same domain. Table 1 summarizes the
statistics of the beer review dataset.

Domain transfer Our second experiment fo-
cuses on domain transfer from beer reviews to
different aspects of hotel reviews. We use the
TripAdvisor4 hotel review dataset (Wang et al.,
2010), with the following three aspects as our
transfer target: location, cleanliness, and service.
For each aspect, reviews with ratings > 3 are la-
beled as positive and those with < 3 are labeled as
negative. Similarly, we collect human rationales
for 200 examples and treat them as our training
data (see Appendix 2 for details). Table 2 summa-
rizes the statistics of the hotel review dataset. In
this experiment, data from all three aspects of the
beer reviews are treated as the source tasks.

4.2 Baselines

We compare our approach (OURS) with four types
of baselines:

4https://www.tripadvisor.com

Basic classifier We train a linear SVM using
bag-of-ngrams representation on the labeled tar-
get data. We combine uni-gram, bi-grams, and tri-
grams as features and use tf-idf weighting.

Rationale augmented classifiers We evaluate
two previous methods that incorporate human ra-
tionales during training: 1) rationale augmented
SVM (RA-SVM) (Zaidan et al., 2007), an SVM-
based model that utilizes human rationales to regu-
larize the decision boundary of the classifier; 2) ra-
tionale augmented CNN (RA-CNN) (Zhang et al.,
2016). RA-CNN first trains a CNN-based sen-
tence classifier to estimate the probability that a
given sentence contains rationale words. Then
RA-CNN scales the contribution of each sentence
to the overall representation in proportion to these
estimates. The final prediction is made from this
overall representation.

Transfer methods We compare against two
variants of our method: 1) TRANS, an attention-
based classifier that does not use human rationales
from the target task; 2) RA-TRANS, an attention-
based classifier that directly uses human rationales
to supervise the attention. Specifically, TRANS
only optimizes the cross-entropy loss LT

lbl in the
objective (Eq. (2)). For RA-TRANS, the term LT

att

in the objective Eq. (2) is replaced by the cosine
distance between human rationales and the atten-
tion generated by itself. Note that both models still
have the ability to transfer, as their encoders are
both initialized from enc, which has been trained
on source data and unlabeled target data.

Oracle We also report the performance of an
ORACLE which shares the same architecture as
ours but is supervised by the oracle attention. The
oracle attention is derived from a held-out dataset
with large-scale annotations for the target task (see
Appendix 3 for details). This helps us analyze the
contribution of our R2A approach in isolation of
the inherent limitations of the target tasks.

4.3 Implementation details
We use pre-trained fastText embeddings (Bo-
janowski et al., 2017), a 200-dimension bi-
directional LSTM (Hochreiter and Schmidhu-
ber, 1997) for the language encoder, and a 50-
dimension bi-directional LSTM for the R2A en-
coder. Dropout (Srivastava et al., 2014) is ap-
plied with drop rate 0.1 on the word embeddings
and the last hidden layers of the classifiers. All
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Source Target SVM RA-SVM‡ RA-CNN‡ TRANS† RA-TRANS‡† OURS‡† ORACLE†

Beer aroma+palate Beer look 74.41 74.83 74.94 72.75 76.41 79.53 80.29

Beer look+palate Beer aroma 68.57 69.23 67.55 69.92 76.45 77.94 78.11

Beer look+aroma Beer palate 63.88 67.82 65.72 74.66 73.40 75.24 75.50

Table 3: Accuracy of transferring between aspects. Models with † use labeled data from source aspects.
Models with ‡ use human rationales on the target aspect.

Source Target SVM RA-SVM‡ RA-CNN‡ TRANS† RA-TRANS‡† OURS‡† ORACLE†

Beer look
+

Beer aroma
+

Beer palate

Hotel location 78.65 79.09 79.28 80.42 82.10 84.52 85.43

Hotel cleanliness 86.44 86.68 89.01 86.95 87.15 90.66 92.09

Hotel service 85.34 86.61 87.91 87.37 86.40 89.93 92.42

Table 4: Accuracy of transferring between domains. Models with † use labeled data from source domains
and unlabeled data from the target domain. Models with ‡ use human rationales on the target task.

parameters are optimized using Adam (Kingma
and Ba, 2014). We set the initial learning rate
to 0.001 and divide it by 10 once the perfor-
mance on the development set plateaus. For RA-
TRANS, OURS and ORACLE, we tuned �T

att from
{102, 101, 100, 10�1, 10�2}. For domain transfer,
we set �lm = 0.1, �wd = 0.01 and �att = 0.01.
For aspect transfer, we adapt the same hyper-
parameters, but set �wd = 0 as both source tasks
and the target task come from the same domain.
To encourage the R2A-generated attention to be
consistent with the provided rationales in aspect
transfer, we augment the overall training objective
of R2A in Eq. (3.3) by a consistency regulariza-
tion, which is computed from the cosine distance
between the R2A-generated attention and the pro-
vided rationales.

In addition, computing Llm is both time and
memory inefficient because the complexity is lin-
ear to the size of the vocabulary, which can be very
large. To expedite the training, we adopt a tech-
nique proposed by Mikolov et al. (2011), which
randomly splits the entire vocabulary into a pre-
defined number of bins and minimizes the loss of
the bin prediction instead of the exact token pre-
diction. We set the bin size as 100 for our experi-
ment.

5 Results

Aspect transfer Table 3 summarizes the results
of aspect transfer on the beer review dataset. Our
model (OURS) obtains substantial gains in accu-
racy over the baselines across all three target as-
pects. It closely matches the performance of OR-
ACLE with only 0.40% absolute difference.

Model
Hotel

location
Hotel

cleanliness
Hotel

service

OURS 84.52 90.66 89.93
w/o Lwd 82.36 89.79 89.61
w/o Llm 82.47 90.05 89.75

Table 5: Ablation study on domain transfer from
beer to hotel.

Specifically, all rationale-augmented methods
(RA-SVM, RA-TRANS and OURS) outperform
their rationale-free counterparts on average. This
confirms the value of human rationales in the
low-resource settings. We observe that the trans-
fer baseline that directly uses rationale as aug-
mented supervision (RA-TRANS) underperforms
ORACLE by a large margin. This validates our
hypothesis that human rationales and attention are
different.

Domain transfer Table 4 presents the results
of domain transfer using 200 training examples.
We use the three aspects of the beer review data
together as our source tasks while use the three
aspects of hotel review data as the target. Our
model (OURS) shows marked performance im-
provement. The error reduction over the best base-
line is 15.08% on average.

We compare the learning curve in Figure 4. We
observe that the performance of our model steadily
improves as more annotations are provided, and
the improvement over other baselines is significant
and consistent.

Ablation study Table 5 presents the results of
an ablation study of our model in the setting of
domain transfer. As this table indicates, both the
language modeling objective and the Wasserstein
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Figure 4: Learning curve of transferring from beer review to three aspects of hotel review: location (left),
cleanliness (center) and service (right). For neural methods, we ran five different random seeds and plot
their mean with their standard deviation.

(a) OURS (b) OURS w/o Lwd

Figure 5: t-SNE visualization of the learned hidden
representation5 for beer review (blue circle) and
hotel review (orange triangle).

Target
Human

rationales
R2A-generated

attention

Location 0.5185 0.2371
Cleanliness 0.5948 0.3141
Service 0.5833 0.2871

Table 6: Avg. cosine distance to the oracle atten-
tion over the target training set. The R2A is trained
on beer reviews with unlabeled hotel reviews.

distance contribute similarly to the task, with the
Wasserstein distance having a bigger impact.

Visualization of representation Figure 5 visu-
alizes the hidden representation of 200 beer re-
views and 200 hotel reviews using t-SNE (Maaten
and Hinton, 2008). We observe that our model
successfully aligns the source and the target fea-
ture distribution. This indicates the effectiveness
of optimizing the Wasserstein distance objective.

Analysis of R2A-generated attention In order
to validate that the trained R2A model is able to
generate task-specific attention from human ratio-
nales, we perform both qualitative and quantitative

5Since the hidden representation is a sequence of variable
length, we applied t-SNE on the concatenation of the first and
last element: [hinv

1 ; hinv
L ].

analysis on the R2A-generated attention in the set-
ting of domain transfer. It is worth pointing out
that our R2A model has never seen any labeled
hotel reviews during training.

Table 6 presents the average cosine distance be-
tween the R2A-generated attention and the oracle
attention over the target training set. Compared
with human rationales, the R2A-generated atten-
tion is much closer to the oracle attention. This ex-
plains the large performance boost of our method.

Figure 6 visualize the R2A-generated atten-
tion on the same hotel review with human ra-
tionales corresponding to three different aspects.
We observe that the trained R2A model is able to
produce task-specific attention scores correspond-
ing to the provided human rationale. For exam-
ple, given the rationale sentence “not the cleanest
rooms but bed was clean and so was bathroom”,
R2A recognizes that not every token is equally im-
portant, and the attention should focus more on
“clean”, “cleanest”, “rooms” and “bathroom”.

Annotating rationales versus annotating more
labeled data Providing rationales for the
training data roughly doubles the annotation
cost (Zaidan et al., 2007). Given the same
annotation budget, a natural question is: shall we
collect a few labeled examples with rationales
or annotate more labeled examples? To answer
this question, we vary the number of training
examples in the target task. Figure 7 shows the
corresponding learning curve of a classifier that
is trained without rationales. The reference line
represents the accuracy of our approach trained on
200 examples with rationales. We notice that in
order to reach the same level of performance, the
rationale-free classifier requires 800, 3100, and
1900 labeled examples on the three target tasks
respectively.
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Task: Hotel location Oracle attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is
cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel location R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is
cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness Oracle attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels
though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it
is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel cleanliness R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels
though as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it
is cheap for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel service Oracle Attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Task: Hotel service R2A-generated attention

you get what you pay for . not the cleanest rooms but bed was clean and so was bathroom . bring your own towels though
as very thin . service was excellent , let us book in at 8:30am ! for location and price , this ca n’t be beaten , but it is cheap
for a reason . if you come expecting the hilton , then book the hilton ! for uk travellers , think of a blackpool b&b.

Figure 6: Oracle attention versus R2A-generated attention on an example of hotel review for three differ-
ent tasks. Words are highlighted according to the attention scores. Human rationales are shown in bold
with underlines. The oracle attention is derived from large amounts of labeled hotel reviews. The R2A
is trained on labeled beer reviews with unlabeled hotel reviews.

Ac
cu

ra
cy

73.00

76.75

80.50

84.25

88.00

Num. training examples
200 400 600 800 1000 1200 1400 1600 1800 2000

84.52

Ours 
(using 200)

Attention-based classifier

Ac
cu

ra
cy

78.00

81.50

85.00

88.50

92.00

Num. training examples
200 700 1200 1700 2200 2700 3200 3700

90.66

Ours 
(using 200)

Attention-based classifier

Ac
cu

ra
cy

80.00

83.00

86.00

89.00

92.00

Num. training examples
200 500 800 1100 1400 1700 2000 2300

89.93

Ours 
(using 200)

Attention-based classifier

Figure 7: Learning curve of an attention-based classifier on three tasks: hotel location (left), hotel clean-
liness (center), hotel service (right). The performance of our approach trained on 200 examples with
human rationales is shown as a reference.

6 Conclusion

In this paper, we propose a novel approach that uti-
lizes the connection between human rationales and
machine attention to improve the performance of
low-resource tasks. Specifically, we learn a trans-
ferrable mapping from rationales to high-quality
attention on resource-rich tasks. The learned map-
ping is then used to provide an additional super-
vision for the target task. Experimental results on
both aspect and domain transfer validate that the
R2A-generated attention serves as a better form of

supervision. Our model produces high-quality at-
tention for low-resource tasks.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint
arXiv:1705.02364.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. The Journal of Machine Learning Research,
17(1):2096–2030.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML-11), pages 513–520.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. 2017. Im-
proved training of wasserstein gans. In Advances
in Neural Information Processing Systems, pages
5769–5779.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu
Hirao, Hiroya Takamura, Manabu Okumura, and
Masaaki Nagata. 2017. Supervised attention for
sequence-to-sequence constituency parsing. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), volume 2, pages 7–12.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130.

Lemao Liu, Masao Utiyama, Andrew Finch, and
Eiichiro Sumita. 2016. Neural machine trans-
lation with supervised attention. arXiv preprint
arXiv:1609.04186.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1789–1798.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605.

Julian McAuley, Jure Leskovec, and Dan Jurafsky.
2012. Learning attitudes and attributes from multi-
aspect reviews. In Data Mining (ICDM), 2012 IEEE
12th International Conference on, pages 1020–
1025. IEEE.
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Abstract

Unsupervised representation learning algo-
rithms such as word2vec and ELMo improve
the accuracy of many supervised NLP mod-
els, mainly because they can take advantage
of large amounts of unlabeled text. However,
the supervised models only learn from task-
specific labeled data during the main train-
ing phase. We therefore propose Cross-View
Training (CVT), a semi-supervised learning
algorithm that improves the representations of
a Bi-LSTM sentence encoder using a mix of
labeled and unlabeled data. On labeled exam-
ples, standard supervised learning is used. On
unlabeled examples, CVT teaches auxiliary
prediction modules that see restricted views
of the input (e.g., only part of a sentence) to
match the predictions of the full model see-
ing the whole input. Since the auxiliary mod-
ules and the full model share intermediate
representations, this in turn improves the full
model. Moreover, we show that CVT is par-
ticularly effective when combined with multi-
task learning. We evaluate CVT on five se-
quence tagging tasks, machine translation, and
dependency parsing, achieving state-of-the-art
results.1

1 Introduction

Deep learning models work best when trained on
large amounts of labeled data. However, acquir-
ing labels is costly, motivating the need for ef-
fective semi-supervised learning techniques that
leverage unlabeled examples. A widely successful
semi-supervised learning strategy for neural NLP
is pre-training word vectors (Mikolov et al., 2013).
More recent work trains a Bi-LSTM sentence en-
coder to do language modeling and then incorpo-
rates its context-sensitive representations into su-
pervised models (Dai and Le, 2015; Peters et al.,

1Code will be made available at https:
//github.com/tensorflow/models/tree/
master/research/cvt_text

2018). Such pre-training methods perform unsu-
pervised representation learning on a large corpus
of unlabeled data followed by supervised training.

A key disadvantage of pre-training is that the
first representation learning phase does not take
advantage of labeled data – the model attempts
to learn generally effective representations rather
than ones that are targeted towards a particular
task. Older semi-supervised learning algorithms
like self-training do not suffer from this prob-
lem because they continually learn about a task
on a mix of labeled and unlabeled data. Self-
training has historically been effective for NLP
(Yarowsky, 1995; McClosky et al., 2006), but is
less commonly used with neural models. This pa-
per presents Cross-View Training (CVT), a new
self-training algorithm that works well for neural
sequence models.

In self-training, the model learns as normal on
labeled examples. On unlabeled examples, the
model acts as both a teacher that makes predictions
about the examples and a student that is trained
on those predictions. Although this process has
shown value for some tasks, it is somewhat tau-
tological: the model already produces the predic-
tions it is being trained on. Recent research on
computer vision addresses this by adding noise to
the student’s input, training the model so it is ro-
bust to input perturbations (Sajjadi et al., 2016;
Wei et al., 2018). However, applying noise is dif-
ficult for discrete inputs like text.

As a solution, we take inspiration from multi-
view learning (Blum and Mitchell, 1998; Xu et al.,
2013) and train the model to produce consistent
predictions across different views of the input. In-
stead of only training the full model as a student,
CVT adds auxiliary prediction modules – neu-
ral networks that transform vector representations
into predictions – to the model and also trains them
as students. The input to each student prediction
module is a subset of the model’s intermediate rep-
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resentations corresponding to a restricted view of
the input example. For example, one auxiliary pre-
diction module for sequence tagging is attached to
only the “forward” LSTM in the model’s first Bi-
LSTM layer, so it makes predictions without see-
ing any tokens to the right of the current one.

CVT works by improving the model’s represen-
tation learning. The auxiliary prediction modules
can learn from the full model’s predictions be-
cause the full model has a better, unrestricted view
of the input. As the auxiliary modules learn to
make accurate predictions despite their restricted
views of the input, they improve the quality of the
representations they are built on top of. This in
turn improves the full model, which uses the same
shared representations. In short, our method com-
bines the idea of representation learning on unla-
beled data with classic self-training.

CVT can be applied to a variety of tasks and
neural architectures, but we focus on sequence
modeling tasks where the prediction modules are
attached to a shared Bi-LSTM encoder. We
propose auxiliary prediction modules that work
well for sequence taggers, graph-based depen-
dency parsers, and sequence-to-sequence mod-
els. We evaluate our approach on English de-
pendency parsing, combinatory categorial gram-
mar supertagging, named entity recognition, part-
of-speech tagging, and text chunking, as well as
English to Vietnamese machine translation. CVT
improves over previously published results on all
these tasks. Furthermore, CVT can easily and ef-
fectively be combined with multi-task learning:
we just add additional prediction modules for the
different tasks on top of the shared Bi-LSTM en-
coder. Training a unified model to jointly perform
all of the tasks except machine translation im-
proves results (outperforming a multi-task ELMo
model) while decreasing the total training time.

2 Cross-View Training

We first present Cross-View Training and describe
how it can be combined effectively with multi-task
learning. See Figure 1 for an overview of the train-
ing method.

2.1 Method

Let Dl = {(x1, y1), (x2, y2), ..., (xN , yN )} repre-
sent a labeled dataset and Dul = {x1, x2, ..., xM}
represent an unlabeled dataset We use p✓(y|xi)
to denote the output distribution over classes pro-
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Figure 1: An overview of Cross-View Training. The
model is trained with standard supervised learning on
labeled examples. On unlabeled examples, auxiliary
prediction modules with different views of the input
are trained to agree with the primary prediction mod-
ule. This particular example shows CVT applied to
named entity recognition. From the labeled example,
the model can learn that “Washington” usually refers
to a location. Then, on unlabeled data, auxiliary pre-
diction modules are trained to reach the same predic-
tion without seeing some of the input. In doing so, they
improve the contextual representations produced by the
model, for example, learning that “traveled to” is usu-
ally followed by a location.

duced by the model with parameters ✓ on input xi.
During CVT, the model alternates learning on a
minibatch of labeled examples and learning on a
minibatch of unlabeled examples. For labeled ex-
amples, CVT uses standard cross-entropy loss:

Lsup(✓) =
1

|Dl|
X

xi,yi2Dl

CE(yi, p✓(y|xi))

CVT adds k auxiliary prediction modules to the
model, which are used when learning on unlabeled
examples. A prediction module is usually a small
neural network (e.g., a hidden layer followed by
a softmax layer). Each one takes as input an in-
termediate representation hj(xi) produced by the
model (e.g., the outputs of one of the LSTMs in a
Bi-LSTM model). It outputs a distribution over la-
bels pj

✓(y|xi). Each hj is chosen such that it only
uses a part of the input xi; the particular choice
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can depend on the task and model architecture. We
propose variants for several tasks in Section 3. The
auxiliary prediction modules are only used during
training; the test-time prediction come from the
primary prediction module that produces p✓.

On an unlabeled example, the model first pro-
duces soft targets p✓(y|xi) by performing infer-
ence. CVT trains the auxiliary prediction modules
to match the primary prediction module on the un-
labeled data by minimizing

LCVT(✓) = 1
|Dul|

P
xi2Dul

Pk
j=1 D(p✓(y|xi), p

j
✓(y|xi))

where D is a distance function between probabil-
ity distributions (we use KL divergence). We hold
the primary module’s prediction p✓(y|xi) fixed
during training (i.e., we do not back-propagate
through it) so the auxiliary modules learn to im-
itate the primary one, but not vice versa. CVT
works by enhancing the model’s representation
learning. As the auxiliary modules train, the rep-
resentations they take as input improve so they are
useful for making predictions even when some of
the model’s inputs are not available. This in turn
improves the primary prediction module, which is
built on top of the same shared representations.

We combine the supervised and CVT losses into
the total loss, L = Lsup + LCVT, and minimize it
with stochastic gradient descent. In particular, we
alternate minimizing Lsup over a minibatch of la-
beled examples and minimizing LCVT over a mini-
batch of unlabeled examples.

For most neural networks, adding a few ad-
ditional prediction modules is computationally
cheap compared to the portion of the model build-
ing up representations (such as an RNN or CNN).
Therefore our method contributes little overhead
to training time over other self-training approaches
for most tasks. CVT does not change inference
time or the number of parameters in the fully-
trained model because the auxiliary prediction
modules are only used during training.

2.2 Combining CVT with Multi-Task
Learning

CVT can easily be combined with multi-task
learning by adding additional prediction modules
for the other tasks on top of the shared Bi-LSTM
encoder. During supervised learning, we ran-
domly select a task and then update Lsup using
a minibatch of labeled data for that task. When
learning on the unlabeled data, we optimize LCVT

jointly across all tasks at once, first running infer-
ence with all the primary prediction modules and
then learning from the predictions with all the aux-
iliary prediction modules. As before, the model
alternates training on minibatches of labeled and
unlabeled examples.

Examples labeled across many tasks are use-
ful for multi-task systems to learn from, but most
datasets are only labeled with one task. A benefit
of multi-task CVT is that the model creates (ar-
tificial) all-tasks-labeled examples from unlabeled
data. This significantly improves the model’s data
efficiency and training time. Since running pre-
diction modules is computationally cheap, com-
puting LCVT is not much slower for many tasks
than it is for a single one. However, we find
the all-tasks-labeled examples substantially speed
up model convergence. For example, our model
trained on six tasks takes about three times as long
to converge as the average model trained on one
task, a 2x decrease in total training time.

3 Cross-View Training Models

CVT relies on auxiliary prediction modules that
have restricted views of the input. In this section,
we describe specific constructions of the auxiliary
prediction modules that are effective for sequence
tagging, dependency parsing, and sequence-to-
sequence learning.

3.1 Bi-LSTM Sentence Encoder
All of our models use a two-layer CNN-BiLSTM
(Chiu and Nichols, 2016; Ma and Hovy, 2016)
sentence encoder. It takes as input a sequence of
words xi = [x1

i , x
2
i , ..., x

T
i ]. First, each word is

represented as the sum of an embedding vector
and the output of a character-level Convolutional
Neural Network, resulting in a sequence of vectors
v = [v1, v2, ..., vT ]. The encoder applies a two-
layer bidirectional LSTM (Graves and Schmidhu-
ber, 2005) to these representations. The first layer
runs a Long Short-Term Memory unit (Hochre-
iter and Schmidhuber, 1997) in the forward di-
rection (taking vt as input at each step t) and the
backward direction (taking vT�t+1 at each step)
to produce vector sequences [

�!
h 1

1,
�!
h 2

1, ...
�!
h T

1 ] and
[
 �
h 1

1,
 �
h 2

1, ...
 �
h T

1 ]. The output of the Bi-LSTM is
the concatenation of these vectors: h1 = [

�!
h 1

1 � �
h 1

1, ...,
�!
h T

1 �
 �
h T

1 ]. The second Bi-LSTM layer
works the same, producing outputs h2, except it
takes h1 as input instead of v.
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3.2 CVT for Sequence Tagging
In sequence tagging, each token xt

i has a corre-
sponding label yt

i . The primary prediction module
for sequence tagging produces a probability distri-
bution over classes for the tth label using a one-
hidden-layer neural network applied to the corre-
sponding encoder outputs:

p(yt|xi) = NN(ht
1 � ht

2)

= softmax(U · ReLU(W (ht
1 � ht

2)) + b)

The auxiliary prediction modules take
�!
h 1(xi)

and
 �
h 1(xi), the outputs of the forward and back-

ward LSTMs in the first2 Bi-LSTM layer, as in-
puts. We add the following four auxiliary predic-
tion modules to the model (see Figure 2):

pfwd
✓ (yt|xi) = NNfwd(

�!
h t

1(xi))

pbwd
✓ (yt|xi) = NNbwd(

 �
h t

1(xi))

pfuture
✓ (yt|xi) = NNfuture(

�!
h t�1

1 (xi))

ppast
✓ (yt|xi) = NNpast(

 �
h t+1

1 (xi))

The “forward” module makes each prediction
without seeing the right context of the current to-
ken. The “future” module makes each predic-
tion without the right context or the current to-
ken itself. Therefore it works like a neural lan-
guage model that, instead of predicting which to-
ken comes next in the sequence, predicts which
class of token comes next. The “backward” and
“past” modules are analogous.

3.3 CVT for Dependency Parsing
In a dependency parse, words in a sentence are
treated as nodes in a graph. Typed directed
edges connect the words, forming a tree struc-
ture describing the syntactic structure of the sen-
tence. In particular, each word xt

i in a sentence
xi = x1

i , ..., x
T
i receives exactly one in-going edge

(u, t, r) going from word xu
i (called the “head”)

to it (the “dependent”) of type r (the “relation”).
We use a graph-based dependency parser similar
to the one from Dozat and Manning (2017). This
treats dependency parsing as a classification task
where the goal is to predict which in-going edge
yt

i = (u, t, r) connects to each word xt
i.

First, the representations produced by the en-
coder for the candidate head and dependent are

2Modules taking inputs from the second Bi-LSTM layer
would not have restricted views because information about
the whole sentence gets propagated through the first layer.

LSTM LSTM

ŷfuture  ŷfwd  ŷ   ŷbwd  ŷpast 

Backward LSTM

Forward LSTM

Predict

LSTM LSTM

LSTM

LSTM LSTM

Auxiliary
Prediction
Modules

Primary
Prediction
Module

x1 x2 x3

Embed

Backward LSTM

Forward LSTM

pθPredict pfwdθ

pfutureθ

pbwdθ

ppastθ

Auxiliary
Prediction
Modules

Primary
Prediction
Module

Loss

Figure 2: Auxiliary prediction modules for sequence
tagging models. Each one sees a restricted view of the
input. For example, the “forward” prediction module
does not see any context to the right of the current token
when predicting that token’s label. For simplicity, we
only show a one layer Bi-LSTM encoder and only show
the model’s predictions for a single time step.

passed through separate hidden layers. A bilin-
ear classifier applied to these representations pro-
duces a score for each candidate edge. Lastly,
these scores are passed through a softmax layer to
produce probabilities. Mathematically, the proba-
bility of an edge is given as:

p✓((u, t, r)|xi) / es(hu
1 (xi)�hu

2 (xi),ht
1(xi)�ht

2(xi),r)

where s is the scoring function:

s(z1, z2, r) = ReLU(Wheadz1 + bhead)(Wr + W )

ReLU(Wdepz2 + bdep)

The bilinear classifier uses a weight matrix Wr

specific to the candidate relation as well as a
weight matrix W shared across all relations. Note
that unlike in most prior work, our dependency
parser only takes words as inputs, not words and
part-of-speech tags.

We add four auxiliary prediction modules to our
model for cross-view training:

pfwd-fwd
✓ ((u, t, r)|xi) / esfwd-fwd(

�!
h u

1 (xi),
�!
h t

1(xi),r)

pfwd-bwd
✓ ((u, t, r)|xi) / esfwd-bwd(

�!
h u

1 (xi),
 �
h t

1(xi),r)

pbwd-fwd
✓ ((u, t, r)|xi) / esbwd-fwd(

 �
h u

1 (xi),
�!
h t

1(xi),r)

pbwd-bwd
✓ ((u, t, r)|xi) / esbwd-bwd(

 �
h u

1 (xi),
 �
h t

1(xi),r)

Each one has some missing context (not seeing ei-
ther the preceding or following words) for the can-
didate head and candidate dependent.
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3.4 CVT for Sequence-to-Sequence Learning
We use an encoder-decoder sequence-to-sequence
model with attention (Sutskever et al., 2014; Bah-
danau et al., 2015). Each example consists of an
input (source) sequence xi = x1

i , ..., x
T
i and out-

put (target) sequence yi = y1
i , ..., y

K
i . The en-

coder’s representations are passed into an LSTM
decoder using a bilinear attention mechanism (Lu-
ong et al., 2015). In particular, at each time
step t the decoder computes an attention distribu-
tion over source sequence hidden states as ↵j /
ehjW↵h̄t where h̄t is the decoder’s current hid-
den state. The source hidden states weighted by
the attention distribution form a context vector:
ct =

P
j ↵jhj . Next, the context vector and

current hidden state are combined into an atten-
tion vector at = tanh(Wa[ct, ht]). Lastly, a soft-
max layer predicts the next token in the output se-
quence: p(yt

i |y<t
i , xi) = softmax(Wsat).

We add two auxiliary decoders when apply-
ing CVT. The auxiliary decoders share embed-
ding and LSTM parameters with the primary de-
coder, but have different parameters for the atten-
tion mechanisms and softmax layers. For the first
one, we restrict its view of the input by applying
attention dropout, randomly zeroing out a fraction
of its attention weights. The second one is trained
to predict the next word in the target sequence
rather than the current one: pfuture

✓ (yt
i |y<t

i , xi) =
softmax(W future

s afuture
t�1 ). Since there is no target se-

quence for unlabeled examples, we cannot apply
teacher forcing to get an output distribution over
the vocabulary from the primary decoder at each
time step. Instead, we produce hard targets for the
auxiliary modules by running the primary decoder
with beam search on the input sequence. This
idea has previously been applied to sequence-level
knowledge distillation by Kim and Rush (2016).

4 Experiments

We compare Cross-View Training against several
strong baselines on seven tasks:

Combinatory Categorial Grammar (CCG) Su-
pertagging: We use data from CCGBank (Hock-
enmaier and Steedman, 2007).

Text Chunking: We use the CoNLL-2000 data
(Tjong Kim Sang and Buchholz, 2000).

Named Entity Recognition (NER): We use the
CoNLL-2003 data (Tjong Kim Sang and De Meul-
der, 2003).

Fine-Grained NER (FGN): We use the
OntoNotes (Hovy et al., 2006) dataset.

Part-of-Speech (POS) Tagging: We use the Wall
Street Journal portion of the Penn Treebank (Mar-
cus et al., 1993).

Dependency Parsing: We use the Penn Treebank
converted to Stanford Dependencies version 3.3.0.

Machine Translation: We use the English-
Vietnamese translation dataset from IWSLT 2015
(Cettolo et al., 2015). We report (tokenized)
BLEU scores on the tst2013 test set.

We use the 1 Billion Word Language Model
Benchmark (Chelba et al., 2014) as a pool of un-
labeled sentences for semi-supervised learning.

4.1 Model Details and Baselines
We apply dropout during training, but not when
running the primary prediction module to produce
soft targets on unlabeled examples. In addition
to the auxiliary prediction modules listed in Sec-
tion 3, we find it slightly improves results to add
another one that sees the whole input rather than
a subset (but unlike the primary prediction mod-
ule, does have dropout applied to its representa-
tions). Unless indicated otherwise, our models
have LSTMs with 1024-sized hidden states and
512-sized projection layers. See the supplemen-
tary material for full training details and hyperpa-
rameters. We compare CVT with the following
other semi-supervised learning algorithms:

Word Dropout. In this method, we only train
the primary prediction module. When acting as
a teacher it is run as normal, but when acting as
a student, we randomly replace some of the input
words with a REMOVED token. This is similar to
CVT in that it exposes the model to a restricted
view of the input. However, it is less data effi-
cient. By carefully designing the auxiliary pre-
diction modules, it is possible to train the auxil-
iary prediction modules to match the primary one
across many different views of the input a once,
rather than just one view at a time.

Virtual Adversarial Training (VAT). VAT (Miy-
ato et al., 2016) works like word dropout, but
adds noise to the word embeddings of the stu-
dent instead of dropping out words. Notably, the
noise is chosen adversarially so it most changes
the model’s prediction. This method was applied
successfully to semi-supervised text classification
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Method CCG Chunk NER FGN POS Dep. Parse Translate
Acc. F1 F1 F1 Acc. UAS LAS BLEU

Shortcut LSTM (Wu et al., 2017) 95.1 97.53
ID-CNN-CRF (Strubell et al., 2017) 90.7 86.8
JMT† (Hashimoto et al., 2017) 95.8 97.55 94.7 92.9
TagLM* (Peters et al., 2017) 96.4 91.9
ELMo* (Peters et al., 2018) 92.2

Biaffine (Dozat and Manning, 2017) 95.7 94.1
Stack Pointer (Ma et al., 2018) 95.9 94.2

Stanford (Luong and Manning, 2015) 23.3
Google (Luong et al., 2017) 26.1

Supervised 94.9 95.1 91.2 87.5 97.60 95.1 93.3 28.9
Virtual Adversarial Training* 95.1 95.1 91.8 87.9 97.64 95.4 93.7 –
Word Dropout* 95.2 95.8 92.1 88.1 97.66 95.6 93.8 29.3
ELMo (our implementation)* 95.8 96.5 92.2 88.5 97.72 96.2 94.4 29.3
ELMo + Multi-task*† 95.9 96.8 92.3 88.4 97.79 96.4 94.8 –
CVT* 95.7 96.6 92.3 88.7 97.70 95.9 94.1 29.6
CVT + Multi-task*† 96.0 96.9 92.4 88.4 97.76 96.4 94.8 –
CVT + Multi-task + Large*† 96.1 97.0 92.6 88.8 97.74 96.6 95.0 –

Table 1: Results on the test sets. We report the mean score over 5 runs. Standard deviations in score are around 0.1
for NER, FGN, and translation, 0.02 for POS, and 0.05 for the other tasks. See the supplementary materials for
results with them included. The +Large model has four times as many hidden units as the others, making it similar
in size to the models when ELMo is included. * denotes semi-supervised and † denotes multi-task.

by Miyato et al. (2017).

ELMo. ELMo incorporates the representations
from a large separately-trained language model
into a task-specific model. Our implementaiton
follows Peters et al. (2018). When combining
ELMo with multi-task learning, we allow each
task to learn its own weights for the ELMo em-
beddings going into each prediction module. We
found applying dropout to the ELMo embeddings
was crucial for achieving good performance.

4.2 Results

Results are shown in Table 1. CVT on its own out-
performs or is comparable to the best previously
published results on all tasks. Figure 3 shows an
example win for CVT over supervised learning.

Of the prior results listed in Table 1, only
TagLM and ELMo are semi-supervised. These
methods first train an enormous language model
on unlabeled data and incorporate the representa-
tions produced by the language model into a su-
pervised classifier. Our base models use 1024 hid-
den units in their LSTMs (compared to 4096 in
ELMo), require fewer training steps (around one
pass over the billion-word benchmark rather than

Figure 3: An NER example that CVT classifies cor-
rectly but supervised learning does not. “Warner” only
occurs as a last name in the train set, so the supervised
model classifies “Warner Bros” as a person. The CVT
model also mistakenly classifies “Warner Bros” as a
person to start with, but as it sees more of the unlabeled
data (in which “Warner” occurs thousands of times) it
learns that “Warner Bros” is an organization.

many passes), and do not require a pipelined train-
ing procedure. Therefore, although they perform
on par with ELMo, they are faster and simpler
to train. Increasing the size of our CVT+Multi-
task model so it has 4096 units in its LSTMs like
ELMo improves results further so they are signifi-
cantly better than the ELMo+Multi-task ones. We
suspect there could be further gains from combin-
ing our method with language model pre-training,
which we leave for future work.
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CVT + Multi-Task. We train a single shared-
encoder CVT model to perform all of the tasks
except machine translation (as it is quite differ-
ent and requires more training time than the other
ones). Multi-task learning improves results on
all of the tasks except fine-grained NER, some-
times by large margins. Prior work on many-task
NLP such as Hashimoto et al. (2017) uses compli-
cated architectures and training algorithms. Our
result shows that simple parameter sharing can be
enough for effective many-task learning when the
model is big and trained on a large amount of data.

Interestingly, multi-task learning works better
in conjunction with CVT than with ELMo. We
hypothesize that the ELMo models quickly fit to
the data primarily using the ELMo vectors, which
perhaps hinders the model from learning effective
representations that transfer across tasks. We also
believe CVT alleviates the danger of the model
“forgetting” one task while training on the other
ones, a well-known problem in many-task learn-
ing (Kirkpatrick et al., 2017). During multi-task
CVT, the model makes predictions about unla-
beled examples across all tasks, creating (artifi-
cial) all-tasks-labeled examples, so the model does
not only see one task at a time. In fact, multi-task
learning plus self training is similar to the Learn-
ing without Forgetting algorithm (Li and Hoiem,
2016), which trains the model to keep its predic-
tions on an old task unchanged when learning a
new task. To test the value of all-tasks-labeled ex-
amples, we trained a multi-task CVT model that
only computes LCVT on one task at a time (chosen
randomly for each unlabeled minibatch) instead of
for all tasks in parallel. The one-at-a-time model
performs substantially worse (see Table 2).

Model CCG Chnk NER FGN POS Dep.

CVT-MT 95.7 97.4 96.0 86.7 97.74 94.4
w/out parallel 95.4 97.1 95.6 86.3 97.71 94.1

Table 2: Dev set performance of multi-task CVT with
and without producing all-tasks-labeled examples.

Model Generalization. In order to evaluate how
our models generalize to the dev set from the train
set, we plot the dev vs. train accuracy for our dif-
ferent methods as they learn (see Figure 4). Both
CVT and multi-task learning improve model gen-
eralization: for the same train accuracy, the mod-
els get better dev accuracy than purely supervised
learning. Interestingly, CVT continues to improve

Figure 4: Dev set vs. Train set accuracy for various
methods. The “small” model has 1/4 the LSTM hidden
state size of the other ones (256 instead of 1024).

in dev set accuracy while close to 100% train ac-
curacy for CCG, Chunking, and NER, perhaps be-
cause the model is still learning from unlabeled
data even when it has completely fit to the train
set. We also show results for a smaller multi-task
+ CVT model. Although it generalizes at least as
well as the larger one, it halts making progress on
the train set earlier. This suggests it is important
to use sufficiently large neural networks for multi-
task learning: otherwise the model does not have
the capacity to fit to all the training data.

Auxiliary Prediction Module Ablation. We
briefly explore which auxiliary prediction modules
are more important for the sequence tagging tasks
in Table 3. We find that both kinds of auxiliary
prediction modules improve performance, but that
the future and past modules improve results more
than the forward and backward ones, perhaps be-
cause they see a more restricted and challenging
view of the input.

Model CCG Chnk NER FGN POS

Supervised 94.8 95.5 95.0 86.0 97.59
CVT 95.6 97.0 95.9 87.3 97.66

no fwd/bwd –0.1 –0.2 –0.2 –0.1 –0.01
no future/past –0.3 –0.4 –0.4 –0.3 –0.04

Table 3: Ablation study on auxiliary prediction mod-
ules for sequence tagging.

Training Models on Small Datasets. We ex-
plore how CVT scales with dataset size by vary-
ing the amount of training data the model has ac-
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Figure 5: Left: Dev set performance vs. percent of the training set provided to the model. Right: Dev set perfor-
mance vs. model size. The x axis shows the number of hidden units in the LSTM layers; the projection layers and
other hidden layers in the network are half that size. Points correspond to the mean of three runs.

cess to. Unsurprisingly, the improvement of CVT
over purely supervised learning grows larger as the
amount of labeled data decreases (see Figure 5,
left). Using only 25% of the labeled data, our ap-
proach already performs as well or better than a
fully supervised model using 100% of the training
data, demonstrating that CVT is particularly use-
ful on small datasets.

Training Larger Models. Most sequence taggers
and dependency parsers in prior work use small
LSTMs (hidden state sizes of around 300) because
larger models yield little to no gains in perfor-
mance (Reimers and Gurevych, 2017). We found
our own supervised approaches also do not ben-
efit greatly from increasing the model size. In
contrast, when using CVT accuracy scales better
with model size (see Figure 5, right). This finding
suggests the appropriate semi-supervised learning
methods may enable the development of larger,
more sophisticated models for NLP tasks with lim-
ited amounts of labeled data.

Generalizable Representations. Lastly, we ex-
plore training the CVT+multi-task model on five
tasks, freezing the encoder, and then only training
a prediction module on the sixth task. This tests
whether the encoder’s representations generalize
to a new task not seen during its training. Only
training the prediction module is very fast because
(1) the encoder (which is by far the slowest part of
the model) has to be run over each example only
once and (2) we do not back-propagate into the
encoder. Results are shown in Table 4.

Training only a prediction module on top of
multi-task representations works remarkably well,

Model CCG Chnk NER FGN POS Dep.

Supervised 94.8 95.6 95.0 86.0 97.59 92.9
CVT-MT frozen 95.1 96.6 94.6 83.2 97.66 92.5
ELMo frozen 94.3 92.2 91.3 80.6 97.50 89.4

Table 4: Comparison of single-task models on the dev
sets. “CVT-MT frozen” means we pretrain a CVT +
multi-task model on five tasks, and then train only the
prediction module for the sixth. “ELMo frozen” means
we train prediction modules (but no LSTMs) on top of
ELMo embeddings.

outperforming ELMo embeddings and sometimes
even a vanilla supervised model, showing the
multi-task model is building up effective repre-
sentations for language. In particular, the repre-
sentations could be used like skip-thought vectors
(Kiros et al., 2015) to quickly train models on new
tasks without slow representation learning.

5 Related Work

Unsupervised Representation Learning. Early
approaches to deep semi-supervised learning pre-
train neural models on unlabeled data, which has
been successful for applications in computer vi-
sion (Jarrett et al., 2009; LeCun et al., 2010) and
NLP. Particularly noteworthy for NLP are al-
gorithms for learning effective word embeddings
(Collobert et al., 2011; Mikolov et al., 2013; Pen-
nington et al., 2014) and language model pretrain-
ing (Dai and Le, 2015; Ramachandran et al., 2017;
Peters et al., 2018; Howard and Ruder, 2018; Rad-
ford et al., 2018). Pre-training on other tasks
such as machine translation has also been stud-
ied (McCann et al., 2017). Other approaches train
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“thought vectors” representing sentences through
unsupervised (Kiros et al., 2015; Hill et al., 2016)
or supervised (Conneau et al., 2017) learning.

Self-Training. One of the earliest approaches
to semi-supervised learning is self-training (Scud-
der, 1965), which has been successfully applied
to NLP tasks such as word-sense disambiguation
(Yarowsky, 1995) and parsing (McClosky et al.,
2006). In each round of training, the classifier,
acting as a “teacher,” labels some of the unlabeled
data and adds it to the training set. Then, acting as
a “student,” it is retrained on the new training set.
Many recent approaches (including the consisten-
tency regularization methods discussed below and
our own method) train the student with soft tar-
gets from the teacher’s output distribution rather
than a hard label, making the procedure more akin
to knowledge distillation (Hinton et al., 2015). It
is also possible to use multiple models or predic-
tion modules for the teacher, such as in tri-training
(Zhou and Li, 2005; Ruder and Plank, 2018).

Consistency Regularization. Recent works add
noise (e.g., drawn from a Gaussian distribution)
or apply stochastic transformations (e.g., horizon-
tally flipping an image) to the student’s inputs.
This trains the model to give consistent predictions
to nearby data points, encouraging distributional
smoothness in the model. Consistency regular-
ization has been very successful for computer vi-
sion applications (Bachman et al., 2014; Laine and
Aila, 2017; Tarvainen and Valpola, 2017). How-
ever, stochastic input alterations are more difficult
to apply to discrete data like text, making consis-
tency regularization less used for natural language
processing. One solution is to add noise to the
model’s word embeddings (Miyato et al., 2017);
we compare against this approach in our experi-
ments. CVT is easily applicable to text because it
does not require changing the student’s inputs.

Multi-View Learning. Multi-view learning on
data where features can be separated into distinct
subsets has been well studied (Xu et al., 2013).
Particularly relevant are co-training (Blum and
Mitchell, 1998) and co-regularization (Sindhwani
and Belkin, 2005), which trains two models with
disjoint views of the input. On unlabeled data,
each one acts as a “teacher” for the other model.
In contrast to these methods, our approach trains
a single unified model where auxiliary prediction
modules see different, but not necessarily indepen-

dent views of the input.

Self Supervision. Self-supervised learning meth-
ods train auxiliary prediction modules on tasks
where performance can be measured without
human-provided labels. Recent work has jointly
trained image classifiers with tasks like relative
position and colorization (Doersch and Zisserman,
2017), sequence taggers with language modeling
(Rei, 2017), and reinforcement learning agents
with predicting changes in the environment (Jader-
berg et al., 2017). Unlike these approaches, our
auxiliary losses are based on self-labeling, not la-
bels deterministically constructed from the input.

Multi-Task Learning. There has been extensive
prior work on multi-task learning (Caruana, 1997;
Ruder, 2017). For NLP, most work has focused
on a small number of closely related tasks (Lu-
ong et al., 2016; Zhang and Weiss, 2016; Søgaard
and Goldberg, 2016; Peng et al., 2017). Many-
task systems are less commonly developed. Col-
lobert and Weston (2008) propose a many-task
system sharing word embeddings between the
tasks, Hashimoto et al. (2017) train a many-task
model where the tasks are arranged hierarchically
according to their linguistic level, and Subrama-
nian et al. (2018) train a shared-encoder many-task
model for the purpose of learning better sentence
representations for use in downstream tasks, not
for improving results on the original tasks.

6 Conclusion

We propose Cross-View Training, a new method
for semi-supervised learning. Our approach al-
lows models to effectively leverage their own pre-
dictions on unlabeled data, training them to pro-
duce effective representations that yield accurate
predictions even when some of the input is not
available. We achieve excellent results across
seven NLP tasks, especially when CVT is com-
bined with multi-task learning.
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Abstract
The availability of large scale annotated cor-
pora for coreference is essential to the devel-
opment of the field. However, creating re-
sources at the required scale via expert anno-
tation would be too expensive. Crowdsourc-
ing has been proposed as an alternative; but
this approach has not been widely used for
coreference. This paper addresses one cru-
cial hurdle on the way to make this possible,
by introducing a new model of annotation for
aggregating crowdsourced anaphoric annota-
tions. The model is evaluated along three di-
mensions: the accuracy of the inferred men-
tion pairs, the quality of the post-hoc con-
structed silver chains, and the viability of us-
ing the silver chains as an alternative to the
expert-annotated chains in training a state of
the art coreference system. The results suggest
that our model can extract from crowdsourced
annotations coreference chains of comparable
quality to those obtained with expert annota-
tion.

1 Introduction

The task of identifying and resolving anaphoric
reference to discourse entities, known in NLP as
coreference resolution, has long been considered
a core aspect of language interpretation (Poesio
et al., 2016b), also because of its role in applica-
tions such as summarization (Baldwin and Mor-
ton, 1998; Steinberger et al., 2007), information
extraction (Humphreys et al.) or question answer-
ing (Morton, 1999; Zheng, 2002).

In the 1990s the field made a paradigmatic turn
towards corpus based approaches initiated by cam-
paigns such as MUC (Grishman and Sundheim,
1995; Chinchor, 1998) and since then we have
seen the development of a range of data-driven
approaches, spurred by the development of ever
larger and richer datasets. Nowadays, a vari-
ety of datasets exist for several languages (Poesio

et al., 2016a). These include medium-scale mul-
tilingual datasets such as ONTONOTES (Pradhan
et al., 2007; Weischedel et al., 2011), which led
to the most recent evaluation campaigns, in par-
ticular CONLL 2012 (Pradhan et al., 2012), and
are used in most current research (Björkelund and
Kuhn, 2014; Martschat and Strube, 2015; Clark
and Manning, 2016; Lee et al., 2017). However,
there are still many languages and domains for
which no such resources are available, and even
for English much larger corpora than ONTONOTES
will eventually be required.

However, annotating data on the scale required
to train state of the art systems using traditional
expert annotation would be unaffordable. One
alternative is to employ crowdsourcing, either
via platforms like Amazon Mechanical Turk and
Crowdflower, or using Games-With-A-Purpose
(Poesio et al., 2017). Studies such as (Snow
et al., 2008; Raykar et al., 2010) have shown that
when a sufficiently large number of workers is em-
ployed, expert-level quality can be achieved, at
a fraction of the cost required to create such re-
sources using traditional methods. The one ef-
fort to create a large-scale coreference corpus en-
tirely through crowdsourcing, the Phrase Detec-
tives project (Poesio et al., 2013; Chamberlain
et al., 2016; Chamberlain, 2016), employs the
Phrase Detectives game with a purpose. The
Phrase Detectives corpus consists of 843 docu-
ments for a total of 1.2 million tokens and 392,741
markables; at present, 563 documents for a total
of 360,000 tokens have been annotated.1 A sec-
ond coreference corpus created using crowdsourc-
ing (in the context of a trivia game) also exists, the

1Note that although the Phrase Detectives corpus is
slightly smaller in terms of tokens than the currently largest
coreference corpus for English, the CONLL 2012 dataset
(Pradhan et al., 2012), it has about twice the number of mark-
ables, 390,000 vs. 190,000.
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Quiz Bowl dataset (Guha et al., 2015).2

However, such existing corpora are not widely
used yet. One of the reasons for this is the lack
of suitable aggregation methods for anaphora.
Crowdsourced annotations require aggregation
methods to select among the different interpreta-
tions produced by the crowd. Standard practice
for crowdsourced data analysis has seen a shift in
recent years from simple majority vote to much
more effective aggregation methods (Smyth et al.,
1994; Quoc Viet Hung et al., 2013; Sheshadri and
Lease, 2013; Carpenter, 2008; Hovy et al., 2013;
Passonneau and Carpenter, 2014). Probabilistic
models of annotation, in particular, make it possi-
ble to characterize the accuracy of the annotators
and correct for their bias (Dawid and Skene, 1979;
Passonneau and Carpenter, 2014), to account for
item-level effects (e.g.: difficulty) (Whitehill et al.,
2009), and to employ different pooling strategies
(Carpenter, 2008). However, existing models of
annotation cannot be used for anaphora. Such
methods assume that coders choose between a
fixed set of general labels, the same labels across
all annotated items. In anaphoric annotation, by
contrast, coders relate markables to coreference
chains which depend on the markables that are an-
notated in that given document (Passonneau, 2004;
Artstein and Poesio, 2008)

Contributions In this paper we propose a men-
tion pair-based approach to aggregating crowd-
sourced anaphoric annotations. Concretely, we in-
troduce a new model of annotation capable of in-
ferring the most likely mention pairs from crowd-
annotated anaphoric relations. We then use these
pairs to build the most likely coreference chains.
This approach to building chains is evaluated on
both crowdsourced and synthetic (via simulation)
coreference datasets. The evaluations include as-
sessing the accuracy of the inferred mention pairs;
the quality of the chains; and the viability of us-
ing these chains derived from mention pairs as an
alternative to gold chains when training a state of
the art coreference system. We conclude by also
demonstrating the quality of the proposed model

2Another corpus creation project using crowdsourcing
(and also games) for anaphoric annotation is the Groningen
Meaning Bank (Bos et al., 2017). However, in the GMB
crowdsourcing is not used to generate interpretations: play-
ers correct automatically annotated interpretations rather than
providing the annotations themselves. Another crucial differ-
ence is that interpretations are not aggregated in the sense
discussed below; rather, an expert adjudicates between the
interpretations produced by players.

in a standard annotation task. The implementation
is available as supplementary material.

2 A Mention-Pair Model of Annotation

Traditional models of annotation (Dawid and
Skene, 1979; Smyth et al., 1994; Raykar et al.,
2010; Hovy et al., 2013) are specified assuming
the annotations are chosen among a general set
of classes that is consistent across the annotated
items. This is the case in a type of annotation
closely related to anaphoric annotation, informa-
tion status annotation (Nissim et al., 2004; Riester
et al., 2010). In this type of annotation, an annota-
tor marks a mention as either discourse old (DO) –
referring to an existing entity (coreference chain)
– or as discourse-new (DN) – introducing a new
coreference chain, but without specifying which
coreference chain the mention belongs to, if any.
We will refer below to categories such as DN and
DO as (general) classes.

Traditional models of annotation can model this
type of annotation, but not the task of anaphoric
annotation proper. In standard annotation schemes
for anaphora/coreference (Poesio et al., 2016a)
the annotator may mark a mention as referring
to a discourse new entity as above; but in case
the mention is identified as discourse-old, this en-
tity, or coreference chain–the set of coreferring
mentions–is also specified. The available corefer-
ence chains differ from document to document.

Our proposal for a probabilistic model of this
type of annotation is based on one of the most
widely used models of coreference resolution: the
mention pair model. In the mention pair model,
the task of linking the mention to a coreference
chain/entity is split in two parts: classifying men-
tion pairs as coreferring or not, and subsequent
clustering (Soon et al., 2001; Hoste, 2016). The
model we propose addresses the first part.

More formally, the crowdsourced data to be
modeled consists of I mentions (indexed by i)
annotated by a total of J coders (indexed by j).
Each mention i has Ni annotations (indexed by
n), for a total of Mi distinct labels (indexed by
m). Each label m of mention i belongs to a class
zi,m. The label of a mention could be the ID
of the antecedent, in case that mention is anno-
tated as belonging to the discourse old (general)
class; or could be discourse new or another general
class (e.g.: property, non referring). In these lat-
ter cases, the labels coincide with the classes they
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belong to.
An important difficulty we had to address is la-

bel sparsity. The solution we propose is to trans-
form the mention-level annotations into a series of
binary decisions with respect to each candidate la-
bel. In the extended literature this is often referred
to as the binary relevance method (Tsoumakas and
Katakis, 2007; Madjarov et al., 2012). We then
model these (label-level) decisions as the result of
the sensitivity (the true positive rate) and speci-
ficity (the true negative rate) of the annotators
which we assume are class dependent. This latter
assumption allows inferring different levels of an-
notator ability for each class (e.g.: capturing that
DO labels are generally harder compared to DN).

The graphical model of our Mention Pair An-
notations model (MPA) is presented in Figure 1,
while the generative process is given below:

• For every class h 2 {1, 2, ..., K}:

– Draw class specific true label likelihood
⇡h ⇠ Beta(a, b)

• For every annotator j 2 {1, 2, ..., J}:

– For every class h 2 {1, 2, ..., K}:
⇤ Draw sensitivity ↵j,h ⇠ Beta(d, e)
⇤ Draw specificity �j,h ⇠ Beta(t, u)

• For every mention i 2 {1, 2, ..., I}:

– For every candidate label m 2
{1, 2, ..., Mi}:
⇤ Draw true label indicator ci,m ⇠

Bern(⇡zi,m)
⇤ For every position n 2

{1, 2, ..., Ni}:
· If ci,m = 1 then draw decision

yi,m,n ⇠ Bern(↵jj[i,m,n],zi,m
)3

· Otherwise, draw decision
yi,m,n ⇠ Bern(1 � �jj[i,m,n],zi,m

)

The model addresses the first part of the men-
tion pair framework: the posterior of the true label
indicators is used to link each mention with the
most likely label, obtaining the mention pairs. The
coreference chains are then built by following the
link structure from the inferred pairs.

Note that for a traditional annotation task with
no distinction between generic classes and spe-
cific labels the MPA model is equivalent to train-
ing K binary Bayesian versions of the Dawid

3Notation: jj[i,m,n] returns the index of the annotator who
made the n-th decision on the m-th label of mention i.

Figure 1: Plate diagram for MPA

and Skene (1979) model (one for each general
class) on data processed using the binary relevance
method. Note also that whereas traditional models
of annotation assume one true class per annotated
item, an implicit benefit of our approach is allow-
ing for potentially multiple true classes, which can
be useful to detect ambiguity (Poesio and Artstein,
2005), but we don’t exploit that in this work.

2.1 Parameter Estimation
We infer the parameters of the proposed model
using Variational Inference (VI). Unlike Markov
Chain Monte Carlo (MCMC) approaches (e.g.:
Gibbs Sampling, Hamiltonian Monte Carlo), VI is
deterministic, fast, and benefits from a clear con-
vergence criterion (Blei et al., 2017).

Specifically we approximate the intractable pos-
terior p(✓|D) with a variational distribution q(✓)
such that the Kullback-Leibler (KL) divergence
between the two distributions is minimized. It can
be shown this minimization is equivalent to maxi-
mizing the evidence lower bound (ELBO) below:

L = Eq[log p(⇡, ↵, �, c, y|a, b, d, e, t, u, z)]

� Eq[log q(⇡, ↵, �, c|�, ⌘, �, µ, ✓, ✏, �, ⇣)]
(1)

We need a variational distribution q that is
tractable under expectations. Following common
practice (Blei et al., 2003; Hoffman et al., 2013;
Blei et al., 2017), we choose q to be in the mean
field variational family where each hidden variable
is independent and governed by its own parameter.
Elegant solutions have been derived for models
whose complete conditionals are in the exponen-
tial family (Blei and Jordan, 2006; Hoffman et al.,
2013). Concretely, we used the fact that the nat-
ural parameters of the variational distributions are
equal to the expected value of the natural parame-
ters of the corresponding complete conditionals.

The derivations are standard in the VI literature
(see, for example, Hoffman et al., 2013). (To save
space, we only provide here the update formulas of
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the variational parameters; supplementary details
are in the Appendix.)

Equations (2) and (3) give the variational update
formulas for the class-level true label likelihood.
We have q(⇡h|�h, ⌘h) = Beta(�h, ⌘h), where:

�h = a +
I,MiX

i,m

I(zi,m = h)Eq[I(ci,m = 1)] (2)

⌘h = b +
I,MiX

i,m

I(zi,m = h)Eq[I(ci,m = 0)] (3)

In Equation (4) and (5) we list the varia-
tional update formulas for the class-level anno-
tator sensitivity. We have q(↵j,h|�j,h, µj,h) =
Beta(�j,h, µj,h), where:

�j,h = d +
I,Mi,NiX

i,m,n

I(jj[i, m, n] = j)

I(zi,m = h)I(yi,m,n = 1)Eq[I(ci,m = 1)]

(4)

µj,h = e +
I,Mi,NiX

i,m,n

I(jj[i, m, n] = j)

I(zi,m = h)I(yi,m,n = 0)Eq[I(ci,m = 1)]

(5)

In Equations (6) and (7) we list the varia-
tional update formulas for the class-level anno-
tator specificity. We have q(�j,h|✓j,h, ✏j,h) =
Beta(✓j,h, ✏j,h), where:

✓j,h = t +
I,Mi,NiX

i,m,n

I(jj[i, m, n] = j)

I(zi,m = h)I(yi,m,n = 0)Eq[I(ci,m = 0)]

(6)

✏j,h = u +
I,Mi,NiX

i,m,n

I(jj[i, m, n] = j)

I(zi,m = h)I(yi,m,n = 1)Eq[I(ci,m = 0)]

(7)

In Equations (8) and (9) we list the variational
update formulas for the true label indicator. We
have q(ci,m|�i,m) = Bern(�i,m), where ⇣i,m =
1 � �i,m and:

log �i,m / Eq[log ⇡zi,m ]+

+
NiX

n=1

I(yi,m,n = 1)Eq[log ↵jj[i,m,n],zi,m
]+

+ I(yi,m,n = 0)Eq[log(1 � ↵jj[i,m,n],zi,m
)]

(8)

log ⇣i,m / Eq[log(1 � ⇡zi,m)]+

+
NiX

n=1

I(yi,m,n = 0)Eq[log �jj[i,m,n],zi,m
]+

+ I(yi,m,n = 1)Eq[log(1 � �jj[i,m,n],zi,m
)]

(9)

Finally, for the above formulas, we used the
fact that Eq[I(ci,m = 1)] = �i,m. The other
expectations can be easily calculated noting that
for a distribution part of the exponential family,
the first derivative of the log normalizer is equal
to the expected value of the sufficient statistics
(Blei et al., 2003). For example, Eq[log ⇡zi,m ] =
 (�zi,m) �  (�zi,m + ⌘zi,m), where  (.) is the
digamma function. Similar observations apply to
the ↵ and � related expectations.

The algorithm, known as Coordinate Ascent
Variational Inference (CAVI) (Blei et al., 2017),
involves iterating between Equations (2), (3), (4),
(5), (6), (7), (8) and (9) until convergence. The
ELBO expressed in Equation (1) is guaranteed to
increase at every step. Convergence is achieved
when the ELBO plateaus. Throughout the experi-
ments we used non-informative, uniform priors.

3 Evaluation
We carried out a series of evaluations of increasing
complexity of our MPA model. We first assess the
accuracy of the inferred mention pairs. Second,
we cluster the pairs into appropriate coreference
chains and evaluate the quality of these chains.
Third, we assess the viability of using silver chains
as an alternative to the gold chains when training
a state of the art coreference system. Finally, we
conclude the evaluation with a performance check
in a standard annotation task.

3.1 Datasets
The largest coreference dataset with crowdsourced
annotations is the Phrase Detectives corpus. A
subset of this corpus is the Phrase Detectives 1.0
dataset (Chamberlain et al., 2016), which also in-
cludes gold annotations and can therefore be used
to evaluate the accuracy of MPA at mention-pair
and coreference chain inference, but is too small
to train a state-of-the-art coreference system. To
carry out this second type of evaluation we used
the approach, common in the crowdsourcing liter-
ature (Carpenter, 2008; Raykar et al., 2010; Hovy
et al., 2013; Felt et al., 2014), of generating sim-
ulated datasets by corrupting the gold standard

1929



Figure 2: Sensitivity profiles extracted from the PD
corpus: DO (x-axis) vs. DN (y-axis)

of an existing corpus. For this purpose, we use
the CONLL-2012 dataset (Pradhan et al., 2012), at
present the standard dataset for coreference reso-
lution.

3.1.1 Crowdsourced Data
The Phrase Detectives (PD) 1.0 dataset has been
annotated using the Phrase Detectives game with
a purpose.4 The annotation scheme for PD is
based on that for the ARRAU corpus (Poesio et al.,
2018). Players have to label predefined5 mark-
ables with one of the following categories: non-
referring (e.g., for expletives), discourse-new,
discourse-old (in which case an antecedent is also
marked, the most recent mention belonging to the
antecedent’s coreference chain), or property (for
appositions and copular structures). The PD 1.0
dataset is the portion of the corpus that contains, in
addition to the annotations by the players, a gold
label for each markable. The coreference chains
are obtained using a simple clustering of the men-
tion pairs. An important limitation of this corpus
is its small size (around 6000 markables from 45
documents), making it unfit for the training and
evaluation of state of the art supervised systems.

3.1.2 Synthetic Data
The CONLL-2012 dataset specifies gold chains,
not mention pairs. So we need first to extract ap-
propriate mention pairs from these chains. To do
this, for each mention we select as gold label the
closest mention from its gold chain (or discourse
new if the mention is the first in its chain).

4http://www.phrasedetectives.org
5In standard annotation projects markables are predefined

for better agreement. The markables used in PD are automat-
ically identified, but players can highlight errors in markable
identification that can then be corrected.

Simulation Profile Type Error Distribution

1 Synthetic Uniform
2 Synthetic Sparse
3 PD-inspired Uniform
4 PD-inspired Sparse

Table 1: Simulation summary

Data Method Accuracy

avg. s.d.

PD 1.0 MV 84.32 -

MPA 91.43 -

Synthetic Uniform MV 85.09 0.52

MPA 90.12 0.52

Synthetic Sparse MV 76.55 0.46

MPA 85.92 0.60

PD-inspired Uniform MV 89.26 0.47

MPA 97.38 0.28

PD-inspired Sparse MV 82.72 0.56

MPA 94.36 0.33

Table 2: Mention pair accuracy results. Each simulated
scenario is randomly generated 10 times (summary is
in terms of average result and standard deviation)

The simulations are then generated by extract-
ing from each gold label a number of ‘crowd-
sourced labels’ produced by (simulated) annota-
tors with varying degrees of ability. We consid-
ered a range of simulated scenarios, all sharing the
following settings:

• 10 distinct annotators per mention and 20 dis-
tinct mentions per annotator. The annotators
receive random mentions to annotate.6

• Each annotator is assigned randomly a pro-
file. The profiles indicate the sensitivity of
the annotators with respect to discourse old
and new. For example, the (DO 0.8, DN 0.9)
profile indicates that, given a mention whose
true class is DO, the annotator has 0.8 prob-
ability of getting it right; and of 0.9 for DN.
We considered both profiles reflecting the ac-
tual profiles of players in Phrase Detectives
(Chamberlain, 2016) and synthetic profiles.

• 5 choices for the annotators to choose from
for each mention: the correct label, the DN

6This equal load reflects work distribution as found in mi-
crotask crowdsourcing rather than in games such as Phrase
Detectives, where a few players do most of the work (Cham-
berlain, 2016).

1930



PD 1.0 Method MUC BCUB CEAFE Avg.
F1P R F1 P R F1 P R F1

Singletons
included

MV 95.18 69.44 80.30 95.53 78.79 86.36 79.04 95.12 86.34 84.33

MPA 92.87 86.07 89.34 94.79 88.56 91.57 90.53 94.27 92.36 91.09

Stanford 65.55 59.70 62.49 79.83 74.54 77.09 77.74 85.41 81.40 73.66

Singletons
excluded

MV 95.18 69.44 80.30 93.36 46.05 61.68 64.23 55.17 59.35 67.11

MPA 92.87 86.07 89.34 88.46 72.83 79.89 79.65 76.32 77.95 82.39

Stanford 65.55 59.70 62.49 51.09 39.16 44.33 41.44 49.02 44.91 50.58

Table 3: The quality of the coreference chains on the PD 1.0 dataset

PD 1.0 Method P R F1

Non Referring
scores

MV 82.98 20.00 32.23

MPA 75.14 66.67 70.65

Table 4: Non-referring scores for the PD 1.0 dataset

label (without including it twice if this is the
correct label), and the 3 (or 4 if the correct
label is DN) incorrect DO antecedents situated
closest to the mention.

The range of options considered in the simulation
is specified by two aspects: the sensitivity from the
annotator profiles and the distribution of the errors
they make. We use the following two profile types:

• Synthetic profiles: 5 profiles covering a wide
range of abilities (DO 0.8, DN 0.9), (DO 0.7,
DN 0.8), (DO 0.4, DN 0.5), (DO 0.3, DN 0.4),
(DO 0.2, DN 0.3). The profiles roughly corre-
spond to two experts and three novices whose
class sensitivities are relatively close – with
extra mass associated with DN because this
class is generally easier compared to DO.

• Phrase Detectives inspired profiles: from the
PD annotators who annotated more than 10
DO and 10 DN mentions (thresholds set to
have a minimum confidence) we extracted a
total of 89 profiles. This gave us much more
interesting sensitivity pairs compared to the
ones from the synthetic profiles, i.e., contrast-
ing class abilities – see Figure 2.

We also considered a range of ways in which an-
notators may make mistakes:

• Distribute the errors uniformly random given
the remaining mass (1 - sensitivity)

• Distribute the errors in a sparse manner, i.e.,
assume that some errors will be more likely

than others. This can be achieved by drawing
randomly from a 4-dimensional (4 = number
of errors) uniform Dirichlet for each mention.
The annotator probabilities over the 5 choices
will then consist of their sensitivity, and the
error distribution normalized with respect to
the remaining mass.

The settings just discussed lead to 4 simulations
summarized in Table 1.

3.2 Evaluation 1: Mention Pair Accuracy

We use MPA to link each mention with the most
likely label based on the posterior of the true label
indicators. We then assess the accuracy of the in-
ferred mention pairs against the gold standard, i.e.,
the agreement with the gold mention pairs. In this
task the proposed model is compared against a ma-
jority vote baseline where each mention is paired
with the most voted label.7

The evaluation is conducted on the crowd-
sourced annotated PD 1.0 dataset and on simulated
data generated from the CONLL-2012 test set. The
results, summarized in Table 2, indicate the men-
tion pairs inferred by our model (MPA) obtain a
much better level of agreement with the gold men-
tion pairs, compared with the output of the ma-
jority vote (MV) baseline. MV implicitly assumes
equal expertise among the annotators, which has
repeatedly been shown to be false in annotation
practice (Poesio and Artstein, 2005; Passonneau
and Carpenter, 2014; Plank et al., 2014).

3.3 Evaluation 2: Silver Chain Quality

After the mention pairs have been inferred using
MPA, producing the coreference chains – we will
henceforth refer to the coreference chains thus ob-

7Throughout the paper we report the best majority vote
result after 10 random rounds of splitting ties.
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CoNLL 2012 Test Dataset MUC BCUB CEAFE Avg.
F1Simulation Method P R F1 P R F1 P R F1

None Stanford 89.78 73.88 81.06 83.93 59.22 69.44 73.87 60.57 66.56 72.35

Synthetic
Uniform

MV avg. 88.27 86.00 87.12 73.92 70.81 72.33 70.62 76.73 73.55 77.67

s.d. 0.38 0.35 0.36 0.83 0.52 0.62 0.49 0.60 0.50 0.47

MPA avg. 90.92 91.97 91.44 75.51 80.14 77.75 81.98 78.81 80.37 83.19

s.d. 0.48 0.36 0.41 1.20 0.67 0.93 0.74 1.16 0.93 0.75

Synthetic
Sparse

MV avg. 81.99 79.01 80.47 65.91 62.64 64.23 60.61 68.00 64.09 69.59

s.d. 0.32 0.43 0.38 0.45 0.51 0.40 0.39 0.24 0.28 0.32

MPA avg. 87.90 88.24 88.07 70.67 73.91 72.25 74.62 73.63 74.12 78.15

s.d. 0.47 0.44 0.45 0.96 0.65 0.77 0.75 0.93 0.82 0.66

PD-inspired
Uniform

MV avg. 91.84 88.28 90.02 80.94 74.19 77.41 75.13 84.93 79.73 82.39

s.d. 0.36 0.49 0.42 0.61 0.84 0.66 0.88 0.55 0.72 0.58

MPA avg. 97.42 97.20 97.31 91.61 91.53 91.57 93.87 94.58 94.23 94.37

s.d. 0.27 0.28 0.27 1.05 1.28 1.15 0.67 0.61 0.63 0.68

PD-inspired
Sparse

MV avg. 86.86 81.70 84.20 74.26 65.42 69.56 65.45 78.51 71.39 75.05

s.d. 0.49 0.54 0.51 0.63 0.48 0.52 0.67 0.55 0.60 0.53

MPA avg. 94.86 94.09 94.47 85.24 84.42 84.83 87.52 89.91 88.70 89.33

s.d. 0.32 0.36 0.34 0.70 0.75 0.71 0.60 0.49 0.54 0.52

Table 5: The quality of the coreference chains on the CoNLL-2012 test set. Each simulated scenario is randomly
generated 10 times (summary reported in terms of average result and standard deviation)

tained as silver coreference chains8 – is a straight-
forward clustering task: we simply follow the link
structure from the pairs. In this Section we as-
sess the quality of the silver chains using standard
coreference metrics – in particular, the Extended
Scorer introduced in (Poesio et al., 2018) which
extends the official CONLL scorer to include in the
evaluation system-predicted singletons and non re-
ferring expressions, both of which are annotated
in Phrase Detectives; when singletons and non-
referring expressions are not considered, the Ex-
tended Scorer is identical to the official scorer.

As in the previous experiment, the evaluation is
conducted on the crowdsourced annotated PD 1.0
dataset and on simulated data generated from the
CONLL-2012 test set. We compare silver chains
produced using our MPA model, using MV, and
using the Stanford deterministic coreference sys-
tem (Stanford) (Lee et al., 2011). To run the latter
on PD 1.0, we used the default annotators of the
CoreNLP toolkit (Manning et al., 2014) to supply
the information required by the coreference sys-

8Our use of the term ’silver standard’ should not be con-
fused with the other common use of standard generated out
of automatic annotations.

tem and switched off the post-processing to output
singleton clusters; for the CONLL-2012 data we set
the dcoref.replicate.conll = true to run exactly
the same method as Lee et al. (2011). On both
datasets we evaluated on gold mentions.

Table 3 summarizes the results on the crowd-
sourced annotated PD 1.0 dataset. The silver
chains obtained using our MPA model are of a far
better quality than those of baseline alternatives
such as MV and Stanford. Note also that even the
simple MV baseline built from crowdsourced an-
notations yields much better chains compared to a
standard coreference system such as the Stanford
system. This underlines the advantage of crowd-
sourced annotations for coreference over automat-
ically produced annotations. In Table 4 we present
the scores of MPA and MV on cases of non refer-
ring. In this case, as well, the probabilistic model
substantially outperforms the MV baseline.

In Table 5 we present the results obtained on
simulated data from the CONLL-2012 test set. The
results follow a similar trend to those observed us-
ing actual annotations: a much better quality of
the chains produced using the mention pairs in-
ferred by our MPA model, across all the simulated
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MUC BCUB CEAFE Avg.
F1Simulation Method P R F1 P R F1 P R F1

None Gold 78.40 73.40 75.80 68.60 61.80 65.00 62.70 59.00 60.80 67.20

Stanford 79.87 63.67 70.86 71.63 47.85 57.37 58.55 48.08 52.80 60.34

Synthetic
Uniform

MV avg. 78.67 67.51 72.65 67.68 51.41 58.41 59.59 52.63 55.89 62.32

s.d. 0.87 0.73 0.13 1.48 0.99 0.27 0.62 0.64 0.34 0.22

MPA avg. 78.27 70.21 74.02 66.67 56.06 60.90 61.44 54.92 57.99 64.30

s.d. 0.64 0.57 0.23 1.03 0.81 0.31 0.50 0.51 0.27 0.24

Synthetic
Sparse

MV avg. 77.95 64.45 70.55 66.80 47.21 55.29 57.64 49.64 53.34 59.73

s.d. 0.75 1.18 0.52 1.17 1.75 0.89 0.64 1.10 0.76 0.72

MPA avg. 77.99 68.82 73.11 66.01 53.76 59.25 60.25 53.46 56.65 63.01

s.d. 0.55 0.51 0.25 0.93 0.84 0.42 0.43 0.38 0.27 0.28

PD-inspired
Uniform

MV avg. 78.99 68.44 73.33 68.42 52.86 59.63 59.99 54.04 56.85 63.27

s.d. 0.58 0.60 0.14 0.92 0.75 0.38 0.79 0.27 0.44 0.27

MPA avg. 78.35 72.39 75.25 67.65 59.89 63.53 62.32 57.70 59.92 66.23

s.d. 0.24 0.34 0.15 0.58 0.42 0.20 0.21 0.38 0.25 0.14

PD-inspired
Sparse

MV avg. 78.72 65.46 71.47 67.99 48.43 56.55 58.29 51.33 54.59 60.87

s.d. 0.70 0.68 0.33 1.43 0.96 0.55 0.57 0.62 0.53 0.45

MPA avg. 78.34 71.47 74.75 67.43 58.11 62.42 61.90 56.77 59.22 65.46

s.d. 0.44 0.62 0.20 0.83 0.94 0.26 0.27 0.49 0.28 0.23

Table 6: Results of a state of the art coreference system trained on silver chains obtained in different ways. Each
simulated scenario is randomly generated 10 times (summary is in terms of average result and standard deviation)

scenarios. Furthermore, the MV baseline achieves
better chains compared to the Stanford system in 3
out of 4 simulation settings, again showcasing the
potential of crowdsourced annotations.

3.4 Training on Silver Chains

In this Section we assessed the viability of using
the (silver) chains extracted from crowdsourcing
as an alternative to gold chains when training a
state of the art coreference system. Concretely,
we train the best-performing current system Lee
et al. (2017) on chains produced using our MPA
model, the MV baseline and the Stanford deter-
ministic system (Lee et al., 2011) (used mainly for
calibration, i.e., an alternative baseline that’s not
based on crowdsourced annotations). We also in-
clude the results obtained using actual gold chains.

The results are in Table 6. Across all simulated
scenarios, the silver chains produced by our MPA
model obtain the closest performance to training
on gold chains, and the best result is only 1 per-
centage point less than the result with gold chains.
Again, the MV chains lead to better performance
than those obtained using a system (Stanford).

These results, once again, indicate the utility of
crowdsourced annotations for coreference tasks.

3.5 Traditional Crowdsourcing Tasks

In this Section we show that MPA is state of the art
also on traditional crowdsourcing datasets, where
annotations fall into general classes that are con-
sistent across the annotated items. This evaluation
was done on the datasets (WSD, RTE and TEMP)
introduced by Snow et al. (2008) and widely used
as benchmarks in the literature on annotation mod-
els (Hovy et al., 2013; Carpenter, 2008).

We compare the results against a majority vote
baseline and two well-known state of the art mod-
els: a Bayesian version of the Dawid and Skene
(1979) (DS) model and MACE (Hovy et al., 2013).
We implement DS ourselves using variational in-
ference, while for MACE, we simply report the
published results. As in Hovy et al. (2013) the as-
sessment is done in terms of accuracy against the
gold standard. The results, presented in Table 7,
indicate the proposed model achieves performance
on par with the state of the art.
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4 Related Work

To our knowledge, this is the first paper proposing
a model of crowdsourced annotations for corefer-
ence. We did draw inspiration however from ex-
isting mention pair models of coreference and tra-
ditional models of annotation.

The so-called mention pair model is one of the
early machine learning approaches to coreference
resolution, made popular by Soon et al. (2001).
The model is based on a two step procedure: a
classification step which identifies the coreferent
mention pairs, followed by a clustering step which
builds the coreference chains from the aforemen-
tioned pairs. The diversity of mention pair mod-
els comes from the distinct approaches taken for
each of the two steps (Hoste, 2016). Although
we follow a similar two step procedure, there are
also important differences. Our way of identifying
the mention pairs is completely unsupervised, and
relies entirely on the crowdsourced annotations.
Furthermore, we pair every mention with only one
label, reducing the second step of clustering men-
tion pairs into appropriate coreference chains to
a simple grouping task guided by a unique path
which arises from the pairs.

All existing probabilistic models of annotation
(Dawid and Skene, 1979; Smyth et al., 1994;
Raykar et al., 2010; Hovy et al., 2013; Passon-
neau and Carpenter, 2014) assume the annotations
fall into a general set of classes that is consistent
across the annotated items. This is clearly not the
case in a coreference resolution task, a limitation
we had to address. We first transformed the an-
notations into a series of (per label) binary deci-
sions, approach often referred to, in the multi-class
classification literature, as the binary relevance
method (Tsoumakas and Katakis, 2007; Madjarov
et al., 2012). The transformation avoids modeling
the sparse labels directly. We further exploited the
fact that the annotations fall into a general set of
classes and assumed the inter-label decisions are
the result of the class-dependent ability of the an-
notators.

5 Conclusions

Crowdsourced annotations are an increasingly
popular alternative to expert annotation. Even
so, their viability for coreference annotation had
not been explored so far. This paper is a first
step to filling this gap. We introduced a men-
tion pair-based approach to aggregating crowd-

RTE TEMP WSD

MV 90.00 93.00 99.00

MACE 93.00 94.00 99.00

DS 93.00 94.00 99.00

MPA 93.00 94.00 99.00

Table 7: Accuracy on standard crowdsourced data

sourced anaphoric annotations and assessed the
quality of the inferred pairs, of the post-hoc con-
structed coreference chains, and the viability of
using the inferred chains as an alternative to gold
chains when training a state of the art corefer-
ence system. Throughout the experiments, the
model introduced was superior to baseline alter-
natives such as majority vote and chains obtained
automatically using a coreference system, across
both genuinely crowdsourced and simulated coref-
erence datasets. Furthermore, even the annotation-
based baseline achieved results consistently better
than those obtained by automatic coreference re-
solvers, strengthening the case for using crowd-
sourced annotations to create coreference datasets.
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A Supplementary Parameter Estimation
Details

This Section gives supplementary details for the
derivations involved in the parameter estimation
process.

In Equation (10) we derive the complete con-
ditional of the class-specific true label likelihood:

p(⇡h|...) / p(⇡h|a, b)
I,MiY

i,m

p(ci,m|⇡h)I(zi,m=h)
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b +
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(10)

The corresponding variational distribution has
the same form, i,e, q(⇡h|�h, ⌘h) = Beta(�h, ⌘h).
Taking the expectation of the natural parameters of
the above distribution gives the variational update
formulas for the class-level true label likelihood
expressed in the paper. For example, for the �h

variational parameter we have:

�h = a +
I,MiX

i,m

I(zi,m = h)Eq[I(ci,m = 1)]

= a +
I,MiX

i,m

I(zi,m = h)�i,m

(11)

Similar steps were taken to derive the varia-
tional parameters associated with the sensitivity ↵
and specificity �.

In Equation (12) we derive the complete condi-
tional associated with the positive outcome of the
true label indicator:

p(ci,m = 1|...) / p(ci,m = 1|⇡zi,m)⇥

⇥
NiY

n
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)}

(12)

The corresponding variational distribution has
the same form, i,e, q(ci,m|�i,m) = Bern(�i,m).
Taking the necessary expectations leads to the up-
date formula expressed in the paper. Concretely,
we have:

log �i,m / Eq[log ⇡zi,m ]+

+
NiX
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)]

(13)

The update formula for the negative outcome of
the true label indicator ⇣i,m is derived in a similar
manner. Following the above derivations should
also make it straightforward to expand the ELBO.

For completeness, we make a note of the
digamma function  () – this is the first derivative
of the log� function and can be computed using a
Taylor approximation.
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Abstract
Previous work on bridging anaphora resolu-
tion (Poesio et al., 2004; Hou et al., 2013b)
use syntactic preposition patterns to calculate
word relatedness. However, such patterns only
consider NPs’ head nouns and hence do not
fully capture the semantics of NPs. Recently,
Hou (2018) created word embeddings (em-
beddings PP) to capture associative similarity
(i.e., relatedness) between nouns by exploring
the syntactic structure of noun phrases. But
embeddings PP only contains word represen-
tations for nouns. In this paper, we create new
word vectors by combining embeddings PP
with GloVe. This new word embeddings (em-
beddings bridging) are a more general lexi-
cal knowledge resource for bridging and allow
us to represent the meaning of an NP beyond
its head easily. We therefore develop a deter-
ministic approach for bridging anaphora res-
olution, which represents the semantics of an
NP based on its head noun and modifications.
We show that this simple approach achieves
the competitive results compared to the best
system in Hou et al. (2013b) which explores
Markov Logic Networks to model the prob-
lem. Additionally, we further improve the re-
sults for bridging anaphora resolution reported
in Hou (2018) by combining our simple de-
terministic approach with Hou et al. (2013b)’s
best system MLN II.

1 Introduction

Anaphora plays a major role in discourse com-
prehension and accounts for the coherence of a
text. In contrast to identity anaphora which in-
dicates that a noun phrase refers back to the
same entity introduced by previous descriptions
in the discourse, bridging anaphora or associa-
tive anaphora links anaphors and antecedents via
lexico-semantic, frame or encyclopedic relations.
Bridging resolution is the task to recognize bridg-
ing anaphors (e.g., distribution arrangements in

Example 11) and find links to their antecedents
(e.g., dialysis products in Example 1).

(1) While the discussions between Delmed and
National Medical Care have been discontinued,
Delmed will continue to supply dialysis prod-
ucts through National Medical after their exclu-
sive agreement ends in March 1990, Delmed said.
In addition, Delmed is exploring distribution ar-
rangements with Fresenius USA, Delmed said.

Most previous empirical research on bridging
(Poesio and Vieira, 1998; Poesio et al., 2004;
Markert et al., 2003; Lassalle and Denis, 2011;
Hou et al., 2013b) focus on bridging anaphora
resolution, a subtask of bridging resolution that
aims to choose the antecedents for bridging
anaphors. For this substask, most previous work
(Poesio et al., 2004; Lassalle and Denis, 2011;
Hou et al., 2013b) calculate semantic relatedness
between an anaphor and its antecedent based on
word co-occurrence counts using certain syntac-
tic patterns. However, such patterns only consider
head noun knowledge and hence are not sufficient
for bridging relations which require the semantics
of modification. In Example 1, in order to find
the antecedent (dialysis products) for the bridging
anaphor “distribution arrangements”, we have
to understand the semantics of the modification
“distribution”.

Over the past few years, word embeddings
gained a lot popularity in the NLP community.
State-of-the-art word vectors such as word2vec
skip-gram (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) have been shown to perform
well across a variety of NLP tasks, including tex-
tual entailment (Rocktäschel et al., 2016), reading

1All examples, if not specified otherwise, are from IS-
Notes (Markert et al., 2012). Bridging anaphors are typed
in boldface, antecedents in italics throughout this paper.
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comprehension (Chen et al., 2016) and corefer-
ence resolution (Lee et al., 2017).

Recently, Hou (2018) found that these vanilla
word embeddings capture both “genuine” similar-
ity and relatedness, and hence they are not suit-
able for bridging anaphora resolution which re-
quires lexical association knowledge instead of se-
mantic similarity information between synonyms
or hypernyms. Hou (2018) created word embed-
dings for bridging (embeddings PP) by exploring
the syntactic structure of noun phrases (NPs) to
derive contexts for nouns in the GloVe model.

However, embeddings PP only contains the
word representations for nouns. In this paper,
we improve embeddings PP by combining it with
GloVe. The resulting word embeddings (embed-
dings bridging) are a more general lexical knowl-
edge resource for bridging anaphora resolution.
Compared to embeddings PP, the coverage of lex-
icon in embeddings bridging is much larger. Also
the word representations for nouns without the
suffix “ PP” are more accurate because they are
trained on many more instances in the vanilla
GloVe. Based on this general vector space, we
develop a deterministic algorithm to select an-
tecedents for bridging anaphors. Our approach
combines the semantics of an NP’s head with
the semantics of its modifications by vector av-
erage using embeddings bridging. We show that
this simple, efficient method achieves the com-
petitive results on ISNotes for the task of bridg-
ing anaphora resolution compared to the best sys-
tem in Hou et al. (2013b) which explores Markov
Logic Networks to model the problem.

The main contributions of our work are: (1) a
general word representation resource2 for bridg-
ing; and (2) a simple yet competitive deterministic
approach for bridging anaphora resolution which
models the meaning of an NP based on its head
noun and modifications.

2 Related Work

Lexical/world knowledge for bridging: Hou
et al. (2013a) explored various lexico-semantic
features for bridging anaphora recognition. Hou
(2016) proposed an attention-based LSTM model
with pre-trained word embeddings for information
status classification and reported moderate results
for bridging recognition. Previous work on bridg-

2embeddings bridging can be downloaded from https:
//doi.org/10.5281/zenodo.1403164

ing anaphora resolution (Poesio et al., 2004; Las-
salle and Denis, 2011; Hou et al., 2013b) explored
word co-occurrence counts in certain syntactic
preposition patterns to calculate word relatedness.
For instance, the big hit counts of the query “the
door of the house” in large corpora could indi-
cate that door and house stand in a part-of rela-
tion. These patterns encode associative relations
between nouns which cover a variety of bridging
relations. Unlike previous work which only con-
sider a small number of prepositions per anaphor,
the PP context model (Hou, 2018) uses all prepo-
sitions for all nouns in big corpora. It also includes
the possessive structure of NPs. In this paper,
we further improve Hou (2018)’s embeddings PP
by combining it with the vanilla GloVe. The re-
sulting word embeddings (embeddings bridging)
are a more general lexical knowledge resource for
bridging resolution. In addition, it enables ef-
ficient computation of word association strength
through low-dimensional matrix operations.

Bridging anaphora resolution: regarding the
methods to select antecedents for bridging
anaphors, Poesio et al. (2004) applied a pair-
wise model combining lexical semantic features
as well as salience features to perform mereo-
logical bridging resolution in the GNOME cor-
pus3. To address the data sparseness problem (e.g.,
some part-of relations are not covered by Word-
Net), they used the Web to estimate the part-of
relations expressed by certain syntactic construc-
tions. Based on the method proposed by Poesio
et al. (2004), Lassalle and Denis (2011) devel-
oped a system that resolves mereological bridging
anaphors in French. The system was enriched with
meronymic information extracted from raw texts.
Such information was extracted in a bootstrapping
fashion by iteratively collecting meronymic pairs
and the corresponding syntactic patterns. Lassalle
and Denis (2011) evaluated their system on mere-
ological bridging anaphors annotated in the DEDE
corpus and reported an accuracy of 23%.

Markert et al. (2012) released a corpus called
ISNotes which contains unrestricted bridging an-
notations. Based on this corpus, Hou et al. (2013b)
proposed a joint inference framework for bridg-
ing anaphora resolution using Markov logic net-
works (Domingos and Lowd, 2009). The frame-
work resolves all bridging anaphors in one docu-
ment together by modeling that semantically re-

3The GNOME corpus is not publicly available.

1939



Noun Phrases Extracted Noun Pairs
travelers in the train station travelers PP – station
travelers from the airport travelers PP – airport
hotels for travelers hotels PP – travelers
the destination for travelers destination PP – travelers
the company’s new appointed chairman chairman PP – company

Table 1: Examples of noun phrases as well as the extracted noun pairs in embeddings PP. Bold indicates the head
noun of an NP.

lated anaphors are likely to share the same an-
tecedent.

ISNotes is a challenging corpus for bridging.
First, bridging anaphors are not limited to defi-
nite NPs as in previous work (Poesio et al., 1997,
2004; Lassalle and Denis, 2011). Also in IS-
Notes, the semantic relations between anaphor and
antecedent are not restricted to meronymic rela-
tions. We therefore choose ISNotes to evalu-
ate our algorithm for bridging anaphora resolu-
tion. Our approach is deterministic and simple, but
achieves the competitive results compared to the
advanced machine learning-based approach (Hou
et al., 2013b). We also improve the result reported
in Hou (2018) on the same corpus by combining
our deterministic approach with the best system
from Hou et al. (2013b).

Just recently, two new corpora (Rösiger, 2018a;
Poesio et al., 2018) with bridging annotations have
become available and we notice that the defini-
tions of bridging in these corpora are different
from the bridging definition in ISNotes. We ap-
ply our algorithm with small adaptations to select
antecedents for bridging anaphors on these cor-
pora. The moderate results demonstrate that em-
beddings bridging is a general word representa-
tion resource for bridging.

3 Word Representations for Bridging

3.1 Word Embeddings Based on PP Contexts
(embeddings PP)

We briefly describe Hou (2018)’s embeddings PP
in this section. embeddings PP released by Hou
(2018) contains 100-dimensional vectors for 276k
nouns. It is trained over 197 million noun pairs
extracted from the automatically parsed Gigaword
corpus (Parker et al., 2011; Napoles et al., 2012).
The author generates these noun pairs by ex-
ploring the syntactic prepositional and possessive
structures of noun phrases. These two structures
encode a variety of bridging relations between

anaphors and their antecedents. For instance, the
prepositional structure in “the door of the house”
indicates the part-of relation between “door” and
“house”. More specifically, for NPs containing
the prepositional structure (e.g., X preposition Y)
or the possessive structure (e.g., Y ’s X), the au-
thor extracts the noun pair “X PP–Y”. Note that
the head of the NP is always on the left and the
noun modifier is always on the right. In addition,
the suffix “ PP” is added for the nouns on the left.
Table 1 shows a few examples of noun phrases to-
gether with the extracted noun pairs.

Hou (2018) showed that the suffix “ PP” plays
an important role for the model to learn the asym-
metric relations between the head nouns and their
noun modifiers from the extracted noun pairs. For
instance, among the top five nearest neighbors in
embeddings PP, “president PP” is mostly related
to countries or organizations (e.g., “federation”,
“republic”, or “USA”), while “president” is mostly
related to words which have the same semantic
type as “president” (e.g., “minister”, “mayor”, or
“governor”).

3.2 Word Representations for Bridging
(embeddings bridging)

embeddings PP described in the previous sec-
tion only contains word representations for nouns.
To improve the coverage of lexical information,
we create a general word representation resource
embeddings bridging by merging embeddings PP
with the original GloVe vectors trained on Gi-
gaword and Wikipedia datasets. Specifically,
given the 100 dimension word embeddings em-
beddings PP and GloVe, we first create a 100 di-
mension vector vfiller with the value of each di-
mension as 0.14. Let v1w represent the vector for
the word w in GloVe, v2w represent the vector for
the word w in embeddings PP, if a word w appears

4Theoretically, any 100 dimension random vector with
uniform distribution could be used as vfiller .
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embeddings bridging embeddings PP
dimension size 200 100
vocabulary size 532,768 276,326
word type all nouns

Table 2: Comparison between embeddings bridging and embeddings PP

Category Relation prototypical word embeddings embeddings GloVe
pair example bridging PP

PART–WHOLE Object: Component {face: nose} 0.43 0.27 0.40
PART–WHOLE Event: Feature {wedding: bride} 0.46 0.29 0.15
PART–WHOLE Creature: Possession {author: copyright} 0.23 0.14 0.21
PART–WHOLE Activity: Stage {buying: shopping} 0.32 0.30 0.25

Table 3: Spearman’s rank correlation coefficient ⇢ for typical PART–WHOLE bridging relations using embed-
dings bridging, embeddings PP and GloVe.

both in GloVe and in embeddings PP, its vector
in embeddings bridging is the concatenation of
v1w and v2w. For the word w1 which only ap-
pears in GloVe, its vector in embeddings bridging
is the concatenation of v1w1 and vfiller. Finally,
for the word w2 which only appears in embed-
dings PP (all the words with the suffix “ PP”),
we construct its vector by concatenating vfiller

and v2w2 . The resulting 200 dimension word em-
beddings (embeddings bridging) is a general lex-
ical resource for bridging. Table 2 compares the
main features between embeddings bridging and
embeddings PP. In the next section, we will com-
pare embeddings bridging with embeddings PP
and the original GloVe on a few typical bridging
relations in the task of measuring relational simi-
larity (Jurgens et al., 2012). Moreover, in Section
5.3 and Section 5.4, we show that using embed-
dings bridging yields better results than using em-
beddings PP for bridging anaphora resolution.

3.3 Measuring Relational Similarity on
Typical Bridging Relations

We evaluate our embeddings bridging quantita-
tively using a few typical bridging relations from
SemEval-2012 Task 2 (Jurgens et al., 2012). The
shared task aims to rank word pairs by the degree
to which they are prototypical members of a given
relation class. For instance, given the prototyp-
ical word pairs {wedding–bride, rodeo–cowboy,
banquet–food} for the relation Event:Feature, we
would like to know among the input word pairs
{school–students, circus–clown, meal–food, lion–
zoo}, which one represents the relation best.

SemEval-2012 Task 2 contains 79 relation
classes chosen from Bejar et al. (1991). These
relations fall into ten main categories, including
SIMILAR, PART–WHOLE, CONTRAST and more.
Each relation class is paired with a few prototyp-
ical word pairs and a list of around 40 word pairs
which are ranked by humans according to their
degree of similarity to the corresponding relation.
We choose all typical bridging relations under the
PART–WHOLE category and evaluate our embed-
dings bridging in terms of ranking the list of word
pairs for each relation. Spearman’s rank correla-
tion coefficient ⇢ is used to evaluate a system by
comparing the system’s ranking of the word pairs
against the gold standard ranking.

Following Zhila et al. (2013), we calculate the
relational similarity between word pairs using co-
sine similarity. Let (w1, w2) and (w3, w4) be the
two word pairs, v1, v2, v3, v4 be the correspond-
ing vectors for these words. We first normalize
all word vectors to unit vectors, then the relational
similarity between (w1, w2) and (w3, w4) is calcu-
lated as:

(v1 � v2) · (v3 � v4)

k v1 � v2 kk v3 � v4 k (1)

For each chosen relation class, we rank the list
of word pairs according to their mean relational
similarity to the given prototypical word pairs. Ta-
ble 3 shows the results of Spearman’s rank correla-
tion coefficient ⇢ for each typical bridging relation
using embeddings bridging, embeddings PP, and
GloVe, respectively. Note that when using embed-
dings bridging and embeddings PP, we add the
suffix “ PP” to the potential bridging anaphor for
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bridging anaphor: distribution arrangements
Ante. Candidates Head Head + Modifiers disth disthm

the discussions between Delmed {discussions} {discussions} 0.05 -0.10
and National Medical Care
Delmed {delmed} {delmed} — —
National Medical Care {care} {care} 0.08 0.10
dialysis products {products} {dialysis, products} 0.06 0.17
National Medical {medical} {medical} 0.02 -0.01
their {their} {their} -0.05 -0.01
their exclusive agreement {agreement} {exclusive, agreement} 0.07 0.03

Table 4: The cosine similarities between the bridging anaphor distribution arrangements and its antecedent can-
didates for Example 1. disth indicates the cosine similarity between {arrangements PP} and the candidate head,
disthm the cosine similarity between {distribution PP, arrangements PP} and Head+Modifiers. “–” means
Delmed is not present in embeddings bridging and therefore we neglect this candidate.

each word pair (e.g., {wedding: bride PP}). As
shown in Table 3, using embeddings bridging per-
forms better than both using embeddings PP and
using the vanilla GloVe vectors on these four part-
of relation classes. This partially indicates that
embeddings bridging could capture lexical knowl-
edge for bridging relations.

4 A Deterministic Algorithm for
Bridging Anaphora Resolution

In this section, we describe our deterministic al-
gorithm based on embeddings bridging for bridg-
ing anaphora resolution. For each anaphor a, we
construct the list of antecedent candidates Ea us-
ing NPs preceding a from the same sentence as
well as from the previous two sentences. Hou
et al. (2013b) found that globally salient entities
are likely to be the antecedents of all anaphors in a
text. We approximate this by adding NPs from the
first sentence of the text to Ea. This is motivated
by the fact that ISNotes is a newswire corpus and
globally salient entities are often introduced in the
beginning of an article. We exclude an NP from
Ea if it is a bridging anaphor because a bridging
anaphor is rarely to be an antecedent for another
bridging anaphor. We also exclude NPs whose se-
mantic types are “time” from Ea if a is not a time
expression. This is because time expressions are
related to a lot of words in the corpus in which
we learned embeddings bridging from. Therefore
we only keep them as the antecedent candidates
for bridging anaphors whose semantic types are
“time” (see Example 2).

(2) As a presidential candidate in 1980, George
Bush forthrightly expressed his position on abor-

tion in an interview with Rolling Stone magazine
published that March.

Given an anaphor a and its antecedent candidate
list Ea, we predict the most semantically related
NP among all NPs in Ea as the antecedent for a.
In case of a tie, the closest one is chosen to be the
predicted antecedent.

The relatedness is measured via cosine sim-
ilarity between the vector representation of the
anaphor and the vector representation of the candi-
date. More specifically, given a noun phrase np1,
we first construct a list N which consists of the
head and all common nouns (e.g., earthquake vic-
tims), adjectives (e.g., economical sanctions), and
ed/ing participles (e.g., the collapsed roadway and
the landing site) appearing before the head. If np1

contains a post-modifier NP np2 via the preposi-
tion “of”, we also add the above premodifiers and
the head of np2 to the list N (e.g., the policies of
racial segregation). Finally, the noun phrase np1

is represented as a vector v using the following
formula, where the suffix “ PP” is added to each n
if np1 is a bridging anaphor and its semantic type
is not time:

v =

P
n2N embeddings bridgingn

|N | (2)

The underlying intuition of adding NP modifi-
cations to the list N is that the above mentioned
modifiers also represent core semantics of an NP,
therefore we should consider them when select-
ing antecedents for bridging anaphors. For in-
stance, as shown in Table 4, for Example 1, the co-
sine similarity between {arrangements PP} and
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{products} is 0.06, while the cosine similarity be-
tween {distribution PP, arrangements PP} and
{dialysis, products} is 0.17.

If none of the words in N is present in embed-
dings bridging, we simply neglect the noun phrase
np1. Note that we do not add the suffix “ PP” to
a bridging anaphor representing time information,
because such an anaphor is likely to have the same
semantic type antecedent (see Example 2). There-
fore we use semantic similarity instead of related-
ness to find its antecedent.

5 Experiments

5.1 Dataset

For the task of bridging anaphora resolution, we
use the dataset ISNotes5 released by Markert et al.
(2012). This dataset contains around 11,000 NPs
annotated for information status including 663
bridging NPs and their antecedents in 50 texts
taken from the WSJ portion of the OntoNotes cor-
pus (Weischedel et al., 2011). As stated in Sec-
tion 2, bridging anaphors in ISNotes are not lim-
ited to definite NPs as in previous work (Poe-
sio et al., 1997, 2004; Lassalle and Denis, 2011).
The semantic relations between anaphor and an-
tecedent in the corpus are quite diverse: only
14% of anaphors have a part-of/attribute-of rela-
tion with the antecedent and only 7% of anaphors
stand in a set relationship to the antecedent. 79%
of anaphors have “other” relation with their an-
tecedents. This includes encyclopedic or frame
relations such as restaurant – the waiter as well
as context-specific relations such as palms – the
thieves. In Example 1, “dialysis products” is
the “theme” of the distribution arrangements.
More specifically, “dialysis products” belongs to
the frame element “Individuals” in the “Dispersal”
frame that is triggered by “distribution arrange-
ments”.

5.2 Experimental Setup

Following Hou et al. (2013b)’s experimental
setup, we resolve bridging anaphors to entity an-
tecedents. Entity information is based on the
OntoNotes coreference annotation. We also use
the OntoNotes named entity annotation to assign
NPs the semantic type “time” if their entity types
are “date” or “time”.

5http://www.h-its.org/en/research/nlp/
isnotes-corpus

In Hou et al. (2013b), features are extracted
by using entity information. For instance, the
raw hit counts of the preposition pattern query
(e.g., arrangements of products) for a bridging
anaphor a and its antecedent candidate e is the
maximum count among all instantiations of e. In
our experiments, we simply extend the list of an-
tecedent candidates Ea (described in Section 4)
to include all instantiations of the original enti-
ties in Ea. Note that our simple antecedent can-
didate selection strategy (described in Section 4)
allows us to include 76% of NP antecedents com-
pared to 77% in pairwise model III from Hou
et al. (2013b) where they add top 10% salient en-
tities as additional antecedent candidates. In Hou
et al. (2013b), salient entities on each text are mea-
sured through the lengths of the coreference chains
based on the gold coreference annotation.

Following Hou et al. (2013b), we measure accu-
racy on the number of bridging anaphors, instead
of on all links between bridging anaphors and their
antecedent instantiations. We calculate how many
bridging anaphors are correctly resolved among
all bridging anaphors.

5.3 Using NP Head Alone

Given an anaphor a and its antecedent candidate
list Ea, we predict the most related NP among all
NPs in Ea as the antecedent for a6. The relat-
edness is measured via cosine similarity between
the head of the anaphor (plus the postfix “ PP”
if the anaphor is not a time expression) and the
head of the candidate. We run experiments on
the following four word embeddings: the original
GloVe vectors trained on Gigaword and Wikipedia
2014 dump (GloVe GigaWiki14), GloVe vectors
that we trained on Gigaword only (GloVe Giga),
word vectors from Hou (2018) (embeddings PP),
and our word representation resource described in
Section 3.2 (embeddings bridging). Note that for
the first two word vectors, we do not add the suffix
“ PP” to the anaphor’s head since such words do
not exist in GloVe GigaWiki14 and GloVe Giga.

Table 5 lists the results for bridging anaphora
resolution based on different word representa-
tion resources7. We notice that there is not

6In case of a tie, the closest one is chosen to be the pre-
dicted antecedent.

7Note that the results for the first three word embeddings
are slight better than the ones reported in Hou (2018). This is
due to the improved antecedent candidate selection strategy
described in Section 4.
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acc
GloVe GigaWiki14 21.42
GloVe Giga 21.87
embeddings PP 33.03
embeddings bridging 34.84

Table 5: Results of using NP head alone for bridg-
ing anaphora resolution based on different word repre-
sentation resources. Bold indicates statistically signif-
icant differences over the baselines (two-sided paired
approximate randomization test, p < 0.01).

much difference between GloVe GigaWiki14 and
GloVe Giga. We find that using embeddings PP
achieves an accuracy of 33.03% on the ISNotes
corpus, which outperforms the results based on
GloVe GigaWiki14 and GloVe Giga by a large
margin. Using embeddings bridging further im-
proves the result by 1.8%. Although the improve-
ment is not significant, we suspect that the repre-
sentations for words without the suffix “ PP” in
embeddings bridging are more accurate because
they are trained on many more instances in the
vanilla GloVe vectors (GloVe GigaWiki14).

5.4 Using NP Head + Modifiers
We carried out experiments using the determinis-
tic algorithm described in Section 4 together with
different word embeddings. Again we do not
add the suffix “ PP” to the bridging anaphors for
GloVe GigaWiki14 and GloVe Giga.

Table 6 lists the best results of the two models
for bridging anaphora resolution from Hou et al.
(2013b). pairwise model III is a pairwise mention-
entity model based on various semantic, syntac-
tic and lexical features. MLN model II is a joint
inference framework based on Markov logic net-
works (Domingos and Lowd, 2009). It models that
semantically or syntactically related anaphors are
likely to share the same antecedent and achieves
an accuracy of 41.32% on the ISNotes corpus.

The results for GloVe GigaWiki14 and
GloVe Giga are similar on two settings (us-
ing NP head vs. using NP head + modifiers). For
embeddings PP, the result on using NP head +
modifiers (31.67%) is worse than the result on
using NP head (33.03%). However, if we apply
embeddings PP to a bridging anaphor’s head and
modifiers, and only apply embeddings PP to the
head noun of an antecedent candidate, we get an
accuracy of 34.53%. Although the differences are
not significant, it confirms that the information

acc
models from Hou et al. (2013b)
pairwise model III 36.35
MLN model II 41.32

NP head + modifiers
GloVe GigaWiki14 20.52
GloVe Giga 20.81
embeddings PP 31.67
embeddings bridging 39.52

Table 6: Results of using NP head plus modifications
in different word representations for bridging anaphora
resolution compared to the best results of two models
from Hou et al. (2013b). Bold indicates statistically
significant differences over the other models (two-sided
paired approximate randomization test, p < 0.01).

from the modifiers of the antecedent candidates
in embeddings PP hurts the performance. This
corresponds to our observations in the previous
section that the representations for words without
the suffix “ PP” in embeddings PP are not as good
as in embeddings bridging due to less training
instances.

Finally, our method based on embed-
dings bridging achieves an accuracy of 39.52%,
which is competitive to the best result (41.32%)
reported in Hou et al. (2013b). There is no sig-
nificant difference between NP head + modifiers
based on embeddings bridging and MLN model II
(randomization test with p < 0.01).

To gain an insight into the contribution of em-
beddings bridging on different relation types, we
analyze the results of our method using embed-
dings bridging on three relation types: set-of,
part-of, and other. The accuracies on these three
relation types are 17.78%, 50.0%, and 39.16%,
respectively. This suggests that in the future we
should include more context for bridging anaphors
that hold the set-of relation to their antecedents,
because the head nouns of such anaphors often do
not bear any specific meanings (e.g., Another).

5.5 Analysis of Modifiers
To better understand the role of NP modifiers in
our method, we carried out experiments on em-
beddings bridging using different set of modifiers
(see Table 7). It seems that among all three
types of modifiers, compared to using NP head
alone, adding noun modifiers has the positive im-
pact (36.65% on NP head + noun modifiers vs.
34.84% on NP head). Although adding only ad-
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embeddings bridging acc
NP head 34.84
+ all modifiers 39.52
+ noun modifiers 36.65
+ adjective modifiers 34.84
+ ed/ing participle modifiers 34.84
+ noun&adjective modifiers 38.31
+ noun&ed/ing participle modifiers 36.80
+ adjective&ed/ing participle modifiers 34.84

Table 7: Results of using NP head plus different mod-
ifications in embeddings bridging.

jective modifiers does not have influence on re-
sults, combining them with noun modifiers yields
some improvement over adding only noun modi-
fiers (38.31% on NP head + noun&adjective mod-
ifiers vs. 36.65% on NP head + noun modifiers).
On the other hand, ed/ing participle modifiers only
have a small positive impact over NP head + noun
modifiers when combining with noun modifiers.

5.6 Combining NP Head + Modifiers with
MLN II

For bridging anaphora resolution, Hou (2018) in-
tegrates a much simpler deterministic approach
by combining an NP head with its noun modi-
fiers (appearing before the head) based on em-
beddings PP into the MLN II system (Hou et al.,
2013b). Similarly, we add a constraint on top
of MLN II using our deterministic approach (NP
head + modifiers) based on embeddings bridging.
Table 8 lists the results of different systems8 for
bridging anaphora resolution in ISNotes. It shows
that combining our deterministic approach (NP
Head + modifiers) with MLN II slightly improves
the result compared to Hou (2018).

Although combining NP Head + modifiers with
MLN II achieves significant improvement over NP
Head + modifiers, we think the latter has its own
value. Our deterministic algorithm is simpler and
more efficient compared to MLN model II + em-

8We also reimplement the algorithms from Schulte im
Walde (1998) and Poesio et al. (2004) as baselines (Table
8). Schulte im Walde (1998) resolved bridging anaphors to
the closest antecedent candidate in a high-dimensional space.
We use the 2,000 most frequent words (adjectives, common
nouns, proper nouns, and lexical verbs) from Gigaword as the
context words. Poesio et al. (2004) applied a pairwise model
combining lexical semantic features and salience features to
perform mereological bridging resolution in the GNOME
corpus. We use a Naive Bayes classifier with standard set-
tings in WEKA (Witten and Frank, 2005) and apply the best
first strategy to select the antecedent for each anaphor.

beddings bridging, which contains many compli-
cated features and might be hard to migrate to
other bridging corpora. Moreover, our algorithm
is “unsupervised” and requires no training when
applied to other English bridging corpora.

5.7 Resolving Bridging Anaphors in Other
Corpora

Recently, two new corpora containing bridging an-
notation have become available. The BASHI cor-
pus (Rösiger, 2018a) contains 459 bridging NPs
and their antecedents in 50 World Street Jour-
nal articles. Similar to ISNotes, BASHI includes
both definite and indefinite referential bridging
anaphors. In addition, comparative anaphora is
also considered as bridging anaphora in BASHI.

Another new corpus for bridging is the sec-
ond release of the ARRAU corpus, which con-
tains 5,512 bridging pairs in three different do-
mains (Poesio et al., 2018). However, most bridg-
ing links in ARRAU are purely lexical bridging
pairs, and only a small subset of the annotated
pairs contains truly anaphoric bridging anaphors
(Rösiger et al., 2018). Following Rösiger et al.
(2018), we focus on resolving bridging anaphors
in the news text domain (RST).

Based on embeddings bridging, we apply our
deterministic algorithm with small adaptations to
resolve bridging anaphors to entity antecedents on
the BASHI and ARRAU (RST) corpora. Specifi-
cally, for the BASHI corpus, we do not add NPs
from the first sentence to the list of antecedent
candidates Ea. This is because the phenomenon
of globally salient antecedents being linked to all
anaphors in a text is less obvious in BASHI. In ad-
dition, comparative anaphors often have the same
semantic class as their antecedents, therefore we
do not add the suffix “ PP” to a bridging anaphor
if it is a comparative anaphor.

For the ARRAU corpus, we construct the list of
antecedent candidates Ea using NPs preceding a
from the same sentence as well as from the pre-
vious ten sentences. Since most bridging pairs in
ARRAU are lexical bridging (e.g., Tokyo – Japan,
other nations – Britain) and anaphors often have
the same semantic type as their antecedents, we do
not add the suffix “ PP” to bridging anaphors.

Table 9 lists the results of bridging anaphora
resolution in the BASHI and ARRAU corpora,
respectively. On the test set of the ARRAU
(RST) corpus, Rösiger (2018b) proposed a modi-
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System acc
Baselines Schulte im Walde (1998) 13.68

Poesio et al. (2004) 18.85
Models from pairwise model III 36.35
Hou et al. (2013b) MLN model II 41.32
Hou (2018) MLN model II + embeddings PP (NP head + noun pre-modifiers) 45.85
This work embeddings bridging (NP head + modifiers) 39.52

MLN model II + embeddings bridging (NP head + modifiers) 46.46

Table 8: Results of different systems for bridging anaphora resolution in ISNotes. Bold indicates statistically
significant differences over the other models (two-sided paired approximate randomization test, p < 0.01).

Corpus Bridging Type # of Anaphors acc
BASHI referential, including comparative anaphora 452 27.43
BASHI referential, excluding comparative anaphora 344 29.94
ARRAU (RST Train) mostly lexical, some referential 2,325 31.44
ARRAU (RST Test) mostly lexical, some referential 639 32.39

Table 9: Results of resolving bridging anaphors in other corpora. Number of bridging anaphors is reported after
filtering out a few problematic cases on each corpus.

fied rule-based system based on Hou et al. (2014)’s
work and reported an accuracy of 39.8% for
bridging anaphora resolution. And our algorithm
achieves an accuracy of 32.39% using only em-
beddings bridging. Overall, the reasonable per-
formance on these two corpora demonstrates that
embeddings bridging is a general word represen-
tation resource for bridging.

6 Conclusions

We improve the word representation resource em-
beddings PP (Hou, 2018) by combining it with
GloVe. The resulting word embeddings (embed-
dings bridging) are a more general word repre-
sentation resource for bridging. Based on em-
beddings bridging, we propose a deterministic
approach for choosing antecedents for bridging
anaphors. We show that this simple and effi-
cient method achieves the competitive result on
bridging anaphora resolution compared to the ad-
vanced machine learning-based approach in Hou
et al. (2013b) which is heavily dependent on a
lot of carefully designed complex features. We
also demonstrate that using embeddings bridging
yields better results than using embeddings PP for
bridging anaphora resolution.

For the task of bridging anaphora resolution,
Hou et al. (2013b) pointed out that considering
only head noun knowledge is not enough and fu-
ture work needs to explore wider context to re-

solve context-specific bridging relations. In this
work we explore the context within NPs—that is,
we combine the semantics of certain modifica-
tions and the head by vector average using em-
beddings bridging. But in some cases, knowledge
about NPs themselves is not enough for resolv-
ing bridging. For instance, in Example 3, know-
ing that any loosening has the ability to “rekindle
inflation” from the context of the second sentence
can help us to find its antecedent “the high rates”
(which is used to against inflation).

(3) Chancellor of the Exchequer Nigel Lawson
views the high rates as his chief weapon against
inflation, which was ignited by tax cuts and loose
credit policies in 1986 and 1987. Officials fear
that any loosening this year could rekindle in-
flation or further weaken the pound against other
major currencies.

In the future, we will study how to integrate
context outside of NPs for the task of choosing an-
tencedents for bridging anaphors. Also we hope
that our word representation resource will facil-
itate other related research problems such as se-
mantic role labeling.
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Abstract

We introduce an automatic system that
achieves state-of-the-art results on the Wino-
grad Schema Challenge (WSC), a common
sense reasoning task that requires diverse,
complex forms of inference and knowledge.
Our method uses a knowledge hunting mod-
ule to gather text from the web, which serves
as evidence for candidate problem resolutions.
Given an input problem, our system gener-
ates relevant queries to send to a search en-
gine, then extracts and classifies knowledge
from the returned results and weighs them to
make a resolution. Our approach improves F1
performance on the full WSC by 0.21 over
the previous best and represents the first sys-
tem to exceed 0.5 F1. We further demonstrate
that the approach is competitive on the Choice
of Plausible Alternatives (COPA) task, which
suggests that it is generally applicable.

1 Introduction

The importance of common-sense reasoning in
natural language processing, particularly for syn-
tactic and semantic disambiguation, has long been
recognized. Almost 30 years ago, Dahlgren et al.
(1989) proposed systems that use common sense
to disambiguate parse trees, word senses, and
quantifier scope. Although the resolution of cer-
tain ambiguities depends chiefly on linguistic pat-
terns (e.g., the number and gender of an antecedent
for pronoun disambiguation), many cases de-
pend on world knowledge, shared points of refer-
ence, and an understanding of what is plausible—
concepts often grouped under the term “common
sense.”

Various tasks have been devised to test
common-sense reasoning in automatic systems.
Two of the most popular are the Winograd Schema
Challenge (WSC) (Levesque et al., 2011) and the
Choice of Plausible Alternatives (COPA) (Roem-

mele et al., 2011). Both require a system to assess
the relative plausibility of two scenarios.

WSC problems are short passages containing a
target pronoun that must be correctly resolved to
one of two possible antecedents. They come in
pairs which differ slightly and result in adverse
correct resolutions. As an example:

(1) a. Jim yelled at Kevin because he was so
upset. (Answer: Jim)

b. Jim comforted Kevin because he was
so upset. (Answer: Kevin)

WSC problem pairs (“twins,” using the termi-
nology of Hirst (1988)) are carefully controlled
such that heuristics involving syntactic salience,
the number and gender of the antecedent, or other
simple syntactic and semantic cues are ineffec-
tive. This distinguishes the task from the standard
coreference resolution problem. Performant sys-
tems must make common sense inferences; i.e.,
that someone who yells is likely to be upset, and
that someone who is upset tends to be comforted.
Additional examples are shown in Table 1.

WSC problems are simple for people to solve
(human participants in one study performed at
92% accuracy (Bender, 2015)) but difficult for au-
tomatic systems. This is because common sense
reasoning encompasses many types of reasoning
(causal, spatio-temporal, etc.) and requires a wide
breadth of knowledge.

COPA is a related task that tests a system’s abil-
ity to recognize causality (Roemmele et al., 2011).
Each instance comprises a premise and two candi-
date causes or effects, where the correct choice is
the candidate that is more plausible.

Previous approaches to common sense reason-
ing, for instance based on logical formalisms (Bai-
ley et al., 2015) or deep neural models (Liu et al.,
2016), have solved only restricted subsets of the
WSC with high precision. They have been tailored
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1 a) The man couldn’t lift his son because he was so weak. (Answer: the man)
1 b) The man couldn’t lift his son because he was so heavy. (Answer: son)
2 a) The older students were bullying the younger ones, so we punished them. (Answer: the older students)
2 b) The older students were bullying the younger ones, so we rescued them. (Answer: the younger ones)

3 a) Sam tried to paint a picture of shepherds with sheep, but they ended up looking more like golfers.
(Answer: shepherds)

3 b) Sam tried to paint a picture of shepherds with sheep, but they ended up looking more like dogs.
(Answer: sheep)

Table 1: Examples of Winograd instances.

for manually selected subsets that demand a spe-
cific type of reasoning (Sharma et al., 2015; Liu
et al., 2016). Others have developed systems for
relaxed common sense datasets with looser con-
straints (Rahman and Ng, 2012; Peng et al., 2015;
Kruengkrai et al., 2014). In parallel, more gen-
eral work on common sense reasoning aims to de-
velop a repository of common knowledge using
semi-automatic methods (e.g., Cyc (Lenat, 1995)
and ConceptNet (Liu and Singh, 2004)). However,
such knowledge bases are necessarily incomplete.

In this work, we propose a general method to
resolve common sense problems like WSC and
COPA. Contrary to previous work, we aim to solve
all problem instances rather than a restricted sub-
set. Our method is based on on-the-fly knowl-
edge hunting and operates in four stages. First,
it parses an input problem into a representation
schema. Next it generates search queries from the
populated schema. It sends these to a search en-
gine, and the next stage parses and filters the re-
sults. Finally, it classifies and weighs the results
as evidence for respective candidate resolutions.

Our approach arises from the hypothesis that
there is too much common sense to encode it all
statically; e.g., within a knowledge base or a neu-
ral model (using existing techniques). Even mod-
ern NLP corpora composed of billions of words
are unlikely to offer good coverage of common
sense, or if they do, instances of specific knowl-
edge are likely to be “long-tailed” and difficult for
statistical systems to model effectively. Informa-
tion retrieval (IR) techniques can sidestep these
issues by returning targeted results and by using
the entire indexed internet as a knowledge source.
Scenarios that appear in natural text can offer im-
plicit or explicit evidence for the plausibility of
related scenarios in common sense problems. To
solve (1a), the following search result contains the
relevant knowledge without the original ambigu-
ity:

(2) I got really upset with her and I started to

yell at her because...

Here, the same entity, I, is the subject of both upset
and yell at, which is strong evidence for resolving
the original statement. This information can be
extracted from a syntactic parse of the retrieved
passage with standard NLP tools.

As we will demonstrate experimentally, our
knowledge hunting approach achieves an F1 score
of 0.51 on the WSC, improving significantly over
the previous state-of-the-art (0.3 F1). When tested
on the similar COPA task, a simplified knowl-
edge hunting system performs competitively with
the previous best. To our knowledge, this is the
first method that tackles multiple common sense
tasks with strong performance on each. Thus,
knowledge-hunting embodies some of the general
capabilities that we desire of automatic systems
for common sense reasoning.1

2 Related Work

There is increasing interest in using IR approaches
to address difficult coreference problems. For ex-
ample, a recent system (Rahman and Ng, 2012)
uses web query information to retrieve evidence
for the coreference decision in a Winograd-like
corpus. Other systems (Kobdani et al., 2011;
Ratinov and Roth, 2012; Bansal and Klein, 2012;
Zheng et al., 2013; Peng et al., 2015; Sharma
et al., 2015) rely on similar techniques, i.e., us-
ing search-query counts or co-occurrence statistics
and word alignment methods to relate antecedents
with pronouns.

Most recent approaches have tackled the Wino-
grad problem by simplifying it in one of two ways.
First, systems have been developed exclusively for
Rahman and Ng’s expanded Winograd-like cor-
pus. These include Rahman and Ng (2012)’s
system itself, achieving 73% accuracy, and Peng
et al. (2015)’s system (76%). Kruengkrai et al.

1Code to reproduce these results are available at
https://github.com/aemami1/Wino-Knowledge-Hunter
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(2014) use sentence alignment of web query snip-
pets to achieve 70% accuracy on a subset of the
expanded corpus. Many instances in this corpus
can be resolved using associations between candi-
date antecedents and the query predicate. For ex-
ample, “Lions eat zebras because they are preda-
tors.” Many of the above systems simply query
“Lions are predators” versus “zebras are preda-
tors” to make a resolution decision. This exploita-
tion is often the top contributor to such systems’
overall accuracy (Rahman and Ng, 2012), but fails
to apply in the majority (if not all) of the origi-
nal Winograd instances.2 Our work alleviates this
issue by generating search queries that are based
exclusively on the predicates of the Winograd in-
stance, not the antecedents, and by considering the
strength of the evidence.

Other systems do tackle the original, more diffi-
cult Winograd instances, but only a small, author-
selected subset. The selection is based often
on knowledge-type constraints. Sharma et al.
(2015)’s knowledge-hunting module focused on
a subset of 71 instances that exhibit causal rela-
tionships; Liu et al. (2016)’s neural association
model focused on a similar causal subset of 70
instances, for which events were extracted man-
ually; and finally, a recent system by Huang and
Luo (2017) focused on 49 instances. While these
approaches demonstrate that difficult coreference
problems can be resolved when they adhere to cer-
tain knowledge or structural constraints, they may
fail to generalize to other settings. This factor of-
ten goes unnoticed when systems are compared
only in terms of precision; accordingly, we use an
F1-driven comparison that does not enable preci-
sion boosting at the cost of recall.

Concurrently with our work, Trinh and Le
(2018) introduced a system composed of 14 en-
sembled language models, pre-trained in an unsu-
pervised manner, that achieves up to 63.7% accu-
racy on the Winograd Schema Challenge. Com-
pared to our approach, their method requires train-
ing multiple language models with vast amounts
of data, which is much more expensive.

Other Common-sense Tasks: There are vari-
ous other Turing-test alternatives that directly or
indirectly assess common-sense reasoning. These
include Pronoun Disambiguation Problems (more
generalized, Winograd-like passages without the

2This is why we do not evaluate our method directly on
the expanded corpus.

twist of a special word or twin) (Morgenstern
et al., 2016), the Narrative cloze task (Tay-
lor, 1953), or its more difficult counterpart, the
NarrativeQA Reading Comprehension Challenge
(Kočiskỳ et al., 2017).

The COPA task was proposed by Roemmele
et al. (2011), who also measured the perfor-
mance of several systems. The most successful
used Pointwise Mutual Information (PMI) statis-
tics (Church and Hanks, 1990) between words in
the premise and each alternative obtained from a
large text corpus (as an implicit way to estimate
causal association). More recent work showed that
applying the same PMI-based technique on a cor-
pus of stories yields better results (Gordon et al.,
2011). The current state-of-the-art approaches
leverage co-occurrence statistics extracted using
causal cues (Luo et al., 2016; Sasaki et al., 2017).

Extended Work: Previously, Emami et al.
(2018) proposed a similar knowledge hunting
framework to tackle the Winograd Schema Chal-
lenge. This work modifies and extends their
approach. Our modifications include a query-
filtering step and various other tweaks that im-
prove results by 0.05 F1 for our best model. In
addition, we added further experiments and an ab-
lation study that explores the performance of dif-
ferent model components. Finally, we adapted
our method to a new dataset, COPA, on which
we achieve respectable results. Accordingly, we
change the general takeaway of the previous work
from a method with strong performance on a sin-
gle dataset to one that generalizes and performs
well on various tasks.

3 Knowledge Hunting Framework

Our framework takes as input a problem instance
and processes it through four stages to make a fi-
nal coreference decision. First, it fits the instance
to a semantic representation schema. Second, it
generates a set of queries that capture the predi-
cates in the instance’s clauses and sends these to
a search engine, which retrieves text snippets that
closely match the schema. The returned snippets
are then parsed and filtered. Finally, the snippets
are resolved to their respective antecedents and the
results are mapped to a best guess for the origi-
nal instance’s resolution. We detail these stages
below, grounding our description in Winograd in-
stances.
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3.1 Semantic Representation Schema

The first step is to perform a partial parse of each
instance into a shallow semantic representation;
that is, a general skeleton of each of the impor-
tant semantic components in the order that they
appear. This is performed using rules related to
the syntactic parse of the sentence determined by
Stanford CoreNLP (Manning et al., 2014).

In general, Winograd instances can be separated
into a context clause, which introduces the two
competing antecedents, and a query clause, which
contains the target pronoun to be resolved. We use
the following notation to define the components in
our representation schema:

E1, E2 the candidate antecedents
PredC the context predicate
+ discourse connective
P the target pronoun
PredQ the query predicate

E1 and E2 are noun phrases in the sentence. In the
WSC, these two are specified without ambiguity.
PredC is the context predicate composed of the
verb phrase that relates both antecedents to some
event. The context contains E1, E2, and the con-
text predicate PredC . The context and the query
clauses are often connected by a discourse connec-
tive +. The query contains the target pronoun, P ,
which is also specified unambiguously. In addi-
tion, preceding or succeeding P is the query pred-
icate, PredQ, a verb phrase involving the target
pronoun. Table 2 shows sentence pairs in terms of
each of these components.

3.2 Query Generation

Based on the parse, the system generates queries
to send to a search engine. The goal is to retrieve
text snippets that resemble the original instance.
Queries are of the form:

+TermC +TermQ �“Winograd”�E1

We assume that the search queries are composed
of two components, TermC and TermQ, which
are strings that represent the events occurring in
the first (context) and second (query) clause of the
sentence, respectively. By excluding search results
that may contain Winograd or E1, we ensure that
we do not cheat by retrieving some rewording of
the original Winograd instance.

The next task is to construct two query sets, C
and Q, whose elements are possible entries for
TermC and TermQ, respectively. We identify the
root verbs in the context and query clauses, along
with any modifying adjective, using the depen-
dency parse of the sentence determined by Stan-
ford CoreNLP (Manning et al., 2014). We add the
root verbs and adjectives into the sets C and Q
along with their broader verb phrases (again iden-
tified directly using the dependency tree).

Augmenting the query set with WordNet We
use WordNet (Kilgarriff, 2000) to construct an
augmented query set that contains synonyms for
the verbs and adjectives involved in a representa-
tion. In particular, we include the synonyms listed
for the top synset of the same part of speech as the
extracted verb or adjective.

Query filtering Automated query generation
sometimes yields terms that are irrelevant to the
disambiguation task. This can add noise to the
results. To address this, we implement a seman-
tic similarity algorithm that filters root verbs and
modifying adjectives from the query sets accord-
ing to their relevance to other terms. We esti-
mate relative relevance using Wu-Palmer (Wu and
Palmer, 1994) similarity scores from WordNet and
filter as follows. For each passage, the semantic
filter (i) computes similarity scores for every pos-
sible combination of {TermC , T ermQ} (if both
TermC and TermQ are single words); (ii) deter-
mines the maximum similarity score s; and (iii)
discards any term whose highest similarity score
from step (i) is less than ↵s, where 0 < ↵ < 1. We
tune ↵, a hyperparameter, on Rahman and Ng’s
expanded corpus (Rahman and Ng, 2012).

We hypothesize that terms in the query and con-
text clauses more pertinent to the task have higher
mutual similarity scores than irrelevant terms. To
illustrate this, consider the query sets generated
for Example 2a, Table 1: {“bullying”, “younger”,
“older”} and {“punished”}. Applying the se-
mantic filter yields the new sets {“bullying”} and
{“punished”}, where the irrelevant terms younger
and older have been removed.

Manual query construction To understand the
impact of the query generation step, we also manu-
ally produced representations for all Winograd in-
stances. We limited the size of these sets to five
to prevent a blowing-up of search space during
knowledge extraction. In Table 3, we show ex-

1952



Pair PredC E1 E2 PredQ P
Alternating Word
(POS)

1 couldn’t lift the man his son was so heavy he weak/heavy (adjective)

2 were
bullying

the older
students

the younger
ones punished them punished/rescued

(verb)

3 tried to
paint shepherds sheep

ended up
looking more
like

they golfers/dogs (noun)

Table 2: Winograd sentence pairs from Table 1, parsed into the representation schema that we define.

Sentence: The trophy doesn’t fit into the brown suitcase because it is too large.

Query Generation Method C Q

Automatic {“doesn’t fit into”, “brown”, “fit” } {“large”, “is too large”}
Automatic, with synonyms {“doesn’t fit into”, “brown”, “accommo-

date”, “fit”, “suit” }

{“large”, “big”, “is too large” }

Manual {“doesn’t fit into”, “fit into”,“doesn’t fit” } {“is too large”, “too large”, “large” }

Table 3: Query generation techniques on an example Winograd sentences

amples of generated queries for C and Q using the
various techniques.

3.3 Parsing the Search Results
From the search results, we obtain a set of text
snippets that we filter for similarity to the original
problem instance. First, TermC and TermQ are
restricted to occur in the same snippet, but are
allowed to occur in any order. We filter the passed
sentences further to ensure that they contain at
least two entities that corefer. These may be
structured as follows:

E0
1 Pred0

C E0
2 + E0

3 Pred0
Q

E0
1 Pred0

C E0
2 + Pred0

Q E0
3

E0
1 Pred0

C + E0
3 Pred0

Q

E0
1 Pred0

C + Pred0
Q E0

3

We call these evidence sentences. They ex-
hibit a structure similar to the corresponding
Winograd instance, but with different entities
and event order. Pred0

C and Pred0
Q (resulting

from the queries TermC and TermQ, resp.)
should be similar if not identical to PredC and
PredQ from the Winograd sentence. However,
E0

1, E0
2, and E0

3 may not have the same semantic
type, potentially simplifying their coreference
resolution. A sentence for which E0

3 refers to E0
1

is subsequently labelled evidence-agent, and one
for which E0

3 refers to E0
2, evidence-patient. The

exception to this rule is when an event occurs
in the passive voice (e.g., was called), which
reverses the conventional order of the agent and
patient. Another exception is in the case of

causative alternation, where a verb can be used
both transitively and intransitively. The latter case
can also reverse the conventional order of the
agent and patient (e.g., he opened the door versus
the door opened).

As an example of coreference simplification,
a valid evidence sentence is: He tried to call
her but she wasn’t available. Here, the sentence
can be resolved on the basis of the gender of
the antecedents; E0

3 (the pronoun she) refers to
the patient, E0

2. Accordingly, the sentence is
considered an evidence-patient.

3.4 Antecedent Selection

We collect and reason about the set of retrieved
sentences using a selection process that (i) re-
solves E0

3 to either E0
1 or E0

2 using CoreNLP’s
coreference resolution module (rendering them
evidence-agent or evidence-patient); and (ii) uses
both the count and individual features of the evi-
dence sentences to resolve the original Winograd
instance. For example, the more similar evidence-
agents there are for the sentence Paul tried to call
George on the phone, but he wasn’t successful, the
more likely it is that the process would guess Paul,
the agent, to be the correct referent of the target
pronoun.

To map each sentence to either an evidence-
agent or evidence-patient, we developed a rule-
based algorithm that uses the syntactic parse of
an input sentence. This algorithm outputs an ev-
idence label along with a list of features. The fea-
tures indicate: which two entities co-refer accord-
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ing to Stanford CoreNLP’s resolver, and to which
category of E0

1, E0
2, or E0

3 each belong; the token
length of the sentence’s search terms, TermC and
TermQ; the order of the sentence’s search terms;
whether the sentence is in active or passive voice;
and whether or not the verb is causative alternat-
ing. Some of these features are straightforward to
extract (like token length and order, and corefer-
ring entities given by CoreNLP), while others re-
quire various heuristics. To map each coreferring
entity in the snippet to E0

1, E0
2, or E0

3 (correspond-
ing loosely to context subject, context object, and
query entity, respectively), we consider their posi-
tion relative to the predicates in the original Wino-
grad instance. That is, E0

1 precedes TermC , E0
2

succeeds TermC , and E0
3 may precede or succeed

TermQ depending on the Winograd instance. To
determine the voice, we use a list of auxiliary
verbs and verb phrases (e.g., was, had been, is,
are being) that switch the voice from active to pas-
sive (e.g., “they are being bullied” vs “they bul-
lied”) whenever one of these precedes TermC or
TermQ (if they are verbs). Similarly, to identify
causative alternation, we use a list of causative al-
ternating verbs (e.g., break, open, shut) to identify
the phenomenon whenever TermC or TermQ is
used intransitively.

These features determine the evidence label,
evidence-agent (EA) or evidence-patient (EP), ac-
cording to the following rules:

L(e) =

8
>>>>>><

>>>>>>:

EA, if E0
3 refers to E0

1, active (1)
EA, if E0

3 refers to E0
2, passive (2)

EP, if E0
3 refers to E0

2, active (3)
EP, if E0

3 refers to E0
1, passive (4)

EP, if E0
3 refers to E0

1, causative (5)

Cases (2), (4), and (5) account for the passive and
causative constructions, which alter the mapping
from syntactic role to semantic role.

In addition to determining the evidence label,
the features are used in a heuristic that generates
scores (called strengths) for each evidence sen-
tence:

Str(e) = LenScore(e) + OrderScore(e)

LenScore(e) =

8
><

>:

2, if len(TermQ) > 1

2, if len(TermC) > 1

1, otherwise

OrderScore(e) =

(
2, if TermC � TermQ

1, if TermQ � TermC

As an example of scoring for an actual snip-
pet, let us consider “She tried to call for him
and then search for him herself, but wasn’t suc-
cessful,” returned for TermC=tried to call, and
TermQ=wasn’t successful.

Here, both TermQ and TermC are multi-word
search terms, and TermC precedes TermQ as in
the original Winograd sentence. Its overall ev-
idence strength is 4, the highest possible score.
On the other hand, for the retrieved snippet “Has
your husband tried Sudafed and was it success-
ful?” for TermQ=tried, and TermC=successful,
the evidence strength would be 3. We designed
the scoring system to capture the structural simi-
larity of a snippet to its corresponding Winograd
instance. We observed that a greater quantity of
snippets can be retrieved for less specific search
terms, but with increasing noise; we sought to ac-
count for this with the features described above.
Note also that our use of the word features is inten-
tional. While the weights assigned for the length
and order scores could be optimized, as parame-
ters, we consider it inappropriate to do so on the
WSC since it is widely used as a test set. We set
these weights according to our best guess and val-
idated our choices through experiments on the set
of Winograd-like sentences provided in Rahman
and Ng (2012).

We run the above four processes on all snippets
retrieved for the input Winograd instance. The
sum of strengths for the evidence-agents is finally
compared to that of the evidence-patients to make
the resolution decision.

4 Experiments and Results

We tested several versions of our framework on
the original 273 Winograd sentences (135 pairs
and one triple). These vary in the method of query
generation: automatic vs. automatic with syn-
onyms vs. manual. We compared these systems
with previous work on the basis of Precision (P),
Recall (R), and F1.

We used Stanford CoreNLP’s coreference re-
solver (Raghunathan et al., 2010) during query
generation to identify the predicates from the syn-
tactic parse, as well as during antecedent selec-
tion to retrieve the coreference chain of a candi-
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date evidence sentence. Python’s Selenium pack-
age was used for web-scraping and Bing-USA and
Google (top two pages per result) were the search
engines. The search results comprise a list of doc-
ument snippets that contain the queries (for exam-
ple, “yelled at” and “upset”). We extract the sen-
tence/s within each snippet that contain the query
terms, with the added restriction that the terms
should be within 70 characters of each other to en-
courage relevance.

# Correct P R F1
AGQ 77 0.56 0.28 0.38
AGQ+F 80 0.63 0.29 0.40
AGQS 114 0.57 0.42 0.48
AGQS+F 119 0.60 0.44 0.51
S2015 49 0.92 0.18 0.30
Systems with manual information:
L2017 43 0.61 0.15 0.25
MGQ 118 0.60 0.43 0.50

Table 4: Coverage and performance on the
original Winograd Schema Challenge (273

sentences).

Table 4 shows the precision, recall, and F1 of
our framework’s variants: automatically generated
queries (AGQ), automatically generated queries
with synonyms (AGQS), and manually gener-
ated queries (MGQ). We test the automatic sys-
tems with (+F) and without the semantic similar-
ity filter. We compare these to the systems of
Sharma et al. (2015) (S2015) and Liu et al. (2017)
(L2017). The system developed by Liu et al.
(2017) uses elements extracted manually from the
problem instances, so is most closely comparable
to our MGQ method. Our best automated frame-
work, AGQS+F, outperforms S2015 by 0.21 F1,
achieving much higher recall (0.44 vs 0.18). Our
results show that the framework with manually
generated queries (MGQ) performs better than its
automatic counterpart, AGQ, with an F1 of 0.50.
AGQS+F slightly outperforms MGQ despite be-
ing fully automatic.

The power of our approach lies in its general-
ity, i.e., its improved coverage of the problem set.
It produces an answer for over 70% of instances.
This surpasses previous methods, which only ad-
mit specific instance types, by nearly 50%.

The random baseline on this binary task
achieves a P/R/F1 of 0.5. We can artificially raise
the F1 performance of all systems above 0.5 by

randomly guessing an answer in cases where the
system makes no decision. For AGQS+F, for ex-
ample, if we take a random decision on the cases
(74) with no retrieved evidence, we get an accu-
racy of 57.1%. However, we think it is important
that systems are compared transparently based on
which instances they admit and when they are ca-
pable of making a prediction.

5 Error Analysis

To get a sense of the performance of our heuris-
tics in classifying evidence sentences in the an-
tecedent selection step, we manually labelled sen-
tences retrieved by the AGQS system for 40 Wino-
grad instances. The categories are evidence-
agent, evidence-patient, or neither (insufficient ev-
idence). This amounts to a total of 876 evidence
sentences. We compared these labels to those as-
signed by our system. In total, 703 of the 876 evi-
dence sentences were labelled correctly (81%). Of
the 173 incorrect cases, 110 were marked as in-
sufficient evidence. Our system is forced to label
these as agent or patient.

Evidence sentences were insufficient for a va-
riety of reasons. Most frequently, they were
structurally incomplete or grammatically incor-
rect, despite passing as valid through CoreNLP
and our initial coreference heuristics. In general,
our coreference heuristics filter strongly: over all
Winograd instances, they filter a total of 50,110 re-
trieved sentences down to only 3,097 (0.0617 ac-
ceptance rate). As for the 63 cases of sufficient
evidence sentences that were labelled incorrectly,
the issue was either errors in the coreference in-
formation from the CoreNLP pipeline or errors in
our heuristics for reasoning about the coreference
information. We show examples of these various
sources of error in supplementary Table S1. At any
rate, the corrected labels (with the 110 insufficient
evidence removed and the 63 cases corrected) did
not result in a shift in any of the 40 coreference
decisions.

In Table 5, we show a sample resolution that our
system makes on a problem instance,3 including
some evidence that was retrieved and labelled au-
tomatically and the evidence strengths that led to
the resolution. These examples reveal that, indeed,
general knowledge of what is plausible appears in
natural text. Our system successfully leverages
this knowledge for common sense reasoning.

3We provide more examples in a supplementary file.
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WSC Instance: The man couldn’t lift his son because he was so weak. Answer: the man (Agent)
Evidence and labels: “However I was so weak that I couldn’t lift” ! EA
(query terms in bold) “She was so weak she couldn’t lift” ! EA

“I could not stand without falling immediately and I was so weak that I couldn’t lift” ! EA
“It hurts to lift my leg and its kind of weak” ! EP

Stats and resolution: Agent evidence strength: 97
Patient evidence strength: 72
Number of scraped sentences: 109
Resolution: Agent

Table 5: Example Resolution for a WSC problem.

We also include an example evidence snip-
pet that yields a “misleading” label. Generally,
sources of misleading snippets include incomplete
or imprecise query generation (e.g. in Table 5,
querying only “lift” instead of “couldn’t lift”), er-
rors in the automatic parsing of sentences (e.g., in
supplementary Table S1.1.b, “lift” is incorrectly
labelled as a verb via the parse tree, despite being a
noun), and insufficient filtering of noisy sentences
that are not relevant to the problem instance or are
incomplete (e.g. in supplementary Table S1.2.b,
the sentence is incomplete and indicates a mislead-
ing resolution).

6 Generalization to COPA

To investigate the generality of our knowledge-
hunting approach, we adapted it to the Choice of
Plausible Alternatives (COPA). We evaluated our
basic automatic models that did not use the seman-
tic similarity filter for this check.

COPA has a slightly different form that necessi-
tates some modifications. As an example,

(3) The climbers reached the peak of the
mountain. What happened as a result?
a. They encountered an avalanche.
b. They congratulated each other.

During query generation, as before, the set C con-
tains terms extracted from the context sentence.
Instead of a single set Q as in the WSC, we gener-
ate two query sets Q1 and Q2, that contain terms
extracted for the first and second candidate sen-
tences. Because entities in the candidate sentences
can contribute to the answer (unlike in the WSC),
we modified the query generation rules to extract
more than just predicates. Specifically, the extrac-
tion procedure uses the syntactic parse tree of the
phrase to back-off from extracting the clause con-
taining the subject and verb phrase, to only the
verb phrase, to only the verbs or adjectives that
are rooted in the verb phrase. For the running
example, our system generates these three sets:

C={“The climbers reached the peak”, “reached
the peak”, “reached”}, Q1={“They encountered
an avalanche”, “encountered an avalanche”, “en-
countered”}, and Q2={“They congratulated each
other”, “congratulated each other”, “congratu-
lated”}.

We query the web for sentences that contain
terms in (C, Q1) and (C, Q2), with one added re-
striction: for problem instances in which the rela-
tion is cause, the system only extracts sentences
in which TermC precedes TermQ1 or TermQ2 ;
when the relation is result (as in our running exam-
ple), TermC succeeds TermQ1 or TermQ2 . As
for the WSC, the final decision is determined from
the evidence snippets according to their strengths.

Dev Test
Goodwin et al. (2012) – 63.4
AGQS 64.0 65.1
Gordon et al. (2011) 62.8 65.4
AGQ 65.8 66.24

Luo et al. (2016) – 70.2
Sasaki et al. (2017) – 71.2

Table 6: Model accuracy (%) on COPA.

We tuned the system’s evidence-scoring heuris-
tics on COPA’s 500 validation instances. In Ta-
ble 6, we compare our system’s performance on
the 500 test instances to previous work on the
basis of precision (which in the full-coverage
case equates to accuracy). Our simpler AGQ
method achieves 66.2% accuracy, which is re-
spectable, although not state-of-the-art. As indi-
cated by the lower performance of AGQS, syn-
onyms from WordNet did not improve perfor-
mance on COPA. Without the semantic-similarity
filtering, synonyms may add noise to the re-
trieved results. It has also been shown that multi-
word expressions are prevalent and important for
COPA (Sasaki et al., 2017), which we have not

4This precision can be inflated to 67.2 by randomly guess-
ing on the 10 examples for which there were no search results.
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specifically attempted to handle with our method.
We believe that this is a promising direction of im-
provement for our approach in future work.

7 Conclusion

We developed a knowledge-hunting framework to
tackle the Winograd Schema Challenge, a task
that requires common-sense knowledge and rea-
soning. Our system involves a semantic repre-
sentation schema and an antecedent selection pro-
cess that acts on web-search results. We evaluated
the performance of our framework on the original
set of WSC instances, achieving F1-performance
that significantly exceeded the previous state-of-
the-art. A simple port of our approach to COPA
suggests that it has the potential to generalize.
In the future we will study how this common-
sense reasoning technique can contribute to solv-
ing “edge cases” and difficult examples in more
general coreference tasks.
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Abstract

This paper addresses the problem of mapping
natural language text to knowledge base enti-
ties. The mapping process is approached as a
composition of a phrase or a sentence into a
point in a multi-dimensional entity space ob-
tained from a knowledge graph. The composi-
tional model is an LSTM equipped with a dy-
namic disambiguation mechanism on the input
word embeddings (a Multi-Sense LSTM), ad-
dressing polysemy issues. Further, the knowl-
edge base space is prepared by collecting ran-
dom walks from a graph enhanced with textual
features, which act as a set of semantic bridges
between text and knowledge base entities. The
ideas of this work are demonstrated on large-
scale text-to-entity mapping and entity classi-
fication tasks, with state of the art results.

1 Introduction

The task of associating a well-defined action, con-
cept or piece of knowledge to a natural language
utterance or text is a common problem in natu-
ral language processing and generic artificial in-
telligence (Tellex et al., 2011), and can emerge
in many different forms. In NLP, the ability to
code text into an entity of a knowledge graph
finds applications in tasks such as question an-
swering and information retrieval, or any task that
involves some form of mapping a definition to a
term (Hill et al., 2016; Rimell et al., 2016). Fur-
ther, it can be invaluable in providing solutions to
domain-specific challenges, for example medical
concept normalisation (Limsopatham and Collier,
2016) and identification of adverse drug reactions
(O’Connor et al., 2014).

This paper details a model for efficiently map-
ping unrestricted text at the level of phrases and
sentences to the entities of a knowledge base

⇤ This paper is dedicated to the memory of Euripides
Kartsaklis, a man who loved technology.

(KB)—a task also referred to as text grounding or
normalisation. The model aims at characterising
short focused texts, such as definitions or tweets.
Given a medical KB, for example, a tweet of
the form “Can’t sleep, too tired to think straight”
would be mapped to the entity Insomnia, while
in the context of a lexical ontology the definition
“Device that detects planets” would be associated
to the entity Telescope.

Note that such a task cannot be approached
as standard classification, since the “classes” (en-
tities) are usually in one-to-one correspondence
with the available inputs. To address this we pro-
pose the use of a continuous vector space for em-
bedding the entities of the KB graph, where text
is projected by a neural network. We rely on the
notion of distributional semantics, where a word
is represented as a multi-dimensional vector ob-
tained either by collecting co-occurrence statistics
with a selected set of contexts or by directly opti-
mising an objective function in a neural network-
based architecture (Collobert and Weston, 2008).
Interestingly, similar techniques can be used for
the multi-dimensional representation of nodes in
a KB graph; for example, by collecting random
walks following the edges of a graph it is possi-
ble for one to construct an artificial “corpus”, to
which a distributional model applies in the usual
way (Perozzi et al., 2014).

By exploiting this representational compatibil-
ity, we treat the process of text-to-entity map-
ping as a transformation from a textual vector
space where words live, to a KB vector space cre-
ated from a graph and populated by vectors rep-
resenting entities. A sentence is coded as a se-
quence of word vectors, composed by a modi-
fied Long Short-Term Memory network (LSTM—
Hochreiter and Schmidhuber, 1997) into a multi-
dimensional point in the entity space. One of our
aims is to specifically deal with lexical ambiguity
and polysemy which can be an important factor
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for the task at hand. To this end, each word is as-
sociated with a number of sense embeddings, and
the LSTM is extended with an attentional disam-
biguation mechanism that dynamically selects and
updates the right sense vector for each word given
its context during training. We dub this formula-
tion Multi-Sense LSTM (MS-LSTM).

An important issue is the provision of a set of
reliable anchors; that is, points in one-to-one cor-
respondence between the two representations that
would enforce some degree of structural similar-
ity between pieces of text and KB entities and
thus make the mapping more efficient. We deal
with this problem by extending the original KB
graph with nodes corresponding to textual fea-
tures, i.e. to words strongly associated to a spe-
cific entity and collected from various resources.
A novel sampling strategy is detailed for incor-
porating these nodes to random walks, which are
then fed to the skipgram model for producing an
entity space. The results indicate that the textual
nodes, being words and KB entities at the same
time, do an extremely effective job in transform-
ing the geometry of the entity space to the benefit
of mapping the textual modality.

The proposed model is evaluated in three tasks:
text-to-entity mapping on a dataset extracted from
SNOMED CT1, a medical knowledge base of
327,000 concepts; a reverse dictionary task based
on WordNet (Miller, 1998), where the goal is to
associate a multi-word definition to the correct
lemma (Hill et al., 2016); and document classifica-
tion on the Cora dataset (McCallum et al., 2000).
The results demonstrate the effectiveness of our
methods by improving the current state of the art.

2 Background

Aligning meaning between text and entities in
a knowledge graph is a task traditionally based
on heuristic methods exploiting text features such
as string matching, word weighting, syntactic re-
lations, or dictionary lookups (McCallum et al.,
2005; Lu et al., 2011; O’Connor et al., 2014). Ma-
chine learning techniques have been also exploited
in various forms, for example Leaman et al. (2013)
use a pairwise learning-to-rank technique to learn
the similarity between different terms, while Lim-
sopatham and Collier (2015) apply statistical ma-
chine translation to “translate” social media text to
domain-specific terminology. There is little work
based on neural networks; the most relevant to us

1https://www.snomed.org/snomed-ct

is a study by Hill et al. (2016), who tested a num-
ber of compositional neural architectures trained
to approximate word embeddings on a reverse dic-
tionary task. Compared to their work, this paper
proposes the use of a distinct target space for rep-
resenting ontological knowledge, where every en-
tity in the graph lives.

The goal of a graph embedding method is to em-
bed components of a knowledge graph into a low-
dimensional space. One research direction focuses
on the relations, i.e. the edges of the graph (Bor-
des et al., 2013; Socher et al., 2013; Xiao et al.,
2016) and aims at tasks such as link prediction
and KB completion. Such work is outside the
scope of the current paper, the subject of which
is the efficient low-dimensional representation of
entities (nodes). In this line of research, a preva-
lent method involves the collection of a set of ran-
dom walks, starting from each node in the graph
(Perozzi et al., 2014; Grover and Leskovec, 2016).
There is a direct analogy between such a set of
random walks and a text corpus: each node corre-
sponds to a word and the sequence of nodes vis-
ited during a random walk is analogous to a sen-
tence. Thus, any distributional model that takes
as input this artificial “corpus” can generate multi-
dimensional representations of the nodes in the
graph. Random walks have also been used for KB
inference (Lao et al., 2011) with success.

While random walk-based methods are not the
only way to construct graph spaces—alternatives
include factorisation (Ahmed et al., 2013) and
deep autoencoders (Wang et al., 2016)—they have
been found very effective in capturing multiple as-
pects of the graph structure (Wang et al., 2017;
Goyal and Ferrara, 2017). The current paper pro-
poses a random walk generation strategy that im-
proves and complements existing approaches.

The idea of using textual features to improve the
entity vectors is not well explored, and most of the
existing work focuses again on the representation
of relations (Xie et al., 2016; Wang et al., 2014;
Wang and Li, 2016) as opposed to entities. Closer
to us is the work of Yamada et al. (2017) and Yang
et al. (2015), with the latter to incorporate text fea-
tures in the concept embeddings by exploiting ma-
trix factorisation properties.

Representing the meaning of words using
a number of sense vectors is an old and
well-established idea in NLP—see for example
(Schütze, 1998; Reisinger and Mooney, 2010;
Neelakantan et al., 2014). However, most of the
relevant research is evaluated on intrinsic tasks
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Figure 1: The text-to-entity mapping system in a nut-
shell. The red nodes indicate textual features, while
“MSE” stands for mean squared error.

such as word similarity, while in the few works
based in real end tasks, disambiguation is usu-
ally treated as a prior stand-alone step (Kartsak-
lis and Sadrzadeh, 2013; Li and Jurafsky, 2015;
Pilehvar et al., 2017). The crucial difference of
this work is that the ambiguity resolution mecha-
nism is part of the compositional model itself, and
the sense embeddings are trained simultaneously
with the rest of the parameters. A close work is by
Cheng and Kartsaklis (2015), who used a siamese
network with an integrated disambiguation mech-
anism for paraphrase detection. For more infor-
mation on multi-sense embeddings see (Camacho-
Collados and Pilehvar, 2018).

3 Methodology

Fig. 1 provides a high-level illustration of our
methodology, consisting of two stages: (1) the
KB graph is extended with weighted textual fea-
tures, and an artificial “corpus” of random walks
is created and used as input to the skipgram model
(Mikolov et al., 2013) for generating an enhanced
KB space—this part is covered in §3.1; (2) the
transformation from text to entities is performed
by a supervised multi-sense compositional model,
which generates a point in the KB space for every
input text. This is achieved with an LSTM recur-
rent network, equipped with an attentional mech-
anism that provides a finer level of granularity to
the different ways a word is used in the data—we
detail this part in §3.2.

3.1 Textual features for entity vectors
For our KB space, we follow the generic recipe
proposed by Perozzi et al. (2014) and we assemble

an artificial corpus of random walks from the KB
graph, which is then used as input to the skipgram
model (Mikolov et al., 2013). For a random walk
of nodes n1n2 . . . nT and a context window size c,
skipgram maximises the following quantity:

1

T

TX

t=1

X

�cjc,j 6=0

log p(nt+j |nt) (1)

i.e. for a target node nt, the objective is to pre-
dict all other nodes in the same context. As a
consequence, two vectors of the resulting space
will be close if their corresponding nodes occur in
topological proximity within the graph. However,
while such a topology allows perhaps for mean-
ingful comparisons between points in this space, it
is not directly compatible with the task of mapping
text to entities. The reason is that the communities
formed in a KB graph (and thus the topology of
the resulting vector space) mostly reflect domain-
specific hierarchies and ontological relationships
that are not necessarily evident by the textual rep-
resentations referring to the entities. An impor-
tant question therefore with regard to the proposed
methodology is how to provide meaningful links
between the two representations that would allow
for the efficient translation of one form (text) to
another (entities).

In this work, we address this problem by associ-
ating every node in the graph with a set of textual
features, each one of which is weighted according
to their importance with respect to the node. Our
methodology is as follows: For each entity, we
collect all available textual descriptions found in
the knowledge base itself and the English portion
of BabelNet (Navigli and Ponzetto, 2012), which
is a very large dictionary integrating numerous re-
sources, such as WordNet, Wikipedia, FrameNet
and many others. The textual descriptions are
treated as short documents, and each word in them
is assigned a specific TF-IDF value, forming the
set of textual features for the specific entity.

The KB graph is extended in the following way:
Let Tc be the set of textual features for an entity
c; then, for each t in Tc, we add an edge (c, t)
with weight tf-idfc(t), where tf-idfc(t) is the TF-
IDF value of t with respect to c. In contrast to
Perozzi et al. (2014) who utilise a uniform node
sampling strategy, we define the random walk gen-
eration process as follows: Given a randomly se-
lected node n, let Cn = {c1, c2, · · · cN} be the set
of all entity nodes in its immediate vicinity, and
Tn = {t1, t2, · · · tM} the set of all textual features
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λ = 0 λ = 0.5 λ = 1

Figure 2: Effect of � parameter. Blue nodes indicate
entities, red nodes textual features, and red paths re-
fer to random walks. As � increases, the probability
of “hops” between originally unlinked nodes increases
accordingly.

of n; the next node x in the path is drawn from a
categorical distribution defined as below:

PX(x) =

8
><

>:

(1 � �)
1
N

if x 2 Cn

�
tf-idfn(ti)PM

j=1 tf-idfn(tj)
if x 2 Tn

(2)

for X a discrete random variable with range Cn [
Tn. In the above, � defines the proportion of
the probability mass allocated to textual features,
when both Cn and Tn are non-empty; if one of the
sets is empty, all of the probability mass is allo-
cated to the other set, and � becomes irrelevant.
Further, in contrast to what is the case for the tex-
tual nodes, the probabilities of the entity nodes in
Equation 2 are defined uniformly, since we lack
any mechanism for fine-tuning them in a way that
objectively reflects the importance of the nodes.

It is instructive to examine how the above sam-
pling strategy works. As expected, setting � = 0
will result in a sampling process that ignores the
textual features and produces a path comprised
solely of entity nodes; this is equivalent to the
original model by Perozzi et al. (2014), known as
DeepWalk. On the other hand, the effect of setting
� = 1 is less intuitive: Recall that, by construc-
tion, each textual node is connected only to entity
nodes; that is, when the current node is textual,
the next node will be always sampled from Cn.
Therefore, setting � = 1 creates paths following
an alternating pattern, where each entity node is
followed by a textual node, which in turn is fol-
lowed by an entity node. Values of � between 0
and 1 scale this behaviour accordingly (Fig. 2).

Advantages. The introduction of textual fea-
tures in the graph achieves two goals. Firstly,
the textual nodes serve as links between entities
which, although perhaps related to each other in
some way, lie in different parts of the KB graph
(e.g. being parts of different hierarchies). As

Understanding+

Inability+ Insomnia+

Disorder+Finding+

Findings+related+to+
ability+to+comprehend+

Does+not+understand+
single+word+instruc9ons+Aphasia+

Alexia+

Neurological+
findings+

Sleep+
disorders+

Figure 3: Linking of distant concepts with textual fea-
tures (red boxes) for � = 1. The textual feature under-
standing correctly links a related medical finding (ly-
ing on a different branch) to the condition known as
alexia. Further, due to the presence of inability in their
contexts, the vectors of alexia and insomnia (concepts
originally quite far apart in the graph) will now have
a common part reflecting that they are both conditions
related to forms of incompetence.

a result, points that would normally be unjustifi-
ably apart of each other in the vector space are
now brought closer, providing additional coher-
ence. This behaviour is controlled by the � pa-
rameter, as Fig. 2 shows. Fig. 3 presents an illus-
trative example, taken from a real random walk on
SNOMED CT.

The second advantage of introducing textual
features in the graph is a consequence of the dual
nature of these features in the context of learn-
ing: they essentially represent words, but since
they are also nodes of the graph, they get vector
representations exactly as every other normal en-
tity in the knowledge base. The textual features,
therefore, paired with their assigned vectors, form
a set of anchors that links pieces of text with the
KB space, and can be used to support the train-
ing process of the mapping system. In §4.1 we
will see that this approach leads to substantial im-
provements in the accuracy of the model.

3.2 A multi-sense LSTM
We now proceed to present our neural architecture
for text-to-entity mapping. The goal of the model
is, given a certain piece of text, to produce a point
in the KB space corresponding to an appropriate
entity or concept. The model is trained on pairs of
texts and entity vectors created from a graph ex-
tended with textual features, as discussed in §3.1.

Our architecture needs to explicitly take into ac-
count the fact that the task at hand is very sen-
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Figure 4: Detailed architecture of the Multi-Sense
LSTM (MS-LSTM), shown here for the first word of
a phrase. Red vectors refer to senses, while the green
vector is a target vector.

sitive to lexical ambiguity. Specifically, while it
is true that the level of homonymy (words hav-
ing more than one disjoint meanings) is substan-
tially decreased when we move from the generic
domain to more specialised domains, on the other
hand the increase in polysemy (words with many
slightly different meanings) is exponential. As an
example, while the lemma for the word “fever” in
a dictionary usually contains two or three defini-
tions, the term occurs in many dozens of different
forms and contexts in SNOMED. Note that most of
the different uses of the term correspond to distinct
KB nodes, a fact that makes the job of a text-to-
entity mapping system especially hard.2 This mo-
tivates the employment of a dedicated mechanism
that would handle the extra complexity imposed
by the polysemous words.

The compositional setting of this paper, equip-
ped with such a mechanism, is shown in Fig. 4.
It consists of a generic word embedding layer, a
word sense disambiguation layer, and two con-
secutive LSTM networks responsible for encoding
the embeddings into a vector in the KB space. The
objective is to minimise the mean squared error
between the predicted vectors and the target vec-
tors (prepared as in §3.1):

MSE =
1

N

NX

i=1

kyi � f(xi)k2 (3)

where N is the number of training examples, x
the input text, y the target entity vector, and f the
neural network.

To address the polysemy issues discussed
above, every word is associated with a sin-
gle generic embedding and k sense embeddings,
where k is a fixed number. These sense embed-
dings can be seen as centroids of clusters denoting

2See also §4.4 for some concrete examples.

different uses of the word in the training set, and
are dynamically updated during training. Specif-
ically, for each word wi in a training example, a
context vector ci is computed as the average of the
generic vectors of all other words in the sentence.
The probability of each sense vector sij given this
context is then calculated via an attentional mech-
anism equipped with a softmax layer, as follows:

p(sij |ci) =
exp (w0

j
|s0

ij)Pk
l=1 exp (w0

l
|s0

il)
(4)

where s0
ij = tanh(Wsij+Uci), and W , U and W 0

the parameters of the attentional network. Each
sense vector is subsequently updated by addition
of the context vector weighted by its similarity
with the specific sense:

st+1
ij = st

ij + (st
ij

|

ct
i)c

t
i (5)

The output of the attention is a weighted sum
of the sense vectors given their probabilities (i.e.
we apply soft attention), which is used as input
to the compositional network—a 2-layer LSTM.
The overall model is optimised on the MSE of the
LSTM’s output vector and the target entity vec-
tor. At inference time, a predicted vector ŷ can
be classified to the entity with the closest vectorial
representation according to some metric.

4 Experiments

The ideas presented in the previous sections are
evaluated on three tasks, two of which are related
to text-to-entity mapping, and one to classifica-
tion of KB entities. The purpose of the classifica-
tion task (§4.3) is to provide a direct comparison
of the textually enhanced vectors against vectors
produced by the original graph, but independently
of the compositional part. On the other hand,
the text mapping experiments (§§4.1, 4.2) evalu-
ate the overall architecture of Fig. 1 (including
the compositional model and the dynamic disam-
biguation mechanism) on appropriate end tasks.
Comparisons are provided with the most relevant
previous work. Specifically, in all tasks, no inclu-
sion of textual features corresponds to the standard
DeepWalk model of Perozzi et al. (2014); in §4.2
our compositional architecture is compared to the
work of Hill et al. (2016) in their reverse dictio-
nary task; and §4.3 compares our method for tex-
tually enhancing the entity space with that of Yang
et al. (2015), and other state-of-the-art deep mod-
els. The last subsection, §4.4, examines a few se-
lected cases from a qualitative perspective.
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4.1 Text-to-entity mapping
We begin with a large scale text-to-entity mapping
experiment. We construct a dataset of 21,000 med-
ical concepts extracted from SNOMED CT, each
of which is associated with a multi-word textual
description, taken from the knowledge base or Ba-
belNet. The criterion for including a concept in
the dataset was the availability of at least one tex-
tual description with 4 or more words. The objec-
tive of the task is to associate each one of these
descriptions to the correct concept. Given a pre-
dicted vector v̂, we assemble a list of all candidate
concept vectors ranked by their cosine similarity
with v̂. We compute strict accuracy (based on how
many times the vector of the correct concept is at
the top of the list) and accuracy on the first 20 el-
ements of the list. Further, we also present results
based on the mean reciprocal rank (MRR).

In all experiments, we create KB vectors of
150 dimensions by applying the skipgram objec-
tive on a set of random walks of length 20, and
with window size of 5. The graph is extended
with 102,500 textual nodes weighted by their TF-
IDF values with regard to the corresponding enti-
ties and selected as described in §3.1 (textual fea-
tures that occur in the testing set are not taken into
account). Each node in the graph serves as the
starting point of 10 random walks. For the compo-
sitional model, we use embeddings of 150 dimen-
sions, and 200-dimensional hidden states. The at-
tentional mechanism is implemented as a 2-layer
MLP, with 50 units allocated to the hidden layer
for each sense. The overall model contains two
dropout layers for regularisation purposes, and
is optimised with Adam (Kingma and Ba, 2015)
(↵ = 0.001, �1 = 0.9, �2 = 0.999).3

Following usual practice, we split our dataset
in three parts: a training set (14,754 instances), a
testing set (4,187 instances), and a development
set (2,000 instances). We use the dev set to opti-
mise the two main hyper-parameters of our model,
namely the probability mass given to textual fea-
tures (�) and the number of senses for each word
(k). The experiments on the dev set showed that
increasing the probability mass for the inclusion of
textual features in the random walks leads to con-
sistently better performance for all tested models,
so for the main experiment we set � to its highest
possible value, 1.00.4 Further, a number of senses

3Python code will be released at https://github.com/
cambridgeltl/SIPHS.

4Recall that this means half of the nodes in a random
walk will be textual (see Fig. 2).

Model Target space MRR Acc Acc-20
Baseline 1 W2V-GoogleNews 0.25 0.19 0.41
Baseline 2 W2V-PubMed 0.17 0.12 0.31

Least squares DeepWalk 0.19 0.10 0.49
TF vectors 0.49 0.37 0.79

CCA DeepWalk 0.36 0.24 0.70
TF vectors 0.71 0.60 0.94

Standard LSTM DeepWalk 0.30 0.20 0.58
(150 dim.) TF vectors 0.82 0.73 0.97

Standard LSTM DeepWalk 0.33 0.23 0.59
(k ⇥ 150 dim.) TF vectors 0.86 0.80 0.97

MS-LSTM DeepWalk 0.36 0.26 0.60
TF vectors 0.89 0.84 0.98

MS-LSTM TF vectors 0.94 0.90 1.00+ anchors

Table 1: Results for the SNOMED dataset. For the MS-
LSTM we set k = 3, while TF vectors refers to our
textually enhanced vectors (� = 1). The difference
between MS-LSTM and LSTM is s.s. with p < 0.01
according to a two-tailed z-test.

equal to 3 achieved the highest performance.
We compare our MS-LSTM with a number of

baselines: In Baselines 1 and 2 a vector for each
textual description is computed as the average of
pre-computed word vectors, and compared to con-
cept vectors prepared in a similar way, i.e. by av-
eraging pre-computed vectors for all words in the
qualified name of the entities. We used two differ-
ent word spaces, a standard Word2Vec space cre-
ated from Google News5 and a custom Word2Vec
model trained on a corpus of 4B tokens from med-
ical articles indexed in PubMed6. In Least squares
and CCA, an averaged vector for each textual de-
scription is again computed as before, and a linear
mapping is learned between the textual space and
the KB space, using least squares and canonical
correlation analysis (Hardoon et al., 2004).

In Standard LSTM, we use a configuration simi-
lar to that of Fig. 4, but without the multi-sense as-
pect; here, the word embeddings are just parame-
ters of the model randomly initialised before train-
ing. Further, we also test a standard LSTM where
the length of the single embeddings is k times big-
ger (k is the number of senses in the MS-LSTM),
so that the overall dimensionality of embeddings
in LSTM and MS-LSTM is the same.

The results are presented in Table 1. Each
model is tested against two target KB spaces, one
consisting of simple DeepWalk vectors7 and one
of textually enhanced vectors (TF vectors, � = 1)
according to the procedure of §3.1. There are three
observations: (1) Using the enhanced vectors as a

5https://code.google.com/archive/p/word2vec
6http://www.ncbi.nlm.nih.gov/pubmed/
7In our setting, this is equivalent to having � = 0.
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target space improves the performance of all tested
models by a large margin; (2) the MS-LSTM con-
figuration of Fig. 4 achieves the highest overall
performance, showing that explicitly handling pol-
ysemy during the composition is beneficial for the
task at hand; and (3) despite the equal dimension-
ality between the two models, the standard LSTM
with the long embeddings presents performance
inferior to that of the MS-LSTM.

The last row of the table presents results after
extending the training dataset with the textual an-
chors, that is, all the textual features paired with
their learned KB vectors, as described in the Ad-
vantages section in §3.1. Specifically, recall that
each textual feature (a word or a two-word com-
pound), being also a node in the graph, is associ-
ated with a vector according to the process of §3.1.
It is possible for one then to use these (textual fea-
ture, vector) pairs as additional examples during
the training of the MS-LSTM. The last row of Ta-
ble 1 shows the results after extending the training
set with the 102,500 textual features. This setting
achieves the highest performance, increasing fur-
ther the strict accuracy by 6%, to 0.90.

4.2 Reverse dictionary

We proceed to the reverse dictionary task of Hill
et al. (2016), the goal of which is to return a can-
didate term given a definition. Many forms of this
task have been proposed in the past, see for exam-
ple (Kartsaklis et al., 2012; Turney, 2014; Rimell
et al., 2016). In (Hill et al., 2016), the authors test
a number of supervised models under two evalu-
ation modes: (1) “seen”, in which the testing in-
stances are also included in the training set; and
(2) “unseen”, where the evaluation is done on a
held-out set. In both cases the datasets consisted
of 500 term-definition pairs from WordNet.

We treat WordNet as a graph, the edges of
which are defined by the various relationships
between the synsets. This graph is further ex-
tended with 96,734 textual nodes extracted from
the synset descriptions. We compute synset vec-
tors of 150 dimensions, on random walks of length
20 and with window size of 5. For the seen evalu-
ation, we train the compositional model on the to-
tality of WordNet 3.0 synsets (117,659) and their
descriptions. For the unseen evaluation, we re-
move from the graph any textual features occur-
ring in the testing part, and create a new set of
synset vectors; further, any testing instance is re-
moved from the training set of the compositional
model. The evaluation is done by comparing the

Model Acc-10 Acc-100
Seen (500 WordNet definitions)

OneLook (Hill et al., 2016) 0.89 0.91
RNN cosine (Hill et al., 2016) 0.48 0.73

Std LSTM (150 dim.) + TF vec. 0.86 0.96
Std LSTM (k ⇥ 150 dim.) + TF vec. 0.93 0.98

MS-LSTM +TF vectors 0.95 0.99
MS-LSTM +TF vectors + anchors 0.96 0.99

Unseen (500 WordNet definitions)
RNN w2v cosine (Hill et al., 2016) 0.44 0.69
BOW w2v cosine (Hill et al., 2016) 0.46 0.71

Std LSTM (150 dim.) + TF vec. 0.72 0.88
Std LSTM (k ⇥ 150 dim.) + TF vec. 0.77 0.90

MS-LSTM + TF vectors 0.79 0.90
MS-LSTM + TF vectors + anchors 0.80 0.91

Table 2: Results for the reverse dictionary task, com-
pared with the highest numbers reported by Hill et al.
(2016). TF vectors refers to textually enhanced vectors
with � = 1. For the MS-LSTM, k is set to 3.

predicted vector with the vectors of all WordNet
synsets (a search space of 117,659 points) and cre-
ating a ranked list as before, by cosine similarity.
Following (Hill et al., 2016), we compute accu-
racy on top-10 and top-100. � and k are tuned on
a dev set of 2,000 synsets, showing a behaviour
very similar to that of the SNOMED task.

Table 2 shows the results, based on a MS-LSTM
setup similar to that of §4.1. Note that the MS-
LSTM achieves 0.95-0.96 top-10 accuracy for the
seen evaluation, significantly higher not only than
the best model of Hill et al. (2016), but also higher
than OneLook, a commercial system with access
to more than 1000 dictionaries. It also presents
considerably higher performance in the unseen
evaluation. We are not aware of any other mod-
els with higher performance on the specific task.

4.3 Document classification

Our last experiment is a document classification
task, performed on Cora (McCallum et al., 2000),
a dataset containing 2708 machine learning papers
linked by citation relationships into a graph. Each
document is a short text extracted from the title or
the abstract of the paper. The task is to predict the
category of a document (a total of 7 classes), given
its vector—so here we only evaluate the textually
enhanced vectors as inputs to a classifier, indepen-
dently of the compositional part.

In Table 3 we report results for two evaluation
settings. In Evaluation 1, we provide a compari-
son with the method of Yang et al. (2015) who in-
clude textual features in graph embeddings based
on matrix factorisation, and two topic models used
as baselines in their paper. Using the same clas-
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Model Accuracy
Evaluation 1 (training ratio=0.50)

PLSA (Hofmann, 1999) 0.68
NetPLSA (Mei et al., 2008) 0.85
TADW (Yang et al., 2015) 0.87

Linear SVM + DeepWalk vectors 0.85
Linear SVM + TF vectors 0.88

Evaluation 2 (training ratio=0.05)
Planetoid (Yang et al., 2016) 0.76

GCN (Kipf and Welling, 2017) 0.81
GAT (Veličković et al., 2018) 0.83

Linear SVM + DeepWalk vectors 0.72
Linear SVM + TF vectors 0.82

Table 3: Results for the Cora dataset. TF vectors refers
to textually enhanced KB vectors (� = 0.5). Differ-
ence between our best models and GAT/GCN/TADW
are not s.s.

sification algorithm (a linear SVM) and training
ratio (0.50) with them, we present state-of-the-art
results for vectors of 150 dimensions, prepared by
a graph extended with 1422 textual features. We
set � = 0.5 by tuning on a dev set of 677 randomly
selected entries from the training data.8

In Evaluation 2, using the same linear SVM
classifier and � as before, we reduce the train-
ing ratio to 0.05 in order to make our task com-
parable to the experiments reported by Veličković
et al. (2018) for a number of deep learning models:
specifically, the graph attention network (GAT)
of Veličković et al. (2018), the graph convolu-
tional network (GCN) of Kipf and Welling (2017),
and the Planetoid model of Yang et al. (2016).
Again, our simple setting presents results within
the state of the art range, comparable to (or bet-
ter than) those of much more sophisticated models
that have been specifically designed for the task of
node classification. We consider this as a strong
indication for the effectiveness of the textually en-
hanced vectors as representations of KB entities.

Fig. 5 provides a visualisation of the Cora clas-
ses based on node vectors created with � = 0 and
� = 0.5, correspondingly, demonstrating the im-
pact of textual features in terms of cluster coher-
ence and separation.

4.4 Qualitative evaluation
Table 4 compares the performance of the multi-
sense approach with that of the single-sense model
for a number of selected cases of text mapping.
The predictions in the top part (for definitions

8We also attempted a second classification experiment on
a dataset of 200k concepts extracted from SNOMED, observ-
ing a similar behaviour of � (details are not reported due to
space). This difference in the behaviour of � between text-to-
entity mapping and classification tasks is discussed in §5.

Figure 5: Visualisation of the Cora classes based on
a 2D t-SNE projection of the node vectors before the
inclusion of textual features (left) and after (right).

taken from the unseen evaluation of the reverse
dictionary task) show that, in contrast to the
single-sense model, the multi-sense approach was
able to capture subtle variations of meaning be-
tween different synsets due to polysemy, as moti-
vated in §3.2. The lower part of the table contains
short phrases with ambiguous words, specifically
selected to demonstrate the effect of the multi-
sense approach. In all these cases, the multi-sense
model was able to effectively disambiguate the
ambiguous parts of the phrase by using the avail-
able context, and predict a very relevant synset; in
contrast, the predictions of the single-sense model
were based on choosing a wrong sense.

Finally, Table 5 presents the derived senses for
word table, expressed as lists of nearest neigh-
bouring words in the space. The model was able to
effectively distinguish between a table as a kitchen
furniture (sense 2), and a table as a structured way
of presenting data (senses 1 and 3).

5 Discussion

The experimental work shows that using a graph
embedding space as a target for mapping text
to entities is an effective approach. This was
mostly evident in the reverse dictionary task of
§4.2, where the model was found to perform sub-
stantially better than previous approaches by Hill
et al. (2016), who used a compositional architec-
ture similar to ours but optimised on the word em-
beddings of the target terms. Note that this is sub-
optimal in the sense that, unless specific measures
are taken, a word embedding reflects ambiguous
meaning; therefore, trying to associate a definition
like “keyboard musical instrument with pipes” to
the vector for word “organ” introduces a certain
amount of noise in the model, since the definition
will be partly associated with features related to
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Definition from the unseen dataset of the reverse dictionary task k = 3 (correct pred.) k = 1 (wrong pred.)
the branch of engineering that deals with things smaller than 100 nm nanotechnology microelectronics
floor consisting of open space at the top of a house just below roof loft balcony

a board game for two players; pieces move according to dice throws backgammon checkers
an address of a religious nature sermon rogation

Example short phrase with ambiguous words k = 3 prediction k = 1 prediction
a rechargeable cell nickel-cadmium battery karyolysis (biological process)

a state capital Curitiba (Brazilian state capital) assert (verb)
the lap of a person upper side of thighs lapper (garment)

a band named Queen band leader neckband (garment)

Table 4: Qualitative comparison of a few selected cases for multi- and single-sense LSTMs.

Sense 1. formulation, uncommonly, rauwolfia, cardiol-
ogy, hypodermic, malleability, points, optic, dendrite, ru-
biaceae, nonparametric, meninges, deviation, anesthetics
Sense 2. tableware, meal, expectation, heartily, kitchen,
hum, eating, forestay, suitors, croupier, companionship,
restaurant, dishes, candles, cup, tea
Sense 3. reassigned, projective, ultracentrifuge, polemo-
niaceous, thyronine, assumptions, lymphocyte, atomic,
difficulties, intracellular, virgil, elementary, cartesian

Table 5: Derived senses for word table, visualised as
lists of nearest neighbouring words in the vector space.

the “body part” sense of the word. In our model,
homonymy issues are resolved by design: each
point in the target space corresponds to a well-
defined unambiguous concept or synset. Further,
the attentional mechanism of Fig. 4 handles subtle
variations of each distinct sense due to polysemy.

The effectiveness of the textual feature mech-
anism was demonstrated in every task we at-
tempted, but to different extents. As our tuning
on the dev sets showed, for tasks closer to text-
to-entity mapping (§§4.1-4.2) the more the textual
features in the random walks, the better the results
were. However, the best performance on the clas-
sification task came by � values between 0.50 and
0.75, i.e. by walks visiting more entity nodes than
textual nodes. The reason is that entity classifi-
cation is a task very sensitive to the topology of
the KB graph, since entities belonging to a spe-
cific class are very likely to be located at the same
sub-hierarchy, hence in topological proximity. On
the other hand, one of the motivations for intro-
ducing textual features was exactly to broaden the
context of a node by connecting distant parts of the
graph (see Figures 2-3). So, while small amounts
of textual features can be still useful for classifica-
tion purposes, excessive use introduces unwanted
noise in the model.

The dynamic disambiguation mechanism inte-
grated in the compositional architecture improved
further the performance of the model. This finding
is consistent with previous work on simpler tensor-
based models, which showed that applying some

form of word sense disambiguation when compos-
ing word vectors can provide consistent improve-
ments on end tasks such as sentence similarity and
paraphrase detection (Kartsaklis and Sadrzadeh,
2013; Kartsaklis et al., 2013).

6 Conclusion and future work

We presented and evaluated a text-to-entity map-
ping system based on a continuous KB space en-
hanced with textual features and capable of han-
dling polysemy. The reasonable next step will be
to extend our methods for modelling the relations
(edges) of a KB graph, which will allow appli-
cations in tasks such as link prediction and KB
completion. Furthermore, having a mechanism
that translates arbitrary text to points in a contin-
uous space creates many opportunities for inter-
esting research. For example, while the size of a
knowledge base is finite, the space itself consists
of infinite number of points, each one of which
corresponds to a valid—yet not explicitly stated
in the KB—entity of the same domain. The ex-
citing question of how can we exploit this extra
information—for instance in order to enrich the
knowledge base with new data—constitutes one of
our future directions.
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Abstract

Concepts, which represent a group of differ-
ent instances sharing common properties, are
essential information in knowledge represen-
tation. Most conventional knowledge embed-
ding methods encode both entities (concepts
and instances) and relations as vectors in a
low dimensional semantic space equally, ig-
noring the difference between concepts and in-
stances. In this paper, we propose a novel
knowledge graph embedding model named
TransC by differentiating concepts and in-
stances. Specifically, TransC encodes each
concept in knowledge graph as a sphere and
each instance as a vector in the same seman-
tic space. We use the relative positions to
model the relations between concepts and in-
stances (i.e., instanceOf), and the rela-
tions between concepts and sub-concepts (i.e.,
subClassOf). We evaluate our model on
both link prediction and triple classification
tasks on the dataset based on YAGO. Ex-
perimental results show that TransC outper-
forms state-of-the-art methods, and captures
the semantic transitivity for instanceOf
and subClassOf relation. Our codes and
datasets can be obtained from https://
github.com/davidlvxin/TransC.

1 Introduction

Knowledge graphs (KGs) aim at semantically rep-
resenting the world’s truth in the form of machine-
readable graphs composed of triple facts. Knowl-
edge graph embedding encodes each element (en-
tities and relations) in knowledge graph into a
continuous low-dimensional vector space. The
learned representations make the knowledge graph
essentially computable and have been proved to be
helpful for knowledge graph completion and infor-
mation extraction (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015b; Ji et al., 2015, 2016).
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Figure 1: An example of concepts, instances, and isA
transitivity.

In recent years, various knowledge graph em-
bedding methods have been proposed, among
which the translation-based models are simple and
effective with good performances. Inspired by
word2vec (Mikolov et al., 2013), given a triple
(h, r, t), TransE learns vector embeddings h, r
and t which satisfy r ⇡ t � h. Afterwards,
TransH (Wang et al., 2014), TransR/CTransR (Lin
et al., 2015b) and TransD (Ji et al., 2015), etc
are proposed to address the problem of TransE
when modeling 1-to-N, N-to-1, and N-to-N rela-
tions. As extensions of RESCAL(Nickel et al.,
2011), which is a bilinear model, HolE(Nickel
et al., 2016), DistMult(Yang et al., 2014) and
ComplEx(Trouillon et al., 2016) achieve the state-
of-the-art performances. Meanwhile, there are
also some different methods using a variety of ex-
ternal information such as entity types (Xie et al.,
2016), textual descriptions (Wang and Li, 2016),
as well as logical rules to strengthen representa-
tions of knowledge graphs (Wang et al., 2015; Guo
et al., 2016; Rocktäschel et al., 2015).

However, all these methods ignore to distin-
guish between concepts and instances, and regard
both as entities to make a simplification. Actually,
concepts and instances are organized differently in
many real world datasets like YAGO (Suchanek
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et al., 2007), Freebase (Bollacker et al., 2008), and
WordNet (Miller, 1995). Hierarchical concepts in
these knowledge bases provide a natural way to
categorize and locate instances. Therefore, the
common simplification in previous work will lead
to the following two drawbacks:

Insufficient concept representation: Con-
cepts are essential information in knowledge
graph. A concept is a fundamental category of ex-
istence (Rosch, 1973) and can be reified by all of
its actual or potential instances. Figure 1 presents
an example of concepts and instances about uni-
versity staffs. Most knowledge embedding meth-
ods encode both concepts and instances as vectors,
cannot explicitly represent the difference between
concepts and instances.

Lack transitivity of both isA relations:
instanceOf and subClassOf (generally
known as isA) are two special relations in knowl-
edge graph. Different from most other relations,
isA relations exhibit transitivity, e.g., the dotted
lines in Figure 1 represent the facts inferred by
isA transitivity. The indiscriminate vector repre-
sentation for all relations in previous work cannot
reserve this property well (see Section 5.3 for de-
tails).

To address these issues, we propose a novel
translation embedding model named TransC in
this paper. Inspired by (Tenenbaum et al., 2011),
concepts in people’s mind are organized hierarchi-
cally and instances should be close to concepts
that they belong to. Hence in TransC, each con-
cept is encoded as a sphere and each instance as
a vector in the same semantic space, and relative
positions are employed to model the relations be-
tween concepts and instances. More specifically,
instanceOf relation is naturally represented by
checking whether an instance vector is inside a
concept sphere. For the subClassOf relation,
we enumerate and quantify four possible relative
positions between two concept spheres. We also
define loss functions to measure the relative posi-
tions and optimize knowledge graph embeddings.
Finally, we incorporate them into translation-
based models to jointly learn the knowledge rep-
resentations of concepts, instances and relations.

Experiments on real world datasets extracted
from YAGO show that TransC outperforms pre-
vious work like TransE, TransD, HolE, DistMult
and ComplEx in most cases. The contributions of
this paper can be summarized as follows:

1. To the best of our knowledge, we are the
first to propose and formalize the problem of
knowledge graph embedding which differen-
tiates between concepts and instances.

2. We propose a novel knowledge embedding
method named TransC, which distinguishes
between concepts and instances and deals
with the transitivity of isA relations.

3. We construct a new dataset based on YAGO
for evaluation. Experiments on link pre-
diction and triple classification demonstrate
that TransC successfully addresses the above
problems and outperforms state-of-the-art
methods.

2 Related Work

There are a variety of models for knowledge graph
embedding. We divide them into three kinds and
introduce them respectively.

2.1 Translation-based Models
TransE (Bordes et al., 2013) regards a relation r
as a translation from h to t for a triple (h, r, t) in
training set. The vector embeddings of this triple
should satisfy h + r ⇡ t. Hence, t should be the
nearest neighbor of h+ r, and the loss function is

fr(h, t) = ||h + r � t||22. (1)

TransE is suitable for 1-to-1 relations, but it has
problems when handling 1-to-N, N-to-1, and N-
to-N relations.
TransH (Wang et al., 2014) attempts to alleviate
the problems of TransE above. It regards a relation
vector r as a translation on a hyperplane with wr

as the normal vector. The vector embeddings will
be first projected to the hyperplane of relation r
and get h? = h�w>

r hwr and t? = t�w>
r twr.

The loss function of TransH is

fr(h, t) = ||h? + r � t?||22. (2)

TransR/CTransR (Lin et al., 2015b) addresses
the issue in TransE and TransH that some entities
are similar in the entity space but comparably dif-
ferent in other specific aspects. It sets a transfer
matrix Mr for each relation r to map entity em-
bedding to relation vector space. Its loss function
is

fr(h, t) = ||Mrh + r � Mrt||22. (3)
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TransD (Ji et al., 2015) considers the different
types of entities and relations at the same time.
Each relation-entity pair (r, e) will have a map-
ping matrix Mre to map entity embedding into
relation vector space. And the projected vectors
could be defined as h? = Mrhh and t? = Mrtt.
The loss function of TransD is

fr(h, t) = ||h? + r � t?||22. (4)

There are many other translation-based models
in recent years. For example, TranSparse (Ji et al.,
2016) simplifies TransR by enforcing the sparse-
ness on the projection matrix, PTransE (Lin et al.,
2015a) considers relation paths as translations be-
tween entities for representation learning, (Xiao
et al., 2016a) proposes a manifold-based embed-
ding principle (ManifoldE) for precise link predic-
tion, TransF (Feng et al., 2016) regards relation as
translation between head entity vector and tail en-
tity vector with flexible magnitude, (Xiao et al.,
2016b) proposes a new generative model TransG,
and KG2E (He et al., 2015) uses Gaussian embed-
ding to model the data uncertainty. All these mod-
els can be seen in (Wang et al.).

2.2 Bilinear Models
RESCAL(Nickel et al., 2011) is the first bilinear
model. It associates each entity with a vector to
capture its latent semantics. Each relation is rep-
resented as a matrix which models pairwise inter-
actions between latent factors.

Many extensions of RESCAL have been pro-
posed by restricting bilinear functions in recent
years. For example, DistMult (Yang et al.,
2014) simplifies RESCAL by restricting the ma-
trices representing relations to diagonal matrices.
HolE(Nickel et al., 2016) combines the expressive
power of RESCAL with the efficiency and sim-
plicity of DistMult. It represents both entities and
relations as vectors in R

d. ComplEx(Trouillon
et al., 2016) extends DistMult by introducing
complex-valued embeddings so as to better model
asymmetric relations.

2.3 External Information Learning Models
External information like textual information is
significant for knowledge representation. TEKE
(Wang and Li, 2016) uses external context infor-
mation in a text corpus to represent both entities
and words into a joint vector space with alignment
models. DKRL (Xie et al., 2016) directly learns

entity representations from entity descriptions.
(Wang et al., 2015; Guo et al., 2016; Rocktäschel
et al., 2015) use logical rules to strengthen repre-
sentations of knowledge graphs.

All models above do not differentiate between
concepts and instances. To the best of our knowl-
edge, our proposed TransC is the first attempt
which represents concepts, instances, and rela-
tions differently in the same space.

3 Problem Formulation

In this section, we formulate the problem of
knowledge graph embedding with concepts and
instances. Before that, we first introduce the in-
put knowledge graph.

Knowledge Graph KG describes concepts, in-
stances, and the relations between them. It can
be formalized as KG = {C, I, R, S}. C and
I denote the sets of concepts and instances re-
spectively. Relation set R can be formalized as
R = {re, rc} [ Rl, where re is an instanceOf
relation, rc is a subClassOf relation, and Rl is
the instance relation set. Therefore, the triple set
S can be divided into three disjoint subsets:

1. InstanceOf triple set Se =
{(i, re, c)k}ne

k=1, where i 2 I is an in-
stance, c 2 C is a concept, and ne is the size
of Se.

2. SubClassOf triple set Sc =
{(ci, rc, cj)k}nc

k=1, where ci, cj 2 C are
concepts, ci is a sub-concept of cj , and nc is
the size of Sc.

3. Relational triple set Sl = {(h, r, t)k}nl
k=1,

where h, r 2 I are head instance and tail in-
stance, r 2 Rl is an instance relation, and nl

is the size of Sl.

Given knowledge graph KG, knowledge graph
embedding with concepts and instances aims at
learning embeddings for instances, concepts, and
relations in the same space R

k. For each concept
c 2 C, we learn a sphere s(p, m) with p 2 R

k and
m denoting the sphere center and radius. For each
instance i 2 I and instance relation r 2 Rl, we
learn a low-dimensional vector i 2 R

k and r 2 R
k

respectively. Specifically, the instanceOf and
subClassOf representations are well-designed
so that the transitivity of isA relations can be
reserved, namely, instanceOf-subClassOf
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Figure 2: Four relative positions between sphere si and sj .

transitivity shown in Equation 5:

(i, re, c1) 2 Se ^ (c1, rc, c2) 2 Sc ! (i, re, c2) 2 Se, (5)

and subClassOf-subClassOf transitivity
shown in Equation 6:

(c1, rc, c2) 2 Sc ^ (c2, rc, c3) 2 Sc ! (c1, rc, c3) 2 Sc. (6)

Based on the definition, how to model concepts
and isA relations is critical to solve this problem.

4 Our Approach

To differentiate between concepts and instances
for knowledge graph embedding, we propose a
novel method named TransC. We define different
loss functions to measure the relative positions in
embedding space, and then jointly learn the rep-
resentations of concepts, instances, and relations
based on the translation-based models.

4.1 TransC
We have three kinds of triples in our triple set S
and define different loss function for them respec-
tively.

InstanceOf Triple Representation. For a
given instanceOf triple (i, re, c), if it is a true
triple, i should be inside the sphere s to represent
the instanceOf relation between them. Actu-
ally, there is another relative position that i is out-
side the sphere s. In this condition, the embed-
dings still need to be optimized. The loss function
is defined as

fe(i, c) = ||i � p||2 � m. (7)

SubClassOf Triple Representation. For a
subClassOf triple (ci, rc, cj), just like before,
concepts ci, cj are encoded as spheres si(pi, mi)
and sj(pj , mj). We first denote the distance be-
tween the centers of the two spheres as

d = ||pi � pj ||2. (8)

If (ci, rc, cj) is a true triple, sphere si should
be inside sphere sj (Figure 2a) to represent the
subClassOf relation between them. Actually,
there are three other relative positions between
sphere si and sj (as shown in Figure 2). We also
have three loss functions under these three condi-
tions:

1. si is separate from sj (Figure 2b). The em-
beddings still need to be optimized. In this
condition, the two spheres need to get closer
in optimalization. Therefore, the loss func-
tion is defined as

fc(ci, cj) = ||pi � pj ||2 + mi � mj . (9)

2. si intersects with sj (Figure 2c). This condi-
tion is similar to condition 1. The loss func-
tion is defined as

fc(ci, cj) = ||pi � pj ||2 + mi � mj . (10)

3. sj is inside si (Figure 2d). It is different from
our target and we should reduce mj and in-
crease mi. Hence, the loss function is

fc(ci, cj) = mi � mj . (11)

Relational Triple Representation. For a re-
lational triple (h, r, t), TransC will learn low-
dimensional vectors h, t, r 2 R

k for instances and
relations. Just like TransE (Bordes et al., 2013),
the loss function of this kind of triples is defined
as

fr(h, t) = ||h + r � t||22. (12)

After having embeddings above, TransC can
easily deal with the transitivity of isA relations.
If we have true triples (i, re, ci) and (ci, rc, cj),
which means i is inside the sphere si and si is in-
side sj , we can get a result that i is also inside the
sphere sj . It can be concluded that (i, re, cj) is a

1974



true triple and TransC can handle instanceOf-
subClassOf transitivity. Similarly, if we have
true triples (ci, rc, cj) and (cj , rc, ck), we can get
a result that sphere si is inside sphere sk. It means
(ci, re, ck) is a true triple and TransC can deal with
subClassOf-subClassOf transitivity.

In experiments, we enforce constrains as
||h||2  1, ||r||2  1, ||t||2  1 and ||p||2  1.

4.2 Training Method
For instanceOf triples, we use ⇠ and ⇠0 to de-
note a positive triple and a negative triple. Se and
S 0

e are used to describe the positive triple set and
negative triple set. Then we can define a margin-
based ranking loss for instanceOf triples:

Le =
X

⇠2Se

X

⇠02S0
e

[�e + fe(⇠) � fe(⇠
0)]+, (13)

where [x]+ , max (0, x) and �e is the margin sep-
arating positive triplets and negative triplets. Sim-
ilarly, for subClassOf triples, we will have a
ranking loss:

Lc =
X

⇠2Sc

X

⇠02S0
c

[�c + fc(⇠) � fc(⇠
0)]+, (14)

and for relational triples, we will have a ranking
loss:

Ll =
X

⇠2Sl

X

⇠02S0

l

[�l + fr(⇠) � fr(⇠
0)]+. (15)

Finally, we define the overall loss function as lin-
ear combinations of these three functions:

L = Le + Lc + Ll. (16)

The goal of training TransC is to minimize the
above function, and iteratively update embeddings
of concepts, instances, and concepts.

Every triple in our training set has a label to
indicate whether the triple is positive or negative.
But existing knowledge graph only contains posi-
tive triples. We need to generate negative triples
by corrupting positive triples. For a relational
triple (h, r, t), we replace h or t to generate a
negative triple (h0, r, t) or (h, r, t0). For exam-
ple, we get h0 by randomly picking from a set
Mt = M1[M2[ · · ·[Mn, where n is the num-
ber of concepts that t belongs to and Mi = {a|a 2
I ^ (a, re, ci) 2 Se ^ (t, re, ci) 2 Se ^ t 6= a}.
For the other two kinds of triples, we follow the
same policy to generate negative triples. We also
use two strategies “unif” and “bern” described in
(Wang et al., 2014) to replace instances or con-
cepts.

DataSets YAGO39K M-YAGO39K
#Instance 39,374 39,374
#Concept 46,110 46,110
#Relation 39 39

#Relational Triple 354,997 354,997
#InstanceOf Triple 442,836 442,836
#SubClassOf Triple 30,181 30,181

#Valid (Relational Triple) 9,341 9,341
#Test (Relational Triple) 9,364 9,364

#Valid (InstanceOf Triple) 5,000 8,650
#Test (InstanceOf Triple) 5,000 8,650
#Valid (SubClassOf Triple) 1,000 1,187
#Test (SubClassOf Triple) 1,000 1,187

Table 1: Statistics of YAGO39K and M-YAGO39K.

5 Experiments and Analysis

We evaluate our method on two typical tasks com-
monly used in knowledge graph embedding: link
prediction (Bordes et al., 2013) and triple classifi-
cation (Socher et al., 2013).

5.1 Datasets
Most previous work used FB15K and WN18 (Bor-
des et al., 2013) for evaluation. But these two
datasets are not suitable for our model because
FB15K mainly consists of instances and WN18
mainly contains concepts. Therefore, we use an-
other popular knowledge graph YAGO (Suchanek
et al., 2007) for evaluation, which contains a lot
of concepts from WordNet and instances from
Wikipedia. We construct a subset of YAGO named
YAGO39K for evaluation through the following
steps:

(1) We randomly select some relational triples
like (h, r, t) from the whole YAGO dataset as our
relational triple set Sl.

(2) For every instance and instance relation ex-
isted in our relational triples, we save it to con-
struct instance set I and instance relation set Rl

respectively.
(3) For every instanceOf triple (i, re, c) in

YAGO, if i 2 I, we save this triple to construct
instanceOf triple set Se.

(4) For every concept existed in instanceOf
triple set Se, we save it to construct concept set C.

(5) For every subClassOf triple (ci, rc, cj) in
YAGO, if ci 2 C ^ cj 2 C, we save this triple to
construct subClassOf triple set Sc.

(6) Finally, we achieve our triple set S = Se [
Sc [ Sl and our relation set R = {re, rc} [ Rl.

To evaluate every model’s performance in han-
dling the transitivity of isA relations, we generate
some new triples based on YAGO39K using the
transitivity of isA relations. These new triples will
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Experiments Link Prediction Triple Classification(%)

Metric MRR Hits@N(%) Accuracy Precision Recall F1-Score
Raw Filter 1 3 10

TransE 0.114 0.248 12.3 28.7 51.1 92.1 92.8 91.2 92.0
TransH 0.102 0.215 10.4 24.0 45.1 90.8 91.2 90.3 90.8
TransR 0.112 0.289 15.8 33.8 56.7 91.7 91.6 91.9 91.7
TransD 0.113 0.176 8.9 19.0 35.4 89.3 88.1 91.0 89.5
HolE 0.063 0.198 11.0 23.0 38.4 92.3 92.6 91.9 92.3

DistMult 0.156 0.362 22.1 43.6 66.0 93.5 93.9 93.0 93.5
ComplEx 0.058 0.362 29.2 40.7 48.1 92.8 92.6 93.1 92.9

TransC (unif) 0.087 0.421 28.3 50.0 69.2 93.5 94.3 92.6 93.4
TransC (bern) 0.112 0.420 29.8 50.2 69.8 93.8 94.8 92.7 93.7

Table 2: Experimental results on link prediction and triple classification for relational triples. Hits@N uses results
of “Filter” evaluation setting.

be added to valid and test datasets of YAGO39K
to create a new dataset named M-YAGO39K. Spe-
cific steps are described as follows:

(1) For every instanceOf triple (i, re, c) in
valid and test dataset, if (c, rc, cj) exists in train-
ing dataset, we save a new instanceOf triple
(i, re, cj).

(2) For every subClassOf triple (ci, rc, cj) in
valid and test dataset, if (cj , rc, ck) exists in train-
ing dataset, we save a new subClassOf triple
(ci, rc, ck).

(3) We add these new triples to valid and test
dataset of YAGO39K to get M-YAGO39K.

The statistics of YAGO39K and M-YAGO39K
are shown in Table 1.

5.2 Link Prediction
Link Prediction aims to predict the missing h or t
for a relational triple (h, r, t). In this task, we need
to give a ranking list of candidate instances from
the knowledge graph, instead of only giving one
best result.

For every test relational triple (h, r, t), we re-
move the head or tail instance and replace it with
all instances existed in knowledge graph, and rank
these instances in ascending order of distances cal-
culated by loss function fr. Just like (Bordes
et al., 2013), we use two evaluation metrics in this
task: (1) the mean reciprocal rank of all correct in-
stances (MRR) and (2) the proportion of correct
instances that rank no larger than N (Hits@N).
A good embedding model should achieve a high
MRR and a high Hits@N. We note that a corrupted
triple may also exist in knowledge graph, which
should also be regarded as a correct prediction.
However, the above evaluations do not handle this
issue and may underestimate the results. Hence,
we filter out every triple appeared in our knowl-
edge graph before getting the ranking list. The first

evaluation setting is called “Raw” and the second
one is called “Filter.” We report the experiment re-
sults on both settings.

In this task, we use dataset YAGO39K for eval-
uation. We select learning rate � for SGD among
{0.1, 0.01, 0.001}, the three margins �l, �e and �c

among {0.1, 0.3, 0.5, 1, 2}, the dimension of in-
stance vectors and relation vectors n among {20,
50, 100}. The best configurations are determined
according to the Hits@10 in valid set. The opti-
mal configurations are: �l = 1, �e = 0.1, �c = 1,
� = 0.001, n = 100 and taking L2 as dissimilar-
ity. We train every model for 1000 rounds in this
task.

Evaluation results on YAGO39K are shown in
Table 2. From the table, we can conclude that: (1)
TransC significantly outperforms other models in
terms of Hits@N. This indicates that TransC can
use isA triples’ information better than other mod-
els, which is helpful for instance representation
learning. (2) TransC performs a little bit worse
than DistMult in some settings. The reason may
be that we determine the best configurations only
according to the Hits@10, which may lead to a
low MRR. (3) The “bern” sampling trick works
well for TransC.

5.3 Triple Classification
Triple Classification aims to judge whether a given
triple is correct or not, which is a binary classifica-
tion task. This triple can be a relational triple, an
instanceOf triple or a subClassOf triple.

Negative triples are needed for evaluation of
binary classification. Hence, we construct some
negative triples following the same setting in
(Socher et al., 2013). There are as many true
triples as negative triples in both valid and test set.

For triple classification, we set a threshold �r

for every relation r. For a given test triple, if its
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Datasets YAGO39K M-YAGO39K
Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
TransE 82.6 83.6 81.0 82.3 71.0# 81.4# 54.4# 65.2#

TransH 82.9 83.7 81.7 82.7 70.1# 80.4# 53.2# 64.0#

TransR 80.6 79.4 82.5 80.9 70.9# 73.0# 66.3# 69.5#

TransD 83.2 84.4 81.5 82.9 72.5# 73.1# 71.4# 72.2#

HolE 82.3 86.3 76.7 81.2 74.2# 81.4# 62.7# 70.9#

DistMult 83.9 86.8 80.1 83.3 70.5# 86.1# 49.0# 62.4#

ComplEx 83.3 84.8 81.1 82.9 70.2# 84.4# 49.5# 62.4#

TransC (unif) 80.2 81.6 80.0 79.7 85.5" 88.3" 81.8" 85.0"

TransC (bern) 79.7 83.2 74.4 78.6 85.3" 86.1" 84.2" 85.2"

Table 3: Experimental results on instanceOf triple classification(%).

Datasets YAGO39K M-YAGO39K
Metric Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
TransE 77.6 72.2 89.8 80.0 76.9# 72.3" 87.2# 79.0#

TransH 80.2 76.4 87.5 81.5 79.1# 72.8# 92.9" 81.6"

TransR 80.4 74.7 91.9 82.4 80.0# 73.9# 92.9" 82.3#

TransD 75.9 70.6 88.8 78.7 76.1" 70.7" 89.0" 78.8"

HolE 70.5 73.9 63.3 68.2 66.6# 72.3# 53.7# 61.7#

DistMult 61.9 68.7 43.7 53.4 60.7# 71.7" 35.5# 47.7#

ComplEx 61.6 71.5 38.6 50.1 59.8# 65.6# 41.4" 50.7"

TransC (unif) 82.9 77.1 93.7 84.6 83.0" 77.5" 93.1# 84.7"

TransC (bern) 83.7 78.1 93.9 85.2 84.4" 80.7" 90.4# 85.3"

Table 4: Experimental results on subClassOf triple classification(%).

loss function is smaller than �r, it will be classi-
fied as positive, otherwise negative. �r is obtained
by maximizing the classification accuracy on valid
set.

In this task, we use dataset YAGO39K and M-
YAGO39K for evaluation. Parameters are selected
in the same way as in link prediction. The best
configurations are determined by accuracy in valid
set. The optimal configurations for YAGO39K
are: �l = 1, �e = 0.1, �c = 0.1, � = 0.001,
n = 100 and taking L2 as dissimilarity. The opti-
mal configurations for M-YAGO39K are: �l = 1,
�e = 0.1, �c = 0.3, � = 0.001, n = 100 and
taking L2 as dissimilarity. For both datasets, we
traverse all the training triples for 1000 rounds.

Our datasets have three kinds of triples. Hence,
we do experiments on them respectively. Experi-
mental results for relational triples, instanceOf
triples, and subClassOf triples are shown in Ta-
ble 2, Table 3, and Table 4 respectively. In Table
3 and Table 4, a rising arrow means performance
of this model have a promotion from YAGO39K
to M-YAGO39K and a down arrow means a drop.

From Table 2, we can learn that: (1) TransC out-
performs all previous work in relational triple clas-
sification. (2) The “bern” sampling trick works
better than “unif” in TransC.

From Table 3 and Table 4, we can conclude that:
(1) On YAGO39K, some compared models per-
form better than TransC in instanceOf triple

classification. This is because that instanceOf
has most triples (53.5%) among all relations in
YAGO39K. This relation is trained superabundant
times and nearly achieves the best performance,
which has an adverse effect on other triples.
TransC can find a balance between them and
all triples achieve a good performance. (2) On
YAGO39K, TransC outperforms other models in
subClassOf triple classification. As shown
in Table 1, subClassOf triples are much less
than instanceOf triples. Hence, other models
can not achieve the best performance under the
bad influence of instanceOf triples. (3) On
M-YAGO39K, TransC outperforms previous
work in both instanceOf triple classification
and subClassOf triple classification, which
indicates that TransC can handle the transitivity
of isA relations much better than other models.
(4) After comparing experimental results in
YAGO39K and M-YAGO39K, we can find that
most previous work’s performance suffers a big
drop in instanceOf triple classification and a
small drop in subClassOf triple classification.
This shows that previous work can not deal with
instanceOf-subClassOf transitivity well.
(5) In TransC, nearly all performances have a
significant promotion from YAGO39K to M-
YAGO39K. Both instanceOf-subClassOf
transitivity and subClassOf-subClassOf
transitivity are solved well in TransC.
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5.4 Case Study
We have shown that TransC have a good per-
formance for knowledge graph embedding and
dealing with transitivity of isA relations. In this
section, we present an example of finding new
instanceOf triples and subClassOf triples
using results of TransC.

As shown in Figure 3, New York City is an in-
stance and others are concepts. The solid lines
represent the triples from our datasets and the dot-
ted lines represent the facts inferred by our model.
TransC can find two new instanceOf triples
(New York City, instanceOf, City) and (New
York City, instanceOf, Municipality). It can
also find a new subClassOf triple (Port Cities,
subClassOf, City). Following the transitivity
of isA relations, we can know all these three new
triples are right. Unfortunately, most previous
work regards these three triples as wrong, which
means they can not handle transitivity of isA rela-
tions well.

New York
City

Port cities

City

Municipality

Northeastern
United States

������	
��

���������

��� ������������

Figure 3: An inference example of TransC.

6 Conclusion and Future Work

In this paper, we propose a new knowledge em-
bedding model named TransC. TransC embeds in-
stances, concepts, and relations in the same space
to deal with the transitivity of isA relations. We
create a new dataset YAGO39K for evaluation.
Experiment results show that TransC outperforms
previous translation-based models in most cases.
Besides, It can also handle the transitivity of isA
relations much better than other models. In our fu-
ture work, we will explore the following research
directions: (1) Sphere is a simple model to repre-
sent a concept in semantic space, but it still have
some limits since it is too naive. we will try to
find a more expressive model instead of spheres to
represent concepts. (2) A concept may have dif-
ferent meanings in different triples. We will try to

use several typical vectors of instances as a con-
cept’s centers to represent different meanings of a
concept. Then a concept can have different em-
beddings in different triples.
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Abstract

Knowledge graphs (KGs) are the key compo-
nents of various natural language processing
applications. To further expand KGs’ cov-
erage, previous studies on knowledge graph
completion usually require a large number of
training instances for each relation. However,
we observe that long-tail relations are actually
more common in KGs and those newly added
relations often do not have many known triples
for training. In this work, we aim at predicting
new facts under a challenging setting where
only one training instance is available. We
propose a one-shot relational learning frame-
work, which utilizes the knowledge extracted
by embedding models and learns a matching
metric by considering both the learned embed-
dings and one-hop graph structures. Empir-
ically, our model yields considerable perfor-
mance improvements over existing embedding
models, and also eliminates the need of re-
training the embedding models when dealing
with newly added relations.1

1 Introduction

Large-scale knowledge graphs (Suchanek et al.,
2007; Vrandečić and Krötzsch, 2014; Bollacker
et al., 2008; Auer et al., 2007; Carlson et al., 2010)
represent every piece of information as binary re-
lationships between entities, usually in the form
of triples i.e. (subject, predicate, object). This
kind of structured knowledge is essential for many
downstream applications such as Question An-
swering and Semantic Web.

Despite KGs’ large scale, they are known to be
highly incomplete (Min et al., 2013). To automat-
ically complete KGs, extensive research efforts
(Nickel et al., 2011; Bordes et al., 2013; Yang

1Code and datasets could be found
at https://github.com/xwhan/
One-shot-Relational-Learning.

Figure 1: The histogram of relation frequencies in
Wikidata. There are a large portion of relations that
only have a few triples.

et al., 2014; Trouillon et al., 2016; Lao and Co-
hen, 2010; Neelakantan et al., 2015; Xiong et al.,
2017; Das et al., 2017; Chen et al., 2018) have
been made to build relational learning models that
could infer missing triples by learning from exist-
ing ones. These methods explore the statistical in-
formation of triples or path patterns to infer new
facts of existing relations; and have achieved con-
siderable performance on various public datasets.

However, those datasets (e.g. FB15k, WN18)
used by previous models mostly only cover com-
mon relations in KGs. For more practical scenar-
ios, we believe the desired KG completion models
should handle two key properties of KGs. First,
as shown in Figure 1, a large portion of KG rela-
tions are actually long-tail. In other words, they
have very few instances. But intuitively, the fewer
training triples that one relation has, the more KG
completion techniques could be of use. Therefore,
it is crucial for models to be able to complete re-
lations with limited numbers of triples. However,
existing research usually assumes the availability
of sufficient training triples for all relations, which
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limits their usefulness on sparse long-tail relations.
Second, to capture up-to-date knowledge, real-

world KGs are often dynamic and evolving at any
given moment. New relations will be added when-
ever new knowledge is acquired. If a model can
predict new triples given only a small number of
examples, a large amount of human effort could be
spared. However, to predict target relations, pre-
vious methods usually rely on well-learned repre-
sentations of these relations. In the dynamic sce-
nario, the representations of new relations cannot
be sufficiently trained given limited training in-
stances, thus the ability to adapt to new relations
is also limited for current models.

In contrast to previous methods, we propose
a model that depends only on the entity embed-
dings and local graph structures. Our model aims
at learning a matching metric that can be used to
discover more similar triples given one reference
triple. The learnable metric model is based on a
permutation-invariant network that effectively en-
codes the one-hop neighbors of entities, and also
a recurrent neural network that allows multi-step
matching. Once trained, the model will be able to
make predictions about any relation while exist-
ing methods usually require fine-tuning to adapt
to new relations. With two newly constructed
datasets, we show that our model can achieve
consistent improvement over various embedding
models on the one-shot link prediction task.

In summary, our contributions are three-fold:

• We are the first to consider the long-tail rela-
tions in the link prediction task and formulate
the problem as few-shot relational learning;

• We propose an effective one-shot learn-
ing framework for relational data, which
achieves better performance than various
embedding-based methods;

• We also present two newly constructed
datasets for the task of one-shot knowledge
graph completion.

2 Related Work

Embedding Models for Relational Learning
Various models have been developed to model re-
lational KGs in continous vector space and to au-
tomatically infer missing links. RESCAL (Nickel
et al., 2011) is one of the earlier work that models
the relationship using tensor operations. Bordes

et al. (2013) proposed to model relationships in the
1-D vector space. Following this line of research,
more advanced models such as DistMult (Yang
et al., 2014), ComplEx (Trouillon et al., 2016) and
ConvE (Dettmers et al., 2017) have been proposed.
These embedding-based models usually assume
enough training instances for all relations and en-
tities and do not pay attention to those sparse
symbols. More recently, several models (Shi and
Weninger, 2017; Xie et al., 2016) have been pro-
posed to handle unseen entities by leveraging text
descriptions. In contrast to these approaches, our
model deals with long-tail or newly added rela-
tions and focuses on one-shot relational learning
without any external information, such as text de-
scriptions of entities or relations.

Few-Shot Learning Recent deep learning based
few-shot learning approaches fall into two main
categories: (1) metric based approaches (Koch,
2015; Vinyals et al., 2016; Snell et al., 2017;
Yu et al., 2018), which try to learn generalizable
metrics and the corresponding matching functions
from a set of training tasks. Most methods in
this class adopt the general matching framework
proposed in deep siamese network (Koch, 2015).
One example is the Matching Networks (Vinyals
et al., 2016), which make predictions by compar-
ing the input example with a small labeled support
set; (2) meta-learner based approaches (Ravi and
Larochelle, 2017; Munkhdalai and Yu, 2017; Finn
et al., 2017; Li et al., 2017), which aim to learn the
optimization of model parameters (by either out-
putting the parameter updates or directly predict-
ing the model parameters) given the gradients on
few-shot examples. One example is the LSTM-
based meta-learner (Ravi and Larochelle, 2017),
which learns the step size for each dimension of
the stochastic gradients. Besides the above cate-
gories, there are also some other styles of few-shot
learning algorithms, e.g. Bayesian Program Induc-
tion (Lake et al., 2015), which represents concepts
as simple programs that best explain observed ex-
amples under a Bayesian criterion.

Previous few-shot learning research mainly fo-
cuses on vision and imitation learning (Duan et al.,
2017) domains. In the language domain, Yu et al.
(2018) proposed a multi-metric based approach
for text classification. To the best of our knowl-
edge, this work is the first research on few-shot
learning for knowledge graphs.
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3 Background

3.1 Problem Formulation
Knowledge graphs G are represented as a collec-
tion of triples {(h, r, t)} ✓ E ⇥ R ⇥ E , where E
and R are the entity set and relation set. The task
of knowledge graph completion is to either predict
unseen relations r between two existing entities:
(h, ?, t) or predict the tail entity t given the head
entity and the query relation: (h, r, ?). As our pur-
pose is to infer unseen facts for newly added or
existing long-tail relations, we focus on the lat-
ter case. In contrast to previous work that usually
assumes enough triples for the query relation are
available for training, this work studies the case
where only one training triple is available. To be
more specific, the goal is to rank the true tail entity
ttrue higher than other candidate entities t 2 Ch,r,
given only an example triple (h0, r, t0). The can-
didates set is constructed using the entity type con-
straint (Toutanova et al., 2015). It is also worth
noting that when we predict new facts of the rela-
tion r, we only consider a closed set of entities, i.e.
no unseen entities during testing. For open-world
settings where new entities might appear during
testing, external information such as text descrip-
tions about these entities are usually required and
we leave this to future work.

3.2 One-Shot Learning Settings
This section describes the settings for the training
and evaluation of our one-shot learning model.

The goal of our work is to learn a metric that
could be used to predict new facts with one-
shot examples. Following the standard one-shot
learning settings (Vinyals et al., 2016; Ravi and
Larochelle, 2017), we assume access to a set
of training tasks. In our problem, each train-
ing task corresponds to a KG relations r 2 R,
and has its own training/testing triples: Tr =
{Dtrain

r , Dtest
r }. This task set is often denoted as

the meta-training set, Tmeta�train.
To imitate the one-shot prediction at evaluation

time, there is only one triple (h0, r, t0) in each
Dtrain

r . The Dtest
r = {(hi, r, ti, Chi,r)} consists

of the testing triples of r with ground-truth tail en-
tities ti for each query (hi, r), and the correspond-
ing tail entity candidates Chi,r = {tij} where each
tij is an entity in G. The metric model can thus
be tested on this set by ranking the candidate set
Chi,r given the test query (hi, r) and the labeled
triple in Dtrain

r . We denote an arbitrary ranking-

loss function as `✓(hi, r, ti|Chi,r, D
train
r ), where

✓ represents the parameters of our metric model.
This loss function indicates how well the metric
model works on tuple (hi, r, ti, Chi,r) while ob-
serving only one-shot data from Dtrain

r . The ob-
jective of training the metric model, i.e. the meta-
training objective, thus becomes:

min
✓

ETr

2

4
X

(hi,r,ti,Chi,r)2Dtest
r

`✓(hi, r, ti|Chi,r, D
train
r )

|Dtest
r |

3

5 ,

(1)
where Tr is sampled from the meta-training set
Tmeta�train, and |Dtest

r | denotes the number of tu-
ples in Dtest

r .
Once trained, we can use the model to make

predictions on new relations r0 2 R0, which is
called the meta-testing step in literature. These
meta-testing relations are unseen from meta-
training, i.e. R0 \ R = �. Each meta-testing
relation r0 also has its own one-shot training data
Dtrain

r0 and testing data Dtest
r0 , defined in the same

way as in meta-training. These meta-testing rela-
tions form a meta-test set Tmeta�test.

Moreover, we leave out a subset of rela-
tions in Tmeta�train as the meta-validation set
Tmeta�validation. Because of the assumption of
one-shot learning, the meta-testing relations do
not have validation sets like in the traditional
machine learning setting. Otherwise, the metric
model will actually see more than one-shot la-
beled data during meta-testing, thus the one-shot
assumption is violated.

Finally, we assume that the method has access
to a background knowledge graph G0, which is a
subset of G with all the relations from Tmeta�train,
Tmeta�validation and Tmeta�test removed.

4 Model
In this section, we describe the proposed model for
similarity metric learning and also the correspond-
ing loss function ` we use to train our model.

The core of our proposed model is a similar-
ity function M((h, t), (h0, t0)|G0). Thus for any
query relation r, as long as there is one known fact
(h0, r, t0), the model could predict the likelihood
of testing triples {(hi, r, tij)|tij 2 Chi,r}, based
on the matching score between each (hi, tij) and
(h0, t0). The implementation of the above match-
ing function involves two sub-problems: (1) the
representations of entity pairs; and (2) the compar-
ison function between two entity-pair representa-
tions. Our overall model, as shown in Figure 2,

1982



Leonardo	
da	Vinci

Occupation

Painter

vegetarianism

Lifestyle

Milan

Work	location

Italian

AmbassadorLanguage

Position	held

a)	Local	graph	of	entity	Leonardo	da	Vinci	

...

Relation:	occupation Entity:	painter

b)	Neighbor	Encoder

...

...

LSTM

Similarity	Score

:		sum
:		concatenation
:		cosine	similarity

c)	Matching	Processor

(da	Vinci,		The	Starry	Night) (da	Vinci,	Mona	Lisa)

ReferenceQuery

Figure 2: a) and b): Our neighbor encoder operating on entity Leonardo da Vinci; c): The matching processor.

deals with the above two problems with two major
components respectively:
• Neighbor encoder (Figure 2b), aims at utilizing
the local graph structure to better represent enti-
ties. In this way, the model can leverage more in-
formation that KG provides for every entity within
an entity pair.
• Matching processor (Figure 2c), takes the vec-
tor representations of any two entity pairs from
the neighbor encoder; then performs multi-step
matching between two entity-pairs and outputs a
scalar as the similarity score.

4.1 Neighbor Encoder

This module is designed to enhance the represen-
tation of each entity with its local connections in
knowledge graph.

Although the entity embeddings from KG em-
bedding models (Bordes et al., 2013; Yang et al.,
2014) already have relational information en-
coded, previous work (Neelakantan et al., 2015;
Lin et al., 2015a; Xiong et al., 2017) showed that
explicitly modeling the structural patterns, such as
paths, is usually beneficial for relationship predic-
tion. In view of this, we propose to use a neighbor
encoder to incorporate graph structures into our
metric-learning model. In order to benefit from
the structural information while maintaining the
efficiency to easily scale to real-world large-scale
KGs, our neighbor encoder only considers enti-
ties’ local connections, i.e. the one-hop neighbors.

For any given entity e, its local connections
form a set of (relation, entity) tuples. As shown in
Figure 2a, for the entity Leonardo da Vinci, one of
such tuples is (occupation, painter). We refer this

neighbor set as as Ne = {(rk, ek)|(e, rk, ek) 2
G0}. The purpose of our neighbor encoder is to
encode Ne and output a vector as the latent repre-
sentation of e. Because this is a problem of encod-
ing sets with varying sizes, we hope the encoding
function can be (1) invariant to permutations and
also (2) insensitive to the size of the neighbor set.
Inspired by the results from (Zaheer et al., 2017),
we use the following function f that satisfies the
above properties:

f(Ne) = �(
1

|Ne|
X

(rk,ek)2Ne

Crk,ek). (2)

where Crk,ek is the feature representation of a
relation-entity pair (rk, ek) and � is the acti-
vation function. In this paper we set � =
tanh which achieves the best performance on
Tmeta�validation.

To encode every tuple (rk, ek) 2 Ne into
Crk,ek , we first use an embedding layer emb with
dimension d (which can be pre-trained using ex-
isting embedding-based models) to get the vector
representations of rk and ek:

vrk = emb(rk), vek = emb(ek)

Dropout (Srivastava et al., 2014) is applied here
to the vectors vrk , vek to achieve better generaliza-
tion. We then apply a feed-forward layer to encode
the interaction within this tuple:

Crk,ek = Wc(vrk � vek) + bc, (3)

where Wc 2 Rd⇥2d, bc 2 Rd are parameters to be
learned and � denotes concatenation.
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Figure 3: The distribution of entities’ degrees (num-
bers of neighbors) on our two datasets. Since we work
on closed-set of entities, we draw the figure by con-
sidering the intersection between entities in our back-
ground knowledge G0 and the entities appearing in
Tmeta�train, Tmeta�validation or Tmeta�test. Note
that all triples in Tmeta�train, Tmeta�validation or
Tmeta�test are removed from G0. Upper: NELL;
Lower: Wikidata.

To enable batching during training, we manu-
ally specify the maximum number of neighbors
and use all-zero vectors as “dummy” neighbors.
Although different entities have different degrees
(number of neighbors), the degree distribution is
usually very concentrated, as shown in Figure 3.
We can easily find a proper bound as the maximum
number of neighbors to batch groups of entities.

The neighbor encoder module we propose here
is similar to the Relational Graph Convolutional
Networks (Schlichtkrull et al., 2017) in the sense
that we also use the shared kernel {Wc, bc} to en-
code the neighbors of different entities. But un-
like their model that operates on the whole graph
and performs multiple steps of information prop-
agation, we only encode the local graphs of the
entities and perform one-step propagation. This
enables us to easily apply our model to large-scale
KGs such as Wikidata. Besides, their model also
does not operate on pre-trained graph embeddings.
We leave the investigation of other graph encoding
strategies, e.g. (Xu et al., 2018; Song et al., 2018),
to future work.

4.2 Matching Processor
Given the neighbor encoder module, now we dis-
cuss how we can do effective similarity matching
based on our recurrent matching processor. By ap-
plying f(Ne) to the reference entity pair (h0, t0)
and any query entity pair (hi, tij), we get two

Algorithm 1 One-shot Training
1: Input:
2: a) Meta-training task set Tmeta�training;
3: b) Pre-trained KG embeddings (excluding relation in

Tmeta�training);
4: c) Initial parameters ✓ of the metric model;
5: for epoch = 0:M-1 do
6: Shuffle the tasks in Tmeta�learning

7: for Tr in Tmeta�learning do
8: Sample one triple as the reference
9: Sample a batch B+ of query triples

10: Pollute the tail entity of query triples to get B�

11: Calculate the matching scores for triple in B+

and B�

12: Calculate the batch loss L =
P

B `
13: Update ✓ using gradient g / rL

14: end for
15: end for

neighbor vectors for each: [f(Nh0); f(Nt0)] and
[f(Nhi); f(Ntij )]. To get a similarity score that
can be used to rank (hi, tij) among other candi-
dates, we can simply concatenate the f(Nh) and
f(Nt) in each pair to form a single pair repre-
sentation vector, and calculate the cosine similar-
ity between pairs. However, this simple metric
model turns out to be too shallow and does not
give good performance. To enlarge our model’s
capacity, we leverage a LSTM-based (Hochre-
iter and Schmidhuber, 1997) recurrent “process-
ing” block (Vinyals et al., 2015, 2016) to perform
multi-step matching. Every process step is defined
as follows:

h
0

k+1, ck+1 = LSTM(q, [hk � s, ck])

hk+1 = h
0

k+1 + q

scorek+1 =
hk+1 � s

khk+1k ksk , (4)

where LSTM(x, [h, c]) is a standard LSTM cell
with input x, hidden state h and cell state c, and
s = f(Nh0) � f(Nt0), q = f(Nhi) � f(Ntij ) are
the concatenated neighbor vectors of the reference
pair and query pair. After K processing steps2, we
use scoreK as the final similarity score between
the query and support entity pair. For every query
(hi, r, ?), by comparing (hi, tij) with (h0, t0), we
can get the ranking scores for every tij 2 Chi,r.

4.3 Loss Function and Training
For a query relation r and its reference/training
triple (h0, r, t0), we collect a group of positive
(true) query triples {(hi, r, t

+
i )|(hi, r, t

+
i ) 2 G}

and construct another group negative (false) query
2K is a hyperparameter to be tuned.

1984



triples {(hi, r, t
�
i )|(hi, r, t

�
i ) 62 G} by polluting

the tail entities. Following previous embedding-
based models, we use a hinge loss function to op-
timize our model:

`✓ = max(0, � + score�
✓ � score+

✓ ), (5)

where score+
✓ and score�

✓ are scalars calculated
by comparing the query triple (hi, r, t

+
i /t�i ) with

the reference triple (h0, r, t0) using our metric
model, and the margin � is a hyperparameter to
be tuned. For every training episode, we first sam-
ple one task/relation Tr from the meta-training set
Tmeta�training. Then from all the known triples in
Tr, we sample one triple as the reference/training
triple Dtrain

r and a batch of other triples as the
positive query/test triples Dtest

r . The detail of the
training process is shown in Algorithm 1. Our ex-
periments are discussed in the next section.

5 Experiments

5.1 Datasets

Dataset # Ent. # R. # Triples # Tasks

NELL-One 68,545 358 181,109 67
Wiki-One 4,838,244 822 5,859,240 183

Table 1: Statistics of the Datasets. # Ent. denotes the
number of unique entities and # R. denotes the number
of all relations. # Tasks denotes the number of relations
we use as one-shot tasks.

Existing benchmarks for knowledge graph com-
pletion, such as FB15k-237 (Toutanova et al.,
2015) and YAGO3-10 (Mahdisoltani et al., 2013)
are all small subsets of real-world KGs. These
datasets consider the same set of relations during
training and testing and often include sufficient
training triples for every relation. To construct
datasets for one-shot learning, we go back to the
original KGs and select those relations that do not
have too many triples as one-shot task relations.
We refer the rest of the relations as background re-
lations, since their triples provide important back-
ground knowledge for us to match entity pairs.

Our first dataset is based on NELL (Mitchell
et al., 2018), a system that continuously collects
structured knowledge by reading webs. We take
the latest dump and remove those inverse relations.
We select the relations with less than 500 but more
than 50 triples3 as one-shot tasks. To show that
our model is able to operate on large-scale KGs,

3We want to have enough triples for evaluation.

we follow the similar process to build another
larger dataset based on Wikidata (Vrandečić and
Krötzsch, 2014). The dataset statistics are shown
in Table 1. Note that the Wiki-One dataset is an
order of magnitude larger than any other bench-
mark datasets in terms of the numbers of entities
and triples. For NELL-One, we use 51/5/11 task
relations for training/validation/testing. For Wiki-
One, the division ratio is 133:16:34.

5.2 Implementation Details

In our experiments, we consider the follow-
ing embedding-based methods: RESCAL (Nickel
et al., 2011), TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014) and ComplEx (Trouillon
et al., 2016). For TransE, we use the code released
by Lin et al. (2015b). For the other models, we
have tried the code released by Trouillon et al.
(2016) but it gives much worse results than TransE
on our datasets. Thus we use our own implemen-
tations based on PyTorch (Paszke et al., 2017) for
comparison. When evaluating existing embedding
models, during training, we use not only the triples
of background relations but also all the triples
of the training relations and the one-shot training
triple of those validation/test relations. However,
since the proposed metric model does not require
the embeddings of query relations, we only in-
clude the triples of the background relations for
embedding training. As TransE and DistMult use
1-D vectors to represent entities and relations, they
can be directly used in our natching model. While
for RESCAL, since it uses matrices to represent
relations, we employ mean-pooling over these ma-
trices to get 1-D embeddings. For the ComplEx
model, we use the concatenation of the real part
and imaginary part. The hyperparameters of our
model are tuned on the validation task set and can
be found in the appendix.

Apart from the above embedding models, a
more recent method (Dettmers et al., 2017) applies
convolution to model relationships and achieves
the best performance on several benchmarks. For
every query (h, r, ?), their model enumerates the
whole entity set to get positive and negative triples
for training. We find that this training paradigm
takes lots of computational resources when deal-
ing with large entity sets and cannot scale to real-
world KGs such as Wikidata4 that have millions

4On a GPU card with 12GB memory, we fail to run their
ConvE model on Wiki-One with batch size 1.
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NELL-One Wiki-One
Model MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

RESCAL .071/.140 .100/.229 .082/.186 .048/.089 .119/.072 .167/.082 .132/.062 .093/.051
TransE .082/.093 .177/.192 .126/.141 .032/.043 .023/.035 .036/.052 .029/.043 .015/.025
DistMult .075/.102 .128/.177 .093/.126 .045/.066 .042/.048 .086/.101 .055/.070 .017/.019
ComplEx .072/.131 .128/.223 .041/.086 .041/.086 .079/.069 .148/.121 .106/.092 .046/.040

GMatching (RESCAL) .144/.188 .277/.305 .216/.243 .087/.133 .113/.139 .330/.305 .180/.228 .033/.061
GMatching (TransE) .168/.171 .293/.255 .239/.210 .103/.122 .167/.219 .349/.328 .289/.269 .083/.163
GMatching (DistMult) .119/.171 .238/.301 .183/.221 .054/.114 .190/.222 .384/.340 .291/.271 .114/.164
GMatching (ComplEx) .132/.185 .308/.313 .232/.260 .049/.119 .201/.200 .350/.336 .231/.272 .141/.120
GMatching (Random) .083/.151 .211/.252 .135/.186 .024/.103 .174/.198 .309/.299 .222/.260 .121/.133

Table 2: Link prediction results on validation/test relations. KG embeddings baselines are shown at the top of the
table and our one-shot learning (GMatching) results are shown at the bottom. Bold numbers denote the best results
on meta-validation/meta-test. Underline numbers denote the model selection results from all KG embeddings
baselines, or from all one-shot methods, i.e. selecting the method with the best validation score and reporting the
corresponding test score.

of entities. For the scalability concern, our experi-
ments only consider models that use negative sam-
pling for training.

5.3 Results
The main results of our methods are shown in Ta-
ble 2. We denote our method as “GMatching”
since our model is trained to match local graph
patterns. We use mean reciprocal rank (MRR)
and Hits@K to evaluate different models. We can
see that our method produces consistent improve-
ments over various embedding models on these
one-shot relations. The improvements are even
more substantial on the larger Wiki-One dataset.
To investigate the learning power of our model,
we also try to train our metric model with ran-
domly initialized embeddings. Surprisingly, al-
though the results are worse than the metric mod-
els with pre-trained embeddings, they are still su-
perior to the baseline embedding models. This
suggests that, by incorporating the neighbor enti-
ties into our model, the embeddings of many rela-
tions and entities actually get updated in an effec-
tive way and provide useful information for our
model to make predictions on test data.

It is worth noting that once trained, our model
can be used to predict any newly added relations
without fine-tuning, while existing models usu-
ally need to be re-trained to handle those newly
added symbols. On a large real-world KG, this
re-training process can be slow and highly com-
putational expensive.

Remark on Model Selection Given the exis-
tence of various KG embedding models, one in-
teresting experiment is to incorporate model selec-

tion into hyper-parameter tuning and choose the
best validation model for testing.

If we think about comparing KG embedding
and metric learning as two approaches, the re-
sults from the model selection process can then
be used as the “final” measurement for compar-
ison. For example, the baseline KG embedding
achieves best MRR on Wiki-One with RESCAL
(11.9%), so we report the corresponding testing
MRR (7.2%) as the final model selection result for
KG embedding approach. In this way, at the top
half of Table 2, we select the best KG embedding
method according to the validation performance.
The results are highlighted with underlines. Sim-
ilarly, we select the best metric learning approach
at the bottom.

Our metric-based method outperforms KG em-
bedding by a large margin from this perspective
as well. Taking MRR as an example, the selected
metric model achieves 17.1% on NELL-One and
20.0% on Wiki-One; while the results of KG em-
bedding are 9.3% and 7.2%. The improvement is
7.8% and 12.8% respectively.

5.4 Analysis on Neighbor-Encoder

As our model leverages entities’ local graph struc-
tures by encoding the neighbors, here we try to
investigate the effect of the neighbor set by re-
stricting the maximum number of neighbors. If
the size of the true neighbor set is larger than the
maximum limit, the neighbors are then selected
by random sampling. Figure 4 shows the learn-
ing curves of different settings. These curves are
based on the Hits@10 calculated on the valida-
tion set. We see that encoding more neighbors
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MRR Hits@10

Relations # Candidates GMatching ComplEx GMatching ComplEx

sportsGameSport 123 0.424 0.466(0.139?) 1.000 0.479(0.200?)
athleteInjuredHisBodypart 299 0.025 0.026(0.330

?) 0.015 0.059(0.444
?)

animalSuchAsInvertebrate 786 0.447 0.333(0.555
?) 0.626 0.587(0.783

?)
automobilemakerDealersInCountry 1084 0.453 0.245(0.396?) 0.821 0.453(0.500?)
sportSchoolIncountry 2100 0.534 0.324(0.294?) 0.745 0.529(0.571?)
politicianEndorsesPolitician 2160 0.093 0.026(0.194

?) 0.226 0.047(0.357
?)

agriculturalProductFromCountry 2222 0.120 0.029(0.042?) 0.288 0.058(0.086?)
producedBy 3174 0.085 0.040(0.165

?) 0.179 0.075(0.241
?)

automobilemakerDealersInCity 5716 0.026 0.024(0.041
?) 0.040 0.051(0.174

?)
teamCoach 10569 0.017 0.065(0.376

?) 0.024 0.079(0.547
?)

geopoliticalLocationOfPerson 11618 0.028 0.016(0.284
?) 0.035 0.035(0.447

?)

Table 3: Results decomposed over different relations. “?” denotes the results with standard training settings and
“# Candidates” denotes the size of candidate entity set.

Figure 4: The learning curves on NELL-one. Every
run uses different number of neighbors. The y-axis is
Hits@10 calculated on all the validation relations.

Configuration Hits@10

Full Model with ComplEx .308/.313

w/o Matching Processor .266/.269
w/o Neighbor Encoder .248/.296
w/o Scaling Factor .229/.219

Table 4: Ablation on different components.

for every entity generally leads to better perfor-
mance. We also observe that the model that en-
codes 40 neighbors in maximum actually yields
worse performance than the model that only en-
codes 30 neighbors. We think the potential reason
is that for some entity pairs, there are some local
connections that are irrelevant and provide noisy
information to the model.

5.5 Ablation Studies
We conduct ablation studies using the model that
achieves the best Hits@10 on the NELL-One
dataset. The results are shown in Table 4. We
use Hits@10 on validation and test set for com-
parison, as the hyperparameters are selected us-

ing this evaluation metric. We can see that both
the matching processor5 and the neighbor encoder
play important roles in our model. Another im-
portant observation is that the scaling factor 1/Ne

turns out to be very essential for the neighbor en-
coder. Without scaling, the neighbor encoder ac-
tually gives worse results compared to the simple
embedding-based matching.

5.6 Performance on Different Relations

When testing various models, we observe that the
results on different relations are actually of high
variance. Table 3 shows the decomposed results
on NELL-One generated by our best metric model
(GMatching-ComplEx) and its corresponding em-
bedding method. For reference, we also report
the embedding model’s performance under stan-
dard training settings where 75% of the triples (in-
stead of only one) are used for training and the
rest are used for testing. We can see that rela-
tions with smaller candidate sets are generally eas-
ier and our model could even perform better than
the embedding model trained under standard set-
tings. For some relations such as athleteInjured-
HisBodypart, their involved entities have very few
connections in KG. It is as expected that one-shot
learning on these kinds of relations is quite chal-
lenging. Those relations with lots of (>3000) can-
didates are challenging for all models. Even for
embedding model with more training triples, the
performance on some relations is still very limited.
This suggests that the knowledge graph comple-
tion task is still far from being solved.

5Matching without Matching Processor is equivalent to
matching using simple cosine similarity.
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6 Conclusion

This paper introduces a one-shot relational learn-
ing framework that could be used to predict new
facts of long-tail relations in KGs. Our model
leverages the local graph structure of entities and
learns a differentiable metric to match entity pairs.
In contrast to existing methods that usually need
finetuning to adapt to new relations, our trained
model can be directly used to predict any un-
seen relation and also achieves much better per-
formance in the one-shot setting. Our future
work might consider incorporating external text
data and also enhancing our model to make better
use of multiple training examples in the few-shot
learning case.
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A Hyperparameters

For the NELL dataset, we set embedding size as
100. For Wikidata, we set the embedding size
as 50 for faster training with millions of triples.
The embeddings are trained for 1,000 epochs. The
other hyperparamters are tuned using the Hits@10
metric6 on the validation tasks. For matching
steps, the optimal setting is 2 for NELL-One and
4 for Wiki-One. For the number of neighbors,
we find that the maximum limit 50 works the
best for both datasets. For parameter updates, we
use Adam (Kingma and Ba, 2014) with the initial
learning rate 0.001 and we half the learning rate
after 200k update steps. The margin used in our
loss function is 5.0. The dimension of LSTM’s
hidden size is 200.

B Few-Shot Experiments

Metrics GMatching ComplEx
1-shot 5-shot 1-shot 5-shot

MRR .132/.185 .178/.201 .072/.131 .113/.200
Hits@10 .308/.313 .307/.311 .128/.223 .221/.325
Hits@5 .232/.260 .241/.264 .041/.086 .160/.269
Hits@1 .049/.119 .109/.143 .041/.086 .113/.133

Table 5: 5-shot experiments on NELL-One.

6The percentage of correct answer ranks within top10.
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Abstract

Many important entity types in web docu-
ments, such as dates, times, email addresses,
and course numbers, follow or closely resem-
ble patterns that can be described by Regular
Expressions (REs). Due to a vast diversity of
web documents and ways in which they are be-
ing generated, even seemingly straightforward
tasks such as identifying mentions of date in a
document become very challenging. It is rea-
sonable to claim that it is impossible to create
a RE that is capable of identifying such enti-
ties from web documents with perfect preci-
sion and recall. Rather than abandoning REs
as a go-to approach for entity detection, this
paper explores ways to combine the expressive
power of REs, ability of deep learning to learn
from large data, and human-in-the loop ap-
proach into a new integrated framework for en-
tity identification from web data. The frame-
work starts by creating or collecting the ex-
isting REs for a particular type of an entity.
Those REs are then used over a large docu-
ment corpus to collect weak labels for the en-
tity mentions and a neural network is trained
to predict those RE-generated weak labels. Fi-
nally, a human expert is asked to label a small
set of documents and the neural network is fine
tuned on those documents. The experimen-
tal evaluation on several entity identification
problems shows that the proposed framework
achieves impressive accuracy, while requiring
very modest human effort.

1 Introduction

Named Entity Recognition (NER) is the task of
automatically locating, extracting, and classifying
contiguous pieces of strings, which represent en-
tities of interest, in text. Classification (or typing)
seeks to assign pre-defined categories (e.g., per-
son, organization, location, expressions of time,
monetary values, and emails) to each extracted
piece of text. NER is a subtask of the broader

problem of Information Extraction (IE) from text
(Chang et al., 2006; Etzioni et al., 2005; Finkel
and Manning, 2009; Nadeau and Sekine, 2007;
Shen et al., 2015). Named entities usually refer
to entity names that describe unique identifiers of
people, locations, movies, events, and organiza-
tions. There is a large class of entities that are
not “named," such as expressions of time, emails,
and course identifiers. Their main characteristic
is that they often follow an underlying syntactical
pattern, which can be fully described or well ap-
proximated by Regular Expressions (REs).

Despite being the workhorse of many entity
recognition tasks, REs have a number of draw-
backs. The construction of highly accurate REs is
difficult and requires specific technical skills. For
a simple task such as recognizing emails, there are
361 REs proposed in RegExLib.com. Moreover,
REs are brittle and difficult to maintain. These ob-
stacles have motivated the work on automatic in-
ference of REs (Banko et al., 2007; Li et al., 2008;
Bartoli et al., 2018) where the objective it to de-
velop approaches that are fast and deployable in
real time. However, the existing approaches tend
to require large number of examples to cover both
the alphabet and the possible syntactic patterns.
Moreover, they often produce overly complicated
or long REs or combinations of REs (Bartoli et al.,
2016). One of the most complete REs for emails
has nearly 6,500 characters (Millner, 2008)!

Web documents are an important domain for
data extraction. Importantly, the Web is not a
place where data follows "underlying syntactical
pattern" at scale. A datetime RE for New York
Times news articles may not work for the articles
at Le Figaro or Al Jazeera. Small typos throw off
REs and produce nothing. This is a concrete Web
example data-timestamp="Thu Oct 05
2017 10:33:05 -0500"> that contains an un-
expected space before "-0500". This small typo
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can easily deem a complex and painstakingly con-
structed datetime RE obsolete. At such scale, any
attempt to fully understand an RE and debug it in
case it fails is futile. New automated or semi-
automated tools are needed to either supersede
REs or to work in tandem with REs. In this work,
we focus on the later.

In this paper, we target the problem of detecting
presence of entity mentions that follow or closely
resemble patterns that can be described by REs.
Unlike much of the previous body of work on this
topic, we do not focus on learning/inferring highly
accuracte REs for entity identification (Prasse
et al., 2012; Bui and Zeng-Treitler, 2014; Li et al.,
2008; Banko et al., 2007; Brauer et al., 2011; Bar-
toli et al., 2016). We aim instead to show that deep
learning can leverage imperfect REs and achieve
very high accuracy while requiring only a modest
human involvement.

Suppose the goal is to recognize datetime string
expressions. We use some reasonable REs R
for datetime to generate a weakly labeled train-
ing dataset from a large corpus of Web documents,
e.g., news articles. We train a deep neural network
on this data. Denote this model MRE . To our
surprise, MRE is already capable of recognizing
the presence of datetime expressions beyond those
recognized by R. Furthermore, with the addition
of a very small number of training samples (be-
tween 20 - 50 instances) from a human labeler,
we obtain a model MRE+human that is supe-
rior to MRE by a significant margin. In general,
complex systems do not generalize easily with the
addition of new data, because the amount of la-
beled data required to provide a good coverage
grows exponentially with the complexity of the
problem (Chiu and Nichols, 2015; Lample et al.,
2016; Huang et al., 2015; Mahajan et al., 2018).
We show that there is an opportunity for faster
convergence to a generalized recognizer for this
class of entities.

The main contributions in this paper are:
• We show how starting from REs R that rec-

ognizes a fraction of entities of a given type
E (say, email) we can pretrain a deep neural
network (NN) model which can be a richer
recognizer of entities of type E than R.

• We show that we can fine tune the pretrained
model to recognize an even larger set of en-
tities of type E with the addition of a small
number of labeled instances, as small as 20.

The paper is organized as follows. Section 2
gives an overview of the related work. Section
3 describes our method. Section 4 presents our
methodology for parameter learning and experi-
mental setup. Section 5 gives the experimental re-
sults. Finally, Section 6 concludes the paper.

2 Related Work

This section will mention several lines of research
we deem the most related to our work.

The problem of inducing regular expressions
has been an active area of work for more than
two decades. One line of work focuses on im-
proving the initial REs by identifying the true
or false matches (Li et al., 2008; Murthy et al.,
2012; Cetinkaya, 2007; Cochran et al., 2015). An-
other line of work attempts to directly induce REs
from positive and negative sample strings (Fer-
nau, 2009; Denis, 2001). The common approaches
include generation of prefix and suffix automa-
tons that represent overlapping syntactical fea-
tures of the entities on character and token level
(Brauer et al., 2011) and the automatic creation of
REs based on genetic programming (Bartoli et al.,
2012, 2014, 2016, 2018).

Constraining NN training to comply with
known rules has also been an active research topic.
Hu et al. (2016) proposes integration of constraints
coming in the form of first order logic rules during
training of NNs. Alashkar et al. (2017) trains an
NN by minimizing a joint loss based on prediction
of labels and adhering to the predefined rules. Lo-
cascio et al. (2016) proposed training LSTM NN
to generate REs from sample pieces of text. Luo
et al. (2018) incorporates knowledge of REs into
training of NNs at three different levels: as the in-
put features to NNs, as regularizations of the out-
puts of NN layers, or as a reward/penalty in the
loss functions in NNs.

Unlike the aforementioned work, we do not at-
tempt to learn explicit REs and do not force the
outputs of NN layers match predetermined rules.
Instead, we leverage REs as a means of generat-
ing a large quantity of weak labels from unlabeled
data and using such data to pre-train an NN to rec-
ognize the provided REs. We fine tune such an NN
on human-labeled data to exceed accuracy of the
REs. A similar approach is effective in other do-
mains. For example, Felbo et al. (2017) proposed
pre-training an NN on millions of tweets labeled
by emojis before fine tuning it for sentiment anal-
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Figure 1: Overview of the solution (left) and deep learning architecture (right) used to train model MRE .

ysis. Mahajan et al. (2018) pre-trained an NN on
billions of images labeled by hashtags before fine
tuning it to various computer vision tasks.

3 Methodology

We describe the proposed framework here.

Problem Definition: Given a text string t and an
entity type E , the task is to predict whether t con-
tains an entity mention of type E . We treat this
task as binary classification. To build the classi-
fier, we assume that we are given a large corpus
of unlabeled text strings T = {t1, t2, ..., tn}. The
challenge is to train the classifier with the minimal
human effort. We allow a human expert to help
in two ways: (1) construct a new RE or find an
RE created by others, and (2) label an unlabeled
string. For the purposes of this paper, we assume
that one or more REs suitable for entity identifi-
cation are already available and that human effort
refers only to string labeling. The available REs
might have an arbitrary precision and recall. We
will analyze the impact of the RE quality on clas-
sification accuracy in the experimental section.

Solution Framework: An overview of the pro-
posed framework is illustrated in Figure 1.

STEP 1. All of the unlabeled strings from T are
fed into an RE annotator. If any of the provided
REs ti recognizes ti, it is weakly labeled as yi = 1,
otherwise it is weakly labeled as yi = 0.

STEP 2. An NN model MRE is trained based
on the weakly labeled data DRE = {(ti, yi)|i =
1, 2, ..., n}. Given a large number of sample
strings, it is expected that we can train an NN with
high accuracy on DRE .

STEP 3. A subset of m strings from T are
sampled randomly and a human annotator labels

each of the sampled strings. String ti is labeled
as yi = 1 if the annotator recognizes an entity
type E in ti and as yi = 0, if not. We denote the
resulting strongly labeled data set as Dhuman =
{(ti, yi)|i = 1, 2, ..., m}, where m ⌧ n.

STEP 4. The pre-trained NN MRE is fine
tuned with Dhuman data. We call the resulting NN
MRE+human. For comparison, we also train a
randomly initialized NN directly on Dhuman. We
call this NN Mhuman. The expectation is that the
pre-trained NN captures very useful information
about the entity type E and that fine tuning is more
effective than training a new NN from scratch.

RE Annotator: Let us denote the set of REs
available for a specific entity type E as R. R may
be either created by human experts or generated
automatically by tools like (Li et al., 2008; Bartoli
et al., 2018), which require a human-labeled sub-
set of T . Both approaches are human-intensive.

Deep Learning Architectures: We do not have
a preference over any deep learning architecture
to train MRE , as long as it can handle character-
level inputs and produce binary outputs. We have
no strict assumption about the strings in T . They
may contain sentences from a formal news arti-
cle, pieces of HTML code, or a mixture of for-
mal texts and informal texts. For this reason, we
treat ti as a sequence of characters by default.
NN architectures that meet our condition include
but are not limited to: CNNs (Kim, 2014), BiL-
STMs (Lai et al., 2015), and BiLSTM with self-
attentions (Lin et al., 2017). For this paper we im-
plemented a BiLSTM architecture. However, we
also tested a CNN architecture, reaching similar
conclusions. Our architecture contains an embed-
ding layer to project each character into a vector, 2
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Task Data Size Example Labor

Date Time 761,002 data-timestamp="Thu Oct 05 2017 10:33:05 -0500">

<script src=’/js/next-stories.20170925144113.js’>
2 days

Course
Number 44,651 <body><h1>CS 556 Interactive Software Systems

/home.html>Dan R. Olsen Jr.</a><li>Office: 3360 TM
1 week

Bill Date 49,002 (a) shall terminate on 30-09-2012.

ealth Service Act (42 U.S.C. 254c-15(c)(8)
-

Email
Address 29,035 06:13:00 -0700 From:phillip.allen@enron.com To:

Date:Mon, 23 Oct 2000 06:13:00 -0700 From: tom
1 week

Table 1: Dataset Summary.

BiLSTM layers to encode a sequence of character
embeddings into a sequence of hidden vectors, and
a max pooling layer followed by 2 fully-connected
layers to project the hidden vectors into binary la-
bels (Figure 1, on the right).

Fine-tuning: Once we have a model MRE

trained on weak labels, there are multiple ways
to improve the weak model with human annota-
tions to get MRE+human. One common way
is to freeze the parameters of all other layers of
MRE and fine-tune the last fully-connected layer
(Donahue et al., 2014). Felbo et al. (2017) pro-
pose a ’chain-thaw’ strategy, which freezes all lay-
ers, then sequentially unfreezes and fine-tunes a
single layer at a time. We exploit a less costly
strategy as proposed in (Erhan et al., 2010), which
uses the weights learned in MRE to initialize
MRE+human, and start training MRE+human

immediately with human annotations.

4 Experiment Design

We aim to answer three research questions in our
experiments: Q1. Is it possible to train an accu-
rate NN classifier with a limited number of human
generated labels? Q2. What is the difference be-
tween REs and an NN pretrained on those REs?
Q3. Does the quality of REs matter?

4.1 Data Sets
We use four datasets which are described in Table
1 in our experiments:

• Date Time: We download 6,000 news articles
provided in the dataset One Week of Global
News Feeds in Kaggle 1. After chunking each
news article, we get 761,002 strings.

• Course Number: The documents to produce
chuncked strings are from The 4 Universities

1https://www.kaggle.com/therohk/
global-news-week

Data Set at CMU World Wide Knowledge
Base (Web->KB) project2. This dataset has
44,651 strings.

• Bill Date: 600 US Congress bills from the
THOMAS online database are used to iden-
tify the entity mentions of type datetime pro-
vided by (Bartoli et al., 2016). We generate
49,002 chuncked strings for this task. Each
text instance contains the bill date (and time)
and the location (index) of the datetime sub-
string in the text.

• Email Address: The dataset is a collection
of publicly available Enron email addresses
from (Li et al., 2008; Brauer et al., 2011). It
has 29,035 chuncked strings in total.

To answer the above 3 questions, we manually
label 6,000 random strings from each data set. We
create our training and testing data from this sam-
ple. The remaining strings are used to create DRE .
We list the human effort spent on labelling each
data set in Table 1.

As an example of human annotations is
the string data-timestamp="Thu Oct 05

2017 10:33:05 -0500">Ex-dep, which con-
tains an entity of type datetime. The string
<scriptsrc=’/js/prev-next-stories.

20170925144113.js’defer> is an example
of a negative instance. We give examples of
positive and negative instances in Table 1. The
presence of an entity mention of a desired type is
highlighted in bold in positive instances.

Our human annotated data sets are attached as
supplementary materials.

4.2 Regular Expression Generation
The number and the source of REs used to train
the deep model MRE are listed in Table 2.

For the recognition of Date/Time entity
2http://www.cs.cmu.edu/afs/cs/project/

theo-20/www/data/
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Task |R| Source Labor
Date
Time 25 Experts 5 hrs

Course
Number 4 Li et al. (2008)

Murthy et al. (2012) -

Bill
Date 5 Murthy et al. (2012) -

Email
Address 5 RE Library3 -

Table 2: Summary of REs.

mentions, we create 25 distinct REs in total
(a member of our team who is familiar with
REs generated the 25 REs, then the rest of
the team checked these REs). For example,
the RE (20[0-9][0-9])(0[1-9]|1[0-2]

)(\d{2})([01][0-9]|2[0-3])([0-5][0-9]

)([0-5][0-9]) identifies datetime entities in
the format YYYYMMDDhhmmss, while the RE
(20[0-9][0-9])-(0[1-9]|1[0-2])-(\d{2})

T([01][0-9]|2[0-3]):([0-5][0-9]):

([0-5][0-9])Z identifies datetime entities
in the format YYYY-MM-DDThh:mm:ssZ.

For the task of course number identification, we
used four REs, one of which is borrowed from the
results learned by ReLIE (Li et al., 2008), and the
remaining three are from (Murthy et al., 2012).
The regular expressions to extract the entity men-
tions of date are all from (Murthy et al., 2012). For
email address, we use the top five REs from the RE
Library3 website.

4.3 Experimental Setup
Models in Comparison We compare 5 models
on the 4 data sets: (1) Naive, which always pre-
dicts 0, because 0 is the majority class on all 4
tasks. (2) RE, which uses the set of REs R de-
signed by experts or tools to weakly label the
strings. Although we have multiple REs for each
task, R can be any subset of the available REs.
(3) MRE , which is the pretrained model of weak
labels generated by R in model (2). (4) Mhuman,
which is the model trained with human annota-
tions. (5) MRE+human, which is the fine tuned
model MRE .

Evaluation Metrics For each data set, we divide
the 6,000 strings with human annotations into 5
folds. We leave one fold as our test data. The train-
ing data is selected from the other 4 folds. We re-
port four scores for each model: Accuracy (ACC),

3http://www.regexlib.com/

F1, Precision, and Recall. We report the average
results over three random repetitions in Section 5.

Hyperparameters We use 100 dimensions
in the embedding layer. We set the activation
function in the first fully connected layers as
tanh. The batch size is set to 300. We also add
dropout layers after the embedding layer, the
max pooling layer, and the first fully-connected
layer to avoid overfitting, with drop out rate at
0.5. Our implementation is in PyTorch. We
tune the learning rate (lr), the hidden units
size (nhidden) in BiLSTM layers and the
output size (nfc) of the first fully-connected
layer by 5-fold cross validation using a ran-
dom 6,000 sample from DRE , for the sake of
expediency. The ranges of selection are: lr 2
[0.0002, 0.0005, 0.001, 0.002, 0.004, 0.008, 0.015],
nhidden 2 [50, 75, 100, 125, 150, 200] and nfc
2 [20, 50, 100, 200, 500]. We use the random
search algorithm proposed in (Bergstra and
Bengio, 2012) that has been proved more effective
than grid search. The hyperparameters used to
train Mhuman and MRE+human are identical
to those used to train MRE .

We train 2 epochs for MRE on weakly labeled
data. Mhuman and MRE+human are trained
for 50 epochs on strongly labeled data.

5 Experimental Results

In this section, we evaluate the proposed frame-
work with extensive experiments on the 4 entity
recognition tasks. We use the empirical results to
understand how the quality of initial REs impacts
our conclusions.

5.1 Entity Mention Detection with Limited
Human Annotations

We report the comparisons of the 5 models in
Table 3 when we only have 20 human annota-
tions. We use all the available REs in each task
in this experiment. Comparing the last two rows
of each task, MRE+human always outperforms
Mhuman by a large margin according to all 4
evaluation metrics on all 4 data sets. The F1, Pre-
cision and Recall scores are more than twice larger
for all of tasks. The pretraining strategy is quite ef-
fective despite the very limited human annotation.

In addition, MRE+human is much better than
RE in the datetime and Course Number tasks. Its
Recall scores increase by 19.1% and 14.4%, re-
spectively, in the two tasks. This means the human
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Model Name Date Time (%) Course Number (%)
ACC F1 Precision Recall ACC F1 Precision Recall

Naive 77.34 0.00 0.00 0.00 68.47 0.00 0.00 0.00
RE 90.65 76.77 88.00 68.33 71.64 59.91 54.01 67.28

MRE 91.45 79.09 89.01 71.39 72.64 61.52 55.21 69.47
Mhuman 74.78 40.75 37.25 46.38 62.81 30.74 37.63 28.45

MRE+human 93.50 85.44 87.03 84.95 82.86 74.31 72.45 77.01

Bill Date (%) Email Address (%)
Naive 92.83 0.00 0.00 0.00 88.75 0.00 0.00 0.00

RE 94.56 38.23 97.92 24.01 98.72 94.61 89.79 100.00
MRE 94.53 38.10 96.30 23.96 98.64 94.28 89.19 100.00

Mhuman 92.56 2.15 6.25 1.30 83.44 42.30 35.99 53.03
MRE+human 94.36 39.95 87.88 27.59 97.75 90.95 83.60 100.00

Table 3: The comparisons in the presence of very few human annotations: |Dhuman| = 20.

Figure 2: Trend of F1 when varying the number of human annotations.

annotations greatly increase the coverage of the
initial REs for entity mentions. The Bill Date task
is hard, since the initial REs already achieve Pre-
cision = 98% and entity mentions are really rare
(ACC = 93% in Naive model). We still are able
to improve the Recall by 15%, but at the expense
of reduced Precision. This only gives a slight im-
provement in F1 (4.5%) and unchanged Accuracy.
The Email Address task is even harder, with 90%
Precision and 100% Recall from the initial REs.
We fail to improve the accuracy with only 20 hu-
man annotations in this task.

To summarize, the answer to Q1, it is possible
to train accurate NNs with limited amount of hu-

man generated labels and large amount of weak
labels generated automatically.

5.2 Effect of the Number of Human
Annotations

In Figure 2 we show how F1 varies with the
size of the strongly labeled dataset, |Dhuman| =
[20, 50, 100, 200, 500, 1000, 2000, 4800]. The
observed trend is consistent over all 4 tasks:
the larger the set of human annotations the
better the performance of both Mhuman

and MRE+human. For the first 2 tasks,
MRE+human surpasses all other competitors
at 20; it takes 50 human annotations in Bill Date
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Date Time
Example Labels

Group 1
19 / 11 / 8

"20170825" /><meta name="utime" content="20170828042824"/> 1 / 1 / 0
{"origin":"mw1273","timestamp":"20171005170835","ttl":1900800} 1 / 1 / 0
<span class="timestamp-published">08/29/2017 12:13 pm ET</span> 1 / 1 / 0

2017/08/29/1/1700000000AEN20170829007751315F.html 0 / 0 / 1
11-hristo-dimitrov-2017-10-05-06-57-492-c37d5a31-4ade 0 / 0 / 1

Group 2
48 / 36 / 12

0","dateModified": "Thu, 05 Oct 2017 17:26:30 +0000" 1 / 0 / 1
<meta property="published",content="2017-08-28T14:4316-0400" /> 1 / 0 / 1

<div>published August 24, 2017 at 6:00 am</time></div> 1 / 0 / 1
http://www.businesswire.com/news/home/20170829005822/en/</p> 0 / 1 / 0
resources/MWimages/MW-FV607-lava-2-MC-20171004095909.jpg"> 0 / 1 / 0

Table 4: Examples of misclassified strings by MRE and RE for Date Time task. The first columns shows
number of misclassified strings, number of positives, and number of negaives. The last column represent
human label and classifications by RE, and MRE . Datetime is in bold for positive human annotation.

task, and 2, 000 in Email Address task.

5.3 Case Studies

From Table 3, we observe that MRE achieves
higher F1 scores than RE by about 2.3% on Date
Time and 1.6% on Course Number tasks. This is
a seemingly surprising outcome; NN trained on
weak labels does better on human labeled test data
than the REs used to generate the weak labels.
To provide an insight, in Table 4 we illustrate ex-
ample strings on which RE and MRE disagree.
Group 1 consists of 19 strings where RE is cor-
rect and MRE is not. Group 2 consists of 48
strings where RE is incorrect and MRE is cor-
rect. Looking at the examples in the first and last
2 rows of the table, we find strings that match RE
with YYYYMMDDhhmmss format. This is an un-
usual form and it is expected that it might not al-
ways correspond to datetime entity. We hypoth-
esize that the neural network encountered many
negative strings in the weakly labeled data that
have a similar form and learned that this form is
not a reliable predictor of datetime.

Rows 6 - 8 in Table 4 illustrate the resilience of
MRE to small variations in the original REs. For
example, despite an extra space in row 6, a miss-
ing colon in row 7, and a mixture of spoken lan-
guage in row 8, MRE is able to detect those enti-
ties, but REs are not. We give cases where MRE

makes mistakes in rows 3 - 5, showing that the NN
is not able to learn the underlying REs with 100%
accuracy.

To summarize, the answer to Q2, it appears that
NNs are more noise resilient than REs.

5.4 Impact of the Initial REs

In this subsection, we investigate the impact of
the choice of REs R on the accuracy of NN mod-
els. Since Naive and Mhuman models are not
affected by R, we compare only three models in
this subsection: RE, MRE and MRE+human.
We select 4 out of the 25 REs in the datetime task
for this study. The 4 REs are of different qual-
ity. We list the 4 REs in Figure 3. An exam-
ple pattern that RE1 matches is 20180503101212,
for RE2 it is 2018-05-03 10:12:12, for RE3
it is 2018-05-03T10:12:12Z in UTC time zone
and for RE4 it is 2018-05-03 10:12:12+00:00 or
2018-05-03 10:12:12-00:00. We also consider
the quality of NNs trained on weak labels from the
whole set of 25 REs, denoted as All.

In Table 5 we compare the performance of RE
and MRE for the 5 different selections of REs
for weak labeling. It can be observed that RE1 is
the weakest individual RE in the group with F1 =
4.83, while RE4 is the strongest with F1= 41.86.
Using all 25 REs gives the highest accuracy of
F1= 76.77. We can see that MRE closely fol-
lows the performance of RE and it is interest-
ing to observe that MRE becomes visibly supe-
rior only with good REs.

In Figure 3, we plot the 4 accuracy metrics
for model MRE+human, which was pretrained
on weakly labeled data generated by 5 different
choices of REs, with varying initial RE sets and
sizes of human annotations. We observe a signifi-
cant influence of REs on accuracy. We can also ob-
serve that as the number of strong labels grows, the
impact of RE choice decreases. When the number
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Initial Set RE MRE

ACC F1 Precision Recall ACC F1 Precision Recall
RE1 75.88 4.83 24.89 2.68 75.71 4.20 23.68 2.32
RE2 79.97 20.72 100.00 11.58 80.00 20.92 100.00 11.70
RE3 79.78 19.34 100.00 10.75 79.83 19.75 100.00 10.99
RE4 83.40 41.86 100.00 26.71 83.73 43.77 100.00 28.19
All 90.65 76.77 88.00 68.33 91.45 79.09 89.01 71.39

Table 5: Comparison between RE and MRE model for 5 different sets of REs.

Figure 3: Performance of MRE+human for different initial sets of REs and sizes of Dhuman.

of strong labels exceeds 1, 000, the impact of the
RE choice becomes negligible.

In summary, to answer Q3, there is a trade-
off between creating more REs and creating more
strong labels: (1) If designing a comprehensive RE
takes a lot of time, a good strategy may be to take
some time to construct one moderately good RE
and spend more time on data labeling. (2) If the
pattern is easy to describe by an RE, it may be a
good strategy to spend time on creating a better set
of REs and spend less time on labeling.

6 Conclusions

The main premise of this work is that it is practi-
cally impossible to create REs capable of identi-
fying entities with perfect precision and recall at
web scale. This paper explores ways to combine
the expressive power of REs, ability of deep learn-
ing, and human-in-the loop into a novel integrated

framework for entity recognition in web data. The
framework starts by creating or collecting the ex-
isting REs for a particular type of an entity type
(e.g., emails). Those REs are then used over a
large document corpus to collect weak labels for
the entity mentions and an NN is trained to pre-
dict those RE-generated weak labels. Finally, a
human expert is asked to label a small set of doc-
uments and the neural network is fine tuned on
those documents. The experimental evaluation on
several entity identification problems shows that
the proposed framework achieves impressive ac-
curacy, while requiring very modest human effort.

Web sources often change in ways that prevent
the induced REs from extracting data correctly. At
the web scale, we require automated tools to main-
tain them. One direction of future work is to use
our framework to diagnose when a RE is broken
over a text stream.
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Abstract
Knowledge Graph (KG) embedding has
emerged as an active area of research result-
ing in the development of several KG embed-
ding methods. Relational facts in KG often
show temporal dynamics, e.g., the fact (Cris-
tiano Ronaldo, playsFor, Manchester United)
is valid only from 2003 to 2009. Most of
the existing KG embedding methods ignore
this temporal dimension while learning em-
beddings of the KG elements. In this paper,
we propose HyTE, a temporally aware KG
embedding method which explicitly incorpo-
rates time in the entity-relation space by as-
sociating each timestamp with a correspond-
ing hyperplane. HyTE not only performs KG
inference using temporal guidance, but also
predicts temporal scopes for relational facts
with missing time annotations. Through ex-
tensive experimentation on temporal datasets
extracted from real-world KGs, we demon-
strate the effectiveness of our model over both
traditional as well as temporal KG embedding
methods.

1 Introduction

Knowledge Graphs (KGs) are large multi-
relational graphs where nodes correspond to en-
tities, and typed edges represent relationships
among them. KGs encode factual beliefs in the
form of triple (entity, relation, entity), e.g., (Brus-
sels, isCapitalOf, Belgium). Examples of a few
KGs include NELL (Mitchell et al., 2018), YAGO
(Suchanek et al., 2007), and Freebase (Bollacker
et al., 2008). KGs have been found to be useful
for a variety of tasks, viz., Information Retrieval
(Kotov and Zhai, 2012; Xiong and Callan, 2015),
Question Answering (Dong et al., 2015; Bordes
et al., 2015; Yao and Durme, 2014), among oth-
ers.

KG embedding has emerged as a very active
area of research over the last few years, resulting

in the development of several techniques (Bordes
et al., 2013; Nickel et al., 2016b; Yang et al., 2014;
Lin et al., 2015; Trouillon et al., 2016; Dettmers
et al., 2018; Guo et al., 2018). These methods
learn high-dimensional vectorial representations
for nodes and relations in the KG, while preserv-
ing various graph and knowledge constraints.

We note that KG beliefs are not universally
true, as they tend to be valid only in a specific
time period. For example, (Bill Clinton, presi-
dentOf, USA) was true only from 1993 to 2001.
KG beliefs with such temporal validity marked
are called as temporally scoped. These temporal
scopes are increasingly available on several large
KGs, e.g., YAGO (Suchanek et al., 2007), Wiki-
data (Erxleben et al., 2014). The mainstream KG
embedding methods ignore the availability or im-
portance of such temporal scopes while learning
embeddings of nodes and relations in the KGs.
These methods treat the KG as a static graph with
the assumption that the beliefs contained in them
are universally true. This is clearly inadequate and
it is quite conceivable that incorporating temporal
scopes during representation learning is likely to
yield better KG embeddings. In spite of its impor-
tance, temporally aware KG embeddings is a rela-
tively unexplored area. Recently, a KG embedding
method which utilizes temporal scopes was pro-
posed in (Jiang et al., 2016). However, instead of
directly incorporating time in the learned embed-
dings, the method proposed in (Jiang et al., 2016)
first learns temporal order among relations (e.g.,
wasBorIn ! wonPrize ! diedIn). These relation
orders are then incorporated as constraints during
the KG embedding stage. Thus, the embedding
learned by (Jiang et al., 2016) is not explicitly tem-
porally aware.

In order to overcome this challenge, in this
paper, we propose Hyperplane-based Temporally
aware KG Embedding (HyTE), a novel KG em-
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bedding technique which directly incorporates
temporal information in the learned embeddings.
HyTE fragments a temporally-scoped input KG
into multiple static subgraphs with each subgraph
corresponding to a timestamp. HyTE then projects
the entities and the relations of each subgraph onto
timestamp specific hyperplanes. We learn the hy-
perplane (normal) vectors and the representation
of the KG elements distributed over time jointly.
Our contributions are as follows.

• We draw attention to the important but rel-
atively unexplored problem of temporally
aware Knowledge Graph (KG) embedding.
In particular, we propose HyTE, a temporally
aware method for learning Knowledge Graph
(KG) embedding.

• In contrast to previous time-sensitive KG em-
bedding methods, HyTE encodes temporal
information directly in the learned embed-
dings. This enables us to predict temporal
scopes for previously unscoped KG beliefs.

• Through extensive experiments on multiple
real-world datasets, we demonstrate HyTE’s
effectiveness.

We have made HyTE’s source code and
datasets used in the paper available at
https://github.com/malllabiisc/HyTE

2 Related Work

Temporal fact and event extraction: Time, apart
from being an information, also introduces a sep-
arate dimension to knowledge. Thus temporal
scoping of relational facts is an imperative part
of automatic knowledge graph construction and
completion. T-YAGO (Wang et al., 2010) ex-
tracts temporal facts from semi-structured data
like Wikipedia Infoboxes, and categories using
only regular expressions. On the other hand, sys-
tems like PRAVDA harvests temporal informa-
tion from free text sources using label propaga-
tion. CoTS (Talukdar et al., 2012b) uses integer
linear program based approach to model tempo-
ral constraints and proposes joint inference frame-
work with few seed examples.

A method for discovering temporal ordering
among factual relations was proposed in (Taluk-
dar et al., 2012a). The task of extracting tem-
porally rich events and time expressions and or-
dering between them is introduced in TempEval

challenge (UzZaman et al., 2013; Verhagen et al.,
2010). Various approaches (McDowell et al.,
2017; Mirza and Tonelli, 2016) made for solving
the task proved to be effective in other temporal
reasoning tasks. Although we try to attend to a
similar problem, the method proposed in this pa-
per is more related to relational embedding learn-
ing paradigm than scoping temporal facts from the
web.

Relational embedding learning methods: An
enormous amount of research has been done in
this field, especially for KG completion or link
prediction task (Bordes et al., 2013). (Nickel et al.,
2016a) provides a detailed review of the recent
KG embedding learning methods. These can be
broadly categorized into two different paradigms.
TransE(Bordes et al., 2013), TransH(Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et al.,
2015) are the translational distance-based models.
Here the main theme is to minimize the distance
between two entity vectors where one of them is
translated by a relation vector. The realm of ma-
trix factorization based methods includes bilinear
model RESCAL (Nickel et al., 2011), DistMult
(Yang et al., 2014), HoIE (Nickel et al., 2016b).
Some of the other notable models are Neural Ten-
sor Networks(NTN) (Socher et al., 2013). We also
provide some background on the traditional meth-
ods in section 3. However, the temporal dimension
remains silent in all of these inference methods.

Link prediction through embeddings of the
graph nodes and edges, are not only useful for in-
ference over KG but also important for predict-
ing incomplete pieces of the KG itself. Learn-
ing temporally steered embeddings is an impor-
tant but proportionately less explored problem.
Only some handful of methods have been pro-
posed for this purpose. t-TransE (Jiang et al.,
2016) learns time aware embedding by learning
relation ordering jointly with TransE. They try to
inflict temporal order on time-sensitive relations
e.g. wasBornIn ! wonPrize ! diedIn.
t-TransE does not use the time information di-
rectly, whereas we incorporate time directly in
our learning algorithm. Another approach Know-
Evolve (Trivedi et al., 2017) models the non-linear
temporal evolution of KG elements using bilinear
embedding learning method. They deploy recur-
rent neural network to capture non-linear dynam-
ical characteristics of the embeddings. However,
they restrict their domain to event-based interac-
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Figure 1: In the figure, the vectors eh, er and et correspond to the triple (h, r, t) that is valid at time ⌧1 and ⌧2.
eh(⌧1), er(⌧1) and et(⌧1) are the projections of this triple on the hyperplane corresponding to time ⌧1 (similarly for time
⌧2). Our method HyTE minimizes the translational distance,

P
i ket(⌧i) + er(⌧i) � et(⌧i)k1, in order to learn the temporally

aware representations of entities and relations in this triple.

tion type of datasets which are fairly dense in na-
ture. Leblay and Chekol (2018) propose a method
for temporal embedding learning using side infor-
mation from the atemporal part of the graph. How-
ever, we use purely temporal KG to learn the tem-
porally aware embedding.

3 Background: KG Embedding

In this section, we provide an overview of the ex-
isting methods for knowledge graph representa-
tion learning (Bordes et al., 2013), (Wang et al.,
2014). Consider a KG G with a set of entities E.
The set of directed edges, D+ consists of triples
(h, r, t), where the edge direction is from h to t
and the edge label (also popularly known as rela-
tion) is r.

3.1 TransE and TransH

TransE (Bordes et al., 2013) is a simple and effi-
cient translational distance model. It interprets the
relation as a translation vector between head and
tail entity vectors. Given two entity vectors eh, et

2 R
n, it tries to map the relation as a translation

vector er 2 R
n , i.e., eh + er ⇡ et for observed

triple (h, r, t). So the distance based scoring func-

tion used for plausible triples is hereby,

f(h, r, t) = keh + er � etkl1/l2 ,

where, k · kl1/l2 is the l1 or l2-norm of the differ-
ence vector. f(h, r, t) will be minimized for ob-
served or correct triples. In order to differentiate
between correct and incorrect triples, their TransE
score difference is minimized using margin based
pairwise ranking loss. More formally, we optimize

X

x2D+

X

y2D�

max(0, f(x) � f(y) + �),

with respect to the entity and relation vectors. � is
a margin separating correct and incorrect triples.
D+ is the set of all positive triples, i.e., observed
triples in KG. The negative samples are drawn ran-
domly from the set -

D� = {(h
0

, r, t)|h0 2 E, (h
0

, r, t) /2 D+}
[ {(h, r, t

0

)|t0 2 E, (h, r, t
0

) /2 D+}.

TransE fails to model the many-to-one, one-to-
many, many-to-many type of relations as it does
not learn a distributed representation of entities
when it is involved with many relations. In order
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to tackle these situations, TransH was proposed.
TransH (Wang et al., 2014) models a relation r
as a vector on a relation specific hyperplane and
project entities associated with it on that particular
hyperplane in order to learn distributed represen-
tation of the entities.

We notice that not only the role of the entities
changes with time, but also the relationship be-
tween them changes. In this paper, we intend to
capture this temporal behavior of the entities and
relations and try to learn their embeddings accord-
ingly. As discussed above, TransH (Wang et al.,
2014) uses relation specific hyperplanes in order to
prevent an entity from exhibiting identical charac-
teristic when it is involved with different relations.
Taking inspiration from the objective of TransH,
we propose a hyperplane based method for learn-
ing KG representation distributed in time.

4 Proposed Method: HyTE

In this section, we present a detailed description
of HyTE (Figure 1) which not only exploits the
relational properties among entities but also uses
the temporal meta-data associated with them.

4.1 Temporal Knowledge Graph

Usually knowledge graphs are treated as a static
graph consisting of triples in form of (h, r, t).
Adding a separate time dimension to the triple
makes the KG dynamic. Consider the quadru-
ple (h, r, t, [⌧s, ⌧e]), where ⌧s and ⌧e denote the
start and end time during which the triple (h, r, t)
is valid. Unlike (Jiang et al., 2016), we incor-
porate this time meta-fact directly into our learn-
ing algorithm to learn temporal embeddings of the
KG elements. Given the timestamps, the graph
can be dismantled into several static graphs con-
sisting of triples that are valid in the respective
time steps, e.g., knowledge graph G can be ex-
pressed as G = G⌧1 [ G⌧2 [ · · · [ G⌧T , where ⌧i,
i 2 1, 2, · · · , T are the discrete time points.

We constructed this temporal component-
graphs (G⌧ ) from the quadruples by consider-
ing (h, r, t) to be a positive triple at each time
point between ⌧s and ⌧e. Now, given a quadru-
ple (h, r, t, [⌧s, ⌧e]), we consider it to be a pos-
itive triple for each time point between ⌧s and
⌧e. So, we include (h, r, t) in each G⌧ , where
⌧s  ⌧  ⌧e. The set of positive triple corre-
sponding to time ⌧ is denoted as D+

⌧ .

4.2 Projected-Time Translation
TransE considers entity and relation vectors in the
same semantic space for a static graph. We ob-
serve that time is the main source of different
many-to-one, one-to-many or many-to-many rela-
tions, e.g., (h, r) pair can be associated with dif-
ferent tail entity t at different points of time. Thus
traditional methods fail to disambiguate them di-
rectly. In our time guided model, we want the en-
tity to have a distributed representation associated
with different time points.

We represent time as a hyperplane i.e., for T
number of time steps in the KG, we will have T
different hyperplanes represented by normal vec-
tors wt1 , wt2 , · · · , wtT . Thus, we try to segregate
the space into different time zones with the help
of the hyperplanes. Now, triples valid at time ⌧
(i.e., the sub graph G⌧ ) are projected onto time
specific hyperplane w⌧ , where their translational
distance (TransE Section 3 our case) is minimized.
To illustrate, in Figure 1, the triple (h, r, t) is valid
for both time frame ⌧1 and ⌧2. Hence they are
projected on hyperplanes corresponding to those
times.

Now we compute the projected representation
on w⌧ as,

P⌧ (eh) = eh � (w>
⌧ eh)w⌧ ,

P⌧ (et) = et � (w>
⌧ et)w⌧ ,

P⌧ (er) = er � (w>
⌧ er)w⌧ ,

where we restrict kw⌧k2 = 1.
We expect that a positive triple, valid at time

⌧ , will have the mapping as P⌧ (eh) + P⌧ (er) ⇡
P⌧ (et). Thus, we use the following scoring func-
tion.

f⌧ (h, r, t) = kP⌧ (eh) + P⌧ (er) � P⌧ (et)kl1/l2 .

We learn {w⌧}T
⌧=1 for each time stamp ⌧ , along

with the entity and relation embeddings. So, by
projecting the triple into its time hyperplane, we
incorporate temporal knowledge into the relation
and entity embeddings, i.e., the same distributed
representation will have a different role in differ-
ent points in time.

Optimization : As mentioned in section 3.1 ,
we minimize the margin-based ranking loss.

L =
X

⌧2[T ]

X

x2D+
⌧

X

y2D�
⌧

max(0, f⌧ (x)�f⌧ (y)+�),
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where, D+
⌧ is the set of valid triples with time-

stamp ⌧ . The negative samples are drawn from the
set of all negative samples, D�

⌧ . We explored two
different types of negative sampling:

• Time agnostic negative sampling(TANS)
considers the set of all the triples that does not
belong to the KG, irrespective of timestamps.
More formally, for time step ⌧ the negative
samples are drawn from the set,

D�
⌧ = {(h

0

, r, t, ⌧)|h0 2 E, (h
0

, r, t) /2 D+

} [ {(h, r, t
0

, ⌧)| t
0 2 E,

(h, r, t
0

) /2 D+}. (1)

• Time dependent negative sampling(TDNS)
emphasizes on time. Along with the time ag-
nostic negative sample, we add extra negative
samples which are present in the KG but do
not exist in the subgraph for a particular time
stamp. Thus we draw negative samples from
the set,

D�
⌧ = {(h

0

, r, t, ⌧)|h0 2 E, (h
0

, r, t) 2 D+

, (h
0

, r, t, ⌧) /2 D+
⌧ }[

{(h, r, t
0

, ⌧)| t
0 2 E, (h, r, t

0

) 2 D+,

(h, r, t
0

, ⌧) /2 D+
⌧ }. (2)

The above mentioned loss L is minimized sub-
jected to the constraints.

kepk2  1, 8 p 2 E, kw⌧k2 = 1, 8 ⌧ 2 [T ]

We enforce the first one by adding l2- regulariza-
tion of entity vectors with L. We take care of
the second constraint by normalizing the time em-
beddings viz., the hyperplane normal vectors after
each update of stochastic gradient descent.

We perform link prediction as well as tempo-
ral scoping in order to show the effectiveness of
HyTE. For link prediction, we train the model us-
ing the optimization procedure as described with
time agnostic negative sampling (TANS, Equation
1). The temporal scoping task (Section 5.5) re-
quires the time hyperplanes to be well structured
in the embedding space. The time-dependent neg-
ative sampling (TDNS Equation 2) is more suit-
able in case of the temporal scoping problem.

Datasets #Entity #Relations Train/Valid/Test

Wikidata12K 12,554 24 32.5k/4k/4k
YAGO11K 10,623 10 16.4k/2k/2k

Table 1: Details of datasets used. Please see Section 5.1 for
details.

5 Experiments

We evaluate our model and compare with differ-
ent state-of-the-art baselines based on Link predic-
tion(Section 5.3,5.4) and Temporal scoping (Sec-
tion 5.5). Evaluation metrics used are same as that
of the traditional KG embedding method (Bordes
et al., 2013) for link prediction task. For temporal
scoping task, we present an evaluation criteria as
none of the baselines are applicable for this task.

5.1 Datasets

Knowledge Graphs such as Wikidata (Erxleben
et al., 2014) and YAGO (Suchanek et al., 2007)
have time annotations on a subset of the facts. We
extracted the temporally rich subgraph from them
for testing our algorithm as well as the baselines.

YAGO11k: In the YAGO3 knowledge graph
(Mahdisoltani et al., 2013), some temporally as-
sociated facts have meta-facts as (#factID, oc-
curSince, ts), (#factID, occurUntil, te). The to-
tal number of time annotated facts containing both
occursSince and occursUntil are 722,494. Out of
them, we selected top 10 most frequent tempo-
rally rich relations. In order to handle sparsity, we
recursively remove edges containing entity with
only a single mention in the subgraph. This en-
sures a healthy connectivity within the graph. Fi-
nally, we obtain a purely temporal graph of 20.5k
triples and 10,623 entities by following this proce-
dure.

Wikidata12k: We extracted this temporal
Knowledge Graph from a preprocessed dataset
of Wikidata proposed by (Leblay and Chekol,
2018)1. We followed a similar procedure as de-
scribed in YAGO11k. Here also, we distill out
the subgraph with time mentions for both start and
end. We ensure that no entity has only a sin-
gle edge connected to it. We select top 24 fre-
quent temporally rich relations for this case, which
resulted in 40k triples with 12.5k entities. The
dataset is almost double in size with respect to
YAGO11k.

1https://staff.aist.go.jp/julien.leblay/datasets/
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5.2 Method Compared
For evaluating the performance of our algorithm,
we compare against the following methods:

• t-TransE (Jiang et al., 2016): This method
uses a temporal ordering of relations to model
knowledge evolution in the temporal dimen-
sion. They regularize the traditional embed-
ding score function with observed relation or-
dering with respect to head entities.

• HolE (Nickel et al., 2016b): We consider this
method as a representative of the state-of-the-
art in non-temporal KG representation learn-
ing.

• TransE (Bordes et al., 2013): This is a sim-
ple but effective translation based model. We
build HyTE on top of TransE and demon-
strate the gains over this method.

• TransH (Wang et al., 2014): This method
models each relation as different hyperplanes
on which the translation operations are car-
ried out. Our proposed method, HyTE also
modifies TransE in a similar fashion by treat-
ing the timestamps as hyperplanes.

• HyTE : Our proposed method. Please see
Section 4 for more details.

5.3 Entity Prediction
The task here is to predict the missing entity,
given an incomplete relational fact with its time.
We experimented with both YAGO11K and Wiki-
data12k dataset. Training is done in perspective of
both head and tail prediction. More formally, for
generation of negative sample from a correct triple
(h, r, t, ⌧), we split them in two parts - (h, r, ?, ⌧)
(for tail entity prediction) and (?, r, t, ⌧) (for head
entity prediction). In this task, we follow the
TANS (Equation 1) procedure for generating neg-
ative samples, i.e., for each of tail and head query
terms we randomly replace an entity such that
newly generated triple is not observed in the graph,
for eg, we sample t0 such that t0 2 E \ t and
(h, r, t

0

, ⌧) /2 D+
⌧ .

Ranking Protocol: For a test triple (h, r, t, ⌧),
we generate corrupted triples by replacing tail en-
tity (for tail prediction) or head entity (for head
prediction) with all possible entities. Filtered pro-
tocol, proposed by (Bordes et al., 2013), says that
the corrupted triples must not be a part of the graph

itself. To illustrate, given a test triple (h, r, t)
for tail prediction task, we compute scores for
the candidate set C(h, r) = {(h, r, t

0

: 8t
0 2

E)}\(Train[Test[V alid)[ (h, r, t) . We rank
all the triples in C(h, r) in the increasing order of
their score and find the rank of the actual triple
(h, r, t). We report the mean rank over all the test
queries (MR) and proportion of correct entities in
top 10 rank (Hits@10).

5.4 Relation Prediction
The aim of this task is to predict the relation be-
tween two entities, i.e, for a given time-stamped
triple with missing relation (h, ?, t, ⌧), we pre-
dict the relation r. For evaluation, we corrupt the
triples with all possible relations and report the
rank of the actual relation. We report Hits@1 for
this task as the number of relations are quite less
in numbers for both the datasets, 10 and 24 for
YAGO11k and Wikidata12k respectively. Please
note that we do not train our model separately for
this task, rather we report the values obtained by
the exact same model used for head and tail entity
prediction.

The main motivation for this task is to deal with
the relational conflict between two entities at a par-
ticular time-scope. For example, given the year
1992, a person ’X’ and a city ’Y’, one would like
to know if he/she was bornIn or diedIn that city
in that year. Through the explicit use of tempo-
ral information during training, we find that our
method HyTE outperforms the baseline methods
in both the datasets (as shown in 6.1)

5.5 Temporal Scope Prediction
Given the scarcity of time annotations of the KG
facts, predicting time for atemporal part of the KG
is an important problem. Unlike the previous base-
line methods, our model can predict the time scope
for a given triple. In order to perform better in this
task, we want the hyperplanes to be well separated
even after maintaining consistency with the posi-
tive triples. To incorporate this nature during train-
ing, we use the time-dependent negative sampling
technique (TDNS Equation 2). Rest of the training
procedure remains the same as the link prediction
task. The model is trained on the same train split
used for link prediction. In this task, we predict
the time interval or the time instance ⌧ for a given
test triple (h, r, t, ?). We project the relation and
the entities of the triple on all the time hyperplanes
and check the plausibility of that test triple on each
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Dataset YAGO11K Wikidata12K

Metric Mean Rank Hits@10(%) Mean Rank Hits@10(%)
tail head tail head tail head tail head

Trans-E (Bordes et al., 2013) 504 2020 4.4 1.2 520 740 11.0 6.0
TransH (Wang et al., 2014) 354 1808 5.8 1.5 423 648 23.7 11.8
HolE (Nickel et al., 2016b) 1828 1953 29.4 13.7 734 808 25.0 12.3
t-TransE (Jiang et al., 2016) 292 1692 6.2 1.3 283 413 24.5 14.5

HyTE 107 1069 38.4 16.0 179 237 41.6 25.0

Table 2: Mean Rank (lower the better) and Hits@10(higher the better) for different methods for Entity Prediction task.
Proposed method HyTE outperforms all the traditional approaches. The better performance of HyTE over t-TransE can be
attributed to the fact that it incorporates time directly. Please see Section 6.1 for details.

Dataset YAGO11K Wikidata12K
Metric Mean Rank Hits@1(%) Mean Rank Hits@1(%)

Trans-E (Bordes et al., 2013) 1.7 78.4 1.35 88.4
TransH (Wang et al., 2014) 1.53 76.1 1.4 88.1
HolE (Nickel et al., 2016b) 2.57 69.3 2.23 83.96
t-TransE (Jiang et al., 2016) 1.66 75.5 1.97 74.2

HyTE 1.23 81.2 1.13 92.6

Table 3: Mean Rank (lower the better) and Hits@1 (higher the better) for different methods for Relation Prediction Task.
Proposed method HyTE outperforms all the traditional approaches. Even though t-TransE imposes implicit relation ordering,
HyTE beats it with a high margin. Please see Section 6.1 for details.

Negative Sampling YAGO11K Wikidata12k

TANS (Equation 1) 14.0 29.3
TDNS (Equation 2) 9.88 17.6

Table 4: The predicted Mean Rank (lower the better) for
temporal Scoping. The number of classes are 61 and 78 for
YAGO11K and Wiki-data12k respectively. The results depict
the effectiveness of TDNS. Please see Section 6.2

of them. For evaluation, we order the time frames
in increasing order of their plausibility score for
that particular triple. Now, we select the rank of
the time(⌧ ) associated with the test triple. If the as-
sociated time is an interval, we consider the lowest
rank among the times in between the interval.

6 Results

Implementation details: For all the methods, we
have kept batch size b = 50k on both the datasets.
The dimensions of the embeddings (d) are varied
in the range {64, 128, 256}. The margins(⌘) for all
the methods are chosen from the set {1, 2, 5, 10}.
Learning rate used for SGD, lr 2 {0.01, 0.001,
0.0001}.

The best configuration is chosen by correspond-
ing lowest MR on the validation set. For both
YAGO11k and Wikidata12k, we obtained d = 128,
⌘ = 10, lr = 0.0001 using l1-norm in the scoring
function.

Both YAGO11k and Wikidata12k contain time
annotations to the granularity of days. For the

temporal scoping task, we only deal with year
level granularity by dropping the month and date
information. Timestamps are then treated as 61
and 78 different intervals for YAGO and Wiki-
data respectively. The main motive behind hav-
ing time classes is to distribute the time annota-
tions in the KG uniformly. For example, less fre-
quent year mentions are clubbed into same time
class but years with high frequency forms individ-
ual classes. We take care of the unbalance that
may occur in terms of number of triples in a par-
ticular interval by applying a minimum threshold
of 300 triples per interval during construction. To
illustrate, in Wikidata there are classes like 1596-
1777, 1791-1815 with a large span as the events
occurring on those points of time are quite less in
KG. The years like 2013, 2014 being highly fre-
quent are self-contained.

6.1 Performance analysis & comparison

The obtained results for different tasks are based
on the above mentioned hyperparameters.

Link Prediction: The results reported in Table
2 demonstrate the efficacy of HyTE. We observe
that our model outperforms the traditional state-
of-the-art link prediction model HolE (Nickel
et al., 2016b) by a significant margin in both the
datasets. We also show a large boost in perfor-
mance over TransE (Bordes et al., 2013). This
significant gain empirically validates our claim
that including temporal information in a principled
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Test quadruples TransE HyTE
Gordon Carroll, ?, Baltimore,[1928, 1928] diedIn, wasBornIn wasBornIn,diedIn
S.Laubenthal, ?, Washington.,[2002, 2002] wasBornIn,diedIn diedIn, wasBornIn
Eugene Sander, ?, Cornell Univ.,[1959, 1965] worksAt,graduatedFrom graduatedFrom, isAffiliatedTo
Ernesto Maceda, ?, Nacionalist Party, [1971,1987] isMarriedTo, diedIn isAffiliatedTo,diedIn

Table 5: Example of Qualitative Results on relation prediction. The order of prediction is in descending order. Correct one is
in bold. Please refer Section 6.2 for details.

fashion helps to learn richer embeddings of the KG
elements. We notice that HolE is performing sig-
nificantly poor in terms of MR but it exceeds the
other baselines in Hits@10 by a large margin.

Again, in comparison with the temporal model
t-TransE (Jiang et al., 2016), HyTE proves to be
effective. t-TransE performs better than TransE
and HolE due to its implicit time incorporation
through relation ordering. HyTE with its direct
inclusion of time in the relation-entity semantic
space outperforms all of them.

Relation prediction: Again, in this scenario,
we show improvement over baselines. We hypoth-
esize that time scope information helps to disam-
biguate among relations e.g. traditional methods
like TransE or HolE will confuse between rela-
tions like wasBornIN, diedIn. Where time infor-
mation surely helps to resolve that conflict. From
Table 3, we validate this claim. In Section 6.2, we
also demonstrate some qualitative result in favor
of our assertion.

Temporal scoping of facts: We report the rank
of correct time instance of the triple. If the triple
scope is an interval of time, we consider the low-
est rank that corresponds to the time within that
interval. The ranks are reported in table 4 for both
the datasets. The baseline model t-TransE (Jiang
et al., 2016) is not applicable here as it does not
use the time meta-facts directly. We also observe
that the HyTE hyperplanes form a sequential map
in the space. We discuss it with details in subsec-
tion 6.2.

6.2 Qualitative results
Table 5 contains some of the qualitative analy-
ses for the relation prediction task. We mention
some of the cases where transE is confusing be-
tween the temporal relations like wasBornIn and
diedIn. Consider the second example in Table 5,
where transE wrongly predicts wasBornIn . HyTE
predicts diedIn as it has a prior knowledge that
S.Laubenthal “was born in 1943”, “created Ex-
calibur on 1973” from the training data. As the
query year is 2002, our method comes to such

Figure 2: The figure illustrates 2-d PCA projection of the
128 dimensional time embeddings which are obtained after
training HyTE for temporal scoping task. We observe that
the trained time representations are forming natural clusters
and ordering. Please ref Section 6.2

a conclusion through its relative temporal order-
ing. We see many examples of this kind, where
HyTE is naturally learning some relation ordering
in parallel with the temporal direction. We observe
many type inconsistency in relation prediction
for our model, e.g., for this fact (Lauren Miller,
wasBornIn, Lakeland,Florida,[1982,1982]), our
model predicts isMarriedTo. This can be at-
tributed to the fact that we do not impose any type
related constraints in our model. We will look
forward to incorporating type and temporal con-
straints within our model as future work.

In Figure 2, we show a 2-d PCA projection of
the 128-dimensional normal vectors of the hyper-
planes. These vectors are trained for the tem-
poral scoping task with time-dependent negative
sampling (Equation 2). This figure demonstrates
the ability of HyTE to structure the hyperplanes
in the entity-relation space according to the data.
Also, note that we do not regularize the model
with any ordering constraint, but it learns the tem-
poral ordering as well as the clustering from the
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data itself. We hypothesize that this phenomenon
emerges due to TDNS (Equation 2). However, in
case of link prediction, we notice that the extra
samples are affecting performance as they origi-
nate from the KG itself.

7 Conclusion

We propose HyTE, a hyperplane-based method for
learning temporally aware knowledge graph em-
beddings. Our method exploits temporally scoped
facts of KG to perform link prediction as well as
prediction of time scopes for unannotated tempo-
ral facts. Through extensive experiments on real-
world datasets, we demonstrate effectiveness of
HyTE over both traditional and time aware em-
bedding methods. In future, we would like to in-
corporate type consistency information to further
improve our model and also integrate HyTE with
open-world knowledge graph completion (Shi and
Weninger, 2018). We are hopeful that our pro-
posed temporal representation learning algorithm
will motivate further research on temporal KG em-
bedding learning.
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Abstract

Recent research efforts have shown that neural
architectures can be effective in conventional
information extraction tasks such as named
entity recognition, yielding state-of-the-art re-
sults on standard newswire datasets. However,
despite significant resources required for train-
ing such models, the performance of a model
trained on one domain typically degrades dra-
matically when applied to a different domain,
yet extracting entities from new emerging do-
mains such as social media can be of signif-
icant interest. In this paper, we empirically
investigate effective methods for conveniently
adapting an existing, well-trained neural NER
model for a new domain. Unlike existing ap-
proaches, we propose lightweight yet effec-
tive methods for performing domain adapta-
tion for neural models. Specifically, we intro-
duce adaptation layers on top of existing neu-
ral architectures, where no re-training using
the source domain data is required. We con-
duct extensive empirical studies and show that
our approach significantly outperforms state-
of-the-art methods.

1 Introduction

Named entity recognition (NER) focuses on ex-
tracting named entities in a given text while iden-
tifying their underlying semantic types. Most
earlier approaches to NER are based on conven-
tional structured prediction models such as condi-
tional random fields (CRF) (Lafferty et al., 2001;
Sarawagi and Cohen, 2004), relying on hand-
crafted features which can be designed based
on domain-specific knowledge (Yang and Cardie,
2012; Passos et al., 2014; Luo et al., 2015). Re-
cently, neural architectures have been shown ef-
fective in such a task, whereby minimal feature en-
gineering is required (Lample et al., 2016; Ma and
Hovy, 2016; Peters et al., 2017; Liu et al., 2018).
Domain adaptation, as a special case for transfer

Shared Word Embeddings

3. Fine-Tuning with 
Target Data 

1. Training with 
Source Data 

2. Parameter 
Initialization

BLSTMs

Training with Random Samples
from Source or Target Data

(a) INIT (b) MULT

BLSTMs

Target-Domain 
CRF Layer

Shared Word Embeddings

Source-Domain 
CRF Layer

Shared BLSTMs

Source-Domain 
CRF Layer

Target-Domain 
CRF Layer

Figure 1: Two existing adaptation approaches for NER.

learning, aims to exploit the abundant data of well-
studied source domains to improve the perfor-
mance in target domains of interest (Pan and Yang,
2010; Weiss et al., 2016). There is a growing in-
terest in investigating the transferability of neural
models for NLP. Two notable approaches, namely
INIT (parameter initialization) and MULT (mul-
titask learning), have been proposed for studying
the transferrability of neural networks under tasks
such as sentence (pair) classification (Mou et al.,
2016) and sequence labeling (Yang et al., 2017b).

The INIT method first trains a model using la-
beled data from the source domain; next, it ini-
tializes a target model with the learned param-
eters; finally, it fine-tunes the initialized target
model using labeled data from the target domain.
The MULT method, on the other hand, simul-
taneously trains two models using both source
and target data respectively, where some param-
eters are shared across the two models during the
learning process. Figure 1 illustrates the two ap-
proaches based on the BLSTM-CRF (bidirectional
LSTM augmented with a CRF layer) architecture
for NER. While such approaches make intuitive
senses, they also come with some limitations.

First, these methods utilize shared domain-
general word embeddings when performing learn-
ing from both source and target domains. This es-
sentially assumes there is no domain shift of input
feature spaces. However, cases when the two do-
mains are distinct (words may contain different se-
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Figure 2: Our base model (left) and target model (right) where we insert new adaptation layers (highlighted in red).

mantics across two domains), we believe such an
assumption can be weak.

Second, existing approaches such as INIT di-
rectly augment the LSTM layer with a new out-
put CRF layer when learning models for the tar-
get domain. One basic assumption involved here
is that the model would be able to re-construct a
new CRF layer that can capture not only the vari-
ation of the input features (or hidden states out-
putted from LSTM) to the final CRF layer across
two domains, but also the structural dependencies
between output nodes in the target output space.
We believe this overly restrictive assumption may
prevent the model from capturing rich, complex
cross-domain information due to the inherent lin-
ear nature of the CRF model.

Third, most methods involving cross-domain
embedding often require highly time-consuming
retraining word embeddings on domain-specific
corpora. This makes it less realistic in scenarios
where source corpora are huge or even inacces-
sible. Also, MULT-based methods need retrain-
ing on the source-domain data for different tar-
get domains. We think this disadvantage of exist-
ing methods hinders the neural domain adaptation
methods for NER to be practical in real scenarios.

In this work, we propose solutions to address
the above-mentioned issues. Specifically, we ad-
dress the first issue at both the word and sentence
level by introducing a word adaptation layer and
a sentence adaptation layer respectively, bridging
the gap between the two input spaces. Similarly,
an output adaptation layer is also introduced be-
tween the LSTM and the final CRF layer, captur-

ing the variations in the two output spaces. Fur-
thermore, we introduce a single hyper-parameter
that controls how much information we would
like to preserve from the model trained on the
source domain. These approaches are lightweight,
without requiring re-training on data from the
source domain. We show through extensive em-
pirical analysis as well as ablation study that our
proposed approach can significantly improve the
performance of cross-domain NER over existing
transfer approaches.

2 Base Model

We briefly introduce the BLSTM-CRF architec-
ture for NER, which serves as our base model
throughout this paper. Our base model is the com-
bination of two recently proposed popular works
for named entity recognition by Lample et al.
(2016) and Ma and Hovy (2016). Figure 2 illus-
trates the BLSTM-CRF architecture.

Following Lample et al. (2016), we de-
velop the comprehensive word representations by
concatenating pre-trained word embeddings and
character-level word representations, which are
constructed by running a BLSTM over sequences
of character embeddings. The middle BLSTM
layer takes a sequence of comprehensive word
representations and produces a sequence of hid-
den states, representing the contextual information
of each token. Finally, following Ma and Hovy
(2016), we build the final CRF layer by utiliz-
ing potential functions describing local structures
to define the conditional probabilities of complete
predictions for the given input sentence.
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This architecture is selected as our base model
due to its generality and representativeness. We
note that several recently proposed models (Peters
et al., 2017; Liu et al., 2018) are built based on
it. As our focus is on how to better transfer such
architectures for NER, we include further discus-
sions of the model and training details in our sup-
plementary material.

3 Our Approach

We first introduce our proposed three adaptation
layers and describe the overall learning process.

3.1 Word Adaptation Layer
Most existing transfer approaches use the same
domain-general word embeddings for training
both source and target models. Assuming that
there is little domain shift of input feature spaces,
they simplify the problem as homogeneous trans-
fer learning (Weiss et al., 2016). However, this
simplified assumption becomes weak when two
domains have apparently different language styles
and involve considerable domain-specific terms
that may not share the same semantics across the
domains; for example, the term “cell” has differ-
ent meaning in biomedical articles and product
reviews. Furthermore, some important domain-
specific words may not be present in the vocab-
ulary of domain-general embeddings. As a result,
we have to regard such words as out-of-vacabulary
(OOV) words, which may be harmful to the trans-
fer learning process.

Stenetorp et al. (2012) show that domain-
specific word embeddings tend to perform better
when used in supervised learning tasks.1 How-
ever, maintaining such an improvement in the
transfer learning process is very challenging. This
is because two domain-specific embeddings are
trained separately on source and target datasets,
and therefore the two embedding spaces are het-
erogeneous. Thus, model parameters trained in
each model are heterogeneous as well, which hin-
ders the transfer process. How can we address
such challenges while maintaining the improve-
ment by using domain-specific embeddings?

We address this issue by developing a word
adaptation layer, bridging the gap between the
source and target embedding spaces, so that
both input features and model parameters be-

1We also confirm this claim with experiments presented
in supplementary materials.

come homogeneous across domains. Popular
pre-trained word embeddings are usually trained
on very large corpora, and thus methods requir-
ing re-training them can be extremely costly and
time-consuming. We propose a straightforward,
lightweight yet effective method to construct the
word adaptation layer that projects the learned em-
beddings from the target embedding space into the
source space. This method only requires some
corpus-level statistics from the datasets (used for
learning embeddings) to build the pivot lexicon for
constructing the adaptation layer.

3.1.1 Pivot Lexicon
A pivot word pair is denoted as (ws, wt), where
ws 2 XS and wt 2 XT . Here, XS and XT are
source and target vocabularies. A pivot lexicon P
is a set of such word pairs.

To construct a pivot lexicon, first, motivated
by Tan et al. (2015), we define P1, which con-
sists of the ordinary words that have high rela-
tive frequency in both source and target domain
corpora: P1 = {(ws, wt)|ws = wt, f(ws) �
�s, f(wt) � �t}, where f(w) is the frequency
function that returns the number of occorrence of
the word w in the dataset, and �s and �t are word
frequency thresholds2. Optionally, we can utilize
a customized word-pair list P2, which gives map-
pings between domain-specific words across do-
mains, such as normalization lexicons (Han and
Baldwin, 2011; Liu et al., 2012). The final lexicon
is thus defined as P = P1 [ P2.

3.1.2 Projection Learning
Mathematically, given the pre-trained domain-
specific word embeddings VS and VT as well as
a pivot lexicon P , we would like to learn a lin-
ear projection transforming word vectors from VT

into VS. This idea is based on a bilingual word
embedding model (Mikolov et al., 2013), but we
adapt it to this domain adaptation task.

We first construct two matrices V⇤
S

and V⇤
T

,
where the i-th rows of these two matrices are the
vector representations for the words in the i-th en-
try of P: P(i) = (wi

s, w
i
t). We use V⇤i

S
to denote

the vector representation of the word wi
s, and sim-

ilarly for V⇤i
T

and wi
t.

Next, we learn a transformation matrix Z min-
imizing the distances between V⇤

S
and V⇤

T
Z with

2A simple way of setting them is to choose the frequency
of the k-th word in the word lists sorted by frequencies.
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the following loss function, where ci is the con-
fidence coefficient for the entry P(i), highlighting
the significance of the entry:

argmin
Z

|P|X

i=1

ci

����

����V
⇤i
TZ � V

⇤i
S

����

����
2

,

We use normalized frequency (f̄ ) and Sørensen-
Dice coefficient (Sørensen, 1948) to describe the
significance of each word pair:

f̄(ws) =
f(ws)

maxw02XS
f(w0)

, f̄(wt) =
f(wt)

maxw02XT
f(w0)

ci =
2 · f̄(wi

s) · f̄(wi
t)

f̄(wi
s) + f̄(wi

t)

The intuition behind this scoring method is that
a word pair is more important when both words
have high relative frequency in both domains. This
is because such words are likely more domain-
independent, conveying identical or similar se-
mantics across these two different domains.

Now, the matrix Z exactly gives the weights to
the word adaptation layer, which takes in the target
domain word embeddings and returns the trans-
formed embeddings in the new space. We learn Z
with stochastic gradient descent. After learning,
the projected new embeddings would be VTZ,
which would be used in the subsequent steps as
illustrated in Figure 2 and Figure 3. With such
a word-level input-space transformation, the pa-
rameters of the pre-trained source models based
on VS can still be relevant, which can be used in
subsequent steps.

We would like to highlight that, unlike many
previous approaches to learning cross-domain
word embeddings (Bollegala et al., 2015; Yang
et al., 2017a), the learning of our word adapta-
tion layer involves no modifications to the source-
domain embedding spaces. It also requires no re-
training of the embeddings based on the target-
domain data. Such a distinctive advantage of our
approach comes with some important practical im-
plications: it essentially enables the transfer learn-
ing process to work directly on top of a well-
trained model by performing adaptation without
involving significant re-training efforts. For ex-
ample, the existing model could be one that has
already gone through extensive training, tuning
and testing for months based on large datasets
with embeddings learned from a particular domain
(which may be different from the target domain).

3.2 Sentence Adaptation Layer

The word adaptation layer serves as a way to
bridge the gap of heterogeneous input spaces, but
it does so only at the word level and is context in-
dependent. We can still take a step further to ad-
dress the input space mismatch issue at the sen-
tence level, capturing the contextual information
in the learning process of such a mapping based
on labeled data from the target domain. To this
end, we augment a BLSTM layer right after the
word adaptation layer (see Figure 2), and we name
it the sentence adaptation layer.

This layer pre-encodes the sequence of pro-
jected word embeddings for each target instance,
before they serve as inputs to the LSTM layer in-
side the base model. The hidden states for each
word generated from this layer can be seen as
the further transformed word embeddings captur-
ing target-domain specific contextual information,
where such a further transformation is learned in
a supervised manner based on target-domain an-
notations. We also believe that with such a sen-
tence adaptation layer, the OOV issue mentioned
above may also be partially alleviated. This is
because without such a layer, OOV words would
all be mapped to a single fixed vector representa-
tion – which is not desirable; whereas with such a
sentence adaptation layer, each OOV word would
be assigned their “transformed” embeddings based
on its respective contextual information.

3.3 Output Adaptation Layer

We focus on the problem of performing domain
adaptation for NER under a general setup, where
we assume the set of output labels for the source
and target domains could be different. Due to the
heterogeneousness of output spaces, we have to re-
construct the final CRF layer in the target models.

However, we believe solely doing this may not
be enough to address the labeling difference prob-
lem as highlighted in (Jiang, 2008) as the two out-
put spaces may be very different. For example,
in the sentence “Taylor released her new songs”,
“Taylor” should be labeled as “MUSIC-ARTIST”
instead of “PERSON” in some social media NER
datasets; this suggests re-classifying with contex-
tual information is necessary. In another exam-
ple, where we have a tweet “so...#kktny in 30
mins?”; here we should recognize “#kktny” as a
CREATIVE-WORK entity, but there is little sim-
ilar instances in newswire data, indicating that
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Figure 3: Overview of our transfer learning process.

context-aware re-recognition is also needed.
How can we perform re-classification and re-

recognition with contextual information in the tar-
get model? We answer this question by insert-
ing a BLSTM output adaptation layer in the base
model, right before the final CRF layer, to capture
variations in outputs with contextual information.
This output adaption layer takes the output hidden
states from the BLSTM layer from the base model
as its inputs, producing a sequence of new hidden
states for the re-constructed CRF layer. Without
this layer, the learning process directly updates the
pre-trained parameters of the base model, which
may lead to loss of knowledge that can be trans-
ferred from the source domain.

3.4 Overall Learning Process

Figure 3 depicts our overall learning process. We
initialize the base model with the parameters from
the pre-trained source model, and tune the weights
for all layers — including layers from the base
model, sentence and output adaptation layers, and
the CRF layer. We use different learning rates
when updating the weights in different layers us-
ing Adam (Kingma and Ba, 2014). In all our ex-
periments, we fixed the weights to Z for the word
adaptation layers to avoid over-fitting. This al-
lows us to preserve the knowledge learned from
the source domain while effectively leveraging the
limited training data from the target domain.

Similar to Yang et al. (2017b), who utilizes a
hyper-parameter � for controlling the transferabil-
ity, we also introduce a hyper-parameter  that
serves a similar purpose — it captures the relation
between the learning rate used for the base model
(↵base) and the learning rate used for the adaptation

layers plus the final CRF layer ↵base =  · ↵adapt.
If  = 0, we fix the learned parameters (from

source domain) of the base model completely
(Ours-Frozen). If  = 1, we treat all the layers
equally (Ours-FineTune).

4 Experimental Setup

In this section, we present the setup of our exper-
iments. We show our choice for source and target
domains, resources for embeddings, the datasets
for evaluation and finally the baseline methods.

4.1 Source and Target Domains
We evaluate our approach with the setting that the
source domain is newswire and the target domain
is social media. We designed this experimental
setup based on the following considerations:

• Challenging: Newswire is a well-studied do-
main for NER and existing neural models
perform very well (around 90.0 F1-score (Ma
and Hovy, 2016)). However, the perfor-
mance drop dramatically in social media data
(around 60.0 F-score (Strauss et al., 2016)).

• Important: Social media is a rich soil for
text mining (Petrovic et al., 2010; Rosen-
thal and McKeown, 2015; Wang and Yang,
2015), and NER is of significant importance
for other information extraction tasks in so-
cial media (Ritter et al., 2011a; Peng and
Dredze, 2016; Chou et al., 2016).

• Representative: The noisy nature of user gen-
erated content as well as emerging entities
with novel surface forms make the domain
shift very salient (Finin et al., 2010; Han
et al., 2016).

Nevertheless, the techniques developed in this
paper are domain independent and thus can be
used for other learning tasks across any two do-
mains so long as we have the necessary resources.

4.2 Resources for Cross-domain Embeddings
We utilizes GloVe (Pennington et al., 2014) to
train domain-specific and domain-general word
embeddings from different corpora, denoted as
follows: 1) source emb, which is trained on the
newswire domain corpus (NewYorkTimes and Dai-
lyMail articles); 2) target emb, which is trained
on a social media corpus (Archive Team’s Twit-
ter stream grab3); 3) general emb, which is pre-
trained on CommonCrawl containing both formal

3https://archive.org/details/twitterstream
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CO ON RI WN
#train token 204,567 848,220 37,098 46,469
#dev token 51,578 144,319 4,461 16,261
#test token 46,666 49,235 4,730 61,908
#train sent. 14,987 33,908 1,915 2,394
#dev sent. 3,466 5,771 239 1,000
#test sent. 3,684 1,898 240 3,856

#entity type 4 11 10 10

Table 1: Statistics of the NER datasets.

and user-generated content.4 We obtain the inter-
section of the top 5K words from source and tar-
get vocabularies sorted by frequency to build P1.
For P2, we utilize an existing twitter normaliza-
tion lexicon containing 3,802 word pairs(Liu et al.,
2012). More details are in supplemental material.

4.3 NER Datasets for Evaluation
For the source newswire domain, we use the
following two datasets: OntoNotes-nw – the
newswire section of OntoNotes 5.0 release dataset
(ON) (Weischedel et al., 2013) that is publicly
available5, as well as the CoNLL03 NER dataset
(CO) (Sang and Meulder, 2003). For the first
dataset, we randomly split the dataset into three
sets: 80% for training, 15% for development and
5% for testing. For the second dataset, we follow
their provided standard train-dev-test split. For
the target domain, we consider the following two
datasets: Ritter11 (RI) (Ritter et al., 2011b) and
WNUT16 (WN) (Strauss et al., 2016), both of
which are publicly available. The statistics of the
four datasets we used in the paper are shown in Ta-
ble 1.

4.4 Baseline Transfer Approaches
We present the baseline approaches, which were
originally investigated by Mou et al. (2016). Lee
et al. (2017) explored the INIT method for NER,
while Yang et al. (2017b) extended the MULT
method for sequence labeling.

INIT: We first train a source model MS us-
ing the source-domain training data DS . Next, we
construct a target model MT and reconstruct the
final CRF layer to address the issue of different
output spaces. We use the learned parameters of
MS to initialize MT excluding the CRF layer. Fi-
nally, INIT-FineTune continues training MT with
the target-domain training data DT , while INIT-
Frozen instead only updates the parameters of the
newly constructed CRF layer.

4https://nlp.stanford.edu/projects/glove/
5https://catalog.ldc.upenn.edu/ldc2013t19

MULT: Multi-task learning based transfer
method simultaneously trains MS and MT us-
ing DS and DT . The parameters of MS and MT

excluding their CRF layers are shared during the
training process. Both Mou et al. (2016) and Yang
et al. (2017b) follow Collobert and Weston (2008)
and use a hyper-parameter � as the probability of
choosing an instance from DS instead of DT to
optimize the model parameters. By selecting the
hyper-parameter �, the multi-task learning process
tends to perform better in target domains. Note
that this method needs re-training of the source
model with DS every time we would like to build
a new target model, which can be time-consuming
especially when DS is large.

MULT+INIT: This is a combination of the
above two methods. We first use INIT to initial-
ize the target model. Afterwards, we train the two
models as what MULT does.

5 Results and Discussion

5.1 Main Results
We primarily focus on the discussion of experi-
ments with a particular setup where DS is set to
OntoNotes-nw and DT is Ritter11. In the exper-
iments, “in-domain” means we only use DT to
train our base model without any transfer from the
source domain. “�” represents the amount of im-
provement we can obtain (in terms of F measure)
using transfer learning over “in-domain” for each
transfer method. The hyper-parameters  and �
are tuned from {0.1, 0.2, ..., 1.0} on the develop-
ment set, and we show the results based on the
developed hyper-parameters.

We first conduct the first set of experiments to
evaluate performance of different transfer meth-
ods under the assumption of homogeneous input
spaces. Thus, we utilize the same word embed-
dings (general emb) for training both source and
target models. Consequently we remove the word
adaptation layer (cd emb) in our approach under
this setting. The results are listed in Table 2. As
we can observe, the INIT-Frozen method leads
to a slight “negative transfer”, which is also re-
ported in the experiments of Mou et al. (2016).
This indicates that solely updating the parame-
ters of the final CRF layer is not enough for per-
forming re-classification and re-recognition of the
named entities for the new target domain. The
INIT-FineTune method yields better results for it
also updates the parameters of the middle LSTM
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Settings P R F �
in-domain 72.73 56.14 63.37 -

INIT-Frozen 72.61 56.11 63.30 -0.07
INIT-FineTune 73.13 56.55 63.78 +0.41

MULT 74.07 57.51 64.75 +1.38
MULT+INIT 74.12 57.57 64.81 +1.44

Ours (w/o word adapt) 74.87 57.95 65.33 +1.96

Table 2: Comparisons of different methods for homo-
geneous input spaces. (DS = ON, DT = RI)

layers in the base model to mitigate the heteroge-
neousness. The MULT and MULT+INIT meth-
ods yield higher results, partly due to the fact
that they can better control the amount of transfer
through tuning the hyper-parameter. Our proposed
transfer approach outperforms all these baseline
approaches. It not only controls the amount of
transfer across the two domains but also explicitly
captures variations in the input and output spaces
when there is significant domain shift.

We use the second set of experiments to un-
derstand the effectiveness of each method when
dealing with heterogeneous input spaces. We use
source emb for training source models and tar-
get emb for learning the target models. From
the results shown in Table 3, we can find that
all the baseline methods degrade when the two
word embeddings used for training source mod-
els and learning target models are different from
each other. The heterogeneousness of input fea-
ture space hinders them to better use the infor-
mation from source domains. However, with the
help of word and sentence adaptation layers, our
method achieves better results. The experiment
on learning without the word adaptation layer also
confirms the importance of such a layer.6

Our results are also comparable to the re-
sults when the cross-lingual embedding method
of Yang et al. (2017a) is used instead of the word
adaptation layer. However, as we mentioned ear-
lier, their method requires re-training the embed-
dings from target domain, and is more expensive.

5.2 Ablation Test
To investigate the effectiveness of each component
of our method, we conduct ablation test based on
our full model (F=66.40) reported in Table 3. We
use � to denote the differences of the performance
between each setting and our model. The results

6We use the approximate randomization test (Yeh, 2000)
for statistical significance of the difference between “Ours”
and “MULT+INIT”. Our improvements are statistically sig-
nificant with a p-value of 0.0033.

Settings P R F �
in-domain 72.51 57.11 63.90 -

INIT-Frozen 72.65 55.25 62.77 -1.13
INIT-FineTune 72.83 56.73 63.78 -0.12

MULT 73.11 57.35 64.28 +0.38
MULT+INIT 73.13 57.31 64.26 +0.36

Ours 75.87 59.03 66.40 +2.50
w/ Yang et al. (2017a) 76.12 59.10 66.53 +2.63
w/o word adapt. layer 73.29 57.61 64.51 +0.61

Table 3: Comparisons of different methods for hetero-
geneous input spaces. (DS = ON, DT = RI)

of ablation test are shown in Table 4. We first set
 to 0 and 1 respectively to investigate the two
special variant (Ours-Frozen, Ours-FineTune) of
our method. We find they both perform worse than
using the optimal  (0.6).

One natural concern is whether our perfor-
mance gain is truly caused by the effective ap-
proach for cross-domain transfer learning, or is
simply because we use a new architecture with
more layers (that is built on top of the base model)
for learning the target model. To understand this,
we carry out an experiment named “w/o transfer”
by setting  to 1, where we randomly initialize
the parameters of the middle BLSTMs in the tar-
get model instead of using source model parame-
ters. Results show that such a model does not per-
form well, confirming the effectiveness of transfer
learning with our proposed adaptation layers. Re-
sults also confirm the importance of all the three
adaptation layers that we introduced. Learning the
confidence scores (ci) and employing the optional
P2 are also helpful but they appear to be playing
less significant roles.

5.3 Additional Experiments

As shown in Table 5, we conduct some additional
experiments to investigate the significance of our
improvements on different source-target domains,
and whether the improvement is simply because of
the increased model expressiveness due to a larger
number of parameters.7

We first set the hidden dimension to be the same
as the dimension of source-domain word embed-
dings for the sentence adaptation layer, which is
200 (I/M-200). The dimension used for the out-
put adaptation layer is just half of that of the
base BLSTM model. Overall, our model roughly

7In this table, I-200/300 and M-200/300 represent the
best performance from {INIT-Frozen, INIT-FineTune} and
{MULT, MULT+INIT} respectively after tuning; “in-do.”
here is the best score of our base model without transfer.
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Settings F �
 =0.0 Ours-Frozen 63.95 -2.45
 =1.0 Ours-FineTune 63.40 -3.00
 =1.0 w/o transfer 63.26 -3.14
 =0.6 w/o using confidence ci 66.04 -0.36
 =0.6 w/o using P2 66.11 -0.29
 =0.6 w/o word adapt. layer 64.51 -1.89
 =0.6 w/o sentence adapt. layer 65.25 -1.15
 =0.6 w/o output adapt. layer 64.84 -1.56

Table 4: Comparing different settings of our method.

DS , DT in-do. I-200 M-200 I-300 M-300 Ours
(ON, RI) 63.37 +0.41 +1.44 +0.43 +1.48 +3.03
(CO, RI) +0.23 +0.81 +0.22 + 0.88 +1.86

(ON, WN) 51.03 +0.89 +1.72 +0.88 +1.77 +3.16
(CO, WN) +0.69 +1.04 +0.71 +1.13 +2.38

Table 5: Results of transfer learning methods on dif-
ferent datasets with different number of LSTM units in
the base model. (I: INIT; M: MULT; 200/300: number
of LSTM units).

involves 117.3% more parameters than the base
model.8 To understand the effect of a larger pa-
rameter size, we further experimented with hidden
unit size as 300 (I/M-300), leading to a parame-
ter size of 213, 750 that is comparable to “Ours”
(203, 750). As we can observe, our approach out-
performs these approaches consistently in the four
settings. More experiments with other settings can
be found in the supplementary material.

5.4 Effect of Target-Domain Data Size
To assess the effectiveness of our approach when
we have different amounts of training data from
the target domain, we conduct additional experi-
ments by gradually increasing the amount of the
target training data from 10% to 100%. We again
use the OntoNotes-nw and Ritter11 as DS and DT ,
respectively. Results are shown in Figure 4. Ex-
periments for INIT and MULT are based on the
respective best settings used in Table 5. We find
that the improvements of baseline methods tend to
be smaller when the target training set becomes
larger. This is partly because INIT and MULT do
not explicitly preserve the parameters from source
models in the constructed target models. Thus, the
transferred information is diluted while we train
the target model with more data. In contrast, our
transfer method explicitly saves the transferred in-
formation in the base part of our target model, and
we use separate learning rates to help the target
model to preserve the transferred knowledge. Sim-

8Base Model: (25 ⇥ 50 + 502) + (250 ⇥ 200 + 2002) =
93, 750; Ours: (25 ⇥ 50 + 502) + (200 ⇥ 200 + 2002) +
(250 ⇥ 200 + 2002) + (200 ⇥ 100 + 1002) = 203, 750.
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Figure 5: Performance at different  of our methods.

ilar experiments on other datasets are shown in the
supplementary material.

5.5 Effect of the Hyper-parameter  
We present a set of experiments around the hyper-
parameter  in Figure 5. Such experiments over
different datasets can shed some light on how to
select this hyper-parameter. We find that when
the target data set is small (Ritter11), the best  
are 0.5 and 0.6 respectively for the two source do-
mains, whereas when the target data set is larger
(WNUT16), the best  becomes 0.7 and 0.8. The
results suggest that the optimal  tends to be rela-
tively larger when the target data set is larger.

6 Related Work
Domain adaptation and transfer learning has been
a popular topic that has been extensively stud-
ied in the past few years (Pan and Yang, 2010).
For well-studied conventional feature-based mod-
els in NLP, there are various classic transfer ap-
proaches, such as EasyAdapt (Daumé, 2007),
instance weighting (Jiang and Zhai, 2007) and
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structural correspondence learning (Blitzer et al.,
2006). Fewer works have been focused on trans-
fer approaches for neural models in NLP. Mou
et al. (2016) use intuitive transfer methods (INIT
and MULT) to study the transferability of neu-
ral network models for the sentence (pair) clas-
sification problem; Lee et al. (2017) utilize the
INIT method on highly related datasets of elec-
tronic health records to study their specific de-
identification problem. Yang et al. (2017b) use
the MULT approach in sequence tagging tasks in-
cluding named entity recognition. Following the
MULT scheme, Wang et al. (2018) introduce a
label-aware mechanism into maximum mean dis-
crepancy (MMD) to explicitly reduce domain shift
between the same labels across domains in medi-
cal data. Their approach requires the output space
to be the same in both source and target domains.
Note that the scenario in our paper is that the out-
put spaces are different in two domains.

All these existing works do not use domain-
specific embeddings for different domains and
they use the same neural model for source and
target models. However, with our word adapta-
tion layer, it opens the opportunity to use domain-
specific embeddings. Our approach also addresses
the domain shift problem at both input and out-
put level by re-constructing target models with
our specifically designed adaptation layers. The
hyper-parameter  in our proposed methods and
� in MULT both control the knowledge transfer
from source domain in the transfer learning pro-
cess. While our method works on top of an ex-
isting pre-trained source model directly, MULT
needs re-training with source domain data each
time they train a target model.

Fang and Cohn (2017) add an “augmented
layer” before their final prediction layer for cross-
lingual POS tagging — which is a simple multi-
layer perceptron performing local adaptation for
each token separately — ignoring contextual in-
formation. In contrast, we employ a BLSTM layer
due to its ability in capturing contextual infor-
mation, which was recently shown to be crucial
for sequence labeling tasks such as NER (Ma and
Hovy, 2016; Lample et al., 2016). We also notice
that a similar idea to ours has been used in the re-
cently proposed Deliberation Network (Xia et al.,
2017) for the sequence generation task, where a
second-pass decoder is added to a first-pass de-
coder to polish sequences generated by the latter.

We propose to learn the word adaptation layer
in our task inspired by two prior studies. Fang
and Cohn (2017) use the cross-lingual word em-
beddings to obtain distant supervision for tar-
get languages. Yang et al. (2017a) propose to
re-train word embeddings on target domain by
using regularization terms based on the source-
domain embeddings, where some hyper-parameter
tuning based on down-stream tasks is required.
Our word adaptation layer serves as a linear-
transformation (Mikolov et al., 2013), which is
learned based on corpus level statistics. Although
there are alternative methods that also learn a map-
ping between embeddings learned from different
domains (Faruqui and Dyer, 2014; Artetxe et al.,
2016; Smith et al., 2017), such methods usually in-
volve modifying source domain embeddings, and
thus re-training of the source model based on the
modified source embeddings would be required
for the subsequent transfer process.

7 Conclusion

We proposed a novel, lightweight transfer learn-
ing approach for cross-domain NER with neural
networks. Our introduced transfer method per-
forms adaptation across two domains using adap-
tation layers augmented on top of the existing neu-
ral model. Through extensive experiments, we
demonstrated the effectiveness of our approach,
reporting better results over existing transfer meth-
ods. Our approach is general, which can be poten-
tially applied to other cross-domain structured pre-
diction tasks. Future directions include investiga-
tions on employing alternative neural architectures
such as convolutional neural networks (CNNs) as
adaptation layers, as well as on how to learn the
optimal value for  from the data automatically
rather than regarding it as a hyper-parameter. 9
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Abstract

In this paper, we study a new entity linking
problem where both the entity mentions and
the target entities are within a same social me-
dia platform. Compared with traditional en-
tity linking problems that link mentions to a
knowledge base, this new problem have less
information about the target entities. How-
ever, if we can successfully link mentions to
entities within a social media platform, we can
improve a lot of applications such as compara-
tive study in business intelligence and opinion
leader finding. To study this problem, we con-
structed a dataset called Yelp-EL, where the
business mentions in Yelp reviews are linked
to their corresponding businesses on the plat-
form. We conducted comprehensive experi-
ments and analysis on this dataset with a learn-
ing to rank model that takes different types of
features as input, as well as a few state-of-the-
art entity linking approaches. Our experimen-
tal results show that two types of features that
are not available in traditional entity linking:
social features and location features, can be
very helpful for this task.

1 Introduction

Entity linking is the task of determining the iden-
tities of entities mentioned in texts. Most exist-
ing studies on entity linking have focused on link-
ing entity mentions to their referred entities in a
knowledge base (Cucerzan, 2007; Liu et al., 2013;
Ling et al., 2015). However, on social media plat-
forms such as Twitter, Instagram, Yelp, Facebook,
etc., the texts produced on them may often men-
tion entities that cannot be found in a knowledge
base, but can be found on the platform itself. For
example, consider Yelp, a platform where users
can write reviews about businesses such as restau-
rants, hotels, etc., a restaurant review on Yelp may
mention another restaurant to compare, which is
also likely to be on Yelp but cannot be found in

a knowledge base such as Wikipedia. As another
example, when people post a photo on a social me-
dia platform, their friends may be mentioned in
this post if they are also in the photo. Usually,
their friends are not included in a knowledge base
but may also have accounts on the same platform.
Thus for such entity mentions, linking them to an
account that is also on the platform is more practi-
cal than linking them to a knowledge base.

Performing this kind of entity linking can ben-
efit many applications. For example, on Yelp, we
can perform analysis on the comparative sentences
in reviews after linking the business mentions in
them. The results can be directly used to either
provide recommendations for users or suggestions
for business owners.

Thus, in this paper, we focus on a new en-
tity linking problem where both the entity men-
tions and the target entities are within a social me-
dia platform. Specifically, the entity mentions are
from the texts (which we will refer to as men-
tion texts) produced by the users on a social me-
dia platform; and these mentions are linked to the
accounts on this platform.

It is not straightforward to apply existing entity
linking systems that link to a knowledge base to
this problem, because they usually take advantage
of the rich information knowledge bases provide
for the entities. For example, they can use detailed
text descriptions, varies kinds of attributes, etc., as
features (Francis-Landau et al., 2016; Gupta et al.,
2017; Tan et al., 2017), or even additional signals
such as the anchor texts in Wikipedia articles (Guo
and Barbosa, 2014; Globerson et al., 2016; Ganea
et al., 2016). However, on social media platforms,
most of these resources or information are either
unavailable or of poor quality.

On the other hand, social media platforms also
have some unique resources that can be exploited.
One that commonly exists on all of them is social
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BizName: The Shop
Addr.: 1505 S Pavilion Center Dr, Las Vegas

Review #1: 
David

I normally buy a copy of the LA ...

West garage at Red Rock and ...
... I was meeting some friends in the

...

BizName: Red Rock Pizza
Addr.: 8455 W Lake Mead Blvd, Las Vegas

BizName: Red Rock Casino Resort & Spa
Addr.: 11011 W Charleston Blvd, Las Vegas

BizName: Red Rock Eyecare
Addr.: 3350 E Tropicana Ave, Las Vegas

...

...

Alice

Bob

Kyle
Candidate Businesses for "Red Rock"

...

...

Users

Wrote

Reviewed

Figure 1: An example of entity linking within the Yelp social media platform. On Yelp, users can have friends
which makes it a social network. Users can also write reviews about a business and compare with other businesses.

information, which can be intuitively used in our
problem where mention texts and target entities
may be directly connected by users and their social
activities. Other than this, for location-based so-
cial media platforms such as Yelp and Foursquare,
location information can also be helpful since peo-
ple are more likely to mention and compare places
close to each other.

To study this problem, we construct a dataset
based on Yelp, which we name as Yelp-EL. As
shown in Figure 1, on Yelp, users can write re-
views for businesses and friend other users, and
the reviews they write may mention businesses
other than the reviewed ones. Thus, reviews,
users, and businesses are connected and form a
network through users’ activities on the platform.
In Yelp-EL, we link the business mentions in re-
views to their corresponding businesses on the
platform. We choose Yelp because other social
media platforms such as Facebook and Instagram
do not provide open dataset and there can be pri-
vacy issues related.

We then study the roles of three types of fea-
tures in our entity linking problem: social fea-
tures, location features, as well as conventional
features that are also frequently used in traditional
entity linking problems. We implemented a learn-
ing to rank model that takes the above features as
input. We conducted comprehensive experiments
and analysis on Yelp-EL with this model and also a
few state-of-the-art entity linking approaches that
we tailored to meet the requirements of Yelp-EL.
Experimental results show that both social and lo-
cation features can improve performance signifi-
cantly.

Our contributions are summarized as follows.

• We are the first attempt to study the new en-
tity linking problem where both entity men-
tions and target entities are within a same so-

cial media platform.

• We created a dataset based on Yelp to illus-
trate the usefulness of this problem and use
it as a benchmark to compare different ap-
proaches.

• We studied both traditional entity linking fea-
tures and social/location based features that
are available from the social media platform,
and show that they are indeed helpful for im-
proving the entity linking performance.

The code and data are available at https://
github.com/HKUST-KnowComp/ELWSMP.

2 Yelp-EL Dataset Construction

In this section we introduce how we create the
dataset Yelp-EL based on the Yelp social media
platform. We used the Round 9 version of the
Yelp challenge dataset1 to build Yelp-EL. There
are 4,153,150 reviews, 144,072 businesses, and
1,029,432 users in this dataset. In order to build
Yelp-EL, we first find possible entity mentions in
Yelp reviews, and then ask people to manually link
these mentions to Yelp businesses if possible.

Ideally, the mentions we need to extract from
the reviews should be only those that refer the
businesses in Yelp. Unfortunately, there is no
existing method or tool that can accomplish this
task. In fact, this problem itself is worth studying.
Nonetheless, since we focus on entity linking in
this paper, we only try to find as many mentions
that may refer to Yelp businesses as we can, and
then let the annotators decide whether to link this
mention to a business. Thus, we use the following
two ways to find mentions and then merge their
results.

1https://www.yelp.com/dataset/challenge
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#Mentions #Linked #NIL #Disagreement1 #Disagreement2 Agreement%
7,731 1,749 5,117 842 23 88.8%

Table 1: Annotation statistics. “Linked” means the mentions that both annotators link to a same business. “NIL”
means the mentions that both annotators think are “unlinkable.” “Disagreement1” means the mentions that are
labeled by one annotator as “unlinkable,” but are linked to a business by the other annotator. “Disagreement2”
means the mentions that are linked by two annotators to two different businesses.

(1) We use the Standford NER tool (Finkel
et al., 2005) to find ordinary entity mentions and
filter those that are unlikely to refer to businesses.
To do the filtering, we first construct a dictionary
which contains entity names that may occur in
Yelp reviews frequently but are unlikely to refer to
businesses, e.g., city names, country names, etc.
Then we run through the mentions found with the
NER tool and remove those whose mention strings
matches one of the names in the dictionary.

(2) We find all the words/multi-word expres-
sions in reviews that match the name of a business,
and output them as mentions.

After extracting the mentions, we obtain the
ground-truth by asking annotators to label them.
Each time, we show the annotator one review with
the mentions in this review highlighted, the anno-
tator then needs to label each of the highlighted
mentions. For each mention, we show several can-
didate businesses whose names match the mention
string well. The annotator can also search the busi-
ness by querying its name and/or location, in case
the referred business is not included in the given
candidates. We also ask the annotators to label the
mention as “unlinkable” when its referred entity is
not a Yelp business or it is not an entity mention.

An important issue to note is franchises. There
are some mentions that refer to a franchise as a
whole, e.g., the mention “Panda Express” in the
sentence “If you want something different than the
usual Panda Express this is the place to come.”
There are also some mentions that refer to a spe-
cific location of a franchise. For example, the
mention “Best Buy” in “Every store you could
possibly need is no further than 3 miles from here,
which at that distance is Best Buy” refers to a spe-
cific “Best Buy” shop. As a location based social
network platform, Yelp only contains businesses
for different locations of franchises, not franchises
themselves. Thus in these cases, we ask the an-
notators to link the mentions when they refer to a
specific location of a franchise, but label them as
“unlinkable” when they refer to a franchise as a
whole.

We asked 14 annotators who are all undergradu-
ate or graduate students in an English environment
university to perform the annotation. They were
given a tutorial before starting to annotate, and
the annotation supervisor answered questions dur-
ing the procedure to ensure the annotation quality.
Each review is assigned to two annotators.

The statistics of the annotation results are
shown in Table 1. The total agree rate, calculated
as (#Linked + #NIL)/#Mentions, is 88.8%. Most
disagreements are on whether to link a mention
or not. We checked the data and find that this
happens mostly when: they disagree on whether
the mention refers to a franchise as a whole or
just one specific location; one of the annotators
fails to find the referred business. However, when
both annotators think the mention should be linked
to a business, the disagree rate, calculated as
#Disagreement2/(#Linked + #Disagreement2), is
very low (only 1.3%).

We only use the mentions that both annotators
give the same labeling results to build the dataset.
As a result, we obtain 1,749 mentions that are
linked to a business. These mentions refer to 1,134
different businesses (mentioned businesses) and
are from 1,110 reviews. The reviews that contain
these mentions are for 967 different businesses (re-
viewed businesses).

The reviewed businesses are located in 96 dif-
ferent cities and belong to 419 different categories.
Note that a business can only locate in one city but
may have several different categories. The men-
tioned businesses are located in 98 different cities
and belong to 425 different categories. Figure 2
shows the numbers of reviewed businesses and
mentioned businesses in the most popular cities
and categories, from where we can see that these
mentions have an acceptable level of diversity.

The mentions that can be linked are our focus,
but we also include the 5,117 unlinkable mentions
in our dataset since they can be helpful for building
a complete entity discovery and linking system (Ji
et al., 2016).

2025



(a) Top Cities (b) Top Categories

Figure 2: Statistics of the related businesses in Yelp-EL. (a) The number of reviewed businesses in the six most
popular cities. (b) The number of mentioned businesses in the five most popular categories. Here, “popular” means
having the largest number of businesses in the dataset.

3 Entity Linking Algorithm

In this section, we introduce LinkYelp, an entity
linking approach we design for Yelp-EL to inves-
tigate the new proposed problem. LinkYelp con-
tains two main steps: candidate generation and
candidate ranking. The candidate generation step
finds a set of businesses that are plausible to be the
target of a mention based on the mention string.
Afterwards, the candidate ranking step ranks all
the candidates and chooses the top ranked one as
the target business.

3.1 Candidate Generation

For the first step, candidate generation, we score
each business b with g(m, b) = gc(m, b) ·
gn(sm, sb) for a mention m, where sm is the men-
tion string of m, sb is the name of b. gc(m, b)
equals to a constant value that is larger than 1 (it
is set to 1.3 in practice) when the review that con-
tains m is for a business that is located in the same
city with b; Otherwise, it equals to 0. gn is defined
as

gn(sm, sb) =

(
1 if sm 2 A(sb)

sim(sm, sb) Otherwise,
(1)

where A(sb) is the set of possible acronyms for
sb, sim(sm, sb) is the cosine similarity between
the TF-IDF representations of sm and sb. In prac-
tice, A(sb) is empty when sb contains less than
two words; Otherwise, it contains one string: the
concatenation of the first letter of each word in sb.
Then, we find the top 30 highest scored businesses

as candidates. This approach has a recall of 0.955
on Yelp-EL.

3.2 Candidate Ranking
Let m be a mention and b be a candidate business
of m. We use the following function to score how
likely b is the correct business that m refers to:

f(m, b) = w · �(m, b), (2)

where �(m, b) is the feature vector for mention-
candidate pair m and b, Section 4 describes how
to obtain it in detail; w is a parameter vector.

We use a max-margin based loss function to
train w:

J =
1

|T |
X

<m,bt,bc>2T

max[0, 1 � f(m, bt)

+ f(m, bc)] + �kwk2,

(3)

where bt is the true business mention m refers to;
bc 6= bt is a corrupted business sample randomly
picked from the candidates of m; T is the set of
training samples; k · k is the l2-norm; � is a hyper-
parameter that controls the regularization strength.
We use stochastic gradient descent to train this
model.

4 Feature Engineering

We study the effectiveness of three types of fea-
tures: conventional features, social features, and
location features. Among them, conventional fea-
tures are those that can also be use in traditional
entity linking tasks; social features and location
features are unique in our problem.
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4.1 Conventional Features
Lots of information used in traditional entity link-
ing cannot be found for Yelp businesses, but we
try our best to include all such features that can be
used in our problem.

For Yelp-EL, we use the following conventional
features for a mention m and its candidate busi-
ness b:

u1 : The cosine similarity between the TF-IDF
representations of the mention string of m
and the name of b.

u2 : Whether the mention string of m is a pos-
sible acronym of b’s name (i.e., whether it is
an element of the set A(sb) in Equation 1).

u3 : The popularity of b. Let the number of re-
views received by b be n. Then this feature
value equals to n/C if n is smaller than a pa-
rameter C that’s used for normalization, oth-
erwise it equals to 1.

u4 : The cosine similarity between the TF-IDF
representations of the review that contains m
and combination of all reviews of b. This fea-
ture evaluates how well b fits m semantically.

u5 : Whether b is the same as the reviewed busi-
ness. This feature is actually not available in
traditional EL, and it is usually not available
on other social media platforms either. But
it is obviously useful on Yelp-EL. Including
it here helps us to see how beneficial social
features and location features truly are.

4.2 Social Features
Through the activities of the users on the plat-
form, the users, mentions, reviews and businesses
in Yelp-EL form a network where there are differ-
ent types of nodes and edges. Thus we use Hetero-
geneous Information Networks (HIN) to model it,
and then design meta-path based features to cap-
ture the relations between mentions and their can-
didate businesses. We skip the formal definitions
of HIN and meta-path here, readers can refer to
(Sun et al., 2011) for detailed introduction. The
HIN schema for Yelp-EL is shown in Figure 3.

The following meta-paths are used:

P1 : M � R � U � R � B
P2 : M � R � U � U � R � B
P3 : M � R � U � R � B � R � U � R � B

FriendOf

U

R BM
Rate

W
rit
e

Contain

Figure 3: HIN schema of Yelp-EL. M: mention; R: Re-
view; U: user; B: business.

where we denote M for mention, R for Review, U
for user, and B for business.

Different meta-paths above capture different
kinds of relations between a mention and its can-
didate entities that are induced by users’ social ac-
tivities. For example, if an instance of P1 exists
between a mention m and a business b, then m is
contained in a review that is written by a user who
also reviewed business b. If many such instances
of P1 exist, then we may assume that m and b are
related, which makes it more possible for m to be
referring to b.

With the meta-paths above, we use the Path
Count feature defined in (Sun et al., 2011) to feed
into the entity linking model described in Section
3. Given a meta-path P , for mention m and busi-
ness b, Path Count is the number of path instances
of P that start from m and end with b. In practice,
we normalize this value based on global statistics
before feeding it to a model.

4.3 Location Features
Location information commonly exists in
location-based social media platforms such as
Yelp and Foursquare. Users on platforms such
as Twitter and Instagram may also be willing to
provide their locations.

Here, we use the following two features for a
mention m and its candidate business b:

v1 : Whether the reviewed business is in the
same city as b.

v2 : The geographical distance between the re-
viewed business and b. This value is calcu-
lated based on the longitude and latitude co-
ordinates of the businesses.

There are still some other location features that
can be designed. For example, we can also con-
sider the locations of the other businesses that are
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reviewed by the user. We only use the above two
since we find in our experiments that including
them already provides high performance boost.

5 Experiments

5.1 Compared Methods
We compare with a baseline method we name as
DirectLink, as well as two existing entity linking
methods including the method proposed by (Liu
et al., 2013) (which we refer to as ELT) and SS-
Regu proposed by (Huang et al., 2014).

DirectLink simply links each mention to the
corresponding reviewed business. Many business
mentions in Yelp reviews actually refer to the busi-
ness that is being reviewed. This baseline method
tells us how many of these mentions there are in
Yelp-EL.

ELT collectively links a set of mentions with
an objective to maximize local compatibility and
global consistence. It achieves this by integrating
three types of similarities: mention-entity similar-
ity, entity-entity similarity, and mention-mention
similarity. To apply ELT to Yelp-EL, we use the
conventional features introduced in Section 4.1 for
mention-entity similarities. The path count fea-
ture of meta-path B–R–U–R–B is used as entity-
entity similarity. For mention-mention similarity,
we use two features that are both TF-IDF based
cosine similarities, with one between the two men-
tion strings and the other between the reviews that
the two mentions belong to.

SSRegu is also a collective approach. It is a
graph regularization model that incorporates both
local and global evidence through three principals:
local compatibility, coreference, and semantic re-
latedness. SSRegu computes a weight matrix for
each of these three principals, and then forms a
graph based on the weight matrices and performs
graph regularization to rank candidate entities. To
apply SSRegu, we need to compute three weight
matrices. The weight matrix for local compatibil-
ity is based on features extracted from the men-
tion and the candidate entity. In our case, the
conventional features are used for computing this
matrix. Computing the coreference weight matrix
requires to determine whether two corresponding
mentions are coreferential. Huang et al. (2014)
assume two mentions to be coreferential if their
mention strings are the same and there exists at
least one meta-path instance of specific patterns
between them. In our case, the meta-paths used

Method Accuracy (mean±std)

DirectLink 0.6684±0.008
ELT 0.8451±0.012

SSRegu 0.7970±0.013
LinkYelp 0.9034±0.014

Table 2: Entity linking performance of different meth-
ods on Yelp-EL.

are M–R–M and M–R–U–R–M. To compute the
semantic relatedness weight matrix, we apply the
entity-entity similarity used for ELT. Note that SS-
Regu is a semi-supervised approach and is capable
of using unsupervised data, but for fair comparison
we do not use this feature here.

ELT and SSRegu are originally proposed to
tackle the problem of entity linking for tweets,
but their linking target is Wikipedia. Evaluating
the performance of these two methods on Yelp-EL
shows the difference between their problem and
ours.

5.2 Experimental Settings
Throughout our experiments, the hyperparameter
� in Equation (3) is set to 0.001. For each men-
tion, three corrupted samples are random selected
for the training with Equation (3). For ELT and
SSRegu, the hyperparameters are tuned on the val-
idation set with grid search. The candidate busi-
nesses for ELT and SSRegu are also obtained with
the method describe in Section 3.1. We run five
trials of random split of the linked mentions in the
dataset, where each trail uses 60% of the linked
mentions as training data and 40% as test data. In
each of the training set, we further select 20% as
validation set.

Note that we only use linked mentions to eval-
uate different methods since NIL detection is not
our focus, but NIL mentions are utilized in Section
5.6 to build a complete entity linking system.

5.3 Comparison Results
Table 2 shows the entity linking performance of
different methods on Yelp-EL. Here, all three
types of features described in Section 4 are fed
into LinkYelp. Within the compared methods,
LinkYelp performs substantially better. This
shows that methods carefully designed for tradi-
tional entity linking problems may not work so
well when applied to entity linking within a so-
cial media platform, and this new problem we pro-
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Features All Restaurants Nightlife Shopping Food A & E Bars E & S H & T
C 84.05 86.80 79.18 83.15 81.15 71.67 83.49 68.79 63.70
S 79.65 82.92 75.09 82.05 77.69 66.95 80.66 72.25 67.41
L 80.05 85.71 72.70 81.32 85.77 50.21 82.55 49.13 37.78
C+S 86.45 89.29 84.98 85.71 85.00 78.54 87.26 77.46 71.85
C+L 89.42 93.32 84.98 90.48 88.46 76.39 88.21 72.83 66.67
S+L 85.19 89.29 79.86 87.91 87.31 72.10 85.38 72.25 67.41
C+S+L 90.34 93.79 85.67 91.94 90.00 78.97 88.68 76.30 71.11

Table 3: Entity linking accuracy (%) on different categories of businesses with different types of features as input.
On the “Features” column, “C,” “S,” and “L” means conventional, social, and location features respectively. “All”
means all the categories combined, i.e., the whole test set; “A & E” means Arts & Entertainment; “E & S” means
Event Planning & Services; “H & T” means Hotels & Travel.

pose is worth studying differently from the tradi-
tional entity linking problem. The accuracy of Di-
rectLink means that many mentions (about 67%)
in Yelp-EL simply refer to the corresponding re-
viewed businesses. However, this does not mean
that our problem is less challenging than tradi-
tional entity linking, since simply using the popu-
larity measure of entities can achieve an accuracy
of about 82% in the latter task (Pan et al., 2015).

5.4 Ablation Study
We further investigate how the three different
types of features described in Section 4 contribute
to the final performance of LinkYelp, and how
they perform differently in linking mentions that
refer to a specific category of Yelp businesses. The
results are listed in Table 3. The categories in Ta-
ble 3 are those that include the largest numbers
of businesses in the dataset. Entries in the “All”
column in Table 3 are the accuracies on all the cat-
egories combined. We can see from this column
that both social features and location features are
able to improve the performance when combined
with conventional features. Location features are
relatively more effective than social features, this
is because people’s activities are mainly restricted
to a certain area, so they are more likely to mention
businesses that are within this area. But social fea-
tures are still helpful even when both conventional
features and location features are already used, as
the best performance is achieved with all the three
types of features combined. Moreover, social fea-
tures can become more important for other social
media platforms that do not have location infor-
mation available.

There are also some interesting findings if we
consider the performance on different categories.
For example, compared with only using conven-

tional features (row C), incorporating social fea-
tures (row C+S) provides the largest improvement
for Event Planing & Services (e.g., wedding plan-
ning, party planning). This matches our intuition
because for these kinds of businesses, people tend
to be influenced more by their friends and make
choices that are socially related. Table 3 also
shows that on the categories Event Planning &
Services and Hotels & Travel, incorporating loca-
tion features is not that helpful as it does on other
categories. We manually checked the mentions
under these two categories that are linked correctly
by C+S but incorrectly by C+L. We find that the
reasons why incorporating location features fails
on these mentions vary from case to case. Two
possible reasons are: location information is not
helpful to disambiguate a hotel and the shops in
this hotel; it also does not work well in disam-
biguating different locations of a hotel chain that
are all not far away from the reviewed business.

5.5 Error Examples

We also manually checked some of the errors
made by LinkYelp with all the three types of fea-
tures as input. A few examples are shown in Table
4. In the first case, since the reviewed business
“Jean Philippe Patisserie” is a restaurant, our sys-
tem tends to find a similar business instead of a
hotel. Location features do not help here because
Cafe Bellagio has the same location as Bellagio
Hotel. The system is also incapable of identify-
ing that “stay at” should be probably followed by
a hotel instead of a Cafe. In the second case, the
algorithm outputs the reviewed business because
it is unable to understand what “the other Second
Sole in Rock River” means. The above two exam-
ples show that there are still some errors caused
by the failure of natural language understanding.
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Reviewed Biz: Name: Jean Philippe Patisserie Addr.: 3600 S Las Vegas Blvd, Las Vegas
Review: ... Even if you are not staying at the Bellagio, you have to stop by anyway to ...
True Referent: Name: Bellagio Hotel Addr.: 3600 S Las Vegas Blvd, Las Vegas
System Prediction: Name: Cafe Bellagio Addr.: 3600 S Las Vegas Blvd, Las Vegas

Reviewed Biz: Name: Second Sole Athletic Footwear Addr.: 5114 Mayfield Rd, Cleveland
Review: I did a review of the other Second Sole in Rocky River. This one is in Lyndhurst...
True Referent: Name: Second Sole Addr.: 19341 Detroit Rd, Rocky River
System Prediction: Name: Second Sole Athletic Footwear Addr.: 5114 Mayfield Rd, Cleveland

Reviewed Biz: Name: Hoot Owl Addr.: 4361 W Bell Rd, Phoenix
Review: This place is a really fun neighborhood bar ... Its tucked away in the Frys parking lot...
True Referent: Name: Fry’s Food and Drug Addr.: 4315 W Bell Road, Phoenix
System Prediction: Name: Frys Addr.: 2626 S 83rd Ave, Phoenix

Table 4: Examples of errors made by LinkYelp. Business mentions are underlined.

Reviewed Biz Sentence Mentioned Biz
Name: Burger King
Addr.: 1194 King St W, Toronto

When you compare it to the McDonald’s
across the street, the service is way better.

Name: McDonald’s
Addr.: 1221 King Street W, Toronto

Name: The Turf Public House
Addr.: 705 N 1st St, Phoenix

I have to say I like the atmosphere and sur-
roundings of the Turf better than Seamus.

Name: Seamus McCaffrey’s
Addr.: 18 W Monroe St, Phoenix

Table 5: Examples of comparative sentences and linked mentions.

Name City Stars #Better
Bacchanal Buffet Las Vegas 4.0 33

Wicked Spoon Las Vegas 3.5 24
Cibo Phoenix 4.5 9

Pizzeria Bianco Phoenix 4.0 2
XS Nightclub Las Vegas 4.0 8

Marquee Las Vegas 3.5 1

Table 6: Comparative study using texts and average
ratings. Each row is a pair of two frequently compared
businesses. #Better means the number of sentences that
claim the corresponding business to be better than the
other one.

In the third case, “Fry’s Food and Drug” is lo-
cated at “4315 W Bell Road, Phoenix” which is
nearer to the reviewed business “Hoot Owl” lo-
cated at “4361 W Bell Rd, Phoenix.” However,
although location information favors the correct
business, the others features may contribute more
for the system output “Frys” since “Frys” has an
exact match of the candidate mention name.

5.6 Comparative Study

In this study, we provide some insight on the pos-
sible applications of our task by checking the com-
parative sentences in Yelp reviews.

First, we find comparative sentences from the
whole Yelp review dataset with a simple pat-
tern matching method: we retrieve the sentences
that contain one of eight predefined comparison
phrases such as “is better,” “not as good as,” etc.

Then we extract the named entity mentions within
these sentences and link them to Yelp businesses.
A threshold based approach is used to detect NIL
mentions (Dalton and Dietz, 2013).

As a result, we get 12,149 comparative sen-
tences from the total 4,153,150 reviews that con-
tains at least one linked mention. Some of the re-
sults are shown in Table 5. We can successfully
identify both the entity names and their locations
on Yelp. We also selected the top three frequently
compared pairs and compare with the stars pro-
vided by Yelp dataset. From Table 6 we can see
that the text comparison is consistent with star rat-
ings.

6 Related Work

The traditional entity linking task of mapping
mentions in articles to their corresponding enti-
ties in a knowledge base has been studied exten-
sively (Shen et al., 2015; Ling et al., 2015). Vari-
ous kinds of methods have been studied, e.g., neu-
ral network models (Sun et al., 2015; He et al.,
2013), generative models (Li et al., 2013), etc.
A large group of the existing entity linking ap-
proaches are called collective approaches, which
are based on the observation that the entities men-
tioned in a same context are usually related with
each other. Thus they usually form entity linking
as an optimization problem that tries to maximizes
both local mention-entity compatibility and global
entity-entity coherence (Han et al., 2011; Nguyen
et al., 2016). LinkYelp does not consider global
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entity-entity coherence as it is not the focus of this
paper, but it can be applied to our problem too.

The prevalence of on-line social networks has
also motivated researchers to study entity linking
in such environments. (Huang et al., 2014; Shen
et al., 2013; Liu et al., 2013) proposed methods
that are specially designed for linking named en-
tities in tweets. They mainly address the problem
that tweets are usually short and informal, while
taking advantage of some of the extra information
that tweets may provide. For example, (Shen et al.,
2013) assumed that each user’s tweets have an un-
derlying interest distribution and proposed a graph
based interest propagation algorithm to rank the
entities. (Huang et al., 2014) also used meta-path
on HIN in their entity linking approach, but they
only used it to get an indication of whether two
mentions are related. Finally, although these stud-
ies focused on entity linking for tweets, they still
use entities in knowledge bases as the target.

There are a few entity linking studies that do not
link mentions to knowledge bases. (Shen et al.,
2017) proposed to link entity mentions to an HIN
such as DBLP and IMDB. However, their articles
are collected from the Internet through searching
and thus are not related to the target entities. They
also used an HIN based method, but their use is
restricted to get the relatedness between different
entities. (Lin et al., 2017) studied the entity linking
problem where the entities are included in differ-
ent lists and entities of the same type belong to the
same list. They only used this information along
with the name of each entity to perform entity link-
ing. Thus their focus is very different from ours.

7 Conclusions

In this paper, we propose a new entity linking
problem where both entity mentions and target en-
tities are in a same social media platform. To
study this problem, we first create a dataset called
Yelp-EL, and then conduct extensive experiments
and analysis on it with a learning to rank model
that takes three different types of features as input.
Through the experimental results, we find that tra-
ditional entity linking approaches may not work
so well on our problem. The two types of features
that are usually not available for traditional entity
linking tasks – social features and location features
– can both improve the performance significantly
on Yelp-EL. Our work can also motivate and en-
able a lot of downstream applications such as com-

parative analysis of location based businesses. In
the future, we plan to extract more patterns to ob-
tain more comparative sentences, so that we may
more accurately demonstrate how useful perform-
ing comparative analysis after linking the business
mentions can be.
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Abstract
Having an entity annotated corpus of the clin-
ical domain is one of the basic requirements
for detection of clinical entities using machine
learning (ML) approaches. Past researches
have shown the superiority of statistical/ML
approaches over the rule based approaches.
But in order to take full advantage of the ML
approaches, an accurately annotated corpus
becomes an essential requirement. Though
there are a few annotated corpora available ei-
ther on a small data set, or covering a nar-
rower domain (like cancer patients records, lab
reports), annotation of a large data set repre-
senting the entire clinical domain has not been
created yet. In this paper, we have described
in detail the annotation guidelines, annotation
process and our approaches in creating a CER
(clinical entity recognition) corpus of 5,160
clinical documents from forty different clin-
ical specialities. The clinical entities range
across various types such as diseases, proce-
dures, medications, medical devices and so on.
We have classified them into eleven categories
for annotation. Our annotation also reflects the
relations among the group of entities that con-
stitute larger concepts altogether.

1 Introduction
Corpus annotation is a process of adding inter-
pretive linguistic information to a corpus (Leech,
2004). In the era of increasing trend of ma-
chine learning in NLP, annotated data drives the
progress of NLP systems in many ways. Fields
of NLP like Machine Translation, Information Ex-
traction/Retrieval, Relationship Detection among
the entities, depends heavily on an annotated cor-
pus. In the past, many traditional NLP engines
have used rule based dictionary lookup methods,
with Unified Medical Language System (UMLS)
(Lindberg et al., 1993) as a base dictionary, to de-
tect clinical entities. However, these approaches

fetch very low recall, due to the fact that the dic-
tionary lookup can never capture all the lexical and
linguistic variants of a medical term, and also due
to the fact that the clinical documents depend upon
a physician’s writing style (Pathak et al., 2014).

Over the last few decades, Electronic Medi-
cal Records (EMR) have been an integral part
of health care. Most of the data consists of a
patient’s symptoms, procedures being conducted
and the medications prescribed to them. This
data is mostly available in free text form or semi-
structured form and may contain different level of
difficulties in parsing this natural text and getting
meaningful information. The extensive linguis-
tic study is not available for a clinical domain to
the extent it is for the general domain. Therefore,
ML approaches are preferred over rule based ap-
proaches in the clinical domain. So a resource of
the annotated corpus became a necessity to take
full advantage of ML approaches. In the recent
past, a few attempts have been made to anno-
tate clinical texts. One of the first such attempt
was made by (Wang, 2009) on 311 clinical notes
from an Intensive Care Unit (ICU) department of
the single hospital - Royal Prince Alfred Hospi-
tal (RPAH). However, no specific guidelines on
how that data were annotated are available. Shared
tasks like i2b2 in 2010 (Uzuner et al., 2011) (more
than 800 documents), ShARe/CLEF (Suominen
et al., 2013) (around 300 documents) in 2013 and
SemEval 2014 (Pradhan et al., 2014), 2015 (El-
hadad et al., 2015) (around 300 documents) have
contributed a lot in increasing the availability of
annotated clinical corpora. However, these cor-
pora are focused only on certain type of entities.
For example, i2b2 2010 data set has the annota-
tion of three entity types, including test, treatment
and disease.

There are other contributions to annotating clin-
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ical corpora, but depending on the purpose of the
clinical research, most of the corpora generated in
this domain are very specific to a disease or a dis-
ease category or some specialities of hospitals. For
example, (Fiszman et al., 2000) annotated chest
x-ray reports for automatic identification of acute
bacterial pneumonia; (South et al., 2009) manu-
ally annotated clinical records to identify pheno-
typic information for inflammatory bowel disease;
(Koeling et al., 2011) have annotated oncology re-
ports on ovarian cancer for symptoms; (Xia and
Yetisgen-Yildiz, 2012) have manually annotated
the corpus for three different categories - Pneu-
monia (PNA), Critical Pulmonary Infection Score
(CPIS) and critical recommendation on Radiology
and ICU Reports; Clinical E-Science Framework
(CLEF) corpus (Roberts et al., 2009) have anno-
tated various types of clinical records from a sin-
gle hospital, Royal Marsden Hospital, Oncology
Center. This corpus is restricted to diagnosis, and
only considers documents from the patients with
neoplasms, that is only a primary diagnosis code
in one of the top level sub-categories of ICD-10
Chapter II (neoplasms). As none of the above cor-
pora cover the clinical domain in entirety, we have
started building our own CER corpus.

In this paper, we demonstrate our approach of
creating the corpus, deciding on annotation guide-
lines, annotation processes, annotation error anal-
ysis and improving the annotation quality with a
corpus of 5,160 de-identified clinical documents
for 11 different entity types varying from 40 dif-
ferent domains.

2 Corpus Creation

The success of many healthcare IT applications
like computer assisted coding (CAC), clinical doc-
ument improvement (CDI), core/quality measure
monitoring are directly proportional to the accu-
racy of entity recognition and relations among the
group of entities. Our aim of creating this corpus
was to encapsulate as many entity types as possi-
ble, keeping in mind many of such future appli-
cations. We have annotated 5,160 de-identified
clinical documents for 11 different entity types
varying from 40 different domains. All the doc-
uments were de-identified using simple rule based
approaches which follow safe harbour guidelines
before any further use.

Clinical documents are very peculiar. Type of
text in the document depends heavily on work

types (like admit notes, discharge notes, opera-
tive notes, progress notes, etc.), associated med-
ical domains (cardiology, oncology, endocrinol-
ogy etc.) and varies considerably from physician
to physician. So it was very important for us to
make sure that we include as many different do-
mains, work types and physicians as we could. So
the first step towards corpus creation was to clas-
sify documents into different domains. We took
around 700,000 documents, from 119 providers
(hospitals and specialty clinics), unfortunately not
all of these documents had the information regard-
ing its domain and work type. We used a semi-
automatic way to find domain related information
and were able to classify 236,850 documents from
all the documents into 40 different domains. We
were also able to capture information regarding
sub-specialities and physician expertise for these
documents. Table 1 represents a sample domain
classification.

Domain
Docu-
-ment
Count

Sub
specialty Physician

Radiology 84635 2 16
Internal
Medicine 15751 3 56

Emergency
Medicine 12742 5 28

Cardiology 11555 6 40
Oncology 8325 4 11
Orthopedics 5480 2 19

Table 1: Domain wise classification of the documents

Work Type Document Count
Consultation Reports 18
Operative Report 20
Progress Notes 40
History and Physical 15
Discharge Summary 30
Total 123

Table 2: Sample Document selection of gastroenterol-
ogy domain

Based on this classification, our domain team
prepared a list of important domain and worktype
pairs from the whole corpus and on the basis of
document distribution over these pairs, we filtered
5,160 documents to annotate which represent 40
different domains and more than 100 worktypes.
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For example, Table 2 shows a sample selection of
gastroenterology domain.

3 Annotation Guidelines

The first step towards preparing the annotation
guideline was to decide on what has to be anno-
tated. The best resource available to make this de-
cision for the clinical domain was UMLS seman-
tic group. The UMLS classifies the bio-medical
entities into 133 semantic groups defined as Term
Unique Identifiers (TUIs). These semantic groups
are very fine-grained. We grouped multiple of
these TUIs into different bucket to come up with
11 different types of medical entities. For the pur-
pose of clinical information extraction, it is not
necessary to use this much of detail as they would
not be of much use in the clinical NLP applica-
tions, for example, clinical coding etc.

3.1 Clinical Entity Types

The clinical domain includes medical records
like consultation reports, progress notes, his-
tory and physical, discharge summary, operative
notes. These medical records comprise informa-
tion about patient’s diseases, affected anatomical
area, procedures performed to treat the condition,
devices used during the procedures and list of
medications. It mainly covers the important entity
types such as Problem, Anatomical structure, Pro-
cedure, Medical device and Medicine respectively.
Apart from such information, the medical record
also consists of the patient’s normal functions, vi-
tal signs, lab examination and status of the patient.
To cover this information, we have added other en-
tity types Body function, Body measurement, Lab-
oratory data and Finding respectively. Most of the
times, entity type like Body measurement is men-
tioned with its values and to cover these values
we have added an entity type named Measurement
value which acts like a numerical modifier to add
meaning to the entity type. Just a numerical entity
has no meaning, so it is necessary that this entity
type is always used in relation to an entity type
named Body measurement. There are some words
used in the clinical domain to add specificity to an
entity. Such type of words are mostly adjectives
and need a head word without which they have
no contextual meaning and cannot be annotated
alone. For example the word acute. The word
acute alone has no specific meaning, but when it
is relates to a head word entity like pain then it

adds meaning to the word pain. To cover such in-
formation and to maintain the entities as simple
and unique as possible, we have added an entity
type named Modifier as a separate enhancing en-
tity type. So in all, the gist of the medical record is
captured by annotating the documents in our clas-
sified entity types.

Problem: The disease conditions which in-
clude major problem, disease, symptoms and dis-
orders.

e.g.: Complication of bleeding, infection, arte-
rial puncture, DVT.

Finding: Concepts apart from major problem,
including abnormal conditions and the minor al-
teration in the regular condition.

e.g.: This is a 27-year-old female gravida 4
para 1, feeling weak and lethargic.

Procedure: Surgery or other procedures per-
formed to cure or diagnose.

e.g.: This is an 82-year-old female with the his-
tory of appendectomy, status post open reduc-
tion internal fixation.

Anatomical Structure: Anatomical sites, cells
and organs of the human body.

e.g.: The patient continued to have mild colitis
throughout into the cecum.

Body Function: Activities carried out by the
body to maintain the normal functioning.

e.g.: The patient’s breathing was normal.
Lab Data: The type of analysis performed on

blood, urine, other body substances or tissues to
help diagnose or monitor the patient’s condition.

e.g.: AFB test is negative, TSH is 1.1.
Body Measurement: The normal measurement

of the body obtained without performing a com-
plex procedure or test.

e.g.: The weight is up a couple pounds at 157
pounds, pulse is 74.

Measurement Value: Numerical value with its
unit, associated with body measurement.

e.g.: The patient’s heart rate was 90 and the BP
was 140/90.

Medical Device: Instruments used for the treat-
ment, operation and various medical purposes.

e.g.: Arterial line catheter was placed over the
guidewire without any resistance.

Medicine: A drug used for the treatment or pre-
vention of a disease.

e.g.: Completed antibiotic course of ceftriax-
one.
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Modifier: Any word that adds some specific
meaning to an Entity.

e.g.: Chronic skin excoriation due to known
neurodermatitis.

We have classified our entity types in such a
way that the meaning of the medical record is cap-
tured properly. Medical terminology is vast in na-
ture, so other entity types except the 11 mentioned
types are possible, like gene/variants, lipids, cells,
cell lines, steroids, etc. and no doubt they are im-
portant entity types, but we do not need to annotate
them separately because some of these entities can
be classified in the existing entity types and others
do not occur frequently in our medical records.

For example, an entity type like Lipid, docu-
mented only in laboratory data section is covered
by our entity type Laboratory data.

e.g.: Cholesterol levels are high.
In this example, cholesterol is an organic lipid

molecule present in the body and generally should
be labelled under entity type Lipid. But in the
medical records, it is mostly present in the form
of a laboratory test. So there is no need to create a
new entity type as it would be easily covered under
our classified entity type named Laboratory data.
We encounter such cases in our data and so entity
type like Lipid is not used and if we use, it alters
the meaning, which in this case, the system won’t
understand that it is a lab report and not an organic
lipid molecule present in the body.

Another example is an entity type like Steroid, it
is documented only in the medicine section which
is covered by our entity type Medicine.

e.g.: The patient was prescribed corticosteroids.
“Corticosteroid” is a type of steroid hormone

present in the body. But in this case, “corticos-
teroids” is a medicine which is prescribed and it
is annotated under Medicine type. We encounter
such cases in our data and entity type like Steroid
is covered by our classified Medicine type.

So we have categorized these groups into
broader categories of entity types like Problem,
Procedure etc. These categories are as mentioned
in Table 3 with relevant TUIs from UMLS.

Primary annotation guidelines were prepared by
a linguist and an experienced medical coder. Both
linguists and medical coder finalized entity types
and created its initial descriptive definition with
some complex examples. After that, both lin-
guists and coder annotated the same set of doc-
uments separately and on the basis of conflicting

Entity Type Related TUI

Problem T046,T047,T048,T049,
T050,T191,T037,T019,T184

Finding
T033,T034,T041,T084,T032,
T201,T053,T054,T069,T068,
T070,T067

Procedure T059,T060,T061,T065,T058
Medicine T200,T120,T110,T195,T131
Medical
Device

T073,T074,T075,T203,T072,
T071

Lab Data T196,T119
Anatomical
Structure

T017,T021,T023,T024,
T025,T026,T029,T030

Body
Function

T038,T039,T040,T042,
T043, T044,T045

Table 3: Entity types with their mappings to TUIs

annotations they sat together and solved the con-
flicts, then they updated the annotation guidelines
to cover these conflict patterns. During this pro-
cess, we have covered all possible domains and
their existing document types in order to cover all
the prominent entity patterns. After a few itera-
tions, a well-defined annotation guideline was pre-
pared and we started the actual annotation work.
Note that the documents annotated during this pro-
cess were not included in the corpus.

3.2 Inter-Conceptual Relationships

Relationships may exist between two or more con-
cepts. In such instances, we considered inter-
conceptual relationships between limited and fre-
quently used terminologies. Relationships are
marked only when relations occur in the same sen-
tence and less frequent relationships like Lab data
and problem, Medicine and Problem are rarely
mentioned in a single sentence and hence we do
not annotate those relations. We have not covered
some relations like medicine with its attributes
because it unnecessarily increases the complex-
ity of the annotation task and these relations are
easy to extract using finite state automata or regex
based tools like cTAKES (Savova et al., 2010,
2011). Currently, the relationships are marked
for the anatomical structure, measurement value
and modifier with their related entities. Anatom-
ical structures get related with three categories
like problem, finding and procedure; measurement
value gets related to only body measurement and
modifier gets related to all other concepts except
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measurement value.

3.2.1 Relationships with Anatomical
Structures

Anatomical structure can be related to problem,
procedure and finding. A relationship adds speci-
ficity to the concept.
Anatomical structure and problem relationship

This type of relationship helps to understand
which part of the anatomical structure is affected
by the particular problem. It simplifies the under-
standing of the problem and its area of effect.

For e.g.: she had severe pain in the left ankle.
Here pain is the problem and ankle is the

anatomical structure. A relationship can be
formed between these two concepts and it makes
it easy to understand that pain is in the ankle.
Anatomical structure and finding relationship

This relation helps to understand to which
anatomical structure is the finding related.

For e.g.: He noted he had felt some tingling and
numbness in the left upper chest area.

Here tingling is the finding and chest is the
anatomical structure. By linking these two con-
cepts in a relationship we explain that tingling is
occurring in the chest.
Anatomical structure and procedure relation-
ship

This relationship explains that the procedure is
being done at the given anatomical structure. It is
usually used to relate any operation, test, and other
such procedures to the organ or body site at which
it is being performed.

e.g.: The patient had a CT of the brain.
Here CT is a procedure named Computed To-

mography and brain is the anatomical structure.
Relating these two concepts simplifies the under-
standing that CT of the brain was performed.

3.2.2 Relationships of Measurement Values
Measurement values cannot stand alone as only
some numerical values do not provide any useful
information. So these values need to be related to
the concept where they belong to.
Body measurement and Measurement Value
relationship

Body measurement is the measurement of basic
body parameters like temperature, height, weight,
pulse rate, etc. These parameters often have values
that can be linked to the measurement in order to
provide a complete meaning.

e.g.: Pulse: 80. BP: 110/70. Respirations: 16.

Here, pulse, BP, and respiration are the body
measurements and 80, 110/70, and 16 are the mea-
surement values of these respectively. So, forming
the relationship between pulse and 80 signifies that
the pulse rate is 80 per min, and similarly for all
such concepts.

3.2.3 Relationships of Modifier
All the concepts except modifier itself and mea-
surement values can be related to the modifier to
add specific meaning to these concepts. Modifiers
can never stand alone.

So after classifying the entity types to be anno-
tated and the possible relationships between those
entity types as mentioned above, a set of definite
principles were documented. Annotators followed
these principles while annotating the data. Some
directive principles from the guideline are men-
tioned below.

3.2.4 Directive Principles
Consistency in the annotation is very important to
get the good accuracy of systems using ML ap-
proaches. Therefore, to achieve good consistency,
following simple rules were prescribed for the an-
notators:

• The entities should be annotated based on the
above given entity types and also generate re-
lationship as mentioned above.

• Modifiers and measurement values should
not be annotated without any relationship
with other entity types.

• Entities from section headers should not be
annotated.

• Adjective should be annotated as a modi-
fier only if it is not a part of an abbreviated
term instead of the selected text. For ex-
ample, in “Chronic Hypertension”, ‘Chronic’
should be annotated as Modifier and ‘Hyper-
tension’ should be annotated as Problem but
in “Chronic Obstructive Pulmonary Disease”
the whole phrase must be marked as Prob-
lem, as the phrase has a universally accepted
abbreviation COPD. We refer to the UMLS
dictionary for the abbreviated terms.

• Mark normal alternation in condition as a
finding and abnormal alteration as a problem.
i.e. “ST wave changes” is marked as a finding
while “ST wave abnormality” as a problem.
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• The entities should be annotated depending
on the meaning and the context of the sen-
tences because there might be some cases in
which the type of an entity changes based on
the sentence structure. For example: There
was an evidence of “drainage” of pus and
“drainage” was carried out. In this case, the
word drainage appears twice, in the first half
it means the pus is oozing out, so it is tagged
as an entity type finding and in the second
half it means a procedure named drainage
was carried out and so tagged under entity
type Procedure.

• There are instances where there are disjoint
entities present in the sentence which have a
relationship with other entities too. For ex-
ample “The patient suffered from chest and
abdominal pain.” In this case, the word pain
is a disjoint entity but it also has a relation-
ship with the chest. So in such cases, we
mark chest and abdominal as an anatomi-
cal structure respectively and pain as a prob-
lem and then generate a relationship between
these entities.

4 Annotation Process

There are different ways to annotate a medical
corpus, but we embarked on two pre-eminent ap-
proaches. The first approach is semi-automated
annotation, in this approach, we can choose any
pre-existing tools like MetaMap (Aronson, 2001),
for CER task and thereafter annotator uses initial
annotated results of tool to add, update or delete
annotations as required and give the final anno-
tated result. This approach definitely saves some
human efforts and takes less time to annotate,
however it is difficult to find an efficient and ac-
curate tool. In addition, there is another issue with
semi-automated annotation approach, that is, the
annotator’s decision may alter after viewing the
output of the tool for ambiguous entities. The Sec-
ond approach is to annotate the document based
on just annotation guidelines and based on anno-
tator’s medical knowledge without looking at pre-
annotated labels. As quality of annotation is more
important than quantity of annotation specifically
in medical domain, so we decided to go ahead with
second approach.

Protégé (Noy et al., 2001) is an open source
annotation and ontology editing tool. This tool
was developed by Stanford Center for Biomedi-

cal Informatics Research. It allows us to add en-
tity types with a description and assign color. Us-
ing this tool we can generate relationships between
different entity types. The tool supports plain text,
CSV and TSV format and so it is easy to load
a medical document. The annotated data can be
exported to a structured XML file format which
makes the data widely accepted, machine readable
and easy to use for any system.

Four annotators with a background in micro-
biology and biochemistry were involved in the
annotation process. The medical document con-
sists of major entities like the problem, proce-
dure, anatomical structure and lab data which the
annotators are well aware of because microbiol-
ogy and biochemistry experts have a good knowl-
edge about the anatomy and physiology as well as
information about many ailments and procedures
and laboratory tests. The queries were solved us-
ing UMLS dictionary and internal discussion with
experienced medical experts and AAPC certified
coders. The annotators are initially given a brief
introduction about the importance of annotation
and its applications and the impact of the anno-
tated data on the clinical NLP. After that, the lin-
guist and medical coders walk them through the
set of guidelines which should be followed while
annotating the corpus and present a demo of the
annotating tool so that they get a brief knowledge
of the tool. Initially, some documents were anno-
tated in front of them so they become familiar with
the process of annotation and tool. For the first
few sets of documents (one set contains 30 doc-
uments), we divided the team of annotators into
two pairs and made them annotate the same docu-
ments together. After completion of these sets, we
changed the pairs of annotators. After 3 such it-
erations, each annotator had worked with all other
annotators. This process was performed to make
sure that all the annotators have the same level of
understanding towards the task. The annotators
are instructed to keep a note of problems faced
while annotating data and discuss it with the med-
ical coders regarding the medical annotation and
with engineers regarding the technical difficulties
and the functioning of the tool. While annotating
ambiguous entity, UMLS metathesaurus was used
as a reference. However, annotators found many
inconsistencies in the UMLS. So in case of any
disagreement among the annotators, the final de-
cision about what to be annotated was taken by a
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mutual consensus arrived after a discussion with
the whole team. Note that the documents anno-
tated during this process were not included in the
corpus. After that, all the annotators were given
a distinct set of documents in which 20% of the
documents were the same between two annotators.
We chose these same documents considering the
distribution of worktypes over the corpus. These
documents were used to calculate the kappa score
(inter-annotator agreement). After annotation, the
kappa score is calculated. The errors are discussed
and solved by the annotators and then the data be-
comes useful. It took one year for the annotators to
complete this task, in which the initial one month
was spent on the training process.

4.1 Inter-annotator Agreement Calculation
Annotation is a mentally taxing task, and so an-
notators occasionally miss to annotate some of the
medical entities, especially when a document con-
tains a large number of them. The annotators are
free to mark the entities according to their med-
ical knowledge and as a result of that, some dis-
agreement arises. An inter-annotator agreement is
an important quality measure. The Cohen’s kappa
coefficient is used to estimate the agreement be-
tween the annotators. The Cohen’s kappa equation
is calculated with the following formula:

K =
po � pe

1 � pe
= 1 � 1 � po

1 � pe
(1)

where, po is the relative observed agreement
among annotators, and pe is the hypothetical prob-
ability of chance agreement, using the observed
data to calculate the probabilities of each observer
randomly saying each category. If the annotators
are in complete agreement then = 1. If there is no
agreement among the raters other than what would
be expected by chance (as given by pe), K  0
(Koeling et al., 2011). The initial kappa score was
68.01% calculated on the set of 30 documents.
The aim was to achieve good kappa score up to
95% to minimize the conception gap between the
annotators. The kappa score is obtained after each
set of annotation and the annotators are made to sit
together and review the whole document with their
own annotation results. They internally discuss
why some entities are annotated and missed or am-
biguously annotated. After discussion, they come
to a conclusion and make a note of the changes
which helps to decrease the conception gap. Using
these notes, they are clear about what to annotate

and what not to. Using structured guidelines and
proper classification of entity types and relations,
we achieved a 96.89% kappa score for the entity
and relationship annotation.

5 Corpus Statistics

Using the mentioned process, we have created
a large annotated corpus of the medical domain
for clinical entity and relationships which covers
5,160 clinical documents with 398,568 sentences.
Out of these sentences, 190,188 sentences con-
tained one or more medical entities which were
annotated as concepts in the corpus, hence con-
cept density over sentences is 47.72%. These
398,568 sentences vary in length from 1 token
to 150+ tokens as shown in Figure 3. The cor-
pus has average 9.59 tokens per sentence with to-
tal 3,825,465 tokens across the corpus. Out of
these 3,825,465 tokens, 600,550 tokens annotated
as concepts in the corpus, hence concept density
over token is 15.70%. An EMR record consists
of a gist of the patient’s conditions, procedure
and tests carried out, medications prescribed etc.
But, along with that, there is a lot of insignifi-
cant information present in the record like hospital
name and address, patient’s demographics which
are not healthcare entities. Apart from all these,
an EMR contains information documented using
definite templates and so a lot of sentence are gen-
erally not important and common in every medi-
cal record and they reflect in annotated token den-
sity. The frequency of annotation for each relation
and entity type are detailed in Figure 1 and 2 re-
spectively. There are in total 443,328 annotated
concepts in the corpus. These annotated concepts
result in an average length of 1.35 tokens per con-
cept. The highest frequency concepts are Problem,
Procedure, Medication, Anatomical Structure and
Modifier which account for 78.81% of the data.
The remaining 21.19% concepts are distributed
into 6 rare categories. For the relation annota-
tion, the corpus contains total 119,968 relations,
out of which modifier - anatomical structure cover
30,018 relations, modifier with other entity types
except anatomical structure cover 49,677 rela-
tions, anatomical structure with other entity types
except modifier cover 35,401 relations and body
measurement - measurement value cover 4,872 re-
lations.
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Figure 1: Frequencies of relation types

Figure 2: Frequencies of entity types

Figure 3: Sentence distribution over token counts

5.1 Initial Experiment with CRF

Initially, we used Conditional Random Fields
(CRF) which is a well-known and a proven ap-
proach to detect continuous entities using CRF++
(Kudo, 2010) toolkit. Feature selection is the key

task for accurate CRF model. We used feature sets
as mentioned below (Pathak et al., 2015)

• Bag of words features, prefix, suffix

• Orthographic features, binary (true/false) like
whole word capital, first char capital, nu-
meric values, dates, words contains hyphen
or slash, medical units (mg, gram, ltr, etc)

• Grammatical features like

– Parts of Speech (PoS) (Choudhary
et al., 2014), chunk, consistency parser
(Oinam et al., 2018); all developed and
designed in-house for clinical NLP

– Head of the phrases
– Stemming of the words

• Dictionary features, binary (true/false) was
used to check whether the word is present in
the medical dictionary or not.

• Stop words and word embedding id from
word2vec trained on 2 lakh clinical docu-
ments

• Section header and document type informa-
tion and sentence cluster id

Table 4 shows the initial accuracy, calculated
using the Perl script provided by the CoNLL 2000
task (Tjong Kim Sang and Buchholz, 2000), on
CRF using a BIO format with the combination of
different features on 5-fold validation. We are able
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Feature Set Precision Recall F-Measure
Token 92.32 86.00 89.05
Orthographic 92.22 86.26 89.30
POS and Chunk 91.92 87.94 89.89
Dictionary 91.91 87.43 89.61
Consistency Parse 92.04 87.32 89.62
POS-Chunk and
Orthographic 91.91 88.04 89.93

POS-Chunk and
Dictionary 91.82 88.77 90.27

POS-Chunk,
Consistency Parse
and Dictionary

91.65 88.90 90.25

Above + Stemmer,
Word Embedding
Id

92.00 90.26 91.12

All 92.12 91.05 91.58

Table 4: CER task accuracy using CRF with different
feature set

to get 91.58% f-measure with 92.12% precision
and 91.05% recall using all features. We obtained
a good performance using CRF which shows the
quality of the annotation over the definite corpus.

6 Conclusion

In the domain of clinical NLP, there is a paucity
of good and large annotated corpus. Research
shows that some amount of data has been anno-
tated according to different purposes and applica-
tions. Available annotated corpora are not found
covering the clinical domain in entirety. In this pa-
per, we have described the creation of a corpus of
the clinical domain annotated with clinical entities
and their inter-conceptual relationships. We have
manually annotated the clinical corpus comprising
of 5,160 documents, 398,568 sentences according
to the guidelines created in-house.
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Abstract

We challenge a common assumption in active
learning, that a list-based interface populated
by informative samples provides for efficient
and effective data annotation. We show how a
2D scatterplot populated with diverse and rep-
resentative samples can yield improved mod-
els given the same time budget. We consider
this for bootstrapping-based information ex-
traction, in particular named entity classifica-
tion, where human and machine jointly label
data. To enable effective data annotation in a
scatterplot, we have developed an embedding-
based bootstrapping model that learns the dis-
tributional similarity of entities through the
patterns that match them in a large data cor-
pus, while being discriminative with respect
to human-labeled and machine-promoted en-
tities. We conducted a user study to assess the
effectiveness of these different interfaces, and
analyze bootstrapping performance in terms of
human labeling accuracy, label quantity, and
labeling consensus across multiple users. Our
results suggest that supervision acquired from
the scatterplot interface, despite being noisier,
yields improvements in classification perfor-
mance compared with the list interface, due to
a larger quantity of supervision acquired.

1 Introduction

One strategy for mitigating the cost of supervised
learning in information extraction (IE) is to boot-
strap extractors with light supervision from a few
provided examples (or seeds). Most typical boot-
strapping methods (Yarowsky, 1995; Collins and
Singer, 1999; Abney, 2007; Carlson et al., 2010;
Gupta and Manning, 2014, 2015, inter alia) are it-
erative in nature, and suffer from semantic drift:
as the learning advances, the task often drifts se-
mantically into a related but different space, e.g.,
from learning women names into learning flower
names (Komachi et al., 2008; Yangarber, 2003).

In such cases, a human-in-the-loop to help guide
bootstrapping through active learning (AL) (Set-
tles, 2012) can be highly beneficial.

In this work, we challenge the common assump-
tion made for AL methods in the context of IE: a
visual interface that shows a list of samples ranked
by their informativeness to the classifier is effec-
tive for building classifiers that minimize human
annotator time (Dalvi et al., 2016; He and Grish-
man, 2015). We argue that this is an inefficient
form of acquiring supervision from humans. In-
stead, we propose a two-dimensional (2D) scat-
terplot interface (rather than the one-dimensional
(1D) list), where the examples to be annotated
are selected by their capacity to cluster together
(rather than by their informativeness to the classi-
fier). We demonstrate that our approach leads to
more data being annotated, and better overall per-
formance for the model being learned.

In particular, we focus on the task of boot-
strapped named entity classification (NEC), where
a classifier is trained to label named entities with
their corresponding category. For example, such
an algorithm starts with a few examples of labeled
names, e.g., “Barack Obama” as PERSON, from
which it learns representative patterns, e.g., the
pattern “@ENTITY , former president”,
which are then used to label other names in fu-
ture iterations. Unlike traditional bootstrapping,
our approach receives supervision in two ways:
from the seed examples (as shown above), but also
from human labels through an active learning step
that is inserted after each bootstrapping iteration.
To facilitate the clustering of examples in the an-
notation interface, we propose a semi-supervised
NEC approach that learns custom embeddings for
the entities being classified (§4). We select entities
that are diverse and representative of the embed-
ding’s data distribution, and project them into a 2D
visual encoding of the data via a scatterplot using
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dimensionality reduction (§5).
The resulting scatterplot interface enables the

user to label a larger quantity of entities, at the ex-
pense of label noise from mixed-category clusters
and a potentially less-informative sampling crite-
rion. To better understand this space, we con-
ducted a user study to compare the effectiveness
of the scatterplot interface compared to the tradi-
tional list that contains examples selected by infor-
mativeness (§7). Through our study, we arrive at
the following takeaways:

• We observe that in configurations that used
the scatterplot interface, annotators indeed la-
beled considerably more examples, but at an
accuracy slightly lower than in the list inter-
face. Despite the lower accuracy, the scat-
terplot interface generally yields better clas-
sifiers. In other words, the volume of anno-
tations matters just as much as quality for the
classifier performance.

• We find that a consensus model of users
can mitigate noise, but must preserve a cer-
tain quantity of annotated data. A consen-
sus model for the list interface that con-
servatively estimates labels reduces perfor-
mance despite highly accurate labels due to
the small amount of annotations. In con-
trast, the same model for the scatterplot inter-
face yields higher label noise, but more an-
notations within the same budget of time and
gives the best performance.

2 Related Work

Information extraction (IE) techniques commonly
assume that the human supervision comes in the
form of knowledge bases of facts disconnected
from supporting text, as in the case of distant
supervision (Mintz et al., 2009), or provides a
light amount of supervision up front, as in the
case of bootstrapping (Angeli et al., 2015). Com-
mon techniques for bootstrapping are to use rules
for incrementally classifying entities (Collins and
Singer, 1999) or to use syntactic (He and Grish-
man, 2015) and semantic (Gupta and Manning,
2014, 2015) contextual features. However, such
approaches suffer from semantic drift, as previ-
ously discussed.

Considering a human-in-the-loop for IE has the
potential to mitigate drift and greatly benefit per-
formance, yet the challenge lies in minimizing hu-

man effort. The work of Angeli et al. (2014) show
how to use active learning to improve distantly su-
pervised relation extraction techniques (Surdeanu
et al., 2012) through humans labeling informative
relations. Werling et al. (2015) use Bayesian deci-
sion theory to minimize human cost and maximize
accuracy for named entity recognition. For certain
IE tasks, however, human supervision can be very
noisy and thus counterproductive, especially from
crowds, thus previous work has shown the impor-
tance of how to pose tasks for humans in provid-
ing labels (Liu et al., 2016), as well as automati-
cally distinguishing simple labeling tasks from ex-
pert tasks in crowd-based task assignments (Wang
et al., 2017). Our work shares a similar view of hu-
man supervision for IE, yet we instead study the
impact of the annotation interface on the overall
performance.

The role of the human-in-the-loop for topic
modeling has also been extensively explored. For
instance Smith et al. (2018) consider the types of
modifications that one can provide to a built topic
model (Hu et al., 2014) to make the topics more
meaningful, while also studying the downstream
human factor implications. Furthermore, prior
work has also considered how different visual rep-
resentations of topics impact a human’s under-
standing of topic semantics (Smith et al., 2017).
Closely related is the technique of Poursabzi-
Sangdeh et al. (2016), where they highlight how
different visual representations can have an impact
on the effectiveness and efficiency of human label-
ing for document classification, comparing stan-
dard list interfaces with topic-grouped lists. Our
method instead considers how 2D scatterplot in-
terfaces, via embedding-based techniques, capture
semantics for the purposes of providing labels in
an IE task.

The visual analytics community has also inves-
tigated the role of visual interfaces and interaction
tools for annotating data in supervised learning.
For instance Heimerl et al. (2012) enable interac-
tive labeling for document classification by visual-
izing unlabeled documents based on classifier un-
certainty and document diversity. The technique
of Höferlin et al. (2012) jointly visualizes unla-
beled data and the classifier model, and allows the
user to both label data points and directly modify
model parameters. Closely related to our method
is the work of Bernard et al. (2018) which com-
pares active learning, via list interfaces, with in-
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Figure 1: We show the workflow of our study (left): (S1) the Information Extraction model first auto-
matically labels entities and updates its parameters, (S2) the human then labels entities through a given
visual interface, and (S3) the model is updated based on the provided set of human labels. We study the
effectiveness of two different interfaces (right): a list, and a 2D scatterplot of entities.

teractive visual labeling. However, their method is
focused on acquiring labels solely from humans,
whereas our method studies the interplay between
self-labeling and human labels in a visualization
context.

3 Human-Machine Workflow for
Bootstrapping

We first describe the general workflow on which
our study is based. We consider bootstrapping
where both the human and the machine label enti-
ties in tandem, following the setup described in Fu
and Grishman (2013) . More specifically, we con-
sider the following iterative process (c.f. Fig. 1):

• (S1) The model automatically classifies enti-
ties, adds them as labeled data, and updates
its parameters, as detailed in §4.

• (S2) The human interacts with a visual inter-
face, driven by the model and the current set
of labeled and unlabeled entities. The result
of this step is a set of entities labeled by the
human. We define this step a round of label-
ing, or just round.

• (S3) The model then updates its parameters
given the human-labeled entities.

In contrast with typical bootstrapping, which inter-
leaves entity promotion with model updates, here
the human has the opportunity to label data. The
intent is to guide bootstrapping: human annota-
tions should steer bootstrapping towards learning
the proper concepts, and away from semantic drift.

Yet, in this process we would like to minimize
human effort while maximizing bootstrapping per-
formance, where we define effort as the total time
spent annotating data. In particular, the primary
focus of our study is on step (S2), and how the
user’s interactions with the interface impacts these
considerations. We consider two different types
of interfaces for this purpose, shown on the right
side of Fig. 1: list interfaces, and scatterplot inter-
faces. In particular, both interfaces utilize the state
of the model to decide on what to show to the user.
In the case of the list-based interface, we perform
uncertainty sampling with respect to the model, as
a way to maximize the information obtained from
the user. For the scatterplot interface, the user in-
teracts with a subset of diverse and representative
entities through a 2D projection. Here we wish
to see if more efficient groupwise labeling of per-
ceived clusters in the scatterplot results in a more
efficient and effective labeling process.

Of course, a critical piece to our study is the
bootstrapping model itself. There exists a large
body of work in bootstrapping, as previously dis-
cussed, and one possibility is to use an existing
technique for our work. For our learning scenario,
a bootstrapping technique should satisfy several
criteria:

• Be efficient to update, in order to minimize
user latency with the interface;

• Incorporate user supervision to ensure a dis-
criminative representation;

• Be suitable for visual exploration.

2045



Please note that traditional bootstrapping tech-
niques such as rule-based methods (Collins and
Singer, 1999) fail to meet all criteria. In partic-
ular, they are not suitable for visual exploration
because there is no clear way to represent the se-
mantic proximity of rules or of the concepts be-
ing learned. We next describe how to address
these challenges through embedding-based boot-
strapping.

4 Embedding-Based Bootstrapping

Our bootstrapping technique is based on neural
language models (Mikolov et al., 2013), in par-
ticular, semi-supervised embedding-based boot-
strapping techniques (Valenzuela-Escárcega et al.,
2018). Unlike other word embedding algorithms,
our approach measures distributional similarity of
entities (rather than words) with respect to pat-
terns (rather than context words). We define a
pattern as a small sequence of words that sur-
round an entity, up to ±4 words to the left/right
of the entity under consideration. For instance, in
the phrases “John said on Saturday” and ”John
told reporters” the patterns ”said on Saturday”
and “told reporters” are suggestive of the category
Person for entity John.1 We observe that enti-
ties of a given category, e.g. Person, are likely to
have common pattern distributions. This observa-
tion drives our method for learning entity and pat-
tern embeddings. Furthermore, as we will see, this
method permits efficient updates, and it is suitable
for visualization due to the geometric representa-
tion of entities and patterns.

More specifically, assume that we have ex-
tracted a set of entities E and patterns P in a given
text corpus C. We associate each entity e 2 E
and pattern p 2 P with embeddings xe and xp,
respectively, with xe,xp 2 R

d. To satisfy the
above form of distributional similarity, we utilize
the Skip Gram model (Mikolov et al., 2013) and
seek entity embeddings to be close to their embed-
dings of observed patterns through maximizing:

SG =
X

(e,p)2Cp

[log(�(x>
e xp))+

X

n2N

log(�(�x>
e xn))],

(1)
where (e, p) corresponds to an entity-pattern oc-
currence from the corpus set Cp, n represents a
negative pattern, sampled from the unigram dis-
tribution of all patterns N (Levy and Goldberg,

1In this work we use surface patterns, but the proposed
algorithm is agnostic to the types of patterns used.

2014) 2, and � is the sigmoid function. Intuitively,
this forces an entity’s embedding to be similar to
embeddings of its matched patterns from the cor-
pus, and dissimilar to random pattern embeddings.

A disadvantage with the Skip Gram model is
that it might fail to be discriminative, since it does
not utilize category labels. Thus, we introduce
an objective term that seeks to bring entities that
belong to the same category to have similar em-
beddings, and entities that belong to different cat-
egories to be far apart in their embeddings. We re-
alize this using large-margin metric learning (Cui
et al., 2016; Sohn, 2016), minimizing:

LM =
X

(a,b,c)2El

bs(xa,xc) � s(xa,xb) + Mc+, (2)

where (a, b, c) represents a triplet of entities, such
that a and b belong to the same category, while c
belongs to a different category, and the function
s is the cosine similarity between entity embed-
dings. The set El is a subset of entities from E that
have been assigned categories so far, as provided
by the bootstrapper (S1) or the human (S2). Intu-
itively, entities from dissimilar categories should
be positioned in the embedding space such that
their cosine similarity is at least a margin M from
any pair of entities of the same category.

We combine the Skip Gram objective with the
metric learning objective to obtain:

B = LM � SG. (3)

The objective B can be viewed as a form of semi-
supervised representation learning, where from a
sparse set of labeled entities, we wish to learn
entity representations that are similar should they
have patterns in common (SG), while simultane-
ously ensuring that embeddings are discriminative
with respect to categories (LM ). Step (S3) min-
imizes this objective at every round of bootstrap-
ping via stochastic gradient descent, given the cur-
rent set of labeled entities El.

4.1 Promoting Entities
We use the learned embedding to automatically
promote unlabeled entities to categories, as dis-
cussed in step (S1). We use the normalized entity
embeddings as features, and build a multinomial

2In initial ablation studies, we found that this strategy was
about as effective as negative sampling from all patterns, but
significantly faster, which is necessary for interactivity.
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Figure 2: We study two different interfaces for humans to label entities, a list interface (a) and a 2D
scatterplot interface (b). In both, the user selects entities in the main view (I), based on an assigned
category (II), wherein we also show the total amount of labels the user, and the machine, has thus far
labeled. In (III) we show the current status of training/labeling, and the option to initiate/stop training.

logistic regression model over the given set of la-
beled entities, trained to predict entity categories.
For each category, we then promote the most con-
fident entities to the category. To compute confi-
dence, we treat the model’s predictions as category
probabilities, take the entropy over this distribu-
tion as a measure of unconfidence, and promote
entities with the lowest entropy.

5 Supervision Interfaces

We now turn to the visual interface through which
humans provide supervision (step S2). We distin-
guish the interfaces by how entities are sampled,
presented to the user, and each interface’s set of
interactions for labeling.

5.1 List Interface
Sampling. We sample entities through sorting
them by confidence, as defined in §4.1, and sam-
ple the most unconfident entities. This form of
uncertainty sampling is common in list-based in-
terfaces (Angeli et al., 2014; Poursabzi-Sangdeh
et al., 2016), as a measure of informativeness for
updating the model (Settles, 2012).

Presentation. We next show the 15 most un-
certain entities in a 1D list-based visual interface
(Fig. 2a (I)).

Interactions. The user labels entities by first
selecting their desired category (Fig. 2a (II)), fol-
lowed by clicking on the entity in the main display.
We also allow the user to select multiple entities at

once, for a given category. As the user labels enti-
ties, we repopulate the display with the next set of
most unconfident entities.

5.2 Scatterplot Interface

Sampling. For the scatterplot interface, we aim to
sample entities that are beneficial for the model,
while also ensuring the user can efficiently label
entities through groupwise selection. Uncertainty
sampling, though potentially informative, can lead
to projections that are challenging for the user in
performing groupwise labeling, as we experimen-
tally verified that entities with high classification
uncertainty are unlikely to group together. To ad-
dress this, we sample entities based on how they
are distributed in the embedding space, to pro-
vide us a diverse and representative sampling (Xu
et al., 2007). More specifically, we first perform
k-means on the entities’ normalized embeddings,
with k = 40, and sample across clusters to give di-
versity. To ensure a representative sampling, ker-
nel density estimation is performed within each
cluster’s entities, and the entity with highest den-
sity, along with its nearest neighbors in the embed-
ding space, are selected. The number of neighbors
sampled in each cluster is proportional to the clus-
ter size, to ensure balance across clusters.

Presentation. We next perform a 2D projec-
tion of 500 sampled entities using t-SNE (Maaten
and Hinton, 2008), visually encoding each entity
by a filled circle (Fig. 2b (I)). To provide context
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with respect to entities labeled by the human or
machine, we jointly project the unlabeled sampled
entities, and a subset of the entities previously la-
beled (drawn as triangles), either by the human an-
notator or promoted with high-confidence by the
machine.

Interactions. The user labels entities by first
selecting a category (Fig. 2b (II)), followed by
using a circular brush to label groups of entities.
The user can adjust the brush’s radius, as well as
change the view through panning and zooming.
We dynamically filter the text labels for entities
based on the zoom level to reduce clutter, thus
the user can observe a high-level overview of the
space of entities when zoomed out, and observe
more details upon zooming in. This gives the an-
notator the chance to perform groupwise annota-
tions by jointly considering cluster structure and a
sparse set of text labels from the cluster, and label-
ing all entities at once should the annotator decide
the group of entities belongs to a single category.

5.3 Training

Common to both interfaces, user interactions are
interleaved with model updates. During training,
the list interface is refreshed with the top 15 most
informative samples every 3 training epochs, or
passes over the data, while for the scatterplot the
samples and their 2D positions are updated. To
ensure temporal coherence for those entities that
persist between updates, we employ dynamic t-
SNE (Rauber et al., 2016). The user can opt to
stop training if they observe little change occur-
ring between snapshots (Fig. 2 (III)).

6 User Study

We conducted a user study to investigate the effec-
tiveness of the different interfaces. We recruited
10 participants for our study: the median age
was 22, the minimum and maximum respectively
19 and 41, 5 participants self-reported as being
“somewhat knowledgeable” of machine learning,
4 with ”no knowledge”, and 1 identifying as an
“expert”. We used a within-subject design, where
the first interface presented to the participant was
selected at random to mitigate potential priming
effects. For each interface, a set of instructions
was first presented, followed by a brief tutorial
where the user must label a small set of seed enti-
ties – 10 per category. These seed entities, labeled
with ground truth rather than user labels, initialize

the bootstrapping model, so that participants start
off with identical embeddings. After the instruc-
tions, the participant then performs 10 rounds of
labeling, where they may label entities for up to
1 minute per round. After each round of labeling,
the bootstrapper promotes 10 entities to each cate-
gory, and then performs 30 epochs of training.

Dataset. We use the Ontonotes
dataset (Weischedel et al., 2013), limited to
the 4 categories that have the most frequently
mentioned entities, in order to make the labeling
task manageable, yet still nontrivial, for par-
ticipants. These categories are people (PER),
organizations (ORG), geopolitical entities (GPE),
and nationalities as well as religious/political
affiliations (AFF), resulting in 6,567, 6,199,
1,617, and 422 entities per category, respectively.

Bootstrapping Details. It is critical to ensure
that bootstrapping training minimizes user latency,
while not sacrificing performance (c.f. Eq. 3). To
strike this balance, we set the number of nega-
tive patterns sampled for each entity to 10 (Levy
and Goldberg, 2014), the embedding dimension d
to 100, perform hard negative triplet mining (Cui
et al., 2016) to form the loss on triplets likely
to violate the margin, and set the margin M to
0.4. Experimentally, we found these settings al-
lowed training to converge to a good solution after
30 training epochs, and that each epoch took no
longer than 1 second on average.

7 Results

We analyze the results in terms of three forms of
evaluation: bootstrapping performance, as deter-
mined by the entities promoted during the course
of the user study, extrapolation, wherein we let
bootstrapping proceed to promote entities after the
joint human-machine labeling has completed, and
consensus, where we combine the set of entities
annotated by participants within the different in-
terfaces. We also analyze a typical user’s labeling,
and corresponding machine performance.

7.1 Bootstrapping Performance

We first look at the effectiveness of promoted en-
tities during the course of each participant’s inter-
actions. Fig. 3(a) shows bootstrapping accuracy
averaged over all users for the list and scatter-
plot. We also compare to a baseline of traditional
bootstrapping, where no human labels are consid-
ered, averaged over 10 trials. Note this is simi-
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Figure 3: Performance averaged over all users for
bootstrapping during user study (a) and extrapo-
lation (b), for both interfaces and a baseline that
does not use human labels. The green, orange, and
purple plots are scatterplot, list, and baseline, re-
spectively.

scatterplot list baseline
bootstrapping 88.8 87.2 85.1
extrapolation 84.7 83.5 78.6

Table 1: We show performance in terms of recall,
computed per-category and averaged across cate-
gories, for the baseline, list and scatterplot inter-
faces. This is shown for the last round of boot-
strapping (c.f. Fig. 3a) and extrapolation (c.f.
Fig. 3b).

lar to Valenzuela-Escárcega et al. (2018), which
demonstrates improved performance across a set
of bootstrapping techniques, and thus represents
a competitive baseline. We find that the perfor-
mance of both interfaces outperform this baseline,
and that the scatterplot outperforms the list: a two-
sample Welch’s t-test concludes statistical signifi-
cance (p=0.05), as well as for a paired t-test mea-
sured within participants (p=0.03). In Table 1 we
also show recall, computed per-category and av-
eraged over categories, at the last round of boot-
strapping and similarly find the scatterplot outper-
forms the list.

Better insight between the interfaces can be
gained by looking at individual user performance.
Fig. 4(a) shows a plot of each participant’s perfor-
mance (y-axis) for both interfaces, as a function of
their labeling accuracy (x-axis) and the total num-
ber of labels provided (size of each circle). Note
that the 3 best-performing models come from the
scatterplot interface, even at the expense of a lower
labeling accuracy. This suggests that the number
of labels can counter the noise in labeling, com-
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Figure 4: Bootstrapping performance for user
study (a), and extrapolation (b) for individual par-
ticipants, evaluated at throughputs (number of en-
tities promoted) of 400 and 800, respectively.
Each circle is a participant whose color indicates
the interface (green, orange, and purple are scat-
terplot, list, and baseline, respectively); x-axis is
participant labeling accuracy; y-axis is machine
accuracy; and circle size encodes the number of
annotated labels (large circle indicates large num-
ber of annotated labels).

pared to a list where we may have potentially more
informative entities labeled more accurately, but
much fewer entities annotated.

7.2 Extrapolation

We next look at how bootstrapping continues to
learn, when starting from all of the annotations
provided by the corresponding human annotator as
well as the entities promoted by the machine. We
term this configuration extrapolation. This analy-
sis indirectly measures how much noise crept into
the available annotations, by measuring the perfor-
mance of the classifier trained on this data.

We repeated this experiment over 10 different
trials, promoting 10 entities per category in each
round, and take the average accuracy, see Fig. 3(b)
for the performance averaged over all users for
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Figure 5: Labeling accuracy and bootstrapping performance for a typical participant. In (a) we show
per-category annotations, where the x-axis is the round number and y-axis is the number of entities
labeled. Colors of higher lightness indicate mislabeled entities. For example, approximately 40% of the
user’s annotations in round 2 for ORG in the scatterplot were incorrect. In (b) we show the difference
in bootstrapping performance between the scatterplot and list interfaces. For instance, scatterplot yields
a model 5% more accurate than list for GPE in round 10. Note the correlation between human labeling
(left) and bootstrapping performance (right), highlighted by the arrows.

the interfaces, as well as the aforementioned base-
line. Observe that the baseline performs progres-
sively worse as a function of throughput, indicat-
ing that labels provided by the human annotators
help to prevent drift. We also find the results to
be stronger compared with §7.1; namely, a two-
sample Welch’s t-test concludes statistical signif-
icance (p=0.002) and similarly for a paired t-test
within participants (p=0.007). The recall perfor-
mance in Table 1 also confirms the performance
gains of the scatterplot. Supporting these results,
Fig. 4(b) shows that the scatterplot interface for
users that labeled a large amount of entities gener-
ally outperform those where fewer entities were
labeled. This experiment suggests that the best
strategy to control for semantic drift is to aim for
an interface that yields many annotations at rea-
sonable accuracy, rather than few, higher-quality
ones.

7.3 Individual User Labeling

We show labeling accuracy and bootstrapping ac-
curacy for a participant that has similar perfor-
mance to the average (c.f. Fig. 3(a)). In Fig. 5(a)
we show the number of entities labeled across cat-
egories, where bars of higher color lightness en-
code the number of incorrect labels, and in (b) we
plot the difference in bootstrapping performance
between the scatterplot and the list. We observe
that the class imbalance of the Ontonotes dataset
tends to manifest in labeling as well, where ORG
and PER are typically labeled the most. We also

see a correlation between accurate human labeling
and bootstrapping performance (e.g. the arrows
pointing at GPE and ORG for rounds 7 and 8, re-
spectively). This highlights an advantage of ex-
ploratory visual interfaces for labeling, such as a
scatterplot, where the user can search for clusters
of a particular category, e.g., in the case of GPE
there may not exist many entities of this type in
the list interface.

7.4 Consensus

Given the noise inherent in a single user’s annota-
tions, we last analyze whether techniques to com-
bine labels across a set of users can help reduce
label noise and improve performance. To this end,
for the scatterplot and list interface we combine
all annotations, and consider two different types of
consensus methods: 1) Union: we take the union
of all annotated entities, choosing an entity’s la-
bel at random during conflicts; and 2) Majority
Vote (MV): for conflicting entities we select the
most voted category across users, discarding enti-
ties that have only been annotated once or have ties
across users. We then seed bootstrapping with the
resulting set of labels, run 20 rounds of promotion,
and take the average performance of 10 trials.

Fig. 6(a-b) compares each method across the
different interfaces, while Table 2 shows accuracy
and total number of labels for the consensus meth-
ods. We also include performance, labeling ac-
curacy, and label totals averaged across individual
users, where for each user we seed bootstrapping
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Figure 6: Accuracy of different consensus meth-
ods, compared across the two interfaces, as well
as average performance across individual users.

with their full set of annotations. For Union, we
observe that despite the large number of labels,
the scatterplot performance is comparable to av-
erage individual performance, suggesting that in
this case, the volume of labels does not counter
the noise in the data. For the list, we can see
a gain in performance, which is likely attributed
to the cleaner annotations from participants. For
MV, however, we find that the scatterplot per-
forms the best, whereas the list performs worse
compared with its Union counterpart, now hav-
ing approximately 3x less labels. This emphasizes
the interplay between accuracy and label quantity,
even despite the more informative labels provided
through the list interface, and supports our previ-
ous observation that balancing the volume of an-
notations with their quality yields the best annota-
tion strategy.

8 Discussion

We acknowledge some limitations in our tech-
nique and user study. A drawback to our sam-
pling scheme for the scatterplot is that it does not
utilize classifier informativeness. In initial exper-
iments, we found that uncertainty sampling led to
2D projections that were challenging to groupwise
label. This result is intuitive: data points classified
with lowest confidence will naturally have low-
quality embeddings, yielding poor clusters. Thus
we can not perform a consistent comparison of the
same sampling criterion used between the inter-
faces. For future work we will investigate active
learning techniques that are relevant to the learn-
ing task, while still permitting efficient labeling.

In this work we restricted our study to entity
classification, one of many types of IE tasks. Our
approach should generalize to other IE tasks, how-
ever, provided these tasks exhibit certain struc-

Interface Union MV Ave. User
Acc Total Acc Total Acc Total

List 82.7 1463 95.4 543 85.1 217
Scatterplot 77.6 3503 92.5 1959 82.3 788

Table 2: Consensus accuracies and label amounts
across the interfaces. The last column is average
user accuracy and label amount.

ture. Specifically, user annotations in a task should
amount to labeling of data instances, and the data
instances defined by the task should be able to
be perceived in a 2D scatterplot. For instance,
coreference resolution and relationship extraction
fit both criteria. Assessing the effectiveness of vi-
sual supervision for these tasks is outside of the
scope of this paper, however, and we will consider
these studies in future work.

Overall, our user study clearly highlights the
importance of visual interfaces in acquiring su-
pervision for semi-supervised information extrac-
tion. We demonstrated that, when compared to the
traditional list interface, the scatterplot allows a
larger volume of annotations to be created at rea-
sonable accuracy, yielding better classifiers. We
believe this finding will influence active learning,
in terms of sampling criteria and the interplay be-
tween AL and visual interfaces.
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Abstract

Recent advances in deep neural models allow
us to build reliable named entity recognition
(NER) systems without handcrafting features.
However, such methods require large amounts
of manually-labeled training data. There have
been efforts on replacing human annotations
with distant supervision (in conjunction with
external dictionaries), but the generated noisy
labels pose significant challenges on learning
effective neural models. Here we propose
two neural models to suit noisy distant super-
vision from the dictionary. First, under the
traditional sequence labeling framework, we
propose a revised fuzzy CRF layer to handle
tokens with multiple possible labels. After
identifying the nature of noisy labels in dis-
tant supervision, we go beyond the traditional
framework and propose a novel, more effec-
tive neural model AutoNER with a new Tie
or Break scheme. In addition, we dis-
cuss how to refine distant supervision for bet-
ter NER performance. Extensive experiments
on three benchmark datasets demonstrate that
AutoNER achieves the best performance when
only using dictionaries with no additional hu-
man effort, and delivers competitive results
with state-of-the-art supervised benchmarks.

1 Introduction

Recently, extensive efforts have been made on
building reliable named entity recognition (NER)
models without handcrafting features (Liu et al.,
2018; Ma and Hovy, 2016; Lample et al.,
2016). However, most existing methods require
large amounts of manually annotated sentences
for training supervised models (e.g., neural se-
quence models) (Liu et al., 2018; Ma and Hovy,
2016; Lample et al., 2016; Finkel et al., 2005).
This is particularly challenging in specific do-

⇤Equal contribution.

mains, where domain-expert annotation is expen-
sive and/or slow to obtain.

To alleviate human effort, distant supervision
has been applied to automatically generate labeled
data, and has gained successes in various natural
language processing tasks, including phrase min-
ing (Shang et al., 2018), entity recognition (Ren
et al., 2015; Fries et al., 2017; He, 2017), aspect
term extraction (Giannakopoulos et al., 2017), and
relation extraction (Mintz et al., 2009). Mean-
while, open knowledge bases (or dictionaries) are
becoming increasingly popular, such as WikiData
and YAGO in the general domain, as well as
MeSH and CTD in the biomedical domain. The
existence of such dictionaries makes it possible
to generate training data for NER at a large scale
without additional human effort.

Existing distantly supervised NER models usu-
ally tackle the entity span detection problem by
heuristic matching rules, such as POS tag-based
regular expressions (Ren et al., 2015; Fries et al.,
2017) and exact string matching (Giannakopou-
los et al., 2017; He, 2017). In these models,
every unmatched token will be tagged as non-
entity. However, as most existing dictionaries have
limited coverage on entities, simply ignoring un-
matched tokens may introduce false-negative la-
bels (e.g., “prostaglandin synthesis” in Fig. 1).
Therefore, we propose to extract high-quality out-
of-dictionary phrases from the corpus, and mark
them as potential entities with a special “un-
known” type. Moreover, every entity span in a
sentence can be tagged with multiple types, since
two entities of different types may share the same
surface name in the dictionary. To address these
challenges, we propose and compare two neural
architectures with customized tagging schemes.

We start with adjusting models under the tra-
ditional sequence labeling framework. Typically,
NER models are built upon conditional random
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fields (CRF) with the IOB or IOBES tagging
scheme (Liu et al., 2018; Ma and Hovy, 2016;
Lample et al., 2016; Ratinov and Roth, 2009;
Finkel et al., 2005). However, such design can-
not deal with multi-label tokens. Therefore, we
customize the conventional CRF layer in LSTM-
CRF (Lample et al., 2016) into a Fuzzy CRF layer,
which allows each token to have multiple labels
without sacrificing computing efficiency.

To adapt to imperfect labels generated by dis-
tant supervision, we go beyond the traditional se-
quence labeling framework and propose a new
prediction model. Specifically, instead of predict-
ing the label of each single token, we propose to
predict whether two adjacent tokens are tied in the
same entity mention or not (i.e., broken). The key
motivation is that, even the boundaries of an en-
tity mention are mismatched by distant supervi-
sion, most of its inner ties are not affected, and
thus more robust to noise. Therefore, we design
a new Tie or Break tagging scheme to bet-
ter exploit the noisy distant supervision. Accord-
ingly, we design a novel neural architecture that
first forms all possible entity spans by detecting
such ties, then identifies the entity type for each
span. The new scheme and neural architecture
form our new model, AutoNER, which proves to
work better than the Fuzzy CRF model in our ex-
periments.

We summarize our major contributions as

• We propose AutoNER, a novel neural model
with the new Tie or Break scheme for the
distantly supervised NER task.

• We revise the traditional NER model to the
Fuzzy-LSTM-CRF model, which serves as a
strong distantly supervised baseline.

• We explore to refine distant supervision for bet-
ter NER performance, such as incorporating
high-quality phrases to reduce false-negative la-
bels, and conduct ablation experiments to verify
the effectiveness.

• Experiments on three benchmark datasets
demonstrate that AutoNER achieves the best
performance when only using dictionaries with
no additional human effort and is even compet-
itive with the supervised benchmarks.

We release all code and data for future studies1.
Related open tools can serve as the NER module

1 https://github.com/shangjingbo1226/
AutoNER

of various domain-specific systems in a plug-in-
and-play manner.

2 Overview

Our goal, in this paper, is to learn a named entity
tagger using, and only using dictionaries. Each
dictionary entry consists of 1) the surface names
of the entity, including a canonical name and a list
of synonyms; and 2) the entity type. Considering
the limited coverage of dictionaries, we extend ex-
isting dictionaries by adding high-quality phrases
as potential entities with unknown type. More de-
tails on refining distant supervision for better NER
performance will be presented in Sec. 4.

Given a raw corpus and a dictionary, we first
generate entity labels (including unknown la-
bels) by exact string matching, where conflicted
matches are resolved by maximizing the total
number of matched tokens (Etzioni et al., 2005;
Hanisch et al., 2005; Lin et al., 2012; He, 2017).

Based on the result of dictionary matching, each
token falls into one of three categories: 1) it be-
longs to an entity mention with one or more known
types; 2) it belongs to an entity mention with un-
known type; and 3) It is marked as non-entity.

Accordingly, we design and explore two neu-
ral models, Fuzzy-LSTM-CRF with the modified
IOBES scheme and AutoNER with the Tie or
Break scheme, to learn named entity taggers
based on such labels with unknown and multiple
types. We will discuss the details in Sec. 3.

3 Neural Models

In this section, we introduce two prediction mod-
els for the distantly supervised NER task, one un-
der the traditional sequence labeling framework
and another with a new labeling scheme.

3.1 Fuzzy-LSTM-CRF with Modified IOBES
State-of-the-art named entity taggers follow the
sequence labeling framework using IOB or
IOBES scheme (Ratinov and Roth, 2009), thus
requiring a conditional random field (CRF) layer
to capture the dependency between labels. How-
ever, both the original scheme and the conven-
tional CRF layer cannot handle multi-typed or
unknown-typed tokens. Therefore, we propose the
modified IOBES scheme and Fuzzy CRF layer ac-
cordingly, as illustrated in Figure 1.
Modified IOBES. We define the labels accord-
ing to the three token categories. 1) For a token
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Figure 1: The illustration of the Fuzzy CRF layer with modified IOBES tagging scheme. The named entity types
are {Chemical, Disease}. “indomethacin” is a matched Chemical entity and “prostaglandin synthesis” is an
unknown-typed high-quality phrase. Paths from Start to Endmarked as purple form all possible label sequences
given the distant supervision.

marked as one or more types, it is labeled with all
these types and one of {I, B, E, S} according to
its positions in the matched entity mention. 2) For
a token with unknown type, all five {I, O, B, E, S}
tags are possible. Meanwhile, all available types
are assigned. For example, when there are only
two available types (e.g., Chemical and Disease),
it has nine (i.e., 4 ⇥ 2 + 1) possible labels in total.
3) For a token that is annotated as non-entity, it is
labeled as O.

As demonstrated in Fig. 1, based on the dic-
tionary matching results, “indomethacin” is a
singleton Chemical entity and “prostaglandin
synthesis” is an unknown-typed high-quality
phrase. Therefore, “indomethacin” is labeled
as S-Chemical, while both “prostaglandin”
and “synthesis” are labeled as O, B-Disease,
I-Disease, . . ., and S-Chemical because
the available entity types are {Chemical,
Disease}. The non-entity tokens, such as
“Thus” and “by”, are labeled as O.

Fuzzy-LSTM-CRF. We revise the LSTM-CRF
model (Lample et al., 2016) to the Fuzzy-LSTM-
CRF model to support the modified IOBES labels.

Given a word sequence (X1, X2, . . . , Xn),
it is first passed through a word-level BiL-
STM (Hochreiter and Schmidhuber, 1997) (i.e.,
forward and backward LSTMs). After concatenat-
ing the representations from both directions, the
model makes independent tagging decisions for
each output label. In this step, the model estimates
the score Pi,yj for the word Xi being the label yj .

We follow previous works (Liu et al., 2018; Ma
and Hovy, 2016; Lample et al., 2016) to define the
score of the predicted sequence, the score of the
predicted sequence (y1, y2, . . . , yn) is defined as:

s(X, y) =
nX

i=0

�yi,yi+1 +
nX

i=1

Pi,yi (1)

where, �yi,yi+1 is the transition probability from a
label yi to its next label yi+1. � is a (k + 2) ⇥
(k + 2) matrix, where k is the number of distinct
labels. Two additional labels start and end are
used (only used in the CRF layer) to represent the
beginning and end of a sequence, respectively.

The conventional CRF layer maximizes the
probability of the only valid label sequence. How-
ever, in the modified IOBES scheme, one sentence
may have multiple valid label sequences, as shown
in Fig. 1. Therefore, we extend the conventional
CRF layer to a fuzzy CRF model. Instead, it max-
imizes the total probability of all possible label se-
quences by enumerating both the IOBES tags and
all matched entity types. Mathematically, we de-
fine the optimization goal as Eq. 2.

p(y|X) =

P
ỹ2Ypossible

es(X,ỹ)

P
ỹ2YX

es(X,ỹ)
(2)

where YX means all the possible label sequences
for sequence X , and Ypossible contains all the pos-
sible label sequences given the labels of modified
IOBES scheme. Note that, when all labels and
types are known and unique, the fuzzy CRF model
is equivalent to the conventional CRF.

During the training process, we maximize the
log-likelihood function of Eq. 2. For inference, we
apply the Viterbi algorithm to maximize the score
of Eq. 1 for each input sequence.

3.2 AutoNER with “Tie or Break”

Identifying the nature of the distant supervision,
we go beyond the sequence labeling framework
and propose a new tagging scheme, Tie or
Break. It focuses on the ties between adjacent to-
kens, i.e., whether they are tied in the same entity
mentions or broken into two parts. Accordingly,
we design a novel neural model for this scheme.
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Figure 2: The illustration of AutoNER with Tie or Break tagging scheme. The named entity type is
{AspectTerm}. “ceramic unibody” is a matched AspectTerm entity and “8GB RAM” is an unknown-typed
high-quality phrase. Unknown labels will be skipped during the model training.

“Tie or Break” Tagging Scheme. Specifically,
for every two adjacent tokens, the connection
between them is labeled as (1) Tie, when the
two tokens are matched to the same entity; (2)
Unknown, if at least one of the tokens belongs
to an unknown-typed high-quality phrase; (3)
Break, otherwise.

An example can be found in Fig. 2. The dis-
tant supervision shows that “ceramic unibody” is
a matched AspectTerm and “8GB RAM” is an
unknown-typed high-quality phrase. Therefore, a
Tie is labeled between “ceramic” and “unibody”,
while Unknown labels are put before “8GB”, be-
tween “8GB” and “RAM”, and after “RAM”.

Tokens between every two consecutive Break
form a token span. Each token span is associated
with all its matched types, the same as for the mod-
ified IOBES scheme. For those token spans with-
out any associated types, such as “with” in the ex-
ample, we assign them the additional type None.

We believe this new scheme can better exploit
the knowledge from dictionary according to the
following two observations. First, even though the
boundaries of an entity mention are mismatched
by distant supervision, most of its inner ties are
not affected. More interestingly, compared to
multi-word entity mentions, matched unigram en-
tity mentions are more likely to be false-positive
labels. However, such false-positive labels will
not introduce incorrect labels with the Tie or
Break scheme, since either the unigram is a true
entity mention or a false positive, it always brings
two Break labels around.

AutoNER. In the Tie or Break scheme, en-
tity spans and entity types are encoded into two
folds. Therefore, we separate the entity span de-
tection and entity type prediction into two steps.

For entity span detection, we build a binary
classifier to distinguish Break from Tie, while

Unknown positions will be skipped. Specifically,
as shown in Fig. 2, for the prediction between i-th
token and its previous token, we concatenate the
output of the BiLSTM as a new feature vector, ui.
ui is then fed into a sigmoid layer, which estimates
the probability that there is a Break as

p(yi = Break|ui) = �(wTui)

where yi is the label between the i-th and its pre-
vious tokens, � is the sigmoid function, and w is
the sigmoid layer’s parameter. The entity span de-
tection loss is then computed as follows.

Lspan =
X

i|yi 6=Unknown
l
�
yi, p(yi = Break|ui)

�

Here, l(·, ·) is the logistic loss. Note that those
Unknown positions are skipped.

After obtaining candidate entity spans, we fur-
ther identify their entity types, including the None
type for non-entity spans. As shown in Fig. 2, the
output of the BiLSTM will be re-aligned to form
a new feature vector, which is referred as vi for
i-th span candidate. vi will be further fed into a
softmax layer, which estimates the entity type dis-
tribution as

p(tj |vi) =
et

T
j vi

P
tk2L et

T
k vi

where tj is an entity type and L is the set of all
entity types including None.

Since one span can be labeled as multiple types,
we mark the possible set of types for i-th entity
span candidate as Li. Accordingly, we modify the
cross-entropy loss as follows.

Ltype = H(p̂(·|vi, Li), p(·|vi))

Here, H(p, q) is the cross entropy between p and
q, and p̂(tj |vi, Li) is the soft supervision distribu-
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tion. Specifically, it is defined as:

p̂(tj |vi, Li) =
�(tj 2 Li) · et

T
j vi

P
tk2L �(tk 2 Li) · et

T
k vi

where �(tj 2 Li) is the boolean function of check-
ing whether the i-th span candidate is labeled as
the type tj in the distant supervision.

It’s worth mentioning that AutoNER has no
CRF layer and Viterbi decoding, thus being more
efficient than Fuzzy-LSTM-CRF for inference.

3.3 Remarks on “Unknown” Entities

“Unknown” entity mentions are not the entities of
other types, but the tokens that we are less confi-
dent about their boundaries and/or cannot identify
their types based on the distant supervision. For
example, in Figure 1, “prostaglandin synthesis” is
an “unknown” token span. The distant supervi-
sion cannot decide whether it is a Chemical, a
Disease, an entity of other types, two separate
single-token entities, or (partially) not an entity.
Therefore, in the FuzzyCRF model, we assign all
possible labels for these tokens.

In our AutoNER model, these “unknown” posi-
tions have undefined boundary and type losses, be-
cause (1) they make the boundary labels unclear;
and (2) they have no type labels. Therefore, they
are skipped.

4 Distant Supervision Refinement

In this section, we present two techniques to refine
the distant supervision for better named entity tag-
gers. Ablation experiments in Sec. 5.4 verify their
effectiveness empirically.

4.1 Corpus-Aware Dictionary Tailoring

In dictionary matching, blindly using the full dic-
tionary may introduce false-positive labels, as
there exist many entities beyond the scope of the
given corpus but their aliases can be matched. For
example, when the dictionary has a non-related
character name “Wednesday Addams”2 and its
alias “Wednesday”, many Wednesday’s will be
wrongly marked as persons. In an ideal case, the
dictionary should cover, and only cover entities
occurring in the given corpus to ensure a high pre-
cision while retaining a reasonable coverage.

2https://en.wikipedia.org/wiki/
Wednesday_Addams

As an approximation, we tailor the original dic-
tionary to a corpus-related subset by excluding en-
tities whose canonical names never appear in the
given corpus. The intuition behind is that to avoid
ambiguities, people will likely mention the canon-
ical name of the entity at least once. For example,
in the biomedical domain, this is true for 88.12%,
95.07% of entity mentions on the BC5CDR and
NCBI datasets respectively. We expect the NER
model trained on such tailored dictionary will have
a higher precision and a reasonable recall com-
pared to that trained on the original dictionary.

4.2 Unknown-Typed High-Quality Phrases

Another issue of the distant supervision is about
the false-negative labels. When a token span can-
not be matched to any entity surface names in the
dictionary, because of the limited coverage of dic-
tionaries, it is still difficult to claim it as non-entity
(i.e., negative labels) for sure. Specifically, some
high-quality phrases out of the dictionary may also
be potential entities.

We utilize the state-of-the-art distantly super-
vised phrase mining method, AutoPhrase (Shang
et al., 2018), with the corpus and dictionary in
the given domain as input. AutoPhrase only re-
quires unlabeled text and a dictionary of high-
quality phrases. We obtain quality multi-word and
single-word phrases by posing thresholds (e.g., 0.5
and 0.9 respectively). In practice, one can find
more unlabeled texts from the same domain (e.g.,
PubMed papers and Amazon laptop reviews) and
use the same domain-specific dictionary for the
NER task. In our experiments, for the biomedical
domain, we use the titles and abstracts of 686,568
PubMed papers (about 4%) uniformly sampled
from the whole PubTator database as the train-
ing corpus. For the laptop review domain, we
use the Amazon laptop review dataset3, which is
designed for the aspect-based sentiment analysis
(Wang et al., 2011).

We treat out-of-dictionary phrases as poten-
tial entities with “unknown” type and incorporate
them as new dictionary entries. After this, only to-
ken spans that cannot be matched in this extended
dictionary will be labeled as non-entity. Being
aware of these high-quality phrases, we expect the
trained NER tagger should be more accurate.

3http://times.cs.uiuc.edu/˜wang296/
Data/
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Table 1: Dataset Overview.
Dataset BC5CDR NCBI-Disease LaptopReview

Domain Biomedical Biomedical Technical Review

Entity Types Disease, Chemical Disease AspectTerm

Dictionary MeSH + CTD MeSH + CTD Computer Terms

Raw Sent. # 20,217 7,286 3,845

5 Experiments

We conduct experiments on three benchmark
datasets to evaluate and compare our proposed
Fuzzy-LSTM-CRF and AutoNER with many
other methods. We further investigate the effec-
tiveness of our proposed refinements for the dis-
tant supervision and the impact of the number of
distantly supervised sentences.

5.1 Experimental Settings
Datasets are briefly summarized in Table 1. More
details as as follows.

• BC5CDR is from the most recent BioCreative
V Chemical and Disease Mention Recognition
task. It has 1,500 articles containing 15,935
Chemical and 12,852 Disease mentions.

• NCBI-Disease focuses on Disease Name
Recognition. It contains 793 abstracts and 6,881
Disease mentions.

• LaptopReview is from the SemEval 2014 Chal-
lenge, Task 4 Subtask 1 (Pontiki et al., 2014) fo-
cusing on laptop aspect term (e.g., “disk drive”)
Recognition. It consists of 3,845 review sen-
tences and 3,012 AspectTerm mentions.

All datasets are publicly available. The first two
datasets are already partitioned into three subsets:
a training set, a development set, and a testing set.
For the LaptopReview dataset, we follow (Gian-
nakopoulos et al., 2017) and randomly select 20%
from the training set as the development set. Only
raw texts are provided as the input of distantly su-
pervised models, while the gold training set is used
for supervised models.
Domain-Specific Dictionary. For the biomedi-
cal datasets, the dictionary is a combination of
both the MeSH database4 and the CTD Chemical
and Disease vocabularies5. The dictionary con-
tains 322,882 Chemical and Disease entity
surfaces. For the laptop review dataset, the dic-
tionary has 13,457 computer terms crawled from a

4https://www.nlm.nih.gov/mesh/
download_mesh.html

5http://ctdbase.org/downloads/

public website6.
Metric. We use the micro-averaged F1 score as
the evaluation metric. Meanwhile, precision and
recall are presented. The reported scores are the
mean across five different runs.
Parameters and Model Training. Based on the
analysis conducted in the development set, we
conduct optimization with the stochastic gradient
descent with momentum. We set the batch size
and the momentum to 10 and 0.9. The learning
rate is initially set to 0.05 and will be shrunk by
40% if there is no better development F1 in the re-
cent 5 rounds. Dropout of a ratio 0.5 is applied in
our model. For a better stability, we use gradient
clipping of 5.0. Furthermore, we employ the early
stopping in the development set.
Pre-trained Word Embeddings. For the
biomedical datasets, we use the pre-trained 200-
dimension word vectors 7 from (Pyysalo et al.,
2013), which are trained on the whole PubMed
abstracts, all the full-text articles from PubMed
Central (PMC), and English Wikipedia. For
the laptop review dataset, we use the GloVe
100-dimension pre-trained word vectors8 instead,
which are trained on the Wikipedia and GigaWord.

5.2 Compared Methods
Dictionary Match is our proposed distant super-
vision generation method. Specifically, we apply
it to the testing set directly to obtain entity men-
tions with exactly the same surface name as in the
dictionary. The type is assigned through a major-
ity voting. By comparing with it, we can check
the improvements of neural models over the dis-
tant supervision itself.
SwellShark, in the biomedical domain, is ar-
guably the best distantly supervised model, es-
pecially on the BC5CDR and NCBI-Disease
datasets (Fries et al., 2017). It needs no human an-
notated data, however, it requires extra expert ef-
fort for entity span detection on building POS tag-
ger, designing effective regular expressions, and
hand-tuning for special cases.
Distant-LSTM-CRF achieved the best perfor-
mance on the LaptopReview dataset without an-
notated training data using a distantly supervised

6https://www.computerhope.com/jargon.
htm

7http://bio.nlplab.org/
8https://nlp.stanford.edu/projects/

glove/
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Table 2: [Biomedical Domain] NER Performance Comparison. The supervised benchmarks on the BC5CDR and
NCBI-Disease datasets are LM-LSTM-CRF and LSTM-CRF respectively (Wang et al., 2018). SwellShark has
no annotated data, but for entity span extraction, it requires pre-trained POS taggers and extra human efforts of
designing POS tag-based regular expressions and/or hand-tuning for special cases.

Method Human Effort BC5CDR NCBI-Disease

other than Dictionary Pre Rec F1 Pre Rec F1

Supervised Benchmark Gold Annotations 88.84 85.16 86.96 86.11 85.49 85.80

SwellShark Regex Design + Special Case Tuning 86.11 82.39 84.21 81.6 80.1 80.8
Regex Design 84.98 83.49 84.23 64.7 69.7 67.1

Dictionary Match
None

93.93 58.35 71.98 90.59 56.15 69.32

Fuzzy-LSTM-CRF 88.27 76.75 82.11 79.85 67.71 73.28

AutoNER 88.96 81.00 84.8 79.42 71.98 75.52

Table 3: [Technical Review Domain] NER Perfor-
mance Comparison. The supervised benchmark refers
to the challenge winner.

Method LaptopReview

Pre Rec F1

Supervised Benchmark 84.80 66.51 74.55

Distant-LSTM-CRF 74.03 31.59 53.93

Dictionary Match 90.68 44.65 59.84

Fuzzy-LSTM-CRF 85.08 47.09 60.63

AutoNER 72.27 59.79 65.44

LSTM-CRF model (Giannakopoulos et al., 2017).
Supervised benchmarks on each dataset are
listed to check whether AutoNER can deliver com-
petitive performance. On the BC5CDR and NCBI-
Disease datasets, LM-LSTM-CRF (Liu et al.,
2018) and LSTM-CRF (Lample et al., 2016)
achieve the state-of-the-art F1 scores without ex-
ternal resources, respectively (Wang et al., 2018).
On the LaptopReview dataset, we present the
scores of the Winner in the SemEval2014 Chal-
lenge Task 4 Subtask 1 (Pontiki et al., 2014).

5.3 NER Performance Comparison
We present F1, precision, and recall scores on all
datasets in Table 2 and Table 3. From both ta-
bles, one can find the AutoNER achieves the best
performance when there is no extra human effort.
Fuzzy-LSTM-CRF does have some improvements
over the Dictionary Match, but it is always worse
than AutoNER.

Even though SwellShark is designed for the
biomedical domain and utilizes much more ex-
pert effort, AutoNER outperforms it in almost all
cases. The only outlier happens on the NCBI-
disease dataset when the entity span matcher in

SwellShark is carefully tuned by experts for many
special cases.

It is worth mentioning that AutoNER beats
Distant-LSTM-CRF, which is the previous state-
of-the-art distantly supervised model on the Lap-
topReview dataset.

Moreover, AutoNER’s performance is compet-
itive to the supervised benchmarks. For exam-
ple, on the BC5CDR dataset, its F1 score is only
2.16% away from the supervised benchmark.

5.4 Distant Supervision Explorations
We investigate the effectiveness of the two tech-
niques that we proposed in Sec. 4 via ablation ex-
periments. As shown in Table 4, using the tailored
dictionary always achieves better F1 scores than
using the original dictionary. By using the tailored
dictionary, the precision of the AutoNER model
will be higher, while the recall will be retained
similarly. For example, on the NCBI-Disease
dataset, it significantly boosts the precision from
53.14% to 77.30% with an acceptable recall loss
from 63.54% to 58.54%. Moreover, incorporating
unknown-typed high-quality phrases in the dictio-
nary enhances every score of AutoNER models
significantly, especially the recall. These results
match our expectations well.

5.5 Test F1 Scores vs. Size of Raw Corpus
Furthermore, we explore the change of test F1

scores when we have different sizes of distantly
supervised texts. We sample sentences uniformly
random from the given raw corpus and then evalu-
ate AutoNER models trained on the selected sen-
tences. We also study what will happen when the
gold training set is available. The curves can be
found in Figure 3. The X-axis is the number of
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Table 4: Ablation Experiments for Dictionary Refinement. The dictionary for the LaptopReview dataset contains
no alias, so the corpus-aware dictionary tailoring is not applicable.

Method BC5CDR NCBI-Disease LaptopReview

Pre Rec F1 Pre Rec F1 Pre Rec F1

AutoNER w/ Original Dict 82.79 70.40 76.09 53.14 63.54 57.87 69.96 49.85 58.21

AutoNER w/ Tailored Dict 84.57 70.22 76.73 77.30 58.54 66.63 Not Applicable

AutoNER w/ Tailored Dict & Phrases 88.96 81.00 84.8 79.42 71.98 75.52 72.27 59.79 65.44

(a) BC5CDR (b) NCBI (c) LaptopReview

Figure 3: AutoNER: Test F1 score vs. the number of distantly supervised sentences.

distantly supervised training sentences while the
Y-axis is the F1 score on the testing set.

When using distant supervision only, one can
observe a significant growing trend of test F1 score
in the beginning, but later the increasing rate slows
down when there are more and more raw texts.

When the gold training set is available, the dis-
tant supervision is still helpful to AutoNER. In the
beginning, AutoNER works worse than the super-
vised benchmarks. Later, with enough distantly
supervised sentences, AutoNER outperforms the
supervised benchmarks. We think there are two
possible reasons: (1) The distant supervision puts
emphasis on those matchable entity mentions; and
(2) The gold annotation may miss some good but
matchable entity mentions. These may guide the
training of AutoNER to a more generalized model,
and thus have a higher test F1 score.

5.6 Comparison with Gold Supervision

To demonstrate the effectiveness of distant super-
vision, we try to compare our method with gold
annotations provided by human experts.

Specifically, we conduct experiments on the
BC5CDR dataset by sampling different amounts
of annotated articles for model training. As shown
in Figure 4, we found that our method outper-
forms the supervised method by a large margin
when less training examples are available. For ex-
ample, when there are only 50 annotated articles
available, the test F1 score drops substantially to
74.29%. To achieve a similar test F1 score (e.g.,

Figure 4: AutoNER: Test F1 score vs. the number of
human annotated articles.

83.91%) as our AutoNER models (i.e., 84.8%),
the supervised benchmark model requires at least
300 annotated articles. Such results indicate the
effectiveness and usefulness of AutoNER on the
scenario without sufficient human annotations.

Still, we observe that, when the supervised
benchmark is trained with all annotations, it
achieves the performance better than AutoNER.
We conjugate that this is because AutoNER lacks
more advanced techniques to handle distant super-
vision, and we leave further improvements of Au-
toNER to the future work.

6 Related Work

The task of supervised named entity recognition
(NER) is typically embodied as a sequence label-
ing problem. Conditional random fields (CRF)
models built upon human annotations and hand-
crafted features are the standard (Finkel et al.,
2005; Settles, 2004; Leaman and Gonzalez, 2008).
Recent advances in neural models have freed do-
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main experts from handcrafting features for NER
tasks. (Lample et al., 2016; Ma and Hovy, 2016;
Liu et al., 2018). Such neural models are in-
creasingly common in the domain-specific NER
tasks (Sahu and Anand, 2016; Dernoncourt et al.,
2017; Wang et al., 2018). Semi-supervised meth-
ods have been explored to further improve the ac-
curacy by either augmenting labeled datasets with
word embeddings or bootstrapping techniques in
tasks like gene name recognition (Kuksa and Qi,
2010; Tang et al., 2014; Vlachos and Gasperin,
2006). Unlike these existing approaches, our study
focuses on the distantly supervised setting without
any expert-curated training data.

Distant supervision has attracted many atten-
tions to alleviate human efforts. Originally, it was
proposed to leverage knowledge bases to super-
vise relation extraction tasks (Craven et al., 1999;
Mintz et al., 2009). AutoPhrase has demonstrated
powers in extracting high-quality phrases from
domain-specific corpora like scientific papers and
business reviews (Shang et al., 2018) but it cannot
categorize phrases into typed entities in a context-
aware manner. We incorporate the high-quality
phrases to enrich the domain-specific dictionary.

There are attempts on the distantly supervised
NER task recently (Ren et al., 2015; Fries et al.,
2017; He, 2017; Giannakopoulos et al., 2017). For
example, SwellShark (Fries et al., 2017), specif-
ically designed for biomedical NER, leverages a
generative model to unify and model noise across
different supervision sources for named entity typ-
ing. However, it leaves the named entity span
detection to a heuristic combination of dictionary
matching and part-of-speech tag-based regular ex-
pressions, which require extensive expert effort to
cover many special cases. Other methods (Ren
et al., 2015; He, 2017) also utilize similar ap-
proaches to extract entity span candidates before
entity typing. Distant-LSTM-CRF (Giannakopou-
los et al., 2017) has been proposed for the distantly
supervised aspect term extraction, which can be
viewed as an entity recognition task of a single
type for business reviews. As shown in our experi-
ments, our models can outperform Distant-LSTM-
CRF significantly on the laptop review dataset.

To the best of our knowledge, AutoNER is the
most effective model that can learn NER models
by using, and only using dictionaries without any
additional human effort.

7 Conclusion and Future Work

In this paper, we explore how to learn an effective
NER model by using, and only using dictionar-
ies. We design two neural architectures, Fuzzy-
LSTM-CRF model with a modified IOBES tag-
ging scheme and AutoNER with a new Tie or
Break scheme. In experiments on three bench-
mark datasets, AutoNER achieves the best F1

scores without additional human efforts. Its per-
formance is even competitive to the supervised
benchmarks with full human annotation. In ad-
dition, we discuss how to refine the distant super-
vision for better NER performance, including in-
corporating high-quality phrases mined from the
corpus as well as tailoring dictionary according to
the given corpus, and demonstrate their effective-
ness in ablation experiments.

In future, we plan to further investigate the
power and potentials of the AutoNER model with
Tie or Break scheme in different languages
and domains. Also, the proposed framework can
be further extended to other sequence labeling
tasks, such as noun phrase chunking. Moreover,
going beyond the classical NER setting in this
paper, it is interesting to further explore distant
supervised methods for the nested and multiple
typed entity recognitions in the future.
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2017. Swellshark: A generative model for biomed-
ical named entity recognition without labeled data.
arXiv preprint arXiv:1704.06360.

Athanasios Giannakopoulos, Claudiu Musat, Andreea
Hossmann, and Michael Baeriswyl. 2017. Unsuper-
vised aspect term extraction with b-lstm & crf using
automatically labelled datasets. In Proceedings of
the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 180–188.

Daniel Hanisch, Katrin Fundel, Heinz-Theodor Mevis-
sen, Ralf Zimmer, and Juliane Fluck. 2005.
Prominer: rule-based protein and gene entity recog-
nition. BMC bioinformatics, 6(1):S14.

Wenqi He. 2017. Autoentity: automated entity de-
tection from massive text corpora. M.S. Thesis
for Computer Science of University of Illinois at
Urbana-Champaign.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Pavel P Kuksa and Yanjun Qi. 2010. Semi-supervised
bio-named entity recognition with word-codebook
learning. In Proceedings of the 2010 SIAM Inter-
national Conference on Data Mining, pages 25–36.
SIAM.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Robert Leaman and Graciela Gonzalez. 2008. Ban-
ner: an executable survey of advances in biomedical
named entity recognition. In Biocomputing 2008,
pages 652–663. World Scientific.

Thomas Lin, Oren Etzioni, et al. 2012. Entity linking at
web scale. In Proceedings of the Joint Workshop on
Automatic Knowledge Base Construction and Web-
scale Knowledge Extraction, pages 84–88. Associa-
tion for Computational Linguistics.

Liyuan Liu, Jingbo Shang, Frank Xu, Xiang Ren, Huan
Gui, Jian Peng, and Jiawei Han. 2018. Empower
sequence labeling with task-aware neural language
model. AAAI.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 1064–1074.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011. Association for
Computational Linguistics.

Maria Pontiki, Dimitrios Galanis, John Pavlopou-
los, Haris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), page 2735.

Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio
Salakoski, and Sophia Ananiadou. 2013. Distribu-
tional semantics resources for biomedical text pro-
cessing. In Proceedings of the 5th International
Symposium on Languages in Biology and Medicine,
Tokyo, Japan, pages 39–43.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL.

Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao,
Clare R Voss, and Jiawei Han. 2015. Clustype:
Effective entity recognition and typing by relation
phrase-based clustering. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 995–1004.
ACM.

Sunil Sahu and Ashish Anand. 2016. Recurrent neu-
ral network models for disease name recognition us-
ing domain invariant features. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), vol-
ume 1, pages 2216–2225.

2063



Burr Settles. 2004. Biomedical named entity recogni-
tion using conditional random fields and rich feature
sets. In Proceedings of the international joint work-
shop on natural language processing in biomedicine
and its applications, pages 104–107. Association for
Computational Linguistics.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R Voss, and Jiawei Han. 2018. Automated
phrase mining from massive text corpora. IEEE
Transactions on Knowledge and Data Engineering.

Buzhou Tang, Hongxin Cao, Xiaolong Wang, Qingcai
Chen, and Hua Xu. 2014. Evaluating word represen-
tation features in biomedical named entity recogni-
tion tasks. BioMed research international, 2014.

Andreas Vlachos and Caroline Gasperin. 2006. Boot-
strapping and evaluating named entity recognition in
the biomedical domain. In Proceedings of the HLT-
NAACL BioNLP Workshop on Linking Natural Lan-
guage and Biology, pages 138–145. Association for
Computational Linguistics.

Hongning Wang, Yue Lu, and ChengXiang Zhai. 2011.
Latent aspect rating analysis without aspect key-
word supervision. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 618–626. ACM.

Xuan Wang, Yu Zhang, Xiang Ren, Yuhao Zhang,
Marinka Zitnik, Jingbo Shang, Curtis Langlotz, and
Jiawei Han. 2018. Cross-type biomedical named en-
tity recognition with deep multi-task learning. arXiv
preprint arXiv:1801.09851.

2064



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2065–2076
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Zero-Shot Open Entity Typing as Type-Compatible Grounding

Ben Zhou1, Daniel Khashabi2, Chen-Tse Tsai3, Dan Roth2

1University of Illinois, Urbana-Champaign, 2University of Pennsylvania, 3Bloomberg LP
xzhou45@illinois.edu, {danielkh,danroth}@cis.upenn.edu, ctsai54@bloomberg.net

Abstract

The problem of entity-typing has been stud-
ied predominantly in supervised learning fash-
ion, mostly with task-specific annotations
(for coarse types) and sometimes with dis-
tant supervision (for fine types). While such
approaches have strong performance within
datasets, they often lack the flexibility to trans-
fer across text genres and to generalize to new
type taxonomies. In this work we propose a
zero-shot entity typing approach that requires
no annotated data and can flexibly identify
newly defined types.

Given a type taxonomy defined as Boolean
functions of FREEBASE “types”, we ground
a given mention to a set of type-compatible
Wikipedia entries and then infer the target
mention’s types using an inference algorithm
that makes use of the types of these entries.
We evaluate our system on a broad range of
datasets, including standard fine-grained and
coarse-grained entity typing datasets, and also
a dataset in the biological domain. Our system
is shown to be competitive with state-of-the-
art supervised NER systems and outperforms
them on out-of-domain datasets. We also show
that our system significantly outperforms other
zero-shot fine typing systems.

1 Introduction

Entity type classification is the task of connect-
ing an entity mention to a given set of seman-
tic types. The commonly used type sets range in
size and level of granularity, from a small num-
ber of coarse-grained types (Tjong Kim Sang and
De Meulder, 2003) to over a hundred fine-grained
types (Ling and Weld, 2012). It is understood that
semantic typing is a key component in many natu-
ral language understanding tasks, including Ques-
tion Answering (Toral et al., 2005; Li and Roth,
2005) and Textual Entailment (Dagan et al., 2010,
2013). Consequently, the ability to type mentions

semantically across domains and text genres, and
to use a flexible type hierarchy, is essential for
solving many important challenges.

Nevertheless, most commonly used ap-
proaches and systems for semantic typing
(e.g., CORENLP (Manning et al., 2014), COG-
COMPNLP (Khashabi et al., 2018), NLTK (Loper
and Bird, 2002), SPACY) are trained in a super-
vised fashion and rely on high quality, task-
specific annotation. Scaling such systems to other
domains and to a larger set of entity types faces
fundamental restrictions.

Coarse typing systems, which are mostly fully
supervised, are known to fit a single dataset very
well. However, their performance drops signifi-
cantly on different text genres and even new data
sets. Moreover, adding a new coarse type re-
quires manual annotation and retraining. For fine-
typing systems, people have adopted a distant-
supervision approach. Nevertheless, the number
of types used is small: the distantly-supervised
FIGER dataset covers only 113 types, a small
fraction of most-conservative estimates of the
number of types in the English language (the
FREEBASE (Bollacker et al., 2008) and WORD-
NET (Miller, 1995) hierarchies consist of more
than 1k and 1.5k unique types, respectively).
More importantly, adapting these systems, once
trained, to new type taxonomies cannot be done
flexibly.

As was argued in Roth (2017), there is a need to
develop new training paradigms that support scal-
able semantic processing; specifically, there is a
need to scale semantic typing to flexible type tax-
onomies and to multiple domains.

In this work, we introduce ZOE, a zero-shot
entity typing system, with open type definitions.
Given a mention in a sentence and a taxonomy of
entity types with their definitions, ZOE identifies
a set of types that are appropriate for the mention
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Figure 1: ZOE maps a given mention to its type-compatible entities in Wikipedia and infers a collection of
types using this set of entities. While the mention “Oarnniwsf,” a football player in the U. of Washington,
does not exist in Wikipedia, we ground it to other entities with approximately the same types (§3).

in this context. ZOE does not require any training,
and it makes use of existing data resources (e.g.,
Wikipedia) and tools developed without any task-
specific annotation. The key idea is to ground each
mention to a set of type-compatible Wikipedia en-
tities. The benefit of using a set of Wikipedia titles
as an intermediate representation for a mention is
that there is much human-curated information in
Wikipedia – categories associated with each page,
FREEBASE types, and DBpedia types. These were
put there independently of the task at hand and can
be harnessed for many tasks: in particular, for de-
termining the semantic types of a given mention
in its context. In this grounding step, the guid-
ing principle is that type-compatible entities often
appear in similar contexts. We rely on contextual
signals and, when available, surface forms, to rank
Wikipedia titles and choose those that are more
compatible with a given mention.

Importantly, our algorithm does not require a
given mention to be in Wikipedia; in fact, in many
cases (such as nominal mentions) the mentions are
not available in Wikipedia. We hypothesize that
any entity possible in English corresponds to some
type-compatible entities in Wikipedia. We can
then rely mostly on the context to reveal a set of
compatible titles, those that are likely to share se-
mantic types with the target mention. The fact that
our system is not required to ground to the exact
concept is a key difference between our ground-
ing and “standard” Wikification approaches (Mi-
halcea and Csomai, 2007; Ratinov et al., 2011).
As a consequence, while entity linking approaches
rely heavily on priors associated with the surface
forms and do not consider those that do not link to
Wikipedia titles, our system mostly relies on con-
text, regardless of whether the grounding actually
exists or not.

Figure 1 shows a high-level visualization of our
system. Given a mention, our system grounds it
into type-compatible entries in Wikipedia. The

target mention “Oarnniwsf,” is not in Wikipedia,
yet it is grounded to entities with approximately
correct types. In addition, while some of the
grounded Wikipedia entries are inaccurate in
terms of entity types, the resulting aggregated de-
cision is correct.

ZOE is an open type system, since it is not re-
stricted to a closed set of types. In our experi-
ments, we build on FREEBASE types as primitive
types and use them to define types across seven
different datasets. Note, however, that our ap-
proach is not fundamentally restricted to FREE-
BASE types; in particular, we allow types to be
defined as Boolean formulae over these primitives
(considering a type to be a set of entities). Further-
more, we support other primitives, e.g., DBPedia
or Wikipedia entries. Consequently, our system
can be used across type taxonomies; there is no
need to restrict to previously observed types or re-
train with annotations of new types. If one wants
to use types that are outside our current vocabu-
lary, one only needs to define the target type tax-
onomy in terms of the primitives used in this work.

In summary, our contributions are as follows:
• We propose a zero-shot open entity typing

framework1 that does not require training on
entity-typing-specific supervised data.

• The proposed system outperforms existing
zero-shot entity typing systems.

• Our system is competitive with fully-
supervised systems in their respective do-
mains across a broad range of coarse- and
fine-grained typing datasets, and it outper-
forms these systems in out-of-domain set-
tings.

2 Related Work

Named Entity Recognition (NER), for which the
goal is to discover mention-boundaries in addi-
tion to typing, often using a small set of mutu-

1https://github.com/CogComp/zoe
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ally exclusive types, has a considerable amount of
work (Grishman and Sundheim, 1996; Mikheev
et al., 1999; Tjong Kim Sang and De Meulder,
2003; Florian et al., 2003; Ratinov and Roth,
2009).

There have been many proposals to scale the
systems to support a bigger type space (Fleis-
chman and Hovy, 2002; Sekine et al., 2002).
This direction was followed by the introduction
of datasets with large label-sets, either manually
annotated like BBN (Weischedel and Brunstein,
2005) or distantly supervised like FIGER (Ling
and Weld, 2012). With larger datasets avail-
able, supervised-learning systems were proposed
to learn from the data (Yosef et al., 2012; Ab-
hishek et al., 2017; Shimaoka et al., 2017; Xu and
Barbosa, 2018; Choi et al., 2018). Such systems
have achieved remarkable success, mostly when
restricted to their observed domain and labels.

There is a handful of works aiming to pave
the road towards zero-shot typing by address-
ing ways to extract cheap signals, often to help
the supervised algorithms: e.g., by generating
gazetteers (Nadeau et al., 2006), or using the an-
chor texts in Wikipedia (Nothman et al., 2008,
2009). Ren et al. (2016) project labels in high-
dimensional space and use label correlations to
suppress noise and better model their relations. In
our work, we choose not to use the supervised-
learning paradigm and instead merely rely on a
general entity linking corpus and the signals in
Wikipedia. Prior work has already shown the im-
portance of Wikipedia information for NER. Tsai
et al. (2016a) use a cross-lingual WIKIFIER to fa-
cilitate cross-lingual NER. However, they do not
explicitly address the case where the target entity
does not exist in Wikipedia.

The zero-shot paradigm for entity typing has
only recently been studied. Yogatama et al. (2015)
proposed an embedding representation for user-
defined features and labels, which facilitates in-
formation sharing among labels and reduces the
dependence on the labels observed in the train-
ing set. The work of Yuan and Downey (2018)
can also be seen in the same spirit, i.e., systems
that rely on a form of representation of the labels.
In a broader sense, such works–including ours–
are part of a more general line of work on zero-
shot learning (Chang et al., 2008; Palatucci et al.,
2009; Norouzi et al., 2013; Romera-Paredes and
Torr, 2015; Song and Roth, 2014). Our work can

Approach Zero-shot? Use labeled
data?

ATTENTIVE
(Shimaoka et al., 2017) No Yes

AAA
(Abhishek et al., 2017) No Yes

NFETC-HIER(R)
(Xu and Barbosa, 2018) No Yes

AFET
(Ren et al., 2016) No Yes

(partial)
PROTOLE

(Ma et al., 2016)
Yes

Prototype Embedding
Yes

(partial)
OTYPER

(Yuan and Downey, 2018)
Yes

Word Embedding
Yes

(partial)

(Huang et al., 2016)
Yes

Concept-embedding
Clustering

No

ZOE (ours)
Yes

Type-Compatible
Concepts

No

Table 1: Comparison of recent work on entity typ-
ing. Our system does not require any labeled
data for entity typing; therefore it works on new
datasets without retraining.

be thought of as the continuation of the same re-
search direction.

A critical step in the design of zero-shot sys-
tems is the characterization of the output space.
For supervised systems, the output representations
are trivial, as they are just indices. For zero-shot
systems, the output space is often represented in
a high-dimensional space that encodes the seman-
tics of the labels. In OTYPER (Yuan and Downey,
2018), each type embedding is computed by av-
eraging the word embeddings of the words com-
prising the type. The same idea is also used in
PROTOLE (Ma et al., 2016), except that averag-
ing is done only for a few prototypical instances
of each type. In our work, we choose to define
types using information in Wikipedia. This flex-
ibility allows our system to perform well across
several datasets without retraining. On a concep-
tual level, the work of Lin et al. (2012) and Huang
et al. (2016) are close to our approach. The gov-
erning idea in these works is to cluster mentions,
followed by propagating type information from
representative mentions.

Table 1 compares our proposed system with
several recently proposed models.

3 Zero-Shot Open Entity Typing

Types are conceptual containers that bind entities
together to form a coherent group. Among the en-
tities of the same type, type-compatibility creates
a network of loosely connected entities:

2067



Definition 1 (Weak Type Compatibility) Two
entities are type-compatible if they share at least
one type with respect to a type taxonomy and the
contexts in which they appear.

In our approach, given a mention in a sentence,
we aim to discover type-compatible entities in
Wikipedia and then infer the mention’s types us-
ing all the type-compatible entities together. The
advantage of using Wikipedia entries is that the
rich information associated with them allows us to
infer the types more easily. Note that this prob-
lem is different from the standard entity linking or
Wikification problem in which the goal is to find
the corresponding entity in Wikipedia. Wikipedia
does not contain all entities in the world, but an
entity is likely to have at least one type-compatible
entity in Wikipedia.

In order to find the type-compatible entities, we
use the context of mentions as a proxy. Defining it
formally:

Definition 2 (Context Consistency) A mention
m (in a context sentence s) is context-consistent
with another well-defined mention m0, if m can
be replaced by m0 in the context s, and the new
sentence still makes logical sense.

Hypothesis 1 Context consistency is a strong
proxy for type compatibility.

Based on this hypothesis, given a mention m
in a sentence s, we find other context-compatible
mentions in a Wikified corpus. Since the men-
tions in the Wikified corpus are linked to the cor-
responding Wikipedia entries, we can infer m’s
types by aggregating information associated with
these Wikipedia entries.

Figure 2 shows the high-level architecture of
our proposed system. The inputs to the system are
a mention m in a sentence s, and a type definition
T . The output of the system is a set of types
{tTarget} ✓ T in the target taxonomy that best
represents the given mention. The type definitions
characterize the target entity-type space. In our
experiments, we choose to use FREEBASE types
to define the types across 7 datasets; that is, T is
a mapping from the set of FREEBASE types to
the set of target types: T : {tFB} ! {tTarget}.
This definition comprises many atomic defi-
nitions; for example, we can define the type
location as the disjunction of FREEBASE
types like FB.location and FB.geography:

Figure 2: A high-level view of our approach. The
inputs to the system are a mention m in a context
s, and type definitions T . The output is set of
types {t} in the type definition. The figure also
highlights the input resources , as well as offline
and online processes .

The type definitions of a dataset reflect the un-
derstanding of a domain expert and the assump-
tions made in dataset design. Such definitions
are often much cheaper to define, than to anno-
tate full-fledged supervised datasets. It is impor-
tant to emphasize that, to use our system on differ-
ent datasets, one does not need to retrain it; there
is one single system used across different datasets,
working with different type definitions.

For notational simplicity, we define a few con-
ventions for the rest of the paper. The notation
t 2 T , simply means t is a member of the image of
the map T (i.e., t is a member of the target types).
For a fixed concept c, the notation T (c) is the ap-
plication of T (.) on the FREEBASE types attached
to the concept c. For a collection of concepts C,
T (C) is defined as

S
c2C T (c). We use Tcoarse(.)

to refer to the subset of coarse types of T (.), while
Tfine(.) defines the fine type subset.

Components in Figure 2 are described in the fol-
lowing sections.
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Figure 3: Extraction of topically relevant concepts. Word-concept map is pre-computed using WIK-
ILINKS and used to retrieve the most relevant concepts for a given mention (see §3.1).

3.1 Initial Concept Candidate Generation
Given a mention, the goal of this step is to quickly
generate a set of Wikipedia entries based on other
words in the sentence. Since there are millions
of entries in Wikipedia, it is extremely ineffi-
cient to go through all entries for each mention.
We adopt ideas from explicit semantic analysis
(ESA) (Gabrilovich and Markovitch, 2007), an
approach to representing words with a vector of
Wikipedia concepts, and to providing fast retrieval
of the relevant Wikipedia concepts via inverted in-
dexing.

In our construction we use the WIK-
ILINKS (Singh et al., 2012) corpus, which
contains a total of 40 million mentions over 3
million concepts. Each mention in WIKILINKS
is associated with a Wikipedia concept. To char-
acterize it formally, in the WIKILINKS corpus,
for each concept c, there are example sentences
sent(c) = {si}.

Offline computation: The first step is to con-
struct an ESA representation for each word in the
WIKILINKS corpus. We create a mapping from
each word in the corpus to the relevant concepts
associated with it. The result is a map S from to-
kens to concepts: S : w ! {c, score(c|w)} (see
Figure 3), where score(c|w) denotes the associa-
tion of the word w with concept c, calculated as
the sum of the TF-IDF values of the word w in the
sentences describing c:

score(c|w) ,

X

s2sent(c)

X

w2s

tf-idf(w, s).

That is, we treat each sentence as a document and
compute TF-IDF scores for the words in it.

Online computation: For a given mention m
and its sentence context s, we use our offline word-
concept map S to find the concepts associated with
each word, and aggregate them to create a single
list of weighted concepts; i.e.,

P
w2s S(w). The

resulting concepts are sorted by the corresponding
weights, and the top `ESA candidates form a set

CESA which is passed to the next step.

3.2 Context-Consistent Re-Ranking
After quick retrieval of the initial concept candi-
dates, we re-rank concepts in CESA based on con-
text consistency between the input mention and
concept mentions in WIKILINKS.

For this step, assume we have a representation
that encodes the sentential information anchored
on the mention. We denote this mention-aware
context representation as SentRep(s|m). We de-
fine a measure of consistency between a concept c
and a mention m in a sentence s:

Consistency(c, s, m) =

cosine(SentRep(s|m), ConceptRep(c)), (1)
where ConceptRep(c) is representation of a con-

cept:

ConceptRep(c) ,

avgs

⇣
SentRep(s|c)

���s 2 WIKILINKS, c 2 s)
⌘

,

which is the average vector of the representation
of all the sentences in WIKILINKS that describe
the given concept.

We use pre-trained ELMO (Peters et al.,
2018), a state-of-the-art contextual and mention-
aware word representation. In order to gener-
ate SentRep(s|m), we run ELMO on sentence s,
where the tokens of the mention m are concate-
nated with “ ”, and retrieve its ELMO vector as
SentRep(s|m).

According to the consistency measure, we se-
lect the top `ELMO concepts for each mention. We
call this set of concepts CELMO.

3.3 Surface-Based Concept Generation
While context often is a key signal for typing, one
should not ignore the information included in the
surface form of the mentions. If the corresponding
concept or entity exists in Wikipedia, many men-
tions can be accurately grounded with only trivial
prior probability Pr(concept|surface). The prior
distribution is pre-computed by calculating the fre-
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quency of the times a certain surface string refers
to different concepts within Wikipedia.

In the test time, for a given mention, we use the
pre-computed probability distribution to obtain the
most likely concept, csurf = arg maxc Pr(c|m),
for the given mention m.

3.4 Type Inference
Our inference algorithm starts with selection of
concepts, followed by inference of coarse and fine
types. Our approach is outlined in Algorithm 1
and explained below.

Concept inference. To integrate surface-based
and context-based concepts, we follow a simple
rule: if the prior probability of the surface-based
concept (csurf) has confidence below a threshold
�, we ignore it; otherwise we include it among the
concepts selected from context (CELMO), and only
choose coarse and fine types from csurf.

To map the selected concepts to the target entity
types, we retrieve the FREEBASE-types of each
concept and then apply the type definition T (de-
fined just before §3.1). In Algorithm 1, the set of
target types of a concept c is denoted as T (c). This
is followed by an aggregation step for selection of
a coarse type tcoarse 2 Tcoarse(.), and ends with the
selection of a set of fine types {tfine} ✓ Tfine(.).

Coarse type inference. Our type inference al-
gorithm works in a relatively simple confidence
analysis procedure. To this end, we define
Count(t; C) to be the number of occurrences of
type t in the collection of concepts C:

Count(t; C) := |{c : c 2 C and t 2 T (c)}|.
In theory, for a sensible type t, the count of

context-consistent concepts that have this type
should be higher than that of the initial concept
candidates. In other words, Count(t;CELMO)/`ELMO

Count(t;CESA)/`ESA
>

1. We select the first concept (in the CELMO rank-
ing) which has some coarse type that matches this
criterion. If there is no such concept, we use the
coarse types of the highest scoring concept. To se-
lect one of the coarse types of the selected concept,
we let each concept of CELMO vote based on its
consistency score. We name this voting-based pro-
cedure SelectCoarse(c), which selects one coarse
type from a given concept:

SelectCoarse(c) ,

argmax
t

X

c̃2CELMO

X

t2Tcoarse(c̃)

Consistency(c̃, s, m),

Algorithm 1: Type inference algorithm
Input mention m in sentence s, retrieved concepts
CESA, CELMO, csurf, and type definition T

Output Inferred types tcoarse and {tfine}.

Define, r(t, t0; C, C0) := Count(t;C)/|C|

Count(t0;C0)/|C0| ,
r(t; C, C0) := r(t, t; C, C0),
r(t, t0; C, ) := r(t, t0; C, C).

⌧surf  {t|t 2 Tcoarse(csurf), r(t; CELMO, CESA) > 1}

if Pr(csurf|m) � � and ⌧surf 6= ; then
tcoarse  SelectCoarse(csurf)
C̃  {csurf} [ CELMO

{tfine} 

8
<

:tf

������

tf 2 Tfine(csurf),
compatible w/ tcoarse and,
r(tf , tcoarse; C̃) � ⌘s

9
=

;

else

C̃ELMO  

⇢
c

����
c 2 CELMO, 9t 2 Tcoarse(c)
r(t; CELMO, CESA) > 1

�

if C̃ELMO = ø then
c̃ argmaxc2CELMO

Consistency(c, s, m)
else

c̃ argmaxc2C̃ELMO
Consistency(c, s, m)

end
tcoarse  SelectCoarse(c̃)

{tfine} 

8
<

:tf

������

tf 2 Tfine(CELMO),
compatible w/ tcoarse and,
r(tf , tcoarse; CELMO) � ⌘c

9
=

;

end

where consistency is defined in Equation (1).

Fine type inference. With the selected coarse
type, we take only the fine types that are compati-
ble with the selected coarse type (e.g., the fine type
/people/athlete and the coarse type /people

are compatible).
Among the compatible fine types, we further fil-

ter the ones that have better support from the con-
text. Therefore, we select the fine types tf such
that Count(tf ;CELMO)

Count(tc;CELMO) � ⌘, where tc is the previously
selected coarse type which is compatible with tf .
Intuitively, the fraction filters out the fine-grained
candidate types that don’t have enough support
compared to the selected coarse type.

4 Experiments

Empirically, we study the behavior of our system
compared to published results. All the results are
reproduced except the ones indicated by ⇤, which
are directly cited from their corresponding papers.

Datasets. In our experiments, we use a wide
range of typing datasets:
• For coarse entity typing, we use MUC (Gr-

ishman and Sundheim, 1996), CoNLL (Tjong
Kim Sang and De Meulder, 2003), and
OntoNotes (Hovy et al., 2006).
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FIGER BBN OntoNotesfine

Approach Trained on Acc. F1ma F1mi Acc. F1ma F1mi Acc. F1ma F1mi
C

lo
se

d
Ty

pe

AFET* (Ren et al., 2016) FIGER 53.3 69.3 66.4 - - - - - -
NFETC-HIER(R)*(Xu and Barbosa, 2018) FIGER 68.9 81.9 79.0 - - - - - -

AFET* (Ren et al., 2016) BBN - - - 68.3 74.4 74.7 - - -
AAA* (Abhishek et al., 2017) BBN - - - 73.3 79.1 79.2 - - -

AFET* (Ren et al., 2016) OntoNotesfine - - - - - - 55.1 71.1 64.7
NFETC-HIER(R)* (Xu and Barbosa, 2018) OntoNotesfine - - - - - - 60.2 76.4 70.2

O
pe

n
Ty

pe

OTYPER
(Yuan and Downey, 2018)

FIGER 47.2 69.1 67.2 27 50.3 49.5 31.6 34.5 32.1
BBN 5.3 11.5 11.5 29 54.4 48.8 2.5 5.1 5.4

OntoNotesfine 0.4 15.6 16.8 23.6 51.1 47.9 31.8 39.1 36

ELMONN ⇥ 21.5 57.7 53.8 49.3 68.4 66.2 0.5 21.2 21.8
WIKIFIERTYPER ⇥ 17.2 33.3 46.2 45.8 52.3 66.1 47.8 65.6 58.2

ZOE (ours) ⇥ 58.8 74.8 71.3 61.8 74.6 74.9 50.7 66.9 60.8

Table 2: Evaluation of fine-grained entity-typing: we compare our system with state-of-the-art systems (§4.1) For each
column, the best zero-shot and overall results are bold-faced and underlined, respectively. Numbers are F1 in percentage. For
supervised systems, we report their in-domain performances, since they do not transfer to other datasets with different labels.
For OTYPER, cells with gray color indicate in-domain evaluation, which is the setting in which it has the best performance.
Our system outperforms all the other zero-shot baselines, and achieves competitive results compared to the best supervised
systems.

OntoNotes CoNLL MUC

System Trained on PER LOC ORG PER LOC ORG PER LOC ORG

COGCOMPNLP OntoNotes 98.4 91.9 97.7 83.7 70.1 68.3 82.5 76.9 86.7
COGCOMPNLP CoNLL 94.4 59.1 87.8 95.6 92.9 90.5 90.8 90.8 90.9

ZOE (ours) ⇥ 88.4 70.0 85.6 90.1 80.1 73.9 87.8 90.9 91.2

Table 3: Evaluation of coarse entity-typing (§4.2): we compare two supervised entity-typers with our system. For the su-
pervised systems, cells with gray color indicate in-domain evaluation. For each column, the best, out-of-domain and overall
results are bold-faced and underlined, respectively. Numbers are F1 in percentage. In most of the out-of-domain settings our
system outperforms the supervised system.

• For fine typing, we focus on FIGER (Ling and
Weld, 2012), BBN (Weischedel and Brunstein,
2005), and OntoNotesfine (Gillick et al., 2014).

• In addition to the news NER, we use the BB3
dataset (Delėger et al., 2016), with contain men-
tions of bacteria or other notions, extracted from
sentences of scientific papers.

ZOE’s parameters. We use different type defi-
nitions for each dataset. In order to design type
definitions for each dataset, we follow in the foot-
steps of Abhishek et al. (2017) and randomly sam-
ple 10% of the test set. For the experiments, we
exclude the sampled set. For completeness, we
have included the type definitions of the major ex-
periments in Appendix D.

The parameters are set universally across dif-
ferent experiments. For parameters that deter-
mine the number of extracted concepts, we use
`ESA = 300 and `ELMO = 20, which are based
on the upper-bound analysis in Appendix A. For
other parameters, we set � = 0.5, ⌘s = 0.8 and
⌘c = 0.3, based on the FIGER dev set. We em-
phasize that these parameters are universal across
our evaluations.

Evaluation metrics. Given a collection of men-
tions M , denote the set of gold types and predicted
types of a mention m 2 M as Tg(m) and Tp(m)
respectively. We define the following metrics for
our evaluations:
• Strict Accuracy (Acc.): |{m|Tg(m)=Tp(m)}|

|M | .
• Macro F1 (F1ma): Macro Precision is defined as

1
|M |

P
m2M

|Tp(m)\Tg(m)|
|Tp(m)| . With this, the defini-

tions of Macro recall and F1 follow.
• Micro F1 (F1mi): The precision is defined asP

m2M |Tp(m)\Tg(m)|P
m2M |Tp(m)| , and the Micro recall and

F1 follow the same pattern.
In the experiment in §4.3, to evaluate systems

on unseen types we used modified versions of met-
rics. Let G(t) be the number of mentions with
gold type t, P (t) be the number of mentions pre-
dicted to have type t, C(t) be the number of men-
tions correctly predicted to have type t:
• The precision corresponding to F1type

ma is defined
as

P
t

C(t)
P (t)

G(t)P
t0 G(t0) ; recall follows the same pat-

tern.
• The precision corresponding to F1type

mi is defined
as

P
t C(t)P
t P (t) ; recall follows the same pattern.
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Approach F1type
ma F1type

mi

ELMONN 63.1 53.8
WIKIFIERTYPER 53.0 43.9

OTYPER (Yuan and Downey, 2018) 50.6 23.4
ZOE (ours) 71.7 71.1

Table 4: Comparing systems where no labels
(types) are seen a priori (§4.3).

Baselines. To add to the best published results
on each dataset, we create two simple and effec-
tive baselines. The first baseline, ELMONN, se-
lects the nearest neighbor types to a given men-
tion, where mentions and types are represented by
ELMO vectors. To create a representation for each
type t, we average the representation of the WIK-
ILINKS sentences that contain mentions of type t
(as explained in §3.2). Our other baseline, WIK-
IFIERTYPER, uses Wikifier (Tsai et al., 2016b) to
map the mention to a Wikipedia concept, followed
by mapping to FREEBASE types, and finally pro-
jecting them to the target types, via type defini-
tion function T (.). Additionally, to compare with
published zero-shot systems, we compare our sys-
tem to OTYPER, a recently published open-typing
system. Unfortunately, to the best of our knowl-
edge, the systems proposed by Ma et al.; Huang
et al. (2016; 2016) are not available online for em-
pirical comparison.

4.1 Fine-Grained Entity Typing

We evaluate our system for fine-grained named-
entity typing. Table 2 shows the evaluation
result for three datasets, FIGER, BBN, and
OntoNotesfine. We report our system’s perfor-
mance, our zero-shot baselines, and two super-
vised systems (AFET, plus the-state-of-the-art),
for each dataset. There is no easy way to trans-
fer the supervised systems across datasets, hence
no out-of-domain numbers for such systems. For
each dataset, we train OTYPER and evaluate on the
test sets of all the three datasets. In order to run
OTYPER on different datasets, we disabled orig-
inal dataset-specific entity and type features. As
a result, among the open typing systems, our sys-
tem has significantly better results. In addition,
our system has competitive scores compared to the
supervised systems.

4.2 Coarse Entity Typing

In Table 3 we study entity typing for the coarse
types on three datasets. We focus on three types

System Bacteria not-Bacteria Overall

WIKIFIERTYPER 54.8 86.2 70.5
ELMONN 67.6 81.2 74.4
ZOE (ours) 68.1 84.2 76.2

Table 5: Results of the system classifying mentions
to “bacteria” or something else (§4.4). Numbers
are F1 in percentage.

that are shared among the datasets: PER, LOC,
ORG. In coarse-entity typing, the best available
systems are heavily supervised. In this evaluation,
we use gold mention spans; i.e., we force the de-
coding algorithm of the supervised systems to se-
lect the best of the three classes for each gold men-
tion. As expected, the supervised systems have
strong in-domain performance. However, they
suffer a significant drop when evaluated in a dif-
ferent domain. Our system, while not trained on
any supervised data, achieves better or comparable
performance compared to other supervised base-
lines in the out-of-domain evaluations.

4.3 Typing of Unseen Types within Domain
We compare the quality of open typing, in which
the target type(s) have not been seen before. We
compare our system to OTYPER, which relies on
supervised data to create representations for each
type; however, it is not restricted to the observed
types. We follow a similar setting to Yuan and
Downey (2018) and split the FIGER test in folds
(one fold per type) and do cross-validations. For
each fold, mentions of only one type are used
for evaluation, and the rest are used for training
OTYPER. To be able to evaluate on unseen types
(only for this experiment), we use modified met-
rics F1type

ma and F1type
mi that measure per type qual-

ity of the system (§4). In this experiment, we focus
on a within-domain setting, and show the results
of transfer across genres in the next experiments.
The results are summarized in Table 4. We ob-
serve a significant margin between ZOE and other
systems, including OTYPER.

4.4 Biology Entity Typing
We go beyond the scope of popular entity-typing
tasks, and evaluate the quality of our system on a
dataset that contains sentences from scientific pa-
pers (Delėger et al., 2016), which makes it differ-
ent from other entity-typing datasets. The men-
tions refer to either “bacteria”, or some miscella-
neous class (two class typing). As indicated in Ta-
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FIGER BBN OntoNotesfine

Approach Acc. F1ma F1mi Acc. F1ma F1mi Acc. F1ma F1mi

ZOE (ours) 58.8 74.8 71.3 61.8 74.6 74.9 50.7 66.9 60.8

no surface-based concepts -8.8 -7.5 -9.2 -12.9 -7.0 -8.6 -1.8 -1.2 -0.1
no context-based concepts -39.3 -42.1 -25.4 -36.4 -31.0 -13.9 -10.0 -12.3 -7.4

Table 6: Ablation study of different ways in which concepts are generated in our system (§4.5). The first row shows perfor-
mance of our system on each dataset, followed by the change in the performance upon dropping a component. While both
signals are crucial, contextual information is playing more important role than the mention-surface signal.

ble 5, our system’s overall scores are higher than
our baselines.

4.5 Ablation Study
We carry out ablation studies that quantify the con-
tribution of surface information (§3.3) and context
information (§3.2). As Table 6 shows, both fac-
tors are crucial and complementary for the sys-
tem. However, the contextual information seems
to have a bigger role overall.

We complement our qualitative analysis with
the quantitative share of each component. In
69.3%, 54.6%, and 69.7% of mentions, our system
uses the context information (and ignores the sur-
face), in FIGER, BBN, and OntoNotesfine datasets,
respectively, underscoring the importance of con-
textual information.

4.6 Error Analysis
We provide insights into specific reasons for the
mistakes made by the system. For our analysis,
we use the erroneous decisions in the FIGER dev
set. Two independent annotators label the cause(s)
of the mistakes, resulting in 83% agreement be-
tween the annotators. The disagreements are later
reconciled by an adjudication step.
1. Incompatible concept, due to context informa-

tion: Ambiguous contexts, or short ones, of-
ten contribute to the inaccurate mapping to con-
cepts. In our manual annotations, 23.3% of er-
rors are caused, at least partly, by this issue.

2. Incompatible concept, due to surface informa-
tion: Although the prior probability is high, the
surface-based concept could be wrong. About
26% of the errors are partly due to the surface
signal errors.

3. Incorrect type, due to type inference: Even
when the system is able to find several type-
compatible concepts, it can fail due to inference
errors. This could happen if the types attached
to the type-compatible concepts are not the ma-
jority among other types attached to other con-

cepts. This is the major reason behind 56.6%
of errors.

4. Incorrect type, due to type definition: Some er-
rors are caused by the inaccurate definition of
the type mapping function T . About 23% of
the mistakes are partly caused by this issue.

Note that each mistake could be caused by mul-
tiple factors; in other words, the above categories
are not mutually disjoint events. A slightly more
detailed analysis is included in Appendix C.

5 Conclusion

Moving beyond a fully supervised paradigm and
scaling entity-typing systems to support bigger
type sets is a crucial challenge for NLP. In this
work, we have presented ZOE, a zero-shot open
entity typing framework. The significance of this
work is threefold. First, the proposed system does
not require task-specific labeled data. Our sys-
tem relies on type definitions, which are much
cheaper to obtain than annotating thousands of ex-
amples. Second, our system outperforms exist-
ing state-of-the-art zero-shot systems by a signifi-
cant margin. Third, we show that without reliance
on task-specific supervision, one can achieve rela-
tively robust transfer across datasets.
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Passage: Super Bowl 50 was an American football game 
to determine the champion of the National Football 
League (NFL) for the 2015 season. The American 
Football Conference (AFC) champion Denver Broncos 
defeated the National Football Conference (NFC) 
champion Carolina Panthers 24–10 to earn their third 
Super Bowl title. The game was played on February 7, 
2016, at Levi's Stadium in the San Francisco Bay Area at 
Santa Clara, California. The Champ Bowl 40 took place 
in Chicago. 

Question1: Who won Super Bowl 50?
Question2: Where did Super Bowl 50 take place?

P: … Denver Broncos defeated Carolina Panthers ...

Q: Who won Super Bowl 50?

1

0.5

0

1

0.5

0

start probability
end probability

ground truth start
ground truth end

start probability
end probability

ground truth start
ground truth end

Teacher

Student

A: Carolina Panthers

Distill

2078



3. Attention Distillation
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Abstract

Most work in machine reading focuses on
question answering problems where the an-
swer is directly expressed in the text to read.
However, many real-world question answer-
ing problems require the reading of text not
because it contains the literal answer, but be-
cause it contains a recipe to derive an answer
together with the reader’s background knowl-
edge. One example is the task of interpret-
ing regulations to answer “Can I...?” or “Do
I have to...?” questions such as “I am work-
ing in Canada. Do I have to carry on pay-
ing UK National Insurance?” after reading a
UK government website about this topic. This
task requires both the interpretation of rules
and the application of background knowledge.
It is further complicated due to the fact that,
in practice, most questions are underspecified,
and a human assistant will regularly have to
ask clarification questions such as “How long
have you been working abroad?” when the an-
swer cannot be directly derived from the ques-
tion and text. In this paper, we formalise this
task and develop a crowd-sourcing strategy to
collect 32k task instances based on real-world
rules and crowd-generated questions and sce-
narios. We analyse the challenges of this task
and assess its difficulty by evaluating the per-
formance of rule-based and machine-learning
baselines. We observe promising results when
no background knowledge is necessary, and
substantial room for improvement whenever
background knowledge is needed.

1 Introduction

There has been significant progress in teaching ma-
chines to read text and answer questions when the
answer is directly expressed in the text (Rajpurkar
et al., 2016; Joshi et al., 2017; Welbl et al., 2018;
Hermann et al., 2015). However, in many settings,

⇤These three authors contributed equally

Do I need to carry on 
paying UK National 

Insurance?

I am working for an 
employer in Canada.

Yes

Have you been working abroad 52 
weeks or less?

Yes

You’ll carry on paying National 
Insurance for the first 52 weeks 
you’re abroad if you’re working for 
an employer outside the EEA.

in
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Utterance 1

Utterance 2

Rule Text

Scenario

Question

Follow-up

Answer

Figure 1: An example of two utterances for rule
interpretation. In the first utterance, a follow-up
question is generated. In the second, the scenario,
history and background knowledge (Canada is not
in the EEA) is used to arrive at the answer “Yes”.

the text contains rules expressed in natural lan-
guage that can be used to infer the answer when
combined with background knowledge, rather than
the literal answer. For example, to answer some-
one’s question “I am working for an employer in
Canada. Do I need to carry on paying National
Insurance?” with “Yes”, one needs to read that
“You’ll carry on paying National Insurance if you’re
working for an employer outside the EEA” and un-
derstand how the rule and question determine the
answer.

Answering questions that require rule interpre-
tation is often further complicated due to missing
information in the question. For example, as il-
lustrated in Figure 1 (Utterance 1), the actual rule
also mentions that National Insurance only needs
to be paid for the first 52 weeks when abroad. This
means that we cannot answer the original question
without knowing how long the user has already
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been working abroad. Hence, the correct response
in this conversational context is to issue another
query such as “Have you been working abroad 52
weeks or less?”

To capture the fact that question answering in
the above scenario requires a dialog, we hence con-
sider the following conversational machine read-
ing (CMR) problem as displayed in Figure 1: Given
an input question, a context scenario of the ques-
tion, a snippet of supporting rule text containing a
rule, and a history of previous follow-up questions
and answers, predict the answer to the question
(“Yes”or “No”) or, if needed, generate a follow-up
question whose answer is necessary to answer the
original question. Our goal in this paper is to create
a corpus for this task, understand its challenges,
and develop initial models that can address it.

To collect a dataset for this task, we could give a
textual rule to an annotator and ask them to provide
an input question, scenario, and dialog in one go.
This poses two problems. First, this setup would
give us very little control. For example, users
would decide which follow-up questions become
part of the scenario and which are answered with
“Yes” or “No”. Ultimately, this can lead to bias
because annotators might tend to answer “Yes”,
or focus on the first condition. Second, the more
complex the task, the more likely crowd annotators
are to make mistakes. To mitigate these effects, we
aim to break up the utterance annotation as much
as possible.

We hence develop an annotation protocol in
which annotators collaborate with virtual users—
agents that give system-produced answers to
follow-up questions—to incrementally construct
a dialog based on a snippet of rule text and a sim-
ple underspecified initial question (e.g., “Do I need
to ...?”), and then produce a more elaborate ques-
tion based on this dialog (e.g., “I am ... Do I need
to...?”). By controlling the answers of the virtual
user, we control the ratio of “Yes” and “No” an-
swers. And by showing only subsets of the dialog
to the annotator that produces the scenario, we can
control what the scenario is capturing. The ques-
tion, rule text and dialogs are then used to produce
utterances of the kind we see in Figure 1. Annota-
tors show substantial agreement when constructing
dialogs with a three-way annotator agreement at a
Fleiss’ Kappa level of 0.71.1 Likewise, we find that

1This is well within the range of what is considered as
substantial agreement (Artstein and Poesio, 2008).

our crowd-annotators produce questions that are
coherent with the given dialogs with high accuracy.

In theory, the task could be addressed by an end-
to-end neural network that encodes the question,
history and previous dialog, and then decodes a
Yes/No answer or question. In practice, we test
this hypothesis using a seq2seq model (Sutskever
et al., 2014; Cho et al., 2014), with and without
copy mechanisms (Gu et al., 2016) to reflect how
follow-up questions often use lexical content from
the rule text. We find that despite a training set
size of 21,890 training utterances, successful mod-
els for this task need a stronger inductive bias due
to the inherent challenges of the task: interpret-
ing natural language rules, generating questions,
and reasoning with background knowledge. We
develop heuristics that can work better in terms of
identifying what questions to ask, but they still fail
to interpret scenarios correctly. To further motivate
the task, we also show in oracle experiments that a
CMR system can help humans to answer questions
faster and more accurately.

This paper makes the following contributions:
1. We introduce the task of conversational ma-

chine reading and provide evaluation metrics.
2. We develop an annotation protocol to collect

annotations for conversational machine read-
ing, suitable for use in crowd-sourcing plat-
forms such as Amazon Mechanical Turk.

3. We provide a corpus of over 32k conversa-
tional machine reading utterances, from do-
mains such as grant descriptions, traffic laws
and benefit programs, and include an analysis
of the challenges the corpus poses.

4. We develop and compare several baseline
models for the task and subtasks.

2 Task Definition

Figure 1 shows an example of a conversational ma-
chine reading problem. A user has a question that
relates to a specific rule or part of a regulation, such
as “Do I need to carry on paying National Insur-
ance?”. In addition, a natural language description
of the context or scenario, such as “I am working
for an employer in Canada”, is provided. The ques-
tion will need to be answered using a small snippet
of supporting rule text. Akin to machine reading
problems in previous work (Rajpurkar et al., 2016;
Hermann et al., 2015), we assume that this snip-
pet is pre-identified. We generally assume that the
question is underspecified, in the sense that the
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question often does not provide enough informa-
tion to be answered directly. However, an agent can
use the supporting rule text to infer what needs to
be asked in order to determine the final answer. In
Figure 1, for example, a reasonable follow-up ques-
tion is “Have you been working abroad 52 weeks
or less?”.

We formalise the above task on a per-utterance
basis. A given dialog corresponds to a sequence of
prediction problems, one for each utterance the
system needs to produce. Let W be a vocabu-
lary. Let q = w1 . . . wnq be an input question and
r = w1 . . . wnr an input support rule text, where
wi 2 W is a word from a vocabulary. Further-
more, let h = (f1, a1) . . . (fnh , anh) be a dialog
history where each fi 2 W ⇤ is a follow-up ques-
tion, and each ai 2 {YES, NO} is a follow-up an-
swer. Let s be a scenario describing the context of
the question. We will refer to x = (q, r, h, s) as
the input. Given an input x, our task is to predict
an answer y 2 {YES, NO, IRRELEVANT} [ W ⇤

that specifies whether the answer to the input ques-
tion, in the context of the rule text and the previ-
ous follow-up question dialog, is either YES, NO,
IRRELEVANT or another follow-up question in W ⇤.
Here IRRELEVANT is the target answer whenever
a rule text is not related to the question q.

3 Annotation Protocol

Our annotation protocol is depicted in Figure 2 and
has four high-level stages: Rule Text Extraction,
Question Generation, Dialog Generation and Sce-
nario Annotation. We present these stages below,
together with discussion of our quality-assurance
mechanisms and method to generate negative data.
For more details, such as annotation interfaces, we
refer the reader to Appendix A.

3.1 Rule Text Extraction Stage
First, we identify the source documents that con-
tain the rules we would like to annotate. Source
documents can be found in Appendix C. We then
convert each document to a set of rule texts using
a heuristic which identifies and groups paragraphs
and bulleted lists. To preserve readability during
the annotation, we also split by a maximum rule
text length and a maximum number of bullets.

3.2 Question Generation Stage
For each rule text we ask annotators to come up
with an input question. Annotators are instructed to

ask questions that cannot be answered directly but
instead require follow-up questions. This means
that the question should a) match the topic of the
support rule text, and b) be underspecified. At
present, this part of the annotation is done by expert
annotators, but in future work we plan to crowd-
source this step as well.

3.3 Dialog Generation Stage
In this stage, we view human annotators as assis-
tants that help users reach the answer to the input
question. Because the question was designed to be
broad and to omit important information, human
annotators will have to ask for this information us-
ing the rule text to figure out which question to
ask. The follow-up question is then sent to a vir-
tual user, i.e., a program that simply generates a
random YES or NO answer. If the input question
can be answered with this new information, the an-
notator should enter the respective answer. If not,
the annotator should provide the next follow-up
question and the process is repeated.

When the virtual user is providing random YES
and NO answers in the dialog generation stage,
we are traversing a specific branch of a decision
tree. We want the corpus to reflect all possible
dialogs for each question and rule text. Hence, we
ask annotators to label additional branches. For
example, if the first annotator received a YES as
the answer to the second follow-up question in
Figure 3, the second annotator (orange) receives a
NO.

3.4 Scenario Annotation Stage
In the final stage, we choose parts of the dialogs cre-
ated in the previous stage and present this to an an-
notator. For example, the annotator sees “Are you
working or preparing for work?” and NO. They
are then asked to write a scenario that is consistent
with this dialog such as “I am currently out of work
after being laid off from my last job, but am not
able to look for any yet.”. The number of questions
and answers that the annotator is presented with for
generating a scenario can vary from one to the full
length of a dialog. Users are encouraged to para-
phrase the questions and not to use many words
from the dialog.

In an attempt to make these scenarios closer to
the real-world situations where a user may provide
a lot of unnecessary information to an operator,
not only do we present users with one or more
questions and answers from a specific dialog but
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Do I need to carry on 
paying National 
Insurance?

Annotator

Virtual User

Do I need to carry on paying 
National Insurance?

Annotator Annotator

Do I need to carry on paying 
National Insurance?

I am working for an 
employer in Canada.

Yes

Have you been working 
abroad 52 weeks or less?

Yes

Are you working for an 
employer outside the EEA

Yes

Yes

Have you been working abroad 
52 weeks or less?

Yes

sees only

Question 
Generation
Stage

Dialog  
Generation
Stage

Scenario  
Annotation
Stage

You’ll carry on paying National 
Insurance for the first 52 weeks 
you’re abroad if you’re working 
for an employer outside the 
EEA.

You’ll carry on paying National 
Insurance for the first 52 weeks 
you’re abroad if you’re working 
for an employer outside the 
EEA.

You’ll carry on paying National 
Insurance for the first 52 weeks 
you’re abroad if you’re working 
for an employer outside the 
EEA.

You’ll carry on paying National 
Insurance for the first 52 weeks 
you’re abroad if you’re working 
for an employer outside the 
EEA.

Figure 2: The different stages of the annotation process (excluding the rule text extraction stage). First
a human annotator generates an underspecified input question (question generation). Then, a virtual
user and a human annotator collaborate to produce a dialog of follow-up questions and answers (dialog
generation). Finally, a scenario is generated from parts of the dialog, and these parts are omitted in the
final result.

Have you been working 
abroad 52 weeks or less?

Are you working for an 
employer outside the EEA

Yes No

Yes No

Yes

No

No

Figure 3: We use different annotators (indicated by
different colors) to create the complete dialog tree.

also with one question from a random dialog. The
annotators are asked to come up with a scenario
that fits all the questions and answers.

Finally, a dialog is produced by combining the
scenario with the input question and rule text from
the previous stages. In addition, all dialog utter-
ances that were not shown to the final annotator
are included as well as they complement the in-
formation in the scenario. Given a dialog of this
form, we can create utterances that are described
in Section 2.

As a result of this stage of annotation, we create a
corpus of scenarios and questions where the correct
answers (YES, NO or IRRELEVANT) to questions
can be derived from the related scenarios. This
corpus and its challenges will be discussed in Sec-
tion 4.2.2.

3.5 Negative Examples
To facilitate the future application of the models
to large-scale rule-based documents instead of rule

text, we deem it to be imperative for the data to
contain negative examples of both questions and
scenarios.

We define a negative question as a question that
is not relevant to the rule text. In this case, we ex-
pect models to produce the answer IRRELEVANT.
For a given rule text and question pair, a negative
example is generated by sampling a random ques-
tion from the set of all possible questions, exclud-
ing the question itself and questions sourced from
the same document using a methodology similar to
the work of Levy et al. (2017).

The data created so far is biased in the sense
that when a scenario is given, at least one of the
follow-up questions in a dialog can be answered.
In practice, we expect users to also provide back-
ground scenarios that are completely irrelevant to
the input question. Therefore, we sample a nega-
tive scenario for each input question and rule text
pair, (q, r) in our data. We uniformly sample from
the scenarios created in Section 3.4 for all question
and rule text pairs (q0, r0) unequal to (q, r). For
more details, we point the reader to Appendix D.

3.6 Quality Control
We employ a range of quality control measures
throughout the process. In particular, we:

1. Re-annotate pre-terminal nodes in the dia-
log trees if they have identical YES and NO
branches.

2. Ask annotators to validate the previous dialog
in case previous utterances where created by
different annotators.

3. Assess a sample of annotations for each an-
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notator and keep only those annotators with
quality scores higher than a certain threshold.

4. We require annotators to pass a qualification
test before selecting them for our tasks. We
also require high approval rates and restrict
location to the UK, US, or Canada.

Further details are provided in Appendix B.

3.7 Cost, Duration and Scalability
The cost of different stages of annotation is as fol-
lows. An annotator was paid $0.15 for an initial
question (948 questions), $0.11 for a dialog part
(3000 dialog parts) and $0.20 for a scenario (6,600
scenarios). It takes in total 2 weeks to complete the
annotation process. Considering that all the annota-
tion stages can be done through crowdsourcing and
in a relatively short time period and at a reasonable
cost using established validation procedures, the
dataset can be scaled up without major bottlenecks
or an impact on the quality.

4 ShARC

In this section, we present the SHaping Answers
with Rules and Conversation (ShARC) dataset.2

4.1 Dataset Size and Quality
The dataset is built up from of 948 distinct snip-
pets of rule text. Each has an input question and
a “dialog tree”. At each step in the dialog, there
is a followup question posed and the tree branches
depending on the answer to the followup question
(yes/no). The ShARC dataset is comprised of all
individual “utterances” from every tree, i.e. ev-
ery possible point/node in any dialog tree. There
are 6058 of these utterances. In addition, there
are 6637 scenarios that provide more information,
allowing some questions in the dialog tree to be
“skipped” as the answers can be inferred from the
scenario. Scenarios therefore modify the dialog
trees, which creates new trees. When combined
with scenarios and negative sampled scenarios, the
total number of distinct utterances became 37087.
As a final step, utterances were removed where the
scenario referred to a portion of the dialog tree that
was unreachable for that utterance, leaving a final
dataset size of 32436 utterances.3

2The dataset and its Codalab challenge can be found at
https://sharc-data.github.io.

3One may argue that the the size of the dataset is not
sufficient for training end-to-end neural models. While we
believe that the availability of large datasets such as SNLI or
SQuAD has helped drive the state-of-the-art forward on related

We break these into train, development and test
sets such that each dataset contains approximately
the same proportion of sources from each domain,
targeting a 70%/10%/20% split.

To evaluate the quality of dialog generation
HITs, we sample a subset of 200 rule texts and ques-
tions and allow each HIT to be annotated by three
distinct workers. In terms of deciding whether the
answer is a YES, NO or some follow-up question,
the three annotators reach an answer agreement of
72.3%. We also calculate Cohen’s Kappa, a mea-
sure designed for situations with two annotators.
We randomly select two out of the three annota-
tions and compute the unweighted kappa values,
repeated for 100 times and averaged to give a value
of 0.82.

The above metrics measure whether annota-
tors agree in terms of deciding between YES, NO
or some follow-up question, but not whether the
follow-up questions are equivalent. To approxi-
mate this, we calculate BLEU scores between pairs
of annotators when they both predict follow-up
questions Generally, we find high agreement: An-
notators reach average BLEU scores of 0.71, 0.63,
0.58 and 0.58 for maximum orders of 1, 2, 3 and 4
respectively.

To get an indication of human performance on
the sub-task of classifying whether a response
should be a YES, NO or FOLLOW-UP QUESTION,
we use a similar methodology to (Rajpurkar et al.,
2016) by considering the second answer to each
question as the human prediction and taking the
majority vote as ground truth. The resulting human
accuracy is 93.9%.

To evaluate the quality of the scenarios, we sam-
ple 100 scenarios randomly and ask two expert
annotators to validate them. We perform validation
for two cases: 1) scenarios generated by turkers
who did not attempt the qualification test and were
not filtered by our validation process, 2) scenar-
ios that are generated by turkers who have passed
the qualification test and validation process. In the
second case, annotators approved an average of
89 of the scenarios whereas in the first case, they
only approved an average of 38. This shows that
the qualification test and the validation process im-

tasks, relying solely on large datasets to push the boundaries
of AI cannot be as practical as developing better models for
incorporating common sense and external knowledge which
we believe ShARC is a good test-bed for. Furthermore, the
proposed annotation protocol and evaluation procedure can be
used to reliably extend the dataset or create datasets for new
domains.
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proved the quality of the generated scenarios by
more than double. In both cases, the annotators
agreed on the validity of 91-92 of the scenarios.
For further details on dataset quality, the reader if
referred to Appendix B.

4.2 Challenges
We analyse the challenges involved in solving con-
versational machine reading in ShARC. We divide
these into two parts: challenges that arise when
interpreting rules, and challenges that arise when
interpreting scenarios.

4.2.1 Interpreting Rules
When no scenarios are available, the task reduces
to a) identifying the follow-up questions within
the rule text, b) understanding whether a follow-up
question has already been answered in the history,
and c) determining the logical structure of the rule
(e.g.disjunction vs. conjunction vs. conjunction of
disjunctions) .

To illustrate the challenges that these sub-tasks
involve, we manually categorise a random sample
of 100 (qi, ri) pairs. We identify 9 phenomena of
interest, and estimate their frequency within the
corpus. Here we briefly highlight some categories
of interest, but full details, including examples, can
be found in Appendix G.

A large fraction of problems involve the
identification of at least two conditions, and
approximately 41% and 27% of the cases involve
logical disjunctions and conjunctions respectively.
These can appear in linguistic coordination
structures as well as bullet points. Often, differ-
entiating between conjunctions and disjunctions
is easy when considering bullets—key phrases
such as “if all of the following hold” can give
this away. However, in 13% of the cases, no
such cues are given and we have to rely on lan-
guage understanding to differentiate. For example:

Q: Do I qualify for Statutory Maternity Leave?
R: You qualify for Statutory Maternity Leave if

- you’re an employee not a “worker”
- you give your employer the correct notice

4.2.2 Interpreting Scenarios
Scenario interpretation can be considered as a
multi-sentence entailment task. Given a sce-
nario (premise) of (usually) several sentences,
and a question (hypothesis), a system should out-

put YES (ENTAILMENT), NO (CONTRADICTION)
or IRRELEVANT (NEUTRAL). In this context,
IRRELEVANT indicates that the answer to the ques-
tion cannot be inferred from the scenario.

Different types of reasoning are required to in-
terpret the scenarios. Examples include numeri-
cal reasoning, temporal reasoning and implication
(common sense and external knowledge). We man-
ually label 100 scenarios with the type of reasoning
required to answer their questions. Table 1 shows
examples of different types of reasoning and their
percentages. Note that these percentages do not add
up to 100% as interpreting a scenario may require
more than one type of reasoning.

5 Experiments

To assess the difficulty of ShARC as a machine
learning problem, we investigate a set of baseline
approaches on the end-to-end task as well as the im-
portant sub-tasks we identified. The baselines are
chosen to assess and demonstrate both feasibility
and difficulty of the tasks.

Metrics For all following classification tasks, we
use micro- and macro- averaged accuracies. For the
follow-up generation task, we compute the BLEU
scores at orders 1, 2, 3 and 4 computed between the
gold follow-up questions, yi and follow-up ques-
tion ŷi = wŷi,1, wŷi,2 . . . wŷi,n for all utterances i
in the evaluation dataset.

5.1 Classification (excluding Scenarios)
On each turn, a CMR system needs to decide, either
explicitly or implicitly, whether the answer is YES
or NO, whether the question is not relevant to the
rule text (IRRELEVANT), or whether a follow-up
question is necessary—an outcome we label as
MORE. In the following experiments, we will test
whether one can learn to make this decision using
the ShARC training data.

When a non-empty scenario is given, this task
also requires an understanding of how scenarios
answer follow-up questions. In order to focus on
the challenges of rule interpretation, here we only
consider empty scenarios.

Formally, for an utterance x = (q, r, h, s), we
require models to predict an answer y where y 2
{YES, NO, IRRELEVANT, MORE}. Since we con-
sider only the classification task without scenario
influence, we consider the subset of utterances such
that s = NULL. This data subset consists of 4026
train, 431 dev and 1601 test utterances.
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Category Questions Scenario %

Explicit Has your wife reached state pension age? Yes My wife just recently reached the age for state pension 25%

Temporal Did you own it before April 1982? Yes I purchased the property on June 5, 1980. 10%

Geographic Do you normally live in the UK? No I’m a resident of Germany. 7%

Numeric Do you work less than 24 hours a week between
you? No

My wife and I work long hours and get between 90 -
110 hours per week between the two of us.

12%

Paraphrase Are you working or preparing for work? No I am currently out of work after being laid off from my
last job, but am not able to look for any yet.

19%

Implication Are you the baby’s father? No My girlfriend is having a baby by her ex. 51%

Table 1: Types of reasoning and their proportions in the dataset based on 100 samples. Implication includes
reasoning beyond what is explicitly stated in the text, including common sense reasoning and external
knowledge.

Model Micro Acc. Macro Acc.

Random 0.254 0.250
Surface LR 0.555 0.511
Heuristic 0.791 0.779
Random Forest 0.808 0.797

CNN 0.677 0.681

Table 2: Selected Results of the baseline models on
the classification sub-task.

Baselines We evaluate various baselines includ-
ing random, a surface logistic regression applied to
a TFIDF representation of the rule text, question
and history, a rule-based heuristic which makes
predictions depending on the number of overlap-
ping words between the rule text and question, de-
tecting conjunctive or disjunctive rules, detecting
negative mismatch between the rule text and the
question and what the answer to the last follow-up
history was, a feature-engineered Random Forest
and a Convolutional Neural Network applied to
the tokenised inputs of the concatenated rule text,
question and history.

Results We find that, for this classification sub-
task, Random Forest slightly outperforms the
heuristic. All learnt models considerably outper-
form the random and majority baselines.

5.2 Follow-up Question Generation without
Scenarios

When the target utterance is a follow-up question,
we still have to determine what that follow-up ques-
tion is. For an utterance x = (q, r, h, s), we re-
quire models to predict an answer y where y is the
next follow-up question, y = wy,1, wy,2 . . . wy,n =
fm+1 if x has history of length m. We there-

fore consider the subset of utterances such that
s = NULL and y 62 {YES, NO, IRRELEVANT}.
This data subset consists of 1071 train, 112 dev and
424 test utterances.

Baselines We first consider several simple base-
lines to explore the relationship between our evalu-
ation metric and the task. As annotators are encour-
aged to re-use the words from rule text when gen-
erating follow-up questions, a baseline that simply
returns the final sentence of the rule text performs
surprisingly well. We also implement a rule-based
model that uses several heuristics.

If framed as a seq2seq task, a modified Copy-
Net is most promising (Gu et al., 2016). We also
experiment with span extraction/sequence-tagging
approaches to identify relevant spans from the rule
text that correspond to the next follow-up ques-
tions. We find that Bidirectional Attention Flow
(Seo et al., 2017) performed well.4 Further imple-
mentation details can be found in Appendix H.

Results Our results, shown in Table 3 indicate
that systems that return contiguous spans from the
rule text perform better according to our BLEU
metric. We speculate that the logical forms in the
data are challenging for existing models to extract
and manipulate, which may suggest why the ex-
plicit rule-based system performed best. We fur-
ther note that only the rule-based and NMT-Copy
models are capable of generating genuine questions
rather than spans or sentences.

5.3 Scenario Interpretation
Many utterances require the interpretation of the
scenario associated with a question. If the scenario

4We use AllenNLP implementations of BiDAF & DAM
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4

First Sent. 0.221 0.144 0.119 0.106

NMT-Copy 0.339 0.206 0.139 0.102
BiDAF 0.450 0.375 0.338 0.312
Rule-based 0.533 0.437 0.379 0.344

Table 3: Selected Results of the baseline models on
follow-up question generation.

Model Micro Acc. Macro Acc.

Random 0.330 0.326
Surface LR 0.682 0.333

DAM (SNLI) 0.479 0.362

DAM (ShARC) 0.492 0.322

Table 4: Results of entailment models on ShARC.

is understood, certain follow-up questions can be
skipped because they are answered within the sce-
nario. In this section, we investigate how difficult
scenario interpretation is by training models to an-
swer follow-up questions based on scenarios.

Baselines We use a random baseline and also im-
plement a surface logistic regression applied to a
TFIDF representation of the combined scenario and
the question. For neural models, we use Decom-
posed Attention Model (DAM) (Parikh et al., 2016)
trained on each the SNLI and ShARC corpora us-
ing ELMO embeddings (Peters et al., 2018).4

Results Table 4 shows the result of our baseline
models on the entailment corpus of ShARC test
set. Results show poor performance especially for
the macro accuracy metric of both simple baselines
and neural state-of-the-art entailment models. This
performance highlights the challenges that the sce-
nario interpretation task of ShARC presents, many
of which are discussed in Section 4.2.2.

5.4 Conversational Machine Reading
The CMR task requires all of the above abilities. To
understand its core challenges, we compare base-
lines that are trained end-to-end vs. baselines that
reuse solutions for the above subtasks.

Baselines We present a Combined Model (CM)
which is a pipeline of the best performing Random
Forest classification model, rule-based follow-up
question generation model and Surface LR entail-
ment model. We first run the classification model
to predict YES, NO, MORE or IRRELEVANT. If
MORE is predicted, the Follow-up Question Gen-

Model Micro Acc Macro Acc BLEU-1 BLEU-4

CM 0.619 0.689 0.544 0.344
NMT 0.448 0.428 0.340 0.078

Table 5: Results of the models on the CMR task.

eration model is used to produce a follow-up ques-
tion, f1. The rule text and produced follow-up
question are then passed as inputs to the Sce-
nario Interpretation model. If the output of this is
IRRELEVANT, then the CM predicts f1, otherwise,
these steps are repeated recursively until the clas-
sification model no longer predicts MORE or the
entailment model predicts IRRELEVANT, in which
case the model produces a final answer. We also in-
vestigate an extension of the NMT-copy model on
the end-to-end task. Input sequences are encoded
as a concatenation of the rule text, question, sce-
nario and history. The model consists of a shared
encoder LSTM, a 4-class classification head with
attention, and a decoder GRU to generate followup
questions. The model was trained by alternating
training the classifier via standard softmax-cross en-
tropy loss and the followup generator via seq2seq.
At test time, the input is first classified, and if the
predicted class is MORE, the follow-up generator
is used to generate a followup question, f1. A sim-
pler model without the separate classification head
failed to produce predictive results.

Results We find that the combined model outper-
forms the neural end-to-end model on the CMR
task, however, the fact that the neural model has
learned to classify better than random and also
predict follow-up questions is encouraging for de-
signing more sophisticated neural models for this
task.

User Study In order to evaluate the utility of con-
versational machine reading, we run a user study
that compares CMR to when such an agent is not
available, i.e. the user has to read the rule text and
determine themselves the answer to the question.
On the other hand, with the agent, the user does not
read the rule text, instead only responds to follow-
up questions. Our results show that users using the
conversational agent reach conclusions > 2 times
faster than ones that are not, but more importantly,
they are also much more accurate (93% as com-
pared to 68%). Details of the experiments and the
results are included in Appendix I.
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6 Related Work

This work relates to several areas of active research.

Machine Reading In our task, systems answer
questions about units of texts. In this sense, it
is most related to work in Machine Reading (Ra-
jpurkar et al., 2016; Seo et al., 2017; Weissenborn
et al., 2017). The core difference lies in the con-
versational nature of our task: in traditional Ma-
chine Reading the questions can be answered right
away; in our setting, clarification questions are
often needed. The domain of text we consider
is also different (regulatory vs Wikipedia, books,
newswire).

Dialog The task we propose is, at its heart, about
conducting a dialog (Weizenbaum, 1966; Serban
et al., 2018; Bordes and Weston, 2016). Within
this scope, our work is closest to work in dialog-
based QA where complex information needs are
addressed using a series of questions. In this space,
previous approaches have been looking primarily
at QA dialogs about images (Das et al., 2017) and
knowledge graphs (Saha et al., 2018; Iyyer et al.,
2017). In parallel to our work, both Choi et al.
(2018) and Reddy et al. (2018) have to began to
investigate QA dialogs with background text. Our
work not only differs in the domain covered (regula-
tory text vs wikipedia), but also in the fact that our
task requires the interpretation of complex rules, ap-
plication of background knowledge, and the formu-
lation of free-form clarification questions. Rao and
Daume III (2018) does investigate how to generate
clarification questions but this does not require the
understanding of explicit natural language rules.

Rule Extraction From Text There is a long
line of work in the automatic extraction of rules
from text (Silvestro, 1988; Moulin and Rousseau,
1992; Delisle et al., 1994; Hassanpour et al., 2011;
Moulin and Rousseau, 1992). The work tackles a
similar problem—interpretation of rules and reg-
ulatory text—but frames it as a text-to-structure
task as opposed to end-to-end question-answering.
For example, Delisle et al. (1994) maps text to
horn clauses. This can be very effective, and good
results are reported, but suffers from the general
problem of such approaches: they require careful
ontology building, layers of error-prone linguistic
preprocessing, and are difficult for non-experts to
create annotations for.

Question Generation Our task involves the au-
tomatic generation of natural language questions.
Previous work in question generation has focussed
on producing questions for a given text, such that
the questions can be answered using this text (Van-
derwende, 2008; M. Olney et al., 2012; Rus et al.,
2011). In our case, the questions to generate are
derived from the background text but cannot be
answered by them. Mostafazadeh et al. (2016)
investigate how to generate natural follow-up ques-
tions based on the content of an image. Besides
not working in a visual context, our task is also
different because we see question generation as a
sub-task of question answering.

7 Conclusion

In this paper we present a new task as well as an
annotation protocol, a dataset, and a set of base-
lines. The task is challenging and requires models
to generate language, copy tokens, and make log-
ical inferences. Through the use of an interactive
and dialog-based annotation interface, we achieve
good agreement rates at a low cost. Initial baseline
results suggest that substantial improvements are
possible and require sophisticated integration of
entailment-like reasoning and question generation.
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Abstract

Although natural language question answer-
ing over knowledge graphs have been studied
in the literature, existing methods have some
limitations in answering complex questions.
To address that, in this paper, we propose a
State Transition-based approach to translate
a complex natural language question N to a
semantic query graph (SQG) QS , which is
used to match the underlying knowledge graph
to find the answers to question N . In or-
der to generate QS , we propose four prim-
itive operations (expand, fold, connect and
merge) and a learning-based state transition
approach. Extensive experiments on several
benchmarks (such as QALD, WebQuestions
and ComplexQuestions) with two knowledge
bases (DBpedia and Freebase) confirm the su-
periority of our approach compared with state-
of-the-arts.

1 Introduction

Complex Question Answering, in which the ques-
tion corresponds to multiple triples in knowledge
base, has attracted researchers’ attentions recently
(Bao et al., 2014; Xu et al., 2016; Berant and
Liang, 2014; Bast and Haussmann, 2015; Yih
et al., 2015). However, most of existing solu-
tions employ the predefined patterns or templates
in understanding complex questions. For exam-
ple, (Bao et al., 2014; Xu et al., 2016) use de-
pendency tree patterns to decompose a complex
question to several simple questions. (Berant and
Liang, 2014; Bast and Haussmann, 2015) rely on
templates to translate natural language sentences
to predefined logical forms. Obviously, it is im-
possible to cover all real-world cases using those
handcrafted templates. The recent work STAGG
(Yih et al., 2015) proposes a state transition strat-
egy to tackle complex questions. However, the
generated query graph’s structure in STAGG is

limited, as shown in Figure 1. Generally, the struc-
ture is formed by linking the topic entity e and the
answer node t through a core relation. It only al-
lows entity constraints (such as c) and one vari-
able (the answer node t), the expressivity is quite
limited. It cannot cover all types of complex ques-
tions such as the question in Figure 2, whose query
graph contains variable constraint (v4) and multi-
edges (between v1 and v4). Therefore, in this pa-
per, we propose a more flexible strategy to answer
complex questions without handcrafted templates
or restricting the query graph’s structure.

1.1 Properties and Challenges of Complex
Questions

We first analyze the inherent challenges for com-
plex question answering, which has not been well
studied in existing literatures.
Multi or Implicit relations. A complex ques-
tion has multiple relations and some relations may
be multi-hop or implicit. Consider the question
N1 = “Which Russian astronauts died in the
same place they were born in?”. Obviously there
are two explicit relations represented by the two
phrases “died in” and “born in”, but many tradi-
tional methods only extract a single relation be-
tween topic entity and the answer node. On the
other hand, there is an implicit relation between
“Russian” and “astronauts” (i.e., hNationalityi),
which lacks a corresponding relation phrase.
Multi or No entities. Different from simple (one-
hop) questions that only contain a single topic en-
tity in the question sentence N , complex questions
may have multiple entities. For example, “Which
Russian astronauts were died in Moscow and born
in Soviet Union”. There are three entities “Rus-
sian”, “Moscow” and “Soviet Union”. In some
cases, the question sentence does not include any
entity, such as “Who died in the same place they
were born in”. Therefore, existing methods that
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e t c 
Topic Entity Answer Constraint

Figure 1: The query graph structure of STAGG. Node e is
the “topic entity”, path e-t is the “core inferential chain” and
c represents “augmenting constraints”. Notice we omit the
CVT node as it is a virtual node only existed in Freebase.

Russia 
?cosmonauts

v1

v2v3

Which cosmonauts died in the same place they were born in?

<birthPlace>

?place
v4

Astronaut 
<nationality> <type>

<deathPlace>
(died in) (born in)

Figure 2: The example of complex questions with semantic
query graph

only care about a single topic entity cannot work
for such types of complex questions.
Variables and Co-reference. Existing solutions
assume that there is a single variable in the ques-
tion N , i.e., the wh-word, which is focus of the
question (representing the answer node). How-
ever, complex questions may have other variables.
Consider the question in Figure 2, there are four
variables “Which”, “cosmonauts”, “place” and
“they” recognized. While the three in yellow grid
(“Which”, “cosmonaut”, “they”) refer to the same
thing, which is the co-reference phenomenon.
Composition. In the simple questions, the query
graph’s structure is determinate (one-hop edge).
For complex questions, even when all entities,
variables and relations are recognized, how to as-
semble them to logical forms or executable queries
(query graphs) is still a challenge. As mentioned
earlier, existing solutions that depend on prede-
fined templates (such as (Xu et al., 2016; Bast and
Haussmann, 2015)) or query graph structure pat-
terns (such as (Yih et al., 2015)) may not be suit-
able due to the diversity of complex questions.

1.2 Our Solution
Considering the above challenges, we propose
a state transition based framework to translate
users’ question N into a semantic query graph
(SQG) QS , further the answers of N can be found
by matching QS over the knowledge graph G.
Specifically, we first recognize nodes (such as en-
tities and variables) from N as the initial state
(Section 2.1). Then, to enable and speed up the

state transition process, we propose four primitive
operations with corresponding conditions (Section
2.2). The entity/relation candidates are extracted
using existing entity linking algorithms and our
proposed MCCNN model (Section 2.3). To guide
the state transition, we learn a reward function us-
ing SVM ranking algorithm (Section 3) to greedily
select a subsequent state.

Compared with existing solutions, our frame-
work has stronger expressivity to solve more types
of complex questions (considering the challenges
introduced in Section 1.1) and does not rely on
handcrafted templates.

2 Semantic Query Graph Generation

This section outlines the whole framework of our
system. Given a natural language question N , we
aim to translate N into a semantic query graph
(SQG) (see Definition 1).

Definition 1 (Semantic Query Graph). A seman-
tic query graph (denoted as QS) is a connected
graph, in which each vertex vi corresponds a
phrase in the question sentence N and associated
with a list of entity/type/literal candidates; and
each edge vivj is associated with a list of relation
candidates, 1  i, j  |V (QS)|.

Given a question sentence N1 = “Which cos-
monauts died in the same place they were born
in?”, the corresponding semantic query graph QS

1

is given in Figure 2. In QS
1 , the subgraph {v1,

v2 and v3} corresponds “cosmonauts”, v4 corre-
sponds “place”. The relation phrases “born in” and
“died in” denote two relations between v1 and v4.
Each edge in QS has a list of relation(predicate)
candidates with confidence probabilities. In this
paper, we only draw one relation candidate of
each edge for simplicity. Notice that the edge
v1v3 and v1v2 have no relation phrases, however,
they still have corresponding relation candidates
hnationalityi and htypei.

After obtaining semantic query graph QS , we
find matches of QS over the underlying knowl-
edge graph G to find answers to the original ques-
tion N . This stage is identical to gAnswer (Zou
et al., 2014) and NFF (Hu et al., 2018). Thus, in
this paper, we concentrate ourselves on discussing
how to generate semantic query graph QS , which
is different from NFF that relies on the paraphras-
ing dictionaries and heuristic rules to build QS .
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2.1 Node Recognition

The first step is to detect the “nodes” (for build-
ing SQG QS) in users’ question sentences. Ac-
cording to Definition 1, each node in the semantic
query graph is a phrase corresponding to a subject
or object in the SPARQL query. Generally, con-
stant nodes (e.g., Titanic) can be divided into three
categories according to their roles (entity, type, lit-
eral) in knowledge graph. Besides, a variable node
(e.g., ?place) has the potential to map any vertices
in knowledge graph.

Generally, the node recognition task is regarded
as a sequence labeling problem and we adopt a
BLSTM-CRF model (Huang et al., 2015) to re-
alize it. However, this model doesn’t work very
well on recognizing entity/type nodes as the entity
phrases may be too long or too complex. There-
fore, we first detect entity and type nodes by uti-
lize existing entity linking algorithms of specific
knowledge bases (see section 2.3), and then detect
variable/literal nodes by the BLSTM-CRF model.
A phrase wij , which contains the words from i to
j in the question, is recognized as entity/type node
if we can find entity/type mappings of wij through
the entity linking algorithm. We check all possible
phrases and select the longer one if two candidate
nodes share any words. The detected entity/type
nodes will be replaced by special tokens hEi or
hTi before calling the BLSTM-CRF model.

In practice, we find that some nodes have hid-
den information, which can be expanded to a
subgraph (i.e, one or multiple triples). For ex-
ample, the hidden information of “?cosmonauts”
in question N1 in Figure 2 can extends two
triples: h?cosmonauts rdf:type dbo:Astronauti and
h?cosmonauts dbo:nationality dbr:Russiai. Such
information can help us to reduce the matching
space and make the answers more accurate.

We mine those nodes with hidden information
from several QA benchmarks1 and build a transla-
tion dictionary DT in offline. Given a question N
with the gold query graph QG, we try to match QG

to the SQG QS generated by our approach. Each
unmatched connected subgraph in QG is regarded
as hidden information of the nearest matched node
v. For the benchmarks only have gold question-
answers pairs, we utilize the method in (Zhang and
Zou, 2017) to mine the gold query graph first.

1QALD, WebQuestions and ComplexQuestions, only the
training sets are used to build the translation dictionary DT .
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Figure 3: Samples of Operations

2.2 SQG’s Structure Construction
As mentioned earlier, our SQG’s structure is gen-
erated in a state-transition paradigm. Initially, the
state only contains several isolated nodes that are
recognized in the first step. To enable the state
transition, we propose four primitive operations as
follows.

1. Connect. Given two operate nodes u1 and
u2, we introduce an edge u1u2 between them
by the connect operation. Note that the rela-
tion mention and candidate relations (predi-
cates) of the edge u1u2 can be found through
relation extraction model (see section 2.3).

2. Merge. Given a SQG QS = {V, E} and two
operate nodes u,v, this operation is to merge
the node u into v. The new SQG Q

0S = {V \
{u}, (E \ Ed) [ Ea}, Ed = {uw 2 E} and
Ea = {vw|uw 2 E ^ w 6= v}. Notice that
v also inherits the properties of u. The merge
operation is designed to support co-reference
resolution. The Figure 3(b) gives an example.
For the question “Which presidents died in
the same place they were born in?”, the node
v2(“which”) is redundant and can be merged
into v1(“presidents”). The node v4(“they”)
and v1(“presidents”) are co-reference, we can
merge v4 to v1. The edge v3v4(birthPlace) is
replaced by edge v

0

3v
0

1(birthPlace).

3. Expand. Given a SQG QS = {V, E} and
the operate node u 2 V , this operation is
to expand u to a subgraph QS

u = {Vu, Eu}.
The new SQG Q

0S = {V [ Vu, E [ Eu}.
The expand operation is designed to those
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Figure 4: Semantic Query Graph Generation

nodes that have hidden information. Let us
see Figure 3(c). The word “cosmonauts”(v1)
means “Russia astronauts”, but it cannot be
mapped to a certain entity or type in the
knowledge base directly. To match “cosmo-
nauts”, we can expand it to an equivalent sub-
graph {v

0

1,v0

2,v0

3} (according to the transition
dictionary DT ) that can match the underlying
knowledge base.

4. Fold. Given a SQG QS = {V, E} and an op-
erate node u 2 V , this operation is to delete
u and merge the associated relations. For-
mally, the new SQG Q

0S = {V \ {u}, (E \
Ed) [ Ea}, in which Ed = {uvi 2 E}
and Ea = {vivj |uvi 2 E ^ uvj 2 E ^
i 6= j}. The fold operation is designed
to eliminate those nodes which are useless
or mis-recognized. Figure 3(d) gives an ex-
ample. For the question “Who composed
the soundtrack for Cameron’s Titanic?”, SQG
{v1, v2, v3} cannot find matches in knowl-
edge base because there are no correct rela-
tions of v1v2 and v1v3. By applying a fold
operation, these two edges with the redundant
node v1 are removed, while the new edge
v0

1v0
2 can be matched to the correct relation

hmusicComposeri (according to the relation
extraction model).

We focus on generating the correct SQG with
the above operations. Obviously, it is impossible
to enumerate all possible transitions in each step
due to exponential search space. Therefore, we
propose a greedy search algorithm2 inspired by
(Yih et al., 2015). The intention is that an better
intermediate state should have more opportunities
to be visited and produce subsequent states. As
each state can be seen as a partial SQG, we pro-
pose a reward function using a log-linear model
(see Section 3) to estimate the likelihood of each
state. A priority queue is utilized to maintain the

2The formal algorithm can be found in Appendix A.

order of unvisited states. Each turn we choose the
state with maximum correctness likelihood and try
all possible transitions by each operation. Specif-
ically, the connect and merge operations try every
pair of nodes in current state as the two operate
nodes, while the expand and fold operations try
each node as the operate node. The newly gener-
ated states are estimated by the learning model and
pushed into the priority queue. Note that redupli-
cated states will not be added. The algorithm ends
when a complete SQG QS is found and QS can
not generates any better subsequent states.

To reduce the search space of the state-
transition process, we also propose several con-
straints for each operation. Only when the condi-
tions are satisfied, the corresponding operation can
be executed. Experiments show that those condi-
tions not only speeds up the QA process but also
improves the precision (see Section 4.4). The con-
ditions are listed as follows.

Condition 1 (Condition for Connect) Two nodes
v1 and v2 can be connected if and only if there
exists no other node v⇤ that occurs in the shortest
path between v1 and v2 of the dependency parse
tree3 of question sentence N .

Condition 2 (Condition for Merge) For the
merge operation, there should be at least one vari-
able v in the two operate nodes. And v should be
a wh-word or pronoun, which may co-reference3

with an other node.

Condition 3 (Condition for Expand) For the ex-
pand operation, the operate node u should be a
variable, and we need to be able to find u and
its hidden information in the transition dictionary
DT .

Condition 4 (Condition for Fold) For the fold
operation, we require at least one of the connected
edges with the operate node have no relation can-
didates or the confidence probabilities of the cor-
responding relations are less than a threshold ⌧ .

3We utilize the Stanford CoreNLP dependency parser and
coreference annotator (Manning et al., 2014)
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The following example illustrates the process of
SQG generation. Note that it can have other tran-
sition sequences to get the final state.

Example 1 Consider Figure 4. Given a question
N1 = “Which cosmonauts died in the same place
they were born in?”, we first extract four nodes v1,
v2, v3, v4, which are all variable nodes. Accord-
ing the condition 1, we connect (v1,v2), (v1,v3),
and (v3,v4). The simple path between v1 and v3 in
the dependency parse tree can be regarded as the
relation phrase of v1v3, which is “died in”. Simi-
larly, the relation phrase of v3v4 is “born in”. As
v1 and v2 are neighbors in the dependency parse
tree, the corresponding relation phrase is empty.
Then we merge (v1,v2) as they are recognized co-
reference. Similarly v1 and v4 are merged. Notice
that the associated edge v3v4 have been reserved,
then there are two edges between v0

1 and v0
3 in the

new SQG. In the end, we expand v0
1 to the sub-

graph {v0
1, v

0
4, v

0
2} and get the final SQG.

2.3 Finding entity/relation candidates and
matches of SQG

During SQG construction, there are two sub-
tasks: entity extraction and relation extraction. We
briefly discuss the two steps as follows.

Given a node phrase in QS , we find the candi-
date entities/types with confidence probabilities by
using existing entity linking approaches. Specifi-
cally, we use S-MART (Yang and Chang, 2015)
for Freebase dataset and DBpeida Lookup4 for
DBpedia dataset.

Given two connected nodes vi and vj in QS ,
we need to find the relation candidates between
them. Inspired by the recent success of neural rela-
tion extraction models in KBQA (Yih et al., 2015;
Dong et al., 2015; Xu et al., 2016), we propose
a Multi-Channel Convolutional Neural Network
(MCCNN) to extract all relations in the question
N exploiting both syntactic and sentential infor-
mation. We use the simple path between vi and vj

in the dependency tree Y (N) as input to the first
channel. The input of second channel is the whole
question sentence excluded all nodes, which rep-
resents the context of the relation we want to pre-
dict. If vi and vj are neighbors in Y (N), we need
to extract an implicit relation. To tackle this task,
we use vi, vj and their types as input to the third
channel. For vi = “Chinese” and vj = “actor”, the
input is “Chinese-Country-actor-Actor”.

4http://wiki.dbpedia.org/projects/dbpedia-lookup

Different from (Xu et al., 2016) which can only
extract one explicit relation, our model can not
only extract multiple relations from N by taking
different node pairs, but also extract the implicit
relation considering the embedded information in
the two nodes vi and vj .

After generating the SQG QS , we employ the
subgraph matching algorithm (Hu et al., 2018)
to find matches of QS over the underlying RDF
knowledge graph G. Once the matches are found,
it is straightforward to derive the answers.

3 Learning the reward function

Given an intermediate state s during SQG gener-
ation process, we may transit to multiple subse-
quent states s0 by applying different operations.
Thus, we greedily select a subsequent state s0 with
the maximum �(s0), where �() is a reward func-
tion taking the features and outputting the reward
of corresponding state. In this work, the reward
function �() is a linear model trained with the
SVM ranking loss. Below we describe the fea-
tures, learning process and how to generate the
training data.

3.1 Features
Note that for any intermediate state s, we also re-
gard it as a SQG QS(s) even though it is a dis-
connected graph. For a given SQG QS , we extract
the following features which are passed as an input
vector to the SVM ranker.

Nodes. For each entity/type node v, we utilize
entity linking systems to find the candidate entities
or types and corresponding confidence probabili-
ties. We use the largest confidence probability as
the score of v, and use the average score of all en-
tity nodes as the feature. In addition, the number
of constant nodes and variable nodes in current QS

are considered as features.
Edges. For each edge vivj , the relation extrac-

tion model returns a list of candidate predicates
with the corresponding confidence probabilities.
We use the largest confidence probability as the
score of vivj , and use the average score of all
edges as the feature. We also consider the to-
tal number of edges in QS , the number of edges
which have relation phrase and which have no re-
lation phrase.

Matches. We also consider the matching be-
tween QS and the knowledge graph G. A new
state s would get a low score if its corresponding
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SQG QS could not find any matches in G. We
do not discard s directly from the search queue as
we allow the fold operation of it. To speed up the
matching process, we build the index of all entities
and relations in offline. For a given SQG QS , we
use the offline index to check whether it is valid.

Given a valid state s, if all of its possible subse-
quent states s0 have smaller reward function value
than that of s, we will terminate the state transi-
tion process and return s as the final state. The
corresponding SQG QS(s) is used to match the
knowledge base to retrieve answers.

3.2 Learning
The task of reward function can be viewed as a
ranking problem, in which the appropriate SQGs
should be ranked in the front. In this work, we
rank them using a SVM rank classifier (Joachims,
2006).

Given a SQG QS = {V, E}, the ranking score
that we use to train our reward function �() is cal-
culated by the following function.

R(QS) =
|P (V )|
|V 0| +

|P (E)|
|E0| + max(F (Ai, A

0))

(1)
V 0 and E0 are the gold node set and relation set ex-
tracted from the gold SPARQL query. P (V ) con-
tains the nodes existing in both V and V 0. P (E)
contains the relations existing in both E and E0.
F (Ai, A0) is the F-1 measure where A0 is the gold
answer set and Ai is one of the subgraph matches
between QS and knowledge graph G obtained by
the executing method in (Hu et al., 2018). No-
tice that for the benchmark without gold SPARQL
queries, R(QS) = max(F (Ai, A0)).

3.3 Generating Training Data
To generate the training data of the reward func-
tion, given a question N = {w1, w2, ..., wn}, we
first check all possible phrases wij by existing en-
tity linking system and get the candidate entity list
Cvi = {e1, e2, ..., em} for each entity node vi. If
two entity node vi and vj have conflict, i.e, vi and
vj share one or more words, we reserve the longer
one. We replace each entity node vi with a spe-
cial token to denote the type of entity ej , where
ej 2 Cvi and has the largest confidence possi-
bility. Then the whole node set V can be pre-
dicted by the well-trained node recognition model.
QS = {V, �} is the initial state. Further we do
state transition by applying the predefined opera-

tions using a BFS algorithm. Meanwhile, only the
states satisfied with corresponding conditions are
considered if enabling the condition mechanism.
Once we get a new QS we call the well-trained
relation extraction model to get the relation can-
didate list of each new edge vivj 2 E, while the
features are collected according Section 3.1 and
the ranking score is calculated using Equation 1.

4 Evaluation
We evaluate our system on several benchmarks
with two knowledge base DBpedia and Freebase.
For DBpedia, we use the QALD-6 benchmark. We
compare our method STF (State Transition Frame-
work) with all systems in QALD-6 competition
as well as Aqqu (Bast and Haussmann, 2015),
gAnswer (Zou et al., 2014) and NFF (Hu et al.,
2018). For Freebase, we use WebQuestions (Be-
rant et al., 2013) and ComplexQuestions (Abuja-
bal et al., 2017) as benchmarks and compare our
method with corresponding state-of-art systems.

4.1 Setup
4.1.1 Knowledge Bases
DBpedia RDF repository is a knowledge base
derived from Wikipedia (Bizer et al., 2009). We
use the version of DBpedia 2014 and the statistics
are given in Table 1.
Freebase is a collaboratively edited knowledge
base. We use the version of Freebase 2013, which
is same with (Berant and Liang, 2014). The statis-
tics are given in Table 1.

4.1.2 Benchmarks
QALD is a series of open-domain question an-
swering campaigns, which have several different
tasks. We only consider the task of English ques-
tion answering over DBpedia in QALD-6 (Unger
et al., 2016), which has 350 training questions and
100 test questions, with gold SPARQL queries and
answer sets.
WebQuestions (Berant et al., 2013) consists of
3778 training questions and 2032 test questions,
which are collected using the Google Suggest API
and crowdsourcing. It only provides the pairs of
question and answer set.
ComplexQuestions (Abujabal et al., 2017) is
composed of 150 test questions that exhibit
compositionality through multiple clauses, which
is constructed using the crawl of WikiAnswers
(http://wiki.answers.com) and human annotator. It
has no training questions and SPARQL queries.
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Table 1: Statistics of Knowledge Bases
DBpedia Freebase

Number of Entities 5.4 million 41 million
Number of Triples 110 million 596 million

Number of Predicates 9708 19456
Size of KBs (in GB) 8.7 56.9

Table 2: The average F1 score of WebQuestions and
ComplexQuestions benchmark

WQ CQ
STF (Our approach) 53.6% 54.3%

STAGG (Yih et al., 2015) 52.5% -
QUINT (Abujabal et al., 2017) 51.0% 49.2%

NFF (Hu et al., 2018) 49.6% -
Aqqu (Bast and Haussmann, 2015) 49.4% 27.8%

Aqqu++ (Bast and Haussmann, 2015) 49.4% 46.7%

4.2 Results on WebQuestions and
ComplexQuestions

Table 2 shows the results on the test set of
WebQuestions(WQ) and ComplexQuestions(CQ),
which are based on the Freebase. We com-
pare our system with STAGG (Yih et al., 2015),
QUINT (Abujabal et al., 2017), NFF (Hu et al.,
2018) and Aqqu(Bast and Haussmann, 2015).
QUINT is the model used in the original Com-
plexQuestions paper and Aqqu is the best publicly
available QA system on WebQuestions. The aver-
age F1 of our system (53.6% for WQ and 54.3%
for CQ) are better than the other systems.

Aqqu defines three query templates for We-
bQuestions and try to match test questions to pre-
defined templates. It has a poor performance
(27.8%) on ComplexQuestions when answering
the test questions directly. Aqqu++ shows the
result (46.7%) by taking manually decomposed
subquestions as input and getting the intersection
of subquestions’ answer sets. QUINT is a sys-
tem that automatically learns utterance-query tem-
plates from the pairs of question and answer set.
NFF builds a relation paraphrase dictionary and
leverages it to extract relations from the questions.
STAGG proposes a state-transition based query
graph generation method. However, its query
graph structure is limited as in the Figure 1, which
is very similar with the templates of Aqqu.

To generate the training data of relation extrac-
tion model on the WebQuestions, for each two
nodes u and v in the training question, we explore
all simple relations between u and v in Freebase.
Note that if u or v is the answer node, we will
anchor the answer entity first and select the rela-
tion which can handle most of answer entities as
the gold relation. Each entity will be replaced in
text by a special token representing its type before

Table 3: Evaluating QALD-6 Testing Questions
Processed Right Recall Precision F-1

Our approach 100 70 0.72 0.89 0.80
CANaLI 100 83 0.89 0.89 0.89
UTQA 100 63 0.69 0.82 0.75

KWGAnswer 100 52 0.59 0.85 0.70
SemGraphQA 100 20 0.25 0.70 0.37

UIQA1 44 21 0.63 0.54 0.25
UIQA2 36 14 0.53 0.43 0.17

NFF 100 68 0.70 0.89 0.78
gAnswer 100 40 0.43 0.77 0.55

Aqqu 100 36 0.37 0.39 0.38

training. As there are no training data in Com-
plexQuestions, we use the models trained on We-
bQuestions directly.

Generally, WebQuestions benchmark has low
diversity and contains some incorrect or incom-
plete labeled answers. Most of questions in We-
bQuestions are simple questions, which can be
translated to a “one-triple” query. The results
on WebQuestions benchmark prove our approach
is able to obtain good performance on simple
questions. ComplexQuestions benchmark is more
complex than WebQuestions. The experiments re-
sults show that the two template based methods
QUINT and Aqqu can solve a part of the complex
questions. However, it still lack of the capacity to
tackle all questions due to the error of dependency
parse or the mismatch of the templates. On the
other hand, our system outperforms them because
we do not rely on templates and have better gener-
alization ability to solve complex questions.

4.3 Results on QALD
Table 3 shows the evaluation results on the test
set of QALD-6. We compare our system with all
participants of QALD-6 as well as gAnswer (Zou
et al., 2014), NFF (Hu et al., 2018) and Aqqu (Bast
and Haussmann, 2015). To enable the comparison,
we show the experiment results in the QALD com-
petition report format. “Processed” denotes the
number of questions can be processed and “Right”
refers to the number of questions that were an-
swered correctly. Our approach can answer 70
questions correctly, and get the 0.80 F-1 score.

The experiment results show that we can beat
all systems in QALD-6 campaign in F-1 ex-
cept for CANaLI (Mazzeo and Zaniolo). Note
that CANaLI is not an automatic QA system,
as it needs users to specify the precise entities
and predicates in the question sentences. gAn-
swer (Zou et al., 2014) proposes a relation first
framework to generate the semantic query graph
while it can not detect implicit relations. NFF
(Hu et al., 2018) proposes a node first framework
which performs well on answering complex ques-
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Table 4: The performance comparison of state transi-
tion with conditions or without conditions in QALD-6
test set

Right Recall Precision F-1
with condition 70 0.72 0.89 0.80
no condition 62 0.64 0.84 0.72
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Figure 5: The elapsed time comparison of state transi-
tion with conditions or without conditions in QALD-6
test set

tions (0.78 F1 score on QALD-6). However it re-
lies on the predefined paraphrasing dictionaries to
extract relations and could not tackle with redun-
dant nodes.

As QALD has the gold SPARQL queries, we
can obtain the training data of node recognition
and relation extraction model directly. Different
from the WebQuestions and ComplexQuestions
which have only special questions, the QALD
benchmark also has general questions and imper-
ative sentence. Besides, there are some questions
that have no entities or multiple entities.

Generally, QALD benchmark has both high di-
versity and quality. The performance of Aqqu
in QALD is worse than its performance in We-
bQuestions and ComplexQuestions as it has only
designed the templates to WebQuestions. In con-
trast, our approach do not rely specific benchmark
or knowledge base. The evaluation results show
that our approach performs well on various types
of complex questions.

4.4 Comparison experiments of the four
conditions

We run experiments on QALD-6 test set to verify
the effectiveness of the four conditions proposed
in Section 2.2. We first compare the elapsed time
of state transition with conditions or without con-
ditions. Figure 5 shows the results of 10 ques-

Table 5: Failure Analysis on QALD-6
Reason # (Ratio) Sample question
Structure
Failure

6 (20%) Q55: In which countries do
people speak Japanese?

Entity
Mapping

5 (17%) Q88: What color expresses
loyalty?

Relation
Mapping

10 (33%) Q44: What is the full name
of Prince Charles?

Complex
Aggregation

9 (30%) Q80: How short is the
shortest active NBA player?

tions selected randomly and AVG means the av-
erage time consumption among all 100 test ques-
tions. The average elapsed time with conditions
is 700 ms while it rises to 1200 ms without the
conditions. The results declare that using the con-
ditions in the search process can avoid unneces-
sary searches and save SQG construction time. In
some questions (such as Q66 and Q81), the gap
of elapsed time are very little because the number
of recognized nodes are less than three. In other
words, those simple questions do not need the con-
ditions to speed up the SQG construction process.

On the other hand, using conditions can im-
prove the evaluation performance (see Table 4).
That because the conditions help system to re-
duce search space and avoid local optimum, es-
pecially the condition of connect operation. When
the question has multiple nodes, if we do not use
the condition of connect operation, it tries to con-
nect each two nodes and enrolls too many mis-
taken states.

4.5 Error Analysis
We provide the error analysis of our approach on
QALD-6 test set (100 questions), which contains
gold SPARQL queries and more diversified ques-
tions. The ratio of each error type and the corre-
sponding examples are given in Table 5.

There are mainly four reasons for the failure of
some questions in our approach. The first reason
is the structure failure, which means we generate a
wrong SQG. That usually occurred when the cor-
rect SQG needs a fold operation. For example, the
correct SQG of question “In which countries do
people speak Japanese” has only two nodes “coun-
tries”, “Japanese”. However, we recognized the
phrase “people” as a variable node by mistake and
connected it to both “countries” and “Japanese” to
generate a wrong SQG QS0 . It should be elimi-
nated by the fold operation to get the correct SQG
QS . However, the score of QS0 that we get from
the reward function is higher than the score of QS .
The inherent reason is the lack of training data.
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The second reason is the failure of entity link-
ing, for example, we could not find the correct en-
tity of the node “loyalty” in the question “What
color expresses loyalty?”. It has smallest propor-
tion as the existing entity linking algorithms al-
ready have high accuracy on QA task.

The third reason is the failure of relation ex-
traction. For example, the correct relation be-
tween “What” and “Prince Charles” in the ques-
tion ‘What is the full name of Prince Charles?” is
haliasi. However, we got a wrong relation hnamei.
The relation extraction problem is very important
to QA task, which can be improved by designing
more elegant models and combining more useful
information.

The last one is that our method cannot answer
some complex aggregation questions, which need
to detect the aggregation constraint first and then
infer the related node and corresponding relation.
Using predefined templates or utilizing textual ev-
idence maybe works but not good enough.

5 Related Work

Generally, the solutions of KBQA can be di-
vided into information retrieval-based and seman-
tic parsing-based methods. The general process
of information retrieval-based methods is to se-
lect candidate answers first and then rank them
by various methods(Veyseh, 2016; Dong et al.,
2015; Xu et al., 2016; Bordes et al., 2014; Yao
and Durme, 2014). The main difference among in-
formation retrieval-based methods is how to rank
the candidate answers. (Bordes et al., 2014) uti-
lizes subgraph embedding to predict the confi-
dence of candidate answers. (Dong et al., 2015)
maximize the similarity between the distributed
representation of a question and its answer can-
didates using Multi-Column Convolutional Neural
Networks (MCCNN), while (Xu et al., 2016) aims
to predicate the correct relations between topic en-
tity and answer candidates with text evidence.

The semantic parsing-based methods try to
translate the natural language question into seman-
tic equivalent logical forms, such as simple �-
DCS (Berant et al., 2013; Berant and Liang, 2014),
query graph (Yih et al., 2015; Zou et al., 2014),
or executable queries such as SPARQL (Bast and
Haussmann, 2015; Unger et al., 2012; Yahya et al.,
2012). Then the logical forms are executed by
corresponding technique and get the answers from
knowledge base. For answering complex ques-

tions, the key is how to construct the logical form.
Different from existing systems relying on the pre-
defined templates, we build the query graph by
state transition, which has stronger representation
power and more robustness.

(Dong and Lapata, 2016) trains a sequence to
tree model to translate natural language to logical
forms directly, which needs a lot of training data.
(Yu et al., 2017) uses deep bidirectional LSTMs
to learn both relation-level and word-level ques-
tion/relation representations and match the ques-
tion to candidate relations. The pipeline of (Yu
et al., 2017) is similar with (Yih et al., 2015),
which detect topic entity and relation first and
then recognize constraints by enumerating all con-
nected entities of answer node or CVT node in
knowledge base. The issue is they assume the
question N only have one relation, which is from
the topic entity to the answer. Different from (Yu
et al., 2017), we consider the question can have
many nodes (including entities and variables) and
recognize them by a BLSTM model. We also al-
low multi relations between these nodes and ex-
tract them by the MCCNN model.

6 Conclusions

In this paper, we propose a state transition frame-
work to utilize neural networks to answer complex
questions, which generates semantic query graph
based on four primitive operations. We train a
BLSTM-CRF model to recognize nodes including
entities and variables from the question sentence.
To extract the relations between those nodes, we
propose a MCCNN model which can tackle both
explicit and implicit relations. Comparing with
existing solutions, our framework do not rely on
handcrafted templates and has the potential to gen-
erate all kinds of SQGs given enough training
data. Extensive experiments on multi benchmark
datasets confirm that our approach have the state-
of-art performance.
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Abstract
The task of machine reading comprehension
(MRC) has evolved from answering simple
questions from well-edited text to answering
real questions from users out of web data.
In the real-world setting, full-body text from
multiple relevant documents in the top search
results are provided as context for questions
from user queries, including not only ques-
tions with a single, short, and factual an-
swer, but also questions about reasons, pro-
cedures, and opinions. In this case, multiple
answers could be equally valid for a single
question and each answer may occur multiple
times in the context, which should be taken
into consideration when we build MRC sys-
tem. We propose a multi-answer multi-task
framework, in which different loss functions
are used for multiple reference answers. Min-
imum Risk Training is applied to solve the
multi-occurrence problem of a single answer.
Combined with a simple heuristic passage ex-
traction strategy for overlong documents, our
model increases the ROUGE-L score on the
DuReader dataset from 44.18, the previous
state-of-the-art, to 51.09.

1 Introduction

Machine reading comprehension (MRC) or ques-
tion answering (QA) has been a long-standing goal
in Natural Language Processing. There is a surge
of interest in this area due to new end-to-end mod-
eling techniques and the release of several large-
scale, open-domain datasets.

In earlier datasets (Hermann et al., 2015; Hill
et al., 2016; Yang et al., 2015; Rajpurkar et al.,
2016), the questions did not arise from actual end
users. Instead, they were constructed in cloze style
or created by crowdworkers given a short passage
from well-edited sources such as Wikipedia and
CNN/Daily Mail. As a consequence, the questions

⇤⇤Corresponding author: D. Lin (lindek@naturali.io).

are usually well-formed and about simple facts,
and the answers are guaranteed to exist as short
spans in the given candidate passages.

In MS-MARCO (Nguyen et al., 2016), the
questions were sampled from actual search
queries, which may have typos and may not be
phrased as questions.1 Multiple short passages,
which might have the answer to the query, were
extracted from webpages by a separate informa-
tion retrieval system.

He et al. (2017) made the DuReader dataset a
more realistic reflection of the real-world prob-
lem by including not only questions with relatively
short and factual answers, but also questions about
complex descriptions, procedures, opinions, etc.
which may have multiple, much longer answers,
or no answer at all. Furthermore, full-body text
from webpages listed in top search results are di-
rectly provided as context. These documents tend
to be much noiser than Wikipedia and CNN. They
are much longer (5 times longer than those in
MS-MARCO on average) and contain many para-
graphs that are irrelevant to the query.

New problems arise as we now consider the
task of machine reading comprehension in a much
more challenging real-world setting. First, multi-
ple valid answers to a single question are not only
possible but quite common. Figure 1 shows some
examples of questions with multiple answers from
the DuReader dataset. There could be multiple
ways to perform the same task (Question 1), mul-
tiple opinions about the same subject (Question 2),
or multiple explanations for the same observation
(Question 3). However, few works have been done
with multiple answers in machine reading com-
prehension. To address this problem, we propose
a multi-answer multi-task scheme which incorpo-
rates multiple reference answers in the objective

1We use these two terms, question and query, interchange-
ably in the following content
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Question 1: 
word>�[ 
character spacing in Word 
Answers: 
1. 3K�b+�06l�=Y^3K>)l!�“>)”��gl3K“>e�[”3NQld3“�>)BC>�[”1\*:>l�
�4=“V$”Xik 
2. 3���DS>e�[��>�l4=`JY^l3K>)3Nl�AF�>e�[k 
3. �=2E4f“<@”→“>)”→“>e�[”lB;�[�hG8�k 
1. Select the text you want to indent, and right-click on it to select Font, open the Font dialog box, and then select the Character Spacing tab, 
select the Kerning for fonts check box, and enter a number, at last click OK. 
2. Select the text you want to set character spacing, and right-click on it to select Font, and then switch to Character Spacing. 
3. click Format from the upper menu bar, select Font, select Character Spacing, and then change the point size.  

Question 2: 
P_7H	�&       Is LONGZHU worth watchingm 
Answers: 
1. 	��j;c���jaa�II�k  1. It is, the pace is good and it's adorable and sweet. 
2. �	�l���"%��OL� 5Rk 2. It’s not, personally I don’t like that kind of TV series. 
3. ��l�]/MW,.���Uk   3. It’s ok, it’s fine to follow if you don’t care about the historical accuracy. 

Question 3: 
T�9
�(�-��      Got “User Busy” message after one ring 
Answers: 
1. '���DS�?#4k     1. Your number is in that person’s blacklist. 
2. '�Z��� �k      2. The person you called hung up on you. 

Figure 1: Examples of questions with multiple answers from the DuReader dataset

function (but still predicts a single answer in de-
coding time). We propose three different kinds of
multi-answer loss functions and compare their per-
formance through experiment.

Another problem is the multiple occurrences of
the same answer. As rich context is provided for a
single question, the same answer could occur more
than one time in different passages, or even at dif-
ferent places of the same passage. In this case,
using only one gold span for the answer could
be problematic, as the model is forced to choose
one span over others that contain the same con-
tent. To solve this problem, we propose to apply
Minimum Risk Training (MRT), which uses the
expected metric as the loss and gives reward to all
spans that are similar with the gold answer.

In this paper, we present a multi-answer, multi-
task objective function to train an end-to-end
MRC/QA system. We experiment with various al-
ternatives on the DuReader dataset and show that
our model out-performs other competing systems
and increases the state-of-the-art ROUGE-L score
by about 7 points.

2 Related Work

Various datasets have been released in recent
years, which fuel the research for reading compre-
hension and question answering. The CNN/Daily-
Mail dataset (Hermann et al., 2015) and the Chil-

dren’s Book Test (Hill et al., 2016) evaluate com-
prehension by filling in missing words from well-
edited texts. SQuAD (Rajpurkar et al., 2016) is
one of the most popular datasets for reading com-
prehension, where a span in a Wikipedia passage
is to be extracted to answer questions generated
by annotators. The WikiQA (Yang et al., 2015)
is another dataset from Wikipedia, where one sin-
gle sentence is to be selected to answer ques-
tions from search engine logs. Different from the
above datasets, the MS-MARCO dataset (Nguyen
et al., 2016) was built in a real-world setting. The
questions were real anonymized Bing queries and
multiple passages are extracted from related web
pages by a separate system. The DuReader (He
et al., 2017) is a Chinese dataset, similarly con-
structed from user queries as MS MACRCO, but
in a more realistic setting using Baidu Web Search
and Baidu Answers (Zhidao) data. While a small
proportion of questions were labeled with multiple
answers in MS MARCO (9.93%), more than half
of the DuReader queries were annotated with mul-
tiple answers, which provides the perfect setup for
our work.

Great effort has been put into the development
of sophisticated neural models for machine read-
ing comprehension. The attention mechanism was
first introduced by Hermann et al. (2015) into
reading comprehension and soon became the dom-

2110



inating model. Wang and Jiang (2017) proposed
to solve machine comprehension using Match-
LSTM and answer pointer. Seo et al. (2017)
and Xiong et al. (2017) applied different ways
to match the question and the context with bi-
directional attention. Hu et al. (2017) used iter-
ative aligner to match the question and the pas-
sage with feature-rich encoder. Cui et al. (2017)
employed one more layer of attention over the
bi-directional attention mechanism. Wang et al.
(2017) applied a self-matching mechanism to ag-
gregate evidence from the context. Tan et al.
(2018) proposed to generate answer from ex-
tracted answer span. Yu et al. (2018) proposed to
use convolution with self-attention instead of re-
current models in reading comprehension.

Recently there are some emerging works start-
ing to touch the reading comprehension task from
the answer side. Wang et al. (2018a) proposed to
use evidence aggregation to re-rank answer candi-
dates extracted from different passages, and Wang
et al. (2018b) proposed Cross-Passage Answer
Verification model for the same purpose. Neither
of them involved multiple answers as in this work.

Minimum Risk Training (MRT) has been
widely used in various tasks in NLP. Shen et al.
(2016) introduced MRT into Neural Machine
Translation, and Ayana et al. (2016) applied it in
Text Summarization.

3 Our Approach

In this section we describe in details the architec-
ture of our model which is depicted in Figure 2.

3.1 Passage Extraction

Unlike most other datasets where the source of an-
swers is a short passage with a few hundred words,
the DuReader dataset provides up to 5 full docu-
ments, which may contain up to 100K words. This
incurs exorbitant demand on memory and train-
ing time. To deal with this issue, previous ap-
proaches select a single representative paragraph
for each document, on which the answer extrac-
tion is performed. The original paper of DuReader
(He et al., 2017) employed a simple heuristic strat-
egy, and Wang et al. (2018b) trained a paragraph
ranking model, while Clark and Gardner (2017)
applied TF-IDF based method for the TriviaQA
dataset (Joshi et al., 2017) which was in a simi-
lar situation. However, answers could come from
more than one paragraph. We apply a simple yet

effective method to extract contents from multi-
ple paragraphs of the document, aiming to include
as much information for the answer extraction as
possible.

We concatenate the title and the whole docu-
ment as the passage if it is shorter than a prede-
fined maximum length. If not, we employ passage
extraction in the following way:

• The title of the document is extracted.
Whether a document is relevant to the ques-
tion could be easily seen from the title.

• We compute BLEU-4 score of each para-
graph relative to the question, and select the
one that appears first in the document among
paragraphs with top-k scores.

• We extract the full body of this selected para-
graph and the next paragraph.

• For each of the following paragraphs, the first
sentence is extracted as it probably contains
the main point.

• We concatenate all the extracted contents to
form the extracted passage, and it is truncated
to the maximum length if it is longer than the
predefined value.

We apply our model on the basis of the extracted
passages.

3.2 Representation of Word
Given a word sequence of question Q = {wq

t }
m
t=1,

and a word sequence of extracted passage P =
{wp

t }
n
t=1, we combine different useful information

to form the representation of each question word
wq

t and passage word wp
t :

• Word-level embedding: each word w in the
question and passage is mapped to its corre-
sponding n-dimensional embedding we.

• POS tag embedding: we use a POS tagger to
tag each word in the question and passage.
Each POS tag is mapped to a m-dimensional
embedding pe.

• Word-in-question feature: following Chen
et al. (2017) and Weissenborn et al. (2017),
we use one additional binary feature wiq for
each passage word, indicating whether this
word occurs in the question.
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Figure 2: Model Architecture

Each question word is represented as the con-
catenation of the word embedding we, and the
POS tag embedding pe, denoted as xq = [we; pe].
Each passage word is additionally concatenated
with the word-in-question feature wiq: xp =
[we; pe; wiq].

It should be noted that, character-level embed-
ding is an important part of word representation
in English MRC models (Seo et al., 2017; Weis-
senborn et al., 2017; Wang et al., 2017; Tan et al.,
2018). Character sequence would give informa-
tion which helps to relieve the OOV problem, as
many English words share the same stem and dif-
fer only in prefix or suffix. However, this is not the
case in Chinese, and we observe no significant im-
provement incorporating character-level embed-
ding into our system.

3.3 Encoding Layer

Following previous work, we use a bi-directional
LSTM to obtain contextual encoding for each

word in the question and passage respectively:

uq
i = BiLSTM(uq

i�1, x
q
i ) (1)

up
j = BiLSTM(up

j�1, x
p
j ) (2)

3.4 Match Layer
To fuse question encoding and passage encoding,
we adopt the Attention Flow Layer (Seo et al.,
2017) with a simpler similarity function. The sim-
ilarity score between the contextual encoding for
a query word uq

i and that for a passage word up
j is

defined as:
sij = uq

i
T · up

j (3)

The context-to-query attention vectors cp
j are

computed from the similarity scores:

aij =
exp(sij)Pm

k=1 exp(skj)
(4)

cp
j =

mX

i=1

aiju
q
i (5)
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The query-to-context attention vector dp is com-
puted as:

zj = max
i

sij (6)

bj =
exp(zj)Pn

k=1 exp(zk)
(7)

dp =
nX

j=1

bju
p
j (8)

Another BiLSTM is applied on top of them to
get the question-aware passage representation:

hp
j = BiLSTM(hp

j�1, [u
p
j ; c

p
j ; u

p
j � cp

j ; u
p
j � dp])

(9)

3.5 Multi-answer multi-task loss function
3.5.1 Answer prediction with multi-answer
A reading comprehension model is typically
trained as an extractor of an answer span from a
candidate passage. In DuReader dataset, multiple
reference answers are provided for a single ques-
tion. For each of the reference answers, we add the
span with the highest F1 score to the gold answer
spans. For models considering only a single an-
swer span (baseline model), the gold answer span
is the one with the highest F1 score relative to any
of the reference answers (He et al., 2017; Wang
et al., 2018b).

In the boundary model with pointer network
(Wang and Jiang, 2017; Wang et al., 2017; Tan
et al., 2018), two probability distributions y1

j and
y2

j (j = 1 . . . n), which denote the probability that
position j is the beginning or the end of the answer
span respectively, are computed as follows:

st
j = vT tanh(W p

hhp
j + WP

a ha
j�1) (10)

yt
j =

exp(st
j)Pn

k=1 exp(st
k)

(11)

ct =
nX

j=1

yt
jh

p
j (12)

ha
t = BiLSTM(ha

t�1, ct) (13)

where t = 1, 2, and the initial hidden state ha
0 is

generated by an attention-pooling over the ques-
tion representation following Wang et al. (2017):

si = vT tanh(W q
uuq

i + b) (14)

ai =
exp(si)Pm

k=1 exp(sk)
(15)

ha
0 =

mX

i=1

aiu
q
i (16)

Note that all passages for the same question are
concatenated in order to predict one answer span.
The loss is defined as the sum of negative log prob-
abilities of the ground truth start and end position
based on the predicted distributions:

L = �(log y1
start + log y2

end) (17)

We propose three different ways to incorporate
multiple answers. A simple solution is to compute
the average loss for multiple answer spans:

Lavg = � 1

A

AX

k=1

(log y1
startk + log y2

endk
) (18)

Lavg treats all answer spans as equally good.
However, some of them may be closer to human-
generated answers than others. We therefore de-
fine the weighted average loss as follow:

Lwavg = �
AX

k=1

wk(log y1
startk + log y2

endk
) (19)

where wk is the F-score between the answer span
and the corresponding human-generated answer,
normalized by the sum of the scores of each an-
swer.

Another solution is to use the minimal value of
the loss from each span:

Lmin = min
k

(�(log y1
startk + log y2

endk
)) (20)

Instead of predicting all answer spans, this loss
will encourage the model to predict only the easi-
est answer span for it.

The answer span prediction loss Lap is defined
as the average of any of the loss functions de-
scribed above over the training set.

3.5.2 Passage selection with multi-answer
Tan et al. (2018) showed that their single-answer,
multi-passage MRC model benefits from using
multi-task learning by adding an auxiliary loss to
predict the correct passage to extract the answer
from. We adapt the idea to compute passage se-
lection loss Lps in multi-answer setting.
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We first apply attention-pooling over the pas-
sage representation {hp

j}n
j=1, and then calculate a

matching score g for each passage:

sj = vT tanh(W p
uhp

j + b) (21)

aj =
exp(sj)Pn

k=1 exp(sk)
(22)

rp =
nX

j=1

ajh
p
j (23)

g = sigmoid(vT
spr

p) (24)

Since multiple answers are provided in the
DuReader dataset, multiple passages may contain
correct answers. The match score g for different
passages are not in competition against one an-
other. We therefore used pointwise sigmoid func-
tion instead of the softmax function (as in Tan
et al. (2018)) in the passage selection loss Lps:

Lps = � 1

K

KX

k=1

(yk log gk

+(1 � yk) log(1 � gk))

(25)

where yk = 1 if one of the gold span comes from
this passage, yk = 0 otherwise.

3.5.3 Joint training
We train our model by jointly optimizing answer
span prediction loss and passage selection loss:

L = Lap + �psLps (26)

where �ps is a hyper-parameter tuned on the dev
set.

3.6 Minimum Risk Training
Minimum Risk Training (MRT) has been widely
used in various tasks in NLP. The basic idea is
to directly optimize the evaluation metric instead
of maximizing the log likelihood of training data
using Maximum Likelihood Estimation (MLE) as
described above. In MRT, the object is to mini-
mize the expected loss with respect to the posterior
distribution:

JMRT (✓) =
1

N

NX

i=1

Eyi|xi;✓[�(yi, y
⇤
i )] (27)

where �(yi, y⇤
i ) is a function which indicates the

difference between the predicted result yi and the
label result y⇤

i .

In this work, we apply MRT to solve the prob-
lem of multi-occurrence of answer in machine
reading comprehension, directly using the metric
(ROUGE-L) as �. As an answer occurs multi-
ple times in the context, each span in which the
answer occurs will have minimum difference with
the answer, and is thus given a high score by a
model trained with MRT.

In machine translation and many other tasks, to
compute the expected metric with respect to the
posterior distribution is often intractable. Thus
sampling methods are commonly used in MRT
training. However, in our span extraction model,
we use all spans without sampling.

Formally, the MRT loss in our model is defined
as:

JMRT (✓) =
1

N

NX

i=1

|P |X

k=1

|P |X

l=k+1

y1
ky

2
l �(Pk,l, A)

(28)
As in Hu et al. (2017), we minimize the linear

combination of MLE and MRT loss:

J(✓) = JMLE(✓) + �JMRT (✓) (29)

where JMLE(✓) refers to L in equation 26 and � is
a hyper-parameter tuned on the development set.

4 Experiment

We conduct our experiment on the DuReader
dataset (He et al., 2017), where multiple passages
containing full-body text are provided for each
question, and over half of the questions have mul-
tiple answers.

4.1 Dataset and Evaluation Metrics
The DuReader dataset consists of 201574 ques-
tions in total, with 181574 in the training set,
10000 in the development set, and 10000 in the
test set. The questions are sampled from fre-
quently occurring queries from Baidu search en-
gines, and the full-body text of top-5 search results
from the web are provided as the context.

BLEU-4 and ROUGE-L are used in evaluation
on DuReader. However, the implementations for
the two metrics are quite different in the official
evaluation tool. As in MS-MARCO, the BLEU-
4 score is normalized across all questions, essen-
tially giving different weights to different ques-
tions, while the ROUGE-L is averaged across dif-
ferent questions. We mainly focus on ROUGE-
L as each question in a reading comprehension
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Model ROUGE-L BLEU-4
BiDAF baseline 37.68 35.51
+ passage extraction 44.57 38.03
+ rich feature 48.93 42.17

Table 1: The influence of passage extraction and rich-
feature representation on the development set

Loss ROUGE-L �
single answer 48.93 -
Lmin 49.05 + 0.12
Lavg 49.67 + 0.74
Lwavg 49.77 + 0.84

Table 2: Comparison among different choices for the
loss function with multiple answers on the development
set

dataset should have equal weight in evaluation
(Tan et al., 2018). For a single question with mul-
tiple reference answers, the maximum score with
any reference answers is used, as implemented in
the official tool for ROUGE-L. This is reasonable
as providing one valid answer is good enough in
many cases.

4.2 Implementation Details
4.2.1 Word and POS Tag Embedding
We train a segmentation model with one-layer
BiLSTM using the DuReader dataset, and apply
it to a subset of SogouT corpus2, which con-
tains a large amount of Chinese web pages(Liu
et al., 2012). 256-dimension word embeddings are
trained on this data with language model task us-
ing one-layer BiLSTM model.

As for POS tag, we use a POS tagger trained on
the Chinese Treebank (CTB) data to tag each word
in questions and passages in the DuReader dataset.
64-dimension POS tag embeddings are trained on
this data using one-layer BiLSTM model.

We keep all word and POS tag embeddings
fixed during training.

4.2.2 Training and Parameters
The maximum length of each passage is set to be
500. The batch size is set to be 32. The dimen-
sion of hidden vector is set to be 150 for all lay-
ers. Dropout (Srivastava et al., 2014) is applied be-
tween layers, with a dropout rate of 0.15. We use
�ps = 3 for passage selection loss and � = 10 for

2http://www.sogou.com/labs/resource/t.
php

Model ROUGE-L �
single-answer baseline 48.93 -
+ multi-answer loss 49.77 + 0.84
+ passage selection loss 49.96 + 1.03
+ MRT 50.62 + 1.69

Table 3: Results with multi-answer multi-task loss and
Minimum Risk Training on the development set

MRT. All parameters are tuned on the DuReader
development set.

As MRT training is more time-consuming than
MLE training, our MRT model is initialized with
model trained with MLE. It usually obtains the
best result in just one epoch, which results in fea-
sible training time.

Our model is optimized with Adam algorithm
(Kingma and Ba, 2014), and the learning rate is
fixed to 0.001 during training.

4.3 Results

4.3.1 Single-Answer Baseline

Table 1 shows the results for passage extraction
and rich-feature representation (pre-trained word,
POS, and word-in-query embeddings) on the de-
velopment set. Both of them dramatically in-
crease ROUGE-L and BLEU-4 score over the
BiDAF baseline from the original DuReader pa-
per. Together they form our single-answer base-
line, on which we test the effectiveness of the
multi-answer multi-task loss and Minimum Risk
Training.

4.3.2 Different loss functions with
multi-answer

Table 2 shows the experimental results with three
different multi-answer loss functions introduced
in Section 3.5.1. All of them offer improvement
over the single-answer baseline, which shows the
effectiveness of utilizing multiple answers. The
average loss performs better than the min loss,
which suggests that forcing the model to predict
all possible answers is better than asking it to just
find the easiest one. Not surprisingly, by taking
into account the quality of different answer spans,
the weighted average loss outperforms the average
loss and achieves the best result among the three.
All later experiments are conducted based on the
weighted average loss.
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Model ROUGE-L BLEU-4
BiDAF (He et al., 2017) 39.0 31.8
Match-LSTM (He et al., 2017) 39.2 31.9
PR+BiDAF (Wang et al., 2018b) 41.81 37.55
PE+BiDAF (ours) 45.93 38.86
V-Net (Wang et al., 2018b) 44.18 40.97
Our complete model 51.09 43.76
Human 57.4 56.1

Table 4: Performance of our model and competing models on the DuReader test set

ROUGE-L
Model Qs Qm

single-answer 38.01 53.8
multi-answer 38.66 54.65

Table 5: Results on Qs and Qm

4.3.3 Multi-task Loss and Minimum Risk
Training

As we can see in Table 3, the ROUGE-L score on
the DuReader development set increases to 49.77
by incorporating multi-answer into the loss func-
tion. Joint learning with passage selection loss
yields an increase of 0.19. And with Minimum
Risk Training, our model can reach a ROUGE-L
score of 50.62, with a further increment of 0.66.

4.3.4 Comparison with State-of-the-art
Table 4 shows the performance of our model and
other state-of-the-art models on the DuReader test
set. First, we compare our passage extraction
method with the paragraph ranking model from
Wang et al. (2018b). Based on the same BiDAF
model described in Section 3.4, our method
(PE+BiDAF) significantly outperforms the trained
model from Wang et al. (2018b) (PR+BiDAF)
on the DuReader test set. As we can see, our
complete model achieves the state-of-the-art per-
formance in both ROUGE-L and BLEU-4, and
greatly narrows the performance gap between
MRC system and human in the challenging real-
world setting.

4.3.5 Further Analysis
For further analysis, we construct two sets from
the development set. Qs contains 2787 questions
with a single reference answer, and Qm contains
6650 questions with more than one reference an-
swer. 563 questions from the development set are
labeled with no answer, and thus not included in

Qs or Qm. Table 5 shows the performance of
our model on Qs and Qm. It can be seen that
even questions with single answer (Qs) can ben-
efit from using multiple answers in training. The
improvement for Qm is higher than that for Qs.

5 Conclusion

In this paper, we focus on real-world machine
reading comprehension. We propose a multi-
answer multi-task framework to tackle the multi-
answer problem which is common in everyday
world. Minimum Risk Training is applied to solve
the multi-occurrence problem of the answer. We
also propose a simple method for passage extrac-
tion which solves the length issue of the pas-
sage. Experimental results indicate that our model
achieves state-of-the-art performance in the chal-
lenging DuReader dataset.

Despite using multiple answers in training, our
system only predicts a single answer in decoding
time. However, in some cases (e.g. for questions
about opinion), finding all possible answers may
be desirable. In the future, we plan to design mod-
els which could generate all possible answers for
a single question.
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Abstract
We propose the task of Open-Domain Infor-
mation Narration (OIN) as the reverse task of
Open Information Extraction (OIE), to imple-
ment the dual structure between language and
knowledge in the open domain. We then de-
velop an agent, called Orator, to accomplish
the OIN task, and assemble the Orator and the
recently proposed OIE agent – Logician (Sun
et al., 2018) into a dual system to utilize the
duality structure with a reinforcement learning
paradigm. Experimental results reveal the dual
structure between OIE and OIN tasks helps to
build better both OIE agents and OIN agents.

1 Introduction

The duality between language and knowledge is
natural for human intelligence. The human can ex-
tract knowledge from natural language to learn or
remember, and then narrate the knowledge back
to natural language to communicate. Information
extraction (IE) is a task to simulate the first part
of the duality, which is a long-term hot spot for
NLP research. Recently, the task that fulfills the
last part of the duality, that is, assembling a set
of relation instances/facts or database records into
natural language sentences/documents, has also
attracted many interests (Wiseman et al., 2017;
Chisholm et al., 2017; Agarwal and Dymetman,
2017; Vougiouklis et al., 2017; Yin et al., 2016). In
the literature, this task has been referred to as “data
to document generation” (Wiseman et al., 2017)
or “knowledge-to-text” (Chisholm et al., 2017). In
this paper, we name the task as information narra-
tion (IN), to emphasize the reverse relationship to
the information extraction (IE) task.

The duality between language and knowledge
(and thus between the IE and IN tasks) can be
examined in closed-domain or open-domain. For
the closed-domain problem, the closed-domain IE
(CIE) task is often referred to as “relation ex-

traction” or “relation classification”, which iden-
tifies instances of a fixed and finite set of rela-
tions from natural language corpus, using super-
vised methods (Kambhatla, 2004; Zelenko et al.,
2003; Miwa and Bansal, 2016; Zheng et al., 2017)
or weakly supervised methods (Mintz et al., 2009;
Lin et al., 2016). In the meantime, the close-
domain IN (CIN) task (Wiseman et al., 2017;
Chisholm et al., 2017; Agarwal and Dymetman,
2017; Vougiouklis et al., 2017; Yin et al., 2016)
transforms a set of facts with a pre-defined schema
or relation types (such as facts from Freebase (Bol-
lacker et al., 2008), DBpedia (Auer et al., 2007),
or database tables), into natural language sen-
tences/documents. Furthermore, the dual structure
between CIE and CIN tasks has been noticed and
utilized in (Chisholm et al., 2017).

For the open-domain problem, the open-domain
IE (OIE) task is to investigate how the natural
language sentences express the facts, and then
use the learned knowledge to extract entity and
relation level intermediate structures from open-
domain sentences (Christensen et al., 2011; Et-
zioni et al., 2011; Schmitz et al., 2012; Pal and
Mausam, 2016). Although the OIE task has at-
tracted much interests and obtained many appli-
cations (Christensen et al., 2013, 2014; Mausam,
2016; Stanovsky et al., 2015; Khot et al., 2017;
Fader et al., 2014), the OIN task has not been
stated, neither the duality between the language
and knowledge in the open domain.

Open-Domain Closed-Domain
Extraction OIE CIE
Narration OIN CIN

Table 1: Taxonomy: Tasks between knowledge and
natural language.

The tasks involved in the duality between lan-
guage and knowledge is shown in Table 1, where
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the OIN task has not been stated. In this paper,
we focus on the OIN task and the duality between
the OIE and OIN tasks, for following reasons: 1)
the OIN task is an essential component for open-
domain information processing pipeline. For ex-
ample, it is helpful for building natural and in-
formative response for open-domain KBQA sys-
tems (Khot et al., 2017; Fader et al., 2014). 2) (as
the results in this paper will illustrate) the duality
between tasks can be valuable for building better
agents for both tasks (Xia et al., 2017, 2016).

A major historical obstacle for investigating
the duality between OIE and OIN tasks is the
absence of parallel corpus between natural lan-
guage sentence and open-domain facts. Recently,
the SAOKE dataset (Sun et al., 2018) was re-
leased, which contains more than forty thou-
sand of human-labeled open-domain sentence-
facts pairs, and thus essentially eliminates the ob-
stacle for our investigation.

The contribution of this paper lies in following
aspects:

• We propose the concept of OIN task, which is
potentially an important component for open-
domain information pipeline. We develop the
Orator agent to fulfill the task;

• We build a multi-agent system with Logician
and Orator to exploit the dual structure be-
tween language and knowledge in open do-
main. Experimental results reveal that the
dual information is beneficial for improving
the performance of both agents.

The paper is organized as follows: Section 2
discusses the related work. Section 3 explains the
Orator agent for OIN task. Section 4 describes the
multi-agent system with Logician and Oration and
its algorithm to learn from the duality between lan-
guage and sentence. The experimental results of
the fine tuned agents are shown and discussed in
Section 5. We conclude our work and discuss the
future direction in Section 6.

2 Related Work

2.1 Information Narration

The closed-domain information narration (CIN)
task has been studied in (Wiseman et al., 2017;
Chisholm et al., 2017; Agarwal and Dymet-
man, 2017; Vougiouklis et al., 2017). These

CIN agents face problems from different prob-
lem domains, from people biographies to basket-
ball game records, but most of them follow the
same sequence-to-sequence pattern. First, the al-
gorithm encodes a sequence of facts into a set
of annotations and then decodes the annotations
into a natural language text. Mechanisms such
as attention (Bahdanau et al., 2014) and copy-
ing (Gu et al., 2016) are employed into the de-
coder to improve the performance. Then, the mod-
els are trained on a supervised dataset with back-
propagation.

In this work, we adopt a similar sequence-to-
sequence architecture to build our baseline Ora-
tor agent, but with following differences: 1) the
Orator is proposed to narrate open domain facts,
where the encoder must encode words rather than
the entities and relations in the closed domain; 2)
the baseline Orator will be fine tuned using the
dual learning algorithm proposed in this paper.

2.2 Dual Learning Systems

For many natural language processing tasks, there
exist corresponding reverse/dual tasks. One ex-
ample of a pair of dual problems is the question
answering (QA) and question generation (QG). In
(Tang et al., 2017), the duality between QA prob-
lem and QG problem was considered as a con-
straint that both problems must share the same
joint probability. Then, a loss function that im-
plemented the constraint was involved in the su-
pervised learning procedures for both agents. Fur-
thermore, researchers (Tang et al., 2017; Duan
et al., 2017; Sachan and Xing, 2018) use both
the question-answering agent and the question-
generation agent to identify extra high-confident
question-answering pairs, which are further used
to fine tune the pre-trained agents.

Back-and-forth translation (or round-trip trans-
lation) 1 is another example of duality, in the field
of machine translation. It has been employed to
evaluate the quality of machine translation sys-
tems (Van Zaanen and Zwarts, 2006), or to test
the suitability of text for machine translation (Gas-
pari, 2006; Shigenobu, 2007). Recently, (Xia
et al., 2016) implemented the duality in a neural-
based dual learning system, in which the quality
of each translation agent was improved on the un-
labeled dataset using the rewards provided by its

1https://en.wikipedia.org/wiki/
Round-trip_translation
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Chinese English Translation
Sentence ÷—�Ü $*˙öπ�4Ñ∏

πå∞π Ñ100D✏¶°):�
/�L'⇢p0:⇢(ÑD✏)
¶°ÑM´⇥

He invented a 100 degree centimeter temperature
scale with two fixed points (the boiling point of wa-
ter and the freezing point), which is the precursor of
the Celsius thermometer in most parts of the world.

Facts (÷,—�,100D✏¶°):)(100D
✏¶°):, ,$*˙öπ)(4
Ñ[∏ π|∞ π],ISA,$ * ˙ ö
π)(100D✏¶°):,/XÑM
´,�L'⇢p0:⇢(ÑD✏)
¶°)

(He, invented, the 100 degree Celsius temperature
scale) (100 Celsius temperature scale, has, two fixed
points) (water [boiling point | freezing point], ISA,
two fixed points) (100 degrees Celsius temperature
scale, is the predecessor of X, most Celsius ther-
mometers in most parts of the world)

Table 2: An example sentence and the corresponding facts in the SAOKE dataset, where “ISA” is a symbol denoting
the “is-a” relationship in the SAOKE format.

corresponding dual agent, using the reinforcement
learning technique.

Parsing-reconstruction is also a pattern of du-
ality. (Konstas et al., 2017) considered the AMR
(Abstract Meaning Representation)(Banarescu
et al., 2013) parsing problem (text to AMR)
and AMR generation problem (AMR to text) in
one system, in which the AMR parser generated
extra text-AMR pair data to fine tune the AMR
generator. The AMR generator, however, does not
contribute to the performance improvement of the
AMR parser. The CIE agent and CIN agent in
(Chisholm et al., 2017) also follow this pattern,
where both agents help each other to improve
by sharing weights. Nevertheless, the sharing
weight strategy cannot be applied to agents with
different architecture, which is a typical situation
in practice.

From these practices, it can be seen that the
duality can be implemented with two major ap-
proaches: 1) by providing additional labeled sam-
ples via bootstrapping, and 2) by adding losses or
rewards to the training procedure of the agents. In
this paper, we follow the second approach. We
design a set of rewards, among which some are
related to OIE and OIN tasks respectively, and
some are related to the duality of the problems.
Then we optimize both agents using the reinforce-
ment learning technique. The learning algorithm
is similar to the dual-NMT algorithm described
in (Xia et al., 2016), but with adaption for the OIE
and OIN tasks, especially on the task related re-
wards. Compared to the approach of applying the
regularization about sharing the same joint prob-
ability (Tang et al., 2017), our approach directly
optimizes the task objective by introducing task

related rewards. Furthermore, our approach is
more adaptable than the weight sharing approach
adopted in (Chisholm et al., 2017).

3 Orator

3.1 SAOKE Dataset
Symbolic Aided Open Knowledge Expression
(SAOKE) is proposed in (Sun et al., 2018) as the
form to honestly record the facts that humans can
extract from sentences when humans read them.
SAOKE uses a unified form - an n-ary tuple:

(subject, predicate, object1, · · · , objectN ),

to express four categories of facts: 1) Rela-
tion: Verb/preposition-based n-ary relations be-
tween entity mentions; 2) Attribute: Nominal at-
tributes for entity mentions; 3) Description: De-
scriptive phrases of entity mentions; 4) Concept:
Hyponymy and synonymy relations among con-
cepts and instances.

Using this SAOKE format, Sun et al. (2018)
manually labeled the SAOKE dataset DSAOKE by
crowdsourcing, which includes more than forty
thousand sentence-facts pairs < S, F >.2 The la-
beling procedure is under the supervision of the
“Completeness” criterion (Sun et al., 2018), so the
facts recorded information in the sentence as much
as possible (only auxiliary information and rela-
tion between facts are omitted (Sun et al., 2018)).
As a result, the SAOKE dataset is a valid open-
domain sentence-facts parallel dataset for both
OIE and OIN tasks. Table 2 is an example from
the SAOKE dataset for an easy understanding of
the dual relationship between sentence and facts.

2http://ai.baidu.com/broad
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3.2 Model

The Orator is an agent O that assembles a set of
open-domain facts F into a sentence S with prob-
ability PO(S|F , ⇥O), where ⇥O is the set of pa-
rameters of O :

Orator O: F ! PO(S|F , ⇥O).

For each pair < S, F >2 DSAOKE , the set
of facts F is actually expressed as a sequence of
facts, in the order of the labeler wrote them. So,
the deep sequence to sequence paradigm is suit-
able to model the Orator. In this work, we build
the base Orator model with the attention-based se-
quence to sequence model, together with copy and
coverage mechanism, in a similar way of the im-
plementation of the Logician in (Sun et al., 2018).

3.2.1 Attention based Sequence-to-sequence
Learning

The attention-based sequence-to-sequence learn-
ing (Bahdanau et al., 2014) first encodes the in-
put fact sequence F (actually the sequence of Ne-
dimensional word embedding vectors) into a Nh-
dimensional hidden states HF = [hF

1 , · · · , hF
NS

]
using bi-directional GRU (Gated Recurrent Units)
network (Cho et al., 2014). Then, when gen-
erating word wt of the target sentence, the de-
coder computes the probability of generating wt

by p(wt|{w1, · · · , wt�1}, ct) = g(ht�1, st, ct),
where st is the hidden state of the GRU decoder,
g is the word generation model, and ct is the dy-
namic context vector which focuses attention on
specific location l in the input hidden states HF .

For the Orator, we use the copy mechanism to
implement the word generation model g and use
the coverage mechanism to compute the dynamic
context vector ct.

3.2.2 Copy Mechanism
In the SAOKE dataset, the words in the set of facts
(excluding the external symbols) must be in the
corresponding sentence, so the problem is suitable
to be modeled via the copy mechanism (Gu et al.,
2016). In the copy mechanism, when the decoder
is considering generating a word wt, it can either
be copied from the source fact sequence F or se-
lect from a vocabulary V :

p(wt|wt�1, st, ct) = pF (wt|wt�1, st, ct) +

pV (wt|wt�1, st, ct),

where pF is the probability of copying from F and
pV is the probability of selecting from V . The de-
tails can be found in (Gu et al., 2016).

3.2.3 Coverage Mechanism
To cope with the problem of information lost or
redundancy in the generated sentence, the copied
histories of previous generated words should be
remembered to guide future generation. This
could be done through the coverage mecha-
nism (Tu et al., 2016), in which a coverage vec-
tor mt

j is introduced for each word wF
j in F

and updated at each step t as a gated function of
hF

j , ↵tj , st�1, m
t�1
j . By this means, the coverage

vectors remember the historical attentions over
source sequence and can be incorporated in the
alignment model to generate complete and non-
redundant sentences. Detailed formulations can be
found in (Tu et al., 2016) and (Sun et al., 2018).

4 Learning the Dual Structure between
Knowledge and Natural Language

4.1 Dual Structure between Orator and
Logician

In (Sun et al., 2018), an agent L, called Logician,
was trained to convert a sentence S into a set of
facts F with probability PL(F|S, ⇥L), where ⇥L

is the set of parameters of L:

Logician L: S ! PL(F|S, ⇥L).

Obviously, the Logician and Orator can coop-
erate to supervise each other. Given < S, F >2
DSAOKE, the Logician produces a predicted set of
facts F⇤ for the sentence S , and the Orator can
calculate the probability PO(S|F⇤, ⇥O) of recon-
struction S from F⇤. Intuitively, if F⇤ loses major
information of S , honestly reconstructing S from
F⇤ would be impossible, and thus the probabil-
ity PO(S|F⇤, ⇥O) would be small. Thus, it is a
strong signal to evaluate the quality of F⇤. Simi-
larly, when the Orator produces a sentence S⇤ for
the set of facts F , the probability PL(F|S⇤, ⇥L)
provided by the Logician is a strong signal for
evaluating the quality of S⇤. These signals are
helpful to conquer several problems of the origi-
nal agents, including information lost, information
redundancy, and non-fluency.

Note that the supervision signals
PO(S|F⇤, ⇥O) and PL(F|S⇤, ⇥L) do not rely on
any supervised parallel corpus. Thus, similar to
the application of dual learning paradigm on NMT
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task (Xia et al., 2016), it is theoretically possible
to use unparalleled sentences and sets of facts to
compute these signals. However, unsupervised
collections of fact-groups that can be reasonably
narrated in a sentence are not naturally available.
Currently, the only available collection is the
sets of facts provided by the SAOKE dataset,
where the supervised information is available.
As a result, we implement our dual learning
system in a supervised approach, which uses the
reinforcement learning algorithm to optimize the
Orator and the Logician. The involved rewards
are described in the next subsection, and then the
algorithm is detailed in the last subsection.

4.2 Rewards
Given < S, F >2 DSAOKE, we sample a set
of facts F⇤ from distribution PL(·|S, ⇥L) and a
sentence S⇤from distribution PO(·|F , ⇥O). Fol-
lowing rewards are introduced into the proposed
dual learning system, and the relationships be-
tween them are shown in Figure 1.

S

F{Sj}

{Fi}
Logician

Orator

VO(Sj)

VL(Fi)

RO(S, Fi)

RL(F , Sj)

SL(F , Fi)SO(Sj , S)

Figure 1: Illustration of the dual learning system of Lo-
gician and Orator.

4.2.1 Reconstruction Rewards
Following the idea described in above subsection,
we design the reconstruction reward for the Orator
as:

RO(S⇤, F) = log PL(F|S⇤, ⇥L),

and that for the Logician as:

RL(F⇤, S) = log PO(S|F⇤, ⇥O).

4.2.2 Similarity Rewards
Since the SAOKE dataset has label information,
the similarities between the predicted results and
the ground truths can be used as rewards.

For the Orator, since the S⇤ can be viewed as
the summarization of S , we use the widely used
ROUGE-L (Lin, 2004) measure in the text sum-
marization field to evaluate the quality of S⇤:

SO = ROUGEL(S, S⇤).

For the Logician, we use following procedure to
calculate the similarity between F and F⇤. First,
we compute the similarity between each predicted
fact f⇤ 2 F⇤ and each ground truth fact f 2 F
with following measure:

SimFact(f⇤, f) =

Pmin(|f⇤|,|f |)
i=1 SimStr(f⇤

i , fi)

max(|f⇤|, |f |) ,

where f⇤
i and fi denote the i-th element of tu-

ples of fact f⇤ and f , SimStr(·, ·) denotes the
gestalt pattern matching (Ratcliff and Metzener,
1988) measure for two strings, and | · | is the car-
dinality function. Then, each predicted fact in
F⇤ is aligned to its corresponding ground-truth
fact in F by solving a linear assignment prob-
lem (Wikipedia, 2017) to maximize the sum of
similarities between the aligned facts. Finally, the
similarity reward for the Logician is calculated by:

SL(F⇤, F) =

P
SimFact(f⇤, f)

max(|F⇤|, |F|) ,

where f⇤ 2 F⇤, f 2 F are aligned pair of facts.

4.2.3 Validity Rewards
For the Orator, the output is expected as a valid
natural language sentence, so the validity reward
can be defined as:

VO(S⇤) = LM(S⇤),

where the LM(·) is a language model.
For the Logician, the output should represent a

valid collection of facts, which means: 1) the out-
put can be parsed into a collection of facts; 2) there
is no duplicated fact (identified by the SimFact
value larger than 0.85) in the parsed collection.
The validity reward for Logician is defined as:

VL(F⇤) =

(
0 if F⇤is valid;
�1 otherwise.
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Algorithm 1 A simple dual-learning algorithm for facts extraction and expression
Require:

A set of sentence-facts pairs {< S, F >};
An initial Logician L and an initial Orator O;
Beam size K;

repeat

1: Sample a sentence-facts pair < S, F >;
2: Logician produces K sets of facts

F1, · · · , FK from S via beam search;
3: for each set of facts Fi do
4: Compute the reward for Fi as:

rF
i = ↵1RO(S, Fi)+↵2VF (F)+↵3SF (F , Fi).

5: end for
6: Compute the total reward r = 1

K

PK
i=1 rF

i ;
7: Compute the stochastic gradient of ⇥L:

r⇥L
Ê[r] =

1

K

KX

i=1

rF
i D⇥L

(S, Fi)

8: Compute the stochastic gradient of ⇥O:

r⇥O
Ê[r] =

↵1

K

KX

i=1

D⇥O
(Fi, S)

9: Model updates:

⇥L  ⇥L + ⌘L ·r⇥L
Ê[r],

⇥O  ⇥O + ⌘O ·r⇥O
Ê[r].

1: Sample a sentence-facts pair < S, F >;
2: Orator produces K sentences S1, · · · , SK

from F via beam search;
3: for each sentence Si do
4: Compute the reward for Si as:

rS
i = �1RL(F , Si)+�2VS(Si)+�3SS(S, Si).

5: end for
6: Compute the total reward r = 1

K

PK
i=1 rS

i ;
7: Compute the stochastic gradient of ⇥O,

r⇥O
Ê[r] =

1

K

KX

i=1

rS
i D⇥O

(Si, F)

8: Compute the stochastic gradient of ⇥L:

r⇥L
Ê[r] =

�1

K

KX

i=1

D⇥L
(Fi, S)

9: Model updates:

⇥O  ⇥O + ⌘O ·r⇥O
Ê[r],

⇥L  ⇥L + ⌘L ·r⇥L
Ê[r].

until convergence

4.3 Algorithm
For each pair < S, F >2 DSAOKE, the following
procedures are performed respectively (details are
shown in Algorithm 1):

4.3.1 Learning from Sentence to Facts
We sample F⇤ from the Logician PL(·|S, ⇥L) and
calculate the total reward for F⇤ by

rL = ↵1 · RL(F⇤, S) + ↵2 · VL(F⇤) +

↵3 · SL(F⇤, F),

where
P

↵i = 1. The gradients of the expected
reward E[rL] to the parameters of agents can be
computed as follows, according to the policy gra-
dient theorem (Sutton et al., 1999):

r⇥L
E[rL] = E[rLD⇥L

(F⇤, S)],

r⇥O
E[rL] = E[↵1D⇥O

(S, F⇤)].

where D⇥L
(F , S) = r⇥L

log PL(F|S, ⇥L) and
D⇥O

(S, F) = r⇥O
log PO(S|F , ⇥O).

4.3.2 Learning from Facts to Sentence
We sample S⇤ from the Logician PO(·|F , ⇥O)
and define the total reward for S⇤ by:

rO = �1RO(S⇤, F) + �2VO(S⇤) +

�3SO(S⇤, S),

where
P

�i = 1. The gradients can be computed
as follows:

r⇥L
E[rO] = E[�1D⇥L

(F , S⇤)],

r⇥O
E[rO] = E[rOD⇥O

(S⇤, F)].

In practice, we use beam search (Sutskever
et al., 2014) to obtain high-quality samples as F⇤

and S⇤, and estimate the true gradient with the em-
pirical average of gradients over these samples.

5 Experimental Results
5.1 Experimental Design
First, we evaluate the performance of each agent
fine-tuned by the dual learning procedure on the
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SAOKE dataset. Then we evaluate the Orator on
noisy facts, which accords with real OIN applica-
tion scenarios. Last, we investigate the behavior
of agents in the dual system.

In the experiments, the SAOKE dataset is split
into the training set, validating set and testing
set with ratios of 80%, 10%, 10%, respectively.
For each algorithm involved in the experiments,
we perform grid search to find the optimal super-
parameters, and the model with the best perfor-
mance on the validating set is chosen as the learnt
model to be evaluated on the testing set.

5.1.1 Evaluation Metric
For the Orator, BLEU-4 and ROUGE-L are used
to measure how well the output matches the
ground truth sentence.

For the Logician, based on the fact-equivalence
judgment proposed in (Sun et al., 2018), we com-
pute the Precision(P), Recall (R) and F1-score
over the testing set of the SAOKE dataset as the
evaluation metric.

5.1.2 Agent Implementation
For the Orator, we make a vocabulary V with
size 72,591 by collecting all web pages from
Baidu Baike website3 (a Chinese alternative to
Wikipedia) and identifying the words occurred in
more than 100 web pages. For the Orator, the di-
mension of embedding vectors is set to Ne = 256,
and the dimension of hidden states is set to Nh =
256. We use a three-layer bi-directional GRU with
dimension 128 as the encoder. All dimensions of
hidden states in the decoder are set to 256.

For the Logician, we implement the model de-
scribed in (Sun et al., 2018), including the shallow
tag information and the gated dependency atten-
tion mechanism.

Furthermore, to provide an intuitive compre-
hension of the OIN task, we implement a rule-
based method for OIN task. For each sequence of
facts in the SAOKE dataset, the method first iden-
tifies the subsequences in which the facts share the
same subject. Then it preserves the subject of the
first fact in each subsequence and removes the sub-
jects of following facts (by replacing it with an
empty string). It is necessary since the SAOKE
dataset requires the shared subject to be repeated
for completeness of the related facts. At last, each
fact is formatted into a string by filling the objects
into the placeholders of the predicate and these

3http://baike.baidu.com

strings are concatenated with commas to form the
final sentence.

5.1.3 Reward Implementation
For the validity reward of the Orator, the lan-
guage model is trained using an RNN based
method (Mikolov et al., 2010) with the same vo-
cabulary V and the web pages from Baidu Baike
website.

For the reconstruction reward of the Orator,
since the Logician needs the shallow tag and de-
pendency information of S⇤ as inputs, the infor-
mation is extracted using the LTP tool-set (Che
et al., 2010) and then fed to the Logician.

5.1.4 Training
When training the base model for each agent, the
batch size is set to 20. When training two agents
in dual learning, the batch size is set to 12, and the
beam size is set to 3. Both agents are trained using
the stochastic gradient descent (SGD) with RM-
SPROP strategy (Hinton et al., 2012) and early-
stop strategy on the validating set. In dual learn-
ing, the super-parameters, including ↵i , �i, is de-
termined by grid-search.

5.2 Evaluation of Agents on the SAOKE
dataset

First, we evaluate the performance of the agents
optimized by the dual learning method. To iden-
tify the contribution of the dual structure, we train
another pair of agents with ↵1 = 0 and �1 = 0
in Algorithm 1 to exclude the dual information.
Without the dual information, these two agents are
trained independently to each other with reinforce-
ment learning on their own supervised informa-
tion. We name these two agents as R-Logician and
R-Orator, where “R” means “Reinforced”. In the
experimental results of this paper, the symbol at
the top mark means that the marked result is sig-
nificantly different (with p = 0.05) with the corre-
sponding result of the agent with the specific mark.

Methods Precision Recall F1
Logician⇤ 0.449 0.400 0.423

R-Logician⌥ 0.462⇤ 0.432⇤ 0.446⇤

Logician@Dual 0.494⇤⌥ 0.426⇤ 0.457⇤⌥

Table 3: Performance of the Logicians.

The experimental results for the Logician
agents are shown in Table 3, from which we can
observe a significant performance improvement
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from Logician to R-Logician and also from R-
Logician to Logician@Dual. The experimental re-
sults for the Orator agents are shown in Table 4.
The neural based Orator agents significantly out-
perform the rule-based agent. For both evalua-
tion metric, the R-Orator and Orator@Dual are
both significantly outperform the original Orator.
The Orator@Dual significantly outperforms the
R-Orator on the BLEU-4 score, but is not signifi-
cantly different on the ROUGE-L score.

Methods BLEU-4 ROUGE-L
Rule? 0.257 0.434

Orator⇤ 0.401? 0.556?

R-Orator⌥ 0.405?⇤ 0.559?⇤

Orator@Dual 0.419?⇤⌥ 0.559?⇤

Table 4: Performance of the Orators.

By comparing the performance of R-agents
and the agents@Dual, we can observe that
agents@Dual generally achieve better perfor-
mance on precision, but may recall less informa-
tion, resulting in smaller advances in the balanced
evaluation metric (F1 and ROUGE-L). This may
imply that the agents tend to provide easy input
for each other for higher accuracy, by neglecting
some difficult part of the problem which they cur-
rently cannot handle properly. This interesting
phenomenon is the subject of our future research.

5.3 Evaluation of Orator on Noisy Facts
Experiments in the previous subsection show the
performance of Orators to narrate a set of human-
labeled facts. In practice, however, the input to
the Orator might not be the human-labeled perfect
facts, but some noisy facts automatically extracted
by OIE algorithms. In this subsection, we make
a collection of sets of noisy facts by feeding the
sentences in the testing set of the SAOKE dataset
to the base Logician model and collecting the out-
puts. Then we evaluate the series of Orator models
on these noisy facts, and report their performance
at Table 5, from which we can see the performance
improvement from the Orator to Orator@Dual.

Methods BLEU-4 ROUGE-L
Orator⇤ 0.428 0.565

R-Orator⌥ 0.431⇤ 0.567⇤

Orator@Dual 0.458⇤⌥ 0.572⇤⌥

Table 5: Performance of the Orators on noisy facts.

5.4 Evaluation of the Dual System
In this section, we investigate the behavior of
agents in the dual system. We first examine the
procedure F Orator����! S⇤ Logician�����! F⇤⇤, that is, for
each F in the testing set of the SAOKE dataset, let
the Orator narrate it into a sentence S⇤, and then
let the Logician to extract facts F⇤⇤ from S⇤. Then
the quality of F⇤⇤ is measured by comparing it
with F . Then we examine S Logician�����! F⇤ Orator����!
S⇤⇤, which is the reverse procedure. The compar-
ison is made between the family of base agents
and that of the dual-trained agents. The results are
shown in Table 6, and two instance of these two
experiments are shown in Table 7 and 8 respec-
tively. From these results, we can observe large
improvements of reconstruction quality on both
directions.

F Orator����! S⇤ Logician�����! F⇤⇤

Methods Precision Recall F1
Base⇤ 0.574 0.488 0.527
Dual 0.657⇤ 0.565⇤ 0.608⇤

S Logician�����! F⇤ Orator����! S⇤⇤

Methods BLEU-4 ROUGE-L
Base⇤ 0.428 0.565
Dual 0.635⇤ 0.635⇤

Table 6: Reconstruction performance for the Logicians
and the Orators.

6 Conclusion

In this paper, we investigate the OIN task and its
duality to the OIE task. The proposed Orator has
shown its ability to fulfill the OIN task, that is, as-
sembling open-domain facts into high quality sen-
tences. Furthermore, our attempt to utilize the du-
ality between OIN and OIE tasks for improving
the performances for both OIN and OIE agents ac-
complishes a preliminary success.

Our work suggests at least three future research
topics: Firstly, one can enrich the theoretical study
of the duality between the OIE and OIN tasks.
Secondly, one can investigate how to conquer the
barrier of the absence of an extensive collection of
reasonable sets of open-domain facts and incorpo-
rate unsupervised information into this Logician-
Orator dual learning structures for further im-
provement. Lastly, one can also interested in de-
veloping task-oriented rewards for adapting the
agent to a specific task, for example, the answer
generation task for open-domain KBQA system.
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S '¸'i�⇣œG›�$Mpû��v-¡ˇÛ�⇣œÅ44500⌥(�(P�⇣œ
Å4600⌥Àπ�G�ÜÚ∞ÿ�⇣:h˝€„(P,�'/⇥

S in English The throughput of all integrated cargoes kept a double-digit growth. Among them, the
throughput of iron ore exceeded 45 million tons and the throughput of timber exceeded 6
million cubic meters, all of which hit record highs, and became the country’s largest port of
timber imports.

Base Models Dual Models
S

Logician
������! F

⇤ ('¸'i�⇣œ, ›�, $Mpû�) (¡
ˇÛ�⇣œ,Å4, 4500⌥() ((P�⇣œ,
Å4, 600⌥Àπ) (�ÜÚ, DESC,∞ÿ) (_,
⇣:,h˝€„(P,�'/)

('¸'i�⇣œ,G›�,$Mpû�) (¡
ˇÛ�⇣œ,Å4, 4500⌥() ((P�⇣œ,
Å4, 600⌥Àπ) (_,G�,ÜÚ∞ÿ) (_,⇣
:,h˝€„(P,�'/)

S
Logician
������! F

⇤

in English
(The throughput of all integrated cargoes,
kept, double-digits growth) (Throughput
of iron ore, exceeded, 45 million tons)
(Throughput of wood, breakthrough, 6 mil-
lion cubic meters) (Hit historical, DESC, new
high) (_, become, the country’s largest port of
timber imports)

(The throughput of integrated cargoes, all
kept, double-digit growth) (Throughput
of iron ore, exceeded, 45 million tons)
(Throughput of timber, exceeded 6, million
cubic meters) (_, all hit, record highs) (_,
become, the country’s largest port of timber
imports)

S
Logician
������!

F
⇤ Orator

����! S
⇤⇤

'¸'i�⇣œ›�$Mpû��Å
44500⌥(�Å4600⌥Àπ�∞ÿ�⇣
:h˝€„(P,�'/⇥

'¸'i�⇣œG›�$Mpû��¡
ˇÛ�⇣œÅ44500⌥(�(P�⇣œÅ
4600⌥Àπ�G�ÜÚ∞ÿ�⇣:h˝
€„(P,�'/⇥

S
Logician
������!

F
⇤ Orator

����! S
⇤⇤

in English

The throughput of all integrated cargoes
kept double-digit growth, breaking 45 million
tons, breaking 6 million cubic meters, a new
high, became the country’s largest port of tim-
ber imports.

The throughput of all integrated cargoes kept
double-digit growth. The throughput of iron
ore exceeded 45 million tons and the through-
put of timber exceeded 6 million cubic me-
ters, all hit a record high and became the
country’s largest port of timber imports.

Table 7: Examples for sentence reconstruction.

F (%⇢’∫,w⌥,-◆�ÿ- Â⌦fÜ) (%⇢’∫, ,�öÑ[°⌃|œ%]˝õ) (%
⇢’∫,w⌥, [É:Ñ�°⌃ı|‚��\æ^])

F in English (Business legal person, is with, technical secondary school (high school) or above) (Busi-
ness legal person, has, certain [managerial | operational] ability) (Business legal person, is
with, [strong philosophy of service | teamwork spirit])

Base Models Dual Models
F

Orator
����! S

⇤ %⇢’∫w⌥-◆�ÿ- Â⌦fÜ� 
�öÑ°⌃åœ%˝õ�w⌥É:Ñ�°
⌃ıå‚��\æ^⇥

%⇢’∫w⌥-◆�ÿ- Â⌦fÜ�%
⇢’∫ �öÑ°⌃åœ%˝õ�w⌥É
:Ñ�°⌃ıå‚��\æ^⇥

F
Orator
����! S

⇤ in
English

Business legal person is with secondary (high
school) or above, has certain managerial and
operational capabilities, and is with strong
philosophy of service and teamwork spirit.

Business legal person is with secondary (high
school) or above, business legal person has
certain managerial and operational capabili-
ties, and is with strong philosophy of service
and teamwork spirit.

F
Orator
����!

S
⇤ Logician

������! F
⇤⇤

(%⇢’∫w⌥-◆�ÿ- Â⌦fÜ, ,
�öÑ[°⌃|œ%]˝õ) (%⇢’∫w⌥-
◆Ñ[°⌃|œ%]˝õ,w⌥,É:Ñ[�°⌃
ı|‚��\æ^])

(%⇢’∫, w⌥, -◆�ÿ- Â⌦fÜ)
(%⇢’∫, ,[�öÑ°⌃|œ%˝õ]) (%
⇢’∫, w⌥, É:Ñ[�°⌃ı|‚��\
æ^])

F
Orator
����!

S
⇤ Logician

������! F
⇤⇤

in English

(Business legal person with technical sec-
ondary school (high school) or above, has,
certain [managerial | operational] ability)
(Business legal person with technical sec-
ondary school (high school) or above, is
with, [strong philosophy of service | team-
work spirit])

(Business legal person, is with, technical sec-
ondary school (high school) or above) (Busi-
ness legal person, has, [certain managerial |
operational ability]) (Business legal person,
is with, [strong philosophy of service | team-
work spirit])

Table 8: Examples for fact reconstruction.
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Abstract

Machine reading comprehension helps ma-
chines learn to utilize most of the human
knowledge written in the form of text. Existing
approaches made a significant progress com-
parable to human-level performance, but they
are still limited in understanding, up to a few
paragraphs, failing to properly comprehend
lengthy document. In this paper, we propose a
novel deep neural network architecture to han-
dle a long-range dependency in RC tasks. In
detail, our method has two novel aspects: (1)
an advanced memory-augmented architecture
and (2) an expanded gated recurrent unit with
dense connections that mitigate potential in-
formation distortion occurring in the memory.
Our proposed architecture is widely applicable
to other models. We have performed exten-
sive experiments with well-known benchmark
datasets such as TriviaQA, QUASAR-T, and
SQuAD. The experimental results demonstrate
that the proposed method outperforms existing
methods, especially for lengthy documents.

1 Introduction

Most of the human knowledge has been stored in
the form of text. Reading comprehension (RC) to
understand this knowledge is a major challenge
that can vastly increase the range of knowledge
available to the machines. Many neural network-
based methods have been proposed, pushing per-
formance close to a human level. Nonetheless,
there still exists room to improve the performance
especially in comprehending lengthy documents
that involve complicated reasoning processes. We
identify the main bottleneck as the lack of the
long-term memory and its improper controlling
mechanism.

Previously, several memory-augmenting meth-
ods have been proposed to solve the long-term de-

⇤ To whom correspondence should be addressed.

pendency problem. For example, in relatively sim-
ple tasks such as bAbI tasks (Weston et al., 2015),
Graves et al. (2014, 2016); Henaff et al. (2017)
proposed methods that handle the external mem-
ory to address long-term dependency. Inspired by
these approaches, we develop a customized mem-
ory controller along with an external memory aug-
mentation (Graves et al., 2016) for complicated
RC tasks. However, we found that the memory
controller is susceptible to information distortion
as neural networks become deeper, this distortion
can hinder the performance.

To overcome this issue, we propose two novel
strategies that improve the memory-handling ca-
pability while mitigating the information distor-
tion. We extend the memory controller with a
residual connection to alleviate the information
distortion occurring in it. We also expand the
gated recurrent unit (GRU) (Cho et al., 2014)
with a dense connection that conveys enriched
features to the next layer containing the origi-
nal as well as the transformed information. We
conducted extensive experiments through several
benchmark datasets such as TriviaQA, QUASAR-
T, and SQuAD. The results show that the proposed
model outperforms all the published results. We
also integrated the proposed memory controller
and the expanded GRU cell block with other ex-
isting methods to ensure that our proposed compo-
nents are widely applicable. The results show that
our components consistently bring performance
improvement across various state-of-the-art archi-
tectures.

The main contributions of this work include the
following: (1) We propose an extended memory
controller module for RC tasks. (2) We propose a
densely connected encoder block with self atten-
tion to provide rich representation of given data,
reducing information loss due to deep layers of the
network. (3) We present the state-of-the-art results
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in lengthy-document RC tasks such as TriviaQA
and QUASAR-T as well as relatively short docu-
ment RC tasks such as SQuAD.

2 Proposed Method

This section presents two of our proposed compo-
nents in detail, as depicted in Figure 1.

2.1 Memory Controller
Our first proposed component is an advanced ex-
ternal memory controller module for solving RC
tasks. We modified the recently proposed mem-
ory controller (Graves et al., 2016) by using our
new encoder block and layer-wise residual con-
nections. These modifications enable the memory
controller to reason over a lengthy document, lead-
ing to the overall performance improvement.

This layer takes input as a sequence of vec-
tor representations corresponding to individual to-
kens, dt 2 R

l, where l is the given vector dimen-
sion. For example, such input can be the output of
the co-attention layer in Section 3. The operation
of this layer is defined as

ot, it = Controller(dt, Mt�1).

That is, at time step t, the controller generates an
interface vector it for read and write operations
and an output vector ot based on the input vec-
tor dt and the external memory content from the
previous time step, Mt�1 2 R

p⇥q, where p is the
memory size and q is the vector dimension of each
memory.

Through this controller, we encode an input
D = {dt}n

t=1 to {xt}n
t=1 by using the encoder

block, i.e.,

{xt}n
t=1 = EncoderBlockx(D) 2 R

n⇥k,

where k is the output dimension of the encoder
block. In general, this block is implemented as a
recurrent unit, e.g., GRU (Cho et al., 2014). In our
model, we replace it with our dense encoder block
with self attention (DEBS), as will be discussed in
Section 2.2.

To generate a memory-augmented vector zt, we
concatenate xt with the vectors read from the pre-
vious time step memory, Mt�1, i.e.,

zt = [xt;m
1
t�1; · · · ;ms

t�1] 2 R
k+sq,

where s represents the number of read heads in the
memory interface. We then feed the vector zt to

the bi-directional GRU (BiGRU) layer and obtain
the output vector hm

t as

hm
t = BiGRU(zt,h

m
t�1,h

m
t+1) 2 R

2l.

Afterwards, we generate output vector vt as the
weighted sum of the BiGRU output and read vec-
tors from the memory in the current step, i.e.,

vt = Whh
m
t + Wm[m1

t ; · · · ;ms
t ] 2 R

2l.

Finally, we add a residual connection between the
input dt and the output vt to mitigate any possible
information distortion that can occur while access-
ing the memory, resulting in a the output vector
that can handle long-term dependency, i.e.,

ot = ReLU(Wvvt + dt) 2 R
l.

For further details on how the interface vector
works, we refer the readers to Graves et al. (2016)
as well as our supplemental material.

2.2 Dense Encoder Block with Self Attention
The second novel component we propose is a
dense encoder block with self attention (DEBS),
which further improves a GRU cell. Recently,
Huang et al. (2017a) proposed that adding a con-
nection between each layer to the other layers in
convolution networks can help to properly convey
the information across multiple layers. Inspired
by this, we add such dense connections that con-
catenate the input to a particular layer to its out-
put. We also add a self-attention module to this
block, to properly address long-term dependency
in a length document. In this manner, our en-
coder block maintains the necessary information
not only along the vertical direction (across layers)
through dense connections but also along the hor-
izontal direction (across time steps) through self
attention.

DEBS takes the input vector sequence with its
length as n and transforms each vector to an l-
dimensional vector pt through the fully connected
layer with ReLU as a nonlinear unit and generates
a contextually encoded vector rt as

rt = BiGRU(pt, rt�1, rt+1) 2 R
2l.

Then we concatenate each output vector rt to the
projected input pt to obtain gt = [rt;pt] 2 R

3l

and pass it to the self-attention layer. The self-
attention layer then calculates the similarity map
Sg 2 R

n⇥n using the tri-linear function as

sg
ij = wa · gi + wb · gj + wf · (gi � gj),
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Figure 1: Overview of our model (A) and dense encoder block with self attention (B).

where i, j = 1, . . . , n. Finally, the self-attended
representation Q = {qt}n

t=1 is obtained by per-
forming column-wise softmax on Sg to get the at-
tention matrix Ag, which is further multiplied with
G = {gt}n

t=1, i.e.,

Q = AgG 2 R
n⇥3l.

The final output is obtained as the concatenation
of outputs from the recurrent layer (BiGRU) and
the self-attention layer, i.e., [rt;qt] 2 R

5l.

3 Reading Comprehension Model with
Proposed Components

We apply the proposed components to our model
for RC tasks. As depicted in Figure 1, the model
consists of three major layers: the co-attention
layer, the memory controller, and the prediction
layer. Given the embeddings of a question and a
document, the co-attention layer generates query-
aware contextual representations. The memory
controller further refines these contextual repre-
sentations using an external memory. Based on
such representations, the prediction layer deter-
mines the start and the end token indices that form
the answer span. In addition, we replace all the en-
coder block with DEBS in the three major layers.

Embedding. We incorporate both word- and
character-level embedding methods to obtain the
vector representation of each word in the input

data. For word-level embedding ew, we utilize
pre-trained, 300-dimensional embedding vectors
from GloVe 6B (Pennington et al., 2014). The
character-level word embedding ec is obtained as
a 100-dimensional vector by first applying a con-
volution layer with 100 filters to a sequence of 20-
dimensional character embeddings learned dur-
ing training and by further applying global max-
pooling over the entire character-level sequence.
Then we obtain the embedding vector of a given
word token, e, by concatenating these word- and
character-level embeddings, i.e., e = [ew; ec] 2
R

400.
Finally, we obtain the two sets of embedding

vectors of question and document token sequences
as Eq = {eq

u}m
u=1 2 R

m⇥400 and Ed =�
ed

t

 n

t=1
2 R

n⇥400, where m and n represent the
sequence length of a question and a document, re-
spectively.

Co-attention layer. Given Eq and Ed, we feed
each of them into the encoder block and obtain
their contextual representations as

Cq = {cq
u}m

u=1 = EncoderBlockq(Eq) 2 R
m⇥k

Cd = {cd
t }n

t=1 = EncoderBlockd(Ed) 2 R
n⇥k.

These representations are used to calculate the
pairwise similarity matrix S 2 R

m⇥n between to-
kens in the question and those in the document by
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a tri-linear function (Seo et al., 2017), i.e.,

sij = wq · cq
i + wd · cd

j + wc · (cq
i � cd

j ),

where i = 1, . . . , m, j = (1, . . . , n), and � rep-
resents the element-wise multiplication and wq,
wd, and wc are trainable vectors. We apply
column-wise softmax to S to obtain the document-
to-question attention matrix A. Afterwards, a
question-attended document representation C̃q is
calculate as

C̃q = {c̃q
t}

n
t=1 = AT Cq 2 R

n⇥k.

In addition to this, we obtain vector ã 2 R
n, cor-

responding to the attention of a question to docu-
ment tokens, by applying softmax to the column-
wise max values of S. Then document-attended
question vector is obtained by

c̃d =
nX

t=1

ãtc
d
t 2 R

k.

The final co-attended representations {dt}n
t=1 is

obtained by fully connected layer with ReLU as
a nonlinear unit, ', as

dt = '([cd
t ; c̃

q
t ; c

d
t � c̃q

t ; c
d
t � c̃d

t ]) 2 R
l.

Memory controller. This layer takes the out-
put of the co-attention layer {dt}n

t=1 as input
and refine their representations using our proposed
memory controller (Section 2.1). Afterwards, the
resulting output vector {ot}n

t=1 are given as input
to the prediction layer.

Prediction layer. We feed the output of the
memory controller {ot}n

t=1 to the prediction layer
to predict the start and the end token indices of
the answer span. First, it goes through the encoder
block followed by the fully connected layer with
softmax over the entire sequence to compute the
probability distribution of a start index. The prob-
ability distribution of the end index is calculated
by concatenating the output of the encoder block
for the start index with the output of the memory
controller and then by feeding them as input to an-
other encoder block. These probability distribu-
tions are used as part of the negative log-likelihood
objective function.

4 Experimental Setup

Datasets and preprocessing. We perform ex-
tensive experiments with well-known benchmarks

Dataset Total AWCTrain / Dev / Test
SQuAD 87,599 / 10,570 / UNK 142

QUASAR-T 25,465 / 2,043 / 2,068 221
(Short)

QUASAR-T 26,318 / 2,129 / 2,102 392
(Long)

TriviaQA 528,979 / 68,621 / 65,509 631
(Web)

TriviaQA 110,648 / 14,229 / 13,661 955
(Wikipedia)

Table 1: Statistics of datasets in terms of the av-
erage word count per document (AWC). In Triv-
iaQA, AWC was calculated after truncating each
document to 1,200 words.

such as TriviaQA, QUASAR-T, and SQuAD, as
summarized in Table 1. In most of these datasets,
a question q and a document d are represented as
a sequence of words, and the answer span has to
be selected from the document words based on the
question. SQuAD consists of crowd-sourced ques-
tions and paragraphs from Wikipedia articles con-
taining the answer to these questions. QUASAR-
T is mostly based on factoid questions with their
corresponding, large-sized corpus. TriviaQA is
composed of question-answer pairs obtained from
14 trivia and quiz-league websites, along with the
documents collected later that are likely to contain
the answer from either web search or Wikipedia.
In TriviaQA dataset, we truncate each document to
1,200 words. Even with such truncation, the aver-
age word count per document (AWC) of TriviaQA
is approximately four times larger than that of
SQuAD. In terms of the AWC, documents in Triv-
iaQA, QUASAR-T, and SQuAD can be viewed as
large-, medium-, and small-length documents, re-
spectively.

In TriviaQA dataset, because a document is col-
lected separately for an already collected question-
answer pair, the document does not sometimes
have the information to properly infer the answer
to the question. In response, Clark and Gard-
ner (2017) attempted to solve this problem by ex-
posing both relevant and irrelevant paragraphs to-
gether separated based on TF-IDF scores. We fol-
low this approach in TriviaQA. In QUASAR-T,
we follow the same preprocessing steps done by
Dhingra et al. (2017).

Implementation details. We use TensorFlow1

1http://www.tensorflow.org
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Domain Model Full Verified AFEM F1 EM F1
Web Our model (with DEBS) 68.21 73.26 82.57 86.05

(AWC=631) Our model (without DEBS) 66.82 71.91 81.01 84.12
BiDAF + SA + SN (Clark and Gardner, 2017) 66.37 71.32 79.97 83.70
Reading Twice for NLU (Weissenborn, 2017) 50.56 56.73 63.20 67.97 X

M-Reader (Hu et al., 2017) 46.65 52.89 56.96 61.48 X

BiDAF + DNC 42.34 48.65 51.50 57.17
MEMEN (Pan et al., 2017) 44.25 48.34 53.27 57.64 X

BiDAF (Seo et al., 2017) 40.74 47.05 49.54 55.80
Wikipedia Our model (with DEBS) 64.12 69.44 71.75 76.91

(AWC=955) Our model (without DEBS) 64.41 69.60 70.21 75.49
BiDAF + SA + SN (Clark and Gardner, 2017) 63.99 68.93 67.98 72.88
QANet (Yu et al., 2018a) 51.10 56.60 53.30 59.20
Reading Twice for NLU (Weissenborn, 2017) 48.60 55.10 53.40 59.90 X

M-Reader (Hu et al., 2017) 46.94 52.85 54.45 59.46 X

BiDAF + DNC 42.57 48.30 46.23 51.61
MEMEN (Pan et al., 2017) 43.16 46.90 49.28 55.83 X

BiDAF (Seo et al., 2017) 40.32 45.91 44.86 50.71
Table 2: Single model results on TriviaQA (Web and Wikipedia) dataset. All the results are gathered from
their corresponding publications except for our models and ‘BiDAF + DNC,’ which we implemented on
our own. ‘Full’ represents a complete dataset not guaranteed to contain relevant information to answer the
question while ‘Verified’ corresponds to its subset annotated by humans so that the relevant information
for the answer is guaranteed to exist. The last column indicates whether a model uses any additional
feature augmentation (AF).

to build the model and Sonnet2 to implement the
memory interface. NLTK (Bird and Loper, 2004)
is used for tokenizing words. In the memory con-
troller, we use four read heads and one write head,
and the memory size is set to 100 ⇥ 36, with all
initialized as 0. The hidden vector dimension l is
set to 200. We use AdaDelta (Zeiler, 2012) as an
optimizer with a learning rate of 0.5. The batch
size is set to 20 for TriviaQA (Joshi et al., 2017)
and 30 for SQuAD (Rajpurkar et al., 2016) and
QUASAR-T (Dhingra et al., 2017). We use an ex-
ponential moving average of weights with a de-
caying factor of 0.001. Our model does require
more memory than existing methods, but a single
GPU (e.g., M40 with 12GB memory) was enough
to train model within a reasonable amount of time.

5 Quantitative Results

For our quantitative comparisons, we use BiDAF
with self attention (Clark and Gardner, 2017) as
a baseline, which maintains the best results pub-
lished on both TriviaQA and SQuAD datasets. In
TriviaQA and QUASAR-T dataset, we compare
our model with BiDAF (Seo et al., 2017) as well as

2https://github.com/deepmind/sonnet

its variant called ‘BiDAF + DNC,’ which is aug-
mented with an existing external memory archi-
tecture (Graves et al., 2016) just before the answer
prediction layer in the BiDAF.

Overall, in lengthy-document cases such as
TriviaQA and QUASAR-T, our model outper-
forms all the published results, as seen in Tables
2 and 3, while in the short-document case such
as SQuAD, we mostly achieve the best results, as
seen in Table 4. In the following, we present de-
tailed analyses on each dataset.

TriviaQA. As shown in Table 2, our model,
even without DEBS, outperforms the existing
state-of-the-art method such as ‘BiDAF + SA +
SN’ by a large margin in all the cases. Our
model with DEBS, which replaces BiGRU en-
coder blocks, performs even better than that with-
out it in all the cases except for the combina-
tion of the ‘full’ and ‘Wikipedia’ case, which in-
volves documents containing no relevant informa-
tion for the answer. Among those methods shown
in Table 2, Reading Twice for NLU (Weissenborn,
2017) uses background knowledge from Concept-
Net while both M-Reader (Hu et al., 2017) and
MEMEN (Pan et al., 2017) use POS and NER in-
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Dataset Model Dev set Test set
EM F1 EM F1

Short documents Our model (with DEBS) 65.06 69.17 69.11 71.19
(AWC=221) Our model (without DEBS) 64.87 68.88 68.13 70.32

BiDAF + DNC 51.18 54.77 54.81 58.24
BiDAF (Seo et al., 2017) 45.40 50.90 47.60 52.40

Long documents Our model (with DEBS) 62.08 65.21 63.54 66.87
(AWC=392) Our model (without DEBS) 60.05 63.23 63.44 65.19

BiDAF + DNC 48.67 52.25 52.15 54.43
BiDAF (Seo et al., 2017) 37.00 42.50 39.50 44.50

Table 3: Performance results on QUASAR-T dataset.
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Figure 2: F1 score on the development set in TriviaQA (Web) and SQuAD with respect to the minimum
anchor distance.

formation as additional features. We note that our
method achieves these outstanding results without
any additional features.

QUASAR-T. As shown in Table 3, our simple
baseline ‘BiDAF + DNC,’ which involves an exist-
ing memory architecture, improves performance
over BiDAF, indicating the efficacy of incorpo-
rating an external memory. Moreover, our model
with the proposed memory controller achieves sig-
nificantly better results compared to other mod-
els. Furthermore, another proposed component,
DEBS, gives an additional performance boost to
our model.

SQuAD. As shown in Table 4, most of the
models, if not all, use additional features such as
ELMo (Peters et al.), and the self-attention mecha-
nism to further improve the performance. We also
adopt these mechanisms one by one to show that
our model can also benefit from these. First, we
adopt ELMo to our model (without DEBS), which
uses word embedding as the weighted sum of the

hidden layers of a language model with regulariza-
tion as an additional feature to our word embed-
dings. This improves the F1 score of our model
up to 85.13 and EM to 77.44, showing the highest
performances among all the methods without us-
ing self attention. Due to the relatively short docu-
ment length in SQuAD compared to TriviaQA and
QUASAR-T, our model without DEBS performs
worse than the baseline ‘BiDAF + Self Attention
+ ELMo.’ However, after applying DEBS, our
model outperforms the baseline, achieving 86.73
F1 and 79.69 EM.

Minimum anchor distance. Rajpurkar et al.
(2016) proposed the difficulty measure called syn-
tactic divergence, which is computed as the edit
distance between syntactic parse trees of the ques-
tion and the sentence containing the answer. How-
ever, this measure has limitations that the syntac-
tic parser does not work properly on incomplete
sentences, which are common in web text. It also
becomes difficult to compute this measure if the
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Model Test set AF SAEM F1
Our model (with DEBS) + ELMo 79.69 86.73 X X

BiDAF + Self Attention + ELMo (Peters et al.) 78.58 85.83 X X

Our model (without DEBS) + ELMo 77.44 85.13 X

RaSoR + TR + LM (Salant and Berant, 2017) 77.58 84.16 X

QANet (Yu et al., 2018a) 76.24 84.60 X X

SAN (Liu et al., 2017b) 76.83 84.40 X X

FusionNet (Huang et al., 2017b) 75.97 83.90 X X

RaSoR + TR (Salant and Berant, 2017) 75.79 83.26 X

Conducter-net (Liu et al., 2017a) 74.41 82.74 X X

Reinforced Mnemonic Reader (Hu et al., 2017) 73.20 81.80 X X

BiDAF + Self Attention (Clark and Gardner, 2017) 72.14 81.05 X

MEMEN (Pan et al., 2017) 70.98 80.36 X

Our model (without DEBS) 70.99 79.94
r-net (Wang et al., 2017) 71.30 79.70 X

Document Reader (Chen et al., 2017) 70.73 79.35 X

FastQAExt (Weissenborn et al., 2017) 70.85 78.86 X

Human Performance 82.30 91.22
Table 4: Single model results on SQuAD. All the other results than ours are those reported in their own
publications. The last two column indicate whether a model uses any additional feature augmentation
(AF) and self attention (SA).

answer requires multi-sentence inference.
Instead, we develop our own metric called a

minimum anchor distance, which is simple and
robust to noisy text. To compute this metric, we
first identify for all the co-occurring words (an-
chor words) between a document and a question
while ignoring stop words. Then, we compute the
number of words found between the answer and
all the possible anchor words and select the mini-
mum number from these.

In Figure 2, we show F1 scores of our model
with DEBS and the baseline with respect to
the minimum anchor distance. The scores are
obtained from the development set of Trivi-
aQA(Web) and SQuAD. The heat map at the bot-
tom of the figure indicates the number of samples
in each interval of the minimum anchor distance.
One can see that our model performs increasingly
better than the baseline as the minimum anchor
distance gets larger. The examples shown in Ta-
ble 5 indicate that documents with long dependen-
cies tend to have a large minimum anchor distance.
These examples show that our model predicts the
remotely placed answer from the anchor word rel-
atively well when anaphora resolution and nega-
tion are involved.

Ablation study with an encoder block. We
assume that the concatenation of the layer outputs

in DEBS helps the memory controller store con-
textual representations clearly. To see how DEBS
affects the memory controller depending on differ-
ent positions in the entire network, we conducted
an ablation study by replacing the encoder block
with DEBS on SQuAD. As can be seen in Table 6,
using DEBS in all the places improves the perfor-
mance most, and furthermore, the memory con-
troller with DEBS gives the largest performance
margin. This implies that DEBS can generally
work as a better alternative to a BiGRU module,
and DEBS is critical in maintaining the high per-
formance of our proposed memory controller.

Adding our proposed modules to other mod-
els. To show the wide effectiveness of our pro-
posed approaches, we choose two well-known
baseline models in SQuAD: R-net (Wang et al.,
2017) and ‘BiDAF + Self Attention’ (Clark and
Gardner, 2017). These models have similar archi-
tectures where the model first pairs a given ques-
tion and document pair using an attention and af-
terward applies a self-attention mechanism. We
use the publicly available implementation of these
models3,4. In Table 7, replacing all the recur-
rent units with DEBS and adding our memory
controller between the question-document pairing

3https://github.com/HKUST-KnowComp/R-Net
4https://github.com/allenai/document-qa
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Dataset Example
Question : What claimed the life of singer Kathleen Ferrier?
Context : (omit) · · · Kathleen Ferrier (22.III.1912 Higher Walton, Lancashire- 8.X.

TriviaQA 1953 London, England ) was an English contralto singer* who achieved an international
(Web) reputation with a repertoire extending from folksong and popular ballads to the classical

works. Her death from cancer , at the height of her fame, was a shock to the musical
world and particularly to the general public, which was kept in ignorance of · · · (omit)
Question : What did Mote think the Yuan class system really represented?
Context : The historian Frederick W.Mote wrote that the usage of the term “social

SQuAD classes” for this system was misleading and that the position of people within the four
-class system* was not an indication of their actual social power and wealth, but just
entailed “degrees of privilege” to which they were entitled institutionally and legally,
so a person’s standing within the classes was not a guarantee of their standing, · · · (omit)

*A word with an asterisk indicates an anchor word closest to the ground truth answer.

Table 5: Examples in TriviaQA (Web) and SQuAD. Italic means the ground truth answer, frame in-
dicates the prediction of our model (with DEBS) and underline shows the prediction of ‘BiDAF + Self
Attention’ model.

Adding DEBS Dev
C M P EM F1

77.22 85.01
X 77.31 85.22
X X 77.75 85.34
X X 78.70 86.12
X X X 78.93 86.26

Table 6: Ablation study of replacing an encoder
block with DEBS in the co-attention layer (C), the
memory controller (M), and the prediction layer
(P) in SQuAD. Xmeans that DEBS is used. Oth-
erwise, BiGRU is used.

layer and the self-attention layer increases the F1
score by around 0.5 compared to the baseline.

6 Related Work

Numerous neural network-based methods have
been proposed, pushing the performance nearly
up to a human level. Although slight differ-
ences exist, (Wang et al., 2017; Seo et al., 2017;
Xiong et al., 2017) mostly leverage the question-
document co-attention based on their pairwise
similarity of word-level vector representations.
These models currently work as the backbone ar-
chitecture for many other models. Furthermore,
Wang et al. (2017) suggest utilizing a self attention
mechanism between tokens within a document to
refine contextual representations.

Salant and Berant (2017); Chen et al. (2016);
Pan et al. (2017); Weissenborn (2017); Peters et al.
focus on augmenting feature representations in the

Base Adapt- Dev
model ation EM F1

R-net3 - 70.71 (0.07) 79.48 (0.08)
X 71.12 (0.12) 79.99 (0.11)

BiDAF - 71.61 (0.07) 80.78 (0.08)
+SA4

X 72.82 (0.15) 81.33 (0.09)
Table 7: Effects of our proposed components added
to R-net and ‘BiDAF + Self Attention (SA)’ on
SQuAD. The values in parentheses represent the
standard deviation from 6 runs. The first row of
each base model indicates the result of the original
methods. When adding the proposed component,
DEBS is used in the place of all the recurrent lay-
ers while the memory controller is added between
the co-attention and the self-attention layers.

word embedding layer to provide rich information.
Salant and Berant (2017); Weissenborn (2017);
Peters et al. extract and use additional features
from other neural models trained for another task
or external resources. Chen et al. (2016); Pan et al.
(2017) utilize additional syntactic or semantic fea-
tures through part-of-speech tagging or named-
entity recognition, etc.

Enriching the input representation from pre-
trained external models has been shown to be
useful in improving RC task performances. Yu
et al. (2018a) have also improved the performance
by leveraging self attention for context encoding
based on convolutional neural networks. Hu et al.
(2017) refine the contextual representation with
multiple hops, and Pan et al. (2017) use the en-
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coded query for refining the answer prediction as
a memory, which are different from our work in
terms of handling long-range dependency.

7 Conclusion

This paper proposed two novel, crucial compo-
nents for deep neural network-based RC tasks, (1)
an advanced memory controller architecture and
(2) a densely connected encoder block with self
attention. We showed the effectiveness of these
approaches in handling long-range dependencies
using three benchmark RC datasets such as Triv-
iaQA, QUASAR-T, and SQuAD. Our proposed
modules are widely applicable to other models to
improve their performance. Future work includes
developing a scalable read/write accessing mech-
anism to handle a large-scale external memory to
reason over multiple documents.
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Abstract

Sequence encoders are crucial components in
many neural architectures for learning to read
and comprehend. This paper presents a new
compositional encoder for reading compre-
hension (RC). Our proposed encoder is not
only aimed at being fast but also expressive.
Specifically, the key novelty behind our en-
coder is that it explicitly models across mul-
tiple granularities using a new dilated com-
position mechanism. In our approach, gat-
ing functions are learned by modeling rela-
tionships and reasoning over multi-granular
sequence information, enabling compositional
learning that is aware of both long and short
term information. We conduct experiments
on three RC datasets, showing that our pro-
posed encoder demonstrates very promising
results both as a standalone encoder as well
as a complementary building block. Empiri-
cal results show that simple Bi-Attentive archi-
tectures augmented with our proposed encoder
not only achieves state-of-the-art / highly com-
petitive results but is also considerably faster
than other published works.

1 Introduction

Teaching machines to read, comprehend and rea-
son lives at the heart of reading comprehension
(RC) tasks (Rajpurkar et al., 2016; Lai et al., 2017;
Dunn et al., 2017; Kočiskỳ et al., 2017). In these
tasks, the goal is to answer questions based on a
given passage, effectively testing the learner’s ca-
pability to understand natural language. This has
been an extremely productive area of research in
the recent years, giving rise to many highly ad-
vanced neural network architectures (Xiong et al.,
2016; Weissenborn et al., 2017; Seo et al., 2016;
Hu et al., 2017; Shen et al., 2017; Wang and
Jiang, 2016b; Wang et al., 2018). A common de-
nominator in many of these models is the com-
positional encoder, i.e., usually a bidirectional

recurrent-based (LSTM (Hochreiter and Schmid-
huber, 1997) or GRU (Cho et al., 2014)) encoder
that sequentially parses the text sequence word-
by-word. This helps to model compositionality of
words, capturing rich and complex linguistic and
syntactic structure in language.

While the usage of recurrent encoder is often
regarded as indispensable in highly complex RC
tasks, there are still several challenges and prob-
lems pertaining to its usage in modern RC tasks.
Firstly, documents can be extremely long to the
point where running a BiRNN model across a long
document is computationally prohibitive1. This
is aggravated since RC tasks can be easily ex-
tended to reasoning over multiple long documents.
Secondly, recurrent encoders have limited access
to long term context since each word is sequen-
tially parsed. This restricts any form of multi-
sentence and intra-document reasoning from hap-
pening within compositional encoder layer.

To this end, we propose a new compositional
encoder that can either be used in place of stan-
dard RNN encoders or serve as a new module
that is complementary to existing neural archi-
tectures. Our proposed encoder leverages dilated
compositions to model relationships across mul-
tiple granularities. That is, for a given word in
the target sequence, our encoder exploits both
long-term (far) and short-term (near) information
to decide how much information to retain for
it. Intuitively, this can be interpreted as learn-
ing to compose based on modeling relationships
between word-level, phrase-level, sentence-level,
paragraph-level and so on. The output of the di-
lated composition mechanism acts as gating func-
tions, which are then used to learn compositional
representations of the input sequence.

1Many recent works tackle this issue (Yu et al., 2018;
Choi et al., 2017). However, this work presents a comple-
mentary/orthogonal approach to many of these works.
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A brief high-level overview to our proposed en-
coder is given as follows: Firstly, sequences are
chunked into blocks based on user-defined (hyper-
parameter) block sizes. Block sizes are often di-
lated in nature, i.e., 1, 2, 4, 10, 25, etc., in order
to capture more long-term information. Our en-
coder takes the neural bag-of-words representation
of each block size and compresses/folds all words
(that reside in each block) into a single summed
embedding. All blocks are then passed into
fully-connected layers and re-expanded/unfolded
to their original sequence lengths. For each word,
the gating vectors are then constructed by mod-
eling the relationships between all blocks that this
word resides in. As such, this can be interpreted as
a divide-and-conquer sequence encoding method.

This has several advantages. Firstly, we enable
a major speedup by avoiding either costly step-by-
step gate construction while still maintaining inter-
actions between neighboring words. As such, our
model belongs to a class of architectures which is
inspired by QRNNs (Bradbury et al., 2016) and
SRUs (Lei and Zhang, 2017). The key differ-
ence is that our gates are not constructed by con-
volution layers but explicit block-based matching
across multiple ranges, both long and short. Sec-
ondly, modeling at a long range (e.g., 25 or 50)
enables our model to look further ahead as op-
posed to only one step forward. As such, the
learned gates not only possess information about
nearby words but also a larger overview of the
context. This is in similar2 spirit to self-attention,
albeit occuring within the encoder. Thirdly, the
final gates are formed by modeling relationships
between multi-range projections (n-gram blocks),
allowing for fine-grained intra-document relation-
ships to be captured. The overall contributions of
our work are as follows:

• We propose DCU (Dilated Compositional
Units3), a new compositional encoder for
both fast and expressive sequence encoding.
We propose an overall architecture that uti-
lizes DCU within a Bi-Attentive framework
for both multiple choice and span prediction
RC tasks. DCU can be used as a standalone
(without RNNs) for fast reading and/or to-

2It is good to note that our approach explicitdly compares
across blocks of multi-granularities while self-attention com-
pares on a word-level basis.

3This model was originally known as MRU (Multi-Range
Reasoning Units) and was published on ArXiv on March
2018.

gether with RNN models (i.e., DCU-LSTM)
for more expressive reading.

• We conduct extensive experiments on three
large-scale and challenging RC datasets -
RACE (Lai et al., 2017), SearchQA (Dunn
et al., 2017) and NarrativeQA (Kočiskỳ et al.,
2017). Our model is lightweight, fast and
efficient, achieving state-of-the-art or highly
competitive performance on three datasets.

• Despite its simplicity, our model outperforms
highly complex models such as Dynamic Fu-
sion Networks (DFN) (Xu et al., 2017) on
RACE. While DFN takes approximately a
week to train, spending at least several hours
per epoch, our model converges in less than
12 hours with only 4 � 5 minutes per epoch.
Moreover, our model outperforms DFN by
2% � 6% on the RACE benchmark and other
strong baselines such as the Gated Attention
Reader by 10%. On RACE, we outperform
DFN without any recurrent and convolution
layers. Ablation studies show an improve-
ment of up to 6% when using DCU over a
LSTM/GRU encoder.

2 Dilated Compositional Units (DCU)

In this section, we describe our proposed DCU en-
coder.

2.1 Dilated Composition Mechanism
The inputs to the DCU encoder are (1) a se-
quence {w1, w2 · · · w`}, and (2) list of ranges
{r1, r2 · · · rk} where k is the number of times the
fold/unfold operation is executed. The final output
of the encoder is a sequence of vectors which re-
tains the same dimensionality as its inputs. Figure
1 provides an illustration of the overall encoder ar-
chitecture.

2.1.1 Fold Operation
This section describes the operation for each rj .
For each rj and the input sequence, the fold oper-
ation performs the summation of every rj word.
This is essentially the NBOW (neural bag-of-
words) representation. This reduces the overall
document length to `/rj where each item in the se-
quence is the sum of every rj word. Given the new
sequence of `/rj tokens, we then pass each token
into a single layered feed-forward neural network:

w̄t = �r(Wa(wt)) + ba (1)
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Figure 1: High-level overview of (1) our proposed DCU encoder (left), (2) Span Prediction Architecture (center) and (3)
Multiple Choice Architecture (right). In the DCU encoder, blocks are formed at multi-granular levels. A block embedding is
learned for each granularity. The composition gates for each word is constructed by modeling the relationships between all
NBOW (neural bag-of-words) blocks that it resides in.

where Wa 2 R
d⇥d and ba 2 R

d are the param-
eters of the fold layer. �r is the ReLU activation
function. wt is the t-th token in the sequence.

2.1.2 Unfold Operation

Given the transformed tokens w̄1, w̄2 · · · w̄`/rj
,

we then expand/unfold them into the original se-
quence length. Note that for each rj , the param-
eters Wa, ba are not shared between blocks. Fig-
ure 2 depicts the fold-unfold operation for a single
value of rj .

Proj Proj Proj Proj

Fold

Input

Transform
Unfold

Output

Figure 2: Overview of the Fold-Unfold operation for rj = 2.

Overall, the key intuition of each fold-unfold
operation is to learn representations of a block
of a single granularity (say, blocks of 2). The
main rationale for unfolding is to enable reason-
ing over multiple blocks (or granularities). This is
described in the next section.

2.1.3 Multi-Granular Reasoning
From k different calls of the Fold/Unfold opera-
tion at different block sizes, we pass the concate-
nated vector of all transformed tokens into a two
layered feed-forward neural network.

gt = F2(F1([w
1
t ; w

2
t ; · · · wk

t ])) (2)

where F1(.), F2(.) are feed-forward networks with
ReLU activations, i.e., �r(Wx + b). [; ] is the
concatenation operator. gt is interpreted as a gat-
ing vector learned from multiple granularities and
Equation (2) is learning the relationships between
a token’s representation at multiple hierarchies de-
pending on the values of rj . Notably, it is easy to
see that every n pairs of words will have the same
gating vector where n is the lowest value of rj . As
such, the value of the unigram, i.e., rj = 1 (projec-
tion of every single token) is critical as it prevents
identical gating vectors across the sequence.

2.2 Encoding Operation
To learn the DCU encoded representation of each
word, we consider two variations of DCU en-
coders.

2.2.1 Simple Encoding
In this variation, we use gt as a gating vector to
control the fine-grained balance between the pro-
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jection of each word wt in the original input doc-
ument and the original representation.

zt = tanh(Wp wt) + bp (3)
yt = �(gt) ⇤ wt + (1 � �(gt)) zt (4)

where {y1, y2, · · · y`} is the output document rep-
resentation. � is the sigmoid function. Note that
this formulation is in similar spirit to highway net-
works (Srivastava et al., 2015). However, since
our gating function is learned via reasoning over
multi-granular sequence blocks, it captures more
compositionality and long range context. Note
that an optional and additional projection may be
applied to wt but we found that it did not yield
much empirical benefit.

2.2.2 Recurrent Encoding (DCU cell)
In the second variation, we consider a recurrent
(sequential) variant. This is in similar spirit to
QRNNs (Bradbury et al., 2016) and SRUs (Lei
and Zhang, 2017) which reduces computation cost
by pre-learning the gating vectors. The following
operations describe the operations of the recurrent
DCU cell for each time step t.

ct = gt � ct�1 + (1 � gt) � zt (5)
ht = ot � ct (6)

where ct, ht are the cell and hidden states at time
step t. gt are the gates learned from the output of
the multi-range reasoning step. ot is an additional
output gate learned via applying an affine trans-
form on the input vector wt, i.e., ot = Wo(wt) +
bo. Similar to RNNs, the Recurrent DCU parses
the input sequence word-by-word. However, the
cost is significantly reduced because we do not
have expensive matrix operations that are executed
in an non-parallel fashion. Finally, the outputs of
the DCU encoder are a series of hidden vectors
{h1, h2 · · · h`} for each word in the sequence.

3 Overall Model Architectures
This section describes the overall model architec-
tures that utilize DCU encoders. In our exper-
iments, we focus on both multiple-choice based
(RACE) and span prediction RC tasks (SearchQA,
NarrativeQA). Since the core focus of this paper is
our encoder, we briefly provide the high-level de-
tails4 of our vanilla Bi-Attentive model. The Bi-
Attentive models that are used in our experiments

4This is primarily due to the lack of space as the main
focus of this work is the DCU. Source code will be released at
hhttps://github.com/vanzytay/EMNLP18_DCU.

act as baselines, often being less complex than cur-
rent competitive models such as BiDAF (Seo et al.,
2016), AMANDA (Kundu and Ng, 2018) or DFN
(Xu et al., 2017). Figure 1 (center and right side
of the figure) provides a high-level illustration of
these architectures.

3.1 Multiple Choice Models
In the Multiple Choice (MCQ) model, there are
three types of input sequences, namely Passage
(P ), Question (Q) and Answers (Aj). The out-
put of the model (for each answer), is a score
s(P, Q, Aj) 2 [0, 1] denoting the strength of Aj .

Input Encoding Each input sequence is passed
into first a projection layer. To enhance the input
word representations, we also include the standard
EM (exact match) binary feature to each word. In
this case, we use a three-way EM adaptation, i.e.,
EM(P, Q), EM(Q, A) and EM(P, A). The pro-
jected embeddings are then passed into a single-
layered highway network.

Compositional Encoder In our experiments,
we vary the encoder in this layer. Typical choices
of encoders in this layer are LSTMs or GRUs. We
vary this in our experiments in order to benchmark
the effectiveness of our proposed DCU encoder.
The output of this layer has the same dimensions
as its inputs (typically the hidden states of a RNN
model).

Bi-Attention Layer - This layer models the in-
teractions between P, Q and A. Let B(.) be a
standard bidirectional attention that utilizes mean-
pooling aggregation. The scoring function is the
bilinear product of the nonlinearly transformed in-
put, i.e., F (x)>

i MF (y)i. We first apply B(P, Q)
to form bi-attentive P q, Qp representations. Sub-
sequently, we apply B(P q, Aj) to learn a vector
representation for each answer. A temporal sum
pooling is applied on the outputs of P qa, Ap

j and
concatenated to form af

j 2 R
2d.

Answer Selection Let {a1, a2 · · · aNa} be the
inputs to this layer and Na is the number of answer
candidates. Motivated by the work in retrieval-
based QA (Severyn and Moschitti, 2015), we in-
clude word overlap features to each answer can-
didate. This word overlap feature is in similar
spirit to the EM feature. Each overlap operation
between two sequences returns four features. We
convert each answer vector aj into a scalar via
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af
j = Softmax(W2(�r(W1([aj ]) + b1) + b2))

where W⇤, b⇤ and ⇤ = {1, 2} are standard dense
layer parameters.

Optimization The MCQ-based model mini-
mizes the multi-class cross entropy where the
number of classes corresponds to the number of
choices.

3.2 Span Prediction Model

In the Span Prediction Model, the goal is to extract
(or predict a span s, e) where P [s : e] is the answer
to the query. As such, the key interaction in this
architecture is between P and Q. For most part,
the model architecture remains similar especially
for the input encoding layers and compositional
encoder layer. The key difference is that we reduce
the number of input sequence from three to two.

Input Encoding This follows the same design
as the MCQ-based model, albeit for two sequences
instead of three. Similarly, the two-way EM fea-
ture is added before passing into the highway
layer.

Compositional Encoder This layer remains
identical to the MCQ-based model.

Bi-Attention Layer We adopt a different bi-
attention function for span prediction. More
specifically, we use the ‘SubMultNN’ or the
‘Mult’ adaptation from (Wang and Jiang, 2016a)
(which is tuned) and compare aligned sequences
between P and Q to form P q, the query-dependent
passage representation.

Answer Pointer Layer In this layer, we pass
P q through a two layered compositional encoder
(which is varied similar to the compositional en-
coder layer and will be further elaborated in our
experiments.). The start pointer and end pointer
are determined by F (H1), F (H2) where H1, H2

are the hidden outputs from the first and sec-
ond encoders respectively. F (.) is a linear trans-
form, projecting each hidden state to a scalar. We
pass both of them into softmax functions to obtain
probability distributions.

Optimization Following (Seo et al., 2016;
Wang and Jiang, 2016b), we minimize the joint
cross entropy loss of the start and end probability
distributions. During inference, we follow (Wang
and Jiang, 2016b) to find the best answer span.

4 Empirical Evaluation

In this section, we report our experimental results
and comparisons against other published works.

4.1 Datasets

For our experiments, we use one challenging mul-
tiple choice MC dataset and two span-prediction
MC datasets.

RACE (Reading Comprehension from Exami-
nations) (Lai et al., 2017) is a recently proposed
dataset that is constructed from real world exam-
inations. Given a passage, there are several ques-
tions with four options each. The authors argue
that RACE is more challenging compared to pop-
ular benchmarks (e.g., SQuAD (Rajpurkar et al.,
2016)) as more multi-sentence and compositional
reasoning are required. There are two subsets
of RACE, namely RACE-M (Middle school) and
RACE-H (High school). The latter is considered
to be harder than the former.

SearchQA (Dunn et al., 2017) is a recent dataset
that emulates a real world QA system. It involves
extracting passages from search engine results and
requiring models to answer questions by reasoning
and reading these search snippets.

NarrativeQA (Kočiskỳ et al., 2017) is a recent
benchmark proposed for story-based reading com-
prehension. Different from many RC datasets, the
answers are handwritten by human annotators. We
focus on the summaries setting instead of reading
full stories since our model is targetted at standard
RC tasks.

MCQ datasets are evaluated using the standard
accuracy metric. For RACE, we train models on
the entire dataset, i.e., both RACE-M and RACE-
H, and evaluate them separately. For RACE, the
model selection is based on each subset’s respec-
tive development set. For SearchQA, we follow
(Kundu and Ng, 2018; Dunn et al., 2017) which
evaluates unigram exact match (EM) and n-gram
F1 scores. For NarrativeQA, since the answers are
human written and not constrained to a span that
can be found in the passage, the evaluation met-
rics are BLEU-1, BLEU-4, Meteor and Rouge-L
following (Kočiskỳ et al., 2017).

4.2 Competitor Methods

We describe the key competitors on each dataset.
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RACE The key competitors are the Stanford
Attention Reader (Stanford AR) (Chen et al.,
2016), Gated Attention Reader (GA) (Dhin-
gra et al., 2016), and Dynamic Fusion Net-
works (DFN) (Xu et al., 2017). GA incor-
porates a multi-hop attention mechanism that
helps to refine the answer representations. DFN
is an extremely complex model. It uses (1)
BiMPM’s matching functions (Wang et al., 2017c)
for extensive matching between Q, P and A,
(2) multi-hop reasoning powered by ReasoNet
(Shen et al., 2017) and (3) employs reinforce-
ment learning techniques for dynamic strategy
selection. A leaderboard for this dataset is
maintained at http://www.qizhexie.com/
data/RACE_leaderboard. Note that the cur-
rent state-of-the-art5 (Radford et al., 2018), is a
generative pre-training model trained on a large
external corpus.

SearchQA The main competitor baseline is the
AMANDA model proposed by (Kundu and Ng,
2018). AMANDA uses a multi-factor self-
attention module, along with a question focused
span prediction. AMANDA also uses BiLSTM
layers for input encoding and at the span predic-
tion layers. We also compare against the reported
ASR (Kadlec et al., 2016) baselines which were
reported in (Dunn et al., 2017).

NarrativeQA On this benchmark, we compare
with the reported baselines in (Kočiskỳ et al.,
2017). We compete on the summaries setting, in
which the baselines are a context-less sequence to
sequence (seq2seq) model, ASR (Kadlec et al.,
2016) and BiDAF (Seo et al., 2016). As per
reviewer request, we also benchmark a stronger
competitor, namely R-NET (Wang et al., 2017b)
on this benchmark. We use the open source
implementation6 at https://github.com/
HKUST-KnowComp/R-Net.

4.3 Our Methods
Across our experiments, we benchmark several
variants of our proposed DCU. The first is de-
noted as Sim-DCU which corresponds to the Sim-
ple DCU model described earlier. The model de-
noted by DCU (without any prefix) corresponds to

5This paper was not public at the time of EMNLP 2018
submission.

6Note that the authors of this repository state some dif-
ferences with the original R-NET. However, they get similar
scores on the SQuAD benchmark.

the recurrent DCU model. Finally, the final vari-
ant is the DCU-LSTM which places a DCU en-
coder layer on top of a BiLSTM layer. We report
the dimensions of the encoder as well as training
time (per epoch) for each variant. The encompass-
ing framework for DCU is the Bi-Attentive mod-
els described for MCQ-based problems and span
prediction problems. Unless stated otherwise, the
encoder in the pointer layer for span prediction
models also uses DCU. However, for the Hybrid
DCU-LSTM models, answer pointer layers use
BiLSTMs. For the RACE-dataset, we additionally
report scores of an ensemble of nine Sim-DCU
models. This is to facilitate comparison against
ensemble models of (Xu et al., 2017). We tune the
dimensionality of the DCU cell within a range of
100 � 300 in denominations of 50. The results re-
ported are the best performing models on the held-
out set.

4.4 Implementation Details
We implement all models in TensorFlow (Abadi
et al., 2015). Word embeddings are initial-
ized with 300d GloVe (Pennington et al., 2014)
vectors and are not fine-tuned during training.
Dropout rate is tuned amongst {0.1, 0.2, 0.3}
on all layers including the embedding layer.
For our DCU model, we use range values of
{1, 2, 4, 10, 25}. DCU encoders are only ap-
plied on the passage and not the query. We
adopt the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.0003/0.001/0.001 for
RACE/SearchQA/NarrativeQA respectively. The
batch size is set to 64/256/32 accordingly. The
maximum sequence lengths are 500/200/1100 re-
spectively. For NarrativeQA, we use the Rouge-
L score to find the best approximate answer rel-
ative to the human written answer for training the
span model. All models are trained and all runtime
benchmarks are based on a TitanXP GPU.

4.5 Experimental Results on RACE
Table 1 reports our results on the RACE bench-
mark dataset. Our proposed DCU model achieves
the best result for both single models and ensem-
ble models. We outperform highly complex mod-
els such as DFN. We also pull ahead of other
recent baselines such as ElimiNet (Parikh et al.,
2018) and GA by at least 5%. The best single
model score from RACE-H and RACE-M alter-
nates between Sim-DCU and DCU. Overall, there
is a 6% improvement on the RACE-H dataset and
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Model RACE-M RACE-H RACE Time
Sliding Window (Lai et al., 2017) 37.3 30.4 32.2 N/A
Stanford AR (Chen et al., 2016) 44.2 43.0 43.3 N/A
GA (Dhingra et al., 2016) 43.7 44.2 44.1 N/A
ElimiNet (Parikh et al., 2018) N/A N/A 44.5 N/A
Dynamic Fusion Network (Xu et al., 2017) 51.5 45.7 47.4 ⇡8 hours (1 week⇤)
Bi-Attention (No Encoder) 50.6 44.0 44.9 3 min (9 hours)
Bi-Attention (250d GRU) 48.5 42.1 44.0 16 min (2 days)
Bi-Attention (250d LSTM) 50.3 40.9 43.6 18 min (2 days)
Bi-Attention (250d Sim-DCU) 57.7 47.4 50.4 4 min (12 hours)
Bi-Attention (250d DCU) 56.1 47.5 50.0 12 min (20 hours)
GA + ElimiNet (Parikh et al., 2018) N/A N/A 47.2 N/A
DFN Ensemble (x9) (Xu et al., 2017) 55.6 49.4 51.2 N/A
Bi-Attention (Sim-DCU) Ensemble (x9) 60.2 50.3 53.3 N/A

Table 1: Comparison against other published models on RACE dataset (Lai et al., 2017). Competitor result are reported
from (Lai et al., 2017; Xu et al., 2017). Best result for each category (single and ensemble) is in boldface. Last column reports
estimated training time per epoch and total time for convergence. ⇤ is an estimated value that we obtain from asking the authors.

Dev Test
Model Acc F1 Acc F1 Time
TF-IDF max (Dunn et al., 2017) 13.0 N/A 12.7 N/A N/A
ASR (Kadlec et al., 2016) 43.9 24.2 41.3 22.8 N/A
AMANDA (Kundu and Ng, 2018) 48.6 57.7 46.8 56.6 ⇡8⇤ min
Bi-Attention† (No Encoder) 12.4 20.2 18.9 12.3 ⇡17 sec
Bi-Attention† (150d BiLSTM) 40.0 51.3 38.6 49.0 ⇡7 min
Bi-Attention† (300d LSTM) 40.3 48.7 38.2 46.4 ⇡6 min
Bi-Attention† (300d Sim-DCU) 44.1 45.5 42.9 43.1 ⇡25 sec
Bi-Attention† (300d DCU) 48.6 54.8 46.8 53.3 ⇡2 min
Bi-Attention (200d Hybrid DCU-LSTM) 50.5 59.9 49.4 59.5 ⇡7 min

Table 2: Experimental Results on SearchQA dataset. (Dunn et al., 2017). Unigram Accuracy and N-gram F1 are reported
following (Kundu and Ng, 2018). All models with † use the same encoder in the answer pointer layer. ⇤ is an estimate running
a replicated model with same batch size (b = 256) as our models.

1.8% improvement on the RACE-M dataset. Our
Sim-DCU model also runs at 4 minutes per itera-
tion, which is dramatically faster and simpler than
DFN or other recurrent models. We believe that
this finding highlights the importance of designing
strong and fast baselines for the task at hand.

In general, we also found that the usage of a
recurrent cell is not really crucial on this dataset
since (1) Sim-DCU and DCU can achieve com-
parable performance to each other, (2) GRU and
LSTM models do not have a competitive edge and
(3) using no encoder can achieve comparable7 per-
formance to DFN. Finally, an ensemble of Sim-
DCU models achieve state-of-the-art performance
on the RACE dataset, achieving an overall score

7Nevertheless, this suggests the importance of bench-
marking good and strong baselines since a well-tuned base-
line model can outperform DFN, a highly complicated model.

of 53.3%.

4.6 Experimental Results on SearchQA

Table 2 reports our results on the SearchQA
dataset. We draw the reader’s attention to the per-
formance of the 300d DCU encoder. We achieve
the same accuracy as AMANDA without using
any LSTM or GRU encoder. This model runs
at 2 minutes per epoch, making it 4 times more
efficient than AMANDA (estimated, with iden-
tical batch size). While AMANDA also uses
multi-factor self-attention, along with character
enhanced representations, our simple DCU en-
coder used within a mere baseline bi-attentive
framework comes close in performance. Finally,
the hybrid combination, DCU-LSTM significantly
outperforms AMANDA by 3%.

Contrary to MCQ-based datasets, we found that
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Model BLEU-1 BLEU-4 Meteor Rouge-L Time
Seq2Seq† 15.89 1.26 4.08 13.15 N/A
ASR† (Kadlec et al., 2016) 23.20 6.39 7.77 22.26 N/A
BiDAF† (Seo et al., 2016) 33.72 15.53 15.38 36.30 N/A
R-NET� (Wang et al., 2017b) 34.90 20.30 18.00 36.70 N/A
Bi-Attention (300d LSTM) 31.18 15.34 14.42 32.95 ⇡1 hour
Bi-Attention (150d BiLSTM) 34.22 18.22 16.19 38.32 ⇡1 hour
Bi-Attention (300d Sim-DCU) 9.15 1.69 3.95 11.16 1 min
Bi-Attention (300d DCU) 33.28 16.15 15.84 36.65 18 mins
Bi-Attention (150d Hybrid DCU-LSTM) 36.55 19.79 17.87 41.44 ⇡1 hour

Table 3: Experimental Results on the NarrativeQA reading comprehension challenge (Kočiskỳ et al., 2017) using summaries.
† are baselines reported by (Kočiskỳ et al., 2017). � was obtained by running an open-source implementation of R-NET on the
benchmark.

Sim-DCU model could not achieve comparable re-
sults to the recurrent DCU. We hypothesize that
this is due to the need to predict spans. Nev-
ertheless, the 300d DCU outperforms an LSTM
encoder and remains competitive to a BiLSTM
of similar dimensionality8. We also observe
that LSTM and DCU are complementary. This
shows that stacking a DCU encoder over standard
LSTMs can give a performance boost relative to
using each encoder separately.

4.7 Experimental Results on NarrativeQA

Table 3 reports our results on the NarrativeQA
benchmark. First, we observe that 300d DCU
can achieve comparable performance with BiDAF
(Seo et al., 2016). When compared with a BiL-
STM of equal output dimensions (150d), we find
that our DCU model performs competitively, with
less than 1% deprovement across all metrics.
However, the time cost required is significantly
reduced. The performance of our model is sig-
nificantly better than 300d LSTM model while
also being significantly faster. Here, we note that
Sim-DCU does not produce reasonable results at
all, which seems to be in similar vein to results
on SearchQA, i.e., a recursive cell that processes
word-by-word is mandatory for span prediction.
However, our results show that it is not neces-
sary to construct gates in a word-by-word fashion.
Finally, DCU-LSTM significantly outperforms all
models in terms of ROUGE-L, including BiDAF
on this dataset. Performance improvement over
the vanilla BiLSTM model ranges from 1% � 3%
across all metrics, suggesting that DCU encoders

8In terms of representation and parameter size, we con-
sider a 150d BiLSTM to be equivalent to a 300d LSTM for
fair comparison.

are also effective as a complementary neural build-
ing block.

5 Related Work

A diverse collection of MC datasets such
as SQuAD (Rajpurkar et al., 2016) and
CNN/DailyMail (Hermann et al., 2015) are
readily available for benchmarking new deep
learning models. New datasets have been recently
released (Kočiskỳ et al., 2017; Joshi et al., 2017;
Lai et al., 2017; Welbl et al., 2017; Dhingra
et al., 2017; Trischler et al., 2016), claiming to
involve a greater need for going beyond simple
surface-level matching. As such, these datasets
often emphasize the extent of compositional and
multi-sentence reasoning required to tackle its
questions.

In recent years, a wide range of innovative neu-
ral solutions have also been proposed, mainly in-
volving bi-attention (Seo et al., 2016; Xiong et al.,
2016; Cui et al., 2016) and answer pointers (Wang
and Jiang, 2016b). Recent work also investigates
the notion of multi-hop reasoning (Dhingra et al.,
2016; Shen et al., 2017; Xu et al., 2017), rein-
forcement learning (Shen et al., 2017; Wang et al.,
2017a; Hu et al., 2017), pretraining on auxilliary
tasks (Radford et al., 2018; Peters et al., 2018;
McCann et al., 2017, 2018) and self-matching /
self-attention (Kundu and Ng, 2018; Wang et al.,
2017b; Yu et al., 2018). While many of these
works use BiLSTMs as standard building blocks,
(Yu et al., 2018) proposed a RNN-less model ar-
chitecture by utilizing components inspired by the
Transformer architecture (Vaswani et al., 2017).

Our work is mainly concerned with designing
an efficient encoder that is able to capture not only
compositional information but also long-range and
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short-range information. More specifically, our re-
current DCU encoder takes on a similar architec-
ture to Quasi-Recurrent Neural Networks (Brad-
bury et al., 2016) and Simple Recurrent Units (Lei
and Zhang, 2017). In these models, gates are
pre-learned and then applied. However, differ-
ent from existing models such as QRNNs that use
convolution layers as gates, we use block-based
fold-unfold layers for learning gates. Our model
also draws inspiration from dilation, in particu-
lar dilated RNNs (Chang et al., 2017) and dilated
convolutions (Kalchbrenner et al., 2016), that in-
tuitively help to model long-range dependencies.
Notably, our work is orthogonal to recent advances
that are targetted at speeding up the reading pro-
cess. Such works include residual dilated convo-
lutions (Wu et al., 2017), self-attention (Yu et al.,
2018) and coarse-to-fine grained paradigm (Choi
et al., 2017). However, while speed is one of the
clear benefits of this work, our work is the first to
introduce the idea of block-based multi-granular
reasoning. We believe that this new building block
is complementary/useful to the RC task in general.

6 Conclusion and Future Work

We proposed a novel neural architecture, the DCU
encoder and an overall bi-attentive model for both
MCQ-based and span prediction MC tasks. We
apply it to three MC datasets and achieve com-
petitive performance on all without the use of
recurrent and convolution layers. Our proposed
method outperforms DFN, an extremely complex
model, without using any LSTM/GRU layer. We
also remain competitive to AMANDA and BiDAF
without any LSTM/GRU. While our proposed en-
coder demonstrates promise on reasoning and un-
derstanding natural language, we believe that our
encoder is generalizable to other domains beyond
reading comprehension. However, we defer this
prospect to future work.
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Abstract
Answering compositional questions requiring
multi-step reasoning is challenging. We intro-
duce an end-to-end differentiable model for in-
terpreting questions about a knowledge graph
(KG), which is inspired by formal approaches
to semantics. Each span of text is repre-
sented by a denotation in a KG and a vec-
tor that captures ungrounded aspects of mean-
ing. Learned composition modules recursively
combine constituent spans, culminating in a
grounding for the complete sentence which an-
swers the question. For example, to interpret
“not green”, the model represents “green” as a
set of KG entities and “not” as a trainable un-
grounded vector—and then uses this vector to
parameterize a composition function that per-
forms a complement operation. For each sen-
tence, we build a parse chart subsuming all
possible parses, allowing the model to jointly
learn both the composition operators and out-
put structure by gradient descent from end-
task supervision. The model learns a variety of
challenging semantic operators, such as quanti-
fiers, disjunctions and composed relations, and
infers latent syntactic structure. It also gen-
eralizes well to longer questions than seen in
its training data, in contrast to RNN, its tree-
based variants, and semantic parsing baselines.

1 Introduction
Compositionality is a mechanism by which the
meanings of complex expressions are systemati-
cally determined from the meanings of their parts,
and has been widely assumed in the study of both
artificial and natural languages (Montague, 1973)
as a means for allowing speakers to generalize to
understanding an infinite number of sentences. Pop-
ular neural network approaches to question answer-
ing use a restricted form of compositionality, typi-
cally encoding a sentence word-by-word, and then

⇤ Work done while interning with Facebook AI Research.

executing the complete sentence encoding against
a knowledge source (Perez et al., 2017). Such mod-
els can fail to generalize from training data in sur-
prising ways. Inspired by linguistic theories of
compositional semantics, we instead build a latent
tree of interpretable expressions over a sentence,
recursively combining constituents using a small
set of neural modules. Our model outperforms
RNN encoders, particularly when test questions
are longer than training questions.

Our approach resembles Montague semantics,
in which a tree of interpretable expressions is built
over the sentence, with nodes combined by a small
set of composition functions. However, both the
structure of the sentence and the composition func-
tions are learned by end-to-end gradient descent.
To achieve this, we define the parametric form of
small set of composition modules, and then build a
parse chart over each sentence subsuming all pos-
sible trees. Each node in the chart represents a
span of text with a distribution over groundings
(in terms of booleans and knowledge base nodes
and edges), as well as a vector representing aspects
of the meaning that have not yet been grounded.
The representation for a node is built by taking a
weighted sum over different ways of building the
node (similar to Maillard et al. (2017)). The trees
induced by our model are linguistically plausible,
in contrast to prior work on structure learning from
semantic objectives (Williams et al., 2018).

Typical neural approaches to grounded question
answering first encode a question with a recur-
rent neural network (RNN), and then evaluate the
encoding against an encoding of the knowledge
source (for example, a knowledge graph or image)
(Santoro et al., 2017). In contrast to classical ap-
proaches to compositionality, constituents of com-
plex expressions are not given explicit interpreta-
tions in isolation. For example, in Which cubes are
large or green?, an RNN encoder will not explic-
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what  is  left  of   a   red  thing  or  not  cylindrical
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Figure 1: A correct parse for a question given the knowledge graph on the right, using our model. We
show the type for each node, and its denotation in terms of the knowledge graph. The words or and not
are represented by vectors, which parameterize composition modules. The denotation for the complete
question represents the answer to the question. Nodes here have types E for sets of entities, R for relations,
V for ungrounded vectors, EV for a combination of entities and a vector, and � for semantically vacuous
nodes. While we show only one parse tree here, our model builds a parse chart subsuming all trees.

itly build an interpretation for the phrase large or
green. We show that such approaches can general-
ize poorly when tested on more complex sentences
than they were trained on. Our approach instead
imposes independence assumptions that give a lin-
guistically motivated inductive bias. In particular,
it enforces that phrases are interpreted indepen-
dently of surrounding words, allowing the model
to generalize naturally to interpreting phrases in
different contexts. In our model, large or green
will be represented as a particular set of entities in
a knowledge graph, and be intersected with the set
of entities represented by the cubes node.

Another perspective on our work is as a method
for learning layouts of Neural Module Networks
(NMNs) (Andreas et al., 2016b). Work on NMNs
has focused on construction of the structure of the
network, variously using rules, parsers and rein-
forcement learning (Andreas et al., 2016a; Hu et al.,
2017). Our end-to-end differentiable model jointly
learns structures and modules by gradient descent.

Our model is a new combination of classical and
neural methods, which maintains the interpretabil-
ity and generalization behaviour of semantic pars-
ing, while being end-to-end differentiable.

2 Model Overview

Our task is to answer a question q = w1..|q|, with
respect to a Knowledge Graph (KG) consisting
of nodes E (representing entities) and labelled di-
rected edges R (representing relationship between
entities). In our task, answers are either booleans,
or specific subsets of nodes from the KG.

Our model builds a parse for the sentence, in

which phrases are grounded in the KG, and a small
set of composition modules are used to combine
phrases, resulting in a grounding for the complete
question sentence that answers it. For example,
in Figure 1, the phrases not and cylindrical are
interpreted as a function word and an entity set,
respectively, and then not cylindrical is interpreted
by computing the complement of the entity set. The
node at the root of the parse tree is the answer to
the question. Our model answers questions by:

(a) Grounding individual tokens in a KG, that
can either be grounded as particular sets of entities
and relations in the KG, as ungrounded vectors, or
marked as being semantically vacuous. For each
word, we learn parameters that are used to compute
a distribution over semantic types and correspond-
ing denotations in a KG (§ 3.1).

(b) Combining representations for adjacent
phrases into representations for larger phrases, us-
ing trainable neural composition modules (§ 3.2).
This produces a denotation for the phrase.

(c) Assigning a binary-tree structure to the ques-
tion sentence, which determines how words are
grounded, and which phrases are combined using
which modules. We build a parse chart subsuming
all possible structures, and train a parsing model
to increase the likelihood of structures leading to
the correct answer to questions. Different parses
leading to a denotation for a phrase of type t are
merged into an expected denotation, allowing dy-
namic programming (§ 4).

(d) Answering the question, with the most likely
grounding of the phrase spanning the sentence.
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3 Compositional Semantics

3.1 Semantic Types
Our model classifies spans of text into different se-
mantic types to represent their meaning as explicit
denotations, or ungrounded vectors. All phrases are
assigned a distribution over semantic types. The se-
mantic type determines how a phrase is grounded,
and which composition modules can be used to
combine it with other phrases. A phrase spanning
wi..j has a denotation Jwi..jKt

KG for each semantic
type t. For example, in Figure 1, red corresponds
to a set of entities, left corresponds to a set of rela-
tions, and not is treated as an ungrounded vector.

The semantic types we define can be classified
into three broad categories.

Grounded Semantic Types: Spans of text that
can be fully grounded in the KG.

1. Entity (E): Spans of text that can be grounded
to a set of entities in the KG, for example, red
sphere or large cube. E-type span grounding
is represented as an attention value for each en-
tity, [pe1 , . . . , pe|E|

], where pei 2 [0, 1]. This
can be viewed as a soft version of a logical
set-valued denotation, which we refer to as a
soft entity set.

2. Relation (R): Spans of text that can be
grounded to set of relations in the KG, for
example, left of or not right of or above. R-
type span grounding is represented by a soft
adjacency matrix A 2 R

|E|⇥|E| where Aij = 1
denotes a directed edge from ei ! ej .

3. Truth (T): Spans of text that can be grounded
with a Boolean denotation, for example, Is
anything red?, Is one ball green and are no
cubes red?. T-type span grounding is repre-
sented using a real-value ptrue 2 [0, 1] that
denotes the probability of the span being true.

Ungrounded Semantic Types: Spans of text
whose meaning cannot be grounded in the KG.

1. Vector (V): This type is used for spans repre-
senting functions that cannot yet be grounded
in the KG (e.g. words such as and or every).
These spans are represented using 4 different
real-valued vectors v1-v4 2 R

2-R5, that are
used to parameterize the composition mod-
ules described in §3.2.

2. Vacuous (���): Spans that are considered se-
mantically vacuous, but are necessary syntac-
tically, e.g. of in left of a cube. During com-
position, these nodes act as identity functions.

Partially-Grounded Semantic Types: Spans of
text that can only be partially grounded in the
knowledge graph, such as and red or are four
spheres. Here, we represent the span by a com-
bination of a grounding and vectors, representing
grounded and ungrounded aspects of meaning re-
spectively. The grounded component of the repre-
sentation will typically combine with another fully
grounded representation, and the ungrounded vec-
tors will parameterize the composition module. We
define 3 semantic types of this kind: EV, RV and
TV, corresponding to the combination of entities,
relations and boolean groundings respectively with
an ungrounded vector. Here, the word represented
by the vectors can be viewed as a binary function,
one of whose arguments has been supplied.

3.2 Composition Modules
Next, we describe how we compose phrase repre-
sentations (from § 3.1) to represent larger phrases.
We define a small set of composition modules, that
take as input two constituents of text with their cor-
responding semantic representations (grounded rep-
resentations and ungrounded vectors), and outputs
the semantic type and corresponding representation
of the larger constituent. The composition modules
are parameterized by the trainable word vectors.
These can be divided into several categories:

Composition modules resulting in fully
grounded denotations: Described in Figure 2.

Composition with���-typed nodes: Phrases with
type��� are treated as being semantically transparent
identity functions. Phrases of any other type can
combined with these nodes, with no change to their
type or representation.

Composition modules resulting in partially
grounded denotations: We define several mod-
ules that combine fully grounded phrases with un-
grounded phrases, by deterministically taking the
union of the representations, giving phrases with
partially grounded representations (§ 3.1). These
modules are useful when words act as binary func-
tions; here they combine with their first argument.
For example, in Fig. 1, or and not cylindrical com-
bine to make a phrase containing both the vectors
for or and the entity set for not cylindrical.
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E + E ! E: This module performs a function on a pair of
soft entity sets, parameterized by the model’s global param-
eter vector [w1, w2, b] to produce a new soft entity set. The
composition function for a single entity’s resulting attention
value is shown. Such a composition module can be used to
interpret compound nouns and entity appositions. For exam-
ple, the composition module shown above learns to output the
intersection of two entity sets.
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V + E ! E: This module performs a function on a soft entity
set, parameterized by a word vector, to produce a new soft
entity set. For example, the word not learns to take the com-
plement of a set of entities. The entity attention representation
of the resulting span is computed by using the indicated func-
tion that takes the v1 2 R

2 vector of the V constituent as a
parameter argument and the entity attention vector of the E
constituent as a function argument.

small or purple  

E

EEV
pei

= �

�
v2 ·

�

�
pL

ei

pR
ei

1

�

�
�

EV + E ! E: This module combines two soft entity sets into
a third set, parameterized by the v2 word vector. This com-
position function is similar to a linear threshold unit and is
capable of modeling various mathematical operations such as
logical conjunctions, disjunctions, differences etc. for differ-
ent values of v2. For example, the word or learns to model set
union.
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R + E ! E: This module composes a set of relations (repre-
sented as a single soft adjacency matrix) and a soft entity set
to produce an output soft entity set. The composition function
uses the adjacency matrix representation of the R-span and
the soft entity set representation of the E-span.
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V + E ! T: This module maps a soft entity set onto a soft
boolean, parameterized by word vector (v3). The module
counts whether a sufficient number of elements are in (or out)
of the set. For example, the word any should test if a set is
non-empty.
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EV + E ! T: This module combines two soft entity sets
into a soft boolean, which is useful for modelling generalized
quantifiers. For example, in is every cylinder blue, the module
can use the inner sigmoid to test if an element ei is in the
set of cylinders (pL

ei
⇡ 1) but not in the set of blue things

(pR
ei

⇡ 0), and then use the outer sigmoid to return a value
close to 1 if the sum of elements matching this property is
close to 0.
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TTV
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TV + T ! T: This module maps a pair of soft booleans into
a soft boolean using the v2 word vector to parameterize the
composition function. Similar to EV + E ! E, this module
facilitates modeling a range of boolean set operations. Using
the same functional form for different composition functions
allows our model to use the same ungrounded word vector
(v2) for compositions that are semantically analogous.

Aij = �

�
v2 ·

�

�
AL

ij

AR
ij

1

�

�
�

left of or above

R
RRV

RV + R ! R: This module composes a pair of soft set of
relations to a produce an output soft set of relations. For
example, the relations left and above are composed by the
word or to produce a set of relations such that entities ei and
ej are related if either of the two relations exists between
them. The functional form for this composition is similar to
EV + E ! E and TV + T ! T modules.

Figure 2: Composition Modules that compose two constituent span representations into the representation
for the combined larger span, using the indicated equations.
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4 Parsing Model

Here, we describe how our model classifies ques-
tion tokens into semantic type spans and computes
their representations (§ 4.1), and recursively uses
the composition modules defined above to parse
the question into a soft latent tree that provides the
answer (§ 4.2). The model is trained end-to-end
using only question-answer supervision (§ 4.3).

4.1 Lexical Representation Assignment
Each token in the question sentence is assigned
a distribution over the semantic types, and a
grounded representation for each type. Tokens can
only be assigned the E, R, V, and ��� types. For
example, the token cylindrical in the question in
Fig. 1 is assigned a distribution over the 4 semantic
types (one shown) and for the E type, its represen-
tation is the set of cylindrical entities.

Semantic Type Distribution for Tokens: To
compute the semantic type distribution, our model
represents each word w, and each semantic type t
using an embedding vector; vw, vt 2 R

d. The se-
mantic type distribution is assigned with a softmax:

p(t|wi) / exp(vt · vwi)

Grounding for Tokens: For each of the seman-
tic type, we need to compute their representations:

1. E-Type Representation: Each entity e 2 E , is
represented using an embedding vector ve 2
R

d based on the concatenation of vectors for
its properties. For each token w, we use its
word vector to find the probability of each
entity being part of the E-Type grounding:

pw
ei

= �(vei · vw) 8 ei 2 E

For example, in Fig. 1, the word red will be
grounded as all the red entities.

2. R-Type Representation: Each relation r 2
R, is represented using an embedding vector
vr 2 R

d. For each token wi, we compute a
distribution over relations, and then use this to
compute the expected adjacency matrix that
forms the R-type representation for this token.

p(r|wi) / exp(vr · vwi)

Awi =
X

r2R
p(r|wi) · Ar

e.g. the word left in Fig. 1 is grounded as the
subset of edges with label ‘left’.

3. V-Type Representation: For each word w 2
V , we learn four vectors v1 2 R

2, v2 2
R

3, v3 2 R
4, v4 2 R

5, and use these as the
representation for words with the V-Type.

4. ���-Type Representation: Semantically vacuous
words that do not require a representation.

4.2 Parsing Questions
To learn the correct structure for applying composi-
tion modules, we use a simple parsing model. We
build a parse-chart over the question encompass-
ing all possible trees by applying all composition
modules, similar to a standard CRF-based PCFG
parser using the CKY algorithm. Each node in the
parse-chart, for each span wi..j of the question, is
represented as a distribution over different semantic
types with their corresponding representations.

Phrase Semantic Type Potential ( t
i,j): The

model assigns a score,  t
i,j , to each wi..j span,

for each semantic type t. This score is computed
from all possible ways of forming the span wi..j

with type t. For a particular composition of span
wi..k of type t1 and wk+1..j of type t2, using the
t1 + t2 ! t module, the composition score is:

 t1+t2!t
i,k,j =  t1

i,k ·  t2
k+1,j · e✓·f t1+t2!t(i,j,k|q)

where ✓ is a trainable vector and f t1+t2!t(i, j, k|q)
is a simple feature function. Features consist of a
conjunction of the composition module type and:
the words before (wi�1) and after (wj+1) the span,
the first (wi) and last word (wk) in the left con-
stituent, and the first (wk+1) and last (wj) word in
the right constituent.
The final t-type potential of wi..j is computed by
summing scores over all possible compositions:

 t
i,j =

j�1X

k=i

X

(t1+t2!t)
2Modules

 t1+t2!t
i,k,j

Combining Phrase Representations (Jwi..jKt
KG):

To compute wi..j’s t-type denotation, Jwi..jKt
KG,

we compute an expected output representation from
all possible compositions that result in type t.

Jwi..jKt
KG =

1

 t
i,j

j�1X

k=i

Jwi..k..jKt
KG

Jwi..k..jKt
KG =

X

(t1+t2!t)
2Modules

 t1+t2!t
i,k,j ·Jwi..k..jKt1+t2!t

KG
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where Jwi..jKt
KG, is the t-type representation of the

span wi..j and Jwi..k..jKt1+t2!t
KG is the representa-

tion resulting from the composition of wi..k with
wk+1..j using the t1+t2 ! t composition module.

Answer Grounding: By recursively computing
the phrase semantic-type potentials and representa-
tions, we can infer the semantic type distribution of
the complete question and the resulting grounding
for different semantic types t, Jw1..|q|Kt

KG.

p(t|q) /  (1, |q|, t) (1)

The answer-type (boolean or subset of entities) for
the question is computed using:

t⇤ = argmax
t2T,E

p(t|q) (2)

The corresponding grounding is Jw1..|q|Kt⇤
KG, which

answers the question.

4.3 Training Objective
Given a dataset D of (question, answer, knowledge-
graph) tuples, {qi, ai, KGi}i=|D|

i=1 , we train our
model to maximize the log-likelihood of the correct
answers. We maximize the following objective:

L =
X

i

log p(ai|qi, KGi) (3)

Further details regarding the training objective are
given in Appendix A.

5 Dataset

We experiment with two datasets, 1) Questions gen-
erated based on the CLEVR (Johnson et al., 2017)
dataset, and 2) Referring Expression Generation
(GenX) dataset (FitzGerald et al., 2013), both of
which feature complex compositional queries.

CLEVRGEN: We generate a dataset of ques-
tion and answers based on the CLEVR dataset
(Johnson et al., 2017), which contains knowledge
graphs containing attribute information of objects
and relations between them.

We generate a new set of questions as existing
questions contain some biases that can be exploited
by models.1 We generate 75K questions for train-
ing and 37.5K for validation. Our questions test var-
ious challenging semantic operators. These include

1 Johnson et al. (2017) found that many spatial relation
questions can be answered only using absolute spatial infor-
mation, and many long questions can be answered correctly
without performing all steps of reasoning. We employ some
simple tests to remove trivial biases from our dataset.

conjunctions (e.g. Is anything red and large?),
negations (e.g. What is not spherical?), counts (e.g.
Are five spheres green?), quantifiers (e.g. Is every
red thing cylindrical?), and relations (e.g. What is
left of and above a cube?). We create two test sets:

1. Short Questions: Drawn from the same dis-
tribution as the training data (37.5K).

2. Complex Questions: Longer questions than
the training data (22.5K). This test set con-
tains the same words and constructions, but
chained into longer questions. For example,
it contains questions such as What is a cube
that is right of a metallic thing that is beneath
a blue sphere? and Are two red cylinders that
are above a sphere metallic? Solving these
questions require more multi-step reasoning.

REFERRING EXPRESSIONS (GENX)
(FitzGerald et al., 2013): This dataset con-
tains human-generated queries, which identify
a subset of objects from a larger set (e.g. all of
the red items except for the rectangle). It tests
the ability of models to precisely understand
human-generated language, which contains a
far greater diversity of syntactic and semantic
structures. This dataset does not contain relations
between entities, and instead only focuses on
entity-set operations. The dataset contains 3920
questions for training, 600 for development and
940 for testing. Our modules and parsing model
were designed independently of this dataset, and
we re-use hyperparameters from CLEVRGEN.

6 Experiments

Our experiments investigate the ability of our
model to understand complex synthetic and nat-
ural language queries, learn interpretable structure,
and generalize compositionally. We also isolate the
effect of learning the syntactic structure and repre-
senting sub-phrases using explicit denotations.

6.1 Experimentation Setting
We describe training details, and the baselines.

Training Details: Training the model is chal-
lenging since it needs to learn both good syntac-
tic structures and the complex semantics of neural
modules—so we use Curriculum Learning (Bengio
et al., 2009) to pre-train the model on an easier sub-
set of questions. Appendix B contains the details
of curriculum learning and other training details.
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Model Boolean Questions Entity Set Questions Relation Questions Overall

LSTM (NO KG) 50.7 14.4 17.5 27.2
LSTM 88.5 99.9 15.7 84.9
BI-LSTM 85.3 99.6 14.9 83.6
TREE-LSTM 82.2 97.0 15.7 81.2
TREE-LSTM (UNSUP.) 85.4 99.4 16.1 83.6
RELATION NETWORK 85.6 89.7 97.6 89.4
Our Model (Pre-parsed) 94.8 93.4 70.5 90.8
Our Model 99.9 100 100 99.9

Table 1: Results for Short Questions (CLEVRGEN): Performance of our model compared to baseline
models on the Short Questions test set. The LSTM (NO KG) has accuracy close to chance, showing that
the questions lack trivial biases. Our model almost perfectly solves all questions showing its ability to
learn challenging semantic operators, and parse questions only using weak end-to-end supervision.

Baseline Models: We compare to the following
baselines. (a) Models that assume linear structure
of language, and encode the question using linear
RNNs—LSTM (NO KG), LSTM, BI-LSTM, and
a RELATION-NETWORK (Santoro et al., 2017) aug-
mented model. 2 (b) Models that assume tree-like
structure of language. We compare two variants
of Tree-structured LSTMs (Zhu et al., 2015; Tai
et al., 2015)—TREE-LSTM, that operates on pre-
parsed questions, and TREE-LSTM(UNSUP.), an
unsupervised Tree-LSTM model (Maillard et al.,
2017) that learns to jointly parse and represent the
sentence. For GENX, we also use an end-to-end
semantic parsing model from Pasupat and Liang
(2015). Finally, to isolate the contribution of the
proposed denotational-semantics model, we train
our model on pre-parsed questions. Note that, all
LSTM based models only have access to the enti-
ties of the KG but not the relationship information
between them. See Appendix C for details.

6.2 Experiments

Short Questions Performance: Table 1 shows
that our model perfectly answers all test questions,
demonstrating that it can learn challenging seman-
tic operators and induce parse trees from end task
supervision. Performance drops when using ex-
ternal parser, showing that our model learns an
effective syntactic model for this domain. The
RELATION NETWORK also achieves good perfor-
mance, particularly on questions involving rela-
tions. LSTM baselines work well on questions not
involving relations.3

2We use this baseline only for CLEVRGEN since GENX
does not contain relations.

3Relation questions are out of scope for these models.

Model Non-relation
Questions

Relation
Questions Overall

LSTM (NO KG) 46.0 39.6 41.4
LSTM 62.2 49.2 52.2
BI-LSTM 55.3 47.5 49.2
TREE-LSTM 53.5 46.1 47.8
TREE-LSTM (UNSUP.) 64.5 42.6 53.6
RELATION NETWORK 51.1 38.9 41.5
Our Model (Pre-parsed) 94.7 74.2 78.8
Our Model 81.8 85.4 84.6

Table 2: Results for Complex Questions
(CLEVRGEN): All baseline models fail to gener-
alize well to questions requiring longer chains of
reasoning than those seen during training. Our
model substantially outperforms the baselines,
showing its ability to perform complex multi-hop
reasoning, and generalize from its training data.
Analysis suggests that most errors from our model
are due to assigning incorrect structures, rather than
mistakes by the composition modules.

Complex Questions Performance: Table 2
shows results on complex questions, which are con-
structed by combining components of shorter ques-
tions. These require complex multi-hop reasoning,
and the ability to generalize robustly to new types
of questions. We use the same models as in Table 1,
which were trained on short questions. All base-
lines achieve close to random performance, despite
high accuracy for shorter questions. This shows
the challenges in generalizing RNN encoders be-
yond their training data. In contrast, the strong
inductive bias from our model structure allows it to
generalize well to complex questions. Our model
outperforms TREE-LSTM (UNSUP.) and the ver-
sion of our model that uses pre-parsed questions,
showing the effectiveness of explicit denotations
and learning the syntax, respectively.
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Model Accuracy

LSTM (NO KG) 0.0
LSTM 64.9
BI-LSTM 64.6
TREE-LSTM 43.5
TREE-LSTM (UNSUP.) 67.7
SEMPRE 48.1
Our Model (Pre-parsed) 67.1
Our Model 73.7

Table 3: Results for Human Queries (GENX)
Our model outperforms LSTM and semantic pars-
ing models on complex human-generated queries,
showing it is robust to work on natural language.
Better performance than TREE-LSTM (UNSUP.)
shows the efficacy in representing sub-phrases us-
ing explicit denotations. Our model also performs
better without an external parser, showing the ad-
vantages of latent syntax.

Performance on Human-generated Language:
Table 3 shows the performance of our model on
complex human-generated queries in GENX. Our
approach outperforms strong LSTM and semantic
parsing baselines, despite the semantic parser’s use
of hard-coded operators. These results suggest that
our method represents an attractive middle ground
between minimally structured and highly structured
approaches to interpretation. Our model learns to
interpret operators such as except that were not con-
sidered during development. This shows that our
model can learn to parse human language, which
contains greater lexical and structural diversity than
synthetic questions. Trees induced by the model
are linguistically plausible (see Appendix D).

Error Analysis: We find that most model errors
are due to incorrect assignments of structure, rather
than semantic errors from the modules. For exam-
ple, in the question Are four red spheres beneath a
metallic thing small?, our model’s parse composes
metallic thing small into a constituent instead of
composing red spheres beneath a metallic thing
into a single node. Future work should explore
more sophisticated parsing models.

Discussion: While our model shows promising
results, there is significant potential for future work.
Performing exact inference over large KGs is likely
to be intractable, so approximations such as KNN
search, beam search, feature hashing or paralleliza-
tion may be necessary. To model the large number
of entities in KGs such as Freebase, techniques

proposed by recent work (Verga et al., 2017; Gupta
et al., 2017) that explore representing entities as
composition of its properties, such as, types, de-
scription etc. could be used. The modules in this
work were designed in a way to provide good induc-
tive bias for the kind of composition we expected
them to model. For example, EV + E ! E is mod-
eled as a linear composition function making it
easy to represent words such as and and or. These
modules can be exchanged with any other function
with the same ‘type signature’, with different trade-
offs—for example, more general feed-forward net-
works with greater representation capacity would
be needed to represent a linguistic expression equiv-
alent to xor. Similarly, more module types would
be required to handle certain constructions—for
example, a multiword relation such as much larger
than needs a V + V ! V module. This is an excit-
ing direction for future research.

7 Related Work

Many approaches have been proposed to perform
question-answering against structured knowledge
sources. Semantic parsing models have learned
structures over pre-defined discrete operators, to
produce logical forms that can be executed to an-
swer the question. Early work trained using gold-
standard logical forms (Zettlemoyer and Collins,
2005; Kwiatkowski et al., 2010), whereas later ef-
forts have only used answers to questions (Clarke
et al., 2010; Liang et al., 2011; Krishnamurthy and
Kollar, 2013). A key difference is that our model
must learn semantic operators from data, which
may be necessary to model the fuzzy meanings of
function words like many or few.

Another similar line of work is neural pro-
gram induction models, such as Neural Program-
mer (Neelakantan et al., 2017) and Neural Sym-
bolic Machine (Liang et al., 2017). These models
learn to produce programs composed of predefined
operators using weak supervision to answer ques-
tions against semi-structured tables.

Neural module networks have been proposed for
learning semantic operators (Andreas et al., 2016b)
for question answering. This model assumes that
the structure of the semantic parse is given, and
must only learn a set of operators. Dynamic Neural
Module Networks (D-NMN) extend this approach
by selecting from a small set of candidate module
structures (Andreas et al., 2016a). We instead learn
a model over all possible structures.
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Our work is most similar to N2NMN (Hu et al.,
2017) model, which learns both semantic operators
and the layout in which to compose them. How-
ever, optimizing the layouts requires reinforcement
learning, which is challenging due to the high vari-
ance of policy gradients, whereas our chart-based
approach is end-to-end differentiable.

8 Conclusion

We have introduced a model for answering ques-
tions requiring compositional reasoning that com-
bines ideas from compositional semantics with end-
to-end learning of composition operators and struc-
ture. We demonstrated that the model is able to
learn a number of complex composition operators
from end task supervision, and showed that the
linguistically motivated inductive bias imposed by
the structure of the model allows it to generalize
well beyond its training data. Future work should
explore scaling the model to other question answer-
ing tasks, using more general composition modules,
and introducing additional module types.
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Abstract
High-level semantics tasks, e.g., paraphras-
ing, textual entailment or question answer-
ing, involve modeling of text pairs. Before
the emergence of neural networks, this has
been mostly performed using intra-pair fea-
tures, which incorporate similarity scores or
rewrite rules computed between the members
within the same pair. In this paper, we com-
pute scalar products between vectors repre-
senting similarity between members of differ-
ent pairs, in place of simply using a single
vector for each pair. This allows us to obtain
a representation specific to any pair of pairs,
which delivers the state of the art in answer
sentence selection. Most importantly, our ap-
proach can outperform much more complex
algorithms based on neural networks.

1 Introduction
Answer sentence selection (AS) is an impor-
tant subtask of open-domain Question Answering
(QA). Its input are a question Q and a set of can-
didate answer passages A = {A1, A2, ..., AN},
which may, for example, be the output of a search
engine. The objective consists in selecting Ai,
i 2 {1, ..., N} that contain correct answers.

Pre-deep learning renaissance approaches to AS
typically addressed the task by modeling Q-to-A
(intra-pair) similarities (Yih et al., 2013; Wang
et al., 2007; Heilman and Smith, 2010; Wang and
Manning, 2010). Q-to-A similarity and align-
ment are indeed crucial, but, in practice, it is very
difficult to automatically extract meaningful rela-
tions between Q and A. For example, consider
two positive Q/A pairs in Table 1. If we want
to learn a model based only on the intra-pair Q-
to-A matches, simple lexical matching (marked
with italics) will not be enough. One would need
to conduct more complex processing and identify

⇤Professor at the University of Trento.

that movie and film are synonyms, and that the n-
gram play in the movie or be in the movie can
be paraphrased as star. While the former can be
easily detected using an external lexical resource,
e.g., WordNet (Fellbaum, 1998), the latter would
require more complex inference.

On the other hand, Q1 and Q2 contain the same
pattern who ... in the movie ..., and their respec-
tive answers contain film ... starring .... If we
know that P1 = (Q1, A1) is a positive AS example
and want to classify P2 = (Q2, A2), then high Q2-
to-Q1 and A2-to-A1 cross-pair similarities can
suggest that P1 and P2 are likely to have the same
label. This idea, for example, was exploited by
Severyn and Moschitti (2012), whose system mea-
sures syntactic-semantic similarities directly be-
tween structural syntactic tree representations of
Q1/Q2 and A1/A2. This model still exhibited
state-of-the-art performance in 2016 (Tymoshenko
et al., 2016a).

Deep neural networks (DNNs) also naturally
use such cross-pair similarity when modeling two
input texts, and then further combine it with intra-
pair similarity, for example, by means of atten-
tion mechanisms (Shen et al., 2017), compare-
aggregate architectures (Bian et al., 2017; Wang
and Jiang, 2017), or fully-connected layers (Sev-
eryn and Moschitti, 2015, 2016; Rao et al., 2016).

In this work, we observe that: (i) the high accu-
racy of the kernel model by Severyn and Moschitti
(2012) was due not only to the use of syntactic
structures, but also to the use of cross-pair simi-
larities; and (ii) the success of DNNs for QA can
be partially attributed to an implicit combination
of cross- and intra-pair similarity.

More specifically, we investigate, whether sim-
ple similarity metrics, e.g., cosine similarity be-
tween standard vector representations, can per-
form competitively to the state-of-the-art neural
models when employed as cross-pair kernels.
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Question Answer Label
Q1 who plays mary poppins

in the movie?
A1 Mary Poppins is a 1964 musical film starring Julie Andrews,

Dick Van Dyke, David Tomlinson, and Glynis Johns, produced
by Walt Disney, and based on the Mary Poppins books series by
P. L. Travers.

TRUE

Q2 WHO WAS IN THE MOVIE
I CONFESS WITH
MONTGOMERY CLIFT

A2 I Confess is a 1953 drama film directed by Alfred Hitchcock,
and starring Montgomery Clift as Fr. Michael William Lo-
gan, a Catholic priest, Anne Baxter as Ruth Grandfort, and Karl
Malden as Inspector Larrue .

TRUE

Table 1: Question/Answer Sentence pairs from WikiQA corpus. We use italic font to mark intra-pair lexical matches between
Q1 and A1, Q2 and A2, and bold font to mark the cross-pair matches between Q1 and Q2, A1 and A2.

To this end, we apply linear and cosine kernels
to Qi/Qj and Ai/Aj pairs (i, j = 1, ..., N ) repre-
sented as a bag-of-words (BoW) or an averaged
sum of their pretrained word embeddings. Then,
we combine them with the cross-pair Tree Kernels
(TKs) and kernels applied to the traditional Q/A
intra-pair similarity feature vector representations
in a composite kernel and use it in an SVM model.

We experiment with three reference datasets,
WikiQA (Yang et al., 2015), TREC13 (Yao et al.,
2013; Wang et al., 2007) and SemEval-2016, Task
3.A (Nakov et al., 2016), using a number of
lexical-overlap/syntactic kernels. The latter chal-
lenge refers to a community question answering
(cQA) task. It consists in reranking the responses
to user questions from online forums. It is the
same setting as AS, but the text of questions and
answer sentences can be ungrammatical due to the
nature of the online forum language.

We obtain competitive results on WikiQA and
SemEval tasks, showing that: (i) simple BoW rep-
resentations, when used in cross-pair kernels, per-
form comparably to and even outperform hand-
crafted intra-pair features. (ii) In cQA, simple
cross-pair embedding- and BoW-based similar-
ity features outperform domain-specific similar-
ity features, which are hand-crafted from intra-
pair members. The simple features also perform
comparably to syntactic TKs. (iii) We show that
a combination of simple cosine- intra- and cross-
pair kernels with TKs can outperform the most re-
cent state-of-the-art DNN architectures.

Assuming the conjecture of our paper correct,
cross-pair modeling is the major neural network
contribution, the last point above is not surpris-
ing as on relatively small datasets kernels-based
models can exploit syntactic information very ef-
fectively while neural models cannot.

The paper is structured as follows. We de-
scribe the kernels incorporating intra- and cross-
pair matches in Sec. 3.2, list the simple cross-
and intra-pair features in Sec. 3.3, describe strong

hand-crafted baseline features in Sec. 4, and report
the experimental results in Sec. 5.

2 Related work

Early approaches to AS typically focused on mod-
eling intra-pair Q-to-A alignment similarities. For
example, Yih et al. (2013) proposed a latent
alignment model that employed lexical-semantical
Q-to-A alignments, Wang et al. (2007) mod-
eled syntactic alignments with probabilistic quasi-
synchronous grammar, and Heilman and Smith
(2010); Yao et al. (2013); Wang and Manning
(2010) employed Tree Edit Distance-based Q-to-
A alignments.

Originally, the idea of cross-pair similarity was
proposed by Zanzotto and Moschitti (2006) and
applied to the recognizing textual entailment task,
which consists in detecting whether a text T en-
tails a hypothesis H. They assumed that if two H/T
pairs hH1, T1i and hH2, T2i share the same T-to-H
“rewrite rules”, they are likely to share the same
label. Based on this idea, they proposed an al-
gorithm applying TKs to (H1, H2) and (T1, T2)
syntactic tree representations, enriched with H-to-
T intra-pair rewrite rule information. More con-
cretely, such algorithm aligns the constituents of
H with T and then marks them with symbols di-
rectly in the trees. This way the alignment infor-
mation can be matched by tree kernels applied to
cross-pair members.

Then, a line of work on AS, started by Sev-
eryn and Moschitti (2012, 2013); Severyn et al.
(2013), was inspired by a similar idea of incor-
porating “rewrite rules” directly into the tree rep-
resentations of Q1/A1 and Q2/A2. They represent
Q and A as syntactic trees enhanced with Q-to-A
relational information, and apply TKs (Moschitti,
2006) to (Q1, Q2) and (A1, A2). Thus they model
cross-pair similarity, and learn important patterns
occurring in Q and A separately. As shown in (Ty-
moshenko et al., 2016a), this approach is compet-
itive with convolutional neural networks (CNNs).
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In our approach, instead of using only one TK, we
employ a number of different word-based kernels,
most of which can be computed more efficiently
than TKs.

Most recent AS models are based on Deep Neu-
ral Networks (DNNs), which learn distributed rep-
resentations of the input data. DNNs are trained
to apply series of non-linear transformations to
the input Q and A, represented as compositions of
word or character embeddings. DNN architectures
learn AS-relevant patterns using intra-pair similar-
ities as well as cross-pair, Q-to-Q and A-to-A, sim-
ilarities, when modeling the input texts. For exam-
ple, the CNN network by (Severyn and Moschitti,
2015) has two separate embedding layers for Q
and A, which are followed by the respective con-
volution layers, whose output is concatenated and
then passed through the final fully-connected joint
layer. The weights in the Q and A convolution
layers are learned by means of the backpropaga-
tion algorithm on the training Q/A pairs. Thus,
obviously, classifying a new Q/A pair is partially
equivalent to performing the implicit cross-pair Q-
to-Q and A-to-A comparison.

Additionally, the DNN approaches model the
Q-to-A relatedness explicitly in a variety of ways,
e.g., by: (i) using a Q-to-A transformation matrix
and simple Q-to-A similarity features (Yu et al.,
2014; Severyn and Moschitti, 2015), (ii) relying
on RNN and LSTM architectures (Wang and Ny-
berg, 2015; Shen et al., 2017), (iii) employing at-
tention components (Yin et al., 2016; Shen et al.,
2017; Wang et al., 2016a), (iv) decomposing input
into similarity and dissimilarity matches (Wang
et al., 2016b) or (v) using the compare-aggregate
method (Wang and Jiang, 2017; Bian et al., 2017).

We believe that the ability of DNNs to implic-
itly capture cross-pair relational matching, i.e., the
capacity of learning from (Q1, Q2) and (A1, A2),
is a very important factor to their high perfor-
mance. This is of course paired with their abil-
ity to learn non-linear patterns and capture Q-to-
A relatedness by means of attention mechanisms.
It should be noted that the latter are typically
hard-coded in kernel models as lexical match-
ing/similarity (Severyn and Moschitti, 2012). This
is effective as much as the attention approach,
at least with standard-size dataset, also in neural
models (Severyn and Moschitti, 2016).

In our work, we model Q-to-A, Q-to-Q and A-
to-A similarities with intra- and cross-pair ker-

nels and show that such combination also exhibits
state-of-the-art performance on the reference cor-
pora. In addition, our approach can be applied to
smaller datasets as it utilizes less parameters, and
can provide insights on future DNN design.

3 Cross-pair similarity kernels for text

3.1 Background on Kernel Machines
Kernel Machines (KMs) allow for replacing the
dot product with kernel functions directly applied
to examples, i.e., they avoid mapping examples
into vectors. The main advantage of KMs is a
much lower computational complexity than the
dot product as the kernel computation does not de-
pend on the size of the feature space.

KMs are linear classifiers: given a labeled train-
ing dataset S = {(xi, yi) : i = 1, . . . , n}, their
classification function can be defined as:

f(x) = w · x + b =
nX

i=1

↵iyixi · x + b.

where x is a classification example, w is the gra-
dient of the separating hyperplane, and b its bias.
The equation shows that the gradient is a linear
combination of the training points xi 2 R

n mul-
tiplied by their labels yi 2 {�1, 1} and their
weights ↵i 2 R

+. Note that the latter are differ-
ent from zero only for the support vectors: this
reduces the classification complexity, which will
be lower than O(n) for each example.

We can replace the scalar product with a ker-
nel function directly defined over a pair of ob-
jects, K(oi, o) = �(oi)�(o), where � : O ! R

n

maps from objects to vectors of the final feature
space. The new classification function becomes:
f(o) =

Pn
i=1 ↵iyiK(oi, o) + b, which only needs

the initial input objects.

3.2 Inter- and intra-pair match kernel
We cast AS as a text pair classification task: given
a pair, P = (Q, A), constituted by a question (Q)
and a candidate answer sentence (A), we classify it
as either correct or incorrect. We used KMs, where
K (·, ·) operates on two pairs, P1 = (Q1, A1) and
P2 = (Q2, A2).

3.2.1 Intra-pair similarity
A traditional baseline approach would (i) repre-
sent Q/A pairs as feature vectors, where the com-
ponents are similarity metrics applied to Q and
A, e.g., a world overlap-based similarity; and (ii)
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train a classification model, e.g., an SVM using
the following kernel:

KIP (P1, P2) = Kv
�
VhQ1,A1i, VhQ2,A2i

�
, (1)

where Kv can be any kernel operating on the fea-
ture vectors, e.g., the polynomial or linear (as in
our work) kernel. VhT1,T2i is a vector built on N
similarity features, hf1(·, ·), f2(·, ·), ..., fN (·, ·)i,
extracted by applying similarity metrics to two
texts, T1 and T2 (see Sec. 3.3 for the list of the sim-
ilarity metrics we used). KIP merely uses intra-
pair similarities.

3.2.2 Cross-pair similarity
We incorporate the intuition, similar questions
are likely to demand similar answer patterns, by
means of a cross-pair kernel, which measures sim-
ilarity between questions and answers from P1 and
P2 as follows:

KCP (P1, P2) = VhQ1,Q2i · VhA1,A2i

=
NX

i=1

fi(Q1, Q2) · fi(A1, A2)
(2)

KCP measures P1-to-P2 similarity in terms of a
sum of the products of Q1-to-Q2 and A1-to-A2

similarities. Note, that within KIP , fi(Qi, Ai)
is merely an i-th feature in the VhQi,Aii feature
vector. At the same time, within KCP , fi(·, ·)
becomes a kernel, which takes the (Q1, Q2) or
(A1, A2) pairs as input. In other words, VhQ1,Q2i ·
VhA1,A2i is a sum of products of fi(·, ·) kernels ap-
plied to the (Q1, Q2) and (A1, A2) pairs. KCP

is a valid kernel if the similarity metrics used to
compute the fi(·, ·) are valid kernel functions.

Finally, combining KIP and KCP enables
learning of two different kinds of valuable cross-
and intra-pair AS patterns. We combine various
KIP and KCP by summing them or by training a
meta-classifier on their outputs. See Section 5.4
for more details. Figure 1 summarizes the dif-
ferences between the KIP and KCP computation
processes described above.

3.3 Similarity features
We employ three similarity feature types as
fi(·, ·). Two of them are computed using the co-
sine similarity metrics and differ only in terms of
the input texts, T1 and T2, representations. The
other type is constituted by TKs applied to the
structural representations of T1 and T2. Note that,
since cosine similarity and TKs are valid kernels,

Q1	 A1	

Q2	 A2	

P1	

P2	

,	

,	

VQ1,A1	

VQ2,A2	

VQ1,Q2	 VA1,A2	

KCP(P1,P2)=VQ1,Q2!	VA1,A2	
(cross-pair	kernel)	

KIP(P1,P2)	=	
	KV(VQ1,A1,VQ2,A2)	

(intra-pair	
	kernel)	

	

Figure 1: Feature extraction schema for two Q/A pairs, P1

and P2. VT1,T2 is a vector of similarity features extracted for
a pair of texts T1, T2, the respective dashed boxes show from
which pair of input texts they are extracted.

KCP is also guaranteed to be a valid kernel when
computed using these similarity features.

3.3.1 Bag-of-n-grams overlap (B)

f t,l,s
B (T1, T2) is a cosine similarity metric applied

to the bag-of-n-grams vector representations of
Ti, BOW{t,l,s}(Ti), i = 1, 2. The {t, l, s} in-
dex describes an n-gram representation configura-
tion: t denotes whether the n-grams are assembled
of word lemmas (L), or their part-of-speech tags
(POS), or lemmas concatenated with their respec-
tive POS-tags (LPOS); l is a (n1, n2) tuple, with
n1 and n2 being the minimal and maximal length
of n-grams considered, respectively; and s is Y ES
if the representation discards the stopwords and
NO, otherwise.

We used {t, l, s} configurations from
the following set: C = ({L, LPOS} ⇥
{(1, 2), (1, 3), (1, 4), (2, 4), (2, 3)} ⇥ {Y ES,
NO}) [ ({POS} ⇥ {(1, 4), (2, 4)} ⇥ {Y ES}).
It follows that |C| = 23, which means we have 23
similarity features, f t,l,s

B (T1, T2), in total, in the
intra-pair setting. The respective cross-pair ker-
nels are a composite kernel summing 23 products
of cosine kernels applied to 23 different (Q1, Q2)
and (A1, A2) bag-of-ngram representations.

3.3.2 Embedding-based similarities (E).

We represent an input text as an average of em-
beddings of its lemmas from pre-trained word
embedding models. Then, the embedding fea-
ture fE

model(T1, T2) is the cosine kernel ap-
plied to the embedding-based representations of
T1 and T2. We use two pretrained embed-
dings: Word2Vec (Mikolov et al., 2013) and
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GloVe (Pennington et al., 2014), resulting in three1

embedding-based features (see Sec. 5 for more
technical details).

3.3.3 Tree-kernel based similarities
Following the framework defined in (Severyn
et al., 2013; Tymoshenko et al., 2016a), we rep-
resent T1 and T2 as syntactico-semantic structures
and use TKs as semantic similarity metrics. When
computing KCP with TK as similarities, in Eq.2,
we employ summation instead of multiplication2.

More specifically, we represent T1 and T2 as
(i) constituency trees and apply subset TK (SST);
or (ii) shallow chunk-based trees, similar to the
one presented in Figure 2, and apply partial tree
(PTK) kernel. In the shallow trees, lemmas are
leaves and POS tags are pre-terminals. POS nodes
are grouped under chunk nodes, and then under
the sentences nodes. These representations en-
code also some intra-pair similarity information,
e.g., prefix REL denotes the lexical Q-to-A match.
In a structural representation, we prepend it to the
parent and grand-parent nodes of lemmas which
occur both in Q and A, e.g., “Mary” in the first
example of Table 1.

Then, for factoid QA3, we mark focus words
in Q and entities in A, if the answer contains
any named entities of types matching the question
expected answer type (EAT)4. More specifically,
we mark the semantic Q-to-A match by prepend-
ing the REL-FOCUS-<EAT> label to the answer
chunk nodes that contain such named entities and
also to the question focus word. Here, <EAT>
stands for the EAT label. For example, in the
Q1/A1 pair in Table 1, the Q1 EAT is HUMan,
and the matching named entities include “Julie
Andrews”, “David Tomlinson” and others. Fig-
ure 2 depicts Q1 annotated both with REL- and
REL-FOCUS links. We detect both question focus
and EAT automatically. Due to the space limita-

1We use Word2Vec embeddings trained on two different
corpora, which result in two features, and GloVe trained on
one corpus.

2We have opted to use summation in this case to follow
the earlier work.

3WikiQA and TREC13 are the factoid AS datasets, as
their questions ask for a specific fact, e.g. date or a name.

4For example, the PERson named entity type matches
the HUMan EAT. More specifically, we employ the follow-
ing NER-to-EAT matching rules: PERson, ORGanization !

HUMan; LOCation ! LOCation; DATE, TIME, MONEY,
PERCENTAGE, DURATION, NUMBER, SET ! NUM;
ORGanization, PERson, MISCellanious ! ENTiTY. We em-
ploy the (Li and Roth, 2002) coarse-grained EAT taxonomy
and Stanford CoreNLP (Manning et al., 2014) entity types.

Figure 2: Shallow syntactic representation of A1 from the
running example in Table 1

(i) cosine similarity applied to the BoW representa-
tions of T1 and T2 in terms of word lemmas, bi-,
three-, four-grams (computed twice with and with-
out stopwords); POS-tags; dependency triplets;

(ii) longest common string subsequence measure
w. and w/out stopwords;

(iii) Jaccard similarity metric applied to one-, two-,
four, three-grams w. and w/out stopwords;

(iv) word n-gram containment measure on uni- and
bi-grams w. and w/out stopwords (Broder, 1997);

(v) greedy string tiling (Wise, 1996) with minimum
matching length of 3 ;

(vi) string kernel similarity (Lodhi et al., 2002);
(vii) expected answer type match: percentage of

named entities (NE) in the answer passage compat-
ible with the question class5;

(viii) WordNet-based similarity. WordNet T1/T2 com-
mon lemma/synonym/hypernym overlap ratio;

(ix) PTK (Moschitti, 2006) similarity between con-
stituency or dependency tree representations of in-
put texts;

Table 2: Strong baseline fatures

tions, we do not describe the structural representa-
tions and matching algorithms in more detail, but
refer the reader to the works above.

4 Strong baseline feature vector

As a strong baseline, we use similarity feature vec-
tors and intra-pair KIP kernel.

For the factoid answer sentence selection task,
we use 47 strong features listed in Table 2. This
is a compilation of features used in the top-
performing system at SemEval-2012 Semantic
Text Similarity workshop (Bär et al., 2012) and
earlier factoid QA work (Severyn and Moschitti,
2012), extended with few additional features.

For the community question answering (cQA)
task, we employ instead a combination of
similarity-based and thread-level features shown
to be very effective for the cQA task (Nicosia
et al., 2015; Barrón-Cedeño et al., 2016). We
use the exact feature combination from (Barrón-
Cedeño et al., 2016), which includes both lexical
and syntactic similarity measures (cosine similar-
ity of bag-of-words, PTK similarity over syntactic
tree representations of the input texts) and thread-
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MODE TRAIN DEV TEST
Q A Q A Q A

raw 2118 20360 296 2733 633 6165
no all� 873 8672 126 1130 243 2351
clean 857 8651 121 1126 237 2341

Table 3: WikiQA corpus statistics

level domain specific features (are the question
and comment authored by the same person?, does
the comment contain any questions?, and so on.).

We cannot directly use these feature vectors in
the KCP kernels, as not all functions used to com-
pute features are valid kernels, e.g., the longest
common string subsequence is not a kernel func-
tion. Moreover, some of them can be computed
only on the (Q, A) pairs, e.g., the expected type
match feature (vii) in Tab. 2, or many of the cQA
domain-specific features.

5 Experiments

We conduct experiments on three corpora, namely
TREC13, WikiQA and SemEval, and evaluate
the results in terms of Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR). Our
code is available at https://github.com/
iKernels/RelTextRank.

5.1 Datasets
WikiQA dataset. WikiQA (Yang et al., 2015) is
a factoid answer sentence selection dataset with
Bing query logs as questions. Candidate answer
sentences are extracted from Wikipedia and la-
beled manually. Some of the questions have no
correct answer sentence (all�) or have only correct
answer sentences (all+). Table 3 reports the statis-
tics of the WikiQA corpus as distributed (raw),
without all� questions, and without both all� and
all+ questions (clean). We train in the “no all�”
mode using 10 answer sentences per question6 and
test in the “clean” mode.

TREC13 dataset. A factoid answer sen-
tence selection dataset originally presented
in (Wang et al., 2007)7, also frequently called
QASent (Yang et al., 2015). We train on 1,229
automatically labeled TREC8-12 questions. We
use only 10 candidate answer sentences per
question. We test in the “clean” setting defined
in (Rao et al., 2016), i.e., we discard the all+ and
all� questions, resulting in 65 DEV and 68 TEST

6The 10 answer sentences per question limit speeds up
training time without loss in performance

7We use the version distributed by (Yao et al., 2013) in
https://code.google.com/p/jacana/

questions, respectively. DEV and TEST contain
1117 and 1442 candidate associated answer
sentences, respectively.

SemEval-2016, Task 3.A dataset. SemEval
cQA dataset is a benchmark dataset in the Se-
mEval 2016 Task 3. A question-to-comment sim-
ilarity competition. It is a collection of user ques-
tions and the respective answer comment threads
from Qatar Living forum, where the user com-
ments to questions were manually labeled as cor-
rect or incorrect. Each question has 10 respective
candidate answers. The training, dev and test sets
have 1790, 244 and 327 questions, respectively.
The AS task consists in reranking comments with
respect to the question: most questions are non-
factoid and the text is often noisy.

5.2 Models
We used the following notation:
B, E. Intra-pair KIP kernels (see Sec. 3.2) using
the eponymous similarity features from Sec. 3.3.
V. Linear kernel applied to the strong intra-pair
feature vector representation defined in Section 4.
Note that, as already mentioned in Sec. 4, due to
the slightly different nature of the factoid and com-
munity question answering tasks, we used differ-
ent strong feature groups for WikiQA, TREC13
(Table 2) and SemEval-2016.
Bcr, Ecr. Cross-pair KCP kernel applied to B
and E similarity feature vectors respectively. More
specifically, Bcr and Ecr are a sum of 23 and 3
cross-pair kernel products, respectively (see Eq. 2
and Sec. 3.2).
PTK, SST are the cross-pair PTK and SST
tree kernels applied to the shallow chunk- and
constituency-based representations (see Sec. 3.3).
“+” denotes kernel summation. We use this sym-
bol to denote that we sum the gram-matrices for
the distinct standalone kernels, and use the result-
ing kernel matrix as input to SVMs.
METABASE;PTK , METABASE;SST . Logistic
regression metaclassifiers trained on the outputs of
two standalone systems, namely (i) V+Bcr+Ecr+E
(we denote it as BASE to simplify the notation),
and (ii) PTK or SST, respectively. We ran 10-fold
cross-validation on the training set and used the
resulting predictions as training data for the en-
semble classifier. We did not use the development
or training sets for any parameter tuning, thus we
report the results both on the DEV and TEST sets.
SUMBASE;PTK , SUMBASE;SST . Simple meta-
classifiers, summing the output of the BASE and
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PTK or SST systems, respectively.

5.3 Toolkits
We trained the models using scikit-learn8 by Pe-
dregosa et al. (2012) using the SVC version of
SVM with precomputed KIP and KCP kernel ma-
trices and default parameters. We trained the en-
semble model using the scikit LogisticRegression
classifier implementation with the default param-
eters. We used spaCy library9 and scikit to obtain
bag-of-n-gram representations for the B similar-
ity features, and to compute B- and E- base gram
matrices.

We used the RelTextRank framework10 (Ty-
moshenko et al., 2017b) to generate the structural
representations for the TK similarity features and
to extract the strong baseline feature vectors from
Sec. 4. We used KeLP (Filice et al.) to compute
the TK gram matrices.

Regarding the Embedding-based similarities
(E), we obtain three similarity features by us-
ing three word embedding models to generate
the representations of the input texts, T1 and T2,
namely GloVe vectors trained on common crawl
data11, Word2Vec vectors pre-trained on Google
News12, and another Word2Vec vectors model13

pre-trained on Aquaint14 plus Wikipedia.

5.4 Results and discussion
Table 4 reports the results obtained with the intra-
and cross-pair kernels KIP , KCP and their com-
binations. In the following, we describe the results
according to the model categories above.

Intra-pair kernels. Taking into account intra-
pair similarity is the standard approach in the ma-
jority of the previous non-DNN work. In our ex-
periments, we implement this approach as KIP

using B, E, V groups of similarity features. KIP

performs worse than the state-of-art (SoA) DNN
systems on all the datasets (see tables 5, 6 and 7,
for the SoA systems).

The results on WikiQA are particularly low
even when the best KIP system, B+V+E, is used,
which scores up to 15 points less than the state

8http://scikit-learn.org/
9https://spacy.io/

10This tool employs Stanford CoreNLP 3.6.0 (Manning
et al., 2014) for text processing; and DKProSimilarity (Bär
et al., 2013) to extract features (ii)-(v).

11http://nlp.stanford.edu/data/glove.42B.300d.zip
12https://code.google.com/archive/p/word2vec/
13https://github.com/aseveryn/deep-qa
14https://catalog.ldc.upenn.edu/LDC2002T31

of the art. This confirms the Yang et al. (2015)
observation on WikiQA, according to which, sim-
ple word matching methods are likely to under-
perform on its data, considering how it was built.
Nevertheless, despite its simplicity, B+V+E per-
forms comparably to the Yang et al. (2015) reim-
plementation of LCLR, the complex latent struc-
tured approach employing rich lexical and seman-
tic intra-pair similarity features (Yih et al., 2013).
Yang et al. (2015) report that on WikiQA LCLR
obtains MRR of 60.86 and MAP of 59.93.

Then, on TREC13 and SemEval-2016, the
intra-pair V, V+E and B+V+E kernels exhibit
rather high performance, however, they are still
significantly below the state of the art, thus con-
firming our hypothesis that intra-pair similarity
alone does not guarantee top results.

Cross-pair kernels. Bcr and Ecr obtain rather
high results on WikiQA and SemEval. On Wik-
iQA, both Bcr and Bcr + Ecr outperform all the
intra-pair kernels by a large margin, while, on Se-
mEval, they perform comparably to the manually
engineered domain-specific V features of Nicosia
et al. (2015). On the contrary, on TREC13, V
outperforms both Bcr and Ecr, thus showing that
TREC13 is indeed biased towards intra-pair relat-
edness features by construction.

More complex PTK and SST cross-pair kernels,
both alone and combined with Bcr, Ecr, typically
outperform the standalone Bcr and Ecr on all the
corpora (PTK on TREC13 and WikiQA, and SST
and Bcr+Ecr+PTK on SemEval). This can be ex-
plained by the fact that PTK and SST are able
to learn complex syntactic patterns and also con-
tain some information about intra-pair relations,
namely REL- labels described in Sec. 3.2. Thus, it
is natural that they outperform simpler cross-pair
kernels. Nevertheless, on WikiQA-DEV, Bcr+Ecr

performs very close to PTK. Moreover, on Se-
mEval, Bcr+Ecr outperforms PTK and is behind
SST for less than 1 point in terms of MAP. This
can be explained by the fact that Q and A, in Se-
mEval, are frequently ungrammatical as the cQA
corpus is collected from online forums.

Finally, note that the Bcr+Ecr+PTK system,
which does not use any cQA domain-specific fea-
tures, is only 0.56 MAP points behind KeLP, the
best-performing system in the SemEval competi-
tion (see Line 1 of Table 7).

Kernels combining the intra- and cross-pair
similarities. The V+Bcr+Ecr+E combination (we
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TREC13 WikiQA Semeval-2016
DEV TEST DEV TEST DEV TEST

MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP
B 61.91 57.69 65.68 55.63 51.36 51.41 54.69 53.8 57.90 51.45 65.70 57.28

Intra-pair V 85.38 78.01 78.82 69.18 47.07 46.53 50.98 50.26 69.75 63.68 81.94 73.89
kernel E 71.15 67.88 73.27 66.48 48.25 48.49 53.14 52.42 61.50 54.25 67.05 60.25
(KIP ) V+E 88.48 79.64 79.63 69.57 49.24 49.08 53.32 52.87 70.98 64.43 82.06 74.13

B+V+E 84.84 77.31 79.22 68.83 55.47 55.75 60.19 59.52 70.98 64.37 80.84 74.09
Bcr 72.64 65.81 63.70 56.16 72.71 72.00 68.84 67.67 72.28 65.20 81.63 74.68
Ecr 72.22 66.36 76.94 66.14 64.61 64.38 60.77 59.42 70.07 63.92 80.60 73.62

Cross-pair PTK 89.49 81.02 84.09 76.06 75.56 74.27 75.60 74.67 70.45 63.04 81.96 74.30
kernel SST 77.52 68.8 78.73 70.91 72.38 71.78 69.49 68.1 73.77 66.00 82.37 75.65
(KCP ) Bcr+Ecr 71.52 66.35 69.24 62.16 74.62 74.18 70.03 68.76 71.56 65.26 81.81 75.06

Bcr+Ecr+PTK 84.74 79.24 85.07 77.18 75.34 74.91 71.01 69.61 75.99 68.82 85.26 78.63
Bcr+Ecr+SST 73.80 67.69 72.43 65.75 75.90 75.59 71.23 69.72 73.38 66.46 82.82 75.91
V+Ecr 86.92 78.34 85.65 76.72 71.97 71.77 67.63 66.40 75.83 68.75 84.37 77.60
V+Bcr 88.85 80.51 81.99 74.46 75.84 75.22 74.59 73.22 75.42 68.06 85.78 78.47
V+PTK 87.44 80.38 84.25 75.74 75.19 74.81 72.78 71.70 74.15 67.83 86.68 79.22

Combination V+SST 86.41 78.58 84.12 76.86 72.96 72.74 71.24 69.74 75.29 68.71 85.69 79.07
V+Bcr+Ecr+E 90.51 82.94 82.40 75.98 76.65 76.29 74.68 73.34 76.07 69.75 85.54 78.83
V+Bcr+Ecr+E+PTK 89.10 81.23 83.14 76.77 76.88 76.59 74.05 72.71 76.60 69.97 86.52 79.79
V+Bcr+Ecr+E+SST 90.56 82.95 84.24 76.63 76.73 76.11 74.08 72.73 76.00 69.89 86.23 79.43
SUMBASE;SST 89.41 80.02 84.07 77.35 77.12 76.74 74.07 72.52 76.49 69.50 85.45 78.92

Ensemble SUMBASE;PTK 88.33 81.37 86.89 77.65 77.94 77.43 77.00 75.59 74.60 67.69 84.94 78.65
METABASE;PTK 88.26 81.26 86.20 77.53 77.61 77.29 76.01 74.63 75.90 69.94 85.34 79.08
METABASE;SST 90.77 82.51 83.33 77.05 76.61 76.20 75.01 73.54 76.80 70.49 85.78 79.46

Table 4: Results on TREC13, WikiQA and SemEval-2016 datasets. Best results in each feature category are
highlighted with bold, overall best results are underlined. TK is SST for Semeval and PTK for WikiQA and
TREC13. BASE refers to the V+Bcr+Ecr+E configuration.

will refer to it as BASE), outperforms the stan-
dalone domain-specific handcrafted cQA features,
V, and both PTK and SST on SemEval 2016 TEST
and DEV by at least 2.3 points in all metrics.

Moreover, V+Bcr+Ecr+E is only less than 0.5
points behind the #1 system of the SemEval-
2016 competition (see Tab. 7). We recall that
V+Bcr+Ecr+E only uses basic n-gram overlap-
based cross- and intra- similarity features and
embedding-based cosine similarities.

Finally, when we add tree kernel models to
the combination, i.e., V+Bcr+Ecr+E+PTK or
V+Bcr+Ecr+E+SST, we note improvement for Se-
mEval and TREC13 tasks.

Ensemble models. We ensemble cross- and
intra-pair kernels-based models by summing the
predictions of the standalone SVM classifiers
(SUM models) or by training a logistic regression
meta-classifier on them (META models). We build
the meta-classifiers on the outputs of the stan-
dalone system BASE and TKs, namely PTK and
SST. The “Ensemble” section of Table 4 shows
that meta-system combinations mostly outperform
the standalone kernels.

In general, combining cross-pair and intra-pair
similarities (with kernel sum or meta-classifiers)
provides state-of-the-art results without using
deep learning. Additionally, the outcome is de-

terministic, while the DNN accuracy may vary de-
pending on the type of the hardware used or the
random initialization parameters (Crane, 2018).

5.5 Comparison with the state of the art

Tables 5, 6 and 7 report the performance of the
most recent state-of-the-art systems on WikiQA,
TREC13 and SemEval in comparison with our
best results. We discuss them with respect to the
different datasets.

WikiQA. As already mentioned earlier, Wik-
iQA contains many questions without correct an-
swer (see Tab. 3). When evaluated on the full
data, even the oracle system will achieve at most
38.38 points of MAP. Moreover, as originally ob-
served in (Wang et al., 2007), the questions that
do not have either correct answers or incorrect
answers are not useful for comparing the perfor-
mance of different answer sentence selection sys-
tems. Therefore, they are typically removed from
WikiQA and TREC13 before the evaluation.

There has been some discrepancy in the com-
munity when evaluating on WikiQA. The original
baselines proposed for the corpus in (Yang et al.,
2015) were evaluated in the “clean” setting15. We

15According to the WikiQA gold reference files at
https://www.microsoft.com/en-us/download/details.

aspx?id=52419

2169



no all� clean
MRR MAP MRR MAP

LCLR (Yang et al., 2015)
impl. of (Yih et al., 2013)

61.83 60.92 60.86 59.93

HybridTK-NN (Tymoshenko
et al., 2017a)

74.72 72.88 74.08 72.19

IWAN-att (Shen et al., 2017) 75.00 73.30 74.37 72.62
C/A, MULT (Wang and Jiang,
2017)

75.45 74.33 74.83 73.68

C/A, k-max (Bian et al., 2017) 76.40 75.40 75.80 74.78
C/A, listwise (Bian et al.,
2017)

75.90 74.60 75.29 73.96

HyperQA (Tay et al., 2018) 72.70 71.20 72.01 70.47
Our model (PTK) 76.21 75.29 75.60 74.67
Our model (SUMBASE;PTK ) 77.57 76.19 77.00 75.59

Table 5: Comparison to the SoA on WikiQA

MRR MAP
Noise-contrastive estim. (Rao et al., 2016) 87.7 80.1
IWAN-att (Shen et al., 2017) 88.9 82.2
BIMPM (Wang et al., 2017) 87.5 80.2
C/A, k-threshold (Bian et al., 2017) 89.9 82.1
C/A-listwise (Bian et al., 2017) 88.9 81.0
HyperQA (Tay et al., 2018) 86.5 78.4
Our model (Bcr+Ecr+PTK) 85.07 77.18
Our model (V+Ecr) 85.65 76.72
Our model (SUMBASE;PTK ) 86.89 77.65

Table 6: Comparison to the SoA on TREC13

MRR MAP
Kelp [#1] (Filice et al., 2016) 86.42 79.19
Conv-KN [#2] (Barrón-Cedeño et al., 2016) 84.93 77.6
CTKC+VQF (Tymoshenko et al., 2016b) 86.26 78.78
HyperQA (Tay et al., 2018) n/a 79.5
AI-CNN (Zhang et al., 2017) n/a 80.14
Our model (V+Bcr+Ecr+E+SST) 86.52 79.79

Table 7: Comparison to the SoA on SemEval-2016

also evaluate in the “clean” setting. However,
the performance of the most recent state-of-the-
art systems listed in the Tab. 5 is reported in the
“no all�” setting, in the respective papers, i.e.,
they keep the all+ questions16. Thus, they have 6
extra questions always answered correctly by de-
fault. To account for this discrepancy, in Tab. 5,
we report the results in both settings. It is trivial to
convert the performance figures from one setting
to another. In the table, we mark the conversion
results with italic.

Our SUMBASE;PTK system (i) outperforms all
the state-of-the-art systems, including the sophisti-
cated architectures with attention, such as IWAN-
att (Shen et al., 2017), and compare-aggregate
(C/A) frameworks (Wang and Jiang, 2017; Bian
et al., 2017) in terms of MRR; and (ii) has the
same MAP as (Bian et al., 2017). Obviously, this
improvement is not statistically significant with re-

16We deduced that from the corpus statistics reported by
the authors of the papers. They all report having 243 test
questions, which corresponds to the “no all�” setting

spect to C/A systems by Bian et al. (2017). Nev-
ertheless, ours is a very promising result, consid-
ering that we only use linear models with simple
kernels and do not tune any learning parameter of
such models.

TREC13. As shown in Tab. 6, our models do
not outperform the state of the art on TREC13, but
they still perform comparably to the recent DNN
HyperQA model (Tay et al., 2018). In general, our
model is behind the state-of-the-art IWAN-att sys-
tem by 4.55 points in terms of MAP. Note, how-
ever, that TREC13 test set contains only 68 ques-
tions, therefore this difference in performance is
not likely to be statistically significant17.

Semeval. Table 7 compares performance of Bcr

+ Ecr + V + E + SST system on Semeval to that
of KeLP and ConvKN, the two top systems in the
SemEval 2016 competition, and also to the per-
formance of the recent DNN-based HyperQA and
AI-CNN systems. In the Semeval 2016 competi-
tion, our model would have been the first18, with
#1 KeLP system being 0.6 MAP points behind.
Then, it would have outperformed the state-of-the-
art AI-CNN system by 0.35 MAP points.

6 Conclusions
This work proposes a simple, yet effective ap-
proach to the task of answer sentence selection
based on the intuition that similar patterns in ques-
tions are likely to demand similar patterns in an-
swers. We showed that this hypothesis provides an
improvement on three benchmark datasets, Wik-
iQA, TREC13, Semeval-2016, and, moreover, it
enables simple features to achieve the state of the
art on WikiQA and Semeval-2016, outperform-
ing many of state-of-the-art DNN-based systems.
There is significant room for further elaboration of
this approach, for example, by expanding feature
spaces with more syntactic and semantic features,
employing new types of kernels for measuring the
inter-question/answer pair similarity or trying to
implement the same idea in DNN architectures.
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Abstract

We present QuAC, a dataset for Question
Answering in Context that contains 14K
information-seeking QA dialogs (100K ques-
tions in total). The dialogs involve two crowd
workers: (1) a student who poses a sequence
of freeform questions to learn as much as pos-
sible about a hidden Wikipedia text, and (2)
a teacher who answers the questions by pro-
viding short excerpts from the text. QuAC in-
troduces challenges not found in existing ma-
chine comprehension datasets: its questions
are often more open-ended, unanswerable, or
only meaningful within the dialog context, as
we show in a detailed qualitative evaluation.
We also report results for a number of ref-
erence models, including a recently state-of-
the-art reading comprehension architecture ex-
tended to model dialog context. Our best
model underperforms humans by 20 F1, sug-
gesting that there is significant room for fu-
ture work on this data. Dataset, baseline, and
leaderboard available at http://quac.ai.

1 Introduction

In information-seeking dialog, students repeat-
edly ask teachers questions to learn about a topic
of interest (Stede and Schlangen, 2004). Mod-
eling such conversations is challenging, as the
questions can be highly context-dependent, ellip-
tical, and even unanswerable. To enable learning
from rich information-seeking dialog, we present
QuAC (henceforth ), a large-scale dataset for
Question Answering in Context that contains 14K
crowdsourced QA dialogs (100K total QA pairs).1

Figure 1 shows an example dialog. The in-
teraction is student driven and centered around a
short evidence text (a section from Daffy Duck’s

1We use “dialog” to refer to a sequence of QA pairs.
F Authors contributed equally.

Section: Daffy Duck, Origin & History

STUDENT: What is the origin of Daffy Duck?
TEACHER: ,! first appeared in Porky’s Duck Hunt
STUDENT: What was he like in that episode?
TEACHER: ,! assertive, unrestrained, combative
STUDENT: Was he the star?
TEACHER: ¯,! No, barely more than an unnamed

bit player in this short
STUDENT: Who was the star?
TEACHER: 6,! No answer
STUDENT: Did he change a lot from that first

episode in future episodes?
TEACHER: ,! Yes, the only aspects of the char-

acter that have remained consistent (...) are his
voice characterization by Mel Blanc

STUDENT: How has he changed?
TEACHER: ,! Daffy was less anthropomorphic
STUDENT: In what other ways did he change?
TEACHER: ,! Daffy’s slobbery, exaggerated lisp

(...) is barely noticeable in the early cartoons.
STUDENT: Why did they add the lisp?
TEACHER: ,! One often-repeated “official” story

is that it was modeled after producer Leon
Schlesinger’s tendency to lisp.

STUDENT: Is there an “unofficial” story?
TEACHER: ,! Yes, Mel Blanc (...) contradicts

that conventional belief
. . .

Figure 1: An example dialog about a Wikipedia sec-
tion. The student, who does not see the section text,
asks questions. The teacher provides a response in the
form of a text span (or No answer ), optionally yes or
no ( Yes / No ), and encouragement about continuing a
line of questioning (should, ,! , could ¯,! , or should
not 6,! ask a follow-up question).

Wikipedia page), which only the teacher can ac-
cess. Given just the section’s heading, “Origin &
History”, the student aims to learn as much as pos-
sible about its contents by asking questions. The
teacher answers these questions with spans from
the evidence text, as in existing reading compre-
hension tasks (Rajpurkar et al., 2016). Addition-
ally, the teacher uses dialog acts to provide the stu-
dent with feedback (e.g., “ask a follow up ques-
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Dataset Multi
turn

Text-
based

Dialog
Acts

Simple
Evaluation

Unanswerable
Questions

Asker Can’t
See Evidence

QuAC 4 4 4 4 4 4

CoQA (Reddy et al., 2018) 4 4 7 4 4 7
CSQA (Saha et al., 2018) 4 7 7 7 4 7

CQA (Talmor and Berant, 2018) 4 4 7 4 7 4
SQA (Iyyer et al., 2017) 4 7 7 4 7 7

NarrativeQA (Kociský et al., 2017) 7 4 7 7 7 4
TriviaQA (Joshi et al., 2017) 7 4 7 4 7 4

SQuAD 2.0 (Rajpurkar et al., 2018) 7 4 7 4 4 7
MS Marco (Nguyen et al., 2016) 7 4 7 7 4 4
NewsQA (Trischler et al., 2016) 7 4 7 4 4 4

Table 1: Comparison of the QUAC dataset to other question answering datasets.

tion”), which makes the dialogs more productive.
We collect the dataset in an interactive set-

ting where two crowd workers play the roles of
teacher and student. To encourage natural and di-
verse questions, we do not follow previous dialog-
style QA datasets that semi-automatically generate
questions (Talmor and Berant, 2018; Saha et al.,
2018). Furthermore, unlike QA datasets such as
SQuAD and CoQA (Reddy et al., 2018), students
in do not know the answers to their ques-
tions prior to asking them, which lessens the role
of string matching and simple paraphrasing in an-
swering their questions. This property makes
similar to datasets that contain real user queries on
search engines (Nguyen et al., 2016).

contains many challenging phenomena
unique to dialog, such as coreference to previous
questions and answers and open-ended questions
that must be answered without repeating previ-
ous information (Section 3). Additionally, despite
lacking access to the section text, we find that stu-
dents start dialogs by asking questions about the
beginning of the section before progressing to ask-
ing questions about the end. These observations
imply that models built for must incorporate
the dialog context to achieve good performance.

We present a strong neural baseline (Clark and
Gardner, 2018) that considers both dialog context
and section text. While this model achieves within
6 F1 of human performance on SQuAD, it per-
forms 20 F1 points below the human upper bound
on , indicating room for future improvement.

2 Dataset collection

This section describes our data collection process,
which involves facilitating QA dialogs between
crowd workers. Table 1 shows shares many
of the same positive characteristics of existing QA
datasets while expanding upon the dialog aspect.

Train Dev. Test Overall

questions 83,568 7,354 7,353 98,407
dialogs 11,567 1,000 1,002 13,594
unique sections 6,843 1,000 1,002 8,854

tokens / section 396.8 440.0 445.8 401.0
tokens / question 6.5 6.5 6.5 6.5
tokens / answer 15.1 12.3 12.3 14.6
questions / dialog 7.2 7.4 7.3 7.2

% yes/no 26.4 22.1 23.4 25.8
% unanswerable 20.2 20.2 20.1 20.2

Table 2: Statistics summarizing the dataset.

2.1 Interactive Task

Our task pairs up two workers, a teacher and a
student, who discuss a section s (e.g., “Origin &
History” in the example from Figure 1) from a
Wikipedia article about an entity e (Daffy Duck).
The student is permitted to see only the section’s
title t and the first paragraph of the main article b,
while the teacher is additionally provided with full
access to the section text.

The task begins with the student formulating a
free-text question q from the limited information
they have been given. The teacher is not allowed
to answer with free text; instead, they must select
a contiguous span of text defined by indices (i, j)
into the section text s.2 While this decision lim-
its the expressivity of answers, it makes evalua-
tion simpler and more reliable; as such, it has been
adopted in other reading comprehension datasets
such as SQuAD, TriviaQA (Joshi et al., 2017), and
NewsQA (Trischler et al., 2016).

To facilitate more natural interactions, teachers
must also provide the student with a list of dia-
log acts v that indicates the presence of any of n
discrete statements. We include three types of di-

2We set the maximum answer length to 30 tokens to pre-
vent teachers from revealing the full article all at once.
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what
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how was
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who

where

why

what did what is

what was what happened what else

when did

how did
was PRN

did PRN

What team was he with?
What station did it air on?

What was it about?
What was the name of the single?

What was Takemitsu's opinion of Debussy?
What was their first album?
What was one of his reforms?
What was the driving force behind the name change?

What is 
notable about 
his player 
profile?
What is 
Refused’s 
musical style?

What did they try next?
What did Doris 
contribute to?
What did they record?
What did he do in there?
What did she do after 
college?

What happened 
after that?
What happened 
in 1983?

What else must 
one do?
What else is 
notable?

Did the albums do well?
Did Huxley teach his 
beliefs?
Did she rise in the 
company?
Did Pamela cheat on 
Churchill?

Did they have a lot of followers?
Did she go on any tours after this?
Did they win against Cuba?
Did he marry?
Did they serve any prison time? 
Did he have any conflicts with team mates?
Did she win an award?
Did he actually get a Muslim state started?

What other countries if any did he visit?
What type of museum did Peggy plan to open?
What were her troubles in 2016?
What do critics say about them?
What other movies did she do?

How was perversion handled?
How long was he there?
How popular did she become?

How did Mark Felt 
contact Woodword?

How did the meeting go?
How did it do on the charts?

When was she born?
When was it founded?
When was the 
breakup?

When did he 
get started 
in politics?
When did he 
die?

Where was the club 
based?
Where was she from?
Where did Julianne 
Hough tour?

Why did they meet at 
Woodside Hotel?
Why did he represent 
her?

Why did 
he retire?

Who promoted the film?
Who was in The Go-Go’s?

Who was their father?
Who acquired the rights to the 
band’s back catalogs?
Who was Emily influenced by?

Was he very mean to these 
relatives?
Was she a happy child?

Was it a 
success?

Was Villa ever the 
governor of Chihuahua?
Was there another 
lawsuit?

Was this report 
helpful?

How does he try to 
take over the world?

Figure 2: A treemap visualization of the eight most frequent “Wh” words in , where box area is proportional to
number of occurrences. Compared to other machine comprehension datasets, we observe increased contextuality
and open-endedness, as well as a variety of both general and specific questions.

alog acts: (1) continuation (follow up, maybe
follow up, or don’t follow up), (2) affir-
mation (yes, no, or neither) and (3) answer-
ability (answerable or no answer). The
continuation act is crucial for workers to have pro-
ductive dialogs, as it allows teachers to guide the
student’s questioning towards aspects of the article
that are especially important or interesting. Al-
together, a teacher’s complete answer to a ques-
tion q includes a pair of indices and dialog indi-
cators, a = (i, j, v). If a question is marked no
answer, the indices are ignored.

After receiving an answer from the teacher, the
student asks another question. At every turn, the
student has more information about the topic than
they did previously, which encourages them to
ask follow-up questions about what they have just
learned. The dialog continues until (1) twelve
questions are answered, (2) one of the partners de-
cides to end the interaction, or (3) more than two
unanswerable questions were asked.

2.2 Collection Details

We used Amazon Mechanical Turk for collection,
restricting the task to workers in English-speaking
countries and with more than 1000 HITs with at
least a 95% acceptance rate. We paid workers per
the number of completed turns in the dialog, which
encourages workers to have long dialogs with their
partners, and discarded dialogs with less than three

QA pairs.3 To ensure quality, we created a qual-
ification task and allowed workers to report their
partner for various problems. More details on data
collection can be found in our datasheet.4

Article selection Our early pilot studies showed
that articles about people generally require less
background knowledge to write good questions
than other categories. To find articles about peo-
ple with varied backgrounds, we retrieved articles
from a list of category keywords (culture, animal,
people associated with event, geography, health,
celebrity) using a web interface provided by the
Wikimedia foundation.5 We pruned by popular-
ity by selecting articles with at least 100 incoming
links, and we additionally removed non-person en-
tities using YAGO (Suchanek et al., 2007). After
article selection, we filtered sections from these ar-
ticles based on the number of paragraphs, number
of tokens, and average words per sentence. 6

Dataset validation To create our evaluation
sets, we collected four additional annotations per
question. Workers were presented with questions
from a previously collected dialog and asked to

3On average, we paid $0.33 per question, increasing pay
per question as dialogs got longer to encourage completion.

4 http://quac.ai/datasheet.pdf
5https://petscan.wmflabs.org/
6These filtering steps bias our data towards entertainers;

see datasheet for details.
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provide answer spans.7 Acquiring many annota-
tions is important since many questions in
have multiple valid answers.

Train / Dev / Test Differences Table 2 shows
small differences between training, development
and testing splits. Sections in the training set are
shorter than those in the evaluation folds because
we permit multiple dialogs about the same section
only in training; since workers preferred reading
shorter sections, these were more likely to result in
multiple dialogs. Variations in answer span length
arise from two sources: (1) having multiple anno-
tations in the validation task and (2) differing in-
centives between the data collection and validation
procedures.8 An analysis measuring the effect of
these variations shows that they result in little dif-
ference in evaluation.9

3 Dataset Analysis

differs from other reading comprehension
datasets due to our dialog-style collection process
and the information asymmetry between teacher
and student. In the following sections, we pro-
vide a qualitative analysis of the dataset in
that highlights challenging question types as well
as the impact of the dialog context.

Question and answer types Table 2 shows
dataset summary statistics. has long an-
swers of 15 tokens on average compared to 3 for
SQuAD, which is unsurprising as most SQuAD
answers are either entities or numerics (Jurczyk
et al., 2018) while questions can be more
open-ended. While the average question length
(6.5 tokens) is shorter than that of SQuAD (11
tokens), this does not indicate reduced question
complexity, as the student (1) cannot access the
section to paraphrase it and (2) can be more con-
cise by coreferencing previous interactions.

Figure 2 visualizes the most frequent question
types in based on “Wh” words.10 For a more

7After submitting an answer, they were shown the original
teacher’s answer so that they could understand the context of
the subsequent questions.

8Validation workers did not have to maintain the dialog
and so did not include as much information in the response.

9More specifically, we analyze whether references from
the initial data collection significantly differ from references
collected during validation. We observe a difference of less
than 1 F1 when using the original answer as system output
versus using validation answers.

10To more effectively visualize sub-boxes like “what did”,
we exclude questions from the tail of the distribution.

Section: Augusto Pinochet : Intellectual life...

STUDENT: Was he known for being intelligent?
TEACHER: ,! No, Pinochet was publicly known

as a man with a lack of culture.
STUDENT: why did people feel that way?
TEACHER: ,! reinforced by the fact that he also

portrayed himself as a common man
STUDENT: did he have any hobbies?
TEACHER: ,! Yes, Before wresting power from

Allende, Pinochet had written two books.
STUDENT: what is the name of a book written by

him?
TEACHER: ,! Geopolitica (1968) and Campana

de Tarapaca (1972).
STUDENT: what were the books about?
TEACHER: ,! Chile’s military literature.
STUDENT: was there anything noteworthy re-

garding his books?
TEACHER: ,! Yes, In Geopolitica Pinochet pla-

giarized (...) Gregorio Rodriguez Tascon
STUDENT: did he deny those allegations?
TEACHER: 6,! No answer
STUDENT: what did he plagiarize in Geopolitica?
TEACHER: ¯,! In Geopolitica Pinochet plagia-

rized (...) paragraphs from a 1949 presentation
. . .

Figure 3: An example successful dialog from .
Questions build on each other and interesting aspects
(e.g., plagiarism) are explored as they are discovered.

fine-grained analysis, we randomly sampled 100
questions (each from a different dialog) and man-
ually labeled different phenomena in Table 3. Un-
like most current QA datasets that focus on fac-
toid questions, our task setup encourages more
open-ended questions: about half of questions
are non-factoid. Furthermore, 86% of questions
are contextual, requiring reading the context to re-
solve coreference; of these, 44% refer to entities
or events in the dialog history, while 61% refer to
the subject of the article.

The role of context Dialog context is crucial to
understanding and answering questions. Fig-
ure 5a shows that the location of the answer within
the text is influenced by the number of questions
asked previously. Early questions are mostly an-
swered in the beginning of the section, while later
questions tend to focus on the end of the section.
Interestingly, text in the middle of the section is
not asked about as frequently (Figure 5c). As more
questions get asked, the more likely a question is
to be unanswerable.

Figure 5b shows how the answers progress
through different chunks of the evidence text
(where each section is divided into 12 chunks of
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Section: Gaelic Ireland : Invasion

STUDENT: What year did the invasion happen?
TEACHER: ,! in 1169 the main body of Norman,

Welsh and Flemish forces landed in Ireland
and quickly retook Leinster and the cities of
Waterford and Dublin on behalf of Diarmait.

STUDENT: Who was Diarmait?
TEACHER: ¯,! King Diarmait Mac Murchada of

Leinster.
STUDENT: Where is Leinster located?
TEACHER: 6,! landed in Ireland and quickly re-

took Leinster.
STUDENT: Were invasions common?
TEACHER: 6,! No answer
STUDENT: Are there any other interesting as-

pects about this article?
TEACHER: ¯,! Yes, IPope Adrian IV, the only

English pope, had already issued a Papal Bull
in 1155 giving Henry II of England authority
to invade Ireland.

STUDENT: Who lead the invasion?
TEACHER: 6,! No answer
STUDENT: Did England defeat the Irish armies?
TEACHER: 6,! No answer

Figure 4: A less successful dialog from . The stu-
dent struggles to get information despite asking good
questions. The teacher attempts to provide extra con-
text to guide the student, but the dialog ultimately ends
because of too many unanswerable questions.

equal size). The answer to the next question is
most frequently either in the same chunk as the
previous question or an adjacent chunk, and most
dialogs in the dataset cover three to six of the
chunks (Figure 5d). These observations suggest
that models for must take into account the di-
alog context. However, results in Section 5 show
that solely relying on the location of previous an-
swers is not sufficient.

Finally, we examine properties of the questions
as a function of the turn position in the dialog
(Figure 6). The frequency of yes/no questions
increases significantly as the dialogs progress;
again, at the beginning of the dialog, students have
very little information, so it is harder to formu-
late a yes/no question. The percentage of ques-
tions that have multiple answers declines as the
dialog progresses, implying students ask general
questions first and specific ones later.

Qualitative examples Figures 3 and 4 contain
two representative dialogs from . Longer di-
alogs sometimes switch topics (such as in Figure 3
about “academic work”) and often go from gen-
eral to specific questions. Students whose ques-

Question
type % Example

Non-
factoid 54 Q: Were the peace talks a success?

Q: What was her childhood like?

Contextual 86

Coref
(article) 61 Title: Paul Cézanne: Early years

Q: When did he start painting?

Coref
(history) 44

Q: What was special about the Harrah’s?
A: project was built by Trump with
financing from the Holiday Corporation.
Q: Which led to what?

Anything
else? 11 Q: What other acting did he do?

Q: What else did he research?

Table 3: An analysis of questions. Non-factoid
questions do not ask about specific facts, while con-
textual questions require reading the history to resolve
coreferences to the dialog history and/or article.

tions go unanswered commonly resort to asking
their teacher for any interesting content; even if
this strategy fails to prolong the dialog as in Fig-
ure 4, models can still use the dialog to learn when
to give no answer.

4 Experimental Setup

We consider the following QA task: given the first
k questions and k ground-truth answers in the dia-
log, all supporting material (entity e, topic t, back-
ground b, and section text s), and question qk+1,
we predict the answer span indices i, j in the sec-
tion text s. Since affirmation questions are incom-
plete without a yes/no answer and the continuation
feedback is important for information-seeking di-
alog, we predict the dialog acts v, which with the
span form the final answer prediction ak+1.

All of our experiments are carried out on
a train/dev/test split of 83.5k/7.3k/7.3k ques-
tions/answer pairs, where no sections are shared
between the different folds. Questions in the
training set have one reference answer, while dev
and test questions have five references each. For
all experiments, we do not evaluate on questions
with a human F1 lower than 40, which eliminates
roughly 10% of our noisiest annotations.11

4.1 Evaluation Metrics
Our core evaluation metric, word-level F1, is im-
plemented similarly to SQuAD (Rajpurkar et al.,

11A manual inspection of annotations below this threshold
revealed many lower quality questions; however, we also re-
port unthresholded F1 in the final column of Table 4.
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Figure 5: Heatmaps depicting the importance of context in dialogs, where (a) and (b) share the same color
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covered in later turns (a). The middle is the least covered portion (c), and dialogs cover around five unique chunks
of the section on average (d). The transition matrix (b) shows that the answer to the next question is more likely to
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Figure 6: The number of turns in the dialog influences
the student’s behavior: they start by asking general
questions (i.e., easier to answer, with multiple possible
answers) and progress to more specific ones.

2016): precision and recall are computed by con-
sidering the portion of words in the prediction
and references that overlap after removing stop-
words.12 For no answer questions, we give the
system an F1 of one if it correctly predicts no
answer and zero otherwise.13 Like SQuAD, we
compute the maximum F1 among all references;
however, since many questions have multiple
valid answers, this metric varies significantly with

12Since our answer spans have vaguer boundaries than the
shorter ones in SQuAD, exact match is not a useful metric.

13Because the validation task was more susceptible to
spam by constant annotation of “no-answer,” we only al-
low “no-answer” if the majority of references marked “no-
answer”, removing other answers. If “no-answer” is not the
majority answer, we remove all instances of “no-answer”.

the number of reference annotations. To make or-
acle human and system performance comparable,
given n references, we report the average of the
maximum F1 computed from each n � 1 subset
with respect to the heldout reference.

Additionally, since averaged F1 can be mislead-
ing for questions with multiple valid answers, we
introduce the human equivalence score (HEQ), a
performance measure for judging whether a sys-
tem’s output is as good as that of an average hu-
man.14 HEQ measures the percentage of examples
for which system F1 exceeds or matches human
F1. We compute two variants: (1) the percentage
of questions for which this is true (HEQ-Q), and
(2) the percentage of dialogs for which this is true
for every question in the dialog (HEQ-D). A sys-
tem that achieves a value of 100 on HEQ-D can by
definition maintain average human quality output
over full dialogs.

For dialog acts, we report accuracy with respect
to the majority annotation, breaking ties randomly.

5 Experiments
5.1 Sanity checks
Random sentence This baseline selects a ran-
dom sentence in the section text s as the answer
(including no answer).

14In cases with lower human agreement on F1, if a system
produces one reference exactly (F1 = 100), it will get points
that it can use to offset poor performance on other examples.
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Majority The majority answer outputs no
answer and the majority class for all other di-
alog acts (neither for affirmation and don’t
follow up for continuation).

Transition matrix We divide the supporting
text into 12 chunks (with a special chunk for no
answer) and use the transition matrix (computed
from the training set) in Figure 5b to select an an-
swer given the position of the previous answer.
This baseline does not output other dialog acts.

5.2 Upper bounds

Gold NA + TM This is the same transition ma-
trix (TM) baseline as before, except that for ques-
tions whose gold annotations are no answer,
we always output no answer.

Gold sentence + NA To see if can be
treated as an answer sentence selection problem,
we output the sentence from s with the maximal
F1 with respect to references, or no answer for
unanswerable questions.

Human performance We pick one reference as
a system output and compute the F1 with respect
to the remaining references using the method de-
scribed in Section 4.1. By definition, all HEQ
measures are 100, and we report agreement for the
affirmation dialog act.15

5.3 Baselines

Pretrained InferSent To test the importance of
lexical matching in our dataset, we output the sen-
tence in s whose pretrained InferSent representa-
tion (Conneau et al., 2017) has the highest cosine
similarity to that of the question.

Feature-rich logistic regression We train a lo-
gistic regression using Vowpal Wabbit (Langford
et al., 2007) to select answer sentences. We use
simple matching features (e.g., n-gram overlap be-
tween questions and candidate answers), bias fea-
tures (position and length of a candidate), and con-
textual features (e.g., matching features computed
with previous questions / answers, turn number).

BiDAF++ We use a re-implementation of a top-
performing SQuAD model (Peters et al., 2018)
that augments bidirectional attention flow (Seo

15We did not collect multiple annotations for the continua-
tion dialog act and so omit it.

et al., 2016, BiDAF) with self-attention (Clark and
Gardner, 2018) and contextualized embeddings.16

A token for no answer is appended to s to
enable its prediction following Levy et al. (2017).
Additionally, we modify the model for our task to
also predict dialog acts, placing a classifier over
the same representation used to predict the end po-
sition of the predicted span.

BiDAF++ w/ k-ctx As BiDAF++ does not
model any dialog context, we modify the passage
and question embedding processes to consider the
dialog history. We consider context from the pre-
vious k QA pairs.17

• Passage embedding We explicitly identify
the previous k answers within the section text
by concatenating marker embeddings to the
existing word embeddings.

• Question embedding Naively prepending
the previous k questions to the current ques-
tion did not show gains in initial experiments.
We opt instead to simply encode the dialog
turn number within the question embedding.

5.4 Results
Table 4 summarizes our results (each cell displays
dev/test scores), where dialog acts are Yes/No (af-
firmation) and Follow up (continuation). For com-
parison to other datasets, we report F1 without fil-
tering low-agreement QA pairs (F1’).

Sanity check Overall, the poor sanity check re-
sults imply that is very challenging. Of these,
following the transition matrix (TM) gives the best
performance, reinforcing the observation that the
dialog context plays a significant role in the task.

Upper bounds The human upper bound (80.8
F1) demonstrates high agreement. While Gold
sentence + NA does perform well, indicating that
significant progress can be made by treating the
problem as answer sentence selection, HEQ mea-
sures show that span-based approaches will be
needed achieve average human equivalence. Fi-
nally, the Gold NA + TM shows that cannot
be solved by ignoring question and answer text.

16The AllenNLP (Gardner et al., 2017) implementation we
use reaches 82.7 on the SQuAD development set, compared
to the paper’s reported 85.8 on SQuAD; regardless, this im-
plementation would have been state-of-the-art less than a year
ago, making it an extremely strong baseline.

17Our implementation is available in AllenNLP.
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F1 HEQ-Q HEQ-D Yes / No Follow up F1 (All)

Random sentence 15.7 / 15.6 6.9 / 6.9 0.0 / 0.1 — — 16.4 / 16.3
Majority answer 22.7 / 22.5 22.7 / 22.5 0.5 / 0.4 78.8 / 77.6 57.9 / 56.7 20.2 / 20.0
Trans. matrix (TM) 31.8 / 31.5 15.8 / 15.8 0.1 / 0.2 — — 31.2 / 30.9

Pretrained InferSent 21.4 / 20.8 10.2 / 10.0 0.0 / 0.0 — — 22.0 / 21.4
Logistic regression 34.3 / 33.9 22.4 / 22.2 0.6 / 0.2 — — 34.3 / 33.8
BiDAF++ (no ctx) 51.8 / 50.2 45.3 / 43.3 2.0 / 2.2 86.4 / 85.4 59.7 / 59.0 50.1 / 48.2
BiDAF++ (w/ 1-ctx) 59.9 / 59.0 54.9 / 53.6 4.7 / 3.4 86.5 / 86.1 61.3 / 60.3 57.5 / 56.5
BiDAF++ (w/ 2-ctx) 60.6 / 60.1 55.7 / 54.8 5.3 / 4.0 86.6 / 85.7 61.6 / 61.3 58.3 / 57.8
BiDAF++ (w/ 3-ctx) 60.6 / 59.5 55.6 / 54.5 5.0 / 4.1 86.1 / 85.7 61.6 / 61.2 58.1 / 57.0

Gold NA + TM 43.0 / 42.6 27.4 / 27.4 1.0 / 0.8 — — 41.0 / 40.6
Gold sentence + NA 72.4 / 72.7 61.8 / 62.7 9.8 / 9.7 — — 70.8 / 71.2
Human performance 80.8 / 81.1 100 / 100 100 / 100 89.4 / 89.0 — 74.6 / 74.7

Table 4: Experimental results of sanity checks (top), baselines (middle) and upper bounds (bottom) on . Simple
text matching baselines perform poorly, while models that incorporate the dialog context significantly outperform
those that do not. Humans outperform our best model by a large margin, indicating room for future improvement.

Baselines Text similarity methods such as bag-
of-ngrams overlap and InferSent are largely inef-
fective on , which shows that questions have
little direct overlap with their answers. On the
other hand, BiDAF++ models make significant
progress, demonstrating that existing models can
already capture a significant portion of phenom-
ena in . The addition of information from
previous turns (w/ 1-ctx) helps significantly, in-
dicating that integration of context is essential to
solving the task. While increasing the context
size in BiDAF++ continues to help, we observe
saturation using contexts of length 3, suggesting
that more sophisticated models are necessary to
take full advantage of the context. Finally, even
our best model underperforms humans: the sys-
tem achieves human equivalence on only 60% of
questions and 5% of full dialogs.

5.5 Error Analysis
In this section, we analyze the development set
performance of our best context-aware model
(BiDAF++ w/ 2-ctx), our best context-agnostic
model (BiDAF++), and humans. Figure 7 contains
three plots showing how F1 scores of baseline
models and human agreement vary with (1) turn
number, (2) distance from previous answer,18 and
(3) answer length in tokens. Taken as a whole, our
analysis reveals significant qualitative differences
between our context-aware and context-agnostic
models beyond simply F1; additionally, human

18We divide the text into 12 equally-sized chunks and com-
pute the difference of the current and previous chunk indices.

behavior differs from that of both models.

In the first plot, human agreement is unchanged
throughout the dialog while the performance of
both models decreases as the number of turns
increases, although the context-aware model de-
grades less. While continuing a dialog for more
turns does not affect human agreement, the sec-
ond plot shows that human disagreement increases
as the distance between the current answer’s loca-
tion within the section text and that of the previous
answer increases. Larger distances indicate shifts
in the student’s line of questioning (e.g., if the
teacher told the student not to follow up on the pre-
vious question). The plot also shows that model
performance suffers (significantly more than hu-
mans) as distance increases, although the context-
aware model can tolerate smaller shifts better than
the context-agnostic model. In the last plot, hu-
man agreement is higher when the answer span is
short; in contrast, our model struggles to pin down
short answers compared to longer ones.

The plots demonstrate the increased robust-
ness of the context-aware model compared to
BiDAF++. This finding is reinforced by examin-
ing the difference in model performance on ques-
tions where previously the teacher recommended
the student to “follow up” vs. not to follow up.
The context-aware baseline performs 6 HEQ-Q
higher on the “follow up” questions; in contrast,
the context-agnostic baseline shows no HEQ-Q
difference between the two types of questions.
This discrepancy stems from the context-agnostic
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Figure 7: The F1 scores of baseline models and human agreements based on dialog turn number, answer’s distance
from previous answer, and the answer span token length.

model’s inability to take advantage of the location
of the previous answer.

6 Related Work

Reading Comprehension Our work builds on
span based reading comprehension (Rajpurkar
et al., 2016; Joshi et al., 2017; Trischler et al.,
2016), while also incorporating innovations such
as curating questions independently of support-
ing text to reduce trivial lexical overlap (Joshi
et al., 2017; Kociský et al., 2017) and allowing for
unanswerable questions (Trischler et al., 2016; Ra-
jpurkar et al., 2018). We handle open-ended ques-
tions like in MSMARCO (Nguyen et al., 2016),
with multiple references, but we are the first to in-
corporate these into information-seeking dialog.

Sequential QA Our work is similar to se-
quential question answering against knowledge
bases (Iyyer et al., 2017) and the web (Talmor
and Berant, 2018), but instead of decomposing
a single question into smaller questions, we rely
on the curiosity of the student to generate a se-
quence of questions. Such open information seek-
ing was studied in semantic parsing on knowledge
bases (Dahl et al., 1994) and more recently with
modern approaches (Saha et al., 2018), but with
questions paraphrased from templates. Concur-
rent to our work, Saeidi et al. (2018) proposed a
task of generating and answering yes/no questions
for rule focused text (such as traffic laws) by in-
teracting with a user through dialog. Also con-
currently, Reddy et al. (2018) propose conversa-
tional question answering (CoQA) from text but
allow both students and questioners to see the ev-
idence. As a result, a large percentage of CoQA
answers are named entities or short noun phrases,
much like those in SQuAD. In contrast, the asym-
metric nature of forces students to ask more

exploratory questions whose answers can be po-
tentially be followed up on.19

Dialog fits into an increasing interest in
open domain dialog, mostly studied in the con-
text of social chit-chat (Li et al., 2016; Ritter
et al., 2011; Fang et al., 2017; Ghazvininejad et al.,
2018). Most related to our effort is visual dia-
log (Das et al., 2017), which relies on images as
evidence instead of text. More explicit goal driven
scenarios, such as bargaining (Lewis et al., 2017)
and item guessing (He et al., 2017) have also been
explored, but the language is more constrained
than in . Information-seeking dialog specif-
ically was studied in Stede and Schlangen (2004).

7 Conclusion
In this paper, we introduce , a large scale
dataset of information-seeking dialogs over sec-
tions from Wikipedia articles. Our data collection
process, which takes the form of a teacher-student
interaction between two crowd workers, encour-
ages questions that are highly contextual, open-
ended, and even unanswerable from the text. Our
baselines, which include top performers on exist-
ing machine comprehension datasets, significantly
underperform humans on . We hope this dis-
crepancy will spur the development of machines
that can more effectively participate in informa-
tion seeking dialog.
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Abstract

Answering complex questions that involve
multiple entities and multiple relations using
a standard knowledge base is an open and
challenging task. Most existing KBQA ap-
proaches focus on simpler questions and do
not work very well on complex questions be-
cause they were not able to simultaneously
represent the question and the corresponding
complex query structure. In this work, we en-
code such complex query structure into a uni-
form vector representation, and thus success-
fully capture the interactions between individ-
ual semantic components within a complex
question. This approach consistently outper-
forms existing methods on complex questions
while staying competitive on simple questions.

1 Introduction

The knowledge-based question answering
(KBQA) is a task which takes a natural lan-
guage question as input and returns a factual
answer using structured knowledge bases
such as Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007) and DBpe-
dia (Auer et al., 2007). One simple example is
a question like this: “What’s the capital of the
United States?” A common answer to such ques-
tion is to identify the focus entity and the main
relation predicate (or a sequence) in the question,
and map the question to a triple fact query (US,
capital, ?) over KB. The object answers are
returned by executing the query. The mapping
above is typically learned from question-answer
pairs through distant supervision.

While the above question can be answered by
querying a single predicate or predicate sequence
in the KB, many other more complex questions
cannot, e.g. the question in Figure 1. To answer
the question “What is the second longest river in
United States”, we need to infer several semantic

A
isA

length

2
MaxAtN

contained_by

What is the second longest river in the United States?

river

US

Figure 1: Running example of complex question.

clues: 1) the answer is contained by United States;
2) the answer is a river; 3) the answer ranks second
by its length in descending order. Thus, multiple
predicates are required to constrain the answer set,
and we call such questions “complex questions”
throughout this paper.

For answering complex questions, it’s more im-
portant to understand the compositional semantic
meanings of the question. As a classic branch of
KBQA solutions, semantic parsing (SP) technique
(Berant et al., 2013; Yih et al., 2015; Reddy et al.,
2016; Hu et al., 2018) aims at learning semantic
parse trees or equivalent query graphs 1 for repre-
senting semantic structures of the questions. For
example in Figure 1, the query graph forms a tree
shape. The answer node A, serving as the root of
the tree, is the variable vertex that represents the
real answer entities. The focus nodes (US, river,
2nd) are extracted from the mentions of the ques-
tion, and they constrain the answer node via predi-
cate sequences in the knowledge base. Recently,
neural network (NN) models have shown great
promise in improving the performance of KBQA
systems, and SP+NN techniques become the state-
of-the-art on several KBQA datasets (Qu et al.,
2018; Bao et al., 2016). According to the discus-
sion above, our work extends the current research
in the SP+NN direction.

The common step of SP-based approaches
1The term “query graph” is interchangeable with “query

structure” and “semantic parsing tree” throughout this paper.
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is to first collect candidate query graphs us-
ing bottom up parsing (Berant et al., 2013;
Cai and Yates, 2013) or staged query generation
methods (Yih et al., 2015; Bao et al., 2016), then
predict the best graph mainly based on the se-
mantic similarity with the given question. Ex-
isting NN-based methods follow an encode-and-
compare framework for answering simple ques-
tions, where both the question and the predicate
sequence are encoded as semantic vectors in a
common embedding space, and the semantic sim-
ilarity is calculated by the cosine score between
vectors. In order to define the similarity func-
tion between one question and a complex query
graph, an intuitive solution is to split the query
graph into multiple semantic components, as the
predicate sequences separated by dashed boxes in
Figure 1. Then previous methods can be applied
for modeling the similarity between the question
and each part of the graph. However, such ap-
proach faces two limitations. First, each seman-
tic component is not directly comparable with the
whole question, since it conveys only partial in-
formation of the question. Second, and more im-
portantly, the model encodes different components
separately, without learning the representation of
the whole graph, hence it’s not able to capture the
compositional semantics in a global perspective.

In order to attack the above limitations, we pro-
pose a neural network based approach to improve
the performance of semantic similarity measure-
ment in complex question answering. Given can-
didate query graphs generated from one question,
our model embeds the question surface and pred-
icate sequences into a uniform vector space. The
main difference between our approach and previ-
ous methods is that we integrate hidden vectors
of various semantic components and encode their
interaction as the hidden semantics of the entire
query graph. In addition, to cope with different
semantic components of a query graph, we lever-
age dependency parsing information as a comple-
mentary of sentential information for question en-
coding, which makes the model better align each
component to the question. The contribution of
this paper is summarized below.

• We propose a light-weighted and effective
neural network model to solve complex
KBQA task. To the best of our knowledge,
this is the first attempt to explicitly encode
the complete semantics of a complex query

graph (Section 2.2);

• We leverage dependency parsing to enrich
question representation in the NN model, and
conduct thorough investigations to verify its
effectiveness (Section 2.2.2);

• We propose an ensemble method to enrich
entity linking from a state-of-the-art linking
tool, which further improves the performance
of the overall task (Section 2.3);

• We perform comprehensive experiments on
multiple QA datasets, and our proposed
method consistently outperforms previous
approaches on complex questions, and pro-
duces competitive results on datasets made
up of simple questions (Section 3).

2 Approach

In this section, we present our approach for solv-
ing complex KBQA. First, we generate candidate
query graphs by staged generation method (Sec-
tion 2.1). Second, we measure the semantic simi-
larities between the question and each query graph
using deep neural networks (Section 2.2). Then
we introduce an ensemble approach for entity link-
ing enrichment (Section 2.3), Finally, we discuss
the prediction and parameter learning step of this
task (Section 2.4).

2.1 Query Graph Generation
We illustrate our staged candidate generation
method in this section. Compared to previous
methods, such as Bao et al. (2016), we employ
a more effective candidate generation strategy,
which takes advantage of implicit type informa-
tion in query graphs and time interval information
in the KB. In our work, we take 4 kinds of seman-
tic constraints into account: entity, type, time and
ordinal constraints. Figure 2 shows a concrete ex-
ample of our candidate generation. For simplicity
of discussion, we assume Freebase as the KB in
this section.

Step 1: Focus linking. We extract possible
(mention, focus node) pairs from the question. Fo-
cus nodes are the starting points of various se-
mantic constraints, refer to Figure 2(a). For en-
tity linking, we generate (mention, entity) pairs
using the state-of-the-art entity linking tool S-
MART (Yang and Chang, 2015). For type linking,
we brutally combine each type with all uni-, bi-
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(a) Focus linking (b) Main path generation 

(c) Applying entity constraints (d) Applying all constraints 

Figure 2: Running example of candidate generation.

and tri-gram mentions in the question, and pick
top-10 (mention, type) pairs with the highest word
embedding similarities of each pair. For time link-
ing, we extract time mentions by simply matching
year regex. For ordinal linking, we leverage a pre-
defined superlative word list2 and recognize men-
tions by matching superlative words, or the “or-
dinal number + superlative” pattern. The ordinal
node is an integer representing the ordinal number
in the mention.

Step 2: Main path generation. We build dif-
ferent main paths by connecting the answer node
to different focus entities using 1-hop or 2-hop-
with-mediator3 predicate sequence. Figure 2(b)
shows one of the main paths. Further constraints
are attached by connecting an anchor node x to an
unused focus node through predicate sequences,
where the anchor node x is a non-focus node in
the main path (A or v1 in the example).

Step 3: Attaching entity constraints. We ap-
ply a depth-first search to search for combinations
of multiple entity constraints to the main path
through 1-hop predicate. Figure 2(c) shows a valid
entity constraint, (v1, basic title, president).
The advantage of depth-first search is that we
can involve unlimited number of entities in a
query graph, which has a better coverage than
template-based methods.

Step 4: Type constraint generation. Type
constraints can only be applied at the answer node
using IsA predicate. Our improvement in this step
is to filter type constraints using implicit types

2 ~20 superlative words, such as largest, highest, latest.
3 Mediator is a kind of auxiliary nodes in Freebase main-

taining N-ary facts.

of the answer, derived from the outgoing predi-
cates of the answer node. For example in Fig-
ure 2(c), the domain type of the predicate gov-
ernment position is politician, which becomes the
implicit type of the answer. Thus we can filter
type constraints which are irrelevant to the im-
plicit types, preventing semantic drift and speed-
ing up the generation process. To judge whether
two types in Freebase are relevant or not, we adopt
the method in Luo et al. (2015) to build a rich type
hierarchy of Freebase. Focus types are discarded,
if they are not the super- or sub- types of any im-
plicit types of the answer.

Step 5: Time and ordinal constraint gener-
ation. As shown in Figure 2(d), the time con-
straint is represented as a 2-hop predicate se-
quence, where the second is a virtual predicate
determined by the preposition before the focus
time, indicating the time comparing operation, like
“before”, “after” and “in”. Similarly, the ordinal
constraint also forms a 2-hop predicate sequence,
where the second predicate represents descending
(MaxAtN) or ascending order (MinAtN).

For the detail of time constraint, while exist-
ing approaches (Yih et al., 2015; Bao et al., 2016)
link the focus time with only single time predi-
cate, our improvement is to leverage paired time
predicates for representing a more accurate time
constraint. In Freebase, paired time predicates are
used to represent facts within certain time inter-
vals, like from and to4 in Figure 2(d). For time
comparing operation “in”, we link the time focus
to the starting time predicate, but use both predi-

4 Short for governmental position held.from and
governmental position held.to respectively.

2187



cates in SPARQL query, restricting that the focus
time lies in the time interval of the paired predi-
cates.

After finishing all these querying stages, we
translate candidate graphs into SPARQL query,
and produce their final output answers. Finally,
we discard query graphs with zero outputs, or us-
ing overlapped mentions.

2.2 NN-based Semantic Matching Model

The architecture of the proposed model is shown
in Figure 3. We first replace all entity (or time)
mentions used in the query graph by dummy to-
kens hEi (or hTmi). To encode the complex query
structure, we split it into predicate sequences start-
ing from answer to focus nodes, which we call
semantic components. The predicate sequence
doesn’t include the information of focus nodes,
except for type constraints, where we append the
focus type to the IsA predicate, resulting in the
predicate sequence like {IsA, river}. We intro-
duce in detail the encoding methods for questions
and predicate sequences, and how to calculate the
semantic similarity score.

2.2.1 Semantic Component Representation
To encode a semantic component p, we take the se-
quence of both predicate ids and predicate names
into consideration. As the example shown in Fig-
ure 3, the id sequence of the first semantic com-
ponent is {contained by}, and the predicate word
sequence is the concatenation of canonical names
for each predicate, that is {“contained”, “by”}.

Given the word sequence {p(w)
1 , . . . , p(w)

n }, we
first use a word embedding matrix Ew 2 R

|Vw|⇥d

to convert the original sequence into word em-
beddings {p(w)

1 , . . . , p(w)
n }, where |Vw| denotes the

vocabulary size of natural language words, and d
denotes the embedding dimension. Then we rep-
resent the word sequence using word averaging:
p(w) = 1

n

P
i p(w)

i .
For the id sequence {p(id)

1 , . . . , p(id)
m }, we sim-

ply take it as a whole unit, and directly translate
it into vector representation using the embedding
matrix Ep 2 R

|Vp⇥d| at path level, where |Vp| is
the vocabulary size of predicate sequences. There
are two reasons for using such path embedding: 1)
the length of id sequence is not larger than two,
based on our generation method; 2) the number of
distinct predicate sequences is roughly the same
as the number of distinct predicates. We get the fi-

nal vector of the semantic component by element-
wise addition: p = p(w) + p(id).

2.2.2 Question Representation
We encode the question in both global and lo-
cal level, which captures the semantic information
with respect to each component p.

The global information takes the token se-
quence as the input. We use the same word embed-
ding matrix Ew to convert the token sequence into
vectors {q(w)

1 , . . . , q(w)
n }. Then we encode the to-

ken sequence by applying bidirectional GRU net-
work (Cho et al., 2014). The representation of the
token sequence is the concatenation of the last for-
ward and backward hidden states through the Bi-
GRU layer, q(tok) = [

 �
h (w)

1 ;
�!
h (w)

n ].
To encode the question at local level, we lever-

age dependency parsing to represent long-range
dependencies between the answer and the focus
node in p. Since the answer is denoted by the wh-
word in the question, we extract the dependency
path from the answer node to the focus mention
in the question. Similar with Xu et al. (2016), we
treat the path as the concatenation of words and
dependency labels with directions. For example,
the dependency path between “what” and “United
States” is {what,

���!
nsubj, is, ��!prep, in,

��!
pobj, hEi}.

We apply another bidirectional GRU layer to pro-
duce the vector representation at dependency level
q(dep)

p , capturing both syntactic features and local
semantic features. Finally we combine global and
local representation by element-wise addition, re-
turning the representation of the question with re-
spect to the semantic component, qp = q(tok) +

q(dep)
p .

2.2.3 Semantic Similarity Calculation
Given the query graph with multiple semantic
components, G = {p(1), . . . , p(N)}, now all its
semantic components have been projected into a
common vector space, representing hidden fea-
tures in different aspects. We apply max pooling
over the hidden vectors of semantic components,
and get the compositional semantic representation
of the entire query graph. Similarly, we perform
max pooling for the question vectors with respect
to each semantic component. Finally, we compute
the semantic similarity score between the graph
and question:

Ssem(q, G) = cos(max
i

p(i), max
i

q(i)
p ). (1)

2188



A contained_by
A
length

2
MaxAtN

contained by contained_by

pooling

avg

what is the second longest river in the !"#

what nsubj river prep in pobj <E>

pooling

BiGRU

cos

US

river

A
isA

+

BiGRU

+

Figure 3: Overview of proposed semantic matching model.

Based on this framework, our proposed method
ensures the vector spaces of the question and the
entire query graph are comparable, and captures
complementary semantic features from different
parts of the query graph. It’s worth mention-
ing that the semantic matching model is agnostic
to the candidate generation method of the query
graphs, hence it can be applied to the other exist-
ing semantic parsing frameworks.

2.3 Entity Linking Enrichment
The S-MART linker is a black box for our system,
which is not extendable and tend to produce high
precision but low recall linking results. To seek a
better balance at entity linking, we propose an en-
semble approach to enrich linking results. We first
build a large lexicon by collecting all (mention, en-
tity) pairs from article titles, anchor texts, redirects
and disambiguation pages of Wikipedia. Each pair
is associated with statistical features, such as link-
ing probability, letter-tri-gram jaccard similarity
and popularity of the entity in Wikipedia. For the
pairs found in S-MART results, we take the above
features as the input to a 2-layer linear regression
model fitting their linking scores. Thus we learn
a pseudo linking score for every pair in the lexi-
con, and for each question, we pick top-K highest
pairs to enrich S-MART linking results, where K
is a hyperparameter.

2.4 Training and Prediction
To predict the best query graph from candidates,
we calculate the overall association score S(q, G)
between the question q and each candidate G,
which is the weighted sum of features over entity

linking, semantic matching and structural level.
Table 1 lists the detail features.

During training step, we adopt hinge loss to
maximize the margin between positive graphs G+

and negative graphs G�:

loss = max{0, �� S(q, G+) + S(q, G�)}. (2)

For each question, we pick a candidate graph as
positive data, if the F1 score of its answer is larger
than a threshold (set to 0.1 in our work). We ran-
domly sample 20 negative graphs G� from the
candidate set whose F1 is lower than the corre-
sponding G+.

Category Description
Entity Sum of S-MART scores of all entities;

Number of entities from S-MART;
Number of entities from enriched lexicon;

Semantics Semantic similarity score Ssem(q, G);
Structural Number of each kind of constraints in G;

Whether a kind of constraints is used in G;
Whether the main path is one-hop;
Number of output answers.

Table 1: Full set of features.

3 Experiments

In this section, we introduce the QA datasets and
state-of-the-art systems that we compare. We
show the end-to-end results of the KBQA task, and
perform detail analysis to investigate the impor-
tance of different modules used in our approach.

3.1 Experimental Setup
QA datasets: We conduct our experiments
on ComplexQuestions (Bao et al., 2016), We-
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bQuestions (Berant et al., 2013) and SimpleQues-
tions (Bordes et al., 2015). We use CompQ, WebQ
and SimpQ as abbreviations of the above datasets,
respectively. CompQ contains 2,100 complex
questions collected from Bing search query log,
and the dataset is split into 1,300 training and 800
testing questions. WebQ contains 5,810 questions
collected from Google Suggest API, and is split
into 3,778 training and 2,032 testing QA pairs.
Each question is manually labeled with at least one
answer entity in both datasets. SimpQ consists of
more than 100K questions, and the gold answer of
each question is a gold focus entity paired with a
single predicate. This dataset is designed mainly
for answering simple questions, and we use it for
complementary evaluation.

Knowledge bases: For experiments on both
CompQ and WebQ, we follow the settings of Be-
rant et al. (2013) and Xu et al. (2016) to use the full
Freebase dump 5 as the knowledge base, which
contains 46M entities and 5,323 predicates. We
host the knowledge base with Virtuoso engine 6.
For the experiments on SimpQ, the knowledge
base we use is FB2M, which is a subset of Free-
base provided with the dataset, consisting 2M en-
tities and 10M triple facts.

Implementation detail: For all experiments in
this section, we initialize word embeddings us-
ing GloVe (Pennington et al., 2014) word vectors
with dimensions set to 300, and the size of Bi-
GRU hidden layer is also set to 300. We tune the
margin � in {0.1, 0.2, 0.5}, the ensemble thresh-
old K in {1, 2, 3, 5, 10, +INF}, and the batch
size B in {16, 32, 64}. All the source codes,
QA datasets, and detail results can be downloaded
from http://202.120.38.146/CompQA/.

3.2 End-to-End Results
Now we perform KBQA experiments on WebQ
and CompQ. We use the average F1 score over
all questions as our evaluation metric. The offi-
cial evaluation script 7 measures the correctness of
output entities at string level. While in CompQ,
the annotated names of gold answer entities don’t
match the case of their names in Freebase, thus we
follow Bao et al. (2016) to lowercase both anno-
tated names and the output answer names before

5detail information of the Freebase dump is available at
https://github.com/syxu828/QuestionAnsweringOverFB/.

6http://virtuoso.openlinksw.com/
7The evaluation script is available at http://www-

nlp.stanford.edu/software/sempre/.

calculating the F1 score. We set � = 0.5, B = 32,
K = 3 for WebQ and K = 5 for CompQ, as
reaching the highest average F1 on the validation
set of each dataset.

We report the experimental results in Table 2.
The result of Yih et al. (2015) on CompQ is re-
ported by Bao et al. (2016) as their implemented
result. Our approach outperforms existing ap-
proaches on CompQ dataset, and ranks 2nd on
WebQ among a long list of state-of-the-art works.
Jain (2016) achieves highest F1 score on WebQ
using memory networks, which is not semantic
parsing based, and thus less interpretable. We
point out that Xu et al. (2016) uses Wikipedia texts
as the external community knowledge for veri-
fying candidate answers, and achieves a slightly
higher F1 score (53.3) than our model, but the
performance decreases to 47.0 if this step is re-
moved. Besides, Yih et al. (2015) and Bao et al.
(2016) used ClueWeb dataset for learning more
accurate semantics, while based on the ablation
test of Yih, the F1 score of WebQ drops by 0.9
if ClueWeb information is removed.

Method CompQ WebQ
Dong et al. (2015) - 40.8
Yao (2015) - 44.3
Bast and Haussmann (2015) - 49.4
Berant and Liang (2015) - 49.7
Yih et al. (2015) 36.9 52.5
Reddy et al. (2016) - 50.3
Xu et al. (2016) (w/o text) - 47.0
Bao et al. (2016) 40.9 52.4
Jain (2016) - 55.6
Abujabal et al. (2017) - 51.0
Cui et al. (2017) - 34.0
Hu et al. (2018) - 49.6
Talmor and Berant (2018) 39.7 -
Ours (w/o linking enrich) 42.0 52.0
Ours (w/ linking enrich) 42.8 52.7

Table 2: Average F1 scores on CompQ and WebQ datasets.

Our results show that entity enrichment method
improves the results on both datasets by a large
margin (0.8), which is a good help to our ap-
proach. We argue that the enriched results are
directly comparable with other approaches, as S-
MART itself is learned from semi-structured in-
formation in Wikipedia, such as anchor texts, redi-
rect links and disambiguation pages, the enrich-
ment step does not bring extra knowledge into our
system. In addition, the improvements of the can-
didate generation step also show a positive effect.
If we remove our implicit type filtering in Step 4
and time interval constraints in Step 5, the F1 of
CompQ slightly drops from 42.84 to 42.37. Al-
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though these improvements mainly concern time-
related questions (around 25% in CompQ), we be-
lieve these strategies can be useful tricks in the fur-
ther researches.

As a complementary evaluation, we perform se-
mantic matching experiments on SimpQ. Given
the gold entity of each question, we recognize
the entity mention in the question, replace it with
hEi, then predict the correct predicate. Table 3
shows the experimental results. The best result is
from Qu et al. (2018), which learns the semantic
similarity through both attentive RNN and sim-
ilarity matrix based CNN. Yu et al. (2017) pro-
posed another approach using multi-layer BiL-
STM with residual connections. Our semantic
matching model performs slightly below these two
systems, since answering simple questions is not
the main goal of this paper. Comparing with these
approaches, our semantic matching model is light-
weighted, with a simpler structure and fewer pa-
rameters, thus is easier to tune and remains effec-
tive.

Method Relation Inputs Accuracy
BiLSTM w/ words words 91.2
BiLSTM w/ rel name rel name 88.9
Yih et al. (2015) char-3-gram 90.0
Yin et al. (2016) words 91.3
Yu et al. (2017) words+rel name 93.3
Qu et al. (2018) words+rel separated 93.7
Ours words+path 93.1

Table 3: Accuracy on the SimpleQuestions dataset.

3.3 Ablation Study

In this section, we explore the contributions of var-
ious components in our system.

Semantic component representation: We first
evaluate the results on CompQ and WebQ under
different path encoding methods. Recap that the
encoding result of a semantic component is the
summation of its word and id path representations
(Section 2.2.1), thus we compare encoding meth-
ods by multiple combinations. For encoding pred-
icate word sequence, we use BiGRU (the same
setting as encoding question word sequence) as
the alternative of average word embedding. For
encoding predicate id sequence, we use average
predicate embedding as the alternative of the cur-
rent path-level embedding (PathEmb).

The experimental results are shown in Table 4.
The encoding method None means that we don’t
encode the id or word sequence, and simply take

the result of the other sequence as the represen-
tation of the whole component. we observe that
the top three combination settings, ignoring either
word or id sequence, perform worse than the bot-
tom three settings. The comparison demonstrates
that predicate word and id representation can be
complementary to each other. The performance
gain is not that large, mainly because predicate id
features are largely covered by their word name
features.

For the encoding of id sequences, PathEmb
works better than average embedding, consistently
boosting F1 by 0.65 on both datasets. The former
method treats the whole sequence as a single unit,
which is more flexible and can potentially learn
diverse representations of id sequences that share
the same predicates. For the encoding of word
sequences, the average word embedding method
outperforms BiGRU on CompQ, and the gap be-
comes smaller when running on WebQ. This is
mainly because the training set of WebQ is about 3
times larger than that of CompQ, making it easier
for training a more complex model.

Word repr. Id repr. CompQ F1 WebQ F1

None PathEmb 41.11 51.86
Average None 42.18 51.74
BiGRU None 41.80 51.87
Average Average 42.16 52.00
BiGRU PathEmb 41.52 52.33
Average PathEmb 42.84 52.66

Table 4: Ablation results on path representation.

Semantic composition and question repre-
sentation: To demonstrate the effectiveness of se-
mantic composition, we construct a straightfor-
ward baseline, where we remove the max pool-
ing operation in Eq. (2), and instead calculate
the semantic similarity score as the summation
of individual cosine similarities: Ssem(q, G) =P

i cos(p(i), q(i)
p ). For methods of question encod-

ing, we setup ablations by turning off either sen-
tential encoding or dependency encoding.

Table 5 shows the ablation results on CompQ
and WebQ. When dependency path information is
augmented with sentential information, the perfor-
mance boosts by 0.42 on average. Dependency
paths focus on hidden features at syntactic and
functional perspective, which is a good comple-
mentary to sentential encoding results. However,
performances drop by 2.17 if only dependency in-
formation is used, we find that under certain de-
pendency structures, crucial words (bolded) are
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not in the path between the answer and the fo-
cus mention (underlined), for example, “who did
draco malloy end up marrying” and “who did the
philippines gain independence from”. While we
observe about 5% of such questions in WebQ, it’s
hard to predict the correct query graph without
crucial words.

In terms of semantic composition, Our max
pooling based method consistently outperforms
the baseline method. The improvement on WebQ
is smaller than on CompQ, largely due to the fact
that 85% questions in WebQ are simple ques-
tions (Bao et al., 2016). As a result of com-
bination, our approach significantly outperforms
the vanilla SP+NN approach on CompQ by 1.28,
demonstrating the effectiveness of our approach.
Theoretically, the pooling outcome may lead to
worse end-to-end result when there are too many
semantic components in one graph, because the
pooling layer takes too many vectors as input,
different semantic features between similar query
graphs become indistinguishable. In our task, only
0.5% of candidate graphs have more than 3 seman-
tic components, so pooling is a reasonable way to
aggregate semantic components in this scenario.

Composition Q repr CompQ F1 WebQ F1

Baseline sentential 41.56 52.14
Baseline both 42.35 52.39

Ours dependency 41.48 49.69
Ours sentential 42.59 52.28
Ours both 42.84 52.66

Table 5: Ablation results on question representation and
compositional strategy.

To further explain the advantage of semantic
composition, we take the following question as
an example: “who is gimli’s father in the hob-
bit”. Two query graphs are likely to be the fi-
nal answer: 1) (?, children, gimli person); 2)
(?, fictional children, gimli character) ^ (?,
appear in, hobbit). If observing semantic com-
ponents individually, the predicate children is
most likely to be the correct one since “’s father” is
highly related and with plenty of positive training
data. Both fictional children and appear in get
a much lower similarity compared with children,
hence the baseline method prefer the first query
graph. In the meantime, our proposed method
learns the hidden semantics of the second candi-
date by absorbing salient features from both pred-
icates, and such compositional representation is
closer to the semantics of the entire question than

a simple “children” predicate. That’s why our
method manages to answer it correctly.

3.4 Error Analysis
We randomly analyzed 100 questions from
CompQ where no correct answers are returned.
We list the major causes of errors as follows:

Main path error (10%): This type of error oc-
curred when the model failed to understand the
main semantics when facing some difficult ques-
tions (e.g. “What native american sports heroes
earning two gold medals in the 1912 Olympics”);

Constraint missing (42%): These types of ques-
tions involve implicit constraints, for example, the
question “Who was US president when Traicho
Kostov was teenager” is difficult to answer be-
cause it implies an implicit time constraint “when
Traicho Kostov was teenager”;

Entity linking error (16%): This error occurs
due to the highly ambiguity of mentions. For ex-
ample, the question “What character did Robert
Pattinson play in Harry Potter” expects the film
“Harry Potter and the Goblet of Fire” as the focus,
while there are 7 movies in Harry Potter series;

Miscellaneous (32%): This error class contains
questions with semantic ambiguity or not reason-
able. For example, the question “Where is Byron
Nelson 2012” is hard to understand, because “By-
ron Nelson” died in 2006 and maybe this question
wants to ask where did he die.

4 Related Work

Knowledge Base Question Answering(KBQA)
has been a hot research top in recent years. Gen-
erally speaking, the most popular methods for
KBQA can be mainly divided into two classes: in-
formation retrieval and semantic parsing.

Information retrieval based system tries to ob-
tain target answer directly from question in-
formation and KB knowledge without explicit
considering interior query structure. There
are various methods (Yao and Van Durme, 2014;
Bordes et al., 2015; Dong et al., 2015; Xu et al.,
2016) to select candidate answers and to rank re-
sults.

Semantic parsing based approach focuses on
constructing a semantic parsing tree or equivalent
query structure that represents the semantic mean-
ing of the question. In terms of logical representa-
tion of natural language questions, many methods
have been tried, such as query graph (Yih et al.,
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2014, 2015) or RDF query language (Unger et al.,
2012; Cui et al., 2017; Hu et al., 2018).

Recently, as the development of deep learn-
ing, NN-based approaches have been combined
into the KBQA task (Bordes et al., 2014), show-
ing promising result. These approaches tries to
use neural network models to encode both ques-
tions and answers (or query structures) into the
vector space. Subsequently, similarity functions
are used to select the most appropriate query struc-
ture to generate the final answer. For exam-
ple, Bordes et al. (2014) focuses on embedding
the subgraph of the candidate answer; Yin et al.
(2016) uses character-level CNN and word-level
CNN to match different information; Yu et al.
(2017) introduces the method of hierarchical
residual RNN to compare questions and relation
names; Qu et al. (2018) proposes the AR-SMCNN
model, which uses RNN to capture semantic-level
correlation and employs CNN to extract literal-
level words interaction.

Belonging to NN-based semantic parsing cat-
egory, our approach employs a novel encod-
ing structure method to solve complex questions.
Previous works such as Yih et al. (2015) and
Bao et al. (2016) require a recognition of a main
relation and regard other constraints as variables
added to this main relation. Unlike their ap-
proaches, our method encodes multiple relations
(paths) into a uniform query structure representa-
tion (semantic composition), which allows more
flexible query structures.

There are also some works can’t be simply clas-
sified in to IR based methods or SP based meth-
ods. Jain (2016) introduces Factual Memory Net-
work, which tries to encode KB and questions in
same word vector space, extract a subset of ini-
tial candidate facts, then try to employ multi-hop
reasoning and refinement to find a path to answer
entity. Reddy et al. (2016), Abujabal et al. (2017),
and Cui et al. (2017) try to interpret question in-
tention by templates, which learned from KB or
QA corpora. Talmor and Berant (2018) attempts
to answering complex questions by decomposing
them into a sequence of simple questions.

5 Conclusion

To the best of our knowledge, this is the first
work to handle complex KBQA task by explic-
itly encoding the complete semantics of a com-
plex query graph using neural networks. We stud-

ied different methods to further improve the per-
formance, mainly leveraging dependency parse
and the ensemble method for linking enrichment.
Our model becomes the state-of-the-art on Com-
plexQuestions dataset, and produces competitive
results on other simple question based datasets.
Possible future work includes supporting more
complex semantics like implicit time constraints.
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Abstract
Extracting relations is critical for knowledge
base completion and construction in which
distant supervised methods are widely used
to extract relational facts automatically with
the existing knowledge bases. However, the
automatically constructed datasets comprise
amounts of low-quality sentences containing
noisy words, which is neglected by current
distant supervised methods resulting in unac-
ceptable precisions. To mitigate this problem,
we propose a novel word-level distant super-
vised approach for relation extraction. We first
build Sub-Tree Parse (STP) to remove noisy
words that are irrelevant to relations. Then we
construct a neural network inputting the sub-
tree while applying the entity-wise attention to
identify the important semantic features of re-
lational words in each instance. To make our
model more robust against noisy words, we
initialize our network with a priori knowledge
learned from the relevant task of entity classi-
fication by transfer learning. We conduct ex-
tensive experiments using the corpora of New
York Times (NYT) and Freebase. Experiments
show that our approach is effective and im-
proves the area of Precision/Recall (PR) from
0.35 to 0.39 over the state-of-the-art work.

1 Introduction

Relation extraction aims to extract relations be-
tween pairs of marked entities in raw texts. Tradi-
tional supervised methods are time-consuming for
the requirement of large-scale manually labeled
data. Thus, Mintz et al. (2009) propose the distant
supervised relation extraction, in which amounts
of sentences are crawled from web pages of New
York Times (NYT) and labeled with a known
knowledge base automatically. The method as-
sumes that if two entities have a relation in a
known knowledge base, all instances that mention
these two entities will express the same relation.
Obviously, this assumption is too strong, since
a sentence that mentions the two entities does

not necessarily express the relation contained in
a known knowledge base. As described in Riedel
et al. (2010), the assumption leads to the wrong
labeling problem. In order to tackle the wrong
labeling problem, various multi-instance learning
methods are adopted by mitigating noise between
sentences (Hoffmann et al., 2011; Surdeanu et al.,
2012; Zeng et al., 2015; Lin et al., 2016). De-
spite the wrong labeling problem, distant super-
vised methods may suffer from the low quality of
sentences which derive from the large-scale au-
tomatically constructed dataset by crawling web
pages (Yang et al., 2017). To handle the problem
of low-quality sentences, we have to face two ma-
jor challenges: (1) Reduce word-level noise within
sentences; (2) Improve the robustness of relation
extraction against noise.

To explain the influence of word-level noise
within sentences, we consider the following sen-
tence as an example: [It is no accident that
the main event will feature the junior welter-
weight champion miguel cotto, a puerto rican,
against Paul Malignaggi, an Italian American
from Brooklyn.], where Paul Malignaggi and
Brooklyn are two corresponding entities. The sub-
sentence [Paul Malignaggi, an Italian American
from Brooklyn.] keeps enough words to express
the relation /people/person/place of birth, and the
other words could be regarded as noise that may
hamper the extractor’s performance. Meanwhile,
as shown in Figure 1, half of the original sentences
are longer than 40 words, which means that there
are many irrelevant words inside sentences. To be
more detail, there are about 12 noisy words in each
sentence on average, and 99.4% of sentences in the
NYT-10 dataset have noise. Although the Short-
est Dependency Path (SDP) proposed by Xu et al.
(2015) tries to get rid of irrelevant words for rela-
tion extraction, it is not suitable to handle such in-
formal sentences. Moreover, word-level attention
has been leveraged to alleviate the impact of noisy
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words (Zhou et al., 2016), but it weakens the im-
portance of entity features for relation extraction.

Figure 1: Comparison of sentence length distribution
between original data and parsed data.

As for the second challenge, a robust model
could extract precise relation features even from
low-quality sentences containing noisy words.
However, previous neural methods are always
lacking in robustness because parameters are ini-
tialized randomly and hard to tune with noisy
training data, resulting in the poor performance
of extractors. Inspired by Kumagai (2016), ini-
tializing neural networks with a priori knowledge
learned from relevant tasks by transfer learning
could improve the robustness of the target task.
For the relation extraction, entity type classifica-
tion can be used as the relevant task since en-
tity types provide abundant background knowl-
edge. For instance, the sentence [Alfead Kahn,
the Cornell-University economist who led the fight
to deregulate airplanes.] has a relation busi-
ness/person/company, which is hard to decide
without the information that Alfead Kahn is a per-
son and Cornell-University is a company. There-
fore, type features learned from entity type classi-
fication are proper a priori knowledge to initialize
the relation extractor.

In this paper, we propose a novel word-level ap-
proach for distant supervised relation extraction
by reducing inner-sentence noise and improving
robustness against noisy words. To reduce inner-
sentence noise, we utilize a novel Sub-Tree Parse
(STP) method to remove irrelevant words by in-
tercepting a subtree under the parent of entities’
lowest common ancestor. As shown in Figure 1,
the average length of the parsed sentences is much
shorter. Furthermore, the entity-wise attention is

adopted to alleviate the influence of noisy words
in the subtree and emphasize the task-relevant fea-
tures. To tackle the second challenge, we initial-
ize our model parameters with a priori knowledge
learned from the entity type classification task by
transfer learning. The experimental results show
that our model can achieve satisfactory perfor-
mance among the state-of-the-art works. Our con-
tributions are summarized as follows:

• To handle the problem of low-quality sen-
tences, we propose the STP to remove noisy
words of sentences and the entity-wise atten-
tion mechanism to enhance semantic features
of relational words.

• We first propose to initialize the neural
relation extractor with a priori knowledge
learned from entity type classification, which
strengthens its robustness against low-quality
corpus.

• Our model achieves significant results for
distant supervised relation extraction, which
improves the Precision/Recall (PR) curve
area from 0.35 to 0.39 and increases top 100
predictions by 6.3% over the state-of-the-art
work.

2 Related Work

The distant supervised method plays an increas-
ingly essential role in relation extraction due to
its less requirement of human labor (Mintz et al.,
2009). However, an evident drawback of the
method is the wrong labeling problem. Thus,
multi-instance and multi-label learning methods
are proposed to address this issue (Riedel et al.,
2010; Hoffmann et al., 2011; Surdeanu et al.,
2012). Meanwhile, other researches (Angeli et al.,
2014; Han and Sun, 2016) incorporate human-
designed features and leverage Natural Language
Processing (NLP) tools.

As neural networks have been widely used, an
increasing number of researches have been pro-
posed. Zeng et al. (2015) use a piecewise convo-
lutional neural network with multi-instance learn-
ing. Furthermore, selective attention over in-
stances with the neural network is proposed (Lin
et al., 2016). Making use of entity description, Ji
et al. (2017) assign more precise attention weights.
Focused on the imbalance of datasets, a soft label
method has been proposed by Liu et al. (2017).
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Recently, reinforcement learning and adversarial
learning are widely used to select the valid in-
stances for relation extraction (Feng et al., 2018;
Qin et al., 2018b,a).

However, above methods ignore inner-sentence
noise. To better remove irrelevant words, the
SDP between entities is proved to be effective
(De Marneffe and Manning, 2008; Chen and Man-
ning, 2014; Xu et al., 2015; Miwa and Bansal,
2016). Nevertheless, in our observation, the SDP
deals with informal texts difficultly (See Section
3.1 for details). Furthermore, word-level attention
is adopted to focus on relational words for relation
extraction (Zhou et al., 2016), but it hinders the
effect of entity words.

Transfer learning proposed by Pratt (1993) pro-
vides a new approach to leverage knoweldge ex-
tracted by related tasks to enhance the perfor-
mance of the target task. Furthermore, parameter
transfer learning is proved to be effective to im-
prove the stability of models by initializing model
parameters reasonably (Pan and Yang, 2010; Ku-
magai, 2016).

3 Methodology

In this section, we present our methodology for
distant supervised relation extraction. Figure 2
shows the overall architecture of our model. Our
model is divided into three parts:

Sub-Tree Parser. Input instances are parsed
to dependency parse trees by the Stanford parser1

(Chen and Manning, 2014) at first. Then words in
the STP and relative positions are transformed to
distributed representations.

Entity-Wise Neural Extractor. Given the rep-
resentation of each subtree, Bidirectional Gated
Recurrent Unit (BGRU) extracts specific features.
Then, entity-wise attention combined with word-
level attention is applied to reducing irrelevant fea-
tures for relation extraction. Finally, the sentence-
level attention is used to alleviate the influence of
wrong labeling sentences.

Parameter-Transfer Initializer. The transfer
learning method pre-trains our model parameters
from the task of entity type classification aiming
at boosting the performance of relation extraction.

3.1 Sub-Tree Parser
Each instance is put into the dependency parse
module to build the dependency parse tree in the

1https://nlp.stanford.edu/software/lex-parser.shtml

first place. Then we can tailor the sentences based
on the STP method. Finally, we transform word
tokens and position tokens of each instance to dis-
tributed representations by embedding matrixes.

Sub-Tree Parse
In order to reduce inner-sentence noise and ex-
tract relational words, we propose the STP method
which intercepts the subtree of each instance un-
der the parent of entities’ lowest common ancestor.
For instance, in Figure 2(b), China and Shanghai
are entities connected directly with the appositive
relation. The instance [In 1990, he lives in Shang-
hai, China.] will be transformed to [in Shang-
hai, China.] on the basis of the STP, where in is
the parent of Shanghai and China lowest common
ancestor and kept as important information for
expressing the relation location/location/contain.
Words connected by the imaginary line indicat-
ing the extracted subtree are reorganized into their
original sequence order to form network inputs.

Among the parse tree, the SDP has been widely
used by Chen and Manning (2014) and Xu et al.
(2015) to help models focus on relational words.
However, in our observation, the SDP is not appro-
priate in the condition that key relation words are
not in the SDP. Although additional information
(dependency relations between words) is adopted
to enhance the performance of SDP, we found
they have the minor effect through our experiment.
Thus, we do not make use of other types of linguis-
tic information. As Figure 2(b) shows, in the SDP
method, the original sentence will be transformed
to [Shanghai China] because Shanghai and China
are connected with each other directly in the de-
pendency parse tree, which results in deleting the
keyword in and may confuse the model when ex-
tracting relations. Compared with SDP, the STP
method is more appropriate to extract useful in-
formation in informal sentences where relational
words are always not in the SDP.

Word and Position Embeddings
The inputs of the network are word and position
tokens, which are transformed to the distributed
representations before they are fed into the neu-
ral model. We map jth word in the ith instance
to a vector of k dimensions denoted as xw

ij 2 Rk

through the Skip-Gram model (Mikolov et al.,
2013). Like Zeng et al. (2014), we leverage Pos1
and Pos2 to specify entity pairs, which are defined
as the relative distances of current word from head
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Figure 2: Overall architecture of our model is used for distant supervised relation extraction, expressing the process
of handling instances. There are two modules described in detail: (a) One is the BGRU; (b) Another is the STP,
where words in the red brackets represent entities (better viewed in color).

entity and tail entity. For instance, in Figure 2 rel-
ative distances of lived from Shanghai and China
are -2 and -4 respectively. Then, the position to-
ken of each word is transformed to a vector in l
dimensions. Position embeddings are denoted as
xp1

ij 2 Rl and xp2
ij 2 Rl respectively. Finally,

the input representation for xij is concatenated
by word embedding xw

ij , position embeddings xp1
ij

and xp2
ij , which is denoted as xij = [xw

ij ; x
p1
ij ; xp2

ij ]

where xij 2 Rk+2l.

3.2 Entity-Wise Neural Extractor

As shown in Figure 2, we transform the STP into
feature vectors by BGRU at first. Next, entity-wise
attention combined with the hierarchical-level at-
tention mechanism is applied to enhancing seman-
tic features of each instance.

BGRU over STP

Since the transfer learning and entity-wise atten-
tion require the specific features of entities in tree
parsed instances as their input, we adopt Gated Re-
current Unit (GRU) (Cho et al., 2014) to be our
based relation extractor, which can extract global
information of each word by pointing out its corre-
sponding position in the sequence. It can be briefly

described as below:

hit = GRU(xit) (1)

where xit is the tth word representation in the ith

parsed instance as described in the input layer, and
hit 2 Rm is the hidden state of GRU in m dimen-
sions.

Furthermore, BGRU implementing GRU in a
different direction can access future as well as
past context. Under our circumstance, BGRU
combined with the STP can extract semantic and
syntactic features adequately. Figure 2(a) shows
the processing of BGRU over STP. The following
equation defines the operation mathematically.

hit = [
�!
hit �

 �
hit] (2)

In above equation, the tth word output hit 2 Rm

of BGRU is the element-wise addition of the tth

hidden states of forward GRU and backward one.

Entity-wise Attention
To reduce noise within sentences, we propose the
entity-wise attention mechanism to help our model
focus on relational words, especially entity words
for relation extraction. Assume that Hi is the
ith instance matrix consisting of T word vectors
[hi1, hi2, · · · , hiT ] produced by BGRU.
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Not all words contribute equally to the represen-
tation of the sentence. Entity words are of great
importance because they are significantly benefi-
cial to relation extraction. In our model, entity-
wise attention assigns the weight ↵e

it to focus on
the target entity and removes noise further. It is
defined as follows:

↵e
it =

(
1 t = head, tail

0 others
(3)

In the above equation, ↵e
it = 1 if tth word belongs

to the head or tail entity.

Hierarchical-level Attention
To reduce inner-sentence noise further and de-
emphasize noisy sentences, we incorporate word-
level attention and sentence-level attention as
hierarchical-level attention which is introduced in
Yang et al. (2016).

Word-level Attention. It assigns an additional
weight ↵w

it to relational word hit due to its rele-
vance to the relation as described by Zhou et al.
(2016). It can be described as follows:

↵w
it =

exp(hitAwrw)
PT

t=1 exp(hitAwrw)
(4)

where Aw is a weighted matrix, and vector rw can
be seen as a high level representation in a fixed
query what is the informative word over the other
words.

The ith sentence representation Si 2 Rm is
computed as a weighted sum of hit:

Si =
TX

t=1

(↵w
it + ↵e

it)hit (5)

Sentence-level Attention. After we get the in-
stance representation Si, we adopt the selective at-
tention mechanism over instances to de-emphasize
the noisy sentence (Lin et al., 2016), which is de-
scribed as follows:

S =
X

i

↵s
i Si (6)

↵s
i =

exp(SiAsrs)P
i exp(SiAsrs)

(7)

where As is a weighted matrix, rs is the query vec-
tor associated with the relation, and S 2 Rm is the
output of the sentence-level attention layer.

3.3 Parameter-Transfer Initializer
The transfer learning method pre-trains our model
parameters in the entity type classification task,
which in turn contributes to the relation extraction.

Pre-learn the Entity Type
As entity type information plays a significant role
in detecting relation types, the entity type classi-
fication task is considered to be the source task,
which is learned before the relation extraction
task. According to Eq. 6, outputs of the sentence-
level attention layer for the head entity and tail en-
tity task are Shead and Stail respectively. They are
ultimately fed into the softmax layer:

p̂i = softmax(WiSi+bi); i 2 {head, tail} (8)

where Wi and bi are the weight and bias for the en-
tity type classification task respectively, p̂i 2 Rzt

is the predicted probability of each class and zt is
the number of entity classes. The loss function of
the source task is the negative log-likelihood of the
true labels:

Je(✓0, ✓head, ✓tail) = �k✓0k2

+
X

t

(� 1

zt
�t

ztX

i=1

yt
i log(p̂t

i) + �k✓tk2)

t 2 {head, tail}

(9)

where �t is the weight of each task, ✓0 is the
shared model parameters, ✓head and ✓tail are indi-
vidual parameters for the head and tail entity clas-
sification tasks respectively, yt 2 Rzt is the one-
hot vector representing ground truth, and � is the
hyper-parameter for L2 regularization.

Train the Relation Extractor
Based on the pre-trained model in the entity type
classification task, the relation extractor initializes
shared parameters ✓0 within the best state of the
pre-trained model and independent parameters ✓r

randomly. Same as the entity type classification
task, the output Sr of the attention layer for the re-
lation extraction task is finally fed into the softmax
layer and the loss is calculated by cross entropy,
which is defined as follows:

p̂ = softmax(WrSr + br) (10)

Jr(✓0, ✓r) = � 1

zr

zrX

i=1

yilog(p̂i)

+�(k✓0k2 + k✓rk2)
(11)
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where Wr, br, y 2 Rzr , p̂ 2 Rzr , ✓r and � are
defined similarly in the entity type classification
task.

As shown in Figure 2, two tasks share all layers
except attention and output layers. Assume that
the set of total model parameters is ✓. Thus, ✓, ✓0,
✓r, ✓head and ✓tail have a relationship described in
the following equations:

✓ = ✓0 [ ✓head [ ✓tail [ ✓r (12)

✓i = {Aw
i , rw

i , As
i , r

s
i , Wi, bi}

i 2 {head, tail, r}
(13)

where Aw
i , rw

i , As
i , rs

i , Wi and bi are parameters in
attention and output layers.

Optimize the Objective Function
At first, we minimize J to obtain ✓0 at the best
model state ✓̂0 for entity type classification. Then
we minimize Jr for the best performance of rela-
tion extraction under the initialization of ✓0 to be
✓̂0. Above process can be summarized as the fol-
lowing equation:

min J(✓) =�Je(✓0, ✓head, ✓tail)+

(1� �)Jr(✓0, ✓r)
(14)

where � 2 (0, 1) is the hyperparameter to deter-
mine the importance of each task at different train-
ing steps. We use Adam (Kingma and Ba, 2014)
optimizer to minimize the objective J(✓).

4 Experiments

Our experiments are designed to demonstrate that
our model alleviates the influence of word-level
noise arising from low-quality sentences. In this
section, we first introduce the dataset and evalua-
tion metrics. Next, we describe parameter settings.
Then we evaluate effects of the STP, entity-wise
attention and the parameter-transfer initializer. Fi-
nally, we compare our model with the state-of-the-
art works by several evaluation metrics.

4.1 Dataset and Evaluation Metrics
To evaluate the performance of our model, we
adopt a widely used dataset NYT-10 developed by
Riedel et al. (2010). NYT-10 dataset is constructed
by aligning relational facts in Freebase (Bollacker
et al., 2008) with the NYT corpus, where sen-
tences from 2005-2006 are used as training set,
and sentences from 2007 are used for testing. For
training data, there are 522,611 sentences, 281,270

entity pairs, and 18,252 relational facts; for testing
data, there are 172,448 sentences, 96,678 entity
pairs and 1,950 relational facts. There are 53 rela-
tions including a special relation NA, which means
that there is no relation between the entity pair in
the instance. Meanwhile, all relations in Freebase
are defined on head types and tail types. There-
fore, we can construct datasets for type prediction
tasks with the same dataset. The dataset has 29
head types and 26 tail types.

Like previous works, we evaluate our model
with the held-out metrics, which compare rela-
tions found by models with those in Freebase. The
held-out evaluation provides a convenient way to
assess models. We report both the PR curve and
Precision at top N predictions (P@N) at various
numbers of instances under each entity pair:

One: For each entity pair, we randomly select
one instance to represent the relation.

Two: For each entity pair, we randomly select
two instances to represent the relation.

All: For each entity pair, we select all instances
to represent the relation.

4.2 Experimental Settings

In the experiment, we utilize word2vec2 to train
word embeddings on NYT corpus. We use
the cross-validation to tune our model and grid
search to determine model parameters. The
grid search approach is used to select opti-
mal learning rate lr for Adam optimizer among
{0.1, 0.001, 0.0005, 0.0001}, GRU size m 2
{100, 160, 230, 400}, position embedding size l 2
{5, 10, 15, 20}. Table 1 shows all parameters for
our task. We follow experienced settings for other
parameters because they make little influence to
our model performance.

GRU size m 230
Word embedding dimension k 50
POS embedding dimension l 5
Batch size n 50
Entity-Task weights(�head, �tail) 0.5,0.5
Entity-Relation Task weight � 0.3
Learning rate lr 0.001
Dropout probability p 0.5
l2 penalty � 0.0001

Table 1: Parameter Settings

2https://code.google.com/p/word2vec/
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4.3 Effect of Various Model Parts
In this section, we utilize the PR curve to evalu-
ate the effects of three main parts in our model:
the STP, entity-wise attention and the parameter-
transfer initializer.

Effect of the STP
To demonstrate the effect of the STP, we adopt
BGRU with Word-Level Attention (WLA) pro-
posed by Zhou et al. (2016) as our base model. We
compare the performance of BGRU, BGRU+STP,
and BGRU+SDP.

Figure 3: PR curves for BGRU, BGRU+SDP and
BGRU+STP.

From Figure 3, we can observe that the model
with the STP performs best, and the SDP model
obtains an even worse result than the pure one.
The PR curve areas of BGRU+SDP and BGRU
are about 0.332 and 0.337 respectively, while
BGRU+STP increases it to 0.366. The result indi-
cates: (1) Our STP can get rid of irrelevant words
in each instance and obtain more precise sentence
representation for relation extraction. It proves
that our STP module is effective. (2) The SDP
method is not appropriate to handle low-quality
sentences where key relation words are not in the
SDP.

Effect of Entity-wise Attention

Test Settings PR Curve Area
Dataset Original Data STP Data
BGRU 0.337 0.366

-WLA+EWA 0.365 0.375
+EWA 0.372 0.383

Table 2: PR curve areas for BGRU, BGRU-
WLA+EWA and BGRU+EWA on various datasets.

To evaluate the effect of entity-wise attention
combined with word-level attention, we utilize
BGRU in three settings on our tree parsed data
and original data. One setting is to use WLA
mechanism only (BGRU). The second one is to re-
place WLA with the Entity-Wise Attention (EWA)
mechanism (BGRU-WLA+EWA). The third one
is to incorporate two mechanisms (BGRU+EWA).

Figure 4: PR curves for BGRU, BGRU-WLA+EWA
and BGRU+EWA on various datasets.

From Table 2 and Figure 4, we can obtain: (1)
Regardless of the dataset that we employ, BGRU-
WLA(+STP)+EWA outperforms BGRU(+STP).
To be more specific, the PR curve area has a rel-
ative improvement of over 2.3%, which demon-
strates that entity-wise hidden states in the BGRU
present more precise relational features than other
word states. (2) BGRU(+STP)+EWA achieves
further improvements and outperforms the base-
line by over 4.6%, because it considers more infor-
mation than entity or relational words alone. Thus,
it indicates that entity words are essential for rela-
tion extraction, but they can not represent features
of the whole sentence without other words.

Effect of Parameter-Transfer Initializer
To evaluate the effect of the parameter-transfer ini-
tializer in our model, we leverage BGRU under
four circumstances. The first one is to directly ap-
ply it on the original dataset. The second one tests
BGRU combined with Transfer Learning (TL) on
the original dataset. The third one uses BGRU
on our STP dataset. The fourth one examines
BGRU+TL on our STP dataset.

From Figure 5, we can conclude: (1) Regard-
less of the dataset that we use, models with TL
achieve better performance, which improve the PR
curve area by over 4.7%. It demonstrates that
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Test Settings One Two All
P@N 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
Mintz 35.0 37.5 37.3 36.6 51.0 42.0 43.3 45.4 54.0 50.5 45.3 49.9

MultiR 64.0 61.5 53.7 59.7 62.0 61.5 58.7 61.1 75.0 65.0 62.0 67.3
MIML 62.0 59.0 54.7 58.6 69.0 59.5 59.0 62.5 70.0 64.5 60.3 64.9
PCNN 73.3 64.8 56.8 65.0 70.3 67.2 63.1 66.9 72.3 69.7 64.1 68.7

PCNN+ATT 78.0 68.0 60.7 68.9 75.0 74.0 66.3 71.8 82.0 74.0 69.0 75.0
BGRU 72.0 62.5 59.0 64.5 70.0 64.0 64.7 66.2 74.0 68.0 65.0 69.0
+STP 73.0 63.0 60.7 65.6 83.0 72.5 68.0 74.5 86.0 76.0 70.3 77.4
+EWA 82.0 71.5 66.3 73.3 84.0 79.5 70.3 77.9 86.0 81.5 75.3 80.9
+TL 83.0 75.5 67.0 75.2 85.0 81.0 72.3 79.4 87.0 83.0 78.0 82.7

Table 3: P@N for relation extraction in the entity pairs with different number of sentences

Figure 5: PR curves for BGRU, BGRU+TL,
BGRU+STP and BGRU+STP+TL

transfer learning helps our model become more ro-
bust against noise. (2) BGRU+STP+TL achieves
the best performance and increases the area to
0.383, while areas of BGRU, BGRU+STP and
BGRU+TL are 0.337, 0.366 and 0.372 respec-
tively. It means that the TL method works well
with the STP and can resist noisy words further.

4.4 Comparison with Baselines

To evaluate our approach, we select the following
six methods as our baseline:

Mintz (Mintz et al., 2009) proposes the human-
designed feature model.

MultiR (Hoffmann et al., 2011) puts forward a
graphical model.

MIML (Surdeanu et al., 2012) proposes a
multi-instance multi-label model.

PCNN (Zeng et al., 2015) puts forward a piece-
wise CNN for relation extraction.

PCNN+ATT (Lin et al., 2016) proposes the se-
lective attention mechanism with PCNN.

BGRU (Zhou et al., 2016) proposes a BGRU
with the word-level attention mechanism.

Figure 6: Performance comparison of the proposed
method with baselines.

As Figure 6 shows, we can observe: (1)
BGRU+STP+EWA achieves the best PR curve
over baselines, which improves the area to 0.38
over 0.33 of PCNN, 0.34 of BGRU and 0.35
of PCNN+ATT. At the recall rate of 0.25, our
model can still achieve a precision rate above
0.6. It demonstrates that BGRU+STP+EWA is
effective because the STP and entity-wise at-
tention combined with word-level attention can
reduce inner-sentence noise at a fine-grained
level. (2) Integrated with transfer learning,
BGRU+STP+EWA+TL performs much better and
increases the PR curve area to 0.392. It means that
the model is pre-trained for better parameter ini-
tialization so the TL model becomes more robust
against noisy words. Parameter transfer learning
can be applied in better feature extractors for fur-
ther improvement.

Following previous works, we adopt P@N as
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a quantitative indicator to compare our model
with baselines based on various instances un-
der each relational tuple. In Table 3, we re-
port P@100, P@200, P@300 and the mean of
them for each model in the held-out evalua-
tion. We can find: (1) Compared with baselines,
BGRU+STP+EWA+TL achieves the best perfor-
mance in all test settings, which increases the
performance of PCNN+ATT in three settings by
6.3%, 7.6%, and 7.7% respectively. It demon-
strates that the integrated model is the most ef-
fective; (2) Our STP and entity-wise attention
combined with word-level attention reduce inner-
sentence noise effectively, and outperform base-
lines by over 5%; (3) Our neural extractor initial-
ized with a priori knowledge learned from entity
type classification is more robust against word-
level noise where BGRU+STP+EWA+TL has an
improvement of 2% over BGRU+STP+EWA.

5 Conclusion

In this paper, we propose a novel word-level ap-
proach for distant supervised relation extraction.
It aims at tackling the low-quality corpus by re-
ducing inner-sentence noise and improving the ro-
bustness against noisy words. To alleviate the
influence of word-level noise, we propose the
STP. Meanwhile, entity-wise attention combined
with word-level attention helps the model focus
more on relational words. Furthermore, parame-
ter transfer learning makes our model more robust
against noise by reasonable initialization of pa-
rameters. The experimental results show that our
model significantly and consistently outperforms
the state-of-the-art method.

In the future, we will incorporate the SDP and
STP to obtain more precise shortened sentences.
Furthermore, we will conduct research in how to
utilize entity information to assign more appropri-
ate initial parameters of the relation extractor.
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Abstract

Dependency trees help relation extraction
models capture long-range relations between
words. However, existing dependency-based
models either neglect crucial information (e.g.,
negation) by pruning the dependency trees
too aggressively, or are computationally inef-
ficient because it is difficult to parallelize over
different tree structures. We propose an ex-
tension of graph convolutional networks that
is tailored for relation extraction, which pools
information over arbitrary dependency struc-
tures efficiently in parallel. To incorporate rel-
evant information while maximally removing
irrelevant content, we further apply a novel
pruning strategy to the input trees by keeping
words immediately around the shortest path
between the two entities among which a rela-
tion might hold. The resulting model achieves
state-of-the-art performance on the large-scale
TACRED dataset, outperforming existing se-
quence and dependency-based neural models.
We also show through detailed analysis that
this model has complementary strengths to se-
quence models, and combining them further
improves the state of the art.

1 Introduction

Relation extraction involves discerning whether a
relation exists between two entities in a sentence
(often termed subject and object, respectively).
Successful relation extraction is the cornerstone of
applications requiring relational understanding of
unstructured text on a large scale, such as ques-
tion answering (Yu et al., 2017), knowledge base
population (Zhang et al., 2017), and biomedical
knowledge discovery (Quirk and Poon, 2017).

Models making use of dependency parses of
the input sentences, or dependency-based models,

⇤Equal contribution. The order of authorship was decided
by a tossed coin.

I had an e-mail exchange with Benjamin Cane of 
Popular Mechanics which showed that he was not a 
relative of Mike Cane.

relative

that a Cane

Mikeof

he was not

…

Prediction from dependency path: per:other_family
Gold label: no_relation

Figure 1: An example modified from the TAC KBP
challenge corpus. A subtree of the original UD de-
pendency tree between the subject (“he”) and object
(“Mike Cane”) is also shown, where the shortest depen-
dency path between the entities is highlighted in bold.
Note that negation (“not”) is off the dependency path.

have proven to be very effective in relation ex-
traction, because they capture long-range syntac-
tic relations that are obscure from the surface form
alone (e.g., when long clauses or complex scop-
ing are present). Traditional feature-based models
are able to represent dependency information by
featurizing dependency trees as overlapping paths
along the trees (Kambhatla, 2004). However, these
models face the challenge of sparse feature spaces
and are brittle to lexical variations. More re-
cent neural models address this problem with dis-
tributed representations built from their computa-
tion graphs formed along parse trees. One com-
mon approach to leverage dependency information
is to perform bottom-up or top-down computation
along the parse tree or the subtree below the low-
est common ancestor (LCA) of the entities (Miwa
and Bansal, 2016). Another popular approach, in-
spired by Bunescu and Mooney (2005), is to re-
duce the parse tree to the shortest dependency path
between the entities (Xu et al., 2015a,b).

However, these models suffer from several
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drawbacks. Neural models operating directly on
parse trees are usually difficult to parallelize and
thus computationally inefficient, because aligning
trees for efficient batch training is usually non-
trivial. Models based on the shortest dependency
path between the subject and object are compu-
tationally more efficient, but this simplifying as-
sumption has major limitations as well. Figure 1
shows a real-world example where crucial infor-
mation (i.e., negation) would be excluded when
the model is restricted to only considering the de-
pendency path.

In this work, we propose a novel extension
of the graph convolutional network (Kipf and
Welling, 2017; Marcheggiani and Titov, 2017) that
is tailored for relation extraction. Our model
encodes the dependency structure over the input
sentence with efficient graph convolution opera-
tions, then extracts entity-centric representations
to make robust relation predictions. We also ap-
ply a novel path-centric pruning technique to re-
move irrelevant information from the tree while
maximally keeping relevant content, which further
improves the performance of several dependency-
based models including ours.

We test our model on the popular SemEval 2010
Task 8 dataset and the more recent, larger TAC-
RED dataset. On both datasets, our model not
only outperforms existing dependency-based neu-
ral models by a significant margin when combined
with the new pruning technique, but also achieves
a 10–100x speedup over existing tree-based mod-
els. On TACRED, our model further achieves the
state-of-the-art performance, surpassing a compet-
itive neural sequence model baseline. This model
also exhibits complementary strengths to sequence
models on TACRED, and combining these two
model types through simple prediction interpola-
tion further improves the state of the art.

To recap, our main contributions are: (i) we pro-
pose a neural model for relation extraction based
on graph convolutional networks, which allows it
to efficiently pool information over arbitrary de-
pendency structures; (ii) we present a new path-
centric pruning technique to help dependency-
based models maximally remove irrelevant infor-
mation without damaging crucial content to im-
prove their robustness; (iii) we present detailed
analysis on the model and the pruning technique,
and show that dependency-based models have
complementary strengths with sequence models.

2 Models

In this section, we first describe graph convo-
lutional networks (GCNs) over dependency tree
structures, and then we introduce an architecture
that uses GCNs at its core for relation extraction.

2.1 Graph Convolutional Networks over
Dependency Trees

The graph convolutional network (Kipf and
Welling, 2017) is an adaptation of the convolu-
tional neural network (LeCun et al., 1998) for en-
coding graphs. Given a graph with n nodes, we
can represent the graph structure with an n ⇥ n
adjacency matrix A where Aij = 1 if there is an
edge going from node i to node j. In an L-layer
GCN, if we denote by h(l�1)

i the input vector and
h(l)

i the output vector of node i at the l-th layer, a
graph convolution operation can be written as

h(l)
i = �

� nX

j=1

AijW
(l)h(l�1)

j + b(l)
�
, (1)

where W (l) is a linear transformation, b(l) a bias
term, and � a nonlinear function (e.g., ReLU).
Intuitively, during each graph convolution, each
node gathers and summarizes information from its
neighboring nodes in the graph.

We adapt the graph convolution operation to
model dependency trees by converting each tree
into its corresponding adjacency matrix A, where
Aij = 1 if there is a dependency edge between to-
kens i and j. However, naively applying the graph
convolution operation in Equation (1) could lead
to node representations with drastically different
magnitudes, since the degree of a token varies a
lot. This could bias our sentence representation
towards favoring high-degree nodes regardless of
the information carried in the node (see details
in Section 2.2). Furthermore, the information in
h(l�1)

i is never carried over to h(l)
i , since nodes

never connect to themselves in a dependency tree.
We resolve these issues by normalizing the acti-

vations in the graph convolution before feeding it
through the nonlinearity, and adding self-loops to
each node in the graph:

h(l)
i =�

� nX

j=1

ÃijW
(l)h(l�1)

j /di + b(l)
�
, (2)

where Ã = A + I with I being the n⇥ n identity
matrix, and di =

Pn
j=1 Ãij is the degree of token

i in the resulting graph.
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He was not a relative of Mike Cane

GCN

He was not a relative of Mike Cane

f f f

Concatenation

Pooling

GCN Output

GCN Input

hsenths ho

h(l�1)

h(l)

h(0)

h(L)

Figure 2: Relation extraction with a graph convolutional network. The left side shows the overall architecture,
while on the right side, we only show the detailed graph convolution computation for the word “relative” for
clarity. A full unlabeled dependency parse of the sentence is also provided for reference.

Stacking this operation over L layers gives us
a deep GCN network, where we set h(0)

1 , . . . , h(0)
n

to be input word vectors, and use h(L)
1 , . . . , h(L)

n as
output word representations. All operations in this
network can be efficiently implemented with ma-
trix multiplications, making it ideal for batching
computation over examples and running on GPUs.
Moreover, the propagation of information between
tokens occurs in parallel, and the runtime does not
depend on the depth of the dependency tree.

Note that the GCN model presented above uses
the same parameters for all edges in the depen-
dency graph. We also experimented with: (1) us-
ing different transformation matrices W for top-
down, bottom-up, and self-loop edges; and (2)
adding dependency relation-specific parameters
for edge-wise gating, similar to (Marcheggiani and
Titov, 2017). We found that modeling directions
does not lead to improvement,1 and adding edge-
wise gating further hurts performance. We hypoth-
esize that this is because the presented GCN model
is usually already able to capture dependency edge
patterns that are informative for classifying rela-
tions, and modeling edge directions and types does
not offer additional discriminative power to the
network before it leads to overfitting. For exam-
ple, the relations entailed by “A’s son, B” and “B’s
son, A” can be readily distinguished with “’s” at-
tached to different entities, even when edge direc-
tionality is not considered.

1We therefore treat the dependency graph as undirected,
i.e. 8i, j, Aij = Aji.

2.2 Encoding Relations with GCN

We now formally define the task of relation ex-
traction. Let X = [x1, ..., xn] denote a sentence,
where xi is the ith token. A subject entity and an
object entity are identified and correspond to two
spans in the sentence: Xs = [xs1 , . . . , xs2 ] and
Xo = [xo1 , . . . , xo2 ]. Given X , Xs, and Xo, the
goal of relation extraction is to predict a relation
r 2 R (a predefined relation set) that holds be-
tween the entities or “no relation” otherwise.

After applying an L-layer GCN over word vec-
tors, we obtain hidden representations of each to-
ken that are directly influenced by its neighbors no
more than L edges apart in the dependency tree.
To make use of these word representations for re-
lation extraction, we first obtain a sentence repre-
sentation as follows (see also Figure 2 left):

hsent = f
�
h(L)

�
= f

�
GCN(h(0))

�
, (3)

where h(l) denotes the collective hidden represen-
tations at layer l of the GCN, and f : R

d⇥n ! R
d

is a max pooling function that maps from n output
vectors to the sentence vector.

We also observe that information close to entity
tokens in the dependency tree is often central to
relation classification. Therefore, we also obtain a
subject representation hs from h(L) as follows

hs = f
�
h(L)

s1:s2

�
, (4)

as well as an object representation ho similarly.
Inspired by recent work on relational learning

between entities (Santoro et al., 2017; Lee et al.,
2017), we obtain the final representation used
for classification by concatenating the sentence
and the entity representations, and feeding them
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through a feed-forward neural network (FFNN):

hfinal = FFNN
�
[hsent; hs; ho]

�
. (5)

This hfinal representation is then fed into a linear
layer followed by a softmax operation to obtain a
probability distribution over relations.

2.3 Contextualized GCN

The network architecture introduced so far learns
effective representations for relation extraction,
but it also leaves a few issues inadequately ad-
dressed. First, the input word vectors do not con-
tain contextual information about word order or
disambiguation. Second, the GCN highly depends
on a correct parse tree to extract crucial informa-
tion from the sentence (especially when pruning
is performed), while existing parsing algorithms
produce imperfect trees in many cases.

To resolve these issues, we further apply a Con-
textualized GCN (C-GCN) model, where the input
word vectors are first fed into a bi-directional long
short-term memory (LSTM) network to gener-
ate contextualized representations, which are then
used as h(0) in the original model. This BiL-
STM contextualization layer is trained jointly with
the rest of the network. We show empirically in
Section 5 that this augmentation substantially im-
proves the performance over the original model.

We note that this relation extraction model is
conceptually similar to graph kernel-based mod-
els (Zelenko et al., 2003), in that it aims to utilize
local dependency tree patterns to inform relation
classification. Our model also incorporates crucial
off-path information, which greatly improves its
robustness compared to shortest dependency path-
based approaches. Compared to tree-structured
models (e.g., Tree-LSTM (Tai et al., 2015)), it
not only is able to capture more global informa-
tion through the use of pooling functions, but also
achieves substantial speedup by not requiring re-
cursive operations that are difficult to parallelize.
For example, we observe that on a Titan Xp GPU,
training a Tree-LSTM model over a minibatch of
50 examples takes 6.54 seconds on average, while
training the original GCN model takes only 0.07
seconds, and the C-GCN model 0.08 seconds.

3 Incorporating Off-path Information
with Path-centric Pruning

Dependency trees provide rich structures that one
can exploit in relation extraction, but most of the

information pertinent to relations is usually con-
tained within the subtree rooted at the lowest com-
mon ancestor (LCA) of the two entities. Previous
studies (Xu et al., 2015b; Miwa and Bansal, 2016)
have shown that removing tokens outside this
scope helps relation extraction by eliminating ir-
relevant information from the sentence. It is there-
fore desirable to combine our GCN models with
tree pruning strategies to further improve perfor-
mance. However, pruning too aggressively (e.g.,
keeping only the dependency path) could lead to
loss of crucial information and conversely hurt ro-
bustness. For instance, the negation in Figure 1 is
neglected when a model is restricted to only look-
ing at the dependency path between the entities.
Similarly, in the sentence “She was diagnosed with
cancer last year, and succumbed this June”, the
dependency path She diagnosed!cancer is not
sufficient to establish that cancer is the cause of
death for the subject unless the conjunction depen-
dency to succumbed is also present.

Motivated by these observations, we propose
path-centric pruning, a novel technique to incor-
porate information off the dependency path. This
is achieved by including tokens that are up to dis-
tance K away from the dependency path in the
LCA subtree. K = 0, corresponds to pruning
the tree down to the path, K = 1 keeps all nodes
that are directly attached to the path, and K = 1
retains the entire LCA subtree. We combine this
pruning strategy with our GCN model, by directly
feeding the pruned trees into the graph convolu-
tional layers.2 We show that pruning with K = 1
achieves the best balance between including rele-
vant information (e.g., negation and conjunction)
and keeping irrelevant content out of the resulting
pruned tree as much as possible.

4 Related Work

At the core of fully-supervised and distantly-
supervised relation extraction approaches are sta-
tistical classifiers, many of which find syntac-
tic information beneficial. For example, Mintz
et al. (2009) explored adding syntactic features to
a statistical classifier and found them to be use-
ful when sentences are long. Various kernel-based
approaches also leverage syntactic information to
measure similarity between training and test ex-
amples to predict the relation, finding that tree-

2For our C-GCN model, the LSTM layer still operates on
the full sentence regardless of the pruning.
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based kernels (Zelenko et al., 2003) and depen-
dency path-based kernels (Bunescu and Mooney,
2005) are effective for this task.

Recent studies have found neural models ef-
fective in relation extraction. Zeng et al. (2014)
first applied a one-dimensional convolutional neu-
ral network (CNN) with manual features to encode
relations. Vu et al. (2016) showed that combin-
ing a CNN with a recurrent neural network (RNN)
through a voting scheme can further improve per-
formance. Zhou et al. (2016) and Wang et al.
(2016) proposed to use attention mechanisms over
RNN and CNN architectures for this task.

Apart from neural models over word sequences,
incorporating dependency trees into neural models
has also been shown to improve relation extrac-
tion performance by capturing long-distance rela-
tions. Xu et al. (2015b) generalized the idea of de-
pendency path kernels by applying a LSTM net-
work over the shortest dependency path between
entities. Liu et al. (2015) first applied a recur-
sive network over the subtrees rooted at the words
on the dependency path and then applied a CNN
over the path. Miwa and Bansal (2016) applied a
Tree-LSTM (Tai et al., 2015), a generalized form
of LSTM over dependency trees, in a joint entity
and relation extraction setting. They found it to be
most effective when applied to the subtree rooted
at the LCA of the two entities.

More recently, Adel et al. (2016) and Zhang
et al. (2017) have shown that relatively simple
neural models (CNN and augmented LSTM, re-
spectively) can achieve comparable or superior
performance to dependency-based models when
trained on larger datasets. In this paper, we study
dependency-based models in depth and show that
with a properly designed architecture, they can
outperform and have complementary advantages
to sequence models, even in a large-scale setting.

Finally, we note that a technique similar to path-
centric pruning has been applied to reduce the
space of possible arguments in semantic role la-
beling (He et al., 2018). The authors showed prun-
ing words too far away from the path between the
predicate and the root to be beneficial, but reported
the best pruning distance to be 10, which almost
always retains the entire tree. Our method differs
in that it is applied to the shortest dependency path
between entities, and we show that in our tech-
nique the best pruning distance is 1 for several
dependency-based relation extraction models.

5 Experiments

5.1 Baseline Models
We compare our models with several competitive
dependency-based and neural sequence models.

Dependency-based models. In our main ex-
periments we compare with three types of
dependency-based models. (1) A logistic regres-
sion (LR) classifier which combines dependency-
based features with other lexical features. (2)
Shortest Dependency Path LSTM (SDP-LSTM)
(Xu et al., 2015b), which applies a neural sequence
model on the shortest path between the subject
and object entities in the dependency tree. (3)
Tree-LSTM (Tai et al., 2015), which is a recursive
model that generalizes the LSTM to arbitrary tree
structures. We investigate the child-sum variant of
Tree-LSTM, and apply it to the dependency tree
(or part of it). In practice, we find that modifying
this model by concatenating dependency label em-
beddings to the input of forget gates improves its
performance on relation extraction, and therefore
use this variant in our experiments. Earlier, our
group compared (1) and (2) with sequence models
(Zhang et al., 2017), and we report these results;
for (3) we report results with our own implemen-
tation.

Neural sequence model. Our group presented
a competitive sequence model that employs a
position-aware attention mechanism over LSTM
outputs (PA-LSTM), and showed that it outper-
forms several CNN and dependency-based models
by a substantial margin (Zhang et al., 2017). We
compare with this strong baseline, and use its open
implementation in further analysis.3

5.2 Experimental Setup
We conduct experiments on two relation extrac-
tion datasets: (1) TACRED: Introduced in (Zhang
et al., 2017), TACRED contains over 106k men-
tion pairs drawn from the yearly TAC KBP4 chal-
lenge. It represents 41 relation types and a spe-
cial no relation class when the mention pair does
not have a relation between them within these cat-
egories. Mentions in TACRED are typed, with
subjects categorized into person and organization,
and objects into 16 fine-grained types (e.g., date
and location). We report micro-averaged F1 scores
on this dataset as is conventional. (2) SemEval

3https://github.com/yuhaozhang/tacred-relation
4https://tac.nist.gov/2017/KBP/index.html
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System P R F1

LR† (Zhang+2017) 73.5 49.9 59.4
SDP-LSTM† (Xu+2015b) 66.3 52.7 58.7
Tree-LSTM‡ (Tai+2015) 66.0 59.2 62.4
PA-LSTM† (Zhang+2017) 65.7 64.5 65.1

GCN 69.8 59.0 64.0
C-GCN 69.9 63.3 66.4⇤

GCN + PA-LSTM 71.7 63.0 67.1⇤

C-GCN + PA-LSTM 71.3 65.4 68.2⇤

Table 1: Results on TACRED. Underscore marks high-
est number among single models; bold marks highest
among all. † marks results reported in (Zhang et al.,
2017); ‡ marks results produced with our implemen-
tation. ⇤ marks statistically significant improvements
over PA-LSTM with p < .01 under a bootstrap test.

2010 Task 8: The SemEval dataset is widely used
in recent work, but is significantly smaller with
8,000 examples for training and 2,717 for testing.
It contains 19 relation classes over untyped men-
tion pairs: 9 directed relations and a special Other
class. On SemEval, we follow the convention and
report the official macro-averaged F1 scores.

For fair comparisons on the TACRED dataset,
we follow the evaluation protocol used in (Zhang
et al., 2017) by selecting the model with the me-
dian dev F1 from 5 independent runs and report-
ing its test F1. We also use the same “entity mask”
strategy where we replace each subject (and ob-
ject similarly) entity with a special SUBJ-<NER>
token. For all models, we also adopt the “multi-
channel” strategy by concatenating the input word
embeddings with POS and NER embeddings.

Traditionally, evaluation on SemEval is con-
ducted without entity mentions masked. However,
as we will discuss in Section 6.4, this method en-
courages models to overfit to these mentions and
fails to test their actual ability to generalize. We
therefore report results with two evaluation proto-
cols: (1) with-mention, where mentions are kept
for comparison with previous work; and (2) mask-
mention, where they are masked to test the gener-
alization of our model in a more realistic setting.

Due to space limitations, we report model train-
ing details in the supplementary material.

5.3 Results on the TACRED Dataset

We present our main results on the TACRED test
set in Table 1. We observe that our GCN model

System with-m mask-m

SVM† (Rink+2010) 82.2 –
SDP-LSTM† (Xu+2015b) 83.7 –
SPTree† (Miwa+2016) 84.4 –
PA-LSTM‡ (Zhang+2017) 82.7 75.3

Our Model (C-GCN) 84.8⇤ 76.5⇤

Table 2: F1 scores on SemEval. † marks results re-
ported in the original papers; ‡ marks results pro-
duced by using the open implementation. The last two
columns show results from with-mention evaluation
and mask-mention evaluation, respectively. ⇤ marks
statistically significant improvements over PA-LSTM
with p < .05 under a bootstrap test.

outperforms all dependency-based models by at
least 1.6 F1. By using contextualized word rep-
resentations, the C-GCN model further outper-
forms the strong PA-LSTM model by 1.3 F1, and
achieves a new state of the art. In addition, we
find our model improves upon other dependency-
based models in both precision and recall. Com-
paring the C-GCN model with the GCN model,
we find that the gain mainly comes from improved
recall. We hypothesize that this is because the C-
GCN is more robust to parse errors by capturing
local word patterns (see also Section 6.2).

As we will show in Section 6.2, we find that
our GCN models have complementary strengths
when compared to the PA-LSTM. To leverage this
result, we experiment with a simple interpolation
strategy to combine these models. Given the out-
put probabilities PG(r|x) from a GCN model and
PS(r|x) from the sequence model for any relation
r, we calculate the interpolated probability as

P (r|x) = ↵ · PG(r|x) + (1� ↵) · PS(r|x)

where ↵ 2 [0, 1] is chosen on the dev set and set to
0.6. This simple interpolation between a GCN and
a PA-LSTM achieves an F1 score of 67.1, outper-
forming each model alone by at least 2.0 F1. An
interpolation between a C-GCN and a PA-LSTM
further improves the result to 68.2.

5.4 Results on the SemEval Dataset

To study the generalizability of our proposed
model, we also trained and evaluated our best C-
GCN model on the SemEval test set (Table 2). We
find that under the conventional with-entity eval-
uation, our C-GCN model outperforms all exist-
ing dependency-based neural models on this sep-
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Figure 3: Performance of dependency-based models
under different pruning strategies. For each model we
show the F1 score on the TACRED dev set averaged
over 5 runs, and error bars indicate standard deviation
of the mean estimate. K = 1 is equivalent to using
the subtree rooted at the LCA.

arate dataset. Notably, by properly incorporating
off-path information, our model outperforms the
previous shortest dependency path-based model
(SDP-LSTM). Under the mask-entity evaluation,
our C-GCN model also outperforms PA-LSTM by
a substantial margin, suggesting its generalizabil-
ity even when entities are not seen.

5.5 Effect of Path-centric Pruning

To show the effectiveness of path-centric prun-
ing, we compare the two GCN models and the
Tree-LSTM when the pruning distance K is var-
ied. We experimented with K 2 {0, 1, 2,1}
on the TACRED dev set, and also include results
when the full tree is used. As shown in Figure 3,
the performance of all three models peaks when
K = 1, outperforming their respective depen-
dency path-based counterpart (K = 0). This con-
firms our hypothesis in Section 3 that incorporat-
ing off-path information is crucial to relation ex-
traction. Miwa and Bansal (2016) reported that
a Tree-LSTM achieves similar performance when
the dependency path and the LCA subtree are used
respectively. Our experiments confirm this, and
further show that the result can be improved by
path-centric pruning with K = 1.

We find that all three models are less effective
when the entire dependency tree is present, indi-
cating that including extra information hurts per-
formance. Finally, we note that contextualizing
the GCN makes it less sensitive to changes in the
tree structures provided, presumably because the
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C-GCN
GCN

PA-LSTM

Figure 4: Dev set performance with regard to distance
between the entities in the sentence for C-GCN, GCN
and PA-LSTM. Error bars indicate standard deviation
of the mean estimate over 5 runs.

Model Dev F1

Best C-GCN 67.4
– hs, ho, and Feedforward (FF) 66.4
– LSTM Layer 65.5
– Dependency tree structure 64.2
– FF, LSTM, and Tree 57.1
– FF, LSTM, Tree, and Pruning 47.4

Table 3: An ablation study of the best C-GCN model.
Scores are median of 5 models.

model can use word sequence information in the
LSTM layer to recover any off-path information
that it needs for correct relation extraction.

6 Analysis & Discussion

6.1 Ablation Study
To study the contribution of each component in
the C-GCN model, we ran an ablation study on
the TACRED dev set (Table 3). We find that: (1)
The entity representations and feedforward layers
contribute 1.0 F1. (2) When we remove the de-
pendency structure (i.e., setting Ã to I), the score
drops by 3.2 F1. (3) F1 drops by 10.3 when we
remove the feedforward layers, the LSTM compo-
nent and the dependency structure altogether. (4)
Removing the pruning (i.e., using full trees as in-
put) further hurts the result by another 9.7 F1.

6.2 Complementary Strengths of GCNs and
PA-LSTMs

To understand what the GCN models are capturing
and how they differ from a sequence model such
as the PA-LSTM, we compared their performance
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Benoit B. Mandelbrot, a maverick 
mathematician who developed an innovative 
theory of roughness and applied it to physics, 
biology, finance and many other fields, died 
Thursday in Cambridge, Mass.

Anil Kumar, a former director at the consulting 
firm McKinsey & Co, pleaded guilty on 
Thursday to providing inside information to Raj 
Rajaratnam, the founder of the Galleon Group, 
in exchange for payments of at least $ 175 
million from 2004 through 2009.

died

Relation: org:founded_byRelation: per:city_of_death

Rajaratnam

Rajto founder

Groupthe

of the Galleon

Thursday Cambridge

in Mass

Mandelbrot

Benoit B.

In a career that spanned seven decades, Ginzburg
authored several groundbreaking studies in various 
fields -- such as quantum theory, astrophysics, 
radio-astronomy and diffusion of cosmic radiation 
in the Earth's atmosphere -- that were of “Nobel 
Prize caliber,” said Gennady Mesyats, the director 
of the Lebedev Physics Institute in Moscow, where 
Ginzburg worked . 

Institute

PhysicsLebedevtheof Moscow worked

Ginzburgwhere

Relation: per:employee_of

Figure 5: Examples and the pruned dependency trees where the C-GCN predicted correctly. Words are shaded by
the number of dimensions they contributed to hsent in the pooling operation, with punctuation omitted.

Relation Dependency Tree Edges

per:children S-PER son son! O-PER S-PER survived
per:other family S-PER stepson niece! O-PER O-PER stepdaughter
per:employee of a member S-PER worked S-PER played
per:schools attended S-PER graduated S-PER earned S-PER attended
org:founded founded! O-DATE established! O-DATE was founded
org:number of employees S-ORG has S-ORG! employs O-NUMBER employees
org:subsidiaries S-ORG O-ORG S-ORG! ’s O-ORG! division
org:shareholders buffett O-PER shareholder! S-ORG largest shareholder

Table 4: The three dependency edges that contribute the most to the classification of different relations in the
TACRED dev set. For clarity, we removed edges which 1) connect to common punctuation (i.e., commas, periods,
and quotation marks), 2) connect to common prepositions (i.e., of, to, by), and 3) connect between tokens within
the same entity. We use PER, ORG for entity types of PERSON, ORGANIZATION. We use S- and O- to denote
subject and object entities, respectively. We also include edges for more relations in the supplementary material.

over examples in the TACRED dev set. Specifi-
cally, for each model, we trained it for 5 indepen-
dent runs with different seeds, and for each exam-
ple we evaluated the model’s accuracy over these
5 runs. For instance, if a model correctly classifies
an example for 3 out of 5 times, it achieves an ac-
curacy of 60% on this example. We observe that
on 847 (3.7%) dev examples, our C-GCN model
achieves an accuracy at least 60% higher than that
of the PA-LSTM, while on 629 (2.8%) examples
the PA-LSTM achieves 60% higher. This comple-
mentary performance explains the gain we see in
Table 1 when the two models are combined.

We further show that this difference is due to
each model’s competitive advantage (Figure 4):
dependency-based models are better at handling
sentences with entities farther apart, while se-
quence models can better leverage local word pat-
terns regardless of parsing quality (see also Fig-
ure 6). We include further analysis in the supple-
mentary material.

6.3 Understanding Model Behavior
To gain more insights into the C-GCN model’s be-
havior, we visualized the partial dependency tree

it is processing and how much each token’s final
representation contributed to hsent (Figure 5). We
find that the model often focuses on the depen-
dency path, but sometimes also incorporates off-
path information to help reinforce its prediction.
The model also learns to ignore determiners (e.g.,
“the”) as they rarely affect relation prediction.

To further understand what dependency edges
contribute most to the classification of different re-
lations, we scored each dependency edge by sum-
ming up the number of dimensions each of its con-
nected nodes contributed to hsent. We present the
top scoring edges in Table 4. As can be seen in
the table, most of these edges are associated with
indicative nouns or verbs of each relation.5

6.4 Entity Bias in the SemEval Dataset

In our study, we observed a high correlation be-
tween the entity mentions in a sentence and its
relation label in the SemEval dataset. We exper-
imented with PA-LSTM models to analyze this

5We do notice the effect of dataset bias as well: the name
“Buffett” is too often associated with contexts where share-
holder relations hold, and therefore ranks top in that relation.
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phenomenon.6 We started by simplifying every
sentence in the SemEval training and dev sets to
“subject and object”, where subject and object are
the actual entities in the sentence. Surprisingly,
a trained PA-LSTM model on this data is able to
achieve 65.1 F1 on the dev set if GloVe is used
to initialize word vectors, and 47.9 dev F1 even
without GloVe initialization. To further evaluate
the model in a more realistic setting, we trained
one model with the original SemEval training set
(unmasked) and one with mentions masked in the
training set, following what we have done for
TACRED (masked). While the unmasked model
achieves a 83.6 F1 on the original SemEval dev
set, F1 drops drastically to 62.4 if we replace dev
set entity mentions with a special <UNK> token
to simulate the presence of unseen entities. In con-
trast, the masked model is unaffected by unseen
entity mentions and achieves a stable dev F1 of
74.7. This suggests that models trained without
entities masked generalize poorly to new examples
with unseen entities. Our findings call for more
careful evaluation that takes dataset biases into ac-
count in future relation extraction studies.

7 Conclusion

We showed the success of a neural architecture
based on a graph convolutional network for re-
lation extraction. We also proposed path-centric
pruning to improve the robustness of dependency-
based models by removing irrelevant content with-
out ignoring crucial information. We showed
through detailed analysis that our model has com-
plementary strengths to sequence models, and that
the proposed pruning technique can be effectively
applied to other dependency-based models.
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Abstract

Attention mechanisms are often used in deep
neural networks for distantly supervised rela-
tion extraction (DS-RE) to distinguish valid
from noisy instances. However, traditional 1-
D vector attention models are insufficient for
the learning of different contexts in the se-
lection of valid instances to predict the re-
lationship for an entity pair. To alleviate
this issue, we propose a novel multi-level
structured (2-D matrix) self-attention mecha-
nism for DS-RE in a multi-instance learning
(MIL) framework using bidirectional recurrent
neural networks. In the proposed method,
a structured word-level self-attention mecha-
nism learns a 2-D matrix where each row vec-
tor represents a weight distribution for differ-
ent aspects of an instance regarding two enti-
ties. Targeting the MIL issue, the structured
sentence-level attention learns a 2-D matrix
where each row vector represents a weight
distribution on selection of different valid in-
stances. Experiments conducted on two pub-
licly available DS-RE datasets show that the
proposed framework with a multi-level struc-
tured self-attention mechanism significantly
outperform state-of-the-art baselines in terms
of PR curves, P@N and F1 measures.

1 Introduction

Relation extraction is a fundamental task in infor-
mation extraction (IE), which studies the issue of
predicting semantic relations between pairs of en-
tities in a sentence (Zelenko et al., 2003; Bunescu
and Mooney, 2005; Zhou et al., 2005). One crucial
problem in RE is the relative lack of large-scale,
high-quality labeled data. In recent years, one
commonly used and effective technique for deal-
ing with this challenge is the distant supervision
method via knowledge bases (KBs) (Mintz et al.,
2009; Riedel et al., 2010; Hoffmann et al., 2011),
which assumes that if one entity pair appearing in

some sentences can be observed in a KB with a
certain relationship, then these sentences will be
labeled as the context of this entity pair and this
relationship. The distant supervision strategy is an
effective and efficient method for automatically la-
beling large-scale training data. However, it also
introduces a severe mislabelling problem due to
the fact that a sentence that mentions two enti-
ties does not necessarily express their relation in
a KB (Surdeanu et al., 2012; Zeng et al., 2015).

Plenty of research work has been proposed
to deal with distantly supervised data and has
achieved significant progress, especially with
the rapid development of deep neural net-
works (DNN) for relation extraction in recent
years (Zeng et al., 2014, 2015; Lin et al., 2016,
2017a; Wang et al., 2016; Zhou et al., 2016; Ji
et al., 2017; Yang et al., 2017; Zeng et al., 2017).
DNN models under an MIL framework for DS-
RE have become state-of-the-art, replacing statis-
tical methods, such as feature-based and graphi-
cal models (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). In the MIL frame-
work for distantly supervised RE, each entity pair
often has multiple instances where some are noisy
and some are valid. The attention mechanism in
DNNs, such as convolutional (CNN) and recurrent
neural networks (RNN), is an effective way to se-
lect valid instances by learning a weight distribu-
tion over multiple instances. However, there are
two important representation learning problems in
DNN-based distantly supervised RE: (1) Problem
I: entity pair-targeted context representation learn-
ing from an instance; and (2) Problem II: valid in-
stance selection representation learning over mul-
tiple instances. The former can use a word-level
attention mechanism to learn a weight distribu-
tion on words and then a weighted sentence rep-
resentation regarding two entities; the latter can
employ a sentence-level attention mechanism to
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learn a weight distribution on multiple instances so
that valid sentences with higher weights can be fo-
cused and selected, and noisy instances with lower
weights are suppressed.

Both the word-level and sentence-level atten-
tion mechanisms in previous work on the RE task
are simple 1-D vectors which are learned using
the hidden states of the RNN, or via pooling from
either the RNNs’ hidden states or convolved n-
grams (Zeng et al., 2014, 2015; Zhou et al., 2016;
Wang et al., 2016; Ji et al., 2017; Yang et al.,
2017). The deficiency of the 1-D attention vec-
tor is that it only focuses on one or a small number
of aspects of the sentence, or one or a small num-
ber of instances (Lin et al., 2017b), with the result
that different semantic aspects of the sentence, or
different multiple valid sentences are ignored, and
cannot be utilised.

Inspired by the structured self-attentive sen-
tence embedding in Lin et al. (2017b), we propose
a novel multi-level structured (2-D) self-attention
mechanism (MLSSA) in a bidirectional LSTM-
based (BiLSTM) (Hochreiter and Schmidhuber,
1997) MIL framework to alleviate two problems
in the distantly supervised RE. Regarding Prob-
lem I, we propose a 2-D matrix-based word-
level attention mechanism, which contains mul-
tiple vectors, each focusing on different aspects
of the sentence for better context representation
learning. In terms of Problem II, we propose a
2-D sentence-level attention mechanism for mul-
tiple instance learning, where it contains multi-
ple vectors, each focusing on different valid in-
stances for a better sentence selection. “struc-
tured” indicates that the weight vectors in the
learned 2-D matrix try to construct a structural de-
pendency relationship by learning different weight
distributions for different contexts or instances
given the entity pair. We can see that our struc-
tured attention mechanism is different from that
in Kim et al. (2017) which incorporates richer
structural distributions and are simple extensions
of the basic attention procedure. We verify the
proposed framework on two distantly supervised
RE datasets, namely the New York Times (NYT)
dataset (Riedel et al., 2010) and the DBpedia Por-
tuguese dataset (Batista et al., 2013). Experi-
mental results show that our MLSSA framework
significantly outperforms state-of-the-art baseline
systems in terms of different evaluation metrics.

The main contributions of this paper include:

(1) we propose a novel multi-level structured (2-
D) self-attention mechanism for DS-RE which
can make full use of input sequences to learn
different contexts, without integrating extra re-
sources; (2) we propose a 2-D matrix-based word-
level attention for better context representation
learning targeting two entities; (3) we propose a 2-
D sentence-level attention mechanism over mul-
tiple instances to select different valid instances;
and (4) we verify the proposed framework on two
publicly available distantly supervised datasets.

2 Related Work

Most existing work on distant supervision data
mainly focuses on denoising the data under the
MIL strategy by learning a valid sentence rep-
resentation or features, and then selecting one
or more valid instances for relation classifica-
tion (Riedel et al., 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012; Zeng et al., 2015; Lin et al.,
2016, 2017a; Zhou et al., 2016; Ji et al., 2017;
Zeng et al., 2017; Yang et al., 2017).

Riedel et al. (2010) and Surdeanu et al. (2012)
use a graphical model and MIL to select the valid
sentences and classify the relations. However,
these models are based on statistical methods and
feature engineering, i.e. extracting sentence fea-
tures using other NLP tools. Zeng et al. (2015)
proposed a piece-wise CNN (PCNN) method to
automatically learn sentence-level features and se-
lect one valid instance for the relation classifi-
cation. The one-sentence-selection strategy does
not make full use of the supervision information
among multiple instances.

Lin et al. (2016) and Ji et al. (2017) introduce
an attention mechanism to the PCNN-based MIL
framework to select informative sentences, which
outperforms all baseline systems on the NYT data
set. However, their attention mechanism is only a
sentence-level model without incorporating word-
level attention. Zhou et al. (2016) introduce a
word-level attention model to the BiLSTM-based
MIL framework and obtain significant improve-
ments on the SemEval2010 (Hendrickx et al.,
2010) data set. Wang et al. (2016) extend the sin-
gle word-level attention model to multiple word
levels in CNNs to discern patterns in heteroge-
neous contexts of the input sentence, and achieve
best performance on the SemEval2010 data set.
However, these two works were not targeting the
distantly supervised RE problem.
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Yang et al. (2017) experiment with word-level
and sentence-level attention models in the bidirec-
tional RNN on the NYT dataset on the basis of
the open source DS-RE system,1 and verify that a
two-level attention mechanism achieves best per-
formance compared to PCNN/CNN models. Both
the word-level and sentence-level attention models
are 1-D vectors.

From previous work, we can see that the at-
tention mechanism in DNNs has made signifi-
cant progress on the RE task. However, both
word-level and sentence-level attention models are
still based on 1-D vectors which have the follow-
ing insufficiencies: (1) although the 1-D atten-
tion model can learn weights for different con-
texts, it only focuses on one or very few aspects
of a single sentence (Lin et al., 2017b), or one or
very few instances; (2) in order to allow the at-
tention mechanism to learn more aspects of the
sentence, or different instances, extra knowledge
needs to be integrated, such as the work in Ji et al.
(2017) and Lin et al. (2017a). The former in-
tegrates entity descriptions generated from Free-
base and Wikipedia as supplementary background
knowledge to disambiguate the entity. The latter
introduces a multilingual framework which em-
ploys a monolingual attention mechanism to uti-
lize the information within monolingual texts, and
further uses a cross-lingual attention mechanism
to consider the information consistency and com-
plementarity among cross-lingual texts. However,
extra resources are difficult to obtain in many prac-
tical scenarios.

In order to alleviate the burden of integrating
extra knowledge, and make full use of the input
sentence (i.e. learning different aspects of context
and focusing on different valid instances), we pro-
pose a multi-level structured self-attention mecha-
nism in a BiLSTM-based MIL framework without
integrating extra resources.

3 Approach

The distantly supervised RE can be formalised as
follows: given an entity pair (e1, e2), a bag G con-
taining J instances, and the relation label r for G,
the goal of the training process is to denoise these
instances by selecting valid candidates based on r,
and the goal of the testing process is to denoise
multiple instances by selecting valid candidates to

1https://github.com/frankxu2004/
TensorFlow-NRE

predict the relation r for G.
To alleviate the aforementioned two problems,

improving the following two representation learn-
ing issues is clearly important for a DNN-based
RE classifier:

• Entity pair-targeted context representation:
The model should have the capability to learn
a better context representation from the input
sentence targeting the entity pair;

• Instance selection representation: The model
should have the capability to learn a better
weight distribution over multiple instances to
select valid instances regarding an entity pair.

Motivated by these two issues, we propose a
multi-level structured self-attention framework.

3.1 Architecture
The proposed framework consists of three parts
as shown in Figure 1. The first part includes the
input layer, embedding layer and BiLSTM layer
which transform the input sequence at different
time steps to LSTM hidden states.

The second part implements the entity pair-
targeted context representation learning, includ-
ing:

• a structured word-level self-attention layer:
this generates a set of summation weight vec-
tors (or a 2-D matrix) taking the LSTM hid-
den states as input. Each vector in the 2-D
matrix represents the weights for different as-
pects of the input sentence.

• a structured context representation layer: the
weight vectors learned by the 2-D word-level
self-attention are dotted with the BiLSTM
hidden states. Accordingly, a 2-D matrix or
a set of weighted LSTM hidden state vectors,
denoted as “ML1” in Figure 1, is obtained.
Each weighted vector represents a sentence
embedding reflecting a different aspect of the
sentence targeting the entity pair. By this
means, a dependency parsing-like structure
of the input sentence can be constructed, ob-
taining different semantic representations of
the sentence for the two entities in question.

• a flattened representation layer: this concate-
nates each vector in the 2-D matrix of the
sentence embedding to one vector. Then, the
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Figure 1: Multi-level structured self-attention framework for distantly supervised RE

flattened vector connects to a 1-layer multi-
layer perceptron (MLP) with ReLU activa-
tion function, generating an aggregated sen-
tence representation.

The first and second parts operate on the single
instance level, i.e. given a bag G and feeding each
instance into the framework, the structured word-
level self-attention mechanism will construct J in-
dividual structured sentence representations corre-
sponding to J input instances.

The third part targets the instance selection rep-
resentation learning issue, and operates on the bag
level, i.e. considering weighted context represen-
tations of all instances in the bag G and learning
probability distributions to distinguish informative
from noisy sentences. This part includes:

• a structured sentence-level attention model:
this has a similar structure to the structured
word-level attention mechanism, except that

it generates a set of summation weight vec-
tors for all input instances in the same bag
G. Each vector is a weight distribution over
all instances. Accordingly, the 2-D sentence-
level matrix is expected to learn a set of dif-
ferent weight distributions focusing on differ-
ent informative instances. As a result, infor-
mative sentences are expected to contribute
more with higher weights, and noisy sen-
tences are expected to contribute less with
smaller weights, to the relation classification.

• an averaged sentence-level attention layer:
the 2-D sentence-level attention matrix is av-
eraged and converted to a 1-D vector.

• a selection representation layer: the 1-D av-
eraged attention vector is dotted with the out-
put of the flattened representation layer. Ac-
cordingly, a 1-D vector, denoted as “ML2” in
Figure 1, is obtained which represents an av-
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eraged weighted selection representation of
multiple sentences.

• an output layer: this connects to a softmax
layer and produces a probability distribution
corresponding to relation classes.

3.2 Structured Word-Level Self-Attention
and its Penalisation Function

Given a bag G = (S1, S2, . . . , SJ) containing J
instances, and a sentence Sj in G consisting of N
tokens, Sj can be represented using a sequence of
word embeddings, as in (1):

Sj = (e1, e2, . . . , eN ) (1)

where ei is a d-dimension vector for the i-th word,
and Sj is the j-th instance in G.

We denote the hidden state of the BiLSTM as
in (2):

H = (h1,h2, . . . ,hN)T (2)

where ht is a concatenation of the forward hidden
state

�!
h t and the backward hidden state

 �
h t at time

step t. T is the transpose operation. If the size
of each unidirectional LSTM is u, then H has the
size 2u-by-N .

Then, the structured word-level self-attention
mechanism is defined as in (3):

AL1 = softmax(WL1
s2 tanh(WL1

s1 H)) (3)

where L1 stands for the first-level attention mech-
anism, i.e. the word-level; WL1

s1 is a weight matrix
of size dL1

a ⇥ 2u, where dL1
a is a hyper-parameter

for the number of neurons in the attention network;
WL1

s2 is a weight matrix with the shape rL1⇥ dL1
a ,

where rL1 (rL1 > 1) is the hyper-parameter repre-
senting the size of multiple vectors in the 2-D at-
tention matrix. The size of rL1 is defined based on
how many different aspects of the sentence need
to be focused on; AL1 is the annotation matrix of
size rL1⇥N . We can see that in AL1, there are rL1

attention vectors for the N -token input sentence.
Finally, we compute the rL1 weighted sums by

multiplying the annotation matrix AL1 and BiL-
STM hidden states H . The resulting structured
sentence representation ML1 is (4):

ML1 = AL1H
T (4)

where ML1 has the shape rL1⇥ 2u. It can be seen
that the traditional 1-D sentence representation is
extended to a 2-D representation (rL1 > 1).

Subsequently, the output of the flattened repre-
sentation layer for the instance Sj in G is (5):

OL1
j = ReLU(WL1

o MFT
L1 + bL1

o ) (5)

where WL1
o is the weight matrix that has the shape

v-by-rL1⇤2u, where v is the amount of neurons in
the ReLU -based MLP layer; MFT

L1 is the flattened
structured sentence representation which is a con-
catenated vector of each row in ML1 and has the
dimension rL1 ⇤ 2u; bL1

o is the bias vector of size
v; OL1

j is the aggregated sentence representation
of the j-th instance in the bag G with size v.

Then, the output of all instances in G from the
flattened representation layer is denoted as in (6):

OL1 = (OL1
1 , OL1

2 , . . . , OL1
J )T (6)

where OL1 has the shape of v ⇥ J .
As in Lin et al. (2017b), the penalisation term

for the structured word-level attention is as in (7):

PL1 = ||(AL1A
T
L1 � I)||2F (7)

where || · ||F is the Frobenius norm of a matrix. I
is an identity matrix. Minimising this penalisation
term means that we learn an orthogonal matrix for
AL1 so that each row in AL1 only focuses on a
single aspect of semantics.

3.3 Structured Sentence-Level Self-Attention
and Averaged Selection Representation

Taking OL1 as the input to the structured 2-D
sentence-level attention model, the annotation ma-
trix AL2 is calculated as in (8):

AL2 = softmax(WL2
s2 tanh(WL2

s1 OL1)) (8)

where WL2
s1 is the weight matrix of size dL2

a ⇥ v,
and dL2

a is the number of neurons in the atten-
tion network; WL2

s2 is the weight matrix of shape
rL2 ⇥ dL2

a , where rL2 (rL2 > 1) is the hyper-
parameter representing the size of multiple vectors
in the 2-D sentence-level attention matrix. The
rL2 multiple vectors are expected to focus on dif-
ferent informative instances for the relation classi-
fication; AL2 is the sentence-level annotation ma-
trix of size rL2⇥J . We can see that the traditional
1-D sentence-level attention model is expanded to
a multi-vector attention (rL2 > 1).

Then, we average the 2-D AL2 to a 1-D vector
ĀL2 which has the dimension of J .

Accordingly, we calculate the averaged
weighted sum by multiplying ĀL2 and the ag-
gregated sentence representation OL1, with the
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resulting instance selection representation ML2

being (9):

ML2 = ĀL2 · (OL1)T (9)

where ML2 has the size of v.
The probability distribution of the predicted re-

lation type, i.e. the final output for relation predic-
tion, can be calculated as in (10):

p(ŷ|G) = softmax(WL2
o tanh(ML2) + bL2

o ) (10)

3.4 Loss Function and Optimisation
The total loss of the network is the summation of
the penalisation term PL1, softmax loss in Eq. (10)
and the L2 regularisation loss.

We use the ADAM optimiser (Kingma and Ba,
2014) to minimize the loss function on the mini-
batch basis which is randomly selected from the
training set.

4 Experiments

4.1 Datasets
We use two distantly supervised datasets, namely
the NYT corpus (NYT) and the DBpedia Por-
tuguese dataset (PT),2 to verify our method.

In the NYT dataset, there are 53 relationships
including a special relation NA which indicates a
None Relation between two entities. The train-
ing set contains 580,888 sentences, 292,484 entity
pairs and 19,429 relational facts (Non-NA). The
test set contains 172,448 sentences, 96,678 entity
pairs and 1,950 relational facts (Non-NA). There
are 19.24% and 22.57% entity pairs corresponding
to multiple instances in the training set and test set,
respectively.

The DBpedia Portuguese dataset is smaller,
containing just 10 relationships including a spe-
cial relation Other. After preprocessing the orig-
inal dataset, we obtain 96,847 sentences, 85,528
entity pairs and 77,321 relational facts (Non-
Other). There are 8.61% entity pairs correspond-
ing to multiple instances in the whole dataset. As
in Batista et al. (2013), we use two different set-
tings for the training and test sets: (1) a manually

2There are several reasons to use the Portuguese dataset:
(i) the data sets reported in previous work, such as the
KBP data, are not publicly available, or (ii) SemEval data
sets which are not distantly supervised data. Google has
also released a dataset (https://github.com/google-research-
datasets/relation-extraction-corpus), but it is smaller and only
has 4 relation types. For all these reasons, the Portuguese data
is a better option to verify our method.

reviewed subset that contains 602 sentences (PT-
MANUAL) as the test set; and (2) 70%–30% out
of the whole data as the training set and test set,
respectively (PT-SPLIT).

4.2 Word Embeddings and Relative Position
Features

For the NYT dataset, we use the 200-dimensional
word vectors pre-trained using the NYT corpus;3

for the PT dataset, we use a pre-trained 300-
dimensional word vector model.4 For the two-
word entities in the data set, we use underscore to
connect them as one word. The word embeddings
of unknown words are intialised using the normal
distribution with the standard deviation 0.05. Sim-
ilar to previous work, we also use position embed-
dings specified by entity pairs. It is defined as the
combination of the relative distances from the cur-
rent word to head or tail entities (Zeng et al., 2014,
2015; Lin et al., 2016).

4.3 Baselines and Our MLSSA Systems

Neural RE systems have become the state-of-
the-art, such as CNN-based (Zeng et al., 2014;
Lin et al., 2017a), Piecewise CNN-based (Zeng
et al., 2015; Lin et al., 2016; Ji et al., 2017), and
BiLSTM-based (Zhou et al., 2016) models with
or without an attention mechanism. In order to
carry out a fair comparison, we select CNN+ATT,
PCNN+ATT, BiGRU+ATT (bidirectional gated
recurrent unit) and BiGRU+2ATT models as base-
lines on the NYT data, PCNN+ATT and Bi-
GRU+2ATT as baselines on the PT data, where
ATT indicates that the model has a sentence-level
attention mechanism, and 2ATT indicates that the
model has a 1-D word-level and a 1-D sentence-
level attention.5

To show the incremental effectiveness of struc-
tured 2-D word-level and 2-D sentence-level self-
attention mechanisms, we use two different set-
tings for our MLSSA system: (1) MLSSA-1: this
has a 2-D word-level self-attention and a 1-D
sentence-level attention, i.e. AL2 in Figure 1 is a
1-D vector. This system is used to verify the con-
text representation learning targeting Problem I;

3https://catalog.ldc.upenn.edu/
ldc2008t19

4https://s3-us-west-1.amazonaws.com/
fasttext-vectors/wiki.pt.vec

5All the baseline systems are obtained from https://
github.com/thunlp/NRE and https://github.
com/thunlp/TensorFlow-NRE.
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(2) MLSSA-2: both the word-level and sentence-
level attentions are structured 2-D matrices. This
system verifies the instance selection representa-
tion learning targeting Problem II.

4.4 Experiment Setup and Evaluation
Metrics

Following previous work, we use different evalu-
ation metrics on these two datasets. For the NYT
dataset:

• Overall evaluation: all training data is used
for the model training, and all test data is
used for the evaluation in terms of Precision-
Recall (PR) curves;

• P@N evaluation: we select those entity pairs
that have more than one instance to carry out
the comparison in terms of the precision at
n (P@N) measure.6 As in Lin et al. (2016),
there are three settings: (1) One: for each
testing entity pair corresponding to multiple
instances, we randomly select one sentence
to predict the relation; (2) Two: for each test-
ing entity pair with multiple instances, we
randomly select two sentences for the rela-
tion extraction; and (3) All: for each entity
pair having multiple instances, we use all of
them to predict the relation. Note that these
three selections are only applied to the test
set, and we keep all sentences in the training
data for model building.

For the PT dataset, we use Macro F1 to evaluate
system performance.7

4.5 Hyper-parameter Settings
We use cross-validation to determine the hyper-
parameters of our system regarding two different
settings and datasets. The in-common and dif-
ferent parameters for our two systems and two
datasets are shown in Table 1.

4.6 PR Curves on NYT Dataset
The comparison results for the NYT test set are
shown in Figure 2. We have the following obser-
vations: (1) BiGRU+ATT outperforms CNN+ATT

6P@N considers only the topmost results returned by the
model.

7Regarding the metric, we keep the evaluation consistent
with the work in Batista et al. (2013) where they used F1 to
measure their RE systems on the Portuguese dataset, in order
to maintain a fair comparison with their work using the same
metric.

Parameters for MLSSA-1/2 NYT PT
Word embedding dimension d 200 300
Position embedding dimension 50 50
Batch size B 64 50
Time steps T 70 70
Learning rate � 0.001 0.001
Hidden size in BiLSTM u 300 300
dL1

a at word-level attention 300 300
rL1 at word-level attention 9 5
MLP size v 1000 1000
Coefficient of the penalisation term 1.0 1.0
Parameters for MLSSA-2 only NYT PT
dL2

a at sentence-level attention 300 300
rL2 at sentence-level attention 9 3

Table 1: Hyper-parameter settings

and PCNN+ATT in terms of the PR curve, show-
ing that it can learn a better semantic representa-
tion from the sequential input; (2) BiGRU+2ATT
has better overall performance compared to Bi-
GRU+ATT, showing that word-level attention is
beneficial to sentence-level attention compared
to single-attention models, i.e. the sentence-
level attention model can select more informa-
tive sentences based on a more reasonable sen-
tence embedding learned by the word-level atten-
tion model; (3) MLSSA-1 outperforms all baseline
systems in terms of the PR curve, which demon-
strates that the structured 2-D word-level atten-
tion model can learn a better sentence representa-
tion by focusing on different aspects of the sen-
tence, so that the sentence-level attention has a
better chance of selecting the most informative
sentences; and (4) the PR curve of MLSSA-2 is
higher than that of MLSSA-1, demonstrating that
the 2-D sentence-level attention model can better
select the most informative sentences compared to
the 1-D sentence-level attention model targeting
those entity pairs with multiple instances.

4.7 P@N Evaluation on NYT Dataset

The results on the NYT dataset regarding P@100,
P@200, P@300 and the mean of three set-
tings for each model are shown in Table 2.
From the table, we have similar observations
to the PR Curves: (1) BiGRU+2ATT outper-
forms CNN+ATT, PCNN+ATT and BiGRU+ATT
in most cases in terms of all P@N scores; and
(2) MLSSA-1 and MLSSA-2 significantly outper-
form all baselines for all measures. We observe
that MLSSA-1 performs better than MLSSA-2 on
tasks One and Two, but worse on All. We infer
that in our 2-D sentence-level attention model, we

2222



Test Settings One Two All
P@N(%) 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean
CNN+ATT 72.0 67.0 59.5 66.2 75.5 69.0 63.3 69.3 74.3 71.5 64.5 70.1
PCNN+ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
BiGRU+ATT 75.0 69.5 64.7 69.7 80.0 72.5 69.3 73.9 82.0 76.5 71.3 76.6
BiGRU+2ATT 81.0 74.0 67.3 74.1 81.0 75.5 70.7 75.7 81.0 76.0 72.7 76.6
MLSSA-1 88.0 77.0 70.0 78.3 88.0 79.0 73.3 80.1 87.0 81.5 76.0 81.5
MLSSA-2 87.0 76.0 70.0 77.7 89.0 78.5 72.3 79.9 90.0 81.5 77.0 82.8

Table 2: Precision values for the top-100, top-200, and top-300 relation instances that are randomly selected in
terms of one, two and all sentences.

Figure 2: Comparison results of a variety of methods
in terms of precision/recall curves.

set rL2 to 9, but there are only one and two in-
stances for selection in tasks One and Two, so the
2-D matrix cannot demonstrate its full potential.
However, in All, many entity pairs contain multi-
ple or more than 9 instances, so it can learn a better
2-D matrix to focus on different instances.

4.8 Results on PT Dataset
Based on results from the NYT dataset, we choose
PCNN+ATT and BiGRU+2ATT as representative
baselines to compare against our MLSSA-1/2 sys-
tems on the PT test sets. The results in terms of
Macro F1 are shown in Table 3.

It can be seen that on both test sets, our
MLSSA-2 model achieved the best performance
which shows that the structured 2-D word-level
and sentence-level self-attention models can be
well applied to datasets of a smaller scale and with
a smaller ratio of multiple instances.

4.9 Examples and Analysis
In order to show the effectiveness of structured
self-attention mechanisms, we show some exam-

SYS PT-MANUAL (%) PT-SPLIT (%)
PCNN+ATT 62.3 74.1
BiGRU+2ATT 63.5 75.3
MLSSA-1 66.0 77.2
MLSSA-2 69.6 78.1

Table 3: Results on the PT test sets

ples by visualising the attentions on different as-
pects of a sentence, and on different sentences
comparing with BiLSTM+2ATT model.

Figure 3 shows the comparison of word-level
attention mechanism between BiGRU+2ATT and
MLSSA-1 reflecting their capability of context
representation learning (Problem I). MLSSA-2
has a similar probability distribution to MLSSA-
1 in terms of this example.

The pink fonts indicate lower probability and
red indicates higher probability. We observe that:
(1) BiGRU+2ATT mainly focuses on one word
baltimore. We can see that it has little attention
on the entity word maryland. In this example,
the comma implies a semantic relationship loca-
tion/location/contains for the entity pair (Mary-
land, Baltimore). However, BiGRU+2ATT allo-
cates quite a small probability to it; and (2) we
can see that our model focuses on different words
via different attention vectors (9 in total). Words
with a red background have a high probability of
0.98 or so. For rows 5, 6, 8 and 9, the focus is
on the BLANK tokens. In both systems, the max-
imum time step is set to 70, which indicates that
shorter sentences are padded with BLANK tokens
and longer sentences are cut off. The last row
shows the summation of 9 annotation vectors, and
it constructs a dependency-like context of the re-
lation for the entity pair. Attentions on different
words are attributed to the penalisation PL1 which
is optimised to learn orthogonal eigenvectors.

Figure 4 shows the comparison of sentence-
level attentions between BiGRU+2ATT, MLSSA-
1 and MLSSA-2. The first, second and third
columns are probability distributions over multi-
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Figure 3: Comparison of word-level attentions.

Figure 4: Comparison of sentence-level attentions.

ple instances. The entity pair is (vinod khosla,
sun microsystems), and their relation is Busi-
ness/Person/Company. From this figure, we ob-
serve that: (1) BiGRU+2ATT allocates high prob-
abilities to Sentences 1 and 2 by learning the
context of “a founder of”, but does not recog-
nise that “co-founder” is semantically the same
as “founder”; and (2) our two models almost
evenly focus on all sentences because they ex-
press the same semantic concept of “a person is
a founder of a company” in terms of the given en-
tity pair. Therefore, the structured self-attention
mechanism is helpful to learn a better representa-
tion and select informative sentences.

5 Conclusion and Future Work

This paper has proposed a multi-level structured
self-attention mechanism for distantly supervised
RE. In this framework, the traditional 1-D word-
level and sentence-level attentions are extended to
2-D structured matrices which can learn differ-
ent aspects of a sentence, and different informa-
tive instances. Experimental results on two dis-
tant supervision data sets show that (1) the struc-
tured 2-D word-level attention can learn a bet-
ter sentence representation; (2) the structured 2-
D sentence-level attention and averaged selec-
tion can perform better selection from multiple in-
stances for relation classification; (3) the proposed
framework significantly outperforms state-of-the-

art baseline systems for a range of different mea-
sures, which verifies its effectiveness on two rep-
resentation learning issues. A subsequent manual
investigation via examples also show its effective-
ness on two representation learning issues.

In future work, we will build a domain-specific
distant supervision dataset with a higher ratio of
multiple instances and compare our system with
others. Furthermore, we will consider not using
RNNs or CNNs, but a deeper neural networks with
only attentions for distantly supervised RE, similar
to the work in Vaswani et al. (2017).
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Abstract

Cross-sentence n-ary relation extraction de-
tects relations among n entities across multi-
ple sentences. Typical methods formulate an
input as a document graph, integrating vari-
ous intra-sentential and inter-sentential depen-
dencies. The current state-of-the-art method
splits the input graph into two DAGs, adopt-
ing a DAG-structured LSTM for each. Though
being able to model rich linguistic knowledge
by leveraging graph edges, important infor-
mation can be lost in the splitting procedure.
We propose a graph-state LSTM model, which
uses a parallel state to model each word, recur-
rently enriching state values via message pass-
ing. Compared with DAG LSTMs, our graph
LSTM keeps the original graph structure, and
speeds up computation by allowing more par-
allelization. On a standard benchmark, our
model shows the best result in the literature.

1 Introduction

As a central task in natural language processing,
relation extraction has been investigated on news,
web text and biomedical domains. It has been
shown to be useful for detecting explicit facts,
such as cause-effect (Hendrickx et al., 2009), and
predicting the effectiveness of a medicine on a
cancer caused by mutation of a certain gene in
the biomedical domain (Quirk and Poon, 2017;
Peng et al., 2017). While most existing work ex-
tracts relations within a sentence (Zelenko et al.,
2003; Palmer et al., 2005; Zhao and Grishman,
2005; Jiang and Zhai, 2007; Plank and Moschitti,
2013; Li and Ji, 2014; Gormley et al., 2015;
Miwa and Bansal, 2016; Zhang et al., 2017),
the task of cross-sentence relation extraction has
received increasing attention (Gerber and Chai,
2010; Yoshikawa et al., 2011). Recently, Peng

⇤Equal contribution

The deletion mutation on exon-19 of EGFR
gene was present in 16 patients, while the 858E
point mutation on exon-21 was noted in 10.
All patients were treated with gefitinib and
showed a partial response.

Table 1: An example showing that tumors with L858E
mutation in EGFR gene respond to gefitinib treatment.

et al. (2017) extend cross-sentence relation extrac-
tion by further detecting relations among several
entity mentions (n-ary relation). Table 1 shows
an example, which conveys the fact that cancers
caused by the 858E mutation on EGFR gene can
respond to the gefitinib medicine. The three en-
tity mentions form a ternary relation yet appear in
distinct sentences.

Peng et al. (2017) proposed a graph-structured
LSTM for n-ary relation extraction. As shown in
Figure 1 (a), graphs are constructed from input
sentences with dependency edges, links between
adjacent words, and inter-sentence relations, so
that syntactic and discourse information can be
used for relation extraction. To calculate a hidden
state encoding for each word, Peng et al. (2017)
first split the input graph into two directed acyclic
graphs (DAGs) by separating left-to-right edges
from right-to-left edges (Figure 1 (b)). Then, two
separate gated recurrent neural networks, which
extend tree LSTM (Tai et al., 2015), were adopted
for each single-directional DAG, respectively. Fi-
nally, for each word, the hidden states of both di-
rections are concatenated as the final state. The
bi-directional DAG LSTM model showed superior
performance over several strong baselines, such as
tree-structured LSTM (Miwa and Bansal, 2016),
on a biomedical-domain benchmark.

However, the bidirectional DAG LSTM model
suffers from several limitations. First, important
information can be lost when converting a graph
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Figure 1: (a) A fraction of the dependency graph of the example in Table 1. For simplicity, we omit edges of
discourse relations. (b) Results after splitting the graph into two DAGs.

into two separate DAGs. For the example in Fig-
ure 1, the conversion breaks the inner structure of
“exon-19 of EGFR gene”, where the relation be-
tween “exon-19” and “EGFR” via the dependency
path “exon-19 PREP OF�����! gene NN��! EGFR” is lost
from the original subgraph. Second, using LSTMs
on both DAGs, information of only ancestors and
descendants can be incorporated for each word.
Sibling information, which may also be important,
is not included.

A potential solution to the problems above is to
model a graph as a whole, learning its representa-
tion without breaking it into two DAGs. Due to the
existence of cycles, naive extension of tree LSTMs
cannot serve this goal. Recently, graph convolu-
tional networks (GCN) (Kipf and Welling, 2017;
Marcheggiani and Titov, 2017; Bastings et al.,
2017) and graph recurrent networks (GRN) (Song
et al., 2018; Zhang et al., 2018) have been pro-
posed for representing graph structures for NLP
tasks. Such methods encode a given graph by hi-
erarchically learning representations of neighbor-
ing nodes in the graphs via their connecting edges.
While GCNs use CNN for information exchange,
GRNs take gated recurrent steps to this end. For
fair comparison with DAG LSTMs, we build a
graph LSTM by extending Song et al. (2018),
which strictly follow the configurations of Peng
et al. (2017) such as the source of features and hy-
per parameter settings. In particular, the full in-
put graph is modeled as a single state, with words
in the graph being its sub states. State transitions
are performed on the graph recurrently, allowing
word-level states to exchange information through
dependency and discourse edges. At each recur-
rent step, each word advances its current state by
receiving information from the current states of
its adjacent words. Thus with increasing numbers

of recurrent steps each word receives information
from a larger context. Figure 2 shows the recurrent
transition steps where each node works simultane-
ously within each transition step.

Compared with bidirectional DAG LSTM, our
method has several advantages. First, it keeps the
original graph structure, and therefore no informa-
tion is lost. Second, sibling information can be
easily incorporated by passing information up and
then down from a parent. Third, information ex-
change allows more parallelization, and thus can
be very efficient in computation.

Results show that our model outperforms
a bidirectional DAG LSTM baseline by 5.9%
in accuracy, overtaking the state-of-the-art sys-
tem of Peng et al. (2017) by 1.2%. Our
code is available at https://github.com/
freesunshine0316/nary-grn.

Our contributions are summarized as follows.

• We empirically compared graph LSTM with
DAG LSTM for n-ary relation extraction
tasks, showing that the former is better by
more effective use of structural information;

• To our knowledge, we are the first to investi-
gate a graph recurrent network for modeling
dependency and discourse relations.

2 Task Definition

Formally, the input for cross-sentence n-ary rela-
tion extraction can be represented as a pair (E , T ),
where E = (✏1, . . . , ✏N ) is the set of entity men-
tions, and T = [S1; . . . ; SM ] is a text consisting
of multiple sentences. Each entity mention ✏i be-
longs to one sentence in T . There is a predefined
relation set R = (r1, . . . , rL, None), where None
represents that no relation holds for the entities.
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This task can be formulated as a binary classifi-
cation problem of determining whether ✏1, . . . , ✏N

together form a relation (Peng et al., 2017), or
a multi-class classification problem of detecting
which relation holds for the entity mentions. Take
Table 1 as an example. The binary classification
task is to determine whether gefitinib would have
an effect on this type of cancer, given a cancer
patient with 858E mutation on gene EGFR. The
multi-class classification task is to detect the exact
drug effect: response, resistance, sensitivity, etc.

3 Baseline: Bi-directional DAG LSTM

Peng et al. (2017) formulate the task as a graph-
structured problem in order to adopt rich depen-
dency and discourse features. In particular, Stan-
ford parser (Manning et al., 2014) is used to assign
syntactic structure to input sentences, and heads of
two consecutive sentences are connected to rep-
resent discourse information, resulting in a graph
structure. For each input graph G = (V, E), the
nodes V are words within input sentences, and
each edge e 2 E connects two words that ei-
ther have a relation or are adjacent to each other.
Each edge is denoted as a triple (i, j, l), where
i and j are the indices of the source and target
words, respectively, and the edge label l indicates
either a dependency or discourse relation (such as
“nsubj”) or a relative position (such as “next tok”
or “prev tok”). Throughout this paper, we use
Ein(j) and Eout(j) to denote the sets of incom-
ing and outgoing edges for word j.

For a bi-directional DAG LSTM baseline, we
follow Peng et al. (2017), splitting each input
graph into two separate DAGs by separating left-
to-right edges from right-to-left edges (Figure 1).
Each DAG is encoded by using a DAG LSTM
(Section 3.2), which takes both source words and
edge labels as inputs (Section 3.1). Finally, the
hidden states of entity mentions from both LSTMs
are taken as inputs to a logistic regression classi-
fier to make a prediction:

ŷ = softmax(W0[h✏1 ; . . . ; h✏N ] + b0), (1)

where h✏j is the hidden state of entity ✏j . W0 and
b0 are parameters.

3.1 Input Representation

Both nodes and edge labels are useful for model-
ing a syntactic graph. As the input to our DAG

LSTM, we first calculate the representation for
each edge (i, j, l) by:

xl
i,j = W1

⇣
[el; ei]

⌘
+ b1, (2)

where W1 and b1 are model parameters, ei is the
embedding of the source word indexed by i, and
el is the embedding of the edge label l.

3.2 State transition
The baseline LSTM model learns DAG represen-
tations sequentially, following word orders. Tak-
ing the edge representations (such as xl

i,j) as input,
gated state transition operations are executed on
both the forward and backward DAGs. For each
word j, the representations of its incoming edges
Ein(j) are summed up as one vector:

xin
j =

X

(i,j,l)2Ein(j)

xl
i,j (3)

Similarly, for each word j, the states of all incom-
ing nodes are summed to a single vector before
being passed to the gated operations:

hin
j =

X

(i,j,l)2Ein(j)

hi (4)

Finally, the gated state transition operation for the
hidden state hj of the j-th word can be defined as:

ij = �(Wix
in
j + Uih

in
j + bi)

oj = �(Wox
in
j + Uoh

in
j + bo)

fi,j = �(Wfxl
i,j + Ufhi + bf )

uj = �(Wuxin
j + Uuhin

j + bu)

cj = ij � uj +
X

(i,j,l)2Ein(j)

fi,j � ci

hj = oj � tanh(cj),

(5)

where ij , oj and fi,j are a set of input, output and
forget gates, respectively, and Wx, Ux and bx (x 2
{i, o, f, u}) are model parameters.

3.3 Comparison with Peng et al. (2017)
Our baseline is computationally similar to Peng
et al. (2017), but different on how to utilize edge
labels in the gated network. In particular, Peng
et al. (2017) make model parameters specific to
edge labels. They consider two model variations,
namely Full Parametrization (FULL) and Edge-
Type Embedding (EMBED). FULL assigns distinct

2228



...

...

...

...

time

0     1    ...          t-1

t

...
...

...

...

...

...

...

...

Figure 2: Graph state transitions via message passing,
where each wi is a word.

Us (in Equation 5) to different edge types, so that
each edge label is associated with a 2D weight ma-
trix to be tuned in training. On the other hand, EM-
BED assigns each edge label to an embedding vec-
tor, but complicates the gated operations by chang-
ing the Us to be 3D tensors.1

In contrast, we take edge labels as part of the
input to the gated network. In general, the edge
labels are first represented as embeddings, before
being concatenated with the node representation
vectors (Equation 2). We choose this setting for
both the baseline and our graph state LSTM model
in Section 4, since it requires fewer parameters
compared with FULL and EMBED, thus being less
exposed to overfitting on small-scaled data.

4 Graph State LSTM

Our input graph formulation strictly follows Sec-
tion 3. In particular, our model adopts the same
methods for calculating input representation (as in
Section 3.1) and performing classification as the
baseline model. However, different from the base-
line bidirectional DAG LSTM model, we leverage
a graph-structured LSTM to directly model the in-
put graph, without splitting it into two DAGs.

Figure 2 shows an overview of our model. For-
mally, given an input graph G = (V, E), we define
a state vector hj for each word vj 2 V . The state
of the graph consists of all word states, and thus
can be represented as:

g = {hj}|vj2V (6)

1For more information please refer Section 3.3 of Peng
et al. (2017).

In order to capture non-local information, our
model performs information exchange between
words through a recurrent state transition pro-
cess, resulting in a sequence of graph states
g0, g1, . . . , gt, where gt = {hj

t}|vj2V . The ini-
tial graph state g0 consists of a set of initial word
states hj

0 = h0, where h0 is a zero vector.

4.1 State transition
Following the approches of Song et al. (2018) and
Zhang et al. (2018), a recurrent neural network is
utilized to model the state transition process. In
particular, the transition from gt�1 to gt consists
of hidden state transition for each word, as shown
in Figure 2. At each step t, we allow information
exchange between a word and all words that are
directly connected to the word. To avoid gradi-
ent diminishing or bursting, gated LSTM cells are
adopted, where a cell cj

t is taken to record mem-
ory for hj

t . We use an input gate ijt , an output gate
oj
t and a forget gate f j

t to control information flow
from the inputs and to hj

t .
The inputs to a word vj , include representations

of edges that are connected to vj , where vj can be
either the source or the target of the edge. Simi-
lar to Section 3.1, we define each edge as a triple
(i, j, l), where i and j are indices of the source and
target words, respectively, and l is the edge label.
xl

i,j is the representation of edge (i, j, l). The in-
puts for vj are distinguished by incoming and out-
going directions, where:

xi
j =

X

(i,j,l)2Ein(j)

xl
i,j

xo
j =

X

(j,k,l)2Eout(j)

xl
j,k

(7)

Here Ein(j) and Eout(j) denote the sets of incom-
ing and outgoing edges of vj , respectively.

In addition to edge inputs, a cell also takes the
hidden states of its incoming and outgoing words
during a state transition. In particular, the states
of all incoming words and outgoing words are
summed up, respectively:

hi
j =

X

(i,j,l)2Ein(j)

hi
t�1

ho
j =

X

(j,k,l)2Eout(j)

hk
t�1,

(8)

Based on the above definitions of xi
j , xo

j , hi
j and

ho
j , the recurrent state transition from gt�1 to gt,
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as represented by hj
t , is defined as:

ijt = �(Wix
i
j + Ŵix

o
j + Uih

i
j + Ûih

o
j + bi)

oj
t = �(Wox

i
j + Ŵox

o
j + Uoh

i
j + Ûoh

o
j + bo)

f j
t = �(Wfxi

j + Ŵfxo
j + Ufhi

j + Ûfho
j + bf )

uj
t = �(Wuxi

j + Ŵuxo
j + Uuhi

j + Ûuho
j + bu)

cj
t = f j

t � cj
t�1 + ijt � uj

t

hj
t = oj

t � tanh(cj
t ),

where ijt , oj
t and f j

t are the input, output and
forget gates, respectively. Wx, Ŵx, Ux, Ûx, bx

(x 2 {i, o, f, u}) are model parameters.

Graph State LSTM vs bidirectional DAG
LSTM A contrast between the baseline DAG
LSTM and our graph LSTM can be made from
the perspective of information flow. For the base-
line, information flow follows the natural word
order in the input sentence, with the two DAG
components propagating information from left to
right and from right to left, respectively. In con-
trast, information flow in our graph state LSTM is
relatively more concentrated at individual words,
with each word exchanging information with all
its graph neighbors simultaneously at each sate
transition. As a result, wholistic contextual infor-
mation can be leveraged for extracting features for
each word, as compared to separated handling of
bi-directional information flow in DAG LSTM. In
addition, arbitrary structures, including arbitrary
cyclic graphs, can be handled.

From an initial state with isolated words, in-
formation of each word propagates to its graph
neighbors after each step. Information exchange
between non-neighboring words can be achieved
through multiple transition steps. We experiment
with different transition step numbers to study the
effectiveness of global encoding. Unlike the base-
line DAG LSTM encoder, our model allows par-
allelization in node-state updates, and thus can be
highly efficient using a GPU.

5 Training

We train our models with a cross-entropy loss over
a set of gold standard data:

l = � log p(yi|Xi; ✓), (9)

where Xi is an input graph, yi is the gold class la-
bel of Xi, and ✓ is the model parameters. Adam
(Kingma and Ba, 2014) with a learning rate of

Data Avg. Tok. Avg. Sent. Cross
TERNARY 73.9 2.0 70.1%
BINARY 61.0 1.8 55.2%

Table 2: Dataset statistics. Avg. Tok. and Avg. Sent. are
the average number of tokens and sentences, respec-
tively. Cross is the percentage of instances that contain
multiple sentences.

0.001 is used as the optimizer, and the model that
yields the best devset performance is selected to
evaluate on the test set. Dropout with rate 0.3 is
used during training. Both training and evaluation
are conducted using a Tesla K20X GPU.

6 Experiments

We conduct experiments for the binary relation de-
tection task and the multi-class relation extraction
task discussed in Section 2.

6.1 Data
We use the dataset of Peng et al. (2017), which
is a biomedical-domain dataset focusing on drug-
gene-mutation ternary relations,2 extracted from
PubMed. It contains 6987 ternary instances about
drug-gene-mutation relations, and 6087 binary in-
stances about drug-mutation sub-relations. Table
2 shows statistics of the dataset. Most instances
of ternary data contain multiple sentences, and the
average number of sentences is around 2. There
are five classification labels: “resistance or non-
response”, “sensitivity”, “response”, “resistance”
and “None”. We follow Peng et al. (2017) and bi-
narize multi-class labels by grouping all relation
classes as “Yes” and treat “None” as “No”.

6.2 Settings
Following Peng et al. (2017), five-fold cross-
validation is used for evaluating the models,3 and
the final test accuracy is calculated by averaging
the test accuracies over all five folds. For each
fold, we randomly separate 200 instances from the
training set for development. The batch size is set
as 8 for all experiments. Word embeddings are
initialized with the 100-dimensional GloVe (Pen-
nington et al., 2014) vectors, pretrained on 6 bil-
lion words from Wikipedia and web text. The edge
label embeddings are 3-dimensional and randomly

2The dataset is available at
http://hanover.azurewebsites.net.

3The released data has been separated into 5 portions, and
we follow the exact split.
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Figure 3: Dev accuracies against transition steps for the
graph state LSTM model.

initialized. Pretrained word embeddings are not
updated during training. The dimension of hidden
vectors in LSTM units is set to 150.

6.3 Development Experiments
We first analyze our model on the drug-gene-
mutation ternary relation dataset, taking the first
among 5-fold cross validation settings for our data
setting. Figure 3 shows the devset accuracies of
different state transition numbers, where forward
and backward execute our graph state model only
on the forward or backward DAG, respectively.
Concat concatenates the hidden states of forward
and backward. All executes our graph state model
on original graphs.

The performance of forward and backward lag
behind concat, which is consistent with the intu-
ition that both forward and backward relations are
useful (Peng et al., 2017). In addition, all gives
better accuracies compared with concat, demon-
strating the advantage of simultaneously consider-
ing forward and backward relations during repre-
sentation learning. For all the models, more state
transition steps result in better accuracies, where
larger contexts can be integrated in the represen-
tations of graphs. The performance of all starts to
converge after 4 and 5 state transitions, so we set
the number of state transitions to 5 in the remain-
ing experiments.

6.4 Final results
Table 3 compares our model with the bidirec-
tional DAG baseline and the state-of-the-art results
on this dataset, where EMBED and FULL have
been briefly introduced in Section 3.3. +multi-
task applies joint training of both ternary (drug-
gene-mutation) relations and their binary (drug-
mutation) sub-relations. Quirk and Poon (2017)
use a statistical method with a logistic regres-
sion classifier and features derived from shortest
paths between all entity pairs. Bidir DAG LSTM

Model Single Cross
Quirk and Poon (2017) 74.7 77.7
Peng et al. (2017) - EMBED 76.5 80.6
Peng et al. (2017) - FULL 77.9 80.7

+ multi-task – 82.0
Bidir DAG LSTM 75.6 77.3
GS GLSTM 80.3* 83.2*

Table 3: Average test accuracies for TERNARY drug-
gene-mutation interactions. Single represents experi-
ments only on instances within single sentences, while
Cross represents experiments on all instances. *: sig-
nificant at p < 0.01

is our bidirectional DAG LSTM baseline, and GS
GLSTM is our graph state LSTM model.

Using all instances (the Cross column in Table
3), our graph state LSTM model shows the highest
test accuracy among all methods, which is 5.9%
higher than our baseline.4 The accuracy of our
baseline is lower than EMBED and FULL of Peng
et al. (2017), which is likely due to the differences
mentioned in Section 3.3. Our final results are bet-
ter than Peng et al. (2017), despite the fact that we
do not use multi-task learning.

We also report accuracies only on instances
within single sentences (column Single in Table
3), which exhibit similar contrasts. Note that all
systems show performance drops when evaluated
only on single-sentence relations, which are actu-
ally more challenging. One reason may be that
some single sentences cannot provide sufficient
context for disambiguation, making it necessary to
study cross-sentence context. Another reason may
be overfitting caused by relatively fewer training
instances in this setting, as only 30% instances are
within a single sentence. One interesting obser-
vation is that our baseline shows the least perfor-
mance drop of 1.7 points, in contrast to up to 4.1
for other neural systems. This can be a supporting
evidence for overfitting, as our baseline has fewer
parameters at least than FULL and EMBED.

6.5 Analysis
Efficiency. Table 4 shows the training and de-

coding time of both the baseline and our model.
Our model is 8 to 10 times faster than the base-
line in training and decoding speeds, respectively.
By revisiting Table 2, we can see that the average
number of tokens for the ternary-relation data is

4p < 0.01 using t-test. For the remaining of this paper,
we use the same measure for statistical significance.
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Model Train Decode
Bidir DAG LSTM 281s 27.3s
GS GLSTM 36.7s 2.7s

Table 4: The average times for training one epoch
and decoding (seconds) over five folds on drug-gene-
mutation TERNARY cross sentence setting.

74, which means that the baseline model has to ex-
ecute 74 recurrent transition steps for calculating
a hidden state for each input word. On the other
hand, our model only performs 5 state transitions,
and calculations between each pair of nodes for
one transition are parallelizable. This accounts for
the better efficiency of our model.

Accuracy against sentence length Figure 5
(a) shows the test accuracies on different sentence
lengths. We can see that GS GLSTM and Bidir
DAG LSTM show performance increase along in-
creasing input sentence lengths. This is likely be-
cause longer contexts provide richer information
for relation disambiguation. GS GLSTM is consis-
tently better than Bidir DAG LSTM, and the gap is
larger on shorter instances. This demonstrates that
GS GLSTM is more effective in utilizing a smaller
context for disambiguation.

Accuracy against the maximal number of
neighbors Figure 5 (b) shows the test accura-
cies against the maximum number of neighbors.
Intuitively, it is easier to model graphs containing
nodes with more neighbors, because these nodes
can serve as a “supernode” that allow more ef-
ficient information exchange. The performances
of both GS GLSTM and Bidir DAG LSTM in-
crease with increasing maximal number of neigh-
bors, which coincide with this intuition. In addi-
tion, GS GLSTM shows more advantage than Bidir
DAG LSTM under the inputs having lower maxi-
mal number of neighbors, which further demon-
strates the superiority of GS GLSTM over Bidir
DAG LSTM in utilizing context information.

Case study Figure 4 visualizes the merits of
GS GLSTM over Bidir DAG LSTM using two ex-
amples. GS GLSTM makes the correct predictions
for both cases, while Bidir DAG LSTM fails to.

The first case generally mentions that Gefitinib
does not have an effect on T790M mutation on
EGFR gene. Note that both “However” and “was
not” serve as indicators; thus incorporating them
into the contextual vectors of these entity men-

Model Single Cross
Quirk and Poon (2017) 73.9 75.2
Miwa and Bansal (2016) 75.9 75.9
Peng et al. (2017) - EMBED 74.3 76.5
Peng et al. (2017) - FULL 75.6 76.7

+ multi-task – 78.5
Bidir DAG LSTM 76.9 76.4
GS GLSTM 83.5* 83.6*

Table 5: Average test accuracies in five-fold cross-
validation for BINARY drug-mutation interactions.

tions is important for making a correct prediction.
However, both indicators are leaves of the depen-
dency tree, making it impossible for Bidir DAG
LSTM to incorporate them into the contextual vec-
tors of entity mentions up the tree through depen-
dency edges.5 On the other hand, it is easier for GS
GLSTM. For instance, “was not” can be incorpo-
rated into “Gefitinib” through “suppressed

agent���!
treatment nn�! Gefitinib”.

The second case is to detect the relation among
“cetuximab” (drug), “EGFR” (gene) and “S492R”
(mutation), which does not exist. However, the
context introduces further ambiguity by mention-
ing another drug “Panitumumab”, which does
have a relation with “EGFR” and “S492R”. Being
sibling nodes in the dependency tree, “can not” is
an indicator for the relation of “cetuximab”. GS
GLSTM is correct, because “can not” can be easily
included into the contextual vector of “cetuximab”
in two steps via “bind

nsubj���!cetuximab”.

6.6 Results on Binary Sub-relations

Following previous work, we also evaluate our
model on drug-mutation binary relations. Table 5
shows the results, where Miwa and Bansal (2016)
is a state-of-the-art model using sequential and
tree-structured LSTMs to jointly capture linear
and dependency contexts for relation extraction.
Other models have been introduced in Section 6.4.

Similar to the ternary relation extraction exper-
iments, GS GLSTM outperforms all the other sys-
tems with a large margin, which shows that the
message passing graph LSTM is better at encoding
rich linguistic knowledge within the input graphs.
Binary relations being easier, both GS GLSTM and
Bidir DAG LSTM show increased or similar per-
formances compared with the ternary relation ex-

5As shown in Figure 1, a directional DAG LSTM propa-
gates information according to the edge directions.
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However , the phosphorylation level of EGFR in EGFR2 T790M3 mutatnt  cells  ( H1975TM/ LR ) was not suppressed by Gefitinib1 treatment  .
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Figure 4: Example cases. Words with subindices 1, 2 and 3 represent drugs, genes and mutations, respectively.
References for both cases are “No”. For both cases, GS GLSTM makes the correct predictions, while Bidir DAG
LSTM does incorrectly.

74.6 75.3
78.781.5 82.2 84.4

60

70

80

90

[0.0, 45.0) [45.0, 75.0) [75.0,	+∞)

Bidir DAG LSTM GS GLSTM

75.7 76.6

82.582 83.5 84

70

75

80

85

[0.0, 10.0) [10.0, 15.0) [15.0,	+∞)

Bidir DAG LSTM GS GLSTM

(b)

(a)

Figure 5: Test set performances on (a) different sen-
tence lengths, and (b) different maximal number of
neighbors.

periments. On this set, our bidirectional DAG
LSTM model is comparable to FULL using all in-
stances (“Cross”) and slightly better than FULL
using only single-sentence instances (“Single”).

6.7 Fine-grained Classification

Our dataset contains five classes as mentioned in
Section 6.1. However, previous work only investi-
gates binary relation detection. Here we also study
the multi-class classification task, which can be
more informative for applications.

Table 6 shows accuracies on multi-class relation
extraction, which makes the task more ambigu-
ous compared with binary relation extraction. The
results show similar comparisons with the binary
relation extraction results. However, the perfor-
mance gaps between GS GLSTM and Bidir DAG
LSTM dramatically increase, showing the superi-
ority of GS GLSTM over Bidir DAG LSTM in uti-
lizing context information.

7 Related Work

N -ary relation extraction N -ary relation ex-
tractions can be traced back to MUC-7 (Chinchor,

Model TERNARY BINARY

Bidir DAG LSTM 51.7 50.7
GS GLSTM 71.1* 71.7*

Table 6: Average test accuracies for multi-class relation
extraction with all instances (“Cross”).

1998), which focuses on entity-attribution rela-
tions. It has also been studied in biomedical do-
main (McDonald et al., 2005), but only the in-
stances within a single sentence are considered.
Previous work on cross-sentence relation extrac-
tion relies on either explicit co-reference annota-
tion (Gerber and Chai, 2010; Yoshikawa et al.,
2011), or the assumption that the whole document
refers to a single coherent event (Wick et al., 2006;
Swampillai and Stevenson, 2011). Both simplify
the problem and reduce the need for learning bet-
ter contextual representation of entity mentions. A
notable exception is Quirk and Poon (2017), who
adopt distant supervision and integrated contex-
tual evidence of diverse types without relying on
these assumptions. However, they only study bi-
nary relations. We follow Peng et al. (2017) by
studying ternary cross-sentence relations.

Graph encoder Liang et al. (2016) build a
graph LSTM model for semantic object parsing,
which aims to segment objects within an image
into more fine-grained, semantically meaningful
parts. The nodes of an input graph come from im-
age superpixels, and the edges are created by con-
necting spatially neighboring nodes. Their model
is similar as Peng et al. (2017) by calculating node
states sequentially: for each input graph, a start
node and a node sequence are chosen, which de-
termines the order of recurrent state updates. In
contrast, our graph LSTM do not need ordering of
graph nodes, and is highly parallelizable.
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Graph convolutional networks (GCNs) and very
recently graph recurrent networks (GRNs) have
been used to model graph structures in NLP tasks,
such as semantic role labeling (Marcheggiani and
Titov, 2017), machine translation (Bastings et al.,
2017), text generation (Song et al., 2018), text
representation (Zhang et al., 2018) and seman-
tic parsing (Xu et al., 2018b,a). In particular,
Zhang et al. (2018) use GRN to represent raw
sentences by building a graph structure of neigh-
boring words and a sentence-level node, showing
that the encoder outperforms BiLSTMs and Trans-
former (Vaswani et al., 2017) on classification and
sequence labeling tasks; Song et al. (2018) build a
GRN for encoding AMR graphs, showing that the
representation is superior compared to BiLSTM
on serialized AMR. Our work is in line with their
work in the investigation of GRN on NLP. To our
knowledge, we are the first to use GRN for repre-
senting dependency and discourse structures. Un-
der the same recurrent framework, we show that
modeling the original graphs with one GRN model
is more useful than two DAG LSTMs for our rela-
tion extraction task. We choose GRN as our main
method because it gives a more fair comparison
with DAG LSTM. We leave it to future work to
compare GCN and GRN for our task.

8 Conclusion

We explored a graph-state LSTM model for cross-
sentence n-ary relation extraction, which uses a
recurrent state transition process to incrementally
refine a neural graph state representation capturing
graph structure contexts. Compared with a bidi-
rectional DAG LSTM baseline, our model has sev-
eral advantages. First, it does not change the input
graph structure, so that no information can be lost.
For example, it can easily incorporate sibling in-
formation when calculating the contextual vector
of a node. Second, it is better parallelizable. Ex-
periments show significant improvements over the
previously reported numbers, including that of the
bidirectional graph LSTM model.

For future work, we consider adding corefer-
ence information as an entity mention can have
coreferences, which help on information collec-
tion. Another possible direction is including word
sense information. Confusing caused by word
senses can be a severe problem. Not only content
words, but also propositions can introduce word
sense problem (Gong et al., 2018).
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Abstract

Distantly supervised relation extraction em-
ploys existing knowledge graphs to automati-
cally collect training data. While distant super-
vision is effective to scale relation extraction
up to large-scale corpora, it inevitably suffers
from the wrong labeling problem. Many ef-
forts have been devoted to identifying valid in-
stances from noisy data. However, most exist-
ing methods handle each relation in isolation,
regardless of rich semantic correlations lo-
cated in relation hierarchies. In this paper, we
aim to incorporate the hierarchical information
of relations for distantly supervised relation
extraction and propose a novel hierarchical at-
tention scheme. The multiple layers of our
hierarchical attention scheme provide coarse-
to-fine granularity to better identify valid in-
stances, which is especially effective for ex-
tracting those long-tail relations. The exper-
imental results on a large-scale benchmark
dataset demonstrate that our models are capa-
ble of modeling the hierarchical information
of relations and significantly outperform other
baselines. The source code of this paper can
be obtained from https://github.com/
thunlp/HNRE.

1 Introduction

Relation extraction (RE) aims to predict relational
facts from plain text. Conventional supervised
RE models (Zelenko et al., 2003; Mooney and
Bunescu, 2006) usually suffer from the lack of
high-quality training data, because manual label-
ing of training data is time-consuming and human-
intensive. Mintz et al. (2009) propose distant su-
pervision to automatically label training instances
by aligning existing knowledge graphs (KGs) and
text: For an entity pair in KGs, those sentences
containing both the entities will be labeled with

⇤ indicates equal contribution
† Corresponding author: Z.Liu(liuzy@tsinghua.edu.cn)
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Figure 1: An example of hierarchical relation ex-
traction.

the corresponding relation of the entity pair in
KGs. RE relies on distant supervision to scale up
to large-scale training corpora. However, this au-
tomatic mechanism is inevitably accompanied by
the wrong labeling problem, because not all sen-
tences containing two entities can exactly express
their relations in KGs, e.g., we may mistakenly la-
bel “Bill Gates retired from Microsoft” with the
relation business/company/founders.

To alleviate the wrong labeling problem, many
efforts (Riedel et al., 2010; Hoffmann et al., 2011;
Surdeanu et al., 2012; Zeng et al., 2015) have
been devoted to identifying valid instances from
noisy data, especially the recent state-of-the-art
attention-based methods (Lin et al., 2016; Ji et al.,
2017; Liu et al., 2017; Wu et al., 2017). Neverthe-
less, each relation is handled in isolation in most
existing methods. For each relation, there is often
a separate model (e.g. neural attention scheme) to
select relation-related informative instances from
noisy data, regardless of rich semantic correlations
among relations, typically located in the form of
relation hierarchies.

We take the KG Freebase (Bollacker et al.,
2008) as an example, in which relations are la-
beled as hierarchical structures. For example, the
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relation /location/province/capital in
Freebase indicates the relation between a province
and its capital. It is labeled under the location
branch. Under this branch, there are some other
relations /location/location/contains
and /location/country/capital, which
are closely correlated to each other. The rich
correlations among relations are well revealed by
these relation hierarchies. In fact, McCallum et al.
(1998) take advantage of hierarchies of classes to
improve classification models and inspire many
later models (Rousu et al., 2005; Weinberger and
Chapelle, 2009). Furthermore, the hierarchical in-
formation of entities in KGs has also been uti-
lized and demonstrated to be effective for model
enhancement (Hu et al., 2015; Xie et al., 2016).

To take advantage of the rich correlated infor-
mation among relations, we propose a novel hier-
archical attention scheme via utilizing the relation
hierarchies, rather than directly utilizing hierarchi-
cal information as features for models. Similar
to the conventional attention-based method, our
method also computes an attention score for each
instance according to its significance of express-
ing the corresponding relation. The key difference
is that, as illustrated in Figure 1, our hierarchical
attention scheme follows the relation hierarchies
to compute scores for those instances containing
the same entity pair on the each layer of the hier-
archies.

The hierarchical attention scheme provides
coarse-to-fine granularity for identifying valid in-
stances. The attention on the bottom layer can cap-
ture more specific features of the relation, which
has a comparable ability of fine-grained instance
selection like conventional attention-based meth-
ods. The attention on the top-layer can capture the
common features shared by several related sub-
relations, which provides coarse-grained instance
selection. Since there are more sufficient data for
training the top-layer attention, the whole hierar-
chical attention scheme can enhance RE models
for solving those long-tail relations.

We conduct experiments on a large-scale bench-
mark dataset for RE in this paper. The experi-
mental results show that the proposed coarse-to-
fine grained attention scheme based on relation hi-
erarchies significantly outperforms other baseline
methods, even as compared to the recent state-
of-the-art attention-based models, especially for
those long-tail relations.

2 Related Works

Supervised models (Zelenko et al., 2003; Zhou
et al., 2005; Mooney and Bunescu, 2006) for RE
require adequate amounts of annotated data for
their training. It is time-consuming to manu-
ally label large-scale training data. Hence, Mintz
et al. (2009) propose distant supervision to au-
tomatically label data. Distant supervision in-
evitably accompanies with the wrong labeling
problem. To alleviate the noise issue caused by
distant supervision, Riedel et al. (2010) and Hoff-
mann et al. (2011) propose multi-instance learning
(MIL) mechanisms. Riedel et al. (2013) propose
universal schema to transmit information between
relations of KGs and textual patterns to enhance
extraction performance.

These early RE methods mainly extract seman-
tic features using NLP tools to build relation clas-
sifiers. Recently, neural models have been widely
used for RE. These neural models can accurately
capture textual relations without explicit linguis-
tic analysis (Zeng et al., 2014; Xu et al., 2015;
Santos et al., 2015; Zhang and Wang, 2015; Verga
et al., 2016; Verga and McCallum, 2016). Zeng
et al. (2015) employ the MIL scheme by selecting
one most valid instance for distantly supervised
neural relation extraction (NRE), whose denois-
ing capability is far from satisfactory because most
informative instances are neglected. Lin et al.
(2016) and Zhang et al. (2017) propose neural
attention schemes to select those informative in-
stances. To further improve the attention perfor-
mance, some works incorporate knowledge infor-
mation (Zeng et al., 2017; Ji et al., 2017; Han et al.,
2018) and advanced training strategies (Liu et al.,
2017; Huang and Wang, 2017). More sophisti-
cated mechanisms, such as reinforcement learning
(Feng et al., 2018; Zeng et al., 2018) and adver-
sarial training (Wu et al., 2017), have also been
adapted for RE recently.

However, most existing works model each rela-
tion in isolation to identify informative instances,
neglecting rich correlations among relations, es-
pecially the hierarchical information of those re-
lations. Hierarchical information is widely ap-
plied for model enhancement, especially for clas-
sification models (McCallum et al., 1998; Rousu
et al., 2005; Weinberger and Chapelle, 2009; Zhao
et al., 2011; Bi and Kwok, 2011; Zhou et al., 2011;
Verma et al., 2012). Many efforts are also de-
voted to utilizing hierarchical information in KGs.
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Leacock and Chodorow (1998) and Ponzetto and
Strube (2007) adopt hierarchical information de-
rived from KGs to construct concept relatedness.
Morin and Bengio (2005) propose a neural lan-
guage model by utilizing hierarchical information
in WordNet. Further, Hu et al. (2015) learn entity
representations by considering the whole entity hi-
erarchies of Wikipedia and inspire many works
(Krompaß et al., 2015; Xie et al., 2016) to utilize
hierarchical type structures to help the representa-
tion learning of KGs.

Different from the recent hierarchical models
that mainly focus on entity hierarchies and directly
utilize hierarchical information as simple features,
we incorporate relation hierarchies to build a hier-
archical attention scheme with coarse-to-fine gran-
ularity to enhance RE performance. As compared
with the existing models for RE, our models could
take advantage of relation correlations to better
identify informative instances, especially for those
long-tail relations, by transferring the knowledge
from their related relations of high-frequency.

3 Methodology

In this section, we introduce the overall framework
of our hierarchical attention for RE, starting with
notations and definitions.

3.1 Notations
We denote a KG as G = {E , R, F}, where E ,
R and F indicate the sets of entities, relations
and facts respectively. (h, r, t) 2 F indicates
that there is a relation r 2 R between h 2 E
and t 2 E . We follow the MIL setting and split
the entire instances into multiple entity-pair bags
{Sh1,t1 , Sh2,t2 , . . .}. Each bag Shi,ti contains mul-
tiple instances {s1, s2, . . .} mentioning both the
entities hi and ti. The distant supervision mech-
anism will label the bag with the corresponding
relation of the mentioned entity pair. Each in-
stance s in these bags is denoted as a word se-
quence s = {w1, w2, . . .}.

3.2 Framework
Given an entity pair (h, t) and its entity-pair bag
Sh,t, we adopt our models to measure the prob-
ability of each relation r 2 R holding between
the pair. As shown in Figure 2, the overall frame-
work of our models includes a sentence encoder
and a coarse-to-fine grained hierarchical attention.
The sentence encoder adopts several convolutional

neural networks to represent sentence semantics
with embeddings, and the hierarchical attention is
used to select the most informative instances to ex-
actly express their relations.

For each instance si 2 Sh,t, we use the sentence
encoder to represent its semantic information as an
embedding si. The details of the sentence encoder
will be introduced in Section 3.3. Since not all in-
stances in the bag Sh,t are positive to express the
relation between h and t, we apply the hierarchi-
cal attention to compute an instance weight ↵i for
each instance si. The details of the hierarchical at-
tention will be introduced in Section 3.4. We build
the global textual relation representation rh,t with
the weighted sum of instance output embeddings,

rh,t =
mX

i=1

↵isi, s1, . . . , sm 2 Sh,t. (1)

Here ↵i is the instance weight for the ith instance
output embedding si. By taking rh,t as the textual
relation representation of the entity pair (h, t), we
estimate its probability over each relation r 2 R,
i.e., whether there is a specific relation r between
h and t. We define the conditional probability
P (r|h, t, Sh,t),

P (r|h, t, Sh,t) =
exp(or)P

r̃2R exp(or̃)
, (2)

where o is the scores of all relations, which is de-
fined as follows,

o = Mrh,t, (3)

where M is the representation matrix to calculate
the relation scores.

3.3 Sentence Encoder
Given an instance s containing two entities, we ap-
ply several neural architectures to encode the in-
stance into its corresponding embeddings s.

Input Layer
The input layer of the sentence encoder aims to
embed both semantic information and positional
information of words into their input embeddings.

Word Embedding is proposed by Hinton
(1986), which aims to transform words into dis-
tributed representations to capture syntactic and
semantic meanings of words. Given a sentence s
consisting of multiple words s = {w1, . . . , wn},
we adopt Skip-Gram (Mikolov et al., 2013) to

2238



Text

s1

encoder

y1

s1

encoder

y1

s1

encoder

y1

...

...

Relation Hierarchy

...

HATT

HATT

HATT

rs

Figure 2: The architecture of hierarchical attention model.

compute all kw-dimensional word embeddings
{w1, . . . ,wn}.

Position Embedding is proposed by Zeng et al.
(2014). Position embedding is used to embed the
relative distances of each word to the two entities
into two kp-dimensional vectors. By concatenat-
ing the distance embeddings for the current word
wi to the both head and tail entities, we get a uni-
fied position embedding pi 2 R

kp⇥2.
For each word wi, we concatenate its word em-

bedding wi and position embedding pi to build its
input embedding xi 2 R

ki(ki = kw + kp ⇥ 2).

Encoding Layer

The encoding layer aims to compose the input
embeddings of the given instance into its cor-
responding instance embedding. In this paper,
we choose two convolutional neural architectures,
CNN (Zeng et al., 2014) and PCNN (Zeng et al.,
2015), to encode input embeddings into instance
embeddings.

Other neural architectures such as recurrent
neural architectures (Zhang and Wang, 2015) can
also be used as sentence encoders. Since previ-
ous works show that both convolutional and recur-
rent architectures can achieve comparable state-
of-the-art performance, we simply select convo-
lutional architectures in this paper. Note that, our
hierarchical attention scheme is designed indepen-
dently to the encoder choices, hence it can be eas-
ily adapted to fit other encoder architectures.

CNN slides a convolution kernel with the win-
dow size m over the input sequence {x1, . . . ,xn}

to get the kh-dimensional hidden embeddings.

hi = CNN
�
xi� m�1

2
, . . . ,xi+m�1

2

�
. (4)

A max-pooling is then applied over these hidden
embeddings to output the final instance embed-
ding s as follows,

[s]j = max
1in

{[hi]j}, (5)

where [·]j is the j-th value of a vector.
PCNN is an extension to CNN, which also

adopts a convolution kernel to obtain hidden em-
beddings. Then, a piecewise max-pooling is ap-
plied over the hidden embeddings,

[s(1)]j = max
1ii1

{[hi]j},

[s(2)]j = max
i1+1ii2

{[hi]j},

[s(3)]j = max
i2+1in

{[hi]j},

(6)

where [·]j is the j-th value of a vector, i1 and i2
are entity positions. The final instance embedding
s is achieved by concatenating these three pooling
results as follows,

s = [s(1); s(2); s(3)]. (7)

3.4 Hierarchical Selective Attention
Given the entity pair (h, t) and its bag of instances
Sh,t = {s1, s2, . . . , sm}, we achieve the instance
embeddings {s1, s2, . . . , sm} using the sentence
encoder. Afterwards, we apply a hierarchical se-
lective attention over them to get the textual rela-
tion representation rh,t for extracting relations. In
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this part, we will first introduce a plain selective
attention, and then introduce our hierarchical at-
tention.

Plain Selective Attention
The plain selective attention scheme computes the
attention score ↵i for each instance si to indicate
how well the instance can express the relation be-
tween the two entities. We assign a query vector
qr to each relation r 2 R and the attention for
each sentence in Sh,t = {s1, s2, . . . , sm} is de-
fined as follows,

ei = q>
r Wssi,

↵i =
exp(ei)Pm

j=1 exp(ej)
,

(8)

where Ws is the weight matrix. The attention
scores can be used in Eq. 1 to compute textual re-
lation representations. For simplicity, we denote
such a plain selective attention operation as the
following equation,

rh,t = ATT(qr, {s1, s2, . . . , sm}). (9)

Hierarchical Selective Attention
The inherent hierarchical structure of relations
lead us to modeling hierarchical attention. Gen-
erally, given a relation set R of a KG G (e.g.
Freebase), which consists of base-level relations
(e.g. /location/province/capital), we
can generate the corresponding higher-level rela-
tion set RH . The relations in the high-level set
(e.g. location) are more general and common,
which usually contain several sub-relations in the
base-level set. We assume that the sub-relations of
different relations are disjoint, in other words, the
relation hierarchies are tree-structured. The gener-
ation process can be done recursively. In practice,
we start from R0 = R which is the set of all re-
lations we focus for RE, and generate k � 1 times
to get a total of k-level hierarchical relation sets
{R0, R1, . . . , Rk�1}.

As shown in Figure 2, for a relation r = r0 2
R = R0, which is the focus for RE, we construct
its hierarchical chain of parent relations by back-
tracking the relation hierarchy as follows,

(r0, . . . , rk�1) 2 R0 ⇥ . . . ⇥ Rk�1, (10)

where ri�1 is the sub-relation of ri.
As with the plain attention, we assign a query

vector qr to each relation r 2
Sk�1

i=0 Ri. With

the hierarchical chain, we compute attention oper-
ations on the each layer of the relation hierarchies
to obtain corresponding textual relation represen-
tations,

ri
h,t = ATT(qri , {s1, s2, . . . , sm}). (11)

During the training process, those relation query
vectors of high-level relations (i.e., qri with larger
i) have more instances for training than those
query vectors of base-level relations. Hence, the
high-level query vectors are more robust for in-
stance selection but with coarse-grained capabil-
ity. In contrast, the base-level query vectors
(i.e., qri with smaller i) always suffer from data
sparsity, especially for those long-tail base rela-
tions. Hence, the base-level query vectors can per-
form fine-grained instance selection but the per-
formance is not stable.

Based on the hierarchical selective attention, we
can simply concatenate the textual relation repre-
sentations on different layers as the final represen-
tation,

rh,t = [r0
h,t; . . . ; r

k�1
h,t ]. (12)

The representation rh,t will be finally fed to com-
pute the conditional probability P (r|h, t,Sh,t) in
Eq. 2. Note that, those high-level representa-
tions (i.e., ri

h,t with larger i) are coarse-grained,
and those base-level representations (i.e., ri

h,t with
smaller i) are fine-grained. These hierarchical rep-
resentations can provide more informative infor-
mation than single-layered attention for relation
prediction, especially for those long-tail relations.

3.5 Initialization and Implementation Details

Here we introduce the learning and optimization
details for our hierarchical attention model. Dur-
ing the training process, we minimize the cross
entropy loss function. Given the collection of
entity-pair bags ⇡ = {Sh1,t1 , Sh2,t2 , . . .} and cor-
responding labeled relations {r1, r2, . . .}, we de-
fine the loss function as follows,

J(✓) = � 1

|⇡|

|⇡|X

i=1

log P (ri|hi, ti, Shi,ti) + �k✓k2
2,

(13)
where � is a harmonic factor, and k✓k2

2 is the reg-
ularizer defined as L2 normalization. All mod-
els are optimized using stochastic gradient descent
(SGD).
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4 Experiments

4.1 Datasets and Evaluation

We evaluate our models on the New York Times
(NYT) dataset developed by Riedel et al. (2010),
which is widely used in recent works (Lin et al.,
2016; Zeng et al., 2017; Ji et al., 2017; Han et al.,
2018; Liu et al., 2017; Wu et al., 2017; Huang and
Wang, 2017; Feng et al., 2018; Zeng et al., 2018).
The dataset has 53 relations including the NA re-
lation which indicates relations of instances are
not available. The training set has 522, 611 sen-
tences, 281, 270 entity pairs and 18, 252 relational
facts. In the test set, there are 172, 448 sentences,
96, 678 entity pairs and 1, 950 relational facts. In
both the training and test set, we truncate the sen-
tences which have more than 120 words into 120
words.

We evaluate all models in the held-out evalua-
tion. It evaluates models by comparing the rela-
tional facts discovered from the test articles with
those in Freebase and provides an approximate
measure of precision without human evaluation.
For evaluation, we draw precision-recall curves
for all models. Besides precision-recall curves, we
also show the precision values at the specific re-
call rate to conduct a more direct comparison, and
calculate the micro and macro average precision
scores to show the overall effect of different mod-
els. To further verify the effect of our hierarchical
attention for few-shot entity pairs, we follow the
previous works to report the Precision@N results.
The dataset and baseline code can be found from
Github 1 (Lin et al., 2016; Wu et al., 2017; Liu
et al., 2017).

4.2 Parameter Settings

To fairly compare the results of our hierarchical
attention models with those baselines, we also
set most of the experimental parameters following
Lin et al. (2016). Table 1 shows all experimen-
tal parameters used in the experiments. We ap-
ply dropout on the output layers of our models to
prevent overfitting. For CNN, we set the dropout
rate to 0.5. For PCNN, we observe that this model
tends to overfit on the training set very quickly,
and hence we set the dropout rate to 0.9 to allevi-
ate the overfitting problem. We also pre-train the
sentence encoder of PCNN before training our hi-
erarchical attention.

1NRE, AtNRE and soft-label-RE

Batch Size B 160
Learning Rate ↵ 0.2
Hidden Layer Dimension kc for CNNs 230
Word Dimension kw 50
Position Dimension kp 5
Convolution Kernel Size m 3

Table 1: Parameter settings.

Figure 3: Precision-recall curves for the proposed
model and various baseline models.

Figure 4: Precision-recall curves for the proposed
model and various attention-based neural models.

4.3 Overall Evaluation Results
To evaluate the performance of our proposed hier-
archical models, we compare the precision-recall
curves of our models with various previous re-
lation extraction models. The evaluation results
are shown in Figure 3 and Figure 4. We re-
port the results of the neural architectures in-
cluding CNN and PCNN with various attention-
based methods: +HATT is our hierarchical at-
tention method; +ATT is the plain selective at-
tention method over instances (Lin et al., 2016);
+ATT+ADV is the denoising attention method by
adding a small adversarial perturbation to instance
embeddings (Wu et al., 2017); +ATT+SL is the
attention-based model using soft-labeling method
to mitigate the side effect of the wrong label-
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ing problem at entity-pair level (Liu et al., 2017);
+ONE is a vanilla MIL neural model without at-
tention schemes (Zeng et al., 2015). We also com-
pare our method with feature-based models, in-
cluding Mintz (Mintz et al., 2009), MultiR (Hoff-
mann et al., 2011) and MIML (Surdeanu et al.,
2012).

From the results, we observe that:
(1) All methods have reasonable precision when

recall is smaller than 0.05. When the recall grad-
ually grows, the performance of the feature-based
methods drops much more faster than those neu-
ral models. It shows that human-designed features
are very limited as compared to neural models, es-
pecially in a noisy data environment. Hence, for
simplicity, we mainly show the results of our mod-
els and other attention-based neural models in the
following experiments.

(2) Both for CNNs and PCNNs, the models with
attention schemes outperform the vanilla models
without attention schemes. Though vanilla neural
models are powerful for relation classification, it is
still difficult to address data noise. The attention-
based methods apply attentions over multiple in-
stances and dynamically reduce the influence of
noisy instances, which can effectively improve the
performance of RE and achieve the state-of-the-art
results.

(3) As shown in both of the figures, the models
using hierarchical attention (HATT) achieve the
best results among all the attention-based models.
Even when compared with PCNN+ATT+ADV
and PCNN+ATT+SL which adopt sophisticated
denoising schemes and extra information, our
models still keep significant advantages. This in-
dicates that, as compared to the conventional plain
attention schemes which handle each relation in
isolation, our method can better take advantage
of the rich correlations among relations. We be-
lieve the performance of our hierarchical atten-
tion scheme can be further improved by adopting
extra mechanisms like adversarial training, rein-
forcement learning and soft-labeling at entity-pair
level, which will be left as our future work.

4.4 Effect of Hierarchical Attention for
Different Relations

To further verify the effectiveness of our hierar-
chical attention method for different relations, we
evaluate the RE performance of our method and
conventional attention methods. Since we focus

Method 0.1 0.2 0.3

CNN +ATT 67.5 52.8 58.5
+HATT 78.9 69.9 58.5

PCNN +ATT 69.4 60.6 51.6
+HATT 80.6 69.5 60.7

Method Mean Micro Macro

CNN +ATT 55.4 31.8 8.2
+HATT 69.1 41.7 16.5

PCNN +ATT 60.5 38.0 15.1
+HATT 70.3 42.3 17.0

Table 2: Precision (%) of attention-based models
for different recalls.

Training Instances <100 <200
Hits@K (Micro) 10 15 20 10 15 20

CNN +ATT <5.0 <5.0 21.1 <5.0 30.0 50.0
+HATT 5.3 36.8 52.6 40.0 60.0 70.0

PCNN +ATT <5.0 10.5 47.4 33.3 43.3 66.7
+HATT 31.6 52.6 63.2 53.3 70.0 76.7

Training Instances <100 <200
Hits@K (Macro) 10 15 20 10 15 20

CNN +ATT <5.0 <5.0 18.5 <5.0 16.2 33.3
+HATT 5.6 31.5 57.4 22.7 43.9 65.1

PCNN +ATT <5.0 7.4 40.7 17.2 24.2 51.5
+HATT 29.6 51.9 61.1 41.4 60.6 68.2

Table 3: Accuracy (%) of Hits@K on relations
with training instances fewer than 100/200.

more on the performance of those top-ranked re-
sults, we report the precision scores when the re-
call is 0.1, 0.2, 0.3 and their mean. We also report
micro average scores and macro average scores in
this experiment. As an approximation of the area
under the precision-recall curve, the micro aver-
age score gives a more complete view of the model
performance. Since the micro average score gen-
erally overlooks the influences of those long-tail
relations, we use the macro average score to give
more emphasis on long-tail relations in test sets,
which is often neglected by the previous works.

The evaluation results are shown in Table 2,
and from the results we observe that: Our HATT
method achieves consistent and significant im-
provements as compared to the plain ATT method.
From the micro and macro average precision
scores, we find that our HATT method effectively
improves RE performance especially for those
long-tail relations. As compared to the plain ATT
method, our method can take advantage of correla-
tions among relations to achieve the improvement,
especially on the long-tail relations.

To further demonstrate the improvements in
performance on long-tail relations after introduc-
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Test Mode ONE TWO ALL

P@N 100 200 300 Mean 100 200 300 Mean 100 200 300 Mean

CNN+ONE 68.3 60.7 53.8 60.9 70.3 62.7 55.8 62.9 67.3 64.7 58.1 63.4
CNN+ATT 76.2 65.2 60.8 67.4 76.2 65.7 62.1 68.0 76.2 68.6 59.8 68.2
CNN+HATT 88.0 74.5 68.0 76.8 85.0 76.0 73.0 78.0 88.0 79.0 77.7 81.6

PCNN+ONE 73.3 64.8 56.8 65.0 70.3 67.2 63.1 66.9 72.3 69.7 64.1 68.7
PCNN+ATT 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
PCNN+HATT 84.0 76.0 69.7 76.6 85.0 76.0 72.7 77.9 88.0 79.5 75.3 80.9

Table 4: Top-N precision (P@N) for RE on the entity pairs with different number of instances (%).

Relation: /people/person/children

High
Good David and Jody Smith and their son Nathan of

Ankeny , Iowa , stayed at the hotel, . . .

Bad . . . doting grandfather of Amanda, Lindsay,
David, Alexa, Reese, Paige and Nathan.

Base
Good . . . cherished grandfather of David, Michael, Ja-

son, Vicky, Andrew, Sam and Nathan
Bad David and Jody Smith and their son Nathan of

Ankeny, Iowa, stayed at the hotel . . .

Table 5: Example sentences for case study.

ing relation hierarchies, we extract a subset of the
test dataset in which all the relations has fewer
than 100/200 training instances. We employ
the Hits@K metric for evaluation. For each en-
tity pair, the evaluation requires its corresponding
golden relation in the first K candidate relations
recommanded by the models. Because it is diffi-
cult for the existing models to extract long-tail re-
lations, we select K from {10, 15, 20}. We report
the both micro and macro average Hits@K accura-
cies for these subsets. From the evaluation results
in Table 3, we observe that:

(1) For both CNN and PCNN models, our hier-
archical attention outperforms the plain attention
model. By taking advantage of the relation hier-
archy, our models can learn better about long-tail
relations via correlation information among rela-
tions. We also observe that even our hierarchical
CNN model presents a better performance than the
plain PCNN model. This shows the power of rela-
tion hierarchies, which makes our simpler CNN
model outperforms the PCNN model on those
long-tail relations.

(2) Although our HATT method has achieved
obvious progress on the long-tail relations as com-
pared with the plain ATT method, the results of all
these methods are still far from satisfactory. This
indicates that distantly supervised RE models suf-
fer from not only the wrong labeling problem, but
also the long-tail relation problem. We will in-
corporate more schemes and extra information to
solve this problem in the future.

4.5 Effect of Hierarchical Attention with
Different Instances

Since our method mainly focuses on modifications
over selective attention, we also conduct Preci-
sion@N tests on those entity pairs with few in-
stances following (Lin et al., 2016). We use the
three test settings for this experiment: the ONE
test set where we randomly select one instance for
each entity pair for evaluation; the TWO test set
where we randomly select two instances for each
entity pair; the ALL test set where we use all in-
stances for each remaining entity pair for evalua-
tion. For the ONE and TWO test set, we intend
to show that taking correlation information among
relations into consideration can lead to a better re-
lation classifier. The ALL test set is designed to
show the effect of our attention over multiple in-
stances. We report the precision values of top N
triples extracted, where N 2 {100, 200, 300}.

The evaluation results are shown in Table 4, and
from the results we observe that:

(1) The performance of all methods is generally
improved as the instance number increases. This
shows that the selective attention model can effec-
tively take advantage of information from multi-
ple noisy instances by combining useful instances
while discarding useless ones.

(2) Our HATT method has higher precision val-
ues in the ONE test set. This indicates that even in
an insufficient information scenario, correlations
among relations can be caught by our hierarchical
attention.

4.6 Case Study

We give some examples of how our hierarchical
selective attention takes effect in selecting the sen-
tences. In Table 5, we display the sentences that
are scored highest (“Good”) or lowest (“Bad”)
by the attention of different hierarchical levels
(“High” and “Base”).

The relation /people/person/children
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has fewer than 1000 training instances and it is
a long-tail relation. For this relation, the in-
stance recommended by the higher-level attention
straightforwardly expresses the relational fact that
Nathan is the child of David by telling that Nathan
is David’s son, while the sentence with the low at-
tention score actually gives the relationship of be-
ing at the same generation. On the contrary, the
lower-level attention mistakenly assigns high at-
tention to the incorrect sentence. This example
shows that our hierarchical attention is beneficial
for these long-tail relations.

5 Conclusion and Future Work

In this paper, we take advantage of relation hierar-
chies and propose a novel hierarchical instance-
level attention for relation extraction. As com-
pared with previous attention-based methods,
our hierarchical attention provides coarse-to-fine
granularity in instance selection and performs bet-
ter extraction for long-tail relations. We con-
duct various experiments and the evaluation re-
sults show that incorporating the inherent hierar-
chical structure of relations into attention schemes
can take advantage of correlations among relations
and improve the performance significantly.

In the future, we plan to explore the following
directions: (1) It will be promising to adopt ex-
tra information to help train more efficient models
for solving the long-tail relation problem. (2) We
may also combine our attention method with re-
cent denoising methods to further improve model
performance.
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Abstract

Distant supervision is an effective method to
generate large scale labeled data for relation
extraction, which assumes that if a pair of en-
tities appears in some relation of a Knowledge
Graph (KG), all sentences containing those en-
tities in a large unlabeled corpus are then la-
beled with that relation to train a relation clas-
sifier. However, when the pair of entities has
multiple relationships in the KG, this assump-
tion may produce noisy relation labels. This
paper proposes a label-free distant supervision
method, which makes no use of the relation
labels under this inadequate assumption, but
only uses the prior knowledge derived from the
KG to supervise the learning of the classifier
directly and softly. Specifically, we make use
of the type information and the translation law
derived from typical KG embedding model
to learn embeddings for certain sentence pat-
terns. As the supervision signal is only de-
termined by the two aligned entities, neither
hard relation labels nor extra noise-reduction
model for the bag of sentences is needed in
this way. The experiments show that the ap-
proach performs well in current distant super-
vision dataset.

1 Introduction

Distant Supervision was first proposed by
Mintz (2009), which used seed triples in Freebase
instead of manual annotation to supervise text. It
marked text as relation r if (h, r, t) can be found
in a known KG, where (h, t) is the pair of entities
contained in the text. This method can generate
large amounts of training data, therefore widely
used in recent research. But it can also produce
much noise when there are multiple relations
between the entities. For instance in Figure 1, we
may wrongly mark the sentence “Donald Trump
is the president of America” as relation born-in,

⇤ Corresponding author.

Figure 1: The mislabeled sentences produced by
Distant Supervision.

with the seed triple (Donald Trump, born-in,
America).

Previous works have tried different ways to ad-
dress this issue. One way named Multi-Instance
Learning(MIL) divided the sentences into differ-
ent bags by (h, t), and tried to select well-labeled
sentences from each bag (Zeng et al., 2015) or re-
duced the weight of mislabeled data (Lin et al.,
2016). Another way tended to capture the reg-
ular pattern of the translation from true label to
noise label, and learned the true distribution by
modeling the noisy data (Riedel et al., 2010; Luo
et al., 2017). Some novel methods like (Feng et al.,
2017) used reinforcement learning to train an
instance-selector, which will choose true labeled
sentences from the whole sentence set. These
methods focus on adding an extra model to reduce
the noisy label. However, stacking extra model
does not fundamentally solve the problem of inad-
equate supervision signals of distant supervision,
and will introduce expensive training costs.

Another solution is to exploit extra supervision
signal contained in a KG. Weston (2013) added the
confidence of (h, r, t) in the KG as extra super-
vision signal. Han (2018) used mutual attention
of KG and text to calculate a weight distribution
of train data. Both of them got a better perfor-
mance by introducing more information from KG.
However, they still used the hard relation label de-
rived from distant supervision, which also brought
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Figure 2: An instance of our label-free distant supervision method.

in much noise.
In this paper, we tend to avoid supervision by

hard relation labels, and make full use of prior
knowledge from a KG as soft supervision signal.
We consider the TransE model proposed by Bor-
des (2013), which encodes entities and relations
of a KG into a continuous low-dimensional space
with the translation law h + r ⇡ t, where h, r, t
describe the head entity, the relation and the tail
entity respectively. Inspired by TransE model, we
use t � h, instead of a concrete relation label r, as
the supervision signal and make the sentence em-
bedding close to t � h. Concrete relation labels
may introduce mislabeled sentences, while t � h
is label-free, which is only determined by the two
aligned entities and the the translation law.

Our assumption is that each relation r in a
KG has one or more sentence patterns that can
describe the meaning of r. For the example in
Figure 2, we first replace the entity mentions in
a sentence with the types of the aligned enti-
ties in the KG to form a sentence pattern. For
example, “in Guadalajara, Mexico” will be re-
placed by “in PLACE, PLACE” to form a sen-
tence pattern “in A, B” which conveys the mean-
ing of “B contains A” and indicates the relation
contains. For this sentence pattern, there may
be a group of sentences sharing the same pat-
tern but with different aligned entity pairs. In
the first sentence “The talks, in Ankara, Turkey,
continued late into the evening”, (Turkey �
Ankara) implies both “/location/country/capital”
and “/location/location/contains” as there are mul-
tiple relations between Ankara and Turkey in
the KG. But in the similar sentence “She raised
the family comfortably in Guadalajara, Mexico.”,
(Mexico � Guadalajara) only implies “/loca-

tion/location/contains” as there is no relation of
“/location/country/capital” between Mexico and
Guadalajara in the KG. As both (Turkey �
Ankara) and (Mexico � Guadalajara) will be
used to supervise the learning of the encoder for
the pattern “in A, B”, it makes the embedding of
the sentence pattern closer to the correct relation
“/location/location/contains” instead of the wrong
relation “/location/country/capital”. In this way,
we do not need to label the sentences with the hard
relation labels anymore.

The main contributions of this paper can be
summarized as follows:

• As compared to existing distant supervision
for relation extraction, our method makes
better use of the prior knowledge derived
from KG to address the wrong labeling prob-
lem.

• The proposed approach tends to supervise the
learning process directly and softly by the
type information and translation law, both de-
rived from KG. Neither hard labels nor ex-
tra noise-reduction model for the bag of sen-
tences is needed in this way.

• In the experiments, we show that the label-
free approach performs well in current distant
supervision dataset.

2 Related works

Relation extraction is intended to find the relation-
ship between two entities given an unstructured
text. Traditional methods use artificial character-
istics or tree kernels to train a classification model
(Culotta and Sorensen, 2004; Guodong et al.,
2002). Recent works concentrate on deep neural
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networks to avoid error propagation during gen-
erating features (Ebrahimi and Dou, 2010; Zeng
et al., 2014; Zhou et al., 2016; Zheng et al., 2017).
More complicated models were proposed to learn
deeper semantic features, like PCNN (Zeng et al.,
2015) and attention pooling CNN (Wang et al.,
2016), graph LSTMs (Peng et al., 2017).

Most of the early works were trained on the
standard dataset by manual annotation, such as
SemEval-2010 Task 8. In actual scenarios, it will
cost a lot of manual resources to generate labeled
data. Distant supervision (Mintz et al., 2009)
aimed to obtain large-scale training data automat-
ically, which becomes the most versatile supervi-
sion method. However, it suffers from the noisy
label problem. Many works concentrate on deal-
ing with the noise of distant supervision. Multi-
instance learning (Riedel et al., 2010; Surdeanu
et al., 2012) addresses the problem in bag-level,
which divides sentences into different bags by
(h, t). Zeng (2015) selects the most correct sen-
tence from each bag. Lin (2016) introduces atten-
tion mechanism by distributing different weight to
each sentence in the same bag, which reduces the
effect of noisy labels and increases utilization of
train data. Luo (2017) uses a transition matrix to
characterize the inherent noise, convert true dis-
tribution to noise distribution. The model is en-
hanced by curriculum learning. Feng (2017) trains
an instance selector to select correct labeled sen-
tences by reinforcement learning.

Most of the above methods introduce a com-
plicated extra model to deal with the noisy label
problem. Our work tends to avoid the noisy label
from distant supervision, by using entity informa-
tion and translation law in KG to introduce more
supervision signal.

KG is composed of many triples like (head, re-
lation, tail), which describe relationships between
head entities and tail entities. TransE is first pro-
posed by (Bordes et al., 2013) to encode triples
into a continuous low-dimensional space, which
based on the translation h+r ⇡ t. Many follow-up
works like TransH (Wang et al., 2014), DistMult
(Yang et al., 2014), and TransR (Lin et al., 2015),
proposed advanced method of translation by intro-
ducing different embedding spaces. Some recent
works attempt to jointly learn text and KG triples,
including (Xie et al., 2016) and (Xiao et al., 2016).
These models tend to strengthen the representation
of entities and relationships for KG tasks, but not

for text representation.

3 Methodology

Here we present LFDS (Label-Free Distant Su-
pervision) that essentially avoids noisy labels in-
troduced by traditional distant supervision. Fig-
ure 2 shows an instance of our method. First, we
pre-train representations for entities and relations
based on the translation law h + r ⇡ t defined
by typical KG embedding models such as TransE.
Second, for each sentence in the train sets, we re-
place the entity mentions with the types of the en-
tities in the KG. An attention mechanism is then
applied to calculate the importance of words with
regard to the sentence pattern. Third, we train the
sentence encoder by the margin loss between t�h
and sentence embedding. Note we do not use the
noisy relation labels to train the model. Finally,
for prediction, we calculate the embedding of test
sentences, then compare the sentence embedding
with all relation embeddings learned by TransE,
and choose the closest relation as our predicted re-
sult. We describe these four parts in details as be-
low.

3.1 KG Embedding

We use typical KG embedding models such as
TransE to pre-train the embedding of entities and
relations. We intend to supervise the learning by
t � h instead of hard relation label r. Concretely
speaking, given two entities, h and t, we regard
the translation based upon TransE between h and
t as the target relation representation. TransE in-
terprets relationships as translations operating on
low-dimensional embeddings of entities, with the
formula h+r ⇡ t, where h, r, t represent head en-
tity, relation, and tail entity separately. The model
is proved to perform well in predicting the tail en-
tity when given head entity and relation.

The problem is that there may be multi-
ple relations between t and h. As the ex-
ample in Figure 2, the vector calculated by
Turkey � Ankara contains information for both
relations: “/location/country/capital” and “/loca-
tion/location/contains”. While supervising the
learning of the sentence pattern “in PLACE,
PLACE”, it is difficult to distinguish the two re-
lations by supervision signal from only one sen-
tence. However, other sentences with the simi-
lar pattern but different aligned entity pairs can
push the embedding of the pattern close to another
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vector, such as Mexico � Guadalajara, which
only represents “/location/location/contains” rela-
tion. As a result, the pattern will be closer to its
correct relation “/location/location/contains”.

Our work chooses TransE instead of other KG
embedding models such as TransH or TransR, be-
cause TransE builds representations for h and t in-
dependent from fixed relation type r as the model
assumes we do not know the specific relation r
when training the encoder with supervision from
t � h.

3.2 Sentence Embedding
In order to get a better representation of sentences,
we had tried a variety of NRE models, such as Bi-
LSTM(Zhou et al., 2016), SDP-LSTM (Yan et al.,
2015), and typical CNN models. We chose PCNN
(Zeng et al., 2015) to encode the sentence finally,
which performs the best in our experiments. The
encoder contains three parts as below.

Word Embeddings and Attentions. Instead
of encoding sentences directly, we first replace
the entity mentions e in the sentences with cor-
responding entity types typee in the KG, such as
PERSON, PLACE, ORGANIZATION, etc. We
then pre-train the word embedding by word2vec.

Attention mechanism is further applied to cap-
ture the importance of words with regards to the
types information of entities as we assume the
words close to the types information are more im-
portant.

First, we calculate the similarity between each
word wj and two entity types respectively:

Aj
1 = f(typee1 , w

j) (1)

Aj
2 = f(typee2 , w

j) (2)

f(typee, wj) is the similarity function, which is
defined as cosine similarity in this paper. typee1

and typee2 are the embeddings of the two entity
types. Then the weight distribution for each word
can be derived by exponential function:

↵j
1 =

exp(Aj
1)Pn

i=1 exp(Ai
1)

(3)

↵j
2 =

exp(Aj
2)Pn

i=1 exp(Ai
2)

(4)

We use the average weights of two entities as the
attention of word wj . Finally, the word embedding
WF j is derived as follows:

WF j =
↵j

1 + ↵j
2

2
⇤ wj (5)

Figure 3: The sentence encoder with word atten-
tion and PCNN.

Position embedding. Zeng (2014) first pro-
posed PFs to specify entity pairs. PF is a series
of relative distances from current word to the two
entities. For instance, for the sentence “Damas-
cus, the capital of Syria”, the distances from “cap-
ital” to the two entities are 3 and -2 respectively.
The initial embedding matrix is randomly gener-
ated. Then we look up vector in the matrix by the
two relative distances. The final position embed-
ding will be the concatenation of [PF1, PF2]. As
a result, we get a representation for each word:

wj = [WF j , PF j
1 , PF j

2 ]

Then the input sentence representation will be:

x = w1, w2, ..., wn

Piecewise-CNN. It was proved by (Zeng et al.,
2015) that piecewise max pooling layer performs
well in relation extraction, which tends to capture
structural information between two entities. For
each sentence, we use CNN to obtain a represen-
tation, then divide it into three parts by the two
entities index. For each part, we perform a max
pooling layer, thus we get 3-dimensional vector:

pi = [pi1 , pi2 , pi3 ]

The shape of final vector will be (bz, dc ⇤ 3),
where bz represents batch size and dc is the num-
ber of channels.
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The structure of whole model is shown in Fig-
ure 3.

3.3 Margin loss
In order to make the sentence embedding encoded
by the PCNN model and relation embedding spec-
ified by t � h based on the translation law as close
as possible, we use margin loss with linear layer
instead of cross-entropy loss with softmax layer.
For the sentence embedding via PCNN layer, we
perform a linear transformation to make its dimen-
sion equal to the relation representation.

se = W ⇤ PCNN(x) + b (6)

Where W is the transformation matrix with shape
(dc⇤3, embedding dim). Then we define margin
loss between t � h and se as follows:

L =
X

se2S

[(t�h�se+��(rand(t0�h, t�h0)�se))]+

(7)
Where rand(a, b) means choosing a or b. t0 �h

is a negative instance of t � h, which is generated
by randomly replacing t with other entities in KG,
so does t � h0. For each sentence, we decrease the
distance between t � h and se, while increase the
distance between the negative instance and se. � is
the reasonable margin between positive triple and
negative triple. If the margin is already larger than
�, the loss of the sentence will be zero.

Another point to note is the special label NA in
the dataset, which means there is no relationship
between the two entities in the KG. In this case,
t � h is pointless and will confuse our encoder.
To deal with this issue, we generate a fixed rela-
tion for NA, used as the negative relation for those
sentences having some relationships. The mini-
mum distance from NA to other relations is forced
to be greater than 2 ⇤ �, where � is the margin in
loss function. When the model is used for predic-
tion, the NA is also included.

The training target of our model is shown as
Figure 4, including the sentence encoder we in-
troduced above.

3.4 Prediction
We build a sentence encoder which can output a
sentence embedding with the same dimension as
relation embedding from the KG. For a new test
sentence, we first encode it with the model, then
calculate the similarity between the sentence em-
bedding and the embeddings of all candidate re-
lations. The most similar relation to the sentence

Figure 4: The training target.

embedding is the predicted category.

r = arg max
i

(f(Se, ri)) (8)

4 Experiments

Our experiments aim to provide positive evidence
for the two main questions: (1) Whether or not the
sentence pattern can express the essential part of
the sentence? (2) Whether the abundant supervi-
sion signal in a KG is helpful to predict the true
label for those mislabeled sentences?

To this end, we first introduce the widely used
dataset for distant supervision, and evaluate our
performance on the dataset. To further investigate
the effectiveness of our model with noisy data, We
divide the sentences in dataset into different cat-
egories, and show the study about some specific
cases.

4.1 Datasets
The most widely used dataset was generated by
Riedel (2010). It aligns the entities in Freebase
with the New York Times (NYT) corpus, which
contains all the news during 2005-2007. The sen-
tences derived from news in 2005-2006 were used
as the training data, while those from year 2007
were used as test data. After the alignment, there
are 522,611 training sentences and 172,448 test
sentences, labeled by 53 candidate relations in
Freebase, and an extra label NA, which means
there is no relation between the two entities in
Freebase.

According to previous work (Mintz et al.,
2009), we evaluate our model in the held-out eval-
uation and manual evaluation. The held-out evalu-
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Parameter Settings
Kernel size k 3
Sentence embedding size 100
Word embedding size 50
Position embedding size 5
Number of Channels 250
Margin 2
Learning rate 0.001
Dropout 0.5
Batch size 128

Table 1: Parameter settings.

ation calculates the precision-recall curves on the
whole test set. For the false positives produced by
the noisy labels in the test data, the precision will
drop rapidly as the recall increases. In order to
measure the precision, we need manual evaluation
to check misclassified samples.

4.2 Experimental settings
4.2.1 Word Embeddings
In this paper, we use word2vec to train word em-
beddings on the NYT corpus. The window size of
word2vec model is set as 5, and the embedding
size is 50. We preserve those words appearing
more than 10 times as vocabulary.

4.2.2 KG embeddings
We train the entities and relationships on FB40k1

(Lin et al., 2015), which is generated for knowl-
edge graph completion, with about 40,000 entities
and 1318 relations. We set the embedding size as
100 instead of 50, which performs better in our
experiment. Besides, we set the margin as 1 and
train with learning rate 0.01. In order to test the
performance of the vectors, we evaluate our model
in KG completion tasks. The hit@10 of our final
TransE model is 0.67, which is evaluated by pre-
dicting the closest 10 tail entities with specified
head entities and relationships.

4.2.3 Parameter Settings
We use three-fold validation to determine the
hyper-parameters. In the network layer, we try
{3, 4, 5} for the kernel size, {100, 150, 200, 250,
300} for the number of channels, {5, 10, 15} for
the position embedding size. In the update proce-
dure, we use adaptive gradient descent with try-
ing {0.1, 0.05, 0.01, 0.001} for the initial learn-
ing rate, and {64, 128, 256} for the mini-batch
size. In the dropout operation, we set the proba-
bility as 0.5 referring to most of the classical ex-

1https://github.com/thunlp/KB2E.

Figure 5: Performance comparison with Tradi-
tional methods.

periments. Table 1 shows our final setting for all
hyper-parameters.

4.3 Comparison with Traditional Methods

4.3.1 Held-out Evaluation
The held-out evaluation is performed directly on
the test data. For the labels produced by distant su-
pervision may not be precise, held-out evaluation
is an approximate measure of our model, which is
usually depicted by the precision-recall curve.

We select six representative models for com-
parison. Mintz (Mintz et al., 2009) proposed
a feature-based model that first used distant su-
pervision. MultiR (Hoffmann et al., 2011) is
a multi-instance learning model under the at-
least-one assumption. PCNN+MIL (Zeng et al.,
2015) proposed the piece-wise pooling method,
which is used as the encoder of our works.
PCNN+ATT (Lin et al., 2016) performed selec-
tive attention over instances and got better results
in the datasets. SEE (He et al., 2018) is a novel
work that learned syntax-aware entity embedding
for relation extraction and achieved state-of-the-
art. The precision-recall curves are shown in Fig-
ure 5, where LFDS denotes our label-free distant
supervision method.

We can observe from the figure that our LFDS
method has an overall good performance com-
pared to current works, especially with the growth
of recall. It demonstrates that our model has a
good classification ability in general, because the
sentence pattern can capture the meaning of rela-
tions better than a sentence. The result can answer
the first question we proposed at section 4.
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Accuracy Top 100 Top 200 Top 500 Average
Mintz 0.77 0.71 0.55 0.676
MultiR 0.83 0.74 0.59 0.720
PCNN+MIL 0.86 0.80 0.69 0.783
PCNN+ATT 0.86 0.83 0.73 0.807
SEE 0.91 0.87 0.77 0.850
LFDS 0.90 0.88 0.83 0.869

Table 2: Precision values for the top 100, 200 and
500 sentences.

4.3.2 Manual Evaluation
For the wrong labels produced by distant super-
vision, there will be many false positives in our
evaluation inevitably, thus causing a sharp decline
in the held-out precision-recall curves. Manual
evaluation is necessary to evaluate the model more
precisely. Following the previous works, we se-
lected the top 100, top 200, and top 500 sentences,
which is ranked by the predicted confidence, then
evaluated the precision artificially. The result is
shown in table 2.

We can see that the precision is higher than
held-out evaluation, because manual evaluation
avoid the effect of wrong labels. Our LFDS
method achieved a consistently higher precision
compared with current works, especially when re-
call increases. Compared to held-out evaluation,
manual evaluation can show our model’s ability in
differentiating noisy sentence. Detail analysis will
be shown in Section 4.4.

In the manual procedure, we found some wrong
cases caused by entity types. The entity types in
Freebase can be ambiguous, where “ORGANIZA-
TION” may be confused with “PLACE”. It causes
error propagation in our experiments.

4.4 Case Study
To further prove the effectiveness of our model,
especially in distinguishing noisy labels, we se-
lect some specific relationships for detail analysis.
The noisy labels are produced by the entity pairs
which have multiple relationships between them.
In this case, different relationships will share the
same entity pairs in knowledge graph. We de-
fined this kind of relationships as “overlapping”
relationships. The more entity pairs it shares with
other relation, the overlapping degree of the rela-
tion is higher, which means the relation is harder
to distinguish.

Case 1: Non-overlapping Relations. The first
case is the non-overlapping relation. For triples
of the non-overlapping relation r1 as (h, r1, t),

there are few triples like (h, r2, t) in KG, where r2

is another relation in our candidate relations set.
That means for this kind of relation, almost no
noisy label will be produced. One of these rela-
tion is /business/person/company. There are near
200 sentences in the test set, with our evaluation
of precision achieving 0.98. It proves that our en-
coder with sentence pattern and label-free super-
vision is effective in basic classification, which is
a convincing answer of the first question we pro-
posed at section 4.

Case 2: Partly-overlapping Relations. The
second case is the partly-overlapping relation, in
which two relations may share a certain number of
entity pairs in Freebase. For instance, the relation
/location/country/capital shares many entity pairs
with /location/location/contains but not all entity
pairs in Freebase have both capital and contain
relations.

For those entity pairs having both relations, tra-
ditional distant supervision would produce two la-
bels for sentences such as:

“The talks, in Ankara, Turkey, contin-
ued late into the evening.”

The noisy labels in the train set are hard to dif-
ferentiate. Recent noise reduction methods com-
mit to improving the distinguishing ability of the
model by adding extra models. Our experiment
proves that our label-free supervision method not
only achieves better differentiation performance
but also does not need to train extra noise reduc-
tion models. Cases are shown in Table 3.

The prediction results indicate that the model
is capable of learning the embedding of the sen-
tence pattern we want. For instance, the model
captures the pattern like “in PLACE, PLACE”,
and tends to predict the sentence with this pat-
tern for /location/location/contains, while the pat-
tern “PLACE, the capital of PLACE” for /loca-
tion/country/capital respectively. When both two
relations are labeled for the same sentence in the
test set, our model can predict the correct label
with the corresponding patterns.

Another similar but more interesting ex-
ample is /people/person/nationality and /peo-
ple/person/place lived. In this case, the two rela-
tions share a certain number of entity pairs in Free-
base like the previous example. But because of
the incompleteness of Freebase, many sentences
with only one label are actually wrongly labeled.
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Sentence Label with normal distant
supervision

Prediction with LFDS Pattern

The talks, in Ankara, Turkey,
continued late into the evening.

/location/location/contains
/location/country/capital

/location/location/contains in PLACE, PLACE

..., said Mr.Cho, 25, who was
born in Seoul, South Korea, and
educated at a boarding school in
Scotland.

/location/location/contains
/location/country/capital

/location/location/contains in PLACE, PLACE

On Wednesday, suicide bomb-
ings killed 33 people in Algiers,
the capital of Algeria.

/location/location/contains
/location/country/capital

/location/country/capital PLACE, the capital of
PLACE

Farah has lived in India, Eu-
rope and South Africa, and only
started revisiting Mogadishu in
1996, after two decades away.

/people/person/nationality /people/person/place lived PERSON lived in
PLACE

He was George Mcgovern of
South Dakota – not Frank church
of Idaho, who was involved in
other antiwar legislation.

/people/person/place lived /people/person/nationality PERSON of PLACE

Table 3: The comparison between labels from normal distant supervision and our label-free relation
prediction

For example,the sentence “Farah has lived in In-
dia, ...” is labeled with only one relation /peo-
ple/person/nationality because there is only one
nationality relation in Freebase. But the ac-
tual meaning of the sentence is to say Farah’s
place lived is India. This type of wrongly label-
ing problem is caused by incompleteness of Free-
base which is very common for many other knowl-
edge graphs.

However, our label-free method can correct
this problem because it essentially learns the
sentence patterns that are determined only by
the sentence itself and the aligned entity pairs.
As shown by the last two examples in Ta-
ble 3, our model successfully learned the pat-
terns “PERSON lived in PLACE” for /peo-
ple/person/place lived and “PERSON of PLACE”
for /people/person/nationality respectively.

These instances show that our model is capa-
ble of learning some sentence patterns and map-
ping them to the corresponding relations in Free-
base, which can distinguish noise sentences effec-
tively. It indicates that our label-free supervision
with prior knowledge introduced by the translation
laws and entity types in KG is effective in avoid-
ing noise, which can answer the second question
we proposed at section 4 credibly.

Case 3: Mostly-overlapping Relations. The
final case is mostly-overlapping relations, in
which the two relations share most entity
pairs in Freebase. One example is /peo-
ple/person/place of birth, which shares most of
its entity pairs with /people/person/place lived in

FB40k, because a person‘s birthplace and resi-
dence are likely to be the same. That means in
the process of training with TransE, the two rela-
tions are updated by similar gradients, which will
produce similar representations for t � h. In this
case, the relations are really hard to differentiate,
because there are not enough distinct supervision
signals in the KG. We tend to resolve this situa-
tion in future work by utilizing prior knowledge
derived from relation paths.

5 Conclusion

In this paper, we argue that the noise label prob-
lem in distant supervision is mainly caused by
the incomplete use of KG information. Thus we
propose a label-free distant supervision method,
which supervises the learning of the embedding of
sentence patterns by t � h and entity types, in-
stead of hard relation labels. We conducted ex-
periments on the widely used relation extraction
dataset and showed that with the recall increasing,
our model performs better than state-of-the-art re-
sults. This demonstrates that our approach can ef-
fectively deal with the noise problem and encod-
ing sentence pattern for relation extraction.

In the future, we plan to utilize more informa-
tion in knowledge graphs to improve the distant
supervision signal. For instance, the reasoning
path can introduce new prior knowledge, which is
a key direction in current works of KG. The path
may produce new supervision signals for two en-
tities even there is no direct connection between
them. We also plan to apply this method to other
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datasets.
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Abstract

We investigate the task of joint entity relation
extraction. Unlike prior efforts, we propose a
new lightweight joint learning paradigm based
on minimum risk training (MRT). Specifically,
our algorithm optimizes a global loss function
which is flexible and effective to explore inter-
actions between the entity model and the rela-
tion model. We implement a strong and simple
neural network where the MRT is executed.
Experiment results on the benchmark ACE05
and NYT datasets show that our model is able
to achieve state-of-the-art joint extraction per-
formances.

1 Introduction

Detecting entities and relations is usually the first
step towards extracting structured knowledge from
plain texts. Its goal is to identify text spans repre-
senting typed objects (entities) and semantic rela-
tions among those text spans (relations). For ex-
ample, in the following sentence,

[Associated Press]ORG [writer]PER [Patrick
McDowell]PER in [Kuwait City]GPE.

“Associate Press” is an organization entity (ORG),
“writer” is a person entity (PER), and the two en-
tities have an affiliation relation (ORG-AFF).

Two types of models have been applied to the
extraction task, the pipeline model and the joint
model. In the pipeline setting, the task is bro-
ken down into independently learned components
(an entity model and a relation model). De-
spite its flexibility, the pipeline ignores interac-
tions between the two models. For example, the
entity model doesn’t look at relation annotations
which are useful for identifying entities (e.g., if
an ORG-AFF relation exists, the entity model can
only assign ORG and AFF to its entities). The
joint setting, on the other hand, extracts entities

relation
model

joint decoder 

MRT light interaction

heavy interaction

entity decoder relation decoder shared
parameters

no interaction

entity decoder relation decoder 

entity
model

Figure 1: Paradigms of joint entity relation extraction.

and relations in a unified model, which can ex-
plore shared information and alleviate error prop-
agations between models. Here we will focus on
joint models.

One simple joint learning paradigm is through
sharing parameters (Miwa and Bansal, 2016; Kati-
yar and Cardie, 2017). Typically, instead of train-
ing two independent models, the entity and rela-
tion model can share some input features or in-
ternal hidden states. It has an advantage that no
additional constraint is required on the two sub-
models. But the connections among sub-models
are still not fully explored due to independent sub-
model decoders. For example, to get signals from
relation annotations, the entity model needs to
wait for the relation model to update the shared
parameters. To further utilize the interaction be-
tween decoders, some complex joint decoding al-
gorithms (e.g., simultaneously decoding entities
and relations in beam search) have been carefully
studied (Li and Ji, 2014; Katiyar and Cardie, 2016;
Zhang et al., 2017; Zheng et al., 2017). In this
paradigm, it is important (and hard) to make a
good balance between the exactness of the joint
decoding algorithm and capacities of individual
sub-models.

In this work, we propose a joint minimum risk
training (MRT) (Och, 2003; Smith and Eisner,
2006) method for the entity and relation extraction
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task. It provides a lightweight way to strengthen
connections between the entity model and the rela-
tion model, and keeps their capacities unaffected.
Given an input x and a loss function �(ŷ,y)
(measuring the difference between model output
ŷ and the true y), MRT seeks a posterior P (ŷ|x)
to minimize the expected loss Eŷ⇠P (ŷ|x)�(ŷ,y).
Comparing with prior joint decoding algorithms,
the MRT-based algorithm is simple and can be ap-
plied to a broad range of entity relation extraction
models without changing the original sub-models
and decoders (Figure 1).

One advantage of the MRT-based method is that
it can explicitly optimize a global sentence-level
loss (e.g., F1 score) rather than local token-level
losses. Therefore, it may catch more sentence-
level information in the training time and match
evaluation metrics better in the testing time. Fur-
thermore, besides the handcrafted losses, we also
try to directly learn a loss function from data dur-
ing the joint MRT process. The automatically ob-
tained loss would help MRT to calibrate its risk
estimation with knowledge from the data distribu-
tion. On the other hand, comparing with preivous
single task MRT, the joint MRT algorithm here
will integrate messages from different sub-models,
which is the key step for enhancing decoder in-
teractions in the joint learning. As a result, the
training of the entity model now can directly ac-
knowledge the loss of the relation model (without
waiting for shared parameters) and vice versa.

We compile the proposed joint MRT with a
strong neural network-based model which uses re-
current neural networks (RNN) in the entity model
and convolutional neural networks (CNN) in the
relation model. On benchmark ACE05 and NYT
datasets, we show that the new RNN+CNN struc-
ture outperforms previous neural network-based
models. After adding the joint MRT, our model
is able to achieve state-of-the-art performances.

To summarize, our main contributions include

1. proposing a new joint learning paradigm based
on minimum risk training for the joint entity
relation extraction task.

2. implementing a strong and simple neural-
network-based entity relation extraction model
which carries the proposed MRT algorithm. 1

1Our implementation is available at https://
github.com/changzhisun/entrel-joint-mrt.

3. achieving state-of-the-art results on two bench-
mark datasets (ACE05 and NYT).

2 Related Work

In many pipelined entity relation extraction sys-
tems, one first learns an entity model, then learns
a relation model based on entities generated by the
entity model (Miwa et al., 2009; Chan and Roth,
2011; Lin et al., 2016). Such systems are often
flexible to incorporate different data sources and
different learning algorithms. However, they may
also suffer from error propagation and data ineffi-
ciency. To tackle the problem, many recent studies
try to develop joint extraction algorithms.

Parameter sharing is a basic strategy in joint
learning paradigms. For example, in (Miwa and
Bansal, 2016), the entity model is a sentence-level
RNN, and the relation model is a dependency tree
path RNN which takes hidden states of the en-
tity model as features (i.e., the shared parame-
ters). Our basic extraction model is similar to
theirs but with a CNN-based relation model. Simi-
larly, Katiyar and Cardie (2017) build a simplified
relation model on the entity RNN using the atten-
tion mechanism.

To further explore interactions between the en-
tity decoder and the relation decoder, some joint
decoding algorithms were studied. For example,
Katiyar and Cardie (2016) propose a CRF-based
model which conducts joint decoding with aug-
mented transition matrices. Zheng et al. (2017)
propose to directly encode relations in the sequen-
tial labelling tag set. Both of them are exact decod-
ing algorithms, but they need adding constraints
on the relation model (e.g., Zheng et al. (2017)
cannot handle entities which appear in multiple re-
lations). On the other side, Li and Ji (2014) de-
velop a joint decoding algorithm based on beam
search. Zhang et al. (2017) study a globally nor-
malized joint model. They retain capacities of sub-
models, while their decoding algorithms are inex-
act. Here, we introduce MRT to the task, which is
a more lightweight setting of joint learning.

Minimum risk training is a learning framework
which tries to handle models with arbitrary dis-
crepancy metrics (i.e., losses of a model output
w.r.t. the true answer) (Och, 2003; Smith and Eis-
ner, 2006; Gimpel and Smith, 2010). It has been
successfully applied to many NLP tasks. Some
recent work include (He and Deng, 2012; Shen
et al., 2016) which apply MRT to (neural) ma-
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chine translation, (Xu et al., 2016) which develops
a shift-reduce CCG parser to directly optimize F1,
and (Ayana et al., 2016) which uses a MRT-based
model for summarization. We note that most pre-
vious applications of MRT focus on a single job,
while the joint entity relation extraction consists of
two sub-tasks. Investigating MRT in joint learning
scenarios is the main topic of this work.

Finally, the sampling algorithm of solving MRT
is similar to the policy gradient algorithm in rein-
forcement learning (RL) (Sutton and Barto, 1998).
Some recent NLP applications which share the key
idea of MRT but are described with RL language
also show promising results (e.g., dialog systems
(Li et al., 2016), machine translation (Nguyen
et al., 2017)). The idea of learning loss functions
from data is similar to inverse reinforcement learn-
ing (Abbeel and Ng, 2004; Ratliff et al., 2006).

3 The Approach

We define the joint entity and relation extraction
task following the setting of (Miwa and Bansal,
2016). Given an input sentence s = w1, . . . , w|s|
(wi is a word), the task is to extract a set of enti-
ties E and a set of relations R. An entity e 2 E is
a sequence of words labelling with an entity type
(e.g., person (PER), organization (ORG)). Let Te

be the set of possible entity types. A relation r is a
triple (e1, e2, l), where e1 and e2 are two entities,
l is a relation type describing the semantic relation
between e1 and e2 (e.g., organization affiliation re-
lation (ORG-AFF)). Let Tr be the set of possible
relation types.

In our joint extraction method (Figure 2), we
treat entity detection as a sequence labelling task
(Section 3.1) and relation detection as a classifi-
cation task (Section 3.2). Models of the two tasks
share parameters and are trained jointly. Departing
from previous joint learning algorithms (Miwa and
Bansal, 2016; Katiyar and Cardie, 2017; Zhang
et al., 2017), we introduce minimum risk training
to the joint extraction model. It optimizes a global
loss function and bridges the discrepancy between
training and testing (Section 3.3).

3.1 Entity Detection

To represent entities in s, we assign a tag ti to each
word wi following the BILOU tagging scheme: ti
takes a value in {B-⇤,I-⇤,L-⇤,O,U-⇤}, where
B, I, L and O denote the begin, inside, end and
outside of an entity, U denotes a single word en-

tity and ⇤ 2 Te represents different entity types.
For example, for a person (PER) entity “Patrick
McDowell”, we assign B-PER to “Patrick” and
L-PER to “McDowell”. Given an input sentence
s, the entity model predicts the tags of words
t̂ = t̂1, t̂2, . . . , t̂|s| by learning from the true tags
t = t1, t2, . . . , t|s|.

We use a bidirectional long short term memory
(bi-LSTM) network (Hochreiter and Schmidhu-
ber, 1997) to solve the sequence labelling task. At
each sentence position i, a forward LSTM chain
computes a hidden state vector ~hi by recursively
collecting information from the beginning of s
to the current position i. Similarly, a backward
LSTM chain collects information ~hi from the end
of s to the position i.

~hi = LSTM(xi, ~hi�1; ~✓),
~hi = LSTM(xi, ~hi+1; ~✓).

The word representation xi of wi has two parts
xi = wi � ci (� is the vector concatenation). wi

is a word embedding of word wi (from an embed-
ding look-up table We). ci is a character-based
representation of wi which is obtained by running
a convolution neural network on the character se-
quence of wi: ci = CNN(char(wi); ✓c).

To predict the tag t̂i, we combine the forward
and the backward hidden vector to hi = ~hi � ~hi,
and apply a softmax function on hi to get the pos-
terior of t̂i,

Pent(t̂i|s; ✓E) = Softmax(WE · hi), (1)

where ✓E = {We, ✓c, ~✓, ~✓,WE} are parameters
of the entity model. Given an input sentence s and
its ground truth tag sequence t, the training objec-
tive is to minimize Lent, 2

Lent(✓E) = � 1

|s|

|s|X

i=1

log Pent(t̂i = ti|s; ✓E).

3.2 Relation Detection
Given a set of detected entities Ê (obtaining from
the entity tag sequence t̂), we consider all en-
tity pairs in Ê as candidate relations. The task
of relation detection is to predict a relation type
l 2 Tr for each pair, 3 and output a relation set

2We have also tried biLSTM-CRF (Huang et al., 2015)
as an advanced entity model, but performances are nearly the
same in our experiments.

3We include a NONE relation type in Tr which means that
there exists no relation between e1 and e2.
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Figure 2: Our network structure for the joint entity and relation extraction.

R̂ = {(e1, e2, l)|e1, e2 2 Ê , e1 6= e2, l 2 Tr}.
To build the relation model, we extract two types
of features, namely, features regarding words in
e1, e2 and features regarding contexts of the entity
pair (e1, e2).

To extract features on words in e1, e2, we use
two convolutional neural networks. Taking e1 as
an example, for each word wi in e1, we first col-
lect wi’s bi-LSTM hidden vector hi from the en-
tity model. Then, we concatenate hi with a one-
hot entity tag representation vi of t̂i. We build a
feature vector fe1 for e1 by running a CNN (a sin-
gle convolution layer with a max-pooling layer) on
vectors {hi �vi|wi 2 e1}. Similarly, we build fe2

for e2 with another CNN.
For context features of the entity pair (e1, e2),

we build three feature vectors by looking at words
between e1 and e2 (fmiddle), words on the left of the
pair (fleft) and words on the right of the pair (fright).
For fmiddle, we run a CNN on words between e1

and e2 like the case of fe1 , fe2 . For fleft and fright,
we use the “LSTM-Minus” method as (Wang and
Chang, 2016; Zhang et al., 2017). Assume that the
left context of (e1, e2) is from sentence position 0
to i, then fleft = ~hi � ( ~h0 � ~hi+1). Similarly, if the
right context of (e1, e2) is from j to |s| � 1, then
fright = (~h|s|�1 � ~hj�1) � ~hj . We also use a one-
hot feature fdist to describe the distance between e1

and e2 in the sentence.
Finally, fe1 , fe2 , fmiddle, fleft, fright and fdist are

concatenated to a single vector fe1,e2 . To get the

posterior of the relation type l̂, we apply a multi-
layer perceptron with one hidden layer on fe1,e2 ,

Prel(l̂|s, e1, e2; ✓R)

= Softmax(W2 · ReLU(W1 · fe1,e2)), (2)

where ✓R = {✓e1 , ✓e2 , ✓middle, W1,W2} contains
parameters of the relation model (shared parame-
ters with the entity model are omitted).

Given an input sentence s, the training objective
is to minimize

Lrel(✓R) = �
X

e1,e22Ê
e1 6=e2

log Prel(l̂ = l|s, e1, e2; ✓R)

|Ê |(|Ê | � 1)
,

where the true label l of a candidate entity pair
(e1, e2) can be read from true annotations.

3.3 Joint Minimum Risk Training
To jointly learn the entity model and the relation
model, one common strategy is to optimize the
combined objective function eL = Lent + Lrel,
where the joint learning is accomplished by the
shared parameters. However, we would think that
eL optimizes a “local” loss by observing that a) in
both Lent and Lrel, the loss functions are calcu-
lated by only looking at local parts. For example,
the loss in Lent is based on the correctness of lo-
cal entity tags ti rather than a global measurement
(e.g., F1 score of extracted entities), b) both the
entity model and the relation model are unaware
of the loss from the other side. For example, the
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entity model needs to wait for the relation model to
update the shared parameters rather than get direct
supervision from the loss of the relation model.

Here we introduce the minimum risk training
framework to the joint model. Comparing with
optimizing the local loss in eL, the joint MRT will
optimize a global loss and provide a tighter con-
nection between the entity decoder and the rela-
tion decoder. To illustrate the algorithm, we first
aggregate some notations.

Let y , (E , R) contain the ground truth entity
tag sequence and relations, ŷ , (Ê , R̂) contain
outputs of the joint extraction model and Y(s) be
the set of all possible outputs of the input sentence
s (y, ŷ 2 Y(s)). We define the joint probability,

P (ŷ|s; ✓) = P (Ê |s; ✓E)P (R̂|s, Ê ; ✓R)

=
Y

i

Pent(t̂i|s; ✓E)
Y

e1,e22Ê
e1 6=e2

Prel(l̂|s, e1, e2; ✓R),

where ✓ = ✓E
S

✓R is the joint model parameter,
and Pent, Prel are in Equation 1 and 2.

The objective of MRT is to minimize the fol-
lowing expected loss (i.e., risk),

Eŷ⇠P (ŷ|s;✓)�(ŷ,y) =
X

ŷ2Y(s)

P (ŷ|s; ✓)�(ŷ,y),

(3)

where �(ŷ,y) is a (arbitrary) loss function de-
scribing the difference between ŷ and y.

In our model, the loss function �(ŷ,y) is the
key factor to enhance the joint extraction perfor-
mances. First, in �(ŷ,y), we consider sentence-
level F1 scores of entity and relation extraction re-
sults (denoted by Fent(Ê , E), Frel(R̂, R)). Specif-
ically, we use 1 � Fent(Ê , E) and 1 � Frel(R̂, R)
as the metric of the entity loss and the relation loss
respectively. On the one hand, F1 scores charac-
terize the overall performance of the outputs and
make the training objective be consistent with the
testing time evaluation metric. On the other hand,
F1 scores cannot be decomposed onto local pre-
dictions of Ê and R̂ like the log losses in Lent and
Lrel, thus we need a different training algorithm.

Second, different from previous applications of
MRT on single tasks (Xu et al., 2016; Shen et al.,
2016), we have two sources of losses in the joint
extraction. By integrating losses of individual
tasks in the learning algorithm, the entity model
could forecast how plausible a candidate entity is
according to the relation model, and the relation

Algorithm 1 The Sampling Algorithm
Input: Entity model ✓E , relation model ✓R, sentence s, the

sample size K
Output: A subset Y

0(s) of Y(s)
1: Y

0(s) {(E , R)} // add the ground truth
2: while |Y

0(s)|  K do
3: i 1
4: while i  |s| do
5: with prob. 0.9, sample t0

i ⇠ Pent(·|s; ✓E)
6: with prob. 0.1, sample t0

i uniformly
7: i i + 1
8: end while
9: E

0
 t

0 = t0

1, t
0

2, · · · , t0

|s|

10: R
0
 ;

11: for e1, e2 2 Ê , e1 6= e2 do
12: sample l0 ⇠ Prel(·|s, e1, e2; ✓R)
13: R

0
 R

0
[ {(e1, e2, l

0)}
14: end for
15: Y

0(s) Y
0(s) [ {(E 0, R0)}

16: end while

model could also know the confidence of the en-
tity extraction results. Here, we define a global
loss by adding losses of the two models,

�E+R(ŷ,y) = 1 � 1

2
[Fent(Ê , E) + Frel(R̂, R)].

To compare with �E+R, we also try two al-
ternatives of �(ŷ,y) in experiments, namely,
�E(ŷ,y) = 1 � Fent(Ê , E) and �R(ŷ,y) =
1 � Frel(R̂, R). They only look one model’s loss.

Third, in addition to handcrafted loss functions,
we further ask whether the joint MRT model could
benefit from automatic “loss engineering”. Specif-
ically, let �(ŷ) be the loss learned from the train-
ing set, we augment �(ŷ,y) of the MRT objec-
tive with �(ŷ), and require the learning process
to assign a smaller � value (with a margin) to the
ground truth output y than other ŷ 2 Y \{y},

min .
X

ŷ2Y(s)

P (ŷ|s; ✓) (�(ŷ,y) + �(ŷ)) + ⇠

s.t. �(y⇤) � �(y) � 1 � ⇠, ⇠ � 0, (4)

where y⇤ = arg minŷ2Y (s) �(ŷ). Here, we sim-
ply set �(ŷ) = 1 � P (ŷ|s; ✓) 4 and reformulate
above objective as

X

ŷ2Y(s)

P (ŷ|s; ✓) (�(ŷ,y) � P (ŷ|s; ✓))

+ [1 � P (y|s; ✓) + P (y⇤|s; ✓)]+ . (5)

where [u]+ = max(u, 0) is the hinge loss.
Optimizing the expected loss is hard since the

size of Y(s) is exponential. In practice, we could
4Further study on different �(ŷ) is left for future work.
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approximate the expectation in Equation 3 by sam-
pling a tractable subset Y 0(s) of Y(s). Specifi-
cally, we first obtain an entity set E 0 by sampling
(without replacement) an entity tag sequence t0

from Pent. 5 Then based on the sampled entities,
we get a relation set R0 by sampling l0 from Prel
for each entity pairs. Algorithm 1 lists the pseudo
code. 6 In experiments, we also try a variant of
Algorithm 1 which only samples from the entity
model, and selects relation labels with the maxi-
mum posterior (i.e., doesn’t sample relations).

With the sampled subset Y 0(s), we consider a
revised version of the original MRT objective,

Lmrt(✓) =
X

ŷ2Y 0(s)

Q(ŷ|s; ✓, µ, ↵)�(ŷ,y), (6)

where Q(ŷ|s; ✓, µ, ↵) is a re-normalization of
P (ŷ|s; ✓) on the subset Y 0(s), 7

Q(ŷ|s; ✓, µ, ↵) = 1
Z [P (Ê |s, ✓E)µP (R̂|s, Ê , ✓R)1�µ]↵

Z =
X

(E 0,R0)2Y 0(s)

[P (E 0|s, ✓E)µP (R0|s, E 0, ✓R)1�µ]↵

The hyper-parameter ↵ controls the sharpness of
the Q distribution (Och, 2003), and µ weights the
importance of the entity model and the relation
model in Q. Similary, we can rewrite the objec-
tive in Equation 5 with Y 0(s) and Q.

Finally, we remark that if we view MRT as a
fine tuning step, it can be applied in any joint
learning model based on building the joint distri-
bution P (ŷ|s, ✓) (e.g., the globally normalized P
in (Zhang et al., 2017)). Thus, we would think
that MRT is a flexible and lightweight framework
for the joint learning.

3.4 Training
To train the joint extraction model, we first pre-
train the model with objective eL (i.e., minimize
the local loss), then optimize the local loss and
the global loss simultaneously with objective eL +
Lmrt. The setting is slightly different from previ-
ous work which only optimize Lmrt in the second
step. We find that adding eL in the experiments
could make the training more stable.

5To accelerate sampling, we borrow the idea of "-greedy
in reinforcement learning: with probability 0.9, we sample t0

i

from Pent, and with probability 0.1, we sample it uniformly.
6The time complexity is O(K|s|) which is the same to

the beam search algorithm with beam size K (Zhang et al.,
2017).

7Here we follow the literature of MRT to apply the re-
normalization on Y

0(s). Another formulation is the policy
gradient framework which sticks to the original probability.

When training with eL in the pre-training step,
we apply the scheduled sampling strategy (Ben-
gio et al., 2015) in the entity model as (Miwa
and Bansal, 2016). Models are regularized with
dropout and trained using Adadelta (Zeiler, 2012).
We give the full derivation of Equation 6’s gradi-
ent in the supplementary. 8

We select models using development sets:
within a fix number of epochs, the model with the
best relation extraction performance on the devel-
opment set is picked out for testing. 9

4 Experiments

We evaluate the proposed model on two datasets.
ACE05 is a standard corpus for the entity relation
extraction task. It is labelled with 7 entity types
and 6 relation types. We use the same split of
ACE05 documents as previous work (351 train-
ing, 80 development, and 80 testing). 10 NYT
(Riedel et al., 2010) is a larger corpus which is la-
belled with 3 entity types and 24 relation types. 11

The training set has 353k relation triples which are
generated by distant supervision. It also provides
another 3880 manually labelled relation triples.
Following (Ren et al., 2017; Zheng et al., 2017),
we exclude the None relation label and randomly
select 10% of the labelled data as the develop-
ment set. We will mainly discuss the results on
ACE05 where many previous joint learning mod-
els are available for comparison.

We list detailed hyper-parameter settings in the
supplementary. Note that, except µ,↵, K which
are introduced in the joint MRT and selected on
the development set, 12 we don’t tune hyper-
parameters extensively. For example, we use the
same setting in both ACE 05 and NYT rather than
tune parameters on each of them.

As previous work, we evaluate performances
8We remark that the MRT objective (Equation 6) is dif-

ferentiable with respect to model parameters (Shen et al.,
2016). The non-decomposability of the F1 score does not
make the model non-differentiable. In our implementation,
the gradient is automatically calculated using autograd tools.
Please see the supplementary for more details.

9We focus on the performance of the ent-to-end relation
extraction, so we select models by the relation extraction re-
sults. It is also possible to consider both the performances of
the entity model and the relation model. We leave the study
of advanced model selection algorithms for future work.

10We use the dataset in https://github.com/tticoin/LSTM-
ER, which is from (Miwa and Bansal, 2016).

11https://github.com/shanzhenren/CoType.
12The default setting is ↵ = 10�4, µ = 1.0, K = 3

in systems without self-learned � loss and ↵ = 1, µ =
1.0, K = 2 in systems with � loss.
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Model Entity Relation
P R F P R F

L&J (2014) 85.2 76.9 80.8 65.4 39.8 49.5
M&B (2016) 82.9 83.9 83.4 57.2 54.0 55.6
Zhang (2017) - - 83.5 - - 57.5
K&C (2017) 84.0 81.3 82.6 55.5 51.8 53.6
NN 84.0 82.9 83.4 59.5 56.3 57.8
MRT 83.9 83.2 83.6 64.9 55.1 59.6

Table 1: Results on the ACE05 test data. (Miwa and Bansal,
2016) and (Katiyar and Cardie, 2017) are joint training sys-
tems without joint decoding. (Li and Ji, 2014) and (Zhang
et al., 2017) are joint decoding algorithms. NN is our neu-
ral network model without minimum risk training. MRT is
minimum risk training with loss � (Equation 5). We omit
pipeline methods which underperform joint models (see (Li
and Ji, 2014) for details).

using precision (P), recall (R) and F1 scores.
Specifically, an output entity e is correct if its type
and the region of its head are correct, and an out-
put relation r is correct if its e1, e2, l are correct
(i.e., “exact match”).

4.1 Results on ACE05
We first compare proposed models with previous
work (Table 1). In general, our plain neural net-
work model (NN) is competitive, and after compil-
ing with MRT, it achieves non-negligible improve-
ment over existing state-of-the-art systems. (both
on the entity and the relation extraction). 13 We
have following two detailed comparisons.

Among systems which only rely on shared pa-
rameters ((Miwa and Bansal, 2016; Katiyar and
Cardie, 2017) and NN), NN gives the best result
(we give detailed results on different relation types
in the supplement). One possible reason is that
the “RNN+CNN” network structure is not fully
explored in previous joint learning models. More
importantly, it suggests that how to build powerful
sub-models and utilize shared parameters are still
among the key problems of the task.

Comparing with the best joint decoding sys-
tem which adopts global normalization in train-
ing (Zhang et al., 2017), MRT mainly improves
the relation extraction results. We think that the
improvement may come from the sentence-level
loss applied in MRT: both systems consider inter-
actions between decoders, and both objectives are
approximated by sampling, but MRT optimizes F1
score while Zhang et al. (2017) optimize label ac-

13It is worth noting that our models don’t access addi-
tional linguistic resources such as POS tags and dependency
trees. We have tried to add syntactic features in (Zhang et al.,
2017), but didn’t observe improvements.

Settings F1 of Entity F1 of Relation

Default
sampling

�E 83.8 +0.4 57.9 +0.1
�R 83.5 +0.1 58.9 +1.1
�E+R 83.6 +0.2 59.0 +1.2
� 83.6 +0.2 58.3 +0.5
� + �E+R 83.6 +0.2 59.6 +1.8

Only
sampling
entity

�E 83.7 +0.3 57.4 -0.4
�R 83.5 +0.1 59.1 +1.3
�E+R 83.6 +0.2 57.9 +0.1
� 83.6 +0.2 58.7 +0.9
� + �E+R 83.3 -0.1 59.2 +1.4

Table 2: MRT with different loss functions and sampling
methods. The numbers in subscripts indicate improvements
over the NN setting in Table 1.

curacy. For the joint decoding system in (Li and
Ji, 2014), although it cannot beat recent neural
network-based models, it is interesting to compare
MRT with a feature-enriched version of (Li and Ji,
2014)’s model in the future work.

Next, we evaluate the joint MRT with different
loss functions and sampling methods.

As mentioned in Section 3.3, we have three op-
tions (�E+R, �E , �R) for �(ŷ,y) and a self-
learned loss function �. The first five rows of Ta-
ble 2 show their performances on the test data. We
have three observations regarding the results.

1. �R, �E+R have higher relation F1 scores than
�E and NN. Thus, adding relation loss in �(ŷ,y)
is helpful for relation extraction. We think that
knowing the relation loss could bias the entity
model to highlight the entities appearing in rela-
tions, which provides a better candidate relation
set for the relation extraction model.

2. �E has the best entity extraction results, which
implies that the sentence-level entity loss alone
could benefit entity extraction. While after adding
relation loss (�E+R), the entity performance
slightly decreases. One reason might be that our
model selection strategy only focuses on the re-
lation part (footnote 9), thus the model with im-
proved entity performances may not be selected.

3. The learned loss � can help to improve perfor-
mances, but only using � is not as effective as
the handcrafted � functions (which are tailored
to the evaluation metrics). By combining both the
prior knowledge and information from the dataset,
� + �E+R achieves the best results.

Regarding the sampling method, we test a vari-
ant of Algorithm 1 which samples entities but not
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relations (the last five rows of Table 2). Comparing
with the default sampling algorithm, it has similar
entity extraction performances, but its behaviour
on the relation extraction is different. Specifically,
adding entity loss in �(ŷ,y) (i.e., �E , �E+R)
now affects relation results negatively. It may sug-
gest that when only exploring the output of entity
extraction, the entity loss may dominate the rela-
tion loss, and trap the joint model to exploit the
entity model only. On the other hand, the perfor-
mances of self-learned loss � are less sensitive to
the sampling method. We haven’t had a clear un-
derstanding of the relationship between sampling
algorithms and loss functions, but the above re-
sults show that adding data-related loss function
could improve the robustness of MRT in practice.

Thirdly, we present influences of hyper-
parameters for MRT with �E+R on the develop-
ment set in Figure 3 and 4 (other settings have sim-
ilar results). We find that, for the parameters ex-
amined here, it is hard for the entity model and the
relation model to agree with each other: parame-
ters achieving high relation performances usually
get low entity performances, and vise versa. Thus,
if we perform the model selection by only look-
ing at relation extraction results, the joint model
may sacrifice entity extraction performances. For
↵ and µ (Figure 3), we observe that on the ACE05
dataset, the model prefers a small ↵ (which means
a sharper Q) and µ at boundary (i.e., Q is either
close to the entity model or the relation model).
Regarding the sample size K (Figure 4), we don’t
observe a convergence of performances in a small
range of K. Since the computation cost increases
rapidly as we increase the sample size (K = 5 is
about 2x slower than K = 3 in our implementa-
tion), we stick to a small K.

Finally, due to lack of space, we provide more
discussions on model configurations (including re-
sults regarding different entity pair distances, ad-
ditional experiments on tuning hyper parameters
etc.), and detailed error analyses on concrete sam-
ples in the supplementary.

4.2 Results on NYT

We briefly list results on the NYT dataset in Ta-
ble 3. The baseline methods are (Ren et al., 2017)
which is based on a joint embedding of entities
and relations, and (Zheng et al., 2017) which con-
ducts joint decoding with an augmented sequence
labelling tag set. Both NN and MRT outperform

Figure 3: MRT with different Q distributions on the devel-
opment set. Rows are settings of µ, and columns are settings
of ↵. In each cell, we draw F1 scores of the entity extraction
(the left gray bar) and the relation extraction (the right dark
bar) under the combination of corresponding ↵ and µ.

Figure 4: MRT with different sample size K on the devel-
opment set.

baseline results. In particular, comparing with the
joint tagging scheme in (Zheng et al., 2017), MRT
adds no constraint on the relation extraction model
and can explore the large NYT training set more
effectively. At the same time, since the training set
is automatically generated, the global losses ob-
served in MRT are also noisy. Like recent work on
bandit structured prediction (Kreutzer et al., 2017;
Nguyen et al., 2017), the results here suggest that
MRT could be a reasonable choice when the su-
pervision of the joint learning is partial and noisy.

5 Conclusion

We introduced minimum risk training to the task
of joint entity and relation extraction. We showed
that, with a global loss function, MRT could en-
hance the connection between the sub-models.
Extensive experiments on benchmark datasets wit-
ness the effectiveness of the joint MRT.
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Model Relation
P R F

(Zheng et al., 2017) 61.5 41.4 49.5
NN 61.8 43.3 50.9
MRT 67.4 42.0 51.7

(Ren et al., 2017) 42.3 51.1 46.3
NN (exact match) 59.4 41.7 49.0
MRT (exact match) 65.2 40.6 50.0

Table 3: Results on the NYT dataset. To compare with (Ren
et al., 2017), we give results under the “exact match” crite-
rion as ACE05. To compare with (Zheng et al., 2017), we
give results which ignore the entity type in the justification of
relations. We use ↵ = 1, µ = 1, K = 2 and �E+R + �.
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Abstract

Experimental performance on the task of rela-
tion classification has generally improved us-
ing deep neural network architectures. One
major drawback of reported studies is that
individual models have been evaluated on a
very narrow range of datasets, raising ques-
tions about the adaptability of the architec-
tures, while making comparisons between ap-
proaches difficult. In this work, we present a
systematic large-scale analysis of neural rela-
tion classification architectures on six bench-
mark datasets with widely varying characteris-
tics. We propose a novel multi-channel LSTM
model combined with a CNN that takes ad-
vantage of all currently popular linguistic and
architectural features. Our ‘Man for All Sea-
sons’ approach achieves state-of-the-art per-
formance on two datasets. More importantly,
in our view, the model allowed us to obtain
direct insights into the continued challenges
faced by neural language models on this task.
Example data and source code are available
at: https://github.com/aidantee/
MASS.

1 Introduction

Determining the semantic relation between pairs
of named entity mentions, i.e. relation classifica-
tion, is useful in many fact extraction applications,
ranging from identifying adverse drug reactions
(Gurulingappa et al., 2012; Dandala et al., 2017),
extracting drug abuse events (Jenhani et al., 2016),
improving the access to scientific literature (Gábor
et al., 2018), question answering (Lukovnikov
et al., 2017; Das et al., 2017) to major life events
extraction (Li et al., 2014; Cavalin et al., 2016).
With a multitude of possible relation types, it is
critical to understand how systems will behave in
a variety of settings (see Table 1 for an example).

†Contributed equally & Names are in alphabetical order
⇤⇤Corresponding author

(i) <e1>Three-dimensional digital subtraction
angiographic</e1> (<e2>3D-DSA</e2>) images
from diagnostic cerebral angiography were obtained ...

(ii) The metal <e1>ball</e1> makes a ding ding ding
<e2>noise</e2> when it swings back and hits the metal
body of the lamp.

Table 1: Examples for different relation types: sen-
tence (i) shows a Synonym-of relation, represented by
an abbreviation pattern, which is very different from
the predicate relation Cause-effect in (ii).

To the best of our knowledge, almost all relation
classification models introduced so far have been
experimentally validated on only a few datasets
- often only one. This is despite the availabil-
ity of established benchmarks. The lack of trans-
parency as well as the possibility of having selec-
tion bias raise a question about the true capability
of state-of-the-art methods for relation classifica-
tion. In addition, despite such a wealth of studies,
it still remains unclear which approach is superior
and which factors set the limits on performance.
For example, heuristic post-processing rules have
been seen to significantly boost relation classifi-
cation performance on several benchmarks; yet,
they cannot be relied upon to generalize across
domains. The novel approach we present in this
paper draws inspiration from neural hybrid mod-
els such as that of Cai et al. (2016). In this work,
we present a large-scale analysis of state-of-the-
art neural network architectures on six benchmark
datasets which represent a variety of language do-
mains and semantic types. As a means of compar-
ison against reported system performance, we pro-
pose a novel multi-channel long short term mem-
ory (Hochreiter and Schmidhuber, 1997, LSTM)
model combined with a Convolutional Neural Net-
work (Kim, 2014, CNN) that takes advantage of
all major linguistic and architectural features cur-
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rently employed. We designate this as a ‘Man for
All SeasonS’ (MASS) model because it incorpo-
rates many popular elements reported by state of
the art systems on individual datasets.

The main contributions of the paper are:

1. We presented a deep neural network model,
in which each component is capable of tak-
ing advantage of a particular type of major
linguistic or architectural feature. The model
is robust and adaptable across different rela-
tion types in various domains without any ar-
chitectural changes.

2. We investigated the impact of different
components and features on the final per-
formance, therefore, providing insights on
which model components and features are
useful for future research.

2 Related Works

We focus here on supervised approaches to re-
lation classification. Alternatives include hand
built patterns (Aone and Ramos-Santacruz, 2000),
unsupervised approaches (Yan et al., 2009) and
distantly supervised approaches (Mintz et al.,
2009). Traditional supervised and kernel-based
approaches have made use of a full range of lin-
guistic features (Miwa et al., 2010) such as or-
thography, character n-grams, chunking as well as
vertex and edge walks over the dependency graph.
Hand crafting and modeling with such complex
feature sets remains a challenge although perfor-
mance tends to increase with the amount of syn-
tactic information (Bunescu and Mooney, 2005).

Recent successes in deep learning have stimu-
lated interest in applying neural architectures to
the task. Convolutional Neural Networks (CNNs)
(Nguyen and Grishman, 2015) were among early
approaches to be applied. Following in this direc-
tion, (Lee et al., 2017) achieved state of the art
performance on the ScienceIE task of SemEval
2017. Other recent variations of CNN architec-
tures include a CNN with an attention mechanism
in Shen and Huang (2016) and a CNN combined
with maximum entropy in Gu et al. (2017). Var-
ious auxiliary information has been reported to
improve the performance of CNNs, such as the
document graph (Verga et al., 2018) and position
embeddings (Shen and Huang, 2016; Lee et al.,
2017; Verga et al., 2018). Recurrent Neural Net-
works (RNNs) are another approach to capturing

Figure 1: The statistics of corpora used in our exper-
iments. Three aspects are considered: the distribution
of relation types, the distribution of Out-Of-Vocabulary
(OOV) in the test set and the distribution of new entity
pairs (NP) that appeared in the test set but never ap-
peared in the training data.

relations and naturally good at modeling long dis-
tance relations within sequential language data.
Approaches include Mehryary et al. (2016) with
the original RNN and Li et al. (2017); Ammar
et al. (2017); Zhou et al. (2018) with RNNs having
LSTM units which are used to extend the range of
context. Apart from sentences themselves, RNN-
based models often take as input information ex-
tracted from dependency trees, such as shortest
dependency paths (SDP) (Mehryary et al., 2016;
Ammar et al., 2017), or even whole trees (Li et al.,
2017). Since RNNs and CNNs each have their
own distinct advantages, a few models have com-
bined both in a single neural architecture (Cai
et al., 2016; Zhang et al., 2018).

3 Materials and Methods

3.1 Gold Standard Corpora

As noted above, our experiments used six well-
known benchmark corpora from different do-
mains, which have been used to evaluate vari-
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# Corpus Domain IAA Size Entity Relation % of
negatives

Cross-
sentence Directed Undirected SDP length

1 SemEval (SemEval
2010 - Task 8) Generic 0.74 8000

(2717) – 9 17.4 % – X – 3.8 (13)

2 DDI-2013 (SemEval
DDIExtraction 2013) Biomedical D: 0.84

M: 0.62
730

(175) 4 4 85.3 % – – X 9.0 (66)

3 CDR (BioCreative5
CDR 2015) Biomedical - 1000

(500) 2 1 61.4 % X X – 6.8 (24)

4 BB3 (BioNLPST
BB-Event 2016) Biomedical 0.47 95

(51) 3 1 61.4 % X X – 7.5 (25)

5 ScienceIE (SemEval
ScienceIE 2017) Scientific 0.45-

0.85
400

(100) 3 2 88.5 % – X X 6.5 (22)

6 Phenebank Biomedical 0.56 1000
(500) 9 5 77.0 % X X X 6.2 (26)

Table 2: Characteristics of the six corpora used in this study. Domain: the domain of the corpus; IAA: the Inter-
annotator Agreement score; Size: training set size (test set size in the brackets) in terms of the number of sentences
(SemEval) or documents (all other corpora); Entity: the number of entity types; Relation: the number of relation
types; % of negative: the distribution of positive and negative instances; Cross-sentence: if there are cross-sentence
relations; Directed: if there are directed relations in the corpus; Undirected: if there are undirected relations in the
corpus; SDP length: the averaged (max in brackets) length of the SDPs in the corpus.

ous state-of-the-art relation classification systems.
SemEval is a generic domain benchmark dataset
(Hendrickx et al., 2009). The next four cho-
sen corpora are from various biomedical domains:
the DDI-2013 corpus (Herrero-Zazo et al., 2013;
Segura-Bedmar et al., 2014), the CDR corpus (Li
et al., 2016), the BB3 corpus (Delėger et al., 2016),
and the Phenebank corpus. Finally, ScienceIE
corpus contains scientific journal articles from
three sub-domains (Augenstein et al., 2017). Inter-
annotator agreement (IAA) as measured with Co-
hens kappa on these corpora indicates high vari-
ability in the range of [0.45, 0.74], i.e. moderate to
substantial agreement (McHugh, 2012).

As shown in Table 2, each of these corpora is
distinct in many respects. CDR and BB3 were
only annotated with one relation type, whilst other
corpora have several relation types. In all corpora
except SemEval, negative instances must be auto-
matically generated by pairing all the entities ap-
pearing in the same sentences that have not been
annotated as positives. As there are a large number
of such entities, the number of possible negatives
accounts for a large percentage of set of instances,
i.e. up to 80% of the total in DDI-2013, Scien-
ceIE and Phenebank. Further, the small percent-
age of positive examples includes several types,
causing a severe imbalance in the data (He and
Garcia, 2009) (see Figure 1 for further details).

Another challenge for relation classification is
in modeling the order of entities in a directed re-
lation type (Lee et al., 2017). In the six corpora,

several relations are directed and order-sensitive,
such as the Cause-Effect relation in SemEval and
Hyponym-of in ScienceIE. Such relations require
the model to predict both relation types and the
entity order correctly. In contrast, for undirected
relations, such as Synonym-of in ScienceIE and
Associated in Phenebank, both directions can be
accepted.

An interesting factor is that the length of the
SDP in SemEval is considerably shorter than in
the other corpora. The mean and maximum
length SDP values for CDR, BB3, ScienceIE and
Phenebank are quite similar, i.e. ⇠ 7 and 22 � 26
tokens. DDI-2013 contains very complex sen-
tences, with an averaged SDP length of 9 and the
longest SDP of 66 token.

Figure 1 shows the Out-Of-Vocabulary (OOV)
ratios in six corpora, which are quite large, ranging
from 23% to 57%. More interesting is the percent-
age of entities (or nominal) pairs in the test set that
have never appeared in the training set (NP: 79%
on CDR and more than 93% on SemEval, DDI-
2013, ScienceIE and Phenebank). These two char-
acteristics indicate the importance of understand-
ing the mechanisms by which neural networks can
generalize, i.e. make accurate predictions on novel
instances.

3.2 Model Architecture

Our ‘Man for All SeasonS’ (MASS) model com-
prises an embeddings layer, multi-channel bi-
directional Long Short-Term Memory (BLSTM)
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Figure 2: The architecture of MASS model for rela-
tion classification. An embeddings layer is followed by
multi-channel bi-directional LSTM layers, two parallel
CNNs and three softmax classifiers. The model’s input
makes use of words and dependencies along the SDP
going from the first entity to the second one using both
forwards and backwards sequences.

layers, two parallel Convolutional Neural Network
(CNN) layers and three softmax classifiers. The
MASS model’s architecture is depicted in Fig-
ure 2. MASS makes use of words and depen-
dencies along the SDP going from the first en-
tity to the second one using both forwards and
backwards sequences. As is standard practice (Xu
et al., 2015; Cai et al., 2016; Mehryary et al., 2016;
Panyam et al., 2018) an entity pair is classified as
having a relation if and only if the SDP between
them is classified as having that relation.

3.2.1 Embeddings layer
Despite the presence of inter-sentential relations in
the six corpora we make the simplifying assump-
tion that relations occur only between entities (or
nominals) in the same sentence. We model each
such sentence using a dependency path. In order
to classify novel dependency paths we represent a
dependency relation di as a vector Di that is the
concatenation of two vectors as follow:

Di = Dtypi � Ddiri

where Dtyp is the undirected dependency vector,
expressing the dependency type among 63 labels

and, Ddir is the orientation of the dependency
vector i.e. from left-to-right or vice versa in the
order of the SDP. Both are initialized randomly.

For word representation, we take advantage of
four types of information, including:

• FastText pre-trained embeddings (Bo-
janowski et al., 2017) are the 300-
dimensional vectors that represent words
as the sum of the skip-gram vector and
character n-gram vectors to incorporate
sub-word information.

• WordNet embeddings are in the form of one-
hot vectors that determine which sets in the
45 standard WordNet super-senses the tokens
belong to.

• Character embeddings are denoted by C,
containing 76 entries for 26 letters in upper-
case and lowercase forms, punctuation, and
numbers. Each character cj 2 C is randomly
initialized. They will be used to generate the
token’s character-based embeddings.

• POS tag embeddings capture (dis)similari-
ties between grammatical properties of words
and their lexical-syntactic roles within a sen-
tence. We randomly initialized these vec-
tors values for the 56 POS tags in OntoNotes
v5.0.

Note that all initializations are generated by
looking up the corresponding lookup table. The
character and POS tag embeddings lookup ta-
bles were randomly constructed according to the
Glorot uniform initializer (Glorot and Bengio,
2010) and then treated as the model’s parameters
to be learned in the training phase.

3.2.2 Multi-channel Bi-LSTM
For a given linguistic feature type, LSTM net-
works (Hochreiter and Schmidhuber, 1997) are
employed to capture long-distance dependencies
along two directions, namely the forward and
backward Bi-directional LSTM (BLSTM).

For the dependencies, BLSTMs take as in-
put a sequence of dependency embeddings Di,
then gives output are the hidden states for depen-
dencies between adjacent tokens wi and wi+1 as
fwDEPii+1 and bwDEPii+1.

Apart from the dependencies between tokens
in SDPs, our model exploits four linguistic em-
beddings relating to words for representing the
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Figure 3: The multi-channel LSTM for word represen-
tation. Each token in the SDP is represented by us-
ing four word-related embeddings, including FastText
word embedding, WordNet embedding, POS tag em-
bedding and the character embedding. These four types
of word-related information are fed into eight separate
LSTMs, independently from each other during recur-
rent propagation.

words. These four types of word-related infor-
mation are fed into eight separate LSTMs (four
for each direction) independently from each other
during recurrent propagation. These four BLSTM
channels are illustrated in Figure 3. The mor-
phological surface information is represented with
character-based embedding using a BLSTM, in
which the forward and backward LSTM hidden
states are jointly concatenated (Ling et al., 2015;
Dang et al., 2018). For other layers, the LSTM
hidden states are concatenated separately as the
forward and the backward vector to form two fi-
nal embeddings for each token as follows:

fwWi = fwFTi � fwWNi � Chari � fwPOSi

bwWi = bwFTi � bwWNi � Chari � bwPOSi

3.2.3 CNN with dependency unit
Similar to Cai et al. (2016), the Convolutional
Neural Networks (CNNs) in our model utilize
Dependency Units (DU) to model the SDP. DU
has the form of [wi � dii+1 � wi+1], in which
wi, wi+1 are two adjacent tokens and dii+1 is
the dependency between them. As a result, the
low-dimensional forward and backward represen-
tation vectors of DUj are created by concatenat-
ing the corresponding final embeddings of tokens
wj , wj+1 and the LSTM hidden state of the depen-
dency dii+1. Formally, we have:

fwDUj = fwWj � fwDEPjj+1 � fwWj+1

bwDUj = bwWj � bwDEPjj+1 � bwWj+1

The forward and backward SDP representation
matrices fwS and bwS are created by stacking the

fwDU and bwDU vectors. We then apply two
parallel CNNs to fwS and bwS to capture the con-
text features (CFj) around each dependency unit
DUj in the SDP as follows. These CNNs are de-
signed similarly to the original CNN for sentence
classification (Kim, 2014).

fwCFj = f(WeCNN · fwDUj + bCNN )

bwCFj = f
0

(We
0

CNN · bwDUj + b
0

CNN )

where WeCNN and We
0

CNN are the weight ma-
trices for the CNNs, bCNN and b

0

CNN are the bias
terms for the hidden state vectors and f and f

0 are
the non-linear activation functions.

The n�max pooling (Boureau et al., 2010)
layer gathers the most useful global information G
over the whole SDP (Collobert et al., 2011) from
the context features of dependency units, which is
defined as follows (in this work, we use 1�max
pooling).

fwG =
k

max
d=1

fwCFj

bwG =
k

max
d=1

bwCFj

where max is an element-wise function, and k is
the number of dependency units in the SDP.

3.2.4 Softmax classifiers
Following (Cai et al., 2016), relation classifica-
tion based on fwS and bwS simultaneously can
strengthen the model’s ability to judge the direc-
tion of relations. We, therefore, use two directed
softmax classifiers, one for each direction of the
relation, with linear transformation to estimate the
probability that each of fwS and bwS belongs to a
directed relation (the direction taken into account).
Formally we have:

p(fw) = softmax(Wf · fwG + bf )

p(bw) = softmax(W
0

f · bwG + b
0

f )

where Wf and W
0

f are the transformation matrices
and bf and b

0

f are the bias vectors.
These two distributions are then combined to

get the final distribution with a priority weight ↵:

p = ↵ · p(fw) + (1 � ↵) · p(bw)

We also use the undirected softmax to predict
undirected distribution p(ud). This softmax is
only used in the training objective function, which
is the penalized cross-entropy of three softmax
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classifiers. Our undirected softmax is quite simi-
lar to the idea of coarse-grain softmax used in Cai
et al. (2016); Zhou et al. (2018).

p(ud) = softmax(W
00

f · [fwG � bwG] + b
00

f )

where W
00

f is the transformation matrix and b
0

f is
the bias vector.

3.3 Additional Techniques

Mehryary et al. (2016) demonstrated that random
initialization can, to some extent, have an impact
on the model’s performance on unseen data, i.e,
individual trained models may perform substan-
tially better (or worse) than the averaged results.

Further, an ensemble mechanism, was found
to reduce variability whilst yielding better perfor-
mance than the averaging mechanism. Two simple
but effective ensemble methods include strict ma-
jority vote (Mehryary et al., 2016) and weighted
sum over results (Ammar et al., 2017; Lim et al.,
2018; Verga et al., 2018). Since the former brings
better results in our experiments, our ensemble
system runs the model for 20 times and uses the
strict majority vote to obtain the final results.

For dealing with the imbalanced data problem,
we apply an under-sampling technique (Yen and
Lee, 2006) during pre-processing for the DDI-
2013 and Phenebank corpora. For a fair compari-
son we also apply some simple rules that was used
by comparison models as the pre/post-processing
step for DDI-2013 (following Zhou et al. (2018)),
BCR (following Gu et al. (2017)) and ScienceIE
(following Lee et al. (2017)) (for further details,
see Appendix A).

Finally, we use several techniques to overcome
over-fitting, including: max-norm regularization
for Gradient descent (Qin et al., 2016); adding
Gaussian noise (Quan et al., 2016) with mean
0.001 to the input embeddings; applying dropout
(Srivastava et al., 2014) at 0.5 after all embedding
layers, LSTM layers and CNN layers; and using
early stopping technique (Caruana et al., 2000).

4 Results and Discussion

For each benchmark dataset we adopt the official
task evaluations for system with F1 score, pre-
cision P and recall R. All official evaluations
only considered the actual relations (excluding the
Other relation and negatives) and worked on the
abstract level (excepted SemEval). For a clearer

Model Source of information F1

SVM
(Rink and Harabagiu, 2010) Rich features 82.2

CNN + Attention
Shen and Huang (2016)

Position, WordNet,
words around nominals 85.9

BLSTM + CNN
(Cai et al., 2016)

NER, WordNet
w/o inversed SDP⇤ 83.8
w/ inversed SDP 86.3

BLSTM + CNN + attention
(Zhang et al., 2018) Position embedding 83.7

Baseline model WordNet, Character embeds 85.0

MASS model
WordNet, Character embeds 85.9
(+ Inversed SDP) 85.4
+ Ensemble 86.3

Table 3: Comparison of our system with top perform-
ing systems on the SemEval 2010 corpus. The official
evaluation is based on the macro-averaged F1. Since
most of the comparative models did not report their P
and R, we only report our F1 for comparison. All deep
learning models use word embedding and POS tag in-
formation. ⇤We report results for our implementation
of Cai et al.’s system, without using the inversed SDP.

comparison, we also report both averaged and en-
semble results, in which, the averaged results are
calculated over 20 different runs. Both results
of the MASS model with and without applying
pre/post-processing rules are also reported.

We compare the performance of the MASS
model against three types of competitors: (i) A
baseline model is used to verify the effectiveness
of the multi-channel LSTM, in which we concate-
nate all embedding vectors used in MASS directly.
(ii) The first ranked in the original challenges. (iii)
Recent models with state-of-the-art results. The
comparative results are shown in Tables 3 - 8.

In all corpora, the MASS model’s results are
always better than the baseline model. This is
because directly concatenating many vectors with
various value ranges seems to be causing informa-
tion interference, and we cannot take advantages
of each sequence of information separately any-
more.

In SemEval2010 corpus (see Table 3), the
macro-averaged F1 of the original model is 85.9%
with the standard deviation of 20 runs is 0.33. This
result outperforms all comparative models but Cai
et al. (2016) which fed the inversed SDP to enrich
the training data (we also tried feeding inversed
SDP to the model, but the result became worse
since this technique may be unsuitable for our
model). Applying ensemble procedure boosts F1
for 0.45%, outperforming all comparative models.
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Model Source of information P R F1

2-phase classification
Hybrid kernel SVM1

Heterogeneous set of feature,
rule-based negative filtering 64.6 65.6 65.1

2-phase classification
SVM2 Rich features 73.6 70.1 71.8

BLSTM + Attention
(Zhou et al., 2018)

Position-aware attention
+ Pre-processing 75.8 70.3 73.0

Baseline model WordNet, Character embeds 51.6 52.9 52.2

MASS model
WordNet, Character embeds 54.0 56.3 55.1
+ Ensemble 56.5 57.3 56.0
+ Pre-processing 57.0 56.5 56.7

Table 4: Results on the DDI-2013 corpus. The of-
ficial evaluation is the micro-averaged P, R and F1
at abstract-level. Note that all deep learning mod-
els use word embedding and POS tag information.
1Chowdhury and Lavelli (2013). 2Raihani and Laach-
foubi (2017).

For dealing with DDI-2013 (see Table 4)- an
imbalanced data, comparative models often con-
sider it as two sub-tasks, i.e. detection and classi-
fication. Chowdhury and Lavelli (2013); Raihani
and Laachfoubi (2017) applied a two-phrase clas-
sification, in which one classifier detects positive
instance and the other then classifies them. Zhou
et al. (2018) used a binary softmax together with
a multi-class softmax. Obviously, our model en-
counters a serious problem with imbalanced data.
Since we treat the RE problem as a multi-class
classification, in which, negative is also consid-
ered as a class, our results are much lower than
comparative models. We applied negative under-
sampling technique and the pre-processing rules
from Zhou et al. (2018) to remove some neg-
atives, however the rules improved performance
only slightly (0.3%).

Since our system just extracts the relations

Model Source of information P R F1

CNN + ME1

(Gu et al., 2017)

Contextual of whole sentence 59.7 57.5 57.2
+ Cross-sentence 60.9 59.5 60.2
+ Post processing 55.7 68.1 61.3

ASM2

(Panyam et al., 2018) Dependency graph 49.0 67.4 56.8

BRAN3

(Verga et al., 2018)

Position, multi-head att 55.6 70.8 62.1
+ Data 64.0 69.2 66.2
+ Ensemble 63.3 67.1 65.1

Baseline model WordNet, character embeds 56.6 54.1 55.3

MASS model
WordNet, character embeds 58.9 54.9 56.9
+ Ensemble 56.8 57.9 57.3
+ Post-processing 52.8 71.1 60.6

Table 5: Results on the CDR corpus. The official eval-
uation is reported at abstract-leve. All deep learning
models use word embedding and POS tag information.
1CNN + Maximum Entropy. 2Approximate Subgraph
Matching. 3CNN + attention at abstract-level graph.

Model Source of information P R F1 IntraF

VERSE (SVM)1 Rich features 51.0 61.5 55.8 63.4

TurkuNLP (RNN)2 62.3 44.8 52.1 62.0

DET-BLSTM
(Li et al., 2017)

Dynamic ext dep tree,
distance embeddings 56.3 58.0 57.1 –

Baseline model WordNet, Char embds 60.8 47.2 53.1 62.5

MASS model WordNet, Char embds 59.8 51.3 55.2 64.6
+ Ensemble 59.2 52.2 55.5 64.8

Table 6: Results on the BB3 corpus. The official eval-
uation is reported at both abstract- and intra sentence
levels. All deep learning models use word embedding
and POS tag information. 1Lever and Jones (2016).
2Mehryary et al. (2016)

within a sentence, for CDR (see Table 5)- a cor-
pus where 30% instances are cross-sentence re-
lations, it is reasonable to explain why our recall
is much lower than the comparative systems that
can extract cross-sentences relations (Gu et al.,
2017; Verga et al., 2018). Our results are still ex-
tremely encouraging since the F1 is better than
other models which do not extract cross-sentences
relations (Gu et al., 2017; Panyam et al., 2018).
For a clearer comparison, we also try applying
post-processing rules used by Gu et al. (2017), and
they help to increase the F1 by 3.3%. Our F1
is just a little lower than the combined model of
CNN and ME which extracts cross-sentence re-
lations (Gu et al., 2017). The results for BRAN
(Verga et al., 2018) however are much better than
our MASS model. It is a a strong competitor
on this benchmark that is designed to focus on
cross-sentence relation classification by creating
the document-level graph and is also trained using
auxiliary data.

In the BB3 corpus (see Table 6), the original
system outperforms all previously reported results
at intra-sentence F . Using ensemble procedure,
our results increase, but not much and still lower
than the DT-BLSTM model, which is based on
Dynamic Extended Tree (Li et al., 2017).

In the ScienceIE corpus (see Table 7), our re-
sults are only outperformed by one competitor.
The reason may come from the characteristic of
Hyponym-of and Synonym-of relations. Neither
of these relations is expressed frequently by the
linguistic information of tokens appearing in the
SDP. In many cases, they are represented by dif-
ferent patterns with the same SDP. Therefore, our
conclusion is that maybe the use of SDP does not
match the ScienceIE corpus. The system from
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Model Source of information F1

NTNU-2 (SVM)
(Barik and Marsi, 2017) Rich features 50.0

MIT (CNN)
(Lee et al., 2017)

Relative position, NER
+ Post-processing 64.5

S2 rel (BLSTM)
(Ammar et al., 2017)

Semisupervised, language model 54.1
+ Ensemble 55.2

Baseline model WordNet, character embeds 48.7

MASS model

WordNet, character embeds 54.6
+ Ensemble 56.4
+ Post- processing (Lee et al., 2017) 60.3
+ Post- processing (rules ++) 73.0

Table 7: Results on the ScienceIE corpus. The offi-
cial evaluation is based on the micro-averaged F1 at
abstract-level. Since most of comparative models did
not report their P and R, we only report our F1 for com-
parison. All deep learning models use word embedding
and POS tag information.

MIT (Lee et al., 2017) fed the whole sentence
with the relative position as input, therefore it may
catch many useful patterns which did not appear
in the SDP. To test this hypothesis, we apply the
post-processing rules used in Lee et al. (2017) and
boosted F1 by 3.8%. In addition, when we ap-
plied some more simple linguistic rules to identify
synonyms and hyponyms, the results improved be-
yond expectations by 16.6%, totally outperformed
all other models.

For Phenebank (see Table 8), since this new
corpus did not have an official evaluation, we
report all possible MASS results. The micro-
averaged results are much better than the macro-
averaged. It is reasonable since Phenebank is an
extremely imbalanced corpus, in which we can
expect poor accuracy for rare classes, which to-
gether account for about 1% of positive data
(and positive data only account for 23% of the
whole corpus). The micro-averaged and macro-
averaged results of the proposed model are always
better than the baseline model, in both abstract and
sentence-level. Interestingly, the ensemble model
boosts the micro-averaged results (1.33% of F1 at
sentence-level and 0.88% of F1 at abstract-level),
but brings lower macro-averaged F1 (decreased
0.51% and 0.77% of F1 at sentence- and abstract-
level respectively).

4.1 Components and Information resources
We study the contribution of each model’s compo-
nent and information sources to the system perfor-
mance by ablating each of them in turn from the
model and afterwards evaluating the model on all
corpora. We compare these experimental results

Baseline Averaged Ensemble

Sentence
level

Macro-
averaged

P 45.8 43.6 44.2
R 39.2 42.6 41.1
F 42.2 43.1 42.6

Micro-
averaged

P 56.5 53.2 55.4
R 56.2 62.3 62.3
F 56.4 57.3 58.7

Abstract
level

Macro-
averaged

P 45.8 43.6 44.2
R 27.3 29.7 28.4
F 34.3 35.3 34.6

Micro-
averaged

P 56.5 53.2 55.5
R 37.5 41.6 41.6
F 45.1 46.7 47.5

Table 8: Experimental results on the Phenebank corpus
for the MASS model.

with the full system’s results and then illustrate
the changes of F1 in Figure 4. The changes of F1
show that all model’s components and information
sources help the system to boost its performance
(in terms of the increments in F1) in all corpora.
The contribution, however, varies among compo-
nents, information types and among corpora.

Among information sources, FastText embed-
ding (FT ) often has the most important con-
tribution, while using WordNet (WN ) brings
quite small improvements. Some examples
clearly demonstrate that the impact of information
sources varies greatly between benchmarks. The
dependency embedding (DEP ) and type embed-
ding (Dtyp) have a very strong influence over the
results in DDI-2013 and ScienceIE corpora but not
much in other corpora. Furthermore, POS tag in-
formation (POS) plays a very important role in
the BB3 corpus, surpassing FT , while its contri-
bution in other corpora is not significant.

Also, the impact of model components shows
relatively inconsistent across corpora. The base-
line models always have lower F1 than MASS.
This demonstrates the advantage of using a multi-
channel LSTM to represent various linguistic in-
formation. Furthermore, the contributions of
multi-channel LSTM and CNN are quite balanced.
Interestingly, the undirected softmax always bene-
fits the result although it was only used to calculate
the penalty in the training step.

These experiments prove the effectiveness of
using various information as well as architectural
components. More importantly, these results show
that our proposed MASS model can automatically
adjust to each corpus, highlighting the flexibility
of the MASS model which is able to adapt to var-
ious datasets with many different characteristics.
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Figure 4: Ablation test results for various compo-
nents and information sources: FastText (FT), WordNet
(WN), Character-based (Char), POS tag, Dependency
(DEP), dependency type (Dtyp) and dependency direc-
tion embedding (Ddir). Results are calculated based on
the averaged F1 over 20 different runs. Baseline: Con-
catenating all embedding vectors to represent the words
instead of using multi-channel LSTM. CNN: Using the
final LSTM hidden states instead of CNN. udSfm: Re-
moving the undirected softmax

4.2 Error Analysis

We studied model outputs to analyze system er-
rors that defined the limitations of the model as
well as to prioritize future directions. Many er-
rors seem attributable to the parser. In some cases,
we cannot generate the SDP, and in some cases
where we have the SDP, information on the SDP
is still insufficient or redundant to make the cor-
rect prediction. The directionality of relations is
also challenging; in some cases the relation is pre-
dicted correctly but in the wrong direction. Other

errors can be attributed to the limitations of our
model, including (a) the inability to extract cross-
sentence relations (accounting for 30% in CDR,
BB3 and Phenebank), (b) the over-fitting problem
(leading to wrong prediction - FP ) and (c) lim-
ited generalisation power in predicting new rela-
tions (FN ). Finally, we found some errors caused
by the imperfect annotation. This problem may
come from the different annotations assigned in-
dependently by two annotators (see IAA column
in Table 2). We illustrate the above issues using
realistic examples in Appendix C.

5 Conclusions

In this paper, we have presented a novel well-
balanced relation classification model that con-
sists of several deep learning components applied
to the Dependency Unit of Shortest Dependency
Path. We evaluated our model on six bench-
mark datasets, comparing the results with 15 re-
cent state-of-the-art models. Experiments were
also carried out to verify the rationality and im-
pact of various model components and informa-
tion sources. Experimental results demonstrated
the robustness and adaptability of our system to
classify different relation types in various domains
without any architectural changes.

One existing issue with our model lies in its
sensitiveness to class imbalance. This limitation
resulted in significantly low performance on the
DDI-2013 corpus (compared to state-of-the-art re-
sults). Our experiments also highlighted the ex-
isting challenges for neural relation classification
models, including cross-sentence relations and im-
balanced data. We aim to address these problems
in future work.
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Sören Auer. 2017. Neural network-based question
answering over knowledge graphs on word and char-
acter level. In Proceedings of the 26th international
conference on World Wide Web, pages 1211–1220.
International World Wide Web Conferences Steer-
ing Committee.

Mary L McHugh. 2012. Interrater reliability: the
kappa statistic. Biochemia medica: Biochemia med-
ica, 22(3):276–282.

Farrokh Mehryary, Jari Björne, Sampo Pyysalo, Tapio
Salakoski, and Filip Ginter. 2016. Deep learning
with minimal training data: Turkunlp entry in the
bionlp shared task 2016. In Proceedings of the the
4th BioNLP Shared Task Workshop, pages 73–81.
Association for Computational Linguistics.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011.

Makoto Miwa, Rune Sætre, Jin-Dong Kim, and
Jun’ichi Tsujii. 2010. Event extraction with com-
plex event classification using rich features. Jour-
nal of bioinformatics and computational biology,
8(01):131–146.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of the 1st Workshop on
Vector Space Modeling for Natural Language Pro-
cessing, pages 39–48.

Nagesh C. Panyam, Karin Verspoor, Trevor Cohn, and
Kotagiri Ramamohanarao. 2018. Exploiting graph
kernels for high performance biomedical relation ex-
traction. Journal of biomedical semantics, 9(1):7.

Pengda Qin, Weiran Xu, and Jun Guo. 2016. An em-
pirical convolutional neural network approach for
semantic relation classification. Neurocomputing,
190.

Chanqin Quan, Lei Hua, Xiao Sun, and Wenjun Bai.
2016. Multichannel convolutional neural network
for biological relation extraction. BioMed research
international.

2276



Anass Raihani and Nabil Laachfoubi. 2017. A rich
feature-based kernel approach for drug-drug inter-
action extraction. International journal of advanced
computer science and applications, 8(4):324–3360.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages
256–259. Association for Computational Linguis-
tics.

Isabel Segura-Bedmar, Paloma Martı́nez, and
Marı́a Herrero Zazo. 2014. Lessons learnt
from the ddiextraction-2013 shared task. Journal of
Biomedical Informatics, 51:152–164.

Yatian Shen and Xuanjing Huang. 2016. Attention-
based convolutional neural network for semantic re-
lation extraction. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers, pages 2526–2536.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958.

Patrick Verga, Emma Strubell, and Andrew McCallum.
2018. Simultaneously self-attending to all mentions
for full-abstract biological relation extraction. In
Proceedings of the Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HLT).

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015. Semantic relation classifica-
tion via convolutional neural networks with simple
negative sampling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 536–540.

Yulan Yan, Naoaki Okazaki, Yutaka Matsuo, Zhenglu
Yang, and Mitsuru Ishizuka. 2009. Unsupervised re-
lation extraction by mining wikipedia texts using in-
formation from the web. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP: Volume 2-
Volume 2, pages 1021–1029.

Show-Jane Yen and Yue-Shi Lee. 2006. Under-
sampling approaches for improving prediction of the
minority class in an imbalanced dataset. In Proceed-
ings of Intelligent Control and Automation, pages
731–740.

Xiaobin Zhang, Fucai Chen, and Ruiyang Huang.
2018. A combination of rnn and cnn for attention-
based relation classification. Procedia Computer
Science, 131:911917.

Deyu Zhou, Lei Miao, and Yulan He. 2018. Position-
aware deep multi-task learning for drugdrug interac-
tion extraction. Artificial intelligence in medicine,
In Press.

2277



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2278–2287
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Possessors Change Over Time: A Case Study with Artworks

Dhivya Chinnappa and Eduardo Blanco
Human Intelligence and Language Technologies Lab

University of North Texas
Denton, TX, 76203

dhivyainfantchinnappa@my.unt.edu, eduardo.blanco@unt.edu

Abstract

This paper presents a corpus and experi-
mental results to extract possession relations
over time. We work with Wikipedia articles
about artworks, and extract possession rela-
tions along with temporal information indicat-
ing when these relations are true. The annota-
tion scheme yields many possessors over time
for a given artwork, and experimental results
show that an LSTM ensemble can automate
the task.

1 Introduction

All languages have a way to express possessive re-
lationships (Aikhenvald and Dixon, 2012). Pos-
session is an asymmetric semantic relation be-
tween two entities, where one entity (the pos-
sessee) belongs to the other entity (the possessor)
(Stassen, 2009). When it comes to defining pos-
session, belongs includes a wide range of relation-
ships, including kinship (e.g., [my]possessor oldest
[son]possessee), part-whole (e.g., the [car]possessor’s
[dashboard]possessee), possession of something in-
tangible (e.g., [John]possessor got the [flu]possessee
last year), proximity (e.g., The [shelf]possessor
has a [glass sculpture]possessee), physical and
temporary possession (e.g., [I]possessor have
John’s [book]possessee), and ownership (e.g.,
[John]possessor bought a [house]possessee last year).

Possession relations can be divided into alien-
able (also referred to as acquired, transferable,
non-intimate, etc.) and inalienable (also referred
to as inherent, inseparable, intimate, etc.). Pos-
sessees that can be separated from their posses-
sors are alienable, and possessees that cannot nor-
mally be separated from their possessors are in-
alienable (Heine, 1997). For example, [John]x’s
[condo]y is alienable, and [John]x’s [arm]y is in-
alienable (some previous works would call the lat-
ter a part-whole relation instead). Tham (2004)

In 1530 the painting was inherited by Margaret’s niece
Mary of Hungary, who [. . . ]. It is clearly described in
an inventory taken after her death in 1558, when it was
inherited by Philip II of Spain.

Mary of Hungary: 1530–1558
Philip II of Spain: after 1558

Figure 1: Excerpt from the Wikipedia article about
Arnolfini Portrait and its possessors over time.

defines control possession as a relation in which
the possessor has temporary control of the pos-
sessee, but does not necessarily alienably possess
it (e.g., [John]x borrowed the [car]y for the week-
end). Following the aforecited works, possession
goes beyond ownership of property.

Virtually all possessees change possessors over
time, especially if possession relationships are un-
derstood in a broad sense as outlined above. Con-
sider the excerpt of the Wikipedia article about the
Arnolfini Portrait in Figure 1. From this excerpt,
we know that the painting had at least two posses-
sors (Mary of Hungary and Philip II of Spain), and
that they were the possessors from 1530 to 1558
and after 1558 respectively.

In this paper, we track possessors of selected
possessees over time. Unlike most previous works
(Section 3), we (a) start with a document rele-
vant to the possessee of interest, (b) select plau-
sible possessors and years without syntactic re-
strictions and including inter-sentential pairs, and
then (c) determine whether the plausible posses-
sors are actual possessors with respect to the years.
The main contributions of this paper are: (a) 88
Wikipedia articles about artworks annotated with
their possessors over time;1 (b) a detailed cor-
pus analysis (e.g., unique possessors, years and
possessor-year pairs); and (c) experimental re-
sults showing that an LSTM ensemble outper-
forms SVM.

1Available at dhivyachinnappa.com
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2 Previous Work

We briefly summarize work on possession rela-
tionships from a theoretical perspective, and then
move to work in computational linguistics.

2.1 Possession relations
The very definition of possession is not set in
stone. Aikhenvald (2013) distinguishes three core
meanings for possessive noun phrases that occur
across languages: ownership (of property), whole-
part (often referred to as part-whole), and kin-
ship. Following a cross-linguistic perspective, she
discusses possessions and time (present and for-
mer possession relationships, e.g., my tooth vs.
my former axe), temporary and permanent pos-
session (e.g., borrow vs. acquire) and others.
Heine (1997) classifies possession relationships
depending on the possessor and possessee. First,
he makes a distinction between human (e.g., [I]x
have a [house]y) and non-human possessors (e.g.
[This house]x has [two bedrooms]y). Second, he
differentiates three kinds of possession depend-
ing on the possessee: concrete possession (e.g.,
[I]x have [two cats]y), social possession (e.g., [I]x
have [two sisters]y), and abstract possession (e.g.,
[I]x have [an idea]y). Miller and Johnson-Laird
(1976) differentiate between three kinds of pos-
session: inherent, accidental, and physical; and
provide the following example: He owns an um-
brella (inherent), but she’s borrowed it (acciden-
tal), though she doesn’t have it with her (physical).

Possession relations have also been defined in
terms of parameters. For example, Stassen (2009)
considers two parameters (permanent contact and
control) and Heine (1997) defines five parame-
ters (human possessor, concrete possessee, spatial
proximity, temporal permanence, and control).

While we do not closely follow any of these pre-
vious works, we borrow from them the broad def-
inition of possession relations, and the motivation
to work with possessions over time.

2.2 Computational Linguistics
Within computational linguistics, possession re-
lations have been mostly studied as one of the
many relations encoded in a given syntactic con-
struction. For example, Tratz and Hovy (2013)
extract semantic relations within English posses-
sives. They propose a set of 18 relations, e.g.
temporal (e.g., [today]x’s [rates]y), extent (e.g.,
[6 hours]y’ [drive]x). Their controller / owner

/ user relation (one relation with three aliases)
is the closest relation to the possession rela-
tions we target in this paper. Extracting seman-
tic relations between noun compounds (Nakov
and Hearst, 2013; Tratz and Hovy, 2010) usu-
ally includes extracting possession relations, e.g.,
[family]x [estate]y. These previous works extract
all semantic relations—including possessions—
between arguments that follow a syntactic con-
struction.

In our previous work (Chinnappa and Blanco,
2018), we identify possession relations between a
deterministically chosen person (possessor) and a
concrete object (possessee) within a sentence. If
a possession relation exists, we also identify the
possession type (alienable or control). Finally, we
temporally anchor the possession relation with re-
spect to the verb of which the possessor is the sub-
ject. In this paper, we take a complementary ap-
proach. We start with text relevant to the possessee
of interest—specifically, its Wikipedia article—
and then extract its possessors without any re-
strictions beyond considering as possessors only
named entities. Furthermore, we specify in which
years the possessions were true.

To the best of our knowledge, the work by
Banea et al. (2016) is the only one on extract-
ing possession relations without imposing syntac-
tic constraints. Banea and Mihalcea (2018) build
a corpus working with personal blogs, and present
results on automatic extraction of possession using
a naive bayes approach. They consider as posses-
sors the author of a blog, and as possessees con-
crete nouns in blog posts. Regarding time, they
annotate possessions at the time of the utterance
(when the blog posts were published). Unlike
them, we work with one possessee per Wikipedia
article (i.e., the artwork the article is about), and
then find possessors in the article. Additionally,
we extract when a possessor-possessee relation is
true with respect to the years in the article, and
present results using SVM and end-to-end neural
networks.

3 Annotating Possessions Over Time

In this section, we detail the methodology to create
a corpus of possession relations over time. We first
discuss the selection of source documents and pos-
sessees of interest. Then, we detail what is consid-
ered as a potential possessor, and how these pos-
sessors are paired with years. Finally, we describe
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# %

x, potential
possessor

PERSON 1,152 48.0
ORG 986 30.5
GPE, LOC 692 21.5
All 3,230 100.0

y, year All 940 100.0

(x, y) pairs

x is PERSON 6,304 48.8
x is ORG 3,840 29.7
x is GPE, LOC 2,769 21.4
All 12,913 100.0

Table 1: Counts of potential possessors (x) and years
(y), and (x, y) pairs selected for annotation.

the annotation process (is the potential possessor
an actual possessor with respect to the years?) and
analyze the resulting corpus.

3.1 Selecting Source Documents
Our goal is to target possessors of a given pos-
sessee over time. A natural choice is to work
with documents about specific objects, as they are
likely to describe the history and key events in-
volving the objects. We decided to work with
Wikipedia articles about important artworks. The
methodology presented here, however, is not lim-
ited to artworks, and we believe it is applicable to
any article about an object of interest.

We selected 100 artworks using online content,
including Google queries for famous artwork and
famous paintings, and online lists.2 Then, we
downloaded the full content of the corresponding
Wikipedia articles. Some of the selected artworks
are The Third of May 1808, Philosopher in Med-
itation, and Saturn Devouring His Son. The final
corpus has 88 articles because we discarded arti-
cles if we could not select at least three (potential
possessor, year) pairs (see below).

3.2 Selecting Potential Possessors and Years
Once possessees and their Wikipedia articles were
selected, we identified potential possessors and
years following the five steps below for each sec-
tion in each Wikipedia article:

1. Run the named entity recognizers in spaCy3

and Stanford CoreNLP (Manning et al.,
2014).

2http://en.most-famous-paintings.com,
http://remliel.com/2016/07/08/100-
greatest-paintings-of-all-time

3https://spacy.io/

Figure 2: Distribution of unique potential possessors,
unique years and unique pairs per article. Each box-
plot displays the minimum, first quartile, median, third
quartile and maximum.

2. Select as potential possessors all instances of
the following named entities: PERSON, OR-
GANIZATION, LOCATION, and GPE.

3. Select as years all sequences of four digits in-
side a DATE named entity.

4. Remove all duplicate potential possessors
and years from steps 2 and 3.

5. Generate all pairs of potential possessors and
years.

Table 1 presents basic counts and percentages
of the potential possessors and years after remov-
ing duplicates (Step 4), and the pairs generated
(Step 5) for all documents. There are 3,230 po-
tential possessors and 940 years, and 12,913 (po-
tential possessor, year) pairs. The most common
named entity of potential possessors is PERSON
(48%), followed by ORG (30.5%) and GPE / LOC
(21.5%). The percentage of (potential possessor,
year) pairs depending on the named entity of the
potential possessor almost follows an identical dis-
tribution (48.8%, 29.7% and 21.4%).

Figure 2 shows the distributions of unique po-
tential possessors, years and (potential possessor,
year) pairs generated per article (or equivalently,
per possessee). While the distributions are far
from uniform, the boxplots show that most articles
have a substantial number of potential possessors,
years and pairs. The minimum number of poten-
tial possessors is 4, of years 2, and of pairs 7. But
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Cohen’s 
Before 0.69
During 0.59
After 0.77
All 0.70

Table 2: Inter-annotator agreement (Cohen’s kappa).
Values over 0.6 are considered substantial, over 0.8 are
considered perfect (Artstein and Poesio, 2008).

over 75% of articles have at least 19 unique po-
tential possessors, 5 years and 46 pairs; and over
50% of articles have at least 28 unique potential
possessors, 8 years and 86 pairs. In other words,
our corpus takes into account many potential pos-
sessors and years for the vast majority of articles.

3.3 Validating Possessors and Years
After (potential possessor, year) pairs were gener-
ated, they were validated manually. To do so, we
asked the following questions to annotators:

• Did a possession relation exist between the
potential possessor and the possessee at any
point of time before year?

• Did a possession relation exist between the
potential possessor and the possessee at any
point of time during year?

• Did a possession relation exist between the
potential possessor and the possessee at any
point of time after year?

In all questions, possessee refers to the artwork
the Wikipedia article is about. Annotators had to
choose from two answers: yes or no, where no

indicates all cases in which there is not enough in-
formation to determine that a possession relation
exists at any point of time before / during / after
year. In other words, no does not mean that the
potential possessor did not possess the possessee,
and it may mean that there is no information about
whether a possession relations exists.

The annotation interface showed the title of the
article and the section to which the potential pos-
sessor and year belong to (section title + text). An-
notators were instructed to first read the section
and then answer all questions. Thus, annotators re-
veal possession information involving possessors
and years that are potentially far away (different
clauses, sentences, etc.). Recall that all potential
possessors and years within a section are paired,
thus we allow to cross sentence boundaries.
Annotation Quality. Annotations were done in-
house by two graduate students. Both of them

annotated 25% of the articles individually. Ta-
ble 2 shows inter-annotator agreements (Cohen’s
kappa) for each question. Overall, inter-annotator
agreement is 0.70 (values between 0.60 and 0.80
are considered substantial (Artstein and Poesio,
2008)). Agreements are higher for Before and Af-
ter than During (0.69 and 0.77 vs. 0.59). The re-
maining articles were annotated once.
Annotation Examples. Figure 3 shows the an-
notations for one paragraph of the Wikipedia arti-
cle about Girl with a Pearl Earring (more specif-
ically, from the section titled Ownership and dis-
play). The figure shows the annotations on top of
a screenshot of the article for clarity purposes, but
the annotation interface only showed one section
at a time along with all the generated pairs (Sec-
tion 3.3, equivalent to pre-drawing edges).

Five potential possessors and two years were se-
lected, thus ten (potential possessor, year) pairs
were generated. The annotations reveal the intu-
itive possession information contained within the
paragraph. First, Victor de Stuers was an advi-
sor to Arnoldus Andries des Tombe, so there is
no evidence that he was a possessor at any point
of time (missing label edges). Second, Vermeer
is the artist who made Girl with a Pearl Earring,
so there are possession relations before 1881 and
1902. Third, Arnoldus purchased the piece in The
Hague in 1881, and in 1902 it was donated to
Mauritshuis. So Arnoldus was a possessor in 1881
and after 1881 (until 1902), The Hague in 1881
(recall that non-humans can be possessors, spatial
proximity is also considered possession, Section
2.1), and Mauritshuis during and after 1902. We
discuss the limitation of the annotation approach
in Section 3.5.

3.4 Annotation Analysis.
Counts of yes labels for the three questions (be-
fore, during and after) are rather low (17%, 9%
and 19%, Figure 4). This is not surprising, as any
PERSON, ORG, LOC and GPE named entity is con-
sidered as potential possessors. We note, however,
that we annotated a possession relation (yes label)
in 35% of (potential possessor, year) pairs gener-
ated (either before, during or after year).

Figure 5 depicts the distribution of labels per ar-
ticle for (potential possessor, year) pairs generated
from the same and different sentences. It is worth
noting a couple of interesting patterns. First, the
annotations contain many more possessions be-
cause we pair potential possessors and years that
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Figure 3: Excerpt of the Wikipedia article of Girl with a Pearl Earring and annotations. Edges indicate (potential
possessor, year) pairs generated. Edge labels indicate yes label for before, during and after; missing edge labels
indicates all annotations are no (i.e., the potential possessor was invalid).

17%
83%

9%
91%

19%
81%

yes

no

35%

65%

�1 yes

all no

Before During After All

Figure 4: Label percentages for each question (left). While most labels are no, one of the three questions (before,
during or after) was answered with yes in 35% of (potential possessor, year) pairs (right).

Possessor and year from the same sentence Possessor and year from different sentences

Figure 5: Distribution of yes label per article. We provide distributions for each temporal anchor (at some point
of time before, during or after year) and for all anchors, and distinguish between possessors and years belonging
to the same sentence (left) or different sentences (right). Each boxplot shows the minimum, first quartile, median,
third quartile, and maximum.

belong to different sentences (note the different
scales in the y-axis). Second, for pairs gener-
ated from different sentences, yes label for during
questions is much less likely than for the labels
before and after.

Finally, Figure 6 shows the distribution of yes
label for all generated pairs. At a minimum, each
possessee has at least two possession relations.
There are a few outliers articles in which anno-
tators identified over 150 possessors in time. The
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From the possessor and year: the concatenation of tokens; binary flags for each token; the syntactic head (token, lemma
and part-of-speech tag); and the named entity type.

From the sentences to which the possessor and year belong to: for (a) a window of 4 tokens to the left and right, (b) all
the verbs to the left and right, (c) all the verbs that are ancestors or children in the depedency tree, and (d) all the left and
right siblings in the dependency tree, the tokens, lemmas and part-of-speech tags.

Other and Wikipedia article: whether the possessor and year belong to the same sentence, whether the possessor appears
before or after the year, the Wikipedia article tile (concatenation of tokens and binary flags for each token), and the section
title (concatenation of tokens and binary flags for each token).

Table 3: Feature set used with Support Vector Machines.

first quartile is 14, the median 30, and the third
quartile 65 (All, right most boxplot). Thus the pro-
cedure presented here reveals a substantial amount
of possession relations along with temporal infor-
mation anchored in the form of years.

Figure 6: Distribution of yes label per article for all
possessors and years.

3.5 Limitations
While the proposed procedure successfully iden-
tifies possession relations over time, we acknowl-
edge limitations in both the possessors and tempo-
ral information considered.

First, we only consider named entities as po-
tential possessors, so it is possible we miss some
possessors (e.g., pronouns, the artist, his son).
Because of the source documents we work with
(Wikipedia articles about artwork) and the fact that
we pair all potential possessors and years within a
section, this is not a big issue: most Wikipedia sec-
tions do not have mentions that cannot be resolved
to a named entity within the same section. We
note, however, that coreference resolution (Prad-
han et al., 2011) would alleviate this problem.

Second, we only consider four digits within a
DATE named entity as temporal information. This
means that temporal information encoded in rel-
ative dates (e.g., four years later) or historical
events (e.g. after World War II) is disregarded.
Additionally, we cannot distinguish between sev-
eral possessors within a year, finer-grained times
would be required to do so. To address these is-
sues, temporal parsers (Lee et al., 2014; Strötgen
and Gertz, 2015) and anchoring events in time
(Reimers et al., 2016) are required.

4 Experiments and Results

We experiment with traditional Support Vector
Machines and neural networks. We divided the
articles (and the corresponding (potential posses-
sor, year) pairs) into train (80%) and test (20%),
and report results obtained with the test split. Note
that splitting pairs randomly would be unsound, as
possession relations for the same possessee would
be in the train and test splits. We build three clas-
sifiers with both SVMs and neural networks (one
per question: before, during and after), and all of
them predict two labels: yes or no.

4.1 Support Vector Machines

We trained the three classifiers using the SVM
implementation in scikit-learn (Pedregosa et al.,
2011), and tuned hyper-parameters C and � us-
ing 10-fold cross-validation with the train split.
We used features extracted from the possessor, the
year, and the sentences they belong to. Addition-
ally, we also included the Wikipedia article title
and the section title from which the possessor and
year were selected. The full feature set is de-
scribed in Table 3 and we do not elaborate fur-
ther. Our motivation to try SVMs is to establish
a strong supervised baseline, and to compare with
neural networks that take as input only plain text.
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Figure 7: Neural network architecture to predict whether a potential possessor is a possessor before, during or
after year. We exemplify the input to the network with the (Vermeer, 1902) pair from Figure 3.

4.2 Neural Networks

We use the implementations provided by the Keras
neural network API (Chollet et al., 2015) with
TensorFlow backend (Abadi et al., 2015). Ad-
ditionally, we use GloVe embeddings with 300
dimensions (Pennington et al., 2014)4 to trans-
form words into their distributed representations,
the Adam optimizer (Kingma and Ba, 2014) and
categorical cross entropy as a loss function. We
train the network with batch size 16 for up to 200
epochs, but stop earlier if no improvement is ob-
served in the validation set for 5 epochs. We re-
serve 20% of the train split for validation.

The neural network is composed of four Long
Short-Term Memory networks (Hochreiter and
Schmidhuber, 1997) with 200 units. The outputs
of the LSTMs are concatenated along with the em-
beddings of the possessor and year, and the final
output is calculated with a Softmax layer. Each
LSTM has as its input a different chunk of text:

• The first LSTM takes as input the sequence
of tokens in the sentence containing the pos-
sessor (top left in Figure 7). Each token is
represented by the corresponding word em-
bedding, and an additional embedding (also
with 300 dimensions) for the possessor and
all other tokens (there are only two unique ad-
ditional embeddings, white and light gray in
Figure 7). Unlike the word embedding from
GloVe, the additional embeddings are initial-
ized randomly and are updated during the
training process. Our rationale to add the ad-
ditional embeddings is to provide the LSTM
with information to learn which tokens sur-
rounding the possessor are more important.

4Available at https://nlp.stanford.edu/
projects/glove/, file glove/glove.6B.300.txt

• The second LSTM takes as input the sentence
containing the year (top right in Figure 7).
The input representation is very similar to the
one used in the first LSTM, the only differ-
ence is that the additional embeddings (white
and dark grey) indicate the year and any other
token. Again, our rationale for the additional
embeddings is to provide the LSTM with in-
formation to learn which tokens surrounding
the year are more important.

• The third LSTM (bottom left in Figure 7)
takes as input the Wikipedia article (i.e., the
name of the possessee). The input words are
represented with their GloVe embeddings.

• The fourth LSTM (bottom right) takes as in-
put the section title from which the posses-
sor and year were selected. The input words
are also represented with their GloVe embed-
dings and no additional information. Our ra-
tionale is that some sections are less likely
to contain valid possessors (e.g., Cultural Im-
pact (low likelihood) vs. Ownership and dis-
play (high likelihood).

4.3 Results
Results obtained with the test set are provided in
Table 4. F-measures are always higher for no than
yes, but recall that only yes label allows us to ex-
tract valid possession relations.
Baselines. The majority baseline always predicts
no label for all temporal tags (before, during and
after, see percentages in Figure 4), thus it fails to
extract any possession information.
SVMs. SVMs obtain higher-than-chance results,
but F-scores with yes label are relatively low (be-
fore: 0.33, during: 0.31 and after: 0.44).
Neural Networks. The full neural network always
outperforms SVMs, but the difference in F-score
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Before During After
P R F P R F P R F

SVM yes 0.47 0.26 0.33 0.33 0.29 0.31 0.42 0.46 0.44
no 0.86 0.94 0.90 0.93 0.94 0.93 0.88 0.87 0.87

NN Full yes 0.41 0.38 0.40 0.22 0.56 0.32 0.44 0.65 0.53
no 0.87 0.89 0.88 0.95 0.80 0.87 0.92 0.82 0.87

NN Full - addt embeds. yes 0.40 0.40 0.40 0.21 0.46 0.29 0.35 0.75 0.47
no 0.88 0.87 0.88 0.94 0.82 0.88 0.93 0.69 0.79

NN Full - LSTMarticle title
yes 0.33 0.42 0.37 0.21 0.65 0.31 0.33 0.77 0.46
no 0.87 0.82 0.85 0.95 0.74 0.83 0.93 0.66 0.77

NN Full - LSTMsection title
yes 0.41 0.50 0.45 0.25 0.46 0.33 0.38 0.80 0.48
no 0.89 0.85 0.87 0.94 0.86 0.90 0.94 0.67 0.78

Table 4: Results obtained in the test set using SVMs (all features), and the neural network (the full architecture and
after disabling some components). Recall that yes is the only label that enables us to extract possession relations,
results with no are mostly irrelevant.

with yes label is minimal for during (before: 0.40
vs 0.33, +21.2%; during: 0.32 vs. 0.31, +3.2%;
after: 0.53 vs. 0.44, +20.5%).

We also experimented with modifications of
the full neural network to provide insights into
which components are more useful. Specifically,
we report results not using the additional embed-
dings for the possessor and year, and disabling the
LSTMs for the article title and section title. Note
that while yes F-scores for during barely vary re-
gardless of the modifications to the network, we
found interesting patterns for before and after. All
F-scores discussed below are for yes label, the
only label that is useful to extract possession re-
lations.

• First, the additional embeddings for the pos-
sessor and year are beneficial for after (0.47
vs 0.53, +12.8%) and during (0.29 vs 0.32,
+10.3%), and neutral for before. This leads
to the conclusion that the LSTM learns the
contexts surrounding the possessor and year
successfully only for after and during. Note
that the additional embeddings provides in-
formation regarding the position of the pos-
sessor and year within their sentences.

• Second, the LSTM that takes as its input
the article title is beneficial for before (0.37
vs. 0.40, +8.1%) and after (0.46 vs 0.53,
+15.2%), and barely for during (0.31 vs.
0.32, +3.1%). Thus we can conclude that the
article title contains useful information to de-
termine the existence of possession relations,
and that pretrained word embeddings capture
this information.

• Third, the LSTM that takes as its input the

section title is beneficial for after (0.48 vs
0.53, +10.4%), detrimental for before (0.45
vs. 0.40, -11.1%) and barely detrimental for
during (0.32 vs. 0.33, -3.0%). These results
lead to the conclusion that the section title
only contains useful information to determine
possession relations in future years with re-
spect to the years mentioned in the section.

5 Conclusions

Possession is an asymmetric semantic relation be-
tween two entities, where one entity (the pos-
sessee) belongs to the other entity (the possessor).
Following theoretical works, we understand be-
longs in a broad sense, including physical, tem-
poral, and control possessions.

In this paper, we track possession relations over
time. Specifically, we work with Wikipedia arti-
cles about artworks, and extract their possessors as
well as temporal information with respect to the
years explicitly mentioned (before, during or af-
ter). We have presented an approach to extract po-
tential possessors and pair them with years, and an
annotation scheme to validate them. Overall inter-
annotator agreement (Cohen’s kappa) is 0.70, and
the resulting corpus has substantial information re-
garding possessors over time: in 75% of articles
we validate at least 14 (possessor, year) pairs, and
in 50%, at least 30 pairs.

Experimental results show that the task can be
automated, although we obtain moderate results.
We present an LSTM ensemble that outperforms a
traditional SVM. Disabling certain components of
the full network show that the article title and sec-
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tion title benefit different temporal tags, and that
the additional embeddings for the possessor and
year are beneficial for during.
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Abstract
Referring to entities in situated dialog is a col-
laborative process, whereby interlocutors of-
ten expand, repair and/or replace referring ex-
pressions in an iterative process, converging
on conceptual pacts of referring language use
in doing so. Nevertheless, much work on ex-
ophoric reference resolution (i.e. resolution of
references to entities outside of a given text)
follows a literary model, whereby individual
referring expressions are interpreted as unique
identifiers of their referents given the state of
the dialog the referring expression is initiated.
In this paper, we address this collaborative na-
ture to improve dialogic reference resolution
in two ways: First, we trained a words-as-
classifiers logistic regression model of word
semantics and incrementally adapt the model
to idiosyncratic language between dyad part-
ners during evaluation of the dialog. We then
used these semantic models to learn the gen-
eral referring ability of each word, which is
independent of referent features. These meth-
ods facilitate accurate automatic reference res-
olution in situated dialog without annotation
of referring expressions, even with little back-
ground data.

1 Introduction

A crucial part of dialog situated in a physical en-
vironment is exophoric references, i.e. language
used by the participants to make entities in the
shared environment salient to each other for the
purposes of communication (Poesio and Vieira,
1998). Several studies in exophoric reference res-
olution have investigated how referential seman-
tics can be learned automatically via the relation-
ship of a referent’s features to the language refer-
ring to it (cf. Kennington et al., 2015; Shore and
Skantze, 2017) or the state of the interaction a di-
alog is situated in (cf. Prasov and Chai, 2008; Iida

† Deceased 2 July 2018.

et al., 2010), inferring a relationship between e.g.
the word red and the individual features it refers
to, e.g. a particular range of hue values.

Speaker Utterance
A it’s the one to the left
B the purple pinkish uh weird?
A the pinkish one yeah it looks

like an asteroid or something
big

B the very big?
A yeah

Figure 1: Collaborative reference in dialog situated in
a reference communication task (cf. Krauss and Wein-
heimer, 1964).

Most works in exophoric reference resolution
have assumed the identification of certain sub-
sets of language known as referring expres-
sions (REs) that have been either manually or
automatically annotated (cf. Schutte et al., 2011;
Meena et al., 2012; Zarrieß et al., 2016; Shore
and Skantze, 2017). However, discerning REs
from non-referring language in dialog is not triv-
ial. For example, Figure 1 illustrates an interaction
between two participants in a reference commu-
nication task like that of Krauss and Weinheimer
(1964), whereby speaker A describes a particular
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referent which must be resolved by speaker B. 1.
While REs are idealized as contiguous, single

noun phrases (NPs) such as the pinkish one, ref-
erence in unrestricted, natural dialog is in fact a
collaborative process to which both partners in a
dyad contribute (Clark and Wilkes-Gibbs, 1986),
and not all referring language (RL) is nominal, e.g.
big in Figure 1. Both participants contribute RL in
a cumulative fashion, but often no complete nomi-
nal RE is produced, e.g. the big pinkish asteroid to
the left. Due to this, it is difficult to infer from syn-
tax alone the referring ability (RA) of language,
i.e. the overall ability of a subset of language to un-
ambiguously refer to entities in discourse (Ariel,
1988; Reboul, 1997). In context (e.g. given the
set of possible abstract shapes to choose from),
it is easy to infer which words have the greatest
RA, but without context this is more difficult. This
makes recognizing “non-ideal” cases of RL diffi-
cult, as the boundary between RL and non-RL is
often fuzzy.

Moreover, participants in dialog tend to develop
so-called conceptual pacts, which means that
they converge on commonly-used RL for unique
referents in dialog (Brennan and Clark, 1996). As
an example, they may repeatedly refer to a given
entity as e.g. the asteroid even though asteroid
may only rarely be used to refer to similar enti-
ties in the general population. Thus, RL varies less
within a given dialog than across dialogs, and vari-
ation of RL has an inverse relationship with the
length of the time two participants interact due to
alignment of dialog participants’ use of language
(Clark and Wilkes-Gibbs, 1986; Garrod and An-
derson, 1987; Brennan, 1996).

In this paper, we present two contributions to
the automatic learning of referential semantics for
reference resolution in situated dialog that address
these problems: Firstly, we show the benefits of
adapting models of RL semantics to a specific di-
alog as it progresses to accommodate the dyad’s
idiosyncratic use of RL. Secondly, we present a
method for deriving a gradient (non-binary) mea-
sure of RA in situated dialog. Thus, instead of
first identifying REs and then resolving which en-
tity they refer to, we treat all language in the di-
alog as being more or less referential, and use
this gradual measure together with the referential
semantics to derive which entity is being talked
about. Our assumption is that while the exact

1Examples are from the dataset of Shore et al. (2018)

referential semantics of words vary greatly across
dyads, the general ability of a given word to suc-
cessfully refer to entities varies little across dyads.
Thus, it should be possible to statistically measure
the ability of a set of language to refer to entities
in general, irrespective of the language’s seman-
tic content (e.g. the exact hue understood as pink
by a dyad). This knowledge, combined with dia-
logic adaptation, facilitates accurate automatic ref-
erence resolution in situated dialog without anno-
tation of REs, even with little background data.

2 Background

Both behavioral studies on reference resolution
and RL and computational models thereof have il-
lustrated the context-sensitive nature of reference
resolution and RL and the gradient nature of RA.

2.1 Collaboration in Reference Resolution

Traditionally, reference resolution in dialog was
analyzed using a literary model of reference,
whereby individual REs are seen as unique iden-
tifiers of a referent as in written discourse, i.e.
each RE is assumed to be “atomic” in its ref-
erence to a particular entity (Clark and Wilkes-
Gibbs, 1986, 3). However, shortcomings in this
approach have long since been identified (cf. Ol-
son, 1970): REs often do not unambiguously iden-
tify their referent when initiated but rather com-
prise a larger process of collaborative reference
resolution, whereby multiple dialog participants
iteratively extend, repair and even replace REs ini-
tiated by themselves or others (Clark and Wilkes-
Gibbs, 1986; Heeman and Hirst, 1995).

In Figure 1, speaker A initiates the RE the one to
the left and immediately expands it in an episodic
manner (Clark and Wilkes-Gibbs, 1986, 4, 17).
Given a literary model of reference, they should
have supplied exactly enough information to iden-
tify the referent and no more (the big pinkish aster-
oid to the left), adhering to Grice’s (1975) maxim
of quantity. However, RL can undergo not only ex-
pansion but also replacement: For color, speaker B
proposes both purple and pinkish, but only pinkish
is then accepted by A.

In contrast to a literary model of reference, a
collaborative model represents reference resolu-
tion as a process of iteratively presenting RL to
the other participant(s) in a dialog, which is then
either accepted as being sufficient to identify a ref-
erent or rejected as insufficient (Clark and Wilkes-
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Gibbs, 1986, 9). This more accurately models ref-
erence observed in spoken dialog.

2.2 Referring Language Syntax

Literary reference models fail to account not only
for the collaborative nature of reference resolution
but also for the syntactic structure of RL itself:
Ideally, a reference is expressed linguistically as
an NP, but this ideal does not hold in unrestricted
dialog (Clark and Wilkes-Gibbs, 1986).

Since an RE cannot be defined as an atomic re-
ferring unit, a model of RL should ideally be able
to measure the RA of any given set of language
rather than simply classifying language as (part of)
an RE in a binary decision, such as by using hand-
crafted rules (cf. Shore and Skantze, 2017) or ex-
pert annotation (cf. Spanger et al., 2009; Kenning-
ton et al., 2015).

2.3 Modeling Referring Language

There have already been some efforts in auto-
matic annotation of REs: For example, Schutte
et al. (2011) algorithmically extracted RL as ut-
terance(s) preceding a discrete event in a shared
environment within a certain timeframe. However,
one drawback to this method is that “the references
must be contained in instructions that cause events
involving the referents” and “it must be possible to
automatically detect these events” (Schutte et al.,
2011, 189). Thus, REs not referring to a detectable
event cannot be detected in this manner. More-
over, not all language extracted is that of REs: For
example, in the instruction go through that door,
only half of the tokens constitute RL (that door).
This means that this method must either be sup-
plemented with additional methods to extract RL
or tolerate a high noise-to-signal ratio.

Other approaches use language structure to in-
fer RL, namely in parsing said language using a
combination of statistical or rule-based methods.
However, both entail that a solution be special-
ized for language specific to a given domain, such
as for route-following instructions (Meena et al.,
2012) or for a specific instructor-manipulator pair
task (Shore and Skantze, 2017): Meena et al.
(2012) used the highly-structured nature of route-
following instructions to great effect, while Shore
and Skantze (2017) used a phrase-structure parser
pre-trained on out-of-domain data and supple-
mented it with hand-crafted rules to extract NPs
according to the literary ideal of RL.

Finally, many works simply ignore the distinc-
tion between RL and non-RL and focus solely on
learning reference resolution as a function of lan-
guage and extra-linguistic knowledge such as en-
tity features (cf. Kennington et al., 2015; Shore
and Skantze, 2017), discourse and action history
(cf. Iida et al., 2010), perception (cf. Matuszek
et al., 2012) or gesture (cf. Matuszek et al., 2014).
Although these methods improve the resolution of
what RL refers to, they do not resolve what lan-
guage is RL. Moreover, none of these works ad-
dress the strong dyadic and dialogic entrainment
effects on RL which include the formation of CPs,
reinforcing the use of RL specific to a given dialog
even if it diverges from population RL use.

3 Data Description

Speaker Round Utterance
B 4 eh it looks like a blue crab

sticking up his claws
. . .

A 7 it’s the same the
the little crab again

Figure 2: Example of repeated reference across rounds;
the referent the participants have to collaboratively re-
solve is indicated here with a magenta square.

The data used is that of Shore et al. (2018), a
set of |D| = 42 task-oriented dialogs (mean du-
ration µ = 15:25 minutes, standard deviation
SD = 1:13, total 647:35) in which one partici-
pant is an instructor referring to specific pieces on
a shared game board which the other participant,
the manipulator, must then attempt to resolve by
selecting without the aid of extra-linguistic cues
(see Figures 1–2): They sit at different locations
and communicate solely through an audio chan-
nel. Upon successful selection, the piece moves
to a random free place on the board and the par-
ticipants alternate roles. This dataset is some-
what larger than that for similar tasks (cf. Iida
et al., 2010; Matuszek et al., 2012; Malinowski
and Fritz, 2014; Kennington et al., 2015). How-
ever, unlike in many other works, participants
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were allowed to refer to pieces in any way they
wish and both were allowed to speak freely.

Each dialog d 2 D has |R| = 20 randomly-
generated game pieces and is divided into individ-
ual game rounds d , hd0

1 . . . d0
ni, in each of which

d0
, (R, r̂, T ) a single entity is pre-selected by the

game as the entity r̂ 2 R which must be success-
fully resolved for that round. Each dialog presents
the same 20 referents aside from their changing
position, so participants must also refer to pieces
which have already been referenced before: After
40 rounds, all pieces are guaranteed to have been
referred to and so every reference thereafter is a
coreference (see Figure 2).

Each entity r 2 R has features representing
shape, size, color and position during the given
round. A sequence of tokens T was transcribed
from the speech of both participants using Penn
Treebank tokenization rules (Marcus et al., 1993).
See the Supplementary Material for further infor-
mation on the dataset.

4 Baseline

The reference resolution method used as a base-
line was a words-as-classifiers (WaC) regres-
sion model (cf. Kennington et al., 2015). In
this framework, an individual logistic regression
model pt(r) , �(wT

t r + bt) is trained for each to-
ken type t, predicting the probability of a given
entity r being the token’s TRUE referent r̂, given
the feature vector r representing shape, size, color
and position (see the Supplementary Material for
details). For example, if trained successfully, the
model for the token ”red” should be sensitive to
the entity’s hue, but not to its size. Common non-
descriptive words such as ”the” should not be sen-
sitive to any of the entity’s properties, yielding an
output of 0.5 for all entities. The score of a given
entity r being the referent r = r̂ of a set of RL to-
kens T is defined as the normalized linear com-
bination of the tokens’ corresponding classifiers
pt(r):

p0(r = r̂, T ) ,
1

n

nX

t2T

pt(r) (1)

For training, language in each round (R, r̂, T )
is defined as a bag of words T referring to the ref-
erent r̂. For each token t 2 T , a training example
is defined for the referent r̂ (with a target score of
1) as well as for each non-referent entity r 2 R \ r̂
(with a target score of 0). To address model bias,

the training example for r̂ is weighted by its com-
plement set size, |R \ r̂| = 19.

Initial experiments showed that lemmatization
did not affect the performance on our dataset.
Thus, each inflected lexical form is considered a
unique word (i.e., vocabulary item). Unlike Ken-
nington et al. (2015), no smoothing was used, in-
stead ignoring words of fewer than ↵ , 3 oc-
currences. The motivation for this is that a gen-
eral out-of-vocabulary model is not expected to in-
crease the performance, since it basically learns to
ignore entity properties, similar to the models for
common words such as ”the”. This was also con-
firmed in our initial experiments.

Note that all language from both the instructor
and the manipulator in each round is used. This
is unlike Kennington et al. (2015), who only used
language from (manually annotated) REs. As ar-
gued above, REs cannot easily be identified in
the type of dialog data we are addressing. This
of course makes the task much more challenging,
and the baseline performance can be expected to
be lower than that reported in Kennington et al.
(2015).

We did 42-fold cross-validation, in each fold us-
ing 40 dialogs for training as background data,
one for testing and one for use as random data
to compare the effects of dialog-specific data to
(see Section 5 below). Each round in the test di-
alog is evaluated by the reciprocal rank (RR) of
the referent r̂ in the set of entities R ordered by
their combined score for all word classifiers in the
round

P
t2T pt(r), and its mean (MRR) is then

calculated.

Statistic Mean SD SEM
Rank 2.8060 3.2427 0.0566
RR 0.6892 0.3648 0.0064

Table 1: Baseline results for 42-fold cross-validation.

The cross-validation results for the baseline
WaC model are shown in Table 1. As expected,
this is indeed worse than e.g. Kennington et al.
(2015)’s reported mean rank of 2.16 when only us-
ing speech features. The WaC model is neverthe-
less a simple and effective representation of ref-
erential semantics in domains where features for
each individual referent can be easily represented
(cf. Kennington and Schlangen, 2015). Still, it has
two shortcomings: Firstly, it infers a static model
of referential semantics which is good across di-
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alogs but is suboptimal for language within di-
alogs due to effects of language alignment (Gar-
rod and Anderson, 1987; Brennan, 1996; Brennan
and Clark, 1996). Secondly, it encodes RA only
indirectly: Given a large enough dataset, logistic
regression for non-RL such as okay now I’m ready
should have an even distribution between TRUE
and FALSE classes, i.e. these classifiers should de-
cide nothing. Conversely, strong RL such as red
should entail strong relationships between certain
features and decisions. However, due to the ef-
fects of idiosyncrasy and alignment on dialogic
language, understanding low-frequency words is
crucial despite that they cannot be conditioned for
as well as can be done for high-frequency ones.

5 Dialogic Model Adaptation

We evaluated the benefits of adapting reference
resolution parameters to the language of individ-
ual dialogs by initially conditioning WaC mod-
els on the training set as background data and
then adapting the model during evaluation by re-
training using data from previous states in the di-
alog being evaluated: The RR for the ith round
(R, r̂, T )i is calculated using a model trained on
both background data and interaction data de-
fined as the rounds observed thus far in the given
dialog (R, r̂, T )i0<i. The parameters for the lo-
gistic regression models representing individual
words are optimized using quasi-Newton hybrid
conjugate gradient descent from Weka v3.8.0 (Dai
and Yuan, 2001; Frank et al., 2016). A ridge
� = 100 was used to avoid over-fitting of mod-
els for low-frequency words, tuned using cross-
validation over the dataset (le Cessie and van
Houwelingen, 1992). The same cross-validation
method determined an optimal interaction data
weight of 3 relative to background data, i.e. an ob-
servation in a given dialog is three times as rele-
vant as one from the background data2.

Figure 3 compares the improvement of RR from
adapting model parameters using dialog interac-
tion data (Adt) to the Baseline as well as
effects of adding data from a randomly-chosen
round from another unseen dialog (RndAdt): The
condition RndAdt is used to rule out the possi-
bility that model fit improves simply due to more
training data in general. We fit a linear mixed
model with conditions Adt, RndAdt, Wgt and
scaled Tokens as linear fixed effects and game

2Interaction data weight values tested were 1, 3, 5, 7, 10.
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Figure 3: RR as a quadratic function of ROUND i · i2

for model adaptation using interaction data (CI 0.95;
error bars are SEM; showing every 5th round).

round ordinality (ROUND) as a quadratic fixed
effect: Wgt denotes weighting word classifiers
by RA, which will be discussed in Section 6.
Tokens denotes the number of word tokens pro-
duced by both speakers in the given round3. DYAD
(the pair of participants in a given dialog) was
included as a random intercept with a random
slope for Adt and Wgt. We selected the best-
fitting model using backwards selection with log-
likelihood ratio tests: Starting from the maximally
complex model (Barr et al., 2013), we first simpli-
fied the random structure and then removed fixed
effects not contributing to fit. This showed that
including RndAdt does not significantly improve
fit (�2 = 0.00003, p = 0.99599), meaning model
fit improves from data specific to the given dialog
and not merely from more training data.

We refit the final model using maximum-
likelihood estimation with Satterthwaite approx-
imation to degrees of freedom (see the Supple-
mentary Material for details). Despite that RR
correlates with ROUND i even for the baseline
method due to dialogic lexical alignment (cf.
Shore and Skantze, 2017; Shore et al., 2018), there
is a significant improvement in RR from Adt
(B = 0.04882, t(40) = 7.65, p < 0.001).

Since adding a small amount of data from a
dialog significantly improves reference resolution
for that dialog, dialogic reference resolution can
be seen as a model adaptation problem, where in-
domain data (that from the dialog being evaluated)

3Adding the count of coreferences to a given referent as
a fixed effect prevented model convergence when included
with Tokens. Regardless, adding it in lieu of Tokens did
not significantly improve fit (�2 = 3.7329,, p = 0.05335).
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is relatively sparse compared to out-of-domain
data (that from other dialogs). This suggests that
the effect of dyadic alignment on reference reso-
lution is amplified: As ROUND i increases, not
only is more data specific to the given dialog avail-
able, but the data observed becomes more homo-
geneous. Thus, the benefit of this method in-
creases with time, as the ratio of interaction to
background data increases.

6 Weighting by Referring Ability
While the method above facilitates the adaption of
referential semantics models to dyad-specific lan-
guage, not all language which is rare and/or ob-
served in only one dyad has great RA: For exam-
ple, in the dataset used, there were 19 observations
of the word awesome but 15 of those were in a sin-
gle dialog. Even when evaluating on that dialog, a
classifier would be inferred from the 19 � 15 > ↵
remaining observations, and even adapting the
word models with interaction data as done in Sec-
tion 5 will only add noise since it only occurs as
non-RL (e.g. awesome good work). Conversely, a
word such as piece is semantically heavy in gen-
eral English but is by itself a poor signifier of ref-
erents given the task at hand. So, we evaluated the
benefit of weighting word classifiers by their RA
in order to mitigate the effects of such spurious ob-
servations. To do this, we define the RA of a word
t as the mean difference between the probability
of the actual referent r̂ being TRUE pt(r̂) and the
mean probability for all other entities R \ r̂ for ev-
ery occurrence of the word in the training data:

wt ,
1

n

nX

d2D
(R,r̂,T )2d

p00
t (R, r̂, T )

p00
t (R, r̂, T ) , p0

t(r̂, T ) � 1

m

mX

r2R\r̂

p0
t(r, T )

p0
t(r, T ) , pt(r)

|T |X

i=1

[Ti = t]

(2)

One alternative to this metric that we considered
was the area under the receiver operating charac-
teristic (ROC) curve (AUC). However, the metric
above is more conservative in cases of word mod-
els with few observations by penalizing their score
due to the logistic ridge used, thus putting more
“trust” in word models with more observations;
The AUC does not account for this directly.

Although this metric is derived from referen-
tial semantics learned for a specific domain, the
WaC logistic regression model(s) encoding refer-
ential semantics are simple and thus can easily be
re-trained for other domains. It can also be derived
from other models of referential semantics.
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Figure 4: RR as a quadratic function of ROUND i · i2

for weighting model scores by RA pt(r) · wt (CI 0.95;
error bars are SEM; showing every 5th round).

Figure 4 compares the improvement of RR from
weighting each classifier pt(r) by its RA wt (Wgt)
to the Baseline and finally to that from com-
bining adaptation from Section 5 with weight-
ing (Adt,Wgt); Using the same linear mixed
model described in Section 5, a significant im-
provement in RR was found for Wgt over the
baseline (B = 0.1314, t(39) = 11.79, p < 0.001)
although the effect weakens over time. However,
this is likely not a weakness of the method but
rather an effect of repeated reference on partici-
pants’ RL use: With repeated reference, the length
of RL reduces (Clark and Wilkes-Gibbs, 1986),
meaning that the mean RA of each word increases
due to fewer tokens of weak RA being uttered. In-
deed, a significant interaction between Round and
Tokens was found in their effects on RA (see
Supplementary Material). Figure 5 shows a sig-
nificant correlation of ROUND i and mean RA of
all tokens for that round 1

n

Pn
t2Ti

wt. Addition-
ally, Figure 6 shows a significant inverse relation-
ship with token count |Ti|. Since the referent r̂ is
chosen at random by the game, the amount of ref-
erences to an entity increases with round ordinal-
ity, and so this corresponds with Clark and Wilkes-
Gibbs (1986).

A qualitative assessment shows that vocabu-
lary items with the great RA are typically nouns
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Figure 6: Token count |Ti| as a quadratic function of
ROUND i · i2 (CI 0.95; error bars are SEM).

strongly associated with the task at hand: The 31
words with greatest RA are all nouns referring to
shapes. Despite this, however, great RA is not
exclusive to nouns: In Table 2, inside, a prepo-
sition, is considered semantically lighter in gen-
eral English than nouns are (Froud, 2001), but has
RA greater than the mean (µ = 0.2424, SD =
0.1266). On the other hand, the noun color has
relatively little RA given the task at hand.
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Figure 7: MRR per background training set size.

Moreover, including Adt and Wgt using dialog
interaction data (Adt,Wgt) shows significant im-
provements over either alone: During model se-
lection, including Wgt significantly improved fit

Word t RA wt Count
K 0.7567 108
bat 0.6382 69
house 0.6374 153
chicken 0.6340 85
computer 0.6181 96

. . .
inside 0.3985 13

. . .
color 0.0291 195

. . .
’s 0.0066 1593
it 0.0051 1731
okay 0.0048 1115
the 0.0040 2478

Table 2: Sample vocabulary items ordered by RA.

(�2 = 61.425, p < 0.001). This means that both
methods can be used together and complement
each other: Weighting is particularly beneficial
for shorter interactions, where little in-domain in-
teraction data is present, while adaptation pro-
vides greater benefit for longer interactions (cf.
Figure 3). In fact, Figure 7 shows that Wgt has
better MRR using only 12 randomly-chosen di-
alogs as background data than the Baseline
does with 40, and adaptation and weighting to-
gether (Adt,Wgt) has better MRR with only 7.
Figure 8 illustrates the effects of the two condi-
tions on reference resolution in the task used for
evaluation: The baseline classifier has a rank of
10 for the referent r̂ out of |R| = 20 possible
referents. In the baseline (A), the classifier for
e.g. color has as much weight as e.g. rectangle al-
though the former is not a useful signifier for the
given task. When weighting by RA (B), however,
the less-useful words contribute less to the totalP

t2T (pt(r̂) · wt), improving rank to 5. Finally,
when adapting the model with interaction data (C),
models for semantically-heavy words like violet
better fit the dyad’s RL use, bringing rank to 1.

When both incrementally adapting semantic
models with in-domain dialog data and weight-
ing by RA, MRR for reference resolution was im-
proved by 32.5% over the baseline (see Table 3).

7 Conclusion and Discussion

We have shown that it is possible to improve ref-
erence resolution for situated dialog by incremen-
tally adapting word semantic model parameters to
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(A) Baseline (Target rank 10)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.50 0.74 0.31 0.42 0.23 0.41 0.53 0.31 

(B) Weighting by RA (Target rank 5)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.50 0.74 0.31 0.42 0.23 0.41 0.53 0.31 

RA 0.00 0.00 0.32 0.15 0.19 0.31 0.34 0.02 0.05 

(C) Adapting and Weighting by RA (Target rank 1)

the  slanted rectangle with two  triangles violet in color 

the  slanted rectangle with two  triangles violet in color 

Score 0.51 0.64 0.80 0.31 0.60 0.63 0.70 0.53 0.46 

RA 0.00 0.56 0.34 0.15 0.19 0.30 0.34 0.02 0.04 

A 

C 

B 

Figure 8: Reference resolution with different condi-
tions: The TRUE referent r̂ is labeled C. Word hue de-
notes semantic score pt(r̂) (green = 1.0, yellow = 0.5,
red = 0.0). Saturation denotes RA wt.

a given dialog in order to accommodate idiosyn-
cratic language use by dyad partners, and the ef-
fect of the partners’ own alignment makes this
method even more beneficial over time. Addition-
ally, we have defined a metric of word referring
ability which is derived from a word’s referen-
tial semantics in situated dialog but holds across
individual dialogs despite dyadic variation in RL
use. We showed that this metric can be used to
automatically determine the usefulness of a given
word for reference resolution, meaning that RE
annotation is not necessary. Both of these aspects
are beneficial to natural language understanding
(NLU) for situated dialog due to the difficulty of
acquiring data domain-appropriate data.

Model adaption using dialogic knowledge can
be effective for improving NLU (cf. Riccardi and
Gorin, 2000) despite that little work has been done
in this regard specifically for reference resolution.
Our experiments with model adaptation in Sec-
tion 5 suggest that it may be beneficial to treat
reference resolution in situated dialog as a model
adaptation task, where a given dialog being evalu-

Condition Rank SDRank SEMRank

Baseline 2.8060 3.2427 0.0566
Adt 2.4224 2.8614 0.0499
Wgt 1.9373 2.3288 0.0406
Adt,Wgt 1.5693 1.6685 0.0291
Condition RR SDRR SEMRR

Baseline 0.6892 0.3648 0.0064
Adt 0.7372 0.3470 0.0061
Wgt 0.8099 0.3116 0.0054
Adt,Wgt 0.8613 0.2686 0.0047

Table 3: Overall results for conditions evaluated.

ated is considered “in-domain” data and all other
dialogs considered “out-of-domain” data. More-
over, due to the fact that dialog participants’ use
of RL converges over time (Garrod and Anderson,
1987; Brennan, 1996; Brennan and Clark, 1996),
the task should adapt a pre-trained reference res-
olution model not only for a given dialog but also
to the given state of that dialog; On the other hand,
Iida et al. (2010) incorporate intra-dialogic knowl-
edge but do not adapt to inter-dialogic effects.

Lastly, weighting by RA wt as derived from lo-
gistic word classifier scores pt(r) in Section 6 was
shown to be effective and can be easily inferred
from data. However, this inaccurately assumes
inter-word independence, since it does not encode
a word’s context: For example, the RA of not was
0.0638, which is relatively low. While it is a poor
signifier in itself, it reverses the polarity of the
predicate it modifies. For example, in it’s the baby
blue K the light one not the dark one, the NP the
dark one should in fact have negative RA: Entities
with a low semantic score

P
t2hthe,dark,onei pt(r)

should in fact be preferred over those those with a
high score. This could be addressed via structural
prediction (e.g. conditional random fields or neu-
ral networks) or even higher-order n-grams, but
these methods cannot be easily utilized given the
typically small size of situated dialog datasets.
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Abstract

Developing agents to engage in complex goal-
oriented dialogues is challenging partly be-
cause the main learning signals are very sparse
in long conversations. In this paper, we pro-
pose a divide-and-conquer approach that dis-
covers and exploits the hidden structure of the
task to enable efficient policy learning. First,
given successful example dialogues, we pro-
pose the Subgoal Discovery Network (SDN)
to divide a complex goal-oriented task into
a set of simpler subgoals in an unsupervised
fashion. We then use these subgoals to learn
a multi-level policy by hierarchical reinforce-
ment learning. We demonstrate our method
by building a dialogue agent for the composite
task of travel planning. Experiments with sim-
ulated and real users show that our approach
performs competitively against a state-of-the-
art method that requires human-defined sub-
goals. Moreover, we show that the learned
subgoals are often human comprehensible.

1 Introduction

Consider we want to plan a trip to a distant city
using a dialogue agent. The agent must make
choices at each leg, e.g., whether to fly or to drive,
whether to book a hotel. Each of these steps in
turn involves making a sequence of decisions all
the way down to lower-level actions. For exam-
ple, to book a hotel involves identifying the loca-
tion, specifying the check-in date and time, and
negotiating the price etc.

The above process of the agent has a natural
hierarchy: a top-level process selects which sub-
goal to complete, and a low-level process chooses
primitive actions to accomplish the selected sub-
goal. Within the reinforcement learning (RL)
paradigm, such a hierarchical decision making
process can be formulated in the options frame-
work (Sutton et al., 1999), where subgoals with

their own reward functions are used to learn poli-
cies for achieving these subgoals. These learned
policies are then used as temporally extended ac-
tions, or options, for solving the entire task.

Based on the options framework, researchers
have developed dialogue agents for complex tasks,
such as travel planning, using hierarchical re-
inforcement learning (HRL) (Cuayáhuitl et al.,
2010). Recently, Peng et al. (2017b) showed that
the use of subgoals mitigates the reward sparsity
and leads to more effective exploration for dia-
logue policy learning. However, these subgoals
need to be human-defined which limits the appli-
cability of the approach in practice because the do-
main knowledge required to properly define sub-
goals is often not available in many cases.

In this paper, we propose a simple yet effective
Subgoal Discovery Network (SDN) that discovers
useful subgoals automatically for an RL-based di-
alogue agent. The SDN takes as input a collection
of successful conversations, and identifies “hub”
states as subgoals. Intuitively, a hub state is a re-
gion in the agent’s state space that the agent tends
to visit frequently on successful paths to a goal but
not on unsuccessful paths. Given the discovered
subgoals, HRL can be applied to learn a hierar-
chical dialogue policy which consists of (1) a top-
level policy that selects among subgoals, and (2) a
low-level policy that chooses primitive actions to
achieve selected subgoals.

We present the first study of learning dialogue
agents with automatically discovered subgoals.
We demonstrate the effectiveness of our approach
by building a composite task-completion dialogue
agent for travel planning. Experiments with
both simulated and real users show that an agent
learned with discovered subgoals performs com-
petitively against an agent learned using expert-
defined subgoals, and significantly outperforms an
agent learned without subgoals. We also find that
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the subgoals discovered by SDN are often human
comprehensible.

2 Background

A goal-oriented dialogue can be formulated as a
Markov decision process, or MDP (Levin et al.,
2000), in which the agent interacts with its en-
vironment over a sequence of discrete steps. At
each step t 2 {0, 1, . . .}, the agent observes the
current state st of the conversation (Henderson,
2015; Mrkšić et al., 2017; Li et al., 2017), and
chooses action at according to a policy ⇡. Here,
the action may be a natural-language sentence or
a speech act, among others. Then, the agent re-
ceives a numerical reward rt and switches to next
state st+1. The process repeats until the dialogue
terminates. The agent is to learn to choose op-
timal actions {at}t=1,2,... so as to maximize the
total discounted reward r0 + �r1 + �2r2 + · · · ,
where � 2 [0, 1] is a discount factor. This learning
paradigm is known as reinforcement learning, or
RL (Sutton and Barto, 1998).

When facing a complex task, it is often more
efficient to divide it into multiple simpler sub-
tasks, solve them, and combine the partial solu-
tions into a full solution for the original task. Such
an approach may be formalized as hierarchical RL
(HRL) in the options framework (Sutton et al.,
1999). An option can be understood as a subgoal,
which consists of an initiation condition (when
the subgoal can be triggered), an option policy
to solve the subgoal, and a termination condition
(when the subgoal is considered finished).

When subgoals are given, there exist effective
RL algorithms to learn a hierarchical policy. A
major open challenge is the automatic discovery
of subgoals from data, the main innovation of this
work is covered in the next section.

3 Subgoal Discovery for HRL

Figure 1 shows the overall workflow of our pro-
posed method of using automatic subgoal discov-
ery for HRL. First a dialogue session is divided
into several segments. Then at the end of those
segments (subgoals), we equip an intrinsic or ex-
trinsic reward for the HRL algorithm to learn a hi-
erarchical dialogue policy. Note that only the last
segment has an extrinsic reward. The details of
the segmentation algorithm and how to use sub-
goals for HRL are presented in Section 3.1 and
Section 3.3.

SDN
Intrinsic
Reward

Extrinsic 
Reward

HRLIntrinsic
Reward 𝜋Dialogue

Session

Figure 1: The workflow for HRL with subgoal discov-
ery. In addition to the extrinsic reward at the end of
the dialogue session, HRL also uses intrinsic rewards
induced by the subgoals (or the ends of dialogue seg-
ments). Section 3.2 details the reward design for HRL.

3.1 Subgoal Discovery Network
Assume that we have collected a set of successful
state trajectories of a task, as shown in Figure 2.
We want to find subgoal states, such as the three
red states s4, s9 and s13, which form the “hubs”
of these trajectories. These hub states indicate the
subgoals, and thus divide a state trajectory into
several segments, each for an option1.

s0

s1

s2

s3

s4 s9

s10

s11

s12

s13
Start Goal

s6

s8

s7

Figure 2: Illustration of “subgoals”. As-
suming that there are three state trajectories
(s0, s1, s4, s6, s9, s10, s13), (s0, s2, s4, s7, s9, s11, s13)
and (s0, s3, s4, s8, s9, s12, s13). Then red states s4, s9,
s13 could be good candidates for “subgoals”.

Thus, discovering subgoals by identifying hubs
in state trajectories is equivalent to segmenting
state trajectories into options. In this work, we for-
mulate subgoal discovery as a state trajectory seg-
mentation problem, and address it using the Sub-
goal Discovery Network (SDN), inspired by the
sequence segmentation model (Wang et al., 2017).

The SDN architecture. SDN repeats a two-
stage process of generating a state trajectory seg-
ment, until a trajectory termination symbol is gen-
erated: first it uses an initial segment hidden state

1There are many ways of creating a new option hI, ⇡, �i
for a discovered subgoal state. For example, when a subgoal
state is identified at time step t, we add to I the set of states
visited by the agent from time t� n to t, where n is a pre-set
parameter. I is therefore the union of all such states over all
the state trajectories. The termination condition � is set to 1
when the subgoal is reached or when the agent is no longer in
I , and to 0 otherwise. In the deep RL setting where states are
represented by continuous vectors, � is a probability whose
value is proportional to the vector distance e.g., between cur-
rent state and subgoal state.
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s0

s1

s1
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s2

#

s2

s3

s3

s4

s4

#

s4

s5

s5

#

s0 s1 s2 s3 s4 s5

#

M

RNN1

RNN2

Figure 3: Illustration of SDN for state trajectory
(s0, . . . , s5) with s2, s4 and s5 as subgoals. Symbol #
is the termination. The top-level RNN (RNN1) models
segments and the low-level RNN (RNN2) provides in-
formation about previous states from RNN1. The em-
bedding matrix M maps the outputs of RNN2 to low
dimensional representations so as to be consistent with
the input dimensionality of RNN1. Note that state s5 is
associated with two termination symbols #; one is for
the termination of the last segment and the other is for
the termination of the entire trajectory.

to start a new segment, or a trajectory termina-
tion symbol to terminate the trajectory, given all
previous states; if the trajectory is not terminated,
then keep generating the next state in this trajec-
tory segment given previous states until a segment
termination symbol is generated. We illustrated
this process in Figure 3.

We model the likelihood of each segment using
an RNN, denoted as RNN1. During the training, at
each time step, RNN1 predicts the next state with
the current state as input, until it reaches the op-
tion termination symbol #. Since different options
are under different conditions, it is not plausible to
apply a fixed initial input to each segment. There-
fore, we use another RNN (RNN2) to encode
all previous states to provide relevant information
and we transform these information to low dimen-
sional representations as the initial inputs for the
RNN1 instances. This is based on the causality as-
sumption of the options framework (Sutton et al.,
1999) — the agent should be able to determine
the next option given all previous information, and
this should not depend on information related to
any later state. The low dimensional representa-
tions are obtained via a global subgoal embedding
matrix M 2 R

d⇥D, where d and D are the di-
mensionality of RNN1’s input layer and RNN2’s
output layer, respectively. Mathematically, if the

output of RNN2 at time step t is ot, then from
time t the RNN1 instance has M · softmax(ot)
as its initial input2. D is the number of subgoals
we aim to learn. Ideally, the vector softmax(ot) in
a well-trained SDN is close to an one-hot vector.
Therefore, M ·softmax(ot) should be close to one
column in M and we can view that M provides at
most D different “embedding vectors” for RNN1
as inputs, indicating at most D different subgoals.
Even in the case where softmax(ot) is not close
to any one-hot vector, choosing a small D helps
avoid overfitting.

Segmentation likelihood. Given the state tra-
jectory (s0, . . . , s5), assuming that s2, s4 and
s5 are the discovered subgoal states, we model
the conditional likelihood of a proposed segmen-
tation � = ((s0, s1, s2), (s2, s3, s4), (s4, s5)) as
p(�|s0) = p((s0, s1, s2)|s0) · p((s2, s3, s4)|s0:2) ·
p((s4, s5)|s0:4), where each probability term
p(·|s0:i) is based on an RNN1 instance. And for
the whole trajectory (s0, . . . , s5), its likelihood is
the sum over all possible segmentations.

Generally, for state trajectory s = (s0, . . . , sT ),
we model its likelihood as follows3:

LS(s) =
X

�✓S(s),length(�)S

length(�)Y

i=1

p(�i|⌧(�1:i)),

(1)
where S(s) is the set of all possible segmentations
for the trajectory s, �i denotes the ith segment in
the segmentation �, and ⌧ is the concatenation op-
erator. S is an upper limit on the maximal num-
ber of segments. This parameter is important for
learning subgoals in our setting since we usually
prefer a small number of subgoals. This is differ-
ent from Wang et al. (2017), where a maximum
segment length is enforced.

We use maximum likelihood estimation with
Eq. (1) for training. However, the number of pos-
sible segmentations is exponential in S(s) and
the naive enumeration is intractable. Here, dy-
namic programming is employed to compute the
likelihood in Eq. (1) efficiently: for a trajectory
s = (s0, . . . , sT ), if we denote the sub-trajectory
(si, . . . , st) of s as si:t, then its likelihood follows

2softmax(ot)i = exp(ot,i)/
DP

i0=1

exp(ot,i0) 2 R
D for

ot = (ot,1, . . . , ot,D).
3For notation convenience, we include s0 into the obser-

vational sequence, though s0 is always conditioned upon.
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the below recursion:

Lm(s0:t) =

8
><

>:

t�1P
i=0

Lm�1(s0:i)p(si:t|s0:i), m > 0,

I[t = 0], m = 0.

Here, Lm(s0:t) denotes the likelihood of sub-
trajectory s0:t with no more than m segments and
I[·] is an indicator function. p(si:t|s0:i) is the
likelihood segment si:t given the previous history,
where RNN1 models the segment and RNN2 mod-
els the history as shown in Figure 3. With this re-
cursion, we can compute the likelihood LS(s) for
the trajectory s = (s0, . . . , sT ) in O(ST 2) time.

Learning algorithm. We denote ✓s as the model
parameter including the parameters of the em-
bedding matrix M , RNN1 and RNN2. We then
parameterize the segment likelihood function as
p(si:t|s0:i) = p(si:t|s0:i; ✓s), and the trajectory
likelihood function as Lm(s0:t) = Lm(s0:t; ✓s).

Given a set of N state trajectories
(s(1), . . . , s(N)), we optimize ✓s by mini-
mizing the negative mean log-likelihood with L2

regularization term 1
2�||✓s||2 where � > 0, using

stochastic gradient descent:

LS(✓s, �) = �
1
N

NX

i=1

log LS(s(i), ✓s) +
1
2
�||✓s

||
2. (2)

Algorithm 1 outlines the training procedure for
SDN using stochastic gradient descent.

Algorithm 1 Learning SDN
Input: A set of state trajectories (s1, . . . sN ), the number of

segments limit S, initial learning rate ⌘ > 0.
1: Initialize the SDN parameter ✓s.
2: while not converged do
3: Compute the gradient r✓sLS(✓s, �) of the loss

LS(✓s, �) as in Eq. (2).
4: Update ✓s

 ✓s
� ⌘r✓sLS(✓s, �).

5: Update the learning rate ⌘.
6: end while

3.2 Hierarchical Dialogue Policy Learning
Before describing how we use a trained SDN
model for HRL, we first present a short review of
HRL for a task-oriented dialogue system. Follow-
ing the options framework (Sutton et al., 1999),
assume that we have a state set S , an option set G
and a finite primitive action set A.

The HRL approach we take learns two Q-
functions (Peng et al., 2017b), parameterized by
✓e and ✓i, respectively:

• The top-level Q⇤(s, g; ✓e) measures the maxi-
mum total discounted extrinsic reward received
by choosing subgoal g in state s and then fol-
lowing an optimal policy. These extrinsic re-
wards are the objective to be maximized by the
entire dialogue policy.

• The low-level Q⇤(s, a, g; ✓i) measures the max-
imum total discounted intrinsic reward received
to achieve a given subgoal g, by choosing action
a in state s and then following an optimal option
policy. These intrinsic rewards are used to learn
an option policy to achieve a given subgoal.

Suppose we have a dialogue session of T turns:
⌧ = (s0, a0, r0, . . . , sT ), which is segmented into
a sequence of subgoals g0, g1, . . . 2 G. Consider
one of these subgoals g which starts and ends in
steps t0 and t1, respectively.

The top-level Q-function is learned using Q-
learning, by treating subgoals as temporally ex-
tended actions:

✓e  ✓e +↵ · (q �Q(st, g; ✓e)) ·r✓eQ(st, g; ✓e) ,

where

q =
t1�1X

t=t0

�t�t0re
t + �t1�t0 max

g02G
Q(st1 , g

0; ✓e) ,

and ↵ is the step-size parameter, � 2 [0, 1] is a
discount factor. In the above expression of q, the
first term refers to the total discounted reward dur-
ing fulfillment of subgoal g, and the second to the
maximum total discounted after g is fulfilled.

The low-level Q-function is learned in a sim-
ilar way, and follows the standard Q-learning up-
date, except that intrinsic rewards for subgoal g are
used. Specifically, for t = t0, t0 + 1, . . . , t1 � 1:

✓i  ✓i + ↵ · (qt �Q(st, at, g; ✓e)) ·r✓i
Q(st, at, g; ✓i) ,

where

qt = ri
t + � max

a02A
Q(st+1, a

0, g; ✓i) .

Here, the intrinsic reward ri
t is provided by the in-

ternal critic of dialogue manager. More details are
in Appendix A.

In hierarchical policy learning, the combination
of the extrinsic and intrinsic rewards is expected to
help the agent to successfully accomplish a com-
posite task as fast as possible while trying to avoid
unnecessary subtask switches. Hence, we define
the extrinsic and intrinsic rewards as follows:
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Extrinsic Reward. Let L be the maximum
number of turns of a dialogue, and K the number
of subgoals. At the end of a dialogue, the agent re-
ceives a positive extrinsic reward of 2L for a suc-
cess dialogue, or �L for a failure dialogue; for
each turn, the agent receives an extrinsic reward
of �1 to encourage shorter dialogues.

Intrinsic Reward. When a subgoal terminates,
the agent receives a positive intrinsic reward of
2L/K if a subgoal is completed successfully, or
a negative intrinsic reward of �1 otherwise; for
each turn, the agent receives an intrinsic reward
�1 to encourage shorter dialogues.

3.3 Hierarchical Policy Learning with SDN

We use a trained SDN in HRL as follows. The
agent starts from the initial state s0, keeps sam-
pling the output from the distribution related to the
top-level RNN (RNN1) until a termination symbol
# is generated, which indicates the agent reaches a
subgoal. In this process, intrinsic rewards are gen-
erated as specified in the previous subsection. Af-
ter # is generated, the agent selects a new option,
and repeats this process.

This type of naive sampling may allow the op-
tion to terminate at some places with a low proba-
bility. To stabilize the HRL training, we introduce
a threshold p 2 (0, 1), which directs the agent to
terminate an option if and only if the probability
of outputting # is at least p. We found this modi-
fication leads to better behavior of the HRL agent
than the naive sampling method, since it normally
has a smaller variance.

In the HRL training, the agent only uses the
probability of outputting # to decide subgoal ter-
mination. Algorithm 2 outlines the full proce-
dure of one episode for hierarchical dialogue poli-
cies with a trained SDN in the composite task-
completion dialogue system.

4 Experiments and Results

We evaluate the proposed model on a travel plan-
ning scenario for composite task-oriented dia-
logues (Peng et al., 2017b). Over the exchange
of a conversation, the agent gathers information
about the user’s intent before booking a trip. The
environment then assesses a binary outcome (suc-
cess or failure) at the end of the conversation,
based on (1) whether a trip is booked, and (2)
whether the trip satisfies the user’s constraints.

Algorithm 2 HRL episode with a trained SDN
Input: A trained SDN M, initial state s0 of an episode,

threshold p, the HRL agent A.
1: Initialize an RNN2 instance R2 with parameters from M

and s0 as the initial input.
2: Initialize an RNN1 instance R1 with parameters from M

and M · softmax(oRNN2
0 ) as the initial input, where M is

the embedding matrix (from M) and oRNN2
0 is the initial

output of R2.
3: Current state s s0.
4: Select an option o using the agent A.
5: while Not reached the final goal do
6: Select an action a according to s and o using the agent

A. Get the reward r and the next state s0 from the
environment.

7: Place s0 to R2, denote oRNN2
t as R2’s latest output and

take M · softmax(oRNN2
t ) as the R1’s new input. Let

ps0 be the probability of outputting the termination
symbol #.

8: if ps0 � p then
9: Select a new option o using the agent A.

10: Re-initialize R1 using the latest output from R2

and the embedding matrix M .
11: end if
12: end while

Dataset. The raw dataset in our experiments is
from a publicly available multi-domain dialogue
corpus (El Asri et al., 2017). Following Peng
et al. (2017b), a few changes were made to in-
troduce dependencies among subtasks. For exam-
ple, the hotel check-in date should be the same
with the departure flight arrival date. The data was
mainly used to create simulated users, and to build
the knowledge bases for the subtasks of booking
flights and reserving hotels.

User Simulator. In order to learn good policies,
RL algorithms typically need an environment to
interact with. In the dialogue research community,
it is common to use simulated users for this pur-
pose (Schatzmann et al., 2007; Li et al., 2017; Liu
and Lane, 2017). In this work, we adapted a pub-
licly available user simulator (Li et al., 2016) to the
composite task-completion dialogue setting with
the dataset described above. During training, the
simulator provides the agent with an (extrinsic) re-
ward signal at the end of the dialogue. A dialogue
is considered to be successful only when a travel
plan is booked successfully, and the information
provided by the agent satisfies user’s constraints.

Baseline Agents. We benchmarked the pro-
posed agent (referred to as the m-HRL Agent)
against three baseline agents:
• A Rule Agent uses a sophisticated, hand-crafted

dialogue policy, which requests and informs a
hand-picked subset of necessary slots, and then
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confirms with the user about the reserved trip
before booking the flight and hotel.

• A flat RL Agent is trained with a standard deep
reinforcement learning method, DQN (Mnih
et al., 2015), which learns a flat dialogue pol-
icy using extrinsic rewards only.

• A h-HRL Agent is trained with hierarchical deep
reinforcement learning (HDQN), which learns
a hierarchical dialogue policy based on human-
defined subgoals (Peng et al., 2017b).

Collecting State Trajectories. Recall that our
subgoal discovery approach takes as input a set
of state trajectories which lead to successful out-
comes. In practice, one can collect a large set of
successful state trajectories, either by asking hu-
man experts to demonstrate (e.g., in a call center),
or by rolling out a reasonably good policy (e.g., a
policy designed by human experts). In this paper,
we obtain dialogue state trajectories from a rule-
based agent which is handcrafted by a domain ex-
pert, the performance of this rule-based agent can
achieve success rate of 32.2% as shown in Figure 4
and Table 1. We only collect the successful dia-
logue sessions from the roll-outs of the rule-based
agent, and try to learn the subgoals from these di-
alogue state trajectories.

Experiment Settings. To train SDN, we use
RMSProp (Tieleman and Hinton, 2012) to opti-
mize the model parameters. For both RNN1 and
RNN2, we use LSTM (Hochreiter and Schmid-
huber, 1997) as hidden units and set the hidden
size to 50. We set embedding matrix M with
D = 4 columns. As we discussed in Section 3.1,
D captures the maximum number of subgoals that
the model is expected to learn. Again, to avoid
SDN from learning many unnecessary subgoals,
we only allow segmentation with at most S = 4
segments during subgoal training. The values for
D and S are usually set to be a little bit larger than
the expected number of subgoals (e.g., 2 or 3 for
this task) since we expect a great proportion of the
subgoals that SDN learns are useful, but not nec-
essary for all of them. As long as SDN discovers
useful subgoals that guide the agent to learn poli-
cies faster, it is beneficial for HRL training, even
if some non-perfect subgoals are found. During
the HRL training, we use the learned SDN to pro-
pose subgoal-completion queries. In our experi-
ment, we set the maximum turn L = 60.

We collected N = 1634 successful, but imper-

Figure 4: Learning curves of agents under simulation.

Agent Success Rate Turns Reward
Rule .3220 46.23 -24.02
RL .4440 45.50 -1.834

h-HRL .6485 44.23 35.32
m-HRL .6455 44.85 34.77

Table 1: Performance of agents with simulated user.

fect, dialogue episodes from the rule-based agent
in Table 1 and randomly choose 80% of these di-
alogue state trajectories for training SDN. The re-
maining 20% were used as a validation set.

As illustrated in Section 3.3, SDN starts a new
RNN1 instance and issues a subgoal-completion
query when the probability of outputting the ter-
mination symbol # is above a certain threshold p
(as in Algorithm 2). In our experiment, p is set to
be 0.2, which was manually picked according to
the termination probability during SDN training.

In dialogue policy learning, for the baseline RL
agent, we set the size of the hidden layer to 80.
For the HRL agents, both top-level and low-level
dialogue policies have a hidden layer size of 80.
RMSprop was applied to optimize the parameters.
We set the batch size to be 16. During train-
ing, we used ✏-greedy strategy for exploration with
annealing and set � = 0.95. For each simula-
tion epoch, we simulated 100 dialogues and stored
these state transition tuples in the experience re-
play buffers. At the end of each simulation epoch,
the model was updated with all the transition tu-
ples in the buffers in a batch manner.

4.1 Simulated User Evaluation
In the composite task-completion dialogue sce-
nario, we compared the proposed m-HRL agent
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Figure 5: Performance of three agents tested with real
users: success rate, number of dialogues and p-value
are indicated on each bar (difference in mean is signif-
icant with p < 0.05).

with three baseline agents in terms of three met-
rics: success rate4, average rewards and average
turns per dialogue session.

Figure 4 shows the learning curves of all four
agents trained against the simulated user. Each
learning curve was averaged over 5 runs. Table 1
shows the test performance where each number
was averaged over 5 runs and each run gener-
ated 2000 simulated dialogues. We find that the
HRL agents generated higher success rates and
needed fewer conversation turns to achieve the
users’ goals than the rule-based agent and the flat
RL agent. The performance of the m-HRL agent
is tied with that of the h-HRL agent, even though
the latter requires high-quality subgoals designed
by human experts.

4.2 Human Evaluation
We further evaluated the agents that were trained
on simulated users against real users, who were
recruited from the authors’ organization. We con-
ducted a study using the one RL agent and two
HRL agents {RL, h-HRL, m-HRL}, and com-
pared two pairs: {RL, m-HRL} and {h-HRL, m-
HRL}. In each dialogue session, one agent was
randomly selected from the pool to interact with
a user. The user was not aware of which agent
was selected to avoid systematic bias. The user
was presented with a goal sampled from a user-
goal corpus, then was instructed to converse with
the agent to complete the given task. At the end of
each dialogue session, the user was asked to give a
rating on a scale from 1 to 5 based on the natural-

4Success rate is the fraction of dialogues which accom-
plished the task successfully within the maximum turns.

Figure 6: Distribution of user ratings for three agents
in human evaluation

ness and coherence of the dialogue; here, 1 is the
worst rating and 5 the best. In total, we collected
196 dialogue sessions from 10 human users.

Figure 5 summarizes the performances of these
agents against real users in terms of success rate.
Figure 6 shows the distribution of user ratings for
each agent. For these two metrics, both HRL
agents were significantly better than the flat RL
agent. Another interesting observation is that the
m-HRL agent performs similarly to the h-HRL
agent in terms of success rate in the real user
study as shown on Figure 5. Meanwhile in Fig-
ure 6, the h-HRL agent is significantly better than
m-HRL agent in terms of real user ratings. This
may be caused by the probabilistic termination of
subgoals: we used a threshold strategy to decide
whether to terminate a subgoal. This could intro-
duce variance so the agent might not behave rea-
sonably compared with human-defined subgoals
which terminate deterministically.

4.3 Subgoal Visualization
Table 2 shows the subgoals discovered by SDN in
a sample dialogue by a rule-based agent interact-
ing with the simulated user. The rule-based agent
is equipped with a human-defined subtask struc-
ture, which always solves subtask flight (turns 1–
15) before hotel (turns 16–23), as shown in the first
column. At turn 10, the user starts to talk about
hotel while the rule-based agent is still working
on the pre-defined, unfinished flight subtask until
subtask flight is finished at turn 15. At turn 16, the
user switches to hotel, and so does the rule-based
agent until the end of the dialogue. For this rule-
based agent, the human-defined subgoal (flight)
terminates at turn 15. Meanwhile, our SDN model
detected two subgoals (except for the final goal):
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h-Task ID Text

Fl
ig

ht
1 agt: Hi, may I know your departure city?
2 usr: I depart from Fort Lauderdale.
3 agt: And what is your destination city?
4 usr: I need economy seat to Pittsburgh.
5 agt: What is your departure date?
6 usr: 2016-09-12, what time is available for the flight?
7 agt: There is one flight at 21:00:00.
8 usr: What is the price for that flight?
9 agt: $423.

Subgoal 1: A detected subgoal terminates!
10 usr: I need to reserve a hotel for five people.
11 agt: What is your return date for the trip?
12 usr: 2016-09-18, I need to book 5 tickets for the flight.
13 agt: What time do you prefer for return flight?
14 usr: What time is available that day?
15 agt: There is one flight departing at 11:00:00AM.

Subgoal 2: A detected subgoal terminates!

H
ot

el

16 usr: What hotel is available?
17 agt: There is one hotel called Winter Hill Inn available.
18 usr: What is the price for hotel?
19 agt: $410.
20 usr: Great, could you book the trip for me?
21 agt: Okay. Trip tickets are issued.
22 usr: Thanks very much!
23 agt: You are welcome!

Table 2: Discovered subgoals (except for the final goal)
in a sample dialogue by a rule-based agent interacting
with user simulator. The left column (h-Task) shows
the human-defined subtasks for the rule-based agent.
SDN detects two subgoals that terminate at turn 9 and
15 respectively. (h-Task: human-defined subtask, ID:
turn ID, agt: Agent, usr: User)

one terminating at turn 9 (Subgoal 1), and another
terminating at turn 15 (Subgoal 2). Subgoal 2 is
consistent with the human-defined subgoal. Sub-
goal 1 is also reasonable since the user tries to
switch to hotel at turn 10. In Appendix B, Table 3
shows a sample dialogue session by m-HRL agent
interacting with a real user.

5 Related Work

Task-completion dialogue systems have attracted
numerous research efforts, and there is grow-
ing interest in leveraging reinforcement learn-
ing for policy learning. One line of research is
on single-domain task-completion dialogues with
flat deep reinforcement learning algorithms such
as DQN (Zhao and Eskenazi, 2016; Li et al.,
2017; Peng et al., 2018), actor-critic (Peng et al.,
2017a; Liu and Lane, 2017) and policy gradi-
ents (Williams et al., 2017; Liu et al., 2017). An-
other line of research addresses multi-domain di-
alogues where each domain is handled by a sepa-
rate agent (Gašić et al., 2015; Gašić et al., 2015;
Cuayáhuitl et al., 2016). Recently, Peng et al.
(2017b) presented a composite task-completion
dialogue system. Unlike multi-domain dialogue
systems, composite tasks introduce inter-subtask
constraints. As a result, the completion of a set

of individual subtasks does not guarantee the so-
lution of the entire task.

Cuayáhuitl et al. (2010) applied HRL to di-
alogue policy learning, although they focus on
problems with a small state space. Later,
Budzianowski et al. (2017) used HRL in multi-
domain dialogue systems. Peng et al. (2017b) first
presented an HRL agent with a global state tracker
to learn the dialogue policy in the composite task-
completion dialogue systems. All these works are
built based on subgoals that were pre-defined with
human domain knowledge for the specific tasks.
The only job of the policy learner is to learn a hier-
archical dialogue policy, which leaves the subgoal
discovery problem unsolved. In addition to the
applications in dialogue systems, subgoal is also
widely studied in the linguistics research commu-
nity (Allwood, 2000; Linell, 2009).

In the literature, researchers have proposed al-
gorithms to automatically discovery subgoals for
hierarchical RL. One large body of work is based
on analyzing the spatial structure of the state tran-
sition graphs, by identifying bottleneck states or
clusters, among others (Stolle and Precup, 2002;
McGovern and Barto, 2001; Mannor et al., 2004;
Şimşek et al., 2005; Entezari et al., 2011; Bacon,
2013). Another family of algorithms identifies
commonalities of policies and extracts these par-
tial policies as useful skills (Thrun and Schwartz,
1994; Pickett and Barto, 2002; Brunskill and Li,
2014). While similar in spirit to ours, these meth-
ods do not easily scale to continuous problems as
in dialogue systems. More recently, researchers
have proposed deep learning models to discover
subgoals in continuous-state MDPs (Bacon et al.,
2017; Machado et al., 2017; Vezhnevets et al.,
2017). It would be interesting to see how effec-
tive they are for dialogue management.

Segmental structures are common in human
languages. In the NLP community, some related
research on segmentation includes word segmen-
tation (Gao et al., 2005; Zhang et al., 2016) to
divide the words into meaningful units. Alterna-
tively, topic detection and tracking (Allan et al.,
1998; Sun et al., 2007) segment a stream of data
and identify stories or events in news or social
text. In this work, we formulate subgoal discovery
as a trajectory segmentation problem. Section 3.1
presents our approach to subgoal discovery which
is inspired by a probabilistic sequence segmenta-
tion model (Wang et al., 2017).
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6 Discussion and Conclusion

We have proposed the Subgoal Discovery Net-
work to learn subgoals automatically in an unsu-
pervised fashion without human domain knowl-
edge. Based on the discovered subgoals, we learn
the dialogue policy for complex task-completion
dialogue agents using HRL. Our experiments with
both simulated and real users on a composite task
of travel planning, show that an agent trained with
automatically discovered subgoals performs com-
petitively against an agent with human-defined
subgoals, and significantly outperforms an agent
without subgoals. Through visualization, we find
that SDN discovers reasonable, comprehensible
subgoals given only a small amount of suboptimal
but successful dialogue state trajectories.

These promising results suggest several direc-
tions for future research. First, we want to inte-
grate subgoal discovery into dialogue policy learn-
ing rather than treat them as two separate pro-
cesses. Second, we would like to extend SDN to
identify multi-level hierarchical structures among
subgoals so that we can handle more complex
tasks than those studied in this paper. Third, we
would like to generalize SDN to a wide range
of complex goal-oriented tasks beyond dialogue,
such as the particularly challenging Atari game of
Montezuma’s Revenge (Kulkarni et al., 2016).
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A Hierarchical Dialogue Policy Learning

This section provides more algorithmic details for
Section 3.2. Again, assume a conversation of
length T :

⌧ = (s0, a0, r0, . . . , sT�1, aT�1, rT�1, sT ) .

Suppose an HRL agent segments the trajectory
into a sequence of subgoals as g0, g1, . . . 2 G,
and the corresponding subgoal termination time
steps as tg0 , tg1 , . . . 2 N

⇤. Furthermore, denote
the intrinsic reward at time step t by ri

t. The top-
level and low-level Q-functions satisfy the follow-
ing Bellman equations:

Q⇤(s, g) = E

h tgj+1�1X

i=tgj

�i�tgj re
t+1

+ �tgj+1�tgj · max
g02G

Q⇤(stgj+1
, g0)

|stgj
= s, gj = g

i

and

Q⇤(s, a, g) = E

h
ri
t + � · max

a02A
Q⇤

i (st+1, gj , a
0)

|st = s, gj = g, at = a,

t 2 [tgj , tgj+1)
i
.

Here � 2 [0, 1] is a discount factor, and the ex-
pectations are taken over the randomness of the
reward and the state transition,

We use deep neural networks to approximate
the two Q-value functions as Q⇤(s, a, g) ⇡
Q(s, a, g; ✓i) and Q⇤(s, g) ⇡ Q(s, g; ✓e). The pa-
rameters ✓i and ✓e are optimized to minimize the
following quadratic loss functions:

Li(✓i) =
1

2|Di|
X

(s,a,g,s0,ri)2Di

[(yi �Q(s, a, g; ✓i))
2]

yi =ri + � · max
a02A

Qi(s
0, a0, g; ✓i)

(3)
and

Le(✓e) =
1

2|De|
X

(s,g,s0,re)2De

[(ye �Q(s, g; ✓e))
2]

ye =re + � · max
g02G

Q(s0, g0; ✓e) .

(4)
Here, De, Di are the replay buffers storing dia-
logue experience for training top-level and low-
level policies.

Optimization of parameters ✓i and ✓e can be
done by stochastic gradient descent on the two loss
functions in Equations (3) and (4). The gradients
of the two loss functions w.r.t their parameters are

r✓iLi =
1

|Di|
X

(s,a,g,s0,ri)2Di

h
r✓iQ(s, a, g; ✓i)·

(yi �Qi(s, a, g; ✓i))
i

and

r✓eLe =
1

|De|
X

(s,g,s0,re)2De

h
r✓eQ(s, g; ✓e)·

(ye �Qe(s, g; ✓e))
i
.

To avoid overfitting, we also add L2-regularization
to the objective functions above.
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B Sample Dialogue

Table 3: Sample dialogue by the m-HRL agent interact-
ing with real user: bolded slots are the joint constraints
between two subtasks. (agt: Agent, usr: User)

User Goal
reserve-hotel subtask:
{

“request slots”: { “inform slots”: {

“hotel price”: “?” “hotel date checkin”:“2016-09-22”
“hotel date checkout”: “?” “hotel city”: “Curitiba”
“hotel name”: “?” “hotel numberofpeople”: “4”
“hotel amenity wifi”: “?” }

}

}

book-flight-ticket subtask:
{

“request slots”: { “inform slots”: {

“price”: “?” “or city”: “Lima”,
“return time dep”: “?” “dst city”: “Curitiba”,
“return date dep”: “?” “numberofpeople”: “4”,
“depart time dep”: “?” “depart date dep”:“2016-09-22”
“seat”: “?” }

}

}

m-HRL agent
agt: Hi, may I know your departure city and destination city?
usr: I depart from Lima to Curitiba.
agt: What is your departure date?
usr: I am leaving on 2016-09-22.
agt: There is one flight available at 8:00:00AM.
usr: What date is available for return flight?
agt: There is one return flight on 2016-09-27.
usr: What is the time for the return flight?
agt: It is 00:00:00AM.
usr: What seat is available?
agt: Only Economy seat now.
usr: We need 4 tickets for the flight.
agt: Total is 1201 dollars for flight.

inform(subtask complete): Subgoal reached!
usr: What hotel is available there?
agt: There is one hotel called Starlight.
usr: Is the wifi available for the hotel?
agt: Yes, it is free.
usr: What’s the price for the hotel?
agt: It is 1541 dollars for hotel.
usr: Could you please book the trip for me?
agt: Okay. Trip tickets are issued.
usr: Thanks!
agt: Thanks!
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Abstract

Modern automated dialog systems require
complex dialog managers able to deal with
user intent triggered by high-level seman-
tic questions. In this paper, we propose a
model for automatically clustering questions
into user intents to help the design tasks. Since
questions are short texts, uncovering their se-
mantics to group them together can be very
challenging. We approach the problem by us-
ing powerful semantic classifiers from ques-
tion duplicate/matching research along with a
novel idea of supervised clustering methods
based on structured output. We test our ap-
proach on two intent clustering corpora, show-
ing an impressive improvement over previous
methods for two languages/domains.

1 Introduction

The recent years have seen a resurgent interest
for dialog systems, ranging from help desks and
more complex task-based dialog to general pur-
pose conversational agents, e.g., Alexa, Cortana or
Siri. All these different application scenarios show
that users expect to formulate complex informa-
tion needs in natural language, with no limitation
to their expressiveness. In other words, standard
shallow semantic parsing based on concept seg-
mentation and labeling is no longer sufficient for
dialog modeling in today’s applications. In partic-
ular, when designing dialog managers, we need to
consider user intents expressed by articulated nat-
ural language text.

Current solutions to the intent detection prob-
lem consist in manually analyzing user questions
and creating a taxonomy of intents to be attached
to the appropriate actions. For example, if sev-
eral semantically similar/identical questions re-
gard BookFlight, the designer will build a cat-

⇤ The first two authors contributed equally to this
manuscript.

egory. This is a rather costly, difficult and time
consuming task, which can often prevent the fast
prototyping of dialog systems even for small do-
mains. Moreover, the effort is extremely task- and
system-specific, with very limited possibilities of
porting the intent model, at least partially, across
platforms, domains and languages. For example,
in the recent 2016/2017 Natural Language Under-
standing Benchmarks (Coucke et al., 2017), the or-
ganizers have evaluated built-in intents generated
by the major dialog managers (Apple’s SiriKit,
Amazon’s Alexa, Microsoft’s Luis, Google’s Di-
alogflow, and Snips.ai) against a rather small set
of relatively generic intents (e.g., GetWeather).
This involved a considerable effort on aligning dif-
ferent system outputs.

To our knowledge, no previous work has been
dedicated to automatizing this task, mainly be-
cause the underlying problem, semantic ques-
tion paraphrasing, is very challenging. How-
ever, recent initiatives for automatic question du-
plicate detection1, question relatedness (Nakov
et al., 2016, 2017) and semantic textual similarity
(Agirre et al., 2012; Cer et al., 2017) have shown
that current technology achieves good accuracy in
matching short text expressing similar semantics.

In this paper, we propose a model for automat-
ically clustering questions into user intent cate-
gories, which can help the design of dialog sys-
tems. Our approach aims at overcoming the dif-
ficulty of providing a unique definition of intent
from either a theoretical or practical perspective.
Collaborating with stakeholders, we observe that
it is very challenging to capture the intent prop-
erty that can optimize dialogue/chatbot engineer-
ing work in terms of design and effort. The impor-
tant aspect of our approach is that given a notion of
intent, explicitly provided by annotated data, our

1Quora: https://www.kaggle.com/c/quora-question-pairs
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model can create clusterings driven by such intrin-
sic definition. This is one of our major contribu-
tions: providing an effective supervised clustering
approach, which can learn definitions from exam-
ples.

Regarding the technical solution our approach is
bridging (i) the state-of-the-art methods for ques-
tion similarity/paraphrasing with (ii) powerful su-
pervised clustering algorithms. The former are
obtained by exploiting previous research, e.g., on
Quora, whereas the latter, are obtained by capi-
talizing on the structured output machine learn-
ing methods used for coreference resolution (CR),
e.g., (Yu and Joachims, 2009; Fernandes et al.,
2014). The main difference with CR consists in
substituting mentions and their vector representa-
tion with the one of entire questions. It should be
noted that structured output methods require a rep-
resentation of edges connecting questions, which
we obtain from question similarity research.

To train our model, we define a clustering cor-
pus by automatically deriving question clusters
from the Quora data, complementing the avail-
able question pair annotation with the transitive
closure of the semantic matching property. Ad-
ditionally, since Quora data is noisy, we manually
annotate a question sample, defining an intent hi-
erarchical taxonomy. To test the applicability of
our methodology across languages and domains,
we run evaluation experiments on another intent-
based corpus, a collection of FAQs for an Italian
online service.

We evaluate our approach comparing it to the
classical k-means using (i) tf-idf model, (ii) our
learned question similarity, and (iii) the similar-
ity with spectral clustering. The last two methods
can be considered another relatively novel contri-
bution. Our results show that our new structured
output method for question clustering: (i) highly
outperforms all its competitors with respect to the
standard clustering accuracy/purity as well as the
measures defined in the CR domain, (ii) provides
clustering accuracy of 80% with respect to the
original Quora annotation and a still valuable ac-
curacy of 65% with respect to the intent classes
designed by an expert in Dialog modeling. This
is a promising result as our designer can only pro-
vide one of the many interpretations of the intent
taxonomy, which can be effectively applied.

Finally, a particular strength of our approach
lies in identifying new intents (singleton clus-

ters). These unseen intents are clearly problem-
atic for dialogue management and cannot be cov-
ered by traditional approaches (e.g., our unsuper-
vised clustering baselines show much lower per-
formance on singleton clusters).

2 Related Work

Intent is a key concept for building dialog systems
and is therefore a central research topic in the area.
In particular, recent general-purpose dialog sys-
tems have to rely on extensive intent modeling to
be able to correctly analyze a wide variety of user
queries. This has led to a considerable amount of
research on data-driven intent modeling.

In particular, Xu et al. (2013) represent query’s
intent as trees and employ a procedure for map-
ping an NL query into a tree-structured intent.
The problem of this approach is that a new set
of intent trees is required for new domains. Kim
et al. (2016); Celikyilmaz et al. (2011) use semi-
supervised approaches with large amounts of un-
labeled data to improve the accuracy in map-
ping user queries into intents. However, they
still require a small amount of labeled data in or-
der to learn a given intent. Chen et al. (2016a)
train a Convolutional Deep Neural Network to
jointly learn the representations of human intents
and associated utterances. Chen et al. (2016b)
propose feature-enriched matrix factorization to
model open domain intents. This leverages knowl-
edge from Wikipedia and Freebase to acquire in-
formation from unexplored domains according to
new users’ requests. Unfortunately, it also requires
external knowledge bases to induce concepts ap-
pearing within the intents.

Approaching the same problem from the op-
posite direction, several studies investigate algo-
rithms for automatic question clustering. Wen
et al. (2001) propose to cluster together queries
that lead to the same group of web pages that are
frequently selected by users. Jeon et al. (2005)
use machine translation to estimate word trans-
lation probabilities and retrieve similar questions
from question archives. Li et al. (2008) try to
infer the intent of unlabeled queries according to
the proximity with respect to the labeled queries
in a click graph. Beitzel et al. (2007) propose
to automatically classify web queries from logs
into a set of topics by using a combination of
different techniques, either supervised or unsu-
pervised. The extracted topics are further used

2311



for efficient web search. Deepak (2016) presents
MiXKmeans, a variation of k-means algorithm,
suited for clustering threads present on forums and
Community Question Answering websites. How-
ever, most techniques use unsupervised clustering
to group similar questions/queries, without model-
ing intents. In contrast, our study relies on super-
vised clustering to learn intent-based similarity.

Finally, our work is related to a large body of
research on dialog acts (Stolcke et al., 2000; Kim
et al., 2010; Chen et al., 2018): our low-level
intent labels (Table 1) can be seen as very fine-
grained dialog acts (Core and Allen, 1997; Bunt
et al., 2010; Oraby et al., 2017).

However, our paper’s objective is different as
our goal is not to rigidly define intents and then ex-
ploit them to derive a semantic interpretation. We
focus on two contributions: first, we aim at provid-
ing a tool to help implementing dialog managers
such that the designer can more easily create cate-
gories from precomputed clusters. Note that hav-
ing in mind hundreds of questions to create intent
category from scratch is clearly an exigent task.

Second, our approach can dynamically cluster
questions with the same semantics, without any
concept annotation. Indeed, the important con-
cepts will be learned from the training data, which
constitutes a much simpler annotation task than
the creation of ad hoc dialogue acts. In particu-
lar, this can help with domain-specific intents: the
domain-level semantics will be learned from data
with no need for advanced manual engineering.

3 Question Clustering Algorithms

In this paper, we explore techniques for clustering
questions into user intent. To this end, an input
set of questions Q undergoes splitting into subsets
(clusters), ci = {qi

j}
Ni
j=1, where qi

j is the j-th ques-
tion in the cluster i of size Ni and

F
i ci = Q. Each

ci is assumed to contain questions with the same
intent, i.e., to represent a distinct intent. Perform-
ing a clustering of a new question set Q in an un-
supervised manner may generally be troublesome
due to the lack of any information about the struc-
ture of Q and the target number of distinct intents
in it. To overcome this issue, we learn a clustering
function from data annotated with gold question
clusters.

In this work, we pose the task as a supervised
clustering problem following the formulation by
Finley and Joachims (2005). Having the train-

ing examples of the form {(xi,yi)}n
i=1, where

each input xi is a set of elements of some nature
and yi – the corresponding gold standard cluster-
ing of such a set, the goal is to learn a predictor
h : X ! Y , from the space of sets X to the
space of clusterings Y . Supervised clustering has
been shown particularly effective for the NLP task
of coreference resolution (Yu and Joachims, 2009;
Fernandes et al., 2014). These models learn to in-
fer an optimal clustering y of an input set x in a
structured way, i.e., as one output object optimiz-
ing a global scoring function f : X ⇥ Y ! R.
This is different from local models, which aggre-
gate multiple clustering decisions taken with re-
spect to pairs of elements.

At the test time, the global models draw predic-
tions by finding

ŷ = argmax
y2Y

f(x,y). (1)

In the following, we give the necessary details of
the original approach of Yu and Joachims (2009)
and its adaptation for clustering questions.

3.1 Structured Output Clustering
To facilitate the inference of the optimal clustering
in Equation 1, Yu and Joachims represent clus-
tering variables y using graph structures. For an
input x, they construct a fully-connected undi-
rected graph G, whose nodes are elements xi of
the input x and edges are all the pairwise links
between them (xi, xj).2 Any spanning forest h
on G straightforwardly translates into a clustering
y. The nodes, aka elements represented by them,
in each connected component (spanning tree) of
h are considered to belong to the same cluster.
The authors incorporate the spanning forest struc-
tures h as latent variables and decompose the fea-
ture representation of the input-output pair (x,y),
which is extended with h, over the edges of h:

�(x,y,h) =
X

(xi,xj)2h

�(xi, xj). (2)

They employ Kruskal’s spanning algo-
rithm (Kruskal, 1956) to infer the optimal h,
and, respectively, y.

A linear model w is trained using the Latent for-
mulation of the Structural SVM learner (LSSVM),

2Note that we distinguish between boldface letters which
we use to denote structural input/output variables, and nor-
mal font letters - for their rather elementary constituents, and
simple variables.
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to score the output clusterings according to the
function f(x,y,h) = w · �(x,y,h). In fact, w
learns to score the edges since the structural fea-
ture vector decomposes over the edges. However,
imposing a structure onto the output is supposed
to produce a better w, which we test in our exper-
iments described in Section 5.

Alternatively, we employ the same structural
model with another learning algorithm – latent
structured perceptron (LSP) by Sun et al. (2009);
Fernandes et al. (2014).

3.2 Pairwise question similarity classifier

Our intent clustering algorithm relies on the pair-
wise similarity between questions (edge score).
To provide an accurate estimation of question-
question similarity, we build upon an extensive
state-of-the-art research in semantic similarity for
short text, more specifically, on our previous
work (Filice et al., 2016, 2017; Barrón-Cedeño
et al., 2016; Da San Martino et al., 2016) solu-
tions/features shown effective in the shared tasks
by Nakov et al. (2016, 2017); Agirre et al. (2012,
2013).

In such work, the classifier is trained with
SVMs, which learn a classification function f :
Q ⇥ Q ! {0, 1} on duplicate vs. non-duplicate
pairs of questions belonging to the question set Q.
The classifier score is used to decide if two ques-
tions in the dataset qi and qj are duplicate or not.
We represent question pairs as vectors of similar-
ity features derived between two questions.

Feature Vectors are built for questions pairs,
(qi, qj), using a set of text similarity features
that capture the relations between two ques-
tions. More specifically, we compute 20 sim-
ilarity features sim(qi, qj) using word n-grams
(n = [1, . . . , 4]), after stopword removal, greedy
string tiling (Wise, 1996), longest common sub-
sequences (Allison and Dix, 1986), Jaccard coef-
ficient (Jaccard, 1901), word containment (Lyon
et al., 2001), and cosine similarity.

4 Building Intent clusters

In this study, we rely on two datasets, providing
some important insights on question semantics.
None of them, however, fully annotates intents ex-
plicitly. Below we describe our approach for con-
verting these resources into intent corpora, relying
on an automatic procedure followed by a manual
post-annotation step. Our intent corpora as well

as the larger raw question clusters collections are
available to the research community.3

4.1 Quora corpus

The original Quora task requires detecting
whether two questions are semantically dupli-
cate or not. The associated dataset contains over
404, 348 pairs of questions, posted by users on
Quora website, labeled as a duplicate pair or not.
For example, How do you start a bakery? and
How can one start a bakery business? are dupli-
cate, while What are natural numbers? and What
is a least natural number? are not. Note that the
coders label pairs in isolation, only having access
to one pair to be labeled at a time on Quora website
(answer base). The pairs to be labeled are not se-
lected randomly. To make the task more challeng-
ing, as well as more useful for practical applica-
tions, the organizers only offer pairs of questions
that are somewhat semantically related:

(3) q1: How does an automobile works?
q2: How does automobile R&D work?

(4) q1: Will I lose weight if I fast ?
q2: Why am I losing weight so fast ?
q3: How can I lose my weight fast ?

In (3), the lexical material is very similar, yet the
questions are rather distinct, as reflected in the
Quora annotation. They also express very differ-
ent user intents: while q1 is a generic curiosity
question about automobiles, q2 is a practical re-
quest for information on R&D in the automotive
industry. Example (4) shows why Quora dupli-
cate detection task is very challenging and requires
a very good level of NL Understanding: while
these three questions are very similar on the sur-
face level, they all convey distinct semantics.

4.1.1 Question clusters from Quora
Differently from the original task, in this work,
we are interested in automatically acquiring in-
tents from large question repositories. Given this,
we need a corpus that contains clusters of ques-
tions annotated by their underlying intent. As a
first step in this direction, we approximate intent
clusters with the clusters of similar questions from
Quora. These can be obtained by exploiting the
pairwise annotation and relying on the transitivity
property: for each pair q1, q2 annotated as a du-
plicate, we assign q1 and q2 to the same cluster;

3https://ikernels-portal.disi.unitn.
it/repository/intent-qa
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negative pairs (non-duplicate question) do not im-
pact the clustering in any way.

This procedure has obvious limitations by de-
sign: (i) it will not give us any intent labels, only
the clusters and (ii) it will not provide any hier-
archy of intents, or any general/large intent cate-
gories. Still, it provides data for a large number
of user-generated intents that fully manual anno-
tation initiatives (e.g., Natural Language Under-
standing Benchmarks) cannot guarantee.

4.1.2 Manually annotating intent clusters
The use of Quora dataset to derive intent raises
several potential issues: (i) no consistency is en-
forced across labels, (ii) duplicate or very similar
Quora answers potentially pollute the annotation
for their corresponding questions, (iii) specific de-
cisions may depend on availability and granular-
ity of the underlying answers, and (iv) the anno-
tation of popular questions might be very spuri-
ous since the users have no access to all the other
related questions. The first issue has also been
noted by the Quora competition4 participants, who
found the same pairs of questions appearing sev-
eral times in the training set with different labels.
Moreover, we found numerous cases where the an-
notation does not respect the transitivity property:

(5) q1: What are, if any, the medical benefits of fasting?
q2: What are the benefits of water fasting?
q3: What are the health benefits of fasting?

Here, the three independent coders have produced
inconsistent labeling: although q2 and q3 are ex-
plicitly labeled as non-duplicate, they are both
considered duplicates of q1.

The second issue arises when the answer base
contains (near-)duplicate entries. For example, the
following two very similar questions are consid-
ered non-duplicates since they lead to two distinct
answers:

(6) q1: Which is better - DC or Marvel?
q2: DC VS Marvel: which do you like more? [non-
duplicate]

Note that this typically happens for rather popular
questions that are therefore important to be ana-
lyzed correctly, either manually or automatically.

The third issue is extremely important for areas
only partially covered by the answer DB. For ex-
ample, for the set of questions, Why is Saltwater

4https://www.kaggle.com/c/
quora-question-pairs/discussion/30435

Taffy candy imported in LOCATION?, most LO-
CATIONs are covered by a generic answer, and
all the corresponding questions are judged dupli-
cates. However, some specific LOCATIONs, e.g.,
Fiji, have a dedicated answer and thus the corre-
sponding questions form singleton clusters.

Finally, the annotation coherence problem
arises for very popular areas covering a lot of
closely related questions. Thus, more than 100
questions cover different aspects of Weight Loss.
Since the coders do not have any access to all the
questions on the same topic, the individual deci-
sions are not coordinated, which leads to rather ar-
bitrary partitioning of the area into clusters:

(7) Gold Quora Cluster 1:
How can I lose weight ?
What is the easiest way to lose weight faster ?
How can you lose weight quickly ?
How do I lose 7kgs in 2 weeks ?
What a great diet to lose weight fast and not make you
hungry or keep on measuring portions ?
.. many more
Gold Quora Cluster 2:
How can I lose 3 kg in one week?
Gold Quora Cluster 3:
What are the good diets for weight loss ?
What is the best diet plan for weight loss?

To overcome these issues, we manually re-
annotated a portion of the original Quora dataset
with intent-based clusters. Starting from automat-
ically induced clusters described above, we first
re-assess the partitioning, correcting eventual mis-
takes and then assign intent-based labels to our
clusters. Our labels are hierarchical, thus allow-
ing for a better flexibility when designing dialog
managers: the dialog flow/actions can be defined
in terms of more generic (e.g., Advice) or more
specific (e.g., Advice-WeightLoss-diet)
intents, depending on different implementation
considerations (query frequency for specific in-
tents, overall importance for the application, diffi-
culty of processing inter alia). To stay inline with
the recent intent-based dialogue research, we also
annotate slots, where applicable: entities external
to the intent, yet playing an essential role for the
correct semantic interpretation of the question. Ta-
ble 1 shows an example of the intent-based cluster
annotation.

4.2 FAQ: Hype Intent corpus

Our second corpus, Hype, allows for a more di-
rect evaluation of the intent clustering algorithm.
The data come from a set of questions asked by
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Intent Slots Questions
Recommend-TourismCuisine streetfood, Delhi What are the best street food in Delhi ?
Recommend-TourismCuisine streetfood, Delhi What is the best street food in Delhi ?
Recommend-TourismCuisine streetfood, Delhi What are the best street foods in delhi ?
Recommend-TourismRestaurant streetfood, Delhi What are the best street food places of delhi ?

Table 1: Manually annotated intent clusters for Quora

users to a conversational agent, collected and man-
ually processed for constructing a FAQ section for
Hype—an online service that offers a credit card,
a bank account number and an ibanking app to its
customers. Unlike Quora, the questions are explic-
itly assigned to clusters by human annotators, and
these clusters correspond to intents by construc-
tion. However, they do not have any informative
labels and there is therefore no associated hierar-
chy. While this corpus provides very valuable data
for our study, its main disadvantage is a very lim-
ited number of questions. Some questions are re-
ported below:

(8) q0: Cos’é HYPE? (What is HYPE?)
q1: Volevo dei chiarimente di cos’é la app hype (I’d like
to have more information about the hype app)
q2: mi puó spiegare cose’é la app hype (could you please
explain me what the hype app is?)
q3: informazione applicazione hype (information about
hype app)

At the current stage of our research, we use the
FAQ/Hype corpus directly, with no automatic or
manual adjustments as we did for Quora. We plan
to annotate the FAQ categories with explicit intent
labels in future work.

5 Experiments

We describe our comparative experiments on our
clustering models on two corpora in two different
languages.

5.1 Setup

We used two different corpora, described in Sec-
tion 4:

The Quora Intent corpus contains 270, 146
and 212 clusters in the training, development and
test sets. The clusters contain different numbers
of questions, ranging from singletons to groups of
100+ questions. The singletons are the dominant
group in the Quora dataset. This is probably due
to the inclusion of non-duplicate questions that ap-
pear in the original Quora dataset. Overall, there
are 1, 334 questions distributed in 628 clusters (an
average of 2.12 questions/cluster).

The FAQ/Hype corpus contains no small-size
(< 3) clusters by construction since smaller clus-
ters are typically not selected as FAQ entries. The
largest groups of clusters are those of size 8 and 9.
Overall, the FAQ Intent corpus contains 147 ques-
tions spread in 28 intent-based clusters, which cor-
respond to an average of 5.25 questions/cluster.

Models To perform supervised clustering, we
use: (i) the original implementation of the Latent
SVMstruct 5 – LSSVM, and (ii) our implementation
of the LSP algorithm based on the same clustering
inference on undirected graphs using Kruskal’s
spanning algorithm.

We compare these approaches to two unsuper-
vised clustering baselines: (i) spectral cluster-
ing (Ng et al., 2001), for which we employ the
implementation from the smile6 library, and (ii) re-
lational k-means (Szalkai, 2013). The former im-
plementation takes a matrix of pairwise similari-
ties between data points as input, whereas the lat-
ter approach is a generalization of k-means to an
arbitrary matrix of pairwise distances. Thus, they
can be run on the scores relative to the question
pairs (qi, qj).

We provide two variants of such scores: first,
we run both the methods on the scores obtained
from a binary pairwise similarity classifier, de-
scribed in Section 3.2. Second, we run the cluster-
ing baselines on the tf-idf scores computed for the
question pairs. Note that our use of the scores from
a trained pairwise classifier introduces some su-
pervision in standard unsupervised clustering ap-
proaches, originating new hybrid methods.

Parametrization LSSVM and LSP require the
tuning of a regularization parameter, C, and of a
specific loss parameter, r (penalty for adding an
incorrect edge), which we select on the dev. set.
We pick up C from {1.0, 10.0, 100.0, 1000.0},
and the r values from {0.1, 0.5, 1.0}. K-means
and spectral clustering algorithms require the in-
dication of the number of clusters k. In all of our

5 www.cs.cornell.edu/˜cnyu/latentssvm/
6http://haifengl.github.io/smile/
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Model Clustering Pairwise Classification
Precision Recall F1 CEAFe Precision Recall F1 Accuracy

LSSVM 80.16 77.81 78.96 63.68 43.74 32.00 36.96 88.41
LSP 66.06 91.64 76.78 51.50 20.36 76.85 32.19 65.62
SVM + spectral clustering 72.06 62.40 66.89 47.04 28.07 3.52 6.26 88.80
SVM + k-means 70.76 66.58 68.60 53.87 31.03 7.92 12.62 88.35
tfidf + spectral clustering 72.06 62.92 67.18 52.96 33.90 4.36 7.72 88.94
tfidf + k-means 69.19 65.01 67.04 50.94 29.95 5.33 9.04 88.62
SVM 26.25 72.23 38.50 75.50

Table 2: Supervised vs. unsupervised clustering models and pairwise classification baselines on the test set, where the gold
labels are from the original Quora annotation. Note that pairwise classification does not provide a good estimation of

clustering accuracy.

experiments, we use the gold standard k of each
example (clustering) as parameter to run the base-
line approaches. This corresponds to comparing
with an upperbound of the baselines.

Measures We compare the output clustering
ŷ =

F
j ĉj to the ground truth y⇤ =

F
i ci, where

ci, in our case, are either the clusters obtained with
transitive closure from Quora annotation or the
manually annotated categories (see Section 4.1).

For evaluation purposes, we assign each clus-
ter ĉj to the most frequent gold class (cluster), i.e.,
argmaxi|ci \ ĉj |, and compute the average preci-
sion over the clustering as:

Precision =
1

N

k̂X

j=1

maxi|ci \ ĉj |, (9)

where N is the number of questions to be clus-
tered, and k̂ is the number of output clusters. This
number is exactly the standard clustering purity
by Zhao and Karypis (2002). Since the purity
is known to favor the clustering outputs with the
large number of clusters, we interchange the roles
of output and gold clusters, which gives us the
clustering

Recall =
1

N

kX

j=1

maxi|ĉi \ cj |, (10)

where k is the number of gold standard clusters.
We then compute F1 from the above measures.

The defined majority-class based clustering
measure allows assigning more than one cluster to
the same gold cluster. The coreference resolution
metric CEAF (Luo, 2005; Cai and Strube, 2010)
solves this issue by finding one-to-one alignment
between the clusters in the output and in the
ground truth, based on which the final score is
computed. We use CEAFe, the variant with the
entity-based similarity, as an alternative evaluation

measure.7 Note that, although we split the data
into samples, all the clustering measures we use,
the majority-based, defined by equations 9 and 10,
and CEAF, are computed over the whole test sets
(not by averaging scores separately for each sam-
ple).

We evaluate the results as well in terms of the
classification scores relative to the correctness of
the models in detecting the pairs of questions
with the same/different intent. This enables the
comparison against the pairwise classification ap-
proaches and an evaluation of their impact. We
compute the Precision, Recall, and Accuracy of
question pairs with the same intent.

5.2 Experiments on Quora

Original question label-based evaluation:
first, we test the models on the clustering data
from the Quora corpus, derived as described in
Section 4.1. We train LSSVM, LSP, and the SVM
classifier on the training part. The results of all
the models on the test set are depicted in Table 2.
In terms of clustering accuracy (the left half of
the table), the LSSVM approach outperforms
all the clustering baselines, improving about 10
points the highest baseline model, i.e., SVM +
k-means both in terms of F1 and CEAF. LSP,
in this setting, shows a slightly worse F1 than
LSSVM, producing a model with high recall.

To study the impact of the pairwise classifier,
we consider all the pairs of questions predicted
by the clustering approaches as belonging to the
same cluster as positive and the rest – as nega-
tive. All the clustering models show high accu-
racy, superior to that shown by the SVM classi-
fier, but this is mainly due to the fact that there
are much more negative question pairs. Interest-
ingly, only LSSVM, though, among all the clus-

7 We used the version 8 of the official coreference scorer
conll.cemantix.org/2012/software.html
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Model Clustering Pairwise Classification
Precision Recall F1 CEAFe Precision Recall F1 Accuracy

LSSVM 84.92 51.76 64.32 49.72 33.24 7.86 12.71 78.07
LSP 71.36 89.45 79.38 59.99 37.22 83.46 51.48 68.03
SVM + spectral clustering 62.31 43.22 51.04 33.04 35.11 2.95 5.44 79.17
SVM + k-means 68.84 47.24 56.03 48.62 42.71 6.48 11.25 79.23
tfidf + spectral clustering 65.83 45.23 53.62 35.46 38.18 3.62 6.62 79.23
tfidf + k-means 65.83 47.24 55.00 38.49 29.31 9.43 14.26 76.98
SVM 40.35 62.33 48.99 73.62

Table 3: Supervised vs. unsupervised clustering models and pairwise classification baselines on the test set, where the gold
labels are provided by the intent-based manual annotation on a portion of the test set.

tering model, approaches the classifier in terms of
classification F1. However, the cluster accuracy
depends on many factors in addition to the pair-
wise classification accuracy.

Intent-based evaluation In Table 3, we present
the results obtained on the portion of the test set
which we manually annotated with the intent clus-
ters. Here, we apply the same LSSVM, LSP, and
the SVM classifier models trained in the experi-
ments of the previous paragraph. However, we re-
compute all the four unsupervised clustering base-
lines supplying them with the new k – the number
of gold intent-based annotated clusters.

In spite of being trained on data with differ-
ent style of annotation (clusters automatically de-
rived form Quora annotation), which is potentially
rather noisy, LSSVM is able to recover the new in-
tent categories better than the baseline approaches
in terms of all the clustering metrics. The differ-
ence from the closest unsupervised clustering ap-
proach, which is the same as in the previous exper-
iment, is now reduced in terms of CEAF. However,
the information about the number of clusters in
the ground truth critically impacts on the accuracy.
The LSP model scored the best with respect to the
new annotation. The lower classification accuracy
of LSSVM with respect to the pairwise classifier
is expected as the cluster number changed notably
with the new annotation.

5.3 Evaluation on the FAQ dataset

Due to the limited size of the FAQ HYPE dataset,
we split it into two parts, each of which forms one
sample. We use the one containing 19 out of 28
clusters for training and the other with the remain-
ing 9 clusters – for testing. The training sample
comprises 97 questions, while the test sample –
50. The plots in Figure 1 illustrate the perfor-
mance of LSSVM and LSP in terms of the clus-
tering F1 in confront to the clustering baselines.
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Figure 1: LSSVM and baseline clustering models; the latter
vary with the cluster number k, on the FAQ HYPE test set.

We run the k-means and the spectral clustering al-
gorithms with k in the range (1, 50), which covers
all the possible values for the given test set size.

LSSVM is better than the spectral clustering
models with any k. k-means curves surpass
LSSVM only in a narrow interval, showing high
unstability. This suggests that guessing the k value
in a realistic scenario in the absence of supervision
does not seem an easy task. It should be also taken
into consideration that we deal with very scarce
training data. This also explains slightly insuffi-
cient accuracy of LSP compared to the k-means
baseline.

5.4 Error Analysis and Discussion
As seen in tables 2 and 3, the structural output
model consistently outperforms approaches based
on spectral and k-means clustering on the Quora
dataset. The most prominent improvement comes
from singleton clusters: questions that are not du-
plicate with any other entries. Recall that the orig-
inal dataset is constructed in such a way that sin-
gleton clusters are somewhat similar or related to
existing material, but are still considered distinct
by Quora annotators. LSSVM correctly recovers
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71% of singleton clusters, whereas other methods
perform much worse (5-30%). In the question-
answering setting, singleton clusters correspond to
novel questions that require setting up of a new
entry in the answer base. Accurate recognition of
singletons would allow for a timely allocation of
resources to keep the answer base up-to-date and
in line with incoming user requests.

Larger clusters are problematic for all the com-
pared methods. Still, as evidenced by the CEAF
score8, the structural clustering is doing a better
job at recovering non-singleton clusters. This mir-
rors our observations that even human annotators
have difficulties correctly and consistently detect-
ing duplicates in complex over-populated seman-
tic areas (see Example 7) in the absence of the
global context (e.g., list of all the related ques-
tions).

Finally, the clusters created by the LSSVM ap-
proach are more semantically related. Thus, 97%
of all the suggested clusters contain questions with
the same intent but, possibly, incorrect slots.
For example, in the following question cluster:

(11) gold cluster
Advice-Weightloss: fast,deadline

q1: How do I loose 50 lbs by Dec 2016?
q2: How do I loose weight fast for operation ?
q3: How can I lose 20 lbs super fast to audition for a small
role in a movie ?
q4: I want to lose weight for an event coming up in 2
weeks and I really don’t care if I gain it back afterwords.
What should I do ?

the user wants advice on losing their weight very
fast by a specific deadline. LSSVM groups these
questions with some others, more generic queries
on fast weight loss (How do I loose weight fast?).
This means that LSSVM captures the intent hi-
erarchy well, providing meaningful clusters, al-
though occasionally missing some important de-
tails. Other methods, on the contrary, form more
poorly-related clusters (25-42% of clusters sug-
gested by unsupervised approaches contain unre-
lated intents). Thus, the questions from Example
(11) get grouped by other methods with such unre-
lated queries as How is it to be in true love? (spec-
tral clustering over tf-idf).

Note that neither LSSVM nor unsupervised ap-
proaches have any access to the cluster labels and
their hierarchy: in the training data, we only spec-
ify the clustering itself. Yet, by taking into account

8The reference scorer adopted by the coreference commu-
nity discards singleton clusters.

the global cluster structure, the LSSVM method
can uncover the underlying hierarchy.

In the FAQ setting, most clusters are mid-size
(5-9 questions). All the methods are doing a mod-
erate job at recuperating the intent structure in this
experiment. However, LSSVM shows better per-
formance (cf. Section 5.3). Moreover, structural
output is the only method that perfectly recuper-
ates at least some clusters, e.g.:
(12) q1: Non ricordo piú la password per accedere all’App

(I don’t remember the password for the App)
q2: mi sono dimenticato la password (I forgot the pass-
word)
q3: reimpostare la password (reset the password)
q4: cambio password (change the password)

Here, LSSVM predicts the correct cluster exactly.
K-means based approaches put q1 � q4 into the
same cluster, however, they also merge them with
bloccare gli acquisti online (block the online pur-
chases). Finally, spectral clustering does a poor
job on this particular example, tearing either q1

(tf-idf based spectral clustering) or q2 (SVM pair-
wise classifier-based spectral clustering) apart and
introducing a lot of spurious material.

6 Conclusion

We have proposed structured output methods fed
with semantic question paraphrasing models to
automatically extract user intents from question
repositories. Our approach provides clustering ac-
curacy of 80% with respect to the original Quora
annotation and still valuable accuracy of 65% with
respect one to of the many interpretations of ques-
tion intent of our dataset, carried out by our expert
in dialog modeling. This line of research looks
promising as it can potentially simplify and speed
up the work of Dialog Manager engineers. Al-
though a deeper study is required to assess the ben-
efits of our approach, the feedback of our designer
clearly suggests that automatic clusters, even if
were not perfect, simplify the annotation work.
Several future research directions are enabled by
our study, ranging from the use of neural clus-
tering models to the application of our models
to fast and semi-automatic prototyping of Dialog
Systems. For this purpose, we make our data and
software available to the research community.
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Abstract

Existing dialog datasets contain a sequence of
utterances and responses without any explicit
background knowledge associated with them.
This has resulted in the development of mod-
els which treat conversation as a sequence-
to-sequence generation task (i.e., given a se-
quence of utterances generate the response se-
quence). This is not only an overly simplis-
tic view of conversation but it is also em-
phatically different from the way humans con-
verse by heavily relying on their background
knowledge about the topic (as opposed to sim-
ply relying on the previous sequence of ut-
terances). For example, it is common for
humans to (involuntarily) produce utterances
which are copied or suitably modified from
background articles they have read about the
topic. To facilitate the development of such
natural conversation models which mimic the
human process of conversing, we create a new
dataset containing movie chats wherein each
response is explicitly generated by copying
and/or modifying sentences from unstructured
background knowledge such as plots, com-
ments and reviews about the movie. We estab-
lish baseline results on this dataset (90K utter-
ances from 9K conversations) using three dif-
ferent models: (i) pure generation based mod-
els which ignore the background knowledge
(ii) generation based models which learn to
copy information from the background knowl-
edge when required and (iii) span prediction
based models which predict the appropriate re-
sponse span in the background knowledge.

1 Introduction

Background knowledge plays a very important
role in human conversations. For example, to have
a meaningful conversation about a movie, one
uses their knowledge about the plot, reviews, com-
ments and facts about the movie. A typical con-
versation involves recalling important points from

this background knowledge and producing them
appropriately in the context of the conversation.
However, most existing large scale datasets (Lowe
et al., 2015b; Ritter et al., 2010; Serban et al.,
2016) simply contain a sequence of utterances and
responses without any explicit background knowl-
edge associated with them. This has led to the de-
velopment of models which treat conversation as a
simple sequence-to-sequence generation task and
often produce output which is both syntactically
incorrect and incoherent (off topic). To make con-
versations more coherent, there is an increasing
interest in integrating structured and unstructured
knowledge sources with neural conversation mod-
els. While there are already some works in this
direction (Rojas-Barahona et al., 2017; Williams
et al., 2016; Lowe et al., 2015a; Ghazvininejad
et al., 2017) which try to integrate external knowl-
edge sources with existing datasets, we believe
that building new datasets where the utterances are
explicitly linked to external background knowl-
edge will further facilitate the development of such
background aware conversation models.

With this motivation, we built a new back-
ground aware conversation dataset using crowd-
sourcing. Specifically, we asked workers to chat
about a movie using structured and unstructured
resources about the movie such as plots, reviews,
comments, fact tables (see Figure 1). For every
even numbered utterance, we asked the workers to
consult the available background knowledge and
try to construct a sentence which contains infor-
mation from this background knowledge and is
relevant in the current context of the conversa-
tion (akin to how humans recall things from their
background knowledge and insert them appropri-
ately in the conversation). For example, in Turn 2,
Speaker 2 picked a sentence from the plot which
is relevant to the current context of the conver-
sation. Similarly, in Turn 3, Speaker 2 picked a
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... The lab works on spi-
ders and has even man-
aged to create new species
of spiders through genetic
manipulation. While Peter
is taking photographs of
Mary Jane for the school
newspaper, one of these
new spiders lands on his
hand and bites him Pe-
ter comes home feeling ill
and immediately goes to
bed. ...

Plot

... I thoroughly enjoyed
“Spider-Man” which I saw
in a screening. I thought
the movie was very en-
grossing. Director Sam
Raimi kept the action quo-
tient high, but also em-
phasized the human ele-
ment of the story. Tobey
was brilliant as a gawky
teenager...

Review

Speaker 1(N): Which is your favourite character?

Speaker 2(C): My favorite character was Tobey
Maguire.

Speaker 1(N): I thought he did an excellent job as
peter parker, I didn’t see what it was that turned him
into Spider-Man though.

Speaker 2(P): Well this happens while Peter is taking
photographs of Mary Jane for the school newspaper,
one of these new spiders lands on his hand and bites
him.

Speaker 1 (N): I see. I was very excited to see this
film and it did not disappoint!

Speaker 2(R): I agree, I thoroughly enjoyed “Spider-
Man”

Speaker 1(N): I loved that they stayed true to the
comic.

Speaker 2(C): Yeah, it was a really great comic book
adaptation

Speaker 1(N): The movie is a great life lesson on bal-
ancing power.

Speaker 2(F): That is my most favorite line in the
movie, “With great power comes great responsibility.”

Movie: Spider-Man

... Crazy attention to de-
tail. My favorite character
was Tobey Maguire. I
can’t get over the “I’m
gonna kill you dead” line.
It was too heavily reliant
on constant light-hearted
humor. However the con-
stant joking around kinda
bogged it down for me. A
really great comic book
adaptation. ....

Comments

Awards Golden Trailer
Awards 2002

Taglines

With great
power comes
great
responsibility.
Get Ready For
Spidey !

Similar
Movies

Iron Man
Spider-Man 2

Fact Table

Figure 1: A sample chat from our dataset which uses background resources. The chosen spans used in the conver-
sation are shown in blue. The letters in the brackets denote the type of resource that was chosen - P, C ,R, F and N
indicate Plot, Comments, Review, Fact Table and None respectively.

sentence from the movie review. We also asked
the workers to suitably modify the content picked
from the background knowledge, if needed, so that
the conversation remains coherent. We collected
around 9K such conversations containing a total
of 90K utterances pertaining to about 921 movies.
These conversations along with the background
resources will be made publicly available1. For ev-
ery utterance, we also provide information about
the exact span in the resource from which this ut-
terance was created. Lastly note that unlike ex-
isting datasets, our test set contains multiple ref-
erence responses for each test context thereby fa-
cilitating better evaluation of conversation models.
We believe that this dataset will allow the com-
munity to take a fresh look at conversation mod-
eling and will lead to the development of mod-
els which can learn to exploit background knowl-
edge to pick appropriate responses instead of gen-
erating responses from scratch. Such a conversa-
tion strategy which produces responses from back-
ground knowledge would be useful in various do-
mains. For example, a troubleshooting bot could
exploit the information available in manuals, re-
views and previous bug reports about the soft-
ware. Similarly, an e-commerce bot could exploit
the rich information available in product descrip-
tions, reviews, fact tables, etc. about the product.
While the proposed dataset is domain specific, it

1https://github.com/nikitacs16/Holl-E

serves as a good benchmark for developing cre-
ative background-knowledge-aware models which
can then be ported to different domains by build-
ing similar datasets for other domains.

We establish some initial baselines using three
different paradigms to demonstrate the various
models that can be developed and evaluated using
this dataset. For the sake of completeness, the first
paradigm is a hierarchical variant of the sequence
to sequence architecture which does not exploit
any background knowledge. The second paradigm
is the copy-and-generate paradigm wherein the
model tries to copy text from the given resources
whenever appropriate and generate it otherwise.
The third paradigm borrows from the span predic-
tion based models which are predominantly being
used for Question Answering (QA). These base-
line results along with the dataset would hopefully
shape future research in the area of background
aware conversation models.

2 Related Work

There has been an active interest in building
datasets (Serban et al., 2015) for training dia-
log systems. Some of these datasets contain
transcripts of human-bot conversations (Williams
et al., 2013; Henderson et al., 2014a,b) while oth-
ers are created using a fixed set of natural lan-
guage patterns (Bordes and Weston, 2017; Dodge
et al., 2016). The advent of deep learning created
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interest in the construction of large-scale dialog
datasets (Lowe et al., 2015b; Ritter et al., 2010;
Sordoni et al., 2015) leading to the development
of several end-to-end conversation systems (Shang
et al., 2015; Vinyals and Le, 2015; Li et al., 2016;
Serban et al., 2016) which treat dialog as a se-
quence generation task.

To make the output of these models more coher-
ent, there is an increasing effort in integrating ex-
ternal background knowledge with these models.
This is because human beings rely on background
knowledge for conversations as well as other tasks
(Schallert, 2002). There has been considerable
work on incorporating background knowledge in
the context of goal-oriented dialog datasets even
before the advent of large-scale datasets for deep
learning (Raux et al., 2005; Seneff et al., 1991)
as well as in recent times (Rojas-Barahona et al.,
2017; Williams et al., 2016; Eric et al., 2017)
where datasets include small sized knowledge
graphs as background knowledge. However, the
conversations in these datasets are very templated
and nowhere close to open conversations in spe-
cific domains such as the ones contained in our
dataset.

Even in the case of open domain conversa-
tions, there are some works which have inte-
grated external knowledge sources. Most of
the entries in 2017 Amazon Alexa Prize (Ram
et al., 2017) relied on background knowledge for
meaningful response generation. Milabot (Serban
et al., 2017a) and even the winning entry Sound-
ingBoard (Liu et al., 2018) used Reddit pages,
Amazon’s Evi Service, and large databases like
OMDB, Google Knowledge Graph and Wikidata
as external knowledge. The submission named
Eigen (Guss et al., 2017) used several dialog
datasets and corpora belonging to related Natu-
ral Language Processing tasks to make their re-
sponses more informative. We refer the reader to
(Ram et al., 2017) for detailed analysis of these
systems. In the space of academic datasets, Lowe
et al. (2015a) report results on the Ubuntu dataset
using manpages as external knowledge whereas
Ghazvininejad et al. (2017) use Foursquare tips
as external knowledge for social media conver-
sations. However, unlike our work both these
works do not create a new dataset where the
responses are explicitly linked to a knowledge
source. The infusion of external knowledge in
both these works is post facto (as opposed to our

work where we take a bottom-up approach and ex-
plicitly create a dataset which allows exploitation
of background knowledge). Additionally, existing
large-scale datasets are noisy as they are extracted
from online forums which are inherently noisy. In
contrast, since we use crowdsourcing, the extent of
noise is reduced since there are humans in the loop
who were explicitly instructed to use only clean
sentences from the external knowledge sources.

We would also like to mention some existing
works such as (He et al., 2017; Lewis et al., 2017;
Krause et al., 2017) which have used crowdsourc-
ing for creating conversation datasets. In fact, our
data collection method is inspired by the work of
Krause et al. (2017) where the authors use self-
dialogs to collect conversation data about movies,
music and sports. They are referred to as self-
dialogs because the same worker plays the role
of both parties in the conversation. However, our
work differs from Krause et al. (2017) as we pro-
vide explicit background knowledge sources to the
workers from where they can copy text with the
addition of suitable prefixes and suffixes to gener-
ate appropriate coherent responses.

3 Dataset

In the following sub-sections we describe the var-
ious stages involved in collecting our dataset.

3.1 Curating a list of popular movies
We created a list of 921 movies containing (i) top
10 popular movies within the past five years, (ii)
top 250 movies as per IMDb rankings, (iii) top 10
movies in popular genres, and (iv) other popular
movie lists made available elsewhere on the Inter-
net. These movies belonged to 22 different genres
such as sci-fi, action, horror, fantasy, adventure,
romance, etc. thereby ensuring that our dataset
is not limited to a specific genre. We considered
those movies for which enough background infor-
mation such as plots, reviews, comments, facts,
etc. were available on the Internet irrespective
of whether they were box-office successes or not.
Please find the respective urls in the Appendix.

3.2 Collecting background knowledge
For each movie, we collected the following back-
ground knowledge:

1. Review (R): For each movie, we asked some
in-house workers to fetch the top 2 most popular
reviews for this movie from IMDb using the sort
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by Total Votes option. We also instructed them to
avoid choosing reviews which were less than 50
words but this was typically never the case with
popular reviews. 2. Plot (P): For each movie,
we extracted information about the “Plot” of the
movie from the Wikipedia page of the movie.
Wikipedia pages of movies have an explicit sec-
tion on “Plot” making it easy to extract this infor-
mation using scripts. 3. Comments (C): Web-
sites like Reddit have a segment called “official
discussion page about X” (where X is a movie
name) containing small comments about various
aspects of movie. We identified such pages and
extracted the first comment on every thread on this
page. We bundled all these comments into a sin-
gle text file and refer to it as the resource contain-
ing “Comments”. For a few movies, the official
discussion page was not present in which case we
used the review titles of all the IMDb reviews of
the movie as comments. The difference between
Reviews and Comments is that a Review is an
opinion piece given by one person thus typically
exhibiting one sentiment throughout while Com-
ments include opinions of several people about the
same movie ensuring that positive, negative and
factual aspects of the movie are captured as well
as some banter.

4. Meta data or Fact Table (F): For each
movie, we also collected factual details about the
movie, viz., box office collection, similar movies
(for recommendations), awards and tag-lines from
the corresponding IMDb pages and Wikipedia In-
foboxes. Such information would be useful for
inserting facts in the conversation, for example,
“Did you know that the movie won an Oscar?”.
We included only 4 fields in our fact table instead
of showing the entire Wikipedia Infobox to reduce
the cognitive load on turkers who already had to
read the plot, reviews and comments of the movie.

3.3 Collecting conversation starters

During our initial pilots, we observed that if we
asked the workers to converse for at least 8 turns,
they used a lot of the initial turns in greetings and
general chit-chat before actually chatting about a
movie. To avoid this, we collected opening state-
ments using Amazon Mechanical Turk (AMT)
where the task for the workers was to answer the
following questions “What is your favorite scene
from the movie X ?”, “What is your favorite char-
acter from the movie X ?” and “What is your opin-

ion about the movie X?” (X is the movie name).
We paid the workers 0.04$ per movie and showed
the same movie to 3 different workers, thereby
collecting 9 different opening statements for every
movie. By using these statements as conversation
starters in our data collection, the workers could
now directly start conversing about the movie.

3.4 Collecting background knowledge aware
conversations via crowdsourcing

Our aim is to create a conversation dataset wherein
every response is explicitly linked to some struc-
tured or unstructured background knowledge.
Creating such a dataset using dedicated in-house
workers would obviously be expensive and time
consuming and so we decided to use crowdsourc-
ing. However, unlike other NLP and Vision tasks,
where crowdsourcing has been very successful,
collecting conversations via crowdsourcing is a bit
challenging. The main difficulty arises from the
fact that conversation is inherently a task involv-
ing two persons but it is hard to get two work-
ers to synchronize and chat on AMT. We did try
a few pilot experiments where we setup a server
to connect two AMT workers but we found that
the probability of two workers simultaneously log-
ging in was very low. Thus, most workers logged
in and left in a few seconds because no other
worker joined simultaneously. Finally, we took in-
spiration from the idea of self chats Krause et al.
(2017) in which, the same worker plays the role
of both Speaker 1 and Speaker 2 to create the
chat. In the above self chat setup, we showed ev-
ery worker 3 to 4 resources related to the movie,
viz., plot (P), review (R), comments (C) and fact
table (F). We also showed them a randomly se-
lected opening statement from the 9 opening state-
ments that we had collected for each movie and
requested them to continue the conversation from
that point. The workers were asked to add at
least 8 utterances to this initial chat. While play-
ing the role of Speaker 1, the worker was not re-
stricted to copy/modify sentences from the back-
ground resources but was given the freedom to
create (write) original sentences. However, when
playing the role of Speaker 2, the worker was
strictly instructed to copy/modify sentences from
the shown resources such that they were relevant
in the current context of the conversation. The rea-
son for not imposing any restrictions on Speaker 1
was to ensure that the chats look more natural and
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coherent. Further, Speaker 2 was allowed to add
words at the beginning or end of the span selected
from the resources to make the chats more coher-
ent and natural (for example, see the prefix in ut-
terance 2 of Speaker 2 in Figure 1). We paid the
workers 40 cents for every chat. Please refer to the
Appendix for the instruction screen shots.

3.5 Verification of the collected chats
Every chat that was collected by the above pro-
cess was verified by an in-house evaluator to check
if the workers adhered to the instructions and pro-
duced coherent chats. Since humans typically tend
to paraphrase the background knowledge acquired
by reading articles, one could argue that such con-
versations may not look very natural because of
this restriction to copy/modify content from the
provided resources. To verify this, we conducted
a separate human evaluation wherein we asked 15
in-house evaluators to read conversations (without
the background resources) from our dataset and
rate them on five different parameters. Specifi-
cally, they were asked to check if the conversations
were 1) intelligible: i.e., an average reader could
understand the conversation 2) coherent: i.e.,
there were no abrupt context switches 3) gram-
matically correct 4) on-topic: i.e., the chat re-
volved around the concerned movie with digres-
sion limited to related movies/characters/actors
and 5) natural two-person chats: i.e., the role-
play setup does not make the chat look unnatural.
These evaluators were post-graduate students who
were fluent in English and had watched at least
100 Hollywood movies. We did not give them
any information about the data creation process.
We used a total of 500 chats for the evaluation
and every chat was shown to 3 different evalua-
tors. The evaluators rated the conversations on a
scale of 1 (very poor) to 5 (very good). We com-
puted inter-annotator agreement using the mean
linearly weighted Cohen’s  (Cohen, 1968) and
mean Krippendorff’s ↵ (Hayes and Krippendorff,
2007). The average rating for each of the 5 param-
eters along with the inter annotator agreement are
reported in Table 1 and are very encouraging.

3.6 Statistics
In Table 2, we show different statistics about the
dataset collected using the above process. These
include average number of utterances per chat,
average number of words per utterance, and so
on followed by the statistics of the different re-

Metric Rating ↵ 
Intelligible 4.47 ± 0.52 0.70 0.69
Coherent 4.33 ± 0.93 0.57 0.71
Grammar 4.41 ± 0.56 0.60 0.69
Two-person-chat 4.47 ± 0.46 0.64 0.70
On Topic 4.57 ± 0.43 0.72 0.70

Table 1: Average human evaluation scores with stan-
dard deviations for conversations (scale 1-5). We also
report mean Krippendorff’s ↵ and mean Cohen’s 

#chats 9071
#movies 921
#utterances 90810
Average # of utterances per chat 10.01
Average # of words per utterance 15.29
Average # of words per chat 153.07
Average # of words in Plot 186.10
Average # of words in Review 384.44
Average # of words in Comments 123.81
Average # of words in Fact Table 33.47
# unique Plots 5157
# unique Reviews 1817
# unique Comments 12740

Table 2: Statistics of the dataset

sources which were used as background knowl-
edge. Please note that the # unique Plots and
# unique Reviews correspond to unique para-
graphs while the # unique Comments is the count
of unique sentences. We observed that 41.2%,
34.6%, 16.1% and 8.1% of Speaker 2 responses
came from Reviews, Comments, Plots and Fact
Table respectively.

4 Models

We evaluate three different types of models as de-
scribed below. Since these are popular existing
models, we describe them very briefly below and
refer the reader to the original papers for more de-
tails. Note that in this work we merge the com-
ments, reviews, plots and facts into one single doc-
ument and refer to it as background knowledge. In
the rest of the paper, when we refer to a resource
we mean this single document which is a merger
of all the resources unless specified otherwise.

4.1 Generation based models
We use the standard Hierarchical Recurrent En-
coder Decoder model (HRED) (Serban et al.,
2016) instead of its variant (Serban et al., 2017b)
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as the standard model performs only slightly
poorly than the variant and is much easier to im-
plement. It decomposes the context of the conver-
sation as two level hierarchy using Recurrent Neu-
ral Networks (RNN). The lower RNN encodes in-
dividual utterances (sequence of words) which is
then fed into the higher level RNN as a sequence
of utterances. The decoder RNN then generates
the output based on this hierarchical context rep-
resentation.

4.2 Generate-or-Copy models

Get To The Point (GTTP) (See et al., 2017) pro-
posed a hybrid pointer generator network for ab-
stractive summarization that learns to copy words
from the source document when required and oth-
erwise generates a word like any sequence-to-
sequence model. In the summarization task, the
input is a document and the output is a summary
whereas in our case the input is a {document, con-
text} pair and the output is a response. Here,
the context includes the previous two utterances
and the current utterance. We modified the ar-
chitecture to suit our task. We use an RNN to
compute the representation of the document (like
the original model) and introduce another RNN to
compute a representation of the context by treat-
ing it as a single sequence of words. The de-
coder which is also an RNN then uses the docu-
ment representation, context representation and its
own internal state representation to compute a (i)
probability score which indicates whether the next
word should be copied or generated (ii) probability
distribution over the vocabulary if the next word
needs to be generated and (iii) probability distri-
bution over the input words if the next word needs
to be copied. These three probability distributions
are then combined to produce the next word in the
response.

4.3 Span prediction models

Bi-directional Attention Flow Model (BiDAF)
(Seo et al., 2017) model is a QA model which
was proposed in the context of the SQuAD dataset
(Rajpurkar et al., 2016). Given a document and a
question, the model uses a six-layered architecture
to predict the span in the document which contains
the answer. We can use their model as it is for our
task without any modifications by simply treating
the context as the question and the resource as the
document.

We chose to evaluate on the modified generate-
or-copy model instead of other variants such as
(Ghazvininejad et al., 2017; Lowe et al., 2015a)
as the modified model already contains the extra
encoder for background model which is present in
these models. Moreover, the modified model uses
a hybrid copy-or-generate decoder which is well-
suited to our task.

5 Experimental Setup

In this section we describe the train-validation-
test splits, the process used for creating training
instances, the manner in which the models were
trained using our data and the evaluation metrics.

5.1 Creating train/valid/test splits
On average we have 9.14 chats per movie. We di-
vide the collected chats into train, validation, and
test splits such that all the chats corresponding to
a given movie are in exactly one of the splits. This
ensures that a movie seen in the test or validation
set is never seen at training time. We create the
splits such that the percentage of chats in the train-
validation-test set is roughly 80%-10%-10%.

5.2 Creating training instances
For each chat in the training data, we construct
training instances of the form {resource, context,
response} where the context is taken as previous
two utterances and current utterance. We consider
only the even numbered utterances as training ex-
amples as they are generated from the background
resources thus emulating a human-bot setup. If
a chat has 10 turns, we will have 5 instances.
The task then is to train a model which can pre-
dict these even numbered responses. At test time
the model is shown {resource, context} and pre-
dicts the response. Note that, HRED will ignore
the resource and only use {context, response} as
input-output pairs. BiDAF and GTTP will use
{resource, context, response} as training data with
relevant span instead of response for BiDAF.

5.3 Merging resources into a single document
As stated earlier, we simply merge all the back-
ground information to create a single document
which we collectively refer to as resource. For
the BiDAF model, we had to restrict the length
of the resource to 256 words because we found
that even on a K80 GPU with 12GB RAM, this
model gives an out of memory error for longer
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documents. We found this to be a severe limita-
tion of this and other span based models (for ex-
ample, R-Net (Wang et al., 2017)) . We exper-
imented with three methods of creating this re-
source. The first method oracle uses the actual re-
source (plot or comments or reviews) from which
the next response was generated as a resource. If
that resource itself has more than 256 words then
we truncate it from the beginning and the end such
that the span containing the actual response is con-
tained within the retained 256 words. The number
of words that are discarded from the start or the
end is chosen at random so that the correct spans
do not end up in similar positions throughout the
dataset. The next two methods mixed-short and
mixed-long are created by merging the individual
resources. We retain each resource in the merged
document proportional to its length. (i.e,if there
are 400 words in the plot, 200 words in the review
and 100 in the comments, the merged resource will
contain contiguous sentences from these three re-
sources in the ratio of 4:2:1.) Further, we ensure
that the merged resource contains the actual re-
sponse span. In this way, we create mixed-short
with 256 words and mixed-long with 1200 words
(the maximum length of the merged resources).
We will henceforth denote oracle, mixed-long and
mixed-short using ‘(o) ’, ‘(ms) ’and ‘(ml) ’respec-
tively. We report results for BiDAF(o), BiDAF
(ms), GTTP (o) and GTTP (ml).

5.4 Evaluation metrics

As HRED and GTTP models are generation based
models we use BLEU-4, ROUGE-1, ROUGE-2
and ROUGE-L as the evaluation metrics. For
BiDAF we use the above metrics by comparing
the predicted span with the reference span. For
BiDAF, we also report F1 as stated in Rajpurkar
et al. (2016).

In addition to the automatic evaluation, we
also collected human judgments using 100 test re-
sponses generated for every model for every setup
(oracle, mixed-short, mixed-long). These evalu-
ators had the same qualifications as the evalua-
tors who earlier helped us evaluate our dataset.
They were asked to rate the response on scale of
1 to 5 (with 1 being the least) on the following
four metrics: (1) Fluency(Flu), (2) appropriate-
ness/relevance (apt) of the response in the current
context language (3) humanness (Hum) of the re-
sponse, i.e., whether the responses look as if they

were generated by a human (4) and specificity
(spec) of the response, i.e., whether the model
produced movie-specific responses or generic re-
sponses such as “This movie is amazing”. We re-
port these results in Table 4.

5.5 Collecting multiple reference responses

One common issue with evaluating dialog systems
is that existing datasets typically contain only one
reference response whereas in practice several re-
sponses can be correct in a given context. To solve
this to a certain extent, we collected three refer-
ence responses for every Speaker 2 utterance in
our dataset (note that Speaker 2 is treated as the bot
while training/testing our models). We show the
previous utterances ending with Speaker 1’s re-
sponse and ask workers to provide three appropri-
ate responses from the given resources. We found
that in some cases there was only one appropri-
ate response like factual response and the workers
could not provide multiple references . In this way
we were able to create a multiple reference test set
where 78.04% of the test instances have multiple
responses. In Table 3, we report two sets of scores
based on single-reference test dataset and multi-
reference test dataset. While calculating the scores
for multi-reference dataset, we take the maximum
score over multiple reference responses.

Please refer to the Appendix section for the de-
tails of the model, hyperparameters, example of
multiple references in our dataset and sample out-
puts produced by different models.

6 Results and Discussion

In this section, we discuss the results of our exper-
iments as summarized in Tables 3 and 4.

Generation based models v/s Span prediction
models: We compare the generation based models
and span prediction models only based on results
in the oracle setting. Here, the span based model
(BiDAF) outperforms the generation based mod-
els (HRED and GTTP). This confirms our belief
that the natural language generation (NLG) capa-
bilities of current generation based models are far
from being acceptable even in case of generate-
or-copy modes. This also emphasizes the impor-
tance of this data which allows building models
which can exploit well-formed sentences in the
background knowledge and reproduce them with
minor modifications instead of generating them
from scratch. While the results for BiDAF are
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Model F1 BLEU Rouge-1 Rouge-2 Rouge-L
HRED - - 5.23 5.38 24.55 25.38 7.61 8.35 18.87 19.67
GTTP (o) - - 13.92 16.46 30.32 31.6 17.78 21.21 25.67 27.83
GTTP (ms) - - 11.05 15.68 29.66 31.71 17.70 19.72 25.13 27.35
GTTP (ml) - - 7.51 8.73 23.20 21.55 9.91 10.42 17.35 18.12
BiDAF (o) 39.69 47.18 28.85 34.98 39.68 46.49 33.72 40.58 35.91 42.64
BiDAF (ms) 45.73 51.35 32.95 39.39 45.69 50.73 40.18 45.01 43.46 46.95

Table 3: Performance of the proposed models on our dataset. The figures on the left in each column indicate scores
on single-reference test dataset while the figures on the right denote scores on multi-reference dataset.

Model Hum Apt Flu Spec
HRED 3.08 2.49 2.64 2.06
GTTP (o) 4.10 3.73 4.03 3.33
GTTP (ml) 2.93 2.97 3.42 2.60
BiDAF (o) 3.78 3.71 4.05 3.76
BiDAF(ms) 3.41 3.38 3.47 3.30

Table 4: Human evaluation results on the model perfor-
mances.

encouraging, we reiterate that it does not scale to
longer documents (we were not able to run it in
the mixed-long setting). We still need much bet-
ter models as BiDAF on SQuAD dataset gives an
F1 of 81.52 % which is much higher than the re-
sults on our dataset. Further, note that using the
predicted span as a response is not natural. This
is evident from human likeliness (Hum) score of
GTTP (o) being higher than both the BiDAF mod-
els. We need models which can suitably alter the
span to retain the coherence of the context.

Effect of including background knowledge:
We observe that there isn’t much difference be-
tween the performance of HRED which does not
use any background knowledge when compared
to GTTP (ml) which actually uses a lot of back-
ground knowledge. However, there is a substan-
tial difference between the performance of HRED
and GTTP (o) which uses only the relevant back-
ground knowledge. Further, without background
knowledge, HRED learns to produce very generic
responses (Spec score = 2.06). This shows that the
background knowledge is important, but the mod-
els should learn to focus on the right background
knowledge relevant to the current context. Alter-
nately, we can have a two-stage network which
first predicts the right resource (plot, review, com-
ments) from which the span should be selected and
then selects the span from this chosen resource.

Oracle v/s mixed-short resource: We observe
that the performance of BiDAF (ms) is actually

better than BiDAF (o) even when the resource
length for both is 256 words. We would expect
a poor performance for BiDAF (ms) as the re-
source has more noise because of the sentences
from irrelevant resources. However, we specu-
late the model learns to regard irrelevant sentences
as noise and learns to focus on sentences corre-
sponding to the correct resource resulting in im-
proved performance (however, this is only a hy-
pothesis and it needs to be verified). We realize
that this is clearly a poor baseline and we need bet-
ter span prediction based models which can work
with longer documents. At the same time, GTTP
(o) and GTTP (ms) have comparable (yet poor)
performance. There is no co-attention mechanism
in this model which can effectively filter out noisy
sentences.

Observations from the copy-and-gen model:
We observed that this model produced sentences
where on average of 82.18% (oracle) and 71.95%
(mixed-long) of the tokens were copied. One
interesting observation was that it easily learns to
copy longer contiguous sequences one word at a
time. However, as is evident from the automatic
evaluation metrics, in many cases, the ‘copied’
spans are not relevant to the current context.

Evaluating with multiple references: When
considering multiple references, the performance
numbers as reported in Table 3 indeed improve.
This shows the importance of having multiple
references and the need to develop metrics which
account for multiple dissimilar references.

7 Conclusion

We introduce a new dataset for building dialog
systems which would hopefully allow the commu-
nity to take a fresh look at this task. Unlike ex-
isting datasets which only contain a sequence of
utterances, in our dataset each response is explic-
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itly linked to some background knowledge. This
mimics how humans converse by recalling infor-
mation from their background knowledge and use
it appropriately in the context of the conversation.
Using this dataset, we evaluated models belonging
to three different paradigms, viz., generation based
models, generate-or-copy models and span predic-
tion models. Our results suggest that the NLG
capabilities of existing seq-to-seq models are still
far from desirable while span based models which
completely bypass the process of NLG show some
promise but with clear scope for improvement.

Going forward, we would like to build models
which are a hybrid of span prediction models and
generation models. Specifically, we would like to
build models which can learn to copy a large se-
quence from the input instead of one word at a
time. Another important aspect is to build less
complex models which can handle longer docu-
ments. For example, the BiDAF model has an
expensive outer product between two large matri-
ces which makes it infeasible for long documents
(because the size of these matrices grows with the
length of the document). Alternately, we would
like to build two-stage models which first select
the correct resource from which the next response
is to be generated and then generate or copy the
response from the resource.
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Abstract

We consider negotiation settings in which
two agents use natural language to bargain
on goods. Agents need to decide on both
high-level strategy (e.g., proposing $50) and
the execution of that strategy (e.g., generat-
ing “The bike is brand new. Selling for just
$50!”). Recent work on negotiation trains
neural models, but their end-to-end nature
makes it hard to control their strategy, and
reinforcement learning tends to lead to de-
generate solutions. In this paper, we pro-
pose a modular approach based on coarse di-
alogue acts (e.g., propose(price=50)) that de-
couples strategy and generation. We show
that we can flexibly set the strategy using su-
pervised learning, reinforcement learning, or
domain-specific knowledge without degener-
acy, while our retrieval-based generation can
maintain context-awareness and produce di-
verse utterances. We test our approach on the
recently proposed DEALORNODEAL game,
and we also collect a richer dataset based on
real items on Craigslist. Human evaluation
shows that our systems achieve higher task
success rate and more human-like negotiation
behavior than previous approaches.

1 Introduction

A good negotiator needs to decide on the strat-
egy for achieving a certain goal (e.g., proposing
$6000) and the realization of that strategy via gen-
eration of natural language (e.g., “I really need a
car so I can go to work, but all I have is 6000, any
more and I won’t be able to feed my children.”).

Most past work in NLP on negotiation focuses
on strategy (dialogue management) with either no
natural language (Cuayáhuitl et al., 2015; Cao
et al., 2018) or canned responses (Keizer et al.,
2017; Traum et al., 2008). Recently, end-to-end
neural models (Lewis et al., 2017; He et al., 2017)
are used to simultaneously learn dialogue strategy

and language realization from human-human di-
alogues, following the trend of using neural net-
work models on both goal-oriented dialogue (Wen
et al., 2017a; Dhingra et al., 2017) and open-
domain dialogue (Sordoni et al., 2015; Li et al.,
2017; Lowe et al., 2017). However, these models
have two problems: (i) it is hard to control and in-
terpret the strategies, and (ii) directly optimizing
the agent’s goal through reinforcement learning
often leads to degenerate solutions where the utter-
ances become ungrammatical (Lewis et al., 2017)
or repetitive (Li et al., 2016).

To alleviate these problems, our key idea is to
decouple strategy and generation, which gives us
control over the strategy such that we can achieve
different negotiation goals (e.g., maximizing util-
ity, achieving a fair deal) with the same language
generator. Our framework consists of three com-
ponents shown in Figure 1: First, the parser iden-
tifies keywords and entities to map each utter-
ance to a coarse dialogue act capturing the high-
level strategic move. Then, the dialogue man-
ager chooses a responding dialogue act based on a
sequence-to-sequence model over coarse dialogue
acts learned from parsed training dialogues. Fi-
nally, the generator produces an utterance given
the dialogue act and the utterance history.

Our framework follows that of traditional goal-
oriented dialogue systems (Young et al., 2013),
with one important difference: coarse dialogue
acts are not intended to and cannot capture the
full meaning of an utterance. As negotiation di-
alogues are fairly open-ended, the generator needs
to depend on the full utterance history. For exam-
ple, consider the first turn in Figure 1. We can-
not generate a response given only the dialogue
act inform; we must also look at the previous ques-
tion. However, we still optimize the dialogue man-
ager in the coarse dialogue act space using super-
vised learning, reinforcement learning, or domain-
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inquire inform propose
(price=125)

counter
(price=160)

counter
(price=150) agree

Buyer: Are you 
willing to lower 
the price at all?

Seller: yes

Buyer:  I would 
like to pay 125 for 
it.  How does that 
sound?

Buyer: How 
about 150? That 
is a bit lower.

Seller: i’ll 
accept 160

Seller: i can 
do that!

Manager

Parser
Generator

Words

Coarse 
dialogue acts

ztz<t

xt

x<t

Figure 1: Our modular framework consists of three components similar to traditional goal-oriented di-
alogue systems. (1) The parser maps received utterances to coarse dialogue acts (an intent and its ar-
guments) that capture the high-level dialogue flow. (2) The manager generates the next coarse dialogue
act zt conditioned on past dialogue acts z<t. (3) The generator then produces a response conditioned on
both the predicted coarse dialogue act zt and the dialogue history x<t. Importantly, unlike in traditional
systems, coarse dialogue acts only capture the rough shape of a dialogue, not the full meaning of its
utterances, e.g., inform does not specify the answer to the question.

specific knowledge.
Existing human-human negotiation datasets are

grounded in closed-domain games with a fixed set
of objects such as Settlers of Catan (lumber, coal,
brick, wheat, and sheep) (Afantenos et al., 2012;
Asher et al., 2016) or item division (book, hat,
and ball) (DeVault et al., 2015; Lewis et al., 2017).
These objects lack the richness of the real world.
To study human negotiation in more open-ended
settings that involve real goods, we scraped post-
ings of items for sale from craigslist.org
as our negotiation scenario. By hiring workers
on Amazon Mechanical Turk (AMT) to play the
role of buyers and sellers, we collected a new
dataset (CRAIGSLISTBARGAIN) of negotiation di-
alogues.1 Compared to existing datasets, our more
realistic scenario invites richer negotiation behav-
ior involving open-ended aspects such as cheap
talk or side offers.

We evaluate two families of systems modeling
coarse dialogue acts and words respectively, which
are optimized by supervised learning, reinforce-
ment learning, or domain knowledge. Each sys-
tem is evaluated on our new CRAIGSLISTBAR-
GAIN dataset and the DEALORNODEAL dataset
of Lewis et al. (2017) by asking AMT workers to
chat with the system in an A/B testing setting. We
focus on two metrics: task-specific scores (e.g.,
utility) and human-likeness. We show that rein-
forcement learning on coarse dialogue acts avoids

1 Available at https://stanfordnlp.github.
io/cocoa.

degenerate solutions, which was a problem in Li
et al. (2016); Lewis et al. (2017). Our modular
model maintains reasonable human-like behavior
while still optimizes the objective. Furthermore,
we find that models trained over coarse dialogue
acts are stronger negotiators (even with only su-
pervised learning) and produce more diverse ut-
terances than models trained over words. Finally,
the interpretability of coarse dialogue acts allows
system developers to combine the learned dia-
logue policy with hand-coded rules, thus imposing
stronger control over the desired strategy.

2 Craigslist Negotiation Dataset

Previous negotiation datasets were collected in the
context of games. For example, Asher et al. (2016)
collected chat logs from online Settlers of Catan.
Lewis et al. (2017) asked two people to divide a
set of hats, books, and balls. While such games
are convenient for grounding and evaluation, it re-
stricts the dialogue domain and the richness of the
language. Most utterances are direct offers such as
“has anyone got wood for me?” and “I want the
ball.”, whereas real-world negotiation would in-
volve more information gathering and persuasion.

To encourage more open-ended, realistic ne-
gotiation, we propose the CRAIGSLISTBARGAIN
task. Two agents are assigned the role of a buyer
and a seller; they are asked to negotiate the price
of an item for sale on Craigslist given a descrip-
tion and photos. As with the real platform, the
listing price is shown to both agents. We addition-
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JVC HD-ILA 1080P 70 Inch TV

Tv is approximately 10 years old.
Just installed new lamp. There are 2
HDMI inputs. Works and looks like
new.
Listing price: $275
Buyer’s target price: $192

Agent Utterance Dialogue Act

Buyer Hello do you still have the TV? greet
Seller Hello, yes the TV is still available greet

Buyer What condition is it in? Any scratches or problems? I see it
recently got repaired inquire

Seller It is in great condition and works like a champ! I just installed
a new lamp in it. There aren’t any scratches or problems. inform

Buyer All right. Well I think 275 is a little high for a 10 year old TV.
Can you lower the price some? How about 150? propose(150)

Seller
I am willing to lower the price, but $150 is a little too low.
How about $245 and if you are not too far from me, I will
deliver it to you for free?

counter(245)

Buyer It’s still 10 years old and the technology is much older. Will
you do 225 and you deliver it. How’s that sound? counter(225)

Seller Okay, that sounds like a deal! agree
Buyer Great thanks! agree
Seller OFFER $225.0 o�er(225)
Buyer ACCEPT accept

Table 1: Example dialogue between two people negotiating the price of a used TV.

ally suggest a private price to the buyer as a tar-
get. Agents chat freely in alternating turns. Either
agent can enter an offer price at any time, which
can be accepted or rejected by the partner. Agents
also have the option to quit, in which case the task
is completed with no agreement.

To generate the negotiation scenarios, we
scraped postings on sfbay.craigslist.org
from the 6 most popular categories (housing, fur-
niture, cars, bikes, phones, and electronics). Each
posting produces three scenarios with the buyer’s
target prices at 0.5x, 0.7x and 0.9x of the listing
price. Statistics of the scenarios are shown in Ta-
ble 2.

We collected 6682 human-human dialogues on
AMT using the interface shown in Appendix A
Figure 2. The dataset statistics in Table 3 show
that CRAIGSLISTBARGAIN has longer dialogues
and more diverse utterances compared to prior
datasets. Furthermore, workers were encouraged
to embellish the item and negotiate side offers
such as free delivery or pick-up. This highly re-
latable scenario leads to richer dialogues such as
the one shown in Table 1. We also observed vari-
ous persuasion techniques listed in Table 4 such as
embellishment, side offers, and appeals to sympa-
thy.

3 Approach

3.1 Motivation
While end-to-end neural models have made
promising progress in dialogue systems (Wen
et al., 2017a; Dhingra et al., 2017), we find they

# of unique postings 1402
% with images 80.8
Avg # of tokens per description 42.6
Avg # of tokens per title 33.8
Vocab size 12872

Table 2: Statistics of CRAIGSLISTBARGAIN sce-
narios.

CB DN SoC

# of dialogues 6682 5808 1081
Avg # of turns 9.2 6.6 8.5
Avg # of tokens per turn 15.5 7.6 4.2
Vocab size 13928 2719 4921
Vocab size (excl. numbers) 11799 2623 4735

Table 3: Comparison of dataset statistics of
CRAIGSLISTBARGAIN (CB), DEALORN-
ODEAL (DN), and SETTLERSOFCATAN (SoC).
CRAIGSLISTBARGAIN contains longer, more
diverse dialogues on average.

struggle to simultaneously learn the strategy and
the rich utterances necessary to succeed in the
CRAIGSLISTBARGAIN domain, e.g., Table 8(a)
shows a typical dialogue between a human and
a sequence-to-sequence-based bot, where the bot
easily agrees. We wish to now separate negoti-
ation strategy and language generation. Suppose
the buyer says: “All right. Well I think 275 is a
little high for a 10 year old TV. Can you lower the
price some? How about 150?” We can capture the
highest-order bit with a coarse dialogue act pro-
pose(price=150). Then, to generate the seller’s
response, the agent can first focus on this coarse
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Phenomenon Example

Embellishment It is in great condition and works like a champ! I just installed a new lamp in it. There aren’t any
scratches or problems.

Cheap talk How about i give you $20 and you keep the helmet. its for my daughter for her job, she delivers
lemonade.

Side offers Throw in a couple of movies with that DVD player, and you have yourself a deal.

Appeal to sympathy I would love to have this for my mother, she is very sick and this would help her and with me taking
care of her and having to take a leave from work I can’t pay very much of it

World knowledge For a Beemer 5 series in this condition, I really can’t go that low.

Table 4: Rich negotiation language in our CRAIGSLISTBARGAIN dataset.

dialogue act rather than having to ingest the free-
form text all at once. Once a counter price is de-
cided, the rest is open-ended justification for the
proposed price, e.g., emphasizing the quality of
the TV despite its age.

Motivated by these observations, we now de-
scribe a modular framework that extracts coarse
dialogue acts from utterances, learns to optimize
strategy in the dialogue act space, and uses re-
trieval to fill in the open-ended parts conditioned
on the full dialogue history.

3.2 Overview
Our goal is to build a dialogue agent that takes
the dialogue history, i.e. a sequence of utterances
x1, . . . , xt�1 along with the dialogue scenario c
(e.g., item description), and produces a distribu-
tion over the responding utterance xt.

For each utterance xt (e.g., “I am willing to
pay $15”), we define a coarse dialogue act zt

(e.g., propose(price=15)); the coarse dialogue act
serves as a logical skeleton which does not attempt
to capture the full semantics of the utterance. Fol-
lowing the strategy of traditional goal-oriented di-
alogue systems (Young et al., 2013), we broadly
define our model in terms of the following three
modules:

1. A parser that (deterministically) maps an in-
put utterance xt�1 into a coarse dialogue act
zt�1 given the dialogue history x<t and z<t,
as well as the scenario c.

2. A manager that predicts the responding di-
alogue act zt given past coarse dialogue acts
z<t and the scenario c.

3. A generator that turns the coarse dialogue
act zt to a natural language response xt given
the full dialogue history x<t.

Because coarse dialogue acts do not capture the
full semantics, the parser and the generator main-
tains full access to the dialogue history. The main

restriction is the manager examining the dialogue
acts, which we show will reduce the risk of degen-
eracy during reinforcement learning Section 4.4.
We now describe each module in detail (Figure 1).

3.3 Parser
Our framework is centered around the coarse dia-
logue act z, which consists of an intent and a set
of arguments. For example, “I am willing to pay
$15” is mapped to propose(price=15). The fact
that our coarse dialogue acts do not intend to cap-
ture the full semantics of a sentence allows us to
use a simple rule-based parser. It detects the intent
and its arguments by regular expression matching
and a few if-then rules. Our parser starts by de-
tecting entities (e.g., prices, objects) and matching
keyword patterns (e.g., “go lower”). These sig-
nals are checked against an ordered list of rules,
where we choose the first matched intent in the
case of multiple matches. An unknown act is out-
put if no rule is triggered. The list of intent parsing
rules used are shown in Table 5. Please refer to
Appendix B for argument parsing based on entity
detection.

3.4 Manager
The dialogue manager decides what action zt the
dialogue agent should take at each time step t
given the sequence of past coarse dialogue acts
z<t and the scenario c. Below, we describe three
ways to learn the dialogue manager with increas-
ing controllability: modeling human behavior in
the training corpus (supervised learning), explic-
itly optimizing a reward function (reinforcement
learning), and injecting hand-coded rules (hybrid
policy).

Supervised learning. Given a parsed train-
ing corpus, each training example is a se-
quence of coarse dialogue acts over one dialogue,
z1, . . . , zT . We learn the transition probabilities
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Generic Rules

Intent Matching Patterns

greet hi, hello, hey, hiya, howdy
disagree no, not, n’t, nothing, dont

agree
not disagree and ok, okay, great, perfect,
deal, that works, i can do that

insist
the same offer as the previous one is
detected

inquire
starts with an interrogative word (e.g., what,
when, where) or particle (e.g., do, are)

CRAIGSLISTBARGAIN Rules

Intent Matching Patterns

intro greet or how are you, interested
propose first price mention

vague-price
no price mention and come down, highest,
lowest, go higher/lower, too high/low

counter new price detected
inform previous coarse dialogue act was inquire

DEALORNODEAL Rules

Intent Matching Patterns

propose items and respective counts are detected

Table 5: Rules for intent detection in the parser.

p✓(zt | z<t, c) by maximizing the likelihood of
the training data.

We use a standard sequence-to-sequence model
with attention. Each coarse dialogue act is repre-
sented as a sequence of tokens, i.e. an intent fol-
lowed by each of its arguments, e.g., “o�er 150”.
During the agent’s listening turn, an LSTM en-
codes the received coarse dialogue act; during its
speaking turn, another LSTM decodes the tokens
in the coarse dialogue act. The hidden states are
carried over the entire dialogue to provide full his-
tory.

The vocabulary of coarse dialogue acts is much
smaller than the word vocabulary. For example,
our implementation includes fewer than 10 intents
and argument values are normalized and binned
(see Section 4.2).

Reinforcement learning. Supervised learning
aims to mimic the average human behavior, but
sometimes we want to directly optimize for a par-
ticular dialogue goal. In reinforcement learning,
we define a reward R(z1:T ) on the entire sequence
of coarse dialogue acts. Specifically, we experi-
ment with three reward functions:

• Utility is the objective of a self-interested
agent. For CRAIGSLISTBARGAIN, we set the
utility function to be a linear function of the
final price, such that the buyer has a utility of

1 at their target price, the seller has a utility
of 1 at the listing price, and both agents have
a utility of zero at the midpoint of the list-
ing price and the buyer’s target price, making
it a zero-sum game. For DEALORNODEAL,
utility is the total value of objects given to the
agent.

• Fairness aims to achieve equal outcome for
both agents, i.e. the difference between two
agents’ utilities.

• Length is the number of utterances in a dia-
logue, thus encourages agents to chat as long
as possible.

The reward is �1 if no agreement is reached.
We use policy gradient (Williams, 1992) for op-

timization. Given a sampled trajectory z1:T and
the final reward r, let ai be the i-th generated to-
ken (i.e. “action” taken by the policy) along the
trajectory. We update the parameters ✓ by

✓  ✓ � ⌘
X

i

r✓ log p✓(ai | a<i, c)(r � b) (1)

where ⌘ is the learning rate and b is a baseline es-
timated by the average return so far for variance
reduction.

Hybrid policy. Given the interpretable coarse
dialogue acts, a simple option is to write a rule-
based manager with domain knowledge, e.g., if
zt�1 = greet, then zt = greet. We combine
these rules with a learned manager to fine-tune the
dialogue policy. Specifically, the dialogue man-
ager predicts the intent from a learned sequence
model but fills in the arguments (e.g., price) using
rules. For example, given a predicted intent pro-
pose, we can set the price to be the average of the
buyer’s and seller’s current proposals (a split-the-
difference strategy).

3.5 Generator
We use retrieval-based generation to condition on
both the coarse dialogue act and the dialogue his-
tory. Each candidate in our database for retrieval is
a tuple of an utterance xt and its dialogue context
xt�1, represented by both templates and coarse di-
alogue acts. i.e. (d(xt�1), zt�1, d(xt), zt), where
d is the template extractor. Specifically, given a
parsed training set, each utterance is converted to a
template by delexicalizing arguments in its coarse
dialogue act. For example, “How about $150?”
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becomes “How about [price]?”, where [price] is a
placeholder to be filled in at generation time.

At test time, given zt from the dialogue man-
ager, the generator first retrieves candidates with
the same intent as zt and zt�1. Next, candi-
dates are ranked by similarity between their con-
text templates and the current dialogue context.
Specifically, we represent the context d(xt�1) as
a TF-IDF weighted bag-of-words vector and sim-
ilarity is computed by a dot product of two con-
text vectors. To encourage diversity, the generator
samples an utterance from the top K candidates
according to the distribution given by a trigram
language model estimated on the training data.

4 Experiments

4.1 Tasks
We test our approach on two negotiation tasks.
CRAIGSLISTBARGAIN (Section 2) asks a buyer
and a seller to negotiate the price of an item
for sale given its Craigslist post. DEALORN-
ODEAL (Lewis et al., 2017) asks two agents to
divide a set of items given their private utility func-
tions.

4.2 Models
We compare two families of models: end-to-end
neural models that directly map the input dialogue
context to a sequence of output words, and our
modular models that use coarse dialogue acts as
the intermediate representation.

We start by training the word-based model
and the act-based model with supervised learning
(SL).

• SL(word): a sequence-to-sequence model
with attention over previous utterances and
the scenario, both embedded as a continuous
Bag-of-Words;

• SL(act): our model described in Section 3
with a rule-based parser, a learned neural di-
alogue manager, and a retrieval-based gener-
ator.

To handle the large range of argument values
(prices) in CRAIGSLISTBARGAIN for act-based
models, we normalize the prices such that an
agent’s target price is 1 and the bottomline price
is 0. For the buyer, the target is given and the
bottomline is the listing price. For the seller, the
target is the listing price and the bottomline is set
to 0.7x of the listing price. The prices are then

Model z Parser Manager Generator

SL/RL(word) vector learned learned generative
SL/RL(act) logical rules learned retrieval
SL(act)+rule logical rules hybrid retrieval

Table 6: Comparison of different implementation
of the core modules in our framework.

binned according to their approximate values with
two digits after the decimal point.

Next, given the pretrained SL models, we
fine-tune them with the three reward functions
(Section 3.4), producing RLutility, RLfairness, and
RLlength.

In addition, we compare with the hybrid model,
SL(act)+rule. It predicts the next intent using
a trigram language model learned over intent se-
quences in the training data, and fills in the argu-
ments with hand-coded rules. For CRAIGSLIST-
BARGAIN, the only argument is the price. The
agent always splits the difference when making
counter proposals, rejects an offer if it is worse
than its bottomline and accepts otherwise. For
DEALORNODEAL, the agent maintains an esti-
mate of the partner’s private utility function. In
case of disagreement, it gives up the item with the
lowest value of (own utility � partner utility) and
takes an item of estimated zero utility to the part-
ner. The agent agrees whenever a proposal is bet-
ter than the last one or its predefined target. A
high-level comparison of all models is shown in
Table 6.

4.3 Training Details

CRAIGSLISTBARGAIN For SL(word), we use
a sequence-to-sequence model with attention over
3 previous utterances and the negotiation sce-
nario (embedded as a continuous Bag-of-Words).
For both SL(word) and SL(act), we use 300-
dimensional word vectors initialized by pretrained
GloVe word vectors (Pennington et al., 2014), and
a two-layer LSTM with 300 hidden units for both
the encoder and the decoder. Parameters are ini-
tialized by sampling from a uniform distribution
between -0.1 and 0.1. For optimization, we use
AdaGrad (Duchi et al., 2010) with a learning rate
of 0.01 and a mini-batch size of 128. We train the
model for 20 epochs and choose the model with
the lowest validation loss.

For RL, we first fit a partner model using su-
pervised learning (e.g., SL(word)), then run RL
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CRAIGSLISTBARGAIN DEALORNODEAL
Hu Ut Fa Ag Len Hu Ut Fa Ag Len

Human 4.3 -0.07 -0.14 0.91 10.2 4.6 5.5 vs. 5.3 -0.2 0.78 5.8

SL(word) 3.0 -0.32 -0.64 0.75 7.8 3.8 4.7 vs. 5.0 -0.3 0.70 5.0
SL(act) 3.3 0.06 -0.12 0.84 14.0 3.2 5.2 vs. 5.0 -0.2 0.67 7.0
SL(act)+rule 3.6 0.23 -0.46 0.75 11.4 4.2 5.2 vs. 5.2 0 0.72 8.0

RLutility(word) 1.7 1.00 -2.00 0.31 2.5 1.7 2.9 vs. 1.8 -1.1 0.33 10.4
RLutility(act) 2.8 1.00 -2.00 0.22 6.7 2.8 3.3 vs. 2.3 -1.0 0.38 9.5

RLfairness(word) 1.8 -0.62 -1.24 0.75 9.4 3.2 5.7 vs. 5.9 -0.2 0.79 4.0
RLfairness(act) 3.0 -0.28 -0.56 0.68 7.1 3.5 4.2 vs. 5.4 -1.2 0.77 7.6

RLlength(word) 1.9 -0.79 -1.58 0.85 13.8 1.6 3.4 vs. 2.9 -0.5 0.48 9.2
RLlength(act) 3.0 0.89 -1.78 0.40 11.8 2.5 2.5 vs. 3.1 -0.6 0.54 11.0

Table 7: Human evaluation results on human-likeness (Hu), agreement rate (Ag), and RL objectives,
including agent utility (Ut), deal fairness (Fa), and dialogue length (Len). Results are grouped by the
optimization objective. For each group of RL models, the column of the optimization objective is high-
lighted. For human-likeness, scores that are better than others in the same group with statistical signifi-
cance (p < 0.05 given by paired t-tests) are in bold. Overall, with SL, all models are human-like, how-
ever, act-based models better matches human statistics across all metrics; with RL, word-based models
becomes degenerate, whereas act-based models optimize the reward while maintaining human-likeness.

against it. One agent is updated by policy gradi-
ent and the partner model is fixed during training.
We use a learning rate of 0.001 and train for 5000
episodes (dialogues). The model with the highest
reward on the validation set is chosen.

DEALORNODEAL For act-based models, we
use the same parameterization as CRAIGSLIST-
BARGAIN. For word-based models, we use the
implementation from Lewis et al. (2017).2 Note
that for fair comparison, we did not apply SL in-
terleaving during RL training and rollouts during
inference.

4.4 Human Evaluation
We evaluated each system on two metrics: task-
specific scores (e.g., utility) and human-likeness.
The scores tell us how well the system is play-
ing the game, and human-likeness tells us whether
the bot deviates from human behavior, presumably
due to over-optimization.

We put up all 9 systems online and hired work-
ers from AMT to chat with the bots. Each worker
was randomly paired with one of the bots or an-
other worker, so as to compare the bots with hu-
man performance under the same conditions. At

2https://github.com/facebookresearch/
end-to-end-negotiator

the end of a chat, workers were asked the question
“Do you think your partner demonstrated reason-
able human behavior?”. They provided answers
on a Likert scale from 1 (not at all) to 5 (defi-
nitely). Table 7 shows the human evaluation re-
sults on CRAIGSLISTBARGAIN and DEALORN-
ODEAL respectively. We also show example
human-bot dialogues in Table 8 and Appendix C.

SL(act) learns more human-like behavior. We
first compare performance of SL models over
words and coarse dialogue acts. Both SL(word)
and SL(act) achieved similar scores on human-
likeness (no statistically significant difference).
However, SL(word) better matched human statis-
tics such as dialogue length and utility. For in-
stance, SL(word) tended to produce short, generic
utterances as shown in Table 8(a); they also agreed
on a deal more quickly because utterances such
as “deal” and “I can do that” are frequent in
negotiation dialogues. This behavior is reflected
by the shorter dialogue length and lower utility of
SL(word) models.

RL(word) leads to degeneracy. On
CRAIGSLISTBARGAIN, all RL(word) mod-
els clearly have low scores on human-likeness
in Table 7. They merely learned to repeat
a few sentences: The three most frequent
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Title: Fitbit Flex + 2 Bands Activity Tracker Listing Price: $60
Description: Hi, I’m selling a Fitbit Activity Tracker. Track your day including steps, distance, calories burned, active minutes.
Track your night including hours slept, times to woken up, sleep quality, Wake with a silent vibrating alarm. You can set a ...

(a) A: SL(word) (Buyer) B: Human (Seller) (b) A: SL(act) (Buyer) B: Human (Seller)

A: hi, i ’m interested in your fitbit.
B: Great. It really is a good deal.
A: great.
B: Do you have any questions about it?
A: i ’m interested in your fitbit. i ’m not sure i ’m not sure
i ’m interested.
B: It has so many functions that are great. I particularly like
the sleep tracking. Plus it is waterproof. How about I will
deliver it to you and you give me 60 dollars?
A: i can do $52 if you come pick it up.
B: Well I am selling it. So I will deliver it for 60. Deal?
A: yes, i can do that.
B: OFFER($60) A: ACCEPT

A: how we doing today
B: Hi!
A: yes, i really need one, what color is it?
B: It has a black band and a white band.
A: i see, so you bought an extra one by mistake?
B: No, it comes with 2 bands
A: i would like to make you a offer of 36
B: Ooooh....yeah, I can’t. Sorry. It’s wireless, has Bluetooth,
extra bands, and is water resistant. I could do $50.
A: 49?
B: You know..I’d do $49.
A: thank you so much!
B: OFFER($49) A: ACCEPT

(c) A: RLlength(word) (Buyer) B: Human (Seller) (d) A: RLlength(act) (Buyer) B: Human (Seller)

A: hello
B: Hi how are you?
A: i am.
B: you are interested in the fitbit flex and the 2 trackers?
A: it’s in good condition condition.
B: yes
A: ok, that sounds good.
B: I am selling it at $60?
A: it’s in good condition condition.
B: yes
A: ok, that sounds good.
B: $60
A: i can go that low.

A: hi, i saw your ad about the item.
B: Okay great, i’m selling a Fitbit Flex plus 2 bands
A: how old is the item?
B: I’ve only had it for about a few months.
A: but it does work correct?
B: yes it does work, it’s in great condition.
A: excellent. would you consider taking 36 for it?
B: I’m selling for $60 but $36 would be way too low.
A: how about 36?
B: no I cannot accept $36, I’m sorry
A: i’m sorry. would you accept 36?
B: I am not going lower than $50
A: OFFER($36) A: REJECT

Table 8: Example human-bot chats on CRAIGSLISTBARGAIN, where bot utterances are in bold.
SL(word) produced generic responses, while SL(act) is more human-like. RLlength(word) devolved into
degenerate behavior repeating itself while RLlength(act) maintained coherency. Only the first half of the
item description and the RLlength(word) chat are shown due to space limit.

sentences of RLutility(word), RLfairness(word),
and RLlength(word) account for 81.6%, 100%
and 100% of all utterances. For example,
RLutility(word) almost always opened with “i
can pick it up”, then offer its target price.
RLlength(word) repeated generic sentences un-
til the partner submitted a price. While they
scored high on the reward being optimized, the
conversations are unnatural.

On DEALORNODEAL, we have observed sim-
ilar patterns. A general strategy learned by
RL(word) was to pick an offer depending on its
objective, then repeat the same utterance over
and over again (e.g., “i need the ball.”), result-
ing in low human-likeness scores. One excep-
tion is RLfairness(word), since most of its offers
were reasonable and agreed on immediately (it has
the shorted dialogue length), the conversations are
natural.

RL(act) optimizes different negotiation goals
while being human-like. On both tasks,
RL(act) models optimized their rewards while
maintaining reasonable human-likeness scores.
We now show that different models demon-
strated different negotiation behavior. Two main
strategies learned by RLlength(act) were to ask
questions and to postpone offer submission. On
CRAIGSLISTBARGAIN, when acting as a buyer,
42.4% of its utterances were questions, compared
to 30.2% for other models. On both tasks, it
tended to wait for the partner to submit an offer
(even after a deal was agreed on), compared to
RLmargin(act) which almost always submitted
offers first. For RLfairness(act), it aimed to agree
on a price in the middle of the listing price and the
buyer’s target price for CRAIGSLISTBARGAIN.
Since the buyer’s target was hidden, when the
agent was the seller, it tended to wait for the buyer
to propose prices first. Similary, on DEALORN-
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ODEAL it waited to hear the parter’s offer and
sometimes changed its offer afterwards, whereas
the other models often insisted on one offer.

On both tasks, RLutility(act) learned to insist on
its offer and refuse to budge. This ended up frus-
trating many people, which is why it has a low
agreement rate. The problem is that our human
model is simply a SL model trained on human-
human dialogues, which may not accurately re-
flects real human behavior during human-bot chat.
For example, the SL model often agrees after a few
turns of insistence on a proposal, whereas humans
get annoyed if the partner is not willing to make
compromises at all. However, by injecting domain
knowledge to SL(act)+rule, e.g., making a small
compromise is better than stubbornly being fixed
on a single price, we were able to achieve high
utility and human-likeness on both CRAIGSLIST-
BARGAIN and DEALORNODEAL.

5 Related Work and Discussion

Recent work has explored the space between
goal-oriented dialogue and open-domain chit-chat
through collaborative or competitive language
games, such as collecting cards in a maze (Potts,
2012), finding a mutual friend (He et al., 2017), or
splitting a set of items (DeVault et al., 2015; Lewis
et al., 2017). Our CRAIGSLISTBARGAIN dialogue
falls in this category, but exhibits richer and more
diverse language than prior datasets. Our dataset
calls for systems that can handle both strategic
decision-making and open-ended text generation.

Traditional goal-oriented dialogue systems
build a pipeline of modules (Young et al., 2013;
Williams et al., 2016). Due to the laborious dia-
logue state design and annotation, recent work has
been exploring ways to replace these modules with
neural networks and end-to-end training while still
having a logical backbone (Wen et al., 2017a; Bor-
des and Weston, 2017; He et al., 2017). Our
work is closely related to the Hybrid Code Net-
work (Williams et al., 2017), but the key difference
is that Williams et al. (2017) uses a neural dialogue
state, whereas we keep a structured, interpretable
dialogue state which allows for stronger top-down
control. Another line of work tackles this prob-
lem by introducing latent stochastic variables to
model the dialogue state (Wen et al., 2017b; Zhao
et al., 2017; Cao and Clark, 2017). While the la-
tent discrete variable allows for post-hoc discov-
ery of dialogue acts and increased utterance diver-

sity, it does not provide controllability over the di-
alogue strategy.

Our work is also related to a large body of liter-
ature on dialogue policies in negotiation (English
and Heeman, 2005; Efstathiou and Lemon, 2014;
Hiraoka et al., 2015; Cao et al., 2018). These work
mostly focus on learning good negotiation policies
in a domain-specific action space, whereas our
model operates in an open-ended space of natural
language. An interesting future direction is to con-
nect with game theory (Brams, 2003) for complex
multi-issue bargaining. Another direction is learn-
ing to generate persuasive utterances, e.g., through
framing (Takuya et al., 2014) or accounting for the
social and cultural context (Elnaz et al., 2012).

To conclude, we have introduced CRAIGSLIST-
BARGAIN, a rich dataset of human-human nego-
tiation dialogues. We have also presented a mod-
ular approach based on coarse dialogue acts that
models a rough strategic backbone as well allow-
ing for open-ended generation. We hope this work
will spur more research in hybrid approaches that
can work in open-ended, goal-oriented settings.
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Abstract

Cloze tests are widely adopted in language
exams to evaluate students’ language profi-
ciency. In this paper, we propose the first
large-scale human-created cloze test dataset
CLOTH 1 2, containing questions used in
middle-school and high-school language ex-
ams. With missing blanks carefully created
by teachers and candidate choices purposely
designed to be nuanced, CLOTH requires a
deeper language understanding and a wider
attention span than previously automatically-
generated cloze datasets. We test the perfor-
mance of dedicatedly designed baseline mod-
els including a language model trained on the
One Billion Word Corpus and show humans
outperform them by a significant margin. We
investigate the source of the performance gap,
trace model deficiencies to some distinct prop-
erties of CLOTH, and identify the limited abil-
ity of comprehending the long-term context to
be the key bottleneck.

1 Introduction

Being a classic language exercise, the cloze
test (Taylor, 1953) is an accurate assessment of
language proficiency (Fotos, 1991; Jonz, 1991;
Tremblay, 2011) and has been widely employed
in language examinations. Under a typical set-
ting, a cloze test requires examinees to fill in miss-
ing words (or sentences) to best fit the surround-
ing context. To facilitate natural language under-
standing, automatically-generated cloze datasets
are introduced to measure the ability of machines
in reading comprehension (Hermann et al., 2015;
Hill et al., 2016; Onishi et al., 2016). In these
datasets, each cloze question typically consists of

⇤ Equal contribution.
1CLOTH (CLOze test by TeacHers) is available at

http://www.cs.cmu.edu/˜glai1/data/cloth/.
2The leaderboard is available at http://www.

qizhexie.com/data/CLOTH_leaderboard.html

a context paragraph and a question sentence. By
randomly replacing a particular word in the ques-
tion sentence with a blank symbol, a single test
case is created. For instance, CNN/Daily Mail
datasets (Hermann et al., 2015) use news articles
as contexts and summary bullet points as the ques-
tion sentence. Only named entities are removed
when creating the blanks. Similarly, in Children’s
Books test (CBT) (Hill et al., 2016), cloze ques-
tions are obtained by removing a word in the last
sentence of every consecutive 21 sentences, with
the first 20 sentences being the context. Different
from CNN/Daily Mail datasets, CBT also provides
each question with a candidate answer set, con-
sisting of randomly sampled words with the same
part-of-speech tag from the context as that of the
correct answer.

Thanks to the automatic generation process,
these datasets can be very large in size, leading
to significant research progresses. However, com-
pared to how humans would create cloze ques-
tions and evaluate reading comprehension ability,
the automatic generation process bears some in-
evitable issues. Firstly, blanks are chosen uni-
formly without considering which aspect of the
language phenomenon that questions will test.
Hence, quite a portion of automatically-generated
questions can be purposeless or even trivial to an-
swer. Another issue involves the ambiguity of
answers. Given a context and a sentence with a
blank, there can be multiple words that fit almost
equally well into the blank. A possible solution is
to include a candidate option set, as done by CBT,
to get rid of the ambiguity. However, automati-
cally generating the candidate option set can be
problematic since it cannot guarantee the ambigu-
ity is removed. More importantly, automatically-
generated candidates can be totally irrelevant or
simply grammatically unsuitable for the blank, re-
sulting in again purposeless or trivial questions.
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Probably due to these unsatisfactory issues, neu-
ral models have achieved comparable results to
the human-level performance within a very short
time (Chen et al., 2016; Dhingra et al., 2016; Seo
et al., 2016). While there have been works try-
ing to incorporate human design into cloze ques-
tion generation (Zweig and Burges, 2011; Paperno
et al., 2016), due to the expensive labeling process,
the MSR Sentence Completion Challenge created
by this effort has 1, 040 questions and the LAM-
BADA (Paperno et al., 2016) dataset has 10, 022
questions, limiting the possibility of developing
powerful neural models on it. As a result of
the small size, human-created questions are only
used to compose development sets and test sets.
Motivated by the aforementioned drawbacks, we
propose CLOTH, a large-scale cloze test dataset
collected from English exams. Questions in the
dataset are designed by middle-school and high-
school teachers to prepare Chinese students for
entrance exams. To design a cloze test, teachers
firstly determine the words that can test students’
knowledge of vocabulary, reasoning or grammar;
then replace those words with blanks and provide
other three candidate options for each blank. If a
question does not specifically test grammar usage,
all of the candidate options would complete the
sentence with correct grammar, leading to highly
nuanced questions. As a result, human-created
questions are usually harder and are a better as-
sessment of language proficiency. A general cloze
test evaluates several aspects of language profi-
ciency including vocabulary, reasoning and gram-
mar, which are key components of comprehending
natural language.

To verify if human-created cloze questions are
difficult for current models, we train and evaluate
the state-of-the-art language model (LM) and ma-
chine comprehension models on this dataset, in-
cluding a language model trained on the One Bil-
lion Word Corpus. We find that the state-of-the-
art model lags behind human performance even if
the model is trained on a large external corpus.
We analyze where the model fails compared to
humans who perform well. After conducting er-
ror analysis, we assume the performance gap re-
sults from the model’s inability to use a long-term
context. To examine this assumption, we eval-
uate human-level performance when the human
subjects are only allowed to see one sentence as
the context. Our assumption is confirmed by the

matched performances of the models and human
when given only one sentence. In addition, we
demonstrate that human-created data is more dif-
ficult than automatically-generated data. Specifi-
cally, it is much easier for the same model to per-
form well on automatically-generated data.

We hope that CLOTH provides a valuable
testbed for both the language modeling commu-
nity and the machine comprehension community.
Specifically, the language modeling community
can use CLOTH to evaluate their models’ abil-
ities in modeling long contexts, while the ma-
chine comprehension community can use CLOTH
to test machine’s understanding of language phe-
nomena.

2 Related Work

Large-scale automatically-generated cloze
tests (Hermann et al., 2015; Hill et al., 2016;
Onishi et al., 2016) lead to significant research ad-
vancements. However, generated questions do not
consider language phenomenon to be tested and
are relatively easy to solve. Recently proposed
reading comprehension datasets are all labeled by
humans to ensure a high quality (Rajpurkar et al.,
2016; Joshi et al., 2017; Trischler et al., 2016;
Nguyen et al., 2016).

Perhaps the closet work to CLOTH is the LAM-
BADA dataset (Paperno et al., 2016). LAM-
BADA also targets at finding challenging words to
test LM’s ability in comprehending a longer con-
text. However, LAMBADA does not provide a
candidate set for each question, which can cause
ambiguities when multiple words can fit in. Fur-
thermore, only test set and development set are la-
beled manually. The provided training set is the
unlabeled Book Corpus (Zhu et al., 2015). Such
unlabeled data do not emphasize long-dependency
questions and have a mismatched distribution with
the test set, as showed in Section 5. Further, the
Book Corpus is too large to allow rapid algorithm
development for researchers who do not have ac-
cess to a huge amount of computational power.

Aiming to evaluate machines under the same
conditions that the humans are evaluated, there is
a growing interest in obtaining data from exam-
inations. NTCIR QA Lab (Shibuki et al., 2014)
contains a set of real-world college entrance exam
questions. The Entrance Exams task at CLEF QA
Track (Peñas et al., 2014; Rodrigo et al., 2015)
evaluates machine’s reading comprehension abil-
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ity. The AI2 Reasoning Challenge (Clark et al.,
2018; Schoenick et al., 2017) contains approx-
imately eight thousand scientific questions used
in middle school. Lai et al. (2017) proposes the
first large-scale machine comprehension dataset
obtained from exams. They show that questions
designed by teachers have a significantly larger
proportion of reasoning questions. Our dataset fo-
cuses on evaluating both language proficiency and
reasoning abilities.

3 CLOTH Dataset

In this section, we introduce the CLOTH dataset
that is collected from English examinations, and
study its abilities of assessment.

3.1 Data Collection and Statistics
We collect the raw data from three free and pub-
lic websites in China that gather exams created
by English teachers to prepare students for col-
lege/high school entrance exams3. Before clean-
ing, there are 20, 605 passages and 332, 755 ques-
tions. We perform the following processes to en-
sure the validity of data: Firstly, we remove ques-
tions with an inconsistent format such as questions
with more than four options. Then we filter all
questions whose validity relies on external infor-
mation such as pictures or tables. Further, we find
that half of the total passages are duplicates and we
delete those passages. Lastly, on one of the web-
sites, the answers are stored as images. We use two
OCR software programs4 to extract the answers
from images. We discard the questions when re-
sults from the two software are different. After
the cleaning process, we obtain a clean dataset of
7, 131 passages and 99, 433 questions.

Since high school questions are more diffi-
cult than middle school questions, we divide the
datasets into CLOTH-M and CLOTH-H, which
stand for the middle school part and the high
school part. We split 11% of the data for both
the test set and the development set. The detailed
statistics of the whole dataset and two subsets are
presented in Table 1. Note that the questions were
created to test non-native speakers, hence the vo-
cabulary size is not very large.

3 The three websites include http://www.21cnjy.com/;
http://5utk.ks5u.com/; http://zujuan.xkw.com/. We checked
that CLOTH does not contain sentence completion example
questions from GRE, SAT and PSAT.

4tesseract: https://github.com/tesseract-ocr; ABBYY
FineReader: https://www.abbyy.com/en-us/finereader/

3.2 Question Type Analysis
In order to evaluate students’ mastery of a lan-
guage, teachers usually design tests in a way that
questions cover different aspects of a language.
Specifically, they first identify words in the pas-
sage that can examine students’ knowledge in vo-
cabulary, logic, or grammar. Then, they replace
the words with blanks and prepare three incorrect
but nuanced candidate options to make the test
non-trivial. A sample passage is presented in Ta-
ble 2.

To understand the abilities of assessment on this
dataset, we divide questions into several types and
label the proportion of each type. According to
English teachers who regularly create cloze test
questions for English exams in China, there are
largely three types: grammar, vocabulary and rea-
soning. Grammar questions are easily differen-
tiated from other two categories. However, the
teachers themselves cannot specify a clear distinc-
tion between reasoning questions and vocabulary
questions since all questions require comprehend-
ing the words within the context and conducting
some level of reasoning by recognizing incom-
plete information or conceptual overlap.

Hence, we divided the questions except gram-
mar questions based on the difficulty level
for a machine to answer the question, follow-
ing works on analyzing machine comprehension
datasets (Chen et al., 2016; Trischler et al., 2016).
In particular, we divide them in terms of their de-
pendency ranges, since questions that only involve
a single sentence are easier to answer than ques-
tions involving evidence distributed in multiple
sentences. Further, we divided questions involving
long-term dependency into matching/paraphrasing
questions and reasoning questions since matching
questions are easier. The four types include:

• Grammar: The question is about grammar us-
age, involving tense, preposition usage, ac-
tive/passive voices, subjunctive mood and so on.

• Short-term-reasoning: The question is about
content words and can be answered based on
the information within the same sentence. Note
that the content words can evaluate knowledge
of both vocabulary and reasoning.

• Matching/paraphrasing: The question is an-
swered by copying/paraphrasing a word in the
context.
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Dataset CLOTH-M CLOTH-H CLOTH (Total)
Train Dev Test Train Dev Test Train Dev Test

# passages 2,341 355 335 3,172 450 478 5,513 805 813
# questions 22,056 3,273 3,198 54,794 7,794 8,318 76,850 11,067 11,516
Vocab. size 15,096 32,212 37,235

Avg. # sentence 16.26 18.92 17.79
Avg. # words 242.88 365.1 313.16

Table 1: The statistics of the training, development and test sets of CLOTH-M (middle school questions),
CLOTH-H (high school questions) and CLOTH

• Long-term-reasoning: The answer must be
inferred from synthesizing information dis-
tributed across multiple sentences.

We sample 100 passages in the high school cat-
egory and the middle school category respectively
with totally 3, 000 questions. The types of these
questions are labeled on Amazon Turk. We pay
$1 and $0.5 for high school passages and middle
school passages respectively. We refer readers to
Appendix A.1 for details of the labeling processes
and the labeled sample passage.

The proportion of different questions is shown
in Table 3. The majority of questions are short-
term-reasoning questions while approximately
22.4% of the data needs long-term information,
in which the long-term-reasoning questions con-
stitute a large proportion.

4 Exploring Models’ Limits

In this section, we investigate if human-created
cloze test is a challenging problem for state-of-
the-art models. We find that LM trained on the
One Billion Word Corpus can achieve a remark-
able score but cannot solve the cloze test. After
conducting an error analysis, we hypothesize that
the model is not able to deal with long-term de-
pendencies. We verify the hypothesis by compar-
ing the model’s performance with the human per-
formance when the information humans obtain is
limited to one sentence.

4.1 Human and Model Performance
LSTM To test the performance of RNN-based
supervised models, we train a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to
predict the missing word given the context with
only labeled data. The implementation details are
in Appendix A.3.

Attentive Readers To enable the model to
gather information from a longer context, we aug-

ment the supervised LSTM model with the at-
tention mechanism (Bahdanau et al., 2014), so
that the representation at the blank is used as a
query to find the relevant context in the docu-
ment and a blank-specific representation of the
document is used to score each candidate an-
swer. Specifically, we adapt the Stanford Atten-
tive Reader (Chen et al., 2016) and the position-
aware attention model (Zhang et al., 2017) to the
cloze test problem. With the position-aware atten-
tion model, the attention scores are based on both
the context match and the distance from a context
to the blank. Both attention models are trained
only with human-created blanks just as the LSTM
model.

LM In cloze test, the context on both sides may
be enough to determine the correct answer. Sup-
pose xi is the missing word and x1, · · · , xi�1,
xi+1, · · · , xn are the context, we choose xi that
maximizes the joint probability p(x1, · · · , xn),
which essentially maximizes the conditional
likelihood p(xi | x1, · · · , xi�1, xi+1, · · · , xn).
Therefore, LM can be naturally adapted to cloze
test.

In essence, LM treats each word as a possible
blank and learns to predict it. As a result, it re-
ceives more supervision than the LSTM trained
on human-labeled questions. Besides training a
neural LM on our dataset, interested in whether
the state-of-the-art LM can solve cloze test, we
also test the LM trained on the One Billion Word
Benchmark (Chelba et al., 2013) (referred as 1B-
LM) that achieves a perplexity of 30.0 (Jozefow-
icz et al., 2016)5. To make the evaluation time
tractable, we limit the context length to one sen-
tence or three sentences. Note that the One Billion
Word Corpus does not overlap with the CLOTH

5The pre-trained model is obtained from
https://github.com/tensorflow/models/tree/master/research/
lm 1b
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Passage: Nancy had just got a job as a secretary in a com-
pany. Monday was the first day she went to work, so she
was very 1 and arrived early. She 2 the door open and
found nobody there. ”I am the 3 to arrive.” She thought and
came to her desk. She was surprised to find a bunch of 4
on it. They were fresh. She 5 them and they were sweet.
She looked around for a 6 to put them in. ”Somebody has
sent me flowers the very first day!” she thought 7 . ” But
who could it be?” she began to 8 . The day passed quickly
and Nancy did everything with 9 interest. For the follow-
ing days of the 10 , the first thing Nancy did was to change
water for the followers and then set about her work.
Then came another Monday. 11 she came near her desk
she was overjoyed to see a(n) 12 bunch of flowers there.
She quickly put them in the vase, 13 the old ones. The
same thing happened again the next Monday. Nancy began
to think of ways to find out the 14 . On Tuesday afternoon,
she was sent to hand in a plan to the 15 . She waited for
his directives at his secretary’s 16 . She happened to see on
the desk a half-opened notebook, which 17 : ”In order to
keep the secretaries in high spirits, the company has decided
that every Monday morning a bunch of fresh flowers should
be put on each secretarys desk.” Later, she was told that their
general manager was a business management psychologist.
Questions:

1. A. depressed B. encouraged C. excited D. surprised
2. A. turned B. pushed C. knocked D. forced
3. A. last B. second C. third D. first
4. A. keys B. grapes C. flowers D. bananas
5. A. smelled B. ate C. took D. held
6. A. vase B. room C. glass D. bottle
7. A. angrily B. quietly C. strangely D. happily
8. A. seek B. wonder C. work D. ask
9. A. low B. little C. great D. general
10. A. month B. period C. year D. week
11. A. Unless B. When C. Since D. Before
12. A. old B. red C. blue D. new
13. A. covering B. demanding C. replacing D. forbidding
14. A. sender B. receiver C. secretary D. waiter
15. A. assistant B. colleague C. employee D. manager
16. A. notebook B. desk C. office D. house
17. A. said B. written C. printed D. signed

Table 2: A Sample passage from our dataset. Bold
faces highlight the correct answers. There is only
one best answer among four candidates, although
several candidates may seem correct.

corpus.

Human performance We measure the perfor-
mance of Amazon Mechanical Turkers on 3, 000
sampled questions when the whole passage is
given.

Results The comparison is shown in Table 4.
Both attentive readers achieve similar accuracy
to the LSTM. We hypothesize that the reason of
the attention model’s unsatisfactory performance
is that the evidence of a question cannot be simply
found by matching the context. Similarly, on read-
ing comprehension, though attention-based mod-
els (Wang et al., 2017; Seo et al., 2016; Dhingra

Short-term Long-term

Dataset GM STR MP LTR O

CLOTH 0.265 0.503 0.044 0.180 0.007
CLOTH-M 0.330 0.413 0.068 0.174 0.014
CLOTH-H 0.240 0.539 0.035 0.183 0.004

Table 3: The question type statistics of 3000 sam-
pled questions where GM, STR, MP, LTR and
O denotes grammar, short-term-reasoning, match-
ing/paraphrasing, long-term-reasoning and others
respectively.

Model CLOTH CLOTH-M CLOTH-H

LSTM 0.484 0.518 0.471
Stanford AR 0.487 0.529 0.471
Position-aware AR 0.485 0.523 0.471

LM 0.548 0.646 0.506
1B-LM (one sent.) 0.695 0.723 0.685
1B-LM (three sent.) 0.707 0.745 0.693

Human performance 0.859 0.897 0.845

Table 4: Models’ performance and human-level
performance on CLOTH. LSTM, Stanford Atten-
tive Reader and Attentive Reader with position-
aware attention shown in the top part only use
supervised data labelled by human. LM out-
performs LSTM since it receives more supervi-
sions in learning to predict each word. Training
on large external corpus further significantly en-
hances LM’s accuracy.

et al., 2016) have reached human performance on
the SQuAD dataset (Rajpurkar et al., 2016), their
performance is still not comparable to human per-
formance on datasets that focus more on reason-
ing where the evidence cannot be simply found by
a matching behavior (Lai et al., 2017; Xu et al.,
2017). Since the focus of this paper is to analyze
the proposed dataset, we leave the design of rea-
soning oriented attention models for future work.

The LM achieves much better performance than
LSTM. The gap is larger when the LM is trained
on the 1 Billion Word Corpus, indicating that
more training data results in a better generaliza-
tion. Specifically, the accuracy of 1B-LM is 0.695
when one sentence is used as the context. It in-
dicates that LM can learn sophisticated language
regularities when given sufficient data. The same
conclusion can also be drawn from the success of
a concurrent work ELMo which uses LM repre-
sentations as word vectors and achieves state-of-
the-art results on six language tasks (Peters et al.,
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2018). However, if we increase the context length
to three sentences, the accuracy of 1B-LM only
has a marginal improvement. In contrast, humans
outperform 1B-LM by a significant margin, which
demonstrates that deliberately designed questions
in CLOTH are not completely solved even for
state-of-the-art models.

4.2 Analyzing 1B-LM’s Strengths and
Weaknesses

In this section, we would like to understand why
1B-LM lags behind human performance. We find
that most of the errors involve long-term reason-
ing. Additionally, in a lot of cases, the depen-
dency is within the context of three sentences. We
show several errors made by the 1B-LM in Table
5. In the first example, the model does not know
that Nancy found nobody in the company means
that Nancy was the first one to arrive at the com-
pany. In the second and third example, the model
fails probably because of not recognizing “they”
referred to “flowers”. The dependency in the last
case is longer. It depends on the fact that Nancy
was alone in the company.

Based on the case study, we hypothesize that
the LM is not able to take long-term information
into account, although it achieves a surprisingly
good overall performance. Additionally, the 1B-
LM is trained on the sentence level, which might
also result in the inability to track paragraph level
information. However, to investigate the differ-
ences between training on sentence level and on
paragraph level, a prohibitive amount of computa-
tional resource is required to train a large model
on the 1 Billion Word Corpus.

On the other hand, a practical comparison is to
test the model’s performance on different types
of questions. We find that the model’s accu-
racy is 0.591 on long-term-reasoning questions of
CLOTH-H while it achieves 0.693 on short-term-
reasoning (a comprehensive type-specific perfor-
mance is available in Appendix A.3), which par-
tially confirms that long-term-reasoning is harder.
However, we could not completely rely on the per-
formance on specific questions types, partly due to
a large variance caused by the small sample size.
Another reason is that the reliability of question
type labels depends on whether turkers are careful
enough. For example, in the error analysis shown
in Table 5, a careless turker would label the second
example as short-term-reasoning without noticing

that the meaning of “they” relies on a long context.
To objectively verify if the LM’s strengths lie

in dealing with short-term information, we obtain
the ceiling performance of only utilizing short-
term information. Showing only one sentence as
the context, we ask the Turkers to select an option
based on their best guesses given the insufficient
information. By limiting the context span man-
ually, the ceiling performance with the access to
only a short context is estimated accurately.

As shown in Table 6, The performance of 1B-
LM using one sentence as the context can almost
match the human ceiling performance of only us-
ing short-term information. Hence we conclude
that the LM can almost perfectly solve all short-
term cloze questions. However, the performance
of LM is not improved significantly when a long-
term context is given, indicating that the perfor-
mance gap is due to the inability of long-term rea-
soning.

5 Comparing Human-created Data and
Automatically-generated Data

In this section, we demonstrate that human-
created data is a better testbed than automatically-
generated cloze test since it results in a larger gap
between model’s performance and human perfor-
mance.

A casual observation is that a cloze test can
be created by randomly deleting words and ran-
domly sampling candidate options. In fact, to
generate large-scale data, similar generation pro-
cesses have been introduced and widely used in
machine comprehension (Hermann et al., 2015;
Hill et al., 2016; Onishi et al., 2016). However,
research on cloze test design (Sachs et al., 1997)
shows that tests created by deliberately deleting
words are more reliable than tests created by ran-
domly or periodically deleting words. To design
accurate language proficiency assessment, teach-
ers usually deliberately select words in order to ex-
amine students’ proficiency in grammar, vocabu-
lary and reasoning. Moreover, in order to make the
question non-trivial, three incorrect options pro-
vided by teachers are usually grammatically cor-
rect and relevant to the context. For instance, in
the fourth problem of the sample passage shown
in Table 2, “grapes”, “flowers” and “bananas” all
fit the description of being fresh.

Hence we naturally hypothesize that human-
generated data has distinct characteristics when
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Context Options

She pushed the door open and found nobody there. ”I am the to arrive.” She A. last B. second C. third D. firstthought and came to her desk.

They were fresh. She them and they were sweet. She looked around for a vase A. smelled B. ate C. took D. heldto put them in.

She smelled them and they were sweet. She looked around for a to put them in. A. vase B. room C. glass D. bottle”Somebody has sent me flowers the very first day!”

”But who could it be?” she began to . The day passed quickly and Nancy did A. seek B. wonder C. work D. askeverything with great interest.

Table 5: Error analysis of 1-billion-language-model with three sentences as the context. The questions are
sampled from the sample passage shown in Table 2. The correct answer is in bold text. The incorrectly
selected options are in italics.

Model CLOTH CLOTH-M CLOTH-H

Short context 1B-LM 0.695 0.723 0.685
Human 0.713 0.771 0.691

Long context 1B-LM 0.707 0.745 0.693
Human 0.859 0.897 0.845

Table 6: Humans’ performance compared with 1-
billion-language-model. In the short context part,
both 1B-LM and humans only use information of
one sentence. In the long context part, humans
have the whole passage as the context, while 1B-
LM uses contexts of three sentences.

compared with automatically-generated data. To
verify this assumption, we compare the LSTM
model’s performance when given different propor-
tions of the two types of data. Specifically, to train
a model with ↵ percent of automatically-generated
data, we randomly replace a percent blanks with
blanks at random positions, while keeping the re-
maining 1 � ↵ percent questions the same. The
candidate options for the generated blanks are ran-
dom words sampled from the unigram distribu-
tion. We test models obtained with varying ↵ on
human-created data and automatically-generated
data respectively.

PPPPPPTest
↵%

0% 25% 50% 75% 100%

human-created 0.484 0.475 0.469 0.423 0.381
Generated 0.422 0.699 0.757 0.785 0.815

Table 7: The model’s performance when trained
on ↵ percent of automatically-generated data and
100 � ↵ percent of human-created data

From the comparison in Table 7, we have the
following observations: (1) human-created data
leads to a larger gap between model’s perfor-
mance and the ceiling/human performance. The
model’s performance and human’s performance

on the human-created data are 0.484 and 0.859 re-
spectively, as shown in Tab. 4, leading to a gap
of 0.376. In comparison, the performance gap on
the automatically-generated data is at most 0.185
since the model’s performance reaches an accu-
racy of 0.815 when fully trained on generated data.
(2) Although human-created data may provide
more information in distinguishing similar words,
the distributional mismatch between two types of
data makes it non-trivial to transfer the knowl-
edge gained from human-created data to tackle
automatically-generated data. Specifically, the
model’s performance on automatically-generated
data monotonically decreases when given a higher
ratio of human-created data.

6 Combining Human-created Data with
Automatically-generated Data

In Section 4.1, we show that LM is able to take
advantage of more supervision since it predicts
each word based on the context. At the same
time, we also show that human-created data and
the automatically-generated data are quite differ-
ent in Section 5. In this section, we propose a
model that takes advantage of both sources.

6.1 Representative-based Model

Specifically, for each question, regardless of be-
ing human-created or automatically-generated, we
can compute the negative log likelihood of the
correct answer as the loss function. Suppose JH

is the average negative log likelihood loss for
human-created questions and JR is the loss func-
tion on generated questions, we combine losses on
human-created questions and generated questions
by simply adding them together, i.e., JR + JH is
used as the final loss function. We will introduce
the definition of JR in the following paragraphs.

Although automatically-generated data has a
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large quantity and is valuable to the model
training, as shown in the previous Section,
automatically-generated questions are quite dif-
ferent from human-created questions. Ideally, a
large amount of human-created questions is more
desirable than a large amount of automatically-
generated questions. A possible avenue towards
having large-scale human-created data is to au-
tomatically pick out a large number of generated
questions which are representative of or similar to
human-created questions. In other words, we train
a network to predict whether a question is a gener-
ated question or a human-created question. A gen-
erated question is representative of human-created
questions if it has a high probability of being a
human-created question. Then we can give higher
weights to questions that resemble human-created
question.

We first introduce our method to obtain the rep-
resentativeness information. Let x denote the pas-
sage and z denote whether a word is selected as
a question by human, i.e., z is 1 if this word is
selected to be filled in the original passage or 0
otherwise. Suppose hi is the representation of i-th
word given by a bidirectional LSTM. The network
computes the probability pi of xi being a human-
created question as follows:

li = hT
i wxi ; pi = Sigmoid(li)

where li is the logit which will be used as in the
final model and wxi is the the word embedding.
We train the network to minimize the binary cross
entropy between p and ground-truth labels at each
token.

After obtaining the representativeness informa-
tion, we define the representativeness weighted
loss function as

JR =
X

i 62H

Softmaxi(
l1
↵

, · · · ,
ln
↵

)Ji

where Ji denotes the negative log likelihood loss
for the i�th question and let li be the output rep-
resentativeness of the i-th question and H is the
set of all human-generated questions and ↵ is the
temperature of the Softmax function. The model
degenerates into assigning a uniform weight to all
questions when the temperature is +1. We set ↵
to 2 based on the performance on the dev set. 6.

6The code is available at https://github.com/qizhex/Large-
scale-Cloze-Test-Dataset-Created-by-Teachers

Model Ex. CLOTH CLOTH-M CLOTH-H

Our model

No

0.583 0.673 0.549
LM 0.548 0.646 0.506
LSTM 0.484 0.518 0.471
Stanford AR 0.487 0.529 0.471

1B-LM Yes 0.707 0.745 0.693

Human 0.859 0.897 0.845

Table 8: Overall results on CLOTH. Ex. denotes
external data.

Model CLOTH CLOTH-M CLOTH-H

Our model 0.583 0.673 0.549
w.o. rep. 0.566 0.662 0.528
w.o. hum. 0.565 0.665 0.526
w.o. rep. or hum. 0.543 0.643 0.505

Table 9: Ablation study on using the representa-
tiveness information (denoted as rep.) and the
human-created data (denoted as hum.)

6.2 Results
We summarize performances of all models in Ta-
ble 8. Our representativeness model outperforms
all other models that do not use external data on
CLOTH, CLOTH-H and CLOTH-M.

6.3 Analysis
In this section, we verify the effectiveness of
the representativeness-based averaging by abla-
tion studies. When we remove the representative-
ness information by setting ↵ to infinity, the ac-
curacy drops from 0.583 to 0.566. When we fur-
ther remove the human-created data so that only
generated data is employed, the accuracy drops to
0.543, similar to the performance of LM. The re-
sults further confirm that it is beneficial to incor-
porate human-created questions into training.

A sample of the predicted representativeness is
shown in Figure 17. Clearly, words that are too ob-
vious have low scores, such as punctuation marks,
simple words “a” and “the”. In contrast, content
words whose semantics are directly related to the
context have a higher score, e.g., “same”, “simi-
lar”, “difference” have a high score when the dif-
ference between two objects is discussed and “se-
crets” has a high score since it is related to the sub-
sequent sentence “does not want to share with oth-
ers”. Our prediction model achieves an F1 score of
36.5 on the test set, which is understandable since

7The script to generate the Figure is obtained
at https://gist.github.com/ihsgnef/
f13c35cd46624c8f458a4d23589ac768
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Figure 1: Representativeness prediction for each word. Lighter color means less representative. The
words deleted by human as blanks are in bold text.

there are many plausible questions within a pas-
sage.

It has been shown that features such as morphol-
ogy information and readability are beneficial in
cloze test prediction (Skory and Eskenazi, 2010;
Correia et al., 2012, 2010; Kurtasov, 2013). We
leave investigating the advanced approaches of au-
tomatically designing cloze test to future work.

7 Conclusion and Discussion

In this paper, we propose a large-scale cloze test
dataset CLOTH that is designed by teachers. With
missing blanks and candidate options carefully
created by teachers to test different aspects of lan-
guage phenomena, CLOTH requires a deep lan-
guage understanding and better captures the com-
plexity of human language. We find that hu-
man outperforms 1B-LM by a significant mar-
gin. After detailed analysis, we find that the
performance gap is due to the model’s inability
to understanding a long context. We also show
that, compared to automatically-generated ques-
tions, human-created questions are more difficult
and lead to a larger margin between human per-
formance and the model’s performance.

Despite the excellent performance of 1B-LM
when compared with models trained only on
CLOTH, it is still important to investigate and cre-
ate more effective models and algorithms which
provide complementary advantages to having a
large amount of data. For rapid algorithm devel-
opments, we suggest training models only on the
training set of CLOTH and comparing with mod-
els that do not utilize external data.

We hope our dataset provides a valuable testbed
to the language modeling community and the
machine comprehension community. In partic-
ular, the language modeling community can use

CLOTH to evaluate their models’ abilities in mod-
eling a long context. In addition, the machine
comprehension community may also find CLOTH
useful in evaluating machine’s understanding of
language phenomena including vocabulary, rea-
soning and grammar, which are key components
of comprehending natural language.

In our future work, we would like to design al-
gorithms to better model a long context, to utilize
external knowledge, and to explore more effec-
tive semi-supervised learning approaches. Firstly,
we would like to investigate efficient ways of uti-
lizing external knowledge such as paraphrasing
and semantic concepts like prior works (Dong
et al., 2017; Dasigi et al., 2017). In comparison,
training on a large external dataset is actually a
time-consuming way of utilizing external knowl-
edge. Secondly, to use the generated questions
more effectively, the representative-based semi-
supervised approach might be improved by tech-
niques studied in active learning and hard exam-
ple mining (Settles, 2009; Shrivastava et al., 2016;
Chang et al., 2017).
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Figure 2: Model and human’s performance on questions with different types. Our model will be intro-
duced in Sec. 6.

A Appendix

A.1 Question Type Labeling
To label the questions, we provided the definition and an example for each question category to the
Amazon Mechanical Turkers. To ensure quality, we limited the workers to master Turkers who are expe-
rienced and maintain a high acceptance rate. However, we did not restrict the backgrounds of the Turkers
since master Turkers should have a reasonable amount of knowledge about English to conduct previous
tasks. In addition, the vocabulary used in CLOTH are usually not difficult since they are constructed to
test non-native speakers in middle school or high school. To get a concrete idea of the nature of question
types, please refer to examples shown in Tab. 10.

A.2 Type-specific Performance Analysis
We can also further verify the strengths and weaknesses of the 1B-LM by studying the performance of
models and human on different question categories. Note that the performance presented here may be
subject to a high variance due to the limited number of samples in each category. From the comparison
shown in Figure 2, we see that 1B-LM is indeed good at short-term questions. Specifically, when the
human only has access to the context of one sentence, 1B-LM is close to human’s performance on
almost all categories. Further, comparing LM and 1B-LM, we find that training on the large corpus leads
to improvements on all categories, showing that training on a large amount of data leads to a substantial
improvement in learning complex language regularities.

A.3 Implementation Details
We implement our models using PyTorch (Paszke et al., 2017). We train our model on all questions in
CLOTH and test it on CLOTH-M and CLOTH-H separately. For our final model, we use Adam (Kingma
and Ba, 2014) with the learning rate of 0.001. The hidden dimension is set to 650 and we initialize
the word embedding by 300-dimensional Glove word vector (Pennington et al., 2014). The temperature
↵ is set to 2. We tried to increase the dimensionality of the model but do not observe performance
improvement.

When we train the small LM on CLOTH, we largely follow the recommended hyperparameters in the
Pytorch LM example8. Specifically, we employ a 2-layer LSTM with hidden dimension as 1024. The
input embedding and output weight matrix are tied. We set the dropout rate to 0.5. The initial learning
rate is set to 10 and divided by 4 whenever the PPL stops improving on the dev set.

We predict the answer for each blank independently for all of the models mentioned in this paper,
since we do not observe significant performance improvements in our preliminary experiments when an
auto-regressive approach is employed, i.e., when we fill all previous blanks with predicted answers. We
hypothesize that, regardless of whether there exist inter-blank dependencies, since blanks are usually

8https://github.com/pytorch/examples/tree/master/word language model
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distributed far away from each other, LSTM is not able to capture such long dependencies. When testing
language models, we use the longest text spans that do not contain blanks.

Passage: Nancy had just got a job as a secretary in a company. Monday was the first day she went
to work, so she was very 1 and arrived early. She 2 the door open and found nobody there. ”I
am the 3 to arrive.” She thought and came to her desk. She was surprised to find a bunch of 4
on it. They were fresh. She 5 them and they were sweet. She looked around for a 6 to put
them in. ”Somebody has sent me flowers the very first day!” she thought 7 . ” But who could it
be?” she began to 8 . The day passed quickly and Nancy did everything with 9 interest. For
the following days of the 10 , the first thing Nancy did was to change water for the followers and
then set about her work.
Then came another Monday. 11 she came near her desk she was overjoyed to see a(n) 12 bunch
of flowers there. She quickly put them in the vase, 13 the old ones. The same thing happened
again the next Monday. Nancy began to think of ways to find out the 14 . On Tuesday afternoon,
she was sent to hand in a plan to the 15 . She waited for his directives at his secretary’s 16
. She happened to see on the desk a half-opened notebook, which 17 : ”In order to keep the
secretaries in high spirits, the company has decided that every Monday morning a bunch of fresh
flowers should be put on each secretarys desk.” Later, she was told that their general manager was
a business management psychologist.

Questions Question type
1. A. depressed B. encouraged C. excited D. surprised short-term reasoning
2. A. turned B. pushed C. knocked D. forced short-term reasoning
3. A. last B. second C. third D. first long-term reasoning
4. A. keys B. grapes C. flowers D. bananas matching
5. A. smelled B. ate C. took D. held short-term reasoning
6. A. vase B. room C. glass D. bottle long-term reasoning
7. A. angrily B. quietly C. strangely D. happily short-term reasoning
8. A. seek B. wonder C. work D. ask long-term reasoning
9. A. low B. little C. great D. general long-term reasoning
10. A. month B. period C. year D. week long-term reasoning
11. A. Unless B. When C. Since D. Before grammar
12. A. old B. red C. blue D. new long-term reasoning
13. A. covering B. demanding C. replacing D. forbidding long-term reasoning
14. A. sender B. receiver C. secretary D. waiter long-term reasoning
15. A. assistant B. colleague C. employee D. manager matching
16. A. notebook B. desk C. office D. house matching
17. A. said B. written C. printed D. signed grammar

Table 10: An Amazon Turker’s label for the sample passage
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Abstract

We propose a novel methodology to gener-
ate domain-specific large-scale question an-
swering (QA) datasets by re-purposing ex-
isting annotations for other NLP tasks. We
demonstrate an instance of this methodology
in generating a large-scale QA dataset for elec-
tronic medical records by leveraging existing
expert annotations on clinical notes for various
NLP tasks from the community shared i2b2
datasets§. The resulting corpus (emrQA) has
1 million questions-logical form and 400,000+
question-answer evidence pairs. We character-
ize the dataset and explore its learning poten-
tial by training baseline models for question to
logical form and question to answer mapping.

1 Introduction

Automatic question answering (QA) has made
big strides with several open-domain and machine
comprehension systems built using large-scale an-
notated datasets (Voorhees et al., 1999; Ferrucci
et al., 2010; Rajpurkar et al., 2016; Joshi et al.,
2017). However, in the clinical domain this prob-
lem remains relatively unexplored. Physicians fre-
quently seek answers to questions from unstruc-
tured electronic medical records (EMRs) to sup-
port clinical decision-making (Demner-Fushman
et al., 2009). But in a significant majority of cases,
they are unable to unearth the information they
want from EMRs (Tang et al., 1994). Moreover
to date, there is no general system for answering
natural language questions asked by physicians on
a patient’s EMR (Figure 1) due to lack of large-
scale datasets (Raghavan and Patwardhan, 2016).

EMRs are a longitudinal record of a patient’s
health information in the form of unstructured
clinical notes (progress notes, discharge sum-
maries etc.) and structured vocabularies. Physi-

⇤This work was conducted during an internship at IBM
§https://www.i2b2.org/NLP/DataSets/

Record Date: 08/09/98
08/31/96 ascending aortic root replacement with homograft
with omentopexy. The patient continued to be hemodynam-
ically stable making good progress. Physical examination:
BMI: 33.4 Obese, high risk. Pulse: 60. resp. rate: 18

Question: Has the patient ever had an abnormal BMI?
Answer: BMI: 33.4 Obese, high risk
Question: When did the patient last receive a homograft
replacement ?
Answer: 08/31/96 ascending aortic root replacement with
homograft with omentopexy.

Figure 1: Question-Answer pairs from emrQA clinical note.

cians wish to answer questions about medical en-
tities and relations from the EMR, requiring a
deeper understanding of clinical notes. While
this may be likened to machine comprehension,
the longitudinal nature of clinical discourse, lit-
tle to no redundancy in facts, abundant use of
domain-specific terminology, temporal narratives
with multiple related diseases, symptoms, medi-
cations that go back and forth in time, and mis-
spellings, make it complex and difficult to ap-
ply existing NLP tools (Demner-Fushman et al.,
2009; Raghavan and Patwardhan, 2016). More-
over, answers may be implicit or explicit and may
require domain-knowledge and reasoning across
clinical notes. Thus, building a credible QA sys-
tem for patient-specific EMR QA requires large-
scale question and answer annotations that suffi-
ciently capture the challenging nature of clinical
narratives in the EMR. However, serious privacy
concerns about sharing personal health informa-
tion (Devereaux, 2013; Krumholz et al., 2016),
and the tedious nature of assimilating answer an-
notations from across longitudinal clinical notes,
makes this task impractical and possibly erroneous
to do manually (Lee et al., 2017).

In this work, we address the lack of any pub-
licly available EMR QA corpus by creating a
large-scale dataset, emrQA, using a novel gener-
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Figure 2: Our QA dataset generation framework using existing i2b2 annotations on a given patient’s record to generate a
question, its logical form and answer evidence. The highlights in the figure show the annotations being used for this example.

ation framework that allows for minimal expert
involvement and re-purposes existing annotations
available for other clinical NLP tasks (i2b2 chal-
lenge datasets (Guo et al., 2006)). The annota-
tions serve as a proxy-expert in generating ques-
tions, answers, and logical forms. Logical forms
provide a human-comprehensible symbolic repre-
sentation, linking questions to answers, and help
build interpretable models, critical to the medical
domain (Davis et al., 1977; Vellido et al., 2012).
We analyze the emrQA dataset in terms of ques-
tion complexity, relations, and the reasoning re-
quired to answer questions, and provide neural and
heuristic baselines for learning to predict question-
logical forms and question-answers.

The main contributions of this work are as fol-
lows:

• A novel framework for systematic generation
of domain-specific large-scale QA datasets
that can be used in any domain where manual
annotations are challenging to obtain but lim-
ited annotations may be available for other
NLP tasks.

• The first accessible patient-specific EMR
QA dataset, emrQA⇤, consisting of 400,000
question-answer pairs and 1 million question-
logical form pairs. The logical forms will
allow users to train and benchmark inter-
pretable models that justify answers with cor-
responding logical forms.

• Two new reasoning challenges, namely arith-
metic and temporal reasoning, that are absent
in open-domain datasets like SQuAD (Ra-
jpurkar et al., 2016).

⇤https://github.com/panushri25/emrQA, scripts to gener-
ate emrQA from i2b2 data. i2b2 data is accessible by every-
one subject to a license agreement.

2 Related Work
Question Answering (QA) datasets are classified
into two main categories: (1) machine comprehen-
sion (MC) using unstructured documents, and (2)
QA using Knowledge Bases (KBs).

MC systems aim to answer any question that
could be posed against a reference text. Recent
advances in crowd-sourcing and search engines
have resulted in an explosion of large-scale (100K)
MC datasets for factoid QA, having ample re-
dundant evidence in text (Rajpurkar et al., 2016;
Trischler et al., 2016; Joshi et al., 2017; Dhingra
et al., 2017). On the other hand, complex domain-
specific MC datasets such as MCTest (Richardson
et al., 2013), biological process modeling (Berant
et al., 2014), BioASQ (Tsatsaronis et al., 2015),
InsuranceQA (Feng et al., 2015), etc have been
limited in scale (500-10K) because of the com-
plexity of the task or the need for expert anno-
tations that cannot be crowd-sourced or gathered
from the web. In contrast to the open-domain,
EMR data cannot be released publicly due to pri-
vacy concerns (Šuster et al., 2017). Also, anno-
tating unstructured EMRs requires a medical ex-
pert who can understand and interpret clinical text.
Thus, very few datasets like i2b2, MIMIC (John-
son et al., 2016) (developed over several years in
collaboration with large medical groups and hos-
pitals), share small-scale annotated clinical notes.
In this work, we take advantage of the limited ex-
pertly annotated resources to generate emrQA.

KB-based QA datasets, used for semantic pars-
ing, are traditionally limited by the requirement of
annotated question and logical form (LF) pairs for
supervision where the LF are used to retrieve an-
swers from a schema (Cai and Yates, 2013; Lopez
et al., 2013; Bordes et al., 2015). Roberts and
Demner-Fushman (2016) generated a corpus by
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Datasets #QA #QL #notes Property Stats.
Relations 141,243 1,061,710 425 Question len. 8.6
Medications 255,908 198,739 261 Evidence len. 18.7
Heart disease 30,731 36,746 119 LF len. 33
Obesity 23,437 280 1,118 Note len. 3825
Smoking 4,518 6 502 # of evidence 1.5
emrQA 455,837 1,295,814 2,425 # Ques. in note 187

Table 1: (left) i2b2 dataset distribution in emrQA, and
(right) emrQA properties with length in tokens, averaged

manually annotating LFs on 468 EMR questions
(not released publicly), thus limiting its ability to
create large scale datasets. In contrast, we only
collect LFs for question templates from a domain-
expert - the rest of our corpus is automatically gen-
erated.

Recent advances in QA combine logic-based
and neural MC approaches to build hybrid mod-
els (Usbeck et al., 2015; Feng et al., 2016; Palangi
et al., 2018). These models are driven to combine
the accuracy of neural approaches (Hermann et al.,
2015) and the interpretability of the symbolic rep-
resentations in logic-based methods (Gao et al.;
Chabierski et al., 2017). Building interpretable
yet accurate models is extremely important in the
medical domain (Shickel et al., 2017). We gen-
erate large-scale ground truth annotations (ques-
tions, logical forms, and answers) that can provide
supervision to learn such hybrid models. Our ap-
proach to generating emrQA is in the same spirit
as Su et al. (2016), who generate graph queries
(logical forms) from a structured KB and use them
to collect answers. In contrast, our framework can
be applied to generate QA dataset in any domain
with minimal expert input using annotations from
other NLP tasks.

3 QA Dataset Generation Framework
Our general framework for generating a large-
scale QA corpus given certain resources consists
of three steps: (1) collecting questions to capture
domain-specific user needs, followed by normal-
izing the collected questions to templates by re-
placing entities (that may be related via binary or
composite relations) in the question with place-
holders. The entity types replaced in the question
are grounded in an ontology like WordNet (Miller,
1995), UMLS (Bodenreider, 2004), or a user-
generated schema that defines and relates different
entity types. (2) We associate question templates
with expert-annotated logical form templates; log-
ical forms are symbolic representations using re-
lations from the ontology/schema to express the
relations in the question, and associate the ques-

How was the |problem| managed ?
How was the patient’s |problem| treated ?
What was done to correct the patient’s |problem| ?
Has the patient ever been treated for a |problem| ?
What treatment has the patient had for his |problem| ?
Has the patient ever received treatment for |problem| ?
What treatments for |problem| has this patient tried ?

Table 2: Paraphrase templates of a question type in emrQA.

tion entity type with an answer entity type. (3) We
then proceed to the important step of re-purposing
existing NLP annotations to populate question-
logical form templates and generate answers. QA
is a complex task that requires addressing several
fundamental NLP problems before accurately an-
swering a question. Hence, obtaining expert man-
ual annotations in complex domains is infeasible
as it is tedious to expert-annotate answers that may
be found across long document collections (e.g.,
longitudinal EMR) (Lee et al., 2017). Thus, we
reverse engineer the process where we reuse ex-
pert annotations available in NLP tasks such as
entity recognition, coreference, and relation learn-
ing, based on the information captured in the log-
ical forms to populate entity placeholders in tem-
plates and generate answers. Reverse engineering
serves as a proxy expert ensuring that the gener-
ated QA annotations are credible. The only man-
ual effort is in annotating logical forms, thus sig-
nificantly reducing expert labor. Moreover, in do-
main specific instances such as EMRs, manually
annotated logical forms allow the experts to ex-
press information essential for natural language
understanding such as domain knowledge, tempo-
ral relations, and negation (Gao et al.; Chabierski
et al., 2017). This knowledge, once captured, can
be used to generate QA pairs on new documents,
making the framework scalable.

4 Generating the emrQA Dataset
We apply the proposed framework to generate the
emrQA corpus consisting of questions posed by
physicians against longitudinal EMRs of a patient,
using annotations provided by i2b2 (Figure 2).

4.1 Question Collection and Normalization
We collect questions for EMR QA by, 1) polling
physicians at the Veterans Administration for what
they frequently want to know from the EMR (976
questions), 2) using an existing source of 5,696
questions generated by a team of medical experts
from 71 patient records (Raghavan et al., 2017)
and 3) using 15 prototypical questions from an ob-
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Figure 3: Events, attributes & relations in emrQA’s logical
forms. Events & attributes accept i2b2 entities as arguments.

servational study done by physicians (Tang et al.,
1994). To obtain templates, the questions were au-
tomatically normalized by identifying medical en-
tities (using MetaMap (Aronson, 2001)) in ques-
tions and replacing them with generic placehold-
ers. The resulting ⇠2K noisy templates were ex-
pert reviewed and corrected (to account for any
entity recognition errors by MetaMap). We align
our entity types to those defined in the i2b2 con-
cept extraction tasks (Uzuner et al., 2010a, 2011)
- problem, test, treatment, mode and medication.
E.g., The question What is the dosage of insulin?
from the collection gets converted to the template
What is the dosage of |medication|? as shown in
Fig.2. This process resulted in 680 question tem-
plates. We do not correct for the usage/spelling
errors in these templates, such as usage of "pt"
for "patient", or make the templates gender neutral
in order to provide a true representation of physi-
cians’ questions. Further, analyzing these tem-
plates shows that physicians most frequently ask
about test results (11%), medications for problem
(9%), and problem existence (8%). The long tail
following this includes questions about medica-
tion dosage, response to treatment, medication du-
ration, prescription date, etiology, etc. Temporal
constraints were frequently imposed on questions
related to tests, problem diagnosis and medication
start/stop.

4.2 Associating Templates w/ Logical Forms
The 680 question templates were annotated by a
physician with their corresponding logical form
(LF) templates, which resulted in 94 unique LF
templates. More than one question template that
map to the same LF are considered paraphrases of
each other and correspond to a particular question
type (Table 2). Logical forms are defined based

on an ontology schema designed by medical ex-
perts (Figure 3). This schema captures entities in
unstructured clinical notes through medical events
and their attributes, interconnected through rela-
tions. We align the entity and relation types of
i2b2 to this schema.

A formal representation of the LF gram-
mar using this schema (Figure 3) is as fol-
lows. Medical events are denoted as MEi (e.g
LabEvent, ConditionEvent) and relations are de-
noted as REi (e.g conducted/reveals). Now,
ME[a1, .., aj , .., oper(an)] is a medical event
where aj represents the attribute of the event (such
as result in LabEvent). An event may optionally
include constraints on attributes captured by an
operator (oper() 2 sort, range, check for null val-
ues, compare). These operators sometimes require
values from external medical KB (indicated by ref,
e.g. lab.ref low/lab.ref high to indicate range of ref-
erence standards considered healthy in lab results)
indicating the need for medical knowledge to an-
swer the question. Using these constructs, a LF
can be defined using the following rules,
LF ! MEi | M1 relation M2

M1 ! MEi, M2 ! MEj

M1 ! M1 relation M2, M2 ! M1 relation M2

relation ! OR | AND | REi

Advantages of our LF representation include
the ability to represent composite relations, de-
fine attributes for medical events and constrain
the attributes to precisely capture the informa-
tion need in the question. While these can be
achieved using different methods that combine
lambda calculus and first order logic (Roberts
and Demner-Fushman, 2016), our representation
is more human comprehensible. This allows a
physician to consider an ontology like Figure 3
and easily define a logical form. Some exam-
ple question templates with their LF annotations
are described in Table 3 using the above notation.
The LF representation of the question in Figure
2 is MedicationEvent(|medication|) [dosage=x].
The entities seen in LF are the entities posed in
the question and entity marked x indicates the an-
swer entity type.

4.3 Template Filling and Answer Extraction

The next step in the process is to populate the
question and logical form (QL) templates with
existing annotations in the i2b2 clinical datasets
and extract answer evidence for the questions.
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Property Example Annotation Stats.
Fine grained answer type
(attribute entity is answer)

Q: What is the dosage of |medication| ?
LF: MedicationEvent (|medication|) [dosage=x]

62.7%

Course grained answer type
(event entity is answer)

Q: What does the patient take |medication| for?
LF: MedicationEvent(|medication|)given{ConditionEvent(x) OR SymptomEvent(x)}

52.1%

Questions with operators on
entities

Q: What are the last set of labs with elevated numbers out of range?
LF: LabEvent (x) [date=x, (result=x)>lab.refhigh]

25.5%

Questions which require
medical KB

Q: What are the last set of labs with elevated numbers out of range?
LF: LabEvent (x) [date=x, (result=x)>lab.refhigh]

11.7%

At least one event relation What lab results does he have that are pertinent to |problem| diagnosis
LF: LabEvent (x) [date=x, result=x] conducted/reveals ConditionEvent (|problem|)

46.8%

Table 3: Properties of question templates inferred from the corresponding logical form templates. The boldface words hint at
the presence of the corresponding property in both question and the logical form template.

The i2b2 datasets are expert annotated with
fine-grained annotations (Guo et al., 2006) that
were developed for various shared NLP challenge
tasks, including (1) smoking status classification
(Uzuner et al., 2008), (2) diagnosis of obesity and
its co-morbidities (Uzuner, 2009), extraction of
(3) medication concepts (Uzuner et al., 2010a),
(4) relations, concepts, assertions (Uzuner et al.,
2010b, 2011) (5) co-reference resolution (Uzuner
et al., 2012) and (6) heart disease risk factor
identification (Stubbs and Uzuner, 2015). In
Figure 2, this would correspond to leveraging
annotations from medications challenge between
medications and their dosages, such as medica-
tion=Nitroglycerin, dosage=40mg, to populate
|medication| and generate several instances of the
question “What is the dosage of |medication|?"
and its corresponding logical form
MedicationEvent(|medication|)[dosage=x].
The answer would be derived from the value of
the dosage entity in the dataset.

Preprocessing: The i2b2 entities are prepro-
cessed before using them with our templates to
ensure syntactic correctness of the generated ques-
tions. The pre-processing steps are designed based
on the i2b2 annotations syntax guidelines (Guo
et al., 2006). To estimate grammatical correct-
ness, we randomly sampled 500 generated ques-
tions and found that <5% had errors. These errors
include, among others, incorrect usage of article
with the entity and incorrect entity phrasing.

Answer Extraction: The final step in the pro-
cess is generating answer evidence corresponding
to each question. The answers in emrQA are de-
fined differently; instead of a single word or phrase
we provide the entire i2b2 annotation line from
the clinical note as the answer. This is because
the context in which the answer entity or phrase
is mentioned is extremely important in clinical
decision making (Demner-Fushman et al., 2009).

Hence, we call them answer evidence instead of
just answers. For example, consider the ques-
tion Is the patient’s hypertension controlled?.
The answer to this question is not a simple yes/no
since the status of the patient’s hypertension can
change through the course of treatment. The an-
swer evidence to this question in emrQA are mul-
tiple lines across the longitudinal notes that reflect
this potentially changing status of the patients con-
dition, e.g. Hypertension-borderline today. Addi-
tionally, for questions seeking specific answers we
also provide the corresponding answer entities.

The overall process for answer evidence gener-
ation was vetted by a physician. Here is a brief
overview of how the different i2b2 datasets were
used in generating answers. The relations chal-
lenge datasets have various event-relation anno-
tations across single/multiple lines in a clinical
note. We used a combination of one or more of
these, to generate answers for a question; in do-
ing so we used the annotations provided by the
i2b2 co-reference datasets. Similarly, the medica-
tions challenge dataset has various event-attribute
annotations but since this dataset is not provided
with co-reference annotations, it is currently not
possible to combine all valid answers. The heart
disease challenge dataset has longitudinal notes
(⇠5 per patient) with record dates. The events
in this dataset are also provided with time anno-
tations and are rich in quantitative entities. This
dataset was primarily used to answer questions
that require temporal and arithmetic reasoning
on events. The patient records in the smoking
and obesity challenge datasets are categorized into
classes with no entity annotations. Thus, for ques-
tions generated on these datasets, the entire docu-
ment acts as evidence and the annotated class in-
formation (7 classes) needs to be predicted as the
answer.

The total questions, LFs and answers gener-
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ated using this framework are summarized in Ta-
ble 1. Consider the question How much does the
patient smoke? for which we do not have i2b2-
annotations to provide an answer. In cases where
the answer entity is empty, we only generate the
question and LF, resulting in more question types
being used for QL than QA pairs: only 53% of
question types have answers.

5 emrQA Dataset Analysis
We analyze the complexity of emrQA by consider-
ing the LFs for question characteristics, variations
in paraphrases, and the type of reasoning required
for answering questions (Table 2, 3, 4).

5.1 Question/Logical Form Characteristics
A quantitative and qualitative analysis of emrQA
question templates is shown in Table 3, where log-
ical forms help formalize their characteristics (Su
et al., 2016). Questions may request specific fine-
grained information (attribute values like dosage)
or may express a more coarse-grained need (event
entities like medications etc), or a combination
of both. 25% of questions require complex op-
erators (e.g compare(>)) and 12% of questions
express the need for external medical knowledge
(e.g. lab.refhigh). The questions in emrQA are
highly compositional, where 47% of question tem-
plates have at least one event relation.

5.2 Paraphrase Complexity Analysis
Questions templates that map to the same LF are
considered paraphrases (e.g, Table 2) and corre-
spond to the same question type. In emrQA, an
average of 7 paraphrase templates exist per ques-
tion type. This is representative of FAQ types that
are perhaps more important to the physician. Good
paraphrases are lexically dissimilar to each other
(Chen and Dolan, 2011). In order to understand
the lexical variation within our paraphrases, we
randomly select a question from the list of para-
phrases as a reference and evaluate the others with
respect to the reference, and report the average
BLEU (0.74 ± 0.06) and Jaccard Score (0.72 ±
0.19). The low BLEU and Jaccard score with large
standard deviation indicates the lexical diversity
captured by emrQA’s paraphrases (Papineni et al.,
2002; Niwattanakul et al., 2013).

5.3 Answer Evidence Analysis
33% of the questions in emrQA have more than
one answer evidence, with the number ranging

from 2 to 61. E.g., the question Medications
Record? has all medications in the patient’s lon-
gitudinal record as answer evidence. In order to
analyze the reasoning required to answer emrQA
questions, we sampled 35 clinical notes from the
corpus and analyzed 3 random questions per note
by manually labeling them with the categories de-
scribed in Table 4. Categories are not mutually
exclusive: a single example can fall into multiple
categories. We compare and contrast this analy-
sis with SQuAD (Rajpurkar et al., 2016), a popu-
lar MC dataset generated through crowdsourcing,
to show that the framework is capable of generat-
ing a corpus as representative and even more com-
plex. Compared to SQuAD, emrQA offers two
new reasoning categories, temporal and arithmetic
which make up 31% of the dataset. Addition-
ally, over two times as many questions in emrQA
require reasoning over multiple sentences. Long
and noisy documents make the question answer-
ing task more difficult (Joshi et al., 2017). EMRs
are inherently noisy and hence 29% have incom-
plete context and the document length is 27 times
more than SQuAD which offers new challenges to
existing QA models. Owing to the domain specific
nature of the task, 39% of the examples required
some form of medical/world knowledge.

As discussed in Section 4.3, 12% of the ques-
tions in emrQA corpus require a class category
from i2b2 smoking and obesity datasets to be pre-
dicted. We also found 6% of the questions had
other possible answers that were not included by
emrQA, this is because of the lack of co-reference
annotations for the medications challenge.

6 Baseline Methods
We implement baseline models using neural and
heuristic methods for question to logical form (Q-
L) and question to answer (Q-A) mapping.

6.1 Q-L Mapping
Heuristic Models: We use a template-matching
approach where we first split the data into
train/test sets, and then normalize questions in
the test set into templates by replacing entities
with placeholders. The templates are then scored
against the ground truth templates of the questions
in the train set, to find the best match. The place-
holders in the LF template corresponding to the
best matched question template is then filled with
the normalized entities to obtain the predicted LF.
To normalize the test questions we use CLiNER
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Reasoning Description Example Annotation emrQA SQuAD
Lexical Variation
(Synonym)

Major correspondence between the
question and answer sentence are
synonyms.

Q: Has this patient ever been treated with insulin?
E: Patient sugars were managed o/n with sliding
scale insulin and diabetic

15.2% 33.3%

Lexical Variation
(world/medical
knowledge)

Major correspondence between the
question and answer sentence re-
quires world/medical knowledge to
resolve

Q: Has the patient complained of any CAD symp-
toms?
E: 70-year-old female who comes in with
substernal chest pressure

39.0% 9.1%

Syntactic Variation After the question is paraphrased
into declarative form, its syntac-
tic dependency structure does not
match that of the answer sentence

Q: Has this patient ever been treated with ffp?
E: attempt to reverse anticoagulation , one unit of
FFP was begun

60.0% 64.1%

Multiple Sentence Co-reference and higher level fu-
sion of multiple sentences

Q: What happened when the patient was given as-
cending aortic root replacement?
E: The patient tolerated the procedure fairly well
and was transferred to the ICU with his chest open

23.8% 13.6%

Arithmetic Knowing comparison and subtrac-
tion operators.

Q: Show me any LDL > 100 mg/dl in the last 6
years?
E: gluc 192, LDL 115, TG 71, HDL 36

13.3% N.A.

Temporal Reasoning based on time frame Q: What were the results of the abnormal A1C on
2115-12-14?
E: HBA1C 12/14/2115 11.80

18.1% N.A.

Incomplete
Context

Unstructured clinical text is noisy
and may have missing context

Q: What is her current dose of iron?
E: Iron 325 mg p.o. t.i.d.

28.6% N.A.

Class Prediction Questions for which a specific pre-
defined class needs to be predicted

Q: Is the patient currently Obese?
E: Yes

12.4% N.A.

Table 4: We manually labeled 105 examples into one or more of the above categories. Words relevant to the corresponding
reasoning type are in bold and the answer entity (if any) in the evidence is in italics. We compare this analysis with SQuAD.

Dataset Train/Test HM-1 HM-2 Neural
GeoQuery 600/280 32.8% 52.1% 74.6%†

ATIS 4,473/448 20.8% 52.2% 69.9%†

emrQL-1 1M/253K 0.3% 26.3% 22.4%
emrQL-2 1.1M/296K 31.6% 32.0% 42.7%

Table 5: Heuristic (HM) and neural (seq2seq) models per-
formance on question to logical form learning in emrQA.

(Boag et al., 2015) for emrQA and Jia and Liang
(2016)’s work for ATIS and GeoQuery. Scoring
and matching is done using two heuristics: (1)
HM-1, which computes an identical match, and
(2) HM-2, which generates a GloVe vector (Arora
et al., 2016) representation of the templates using
sentence2vec and then computes pairwise cosine
similarity.

Neural Model: We train a sequence-to-
sequence (seq2seq) (Sutskever et al., 2014) with
attention paradigm (Bahdanau et al., 2014; Luong
et al., 2017) as our neural baseline (2 layers, each
with 64 hidden units). The same setting when used
with Geoquery and ATIS gives poor results be-
cause the parameters are not appropriate for the
nature of that dataset. Hence, for comparison with
GeoQuery and ATIS, we use the results of seq2seq
model with a single 200 hidden units layer (Jia and
Liang, 2016). At test time we automatically bal-
ance missing right parentheses.

†results from Jia and Liang (2016)

6.1.1 Experimental Setup
We randomly partition the QL pairs in the dataset
in train(80%) and test(20%) sets in two ways. (1)
In emrQL-1, we first split the paraphrase templates
corresponding to a single LF template into train
and test, and then generate the instances of QL
pairs. (2) In emrQL-2, we first generate the in-
stances of QL pairs from the templates and then
distribute them into train and test sets. As a result,
emrQL-1 has more lexical variation between train
and test distribution compared to emrQL-2, result-
ing in increased paraphrase complexity. We use
accuracy i.e, the total number of logical forms pre-
dicted correctly as a metric to evaluate our model.

6.1.2 Results
The performance of the proposed models is sum-
marized in Table 5. emrQL results are not directly
comparable with GeoQuery and ATIS because of
the differences in the lexicon and tools available
for the domains. However, it helps us establish
that QL learning in emrQA is non-trivial and sup-
ports significant future work.

Error analysis of heuristic models on emrQL-1
and emrQL-2 showed that 70% of the errors oc-
curred because of incorrect question normaliza-
tion. In fact, 30% of these questions had not been
normalized at all. This shows that the entities
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added to the templates are complex and diverse
and make the inverse process of template gener-
ation non trivial. This makes a challenging QL
corpus that cannot trivially be solved by template
matching based approaches.

Errors made by the neural model on both
emrQL-1 and emrQL-2 are due to long LFs (20%)
and incorrectly identified entities (10%), which
are harder for the attention-based model (Jia and
Liang, 2016). The increased paraphrase complex-
ity in emrQL-1 compared to emrQL-2 resulted in
20% more structural errors in emrQL-1, where the
predicted event/grammar structure deviates signif-
icantly from the ground truth. This shows that the
model is not adequately capturing the semantics
in the questions to generalize to new paraphrases.
Therefore, emrQL-1 can be used to benchmark QL
models robust to paraphrasing.

6.2 Q-A Mapping
Question-answering on emrQA consists of two
different tasks, (1) extraction of answer line from
the clinical note (machine comprehension (MC))
and (2) prediction of answer class based on the en-
tire clinical note. We provide baseline models to
illustrate the complexity in doing both these tasks.

Machine Comprehension: To do extractive
QA on EMRs, we use DrQA’s (Chen et al., 2017)
document reader which is a multi-layer RNN
based MC model. We use their best performing
settings trained for SQuAD data using Glove vec-
tors (300 dim-840B).

Class Prediction: We build a multi-class logis-
tic regression model for predicting a class as an
answer based on the patient’s clinical note. Fea-
tures input to the classifier are TF-IDF vectors of
the question and the clinical notes taken from i2b2
smoking and obesity datasets.

6.2.1 Experimental setup
We consider a 80-20 split of the data for train-test.
In order to evaluate worst-case performance, we
train on question-evidence pairs in a clinical note
obtained by using only one random paraphrase for
a question instead of all the paraphrases. We use a
slightly modified‡ version of the two popularly re-
ported metrics in MC for evaluation since our ev-
idence span is longer: Exact Match (EM) and F1.
Wherever the answer entity in an evidence is ex-
plicitly known, EM checks if the answer entity is

‡using the original definitions, the evaluated values were
far less than those obtained in Table 7

Model Train/Test Exact Match F1
DrQA (MC) 47,605/9,966 59.2% 60.6

Class Prediction 1276/320 36.6% n.a

Table 7: Performance of baseline models on the two QA sub
tasks, machine comprehension (MC) and class prediction.

present within the evidence, otherwise it checks if
the predicted evidence span lies within ±20 char-
acters of the ground truth evidence. For F1 we
construct a bag of tokens for each evidence string
and measure the F1 score of the overlap between
the two bags of tokens. Since there may be mul-
tiple evidence for a given question, we consider
only the top 10 predictions and report an average
of EM and F1 over ground truth number of an-
swers. In the class prediction setting, we report
the subset accuracy.

6.2.2 Results
The performance of the proposed models is sum-
marized in Table 7. DrQA is one of the best per-
forming models on SQuAD with an F1 of 78.8 and
EM of 69.5. The relatively low performance of the
models on emrQA (60.6 F1 and 59.2 EM) shows
that QA on EMRs is a complex task and offers new
challenges to existing QA models.

To understand model performance, we macro-
average the EM across all the questions corre-
sponding to a LF template. We observe that LFs
representing temporal and arithmetic§ needs had
< 16% EM. LFs expressing the need for medi-
cal KB§ performed poorly since we used general
Glove embeddings. An analysis of LFs which had
approximately equal number of QA pair represen-
tation in the test set revealed an interesting relation
between the model performance and LF complex-
ity, as summarized in Table 6. The trend shows
that performance is worse on multiple relation
questions as compared to single relation and at-
tribute questions, showing that the LFs sufficiently
capture the complexity of the questions and give
us an ability to do a qualitative model analysis.

Error analysis on a random sample of 50 ques-
tions containing at least one answer entity in an
evidence showed that: (1) 38% of the examples re-
quired multiple sentence reasoning of which 16%
were due to a missing evidence in a multiple ev-
idence question, (2) 14% were due to syntactic
variation, (3) 10% required medical reasoning and
(4) in 14%, DrQA predicted an incomplete evi-
dence span missing the answer entity in it.

§maximum representation of these templates comes from
the i2b2 heart disease risk dataset
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Logical Form template Property Exact Match
MedicationEvent (|medication|) [enddate=x] single attribute 55.3%
{LabEvent (|test|) OR ProcedureEvent (|test|)} conducted
{ConditionEvent(x) OR SymptomEvent (x)}

single relation 32.2%

{MedicationEvent(|treatment|)ORProcedureEvent(|treatment|)}
improves/worsens/causes {ConditionEvent (x) OR SymptomEvent (x)}

multiple relation 12.6%

Table 6: Neural models (DrQA) performance on question-evidence corpus of emrQA stratified according to the logical
form templates. Instance showing increasing complexity in the logical forms with decreasing model performance.

7 Discussion
In this section, we describe how our generation
framework may also be applied to generate open-
domain QA datasets given the availability of other
NLP resources. We also discuss possible exten-
sions of the framework to increase the complexity
of the generated datasets.

Open domain QA dataset generation: Con-
sider the popularly used SQuAD (Rajpurkar et al.,
2016) reading comprehension dataset generated
by crowdworkers, where the answer to every ques-
tion is a segment of text from the corresponding
passage in the Wikipedia article. This dataset can
easily be generated or extended using our pro-
posed framework with existing NLP annotations
on Wikipedia (Auer et al., 2007; Nothman et al.,
2008; Ghaddar and Langlais, 2017).

For instance, consider DBPedia (Auer et al.,
2007), an existing dataset of entities and their re-
lations extracted from Wikipedia. It also has its
own ontology which can serve as the semantic
frames schema to define logical forms. Using
these resources, our reverse engineering technique
for QA dataset generation can be applied as fol-
lows. (1) Question templates can be defined for
each entity type and relation in DBPedia. For
example¶, consider the relation [place, country]
field in DBpedia. For this we can define a ques-
tion template In what country is |place| located?.
(2) Every such question template can be annotated
with a logical form template using existing DB-
Pedia ontology. (3) By considering the entity val-
ues of DBPedia fields such as [place=Normandy,
dbo:country=France], we can automatically gen-
erate the question In what country is Normandy
located? and its corresponding logical form from
the templates. The text span of country=France
from the Wikipedia passage is then used as the
answer (Daiber et al., 2013). Currently, this QA
pair instance is a part of the SQuAD dev set. Us-
ing our framework we can generate many more in-
stances like this example from different Wikipedia
passages - without crowdsourcing efforts.

¶example reference: http://dbpedia.org/page/Normandy

Extensions to the framework: The complexity
of the generated dataset can be further extended as
follows. (1) We can use a coreferred or a lexical
variant of the original entity in the question-logical
form generation. This can allow for increased lexi-
cal variation between the question and answer line
entities in the passage. (2) It is possible to combine
two or more question templates to make composi-
tional questions with the answers to these ques-
tions similarly combined. This can also result in
more multiple sentence reasoning questions. (3)
We can generate questions with entities not related
to the context in the passage. This can increase
empty answer questions in the dataset, resulting in
increased negative training examples.

8 Conclusions and Future Work
We propose a novel framework that can generate
a large-scale QA dataset using existing resources
and minimal expert input. This has the potential
to make a huge impact in domains like medicine,
where obtaining manual QA annotations is tedious
and infeasible. We apply this framework to gener-
ate a large scale EMR QA corpus (emrQA), con-
sisting of 400,000 question-answers pairs and 1
million question-logical forms, and analyze the
complexity of the dataset to show its non-trivial
nature. We show that the logical forms provide a
symbolic representation that is very useful for cor-
pus generation and for model analysis. The logi-
cal forms also provide an opportunity to build in-
terpretable systems by perhaps jointly (or latently)
learning the logical form and answer for a ques-
tion. In future, this framework may be applied to
also re-purpose and integrate other NLP datasets
such as MIMIC and generate a more diverse and
representative EMR QA corpus (Johnson et al.,
2016).
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} CIFAR Senior Fellow † Google AI

{zhiliny, rsalakhu}@cs.cmu.edu, {pengqi, manning}@cs.stanford.edu

saizheng.zhang@umontreal.ca, yoshua.bengio@gmail.com, wcohen@google.com

Abstract

Existing question answering (QA) datasets fail
to train QA systems to perform complex rea-
soning and provide explanations for answers.
We introduce HOTPOTQA, a new dataset with
113k Wikipedia-based question-answer pairs
with four key features: (1) the questions re-
quire finding and reasoning over multiple sup-
porting documents to answer; (2) the ques-
tions are diverse and not constrained to any
pre-existing knowledge bases or knowledge
schemas; (3) we provide sentence-level sup-
porting facts required for reasoning, allowing
QA systems to reason with strong supervision
and explain the predictions; (4) we offer a new
type of factoid comparison questions to test
QA systems’ ability to extract relevant facts
and perform necessary comparison. We show
that HOTPOTQA is challenging for the latest
QA systems, and the supporting facts enable
models to improve performance and make ex-
plainable predictions.

1 Introduction

The ability to perform reasoning and inference
over natural language is an important aspect of in-
telligence. The task of question answering (QA)
provides a quantifiable and objective way to test
the reasoning ability of intelligent systems. To this
end, a few large-scale QA datasets have been pro-
posed, which sparked significant progress in this
direction. However, existing datasets have limita-
tions that hinder further advancements of machine
reasoning over natural language, especially in test-
ing QA systems’ ability to perform multi-hop rea-
soning, where the system has to reason with in-
formation taken from more than one document to
arrive at the answer.

⇤These authors contributed equally. The order of author-
ship is decided through dice rolling.

†Work done when WWC was at CMU.

Paragraph A, Return to Olympus:
[1] Return to Olympus is the only album by the alterna-
tive rock band Malfunkshun. [2] It was released after
the band had broken up and after lead singer Andrew
Wood (later of Mother Love Bone) had died of a drug
overdose in 1990. [3] Stone Gossard, of Pearl Jam, had
compiled the songs and released the album on his label,
Loosegroove Records.
Paragraph B, Mother Love Bone:
[4] Mother Love Bone was an American rock band that
formed in Seattle, Washington in 1987. [5] The band
was active from 1987 to 1990. [6] Frontman Andrew
Wood’s personality and compositions helped to catapult
the group to the top of the burgeoning late 1980s/early
1990s Seattle music scene. [7] Wood died only days be-
fore the scheduled release of the band’s debut album,
“Apple”, thus ending the group’s hopes of success. [8]
The album was finally released a few months later.
Q: What was the former band of the member of Mother
Love Bone who died just before the release of “Apple”?
A: Malfunkshun
Supporting facts: 1, 2, 4, 6, 7

Figure 1: An example of the multi-hop questions in
HOTPOTQA. We also highlight the supporting facts in
blue italics, which are also part of the dataset.

First, some datasets mainly focus on testing the
ability of reasoning within a single paragraph or
document, or single-hop reasoning. For example,
in SQuAD (Rajpurkar et al., 2016) questions are
designed to be answered given a single paragraph
as the context, and most of the questions can in
fact be answered by matching the question with
a single sentence in that paragraph. As a result, it
has fallen short at testing systems’ ability to reason
over a larger context. TriviaQA (Joshi et al., 2017)
and SearchQA (Dunn et al., 2017) create a more
challenging setting by using information retrieval
to collect multiple documents to form the con-
text given existing question-answer pairs. Nev-
ertheless, most of the questions can be answered
by matching the question with a few nearby sen-
tences in one single paragraph, which is limited as
it does not require more complex reasoning (e.g.,
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over multiple paragraphs).
Second, existing datasets that target multi-hop

reasoning, such as QAngaroo (Welbl et al., 2018)
and COMPLEXWEBQUESTIONS (Talmor and Be-
rant, 2018), are constructed using existing knowl-
edge bases (KBs). As a result, these datasets are
constrained by the schema of the KBs they use,
and therefore the diversity of questions and an-
swers is inherently limited.

Third, all of the above datasets only provide dis-
tant supervision; i.e., the systems only know what
the answer is, but do not know what supporting
facts lead to it. This makes it difficult for models
to learn about the underlying reasoning process, as
well as to make explainable predictions.

To address the above challenges, we aim at cre-
ating a QA dataset that requires reasoning over
multiple documents, and does so in natural lan-
guage, without constraining itself to an existing
knowledge base or knowledge schema. We also
want it to provide the system with strong supervi-
sion about what text the answer is actually derived
from, to help guide systems to perform meaning-
ful and explainable reasoning.

We present HOTPOTQA1, a large-scale dataset
that satisfies these desiderata. HOTPOTQA is col-
lected by crowdsourcing based on Wikipedia ar-
ticles, where crowd workers are shown multiple
supporting context documents and asked explic-
itly to come up with questions requiring reason-
ing about all of the documents. This ensures it
covers multi-hop questions that are more natural,
and are not designed with any pre-existing knowl-
edge base schema in mind. Moreover, we also
ask the crowd workers to provide the supporting
facts they use to answer the question, which we
also provide as part of the dataset (see Figure 1 for
an example). We have carefully designed a data
collection pipeline for HOTPOTQA, since the col-
lection of high-quality multi-hop questions is non-
trivial. We hope that this pipeline also sheds light
on future work in this direction. Finally, we also
collected a novel type of questions—comparison
questions—as part of HOTPOTQA, in which we
require systems to compare two entities on some
shared properties to test their understanding of
both language and common concepts such as nu-
merical magnitude. We make HOTPOTQA pub-
licly available at https://HotpotQA.github.io.

1The name comes from the first three authors’ arriving at
the main idea during a discussion at a hot pot restaurant.

2 Data Collection

The main goal of our work is to collect a diverse
and explainable question answering dataset that
requires multi-hop reasoning. One way to do so
is to define reasoning chains based on a knowl-
edge base (Welbl et al., 2018; Talmor and Berant,
2018). However, the resulting datasets are limited
by the incompleteness of entity relations and the
lack of diversity in the question types. Instead,
in this work, we focus on text-based question an-
swering in order to diversify the questions and an-
swers. The overall setting is that given some con-
text paragraphs (e.g., a few paragraphs, or the en-
tire Web) and a question, a QA system answers
the question by extracting a span of text from the
context, similar to Rajpurkar et al. (2016). We
additionally ensure that it is necessary to perform
multi-hop reasoning to correctly answer the ques-
tion.

It is non-trivial to collect text-based multi-hop
questions. In our pilot studies, we found that sim-
ply giving an arbitrary set of paragraphs to crowd
workers is counterproductive, because for most
paragraph sets, it is difficult to ask a meaning-
ful multi-hop question. To address this challenge,
we carefully design a pipeline to collect text-based
multi-hop questions. Below, we will highlight the
key design choices in our pipeline.

Building a Wikipedia Hyperlink Graph. We
use the entire English Wikipedia dump as our cor-
pus.2 In this corpus, we make two observations:
(1) hyper-links in the Wikipedia articles often nat-
urally entail a relation between two (already dis-
ambiguated) entities in the context, which could
potentially be used to facilitate multi-hop reason-
ing; (2) the first paragraph of each article often
contains much information that could be queried
in a meaningful way. Based on these observations,
we extract all the hyperlinks from the first para-
graphs of all Wikipedia articles. With these hy-
perlinks, we build a directed graph G, where each
edge (a, b) indicates there is a hyperlink from the
first paragraph of article a to article b.

Generating Candidate Paragraph Pairs. To
generate meaningful pairs of paragraphs for multi-
hop question answering with G, we start by
considering an example question “when was the
singer and songwriter of Radiohead born?” To

2https://dumps.wikimedia.org/
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answer this question, one would need to first rea-
son that the “singer and songwriter of Radiohead”
is “Thom Yorke”, and then figure out his birth-
day in the text. We call “Thom Yorke” a bridge
entity in this example. Given an edge (a, b) in
the hyperlink graph G, the entity of b can usually
be viewed as a bridge entity that connects a and
b. As we observe articles b usually determine the
theme of the shared context between a and b, but
not all articles b are suitable for collecting multi-
hop questions. For example, entities like coun-
tries are frequently referred to in Wikipedia, but
don’t necessarily have much in common with all
incoming links. It is also difficult, for instance,
for the crowd workers to ask meaningful multi-
hop questions about highly technical entities like
the IPv4 protocol. To alleviate this issue, we con-
strain the bridge entities to a set of manually cu-
rated pages in Wikipedia (see Appendix A). Af-
ter curating a set of pages B, we create candidate
paragraph pairs by sampling edges (a, b) from the
hyperlink graph such that b 2 B.

Comparison Questions. In addition to ques-
tions collected using bridge entities, we also
collect another type of multi-hop questions—
comparison questions. The main idea is that com-
paring two entities from the same category usu-
ally results in interesting multi-hop questions, e.g.,
“Who has played for more NBA teams, Michael
Jordan or Kobe Bryant?” To facilitate collecting
this type of question, we manually curate 42 lists
of similar entities (denoted as L) from Wikipedia.3

To generate candidate paragraph pairs, we ran-
domly sample two paragraphs from the same list
and present them to the crowd worker.

To increase the diversity of multi-hop questions,
we also introduce a subset of yes/no questions
in comparison questions. This complements the
original scope of comparison questions by offer-
ing new ways to require systems to reason over
both paragraphs. For example, consider the en-
tities Iron Maiden (from the UK) and AC/DC
(from Australia). Questions like “Is Iron Maiden
or AC/DC from the UK?” are not ideal, because
one would deduce the answer is “Iron Maiden”
even if one only had access to that article. With
yes/no questions, one may ask “Are Iron Maiden
and AC/DC from the same country?”, which re-

3This is achieved by manually curating lists from the
Wikipedia “List of lists of lists” (https://wiki.sh/
y8qv). One example is “Highest Mountains on Earth”.

Algorithm 1 Overall data collection procedure
Input: question type ratio r1 = 0.75, yes/no ratio r2 =
0.5
while not finished do

if random() < r1 then
Uniformly sample an entity b 2 B
Uniformly sample an edge (a, b)
Workers ask a question about paragraphs a and b

else
Sample a list from L, with probabilities weighted by
list sizes
Uniformly sample two entities (a, b) from the list
if random() < r2 then

Workers ask a yes/no question to compare a and
b

else
Workers ask a question with a span answer to
compare a and b

end if
end if
Workers provide the supporting facts

end while

quires reasoning over both paragraphs.
To the best of our knowledge, text-based com-

parison questions are a novel type of questions that
have not been considered by previous datasets.
More importantly, answering these questions usu-
ally requires arithmetic comparison, such as com-
paring ages given birth dates, which presents a
new challenge for future model development.

Collecting Supporting Facts. To enhance the
explainability of question answering systems, we
want them to output a set of supporting facts nec-
essary to arrive at the answer, when the answer
is generated. To this end, we also collect the
sentences that determine the answers from crowd
workers. These supporting facts can serve as
strong supervision for what sentences to pay at-
tention to. Moreover, we can now test the explain-
ability of a model by comparing the predicted sup-
porting facts to the ground truth ones.

The overall procedure of data collection is illus-
trated in Algorithm 1.

3 Processing and Benchmark Settings

We collected 112,779 valid examples in total on
Amazon Mechanical Turk4 using the ParlAI in-
terface (Miller et al., 2017) (see Appendix A).To
isolate potential single-hop questions from the de-
sired multi-hop ones, we first split out a sub-
set of data called train-easy. Specifically, we
randomly sampled questions (⇠3–10 per Turker)
from top-contributing turkers, and categorized all

4https://www.mturk.com/
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Name Desc. Usage # Examples

train-easy single-hop training 18,089
train-medium multi-hop training 56,814
train-hard hard multi-hop training 15,661
dev hard multi-hop dev 7,405
test-distractor hard multi-hop test 7,405
test-fullwiki hard multi-hop test 7,405
Total 112,779

Table 1: Data split. The splits train-easy, train-
medium, and train-hard are combined for training. The
distractor and full wiki settings use different test sets so
that the gold paragraphs in the full wiki test set remain
unknown to any models.

their questions into the train-easy set if an over-
whelming percentage in the sample only required
reasoning over one of the paragraphs. We sam-
pled these turkers because they contributed more
than 70% of our data. This train-easy set contains
18,089 mostly single-hop examples.

We implemented a question answering model
based on the current state-of-the-art architectures,
which we discuss in detail in Section 5.1. Based
on this model, we performed a three-fold cross
validation on the remaining multi-hop examples.
Among these examples, the models were able to
correctly answer 60% of the questions with high
confidence (determined by thresholding the model
loss). These correctly-answered questions (56,814
in total, 60% of the multi-hop examples) are split
out and marked as the train-medium subset, which
will also be used as part of our training set.

After splitting out train-easy and train-medium,
we are left with hard examples. As our ultimate
goal is to solve multi-hop question answering, we
focus on questions that the latest modeling tech-
niques are not able to answer. Thus we constrain
our dev and test sets to be hard examples. Specif-
ically, we randomly divide the hard examples into
four subsets, train-hard, dev, test-distractor, and
test-fullwiki. Statistics about the data split can be
found in Table 1. In Section 5, we will show that
combining train-easy, train-medium, and train-
hard to train models yields the best performance,
so we use the combined set as our default train-
ing set. The two test sets test-distractor and test-
fullwiki are used in two different benchmark set-
tings, which we introduce next.

We create two benchmark settings. In the first
setting, to challenge the model to find the true sup-
porting facts in the presence of noise, for each ex-
ample we employ bigram tf-idf (Chen et al., 2017)

to retrieve 8 paragraphs from Wikipedia as dis-
tractors, using the question as the query. We mix
them with the 2 gold paragraphs (the ones used
to collect the question and answer) to construct
the distractor setting. The 2 gold paragraphs
and the 8 distractors are shuffled before they are
fed to the model. In the second setting, we fully
test the model’s ability to locate relevant facts as
well as reasoning about them by requiring it to
answer the question given the first paragraphs of
all Wikipedia articles without the gold paragraphs
specified. This full wiki setting truly tests the per-
formance of the systems’ ability at multi-hop rea-
soning in the wild.5 The two settings present dif-
ferent levels of difficulty, and would require tech-
niques ranging from reading comprehension to in-
formation retrieval. As shown in Table 1, we use
separate test sets for the two settings to avoid leak-
ing information, because the gold paragraphs are
available to a model in the distractor setting, but
should not be accessible in the full wiki setting.

We also try to understand the model’s good
performance on the train-medium split. Manual
analysis shows that the ratio of multi-hop ques-
tions in train-medium is similar to that of the hard
examples (93.3% in train-medium vs. 92.0% in
dev), but one of the question types appears more
frequently in train-medium compared to the hard
splits (Type II: 32.0% in train-medium vs. 15.0%
in dev, see Section 4 for the definition of Type II
questions). These observations demonstrate that
given enough training data, existing neural archi-
tectures can be trained to answer certain types and
certain subsets of the multi-hop questions. How-
ever, train-medium remains challenging when not
just the gold paragraphs are present—we show in
Appendix C that the retrieval problem on these ex-
amples are as difficult as that on their hard cousins.

4 Dataset Analysis

In this section, we analyze the types of questions,
types of answers, and types of multi-hop reasoning
covered in the dataset.

Question Types. We heuristically identified
question types for each collected question. To
identify the question type, we first locate the cen-
tral question word (CQW) in the question. Since
HOTPOTQA contains comparison questions and

5As we required the crowd workers to use complete en-
tity names in the question, the majority of the questions are
unambiguous in the full wiki setting.
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Figure 2: Types of questions covered in HOTPOTQA.
Question types are extracted heuristically, starting at
question words or prepositions preceding them. Empty
colored blocks indicate suffixes that are too rare to
show individually. See main text for more details.

yes/no questions, we consider as question words
WH-words, copulas (“is”, “are”), and auxiliary
verbs (“does”, “did”). Because questions often in-
volve relative clauses beginning with WH-words,
we define the CQW as the first question word in
the question if it can be found in the first three to-
kens, or the last question word otherwise. Then,
we determine question type by extracting words
up to 2 tokens away to the right of the CQW, along
with the token to the left if it is one of a few com-
mon prepositions (e.g., in the cases of “in which”
and “by whom”).

We visualize the distribution of question types
in Figure 2, and label the ones shared among more
than 250 questions. As is shown, our dataset cov-
ers a diverse variety of questions centered around
entities, locations, events, dates, and numbers, as
well as yes/no questions directed at comparing two
entities (“Are both A and B ...?”), to name a few.

Answer Types. We further sample 100 exam-
ples from the dataset, and present the types of an-
swers in Table 2. As can be seen, HOTPOTQA
covers a broad range of answer types, which
matches our initial analysis of question types. We
find that a majority of the questions are about en-
tities in the articles (68%), and a non-negligible
amount of questions also ask about various proper-
ties like date (9%) and other descriptive properties
such as numbers (8%) and adjectives (4%).

Answer Type % Example(s)

Person 30 King Edward II, Rihanna
Group / Org 13 Cartoonito, Apalachee
Location 10 Fort Richardson, California
Date 9 10th or even 13th century
Number 8 79.92 million, 17
Artwork 8 Die schweigsame Frau
Yes/No 6 -
Adjective 4 conservative
Event 1 Prix Benois de la Danse
Other proper
noun

6 Cold War, Laban Movement
Analysis

Common noun 5 comedy, both men and women

Table 2: Types of answers in HOTPOTQA.

Multi-hop Reasoning Types. We also sampled
100 examples from the dev and test sets and man-
ually classified the types of reasoning required to
answer each question. Besides comparing two en-
tities, there are three main types of multi-hop rea-
soning required to answer these questions, which
we show in Table 3 accompanied with examples.

Most of the questions require at least one sup-
porting fact from each paragraph to answer. A ma-
jority of sampled questions (42%) require chain
reasoning (Type I in the table), where the reader
must first identify a bridge entity before the second
hop can be answered by filling in the bridge. One
strategy to answer these questions would be to de-
compose them into consecutive single-hop ques-
tions. The bridge entity could also be used im-
plicitly to help infer properties of other entities re-
lated to it. In some questions (Type III), the entity
in question shares certain properties with a bridge
entity (e.g., they are collocated), and we can in-
fer its properties through the bridge entity. An-
other type of question involves locating the answer
entity by satisfying multiple properties simultane-
ously (Type II). Here, to answer the question, one
could find the set of all entities that satisfy each of
the properties mentioned, and take an intersection
to arrive at the final answer. Questions comparing
two entities (Comparison) also require the system
to understand the properties in question about the
two entities (e.g., nationality), and sometimes re-
quire arithmetic such as counting (as seen in the
table) or comparing numerical values (“Who is
older, A or B?”). Finally, we find that sometimes
the questions require more than two supporting
facts to answer (Other). In our analysis, we also
find that for all of the examples shown in the ta-
ble, the supporting facts provided by the Turkers
match exactly with the limited context shown here,
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Reasoning Type % Example(s)

Inferring the bridge
entity to complete
the 2nd-hop question
(Type I)

42 Paragraph A: The 2015 Diamond Head Classic was a college basketball tournament ...
Buddy Hield was named the tournament’s MVP.
Paragraph B: Chavano Rainier ”Buddy” Hield is a Bahamian professional basketball
player for the Sacramento Kings of the NBA...
Q: Which team does the player named 2015 Diamond Head Classic’s MVP play for?

Comparing two enti-
ties (Comparison)

27 Paragraph A: LostAlone were a British rock band ... consisted of Steven Battelle, Alan
Williamson, and Mark Gibson...
Paragraph B: Guster is an American alternative rock band ... Founding members Adam
Gardner, Ryan Miller, and Brian Rosenworcel began...
Q: Did LostAlone and Guster have the same number of members? (yes)

Locating the answer
entity by checking
multiple properties
(Type II)

15 Paragraph A: Several current and former members of the Pittsburgh Pirates – ... John
Milner, Dave Parker, and Rod Scurry...
Paragraph B: David Gene Parker, nicknamed ”The Cobra”, is an American former player
in Major League Baseball...
Q: Which former member of the Pittsburgh Pirates was nicknamed ”The Cobra”?

Inferring about the
property of an entity
in question through
a bridge entity (Type
III)

6 Paragraph A: Marine Tactical Air Command Squadron 28 is a United States Marine Corps
aviation command and control unit based at Marine Corps Air Station Cherry Point...
Paragraph B: Marine Corps Air Station Cherry Point ... is a United States Marine Corps
airfield located in Havelock, North Carolina, USA ...
Q: What city is the Marine Air Control Group 28 located in?

Other types of reason-
ing that require more
than two supporting
facts (Other)

2 Paragraph A: ... the towns of Yodobashi, Okubo, Totsuka, and Ochiai town were merged
into Yodobashi ward. ... Yodobashi Camera is a store with its name taken from the town and
ward.
Paragraph B: Yodobashi Camera Co., Ltd. is a major Japanese retail chain specializing in
electronics, PCs, cameras and photographic equipment.
Q: Aside from Yodobashi, what other towns were merged into the ward which gave the major
Japanese retail chain specializing in electronics, PCs, cameras, and photographic equipment
it’s name?

Table 3: Types of multi-hop reasoning required to answer questions in the HOTPOTQA dev and test sets. We show
in orange bold italics bridge entities if applicable, blue italics supporting facts from the paragraphs that connect
directly to the question, and green bold the answer in the paragraph or following the question. The remaining 8%
are single-hop (6%) or unanswerable questions (2%) by our judgement.

showing that the supporting facts collected are of
high quality.

Aside from the reasoning types mentioned
above, we also estimate that about 6% of the sam-
pled questions can be answered with one of the
two paragraphs, and 2% of them unanswerable.
We also randomly sampled 100 examples from
train-medium and train-hard combined, and the
proportions of reasoning types are: Type I 38%,
Type II 29%, Comparison 20%, Other 7%, Type
III 2%, single-hop 2%, and unanswerable 2%.

5 Experiments

5.1 Model Architecture and Training
To test the performance of leading QA systems
on our data, we reimplemented the architecture
described in Clark and Gardner (2017) as our
baseline model. We note that our implementa-
tion without weight averaging achieves perfor-
mance very close to what the authors reported
on SQuAD (about 1 point worse in F1). Our
implemented model subsumes the latest techni-

cal advances on question answering, including
character-level models, self-attention (Wang et al.,
2017), and bi-attention (Seo et al., 2017). Combin-
ing these three key components is becoming stan-
dard practice, and various state-of-the-art or com-
petitive architectures (Liu et al., 2018; Clark and
Gardner, 2017; Wang et al., 2017; Seo et al., 2017;
Pan et al., 2017; Salant and Berant, 2018; Xiong
et al., 2018) on SQuAD can be viewed as simi-
lar to our implemented model. To accommodate
yes/no questions, we also add a 3-way classifier
after the last recurrent layer to produce the prob-
abilities of “yes”, “no”, and span-based answers.
During decoding, we first use the 3-way output to
determine whether the answer is “yes”, “no”, or a
text span. If it is a text span, we further search for
the most probable span.

Supporting Facts as Strong Supervision. To
evaluate the baseline model’s performance in pre-
dicting explainable supporting facts, as well as
how much they improve QA performance, we
additionally design a component to incorporate
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Figure 3: Our model architecture. Strong supervision
over supporting facts is used in a multi-task setting.

such strong supervision into our model. For each
sentence, we concatenate the output of the self-
attention layer at the first and last positions, and
use a binary linear classifier to predict the prob-
ability that the current sentence is a supporting
fact. We minimize a binary cross entropy loss for
this classifier. This objective is jointly optimized
with the normal question answering objective in
a multi-task learning setting, and they share the
same low-level representations. With this classi-
fier, the model can also be evaluated on the task of
supporting fact prediction to gauge its explainabil-
ity. Our overall architecture is illustrated in Figure
3. Though it is possible to build a pipeline system,
in this work we focus on an end-to-end one, which
is easier to tune and faster to train.

5.2 Results
We evaluate our model in the two benchmark set-
tings. In the full wiki setting, to enable efficient tf-
idf retrieval among 5,000,000+ wiki paragraphs,
given a question we first return a candidate pool of
at most 5,000 paragraphs using an inverted-index-
based filtering strategy6 and then select the top 10
paragraphs in the pool as the final candidates using
bigram tf-idf.7 Retrieval performance is shown in

6See Appendix C for details.
7We choose the number of final candidates as 10 to stay

consistent with the distractor setting where candidates are 2

Table 5. After retrieving these 10 paragraphs, we
then use the model trained in the distractor setting
to evaluate its performance on these final candi-
date paragraphs.

Following previous work (Rajpurkar et al.,
2016), we use exact match (EM) and F1 as two
evaluation metrics. To assess the explainability of
the models, we further introduce two sets of met-
rics involving the supporting facts. The first set fo-
cuses on evaluating the supporting facts directly,
namely EM and F1 on the set of supporting fact
sentences as compared to the gold set. The second
set features joint metrics that combine the evalu-
ation of answer spans and supporting facts as fol-
lows. For each example, given its precision and
recall on the answer span (P (ans), R(ans)) and the
supporting facts (P (sup), R(sup)), respectively, we
calculate joint F1 as

P (joint) = P (ans)P (sup), R(joint) = R(ans)R(sup),

Joint F1 =
2P (joint)R(joint)

P (joint) + R(joint) .

Joint EM is 1 only if both tasks achieve an ex-
act match and otherwise 0. Intuitively, these met-
rics penalize systems that perform poorly on ei-
ther task. All metrics are evaluated example-by-
example, and then averaged over examples in the
evaluation set.

The performance of our model on the bench-
mark settings is reported in Table 4, where all
numbers are obtained with strong supervision over
supporting facts. From the distractor setting to the
full wiki setting, expanding the scope of the con-
text increases the difficulty of question answering.
The performance in the full wiki setting is sub-
stantially lower, which poses a challenge to exist-
ing techniques on retrieval-based question answer-
ing. Overall, model performance in all settings
is significantly lower than human performance as
shown in Section 5.3, which indicates that more
technical advancements are needed in future work.

We also investigate the explainability of our
model by measuring supporting fact prediction
performance. Our model achieves 60+ support-
ing fact prediction F1 and ⇠40 joint F1, which in-
dicates there is room for further improvement in
terms of explainability.

In Table 6, we break down the performance
on different question types. In the distractor set-
ting, comparison questions have lower F1 scores

gold paragraphs plus 8 distractors.
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Setting Split Answer Sup Fact Joint

EM F1 EM F1 EM F1

distractor dev 44.44 58.28 21.95 66.66 11.56 40.86
distractor test 45.46 58.99 22.24 66.62 12.04 41.37

full wiki dev 24.68 34.36 5.28 40.98 2.54 17.73
full wiki test 25.23 34.40 5.07 40.69 2.63 17.85

Table 4: Main results: the performance of question answering and supporting fact prediction in the two benchmark
settings. We encourage researchers to report these metrics when evaluating their methods.

Set MAP Mean Rank Hits@2 Hits@10

dev 43.93 314.71 39.43 56.06
test 43.21 314.05 38.67 55.88

Table 5: Retrieval performance in the full wiki setting.
Mean Rank is averaged over the ranks of two gold para-
graphs.

Setting Br EM Br F1 Cp EM Cp F1

distractor 43.41 59.09 48.55 55.05
full wiki 19.76 30.42 43.87 50.70

Table 6: Performance breakdown over different ques-
tion types on the dev set in the distractor setting. “Br”
denotes questions collected using bridge entities, and
“Cp” denotes comparison questions.

than questions involving bridge entities (as defined
in Section 2), which indicates that better mod-
eling this novel question type might need better
neural architectures. In the full wiki setting, the
performance of bridge entity questions drops sig-
nificantly while that of comparison questions de-
creases only marginally. This is because both en-
tities usually appear in the comparison questions,
and thus reduces the difficulty of retrieval. Com-
bined with the retrieval performance in Table 5,
we believe that the deterioration in the full wiki
setting in Table 4 is largely due to the difficulty of
retrieving both entities.

We perform an ablation study in the distractor
setting, and report the results in Table 7. Both self-
attention and character-level models contribute
notably to the final performance, which is consis-
tent with prior work. This means that techniques
targeted at single-hop QA are still somewhat ef-
fective in our setting. Moreover, removing strong
supervision over supporting facts decreases per-
formance, which demonstrates the effectiveness of
our approach and the usefulness of the supporting
facts. We establish an estimate of the upper bound
of strong supervision by only considering the sup-
porting facts as the oracle context input to our

Setting EM F1

our model 44.44 58.28

– sup fact 42.79 56.19

– sup fact, self attention 41.59 55.19
– sup fact, char model 41.66 55.25

– sup fact, train-easy 41.61 55.12
– sup fact, train-easy, train-medium 31.07 43.61

gold only 48.38 63.58
sup fact only 51.95 66.98

Table 7: Ablation study of question answering perfor-
mance on the dev set in the distractor setting. “– sup
fact” means removing strong supervision over support-
ing facts from our model. “– train-easy” and “– train-
medium” means discarding the according data splits
from training. “gold only” and “sup fact only” refer
to using the gold paragraphs or the supporting facts as
the only context input to the model.

model, which achieves a 10+ F1 improvement over
not using the supporting facts. Compared with the
gain of strong supervision in our model (⇠2 points
in F1), our proposed method of incorporating sup-
porting facts supervision is most likely subopti-
mal, and we leave the challenge of better model-
ing to future work. At last, we show that combin-
ing all data splits (train-easy, train-medium, and
train-hard) yields the best performance, which is
adopted as the default setting.

5.3 Establishing Human Performance

To establish human performance on our dataset,
we randomly sampled 1,000 examples from the
dev and test sets, and had at least three additional
Turkers provide answers and supporting facts for
these examples. As a baseline, we treat the orig-
inal Turker during data collection as the predic-
tion, and the newly collected answers and support-
ing facts as references, to evaluate human perfor-
mance. For each example, we choose the answer
and supporting fact reference that maximize the F1
score to report the final metrics to reduce the effect
of ambiguity (Rajpurkar et al., 2016).
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Setting Answer Sp Fact Joint

EM F1 EM F1 EM F1

gold only 65.87 74.67 59.76 90.41 41.54 68.15
distractor 60.88 68.99 30.99 74.67 20.06 52.37

Human 83.60 91.40 61.50 90.04 52.30 82.55
Human UB 96.80 98.77 87.40 97.56 84.60 96.37

Table 8: Comparing baseline model performance with
human performance on 1,000 random samples. “Hu-
man UB” stands for the upper bound on annotator per-
formance on HOTPOTQA. For details please refer to
the main body.

As can be seen in Table 8, the original crowd
worker achieves very high performance in both
finding supporting facts, and answering the ques-
tion correctly. If the baseline model were provided
with the correct supporting paragraphs to begin
with, it achieves parity with the crowd worker
in finding supporting facts, but still falls short at
finding the actual answer. When distractor para-
graphs are present, the performance gap between
the baseline model and the crowd worker on both
tasks is enlarged to ⇠30% for both EM and F1.

We further establish the upper bound of human
performance in HOTPOTQA, by taking the maxi-
mum EM and F1 for each example. Here, we use
each Turker’s answer in turn as the prediction, and
evaluate it against all other workers’ answers. As
can be seen in Table 8, most of the metrics are
close to 100%, illustrating that on most examples,
at least a subset of Turkers agree with each other,
showing high inter-annotator agreement. We also
note that crowd workers agree less on supporting
facts, which could reflect that this task is inher-
ently more subjective than answering the question.

6 Related Work

Various recently-proposed large-scale QA datasets
can be categorized in four categories.

Single-document datasets. SQuAD (Rajpurkar
et al., 2016, 2018) questions that are relatively
simple because they usually require no more than
one sentence in the paragraph to answer.

Multi-document datasets. TriviaQA (Joshi
et al., 2017) and SearchQA (Dunn et al., 2017)
contain question answer pairs that are accompa-
nied with more than one document as the context.
This further challenges QA systems’ ability to
accommodate longer contexts. However, since the

supporting documents are collected after the ques-
tion answer pairs with information retrieval, the
questions are not guaranteed to involve interesting
reasoning between multiple documents.

KB-based multi-hop datasets. Recent datasets
like QAngaroo (Welbl et al., 2018) and COM-
PLEXWEBQUESTIONS (Talmor and Berant, 2018)
explore different approaches of using pre-existing
knowledge bases (KB) with pre-defined logic rules
to generate valid QA pairs, to test QA models’ ca-
pability of performing multi-hop reasoning. The
diversity of questions and answers is largely lim-
ited by the fixed KB schemas or logical forms.
Furthermore, some of the questions might be an-
swerable by one text sentence due to the incom-
pleteness of KBs.

Free-form answer-generation datasets. MS
MARCO (Nguyen et al., 2016) contains 100k user
queries from Bing Search with human generated
answers. Systems generate free-form answers
and are evaluated by automatic metrics such as
ROUGE-L and BLEU-1. However, the reliabil-
ity of these metrics is questionable because they
have been shown to correlate poorly with human
judgement (Novikova et al., 2017).

7 Conclusions

We present HOTPOTQA, a large-scale question
answering dataset aimed at facilitating the devel-
opment of QA systems capable of performing ex-
plainable, multi-hop reasoning over diverse nat-
ural language. We also offer a new type of fac-
toid comparison questions to test systems’ ability
to extract and compare various entity properties in
text.
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Montréal. PQ and CDM are supported by the Na-
tional Science Foundation under Grant No. IIS-
1514268. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the National Science Foundation.

2377



References
Danqi Chen, Adam Fisch, Jason Weston, and Antoine

Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Association for Computa-
tional Linguistics (ACL).

Christopher Clark and Matt Gardner. 2017. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 55th Annual Meeting
of the Association of Computational Linguistics.

Matthew Dunn, Levent Sagun, Mike Higgins, Ugur
Guney, Volkan Cirik, and Kyunghyun Cho. 2017.
SearchQA: A new Q&A dataset augmented with
context from a search engine. arXiv preprint
arXiv:1704.05179.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics.

Xiaodong Liu, Yelong Shen, Kevin Duh, and Jianfeng
Gao. 2018. Stochastic answer networks for ma-
chine reading comprehension. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. ParlAI: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Proceedings of
the 30th Annual Conference on Neural Information
Processing Systems (NIPS).

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
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A Data Collection Details
A.1 Data Preprocessing
We downloaded the dump of English Wikipedia of
October 1, 2017, and extracted text and hyperlinks
with WikiExtractor.8 We use Stanford CoreNLP
3.8.0 (Manning et al., 2014) for word and sen-
tence tokenization. We use the resulting sentence
boundaries for collection of supporting facts, and
use token boundaries to check whether Turkers are
providing answers that cover spans of entire to-
kens to avoid nonsensical partial-word answers.

A.2 Further Data Collection Details
Details on Curating Wikipedia Pages. To
make sure the sampled candidate paragraph pairs
are intuitive for crowd workers to ask high-quality
multi-hop questions about, we manually curate
591 categories from the lists of popular pages by
WikiProject.9 For each category, we sample (a, b)
pairs from the graph G where b is in the considered
category, and manually check whether a multi-hop
question can be asked given the pair (a, b). Those
categories with a high probability of permitting
multi-hop questions are selected.

Bonus Structures. To incentivize crowd work-
ers to produce higher-quality data more efficiently,
we follow Yang et al. (2018), and employ bonus
structures. We mix two settings in our data collec-
tion process. In the first setting, we reward the top
(in terms of numbers of examples) workers every
200 examples. In the second setting, the workers
get bonuses based on their productivity (measured
as the number of examples per hour).

A.3 Crowd Worker Interface
Our crowd worker interface is based on ParlAI
(Miller et al., 2017), an open-source project that
facilitates the development of dialog systems and
data collection with a dialog interface. We adapt
ParlAI for collecting question answer pairs by
converting the collection workflow into a system-
oriented dialog. This allows us to have more con-
trol over the turkers input, as well as provide turk-
ers with in-the-loop feedbacks or helpful hints to
help Turkers finish the task, and therefore speed
up the collection process.

Please see Figure 4 for an example of the worker
interface during data collection.

8https://github.com/attardi/
wikiextractor

9https://wiki.sh/y8qu

Supporting Paragraphs

Friendly Hints

Worker Input

Figure 4: Screenshot of our worker interface on Ama-
zon Mechanical Turk.
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Figure 5: Distribution of lengths of questions in HOT-
POTQA.

B Further Data Analysis

To further look into the diversity of the data in
HOTPOTQA, we further visualized the distribu-
tion of question lengths in the dataset in Figure
5. Besides being diverse in terms of types as is
show in the main text, questions also vary greatly
in length, indicating different levels of complexity
and details covered.

C Full Wiki Setting Details

C.1 The Inverted Index Filtering Strategy
In the full wiki setting, we adopt an efficient

inverted-index-based filtering strategy for prelim-
inary candidate paragraph retrieval. We provide
details in Algorithm 2, where we set the control
threshold N = 5000 in our experiments. For some
of the question q, its corresponding gold para-
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Algorithm 2 Inverted Index Filtering Strategy
Input: question text q, control threshold N , ngram-to-
Wikidoc inverted index D

Inintialize:
Extract unigram + bigram set rq from q
Ncand = +1

Cgram = 0
while Ncands > N do

Cgram = Cgram + 1
Set Soverlap to be an empty dictionary
for w 2 rq do

for d 2 D[w] do
if d not in Soverlap then

Soverlap[d] = 1
else

Soverlap[d] = Soverlap[d] + 1
end if

end for
end for
Scand = ;

for d in Soverlap do
if Soverlap[d] � Cgram then

Scand = Scand [ {d}

end if
end for
Ncands = |Scand|

end while
return Scand

graphs may not be included in the output candidate
pool Scand, we set such missing gold paragraph’s
rank as |Scand| + 1 during the evaluation, so MAP
and Mean Rank reported in this paper are upper
bounds of their true values.

C.2 Compare train-medium Split to Hard
Ones

Table 9 shows the comparison between train-
medium split and hard examples like dev and test
under retrieval metrics in full wiki setting. As
we can see, the performance gap between train-
medium split and its dev/test is close, which im-
plies that train-medium split has a similar level of
difficulty as hard examples under the full wiki set-
ting in which a retrieval model is necessary as the
first processing step.

Set MAP Mean Rank CorAns Rank

train-medium 41.89 288.19 82.76
dev 42.79 304.30 97.93
test 45.92 286.20 74.85

Table 9: Retrieval performance comparison on full wiki
setting for train-medium, dev and test with 1,000 ran-
dom samples each. MAP and are in %. Mean Rank
averages over retrieval ranks of two gold paragraphs.
CorAns Rank refers to the rank of the gold paragraph
containing the answer.
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Abstract

We present a new kind of question answering
dataset, OpenBookQA, modeled after open
book exams for assessing human understand-
ing of a subject. The open book that comes
with our questions is a set of 1326 elementary
level science facts. Roughly 6000 questions
probe an understanding of these facts and their
application to novel situations. This requires
combining an open book fact (e.g., metals con-
duct electricity) with broad common knowl-
edge (e.g., a suit of armor is made of metal) ob-
tained from other sources. While existing QA
datasets over documents or knowledge bases,
being generally self-contained, focus on lin-
guistic understanding, OpenBookQA probes a
deeper understanding of both the topic—in the
context of common knowledge—and the lan-
guage it is expressed in. Human performance
on OpenBookQA is close to 92%, but many
state-of-the-art pre-trained QA methods per-
form surprisingly poorly, worse than several
simple neural baselines we develop. Our or-
acle experiments designed to circumvent the
knowledge retrieval bottleneck demonstrate
the value of both the open book and additional
facts. We leave it as a challenge to solve the
retrieval problem in this multi-hop setting and
to close the large gap to human performance.

1 Introduction

Open book exams are a common mechanism
for assessing human understanding of a subject,
where test takers are allowed free access to a rel-
evant book, study guide, or class notes when an-
swering questions. In this context, the goal is not
to evaluate memorization but a deeper understand-
ing of the material and its application to new situa-
tions (Jenkins, 1995; Landsberger, 1996). The ap-
plication, in turn, often requires combining a fact
in the book (e.g., metals conduct electricity) with
additional common knowledge the test taker is ex-

Question:
Which of these would let the most heat travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat.

Science Fact:
Metal is a thermal conductor.

Common Knowledge:
Steel is made of metal.
Heat travels through a thermal conductor.

Figure 1: An example for a question with a given set
of choices and supporting facts.

pected to have acquired by this stage (e.g., a suit
of armor is made of metal).

Motivated by this setting, we present a new kind
of question answering dataset, OpenBookQA,1

that consists of two parts: Q, a set of 5957
multiple-choice questions, and F , a set of 1326 di-
verse facts about elementary level science. F has
three key characteristics of an ‘open book’: (a) it
forms the basis for generating Q; (b) it has been
deemed central to scientific explanations (Jansen
et al., 2018); and (c) by itself, F is generally in-
sufficient to answer questions in Q. Faced with a
question q 2 Q, a student or system S is expected
retrieve a relevant fact f 2 F , and appeal to their
own common knowledge, KS , when applying f to
answer q.

Figure 1 provides an example. Here, metals are
thermal conductors is a core scientific fact avail-
able in F . One way to apply this fact to decide
whether a steel spoon would let the most heat
travel through is to appeal to common knowledge
that steel is metallic and heat travels through ther-
mal conductors. In general, the expected common
knowledge is relatively simple (taxonomic facts,

1The dataset and the code for the models are available at
http://data.allenai.org/OpenBookQA.
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definitions, object properties, etc.); the difficulty
lies in identifying it and meaningfully combining
it with a core fact from F to answer the question.

OpenBookQA questions are challenging as they
require multi-hop reasoning with partial context
provided by F . Specifically, unlike existing
datasets for reading comprehension (RC), answer-
ing questions on the back of a textbook (TQA),2

as well as question answering over structured
knowledge-bases (KBQA), the open book F that
comes with OpenBookQA is not self-contained.
A successful system must therefore go beyond
the typical challenges such as paraphrase match-
ing and coreference resolution, without benefiting
from the canonicalized and complete information
in KBQA.

Generating interesting open book questions is
a difficult task. We used a multi-stage process
starting with F , using crowd-sourcing to generate
(noisy) questions based on F that probe novel sit-
uations, using an automatic filter to ensure hard-
ness for retrieval and association based systems,
using a crowd filter to ensure answerability by a
lay person, and further using an expert filter to en-
sure higher quality in Dev and Test sets.

We evaluate a number of existing QA systems
for science (without retraining) on OpenBookQA,
finding that they perform surprisingly close to the
random guessing baseline of 25%. Human perfor-
mance, on the other hand, is close to 92%.3

Motivated by recent findings of gameability of
NLP datasets (Gururangan et al., 2018), we also
develop and evaluate simple, attention-based, neu-
ral baselines including a plausible answer detector
(which ignores the question text completely) and
an odd-one-out solver. These highlight inevitable
human bias in any crowdsourced dataset, increas-
ing performance on OpenBookQA to 48%.

Building upon a recent neural model for incor-
porating external knowledge in the story cloze set-
ting (Mihaylov and Frank, 2018), we propose a
knowledge-aware neural baseline that can utilize
both the open book F and common knowledge re-
trieved from sources such as ConceptNet (Speer
et al., 2017). While retrieving the most useful
pieces of knowledge remains an open challenge,
our ‘oracle’ experiments with the fact f used while
generating a question q and an interpretation (by

2Only ⇠5% of the TQA questions of Kembhavi et al.
(2017) require additional common knowledge.

3To avoid ambiguity in the term ‘human performance’,
Section 3.2 describes the specific randomized model we use.

the question author) of the additional knowledge
k needed for q, provides valuable insight into the
nature of this dataset: Facts from the open book F
are valuable (5% improvement) but not sufficient.
Using both f and k increases the accuracy to 76%,
but is still far from human level performance, sug-
gesting the need for non-trivial reasoning to com-
bine these facts.

To encourage further research on this new task,
for each Train and Dev question q, OpenBookQA
also includes f as intermediate supervision signal,
which may be viewed as a partial explanation for
q. We leave closing the large gap to human perfor-
mance as a challenge for the NLP community.

2 Related Work

By construction, answering OpenBookQA ques-
tions requires (i) some base science facts from
a provided ‘open book’, (ii) broader understand-
ing about the world (common or commonsense
knowledge), and (iii) an ability to combine these
facts (reasoning). This setup differs from several
existing QA tasks, as summarized below.

Reading Comprehension (RC) datasets have
been proposed as benchmarks to evaluate the abil-
ity of systems to understand a document by an-
swering factoid-style questions over this docu-
ment. These datasets have taken various forms:
multiple-choice (Richardson et al., 2013), cloze-
style (Hermann et al., 2015; Onishi et al., 2016;
Hill et al., 2016), and span prediction (Rajpurkar
et al., 2016; Trischler et al., 2017; Joshi et al.,
2017) However, analysis (Chen et al., 2016; Sug-
awara et al., 2017) of these datasets has shown that
many of the questions can be solved with context
token matching (Chen et al., 2017a; Weissenborn
et al., 2017) or relatively simple paraphrasing.

To focus on the more challenging problem
of reasoning across sentences, new datasets
have been proposed for multi-step RC. QAnga-
roo (Welbl et al., 2018) have used a knowledge-
base to identify entity pairs (s, o) with a known
relation, r, which is also supported by a multi-
hop path in a set of documents. They use struc-
tured tuple queries (s, r, ?) and use all the docu-
ments along the path as the input passage. Nar-
rativeQA (Kociský et al., 2017) is an RC dataset
that has been shown to require an iterative reason-
ing about the narrative of a story. Similar to Open-
BookQA, the questions were generated to ensure
that the answer is not a direct match or paraphrase
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that can be retrieved with an IR approach. Most
recently, Khashabi et al. (2018) proposed Mul-
tiRC, a multiple-choice RC dataset that is de-
signed to require multi-sentence reasoning and can
have multiple correct answers. Again, like most
RC datasets, it is self-contained.

Tasks with external knowledge. While many
of the RC datasets could benefit from common-
sense or background knowledge, they are designed
to be self-contained, i.e., solvable by the document
context alone. Datasets such as the Story Cloze
Test (Mostafazadeh et al., 2016), MCScript,4 and
ProPara (Mishra et al., 2018) do require addi-
tional domain knowledge about everyday events,
scripts, and processes, respectively. However,
these datasets need domain-specific modeling of
events, whereas OpenBookQA appeals to broad
common knowledge cutting across a variety of
types and topics.

Stasaski and Hearst (2017) explore the creation
of multi-hop questions and propose generating
stronger distractors for the multiple-choice setting.
Their work, however, starts with structured knowl-
edge, specifically a Biology ontology.

Lastly, many Science Question Answering
datasets (e.g. Clark et al., 2016, 2018) have been
released that need broad external knowledge to
answer the questions. However, these questions
are not associated with a core set of facts, i.e., an
“open book” used to define these questions. As
a result, the questions vary widely in style and
complexity (Clark et al., 2018). In contrast, Open-
BookQA focuses on a more well-defined subset of
science QA, appealing to one core fact from the
open book and one (or few) relatively simple com-
monly known supporting facts.

3 OpenBookQA Dataset

The OpenBookQA dataset consists of about 6,000
4-way multiple-choice questions, each associated
with one core fact from a “book” F of 1326 such
facts, and an auxiliary set K of about 6000 ad-
ditional facts. The questions were created via a
multi-stage crowdsourcing and partial expert fil-
tering process, discussed in Section 3.1.

The small “book” F consists of recurring sci-
ence themes and principles, each of which can be
(and here is) instantiated into multiple questions.

4SemEval-2018 Task 11: Machine Comprehension using
Commonsense Knowledge https://competitions.
codalab.org/competitions/17184

For F , we use a subset of the WorldTree corpus
which Jansen et al. (2018) have analyzed for suf-
ficiency for elementary level science. The subset
we use is taken from the 2287 WorldTree facts that
were marked as “central” by the original authors
in at least one explanation. We further filter them
down to 1326 that appear general enough to be ap-
plicable to multiple situations.

OpenBookQA additionally requires broad com-
mon knowledge, which is expected to come from
large corpora, such as ConceptNet, Wikipedia, or
a corpus with 14M science-related sentences used
by some existing baselines. The crowdsourcing
process below also asks workers to mark a second
fact, k, needed for each question q, in addition to
f . These second facts, unfortunately, were often
incomplete, over-complete, or only distantly re-
lated to q. We thus include in OpenBookQA the
set K of such second facts only as auxiliary data
for optional use. We emphasize that K should not
be viewed as ‘gold’ additional facts, or as a substi-
tute for broad common knowledge.

3.1 Crowdsourcing Process

The overall question generation and filtering
pipeline is summarized in Figure 2. Given the
“book” F of core facts, the process proceeds as
follows, starting with an empty question set Qs
and an empty ‘second facts’ set K:

1. A crowd-worker5 w is shown a random sci-
ence fact f from the set F .

2. w is asked to think of a second common fact,
k, that may be combined with f to derive a new,
valid assertion s.

3. w then converts s into a question-answer pair
and extends this into a 4-way multiple choice
question by adding 3 incorrect answer choices,
qmc = (q, {c1, c2, c3, c4}), where one of the ci’s
is the unique correct answer.

4. The system verifies qmc passes basic checks
such as uniformity of answer choices.6

5. w then feeds the multiple-choice question qmc

to an information retrieval solver (Clark et al.,

5 We used Amazon Mechnical Turk, with workers from
North America and with a ‘masters’ level qualification.

6Specifically, it looks for: 1) exactly 4 answer choices; 2)
no negation words to trivially fool baselines (no, none, not,
isn’t, doesn’t, aren’t, don’t, won’t, except, can’t, shouldn’t,
wouldn’t, couldn’t, mustn’t); 3) uniform answer choice
length: all with at most 3 or at least 4 words.
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Figure 2: OpenBookQA question generation pipeline

2016) and a word association based solver (Tur-
ney, 2017), and verifies that (a) neither of them an-
swers qmc correctly and (b) the top 3 IR retrieved
sentences are insufficient to answer qmc; if not, the
question is edited and re-tried.

6. Question qmc is then shown to 5 new crowd-
workers, who are asked to answer it.

7. If at least 4 out of 5 workers answer qmc cor-
rectly, it is deemed answerable and the process
continues. If not, qmc is discarded.

8. The answer choices of qmc are randomly shuf-
fled to avoid unintended bias.7

9. qmc is associated with f as the core science
fact and added to the question set Q. k is added to
the set K of additional (noisy) facts.

The Dev and Test splits were further filtered by
an in-house expert to ensure higher quality.

3.2 Human Performance
To assess human accuracy on this dataset, we con-
sider the following model: Each question q 2 Q
has some (unknown) human accuracy pq, defined
as the probability that a random human subject,
chosen uniformly from a large pool H, would
answer q correctly. Thus, we can think of this
as defining a Bernoulli random variable, Xq ⇠
B(pq), whose mean is (unknown) pq. The aver-
age human accuracy on Q under this model is:

H(Q) =
1

|Q|
X

q2Q
pq

where {pq | q 2 Q} are unknown.
With H as the set of crowd-workers (cf. Foot-

note 5), step 6 of the above question generation
7Choice ‘A’ was the correct answer in 69% of the ques-

tions at the end of Step 4.

process is equivalent to obtaining 5 independent
samples, Xq,i, i 2 I, |I| = 5, from B(pq). We
must, however, be careful when using this data to
estimate pq, as the same 5 samples were used to
decide whether q makes it into the question set Q
or not. For instance, if we had kept only those
questions that all 5 workers answered correctly, it
would clearly be inaccurate to claim that the hu-
man accuracy on Q is 100%. Nevertheless, it is
possible to re-use the judgments from Step 6 to
approximate H(Q) with high confidence, without
posing the questions to new workers.

Intuitively, if all questions in Q were difficult
to answer (i.e., all pq were small), it would be un-
likely that all |Q| questions would pass the test in
Step 6. We can use the contrapositive of this obser-
vation to conclude that pq, on average, must have
been high for q 2 Q.

Formally, aggregating across all questions gives
the following empirical estimate of H(Q):

H̃(Q) =
1

|Q|
X

q2Q

1

|I|
X

i2I

Xq,i

=
1

|Q||I|
X

q2Q,i2|I|
Xq,i

For analysis, we assume all samples Xq,i are in-
dependent, i.e., every answer is obtained indepen-
dently.8 An application of Hoeffding’s Inequal-
ity (Hoeffding, 1963) shows that H̃(Q) converges
to H(Q) very rapidly as n = |Q||I| grows; specif-
ically, H̃(Q)  H(Q)+ t with probability at least
1�exp(�2nt2); similarly for H̃(Q) � H(Q)�t.
In our Dev and Test sets, where |Q| = 500 and
|I| = 5, this translates into H(Q) being at least

8Realistically, there is some dependence across questions
as a single worker may answer multiple questions. We leave
a formal analysis of this setting as future work.
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OpenBookQA Statistics
# of questions 5957
# of choices per question 4
Avg. question sentences 1.08 (6)
Avg. question tokens 11.46 (76)
Avg. choice tokens 2.89 (23)
Avg. science fact tokens 9.38 (28)
Vocabulary size (q+c) 11855
Vocabulary size (q+c+f) 12839
Answer is the longest choice 1108 (18.6%)
Answer is the shortest choice 216 (3.6%)

Table 1: Statistics for full OpenBookQA dataset. Par-
enthetical numbers next to each average are the max.

H̃(Q) � 3% with probability over 98.8% and at
least H̃(Q) � 2.5% with prob 95.6%; we report
the former as our conservative estimate on human
performance.

3.3 Question Set Analysis
OpenBookQA consists of 5957 questions, with
4957/500/500 in the Train/Dev/Test splits.9 Ta-
ble 1 summarizes some statistics about the full
dataset. Each question has exactly four answer
choices and one associated fact used in the cre-
ation process. We report the average length of
questions, candidate choices, and associated facts,
as well as how often is the longest/shortest choice
the correct one.

We analyzed 100 questions in the Train set to
capture the kind of common knowledge and rea-
soning needed. For each, we wrote down the addi-
tional common knowledge needed to answer this
question in addition to the original science fact. In
21% of the cases, the crowdsourced question ac-
tually tests for a fact that doesn’t necessarily need
the original science fact. For example, the ques-
tion: “On a rainy day the clouds are (A) low (B)
white (C) small (D) gray” was written based on
the science fact “clouds produce rain” but doesn’t
need this fact to answer it. We ignore such ques-
tions in our analysis. For the remaining ques-
tions, we categorized the additional facts into five
high-level categories (and collapsed the remain-
ing facts into a catch-all OTHERS category) based
on previous approaches on similar science ques-
tions (Clark et al., 2018; Jansen et al., 2016):

1. ISA: Basic taxonomic facts such as isa(tree,
9Overall, 8140 questions were collected, of which 2183

were discarded in crowdsourcing Step 7.

Fact Type % Questions % Facts
PROPERTY 29.11% 25.81%
ISA 20.25% 17.20%
BASIC 17.72% 19.35%
DEFINITION 17.72% 15.05%
CAUSAL 11.39% 9.68%
OTHERS 13.92% 12.90%

Table 2: Percentage of questions and facts for the five
most common type of additional facts. Note that %
Questions does not add up to 100% since we count the
percentage of questions where at least one such fact is
needed.

living thing), isa(granite, rock).
2. PROPERTY: Properties of objects such as

madeof(belt buckle, metal), has(mammals,
four legs), contains(lemon juice, citric acid).

3. DEFINITION: Definitions of objects that may
be based on their appearance (tape is a plastic
with markings), working mechanism (tele-
scope is a device that uses mirrors to view
objects), etc.

4. CAUSAL: Causal facts such as causes(adding
lemon juice to milk, milk to break down).

5. BASIC: General scientific fact that did not fit
above, e.g. squirrels eat nuts for food.

Table 2 presents the proportions of these facts
in our analyzed question set. For each type of
fact, we calculate the percentage of questions that
need at least one such fact (shown as % Ques-
tions). We also calculate the overall percentage
of each fact type across all the common knowl-
edge facts (shown as % Facts). Most of our ques-
tions need simple facts such as isa knowledge and
properties of objects, further confirming the need
for simple reasoning with common knowledge.
Apart from these five major categories of facts,
the catch-all OTHERS category contains common-
sense facts (e.g., it is dark at night), world knowl-
edge (e.g., Japan is often hit by earthquakes) and
lexical rewrites10 (e.g., ad infinitum means over
and over).

Most of our questions need simple facts that
should be easily retrievable from any knowledge-
base/textual corpora. On an average, each ques-
tion needed 1.16 additional facts ignoring any lin-
guistic variations. Despite the simplicity of the
knowledge needed for these questions, as we show

10Of course, every question had lexical variations. We
marked it when this was the only change to the core fact.
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empirically, most baseline approaches achieve a
relatively low score on this dataset (even when
the core fact is provided). We claim that this is
due to the fact that the reasoning needed to answer
these questions is non-trivial. Table 3 shows few
questions with the associated facts and high-level
reasoning needed to answer these questions. As-
suming a model can extract the described relations
(e.g. defn, contains), the QA system still needs to
be able to chain these facts together, identify the
resulting relation and verify its expression for each
choice. In the extreme case (as shown in the last
example), even though only one additional fact is
needed to answer the question, it needs a system
to apply the core “general” science fact to a “spe-
cific” situation.

4 Baseline Models

We evaluate the performance of several baselines
systems on the Dev and Test subsets of Open-
BookQA. For each question, a solver receives 1
point towards this score if it chooses the correct
answer, and 1/k if it reports a k-way tie that
includes the correct answer. The “Guess All”
baseline, which always outputs a 4-way tie, thus
achieves a score of 25%, same as the expected per-
formance of a uniform random baseline.

4.1 No Training, External Knowledge Only

Since OpenBookQA is a set of elementary level
science questions, one natural baseline category
is existing systems that have proven to be effec-
tive on elementary- and middle-school level sci-
ence exams. These pre-trained systems, however,
rely only on their background knowledge and do
not take the set F of core facts into account. Fur-
ther, their knowledge sources and retrieval mecha-
nism are close to those used by the IR solver that,
by design, is guaranteed to fail on OpenBookQA.
These two aspects place a natural limit on the ef-
fectiveness of these solvers on OpenBookQA, de-
spite their excellent fit for the domain of multiple-
choice science questions. We consider four such
solvers.

PMI (Clark et al., 2016) uses pointwise mutual
information (PMI) to score each answer choice us-
ing statistics based on a corpus of 280 GB of plain
text. It extracts unigrams, bigrams, trigrams, and
skip-bigrams from the question q and each answer
choice ci. Each answer choice is scored based on
the average PMI across all pairs of question and

answer n-grams.
TableILP (Khashabi et al., 2016) is an Integer

Linear Programming (ILP) based reasoning sys-
tem designed for science questions. It operates
over semi-structured relational tables of knowl-
edge. It scores each answer choice based on the
optimal (as defined by the ILP objective) “sup-
port graph” connecting the question to that an-
swer through table rows. The small set of these
knowledge tables, however, often results in miss-
ing knowledge, making TableILP not answer 24%
of the OpenBookQA questions at all.

TupleInference (Khot et al., 2017), also
an ILP-based QA system, uses Open IE tu-
ples (Banko et al., 2007) as its semi-structured rep-
resentation. It builds these subject-verb-object tu-
ples on-the-fly by retrieving text for each question
from a large corpus. It then defines an ILP pro-
gram to combine evidence from multiple tuples.

DGEM (Khot et al., 2018) is a neural entail-
ment model that also uses Open IE to produce a
semi-structured representation. We use the adap-
tation of this model to multiple-choice question
answering proposed by Clark et al. (2018), which
works as follows: (1) convert q and each ci into
a hypothesis, hi, and each retrieved fact into a
premise pj ; and (2) return the answer choice with
the highest entailment score, arg maxi e(pj , hi).

4.2 No Training; F and Extr. Knowledge

We also consider providing the set F of core
facts to two existing solvers: the IR solver of
Clark et al. (2016) (to assess how far simple word-
overlap can get), and the TupleInference solver.

4.3 Trained Models, No Knowledge

We consider several neural baseline models that
are trained using Train set of OpenBookQA. For
ease of explanation, we first define the notation
used in our models. For a given question qmc =
(q, {c1, c2, c3, c4}), we define the set of token se-
quences , S = {q, c1, c2, c3, c4}. For each token
sequence s 2 S , ws

j is the jth and es
j = Emb(ws

j )
is the embedding for this token. We use ns to
indicate the number of tokens in s and d for the
dimensionality of the embeddings.11 We model
multiple-choice QA as multi-class classification:
Given qmc, predict one of four class labels L =

11For all experiments we use d = 300 GloVe (Pennington
et al., 2014) embeddings pre-trained on 840B tokens from
Common Crawl (https://nlp.stanford.edu/projects/glove/).
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Question Science Fact Common Knowledge
(Type)

Reasoning
Challenge

What is the most likely to be an effect of acid rain
on an aquatic environment? (A) increase in plant
growth (B) increase in fish population (C)
decrease in plant life (D) cleaner and clearer water

acid rain has a
negative impact on
water quality

decrease in water
quality leads to a
decrease in aquatic life
(CAUSAL)

causes(x, y) ^

causes(y, z) )

causes(x, z)

The moon’s surface (A) is smooth on the entire
surface (B) contains an internal core of cheese (C)
is filled with lakes (D) contains large cavities
cause by explosions

the moon’s surface
contains many
craters

Craters are large
cavities caused by
explosions
(DEFINITION)

contains(x, y) ^

defn(y, z) )

contains(x, z)

As a car approaches you in the night (A) the
headlights remain at a constant (B) the headlights
turn off (C) the headlights become more intense
(D) the headlights recede into the dark

as a source of light
becomes closer,
that source will
appear brighter

Headlights of a car are
source of light
(PROPERTY)

[lhs ) rhs] )

[ground(lhs) )

ground(rhs)]

Table 3: Example training questions (with their correct choices marked) along with the facts and reasoning
needed. In the last example, the science fact states that lhs=“source of light becomes closer” implies rhs=“source
will appear brighter”. Grounding this rule based on the common-knowledge fact, produces a new rule: “As head-
lights of the car come closer, headlights will appear brighter”

{1, 2, 3, 4}, where the true label is the correct an-
swer index.

Embeddings + Similarities as Features. We
first experiment with a simple logistic regression
model (Mihaylov and Nakov, 2016; Mihaylov and
Frank, 2016, 2017) that uses centroid vectors remb

s

of the word embeddings of tokens in s, and then
computes the cosine similarities between the ques-
tion and each answer choice, rcos

q,ci
:

remb
s =

1

ns

nsX

j=1

esj 2 R
d

rcos
q,ci

= cos(remb
q , remb

ci
) 2 R

1

For each training instance, we build a feature rep-
resentations ~f by concatenating these vectors and
train an L2 logistic regression classifier:

~f = [remb
q ; remb

c1..4
; rcos

q,c1..4
] 2 R

5d+4

BiLSTM Max-Out Baselines. As a simple
neural baseline, we adapt BiLSTM max-out
model (Conneau et al., 2017) to our QA task. That
is, we first encode the question tokens and choice
tokens ws

1...ns
, independently with a bi-directional

context encoder (LSTM) to obtain a context (ctx)
representation hctx

s1...ns
= BiLSTM(es

1...ns
) 2

R
ns⇥2h Next, we perform an element-wise aggre-

gation operation max on the encoded representa-
tions hctx

s1..ns
to construct a single vector:

rctx
s = max(hctx

s1..ns
) 2 R

2h. (1)

Given the contextual representations for each
token sequence, we experiment with three config-
urations for using these representations for QA:

(a) Plausible Answer Detector. This baseline
goes to the extreme of completely ignoring q and
trying to learn how plausible it is for ci to be the
correct answer to some question in this domain.
This captures the fact that certain choices like ‘a
magical place’ or ‘flying cats’ are highly unlikely
to be the correct answer to a science question with-
out negation (which is the case for OpenBookQA).

We implement a plausible answer detector us-
ing a choice-only model for predicting the an-
swer by obtaining a score ↵ci as: ↵ci =
W T

c rctx
ci

2 R
1, where W T

c 2 R
2h is a

weights vector optimized during training, i =
{1..4} is the index of the choice. To ob-
tain the answer choice from the set of choice
scores ↵c1..4 using arg max(softmax(↵c1..4)),

where softmax(↵ci) =
exp(↵ci )P4

j=1 exp(↵cj )
as usual.

(b) Odd-One-Out Solver. It considers all 4 an-
swer options jointly and selects the one that is least
similar to the others. This captures bias in human
authored questions arising from the fact that cre-
ating good quality incorrect answers is difficult.
Workers generally start with the correct answer,
and then come up with three incorrect ones. The
latter often tend to be homogeneous or share other
common properties (e.g., non-scientific terms) un-
characteristic of the correct answer.

We implement this using a choice-to-choices at-
tention model. For each choice ci, we calculate the
attention to the other choices as ↵ci,cj . We then
sum these attention values to compute the atten-
tion for ci to the rest of the choices, ↵ci2cr(est)

, and
return the choice with the lowest sum. The atten-
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tion is computed as ↵ci,cj = Att(rctx
ci

, rctx
cj

) where

Att(u, v) = W T ([u; v; u · v; |u � v|]) 2 R
1

is a linear attention function and W 2 R
8h is

a weight vector. We then compute ↵ci2cr(est)
=

P4
j=1 ↵ci,cj (j 6= i) and select the answer with the

index ac2cr = arg min(softmax(↵c1..42cr)).

(c) Question Match. This solver tries to predict
which choice best matches the question (Nakov
et al., 2016), without relying on external knowl-
edge. To achieve that, we compute an attention
score ↵q,ci between q and each of the choices qi as
↵q,ci = Att(rctx

q , rctx
ci

), and select the one with the
highest score. We also experiment with a model
where rctx

q and rctx
ci

are obtained using token-wise
interaction proposed in ESIM (Chen et al., 2017b).

4.4 Trained Model with External Knowledge
Lastly, we implement a two stage model for in-
corporating external common knowledge, K. The
first module performs information retrieval on K
to select a fixed size subset of potentially relevant
facts KQ,C for each instance in the dataset (see
Appendix A). The second module is a neural net-
work that takes (Q, C, KQ,C) as input to predict
the answer aq,c to a question Q from the set of
choices C.

Knowledge-Enhanced Reader. As a base
knowledge-aware model, we use a variant of
the model of Mihaylov and Frank (2018), im-
plemented by extending our BiLSTM max-out
question-match baseline (c). For each instance
the model reads the question q and answers
c1..4 independently and attends to the set of
retrieved external knowledge facts KQ,C . We
encode each fact kj from KQ,C = k1..Nk (Nk

is the number of facts) with same BiLSTM
as used for q and c1..4 and construct a single
vector rctx

kj
2 R

2h using Eq. 1. Having such
representations for each kj results in knowledge
memory matrix Mk = rctx

k1..Nk
2 R

Nk⇥2h. Note
that Mk is dynamic memory, specific for each
instance in the batch and is encoded in each
step during training. This memory is used to
calculate a knowledge-aware representation,
rkn
s =

P
((MT

k rctx
s ).Mk) 2 R

2h. Each context
(ctx) representation rctx

s (s 2 S) is combined with
rkn
s to obtain a knowledge-enhanced representa-

tion rctx+kn
s = (rctx

s + rkn
s )/2. We then model

the knowledge-enhanced attention ↵kn
q,ci

between

Solver Dev Test

Human solver 89.3* 91.7*
Guess All (“random”) 25.0 25.0

NO TRAINING, KB ONLY (§4.1)
TupleInference 15.9 17.9
PMI (Waterloo corpus) 19.7 21.2
TableILP 20.0 23.4
DGEM 27.4 24.4

NO TRAINING, KB + F (§4.2)
IR with F 25.5 24.8
TupleInference with F 23.6 26.6
DGEM with F 28.2 24.6

TRAINED MODELS, NO F OR KB (§4.3)
Embedd+Sim 44.6 41.8
ESIM 53.9±0.4 48.9±1.1
Plausible Answer Detector 54.4±0.7 49.6±0.7
Odd-one-out Solver 56.9±0.5 50.2±1.6
Question Match 54.6±1.2 50.2±0.9

ORACLE MODELS, F AND/OR KB (§4.4)
f 63.0±2.3 55.8±2.3
f + WordNet 57.6±1.4 56.3±1.3
f + ConceptNet 57.0±1.6 53.7±1.5
f + k 80.2±1.1 76.9±0.7

Table 4: Scores obtained by various solvers on Open-
BookQA, reported as a percentage ± the standard devi-
ation across 5 runs with different random seeds. Other
baselines are described in the corresponding referenced
section. For oracle evaluation, we use the gold science
fact f associated with each question, and optionally the
additional fact k provided by the question author. Bold
denotes the best Test score in each category.

q and ci as a linear combination of the ctx, kn and
ctx + kn representations as

↵q,ci = W T [Att(rctx
s , rctx

ci
); Att(rkn

s , rkn
ci

);

Att(rctx+kn
s , rctx

ci
); Att(rctx

s , rctx+kn
ci

);

Att(rctx
s , rkn

ci
); Att(rkn

s , rctx
ci

);

Att(rctx+kn
s , rkn

ci
); Att(rkn

s , rctx+kn
ci

);

Att(rctx+kn
s , rctx+kn

ci
)],

where W 2 R
9 is a weight vector initialized with

the ones vector and optimized during training. We
then select the answer ci with the highest score.

5 Baseline Performance

The results for various baseline models are sum-
marized in Table 4, grouped by method category.
We make a few observations:

First, the task is largely solvable by a lay-
person, as evidenced by the 92% score of crowd-
workers. This is measured as described in Sec-
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tion 3.2. We use annotations from Step 6 of the
question generation process and report H̃(Q)�3%
as a conservative lower estimate. As an additional
assessment, we also obtained 5 new annotations
for 100 randomly chosen questions from each of
Train, Dev, and Test sets. The performance re-
mained similar at 88.6%, 90.2%, and 91.6%, resp.

The second group shows that pre-trained
state-of-the-art solvers for multiple-choice science
questions perform poorly. One explanation is their
correlation with the the IR method used for ques-
tion filtering, as mentioned in Section 4.1.

The third group of results suggests that adding
F to pre-trained models has a mixed effect, im-
proving TupleInference by 8.7% but not changing
DGEM.12 Unlike DGEM, TupleInference relies
on brittle word-overlap similarity measures very
similar to the ones used by IR. Since IR (KB) gets
0% by design, TupleInference (KB) also has poor
performance and adding F helps it find better sup-
port despite the brittle measures.

The fourth group demonstrates that carefully
designed trainable neural models—even if sim-
plistic and knowledge-free—can be surprisingly
powerful. For example, the “plausible answer
detector” can predict the correct answer with
49.6% accuracy without even looking at the ques-
tion. The “odd-one-out” solver, by considering
other answer choices, raises this to 50.2%. The
“question match” solver, which simply compares
the BiLSTM max-out encoding of the question
with that of various answer choices, also achieves
50.2%.13 Similar findings have been reported for
several recent datasets (Gururangan et al., 2018),
making it imperative to perform such tests early.

Interestingly, all of these neural knowledge-free
baselines simultaneously succeed on 34.4% of the
Dev questions, and simultaneously fail on 23.6%.
For Question Match and ESIM we also experi-
ment with ElMo (Peters et al., 2018) which im-
proved their score on Test with 0.4% and 1.8%.

The final group demonstrates the need for ex-
ternal knowledge and deeper reasoning. When the
“oracle” science fact f used by the question author
is provided to the knowledge-enhanced reader,

12By design, IR with its default corpus gets 0% on Open-
BookQA. Hence we don’t consider the effect of adding F ,
which appears artificially magnified.

13This model also achieves the current best score, 33.87%,
on the ARC Reasoning Challenge (Clark et al., 2018).
When adapted for the textual entailment task by comparing
BiLSTM max-out encodings of premise and hypothesis, it
achieves 85% on the SciTail dataset (Khot et al., 2018).

it improves over the knowledge-less models by
about 5%. However, there is still a large gap,
showing that the core fact is insufficient to answer
the question. When we also include facts retrieved
from WordNet (Miller et al., 1990), the score im-
proves by about 0.5%. Unlike the WordNet gain,
adding ConceptNet (Speer et al., 2017) introduces
a distraction and reduces the score. This suggests
that ConceptNet is either not a good source of
knowledge for our task, or only a subset of its
relations should be considered. Overall, external
knowledge helps, although retrieving the right bits
of knowledge remains difficult. In the last row of
Table 4, we use the oracle core fact along with
question author’s interpretation of the additional
fact k. This increases the scores substantially, to
about 76%. This big jump shows that improved
knowledge retrieval should help on this task. At
the same time, we are still not close to the hu-
man performance level of 92% due to various rea-
sons: (a) the additional fact needed can be sub-
jective, as hinted at by our earlier analysis; (b)
the authored facts K tend to be noisy (incomplete,
over-complete, or only distantly related), also as
mentioned earlier; and (b) even given the true gold
facts, performing reliable “reasoning” to link them
properly remains a challenge.

Sample predictions and analysis of questions
from Dev are provided in Appendix D.

6 Conclusion

We present a new dataset, OpenBookQA, of about
6000 questions for open book question answering.
The task focuses on the challenge of combining a
corpus of provided science facts (open book) with
external broad common knowledge. We show that
this dataset requires simple common knowledge
beyond the provided core facts, as well as multi-
hop reasoning combining the two. While simple
neural methods are able to achieve an accuracy of
about 50%, this is still far from the human perfor-
mance of 92% on this task. We leave closing this
gap for future research, and illustrate, via oracle-
style experiments, the potential of better retrieval
and reasoning on this task.
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T. Kociský, J. Schwarz, P. Blunsom, C. Dyer, K. M.
Hermann, G. Melis, and E. Grefenstette. 2017.
The NarrativeQA reading comprehension challenge.
CoRR, abs/1712.07040.

J. Landsberger. 1996. Study guides and strategies.
Http://www.studygs.net/tsttak7.htm.

T. Mihaylov and A. Frank. 2016. Discourse relation
sense classification using cross-argument semantic
similarity based on word embeddings. In CoNLL-
16 shared task, pages 100–107.

T. Mihaylov and A. Frank. 2017. Story Cloze Ending
Selection Baselines and Data Examination. In LSD-
Sem Shared Task.

T. Mihaylov and A. Frank. 2018. Knowledgeable
Reader: Enhancing Cloze-Style Reading Compre-
hension with External Commonsense Knowledge.
In ACL, pages 821–832.

T. Mihaylov and P. Nakov. 2016. SemanticZ at
SemEval-2016 Task 3: Ranking relevant answers in
community question answering using semantic sim-
ilarity based on fine-tuned word embeddings. In Se-
mEval ’16.

2390



G. A. Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller. 1990. Introduction to WordNet: An on-
line lexical database. International Journal of Lexi-
cography, 3(4):235–244.

B. D. Mishra, L. Huang, N. Tandon, W. tau Yih, and
P. Clark. 2018. Tracking state changes in procedu-
ral text: A challenge dataset and models for process
paragraph comprehension. In NAACL.

N. Mostafazadeh, N. Chambers, X. He, D. Parikh,
D. Batra, L. Vanderwende, P. Kohli, and J. Allen.
2016. A Corpus and Evaluation Framework for
Deeper Understanding of Commonsense Stories. In
NAACL.
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Abstract
We propose a new dataset for evaluating ques-
tion answering models with respect to their ca-
pacity to reason about beliefs. Our tasks are
inspired by theory-of-mind experiments that
examine whether children are able to reason
about the beliefs of others, in particular when
those beliefs differ from reality. We evaluate
a number of recent neural models with mem-
ory augmentation. We find that all fail on our
tasks, which require keeping track of inconsis-
tent states of the world; moreover, the models’
accuracy decreases notably when random sen-
tences are introduced to the tasks at test.1

1 Reasoning About Beliefs
Possessing a capacity similar to human reasoning
has been argued to be necessary for the success
of artificial intelligence systems (e.g., Levesque
et al., 2011). One well-studied domain that re-
quires reasoning is question answering, where
simply memorizing and looking up information is
often not enough to correctly answer a question.
For example, given the very simple scenario in Ta-
ble 1, searching for the word “Mary” and returning
a nearby word is not a correct strategy; instead, a
model needs to recognize that Mary is currently at
the second location (office and not the bathroom).

Recent research has focused on developing
neural models that succeed in such scenarios
(Sukhbaatar et al., 2015; Henaff et al., 2017). As a
benchmark to evaluate these models, Weston et al.
(2016) released a dataset – Facebook bAbi – that
provides a set of toy tasks, each examining a spe-
cific type of reasoning. For example, the scenario
in Table 1 evaluates the capacity to reason us-
ing a single supporting fact. However, the bAbi
tasks are already too simple for the current mod-
els. Only a few years after their release, existing

1 Code to generate dataset and replicate results is available
at github.com/kayburns/tom-qa-dataset.

models fail at only one or two (out of 20) tasks
(Rae et al., 2016; Santoro et al., 2017). Moreover,
all except two of the reasoning tasks in this dataset
only require transitive inference (Lee et al., 2016).

Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.
Where is Mary? A: office

Table 1: A task from the bAbi dataset (Weston et al., 2016).

People reason not just about their own obser-
vations and beliefs but also about others’ mental
states (such as beliefs and intentions). The capac-
ity to recognize that others can have mental states
different than one’s own – theory of mind – marks
an important milestone in the development of chil-
dren and has been extensively studied by psychol-
ogists (for a review, see Flavell, 2004). Artifi-
cial intelligence (AI) systems will also require a
similar reasoning capacity about mental states as
they are expected to be able to interact with peo-
ple (e.g., Chandrasekaran et al., 2017; Grant et al.,
2017; Rabinowitz et al., 2018).

However, the bAbi dataset does not include
tasks that evaluate a model’s ability to reason
about beliefs. Grant et al. (2017) created a bAbi-
style dataset inspired by an influential experiment
on the theory of mind called the Sally-Anne task
(e.g. Baron-Cohen et al., 1985). Their goal was
to examine whether the end-to-end memory net-
work (Sukhbaatar et al., 2015) can answer ques-
tions such as “where does Sally think the milk is?”
in situations that Sally’s belief about the location
of milk does not match the reality. For example,
Sally thinks that the milk is in the fridge but the
milk is actually on the table.

The dataset of Grant et al. (2017) provides
a first step in designing benchmarks to evaluate
the mental-state reasoning capacity of question-
answering models, but it is still limited in the
types of reasoning it probes. For example, it
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only considered first-order beliefs (e.g., Sally’s be-
lief about the location of milk). People also rea-
son about second-order (and higher-order) beliefs
(e.g., Anne’s belief about Sally’s belief about the
location of the milk). More importantly, similarly
to the bAbi dataset, success in each task is defined
as correctly answering one question. This does not
guarantee that a model has an understanding of the
state of the world; in fact, even in developmental
theory-of-mind experiments, children are asked a
few questions (e.g., “where is milk really?”) to
ensure that their correct answer reflects their un-
derstanding and is not simply due to chance.

In this paper, we address these shortcomings by
designing a new dataset that enables us to eval-
uate a model’s capacity to reason about different
types of beliefs as well as whether it maintains a
correct understanding of the world. To this end,
we evaluate a number of different models that per-
form well on the bAbi tasks: the end-to-end mem-
ory network (Sukhbaatar et al., 2015), the multiple
observer model (Grant et al., 2017), the recurrent
entity network (Henaff et al., 2017), and Relation-
Network (Santoro et al., 2017). We find that none
of these models succeed at our tasks, suggesting
that they are not able to keep track of inconsistent
states of the world, in particular when someone’s
belief does not match the history or reality of a sit-
uation.

2 Theory of Mind Experiments

Behavioral research shows that children gradually
develop a theory of mind (for a review, see Gopnik
and Astington, 1988). At the age of two, most chil-
dren have an understanding of others’ desires and
perceptions – if someone wants something, they
will try to get it and if something is in their sight,
they can see it. Children begin to understand oth-
ers’ beliefs around the age of three, but this under-
standing is still limited. For example, they might
not be able to reason that someone’s actions are a
result of their beliefs. By the age of five, most chil-
dren have a unified theory of mind and are able to
represent and reason about others’ desires, percep-
tions, and beliefs. Developmental psychologists
have designed various experimental paradigms to
examine to what extent children are able to reason
about others’ mental states. We use these exper-
iments as guidelines for designing tasks to evalu-
ate the reasoning capacity of question-answering
models. We first explain these experiments.

2.1 The Sally-Anne Experiment
The Sally-Anne false-belief experiment, proposed
by Baron-Cohen et al. (1985), examines children’s
ability to reason about others’ false beliefs, i.e.,
when someone’s belief does not match the real-
ity. In this experiment, the participants observe
two agents, Sally and Anne, with their containers,
a basket and a box. After putting a marble in her
basket, Sally leaves the room (and is not able to
observe the events anymore). After Sally’s depar-
ture, Anne moves the marble to her box. Then,
Sally returns to the room (see Figure 1). The par-
ticipants are asked the following questions:

• “Where will Sally look for her marble?”
(belief question)

• “Where is the marble really?”
(reality question)

• “Where was the marble in the beginning?”
(memory question)

The first question tests the participants’ ability
to reason about Sally’s belief about the location of
her marble. Interestingly, most children before the
age of 3 answer this question incorrectly and say
that Sally will look at the box (where the marble
really is) instead of the basket (where Sally thinks
the marble is). These children are not able to rea-
son about Sally’s belief which is different from the
reality of the world. The reality and memory ques-
tions are used to confirm that children’s correct an-
swer to the belief question is not due to chance;
but because they have a correct understanding of
the state of world and others’ beliefs.

Figure 1: The Sally-Anne experiment setup from Baron-
Cohen et al. (1985).

2.2 The Icecream Van Experiment
The Sally-Anne experiment examines the ability
to reason about another person’s belief or a first-
order belief. People are also able to reason about
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beliefs about beliefs, for example, Anne thinks
that Sally believes that the marble is in basket.
Perner and Wimmer (1985) performed a set of
experiments to examine children’s reasoning ca-
pacity about such higher-order beliefs. In their
set-up Mary and John together see an ice cream
van in the park, and the icecream man tells them
that he will be in the park until later in the af-
ternoon. Mary leaves the park and goes home.
A bit after she leaves, the icecream man decides
to leave the park and tells John that he is going
to the church. On his way to the church he runs
into Mary and informs her that he will be selling
icecreams close to the church all afternoon. The
participants are then asked the following second-
order question: “Where does John think Mary
goes to get icecream?” Note that John does not
know that Mary has been told about the new lo-
cation of the icecream van; he has a second-order
false belief about Mary’s belief. The participants
are also asked a few control questions (e.g., “does
Mary know that the van is in the church?”) to en-
sure that they do not correctly answer the second-
order question by chance. Perner and Wimmer
(1985) found that 6- and 7-year old children are
able to answer the second-order questions, sug-
gesting that reasoning about higher-order beliefs
(as compared to a first-order belief) is a harder
cognitive task.

3 The Theory of Mind Task Dataset

Inspired by the theory-of-mind experiments ex-
plained in Section 2 and building on the work of
Grant et al. (2017), we created a dataset based on
three tasks designed to capture increasingly com-
plex theory-of-mind reasoning: true-, false-, and
second-order false-belief tasks. Examples of each
task type are given in Figure 2. In the true-belief
task, Sally observes the world and as a result she
has a first-order true belief about the location of
the milk – her belief matches reality. In the false-
belief task, Sally’s first-order belief differs from
reality (i.e., she has a false belief ) because she was
absent when the state of the world changed. In the
second-order false-belief task, Sally observes the
new location of the milk; thus, she has a true be-
lief about the milk’s location. However, Anne’s
belief about Sally’s mental state does not match
reality because Anne does not know that Sally has
observed the change in the environment. As a re-
sult, Anne has a false belief about Sally’s beliefs.

These tasks are more challenging than the bAbI
scenarios, because a model needs to learn whether
each agent has a true or false belief about a given
world state to succeed, where the world state now
includes the mental states of each agent.

Note that we assume all containers are transpar-
ent in the underlying world; whenever an agent en-
ters a location, they become aware of the objects
true location. We made this decision to keep the
tasks as structurally similar as possible. This pre-
vents models from simply learning to produce a
specific answer for a task type when a sentence
like “Sally looks inside the pantry” is present in
the story. The container-transparency property is
consistent throughout all task-question pairs.

Question types. To examine the reasoning ca-
pacity of each model about beliefs and second-
order beliefs, we employ four question types in-
spired by theory-of-mind experiments discussed
in Section 2; see Table 2 for examples of these
question types. These questions enable us to test
whether a model can reason about first-order and
second-order beliefs, and at the same time, knows
the initial and current correct location of an object;
thus, we can distinguish between when a model
answers a question by chance and when it actually
understands the entire state of the world.

Table 3 gives the answers for the 12 combina-
tions of task type and question. Given a true-belief
or false-belief task, the answers to the first-order
and second-order questions are the same (e.g.,
“pantry” in the true-belief condition and “fridge”
in the false-belief condition for the tasks in Fig-
ure 2). However, they are different in the second-
order false belief task because Anne has a false
belief about Sally’s belief.

Dataset variants. We use these tasks to gener-
ate two datasets: ToM and ToM-easy. The primary
difference between these two datasets is that, in
ToM-easy, each story has only one task, while ToM
can have multiple tasks within a single story. Each
dataset contains a training set with 10 000 exam-
ples with each of the 12 combinations of task and
question types.

In ToM, the tasks are randomly grouped into
sets of 5 to form stories, which is the same num-
ber used in the bAbI dataset. In the test set for
ToM, each story contains 4 tasks, but there is only
one question present at the end. Because questions
that come closer to the beginning of a story have
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True Belief False Belief Second-order False Belief
Anne entered the kitchen. Anne entered the kitchen. Anne entered the kitchen.
Sally entered the kitchen. Sally entered the kitchen. Sally entered the kitchen.
The milk is in the fridge. The milk is in the fridge. The milk is in the fridge.
Anne moved the milk to the pantry. Sally exited the kitchen. Sally exited the kitchen.

Anne moved the milk to the pantry. Anne moved the milk to the pantry.
Anne exited the kitchen.
Sally entered the kitchen.

Figure 2: An example story from each of the three task types.

Memory Where was the milk at the beginning?

Reality Where is the milk really?

First-order Where will Sally look for the milk?

Second-order Where does Anne think that Sally searches for the milk?

Table 2: Examples of the four question types.

TB FB SOFB
Memory first first first
Reality second second second
First-order second first second
Second-order second first first

Table 3: The correct answer to each question for true-
belief (TB), false-belief (FB), and second-order false-
belief (SOFB) tasks. Here, “first” and “second” are the ini-
tial and actual locations of the object of interest, respectively
(e.g., fridge and pantry in Figure 2).

fewer distracting sentences (i.e., potential answer
words) that may confound a model, they are eas-
ier to answer. We found that this testing procedure
gave us a more precise understanding of the per-
formance of the model by separating the difficulty
of a question due to its position in a story from the
inherent difficulty of the question itself.

Generating the data. Each reasoning task in
Weston et al. (2016) can be formalized with a
grammar. The training and test data are then the
derivations of this grammar. We refer to each
derivation as a story (e.g., Figure 2). We follow
Grant et al. (2017) in writing grammars for our
new tasks. In particular, all the task grammars con-
sist of a set of entities (people and objects in the
stories) and predicates that take entities as subject
or object. The grammars also specify the prop-
erties of entities – which predicates take them as
subjects or objects. A predicate can include ac-
tions that are ways an agent interact with the world
(e.g., place, move, enter, exit) and beliefs that are
mental state terms (e.g., believe, think). As an ex-
ample, Sally with the property is agent can per-
form the action displace on apple with the prop-
erty is object. Similar to the previous work, we
use a restricted set of action and belief predicates.

4 The Models

We briefly describe the models that we evaluate
in this paper. We chose these models based on
the novelty in their architecture or their near state-
of-the-art results in the bAbi tasks. More specif-
ically, given 10k examples and joint-training on
the bAbi tasks, the best end-to-end memory net-
work (Sukhbaatar et al., 2015) and relation net-
work (Santoro et al., 2017) fail at 6 and 2 tasks,
respectively. Given the same training dataset and
per-task training, the recurrent entity network suc-
ceed at all tasks (but the authors do not report
the results of joint-training). Recall that the bAbi
tasks are structured as a set of sentences followed
by a question about them (e.g., a story from Fig-
ure 2 followed by a question from Table 2).
The End-to-End Memory Network. Sukhbaatar
et al. (2015) proposed a neural memory-
augmented model, the end-to-end memory net-
work (MemN2N), that extends the memory net-
work architecture (Weston et al., 2014). Similarly
to its predecessor, MemN2N has a memory com-
ponent in which sentences are embedded and an
attention function that weights the embedded sen-
tences based on their similarity to a given question.
The MemN2N model introduces multiple layers of
memory (hops) by stacking memory components
such that the question embedding at layer k + 1 is
the sum of the output and question embedding of
layer k.
The Multiple Observer Model. To perform
well on the false-belief and second-order false-
belief conditions, a model needs to identify that
agents have experienced different events, and, as
a result, have differing knowledge about the state
of the world. Although having multiple layers of
memory in the MemN2N model enables it to com-
bine attention to different memory slots (i.e., em-
bedded sentences) at each layer, the model does
not have access to each agent’s unique perspec-
tive. For example, the model is not explicitly told
that Sally does not observe the change of the lo-
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cation of the milk in the false-belief condition. To
address this, Grant et al. (2017) propose the Multi-
ple Observer model that integrates MemN2N with
individual memory modules for each agent in the
story. An agent’s memory only receives the sen-
tences for which the agent is present and observes
the world. Their model has an additional attention
function that weighs the memory modules based
on their relevance to the question. The model is
expected to learn to attend to Sally’s memory mod-
ule if the question is about her belief about a state
of the world.
The Recurrent Entity Network. Henaff et al.
(2017) propose a memory-augmented architec-
ture, EntNet, with two interesting properties; first,
their model is a recurrent neural network and thus
can capture the sequential nature of the events in a
story. Second, instead of keeping a whole sentence
embedding in a memory slot, their model can learn
the important entities of a story (e.g., a person)
and their properties (e.g., location) through a set
of gated recurrent units and two weight matrices.
The Relation Network. Santoro et al. (2017) pro-
pose a neural model for relational reasoning. Their
model consider the possibility of a relation among
each two possible pairs of objects. To model the
bAbi tasks, they consider each pair of sentences
together with the question as inputs to their rela-
tion network.

5 Experimental Results

Experiment set-up We train all models jointly
over all task types without noise, but evaluate them
independently on different task and question pairs.
We choose the best-performing models by select-
ing hyperparameters on the validation set. Sim-
ilarly to Sukhbaatar et al. (2015), we consider a
model successful only when its accuracy exceeds
95% across the entire task suite.

MemN2N and Multiple Observer Models. We
first examine how each model performs across
a range of parameter and initialization values.
MemN2N models are very sensitive to the network
initialization and for each set of parameters, the
best result out of 10 runs is reported (Sukhbaatar
et al., 2015). We first visualize the accuracy of all
runs as a box plot to identify how sensitive each
model is to random initialization (of parameters
and internal states) and thus difficult to train. We
also report the results for the best run in each ex-
periment. We use a memory size of 50, the same

as experiments of Sukhbaatar et al. (2015), to en-
sure that the memory contains all sentences of a
given story.

EntNet. We report results averaged over 3 ini-
tializations because we observed little randomness
due to initialization. We selected the learning rate
on a held out validation set separately for ToM-
easy and ToM; all otehr the same hyperparame-
ters as Henaff et al. (2017): 20 memory slots and
an embedding size of 100 We trained until the
training error hit zero, which occurred around 50
epochs for both datasets. .

RelNet. We report results using a single seed be-
cause we saw little randomness due to initializa-
tion; this is in accordance with the authors’ find-
ings (Santoro et al., 2017). We selected model hy-
perparameters on a held-out validation set sepa-
rately for each of the ToM and ToM-easy datasets.

5.1 Overall Performance on ToM-easy
We expect the models perform well on this dataset,
given that there is only one task in the memory
during both training and test and as a result unre-
lated events do not interfere with a model’s rea-
soning in this condition.

Despite the large variance in accuracy across
runs, the MemN2N models often succeed at the
memory, reality, and second-order questions (Fig-
ure 3a). Note that the median accuracy (the dark
blue line in box) is close to 1 for these questions.
However, the model often fails (median accuracy
around 0.5) given the first-order question (“where
will Sally look for the milk”) and the false-belief
and second-order false-belief tasks. This pattern
is different from the empirical findings on people;
the second-order question is harder than the first
order one for people. We observe that the perfor-
mance of the Multiple Observer model is similar
to the MemNet for most question-task pairs (ex-
pect one) but there is less variation in the accuracy
values. Interestingly, the median accuracy is close
to one for the first-order question and the second-
order false-belief task but the Multiple Observer
model still performs poorly for this question on
the false-belief task.

Why is the first-order question harder for the
MemN2N model? To investigate this, we look
more closely at our task-question pairs. As shown
in Table 3, the answers to the first-order ques-
tion are different for the false-belief and second-
order false-belief tasks but are the same for the
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Figure 3: Memory Network and Multiple Observer Model Performance Across Task and Question Types.
Pink indicates that the answer to the question is the first container that contained the object in that task. Blue indicates that the
answer is the last container that contained the object before the question was asked. Grey indicates that the answer was the first
container that contained the object in the entire story which may or may not be the same as the pink.

(a) Memory Network with memory size 50 evaluated on the ToM-easy dataset.

(b) Multiple Observer Model with memory size 50 evaluated on the ToM-easy dataset.

(c) Memory Network with memory size 50 evaluated on the ToM dataset.

(d) Multiple Observer Model with memory size 50 evaluated on the ToM dataset.

second-order one. We suspect that it is harder
for the MemN2N model to learn two distinct an-
swers for the same question given the the simi-

larities of the two false-belief tasks. To test this
hypothesis, we altered the data such that the an-
swers to first-order question are (incorrectly) the
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same for both false-belief and second-order false-
belief tasks (and also the second-order question).
We observe that the median accuracy is close to
1 for all conditions suggesting that the model can
learn the distinction between two of the tasks but
not all three.

We observe that EntNet and RelNet models are
not too sensitive to the initialization value, and
thus just report the result on best-performing mod-
els. Both EntNet and RelNet best models succeed
at the ToM-easy tasks; their mean error is 0.

5.2 Overall Performance on ToM
This dataset is more similar to the bAbi dataset
in that, during both training and test, the memory
contains a story with multiple tasks; as a result,
it is harder for the model to identify the entities
relevant to a given question.

As shown in Figure 3c, the MemN2N performs
worse on all the questions with the exception of
the reality question, where performance is slightly
worse but has lower variance. (cf. the ToM-easy
dataset). The first- and second-order questions are,
overall, harder for the model. The performance
of the Multiple Observer model is better for most
of the questions (see Figure 3d), especially the
second-order, but it is slightly worse for the mem-
ory question. This suggests that adding agent-
specific memory modules is not enough to succeed
on all the ToM tasks, and that the increased com-
plexity of inference with multiple memory mod-
ules harms performance on another task.

We also look at the best-performing MemN2N
and Multiple Observer models over all question-
task pairs. These models are selected based on
their performance on the validation dataset. We
observe that none of these models succeed on the
ToM tasks, but, interestingly, the Multiple Ob-
server model performs better overall as compared
to the original MemN2N model (see Table 4).

ToM and bAbi. How are ToM and bAbi tasks
similar? The combination of our true-belief task
and the reality question is very similar to bAbi
task 1 (single supporting fact). To correctly an-
swer the reality question (“where is the milk re-
ally?”, a model need to use a single fact from
the story (“Anne moved the milk to the pantry.”).
The MemN2N model succeeds at both bAbi task 1
and the reality question given the true-belief task.
However, the correct answer to the memory ques-
tion (“where was the milk at the beginning?”) for

the true-belief task also requires a single fact (“the
milk is in the fridge.”). Interestingly, the error of
MemN2N on the memory question is much higher
than the reality question. The model (unlike peo-
ple) cannot learn two representations (initial and
current location) for an object. This result demon-
strates the importance of representing alternative
states of the world, whether it be past states of re-
ality (i.e., where the “milk” used to be) or men-
tal states about the world (i.e., where an agent be-
lieves the “milk” to be).

EntNet and RelNet. We also report results of
two relevant memory-augmented neural network
models on our tasks, EntNet (Henaff et al., 2017)
and RelNet (Santoro et al., 2017), in Table 4.
Again, because we did not observe sensitivity to
initialization for these models, only average per-
formance of their best-performing model is re-
ported. We see that even though these models suc-
ceed on the ToM-easy dataset, they fail on the ToM
tasks, suggesting that these models cannot simul-
taneously deal with inconsistent (i.e., past, present,
and mental) states of the world.

We further investigate which questions are the
hardest for each best model; see Table 5. We
observe that each of the MemN2N, Multiple Ob-
server and RelNet models perform poorly on some
combination of the first- and second-order ques-
tions, but are successful at answering the reality
question. We hypothesize that this phenomenon
occurs because the reality question is the most
similar to the bAbi tasks. In addition, all models
fail the memory question for each task type. While
this is to be expected for EntNet due to its recur-
rent nature and therefore bias towards recency, it
is surprising that the other models, which exhibit
only a small positional bias, cannot correctly rep-
resent a past state of the world in order to answer
the memory question correctly.

5.3 Experimenting with Noise
We examine to what extent each model’s architec-
ture is sensitive to the position of sentences in each
story. We do so by adding a novel sentence at ran-
dom locations in each story at test time. For any
setting of the noise, p, there is a p% probability of
a noise sentence occurring before each sentence
in the story. Noise sentences cannot follow other
noise sentences in the story. In this paper, we re-
port results with p = .1. We observe that the ac-
curacy of all best models decreases notably in the
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Model ToM-easy ToM-easy (noised) ToM ToM (noised)

MemN2N (Sukhbaatar et al., 2015) 100.00% 90.28% 82.38% 77.00%
Multiple Observer (Grant et al., 2017) 100.00% 95.81% 91.11% 87.43%
EntNet (Henaff et al., 2017) 100.00% 94.61% 93.67% 88.63%
RelNet (Santoro et al., 2017) 100.00% 87.82% 94.31% 76.84%

Table 4: A comparison of model performance. All models succeed on the ToM-easy dataset without noise. Multiple Observer
model performs best on ToM-easy with noise, RelNet performs best on ToM, and EntNet performs best on ToM with noise.

Model True-belief False-belief Second-order False-belief

MemN2N (Sukhbaatar et al., 2015) M (94.4); FOB (78.2); SOB (42.9) M (94.3); FOB (17.3) M (92.8); FOB (56.4)
Multiple Observer (Grant et al., 2017) M (93.2) M (90.5); FOB (56.4); SOB (92.5) M (93.0); FOB (90.3); SOB (90.3)
EntNet (Henaff et al., 2017) M (74.0) M (76.1) M (74.25)
RelNet (Santoro et al., 2017) M (39.7%); FOB (71.37%) M (78.5%) M (34.9%); FOB (81.8%)

Table 5: Model accuracy on failed questions given the ToM task (without noise); M, R, FOB, and SOB are the memory, reality,
first- and second-order questions, respectively. The number in the parentheses is the accuracy for that question on that task.

presence of noise (see Table 4). This result is par-
ticularly interesting as it shows that none of the
models are able to use the semantics of the sen-
tences in a story in their reasoning – they are all
sensitive to the presence of distractor sentences.

Interestingly, the RelNet model is the best per-
former amongst the models we considered on the
ToM dataset, yet it is also the most sensitive to
noise. Moreover, the Multiple Observer model –
with explicit memories for each agent – is the most
robust to noise; it has the minimum decrease in
accuracy between each dataset and its noised ver-
sion.

5.4 Experimenting with Memory
In the experiments of Sukhbaatar et al. (2015) the
memory size is fixed to 50, which is necessary to
capture the entire story in memory (e.g. the answer
to the memory question in ToM may rely on infor-
mation at the beginning of a story). We observed
that smaller memory sizes artificially improved the
performance of the MemN2N and Multiple Ob-
server model on ToM tasks. For example, using a
memory size of 10, our best MemN2N model per-
formance boosts on the hardest task of ToM (FB
task with first order belief question) from 5.1%
to 97.5% and on the easiest task from 98.3% to
100.0% (SOFB task with reality question). This
result is not surprising because given a small mem-
ory size, ToM and ToM-easy are very similar tasks;
the memory size of 10 allows for at most two full
tasks in memory.

6 Related Work

Recent research has emphasized the importance
of modeling and understanding people’s mental
states for AI systems. Eysenbach et al. (2016)
created a dataset of scene-description pairs where

each scene is a set of visual frames and some
frames include people with mistaken beliefs.2 The
authors build a regression model for identifying a
mistaken belief and the person who has such a be-
lief in a given frame. Our work differs with theirs
in that we are interested in understanding whether
a model can reason about people’s true and false
beliefs to correctly answer questions as opposed
to identifying mistaken beliefs.

Grant et al. (2017) studied whether the end-to-
end memory network of Sukhbaatar et al. (2015)
can pass a false-belief test – correctly answer
where Sally would search for an object in false-
and true-belief situations. They created a dataset
inspired by the bAbi dataset to examine whether
the model can reason about interaction of beliefs
and actions in these situations – how actions cause
beliefs and vice versa. They show that MemN2N
fails at the false-belief test, and their extension of
that model with separate memories for each agent
and an observer outperforms MemN2N.

Rabinowitz et al. (2018) formulate the capacity
to reason about others’ beliefs as a meta-learning
problem. They propose a neural network, ToM-
net, that learns to predict the behavior of different
agents given their past and current trajectory. Sim-
ilarly to Grant et al. (2017), in addition to individ-
ual agents, they model an “observer” that has ac-
cess to states and actions of all agents (though this
information can be noisy and partial). Interest-
ingly, their model successfully predicts an agent’s
behavior in a false-belief situation – the agent’s be-
havior reflects its false-belief as opposed to the re-
ality of the world.

Finally, Chandrasekaran et al. (2017) take a dif-

2For example, a scene where a person gets sick eating
mushrooms is paired with the sentence “the couple mistak-
enly thinks it’s ok to eat the mushrooms”.
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ferent approach by studying whether people can
understand the “beliefs” of a visual-question an-
swering system. More specifically, they exam-
ine whether the participants can predict when the
model would fail in answering a question as well
as if they can predict the model’s answer. They
find that even with a few examples, people get bet-
ter at answering these questions.

7 Discussion

We propose a dataset for evaluating question-
answering models. Our dataset – inspired by semi-
nal theory-of-mind experiments in children – mea-
sures to what extent recently introduced neural
models can reason about beliefs and states of the
world that are potentially mututally inconsistent.
We evaluate three of the recent neural question an-
swering models (and an extension of one) on our
tasks. We find that none of the models are able
to succeed fully on a suite of tasks that requires
keeping track of inconsistent beliefs or states of
the world. These inconsistencies arise from differ-
ences between the past and the present, as well as
the mental states of agents who may have false be-
liefs about the world or about the mental states of
other agents.

The purpose of the dataset introduced in this
work is not to test advanced language fluency; in-
stead, consistency in the linguistic structure of the
tasks allows us to isolate the performance of the
models’ reasoning capabilities. Even though the
language is simple, the models struggle to achieve
good performance. Furthermore, we note that the
proposed dataset should be treated as a diagnos-
tic tool and that good performance on similar toy
tasks is not sufficient for reasoning capabilities.

References
Simon Baron-Cohen, Alan M Leslie, and Uta Frith.

1985. Does the autistic child have a theory of mind?
Cognition, 21(1):37–46.

Arjun Chandrasekaran, Deshraj Yadav, Prithvijit Chat-
topadhyay, Viraj Prabhu, and Devi Parikh. 2017. It
takes two to tango: Towards theory of AI’s mind.
arXiv preprint arXiv:1704.00717.

Benjamin Eysenbach, Carl Vondrick, and Antonio Tor-
ralba. 2016. Who is mistaken? arXiv preprint
arXiv:1612.01175.

John H Flavell. 2004. Theory-of-mind development:
Retrospect and prospect. Merrill-Palmer Quarterly,
50(3):274–290.

Alison Gopnik and Janet W Astington. 1988. Chil-
dren’s understanding of representational change and
its relation to the understanding of false belief and
the appearance-reality distinction. Child develop.,
59:26–37.

Erin Grant, Aida Nematzadeh, and Thomas L. Grif-
fiths. 2017. How can memory-augmented neural
networks pass a false-belief task. In Proceedings of
the 39th Annual Conference of the Cognitive Science
Society.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. In Interna-
tional Conference on Learning Representations.

Moontae Lee, Xiaodong He, Wen tau Yih, Jianfeng
Gao, Li Deng, and Paul Smolensky. 2016. Rea-
soning in vector space: An exploratory study of
question answering. In International Conference on
Learning Representations.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2011. The winograd schema challenge. In
AAAI Spring Symposium: Logical Formalizations of
Commonsense Reasoning, volume 46, page 47.

Josef Perner and Heinz Wimmer. 1985. “John thinks
that Mary thinks that ...” Attribution of second-order
beliefs by 5-to 10-year-old children. Journal of ex-
perimental child psychology, 39(3):437–471.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan
Zhang, S. M. Ali Eslami, and Matthew Botvinick.
2018. Machine theory of mind. In Proceedings
of the 35th International Conference on Machine
Learning.

Jack W. Rae, Jonathan J. Hunt, Tim Harley, Ivo
Danihelka, Andrew W. Senior, Greg Wayne, Alex
Graves, and Timothy P. Lillicrap. 2016. Scal-
ing memory-augmented neural networks with sparse
reads and writes. In Proceedings of 30th Conference
on Neural Information Processing Systems.

Adam Santoro, David Raposo, David G. T. Bar-
rett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy P. Lillicrap. 2017. A sim-
ple neural network module for relational reasoning.
In International Conference on Learning Represen-
tations.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Proceed-
ings of 29th Conference on Neural Information Pro-
cessing Systems, pages 2440–2448.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2016. Towards AI-complete ques-
tion answering: A set of prerequisite toy tasks. In
International Conference on Learning Representa-
tions.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory Networks. ArXiv e-prints.

2400



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2401–2411
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

A Unified Syntax-aware Framework for Semantic Role Labeling
Zuchao Li1,2,⇤, Shexia He1,2,⇤, Jiaxun Cai1,2, Zhuosheng Zhang1,2, Hai Zhao1,2,†,

Gongshen Liu3, Linlin Li4, Luo Si4
1Department of Computer Science and Engineering, Shanghai Jiao Tong University

2Key Laboratory of Shanghai Education Commission for Intelligent Interaction
and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China

3School of Cyber Security, Shanghai Jiao Tong University, China
4Alibaba Group, Hangzhou, China

{charlee,heshexia,caijiaxun,zhangzs}@sjtu.edu.cn,
zhaohai@cs.sjtu.edu.cn, lgshen@sjtu.edu.cn,

{linyan.lll,luo.si}@alibaba-inc.com
Abstract

Semantic role labeling (SRL) aims to recog-
nize the predicate-argument structure of a sen-
tence. Syntactic information has been paid
a great attention over the role of enhanc-
ing SRL. However, the latest advance shows
that syntax would not be so important for
SRL with the emerging much smaller gap be-
tween syntax-aware and syntax-agnostic SRL.
To comprehensively explore the role of syn-
tax for SRL task, we extend existing mod-
els and propose a unified framework to inves-
tigate more effective and more diverse ways
of incorporating syntax into sequential neu-
ral networks. Exploring the effect of syn-
tactic input quality on SRL performance, we
confirm that high-quality syntactic parse could
still effectively enhance syntactically-driven
SRL. Using empirically optimized integration
strategy, we even enlarge the gap between
syntax-aware and syntax-agnostic SRL. Our
framework achieves state-of-the-art results on
CoNLL-2009 benchmarks both for English
and Chinese, substantially outperforming all
previous models.

1 Introduction

The purpose of semantic role labeling (SRL) is
to derive the predicate-argument structure of each
predicate in a sentence. A popular formalism to
represent the semantic predicate-argument struc-
ture is based on dependencies, namely depen-
dency SRL, which annotates the heads of argu-
ments rather than phrasal arguments. Given a sen-
tence (in Figure 1), SRL is generally decomposed

⇤ These authors made equal contribution.† Correspond-
ing author. This paper was partially supported by National
Key Research and Development Program of China (No.
2017YFB0304100), National Natural Science Foundation of
China (No. 61672343 and No. 61733011), Key Project
of National Society Science Foundation of China (No. 15-
ZDA041), The Art and Science Interdisciplinary Funds of
Shanghai Jiao Tong University (No. 14JCRZ04) and the joint
research project with Youtu Lab of Tencent.

A2
AM-TMP

A0

Someone      always      makes    you   happy
make.02

A1

Figure 1: An example of dependency-based SRL.

into multiple subtasks in pipeline framework, con-
sisting of predicate identification (makes), predi-
cate disambiguation (make.02), argument identifi-
cation (e.g., Someone) and argument classification
(Someone is A0 for the predicate makes). SRL is
beneficial to a wide range of natural language pro-
cessing (NLP) tasks, including machine transla-
tion (Shi et al., 2016) and question answering (Be-
rant et al., 2013; Yih et al., 2016).

Most traditional SRL methods rely heavily on
feature templates that struggle to capture sufficient
discriminative information, while neural models
are capable of extracting features automatically. In
particular, recent works (Zhou and Xu, 2015; He
et al., 2017; Marcheggiani et al., 2017) propose
syntax-agnostic models for SRL and achieve fa-
vorable results, which seems to be in conflict with
the belief that syntactic information is an abso-
lutely necessary prerequisite for high-performance
SRL (Gildea and Palmer, 2002). Despite the suc-
cess of these models, the main reasons for putting
syntax aside are two-fold. First, it is still chal-
lenging to effectively incorporate syntactic infor-
mation into neural SRL models, due to the sophis-
ticated tree structure of syntactic relation. Second,
the syntactic parsers are unreliable on account of
the risk of erroneous syntactic input, which may
lead to error propagation and an unsatisfactory
SRL performance.

However, syntactic information is considered
closely related to semantic relation and plays an
essential role in SRL task (Punyakanok et al.,
2008). Recently, Marcheggiani and Titov (2017)
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proposed a syntactic graph convolutional networks
(GCNs) based SRL model and further improved
the SRL performance with relatively better syn-
tactic parser as input. Since syntax can provide
rich structure and information for SRL, we seek to
effectively model complex syntactic tree structure
for incorporating syntax into neural SRL.

In this paper, we present a general framework1

for SRL, which enables us to integrate syntax
into SRL in diverse ways. Following Marcheg-
giani and Titov (2017), we focus on argument
labeling and formulate SRL as sequence label-
ing problem. However, we differ by (1) lever-
aging enhanced word representation, (2) apply-
ing recent advances in recurrent neural networks
(RNNs), such as highway connections (Srivastava
et al., 2015), (3) using deep encoder with resid-
ual connections (He et al., 2016), (4) further ex-
tending Syntax Aware Long Short-Term Memory
(SA-LSTM) (Qian et al., 2017) for SRL, and (5)
introducing the Tree-Structured Long Short-Term
Memory (Tree-LSTM) (Tai et al., 2015) to model
syntactic information for SRL.

In addition, as pointed out by He et al. (2017)
for span SRL, the worse syntactic input will
hurt performance if the syntactically-driven SRL
model trusts syntactic information too much, and
high-quality syntax can still make a large impact
on SRL, which motivates us to investigate the ef-
fect of syntactic quality on dependency SRL. In
summary, our major contributions are as follows:

• We propose a unified neural framework for
dependency SRL to more effectively integrate syn-
tactic information with multiple methods.

• Our SRL framework incorporated with syntax
achieves the new state-of-the-art results on both
English and Chinese CoNLL-2009 benchmarks.

• We explore the impact of different quality of
syntactic input on SRL performance, showing that
high quality syntactic parse may indeed improve
syntax-aware SRL.

2 A Unified SRL Framework

In order to explore the effectiveness of the syntac-
tic feature from various perspectives, we propose
a unified neural framework that is capable of op-
tionally accommodating various types of syntactic
encoders for syntax-based SRL.

Since the CoNLL-2009 shared task (Hajič et al.,
1Our code is available here: https://github.com/

bcmi220/unified_syn_srl.

2009) have beforehand indicated the predicate po-
sitions, we need to identify and label all argu-
ments for each predicate, which is a typical se-
quence tagging problem. In this work, we con-
struct a general SRL framework for argument la-
beling. As shown in Figure 2, our SRL frame-
work includes three main modules, (1) BiLSTM
encoder that directly takes sequential inputs, (2)
MLP with highway connections for softmax out-
put layer, and (3) an optional syntactic encoder
that receives the outputs of the BiLSTM encoder
and then let its own outputs integrate with the BiL-
STM outputs through residual connections.

Note that when the syntactic encoder is com-
pletely removed, MLP only takes inputs directly
from the BiLSTM encoder, which let our frame-
work become a syntax-agnostic labeler.

2.1 Sentence Encoder
Word representation Given a sentence and
known predicate, we consider predicate-specific
word representation, following previous work
(Marcheggiani and Titov, 2017). Specifically,
each word embedding representation ei of input
sentence is the concatenation of several features,
a randomly initialized word embedding er

i , a pre-
trained word embedding ep

i , a randomly initialized
lemma embedding el

i, a randomly initialized POS
tag embedding epos

i , and a predicate-specific fea-
ture ef

i , which is a binary flag set 0 or 1 indicating
whether the current word is the given predicate.

To further enhance the word representation,
we leverage an external embedding ELMo (Em-
beddings from Language Models) proposed by
Peters et al. (2018). ELMo is obtained by
deep bidirectional language model that takes char-
acters as input, enriching subword information
and contextual information, which has expres-
sive representation power. Eventually, the result-
ing word representation is concatenated as ei =
[er

i , e
p
i , e

l
i, e

pos
i , ef

i , ELMoi].

BiLSTM encoder We use bi-directional Long
Short-term Memory neural network (BiLSTM)
(Hochreiter and Schmidhuber, 1997) as the sen-
tence encoder to model sequential inputs. Given
an input sequence (e1, . . . , en), the BiLSTM pro-
cesses these embedding vectors sequentially from
both directions to obtain two separated hidden
states,

�!
h i and

 �
h i respectively. By concatenating

the two states, we get a contextual representation
hi = [

�!
h i,
 �
h i], which will be taken by the next
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Figure 2: The unified syntax-based SRL framework

BiLSTM layer as input. In this work, we stack
four layers of BiLSTM.

2.2 Role Labeler

We adopt a Multi-Layer Perceptron (MLP) with
highway connections (Srivastava et al., 2015) on
the top of our deep encoder, which takesthe con-
catenated representation as input. The MLP con-
sists of 10 layers and we employ ReLU activa-
tions for the hidden layer. To get the final pre-
dicted semantic roles, we use a softmax layer over
the outputs to maximize the likelihood of labels.
The MLP part takes inputs from both the BiLSTM
encoder and syntactic encoder, which are joint
through a residual connection (He et al., 2016) as
shown in Figure 2. It is worth noting that our
deep encoder is different from the one of Marcheg-
giani and Titov (2017), which directly applies a
softmax transformation over the syntactic repre-
sentation and predicts the role label for each word.
That is, their syntactic encoder outputs are directly
taken as the input of hidden layer.

3 Syntactic Encoder

To integrate the syntactic information into sequen-
tial neural networks, we employ a syntactic en-
coder on top of the BiLSTM encoder.

Specifically, given a syntactic dependency tree

T , for each node nk in T , let C(k) denote the syn-
tactic children set of nk, H(k) denote the syntactic
head of nk, and L(k, ·) be the dependency relation
between node nk and those have a direct arc from
or to nk. Then we formulate the syntactic encoder
as a transformation f ⌧ over the node nk, which
may take some of C(k), H(k), or L(k, ·) as input,
and compute a syntactic representation vk for node
nk, namely, vk = f ⌧ (C(k), H(k), L(k, ·), xk).
When not otherwise specified, xk denotes the in-
put feature representation of nk which may be ei-
ther the word representation ek or the output of
BiLSTM hk, � denotes the logistic sigmoid func-
tion, and � denotes the element-wise multiplica-
tion.

In practice, the transformation f ⌧ can be any
syntax encoding method. In this paper, we will
consider three types of syntactic encoders, syntac-
tic graph convolutional network (Syntactic GCN)
(in Section 3.1), syntax aware LSTM (SA-LSTM)
(in Section 3.2), tree-structured LSTM (Tree-
LSTM) (in Section 3.3). Then, we will provide
a brief introduction in subsequent subsections.

3.1 Syntactic GCN
GCN (Kipf and Welling, 2017) is proposed to in-
duce the representations of nodes in a graph based
on the properties of their neighbors. Given its
effectiveness, Marcheggiani and Titov (2017) in-
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troduce a generalized version for the SRL task,
namely syntactic GCN, and shows that syntactic
GCN is effective in incorporating syntactic infor-
mation into neural models.

Syntactic GCN captures syntactic information
flows in two directions, one from heads to depen-
dents (along), the other from dependents to heads
(opposite). Besides, it also models the informa-
tion flows from a node to itself, namely, it as-
sumes that a syntactic graph contains self-loop for
each node. Thus, the syntactic GCN transforma-
tion of a node nk is defined on its neighborhood
N(k) = C(k)[H(k)[{nk}. For each edge con-
nects nk and its neighbor nj , we can compute a
vector representation for it,

uk,j = W dir(k,j)xj + bL(k,j),

where dir(k, j) denotes the direction type (along,
opposite or self-loop) of the edge from nk to
nj , W dir(k,j) is direction type specific parame-
ter, bL(k,j) is label specific parameter. Consider-
ing that syntactic information from all the neigh-
boring nodes may make different contribution to
semantic role labeling, syntactic GCN introduces
an additional edge-wise gating for each node pair
(nk, nj) as

gk,j = �(W dir(k,j)
g xk + bL(k,j)

g ).

The syntactic representation vk for a node nk can
be then computed as:

vk = ReLU(
X

j2N(k)

gk,j � uk,j).

3.2 SA-LSTM

SA-LSTM (Qian et al., 2017) is an extension of
the standard BiLSTM architecture, which aims to
simultaneously encode the syntactic and contex-
tual information for a given word as shown in Fig-
ure 2. On one hand, the SA-LSTM calculates the
hidden state in sequence timestep order like the
standard LSTM,

ig = �(W (i)xk + U (i)hk�1 + b(i)),

fg = �(W (f)xk + U (f)hk�1 + b(f)),

og = �(W (o)xk + U (o)hk�1 + b(o)),

u = f(W (u)xk + U (u)hk�1 + b(u)),

ck = ig � u + fg � ck�1.

On the other hand, it further incorporates the
syntactic information into the representation of
each word by introducing an additional gate,

sg = �(W (s)xk + U (s)hk�1 + b(s)),

hk = og � f(ck) + sg � h̃k.

where h̃k = f(
P

tj<tk
↵j ⇥ hj) is the weighted

sum of all hidden state vectors hj which come
from previous node (word) nj , the weight factor
↵j is actually a trainable weight related to the de-
pendency relation L(k, ·) when there exists a di-
rected edge from nj to nk.

Note that h̃k is always the hidden state vector
of the syntactic head of nk according to the defini-
tion of ↵j . Since a word will be assigned a single
syntactic head, such a strict constraint prevents the
SA-LSTM from incorporating complex syntactic
structures. Inspire by the idea of GCN, we relax
the directed constraint of ↵j , whenever there is an
edge between nj and nk.

After the SA-LSTM transformation, the outputs
of the SA-LSTM layer from both directions are
concatenated and taken as the syntactic represen-
tation of each word nk, i.e., vk = [

�!
hk,
 �
hk]. Differ-

ent from the syntactic GCN, SA-LSTM encoding
both syntactic and contextual information in a sin-
gle vector vk.

3.3 Tree-LSTM

Tree-LSTM (Tai et al., 2015) can be considered
as an extension of the standard LSTM, which
aims to model the tree-structured topologies. At
each timestep, it composes an input vector and
the hidden states from arbitrarily many child units.
Specifically, the main difference between Tree-
LSTM unit and the standard one is that the mem-
ory cell updating and the calculation of gating vec-
tors are depended on multiple child units. A Tree-
LSTM unit can be connected to arbitrary number
of child units and assigns a single forget gate for
each child unit. This provides Tree-LSTM the
flexibility to incorporate or drop the information
from each child unit.

Given a syntactic tree, the Tree-LSTM trans-
formation is defined on node nk and its children
set C(k), which can be formulated as follows (Tai
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et al., 2015):

h̃k =
X

j2C(k)

hk, (1)

ig = �(W (i)xk + U (i)h̃k + b(i)),

fk,j
g = �(W (f)xk + U (f)hj + b(f)), (2)

og = �(W (o)xk + U (o)h̃k + b(o)),

u = tanh(W (u)xk + U (u)h̃k + b(u)),

ck = ig � u +
X

j2C(k)

fk,j
g � cj ,

hk = og � tanh(ck).

where j 2 C(k), hj is the hidden state of the j-th
child node, ck is the memory cell of the head node
k, and hk is the hidden state of node k. Note that
in Eq.(2), a single forget gate fk,j

g is computed for
each hidden state hj .

However, the primitive form of Tree-LSTM
does not take the dependency relations into con-
sideration. Given the importance of dependency
relations in SRL task, we further extend the Tree-
LSTM by adding an additional gate rg and refor-
mulate the Eq. (1),

rk,j
g = �(W (r)xk + U (r)hj + bL(k,j)),

h̃k =
X

j2C(k)

rk,j
g � hj .

where bL(k,j) is a relation label specific bias term.
After the Tree-LSTM transformation, the hidden
state of each node in dependency tree is taken as
its syntactic representation, i.e., vk = hk.

4 Experiments

We evaluate our models performance of syntac-
tic GCN (henceforth Syn-GCN), SA-LSTM and
Tree-LSTM on CoNLL-2009 datasets both for En-
glish and Chinese with standard training, devel-
opment and test splits. For predicate disambigua-
tion, we follow previous work (Marcheggiani and
Titov, 2017), using the off-the-shelf disambiguator
from Roth and Lapata (2016). For syntactic de-
pendency tree, we parse the corpus with Biaffine
Parser (Dozat and Manning, 2017).

4.1 Experimental Settings
In our experiments, the pre-trained word embed-
dings for English are 100-dimensional GloVe vec-
tors (Pennington et al., 2014). For Chinese, we

System P R F1

Local model
Lei et al. (2015) � � 86.6
FitzGerald et al. (2015) � � 86.7
Roth and Lapata (2016) 88.1 85.3 86.7
Marcheggiani et al. (2017) 88.7 86.8 87.7
Marcheggiani and Titov (2017) 89.1 86.8 88.0
He et al. (2018) 89.7 89.3 89.5
Cai et al. (2018) 89.9 89.2 89.6
Ours (Syn-GCN) 90.3 89.3 89.8
Ours (SA-LSTM) 90.8 88.6 89.7
Ours (Tree-LSTM) 90.0 88.8 89.4
Global model
Björkelund et al. (2010) 88.6 85.2 86.9
FitzGerald et al. (2015) � � 87.3
Roth and Lapata (2016) 90.0 85.5 87.7
Ensemble model
FitzGerald et al. (2015) � � 87.7
Roth and Lapata (2016) 90.3 85.7 87.9
Marcheggiani and Titov (2017) 90.5 87.7 89.1

Table 1: Results on the English in-domain test set.

exploit Wikipedia documents to train the same di-
mensional Word2Vec embeddings (Mikolov et al.,
2013). All other vectors are randomly initialized,
the dimension of lemma embeddings is 100, and
the dimension of POS tag embedding is 32. In ad-
dition, we use 300-dimensional ELMo embedding
for English2.

During training, we use the categorical cross-
entropy as objective, with Adam optimizer
(Kingma and Ba, 2015) the learning rate 0.001,
and the batch size is set to 64. The BiLSTM
encoder consists of 4-layer BiLSTM with 512-
dimensional hidden units. We apply dropout for
BiLSTM with a 90% keeping probability between
time-steps and layers. We train models for a max-
imum of 20 epochs and obtain the nearly best
model based on English development results.

4.2 Results

We compare our models of Syn-GCN, SA-LSTM
and Tree-LSTM with previous approaches for
dependency SRL on both English and Chinese.
Noteworthily, our model is local (argument identi-
fication and classification decisions are condition-
ally independent) and single without reranking,
which neither includes global inference nor com-

2For Chinese, we do not use pre-trained ELMo whose
weights are only available for English.

2405



System P R F1

Local model
Zhao et al. (2009a) 80.4 75.2 77.7
Marcheggiani et al. (2017) 83.4 79.1 81.2
Marcheggiani and Titov (2017) 84.6 80.4 82.5
He et al. (2018) 84.2 81.5 82.8
Cai et al. (2018) 84.7 84.0 84.3
Ours (Syn-GCN) 84.8 81.2 83.0
Ours (SA-LSTM) 85.2 80.5 82.8
Ours (Tree-LSTM) 84.5 80.7 82.6
Global model
Björkelund et al. (2009) 82.4 75.1 78.6
Roth and Lapata (2016) 83.2 75.9 79.4

Table 2: Results on the Chinese test set.

bines multiple models. The experimental results
on the in-domain English and Chinese test sets are
summarized in Tables 1 and 2, respectively.

For English, our models of Syn-GCN, SA-
LSTM and Tree-LSTM overwhelmingly surpass
most previously published single models, achiev-
ing state-of-the-art results of 89.8%, 89.7% and
89.4% in F1 scores respectively. In comparison
to ensemble models, our Syn-GCN even performs
better than the previous model (Marcheggiani and
Titov, 2017) with a margin of 0.7% F1.

From Table 1, we also see that our Syn-GCN
model provides the best recall and F1 score, while
our SA-LSTM model yields the competitive per-
formance with higher precision at the expense of
recall, which shows that SA-LSTM is better at
classifying arguments. Overall, the Tree-LSTM
gives slightly weaker performance, which may
be attributed to tree-structured network topology.
More specifically, Tree-LSTM only considers in-
formation from arbitrary child units so that each
node lacks of the information from parent. How-
ever, our Syn-GCN and SA-LSTM combine bidi-
rectional information, both head-to-dependent and
dependent-to-head.

For Chinese (Table 2), even though we use the
same parameters as for English, our models are
still comparable with the best reported results.

Table 3 presents the results on English out-of-
domain test set. Our models outperform the high-
est records achieved by He et al. (2018), with
absolute improvements of 0.2-0.5% in F1 scores.
These favorable results on both in-domain and out-
of-domain data demonstrate the effectiveness and
robustness of our proposed unified framework.

System P R F1

Local model
Lei et al. (2015) � � 75.6
FitzGerald et al. (2015) � � 75.2
Roth and Lapata (2016) 76.9 73.8 75.3
Marcheggiani et al. (2017) 79.4 76.2 77.7
Marcheggiani and Titov (2017) 78.5 75.9 77.2
He et al. (2018) 81.9 76.9 79.3
Cai et al. (2018) 79.8 78.3 79.0
Ours (Syn-GCN) 80.6 79.0 79.8
Ours (SA-LSTM) 81.0 78.2 79.6
Ours (Tree-LSTM) 80.4 78.7 79.5
Global model
Björkelund et al. (2010) 77.9 73.6 75.7
FitzGerald et al. (2015) � � 75.2
Roth and Lapata (2016) 78.6 73.8 76.1
Ensemble model
FitzGerald et al. (2015) � � 75.5
Roth and Lapata (2016) 79.7 73.6 76.5
Marcheggiani and Titov (2017) 80.8 77.1 78.9

Table 3: Results on the English out-of-domain test set.

Our system P R F1

Syn-GCN 89.2 87.6 88.4
w/o POS tag 88.5 87.5 88.0
w/o ELMo embedding 87.7 86.7 87.2

Table 4: Ablation on the English development set.

4.3 Ablation and Analysis
To investigate the contributions of word represen-
tation and deep encoder in our method, we conduct
a series of ablation studies on the English develop-
ment set, unless otherwise stated.

Effect of word representation In order to better
understand how the enhanced word representation
influences our model performance, we train our
Syn-GCN model with different settings in input
word embeddings. Table 4 shows results for our
system when we remove POS tag and ELMo em-
bedding respectively. Interestingly, the impact of
POS tag embedding (about 0.4% F1) is less com-
pared to the previous works, which allows us to
build an accuracy model even when the POS tag is
unavailable. We also observe that effect of ELMo
embedding is somewhat surprising (1.2% F1 per-
formance degradation). Experimental results in-
dicate that a combination of these features could
enhance the word representation, leading to SRL
performance improvement.
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System syntax-agnostic syntax-aware � F1

M&T (2017) 87.7 88.0 0.3
He et al. (2018) 88.7 89.5 0.8
Cai et al. (2018) 89.6 89.6 ⇡0.0
Our model 88.7 89.8 1.1

Table 5: Comparison of our Syn-GCN model with
(Marcheggiani and Titov, 2017), (He et al., 2018) and
(Cai et al., 2018) on the English test set. � F1 shows
the absolute performance gap between syntax-agnostic
and syntax-aware settings.

Effect of deep encoder Table 5 reports F1

scores of our Syn-GCN model, Marcheggiani and
Titov (2017), He et al. (2018) and Cai et al. (2018)
on English test set in both syntax-agnostic and
syntax-aware settings. The comparison shows that
our framework is more effective for incorporat-
ing syntactic information by giving more perfor-
mance improvement through introducing syntax
over syntax-agnostic SRL than previous state-of-
the-art systems did.

To further investigate the impact of deep en-
coder, we perform our Syn-GCN, SA-LSTM and
Tree-LSTM models with another alternative con-
figuration, using the same encoder as (Marcheg-
giani and Titov, 2017) (M&T encoder for short),
which removes the residual connections from our
framework. The corresponding results of our mod-
els are also summarized in Table 6 for compar-
ison. Note that the first row is the results of
our syntax-agnostic model. Surprisingly, we ob-
serve a dramatical performance decline of 1.2%
F1 for our Syn-GCN model with M&T encoder.
A less significant performance loss for our SA-
LSTM (�0.4%) and Tree-LSTM (�0.5%) mod-
els shows that the Syn-GCN is more sensitive to
contextual information. Nevertheless, the overall
results show that applying deep encoder could re-
ceive higher gains.

4.4 Syntactic Role

As mentioned before, syntactic parsers are unreli-
able due to the risk of erroneous syntactic input,
especially on out-of-domain data. This section
thus attempts to explore the impact of different
quality of syntactic input on SRL performance. To
this end, we further carry out experiments on En-
glish test data with different syntactic inputs based
on our Syn-GCN model.

Our system P R F1

Baseline (syntax-agnostic) 89.5 87.9 88.7
Syn-GCN 90.3 89.3 89.8
SA-LSTM 90.8 88.6 89.7
Tree-LSTM 90.0 88.8 89.4
Syn-GCN (M&T encoder) 89.2 88.0 88.6
SA-LSTM (M&T encoder) 89.8 88.8 89.3
Tree-LSTM (M&T encoder) 90.0 87.8 88.9

Table 6: Comparison of models with deep encoder and
M&T encoder (Marcheggiani and Titov, 2017) on the
English test set.

Syntactic Input
Four types of syntactic inputs are used to ex-
plore the role of syntax in our unified frame-
work, (1) the automatically predicted parse pro-
vided by CoNLL-2009 shared task, (2) the parsing
results of the CoNLL-2009 data by state-of-the-
art syntactic parser, the Biaffine Parser (used in
our previous experiments), (3) corresponding re-
sults from another parser, the BIST Parser (Kiper-
wasser and Goldberg, 2016), which is also adopted
by Marcheggiani and Titov (2017), (4) the gold
syntax available from the official data set.

Evaluation Metric
It is worth noting that for SRL task, the standard
evaluation metric is the semantic labeled F1 score
(Sem-F1), and we use the labeled attachment score
(LAS) to quantify the quality of syntactic input. In
addition, the ratio between labeled F1 score for se-
mantic dependencies and the LAS for syntactic de-
pendencies (Sem-F1/LAS) proposed by CoNLL-
2008 shared task3 (Surdeanu et al., 2008), are also
given for reference. To a certain extent, the ratio
Sem-F1/LAS could normalize the semantic score
relative to syntactic parse, impartially estimating
the true performance of SRL, independent of the
performance of the input syntactic parser.

Comparison and Discussion
Table 7 presents the comprehensive results of
our Syn-GCN model on the four syntactic inputs
aforementioned of different quality together with
previous SRL models. A number of observations
can be made from these results. First, our model
gives quite stable SRL performance no matter the
syntactic input quality varies in a broad range, ob-

3CoNLL-2008 is an English-only task, while CoNLL-
2009 extends to a multilingual one. Their main difference
is that predicates have been pre-identified for the latter.
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System LAS P R Sem-F1 Sem-F1/LAS
Zhao et al. (2009c) [SRL-only] 86.0 � � 85.4 99.3
Zhao et al. (2009a) [Joint] 89.2 � � 86.2 96.6
Björkelund et al. (2010) 89.8 87.1 84.5 85.8 95.6
Lei et al. (2015) 90.4 � � 86.6 95.8
Roth and Lapata (2016) 89.8 88.1 85.3 86.7 96.5
Marcheggiani and Titov (2017) 90.34⇤ 89.1 86.8 88.0 97.41
He et al. (2018) [CoNLL-2009 predicted] 86.0 89.7 89.3 89.5 104.0
He et al. (2018) [Gold syntax] 100 91.0 89.7 90.3 90.3
Our Syn-GCN (CoNLL-2009 predicted) 86.0 90.5 88.5 89.5 104.07
Our Syn-GCN (Biaffine Parser) 90.22 90.3 89.3 89.8 99.53
Our Syn-GCN (BIST Parser) 90.05 90.3 89.1 89.7 99.61
Our Syn-GCN (Gold syntax) 100.0 91.0 90.0 90.5 90.50

Table 7: Results on English test set, in terms of labeled attachment score for syntactic dependencies (LAS), se-
mantic precision (P), semantic recall (R), semantic labeled F1 score (Sem-F1), the ratio Sem-F1/LAS. All numbers
are in percent. A superscript * indicates LAS results from our personal communication with the authors.

taining overall higher scores compared to previ-
ous state-of-the-arts. Second, It is interesting to
note that the Sem-F1/LAS score of our model be-
comes relatively smaller as the syntactic input be-
comes better. Though not so surprised, these re-
sults show that our SRL component is even rela-
tively stronger. Third, when we adopt a syntactic
parser with higher parsing accuracy, our SRL sys-
tem will achieve a better performance. Notably,
our model yields a Sem-F1 of 90.5% taking gold
syntax as input. It suggests that high-quality syn-
tactic parse may indeed enhance SRL, which is
consistent with the conclusion in (He et al., 2017).

5 Related Work

Semantic role labeling was pioneered by Gildea
and Jurafsky (2002), also known as shallow se-
mantic parsing. In early works of SRL, consider-
able attention has been paid to feature engineer-
ing (Pradhan et al., 2005; Zhao and Kit, 2008;
Zhao et al., 2009a,b,c; Li et al., 2009; Björkelund
et al., 2009; Zhao et al., 2013). Along with the
the impressive success of deep neural networks
(Zhang et al., 2016; Cai and Zhao, 2016; Qin et al.,
2016; Wang et al., 2016b,a; Zhang et al., 2018; Li
et al., 2018; Huang et al., 2018), a series of neural
SRL systems have been proposed. For instance,
Foland and Martin (2015) presented a semantic
role labeler using convolutional and time-domain
neural networks. FitzGerald et al. (2015) exploited
neural network to jointly embed arguments and se-
mantic roles, akin to the work (Lei et al., 2015),
which induced a compact feature representation

applying tensor-based approach.

Recently, people have attempted to build end-
to-end systems for span SRL without syntactic in-
put (Zhou and Xu, 2015; He et al., 2017; Tan et al.,
2018). Similarly, Marcheggiani et al. (2017) also
proposed a syntax-agnostic model for dependency
SRL and obtained favorable results. Despite the
success of syntax-agnostic models, there are sev-
eral works focus on leveraging the advantages of
syntax. Roth and Lapata (2016) employed depen-
dency path embedding to model syntactic infor-
mation and exhibited a notable success. Marcheg-
giani and Titov (2017) leveraged the graph convo-
lutional network to incorporate syntax into a neu-
ral SRL model. Qian et al. (2017) proposed SA-
LSTM to model the whole tree structure of depen-
dency relation in an architecture engineering way.

Besides, syntax encoding has also successfully
promoted other NLP tasks. Tree-LSTM (Tai et al.,
2015) is a variant of the standard LSTM that can
encode a dependency tree with arbitrary branch-
ing factors, which has shown effectiveness on se-
mantic relatedness and the sentiment classification
tasks. In this work, we extend the Tree-LSTM
with a relation specific gate and employ it to re-
cursively encode the syntactic dependency tree for
SRL. RCNN (Zhu et al., 2015) is an extension of
the recursive neural network (Socher et al., 2010)
which has been popularly used to encode trees
with fixed branching factors. The RCNN is able
to encode a tree structure with arbitrary number
of factors and is useful in a re-ranking model for
dependency parsing (Zhu et al., 2015).
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In our experiments, we simplify and reformu-
late the RCNN model. However, the simplified
model performs poorly on the development and
the test sets. The reason might be that the RCNN
model with a single global composition parameter
is too simple to cover all types of syntactic relation
in a dependency tree. Because of the poor perfor-
mance of the modified RCNN, we do not include
it in this work. Considering there might be other
approach to incorporate the recursive network in
SRL model, we leave it as our future work and
just provide a brief discussion here.

In this work, we extend existing methods and
introduce Tree-LSTM for incorporating syntax
into SRL. Rather than proposing completely new
model, we synthesize these techniques and present
a unified framework to take genuine superiority of
syntactic information.

6 Conclusion

This paper presents a unified neural framework
for dependency-based SRL, effectively incorpo-
rating syntactic information by directly modeling
syntax based on syntactic parse tree. Rather than
proposing completely new model, we extend ex-
isting models and apply tree-structured LSTM for
SRL. Our approach significantly outperforms all
previous models, achieving state-of-the-art results
on the CoNLL-2009 benchmarks for both English
and Chinese.

Our experiments specially show that giving an
enlarged performance gap from syntax-agnostic
to syntax-aware setting, SRL can be further pro-
moted with the help of deep enhanced representa-
tion and effective methods of integrating syntax.
Furthermore, we explore the impact of the qual-
ity of syntactic input. The relevant results indicate
that high-quality syntactic parse is more favorable
to semantic role labeling.
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Abstract

We propose a novel approach to semantic de-
pendency parsing (SDP) by casting the task as
an instance of multi-lingual machine transla-
tion, where each semantic representation is a
different foreign dialect. To that end, we first
generalize syntactic linearization techniques to
account for the richer semantic dependency
graph structure. Following, we design a neural
sequence-to-sequence framework which can
effectively recover our graph linearizations,
performing almost on-par with previous SDP
state-of-the-art while requiring less parallel
training annotations. Beyond SDP, our lin-
earization technique opens the door to integra-
tion of graph-based semantic representations
as features in neural models for downstream
applications.

1 Introduction

Many sentence-level representations were devel-
oped with the goal of capturing the sentence’s
proposition structure and making it accessible for
downstream applications (Montague, 1973; Car-
reras and Màrquez, 2005; Banarescu et al., 2013;
Abend and Rappoport, 2013). See Abend and
Rappoport (2017), for a recent survey.

While syntactic grammars (Marcus et al., 1993;
Nivre, 2005) induce a rooted tree structure over
the sentence by connecting verbal predicates to
their arguments, these semantic representations
often take the form of the more general labeled
graph structure, and aim to capture a wider no-
tion of propositions (e.g, nominalizations, adjec-
tivals, or appositives). In particular, we will
focus on the three graph-based semantic repre-
sentations collected in the Broad-Coverage Se-
mantic Dependency Parsing SemEval shared task
(SDP) (Oepen et al., 2015): (1) DELPH-IN Bi-

⇤Work performed while at Bar-Ilan University.

Lexical Dependencies (DM) (Flickinger, 2000),1

(2) Enju Predicate-Argument Structures (PAS)
(Miyao et al., 2014), and (3) Prague Semantic
Dependencies (PSD) (Hajic et al., 2012). These
annotations have garnered recent attention (e.g.,
(Buys and Blunsom, 2017; Peng et al., 2017a)),
and were consistently annotated in parallel on over
more than 30K sentences of the Wall Street Jour-
nal corpus (Charniak et al., 2000).

In this work we take a novel approach to graph
parsing, casting sentence-level semantic parsing as
a multilingual machine-translation task (MT). We
deviate from current graph-parsing approaches to
SDP (Peng et al., 2017a) by treating the differ-
ent semantic formalisms as foreign target dialects,
while having English a as a common source lan-
guage (Section 3). Subsequently, we devise a neu-
ral MT sequence-to-sequence framework that is
suited for the task.

In order to apply sequence-to-sequence mod-
els for structured prediction, a linearization func-
tion is required to interpret the model’s sequen-
tial input and output. Initial work on structured
prediction sequence-to-sequence modeling has fo-
cused on tree structures (Vinyals et al., 2015; Aha-
roni and Goldberg, 2017), as these are quite easy
to linearize using the bracketed representation (as
employed in the Penn TreeBank (Marcus et al.,
1993)). Following, various efforts were made
to port the attractiveness of sequence-to-sequence
modeling to the more general graph structure of
semantic representations, such as AMR or MRS
(Peng et al., 2017b; Barzdins and Gosko, 2016;
Konstas et al., 2017; Buys and Blunsom, 2017).
However, to the best of our knowledge, all such
current methods actually sidestep the challenge of
graph linearization – they reduce the input graph
to a tree using lossy heuristics, which are specifi-

1 DM is automatically derived from Minimal Recursion
Semantics (MRS) (Copestake et al., 1999).
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cally tailored for their target representation.

In contrast, we design a novel deterministic and
lossless linearization (Section 4), which is appli-
cable to any graph with ordered nodes (e.g., sen-
tence word order). To that end, we devise so-
lutions for the various obstacles for linearizing a
graph structure, such as reentrancies (or multi-
ple heads), non-connected components, and non-
projective relations. This lineariztion allows us to
follow the spirit of Johnson et al. (2017) in train-
ing all source-target combinations in a multi-task
approach (Section 5). These combinations include
the three traditional text to semantic parsing tasks,
as well as six additional inter-representation trans-
lation tasks, constituting of all binary combina-
tions of the target representations (e.g., PSD to
PAS, or DM to PSD).

Following, we design an encoder-decoder
model which has two shared encoders, one for
raw English sentences and another for linearized
graphs, and a single global graph decoder. Inter-
estingly, we show that training on the auxiliary
inter-representation translation tasks greatly im-
proves the performance on the original SDP tasks,
without requiring any additional manual annota-
tion effort (Section 6).

Our contributions are two-fold. First, we show
that novel sequence-to-sequence models are able
to effectively capture and recover general graph
structures, making them a viable and easily exten-
sible approach towards the SDP task. Second, be-
yond SDP, as the inclusion of syntactic lineariza-
tion was shown beneficial in various tasks (Aha-
roni and Goldberg, 2017; Le et al., 2017) so does
our approach prompt easy integration of graph-
based representations as complementary semantic
signal in various downstream applications.

2 Background

We begin this section by presenting the corpus
we use to train and test our model (the SDP cor-
pus) and the current state-of-the-art in predicting
semantic dependencies. Then, we discuss pre-
vious work on sequence-to-sequence models for
tree prediction, which this work extends to general
graph structures. Finally, we briefly describe the
multilingual translation approach, which we bor-
row and adapt to the semantic parsing task.

DM PAS PSD

#Train sentences 35,657 35,657 35,657
#Test sentences 1,410 1,410 1,410
#Labels 59 42 91
%Trees 2.30 1.22 42.19
%Projective 2.91 1.64 41.92

Table 1: SDP corpus statistics. Numbers taken
from Oepen et al. (2015).

2.1 Semantic Dependencies

In general, the development of most semantic for-
malisms was carried out by disjoint and indepen-
dent efforts. However, the 2014 and 2015 Se-
mEval shared tasks (Oepen et al., 2014, 2015)
have culminated in the Semantic Dependency
Parsing (SDP) resource, a consistent and large
corpus (roughly 39K sentences), annotated in
parallel with three well-established formalisms:
DELPH-IN MRS-Derived Bi-Lexical Dependen-
cies (DM) (Flickinger, 2000), Enju Predicate-
Argument Structures (PAS) (Miyao et al., 2014),
and Prague Semantic Dependencies (PSD) (Hajic
et al., 2012). While varying in their labels and
annotation guidelines, all three representations in-
duce a graph structure, where each node corre-
sponds to a single word in the sentence. See Ta-
ble 1 for more details on this corpus, and Fig-
ure 1 for examples of the three SDP formalisms.
SDP has enabled the application of machine learn-
ing models for the task. Peng et al. (2017a) have
set the state-of-the-art results on all three tasks,
using techniques inspired by graph-based depen-
dency parsing models (Kiperwasser and Goldberg,
2016; Dozat and Manning, 2016; Kuncoro et al.,
2016). Their best results were obtained by lever-
aging the fact that SDP was annotated on parallel
texts. They reached 88% average labeled F1 score
across the SDP representations on an in-domain
test set, via joint prediction of the three representa-
tions using higher-order cross-representation fea-
tures. The first row in Table 4 summarizes their
performance for the three prediction tasks.

In this work we will take a different approach to
structured prediction of the SDP corpus. We will
design a novel sequence-to-sequence model, not
necessitating parallel annotations, which are often
unavailable for multi-task learning.

2413



Couch-potato jocks watching Monday Night Football can now vote for the greatest play in 20 years

compound ARG1

ARG2

compound compound

ARG1

ARG1

ARG2ARG1

BV

ARG1 ARG1

ARG2

ARG2

SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT SHIFT
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(c) Prague Semantic Dependencies (PSD).

Figure 1: Example of gold annotations for the three sentence-level representations in the SDP corpus
(DM, PAS, and PSD) on the same sentence, which was slightly shortened for presentation. Arcs in each
of the representations appear above the sentence. Our “SHIFT” edges, which appear dashed below it,
were introduced in Section 4 to ensure that all nodes are reachable from the first word.

2.2 Structured Prediction using
Sequence-to-Sequence Models

In contrast to the graph-parsing algorithms dis-
cussed in Section 2.1, a recent line of work has
explored the usage of more general sequence-to-
sequence models to perform structured prediction,
focusing specifically on predicting tree structures.
These approaches devise a task-specific lineariza-
tion function which converts the structured repre-
sentation to a sequential string, which is then used
to train the recurrent neural network. During infer-
ence, the inverted linearization function is applied
to the output to recover the desired structure.

Vinyals et al. (2015) showed that sequence-to-
sequence phrase-based constituency parsing can
be achieved using a tree depth-first search (DFS)
traversal as a linearization function.2 Following
this work, several recent efforts have employed
a similar DFS approach to AMR and MRS pars-
ing (Barzdins and Gosko, 2016; Konstas et al.,
2017; Peng et al., 2017b; Buys and Blunsom,
2017), after reducing AMR to trees by removing

2DFS for rooted trees is equivalent to the bracketed nota-
tion of the Penn Treebank.

re-entrencies.
Several recent works have found syntactic lin-

earization useful outside of neural parsers. For ex-
ample, in neural machine translation, Aharoni and
Goldberg (2017) showed that predicting target-
side linearized syntactic trees can improve the
quality and grammatically of the predicted transla-
tions. In Section 4, we show for the first time that
the DFS approach is a viable linearization function
also for semantic dependencies, by extending it to
account for the challenges introduced by the richer
graph structures in SDP.

2.3 Multi-lingual Machine Translation

Multi-Task Learning (MTL) is a modeling ap-
proach which shares and tunes the model param-
eters across several tasks. In some instances of
MTL, a subset of the tasks may be defined as
the “main tasks”, while the other tasks are treated
as auxiliaries which improve performance on the
main tasks by contributing to their training sig-
nal. MTL had regained popularity in recent years
thanks to its easy and wide-spread applicability in
neural networks (Collobert et al., 2011; Sogaard
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and Goldberg, 2016).
Perhaps most relevant to this work is Google’s

neural machine translation system by Johnson
et al. (2017), which trained a single sequence-to-
sequence model to translate between multiple lan-
guages. They introduced the usage of a special tag
in the source sentence to specify the desired target
language. For example, <2es> indicates that the
model should translate the input sentence to Span-
ish.

In Section 4, we adapt the MTL strategy to train
a single model for all SDP formalisms. We use
a similar “to” and “from” tags to indicate source
and desired target representations, and show that
introducing auxiliary inter-task translations can
improve performance on the main target tasks,
namely parsing semantic representations for raw
input text.

3 Task Definition

We define the task of semantic translation, as
converting to, and between, different sentence-
level semantic representations. Formally, a
sentence-level semantic representation according
to formalism R is a tuple, MR = (S, G), where
S = {w1, ..., wn} is a raw sentence, and G =
(V, E | V = {v1, ..., vn}, E ✓ V 2) is a labeled
graph whose vertices have a one-to-one correspon-
dence with the words in S,3 while its edges rep-
resent binary semantic relations, adhering to R’s
specifications.

Using these notations, our input is defined as
a triplet (source, target, Msource). Preceding
the input semantic representation are identifiers
for source and target representation schemes (e.g.,
“PAS”, “DM” or “PSD”). The semantic transla-
tion task is then to produce Mtarget. I.e., the sen-
tence’s representation under the target formalism.

This definition is broad enough to encapsulate
many sentence-level representations, and in this
work we will use the three SDP representations,
as well as an empty “RAW” representation (where
E(G) = ; for all sentences) to allow for transla-
tions from raw input sentences. We note that fu-
ture work may extend this framework with other
graph-based sentence representations.

3 The one-to-one node-to-word correspondence follows
SDP’s formulation, but can be relaxed to adjust for other
graph structures.

4 Graph Linearization

As discussed in Section 2, structured prediction in
a sequence-to-sequence framework requires a lin-
earization function, from the desired structure to a
linear sequence, and vice versa.

Oftentimes, such linearization consists of node
traversal along the edges of the input graph. While
previous work have had certain structural con-
straints on their input (e.g., imposing tree or non-
cyclic constructions), in this work, we construct
a lossless function which allows us to feed the
sequence-to-sequence network with a linearized
general graph representation and expect a lin-
earized graph in its output.

In this section, we describe our linearization
traversal order, which generalizes the DFS traver-
sal applied previously only for trees. We do this
by converting an SDP graph such that all nodes
are reachable from node v1. We then outline the
challenging aspects of graph properties (which do
not exist in trees), show that they are prevalent in
the SDP corpus, and describe our proposed solu-
tions. To the best of our knowledge, this is the
first work which tackles the task of general graph
linearization.

While our linearization can be predicted with
good accuracy (as we show in following sections),
there is ample room to experiment with represen-
tational variations, which we start exploring in
Section 6. Our conversion code is made publicly
available,4 allowing further experimentation with
general graph linearization for SDP and other re-
lated tasks.

4.1 Traversing Graphs with Non-Connected
Components

The DFS approach is an applicable linearization of
trees since a recursive traversal, which starts at the
root and explores all outgoing edges, is guaranteed
to visit all of the graph’s nodes. However, DFS
linearization is not directly applicable to SDP, as
its graphs often consist of several non-connected
components.

For such graphs, there exists no starting node
from which all of the nodes are reachable via DFS
traversal, and certain nodes are bound to be left out
of the traditional DFS encoding. For example, the
words “can” and “greatest” in Figure 1a reside in
different components, and therefore no single path

4https://github.com/gabrielStanovsky/
semantics-as-foreign-language
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(which traverses along the graph’s edge direction)
will discover both of them.

To overcome this limitation, we make sure that
all nodes are reachable from node v1, correspond-
ing to the first word in the sentence, from which
we start our traversal. This is achieved by intro-
ducing an artificial SHIFT edge between any two
consecutive nodes vi, vi+1 for which there is no
directed path already connecting them. Follow-
ing, it is easy to see, by induction, that all nodes
are reachable from v1, as for every node vi there
exists a directed path (v1, v2, ..., vi�1, vi). For ex-
ample, revisit the previously mentioned “can” and
“greatest” nodes in Figure 1a, which are connected
using “SHIFT” edges.

4.2 Linearizing a DFS Graph Traversal

Intuitively, our linearization is a pre-order DFS,
generalizing Vinyals et al. (2015)’s approach to
syntactic linearization. We start from v1 and ex-
plore all paths from it, in a depth-first manner.
Once a path is exhausted, either by reaching a node
with no outgoing edges5 or by reaching an already
visited node, we use special backtracking edges to
form a path backwards “up” the graph, until we hit
a node which still has unexplored outgoing edges.

Formally, our linearization of a given DFS
traversal is composed of 3 types of elements (see
Figure 2 for example):

First, a Node reference identifies a node in the
graph, which in turn corresponds to word in the
SDP formalism. We identify nodes using two to-
kens: (1) Their position in the sentence, relative
to the previous node in the path (while the first
position in the linearization is written in absolute
terms, as “0”), and (2) Explicitly writing the word
corresponding to the node.

For example, in Figure 2, traversing the
ARG1 edge from “easy” lands at “ind/2
understand”, whose outgoing ARG2 edge ar-
rives at “ind/-4 success”.

Second, an Edge reference, identifies an edge
label. These are denoted by a single token, com-
posed of 2 parts: (1) The edge’s formalism (in our
case, the SDP representation to which it pertains),
and (2) The edge label. Traversing an edge (u, v)
with label L will be encoded by placing the edge
reference between the node references of u and
v. For instance, in Figure 2, moving from node

5Note that after introducing the artificial “SHIFT” edges,
only vn may have no outgoing edges.

0 to node 1 through the edge labeled “poss” is en-
coded with the following string: “ind/0 Their

PAS/poss ind/1 success”.
Finally, Backtracking edges, signify a step

“backward” in the traversal. These are de-
noted with a single token, similarly to edge ref-
erences, with the addition of a “BACK” suffix.
For example, in Figure 2, we backtrack from
the already visited node “understand” by writing:
“PAS/ARG1/BACK”.

This linearization can be deterministically and
efficiently inverted back to the graph structure.
This is done by building the graph while read-
ing the linearization, adding to it nodes and edges
when they first appear, and omitting possible node
recurrences in the linearization (due to cycles or
backtracking edges), such as “success”, which ap-
pears twice in the Figure 2.

Redundancy in encoding We note that certain
items in our proposed linearization are redun-
dant. First, writing down the explicit word in
the traversal is not necessary, as the positional in-
dex is sufficient to uniquely identify a node. Sec-
ond, a single backtracking tag would have been
enough to identify the specific edge which is cur-
rently being backtracked (e.g., BACK instead of
PAS/verb ARG1/BACK). The latter is similar
to the redundancy in the syntactic linearization
of Vinyals et al. (2015), who specify the type
of closing bracket, e.g., NP(...)NP instead of
NP(...).

In Section 6 we show empirically that our model
benefits from explicitly generating these redun-
dancies during decoding.

4.3 DFS Traversal Order
A graph DFS traversal does not dictate an order
in which to explore the different outgoing paths
at each branching point. Consider, as a recurring
example, the branching point at the word “vote”
in Figure 1c, in which we need to choose an order
amongst its four neighbors.

While syntactic linearization conveniently fol-
lows the ordering of the words in the sentence,
Konstas et al. (2017) have noted that different
child visiting linearization orders affect the perfor-
mance of text generation from AMR. In particular,
they found that following the order of annotation
of a human expert worked best.

Intuitively, since different graph traversals af-
fect the sequence of encoded nodes during train-
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DFS order type Example
(vote’s PSD neighbors)

Random permutation (play, for, jocks, now)⇤

Sentence order
Neighbor’s index in the sentence

(jocks, now, for, play)

Closest words
Neighbor’s absolute distance

(now, for, play, jocks)

Smaller-first
# nodes reachable from the neighbor

(now, play, for, jocks)

Table 2: Different neighbor exploration orders.
Under the name of each order type, we list the key
by which we sort each node’s neighbors. The “Ex-
ample” column shows the corresponding ordering
of “vote”’s neighbors in Figure 1c. ⇤An example
of one possible random permutation.

ing, the network will inevitably have to learn dif-
ferent weights and attention when presented with
different orderings. Therefore, some traversal or-
derings may be easier to learn than others, leading
to better (hopefully more semantic) abstractions.

To the best of our knowledge, the human an-
notation order is not available for the SDP anno-
tations, and there is no clear a priori optimal or-
dering. We therefore experiment with several vis-
iting orders, as described in Table 2. Notably,
Sentence order is equivalent to the ordering used
by Vinyals et al. (2015) for syntactic lineariza-
tion, while Closest words orders child nodes from
short to longer range-dependencies (commonly as-
sociated with syntactic versus semantic relations),
and Smaller first is motivated by the easy-first ap-
proach (Goldberg and Elhadad, 2010), first encod-
ing paths which are shorter (and easier to memo-
rize), before longer, more complicated sequences.

In Section 6 we evaluate the effect of these vari-
ations on the SDP parsing task.

5 Model

We start by describing our model architecture, in-
spired by recent MT architectures, while allow-
ing for different types of inputs, namely English
sentences and linearized graphs. Following, we
present our methods for training and testing, and
specific hyper-parameter configuration and imple-
mentation details.

Their success is easy to understand

poss
ARG2

ARG1

SHIFT SHIFT SHIFT SHIFT

(a) Gold PAS representation from the SDP corpus. Original
gold edges appear above the words, while our introduced edges
appear below them.

ind/0 Their PAS/poss ind/1 success

SHIFT ind/1 is SHIFT ind/1 easy

PAS/ARG1 ind/2 understand PAS/ARG2
ind/-4 success PAS/ARG2/BACK ind/4
understand PAS/ARG1/BACK ind/-2 easy

SHIFT ind/1 to SHIFT ind/1 understand

(b) Our linearization scheme for the sentence in 2a. Each node
is represented by its relative index and surface form. Back-
wards traversing edges (marked with BACK) appear in italics.

Figure 2: Example of gold PAS representation
from the development partition of the SDP corpus
(top), and our corresponding linearization (bot-
tom).

5.1 Architecture
Our architecture, depicted in Figure 3, consists of
a sequence-to-sequence model using a bi-LSTM
encoder-decoder with attention on input and out-
put tokens, similar to that used by Johnson et al.
(2017) for multi-lingual MT. As described in Sec-
tion 3, it is trained on 9 translation tasks in paral-
lel. We split these into two groups, consisting of 3
primary tasks and 6 auxiliary tasks, as follows:

PRIMARY = {(RAW, tgt) |
tgt 2 (DM, PAS, PSD)}

AUXILIARY = {(src, tgt) 2 {DM, PAS, PSD}2 |
src 6= tgt}

The PRIMARY tasks deal with converting raw
sentences to linearized graph structures, which we
can compare to previous published baselines and
are therefore our main interest. Conversely, while
the AUXILIARY tasks provide additional training
signal to tune our model, they are also interesting
from an analytic point-of-view, which we examine
in depth in Section 6.

To allow the model to differentiate between
the different tasks, we prefix each input sample
with two tags (see example in Figure 3). First,
similarly to Johnson et al. (2017), we add a tag
indicating the desired target representation, e.g.,
<to:DM>. Second, In contrast to multi-lingual
MT which omits the source language (to allow for
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<from:RAW>

<from:DM>

ind/1

<to:PSD>

<to:PSD>

Couch�potato

ind/0

jocks

Couch�potato

can

DM/compound

jocks PSD/compound

Raw
Encoder

SDP
Encoder

Shared SDP Decoder

Softmax

Figure 3: Simplified sketch of our sequence-to-sequence architecture. The figure depicts encoding
and decoding of two input training samples, one from raw text to PSD (lower left), and the other from
DM to PSD (top left). The OR gate denotes choosing only one sample to encode at each training step.
While the two samples use different encoders, they share a single global SDP decoder (right) which
outputs a the graph structure. As denoted by dashed edges, at every decode step we can deterministically
interject and override the softmax probabilities for redundant elements, based on previous predictions.
For simplicity sake, a small number of units is showed for encoders and decoder and the attention and
deep encoder-decoder layers are omitted.

code switching), we explicitly denote the source
representation, e.g., <from:PSD>. This addition
further strengthens the correlation between inputs
from the same representation.6

Further deviating from the current practice in
MT, our architecture uses two encoders and a
single decoder (while common MT regards the
encoder-decoder as a single unit). The first
shared encoder specializes in encoding raw text
for all PRIMARY tasks, while a second encodes
linearized graph structures for the AUXILIARY
tasks. Both encoders are linked to a single de-
coder which converts their output representations
to a linearized graph.

Intuitively, the two encoders correspond to the
different nature of input to the PRIMARY tasks (an
English sentence) versus that of the AUXILIARY
tasks (a linearized graph), while a single decoder
allows for a common linearized graphs output for-
mat. Since the decoder is trained across all 9 tasks,
both encoders are optimized to arrive at similar
latent representations which are geared towards
graph prediction.

5.2 Training and Inference
The overall size of multi-task training data is
320, 913 samples. This constitutes a 9-fold in-

6Moreover, “code-switching” between semantic represen-
tations is inherently undesired.

crease over a single-model for SDP (35, 657 sen-
tences in the SDP corpus) and a 3-fold increase
over a standard MTL approach to SDP (without
the AUXILIARY tasks). During training, we pe-
nalize the model on all predicted elements, in-
cluding the redundant elements discussed in Sec-
tion 4.2. During inference, however, these re-
dundancies may cause contradictions leading to
incoherent sequences. Namely, a word may not
conform to the previous word index, and a back-
tracking edge may point to a different relation.
To overcome this we artificially increase the soft-
max probabilities (dashed edges in Figure 3) so
that they reflect the DFS path decoded up until
that point. Specifically, we override the predicted
word according to the previous index, and back-
track “up” the corresponding edge.

5.3 Implementation Details

All of our hyper-parameters were tuned on a held
out partition of 1000 sentences in the training set.
In particular, we use 3 hidden layers for both
of the encoders, and 2 hidden layers for the de-
coder. English word embeddings were fixed with
300-dimensional GloVe embeddings (Pennington
et al., 2014), while the graph elements, which con-
sist of a lexicon of roughly 400 tokens across three
representations, were randomly initialized. We
trained the model until convergence, roughly 20
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DM PAS PSD Avg.

Random 86.1 87.7 78.4 84.1
Sentence order 87.2 90.3 79.9 85.8
Closest words 87.5 89.8 79.7 85.8
Smaller-first 87.9 90.9 80.3 86.2

Table 3: Evaluation of different DFS orderings, in
labeled F1 score, across the different tasks.

epochs, in about 12 hours on a GPU (NVIDIA
GeForce GTX 1080 Ti), in batches of 50 sen-
tences. All of these sentences belong to the same
task, which is chosen at random before each batch.

Finally, our models were developed using the
OpenNMT-py library (Klein et al., 2017), and are
made available.7

6 Evaluation

We perform several evaluations, testing the im-
pact of alternative configurations, including the
different DFS traversal orders and MTL versus
single-task approach, as well as our model’s per-
formance against current state-of-the-art on each
of the PRIMARY tasks.

6.1 Results
The results of our different analyses are reported
in Tables 3-6, as elaborated below. For all evalu-
ations, we use the in-domain test partition of the
SDP corpus, containing 1, 410 sentences. Follow-
ing Peng et al. (2017a) we report performance us-
ing labeled F1 scores as well as average scores
across representations. We compare the produced
graphs, after applying the inverted linearization
function, rather than comparing the DFS path di-
rectly, as there may be several DFS graph traver-
sals encoding the same relations.

DFS order matters - Table 3 depicts our
model’s performance when linearizing the graphs
according to the different traversal orders dis-
cussed and exemplified in Table 2. Overall, we
find that the “smaller-first” approach performs best
across all datasets, and that imposing one of our
orders is always preferable over random permu-
tations. Intuitively, the “smaller-first” approach
presents shorter, and likely easier, paths first, thus
minimizing the amount of error-propagation for

7https://github.com/gabrielStanovsky/
semantics-as-foreign-language

following decoding steps. Due to its better per-
formance, we will report only the smaller-first’s
performance in all following evaluations.

From English to SDP - Table 4 presents the
performance of our complete model (“MTL PRI-
MARY+AUX”) versus Peng et al. (2017a). On
average, our model performs within 1% F1 point
from the state-of-the art (outperforming it on the
harder PSD task), despite using the more gen-
eral sequence-to-sequence approach instead of a
dedicated graph-parsing algorithm. In addition,
an ablation study shows that multi-tasking the
PRIMARY tasks is beneficial over a single task set-
ting, which in turn is outperformed by the inclu-
sion of the AUXILIARY tasks.

Simulating disjoint annotations - In contrast
with SDP’s complete overlap of annotated sen-
tences, multi-task learning often deals with dis-
joint training data. To simulate such scenario, we
retrained the models on a randomly selected set of
33% of the train sentences for each representation
(11, 886 sentences), such that the three representa-
tions overlap on only 10% (3, 565 sentences). The
results in Table 5 show that our approach is more
resilient to the decrease in annotation overlap, out-
performing the state-of-the-art model on the DM
and PSD task, as well as on the average score. We
hypothesize that this is in part thanks to our ability
to use the inter-task translations, even when these
exist only for part of the annotations.

6.2 Translating Between Representations
As a byproduct of training on the AUXILIARY
tasks, our model can also be tested on translating
between the different representations. This is done
by presenting it with a linearized graph of one rep-
resentation and asking it to translate it to another.
To the best of our knowledge, this is the first work
which tries to accomplish this.

We report the performance of all source-target
combinations in Table 6. These evaluations pro-
vide several interesting comparisons between the
representations: (1) For all representations, trans-
lating from any of the other two is easier than pars-
ing from raw text, (2) The PAS and DM represen-
tations can be converted between them with high
accuracy (95.7% and 96.1%, respectively). This
can be due to their structural resemblance, noted
in previous work (Peng et al., 2017a; Oepen et al.,
2015), and (3) While PSD serves as a viable in-
put for conversion to DM and PAS (92.1% F1 on
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DM PAS PSD Avg.

Peng et al. (2017a) 90.4 92.7 78.5 87.2

Single 70.1 73.6 63.6 69.1
MTL PRIMARY 82.4 87.2 71.4 80.3
MTL PRIMARY+AUX 87.9 90.9 80.3 86.2

Table 4: Evaluation of our model (labeled F1
score) versus the current state of the art. “Sin-
gle” denotes training a different encoder-decoder
for each task. “MTL PRIMARY” reports the
performance of multi-task learning on only the
PRIMARY tasks. “MTL PRIMARY+AUX” shows
the performance of our full model, including MTL
with the AUXILIARY tasks.

DM PAS PSD Avg.

Peng et al. (2017a) 86.8 90.5 77.3 84.9
MTL PRIMARY+AUX 87.1 89.6 79.1 85.3

Table 5: Performance (labeled F1 score) of our
model versus the state of the art, when reducing
the amount of overlap in the training data to 10%.

To \From DM PAS PSD Avg.

DM 96.1 92.4 94.3
PAS 95.7 91.7 93.7
PSD 89.5 87.6 88.6
Avg. 92.6 91.9 92.1

Table 6: Performance (labeled F1 score) of inter-
task translations. Each column depicts the perfor-
mance converting from a specific source represen-
tation, while each row denotes the corresponding
target representation.

average), it is relatively harder to convert either of
them to PSD (88.6%). This might indicate that
PSD subsumes some of the information in DM and
PAS.

7 Conclusions and Future Work

We presented a novel sequence-to-sequence ap-
proach to the task of semantic dependency parsing,
by casting the problem as multi-lingual machine
translation. To that end, we introduced a DFS-
based graph linearization function which general-
izes several previous works on tree linearization.
Following, we showed that our model, inspired
by neural MT, benefits from the inter-task training

signal, reaching performance almost on-par with
current state of the art in several scenarios.

Future work can employ this linearization func-
tion within downstream applications, as was done
with syntactic linearization, or extend this frame-
work with other graph-based representations, such
as universal dependencies (Nivre et al., 2016) or
AMR (Banarescu et al., 2013).
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Abstract

In this paper, we propose a new rich resource
enhanced AMR aligner which produces multi-
ple alignments and a new transition system for
AMR parsing along with its oracle parser. Our
aligner is further tuned by our oracle parser via
picking the alignment that leads to the highest-
scored achievable AMR graph. Experimental
results show that our aligner outperforms the
rule-based aligner in previous work by achiev-
ing higher alignment F1 score and consistently
improving two open-sourced AMR parsers.
Based on our aligner and transition system,
we develop a transition-based AMR parser that
parses a sentence into its AMR graph directly.
An ensemble of our parsers with only words
and POS tags as input leads to 68.4 Smatch F1
score, which outperforms the parser of Wang
and Xue (2017).

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic representation
which encodes the meaning of a sentence in a
rooted and directed graph, whose nodes are ab-
stract semantic concepts and edges are semantic
relations between concepts (see Figure 1 for an ex-
ample). Parsing a sentence into its AMR graph has
drawn a lot of research attention in recent years
with a number of parsers being developed (Flani-
gan et al., 2014; Wang et al., 2015b; Pust et al.,
2015; Artzi et al., 2015; Peng et al., 2015; Zhou
et al., 2016; Goodman et al., 2016; Damonte et al.,
2017; Ballesteros and Al-Onaizan, 2017; Foland
and Martin, 2017; Konstas et al., 2017).

The nature of abstracting away the association
between a concept and a span of words compli-
cates the training of the AMR parser. A word-
concept aligner is required to derive such associ-
ation from the sentence-AMR-graph pair and the

⇤* Email corresponding.

exchange-01

country

ARG0 freeze-01

ARG1

recieve-01

ARG3

name

name

ARG0

act-02

ARG1

reactor

ARG1

"North"

op1

"Korea"

op2

nucleus~1

mod

2

quant

nucleus~2

mod

Figure 1: AMR graph for the sentence “North Korea
froze its nuclear actions in exchange for two nuclear
reactors.”

alignment output is then used as reference to train
the AMR parser. In previous works, such align-
ment is extracted by either greedily applying a set
of heuristic rules (Flanigan et al., 2014) or adopt-
ing the unsupervised word alignment technique
from machine translation (Pourdamghani et al.,
2014; Wang and Xue, 2017).

The rule-based aligner – JAMR aligner pro-
posed by Flanigan et al. (2014) is widely used in
previous works thanks to its flexibility of incor-
porating additional linguistic resources like Word-
Net. However, achieving good alignments with
the JAMR aligner still faces some difficult chal-
lenges. The first challenge is deriving an opti-
mal alignment in ambiguous situations. Taking
the sentence-AMR-graph pair in Figure 1 for ex-
ample, the JAMR aligner doesn’t distinguish be-
tween the two “nuclear”s in the sentence and can
yield sub-optimal alignment in which the first “nu-
clear” is aligned to the nucleus˜2 concept. The
second challenge is recalling more semantically
matched word-concept pair without harming the
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alignment precision. The JAMR aligner adopts
a rule that aligns the word-concept pair which at
least have a common longest prefix of 4 charac-
ters, but omitting the shorter cases like aligning
the word “actions” to the concept act-01 and
the semantically matched cases like aligning the
word “example” to the concept exemplify-01.
The final challenge which is faced by both the
rule-based and unsupervised aligners is tuning the
alignment with downstream parser learning. Pre-
vious works treated the alignment as a fixed input.
Its quality is never evaluated and its alternatives
are never explored. All these challenges make the
JAMR aligner achieve only an alignment F1 score
of about 90% and influence the performance of the
trained AMR parsers.

In this paper, we propose a novel method to
solve these challenges and improve the word-to-
concept alignment, which further improves the
AMR parsing performance. A rule-based aligner
and a transition-based oracle AMR parser lie in the
core of our method. For the aligner part, we in-
corporate rich semantic resources into the JAMR
aligner to recall more word-concept pairs and can-
cel its greedily aligning process. This leads to
multiple alignment outputs with higher recall but
lower precision. For the parser part, we propose a
new transition system that can parse the raw sen-
tence into AMR graph directly. Meanwhile, a new
oracle algorithm is proposed which produces the
best achievable AMR graph from an alignment.
Our aligner is tuned by our oracle parser by feed-
ing the alignments to the oracle parser and picking
the one which leads to the highest Smatch F1 score
(Cai and Knight, 2013). The chosen alignment is
used in downstream training of the AMR parser.
Based on the newly proposed aligner and transi-
tion system, we develop a transition-based parser
that directly parses a sentence into its AMR graph
and it can be easily improved through ensemble
thanks to its simplicity.

We conduct experiments on LDC2014T12
dataset.1 Both intrinsic and extrinsic evaluations
are performed on our aligner. In the intrinsic
evaluation, our aligner achieves an alignment F1
score of 95.2%. In the extrinsic evaluation, we
replace the JAMR aligner with ours in two open-
sourced AMR parsers, which leads to consistent
improvements on both parsers. We also evaluate
our transition-based parser on the same dataset.

1catalog.ldc.upenn.edu/ldc2014t12

Using both our aligner and ensemble, a score of
68.1 Smatch F1 is achieved without any additional
resources, which is comparable to the parser of
Wang and Xue (2017). With additional part-of-
speech (POS) tags, our ensemble parser achieves
68.4 Smatch F1 score and outperforms that of
Wang and Xue (2017).

The contributions of this paper come in two
folds:

• We propose a new AMR aligner (§3) which
recalls more semantically matched pairs and
produces multiple alignments. We also pro-
pose a new transition system for AMR pars-
ing (§4.1) and use its oracle (§4.2) to pick
the alignment that leads to the highest-scored
achievable AMR graph (§4.3). Both intrinsic
and extrinsic evaluations (§5) show the effec-
tiveness of our aligner by achieving higher F1
score and consistently improving two open-
sourced AMR parsers.

• We build a new transition-based parser (§4.4)
upon our aligner and transition system which
directly parses a raw sentence into its AMR
graph. Through simple ensemble, our parser
achieves 68.4 Smatch F1 score with only
words and POS tags as input (§6) and out-
performs the parser of Wang and Xue (2017).

Our code and the alignments for LDC2014T12
dataset are publicly available at https://
github.com/Oneplus/tamr

2 Related Work
AMR Parsers. AMR parsing maps a natural
language sentence into its AMR graph. Most
current parsers construct the AMR graph in a
two-staged manner which first identifies concepts
(nodes in the graph) from the input sentence, then
identifies relations (edges in the graph) between
the identified concepts. Flanigan et al. (2014)
and their follow-up works (Flanigan et al., 2016;
Zhou et al., 2016) model the parsing problem as
finding the maximum spanning connected graph.
Wang et al. (2015b) proposes to greedily trans-
duce the dependency tree into AMR graph and
a bunch of works (Wang et al., 2015a; Goodman
et al., 2016; Wang and Xue, 2017) further improve
the transducer’s performance with rich features
and imitation learning.2 Transition-based methods

2Wang et al. (2015b) and the follow-up works refer their
transducing process as “transition-based”. However, to dis-
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that directly parse an input sentence into its AMR
graph have also been studied (Ballesteros and Al-
Onaizan, 2017; Damonte et al., 2017). In these
works, the concept identification and relation iden-
tification are performed jointly.

An aligner which maps a span of words into its
concept serves to the generation of training data
for the concept identifier, thus is important to the
parser training. Missing or incorrect alignments
lead to poor concept identification, which then
hurt the overall AMR parsing performance. Be-
sides the typical two-staged methods, the aligner
also works in some other AMR parsing algorithms
like that using syntax-based machine translation
(Pust et al., 2015), sequence-to-sequence (Peng
et al., 2017; Konstas et al., 2017), Hyperedge Re-
placement Grammar (Peng et al., 2015) and Com-
binatory Category Grammar (Artzi et al., 2015).

Previous aligner works solve the alignment
problem in two different ways. The rule-based
aligner (Flanigan et al., 2014) defines a set of
heuristic rules which align a span of words to the
graph fragment and greedily applies these rules.
The unsupervised aligner (Pourdamghani et al.,
2014; Wang and Xue, 2017) uncovers the word-to-
concept alignment from the linearized AMR graph
through EM. All these approaches yield a single
alignment for one sentence and its effect on the
downstream parsing is not considered.

JAMR Aligner (Flanigan et al., 2014). Two
components exist in the JAMR aligner: 1) a set
of heuristic rules and 2) a greedy search process.

The heuristic rules in the JAMR aligner are a
set of indicator functions ⇢(c, ws,e) which take a
concept c and a span of words ws,e starting from
s and ending with e as input and return whether
they should be aligned. These rules can be cat-
egorized into matching rules and updating rules.
The matching rules directly compare c with ws,e

and determine if they should be aligned. The up-
dating rules first retrieve the concept c0 that ws,e

aligns, then determine if c and ws,e should be
aligned by checking whether c and c0 meet some
conditions. Here, we illustrate how update rules
work by applying a rule named Entity Type on
the AMR graph in Figure 1 as an example. When
determining if the entity type concept country
should be aligned to “North Korea”, the Entity

tinguish their work with that of Damonte et al. (2017) and
Ballesteros and Al-Onaizan (2017), we use the term “trans-
duce” instead.

Type rule first retrieve that this span is aligned
to the fragment (name :op1 "North" :op2
"Korea"), then determine if they are aligned by
checking if name is the tail concept of country.

The greedy search process applies rules in a
manually defined order. The results are mutually
exclusive which means once a graph fragment is
aligned by one rule, it cannot be realigned. By
doing so, conflicts between the alignments pro-
duced by different rules are resolved. Flanigan
et al. (2014) didn’t talk about the principle of or-
ders but it generally follows the principle that 1)
the matching rules have higher priorities than the
updating rules, and 2) exact matching rules have
higher priorities than the fuzzy matching rules.

3 Enhanced Rule-based Aligner

3.1 Enhancing Aligner with Rich Semantic
Resources

Error propagates in the greedy search process. An
alignment error can lead to future errors because
of the dependencies and mutual exclusions be-
tween rules. In the JAMR aligner, rules that re-
call more alignments but introduce errors are care-
fully opted out and it influences the aligner’s per-
formance. Our motivation is to use rich semantic
resources to recall more alignments. Instead of re-
solving the resulted conflicts and errors by greedy
search, we keep the multiple alignments produced
by the aligner and let a parser decide the best align-
ment.

In this paper, we use two kinds of semantic re-
sources to recall more alignments, which include
the similarity drawn from Glove embedding (Pen-
nington et al., 2014)3 and the morphosemantic
database (Fellbaum et al., 2009) in the WordNet
project4. Two additional matching schemes se-
mantic match and morphological match are pro-
posed as:

Semantic Match. Glove embedding encodes a
word into its vector representation. We define se-
mantic match of a concept as a word in the sen-
tence that has a cosine similarity greater than 0.7
in the embedding space with the concept striping
off trailing number (e.g. run-01 ! run).

Morphological Match. Morphosemantic is a
database that contains links among derivational

3nlp.stanford.edu/projects/glove/
4wordnet.princeton.edu/wordnet/

download/standoff/
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(Semantic Named Entity) Applies to name concepts and
their opn children. Matches a span that matches the se-
mantic match of each child in numerical order.
(Morphological Named Entity) Applies to name con-
cepts and their opn children. Matches a span that matches
the morphological match of each child in numerical order.
(Semantic Concept) Applies to any concept. Strips off
trailing ‘-[0-9]+’ from the concept, and matches any se-
mantic matching word.
(Morphological Concept) Applies to any concept. Strips
off trailing ‘-[0-9]+’ from the concept, and matches any
morphological matching word or WordNet lemma.

Table 1: The extended rules.

links connecting noun and verb senses (e.g., “ex-
ample” and exemplify). We define morpholog-
ical match of a concept as a word in the sentence
having the (word, concept) link in the database.

By defining the semantic match and morpho-
logical match, we extend the rules in Flanigan
et al. (2014) with four additional matching rules
as shown in Table 1. These rules are intended to
recall the concepts or entities which either seman-
tically resemble a span of words but differ in the
surface form, or match a span of words in their
morphological derivation.

3.2 Producing Multiple Alignments
Using the rules in the JAMR aligner along with
our four extended matching rules, we propose an
algorithm to draw multiple alignments from a pair
of sentence and AMR graph and it is shown in Al-
gorithm 1. In this algorithm, Ac denotes the set
of candidate alignments for a graph fragment c,
in which each alignment is represented as a tu-
ple (s, e, c0) where s denotes the starting position,
e denotes the ending position, and c0 denotes the
concept that lead to this alignment. At the begin-
ning, Ac is initialized as an empty set (line 1 to 2).
Then all the matching rules are tried to align a span
of words to that fragment (line 3 to 7). After ap-
plying all the matching rules, all the updating rules
are repeatedly applied until no new alignment is
generated in one iteration (line 8 to 16). During
applying the updating rules, we keep track of the
dependencies between fragments. Finally, all the
possible combination of the alignments are enu-
merated without considering the one that violates
the fragment dependencies (line 17 to 26).

4 Transition-based AMR Parser

Our enhanced rule-based aligner produces mul-
tiple alignments, and we would like to use our

Algorithm 1: Our alignment algorithm.
Input: An AMR graph with a set of graph fragments C;

a sentence W ; a set of matching rules PM ; and
a set of updating rules PU .

Output: a set of alignments A.
1 for c 2 C do
2 Ac  ;;
3 for ⇢M 2 PM do
4 for ws,e  spans(W ) do
5 for c 2 C do
6 if ⇢M (c, ws,e) then
7 Ac  Ac [ (s, e, nil);

8 updated true ;
9 while updated is true do

10 updated false;
11 for ⇢U 2 PU do
12 for c, c0

2 C ⇥ C do
13 for (s, e, d) 2 A0

c do
14 if ⇢U (c, ws,e) ^ (s, e, c0) /2 Ac then
15 Ac  Ac [ (s, e, c0);
16 updated true;

17 A ; ;
18 for (a1, ..., ac) 2 CartesianProduct(A1, ..., A|C|) do
19 legal true;
20 for a 2 (a1, ..., ac) do
21 (s, e, c0) a;
22 (s0, e0, d) ac0 ;
23 if s 6= s0

^ e 6= e0 then
24 legal false ;

25 if legal then
26 A A [ (a1, ..., ac);

parser to evaluate their qualities. A parameter-
ized parser does not accomplish such goal because
training its parameters depends on the aligner’s
outputs. A deterministic parser works in this
situation but is required to consider the associ-
ation between concepts and spans. This stops
the deterministic parsers which build AMR graph
only from the derived concepts5 from being used
because they do not distinguish alignments that
yields to the same set of concepts.6

This discussion shows that to evaluate the qual-
ity of an alignment, we need a deterministic (ora-
cle) parser which builds the AMR graph from the
raw sentence. Ballesteros and Al-Onaizan (2017)
presented a transition-based parser that directly
parses a sentence into its AMR graph. A transition
system which extends the swap-based dependency
parsing system to handle AMR non-projectivities
(Damonte et al., 2017) was proposed in their work.

5e.g. the reference relation identifier in Flanigan et al.
(2014) and the oracle transducer in Wang et al. (2015b).

6recall the “nuclear” example in Section 1.
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Transition Current State Resulting State Description
DROP [�|s0, �, b0|�, A] [�|s0, �, �, A] pops out the word that doesn’t convey

any semantics (e.g., function words and
punctuations).

MERGE [�|s0, �, b0|b1|�, A] [�|s0, �, b0 b1|�, A] concatenates a sequence of words into a
span, which can be derived as a named
entity (name) or date-entity.

CONFIRM(c) [�|s0, �, b0|�, A] [�|s0, �, c|�, A] derives the first element of the buffer (a
word or span) into a concept c.

ENTITY(c) [�|s0, �, b0|�, A] [�|s0, �, c|�, A [ relations(c)] a special form of CONFIRM that derives
the first element into an entity and builds
the internal entity AMR fragment.

NEW(c) [�|s0, �, b0|�, A] [�|s0, �, c|b0|�, A] generates a new concept c and pushes it
to the front of the buffer.

LEFT(r) [�|s0, �, b0|�, A] [�|s0, �, b0|�, A [ {s0
r
 � b0}] links a relation r between the top

concepts on the stack and the buffer.RIGHT(r) [�|s0, �, b0|�, A] [�|s0, �, b0|�, A [ {s0
r
�! b0}]

CACHE [�|s0, �, b0|�, A] [�, s0|�, b0|�, A] passes the top concept of the stack onto
the deque.

SHIFT [�|s0, �, b0|�, A] [�|s0|�|b0, [ ], �, A] shifts the first concept of the buffer onto
the stack along with those on the deque.

REDUCE [�|s0, �, b0|�, A] [�, �, b0|�, A] pops the top concept of the stack.

Table 2: The transition system. The letters in monospace font represent the concepts, the italic letters represent
the word, and the letters in normal font are either concepts or words.

Their work presented the possibility for the oracle
parser, but their oracle parser was not touched ex-
plicitly. What’s more, in the non-projective depen-
dency parsing, Choi and McCallum (2013)’s ex-
tension to the list-based system (Nivre, 2008) with
caching mechanism achieves expected linear time
complexity and requires fewer actions to parse a
non-projective tree than the swap-based system.
Their extension to transition-based AMR parsing
is worth studying.

In this paper, we propose to extend Choi and
McCallum (2013)’s transition system to AMR
parsing and present the corresponding oracle
parser. The oracle parser is used for tuning our
aligner and training our parser. We also present
a comprehensive comparison of our system with
that of Ballesteros and Al-Onaizan (2017) in Sec-
tion 6.3.

4.1 List-based Extension for AMR Parsing

We follow Choi and McCallum (2013) and de-
fine a state in our transition system as a quadruple
s = (�, �, �, A), where � is a stack holding pro-
cessed words, � is a deque holding words popped
out of � that will be pushed back in the future, and
� is a buffer holding unprocessed words. A is a
set of labeled relations. A set of actions is defined
to parse sentence into AMR graph. Table 2 gives
a formal illustration of these actions and how they
work. The first five actions in Table 2 are our ex-

tended actions, and they are used to deriving con-
cepts from the input sentence.

4.2 Oracle Parser
Given an alignment and the gold standard AMR
graph, we can build the best AMR graph by re-
peatedly applying one of these actions and this is
what we called oracle parser. Before running the
oracle parser, we first remove the concepts which
aren’t aligned with any span of words from the
AMR graph. During running the oracle parser,
for a state s = (�|s0, �, b0|b1|�, A), our oracle
parser decides which action to apply by checking
the following conditions one by one.

1. If b0 is a word and it doesn’t align to any con-
cept, perform DROP.

2. If b1 is within a span in the alignment, per-
form MERGE.

3. If b0 is a word or span and it only aligns to
one entity concept c, perform ENTITY(c).

4. If b0 is a word or span and it aligns to one or
more concepts, perform CONFIRM(c) where
c is the concept b0 aligns and has the longest
graph distance to the root.

5. If b0 is a concept and its head concept c has
the same alignment as b0, perform NEW(c).

6. If b0 is a concept and there is an unprocessed
edge r between s0 and t0, perform LEFT(r)
or RIGHT(r) according to r’s direction.
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Figure 2: The workflow of tuning the aligner with the
oracle parser. ai denotes the i-th alignment, gi denotes
the i-th AMR graph, and si denotes the score of the i-th
AMR graph.

7. If s0 has unprocessed edge, perform CACHE.

8. If s0 doesn’t have unprocessed edge, perform
REDUCE.

9. perform SHIFT.

We test our oracle parser on the hand-align data
created by Flanigan et al. (2014) and it achieves
97.4 Smatch F1 score.7 Besides the errors re-
sulted from incorrect manual alignments, entity er-
rors made by the limitation of our ENTITY(c) ac-
tion count a lot. Since our ENTITY action directly
converts the surface form of a word span into an
entity. It cannot correctly generate entity names
when they require derivation,8 or where tokeniza-
tion errors exist.9

4.3 Tune the Aligner with Oracle Parser
Using our oracle parser, we tune the aligner by
picking the alignment which leads to the highest-
scored AMR graph from the set of candidates (see
Figure 2 for the workflow). When more than one
alignment achieve the highest score, we choose
the one with the smallest number of actions. In-
tuitively, choosing the one with the smallest num-
ber of actions will encourage structurally coherent
alignment10 because coherent alignment requires
fewer CACHE actions.

4.4 Parsing Model
Based on our aligner and transition system, we
propose a transition-based parser which parse the

7 Since some alignments in hand-align were created on
incorrect AMR annotations, we filter out them and only use
the correct subset which has 136 pairs of alignment and AMR
graph. This data is also used in our intrinsic evaluation.

8e.g., “North Koreans” cannot be parsed into (name
:op1 "North" :op2 "Korea")

9e.g., “Wi Sung - lac” cannot be parsed into (name
:op1 "Wi" :op2 "Sung-lac")

10e.g. the first “nuclear” aligned to nucleus˜1 in Fig. 1

raw sentence directly into its AMR graph. In
this paper, we follow Ballesteros and Al-Onaizan
(2017) and use StackLSTM (Dyer et al., 2015) to
model the states. The score of a transition action a
on state s is calculated as

p(a|s) =
exp{ga · STACKLSTM(s) + ba}P
a0 exp{ga0 · STACKLSTM(s) + ba0} ,

where STACKLSTM(s) encodes the state s into a
vector and ga is the embedding vector of action a.
We encourage the reader to refer Ballesteros and
Al-Onaizan (2017) for more details.

Ensemble. Ensemble has been shown as an ef-
fective way of improving the neural model’s per-
formance (He et al., 2017). Since the transition-
based parser directly parse a sentence into its
AMR graph, ensemble of several parsers is easier
compared to the two-staged AMR parsers. In this
paper, we ensemble the parsers trained with dif-
ferent initialization by averaging their probability
distribution over the actions.

5 Alignment Experiments

5.1 Settings
We evaluate our aligner on the LDC2014T12
dataset. Two kinds of evaluations are carried out
including the intrinsic and extrinsic evaluations.

For the intrinsic evaluation, we follow Flanigan
et al. (2014) and evaluate the F1 score of the align-
ments produced by our aligner against the man-
ually aligned data created in their work (hand-
align). We also use our oracle parser’s perfor-
mance as an intrinsic evaluation assuming that bet-
ter alignment leads to higher scored oracle parser.

For the extrinsic evaluation, we plug our align-
ment into two open-sourced AMR parsers: 1)
JAMR (Flanigan et al., 2014, 2016) and 2) CAMR
(Wang et al., 2015b,a) and evaluate the final
performances of the AMR parsers on both the
newswire proportion and the entire dataset of
LDC2014T12. We use the configuration in Flani-
gan et al. (2016) for JAMR and the configuration
in Wang et al. (2015a) without semantic role label-
ing (SRL) features for CAMR.

5.2 Results
Intrinsic Evaluation. Table 3 shows the intrin-
sic evaluation results, in which our alignment in-
trinsically outperforms JAMR aligner by achiev-
ing better alignment F1 score and leading to a
higher scored oracle parser.
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Aligner Alignment F1 Oracle’s Smatch
(on hand-align) (on dev. dataset)

JAMR 90.6 91.7
Our 95.2 94.7

Table 3: The intrinsic evaluation results.

model newswire all
JAMR parser: Word, POS, NER, DEP

+ JAMR aligner 71.3 65.9
+ Our aligner 73.1 67.6

CAMR parser: Word, POS, NER, DEP
+ JAMR aligner 68.4 64.6
+ Our aligner 68.8 65.1

Table 4: The parsing results.

Extrinsic Evaluation. Table 4 shows the results.
From this table, we can see that our alignment con-
sistently improves all the parsers by a margin rang-
ing from 0.5 to 1.7. Both the intrinsic and the
extrinsic evaluations show the effectiveness our
aligner.

5.3 Ablation
To have a better understanding of our aligner, we
conduct ablation test by removing the semantic
matching and oracle parser tuning respectively
and retrain the JAMR parser on the newswire pro-
portion. The results are shown in Table 5. From
this table, we can see that removing either of these
components harms the performance. Removing
oracle parser tuning leads to severe performance
drop and the score is even lower than that with
JAMR aligner. We address this observation to
that alignment noise is introduced by the semantic
matching especially by the word embedding sim-
ilarity component. Without filtering the noise by
our oracle parser, just introducing more matching
rules will harm the performance.

6 Parsing Experiments

6.1 Settings
We use the same settings in our aligner extrinsic
evaluation for the experiments on our transition-
based parser. For the input to the parser, we tried
two settings: 1) using only words as input, and
2) using words and POS tags as input. Auto-
matic POS tags are assigned with Stanford POS
tagger (Manning et al., 2014). Word embedding
from Ling et al. (2015) is used in the same way
with Ballesteros and Al-Onaizan (2017). To opt

model newswire
JAMR parser + Our aligner 73.1

- Semantic matching 72.7
- Oracle Parser Tuning 67.6

JAMR parser + JAMR aligner 71.3

Table 5: The ablation test results.

out the effect of different initialization in training
the neural network, we run 10 differently seeded
runs and report their average performance follow-
ing Reimers and Gurevych (2017).

6.2 Results
Table 6 shows the performance of our transition-
based parser along with comparison to the parsers
in the previous works. When compared with our
transition-based counterpart (Ballesteros and Al-
Onaizan, 2017), our word-only model outperforms
theirs using the same JAMR alignment. The same
trend is witnessed using words and POS tags as
input. When replacing the JAMR alignments with
ours, the parsing performances are improved in the
same way as in Table 4, which further confirms the
effectiveness of our aligner.

The second block in Table 6 shows the results
of our ensemble parser, in which ensemble signifi-
cantly improves the performance and more parsers
ensembled, more improvements are achieved. An
ensemble of 10 parsers with only words as input
achieves 68.1 Smatch F1 score which is compara-
ble to the AMR parser of Wang and Xue (2017).
Using the minimal amount of additional syntactic
information – POS tags, the performance of the
ensemble of 10 parsers is further pushed to 68.4,
which surpasses that of Wang and Xue (2017)
which relied on named entity recognition (NER)
and dependency parsing (DEP).

A further study on the speed shows that our 10
parser ensemble can parse 43 tokens per second
which is faster than JAMR (7 tokens/sec.) and
CAMR (24 tokens/sec.) thanks to the simplicity
of our model and independence of preprocessing,
like NER and DEP.11

6.3 Comparison to Ballesteros and
Al-Onaizan (2017)

To explain the improved performance against
Ballesteros and Al-Onaizan (2017) in Table 6, we

11In our speed comparison, we also count the time of pre-
processing for JAMR and CAMR. All the comparison is per-
formed in the same single-threaded settings.
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model newswire all
Our single parser: Word only

+ JAMR aligner 68.6 63.9
+ Our aligner 69.3 64.7

Our single parser: Word, POS
+ JAMR aligner 68.8 64.6
+ Our aligner 69.8 65.2

Our ensemble: Word only + Our aligner
x3 71.9 67.4
x10 72.5 68.1

Our ensemble: Word, POS + Our aligner
x3 72.5 67.7
x10 73.3 68.4

BA17: Word only† 68 63
+ POS 68 63
+ POS, DEP 69 64

Damonte et al. (2017)‡ - 66
Artzi et al. (2015) 66.3 -
Wang et al. (2015a) 70 66
Pust et al. (2015) - 67.1
Zhou et al. (2016) 71 66
Goodman et al. (2016) 70 -
Wang and Xue (2017) - 68.1

Table 6: The parsing results. xn denotes the ensem-
ble of n differently initialized parsers. The differ-
ence in rounding is due to previous works report dif-
ferently rounded results. † BA17 represents the re-
sult of Ballesteros and Al-Onaizan (2017), ‡ Damonte
et al. (2017)’s result is drawn from Ballesteros and Al-
Onaizan (2017).

give a comprehensive comparison between our
transition system and that of Ballesteros and Al-
Onaizan (2017).

Capability. In both these two systems, a span of
words can only be derived into concept for one
time. “Patch” actions are required to generate new
concepts from the one that is aligned to the same
span.12 Ballesteros and Al-Onaizan (2017) uses
a DEPENDENT action to generate one tail concept
for one hop and cannot deal with the cases which
have a chain of more than two concepts aligned to
the same span. Our list-based system differs theirs
by using a NEW action to deal these cases. Since
the new concept is pushed onto the buffer, NEW
action can be repeatedly applied and used to gen-
erate arbitrary concepts that aligned to the same

12 e.g., three concepts in the fragment (person
:source (country :name (name :op1
"North" :op2 "Korea"))) are aligned to “North
Koreans”.
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Figure 3: Number of actions required to parse the de-
velopment set by two systems.

span. On the development set of LDC2014T12,
our oracle achieves 91.7 Smatch F1 score over the
JAMR alignment, which outperforms Ballesteros
and Al-Onaizan (2017)’s oracle (89.5 in their pa-
per) on the same alignment. This result confirms
that our list-based system is more powerful.

Number of Actions. Our list-based system also
differs theirs in the number of oracle actions re-
quired to parse the same AMR graphs. We use
the oracles from two systems to parse the devel-
opment set of LDC2014T12 on the same JAMR
alignments. Figure 3 shows the comparison in
which our system clearly uses fewer actions (the
average number of our system is 63.7 and that of
Ballesteros and Al-Onaizan (2017) is 86.4). Us-
ing fewer actions makes the parser learned from
the oracle less prone to error propagation. We at-
tribute the improved performance in Table 6 to this
advantage of transition system.

7 Conclusion

In this paper, we propose a new AMR aligner
which is tuned by a novel transition-based AMR
oracle parser. Our aligner is also enhanced by
rich semantic resource and recalls more align-
ments. Both the intrinsic and extrinsic evaluations
show the effectiveness of our aligner by achiev-
ing higher alignment F1 score and consistently im-
proving two open-sourced AMR parsers. We also
develop transition-based AMR parser based on our
aligner and transition system and it achieves a per-
formance of 68.4 Smatch F1 score via ensemble
with only words and POS tags as input.
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Abstract

We propose a novel dependency-based hybrid
tree model for semantic parsing, which con-
verts natural language utterance into machine
interpretable meaning representations. Un-
like previous state-of-the-art models, the se-
mantic information is interpreted as the la-
tent dependency between the natural language
words in our joint representation. Such depen-
dency information can capture the interactions
between the semantics and natural language
words. We integrate a neural component into
our model and propose an efficient dynamic-
programming algorithm to perform tractable
inference. Through extensive experiments on
the standard multilingual GeoQuery dataset
with eight languages, we demonstrate that our
proposed approach is able to achieve state-of-
the-art performance across several languages.
Analysis also justifies the effectiveness of us-
ing our new dependency-based representa-
tion.1

1 Introduction

Semantic parsing is a fundamental task within the
field of natural language processing (NLP). Con-
sider a natural language (NL) sentence and its cor-
responding meaning representation (MR) as illus-
trated in Figure 1. Semantic parsing aims to trans-
form the natural language sentences into machine
interpretable meaning representations automati-
cally. The task has been popular for decades and
keeps receiving significant attention from the NLP
community. Various systems (Zelle and Mooney,
1996; Kate et al., 2005; Zettlemoyer and Collins,
2005; Liang et al., 2011) were proposed over the
years to deal with different types of semantic rep-
resentations. Such models include structure-based
models (Wong and Mooney, 2006; Lu et al., 2008;

1We make our system and code available at http://
statnlp.org/research/sp.

NL: What rivers do not run through Tennessee ?

MR: answer(exclude(river(all), traverse(stateid(0tn0))))
m1

m2

m3 m4

m5

m6

m1: QUERY : answer (RIVER)
m2: RIVER : exclude (RIVER, RIVER)
m3: RIVER : river (all)
m4: RIVER : traverse (STATE)
m5: STATE : stateid (STATENAME)
m6: STATENAME : (0tennessee0)

root What rivers do not run through Tennessee ?

m1

m2

m3
m4 m5 m6

Figure 1: Top: natural language (NL) sentence;
middle: meaning representation (MR); bottom:
dependency-based hybrid tree representation.

Kwiatkowski et al., 2010; Jones et al., 2012) and
neural network based models (Dong and Lapata,
2016; Cheng et al., 2017).

Following various previous research efforts
(Wong and Mooney, 2006; Lu et al., 2008; Jones
et al., 2012), in this work, we adopt a popular class
of semantic formalism – logical forms that can be
equivalently represented as tree structures. The
tree representation of an example MR is shown
in the middle of Figure 1. One challenge associ-
ated with building a semantic parser is that the ex-
act correspondence between the words and atomic
semantic units are not explicitly given during the
training phase. The key to the building of a suc-
cessful semantic parsing model lies in the identifi-
cation of a good joint latent representation of both
the sentence and its corresponding semantics. Ex-
ample joint representations proposed in the liter-
ature include a chart used in phrase-based trans-
lation (Wong and Mooney, 2006), a constituency
tree-like representation known as hybrid tree (Lu
et al., 2008), and a CCG-based derivation tree
(Kwiatkowski et al., 2010).

Previous research efforts have shown the effec-
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tiveness of using dependency structures to extract
semantic representations (Debusmann et al., 2004;
Cimiano, 2009; Bédaride and Gardent, 2011;
Stanovsky et al., 2016). Recently, Reddy et al.
(2016, 2017) proposed a model to construct log-
ical representations from sentences that are parsed
into dependency structures. Their work demon-
strates the connection between the dependency
structures of a sentence and its underlying seman-
tics. Although their setup and objectives are dif-
ferent from ours where externally trained depen-
dency parsers are assumed available and their sys-
tem was trained to use the semantics for a specific
down-stream task, the success of their work mo-
tivates us to propose a novel joint representation
that can explicitly capture dependency structures
among words for the semantic parsing task.

In this work, we propose a new joint represen-
tation for both semantics and words, presenting a
new model for semantic parsing. Our main contri-
butions can be summarized as follows:

• We present a novel dependency-based hybrid
tree representation that captures both words
and semantics in a joint manner. Such a de-
pendency tree reveals semantic dependencies
between words which are easily interpretable.

• We show that exact dynamic programming al-
gorithms for inference can be designed on top
of our new representation. We further show
that the model can be integrated with neural
networks for improved effectiveness.

• Extensive experiments conducted on the stan-
dard multilingual GeoQuery dataset show
that our model outperforms the state-of-the-
art models on 7 out of 8 languages. Fur-
ther analysis confirms the effectiveness of our
dependency-based representation.

To the best of our knowledge, this is the first
work that models the semantics as latent depen-
dencies between words for semantic parsing.

2 Related Work

The literature on semantic parsing has focused
on various types of semantic formalisms. The
�-calculus expressions (Zettlemoyer and Collins,
2005) have been popular and widely used in se-
mantic parsing tasks over recent years (Dong and
Lapata, 2016; Gardner and Krishnamurthy, 2017;
Reddy et al., 2016, 2017; Susanto and Lu, 2017a;
Cheng et al., 2017). Dependency-based composi-

tional semantics (DCS)2 was introduced by Liang
et al. (2011), whose extension, �-DCS, was later
proposed by Liang (2013). Various models (Be-
rant et al., 2013; Wang et al., 2015; Jia and Liang,
2016) on semantic parsing with the �-DCS for-
malism were proposed. In this work, we focus on
the tree-structured semantic formalism which has
been examined by various research efforts (Wong
and Mooney, 2006; Kate and Mooney, 2006; Lu
et al., 2008; Kwiatkowski et al., 2010; Jones et al.,
2012; Lu, 2014; Zou and Lu, 2018).

Wong and Mooney (2006) proposed the WASP
semantic parser that regards the task as a phrase-
based machine translation problem. Lu et al.
(2008) proposed a generative process to generate
natural language words and semantic units in a
joint model. The resulting representation is called
hybrid tree where both natural language words and
semantics are encoded into a joint representation.
The UBL-s (Kwiatkowski et al., 2010) parser
applied the CCG grammar (Steedman, 1996) to
model the joint representation of both semantic
units and contiguous word sequences which do
not overlap with one another. Jones et al. (2012)
applied a generative process with Bayesian tree
transducer and their model also simultaneously
generates the meaning representations and natural
language words. Lu (2014, 2015) proposed a dis-
criminative version of the hybrid tree model of (Lu
et al., 2008) where richer features can be captured.
Dong and Lapata (2016) proposed a sequence-to-
tree model using recurrent neural networks where
the decoder can branch out to produce tree struc-
tures. Susanto and Lu (2017b) augmented the dis-
criminative hybrid tree model with multilayer per-
ceptron and achieved state-of-the-art performance.

There exists another line of work that applies
given syntactic dependency information to seman-
tic parsing. Titov and Klementiev (2011) decom-
posed a syntactic dependency tree into fragments
and modeled the semantics as relations between
the fragments. Poon (2013) learned to derive se-
mantic structures based on syntactic dependency
trees predicted by the Stanford dependency parser.
Reddy et al. (2016, 2017) proposed a linguistically
motivated procedure to transform syntactic depen-
dencies into logical forms. Their semantic parsing
performance relies on the quality of the syntactic
dependencies. Unlike such efforts, we do not re-

2Unlike ours, their work captures dependencies between
semantic units but not natural language words.
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Sentence: What rivers do not run through Tennessee ?

Relaxed Hybrid Tree

m1

What ?m2

m3 m4do not

rivers m5run through

m6

Tennessee

Dependency-based Hybrid Tree

root

What
not

rivers through

Tennessee

m1: QUERY : answer (RIVER)
m2: RIVER : exclude (RIVER, RIVER)
m3: RIVER : state (all)
m4: RIVER : traverse (STATE)
m5: STATE : stateid (STATENAME)
m6: STATENAME : (0tennessee0)

m1

m2

m
3

m
4

m
5 m

6

root What rivers do not run through Tennessee ?

m1

m2

m3
m4 m5 m6

Figure 2: The relaxed hybrid tree (left) (Lu, 2014) and our dependency-based hybrid tree (right) as well
as the flat representation (bottom right) of the example in Figure 1.

quire external syntactic dependencies, but model
the semantic units as latent dependencies between
natural language words.

3 Approach

3.1 Variable-free Semantics
The variable-free semantic representations in the
form of FunQL (Kate et al., 2005) used by the de-
facto GeoQuery dataset (Zelle and Mooney, 1996)
encode semantic compositionality of the logical
forms (Cheng et al., 2017). In the tree-structured
semantic representations as illustrated in Figure 1,
each tree node is a semantic unit of the following
form:

mi ⌘ ⌧↵ : p↵(⌧⇤
�)

where mi denotes the complete semantic unit,
which consists of semantic type ⌧↵, function sym-
bol p↵ and an argument list of semantic types ⌧⇤

�
(here ⇤ denotes that there can be 0, 1, or 2 semantic
types in the argument list. This number is known
as the arity of mi). Each semantic unit can be re-
garded as a function that takes in other (partial)
semantic representations of certain types as argu-
ments and returns a semantic representation of a
specific type. For example in Figure 1, the root
unit is represented by m1, the type of this unit is
QUERY, the function name is answer and it has a
single argument RIVER which is a semantic type.
With recursive function composition, we can ob-
tain a complete MR as shown in Figure 1.

3.2 Dependency-based Hybrid Trees
To jointly encode the tree-structured semantics
m and a natural language sentence n, we in-

troduce our novel dependency-based hybrid tree.
Figure 2 (right) shows the two equivalent ways
of visualizing the dependency-based hybrid tree
based on the example given in Figure 1. In
this example, m is the tree-structured semantics
m1(m2(m3, m4(m5(m6)))) and n is the sentence
{w1, w2, · · · , w8}3. Our dependency-based hy-
brid tree t consists of a set of dependencies be-
tween the natural language words, each of which
is labeled with a semantic unit. Formally, a depen-
dency arc is represented as (wp, wc, mi), where wp

is the parent of this dependency, wc is the child,
and mi is the semantic unit that serves as the label
for the dependency arc. A valid dependency-based
hybrid tree (with respect to a given semantic rep-
resentation) allows one to recover the correct se-
mantics from it. Thus, one constraint is that for
any two adjacent dependencies (wp, wc, mi) and
(w0

p, w
0
c, mj), where wc ⌘ w0

p, mi must be the
parent of mj in the tree-structured representation
m. For example, in Figure 2, the dependencies
(not, through, m4) and (through, Tennessee, m5)
satisfy the above condition. However, we cannot
replace (through, Tennessee, m5) with, for exam-
ple, (through, Tennessee, m6), since m6 is not the
child of m4. Furthermore, the number of chil-
dren for a word in the dependency tree should be
consistent with the arity of the corresponding se-
mantic unit that points to it. For example, “not”
has 2 children in our dependency-based hybrid
tree representation because the semantic unit m2

(i.e., RIVER : exclude (RIVER, RIVER)) has arity
2. Also, “rivers” is the leaf as m3, which points
to it, has arity 0. We will discuss in Section 3.3

3We also introduce a special token “root” as w0.
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Abstract Arity Dependency
Semantic Unit Pattern

A 0 WW
B 1 X, WX, XW
C 2 XY, YX

Table 1: List of dependency patterns.

on how to derive the set of allowable dependency-
based hybrid trees for a given (m, n) pair.

To understand the potential advantages of our
new joint representation, we compare it with the
relaxed hybrid tree representation (Lu, 2014),
which is illustrated on the left of Figure 2. We
highlight some similarities and differences be-
tween the two representations from the span level
and word level perspectives.

In a relaxed hybrid tree representation, words
and semantic units jointly form a constituency
tree-like structure, where the former are leaves and
the latter are internal nodes of such a joint repre-
sentation. Such a representation is able to capture
alignment between the natural language words
and semantics at the span level.4 For example,
m2 covers the span from “rivers” to “Tennessee”,
which allows the interactions between the seman-
tic unit and the span to be captured. Similarly, in
our dependency-based hybrid tree, such span level
word-semantics correspondence can also be cap-
tured. For example, the arc between “not” and
“through” is labeled by the semantic unit m4. This
also allows the interactions between m4 and words
within the span from “not” to “through” to be cap-
tured.

While both models are able to capture the span-
level correspondence between words and seman-
tics, we can observe that in the relaxed hybrid tree,
some words within the span are more directly re-
lated to the semantic unit (e.g., “do not” are more
related to m2) and some are not. Specifically, in
their representation, the span level information as-
signed to the parent semantic unit always contains
the span level information assigned to all its child
semantic units. This may not always be desir-
able and may lead to irrelevant features. In fact,
Lu (2014) also empirically showed that the span-
level features may not always be helpful in their
representation. In contrast, in our dependency-
based hybrid tree, the span covered by m2 is from
“What” to “not”, which only consists of the span
level information associated with its first child
semantic units. Therefore, our representation is

4We refer readers to (Lu, 2014) for more details.

rivers

m3

(...) (...)

through

Tennessee(...)

m4

m5

not

rivers through

m2

m3 m4

Tennessee

m5

m6

A ! WW B ! WX C ! XY B ! X

Figure 3: Example dependency patterns used in the
dependency-based hybrid tree of Figure 2.

more flexible in capturing the correspondence be-
tween words and semantics at the span level, al-
lowing the model to choose the relevant span for
features.

Furthermore, our representation can also cap-
ture precise interactions between words through
dependency arcs labeled with semantic units. For
example, the semantic unit m4 on the dependency
arc from “not” to “through” in our representation
can be used to capture their interactions. How-
ever, such information could not be straightfor-
wardly captured in a relaxed hybrid tree, which is
essentially a constituency tree-like representation.
In the same example, consider the word “not” that
bridges two arcs labeled by m2 and m4. Lexical
features defined over such arcs can be used to in-
directly capture the interactions between semantic
units and guide the tree construction process. We
believe such properties can be beneficial in prac-
tice, especially for certain languages. We will ex-
amine their significance in our experiments later.

3.3 Dependency Patterns
To define the set of allowable dependency-based
hybrid tree representation so as to allow us to per-
form exact inference later, we introduce the depen-
dency patterns as shown in Table 1. We use A, B
or C to denote the abstract semantic units with ar-
ity 0, 1, and 2, respectively. We use W to denote a
contiguous word span, and X and Y to denote the
first and second child semantic unit, respectively.

We explain these patterns with concrete cases
in Figure 3 based on the example in Figure 2. For
the first case, the semantic unit m3 has arity 0, the
pattern involved is WW, indicating both the left-
hand and right-hand sides of “rivers” (under the
dependency arc with semantic unit m3) are just
word spans (W, whose length could be zero). In
the second case, the semantic unit m4 has arity 1,
the pattern involved is WX, indicating the left-
hand side of “through” (under the arc of semantic
unit m4) is a word span and the right-hand side
should be handled by the first child of m4 in the
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semantic tree, which is m5 in this case. In the
third case, the semantic unit m2 has two argu-
ments, and the pattern involved in the example is
XY, meaning the left-hand and right-hand sides
should be handled by the first and second child se-
mantic units (i.e., m3 and m4), respectively.5 The
final case illustrates that we also allow self-loops
on our dependency-based hybrid trees, where an
arc can be attached to a single word.6 To avoid an
infinite number of self-loops over a word, we set
a maximum depth c to restrict the maximum num-
ber of recurrences, which is similar to the method
introduced in (Lu, 2015).

Based on the dependency patterns, we are
able to define the set of all possible allow-
able dependency-based hybrid tree representa-
tions. Each representation essentially belongs to a
class of projective dependency trees where seman-
tic units appear on the dependency arcs and (some
of the) words are selected as nodes. The semantic
tree can be constructed by following the arcs while
referring to the dependency patterns involved.

3.4 Model
Given the natural language words n, our task is to
predict m, which is a tree-structured meaning rep-
resentation, consisting of a set of semantic units
as the nodes in the semantic tree. We use t to de-
note a dependency-based hybrid tree (as shown in
Figure 2), which jointly encodes both natural lan-
guage words and the gold meaning representation.
Let T (n, m) denote all the possible dependency-
based hybrid trees that contain the natural lan-
guage words n and the meaning representation
m. We adopt the widely-used structured predic-
tion model conditional random fields (CRF) (Laf-
ferty et al., 2001). The probability of a possible
meaning representation m and dependency-based
hybrid tree t for a sentence n is given by:

Pw(m, t|n) =
ew·f(n,m,t)

P
m0,t02T (n,m0) ew·f(n,m0,t0)

where f(n, m, t) is the feature vector defined over
the (n, m, t) tuple, and w is the parameter vec-
tor. Since we do not have the knowledge of the
“true” dependencies during training, t is regarded
as a latent-variable in our model. We marginalize

5Analogously, the pattern YX would mean m4 handles
the left-hand side and m3 right-hand side.

6The limitations associated with disallowing such a pat-
tern have been discussed in the previous work of (Lu, 2015).

t in the above equation and the resulting model is
a latent-variable CRF (Quattoni et al., 2005):

Pw(m|n) =
X

t2T (n,m)

Pw(m, t|n)

=

P
t2T (n,m) ew·f(n,m,t)

P
m0,t02T (n,m0) ew·f(n,m0,t0)

(1)

Given a dataset D of (n, m) pairs, our objective
is to minimize the negative log-likelihood:7

L(w) = �
X

(n,m)2D
log

X

t2T (n,m)

Pw(m, t|n) (2)

The gradient for model parameter wk is:

@L(w)

@wk
=

X

(n,m)2D

X

m0,t

EPw(m0,t|n)[fk(n, m, t)]

�
X

(n,m)2D

X

t

EPw(t|n,m)[fk(n, m, t)]

where fk(n, m, t) represents the number of oc-
currences of the k-th feature. With both the ob-
jective and gradient above, we can minimize the
objective function with standard optimizers, such
as L-BFGS (Liu and Nocedal, 1989) and stochas-
tic gradient descent. Calculation of these expecta-
tions involves all possible dependency-based hy-
brid trees. As there are exponentially many such
trees, an efficient inference procedure is required.
We will present our efficient algorithm to perform
exact inference for learning and decoding in the
next section.

3.5 Learning and Decoding

We propose dynamic-programming algorithms to
perform efficient and exact inference, which will
be used for calculating the objective and gradi-
ents discussed in the previous section. The algo-
rithms are inspired by the inside-outside style al-
gorithm (Baker, 1979), graph-based dependency
parsing (Eisner, 2000; Koo and Collins, 2010;
Shi et al., 2017), and the relaxed hybrid tree
model (Lu, 2014, 2015). As discussed in Section
3.3, our latent dependency trees are projective as
in traditional dependency parsing (Eisner, 1996;
Nivre and Scholz, 2004; McDonald et al., 2005) –
the dependencies are non-crossing with respect to
the word order (see bottom of Figure 1).

7We ignore the L2 regularization term for brevity.
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The objective function in Equation 2 can be fur-
ther decomposed into the following form8:

L(w) = �
X

(n,m)2D
log

X

t2T (n,m)

ew·f(n,m,t)

+
X

(n,m)2D
log

X

m0,t02T (n,m0)

ew·f(n,m0,t0)

We can see the first term is essentially the com-
bined score of all the possible latent structures
containing the pair (n, m). The second term is
the combined score for all the possible latent struc-
tures containing n. We show how such scores
can be calculated in a factorized manner, based
on the fact that we can recursively decompose a
dependency-based hybrid tree based on the depen-
dency patterns we introduced.

Formally, we introduce two interrelated
dynamic-programming structures that are similar
to those used in graph-based dependency pars-
ing (Eisner, 2000; Koo and Collins, 2010; Shi
et al., 2017), namely complete span and complete
arc span. Figure 4a shows an example of complete
span (left) and complete arc span (right). The
complete span (over [i, j]) consists of a headword
(at i) and its descendants on one side (they
altogether form a subtree), a dependency pattern
and a semantic unit. The complete arc span is
a span (over [i, j]) with a dependency between
the headword (at i) and the modifier (at k). We
use Ci,j,p,m to denote a complete span, where i
and j represent the indices of the headword and
endpoint, p is the dependency pattern and m is
the semantic unit. Analogously, we use Ai,k,j,p,m

to denote a complete arc span where i and k are
used to denote the additional dependency from
the word at the i-th position as headword to the
word at the k-th position as modifier.

As we can see from the derivation in Figure 4,
each type of span can be constructed from smaller
spans in a bottom-up manner. Figure 4a shows that
a complete span is constructed from a complete
arc span following the dependency patterns in Ta-
ble 1. Figure 4b shows a complete arc span can
be simply constructed from two smaller complete
spans based on the dependency pattern. In Figure
4c and 4d, we further show how such two com-
plete spans with pattern X (or Y) and W can be
constructed. Figure 4c illustrates how to model a
transition from one semantic unit to another where

8Regularization term is excluded for brevity.

(a)

ji

m1,B =
ji

m1,WX

k

(b)

ji k

m1,WX =
ki+1

m1,W +
jk

m1,X

(c)

ji

m1,X =
ji

m2,B

(d)

ji

m1,W
=

ii

m1,w +
i+1i+1

m1,w +
ji+1

m1,W

Figure 4: The dynamic-programing structures and
derivation of our model. The other direction is
symmetric. See supplementary material for the
complete structures.

the parent is m1 and the child is m2 in the seman-
tic tree. If m2 has arity 1, then the pattern is B
following the dependency patterns in Table 1. For
spans with a single word, we use the lowercase w
as the pattern to indicate this fact, as shown in Fig-
ure 4d. They are the atomic spans used for build-
ing larger spans. As the complete span in Figure
4d is associated with pattern W, which means the
words within this span are under the semantic unit
m1, we can incrementally construct this span with
atomic spans. We illustrate the construction of a
complete dependency-based hybrid tree in the sup-
plementary material.

Our final goal during training for a sentence
n = {w0, w1, · · · , wN} is to construct all the pos-
sible complete spans that cover the interval [0, N ],
which can be represented as C0,N,·,·. Similar to the
chart-based dependency parsing algorithms (Eis-
ner, 1996, 2000; Koo and Collins, 2010), we can
obtain the inside and outside scores using our
dynamic-programming derivation in Figure 4 dur-
ing the inference process, which can then be used
to calculate the objective and feature expectations.
Since the spans are defined by at most three free
indices, the dependency pattern and the seman-
tic unit, our dynamic-programming algorithm re-
quires O(N3M) time9 where M is the number
of semantic units. The resulting complexity is the
same as the relaxed hybrid tree model (Lu, 2014).

During decoding, we can find the optimal (tree-
structured) meaning representation m

⇤ for a given

9We omit a small constant factor associated with patterns.
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Feature Type Examples
Word “m4 & run”, “m4 & through”
Pattern “m2 & XY”, “m4 & WX”
Transition “m2 & m3”, “m2 & m4”
Head word “m2 & What”, “m4 & not”
Modifier word “m2 & not”, “m4 & through”
Bag of words “m4 & not”, “m4 & run”, “m4 & through”

Table 2: Features for the example in Figure 2.

input sentence n by the Viterbi algorithm. This
step can also be done efficiently with our dynamic-
programming approach, where we switch from
marginal inference to MAP inference:

m
⇤, t⇤ = arg max

m,t2T (n,m)
ew·f(n,m,t)

A similar decoding procedure has been used in
previous work (Lu, 2014; Durrett and Klein, 2015)
with CKY-based parsing algorithm.

3.6 Features
As shown in Equation 1, the features are de-
fined on the tuple (n, m, t). With the dynamic-
programming procedure, we can define the fea-
tures over the structures in Figure 2. Our feature
design is inspired by the hybrid tree model (Lu,
2015) and graph-based dependency parsing (Mc-
Donald et al., 2005). Table 2 shows the feature
templates for the example in Figure 2. Specifi-
cally, we define simple unigram features (concate-
nation of a semantic unit and a word that directly
appears under the unit), pattern features (concate-
nation of the semantic unit and the child pattern)
and transition features (concatenation of the par-
ent and child semantic units). They form our basic
feature set.

Additionally, with the structured properties of
dependencies, we can define dependency-related
features (McDonald et al., 2005). We use the par-
ent (head) and child (modifier) words of the depen-
dency as features. We also use the bag-of-words
covered under a dependency as features. The de-
pendency features are useful in helping improve
the performance as we can see in the experiments
section.

3.7 Neural Component
Following the approach used in Susanto and Lu
(2017b), we could further incorporate neural net-
works into our latent-variable graphical model.
The integration is analogous to the approaches
described in the neural CRF models (Do and

Artieres, 2010; Durrett and Klein, 2015; Gormley,
2015; Lample et al., 2016), where we use neural
networks to learn distributed feature representa-
tions within our graphical model.

We employ a neural architecture to calculate
the score associated with each dependency arc
(wp, wc, m) (here wp and wc are the parent and
child words in the dependency and m is the seman-
tic unit over the arc), where the input to the neural
network consists of words (i.e., (wp, wc)) associ-
ated with this dependency and the neural network
will calculate a score for each possible semantic
unit, including m. The two words are first mapped
to word embeddings ep and ec (both of dimension
d). Next, we use a bilinear layer10 (Socher et al.,
2013; Chen et al., 2016) to capture the interaction
between the parent and the child in a dependency:

ri = eT

p Uiec

where ri represents the score for the i-th semantic
unit and Ui 2 R

d⇥d. The scores are then incorpo-
rated into the probability expression in Equation 1
during learning and decoding. As a comparison,
we also implemented a variant where our model
directly takes in the average embedding of ep and
ec as additional features, without using our neural
component.

4 Experiments

Data and evaluation methodology We conduct
experiments on the publicly available variable-
free version of the GeoQuery dataset, which has
been widely used for semantic parsing (Wong
and Mooney, 2006; Lu et al., 2008; Jones et al.,
2012). The dataset consists of 880 pairs of natu-
ral language sentences and the corresponding tree-
structured semantic representations. This dataset
is annotated with eight languages. The original
annotation of this dataset is English (Zelle and
Mooney, 1996) and Jones et al. (2012) annotated
the dataset with three more languages: German,
Greek and Thai. Lu and Ng (2011) released the
Chinese annotation and Susanto and Lu (2017b)
annotated the corpus with three additional lan-
guages: Indonesian, Swedish and Farsi. In order
to compare with previous work (Jones et al., 2012;
Lu, 2015), we follow the standard splits with 600
instances for training and 280 instances for test-
ing. To evaluate the performance, we follow the

10Empirically, we also tried multilayer perceptron but the
bilinear model gives us better results.
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Type System/Model English (en) Thai (th) German (de) Greek (el) Chinese (zh) Indonesian (id) Swedish (sv) Farsi (fa)
Acc. F. Acc. F. Acc. F. Acc. F. Acc. F. Acc. F. Acc. F. Acc. F.

Non-Neural

WASP 71.1 77.7 71.4 75.0 65.7 74.9 70.7 78.6 48.2 51.6 74.6 79.8 63.9 71.5 46.8 54.1
HYBRIDTREE 76.8 81.0 73.6 76.7 62.1 68.5 69.3 74.6 56.1 58.4 66.4 72.8 61.4 70.5 51.8 58.6
UBL 82.1 82.1 66.4 66.4 75.0 75.0 73.6 73.7 63.8 63.8 73.8 73.8 78.1 78.1 64.4 64.4
TREETRANS 79.3 79.3 78.2 78.2 74.6 74.6 75.4 75.4 - - - - - - - -
RHT 86.8 86.8 80.7 80.7 75.7 75.7 79.3 79.3 76.1 76.1 75.0 75.0 79.3 79.3 73.9 73.9

Neural

SEQ2TREE† 84.5 - 71.9 - 70.3 - 73.1 - 73.3 - 80.7 - 80.8 - 70.5 -
MSP-SINGLE† 83.5 - 72.1 - 69.3 - 74.2 - 74.9 - 79.8 - 77.5 - 72.2 -
NEURAL HT (J=0) 87.9 87.9 82.1 82.1 75.7 75.7 81.1 81.1 76.8 76.8 76.1 76.1 81.1 81.1 75.0 75.0
NEURAL HT (J=1) 88.6 88.6 84.6 84.6 76.8 76.8 79.6 79.6 75.4 75.4 78.6 78.6 82.9 82.9 76.1 76.1
NEURAL HT (J=2) 90.0 90.0 82.1 82.1 73.9 73.9 80.7 80.7 81.1 81.1 81.8 81.8 83.9 83.9 74.6 74.6

Non-Neural (This work) DEPHT 86.8 86.8 81.8 81.8 76.1 76.1 80.4 80.4 81.4 81.4 86.8 86.8 85.4 85.4 73.9 73.9
Non-Neural (This work) DEPHT + embedding 87.5 87.5 83.9 83.9 75.0 75.0 81.1 81.1 81.4 81.4 87.5 87.5 87.1 87.1 73.6 73.6

Neural (This work) DEPHT + NN 89.3 89.3 86.7 86.7 78.2 78.2 82.9 82.9 82.9 82.9 88.7 88.7 87.3 87.3 77.9 77.9

Table 3: Performance comparison with state-of-the-art models on GeoQuery dataset. († represents the
system is using lambda-calculus expressions as meaning representations.)

standard evaluation procedure used in various pre-
vious works (Wong and Mooney, 2006; Lu et al.,
2008; Jones et al., 2012; Lu, 2015) to construct
the Prolog query from the tree-structured semantic
representation using a standard and publicly avail-
able script. The queries are then used to retrieve
the answers from the GeoQuery database, and we
report accuracy and F1 scores.

Hyperparameters We set the maximum depth
c of the semantic tree to 20, following Lu (2015).
The L2 regularization coefficient is tuned from
0.01 to 0.05 using 5-fold cross-validation on the
training set. The Polyglot (Al-Rfou et al., 2013)
multilingual word embeddings11 (with 64 dimen-
sions) are used for all languages. We use L-
BFGS (Liu and Nocedal, 1989) to optimize the
DEPHT model until convergence and stochas-
tic gradient descent (SGD) with a learning rate
of 0.05 to optimize the neural DEPHT model.
We implemented our neural component with the
Torch7 library (Collobert et al., 2011). Our com-
plete implementation is based on the StatNLP12

structured prediction framework (Lu, 2017).

4.1 Baseline Systems

We run the released systems of several state-of-
the-art semantic parsers, namely the WASP
parser (Wong and Mooney, 2006), HY-
BRIDTREE model (Lu et al., 2008), UBL
system (Kwiatkowski et al., 2010), relaxed hybrid
tree (RHT) (Lu, 2015)13, the sequence-to-tree
(SEQ2TREE) model (Dong and Lapata, 2016), the
neural hybrid tree (NEURAL HT) model (Susanto
and Lu, 2017b), and the multilingual semantic

11The embeddings are fixed to avoid overfitting.
12https://gitlab.com/sutd nlp/statnlp-core
13(Lu, 2015) is an extension of the original relaxed hybrid

tree (Lu, 2014), which reports improved results.

Sentence: San Antonio berada di negara bagian apa ?
(San) (Antonio) (located) (in) ( state ) (what) (?)

Gold Meaning Representation: answer(loc(cityid(0san antonio0)))

Relaxed Hybrid Tree

m1

San Antonio breada di ?m4

negara bagian apa

m1: QUERY : answer (STATE)
m2: STATE : loc (CITY)
m3: CITY : cityid (CITYNAME)
m4: STATE : state (all)
m5: CITYNAME : (0san antonio0)

root San Antonio berada di negara bagian apa ?

Dependency-based Hybrid Tree

m1

m2
m3

m5

Figure 5: Example results from DEPHT and RHT
on Indonesian.

parser (Susanto and Lu, 2017a) with single
language (MSP-SINGLE) as input. The results for
TREETRANS (Jones et al., 2012) are taken from
their paper.

4.2 Results and Discussion
Table 3 (top) shows the results of our dependency-
based hybrid tree model compared with non-
neural models which achieve state-of-the-art per-
formance on the GeoQuery dataset. Our model
DEPHT achieves competitive performance and
outperforms the previous best system RHT on
6 languages. Improvements on the Indonesian
dataset are particularly striking (+11.8 absolute
points in F1). We further investigated the outputs
from both systems on Indonesian by doing error
analysis. We found 40 instances that are incor-
rectly predicted by RHT are correctly predicted by
DEPHT. We found that 77.5% of the errors are due
to incorrect alignment between words and seman-
tic units. Figure 5 shows an example of such errors
where the relaxed hybrid tree fails to capture the
correct alignment. We can see the question is ask-
ing “What state is San Antonio located in?”. How-
ever, the natural language word order in Indone-
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en th de el zh id sv fa
DEPHT basic 75.0 82.1 70.4 74.6 76.1 71.9 73.9 69.3
BASIC+HM feats. 80.7 83.9 75.7 79.2 81.1 85.0 81.1 72.5
BASIC+BOW feats. 86.1 83.2 73.9 79.3 81.4 86.1 85.4 73.2
DEPHT 86.8 81.8 76.1 80.4 81.4 86.8 85.4 73.9

Table 4: F1 scores of our model with different de-
pendency features.

sian is different from English, where the phrase
“berada di” that corresponds to m2 (i.e., loc) ap-
pears between “San Antonio” (which corresponds
to m5 – 0san antonio0) and “what” (which corre-
sponds to m1 – answer). Such a structural non
isomorphism issue between the sentence and the
semantic tree makes the relaxed hybrid tree parser
unable to produce a joint representation with valid
word-semantics alignment. This issue makes the
RHT model unable to predict the semantic unit
m2 (i.e., loc) as RHT has to align the words “San
Antonio” which should be aligned to m5 before
aligning “berada di”. However, m5 has arity 0
and cannot have m2 as its child. Thus, it would
be impossible for the RHT model to predict such
a meaning representation as output. In contrast,
we can see that our dependency-based hybrid tree
representation appears to be more flexible in han-
dling such cases. The dependency between the
two words “di” (in) and “berada” (located) is also
well captured by the arc between them that is la-
beled with m2. The error analysis reveals the flex-
ibility of our joint representation in different lan-
guages in terms of the word ordering, indicating
that the novel dependency-based joint representa-
tion is more robust and suffers less from language-
specific characteristics associated with the data.

Effectiveness of dependency To investigate the
helpfulness of the features defined over latent de-
pendencies, we conduct ablation tests by removing
the dependency-related features. Table 4 shows
the performance of augmenting different depen-
dency features in our DEPHT model with basic
features. Specifically, we investigate the perfor-
mance of head word and modifier word features
(HM) and also the bag-of-words features (BOW)
that can be extracted based on dependencies. It
can be observed that dependency features associ-
ated with the words are crucial for all languages,
especially the BOW features.

Effectiveness of neural component The bot-
tom part of Table 3 shows the performance com-
parison among models that involve neural net-
works. Our DEPHT model with embeddings as

features can outperform neural baselines across
several languages (i.e., Chinese, Indonesian and
Swedish). From the table, we can see the neural
component is effective, which consistently gives
better results than DEPHT and the approach that
uses word embedding features only. Susanto and
Lu (2017b) presented the NEURAL HT model
with different window size J for their multilayer
perceptron. Their performance will differ with dif-
ferent window sizes, which need to be tuned for
each language. In our neural component, we do
not require such a language-specific hyperparam-
eter, yet our neural approach consistently achieves
the highest performance on 7 out of 8 languages
compared with all previous approaches. As both
the embeddings and the neural component are de-
fined on the dependency arcs, the superior results
also reveal the effectiveness of our dependency-
based hybrid tree representation.

5 Conclusions and Future Work

In this work, we present a novel dependency-
based hybrid tree model for semantic parsing.
The model captures the underlying semantic in-
formation of a sentence as latent dependencies be-
tween the natural language words. We develop
an efficient algorithm for exact inference based
on dynamic-programming. Extensive experiments
on benchmark dataset across 8 different languages
demonstrate the effectiveness of our newly pro-
posed representation for semantic parsing.

Future work includes exploring alternative ap-
proaches such as transition-based methods (Nivre
et al., 2006; Chen and Manning, 2014) for seman-
tic parsing with latent dependencies, applying our
dependency-based hybrid trees on other types of
logical representations (e.g., lambda calculus ex-
pressions and SQL (Finegan-Dollak et al., 2018))
as well as multilingual semantic parsing (Jie and
Lu, 2014; Susanto and Lu, 2017a).
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Abstract

Semantic parsing from denotations faces two
key challenges in model training: (1) given
only the denotations (e.g., answers), search
for good candidate semantic parses, and (2)
choose the best model update algorithm. We
propose effective and general solutions to each
of them. Using policy shaping, we bias the
search procedure towards semantic parses that
are more compatible to the text, which pro-
vide better supervision signals for training. In
addition, we propose an update equation that
generalizes three different families of learning
algorithms, which enables fast model explo-
ration. When experimented on a recently pro-
posed sequential question answering dataset,
our framework leads to a new state-of-the-
art model that outperforms previous work by
5.0% absolute on exact match accuracy.

1 Introduction

Semantic parsing from denotations (SpFD) is the
problem of mapping text to executable formal rep-
resentations (or program) in a situated environ-
ment and executing them to generate denotations
(or answer), in the absence of access to correct
representations. Several problems have been han-
dled within this framework, including question an-
swering (Berant et al., 2013; Iyyer et al., 2017) and
instructions for robots (Artzi and Zettlemoyer,
2013; Misra et al., 2015).

Consider the example in Figure 1. Given the
question and a table environment, a semantic
parser maps the question to an executable pro-
gram, in this case a SQL query, and then exe-
cutes the query on the environment to generate the
answer England. In the SpFD setting, the train-
ing data does not contain the correct programs.
Thus, the existing learning approaches for SpFD
perform two steps for every training example, a
search step that explores the space of programs

Question: what nation scored the most points

Index Name Nation Points Games Pts/game
1 Karen Andrew England 44 5 8.8
2 Daniella Waterman England 40 5 8
3 Christelle Le Duff France 33 5 6.6
4 Charlotte Barras England 30 5 6
5 Naomi Thomas Wales 25 5 5

Select Nation Where Points is Maximum

Program:

Answer:

Environment:

England

Figure 1: An example of semantic parsing from deno-
tations. Given the table environment, map the question
to an executable program that evaluates to the answer.

and finds suitable candidates, and an update step
that uses these programs to update the model. Fig-
ure 2 shows the two step training procedure for the
above example.

In this paper, we address two key challenges
in model training for SpFD by proposing a novel
learning framework, improving both the search
and update steps. The first challenge, the exis-
tence of spurious programs, lies in the search step.
More specifically, while the success of the search
step relies on its ability to find programs that are
semantically correct, we can only verify if the pro-
gram can generate correct answers, given that no
gold programs are presented. The search step is
complicated by spurious programs, which happen
to evaluate to the correct answer but do not rep-
resent accurately the meaning of the natural lan-
guage question. For example, for the environ-
ment in Figure 1, the program Select Nation
Where Name = Karen Andrew is spurious.
Selecting spurious programs as positive examples
can greatly affect the performance of semantic
parsers as these programs generally do not gen-
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Question: what nation scored the most points

Index Name Nation Points Games Pts/game
1 Karen Andrew England 44 5 8.8
2 Daniella Waterman England 40 5 8
3 Christelle Le Duff France 33 5 6.6
4 Charlotte Barras England 30 5 6
5 Naomi Thomas Wales 25 5 5

Select Nation Where Pts/game is Maximum

Select Nation Where Index is Minimum

Select Nation Where Points = 44

Select Nation Where Points is Maximum

Select Nation Where Name = Karen Andrew

Programs:
Program:

Answer: England

Search Update

Step Step

Marginal Likelihood 

Policy Gradient

Off-Policy Gradient

Margin Methods

Figure 2: An example of semantic parsing from denotation. Given the question and the table environment, there
are several programs which are spurious.

eralize to unseen questions and environments.
The second challenge, choosing a learning al-

gorithm, lies in the update step. Because of the
unique indirect supervision setting of SpFD, the
quality of the learned semantic parser is dictated
by the choice of how to update the model pa-
rameters, often determined empirically. As a re-
sult, several families of learning methods, includ-
ing maximum marginal likelihood, reinforcement
learning and margin based methods have been
used. How to effectively explore different model
choices could be crucial in practice.

Our contributions in this work are twofold. To
address the first challenge, we propose a policy
shaping (Griffith et al., 2013) method that incorpo-
rates simple, lightweight domain knowledge, such
as a small set of lexical pairs of tokens in the ques-
tion and program, in the form of a critique policy
(§ 3). This helps bias the search towards the cor-
rect program, an important step to improve super-
vision signals, which benefits learning regardless
of the choice of algorithm. To address the second
challenge, we prove that the parameter update step
in several algorithms are similar and can be viewed
as special cases of a generalized update equation
(§ 4). The equation contains two variable terms
that govern the update behavior. Changing these
two terms effectively defines an infinite class of
learning algorithms where different values lead to
significantly different results. We study this effect
and propose a novel learning framework that im-
proves over existing methods.

We evaluate our methods using the sequential
question answering (SQA) dataset (Iyyer et al.,
2017), and show that our proposed improvements
to the search and update steps consistently en-
hance existing approaches. The proposed algo-
rithm achieves new state-of-the-art and outper-
forms existing parsers by 5.0%.

2 Background

We give a formal problem definition of the seman-
tic parsing task, followed by the general learning
framework for solving it.

2.1 The Semantic Parsing Task
The problem discussed in this paper can be for-
mally defined as follows. Let X be the set of
all possible questions, Y programs (e.g., SQL-like
queries), T tables (i.e., the structured data in this
work) and Z answers. We further assume access
to an executor � : Y ⇥ T ! Z , that given a pro-
gram y 2 Y and a table t 2 T , generates an an-
swer �(y, t) 2 Z . We assume that the executor
and all tables are deterministic and the executor
can be called as many times as possible. To facili-
tate discussion in the following sections, we define
an environment function et : Y ! Z , by applying
the executor to the program as et(y) = �(y, t).

Given a question x and an environment et, our
aim is to generate a program y⇤ 2 Y and then exe-
cute it to produce the answer et(y⇤). Assume that
for any y 2 Y , the score of y being a correct pro-
gram for x is score✓(y, x, t), parameterized by ✓.
The inference task is thus:

y⇤ = arg max
y2Y

score✓(y, x, t) (1)

As the size of Y is exponential to the length of
the program, a generic search procedure is typi-
cally employed for Eq. (1), as efficient dynamic
algorithms typically do not exist. These search
procedures generally maintain a beam of program
states sorted according to some scoring function,
where each program state represents an incom-
plete program. The search then generates a new
program state from an existing state by perform-
ing an action. Each action adds a set of tokens
(e.g., Nation) and keyword (e.g., Select) to a
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program state. For example, in order to generate
the program in Figure 1, the DynSP parser (Iyyer
et al., 2017) will take the first action as adding the
SQL expression Select Nation. Notice that
score✓ can be used in either probabilistic or non-
probabilistic models. For probabilistic models, we
assume that it is a Boltzmann policy, meaning that
p✓(y | x, t) / exp{score✓(y, x, t)}.

2.2 Learning

Learning a semantic parser is equivalent to learn-
ing the parameters ✓ in the scoring function, which
is a structured learning problem, due to the large,
structured output space Y . Structured learning al-
gorithms generally consist of two major compo-
nents: search and update. When the gold pro-
grams are available during training, the search pro-
cedure finds a set of high-scoring incorrect pro-
grams. These programs are used by the update
step to derive loss for updating parameters. For ex-
ample, these programs are used for approximating
the partition-function in maximum-likelihood ob-
jective (Liang et al., 2011) and finding set of pro-
grams causing margin violation in margin based
methods (Daumé III and Marcu, 2005). Depend-
ing on the exact algorithm being used, these two
components are not necessarily separated into iso-
lated steps. For instance, parameters can be up-
dated in the middle of search (e.g., Huang et al.,
2012).

For learning semantic parsers from denotations,
where we assume only answers are available in a
training set {(xi, ti, zi)}N

i=1 of N examples, the
basic construction of the learning algorithms re-
mains the same. However, the problems that
search needs to handle in SpFD is more challeng-
ing. In addition to finding a set of high-scoring in-
correct programs, the search procedure also needs
to guess the correct program(s) evaluating to the
gold answer zi. This problem is further com-
plicated by the presence of spurious programs,
which generate the correct answer but are seman-
tically incompatible with the question. For ex-
ample, although all programs in Figure 2 evalu-
ate to the same answer, only one of them is cor-
rect. The issue of the spurious programs also af-
fects the design of model update. For instance,
maximum marginal likelihood methods treat all
the programs that evaluate to the gold answer
equally, while maximum margin reward networks
use model score to break tie and pick one of the

programs as the correct reference.

3 Addressing Spurious Programs:
Policy Shaping

Given a training example (x, t, z), the aim of
the search step is to find a set K(x, t, z) of pro-
grams consisting of correct programs that eval-
uate to z and high-scoring incorrect programs.
The search step should avoid picking up spurious
programs for learning since such programs typ-
ically do not generalize. For example, in Fig-
ure 2, the spurious program Select Nation
Where Index is Min will evaluate to an in-
correct answer if the indices of the first two rows
are swapped1. This problem is challenging since
among the programs that evaluate to the correct
answer, most of them are spurious.

The search step can be viewed as following an
exploration policy b✓(y|x, t, z) to explore the set
of programs Y . This exploration is often per-
formed by beam search and at each step, we ei-
ther sample from b✓ or take the top scoring pro-
grams. The set K(x, t, z) is then used by the up-
date step for parameter update. Most search strate-
gies use an exploration policy which is based on
the score function, for example b✓(y|x, t, z) /
exp{score✓(y, t)}. However, this approach can
suffer from a divergence phenomenon whereby
the score of spurious programs picked up by the
search in the first epoch increases, making it more
likely for the search to pick them up in the fu-
ture. Such divergence issues are common with
latent-variable learning and often require careful
initialization to overcome (Rose, 1998). Unfortu-
nately such initialization schemes are not appli-
cable for deep neural networks which form the
model of most successful semantic parsers to-
day (Jia and Liang, 2016; Misra and Artzi, 2016;
Iyyer et al., 2017). Prior work, such as ✏-greedy
exploration (Guu et al., 2017), has reduced the
severity of this problem by introducing random
noise in the search procedure to avoid saturat-
ing the search on high-scoring spurious programs.
However, random noise need not bias the search
towards the correct program(s). In this paper, we
introduce a simple policy-shaping method to guide
the search. This approach allows incorporating
prior knowledge in the exploration policy and can
bias the search away from spurious programs.

1This transformation preserves the answer of the question.
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Algorithm 1 Learning a semantic parser from denotation us-
ing generalized updates.

Input: Training set {(xi, ti, zi}
N
i=1 (see Section 2), learning

rate µ and stopping epoch T (̃see Section 4).
Definitions: score✓(y, x, t) is a semantic parsing model

parameterized by ✓. ps(y | x, t) is the policy used for
exploration and search(✓, x, t, z, ps) generates candi-
date programs for updating parameters (see Section 3).
� is the generalized update (see Section 4).

Output: Model parameters ✓.
1: » Iterate over the training data.
2: for t = 1 to T , i = 1 to N do
3: » Find candidate programs using the shaped policy.
4: K = search(✓, xi, ti, zi, ps)
5: » Compute generalized gradient updates
6: ✓ = ✓ + µ�(K)

7: return ✓

Policy Shaping Policy shaping is a method to
introduce prior knowledge into a policy (Griffith
et al., 2013). Formally, let the current behavior
policy be b✓(y|x, t, z) and a predefined critique
policy, the prior knowledge, be pc(y|x, t). Pol-
icy shaping defines a new shaped behavior policy
pb(y|x, t) given by:

pb(y|x, t) =
b✓(y|x, t, z)pc(y|x, t)P

y02Y b✓(y0|x, t, z)pc(y0|x, t)
. (2)

Using the shaped policy for exploration biases
the search towards the critique policy’s preference.
We next describe a simple critique policy that we
use in this paper.

Lexical Policy Shaping We qualitatively ob-
served that correct programs often contains tokens
which are also present in the question. For exam-
ple, the correct program in Figure 2 contains the
token Points, which is also present in the question.
We therefore, define a simple surface form simi-
larity feature match(x, y) that computes the ratio
of number of non-keyword tokens in the program
y that are also present in the question x.

However, surface-form similarity is often not
enough. For example, both the first and fourth pro-
gram in Figure 2 contain the token Points but only
the fourth program is correct. Therefore, we also
use a simple co-occurrence feature that triggers on
frequently co-occurring pairs of tokens in the pro-
gram and instruction. For example, the token most
is highly likely to co-occur with a correct program
containing the keyword Max. This happens for the
example in Figure 2. Similarly the token not may
co-occur with the keyword NotEqual. We assume
access to a lexicon ⇤ = {(wj , !j)}k

j=1 containing

k lexical pairs of tokens and keywords. Each lex-
ical pair (w, !) maps the token w in a text to a
keyword ! in a program. For a given program y
and question x, we define a co-occurrence score
as co_occur(y, x) =

P
(w,!)2⇤ {w 2 x ^ ! 2

y}}. We define critique score critique(y, x) as
the sum of the match and co_occur scores. The
critique policy is given by:

pc(y|x, t) / exp (⌘ ⇤ critique(y, x)) , (3)

where ⌘ is a single scalar hyper-parameter denot-
ing the confidence in the critique policy.

4 Addressing Update Strategy Selection:
Generalized Update Equation

Given the set of programs generated by the search
step, one can use many objectives to update the
parameters. For example, previous work have
utilized maximum marginal likelihood (Krishna-
murthy et al., 2017; Guu et al., 2017), reinforce-
ment learning (Zhong et al., 2017; Guu et al.,
2017) and margin based methods (Iyyer et al.,
2017). It could be difficult to choose the suitable
algorithm from these options.

In this section, we propose a principle and gen-
eral update equation such that previous update al-
gorithms can be considered as special cases to this
equation. Having a general update is important
for the following reasons. First, it allows us to
understand existing algorithms better by examin-
ing their basic properties. Second, the generalized
update equation also makes it easy to implement
and experiment with various different algorithms.
Moreover, it provides a framework that enables the
development of new variations or extensions of ex-
isting learning methods.

In the following, we describe how the com-
monly used algorithms are in fact very similar –
their update rules can all be viewed as special
cases of the proposed generalized update equation.
Algorithm 1 shows the meta-learning framework.
For every training example, we first find a set of
candidates using an exploration policy (line 4).
We use the program candidates to update the pa-
rameters (line 6).

4.1 Commonly Used Learning Algorithms

We briefly describe three algorithms: maximum
marginalized likelihood, policy gradient and max-
imum margin reward.
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Maximum Marginalized Likelihood The max-
imum marginalized likelihood method maximizes
the log-likelihood of the training data by marginal-
izing over the set of programs.

JMML = log p(zi|xi, ti)

= log
X

y2Y
p(zi|y, ti)p(y|xi, ti) (4)

Because an answer is deterministically com-
puted given a program and a table, we define
p(z | y, t) as 1 or 0 depending upon whether the y
evaluates to z given t, or not. Let Gen(z, t) ✓ Y
be the set of compatible programs that evaluate to
z given the table t. The objective can then be ex-
pressed as:

JMML = log
X

y2Gen(zi,ti)
p(y|xi, ti) (5)

In practice, the summation over Gen(.) is approx-
imated by only using the compatible programs in
the set K generated by the search step.

Policy Gradient Methods Most reinforcement
learning approaches for semantic parsing assume
access to a reward function R : Y ⇥ X ⇥ Z ! R,
giving a scalar reward R(y, z) for a given pro-
gram y and the correct answer z.2 We can fur-
ther assume without loss of generality that the re-
ward is always in [0, 1]. Reinforcement learning
approaches maximize the expected reward JRL:

JRL =
X

y2Y
p(y|xi, ti)R(y, zi) (6)

JRL is hard to approximate using numerical in-
tegration since the reward for all programs may
not be known a priori. Policy gradient methods
solve this by approximating the derivative using a
sample from the policy. When the search space is
large, the policy may fail to sample a correct pro-
gram, which can greatly slow down the learning.
Therefore, off-policy methods are sometimes in-
troduced to bias the sampling towards high-reward
yielding programs. In those methods, an addi-
tional exploration policy u(y|xi, ti, zi) is used to
improve sampling. Importance weights are used
to make the gradient unbiased (see Appendix for
derivation).

2This is essentially a contextual bandit setting. Guu et al.
(2017) also used this setting. A general reinforcement learn-
ing setting requires taking a sequence of actions and receiv-
ing a reward for each action. For example, a program can be
viewed as a sequence of parsing actions, where each action
can get a reward. We do not consider the general setting here.

Maximum Margin Reward For every training
example (xi, ti, zi), the maximum margin reward
method finds the highest scoring program yi that
evaluates to zi, as the reference program, from the
set K of programs generated by the search. With a
margin function � : Y ⇥Y ⇥Z ! R and reference
program y, the set of programs V that violate the
margin constraint can thus be defined as:

V = {y0 | y0 2 Y and score✓(y, x, t)

 score✓(y0, x, t) + �(y, y0, z)}, (7)

where �(y, y0, z) = R(y, z) � R(y0, z). Similarly,
the program that most violates the constraint can
be written as:

ȳ = arg max
y02Y

{score✓(y
0, x, t) + �(y, y0, z)

�score✓(y, x, t)} (8)

The most-violation margin objective (negative
margin loss) is thus defined as:

JMMR = � max{0, score✓(ȳ, xi, ti)

�score✓(yi, xi, ti) + �(yi, ȳ, zi)}

Unlike the previous two learning algorithms, mar-
gin methods only update the score of the reference
program and the program that violates the margin.

4.2 Generalized Update Equation
Although the algorithms described in §4.1 seem
very different on the surface, the gradients of their
loss functions can in fact be described in the same
generalized form, given in Eq. (9)3. In addition
to the gradient of the model scoring function, this
equation has two variable terms, w(·), q(·). We
call the first term w(y, x, t, z) intensity, which is a
positive scalar value and the second term q(y|x, t)
the competing distribution, which is a probability
distribution over programs. Varying them makes
the equation equivalent to the update rule of the
algorithms we discussed, as shown in Table 1.
We also consider meritocratic update policy which
uses a hyperparameter � to sharpen or smooth the
intensity of maximum marginal likelihood (Guu
et al., 2017).

Intuitively, w(y, x, t, z) defines the positive part
of the update equation, which defines how aggres-
sively the update favors program y. Likewise,
q(y|x, t) defines the negative part of the learning

3See Appendix for the detailed derivation.
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Generalized Update Equation:

�(K) =
X

y2K
w(y, x, t, z)

0

@r✓score✓(y, x, t) �
X

y02Y
q(y0|x, t)r✓score✓(y

0, x, t)

1

A (9)

Learning Algorithm Intensity Competing Distribution
w(y, x, t, z) q(y|x, t)

Maximum Margin Likelihood p(z|y)p(y|x)P
y0 p(z|y0)p(y0|x) p(y|x)

Meritocratic(�) (p(z|y)p(y|x))�
P

y0 (p(z|y0)p(y0|x))� p(y|x)

REINFORCE {y = ŷ}R(y, z) p(y|x)

Off-Policy Policy Gradient {y = ŷ} R(y, z) p(y|x)
u(y|x,z) p(y|x)

Maximum Margin Reward (MMR) {y = y⇤} {y = ȳ}
Maximum Margin Avg. Violation Reward (MAVER) {y = y⇤} 1/|V| {y 2 V}

Table 1: Parameter updates for various learning algorithms are special cases of Eq. (9), with different choices of
intensity w and competing distribution q. We do not show dependence upon table t for brevity. For off-policy
policy gradient, u is the exploration policy. For margin methods, y⇤ is the reference program (see §4.1), V is the
set of programs that violate the margin constraint (cf. Eq. (7)) and ȳ is the most violating program (cf. Eq. (8)). For
REINFORCE, ŷ is sampled from K using p(.) whereas for Off-Policy Policy Gradient, ŷ is sampled using u(.).

algorithm, namely how aggressively the update
penalizes the members of the program set.

The generalized update equation provides a tool
for better understanding individual algorithm, and
helps shed some light on when a particular method
may perform better.

Intensity versus Search Quality In SpFD, the
effectiveness of the algorithms for SpFD is closely
related to the quality of the search results given
that the gold program is not available. Intuitively,
if the search quality is good, the update algorithm
could be aggressive on updating the model param-
eters. When the search quality is poor, the algo-
rithm should be conservative.

The intensity w(·) is closely related to the ag-
gressiveness of the algorithm. For example, the
maximum marginal likelihood is less aggressive
given that it produces a non-zero intensity over
all programs in the program set K that evaluate to
the correct answer. The intensity for a particular
correct program y is proportional to its probabil-
ity p(y|x, t). Further, meritocratic update becomes
more aggressive as � becomes larger.

In contrast, REINFORCE and maximum mar-
gin reward both have a non-zero intensity only
on a single program in K. This value is 1.0 for
maximum margin reward, while for reinforcement
learning, this value is the reward. Maximum mar-
gin reward therefore updates most aggressively in
favor of its selection while maximum marginal

likelihood tends to hedge its bet. Therefore, the
maximum margin methods should benefit the most
when the search quality improves.

Stability The general equation also allows us to
investigate the stability of a model update algo-
rithm. In general, the variance of update direction
can be high, hence less stable, if the model update
algorithm has peaky competing distribution, or it
puts all of its intensity on a single program. For
example, REINFORCE only samples one program
and puts non-zero intensity only on that program,
so it could be unstable depending on the sampling
results.

The competing distribution affects the stability
of the algorithm. For example, maximum margin
reward penalizes only the most violating program
and is benign to other incorrect programs. There-
fore, the MMR algorithm could be unstable during
training.

New Model Update Algorithm The general
equation provides a framework that enables the de-
velopment of new variations or extensions of ex-
isting learning methods. For example, in order to
improve the stability of the MMR algorithm, we
propose a simple variant of maximum margin re-
ward, which penalizes all violating programs in-
stead of only the most violating one. We call this
approach maximum margin average violation re-
ward (MAVER), which is included in Table 1 as
well. Given that MAVER effectively considers
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more negative examples during each update, we
expect that it is more stable compared to the MMR
algorithm.

5 Experiments

We describe the setup in §5.1 and results in §5.2.

5.1 Setup
Dataset We use the sequential question answer-
ing (SQA) dataset (Iyyer et al., 2017) for our ex-
periments. SQA contains 6,066 sequences and
each sequence contains up to 3 questions, with
17,553 questions in total. The data is partitioned
into training (83%) and test (17%) splits. We use
4/5 of the original train split as our training set and
the remaining 1/5 as the dev set. We evaluate us-
ing exact match on answer. Previous state-of-the-
art result on the SQA dataset is 44.7% accuracy,
using maximum margin reward learning.

Semantic Parser Our semantic parser is based
on DynSP (Iyyer et al., 2017), which contains a
set of SQL actions, such as adding a clause (e.g.,
Select Column) or adding an operator (e.g.,
Max). Each action has an associated neural net-
work module that generates the score for the ac-
tion based on the instruction, the table and the list
of past actions. The score of the entire program is
given by the sum of scores of all actions.

We modified DynSP to improve its represen-
tational capacity. We refer to the new parser as
DynSP++. Most notably, we included new fea-
tures and introduced two additional parser actions.
See Appendix 8.2 for more details. While these
improvements help us achieve state-of-the-art re-
sults, the majority of the gain comes from the
learning contributions described in this paper.

Hyperparameters For each experiment, we
train the model for 30 epochs. We find the op-
timal stopping epoch by evaluating the model on
the dev set. We then train on train+dev set till
the stopping epoch and evaluate the model on the
held-out test set. Model parameters are trained us-
ing stochastic gradient descent with learning rate
of 0.1. We set the hyperparameter ⌘ for policy
shaping to 5. All hyperparameters were tuned on
the dev set. We use 40 lexical pairs for defining
the co-occur score. We used common English
superlatives (e.g., highest, most) and comparators
(e.g., more, larger) and did not fit the lexical pairs
based on the dataset.

Given the model parameter ✓, we use a base
exploration policy defined in (Iyyer et al., 2017).
This exploration policy is given by b✓(y |
x, t, z) / exp(� · R(y, z) + score✓(y, ✓, z)).
R(y, z) is the reward function of the incomplete
program y, given the answer z. We use a reward
function R(y, z) given by the Jaccard similarity of
the gold answer z and the answer generated by the
program y. The value of � is set to infinity, which
essentially is equivalent to sorting the programs
based on the reward and using the current model
score for tie breaking. Further, we prune all syn-
tactically invalid programs. For more details, we
refer the reader to (Iyyer et al., 2017).

5.2 Results
Table 2 contains the dev and test results when us-
ing our algorithm on the SQA dataset. We ob-
serve that margin based methods perform better
than maximum likelihood methods and policy gra-
dient in our experiment. Policy shaping in general
improves the performance across different algo-
rithms. Our best test results outperform previous
SOTA by 5.0%.

Policy Gradient vs Off-Policy Gradient RE-
INFORCE, a simple policy gradient method,
achieved extremely poor performance. This likely
due to the problem of exploration and having to
sample from a large space of programs. This is
further corroborated from observing the much su-
perior performance of off-policy policy gradient
methods. Thus, the sampling policy is an impor-
tant factor to consider for policy gradient methods.

The Effect of Policy Shaping We observe that
the improvement due to policy shaping is 6.0%
on the SQA dataset for MAVER and only 1.3%
for maximum marginal likelihood. We also ob-
serve that as � increases, the improvement due to
policy shaping for meritocratic update increases.
This supports our hypothesis that aggressive up-
dates of margin based methods is beneficial when
the search method is more accurate as compared
to maximum marginal likelihood which hedges its
bet between all programs that evaluate to the right
answer.

Stability of MMR In Section 4, the general up-
date equation helps us point out that MMR could
be unstable due to the peaky competing distribu-
tion. MAVER was proposed to increase the stabil-
ity of the algorithm. To measure stability, we cal-
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Algorithm Dev Test
w.o. Shaping w. Shaping w.o. Shaping w. Shaping

Maximum Margin Likelihood 33.2 32.5 31.0 32.3
Meritocratic (� = 0) 27.1 28.1 31.3 30.1

Meritocratic (� = 0.5) 28.3 28.7 31.7 32.0
Meritocratic (� = 1) 39.3 41.6 41.6 45.2

REINFORCE 10.2 11.8 2.4 4.0
Off-Policy Policy Gradient 36.6 38.6 42.6 44.1

MMR 38.4 40.7 43.2 46.9
MAVER 39.6 44.1 43.7 49.7

Table 2: Experimental results on different model update algorithms, with and without policy shaping.

w q Dev
MMR MML 41.9
Off-Policy Policy Gradient MMR 37.0
MMR MMR 40.7

Table 3: The dev set results on the new variations of the
update algorithms.

culate the mean absolute difference of the devel-
opment set accuracy between successive epochs
during training, as it indicates how much an al-
gorithm’s performance fluctuates during training.
With this metric, we found mean difference for
MAVER is 0.57% where the mean difference for
MMR is 0.9%. This indicates that MAVER is in
fact more stable than MMR.

Other variations We also analyze other possi-
ble novel learning algorithms that are made pos-
sible due to generalized update equations. Ta-
ble 3 reports development results using these algo-
rithms. By mixing different intensity scalars and
competing distribution from different algorithms,
we can create new variations of the model update
algorithm. In Table 3, we show that by mixing the
MMR’s intensity and MML’s competing distribu-
tion, we can create an algorithm that outperform
MMR on the development set.

Policy Shaping helps against Spurious Pro-
grams In order to better understand if policy
shaping helps bias the search away from spurious
programs, we analyze 100 training examples. We
look at the highest scoring program in the beam at
the end of training using MAVER. Without policy
shaping, we found that 53 programs were spuri-
ous while using policy shaping this number came
down to 23. We list few examples of spurious pro-
gram errors corrected by policy shaping in Table 4.

Policy Shaping vs Model Shaping Critique
policy contains useful information that can bias
the search away from spurious programs. There-
fore, one can also consider making the critique
policy as part of the model. We call this model
shaping. We define our model to be the shaped
policy and train and test using the new model. Us-
ing MAVER updates, we found that the dev ac-
curacy dropped to 37.1%. We conjecture that the
strong prior in the critique policy can hinder gen-
eralization in model shaping.

6 Related Work

Semantic Parsing from Denotation Mapping
natural language text to formal meaning repre-
sentation was first studied by Montague (1970).
Early work on learning semantic parsers rely on
labeled formal representations as the supervision
signals (Zettlemoyer and Collins, 2005, 2007;
Zelle and Mooney, 1993). However, because get-
ting access to gold formal representation gener-
ally requires expensive annotations by an expert,
distant supervision approaches, where semantic
parsers are learned from denotation only, have be-
come the main learning paradigm (e.g., Clarke
et al., 2010; Liang et al., 2011; Artzi and Zettle-
moyer, 2013; Berant et al., 2013; Iyyer et al., 2017;
Krishnamurthy et al., 2017). Guu et al. (2017)
studied the problem of spurious programs and con-
sidered adding noise to diversify the search proce-
dure and introduced meritocratic updates.

Reinforcement Learning Algorithms Rein-
forcement learning algorithms have been applied
to various NLP problems including dialogue (Li
et al., 2016), text-based games (Narasimhan et al.,
2015), information extraction (Narasimhan et al.,
2016), coreference resolution (Clark and Man-
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Question without policy shaping with policy shaping
“of these teams, which had more SELECT Club SELECT Club

than 21 losses?" WHERE Losses = ROW 15 WHERE Losses > 21
“of the remaining, which SELECT Nation WHERE FollowUp WHERE

earned the most bronze medals?" Rank = ROW 1 Bronze is Max
“of those competitors from germany, SELECT Name WHERE FollowUp WHERE

which was not paul sievert?" Time (hand) = ROW 3 Name != ROW 5

Table 4: Training examples and the highest ranked program in the beam search, scored according to the shaped
policy, after training with MAVER. Using policy shaping, we can recover from failures due to spurious programs
in the search step for these examples.

ning, 2016), semantic parsing (Guu et al., 2017)
and instruction following (Misra et al., 2017). Guu
et al. (2017) show that policy gradient methods
underperform maximum marginal likelihood ap-
proaches. Our result on the SQA dataset sup-
ports their observation. However, we show that
using off-policy sampling, policy gradient meth-
ods can provide superior performance to maxi-
mum marginal likelihood methods.

Margin-based Learning Margin-based meth-
ods have been considered in the context of SVM
learning. In the NLP literature, margin based
learning has been applied to parsing (Taskar
et al., 2004; McDonald et al., 2005), text clas-
sification (Taskar et al., 2003), machine transla-
tion (Watanabe et al., 2007) and semantic pars-
ing (Iyyer et al., 2017). Kummerfeld et al. (2015)
found that max-margin based methods generally
outperform likelihood maximization on a range of
tasks. Previous work have studied connections be-
tween margin based method and likelihood maxi-
mization for supervised learning setting. We show
them as special cases of our unified update equa-
tion for distant supervision learning. Similar to
this work, Lee et al. (2016) also found that in the
context of supervised learning, margin-based al-
gorithms which update all violated examples per-
form better than the one that only updates the most
violated example.

Latent Variable Modeling Learning semantic
parsers from denotation can be viewed as a latent
variable modeling problem, where the program is
the latent variable. Probabilistic latent variable
models have been studied using EM-algorithm and
its variant (Dempster et al., 1977). The graphical
model literature has studied latent variable learn-
ing on margin-based methods (Yu and Joachims,
2009) and probabilistic models (Quattoni et al.,
2007). Samdani et al. (2012) studied various vari-

ants of EM algorithm and showed that all of them
are special cases of a unified framework. Our gen-
eralized update framework is similar in spirit.

7 Conclusion

In this paper, we propose a general update equa-
tion from semantic parsing from denotation and
propose a policy shaping method for addressing
the spurious program challenge. For the future,
we plan to apply the proposed learning framework
to more semantic parsing tasks and consider new
methods for policy shaping.
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Abstract

In this paper we advocate the use of bilin-
gual corpora which are abundantly available
for training sentence compression models.
Our approach borrows much of its machin-
ery from neural machine translation and lever-
ages bilingual pivoting: compressions are ob-
tained by translating a source string into a
foreign language and then back-translating it
into the source while controlling the transla-
tion length. Our model can be trained for
any language as long as a bilingual corpus is
available and performs arbitrary rewrites with-
out access to compression specific data. We
release1 MOSS, a new parallel Multilingual
Compression dataset for English, German, and
French which can be used to evaluate com-
pression models across languages and genres.

1 Introduction

Sentence compression aims to produce a summary
of a single sentence that retains the most important
information while preserving its fluency. The task
has attracted much attention due to its potential
for applications such as text summarization (Jing,
2000; Madnani et al., 2007; Woodsend and Lap-
ata, 2010; Berg-Kirkpatrick et al., 2011), subtitle
generation (Vandeghinste and Pan, 2004; Luoto-
lahti and Ginter, 2015), and the display of text on
small-screens (Corston-Oliver, 2001).

The bulk of research on sentence compression
has focused on a simplification of the task in-
volving exclusively word deletion (Knight and
Marcu, 2002; Riezler et al., 2003; Turner and
Charniak, 2005; McDonald, 2006; Clarke and La-
pata, 2008; Cohn and Lapata, 2009), whereas a
few approaches view sentence compression as a
more general text rewriting problem (Galley and
McKeown, 2007; Woodsend and Lapata, 2010;
Cohn and Lapata, 2013). Irrespective of how

1Publicly available for download at https://github.

com/Jmallins/MOSS

the compression task is formulated, most previ-
ous work relies on syntactic information such as
parse trees to help decide what to delete from a
sentence or which rules to learn in order to rewrite
a sentence using less words. More recently, there
has been much interest in applying neural network
models to natural language generation tasks, in-
cluding sentence compression (Rush et al., 2015;
Filippova et al., 2015; Chopra et al., 2016; Kikuchi
et al., 2016). Filippova et al. (2015) focus on
deletion-based sentence compression which they
model as a sequence labeling problem using a re-
current neural network with long short-term mem-
ory units (LSTM; Hochreiter and Schmidhuber
1997). Rush et al. (2015) capture the full gamut of
rewrite operations drawing insights from encoder-
decoder models recently proposed for machine
translation (Bahdanau et al., 2015).

Neural network-based approaches are data-
driven, relying on the ability of recurrent archi-
tectures to learn continuous features without re-
course to preprocessing tools or syntactic infor-
mation (e.g., part-of-speech tags, parse trees).
In order to achieve good performance, they re-
quire large amounts of training data, in the re-
gion of millions of long-short sentence pairs.2

Existing compression datasets are several orders
of magnitude smaller. For example, the Ziff-
Davis corpus (Knight and Marcu, 2002) con-
tains 1,067 sentences and originated from a col-
lection of news articles on computer products.
Clarke and Lapata (2008) create two manual cor-
pora sampled from written (1,433 sentences) and
spoken sources (1,370 sentences). Cohn and La-
pata (2013) elicit manual compressions for 625
sentences taken from newspaper articles. More
recently, Toutanova et al. (2016) crowdsource a
larger corpus which contains manual compres-
sions for single and multiple sentences (about
26,000 pairs of source and compressed texts).

2Rush et al. (2015) use approximately four million train-
ing instances and Filippova et al. (2015) two million.
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Since large scale compression datasets do not
occur naturally, they must be somehow approx-
imated, e.g., by pairing headlines with the first
sentence of a news article (Filippova and Altun,
2013; Rush et al., 2015). As a result, the train-
ing corpus construction process must be repeated
and reconfigured for new languages and domains
(e.g., many headline-first sentence pairs are spu-
rious and need to be filtered using language and
domain specific heuristics). And although it may
be easy to automatically obtain large scale training
data in the news domain, it is not clear how such
data can be sourced for many other genres with
different writing conventions.

Our work addresses the paucity of data for sen-
tence compression models. We argue that multi-
lingual corpora are a rich source for learning a va-
riety of rewrite rules across languages and that ex-
isting neural machine translation (NMT) models
(Sutskever et al. 2014; Bahdanau et al. 2015) can
be easily adapted to the compression task through
bilingual pivoting (Mallinson et al., 2017) coupled
with methods which decode the output sequence
to a desired length (e.g., subject to language and
genre requirements). We obtain compressions by
translating a source string into a foreign language
and then back-translating it into the source while
controlling the translation length (Kikuchi et al.,
2016). Our model can be trained for any language
as long as a bilingual corpus is available, and can
perform arbitrary rewrites while taking advantage
of multiple pivots if these exist.We also demon-
strate that models trained on multilingual data per-
form well out-of-domain.

Although our approach does not employ com-
pression corpora for training, for evaluation pur-
poses, we create MOSS, a new Multilingual
Compression dataset for English, French, and Ger-
man. MOSS is a parallel corpus containing doc-
uments from the European parliament proceed-
ings, TED talks, news commentaries, and the EU
bookshop. Each document is written in English,
French, and German, and compressed by native
speakers of the respective language who process
a document at a time. We obtain five compres-
sions per document leading to 2,000 long-short
sentence pairs per language. Like previous related
resources (Clarke and Lapata, 2008; Cohn and La-
pata, 2013; de Loupy et al., 2010) our corpus is cu-
rated manually, however it differs from Toutanova
et al. (2016) in that it contains compressions for
individual sentences, not documents.

There has been relatively little interest in com-
pressing languages other than English. A few
models have been proposed for Japanese (Hori
and Furui, 2004; Hirao et al., 2009; Harashima
and Kurohashi, 2012), including a neural network
model (Hasegawa et al., 2017) which repurposes
Filippova and Altun’s (2013) data construction
method for Japanese. There is a compression cor-
pus available for French (de Loupy et al., 2010),
however, we are not aware of any modeling work
on this language. Overall, there are no standard-
ized datasets in languages other than English, ei-
ther for training or testing.

Our contributions in this work are three-fold:
a novel application of bilingual pivoting to sen-
tence compression; corroborated by empirical re-
sults showing that our model scales across lan-
guages and text genres without additional supervi-
sion over and above what is available in the bilin-
gual parallel data; and the release of a multilin-
gual, multi-reference compression corpus which
can be effectively used to gain insight in the
compression task and facilitate further research in
compression modeling.

2 Pivot-based Neural Compression
In our pivot-based sentence compression model
an input sequence is first translated into a for-
eign language, and then back into the source lan-
guage. Unlike previous paraphrasing pivoting
models (Mallinson et al., 2017), we parameterize
our translation models with a length feature, which
allows us to produce compressed output. We de-
fine two models, performing compression in one
step or alternatively in two steps which affords
more flexibility in model output.

2.1 NMT Background
In the neural encoder-decoder framework for MT
(Bahdanau et al., 2015; Sutskever et al., 2014),
an encoder takes in a source X = (x1, ...,xTx) of
length Tx and the decoder generates a target se-
quence (y1, ...,yTy) of length Ty. Let hi be the hid-
den state of the source symbol at position i, ob-
tained by concatenating the forward and backward
encoder RNN hidden states, hi = [

�!
hi ;
 �
hi ]. We de-

viate from previous work (Bahdanau et al., 2015;
Sutskever et al., 2014) in that we initialize the de-
coder with the average of the hidden states, fol-
lowing Sennrich et al. (2017):

s0 = tanh(Winit
ÂTx

i=1 hi

Tx
) (1)
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where Winit is a learnt parameter. Our decoder is a
conditional recurrent neural network, specifically
a gated recurrent unit (GRU, Cho et al., 2014) with
attention, which we denote as cGRUatt . cGRUatt
takes as input the previous hidden state s j�1, the
source annotations C = h1, ...,hTx , and the previ-
ously decoded symbol y j�1 in order to update its
hidden state s j, which is used to decode symbol y j
at position j:

s j = cGRUatt(s j�1,y j�1,C) (2)

cGRUatt consists of three components. The first
combines the previously decoded symbol y j�1 and
the previous hidden state s j�1 to generate an inter-
mediate representation s0j. The attention mecha-
nism, AT T , inputs the entire context set C along
with intermediate hidden state s0j in order to com-
pute the context vector c j:

c j = AT T (C,s0j) =
Tx

Â
i

ai jhi (3)

ai j =
exp(ei j)

ÂTx
k=1 exp(ek j)

(4)

ei j = f (s0j,hi) (5)

Where ai j is the normalized alignment weight be-
tween the source symbol at position i and the tar-
get symbol at position j, and f is a feedfoward
neural network.

Finally, we generate s j, the hidden state
of cGRUatt , by using the intermediate representa-
tion s0j and the context vector c j. Given s j, y j�1,
and c j the output probability p(y j|s j,y j�1,c j) is
computed using a feedforward neural network
with a softmax activation. We define the proba-
bility of sequence y as:

P(y|x;q) =
Ty

’
j=1

p(y j|s j,y j�1,c j) (6)

2.2 Length Control
To be able to produce compressed sentences, we
parameterize our model with a length vector which
allows to control the output length. Our approach
is similar to the LenInit model of Kikuchi et al.
(2016), however we use a GRU instead of an
LSTM. The hidden state of the decoder consists
of the average of the encoder’s hidden states but
also a length vector LV , a learnt parameter, which
is scaled by the desired target length Ty0 . We there-
fore rewrite Equation (1) as follows:

s00 = tanh
✓

Winit

hÂTx
i=1 hi

Tx
;LV ·Ty0

i◆
(7)

As such we now define our model as:

P(y|x,Ty0 ;q) (8)

During training, the target length is set to Ty0 = Ty.
However, at test time, the target length generally
varies according to the domain, genre, and lan-
guage at hand. We determine the target length ex-
perimentally based on a small validation set.

2.3 Pivoting
Pivoting is often used in machine translation to
overcome the shortage of parallel data, i,e., when
there is no translation path from the source lan-
guage to the target by taking advantage of paths
through an intermediate language. The idea dates
back at least to Kay (1997), who observed that am-
biguities in translating from one language onto an-
other may be resolved if a translation into some
third language is available, and has met with suc-
cess in phrase-based SMT (Wu and Wang, 2007;
Utiyama and Isahara, 2007) and more recently in
neural MT systems (Firat et al., 2016).

We use pivoting to provide a path from a source
English sentence, via an intermediate foreign lan-
guage, to English in a compressed form. We pro-
pose to extend Mallinson et al.’s (2017) approach
to multi-pivoting, where a sentence x is translated
to K-best foreign pivots, Fx = { f1, ..., fK}. The
probability of generating compression y = y1...yTy

is decomposed as:

P(y|x) =
Fx

Â
f

P(y| f ;
�!
q ) ·P( f |x;

 �
q ) (9)

which we approximate as the tokenwise weighted
average of the pivots:

P(y|x)⇡
Ty

’
j=1

Fx

Â
f

P(y j|y< j, f )P( f |x) (10)

where y< j = y1, ...y j . To ensure a probability dis-
tribution, we normalize the K-best list Fx, such
that the translation probabilities sum to one. We
use beam search to decode tokens by conditioning
on multiple pivoting sentences. The results with
the best decoding scores are considered candidate
compressions.

To ensure the model produces compressed out-
put, we extend the pivoting approach in two ways.
In single step compression, one of the translation
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Figure 1: Histograms of output lengths at three compression rates (CR) compared to a vanilla encoder-
decoder system which does not manipulate output length. German is used as pivot for English, and
English as pivot for French and German.

models is parameterized with length information:

P(y|x,Ty0) ⇡
F

Â
f

P(y| f ,Ty0 ;
�!
q ) · P( f |x;

 �
q )

In dual-step compression, we parameterize both
translation models with length information:

P(y|x,Ty0 ,Ty00)⇡
F

Â
f

P(y| f ,Ty0 ;
�!
q ) ·P( f |x,Ty00 ;

 �
q )

We find that dual-compression performs better
when the system is expected to drastically com-
press the source sentence (e.g., in a headline gen-
eration task). Imposing a high compression ra-
tio from the start tends to produce unintelligible
text. The model attempts to reduce the length of
the source at all costs, even at the expense of be-
ing semantically faithful to the input. Performing
two moderate compressions in succession reduces
both length and content conservatively and as a re-
sult produces more meaningful text.

In Figure 1 we illustrate how the pivot-based
model sketched above can successfully control the
output of the generated compressions. We show
the output of a single-step compression model on
three languages initialized with varying compres-
sion rates3 (see Section 4 for details on how the
models were trained and tested). The compression
rate (CR) is used to determine length parameter of
Equation (8):

Ty0 = Tx ·CR (11)

The figure shows how the output length varies
compared to a vanilla encoder-decoder system
which uses pivoting to backtranslate the source

3The term refers to the percentage of words retained from
the source sentence in the compression.

language (Mallinson et al., 2017). We can see that
the majority of sentences are generated with length
close to the desired compression rate.

3 The MOSS Dataset
For evaluation purposes, we created a multilingual
sentence compression corpus in English, German,
and French. The corpus was collated from exist-
ing document and sentence aligned multilingual
datasets which vary both in terms of topic and
genre. We sampled five documents each from:

1. Europarl, the European Parliament Proceed-
ings Parallel Corpus (Koehn, 2005), has been
used extensively in machine translation re-
search; it contains the minutes of the Euro-
pean parliament and is a spoken corpus of
formulaic nature; speakers take part in de-
bating various issues concerning EU policy
(e.g., taxation, environment).

2. The TED parallel Corpus (Cettolo et al.,
2012) contains transcripts in multiple lan-
guages of short talks devoted to spreading
powerful ideas on a variety of topics ranging
from science to business and global issues.

3. The EU bookshop corpus (Skadiņš et al.,
2014) contains publications from European
institutions covering a variety of topics such
as refugees, gender equality, and travel.

4. The News Commentary Parallel Corpus con-
tains articles downloaded from Project Syn-
dicate, an international media organization
that publishes commentary on global topics
(e.g., economics, world affairs).

We obtained compressions using the Crowd-
flower platform. Crowdworkers were given in-
structions that explained the task and defined sen-
tence compression with the aid of examples. They
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English French German
On the very day that the earthquake
struck, the European Council asked the
High Representative and the Commis-
sion to mobilise all appropriate assis-
tance.

Le jour même du tremblement de terre,
le Conseil européen a demandé à la
haute représentante et à la Commission
de mobiliser toute l’aide appropriée.

Am gleichen Tag, an dem das Erdbeben
ausbrach, ersuchte der Europäische Rat
die Hohe Vertreterin und die Kom-
mission um die Mobilisierung aller
angemessenen Hilfe.

Assistance was mobilized on the very
day of the earthquake.

Le Conseil européen a demandé à la
haute reprsentante et à la Commission
de mobiliser l’aide.

Europa erbrachte Hilfe noch am selben
Tag.

We’re at a tipping point in human his-
tory, a species poised between gaining
the stars and losing the planet we call
home.

L’histoire humaine est à un tournant.
Notre espèce hésite à toucher les étoiles
ou à perdre la planète qui est la sienne.

Wir stehen vor einem historischen Wen-
depunkt: zwischen dem Griff nach
den Sternen und dem Verlust unseres
Heimatplaneten.

We’re at tipping point in human history,
poised between gaining the stars and
losing the Earth.

L’humanité est à un tourt. Notre espèce
a envie des étoiles ou perdre sa planète.

Wir sind vor einem historischen Wen-
depunkt: zwischen dem Griff nach Ster-
nen und Verlust unseres Planeten.

Surveys undertaken by the World Bank
in developing countries show that when
poor people are asked to name the three
most important concerns they face good
health is always mentioned.

Les enquêtes menées par la
Banque mondiale dans les pays en
développement montrent que, quand
on demande aux populations pauvres
de nommer les trois défis les plus
importants qu’ils rencontrent, leur
“bonne santé” fait toujours partie de
cette liste.

Umfragen der Weltbank in Entwick-
lungsländern zeigen, wenn man Arme
nach den drei wichtigsten Anliegen
fragt, die sie beschäftigen, wird
“Gesundheit” immer genannt.

World Bank surveys in developing
countries show poor people always
name good health as an important con-
cern.

Quand on demande aux populations
pauvres de nommer les trois défis les
plus importants qu’ils rencontrent, leur
“bonne santé” fait toujours partie de la
liste.

Umfragen in Entwicklungslndern
zeigen, dass bei Armen das wichtigste
Anliegen Gesundheit ist.

Table 1: Examples of crowdsourced compressions (in italics) from the MOSS corpus. Sentences shown
(in order of appearance) from Europarl, TED, and News Commentary corpora.

were asked to compress while preserving the most
important information, ensuring the sentences re-
mained grammatical and meaning preserving. An-
notators were encouraged to use any rewriting op-
erations that seemed appropriate, e.g., to delete
words, add new words, substitute them, or reorder
them. Annotation proceeded on a document-by-
document basis, line-by-line. Crowdworkers com-
pressed the first twenty lines of each document and
we elicited five compression per document. Exam-
ple compressions are shown in Table 1.

Table 2 presents various statistics on our cor-
pus. As can be seen, Europarl contains the longest
sentences across languages (see column SL), TED
contains the shortest sentences, while the other
two corpora are somewhere in-between. We also
observe that crowdworkers compress the least
when it comes to TED (see column CR), which is
not surprising given the brevity of the utterances.
Overall, French speakers seem more conservative
when shortening sentences compared to English
and German. In general, compression rates are
genre dependent, they range from 0.58 (for En-
glish Europarl) to 0.84 (for German TED). We also
examined the degree to which crowdworkers para-
phrase the source sentence using Translation Edit
Rate (TER; Snover et al., 2006), a measure com-

monly used to automatically evaluate the quality
of machine translation output. We used TER to
compute the (average) number of edits required
to change a long sentence to shorter output. We
also report the number of edits by type, i.e., the
number of insertions, substitutions, deletions, and
shifts needed (on average) to convert long to short
sentences. We observe that crowdworkers perform
a fair amount of rewriting across corpora and lan-
guages. The most frequent rewrite operations are
deletions followed by substitutions, shifts, and in-
sertions.

4 Experimental Setup

Neural Machine Translation Training Nema-
tus (Sennrich et al., 2017) was used as the ma-
chine translation system for all our experiments.
We generally used the default settings and training
procedures as specified within Nematus. All net-
works have a hidden layer size of 1,000, and an
embedding layer size of 512. In addition, layer
normalization (Ba et al., 2016) was used. Dur-
ing training, we used ADAM (Kingma and Ba,
2014), a minibatch size of 80, and the training set
was reshuffled between epochs. We also employed
early stopping.
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English SL TL CR TER Ins Del Sub Shft
EUPar 27.29 15.89 0.58 0.47 0.07 11.29 1.57 0.50
TED 10.64 7.70 0.72 0.40 0.11 2.89 1.33 0.23
News 20.32 15.25 0.75 0.42 0.21 5.58 2.64 0.55
Books 20.52 15.23 0.78 0.38 0.14 5.43 1.86 0.46
All 19.69 13.51 0.71 0.42 0.13 6.30 1.85 0.44

French SL TL CR TER Ins Del Sub Shft
EUPar 29.40 23.00 0.78 0.29 0.06 6.39 1.89 0.20
TED 6.16 4.88 0.79 0.46 0.03 1.63 1.35 0.04
News 27.52 21.03 0.76 0.37 0.11 6.56 2.92 0.54
Books 21.97 17.93 0.82 0.24 0.08 4.12 1.25 0.16
All 21.26 16.71 0.79 0.34 0.07 4.66 1.85 0.24

German SL TL CR TER Ins Del Sub Shft
EUPar 24.78 15.52 0.63 0.41 0.02 9.28 1.08 0.22
TED 5.44 4.54 0.84 0.25 0.02 0.84 0.49 0.07
News 23.35 14.68 0.63 0.47 0.08 9.42 2.11 0.51
Books 19.35 14.37 0.74 0.37 0.09 5.07 1.94 0.31
All 18.23 12.28 0.71 0.38 0.05 6.15 1.41 0.28

Table 2: MOSS statistics across corpora and lan-
guages: length of source (SL) and target sentence
(TL), compression rate (CR), TER scores, and
number of insertions (Ins), deletions (Del), sub-
stitutions (Sub), and shifts (Shft).

We used up to four encoder-decoder NMT
models in our experiments (BLEU scores4

shown in parentheses): English!French (27.03),
French!English (29.14), English!German
(28.3), and German!English (31.19). German
training/test data was taken from the WMT16
shared task and French from the WMT14 shared
task. The training data was 4.2 million and
39 million sentence pairs for en-de, and en-fr,
respectively. We also used back-translated mono-
lingual training data, from the news domain,
(Sennrich et al., 2016a) in training for the German
systems. The data was pre-processed using
standard scripts found in MOSES (Koehn et al.,
2007). Rare words were split into sub-word units,
using byte pair encoding (BPE; Sennrich et al.
2016b). The BPE operations are shared between
language directions.

We experimented with various model variants
using one or multiple pivots. The compression
rate (see Equation (8)) was tuned experimentally
on the validation set which consists of one doc-
ument from each domain (20 source sentences;
100 compression-pairs). Compression rates varied
from 0.55 to 0.85 and were broadly comparable to
those shown in Table 2.

4BLEU scores were calculated using mteval-v13a.pl.

Comparison Systems We compared our model
against ABS, a sequence-to-sequence attention-
based model, developed by Rush et al. (2015).
This model was trained on a monolingual dataset
extracted from the Annotated English Gigaword
corpus (Napoles et al., 2011). The dataset con-
sists of approximately 4 million pairs of the first
sentence from each source document and its head-
line. We also trained LenInit (Kikuchi et al., 2016)
on the same corpus which is conceptually sim-
ilar to ABS but additionally controls the output
length using a length embedding vector (as de-
scribed in Section 2.2).5 Unfortunately, we could
not train these models for French or German, since
there are no monolingual sentence compression
datasets available at a similar scale. An obvious
workaround is to translate Gigaword to French and
German and then train compression models on the
translated data. As the quality of the translation
is relatively poor, we also translated German or
French into English, compressed it with ABS and
LenInit trained on the Gigaword corpus, and then
translated the compressions back to French or Ger-
man. Finally, we include a prefix (Pfix) baseline
which does not perform any rewriting but simply
truncates the source sentence so that it matches the
compression ratio of the validation set.

5 Results

MOSS Evaluation We assessed model perfor-
mance using three automatic metrics which rep-
resent different aspects of the compression task
and have been found to correlate well with hu-
man judgments (Toutanova et al., 2016; Clarke
and Lapata, 2006). These include a recall met-
ric based on skip bi-grams, any pair of words in a
sequence allowing for gaps of size four6 (RS-R);
a recall metric based on bi-grams of dependency
tree triples (D2-R); and bi-gram ROUGE (R2-F1).
We used the Stanford neural network parser (Chen
and Manning, 2014) to obtain dependency triples.

Table 3(a) reports results on English with a
model which controls the output length (L) and
uses either a single pivot (SP; K = 1) or multi-
ple pivots (MP; K = 10). We experimented with
French (fr) or German (de) as pivot languages.
All pivot-based models perform compression in a
single step (see Section 2.3). Dual-step compres-

5We used our own implementation of ABS and LenInit
which on DUC-2004 obtained ROUGE scores similar to those
published in Rush et al. (2015) and Kikuchi et al. (2016).

6We add a begin-of-sentence marker at the start of the can-
didate and reference sentences.
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English RS-R D2-R R2-F1
Pfix 45.38 47.57 33.67
ABS 18.29 23.55 15.60
LenInit 17.90 19.64 11.18
SPL ,de 34.60 37.97 22.67
SPL , f r 27.42 32.34 19.29
MPL ,de 28.71 34.70 19.06
MPL , f r 20.74 27.50 13.89
Gold 76.60 71.68 42.89

(a)

French RS-R D2-R R2-F1
Pfix 60.33 62.44 53.37
ABS 13.84 18.00 9.74
ABSen 16.39 22.08 13.17
LenInit 9.91 14.52 8.08
LenIniten 20.08 24.41 13.06
SPL ,en 43.38 46.17 35.07
MPL ,en 31.55 37.88 26.59
Gold 74.42 80.00 52.13

(b)

German RS-R D2-R R2-F1
Pfix 56.28 50.78 45.84
ABS 5.72 12.95 5.21
ABSen 9.43 14.78 6.79
LenInit 4.91 11.77 2.87
LenIniten 13.19 18.67 7.65
SPL ,en 38.19 38.54 31.15
MPL ,en 23.62 29.13 17.36
Gold 76.01 77.48 48.36

(c)

Table 3: Automatic evaluation on MOSS; S/MP: single/multiple pivot models; L : length parameter;
pivot languages: English (en), French (fr), German (de); ABS (Rush et al., 2015) and LenInit (Kikuchi
et al., 2016) are sequence-to-sequence models trained on Gigaword; Gold is inter-annotator agreement.

English French German
ABS Europe urged to help quake victims. Le Conseil Européen demande une

aide pour les victimes du tremblement
de terre.

Europäischer Rat sucht Hilfen für
Quiz-Opfer.

SP The European Council called on the
High Representative and the Commis-
sion to mobilise all appropriate assis-
tance.

Le Conseil Européen a demandé au
Haut Représentant et à la Commission
de mobiliser l’assistance.

Am selben Tag forderte der Eu-
ropäische Rat die Hohe Vertreterin
und die Kommission auf, jede Hilfe.

ABS Advance for Sunday July a new look
at the world.

Un tournant pour le tournant. Die Stars der Stars und die Stars.

SP We are at a turning point in human
history and losing the planet we call
home.

L’histoire de l’humanité est à la
croisée des chemins et de l’histoire.

Zwischen dem Griff der Sterne und
dem Verlust unseres Planeten stehen
wir vor.

ABS Poor people ask to name the three
most important concerns.

Les enquêtes de la Banque mondiale
révèlent que la santé fait toujours par-
tie de la liste.

Weltbank-Umfragen zeigen arme
Menschen in Entwicklungsländern.

SP Polls conducted by the World Bank
show that when poor people are asked
to mention the three main concerns.

Les enquêtes menées par la
Banque mondiale dans les pays
en développement montrent que,
lorsqu’on demande aux pauvres de
nommer les trois plus grands éfis.

Wenn man die Armen nach den
drei Hauptanliegen fragt, werden sie
gefordert.

Table 4: System output for the example source sentences in Table 1.

sion obtained inferior results which we omit for
the sake of brevity. As can be seen, models which
use a single pivot are better than those using mul-
tiple ones (German is better than French; see SPde
vs SP f r). More pivots might introduce noise at the
expense of translation quality.

Overall, pivot-based models outperform ABS
and LenInit. This is perhaps to be expected since
these models are tested on out of domain data
with different vocabulary and writing conventions;
MOSS does not contain any newspaper articles.
Unfortunately, it is not possible to train ABS and
LenInt on in-domain data as compression data
only exists for the headlines-first sentences pairs.
As an upper bound, we also report how well hu-
mans agree with each other, treating one (ran-
domly selected) reference as system output and
computing how it agrees with the rest (row Gold
in Table 3). All models lag significantly behind
human performance on this task.

Tables 3(b) and 3(c) report results on French
and German, respectively. For these languages, we
obtained best results with English as pivot, using a
single-step compression model. ABS and LenInit
perform poorly when trained directly on transla-
tions of Gigaword into French and German; their
performance improves considerably when they are
trained on the Gigaword and used to compress En-
glish translations of French or German (ABSen,
LenIniten). Again, we observe that our models
(SPL ,en, MPL ,en) outperform the comparison sys-
tems across all metrics and that using a single
pivot yields better compressions. Example com-
pressions are given in Table 4 where we show out-
put produced by ABS and SP for each language
(see the supplementary material for more exam-
ples). Finally, notice that automatic scores for the
prefix baseline across languages are misleadingly
high, since it simply repeats the source sentence up
to a fixed length without performing any rewriting.
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English French German
Models Imp Gram Avg Imp Gram Avg Imp Gram Avg
Pfix 2.72 2.98 2.85 2.73 2.89 2.80 3.17 2.96 3.06
LenInit 2.51 3.0 2.75 1.82 2.62 2.22 2.10 3.25 2.67
SPL 3.27 3.69 3.48 3.48 3.60 3.54 3.30 3.87 3.59
Ref 3.47 3.80 3.63 4.05 4.14 4.10 3.97 4.26 4.10

Table 5: Mean ratings elicited by humans on
MOSS; Avg is the average rating of grammatical-
ity and importance.

SL TL CR TER Ins Del Sub Shft
English 19.69 12.31 0.63 0.65 0.10 6.68 2.14 0.44
French 21.26 14.98 0.70 0.67 0.29 5.71 3.36 0.61
German 18.23 12.51 0.68 0.67 0.16 6.38 2.94 0.50

Table 6: Statistics of model output (SPL ) on MOSS
(aggregated across domains): length of source
(SL) and target (TL), compression rate (CR), TER
scores, and number of insertions (Ins), deletions
(Del), substitutions (Sub), and shifts (Shft).

We also elicited human judgments through the
Crowdflower platform. We asked crowdworkers to
rate the grammaticality of the target compressions
and whether they preserved the most important in-
formation from the source. In both cases, they
used a five-point rating scale where a high num-
ber indicates better performance. We randomly
selected 25 sentences from each corpus from the
test portion of MOSS, i.e., 100 long-short sen-
tence pairs per language. We compared compres-
sions generated by our model (SPL ), with ABS
models for the three languages, the prefix base-
line, and (randomly selected) gold-standard ref-
erence (Ref) compressions from MOSS. All sys-
tems used the length parameter to allow compar-
isons with approximately the same compression
rates. We collected five ratings per compression.
Our results are summarized in Table 5. We show
mean ratings for grammaticality (Gram), impor-
tance (Imp) and their combination (column Avg).
Across languages our model (SPL) significantly
(p < 0.05) outperforms comparison systems (Pfix,
ABS) on both dimensions of grammaticality and
importance (significance tests were performed us-
ing a student t-test). All systems are significantly
worse (p < 0.05) than the human reference com-
pressions.

Finally, in Table 6 we analyze the output of
our best model (SPL ) using the same statistics
we applied to the human compressions (see Ta-
ble 2). As can be seen, the model generally com-
pressess more aggressively and applies more ed-

Models RS-R D2-R R2-F1 R1-R R2-R RL-R
Pfix 15.25 15.59 5.38 20.42 5.86 18.07
SPL ,de 12.93 13.89 4.97 20.70 5.35 18.35
SPL , f r 12.06 12.18 4.42 19.77 4.75 17.40
MPL , f r 10.38 11.85 3.70 18.67 4.03 16.20
MPL ,de 11.06 13.26 4.30 19.10 4.69 16.84
Gold 16.41 18.12 7.72 26.95 7.72 22.79
ABS7 (Rush et al., 2015) 26.55 7.06 22.05
ABS+ (Rush et al., 2015) 28.18 8.49 23.81
RAS (Chopra et al., 2016) 28.97 8.26 24.06
LenInit 8 (Kikuchi et al., 2016) 25.87 8.27 23.24
LenEmb (Kikuchi et al., 2016) 26.73 8.40 23.88

Table 7: DUC-2004 results (75 char length cap);
results for comparison systems are taken from
their respective papers.

its than the crowdworkers (both compression rates
and TER scores are higher for all three languages).
Although the rate of deletions is similar to hu-
mans, insertions, substitutions and shifts happen
to a greater extent for our model, indicating that it
performs a good amount of paraphrasing.

DUC-2004 Evaluation Besides MOSS, we eval-
uated our model on the benchmark DUC-2004
task-1 dataset. In this task, the aim is to create
a very short summary (75 bytes) for a document.
The evaluation set consists of 500 source docu-
ments (from the New York Times and Associated
Press Wire services) each paired with four human-
written (reference) summaries. We follow previ-
ous work (Rush et al., 2015; Chopra et al., 2016)
in compressing the first sentence of the document
and presenting this as the summary. To make the
evaluation unbiased to length, the output of all sys-
tems is cut-off after 75-characters and no bonus is
given for shorter summaries.

Our results are shown in Table 7. To com-
pare with existing methods, we also report ROUGE
(Lin, 2004) unigram and bigram overlap (Lin,
2004) and the longest common subsequence
(ROUGE-L).9 We employed a dual step com-
pression model (see Section 2) as preliminary ex-
periments showed that it was superior to single-
stage variants. We compared single and multi-
ple pivot models against existing ABS and ABS+
(Rush et al., 2015), two encoder-decoder models
trained on the English Gigaword. ABS+ applies
minimum error rate (MERT) training as a copy-

7Our ABS implementation obtains R1-R 25.03,
R2-R 8.40, and RL-R: 22.35

8Our LenInit implementation obtains R1-R 29.26,
R2-R 9.56, and RL-R 25.70

9We used ROUGE version 1.5.5 with the original
DUC-2004 ROUGE parameters.
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Source King Norodom Sihanouk has declined requests to chair a summit of Cambodia’s top political leaders,
saying the meeting would not bring any progress in deadlocked negotiations to form a government.

SPL ,de King Norodom Sihanouk has refused to chair Cambodia summit.
Gold Sihanouk refuses to chair Cambodian political summit at home or abroad.
Source Cambodia’s ruling party responded Tuesday to criticisms of its leader in the U.S. Congress with a

lengthy defense of strongman Hun Sen’s human rights record.
SPL ,de Cambodia’s ruling party responded Tuesday to criticism of its leader in the US.
Gold Cambodian party defends leader Hun Sen against criticism of U.S. House.
Source The Swiss government has ordered no investigation of possible bank accounts belonging to former

Chilean dictator Augusto Pinochet, a spokesman said Wednesday.
SPL ,de Swiss government ordered no inquiry into possible bank accounts of former Chilean dictator Augusto.
Gold Switzerland joins charges against Pinochet but avoids bank probe.

Table 8: System output for DUC-2004.

ing mechanism. LenEmb and LenInit include a
length parameter (Kikuchi et al., 2016), whereas
RAS uses a specialized recurrent neural network
architecture (Elman, 1990). We also report how
well DUC-2004 abstractors agree with each other
(row Gold in Table 7). Example compressions are
given in Table 8, where we show output produced
by SPL ,de and a human reference (see the supple-
mentary material for further examples).

Using automatic metrics we see that our model
generally performs worse compared to these sys-
tems and that German is the best pivot for English.
Although the objective of this paper is not to ob-
tain state-of-the-art scores on this evaluation set,
it is interesting to see that our model is able to
compress out-of-domain. We do not have access
to headline-first sentence pairs, while all compar-
ison systems do. We also elicited human judg-
ments on the compressions of 100 lead sentences
whose documents were randomly selected from
the DUC-2004 test set. We compared the prefix
baseline, our model (SPL ,de), ABS+ (Rush et al.,
2015), LenEmb (Kikuchi et al., 2016), Topiary
(Zajic et al., 2004), and a randomly selected ref-
erence. Topiary came top in almost all measures
in the DUC-2004 evaluation; it first compresses
the lead sentence using linguistically motivated
heuristics and then enhances it with topic key-
words. Crowdworkers rated grammaticality and
importance, using a five-point scale; we collected
five ratings per compression.

As shown in Table 9 ABS+ has the lead with our
system following suit. In terms of grammaticality,
ABS+ and SPL ,de are not significantly different
from the gold standard or from each other (Pfix,
Topiary, and LenEmb are significantly worse than
Gold; p < 0.05). In terms of importance, pairwise
differences between systems and the gold standard
are not significant. Overall, we observe that SPL ,de
performs comparably to ABS+ even though it was

Models Gram Imp Avg
Pfix 3.03 2.93 2.98
SPL ,de 3.37 3.22 3.29
Topiary 3.05 3.15 3.10
ABS+ 3.67 3.23 3.45
LenEmb 3.14 3.08 3.11
Ref 3.62 3.27 3.45

Table 9: Mean ratings elicited by humans on
DUC-2004; Avg is the average rating of grammat-
icality and importance.

not trained on any compression specific data. In-
spection of system output reveals that our model
performs more paraphrasing than comparison sys-
tems (a conclusion also confirmed by the statistics
in Table 6).

6 Conclusions

In this paper we have shown that multilingual cor-
pora can be used to bootstrap compression mod-
els across languages and text genres. Our ap-
proach adapts existing neural machine translation
machinery to the compression task coupled with
methods which decode the output to a desired
length. An interesting direction for future work
would be to train our model using reinforcement
learning (Ranzato et al., 2016; Zhang and Lapata,
2017) in order to control the compression output
more directly. Moreover, although we do not use
any direct supervision in our experiments, it would
be interesting to incorporate it as a means of do-
main adaptation (Cheng et al., 2016).
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Abstract

Cross-lingual transfer of word embeddings
aims to establish the semantic mappings
among words in different languages by learn-
ing the transformation functions over the cor-
responding word embedding spaces. Suc-
cessfully solving this problem would benefit
many downstream tasks such as to translate
text classification models from resource-rich
languages (e.g. English) to low-resource lan-
guages. Supervised methods for this problem
rely on the availability of cross-lingual super-
vision, either using parallel corpora or bilin-
gual lexicons as the labeled data for training,
which may not be available for many low re-
source languages. This paper proposes an un-
supervised learning approach that does not re-
quire any cross-lingual labeled data. Given
two monolingual word embedding spaces for
any language pair, our algorithm optimizes
the transformation functions in both direc-
tions simultaneously based on distributional
matching as well as minimizing the back-
translation losses. We use a neural network
implementation to calculate the Sinkhorn dis-
tance, a well-defined distributional similarity
measure, and optimize our objective through
back-propagation. Our evaluation on bench-
mark datasets for bilingual lexicon induction
and cross-lingual word similarity prediction
shows stronger or competitive performance of
the proposed method compared to other state-
of-the-art supervised and unsupervised base-
line methods over many language pairs.

1 Introduction

Word embeddings are well known to capture
meaningful representations of words based on
large text corpora (Mikolov et al., 2013; Pen-
nington et al., 2014). Training word vectors us-
ing monolingual corpora is a common practice
in various NLP tasks. However, how to estab-
lish cross-lingual semantic mapping among mono-

lingual embeddings remain an open challenge as
the availability of resources and benchmarks are
highly imbalanced across languages.

Recently, increasing effort of research has been
motivated to address this challenge. Success-
ful cross-lingual word mapping will benefit many
cross-lingual learning tasks, such as transform-
ing text classification models trained in resource-
rich languages to low-resource languages. Down-
stream applications include word alignment, text
classification, named entity recognition, depen-
dency parsing, POS-tagging, and more (Søgaard
et al., 2015). Most methods for cross-lingual
transfer of word embeddings are based on super-
vised or semi-supervised learning, i.e., they re-
quire cross-lingual supervision such as human-
annotated bilingual lexicons and parallel cor-
pora (Lu et al., 2015; Smith et al., 2017; Artetxe
et al., 2016). Such a requirement may not be met
for many language pairs in the real world.

This paper proposes an unsupervised approach
to the cross-lingual transfer of monolingual word
embeddings, which requires zero cross-lingual su-
pervision. The key idea is to optimize the mapping
in both directions for each language pair (say A
and B), in the way that the word embedding trans-
lated from language A to language B will match
the distribution of word embedding in language B.
And when translated back from B to A, the word
embedding after two steps of transfer will be max-
imally close to the original word embedding. A
similar property holds for the other direction of
the loop (from B to A and then from A back to
B). Specifically, we use the Sinkhorn distance (Cu-
turi, 2013) to capture the distributional similarity
between two set of embeddings after transforma-
tion, which we found empirically superior to the
KL-divergence (Zhang et al., 2017a) and distance
to nearest neighbor (Artetxe et al., 2017; Conneau
et al., 2017) with regards to the quality of learned
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transformation as well as the robustness under dif-
ferent training conditions.

Our novel contributions in the proposed work
include:

• We propose an unsupervised learning frame-
work which incorporates the Sinkhorn dis-
tance as a distributional similarity measure in
the back-translation loss function.

• We use a neural network to optimize our
model, especially to implement the Sinkhorn
distance whose calculation itself is an opti-
mization problem.

• Unlike previous models which only consider
cross-lingual transformation in a single direc-
tion, our model jointly learns the word em-
bedding transfer in both directions for each
language pair.

• We present an intensive comparative evalua-
tion where our model achieved the state-of-
the-art performance for many language pairs
in cross-lingual tasks.

2 Related Work

We divide the related work into supervised and un-
supervised categories. Representative methods in
both categories are included in our comparative
evaluation (Section 3.4). We also discuss some
related work in unsupervised domain transfer in
addition.

Supervised Methods: There is a rich body of su-
pervised methods for learning cross-lingual trans-
fer of word embeddings based on bilingual dic-
tionaries (Mikolov et al., 2013; Faruqui and Dyer,
2014; Artetxe et al., 2016; Xing et al., 2015;
Duong et al., 2016; Gouws and Søgaard, 2015),
sentence-aligned corpora (Kočiskỳ et al., 2014;
Hermann and Blunsom, 2014; Gouws et al., 2015)
and document-aligned corpora (Vulić and Moens,
2016; Søgaard et al., 2015). The most relevant
line of work is that by Mikolov et al. (2013)
where they showed monolingual word embed-
dings are likely to share similar geometric prop-
erties across languages although they are trained
separately and hence cross-lingual mapping can
be captured by a linear transformation across em-
bedding spaces. Several follow-up studies tried to
improve the cross-lingual transformation in vari-
ous ways (Faruqui and Dyer, 2014; Artetxe et al.,
2016; Xing et al., 2015; Duong et al., 2016; Am-
mar et al., 2016; Artetxe et al., 2016; Zhang et al.,

2016; Shigeto et al., 2015). Nevertheless, all these
methods require bilingual lexicons for supervised
learning. Vulić and Korhonen (2016) showed that
5000 high-quality bilingual lexicons are sufficient
for learning a reasonable cross-lingual mapping.

Unsupervised Methods have been studied to es-
tablish cross-lingual mapping without any human-
annotated supervision. Earlier work simply re-
lied on word occurrence information only (Rapp,
1995; Fung, 1996) while later efforts have con-
sidered more sophisticated statistics in addition
(Haghighi et al., 2008). The main difficulty in
unsupervised learning of cross-lingual mapping
is the formulation of the objective function, i.e.,
how to measure the goodness of an induced map-
ping without any supervision is a non-trivial ques-
tion. Cao et al. (2016) tried to match the mean
and standard deviation of the embedded word vec-
tors in two different languages after mapping the
words in the source language to the target lan-
guage. However, such an approach has shown
to be sub-optimal because the objective function
only carries the first and second order statistics of
the mapping. Artetxe et al. (2017) tried to im-
pose an orthogonal constraint to their linear trans-
formation model and minimize the distance be-
tween the transferred source-word embedding and
its nearest neighbor in the target embedding space.
Their method, however, requires a seed bilingual
dictionary as the labeled training data and hence
is not fully unsupervised. (Zhang et al., 2017a;
Barone, 2016) adapted a generative adversarial
network (GAN) to make the transferred embed-
ding of each source-language word indistinguish-
able from its true translation in the target embed-
ding space (Goodfellow et al., 2014). The adver-
sarial model could be optimized in a purely un-
supervised manner but is often suffered from un-
stable training, i.e. the adversarial learning does
not always improve the performance over simpler
baselines. Zhang et al. (2017b), Conneau et al.
(2017) and Artetxe et al. (2017) also tried adver-
sarial approaches for the induction of seed bilin-
gual dictionaries, as a sub-problem in the cross-
lingual transfer of word embedding.

Unsupervised Domain Transfer: Generally
speaking, learning the cross-lingual transfer of
word embedding can be viewed as a domain trans-
fer problem, where the domains are word sets in
different languages. Thus various work in the
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field of unsupervised domain adaptation or unsu-
pervised transfer learning can shed light on our
problem. For example, He et al. (2016) proposed
a semi-supervised method for machine transla-
tion to utilize large monolingual corpora. Shen
et al. (2017) used unsupervised learning to trans-
fer sentences of different sentiments. Recent work
in computer vision addresses the problem of im-
age style transfer without any annotated training
data (Zhu et al., 2017; Taigman et al., 2016; Yi
et al., 2017). Among those, our work is mostly
inspired by the work on CycleGAN (Zhu et al.,
2017), and we adopt their cycled consistent loss
over images into our back-translation loss. One
key difference of our method from CycleGAN is
that they used the training loss of an adversarial
classifier as an indicator of the distributional dis-
tance, but instead, we introduce the Sinkhorn dis-
tance in our objective function and demonstrate its
superiority over the representative method using
adversarial loss (Zhang et al., 2017a).

3 Proposed Method

Our system takes two sets of monolingual word
embeddings of dimension d as input, which are
trained separately on two languages. We denote
them as X = {xi}n

i=1, Y = {yj}m
j=1, xi, yj 2 R

d.
During the training of monolingual word embed-
ding for X and Y , we also have the access to the
word frequencies, represented by vectors r 2 N

n

and c 2 N
m for X and Y , respectively. Specifi-

cally, ri is the frequency for word (embedding) xi

and similarly for cj of yj . As illustrated in Fig-
ure 3, our model has two mappings: G : X ! Y
and F : Y ! X . We further denote transferred
embedding from X as G(X) := {G(xi)}n

i=1 and
correspondingly for F (Y ).

In the unsupervised setting, the goal is to learn
the mapping G and F without any paired word
translation. To achieve this, our loss function
consists of two parts: Sinkhorn distance (Cuturi,
2013) for matching the distribution of transferred
embedding to its target embedding distribution;
and a back-translation loss for preventing degen-
erated transformation.

3.1 Sinkhorn Distance
3.1.1 Definition
Sinkhorn distance is a recently proposed distance
between probability distributions. We use the
Sinkhorn distance to measure the closeness be-

𝑋

𝐹(𝑌)

𝐺(𝑋)

𝑌

𝐹(𝐺 𝑋 )

𝐺(𝐹 𝑌 )

𝐹

𝐺

𝐺

𝐹

Sinkhorn Distance Sinkhorn Distance

Back Trans. Loss

Back Trans. Loss

Figure 1: The model takes monolingual word embed-
ding X and Y as input. G and F are embedding trans-
fer functions parameterized by a neural network, which
are represented by solid arrows. The dashed lines in-
dicate the input for our objective losses, namely the
Sinkhorn distance and back-translation loss

.

tween G(X) and Y , and also between F (Y ) and
X . During the training, our model optimizes
G and F for lower Sinkhorn distance to make
the transferred embeddings match the distribution
of the target embeddings. Here we only illus-
trate the Sinkhorn distance between G(X) and Y ,
the derivation for F (Y ) and X is very similar.
Although the vocabulary sizes of two languages
could be different, we are able to sample mini-
batches of equal size from G(X) and Y . therefore
we assume n = m in the following derivation.

To compute Sinkhorn distance, we firstly com-
pute a distance matrix M (G) 2 R

n⇥m between
G(X) and Y where M (G)

ij is the distance measure
between G(xi) and yj . The superscript on M (G)

indicates the distance that depends on a parameter-
ized transformation G. For instance, if we choose
Euclidean distance as a measure (see Section 3.1.3
for more discussions), we will have

M (G)
ij = kG(xi) � yjk2.

Given the distance matrix, the Sinkhorn dis-
tance between PG(X) and PY is defined as:

dsh(G) := min
P2U↵(r,c)

hP, M (G)i (1)

where h·, ·i is the Forbenius dot-product and
U↵(r, c) is an entropy constrained transport poly-
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Algorithm 1 Computation of Sinkhorn Distance
dsh(G)

1: procedure SINKHORN(M (G), r, c, �, I)
2: K(G) := e��M(G)

3: v = 1m/m . normalized one vector
4: i = 0
5: while i < I do . iterate for I times
6: u = r./K(G)v

7: v = c./K(G)T u
8: i = i + 1
9: dsh(G) = uT ((K(G) ⌦ M (G))v)

10: return dsh(G) . The Sinkhorn distance

tope, defined as

U↵(r, c) = {P 2 R+
n⇥m|P1m = r, P T1n = c,

h(P )  h(r) + h(c) � ↵} (2)

Note that P is non-negative and the first two con-
straints make its element-wise sum be 1. There-
fore, P can be seen as a set of probability distri-
butions. The same applies for r and c since they
are frequencies. h is the entropy function defined
on any probability distributions and ↵ is a hyper-
parameter to choose. For any probabilistic matrix
P 2 U↵(r, c), it can be viewed as the joint proba-
bility of (G(X), Y ). The first two constraints en-
sure that P has marginal distribution on G(X) as
PG(X) and on Y as PY . We can also view Pij as
the evidence for establishing a translation between
word vector xi and word vector yj .

An intuitive interpretation of equation (1) is that
we are trying to find the optimal transport proba-
bility P under the entropy constraint such that the
total distance to transport from G(X) to Y is min-
imized.

3.1.2 Computing Sinkhorn Distance dsh(G)

Cuturi (2013) showed that the optimal solu-
tion of formula (1) has the form P ⇤ =
diag(u)Kdiag(v) , where u and v are some non-
negative vectors and K(G) := e��M(G) ; � is the
Lagrange multiplier for the entropic constraint in
2 and each ↵ in Equation (1) has one correspond-
ing �. The Sinkhorn distance can be efficiently
computed by a matrix scaling algorithm. We
present the pseudo code in Algorithm 1. Note that
the computation of dsh(G) only requires matrix-
vector multiplication. Therefore, we can compute
and back propagate the gradient of dsh(G) with re-
gards to the parameters in G using standard deep

learning libraries. We show our implementation
details in Section 3.4 and supplementary material.

3.1.3 Choice of the Distance Metric
In Section 3.1.1, we used the Euclidean distance
of vector pairs to define M (G) and Sinkhorn dis-
tance dsh(G). However, in our preliminary exper-
iment, we found that Euclidean distance of unnor-
malized vectors gave poor performance. There-
fore, following the common practice, we normal-
ize all word embedding vectors to have a unit L2
norm in the construction of M (G).

As pointed out in Theorem 1 of Cuturi (2013),
M (G) must be a valid metric in order to make
dsh(G) a valid metric. For example, the com-
monly used cosine distance, which is defined as
CosDist(a, b) = 1� cos(a, b), is not a valid met-
ric because it does not satisfy triangle inequality
1. Thus, for constructing M (G), we propose the
square root cosine distance (SqrtCosDist) be-
low:

SqrtCosDist(a, b) :=
p

2 � 2cos(a, b) (3)

M (G)
ij = SqrtCosDist(G(xi), yj) (4)

Theorem 1. SqrtCosDist is a valid metric.

Proof. 8a, b 2 R
d, let â = a

kak , b̂ = b
kbk . We have

cos(a, b) = hâ, b̂i and hâ, âi = hb̂, b̂i = 1. Then

SqrtCosDist(a, b) =
p

2 � 2cos(a, b)

=
q

hâ, âi + hb̂, b̂i � 2hâ, b̂i

=
q

hâ � b̂, â � b̂i

= kâ � b̂k

Obviously, the last term is the Euclidean distance
between normalized input vectors â and b̂. Since
Euclidean distance is a valid metric, it follows that
SqrtCosDist satisfies all the axioms for a valid
metric.

3.2 Objective Function
Given enough capacity, G is capable to trans-
fer X to Y for arbitrary word-to-word mappings.
To ensure that, we learn a meaningful translation
and also to regularize the search space of possible
transformations, we enforce the word embedding
after the forward and the backward transformation

1If we select a = [1, 0], b = [
p

2
2 ,

p
2

2 ], c = [0, 1] We have
CosDist(a, c) � CosDist(a, b) + CosDist(b, c) , which
violates the triangle inequality.
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should not diverge much from its original direc-
tion. We simply choose the back-translation loss
based on the cosine similarity:

dbt(G, F ) =
X

i

1 � cos(xi, F (G(xi)))+

X

j

1 � cos(yi, G(F (yi))) (5)

where cos is the cosine similarity.
Putting everything together, we minimize the

following objective function.

LX,Y,r,c(G, F ) = dsh(G) + dsh(F ) + �dbt(G, F )
(6)

where hyper-parameter � controls the relative
weight of the last term against the first two terms
in the objective function. By definition, computa-
tion of dsh(G) or dsh(F ) involves another mini-
mization problem as shown in Equation (1). We
solve it using the matrix scaling algorithm in Sec-
tion 3.1.2, and treat dsh(G) as a deterministic and
differentiable function of parameters in G. The
same holds for dsh(F ) and F .

3.3 Wasserstein GAN Training for Good
Initial Point

In preliminary experiments, we found that our ob-
jective 6 is sensitive to the initialization of the
weight in G and F in the purely unsupervised
setting. It requires a good initial setting of the
parameters to avoid getting stuck in the poor lo-
cal minimal. To address this sensitivity issue, we
employed a similar approach as in (Zhang et al.,
2017b; Aldarmaki et al., 2018) to firstly used an
adversarial training approach to learn G and F and
use them as the initial point for training our full
objective 6. More specifically, we choose to mini-
mize the optimal transport distance below.

dot(G) := min
P2U(r,c)

hP, M (G)i (7)

U is the transport polytope without entropy con-
straint, defined as follows.

U = {P 2 R+
n⇥m|P1m = r, P T1n = c} (8)

We optimize the distance above by its dual form
and through adversarial training, which is also
known as Wasserstein GAN (WGAN) (Arjovsky
et al., 2017). We applied the optimization trick
proposed by Gulrajani et al. (2017).

Although the first phase of adversarial training
could be unstable, and the performance is lower
than using the Sinkhorn distance, the adversarial
training narrows down the search space of model
parameters and boosting the training of our pro-
posed model.

3.4 Implementation
We implemented transformation G and F by a
linear transformation. The dimension of the in-
put and output are the same with the word em-
bedding dimension d.2 For all the experiments in
the subsequent section, the � in (6) was set to be
0.1. For hyper-parameters from the computation
of Sinkhorn distance, we choose � = 10 and run
the matrix scaling algorithm for 20 iterations. Due
to the space constraint, a detailed implementation
description is presented in the supplementary ma-
terial. The code of our implementation is publicly
available 3.

4 Experiments

We conducted an evaluation of our approach
in comparison with state-of-the-art super-
vised/unsupervised methods on several evaluation
benchmarks for bilingual lexicon induction (Task
1) and word similarity prediction (Task 2). We
include our main results in this section and report
the ablation study in the supplementary material.

4.1 Data
4.1.1 Monolingual Word Embedding Data
All the methods being evaluated in both tasks take
monolingual word embedding in each language
as the input data. We use publicly available pre-
trained word embeddings trained on Wikipedia ar-
ticles: (1) a smaller set of word embeddings of
dimension 50 trained on comparable Wikipedia
dump in five languages (Zhang et al., 2017a)4 and
(2) a larger set of word embeddings of dimen-
sion 300 trained on Wikipedia dump in 294 lan-
guages (Bojanowski et al., 2016)5. For conve-

2We tried more complex non-linear transformations for
G and F . The performance is slightly worse than the linear
case.

3Our implementation https:
//github.com/xrc10/
unsup-cross-lingual-embedding-transfer

4Available at http://nlp.csai.tsinghua.edu.
cn/˜zm/UBiLexAT

5Available at https://github.com/
facebookresearch/fastText/blob/master/
pretrained-vectors.md
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nience, we name the two sets WE-Z and WE-C,
respectively.

4.1.2 Bilingual Lexicon Data
We need true translation pairs of words for eval-
uating methods in bilingual lexicon induction
(Task 1). We followed previous studies and pre-
pared two datasets below.

LEX-Z: Zhang et al. (2017a) constructed the
bilingual lexicons from various resources. Since
their ground truth word pairs are not released, we
followed their procedure, crawled bilingual dictio-
naries and randomly separated them into the train-
ing and testing set of equal size.6 Note that our
proposed method did not utilize the training set. It
was only used by supervised baseline methods de-
scribed in Section 4.2. There are eight language
pairs (order counted); the corresponding dataset
statistics are summarized in Table 1. We use WE-
Z embeddings in this dataset.

LEX-C: This lexicon was constructed by Conneau
et al. (2017) and contains more translation pairs
than LEX-Z. They divided them into training and
testing set. We run our model and the baseline
methods on 16 language pairs. For each language
pair, the training set contains 5, 000 unique query
words and the testing set has 1, 500 query words.
We followed Conneau et al. (2017) and set the
search space of candidate translations to be the
200, 000 most frequent words in each target lan-
guage. We use WE-C embeddings in this dataset.

4.1.3 Bilingual Word Similarity Data
For bilingual word similarity prediction (Task 2)
we need the true labels for evaluation. Fol-
lowing Conneau et al. (2017), we used the Se-
mEval 2017 competition dataset, where human
annotators measured the cross-lingual similarity
of nominal word pairs according to the five-point
Likert scale. This dataset contains word pairs
across five languages: English (en), German (de),
Spanish (es), Italian (it), and Farsi (fa). Each lan-
guage pair has about 1,000 word pairs annotated
with a real similarity score ranging from 0 to 4.

4.2 Baseline Methods

We evaluated the same set of supervised and un-
supervised baselines for comparative evaluation in

6The bilingual dictionaries we crawled are submitted as
supplementary material.

# tokens vocab. size bi. lex. size

tr-en tr 6m 7,482 18,404
en 28m 13,220 27,327

es-en es 61m 4,774 3,482
en 95m 6,637 10,772

zh-en zh 21m 3,349 54,170
en 53m 5,154 51,375

it-en it 73m 8,490 4,999
en 93m 6,597 11,812

Table 1: The statistics of LEX-Z. The languages are
Spanish (es), French (fr), Chinese (zh), Turkish (tr) and
English (en). Number of tokens is the size of training
corpus of WE-Z. The bilingual lexicon size means the
number of unique words of a language in the gold bilin-
gual lexicons.

both Task 1 and Task 2. The supervised base-
lines include the methods of Shigeto et al. (2015);
Zhang et al. (2016); Artetxe et al. (2016); Xing
et al. (2015); Mikolov et al. (2013); Artetxe et al.
(2017).7 We fed all the supervised methods with
the bilingual dictionaries in the training portions
of the LEX-Z and LEX-C datasets, respectively.

For unsupervised baselines we include the
methods of Zhang et al. (2017a) and Conneau et al.
(2017), whose source code is publicly available as
provided by the authors.8

4.3 Results in Bilingual Lexicons Induction
(Task 1)

Bilingual lexicon induction is a task to induce a
translation in the target language for each query
word in the source language. After the query word
and the target-language words are represented in
the same embedding space (or after our system
maps the query word from the source embedding
space to the target embedding space), the k near-
est target words are retrieved based on their cosine
similarity scores with respect to the query vector.
If the k retrieved target words contain any valid
translation according to the gold bilingual lexicon,
the translation (retrieval) is considered success-
ful. The fraction of the correctly translated source
words in the test set is defined as accuracy@k,

7The implementations are available from https://
github.com/artetxem/vecmap.

8We used implementation by Zhang et al. (2017a)
from http://nlp.csai.tsinghua.edu.cn/˜zm/
UBiLexAT and that of Conneau et al. (2017) from https:
//github.com/facebookresearch/MUSE
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Methods tr-en en-tr es-en en-es zh-en en-zh it-en en-it

Supervised

Mikolov et al. (2013) 19.41 10.81 68.73 41.19 45.88 45.37 59.83 41.26
Zhang et al. (2016) 23.39 11.07 72.36 41.19 48.01 42.66 63.19 40.37
Xing et al. (2015) 24.00 10.78 71.92 41.02 48.10 42.90 62.81 40.43
Shigeto et al. (2015) 26.56 8.52 72.23 37.80 49.95 38.15 63.14 35.63
Artetxe et al. (2016) 23.49 10.74 71.98 41.12 48.01 42.66 63.14 40.28
Artetxe et al. (2017) 22.88 10.78 72.61 41.62 47.54 42.82 61.32 39.63

Unsupervised
Conneau et al. (2017) 4.09 1.41 60.16 33.58 41.98 34.70 26.98 15.47
Zhang et al. (2017a) 15.83 7.41 63.41 37.73 42.08 41.26 54.75 37.17
Ours 23.29 9.96 73.05 41.95 49.03 44.63 61.42 39.63

Table 2: The accuracy@k scores of all methods in bilingual lexicon induction on LEX-Z. The best score for each
language pair is bold-faced for the supervised and unsupervised categories, respectively. Language pair ”A-B”
means query words are in language A and the search space of word translations is in language B. Languages are
paired among English(en), Turkish (tr), Spanish (es), Chinese (zh) and Italian (it).

Methods bg-en en-bg ca-en en-ca sv-en en-sv lv-en en-lv

Supervised

Mikolov et al. (2013) 44.80 48.47 57.73 66.20 43.73 63.73 26.53 28.93
Zhang et al. (2016) 50.60 39.73 63.40 58.73 50.87 53.93 34.53 22.87
Xing et al. (2015) 50.33 40.00 63.40 58.53 51.13 53.73 34.27 21.60
Shigeto et al. (2015) 61.00 33.80 69.33 53.60 61.27 41.67 42.20 13.87
Artetxe et al. (2016) 53.27 43.40 65.27 60.87 54.07 55.93 35.80 26.47
Artetxe et al. (2017) 47.27 34.40 61.27 56.73 38.07 44.20 24.07 12.20

Unsupervised
Conneau et al. (2017) 26.47 13.87 41.00 33.07 24.27 24.47 - -
Zhang et al. (2017a) - - - - - - - -
Ours 50.33 34.27 58.60 54.60 48.13 50.47 27.73 13.53

Table 3: The accuracy@k scores of all methods in bilingual lexicon induction on LEX-C. The best score for
each language pair is bold-faced for the supervised and unsupervised categories, respectively. Languages are
paired among English(en), Bulgarian(bg), Catalan(ca), Swedish(sv) and Latvian(lv). ”-” means that during the
training time, the model failed to converge to reasonable local minimal and hence the result is omitted in the table.

which is conventional metric in benchmark evalu-
ations.

Table 2 shows the accuracy@1 for all the meth-
ods on LEX-Z in our evaluation. We can see that
our method outperformed the other unsupervised
baselines by a large margin on all the eight lan-
guage pairs. Compared with the supervised meth-
ods, our method is still competitive (the best or the
second-best scores on four out of eight language
pairs), even ours does not require cross-lingual su-
pervision. Also, we notice the performance vari-
ance over different language pairs. Our method
outperforms all the methods (supervised and un-
supervised combined) on the English-Spanish (en-
es) pair, perhaps for the reasons that these two lan-
guages are most similar to each other, and that
the monolingual word embeddings for this pair

in the comparable corpus are better aligned than
the other language pairs. On the other hand, all
the methods including ours have the worst perfor-
mance on the English-Turkish (en-tr) pair. An-
other observation is the performance differences in
the two directions of the language pair. For exam-
ple, the performance of it-en is better than en-it for
all methods in table 2. A part of the reason is that
there are more unique English words than non-
English words in the evaluation set. This would
cause direction “xx-en” to be easier than ”en-xx”
because there are often multiple valid ground truth
English translations for each query in “xx”. But
the same may not hold for the opposite direction of
“en-xx”. Nevertheless, the relative performance of
our method compared to others is quite robust over
different language pairs and different directions of
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Methods de-en en-de es-en en-es fr-en en-fr it-en en-it

Supervised

Mikolov et al. (2013) 61.93 73.07 74.00 80.73 71.33 82.20 68.93 77.60
Zhang et al. (2016) 67.67 69.87 77.27 78.53 76.07 78.20 72.40 73.40
Xing et al. (2015) 67.73 69.53 77.20 78.60 76.33 78.67 72.00 73.33
Shigeto et al. (2015) 71.07 63.73 81.07 74.53 79.93 73.13 76.47 68.13
Artetxe et al. (2016) 69.13 72.13 78.27 80.07 77.73 79.20 73.60 74.47
Artetxe et al. (2017) 68.07 69.20 75.60 78.20 74.47 77.67 70.53 71.67

Unsupervised Conneau et al. (2017) 69.87 71.53 78.53 79.40 77.67 78.33 74.60 75.80
Zhang et al. (2017a) - - - - - - - -
Ours 67.00 69.33 77.80 79.53 75.47 77.93 72.60 73.47

Table 4: The accuracy@k scores of all methods in bilingual lexicon induction on LEX-C. The best score for each
language pair is bold-faced for the supervised and unsupervised categories, respectively. Languages are paired
among English (en), German (de), Spanish (es), French (fr) and Italian (it). ”-” means that during the training
time, the model failed to converge to reasonable local minimal and hence the result is omitted in the table.

translation.
Table 3 and Table 4 summarize the results of

all the methods on the LEX-C dataset. Several
points may be worth noticing. Firstly, the perfor-
mance scores on LEX-C are not necessarily con-
sistent with those on LEX-Z (Table 2) even if the
methods and the language pairs are the same; this
is not surprising as the two datasets differ in query
words, word embedding quality, and training-set
sizes. Secondly, the performance gap between
the best supervised methods and the best unsu-
pervised methods in both Table 3 and Table 4 are
larger than that in Table 2. This is attributed to
the large amount of good-quality supervision in
LEX-C (5,000 human-annotated word pairs) and
the larger candidate size in WE-C (200, 000 can-
didates). Thirdly, the average performance in Ta-
ble 3 is lower than that in Table 4, indicating that
the language pairs in the former are more difficult
than that in the latter. Nevertheless, we can see that
our method has much stronger performance than
other unsupervised methods in Table 3, i.e., on the
harder language pairs, and that it performed com-
parably with the model by Conneau et al. (2017)
in Table 4 on the easier language pairs. Combin-
ing all these observations, we see that our method
is highly robust for various language pairs and un-
der different training conditions.

4.4 Results in Cross-lingual Word Similarity
Prediction (Task 2)

We evaluate models on cross-lingual word similar-
ity prediction (Task 2) to measure how much the
predicted cross-language word similarities match

Methods de-en es-en fa-en it-en

Supervised

Mikolov et al. (2013) 0.71 0.72 0.68 0.71
Zhang et al. (2016) 0.71 0.71 0.69 0.71
Xing et al. (2015) 0.72 0.71 0.69 0.72
Shigeto et al. (2015) 0.72 0.72 0.69 0.71
Artetxe et al. (2016) 0.73 0.72 0.70 0.73
Artetxe et al. (2017) 0.70 0.70 0.67 0.71

Unsupervised
Conneau et al. (2017) 0.71 0.71 0.68 0.71
Zhang et al. (2017a) - - - -
Ours 0.71 0.71 0.67 0.71

Table 5: Performance (measured using Pearson cor-
relation) of all the methods in cross-lingual seman-
tic word similarity prediction on the benchmark data
from Conneau et al. (2017). The best score in the su-
pervised and unsupervised category is bold-faced, re-
spectively. The languages include English (en), Ger-
man (de), Spanish (es), Persian (fa) and Italian (it). ”-”
means that the model failed to converge to reasonable
local minimal during the training process.

the ground truth annotated by humans. Follow-
ing the convention in benchmark evaluations for
this task, we compute the Pearson correlation be-
tween the model-induced similarity scores and
the human-annotated similarity scores over testing
word pairs for each language pair. A higher cor-
relation score with the ground truth represents the
better quality of induced embeddings. All systems
use the cosine similarity between the transformed
embedding of each query and the word embedding
of its paired translation as the predicted similarity
score.

Table 5 summarizes the performance of all the
methods in cross-lingual word similarity predic-
tion. We can see that the unsupervised methods,
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including ours, perform equally well as the super-
vised methods, which is highly encouraging.

5 Conclusion

In this paper, we presented a novel method for
cross-lingual transformation of monolingual em-
beddings in an unsupervised manner. By simul-
taneously optimizing the bi-directional mappings
w.r.t. Sinkhorn distances and back-translation
losses on both ends, our model enjoys its predic-
tion power as well as robustness, with the impres-
sive performance on multiple evaluation bench-
marks. For future work, we would like to extend
this work in the semi-supervised setting where in-
sufficient bilingual dictionaries are available.
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Abstract
State-of-the-art natural language processing
systems rely on supervision in the form of an-
notated data to learn competent models. These
models are generally trained on data in a sin-
gle language (usually English), and cannot be
directly used beyond that language. Since col-
lecting data in every language is not realis-
tic, there has been a growing interest in cross-
lingual language understanding (XLU) and
low-resource cross-language transfer. In this
work, we construct an evaluation set for XLU
by extending the development and test sets of
the Multi-Genre Natural Language Inference
Corpus (MultiNLI) to 15 languages, includ-
ing low-resource languages such as Swahili
and Urdu. We hope that our dataset, dubbed
XNLI, will catalyze research in cross-lingual
sentence understanding by providing an infor-
mative standard evaluation task. In addition,
we provide several baselines for multilingual
sentence understanding, including two based
on machine translation systems, and two that
use parallel data to train aligned multilingual
bag-of-words and LSTM encoders. We find
that XNLI represents a practical and challeng-
ing evaluation suite, and that directly translat-
ing the test data yields the best performance
among available baselines.

1 Introduction
Contemporary natural language processing sys-
tems typically rely on annotated data to learn how
to perform a task (e.g., classification, sequence
tagging, natural language inference). Most com-
monly the available training data is in a single lan-
guage (e.g., English or Chinese) and the resulting
system can perform the task only in the training
language. In practice, however, systems used in
major international products need to handle inputs
in many languages. In these settings, it is nearly
impossible to annotate data in all languages that a
system might encounter during operation.

A scalable way to build multilingual systems
is through cross-lingual language understanding
(XLU), in which a system is trained primarily on
data in one language and evaluated on data in
others. While XLU shows promising results for
tasks such as cross-lingual document classification
(Klementiev et al., 2012; Schwenk and Li, 2018),
there are very few, if any, XLU benchmarks for
more difficult language understanding tasks like
natural language inference. Large-scale natural
language inference (NLI), also known as recog-
nizing textual entailment (RTE), has emerged as a
practical test bed for work on sentence understand-
ing. In NLI, a system is tasked with reading two
sentences and determining whether one entails the
other, contradicts it, or neither (neutral). Re-
cent crowdsourced annotation efforts have yielded
datasets for NLI in English (Bowman et al., 2015;
Williams et al., 2017) with nearly a million exam-
ples, and these have been widely used to evaluate
neural network architectures and training strate-
gies (Rocktäschel et al., 2016; Gong et al., 2018;
Peters et al., 2018; Wang et al., 2018), as well as to
train effective, reusable sentence representations
(Conneau et al., 2017; Subramanian et al., 2018;
Cer et al., 2018).

In this work, we introduce a benchmark that
we call the Cross-lingual Natural Language In-
ference corpus, or XNLI, by extending these NLI
corpora to 15 languages. XNLI consists of 7500
human-annotated development and test examples
in NLI three-way classification format in English,
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chi-
nese, Hindi, Swahili and Urdu, making a total of
112,500 annotated pairs. These languages span
several language families, and with the inclusion
of Swahili and Urdu, include two lower-resource
languages as well.

Because of its focus on development and test
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Language Premise / Hypothesis Genre Label

English
You don’t have to stay there.
You can leave.

Face-To-Face Entailment

French
La figure 4 montre la courbe d’offre des services de partage de travaux.
Les services de partage de travaux ont une offre variable.

Government Entailment

Spanish
Y se estremeció con el recuerdo.
El pensamiento sobre el acontecimiento hizo su estremecimiento.

Fiction Entailment

German
Während der Depression war es die ärmste Gegend, kurz vor dem Hungertod.
Die Weltwirtschaftskrise dauerte mehr als zehn Jahre an.

Travel Neutral

Swahili
Ni silaha ya plastiki ya moja kwa moja inayopiga risasi.
Inadumu zaidi kuliko silaha ya chuma.

Telephone Neutral

Russian
И мы занимаемся этим уже на протяжении 85 лет.
Мы только начали этим заниматься.

Letters Contradiction

Chinese
©⌘J…`�é˝∫�»ÇU↵Ö`\:ÏÀ~ÓÑh∞⇥

é˝∫åh�ÂS®/ÏÀã�⇥
Slate Contradiction

Arabic
����� ������� �� ���� ����� ��� ���� ������� ������.

� ������������� � ����� �� ��� ���� ����� �� �.
Nine-Eleven Contradiction

Table 1: Examples (premise and hypothesis) from various languages and genres from the XNLI corpus.

data, this corpus is designed to evaluate cross-
lingual sentence understanding, where models
have to be trained in one language and tested in
different ones.

We evaluate several approaches to cross-lingual
learning of natural language inference that lever-
age parallel data from publicly available corpora
at training time. We show that parallel data can
help align sentence encoders in multiple languages
such that a classifier trained with English NLI data
can correctly classify pairs of sentences in other
languages. While outperformed by our machine
translation baselines, we show that this alignment
mechanism gives very competitive results.

A second practical use of XNLI is the eval-
uation of pretrained general-purpose language-
universal sentence encoders. We hope that this
benchmark will help the research community build
multilingual text embedding spaces. Such embed-
dings spaces will facilitate the creation of multi-
lingual systems that can transfer across languages
with little or no extra supervision.

The paper is organized as follows: We next sur-
vey the related literature on cross-lingual language
understanding. We then describe our data collec-
tion methods and the resulting corpus in Section 3.
We describe our baselines in Section 4, and finally
present and discuss results in Section 5.

2 Related Work

Multilingual Word Embeddings Much of the
work on multilinguality in language understand-
ing has been at the word level. Several approaches
have been proposed to learn cross-lingual word
representations, i.e., word representations where
translations are close in the embedding space.
Many of these methods require some form of
supervision (typically in the form of a small bi-
lingual lexicon) to align two sets of source and tar-
get embeddings to the same space (Mikolov et al.,
2013a; Kociský et al., 2014; Faruqui and Dyer,
2014; Ammar et al., 2016). More recent stud-
ies have showed that cross-lingual word embed-
dings can be generated with no supervision what-
soever (Artetxe et al., 2017; Conneau et al., 2018).

Sentence Representation Learning Many ap-
proaches have been proposed to extend word em-
beddings to sentence or paragraph representa-
tions (Le and Mikolov, 2014; Wieting et al., 2016;
Arora et al., 2017). The most straightforward
way to generate sentence embeddings is to con-
sider an average or weighted average of word
representations, usually referred to as continu-
ous bag-of-words (CBOW). Although naïve, this
method often provides a strong baseline. More so-
phisticated approaches—such as the unsupervised
SkipThought model of Kiros et al. (2015) that
extends the skip-gram model of Mikolov et al.
(2013b) to the sentence level—have been pro-
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posed to capture syntactic and semantic depend-
encies inside sentence representations. While
these fixed-size sentence embedding methods have
been outperformed by their supervised counter-
parts (Conneau et al., 2017; Subramanian et al.,
2018), some recent developments have shown that
pretrained language models can also transfer very
well, either when the hidden states of the model
are used as contextualized word vectors (Peters
et al., 2018), or when the full model is fine-
tuned on transfer tasks (Radford et al.; Howard and
Ruder, 2018).

Multilingual Sentence Representations There
has been some effort on developing multilingual
sentence embeddings. For example, Chandar et al.
(2013) train bilingual autoencoders with the objec-
tive of minimizing reconstruction error between
two languages. Schwenk et al. (2017) and España-
Bonet et al. (2017) jointly train a sequence-to-
sequence MT system on multiple languages to
learn a shared multilingual sentence embedding
space. Hermann and Blunsom (2014) propose a
compositional vector model involving unigrams
and bigrams to learn document level representa-
tions. Pham et al. (2015) directly train embedding
representations for sentences with no attempt at
compositionality. Zhou et al. (2016) learn bilin-
gual document representations by minimizing the
Euclidean distance between document representa-
tions and their translations.

Cross-lingual Evaluation Benchmarks The
lack of evaluation benchmark has hindered the
development of such multilingual representations.
Most previous approaches use the Reuters cross-
lingual document classification corpus Klemen-
tiev et al. (2012) for evaluation. However, the clas-
sification in this corpus is done at document level,
and, as there are many ways to aggregate sen-
tence embeddings, the comparison between differ-
ent sentence embeddings is difficult. Moreover,
the distribution of classes in the Reuters corpus is
highly unbalanced, and the dataset does not pro-
vide a development set in the target language, fur-
ther complicating experimental comparisons.

In addition to the Reuters corpus, Cer et al.
(2017) propose sentence-level multilingual train-
ing and evaluation datasets for semantic textual
similarity in four languages. There have also been
efforts to build multilingual RTE datasets, either
through translating English data (Mehdad et al.,

2011), or annotating sentences from a parallel cor-
pora (Negri et al., 2011). More recently, Agic and
Schluter (2017) provide a corpus, that is very com-
plementary to our work, of human translations for
1332 pairs of the SNLI data into Arabic, French,
Russian, and Spanish. Among all these bench-
marks, XNLI is the first large-scale corpus for
evaluating sentence-level representations on that
many languages.

In practice, cross-lingual sentence understand-
ing goes beyond translation. For instance, Mo-
hammad et al. (2016) analyze the differences in
human sentiment annotations of Arabic sentences
and their English translations, and conclude that
most of them come from cultural differences. Sim-
ilarly, Smith et al. (2016) show that most of the
degradation in performance when applying a clas-
sification model trained in English to Spanish data
translated to English is due to cultural differences.
One of the limitations of the XNLI corpus is that
it does not capture these differences, since it was
obtained by translation. We see the XNLI evalua-
tion as a necessary step for multilingual NLP be-
fore tackling the even more complex problem of
domain-adaptation that occurs when handling this
the change in style from one language to another.

3 The XNLI Corpus

Because the test portion of the Multi-Genre NLI
data is private, the Cross-lingual NLI Corpus
(XNLI) is based on new English NLI data. To col-
lect the core English portion, we follow precisely
the same crowdsourcing-based procedure used for
the existing Multi-Genre NLI corpus, and collect
and validate 750 new examples from each of the
ten text sources used in that corpus for a total of
7500 examples. With that portion in place, we
create the full XNLI corpus by employing profes-
sional translators to translate it into our ten target
languages. This section describes this process and
the resulting corpus.

Translating, rather than generating new hypoth-
esis sentences in each language separately, has
multiple advantages. First, it ensures that the data
distributions are maximally similar across lan-
guages. As speakers of different languages may
have slightly different intuitions about how to fill
in the supplied prompt, this allows us to avoid
adding this unwanted degree of freedom. Second,
it allows us to use the same trusted pool of work-
ers as was used prior NLI crowdsourcing efforts,
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without the need for training a new pool of work-
ers in each language. Third, for any premise, this
process allows us to have a corresponding hypoth-
esis in any language.

This translation approach carries with it the risk
that the semantic relations between the two sen-
tences in each pair might not be reliably preserved
in translation, as Mohammad et al. (2016) ob-
served for sentiment. We investigate this poten-
tial issue in our corpus and find that, while it does
occur, it only concerns a negligible number of sen-
tences (see Section 3.2).

3.1 Data Collection
The English Corpus Our collection procedure
for the English portion of the XNLI corpus fol-
lows the same procedure as the MultiNLI corpus.
We sample 250 sentences from each of the ten
sources that were used in that corpus, ensuring that
none of those selected sentences overlap with the
distributed corpus. Nine of the ten text sources
are drawn from the second release of the Open
American National Corpus1: Face-To-Face, Tele-
phone, Government, 9/11, Letters, Oxford Uni-
versity Press (OUP), Slate, Verbatim, and Gov-
ernment. The tenth, Fiction, is drawn from the
novel Captain Blood (Sabatini, 1922). We refer
the reader to Williams et al. (2017) for more de-
tails on each genre.

Given these sentences, we ask the same
MultiNLI worker pool from a crowdsourcing
platform to produce three hypotheses for each
premise, one for each possible label.

We present premise sentences to workers using
the same templates as were used in MultiNLI. We
also follow that work in pursuing a second valida-
tion phase of data collection in which each pair of
sentences is relabeled by four other workers. For
each validated sentence pair, we assign a gold la-
bel representing a majority vote between the initial
label assigned to the pair by the original annotator,
and the four additional labels assigned by valida-
tion annotators. We obtained a three-vote consen-
sus for 93% of the data. In our experiments, we
kept the 7% additional ones, but we mark these
ones with a special label ’-’.

Translating the Corpus Finally, we hire trans-
lators to translate the resulting sentences into 15
languages using the One Hour Translation plat-
form. We translate the premises and hypotheses

1http://www.anc.org/

separately, to ensure that no context is added to the
hypothesis that was not there originally, and sim-
ply copy the labels from the English source text.
Some examples are shown in Table 1.

3.2 The Resulting Corpus

One main concern in studying the resulting corpus
is to determine whether the gold label for some of
the sentence pairs changes as a result of informa-
tion added or removed in the translation process.

Investigating the data manually, we find an ex-
ample in the Chinese translation where an entail-
ment relation becomes a contradictory relation,
while the entailment is preserved in other lan-
guages. Specifically, the term upright which was
used in English as entailment of standing, was
translated into Chinese as sitting upright thus cre-
ating a contradiction. However, the difficulty of
finding such an example in the data suggests its
rarity.

To quantify this observation, we recruit two
bilingual annotators to re-annotate 100 examples
each in both English and French following our
standard validation procedure. The examples are
drawn from two non-overlapping random subsets
of the development data to prevent the annota-
tors from seeing the source English text for any
translated text they annotate. With no training or
burn-in period, these annotators recover the En-
glish consensus label 85% of the time on the orig-
inal English data and 83% of the time on the trans-
lated French, suggesting that the overall semantic
relationship between the two languages has been
preserved. As most sentences are relatively easy
to translate, in particular the hypotheses generated
by the workers, there seems to be little ambiguity
added by the translator.

More broadly, we find that the resulting corpus
has similar properties to the MultiNLI corpus. For
all languages, on average, the premises are twice
as long as the hypotheses (See Table 2). The top
hypothesis words indicative of the class label –
scored using the mutual information between each
word and class in the corpus – are similar across
languages, and overlap those of the MultiNLI cor-
pus (Gururangan et al., 2018). For example, a
translation of at least one of the words no, not or
never is among the top two cues for contradiction
in all languages.

As in the original MultiNLI corpus, we ex-
pect that cues like these (‘artifacts’, in Guru-
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en fr es de el bg ru tr ar vi th zh hi sw ur
Premise 21.7 24.1 22.1 21.1 21.0 20.9 19.6 16.8 20.7 27.6 22.1 21.8 23.2 18.7 24.1
Hypothesis 10.7 12.4 10.9 10.8 10.6 10.4 9.7 8.4 10.2 13.5 10.4 10.8 11.9 9.0 12.3

Table 2: Average number of tokens per sentence in the XNLI corpus for each language.

rangan’s terms, also observed by Poliak et al.,
2018; Tsuchiya, 2018) allow a baseline system to
achieve better-than-random accuracy with access
only to the premise sentences. We accept this as an
unavoidable property of the NLI task over natural-
istic sentence pairs, and see no reason to expect
that this baseline would achieve better accuracy
than the relatively poor 53% seen in Gururangan
et al. (2018).

4 Cross-Lingual NLI

In this section we present results with XLU sys-
tems that can serve as baselines for future work.

4.1 Translation-Based Approaches

The most straightforward techniques for XLU rely
on translation systems. There are two natural ways
to use a translation system: TRANSLATE TRAIN,
where the training data is translated into each tar-
get language to provide data to train each clas-
sifier, and TRANSLATE TEST, where a transla-
tion system is used at test time to translate in-
put sentences to the training language. These
two methods provide strong baselines, but both
present practical challenges. The former requires
training and maintaining as many classifiers as
there are languages, while the latter relies on
computationally-intensive translation at test time.
Both approaches are limited by the quality of the
translation system, which itself varies with the
quantity of available training data and the similar-
ity of the language pair involved.

4.2 Multilingual Sentence Encoders

An alternative to translation is to rely on language-
universal embeddings of text and build multilin-
gual classifiers on top of these representations. If
an encoder produces an embedding of an English
sentence close to the embedding of its translation
in another language, then a classifier learned on
top of English sentence embeddings will be able to
classify sentences from different languages with-
out needing a translation system at inference time.

We evaluate two types of cross-lingual sen-
tence encoders: (i) pretrained universal multilin-
gual sentence embeddings based on the average
of word embeddings (X-CBOW), (ii) bidirectional-
LSTM (BiLSTM) (Hochreiter and Schmidhuber,
1997) sentence encoders trained on the MultiNLI
training data (X-BILSTM). The former evaluates
transfer learning while the latter evaluates NLI-
specific encoders trained on in-domain data. Both
approaches use the same alignment loss for align-
ing sentence embedding spaces from multiple lan-
guages which is present below. We consider
two ways of extracting feature vectors from the
BiLSTM: either using the initial and final hid-
den states (Sutskever et al., 2014), or using the
element-wise max over all states (Collobert and
Weston, 2008).

The first approach is commonly used as a strong
baseline for monolingual sentence embeddings
(Arora et al., 2017; Conneau and Kiela, 2018;
Gouews et al., 2014). Concretely, we consider
the English fastText word embedding space as be-
ing fixed, and fine-tune embeddings in other lan-
guages so that the average of the word vectors
in a sentence is close to the average of the word
vectors in its English translation. The second ap-
proach consists in learning an English sentence en-
coder on the MultiNLI training data along with
an encoder on the target language, with the ob-
jective that the representations of two translations
are nearby in the embedding space. In both ap-
proaches, an English encoder is fixed, and we train
target language encoders to match the output of
this encoder. This allows us to build sentence rep-
resentations that belong to the same space. Joint
training of encoders and parameter sharing are
also promising directions to improve and simplify
the alignment of sentence embedding spaces. We
leave this for future work.

In all experiments, we consider encoders that
output a vector of fixed size as a sentence repre-
sentation. While previous work shows that perfor-
mance on the NLI task can be improved by using
cross-sentence attention between the premise and
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hypothesis (Rocktäschel et al., 2016; Gong et al.,
2018), we focus on methods with fixed-size sen-
tence embeddings.

4.2.1 Aligning Word Embeddings
Multilingual word embeddings are an efficient
way to transfer knowledge from one language
to another. For instance, Zhang et al. (2016)
show that cross-lingual embeddings can be used
to extend an English part-of-speech tagger to the
cross-lingual setting, and Xiao and Guo (2014)
achieve similar results in dependency parsing.
Cross-lingual embeddings also provide an ef-
ficient mechanism to bootstrap neural machine
translation (NMT) systems for low-resource lan-
guage pairs, which is critical in the case of un-
supervised machine translation (Lample et al.,
2018; Artetxe et al., 2018). In that case, the use
cross-lingual embeddings directly helps the align-
ment of sentence-level encoders. Cross-lingual
embeddings can be generated efficiently using a
very small amount of supervision. By using a
small parallel dictionary with n = 5000 word
pairs, it is possible to learn a linear mapping to
minimize

W ? = argmin
W2Od(R)

kWX � Y kF = UV T ,

where d is the dimension of the embeddings, and
X and Y are two matrices of shape (d, n) that cor-
respond to the aligned word embeddings that ap-
pear in the parallel dictionary, Od(R) is the group
of orthogonal matrices of dimension d, and U and
V are obtained from the singular value decompo-
sition (SVD) of Y XT : U⌃V T = SVD(Y XT ).
Xing et al. (2015) show that enforcing the ortho-
gonality constraint on the linear mapping leads to
better results on the word translation task.

In this paper, we use common-crawl word em-
beddings (Grave et al., 2018) aligned with the
MUSE library of Conneau et al. (2018).

4.2.2 Universal Multilingual Sentence
Embeddings

Most of the successful recent approaches for learn-
ing universal sentence representations have re-
lied on English (Kiros et al., 2015; Arora et al.,
2017; Conneau et al., 2017; Subramanian et al.,
2018; Cer et al., 2018). While notable recent ap-
proaches have considered building a shared sen-
tence encoder for multiple languages using pub-
licly available parallel corpora (Johnson et al.,

2016; Schwenk et al., 2017; España-Bonet et al.,
2017), the lack of a large-scale, sentence-level se-
mantic evaluation has limited their adoption by
the community. In particular, these works do not
cover the scale of languages considered in XNLI,
and are limited to high-resource languages. As
a baseline for the evaluation of multilingual sen-
tence representations in the 15 languages of XNLI,
we consider state-of-the-art common-crawl em-
beddings with a CBOW encoder. Our approach,
dubbed X-CBOW, consists in fixing the English
pretrained word embeddings, and fine-tuning the
target (e.g., French) word embeddings so that
the CBOW representations of two translations are
close in embedding space. In that case, we con-
sider our multilingual sentence embeddings as be-
ing pretrained and only learn a classifier on top of
them to evaluate their quality, similar to so-called
“transfer” tasks in (Kiros et al., 2015; Conneau
et al., 2017) but in the multilingual setting.

4.2.3 Aligning Sentence Embeddings
Training for similarity of source and target sen-
tences in an embedding space is conceptually and
computationally simpler than generating a trans-
lation in the target language from a source sen-
tence. We propose a method for training for cross-
lingual similarity and evaluate approaches based
on the simpler task of aligning sentence represen-
tations. Under our objective, the embeddings of
two parallel sentences need not be identical, but
only close enough in the embedding space that the
decision boundary of the English classifier cap-
tures the similarity.

We propose a simple alignment loss function to
align the embedding spaces of two different lan-
guages. Specifically, we train an English encoder
on NLI, and train a target encoder by minimizing
the loss:

Lalign(x, y) = sim(x, y) � �(sim(xc, y) + sim(x, yc))

where (x, y) corresponds to the source and tar-
get sentence embeddings, (xc, yc) is a contrastive
term (i.e. negative sampling), � controls the
weight of the negative examples in the loss. For
a similarity measure, we use the L2 norm with
sim(x, y) = �kx�yk2. We obtain similar results
using the cosine similarity. A ranking loss (We-
ston et al., 2011) of the form

Lrank(x, y) = max(0, ↵ � sim(x, y) + s(x, yc)) +

max(0, ↵ � sim(x, y) + s(xc, y))
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fr es de el bg ru tr ar vi th zh hi sw ur

XX-En BLEU 41.2 45.8 39.3 42.1 38.7 27.1 29.9 35.2 23.6 22.6 24.6 27.3 21.3 24.4
En-XX BLEU 49.3 48.5 38.8 42.4 34.2 24.9 21.9 15.8 39.9 21.4 23.2 37.5 24.6 24.1
Word translation P@1 73.7 73.9 65.9 61.1 61.9 60.6 55.0 51.9 35.8 25.4 48.6 48.2 - -

Table 3: BLEU scores of our translation models (XX-En) P@1 for multilingual word embeddings.

that pushes the sentence embeddings of a trans-
lation pair to be closer than the ones of negative
pairs leads to very poor results in this particular
case. As opposed to Lalign, Lrank does not encour-
age the embeddings of sentence pairs to be close
enough so that the shared classifier can understand
that these sentences have the same meaning.

We use Lalign in the cross-lingual embed-
dings baselines X-CBOW, X-BILSTM-LAST and X-
BILSTM-MAX. For X-CBOW, the encoder is pre-
trained (transfer-learning), while the English X-
BiLSTMs are trained on NLI (in-domain). For the
three methods, the English encoder is then fixed.
Each of the 14 other languages have their own en-
coders with same architecture. These encoders are
trained to "copy" the English encoder using the
Lalign loss and the parallel data described in sec-
tion 5.2.

We only back-propagate through the target en-
coder when optimizing Lalign such that all 14 en-
coders live in the same English embedding space.
In these experiments, we initialize lookup tables
of the LSTMs with pretrained cross-lingual em-
beddings discussed in Section 4.2.1.

5 Experiments and Results

5.1 Training details

We use internal translation systems to translate
data between English and the 10 other languages.
For TRANSLATE TEST (see Table 4), we translate
each test set into English, while for the TRANS-
LATE TRAIN, we translate the English training
data of MultiNLI2. To give an idea of the transla-
tion quality, we give BLEU scores of the automatic
translation from the foreign language into English
of the XNLI test set in Table 3.

We use pretrained 300D word embeddings and
only consider the most 500,000 frequent words in
the dictionary, which generally covers more than
98% of the words found in XNLI corpora. We

2To allow replication of results, we share the MT transla-
tions of XNLI training and test sets.

set the number of hidden units of the BiLSTMs to
512, and use the Adam optimizer (Kingma and Ba,
2014) with default parameters. For the alignment
loss, setting � to 0.25 worked best in our experi-
ments, and we found that the trade-off between the
importance of the positive and the negative pairs
was particularly important (see Table 5). When
fitting the target BiLSTM encoder to the English
encoder, we fine-tune the lookup table associated
to the target encoder, but keep the source word em-
beddings fixed. The classifier is a feed-forward
neural network with one hidden layer of 128 hid-
den units, regularized with dropout (Srivastava
et al., 2014) at a rate of 0.1. For X-BiLSTMs,
we perform model selection on the XNLI valida-
tion set in each target language. For X-CBOW, we
keep a validation set of parallel sentences to eval-
uate our alignment loss. The alignment loss re-
quires a parallel dataset of sentences for each pair
of languages, which we describe next.

5.2 Parallel Datasets

We use publicly available parallel datasets to learn
the alignment between English and target en-
coders. For French, Spanish, Russian, Arabic and
Chinese, we use the United Nation corpora (Ziem-
ski et al., 2016), for German, Greek and Bul-
garian, the Europarl corpora (Koehn, 2005), for
Turkish, Vietnamese and Thai, the OpenSubtitles
2018 corpus (Tiedemann, 2012), and for Hindi,
the IIT Bombay corpus (Anoop et al., 2018). For
all the above language pairs, we were able to
gather more than 500,000 parallel sentences, and
we set the maximum number of parallel sentences
to 2 million. For the lower-resource languages
Urdu and Swahili, the number of parallel sen-
tences is an order of magnitude smaller than for
the other languages we consider. For Urdu, we
used the Bible and Quran transcriptions (Tiede-
mann, 2012), the OpenSubtitles 2016 and 2018
corpora (Tiedemann, 2012) and LDC2010T21,
LDC2010T23 LDC corpora, and obtained a total
of 64k parallel sentences. For Swahili, we were
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Machine translation baselines (TRANSLATE TRAIN)

BiLSTM-last 71.0 66.7 67.0 65.7 65.3 65.6 65.1 61.9 63.9 63.1 61.3 65.7 61.3 55.2 55.2
BiLSTM-max 73.7 68.3 68.8 66.5 66.4 67.4 66.5 64.5 65.8 66.0 62.8 67.0 62.1 58.2 56.6

Machine translation baselines (TRANSLATE TEST)

BiLSTM-last 71.0 68.3 68.7 66.9 67.3 68.1 66.2 64.9 65.8 64.3 63.2 66.5 61.8 60.1 58 .1
BiLSTM-max 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3
Evaluation of XNLI multilingual sentence encoders (in-domain)

X-BiLSTM-last 71.0 65.2 67.8 66.6 66.3 65.7 63.7 64.2 62.7 65.6 62.7 63.7 62.8 54.1 56.4
X-BiLSTM-max 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4

Evaluation of pretrained multilingual sentence encoders (transfer learning)

X-CBOW 64.5 60.3 60.7 61.0 60.5 60.4 57.8 58.7 57.5 58.8 56.9 58.8 56.3 50.4 52.2

Table 4: Cross-lingual natural language inference (XNLI) test accuracy for the 15 languages.

only able to gather 42k sentences using the Global
Voices corpus and the Tanzil Quran transcription
corpus3.

5.3 Analysis
Comparing in-language performance in Table 4,
we observe that, when using BiLSTMs, results are
consistently better when we take the dimension-
wise maximum over all hidden states (BiLSTM-
max) compared to taking the last hidden state
(BiLSTM-last). Unsuprisingly, BiLSTM results
are better than the pretrained CBOW approach for
all languages. As in Bowman et al. (2015), we
also observe the superiority of BiLSTM encoders
over CBOW, even when fine-tuning the word em-
beddings of the latter on the MultiNLI training
set, thereby again confirming that the NLI task
requires more than just word information. Both
of these findings confirm previously published re-
sults (Conneau et al., 2017).

Table 4 shows that translation offers a strong
baseline for XLU. Within translation, TRANS-
LATE TEST appears to perform consistently better
than TRANSLATE TRAIN for all languages. The
best cross-lingual results in our evaluation are ob-
tained by the TRANSLATE TEST approach for all
cross-lingual directions. Within the translation
approaches, as expected, we observe that cross-
lingual performance depends on the quality of
the translation system. In fact, translation-based
results are very well-correlated with the BLEU
scores for the translation systems; XNLI perfor-
mance for three of the four languages with the best
translation systems (comparing absolute BLEU,

3http://opus.nlpl.eu/

Table 3) is above 70%. This performance is still
about three points below the English NLI perfor-
mance of 73.7%. This slight drop in performance
may be related to translation error, changes in
style, or artifacts introduced by the machine trans-
lation systems that result in discrepancies between
the training and test data.

For cross-lingual performance, we observe a
healthy gap between the English results and the
results obtained on other languages. For instance,
for French, we obtain 67.7% accuracy when clas-
sifying French pairs using our English classifier
and multilingual sentence encoder. When using
our alignment process, our method is competi-
tive with the TRANSLATE TRAIN baseline, sug-
gesting that it might be possible to encode similar-
ity between languages directly in the embedding
spaces generated by the encoders. However, these
methods are still below the other machine trans-
lation baseline TRANSLATE TEST, which signifi-
cantly outperforms the multilingual sentence en-
coder approach by up to 6% (Swahili). These pro-
duction systems have been trained on much larger
training data than the ones used for the alignment
loss (section 5.2), which can partly explain the
superiority of this method over the baseline. In-
terestingly, the two points difference in accuracy
between X-BiLSTM-last and X-BiLSTM-max is
maintained across languages, which suggests that
having a stronger encoder in English also posi-
tively impacts the transfer results on other lan-
guages.

In Table 5, we report the validation accuracy
using BiLSTM-max on three languages with dif-
ferent training hyper-parameters. Fine-tuning the
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ft = 1, � = 0.25 [default] 68.9 66.4 67.9
ft = 1, � = 0.0 (no negatives) 67.8 66.2 66.3
ft = 1, � = 0.5 64.5 61.3 63.7
ft = 0, � = 0.25 68.5 66.3 67.7

Table 5: Validation accuracy using BiLSTM-
max. Default setting corresponds to � = 0.25
(importance of the negative terms) and uses fine-
tuning of the target lookup table (ft =1).

embeddings does not significantly impact the re-
sults, suggesting that the LSTM alone is ensuring
alignment of parallel sentence embeddings. We
also observe that the negative term is not critical
to the performance of the model, but can lead to
slight improvement in Chinese (up to 1.6%).

6 Conclusion

A typical problem in industrial applications is
the lack of supervised data for languages other
than English, and particularly for low-resource
languages. Since annotating data in every lan-
guage is not a realistic approach, there has been
a growing interest in cross-lingual understanding
and low-resource transfer in multilingual scenar-
ios. In this work, we extend the development and
test sets of the Multi-Genre Natural Language In-
ference Corpus to 15 languages, including low-
resource languages such as Swahili and Urdu. Our
dataset, dubbed XNLI, is designed to address the
lack of standardized evaluation protocols in cross-
lingual understanding, and will hopefully help the
community make further strides in this area. We
present several approaches based on cross-lingual
sentence encoders and machine translation sys-
tems. While machine translation baselines ob-
tained the best results in our experiments, these ap-
proaches rely on computationally-intensive trans-
lation models either at training or at test time. We
found that cross-lingual encoder baselines provide
an encouraging and efficient alternative, and that
further work is required to match the performance
of translation based methods.
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Abstract

Cross-lingual Entity Linking (XEL) aims to
ground entity mentions written in any lan-
guage to an English Knowledge Base (KB),
such as Wikipedia. XEL for most languages
is challenging, owing to limited availability of
resources as supervision. We address this chal-
lenge by developing the first XEL approach
that combines supervision from multiple lan-
guages jointly. This enables our approach to:
(a) augment the limited supervision in the tar-
get language with additional supervision from
a high-resource language (like English), and
(b) train a single entity linking model for mul-
tiple languages, improving upon individually
trained models for each language. Extensive
evaluation on three benchmark datasets across
8 languages shows that our approach signifi-
cantly improves over the current state-of-the-
art. We also provide analyses in two limited re-
source settings: (a) zero-shot setting, when no
supervision in the target language is available,
and in (b) low-resource setting, when some
supervision in the target language is available.
Our analysis provides insights into the limita-
tions of zero-shot XEL approaches in realistic
scenarios, and shows the value of joint super-
vision in low-resource settings.1

1 Introduction

Entity Linking (EL) systems ground entity men-
tions in text to entries in Knowledge Bases (KB),
such as Wikipedia (Mihalcea and Csomai, 2007).
Recently, the task of Cross-lingual Entity Linking
(XEL) has gained attention (McNamee et al., 2011;
Ji et al., 2015; Tsai and Roth, 2016) with the goal of
grounding entity mentions written in any language
to the English Wikipedia. For instance, Figure 1
shows a Tamil (a language with >70 million speak-
ers) and an English mention (shown [enclosed])

1Code at www.github.com/shyamupa/xelms

! ரே s [!வr$l] ம&'m உ*+ வே  - ளை யா23றாr.

Everton won against [Liverpool] in an FA Cup match.

Figure 1: Tamil and English mention contexts containing
[mentions] of the entity Liverpool_F.C. from the respective
Wikipedias. Tamil Wikipedia only has 9 mentions referring to
Liverpool_F.C., whereas English Wikipedia has 5303 such
mentions. Clearly, there is a need to augment the limited
contextual evidence in low-resource languages with evidence
from high-resource languages like English. Tamil sentence
translates to “Suarez plays for [Liverpool] and Uruguay.”

and their mention contexts. XEL involves ground-
ing the Tamil mention (which translates to ‘Liv-
erpool’) to the football club Liverpool_F.C., and
not the city or the university. XEL enables knowl-
edge acquisition directly from documents in any
language, without resorting to machine translation.

Training an EL model requires grounded men-
tions, i.e. mentions of entities that are grounded to
a Knowledge Base (KB), as supervision (Figure 1).
While millions of such mentions are available in
English, by virtue of hyperlinks in the English
Wikipedia, this is not the case for most languages.
This makes learning XEL models challenging, es-
pecially for languages with limited resources (e.g.,
the Tamil Wikipedia is only 1% of the English
Wikipedia in size). To overcome this challenge,
it is desirable to augment the limited contextual
evidence available in the target language with evi-
dence from high-resource languages like English.

We propose XELMS (XEL with Multilingual
Supervision) (§2), the first approach that fulfills
the above desiderata by using multilingual super-
vision to train an XEL model. XELMS represents
the mention contexts of the same entity from differ-
ent languages in the same semantic space using a
single context encoder (§2.1). Language-agnostic
entity representations are jointly learned with the
relevant mention context representations, so that an
entity and its context share similar representations.
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<latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit><latexit sha1_base64="7qc84Cdo+wz8L3G9wVRAa1jLUmI=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGY4WxQrbl1dw6ySryC1KBAc1D96g9jlkYoDRNU657nJsbPqDKcCZxV+qnGhLIJHWHPUkkj1H42TzwjZ1YZkjBW9klD5urvjYxGWk+jwE7mCfWyl4v/eb3UhNd+xmWSGpRs8VGYCmJikp9PhlwhM2JqCWWK26yEjamizNiSKrYEb/nkVdK+qHtu3bu/rDVuijrKcAKncA4eXEED7qAJLWAg4Rle4c3Rzovz7nwsRktOsXMMf+B8/gDgWpEJ</latexit>

g
<latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit><latexit sha1_base64="vmPs/L4DTQ+031t4ylAOlX3U35Q=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhNpoNqjW37s5BVolXkBoUaA6qX/1hzNKIK2SSGtPz3AT9jGoUTPJZpZ8anlA2oSPes1TRiBs/myeekTOrDEkYa/sUkrn6eyOjkTHTKLCTeUKz7OXif14vxfDaz4RKUuSKLT4KU0kwJvn5ZCg0ZyinllCmhc1K2JhqytCWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDBc/wCm+OcV6cd+djMVpyip1j+APn8wfjZJEL</latexit>

Mention Context Encoder

Tamil Mention Contexts (low-resource)

English Mention Contexts (high-resource)

TE-Loss
<latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit><latexit sha1_base64="9EVnzPTNABZ8pAfSF5ND/TzHLbA=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LInjwUKFf0ISy2W7bpZtN2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820V1tY3NreK26Wd3b39A/uw3NJRoihr0khEqhMQzQSXrAkcBOvEipEwEKwdjG9nfvuJKc0j2YBpzPyQDCUfcErASD277AGbQOppiht35w+R1lnPrjhVZw68StycVFCOes/+8voRTUImgQqiddd1YvBTooBTwbKSl2gWEzomQ9Y1VJKQaT+d357hU6P08SBSpiTgufp7IiWh1tMwMJ0hgZFe9mbif143gcG1n3IZJ8AkXSwaJAJDhGdB4D5XjIKYGkKo4uZWTEdEEQomrpIJwV1+eZW0LqquU3UfLyu1mzyOIjpGJ+gMuegK1dA9qqMmomiCntErerMy68V6tz4WrQUrnzlCf2B9/gCut5Qx</latexit>

TC-Loss
<latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit><latexit sha1_base64="ILdXp4IXvXZpzw/tlJ3GmKxXa3s=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LvXjwUKFf0ISy2W7bpZts2J1IS8hf8eJBEa/+EW/+G7dtDtr6YODx3gwz84JYcA2O820VNja3tneKu6W9/YPDI/u43NYyUZS1qBRSdQOimeARawEHwbqxYiQMBOsEk/rc7zwxpbmMmjCLmR+SUcSHnBIwUt8ue8CmkHqa4mb98kFqnfXtilN1FsDrxM1JBeVo9O0vbyBpErIIqCBa91wnBj8lCjgVLCt5iWYxoRMyYj1DIxIy7aeL2zN8bpQBHkplKgK8UH9PpCTUehYGpjMkMNar3lz8z+slMLz1Ux7FCbCILhcNE4FB4nkQeMAVoyBmhhCquLkV0zFRhIKJq2RCcFdfXiftq6rrVN3H60rtLo+jiE7RGbpALrpBNXSPGqiFKJqiZ/SK3qzMerHerY9la8HKZ07QH1ifP6ujlC8=</latexit>

EC-Loss
<latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit><latexit sha1_base64="yWgfIQ3Qy5EO0yvNb3qfkwPc3N8=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WSyCF0sigh6LRfDgoYL9gCaUzXbbLt1swu5EWkL+ihcPinj1j3jz37htc9DWBwOP92aYmRfEgmtwnG+rsLa+sblV3C7t7O7tH9iH5ZaOEkVZk0YiUp2AaCa4ZE3gIFgnVoyEgWDtYFyf+e0npjSP5CNMY+aHZCj5gFMCRurZZQ/YBFJPU3xbP7+PtM56dsWpOnPgVeLmpIJyNHr2l9ePaBIyCVQQrbuuE4OfEgWcCpaVvESzmNAxGbKuoZKETPvp/PYMnxqljweRMiUBz9XfEykJtZ6GgekMCYz0sjcT//O6CQyu/ZTLOAEm6WLRIBEYIjwLAve5YhTE1BBCFTe3YjoiilAwcZVMCO7yy6ukdVF1nar7cFmp3eRxFNExOkFnyEVXqIbuUAM1EUUT9Ixe0ZuVWS/Wu/WxaC1Y+cwR+gPr8weUfpQg</latexit>
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[Liverpool] in a FA 
Cup match.
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- ளை யா23றாr.

Liverpool F.C.
<latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit><latexit sha1_base64="TwSIEjixfw47RyeJLAjpqXQA4Pc=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUhE0GWxIC5cVLAPaEKZTKft0EkmzNyIJRTc+CtuXCji1p9w5984bbPQ1gMDh3PO5c49YSK4Btf9tgpLyyura8X10sbm1vaOvbvX0DJVlNWpFFK1QqKZ4DGrAwfBWoliJAoFa4bD6sRv3jOluYzvYJSwICL9mPc4JWCkjn3gA3uAzAfAN9wEEymF37lyqs64Y5ddx50CLxIvJ2WUo9axv/yupGnEYqCCaN323ASCjCjgVLBxyU81Swgdkj5rGxqTiOkgm94wxsdG6eKeVObFgKfq74mMRFqPotAkIwIDPe9NxP+8dgq9iyDjcZICi+lsUS8VGCSeFIK7XDEKYmQIoYqbv2I6IIpQMLWVTAne/MmLpHHqeK7j3Z6VK5d5HUV0iI7QCfLQOaqga1RDdUTRI3pGr+jNerJerHfrYxYtWPnMPvoD6/MHte2XiA==</latexit>

sports team
<latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit><latexit sha1_base64="TE+2DbEyQJlHBLUSvDdIjyd+QjM=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaL4KokIuiy6MZlBfuAJoTJdNIOnUzCzI1YQjb+ihsXirj1M9z5N07bLLT1wMDhnHu4c0+YCq7Bcb6tysrq2vpGdbO2tb2zu2fvH3R0kinK2jQRieqFRDPBJWsDB8F6qWIkDgXrhuObqd99YErzRN7DJGV+TIaSR5wSMFJgH3nAHiH3ALBOEwXaC8DEi8CuOw1nBrxM3JLUUYlWYH95g4RmMZNABdG67zop+DlRwKlgRc3LNEsJHZMh6xsqScy0n88OKPCpUQY4SpR5EvBM/Z3ISaz1JA7NZExgpBe9qfif188guvJzLtMMmKTzRVEmMCR42gYecMUoiIkhhCpu/orpiChCwXRWMyW4iycvk855w3Ua7t1FvXld1lFFx+gEnSEXXaImukUt1EYUFegZvaI368l6sd6tj/loxSozh+gPrM8ftTOXGw==</latexit>

…, Everton, 
FA_Cup, …
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Cup match.
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(a) Overview of XELMS. Mentions are shown [enclosed].

Everton won against 
[Liverpool] in an FA Cup match.

…, Everton, 
FA_Cup, …

Left Local 
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… … … …

l
<latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit><latexit sha1_base64="x65kFaBF/HZpH/Ng0a+ynMI2q6M=">AAACAnicbZDLSsNAFIZP6q3GW9SVuBksBVclEUGXRTcuK9gLNKFMppN26OTCzEQoIbjxVdy4UMStT+HOt3HSRtDWHwY+/nMOc87vJ5xJZdtfRmVldW19o7ppbm3v7O5Z+wcdGaeC0DaJeSx6PpaUs4i2FVOc9hJBcehz2vUn10W9e0+FZHF0p6YJ9UI8iljACFbaGlhHbojV2A8ynpv1H3Yp5/nAqtkNeya0DE4JNSjVGlif7jAmaUgjRTiWsu/YifIyLBQjnOamm0qaYDLBI9rXGOGQSi+bnZCjunaGKIiFfpFCM/f3RIZDKaehrzuLJeVirTD/q/VTFVx6GYuSVNGIzD8KUo5UjIo80JAJShSfasBEML0rImMsMFE6NVOH4CyevAyds4ZjN5zb81rzqoyjCsdwAqfgwAU04QZa0AYCD/AEL/BqPBrPxpvxPm+tGOXMIfyR8fENW+SXZQ==</latexit>

r
<latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit><latexit sha1_base64="juw6eQUUFM3i37Bw8Ysq5tbV1Ao=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMl00g6dTMLMjVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSKQw6LrfTmltfWNzq7xd2dnd2z+oHh61TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST29zvPHFtRKwecJpwP6IjJULBKFrpsR9RHAdhpmeDas2tu3OQVeIVpAYFmoPqV38YszTiCpmkxvQ8N0E/oxoFk3xW6aeGJ5RN6Ij3LFU04sbP5oln5MwqQxLG2j6FZK7+3shoZMw0CuxkntAse7n4n9dLMbz2M6GSFLlii4/CVBKMSX4+GQrNGcqpJZRpYbMSNqaaMrQlVWwJ3vLJq6R9Uffcund/WWvcFHWU4QRO4Rw8uIIG3EETWsBAwTO8wptjnBfn3flYjJacYucY/sD5/AH0G5EW</latexit>

d
<latexit sha1_base64="GGtk1qN94p3lS2+MxRDs9uIEc4U=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYDWeDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrz2My6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDCc/wCm+Odl6cd+djMVpyip1j+APn8wfe1ZEI</latexit><latexit sha1_base64="GGtk1qN94p3lS2+MxRDs9uIEc4U=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYDWeDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrz2My6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDCc/wCm+Odl6cd+djMVpyip1j+APn8wfe1ZEI</latexit><latexit sha1_base64="GGtk1qN94p3lS2+MxRDs9uIEc4U=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYDWeDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrz2My6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDCc/wCm+Odl6cd+djMVpyip1j+APn8wfe1ZEI</latexit><latexit sha1_base64="GGtk1qN94p3lS2+MxRDs9uIEc4U=">AAAB8XicbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+8A2lMn0ph06mYSZiVBC/8KNC0Xc+jfu/BsnbRbaemDgcM69zLknSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udJ1Sax/LBTBP0IzqSPOSMGis99iNqxkGYDWeDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofazeeIZObPKkISxsk8aMld/b2Q00noaBXYyT6iXvVz8z+ulJrz2My6T1KBki4/CVBATk/x8MuQKmRFTSyhT3GYlbEwVZcaWVLEleMsnr5L2Rd1z6979Za1xU9RRhhM4hXPw4AoacAdNaAEDCc/wCm+Odl6cd+djMVpyip1j+APn8wfe1ZEI</latexit>

wi
<latexit sha1_base64="UBwr2R+8MpY5RFOsjT7bXwdRlsw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMn0ph06mYSZiVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udR1Sax/LBTBPsR3QkecgZNVby/YiacRBmT7MBH1Rrbt2dg6wSryA1KNAcVL/8YczSCKVhgmrd89zE9DOqDGcCZxU/1ZhQNqEj7FkqaYS6n80zz8iZVYYkjJV90pC5+nsjo5HW0yiwk3lGvezl4n9eLzXhdT/jMkkNSrY4FKaCmJjkBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/vIqaV/UPbfu3V/WGjdFHWU4gVM4Bw+uoAF30IQWMEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AX25kfc=</latexit><latexit sha1_base64="UBwr2R+8MpY5RFOsjT7bXwdRlsw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMn0ph06mYSZiVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udR1Sax/LBTBPsR3QkecgZNVby/YiacRBmT7MBH1Rrbt2dg6wSryA1KNAcVL/8YczSCKVhgmrd89zE9DOqDGcCZxU/1ZhQNqEj7FkqaYS6n80zz8iZVYYkjJV90pC5+nsjo5HW0yiwk3lGvezl4n9eLzXhdT/jMkkNSrY4FKaCmJjkBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/vIqaV/UPbfu3V/WGjdFHWU4gVM4Bw+uoAF30IQWMEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AX25kfc=</latexit><latexit sha1_base64="UBwr2R+8MpY5RFOsjT7bXwdRlsw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMn0ph06mYSZiVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udR1Sax/LBTBPsR3QkecgZNVby/YiacRBmT7MBH1Rrbt2dg6wSryA1KNAcVL/8YczSCKVhgmrd89zE9DOqDGcCZxU/1ZhQNqEj7FkqaYS6n80zz8iZVYYkjJV90pC5+nsjo5HW0yiwk3lGvezl4n9eLzXhdT/jMkkNSrY4FKaCmJjkBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/vIqaV/UPbfu3V/WGjdFHWU4gVM4Bw+uoAF30IQWMEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AX25kfc=</latexit><latexit sha1_base64="UBwr2R+8MpY5RFOsjT7bXwdRlsw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF+4CmlMn0ph06mYSZiVJCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBym/udR1Sax/LBTBPsR3QkecgZNVby/YiacRBmT7MBH1Rrbt2dg6wSryA1KNAcVL/8YczSCKVhgmrd89zE9DOqDGcCZxU/1ZhQNqEj7FkqaYS6n80zz8iZVYYkjJV90pC5+nsjo5HW0yiwk3lGvezl4n9eLzXhdT/jMkkNSrY4FKaCmJjkBZAhV8iMmFpCmeI2K2FjqigztqaKLcFb/vIqaV/UPbfu3V/WGjdFHWU4gVM4Bw+uoAF30IQWMEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AX25kfc=</latexit>
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Figure 2: (a) Grounded mentions from two or more languages (English and Tamil shown) can be used to supervise XELMS.
The context g, entity e and type t vectors interact through Entity-Context loss (EC-LOSS), Type-Context loss (TC-LOSS) and
Type-Entity loss (TE-LOSS). The Tamil sentence is the same as in Figure 1, and other mentions in it translate to [Suarez] and
[Uruguay]. (b) The Mention Context Encoder (§2.1) encodes the local context (neighboring words) and the document context
(surfaces of other mentions in the document) of the mention into g. Internal view of local context encoder is in Figure 3.

Additionally, by encoding freely available struc-
tured knowledge, like fine-grained entity types, the
entity and context representations can be further
improved (§2.2).

The ability to use multilingual supervision en-
ables XELMS to learn XEL models for target lan-
guages with limited resources by exploiting freely
available supervision from high resource languages
(like English). We show that XELMS outperforms
existing state-of-the-art approaches that only use
target language supervision, across 3 benchmark
datasets in 8 languages (§5.1). Moreover, while
previous XEL models (McNamee et al., 2011; Tsai
and Roth, 2016) train separate models for differ-
ent languages, XELMS can train a single model for
performing XEL in multiple languages (§5.2).

One of the goals of XEL is to enable understand-
ing of languages with limited resources. We pro-
vide experimental analyses in two such settings.
In the zero-shot setting (§6.1), where no supervi-
sion is available in the target language, we show
that the good performance of zero-shot XEL ap-
proaches (Sil et al., 2018) can be attributed to the
use of prior probabilities. These probabilities are
computed from large amount of grounded men-
tions, which are not available in realistic zero-shot
settings. In the low-resource setting (§6.2), where
some supervision is available in the target language,

we show that even when only a fraction of the avail-
able supervision in the target language is provided,
XELMS can achieve competitive performance by
exploiting supervision from English.

The contributions of our work are,
• A new XEL approach, XELMS, that learns a

XEL model for a language with limited re-
sources by exploiting additional supervision
from a high-resource language like English.

• XELMS can also train a single XEL model
for multiple languages jointly, which we show
improves on separately trained models.

• Analysis of XEL approaches in the zero-shot
and low-resource settings. Our analysis re-
veals that in realistic scenarios, zero-shot XEL
is not as effective as previously shown. We
also show that in low-resource settings jointly
training with English leads to better utilization
of target language supervision.

2 Cross-lingual EL with XELMS

Given a mention m in a document D written in any
language, XEL involves linking m to its gold entity
e⇤ in a KB, K = {e1, · · · , en}.

An overview of XELMS is shown in Figure 2a.
XELMS computes the probability, Pcontext(e | m),
of a mention m referring to entity e 2 K using
a mention context vector g 2 R

h representing
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m’s context, and an entity vector e 2 R
h, rep-

resenting the entity e 2 K (one vector per entity).
XELMS can also incorporate structured knowledge
like fine-grained entity types (§2.2) using a multi-
task learning approach (Caruana, 1998), by learn-
ing a type vector t 2 R

h for each possible type
t (e.g., sports_team) associated with the entity e.
The entity vector e, context vector g and the type
vector t are jointly trained, and interact through ap-
propriately defined pairwise loss terms – an Entity-
Context loss (EC-LOSS), Type-Entity loss (TE-
LOSS) and a Type-Context loss (TC-LOSS).

The mention context vector g is generated by
a mention context encoder (§2.1), shown in Fig-
ure 2b. The mention context of m in a document D
consists of: (a) neighboring words around the men-
tion, which we refer to as its local context and, (b)
surfaces of other mentions appearing in D, which
we refer as its document context.
XELMS is trained using grounded mentions in mul-
tiple languages (English and Tamil in Figure 2a),
which can be derived from Wikipedia (§4.1).

2.1 Mention Context Representation
To learn from mention contexts in multiple lan-
guages, we generate mention context representa-
tions using a language-agnostic mention context
encoder. An overview of the mention context en-
coder is shown in Figure 2b. Below we describe
the components of the mention context encoder,
namely multilingual word embeddings and local
and document context encoders.

Multilingual Word Embeddings (Ammar et al.,
2016b; Smith et al., 2017; Duong et al., 2017)
jointly encode words in multiple (�2) languages
in the same vector space such that semantically
similar words in the same language, and transla-
tionally equivalent words in different languages are
close (per cosine similarity). Multilingual embed-
dings generalize bilingual embeddings, which do
the same for two languages only.

We use FASTTEXT (Bojanowski et al., 2017;
Smith et al., 2017), which aligns monolingual em-
beddings of multiple languages in the same space
using a small dictionary (⇠2500 pairs) from each
language to English. Both monolingual embed-
dings and the dictionary can be easily obtained for
languages with limited resources. We denote the
multilingual word embeddings for a set of tokens
{w1, w2, · · · , wn} by w1:n = {w1,w2, · · · ,wn},
where each wi 2 R

d.

ReLU

Oi
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Figure 3: Local Context Encoder, for the right context. Fig-
ure 2b shows how it fits inside Mention Context Encoder.

Local Context Representation The local con-
text of a mention m, spanning tokens i to j, con-
sists of left context (tokens i � W to j) and right
context (tokens i to j + W ). For example, for the
mention [Liverpool] in Figure 2b, the left and right
contexts are “Everton won against Liverpool” and
“Liverpool in a FA Cup match” respectively. The lo-
cal context encoder (Figure 3) encodes the left and
the right contexts into vectors l 2 R

h and r 2 R
h

using a convolutional neural network (CNN). These
two vectors are then combined to generate the local
context vector c 2 R

h (Figure 2b).
The CNN convolves continuous spans of k to-

kens using a filter matrix F 2 R
kd⇥h to project

the concatenation (� operator) of the token embed-
dings in the span. The resulting vector is passed
through a ReLU unit to generate convolutional out-
put Oi. The outputs {Oi} are pooled by averaging,

Oi = RELU(FT (wi � · · · � wi+k�1)) (1)
ENC(w1:n) = AVG(O1, · · · ,On�k+1) (2)

Left and right context vectors l and r are computed
using respective ENC(.) layers,

l = ENCleft(wi�W · · ·wj) (3)
r = ENCright(wi · · ·wj+W ) (4)

These vectors together generate the local context
vector c = F2h,h(l � r). Here Fdi,do : vi ! vo

denotes a feed-forward layer that takes vi 2 R
di as

input, and outputs vo 2 R
do .

Document Context Representation Presence
of certain mentions in a document can help dis-
ambiguate other mentions. For example, “Suarez”,
“Everton” in a document can help disambiguate
“Liverpool”. To incorporate this, we define the
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document context dm of a mention m appearing
in document D to be the bag of all other men-
tions in D. We encode dm into a dense document
context vector d 2 R

h by a feed-forward layer
d = F|V |,h(dm). Here V is the set containing all
mention surfaces seen during training. When train-
ing jointly over multiple languages, V consists of
mention surfaces seen in all languages (e.g. all
English and Tamil mention surfaces) during train-
ing. This enables parameter sharing by embedding
mention surfaces in different languages in the same
low-dimensional space.
The local and document context vectors c and d
are combined to get the mention context vector
g = F2h,h(c � d).

Context Conditional Probability We compute
the probability of a mention m linking to entity e
using its context vector g and the entity vector e,

Pcontext(e | m) =
exp(gTe)P

e02C(m)
exp(gTe0)

(5)

where C(m) denotes all candidate entities of the
mention m (§3.1 explains how C(m) is gener-
ated). We minimize the negative log-likelihood
of Pcontext(e | m) with respect to the gold entity e⇤

against the candidate entities C(m), and call it the
Entity-Context loss (EC-LOSS),

EC-LOSS =� log
Pcontext(e⇤ | m)P

e02C(m)
Pcontext(e0 | m)

(6)

2.2 Including Type Information
Incorporating the fine-grained types of a mention
m can help rank entities of the appropriate type
higher than others (Ling et al., 2015; Gupta et al.,
2017; Raiman and Raiman, 2018). For instance,
knowing the correct type of mention [Liverpool]
as sports_team and constraining linking to entities
with the relevant type, encourages disambiguation
to the correct entity.

To make the mention context representation g
type-aware, we predict the set of fine-grained types
of m, T(m) = {t1, ..., t|T(m)|} using g. Each ti
belongs to a pre-defined type vocabulary �.2 The
probability of a type t belonging to T(m) given the
mention context is defined as P(t | m)=�(tTg),
where � is the sigmoid function and t is the learn-
able embedding for type t.

2We use the type vocabulary � from Ling and Weld (2012),
which contains 112 fine-grained types (|�| = 112)

We define a Type-Context loss (TC-LOSS) as,

TC-LOSS = BCE(T(m), P(t | m)) (7)

where BCE is the Binary Cross-Entropy Loss,

�
X

t2T(m)

log P(t | m) �
X

t 62T(m)

log(1 � P(t | m))

We also incorporate the entity-type information
in the entity representations, and define a similar
Type-Entity loss (TE-LOSS).

To identify the gold types T(m) of a mention
m, we make the distant supervision assumption
(same as Ling et al. (2015)) and assign the types
of the gold entity e⇤ to be the types of the men-
tion. Gold fine-grained types of the entities can be
acquired from resources like Freebase (Bollacker
et al., 2008) or YAGO (Hoffart et al., 2013).

3 Training and Inference
We explain how XELMS generates candidate enti-
ties, performs inference, and combines the different
training losses.

3.1 Candidate Generation
Candidate generation identifies a small number of
plausible entities for a mention m to avoid brute
force comparison with all KB entities. Given m,
candidate generation outputs a list of candidate
entities C(m) = {e1, e2, · · · , eK} of size at most
K (we use K=20), each associated with a prior
probability Pprior(ei | m) indicating the probability
of m referring to ei, given only m’s surface. Pprior
is estimated from counts over the training mentions.

We adopt Tsai and Roth (2016)’s candidate gen-
eration strategy with some minor modifications
(Appendix A). Using other approaches like Cross-
Wikis (Spitkovsky and Chang, 2012), lead to con-
sistently worse recall. We note that transliteration
based candidate generation (McNamee et al., 2011;
Pan et al., 2017; Tsai and Roth, 2018; Upadhyay
et al., 2018) can further improve recall.

3.2 Inference
We combine the context conditional entity proba-
bility Pcontext(e | m) (eq. 5) and prior probability
Pprior(e | m) by taking their union:

Pmodel(e | m) = Pprior(e | m) + Pcontext(e | m)

� Pprior(e | m) ⇥ Pcontext(e | m)

Inference for the mention m picks the entity,

ê = arg max
e2C(m)

Pmodel(e | m) (8)

2489



3.3 Training Objective
When only training the mention context encoder
and entity vectors, we minimize the EC-LOSS av-
eraged over all training mentions. When using the
two type-aware losses, we minimize a weighted
sum of EC-LOSS, TE-LOSS, and TC-LOSS, using
the weighing scheme of Kendall et al. (2018),

EC-LOSS

2�2
EC

+
TE-LOSS

2�2
TE

+
TC-LOSS

2�2
TC

+ log �2
EC + log �2

TE + log �2
TC

(9)

Here �i are learnable scalar weighing parameters,
and the respective 1

2�2
i

and log �2
i term ensure that

�2
i does not grow unboundedly. This way, the

model learns the relative weight for each loss term.
During training, mentions from different lan-

guages are mixed using inverse-ratio mini-batch
mixing strategy. That is, if two languages have
training data sizes proportional to ↵ : �, at any
time during training, mini-batches seen from them
are in the ratio 1

↵ : 1
� . This strategy prevents lan-

guages with more training data from overwhelming
languages with less training data. Though simple,
we found this strategy yielded good results.

4 Experimental Setup

We briefly describe the training and evaluation
datasets, and the previous XEL approaches from
the literature used in our comparison.

4.1 Training Mentions
Following previous work, we use hyperlinks from
Wikipedia (dumps dated 05/20/2017) as our source
of grounded mentions for supervision. Wikipedias
in different languages have different pages for the
same entity, which are resolved by using inter-
language links (e.g., page )if in Chinese
Wikipedia resolves to Liverpool in English). Train-
ing mentions statistics are shown in Table 1.

We evaluate on 8 languages – German (de),
Spanish (es), Italian (it), French (fr), Chinese (zh),
Arabic (ar), Turkish (tr) and Tamil (ta), each of
which has varying amount of grounded mentions
from the respective Wikipedia (Table 1). We note
that our method is applicable to any of the 293
Wikipedia languages as a target language.

4.2 Evaluation Datasets
We evaluate XELMS on the following benchmark
datasets, spanning 8 different languages, thus pro-
viding an extensive evaluation.

Lang. # Train Mentions Size Relative to #
English Mentions

German (de) 22.6M 43.7%
Spanish (es) 13.8M 26.7%
French (fr) 16.2M 31.3%
Italian (it) 11.5M 22.2%

Chinese (zh) 5.9M 11.4%
Arabic (ar) 3.1M 6.0%
Turkish (tr) 1.8M 3.5%
Tamil (ta) 473k 0.9%

Table 1: Number of train mentions (from Wikipedia) in each
language, with % size relative to English (51.7M mentions).
Train mentions from Wikipedias like Arabic, Turkish and
Tamil are <10% the size of those from the English Wikipedia.

McN-Test dataset from (McNamee et al., 2011).
The test set was collected by using parallel doc-
ument collections, and then crowd-sourcing the
ground truths. All the test mentions in this dataset
consists of person-names only.

TH-Test A subset of the dataset used in (Tsai
and Roth, 2016), derived from Wikipedia.3 The
mentions in the dataset fall in two categories – easy
and hard, where hard mentions are those for which
the most likely candidate according to the prior
probability (i.e., arg max Pprior(e | m)) is not the
correct title. Indeed, most Wikipedia mentions can
be correctly linked by selecting the most likely
candidate (Ratinov et al., 2011). We use all the
hard mentions from Tsai and Roth (2016)’s test
splits for each language, and collectively call this
subset TH-TEST.

TAC15-Test TAC 2015 (Ji et al., 2015) dataset
for Chinese and Spanish. It contains documents
from discussion forum articles and news.

We evaluate all models using linking accuracy on
gold mentions, and assume gold mentions are pro-
vided at test time. Table 2 summarizes the different
domains of the evaluation datasets.

Tuning We avoid any dataset-specific tuning, in-
stead tuning on a development set and applying
the same parameters across all datasets. All tun-
able parameters were tuned on a development set
containing the hard mentions from the train split
released by Tsai and Roth (2016). We refer the
reader to Appendix B for details on tuning.

3Pan et al. (2017) also created a dataset using Wikipedia,
but did not categorize mentions like Tsai and Roth (2016).
Preliminary experiments on their dataset showed XELMS con-
sistently beat Pan et al. (2017)’s model. We chose TH-TEST
for more controlled experiments.
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Dataset Lang. Source

TH-TEST
de, es, fr, it, Wikipediazh, ar, tr, ta

MCN-TEST
de, es, fr, it, News,
zh, ar, tr Parliament Proceedings

TAC15-TEST es, zh News,
Discussion Forums

Table 2: Evaluation datasets used in our experiments.

4.3 Comparative Approaches
We compare against the following state-of-the-art
(SoTA) approaches, described with the language
from which they use mention contexts in (.),

Tsai and Roth (2016) (Target Only) trains a
separate XEL model for each language using men-
tion contexts from the target language Wikipedia
only. Current SoTA on TH-TEST.

Pan et al. (2017) (English Only) uses entity co-
herence statistics from English Wikipedia and the
document context of a mention for XEL. Current
SoTA on MCN-TEST, except for Italian and Turk-
ish, for which it’s McNamee et al. (2011).

Sil et al. (2018) (English Only) uses multilin-
gual embeddings to transfer a pre-trained English
entity linking model to perform XEL for Spanish
and Chinese. Prior probabilities Pprior are used as a
feature. Current SoTA on TAC15-TEST.

5 Experiments

We show that: (a) XELMS can train a better en-
tity linking model for a target language on various
benchmark datasets by exploiting additional data
from a high resource language like English (§5.1).
(b) XELMS can train a single XEL model for multi-
ple related languages and improve upon separately
trained models (§5.2). (c) Adding additional type
information as multi-task loss to XELMS further
improves performance (§5.3).

In all tables, we report the linking accuracy of
XELMS, averaged over 5 different runs, and mark
with ⇤ the statistical significance (p < 0.01) of the
best result (shown bold) against the state-of-the-art
(SoTA) using Student’s one-sample t-test.

5.1 Monolingual and Joint Models
In Table 3 and 4 we compare XELMS(mono), which
uses monolingual supervision in the target lan-
guage only, and XELMS(joint), which uses supervi-

Dataset ! TH-TEST MCN-TEST

Lang # SoTA XELMS SoTA XELMS
mono joint mono joint

de 53.3 53.7 55.6⇤ 89.7 90.9 91.5
es 54.5 54.9 56.6⇤ 91.5 91.2 91.4
fr 47.5 48.5 49.9⇤ 92.1 92.6 92.7
it 48.3 48.4 51.9⇤ 85.9 87.0 87.8⇤

zh 57.6 58.1 61.3⇤ 91.2⇤ 87.4 88.2
ar 62.1 62.6 63.8⇤ 80.2 80.3 83.1⇤

tr 60.2 61.0 61.7⇤ 95.3⇤ 91.0 91.9
ta 54.1 54.7 59.7⇤ n/a n/a n/a

avg. 54.7 55.2 57.6 89.4 88.6 89.5

Table 3: XELMS(joint) improves upon XELMS(mono) and
the current State-of-The-Art (SoTA) on TH-TEST and MCN-
TEST, showing the benefit of using additional supervision
from English. The best score is shown bold and ⇤ marks
statistical significance of best against SoTA. Refer §4.3 for
details on SoTA.

Model # Lang. ! es zh

(Tsai and Roth, 2016) 82.4 85.1
(Sil et al., 2018) (SoTA) 83.9 85.9

X
E

L
M

S
mono 83.3 84.4

mono+type 83.5 84.8

joint 84.1 85.5
joint+type 84.4⇤ 86.0

multi 83.9 n/a
multi+type 84.4⇤ n/a

Table 4: Linking accuracy on TAC15-Test. Numbers for Sil
et al. (2018) from personal communication.

sion from English in addition to the monolingual
supervision, with the state-of-the-art approaches.

We see that XELMS(mono) achieves similar or
slightly better scores than respective SoTA on all
datasets. The SoTA for MCN-TEST in Turkish
and Chinese enhances the model by using translit-
eration for candidate generation, explaining their
superior performance. XELMS(joint) performs sub-
stantially better than XELMS(mono) on all datasets
(Table 3 and 4), proving that using additional super-
vision from a high resource language like English
leads to better linking performance. In particular,
XELMS(joint) outperforms the SoTA on all lan-
guages in TH-TEST, on Spanish in TAC15-Test,
and on 4 of the 7 languages in MCN-TEST.

5.2 Multilingual Training

XELMS is the first approach that can train a single
XEL model for multiple languages. To demon-
strate this capability, we train a model, henceforth
referred as XELMS(multi), jointly on 5 related lan-
guages – Spanish, German, French, Italian and En-
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Dataset ! TH-TEST MCN-TEST

Lang # SoTA XELMS SoTA XELMS
joint multi joint multi

de 53.3 55.6⇤ 55.2 89.7 91.5 91.4
es 54.5 56.6 56.8⇤ 91.5 91.4 91.4
fr 47.5 49.9 51.0⇤ 92.1 92.7 92.6
it 48.3 51.9 52.3⇤ 85.9 87.8 87.9⇤

avg. 50.9 53.5 53.8 89.8 90.8 90.8

Table 5: Linking accuracy of a single XELMS(multi) model
for four languages – German, Spanish, French and Italian.
Individually trained XELMS(joint) scores are also shown. The
best score is shown bold and ⇤ marks statistical significance
of best against SoTA. Refer §4.3 for details on SoTA.

glish. We compare XELMS(multi) to the respective
XELMS(joint) model for each language.

Table 4 and 5, show that XELMS(multi) is bet-
ter (or at par) than XELMS(joint) on all datasets.
This shows that XELMS(multi) can making more
efficient use of available supervision in related lan-
guages than previous approaches which trained sep-
arate models per language.

5.3 Adding Fine-grained Type Information
To study the effect of adding fine-grained type in-
formation, in Table 4 we compare XELMS(mono)
and XELMS(joint) to XELMS(mono+type) and
XELMS(joint+type) respectively, which are versions
of XELMS(mono) and XELMS(joint) trained using
the two type-aware losses.

XELMS(mono+type) and XELMS(joint+type)
both improve compared to XELMS(mono) and
XELMS(joint) on MCN-TEST and TH-TEST
(Table 6 vs Table 3), showing the benefit of using
structured knowledge in the form of fine-grained
types. Similar trends are also seen on TAC15-
TEST (Table 4), where XELMS(joint+type) improves
on the SoTA for Spanish and Chinese.

6 Experiments with Limited Resources

The key motivation of XELMS is to exploit supervi-
sion from high-resource languages like English to
aid XEL for languages with limited resources. In
this section, we examine two such scenarios,
(a) Zero-shot setting i.e., no supervision available
in the target language. Our analysis reveals the
limitations of zero-shot XEL approaches and finds
that the prior probabilities play an important role
in achieving good performance (§6.1), which are
unavailable in realistic zero-shot scenarios.
(b) Low-resource setting i.e., some supervision
available in the target language. We show that

Dataset ! TH-TEST MCN-TEST

Lang # SoTA XELMS SoTA XELMS
mono+type joint+type mono+type joint+type

de 53.3 54.0 55.9⇤ 89.7 91.2 91.5
es 54.5 55.1 57.2⇤ 91.5 91.0 91.2
fr 47.5 49.0 50.6⇤ 92.1 92.6 92.7
it 48.3 49.2 52.2⇤ 85.9 87.4 87.9⇤

zh 57.6 58.9 61.5⇤ 91.2⇤ 87.6 88.4
ar 62.1 63.0 64.0⇤ 80.2 81.1 84.0⇤

tr 60.2 61.5 62.0⇤ 95.3⇤ 91.2 92.1
ta 54.1 56.0 59.9⇤ n/a n/a n/a

avg. 54.7 55.8 57.9 89.4 88.9 89.7

Table 6: Adding fine-grained type information further im-
proves linking accuracy (compare to Table 3). The best score
is shown bold and ⇤ marks statistical significance of best
against SoTA. Refer §4.3 for details on SoTA.

by combining supervision from a high-resource
language, like English, XELMS can achieve com-
petitive performance with a fraction of available
supervision in the target language (§6.2).

6.1 Zero-shot Setting
We first explain how XELMS can perform zero-shot
XEL, the implications of our zero-shot setting, and
how it is more realistic than previous work.

Zero-shot XEL with XELMS XELMS performs
zero-shot XEL by training a model using English
supervision and multilingual embeddings for En-
glish, and directly applying it to the test data in
another language using the respective multilingual
word embedding instead of English embeddings.

No Prior Probabilities Prior probabilities (or
prior), i.e., Pprior have been shown to be a reliable
indicator of the correct disambiguation in entity
linking (Ratinov et al., 2011; Tsai and Roth, 2016).
These probabilities are estimated from counts over
the training mentions in the target language. In the
absence of training data for the target language, as
in the zero-shot setting, these prior probabilities are
not available to an XEL model.

Comparison to Previous Work The only other
model capable of zero-shot XEL is that of Sil et al.
(2018). However, Sil et al. (2018) use prior prob-
abilities and coreference chains for the target lan-
guage in their zero-shot experiments, both of which
will not be available in a realistic zero-shot sce-
nario. Compared to Sil et al. (2018), we evaluate
the performance of zero-shot XEL in more real-
istic setting, and show it is adversely affected by
absence of prior probabilities.
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Dataset ! TAC15-Test TH-Test McN-Test
Approach # (es) (zh) (avg) (avg)

XELMS (Z-S w/ prior) 80.3 83.9 43.5 88.1
XELMS (Z-S w/o prior) 53.5 55.9 41.1 86.0

SoTA 83.9 85.9 54.7 89.4

Table 7: Linking accuracy of the zero-shot (Z-S) approach
on different datasets. Zero-shot (w/ prior) is close to SoTA for
datasets like TAC15-Test, but performance drops in the more
realistic setting of zero-shot (w/o prior) (§6.1) on all datasets,
indicating most of the performance can be attributed to the
presence of prior probabilities. The slight drop in MCN-TEST
is due to trivial mentions, which only have a single candidate.

Is zero-shot XEL really effective? To evaluate
the effectiveness of the zero-shot XEL approach,
we perform zero-shot XEL using XELMS on all
datasets. Table 7 shows zero-shot XEL results
on all datasets, both with and without using the
prior during inference. Note that zero-shot XEL
(with prior) is close to SoTA (Sil et al. (2018)) on
TAC15-TEST, which also uses the prior for zero-
shot XEL. However, for zero-shot XEL (without
prior) performance drops by more than 20% for
TAC15-Test, 2.4% for TH-Test and by 2.1% for
McN-Test. This indicates that zero-shot XEL is not
effective in a realistic zero-shot setting (i.e., when
the prior is unavailable for inference).

We found that the prior is indeed a strong indi-
cator of the correct disambiguation. For instance,
simply selecting the the most likely candidate us-
ing the prior for TAC15-TEST achieved 77.2% and
78.8% for Spanish and Chinese respectively. It is
interesting to note that both zero-shot XEL (with
or without prior) perform worse than the best pos-
sible model on TH-TEST, because TH-TEST was
constructed to ensure prior probabilities are not
strong indicators (Tsai and Roth, 2016). On MCN-
TEST, we found that an average of 75.9% mentions
have only one (the correct) candidate, making them
trivial to link, regardless of the absence of priors.

The results show that most of the XEL perfor-
mance in zero-shot settings can be attributed to
availability of prior probabilities for the candidates.
It is evident that zero-shot XEL in a realistic setting
(i.e., when prior probabilities are not available) is
still a challenging problem.

6.2 Low-resource Setting

We analyze the behavior of XELMS in a low-
resource setting, i.e. when some supervision is
available in the target language. The aim of this
setting is to estimate how much supervision from
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Figure 4: Linking accuracy vs. the number of train mentions
in the target language L (= Turkish (tr), Chinese (zh) and Span-
ish (es)). We compare both XELMS(mono) and XELMS(joint)
to the best results using all available supervision, denoted by
L-best. To discount the effect of the prior, all results above are
without it. For number of train mentions = 0, XELMS(joint) is
equivalent to zero-shot without prior. Best viewed in color.

the target language is needed to get reasonable per-
formance when using it jointly with supervision
from English. To discount the effect of prior proba-
bilities, we report all results without the prior.

Figure 4 plots results on the TH-Test dataset
when training a XELMS(joint) model by gradu-
ally increasing the number of mention contexts for
target language L (= Spanish, Chinese and Turk-
ish) that are available for supervision. Figure 4
also shows the best results achieved using all avail-
able target language supervision (denoted by L-
best). For comparison with the mono-lingually
supervised model, we also plot the performance
of XELMS(mono), which only uses the target lan-
guage supervision.

Figure 4 shows that after training on 0.75M men-
tions from Turkish and Chinese (and 1.0M men-
tions from Spanish), the XELMS(joint) model is
within 2-3% of the respective L-best model which
uses all training mentions in the target language,
indicating that XELMS(joint) can reach competi-
tive performance even with a fraction of the full
target language supervision. For comparison, a
XELMS(mono) model trained on the same number
of training mentions is 5-10% behind the respective
XELMS(joint) model, showing better utilization of
target language supervision by XELMS(joint).
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7 Related Work

Existing approaches have taken two main direc-
tions to obtain supervision for learning XEL mod-
els — (a) using mention contexts appearing in the
target language (McNamee et al., 2011; Tsai and
Roth, 2016), or (b) using mention contexts appear-
ing only in English (Pan et al., 2017; Sil et al.,
2018). We describe these directions and their limi-
tations below, and explain how XELMS overcomes
these limitations.

McNamee et al. (2011) use annotation projec-
tion via parallel corpora to generate mention con-
texts in the target language, while Tsai and Roth
(2016) learns separate XEL models for each lan-
guage and only use mention contexts in the target
language. Both these approach have scalability is-
sues for languages with limited resources. Another
limitation of these approaches is that they train sep-
arate models for each language, which is inefficient
when working with multiple languages. XELMS
overcomes these limitations as it can use mention
context from multiple languages simultaneously,
and train a single model.

Other approaches only use mention contexts
from English. While Pan et al. (2017) compute
entity coherence statistics from English Wikipedia,
Sil et al. (2018) perform zero-shot XEL for Chinese
and Spanish by using multilingual embeddings to
transfer a pre-trained English EL model. How-
ever, our work suggests that mention contexts in
the target language should also be used, if avail-
able. Indeed, a recent study (Lewoniewski et al.,
2017) found that for language sensitive topics, the
quality of information can be better in the relevant
language version of Wikipedia than the English ver-
sion. Our analysis also shows that zero-shot XEL
approaches like that of Sil et al. (2018) are not ef-
fective in realistic zero-shot scenarios where good
prior probabilities are unlikely to be available. In
such cases, we showed that combining supervision
available in the target language with supervision
from a high-resource language like English can
yield significant performance improvements.

The architecture of XELMS is inspired by sev-
eral monolingual entity linking systems (Francis-
Landau et al., 2016; Nguyen et al., 2016; Gupta
et al., 2017), approaches that use type informa-
tion to aid entity linking (Ling et al., 2015; Gupta
et al., 2017; Raiman and Raiman, 2018), and the re-
cent success of multilingual embeddings for several
tasks (Ammar et al., 2016a; Duong et al., 2017).

8 Conclusion

We introduced XELMS, an approach that can
combine supervision from multiple languages to
train an XEL model. We illustrate its benefits
through extensive evaluation on different bench-
marks. XELMS is also the first approach that can
train a single model for multiple languages, making
more efficient use of available supervision than pre-
vious approaches which trained separate models.

Our analysis sheds light on the poor performance
of zero-shot XEL in realistic scenarios where the
prior probabilities for candidates are unlikely to
exist, in contrast to findings in previous work that
focused on high-resource languages. We also show
how in low-resource settings, XELMS makes it
possible to achieve competitive performance even
when only a fraction of the available supervision in
the target language is provided.

Several future research directions remain open.
For all XEL approaches, the task of candidate gen-
eration is currently limited by existence of a target
language Wikipedia and remains a key challenge.
A joint inference framework which enforces co-
herent predictions (Cheng and Roth, 2013; Glober-
son et al., 2016; Ganea and Hofmann, 2017) could
also lead to further improvements for XEL. Simi-
lar techniques can be applied to other information
extraction tasks like relation extraction to extend
them to multilingual settings.
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Abstract

This paper proposes to study fine-grained
coordinated cross-lingual text stream align-
ment through a novel information network
decipherment paradigm. We use Burst In-
formation Networks as media to represent
text streams and present a simple yet effec-
tive network decipherment algorithm with di-
verse clues to decipher the networks for ac-
curate text stream alignment. Experiments
on Chinese-English news streams show our
approach not only outperforms previous ap-
proaches on bilingual lexicon extraction from
coordinated text streams but also can harvest
high-quality alignments from large amounts
of streaming data for endless language knowl-
edge mining, which makes it promising to be a
new paradigm for automatic language knowl-
edge acquisition.

1 Introduction

Coordinated text streams (Wang et al., 2007) refer
to the text streams that are topically related and
indexed by the same set of time points. Previ-
ous studies (Wang et al., 2007; Hu et al., 2012)
on coordinated text stream focus on discovering
and aligning common topic patterns across lan-
guages. Despite their contributions to applications
like cross-lingual information retrieval and topic
analysis, such a coarse-grained topic-level align-
ment framework inevitably overlooks many use-
ful fine-grained alignment knowledge. For exam-
ple, Figure 1 shows typical knowledge that can
be derived from fine-grained Chinese-English text
stream alignments. In addition to (a) bi-lingual
word translations, we can also discover (b) poly-
semous and multi-referential words if one Chinese
word is aligned to multiple English words, (c) syn-
onymous and co-referential word pairs if two Chi-
nese words are aligned to the same English word,
and (d) entity phrases (e.g.,?⇤N‘ in Figure 1)

��

inject


	

Dezhou Texas

�

ASEAN

��

Abu Dhabi

������ ��Chinese

English

(a) (b) (c) (d)

Figure 1: Knowledge derived from fine-grained cross-
lingual text stream alignments: (a) word transla-
tions; (b) polysemy/multi-references; (c) synonym/co-
reference; (d) entity phrases

if adjacent Chinese words in text are aligned to the
same English named entity.

In order to acquire language knowledge for
Natural Language Processing (NLP) applications,
we study fine-grained cross-lingual text stream
alignment. Instead of directly turning massive,
unstructured data streams into structured knowl-
edge (D2K), we adopt a new Data-to-Network-to-
Knowledge (D2N2K) paradigm, based on the fol-
lowing observations: (i) most information units
are not independent, instead they are intercon-
nected or interacting, forming massive networks;
(ii) if information networks can be constructed
across multiple languages, they may bring tremen-
dous power to make knowledge mining algorithms
more scalable and effective because we can em-
ploy the graph structures to acquire and propagate
knowledge.

Based on the motivations, we employ a promis-
ing text stream representation – Burst Information
Networks (BINets) (Ge et al., 2016a), which can
be easily constructed without rich language re-
sources, as media to display the most important
information units and illustrate their connections
in the text streams. With the BINet representa-
tion, we propose a simple yet effective network
decipherment algorithm for aligning cross-lingual
text streams, which can take advantage of the co-
burst characteristic of cross-lingual text streams
and easily incorporate prior knowledge and rich
clues for fast and accurate network decipherment.
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Figure 2: (A part of) Burst Information Networks built from Chinese and English news streams.

For example, in Figure 2, each node in a BI-
Net is a bursty word with one of its burst peri-
ods, representing an important information unit
in a text stream. To decipher the Chinese BINet,
our approach first focuses on the nodes in the En-
glish BINet in Figure 2 as the candidates because
they co-burst with the Chinese nodes. Then, we
decipher some nodes based on prior knowledge
(the green node), the pronunciation similarity clue
(the orange nodes) or literal translation similar-
ity clue (the blue node). These deciphered nodes
will serve as neighbor clues to decipher their adja-
cent nodes (the red node) which will then be used
for further decipherment (e.g., decipher the yellow
node) through knowledge propagation across the
network, as the dashed arrows in Figure 2 show.

Experiments on Chinese-English coordinated
news streams show our approach can accurately
align nodes across the cross-lingual BINets and
derive various knowledge, and that with more
streaming data provided, we can harvest more
high-quality alignments and thus derive more
knowledge. By aligning endless text streams, it is
promising for never-ending language knowledge
mining, which can not only complement language
resources but also benefit some NLP applications.

The main contributions of this paper are:

• We propose a promising framework to
mine knowledge from inexhaustible coordi-
nated cross-lingual text streams through fine-
grained alignment, exploring a paradigm for
language knowledge acquisition.

• We propose a network decipherment ap-
proach for text stream alignment, which can
work in both low and rich resource settings
and outperform previous approaches.

• We release our data (annotations) and sys-
tems to guarantee the reproducibility and
help future work improve on this task.

2 Burst Information Network

A Burst Information Network (BINet) is a graph-
based text stream representation and has proven
effective for multiple text stream mining tasks (Ge
et al., 2016a,b,c). In contrast to many informa-
tion networks (e.g., (Ji, 2009; Li et al., 2014)), BI-
Nets are specially for text streams. They focus on
the burst information units which are usually re-
lated to important events or trending topics in text
streams and illustrate their connections.

A BINet is originally defined as G = hV, E, !i
in (Ge et al., 2016a). Each node v 2 V is a burst
element defined as a burst word1 during one of its
burst periods hw, Pi where w denotes a word and
P denotes one consecutive burst period of w, as
Figure 2 shows. Each edge ✏ 2 E indicates the
connection between two burst elements with the
weight ! which is defined as the number of docu-
ments where these two burst elements co-occur in
the text stream. In this paper, we extend the BINet
definition to G = hV, E, !, ⇡i by adding a binary

1Burst words and their corresponding burst periods can be
detected based on Kleinberg burst detection algorithm (Klein-
berg, 2003), as (Ge et al., 2016a) did.
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indicator ⇡ to indicate if two nodes (i.e., burst ele-
ments) are frequently (more than 5 times) adjacent
(as a bigram) in text, for mining knowledge such
as entity phrases in Figure 1(d).

3 Decipherment

After constructing a BINet from a foreign lan-
guage (we use Chinese as a foreign language
in this paper), we can decipher it by consult-
ing an Engish BINet constructed from its coor-
dinated English text stream. We define Gc =
hVc, Ec, !c, ⇡ci and Ge = hVe, Ee, !e, ⇡ei as
the Chinese BINet and English BINet respectively.
For people who do not know Chinese, Gc is a net-
work of ciphers. We design a novel BINet deci-
pherment procedure to decipher Gc by aligning as
many nodes in Gc as possible to Ge. The decipher-
ment process is defined to find e 2 Ve for a node
c 2 Vc so that e is c’s counterpart in the English
text stream.2

3.1 Starting Point
To decipher the Chinese BINet, we need a few
seeds based on prior knowledge as a starting point.
Inspired by previous work on bi-lingual lexicon in-
duction, decipherment and name translation min-
ing, we utilize a few linguistic resources - a bi-
lingual lexicon and language-universal representa-
tions such as time/calendar date, number, website
URL, currency and emoticons to decipher a sub-
set of Chinese nodes. For the example shown in
Figure 2, we can decipher some nodes in the Chi-
nese BINet such as “7-6” (to “7-6”) and “ÕP”
(to “seed”).

3.2 Candidate Generation
For the nodes that cannot be deciphered by the
prior knowledge, we first need to discover their
possible candidates. For a node c in the Chinese
BINet, its counterpart e can be any node in the En-
glish BINet or does not exist in the English BINet,
resulting in an extremely large search space. For-
tunately, burst information that refers to a hot topic
usually co-bursts across languages. Based on this
characteristic, for a node in the Chinese BINet, its
counterpart is likely to be a node with the same
burst period in the English BINet. For example,
the node “�…(Williams)” in the Chinese BINet

2c and e are burst elements (i.e., nodes in the BINets).
Sometimes, we also use c and e to denote the nodes’ word if
that does not lead to misunderstanding.

in Figure 2 bursts between January 25 and January
31, 2010. We only need to look for its counterpart
from the nodes in the English BINet whose burst
period overlaps with this period. Formally, for a
node c 2 Vc in the Chinese BINet, its candidate
nodes in the English BINet can be derived as:

Cand(c) = {e|P(e) \ P(c) 6= ;}

where e 2 Ve, and P(c) and P(e) are the burst
periods of c and e respectively.

3.3 Candidate Verification
For the candidate list for c (i.e., Cand(c)), we
need to verify each node e 2 Cand(c) and choose
the most probable one as c’s counterpart. For-
mally, we define Score(c, e) as the credibility
score of e being the correct counterpart of c and
propose the following novel clues for verification.

Pronunciation
Inspired by previous work on name translation
mining (e.g., (Schafer III, 2006; Sproat et al.,
2006; Ji, 2009)), for a node e 2 Cand(c),
if its pronunciation is similar to c, then e is
likely to be the translation of c. For a Chinese
node c and an English node e, we define Sp as
its scaled pronunciation score to measure their
pronunciation similarity whose range is [0, 1]:

Sp 2 [0, 1] / 1
LD

where LD is the normalized (by e’s length) Lev-
enshtein edit distance between c’s pinyin3 string
and e’s word string.

Translation
For a node e 2 Cand(c), it is possible that e’s
word exists or partially exists in the bi-lingual lex-
icon. We can exploit the translation clue to ver-
ify if e is c’s counterpart. For example, “Aus-
tralian Open” is a candidate of “≥2Q⇤l�
[(Australian Open)” as shown in Figure 2. Even
though “≥2Q⇤l�[(Australian Open)” is
not in the bi-lingual lexicon, “Australian” and
“open” are in the lexicon and their Chinese transla-
tions are “≥2Ñ(Australian)” and “l�(open)”
respectively. If we literally translate “Australian
Open” word by word, we will get “≥2Ñl
�” which has long common subsequences with
the Chinese node “≥2Q⇤l�[(Australian
Open)”, inferring that “Australian Open” is likely
to be the translation of “≥2Q⇤l�[”.

3Pinyin is the official romanization system for Chinese.
We use pinyin instead of IPA because romanization is usually
more easily available than IPA for a language.
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Motivated by this observation, for a candi-
date e 2 Cand(c), we first extract its pos-
sible Chinese translations C(e) from the bi-
lingual lexicon. Note that if e is a multi-
word, we concatenate translations of its compo-
nents. Then, for hc, ei, we define St as its scaled
translation similarity score whose range is [0, 1]:

St 2 [0, 1] / maxc02C(e) LCS(c, c0)
where maxc02C(e) LCS(c, c0) is maximum length
of the longest common subsequence between c
and c0 2 C(e).

Neighbor
The graph topological structure of a BINet is also
an important clue for decipherment. By analyzing
a node’s neighbors, we can learn useful topic-level
knowledge to decipher the node. For the example
in Figure 2, “~Å(Henin)” in the Chinese BINet
has neighbors such as “�…(Williams)”, “≥2
Q⇤l�[(Australian Open)” and “—�(Zheng
Jie)” while “Justine Henin” in the English BINet
is connected with “Serena Williams”, “Australian
Open” and “Zheng Jie”. If we know “Serena
Williams”, “Australian Open” and “Zheng Jie” are
the counterpart of ‘�…”, “≥2Q⇤l�[” and
“—�” respectively, we can infer “Justine Henin”
is likely to be the counterpart of “~Å”, which
can be further used as a clue to decipher its neigh-
bors such as “�a(wildcard)” through knowledge
propagation.

We define N(c) and N(e) as the set of adjacent
nodes of c in the Chinese BINet and the adjacent
nodes of e in the English BINet respectively. The
neighbor clue score Sn of hc, ei is defined as:

Sn =
X

c02N(c)

!̂c,c0 max
e02N(e)

Score(c0, e0) (1)

where Score(c0, e0) is the overall score of e0 being
the counterpart of c0, as defined at the beginning
of this section, !̂c,c0 =

!c,c0P

c002N(c0)

!c0,c00
is the nor-

malized weight of the edge between c and c0.

Correlation of burst
If the word of e 2 Cand(c) frequently co-bursts
with the word of c, then e is likely to be the coun-
terpart of c. For example, “Serena Williams” in
the English stream usually co-bursts with “✏�”
in the Chinese stream, as shown in Figure 3, which
is a useful clue to infer that “Serena Williams” is
the counterpart of “✏�”.

We define Sb as the burst correlation score:

Sb =
sw(c) · sw(e)

ksw(c)k1 + ksw(e)k1 � sw(c) · sw(e)
(2)

Figure 3: Burst states of “✏�” (the upper) and “Ser-
ena Williams” (the lower) are correlated.

where w(v) denotes the word of the node v and
sw denotes the burst sequence of the word w in
which each entry is a binary variable indicating if
w bursts at a moment throughout the time frame.
Note that in the above equation, we regard sw as a
vector. The numerator is the number of days when
w(c) and w(e) co-burst and the denominator is the
number of days when either w(c) or w(e) bursts.

3.4 Graph-based Decipherment
We define the overall (credibility) score as the lin-
ear combination of the clues introduced above:

Score(c, e) = ⌘Sp + �St + �Sn + �Sb (3)

where Sp, St, Sn and Sb are the scores that
measure the value/reliability of the pronunciation,
translation, neighbor and burst correlation clues
respectively, and ⌘, �, � and � are hyperparame-
ters for adjusting their weights.

Based on Eq (3), we can now compute the score
of any candidate pair hc, ei. For pairs that are
known to be correct alignments according to prior
knowledge, their overall scores will be fixed to 1.0.
For other possible candidate pairs, we simply ini-
tialize their scores as follows:

Score(c, e) =
1.0

|Cand(c)|
(4)

where Cand(c) is the set of c’s candidate nodes in
the English BINet.

Given that Score(c, e) is influenced by other
pairs’ scores, we design an iterative algorithm
to compute and update the scores to deci-
pher the entire Chinese BINet through propaga-
tion. This process is elaborated in Algorithm 1.
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Algorithm 1 Graph-based Decipherment
1: For the determined pair hc, ei based on the prior knowl-

edge, Score(c, e) 1.0
2: For other undermined pairs hc, ei, initialize Score(c, e)

according to Eq (4);
3: while True (until �Conf(Gc, Ge)  0.0001) do
4: for each undetermined pair hc, ei do
5: Compute new score according to Eq (3);
6: update(c, e) = min(1.0, new score)
7: end for
8: for each undetermined pair hc, ei do
9: Score(c, e) update(c, e)

10: end for
11: end while

�Conf(Gc, Ge) in the 3rd line of Algorithm 1 is
the difference between the network decipherment
confidence score at the current iteration and that at
its previous iteration. Conf(Gc, Ge) is defined as
follows, reflecting how much confidence we have
in our network decipherment result:

Conf(Gc, Ge) =
X

c2Vc

max
e2Cand(c)

Score(c, e) (5)

In practice, propagation of prior knowledge and
clues makes the confidence score increase be-
cause it helps us know more about the network
(as illustrated by Figure 2). When the confidence
score stops increasing or increases marginally (
0.0001) after several iterations, the algorithm ter-
minates4.

4 Experiments

We first evaluate our approach on aligning nodes
in the cross-lingual BINets for fine-grained cross-
lingual stream alignment in Section 4.1. Then, we
show the value of derived alignments for endless
language knowledge acquisition in Section 4.2.

4.1 Stream alignment
4.1.1 Data
We used the public 2010 Agence France Presse
(AFP) news in Chinese (Graff and Chen, 2005)
and English Gigaword (Graff et al., 2003) as our
cross-lingual text streams. The Chinese stream
has 17,327 while the English one contains 186,737
documents.

We removed stopwords, conducted lemmatiza-
tion and name tagging for the English stream,
and did word segmentation and name tagging for
the Chinese stream using the Stanford CoreNLP
toolkit (Manning et al., 2014).

4Due to the upper bound of Conf(Gc, Ge), the algorithm
must terminate after several iterations.

We detected bursts and constructed the BINets5

for the Chinese and English stream based on (Ge
et al., 2016a). The constructed Chinese BINet has
7,360 nodes and 33,892 edges while the English
one has 8,852 nodes and 85,125 edges. Our seed
bi-lingual lexicon is released by (Zens and Ney,
2004), containing 81,990 Chinese word entries,
each of which has an English translation. Among
the 7,360 nodes in the Chinese BINet, 2,281 nodes
need to be deciphered since their words are not in
the bi-lingual lexicon.

4.1.2 Evaluation Setting
We evaluate our approach in an end-to-end fash-
ion. For a node c in the Chinese BINet, we choose
the node e⇤ which has the highest score as c’s
counterpart in the English BINet:

e⇤ = arg max
e2Cand(c)

Score(c, e)

We rank the aligned node pairs by the score and
manually evaluate the quality of the top K pairs.
A pair hc,ei is annotated as correct if e is a cor-
rect translation of c or e refers to an entity that c
refers to. The annotation assignment is done by
three human judges with 89.4% agreement. The
disagreement mainly arises from the ambiguity of
some named entities. In the evaluation, we con-
sider hc,ei correct if more than two judges anno-
tate it as correct.

We compare our approach to the following
baselines that use various combinations of clues to
verify candidates for decipherment as well as the
state-of-the-art algorithm for language decipher-
ment from non-parallel corpora:
• Pronunciation verification (pv): Use the pronun-

ciation clue only

• Translation verification (tv): Use the translation
clue only

• Neighbor verification (nv): Use the neighbor
clue only to decipher the BINet through prop-
agation.

• Correlation of burst verification: (cv): Use the
burst correlation clue only

• pv+tv and pv+tv+nv

• Bayesian Inference: Bayesian inference based
decipherment approach (Dou and Knight, 2012)
based on the alignment of bigram language

5We discarded the edges whose weight is smaller than a
threshold (5 for Chinese and 20 for English BINet given the
difference of their data size) for removing trivial connections.
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Figure 4: Accuracy curves of various approaches. Note
that pv+tv+nv+cv is our final approach.

models across languages. We adapt it to our ex-
periment setting by considering adjacent nodes
in a BINet as bigrams for decipherment.
We used 2009 AFP Chinese/English news in Gi-

gaword as our development set to tune hyperpa-
rameters. Since our approach has only 4 parame-
ters (i.e., ⌘, �, �, � in Eq (3)), it is easy to tune the
parameters using grid search (from 0.0 to 1.0 with
a step 0.2) on the development set. For baselines
except Bayesian inference, the score computation
function is almost identical to Eq (3) except that
the weights of the clues which are not used are set
to 0.

4.1.3 Results
We present the results in Figure 4. Our approach
outperforms all the baselines because it consid-
ers various clues for decipherment. Among the
baselines, accuracy scores of pv and tv drop dra-
matically with K increasing because a single clue
can only decipher a limited number of nodes ef-
fectively. pv+tv seems to alleviate the problem to
some extent: its accuracy does not drop so dras-
tically as pv or tv because multiple clues allow us
to decipher more nodes but its accuracy is still not
desirable. Among the clues, cv performs worst,
demonstrating that the burst correlation clue alone
is far from enough for decipherment. Compared
with pv, tv and cv, nv deciphers the nodes in the
Chinese BINet through propagation but the neigh-
bor clue alone is not sufficient for accurate deci-
pherment. It is notable that nv achieves compara-
ble performance to the Bayesian inference method
which uses similar clues, demonstrating the effec-
tiveness of our decipherment framework despite
its simplicity. Moreover, our graph-based deci-
pherment approach is more flexible to incorpo-
rate a variety of clues. When it is combined with
pv+tv, the performance shows a significant boost
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Figure 5: Accuracy curves of our approach with differ-
ent resource settings.

and achieves approximately 90% accuracy in the
top 200 results though it is slightly inferior to our
final approach due to the lack of awareness of burst
correlation.

Another interesting observation from Figure 4
is that our approach clearly know the confidence
of its predictions. For top 100 mined pairs with
the highest confidence scores (i.e., the score in Eq
(3)), the accuracy is 98%. Therefore, it is easy to
control the quality of mined pairs, which is impor-
tant for a text mining algorithm.

We also study the effect of language resources
on the performance. We first randomly sample dif-
ferent sizes of entries from the original bi-lingual
lexicon as new bi-lingual lexicons. The results6 in
Figure 5 show the accuracy improves as the size
of bi-lingual lexicon grows because more prior
knowledge benefits deciphering the BINet. In ad-
dition, we test our approach in a low-resource set-
ting where there is no knowledge of the roman-
ization system (i.e., pinyin) and no pre-trained
word segmentation and name tagging tools are
available. The only available resource is a very
small bi-lingual lexicon with 1,000 most com-
mon Chinese words7 and their corresponding En-
glish translations. In this setting, we use an un-
supervised Chinese word segmentation approach
combining a Hierarchical Dirichlet Process (HDP)
model with a Bayesian HMM model (Chen et al.,
2014) to segment Chinese text instead of the pre-
processing steps mentioned in Section 4.1.1. Ac-
cording to Figure 5, our approach still performs
well in the low-resource setting although its accu-
racy curve is lower than that in rich-resource set-
tings, demonstrating it can work in both rich- and
low-resource settings.

6The sample processes are repeated for 3 times and the
results are the averaged accuracy.

7We sample these Chinese words based on IDF.

2501



Top K
0 50 100 150 200 250 300 350 400 450 500

Ac
cu

ra
cy

 (%
)

10

20

30

40

50

60

70

80

90

100 Ours on 2010 AFP(ch) - AFP(en)
Ours on 2008 AFP(ch) - APW(en)
Bayesian on 2010 AFP(ch) - AFP(en)
Bayesian on 2008 AFP(ch) - APW(en)

Figure 6: Accuracy curves on multiple datasets.
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Figure 7: Stream alignments derived from 2008 on the
Chinese and English AFP news streams. With more
data (i.e., streams within a longer time frame) being
aligned, our approach can harvest more high-quality
alignments.

In order to test the generalization ability, we
evaluate our approach using the same hyperparam-
eters on another coordinated text streams – AFP
Chinese and APW English news stream in 2008.
The results in Figure 6 show that our decipherment
approach consistently outperforms the other base-
line and still deciphers the top 100 nodes in high
accuracy even though the curve in 2008 is lower
than that in 2010. The performance difference in
2008 and 2010 mainly arises from the difference
on topic overlaps. In the streams of 2010, the Chi-
nese and English news are from the same news
agency (i.e., AFP). Therefore, the topic overlaps
of the cross-lingual streams are larger than 2008,
allowing more nodes to be deciphered correctly.

Finally, we investigated the performance of our
approach under various sizes of data provided,
as shown in Figure 7. As observed, when the
data size is small (e.g., 6-month coordinated text
streams), the approach works poorly because there
are very few nodes in BINets that can be aligned.
As the data size increases, our approach can effi-
ciently8 harvest a growing number of high-quality

8Efficiency is reported in the supplementary notes.

Node Chinese (burst period) English (burst period)
1 �ÅØÔ< (346-348) Berlusconi (344-348)
2 k• (332-337) Guardian (334-336)
3 ¸Œ (360-363) Manchester City (358-361)
4  q (147-158) Hatoyama (147-158)
5 zfl (106-111) airspace (104-111)
6 æ (119-130) bailout (112-129)
7 ˝Eeó9K‘X⇢ (38-45) IOC (36-44)
8 KÂV (102-104) paedophilia (90-108)
9 ✏� (147-153) Serena Williams (146-148)

10 ⌧O (200-203) ASEAN (198-203)
11 ⌧Wö˝∂O⇢ (299-302) ASEAN (299-303)
12 .L (129-130) European Central Bank (125-129)
13 .L (75-76) Bank of Japan (73-76)
14 ¡q (310-311) Aung San Suu Kyi (308-313)
15 œÏ (310-311) Aung San Suu Kyi (308-313)

Table 1: Alignment examples. The numbers of burst
periods denote the number of days after Jan 1, 2010.

alignments, as reflected by the higher curves in
Figure 7. Considering massive coordinated text
streams generated every day, if the approach can
be applied to the endless streams, it is possible to
monitor the streaming data and derive countless
alignments for never-ending language knowledge
acquisition.

4.2 Endless language knowledge mining
Table 1 shows the stream alignment result of our
approach. As demonstrated above, we can derive
a variety of language knowledge from the fine-
grained cross-lingual alignments.

Word/entity translations are the main knowl-
edge that can be derived from our alignment re-
sults by extracting word pairs from the aligned
cross-lingual node pairs. Formally, we find a Chi-
nese word w’s English translation w⇤ as follows:

w⇤ = w(e⇤)

e⇤ = arg maxe2Ve
maxc2Vc(w) Score(c, e)

where Vc(w) is the set of Chinese nodes whose
word is w, and w(e) denotes the word of node e.

We evaluate our approach on mining trans-
lations of bursty Chinese words, based on the
evaluation criteria of bilingual lexicon extraction.
Specifically, we test how many out-of-vocabulary
(OOV) words appearing in the Chinese BINet are
correctly translated. The datasets used for eval-
uation are the 2010 and 2008 streams in Figure
6. In total, there are 1,226 and 1,082 distinct
Chinese OOV words (excluding incorrectly seg-
mented words) in the corresponding Chinese BI-
Nets. Accuracy is used to measure the proportion
of the words being correctly translated, as (Tamura
et al., 2012) did.

Table 2 compares our approach to represen-
tative bilingual lexicon extraction approaches.
CONTEXT is one of the earliest approaches for ex-
tracting word translations from comparable cor-
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Model Acc1(2010) Acc1(2008)
CONTEXT (Fung and Yee, 1998) 0.32% 0.37%

COLP (Tamura et al., 2012) 0.32% 0.46%
SIMLP (Tamura et al., 2012) 0.49% 0.46%

DIVERSE (Schafer and Yarowsky, 2002) 5.22% 4.25%
DIVERSESP (Sproat et al., 2006) 5.46% 4.44 %

BAYESIAN(LM) (Dou and Knight, 2012) 0.57% 0.55%
BAYESIAN(BINET) 11.17% 4.81%

Ours 28.38% 19.78%

Table 2: Performance of translating bursty words.

pora based on context similarity. COLP and
SIMLP are label propagation models on word co-
occurrence and similarity graphs for bilingual lex-
icon extraction. DIVERSE is a variant of CON-
TEXT by adding various information (e.g., pronun-
ciation and temporality) and DIVERSESP is the
approach using phonetic and frequency correla-
tion with a score propagation strategy. BAYESIAN
is the Bayesian decipherment approach which has
been introduced in the previous section, and it
is evaluated in two settings (i.e., based on tradi-
tional bigram language models and BINets). Ac-
cording to Table 2, our approach substantially out-
performs the other approaches on both datasets,
showing its advantages for mining translation of
bursty words in coordinated text streams. It is also
notable that the BINet-based BAYESIAN improves
the LM-based counterpart, demonstrating the ad-
vantage of burst-level alignment for this task.

In addition to the comparisons to the clas-
sical baselines, we also test the latest repre-
sentative unsupervised bi-lingual lexicon extrac-
tion approaches (Zhang et al., 2017a,b) based on
word embedding and generative adversarial nets
(GANs). Unfortunately, these approaches do not
perform well in our setting. For example, the ap-
proach in (Zhang et al., 2017a) achieved <1% ac-
curacy9. One reason is that the topic overlap of co-
ordinated cross-lingual text streams is not so sig-
nificant as the Wikipedia data used for their ex-
periments, and the other reason is that their ap-
proaches focus on common fundamental words
like “Œ⇥(city)” while our targets are OOVs like
“⌧O(ASEAN)” which do not frequently appear
in a corpus. In contrast, our approach is more prac-
tical: it not only works well in easily available and
endless coordinated text streams without high con-
tent overlap requirement, but also can accurately
mine translations of many OOVs which do not ap-
pear frequently and really need mining their trans-
lations.

9We implement this approach using the codes released by
the authors. Their reported accuracy for the common words
with over 1,000 occurrences is 2.53% on Gigaword corpus.

Knowledge Derived Correct Acc
Word/entity translation pair 500 416 0.83

Polysemy/multi-referential word 11 8 0.73
Synonym/Co-referential word pair 72 49 0.68

Entity phrase 99 84 0.85

Table 3: Knowledge derived from top 500 alignments
obtained by aligning AFP Chinese and English text
streams from 2002 to 2010.

As illustrated in Figure 1, besides word/entity
translations, various types of knowledge can also
be derived from the BINet alignment results as
by-products. For example, for node 9 in Table
1, deciphering the nickname “✏�” into Serena
Williams can benefit cross-lingual entity linking.
Nodes 10-11 also demonstrate the potential effect
on synonym detection, entity linking and coref-
erence resolution, like the case of Figure 1(b).
Nodes 12-13 show that the deciphered BINets can
detect polysemous/multi-referential word like “.
L(Central bank)” which may refer to different en-
tities during different burst periods, like Figure
1(c). Moreover, the deciphered BINets can also
help entity phrase extraction based on the idea of
Figure 1(d). For example, in nodes 14-15, ¡
qœÏ(Aung San Suu Kyi) is not recognized as
a person name by the Chinese name tagger; in-
stead, it is mistakenly separated into two words
– ¡q(Aung San) and œÏ(Suu Kyi). How-
ever, since ¡q(Aung San) and œÏ(Suu Kyi)
are deciphered into the same English named entity
– Aung San Suu Kyi, we can merge them back to
form the correct entity.

For evaluating our approach’s performance on
language knowledge acquisition, we align the AFP
Chinese-English text streams from 2002 to 2010.
The Chinese stream has 119,196 documents and
the English one contains 1,608,636 documents.
Our approach obtained 7,211 node alignments10.
Among them, we focus on the top 500 alignments
to guarantee their quality and use the aforemen-
tioned idea for deriving language knowledge.

Table 3 shows the result of deriving knowl-
edge from the alignments. Among top 500 align-
ments, we derived 416 correct word/entity transla-
tion pairs with 83% accuracy. Also, we correctly
derived 8 polysemous/multi-referential words, 49
synonymous/co-referential word pairs and 84 en-
tity phrases as byproducts. It is notable that the
data size of coordinated cross-lingual text streams
available on the web is much larger than that used
in our experiment and they are endlessly updated.

10The alignments with a low score (< 0.05) are discarded.
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That means it is promising to endlessly derive lan-
guage knowledge by applying our approach to the
huge size of endless cross-lingual text streams,
which may benefit NLP applications like machine
translation, entity linking and name tagging.

5 Related Work

Previous studies on cross-lingual text stream
alignment tend to focus on coarse-grained (i.e.,
topic-level) alignment for finding common pat-
terns (Wang et al., 2007; De Smet and Moens,
2009; Wang et al., 2009; Zhang et al., 2010; Hu
et al., 2012) and discovering parallel sentences and
documents (Munteanu and Marcu, 2005; Enright
and Kondrak, 2007; Uszkoreit et al., 2010; Smith
et al., 2010; Krstovski and Smith, 2011, 2016)
across languages. Studies on fine-grained cross-
lingual alignment are mainly for bilingual lexicon
induction (e.g., (Fung and Yee, 1998; Rapp, 1999;
Koehn and Knight, 2002; Schafer and Yarowsky,
2002; Shao and Ng, 2004; Schafer III, 2006; Has-
san et al., 2007; Haghighi et al., 2008; Udupa
et al., 2009; Klementiev and Callison-Burch,
2010; Tamura et al., 2012; Irvine and Callison-
Burch, 2013, 2015b; Kiela et al., 2015; Irvine and
Callison-Burch, 2015a; Vulic and Moens, 2015;
Cao et al., 2016; Zhang et al., 2017b,a)) and name
translation mining (e.g., (Sproat et al., 2006; Kle-
mentiev and Roth, 2006; Udupa et al., 2008; Ji,
2009; won You et al., 2010; Kotov et al., 2011;
Lin et al., 2011; Sellami et al., 2014)) from non-
parallel corpora. However, these approaches are
mainly developed for general comparable corpora,
not specially for cross-lingual text streams; thus
many of them did not use the powerful stream-
level information (e.g., co-burst across languages).
In contrast to the word-level alignment meth-
ods, we attempt to mine burst-level alignment to
largely narrow down candidates, and introduce
powerful clues for improving accuracy and dis-
covering various language knowledge.

In contrast to previous cross-lingual projection
work like data transfer (Pado and Lapata, 2009)
and model transfer (McDonald et al., 2011), we
do not require any parallel data. Moreover, our
BINets are cheap to construct, which can be eas-
ily extended to other languages. This is also the
first attempt to apply the decipherment idea (e.g.,
(Ravi and Knight, 2011; Dou and Knight, 2012;
Dou et al., 2014)) to graph structures instead of
sequence data.

6 Conclusions and Future Work

This paper proposes an approach to deciphering
the Burst Information Network constructed from
foreign languages as a novel way to align cross-
lingual text streams. For the first time we propose
to model stream alignment as a network decipher-
ment problem. By leveraging the network struc-
tures with stream-level burst features as well as
various clues, our approach can accurately align
the important information units across languages
and derive a variety of knowledge. Given that our
approach is unsupervised, effective, intuitive, in-
terpretable, and easily implementable, it is promis-
ing to use it as a framework for never-ending lan-
guage knowledge mining from big data, which
might benefit NLP applications such as machine
translation and cross-lingual information access.

For future work, we plan to 1) conduct more
experiments and analyses following this prelim-
inary study to verify our approach’s effective-
ness for more languages and domains (e.g., so-
cial stream VS news stream); 2) attempt to use
word embedding (e.g., word2vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014) and ELMo
(Peters et al., 2018)) for local context encoding
and use it as a clue for decipherment; 3) apply
our approach to real-time coordinated text streams
for never-ending knowledge mining and use the
mined knowledge to improve the downstream ap-
plications.
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Abstract

Homographic puns have a long history in hu-
man writing, widely used in written and spo-
ken literature, which usually occur in a certain
syntactic or stylistic structure. How to rec-
ognize homographic puns is an important re-
search. However, homographic pun recogni-
tion does not solve very well in existing work.
In this work, we first use WordNet to under-
stand and expand word embedding for settling
the polysemy of homographic puns, and then
propose a WordNet-Encoded Collocation-
Attention network model (WECA) which
combined with the context weights for recog-
nizing the puns. Our experiments on the Se-
mEval2017 Task7 and Pun of the Day demon-
strate that the proposed model is able to dis-
tinguish between homographic pun and non-
homographic pun texts. We show the effec-
tiveness of the model to present the capability
of choosing qualitatively informative words.
The results show that our model achieves the
state-of-the-art performance on homographic
puns recognition.

1 Introduction

A pun is a writers use of a word in an ambiguous
and inconsistent way in language, often to play on
the different meanings of the word or utilize simi-
larly pronounced sounds for a common humorous
effect. Puns are widely used in written and spo-
ken literature, which intended as jokes. For ex-
ample, Tom Swifty by(Lippman and Dunn, 2000),
in which puns usually occur in a certain syntac-
tic or stylistic structure. From literature, speeches
and oral storytelling, puns are also a standard
rhetorical device, which also can be applied non-
humorously. For instance, Shakespeare is well
known for his puns, which continually appeared in
his non-comedic works by (Tanaka, 1992). Both

⇤Corresponding author

humorous and non-humorous puns have been the
theme of extensive and attractive works that has
led to discernment for the nature of puns with dou-
ble meaning.

There are many relevant studies on pun recogni-
tion in natural language processing. Many schol-
ars attempted to classify puns according to the
similar relationship between the pronunciations
and double meanings of the words. For exam-
ple, (Pafford, 1987) categorizes pun into homo-
phonic puns and homographic puns, which used
homonyms and polysemy of words respectively.
The research on pun recognition has carried out
according to this classification system of Redfern.
Our work also considers that puns consist of ho-
mophonic and homographic puns.

Type of Pun Example Pun Word
Homographic I used to be a banker interest

but I lost interest.
Homophonic When the church bought propane

gas for their annual
barbecue, proceeds went

from sacred to the propane.

Table 1: Pun Examples

Both homographic puns and homophonic puns
have double meanings to increase deep impression
in a certain environment. However, two types of
puns have their own features, respectively. Homo-
graphic puns, as an important class of puns, which
the words for two senses of puns share the same
orthographic form. While homophonic puns have
the similarity in pronunciations with double senses
that distinguished from homographic puns. The
former one mainly settles synonyms, while the lat-
ter one solves homonyms. Because of the differ-
ence, we can not use the unified model to distin-
guish. Table 1 illustrates the examples of homo-
graphic pun and homophonic pun.

In this study, we mainly focus on homographic
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puns since they widely used everywhere (Miller,
Tristan and Turković, Mladen, 2016) and easily
obtain in existing corpus. However, homographic
puns recognition in the current works does not
solve very well because of their confused double
meanings.

To solve the mentioned problem, we propose
a computational WordNet-Encoded Collocation-
Attention network model (WECA) to recognize
homographic puns. Our model takes semantic
word embedding and collocation into account for
homographic puns recognition. Based on the ex-
periments, the results show that our work will
improve the performance of homographic puns
recognition. This work is the first to recognize ho-
mographic puns with improved word representa-
tion and attention mechanism to the best of knowl-
edge. Here, our contributions are as follows.

• The paper applies the lexical ontology Word-
Net to understand and extend the word em-
bedding for solving the polysemy of homo-
graphic puns.

• The paper proposes a neural attention mech-
anism to extract the collocation for homo-
graphic puns classification, which combined
with Bi-LSTM to obtain the context weights.

• Experimental results on the datasets of Se-
meval2017 Task7 and Pun of the Day demon-
strate our method outperforms several base-
lines for recognition homographic puns. Fur-
thermore, visualization of selected examples
show the reasons that this model works well.

The rest of this paper is structured in the follow-
ing. Section 2 mainly reviews the related work on
word representation and puns classification. Sec-
tion 3 presents our proposed word embedding and
collocation attention-based network model. Sec-
tion 4 shows our experiments and discusses eval-
uation results. Finally, Section 5 concludes our
research contributions and offers the future work.

2 Related Work

In this section, we will review related works on
word representation and homographic pun recog-
nition for homographic puns classification briefly.

2.1 Word Representation
In recent years, word representation has the great
improvement because it solves data sparsity prob-

lem and obtain more semantic relations between
words compared with one-hot representation.

(Rumelhart et al., 1986) proposed the idea of
word distributed representation, which converts
all the words into a low-dimensional continu-
ous semantic space. This space took each word
as a vector. These distributed low-dimensional
word representation have been widely applied
in many NLP tasks, including machine transla-
tion(Sutskever et al., 2014; Bahdanau et al., 2014),
text classification (Niu et al., 2017; Du et al.,
2017), neural language models (Mikolov et al.,
2010, 2013) and parsing (Chen and Manning,
2014; Chen et al., 2015). Word embedding is taken
as the essential and available inputs for NLP tasks,
which enables encoding semantic representation
in meaningful vector space.

The studies show that word representations
are useful to achieve a good balance between
effectiveness and efficiency, such as Word2Vec
(Mikolov et al., 2013) and GloVe(Pennington
et al., 2014). Therefore, the semantic meanings
of words can reflect in the contexts according to
these distributed representation models.

However, homographic puns always have multi-
ple meanings. The word representation, consider-
ing as only one vector for each word, which puz-
zled by the understanding for polysemy of puns.
This paper combines the representations of lem-
mas, synsets and words from WordNet1(Miller,
2002) to understand multiple meanings of homo-
graphic puns. The lemma and synset annotation in
WordNet provide helpful semantic information for
detecting homographic puns.

2.2 Homographic Pun Recognition
In recent years, homographic puns have increas-
ingly become a respectable research topic, which
widely appears in rhetoric and literary criticism.
However, there were little related works in the
fields of computational linguistics and natural lan-
guage processing by (Miller, Tristan and Turković,
Mladen, 2016). In this subsection, we mainly in-
troduce some puns detecting methods.

There are many useful methods to classify the
puns in NLP. For example, (Kao et al., 2016;
Huang et al., 2017) used a probability statisti-
cal model to capture the latent semantic infor-
mation between words for detecting homographic
puns. (Jaech et al., 2016) proposed a new prob-

1WordNet: http://wordnet.princeton.edu/
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ability model to learn phoneme edit probabilities
for classifying the homophonic puns. The sys-
tem ECNU(Xiu et al., 2017) applied a supervised
training classifier, which helpful features derived
from WordNet and Word2Vec embeddings to dis-
tinguish between homographic puns. The sys-
tem Fermi (Indurthi and Oota, 2017) employed
a supervised approach for the detection of ho-
mographic puns. It used a bi-directional RNN
for a classification model and adopted the dis-
tributed semantic word embeddings as input fea-
tures. These methods do not consider the colloca-
tion between words in homographic puns.

The attention mechanism proposed by (Bah-
danau et al., 2014) to settle machine translation
problem, which was used to select the reference
words for words before translation. (Xu et al.,
2015) used attention model for image generation
to select the similar image regions. For text clas-
sification, (Yang et al., 2016) applied attention
mechanism into solving document-level classifica-
tion. Many other tasks in NLP used this mecha-
nism, including natural language question answer-
ing (Kumar et al., 2015), parsing (Vinyals et al.,
2014), image question answering(Yang et al.,
2015), and classification(Shen et al., 2018; Tan
et al., 2018). Therefore, this model is capable of
discovering the important and semantic informa-
tion. Meanwhile, attention mechanism can also
improve the performance of classification tasks.

Hence, we explore an attention mechanism for
collocation to mine the latent semantic informa-
tion between the part of speech words to achieve
good result for homographic puns recognition.

3 Methods

Homographic puns recognition could influence
by considering both the semantic word embed-
ding and collocation with the context weights
for homographic puns. In this section, we pro-
pose our model as WordNet-Encoded Collocation-
Attention network (WECA). Figure 1 demon-
strates the overall structure of our model.

It consists of three main components: an im-
proved word embedding with WordNet-Encoded
as inputs, a Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) as context weights in a sentence
for homographic puns and a fully-connected net-
work as the collocation-attention mechanism. The
attention networks combined by a concatenate op-
eration to discover the collocation. Then the con-

text weights and attention networks combined by
an element-wise multiplication operation in the
classification layer. We describe the details of
three components as follows.

3.1 WordNet-Encoded Word Embedding

The homographic pun is a clever trick to let one
word relate to two aspects or multiple meanings.
For example, “Before he sold Christmas trees, he
got himself spruced up” The pun word spruced
has two meaning: one meaning is spruce tree,
while the other is making oneself or something
look neater and tidier. We find this word spruced
means the last meaning in this situation. There-
fore, the polysemy of the ambiguity from homo-
graphic puns need additional large lexical ontol-
ogy. Thus, we apply WordNet for computational
linguistics and natural language processing.

Polysemy is critical factor for recognizing ho-
mographic puns. To combine the information of
multiple meanings, we propose giving a WordNet-
Encoded model (WE) to obtain the word embed-
ding for each word. WordNet is a lexical ontology
of words. Each word has multiple semantics corre-
sponding with respect to different senses and each
sense corresponds to multiple words.

We introduce lemmas, synsets (senses) and
words in WordNet. For example, the word is
“interest”. The word “interest” has three main
synsets: sake (a reason for wanting something
done), pastime (a diversion that occupies one’s
time and thoughts) and interest (a sense of con-
cern with and curiosity about someone or some-
thing). The lemmas eliminate the ambiguity of
each sense. For instance, the synset pastime rep-
resents a diversion that occupies one’s time and
thoughts, which contains lemmas pastime, inter-
est and pursuit. Then we propose two strategies to
generate the Word-Net-Encoded embedding based
on the information of lemmas and synsets in-
formation, Average Lemma Aggregation Model
(ALA) and Weighted Lemma Aggregation Model
(WLA).

Average Lemma Aggregation Model (ALA)
adopts a strategy of equal weight according to
meanings of homographic puns. ALA model
mixes all the lemmas of all the senses of a word to-
gether for each word. Hence, it represents the tar-
get word by using the average of its whole lemma
embedding and puts this together on the original
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Figure 1: WordNet-Encoded Collocation-Attention network model(WECA)

vector of target word. The formula is as follows:

w =
1

m

X

si
(w)2S(w)

X

li
(sj)2Li

(sj)

wlj sj (1)

which means the new embedding vector of w is
determined by the average of all its lemma embed-
ding. Here, m represents the number of lemmas
with overlapping senses with respect to the word
w, si is the sense i, lj is the lemma j. Finally,
word embedding of w is the concatenation of the
original vector and above new vector.

ALA model can apply lemmas to encoding la-
tent semantic relationship because lemmas share
the information by multiple words and senses.
Therefore, words sharing the same lemmas are
likely to obtain the similar representations.

Weighted Lemma Aggregation Model (WLA)
The ALA Model takes the lemma embedding to
encode lemma information for word representa-
tion. Although ALA model represents the aver-
age of all the lemma, which does not consider the
importance of certain lemmas. Hence, we con-
struct embedding for a target word with the help
of word senses and lemmas in WordNet that we
called WLA model. The formula is as follows:

w =
X

si
(w)2S(w)

|Li
(si)|
m

X

li
(sj)2Li

(sj)

wlj sj (2)

where m represents for all the number of lemmas
with overlapping senses with respect to the word

w, si is the sense i, lj is the lemma j, li
(sj) is the

number of lemmas in each sense with target word,
w is the new embedding considering the weighted
lemma information. Then, the target word embed-
ding concatenates new vector to original vector.

The weighted lemma strategy assumes one
sense of word obtains more attention if this sense
of word has more lemmas. We can show each
word as a special distribution on the sense. From
the results, WLA model is the best representation.

3.2 Bidirectional Long Short Term
Memory(Bi-LSTM) for Recognizing
Homographic Puns

Long Short Term Memory (LSTM) was proposed
by Hochreiter and Schmiduber (1997), which has
been widely adopted for text processing. There are
three gates and one cell in LSTM: an input gate it,
a forget gate ft, an output gate ot and a memory
cell ct. They are all vector in Rd. The equations
of transition are:

it = �(Wixt + Uiht�1 + Vict�1) (3)

ft = �(Wfxt + Ufht�1 + Vfct�1) (4)

ot = �(Woxt + Uoht�1 + Voct�1) (5)

c̃t = tanh(Wcxt + Ucht�1) (6)
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ct = ft�ct�1 + it � c̃t (7)

ht = ot�tanh(ct) (8)

where xt is an input vector at the current time step,
� is the sigmoid function and � is the element-
wise multiplication operation, W{i,f,o,c} ,U{i,f,o,c}
,V{i,f,o,c} are learned weight parameters, ht is the
hidden state vector. In LSTM, the hidden state ht

only encodes the front context in a forward direc-
tion but not consider the backward context.

Figure 2: The Structure of Bi-LSTM

In this study, we apply Bi-LSTM model(Graves,
2012) to capture the latent semantic information
of homographic puns for obtaining the context
weights. For each sentence, it has a forward
LSTM

�!
h and a backward LSTM

 �
h to con-

catenate the hidden states of two LSTMs as the
representation of corresponding word. Figure 2
illustrates the architecture of Bi-LSTM model.
{w1, w2, · · · , wn} represent the word vector in a
sentence whose length is N . Then, the forward
and backward contexts can take into account si-
multaneously. The equations of transition are:

�!
h t = H(W

x
�!
h
xt + W�!

h
�!
h

�!
h t�1 + b�!

h
) (9)

 �
h t = H(W

x
 �
h
xt + W �

h
 �
h

 �
h t�1 + b �

h
) (10)

hout = W�!
h y

�!
h t + W �

h y

 �
h t + by (11)

where
�!
h t is a forward LSTM,

 �
h t is a backward

LSTM, hout is the output of Bi-LSTM.

3.3 Collocation-Attention Mechansim
It proposes that not all the words provide the same
contribution of word representation for the sen-
tence. Especially for homographic puns recogni-
tion, the collocation between candidate pun words
in a sentence offers more clues for getting the col-
locational word weights. Miller points out that
the candidate pun words mainly consist of nouns,
verbs, adjectives and adverbs in each pun. For ex-
ample, “The money doesn’t grow on the tree, but it
can grow on the branch.” The word “branch” is the
pun word. From this example, we know that the
collocation of candidate pun words {money, grow,
tree, branch}, which should be more important for
recognizing homographic puns.

Therefore, it is necessary to learn about the la-
tent relationship in collocation of words. We de-
sign an attention mechanism to obtain the colloca-
tional weights by extracting such words of collo-
cation from nouns, verbs, adjectives and adverbs,
respectively. Then we concentrate on the four
parts in sentences with pun to aggregate the in-
formative words for classifying the homographic
puns. This model uses an attention network taking
word embedding with WordNet-Encoded as input
then to extract polysemy attention signal, which
made use of polysemy to understand ambiguity of
homographic puns. The formula is as follows:

uijt = V · tanh(Wuhijt + bw) (12)

↵ijt =
exp(uijt)PTx
t=1 exp(uijt)

(13)

cij =
TxX

t=1

↵ijthijt (14)

where hijt is a hidden state at each
time step for each part of speech,
j 2 {nouns, verbs, adjectives, adverbs},
uijt is a hidden representation of hijt through a
one-layer MLP, ↵ijt is a normalized importance
weight through a softmax function with each part
of speech, cij is a context vector as a high level
representation over the words from attention-
based model by the weighted mean of the hidden
state sequence hijt for each part of speech.

After combining the attention networks with the
context weights in a sentence, we merge all the
cij vectors from collocation attention model and
take the uniformed context weights in a sentence.
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Then we mix the two parts results with element
wise multiplication operation to recognize the ho-
mographic puns. The formula is as follows:

ci = [cinouns; civerbs; ciadjectives; ciadverbs] (15)

lout = Softmax(hout) (16)

si = ci · lout (17)

where ci is merged by cij , j 2
{nouns, verbs, adjectives, adverbs}, lout is
the softmax function of hout, si is the result with
the multiplication operation of ci and lout.

The model can be trained in an end-to-end way
by backpropagation, where objective function is
the cross-entropy loss. Let y be the target distribu-
tion and ŷ be the predicted distribution. The goal
of training is to minimize the cross-entropy error
between y and ŷ for all sentences.

loss = �
X

i

X

j

yj
i logŷi

j + �k✓k2 (18)

where i is the index of sentence, j is the index of
class. Our classification is two way. � is the L2
regularization term. ✓ is the parameter set.

4 Experiments and Evaluation

In this section, we first evaluate the effective-
ness of our WordNet-Encode model (WE) on two
tasks to detect the polysemy of homographic puns.
Then, we examine the performance of our WECA
model compared with existing methods. Finally,
we show the effectiveness of our model.

4.1 Experimental Setting
In this section, we introduce datasets, evaluation
metrics, baseline methods, and present the details
of the training process of our model.

Datasets To verify the effectiveness of our pro-
posed model, we use two datasets: SemEval2017
Task72 and Pun of the Day3 .

SemEval2017 Task7. This dataset is composed
of homographic and heterographic puns for rec-
ognizing and interpreting puns. We focus on ho-
mographic puns detection in semantic rather than
phonology. The homographic pun word will have
at least two words sense in the WordNet(Miller

2SemEval2017 Task7: htto://alt.qcri.org/semeval2017/task7/
3Pun of the Day: htto://www.punoftheday.com/

and Gurevych, 2015). Table 1 shows a detailed
statistical distribution of our datasets.

Pun of the Day. This dataset only includes pun
content in the beginning. Then it collects the neg-
ative samples from Yahoo! Answer4 , AP News5 ,
Proverb, and New York Times in order to balance
the distribution of positive and negative examples,
which adapt to decrease the domain discrepancy.
Table 2 provides a complete statistical description
of our dataset.

Dataset Positive Negative Average
Length

Task7 1607 643 13.1
Pun of the Day 2423 2403 13.5

Table 2: Statistics of Datasets

Metrics We apply the standard measures pre-
cision, recall, accuracy and F1-score to evaluate
the effectiveness for homographic puns recogni-
tion, which also adopted as metrics in SemEval
2017 Task7 evaluation.

Baselines We compare several strong baselines
as follows.

LSTM: LSTM without WordNet-Encoded em-
bedding and Collocation-Attention mechanism.

Bi-LSTM: Bi-LSTM without WordNet-
Encoded embedding and Collocation-Attention.

Bi-LSTME: Bi-LSTM with WordNet-Encoded
embedding used the WLA model.

Bi-LSTM-Attention: Bi-LSTM with single at-
tention mechanism.

Fermi and N-Hance are the good performing
model in the SemEval2017 task7.

Top1 Fermi: Fermi took a supervised ap-
proach for homographic puns detection. It did
not construct own train data set, but rather split
the shared task data set into train sets and test
sets(Miller, Tristan and Hempelmann, Christian
and Gurevych, Iryna, 2017). It used a Bi-RNN
to learn a classification model and treat the word
embedding as the input features.

Top2 N-Hance: It assumed every pun had a
particularly strong association with exactly one
other word in context(Miller, Tristan and Hempel-
mann, Christian and Gurevych, Iryna, 2017).
Then it calculated PMI between words in context
to detect and locate puns. If the score exceeded

4htto://answers.yahoo.com/
5htto://hosted.ap.org/dynamic/fronts/HOME?SITE=AP
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a certain threshold, the text assumed to contain a
pun. Otherwise, the text assumed to have no pun.

WECA: Here, we use Bi-LSTM with WordNet-
Encoded embedding with WLA model and
Collocation-Attention mechanism.

Training Details In experiments, our model is
tuned with 5-fold cross validation. All word vec-
tors are initialized by GloVe. We use 50, 100, 200
and 300 dimension to verify the performance, re-
spectively. Here, 200 dimension is the best perfor-
mance. Therefore, we set the dimensions of word,
synset and lemma embedding to be 200. The size
of units in LSTM is 800. RMSprop is used for our
optimization method. We use learning rate decay
and early stop in the training process. All models
are trained by mini-batch of 64 instances.

4.2 The Effectiveness of WordNet-Encoded
Word Embedding

Comparing the GloVe model with our ALA model
and WLA model, we evaluate the quality of our
improved word representations to detect the ho-
mographic puns. In this experiment, we use the
same classifier Bi-LSTM and parameters to verify
the effectiveness of our word embedding.

Figure 3 and Figure 4 show the results of dif-
ferent word embedding for detecting homographic
puns. From the results we can observe that:

(1) Our models ALA and WLA, which out-
perform the original vector GloVe on both two
datasets. It indicates that our model can better cap-
ture the semantic relations of words by utilizing
lemma annotation properly based on the WordNet.

(2) The ALA model represents each word with
the average of its lemma embedding. In gen-
eral, the ALA model performs better than GloVe,
showed that lemma and synset of WordNet is very
useful. The reason is the words sharing mutual
lemma representation are helpful with each other.

(3) The WLA model mostly performs better
than GloVe and ALA model. This model can
obtain a weighted distribution according to the
senses and lemmas. The results show that their
different senses are commonly different from oth-
ers, but share certain representation.

4.3 Pun Recognition with WordNet-Encoded
Collocation-Attention Network (WECA)

Our model WECA, combination of WordNet-
Encoded word embedding and Collocation-
Attention network with context weight, which
performs compared with the suggested baselines.

Figure 3: Comparison of Different Word Embedding
on SemEval2017 Task7

Figure 4: Comparison of Different Word Embedding
on Pun of the Day

Here, we use Pun of the Day as the training set
to obtain all the parameters, and test the results
of homographic pun recognition in SemEval2017
task7. The results are shown in Table 3.

Precision Recall F1
LSTM 81.80 83.7 82.43

Bi-LSTM 85.40 83.64 84.51
Bi-LSTME 85.87 85.07 85.46

Bi-LSTM-Attention 84.92 85.62 85.26
N-Hance 75.53 93.34 83.50
WECA 89.19 90.64 89.21

Table 3: Comparison of Different Models of Homo-
graphic Puns Recognition

(1) Bi-LSTM has the better performance for ho-
mographic puns detection compared with LSTM
(84.51% vs.82.43%). It shows that Bi-LSTM ex-
ploits two parallels to discover more context in-
formation. At the same time, Bi-LSTME out-
performs Bi-LSTM (85.46% vs.84.51%), which
demonstrating the effectiveness of the WordNet-
Encoded word embedding.

(2) Bi-LSTM-Attention performs slightly better
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Precision Recall F1
Fermi 90.24 89.70 89.97

WECA 91.43 90.53 90.98

Table 4: Comparison of WECA and Fermi of Homo-
graphic Puns Recognition

than Bi-LSTM and LSTM (85.26% vs. 84.51%,
82.43%). The reason is that the attention mech-
anism can assign the weight to the whole words
according to the context information.

(3) Our model WECA has a better performance
compared with Bi-LSTME , Bi-LSTM-Attention
and N-Hance (87.45% vs. 85.46%, 85.26%,
83.50%). N-Hance is the second place in Se-
mEval2017 task7. It shows the WordNet-Encoded
word embedding can capture more semantic in-
formation between words with the help of lemma
and synsets in WordNet. Meanwhile, it presents
that the attention network mechanism combined
with collocation of the specific part of speech of
puns, which capture the characteristic information
to recognize the homographic puns.

The best perform of SemEval2017 task7 is
Fermi. However, Fermi only evaluates on 675
of 2250 homographic contexts(Miller, Tristan and
Hempelmann, Christian and Gurevych, Iryna,
2017) in SemEval2017 task7. Thus, our model
uses 675 as a test set and rest of data as a train-
ing set. The results are shown in Table 4. Experi-
ment results present our model outperforms Fermi
under the same data distribution. It shows the ef-
fectiveness of our model again.

4.4 Visualization of Model

In order to verify our model is enable to select
the valuable information of words that reflected
the collocation, we visualize the attention layers
for several sentences in Pun of the Day and Se-
mEval2017 Task7 data sets whose labels are cor-
rectly predicted by our model in Figure 5. We
choose two examples. One presents collocation
between nouns, the other presents collocation be-
tween verbs.

Each line is a sentence. Blue denotes word
weight. If color of word is darker, the word is more
important. Figure 5 shows our WECA model can
select words carrying ambiguous meanings from
the collocation of homographic puns. For exam-
ple, in the first sentence, it highlights “interest”,
which is worthy attracting more attention because
of multiple meanings for the pun word. In the

Figure 5: Visualization of attention layers

Figure 6: Average context weight of all sentences by
Bi-LSTM

second sentence, “sleep” is selected word by our
attention model as related to homographic puns.
Therefore, attention networks of collocation is ef-
fective for recognizing homographic puns.

We apply the Bi-LSTM to capture latent seman-
tic context for weighting part of speech which in-
cluded nouns, verbs, adjectives and adverbs from
forward and backward direction. Figure 6 shows
Bi-LSTM model distributes weights to the four
part of speeches. The weights of verbs occupy
the first place, then second one is nouns, adjec-
tives and adverbs are lower. Meanwhile, it demon-
strates the importance of part of speech.

Thus, we choose two examples to illustrate
weights with the four part of speeches according
to context information by Bi-LSTM in Figure7.
For the first example, the word “cured”, as a verb,
which is a pun word. It shows weights of verbs are
highest allocation by Bi-LSTM. For the second ex-
ample, the word “cinch”, as a noun, which is a pun
word. It illustrates that Bi-LSTM distributes the
higher weights to nouns, which presents the im-
portance of nouns from the context semantic in-
formation. Hence, context weights providing by
Bi-LSTM are helpful of the collocation for recog-
nizing the homographic puns.
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Figure 7: Visualization of Bi-LSTM

5 Conclusion and Future Work

In this study, we propose a computational model
WECA combined with WordNet-Encoded word
embedding and Collocation-Attention network.
We extend the semantic information of word em-
bedding by lemma and synset according to Word-
Net. We also apply a neural attention network,
combined with Bi-LSTM, which captures the col-
location of homographic puns. Experimental re-
sults show our model achieves the best perfor-
mance and outperforms several baselines.

In future work, we would like to find an appro-
priate way in incorporating the external linguistic
knowledge to improve the performance of homo-
graphic puns recognition. We also focus on au-
tomatically generating homographic puns. Those
are all promising jobs we can pursue in the future.
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Abstract

Chinese spelling check (CSC) is a challenging
yet meaningful task, which not only serves as
a preprocessing in many natural language pro-
cessing (NLP) applications, but also facilitates
reading and understanding of running texts in
peoples’ daily lives. However, to utilize data-
driven approaches for CSC, there is one ma-
jor limitation that annotated corpora are not
enough in applying algorithms and building
models. In this paper, we propose a novel ap-
proach of constructing CSC corpus with au-
tomatically generated spelling errors, which
are either visually or phonologically resem-
bled characters, corresponding to the OCR-
and ASR-based methods, respectively. Upon
the constructed corpus, different models are
trained and evaluated for CSC with respect to
three standard test sets. Experimental results
demonstrate the effectiveness of the corpus,
therefore confirm the validity of our approach.

1 Introduction

Spelling check is a crucial task to detect and cor-
rect human spelling errors in running texts (Yu
and Li, 2014). This task is vital for NLP appli-
cations such as search engine (Martins and Silva,
2004; Gao et al., 2010) and automatic essay scor-
ing (Burstein and Chodorow, 1999; Lonsdale and
Strong-Krause, 2003), for the reason that spelling
errors not only affect reading but also sometimes
completely alter the meaning delivered in a text
fragment. Especially, in Chinese language pro-
cessing, spelling errors can be more serious since
they may affect fundamental tasks such as word
segmentation (Xue, 2003; Song and Xia, 2012)
and part-of-speech tagging (Chang et al., 1993;
Jiang et al., 2008; Sun, 2011), etc. Of all causes
lead to spelling errors, a major one comes from the
misuse of Chinese input methods on daily texts,

⇤ This work was conducted during Dingmin Wang’s in-
ternship in Tencent AI Lab.

Sentence Correction

⌘ÏîÂ§�˘ÖŸõ Ò (ji2) œ—�Ñã Ú (yi3)

(⌘ÏÌ⌦� y (ta1)/�*àj�Ñ7i ÷ (ta1)

Table 1: Two examples of Chinese sentences con-
taining spelling errors. Spelling errors are marked
in red. The first sentence contains a visually sim-
ilar spelling error, i.e., Ú (yi3) is misspelled as
Ò (ji2). The second sentence contains a phono-
logically similar spelling error, i.e.,÷ (ta1) is mis-
spelled asy (ta1).

e.g., emails and social media posts. Table 1 il-
lustrates two examples of such Chinese spelling
errors. The first incorrect sentence contains a
misused character, Ò (ji2)1, which has a similar
shape to its corresponding correct character, i.e.,
Ú (yi3). In the second incorrect sentence, the
boxed spelling errory (ta1) is phonetically iden-
tical to its corresponding correct one÷ (ta1).

Owing to the limited number of available
datasets, many state-of-the-art supervised models
are seldom employed in this field, which hinders
the development of CSC. Currently, some main-
stream approaches still focus on using unsuper-
vised methods, i.e., language model based ones
(Chen et al., 2013; Yu et al., 2014; Tseng et al.,
2015; Lee et al., 2016). As a result, the devel-
opment of CSC techniques are restricted and thus
CSC performance is not satisfied so far (Fung
et al., 2017). To enhance CSC performance, the
biggest challenge is the unavailability of large
scale corpora with labeled spelling errors, which
is of high value for training and applying super-
vised models. Such issue of data absence is mainly
caused by the fact that annotating spelling errors is
an expensive and challenging task.

To address the data unavailability issue so that
1We use Chinese pinyin to identify the pronunciation for

each character, where the last number represents different
tones (ranging from 1 to 4) in Pinyin, same below.
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Figure 1: An example process of generating V-style errors by the OCR-based method. In the OCR
detection results, except for] (yan4), the other three characters, i.e.,ü (li4),fl (mu4), and (ji1), are
incorrectly recognized as⌫ (su4),Ê (mo4), andë (ji2), respectively. All the three incorrect characters
have similar shapes with their corresponding correct references.

to facilitate CSC with data-driven approaches, in
this paper, we propose a novel approach that au-
tomatically constructs Chinese corpora with la-
beled spelling errors. Specifically, given that Chi-
nese spelling errors mainly result from the mis-
use of visually and phonologically similar char-
acters (Chang, 1995; Liu et al., 2011; Yu and Li,
2014), we propose OCR-based and ASR-based
methods to produce the aforementioned two types
of misused characters. Note that, different from
detecting spelling errors from incorrect sentences,
our proposed approach aims at automatically gen-
erating texts with annotated spelling errors like
those in Table 1. With the help of OCR- and ASR-
based methods, CSC corpora are constructed with
annotated visual and phonological spelling errors.

In our experiments, qualitative analysis illus-
trates that incorrectly recognized Chinese char-
acters by OCR or ASR toolkits are not trivial
for human to detect, while interestingly, human
are likely to make such spelling errors in their
daily writing. In the quantitative comparison, we
cast Chinese spelling check into a sequence label-
ing problem and implement a supervised bench-
mark model, i.e., bidirectional LSTM (BiLSTM),
to evaluate the performance of CSC on three stan-
dard testing datasets. Experimental results show
that the BiLSTM models trained on our generated
corpus yield better performance than their coun-
terparts trained on the training dataset provided in
the standard testing datasets. To further facilitat-
ing the CSC task, we construct confusion sets by
collecting all incorrect variants for each character
and their corresponding correct references. The
effectiveness of the confusion set is confirmed in
the error correction task, indicating that the con-
structed confusion sets are highly useful in many
existing Chinese spelling check schemes (Chang,
1995; Wu et al., 2010; Dong et al., 2016).

2 Automatic Data Generation

Spelling errors in Chinese are mainly caused by
the misuse of visually or phonologically similar
characters (Chang, 1995; Liu et al., 2011; Yu and
Li, 2014). Errors of visually similar characters
(henceforth V-style errors) are due to the promi-
nence of character pairs visually similar to each
other. The reason is that, Chinese, as a hiero-
glyph language, consists of more than sixty thou-
sand characters2. They are constructed by a lim-
ited number of radicals and components3. As
for errors caused by the misuse of phonologically
similar characters (henceforth P-style errors), we
note that pronunciations of Chinese characters are
usually defined by Pinyin, which consists of ini-
tials, finals, and tones4. According to Yang et al.
(2012), there are only 398 syllables for thousands
of characters in modern Chinese. As a result, there
are many Chinese characters sharing similar pro-
nunciation, which further leads to the prominence
of P-style errors. In the rest of this section, we de-
scribe how we generate these two types of errors
in Section 2.1 and 2.2, respectively.

2.1 OCR-based Generation
Inspired by the observation that optical character
recognition (OCR) tools are likely to misidentify
characters with those visually similar ones (Tong
and Evans, 1996), we intentionally blur images
with correct characters, and apply OCR tools on
them to produce V-style spelling errors.

In detail, we use Google Tesseract (Smith,
2007) as the OCR toolkit and the generation pro-
cess is illustrated in Figure 1. Given a sentence,

2http://www.hanzizidian.com.
3There are less than three hundred radicals in to-

tal. https://en.wikipedia.org/wiki/Radical_
(Chinese_characters)

4https://en.wikipedia.org/wiki/Pinyin
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as the first step, we randomly select 1 ⇠ 2 charac-
ter(s) from it as our target characters to be detected
by Tesseract, denoted as Ctargets. Specifically, ex-
cept for Chinese characters, other characters like
punctuations and foreign alphabets are excluded
and we also filter those Chinese characters of low
frequency5 based on the statistics of the Chinese
Wikipedia Corpus6. Second, we transfer Ctargets

from text to image with 100 ⇥ 100 pixels, namely,
each generated image has a same size. Third, we
randomly blur a region7 in the produced images
using Gaussian blurring (Bradski, 2000), which
aims at leading the OCR toolkit to make mistakes.
Finally, we use Google Tesseract to recognize the
blurred images. Once the recognized result does
not match to the original one, a V-style error is
generated, which is used to replace the original
character in the sentence, resulting in a sentence
with V-style spelling error(s). After the aforemen-
tioned steps, we obtain the spelling errors for each
sentence with their correct references.

The raw texts used for OCR-based method
are mainly from newspaper articles, which are
crawled from People’s Daily, an official newspa-
per website8, of which articles are reported to un-
dergo a strict edition process and assumed to be all
correct. We divide these texts into sentences using
clause-ending punctuations such as periods (⇥),
question mark (�), and exclamation mark (�)
(Chang et al., 1993). In total, we obtain 50, 000
sentences, each of which contains 8 to 85 char-
acters, including punctuations. These sentences
are then handled by the OCR-based method as we
describe before, resulting in an annotated corpus
containing about 40, 000 annotated sentences with
56, 857 spelling errors. Note that in our experi-
ment, we find that the OCR toolkit can still cor-
rectly detect the characters in the produced images
even we blur part of the images. This explains

5In our setting, Chinese characters occurring less than five
times in the corpus are considered as low-frequency ones.

6https://dumps.wikimedia.org/zhwiki/
7A Chinese character may be misspelled to other different

characters, resulting in different spelling errors. For example,
the Chinese character (ji1) could be misspelled as÷ (ji1),
ë (ji2), or k (ji1), such spelling errors could be obtained
by blurring different locations of the given character, which
makes it possible for the OCR toolkit to give different recog-
nized results for a same character. According to our experi-
ment, if we blur the entire character, we found that the incor-
rectly recognized results are almost the same. As a result, we
could not obtain different spelling errors for a same character.
Specially, the blurred location may be different, but the size
of the region to be blurred is the same for all images.

8http://www.people.com.cn/

Figure 2: Two cases from the OCR-based method.
Char (OCR): the character recognized by the
OCR-based method; Char (gold): the correspond-
ing correct character.

why the size of generated annotated sentences is
smaller than that of the original sentences. We de-
note the dataset by D-ocr, and show its statistics in
the D-ocr column in Table 3.

Bad Cases and the Solution Although the OCR-
based method work smoothly, there are still some
cases worth further investigation. By analyzing
the generated spelling errors by this method, we
find that in terms of shape, there exist some incor-
rectly recognized characters by the OCR toolkit
that greatly differ from their corresponding cor-
rect characters. For example, for the blurred image
containing the character Ü (ling3), the Tesseract
incorrectly recognizes it as» (shi4), which is to-
tally different fromÜ (ling3) in shape. Therefore,
these cases should be excluded because human are
less likely to make such mistakes. In solving this
problem, we propose a novel approach to judge
whether two characters are visually similar by cal-
culating the edit distance based on the strokes of
Chinese characters. Similar to English words con-
sisting of alphabets, a Chinese character can be
split into different strokes9. To this end, we obtain
the strokes of Chinese character from the Online
dictionary10. Empirically, given two Chinese char-
acters, c1 and c2, we set 0.25⇤ (len(c1)+ len(c2))
as the threshold, ⌘, where len(c) denotes the num-
ber of strokes for the Chinese character c. If
the edit distance of two characters is more than a
threshold ⌘, we consider them not to be similar in
shape. To better clarify it, a bad case and a good
case are shown in Figure 2.

9https://en.wikipedia.org/wiki/Stroke_
(CJKV_character)

10https://bihua.51240.com/
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㈂䄜ⱁ䊣⭥㬒ヅ㏐Speech 
Recognition㆗䄜ⱁ䊣⭥㬒ヅ㏐ Text to

 Speech

Figure 3: The full pipeline of generating P-style errors by ASR-based method. In this example,≈ (jin3)
is incorrectly recognized as= (jin4) marked in red, both of which have a similar pronunciation.

Case Gold Sentences Incorrectly-recognized results Type
1 �˘|⇥⇣§ë6\(�'ÑP- �˘ b |⇥⇣§ë6\(�'ÑP- D
2 Ù’ö–⇢€LÑŒ⇥D—ïe ° © ö–⇢€LÑŒ⇥9 ÑD—ïe N
3 �bπOFT�Óò � ≥ Œ f � T�Óò T
4 F/�x�»ÿ/—�Ü F/� L �»ÿ/—�Ü C

Table 2: Four incorrectly-recognized cases with different types of errors. D: Different lengths with that
of the original one. N: Not a P-style error. T: Too many errors. C: Correct case to collect.

2.2 ASR-based Generation
Similar to OCR tools, automatic speech recogni-
tion (ASR) tools may also mistake characters for
others with similar pronunciations (Hartley and
Reich, 2005). To build an annotated corpus of
P-style errors, we follow the similar inspiration
with those for V-style errors and OCR tools, and
adopted a pipeline as shown in Figure 3. However,
given the availability of various speech recogni-
tion datasets, we employ a simpler approach. We
exploit a publicly available Mandarin speech cor-
pus, AIShell (Bu et al., 2017), which contains
around 140,000 sentences with utterances11. We
use Kaldi (Povey et al., 2011), a speech recogni-
tion toolkit, to transcribe the utterances into rec-
ognized sentences. Finally, by comparing the
recognized sentences with the original ones, we
can identify whether the recognition results are
correct. If not, they can serve as incorrectly-
recognized results and be used to build a corpus
with P-style spelling errors.

Bad Cases and the Solution For generated P-
style errors, we also identify some bad cases,
which potentially introduce much noise. To im-
prove the quality of the generated corpus, a solu-
tion is thus needed to remove them. Table 2 gives
three types of bad cases with a good one. We de-
scribe the solution to deal with them as follows.

First, we discard all incorrectly recognized re-
sults similar to Case 1, which has different lengths
comparing to the corresponding reference sen-
tence. Second, the incorrect characters in Case

11Collected from 400 people from different dialect areas
in China. http://www.openslr.org/resources/
33/data_aishell.tgz

2 have totally different pronunciations with their
corresponding characters in the gold sentence.
Such cases do not satisfy our requirement in gener-
ating P-style errors. To this end, we obtain the pro-
nunciation by pinyin12 of Chinese characters from
an online Chinese lexicon13. Then it is easy to
identify whether the incorrectly-recognized char-
acters have similar or same pronunciation with
their corresponding characters in the gold sen-
tence. Specifically, in terms of Pinyin, two charac-
ters have similar pronunciation when they have the
same initials and finals but different tones, i.e., da2
and da1. Third, according to Chen et al. (2011),
there may have two errors per student essay on av-
erage, which reflects the fact that that each sen-
tence will not contain more than two spelling er-
rors on average. Therefore, we remove those
incorrectly-recognized results that contains more
than two incorrect characters as shown in Case 3.
After the aforementioned steps, we generate a cor-
pus with more than 7K P-style spelling errors in
total. We denote it D-asr and show its statistics in
the D-asr column in Table 3.

3 Evaluation

3.1 Benchmark Data
To evaluate the quality of the generated corpora,
we adopt three benchmark datasets from 2013–
2015 shared tasks (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015)14 on CSC. Table 4 reports the

12Pinyin is the standard method to define the pronunciation
of a Chinese character. https://en.wikipedia.org/
wiki/Pinyin

13http://www.zdic.net
14These datasets are written in traditional Chinese, so to

keep the consistency with our generated corpus of simplified
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D-ocr D-asr D
Sentences # 40,000 40,000 80,000
Characters # 915,949 716,509 1,632,458
Errors # 56,857 75,667 132,524

Table 3: Statistics of our generated corpus. D-
ocr denotes the corpus generated by OCR-based
method, D-asr denotes the corpus generated by
ASR-based method and D is the combination of
D-ocr and D-asr.

statistics of the three standard datasets, including
training and test parts. Consider that the quality
of the training dataset has a significant impact on
models’ performance on the test datasets. Thus
in this paper, we propose a metric, Ctrain:test, to
measure the correlation degree between the train-
ing and test dataset by calculating the number of
spelling errors that occur in them:

Ctrain:test =

��Etrain \ Etest

��
��Etest

�� (1)

where Etrain and Etest refer to the set of spelling
errors in the training dataset and the test dataset,
respectively. Each element in the set is a pair con-
taining a correct character and a misspelled char-
acter, e.g., (º (han4), æ (han4)). Table 5 illus-
trates that, for three different testing datasets, the
entire generated corpus D achieves 74.1%, 80.6%
and 84.2% on Ctrain:test, respectively, which are
much higher than that of Trn13, Trn14 and Trn15.
This difference may denote the validity of the gen-
erated corpus, with adequate spelling errors.

3.2 Qualitative Analysis
Setup To evaluate whether the generated corpus
contains errors that are easily made by human, we
randomly select 300 sentences from it for man-
ual evaluation, with 150 from D-ocr and 150 from
D-asr. Three native Chinese speakers, who are
college students, are invited to read and annotate
errors in these sentences. Then, we analyze the
annotated results by three college students from
two levels: sentence-level and error-level. On the
sentence-level, we consider a sentence to be cor-
rectly annotated only if all errors in the sentence
are recognized. On the error-level, we calculate
the percentage of the number of correctly anno-
tated errors out of the total number of errors.
Chinese, we convert these datasets from tradition Chinese
to simplified Chinese using the OpenCC, an Open-source
Chinese Converter. https://github.com/BYVoid/
OpenCC

Error # Char # Sent #

201315 Trn13 324 17,611 350
Tst13 966 75,328 1,000

201416 Trn14 5,224 330,656 6,527
Tst14 510 54,176 1,063

201517 Trn15 3,101 95,114 3,174
Tst15 531 34811 1,100

Table 4: Statistics of three standard datasets. Er-
ror # denotes the number of spelling errors, Char
# represents the number of Chinese character and
Sent # refers to the number of sentences.

Train:Test C (%) Train:Test C (%)
Trn13 : Tst13 16.2 D : Tst13 74.1
Trn14 : Tst14 53.9 D : Tst14 80.6
Trn15 : Tst15 46.7 D : Tst15 84.2

Table 5: Correlation results of Trn13, Trn14, Trn15

and D with Tst13, Tst14, Tst15.

Results Table 6 shows the information of 300
sentences and the annotation results on them. The
average recall in the table illustrates that three stu-
dents have a higher recognition rate for errors from
D-asr than that from D-ocr, which, to some extent,
indicates that P-style errors are easier to be de-
tected than V-style ones. Besides, we observe that
three volunteers fail to identify around 36.9% er-
rors on average, which may indicate that our gen-
erated sentences include some challenging errors
which are likely to be made by human. Such er-
rors are valuable for CSC since they are potential
real cases in people’s writing or typing.

Case Study To qualitatively analyze why some
spelling errors are not detected by human, we con-
duct a case study on an example sentence contain-
ing some spelling errors that are not found by the
three students. The sentence is?�Ë⌃/�Õ
¸æ (translation: politics and industry parts are a
kind of a chronic disease), in which the third char-
acterË (bu4) is a spelling error and should be cor-
rected as � (bu4). In this example, Ë⌃ (trans-
lation: a part of) and �⌃ (translation: equally
treat) are two highly common Chinese words and

15http://ir.itc.ntnu.edu.tw/lre/
sighan7csc.html

16http://ir.itc.ntnu.edu.tw/lre/
clp14csc.html

17http://ir.itc.ntnu.edu.tw/lre/
sighan8csc.html
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Stu1 Stu2 Stu3 R
S-ocr 84/150 100/150 75/150 57.3
E-ocr 104/170 121/170 100/170 72.0
S-asr 95/150 79/150 106/150 62.0
E-asr 341/393 179/393 356/393 74.3

Table 6: Human evaluation results. S-ocr refer
to 150 sentences from the D-ocr and E-ocr rep-
resents the errors in S-ocr, similar for S-asr and E-
asr. R denotes the average recall of three students.
Numbers in bold denotes the correctly-annotated
results by students.

easy to be considered as correct. However, consid-
ering the preceding word ?� (translation: poli-
tics and industry) and the subsequent words/�
Õ¸æ (translation: a kind of chronic disease), we
can see that Ë⌃ does not fit the current context
and should be corrected as�⌃. This case study
confirms that our generated corpus contains some
spelling errors like human made ones in their writ-
ing or typing, which further demonstrates its qual-
ity and the effectiveness of our approach.

3.3 Quantitative Comparison

3.3.1 Chinese Spelling Error Detection

In this section, we evaluate the quality of our gen-
erated corpus through Chinese spelling detection.
We firstly explore how different proportions of P-
style and V-style errors affect the quality of the
corpus. Then we compare the detection perfor-
mance of the generated corpus with that of training
datasets provided in the three shared tasks.

Setup We cast Chinese spelling error detection
into a sequence tagging problem on characters,
in which the correct and incorrect characters are
tagged as 1 and 0, respectively18. We then im-
plement a supervised sequence tagging model,
i.e., bidirectional LSTM (BiLSTM) (Graves and
Schmidhuber, 2005), as our baseline to evalu-
ate the quality of different corpus. The hidden
size of the BiLSTM is set to 150 and the other
hyper-parameters are tuned on a development set
consisting of 10% randomly selected sentences
from the training data. We minimize categori-
cal cross-entropy loss for the model, with RM-
Sprop (Graves, 2013) as the optimizer.

18The detection process can be considered as a problem of
binary classification.

Figure 4: F1 scores achieved by different pro-
portions of D-ocr and D-asr on three testing
dataset (Tst13,Tst14 and Tst15). The total size
of the corpus is 40k, the percentage of which the
x-axis represents from D-ocr.

Results The performance of BiLSTM trained on
different proportions of D-ocr and D-asr aims at
exploring the quality of the generated corpus in-
fluenced by the distribution of P-style and V-style
spelling errors. Figure 4 shows that when the
size of training dataset is fixed (=40k), different
proportions of P-style and V-style errors achieve
different F1 scores, denoting that the proportion
of P-style and V-style spelling errors affects the
quality of the generated corpus. Specifically, it is
observed that a 4:6 proportion of D-ocr and D-
asr achieves the best performance on three test-
ing datasets when compared with other propor-
tion ratios. In addition, for the two special pro-
portions (0% and 100%), it is seen that with the
same size of corpus, the BiLSTM model trained
on D-asr achieves better performance than that
on D-ocr, which indicates that P-style spelling er-
ror contributes more to the quality of the corpus.
This experimental result complies with the previ-
ous conclusion (Liu et al., 2009, 2011) that most
of spelling errors are related to the pronunciations.

Furthermore, to better illustrate the quality of
the generated corpus, we compare it with some
training datasets, which are manually annotated
(Wu et al., 2013; Yu et al., 2014; Tseng et al.,
2015). According to previous analyses on the ex-
perimental results shown in Figure 4, we choose
the 4:6 proportion of P-style and V-style spelling
errors to construct the training data in the fol-
lowing experiments. Specifically, we build five
different sizes of datasets: D-10k19, D-20k, D-
30k, D-40k and D-50k, which are extracted from

19D-10k denotes the corpus contains 10k sentences, similar
for D-20k, D-30k, D-40k and D-50k.
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Tst13 Tst14 Tst15

P R F1 P R F1 P R F1
Trn 24.4 27.3 25.8 49.8 51.5 50.6 40.1 43.2 41.6
D-10k 33.3 39.6 36.1 31.1 35.1 32.9 31.0 37.0 33.7
D-20k 41.1 50.2 45.2 41.1 50.2 45.2 43.0 54.9 48.2
D-30k 47.2 59.1 52.5 40.9 48.0 44.2 50.3 62.3 55.7
D-40k 53.4 65.0 58.6 52.3 64.3 57.7 56.6 66.5 61.2
D-50k 54.0 69.3 60.7 51.9 66.2 58.2 56.6 69.4 62.3

Table 7: The performance of Chinese spelling error detection with BiLSTM on Tst13,Tst14,Tst15 (%).
Best results are in bold. Trn represents the training dataset provided in the corresponding shared task,
e.g., Trn denotes Trn13 in Tst13.

D-ocr and D-asr following the proportion of 4:6.
Then, we train the BiLSTM model on these train-
ing datasets and evaluate error detection perfor-
mance on Tst13, Tst14 and Tst15. Table 7 shows
the detection performance on three different test-
ing datasets. We have the following observations.

The size of training dataset is important for the
model training. For Tst13, D-10k achieves a
better F1 score than Trn13. A major reason may
be the size of Trn13 (=350, see in Table 3), which
is much smaller than the testing dataset. In this
situation, the model can not learn enough infor-
mation, resulting in being unable to detect unseen
spelling errors. Besides, we can see that the de-
tection performance shows a stable improvement
as the size of our generated corpus is continuously
enlarged. Therefore, for data-driven approaches,
it is of great importance to train our model with
enough instances having different spelling errors.

The precision may be compromised if the train-
ing dataset contains too many “noisy” spelling
errors From Table 7, although the overall per-
formance (F1 score) keeps improving as the size of
our generated corpus increases, the precision and
the recall demonstrate different changing trends. It
is observed that as the size of training dataset in-
creases, the model achieves a better performance
in terms of the recall. An possible reason is that
with more instances containing different spelling
error including in the training dataset, the number
of unseen spelling error in the testing dataset is re-
duced, thus facilitating the model to detect more
spelling errors. However, the improvement of the
precision is not so obvious as that of the recall.
Specifically, in Tst14 and Tst15, D-50k does not
achieve a higher precision than D-40k. A possible
explanation is that with a larger training dataset

containing more spelling error instances, it may
lead the model to misidentify some more correct
characters, resulting in a lower precision.

Compared with the limited training dataset man-
ually annotated by human, our generated large-
scale corpus can achieves a better performance
From Table 7, we can see that with a certain size
of our generated corpus, it can train a model that
achieve better detection performance than with the
manually annotated datasets provided in the cor-
responding shared tasks. To some extent, this
demonstrates the effectiveness of our generated
corpus, thus confirms the validity of our approach.

3.3.2 Chinese Spelling Error Correction
Once the Chinese spelling errors are detected, we
test on correcting them.20 from Section 3.3.1.

Following previous studies (Chang, 1995;
Huang et al., 2007; Wu et al., 2010; Chen et al.,
2013; Dong et al., 2016), we adopt confusion
sets21 and a language model to handle the taks
for Chinese spelling error correction. In partic-
ular, by collecting all incorrect variants for each
correct character, we construct a confusion set
for all involved correct characters, denoted as
Ours. In addition, to illustrate its effectiveness, we
compare it with two publicly available confusion
sets (Liu et al., 2009), Con1 and Con2. Specif-
ically, Con1 consists of SC (similar Cangjie),
SSST (same-sound-same-tone) and SSDT (same-
sound-different-tone), while Con2 consists of all
sets, SC, SSST, SSDT, MSST (similar-sound-

20In particular, we choose the best detected results
achieved by D-50k as shown in Table 7.

21A confusion set refers to a set that contains confu-
sion characters for a given character. For example, a
Chinese character Î (kuai4) may have a confusion set,
{w (kuai4),W (kuai4),✏ (yang1),· · · }, each of which has a
similar pronunciation or a similar shape withÎ (kuai4).
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Metrics Tst13 Tst14 Tst15

Con1 Con2 Ours Con1 Con2 Ours Con1 Con2 Ours
F1 (%) 47.6 52.1 50.3 52.6 56.1 53.0 55.6 57.1 56.3
Time(s) 290.3 679.9 101.2 310.2 792.1 132.4 267.6 622.5 119.2

Table 8: Error correction results on Tst13, Tst14, Tst15, using Con1, Con2 and Ours, respectively.

Name # of Char Min. Max. Avg.
Ours 4,676 1 53 5.6
Con1 5,207 8 196 50.6
Con2 5,207 21 323 86.0

Table 9: Statistics of different confusions sets.

same-tone) and MSDT (similar-sound-different-
tone). Table 9 shows the statistics information of
the three confusion sets.

Setup Similar to Dong et al. (2016), we adopt a
tri-gram language model to calculate the probabil-
ity of a given sentence. Based on the detected re-
sults by the sequence labeling models, we choose
as the error correction the character from the cor-
responding confusion set that has the highest prob-
ability. For a given sentence containing n words,
W = w1, w2, · · · , wn, where wi represents the ith

character in the sentence, E is a set containing the
indexes of detected incorrect characters, W (wi, c)
denotes the new generated sentence after the ith

character is replaced with c. The process of error
correction can be formulated as follows:

8i 2 E : arg max
c2C(wi)

P (W (wi, c)) (2)

where P (W ) is the probability of a sentence W
approximated by the product of a series of condi-
tional probabilities as described in (Jelinek, 1997)
and C(wi) refers to the confusion set of wi, one of
which with the maximum conditional probability
is selected as the correction character.22

Results Table 9 shows the running time23 and
the F1 scores achieved by different confusion sets
based on a tri-gram language model. We can ob-
serve that our constructed confusion sets achieve
a better correction performance than that of Con1
while a little lower than Con2. However, from
Table 9, we can see that Con2 has a much larger

22If more than one character from the confusion set have
the same maximum probability, we randomly select one of
them as the correction character.

23We run the experiments on a computer with Intel Core
i5-7500 CPU.

size of confusion characters than Ours; and for the
same testing, Con2 needs much more time to fin-
ish the task while Ours always uses the least time.
These observations indicate that our constructed
confusions sets are more efficient in containing
fewer redundant confusion characters that seldom
serve as correction characters.

Error Analysis We conduct an error analysis on
two types of incorrect cases, namely, the false pos-
itive and the false negative case, which affect the
precision and recall in CSC, respectively.

For the false positive case, we find that one
common issue is that for some fixed usages, such
as idioms, phrases, and poems, our model often
gives incorrect results. For example, in ŒË�
%R (translation: wind and rain escort Spring’s
departure), a line of a Chinese poem, � is incor-
rectly recognized as an irrelevant character. By
checking the annotated corpus generated by the
proposed methods, we observe that in most cases,
Œ% is a more common match, and � is anno-
tated as an spelling error when it co-occurs with
% in the generated corpus. To improve the preci-
sion, a possible approach to handle such cases is
utilizing some external knowledge, such as build-
ing a collection of special Chinese usages.

For the false negative case, takingÛÛe∑�
`1⇢ÂSîÂÅÅflÜ (translation: you will
realize that you should give up smoking when your
consider of your health) as an example, in which
Å should be corrected as ✓. However, since
✓ andÅ are neither visually nor phonologically
similar, the proposed corpus generation approach
is unable to construct such spelling errors, so it is
understandable that the trained model can not de-
tect such spelling errors. In addition, on the word-
level, Åfl (translation: forbid smoking) and ✓
fl (translation: give up smoking) are two related
common Chinese words; it needs to incorporate
more context in order to improve the recall per-
formance. Similar to our study on character-based
corpus generation, one potential solution is to con-
struct a word-level annotated corpus in order to
better detect such spelling errors.

2524



4 Related Work

In the line of research on spelling error detection
and correction, most previous efforts focus on de-
signing different models to improve the perfor-
mance of CSC (Chang, 1995; Huang et al., 2007,
2008; Chang et al., 2013). Different from them,
this work contributes to the generation of training
datasets, which are important resources and can
be used for improving many existing CSC mod-
els. Currently, the limited training datasets have
set a high barrier for many data-driven approaches
(Wang et al., 2013; Wang and Liao, 2015; Zheng
et al., 2016). To the best of our knowledge, up to
date, there is no large quantities of annotated data
sets commonly available for CSC.

Some previous work (Liu et al., 2009; Chang
et al., 2013) pointed out that visually and phono-
logically similar characters are major contribut-
ing factors for errors in Chinese texts, where the
number of phonologically similar spelling errors
is about two times than that of visually similar
spelling errors. Vision- and speech-related tech-
nologies are then adopted in our approach. As
a technology to extract text information from im-
ages, optical character recognition recognizes the
shapes and assigns characters. According to Nagy
(1988); McBride-Chang et al. (2003), incorrectly
recognized results are mainly due to the visual
similarities among some different Chinese charac-
ters. On the other side, automatic speech recogni-
tion is an acoustics-based recognition process for
handling audio stream, where phonologically sim-
ilar characters are usually confused (Kaki et al.,
1998; Voll et al., 2008; Braho et al., 2014).

5 Conclusion and Future Work

In this paper, we proposed a hybrid approach to
automatic generating Chinese corpus for spelling
check with labeled spelling errors. Specifically,
OCR- and ASR-based methods were used to gen-
erate labeled spelling errors by replacing visually
and phonologically resembled characters. Human
evaluation confirmed that our proposed method
can produce common errors that are likely to be
made by human and such errors can serve as ef-
fective annotated spelling errors for CSC. In our
experiment, a neural tagging model was trained
on the generated corpus and the results tested on
benchmark datasets confirmed the quality of the
corpus, which further demonstrated the effective-
ness of our corpus generation approach for CSC.

The large scale annotated dataset generated by
the proposed approach can potentially serve as
useful resources in helping improving the perfor-
mance of data-driven models for CSC, because the
availability of large scale annotated data is the first
vital step before applying any algorithms or mod-
els. In this paper, we do not put too many efforts
into model design for CSC, which we leave as po-
tential future work. To facilitate related research in
the community and benefit other researchers, we
make our code and data in this work publicly avail-
able on: https://github.com/wdimmy/
Automatic-Corpus-Generation.
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Abstract

Grammatical error correction (GEC) systems
deployed in language learning environments
are expected to accurately correct errors in
learners’ writing. However, in practice, they
often produce spurious corrections and fail to
correct many errors, thereby misleading learn-
ers. This necessitates the estimation of the
quality of output sentences produced by GEC
systems so that instructors can selectively in-
tervene and re-correct the sentences which are
poorly corrected by the system and ensure that
learners get accurate feedback. We propose
the first neural approach to automatic qual-
ity estimation of GEC output sentences that
does not employ any hand-crafted features.
Our system is trained in a supervised man-
ner on learner sentences and corresponding
GEC system outputs with quality score labels
computed using human-annotated references.
Our neural quality estimation models for GEC
show significant improvements over a strong
feature-based baseline. We also show that a
state-of-the-art GEC system can be improved
when quality scores are used as features for re-
ranking the N-best candidates.

1 Introduction

The task of automatically correcting various kinds
of errors in written text, termed as grammatical
error correction (GEC), is primarily aimed at as-
sisting language learning and providing correc-
tive feedback to second-language learners. GEC
systems are expected to give precise corrections
and have the ability to correct most learner mis-
takes. In reality, however, this is not the case.
State-of-the-art GEC systems (Junczys-Dowmunt
et al., 2018; Grundkiewicz and Junczys-Dowmunt,
2018; Chollampatt and Ng, 2018) have a precision
below 70% and a recall around 40% when evalu-
ated on benchmark datasets. This level of perfor-
mance is impressive since GEC is a difficult task

given the diversity and complexity of language er-
rors. However, in real-world use cases such as
language learning, erroneous feedback from auto-
matic GEC systems can potentially mislead lan-
guage learners. To prevent this, the instructor can
intervene and re-correct the system’s corrections
when necessary, before they are provided as feed-
back to learners. Having quality estimates for the
system’s output sentences can help instructors to
decide whether to check and fix the system’s cor-
rections (for higher quality corrections) or to ig-
nore the system’s corrections altogether and re-
correct the original learner-written sentences (for
lower quality ones) instead. This can significantly
make the process of post-editing easier and faster.
Such quality estimates can also directly help end
users — the language learners — to decide on the
extent to which the system’s corrections can be
trusted and seek assistance from instructors and
other sources to get better corrective feedback if
needed. In this paper, we propose a neural ap-
proach to automatic quality estimation of GEC
output.

Quality of language output applications can re-
fer to several aspects such as fluency, grammat-
icality, adequacy, and post-editing effort. While
reference-based metrics such as MaxMatch or M2

(Dahlmeier and Ng, 2012) and GLEU (Napoles
et al., 2016a, 2015) are used to evaluate GEC
systems with human-annotated references, a few
reference-less GEC metrics have been proposed
to evaluate fluency, grammaticality, and ade-
quacy (Napoles et al., 2016b; Asano et al., 2017;
Choshen and Abend, 2018b). However, there has
been no work in GEC addressing the estimation of
post-editing effort. Also, to our knowledge, this is
the first supervised approach to quality estimation
(QE) for GEC system outputs, similar to the super-
vised QE task in machine translation (MT) (Specia
et al., 2009). Our neural models for GEC QE are
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based on variants of the predictor-estimator archi-
tecture (Kim et al., 2017a), where knowledge from
a pre-trained network for a word-prediction task is
transferred to another network that estimates the
quality score. Apart from re-implementing the
recurrent predictor-estimator models, we propose
convolutional variants that are faster to train and
run. We release our source code1 publicly.

In summary, the contributions of this paper are:
(1) we propose the first supervised approach to
QE of GEC system outputs, (2) we present neural
QE models that outperform a strong feature-based
baseline for estimating post-editing effort and an
automatic GEC evaluation metric, (3) we propose
new convolutional neural architectures for QE that
can be potentially utilized for QE tasks in other
language applications, and (4) we show that the
performance of a state-of-the-art GEC system can
be improved by adding QE scores as features in
re-ranking the N-best candidates.

2 Related Work

The task of quality estimation became popular in
machine translation (MT) through the studies by
Blatz et al. (2004) and Specia et al. (2009). Much
of the later work in QE of MT was through the
shared tasks in Workshop on Machine Translation
(WMT) campaigns (Bojar et al., 2016b) from 2012
onwards (Callison-Burch et al., 2012). Supervised
methods of quality assessment have been applied
to other natural language processing tasks such as
text simplification (Štajner et al., 2016), language
generation (Dušek et al., 2017), and in assisting
interpreters (Stewart et al., 2018).

In the context of GEC, Heilman et al. (2014) at-
tempted to predict grammaticality of learner sen-
tences using regression with a variety of linguis-
tic features such as the number of misspellings,
language model scores, etc. They use a dataset
of learner sentences manually annotated with sub-
jective scores of grammaticality. However, their
method was to assess learner writing and not for
system evaluation. To evaluate GEC systems,
Napoles et al. (2015) developed reference-less
metrics known as grammaticality-based metrics
or GBMs. GBM scores are based on the num-
ber of errors detected using third-party tools or
determined by a grammaticality prediction model
(Heilman et al., 2014). Their method ignores the
source sentence completely and judges the system

1https://github.com/nusnlp/neuqe

outputs independently for grammaticality. Asano
et al. (2017) improved their method to account for
fluency as well as faithfulness to the source sen-
tence. Choshen and Abend (2018b) provide an-
other measurement for meaning preservation us-
ing a semantic annotation scheme. Contrary to
prior work in GEC reference-less evaluation, our
work is aimed at estimating post-editing effort
in terms of translation error rate (Snover et al.,
2006) and an automatic evaluation metric, Max-
Match (Dahlmeier and Ng, 2012), in a supervised
approach. We propose variants of the predictor-
estimator architecture (Kim and Lee, 2016b; Kim
et al., 2017a) and compare them to a competitive
feature-based baseline, QuEst (Specia et al., 2013,
2015) that has been successfully used for a number
of language pairs in MT QE and for other applica-
tions (Stewart et al., 2018). It has also been the
baseline for WMT QE tasks.

3 Quality Estimation of GEC

Quality estimation (QE) of GEC can be defined
as the task of estimating a quality score q̂ given
a source sentence S and its corresponding GEC
system-corrected hypothesis, H . We formulate the
GEC QE task as a supervised regression task to
predict the quality scores, following the MT QE
approach (Specia et al., 2009). The score is es-
timated using a trained regression model f with
parameters ✓, such that q̂ = f(S, H, ✓). The
model f is trained and evaluated by utilizing a set
of learner-written sentences and their correspond-
ing corrected hypotheses produced by a “black-
box” GEC system, i.e., neither the GEC system’s
model scores nor internal states will be known to
the QE system. The gold-standard quality scores
are obtained by comparing the system-corrected
sentences and human-corrected references. We are
primarily interested in estimating the post-editing
effort for correcting the output sentences. Simi-
lar to MT QE, we assess GEC post-editing effort
scores using human-targeted translation error rate
or HTER (Snover et al., 2006). HTER is the min-
imum number of edit operations (insertions, dele-
tions, substitutions, or shifts of word sequences)
needed to transform the hypothesis sentence to the
reference sentence, normalized by the length of
the reference. A low HTER score indicates less
post-editing effort.

HTER =
number of edits

number of reference tokens
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In MT, the reference translations for HTER are
targeted, i.e., they are created by post-editing sys-
tem translated sentences. However, in GEC, high-
quality datasets annotated by experts with mini-
mal edits are available (Dahlmeier et al., 2013;
Yannakoudakis et al., 2011) and GEC systems are
typically trained to make minimal changes to in-
put sentences. Hence, the actual human annotated
references can be substituted for post-edited ref-
erences of output sentences2. We also experiment
with estimating an automatic GEC evaluation met-
ric, MaxMatch or M2 (Dahlmeier and Ng, 2012)
as the quality score. M2 is the most widely used
GEC evaluation metric that computes the F0.5-
score of phrase-level edits made by a system.

4 Neural Quality Estimation Model

Our neural quality estimation (NQE) model uses
the predictor-estimator architecture (Kim et al.,
2017a) to model the regression function f . Re-
current variants of the model have achieved the
first and second places for WMT 2017 and 2016
sentence-level QE tasks, respectively (Kim and
Lee, 2016a; Kim et al., 2017b). The key idea be-
hind the model is to employ a preliminary predic-
tor neural network that is trained for the “word
prediction” task, i.e., to predict the probabilities of
the words in the target sentence given the source
sentence and the remaining target context (the
words in the target sentence other than the pre-
dicted word). The predictor networks are trained
using large parallel texts (potentially erroneous
learner sentences and their corresponding human-
corrected sentences). The knowledge from the
predictor network is transferred to the estimator
network that is trained to estimate the quality score
q̂ given the source sentence S and its correspond-
ing system hypothesis H . Specifically, a pre-
trained predictor network takes as input S and H
(in place of the target sentence) and predicts prob-
ability scores for words in H . The intuition is that
hypothesis words that are likely to match the ref-
erence sentence will be assigned higher probabil-
ities. The hidden representations from the predic-
tor network, called quality vectors, having infor-
mation about the quality of the hypothesis words,
become the input to the estimator network that es-
timates the quality score. The estimator networks

2Since we use the original annotations instead of human
post-edits as reference corrections, our HTER scores are the
same as TER scores. Nevertheless, we use the term HTER
for consistency with the QE task in MT.

are trained using learner sentences and their corre-
sponding GEC system-corrected hypotheses. The
gold quality score is obtained by comparing a hy-
pothesis and the corresponding human-corrected
reference. We use high-quality datasets annotated
minimally to train the estimator networks. Apart
from re-implementing the recurrent neural net-
work (RNN)-based predictor-estimator model, we
build fully convolutional neural network (CNN)-
based variants for both the predictor and the esti-
mator.

4.1 Predictor Network
The inputs to the predictor network are the source
sentence S with source tokens s1, ..., sm and its
corresponding target sentence T with target tokens
t1, ..., tn. The predictor networks are trained to
predict each target token tj given the source sen-
tence S and the remaining target tokens excluding
the predicted target token, denoted by T�j . The
output of the predictor network is a softmax prob-
ability score normalized across the target vocabu-
lary, Vt:

p(t|S, T�j) =
exp(oj,t)P

t02Vt
exp(oj,t0)

where oj,t is the node corresponding to the word t
in the predictor’s output vectors oj 2 R

|Vt|, when
tj is predicted (see Figure 1). Predictor networks
estimate the output probability by an architecture
that extends the encoder-decoder neural network
for sequence-to-sequence translation (Bahdanau
et al., 2015). Traditional encoder-decoder mod-
els use a bidirectional RNN on the source sen-
tence and a forward RNN on the target side to
capture the target context preceding the predicted
target word. The predictor network additionally
employs another backward RNN in the decoder to
capture the target context following the predicted
word (Kim and Lee, 2016b). In the case of QE, the
entire target sentence is available as input, unlike
the case of sequence-to-sequence translation. Pre-
dictor networks are originally based on RNNs with
gated recurrent units or GRUs (Cho et al., 2014)
and a soft-attention mechanism similar to that in
(Bahdanau et al., 2015). We use separate attention
mechanisms for the forward and backward RNNs
of the decoder in our implementation of the pre-
dictor network.

Due to the recent success of multilayer convo-
lutional encoder-decoder neural networks for MT
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(Gehring et al., 2017) and subsequently for GEC
(Chollampatt and Ng, 2018) that enables better
capturing of the local context, we create a mul-
tilayer convolutional variant of the predictor net-
work. Using CNNs also helps in efficient par-
allelization and improves training and inference
speed as shown in (Gehring et al., 2017). We use
a similar architecture, which is explained in detail
in (Chollampatt and Ng, 2018). In addition, anal-
ogous to the backward RNN in the decoder, we
use a secondary CNN mechanism in each decoder
layer for the convolutional predictor to capture the
target words following the predicted target word.
The first CNN uses k � 1 pre-paddings (paddings
at the beginning), where k is the convolutional ker-
nel width. This ensures that the decoder state cor-
responding to the previous target word does not
include the target word to be predicted in its com-
putation. For the same reason, the secondary CNN
uses k � 1 post-paddings (paddings at the end).
The convolutional predictor uses separate multi-
step attention mechanisms (Gehring et al., 2017)
for both the CNNs in each decoder layer. Addi-
tionally, for the prediction of the target word tj ,
the nearby target embeddings tj�1 and tj+1 are
also used with a maxout non-linearity (Bahdanau
et al., 2015) as done in the RNN-based predictor.
The predictor network is trained to minimize the
negative log-likelihood loss of the target words,
similar to the neural language modeling objective
(Bengio et al., 2003). The overall architecture of a
predictor model is shown in Figure 1.
Quality Vectors: While training and testing the
estimator, the internal hidden representations from
the predictor for every hypothesis word, termed as
quality vectors, are used as inputs to the estimator
network. Specifically, we use the “pre-prediction”
quality vectors in (Kim et al., 2017a), which per-
formed the best for our GEC QE task. The quality
vector qj 2 R

h corresponding to the hypothesis
word tj is given by qj = hj � w>

tj where hj 2 R
h

is the final hidden vector after the maxout layer
(Figure 1), wtj is the column vector corresponding
to the target word tj in the final linear transforma-
tion matrix W 2 R

h⇥|Vt| (Figure 1) that projects
hj to the size of the target vocabulary Vt, and �
represents element-wise multiplication.

4.2 Estimator Network

The estimator network takes the quality vectors
(§4.1) as input and quality scores as labels during

Figure 1: Architecture of a predictor model. For
our proposed CNN-based variant multiple layers
of CNNs are stacked (only one is shown in the fig-
ure).

training. Our re-implementation of the estimator
network in Kim et al. (2017b) uses a bidirectional
recurrent network with GRU cells to aggregate the
quality vectors. The concatenated final states of
the forward and the backward RNNs (with GRU
cells) are used as the aggregated summary vector,
which is projected to a scalar value using an affine
transformation and clipped to the range between 0
and 1 using a sigmoid function.

We also propose a variant of the estimator net-
works using CNNs that achieves faster training
and inference, and performs competitively. CNNs
help to aggregate local quality statistics around
quality vectors, thereby identifying sequences of
words that have a higher or lower quality. In our
proposed convolutional estimator model (Figure
2), the quality vectors q1, ...,qn are transformed
to q0

1, ...,q
0
n where q0

j 2 R
h0 and h0 is the size of

the hidden layer of the estimator. The transformed
quality vectors are fed to a convolutional neural
network with kernel width kq and h0 filters, fol-
lowed by the rectified linear units or ReLU (Nair
and Hinton, 2010) operation. Sufficient paddings
are added on the left and right to retrieve back the
same number of output vectors as the input vec-
tors. The input vectors are added to the output vec-
tors as residual connections. The resulting vector
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Figure 2: The proposed convolutional estimator
neural network with attention-based pooling and
residual connections.

after these operations over a single convolutional
window around q0

j , denoted by uj 2 R
h0 , is given

by

uj = ReLU

✓
Conv(q0

j�
j

kq
2

k, · · · ,q0
j+

j
kq
2

k)

◆
+q0

j

u1, ...,uj , ...,un are aggregated into a summary
vector u 2 R

h0 using a weighted pooling based on
attention weights ↵j for each uj :

↵j =
exp(veu>

j )
Pn

k=1 exp(veu>
k )

u =
Pn

j=1 ↵juj

where ve 2 R
h0 is a trainable parameter. The sum-

mary vector u is then fed through another affine
transformation with weights Wu 2 R

h0⇥h0 and
biases bu 2 R

h0 followed by ReLU resulting in
the output vector u0. The quality score q̂ is com-
puted by projecting u0 to a scalar value using an
affine transformation with weights Wq 2 R

h0⇥1

and bias bq 2 R followed by a sigmoid operation
� to limit the score to between 0 and 1.

q̂ = �(u0Wq + bq)

The network is trained using mean square error
(MSE) as the loss function. We use the pre-trained
predictor model only to generate input vectors to
the estimator. The predictor parameters are not

updated while training the estimator. We apply
dropout (Srivastava et al., 2014) to both the RNN-
based and CNN-based estimator networks on the
inputs to each layer during training. For the CNN-
based predictor and estimator, learning is stabi-
lized using strategies in (Gehring et al., 2017) such
as the initialization and weight normalization of
CNNs and controlling the variance of activations
after residual connections.

5 Experimental Setup

5.1 GEC System
The data to train and evaluate the NQE models
require GEC system-generated hypotheses. For
this, we train a single multilayer convolutional
neural network GEC model initialized with pre-
trained embeddings following (Chollampatt and
Ng, 2018) on Lang-8 corpus only, following the
same pre-processing method with 5,000 sentence
pairs set aside for validation. The remaining data
consists of 2.15M sentence pairs (25.47M source
tokens and 28.94M target tokens). For training
the model, we use only the annotated sentence
pairs after sub-word segmentation (1.28M sen-
tence pairs with 18.50M source sub-words and
21.88 target sub-words). During decoding, a beam
width of 12 is used and the top candidate is chosen
without any re-scoring.

5.2 Datasets
For training the QE models, we use sen-
tences from the NUS Corpus of Learner En-
glish or NUCLE (Dahlmeier et al., 2013) and
sentences from the training scripts of the Cam-
bridge Learner Corpus-First Certificate Exami-
nation3 (FCE) (Yannakoudakis et al., 2011) and
their corresponding hypotheses generated by the
GEC system described in §5.1. We use sen-
tences from the FCE development set and CoNLL-
2013 (Ng et al., 2013) test set and their GEC
system-generated hypotheses as our development
data. We separately test on two datasets, the FCE
test set and the CoNLL-2014 test set (Ng et al.,
2014). The statistics of the datasets are given in
Table 1. The gold-standard scores are obtained
by computing HTER using TERp (Snover et al.,
2009) and sentence-level M2 using the MaxMatch
scorer with the GEC hypotheses and the reference

3The file IDs of training, development, and testing scripts
of FCE are obtained from the FCE dataset for error detection
at https://www.ilexir.co.uk/datasets/index.html
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sentences src. words hyp. words

Train 86,293 1,614,120 1,620,399
Development 3,635 63,782 63,890
FCE (test) 2,769 41,457 41,531
CoNLL-2014 1,312 30,144 30,109

Table 1: Statistics of the datasets used for QE.

sentences. When multiple references are avail-
able, the gold-standard score is chosen to be the
best score (lowest HTER or highest M2) among
the scores computed against each reference sepa-
rately.

5.3 NQE Models and Training
We build variants of the NQE models denoted by
NQEXY, where X indicates the predictor architec-
ture and Y indicates the estimator architecture. X
and Y can be recurrent (R) or convolutional (C),
of which NQERR is our replication of (Kim et al.,
2017a). The predictor models are trained and vali-
dated using parallel data from Lang-8 with 2.15M
and 5000 sentence pairs, respectively (described in
§5.1). For the predictor models, we use a source
and target vocabulary size of 30,000 words, with
500-dimensional source and target embeddings,
and 700-dimensional hidden layer. For our con-
volutional predictor model, a kernel width of 3
and 7 encoder and decoder layers are used. We
train the predictor network with ADADELTA op-
timizer (Zeiler, 2012) with a batch size of 64. We
clip gradients by their `2-norm with a threshold
of 5.0 (Pascanu et al., 2013). The estimator net-
works, both recurrent and convolutional variants,
use a hidden layer dimension of 100. They are
trained with the Adam optimizer (Kingma and Ba,
2015) with an initial learning rate of 0.0005 and
batch size of 32. We use dropout with a proba-
bility of 0.5 during training. Our final model is
NQEALL, which averages the estimated scores of
all variants, namely, NQERR, NQECR, NQECC,
and NQERC.

5.4 Baselines
We use two non-neural baselines for comparison
to our neural QE models.
AVERAGE: The average score of training sen-
tences is used as the estimated score for all test
sentences.
QUEST: We use the standard 17 sentence-level
features in QuEst++ (Specia et al., 2015) which

has been used as the baseline for WMT QE tasks
from 2012 to 2017. The features are based on
word-level statistics from the source-hypothesis
sentence pairs, and statistics and features from lan-
guage and lexical translation models trained using
a parallel corpus. The descriptions of the 17 fea-
tures can be found in (Bojar et al., 2017). We use
the Lang-8 corpus to train the language and trans-
lation models for QuEst.

5.5 Evaluation
We evaluate primarily using the Pearson’s corre-
lation coefficient (PCC) metric following the rec-
ommendations in (Graham, 2015) and the recent
WMT shared tasks (Bojar et al., 2016a, 2017). It is
shown in (Graham, 2015) that aggregates of gold
score distributions are easier to predict and met-
rics such as mean absolute error (MAE) and root
mean square error (RMSE) over-estimate systems
that predict the aggregates accurately despite these
systems performing poorly on tail ends of the dis-
tribution (higher quality and lower quality sam-
ples). PCC does not suffer from this weakness.
We use William’s Test (Williams, 1959) follow-
ing (Graham, 2015) to assess the significance of
the improvements. However, we also report the
root mean square error (RMSE) which reflects the
estimator’s loss and shows the deviation from the
AVERAGE baseline.

6 Experiments and Results

6.1 Estimating Post-Editing Effort
We compare the QE models in terms of their
performance in estimating the post-editing effort
(HTER). The results, including those of the sig-
nificance tests, are shown in Table 2. On the FCE
test set, all NQE models significantly outperform
the baseline QuEst (p < 0.001), with the best
single model being our NQECR model (78.28%
PCC). The NQE models achieve high PCC (�
75%) compared to QuEst (35%). On the CoNLL-
2014 dataset, however, only the NQERC model
with our proposed convolutional estimator signifi-
cantly outperforms all other single models includ-
ing QuEst. The overall best performance on FCE
is achieved by the average model, NQEALL, sig-
nificantly outperforming NQECR (p < 0.05) and
all other systems (p < 0.001). On CoNLL-2014,
NQEALL and NQERC achieve statistically similar
results and outperform all other systems signifi-
cantly (p < 0.01).
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FCE CoNLL-2014 Dev.

PCC" RMSE# PCC" RMSE# PCC" RMSE#

AVERAGE - 0.2082 - 0.0972 - 0.1755
QUEST 0.3539 0.1935 0.4113 0.0865 0.5021 0.1514
NQERR 0.7753 0.1283 0.4334 0.0954 0.6581 0.1309
NQECR 0.7828 0.1263 0.3096 0.0917 0.6730 0.1283
NQECC 0.7495 0.1351 0.3888 0.0916 0.6653 0.1293
NQERC 0.7644 0.1361 0.4787 0.0806 0.6415 0.1383
NQEALL 0.7881 0.1258 0.4687 0.0858 0.6811 0.1270

Table 2: Results of the NQE models in estimating post-editing effort (HTER). The matrices on the right
show the results of the William’s significance tests. A dark green cell indicates the system labeled on the
row significantly outperforms the system labeled on the column (p-values shown in the color bar).

FCE CoNLL-2014

PCC" RMSE# PCC" RMSE#

AVERAGE - 0.4529 - 0.4302
QUEST 0.2506 0.4585 0.2182 0.4129
NQERR 0.3594 0.4235 0.2100 0.3970
NQECR 0.4066 0.4153 0.1992 0.4104
NQECC 0.4129 0.4123 0.2017 0.4038
NQERC 0.4028 0.4158 0.2104 0.4014
NQEALL 0.4186 0.4106 0.2210 0.3999

Table 3: Results of the NQE models for sentence-
level M2 estimation.

6.2 Estimating M2 Score

We use NQE models to estimate the MaxMatch
(M2) GEC evaluation metric at the sentence-level,
which computes F0.5 based on phrase-level edits.
Results are shown in Table 3. All models sig-
nificantly outperform the baseline QuEst on FCE
(p < 0.01) test set. NQEALL is significantly bet-
ter than all other systems except NQECC on FCE
(p < 0.01). The PCC on CoNLL-2014 turns out
to be much lower for all systems with the NQE
models not significantly better than the baseline.
Estimating M2 appears to be more difficult com-
pared to estimating post-editing effort with HTER
scores. This could be because M2 is a phrase-
level measure with phrase-boundaries determined
by matching with gold annotations, unlike HTER
which is a token-level evaluation measure.

6.3 Improving GEC Performance

We use the estimated sentence-level M2 scores
as features to improve the performance of down-
stream GEC by using them as an additional fea-
ture during re-scoring the N-best candidates from
a high-performing GEC baseline. Our GEC base-
line is built on the multilayer convolutional ar-
chitecture initialized with pre-trained embeddings
and re-scoring (Chollampatt and Ng, 2018). We
use the same hyper-parameter settings. The base-
line GEC system consists of an ensemble of 3
sets of 4 models each. The first set consists of
the 4 models released by Chollampatt and Ng
(2018). The second set of 4 models is trained us-
ing a label-smoothed cross entropy loss function
(Szegedy et al., 2016) which has been found to be
effective in neural machine translation (Vaswani
et al., 2017; Edunov et al., 2018). We use a
smoothing parameter of 0.1 following Vaswani
et al. (2017). The third set of 4 models con-
sists of high-recall models that make use of three
techniques proposed by Junczys-Dowmunt et al.
(2018): (1) pre-training decoder parameters (2)
source word dropout, and (3) edit-weighted nega-
tive log-likelihood. The parameters of the decoder
are initialized using the parameters from a pre-
trained neural language model (NLM) of the same
architecture as our decoder except for the attention
mechanism. We train this NLM using 100 million
sentences (1.42 billion words) from the Common
Crawl corpora released by Buck et al. (2014) for
one epoch. We use the reported hyper-parameters
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(Junczys-Dowmunt et al., 2018) for the other two
techniques. The 12-best candidates produced by
this ensemble are then re-scored using edit opera-
tions and language model features following Chol-
lampatt and Ng (2018).

The performance of the baseline system (Base
GEC) in terms of document-level F0.5 computed
by M2scorer on the FCE and CoNLL-2014 test
sets is reported in Table 4. When we use the
development set used by Chollampatt and Ng
(2018) consisting of 5.4k sentences from NU-
CLE to train the re-scorer, Base GEC system
achieves a competitive performance compared to
the top GEC systems with the best-published re-
sults on CoNLL-2014 test set: G&J (Grund-
kiewicz and Junczys-Dowmunt, 2018), JGGH
(Junczys-Dowmunt et al., 2018), and C&N (Chol-
lampatt and Ng, 2018). When we make use of
the spelling error correction system (+SpellCheck)
proposed by Chollampatt and Ng (2017), which is
also used by G&J and C&N, our baseline achieves
the highest reported F0.5 on the CoNLL-2014 test
set (56.43) when trained on public corpora alone.
To the Base GEC system, we add the sentence-
level M2 scores estimated by the final NQE model
(NQEALL) as a feature in the re-scorer. Since our
NQE models use NUCLE during training, we use
our development set consisting of 3.6k sentences
from FCE and CoNLL-2013 to re-train the re-
scorer instead of sentences from NUCLE so that
the feature weights will not be biased. We ob-
serve a slight drop in performance upon retraining,
potentially due to the fewer number of sentences
and error annotations in this new development set.
The added feature scores are also in the logarith-
mic scale, similar to LM and the encoder-decoder
model score. When the estimated M2 score is
added, we find a significant improvement of 1.18
F0.5 on the FCE test set and a significant improve-
ment of 0.25 F0.5 score on the CoNLL-2014 test
set (p < 0.001). Significance testing is done using
sign test by bootstrap re-sampling (Koehn, 2004)
with 100 samples. The smaller margin of improve-
ment on CoNLL-2014 is expected due to the low
PCC values (Table 3). When we add spelling er-
ror correction, the results reach 48.70 F0.5 score
on FCE and 56.52 F0.5 score on CoNLL-2014.
However, the results obtained by training the re-
scorer with our development set (FCE+CoNLL)
and adding the NQE models should not be directly
compared to the top systems (G&J, JGGH, and

FCE CoNLL-2014

Best published results

G&J (2018) w/ SpellCheck – 56.25
JGGH (2018) – 55.8
C&N (2018) w/ SpellCheck – 54.79

Re-scorer trained with 5.4k sents. from NUCLE

Base GEC 47.53 55.86
+ SpellCheck 47.79 56.43

Re-scorer trained with FCE+CoNLL dev set

Base GEC 47.29 55.72
+ M2 (NQEALL) 48.47⇤ 55.97⇤

+ SpellCheck 48.70 56.52

Base GEC + M2 (Oracle) 76.70 80.74

Table 4: Performance (in terms of F0.5 in %) when
NQE-estimated sentence-level M2 scores are used
as features in re-scoring. ⇤ indicates statistically
significant improvement compared to Base GEC
(p < 0.001).

C&N) as they do not make use of the FCE data.
We also re-score using oracle sentence-level M2

scores instead of the NQE estimated scores. We
find that GEC performance can reach up to 80.74
F0.5 for CoNLL-2014 and 76.70 F0.5 on FCE. This
shows that improving automatic QE can substan-
tially improve downstream GEC simply via re-
scoring.

7 Discussion and Analysis

Our results show that the NQE models perform
better than feature-based baselines for QE of GEC.
The crucial component of the NQE model that
enables it to make better score estimates is the
predictor network whose internal representations
(quality vectors) are used as input to the estima-
tor. The sum of nodes of a quality vector corre-
sponds to the output node of the predictor network
for a particular target word, and a softmax oper-
ation across all vocabulary words results in the
predicted probability value. In Figure 3, we an-
alyze the probability outputs by our convolutional
predictor network for four GEC hypotheses for a
source sentence ‘We are all looking forward for
you answer .’. Hypothesis 1 is the source sen-
tence itself and the predictor has rightly identified
the location of error by giving a low probability
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We are all looking forward for you answer . </s>

1.000 0.995 0.999 0.999 1.000 0.038 0.844 0.743 1.000 1.000

1.000 0.995 0.999 0.997 1.000 0.805 0.322 0.970 1.000 1.000

1.000 0.995 0.999 0.996 1.000 0.922 0.003 0.939 1.000 1.000

We are all looking forward for you to answer . </s>

1.000 0.995 0.999 0.999 1.000 0.726 0.999 0.980 0.944 1.000 1.000

We are all looking forward to your answer . </s>

We are all looking forward to the answer . </s>

10

Hypothesis 1: Erroneous source sentence itself.

Hypothesis 2: Grammatically correct and matches the human-annotated reference.

Hypothesis 3: Grammatically correct, but not faithful to the source sentence.

Hypothesis 4: Grammatically correct and faithful to the source sentence.

Figure 3: Probabilities predicted by the convolu-
tional predictor for different GEC hypotheses.

score to the erroneous preposition ‘for’ (0.038).
In Hypothesis 2, which also matches the actual
human-annotated reference, the phrase ‘for you’
is replaced with ‘to your’. The correct preposition
‘to’ gets a higher probability score. In Hypothesis
3, where a less suitable word ‘the’ is used, a lower
probability score (0.003) is assigned compared to
the word ‘your’ (0.322) in Hypothesis 2, despite
Hypothesis 3 being grammatically correct. This
indicates that the predictor rightly considers the
faithfulness to the source sentence as well. When
we analyze Hypothesis 4, which is grammatically
correct and also faithful to the source, the proba-
bilities of all words are much higher. Note that this
hypothesis does not match the human annotated
reference (Hypothesis 2). It is impractical to have
human-annotated references that cover all possi-
ble corrections for all source sentences. This issue
of reference-coverage has been noted previously
in GEC literature (Bryant and Ng, 2015; Napoles
et al., 2016b; Choshen and Abend, 2018a). This
example shows that QE systems can potentially
address this issue, similar to the reference-less
evaluation measures for GEC.

We study if the estimator networks are able
to count edits, which is the basis of estimating
HTER. To do this, we take an example sentence
of 14 tokens: ‘It will be incredible if we have a
chance to watch the show .’ as the source and
the hypothesis as well as the reference. We substi-
tute tokens one by one with an arbitrary token ‘X’,
thereby increasing HTER linearly. Figure 4 shows
the performance of the NQE models compared to
true HTER scores (straight line). We find that with
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True HTER

Figure 4: Estimated HTER scores of NQE models
increasing with the number of incorrect substitu-
tions.

increasing substitutions, all NQE models show an
increasing trend, with the models having convolu-
tional components NQECR, NQECC, and NQERC
having Pearson’s correlation coefficients (PCC) of
0.982, 0.976, and 0.986, respectively, and 0.939
PCC for the recurrent variant NQERR compared to
true HTER scores. The average model NQEALL
has the highest PCC value of 0.995. This example
illustrates that the NQE models are able to capture
edit counts for estimating HTER scores.

8 Conclusion and Future Work

We propose the first supervised approach to qual-
ity estimation (QE) for GEC system outputs. We
propose several neural QE model variants that per-
form significantly better than feature-based base-
lines in estimating the post-editing effort of GEC
output sentences. We also show that the QE vari-
ants perform reasonably well on a more difficult
task of estimating quality in terms of a GEC eval-
uation metric, M2, by showing that the estimated
scores are useful in improving GEC performance
via N-best re-scoring. In future, the general frame-
work of QE for GEC can be used to train on sub-
jective human rankings of hypotheses as well, so
that the system can learn the intuitions underlying
human judgments of quality instead of estimating
a pre-defined measure such as HTER or M2.
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Abstract

Part-of-Speech (POS) tagging for Twitter has
received considerable attention in recent years.
Because most POS tagging methods are based
on supervised models, they usually require
a large amount of labeled data for train-
ing. However, the existing labeled datasets
for Twitter are much smaller than those for
newswire text. Hence, to help POS tagging
for Twitter, most domain adaptation methods
try to leverage newswire datasets by learning
the shared features between the two domains.
However, from a linguistic perspective, Twit-
ter users not only tend to mimic the formal
expressions of traditional media, like news, but
they also appear to be developing linguistically
informal styles. Therefore, POS tagging for
the formal Twitter context can be learned
together with the newswire dataset, while POS
tagging for the informal Twitter context should
be learned separately. To achieve this task,
in this work, we propose a hypernetwork-
based method to generate different parameters
to separately model contexts with different
expression styles. Experimental results on
three different datasets show that our approach
achieves better performance than state-of-the-
art methods in most cases.

1 Introduction

With the continuous growth of online communica-
tion, hundreds of millions of online conversational
messages have become important resources for
various applications such as real-time event detec-
tion (Sakaki et al., 2010), stock prediction (Bollen
et al., 2011) and public health analysis (Wilson
and Brownstein, 2009). Because these appli-
cations need to process natural language text,
POS tagging, which is one of the fundamental
natural language processing tasks, has become
one of the basic pre-processing components of
such applications. The performance of POS

RT @jamstik : Lol :)  there is more than one way to 
start living a greener life.

As their varied strategies suggest , there is more than one 
way to respond to a disaster.

Wall Street Journal Section of Penn Treebank

Treebank-3 (LDC1999T42) /07/WSJ_0799.POS

Figure 1: Examples of WSJ and tweets. Segments
with red highlights can be regarded as the similar
expressions. Segments with blue highlights correspond
to expressions that cannot be learned from WSJ.

tagging may highly impact the results of these
applications.

Most of the POS tagging methods that can
achieve state-of-the-art performance are based on
supervised learning algorithms (Gimpel et al.,
2011). Although these methods can achieve
good performance for in-domain data, their per-
formance usually drops quickly when processing
data from a domain that is different from that of
the training data (Caruana and Niculescu-Mizil,
2006). To achieve better performance, we usually
need to manually label a large amount of in-
domain data. However, the task of construct-
ing labeled data is time-consuming and tedious.
Currently, various methods have been proposed
to solve this problem using out-of-domain data,
including domain adaptation (Daumé III, 2009;
Gui et al., 2017), multi-task learning (Ben-David
et al., 2007), and dual learning (Chandrasekaran
et al., 2014).

Most existing methods aim to learn the shared
representations or parameters, which can reduce
the classification or regression model errors of
each task/domain. However, these methods usu-
ally ignore the fact that each domain has domain-
specific features that should not be shared. From
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Figure 2: Model architecture of the proposed dynamic conversion neural networks.

the language characteristics, in spite of the ex-
pressions that are similar to the newswire text,
Twitter has some informal expressions that cannot
be shared, as shown in Figure 1. Hu et al.
(2013) investigated the characteristics of language
on Twitter and found that Twitter users not only
tended to mimic the linguistic practices of tradi-
tional media, like news, they also appeared to be
developing linguistically unique styles. We also
believe that the tweets simply follow the standard
language rules, and at some point eventually devi-
ate from those. Thus, tweets are a combination of
formal expressions and informal expressions with
conversions between different expression styles.

Based on the above observations, we believe
that annotated sentences of newswire text can
be selectively used to help tag contextual seg-
ments of tweets, especially for formal expressions.
To achieve this goal, in this work we adopt
bidirectional long short-term memory (bi-LSTM)
networks (Schuster and Paliwal, 1997), which
have been successfully used for various sequence
tagging problems. However, different from previ-
ous methods, the formal expressions and informal
expressions in a sentence should be separately
modeled. Inspired by recent work on dynamic
parameter prediction (Ha et al., 2016), we pro-
pose a method to generate the context-specific
parameters of the bi-LSTM based on different
styles of context for POS tagging. We evaluated
our models on three different corpora. The
results demonstrated that the proposed method can
benefit from annotated newswire text data and

achieve competitive performance. In addition, we
visualized the context distributions and the change
of parameters. The visualization results verified
the fact that different contexts produce different
parameters for POS tagging.

The main contributions of the paper can be
summarized as follows.

1. We study problems in the segment modeling
method to apply domain adaptation to the
POS tagging task. Based on the observations
from a linguistic perspective, we found that
there are many shared expressions between
the newswire and tweets, and some expres-
sions cannot be shared.

2. A novel neural network architecture based on
the bi-LSTM was proposed to perform the
task. Different parameters were applied in
different contexts.

3. Experimental results demonstrated that the
proposed method can benefit from different
domains. We also conducted qualitative and
quantitative analyses to show why our model
can achieve better performance.

2 Approach

Twitter is responsible for colorful linguistic ex-
pressions, and full of the conversions between for-
mal expressions and informal expressions. To ad-
dress this problem, we propose the Dynamic Con-
version Neural Networks (DCNN), which can dy-
namically generate different parameters for POS
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tagging based on different contexts as shown in
Figure 2. Our model mainly consists of four
parts: (1) a CNN layer for extracting word
representations xi, (2) an MLP layer for producing
low-dimensional context representations ti, (3) a
hyper LSTM layer for generating the weights W
of a main LSTM, and (4) the main LSTM layer
with dynamic parameters for POS tagging.

The architecture of the main network is the
same with any sequence labeling model, which
learns to map the word representations to the
corresponding labels. However, the parameters of
the main network can be modified according to
our purpose. we use a low-dimensional context
distribution vector ti as the input of the hyper
LSTM to generate the weights of the main LSTM.
Thus, the weights of the main LSTM will be
subject to a change in context vector. Therefore,
the main LSTM can predict the POS tag based on
the different parameters.

Ha et al. (2016) also proposed a HyperRNN
network, in which the hyper net is influenced
by the main net. This is inconsistent with our
motivation. Different from (Ha et al., 2016), to
make the parameters of the main LSTM totally
controlled by the context distribution, we changed
the architecture by cutting off the data path from
the main LSTM to the hyper LSTM. This method
can prevent the hidden states of the main LSTM
from influencing the hyper LSTM. In addition,
we add an extra layer of learning the context
representations based on features returned by a
CNN.

2.1 Word and Context Representations

Out-of-vocabulary words are frequently used in
Twitter. Moreover, new symbols, abbreviations,
and words are constantly being created. These
make word representations difficult to address.
Thus, robust methods should be used to extract the
morphological and shape information from words.

Inspired by (Santos and Zadrozny, 2014), we
adopted character-level convolutional neural net-
works (CNN layer) to tackle this problem, which
can take all of the characters of the word into
consideration and output important orthographic
features (Santos and Zadrozny, 2014). Suppose
that we are given the sentence X = {w1, w2, . . . }
with vocabulary V of words. We use multiple
filters with varying widths to obtain the ortho-
graphic feature vector ~ci for word wi. Then, the

orthographic feature vector ~ci is concatenated to
the word embedding ~wi to form word representa-
tion xi as the input of the main LSTM. Utilizing
a bi-LSTM to model sentences, the model can
extract the sequential relations and contextual
information.

The context is a fixed window of words around
target word. The context representations are
learned by the MLP later. To do this, we apply
a fully connected neural network, which takes
sequential word representations in a fixed window
as input to generate a low-dimensional vector ti as
follows:

ti =

softmax(MLP [xi�r...xi�1 � xi � xi+1...xi+r]),
(1)

where [· � ·] represents concatenation operation.
r represents the length from central word xi to
the edge of the window. MLP is the multilayer
perceptrons function, which transfers the context
matrix to a low-dimensional vector. We apply
MLP to every window of contexts. softmax
denotes the softmax function that converts the
context vector into a probability distribution. The
goal is to learn an MLP layer that, given sequential
word representations, estimates a distribution over
the contexts.

2.2 Adaptive Weight Generation

The identical weights at each time step will limit
the expressiveness of recurrent neural network
(RNN) (Ha et al., 2016). To overcome the
limitation, our model uses a small network (hyper
network) taking low-dimensional context repre-
sentations as inputs to dynamically generate the
parameters of a large network (main network) for
POS tagging. Different with (Ha et al., 2016), at
every time step, the hyper LSTM only takes the
context representation ti as an input and generates
the hidden state ĥi as an output. This hidden
state ĥi is used to generate the weights for the
main LSTM at the same time step. The hyper
LSTM and main LSTM are jointly trained with
backpropagation and gradient descent. Next, we
will give a more formal description of the weight
generation.

The hyper LSTM is a standard LSTM (Hochre-
iter and Schmidhuber, 1997), which takes context
vectors as inputs and outputs hidden states. The
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hyper LSTM is defined as follows:
2

664

ĝi
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where � denotes the tanh function, and � is
the sigmoid function. � and • represent the
Hadamard product and matrix product, respec-
tively. We assume that ŷ is one of {ĝ, î, f̂ , ô}.
The hyper LSTM has Nĥ hidden units, and Nt is
the dimensionality of ti. Then, Wŷ
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sentential sequence.

Inspired by (Ha et al., 2016), we adopted a
weight scaling vector d which is a linear projec-
tion of ĥi. d is used to linearly scale each row of
the weight matrix in the standard LSTM. Because
the context vector t is produced by the different
contexts at each time step, the hidden state hi and
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LSTM can be modified as follows:
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where ⌦ represents the element-wise product with
broadcasting. y is one of {g, i, f, o}. Generally,
Nĥ and Nt are much smaller than Nh and Nx,
respectively. Thus, the size of the parameters in
the hyper LSTM is hundreds of times less than that
of the standard LSTM.

According to the above functions, if the model
is given contexts with different styles, it will
generate different parameters for all kinds of gates
in the main LSTM. Then, the outputs of the main
LSTM are used to predict the POS tags of the
central words with the cross entropy loss:

LPOS = �
X

i

zi ⇤ log ẑi, (4)

Dataset #Train #Dev #Test
RIT-Twitter 10652 2242 2291
NPSChat 40497 - 4500
ARK-Twitter 26594 - 7707

Table 1: The statistics of the datasets used in our
experiments, where # represents the number of tokens
in datasets.

where zi is the one-hot vector of the POS tagging
label corresponding to xi. ẑi is the output of the
top softmax layer: ẑi = softmax(MLP (hi)).

3 Experimental Setup

In this section, we will first detail the datasets
we used. Then, we will describe several baseline
methods, including a number of classic taggers
and a series of deep learning sequence labeling
methods.

3.1 Datasets
Following (Derczynski et al., 2013), we use
RIT-Twitter (Ritter et al., 2011) as our main
dataset. The RIT-Twitter was split into training,
development and evaluation sets (RIT-Train, RIT-
Dev, RIT-Test). The splitting method was shown
in (Derczynski et al., 2013). In order to verify
the validity of our model, we also tested it on
two more datasets, NPSChat (Forsythand and
Martell, 2007), and ARK-Twitter (Gimpel et al.,
2011) using standard splits. The tag-sets of the
RIT-Twitter and NPSChat are PTB-like, while
that of the ARK-Twitter is specific. In order to
use WSJ labeled data in experiments on ARK-
Twitter, we performed the mapping from PTB tag-
sets to ARK tag-sets, according to the PTB POS
Tagging Guidelines (Santorini, 1990) and ARK
Guidelines1. The mapping proceeded from fine to
coarse.

For pretraining the word embedding, we con-
structed a dataset containing 30 million tweets,
from Twitter using its API. We introduced a
newswire dataset containing 1173K tokens as
the written language dataset, namely the Wall
Street Journal (WSJ) from the Penn TreeBank
v3 (Marcus et al., 1993). During training, we
mixed each of RIT-Twitter, NPSChat and ARK-
Twitter with WSJ into three kinds of training data.

The detailed data statistics of the above datasets
used in this work are listed in Table 1.

1http://www.ark.cs.cmu.edu/TweetNLP/
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3.2 Competitor Methods

We applied several classic and state-of-the-art
methods for comparison. In addition, we used a
series of deep learning sequence labeling methods
as baselines for comparison, as follows:

Stanford POS Tagger is a widely used part-
of-speech taggers described in (Toutanova et al.,
2003). It demonstrates the broad use of features
and appropriate model regularization, which pro-
duces a superior level of performance (97.24%).
In this work, we trained it using two different
sets: sections 0-18 of the WSJ (Stanford-WSJ)
and a mixed corpus of WSJ, IRC, and Twitter
(Stanford-MIX).

T-POS (Ritter et al., 2011) adopts hierarchi-
cal clustering and Brown clustering methods to
address the issue of OOV words and lexical
variations. It also uses conditional random fields
and other standard sets of features to perform
the task. In this work, we trained it using three
different sets: the WSJ (T-POS-WSJ), RIT-Train
(T-POS-RIT) and a mixed corpus of WSJ, IRC,
and RIT-Train (T-POS-MIX).

GATE Tagger (Derczynski et al., 2013) uses
an approach that combines the available taggers
for different tagsets. The tagger adopts a vote-
constrained bootstrapping method with unlabeled
data and assigns prior probabilities to handle of
unknown words and slang.

ARK Tagger (Owoputi et al., 2013) is a system
that reports the best accuracy on ARK-Twitter. It
uses unsupervised word clustering and a variety of
lexical features.

TPANN (Gui et al., 2017) applies adversarial
networks and autoencoder to model labeled out-
of-domain data, unlabeled in-domain data and
labeled in-domain data and achieved the best
performance on RIT-Twitter.

Bidirectional LSTM (Bi-LSTM) (Wang et al.,
2015) has been widely used in a variety of
sequence labeling tasks. In this work, we also
evaluated it as a baseline.

Bi-HyperLSTM (Ha et al., 2016) was used
as a substitute for the standard Bi-LSTM. What
makes the Bi-HyperLSTM model different from
the proposed model is that we used context
distribution to generate the parameters of main
LSTM.

3.3 Initialization and Hyperparameter

The word embeddings for all the models were
initialized with the word2vec tool (Mikolov et al.,
2013) on 30 million tweets. The other parameters
excluding the word embeddings, such as the
parameters in LSTM and MLP, were initialized by
randomly sampling from a uniform distribution in
[-0.05, 0.05].

The dimensionality of the word embedding was
set at 200. The dimensionality for the randomly
initialized character embedding was set at 25.
We adopted a hyper LSTM with 160 hidden
neurons to produce the weights of each gates of
the main LSTM with 250 hidden neurons. The
dimensionality of the context vector was set at 10.

Our DCNN could be trained end-to-end
with backpropagation and gradient-based
optimization was performed using the Adam
update rule (Kingma and Ba, 2014) with learning
rate 0.0001.

4 Results and Analysis

In this section, we will report the experimental
results and a detailed analysis of the results for the
three different datasets.

4.1 Evaluation on RIT-Twitter

The RIT-Twitter was introduced in (Ritter et al.,
2011). This dataset uses a tagset based on the Penn
Treebank tagset with several Twitter-specific tags:
retweets, @usernames, hashtags, and urls.

Table 2 lists the results of our method compared
with other methods on this dataset. The first
part shows the results of the classic methods.
From the result of Stanford-WSJ, we can see
that although it can achieve a superior level
of performance (97.24%) on the WSJ dataset,
the accuracy drops significantly to 73.37% when
applied to the Twitter dataset. If we add some in-
domain data to the training set, the Stanford-MIX
can improve by 10% compared to the Stanford-
WSJ. The same phenomenon can be observed
from T-POS tagger. If we apply more features, like
clustering, bootstrapping and lexical features, the
T-POS, GATE tagger and ARK tagger can achieve
better performances. Although TPANN achieve
accuracy of 90.92%, it incorporates additional a
large amount of in-domain unlabeled data. Our
method is more competitive because of the use of
much fewer data sets.
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Methods Training Set RIT-Test RIT-Dev
Stanford-WSJ (Toutanova et al., 2003) - 73.37%
Stanford-MIX - 83.14%
T-POS-WSJ (Ritter et al., 2011) 81.30%
T-POS-RIT 84.55% 84.83%
T-POS-MIX 88.30% -
GATE Tagger (Derczynski et al., 2013) 88.69% 89.37%
ARK Tagger (Owoputi et al., 2013) 90.40% -
TPANN (Gui et al., 2017) 90.92% 91.08%
Bi-LSTM

RIT-Train

89.48% 89.30%
Bi-LSTM⇤ 89.31% 90.37%
Bi-HyperLSTM 88.65% 89.16%
Bi-HyperLSTM⇤ 88.30% 89.56%
DCNN 89.87% 90.50%
Bi-LSTM

WSJ + RIT-Train

90.09% 90.37%
Bi-LSTM⇤ 90.31% 90.81%
Bi-HyperLSTM 90.57% 90.41%
Bi-HyperLSTM⇤ 90.44% 90.54%
DCNN 91.18% 91.17%

Table 2: Token level accuracies of different methods on RIT-Test and RIT-Dev. The first part demonstrates the
results of classic methods. The second part demonstrates a series of deep learning methods trained on RIT-train.
The third part demonstrates the same deep learning methods train on the mixed dataset of RIT-train and WSJ.
DCNN refers to our dynamic conversion neural network. Other models are described in the Section 3.2. The
symbol ⇤ represents the model concatenates the context vectors with the word representations as inputs.

The second part shows the results of the deep
learning methods trained on the RIT-Train dataset.
We can see that if the sequence labeling methods
are just trained on the RIT-Train dataset, their
accuracies can exceed those of most conventional
taggers. Thus, the deep learning methods are
competitive and avoid feature engineering. Com-
pared with other models, the DCNN achieved best
performance among the models just trained on
RIT-Train dataset.

The third part shows the results of the deep
learning methods trained on the mixed dataset of
the RIT-Train and WSJ. As observed, when we
added the WSJ data to train the models, all of them
could obtain different degrees of improvement.
Moreover, our model could make better use of the
out-of-domain data and obtained the best result.
Compared with the ARK tagger, which achieved
the previous best result in conventional methods,
our model was almost 0.78% better. The error
reduction rate was more than 8%. Our model also
outperformed the TPANN, which incorporated
additional unlabeled in-domain data.

From the perspective of utilizing a low-
dimensional context vector, we provided the

same information (word information and context
information) for all of the deep learning models
as shown in Table 2. However, except for the
DCNN, the other models were incapable of
utilizing the context information. Most of the
models could not obtain obvious improvement.
In contrast, our DCNN could make better use
of the context information to generate more
appropriate parameters for POS tagging. Next, we
will analyze the behavior how the DCNN changes
parameters when encountering different context
vectors.

Intuitively, contexts with different language
expression styles should be transformed into dif-
ferent vectors. Figure 3 visualizes the context
distribution. Subfigure (a) shows the context
vector extracted from WSJ. We can see that the
formal expressions are mainly concentrated in the
middle of the four dimensions. This phenomenon
can be observed in the subfigure (b), where the
formal expressions in the Twitter are concentrated
in the middle of the same dimensions and the
informal expressions are concentrated in another
three dimensions. Notice that in our experimental
setup, the dimensionality of the context vector is
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Figure 3: Visualization of context distribution. The left sentence comes from WSJ, and the right one comes from
Twitter.

I ⇠ II III 6⇠ II

� � Compound yields assume reinvestment of dividends and that the current yield
continues for a year. (WSJ Formal)
�� Very grateful for another Monday and a new week full of endless possibilities !
Go World! (Twitter Formal)
�� RT@NickSilly : Fun ! RT @JackFMDFW : Put on your Boogie Shoes and Get
Down Tonight with KC and The Sunshine Band . #Dallas #concerts http :/ ... (Twitter
Informal)
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Figure 4: Visualization of the comparison of weight
matrices. We denote the weight matrix of output gate
as W o

h . Each subgraph represents the result of element-
wise subtraction |W o

hi
�W o

hj
|, where |·| means absolute

value, i and j are the sequence numbers of sentences. If
the two sentences have a similar expression style, then
the absolute value would be close to zero represented
by white color. We use i ⇠ j to represent it. On
the contrary, We use i 6⇠ j to represent the different
expression styles. We only visualize the weights on the
last time step.

set to 10. However, the values of the last three
dimensions are close to zero. Consequently, we set
this hyperparameter to 7 and we achieve a higher
accuracy of 91.27%.

Figure 4 shows how the weight matrix W o
h in

output gate gets changed when the model inputs
different kinds of contexts. Through making a
comparison among the sentences I, II and III. we
can find that although the sentences II and III are
both from Twitter, whereas the sentence I is from
WSJ, If the style of sentence II is close to that of
sentence I, then the model will produce similar
weight values to achieve the task. If the style of
sentence I is different from that of sentence III,
then the model will produce different parameters
more suitable for Twitter-specific sentences. The

Methods Acc.
Forsyth (2007) 90.8%
ARK Tagger 93.4% ± 0.3%
Gui et al. (2017) 94.1%
Bi-LSTM(IRC) 90.3%
Bi-LSTM(WSJ + IRC) 93.2%
DCNN 94.0%

Table 3: Accuracy comparison of different methods on
NPSChat Corpus.

similar phenomena can be found in other gates.

4.2 Evaluation on NPSChat

The NPSChat Corpus (Forsythand and Martell,
2007) is a PTB-POS annotated dataset of Internet
Relay Chat (IRC) room messages from 2006. The
corpus consists of 10,567 posts out of approxi-
mately 500,000 posts gathered from various online
chat services in accordance with their terms of
service. The authors of the corpus made several
decisions during the process that were unique to
the chat domain regarding some abbreviations,
emotions and misspelled words. For example,
LOL and :-) were frequently encountered in the
chat messages. Because these expressions con-
veyed emotion, they were treated as individual
tokens and tagged as interjections (UH).

Table 3 lists the results of different taggers eval-
uated on NPSChat. Our method was tested using
the same setup as the experiments in (Forsyth,
2007). The training part contained 90% of the
data. The testing part contained the remain-
ing 10%. Based on the results, we can see
that our method could achieve the best accu-
racy (94.0%), which was significantly better than
90.8% (Forsyth, 2007). They trained the tagger
on a mix of several corpora tagged with the Penn
Treebank tag set. Our method also outperformed
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Methods Acc.
Gimpel et al. (2011) 89.17%
Gui et al. (2017) 92.8%
ARK Tagger 93.2%
ARK Tagger† 92.38%
Bi-LSTM(OCT27) 90.59%
Bi-LSTM(WSJ + IRC + OCT27) 91.57%
DCNN(WSJ + IRC + OCT27) 92.42%

Table 4: Accuracy comparison of different methods on
ARK-Twitter Corpus. The symbol † represents ARK
Tagger trained without tagdicts and namelists.

the ARK tagger, which applies various external
corpus and features, e.g., Brown clustering, PTB,
Freebase lists of celebrities, and video games.

4.3 Evaluation on ARK-Twitter

The ARK-Twitter that contains 34K tokens uses
a novel tagset. The training set (OCT27) is
provided in (Gimpel et al., 2011). It is a dataset
of POS-tagged tweets consisting almost entirely of
tweets sampled from one particular day (October
27, 2010). However, the test set was introduced
in (Owoputi et al., 2013), and contains 574 tweets
(DAILY547). The DAILY547 consists of one
random English tweet from every day between
January 1, 2011 and June 30, 2012. Thus,
the distribution between the training set and test
set may be slightly different. For example, a
substantial fraction of the messages in the training
data are about a basketball game that occurred on
that day.

The results of the ARK tagger and TweetNLP
Tagger in Table 4 are reported in (Owoputi et al.,
2013). We can see that our method could
significantly outperform the TweetNLP Tagger.
However, our method was worse than the ARK
tagger. By analyzing the incorrect results, we
found that 20.3% of the errors occurred between
nouns and proper nouns. Because our model does
not incorporate any knowledge of proper nouns, it
is difficult for it to recognize proper nouns from
datasets. As reported in (Owoputi et al., 2013), if
ARK-tagger does not add tag dictionary features
and name list features, its performance will drop
to 92.38%, which is lower than that of the DCNN.
Thus, our model is also competitive when lacking
of knowledge.

5 Related Work

At a very early time, Schmidhuber (1992) began to
explore the concept of fast weights, in which one
network can produce context-dependent weight
changes for a second network (Schmidhuber,
1992, 1993). Moreover, they provided the theo-
retical possibility of a recurrent network version.
Recently, numerous studies have been conducted
in this field (Moczulski et al., 2015; Fernando
et al., 2016). De Brabandere et al. (2016)
introduced a new framework called the dynamic
filter network where the filters in the CNN are
generated dynamically. Ha et al. (2016) explored
the use of this approach in recurrent networks. Our
work uses a different mechanism to generate pa-
rameters, which can make the parameters subject
to a change in context representations. we cut off
the data path from the main LSTM to the hyper
LSTM. This method can prevent the hidden states
of the main LSTM from influencing the hyper
LSTM.

Recently, deep learning has achieved promising
results on POS tagging. Santos and Zadrozny
(2014) used a CNN to construct a character-based
model for English (PTB) and Portuguese. Wang
et al. (2015) used the bi-LSTM on WSJ and
reported a state-of-the-art performance. However,
because of a lack of training data and an uncon-
strained writing style, these models encountered
resistance in the implementation process on Twit-
ter. In this work, we focused on the linguistic
correlation between Twitter and newswire and
took the linguistic characteristics into consid-
eration. To selectively utilize out-of-domain
data, we used a low-dimensional context vector
to generate different parameters for text with
different expression styles and obtained better
results.

6 Conclusion

In this work, we study the problem of incor-
porating labeled newswire texts for Twitter POS
tagging tasks. From a linguistic perspective, we
find that Twitter users not only tend to mimic the
formal expressions of traditional media, like news,
but they also appear to be developing linguistically
informal styles. Hence, we predict that labeled
data from the newswire should selectively be
used to help tag contextual segments of tweets.
To achieve this task, we introduce a novel deep
neural network architecture that can dynamically
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generate different parameters based on different
expression styles for POS tagging. To evaluate
the performance of the proposed method, we
compare the method with previous state-of-the-art
methods on three different datasets. Experimental
results demonstrate that the proposed method can
achieve better performance in most cases. We
also visualize some parameters learned for the
proposed method to demonstrate the motivation
for this work.
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Abstract

The configurational information in sentences
of a free word order language such as Sanskrit
is of limited use. Thus, the context of the en-
tire sentence will be desirable even for basic
processing tasks such as word segmentation.
We propose a structured prediction framework
that jointly solves the word segmentation and
morphological tagging tasks in Sanskrit. We
build an energy based model where we adopt
approaches generally employed in graph based
parsing techniques (McDonald et al., 2005a;
Carreras, 2007). Our model outperforms the
state of the art with an F-Score of 96.92 (per-
centage improvement of 7.06%) while using
less than one tenth of the task-specific training
data. We find that the use of a graph based ap-
proach instead of a traditional lattice-based se-
quential labelling approach leads to a percent-
age gain of 12.6% in F-Score for the segmen-
tation task.1

1 Introduction

Sanskrit, a morphologically-rich and a free word
order language (Kulkarni et al., 2015), poses a se-
ries of challenges even for automation of basic
processing tasks such as word segmentation. The
recent surge in the digitisation efforts for archiv-
ing the works ranging from the pre-classical to
modern times (Hellwig, 2010-2016) has led to a
growing demand for such tools (Goyal et al., 2012;
Huet, 2006). We propose a structured prediction
approach that jointly solves the word segmenta-
tion and morphological tagging tasks for Sanskrit.

The computational problems arising from the
mechanical treatment of Sanskrit fall somewhere

⇤Work done while the authors were at IIT Kharagpur
†Part of the work was done while the authors were at IIT

Kharagpur
1The code and the pretrained edge vectors (§3) used in this

work are available at https://zenodo.org/record/
1035413#.W35s8hjhUUs

between speech recognition and the analysis of
written text (Huet, 2005). For instance, consider
Figure 1a which shows all the phonetically valid
word splits for a Sanskrit poetic verse2. The writ-
ten representation in Sanskrit is actually a phone-
mic stream (Huet, 2005). The constructions often
undergo phonetic transformations at the juncture
of successive words, similar to what one observes
in connected speech (Morris et al., 2004; Shieber
and Tao, 2003). These transformations obscure the
word boundaries and often modify the phones at
these word boundaries. In Sanskrit, these transfor-
mations get reflected in writing as well. This is
primarily due to the presence of an advanced dis-
cipline of phonetics in Sanskrit which explicitly
described euphonic assimilation as sandhi (Goyal
and Huet, 2016). For instance, words prefixed
with numbers 14 and 15 in Figure 1a are valid
candidates in spite of the phonetic differences they
posses from that of the original sentence.

Sanskrit is rich with syncretisms (Crystal, 2011)
and homonyms. For example, the surface form
‘satı̄’, prefixed with numbers 6 and 10, are
homonyms, while the root ‘satya’ generates iden-
tical surface form for three different morphologi-
cal classes leading to syncretism (1 to 3 in Figure
1a). Hence, in addition to segmentation, the mor-
phological analysis of the segmented word forms
will be critical for reducing the ambiguity in fur-
ther downstream tasks such as syntactic analy-
sis. The sentence construction in the language fol-
lows weak non-projectivity (Havelka, 2007) per-
mitting the words to have a relatively free word
order structure (Kulkarni et al., 2015). The lan-
guage is all the more lenient for poetic construc-
tions (Scharf et al., 2015; Kulkarni et al., 2015),
where arranging the words to adhere to metri-

2A saying from subhās. itam text: One should tell the truth,
one should say kind words; one should neither tell harsh
truths, nor flattering lies; this is a rule for all times.
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Figure 1: a) All the phonetically valid segmentations (link) for ‘satyam. brūyātpriyam. brūyānna-
brūyātsatyamapriyam. priyam. canānr.tambrūyādes.adharmah. sanātanah. ’ from (subhās. itam) as output by Sanskrit
Heritage Reader (SHR) and b) correct segmentation selected from the candidate space.

cal constraints is a bigger concern (Melnad et al.,
2013). Hence, the whole input context is desirable
when making each prediction at the output (Bah-
danau et al., 2015), even for preliminary tasks such
as segmentation in Sanskrit (Reddy et al., 2018).

The word splits in Figure 1 are based on the
analysis by a lexicon driven analyser, Sanskrit
Heritage Reader (SHR)3. A total of 1,056 combi-
nations can be formed from the word splits, such
that each of those combinations is a solution which
covers the entire input. We call such a solution
as an ‘exhaustive segmentation’. Out task is to
find an ‘exhaustive segmentation’, which is also
semantically valid. Figure 1b shows the semanti-
cally valid solution for the sentence.

We propose our structured prediction frame-
work as an energy based model (LeCun et al.,
2006). Considering the free word-orderness, mor-
phological richness and the phenomena of Sandhi
in Sanskrit, we adopt a graph based treatment for
a given input sentence as shown in Figure 2. All
the word splits, as predicted by SHR, are treated
as the nodes in the graph. Every pair of nodes that
can co-occur in at least one ‘exhaustive segmenta-
tion’4 forms directed edges in both the directions.
By construction, any subset of nodes that forms
a maximal clique will be an ‘exhaustive segmen-
tation’. We formalise our task as the search for
a maximal clique. The graph structure eliminates
the sequential nature of the input, while the greedy
maximal clique selection inference policy of ours
can take the entire input context into considera-
tion. We hypothesise that both of these will be

3Available at http://sanskrit.inria.fr/, SHR is a lexicon-
driven segmenter which produces all the valid word splits. An
interface is provided for manual selection of a solution (Goyal
and Huet, 2016)

4For instance, segments 6 and 7 in Figure 1a are con-
nected, while 6 and 9 are not.

beneficial for processing constructions in Sanskrit.
The major contributions of our work are:

1. We propose the first model that performs both
word segmentation and morphological tagging
for Sanskrit as suggested by Krishna et al.
(2017); the combined task reports an F-Score
of 90.45.

2. We obtain an F-Score of 96.92 for the word seg-
mentation task, an improvement of 7.06% over
the state of the art, a seq2seq model with atten-
tion (Reddy et al., 2018).

3. We achieve the results with less than one-tenth
of the training data that Reddy et al. (2018)
uses, a desirable outcome for a low resource
language such as Sanskrit. The pre-training in
the form of morphological constraints to form
edge vectors enables this.

4. We propose a scheme that uses the Path Rank-
ing Algorithm (Lao and Cohen, 2010) to auto-
mate the feature selection and the feature vec-
tor generation for the edges. This eliminates
the need for manual feature engineering.

2 Proposed Architecture

Given an input construction, we obtain our search
space of possible word splits using SHR as shown
in Figure 1. The search space represents all
the possible exhaustive segmentations with possi-
ble gaps and overlaps between the word splits in
each of the exhaustive segmentation (Kudo, 2006;
Oerder and Ney, 1993; Wolf and Woods, 1977).5

In such a setting, representing the search space as
a lattice (Kudo, 2006; Smith et al., 2005) has been

5The word splits in an exhaustive segmentation often
overlap and sometimes leave gaps by virtue of Sandhi. For
examples, please refer the §1 supplementary material.
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Figure 2: Architecture for the proposed model. Word-
splits for ‘satyamapriyam’, a sub-sequence of the sen-
tence in Figure 1a are considered here. The nodes are
numbered from 1 to 10 and are marked with the same in
Figure 1a. For simplicity, we assume that words in nodes
4 to 10 have only one morphological analysis each.

a popular approach for fusional languages (Gold-
berg and Tsarfaty, 2008; Cohen and Smith, 2007;
Hatori et al., 2012). In a lattice, there will be edges
only between the adjacent word splits of an ex-
haustive segmentation. We deviate from this norm
in a minor yet fundamental way. In the search
space, we choose to add edges between every pair
of word splits that are part of a single exhaustive
segmentation. Henceforth, we will refer this struc-
ture as the sentence graph G. We then employ
our minimum cost maximal clique finding energy
based model on the sentence graph G. Figure 2
shows the proposed architecture of the model. It
shows the sentence graph G for ‘satyamapriyam’,
a sub-sequence of the sentence in Figure 1a.

Our current design choice results in a denser
graph structure as input and a computationally ex-
pensive inference. Such a choice requires justifi-
cation. Currently, there exist digitised versions of
texts which spans over a period of 3000 years cat-
egorised into pre-classical literature (1500 BCE -
100 BCE), classical literature (300 CE - 800 CE)
and modern literature (900 CE to now). Hell-
wig (2009) assert that the assumption that Sanskrit
syntax has remained unchanged over an interval
of over 3000 years is not valid. Kulkarni et al.
(2015) notes that the constructions in prose gener-
ally follow weak non-projectivity (Havelka, 2007;
Maier and Lichte, 2011). Kulkarni et al. (2015)
also observes that constructions in verses violate
weak non-projectivity especially with the adjecti-
val and genitive relations. A large number of texts
are written in verses or to complicate things fur-
ther, they are written as a combination of prose
and verse. A lack of consensus among the ex-

perts on a common set of rules for works across
the different time spans, and the enormous effort
in categorising constructions based on their writ-
ing styles, motivated us to use this graph construc-
tion scheme which is agnostic to word order.

Graph Formation:6 In Figure 1a, identical
surface-forms with the same root are grouped to-
gether and displayed as a single entity. But we
consider, every unique combination of root, mor-
phological class and the word position in SHR as
a separate node in G(V, E). Hence the surface-
from satyam, appears as 6 separate nodes num-
bered from 1-3 and 11-13 in Figure 1a. Here the
nodes 1-3 differ from each other in terms of their
morphological classes. The nodes 1 and 11 dif-
fer only in terms of their position owing to its re-
peated occurrence in the input. The position in-
formation is opaque to our proposed system and
is used only in forming the nodes for the sentence
graph. During the inference, we consider all the
pairwise potentials as contexts for each of the pre-
diction made in the search space. The edges in our
model should capture the likeliness of two nodes
to co-occur in the final solution. Hence, every pair
of nodes that can co-occur in an ‘exhaustive seg-
mentation’ forms two directed edges, one each at
either of the directions.

Energy Based Model (EBM) Architecture:
Our approach is inspired from the graph based
parsing approaches employed generally for depen-
dency parsing (McDonald et al., 2005b; Carreras,
2007) and follows a likewise structured prediction
paradigm (Taskar et al., 2005). Specifically, we
use an EBM where we model our joint task as
search for a maximal clique with minimum en-
ergy. Learning consists of finding an energy func-
tion that associates lower energies to cliques with
increasing similarity to the correct clique. The cor-
rect clique configuration will have the lowest en-
ergy (LeCun et al., 2006). The inference policy,
a maximal clique selection algorithm, is used to
make the predictions.

We follow an approach similar to the arc-
factored approaches in graphs (McDonald et al.,
2005b; Carreras, 2007), where the total energy
of a maximal clique, Ti = (VTi , ETi), is de-
composed as the summation of energies of its

6Our graph construction approach is explained using finite
state methods in §1 of the supplementary material
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edges (Ishikawa, 2011).

S(Ti) =
X

epq2ETi

S(~epq)

where, VTi ✓ V, ETi ✓ E. The edges are fea-
turised. For an edge epq 2 E, the features are rep-
resented as a vector, denoted by ~epq. For a given
edge, the energy function, S(·) : [0, 1)|~e| !
(�1, 1), takes the edge feature vector and pro-
duces a scalar value as the energy assignment.

Loss Function and Training: We use Hinge
Loss (Altun et al., 2003; Taskar et al., 2003) as our
loss function. The hinge loss is formulated such
that it increasingly penalises those cliques, sam-
pled by our inference algorithm, with increasingly
more number of wrong segmentation candidates.
We minimise the hinge loss L which is defined as

L = max(0, S(TGT ) � argmin
Ti2AQ

(S(Ti) � �(Ti))

Here, AQ denotes the set of all the unique maxi-
mal cliques and TGT denotes the maximal clique
corresponding to the ground truth.

The margin �(Ti) is defined as �(Ti) = |VTi �
VGT |2. We minimise the given loss function using
gradient descent method. The network parameters
are updated per sentence using back-propagation.
The hinge loss function is not differentiable at the
origin. Hence, we use the subgradient method
to update the network parameters (Socher et al.,
2010; Ratliff et al., 2007). We use a multi-layer
perceptron network with a single hidden layer and
a leaky ReLU activation function at the hidden
layer for the training.

Inference Policy: For the maximal clique selec-
tion, we use a greedy heuristic approach inspired
from Prim’s algorithm (Prim, 1957). The policy is
described in Algorithm 1.

In Algorithm 1, we start the clique selection
with a single node. At any given instance, we loop
through the nodes in the graph which are not yet
part of the clique. We add a vertex v to the clique
if the cumulative score of all the edges from v to
every vertex that is already in the clique is the min-
imum. We discard all the nodes which are conflict-
ing with vertex v. “Conflicting” nodes are any pair
of nodes which are not connected by an edge be-
tween them. This follows from the construction of
the graph G, as the non-connectivity between the
nodes implies that they are proposed as alternative

Algorithm 1: Greedy maximal clique se-
lection heuristic

1 for each node vi in V do
2 Initialize a graph Ki(VKi , EKi) with

Ki = G such that VKi = V and
EKi = E. Initialise a vertex set VTi with
vi as the only element in it. Remove all
the vertices which are conflicting with vi

from Ki.
3 Add the vertex vj 2 (VKi � VTi) to VTi ,

such that in Ki, the sum of edge weights
for the edges starting from vj to all other
vertices in VTi is minimum.

4 Remove all the vertexes which are
conflicting with vj from VKi .

5 Repeat steps 3 - 4 till VKi � VTi = ?

6 end

word suggestions in G. As guaranteed by our sen-
tence graph construction, we obtain the maximal
clique (exhaustive segmentation) when there exist
no more vertices to loop through. We perform this
for every node in the graph G. From all the cliques
so obtained we select the maximal clique with the
least score. The approach does not guarantee enu-
meration of all the cliques, but it is guaranteed that
every node will be covered by at least one maxi-
mal clique. The heuristic can be seen as a means
of sampling some potential minimum energy max-
imal cliques for the learning task. Energy based
models do not require proper normalisation of the
solution space (LeCun et al., 2006), a choice that
enables the use of the heuristic.

During inference, the greedy clique selection
heuristic is performed for every node in G.
Though the run-time for this inference is poly-
nomial, it can still be computationally expensive.
But, in practice we find that our inference proce-
dure results in faster output for graphs with > 19
nodes in comparison to the exponential time Bron-
Kerbosch algorithm (Tomita et al., 2006; Bron and
Kerbosch, 1973) for clique enumeration (McDon-
ald et al., 2005a). We further improve the run
time of our inference procedure by paralleling the
clique selection procedure for each node on a sep-
arate thread.

3 Feature Generation for the Edges

Given two non-conflicting nodes in G, there exists
a pair of directed edges, one each in either direc-
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tion. For every edge in the sentence graph G, we
need to generate features that capture the distri-
butional information between the candidate nodes
that the edge connects. Similar in spirit to Bilmes
and Kirchhoff (2003) and Krishna et al. (2016), we
condition the distributional information based on
different morphological constraints to enrich the
context. The distributional information is obtained
from a morphologically tagged corpus C. Let Vw,
Vm and Vr be the vocabulary of the inflected word
forms, morphological classes and the roots respec-
tively in the corpus. Let V = Vw [ Vm [ Vr.
For each ni, nj 2 V , the conditional probability
is calculated as Pco(nj |ni) = count(nj ,ni)

count(ni)
. Here

count(·) represents the count of co-occurrence be-
tween the entries in the corpus. Also, let MC be
the set of morphological constraints used for con-
ditioning the distributional information. Now, for
each ni, nj 2 V and each gk 2 MC, we can ob-
tain the feature value as follows:

Pgk(nj |ni) = �log(Pco(nj |gk) ⇥ Pco(gk|ni))

We use the following scheme for feature gener-
ation. A node in G essentially contains three at-
tributes, namely, the root, the morphological class
and the inflected word form. A feature uses corpus
evidence of exactly one of the three attributes. For
instance, consider two candidate nodes o1, o2 in
G with (o1w, o1m, o1r) and (o2w, o2m, o2r) as the
respective 3-tuple attributes. Now, one such possi-
ble feature value for the edge from o1 to o2 can be
calculated as Pg1(o1r|o2w) where g1 2 MC and
o1r, o2w 2 V . Hence, features for a directed edge
connecting two different nodes in G can be gener-
ated in 3 ⇥ |MC|⇥3 ways.

We automate the process of feature generation
and feature selection using the framework of Path
Ranking Algorithm (Lao and Cohen, 2010). For-
malising our approach using PRA leads to an effi-
cient and scalable implementation of our scheme.
In PRA, enumerating and generating all the possi-
ble features needs to be performed only for a sam-
pled set of data pairs from the corpus. By using
a supervised feature selection approach, a relevant
sub-set of features is filtered. This is a one-time
process (Gardner and Mitchell, 2015). During in-
ference, the feature values are computed only for
the filtered features. 7

7The edge vector formation is explained in terms of Meta-
paths (Sun, 2010) in §3 of the Supplementary.

Morphological Constraints: MC is defined
as the set of grammatical category combinations,
each combination falling into one of the follow-
ing two descriptions. a) Complete combination,
i.e., a morphological class – In Sanskrit, similar to
Czech (Smith et al., 2005), a morphological class
represents a certain combination of grammatical
categories. For instance, a noun is represented by
case, gender and number. Hence, the combination
‘genitive-masculine-singular’ forms a morpholog-
ical class. b) Partial combination - A combina-
tion of grammatical categories, which can form a
morphological class by adding one or more cate-
gories to it. For instance, ‘genitive-masculine’ is
a partial combination that denotes all the possible
(three) morphological classes which differ from
each other only in terms of the category ‘number’.
However, ‘genitive-present tense’ is not a ‘valid’
combination as it can never form a valid morpho-
logical class. The evidence for a partial combi-
nation in the corpus C can be obtained by sum-
ming the evidence of all the morphological classes
which it denotes. We obtain a total of 528 morpho-
logical constraints. A filtered set of 1500 features
(out of 4752) is used in our model. Mutual Infor-
mation Regression (Kraskov et al., 2004) with the
word to word co-occurrence probability as label is
used for feature selection.8

4 Experiments

Dataset: We use the Digital Corpus of Sanskrit
(DCS) (Hellwig, 2010-2016), a morphologically
tagged corpus of Sanskrit, for all our experiments.
DCS contains digitised works from periods that
span over 3000 years and contain constructions
written in prose or poetry. Identifying sentence
boundaries in Sanskrit constructions is a chal-
lenge of its own (Hellwig, 2016). DCS currently
has split the corpus into more than 560,000 text
lines, all of which need not be following explicit
sentence boundaries. Krishna et al. (2016) iden-
tify 350,000 constructions from the DCS fit for
the segmentation task. They use a separate set
of 9,577 constructions from the DCS, called as
‘DCS10k’, and use it as the test set. They ig-
nore the remaining text lines from DCS due to am-
biguities either in the provided tagging or align-
ment with SHR (Krishna et al., 2017). We use
the 350,000 constructions used in Krishna et al.

8For different settings we experimented with, for the vec-
tor generation, refer to §4 of the supplementary material.
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(2016) as the corpus C (§3) for the generation of
our edge vectors. ‘DCS10k’ was neither used in
the training of our model, nor in the generation
of edge vectors. Reddy et al. (2018) report their
results on a subset of DCS10k containing 4,200
sentences, which we will refer to as ‘DCS4k’.

We experiment with the following systems:
SupervisedPCRW: Proposed in Krishna et al.
(2016), this model also uses the graph output
from SHR. Using PCRW (Lao and Cohen, 2010;
Meng et al., 2015), feature vectors for edges are
generated using hand-crafted morphological con-
straints. Starting with the longest word in the
graph, the prediction is performed by greedily se-
lecting the candidates as per the edge weights.
EdgeGraphCRF: This is a second order CRF
Model (Müller and Behnke, 2014; Ishikawa, 2011)
which uses the sentence graph structure G as the
input to the system. Every node is represented
with fastText (Bojanowski et al., 2017) word em-
beddings trained under default settings. The edges
are featurised with the PRA vectors (§3). We used
1-slack structured SVM for training. For the bi-
nary class problem, QPBO (Rother et al., 2007)
inference approach provided the best results.
Seq2Seq - Reddy et al. (2018) uses an Encoder-
Decoder framework with LSTM cells for the seg-
mentation task. We consider two models from the
work, namely, ‘segSeq2Seq’ and ‘attnSegSeq2seq’
as our baselines. The later which uses attention
(Bahdanau et al., 2015) is the current state of the
art in Sanskrit word segmentation.
Lattice-EBM: An energy based sequence la-
belling model, where the input is a lattice (Wolf
and Woods, 1977) similar to that of Kudo (2006).
The model can be seen as a special case of Graph
Transformer Networks (LeCun et al., 1998, 2007).
In the lattice structure, the candidate links only
to its adjacent nodes in an exhaustive segmenta-
tion. We also generate edge vectors for the dummy
nodes that act as the start and end markers in the
lattice. During prediction, we have to find the best
path from the lattice which minimises the sentence
score. Here, we consider two variants of Lattice-
EBM. L-EBM-Vanilla uses the discriminative for-
ward training approach (Collobert et al., 2011)
with the standard hinge loss. The second vari-
ant L-EBM-Beam, uses multi-margin loss (Edunov
et al., 2018), instead of the hinge loss. Here, we
employ beam search to generate multiple candi-
dates as required by the loss.

Tree-EBM: The baseline model works exactly the
same as the proposed model where the only differ-
ence between both is in the inference algorithm
used. Tree-EBM has an inference that searches
for a Steiner Tree (Takahashi, 1980) from the input
graph G(V, E), the structure of which is described
in §2.9 The inference procedure outputs a span-
ning tree that covers a subset of the nodes from G.
This raises a challenge while estimating the loss
as, unlike in the case of a clique, there can be mul-
tiple rooted tress that spans the subset of nodes in
the ground truth. In this model, we augment the
loss Ltree such that the Steiner tree with the least
energy that spans the nodes in ground truth is cho-
sen.

Ltree = max(0, argmin
Tm2AG

S(Tm)

� argmin
Ti2AQ

(S(Ti) � �(Ti))

Here AG represents set of all the trees that spans
the nodes in the ground truth.
Clique-EBM: The proposed model. The EBM
model uses the maximal clique selection heuristic
for the inference.
Tasks and Evaluation Measures: We use the
macro-averaged Precision (P), Recall (R), F1-
score (F) and also the percentage of sentences with
perfect matching (PM) as our evaluation metrics.
We evaluate the competing systems on the follow-
ing two different tasks.

Word Prediction Task (WPT) - The word seg-
mentation task is evaluated based on the correct-
ness of the inflected word forms predicted. This
was used in Krishna et al. (2016).

Word++ Prediction Task (WP3T) - This is a
stricter metric for the evaluation of the joint task
of segmentation and morphological tag prediction.
It evaluates the correctness of each of the inflected
word form, lemma and its morphological tag.

4.1 Results

Table 1 provides the results for the best performing
configurations for each of the systems. The results
for WPT on DCS4k and WP3T on DCS10k for
each of the systems are shown in Tables 1.A and
1.B. The proposed model, Clique-EBM (System
8), outperforms all the other models across all the
4 metrics on both the tasks. Clique-EBM shows an

9The inference procedure is given in §2 of the supplemen-
tary material
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No: System P R F PM
1 segSeq2Seq 73.44 73.04 73.24 29.2
2 SupervisedPCRW 76.30 79.47 77.85 38.64
3 EdgeGraphCRF 79.27 81.6 80.42 35.91
4 L-EBM-Vanilla 86.38 85.49 84.29 53.62
5 L-EBM-Beam 86.38 85.77 86.07 60.32
6 AttnsegSeq2Seq 90.77 90.3 90.53 55.99
7 Tree-EBM 89.44 92.35 90.87 61.72
8 Clique-EBM 96.18 97.67 96.92 78.83

Table 1.A: WPT on DCS4k

System P R F PM
EdgeGraphCRF 76.69 78.74 77.7 31.82
LatticeEBM-Vanilla 76.88 74.76 75.8 27.49
LatticeEBM-Beam 79.41 77.98 78.69 31.57
Tree-EBM 82.35 79.74 81.02 32.88
Clique-EBM 91.35 89.57 90.45 55.78

Table 1.B: WP3T on DCS10k

Table 1: Performance evaluation of the competing sys-
tems in ascending order of their F-Score.

improvement of 7.06% and 40.79% in terms of F-
score and perfect matching from the current state
of the art (System 6) in WPT. Currently there ex-
ists no system that predicts the morphological tags
for a given word in Sanskrit. For WP3T, Clique-
EBM has shown a percentage increase of 11.64%
and 69.65% in F-Score and the perfect matching
score from Tree-EBM, the next best system.

All the systems except 1 and 6 in Table 1.A use
the linguistically refined output from SHR as their
search space to predict the final solution. Out of
which 3, 4, 5, 7 and 8 use the edge vectors, which
encodes the morphological constraints refined us-
ing PRA (Lao and Cohen, 2010), generated by the
method discussed in §3. As a result these systems
require <10% training data than required by sys-
tem 6. System 3 was trained on 10,000 sentences,
while systems 4 and 5 were trained on 9,000 sen-
tences after which the models got saturated. Sys-
tems 7 and 8 were trained on 8,200 sentences
which is 7.66% of the training data (107,000) used
in System 6. In terms of training time, Reddy et al.
(2018) reports a training time of 12 hours on a
GPU machine, while systems 7 and 8 take a train-
ing time of 8 hours on an Intel Xeon CPU based
machine with 24 cores and 256 GB RAM.10 For
systems 4 and 5 it takes roughly 4 hours to train on
the same machine. There was no training involved
for the prediction of segmentations in system 2.

In systems 4 and 5, the inference is performed

10Please refer §4 of the supplementary for wall time anal-
ysis. System 6, when trained on this CPU based system, did
not converge even after 15 hours of training.

sequentially from left to right11. The use of beam
search with multi margin in System 5 resulted in
marginal improvements (<2) in terms of F-Score
to that of system 4. Further, the improvement in
the results saturated after a beam size of 128. Sys-
tem 3 being a second order CRF model (Ishikawa,
2011), does not take the entire sentence context
into account. In fact, about 85.16% of the sen-
tences predicted by the model from DCS10K do
not correspond to an ‘exhaustive segmentation’.
Prediction of an ‘exhaustive segmentation’ is guar-
anteed in all our EBM models 4, 5, 7 and 8 (also
in system 2) by virtue of the inference procedure
we use. Both systems 7 and 8, along with System
6 which uses attention, consider the entire input
context when making each prediction. System 8
considers all the pairwise potentials between the
nodes while making a prediction, but System 7
does not (Steiner tree vs. maximal clique).

Figure 3 reports the performance of the systems
2, 5, 6 and 8 where the sentences in DCS4k12

are categorised based on the number of words
presented in the segmented ground-truth solution.
Our proposed system Clique-EBM performs the
best across all the lengths with an exception to-
wards shorter constructions of 2 words or less. In-
terestingly, both the sequential models (systems
5 and 6) show a decreasing trend as the number
of words increases, while the Clique-EBM model
shows an increasing trend with a larger length,
which might indicate that more context helps the
model. In fact, the greedy yet non-sequential ap-
proach used in Krishna et al. (2016) outperforms
both the sequential models at longer lengths. The
average length of a sentence in DCS is 6.7 (Kr-
ishna et al., 2016), the share of sentences with
seven or more words is 62.78%.

4.2 Fine Grained Analysis on Clique-EBM13

Pruning the edges in sentence graph G:
Constructions in Sanskrit follow weak non-
projectivity (with exception to verses), imply-
ing that they adhere to the principle of proxim-
ity (Kulkarni et al., 2015). By proximity we expect
that the words in a phrase go together, without be-
ing interrupted by a syntactically unrelated word.

11We also tried reversing the input effectively enabling the
right to left direction but the results were worse than the re-
ported system by an F-Score of 3.

12sentences with length more than 12 words are not shown
as such sentences appear less than 10 times in DCS4k.

13For hyper-parameter settings, and other fine-grained
analysis refer to §4 of the supplementary material.
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Figure 3: Performance of the competing systems for
DCS4k grouped on the word counts in the ground-truth

But the relative ordering between the phrases in
a construction and the order of words within a
phrase can be free.

For any two words appearing in an exhaustive
segmentation, we keep an edge only if both the
words overlap within a distance of k characters.
We experiment with k = 5, 10, 15 and 20. Hence,
for K = 20, a word will form edges with all the
words that fall within 20 characters to left and 20
characters to right. The average length of an in-
put sequence in DCS10K is 40.79 characters. We
do not modify our inference procedure in system
8 other than to take care of the possibility that a
clique need not always be returned. Table 2 shows
the results for different values of k. Interestingly,
the results show a monotonic increase with the
increase in context window, and the results with
the entire context are still better than those with
k = 20, even though only marginally. It is inter-
esting to note that, keeping the entire context does
not adversely affect the predictions as none of the
pruned models outperforms System 8.

The lattice structure can be seen as an extreme
case of pruning. We modify System 4 to use a
non-sequential inference procedure, adapted from
System 7. Here, the start and end markers were re-
moved. Additionally, a given connected node pair
has 2 edges, each in either of the directions. We
find that the model gives an F-Score of 87.4 which
outperforms System 4 by more than three points.

Out of Vocabulary words: As described in §3,
the distributional information from DCS is used
as the corpus C for the feature generation. For the
case of OOV in roots (Vr), we use add-1 smooth-
ing. But, for the case of OOV in inflections (Vw)
we find that using the evidence from correspond-
ing root of the candidate is beneficial. DCS10k has
8,007 roots of which 514 are OOV and 833 occur

k WPT WP3T
P R F P R F

5 90.46 92.27 91.36 83.52 80.48 81.97
10 92.92 95.07 93.98 85.32 84.4 84.86
15 94.85 96.14 95.49 87.67 86.38 87.02
20 95.23 96.49 95.86 89.25 88.62 88.93

Table 2: Performance of Clique-EBM with pruned
edges in G.

Type WPT Recall WP3T Recall
T-EBM C-EBM T-EBM C-EBM

Noun 93.06 96.87 86.14 89.0
Verb 89.14 95.91 87.38 94.42

Compound 89.35 93.52 86.01 91.07
Indeclinable 95.07 97.09 94.93 96.47

Table 3: System performance on the coarse level POS
for the competing systems Clique-EBM (C-EBM) and
Tree-EBM (T-EBM)

only 1 to 5 times. The micro-averaged F-Score for
these are 57.98 and 72.87, respectively.

Morphological class specific assessment : Ta-
ble 3 presents the micro-averaged recall for the
words grouped based on their parts of speech
(POS) for Clique-EBM and Tree-EBM. Both the
systems follow similar trends and the morphologi-
cal class misprediction is highest among the nouns
and compounds (WP3T Recall). It also needs to be
noted that the improvement made by Clique-EBM
in comparison to Tree-EBM for WP3T was also on
prediction of noun and compound morphological
classes. Also in Tree-EBM, the mispredictions in
compounds were mostly cases of the system get-
ting the compound components confused to one of
the morphological classes in nouns.

We find that considering the pairwise potential
between all the words in a sentence in Clique-
EBM led to improved morphological agreement
between the words in comparison to Tree-EBM. In
Tree-EBM, the top 5 cases of mispredictions from
one morphological class to a particular wrong
class were between those classes of nouns that dif-
fered in exactly one of the three possible grammat-
ical categories, namely gender, number or declen-
sion, that makes up a noun. In Clique-EBM such
patterns were not anymore present and more im-
portantly the skewedness in such mispredictions
were considerably reduced.14

Summarily, our non-sequential method of infer-
ence results in better performance in comparison

14Please refer to Tables 6 and 7 in the supplementary ma-
terial for details
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to the sequential models. We also find that the se-
quential models see a drop in their performances
when the number of words in a sentence increases.
Leveraging the pairwise potentials between every
connected nodes while making a prediction im-
proves the performance. The performance gain of
Clique-EBM over Tree-EBM illustrates the effec-
tiveness of this approach.

5 Discussion

In Sanskrit, syncretism (Crystal, 2011) leads to
ambiguity during morphological analysis. It can
further be observed that such common root iden-
tical surface forms often have one or more com-
mon grammatical categories in their morpholog-
ical classes (Goyal and Huet, 2016). We find
that the first three models in Table 1.B often end
up predicting an identical surface-form with an
incorrect morphological tag, thus affecting the
WP3T scores.15. The grammatical categories in
a morphological class are indicative of the syn-
tactic roles and the morphological agreement be-
tween the words in a construction. We empirically
observe that the inference procedure for clique-
EBM, which considers the entire input context and
pairwise potentials between the candidates, helps
in improving the performance of the model. A
similar observation regarding incompatible mor-
phological agreements between predicted words
was made by Hassan et al. (2018) for their NMT
model. The authors introduced an elaborate 2
phase decoder and a KL-Divergence based regu-
larisation to combat the issue.

The energy based model (EBM) we propose is
a general framework for structured prediction in
Sanskrit. EBMs are widely used for various struc-
tured prediction tasks (LeCun et al., 2007; Be-
langer and McCallum, 2016). Belanger (2017)
states that, “CRFs are typically attributed to Laf-
ferty et al. (2001), but many of the core techni-
cal contributions of the paper appeared earlier in
LeCun et al. (1998).” GTNs (LeCun et al., 1998),
in fact, work on a graph based input very simi-
lar to that of a lattice, a variant of which we use
in L-EBM-Vanilla. For dependency parsing, use
of a word-level lattice structure similar to Seeker
and Çetinoğlu (2015), where all the homonyms
and syncertisms of a given surface-form form a
lattice, will potentially result in a reduced candi-
date space than ours. Additionally, our model cur-

15Details in §4 of the Supplementary material

rently does not take into account the phrasal na-
ture of compounds in Sanskrit (Lowe, 2015). This
can further reduce the edge density in our current
graph construction. But, this needs further explo-
ration, as current edge vectors may not be suitable
for the task. To generate the possible candidates,
we rely completely on the SHR. In case of words
not recognised by the lexicon driven SHR, analy-
sis of sentences with a partially recognised portion
is still possible. Once a root is added, all its inflec-
tions can be generated by the SHR automatically.

6 Conclusion

We proposed a novel approach to tackle word seg-
mentation and morphological tagging problem in
Sanskrit. Our model outperforms Reddy et al.
(2018), the current state of the art, with an F-
Score of 96.92. Reddy et al. (2018) report that the
extension of their model to perform morphologi-
cal tagging is not straightforward, as they learn a
new sub-word vocabulary using the sentencepiece
model (Schuster and Nakajima, 2012).

The free word order nature of the language mo-
tivated us to consider the input to be a graph so
as to avoid the sequential processing of input. For
the EBM we use, there is no requirement of proper
normalisation (LeCun et al., 2006). We benefit
from this as we perform a search in the space of
complete outputs and there is a combinatorial ex-
plosion in the output space for a linear increase
in the input space (Doppa et al., 2014). The pre-
training of the edge vectors with external knowl-
edge in the form of morphological constraints is
effective in reducing the task specific training size
(Yang et al., 2017; Andor et al., 2016).
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Abstract

English part-of-speech taggers regularly make
egregious errors related to noun-verb ambigu-
ity, despite having achieved 97%+ accuracy on
the WSJ Penn Treebank since 2002. These
mistakes have been difficult to quantify and
make taggers less useful to downstream tasks
such as translation and text-to-speech synthe-
sis. This paper creates a new dataset of over
30,000 naturally-occurring non-trivial exam-
ples of noun-verb ambiguity. Taggers within
1% of each other when measured on the WSJ
have accuracies ranging from 57% to 75%
accuracy on this challenge set. Enhancing
the strongest existing tagger with contextual
word embeddings and targeted training data
improves its accuracy to 89%, a 14% absolute
(52% relative) improvement. Downstream, us-
ing just this enhanced tagger yields a 28% re-
duction in error over the prior best learned
model for homograph disambiguation for text-
to-speech synthesis.

1 Introduction

Whether a word is functioning as a noun or a verb
in a particular linguistic context critically affects
the output of tasks including translation and text-
to-speech synthesis. The English word close may
be translated as either nah (adjective/non-verb) or
schließen (verb) (example from Sennrich and Had-
dow (2016)). In text-to-speech, the homograph
lives is pronounced /laIvz/ (noun) or /lIvz/ (verb;
example from Sproat et al. (1992)).

While downstream applications require taggers
be sensitive to non-local linguistic context, it is
difficult to measure such sensitivity with current
tagging evaluation. In the past 15 years since
Collins (2002), many models have accuracy ex-
ceeding 97% when measured on the WSJ Penn
Treebank, which is within the level of human
inter-annotator agreement for the corpus. Incorpo-

rating non-local context via sentence-based repre-
sentations (Collobert et al., 2011) or state-of-the-
art contextual representations of tokens (ELMo,
Peters et al. (2018)) yields the same tagging ac-
curacy as Collobert et al.’s limited window-based
representation (97.3%). However, existing local
models “regularly make egregious errors” (Man-
ning, 2011), notably on imperative detection1.
That is, the applicability of the part-of-speech la-
beling task is limited by its standard evaluation not
reflecting difficult cases which require contextual
reasoning to resolve ambiguity.

In this paper, we address this mismatch by cre-
ating a targeted intrinsic evaluation: a challenge
dataset of over 30,000 naturally-occurring non-
trivial examples of noun-verb ambiguity spanning
multiple domains and containing many impera-
tives that non-expert humans can annotate with
high agreement (Section 2). We will publicly re-
lease both the training and evaluation data2.

We further contribute a series of modeling ex-
periments on this data. We first show that state-
of-the-art taggers perform poorly on this challenge
(Table 1) and then investigate two simple and or-
thogonal approaches to enhancing a state-of-the-
art tagger: incorporating generic contextual em-
beddings trained on billions of words, and incor-
porating thousands of examples of training data
targeted for this task. Both of these approaches
yield large and complementary improvements: the
combined methods give an accuracy of 89.1%, a
14% absolute improvement over a state-of-the-art
tagger and a 31% absolute improvement over the
widely used Stanford tagger. Section 3 provides an
overview of the investigated taggers, experiments,
and results.

1In experiments with recipe data in Kiddon et al. (2015),
an unsupervised system had an F1 score over 20% higher in
absolute terms than supervised taggers.

2http://goo.gl/language/noun-verb
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Model WSJ NV
Existing Taggers
Toutanova et al. (2003) 97.24 57.6
Choi (2016) 97.64 71.2
Dozat et al. (2017) 97.33 70.4
Bohnet et al. (2018) 98.00±.12 74.0±1.2
Enhancements

+ELMo 97.94±.08 82.1±0.9
+NV Data 97.98±.11 86.4±0.4
+ELMo+NV Data 97.97±.09 88.9±0.3

Table 1: Empirical Results. All investigated new
and existing taggers are within 1% of each other
when measured on the WSJ test set. When evalu-
ated on the Noun-Verb dataset, however, existing
taggers range from 57% to 74%. Adding enhance-
ments to the Bohnet et al. (2018) tagger gives
over 14% absolute improvement. Best results and
results insignificantly different from the best are
bolded (two-tailed t-test).

Finally, we demonstrate that these tagging im-
provements make a positive impact on the down-
stream task of homograph disambiguation for text-
to-speech (Section 4).

2 Noun-Verb Dataset

Consider the ambiguous examples below:

(1) Certain insects can damage plumerias,
such as mites, flies, or aphids. NOUN

(2) Mark which area you want to distress.
VERB

All tested existing part-of-speech taggers (Table 1)
mistag both of these examples, tagging flies as a
verb and Mark as a noun3. Looking at only the
WSJ Penn Treebank, all occurrences of Mark are
nouns, so a part-of-speech tagger that ignores con-
text completely could appear to do quite well on
this word type. Similarly, all occurrences of the
word type share in the WSJ development set are
noun instances.

A baseline of selecting the most frequent tag per
word type (ignoring all context) achieves 93.0%
accuracy on the ambiguous tokens in the WSJ (Ta-
ble 2). A simple tagger based on a single hidden
layer feed-forward neural network with 128 units
that uses a three word window around the focus

3The enhanced tagger that uses both contextual word em-
beddings and data augmentation (+ELMo+NV Data in Table
1) gets both Example (1) and Example (2) correct.

Type NN ±3
Train Dev Majority Words
WSJ:NV WSJ:NV 93.0 97.0
NV NV 70.1 77.6

Table 2: Taggers that use no context (Type Ma-
jority) or very little context (NN ±3 words) can
achieve high accuracies on the ambiguous tokens
in the WSJ (WSJ:NV), but would fare much worse
on the Noun-Verb dataset.

token as features achieves an accuracy of 97.0%
on the WSJ ambiguous words (WSJ:NV).

We therefore aim to create a dataset in which
taggers would have to take into account the sur-
rounding context in order to correctly tag ambigu-
ous words, rather than relying on skewed priors
per word type. We design a methodology for iden-
tifying and labeling hard cases of noun-verb am-
biguity. The result is a dataset of over 30,000
hand-labeled, natural, and non-trivial examples of
noun-verb ambiguity, which we will make pub-
licly available to facilitate research on modeling
for this task.

2.1 Collection Methodology
Our goal is to build a resource which captures a
wide range of challenges that a part-of-speech tag-
ger needs to handle in the wild. To produce this
resource, we find large sources of naturally occur-
ring examples with a diversity of challenges, iden-
tify noun-verb ambiguity, find the non-trivial ex-
amples, and finally acquire high-precision labels
from humans.

2.1.1 Naturally Occurring Sources
All examples come from naturally occurring En-
glish web text from three distinct genres. Typical
examples from each are shown in Table 3. These
genres present a diverse range of challenges: genre
1 has long well-edited sentences, genre 2 makes
heavy use of imperative verbs, and genre 3 con-
tains largely headline style short sentences.

2.1.2 Ambiguous Token Detection
We used an online dictionary to identify ambigu-
ous word types (such as play) that can be either
a noun or a verb.4 To find ambiguous instances
of these types, we ran a CRF-based tagger simi-
lar to Toutanova et al. (2003) over the input sen-

4We exclude a short stop list (do, name, state); the final
list contains 24,170 word types.
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Representative Examples Label
Genre 1

“Man With a Vision” peaked at #91 in the UK, spending two weeks on the chart. NOUN
40.7% of the population benefit from public assistance as of 2004, up from 23.0% VERB
in 2000.

Genre 2
Your doctor may recommend a diet or exercise routine. NOUN
Use within 3 days of cooking. VERB

Genre 3
Safeguard Infrastructure From Electrical Surges & Limit Downtime. NOUN
Stop In Today Or Shop Online! VERB

Table 3: Noun and Verb examples from each genre. All examples are taken from the development set.

tences. We selected tokens tagged as either a noun
or a verb5 and for which the k-best list for that to-
ken contained both noun and verb6 tags with close
scores. We used a heuristic that the lower scoring
tag had to have a score within 20% of the score of
the higher.

2.1.3 Filtering Trivial Examples
Part-of-speech tagging is already a well-
established task with plenty of existing labeled
examples. Adding more examples similar to
John watched a play would not affect the output
predictions of taggers, which already tend to
correctly label tokens as nouns if they follow
determiners. Inspired by work on active learning
(Tomanek and Hahn, 2009; Small and Roth,
2010), we focused our data collection efforts
on difficult examples. To remove easy contexts,
we excluded tokens preceded by a determiner or
modal verb. Tokens7 were additionally restricted
to be neither adjectival modifiers8 nor components
of noun-compounds9.

2.1.4 Diversification
Noun-verb disambiguation is a challenge for mod-
ern POS taggers both because words can look si-
multaneously noun- and verb-like to a model, but
also because verbs (nouns) can falsely present as
nouns (verbs). Our extraction methodology is

5Nouns and verbs were identified by mapping the
fine-grained part-of-speech tag to its coarse-grained
category (Petrov et al., 2012): https://github.
com/slavpetrov/universal-pos-tags/blob/
master/en-ptb.map

6We excluded VBN from the set of verb tags, as it often
functions more similarly to non-verbs

7Specifically, non-sentence initial tokens
8Labeled as amod according to a dependency parser
9Labeled as nn according to a dependency parser

Agreement Type # %
Unanimous 23,908 71.4%
Majority 9,122 27.3%
Disagreement 432 1.3%

Table 4: Inter-annotator agreement rates. Unani-
mous examples had 3/3 agreement, while majority
examples had 2/3, 3/5, or 4/5 in agreement.

well-designed to identify the former. To identify
tokens on which models are falsely confident, we
manually reviewed a sample of tokens discarded in
extraction. We found that sentence-initial impera-
tive verbs were very likely to be confidently tagged
as nouns. To ensure that this important class of
ambiguous tokens was included in our dataset, we
made it a special extraction case and did not apply
the above filters for trivial examples.

2.1.5 Crowdsourced Annotation
We presented annotators with the extracted to-
kens in their full sentence context. Annotators
were asked to select whether the target word was
a “Noun”, a “Verb”, “Ambiguous”, or “Neither”
(a noun or a verb). Full annotation guidelines
will accompany the dataset release. Each exam-
ple was annotated by at least three annotators for
quality assurance. For batches with larger than av-
erage proportions of non-unanimous annotations,
the non-unanimous examples were sent to an ad-
ditional two annotators for a total of five annota-
tions. Table 4 shows that annotators generally had
a high level of agreement with each other, with
unanimous agreement on 71.4% of the examples
and majority agreement on 98.7% of the exam-
ples. Annotators achieved an average pace of 40
seconds per sentence.
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Genre Train Dev Test
1 8621 1081 2711
2 6160 919 2289
3 9473 400 1000
All 24254 2400 6000

Table 5: Noun-Verb dataset statistics.

2.2 Final Dataset

To compile the final dataset, we rejected exam-
ples in which there was no majority agreement
or in which the majority label was “Ambiguous”
or “Neither”. This excluded 808 sentences and
yielded a final dataset size of 32,654. We divided
this into training, development, and test sets. Table
5 shows the dataset sizes and genre distributions.
The genre distribution of the training set is inten-
tionally different from that of the development and
test sets, as realistically one will often have differ-
ent distributions at training and test time, and fu-
ture work may want to model this difference (Don-
mez et al., 2010; Steinhardt and Liang, 2016).

We asked a professional linguist to indepen-
dently label 200 examples and adjudicate any dif-
ferences from the crowd-sourced labels with other
professional linguists. The linguists found only 7
actual mistakes (3.5% of examples). Of the re-
maining 96.5% plausible annotations, the linguist
agreed with the crowd in 167 cases (83.5%), and
found 26 disparities between PTB-style guidelines
and plausible intuitive judgments (13%). All but
one of the disparities involved a word ending in
“ing” inside a noun phrase, such as “Manufactur-
ing defects”). Also, all but two of the disparities
were cases which the crowd source annotators la-
beled as nouns while the PTB-style guidelines la-
beled as verbs.

While humans can do well on these instances,
Table 2 shows that baseline taggers that use little
or no context have high error rates on this dataset,
in contrast to the WSJ.

3 Empirical Evaluation of Taggers

In this section, we demonstrate empirically the
limitations of several existing taggers on the new
challenge dataset. We then take the most accu-
rate, Bohnet et al. (2018), and investigate how it
can be enhanced to be much more discriminative
in ambiguous contexts. We finish with some error
analysis to inspire future work.

3.1 Experimental Setup
Training All experiments used the standard
splits of the WSJ Penn Treebank and the new
Noun-Verb dataset. Specifically, WSJ Sections 2-
21 were used to train all models; where indicated,
this was augmented with the training portion of the
Noun-Verb dataset. Neural models (Dozat et al.
(2017), Bohnet et al. (2018), and extensions) used
WSJ Section 22 for early stopping, and were run
with n = 10 random restarts to compute standard
deviations.

Evaluation Models are evaluated on the Noun-
Verb test set. The development set was used for
developing the proposed enhancements, as well as
to do error analysis. To verify performance on the
standard task, we also evaluate accuracy on WSJ
Section 23, cf. Table 1 first column.

Our evaluation metric is VERB/NON-VERB
classification accuracy over tokens which have
gold annotations. To evaluate the taggers we
map the fine-grained tag output using Petrov et al.
(2012): tags with a coarse-grained VERB category
map to the VERB label, and all other tags to the
NON-VERB label.

3.2 Existing Taggers
We evaluated four commonly used and/or state-of-
the-art taggers on our task. The first investigated
tagger is the Stanford POS tagger10 (Toutanova
et al., 2003), part of the Stanford CoreNLP Toolkit
(Manning et al., 2014) and widely used. This pre-
trained model is a log-linear model with features
over the surrounding words and tags in a local win-
dow around the focus word.

The second investigated tagger is the pub-
licly available NLP4J, a pre-trained tagging model
(Choi, 2016)11. It used feature induction to expand
the feature set during training by adding combina-
tions of low-dimensional features. The approach
achieved 97.64% on WSJ evaluation. It is worth
noting that this model used a large automatically
tagged corpus to get ambiguity classes for each
word and Choi (2016) showed that this extra piece
of information was responsible for the largest part
of the improvement.

The third tagger is Dozat et al. (2017), which
won the UPOS portion of the CoNLL 2017 Shared
Task on Universal Dependencies (Zeman et al.,

10https://nlp.stanford.edu/software/
tagger.shtml

11https://github.com/emorynlp/nlp4j
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2017) by a wide margin. It represents each word
by a sum of its pretrained word embedding (glove
Pennington et al. (2014)), trained word embed-
ding, and the output from an LSTM runs over
word’s characters. Those representations are sup-
plied to a deep BiLSTM followed by a Multi-
Layer Perceptron (MLP) layer. The output from
the MLP layer is multiplied by a learned embed-
ding for tags and the tag with the highest score is
selected as the output.

Finally the fourth existing tagger is the Meta-
BiLSTM (Bohnet et al., 2018) which is the cur-
rent state of the art on both WSJ and CoNLL
2017 POS tagging evaluation. This model con-
sists of three components, all of which run over
the entire input sentence: a word-BiLSTM that
takes a sum of pretrained (GloVe (Pennington
et al., 2014)) and trained word embeddings, a char-
BiLSTM that consumes trained characters embed-
ding and a Meta component that takes a concate-
nation of word and character representations (at
word boundaries) and feeds it to a Bi-LSTM fol-
lowed by a MLP layer. The final output is com-
puted using softmax over the Meta-MLP represen-
tation but a multi-loss is also optimized at the char
and word representations level.

For Dozat et al. (2017) and Bohnet et al. (2018),
we trained the model on WSJ PTB training data to
get comparable models to the two previous sys-
tems. For Dozat et al. (2017) we used the default
hyperparameters. For Bohnet et al. (2018), the
hyperparameters used are almost identical to the
original paper.12

The first two taggers are linear models (with
feature combinations) while the second two are
neural models. Both Dozat et al. (2017) and
Bohnet et al. (2018) take non-local context into
account through BiLSTMs over the full sentence.
However, these models might not use this model-
ing power when trained on the WSJ, since local
context is usually sufficient (Table 2).

3.3 Enhancements
We take the best existing tagger (Bohnet et al.,
2018) as our starting point to investigate the ef-
ficacy of two simple enhancements and their com-
bination for improving noun-verb disambiguation.

The first enhancement is to add generic, contex-
12Two hyperparameter differences: we used two layers in-

stead of three for the word component and a learning rate de-
cay of 0.99994 instead of 0.999994. These were fixed early
on and not tuned.

tual word embeddings trained on a billion words
of language modeling data (Peters et al., 2018).
The second enhancement is to add task-specific
targeted training data, with thousands of examples
derived from the Noun-Verb training set.

Contextual Word Embeddings (ELMo) The
statistics of the new dataset, shown in Table 2,
suggest that this dataset might benefit from more
contextual modeling. Although the basic Meta-
BiLSTM model is already contextual, one can sus-
pect based on the first row in Table 2 that WSJ
training might lead the model to ignore wider con-
text. One way to make the model use more con-
textual information is to replace the word embed-
ding layer with a contextual embedding. We used
ELMo embeddings (Peters et al., 2018), which
are generated by training a bi-directional language
model on a large corpus of unlabeled data. The
aim of using ELMo here is that we expect to get
different embeddings for a word like “play” when
it is used as a verb, as in “I will come and play”,
versus when it is used as a noun, as in “I liked the
two-act play”.

We replaced the word embedding layer in the
Word component with ELMo.13 As in Peters et al.
(2018), we trained a task specific weighting of the
three ELMo layers:

v(word)
i = �

2X

j=0

sjh
ELMo
i,j , (1)

where hELMo
i,j is the j-th layer ELMo embedding

of word i, sj are softmax-normalized weights over
the layers, and � is a scalar parameter. We trained
this model on the WSJ training data only.

Targeted Data Augmentation (NV Data) Our
Noun-Verb training data comes with gold binary
labels (“Noun” or “Verb”). To add them to our
current model, we took a simple approach to map
the Noun-Verb labels into the fine-grained POS
tagset used in the WSJ dataset. To do that, we
ran the baseline tagger used to extract the anno-
tated examples in §2.1 over the Noun-Verb train-
ing data, and extracted all possible tags for the
annotated words, sorted by their score. We then
assigned to that word the highest scoring tag con-
sistent with the coarse-grained tags. This resulted
in a silver training dataset containing partially la-
beled sentences, each with one word tagged by its

13We used the “Original” model from https://
allennlp.org/elmo.
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Model SI ¬ SI
Majority class per word 74.6 69.3
type using Noun-Verb
training set

Existing Taggers
Toutanova et al. (2003) 47.4 59.6
Choi (2016) 67.8 71.0
Dozat et al. (2017) 68.3 70.7
Bohnet et al. (2018) 68.4±4.0 74.4±0.9
Enhancements

+ELMo 73.4±2.2 82.1±1.0
+NV Data 89.3±0.5 85.4±0.5
+ELMo+NV Data 90.0±0.8 87.6±0.6

Table 6: Development set accuracies on sentence
initial (SI) tokens compared with non-sentence-
initial (¬SI) tokens.

fine-grained POS tag. We used this dataset to aug-
ment the WSJ training data. Since the Noun-Verb
examples only contain one labeled token per sen-
tence, we assigned the unlabeled tokens a cost of
zero in the cost function at training time.

ELMo and Data Augmentation Together Fi-
nally, we experimented with using both enhance-
ments together. We trained the ELMo-enhanced
model on the dataset augmented with the Noun-
Verb training set examples. The motivating in-
tuition for combining them is that the inclusion
of the difficult Noun-Verb training set examples
could encourage the model to make more use of
ELMo embeddings than the model trained on the
WSJ only. Another possibility is that these two
types of enhancements are redundant and that one
dominates the other.

3.4 Results
Table 1 shows the main results of both existing
taggers and the enhanced models on both WSJ and
the Noun-Verb Challenge Set.

Existing Taggers While all four selected tag-
gers achieve accuracies above 97% on WSJ, they
all struggle on our noun-verb challenge (Table 1).
The widely used tagger of Toutanova et al. (2003)
has an accuracy of just 57.6%, below the 70.1%
accuracy of a per-word type majority class base-
line (Table 2). The best performing tagger (Bohnet
et al., 2018) was 3.9% above the next best model.
However it still has an error rate of 25%.

The ranking of the four taggers stays the same

whether one uses the WSJ or the Noun-Verb Chal-
lenge Set for evaluation. However, the magnitude
of differences changes drastically. For example,
on the WSJ test set, the differences between Dozat
et al. (2017) and Toutanova et al. (2003) appear
insignificant: Dozat et al. (2017) improves over
Toutanova et al. (2003) by 0.09% absolute (3%
relative reduction in error). When measured on
the Noun-Verb Challenge Set, the differences are
stark: the tagger of Dozat et al. (2017) is 12.8%
absolute more accurate, which is a 30% relative
reduction in error.

Enhancements Experimental results in Table 1
show that ELMo gave 7.2% absolute improvement
and did not significantly affect the WSJ results14.
This is further evidence that WSJ evaluation does
not model ambiguities in cases where context mat-
ters. Adding the silver Noun-Verb data to the
baseline model gave 10% absolute improvement
over the baseline. This is significant given that the
model capacity remained unchanged. By contrast,
hooking up ELMo added a very large multi-layer
BiLSTM language model to the parameters.

The best model was the model which used both
ELMo embeddings and data augmentation. It
achieved 13.1% absolute improvement over the
state-of-the-art baseline of Bohnet et al. (2018),
equivalent to over a 52% error reduction. This
demonstrates that the improvement from ELMo is
complementary to that from the additional Noun-
Verb data.

Sentence-Initial Examples The trend in Table 1
is magnified in Table 6, which shows develop-
ment set accuracies separately for tokens that are
sentence-initial (SI), which are often imperatives,
and for tokens that are not SI.

On SI accuracy, none of the WSJ-trained base-
lines could beat the most-frequent-tag baseline
from the Noun-Verb training data. This shows
that these sorts of examples, which are mostly im-
peratives, are underrepresented in the WSJ cor-
pus. ELMo embeddings were able to improve
both SI and non-SI accuracies by roughly the same
amount, but again, not as much as adding the
Noun-Verb data, which gave a 21.7% boost to SI
accuracy. The efficacy of the Noun-Verb data in
this case shows that directed training examples can

14We also ran the experiment using the “Original (5.5B)”
ELMo model, trained on a larger and more diverse corpus.
We did not find any significant difference between the two.
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Tuning Set
Model WSJ NV

WSJ Test Set
Bohnet et al. (2018) 98.00±0.12 97.98±0.13
+ELMo 97.94±0.08 97.85±0.16
+NV Data 97.98±0.11 97.94±0.14
+ELMo+NV Data 97.97±0.09 97.94±0.13

Noun-Verb Test Set
Bohnet et al. (2018) 74.0±1.2 76.9±0.6 †
+ELMo 82.1±0.9 83.4±0.5 †
+NV Data 86.4±0.4 86.8±0.4
+ELMo+NV Data 88.9±0.3 89.3±0.2 ‡

Table 7: Effect of using different tuning sets. As
usual with early stopping, the best tuning set per-
formance was used to evaluate the test set. Here,
we evaluated the same experimental runs at two
points: when the performance was best on the
WSJ development set, and again when the perfor-
mance was best on the Noun-Verb development
set. The increase in Noun-Verb results is signif-
icant at the p < 0.001(†) and p < 0.01(‡) levels.

be especially beneficial for fixing some common
error patterns.

Impact of Tuning Set Table 7 compares perfor-
mance of the same experiments on the WSJ and
Noun-Verb Challenge test sets, tuned either us-
ing the WSJ or the Noun-Verb development set.
The only effect of the change in tuning set was for
the Noun-Verb tuning to cause the early stopping
to sometimes be a little earlier. When we tuned
on the Noun-Verb development set, the WSJ re-
sults remained almost unchanged, while the Noun-
Verb test set results increased significantly. We
see that the performance on each dataset is best
when matched with its tuning data. The effect
was greatest on the unenhanced model, which im-
proved 2.9% absolute on the Noun-Verb evalua-
tion. The best overall Noun-Verb test set result
was 89.3±0.2 when tuned this way.

3.5 Error Analysis
Table 8 shows representative examples that the
best baseline run got wrong, along with the pre-
dictions from the best runs for each of the differ-
ent enhancements. While each enhancement re-
duces all error types, adding Noun-Verb data im-
proves imperatives in particular when compared
with adding ELMo. This holds true even when im-
peratives are not sentence-initial, like the practice

example in Table 8.
Of the errors made by our best model, roughly a

quarter occurred when the focus word was a con-
junction. This provides additional evidence for the
importance of modeling non-local context in this
dataset.

4 Homograph Disambiguation

To show the impact of our best models on a down-
stream task, we used the text-to-speech homo-
graph disambiguation task described in Gorman
et al. (2018). The dataset contains 161 word types,
each of which has up to three possible pronun-
ciations. In that work, the authors built a linear
model that used lexical features of the focus word
and its surrounding words, POS tags, and capital-
ization, to achieve 95.4% on this task. Here, we
want to see the effectiveness of our taggers by us-
ing just the POS tag of each word to determine
its pronunciation category. To do this, we anno-
tated the homograph disambiguation train and test
data with with POS tags using each of our taggers.
We collected counts from the training corpus of
the form <word, POS tag, word_sense, Count>.
These counts show how many times a given word
got assigned to a certain word sense when it has a
certain POS tag. We used those counts to select the
most frequent pronunciation for each <word, POS
tag> pair on the test data. Note that this approach
will miss some word senses that cannot be deter-
mined from the word and POS tag only, like the
difference in pronunciation of the word "jesus" be-
tween English: /"dZi:z@s/ and Spanish: /heI"su:s/.

Table 9 shows results for the micro and macro
accrucies among different word types in the same
way (Gorman et al., 2018) reported their results.
The overall results show similar trend to what is
observed in the Noun-Verb evaluation results. The
Choi (2016), and Bohnet et al. (2018) baseline tag-
gers perform close to the full model in Gorman
et al. (2018), which uses a wider context and more
features. This is probably due to having a stronger
POS tagger than the one used in that model. It is
also interesting to see the gap between Toutanova
et al. (2003) and the rest of baseline taggers which
was measured only on the Noun-Verb evaluation
and not in WSJ evaluation. The rest of the re-
sults show that using either ELMo achieves a 1.3%
absolute improvement over the baseline. while
adding data augmentation achieves 0.3% absolute
improvement over the baseline. Using both ELMo
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+ELMo
Example Gold Base +ELMo +Data +Data
Will gets his revenge by masquerading as Sue’s NOUN MD NNP MD NNP

hairdresser and forcibly shaving her head bald.
Will putting a patch over my eye help to get the VERB NN VB NN VB

object out of it?
If you don’t have a table, you can mount the frame NOUN VB VB NN NN

on a desk, stand, or other structure that will hold
the bike off the ground.

For best results, practice hitting one note higher VERB NN NN VB VB
than your standard range.

Spirit actually suggests unpacking their smokes by NOUN VB VB VB NN
rolling the cigarette between your fingers, filter to
end, so that a pinch or so of tobacco comes out.

Choose the highest combat level and duel. VERB NN NN NN VB

Table 8: Development set examples that reflect the types of errors the enhancements address. Base is the
tagger of Bohnet et al. (2018), while the remaining columns show the impact of the enhancements. Tags
consistent with the gold annotations are in bold and inconsistent are in italics.

Model Micro Macro
Best ML system
Gorman et al. (2018) 95.4 95.1
Existing Taggers
Toutanova et al. (2003) 91.1 91.5
Choi (2016) 95.8 95.8
Dozat et al. (2017) 94.6 94.7
Bohnet et al. (2018) 95.9±0.2 95.9±0.2
Enhancements

+ELMo 96.7±0.2 96.7±0.2
+NV Data 96.2±0.2 96.2±0.2
+ELMo+NV Data 96.7±0.3 96.7±0.3

Table 9: Accurcies of different models on the ho-
mograph disambiguation test set. All enhance-
ments’ improvements over (Bohnet et al., 2018)
baseline are statistically significant p < 0.008.
Standard deviations are estimated from n = 10
random restarts, and p-values were computed us-
ing a heteroscedastic two-tailed t-test.

and data augmentation was not better than just us-
ing ELMo. Those improvements correspond to
a 28% error reduction compared to the machine-
learned model in Gorman et al. (2018).

5 Discussion and Related Work

Dataset Creation Prior work in crowd-sourcing
syntactic annotations and using them in mod-
els motivated the dataset creation portion of this

work. Jha et al. (2010) showed that non-linguists
could reliably do aspects of syntactic annota-
tion, and Hovy et al. (2014) showed that non-
experts could annotate universal part-of-speech
tags (Petrov et al., 2012) almost as well as experts.
He et al. (2016) then showed that incorporating
crowd-sourced annotations improves parsing by a
noticeable margin on the subset of sentences in
which the human judgments affected the parser’s
output. Inspired by this result, we focused our ef-
forts on collecting annotations that were likely to
change a tagger’s predictions and humans can an-
notate reliably.

This work filtered out trivial examples via hand-
written heuristics targeted towards examples that
taggers generally get correct (Section 2.1). One
interesting direction for future work would be to
eliminate this manual step. One option could be to
instead use automatically produced high-precision
interpretable rules to filter out these examples,
such as the Anchor explanations output by Ribeiro
et al. (2018). Table 1 in that paper shows how
the system can automatically induce that a part-of-
speech tagging system will tag the word play as a
NOUN in the sentence I went to a play yesterday
because the previous word is a determiner.

Measurement Manning (2011) performed an
error analysis for WSJ and discovered that 19% of
the errors fall under "Difficult linguistics" which
need non-local context modeling to be able to
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solve them. The negative results of Kiddon et al.
(2015) on using existing supervised part-of-speech
taggers for imperative detection provided motiva-
tion for focusing on noun-verb confusion. How-
ever we are not aware of any prior work on try-
ing to measure part-of-speech-tagging accuracy on
hard ambiguities that are easily recognized by hu-
man using diverse corpora.

6 Conclusion and Future Work

This paper proposes a challenge set approach to
evaluating part-of-speech taggers, and builds a
new resource for doing so. We show that a part-of-
speech tagger can be trained to be better at noun-
verb ambiguity by using extra Noun-Verb targeted
training data or by adding contextual word em-
bedding. We also show that our evaluation data
can measure improvements in Noun-Verb disam-
biguation that standard evaluation dataset was not
able to capture. Those previously unmeasured
improvements in the Noun-Verb disambiguation
are shown to lead to improvements in a down-
stream task. Improvements were especially large
on sentence-initial tokens, which are often imper-
atives. Even with these improvements, there is
still a large gap between the noun-verb accuracies
and overall WSJ tagging accuracy. We expect that
closing this gap will make incorporating syntax
more useful across natural language understand-
ing applications.

Future work can include exploring ways to in-
corporate more context into the tagger, possibly
by using information from dependency tree. Also
investigating more downstream tasks and explore
if this dataset can be used directly in downstream
tasks in a way similar to what have been done in
Swayamdipta et al. (2017) and (Eriguchi et al.,
2017; Niehues and Cho, 2017; Kiperwasser and
Ballesteros, 2018) for injecting syntax in seman-
tic role labeling and translation tasks. A third di-
rection for research would be using this dataset to
evaluate different contextual modeling approaches
and investigate the creation and using such con-
text sensitive dataset to create simpler and smaller
models that can capture a lot of contextual word
representation.

Future work on dataset creation can include
generating similar challenge datasets for differ-
ent key ambiguities in NLP. A collection of such
datasets could be one way to cover hard exam-
ples that models do not get right but humans are

good at. Such targeted datasets can complement
the use of large unsupervised contextual embed-
ding models. This can open an avenue to improve
core NLP tasks on hard relevant ambiguities that
allows making progress on downstream tasks.
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Abstract
When parsing morphologically-rich languages
with neural models, it is beneficial to model
input at the character level, and it has been
claimed that this is because character-level
models learn morphology. We test these
claims by comparing character-level models to
an oracle with access to explicit morphologi-
cal analysis on twelve languages with varying
morphological typologies. Our results high-
light many strengths of character-level mod-
els, but also show that they are poor at disam-
biguating some words, particularly in the face
of case syncretism. We then demonstrate that
explicitly modeling morphological case im-
proves our best model, showing that character-
level models can benefit from targeted forms
of explicit morphological modeling.

1 Introduction

Modeling language input at the character level
(Ling et al., 2015; Kim et al., 2016) is effec-
tive for many NLP tasks, and often produces bet-
ter results than modeling at the word level. For
parsing, Ballesteros et al. (2015) have shown that
character-level input modeling is highly effective
on morphologically-rich languages, and the three
best systems on the 45 languages of the CoNLL
2017 shared task on universal dependency parsing
all use character-level models (Dozat et al., 2017;
Shi et al., 2017; Björkelund et al., 2017; Zeman
et al., 2017), showing that they are effective across
many typologies.

The effectiveness of character-level models in
morphologically-rich languages has raised a ques-
tion and indeed debate about explicit modeling
of morphology in NLP. Ling et al. (2015) pro-
pose that “prior information regarding morphol-
ogy ... among others, should be incorporated”
into character-level models, while Chung et al.
⇤Work done while at the University of Edinburgh.

(2016) counter that it is “unnecessary to consider
these prior information” when modeling charac-
ters. Whether we need to explicitly model mor-
phology is a question whose answer has a real
cost: as Ballesteros et al. (2015) note, morphologi-
cal annotation is expensive, and this expense could
be reinvested elsewhere if the predictive aspects of
morphology are learnable from strings.

Do character-level models learn morphology?
We view this as an empirical claim requiring em-
pirical evidence. The claim has been tested implic-
itly by comparing character-level models to word
lookup models (Qian et al., 2016; Belinkov et al.,
2017). In this paper, we test it explicitly, ask-
ing how character-level models compare with an
oracle model with access to morphological anno-
tations. This extends experiments showing that
character-aware language models in Czech and
Russian benefit substantially from oracle morphol-
ogy (Vania and Lopez, 2017), but here we focus on
dependency parsing (§2)—a task that benefits sub-
stantially from morphological knowledge—and
we experiment with twelve languages using a va-
riety of techniques to probe our models.

Our summary finding is that character-level
models lag the oracle in nearly all languages (§3).
The difference is small, but suggests that there is
value in modeling morphology. When we tease
apart the results by part of speech and dependency
type, we trace the difference back to the character-
level model’s inability to disambiguate words even
when encoded with arbitrary context (§4). Specif-
ically, it struggles with case syncretism, in which
noun case—and thus syntactic function—is am-
biguous. We show that the oracle relies on mor-
phological case, and that a character-level model
provided only with morphological case rivals the
oracle, even when case is provided by another pre-
dictive model (§5). Finally, we show that the cru-
cial morphological features vary by language (§6).
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2 Dependency parsing model

We use a neural graph-based dependency parser
combining elements of two recent models (Kiper-
wasser and Goldberg, 2016; Zhang et al., 2017).
Let w = w1, . . . , w|w| be an input sentence of
length |w| and let w0 denote an artificial ROOT to-
ken. We represent the ith input token wi by con-
catenating its word representation (§2.3), e(wi)
and part-of-speech (POS) representation, pi.1 Us-
ing a semicolon (; ) to denote vector concatena-
tion, we have:

xi = [e(wi); pi] (1)

We call xi the embedding of wi since it depends
on context-independent word and POS represen-
tations. We obtain a context-sensitive encoding hi

with a bidirectional LSTM (bi-LSTM), which con-
catenates the hidden states of a forward and back-
ward LSTM at position i. Using hf

i and hb
i respec-

tively to denote these hidden states, we have:

hi = [hf
i ; hb

i ] (2)

We use hi as the final input representation of wi.

2.1 Head prediction
For each word wi, we compute a distribution over
all other word positions j 2 {0, ..., |w|}/i denot-
ing the probability that wj is the headword of wi.

Phead(wj | wi, w) =
exp(a(hi, hj))

P|w|
j0=0 exp(a(hi, hj0))

(3)

Here, a is a neural network that computes an as-
sociation between wi and wj using model param-
eters Ua, Wa, and va.

a(hi, hj) = va tanh(Uahi + Wahj) (4)

2.2 Label prediction
Given a head prediction for word wi, we predict
its syntactic label `k 2 L using a similar network.

Plabel(`k | wi, wj , w) =
exp(f(hi, hj)[k])

P|L|
k0=1 exp(f(hi, hj)[k0])

(5)

where L is the set of output labels and f is a func-
tion that computes label score using model param-
eters U`, W`, and V`:

f(hi, hj) = V` tanh(U`hi + W`hj) (6)
1This combination yields the best labeled accuracy according
to Ballesteros et al. (2015).

The model is trained to minimize the summed
cross-entropy losses of both head and label predic-
tion. At test time, we use the Chu-Liu-Edmonds
(Chu and Liu, 1965; Edmonds, 1967) algorithm to
ensure well-formed, possibly non-projective trees.

2.3 Computing word representations
We consider several ways to compute the word
representation e(wi) in Eq. 1:

word. Every word type has its own learned
vector representation.

char-lstm. Characters are composed using a
bi-LSTM (Ling et al., 2015), and the final states
of the forward and backward LSTMs are concate-
nated to yield the word representation.

char-cnn. Characters are composed using a
convolutional neural network (Kim et al., 2016).

trigram-lstm. Character trigrams are com-
posed using a bi-LSTM, an approach that we pre-
viously found to be effective across typologies
(Vania and Lopez, 2017).

oracle. We treat the morphemes of a morpho-
logical annotation as a sequence and compose
them using a bi-LSTM. We only use universal in-
flectional features defined in the UD annotation
guidelines. For example, the morphological anno-
tation of “chases” is hchase, person=3rd,
num-SG, tense=Presi.

For the remainder of the paper, we use the name
of model as shorthand for the dependency parser
that uses that model as input (Eq. 1).

3 Experiments

Data We experiment on twelve languages with
varying morphological typologies (Table 1) in the
Universal Dependencies (UD) treebanks version
2.0 (Nivre et al., 2017).2 Note that while Ara-
bic and Hebrew follow a root & pattern typology,
their datasets are unvocalized, which might reduce
the observed effects of this typology. Following
common practice, we remove language-specific
dependency relations and multiword token anno-
tations. We use gold sentence segmentation, to-
kenization, universal POS (UPOS), and morpho-
logical (XFEATS) annotations provided in UD.

Implementation and training Our Chainer
(Tokui et al., 2015) implementation encodes words
(Eq. 2) in two-layer bi-LSTMs with 200 hidden
units, and uses 100 hidden units for head and label
2For Russian we use the UD Russian SynTagRus treebank,
and for all other languages we use the default treebank.
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Languages #sents #tokens type/token
(K) (K) ratio (%)

Finnish 12.2 162.6 28.5
Turkish 3.7 38.1 33.6

Czech 68.5 1173.3 9.5
English 12.5 204.6 8.1
German 14.1 269.6 17.7
Hindi 13.3 281.1 6
Portuguese 8.3 206.7 11.7
Russian 48.8 870 11.4
Spanish 14.2 382.4 11.1
Urdu 4.0 108.7 8.8

Arabic 6.1 223.9 10.3
Hebrew 5.2 137.7 11.7

Table 1: Training data statistics. Languages are
grouped by their dominant morphological pro-
cesses, from top to bottom: agglutinative, fu-
sional, and root & pattern.

predictions (output of Eqs. 4 and 6). We set batch
size to 16 for char-cnn and 32 for other models
following a grid search. We apply dropout to the
embeddings (Eq. 1) and the input of the head pre-
diction. We use Adam optimizer with initial learn-
ing rate 0.001 and clip gradients to 5, and train
all models for 50 epochs with early stopping. For
the word model, we limit our vocabulary to the
20K most frequent words, replacing less frequent
words with an unknown word token. The char-
lstm, trigram-lstm, and oracle models use a one-
layer bi-LSTM with 200 hidden units to compose
subwords. For char-cnn, we use the small model
setup of Kim et al. (2016).

Parsing Results Table 2 presents test results
for every model on every language, establishing
three results. First, they support previous find-
ings that character-level models outperform word-
based models—indeed, the char-lstm model out-
performs the word model on LAS for all lan-
guages except Hindi and Urdu for which the re-
sults are identical.3 Second, they establish strong
baselines for the character-level models: the char-
lstm generally obtains the best parsing accuracy,
closely followed by char-cnn. Third, they demon-
strate that character-level models rarely match the
accuracy of an oracle model with access to ex-
plicit morphology. This reinforces a finding of
3Note that Hindi and Urdu are mutually intelligible.

Vania and Lopez (2017): character-level models
are effective tools, but they do not learn everything
about morphology, and they seem to be closer to
oracle accuracy in agglutinative rather than in fu-
sional languages.

4 Analysis

4.1 Why do characters beat words?

In character-level models, orthographically simi-
lar words share many parameters, so we would ex-
pect these models to produce good representations
of OOV words that are morphological variants of
training words. Does this effect explain why they
are better than word-level models?

Sharing parameters helps with both seen and
unseen words Table 3 shows how the charac-
ter model improves over the word model for both
non-OOV and OOV words. On the agglutina-
tive languages Finnish and Turkish, where the
OOV rates are 23% and 24% respectively, we see
the highest LAS improvements, and we see es-
pecially large improvements in accuracy of OOV
words. However, the effects are more mixed in
other languages, even with relatively high OOV
rates. In particular, languages with rich morphol-
ogy like Czech, Russian, and (unvocalised) Arabic
see more improvement than languages with mod-
erately rich morphology and high OOV rates like
Portuguese or Spanish. This pattern suggests that
parameter sharing between pairs of observed train-
ing words can also improve parsing performance.
For example, if “dog” and “dogs” are observed
in the training data, they will share activations in
their context and on their common prefix.

4.2 Why do morphemes beat characters?

Let’s turn to our main question: what do character-
level models learn about morphology? To answer
it, we compare the oracle model to char-lstm, our
best character-level model.

Morphological analysis disambiguates words
In the oracle, morphological annotations disam-
biguate some words that the char-lstm must dis-
ambiguate from context. Consider these Russian
sentences from Baerman et al. (2005):

(1) Maša čitaet pis mo
Masha reads letter
‘Masha reads a letter.’
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Model ! word char-lstm char-cnn trigram-lstm oracle o/c

# Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS LAS

Finnish 85.7 80.8 90.6 88.4 89.9 87.5 89.7 87.0 90.6 88.8 +0.4
Turkish 71.4 61.6 74.7 68.6 74.4 67.9 73.2 65.9 75.3 69.5 +0.9

Czech 92.6 89.3 93.5 90.6 93.5 90.6 92.7 89.2 94.3 92.0 +1.4
English 90.6 88.9 91.3 89.4 91.7 90.0 90.4 88.5 91.7 89.9 +0.5
German 88.1 84.5 88.0 84.5 87.8 84.4 87.1 83.5 88.8 86.5 +2.0
Hindi 95.8 93.1 95.7 93.3 95.7 93.2 93.4 89.8 95.9 93.3 -
Portuguese 87.4 85.5 87.8 86.0 87.7 86.0 86.7 84.8 88.0 86.5 +0.5
Russian 92.4 90.1 94.0 92.4 93.8 92.1 92.0 89.5 94.4 93.3 +0.9
Spanish 89.4 86.9 89.8 87.4 90.0 87.3 88.6 85.5 90.0 87.7 +0.3
Urdu 91.1 87.0 91.2 87.1 91.3 87.2 88.6 83.5 90.9 87.0 -0.1

Arabic 75.5 70.9 76.7 72.1 76.6 72.2 74.6 68.9 76.7 72.7 +0.6
Hebrew 73.5 69.8 73.4 69.8 73.3 69.8 71.3 67.1 73.3 70.0 +0.2

Table 2: Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS) on test set. The best
accuracy for each language is highlighted in bold for all models, and for all non-oracle models. o/c:
LAS improvement from char-lstm to oracle.

Language dev LAS improvement

%OOV non-OOV OOV

Finnish 23.0 6.8 17.5
Turkish 24.0 4.6 13.5

Czech 5.8 1.4 3.9
English 6.8 0.7 5.2
German 9.7 0.9 0.7
Hindi 4.3 0.2 0.0
Portuguese 8.1 0.3 1.3
Russian 8.4 2.1 6.9
Spanish 7.0 0.4 0.7

Arabic 8.0 1.2 7.3
Hebrew 9.0 0.2 1.3

Table 3: LAS improvements (char-lstm � word)
for non-OOV and OOV words on development set.

(2) Na stole ležit pis mo
on table lies letter
‘There’s a letter on the table.’

Pis mo (“letter”) acts as the subject in (1), and as
object in (2). This knowledge is available to the
oracle via morphological case: in (1), the case of
pis mo is nominative and in (2) it is accusative.
Could this explain why the oracle outperforms the
character model?

To test this, we look at accuracy for word types

Figure 1: LAS improvements (oracle � char-lstm)
for ambiguous and unambiguous words on devel-
opment set.

that are empirically ambiguous—those that have
more than one morphological analysis in the train-
ing data. Note that by this definition, some am-
biguous words will be seen as unambiguous, since
they were seen with only one analysis. To make
the comparison as fair as possible, we consider
only words that were observed in the training data.
Figure 1 compares the improvement of the oracle
on ambiguous and seen unambiguous words, and
as expected we find that handling of ambiguous
words improves with the oracle in almost all lan-
guages. The only exception is Turkish, which has
the least training data.

Morphology helps for nouns Now we turn
to a more fine-grained analysis conditioned on
the annotated part-of-speech (POS) of the depen-
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Language Model ADJ NOUN PRON PROPN VERB Overall

Finnish %tokens 8.1 32.5 8.2 6.7 16.1 -

char-lstm 89.2 82.1 88.1 84.5 88.4 87.7
oracle 90.3 83.3 89.5 86.2 89.3 88.5
diff +1.1 +1.2 +1.4 +1.7 +0.9 +0.8

Czech %tokens 14.9 28.7 3.6 6.3 10.7 -

char-lstm 94.2 83.6 85.3 84.3 90.7 91.2
oracle 94.8 87.5 88.5 86.8 91.1 92.5
diff +0.6 +3.9 +3.2 +2.5 +0.4 +1.3

German %tokens 7.6 20.4 9.5 5.6 12.1 -

char-lstm 88.4 81.4 86.0 82.4 85.2 87.5
oracle 89.1 87.1 93.2 84.4 86.3 89.7
diff +0.7 +5.7 +7.2 +2.0 +1.1 +2.2

Russian %tokens 12.2 29.3 6.1 4.6 13.7 -

char-lstm 93.2 86.7 92.0 80.2 88.5 91.6
oracle 93.7 88.8 93.3 86.4 88.9 92.6
diff +0.5 +2.1 +1.3 +6.2 +0.4 +1.0

Table 4: Labeled accuracy for different parts of speech on development set.

dent. We focus on four languages where the ora-
cle strongly outperforms the best character-level
model on the development set: Finnish, Czech,
German, and Russian.4 We consider five POS
categories that are frequent in all languages and
consistently annotated for morphology in our data:
adjective (ADJ), noun (NOUN), pronoun (PRON),
proper noun (PROPN), and verb (VERB).

Table 4 shows that the three noun categories—
ADJ, PRON, and PROPN—benefit substantially
from oracle morphology, especially for the three
fusional languages: Czech, German, and Russian.

Morphology helps for subjects and objects
We analyze results by the dependency type of the
dependent, focusing on types that interact with
morphology: root, nominal subjects (nsubj), ob-
jects (obj), indirect objects (iobj), nominal modi-
fiers (nmod), adjectival modifier (amod), obliques
(obl), and (syntactic) case markings (case).

Figure 2 shows the differences in the confu-
sion matrices of the char-lstm and oracle for those
words on which both models correctly predict the
head. The differences on Finnish are small, which
we expect from the similar overall LAS of both
4This is slightly different than on the test set, where the effect
was stronger in Turkish than in Finnish. In general, we found
it difficult to draw conclusions from Turkish, possibly due to
the small size of the data.

models. But for the fusional languages, a pat-
tern emerges: the char-lstm consistently underper-
forms the oracle on nominal subject, object, and
indirect object dependencies—labels closely asso-
ciated with noun categories. From inspection, it
appears to frequently mislabel objects as nominal
subjects when the dependent noun is morphologi-
cally ambiguous. For example, in the sentence of
Figure 3, Gelände (“terrain”) is an object, but the
char-lstm incorrectly predicts that it is a nominal
subject. In the training data, Gelände is ambigu-
ous: it can be accusative, nominative, or dative.

In German, the char-lstm frequently confuses
objects and indirect objects. By inspection, we
found 21 mislabeled cases, where 20 of them
would likely be correct if the model had access
to morphological case (usually dative). In Czech
and Russian, the results are more varied: indi-
rect objects are frequently mislabeled as objects,
obliques, nominal modifiers, and nominal sub-
jects. We note that indirect objects are relatively
rare in these data, which may partly explain their
frequent mislabeling.

5 Characters and case syncretism

So far, we’ve seen that for our three fusional
languages—German, Czech, and Russian—the or-
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Figure 2: Heatmaps of the difference between oracle vs. char-lstm confusion matrices for label prediction
when both head predictions are correct (x-axis: predicted labels; y-axis: gold labels). Blue cells have
higher oracle values, red cells have higher char-lstm values.

Ein eigenes Gelände gibt es nicht
a private area exist not

DET ADJ NOUN VERB PRON PART
Case=Acc Case=Nom

det

amod obj

nsubj advmod

nsubj

root

Figure 3: A sentence which the oracle parses per-
fectly (shown in white) and the char-lstm predicts
an incorrect label (shown in black).

acle strongly outperforms a character model on
nouns with ambiguous morphological analyses,
particularly on core dependencies: nominal sub-
jects, objects and indirect objects. Since the nomi-
native, accusative, and dative morphological cases
are strongly (though not perfectly) correlated with
these dependencies, it is easy to see why the
morphologically-aware oracle is able to predict
them so well. We hypothesized that these cases
are more challenging for the character model be-
cause these languages feature a high degree of
syncretism—functionally distinct words that have
the same form—and in particular case syncretism.
For example, referring back to examples (1) and
(2), the character model must disambiguate pis mo
from its context, whereas the oracle can directly
disambiguate it from a feature of the word itself.5

To understand this, we first designed an exper-
iment to see whether the char-lstm could success-
5We are far from first to observe that morphological case is
important to parsing: Seeker and Kuhn (2013) observe the
same for non-neural parsers.

fully disambiguate noun case, using a method sim-
ilar to (Belinkov et al., 2017). We train a neu-
ral classifier that takes as input a word represen-
tation from the trained parser and predicts a mor-
phological feature of that word—for example that
its case is nominative (Case=Nom). The classi-
fier is a feedforward neural network with one hid-
den layer, followed by a ReLU non-linearity. We
consider two representations of each word: its em-
bedding (xi; Eq. 1) and its encoding (hi; Eq. 2).
To understand the importance of case, we consider
it alongside number and gender features as well as
whole feature bundles.

The oracle relies on case Table 5 shows the
results of morphological feature classification on
Czech; we found very similar results in German
and Russian (Appendix A.2). The oracle embed-
dings have almost perfect accuracy—and this is
just what we expect, since the representation only
needs to preserve information from its input. The
char-lstm embeddings perform well on number
and gender, but less well on case. This results sug-
gest that the character-level models still struggle
to learn case when given only the input text. Com-
paring the char-lstm with a baseline model which
predicts the most frequent feature for each type
in the training data, we observe that both of them
show similar trends even though character models
slightly outperforms the baseline model.

The classification results from the encoding are
particularly interesting: the oracle still performs
very well on morphological case, but less well
on other features, even though they appear in
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Feature baseline embedding encoder

char oracle char oracle

Case 71.1 74.4 100 86.5 98.6
Gender 92.9 98.1 100 71.2 58.6
Number 88.9 94.7 100 84.2 84.8
All 70.4 72.5 99.9 58.1 50.2

Table 5: Morphological tagging accuracy from rep-
resentations using the char-lstm and oracle embed-
ding and encoder representations in Czech. Base-
line simply chooses the most frequent tag. All
means we concatenate all annotated features in
UD as one tag.

the input. In the character model, the accuracy
in morphological prediction also degrades in the
encoding—except for case, where accuracy on
case improves by 12%.

These results make intuitive sense: representa-
tions learn to preserve information from their input
that is useful for subsequent predictions. In our
parsing model, morphological case is very use-
ful for predicting dependency labels, and since
it is present in the oracle’s input, it is passed
almost completely intact through each represen-
tation layer. The character model, which must
disambiguate case from context, draws as much
additional information as it can from surround-
ing words through the LSTM encoder. But other
features, and particularly whole feature bundles,
are presumably less useful for parsing, so neither
model preserves them with the same fidelity.6

Explicitly modeling case improves parsing ac-
curacy Our analysis indicates that case is im-
portant for parsing, so it is natural to ask: Can
we improve the neural model by explicitly mod-
eling case? To answer this question, we ran a
set of experiments, considering two ways to aug-
ment the char-lstm with case information: multi-
task learning (MTL; Caruana, 1997) and a pipeline
model in which we augment the char-lstm model
with either predicted or gold case. For example,
we use hp, i, z, z, a, Nomi to represent
pizza with nominative case. For MTL, we fol-
low the setup of Søgaard and Goldberg (2016) and

6This finding is consistent with Ballesteros (2013) which per-
formed careful feature analysis on morphologically rich lan-
guages and found that lemma and case features provide the
highest improvement in a non-neural transition based parser
compared to other features.

Language Input Dev Test

Czech char 91.2 90.6
char (multi-task) 91.6 91.0
char + predicted case 92.2 91.8

char + gold case 92.3 91.9
oracle 92.5 92.0

German char 87.5 84.5
char (multi-task) 87.9 84.4
char + predicted case 87.8 86.4

char + gold case 90.2 86.9
oracle 89.7 86.5

Russian char 91.6 92.4
char (multi-task) 92.2 92.6
char + predicted case 92.5 93.3

char + gold case 92.8 93.5
oracle 92.6 93.3

Table 6: LAS results when case information is
added. We use bold to highlight the best results
for models without explicit access to gold annota-
tions.

Coavoux and Crabbé (2017). We increase the biL-
STMs layers from two to four and use the first two
layers to predict morphological case, leaving out
the other two layers specific only for parser. For
the pipeline model, we train a morphological tag-
ger to predict morphological case (Appendix A.1).
This tagger does not share parameters with the
parser.

Table 6 summarizes the results on Czech, Ger-
man, and Russian. We find augmenting the char-
lstm model with either oracle or predicted case
improve its accuracy, although the effect is dif-
ferent across languages. The improvements from
predicted case results are interesting, since in non-
neural parsers, predicted case usually harms accu-
racy (Tsarfaty et al., 2010). However, we note that
our taggers use gold POS, which might help. The
MTL models achieve similar or slightly better per-
formance than the character-only models, suggest-
ing that supplying case in this way is beneficial.
Curiously, the MTL parser is worse than the the
pipeline parser, but the MTL case tagger is better
than the pipeline case tagger (Table 7). This in-
dicates that the MTL model must learn to encode
case in the model’s representation, but must not
learn to effectively use it for parsing. Finally, we
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Language %case Dev Test

PL MT PL MT

Czech 66.5 95.4 96.7 95.2 96.6
German 36.2 92.6 92.0 90.8 91.4
Russian 55.8 95.8 96.5 95.9 96.5

Table 7: Case accuracy for case-annotated to-
kens, for pipeline (PL) vs. multitask (MT) setup.
%case shows percentage of training tokens anno-
tated with case.

observe that augmenting the char-lstm with either
gold or predicted case improves the parsing per-
formance for all languages, and indeed closes the
performance gap with the full oracle, which has
access to all morphological features. This is espe-
cially interesting, because it shows using carefully
targeted linguistic analyses can improve accuracy
as much as wholesale linguistic analysis.

6 Understanding head selection
The previous experiments condition their analysis
on the dependent, but dependency is a relationship
between dependents and heads. We also want to
understand the importance of morphological fea-
tures to the head. Which morphological features
of the head are important to the oracle?

Composing features in the oracle To see which
morphological features the oracle depends on
when making predictions, we augmented our
model with a gated attention mechanism follow-
ing Kuncoro et al. (2017). Our new model attends
to the morphological features of candidate head
wj when computing its association with dependent
wi (Eq. 3), and morpheme representations are then
scaled by their attention weights to produce a final
representation.

Let fi1, · · · , fik be the k morphological features
of wi, and denote by fi1, · · · , fik their correspond-
ing feature embeddings. As in §2, hi and hj are the
encodings of wi and wj , respectively. The mor-
phological representation mj of wj is:

mj = [fj1, · · · , fjk]>k (7)

where k is a vector of attention weights:

k = softmax([fj1, · · · , fjk]>Vhi) (8)

The intuition is that dependent wi can choose
which morphological features of wj are most im-
portant when deciding whether wj is its head.

Note that this model is asymmetric: a word only
attends to the morphological features of its (sin-
gle) parent, and not its (many) children, which
may have different functions. 7

We combine the morphological representation
with the word’s encoding via a sigmoid gating
mechanism.

zj = g � hj + (1 � g) � mj (9)
g = �(W1hj + W2mj) (10)

where � denotes element-wise multiplication.
The gating mechanism allows the model to choose
between the computed word representation and
the weighted morphological representations, since
for some dependencies, morphological features of
the head might not be important. In the final
model, we replace Eq. 3 and Eq. 4 with the fol-
lowing:

Phead(wj |wi, w) =
exp(a(hi, zj))PN
j0=0 exp a(hi, zj0)

(11)

a(hi, zj) = va tanh(Uahi + Wazj) (12)

The modified label prediction is:

Plabel(`k|wi, wj , w) =
exp(f(hi, zj)[k])

P|L|
k0=0 exp(f(hi, zj)[k0])

(13)

where f is again a function to compute label score:

f(hi, zj) = V` tanh(U`hi + W`zj) (14)

Attention to headword morphological features
We trained our augmented model (oracle-attn) on
Finnish, German, Czech, and Russian. Its accu-
racy is very similar to the oracle model (Table 8),
so we obtain a more interpretable model with no
change to our main results.

Next, we look at the learned attention vectors to
understand which morphological features are im-
portant, focusing on the core arguments: nominal
subjects, objects, and indirect objects. Since our
model knows the case of each dependent, this en-
ables us to understand what features it seeks in po-
tential heads for each case. For simplicity, we only
report results for words where both head and label
predictions are correct.
7This is a simple and much less computationally demanding
variant of the model of Dozat et al. (2017), which uses dif-
ferent views for each head/dependent role.
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Language oracle oracle-attn

UAS LAS UAS LAS

Finnish 89.2 87.3 88.9 86.9
Czech 93.4 91.3 93.5 91.3
German 90.4 88.7 90.7 89.1
Russian 93.9 92.8 93.8 92.7

Table 8: Our attention experiment results on devel-
opment set.

Figure 4 shows how attention is distributed
across multiple features of the head word. In
Czech and Russian, we observe that the model at-
tends to Gender and Number when the noun is in
nominative case. This makes intuitive sense since
these features often signal subject-verb agreement.
As we saw in earlier experiments, these are fea-
tures for which a character model can learn reli-
ably good representations. For most other depen-
dencies (and all dependencies in German), Lemma
is the most important feature, suggesting a strong
reliance on lexical semantics of nouns and verbs.
However, we also notice that the model sometimes
attends to features like Aspect, Polarity, and Verb-
Form—since these features are present only on
verbs, we suspect that the model may simply use
them as convenient signals that a word is verb, and
thus a likely head for a given noun.

7 Conclusion

Character-level models are effective because they
can represent OOV words and orthographic regu-
larities of words that are consistent with morphol-
ogy. But they depend on context to disambiguate
words, and for some words this context is insuffi-
cient. Case syncretism is a specific example that
our analysis identified, but the main results in Ta-
ble 2 hint at the possibility that different phenom-
ena are at play in different languages.

While our results show that prior knowledge of
morphology is important, they also show that it
can be used in a targeted way: our character-level
models improved markedly when we augmented
them only with case. This suggests a pragmatic re-
ality in the middle of the wide spectrum between
pure machine learning from raw text input and
linguistically-intensive modeling: our new models
don’t need all prior linguistic knowledge, but they
clearly benefit from some knowledge in addition
to raw input. While we used a data-driven anal-

Figure 4: The importance of morphological fea-
tures of the head for subject and object predictions.

ysis to identify case syncretism as a problem for
neural parsers, this result is consistent with previ-
ous linguistically-informed analyses (Seeker and
Kuhn, 2013; Tsarfaty et al., 2010). We conclude
that neural models can still benefit from linguis-
tic analyses that target specific phenomena where
annotation is likely to be useful.
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dra Kübler, Marie Candito, Jennifer Foster, Yannick
Versley, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(SPMRL): What, how and whither. In Proceedings
of the NAACL HLT 2010 First Workshop on Statis-
tical Parsing of Morphologically-Rich Languages,
SPMRL ’10, pages 1–12, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2016–2027. Association for
Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan Ha-
jic, Joakim Nivre, Filip Ginter, Juhani Luotolahti,
Sampo Pyysalo, Slav Petrov, Martin Potthast, Fran-
cis Tyers, Elena Badmaeva, Memduh Gokirmak,
Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka
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Abstract

Character-based neural models have recently
proven very useful for many NLP tasks. How-
ever, there is a gap of sophistication between
methods for learning representations of sen-
tences and words. While, most character
models for learning representations of sen-
tences are deep and complex, models for learn-
ing representations of words are shallow and
simple. Also, in spite of considerable re-
search on learning character embeddings, it
is still not clear which kind of architecture
is the best for capturing character-to-word
representations. To address these questions,
we first investigate the gaps between meth-
ods for learning word and sentence represen-
tations. We conduct detailed experiments and
comparisons on different state-of-the-art con-
volutional models, and also investigate the
advantages and disadvantages of their con-
stituents. Furthermore, we propose IntNet, a
funnel-shaped wide convolutional neural ar-
chitecture with no down-sampling for learn-
ing representations of the internal structure of
words by composing their characters from lim-
ited, supervised training corpora. We evaluate
our proposed model on six sequence labeling
datasets, including named entity recognition,
part-of-speech tagging, and syntactic chunk-
ing. Our in-depth analysis shows that IntNet
significantly outperforms other character em-
bedding models and obtains new state-of-the-
art performance without relying on any exter-
nal knowledge or resources.

1 Introduction

Sequence labeling is the task of assigning a label
or class to each element of a sequence of data, and
is one of the first stages in many natural language
processing (NLP) tasks. For example, named en-
tity recognition (NER) aims to classify words in a
sentence into several predefined categories of in-
terest such as person, organization, location, etc.

Part-of-speech (POS) tagging assigns a part of
speech to each word in an input sentence. Syn-
tactic chunking divides text into syntactically re-
lated, non-overlapping groups of words. Sequence
labeling is a challenging problem because human
annotation is very expensive and typically only a
small amount of tagging data is available.

Most traditional sequence labeling systems
have been dominated by linear statistical models
which heavily rely on feature engineering. As
a result, carefully constructed hand-crafted fea-
tures and domain-specific knowledge are widely
used for solving these tasks. Unfortunately, it is
costly to develop domain specific knowledge and
hand-crafted features. Recently, neural networks
using character-level information have been used
successfully for minimizing the need of feature
engineering. There are basically two threads of
character-based modeling, one focuses on learn-
ing representations of sentences for semantics
and syntax (Zhang et al., 2015; Conneau et al.,
2017); the other focuses on learning representa-
tions of words for the purpose of eliminating hand-
crafted features for word shape information (Lam-
ple et al., 2016; Ma and Hovy, 2016).

Two main state-of-the-art approaches of learn-
ing character representations for sequence labeling
emerged from the latter thread. One is based on
RNNs and uses bidirectional LSTMs or GRUs to
learn forward and backward character information
(Ling et al., 2015; Lample et al., 2016; Yang et al.,
2017). The other approach is based on CNNs
with a fixed-size window around each word to
create character-level representations (Santos and
Zadrozny, 2014; Chiu and Nichols, 2016; Ma and
Hovy, 2016). However, there is a gap in the so-
phistication between character-based methods for
learning representations of sentences compared to
that of words. We found that most of the state-
of-the-art character-based CNN models for words
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use a convolution followed by max pooling as a
shallow feature extractor, which is very different
from the CNN models with deep and complex ar-
chitecture for sentences. In spite of considerable
research on learning character embeddings, it is
still not clear which kind of architecture is the best
for capturing character-to-word representations.

Therefore, a number of questions remain open:

• Why is there a gap between methods for
learning representations of sentences and
words? How can this gap be bridged?

• How do state-of-the-art character embedding
models differ in term of performance?

• What kind of neural network architecture is
better for learning the internal structure of a
word? Deep or shallow? Narrow or wide?

To answer these questions, we first investigate
the gap between learning word representations
and sentence representations for convolutional ar-
chitectures. The most straightforward idea is to
add more convolutional layers which follows the
approaches from learning representations of sen-
tences. Interestingly, we observe the accuracy
does not increase much and found that accuracy
drops when we increased the depth of the net-
work. This observation shows that learning char-
acter representations for the internal structure of
words is very different than sentences, and also
might explain one of the reasons there has been
a gap in character-based CNN models for repre-
senting words and sentences.

In this paper, we present detailed experiments
and comparisons across different state-of-the-art
convolutional models from natural language pro-
cessing and computer vision. We also investi-
gate the advantages and disadvantages of some
of their constituents on different convolutional
architectures. Furthermore, we propose IntNet,
a funnel-shaped wide convolutional neural net-
work for learning the internal structure of words
by composing their characters. Unlike previous
CNN-based approaches, our funnel-shaped Int-
Net explores deeper and wider architecture with
no down-sampling for learning character-to-word
representations from limited supervised training
corpora. Lastly, we combine our IntNet model
with LSTM-CRF, which captures both word shape
and context information, and jointly decode tags
for sequence labeling.

The main contributions of this paper are the fol-
lowing:

• We conduct detailed studies on investigating
the gap between learning word representa-
tions and sentence representations.

• We provide in-depth experiments and empir-
ical comparisons of different convolutional
models and explore the advantages and dis-
advantages of their components for learning
character-to-word representations.

• We propose a funnel-shaped wide convo-
lutional neural architecture with no down-
sampling that focuses on learning a better in-
ternal structure of words.

• Our proposed compositional character-to-
word model combined with LSTM-CRF
achieves state-of-the-art performance for var-
ious sequence labeling tasks.

This paper is organized as follows: Section 2
describes multiple threads of related work. Sec-
tion 3 presents the whole architecture of the neu-
ral network. Section 4 provides details about ex-
perimental settings and compared methods. Sec-
tion 5 reports model results on different bench-
marks with detailed analyses and discussion.

2 Related Work

There exist three threads of related work regarding
the topic of this paper: (i) different convolutional
architectures from different domains; (ii) character
embedding models for words; (iii) sequence label-
ing with deep neural network.

CNN models across domains. Convolutional
neural networks (CNNs) are very useful in extract-
ing information from raw signals. In the area of
NLP, Kim (2014) was the first to propose shallow
CNN with word embeddings for sentence classifi-
cation. Zhang et al. (2015) proposed CNN with 6
convolutional layers by directly extracting charac-
ter level information for learning representations
of semantic structure on sentences. Recently, Con-
neau et al. (2017) proposed a VDCNN architec-
ture with 29 convolutional layers using residual
connections for text classification. However, one
study on randomly dropping layers for training
deep residual networks, (Huang et al., 2016), has
shown that not all layers may be needed and high-
lighted there is some amount of redundancy in
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ResNet (He et al., 2016). Also, some research has
shown promising results with wide architectures,
for example, wide ResNet (Zagoruyko and Ko-
modakis, 2016), Inception-ResNet (Szegedy et al.,
2017) and DenseNet (Huang et al., 2017). These
models use character-level information to learn
representations are for sentences, not words.

Character embedding models. Santos and
Zadrozny (2014) proposed a CNN model to
learn character representations of words to re-
place hand-crafted features for part-of-speech tag-
ging. Ling et al. (2015) proposed a bidirectional
LSTM over characters to use as input for learn-
ing character-to-word representations. Chiu and
Nichols (2016) proposed a bidirectional LSTM-
CNN with lexicons for named entity recognition
by applying the CNN-based character embedding
model from Santos and Zadrozny (2014). Plank
et al. (2016) proposed a bi-LSTM model with aux-
iliary loss for multilingual part-of-speech tagging
by following the LSTM-based character embed-
ding model from Ling et al. (2015). Cotterell and
Heigold (2017) proposed a character-level transfer
learning model for neural morphological tagging.

Sequence labeling. Collobert et al. (2011) first
proposed a method based on CNN-CRF that learns
important features from words and requires few
hand-crafted features. Huang et al. (2015) pro-
posed a bidirectional LSTM-CRF model by us-
ing word embeddings and hand-crafted features
for sequence tagging. Lample et al. (2016) applied
the LSTM-based character embedding model from
Ling et al. (2015) with bidirectional LSTM-CRF
and obtained best results on NER for Spanish,
Dutch, and German. Ma and Hovy (2016) ap-
plied the CNN-based character embedding model
from Chiu and Nichols (2016), but without us-
ing any data preprocessing or external knowledge
and achieved the best result on NER for English
and part-of-speech tagging. Also, there have been
some joint models which use additional knowl-
edge, like transfer learning (Yang et al., 2017),
pre-trained language models (Peters et al., 2017),
language model joint training (Rei, 2017), and
multi-task learning (Liu et al., 2018). Without any
additional supervision or extra resources, LSTM-
CRF (Lample et al., 2016) and LSTM-CNN-CRF
(Ma and Hovy, 2016) are current state-of-the-art
methods. To test the effectiveness of our proposed
model, we use these two models as our baselines
in the latter sections.

3 Neural Network Architecture

3.1 IntNet
Character embeddings. The first step is to ini-
tialize the character embeddings for each word w
in the input sequence. We define the finite set
of characters V char. This vocabulary contains all
the variations of the raw text, including upper-
case and lowercase letters, numbers, punctuation
marks, and symbols. Unlike some character-based
approaches, we do not use any character-level pre-
possessing which enables our model to learn and
capture regularities from prefixes to suffixes to
construct character-to-word representations. The
input word w is decomposed into a sequence of
characters {c1, ..., cn}, where n is the length of
w. Character embeddings are encoded by col-
umn vectors in the embedding matrix W char 2
R

dchar⇥|V char|, where dchar is the number of pa-
rameters for each character in V char. Given a
character ci, its embedding rchar

i is obtained by
the matrix-vector product:

rchar
i = W charvchar

i , (1)

where vchar
i is defined as a one-hot vector for

ci. We randomly initialize a look-up table with
values drawn from a uniform distribution with
range [�

q
3

dchar , +
q

3
dchar ], where dchar is em-

pirically chosen by users. The character set in-
cludes all unique characters and the special tokens
PADDING and UNKNOWN. We do not perform any
character-level preprocessing, including case nor-
malization, digit replacement (e.g. replacing all
sequences of digits 0-9 with a single “0”), nor do
we use any capitalization features (e.g. allCaps,
upperInitial, lowercase, mixedCaps,
noinfo).

Convolutional blocks. The input for the Int-
Net is the sequence of character embeddings
{rchar

1 , ..., rchar
n }. First is the initial convolutional

layer, which is a temporal convolutional mod-
ule that computes 1-D convolutions. Let xi 2
R

dchar⇥rchar be the concatenation of the charac-
ter embeddings for each w. The initial convolu-
tional layer applies a matrix-vector operation to
each successive window of size kchar. An input
k-grams xi:i+k�1 is transformed through a convo-
lution filter wc:

ci = f(wc · xi:i+k�1 + bc), (2)

where ci is the feature map of 1-D convolution, f
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is the non-linear ReLU function, and bc is a bias
term. Equation 2 produces m filters with different
kernel sizes. The filters are computed with differ-
ent kernels by the initial convolutional layers are
concatenated:

g0 = [ck1
1 . . . ck1

m ; ck2
1 . . . ck2

m ; ckh
1 . . .kh

m ], (3)

where h is the number of kernels, g0 is the output
for the initial convolutional layer which feeds into
the next convolutional block.

We define F(·) as a function of several con-
secutive operations within a convolutional block.
Firstly, a N⇥1 convolution transforms the input.
The output size is 4 ⇥m ⇥ h feature maps, like a
bottleneck layer. The next step consists of multiple
1-D convolutions with kernels of different sizes.
Lastly, we concatenate all the feature maps from
kernels of different size. In each convolution, we
use a batch normalization, followed by a ReLU ac-
tivation and N⇥k temporal convolution.

Funnel-shaped wide architecture. The net-
work comprises of L convolutional layers, which
implies (L�1

2 ) convolutional blocks. We use direct
connections from every other layer to all subse-
quent layers, inspired by dense connection. There-
fore, the lth layer has access to the feature maps of
all the alternate layers:

gl = Fl([g0, g2, . . . , gl�2]). (4)

Equation 4 ensures maximum information flow
between blocks in the network. Compared to
residual connection Fl(gl�1) + gl�1, it can be
viewed as an extreme case of residual connec-
tion and makes feature reuse possible. Unlike
DenseNet and ResNet, we concatenate feature
maps by different kernels in every other convo-
lutional layers, which captures different levels of
features and makes our wide architecture possible,
inspired by Inception. Different levels of concate-
nation can help IntNet to learn different patterns
of word shape information. We compare our ar-
chitecture to residual connection and dense con-
nection for learning character-to-word representa-
tions in Section 5.

Without down-sampling. Compared to other
CNN models like ResNet and DenseNet, our
model does not contain any halve down-sampling
layer or average pooling to reduce resolution. We
did not find these operations to be helpful and, in
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Figure 1: The main architecture of IntNet.

some cases, found them to be detrimental to per-
formance. These operations are useful for sen-
tences and images, but might break the internal
structure of words, like the sequential patterns for
prefixes and suffixes.

Character-to-word representations. In the
last layer, we use a max-over-time pooling oper-
ation:

ĉi = max(ci), (5)

which takes the maximum value corresponding to
a particular filter. The idea is to capture the most
important feature with the highest value for each
feature map. Finally, we concatenate all of salient
features together as a representation for this word:

z = [ĉ0, ĉ1, . . . ĉu], (6)
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where u is the number of salient features which is
equal to the total number of output feature maps
in the last layer. If each function Fl produces p
feature maps, we obtain (p0 + p⇥ L�1

2 ) represen-
tations, where p0 is the number of output feature
maps in the initial convolution layer.

3.2 Bi-directional RNN
Given the character-to-word representations are
computed by IntNet in Equation 6, we denote the
input vector (z1, z2, . . . , zn) for a sentence.
LSTM (Hochreiter and Schmidhuber, 1997) re-
turns the sequence (h1, h2, . . . , hn) that repre-
sents the sequential information at every step. We
use the following implementation:

it = �(Wzizt + Whiht�1 + Wcict�1 + bi)

ft = �(Wzf zt + Whf ht�1 + Wcf ct�1 + bf )

ect = tanh(Wzczt + Whcht�1 + bc)

ct = ft � ct�1 + it � ect

ot = �(Wzozt + Whoht�1 + Wcoct + bo)

ht = ot � tanh(ct),

where � is the element-wise sigmoid function and
� is the element-wise product. zt is the input vec-
tor at time t and it, ft, ot, ct are the input gate,
forget gate, output gate, and cell vectors, all of
which are the same size as the hidden vector ht.
Wzi, Wzf , Wzo, Wzc denote the weight matrices
of different gates for input zt; Whi, Whf , Who,
Whc are the weight matrices for hidden state ht,
and bi, bf , bo, bc denote the bias vectors. Forward
LSTM and backward LSTM compute the repre-
sentations of

�!ht and
 �ht for left and right context

of the sentence, respectively. We concatenate two
hidden states to form the output of bi-directional
LSTM [

�!ht ,
 �ht ] for capturing context information

from both sides.

3.3 Scoring Function
Instead of predicting each label independently, we
consider the correlations between labels in neigh-
borhoods and jointly decode the best chain of la-
bels for a given input sentence by leveraging a
conditional random field (Lafferty et al., 2001).
Formally, the sequence of labels is defined as:

y = (y1, y2, ..., yT ). (7)

To define the scoring function f (h, y) for each
position t, we multiply the hidden state hw

t with a
parameter vector wyt that is indexed by the tag yt

to obtain the matrix of scores output by the bidi-
rectional LSTM network. Therefore, the function
f can be written as:

f(h, y) =
TX

t=1

wythw
t +

TX

t=1

Ayt�1,yt . (8)

In Equation 8, A is a matrix of transition scores,
Ai,j represents the score of a transition from the
tag i to tag j, y1 is the start tag of a sentence. Let
Y(h) denote the set of possible label sequences for
h. A probabilistic model for a sequence defines a
family of conditional probabilities p(y|h) over all
possible label sequences y given h with the fol-
lowing form:

p(y|h) =
ef(h,y)

P
y02Y(h) ef(h,y0)

. (9)

3.4 Objective Function and Inference
For end-to-end network training, we use maxi-
mum conditional likelihood estimation to max-
imize the log probability of the correct tag se-
quence:

log(p(y|h)) = f(h, y)� log

0

@
X

y02Y(h)

ef(h,y0)

1

A .

While decoding, we predict the label sequence
that obtains the highest score given by:

y⇤ = arg max
y02Y(h)

f(h, y0). (10)

The objective function and its gradients can be
efficiently computed by dynamic programming;
for inference, we use the Viterbi algorithm to find
the best tag path which maximizes the score.

4 Experiments

4.1 Datasets
We performed experiments on six standard
datasets for sequence labeling tasks, i.e. named
entity recognition, part-of-speech tagging, and
syntactic chunking. To test the effectiveness of our
proposed model, we do not use language-specific
resources (such as gazetteers), external knowledge
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Model Spanish NER Dutch NER English NER German NER Chunking PTB POS
Baseline 70.73±0.42 63.49±0.42 77.51±0.39 54.07±0.42 91.97±0.21 95.76±0.13
+ char-LSTM 79.93±0.43 77.16±0.47 83.98±0.46 64.29±0.47 93.31±0.23 97.14±0.11
+ char-CNN 79.78±0.41 76.43±0.48 83.85±0.38 63.53±0.41 92.67±0.24 97.02±0.12
+ char-CNN-5 79.63±0.38 76.92±0.42 83.60±0.39 64.26±0.42 93.11±0.26 97.15±0.12
+ char-CNN-9 79.25±0.56 74.82±0.46 83.31±0.47 63.97±0.46 92.92±0.27 97.13±0.13
+ char-ResNet-9 74.34±0.45 76.54±0.39 83.91±0.42 66.15±0.44 93.85±0.24 96.99±0.15
+ char-DenseNet-9 78.25±0.52 76.71±0.53 84.16±0.41 67.54±0.46 93.82±0.25 97.13±0.11
+ char-IntNet-9 78.53±0.44 76.93±0.47 83.83±0.44 70.11±0.41 93.94±0.26 97.19±0.12
+ char-IntNet-5 80.44±0.43 78.06±0.45 85.34±0.39 69.48±0.42 94.27±0.23 97.23±0.11

Table 1: F1 score of different character-to-word models.

(such as transfer learning, joint training), hand-
crafted features, or any character preprocessing,
we do not replace any rare words into UNKNOWN.

Named entity recognition. CoNLL-2002 and
CoNLL2003 datasets (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003) con-
tain named entity labels for Spanish, Dutch, En-
glish and German as separate datasets. These four
datasets contain different types of named entities:
locations, persons, organizations, and miscella-
neous entities. Unlike some approaches, we do
not combine the validation set with the training
set. Although POS tags were made available for
these datasets, we do not leverage those as addi-
tional information which sets our approach apart
from that of transfer learning.

Part-of-speech tagging. The Wall Street Jour-
nal (WSJ) portion of Penn Treebank (PTB) (Mar-
cus et al., 1993) contains 25 sections and catego-
rizes each word into one out of 45 POS tags. We
adopt the standard split and use sections 0-18 as
training data, sections 19-21 as development data,
and sections 22-24 as test data.

Syntactic chunking. The CoNLL 2000 chunk-
ing task (Tjong Kim Sang and Buchholz, 2000)
uses sections 15-18 from the Wall Street Journal
corpus for training and section 20 for testing. It
defines 11 syntactic chunk types (e.g., NP, VP,
ADJP), we adopt the standard split and sample
1000 sentences from the training set as the devel-
opment set.

4.2 Training Settings
Initialization. The size of the dimensions of char-
acter embeddings is 32 which are randomly ini-
tialized using a uniform distribution. We adopt
the same initialization method for randomly ini-
tialized word embeddings that are updated during
training. For IntNet, the filter size of the initial
convolution is 32 and that of other convolutions is

16. We have used filters of size [3, 4, 5] for all the
kernels. The number of convolutional layers are 5
and 9 for IntNet-5 and IntNet-9, respectively, and
we have adopted the same weight initialization as
that of ResNet. We use pre-trained word embed-
dings for initialization, GloVe (Pennington et al.,
2014) 100-dimension word embeddings for En-
glish, and fastText (Bojanowski et al., 2017) 300-
dimension word embeddings for Spanish, Dutch,
and German. The state size of the bi-directional
LSTMs is set to 256. We adopt standard BIOES
tagging scheme for NER and Chunking.

Optimization. We employ mini-batch stochas-
tic gradient descent with momentum. The batch
size, momentum and learning rate are set to 10,
0.9 and ⌘t = ⌘0

1+⇢t , where ⌘0 is the initial learning
rate 0.01 and ⇢ = 0.05 is the decay ratio, the value
of gradient clipping is 5. Dropout is applied on the
input of IntNet, LSTMs, and CRF, and its ratio 0.5
is fixed, but with no dropout inside of IntNet.

4.3 Compared Methods
To address those open questions in Section 1,
we conduct detailed experiments and empirical
comparisons on different state-of-the-art charac-
ter embedding models across different domains.
Firstly, we use LSTM-CRF with randomly ini-
tialized word embeddings as our initial baseline.
We adopt two state-of-the-art methods in sequence
labeling, denoted as char-LSTM (Lample et al.,
2016) and char-CNN (Ma and Hovy, 2016). We
add more layers to the char-CNN model and re-
fer to that as char-CNN-5 and char-CNN-9, re-
spectively for 5 and 9 convolutional layers. Fur-
thermore, we add residual connections to the char-
CNN-9 and refer it as char-ResNet. Also, we ap-
ply 3 dense blocks based on char-ResNet which
we refer to as char-DenseNet, to compare the dif-
ference between residual connection and dense
connection. Lastly, we refer to our proposed
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Model Spanish Dutch English German Chunking POS
Conv-CRF+Lexicon (Collobert et al., 2011) - - 89.59 - 94.32 97.29
LSTM-CRF+Lexicon (Huang et al., 2015) - - 90.10 - 94.46 97.43
LSTM-CRF+Lexicon+char-CNN (Chiu and Nichols, 2016) - - 90.77 - - -
LSTM-Softmax+char-LSTM (Ling et al., 2015) - - - - - 97.55
LSTM-CRF+char-LSTM (Lample et al., 2016) 85.75 81.74 90.94 78.76 - -
LSTM-CRF+char-CNN (Ma and Hovy, 2016) - - 91.21 - - 97.55
GRM-CRF+char-GRU (Yang et al., 2017) 84.69 85.00 91.20 - 94.66 97.55
LSTM-CRF 80.33±0.37 79.87±0.28 88.41±0.22 73.42±0.39 94.29±0.11 96.63±0.08
LSTM-CRF+char-LSTM 86.12±0.34 87.13±0.25 91.13±0.15 78.31±0.35 94.97±0.09 97.49±0.04
LSTM-CRF+char-CNN 85.91±0.38 86.69±0.22 91.11±0.14 78.15±0.31 94.91±0.08 97.45±0.03
LSTM-CRF+char-IntNet-9 85.71±0.39 87.38±0.27 91.39±0.16 79.43±0.33 95.08±0.07 97.51±0.04
LSTM-CRF+char-IntNet-5 86.68±0.35 87.81±0.24 91.64±0.17 78.58±0.32 95.29±0.08 97.58±0.02

Table 2: F1 score of our proposed models in comparison with state-of-the-art results.

Figure 2: Training details of different models for English, German, Spanish, and Dutch.

model, which uses different convolution layers, as
char-IntNet-5 and char-IntNet-9.

5 Results and Analysis

5.1 Character-to-word Models

Table 1 presents the performance of differ-
ent character-to-word models on six benchmark
datasets. For sequence labeling, char-LSTM and
char-CNN are current state-of-the-art character
embedding models for learning character-to-word
representations. We observe that char-LSTM per-
forms better than char-CNN in most cases, how-
ever, char-CNN uses a convolution layer followed
by max pooling as a shallow feature extractor, that
does not explore the full potential of CNNs.

Therefore, we implement two variations based
on char-CNN, referred to as char-CNN-5 and char-
CNN-9. The result shows that for most of the
datasets, the F1 score does not improve much
when we directly add more layers. We also ob-
serve some accuracy drop when we continuously
increase the depth. This confirms why most CNN-
based approaches for learning representations on
words are shallow, which is very different from
learning representations for sentences. Further-
more, we add residual connections to char-CNN-
9 as char-ResNet-9, which confirms that residual
connections can help train deep layers. We fur-
ther improve char-ResNet-9 by changing residual
connections into dense connection blocks as char-

DenseNet-9, which shows that the dense connec-
tions are better than residual connections for learn-
ing word shape information.

Our proposed character-to-word model, char-
IntNet-5 and char-IntNet-9 generally improves the
results across all datasets. Our IntNet significantly
outperforms other character embedding models,
for example, the improvement is more than 2%
in terms of F1 score for German and Dutch.
Also, we observe that char-IntNet-5 is more ef-
fective for learning character-to-word representa-
tions than char-IntNet-9 in most of the cases. The
only exception is German which seems to require
a deeper and wider model for learning better rep-
resentations.

5.2 State-of-the-art Results
Table 2 presents our proposed model in com-
parison with state-of-the-art results. LSTM-CRF
is our baseline which uses fine-tuned pre-trained
word embeddings. Its comparison with LSTM-
CRF using random initializations for word em-
beddings, as shown in Table 1, confirms that
pre-trained word embeddings are useful for se-
quence labeling. Since the training corpus for
sequence labeling is relatively small, pre-trained
embeddings learned from a huge unlabeled cor-
pus can help to enhance word semantics. Fur-
thermore, we adopt and re-implement two state-
of-the-art character models, char-LSTM and char-
CNN, by combining with LSTM-CRF, which we
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Model English German Spanish Dutch
IV OOTV OOEV OOBV IV OOTV OOEV OOBV IV OOTV OOEV OOBV IV OOTV OOEV OOBV

Dev

char-LSTM 97.15 89.87 89.41 87.07 86.97 85.80 68.35 64.76 89.63 89.06 78.14 74.13 94.50 87.98 80.00 72.37
char-CNN 97.10 90.04 95.45 88.02 87.45 86.13 57.14 63.28 88.93 88.85 72.90 71.96 94.54 87.27 74.55 68.77

char-IntNet-9 96.86 90.52 91.95 90.16 87.92 85.29 76.07 67.98 88.43 88.58 74.53 72.09 93.68 87.49 89.09 75.58
char-IntNet-5 96.65 90.14 88.10 88.31 87.21 85.00 67.10 64.17 88.56 88.47 78.90 70.23 94.63 88.56 89.09 74.40

Test

char-LSTM 93.68 92.48 100.00 82.64 86.97 83.95 69.67 62.74 87.19 87.79 95.29 76.01 95.13 83.00 78.26 72.34
char-CNN 93.85 92.65 100.00 84.09 64.72 83.67 69.67 58.19 87.81 88.46 87.96 73.68 94.25 82.50 73.27 73.37

char-IntNet-9 93.79 94.94 100.00 82.31 87.56 83.85 74.33 65.75 87.08 87.98 95.29 77.16 94.42 83.85 85.02 75.46
char-IntNet-5 93.94 92.72 100.00 83.91 87.11 83.60 67.22 60.92 87.19 88.42 97.38 78.02 94.71 84.84 82.13 76.99

Table 3: F1 score of different models for IV, OOTV, OOEV and OOBV.

Model Frequent Words Rare Words OOV Words

char-LSTM

newspapers slipped world Commerce youthful sessions 11-month Thursdays undetermined
enclosures stirred wolrd Committee luthier cessions 19-month Thousands undereducated
nelsonville clipped worde Computer loughmoe sensible 10-month Tunbridge underpinned
entrances snipped lowed Comments wrathful stepanos 12-month Standings undermined
newpapers striped wowed Corrects slothful stefanos 14-month Torrance underlined
necklaces stifled crowd Clippers ephorus constans 11-inch Phillies underprepared

char-CNN

newspaper slipper worli Committee mouthful suppressions 31-month Thursday determined
newspapermen slippy worle Community eeyou oppressions 51-month Wednesday overdetermined

newpapers stripped worse Commodities mouthfeel digressions 1-month Tuesday determinist
nitrification shipped werle Communist motul confessions 21-month Ecuador determiners
megaphones stopped wereld Comments yourself fissions 41-month Windass determiner

char-IntNet

newpapers blipped eworld Commissioner mouthful recessions 55-month Thursday undermined
wallpapers unclipped offworld Commodities mirthful accessions 51-month Saturday determined
escapers tripped homeworld Clarence mouthfuls missions 22-month thursdays overdetermined
carcases dripped linuxworld Commission youths conversions 25-month Tuesday unexamined
spacers slopped westworld Commons slothful possessions 12-month tuesdays predetermined

Table 4: Nearest neighbours of different models for frequent words, rare words and OOV words.

refer to as LSTM-CRF-char-LSTM and LSTM-
CRF-char-CNN. Lastly, we combine our proposed
model with LSTM-CRF which we refer to as
LSTM-CRF-char-IntNet-9 and LSTM-CRF-char-
IntNet-5.

These experiments show that our char-IntNet
generally improves results across different mod-
els and datasets. The improvement is more pro-
nounced for non-English datasets, for example,
IntNet improves the F-1 score over the state-
of-the-art results by more than 2% for Dutch
and Spanish. It also shows that the results
of LSTM-CRF are significantly improved after
adding character-to-word models, which confirms
that word shape information is very important for
sequence labeling. Figure 2 presents the details of
training epochs in comparison with other state-of-
the-art character models for different languages.
It shows that char-CNN and char-LSTM converge
early whereas char-IntNet takes more epochs to
converge and generally performs better. It alludes
to the fact that IntNet is suitable for reducing over-
fitting, since we have used early stopping while
training.

5.3 Rare and OOV Words Analysis
Another advantage of learning internal structure
of words is that it can capture representations for
out-of-vocabulary (OOV) words. To better un-

derstand the behavior of IntNet, Table 3 presents
error analysis on in-vocabulary words (IV), out-
of-training-vocabulary words (OOTV), out-of-
embedding-vocabulary words (OOEV), and out-
of-both-vocabulary words (OOBV) compared to
different character models. The result shows
that our proposed model significantly outperforms
other character models on OOV words includ-
ing OOTV, OOEV, and OOBV. For example, in
OOBV category, our IntNet outperforms other
models by more than 3% in terms of F1 score for
Dutch and German datasets.

Furthermore, we present comparisons of near-
est neighbors with different models for frequent
words, rare words, and OOV words. Table 4
shows the results of nearest neighbors for learn-
ing word shape information, which gives insights
on what kind of character-to-word representations
can be learned by different models. For exam-
ple, in OOV words, our IntNet model learns a bet-
ter xx-month shape pattern when matching 11-
month compared to other models.

5.4 Discussion
In many situations, learning character-to-word
representations of subword sequences that exceed
the typical length of word shape pattern or mor-
pheme sequences might result in noise. RNNs
can capture longer sequences in theory, however,
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longer sequences do not guarantee better results
when learning prefixes and suffixes. The funnel-
shaped wide architecture of IntNet, uses different
kernels with different levels of concatenation to
capture patterns of different subword lengths and
that is flexible than char-LSTM and char-CNN.
For example, Table 4 shows Thursday in OOV
words, our model learns a better word-shape struc-
ture for character-to-word representations com-
pared to other methods.

When considering training time, IntNet is only
20% slower than char-CNN for the whole training
process. Also, learning word representations use
fewer parameters than learning sentence represen-
tations. Therefore, the impact of training speed for
sequence labeling is limited. The inference time of
IntNet is almost the same as char-CNN.

6 Conclusion

We presented empirical comparisons of differ-
ent character embedding models for learning
character-to-word representations and investigated
the gaps between methods for learning repre-
sentations of words and sentences. We con-
ducted detailed experiments of different state-of-
the-art convolutional models, and explored the ad-
vantages and disadvantages of their components
for learning word shape information. Further-
more, we presented IntNet, a funnel-shaped wide
convolutional neural architecture with no down-
sampling that focuses on learning better inter-
nal structure of words by composing their char-
acters from limited supervised training corpora.
Our in-depth analysis showed that a shallow wide
architecture is better than a narrow deep archi-
tecture for learning character-to-word representa-
tions. Omitting down-sampling operations is use-
ful for capturing the sequential patterns of pre-
fixes and suffixes. Our proposed compositional
character-to-word model does not leverage any ex-
ternal resources, hand-crafted features, additional
knowledge, joint training, or character-level pre-
processing, and achieves new state-of-the-art per-
formance for various sequence labeling tasks, in-
cluding named entity recognition, part-of-speech
tagging and syntactic chunking. In the future, we
would like to explore using the IntNet model for
other NLP tasks.
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Abstract

Emotion recognition in conversations is cru-
cial for building empathetic machines. Cur-
rent work in this domain do not explicitly con-
sider the inter-personal influences that thrive in
the emotional dynamics of dialogues. To this
end, we propose Interactive COnversational
memory Network (ICON), a multimodal emo-
tion detection framework that extracts mul-
timodal features from conversational videos
and hierarchically models the self- and inter-
speaker emotional influences into global mem-
ories. Such memories generate contextual
summaries which aid in predicting the emo-
tional orientation of utterance-videos. Our
model outperforms state-of-the-art networks
on multiple classification and regression tasks
in two benchmark datasets.

1 Introduction

Emotions play an important role in our daily life.
A long-standing goal of AI has been to create af-
fective agents that can detect and comprehend emo-
tions. Research in affective computing has mainly
focused on understanding affect (emotions and sen-
timent) in monologues. However, with increasing
interactions of humans with machines, researchers
now aim at building agents that can seamlessly an-
alyze affective content in conversations. This can
help in creating empathetic dialogue systems, thus
improving the overall human-computer interaction
experience (Young et al., 2018).

Analyzing emotional dynamics in conversations,
however, poses complex challenges. This is due
to the presence of intricate dependencies between
the affective states of speakers participating in the
dialogue. In this paper, we address the problem of
emotion recognition in conversational videos. We
specifically focus on dyadic conversations where
two entities participate in a dialogue.

We propose Interactive COnversational mem-
ory Network (ICON), a multimodal network for
identifying emotions in utterance-videos. Here, ut-
terances are units of speech bounded by breaths
or pauses of the speaker. Emotional dynamics in
conversations consist of two important properties:
self and inter-personal dependencies (Morris and
Keltner, 2000). Self-dependencies, also known as
emotional inertia, deal with the aspect of emotional
influence that speakers have on themselves during
conversations (Kuppens et al., 2010). On the other
hand, inter-personal dependencies relate to the emo-
tional influences that the counterparts induce into
a speaker. Conversely, during the course of a dia-
logue, speakers also tend to mirror their counter-
parts to build rapport (Navarretta et al., 2016).

Figure 1 demonstrates a sample conversation
from the dataset involving both self and inter-
personal dependencies. While most conversa-
tional frameworks only focus on self dependencies,
ICON leverages both such dependencies to gen-
erate affective summaries of conversations. First,
it extracts multimodal features from all utterance-
videos. Next, given a test utterance to be classified,
ICON considers the preceding utterances of both
speakers falling within a context-window and mod-
els their self-emotional influences using local gated
recurrent units (GRUs).

Furthermore, to incorporate inter-speaker influ-
ences, a global representation is generated using
a GRU that intakes output of the local GRUs. For
each instance in the context-window, the output of
this global GRU is stored as a memory cell. These
memories are then subjected to multiple read/write
cycles that include attention mechanism for gener-
ating contextual summaries of the conversational
history. At each iteration, the representation of
the test utterance is improved with this summary
representation and finally used for prediction.
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I don’t think I can do this 
anymore. [ frustrated ]

Well I guess you aren’t trying hard 
enough. [ neutral ]

      Its been three years. I have tried 
everything. [ frustrated ]

Maybe you’re not smart enough. 
[ neutral ]

Just go out and keep trying. 
[ neutral ]

         I am smart enough. I am really good at 
what I do. I just don’t know how to make 

someone else see that. [anger]

Person BPerson A

u1

u3

u6

u2

u4

u5

Figure 1: An abridged dialogue from the IEMOCAP dataset.
Pa is frustrated over her long term unemployment and seeks
encouragement (u1, u3). Pb, however, is pre-occupied and
replies sarcastically (u4). This enrages Pa to appropriate
an angry response (u6). In this dialogue, emotional inertia
is evident in Pb who does not deviate from his nonchalant
behavior. Pa, however, gets emotionally influenced by her
counterpart. This influence is content-based, not label-based.

The contributions of this paper are as follows:

• We propose ICON, a novel model for emo-
tion recognition that incorporates self and inter-
speaker influences in a dialogue. Memory net-
works are used to model contextual summaries
for prediction.

• We introduce a multimodal approach that pro-
vides comprehensive features from modalities
such as language, visual, and audio in utterance-
videos.

• ICON can be considered as a generic framework
for conversational modeling that can be extended
to multi-party conversations.

• Experiments on two benchmark datasets show
that ICON significantly outperforms existing
models on multiple discrete and continuous emo-
tional categories.

The remainder of the paper is organized as fol-
lows: Section 2 presents related works; Section 3
formalizes the problem statement and Section 4 de-
scribes our proposed approach; Section 5 provides
details on experimental setup; Section 6 reports
the results and related analysis; finally, Section 7
concludes the paper.

2 Related Works
Emotion recognition is an interdisciplinary field of
research with contributions from psychology, cog-
nitive science, machine learning, natural language
processing, and others (Picard, 2010).

Initial research in this area primarily involved
visual and audio processing (Ekman, 1993; Datcu
and Rothkrantz, 2008). The role of text in emo-
tional analysis became evident with later research
such as Alm et al. (2005); Strapparava and Mi-
halcea (2010). Current research in this domain
is mainly performed from a multimodal learning
perspective (Poria et al., 2017a; Baltrušaitis et al.,
2018). Numerous previous approaches have relied
on fusion techniques that leverage multiple modali-
ties for affect recognition (Soleymani et al., 2012;
Zadeh et al., 2017; Chen et al., 2017; Tzirakis et al.,
2017; Zadeh et al., 2018b).

Understanding conversations is crucial for ma-
chines to replicate human language and discourse.
Emotions play an important role in shaping such
social interactions (Ruusuvuori, 2013). Richards
et al. (2003) attribute emotional dynamics to be an
interactive phenomena, rather than being within-
person. We utilize this trait in the design of our
model that accommodates inter-personal dynam-
ics. Being a temporal event, context also plays
an important role in conversational analysis. Po-
ria et al. (2017b) use contextual information from
neighboring utterances of the same speaker to pre-
dict emotions. However, there is no provision to
model interactive influences. Work by Yang et al.,
2011; Xiaolan et al., 2013 stresses the study of pat-
terns for emotion transitions. In contrast, we posit
the use of utterance content to model context with
multimodal features.

In the literature, memory networks have been
successfully applied in many areas, includ-
ing question-answering (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2016), ma-
chine translation (Bahdanau et al., 2014), speech
recognition (Graves et al., 2014), and others. In
emotional analysis, Zadeh et al. (2018a) propose a
memory-based sequential learning for multi-view
signals. Although we utilize memory networks,
our work is different as we use memories to en-
code whole utterances. Also, each memory cell in
our network is processed using GRUs to capture
temporal dependencies. This technique deviates
from the traditional use of embedding matrices to
encode information into memory cells.

ICON builds on our previous research (Hazarika
et al., 2018) that used separate memory networks
for both interlocutors participating in a dyadic con-
versation. In contrast, ICON adopts an interac-
tive scheme that actively models inter-speaker emo-
tional dynamics with fewer trainable parameters.
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3 Problem Setting

Let us define a conversation U to be a set of asyn-
chronous exchange of utterances between two per-
sons Pa and Pb over time. With T utterances,
U = {u1, u2, ..., uT } is a totally ordered set which
can be arranged as a sequence (u1, ..., uT ) based
on temporal occurrence. Here, each utterance
ui is spoken by either Pa or Pb. Furthermore,
for each � ∈ {a, b}, U� denotes person P�’s in-
dividual utterances in U , i.e., U� = {ui � ui ∈
U and ui spoken by P�, ∀i ∈ [1, �U �]}. This pro-
vides two sets of utterances for both the respective
speakers, such that U = Ua ∪Ub.

Our aim is to identify the emotions of utterances
in conversational videos. At each time step t ∈
[1, T ] of video U , our model is provided with the
utterance spoken at that time, i.e. ut, and tasked
to predict its emotion. Moreover, we also utilize
the previous utterances within U spoken by both
persons. Considering a context-window of size K,
the preceding utterances of Pa and Pb (starting with
the most recent) within this context-window can be
represented by Ha and Hb, respectively. Formally,
for each � ∈ {a, b}, H� is created as,

H� = {ui � i ∈ [t −K, t − 1] and ui ∈ U�} (1)
and �Ha� + �Hb� ≤K (2)

Table 1 provides a sample conversation with a
context-window of size K = 5.

U { ua
1, ua

2, ub
3, ua

4, ua
5, ub

6 }
Ua, Ub { u1, u2, u4, u5 }, { u3, u6}
test utterance ua

7
Ha, Hb { u2, u4, u5 }, { u3, u6 }

Table 1: Sample conversation U with test utterance u7.
Context-window K = 5. Here, u�

i = ith utterance by P�.

4 Methodology

ICON has been designed as a generic framework
for affective modeling of conversations. Its compu-
tations can be categorized as a sequence of four suc-
cessive modules: Multimodal Feature Extraction,
Self-Influence Module, Dynamic Global-Influence
Module, and Multi-hop Memory. Figure 2 illus-
trates the overall model.

4.1 Multimodal Feature Extraction
ICON adopts a multimodal framework and per-
forms feature extraction from three modalities, i.e.,
language (transcripts), audio and visual.

These features are extracted for each utterance
in the conversation and their concatenated vec-
tors serve as the utterance representations. The
motivation of this setup derives from previous
works that demonstrate the effectiveness of mul-
timodal features in creating rich feature represen-
tations (D’mello and Kory, 2015). These features
provide complementary information from hetero-
geneous sources which helps to accumulate com-
prehensive features. Its need is particularly pro-
nounced in videos as they are often plagued with
noisy signals and missing-information within indi-
vidual modalities (e.g., facial occlusion, loud back-
ground music, imperfect transcriptions).

4.1.1 Textual Features
We employ a convolutional neural network (CNN)
to extract textual features from the transcript of
each utterance. CNNs are capable of learning
abstract semantic representations of a sentence
based on its words and n-grams (Kalchbrenner
et al., 2014). For our purpose, we utilize a simple
CNN with a single convolutional layer followed by
max-pooling (Kim, 2014). The input to this net-
work consists of pre-trained word embeddings ex-
tracted from the 300-dimensional FastText embed-
dings (Bojanowski et al., 2016). The convolution
layer consists of three filters with sizes f1

t , f2
t , f3

t

with fout feature maps each. We perform 1D convo-
lutions using these filters followed by max-pooling
on its output. The pooled features are finally pro-
jected onto a dense layer with dimension dt and its
activations are used as the textual representation
tu ∈ R

dt .

4.1.2 Audio Features
Audio plays a significant role in determining the
emotional states of a speaker (De Silva and Ng,
2000; Song et al., 2004). To extract audio features,
we first format the audio of each utterance-video as
a 16-bit PCM WAV file and use the open-sourced
software openSMILE (Eyben et al., 2010). This
tool provides high dimensional vectors for audio
files that summarizes important statistical descrip-
tors such as loudness, pitch, Mel-spectra, MFCC,
etc. Specifically, we use the IS13 ComParE1 ex-
tractor which provides 6373 features for each ut-
terance. The features are then normalized using
Min-Max scaling followed by L2-based feature se-
lection. This selection provides low-dimensional
audio features au ∈ R

da of dimensions da.
1
http://audeering.com/technology/opensmile
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4.1.3 Visual Features
Visual indicators such as facial expressions are key
to understand emotions. In our work, we use a deep
3D-CNN to model spatiotemporal features of each
utterance video (Tran et al., 2015). 3D-CNN helps
to understand emotional concepts such as smiling
or frowning that are often spread across multiple
frames of a video with no predefined spatial lo-
cation. The input to this network is a video with
dimensions (c, h,w, f), where c is the number of
channels, h,w are the height and width of each
frame, with a total of f frames per video.

The network contains three blocks of convolu-
tion where each block contains two convolutional
layers followed by max-pooling. For the convolu-
tion, 3D filters are employed having dimensions
(fout, fin, fh, fw, fd), where, f[out�in�h�w�d] repre-
sents the number of feature maps, input channels,
height, width, and depth of the filter, respectively.
After a non-linear reLU activation (LeCun et al.,
2015), max-pooling is performed using a sliding
window of dimensions (mp,mp,mp). For an in-
put utterance video, the final features of the third
convolutional block is mapped onto a dense layer
of dimension dv whose activations are used as the
visual features vu ∈ R

dv .

4.1.4 Fusion
We generate the final representation of an utterance
u by concatenating all three multimodal features:

u = tanh((W f [tu;au;vu]) + b
f) (3)

Concatenation is one of the most common fusion
methods (Shwartz et al., 2016). Its simplicity also
allows us to emphasize the contribution of the re-
maining components of ICON.

4.2 SIM: Self-Influence Module

Given a test utterance ut to be classified, this mod-
ule independently processes the histories of both
speakers. SIM consists of two GRUs, GRU s

a and
GRU s

b , for Ha and Hb, respectively. For each
� ∈ {a, b}, GRU s

� attempts to model the emotional
inertia of speaker P� which represents the emo-
tional dependency of a speaker with their own pre-
vious states. In particular, for each historical ut-
terance ui<t ∈ H�, an internal memory state h

(j)
�

is computed by GRU s
� conditioned on utterance

ui and previous memory state h
(j−1)
� . This can be

abbreviated as h
(j)
� = GRU s

�(ui,h
(j−1)
� ).

Gated Recurrent Unit: GRUs are gated recur-
rent cells introduced by Cho et al. (2014). At time
step j, GRU computes hidden state sj ∈ R

dem by
calculating two gates, rj (reset gate) and zj (up-
date gate) with jth input xj and previous state sj−1.
The computations are:

zj = �(V z
xj +W z

sj−1 + b
z)

rj = �(V r
xj +W r

sj−1 + b
r)

vj = tanh(V h
xj +W h(sj−1 ⊗ rj) + b

h)
sj = (1 − zj)⊗ vj + zj ⊗ sj−1

In this work, input xj = ui and sj = h
(j)
� . SIM

computes both sequences H∗a ∈ R
dem×�Ha� and

H∗b ∈ R
dem×�Hb� using the respective GRUs,

H∗� = [h
(j)
� ]

�H��
j=1 = GRU s

�(H�) , � ∈ {a, b} (4)

4.3 DGIM: Dynamic Global Influence
Module

Emotions are not only regarded as internal-
psychological phenomena but also interpreted and
processed communicatively through social inter-
actions (Fiehler, 2002). Conversations exemplify
such a scenario where inter-personal emotional in-
fluence persists. Theories in cognitive science also
suggest the existence of emotional contagion that
causes humans to mirror their counterpart’s ges-
ture, posture and emotional state (Chartrand and
Bargh, 1999; Navarretta et al., 2016). Additionally,
these interactions occur dynamically through the
discourse of a dialogue.

While modeling the contextual history, we incor-
porate such properties using a dynamic influence
module. This module maintains a global represen-
tation of the conversation and updates it recurrently
at each time step of the K-length conversation his-
tory. For any k ∈ [1,K], the global state is updated
using a GRU operation on the previous state sk−1
and current speaker P�’s SIM memory h

(j)
� for the

corresponding spoken utterance u(t−K+k−1), i.e.,
h
(j)
� = GRU s

�(u(t−K+k−1)).
Formally, DGIM consists of a GRU network,

GRUg, where the kth global state sk is computed
as:

sk =
�������

GRUg(h(j)a ,sk−1), if u(t−K+k−1) ∈Ha

GRUg(h(j)b ,sk−1), if u(t−K+k−1) ∈Hb

(5)
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Figure 2: Illustration of ICON. Input conversation is as pre-
sented in Table 1.

4.4 Multi-hop Memory
The overall operation of the GRUg produces a se-
quence of memories M = [s1, ...,sK] ∈ R

dem×K .
These memories incorporate dynamic influences
from each of the K utterances spoken in the his-
tory. They serve as a contextual memory bank
from which selective person-specific information
can be incorporated into test utterance ut to get
discriminative features. To achieve this, a series
of R memory read/write cycles are performed that
are coupled with soft attention for refinement of ut

into a context-aware representation.
The need for multiple hops is inspired by recent

works on memory networks (Kumar et al., 2016;
Weston et al., 2014), which suggests the impor-
tance of multiple read/write iterations for perform-
ing transitive inference. Multiple hops also help
in improving the focus of attention heads which
might miss essential memories in a single hop. At
the rth hop, the computations are as follows:

• Memory Read: An attention mechanism is used
to read the memories from rth memory bank

M (r) (Weston et al., 2014). First, each memory
m
(r)
k ∈M (r) is matched with test utterance u

(r)
t

(initially, u
(1)
t = ut and M (1) =M ).

This matching generates an attention vector
p
(r)
attn ∈ RK whose kth normalized score rep-

resents the relevance of kth memory cell with
respect to the test utterance. Inner product is
used for the matching as follows:

p
(r)
attn = softmax( (M (r))T u

(r)
t ) (6)

Where, softmax(xi) = exi�∑j exj . These
scores are then used to find a weighted repre-
sentation of the memories as

m
(r) =

K

�
k=1
(p(r)attn)

k
.(mk) =M (r)

p
(r)
attn (7)

This vector denotes the summary of the context
that is person-specific and based on the test ut-
terance. Finally, the representation of the test
utterance is updated by consolidating itself with
the weighted memory m as:

u
(r+1)
t = tanh(m(r) +u

(r)
t ) (8)

• Memory Write: After the read operation at each
hop, memories are updated for the next hop. For
this purpose, a GRU network, GRUm, takes the
rth memory cells M (r) as input and reprocesses
this sequence to generate memories M (r+1), i.e.,
M (r+1) = GRUm(M (r)). Across all hops, this
write operation can be viewed as that of a stacked
recurrent neural network (RNN) where each level
(or hop) improves the representational output of
the RNN. The parameters of GRUm are shared
across all hops.

Final Prediction: We use the (R + 1)th test ut-
terance vector u

(R+1)
t and get the final prediction

vector through its affine transformation,

o = softmax(W o
u
(R+1)
t + b

o) (9)

For classification, dimensions of vector o is the
number of classes C, i.e., o ∈ R

C and categorical
cross-entropy loss is used as the cost measure for
training. For regression, o is a scalar (without
softmax normalization) whose scores are used to
calculate the mean squared error cost metric.
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Dataset Fold
No. of No. of Avg. history

Utterances Videos length

IEMOCAP train/val 5810 120 36.54
test 1623 31 39.00

SEMAINE train/val 4368 63 43.61
test 1430 32 45.61

∗val = validation set.

Table 2: Summary of datasets. Note: Avg. history length rep-
resents the expected number of historical utterances available
for any utterance in the dataset.

5 Experiments

5.1 Datasets
We perform experiments on two benchmark
datasets in dialogue-based emotion detection:
IEMOCAP2 (Busso et al., 2008) and SE-
MAINE3 (McKeown et al., 2012).

IEMOCAP is a database consisting of videos of
dyadic conversations between pairs of 10 speakers.
Grouped into five sessions, each pair is assigned
with diverse scenarios for dialogues. Videos are
segmented into utterances with annotations of fine-
grained emotion categories. We consider six such
categories for the classification task: anger, happi-
ness, sadness, neutral, excitement, and frustration.
The training set is curated using the first 8 speakers
from session 1-4 while session 5 is used for testing.

SEMAINE is a video database of human-agent
interactions. Here, users interact with characters
whose responses are based on users’ emotional
state. Specifically, we utilize the AVEC 2012’s fully
continuous sub-challenge (Schuller et al., 2012)
that requires predictions of four continuous affec-
tive dimensions: arousal, expectancy, power, and
valence. The gold annotations are available for ev-
ery 0.2 seconds in each video (Nicolle et al., 2012).
However, to align with our problem statement, we
approximate the utterance-level annotation as the
mean of the continuous values within the spoken
utterance. The sub-challenge provides standard
training and testing splits which has been summa-
rized in Table 2.

5.2 Training Details
20% of the training set is used as validation set
for hyper-parameter tuning. We use the Adam op-
timizer (Kingma and Ba, 2014) for training the
parameters starting with an initial learning rate
of 0.001. Termination of the training-phase is
decided by early-stopping with a patience of 10

2
http://sail.usc.edu/iemocap/

3
http://sspnet.eu/avec2012/

(f1
t , f2

t , f3
t ) = (3,4,5) f[h,w,d] = 3 fout = 64

d[t,a] = 100 dv = 512 dem = 100
K = 40 R = 3

Table 3: Hyper-parameter values for the best model.

epochs. The network is subjected to regularization
in the form of Dropout (Srivastava et al., 2014)
and Gradient-clipping for a norm of 40. Finally,
the best hyper-parameters are decided using a grid-
search. Their values are summarized in Table 3.

For multimodal feature extraction, we explore
different designs for the employed CNNs. For text,
we find the single layer CNN to perform at par
with deeper variants. For visual features, however,
a deeper CNN provides better representations. We
also find that contextually conditioned features per-
form better than context-less features. Thus, in
our experiments, we extract video-level contextual
features for utterances from each modality using
the network proposed by Poria et al. 2017b. These
modified features are then used to form the multi-
modal utterance representations using equation 3.

5.3 Baselines
We compare our proposed model with multiple
state-of-the-art networks in multimodal utterance-
level emotion detection.

• memnet (Sukhbaatar et al., 2015) is an end-to-
end memory network. For comparison, we mod-
ify our network to adopt their embedding-based
memory-encoding in the multi-hop stage.

• cLSTM4 (Poria et al., 2017b) classifies utterances
using neighboring utterances (of same speaker)
as context. LSTM is used for this purpose.

• TFN5 (Zadeh et al., 2017) models intra- and inter-
modality dynamics by explicitly aggregating uni-
, bi- and trimodal interactions. Unlike cLSTM,
contextual utterances are not considered.

• MFN (Zadeh et al., 2018a) performs multi-view
learning by using Delta-memory Attention Net-
work, a fusion mechanism to learn cross-view
interactions. Similar to TFN, the modeling is
performed within utterances.

• CMN (Hazarika et al., 2018) models separate
contexts for both speaker and listener to an ut-
terance. These contexts are stored as memories
and combined with test utterance using attention
mechanism.

4
http://github.com/senticnet/

contextual-sentiment-analysis
5
http://github.com/A2Zadeh/TensorFusionNetwork
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Models IEMOCAP: Emotion Categories
Happy Sad Neutral Angry Excited Frustrated Avg.

acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1 acc. F1

memnet 24.4 33.0 60.4 69.3 56.8 55.0 67.1 66.1 65.2 62.3 68.4 63.0 59.9 59.5
cLSTM 25.5 35.6 58.6 69.2 56.5 53.5 70.0 66.3 58.8 61.1 67.4 62.4 59.8 59.0
TFN 23.2 33.7 58.0 68.6 56.6 55.1 69.1 64.2 63.1 62.4 65.5 61.2 58.8 58.5
MFN 24.0 34.1 65.6 70.5 55.5 52.1 72.3† 66.8 64.3 62.1 67.9 62.5 60.1 59.9
CMN 25.7 32.6 66.5 72.9 53.9 56.2 67.6 64.6 69.9 67.9 71.7 63.1 61.9 61.4
ICON 23.6 32.8 70.6† 74.4† 59.9 60.6† 68.2 68.2 72.2† 68.4 71.9 66.2† 64.0† 63.5†

Table 4: Performance of ICON on the IEMOCAP dataset. † represents statistical significance over state-of-the-art scores under
the paired-t test (p < 0.05).

Models
SEMAINE

DV DA DP DE
MAE r MAE r MAE r MAE r

memnet .20 .16 .21 .24 .21 .23 8.97 .05
cLSTM .18 .14 .21 .23 .20 .25 8.90 -.04
TFN .21 .01 .22 .10 .21 .12 9.19 .12
MFN .19 .14 .20 .25 .18 .26 8.60 .15
CMN .18 .23 .20 .30 .18 .26 8.89 -.02
ICON .18 .24 .19 .31 .18 .27 8.45 0.24

Table 5: Performance on the SEMAINE dataset. Note: MAE
= Mean Absolute Error, r = Pearson’s correlation coefficient,
DV = Valence, DA = Activation/Arousal, DP = Power, DE =
Anticipation/Expectation.

6 Results

Tables 4 and 5 present the results on the IEMO-
CAP and SEMAINE testing sets, respectively. In
Table 4, we evaluate the mean classification per-
formance using Weighted Accuracy (acc.) and
F1-Score (F1) on the discrete emotion categories.
ICON performs better than the compared models
with significant performance increase in emotions
(∼2.1% acc.). For each emotion, ICON outper-
forms all the compared models except for happi-
ness emotion. However, its performance is still at
par with cLSTM without a significant gap. Also,
ICON manages to correctly identify the relatively
similar excitement emotion by a large margin.

In Table 5, evaluations of the four continuous
labels from SEMAINE are performed using Mean
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Figure 3: Trends in the performance of ICON on IEMOCAP
dataset with varying R (hops) and K (Context-window size).

Modality IEMOCAP SEMAINE
Emotions DV DA DP DE

acc. F1 r r r r

T 58.3 57.9 .237 .297 .260 .225
A 50.7 50.9 .021 .082 .250 .035
V 41.2 39.8 .001 .068 .251 .001
A+V 52.0 51.2 .031 .122 .283 .050
T+A 63.8 63.2 .237 .310 .272 .242
T+V 61.4 61.2 .238 .293 .268 .239
T+A+V 64.0 63.5 .243 .312 .279 .244

Table 6: Comparison of the performance of ICON on both
IEMOCAP and SEMAINE considering different modality
combinations. Note: T=Text, A=Audio, V=Video

Absolute Error (MAE) and Pearson’s Correlation
Coefficient (r). In all the labels, ICON attains im-
proved performance over its counterparts, suggest-
ing the efficacy of its context-modeling scheme.

Hyperparameters: We plot the performance
trends of ICON on the IEMOCAP dataset concern-
ing the two main hyperparameters, R (number of
hops) and K (context-window size). For R, the
performance initially improves showing the im-
portance of multiple hops in the memories. How-
ever, with a further increase, the hopping recur-
rence deepens and causes the vanishing gradient
problem. This leads to decrease in performance.
The best performance is obtained at R = 3. For
K, similar trends are observed where performance
improvement is seen by increasing the number of
historical utterances. The best results are obtained
for K = 40 which also aligns with the average num-
ber of historical utterances in the dataset (Table 2).
Further increase in context does not provide rele-
vant information and rather leads to performance
degradation due to model confusion.

Multimodality: We investigate the importance
of multimodal features for our task. Table 6
presents the results for different combinations of
modes used by ICON on IEMOCAP. As seen, the
trimodal network provides the best performance
which is preceded by the bimodal variants. Among
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ICON variants IEMOCAP SEMAINE
Emotions DV DA DP DE

history DGIM hop acc. F1 r r r r

1. - - - 58.0 57.6 .10 .14 .10 .01
2. self 3 - 60.7 60.2 .17 .23 .15 .13
3. dual 3 - 61.2 60.7 .19 .24 .19 .20
4. self - 3 61.9 61.3 .19 .23 .22 .20
5. dual - 3 63.1 62.4 .21 .25 .26 .22
6. self 3 3 62.2 61.7 .20 .28 .21 .22
7. dual 3 3 64.0 63.5 .24 .31 .27 .24

Table 7: Ablation study for components of ICON.

unimodals, language modality performs the best,
reaffirming its significance in multimodal systems.
Interestingly, the audio and visual modality, on
their own, do not provide good performance, but
when used with text, complementary data is shared
to improve overall performance.

6.1 Ablation Study
To check the importance of the modules present
in ICON, we perform an ablation study where we
remove constituent components and evaluate the
model’s performance. Table 7 provides the results
on this study. In the first variant, none of the his-
tories and the associated context-modeling is used.
This provides the worst relative performance.

Self vs Dual History: We evaluate the scenarios
where only self-history of the speaker is considered
(variants 2, 4, and 6). Compared to the dual-history
variants (variants 3, 5, and 7), these models provide
lesser performance. Reasons involve the provision
of partial information from the conversational his-
tories. Similar trends can be seen for the cLSTM
model in Table 4 which works in the same regime.

DGIM vs no-DGIM: Variants 4 and 5 do not
contain the DGIM. In variant 5, separate memory
banks are created for both histories (Ma = H∗a
and Mb = H∗b ). Memory hops are also separately
performed without parameter sharing. Absence of
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Figure 4: Distribution of top-attention by ICON on correctly
classified instances in the testing set.

DGIM prevents the storage of dynamic influences
between speakers at each historical time step and
leads to performance deterioration.

Multi-hop vs No-hop: Variants 2 and 3 repre-
sent cases where multi-hop is omitted, i.e., R = 1.
Performance for them are poorer than variants hav-
ing multi-hop mechanism (variants 4-7). Also, re-
moval of multi-hop leads to worse performance
than the removal of DGIM. This suggests that
multi-hop is more crucial than the latter. However,
best performance is achieved by variant 6 which
contains all the proposed modules in its pipeline.

6.2 Dependency on distant history

For all the test utterances of IEMOCAP correctly
classified by ICON, we analyze the global memo-
ries receiving the highest attention. First, we divide
the conversational history (context-length K = 40)
into three regions: long, short, and medium. Fig-
ure 4 provides a summary of how much the model
attends each of these regions. The short region (la-
beled green) covering 10 utterances, corresponds
to conversational history just preceding the test
utterance. Utterances which occur more than 30
time steps behind the current test utterance are con-
sidered part of the long region (labeled red). Re-
maining utterances in between fall on the medium
region (labeled blue).

The distribution of top-valued attention scores
across the histories reveal interesting insights.
Most of the correctly classified instances focus on
the immediate or short history. In other words, 63%
of the time, at least one of the top-5 attention value
belongs to a memory in the short-history range.
A significant share is also present for distant his-
tory (22%). This result indicates the presence of
long-term emotional dependencies and the need to
consider histories far away from the current test
utterance.

Do you want  
my jacket? [hap]PA:

C
on

ve
rs

at
io

n Its after eleven.  
Lets just go home. [ang]PB:

Are you kidding?  
We just got here! [fru]PA:

There is no point 
in coming here [ang]PB:

Figure 5: As a conversation develops, different speakers
induce different affective bias which reflects in the memory
selection for generation of the summaries.
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Figure 6: Case studies for emotional influence. 20 memories in the history which are nearest to test utterance, i.e. k ∈ [21,40]
are visualized from the trained ICON.

6.3 Dynamic Modeling of Global Memories:
ICON holds the capability to model dynamic in-
teractions between speakers. The memories by its
DGIM (§4.3) are used to create summaries condi-
tioned on the test utterance. Consequently, these
summaries contain characteristics that are specific
to the affective state of the current speaker (of the
test utterance).

Figure 5 presents a sample slice of conversa-
tion from the dataset. As seen, summary selec-
tion for Person A varies from Person B. Such dif-
ferences arise due to person-specific characteris-
tics and unique affective interpretations of the con-
versation. Apart from the inter-speaker variance,
the emotional state of a speaker also varies across
turns.

6.4 Case Studies
To understand ICON’s behavior while processing
the global memories through multi-hop, we man-
ually explore the utterances in the testing set of
IEMOCAP. Figure 6 presents two cases which pro-
vide traces of self and inter-personal emotional
influences and were correctly classified by ICON.
Both the figures show the trend where multiple
hops gradually improve the focus of attention mech-
anism on relevant memories.

In Figure 6a, person Pa registers a complaint to
an operator Pb. Throughout the dialogue, Pa main-
tains an angry demeanor while Pb remains calm
and neutral (u14). While classifying utterance u15,
ICON focuses more on the histories uttered by Pa

(u6, u8, and u11). This demonstrates ICON’s abil-
ity to model self-emotional influences. It should be
noted that emotion of Pa here also depends on the
utterances of Pb but compared to self-utterances,
this dependency is much less. Figure 6b presents
another scenario where a couple argue over an al-
leged affair.

A man (Pb) is angry over this fact and questions
his partner (Pa) asking for details. The woman
tries to behave unperturbed by providing neutral
responses (u12, u16) but is eventually affected by
Pb’s continuous anger and expresses a frustrated
response (u18). These characteristics are captured
by the attention mechanism applied on the global
memories (generated by DGIM), which finds con-
textual information from histories that are relevant
to the test utterance u18. This example displays
the role of inter-speaker influences and how ICON
processes such dependencies.

7 Conclusion
In this paper, we presented ICON, a multimodal
framework for emotion detection in conversations.
ICON capitalizes on modeling contextual infor-
mation that incorporates self and inter-speaker in-
fluences. We accomplish this by using an RNN-
based memory network with multi-hop attention
modeling. Experiments show that ICON outper-
forms state-of-the-art models on multiple bench-
mark datasets. Extensive evaluations and case stud-
ies demonstrate the effectiveness of our proposed
model. Additionally, the ability to visualize the
attentions brings a sense of interpretability to the
model, as it allows us to investigate which utter-
ances in the conversational history provide impor-
tant emotional cues for the current emotional state
of the speaker.

In the future, we plan to test ICON on other
relevant dialogue-based applications and also use
it for empathetic dialogue generation.
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Abstract

Thanks to the success of object detection tech-
nology, we can retrieve objects of the speci-
fied classes even from huge image collections.
However, the current state-of-the-art object de-
tectors (such as Faster R-CNN) can only han-
dle pre-specified classes. In addition, large
amounts of positive and negative visual sam-
ples are required for training. In this paper, we
address the problem of open-vocabulary object
retrieval and localization, where the target ob-
ject is specified by a textual query (e.g., a word
or phrase). We first propose Query-Adaptive
R-CNN, a simple extension of Faster R-CNN
adapted to open-vocabulary queries, by trans-
forming the text embedding vector into an ob-
ject classifier and localization regressor. Then,
for discriminative training, we then propose
negative phrase augmentation (NPA) to mine
hard negative samples which are visually sim-
ilar to the query and at the same time seman-
tically mutually exclusive of the query. The
proposed method can retrieve and localize ob-
jects specified by a textual query from one mil-
lion images in only 0.5 seconds with high pre-
cision.

1 Introduction

Our goal is to retrieve objects from large-scale
image database and localize their spatial lo-
cations given a textual query. The task of
object retrieval and localization has many ap-
plications such as spatial position-aware im-
age searches (Hinami et al., 2017) and it re-
cently has gathered much attention from re-
searchers. While much of the previous work
mainly focused on object instance retrieval
wherein the query is an image (Shen et al.,
2012; Tao et al., 2014; Tolias et al., 2016), re-
cent approaches (Aytar and Zisserman, 2014;
Hinami and Satoh, 2016) enable retrieval of more
generic concepts such as an object category. Al-

skier

(c) (d)

(a) (b)

a man

snowboadertrees

person

skier snowboader

mutually
exclusive

mountain

shoes

Figure 1: Training examples in open-vocabulary ob-
ject detection. (a) positive example of skier classifier.
(b) examples without positive annotation, which can be
positive. (c) examples without positive annotation from
an image that contains a positive example. (d) proposed
approach to select hard and true negative examples by
using linguistics knowledge.

though such approaches are built on the recent
successes of object detection including that of
R-CNN (Girshick et al., 2014), object detection
methods can generally handle only closed sets
of categories (e.g., PASCAL 20 classes), which
severely limits the variety of queries when they
are used as retrieval systems. Open-vocabulary
object localization is also a hot topic and many
approaches are proposed to solve this prob-
lem (Plummer et al., 2015; Chen et al., 2017).
However, most of them are not scalable to make
them useful for large-scale retrieval.

We first describe Query-Adaptive R-CNN as an
extension of the Faster R-CNN (Ren et al., 2015)
object detection framework to open-vocabulary
object detection simply by adding a component
called a detector generator. While Faster R-CNN
learns the class-specific linear classifier as learn-
able parameters of the neural network, we gen-
erate the weight of the classifier adaptively from
text descriptions by learning the detector generator
(Fig. 2b). All of its components can be trained in
an end-to-end manner. In spite of its simple archi-
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tecture, it outperforms all state-of-the-art methods
in the Flickr30k Entities phrase localization task.
It can also be used for large-scale retrievals in the
manner presented in (Hinami and Satoh, 2016).

However, training a discriminative classifier is
harder in the open-vocabulary setting. Closed-
vocabulary object detection models such as Faster
R-CNN are trained using many negative examples,
where a sufficient amount of good-quality nega-
tive examples is shown to be important for learn-
ing a discriminative classifier (Felzenszwalb et al.,
2010; Shrivastava et al., 2016). While closed-
vocabulary object detection can use all regions
without positive labels as negative data, in open-
vocabulary detection, it is not guaranteed that a
region without a positive label is negative. For ex-
ample, as shown in Fig. 1b, a region with the anno-
tation a man is not always negative for skier.
Since training data for open-vocabulary object de-
tection is generally composed of images, each
having region annotations with free descriptions,
it is nearly impossible to do an exhaustive anno-
tation throughout the dataset for all possible de-
scriptions. Another possible approach is to use the
regions without positive labels in the image that
contains positive examples, as shown in Fig. 1c.
Although they can be guaranteed to be positive by
carefully annotating the datasets, negative exam-
ples are only limited to the objects that cooccur
with the learned class.

To exploit negative data in open-vocabulary ob-
ject detection, we use mutually exclusive relation-
ships between categories. For example, an object
with a label dog is guaranteed to be negative for
the cat class because dog and cat are mutually
exclusive. In addition, we propose an approach
to select hard negative phrases that are difficult to
discriminate (e.g., selecting zebra for horse).
This approach, called negative phrase augmenta-
tion (NPA), significantly improves the discrimina-
tive ability of the classifier and improves the re-
trieval performance by a large margin.

Our contributions are as follows. 1) We propose
Query-Adaptive R-CNN, an extension of Faster
R-CNN to open vocabulary, that is a simple yet
strong method of open-vocabulary object detec-
tion and that outperforms all state-of-the-art meth-
ods in the phrase localization task. 2) We pro-
pose negative phrase augmentation (NPA) to ex-
ploit hard negative examples when training for
open-vocabulary object detection, which makes

the classifier more discriminative and robust to
distractors in retrieval. Our method can accurately
find objects amidst one million images in 0.5 sec-
ond.

2 Related work

Phrase localization. Object grounding with nat-
ural language descriptions has recently drawn
much attention and several tasks and approaches
have been proposed for it (Guadarrama et al.,
2014; Hu et al., 2016; Kazemzadeh et al., 2014;
Mao et al., 2016; Plummer et al., 2015). The most
related task to ours is the phrase localization intro-
duced by Plummer et al. (Plummer et al., 2015),
whose goal is to localize objects that corresponds
to noun phrases in textual descriptions from an im-
age. Chen et al. (Chen et al., 2017) is the closest
to our work in terms of learning region propos-
als and performing regression conditioned upon a
query. However, most phrase localization meth-
ods are not scalable and cannot be used for re-
trieval tasks. Some approaches (Plummer et al.,
2017b; Wang et al., 2016a) learn a common sub-
space between the text and image for phrase lo-
calization. Instead of learning the subspace be-
tween the image and sentence as in standard cross-
modal searches, they learn the subspace between
a region and a phrase. In particular, Wang et
al. (Wang et al., 2016a) use a deep neural network
to learn the joint embedding of images and text;
their training uses structure-preserving constraints
based on structured matching. Although these ap-
proaches can be used for large-scale retrieval, their
accuracy is not as good as recent state-of-the-art
methods.

Object retrieval and localization. Object re-
trieval and localization have been researched in the
context of particular object retrieval (Shen et al.,
2012; Tao et al., 2014; Tolias et al., 2016), where
a query is given as an image. Aytar et
al. (Aytar and Zisserman, 2014) proposed re-
trieval and localization of generic category ob-
jects by extending the object detection tech-
nique to large-scale retrieval. Hinami and
Satoh (Hinami and Satoh, 2016) extended the R-
CNN to large-scale retrieval by using approxi-
mate nearest neighbor search techniques. How-
ever, they assumed that the detector of the cate-
gory is given as a query and require many sample
images with bounding box annotations in order to
learn the detector. Several other approaches have
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used the external search engines (e.g., Google im-
age search) to get training images from textual
queries (Arandjelovi et al., 2012; Chatfield et al.,
2015). Instead, we generate an object detector di-
rectly from the given textual query by using a neu-
ral network.

Parameter prediction by neural network.
Query-Adaptive R-CNN generates the weights of
the detector from the query instead of learning
them by backpropagation. The dynamic filter net-
work (De Brabandere et al., 2016) is one of the
first methods that generate neural network pa-
rameters dynamically conditioned on an input.
Several subsequent approaches use this idea in
zero-shot learning (Ba et al., 2016) and visual
question answering (Noh et al., 2016). Zhang et
al. (Zhang et al., 2017) integrates this idea into the
Fast R-CNN framework by dynamically generat-
ing the classifier from the text in a similar manner
to (Ba et al., 2016). We extend this work to the
case of large-scale retrieval. The proposed Query-
Adaptive R-CNN generates the regressor weights
and learn the region proposal network following
Faster R-CNN. It enables precise localization with
fewer proposals, which makes the retrieval system
more memory efficient. In addition, we propose a
novel hard negative mining approach, called nega-
tive phrase augmentation, which makes the gener-
ated classifier more discriminative.

3 Query-Adaptive R-CNN

Query-adaptive R-CNN is a simple extension of
Faster R-CNN to open-vocabulary object detec-
tion. While Faster R-CNN detects objects of fixed
categories, Query-Adaptive R-CNN detects any
objects specified by a textual phrase. Figure 2
illustrates the difference between Faster R-CNN
and Query-Adaptive R-CNN. While Faster R-
CNN learns a class-specific classifier and regres-
sor as parameters of the neural networks, Query-
Adaptive R-CNN generates them from the query
text by using a detector generator. Query-Adaptive
R-CNN is a simple but effective method that sur-
passes state-of-the-art phrase localization methods
and can be easily extended to the case of large-
scale retrieval. Furthermore, its retrieval accu-
racy is significantly improved by a novel train-
ing strategy called negative phrase augmentation
(Sec. 3.2).

(b) Query-Adaptive R-CNN

‘a runnning man’

Conv
RPN

FC
Dot

product

text
feature

detector
generator

classifier

regressor

(a) Faster R-CNN

Conv
RPN

FC
Dot

product

classifier

regressor
learnable parameters

(closed set of categories)

query

Gc

Gr

region features

region features

Figure 2: Difference in network architecture between
(a) Faster R-CNN and (b) Query-Adaptive R-CNN.
While Faster R-CNN learns the classifier of a closed
set of categories as learnable parameters of neural net-
works, Query-Adaptive R-CNN generates a classifier
and regressor adaptively from a query text by learning
a detector generator that transforms the text into a clas-
sifier and regressor.

3.1 Architecture
The network is composed of two subnetworks: a
region feature extractor and detector generator,
both of which are trained in an end-to-end man-
ner. The region feature extractor takes an im-
age as input and outputs features extracted from
sub-regions that are candidate objects. Following
Faster R-CNN (Ren et al., 2015), regions are de-
tected using a region proposal network (RPN) and
the features of the last layer (e.g., fc7 in VGG net-
work) are used as region features. The detector
generator takes a text description as an input and
outputs a linear classifier and regressor for the de-
scription (e.g., if a dog is given, a dog clas-
sifier and regressor are output). Finally, a confi-
dence and a regressed bounding box are predicted
for each region by applying the classifier and re-
gressor to the region features.

Detector generator. The detector generator
transforms the given text t into a classifier wc

and regressor (wr
x,wr

y,w
r
w,wr

h), where wc is the
weight of a linear classifier and (wr

x,wr
y,w

r
w,wr

h)
is the weight of a linear regressor in terms of x, y,
width w, and height h, following (Girshick et al.,
2014). We first transform a text t of variable
length into a text embedding vector v. Other
phrase localization approaches uses the Fisher
vector encoding of word2vec (Klein et al., 2015;
Plummer et al., 2015) or long-short term memory
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(LSTM) (Chen et al., 2017) for the phrase embed-
ding. However, we found that the simple mean
pooling of word2vec (Mikolov et al., 2013) per-
forms better than these methods for our model
(comparisons given in the supplemental material).
The text embedding is then transformed into a de-
tector, i.e., wc = Gc(v) and (wr

x,wr
y,w

r
w,wr

h) =
Gr(v). Here, we use a linear transformation for
Gc (i.e., wc = Wv, where W is a projection
matrix). For the regressor, we use a multi-layer
perceptron with one hidden layer to predict each
of (wr

x,wr
y,w

r
w,wr

h) = Gr(v). We tested var-
ious architectures for Gr and found that sharing
the hidden layer and reducing the dimension of the
hidden layer (up to 16) does not adversely affect
the performance, while at the same time it sig-
nificantly reduces the number of parameters (see
Sec. 5.2 for details).

3.2 Training with Negative Phrase
Augmentation

All components of Query-Adaptive R-CNN can
be jointly trained in an end-to-end manner. The
training strategy basically follows that of Faster
R-CNN. The differences are shown in Figure 3.
Faster R-CNN is trained with the fixed closed set
of categories (Fig. 3a), where all regions with-
out a positive label can be used as negative exam-
ples. On the other hand, Query-Adaptive R-CNN
is trained using the open-vocabulary phrases an-
notated to the regions (Fig. 3b), where sufficient
negative examples cannot be used for each phrase
compared to Faster R-CNN because a region with-
out a positive label is not guaranteed to be negative
in open-vocabulary object detection. We solve this
problem by proposing negative phrase augmenta-
tion (NPA), which enables us to use good quality
negative examples by using the linguistic relation-
ship (e.g., mutually exclusiveness) and the confu-
sion between the categories (Fig. 3c). It signif-
icantly improves the discriminative ability of the
generated classifiers.

3.2.1 Basic Training
First, we describe the basic training strategy with-
out NPA (Fig. 3b). Training a Query-Adaptive R-
CNN requires the phrases and their corresponding
bounding boxes to be annotated. For the ith image
(we use one image as a minibatch), let us assume
that Ci phrases are associated with the image. The
Ci phrases can be considered as the classes to train
in the minibatch. The labels Li 2 {0, 1}Ci⇥nr

person 1 0 0 0 1 0 0 ..

dog 0 1 0 0 0 0 0 ..

... .. .. .. .. .. .. .. ..

horse 0 0 0 0 0 1 0 ..

(a) Faster R-CNN (closed-vocabulary)

cl
os

ed
 s

et
 o

f c
at

eg
or

y

(b) Query-Adaptive R-CNN (open-vocabulary)

Ground 
truth Training labels

Ground
truth

minibatch

a man 1 0 0 0

dog 0 1 0 0

person 0 1 0

brown horse 1 0 0

.. .. ..

(c) Negative phrase augmentation

Training labels

a man 1 0 0 0

a woman 0

dog 0 1 0 0

cat 0

iteration

a man 1 0 0 0

dog 0 1 0 0

..

man:{woman:0.3, girl:0.2, ...}
dog: {cat: 0.4, horse:0.1, ...}

Confusion
table ...

brown horse

dog

dog

horse

person

a man

person

person

Figure 3: Difference in training between (a) closed-
vocabulary and (b) open-vocabulary object detection.
The approach of NPA is illustrated in (c).

are assigned to the region proposals generated by
RPN (each of the dotted rectangles in Fig 3b); a
positive label is assigned if the box overlaps the
ground truth box by more than 0.5 in IoU and neg-
ative labels are assigned to other RoIs under the
assumption that all positive objects of Ci classes
are annotated (i.e., regions without annotations are
negative within the image).1 We then compute the
classification loss by using the training labels and
classification scores.2 The loss in terms of RPN
and bounding box regression is computed in the

1Although this assumption is not always true for datasets
such as Flickr30k Entities, it nonetheless works well for them
because exceptions are rare.

2 Whereas Faster R-CNN uses the softmax cross entropy
over the C + 1 (background) classes, where C is the number
of closed sets of a category, we use the sigmoid cross entropy
because the Ci classes are not always mutually exclusive and
a background class cannot be defined in the context of open-
vocabulary object detection.
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same way as Faster R-CNN (Ren et al., 2015).

3.2.2 Negative Phrase Augmentation
Here, we address the difficulty of using nega-
tive examples in the training of open-vocabulary
object detection. As shown in Fig. 1b, our
generated classifier is not discriminative enough.
The reason is the scarcity of negative exam-
ples when using the training strategy described
in Sec. 3.2.1; e.g., the horse classifier is not
learned with the zebra as a negative example
except for the rare case that both a zebra and
a horse are in the same image. Using hard
negative examples has proven to be effective in
the object detection to train a discriminative de-
tector (Felzenszwalb et al., 2010; Girshick et al.,
2014; Shrivastava et al., 2016). However, adding
negative examples is usually not easy in the open-
vocabulary setting, because it is not guaranteed
that a region without a positive label is negative.
For example, an object with the label man is not a
negative of person even though person is not
annotated. There are an infinite number of cate-
gories in open-vocabulary settings, which makes
it difficult to exhaustively annotate all categories
throughout the dataset.

How can we exploit hard examples that are
guaranteed to be negative? We can make use of
the mutually exclusive relationship between cat-
egories: e.g., an object with a dog label is neg-
ative for cat because dog and cat are mutu-
ally exclusive. There are two ways we can add
to a minibatch: add negative images (regions) or
negative phrases. Adding negative phrases (as in
Fig. 3c) is generally better because it involves a
much smaller additional training cost than adding
images in terms of the both computational cost
and GPU memory usage. In addition, to im-
prove the discriminative ability of the classifier,
we select only hard negative phrases by mining
the confusing categories. This approach, called
negative phrase augmentation (NPA), is a generic
way of exploiting hard negative examples in open-
vocabulary object detection and leads to large im-
provements in accuracy, as we show in Sec. 5.3.

Confusion table. We create a confusion ta-
ble that associates a category with its hard nega-
tive categories, from which negative phrases are
picked as illustrated in Fig. 3c. To create the en-
try for category c, we first generate the candidate
list of hard negative categories by retrieving the
top 500 scored objects from all objects in the vali-

dation set of Visual Genome (Krishna et al., 2016)
(using c as a query). After that, we remove the
mutually non-exclusive category relative to c from
the list. Finally, we aggregate the list by category
and assign a weight to each category. Each of the
registered entries becomes like dog:{cat:0.5,

horse:0.3, cow:0.2}. The weight corresponds
to the probability of selecting the category in NPA,
which is computed based on the number of appear-
ances and their ranks in the candidate list.3

Removal of mutually non-exclusive phrases.
To remove non-mutually exclusive phrases from
the confusion table, we use two approaches that
estimate whether the two categories are mutually
exclusive or not. 1) The first approach uses the
WordNet hierarchy: if two categories have parent-
child relationships in WordNet (Miller, 1995),
they are not mutually exclusive. However, the
converse is not necessarily true; e.g., man and
skier are not mutually exclusive but do not have
the parent-child relationship in the WordNet hi-
erarchy. 2) As an alternative approach, we pro-
pose to use Visual Genome annotation: if two cat-
egories co-occur more often in the Visual Genome
dataset (Krishna et al., 2016), these categories are
considered to be not mutually exclusive.4 These
two approaches are complementary, and they im-
prove detection performance by removing the mu-
tually non-exclusive words (see Sec. 5.3).

The training pipeline with NPA is as follows:

(1) Update the confusion table: The confusion ta-
ble is updated periodically (after every 10k it-
erations in our study). Entries were created for
categories that frequently appeared in 10k suc-
cessive batches (or the whole training set if the
size of the dataset is not large).

(2) Add hard negative phrases: Negative phrases
are added to each of the Ci phrases in a mini-
batch. We replace the name of the category
in each phrase with its hard negative cate-
gory (e.g., generate a running woman for a
running man), where the category name is
obtained by extracting nouns. A negative phrase
is randomly selected from the confusion table
on the basis of the assigned probability.
3We compute the weight of each category as the sum of

500 minus the rank for all ranked results in the candidate lists
normalized over all categories in order to sum to one.

4 We set the ratio at 1% of objects in either category.
For example, if there are 1000 objects with the skier la-
bel and 20 of those objects are also annotated with man
(20/1000=2%), we consider that skier and man are not mu-
tually exclusive.
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(3) Add losses: As illustrated in Fig. 3c, we only
add negative labels to the regions where a posi-
tive label is assigned to the original phrase. The
classification loss is computed only for the re-
gions, which is added to the original loss.

4 Large-Scale Object Retrieval

Query-Adaptive R-CNN can be used for large-
scale object retrieval and localization, because
it can be decomposed into a query-independent
part and a query-dependent part, i.e., a re-
gion feature extractor and detector generator.
We follow the approach used in large-scale R-
CNN (Hinami and Satoh, 2016), but we overcome
its two critical drawbacks. First, a large-scale R-
CNN can only predict boxes included in the region
proposals; these are detected offline even though
the query is unknown at the time; therefore, to
get high recall, a large number of object propos-
als should be used, which is memory inefficient.
Instead, we generate a regressor as well as a classi-
fier, which enables more accurate localization with
fewer proposals. Second, a large-scale R-CNN as-
sumes that the classifier is given as a query, and
learning a classifier requires many samples with
bounding annotations. We generate the classifier
from a text query directly by using the detector
generator of Query-Adaptive R-CNN. The result-
ing system is able to retrieve and localize objects
from a database with one million images in less
than one second.

Database indexing. For each image in the
database, the region feature extractor extracts re-
gion proposals and corresponding features. We
create an index for the region features in order
to speed up the search. For this, we use the IV-
FADC system (Jégou et al., 2011) in the manner
described in (Hinami and Satoh, 2016).

Searching. Given a text query, the detector gen-
erator generates a linear classifier and bounding
box regressor. The regions with high classifica-
tion scores are then retrieved from the database by
making an IVFADC-based search. Finally, the re-
gressor is applied to the retrieved regions to obtain
the accurately localized bounding boxes.

5 Experiments

5.1 Experimental Setup
Model: Query-Adaptive R-CNN is based on
VGG16 (Simonyan and Zisserman, 2015), as in
other work on phrase localization. We first

initialized the weights of the VGG and RPN
by using Faster R-CNN trained on Microsoft
COCO (Lin et al., 2014); the weights were then
fine-tuned for each dataset of the evaluation. In
the training using Flickr30k Entities, we first pre-
trained the model on the Visual Genome dataset
using the object name annotations. We used
Adam (Kingma and Ba, 2015) with a learning rate
starting from 1e-5 and ran it for 200k iterations.

Tasks and datasets: We evaluated our ap-
proaches on two tasks: phrase localization and
open-vocabulary object detection and retrieval.
The phrase localization task was performed
on the Flickr30k Entities dataset (Plummer et al.,
2015). Given an image and a sentence that de-
scribes the image, the task was to localize re-
gion that corresponds to the phrase in a sentence.
Flickr30k datasets contain 44,518 unique phrases,
where the number of words of each phrase is 1–8
(2.1 words on average). We followed the evalu-
ation protocol of (Plummer et al., 2015). We did
not use Flickr30k Entities for the retrieval task
because the dataset is not exhaustively annotated
(e.g., not all men appearing in the dataset are anno-
tated with man), which makes it difficult to eval-
uate with a retrieval metric such as AP, as dis-
cussed in Plummer et al. (Plummer et al., 2017b).
Although we cannot evaluate the retrieval perfor-
mance directly on the phrase localization task, we
can make comparisons with other approaches and
show that our method can handle a wide variety of
phrases.

The open-vocabulary object detection and re-
trieval task was evaluated in the same way as the
standard object detection task. The difference was
the assumption that we do not know the target cat-
egory at training time in open-vocabulary settings;
i.e., the method does not tune in to a specific cate-
gory, unlike the standard object detection task. We
used the Visual Genome dataset (Krishna et al.,
2016) and selected the 100 most frequently object
categories as queries among its 100k or so cate-
gories.5 6 We split the dataset into training, valida-
tion, and test sets following (Johnson et al., 2016).
We also evaluated our approaches on the PASCAL
VOC 2007 dataset, which is a widely used dataset

5Since the WordNet synset ID is assigned to each object,
we add objects with labels of hyponyms as positives (e.g.,
man is positive for the person category).

6We exclude the background (e.g., grass, sky,
field), multiple objects (e.g., people, leaves), and am-
biguous categories (e.g, top, line).
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Approach People Clothing Body Animals Vehicles Instruments Scene Other All

Non-scalable methods
GroundeR (Rohrbach et al., 2016) 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08 47.81
Multimodal compact bilinear (Fukui et al., 2016) - - - - - - - - 48.69
PGN+QRN (Chen et al., 2017) 75.08 55.90 20.27 73.36 68.95 45.68 65.27 38.80 60.21

Non-scalable and joint localization methods
Structured matching (Wang et al., 2016b) 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23 42.08
SPC+PPC (Plummer et al., 2017a) 71.69 50.95 25.24 76.25 66.50 35.80 51.51 35.98 55.85
QRC net (Chen et al., 2017) 76.32 59.58 25.24 80.50 78.25 50.62 67.12 43.60 65.14

Scalable methods
Structure-preserving embedding (Wang et al., 2016a) - - - - - - - - 43.89
CCA+Detector+Size+Color (Plummer et al., 2017b) 64.73 46.88 17.21 65.83 68.75 37.65 51.39 31.77 50.89
Query-Adaptive R-CNN (proposed) 78.17 61.99 35.25 74.41 76.16 56.69 68.07 47.42 65.21

Table 1: Phrase localization accuracy on Flickr30k Entities dataset.

IoU
Architecture Params 0.5 0.6 0.7 0.8 0.9

w/o regression - 65.21 53.19 35.70 14.32 1.88

300–16(–4096) 0.3M 64.14 57.66 48.22 33.04 9.29
300–64(–4096) 1.1M 63.87 57.43 49.05 33.84 10.55
300–256(–4096) 4.3M 63.84 57.70 48.71 33.87 10.05
300–1024(–4096) 17M 64.29 58.05 48.49 33.94 10.09
300(–256–4096) 4.5M 62.82 56.28 48.02 32.71 9.89
300–4096 1.2M 63.23 56.92 48.17 32.66 9.20

Table 2: Comparison of various bounding box regres-
sors on Flickr30k Entities for different IoU thresholds.
The number of parameters in Gr is also shown.

for object detection.7 As metrics, we used top-
k precision and average precision (AP), computed
from the region-level ranked list as in the standard
object detection task.8

5.2 Phrase localization

Comparison with state-of-the-art. We compared
our method with state-of-the-art methods on the
Flickr30k Entities phrase localization task. We
categorized the methods into two types, i.e., non-
scalable and scalable methods (Tab. 1). 1) Non-
scalable methods cannot be used for large-scale
retrieval because their query-dependent compo-
nents are too complex to process a large amount
of images online, and 2) Scalable methods can be
used for large-scale retrieval because their query-
dependent components are easy to scale up (e.g.,
the L2 distance computation); these include com-
mon subspace-based approaches such as CCA.
Our method also belongs to the scalable category.
We used a simple model without a regressor and

7 We used the model trained on Visual Genome even for
the evaluation on the PASCAL dataset because of the assump-
tion that the target category is unknown.

8 We did not separately evaluate the detection and retrieval
tasks because both can be evaluated with the same metric.

NPA in the experiments.
Table 1 compares Query-Adaptive R-CNN with

the state-of-the-art methods. Our model achieved
65.21% in accuracy and outperformed all of
the previous state-of-the-art models including the
non-scalable or joint localization methods. More-
over, it significantly outperformed the scalable
methods, which suggests the approach of predict-
ing the classifier is better than learning a common
subspace for the open-vocabulary detection prob-
lem.

Bounding box regressor. To demonstrate the
effectiveness of the bounding box regressor for
precise localization, we conducted evaluations
with the regressor at different IoU thresholds. As
explained in Sec. 3.1, the regressor was generated
using Gr, which transformed 300-d text embed-
dings x into 4096-d regressor weights wr

x, wr
y,

wr
w, and wr

h. We compared three network archi-
tectures for Gr: 1) 300-n(-4096) MLP hav-
ing a hidden layer with n units that is shared
across the four outputs, 2) 300(-n-4096) MLP
having a hidden layer that is not shared, and 3)
300(-4096) linear transformation (without a
hidden layer).

Table 2 shows the results with and without re-
gressor. The regressor significantly improved the
accuracy with high IoU thresholds, which demon-
strates that the regressor improved the localiza-
tion accuracy. In addition, the accuracy did not
decrease as a result of sharing the hidden layer
or reducing the number of units in the hidden
layer. This suggests that the regressor lies in a very
low-dimensional manifold because the regressor
for one concept can be shared by many concepts
(e.g., the person regressor can be used for man,
woman, girl, boy, etc.). The number of pa-
rameters was significantly reduced by these tricks,
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Figure 4: Qualitative results with and without NPA. Top-k retrieved results for two queries are shown (sorted by
rank) and false alarms are depicted with a red border.

Figure 5: AP gain by negative phrase augmentation (NPA) for individual queries. The bars show the relative AP
gain and points shows the absolute AP with and without NPA.

Visual Genome VOC
NPA WN VG mAP PR@10 PR@100 mAP

CCA 3.18 20.40 15.64 28.23

Query-
Adaptive
R-CNN

9.15 52.60 36.85 29.14
3 10.90 60.10 43.21 36.74
3 3 11.53 61.80 45.91 37.07
3 3 11.65 65.40 46.85 41.32
3 3 3 12.19 65.70 48.45 42.81

Table 3: Open-vocabulary object detection perfor-
mance on Visual Genome and PASCAL VOC 2007
datasets. WN and VG are the strategies to remove mu-
tually non-exclusive phrases.

to even fewer than in the linear transformation.
The accuracy slightly decreased with a threshold
of 0.5, because the regressor was not learned prop-
erly for the categories that did not frequently ap-
pear in the training data.

5.3 Open-Vocabulary Object Retrieval

Main comparison. Open-vocabulary object de-
tection and retrieval is a much more difficult task
than phrase localization, because we do not know
how many objects are present in an image. We
used NPA to train our model. As explained in
Sec. 3.2.2, we used two strategies, Visual Genome
annotation (VG) and WordNet hierarchy (WN), to
remove mutually non-exclusive phrases from the
confusion table. As a baseline, we compared with

Query Most confusing class 2nd most confusing class

girl man 19 ! 3 boy 4 ! 2
skateboard surfboard 12 ! 0 snowboard 11 ! 0
train bus 17 ! 1 oven 3 ! 0
helmet hat 18 ! 1 cap 6 ! 4
elephant bear 14 ! 0 horse 6 ! 0

Table 4: Number of false alarms in top 100 results for
five queries (w/o NPA ! w/ NPA). The top 2 confusing
categories are shown for each query.

region-based CCA (Plummer et al., 2017b), which
is scalable and shown to be effective for phrase lo-
calization; for a fair comparison, the subspace was
learned using the same dataset as ours. An approx-
imate search was not used to evaluate the actual
performance at open-vocabulary object detection.

Table 3 compares different training strate-
gies. NPA significantly improved the perfor-
mance: more than 25% relative improvement for
all metrics. Removing mutually non-exclusive
words also contributed the performance: WN and
VG both improved performance (5.8% and 6.9%
relative AP gain, respectively). Performance im-
proved even further by combining them (11.8%
relative AP gain), which shows they are comple-
mentary. AP was much improved by NPA for
the PASCAL dataset as well (47% relative gain).
However, the performance was still much poorer
than those of the state-of-the-art object detection
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Query: black dog

Query: blue jeans

Query: shark

Figure 6: Retrievals from one million images. Top-k results for three queries are shown.

methods (Redmon and Farhadi, 2017; Ren et al.,
2015), which suggests that there is a large gap be-
tween open-vocabulary and closed-vocabulary ob-
ject detection.

Detailed results of NPA. To investigate the ef-
fect of NPA, we show the AP with and with-
out NPA for individual categories in Figure 5,
which are sorted by relative AP improvement.
It shows that AP improved especially for ani-
mals (elephant, cow, horse, etc.) and per-
son (skier, surfer, girl), which are visually
similar within the same upper category. Table 4
shows the most confused category and its total
count in the top 100 search results for each query,
which shows what concept is confusing for each
query and how much the confusion is reduced by
NPA.9 This shows that visually similar categories
resulted in false positive without NPA, while their
number was suppressed by training with NPA.
The reason is that these confusing categories were
added for negative phrases in NPA, and the net-
work learned to reject them. Figure 4 shows the
qualitative search results for each query with and
without NPA (and CCA as a baseline), which also
showed that NPA can discriminate confusing cat-
egories (e.g., horse and zebra). These re-
sults clearly demonstrate that NPA significantly
improves the discriminative ability of classifiers
by adding hard negative categories.

Large-scale experiments. Finally, we evalu-
ated the scalability of our method on a large im-
age database. We used one million images from
the ILSVRC 2012 training set for this evaluation.
Table 5 show the speed and memory. The mean

9For each query, we scored all the objects in the Visual
Genome testing set and counted the false alarms in the top
100 scored objects.

Database size 10K 50K 100K 500K 1M

Time (ms) 183±16 196±21 242±28 314±90 484±165
Memory (GB) 0.46 1.23 2.19 9.87 19.47

Table 5: Speed/memory in large-scale experiments.

and standard deviation of speed are computed over
20 queries in PASCAL VOC dataset. Our system
could retrieve objects from one million images in
around 0.5 seconds. We did not evaluate accuracy
because there is no such large dataset with bound-
ing box annotations.10 Figure 6 shows the retrieval
results from one million images, which demon-
strates that our system can accurately retrieve and
localize objects from a very large-scale database.

6 Conclusion

Query-Adaptive R-CNN is a simple yet strong
framework for open-vocabulary object detection
and retrieval. It achieves state-of-the-art perfor-
mance on the Flickr30k phrase localization bench-
mark and it can be used for large-scale object re-
trieval by textual query. In addition, its retrieval
accuracy can be further increased by using a novel
training strategy called negative phrase augmenta-
tion (NPA) that appropriately selects hard negative
examples by using their linguistic relationship and
confusion between categories. This simple and
generic approach significantly improves the dis-
criminative ability of the generated classifier.

Acknowledgements: This work was supported
by JST CREST JPMJCR1686 and JSPS KAK-
ENHI 17J08378.

10 adding distractors would also be difficult, because we
cannot guarantee that relevant objects are not in the images.
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Abstract

We address the task of visual semantic role la-
beling (vSRL), the identification of the partic-
ipants of a situation or event in a visual scene,
and their labeling with their semantic relations
to the event or situation. We render candi-
date participants as image regions of objects,
and train a model which learns to ground roles
in the regions which depict the corresponding
participant. Experimental results demonstrate
that we can train a vSRL model without re-
liance on prohibitive image-based role anno-
tations, by utilizing noisy data which we ex-
tract automatically from image captions using
a linguistic SRL system. Furthermore, our
model induces frame–semantic visual repre-
sentations, and their comparison to previous
work on supervised visual verb sense disam-
biguation yields overall better results.

1 Introduction

Images of everyday scenes can be interpreted and
described in many ways, depending on the per-
ceiver and the context in which the image is pre-
sented. The latter may be natural language data or
a visual sequence. As an example, consider the two
scenes in Figure 1 and the question What is the man
doing? The interpretation of the first target image
(left) in isolation would allow many answers. Tak-
ing into account the visual context, however, may
disprove many of those answers (e.g., He is ques-
tioning the women.). For the target image on the
right, the reason for Why there is so much food on
the table? can be inferred from its textual context.

As the examples illustrate, the interpretation
of a (visual) scene is related to the determina-
tion of its events, their participants and the roles
they play therein (i.e., distill who did what to
whom, where, why and how), and this may re-
quire a joint processing or reasoning with possi-
bly multiple (extra-)linguistic information sources

(e.g., text, images). In NLP, the well-established
and studied task of semantic role labeling (SRL)
aims to extract such knowledge in the form of shal-
low semantic structures from natural language texts
(e.g., questioning(Agent:man, Theme:women) );
see, e.g., Gildea and Jurafsky (2002); Palmer et al.
(2010), for an overview). It is considered an essen-
tial task towards text understanding, and was shown
to be beneficial for applications such as informa-
tion extraction (see Roth and Lapata (2016) and the
references therein) and question answering (Shen
and Lapata, 2007). In computer vision research,
recent efforts have been made on visual SRL or sit-
uation recognition, a task coined by transferring the
use of semantic roles to produce similar structured
meaning descriptions for visual scenes (e.g., Yang
et al. (2016); Yatskar et al. (2016)). To facili-
tate the endeavor of joint processing over multiple
sources, it is desirable to induce representations of
texts and visual scenes which do encode this kind
of information, and in, essentially, a congruent and
generic way. The latter would furthermore support
the induction of a desired level of abstraction as
needed.

In this paper we propose an approach towards
this goal: We address the task of visual SRL
(vSRL) and learn frame–semantic representations
of images. Specifically, we present a model that
learns to ground the semantic roles of a seman-
tic frame in image regions, which may be crucial
for, e.g., human-robot interaction or surveillance
(e.g., Who/Where is the robber?). For example, the
image shown in Figure 2 evokes the ARREST frame,
and its semantic roles Authorities, Suspect, and
Place are grounded in the image regions (delin-
eated by bounding boxes) which depict their corre-
sponding fillers. While being trained on this task,
our model learns distributed situation representa-
tions (for images and frames), and participant rep-
resentations (for image regions and roles) which
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Well, the fridge
broke, so I had to
eat everything.

TARGET IMAGE CONTEXT TARGET IMAGE CONTEXT

Figure 1: Example images along with their visual (left) or textual (right) contexts.

capture the visual–frame-semantic features of situ-
ations and participants, respectively.

We train our model on data that we automati-
cally extract by running a linguistic SRL system
on image captions—human produced data that is
abundant and requires less time and expertise than
frame-semantic annotations. Supervised SRL has
suffered from data sparsity since it relies on labor-
intensive human annotations. Analogous issues on
manually annotated images have been addressed by
Yatskar et al. (2017). By leveraging existing efforts
made in NLP, we explore whether we can alleviate
the supervision bottleneck in visual SRL

Our experiments yield promising results, and our
models are even able to make correct predictions
for erroneous data points. Furthermore, we eval-
uate the induced situation representations on the
task of supervised visual verb sense disambigua-
tion, where it outperforms or is comparable to pre-
vious work (on motion or non-motion verbs, re-
spectively).

2 Related Work

Yatskar et al. (2016) introduced the ImSitu dataset
for the task of situation recognition, i.e., the prob-
lem of, given an image, predicting a structured out-
put which specifies the depicted activity (e.g., jump-
ing) and its associated semantic roles paired with
their nominal fillers (e.g., {(agent, bear), (obsta-
cle, water)}. To address the task, Yatskar et
al. (2016, 2017) train conditional random field
(CRF) models on ImSitu (Yatskar et al., 2016)
and on additional training data for rarely occurring
noun-role combinations which they source from the
web (Yatskar et al., 2017). Mallya and Lazebnik
(2017) assume that the roles associated with each
activity are in a fixed order, and treat the above task

as one of recognizing activities and generating a
sequence of nouns, for which they use a recurrent
neural network. They show how hereby learned
features can be transferred to tackle image caption
generation. Li et al. (2017) explicitly model role de-
pendencies through a gated graph neural network.
Given an image, they instantiate a fully connected
graph with a verb and its roles as nodes. Each
node’s hidden state vector is initialized with image
features from two CNNs, which were pre-trained
for the prediction of verbs and nouns, respectively.
Using a softmax layer augmented with hidden state
vectors, they predict the verb and the nominal fillers
of its roles.

In contrast to above works on ImSitu, we do
not link the roles of a verb to their lexical fillers.
We address the related task of explicitly grounding
roles in the corresponding image regions, since our
focus is on the relation between semantic roles and
the typical visual features of their fillers (e.g., a
Body part is typically not a bike but arms). Gupta
and Malik (2015) introduced this task as visual se-
mantic role labeling. Similarly, Yang et al. (2016)
formulate a CRF that jointly processes a cooking
video and its natural language descriptions in or-
der to ground the semantic roles associated with
the verbs in corresponding object tracks. Both of
these studies are limited to a small number of activ-
ities performed by people and a few semantic roles
(26 and 11 verbs, 3 and 6 roles, respectively).

Unlike related work, our approach does not rely
on manual role annotations of images, but exploits
a linguistic SRL system for data creation. With
more than 1k frame-specific roles, our data is of
a larger scope than Gupta and Malik (2015) and
Yang et al. (2016). Further, unlike the CRF-based
approaches, our model induces frame-semantic rep-
resentations during training.
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ARRESTARREST PLACINGPLACING

r1, r2r1, r2 AuthoritiesAuthorities r1r1 AgentAgent

r5r5 SuspectSuspect r5r5 ThemeTheme

r3r3 PlacePlace r3r3 PlacePlace

r4r4 GoalGoal

target outputs

Figure 2: Example image (from Flickr30k Entities)
augmented with frame-semantic annotations. Top: Im-
age with objects rendered by bounding boxes. Bottom:
Annotations which show the frames which the image
evokes, and their roles, linked to their filler objects.

3 Grounding Semantic Roles in Images

We first define the task of vSRL and then present
our model and our approach for data creation.

3.1 Task Definition: vSRL
Our approach is based on the linguistic theory of
frame-semantics (Fillmore, 1982), which underlies
the idea that words evoke semantic frames. Frames
describe prototypical situations or events and con-
tain semantic roles. For example, in the sentence
They arrested him for assault, the argument they
fills the Authorities role, him is the Suspect, and
assault the Charges of the ARREST frame, which
was evoked by the verb arrest.

Let F be a set of frames, E be the
set of all semantic role labels, and Ef

be the inventory of roles associated with
the frame f (e.g., EARREST ={Authorities,
Suspect, Charges, Offense, Place})1. As-
sume we are given an image i, which evokes a
frame f , and a set of image regions Ri, which ren-
der one or several objects in i. The task of vSRL
is to link each role e 2 Ef to the object r 2 Ri

that fills role e in the situation or event which f
describes. We call a role e to be realized in an
image, if it can be grounded in an image (re-
gion). The object r shown in the image region
is called the filler or realization of e. The struc-
ture Af = {(r, e)|r 2 Ri, e 2 Ef} overall repre-

1We use FrameNet 1.5 (Ruppenhofer et al., 2006).

sents the frame f in the image i.
In SRL, the task of identifying the frame which

a predicate evokes is a prerequisite, but it is usually
treated as a subtask of SRL. We follow this ap-
proach and consider the identification of the frames
evoked by an image as a subtask of vSRL. We for-
mulate two further subtasks for vSRL, namely role
prediction—determining the correct role for a rele-
vant image region, and role grounding—linking a
realized role to its filler.

Note that not all roles of a frame may be realized
in an image, and not all objects may play a role in
an evoked frame. Figure 2, for instance, shows an
image with some of its objects delineated by six
bounding boxes Ri = {r1, r2, r3, r4, r5, r6}. The
target outputs (bottom, Fig. 2) are the frames AR-
REST and PLACING, as well as their realized roles
which are aligned with their fillers (marked by col-
ors). The FrameNet roles Charges and Offense

are not realized in the image, i.e., they cannot be
grounded. The vehicle, box r4, in turn, does not
participate in the ARREST frame.

3.2 Model: Visual-Frame–Semantic
Embedder

Our model, illustrated in Figure 3, is formulated
as a neural network architecture. Its input is a
tuple q = (i, r, f, e) 2 Q of an image i, an ob-
ject which is delineated by bounding box r, a
frame f 2 F , and a role label e 2 Ef (e.g., q =
(img1, r5, ARREST, Suspect); cf. Fig. 2). The
model output is a score s(q) 2 [�1, 1] which quan-
tifies the visual–frame-semantic correspondence
between the box r and the role e of f (Fig. 3, right).

More specifically, the model maps visual en-
codings of i and r (e.g., vectors of a pre-trained
CNN), and frame-semantic representations of f
and e (randomly initialized embeddings) to com-
mon visual–frame-semantic spaces (cross-modal
layers in Fig. 3).

We assume that images capture different frame-
semantic features than image regions—an image
encodes the whole scene and its participants and
thus evokes a frame, while individual image regions
of participants capture the participant-specific fea-
tures of the semantic roles they fill. We there-
fore distinguish between two different cross-modal
spaces: a situation space for images and frames,
and a participant space for regions and roles. Us-
ing the respective representations in these spaces,
the model then estimates the situation similar-
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Figure 3: The ImgObjLoc model which scores the correspondence between a semantic role and its frame, respec-
tively, and a candidate role filler (an image region) and the whole image, respectively.

ity, sims(i, f), between the image and the frame,
and the participant-role similarity, simp(r, e), be-
tween the box and the role. Finally, the overall
frame-semantic score s(q) is the aggregation of
sims and simp:

s(q) = bf sims(i, f) + (1� bf ) simp(r, e), (1)
where parameter bf 2 ✓ weights the contribution

of the situation and participant scores to the overall
score and is learned along all model parameters ✓.

By definition of the output function s (Equ. 1),
each role-object pair is scored independently of the
decisions made for the other roles and regions of
the same frame and image, respectively. Techni-
cally, this allows for the use of partially labeled
training data, where not every realized role of a
frame has been linked to its filler, as we will ex-
plain in Section 3.3.

Below we describe how we use our model to ad-
dress the subtasks of role prediction and grounding
(Section 3.1), respectively, for which we will report
experimental results in Section 5.2 In any case,
the method is based on the visual-frame–semantic
correspondence s(q) (Equ. 1), where we discard all
candidates of role-filler pairings with a score less
than zero.

Role Prediction Given an image i, we formulate
the role prediction problem as a mapping L:

L :{i}⇥Ri ! F ⇥ E

L(i, r) = arg max
(f,e),f2F,e2Ef

s(i, r, f, e) (2)

That is, the predicted role (and the frame it is as-
sociated with) which an image region r 2 Ri of i
fills is that e 2 E to which r is most similar in the
visual–frame-semantic space.

2We refer to Appendix A.2 in the supplemental material
for the production of the structure Ai,f of all role–filler pairs
for a frame f evoked by image i.

Role Grounding is the equivalent to linguis-
tic semantic role labeling.3 Given a frame f
realized in i, we ground each role e 2 Ef in
the region r 2 Ri with the highest visual–frame-
semantic similarity to e:

G : {i}⇥ {f}⇥ Ef ! Ri

G(i, f, e) = arg max
r2Ri

s(i, r, f, e) (3)

Training We train the model by using a rank-
ing criterion designed to give higher scores
to true cross-modal frame-semantic combina-
tions (i, r, f, e) than to mismatches, by a mar-
gin M . To this end, for each positive exam-
ple q = (i, r, f, e) of a training set Q, we sample K
negative examples q0

k = (i, r, f 0, e0) of a frame f 0

and role e0 2 Ef 0 not true for image i and box r,4

and learn model parameters ✓ by minimizing the
maximum margin hinge loss function on the tu-
ples (q, q0) (Equ. 4) . Ideally, using this loss func-
tion would guide the parameter learning towards
mapping images and the frames they evoke, and
regions and the roles they fill, respectively, nearby
each other in the cross-modal spaces.

✓ = arg min
✓

X

q2Q

1

K

KX

k=1

max(0, M�s(q)+s(q0
k))

(4)
Margin M is found during hyperparameter opti-
mization on a validation set.

3More formally, the task of SRL is the determination of
the arguments and their semantic roles of a predicate in a
sentence.

4We could extend the model to also sample a negative
image and box for f and e, and a negative role r0 for f that is
filled by another box in the image. We refrain from this since
we create our training data from automatically labeled data,
which hence could contain erroneous role-filler pairs.
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(1a) [r5 A man] is being placed in [r4 a police
car] by [r1 a uniformed officer] .

(1b) [r1,r2 The police] arresting [r5 someone]
on [r3 a busy city street] .

(1c) [r5 A young guy] is getting arrested.

(2a) PLACING (Theme:r5/A man,
Goal:r4/a police car,
Agent:r1/a uniformed officer )

(2b) ARREST (Authorities:r1,r2/The police,
Suspect:r5/someone,
Place:r3/on a busy city street )

(2c) ARREST ( Suspect:r5/A young guy )

Figure 4: Flickr30k captions for the image in Fig. 2. Left: Flickr30k Entities annotations of the mentioned objects
with unique entity ids. Right: Frame-semantic annotations of the sentences, output by PathLSTM (Roth, 2016;
Roth and Lapata, 2016).

3.3 Using Linguistic Knowledge for Data
Creation

SRL systems in NLP research use training data
which have been carefully created by linguistic ex-
perts (e.g., Ruppenhofer et al. (2006); Palmer et al.
(2005)) for many years. To train our model on
the visual SRL task, we build upon the annotation
efforts made in NLP. The exploitation of existing
resources which were developed for the analogous
goal means to get around the time-consuming and
costly annotation effort involved in the creation of
training data. Moreover, adopting an established
framework in NLP for shallow semantic representa-
tions (FrameNet, Ruppenhofer et al. (2006), in our
case), including the therein defined frame and role
labels, could facilitate cross-modal interactions—
advances in vSRL can help to improve SRL and
vice versa, or jointly draw inferences from both
modalities (e.g., a text and its illustration).

Our data creation approach is to use a (linguistic)
SRL system to extract frame-semantic annotations
from a corpus of images paired with captions.
We use the Flickr30k Entities dataset (Plummer
et al., 2015)5 which contains 30k images and five
captions per image. We chose this dataset since
its captions are augmented with entity mention
annotations, associating them with the 276k man-
ually annotated bounding boxes (i.e., entities
are grounded in the image). To create the set
Q = {(i(j), r(kj), f (lj), e(lj ,kj))|j 2 {1, . . . , 30k}}
of training instances, we run PathLSTM (Roth,
2016; Roth and Lapata, 2016) on all captions, and
extract all semantic frame annotations whose roles
are filled by a grounded entity. As a result, our
training corpus comprises images, the frames they
evoke, and the associated semantic roles paired
with their grounded fillers (i.e., bounding boxes).

Sentences (1a)–(1c) in Figure 4 (left), for ex-

5See web.engr.illinois.edu/˜bplumme2/
Flickr30kEntities

ample, are three human produced captions for the
image in Figure 2, in which entity mentions are
linked to their image regions (indicated by colors).
Using PathLSTM, we extract the grounded frame-
semantic annotations (2a)–(2c) (Fig. 4, right),
which results in the following six instances of our
corpus Q:

(img1, r5, PLACING, Theme)
(img1, r1, PLACING, Agent)
(img1, r4, PLACING, Goal)

(img1, r1 r2, ARREST, Authorities)
(img1, r5, ARREST, Suspect)
(img1, r3, ARREST, Place)

4 Data

Training Data We adopt the training, valida-
tion and test splits provided in the Flickr30k En-
tities dataset (Plummer et al., 2015) and create
our dataset Q with the method described above.
Some verbs and the frame types which they evoke
occur very frequently in the set of annotations
(e.g., BEING LOCATED) and therefore allow the in-
duction of a finer-grained frame inventory. Specifi-
cally, we transform each frame which is evoked
by an individual verb (e.g., stand or sit) for
at least 100 images (as obtained from the cap-
tions) in the Flickr30k Entities training split to
a finer-grained frame type by concatenating it
with the verb (e.g., BEING LOCATED-sit). Finally,
we keep all frame types (fine-grained or coarse)
which had been assigned to at least 100 differ-
ent images. This amounts to an inventory of
252 frame types (102 coarse types, e.g., STATE-
MENT), 1, 409 frame-specific role types (e.g., STATE-
MENT.speaker), 169 role labels (e.g., Speaker) and
76, 939 training instances. We derive our validation
and test splits from the original splits on the basis
of above modifications. See Table 1 for the quanti-
tative details on the dataset, which we henceforth
call Flickr30k Roles.
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# inst. # types
frame.role frame.role frames roles

fine coarse fine coarse
train 76,939 1,409 426 252 102 169
val 7,171 755 421 239 102 143
test 7,229 756 426 242 102 146

Table 1: Overview of our Flickr30K Roles dataset.

Reference Data Flickr30k Roles may contain
false instances due to its creation on the basis
of automatic frame–semantic annotations. Im-
Situ (Yatskar et al., 2016) is, to the best of our
knowledge, the only existing benchmark dataset
for vSRL. As explained in Section 2, however, it
is image-based, and does not provide explicit links
between roles and the regions which depict their
fillers. It cannot be used for the evaluation of role
prediction and grounding without additional anno-
tations.

We therefore created a set of reference instances
by presenting a subset of the Flickr30k Roles test
data to two human subjects (both students of com-
putational linguistics) for annotation. We chose
all instances which agree in their frame label with
instances extracted from at least two other cap-
tions of the underlying image. This amounts to
201 images and 715 instances. The annotators
were presented with an image with relevant ob-
jects rendered by bounding boxes, along with the
automatically grounded semantic frame annota-
tions. Figure 5 gives an example image along
with the 4 automatically obtained instances. They
were asked to judge the correctness of the frame
(e.g., INGESTION, Fig. 5), the verb (in the case of a
fine-grained frame type; e.g., eat) and each of the
role–filler links (e.g., Ingestor–226403). They
further linked wrong role assignments to their cor-
rect fillers when possible. We created the reference
set as the intersection of all correct instances of
the two annotators (frame and role–filler linkings),
which amounts to 554 instances.

Visual Representations We use high-
dimensional distributed vectors to represent
images and regions (bounding boxes), and repre-
sent the latter by additional contextual features.
These encode a region’s relative location and size
with respect to the whole image (cf. (Mao et al.,
2016)): 

xtl

W
,
ytl

H
,
xbr

W
,
ybr

H
,

w · h

W · H

�
, (5)

where (xtl, ytl) and (xbr, ybr) are the coordinates
of the top left and bottom right corners of the

INGESTION-eat 1–1
Role Entity ID (obj. name)
Ingestor 226403 woman 1
Ingestibles 226404 lunch/hotdog 1
Place 226408 at diner 1
Ingestor 226409 table/at table 0

instances label

Figure 5: Automatically derived instances in Flickr30k
Roles (colored, left columns) and the human correct-
ness judgments of the frame, verb, and role fillers
(right-most column; 1 is correct, 0 wrong). The object
names were presented to facilitate the annotation, but
are not part of the instance.

bounding box, H and W are the height and width
of the image, and h and w the height and width of
the box. These features have been found useful for
referring expression generation/interpretation for
objects in images (Mao et al., 2016). We hypothe-
size that the relative position and size of an object
can be likewise informative for the roles it can(not)
realize. For example, an object that is located at the
bottom of an image is probably rather the Patient

of a KICKing event than the Agent.

5 Experiments

We first evaluate our model in terms of different
aspects related to visual SRL on the two subtasks
role prediction and grounding (see Section 3).

Our second experiment assesses the usefulness
of the learned frame-semantic image representa-
tions on the task of visual verb disambiguation:
given an image and a verb, assign the correct sense
of the verb, i.e., the one that describes the action de-
picted in the image (e.g., play an instrument; play
sport). This task is different from visual SRL, but
forms a prerequisite for it, since in frame semantics,
roles are defined on the basis of frames evoked by
verb senses.

Model Details For each bounding box and im-
age, we use the VGG16 network (Simonyan and
Zisserman, 2014), trained on ImageNet (Deng et al.,
2009), to extract a 4, 096-dimensional feature vec-
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Fine-grained frame types Coarse frame types
top-1-pred. top-5 preds. gt fr. top-1-pred. top-5 preds.

frame fr.role role frame fr.role role role frame fr.role frame fr.role
te

st
se

t Image-only 19.0 9.4 16.7 44.1 28.6 52.3 47.9 23.7 12.0 55.8 36.3
ImgObject 18.7 12.8 24.1 44.9 33.8 61.2 64.3 22.6 15.5 55.5 41.4
ImgObjLoc 18.6 13.5 25.9 46.8 35.7 62.2 65.7 23.0 16.7 56.5 43.2

re
fe

re
nc

e Image-only 27.8 13.2 17.2 55.2 39.3 57.3 50.2 30.8 14.6 67.8 46.6
ImgObject 22.6 15.7 22.4 59.6 44.3 66.9 69.0 25.1 16.7 68.8 51.0
ImgObjLoc 24.9 17.4 23.6 60.2 47.3 68.6 70.3 28.4 19.7 67.4 53.3

Table 2: Role prediction accuracy on the Flickr30k Roles test data and on its human corrected subset.

tor from the fully connected fc7 layer. To transform
the feature vectors into the visual–frame-semantic
embedding space, we use two two-layer networks
which are composed of a layer with rectified lin-
ear activation units (relu) followed by a layer with
tanh activations (see Fig. 3, top left). We further-
more concatenate the first hidden layer (relu layer)
of each image region (i.e., box) with a vector of
contextual features (relative box size and location,
Equ. 5).

Frames and roles, in turn, are encoded as one-
hot vectors and mapped to randomly initialized
embedding layers, which are then transformed into
the visual–frame-semantic representations using
tanh activation layers (Fig. 3, bottom). We use the
cosine similarity to quantify visual-frame–semantic
correspondences in the cross-modal space (Equ. 1).

Throughout our experiments we compare our
model (ImgObjLoc), which takes into account the
contextual features (Equ. 5), to a model that does
not use contextual box features (ImgObject), and
one that only uses the image as visual input (Image-
only). Image-only derives its cross-modal role
representation by augmenting both, the image and
the box input layers with the image’s fc7 feature
vector.

The network parameters were optimized using
AdaGrad (Duchi et al., 2011) with a learning rate
of 0.003. We monitored the role prediction perfor-
mance on the validation set of Flickr30k Roles and
kept the best performing model. See Appendix A.1
for further details on the model hyperparameters.

5.1 Exp.1: Semantic Role Prediction and
Local Grounding

In the role prediction evaluation, the model is given
an image and a bounding box, which represents a
candidate role filler, and needs to predict the frame
and role which the entity (or entities) in the box

fills.
In the grounding experiment, the model is given

an image, a frame and an associated role which is
realized in the image, and needs to determine the
correct role filler from a list of boxes. We report
results on using ground truth boxes as well as box
proposals, extracted with selective search (Uijlings
et al., 2013). Regarding the latter, we apply the
intersection over union (IoU) metric (e.g., Ever-
ingham et al. (2010)), and consider a role to be
grounded in the correct box proposal r̃ if the area
of overlap between r̃ and the reference box, divided
by the area of their union, exceeds 50%.

Results We report top-1 and top-k accuracy
(i.e., the frame and role is among the top-k scored
predictions) on the Flickr30k Roles test and refer-
ence sets for both subtasks (recall that Flickr30k
Entities provides ground truth alignments between
entity mentions and objects).

Table 2 gives the results on role prediction with
ground truth bounding boxes (i.e., for all entities
which fill at least one semantic role). We report the
accuracy for predicting the correct frame and role
(columns fr.role), for predicting the correct frame
(columns frame), and the correct role regardless
of its frame (columns role; e.g., a prediction of
STATEMENT.Speaker would be considered correct
even if the reference was SPEAK ON TOPIC.Speaker).
We further give results for the coarse frame types,
where verbs are stripped off the frame labels
(i.e., STATEMENT-speak is STATEMENT). Since the
role prediction performance is equal for both frame
types, we report the results for the fine-grained
frames only.

As Table 2 shows, the models which use partic-
ipant representations extracted from the relevant
image regions (ImgObject and ImgObjLoc) per-
form better than Image-only which considers the
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Fine-grained frame types Fine-grained frame types
top-1 pred. filler top-3 pred. fillers top-1 pred. filler top-3 pred. fillers

frame fr.role role frame fr.role role frame fr.role role frame fr.role role

te
st

se
t Random

gt

37.7 23.6 25.3 70.8 56.5 59.4

pr
op

s 5.5 3.7 4.1 15.7 10.6 11.6
ImgObject 55.9 55.1 58.0 83.2 84.0 78.7 10.5 11.3 11.7 21.8 21.4 21.2
ImgObjLoc 56.6 56.6 59.4 83.1 85.1 79.7 11.5 12.8 13.3 22.3 22.6 22.5

re
fe

re
nc

e Random
gt

54.7 25.7 25.7 91.7 65.5 65.5

pr
op

s 8.1 3.8 3.8 22.9 11.8 11.8
ImgObject 78.9 62.1 62.1 95.8 88.2 83.6 13.7 12.8 12.8 39.6 30.9 28.2
ImgObjLoc 80.8 63.9 63.9 97.9 91.8 86.4 18.6 16.9 16.9 43.8 35.5 34.6

Table 3: Role grounding accuracy on the Flickr30k Roles test data and on its human corrected subset. Instances
with less than 2 (for top-1) or 3 (for top-3) gt filler candidates were discarded.

PathLSTM Roles
high prec. Ingestor Source

Carrier Speaker

low prec. Body part Activity Seller

Buyer Manner Purpose

Table 4: Roles which were most difficult to predict by
ImgObjLoc, in the order of their total frequency in the
reference set (top left to bottom right), distinguished by
the prediction precision of PathLSTM.

global image only, except for the top-1 frame pre-
diction. This indicates that the two models are able
to learn useful role-specific visual representations.
Contextual features in the form of the relative size
and location of a region (cf. Equ. 5) seems to be
also beneficial, due to ImgObjLoc yielding the
overall best results.

These features are furthermore beneficial for
role grounding in automatically selected bounding
boxes: When using automatically selected boxes,
ImgObjLoc is significantly more effective than
ImgObject in all settings (rows props, right block
in Table 3). The Random baseline, which assigns
each role randomly to a box in the image, performs
unsurprisingly worst.

Interestingly, the models perform substantially
better on the reference set than on the noisy test set
(top and bottom blocks in Tables 2,3).6 This indi-
cates that they were able to generalize over wrong
role-filler pairs in the training data, and are able
to make correct predictions even for erroneous in-
stances (see the qualitative analysis below). When
assuming that the correct frame has been identi-
fied (columns gt fr.), the best role prediction ac-

6The accuracy scores on the uncorrected instances in the
reference set yield comparable or worse accuracy scores than
those on the test set, except for the top-5 predicted frames.

curacy reaches 70.3% on the reference set, and
grounding accuracy with box proposals is at 35.5%
(ImgObjLoc, Tables 2,3, respectively).

Finally, frame prediction proves to be a diffi-
cult task, especially for fine-grained frame types
(e.g., BEING LOCATED-sit ; left block in Table 2).

Qualitative Analysis Notably, our analysis re-
vealed that ImgObjLoc could correctly predict
roles for cases in which PathLSTM failed, espe-
cially for highly visual entities (e.g., performance
vs. location, goal vs. path). Overall, ImgOb-
jLoc was often able to identify location roles which
PathLSTM had missed, but may confuse the spe-
cific labels (e.g., area vs. path or location) for
reasons discussed below. See Figure 6 for the recall
of ImgObjLoc on the reference set for individual
roles (top-20).

In an error analysis of the predictions of Im-
gObjLoc we identified several classes of errors.
Typical errors in role prediction were in cases
in which an image region contained multiple ob-
jects, and the system predicted a label for an ob-
ject which was occluded by the target or vice
versa (e.g., ingestibles vs. source; clothing

vs. wearer or body part; path vs. area). We
found that this error was propagated from noise in
the training data. Table 4 shows the roles which
were most difficult to predict by ImgObjLoc, and
which the textual SRL system (PathLSTM) could
predict with a high precision (top; as calculated
from the human annotations, cf. Section 4), or with
a low precision (bottom), respectively. As may be
expected, among these are also highly non-visual
roles, such as manner and purpose.

Other noise propagated from the training
data was caused by wrong frame predictions
of PathLSTM (e.g., TRAVERSE-pass instead of
BRINGING-carry; CONTAINING-hold .contents vs. IN-
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Figure 6: Prediction recall of ImgObjLoc on the refer-
ence set for the top-20 roles, ordered by their frequency.

GESTION.ingestibles). Frequent patterns of in-
correct frame predictions were furthermore a fail-
ure of the system to distinguish between fine-
grained frames (e.g., BEING LOCATED-sit vs. -lie or
SELF MOTION-walk vs. -run), or between motion and
non-motion actions (e.g., POSTURE vs. SELF MOTION).

Finally, we observed that often the reference
did not contain an actually valid frame which
had been predicted by the system for an im-
age, due to different levels of frame speci-
ficity, i.e., the output of ImgObjLoc was more
specific (e.g., ASSISTANCE-help.helper vs. WEAR-
ING.wearer; OPERATE VEHICLE-ride.vehicle vs. PER-
CEPTION ACTIVE-look .location of perceiver) or it
was more general (e.g., WEARING.wearer vs. IMPACT-
hit .impactor).

5.2 Exp.2: Visual Verb Sense Disambiguation

We evaluate the effectiveness of the frame-semantic
image representations that can be extracted with
our ImgObjLoc model on the VerSe (visual Verb
Sense disambiguation) dataset (Gella et al., 2018).
It covers 90 verbs and 163 senses used to annotate
3, 510 images. We follow the supervised method
applied in (Gella et al., 2018), divide VerSe into
training and test data, and train logistic regression
classifiers for sense prediction on 19 motion verbs
and 19 non-motion verbs (those which have at least
20 images and at least 2 senses). Input to the sense
classifiers are the frame-semantic image represen-
tations (second top cross-modal layer in Fig. 3)
of the VerSe images, which we extract with the
ImgObjLoc model, trained on Flickr30k Roles.

Table 5 gives the mean accuracy obtained on the
test data (of 100 runs). Our ImgObjLoc vectors
outperform all comparison models on motion verbs,
including CNN-based image features and the best-

Features Motion Non-motion
Random 76.7 ± 0.86 78.5 ± 0.39
MFS+ 76.1 80.0
CNN+ 82.3 80.0
Gella–CNN+O+ 83.0 80.0
Gella–CNN+C+ 82.3 80.3
CNN (reproduced) 83.1 79.8 ± 0.53
ImgObjLoc 84.8 ± 0.69 80.4 ± 0.57

Table 5: Sense prediction accuracy for motion (left)
and non-motion verbs (right) using different image
representations. + marks results taken from Gella et
al. (2018). MFS is the most frequent sense heuristic.

performing models of (Gella et al., 2018), namely
Gella–CNN+O and Gella–CNN+C (CNN features
concatenated with predicted object labels and im-
age captions, respectively). On non-motion verbs,
the best models, including our own, perform only
comparably to the most frequent sense heuristic.
Note that we examine the simplest representation
ImgObjLoc can yield, i.e., frame-semantic repre-
sentations for individual images. More complex
representations are left for future work. See Ap-
pendix A.3 for examples.

6 Conclusions

We addressed the task of grounding semantic roles
of frames which an image evokes in the correspond-
ing image regions of its fillers. We found that our
model can be trained without the need of manual
role annotations of image data, and that the frame-
semantic image representations it learns can be
used for related tasks. Encouraged by our find-
ings, future work includes the exploration of the
model and its learned frame-semantic representa-
tions for tasks such as the interpretation of multi-
modal scenes and stories and referring expressions.
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A Supplemental Material

A.1 Model Parameters
We optimized the network parameters using Ada-
Grad (Duchi et al., 2011) with a learning rate
of 0.003. Dropout with rate 0.25 was added on top
of the visual–frame-semantic layers. We monitored
the role prediction performance on the validation
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Algorithm 1 vSRL algorithm which grounds
each semantic role e of a frame f⇤ in at most
one region r 2 Ri of image i. s(.) denotes
the visual-frame–semantic correspondence score
(Equation (1)).
Require: a frame f⇤ for image i, Ri // Equ. (6)

Si,f⇤  ((s(i, r, f⇤, e), r, e) : r 2 Ri, e 2 Ef⇤),
sorted in descending order of s(.)
Ai,f⇤  ;, grounded realization of f⇤

for all (s, r, e) 2 Si,f⇤ do
if (r, .) /2 Ai,f⇤ ^ (., e) /2 Ai,f⇤ then

Ai,f⇤  Ai,f⇤ [ {(r, e)}
end if

end for
return Ai,f⇤

set of Flickr30k Roles and kept the best performing
model, which was obtained after about 20 epochs
for each model. For all models, the first visual
hidden layer has 1000 dimensions, and all other
layers have 250 units. The margin M (Equation 4
in the main paper) was set to 0.3, and K = 10 neg-
ative frame-role examples were sampled for each
training instance.

A.2 Model: vSRL
The full vSRL task requires, given an im-
age i, the computation of the set Ai,f of
role-object pairs which comprises the seman-
tic roles of a frame f grounded to their fillers,
i.e., Ai,f = {(r, e)|r 2 Ri, e 2 Ef}. Using our
model, we first determine the frame f⇤ which im-
age i evokes on the basis of all role-filler predic-
tions, i.e.,

f⇤ = arg max
f2F

X

{r2Ri,e2Ef }
s(i, r, f, e) (6)

We then apply a simple algorithm (Algorithm 1)
which chooses the filler–role pairs with maxi-
mum similarity from the set Si,f⇤ of all scored
frame-specific filler-role pairings for image i given
frame f⇤ (cf. Equation 1 in the main paper), such
that every role is grounded in at most one region,
and every region fills at most one role (line 6, Al-
gorithm 1).

A.3 Examples for VSD
Figure 7 shows example images of non-motion
verbs for which ImgObjLoc achieved a high (serve,
95%) and a low accuracy (reach, 50%), their

serve (95%):
dish out, hand out
something, often food
sys: 3

serve (95%):
put a ball into play
sys: 3

reach (50%)
extend physically/by
influence
sys: 3

reach (50%)
extend physically/by
influence
sys: 3

reach (50%):
gt: pass or transfer
something
7sys: attain/arrive at
a state, real or abstract

reach (50%):
gt: pass or transfer
something
7sys: extend physi-
cally/by influence

Figure 7: VSD: Example images of non-motion verbs,
their verb senses (gt) and our system’s predictions (sys).

ground truth senses (gt) and the predictions of Im-
gObjLoc (sys).
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Abstract
To enable collaboration and communication
between humans and agents, this paper inves-
tigates learning to acquire commonsense evi-
dence for action justification. In particular, we
have developed an approach based on the gen-
erative Conditional Variational Autoencoder
(CVAE) that models object relations/attributes
of the world as latent variables and jointly
learns a performer that predicts actions and
an explainer that gathers commonsense evi-
dence to justify the action. Our empirical re-
sults have shown that, compared to a typi-
cal attention-based model, CVAE achieves sig-
nificantly higher performance in both action
prediction and justification. A human sub-
ject study further shows that the commonsense
evidence gathered by CVAE can be commu-
nicated to humans to achieve a significantly
higher common ground between humans and
agents.

1 Introduction
To make AI more accessible, transparent, and
trustworthy, recent years have seen an increas-
ing effort on Explainable AI (XAI) which devel-
ops explainable models that attempts to explain
the agent’s decision making behaviors while main-
taining a high-level of performance. Two types
of explanation have been explored by the research
community: introspective explanation which ad-
dresses the process of decision making (e.g., how
a decision is made) and justification explanation
which gathers evidence to support a certain de-
cision (Park et al., 2018; Biran and McKeown,
2017). In this paper we focus on justification ex-
planation, particularly identifying commonsense
evidence to justify the prediction of an action. The
key question we are addressing is: when an AI
agent makes a prediction about an action in the
world, how can the system justify its prediction
that makes sense to the human?

Humans have tremendous commonsense
knowledge about actions in the world (e.g.,
key constituents of an action) which allows
them to quickly recognize and infer actions
in the environment from millions of available
features (Rensink, 2000). As a first step in our
investigation, we initiated a human study to
observe the kind of commonsense reasoning used
by humans to justify the prediction of an action.
From this study, we identified several dimensions
of commonsense evidence which is commonly
used to explain an action. Motivated by this
study, we frame our task as follows: given all the
symbolic descriptions of the perceived physical
world (e.g., object relations and attributes as a
result of vision or other processing), the goal is
to identify a small set of descriptions which can
justify an action prediction in line with humans’
commonsense knowledge about that action. The
lack of commonsense knowledge is a major
bottleneck in artificial agents which jeopardizes
the common ground between humans and agents
for successful communication. If artificial agents
ever become partners with humans in joint tasks,
the ability to learn and acquire commonsense
evidence for action justification is crucial.

To address this problem, we developed an ap-
proach based on the generative Conditional Vari-
ational Autoencoder (CVAE). This approach mod-
els the perceived attributes/relations as latent vari-
ables and jointly learns a performer which pre-
dicts actions based on attributes/relations and
a explainer which selects a subset of at-
tributes/relations as commonsense evidence to jus-
tify the action prediction. Our empirical results
on a subset of the Visual Genome data (Krishna
et al., 2016) have shown that, compared to a typ-
ical attention-based model, CVAE has a signifi-
cantly higher explanation ability in terms of iden-
tifying correct commonsense evidence to justify
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the predicted action. When adding the supervision
of commonsense evidence during training, both
the explainability and the performance (i.e., action
prediction) are further improved.

As commonsense evidence is intuitive to hu-
mans, the agent’s ability to select the right kind
of commonsense evidence will allow the human
and the agent to come to a common understanding
of actions and their justifications, in other words,
common ground. To evaluate the role of common-
sense evidence in facilitating common ground, we
conducted additional human subject studies. In
these experiments, the agent is given a set of im-
ages and applies our models to predict actions
and select commonsense evidence to justify the
prediction. For each image, the agent communi-
cates the selected commonsense evidence to the
human. The human, who does not have access to
the original image, makes a guess on the action
only based on the communicated evidence. The
agreement between the action guessed by the hu-
man and the action predicted by the agent is used
to measure how well the selected commonsense
evidence serves to bring the human and the agent
to a common ground of perceived actions. Our ex-
perimental results have shown that the common-
sense evidence selected by CVAE leads to a signif-
icantly higher common ground.

The contributions of this paper are three folds.
First we identified several key dimensions of com-
monsense evidence, from a human’s perspective,
to justify concrete actions in the physical environ-
ment. These dimensions provide a basis for jus-
tification explanation that is aligned with human’s
commonsense knowledge about the action. Sec-
ond we proposed a method using CVAE to jointly
learn to predict actions and select commonsense
evidence as action justification. CVAE naturally
models the generation process of both actions and
commonsense evidence. Inferring commonsense
evidence is equivalent to the posterior inference of
the CVAE model, which is flexible and powerful
by incorporating actions as context. Our experi-
mental results have shown a higher explainability
of CVAE in action justification without sacrificing
performance. Finally our dataset of commonsense
evidence for action explanation is available to the
community1. It can serve as a benchmark for fu-
ture work on this topic.

1 The dataset is available at https://github.com/
yangshao/Commonsense4Action

2 Related Work

Advanced machine learning such as deep learning
approaches have shown effectiveness in many ap-
plications, however, they often lack transparency
and interpretability. This makes it difficult for hu-
mans to understand the agent’s capabilities and
limitations. To address this problem, there is a
growing interest in Explainable AI. For example,
previous work has applied high-precision rules
to explain classifiers’ decisions (Ribeiro et al.,
2016, 2018). For Convolutional Neural Networks
(CNNs), recent work attempts to explain model
behaviors by mining semantic meanings of fil-
ters (Zhang et al., 2017a,b) or by generating lan-
guage explanations (Hendricks et al., 2016; Park
et al., 2018). An increasing amount of work on
the Visual Question Answering (VQA) task (An-
tol et al., 2015; Lu et al., 2016) has also looked
into more interpretable approaches, for exam-
ple, by utilizing attention-based models (Fukui
et al., 2016) or reasoning based on explicit evi-
dence (Wang et al., 2017).

Specifically for action understanding, recent
work explicitly models commonsense knowledge
including causal relations (Gao et al., 2016; Forbes
and Choi, 2017; Zellers and Choi, 2017; Gao
et al., 2018) related to concrete actions, which
can facilitate action explanation. Commonsense
knowledge can be acquired from image annota-
tions (Yatskar et al., 2016) or learned from vi-
sual abstraction (Vedantam et al., 2015). Differ-
ent from the above work, our work here focuses
on learning to acquire commonsense evidence for
action justification.

3 A Study on Justification Explanation

While there is a rich literature on explanations in
Psychology, Philosophy, and Linguistics, partic-
ularly for higher-level events and decision mak-
ing (Thagard, 2000; Lombrozo, 2012; Dennett,
1987), explanations for recognition of lower-level
concrete physical actions (e.g., drink, brush, cook,
etc.) occurred in our daily life are rarely studied.
One possible reason is that we humans are so intu-
itive in recognizing these actions, which are often
taken for granted without the need for any further
explanation. However, despite recent advances,
the ability to recognize and understand actions in
the real world is extremely challenging for arti-
ficial agents. Thus it becomes important for the
agent to have an ability to explain and justify its
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action prediction. What can be used to justify an
action prediction, and more importantly, in a hu-
man understandable way? To address this ques-
tion, we initiated a human study to examine what
kind of evidence humans would gather in justify-
ing their recognition of an action perceived from
the physical world.

More specifically, we selected a set of 12 short
video clips (each about 14 seconds) from the Mi-
crosoft Research Video to Text dataset (Xu et al.,
2016). For each video clip, we asked human sub-
jects to explain why they think a certain action is
happening in the video. The answers were col-
lected via an online interface. A total of about 140
responses from 67 Michigan State University en-
gineering students were collected. From the data,
we identified the following categories of evidence
commonly used by the subjects in their justifica-
tions. Most responses contain multiple categories
of explanation.

• Transitive-Relation. This kind of expla-
nation does not directly focus on the struc-
tural relations between an action and its par-
ticipants, but rather transits to the relation
between the participant of the action and
other related evidence. For example, using a
woman wears an apron to justify the cook ac-
tion. In the collected responses, 64% of them
used transitive relations.

• Subaction-Relation. Lower-level sub-
actions are used to justify a higher-level ac-
tion. For example, the action is cook because
there are sub-actions like cutting and heating
meat. Almost 75% of the responses used sub-
actions.

• Spatial-Relation. Spatial relations between
the participants of the action play an impor-
tant role. For example, the knife is on the
cutting board is used to explain cooking; and
the water is in the bottle to explain drinking.
Around 15% of responses are in this category.

• Effect-Attribute. A change in the state of
an object, in other words the effect state af-
ter the action, is often used as evidence. For
example, cucumber in small pieces is used as
the evidence for chop. Over 28% of the re-
sponses are in this category.

• Associated-Attribute. Other attributes asso-
ciated with the participants of the action, but
not the effect state of the participants as a

(hold, hand, bottle) 

(near, bottle, mouth) 

(in, water, bottle)

(hold, woman, racket)

(racket, orange)

(shirt, white)

Drink Chop

(carve, knife, meat) 

(use, man, knife) 

(on, fork, meat)

(under, stove, pan)

(meat, sliced) 

(fork, long)

Feed

(eat, bird, fruit) 

(on, fruit, hand) 

(on, bird, hand) 

(on, neck, bird)

(apple, green)

(beak, orange)

Figure 1: Examples of commonsense evidence selected
by the crowd (in bold) from the list of relations and
attributes.

result of the action (20%). While these at-
tributes are not directly related to the action,
they are linked to the action by association.
For example, banana is sliced is used as evi-
dence to justify blend.

• Other. Participants have also cited other
commonsense such as the “definition” of the
action (5%), or the manner associated with
different sub actions(12%).

Most of the above categories can be potentially
perceived and represented through symbolic de-
scriptions such as logic predicates to capture ob-
ject attributes and relations between objects. This
study has motivated us to collect additional data
(Section 4) and formulate the task of common-
sense justification as described in Section 5.

4 Data Collection

Motivated by the human study described above,
we created a dataset based on the Visual Genome
(VG) data (Krishna et al., 2016) for our investiga-
tion. Each image in the VG dataset is annotated
with bounding boxes, attributes of the bounding
boxes, and relations between the bounding boxes.
The available annotation provides an ideal setup
for us to focus on commonsense justification.

In this work, we are interested in the concrete
physical actions that involve physical objects that
can be perceived. We selected ten frequently oc-
curred concrete actions: feed, pull, ride, drink,
chop, brush, fry, bake, blend, eat and manually
identified a set of images from the VG dataset de-
picting these actions. This has led to a dataset of
853 images with annotated ground-truth actions.

We conducted a crowd-source study to collect
responses from the crowd in terms of common-
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Table 1: The average number of available relations/attributes and the average number of annotated commonsense
evidence relations/attributes across the corresponding images for each verb in the dataset.

feed pull ride drink chop brush fry bake blend eat

Rel# 15.49
± 7.55

14.62
± 9.36

12.42
± 7.18

15.16
± 9.89

12.00
± 7.22

15.40
± 8.93

14.02
± 7.02

13.31
± 7.27

14.37
± 6.37

15.08
± 6.87

Gold Rel# 2.79
± 1.28

1.86
± 0.84

1.69
± 0.83

2.41
± 1.14

2.41
± 1.66

2.26
± 1.08

2.72
± 2.06

2.25
± 1.69

2.56
± 1.84

2.52
± 1.08

Att# 12.48
± 7.11

13.60
± 7.52

12.20
± 7.13

10.86
± 6.52

15.09
± 6.82

12.31
± 8.91

15.31
± 7.16

13.44
± 6.84

15.22
± 7.18

11.98
± 6.50

Gold Att# 0.26
± 0.48

0.20
± 0.45

0.13
± 0.40

0.30
± 0.56

1.60
± 1.33

0.22
± 0.49

0.91
± 1.26

0.93
± 1.06

0.15
± 0.40

0.41
± 0.70

Table 2: Distributions of the categories of commonsense evidence relations/attributes for each verb.
feed pull ride drink chop brush fry bake blend eat

Transitive-Relation 0.10 0.14 0.15 0.11 0.11 0.13 0.12 0.18 0.15 0.09
Subaction-Relation 0.45 0.46 0.13 0.32 0.29 0.39 0.17 0.11 0.09 0.43

Spatial-Relation 0.45 0.40 0.72 0.57 0.60 0.48 0.71 0.71 0.76 0.48
Effect-Attribute 0.0 0.0 0.0 0.14 0.82 0.05 0.53 0.34 0.22 0.27

Associated-Attribute 1.0 1.0 1.0 0.86 0.18 0.95 0.47 0.66 0.78 0.73

sense evidence for action justification. As shown
in Figure 1, for each image, we showed to the
crowd (through Amazon Mechanical Turk) the im-
age itself, the ground-truth action, and a list of
relations/attributes. The workers were instructed
to select the relations/attributes that were deemed
to justify the corresponding action. We randomly
assigned three workers to each image. The rela-
tions or attributes that were selected by the major-
ity (two or more) workers were considered gold
commonsense evidence for action justification.

Table 1 shows the average number of rela-
tions/attributes available (i.e., Rel# and Att#)
for the corresponding images for each verb. It
also shows the number of relations/attributes se-
lected by the workers as commonsense evidence
(i.e., Gold Rel# and Gold Att#). The average
number of relations and attributes in each image
for different actions varies slightly. However, only
a small percentage of them are considered com-
monsense evidence. What’s interesting is that the
percentage of attributes considered good evidence
is significantly less than the percentage of the re-
lations. The sparsity of gold relations/attributes
shows that it’s a challenging task to learn an ex-
plainer for a target action.

We further inspected the selected gold com-
monsense relations and attributes. As shown in
Table 2, they nicely fall into the categories of
commonsense evidence discussed in Section 3.
The ratios of Transitive-Relation
are similar across different actions. The
ratios of Subaction-Relation and

Spatial-Relation vary for different verbs.
For instance, ride, bake, blend tend to be justified
by spatial relations more often than sub-actions.
In addition, feed, pull, ride are rarely justified
by Effect-Attribute while chop is mainly
explained by the effect state of its direct object.
These results will provide insight for generating
justification explanations for a variety of verbs in
the future.

5 Method

Before we formulate the problem, we will first
give some formal definitions. The set of rela-
tions R is defined as {r1, r2, ..., rm} where each
ri is a tuple (rp

i , r
s
i , r

o
i ) corresponding to the pred-

icate, subject, and object; and the set of attributes
E is represented as {e1, e2, ..., en} where each ei

is a tuple (eo
i , e

p
i ) corresponding to the object and

attribute. We introduce z as a discrete vector
(z1, z2, ..., zm+n) where zi 2 {0, 1} represents
the hidden explainable variable. z is interpreted
as an evidence selector: zi = 1 means the cor-
responding relation/attribute justifies the target ac-
tion a. We define A as the vocabulary of target ac-
tions. Based on all these definitions, our goal is to
jointly select evidence z and predict target action
a 2 A. In other words, to learn the probability
p(a, z|R,E).

5.1 Conditional Variational Autoencoder

The varational autoencoder( VAE) (Kingma and
Welling, 2013) is proposed as a generative model
to combine the power of both directed continuous
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 r1: (on,  knife,  cutting-board)

                ……

 rm: (hold, hand,   knife)

Image

GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding

Attribute Embedding

chop

Action Embedding

…

…

Prior Embedding

Posterior Embedding

KL(q||p)

Gumble 
Softmax

Weighted Sum + Relu

chop: 0.6
drink: 0.1
……
pull: 0.1
feed: 0.1

softmax

Glove

p�(z|R,E)

q�(z|a,R,E)

Linear 
+Relu

Figure 2: System architecture for the CVAE model. The dotted region is only used during the model training
process.

or discrete graphical models and neural network
with latent variables. The VAE models the gener-
ative process of a random variable x as following:
first the latent variable z is generated from a prior
probability distribution p(z), then a data sample
x is generated from a conditional probability dis-
tribution p(x|z). The CVAE (Zhao et al., 2017)
is a natural extension of VAE: Both the prior dis-
tribution and conditional distribution now are con-
ditioned on an additional context c: p(z|c) and
p(x|z, c).

In our task, we decompose the inference prob-
lem p(a, z|R,E) into two smaller problems. The
first sub-problem is to infer p(a|R,E), which
is a performer. The second problem is to in-
fer p(z|a,R,E) which is an explainer. These
two problems are closely coupled, hence we
model them jointly. The probability distribution
p(a|R,E) can be written as :

p(a|R,E) =
X

z

p✓(a|z,R,E)p(z|R,E)

Directly optimizing this conditional probability is
not feasible. Usually the Evidence Lower Bound
(ELBO) (Sohn et al., 2015) is optimized, which
can be derived as the following:

ELBO(a,R,E; ✓,�)

= � KL(q�(z|a,R,E)||p✓(z|R,E))

+ Eq�(z|a,R,E)[log p✓(a|z,R,E)]

 log p(a|R,E)

(1)

The first KL divergence term is to minimize the
distance between the posterior distribution and the
prior distribution. The second term is to maximize
the expectation of the target action based on the
posterior latent distribution.

In most previous work using VAE, there is no
explicit meaning for the hidden representation z,
thus it’s hard for humans to interpret. For exam-
ple, z is simply assumed as a Gaussian distribu-
tion or a categorical distribution. In order to have
a more explicit representation for the purpose of
explanation, our latent discrete variable z is used
to indicate whether the corresponding relation or
attribute can be used for justifying the action.

The whole system architecture is shown in Fig-
ure 2. From an image, we first extract a candidate
relation set R and an attribute set E. Every rela-
tion r and attribute e are embedded using a Gated
Recurrent Neural Network (Chung et al., 2014).

remb = GRU([rp, rs, ro])

eemb = GRU([eo, ep])

The action a is represented by a GloVe embed-
ding (Pennington et al., 2014), followed by an-
other non-linear layer:

aemb = ReLU(Wia
glove + bi)

where aglove 2 R
k is the pre-trained GloVe em-

bedding. Then the latent variable z can be calcu-
lated as:

q�(z|a,R,E) = softmax(Wz[U;aemb] + bz)
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where U = [remb
1 , ..., remb

m , eemb
1 , ..., eemb

n ] and
[U,aemb] means the concatenation of U and aemb.
and Wz 2 R

2⇥2k as we assume each zi belongs to
one of the two classes {0, 1}.

The prior distribution can be calculated as:

p✓(z|R,E) = softmax(W
0

zU + b
0

z)

The KL divergence between the prior random
variable zprior from p✓(z|R,E) and the posterior
random variable zposterior from q�(z|a,R,E) is:

KL(zprior, zposterior) = �pi log
pi

p
0
i

� (1 � pi) log
1 � pi

1 � p
0
i

here zprior ⇠ Bern (pi), zposterior ⇠ Bern
⇣
p

0

i

⌘
.

Another challenge is that z is a discrete vari-
able which blocks the gradient and makes the end-
to-end training infeasible. Gumbel-Softmax (Jang
et al., 2016) is a re-parameterization trick to deal
with the discrete variables in the neural network.
We use this trick to sample discrete z. Then we do
a weighted sum pooling between discretized z and
U:

hz = ReLU(
X

i

zi ⇤ Ui)

h = ReLU(Whhz + bh)

p✓(a|z,R,E) = softmax(Wh + b)

During training, we also add a sparsity regulariza-
tion on the latent variable z besides the ELBO. So
our final training objective is

LCV AE = � ELBO(a,R,E; ✓,�)

+ � KL(q�(z|a,R,E)|| Bern(0))
(2)

During testing, we have two objectives. First we
want to infer the target action a, which can be
computed through sampling:

p(a|R,E) =
X

z

p✓(z|R,E)p✓(a|z,R,E)

⇡ 1

S

SX

s=1

p✓(a|zs,R,E)

(3)

where zs ⇠ p(z|R,E) and S is the number
of samples. After obtaining the predicted ac-
tion â, the posterior explanation is inferred as
q�(z|â,R,E).

Image GRU

a1: (banana yellow)

          ……

an: (banana, sliced)

GRU

Relation Embedding

Attribute Embedding

r1: (hold, hand,   knife)

                ……

rm: (on,  knife,  cutting-board)

Weighted Sum+Relu

chop: 0.6
……

feed: 0.1

softmax

Context Vector v

Attention Score �

Figure 3: The system architecture for attention-based
method.

5.2 Conditional Variational Autoencoder
with Supervision (CVAE+SV)

In this setting, we assume we have the supervision
for the discrete latent variable z, which is more
like a multi-task setting. We optimize both the
action prediction loss and the evidence selection
loss. The final loss function is defined as:

LSV = �LCV AE + (1 � �)Levidence

where

Levidence = �

X

k

(zk log p(ẑk)+(1�zk) log(1�p(ẑk)))

in which zk 2 {0, 1} is the ground truth label, ẑk

is the predicted label and � is a hyper-parameter.

6 Evaluation on Action Explanation

To evaluate our model, we randomly split our
dataset (853 images) into 60% for training, 20%
for validation, and 20% for test. For all the mod-
els we use the Adam optimizer (Kingma and Ba,
2014) with a starting learning rate 1e-4. All other
hyperparameters are tuned on the validation set.

6.1 Baseline: Attention Model
We use an attention-based model as a baseline,
which is similar to the model originally proposed
for document classification (Yang et al., 2016).
The architecture is shown in Figure 3. Different
from the CVAE-based method, this model directly
learns a context parameter instead of learning from
the posterior action context. The attention is cal-
culated as:

↵i =
exp(uT

i v)P
j exp(uT

i v)

where v is the context parameter, and ui is
the GRU embedding of the corresponding rela-
tion/attribute. The learned attention weights are
used for the selection of commonsense evidence.
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Table 3: Action prediction accuracy and evidence se-
lection MAP.

Action Accuracy Evidence MAP
Attention 0.789 0.442

CVAE 0.835 0.572
CVAE+SV 0.871 0.690

Upper Bound 0.918 1.0

6.2 Evaluation Metrics and Comparison
Our evaluation compares the performance from
the following models:

• Baseline. The attention model presented
in Section 6.1.

• CVAE. The conditional variational autoen-
coder model presented in Section 5.1.

• CVAE+SV. The CVAE model with supervi-
sion as presented in Section 5.2.

• Upper Bound. We also calculate the upper
bound of the CVAE model using the human
annotated gold evidence.

For each of the above model, evaluate model
performance on both action prediction (i.e., per-
former) and action justification (i.e., explainer)

• Performer: Accuracy is used to measure the
percentage of actions that are correctly pre-
dicted by the model.

• Explainer: As discussed in Section 5, the
binary random variable z is used to capture
commonsense evidence. The probability of
each z represents the model’s belief that the
corresponding evidence supports the action
decision. As we hope to rank the gold ev-
idence higher, the Mean Average Precision
(MAP) metric is calculated for evaluating ev-
idence selection.

6.3 Evaluation Results
The results are shown in Table 3. Since the Upper
Bound method directly uses the human annotated
gold evidence, its MAP for selecting evidence is
always 1.0.

The CVAE model outperforms the attention-
based model in both action prediction and evi-
dence selection. This indicates that the CVAE
model can incorporate a better guidance for evi-
dence selection during the training process. One

Figure 4: Evidence selection MAP for semi-supervised
learning.

possible explanation is that the CVAE model in-
corporates the target action as the context during
learning instead of directly learning a context pa-
rameter. Furthermore, after adding the evidence
supervision, the CVAE+SV model gives even bet-
ter performance in both action prediction and evi-
dence selection. We notice that for the CVAE+SV
model, its action prediction accuracy is approach-
ing the upper bound 91.8%, however the evidence
selection MAP is still far from the upper bound
even with supervision.

6.4 Semi-Supervised Learning
Although we have shown that adding supervision
on the latent variable z improves the model perfor-
mance, collecting this label information through
human annotation is usually time consuming and
expensive. In this section, we explore how semi-
supervised learning can help to alleviate this diffi-
culty.

As a generative model, VAE has shown its
advantage on semi-supervised learning (Kingma
et al., 2014). Following the method in (Kingma
et al., 2014), our semi-supervised learning loss
function is defined as:

L =
X

(a,R,E,z)⇠pl

LSV +
X

(a,R,E)⇠pu

LCV AE

where LSV is defined in section 5.2 and LCV AE

is detailed in section 5.1. In other words, the data
sample with evidence label is fed to LSV , other-
wise is fed to LCV AE .

The results are shown in Figure 4 where the
x-axis shows the ratio of labeled examples. The
incremental Naive CVAE+SV model only uses
the labeled evidence examples while the Semi
CVAE model also uses unlabeled evidence exam-
ples. The figure shows that the Semi CVAE

2633



Ground-Truth	Ac,on	A	

CVAE	
Model	

Predicted		
Ac,on	Am	

Commonsense	
Evidence	

Guessed	
Ac,on	Ah	

Am��Ah	=	A	?		

communicated	

Figure 5: The experimental setup for the human subject
study examining the role of commonsense justification
towards common ground.

model outperforms the Naive CVAE+SVmodel.
This indicates that the semi-supervised method
can improve the evidence selection by making use
of unlabeled examples.

7 Commonsense Justification towards
Common Ground

In human-agent communication, the success of
communication is largely dependent on common
ground which captures shared knowledge, beliefs,
or past experience (Clark, 1996). As common-
sense evidence what humans use to justify ac-
tions, To validate this hypothesis, we conducted a
human-subject experiment to examine the role of
commonsense justification in facilitating common
ground.

7.1 Experiment Setup
Figure 5 shows the setup of our experiment. The
agent is provided with an image and applies vari-
ous models (e.g., CVAE) to jointly predict the ac-
tion and identify commonsense evidence. The hu-
man is provided with a list of six action choices
and does not have access to the image. The agent
communicates to the human only the identified
commonsense evidence and the human makes a
guess on the action from the candidate list purely
based on the communicated evidence. The idea is
that, if the human and the agent share the same be-
liefs about evidence to justify an action, then the
action guessed by the human should be the same
as the action predicted by the agent.
Generating Distracting Verbs. For each image,
the human is provided with a list of six action/verb
candidates. To generate this list, we mix four dis-
tracting verbs with the ground-truth action verb
plus a default Other. Most of the distracting
verbs come from the concrete action verbs made
available by (Gao et al., 2018). We first manu-
ally filtered out the verbs which have the same
meaning with the ground-truth verb. We then se-
lected two groups of distracting verbs: an easy

group (where the distracting verbs have larger dis-
tance from the ground-truth verb in the embedding
space, with an average similarity of 0.284) and a
hard group (more close to the ground-truth verbs
with an average similarity of 0.479). The temper-
ature based softmax distribution (Chorowski and
Jaitly, 2016) was used to sample the easy and
the hard distracting verbs based on the pre-trained
GloVe (Pennington et al., 2014) embedding cosine
similarity.

Process. A total of 170 images were used in
this experiment, and 24 workers from AMT par-
ticipated in our study. For each image, we ap-
plied three different models: Attention base-
line, CVAE, and CVAE+SV to generate the com-
monsense evidence. An upper bound based on
gold commonsense evidence was also measured.
Note that, the agent has no knowledge of the hu-
man’s action choices when generating the com-
monsense evidence. Theory of mind is an impor-
tant aspect in human-agent communication. Incor-
porating human’s action choices in justifying ac-
tion is an interesting however a different problem
which requires different solutions. In this paper,
we only focus on the situation where the mind of
the human is opaque to the agent.

For each model and each image under the easy
or hard configurations, the top five predicted com-
monsense evidence (associated with the predicted
action) were shown to a worker. The the worker
was requested to select the most probable action
from the distracting list only based on these five
pieces of evidence. We randomly assigned three
workers to each image. The majority of three se-
lections was considered as the final answer. If
all three selections disagreed, one worker’s choice
was randomly selected as the final answer.

Metrics for Common Ground. We use the agree-
ment between the action guessed by the human
and the action predicted by the agent to mea-
sure how well the selected commonsense evidence
serves to bring the human and the agent to a com-
mon ground of perceived actions. More formally,
as shown in Figure 5, given an image, suppose its
ground-truth action is A, the action predicted by
the agent/machine is Am, and the action guessed
by the human is Ah, the Common Ground is de-
fined as: Am = Ah = A. Here we also enforce
that the predicted action should be the same as
the ground-truth action. The percentage of trials
based on different models that have led to a com-
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Attention CVAE CVAE+SV Gold

Gold Action: Bake
Am: Eat 

Ah: Bake
Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

Am: Bake 
Ah: Bake

• The bread is next to the bread.

• The bread is on the rack.

• The bread is on the pan.

• The man has keys.

• The man has the band.

• The bread is on the rack.

• The bread is on the pan.

• The bread is on the tray.

• The bread is next to the 

bread.

• The bread is baked.

• The bread is baked.

• The bread is next to the bread.

• The person is pushing the tray.

• The bread is on the pan.

• The bread is on the rack.

• The bread is on the tray.

• The person is pushing the 

tray.

• The bread is baked.

Gold Action: Brush
Am: Brush 
Ah: Skin

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

Am: Brush 
Ah: Brush

• The baby has a mouth.

• The baby has a hand.

• The baby has eyeballs.

• The baby has fingers.

• The baby has a nose.

• The hand holds the 
toothbrush.


• The toothbrush is in the 
mouth.


• The baby has a mouth.

• The baby has fingers.

• The baby has a nose.

• The hand holds the toothbrush.

• The toothbrush is in the mouth.

• The baby has eyeballs.

• The baby has a mouth.

• The baby has a hand.

• The toothbrush is in the 
mouth.


• The hand holds the 
toothbrush.


Figure 6: Two examples of the common ground study based on different models. In each example, a ranked list
of commonsense evidence generated by different models is shown. Am captures the action predicted by the agent.
Ah captures the action guessed by the human based on the selected commonsense evidence.

Table 4: Results from the human subject study on com-
mon ground.

Attenton CVAE CVAE+SV Gold
Easy 0.665 0.776 0.818 0.888
Hard 0.576 0.718 0.788 0.841

mon ground is measured and compared.

7.2 Experimental Results

Table 4 shows the comparison results among vari-
ous models and the upper bound where the gold
commonsense evidence provided to the human.
It’s not surprising that performance on common
ground is worse in the hard configuration as the
distracting verbs are more similar to the target
action. The CVAE-based method is better than
the attention-based method in facilitating common
ground.

Figure 6 shows two examples of the top five pre-
dicted evidence under different models. For each
model, it also shows the agent predicted action
(Am) and the human guessed action (Ah). In both
examples, all models were able to establish a com-
mon ground except for the attention-based model.
The evidence selected by the CVAE+SV model is
clearly more accurate than the CVAE model and
is more close to the ground-truth evidence. The
second example shows that although the attention-
based model predicts a correct target action, it fails
to convey correct commonsense evidence to estab-
lish a common ground with the human.

8 Conclusion

This paper describes an approach for action justi-
fication using commonsense evidence. As demon-
strated in our experiments, commonsense evi-
dence is selected to align with humans’ justifica-
tion of an action and is therefore critical in es-
tablishing a common ground between humans and
agents.

For all experiments in this paper, we use the an-
notated relations/attributes from the original Vi-
sual Genome data. As the state-of-the-art re-
call@50 on the relation detection with a lim-
ited vocabulary is only around 20% (Liang et al.,
2018). Using annotated relations and attributes al-
lows us to focus on the study of commonsense ev-
idence and its role in action justification and com-
mon ground. Nevertheless, our proposed method
has the potential to handle the erroneous rela-
tions/entities, e.g., as a result of vision processing,
for example, by avoiding to select erroneous re-
lations as they do not correlate with actions and
other indicative relations/attributes. Our future
work will extend the model and findings from this
work to vision processing that will not only iden-
tify commonsense evidence but also explain where
and how in the perceived environment the evi-
dence is gathered.
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Abstract

The ability to infer persona from dialogue
can have applications in areas ranging from
computational narrative analysis to personal-
ized dialogue generation. We introduce neu-
ral models to learn persona embeddings in a
supervised character trope classification task.
The models encode dialogue snippets from
IMDB into representations that can capture the
various categories of film characters. The best-
performing models use a multi-level attention
mechanism over a set of utterances. We also
utilize prior knowledge in the form of tex-
tual descriptions of the different tropes. We
apply the learned embeddings to find similar
characters across different movies, and clus-
ter movies according to the distribution of the
embeddings. The use of short conversational
text as input, and the ability to learn from
prior knowledge using memory, suggests these
methods could be applied to other domains.

1 Introduction

Individual personality plays a deep and pervasive
role in shaping social life. Research indicates that
it can relate to the professional and personal rela-
tionships we develop (Barrick and Mount, 1993),
(Shaver and Brennan, 1992), the technological in-
terfaces we prefer (Nass and Lee, 2000), the be-
havior we exhibit on social media networks (Self-
hout et al., 2010), and the political stances we take
(Jost et al., 2009).

With increasing advances in human-machine di-
alogue systems, and widespread use of social me-
dia in which people express themselves via short
text messages, there is growing interest in systems
that have an ability to understand different person-
ality types. Automated personality analysis based
on short text analysis could open up a range of po-
tential applications, such as dialogue agents that

⇤The first two authors contributed equally to this work.

sense personality in order to generate more inter-
esting and varied conversations.

We define persona as a person’s social role,
which can be categorized according to their con-
versations, beliefs, and actions. To learn personas,
we start with the character tropes data provided in
the CMU Movie Summary Corpus by (Bamman
et al., 2014). It consists of 72 manually identified
commonly occurring character archetypes and ex-
amples of each. In the character trope classifica-
tion task, we predict the character trope based on
a batch of dialogue snippets.

In their original work, the authors use
Wikipedia plot summaries to learn latent variable
models that provide a clustering from words to
topics and topics to personas – their persona clus-
terings were then evaluated by measuring similar-
ity to the ground-truth character trope clusters. We
asked the question – could personas also be in-
ferred through dialogue? Because we use quotes
as a primary input and not plot summaries, we be-
lieve our model is extensible to areas such as dia-
logue generation and conversational analysis.

Our contributions are:
1. Data collection of IMDB quotes and charac-

ter trope descriptions for characters from the
CMU Movie Summary Corpus.

2. Models that greatly outperform the baseline
model in the character trope classification
task. Our experiments show the importance
of multi-level attention over words in dia-
logue, and over a set of dialogue snippets.

3. We also examine how prior knowledge in
the form of textual descriptions of the per-
sona categories may be used. We find that a
‘Knowledge-Store’ memory initialized with
descriptions of the tropes is particularly use-
ful. This ability may allow these models to be
used more flexibly in new domains and with
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Character Trope Character Movie
Corrupt corporate executive Les Grossman Tropic Thunder

Retired outlaw Butch Cassidy Butch Cassidy and the Sundance Kid
Lovable rogue Wolverine X-Men

Table 1: Example tropes and characters

different persona categories.

2 Related Work

Prior to data-driven approaches, personalities were
largely measured by asking people questions and
assigning traits according to some fixed set of di-
mensions, such as the Big Five traits of openness,
conscientiousness, extraversion, agreeability, and
neuroticism (Tupes and Christal, 1992). Compu-
tational approaches have since advanced to infer
these personalities based on observable behaviors
such as the actions people take and the language
they use (Golbeck et al., 2011).

Our work builds on recent advances in neural
networks that have been used for natural language
processing tasks such as reading comprehension
(Sukhbaatar et al., 2015) and dialogue modeling
and generation (Vinyals and Le, 2015; Li et al.,
2016; Shang et al., 2015). This includes the grow-
ing literature in attention mechanisms and mem-
ory networks (Bahdanau et al., 2014; Sukhbaatar
et al., 2015; Kumar et al., 2016).

The ability to infer and model personality has
applications in storytelling agents, dialogue sys-
tems, and psychometric analysis. In particular,
personality-infused agents can help “chit-chat”
bots avoid repetitive and uninteresting utterances
(Walker et al., 1997; Mairesse and Walker, 2007;
Li et al., 2016; Zhang et al., 2018). The more
recent neural models do so by conditioning on a
‘persona’ embedding – our model could help pro-
duce those embeddings.

Finally, in the field of literary analysis, graphi-
cal models have been proposed for learning char-
acter personas in novels (Flekova and Gurevych,
2015; Srivastava et al., 2016), folktales (Valls-
Vargas et al., 2014), and movies (Bamman et al.,
2014). However, these models often use more
structured inputs than dialogue to learn personas.

3 Datasets

Characters in movies can often be categorized into
archetypal roles and personalities. To understand
the relationship between dialogue and personas,

we utilized three different datasets for our mod-
els: (a) the Movie Character Trope dataset, (b)
the IMDB Dialogue Dataset, and (c) the Charac-
ter Trope Description Dataset. We collected the
IMDB Dialogue and Trope Description datasets,
and these datasets are made publicly available 1.

3.1 Character Tropes Dataset
The CMU Movie Summary dataset provides
tropes commonly occurring in stories and media
(Bamman et al., 2014). There are a total of 72
tropes, which span 433 characters and 384 movies.
Each trope contains between 1 and 25 characters,
with a median of 6 characters per trope. Tropes
and canonical examples are shown in Table 1.

3.2 IMDB Dialogue Snippet Dataset
To obtain the utterances spoken by the charac-
ters, we crawled the IMDB Quotes page for each
movie. Though not every single utterance spoken
by the character may be available, as the quotes
are submitted by IMDB users, many quotes from
most of the characters are typically found, espe-
cially for the famous characters found in the Char-
acter Tropes dataset. The distribution of quotes
per trope is displayed in Figure 1. Our models
were trained on 13,874 quotes and validated and
tested on a set of 1,734 quotes each.

We refer to each IMDB quote as a (contextu-
alized) dialogue snippet, as each quote can con-
tain several lines between multiple characters, as
well as italicized text giving context to what might
be happening when the quote took place. Fig-
ure 2 show a typical dialogue snippet. 70.3% of
the quotes are multi-turn exchanges, with a mean
of 3.34 turns per multi-turn exchange. While the
character’s own lines alone can be highly indica-
tive of the trope, our models show that account-
ing for context and the other characters’ lines and
context improves performance. The context, for
instance, can give clues to typical scenes and ac-
tions that are associated with certain tropes, while
the other characters’ lines give further detail into

1https://pralav.github.io/emnlp_
personas/
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Figure 1: Number of IMDB dialogue snippets per trope

Figure 2: Example IMDB dialogue snippet containing mul-
tiple characters and context.

the relationship between the character and his or
her environment.

3.3 Character Trope Description Dataset
We also incorporate descriptions of each of the
character tropes by using the corresponding de-
scriptions scraped from TVTropes2. Each descrip-
tion contains several paragraphs describing typical
characteristics, actions, personalities, etc. about
the trope. As we demonstrate in our experiments,
the use of these descriptions improves classifica-
tion performance. This could allow our model to
be applied more flexibly beyond the movie char-
acter tropes – as one example, we could store de-
scriptions of personalities based on the Big Five
traits in our Knowledge-Store memory.

4 Problem Formulation

Our goal is to train a model that can take a batch
of dialogue snippets from the IMDB dataset and
predict the character trope.

Formally, let NP be the total number of char-
acter tropes in the character tropes dataset. Each
character C is associated with a correspond-
ing ground-truth trope category P . Let S =
(D, E, O) be a dialog snippet associated with
a character C, where D = [wD1 , wD2 ..., wDT ]
refers to the character’s own lines, E =

2http://tvtropes.org

[wE1 , wE2 ..., wET ] is the contextual information
and O = [wO1 , wO2 ..., wOT ] denotes the other
characters’ lines. We define all three components
of S to have fixed sequence length T and pad when
necessary. Let NS be the total number of dialogue
snippets for a trope. We sample a set of Ndiag

(where Ndiag ⌧ NS) snippets from NS snippets
related to the trope as inputs to our model.

5 Attentive Memory Network

The Attentive Memory Network consists of two
major components: (a) Attentive Encoders, and
(b) a Knowledge-Store Memory Module. Figure 3
outlines the overall model. We describe the com-
ponents in the following sections.

5.1 Attentive Encoders

Not every piece of dialogue may be reflective
of a latent persona. In order to learn to ignore
words and dialogue snippets that are not informa-
tive about the trope we use a multi-level attentive
encoder that operates at (a) the individual snippet
level, and (b) across multiple snippets.

Attentive Snippet Encoder

The snippet encoder extracts features from a sin-
gle dialogue snippet S, with attention over the
words in the snippet. A snippet S = (D, E, O)
is fed to the encoder to extract features from each
of these textual inputs and encode them into an
embedding space. We use a recurrent neural net-
work as our encoder, explained in detail in Sec-
tion 5.1.1. In order to capture the trope-reflective
words from the input text, we augment our model
with a self-attention layer which scores each word
in the given text for its relevance. Section 5.1.2
explains how the attention weights are computed.
The output of this encoder is an encoded snippet
embedding Se = (De, Ee, Oe).

Attentive Inter-Snippet Encoder

As shown in Figure 3, the Ndiag snippet em-
beddings Se from the snippet encoder are fed to
our inter-snippet encoder. This encoder captures
inter-snippet relationship using recurrence over
the Ndiag snippet embeddings for a given trope
and determines their importance. Some of the di-
alogue snippets may not be informative about the
trope, and the model learns to assign low attention
scores to such snippets. The resulting attended
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Figure 3: Illustration of the Attentive Memory Network. The network takes dialogue snippets as input and predicts its asso-
ciated character trope. In this example, dialogue snippets associated with the character trope “Bruiser with a Soft Corner” is
given as input to the model.

summary vector from this phase is the persona rep-
resentation z, defined as:

z = �s
DDs + �s

EEs + �s
OOs

�s
D + �s

E + �s
O = 1 (1)

where �s
D, �s

E , �s
O are learnable weight parame-

ters. Ds, Es, Os refers to summary vectors of
the Ndiag character’s lines, contextual informa-
tion, and other characters’ lines, respectively. In
Section 7, we experiment with models that have
�s

E and �s
O set to 0 to understand how the contex-

tual information and other characters’ lines con-
tribute to the overall performance.

5.1.1 Encoder
Given an input sequence (x1, x2, ..., xT ), we use
a recurrent neural network to encode the sequence
into hidden states (h1, h2, ..., hT ). In our exper-
iments, we use a gated recurrent network (GRU)
(Chung et al., 2014) over LSTMs (Hochreiter and
Schmidhuber, 1997) because the latter is more
computationally expensive. We use bidirectional
GRUs and concatenate our forward and backwards
hidden states to get

 !
ht for t = 1, ..., T .

5.1.2 Attention
We define an attention mechanism Attn that com-
putes s from the resultant hidden states

 !
ht of a

GRU by learning to generate weights ↵t. This can
be interpreted as the relative importance given to a
hidden state ht to form an overall summary vector
for the sequence. Formally, we define it as:

at = fattn(ht) (2)
↵t = softmax(at) (3)

s =
TX

t=1

↵tht (4)

where fattn is a two layer fully connected network
in which the first layer projects ht 2 IRdh to an
attention hidden space gt 2 IRda , and the second
layer produces a relevance score for every hidden
state at timestep t.

5.2 Memory Modules
Our model consists of a read-only ‘Knowledge-
Store’ memory, and we also test a recent read-
write memory. External memories have been
shown to help on natural language processing
tasks (Sukhbaatar et al., 2015; Kumar et al., 2016;
Kaiser and Nachum, 2017), and we find similar
improvements in learning capability.

5.2.1 Knowledge-Store Memory
The main motivation behind the Knowledge-Store
memory module is to incorporate prior domain
knowledge. In our work, this knowledge refers to
the trope descriptions described in Section 3.3.

Related works have initialized their memory
networks with positional encoding using word em-
beddings (Sukhbaatar et al., 2015; Kumar et al.,
2016; Miller et al., 2016). To incorporate the de-
scriptions, we represent them with skip thought
vectors (Kiros et al., 2015) and use them to ini-
tialize the memory keys KM 2 IRNP ⇥dK , where
NP is the number of tropes, and dK is set to
the size of embedded trope description RD, i.e.
dK = ||RD||.

The values in the memory represent learnable
embeddings of corresponding trope categories
VM 2 IRNP ⇥dV , where dV is the size of the
trope category embeddings. The network learns to
use the persona representation z from the encoder
phase to find relevant matches in the memory. This
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corresponds to calculating similarities between z
and the keys KM . Formally, this is calculated as:

zM = fz(z) (5)

p(i)
M = softmax(zM · KM [i]) (6)

8i 2 {1, .., NP }

where fz : IRdh 7! IRdK is a fully-connected
layer that projects the persona representation in the
space of memory keys KM . Based on the match
probabilities p(i)

M , the values VM are weighted and
cumulatively added to the original persona repre-
sentation as:

rout =
NPX

i=1

p(i)
M · VM [i] (7)

We iteratively combine our mapped persona
representation zM with information from the
memory rout. The above process is repeated nhop

times. The memory mapped persona representa-
tion zM is updated as follows:

zhop
M = fr(z

hop�1
M ) + rout (8)

where z0
M = zM , and fr : IRdV 7! IRdK is a fully-

connected layer. Finally, we transform the re-
sulting z

nhop

M using another fully-connected layer,
fout 2 IRdK 7! IRdh , via:

ẑM = fout(z
nhop

M ) (9)

5.2.2 Read-Write Memory
We also tested a Read-Write Memory following
Kaiser et. al (Kaiser and Nachum, 2017), which
was originally designed to remember rare events.
In our case, these ‘rare’ events might be key di-
alogue snippets that are particularly indicative of
latent persona. It consists of keys, which are ac-
tivations of a specific layer of model, i.e. the
persona representation z, and values, which are
the ground-truth labels, i.e. the trope categories.
Over time, it is able to facilitate predictions based
on past data with similar activations stored in the
memory. For every new example, the network
writes to memory for future look up. A memory
with memory size NM is defined as:

M = (KNM ⇥dH
, VNM

, ANM
) (10)

Memory Read We use the persona embedding
z as a query to the memory. We calculate the co-
sine similarities between z and the keys in M , take
the softmax on the top-k neighbors, and compute
a weighted embedding ẑM using those scores.

Memory Write We update the memory in a
similar fashion to the original work by (Kaiser and
Nachum, 2017), which takes into account the max-
imum age of items as stored in ANM .

6 Objective Losses

To train our model, we utilize the different objec-
tive losses described below.

6.1 Classification Loss

We calculate the probability of a character belong-
ing to a particular trope category P through Equa-
tion 11, where fP : IRdh 7! IRNP is a fully-
connected layer, and z is the persona representa-
tion produced by the multi-level attentive encoders
described in Equation 1. We then optimize the cat-
egorical cross-entropy loss between the predicted
and true tropes as in Equation 12, where NP is the
total number of tropes, qj is the predicted distribu-
tion that the input character fulls under trope j, and
pj 2 {0, 1} denotes the ground-truth of whether
the input snippets come from characters from the
jth trope.

q = softmax(fP (z)) (11)

JCE =
NPX

j=1

�pj log(qj) (12)

6.2 Trope Description Triplet Loss

In addition to using trope descriptions to initialize
the Knowledge-Store Memory, we also test learn-
ing from the trope descriptions through a triplet
loss (Hoffer and Ailon, 2015). We again use the
skip thought vectors to represent the descriptions.
Specifically, we want to maximize the similarity
of representations obtained from dialogue snippets
with their corresponding description, and mini-
mize their similarity with negative examples. We
implement this as:

RP = fD(z) (13)

JT = max(0, s(RP , RD
n ) � s(RP , RD

p ) + ↵T ) (14)

where fD : IRdh 7! IR||RD|| is a fully-connected
layer. The triplet ranking loss is then Equation
14, where ↵T is a learnable margin parameter and
s(·, ·) denotes the similarity between trope em-
beddings (RP ), positive (RD

p ) and negative (RD
n )

trope descriptions.
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Trope Description Triplet Loss with Memory
Module
If a memory module is used, we compute a new
triplet loss in place of the one described in Equa-
tion 14. Models that use a memory module
should learn a representation ẑM , based on ei-
ther the prior knowledge stored in the memory
(as in Knowledge-Store memory) or the top-k key
matches (as in Read-Write memory), that is simi-
lar to the representation of the trope descriptions.

This is achieved by replacing the persona em-
bedding z in Equation 13 with the memory out-
put ẑM as shown in Equation 15, where fDM :

IRdh 7! IR||RD|| is a fully-connected layer. To
compute the new loss, we combine the representa-
tions obtained from Equations 13 and 15 through
a learnable parameter � that determines the impor-
tance of each representation. Finally, we utilize
this combined representation R̂P to calculate the
loss as shown in Equation 17.

RP
M = fDM

(ẑM ) (15)

R̂P = �RP + (1 � �)RP
M (16)

JMT = max(0, s(R̂P , RD
n ) � s(R̂P , RD

p ) + ↵MT ) (17)

6.3 Read-Write Memory Losses
When the Read-Write memory is used, we use two
extra loss functions. The first is a Memory Rank-
ing Loss JMR as done in (Kaiser and Nachum,
2017), which learns based on whether a query with
the persona embedding z returns nearest neighbors
with the correct trope. The second is a Memory
Classification Loss JMCE that uses the values re-
turned by the memory to predict the trope. The
full details for both are found in Supplementary
Section A.

6.4 Overall Loss
We combine the above losses through:

J = �CE · JCE

+ �T · ĴT

+ �MR · JMR + �MCE · JMCE

ĴT =

(
JMT if memory module is used
JT otherwise.

(18)

where � = [�CE , �MCE , , �T , �MR] are learn-
able weights such that

P
i �i = 1. Depending on

which variant of the model is being used, the list
� is modified to contain only relevant losses. For
example, when the Knowledge-Store memory is
used, we set �MR = �MCE = 0 and � is modified

to � = [�CE , �T ]. We discuss different variants of
our model in the next section.

7 Experiments

We experimented with combinations of our var-
ious modules and losses. The experimental re-
sults and ablation studies are described in the fol-
lowing sections, and the experimental details are
described in Supplementary Section B. The dif-
ferent model permutation names in Table 2, e.g.
“attn 3 tropetrip ks-mem ndialog16”, are defined
as follows:

• baseline vs attn: The ‘baseline’ model uses
only one dialogue snippet S to predict the
trope, i.e. Ndiag = 1. Hence, the inter-
snippet encoder is not used. The ‘attn’ model
operates on Ndiag dialogue snippets using the
inter-snippet encoder to assign an attention
score for each snippet Si.

• char vs. 3: To measure the importance of
context and other characters’ lines, we have
two variants – ‘char’ uses only the char-
acter’s lines, while ‘3’ uses the character’s
lines, other character’s lines, and all context
lines. Formally, in ‘char’ mode, we set �s

E
and �s

O to 0 in Equation 1. In ‘attn’ mode,
(�s

E , �s
O, �s

D) are learned by the model.
• tropetrip: The presence of ’tropetrip’ indi-

cates that the triplet loss on the trope de-
scriptions was used. If ‘-500’ is appended
to ‘tropetrip’, then the 4800-dimensional skip
embeddings representing the descriptions in
Equations 15 and 17 are projected to 500 di-
mensions using a fully connected layer.

• ks-mem vs. rw-mem: ‘ks-mem’ refers to the
Knowledge-Store memory, and ‘rw-mem’
refers to the Read-Write memory.

• ndialog: The number of dialogue snippets
Ndiag used as input for the attention mod-
els. Any attention model without the explicit
Ndiag listed uses Ndiag = 8.

7.1 Ablation Results

Baseline vs. Attention Model. The attention
model shows a large improvement over the base-
line models. This matches our intuition that not
every quote is strongly indicative of character
trope. Some may be largely expository or ‘chit-
chat’ pieces of dialogue. Example attention scores
are shown in Section 7.2.
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Model Accuracy Precision Recall F1
baseline char 0.286 0.538 0.286 0.339

baseline 3 0.287 0.552 0.288 0.349
attn char 0.630 0.586 0.628 0.600

attn 3 0.630 0.590 0.630 0.603
attn 3 tropetrip 0.615 0.566 0.615 0.583

attn 3 tropetrip-500 0.644 0.601 0.642 0.615
attn 3 ks-mem 0.678 0.648 0.676 0.657
attn 3 rw-mem 0.635 0.598 0.635 0.611

attn 3 tropetrip ks-mem 0.663 0.628 0.662 0.639
attn 3 tropetrip-500 ks-mem 0.654 0.618 0.652 0.629

attn 3 tropetrip rw-mem 0.649 0.602 0.648 0.617
attn 3 tropetrip-500 rw-mem 0.644 0.608 0.644 0.619

attn 3 tropetrip-500 ks-mem ndialog16 0.740 0.707 0.741 0.718
attn 3 tropetrip-500 ks-mem ndialog32 0.750 0.750 0.750 0.750

attn 3 tropetrip ks-mem ndialog16 0.740 0.722 0.741 0.728
attn 3 tropetrip ks-mem ndialog32 0.731 0.712 0.731 0.718

Table 2: Experimental results. Details and analysis are given in Section 7.1. The best performing results in each block are
bolded. The first block examines the baseline model vs. the attention model, as well as use of different inputs. The second block
uses the triplet loss, and the third block uses our memory modules. The fourth block combines the triplet loss and memory
module, which the fifth block extends to larger Ndiag .

Rumors of my death have been greatly exaggerated.

What does it matter? Nothing's real down there. Our life is here.

I don't give a shit who he's connected to. … I want you vacate this 
guy off the premises, and I want you to exit him off his feet and use 
his head to open the fucking door.

I had to see you. Stacy, I swear... I- I don't blame you for hating 
me. Or for wanting to break up. I just- Let me explain. About my 
family. I ju- I didn't want you to know. See, my dad's a drunk. 
Alright? … Cause when you love somebody, you never give up 
on them.

Not so bad... Oh! 'Ello, beastie.

I heard things.

Fuck! Fuck! That's it, I'm screwed. It's over.

dfasdf

I'm the man.

0.330

0.181

0.155

0.081

0.061

0.055

0.054

0.082

Figure 4: Attention scores for a batch of dialogues for the
“byronic hero” trope 3.

Though our experiments showed marginal im-
provement between using the ‘char’ data and the
‘3’ data, we found that using all 3 inputs had
greater performance for models with the triplet
loss and read-only memory. This is likely because
the others’ lines and context capture more of the
social dynamics and situations that are described
in the trope descriptions. Subsequent results are
shown only for the ‘attn 3’ models.

Trope Description Triplet Loss. Adding the
trope description loss alone provided relatively
small gains in performance, though we see greater
gains when combined with memory. While both
use the descriptions, perhaps the Knowledge Store
memory matches an embedding against all the

3TVtropes.org defines a byronic hero as “Sometimes an
Anti-Hero, others an Anti-Villain, or even Just a Villain, By-
ronic heroes are charismatic characters with strong passions
and ideals, but who are nonetheless deeply flawed individu-
als....”

tropes, whereas the trope triplet loss is only pro-
vided information from one positive and one neg-
ative example.

Memory Modules. The Knowledge-Store
memory in particular was helpful. Initialized with
the trope descriptions, this memory can ‘sharpen’
queries toward one of the tropes. The Read-Write
memory had smaller gains in performance. It may
be that more data is required to take advantage of
the write capabilities.

Combined Trope Description Triplet Loss
and Memory Modules. Using the triplet loss
with memory modules led to greater performance
when compared to the attn 3 model, but the per-
formance sits around the use of either triplet only
or memory only. However, when we increase the
Ndiag to 16 or 32, we find a jump in performance.
This is likely the case because the model has both
increased learning capacity and a larger sample of
data at every batch, which means at least some of
the Ndiag quotes should be informative about the
trope.

7.2 Attention Scores

Because the inter-snippet encoder provides such a
large gain in performance compared to the base-
line model, we provide an example illustrating the
weights placed on a batch of Ndiag snippets. Fig-
ure 4 shows the attention scores for the charac-
ter’s lines in the “byronic hero” trope. Matching
what we might expect for an antihero personality,
we find the top weighted line to be full of confi-
dence and heroic bluster, while the middle lines
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hint at the characters’ personal turmoil. We also
find the lowly weighted sixth and seventh lines to
be largely uninformative (e.g. “I heard things.”),
and the last line to be perhaps too pessimistic and
negative for a hero, even a byronic one.

7.3 Purity scores of character clusters
Finally, we measure our ability to recover the trope
‘clusters’ (with one trope being a cluster of its
characters) with our embeddings through the pu-
rity score used in (Bamman et al., 2014). Equa-
tion 19 measures the amount of overlap between
two clusterings, where N is the total number of
characters, gi is the i-ith ground truth cluster, and
cj is the j-th predicted cluster.

Purity =
1
N

X

i

maxj |gi \ cj | (19)

We use a simple agglomerative clustering
method on our embeddings with a parameter k for
the number of clusters. The methods in (Bamman
et al., 2014) contain a similar hyper-parameter for
the number of persona clusters. We note that the
metrics are not completely comparable because
not every character in the original dataset was
found on IMDB. The results are shown in Table
3. It might be expected that our model perform
better because we use the character tropes them-
selves as training data. However, dialogue may be
noisier than the movie summary data; their better
performing Persona Regression (PR) model also
uses useful metadata features such as the movie
genre and character gender. We simply note that
our scores are comparable or higher.

k PR DP AMN
25 42.9 39.63 48.4
50 36.5 31.0 48.1
100 30.3 24.4 45.2

Table 3: Cluster purity scores. k is the number of clusters,
PR and DP are the Persona Regression and Dirichlet Persona
models from (Bamman et al., 2014), and AMN is our atten-
tion memory network.

8 Application: Narrative Analysis

We collected IMDB quotes for the top 250 movies
on IMDB. For every character, we calculated a
character embedding by taking the average em-
bedding produced by passing all the dialogues
through our model. We then calculated movie
embeddings by taking the weighted sum of all
the character embeddings in the movie, with the

weight as the percentage of quotes they had in the
movie. By computing distances between pairs of
character or movie embeddings, we could poten-
tially unearth notable similarities. We note some
of the interesting clusters below.

8.1 Clustering Characters
• Grumpy old men: Carl Fredricksen (Up);

Walk Kowalski (Gran Torino)
• Shady tricksters, crooks, well versed in de-

ceit: Ugarte (Casablanca); Eames (Inception)
• Intrepid heroes, adventurers: Indiana Jones

(Indiana Jones and the Last Crusade); Nemo
(Finding Nemo); Murph (Interstellar)

8.2 Clustering Movies
• Epics, historical tales: Amadeus, Ben-Hur
• Tortured individuals, dark, violent: Donnie

Darko, Taxi Driver, Inception, The Prestige
• Gangsters, excess: Scarface, Goodfellas,

Reservoir Dogs, The Departed, Wolf of Wall
Street

9 Conclusion

We used the character trope classification task as a
test bed for learning personas from dialogue. Our
experiments demonstrate that the use of a multi-
level attention mechanism greatly outperforms a
baseline GRU model. We were also able to lever-
age prior knowledge in the form of textual descrip-
tions of the trope. In particular, using these de-
scriptions to initialize our Knowledge-Store mem-
ory helped improved performance. Because we
use short text and can leverage domain knowl-
edge, we believe future work could use our models
for applications such as personalized dialogue sys-
tems.
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Abstract
We develop a semantic parser that is trained in
a grounded setting using pairs of videos cap-
tioned with sentences. This setting is both
data-efficient, requiring little annotation, and
similar to the experience of children where
they observe their environment and listen to
speakers. The semantic parser recovers the
meaning of English sentences despite not hav-
ing access to any annotated sentences. It does
so despite the ambiguity inherent in vision
where a sentence may refer to any combina-
tion of objects, object properties, relations or
actions taken by any agent in a video. For this
task, we collected a new dataset for grounded
language acquisition. Learning a grounded se-
mantic parser — turning sentences into logi-
cal forms using captioned videos — can sig-
nificantly expand the range of data that parsers
can be trained on, lower the effort of training a
semantic parser, and ultimately lead to a better
understanding of child language acquisition.

1 Introduction
Children learn language from observations that
are very different in nature from what parsers are
trained on today. Most of the time, rather than re-
ceiving direct feedback such as annotated sentences
or answers to direct questions, children observe and
occasionally interact with their environment. They
must use these observations to learn the structure
of the speaker’s language despite never seeing that
structure overtly. This weak and indirect super-
vision where most of the information is obtained
through passive observation poses a difficult disam-
biguation problem for learners: how do you know
what the speaker is referring to in the environment,
i.e., what does the speaker mean? Speakers can
refer to actions, objects, the properties of actions
and objects, relations between those actions and
objects, as well as other features in the environment
and generally do so by combining multiple features

The woman walks by the table with a yellow cup.
�xyz.woman x, walk x, near x y, table y,

hold x z, yellow z, cup z

Figure 1: We develop a semantic parser trained on video-
sentence pairs, without parses. At inference time a sentence,
without a video, is presented and a logical form is produced.

into complex sentences. Moreover, speakers need
not refer to the most visually salient parts of a vi-
sual scene. Here, we induce a semantic parser by
simultaneously resolving visual ambiguities and
grounding the semantics of language using a cor-
pus of sentences paired with videos without other
annotations.

The goal of semantic parsing is to convert a
natural-language sentence into a representation
that encodes its meaning. The parser takes sen-
tences as input and produces these representations
– a lambda-calculus expression in our case – that
can be used for a variety of tasks such as query-
ing databases, understanding references in images
and videos, and answering questions. To train the
parser presented here we collected a video dataset,
balanced such that the raw statistics of the co-
occurrences of objects and events are not infor-
mative, and asked annotators on Mechanical Turk
to produce sentences that are true of those videos.
The parser is presented with pairs of short clips
and sentences. It hypothesizes potential meanings
for those sentences as lambda-calculus expressions.
Each hypothesized expression serves as input for
a modular vision system that constructs a specific
detector for that lambda-calculus expression and
determines the likelihood of the parse being true of
the video. The likelihood of the parse with respect
to the video is used as supervision for the parser. To
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test the parser, we annotated each sentence with its
ground-truth semantic parse, but this information
is not available at training time.

This process introduces ambiguity. For example,
Figure 1 shows a frame from a video annotated
with the sentence “The woman walks by the table
with a yellow cup.”, yet the parse, �x. object(x),
corresponding to a sentence like “There exists an
object.”, is also true of that video. For a single
video there exists an infinite number of true parses
that have high likelihood with respect to the vision
system because they are indeed indicative of some-
thing that is occurring in the video. We demonstrate
how to construct a semantic parser that resolves this
ambiguity and acquires language from captioned
videos by learning to tune the amount of polysemy
in the induced lexicon.

This work makes several contributions: We show
how to construct a semantic parser that learns lan-
guage in a setting closer to that of children. We
demonstrate how to jointly resolve linguistic and
visual ambiguities at training time in a way that can
be adapted to other semantic parsing approaches.
We demonstrate how such an approach can be used
to augment data where a small number of directly
annotated sentences can be combined with a large
number of videos paired with sentences in order to
improve performance. We release a dataset system-
atically constructed and annotated on Mechanical
Turk for joint visual and linguistic learning tasks.

2 Prior work

Learning to understand language in a multimodal
environment is a well-developed task. For example,
visual question answering (VQA) datasets have led
to a number of systems capable of answering com-
plex questions about scenes (Antol et al., 2015).
The goal of our work is not to produce answers for
any one set of questions, although it is possible to
do so from our results; it is instead to learn to pre-
dict the structure of the sentences and their mean-
ing. This is a more general and difficult problem,
in particular because at test time we do not receive
any visual input, only the sentence. The resulting
approach is reusable, generic and more similar to
the kind of general-purpose linguistic knowledge
that humans have. For example, one could use it
to guide robotic actions. Al-Omari et al. (2017)
acquire a grammar for a fragment of English and
Arabic from videos paired with sentences. They
learn a small number of grammar rules for a lan-

guage restricted to robotic commands. Learning
occurs mostly in simulation and with little visual
ambiguity, and the resulting model is not a parser
but a means of associating n-grams with visual
concepts.

Siddharth et al. (2014) and Yu et al. (2015) ac-
quire the meaning of a lexicon from videos paired
with sentences but assume a fully-trained parser.
Matuszek et al. (2012) similarly present a model
to learn the meanings and referents of words re-
stricted to attributes and static scenes. Hermann
et al. (2017) extend these notions to train agents
that learn to carry out instructions in simulated en-
vironments without the need for a parser, but do
so using simple adjective-noun-relation utterances.
Kollar et al. (2013) learn to parse similar utterances
in an interactive setting. Wang et al. (2016) cre-
ate a language game to learn a parser but do not
incorporate visual ambiguity or fallible perception.

Berant et al. (2013) describe semantic parsing
with execution by annotating answers to database
queries. This learning mechanism provides the
same results as the one described here: a parser
produces the meanings of sentences at inference
time without requiring the database, or in our case
a video. Databases have far less ambiguity than
videos; there is not a temporal aspect to their con-
tents and there is not a notion of unreliable per-
ception. Berant and Liang (2014) learn to parse
sentences from paraphrases; one might consider
the work here as concerned with visual and not
just linguistic paraphrases. Artzi and Zettlemoyer
(2013) consider a setting where a validation func-
tion involves the dynamic actions of a simulated
robot while sentences describe its actions.

3 Task

Given a dataset of captioned videos, D, we train
the parameters and lexicon, ✓ and ⇤, of a semantic
parser. At training time, we perform gradient de-
scent over the parameters ✓ and employ GENLEX
(Zettlemoyer and Collins, 2005) to augment the
lexicon ⇤. The objective function of the seman-
tic parser is written in terms of a visual-linguistic
compatibility between a hypothesized parse p and
video v. This compatibility computes the likeli-
hood of the parse being true of the video, P (v|p).
At test time, we take as input a sentence without
an associated video and produce a semantic parse.
We could in principle also take as input the video
and produce a targeted parse for that visual sce-
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nario. This is a problem similar to that considered
by Berzak et al. (2015), but we do not do so here.

We create a CCG-based (Combinatory Categor-
ical Grammar; Steedman (1996)) semantic parser
capable of being trained in this setting. To do so,
we adapt the objective function, training proce-
dure, and feature set to this new scenario. The
visual-linguistic compatibility function is similar
to the Sentence Tracker developed in Siddharth
et al. (2014) and Yu et al. (2015). Given a parse,
the Sentence Tracker produces a targeted detector
that determines if the parse is true of a video, which
provides a weak supervision signal for the parser.

Parses are represented as lambda-calculus ex-
pressions consisting of a set of binders and a con-
junction of literal expressions referring to those
binders. The domain of the variables are the poten-
tial object locations, or object tracks, in the videos.
For example, in the parse presented in Figure 1,
three potential object track slots are available, rep-
resented by the binders x, y, and z. Because of
perceptual ambiguities and the large number of
possible referents in any one video, we do not ex-
plicitly enumerate the space of object tracks. In-
stead, we rely on a joint-inference process between
the parser and the Sentence Tracker. Intuitively,
each literal expression of the parse asserts a con-
straint; for example, if an expression conveys that
one object is approaching another, the Sentence
Tracker will search the space of object tracks and
attempt to satisfy these constraints. In Figure 1, for
instance, there is a constraint that for whichever
objects are bound to x and z, x must be near y, x
must be walking, x must be a person, etc.

4 Model

We develop an approach that combines a semantic
parser with a vision system at training time, but
does not require the vision system at test time.

4.1 Semantic Parsing

We adopt a semantic parsing framework similar
to that of Artzi and Zettlemoyer (2013), although
the general approach of using vision as weak su-
pervision for semantic parsing generalizes to other
parsers. CCG-based parsing employs a small num-
ber of fixed unary and binary derivation rules
(Steedman, 2000) while learning a lexicon. In
CCG-based parsing, a parser takes as input a se-
quence of tokens and a lexicon that maps tokens to
potential syntactic types and derives parse trees by

She takes the cup
NP (S\NP)/NP NP/N N

�x. person x �fgxy. fx, take xy, gy �fx. fx �x. cup x
>

NP
�x.cup x

>
S\NP

�fxy. fx, take xy, cup y
<

S
�xy. person x, take xy, cup y

Figure 2: A simple sentence parsed into a lambda-calculus
expression using a CCG-based grammar. The parse is deter-
mined by the lexicon that associates tokens with syntactic and
semantic types as well as the order of function applications.
Here, we acquire this lexicon and a means to score derivations.

creating and ranking multiple hypotheses that com-
bine those types together. The syntactic types are
richer than other approaches and include forward
and backward function application (the forward
and backward slash) in addition to the standard
syntactic categories. Each derivation has a current
syntactic type that is the result of the application of
a sequence of rules. To create a derivation, at each
step the parser applies each rule to either an indi-
vidual subderivation or to a pair of subderivations.
This process produces multiple hypotheses. Pars-
ing rules are generic, polymorphic, and language-
neutral and include concepts like function applica-
tion and type raising (Carpenter, 1997). The parser
accepts a derivation when the tree reaches a single
node. We refer to the single node of the parse tree
as the logical form. Figure 2 shows a parse starting
with tokens and their syntactic types along with
each rule being applied.

Semantic parsing with CCGs extends this frame-
work to simultaneously derive a logical form while
performing syntactic parsing. Each syntactic rule
includes a simple semantic component that ma-
nipulates the logical form of its arguments. For
example, the forward application rule reduces the
syntactic type by applying the syntactic type of
the right argument to that of the left, while at the
same time performing a lambda-calculus reduction
of the semantic types of those same arguments.
Concretely, consider a case from Figure 2 where
a determiner is attached to a noun, the cup. The
tokens the and cup are hypothesized to have syn-
tactic types NP/N and N (a function returning
NP given an argument on the right side and a
noun) and semantic type �fx.fx and �x.cup(x)
(the identity function and a function that adds a cup
constraint). These two derivations can be reduced
by forward application, denoted by >. Both the
syntactic and semantic types are applied and re-
duced, which means the semantics helps guide the
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syntax. Derivations that produce illegal operations,
such as applying an argument to a constant, are
forbidden.

Following Zettlemoyer and Collins (2005) and
Curran et al. (2007), we adopt a weighted linear
semantic parser. For each sentence paired with its
hypothesized derivation, this approach computes a
feature vector � and a parameter vector ✓. Given
a sentence s, a parse p, a lexicon ⇤, the set of
all possible parses for that sentence with that lexi-
con, P (s, ⇤), and an n-dimensional feature vector
computed for that sentence and parse, �(s, p), the
parser optimizes

argmax
p2P

✓ · �(s, p) (1)

to find the best parse p⇤. Using a fixed-width beam
search, the parser enumerates derivations by choos-
ing a potential syntactic and semantic type for each
token from the lexicon and choosing a set of deriva-
tion rules to apply. For the i-th training sample
di, consisting of a sentence ds

i and a video dv
i in

dataset D and the feature function, the parser finds
margin-violating positive, E+, and negative, E�,
parses, and then uses

✓ +
1

|E+
i |

X

e2E+
i

�i(e, d
v
i ) � 1

|E�
i |

X

e2E�

i

�i(e, d
v
i )

(2)
to update the parameter ✓. After each sweep
through the dataset, the lexicon ⇤ is augmented
using the modified GENLEX from Artzi and Zettle-
moyer (2013), which does not require the ground-
truth logical form. At no point is the logical form
needed for updating the lexicon or parameters; we
rely instead on a visual validation function to com-
pute the margin-violating examples.

Rather than attempting to learn a fixed lexicon
that directly maps tokens to semantic and syntac-
tic parses, we use a factored lexicon like that of
Kwiatkowski et al. (2011). This represents tokens
and any associated constants separately from po-
tential syntactic and semantic types. For example,
the token chair is associated with a single con-
stant chair; chair ` [chair]. In addition to the
token-constants pairs, there exists a list of pairs of
syntactic and semantic types along with placehold-
ers for constants; in the case for chair, a useful type
might be �v.[N : �x.placeholder(x)]. When
parsing, each token is applied to a potential syntac-
tic and semantic type and the derivation proceeds
from there. The factored lexical entries allow for
far greater reuse; the model learns a small number

of constants that a word can imply separately from
a small number of syntactic and semantic types for
any word. The weighted linear CCG-based parser
searches over potential lexical entries, applying
the token to different syntactic and semantic types
and over multiple hypotheses for which rule should
be applied. At training time, in order to learn a
reasonable lexicon and set of parameters, a super-
vision signal is required to validate candidates. We
provide that supervision using the vision system
described below.

4.2 Sentence Tracking
To score a video-parse pair, we employ a frame-
work similar to that of Yu et al. (2015). This ap-
proach constructs a parse-specific model by ex-
tracting the number of participants in the scene
described by a caption as well as the relationships
and properties of those participants. It builds a
graphical model where each participant is local-
ized by an object tracker and each relationship is
encoded by temporal models that express the prop-
erties of the trackers that those models refer to. The
parser’s output representation is chosen to make
building the vision system possible. Each target
logical form is a lambda expression with a set of
binders, whose domain are objects, and a conjunc-
tion of constraints that refer to those binders. In
essence, this notes which objects should be present
in a scene and what static and changing properties
and relationships those objects should have with
respect to one another.

The Sentence Tracker creates one Viterbi-based
tracker for each participant and, given a map-
ping from constraints to Hidden Markov models
(HMMs), connects each tracker and each constraint
together. Given a video v and a parse p, first a large
number of object detections are computed for the
video by using a low confidence threshold of an
object detector. Trackers weave these bounding-
box detections into high-scoring object tracks and
use constraints to verify if the tracks have the de-
sired properties and relations. Inference proceeds
jointly between vision and the parse to allow the
parse to focus the vision component on events and
properties that might otherwise be missed.

Understanding the relationship between a sen-
tence and a video requires finding the objects that
the sentence refers to and determining if those ob-
jects follow the behavior implied by the sentence.
We carry out a joint optimization that finds objects
whose behavior follows certain rules. For clarity,
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the two steps are presented separately, while we
find the global optimum for a linear combination of
Equation (3) and Equation (4). Object trackers are a
maximum-entropy Markov model with a per-frame
score f , the likelihood that any one object detec-
tion is true, as well as a motion-coherence score
g, the likelihood that the bounding boxes selected
between frames refer to the same object instance.
Given a parse p with L participants and a video v
of length T , Equation (3) shows the optimization
where J is a set of L candidate tracks ranging over
every hypothesis from the object detector and b is
a candidate object detection.

max
J

LX

l=1

 
TX

t=1

f(bt
jt

l

) +
TX
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l

, bt
jt

l
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Determining if an object track follows a set of
behaviors implied by a sentence is done using a
collection of HMMs. Each has a per-frame score h
that observes one or more objects tracks, depend-
ing on the number of participants in the behavior
being modeled, and a transition function a that
determines the temporal sequence of the behav-
ior. Given a parse p with C behaviors, also termed
constraints, along with a video v of length T , Equa-
tion (4) shows the optimization where K is a set of
states, one for each constraint, and � is a linking
function.
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The linking function is an indicator variable that

encodes the structure of the logical form thereby
filling in the correct trackers as arguments for the
corresponding constraints. The exposition above
presents a variant using binary constraints that is
trivially generalized to n-ary constraints by extend-
ing � and adding arguments to the appropriate con-
straint observation functions hc. The domain of the
optimization problem is the combination of all ob-
jects at all timesteps that the logical form can refer
to as well as every state of each constraint. The
Viterbi algorithm carries out this optimization in
time linear in the length of the video and quadratic
in the number of detections per frame. The result is
a likelihood of the parse being true of a video. This
is used to create the joint model that supervises the
parser with vision. The tracker can also produce a
time series of bounding boxes that make explicit
the groundings of the sentences, though we do not
use these directly here.

4.3 Joint Model

At training time, we jointly learn using both the
semantic parser and the language-vision compo-
nent. At test time, only the parser is used. Two
parameters are learned, a set of weights ✓ and the
lexicon ⇤. For both the parser and the associated
language-vision component, ⇤ is used to structure
inference. To induce new lexical entries, we em-
ploy a variant of GENLEX (Artzi and Zettlemoyer,
2013) that takes as input a validation function —
the compatibility between a parse and the video.
This GENLEX uses an ontology of predicates, a
validation function, and templates from the current
lexicon to construct new syntactic and semantic
forms. A ground-truth logical form is not required
or used.

The joint model must learn these parameters
despite three sources of noise. First, the vision-
language component may simply fail to produce
the correct likelihood because machine vision is
far from perfect. Overcoming this requires large
beam widths to avoid falling into local minima due
to these errors.

Second, an infinite number of possibly-
erroneous parses are true of a video. When children
learn language, they face this same challenge as
they do not have access to bounding boxes or to
logical forms. The parse �x.person(x) as well as
many other seemingly reasonable parses are true
and cannot be distinguished from the ground-truth
parse — which is not available — by the vision
component. This is a far less constrained environ-
ment than other approaches to semantic parsing.
It is easy to be misguided by a loss function that
is often true when it should not be and thus cre-
ate many special-purpose definitions of words that
happen to fit the peculiarities of any video. This
results in two different problems: assigning empty
semantics to many words since the likelihood of a
subset of a parse is always the same or higher than
the whole parse and excessive polysemy where the
meaning of a word is highly specific to some irrele-
vant feature in a video. We introduce two features
to the parser that bias it against empty semantics
and against excessive polysemy. Models of com-
munication such as the Rational Speech Acts model
(Frank and Goodman, 2012) predict that speakers
will avoid inserting meaningless words. One fea-
ture counts the number of predicates mapped onto
semantic forms which are empty that occur in each
parse. The other feature attempts to prevent exces-
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sive polysemy by counting how many new seman-
tic forms are introduced for existing tokens by the
generated entries from each parse. As the parser
becomes more capable of handling sentences in the
training set, these features begin to bias it against
adding empty semantics and new semantic forms.

Third, models in computer vision are computa-
tionally expensive while many evaluations of parse-
video pairs are required to train a parser. To over-
come this, we construct a provably-correct cache
that keeps track of failing subexpressions. This
is possible because of a feature of this particu-
lar vision-language scoring function: the score
decreases monotonically with the number of con-
straints. With these improvements, the modified
semantic parser employing vision-language-based
validation learns to map sentences into semantic
parses despite facing a challenging setting with few
examples and much ambiguity.

5 Dataset

We collected and annotated a dataset of captioned
videos with fully annotated semantic parses of the
captions. The videos contain people carrying out
one of 15 actions, such as picking things up and
putting things down, with one of 20 objects span-
ning 10 different colors. We control for 11 spatial
relations between objects and actors. Many videos
depict multiple agents performing actions leading
to additional ambiguity. Videos were filmed in mul-
tiple locations with multiple agents but care was
taken to ensure that the background and agents are
not informative of the events depicted.

On Mechanical Turk we asked participants to
provide sentences that describe something about
the video. We did not specify what participants
should describe to avoid biasing them and to add
richness to the dataset. This sometimes led to sen-
tences that referred to properties of the video that
are well beyond the capacities of the vision sys-
tem, e.g., descriptions of an agent being lazy or
references to the camera’s movement. We removed
such sentences. At training time, the parser re-
ceives captioned videos but no annotations about
which objects those captions refer to. Each sen-
tence was annotated with a ground-truth semantic
form by two trained annotators using a set of 34
predicates. Each sentence was then reviewed and
corrected by one other annotator.

To detect the objects in the videos, we used two
off-the-shelf detectors, OpenPose (Cao et al., 2017)

for person detection and YOLO version 3 (Redmon
and Farhadi, 2018) for the remaining objects. In
each case we significantly lowered the confidence
threshold to avoid false negatives. Many objects in
this dataset are small and are handled by humans,
which leads to regular object detector failures that
are only partially compensated for by lowering the
detection threshold at the cost of a large number
of false positives. We rely on the inference mecha-
nism of the grounded parser to automatically elimi-
nate these numerous false positives as candidates
when grounding sentences due to their low likeli-
hoods. False negatives are much more misleading
and difficult to overcome than false positives. It is
harder to read in where an unseen object might be
than to eliminate a low-confidence detection.

In total, the dataset contains 1200 captions from
401 videos, which selected out of a larger body of
sentences collected and pruned as described above.
This is comparable to the size of other datasets used
for semantic parsing such as two datasets from
Tang and Mooney (2001) with 880 and 640 ex-
amples respectively and the navigation instruction
dataset (Chen and Mooney, 2011) with 706 exam-
ples (containing 3236 single sentences). The sen-
tences comprising our dataset contain 169 unique
tokens with an average of 7.93 tokens per caption.
There are an average of 2.31 objects per caption.

6 Evaluation

6.1 Experimental Setup
We adapted the Cornell SFP (Semantic Parsing
Framework) developed by Artzi (2016) to jointly
reason about sentences and videos. We selected
720 examples for training and used 120 examples
for the validation set to fine-tune the model param-
eters. We used the remaining 360 examples for the
test set. This split was fixed and used in all experi-
ments below. No sentences or videos occurred in
both the training and test sets. During training, each
hypothesized parse for each sentence is marked as
either correct or incorrect, using either direct super-
vision with the target parse or compatibility with
the video, depending on the experiment.

We use beams of 80 for the CKY-parser and
GENLEX. CCG-based semantic parsers are seeded
with a small number of generic combinations of
syntactic and semantic types. For example, Artzi
(2016) seed with 141 lexical entries; we provide 98.
GENLEX uses these entries along with an ontology
to form new syntactic and semantic types.
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Precision Recall F1
Direct supervision

0.851 0.946 0.84 0.933 0.846 0.939

Noisy supervision (60%)
0.235 0.423 0.201 0.362 0.217 0.390

Shuffled labels (direct supervision)
0.147 0.384 0.122 0.321 0.136 0.349

Shuffled videos (weak supervision)
0.000 0.106 0.000 0.103 0.000 0.104

Object-only vision
0.051 0.387 0.042 0.349 0.046 0.367

Vision-language
0.223 0.663 0.183 0.553 0.201 0.591

Figure 3: Pairs of results for each condition. On the left, we
show exact match results and on the right, in italics, results for
the near miss metric. In the case of direct supervision, we train
with the target parses. In the case of noisy supervision, a per-
centage of the time (60% here) the parser randomly accepts or
rejects a parse. In the case of shuffled labels, the target logical
forms are assigned to random sentences. For shuffled videos
the sentences are assigned to random videos. The likelihood
of any sentence being true of a random video is low. In the
case of object-only vision, the vision system consists solely of
an object detector discarding any other predicates. The full
vision-language approach learns to parse a significant fraction
of sentences, far outperforming the object-only approach, and
usually being within one predicate of the correct answer.

6.2 Results
Figures 3 and 4 summarize the experiments and
ablation studies performed. The metrics we use
when reporting results are exact matches, where
the predicted parses must perfectly match the target
parses, and near misses, where a single predicate
in the semantic parse is allowed to differ from the
target. Experiments were averaged across 5 runs.

To establish chance-level performance, we
trained the directly supervised approach on shuffled
labels, assigning random correct parses to random
sentences. This is more powerful than a simple
chance-level performance calculation as the parser
can still take advantage of any dataset biases. Even
with the ability to exploit potential biases, perfor-
mance is very low with F1 scores of 0.136 and
0.349 for the exact and near miss metrics. Both
metrics pose a challenging learning problem.

As a baseline, we directly supervised the parser
with the target logical forms. When doing so, it
achieved high performance with F1 scores of 0.841
and 0.911 for the exact match and near miss cases.
Figure 4 shows performance of direct supervision
as a function of training set size.

We then added noise to the directly supervised
parser. Doing so simulates the unreliable nature

of vision and, to an extent, the ambiguities inher-
ent in vision. Noise was introduced by modifying
the compatibility function which determines if a
parse is correct. A certain percentage of the time,
that function returned true or false randomly when
given a hypothesized logical form. With around
60% noise, performance was 0.22 and 0.39 F1 for
the noisy and near miss cases. Figure 4 shows per-
formance of the noisy baseline as a function of how
much noise was introduced.

The fully grounded parser produced 0.2 and 0.6
F1 scores for the exact and near miss metrics. This
is far beyond chance performance and corresponds
to direct supervision with around 55% noise. There
are a number of reasons for why performance is
not perfect. First, the evaluation metrics cannot
consider equivalences in meaning, just form. A
hypothesized parse may carry the same meaning
as the target logical form yet it will be considered
incorrect. This is less of a problem with direct
supervision where the preferences that annotators
have for a particular way of encoding the mean-
ing of a sentence can be learned. In the grounded
case, this cannot be learned; visually equivalent
parses are equally likely. Second, computer vision
is unreliable, i.e., object detectors fail. We find that
in many of our videos while person detection is
fairly reliable, object detection is unreliable. Third,
vision in the real world is very ambiguous. Predi-
cates like hold are true in almost every interaction.
This makes learning the meanings of words much
more difficult resulting in the grounded parser of-
ten adding useless entries into the predicted logical
forms or substituted one predicate for a similar one.
The near miss metric shows that overall the parser
learned reasonable logical forms. Figure 5 shows
six examples from our dataset along with expected
and predicted parses, both correct and incorrect.

To understand how much of the performance
of the grounded parser comes from visual correla-
tions, like the presence or absence of particular ob-
jects, as opposed to more complex and cognitively
relevant spatio-temporal relations like actions, we
ablated the parser. We removed all features other
than objects. The resulting grounded parser accepts
any hypothesized parse as long as the objects men-
tioned in that parse are present in the video. This
led to a significant performance drop, near-chance
level performance on the exact metric, F1 0.05, and
nearly half the F1 score on the near miss metric,
0.37. Having a sophisticated vision system to infer
about agents and interactions is crucial for learning.
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Figure 4: Results from training the grounded semantic parser. In blue, direct supervision as a function of the amount of training
data. In dashed blue, noisy supervision uses the whole training set but accepts and rejects parses at random for a given fraction of
the time. The red cross is the full vision system while the green o is the object detector ablation. The orange triangle represents
shuffled videos and shows chance performance. While direct supervision outperforms vision-only supervision, the grounded
parser closes the gap and operates like noisy direct supervision with roughly 55% noise.

7 Discussion

We present a semantic parser that learns the struc-
ture of language using weak supervision from vi-
sion. At test time, the model parses sentences with-
out the need for visual input. Learning by passive
observation in this way extends the capabilities of
semantic parsers and points the way to a more cog-
nitively plausible model of language acquisition.
Several limits remain. Evaluating parses as correct
or incorrect depending on a match to a human-
annotated logical form is an overly strict criterion
and is a problem that also plagues fully-supervised
syntactic parsing (Berzak et al., 2016). Since two
logical forms may express the same meaning, it is
not yet clear what an effective evaluation metric is
for these grounded scenarios. In addition, learning
in such a passive scenario is hard as correlations
between events, e.g., every pick up event involves
a touch event, are very difficult to disentangle.

An interesting source of error in the experimen-
tal results comes from visual ambiguities. At the
level of relative motions of labeled bounding boxes,
the analysis performed by the language-vision sys-
tem we employed here has difficulty distinguishing
certain parts of actions. For example, carrying a
shirt and wearing a shirt appear very similar to one
another as they are actions that mostly involve mov-
ing alongside a person detection. Moreover, since
every agent is wearing a shirt it becomes more dif-
ficult to learn to distinguish the two actions using
positive evidence alone, i.e., a maximum likelihood

approach. A more robust vision system, perhaps
including object segmentations, person pose, and
weak negative evidence for the occurrence of ac-
tions, would likely significantly improve the results
presented.

In the future, we intend to add a generative
model along with a physical simulation allowing
the learner to imagine scenarios where a predicate
might not hold. This would help mitigate sys-
tematic correlations between sentences and videos.
The sentences selected here were all chosen such
that they are true of the video being shown, yet
much of what people discuss is ungrounded, or at
least not grounded in the current visual scene. We
intend to combine the weakly supervised parser
with an unsupervised parser and learn to determine
whether a sentence should be grounded visually
during training. We hope this work will find ap-
plications in robotics where learning to adapt to
the specific language of a user while engaging
with them is of utmost importance when deploying
robots in users’ homes.
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Annotated sentence: The woman is picking up an apple.
(i) Ground-truth parse: �xy.woman x, pick_up x y, apple y

Predicted parse: �xy.woman x, pick_up x y, apple y

Annotated sentence: A man walks across the hall holding a chair.
(ii) Ground-truth parse: �xyz.person x, walk x, across x y, hallway y, hold x z chair z

Predicted parse: �xyz.person x, from x y, person y, hold x z chair z

Annotated sentence: A man is walking toward a chair.
(iii) Ground-truth parse: �xy.person x, walk x, toward x y, chair y

Predicted parse: �xy.person x, walk x, toward x y, chair y

Annotated sentence: She places the toy car down on the table.
(v) Ground-truth parse: �xyz.person x, put_down x y, toy y, car y, on y z table z

Predicted parse: �xyz.person x, in x y, toy y, car y, on y z table z

Annotated sentence: A man is lifting the chair.
(iv) Ground-truth parse: �xy.person x, pick_up x y, chair y

Predicted parse: �xy.person x, pick_up x y, chair y

Annotated sentence: A woman reaches for a book on the table.
(vi) Ground-truth parse: �xyz.person x, pick_up x y, book y, on y z table z

Predicted parse: �xyz.person x, stand x, in x y, book y, on y z table z

Figure 5: Six examples of frames from videos in the dataset along with target and predicted logical forms showing both
successes and failures. Failures are highlighted in red. Note how incorrect parses are usually similar to the correct semantic
forms. The intended meaning is often preserved even in these cases.
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Abstract

We propose an end-to-end deep learning
model for translating free-form natural lan-
guage instructions to a high-level plan for
behavioral robot navigation. The proposed
model uses attention mechanisms to connect
information from user instructions with a topo-
logical representation of the environment. To
evaluate this model, we collected a new dataset
for the translation problem containing 11,051
pairs of user instructions and navigation plans.
Our results show that the proposed model
outperforms baseline approaches on the new
dataset. Overall, our work suggests that a
topological map of the environment can serve
as a relevant knowledge base for translating
natural language instructions into a sequence
of navigation behaviors.

1 Introduction

Enabling robots to follow navigation instructions
in natural language can facilitate human-robot in-
teraction across a variety of applications. For in-
stance, within the service robotics domain, robots
can follow navigation instructions to help with
mobile manipulation (Tellex et al., 2011) and de-
livery tasks (Veloso et al., 2015).

Interpreting navigation instructions in natural
language is difficult due to the high variabil-
ity in the way people describe routes (Chen and
Mooney, 2011). For example, there are a variety
of ways to describe the route in Fig. 1(a):

– “Exit the room, turn right, follow the corri-
dor until you pass a vase on your left, and
enter the next room on your left”; or

– “Turn right after you exit the room, and enter
the room on the left right before the end of the
corridor”; or

– “Advance forward to the right after going out
of the door. Enter the room which is in the
middle of two vases on your left.”

⇤Both authors contributed equally to this work.

Each fragment of a sentence within these instruc-
tions can be mapped to one or more than one navi-
gation behaviors. For instance, assume that a robot
counts with a number of primitive, navigation be-
haviors, such as “enter the room on the left (or on
right)” , “follow the corridor”, “cross the inter-
section”, etc. Then, the fragment “advance for-
ward” in a navigation instruction could be inter-
preted as a “follow the corridor” behavior, or as
a sequence of “follow the corridor” interspersed
with “cross the intersection” behaviors depend-
ing on the topology of the environment. Resolving
such ambiguities often requires reasoning about
“common-sense” concepts, as well as interpreting
spatial information and landmarks, e.g., in sen-
tences such as “the room on the left right before
the end of the corridor” and “the room which is in
the middle of two vases”.

In this work, we pose the problem of inter-
preting navigation instructions as finding a map-
ping (or grounding) of the commands into an ex-
ecutable navigation plan. While the plan is typ-
ically modeled as a formal specification of low-
level motions (Chen and Mooney, 2011) or a
grammar (Artzi and Zettlemoyer, 2013; Matuszek
et al., 2010), we focus specifically on translating
instructions to a high-level navigation plan based
on a topological representation of the environ-
ment. This representation is a behavioral navi-
gation graph, as recently proposed by (Sepúlveda
et al., 2018), designed to take advantage of the se-
mantic structure typical of human environments.
The nodes of the graph correspond to semanti-
cally meaningful locations for the navigation task,
such as kitchens or entrances to rooms in corri-
dors. The edges are parameterized, visuo-motor
behaviors that allow a robot to navigate between
neighboring nodes, as illustrated in Fig. 1(b). Un-
der this framework, complex navigation routes can
be achieved by sequencing behaviors without an
explicit metric representation of the world.
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Figure 1: Map of an environment (a), its (partial) behavioral navigation graph (b), and the problem setting of interest (c). The
red part of (b) corresponds to the representation of the route highlighted in blue in (a). The codes “oo-left”, “oo-right”, “cf”,
“left-io”, and “right-io” correspond to the behaviors “go out and turn left”, “go out and turn right”, “follow the corridor”, “enter
the room on left”, and “enter office on right”, respectively.

We formulate the problem of following instruc-
tions under the framework of (Sepúlveda et al.,
2018) as finding a path in the behavioral naviga-
tion graph that follows the desired route, given a
known starting location. The edges (behaviors)
along this path serve to reach the – sometimes im-
plicit – destination requested by the user. As in
(Zang et al., 2018), our focus is on the problem of
interpreting navigation directions. We assume that
a robot can realize valid navigation plans accord-
ing to the graph.

We contribute a new end-to-end model for fol-
lowing directions in natural language under the be-
havioral navigation framework. Inspired by the
information retrieval and question answering lit-
erature (Lewis and Jones, 1996; Seo et al., 2017;
Xiong et al., 2016; Palangi et al., 2016), we pro-
pose to leverage the behavioral graph as a knowl-
edge base to facilitate the interpretation of naviga-
tion commands. More specifically, the proposed
model takes as input user directions in text form,
the behavioral graph of the environment encoded
as hnode;edge;nodei triplets, and the initial
location of the robot in the graph. The model then
predicts a set of behaviors to reach the desired des-
tination according to the instructions and the map
(Fig. 1(c)). Our main insight is that using atten-
tion mechanisms to correlate navigation instruc-
tions with the topological map of the environment
can facilitate predicting correct navigation plans.

This work also contributes a new dataset of
11, 050 pairs of free-form natural language in-
structions and high-level navigation plans. This
dataset was collected through Mechanical Turk
using 100 simulated environments with a corre-
sponding topological map and, to the best of our
knowledge, it is the first of its kind for behavioral

navigation. The dataset opens up opportunities to
explore data-driven methods for grounding navi-
gation commands into high-level motion plans.

We conduct extensive experiments to study the
generalization capabilities of the proposed model
for following natural language instructions. We in-
vestigate both generalization to new instructions
in known and in new environments. We conclude
this paper by discussing the benefits of the pro-
posed approach as well as opportunities for future
research based on our findings.

2 Related work
This section reviews relevant prior work on fol-
lowing navigation instructions. Readers interested
in an in-depth review of methods to interpret spa-
tial natural language for robotics are encouraged
to refer to (Landsiedel et al., 2017).

Typical approaches to follow navigation com-
mands deal with the complexity of natural lan-
guage by manually parsing commands, constrain-
ing language descriptions, or using statistical ma-
chine translation methods. While manually pars-
ing commands is often impractical, the first type
of approaches are foundational: they showed that
it is possible to leverage the compositionality of
semantic units to interpret spatial language (Bug-
mann et al., 2004; Levit and Roy, 2007).

Constraining language descriptions can reduce
the size of the input space to facilitate the inter-
pretation of user commands. For example, (Tal-
bot et al., 2016) explored using structured, sym-
bolic language phrases for navigation. As in this
earlier work, we are also interested in navigation
with a topological map of the environment. How-
ever, we do not process symbolic phrases. Our aim
is to translate free-form natural language instruc-
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tions to a navigation plan using information from a
high-level representation of the environment. This
translation problem requires dealing with missing
actions in navigation instructions and actions with
preconditions, such as “at the end of the corridor,
turn right” (MacMahon et al., 2006).

Statistical machine translation (Koehn, 2009) is
at the core of recent approaches to enable robots
to follow navigation instructions. These meth-
ods aim to automatically discover translation rules
from a corpus of data, and often leverage the fact
that navigation directions are composed of sequen-
tial commands. For instance, (Wong and Mooney,
2006; Matuszek et al., 2010; Chen and Mooney,
2011) used statistical machine translation to map
instructions to a formal language defined by a
grammar. Likewise, (Kollar et al., 2010; Tellex
et al., 2011) mapped commands to spatial descrip-
tion clauses based on the hierarchical structure
of language in the navigation problem. Our ap-
proach to machine translation builds on insights
from these prior efforts. In particular, we focus on
end-to-end learning for statistical machine trans-
lation due to the recent success of Neural Net-
works in Natural Language Processing (Goodfel-
low et al., 2016).

Our work is inspired by methods that reduce the
task of interpreting user commands to a sequential
prediction problem (Shimizu and Haas, 2009; Mei
et al., 2016; Anderson et al., 2018). Similar to Mei
et al. and Anderson et al., we use a sequence-to-
sequence model to enable a mobile agent to follow
routes. But instead leveraging visual information
to output low-level navigation commands, we fo-
cus on using a topological map of the environment
to output a high-level navigation plan. This plan
is a sequence of behaviors that can be executed by
a robot to reach a desired destination (Sepúlveda
et al., 2018; Zang et al., 2018).

We explore machine translation from the per-
spective of automatic question answering. Follow-
ing (Seo et al., 2017; Xiong et al., 2016), our ap-
proach uses attention mechanisms to learn align-
ments between different input modalities. In our
case, the inputs to our model are navigation in-
structions, a topological environment map, and the
start location of the robot (Fig. 1(c)). Our results
show that the map can serve as an effective source
of contextual information for the translation task.
Additionally, it is possible to leverage this kind of
information in an end-to-end fashion.

3 Problem Formulation

Our goal is to translate navigation instructions in
text form into a sequence of behaviors that a robot
can execute to reach a desired destination from a
known start location. We frame this problem un-
der a behavioral approach to indoor autonomous
navigation (Sepúlveda et al., 2018) and assume
that prior knowledge about the environment is
available for the translation task. This prior knowl-
edge is a topological map, in the form of a behav-
ioral navigation graph (Fig. 1(b)). The nodes of
the graph correspond to semantically-meaningful
locations for the navigation task, and its directed
edges are visuo-motor behaviors that a robot can
use to move between nodes. This formulation
takes advantage of the rich semantic structure be-
hind man-made environments, resulting in a com-
pact route representation for robot navigation.

Fig. 1(c) provides a schematic view of the prob-
lem setting. The inputs are: (1) a navigation graph
m, (2) the starting node s of the robot in m, and
(3) a set of free-form navigation instructions I in
natural language. The instructions describe a path
in the graph to reach from s to a – potentially im-
plicit – destination node g. Using this informa-
tion, the objective is to predict a suitable sequence
of robot behaviors b1, . . . , bT to navigate from s
to g according to I . From a supervised learning
perspective, the goal is then to estimate:

argmax
b1,...,bT

P (b1, . . . , bT |m, s, I) (1)

based on a dataset of input-target pairs
{(xi, yi) | 0  i  N}, where xi = (m, s, I)i

and yi = (b1, . . . , bT )i, respectively. The sequen-
tial execution of the behaviors b1, . . . , bT should
replicate the route intended by the instructions I .

We assume no prior linguistic knowledge.
Thus, translation approaches have to cope with the
semantics and syntax of the language by discover-
ing corresponding patterns in the data.

3.1 The Behavioral Graph: A Knowledge
Base For Navigation

We view the behavioral graph m as a knowledge
base that encodes a set of navigational rules as
triplets hpi; bl[attr]; pji, where pi and pj are ad-
jacent nodes in the graph, and the edge bl is an
executable behavior to navigate from pi to pj . In
general, each behaviors includes a list of relevant
navigational attributes attr that the robot might
encounter when moving between nodes.
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Behavior Description
oo<d> Go out of the current place and turn <d>
io<d> Turn <d> and enter the place straight ahead

oio Exit current place and enter straight ahead
<d>t Turn <d> at the intersection

cf Follow (or go straight down) the corridor
sp Go straight at a T intersection

ch<d> Cross the hall and turn <d>

Table 1: Behaviors (edges) of the navigation graphs consid-
ered in this work. The direction <d> can be left or right.

We consider 7 types of semantic locations, 11
types of behaviors, and 20 different types of land-
marks. A location in the navigation graph can be
a room, a lab, an office, a kitchen, a hall, a corri-
dor, or a bathroom. These places are labeled with
unique tags, such as ”room-1” or ”lab-2”, except
for bathrooms and kitchens which people do not
typically refer to by unique names when describ-
ing navigation routes.

Table 1 lists the navigation behaviors that we
consider in this work. These behaviors can be de-
scribed in reference to visual landmarks or objects,
such as paintings, book shelfs, tables, etc. As in
Fig. 1, maps might contain multiple landmarks of
the same type. Please see the supplementary ma-
terial (Appendix A) for more details.

4 Approach

We leverage recent advances in deep learning
to translate natural language instructions to a
sequence of navigation behaviors in an end-to-
end fashion. Our proposed model builds on the
sequence-to-sequence translation model of (Bah-
danau et al., 2015), which computes a soft-
alignment between a source sequence (natural lan-
guage instructions in our case) and the correspond-
ing target sequence (navigation behaviors).

As one of our main contributions, we augment
the neural machine translation approach of Bah-
danau et al. to take as input not only natural lan-
guage instructions, but also the corresponding be-
havioral navigation graph m of the environment
where navigation should take place. Specifically,
at each step, the graph m operates as a knowl-
edge base that the model can access to obtain in-
formation about path connectivity, facilitating the
grounding of navigation commands.

Figure 2 shows the structure of the proposed
model for interpreting navigation instructions.
The model consists of six layers:

Embed layer: The model first encodes each
word and symbol in the input sequences I and

m into fixed-length representations. The instruc-
tions I are embedded into a 100-dimensional pre-
trained GloVe vector (Pennington et al., 2014).
Each of the triplet components, pi, bl[attr], and pj

of the graph m, are one-hot encoded into vectors
of dimensionality 2N +E, where N and E are the
number of nodes and edges in m, respectively.

Encoder layer: The model then uses two bidi-
rectional Gated Recurrent Units (GRUs) (Cho
et al., 2014) to independently process the infor-
mation from I and m, and incorporate contextual
cues from the surrounding embeddings in each se-
quence. The outputs of the encoder layer are the
matrix Ī 2 R

T⇥2H for the navigational commands
and the matrix Ḡ 2 R

L⇥2H for the behavioral
graph, where H is the hidden size of each GRU,
T is the number of words in the instruction I , and
L is the number of triplets in the graph m.

Attention layer: Matrices Ī and Ḡ generated
by the encoder layer are combined using an at-
tention mechanism. We use one-way attention
because the graph contains information about the
whole environment, while the instruction has (po-
tentially incomplete) local information about the
route of interest. The use of attention provides
our model with a two-step strategy to interpret
commands. This resembles the way people find
paths on a map: first, relevant parts on the map
are selected according to their affinity to each of
the words in the input instruction (attention layer);
second, the selected parts are connected to assem-
ble a valid path (decoder layer). More formally,
let Ḡi (i 2 [1, L]) be the i-th row of Ḡ, and Īj

(j 2 [1, T ]) the j-th row of Ī . We use each en-
coded triplet Ḡi in Ḡ to calculate its associated
attention distribution ai 2 R

T over all the atomic
instructions Īj :

ei = [ḠiWĪ|

1 , . . . , ḠiWĪ|

T ] (2)
ai = softmax(ei) (3)

where the matrix W 2 R
2H⇥2H serves to com-

bine the different sources of information Ḡ and Ī .
Each component aij of the attention distributions
ai quantifies the affinity between the i-th triplet in
Ḡ and the j-th word in the corresponding input I .

The model then uses each attention distribution
ai to obtain a weighted sum of the encodings of
the words in Ī , according to their relevance to the
corresponding triplet Ḡi. This results in L atten-
tion vectors Ri 2 R

2H , Ri =
PT

j=1 aijIj .
The final step in the attention layer concate-

nates each Ri with Ḡi to generate the outputs
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Figure 2: Model overview. The model contains six layers, takes the input of behavioral graph representation, free-form
instruction, and the start location (yellow block marked as START in the decoder layer) and outputs a sequence of behaviors.

Fi = [Ri; Ḡi], i 2 [1, L]. Following (Seo et al.,
2017), we include the encoded triplet Ḡi in the
output tensor Fi of this layer to prevent early sum-
maries of relevant map information.

FC layer: The model reduces the dimension-
ality of each individual vector Fi from 4H to H
with a fully-connected (FC) layer. The resulting L
vectors are output to the next layer as columns of
a context matrix C 2 R

H⇥L.
Decoder layer: After the FC layer, the model

predicts likelihoods over the sequence of behav-
iors that correspond to the input instructions with
a GRU network. Without loss of generality, con-
sider the t-th recurrent cell in the GRU network.
This cell takes two inputs: a hidden state vector
ht�1 from the prior cell, and a one-hot embedding
of the previous behavior bt�1 that was predicted
by the model. Based on these inputs, the GRU cell
outputs a new hidden state ht to compute likeli-
hoods for the next behavior. These likelihoods are
estimated by combining the output state ht with
relevant information from the context C:

d̂ts = v|

a tanh(W1ht + W2Cs) (4)

dt = softmax(d̂t1, . . . , d̂tL) (5)
where W1, W2, and va are trainable parameters.
The attention vector dt 2 R

L in Eq. (5) quanti-
fies the affinity of ht with respect to each of the
columns Cs of C, where s 2 [1, L]. The attention
vector also helps to estimate a dynamic contextual
vector St =

PL
s=1 dtsCs that the t-th GRU cell

uses to compute logits for the next behavior:
ot = W3[St; ht] (6)

with W3 trainable parameters. Note that ot in-

cludes a value for each of the pre-defined behav-
iors in the graph m, as well as for a special “stop”
symbol to identify the end of the output sequence.

Output layer: The final layer of the model
searches for a valid sequence of robot behaviors
based on the robot’s initial node, the connectivity
of the graph m, and the output logits from the pre-
vious decoder layer. Again, without loss of gen-
erality, consider the t-th behavior bt that is finally
predicted by the model. The search for this behav-
ior is implemented as:

bt = argmax(softmax(ot + mask(m, nt)))
(7)

with mask(m, nt) a masking function that takes
as input the graph m and the node nt that the robot
reaches after following the sequence of behaviors
b1, . . . , bt�1 previously predicted by the model.
The mask function returns a vector of the same
dimensionality as the logits ot, but with zeros for
the valid behaviors after the last location nt and
for the special stop symbol, and � inf for any in-
valid predictions according to the connectivity of
the behavioral navigation graph.

5 Dataset

We created a new dataset for the problem of fol-
lowing navigation instructions under the behav-
ioral navigation framework of (Sepúlveda et al.,
2018).1 This dataset was created using Amazon
Mechanical Turk and 100 maps of simulated in-
door environments, each with 6 to 65 rooms. To
the best of our knowledge, this is the first bench-

1The dataset is publicly available through the website:
follow-nav-directions.stanford.edu.
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Dataset # Single # Double Total
Training 4062 2002 8066

Test-Repeated 944 34 1012
Test-New 962 0 962

Table 2: Dataset statistics. “# Single” indicates the number
of navigation plans with a single natural language instruction.
“# Double” is the number of plans with two different instruc-
tions. The total number of plans is (# Single) ⇥ 2(# Double).

mark for comparing translation models in the con-
text of behavioral robot navigation.

As shown in Table 2, the dataset consists of
8066 pairs of free-form natural language instruc-
tions and navigation plans for training. This train-
ing data was collected from 88 unique simulated
environments, totaling 6064 distinct navigation
plans (2002 plans have two different navigation
instructions each; the rest has one). The dataset
contains two test set variants:

1) Test-Repeated: Contains 1012 pairs of instruc-
tions and navigation plans. These routes are not
part of the training set; however, they are collected
using environments that are part of the training set.

2) Test-New: Contains 962 pairs of instructions
and navigation plans. This test set is more chal-
lenging than the Test-Repeated dataset because it
contains new routes on 12 new indoor environ-
ments not included in the training set.

While the dataset was collected with simulated en-
vironments, no structure was imposed on the nav-
igation instructions while crowd-sourcing data.
Thus, many instructions in our dataset are am-
biguous. Moreover, the order of the behaviors in
the instructions is not always the same. For in-
stance, a person said “turn right and advance” to
describe part of a route, while another person said
“go straight after turning right” in a similar sit-
uation. The high variability present in the natu-
ral language descriptions of our dataset makes the
problem of decoding instructions into behaviors
not trivial. See Appendix A of the supplementary
material for additional details on our data collec-
tion effort.

6 Experiments

This section describes our evaluation of the pro-
posed approach for interpreting navigation com-
mands in natural language. We provide both quan-
titative and qualitative results.

6.1 Evaluation Metrics
While computing evaluation metrics, we only con-
sider the behaviors present in the route because
they are sufficient to recover the high-level navi-
gation plan from the graph. Our metrics treat each
behavior as a single token. For example, the sam-
ple plan “R-1 oor C-1 cf C-1 lt C-0 cf C-0 iol O-3”
is considered to have 5 tokens, each correspond-
ing to one of its behaviors (“oor”, “cf”, “lt”, “cf”,
“iol”). In this plan, “R-1”,“C-1”, “C-0”, and “O-
3” are symbols for locations (nodes) in the graph.

We compare the performance of translation ap-
proaches based on four metrics:

- Exact Match (EM). As in (Shimizu and Haas,
2009), EM is 1 if a predicted plan matches exactly
the ground truth; otherwise it is 0.

- F1 score (F1). The harmonic average of the pre-
cision and recall over all the test set (Chinchor and
Sundheim, 1993).

- Edit Distance (ED). The minimum number of
insertions, deletions or swap operations required
to transform a predicted sequence of behaviors
into the ground truth sequence (Navarro, 2001).

- Goal Match (GM). GM is 1 if a predicted plan
reaches the ground truth destination (even if the
full sequence of behaviors does not match exactly
the ground truth). Otherwise, GM is 0.

6.2 Models Used in the Evaluation
We compare the proposed approach for translat-
ing natural language instructions into a navigation
plan against alternative deep-learning models:

Baseline model. The baseline approach is based
on (Shimizu and Haas, 2009). It divides the task
of interpreting commands for behavioral naviga-
tion into two steps: path generation, and path ver-
ification. For path generation, this baseline uses a
standard sequence-to-sequence model augmented
with an attention mechanism, similar to (Bah-
danau et al., 2015; Zang et al., 2018). For path
verification, the baseline uses depth-first search to
find a route in the graph that matches the sequence
of predicted behaviors. If no route matches per-
fectly, the baseline changes up to three behaviors
in the predicted sequence to try to turn it into a
valid path.

Ablation model. To test the impact of using the
behavioral graphs as an extra input to our trans-
lation model, we implemented a version of our
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approach that only takes natural language instruc-
tions as input. In this ablation model, the output
of the bidirectional GRU that encodes the input in-
struction I is directly fed to the decoder layer. This
model does not have the attention and FC layers
described in Sec. 4, nor uses the masking function
in the output layer.

Ablation with mask model. This model is the
same as the previous Ablation model, but with the
masking function in the output layer.

6.3 Implementation Details
We pre-processed the inputs to the various models
that are considered in our experiment. In partic-
ular, we lowercased, tokenized, spell-checked and
lemmatized the input instructions in text-form us-
ing WordNet (Miller, 1995). We also truncated the
graphs to a maximum of 300 triplets, and the navi-
gational instructions to a maximum of 150 words.
Only 6.4% (5.4%) of the unique graphs in the
training (validation) set had more than 300 triplets,
and less than 0.15% of the natural language in-
structions in these sets had more than 150 tokens.

The dimensionality of the hidden state of the
GRU networks was set to 128 in all the experi-
ments. In general, we used 12.5% of the train-
ing set as validation for choosing models’ hyper-
parameters. In particular, we used dropout after
the encoder and the fully-connected layers of the
proposed model to reduce overfitting. Best perfor-
mance was achieved with a dropout rate of 0.5 and
batch size equal to 256. We also used scheduled
sampling (Bengio et al., 2015) at training time for
all models except the baseline.

We input the triplets from the graph to our pro-
posed model in alphabetical order, and consider a
modification where the triplets that surround the
start location of the robot are provided first in the
input graph sequence. We hypothesized that such
rearrangement would help identify the starting lo-
cation (node) of the robot in the graph. In turn, this
could facilitate the prediction of correct output se-
quences. In the remaining of the paper, we refer
to models that were provided a rearranged graph,
beginning with the starting location of the robot,
as models with “Ordered Triplets”.

6.4 Quantitative Evaluation
Table 3 shows the performance of the models con-
sidered in our evaluation on both test sets. The
next two sections discuss the results in detail.

6.4.1 Performance in the Test-Repeated Set
First, we can observe that the final model “Ours
with Mask and Ordered Triplets” outperforms the
Baseline and Ablation models on all metrics in
previously seen environments. The difference in
performance is particularly evident for the Exact
Match and Goal Match metrics, with our model in-
creasing accuracy by 35% and 25% in comparison
to the Baseline and Ablation models, respectively.
These results suggest that providing the behavioral
navigation graph to the model and allowing it to
process this information as a knowledge base in
an end-to-end fashion is beneficial.

We can also observe from Table 3 that the mask-
ing function of Eq. (7) tends to increase perfor-
mance in the Test-Repeated Set by constraining
the output sequence to a valid set of navigation be-
haviors. For the Ablation model, using the mask-
ing function leads to about 10% increase in EM
and GM accuracy. For the proposed model (with
or without reordering the graph triplets), the in-
crease in accuracy is around 4%. Note that the
impact of the masking function is less evident in
terms of the F1 score because this metric considers
if a predicted behavior exists in the ground truth
navigation plan, irrespective of its specific posi-
tion in the output sequence.

The results in the last four rows of Table 3 sug-
gest that ordering the graph triplets can facilitate
predicting correct navigation plans in previously
seen environments. Providing the triplets that sur-
round the starting location of the robot first to the
model leads to a boost of 4% in EM and GM per-
formance. The rearrangement of the graph triplets
also helps to reduce ED and increase F1.

Lastly, it is worth noting that our proposed
model (last row of Table 3) outperforms all other
models in previously seen environments. In partic-
ular, we obtain over 4% increase in EM and GM
between our model and the next best two models.

6.4.2 Performance in the Test-New Set
The previous section evaluated model perfor-
mance on new instructions (and corresponding
navigation plans) for environments that were pre-
viously seen at training time. Here, we examine
whether the trained models succeed on environ-
ments that are completely new.

The evaluation on the Test-New Set helps un-
derstand the generalization capabilities of the
models under consideration. This experiment is
more challenging than the one in the previous sec-
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Model Test-Repeated Set Test-New Set
EM " F1 " ED # GM " EM " F1" ED # GM "

Baseline 25.30 79.83 2.53 26.28 25.44 81.38 2.39 25.44
Ablation 36.36 90.28 1.36 36.36 24.82 88.65 1.71 24.92

Ablation with Mask 45.95 90.08 1.20 46.05 36.45 88.31 1.45 36.56
Ours without Mask 52.47 91.74 0.95 53.95 21.94 87.50 1.78 22.65

Ours with Mask 57.31 91.91 0.91 57.31 38.52 88.98 1.32 38.52
Ours without Mask and with Ordered Triplets 57.21 93.37 0.79 57.71 33.36 91.02 1.37 33.78

Ours with Mask and Ordered Triplets 61.17 93.54 0.75 61.36 41.71 90.22 1.22 41.81

Table 3: Performance of different models on the test datasets. EM and GM report percentages, and ED corresponds to average
edit distance. The symbol " indicates that higher results are better in the corresponding column; # indicates that lower is better.

tion, as can be seen in performance drops in Ta-
ble 3 for the new environments. Nonetheless, the
insights from the previous section still hold: mask-
ing in the output layer and reordering the graph
triplets tend to increase performance.

Even though the results in Table 3 suggest that
there is room for future work on decoding natural
language instructions, our model still outperforms
the baselines by a clear margin in new environ-
ments. For instance, the difference between our
model and the second best model in the Test-New
set is about 3% EM and GM. Note that the average
number of actions in the ground truth output se-
quences is 7.07 for the Test-New set. Our model’s
predictions are just 1.22 edits off on average from
the correct navigation plans.

6.5 Qualitative Evaluation
This section discusses qualitative results to better
understand how the proposed model uses the nav-
igation graph.

6.5.1 Attention Visualization
We analyze the evolution of the attention weights
dt in Eq. (5) to assess if the decoder layer of the
proposed model is attending to the correct parts
of the behavioral graph when making predictions.
Fig 3(b) shows an example of the resulting atten-
tion map for the case of a correct prediction. In the
Figure, the attention map is depicted as a scaled
and normalized 2D array of color codes. Each col-
umn in the array shows the attention distribution
dt used to generate the predicted output at step t.
Consequently, each row in the array represents a
triplet in the corresponding behavioral graph. This
graph consists of 72 triplets for Fig 3(b).

We observe a locality effect associated to the
attention coefficients corresponding to high val-
ues (bright areas) in each column of Fig 3(b).
This suggests that the decoder is paying atten-
tion to graph triplets associated to particular neigh-
borhoods of the environment in each prediction

Figure 3: Visualization of the attention weights of the de-
coder layer. The color-coded and numbered regions on the
map (left) correspond to the triplets that are highlighted with
the corresponding color in the attention map (right).

step. We include additional attention visualiza-
tions in the supplementary Appendix, including
cases where the dynamics of the attention distri-
bution are harder to interpret.

6.5.2 Experiments with Sub-Optimal Paths
All the routes in our dataset are the shortest
paths from a start location to a given destination.
Thus, we collected a few additional natural lan-
guage instructions to check if our model was able
to follow navigation instructions describing sub-
optimal paths. One such example is shown in
Fig. 4, where the blue route (shortest path) and the
red route (alternative path) are described by:

– Blue route: “Go out the office and make a left.
Turn right at the corner and go down the hall.
Make a right at the next corner and enter the
kitchen in front of table.”

– Red route: “Exit the room 0 and turn right, go
to the end of the corridor and turn left, go straight
to the end of the corridor and turn left again. After
passing bookshelf on your left and table on your
right, Enter the kitchen on your right.”

For both routes, the proposed model was able
to predict the correct sequence of navigation be-
haviors. This result suggests that the model is in-
deed using the input instructions and is not just ap-
proximating shortest paths in the behavioral graph.
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Figure 4: An example of two different navigation paths be-
tween the same pair of start and goal locations.

Other examples on the prediction of sub-obtimal
paths are described in the Appendix.

7 Conclusion

This work introduced behavioral navigation
through free-form natural language instructions as
a challenging and a novel task that falls at the
intersection of natural language processing and
robotics. This problem has a range of interesting
cross-domain applications, including information
retrieval.

We proposed an end-to-end system to trans-
late user instructions to a high-level navigation
plan. Our model utilized an attention mechanism
to merge relevant information from the navigation
instructions with a behavioral graph of the envi-
ronment. The model then used a decoder to predict
a sequence of navigation behaviors that matched
the input commands.

As part of this effort, we contributed a new
dataset of 11,051 pairs of user instructions and
navigation plans from 100 different environments.
Our model achieved the best performance in this
dataset in comparison to a two-step baseline ap-
proach for interpreting navigation instructions,
and a sequence-to-sequence model that does not
consider the behavioral graph. Our quantitative
and qualitative results suggest that attention mech-
anisms can help leverage the behavioral graph as
a relevant knowledge base to facilitate the trans-
lation of free-form navigation instructions. Over-
all, our approach demonstrated practical form of
learning for a complex and useful task.

In future work, we are interested in investigat-
ing mechanisms to improve generalization to new

environments. For example, pointer and graph
networks (Vinyals et al., 2015; Defferrard et al.,
2016) are a promising direction to help supervise
translation models and predict motion behaviors.
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Abstract

We propose to decompose instruction exe-
cution to goal prediction and action genera-
tion. We design a model that maps raw vi-
sual observations to goals using LINGUNET,
a language-conditioned image generation net-
work, and then generates the actions required
to complete them. Our model is trained
from demonstration only without external re-
sources. To evaluate our approach, we intro-
duce two benchmarks for instruction follow-
ing: LANI, a navigation task; and CHAI, where
an agent executes household instructions. Our
evaluation demonstrates the advantages of our
model decomposition, and illustrates the chal-
lenges posed by our new benchmarks.

1 Introduction
Executing instructions in interactive environments
requires mapping natural language and observa-
tions to actions. Recent approaches propose learn-
ing to directly map from inputs to actions, for ex-
ample given language and either structured obser-
vations (Mei et al., 2016; Suhr and Artzi, 2018) or
raw visual observations (Misra et al., 2017; Xiong
et al., 2018). Rather than using a combination
of models, these approaches learn a single model
to solve language, perception, and planning chal-
lenges. This reduces the amount of engineering
required and eliminates the need for hand-crafted
meaning representations. At each step, the agent
maps its current inputs to the next action using a
single learned function that is executed repeatedly
until task completion.

Although executing the same computation at
each step simplifies modeling, it exemplifies cer-
tain inefficiencies; while the agent needs to de-
cide what action to take at each step, identifying
its goal is only required once every several steps
or even once per execution. The left instruction in
Figure 1 illustrates this. The agent can compute its

After reaching the hydrant
head towards the blue
fence and pass towards the
right side of the well.

Put the cereal, the sponge,
and the dishwashing soap
into the cupboard above
the sink.

Figure 1: Example instructions from our two tasks:
LANI (left) and CHAI (right). LANI is a landmark nav-
igation task, and CHAI is a corpus of instructions in the
CHALET environment.

goal once given the initial observation, and given
this goal can then generate the actions required.
In this paper, we study a new model that explic-
itly distinguishes between goal selection and ac-
tion generation, and introduce two instruction fol-
lowing benchmark tasks to evaluate it.

Our model decomposes into goal prediction and
action generation. Given a natural language in-
struction and system observations, the model pre-
dicts the goal to complete. Given the goal, the
model generates a sequence of actions.

The key challenge we address is designing the
goal representation. We avoid manually designing
a meaning representation, and predict the goal in
the agent’s observation space. Given the image of
the environment the agent observes, we generate a
probability distribution over the image to highlight
the goal location. We treat this prediction as image
generation, and develop LINGUNET, a language
conditioned variant of the U-NET image-to-image
architecture (Ronneberger et al., 2015). Given the
visual goal prediction, we generate actions using a
recurrent neural network (RNN).

Our model decomposition offers two key advan-
tages. First, we can use different learning methods
as appropriate for the goal prediction and action
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generation problems. We find supervised learning
more effective for goal prediction, where only a
limited amount of natural language data is avail-
able. For action generation, where exploration is
critical, we use policy gradient in a contextual ban-
dit setting (Misra et al., 2017). Second, the goal
distribution is easily interpretable by overlaying it
on the agent observations. This can be used to in-
crease the safety of physical systems by letting the
user verify the goal before any action is executed.
Despite the decomposition, our approach retains
the advantages of the single-model approach. It
does not require designing intermediate represen-
tations, and training does not rely on external re-
sources, such as pre-trained parsers or object de-
tectors, instead using demonstrations only.

We introduce two new benchmark tasks with
different levels of complexity of goal prediction
and action generation. LANI is a 3D navigation
environment and corpus, where an agent navigates
between landmarks. The corpus includes 6,000
sequences of natural language instructions, each
containing on average 4.7 instructions. CHAI is
a corpus of 1,596 instruction sequences, each in-
cluding 7.7 instructions on average, for CHALET,
a 3D house environment (Yan et al., 2018). In-
structions combine navigation and simple manipu-
lation, including moving objects and opening con-
tainers. Both tasks require solving language chal-
lenges, including spatial and temporal reasoning,
as well as complex perception and planning prob-
lems. While LANI provides a task where most in-
structions include a single goal, the CHAI instruc-
tions often require multiple intermediate goals.
For example, the household instruction in Fig-
ure 1 can be decomposed to eight goals: opening
the cupboard, picking each item and moving it to
the cupboard, and closing the cupboard. Achiev-
ing each goal requires multiple actions of differ-
ent types, including moving and acting on objects.
This allows us to experiment with a simple varia-
tion of our model to generate intermediate goals.

We compare our approach to multiple recent
methods. Experiments on the LANI navigation
task indicate that decomposing goal prediction
and action generation significantly improves in-
struction execution performance. While we ob-
serve similar trends on the CHAI instructions, re-
sults are overall weaker, illustrating the complex-
ity of the task. We also observe that inherent
ambiguities in instruction following make exact

goal identification difficult, as demonstrated by
imperfect human performance. However, the gap
to human-level performance still remains large
across both tasks. Our code and data are available
at github.com/clic-lab/ciff.

2 Technical Overview
Task Let X be the set of all instructions, S the
set of all world states, and A the set of all actions.
An instruction x̄ 2 X is a sequence hx1, . . . , xni,
where each xi is a token. The agent executes
instructions by generating a sequence of actions,
and indicates execution completion with the spe-
cial action STOP.

The sets of actions A and states S are domain
specific. In the navigation domain LANI, the ac-
tions include moving the agent and changing its
orientation. The state information includes the po-
sition and orientation of the agent and the differ-
ent landmarks. The agent actions in the CHALET
house environment include moving and changing
the agent orientation, as well as an object interac-
tion action. The state encodes the position and ori-
entation of the agent and all objects in the house.
For interactive objects, the state also includes their
status, for example if a drawer is open or closed.
In both domains, the actions are discrete. The do-
mains are described in Section 6.
Model The agent does not observe the world
state directly, but instead observes its pose and an
RGB image of the environment from its point of
view. We define these observations as the agent
context s̃. An agent model is a function from an
agent context s̃ to an action a 2 A. We model
goal prediction as predicting a probability distri-
bution over the agent visual observations, repre-
senting the likelihood of locations or objects in the
environment being target positions or objects to be
acted on. Our model is described in Section 4.
Learning We assume access to training data
with N examples {(x̄(i), s(i)

1 , s(i)
g )}N

i=1, where x̄(i)

is an instruction, s(i)
1 is a start state, and s(i)

g is the
goal state. We decompose learning; training goal
prediction using supervised learning, and action
generation using oracle goals with policy gradient
in a contextual bandit setting. We assume an in-
strumented environment with access to the world
state, which is used to compute rewards during
training only. Learning is described in Section 5.
Evaluation We evaluate task performance on a
test set {(x̄(i), s(i)

1 , s(i)
g )}M

i=1, where x̄(i) is an in-
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struction, s(i)
1 is a start state, and s(i)

g is the goal
state. We evaluate task completion accuracy and
the distance of the agent’s final state to s(i)

g .

3 Related Work
Mapping instruction to action has been studied
extensively with intermediate symbolic represen-
tations (e.g., Chen and Mooney, 2011; Kim and
Mooney, 2012; Artzi and Zettlemoyer, 2013; Artzi
et al., 2014; Misra et al., 2015, 2016). Recently,
there has been growing interest in direct mapping
from raw visual observations to actions (Misra
et al., 2017; Xiong et al., 2018; Anderson et al.,
2018; Fried et al., 2018). We propose a model that
enjoys the benefits of such direct mapping, but ex-
plicitly decomposes that task to interpretable goal
prediction and action generation. While we focus
on natural language, the problem has also been
studied using synthetic language (Chaplot et al.,
2018; Hermann et al., 2017).

Our model design is related to hierarchical re-
inforcement learning, where sub-policies at differ-
ent levels of the hierarchy are used at different fre-
quencies (Sutton et al., 1998). Oh et al. (2017)
uses a two-level hierarchy for mapping synthetic
language to actions. Unlike our visual goal rep-
resentation, they use an opaque vector representa-
tion. Also, instead of reinforcement learning, our
methods emphasize sample efficiency.

Goal prediction is related to referring expres-
sion interpretation (Matuszek et al., 2012a; Krish-
namurthy and Kollar, 2013; Kazemzadeh et al.,
2014; Kong et al., 2014; Yu et al., 2016; Mao et al.,
2016; Kitaev and Klein, 2017). While our model
solves a similar problem for goal prediction, we
focus on detecting visual goals for actions, includ-
ing both navigation and manipulation, as part of
an instruction following model. Using formal goal
representation for instruction following was stud-
ied by MacGlashan et al. (2015). In contrast, our
model generates a probability distribution over im-
ages, and does not require an ontology.

Our data collection is related to existing work.
LANI is inspired by the HCRC Map Task (An-
derson et al., 1991), where a leader directs a fol-
lower to navigate between landmarks on a map.
We use a similar task, but our scalable data collec-
tion process allows for a significantly larger cor-
pus. We also provide an interactive navigation
environment, instead of only map diagrams. Un-
like Map Task, our leaders and followers do not
interact in real time. This abstracts away inter-

action challenges, similar to how the SAIL nav-
igation corpus was collected (MacMahon et al.,
2006). CHAI instructions were collected using
scenarios given to workers, similar to the ATIS
collection process (Hemphill et al., 1990; Dahl
et al., 1994). Recently, multiple 3D research envi-
ronments were released. LANI has a significantly
larger state space than existing navigation envi-
ronments (Hermann et al., 2017; Chaplot et al.,
2018), and CHALET, the environment used for
CHAI, is larger and has more complex manipu-
lation compared to similar environments (Gordon
et al., 2018; Das et al., 2018). In addition, only
synthetic language data has been released for these
environment. An exception is the Room-to-Room
dataset (Anderson et al., 2018) that makes use of
an environment of connected panoramas of house
settings. Although it provides a realistic vision
challenge, unlike our environments, the state space
is limited to a small number of panoramas and ma-
nipulation is not possible.

4 Model
We model the agent policy as a neural network.
The agent observes the world state st at time t as
an RGB image It. The agent context s̃t, the infor-
mation available to the agent to select the next ac-
tion at, is a tuple (x̄, IP , h(I1, p1), . . . , (It, pt)i),
where x̄ is the natural language instructions,
IP is a panoramic view of the environment
from the starting position at time t = 1, and
h(I1, p1), . . . , (It, pt)i is the sequence of observa-
tions It and poses pt up to time t. The panorama
IP is generated through deterministic exploration
by rotating 360� to observe the environment at the
beginning of the execution.1

The model includes two main components: goal
prediction and action generation. The agent uses
the panorama IP to predict the goal location lg. At
each time step t, a projection of the goal location
into the agent’s current view Mt is given as input
to an RNN to generate actions. The probability of
an action at at time t decomposes to:

P (at | s̃t) =
X

lg

⇣
P (lg | x̄, IP )

P (at | lg, (I1, p1), . . . , (It, pt))
⌘

,

where the first term puts the complete distribution
mass on a single location (i.e., a delta function).
Figure 2 illustrates the model.

1The panorama is a concatenation of deterministic obser-
vations along the width dimension. For simplicity, we do not
include these deterministic steps in the execution.
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Poses
<latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit><latexit sha1_base64="91gHTs/Kbcm7q63ZDTF3kr+ULN8=">AAACKHicbVDLSsNAFJ34rPFZXboZLIKrkoigS8GNywpWhSaUyeS2Ds4jzNyoJeQ33Orar3Enbv0Sp7ULrR64cDjnvjhZIYXDKPoI5uYXFpeWGyvh6tr6xuZWc/vKmdJy6HIjjb3JmAMpNHRRoISbwgJTmYTr7O5s7F/fg3XC6EscFZAqNtRiIDhDLyUJwiNWHePA1f2tVtSOJqB/STwlLTJFp98MlpLc8FKBRi6Zc704KjCtmEXBJdRhUjooGL9jQ+h5qpkCl1aTp2u675WcDoz1pZFO1J8TFVPOjVTmOxXDWzfrjcV/vdyNF85cx8FJWgldlAiafx8flJKioeNUaC4scJQjTxi3wv9P+S2zjKPPLgwTCxoeuFGK6bxKeN2L06pKrKKtuK5Dn1w8m9NfcnXYjqN2fHHUOo2mGTbILtkjByQmx+SUnJMO6RJOCvJEnslL8Bq8Be/Bx3frXDCd2SG/EHx+AdR3pfY=</latexit>

Goal Masks
<latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8="></latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8="></latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8="></latexit><latexit sha1_base64="IPvFhlL9foBObtEKiW6QIPfFEs8="></latexit>

TURNLEFT TURNLEFT FORWARD Actions
<latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit><latexit sha1_base64="56XYm6fy000AlRxJNii0/3IPSDc=">AAACKnicbVC7TsMwFHV4FAhvGFksKiSmKkFIMBaxMIJEaaUmIMe5BQvbiewboIryH6ww8zVsiJUPwWk7QOFIlo7PuS+dJJfCYhB8eDOzc/ONhcUlf3lldW19Y3PrymaF4dDhmcxML2EWpNDQQYESerkBphIJ3eT+tPa7D2CsyPQlDnOIFbvVYiA4QyddRwhPWJ7w+mOrm41m0ApGoH9JOCFNMsH5zabXiNKMFwo0csms7YdBjnHJDAouofKjwkLO+D27hb6jmimwcTk6u6J7TknpIDPuaaQj9WdHyZS1Q5W4SsXwzk57tfivl9p64NR2HBzHpdB5gaD5ePmgkBQzWudCU2GAoxw6wrgR7n7K75hhHF16vh8Z0PDIM6WYTsuIV/0wLsvIKNoMq8p3yYXTOf0lVwetMGiFF4fNdjDJcJHskF2yT0JyRNrkjJyTDuHEkGfyQl69N+/d+/A+x6Uz3qRnm/yC9/UNf7em0Q==</latexit>

F0
<latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit><latexit sha1_base64="KiBQV71N2bL50Jj1uTacUWvCEJQ=">AAACKHicbVBNS8NAFNxUrRq/qh69LAbBU0lE0GNBEI8KVgtNKJvNi126uwm7G6WE/A2vevbXeBOv/hI3NQdtHVgYZt7bN0ycc6aN7386raXllfbq2rq7sbm1vdPZ3bvTWaEo9GnGMzWIiQbOJPQNMxwGuQIiYg738eSi9u8fQWmWyVszzSES5EGylFFirBSGgphxnJaX1cgfdTy/68+AF0nQEA81uB7tOu0wyWghQBrKidbDwM9NVBJlGOVQuWGhISd0Qh5gaKkkAnRUzkJX+MgqCU4zZZ80eKb+3iiJ0HoqYjtZh9TzXi3+6yW6/nDuuknPo5LJvDAg6c/xtODYZLhuBSdMATV8agmhitn8mI6JItTY7lw3VCDhiWZCEJmUIa2GQVSWoRLYC6rKtc0F8z0tkruTbuB3g5tTr+c3Ha6hA3SIjlGAzlAPXaFr1EcU5egZvaBX5815dz6cz5/RltPs7KM/cL6+AejfpW4=</latexit>

F1
<latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit><latexit sha1_base64="2Vd1vjq33ijDmGTKLVf1EeNdRoE=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQE8ahgq9BdSjb71oYm2SXJKmXZv+FVz/4ab9Krv8Rs24NWBwLDzHt5w8S54MYGwcRrLC2vNFdba/76xubW9s7uXs9khWbQZZnI9ENMDQiuoGu5FfCQa6AyFnAfjy5r//4JtOGZurPjHCJJHxVPOaPWSWEoqR3GaXlVDchgpx10ginwX0LmpI3muBnses0wyVghQVkmqDF9EuQ2Kqm2nAmo/LAwkFM2oo/Qd1RRCSYqp6ErfOSUBKeZdk9ZPFV/bpRUGjOWsZusQ5pFrxb/9RJTf7hw3abnUclVXlhQbHY8LQS2Ga5bwQnXwKwYO0KZ5i4/ZkOqKbOuO98PNSh4ZpmUVCVlyKo+icoy1BK3SVX5rjmy2NNf0jvpkKBDbk/bF8G8wxY6QIfoGBF0hi7QNbpBXcRQjl7QK3rz3r0P79ObzEYb3nxnH/2C9/UN6pilbw==</latexit>

F2
<latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit><latexit sha1_base64="urS1ZYYaAQtBZF50Q4d4YBHBNTI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ6ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AOxRpXA=</latexit>

F3
<latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit><latexit sha1_base64="i/9DfG52M59ilH2h2X+kn1ngme4=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRYEcVnBPqAJZTK50cGZSZiZKCXkN9zq2q9xJ936JU7aLrT1wMDhnHvnHk6UcaaN502cldW19Y3N2pa7vbO7t19vHPR0misKXZryVA0iooEzCV3DDIdBpoCIiEM/erqu/P4zKM1SeW/GGYSCPEiWMEqMlYJAEPMYJcVNOTof1Ztey5sCLxN/Tppojs6o4WwEcUpzAdJQTrQe+l5mwoIowyiH0g1yDRmhT+QBhpZKIkCHxTR0iU+sEuMkVfZJg6fq742CCK3HIrKTVUi96FXiv16sqw8XrpvkKiyYzHIDks6OJznHJsVVKzhmCqjhY0sIVczmx/SRKEKN7c51AwUSXmgqBJFxEdBy6IdFESiBm35ZurY5f7GnZdI7a/ley7+7aLa9eYc1dISO0Sny0SVqo1vUQV1EUYZe0Rt6dz6cT+fLmcxGV5z5ziH6A+f7B+4KpXE=</latexit>

F4
<latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit><latexit sha1_base64="/+SQXrPogU/Oiy+P63M33w8KirI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeiwI4lHB1kITymbzoou7m7C7UUrI3/CqZ3+NN+nVX+KmzUFbBxaGmff2DRPnnGnj+xNnaXlldW29teFubm3v7Lb39vs6KxSFHs14pgYx0cCZhJ5hhsMgV0BEzOE+frqs/ftnUJpl8s6Mc4gEeZAsZZQYK4WhIOYxTsuranQ2ant+x58CL5KgIR5qcDPac9bCJKOFAGkoJ1oPAz83UUmUYZRD5YaFhpzQJ/IAQ0slEaCjchq6wsdWSXCaKfukwVP190ZJhNZjEdvJOqSe92rxXy/R9Ydz1016EZVM5oUBSWfH04Jjk+G6FZwwBdTwsSWEKmbzY/pIFKHGdue6oQIJLzQTgsikDGk1DKKyDJXAXlBVrm0umO9pkfRPO4HfCW7PvK7fdNhCh+gInaAAnaMuukY3qIcoytErekPvzofz6Xw5k9noktPsHKA/cL5/AO/DpXI=</latexit>

G4
<latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit><latexit sha1_base64="vY1NxRx3vOUwSBjhiBoSge7W0MY=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1ehs1Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/APF/pXM=</latexit>

G3
<latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit><latexit sha1_base64="HcFm8a7z1eSW+AHwbMRin3rNUro=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRZc6LKCfUATymRyo4MzkzAzUUrIb7jVtV/jTrr1S5y0XWjrgYHDOffOPZwo40wbz5s4K6tr6xubtS13e2d3b7/eOOjpNFcUujTlqRpERANnErqGGQ6DTAEREYd+9HRd+f1nUJql8t6MMwgFeZAsYZQYKwWBIOYxSoqbcnQ+qje9ljcFXib+nDTRHJ1Rw9kI4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gDDC2VRIAOi2noEp9YJcZJquyTBk/V3xsFEVqPRWQnq5B60avEf71YVx8uXDfJVVgwmeUGJJ0dT3KOTYqrVnDMFFDDx5YQqpjNj+kjUYQa253rBgokvNBUCCLjIqDl0A+LIlACN/2ydG1z/mJPy6R31vK9ln930Wx78w5r6Agdo1Pko0vURreog7qIogy9ojf07nw4n86XM5mNrjjznUP0B873D+/GpXI=</latexit>

G2
<latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit><latexit sha1_base64="/PPwQnSyqTEWTLt+UWBIZkpvYyI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix40KOCrYUmlM3mRRd3N2F3o5SQv+FVz/4ab9Krv8RNm4O2DiwMM+/tGybOOdPG9yfO0vLK6tp6a8Pd3Nre2W3v7fd1VigKPZrxTA1iooEzCT3DDIdBroCImMN9/HRZ+/fPoDTL5J0Z5xAJ8iBZyigxVgpDQcxjnJZX1eh01Pb8jj8FXiRBQzzU4Ga056yFSUYLAdJQTrQeBn5uopIowyiHyg0LDTmhT+QBhpZKIkBH5TR0hY+tkuA0U/ZJg6fq742SCK3HIraTdUg979Xiv16i6w/nrpv0IiqZzAsDks6OpwXHJsN1KzhhCqjhY0sIVczmx/SRKEKN7c51QwUSXmgmBJFJGdJqGERlGSqBvaCqXNtcMN/TIumfdgK/E9yeeV2/6bCFDtEROkEBOkdddI1uUA9RlKNX9IbenQ/n0/lyJrPRJafZOUB/4Hz/AO4NpXE=</latexit>

G1
<latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit><latexit sha1_base64="ai7/g5L8UPDbtaX/LT59oJdWTv4=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehQ86FHBVqG7lGz2rQ1NskuSVcqyf8Ornv013qRXf4nZtgetDgSGmffyholzwY0NgonXWFpeaa621vz1jc2t7Z3dvZ7JCs2gyzKR6YeYGhBcQddyK+Ah10BlLOA+Hl3W/v0TaMMzdWfHOUSSPiqeckatk8JQUjuM0/KqGpDBTjvoBFPgv4TMSRvNcTPY9ZphkrFCgrJMUGP6JMhtVFJtORNQ+WFhIKdsRB+h76iiEkxUTkNX+MgpCU4z7Z6yeKr+3CipNGYsYzdZhzSLXi3+6yWm/nDhuk3Po5KrvLCg2Ox4WghsM1y3ghOugVkxdoQyzV1+zIZUU2Zdd74falDwzDIpqUrKkFV9EpVlqCVuk6ryXXNksae/pHfSIUGH3J62L4J5hy10gA7RMSLoDF2ga3SDuoihHL2gV/TmvXsf3qc3mY02vPnOPvoF7+sb7FSlcA==</latexit>

H1
<latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit><latexit sha1_base64="bK6Sysyo0zWnL8dtSfOhyhhedfI=">AAACKHicbVBNSwMxFMz67frV6tFLsAieykYEPRa89FjBtkJ3KdnsWw0m2SXJKmXZv+FVz/4ab+LVX2K27UFbBwLDzHt5w8S54MYGwZe3srq2vrG5te3v7O7tHzSahwOTFZpBn2Ui03cxNSC4gr7lVsBdroHKWMAwfryu/eETaMMzdWsnOUSS3iueckatk8JQUvsQp2W3GpNxoxW0gynwMiFz0kJz9MZNbyNMMlZIUJYJasyIBLmNSqotZwIqPywM5JQ90nsYOaqoBBOV09AVPnVKgtNMu6csnqq/N0oqjZnI2E3WIc2iV4v/eompP1y4btOrqOQqLywoNjueFgLbDNet4IRrYFZMHKFMc5cfsweqKbOuO98PNSh4ZpmUVCVlyKoRicoy1BK3SFX5rjmy2NMyGZy3SdAmNxetTjDvcAsdoxN0hgi6RB3URT3URwzl6AW9ojfv3fvwPr2v2eiKN985Qn/gff8A7hClcQ==</latexit>

H2
<latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit><latexit sha1_base64="ztWhainNo3WlrYsfCPeut4aputI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ1qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+Ae/JpXI=</latexit>

H3
<latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit><latexit sha1_base64="VDMXHQH4pdq79xyAFWt+aJCg73w=">AAACKHicbVBNS8NAFNzUrxq/qh69LBbBU0lU0GPBi8cK1gpNKJvNS7t0dxN2N0oJ+Rte9eyv8Sa9+kvctD1o68DCMPPevmGijDNtPG/q1NbWNza36tvuzu7e/kHj8OhRp7mi0KUpT9VTRDRwJqFrmOHwlCkgIuLQi8a3ld97BqVZKh/MJINQkKFkCaPEWCkIBDGjKCnuysHloNH0Wt4MeJX4C9JEC3QGh85mEKc0FyAN5UTrvu9lJiyIMoxyKN0g15AROiZD6FsqiQAdFrPQJT6zSoyTVNknDZ6pvzcKIrSeiMhOViH1sleJ/3qxrj5cum6Sm7BgMssNSDo/nuQcmxRXreCYKaCGTywhVDGbH9MRUYQa253rBgokvNBUCCLjIqBl3w+LIlACN/2ydG1z/nJPq+TxouV7Lf/+qtn2Fh3W0Qk6RefIR9eoje5QB3URRRl6RW/o3flwPp0vZzofrTmLnWP0B873D/GCpXM=</latexit>

H4
<latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit><latexit sha1_base64="ceOBShG5hPFw2ptZ4Hq0Nb63eQI=">AAACKHicbVBNS8NAFNz4WeNXq0cvi0XwVBIR9Fjw0mMF2wpNKJvNS7u4uwm7G6WE/A2vevbXeJNe/SVu2h60dWBhmHlv3zBRxpk2njdzNja3tnd2a3vu/sHh0XG9cdLXaa4o9GjKU/UYEQ2cSegZZjg8ZgqIiDgMoqe7yh88g9IslQ9mmkEoyFiyhFFirBQEgphJlBSdcnQ9qje9ljcHXif+kjTREt1Rw9kJ4pTmAqShnGg99L3MhAVRhlEOpRvkGjJCn8gYhpZKIkCHxTx0iS+sEuMkVfZJg+fq742CCK2nIrKTVUi96lXiv16sqw9XrpvkNiyYzHIDki6OJznHJsVVKzhmCqjhU0sIVczmx3RCFKHGdue6gQIJLzQVgsi4CGg59MOiCJTATb8sXducv9rTOulftXyv5d9fN9vessMaOkPn6BL56Aa1UQd1UQ9RlKFX9IbenQ/n0/lyZovRDWe5c4r+wPn+AfM7pXQ=</latexit>

K4
<latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit><latexit sha1_base64="zSEKgDlnGQ6gUlQHW9aLR7TCWig=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY3ORm3P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/hvpXc=</latexit>

K3
<latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit><latexit sha1_base64="Ik9I+TZwqci8GSVJME+dT92LqjM=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcCG4q2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD2tqV2</latexit>

K2
<latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit><latexit sha1_base64="IoGqvGMFq6uTpb2a+qre4xR7QuI=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix4Ebwo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/T9pXU=</latexit>

K1
<latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit><latexit sha1_base64="izW860BEC95Sp1T9QcCShIjKPWk=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8CF4UbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+AfNEpXQ=</latexit>

p1
<latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit><latexit sha1_base64="/Ri2Q9mAiOtekUF3fSKR6vwSxrM=">AAACH3icbVDLSsNAFJ1UrTW+delmMAiuSkYEXRbcuKxoa6EJZTK5qYMzkzAzUUrIJ7jVtV/jTtz6N05rF1o9cOFwzn1xkkJwY8Pw02ssLa80V1tr/vrG5tb2zu5e3+SlZtBjucj1IKEGBFfQs9wKGBQaqEwE3Cb3F1P/9gG04bm6sZMCYknHimecUeuk62JERjtB2A5nwH8JmZMAzdEd7XrNKM1ZKUFZJqgxQxIWNq6otpwJqP2oNFBQdk/HMHRUUQkmrma/1vjIKSnOcu1KWTxTf05UVBozkYnrlNTemUVvKv7rpWa6cOG6zc7jiquitKDY9/GsFNjmeBoGTrkGZsXEEco0d/9jdkc1ZdZF5vuRBgWPLJeSqrSKWD0kcVVFWuKA1LXvkiOLOf0l/ZM2Cdvk6jTohPMMW+gAHaJjRNAZ6qBL1EU9xNAYPaFn9OK9em/eu/fx3drw5jP76Be8zy9K7aF5</latexit>

p2
<latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit><latexit sha1_base64="rLCTQv3h8/oVZNPooMPvjd04whs=">AAACH3icbVDLSsNAFJ34qDW+Wl26GSyCq5IUQZcFNy4r2gc0oUwmt+3QmUmYmSgl5BPc6tqvcSdu+zdOHwttPXDhcM59caKUM208b+Zsbe/slvbK++7B4dHxSaV62tFJpii0acIT1YuIBs4ktA0zHHqpAiIiDt1ocjf3u8+gNEvkk5mmEAoykmzIKDFWekwHjUGl5tW9BfAm8VekhlZoDapOKYgTmgmQhnKidd/3UhPmRBlGORRukGlICZ2QEfQtlUSADvPFrwW+tEqMh4myJQ1eqL8nciK0norIdgpixnrdm4v/erGeL1y7boa3Yc5kmhmQdHl8mHFsEjwPA8dMATV8agmhitn/MR0TRaixkbluoEDCC02EIDLOA1r0/TDPAyVwzS8K1ybnr+e0STqNuu/V/YfrWtNbZVhG5+gCXSEf3aAmukct1EYUjdArekPvzofz6Xw538vWLWc1c4b+wJn9AEymoXo=</latexit>

p3
<latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit><latexit sha1_base64="5mtqhj0wz+4O9RA3aoUiz+NxscM=">AAACH3icbVDLSsNAFJ3UV42vVpduBovgqiQq6LLgxmVF+4AmlMnkth06MwkzE6WEfIJbXfs17sRt/8bpY6GtBy4czrkvTpRypo3nTZ3SxubW9k55193bPzg8qlSP2zrJFIUWTXiiuhHRwJmElmGGQzdVQETEoRON72Z+5xmUZol8MpMUQkGGkg0YJcZKj2n/ql+peXVvDrxO/CWpoSWa/aqzHcQJzQRIQznRuud7qQlzogyjHAo3yDSkhI7JEHqWSiJAh/n81wKfWyXGg0TZkgbP1d8TORFaT0RkOwUxI73qzcR/vVjPFq5cN4PbMGcyzQxIujg+yDg2CZ6FgWOmgBo+sYRQxez/mI6IItTYyFw3UCDhhSZCEBnnAS16fpjngRK45heFa5PzV3NaJ+3Luu/V/YfrWsNbZlhGp+gMXSAf3aAGukdN1EIUDdErekPvzofz6Xw534vWkrOcOUF/4Ex/AE5foXs=</latexit>

M1
<latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit><latexit sha1_base64="vSM5uBNGZajWuI9w4g4UBR+f2f8=">AAACKHicbVBNSwMxFMxWrXX91qOXYBE8lY0IehS8eBEUbBW6S8lm39rQJLskWaUs+ze86tlf40169ZeYbXvQ6kBgmHkvb5g4F9zYIJh4jaXlleZqa81f39jc2t7Z3euZrNAMuiwTmX6IqQHBFXQttwIecg1UxgLu49Fl7d8/gTY8U3d2nEMk6aPiKWfUOikMJbXDOC2vqwEZ7LSDTjAF/kvInLTRHDeDXa8ZJhkrJCjLBDWmT4LcRiXVljMBlR8WBnLKRvQR+o4qKsFE5TR0hY+ckuA00+4pi6fqz42SSmPGMnaTdUiz6NXiv15i6g8Xrtv0PCq5ygsLis2Op4XANsN1KzjhGpgVY0co09zlx2xINWXWdef7oQYFzyyTkqqkDFnVJ1FZhlriNqkq3zVHFnv6S3onHRJ0yO1p+yKYd9hCB+gQHSOCztAFukI3qIsYytELekVv3rv34X16k9low5vv7KNf8L6+Afa8pXY=</latexit>

M2
<latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit><latexit sha1_base64="oXXSKys0njZ2AeYI1+fwSCpO7gk=">AAACKHicbVBNS8NAFNz4WeNX1aOXxSB4KokIeix48SIo2FpoQtlsXnRxdxN2N0oJ+Rte9eyv8Sa9+kvctDlo68DCMPPevmHinDNtfH/iLC2vrK6ttzbcza3tnd323n5fZ4Wi0KMZz9QgJho4k9AzzHAY5AqIiDncx0+XtX//DEqzTN6ZcQ6RIA+SpYwSY6UwFMQ8xml5XY1OR23P7/hT4EUSNMRDDW5Ge85amGS0ECAN5UTrYeDnJiqJMoxyqNyw0JAT+kQeYGipJAJ0VE5DV/jYKglOM2WfNHiq/t4oidB6LGI7WYfU814t/usluv5w7rpJL6KSybwwIOnseFpwbDJct4ITpoAaPraEUMVsfkwfiSLU2O5cN1Qg4YVmQhCZlCGthkFUlqES2AuqyrXNBfM9LZL+aSfwO8Htmdf1mw5b6BAdoRMUoHPURVfoBvUQRTl6RW/o3flwPp0vZzIbXXKanQP0B873D/h1pXc=</latexit>

M3
<latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit><latexit sha1_base64="gPrWsl2OXcWLX7pYl8qAdA1DkQI=">AAACKHicbVDLSsNAFJ34rPHV6tLNYBFclUQFXRbcuBEq2Ac0oUwmNzo4MwkzE6WE/IZbXfs17qRbv8RJ24W2Hhg4nHPv3MOJMs608byJs7K6tr6xWdtyt3d29/brjYOeTnNFoUtTnqpBRDRwJqFrmOEwyBQQEXHoR0/Xld9/BqVZKu/NOINQkAfJEkaJsVIQCGIeo6S4LUfno3rTa3lT4GXiz0kTzdEZNZyNIE5pLkAayonWQ9/LTFgQZRjlULpBriEj9Ik8wNBSSQTosJiGLvGJVWKcpMo+afBU/b1REKH1WER2sgqpF71K/NeLdfXhwnWTXIUFk1luQNLZ8STn2KS4agXHTAE1fGwJoYrZ/Jg+EkWosd25bqBAwgtNhSAyLgJaDv2wKAIlcNMvS9c25y/2tEx6Zy3fa/l3F822N++who7QMTpFPrpEbXSDOqiLKMrQK3pD786H8+l8OZPZ6Ioz3zlEf+B8/wD6LqV4</latexit>

Goal Location lg
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Figure 2: An illustration for our architecture (Section 4) for the instruction turn left and go to the red oil drum
with a LINGUNET depth of m = 4. The instruction x̄ is mapped to x̄ with an RNN, and the initial panorama
observation IP to F0 with a CNN. LINGUNET generates H1, a visual representation of the goal. First, a sequence
of convolutions maps the image features F0 to feature maps F1,. . . ,F4. The text representation x̄ is used to
generate the kernels K1,. . . ,K4, which are convolved to generate the text-conditioned feature maps G1,. . . ,G4.
These feature maps are de-convolved to H1,. . . ,H4. The goal probability distribution Pg is computed from H1.
The goal location is the inferred from the max of Pg . Given lg and pt, the pose at step t, the goal mask Mt is
computed and passed into an RNN that outputs the action to execute.

Goal Prediction To predict the goal location,
we generate a probability distribution Pg over
a feature map F0 generated using convolutions
from the initial panorama observation IP . Each
element in the probability distribution Pg corre-
sponds to an area in IP . Given the instruction
x̄ and panorama IP , we first generate their rep-
resentations. From the panorama IP , we gener-
ate a feature map F0 = [CNN0(IP );Fp], where
CNN0 is a two-layer convolutional neural net-
work (CNN; LeCun et al., 1998) with rectified
linear units (ReLU; Nair and Hinton, 2010) and
Fp are positional embeddings.2 The concatena-
tion is along the channel dimension. The instruc-
tion x̄ = hx1, · · · xni is mapped to a sequence
of hidden states li = LSTMx( x(xi), li�1), i =
1, . . . , n using a learned embedding function  x

and a long short-term memory (LSTM; Hochre-
iter and Schmidhuber, 1997) RNN LSTMx. The
instruction representation is x̄ = ln.

We generate the probability distribution Pg over
pixels in F0 using LINGUNET. The architecture
of LINGUNET is inspired by the U-NET image
generation method (Ronneberger et al., 2015), ex-
cept that the reconstruction phase is conditioned
on the natural language instruction. LINGUNET
first applies m convolutional layers to generate a
sequence of feature maps Fj = CNNj(Fj�1),

2We generate F
p by creating a channel for each determin-

istic observation used to create the panorama, and setting all
the pixels corresponding to that observation location in the
panorama to 1 and all others to 0. The number of observa-
tions depends on the agent’s camera angle.

j = 1 . . . m, where each CNNj is a convolutional
layer with leaky ReLU non-linearities (Maas et al.,
2013) and instance normalization (Ulyanov et al.,
2016). The instruction representation x̄ is split
evenly into m vectors {x̄j}m

j=1, each is used to
create a 1 ⇥ 1 kernel Kj = AFFINEj(x̄j), where
each AFFINEj is an affine transformation followed
by normalizing and reshaping. For each Fj , we
apply a 2D 1 ⇥ 1 convolution using the text ker-
nel Kj to generate a text-conditioned feature map
Gj = CONVOLVE(Kj ,Fj), where CONVOLVE
convolves the kernel over the feature map. We
then perform m deconvolutions to generate a se-
quence of feature maps Hm,. . . ,H1:

Hm = DECONVm(DROPOUT(Gm))

Hj = DECONVj([Hj+1;Gj ]) .

DROPOUT is dropout regularization (Srivastava
et al., 2014) and each DECONVj is a decon-
volution operation followed a leaky ReLU non-
linearity and instance norm.3 Finally, we gener-
ate Pg by applying a softmax to H1 and an ad-
ditional learned scalar bias term bg to represent
events where the goal is out of sight. For example,
when the agent already stands in the goal position
and therefore the panorama does not show it.

We use Pg to predict the goal position in the
environment. We first select the goal pixel in F0 as
the pixel corresponding to the highest probability
element in Pg. We then identify the corresponding
3D location lg in the environment using backward
camera projection, which is computed given the

3DECONV1 does deconvolution only.
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camera parameters and p1, the agent pose at the
beginning of the execution.
Action Generation Given the predicted goal lg,
we generate actions using an RNN. At each time
step t, given pt, we generate the goal mask Mt,
which has the same shape as the observed image
It. The goal mask Mt has a value of 1 for each
element that corresponds to the goal location lg in
It. We do not distinguish between visible or oc-
cluded locations. All other elements are set to 0.
We also maintain an out-of-sight flag ot that is set
to 1 if (a) lg is not within the agent’s view; or (b)
the max scoring element in Pg corresponds to bg,
the term for events when the goal is not visible in
IP . Otherwise, ot is set to 0. We compute an ac-
tion generation hidden state yt with an RNN:

yt = LSTMA (AFFINEA([FLAT(Mt); ot]), yt�1) ,

where FLAT flattens Mt into a vector, AFFINEA

is a learned affine transformation with ReLU, and
LSTMA is an LSTM RNN. The previous hidden
state yt�1 was computed when generating the pre-
vious action, and the RNN is extended gradually
during execution. Finally, we compute a probabil-
ity distribution over actions:

P (at | lg, (I1, p1), . . . , (It, pt)) =

SOFTMAX(AFFINEp([yt; T (t)])) ,

where  T is a learned embedding lookup table
for the current time (Chaplot et al., 2018) and
AFFINEp is a learned affine transformation.
Model Parameters The model parameters ✓ in-
clude the parameters of the convolutions CNN0

and the components of LINGUNET: CNNj ,
AFFINEj , and DECONVj for j = 1, . . . , m.
In addition we learn two affine transformations
AFFINEA and AFFINEp, two RNNs LSTMx and
LSTMA, two embedding functions  x and  T ,
and the goal distribution bias term bg. In our ex-
periments (Section 7), all parameters are learned
without external resources.

5 Learning
Our modeling decomposition enables us to choose
different learning algorithms for the two parts.
While reinforcement learning is commonly de-
ployed for tasks that benefit from exploration (e.g.,
Peters and Schaal, 2008; Mnih et al., 2013), these
methods require many samples due to their high
sample complexity. However, when learning with
natural language, only a relatively small number
of samples is realistically available. This problem

was addressed in prior work by learning in a con-
textual bandit setting (Misra et al., 2017) or mix-
ing reinforcement and supervised learning (Xiong
et al., 2018). Our decomposition uniquely offers
to tease apart the language understanding prob-
lem and address it with supervised learning, which
generally has lower sample complexity. For action
generation though, where exploration can be au-
tonomous, we use policy gradient in a contextual
bandit setting (Misra et al., 2017).

We assume access to training data with N ex-
amples {(x̄(i), s(i)

1 , s(i)
g )}N

i=1, where x̄(i) is an in-
struction, s(i)

1 is a start state, and s(i)
g is the goal

state. We train the goal prediction component by
minimizing the cross-entropy of the predicted dis-
tribution with the gold-standard goal distribution.
The gold-standard goal distribution is a determin-
istic distribution with probability one at the pixel
corresponding to the goal location if the goal is in
the field of view, or probability one at the extra
out-of-sight position otherwise. The gold location
is the agent’s location in s(i)

g . We update the model
parameters using Adam (Kingma and Ba, 2014).

We train action generation by maximizing the
expected immediate reward the agent observes
while exploring the environment. The objective
for a single example i and time stamp t is:

J =
X

a2A

⇡(a | s̃t)R
(i)(st, a) + �H(⇡(. | s̃t)) ,

where R(i) : S ⇥ A ! R is an example-specific
reward function, H(·) is an entropy regularization
term, and � is the regularization coefficient. The
reward function R(i) details are described in de-
tails in Appendix B. Roughly speaking, the re-
ward function includes two additive components:
a problem reward and a shaping term (Ng et al.,
1999). The problem reward provides a positive re-
ward for successful task completion, and a nega-
tive reward for incorrect completion or collision.
The shaping term is positive when the agent gets
closer to the goal position, and negative if it is
moving away. The gradient of the objective is:

rJ =
X

a2A

⇡(a | s̃t)r log ⇡(a | s̃t)R(st, a)

+�rH(⇡(. | s̃t) .

We approximate the gradient by sampling an ac-
tion using the policy (Williams, 1992), and use the
gold goal location computed from s(i)

g . We per-
form several parallel rollouts to compute gradients
and update the parameters using Hogwild! (Recht
et al., 2011) and Adam learning rates.
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Dataset Statistic LANI CHAI
Number paragraphs 6,000 1,596
Mean instructions per paragraph 4.7 7.70
Mean actions per instruction 24.6 54.5
Mean tokens per instruction 12.1 8.4
Vocabulary size 2,292 1,018

Table 1: Summary statistics of the two corpora.

6 Tasks and Data
6.1 LANI

The goal of LANI is to evaluate how well an agent
can follow navigation instructions. The agent task
is to follow a sequence of instructions that specify
a path in an environment with multiple landmarks.
Figure 1 (left) shows an example instruction.

The environment is a fenced, square, grass
field. Each instance of the environment con-
tains between 6–13 randomly placed landmarks,
sampled from 63 unique landmarks. The agent
can take four types of discrete actions: FORWARD,
TURNRIGHT, TURNLEFT, and STOP. The field is
of size 50⇥50, the distance of the FORWARD ac-
tion is 1.5, and the turn angle is 15�. The en-
vironment simulator is implemented in Unity3D.
At each time step, the agent performs an action,
observes a first person view of the environment
as an RGB image, and receives a scalar reward.
The simulator provides a socket API to control the
agent and the environment.

Agent performance is evaluated using two met-
rics: task completion accuracy, and stop distance
error. A task is completed correctly if the agent
stops within an aerial distance of 5 from the goal.

We collect a corpus of navigation instructions
using crowdsourcing. We randomly generate en-
vironments, and generate one reference path for
each environment. To elicit linguistically interest-
ing instructions, reference paths are generated to
pass near landmarks. We use Amazon Mechanical
Turk, and split the annotation process to two tasks.
First, given an environment and a reference path,
a worker writes an instruction paragraph for fol-
lowing the path. The second task requires another
worker to control the agent to perform the instruc-
tions and simultaneously mark at each point what
part of the instruction was executed. The record-
ing of the second worker creates the final data of
segmented instructions and demonstrations. The
generated reference path is displayed in both tasks.
The second worker could also mark the paragraph
as invalid. Both tasks are done from an over-
head view of the environment, but workers are in-
structed to provide instructions for a robot that ob-

Go around the pillar on the right hand side
and head towards the boat, circling around it clockwise.
When you are facing the tree, walk towards it, and the pass on the right hand side,
and the left hand side of the cone. Circle around the cone,
and then walk past the hydrant on your right,
and the the tree stump.
Circle around the stump and then stop right behind it.

Circle around the statue counter clockwise on the right hand side,
then head towards the barrel.
Go past the barrel on the right hand side and head towards the bench,
passing the bench on the right side, stopping right before you get to the
white fence.

[Go around the pillar on the right hand side] [and head
towards the boat, circling around it clockwise.] [When
you are facing the tree, walk towards it, and the pass on
the right hand side,] [and the left hand side of the cone.
Circle around the cone,] [and then walk past the hydrant
on your right,] [and the the tree stump.] [Circle around
the stump and then stop right behind it.]

Figure 3: Segmented instructions in the LANI domain.
The original reference path is marked in red (start) and
blue (end). The agent, using a drone icon, is placed at
the beginning of the path. The follower path is coded in
colors to align to the segmented instruction paragraph.

serves the environment from a first person view.
Figure 3 shows a reference path and the written
instruction. This data can be used for evaluating
both executing sequences of instructions and sin-
gle instructions in isolation.

Table 1 shows the corpus statistics.4 Each para-
graph corresponds to a single unique instance of
the environment. The paragraphs are split into
train, test, and development, with a 70% / 15% /
15% split. Finally, we sample 200 single devel-
opment instructions for qualitative analysis of the
language challenge the corpus presents (Table 2).

6.2 CHAI

The CHAI corpus combines both navigation and
simple manipulation in a complex, simulated
household environment. We use the CHALET sim-
ulator (Yan et al., 2018), a 3D house simulator
that provides multiple houses, each with multi-
ple rooms. The environment supports moving be-
tween rooms, picking and placing objects, and
opening and closing cabinets and similar contain-
ers. Objects can be moved between rooms and
in and out of containers. The agent observes the
world in first-person view, and can take five ac-
tions: FORWARD, TURNLEFT, TURNRIGHT, STOP,
and INTERACT. The INTERACT action acts on ob-
jects. It takes as argument a 2D position in the
agent’s view. Agent performance is evaluated with
two metrics: (a) stop distance, which measures the
distance of the agent’s final state to the final an-
notated position; and (b) manipulation accuracy,
which compares the set of manipulation actions

4Appendix A provides statistics for related datasets.
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Count
Category LANI CHAI Example
Spatial relations
between locations 123 52 LANI: go to the right side of the rock

CHAI: pick up the cup next to the bathtub and place it on . . .
Conjunctions of two
more locations 36 5 LANI: fly between the mushroom and the yellow cone

CHAI: . . . set it on the table next to the juice and milk.
Temporal coordination
of sub-goals 65 68 LANI: at the mushroom turn right and move forward towards the statue

CHAI: go back to the kitchen and put the glass in the sink.
Constraints on the
shape of trajectory 94 0 LANI: go past the house by the right side of the apple

Co-reference 32 18 LANI: turn around it and move in front of fern plant
CHAI: turn left, towards the kitchen door and move through it.

Comparatives 2 0 LANI: . . . the small stone closest to the blue and white fences stop

Table 2: Qualitative analysis of the LANI and CHAI corpora. We sample 200 single development instructions from
each corpora. For each category, we count how many examples of the 200 contained it and show an example.

Scenario
You have several hours before guests begin to arrive for
a dinner party. You are preparing a wide variety of meat
dishes, and need to put them in the sink. In addition,
you want to remove things in the kitchen, and bathroom
which you don’t want your guests seeing, like the soaps
in the bathroom, and the dish cleaning items. You can
put these in the cupboards. Finally, put the dirty dishes
around the house in the dishwasher and close it.
Written Instructions
[In the kitchen, open the cupboard above the sink.] [Put
the cereal, the sponge, and the dishwashing soap into the
cupboard above the sink.] [Close the cupboard.] [Pick
up the meats and put them into the sink.] [Open the dish-
washer, grab the dirty dishes on the counter, and put the
dishes into the dishwasher.]

Figure 4: Scenario and segmented instruction from the
CHAI corpus.

to a reference set. When measuring distance, to
consider the house plan, we compute the minimal
aerial distance for each room that must be visited.
Yan et al. (2018) provides the full details of the
simulator and evaluation. We use five different
houses, each with up to six rooms. Each room
contains on average 30 objects. A typical room
is of size 6⇥6. We set the distance of FORWARD to
0.1, the turn angle to 90�, and divide the agent’s
view to a 32⇥32 grid for the INTERACT action.

We collected a corpus of navigation and ma-
nipulation instructions using Amazon Mechanical
Turk. We created 36 common household scenar-
ios to provide a familiar context to the task.5 We
use two crowdsourcing tasks. First, we provide
workers with a scenario and ask them to write in-
structions. The workers are encouraged to explore
the environment and interact with it. We then seg-
ment the instructions to sentences automatically.
In the second task, workers are presented with the
segmented sentences in order and asked to execute
them. After finishing a sentence, the workers re-

5We observed that asking workers to simply write instruc-
tions without providing a scenario leads to combinations of
repetitive instructions unlikely to occur in reality.

quest the next sentence. The workers do not see
the original scenario. Figure 4 shows a scenario
and the written segmented paragraph. Similar to
LANI, CHAI data can be used for studying com-
plete paragraphs and single instructions.

Table 1 shows the corpus statistics.6 The para-
graphs are split into train, test, and development,
with a 70% / 15% / 15% split. Table 2 shows qual-
itative analysis of a sample of 200 instructions.

7 Experimental Setup
Method Adaptations for CHAI We apply two
modifications to our model to support interme-
diate goal for the CHAI instructions. First,
we train an additional RNN to predict the se-
quence of intermediate goals given the instruc-
tion only. There are two types of goals:
NAVIGATION, for action sequences requiring
movement only and ending with the STOP action;
and INTERACTION, for sequence of movement ac-
tions that end with an INTERACT action. For ex-
ample, for the instruction pick up the red book
and go to the kitchen, the sequence of goals will
be hINTERACTION, NAVIGATION, NAVIGATIONi.
This indicates the agent must first move to the
object to pick it up via interaction, move to the
kitchen door, and finally move within the kitchen.
The process of executing an instruction starts with
predicting the sequence of goal types. We call our
model (Section 4) separately for each goal type.
The execution concludes when the final goal is
completed. For learning, we create a separate ex-
ample for each intermediate goal and train the ad-
ditional RNN separately. The second modification
is replacing the backward camera projection for
inferring the goal location with ray casting to iden-

6The number of actions per instruction is given in the
more fine-grained action space used during collection. To
make the required number of actions smaller, we use the more
coarse action space specified.
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LANI CHAI
Method SD TC SD MA
STOP 15.37 8.20 2.99 37.53
RANDOMWALK 14.80 9.66 2.99 28.96
MOSTFREQUENT 19.31 2.94 3.80 37.53
MISRA17 10.54 22.9 2.99 32.25
CHAPLOT18 9.05 31.0 2.99 37.53
Our Approach (OA) 8.65 35.72 2.75 37.53
OA w/o RNN 9.21 31.30 3.75 37.43
OA w/o Language 10.65 23.02 3.22 37.53
OA w/joint 11.54 21.76 2.99 36.90
OA w/oracle goals 2.13 94.60 2.19 41.07

Table 3: Performance on the development data.

tify INTERACTION goals, which are often objects
that are not located on the ground.
Baselines We compare our approach against the
following baselines: (a) STOP: Agent stops im-
mediately; (b) RANDOMWALK: Agent samples
actions uniformly until it exhausts the horizon
or stops; (c) MOSTFREQUENT: Agent takes the
most frequent action in the data, FORWARD for
both datasets, until it exhausts the horizon; (d)
MISRA17: the approach of Misra et al. (2017);
and (e) CHAPLOT18: the approach of Chaplot
et al. (2018). We also evaluate goal prediction and
compare to the method of Janner et al. (2018) and
a CENTER baseline, which always predict the cen-
ter pixel. Appendix C provides baseline details.
Evaluation Metrics We evaluate using the met-
rics described in Section 6: stop distance (SD) and
task completion (TC) for LANI, and stop distance
(SD) and manipulation accuracy (MA) for CHAI.
To evaluate the goal prediction, we report the real
distance of the predicted goal from the annotated
goal and the percentage of correct predictions. We
consider a goal correct if it is within a distance of
5.0 for LANI and 1.0 for CHAI. We also report
human evaluation for LANI by asking raters if the
generated path follows the instruction on a Likert-
type scale of 1–5. Raters were shown the gener-
ated path, the reference path, and the instruction.
Parameters We use a horizon of 40 for both
domains. During training, we allow additional
5 steps to encourage learning even after errors.
When using intermediate goals in CHAI, the hori-
zon is used for each intermediate goal separately.
All other parameters and detailed in Appendix D.

8 Results
Tables 3 and 4 show development and test re-
sults. Both sets of experiments demonstrate sim-
ilar trends. The low performance of STOP, RAN-
DOMWALK, and MOSTFREQUENT demonstrates

LANI CHAI
Method SD TC SD MA
STOP 15.18 8.29 3.59 39.77
RANDOMWALK 14.63 9.76 3.59 33.29
MOSTFREQUENT 19.14 3.15 4.36 39.77
MISRA17 10.23 23.2 3.59 36.84
CHAPLOT18 8.78 31.9 3.59 39.76
Our Approach 8.43 36.9 3.34 39.97

Table 4: Performance on the held-out test dataset.
LANI CHAI

Method Dist Acc Dist Acc
CENTER 12.0 19.51 3.41 19.0
Janner et al. (2018) 9.61 30.26 2.81 28.3
Our Approach 8.67 35.83 2.12 40.3

Table 5: Development goal prediction performance.
We measure distance (Dist) and accuracy (Acc).

the challenges of both tasks, and shows the tasks
are robust to simple biases. On LANI, our ap-
proach outperforms CHAPLOT18, improving task
completion (TC) accuracy by 5%, and both meth-
ods outperform MISRA17. On CHAI, CHAP-
LOT18 and MISRA17 both fail to learn, while
our approach shows an improvement on stop dis-
tance (SD). However, all models perform poorly
on CHAI, especially on manipulation (MA).

To isolate navigation performance on CHAI, we
limit our train and test data to instructions that in-
clude navigation actions only. The STOP baseline
on these instructions gives a stop distance (SD) of
3.91, higher than the average for the entire data
as these instructions require more movement. Our
approach gives a stop distance (SD) of 3.24, a 17%
reduction of error, significantly better than the 8%
reduction of error over the entire corpus.

We also measure human performance on a sam-
ple of 100 development examples for both tasks.
On LANI, we observe a stop distance error (SD)
of 5.2 and successful task completion (TC) 63%
of the time. On CHAI, the human distance er-
ror (SD) is 1.34 and the manipulation accuracy is
100%. The imperfect performance demonstrates
the inherent ambiguity of the tasks. The gap to
human performance is still large though, demon-
strating that both tasks are largely open problems.

The imperfect human performance raises ques-
tions about automated evaluation. In general,
we observe that often measuring execution qual-
ity with rigid goals is insufficient. We conduct
a human evaluation with 50 development exam-
ples from LANI rating human performance and
our approach. Figure 5 shows a histogram of the
ratings. The mean rating for human followers is
4.38, while our approach’s is 3.78; we observe
a similar trend to before with this metric. Using
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Category Present Absent p-value
Spatial relations 8.75 10.09 .262
Location conjunction 10.19 9.05 .327
Temporal coordination 11.38 8.24 .015
Trajectory constraints 9.56 8.99 .607
Co-reference 12.88 8.59 .016
Comparatives 10.22 9.25 .906

Table 6: Mean goal prediction error for LANI instruc-
tions with and without the analysis categories we used
in Table 2. The p-values are from two-sided t-tests
comparing the means in each row.
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Figure 5: Likert rating histogram for expert human fol-
lower and our approach for LANI.

judgements on our approach, we correlate the hu-
man metric with the SD measure. We observe a
Pearson correlation -0.65 (p=5e-7), indicating that
our automated metric correlates well with human
judgment.7 This initial study suggests that our au-
tomated evaluation is appropriate for this task.

Our ablations (Table 3) demonstrate the impor-
tance of each of the components of the model.
We ablate the action generation RNN (w/o RNN),
completely remove the language input (w/o Lan-
guage), and train the model jointly (w/joint Learn-
ing).8 On CHAI especially, ablations results in
models that display ineffective behavior. Of the
ablations, we observe the largest benefit from
decomposing the learning and using supervised
learning for the language problem.

We also evaluate our approach with access to
oracle goals (Table 3). We observe this im-
proves navigation performance significantly on
both tasks. However, the model completely fails
to learn a reasonable manipulation behavior for
CHAI. This illustrates the planning complexity
of this domain. A large part of the improvement
in measured navigation behavior is likely due to
eliminating much of the ambiguity the automated
metric often fails to capture.

Finally, on goal prediction (Table 5), our ap-
proach outperforms the method of Janner et al.
(2018). Figure 6 and Appendix Figure 7 show ex-
ample goal predictions. In Table 6, we break down
LANI goal prediction results for the analysis cate-

7We did not observe this kind of clear anti-correlation
comparing the two results for human performance (Pearson
correlation of 0.09 and p=0.52). The limited variance in hu-
man performance makes correlation harder to test.

8Appendix C provides the details of joint learning.

curve around big rock keeping it to your left .

walk over to the cabinets and open the cabinet doors up

Figure 6: Goal prediction probability maps Pg overlaid
on the corresponding observed panoramas IP . The top
example shows a result on LANI, the bottom on CHAI.

gories we used in Table 2 using the same sample of
the data. Appendix E includes a similar table for
CHAI. We observe that our approach finds instruc-
tions with temporal coordination or co-reference
challenging. Co-reference is an expected limita-
tion; with single instructions, the model can not
resolve references to previous instructions.
9 Discussion
We propose a model for instruction following with
explicit separation of goal prediction and action
generation. Our representation of goal prediction
is easily interpretable, while not requiring the de-
sign of logical ontologies and symbolic represen-
tations. A potential limitation of our approach is
cascading errors. Action generation relies com-
pletely on the predicted goal and is not exposed
to the language otherwise. This also suggests a
second related limitation: the model is unlikely
to successfully reason about instructions that in-
clude constraints on the execution itself. While
the model may reach the final goal correctly, it is
unlikely to account for the intermediate trajectory
constraints. As we show (Table 2), such instruc-
tions are common in our data. These two limita-
tions may be addressed by allowing action genera-
tion access to the instruction. Achieving this while
retaining an interpretable goal representation that
clearly determines the execution is an important
direction for future work. Another important open
question concerns automated evaluation, which re-
mains especially challenging when instructions do
not only specify goals, but also constraints on how
to achieve them. Our resources provide the plat-
form and data to conduct this research.
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Abstract

Researchers in computational psycholinguis-
tics frequently use linear models to study
time series data generated by human subjects.
However, time series may violate the assump-
tions of these models through temporal diffu-
sion, where stimulus presentation has a linger-
ing influence on the response as the rest of
the experiment unfolds. This paper proposes a
new statistical model that borrows from digital
signal processing by recasting the predictors
and response as convolutionally-related sig-
nals, using recent advances in machine learn-
ing to fit latent impulse response functions
(IRFs) of arbitrary shape. A synthetic exper-
iment shows successful recovery of true la-
tent IRFs, and psycholinguistic experiments
reveal plausible, replicable, and fine-grained
estimates of latent temporal dynamics, with
comparable or improved prediction quality to
widely-used alternatives.

1 Introduction

Time series are abundant in many naturally-
occurring phenomena of interest to science, and
they frequently violate the assumptions of linear
modeling and its generalizations. One confound
that may be widespread in psycholinguistic data
is temporal diffusion: the dependent variable may
evolve slowly in response to its inputs, with the
result that a particular predictor observed at a par-
ticular time may continue to exert an influence on
the response as the rest of the process unfolds. If
not properly controlled for, such a confound could
have a detrimental impact on parameter estima-
tion, model interpretation, and hypothesis testing.

The problem of temporal diffusion remains
largely unsolved in the general case.1 A stan-

1Although recent work in computational psycholinguis-
tics has begun to address separate but related problems in
time series modeling (auto-correlation and non-stationarity)

dard approach for handling the possibility of tem-
porally diffuse relationships between the predic-
tors and the response is to use spillover or lag
regressors, where the observed predictor value is
used to predict subsequent observations of the re-
sponse (Erlich and Rayner, 1983). But this strat-
egy has several undesirable properties. First, the
choice of spillover position(s) for a given predic-
tor is difficult to motivate empirically. Second, in
experiments with variably long trials the use of
relative event indices obscures potentially impor-
tant details about the actual amount of time that
passed between events. And third, including mul-
tiple spillover positions per predictor quickly leads
to parametric explosion on realistically complex
models over realistically sized data sets, especially
if random effects structures are included.

As a solution to the problem of temporal diffu-
sion, this paper proposes deconvolutional time se-
ries regression (DTSR), a technique that directly
models diffusion by learning parametric impulse
response functions (IRFs) of the predictors that
mediate their relationship to the response variable
over time. Parametric deconvolution is difficult
in the general case because the likelihood surface
depends on the choice IRF kernel, requiring the
user to re-derive estimators for each unique model
structure. Furthermore, arbitrary IRF kernels are
not guaranteed to afford analytical estimator func-
tions or unique real-valued solutions. However,
recent advances in machine learning have led to
libraries like Tensorflow (Abadi et al., 2015) —
which uses auto-differentiation to support opti-
mization of arbitrary computation graphs — and
Edward (Tran et al., 2016) — which enables black
box variational inference (BBVI) on Tensorflow
graphs. While these libraries are typically used to
build and train deep networks, DTSR uses them

using generalized additive models (GAM) with a particular
structure (Baayen et al., 2017, 2018).

2679



R
es

po
ns

e
Pr

ed
ic

to
r

Trial index
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Figure 2: Linear time series model with spillover

to overcome the aforementioned difficulties with
general-purpose temporal deconvolution by elim-
inating the need for hand-derivation of estimators
and sampling distributions for each model.

The IRFs learned by DTSR are interpretable
as estimates of the temporal shape of predictors’
influence on the response variable. By convolv-
ing predictors with their IRFs, DTSR is able to
consider arbitrarily long histories of independent
variable observations in generating a given predic-
tion, and (in contrast to spillover) model complex-
ity is constant on the length of the history win-
dow. DTSR is thus a parsimonious technique for
directly measuring temporal diffusion.

Figures 1–3 illustrate the present proposal and
how it differs from linear time series models. As
shown in Figure 1, a standard linear model as-
sumes conditional independence of the response
from all preceding observations of the predictor.
This independence assumption can be weakened
by including additional spillover predictors (Fig-
ure 2), at a cost of requiring additional parameters.
In both cases, only the relative order of events is
considered, not their actual distance in time. By
contrast, DTSR recasts the predictor and response
vectors as streams of impulses and responses (re-
spectively) localized in time. It then fits latent
IRFs that govern the influence of each predictor
value on the response as a function of time (Fig-
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Figure 3: Effects of predictors in DTSR

ure 3).
This paper presents evidence that DTSR can

(1) recover known underlying IRFs from synthetic
data, (2) discover previously unknown temporal
structure in human data (psycholinguistic reading
time experiments), (3) provide support for the ab-
sence of temporal diffusion in settings where it
might exist in principle, and (4) provide compara-
ble (or in some cases improved) prediction quality
to standard linear mixed-effects (LME) and gener-
alized additive (GAM) models.

2 Related work

2.1 Non-deconvolutional time series modeling
The two most widely used tools for analyzing psy-
cholinguistic time series are linear mixed effects
regression (LME) (Bates et al., 2015) and gener-
alized additive models (GAM) (Hastie and Tib-
shirani, 1986; Wood, 2006). LME learns a lin-
ear combination of the predictors that generates
a given response variable. GAM generalizes lin-
ear models by allowing the response variable to be
computed as the sum of smooth functions of one
or more predictors.

In both approaches, responses are modeled
as conditionally independent of preceding obser-
vations of predictors unless spillover terms are
added, with the attendant drawbacks discussed in
Section 1. To make this point more forcefully, take
for example Shain et al. (2016), who find signif-
icant effects of constituent wrap-up (p = 2.33e-
14) and dependency locality (p = 4.87e-10) in the
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Natural Stories self-paced reading corpus (Futrell
et al., 2018). They argue that this constitutes the
first strong evidence of memory effects in broad-
coverage sentence processing. However, it turns
out that when one baseline predictor — probabilis-
tic context free grammar (PCFG) surprisal — is
spilled over one position, the reported effects dis-
appear: p = 0.816 for constituent wrap-up and p =
0.370 for dependency locality. Thus, a reasonable
but ultimately inaccurate assumption about base-
line effect timecourses can have a dramatic im-
pact on the conclusions supported by the statistical
model. DTSR offers a way forward by bringing
temporal diffusion under direct statistical control.

2.2 Deconvolutional time series modeling

Deconvolutional modeling has long been used in
a variety of scientific fields, including economics
(Ramey, 2016), epidemiology (Goldstein et al.,
2011), and neuroimaging (Friston et al., 1998).
Non-parametric deconvolutional models quantize
the time series and fit estimates for each time point
within some window, similarly to the spillover
approach discussed above. These estimates can
be unconstrained, as in finite impulse response
models (FIR) (H. Glover, 1999; Ward, 2006),
or smoothed with some form of regularization
(Goutte et al., 2000; Pedregosa et al., 2014). Ad-
ditional post-hoc interpolation is necessary in or-
der to obtain a closed-form continuous IRF. These
non-parametric approaches are prone to paramet-
ric explosion as well as sparsity problems when
trials are variably spaced in time.

Parametric deconvolutional approaches (i.e.
specific instantiations of DTSR) have evolved
in certain fields (e.g. fMRI modeling) to solve
particular problems, generally with some
independently-motivated IRF kernel like the
hemodynamic response function (HRF) (Friston
et al., 1998; Lindquist and Wager, 2007; Lindquist
et al., 2009). However, to our knowledge DTSR
constitutes the first mathematical formulation
and software implementation of general-purpose
mixed effects parametric deconvolutional re-
gression for arbitrary impulse response kernels.
DTSR also supports Bayesian inference, enabling
quantification of uncertainty in the absence of
analytic formulae for standard errors. With these
properties, DTSR expands the range of possible
applications of parametric deconvolution beyond
those fields for which appropriate formulations

have already been developed.

3 Model definition
This section presents the mathematical definition
of DTSR. For readability, only a fixed effects
model is presented below, since mixed modeling
substantially complicates the equations. The full
model definition is provided in Appendix A. Note
that the full definition is used to construct all read-
ing time models reported in subsequent sections,
since they contain random effects.

Let X 2 R
M⇥K be a design matrix of M ob-

servations for K predictor variables and y 2 R
N

be a vector of N responses, both of which contain
contiguous temporally-sorted time series. DTSR
models the relationship between X and y using
parameters consisting of:

• a scalar intercept µ 2 R

• a vector u 2 R
K of K coefficients

• a matrix A 2 R
R⇥K of R IRF kernel param-

eters for K fixed impulse vectors
• a scalar variance �2 2 R of the response

To define the convolution step, let gk for k 2
{1, 2, . . . , K} be a set of parametric IRF kernels,
one for each predictor; let a 2 R

M and b 2 R
N be

vectors of timestamps associated with each obser-
vation in X and y, respectively; and let c 2 N

M

and d 2 N
N be vectors of series ID’s associated

with each observation in X and y, respectively. A
filter F 2 R

N⇥M admits only those observations
in X that precede y[n] in the same time series:

F[n,m]
def
=

(
1 c[m] = d[n] ^ a[m]  b[n]

0 otherwise
(1)

The inputs X can be convolved with each IRF
gk by premultiplication with sparse matrix Gk 2
R

N⇥M for k 2 {1, 2, ..., K} as defined below:

Gk = gk

⇣
b1> � 1a>;A[⇤,k]

⌘
� F (2)

The convolution that yields the design matrix of
convolved predictors X0 2 R

N⇥K is then defined
using products of the G matrices and the design
matrix X:2

X0
[⇤,k]

def
= Gk X[⇤,k] (3)

2This implementation of convolution is only exact when
the predictors fully describe a discrete impulse signal. Exact
convolution of samples from continuous signals is generally
not possible because the signal is generally not analytically
integrable. For continuous signals, DTSR can approximate
the convolution as long as the predictor is interpolated be-
tween sample points at a fixed frequency prior to fitting.
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Following convolution, DTSR is simply a linear
model. The full model mean is the sum of (1) the
intercept µ and (2) the product of the convolved
predictor matrix X0 and the coefficient vector u:

y ⇠ N
�
µ + X0u, �2

�
(4)

4 Implementation

The present implementation defines the afore-
mentioned equations3 as a Bayesian computation
graph in Tensorflow and Edward and trains it with
black box variation inference (BBVI) using the
Nadam optimizer (Dozat, 2016)4 with a constant
learning rate of 0.01 and minibatches of size 1024.
For computational efficiency, histories are trun-
cated at 128 timesteps. Prediction from the net-
work uses an exponential moving average of pa-
rameter iterates with a decay rate of 0.998. Con-
vergence was visually diagnosed.

The present experiments use a ShiftedGamma
IRF kernel:

f(x; ↵, �, �) =
�↵(x � �)↵�1e��(x��)

�(↵)
(5)

This is simply the PDF of the Gamma distribution
augmented with a shift parameter � allowing the
lower bound of the support of the distribution to
deviate from 0. We constrain � to be strictly neg-
ative, thereby allowing the model to find a non-
zero instantaneous response. We also constrain k
to be strictly greater than 1, which deconfounds
the shape and shift parameters. All bounded vari-
ables are constrained using the softplus bijection:

softplus(x) = log(ex + 1) (6)

The ShiftedGamma kernel is used here because
it can fit a wide range of response shapes and
has precedent in the fMRI literature, where HRF
kernels are often assumed to be Gamma-shaped
(Lindquist et al., 2009).5

All parameters are given normal priors with unit
variance. Prior means for the fixed IRF kernel

3As noted above, for expository purposes the definition in
Section 3 only supports fixed-effects models. The full def-
inition for mixed-effects DTSR models is provided in Ap-
pendix A. Mixed models are used throughout the experiments
reported below.

4The Adam optimizer (Kingma and Ba, 2014) with Nes-
terov momentum (Nesterov, 1983)

5Other IRF kernels, including spline functions and com-
position of convolutions, are supported by the current imple-
mentation of DTSR but are not explored in these experiments.
More details are provided in the software documentation.

parameters are domain-specific and discussed in
the experiments sections below. To center the
prior at an intercept-only model,6 prior means for
the intercept µ and variance �2 are set (respec-
tively) to the empirical mean and variance of the
response, and prior means for both fixed coeffi-
cients and random effects7 are set to 0. Although
the Bayesian implementation of DTSR is used for
this study because it provides quantification of un-
certainty, placing priors on the IRF kernel param-
eters is not crucial to the success of the system. In
all experiments reported below, the MLE imple-
mentation arrives at similar solutions and achieves
slightly better error.

In the interests of enabling the use of DTSR
by the scientific community, the implementation
of DTSR used here is offered as a documented
open-source Python package with support for (1)
Bayesian, variational Bayesian, and MLE infer-
ences and (2) a variety model structures and im-
pulse response kernels. The Tensorflow back-
end also enables GPU acceleration where avail-
able. Source code and links to documenta-
tion are available at https://github.com/
coryshain/dtsr.

5 Experiment 1: Synthetic data

An initial experiment fits DTSR estimates to syn-
thetic data to determine whether the model can re-
cover known ground truth IRFs. Synthetic data
were synthesized using the following procedure.
First, 20 input vectors of size 10,000 were drawn
from a standard normal distribution. These values
synthesize an impulse stream containing 20 co-
variates, each with 10,000 observations. A Shift-
edGamma IRF was then drawn for each of the 20
covariates. Coefficients were drawn from a uni-
form distribution U(�50, 50), and IRF parame-
ters were drawn from the following distributions:
↵ ⇠ U(1, 6), � ⇠ U(0, 5), � ⇠ U(�1, 0). The
prior means for the corresponding IRF kernel pa-
rameters are placed at the centers of these ranges.
The stream of responses was generated by con-
volving the covariates with their corresponding
IRFs. Gaussian noise with standard deviation 20
was injected into the response following genera-
tion. The 10,000 trials were spaced 100ms apart.
As shown in Figure 4, the DTSR estimates for the

6A model in which the response is insensitive to the model
structure.

7See Appendix A for the definition of the mixed-effects
DTSR model, which includes random effects.
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Figure 4: Synthetic data. True IRFs (left) and estimated IRFs with 95% credible intervals (right).

synthetic data are very similar to the ground truth,
confirming that when the data-generating model
matches the assumptions of DTSR, DTSR can re-
cover its latent structure with high fidelity.

6 Experiment 2: Human reading times

6.1 Background and experimental design

The main interest of DTSR is the potential to bet-
ter understand real-world dynamical systems like
the human sentence processing response. There-
fore, Experiment 2 applies DTSR to three exist-
ing datasets of naturalistic reading: Natural Sto-
ries (Futrell et al., 2018), Dundee (Kennedy et al.,
2003), and UCL (Frank et al., 2013).

Natural Stories is a self-paced reading (SPR)
corpus consisting of narratives designed to provide
context-rich, fluent-sounding stimuli that nonethe-
less contain many grammatical constructions that
rarely occur naturally in texts. The public release
of the corpus contains data collected from 181
subjects. The stimulus set contains 10 stories with
a total of 485 sentences and 10,245 tokens, for a
total 848,768 fixation events.

Dundee is an eye-tracking (ET) corpus con-
taining newspaper editorials read by 10 subjects,
with incremental eye fixation data recorded during
reading. The stimulus set contains 20 editorials
with a total of 2,368 sentences and 51,502 tokens,
for a total of 260,065 fixation events.

UCL is a reading corpus containing individual
sentences that were extracted from novels written
by amateur authors. The sentences were shuffled
and presented in isolation to 42 subjects. The eye-
tracking portion of the UCL corpus used in these
experiments contains 205 sentences with a total of
1,931 tokens, for a total of 53,070 fixation events.

In all experiments, the response variable is log

fixation duration (go-past duration for ET). Mod-
els use the following set of predictor variables in
common use in psycholinguistics: Sentence posi-
tion (index of word in sentence), Trial (index of
trial in series),8 Saccade Length (in words, ET
only), Word Length (in characters), Unigram Log-
prob, and 5-gram Surprisal. Unigram Logprob
and 5-gram Surprisal are computed by the KenLM
toolkit (Heafield et al., 2013) trained on Gigaword
4 (Parker et al., 2009). In addition, DTSR enables
fitting of a Rate predictor, which is simply a vec-
tor of ones, one for each observation, that is con-
volved using a latent IRF. Rate thus measures the
response to density of stimulus presentation in the
recent past. Since without deconvolution Rate is
identical to the intercept, it is excluded from non-
deconvolutional baseline models. Following stan-
dard practice in psycholinguistics, by-subject ran-
dom coefficients for each of these predictors are
included in all models (baseline and DTSR).9

ShiftedGamma IRFs are fitted to all predic-
tors except Sentence Position, which is assigned
a Dirac delta IRF (i.e. a linear coefficient) since it
increases linearly within the sentence and is not
expected to have a diffuse response. In plots,
the Sentence Position estimate is shown as a stick
function at time 0s. Prior means used for the
IRF kernel parameters are ↵ = 2, � = 5, and
� = �0.5. Together, these priors define an ex-
pected exponential-like IRF which decays to near-
zero in about 1s, which seems plausible for human
reading times. In practice they do not appear to be
very constraining, since posterior means of fitted

8Except UCL, which contains isolated sentences, in
which case Trial is identical to Sentence Position.

9By-subject IRF parameters were not used for this study
because they substantially complicate the model and initial
experiments using them showed little benefit on training data.
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Figure 5: Human data. Estimated IRFs with 95% credible intervals for Natural Stories (left), Dundee
(center) and UCL (right). Intervals are too tight to be seen.

models often deviate quite far from these values.
Existing work provides some expectations

about the relationships of these variables to read-
ing time. Processing difficulty is expected to in-
crease with Saccade Length, Word Length, and 5-
gram Surprisal, and positive linear relationships
have been shown experimentally (Demberg and
Keller, 2008). Unigram Logprob is expected to
be negatively correlated with reading times, since
more frequent words are expected to be easier to
process. Sentence Position, Trial, and Rate index
different kinds of change in the response over time
and their relationship has not been carefully stud-
ied, in part for lack of deconvolutional regression
tools. Although reading times tend to decrease
over the course of the experiment (Baayen et al.,
2018), suggesting an expected negative effect of
Trial, this may be partially explained by temporal
diffusion. For the present study, all predictors are
rescaled by their standard deviations.10

In all reading experiments, data are partitioned
into training (50%), development (25%) and test
(25%) sets. Outlier filtering is also performed.
For Natural Stories, following Shain et al. (2016),
items are excluded if they have fixations shorter
than 100ms or longer than 3000ms, if they start
or end a sentence, or if subjects missed 4 or
more subsequent comprehension questions. For
Dundee, following van Schijndel and Schuler
(2015), unfixated items are excluded as well as
(1) items following saccades longer than 4 words
and (2) starts and ends of sentences, screens, doc-
uments, and lines. For UCL, unfixated items are

10Except Rate, which has no variance and therefore cannot
be scaled by its standard deviation of 0.

excluded as well as (1) items following saccades
longer than 4 words and (2) sentence starts and
ends. Partitioning and filtering are applied only to
the response series. The entire predictor history
remains visible to the model.

From a modeling perspective, the primary re-
sults of interest in Experiment 2 are the IRFs them-
selves and the insights they provide into human
sentence processing. However, to check the re-
liability of the DTSR estimates, prediction qual-
ity on unseen data is compared to that of non-
deconvolutional baseline models fitted with LME
and GAM.11 Both baselines are fitted with and
without three preceding spillover positions for
each predictor (baselines with spillover are desig-
nated throughout this paper with the suffix -S).12

6.2 Results

The fitted IRFs for Natural Stories, Dundee, and
UCL are shown in Figure 5. Effect sizes by corpus
— computed here as the integral of each IRF over
the first 10s — are shown in Table 1, along with

11Formulae used to construct each model reported in this
study are available in the associated code repository.

12This number of spillover positions is among the largest
attested in the psycholinguistic literature because model com-
plexity in LME and GAM increases substantially with each
spillover position added, especially when by-subject random
slopes are included for each spillover position for each vari-
able. Indeed, many of the baseline models run for these ex-
periments are already at the limits of tractability, as shown by
the non-convergence reported in certain cells of Table 2. An
advantage of the DTSR approach is that it can consider arbi-
trarily long histories at no cost to model complexity. While
this permits DTSR to consider longer histories than its com-
petitors (in these experiments, 128 timepoints vs. 4), DTSR
is more constrained in its use of history since it must apply
the same set of IRFs to all datapoints, while the baselines es-
sentially fit separate models for each spillover position.
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Natural Stories Dundee UCL
Predictor Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%

Trial -0.0053 -0.0057 -0.0049 -0.0085 -0.0010 -0.0071 — — —
Sent pos 0.0154 0.0148 0.0160 0.0004 -0.0013 0.0022 0.0340 0.0301 0.0379

Rate -0.1853 -0.1858 -0.1848 -0.0649 -0.0659 -0.0640 -0.0806 -0.0832 -0.0781
Sac len — — — 0.0249 0.0216 0.0207 0.0217 0.0209 0.0225

Word len 0.0020 0.0019 0.0021 0.0107 0.0105 0.0109 -8e-07 -1.7e-5 1.4e-5
Unigram 2.6e-6 -5e-6 2.2e-5 -2.0e-6 -3.9e-5 2.8e-5 1e-06 -4e-6 1.2e-5
5-gram 0.0057 0.0056 0.0059 0.0139 0.0134 0.0145 0.0159 0.0148 0.0171

Table 1: Effect sizes by corpus with 95% credible intervals based on 1024 posterior samples

95% credible intervals (CI). The IRFs (curves) in
these plots represent the expected change in the
response over time from observing a unit impulse
of the predictor. For example, the Dundee model
estimates that observing a standard deviation of
5-gram surprisal engenders a slowdown of about
0.05 log ms instantaneously and a slowdown of
about 0.03 log ms 250 ms after stimulus presen-
tation. Because the response is reading time, pos-
itive IRFs represent inhibition and negative IRFs
represent facilitation. Detailed interpretation of
these curves is provided below in Section 6.3.

Table 2 shows prediction error from DTSR vs.
baselines fitted to the same feature set. As shown,
DTSR provides comparable or improved predic-
tion performance to the baselines, even against the
-S models which are more heavily parameterized.
DTSR outperforms LME models on unseen data
across all corpora and generally improves upon or
closely matches the performance of GAM (with
no spillover). Compared to GAM-S (with three
additional spillover positions), there is a clear ad-
vantage of DTSR for Natural Stories but not for
the eye-tracking (ET) datasets. This is likely due
to more pronounced temporal confounds in Natu-
ral Stories (especially of Rate, which the baseline
models cannot estimate) compared to the other
corpora.13 However, even in the absence of suf-
ficiently diffuse effects to afford prediction im-
provements, the ability to measure diffusion di-
rectly is a major advantage of the DTSR model,
since it can be used to detect the absence of dif-
fusion in settings where it might in principle ex-
ist. Further discussion of the DTSR IRF estimates
themselves is provided in Section 6.3.

As shown in Table 3, pooling across corpora,
permutation testing reveals a significant improve-

13Note that GAM-S is more heavily parameterized than
DTSR in that it fits multidimensional spline functions of each
spillover position of each predictor. This makes it difficult to
generalize information about effect timecourses from GAM
fits, motivating the use of DTSR for studies in which time-
courses are a quantity of interest.

ment in MSE on test data of DTSR over each base-
line system (p = 0.0001 for all comparisons).14

6.3 Discussion

Some key generalizations emerge from the DTSR
estimates shown in Figure 5. The first is the pro-
nounced facilitative role of Rate in all three mod-
els, but especially in Natural Stories. This means
that fast reading in the recent past engenders
fast reading in the present, because (1) observ-
ing a stimulus exerts a large-magnitude, diffuse,
and negative (facilitative) influence on the sub-
sequent response, and (2) the Rate contributions
of the stimuli are additive. This result demon-
strates an important pre-linguistic influence of in-
ertia — a tendency toward slow overall change
in base response rate. This effect is especially
large-magnitude and diffuse in Natural Stories,
which is self-paced reading and therefore differs
in modality from the other datasets (which are
eye-tracking). This suggests that SPR participants
strongly habituate to repeated button pressing and
stresses the importance of deconvolutional regres-
sion for bringing this low-level confound under
control in analyzing SPR data, since it appears to
have a large influence on the response and might
otherwise confound model interpretation.

Second, effects are generally consistent with ex-
pectations: positive effects for Saccade Length,
Word Length, and 5-gram Surprisal, and a nega-
tive effect of Trial. The null influence of Unigram
Logprob is likely due to the presence in the model
of both 5-gram Surprisal (which interpolates uni-
gram probabilities) and Word Length (which is in-
versely correlated with Unigram Logprob). The
biggest departure from prior expectations is the
null estimate for Word Length in UCL. It appears

14To ensure comparability across corpora with different er-
ror variances, per-datum errors were first scaled by their stan-
dard deviations within each corpus. Standard deviations were
computed over the joint set of error values in each pair of
DTSR and baseline models.
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Natural Stories Dundee UCL
System Train Dev Test Train Dev Test Train Dev Test

LME 0.0803 0.0818 0.0815 0.2135 0.2133 0.2128 0.2613 0.2776 0.2561
LME-S 0.0789† 0.0807† 0.0804† 0.2099† 0.2103† 0.2095† 0.2509† 0.2754† 0.2557†

GAM 0.0798 0.0814 0.081 0.212 0.2116 0.2111 0.2576 0.2741 0.2538
GAM-S 0.0784 0.0802 0.0799 0.2083 0.2085 0.2078 0.2440 0.2661 0.2457

DTSR 0.0648 0.0655 0.0650 0.2100 0.2094 0.2088 0.2590 0.2752 0.2543

Table 2: Mean squared prediction error by system (daggers indicate convergence warnings)

Baseline DTSR improvement (z-units) p-value
LME 0.059 0.0001⇤⇤⇤

LME-S 0.054 0.0001⇤⇤⇤

GAM 0.057 0.0001⇤⇤⇤

GAM-S 0.051 0.0001⇤⇤⇤

Table 3: Overall pairwise significance of prediction
improvement from DTSR vs. baselines

that the contribution of Word Length in this corpus
can be effectively explained by other variables.

Third, the response estimates for Dundee and
UCL (both of which are eye-tracking) are very
similar, which suggests that DTSR is discovering
replicable population-level features of the tempo-
ral profile for eye-tracking data.

Fourth, there is a general asymmetry in degree
of diffusion between low-level perceptual-motor
variables like Saccade Length and Word Length,
whose responses tend to decay quickly, and the
high-level 5-gram Surprisal variable, whose re-
sponse tends to decay more slowly. This is consis-
tent with expectations from the sentence process-
ing literature. Perceptual-motor variables involve
rapid bottom-up computation (e.g. visual process-
ing or motor planning/execution) and are there-
fore not expected to have a diffuse response, while
surprisal involves top-down computation of future
words given context, which might be more com-
putationally expensive and therefore engender a
slower response. While this outcome is suggested
e.g. by the aforementioned finding that spillover 1
winds up being a stronger position for a surprisal
predictor in the Shain et al. (2016) models, DTSR
permits direct investigation of these dynamics.

7 A note on hypothesis testing

As a Bayesian model, DTSR supports hypothesis
testing by querying the variational posterior. For
example, as shown in Table 1, the credible interval
(CI) for 5-gram Surprisal in Natural Stories does
not include zero (rejecting the null hypothesis of
no effect), while the CI for Unigram logprob does
(failing to reject). To control for effects of mul-

ticolinearity, one could perform ablative tests of
fitted null and alternative models using (1) likeli-
hood comparison or (2) predictive performance on
unseen data.

However, DTSR estimates are obtained through
non-convex stochastic optimization, which com-
plicates hypothesis testing because of possible es-
timation noise due to (1) convergence to a lo-
cal but not global optimum, (2) imperfect con-
vergence to the local optimum, and/or (3) Monte
Carlo estimation of the test statistic via posterior
sampling. It cannot therefore be guaranteed that
hypothesis testing results are due to differences in
model structure rather than differences in relative
amounts of estimation noise introduced by the fit-
ting procedure. Thus, p-values (and, consequently,
hypothesis tests) based on direct comparison of
DTSR models should be considered approximate.

However, even in situations where such un-
certainty in hypothesis testing is not acceptable,
DTSR is appropriate for certain important use
cases. First, DTSR can be used for exploratory
data analysis in order to empirically motivate the
spillover structure of the linear model. Spillover
variables can be excluded or included based on the
degree of temporal diffusion revealed by DTSR,
permitting construction of linear models that are
both parsimonious and effective for controlling
temporal diffusion. Second, DTSR can be used
to fit a data transform which is then applied to
the data prior to statistical analysis. This approach
is identical in spirit to e.g. the use of the canon-
ical HRF to convolve predictors in fMRI models
prior to linear regression. However, since DTSR
is domain-general, it can be a valuable component
in any analysis toolchain for time series.

8 Conclusion

This paper presented a variational Bayesian de-
convolutional time series regression method as a
solution to the problem of temporal diffusion in
psycholinguistic time series data and applied it to
both synthetic and human responses in order to
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better understand and control for latent temporal
dynamics. Results showed that DTSR can yield
a plausible, replicable, parsimonious, insightful,
and predictive model of a complex dynamical sys-
tem like the human sentence processing response
and therefore support the use of DTSR for psy-
cholinguistic time series modeling. While the
present study explored the use of DTSR to under-
stand human reading times, DTSR can in princi-
ple also be used to deconvolve other kinds of re-
sponse variables, such as the HRF in fMRI model-
ing or the power/coherence response in oscillatory
measures like electroencephalography, suggesting
a rich array of potential applications of DTSR in
computational psycholinguistics.
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A Definition of mixed effects DTSR

For expository purposes, in Section 3 the DTSR
model was defined only for fixed effects. How-
ever, DTSR is compatible with mixed modeling
and the implementation used here supports ran-
dom effects in the model intercepts, coefficients,
and IRF parameters. The full mixed-effects DTSR
equations are presented below.

The definitions of X, y, µ, �2, a, b, c, d, F, M ,
N , K, and R presented in Section 3 are retained
for the mixed model definition. The remaining
variables and equations must be redefined to some

extent. Mixed-effects DTSR models additionally
contain the following parameters:

• a vector o 2 R
O of O random intercepts

• a vector u 2 R
U of U fixed coefficients

• a vector v 2 R
V of V random coefficients

• a matrix A 2 R
R⇥L of R fixed IRF kernel

parameters for L fixed impulse vectors

• a matrix B 2 R
R⇥W of R random IRF kernel

parameters for W random impulse vectors

Random parameters o, v, and B are constrained
to be zero-centered within each random grouping
factor.

To support mixed modeling, the fixed and ran-
dom effects must first be combined using addi-
tional utility matrices. Let O 2 {0, 1}N⇥O be
a mask matrix for random intercepts. A vector
q 2 R

N of intercepts is:

q
def
= µ + Oo (7)

Let U 2 {0, 1}L⇥U be an indicator matrix for
fixed coefficients, V 2 {0, 1}L⇥V be an indi-
cator matrix for random coefficients, and V0 2
{0, 1}N⇥V be a mask matrix for random coeffi-
cients. A matrix Q 2 R

N⇥L of coefficients is:

Q
def
= 1 (Uu)> + V0 diag(v)V> (8)

Let W 2 {0, 1}L⇥W be an indicator matrix
for random IRF parameters and W0

1, . . . ,W
0
n 2

{0, 1}R⇥W be mask matrices for random IRF pa-
rameters. Then matrices Pn 2 R

R⇥L for n 2
{1, 2, . . . , N} are:

Pn
def
= A + (W0

n � B)W> (9)

In each equation above, the random effects param-
eters are masked using the random effects filter
associated with each data point. Q and Pn are
then transformed into the impulse vector space us-
ing the indicator matrices V and W, respectively.
This procedure sums the random effects associ-
ated with each data point and adds them to the
population-level parameters.

To define the convolution step, let gl for l 2
{1, 2, . . . , L} be parametric IRF kernels, one for
each impulse. Convolution of X with each IRF
kernel is performed by premultiplying the inputs
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X with sparse matrix Gl 2 R
N⇥M for l 2

{1, 2, ..., L}:

(Gl)[n,⇤]
def
= gl

⇣
b[n] � a>; (Pn)[⇤,l]

⌘
� F[n,⇤]

(10)
Finally, let L 2 {0, 1}K⇥L be an indicator ma-
trix mapping the K predictors of X to the corre-
sponding L impulse vectors of the model.15 The
convolution that yields the design matrix of con-
volved predictors X0 2 R

N⇥L is then defined us-
ing a product of the convolution matrices G, the
design matrix X, and the impulse indicator L:

X0
[⇤,l]

def
= Gl XL[⇤,l] (11)

The full model mean is the sum of (1) the in-
tercepts and (2) the sum-product of the convolved
predictors X0 with the coefficient parameters Q:

y ⇠ N
�
q + (X0 � Q)1, �2

�
(12)

15Predictors and impulse vectors are distinguished because
in principle multiple IRFs can be applied to the same predic-
tor. In the usual case where this distinction is not needed, L
is identity and K = L.
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Abstract

In this paper, we present a crowdsourcing-
based approach to model the human percep-
tion of sentence complexity. We collect a large
corpus of sentences rated with judgments of
complexity for two typologically-different lan-
guages, Italian and English. We test our ap-
proach in two experimental scenarios aimed to
investigate the contribution of a wide set of
lexical, morpho-syntactic and syntactic phe-
nomena in predicting i) the degree of agree-
ment among annotators independently from
the assigned judgment and ii) the perception
of sentence complexity.

1 Introduction

Linguistic complexity is a well-studied and mul-
tifaceted notion for which several measures have
been proposed in different frameworks ranging
from First and Second Language Acquisition, lan-
guage typology and readability assessment. Such
measures depend on the perspective from which
linguistic complexity is considered. According to
one established distinction, linguistic complexity
should be divided into an absolute vs a relative
notion (Miestamo, 2008). While the former is
driven by theory and aims at assessing the com-
plexity of a language according to some formal
properties of the linguistic system, the latter de-
fines complexity in relation to the language user
(e.g. speaker, listener or learner) thus considering
complexity in terms of processing difficulty. From
this second perspective, sentence complexity is
analyzed in terms of cognitive load, which can be
inferred using both off-line (e.g. complexity judg-
ments, error rates on comprehension test, prefer-
ence for a structure over a meaning-equivalent one
in elicited production tasks) and online process-
ing measures (e.g. eye-tracking data such as to-
tal gaze time, fixation duration and pupil dilation).

To operationalize factors underlying sentence pro-
cessing performance, several complexity metrics
have been proposed which consider properties of
single word and sentence, as well as experience-
based expectations. Word-level predictors shown
to correlate with greater processing difficulties are
e.g. word frequency, age of acquisition, root fre-
quency effect, orthographic neighbourhood fre-
quency. At syntactic level, a well-studied mea-
sure of sentence complexity takes into account de-
pendency length (Gibson, 1998, 2000), which has
been used to explain a wide range of psycholin-
guistic phenomena, such as the subject/object rel-
ative clauses asymmetry or the garden path effect
in main verb/reduced-relative ambiguities (Gor-
don et al., 2001; Staub et al., 2010), as well as vari-
ations in word order patterns (Gildea and Temper-
ley, 2010), also in a diachronic perspective (Gu-
lordava and Merlo, 2015). Alternatively, process-
ing difficulty has been explained in terms of sur-
prisal (Hale, 2001). Computational models to cal-
culate lexical and syntactic surprisal have been de-
veloped by e.g. Roark et al. (2009) using a broad-
coverage probabilistic PCFG parser and Demberg
and Keller (2009), who introduced Prediction The-
ory, which aims at unifying Dependency Length
Theory with syntactic surprisal, by making use of
a psycholinguistically-motivated version of tree-
adjoining grammar.

Unlike more conventional studies on human
sentence processing carried out in experimental
settings, in this study we rely on crowdsourcing
methods to investigate how people perceive sen-
tence complexity. The reliability of crowdsourced
data for linguistics and computational linguistics
research is well acknowledged as shown in the sur-
vey by Munro et al. (2010) proving that the qual-
ity of findings obtained from the crowd is com-
parable, if not higher, to controlled laboratory ex-
periments. In addition, crowdsourcing reaches a
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broader population, in terms of age, education,
profession etc. and it is thus more suitable to catch
the “layman” intuition of sentence complexity. For
these reasons, this method has been used in recent
works in the field of readability and text simpli-
fication; it is the case of Lasecki et al. (2015);
Clercq et al. (2013); Brunato et al. (2016) where
the crowd was asked to evaluate the level of com-
plexity or the degree of informativeness of simpli-
fied sentences compared to the original one.

In our study, we adopted a similar perspective
relying on a crowdsourcing approach to collect a
wide resource containing multiple annotations of
sentence complexity given by humans. Unlike tra-
ditional studies which typically assess either lex-
ical or structural complexity phenomena, we fo-
cused on the analysis of a wide set of linguistic
features to investigate how all contribute to human
perception of sentence complexity. This choice
is also motivated by previous studies focused on
the “form” of a text all related to the assess-
ment of complexity, e.g. readability assessment
(Collins-Thompson, 2015), first language acqui-
sition (Sagae et al., 2005) and Native Language
Identification (Malmasi et al., 2017).

2 Our Contributions

Our contribution to the study of sentence complex-
ity is multiple:

• we address two research questions aimed to
investigate the role played by a set of linguis-
tic phenomena in characterizing a) the agree-
ment among annotators when they rated the
sentences independently from the assigned
score and b) the human perception of com-
plexity.

• we introduce a new crowdsourcing-based
method to assess how people perceive sen-
tence complexity and we test it for two lan-
guages;

• we collect two corpora of sentences anno-
tated by humans with a judgment of complex-
ity;

The two research questions refer to two phenom-
ena that are by definition highly subjective and dif-
ficult to define. Our study intends to address this
vagueness providing the following main contribu-
tions: i) detecting the main linguistic phenom-
ena involved in the prediction of agreement and

ii) which phenomena characterize a sentence that
is perceived complex by a high number of human
subjects.

All the data discussed here are made available
at www.italianlp.it/resources/.

3 Approach

We collected a dataset of rated sentences through
a crowdsourcing task in which annotators were
asked to give a score of complexity to a sentence.
The task was carried out on two languages, Ital-
ian and English, which have different morpho-
syntactic and syntactic properties such as morpho-
logical richness and word order freedom. This
choice was aimed to investigate whether there are
linguistic complexity parameters shared by typo-
logically different languages. Starting from the
collected rated sentences, we automatically ex-
tracted a wide set of features spanning across mul-
tiple levels of linguistic description, which have
been acknowledged in the literature on human sen-
tence processing to be involved in sentence com-
plexity. The contribution of these features in mod-
eling the perception of sentence complexity was
tested in two different scenarios: i) a classifi-
cation experiment to assess which features con-
tribute more in the automatic prediction of the de-
gree of agreement among annotators and which
features vary in a statistically significant way be-
tween agreed and not-agreed sentences; ii) a re-
gression experiment to evaluate if the considered
features allow predicting the complexity judgment
assigned by humans and how they contribute to the
prediction.

In what follows, we introduce the three main in-
gredients of our approach, i.e. the set of linguis-
tic features (Section 3.1), the datasets of sentences
(Section 3.2) and the crowdsourcing task (Section
3.3). In the rest of the paper, we describe the ex-
perimental scenarios raised by our two research
questions and discuss the results (Sections 4 and
5).

3.1 Linguistic Features

The set of features considered in this study cap-
tures different aspects of sentence complexity.

Raw text features:
word length, i.e. average number of characters
per words (char tok in all tables and figures that
follow) and sentence length, i.e. average number
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of words per sentence (n tokens), which are typi-
cally used as a proxy of lexical and syntactic com-
plexity in traditional readability metrics (Collins-
Thompson, 2015);

Morpho-syntactic features:
distribution of part-of-speech types; type/token
ratio, calculated as the ratio between the number
of lexical types, the number of tokens, in terms of
both lemma and forms (ttr form, ttr lemma); ver-
bal features, i.e. the distribution of verbs accord-
ing to mood (verbs mood), tense (verbs tense)
and persons (verbs num per), and lexical density
(lex density), calculated as the ratio of content
words (verbs, nouns, adjectives and adverbs) to
the total tokens in a text. Psycholinguistic stud-
ies highlight that higher lexical density implies
greater cognitive load (Gibson, 1993);

Syntactic features:
probability of syntactic dependency types e.g.
subject, direct object, modifier, etc., calculated as
the distribution of each type out of the total de-
pendency types. Some syntactic relations have
been shown to be harder to process, e.g. object-
relative clauses and prepositional-phrase attach-
ments (Gibson and Pearlmutter, 1994; Gibson,
2000), or the subject and object relations espe-
cially in free word-order languages;
distribution of verbal roots, i.e. the distribution
of verbal roots out of the total of sentence roots. A
lower percentage of verbal roots implies a higher
number of nominal sentences which have a less-
standard structure due to verb ellipsis thus possi-
bly causing processing ambiguity;
parse tree depth features: the depth of the whole
parse tree (max depth), calculated in terms of the
longest path from the root of the dependency tree
to some leaf; the depth of embedded complement
chains governed by a nominal head and including
either prepositional complements or nominal and
adjectival modifiers, calculated as the total num-
ber of prepositional chains (n prep chains) and the
average depth of chains (prep chain l); the distri-
bution of embedded complement chains by depth,
calculated as the number of chains out of the total
number of chains in a sentence (prep depth). All
these features are related to length factors and cor-
relate with processing difficulty (Frazier, 1985), as
in the case of long sequences of embedded prepo-
sitional complements;
verbal predicate features: the distribution of ver-

bal head (verb head); the arity of verbs, meant
as the average number of instantiated dependency
links sharing the same verbal head covering both
arguments and modifiers verb arity); the distribu-
tion of verbal head by arity, calculated as the total
number of verbal heads with the same arity in a
sentence (verb head arity); the relative ordering
of subject and object with respect to the verbal
head (order subj and order obj);
subordination features include the distribution of
main vs. subordinate clauses (n subord clauses
and n princ clauses; the average depth of
chains of embedded subordinate clauses, calcu-
lated as the total number of subordinate chains
(n subord chain) and the average depth of sub-
ordinate chains (subord chain l); the distribution
of embedded subordinate clauses chains by depth,
calculated as the number of chains out of the to-
tal number of chains in a sentence (subord depth).
We also calculated the order of the subordi-
nate clause with respect to the main clause (or-
der subord), since according to e.g. (Miller and
Weinert, 1998), sentences containing subordinate
clauses in postverbal than in preverbal position are
easier to process;
length of dependency links calculated as the
number of words between the syntactic head and
the dependent: the feature includes the length of
all dependency links (links len) and of the maxi-
mum dependency links (max links l). It is widely
known that long-distance constructions cause cog-
nitive load (Gibson, 1998; Gildea and Temperley,
2010);
clause length measured as the number of tokens
occurring within a clause (token clause). Syntac-
tic metrics relying on this feature, such as the T-
Unit (Hunt, 1966), are widely used e.g. in first and
second language acquisition to assess the develop-
ment of syntactic competence.

3.2 Data

The experiments were carried out on a subset of
sentences extracted from two manually revised
treebanks. We chose this kind of data in order to
prevent possible errors produced by the automatic
annotation of sentences. Specifically, we consid-
ered the newspaper section of the Italian Universal
Dependency Treebank (UDT) (Simi et al., 2014)
and the automatically converted Wall Street Jour-
nal section of the Penn Treebank (McDonald et al.,
2013). Since we wanted to investigate the human
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perception of complexity with respect to standard
language, we didn’t use the English version of the
UDT containing different genres of web media
(e.g. blogs, emails). Although the two selected
treebanks have different annotation schemes, the
annotation scheme of the UDT project (McDon-
ald et al., 2013) is based on an evolution of (uni-
versal) Stanford dependencies (de Marneffe et al.,
2006). This allowed us to compare linguistic phe-
nomena correlated with sentence complexity mini-
mizing possible cross-linguistic differences due to
not uniform principles of sentence structure rep-
resentation. In order to reduce the influence of
lexicon on the study of sentence complexity we
pruned from the two treebanks those sentences
containing low-frequency lemmas with respect to
a lemma frequency list that we automatically ex-
tracted from a large reference corpus, excluding
numerals and proper nouns. For what concerns
Italian, we used as a reference corpus PAISÁ (Ly-
ding et al., 2014), which is one of the biggest cor-
pus of authentic contemporary Italian texts. For
English, we selected a large corpus of sentences
from the Wall Street Journal (Nivre et al., 2007).
For both languages, all the sentences contained in
the two treebanks were grouped into 6 bins based
on a different sentence length, i.e. 10, 15, 20, 25,
30, 35 tokens (only for Italian with a range of +/-
1 tokens each). This was meant to investigate if
some linguistic features that are known to corre-
late with sentence length (e.g. parse tree depth fea-
tures and dependency links) still play an influence
on sentence complexity judgments when sentence
length is controlled. Sentences in each subset were
then ranked according to the sum of the average
frequency of their lemmas. We extracted for each
bin the first 200-top ranked sentences, with the ex-
ception of Italian for which the last bin contains
123 sentences. As a result of the whole selection
process, we obtained 1,200 sentences for English
and 1,123 for Italian used for experiments.

3.3 Collection of Judgments of Complexity

To collect human complexity judgments, we ad-
ministered a crowdsourcing task through the plat-
form CrowdFlower1. For each language we re-
cruited 20 native speakers who were asked to read
a sentence and rate how difficult it was on a 7-
point scale where 1 means “very easy” and 7 “very
difficult”. Sentences were randomly ordered and

1www.crowdflower.com

presented on distinct pages containing five sen-
tences each. To improve the quality of the col-
lected annotations we chose workers with a “high
quality” level assigned by the platform on the ba-
sis of their performance in previous tasks and we
set a minimum of ten seconds to complete a page.
We computed the Krippendorff’s alpha reliability
corresponding to the number of annotators who as-
signed the same judgment. We obtained a reliabil-
ity of 26% for Italian and 24% for English.

4 Studying the Agreement between
Human Judgments

Our first research question concerned the inves-
tigation of linguistic phenomena characterizing
the agreement among annotators in assigning the
same judgment of complexity to a sentence. To
this end, we split the whole set of rated sentences
into ten sets corresponding to the number of an-
notators giving a judgment of complexity within a
same range, hereafter referred to degrees of agree-
ment2. Figure 1 reports the number of sentences
for each degree of agreement. For both languages,
if we consider a minimum number of 10 agree-
ing annotators, very few sentences were discarded
(⇠50 for Italian and 70 for English). As the num-
ber of agreeing annotators increases, the number
of sentences progressively decreases but we still
have a considerable number of sentences (⇠600)
when 14 annotators agree.

Figure 1: Number of sentences at different degrees
of agreement.

To study the linguistic phenomena characteriz-
ing the agreement, we firstly extracted the features
described in Section 3.1 from sentences on which
annotators agreed (agreed sentences) and from the
rest of sentences (not-agreed sentences); we as-
sessed if the difference is statistically significant

2Each range was calculated in terms of standard deviation
from the mean judgment values given to each sentence.
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using Wilcoxon Rank-sum test. This was done for
each agreement threshold.

We then performed a feature selection process
to identify the features that maximize the accu-
racies of a classifier in predicting agreed vs not-
agreed sentences. To create a ranking of feature
relevance, we used the Recursive Feature Elimi-
nation (RFE) algorithm implemented in the Scikit-
learn library (Pedregosa et al., 2011), using Linear
SVM as estimator algorithm, and we dropped 1
feature in each iteration. We evaluated the clas-
sifier performance using a 3-fold cross validation
method. At the end of this process we selected the
top ranked features. This procedure was iterated
10 times for each degree of agreement.

In order to evaluate the accuracy of the SVM
classifier we computed a baseline corresponding
to the performance of the classifier using a most-
likely class classification method, where each sen-
tence is always classified into the most likely class.

Table 1 reports the features that vary in a sta-
tistically significant way (Xin table) and the ones
selected in classification (marked with ?) for both
languages and degrees of agreement levels. As it
can be seen, there is an opposite trend between
the statistically significant features and those se-
lected by the classifier as the degree of agreement
increases. For what concerns the Wilcoxon test,
very few features have significantly different val-
ues at lower degrees of agreement. That is to say
that very few features are involved in discriminat-
ing the agreed vs not-agreed sentences, especially
when the agreement is lower than 14.

For both languages, raw text features (n tokens
and char tok) vary significantly at all degrees
of agreement. Interestingly, these two features
are not considered by the classifier which uses
more complex syntactic features, such as features
related to subordination (e.g. subord depth) and
nominal modification (e.g. prep chain l). Syntac-
tic features start to vary significantly as the agree-
ment increases, e.g. parse tree depth features such
as the depth of the whole parse tree (max depth)
and the complement chains (dep mark), and fea-
tures related to the use of subordination. Com-
paring the two languages we also found a number
of differences. For example, at the lowest agree-
ment (degree 10), features of all types turned out
to vary significantly for English, while the Ital-
ian agreed and not-agreed sentences do not vary
for any features. At higher agreement, Italian

agreed sentences are characterized by the varia-
tion of two language-specific features: the posi-
tion of the object with respect to the verb head
(order obj) and some verbal morphological fea-
tures (verbs num pers, verbs tense), which also
contributes to the classification only for Italian.

Table 2 reports the accuracy of SVM classi-
fier for each degree of agreement3 and the base-
line. At lower degrees of agreement (i.e. <14)
the classifier achieves lower accuracy compared
to the baseline showing that the selected features
do not contribute to discriminate agreed vs not-
agreed sentences. Instead, these features start to
have a greater impact for the classification of sen-
tences at degrees 14, 15, 16, 17. This means that at
these degrees of agreement the values of the fea-
tures characterizing the agreed sentences are sig-
nificantly different from those of the not-agreed
sentences. In addition, even though for these sen-
tences a very high number of features are consid-
ered statistically significant by the Wilcoxon test
the classifier needs less features to assign the cor-
rect class (as shown in Table 1).

5 Correlation of Linguistic Features with
Sentence Complexity

The second research question aims to model the
human perception of complexity studying the cor-
relation between the set of linguistic features ex-
tracted from sentences and the judgments of com-
plexity assigned to each sentence. We firstly cal-
culated the average complexity judgments for the
six bins of sentences of the same length (i.e. 10,
15, 20, 25, 30, 35 tokens). As expected, long
sentences were judged as more complex for both
languages even though all sentences were always
rated as more complex for Italian (see Figure 2).

We then calculated the Spearman’s rank correla-
tion coefficient between the values of each feature
and the average judgments of complexity thus ob-
taining a ranking of features. The correlation was
computed at two distinct degrees of agreement, i.e.
10 and 14. We chose these two thresholds since at
10 the agreed sentences correspond to almost all
the rated sentences and at 14 the SVM classifier
starts to outperform the baseline (see Table 2). Be-
sides, at 14 we still have a quite large set of agreed
sentences allowing a reliable statistical study of
the features (see Figure 1). Only at threshold 10

3The accuracy was computed as the average classification
score of the 10 best results of the feature selection process.
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Feature
Agreement

10 11 12 13 14 15 16 17
IT EN IT EN IT EN IT EN IT EN IT EN IT EN IT EN

char tok ? ? ? ? ? - - X X X? X? X? X? X? X? X?
cpos ADJ ? ? ? ? ? - - - X? - X? X? X? X? X? X
cpos ADP ? ? ? ? ? - - ? - - - - X X X X
cpos ADV ? - ? - ? - - - - - ? - ? - ? -
cpos AUX ? - ? - ? - X - - - - - X? - X -
cpos CONJ ? ? ? ? ? - - ? - X X X? X? X X X
cpos PRON ? - ? - ? - - - X - X? - X - X -
cpos DET - ? - ? - - - X? - X? - X? - X? - X?
cpos NUM - ? - X? - X - X? - X? - X? - X? - X?
cpos PROPN ? - ? - ? - - - X - ? - X? - -
cpos PUNCT ? - ? - ? - X - - - X? - X - X? -
cpos SCONJ ? - ? - ? - - - - - X? - X - X -
cpos VERB - ? - ? - X - X? - X? - X? - X? - X
dep acl - - ? - ? - X - X - X - X - X -
dep acl:relcl - - ? - ? - - - ? - X - X? - X -
dep adpobj - ? - ? - - - ? - - - - - - - X
dep advcl ? - ? - ? - - - X - X - X? - X -
dep amod ? X? ? ? ? X - X? X X X X? X? X? X X?
dep appos - ? - ? - - - - - ? - - - - - -
dep attr - ? - ? - - - - - - - X? - X? - X
dep aux - - ? - ? - X - X - - - X? - X -
dep case ? - ? - ? - - - ? - - - X - X -
dep cc ? ? ? ? ? - - - - X? X X? X? X? X X
dep ccomp - ? - ? - - - - - X - X - X - X
dep compmod - ? - ? - - - - - X? - ? - X? - X?
dep conj ? ? ? ? ? - - X? - X? X? X? X? X? X X?
dep det - ? - ? - - - ? - X? - X? - X? - X?
dep dobj ? - ? - ? - - - - - X - X? - X -
dep mark ? ? ? ? ? - X ? X ? X? ? X? X X X
dep nmod ? ? ? ? X? - X - X - - X? X? X X X
dep nsubj - X? - X? - X - X - X? - X? - X? - X?
dep num - ? - ? - X - X - X? - X? - X? - X?
dep partmod - ? - ? - - - - - - - X - X - X
dep poss - ? - ? - - - - - X - X - X - X
dep punct ? - ? - ? - X - - - X? - X - X -
dep rcmod - ? - ? - - - ? - - - X? - X? - X
dep xcomp ? - ? - ? - - - - - - - X - X -
lex density - ? - ? - - - X? - X? - X - X? - X?
links len - X? ? ? X? X X X X? X X X? X X X X
max depth - ? ? ? X? - X X X X X X X X? X X
max links l - X? ? X? X? X X X X X X X X X X X
n prep chains ? X? X? ? X? X X X X X X X X X? X X
n principal clauses - ? ? ? ? - X X X X? X X X X X X
n subord chain ? ? ? ? ? X X - X? X? X? X X? X X X
n subord clauses ? - ? - ? - X - X? - X? - X? - X? -
n tokens - X? X? X? X? X X X X X X X X X X X
order obj - - ? - ? - - - - - X - X - X -
order subj - - ? - ? - - - ? - - - X - X -
order subord ? ? ? ? ? - X X X X? X X X X X X
prep chain l - ? ? ? ? - X - X X X? X X? X X X
prep depth - X? ? ? X X X X X X? X X? X X? X X?
subord depth ? ? ? ? ? - X? ? X? X? X? X? X? X? X? X?
token clause - ? ? ? ? - - - - - - - X X X X
ttr form - X? ? ? X? X X X X X? X? X? X? X? X X?
ttr lemma ? X? ? X? ? X X X? X X? X? X? X? X? X? X?
verb arity ? ? ? ? X? - X X X X X X X X X X
verb head arity ? ? ? ? ? ? ? ? X? ? X? X? X? X? X? X?
verb head ? ? ? ? X? - X X X X X X X X X X
verbs num pers ? - ? - ? - X? - X? - X? - X? - X? -
verbs tense ? - ? - X? - X - X? - X? - X? - X? -

Table 1: Linguistic features that vary statistically (X) and the ones selected by the SVM classifier in at
least 50% of the 10 runs (?) for Italian and English at different degrees of agreement.

Baseline Accuracy (%) – SVM Classifier Accuracy (%)
10 11 12 13 14 15 16 17

Italian 95.4-95.4 91-90.8 80.6-80.5 66.7-66 51.9-59.1 66.8-68.8 79-80.7 87-87.1
English 94-94 86.8-86.8 83.6-77.4 66.3-66.1 53.9-60 60.7-71.8 70.9-79.3 80.4-84.6

Table 2: Baseline and SVM classifier accuracy at different degrees of human agreement.

we also calculated the ranking of the features with
respect to the six bins of sentences of the same
length (L10, L15, L20, L25, L30, L35). Figure
3 reports the ranking of features with p <0.05.
Positive numbers mean that the higher the feature
value the more complex the sentence was judged
(i.e. the feature ranked +1 is the top-ranked one
since it is the most positively correlated). Instead,
negative numbers mean that the lower the feature

value, the more complex the sentence was judged
(i.e. the feature ranked -1 is the highest nega-
tively correlated). In both languages, the corre-
lation between the top 20 ranked features and the
complexity judgment is extremely high, ranging
from 0.30 to 0.85 when we consider sentences at
agreement 14. At the two agreement thresholds,
for all lengths (columns T10, T14), they concern
not only sentence length but also deep syntactic
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Figure 2: Mean complexity judgment at different
sentence length.

features, in terms of e.g. the depth of the whole
parse tree (max depth), the length of dependency
links (links len), and features related to subordi-
nation (e.g. n subord clauses). Specifically, the
1st-ranked feature in Italian (parse tree depth) and
the one in English (sentence length) have a cor-
relation of 0.64 and 0.84 respectively. Nominal
modification (n prep chains) is also highly corre-
lated (Italian rs=0.59, English 0.54) and similarly
ranked in the two languages at 3rd position. The
distribution of verbs num pers makes the sentence
harder only for Italian; this is possibly related to
the higher complexity of verbal morphology since
the 3rd person verb in impersonal structures might
increase the ambiguity of the sentence with re-
spect to the referent. Only in English, sentence
complexity is affected by the distribution of car-
dinal numbers (cpos NUM) and the dependency
type “numeric modifier” (dep num), in line with
the difficulty of numerical information shown in
readability studies (Bautista and Saggion, 2014).
Conversely, the verbal arity and the relative or-
dering of subjects with respect to the verb have
a lower position in the negative ranking, suggest-
ing that these features make a sentence easier: this
might be due to a more fixed predicate-argument
structure and word order in this language.

If we focus on sentences of the same length,
features considered as a proxy of lexical complex-
ity are in the top positions in both languages. It
is the case of the average word length (char tok)
and the lexical density (lex density) only for En-
glish. Interestingly, while for English the major-
ity of features are similarly ranked in all bins of
sentences of the same length, for Italian we ob-
serve differences between the rankings of features
extracted from sentences  and �20 token long.
Namely, when the average sentence length is �20

tokens, features related to subordination make the
sentence more complex.

5.1 Predicting Human Complexity
Judgments

To asses the contribution of the linguistic fea-
tures to predict the judgment of sentence com-
plexity we trained a linear SVM regression model
with default parameters. We performed a 3-fold
cross validation over each subset of agreed sen-
tences at agreement 10 and 14. We measured two
performance metrics: the mean absolute error to
evaluate the accuracy of the model to predict the
same complexity judgment assigned by humans;
the Spearman correlation to evaluate the correla-
tion between the ranking of features produced by
the regression model with the ranking produced by
the human judgments. Table 3 reports the results
and the average score of the two metrics. As it can
be seen, the model is very accurate and achieves a
very high correlation (>0.56 with p <0.001) with
an average error difference (avg mean abs err) be-
low 1. In particular, the model obtained higher
performance in predicting the ranking of features
extracted from sentences at agreement 14. This
might be due to the fact these sentences are charac-
terized by a more uniform distribution of linguistic
phenomena and that these phenomena contribute
to predict the same judgment of complexity. This
is in line with the results obtained by the SVM
classifier in predicting agreement (Table 2). This
is particularly the case of English and it possibly
suggests that the set of sentences similarly judged
by humans are characterized by a lower variability
of the values of the features.

IT-10 IT-14 EN-10 EN-14
mean abs err 1 0.77 0.78 0.71 0.68
Spearman 1 0.57 0.64 0.68 0.64
mean abs err 2 0.79 0.80 0.70 0.70
Spearman 2 0.55 0.63 0.67 0.73
mean abs err 3 0.85 0.75 0.77 0.60
Spearman 3 0.55 0.64 0.61 0.71
avg mean abs err 0.80 0.78 0.72 0.66
avg Spearman 0.56 0.63 0.65 0.69

Table 3: Performance of the linear SVM regression
model and the avg score at different agreements.

6 Discussion and Conclusion

In this paper, we introduced a method to model
the human perception of sentence complexity re-
lying on a new corpus of Italian and English sen-
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Figure 3: Features correlating with human judgments at different sentence lengths and with respect to the
sentences at agreement 10 (TOT 10) and 14 (TOT 14).

tences rated with human complexity judgments.
We tested the contribution of a wide set of lin-
guistic features automatically extracted from these
sentences in two experimental scenarios. The first
one highlighted that we can reliably predict the de-
gree of agreement between human annotators, in-
dependently from the assigned judgment of com-
plexity: given the high subjectivity of the task, this
is a quite notable result that to our knowledge has
never been reported. We observed in particular
that deep syntactic features related to e.g. the use
of subordination and nominal modification play a
main role in the automatic prediction of human
agreement. This is true for the two languages even
though we found that some features resulted to be
more relevant in the classification of agreed Ital-

ian sentences, e.g. the relative ordering of the ob-
ject. Interestingly, we also noticed that the classi-
fier needs few features to predict agreed sentences
when more than half of annotators shares the same
judgment.

In the second experiment, we studied the cor-
relation between linguistic features and complex-
ity judgments. The resulting ranking highlighted
the key role played by syntactic phenomena: fea-
tures related to sentence structure are among the
top-ranked features characterizing sentences that
were rated highly complex by a given number of
agreeing annotators. When sentence length was
controlled, the relevance of the considered fea-
tures changes in particular for Italian: e.g. features
concerning the use of subordination make the sen-

2697



tence more complex when sentence length is �20
tokens. As showed by the results of the regression
model, the set of studied features contribute sig-
nificantly to automatically predict the human judg-
ment of sentence complexity.

In addition, the presented corpus can be use-
ful for different applications. From a psycholin-
guistic perspective, it can be used for compari-
son with data collected through controlled experi-
mental scenarios assessing sentence complexity in
terms of cognitive measures (offline and online),
which are also more constrained and costly to ac-
quire in large-dimensions. The corpus also allows
to study whether features of linguistic complexity
are implied in modeling other properties of texts,
such as the level of engagement or subjectivity.
From a NLP perspective, the corpus can be ex-
ploited to train systems able to predict people’s
perception of complexity. For example, it can sup-
port a range of related tasks, such as the devel-
opment of linguistically-informed algorithms for
the automatic assessment of text difficulty, as well
as in Natural Language Generation tasks, going
from text simplification to the automatic genera-
tion/evaluation of highly-engaging texts.
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Abstract

Web queries with question intent manifest a
complex syntactic structure and the processing
of this structure is important for their interpre-
tation. Pinter et al. (2016) has formalized the
grammar of these queries and proposed semi-
supervised algorithms for the adaptation of
parsers originally designed to parse according
to the standard dependency grammar, so that
they can account for the unique forest gram-
mar of queries. However, their algorithms
rely on resources typically not available out-
side of big web corporates. We propose a new
BiLSTM query parser that: (1) Explicitly ac-
counts for the unique grammar of web queries;
and (2) Utilizes named entity (NE) informa-
tion from a BiLSTM NE tagger, that can be
jointly trained with the parser. In order to
train our model we annotate the query tree-
bank of Pinter et al. (2016) with NEs. When
trained on 2500 annotated queries our parser
achieves UAS of 83.5% and segmentation F1-
score of 84.5, substantially outperforming ex-
isting state-of-the-art parsers.1

1 Introduction

Web queries, authored by users in order to search
for information, form a major gate to the Web,
and their correct interpretation is hence invaluable.
While earlier research (Bergsma and Wang, 2007;
Barr et al., 2008) suggested that many queries are
trivial in structure, Pinter et al. (2016) (henceforth
PRS16) demonstrated that this is often not the
case. Particularly, they demonstrated that queries
related to questions that are answered in Commu-
nity Question Answering (CQA) sites (social QA
forums such as Yahoo Answers), follow a complex
dependency grammar. As such queries are quite
frequent (e.g. an early study (White et al., 2015)

1Our code and data are available at: https:
//bitbucket.org/riki_malca/ptsparser/
src/master.

showed that they constitute ⇠10% of all queries is-
sued to search engines) and their interpretation can
benefit from structural analysis (e.g. (Tsur et al.,
2016)), effective query parsing is of importance.2

In order to properly describe the syntactic struc-
ture of queries, PRS16 extended the standard de-
pendency grammar so that it accounts for depen-
dency forests that consist of syntactically indepen-
dent segments, each of which has its own internal
dependency tree. Additionally, they constructed a
query treebank consisting of 4,000 CQA queries,
manually annotated according to the query gram-
mar. Examples of annotated queries from the tree-
bank are given in Figures 2 and 4.

PRS16 presented two algorithms that can adapt
off-the-shelf dependency parsers trained on stan-
dard edited text, so that they can produce syntactic
structures that conform to the query grammar. Im-
portantly, their methods do not contain any change
to the states and transitions of the parser. Instead,
they require millions of unannotated queries each
paired with the title (usually a grammatical ques-
tion) of the Yahoo Answers question page that was
clicked by the user who initiated the query; it is the
alignment between the query and the title that pro-
vides the training signal for their algorithms. Un-
fortunately, millions of (query, title) pairs are typ-
ically not available outside of big web corporates,
and the practical value of the PRS16 algorithms is
hence limited. Moreover, despite the unique su-
pervision signal, their parsers achieve a segmenta-
tion F1-score of up to 70.4, which leaves a large
room for improvement.

In this paper we present a transition-based BiL-
STM query parser that requires no distant super-
vision. Our parser is based on two ideas: (a) We
change the standard transition system so that the
parser explicitly supports the PRS16 query gram-

2In the rest of the paper we will refer to queries with ques-
tion intent, like those addressed in PRS16, simply as queries.
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mar (§ 3.2); and (b) Observing that entities are
very frequent in CQA queries and provide a strong
structural signal (§ 4), we extend our parser to con-
sider information from a named entity (NE) tag-
ger. We explore both sequential and joint training
of the NE tagger and the parser and demonstrate
the superiority of the joint approach.

As another contribution of this paper, we anno-
tate the dataset of PRS16 with NEs (§ 4). We use
this data to establish our observation about the im-
portance of NEs for query parsing, and in order to
train and test our entity-aware parser.

We split the PRS16 corpus to train (2500
queries), development (750) and test (750) sec-
tions (§ 6). In this training setup our segmentation
and entity-aware parser achieves a segmentation
F1-score of 84.5 (100 on single-segment queries,
60.7 on multi-segment queries) and a dependency
parsing UAS of 83.5. Our model outperforms its
simpler variants that do not utilize segmentation
and/or NE information. For example, the BiLSTM
parser of Kiperwasser and Goldberg (2016), which
forms the basis for our model, scores 67.7 in seg-
mentation F1 and 77.0 in UAS.

We note that our training setup is very dif-
ferent than that of PRS16. They trained their
parser on edited text from the OntoNotes 5 corpus
(Weischedel et al., 2013) augmented with millions
of (query, title) pairs, and their test set consists of
the 4000 queries of the query treebank, as they do
not train on queries.3 While our work is not di-
rectly comparable to theirs, it is worth mentioning
that their best model scores 70.4 in segmentation
F1 and 76.4 in UAS, much lower than the numbers
we report here for our best models.

2 Previous Work

We divide this section to two: We start with works
that analyze the structure of queries and the role of
NEs in their processing, and then discuss work on
parsing of user generated content on the web.

Query structure and entity analysis As noted
in PRS16, web queries differ from standard sen-
tences, as they tend to be shorter and have a unique
dependency structure. Hence, prior to PRS16 sev-
eral works have addressed the syntactic structure
of web queries. However, all these works were
restricted to tasks that are much simpler than full

3In some setups they used the segmentation signal from
the queries and experimented with a five fold cross-validation
over the 4000 queries

dependency parsing, including POS tagging (Ben-
dersky et al., 2010; Ganchev et al., 2012), phrase
chunking (Bendersky et al., 2011), semantic tag-
ging (Manshadi and Li, 2009; Li, 2010) and clas-
sification of queries into syntactic classes (Allan
and Raghavan, 2002; Barr et al., 2008).

NER has been recognized as a fundamental
problem in query processing by Guo et al. (2009),
and many works since (e.g. (Alasiry et al., 2012;
Eiselt and Figueroa, 2013; Zhai et al., 2016)) ex-
plored various models and features for the task.
Differently from those works, our goal is to de-
sign a BiLSTM model that can be easily inte-
grated with modern BiLSTM parsers. We hence
use simple input features and a simple NE scheme
(e.g. see (Guo et al., 2009) for more fine-grained
distinctions). More sophisticated features, en-
tity schemes and deep learning architectures (e.g.
(Lample et al., 2016)) are left for the future.

Syntactic parsing of Web data Only a handful
of papers aimed to parse web data. One important
example is the shared task of Petrov and McDon-
ald (2012) on parsing web data from the Google
Web Treebank, consisting of texts from the email,
weblog, CQA, newsgroup, and review domains.
Other relevant works are the tweet parsers of Fos-
ter et al. (2011), Kong et al. (2014) and Liu et al.
(2018). However, all these works did not address
the unique properties of web queries with question
intent that express information needs in a concise
manner (e.g. with one or more phrases or sentence
fragments) and follow a forest-based grammar.

PRS16 were the first, and to the best of our
knowledge the only work to address the parsing
of web queries with question intent. However,
as noted in § 1 their algorithms rely on millions
of (query, title) pairs, which deems their algorithm
impractical for most users. In practice, they started
with a query log of 60M Yahoo Answers pages and
ended up using 7.5M queries as distant supervi-
sion. In this paper we aim to overcome this limita-
tion by introducing a high quality query parser that
can train on several thousands annotated queries to
provide higher UAS and segmentation F1 figures
compared to those reported in PRS16 (see footnote
3 for their training protocol and data).

We finally note that joint parsing and NER was
explored in past (Reichart et al., 2008; Finkel and
Manning, 2009, 2010), but for edited text, stan-
dard grammar and different modeling techniques.
Our work re-emphasizes the strong ties between
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NER and parsing, in the context of query analysis.

3 Segmentation-Aware Parsing
In this section we present a parser that explicitly
accounts for the query dependency grammar of
PRS16. We start (§ 3.1) with a brief description of
the BiLSTM parser of Kiperwasser and Goldberg
(2016) (henceforth KG16), that forms the basis for
our parser, and then describe our query parser.

3.1 The KG16 BiLSTM Parser
KG16 presented a BiLSTM model for transition
based dependency parsing (Figure 1). Given a sen-
tence s with words w1, ..., wn and corresponding
POS tags p1, ..., pn, the word wi is represented as:

xi = e(wi) � e(pi) (1)

where e(wi) and e(pi) are the embeddings of wi

and pi, respectively, and � is the vector concatena-
tion operator. 4

The BiLSTM consists of two LSTMs:
LSTMforward and LSTMbackward. Given
an input vector xi, LSTMforward(xi) captures
the past context, and is calculated using the
information in the input vectors x1, . . . , xi�1.
Similarly, LSTMbackward(xi) captures the future
context and is calculated using the information in
the input vectors xn, . . . , xi+1. vi, the resulting
representation of xi, is given by:

vi = BiLSTM(x1..n, i) (2)
= LSTMforward(xi) � LSTMbackward(xi)

The parser implements the arc-hybrid system
(Kuhlmann et al., 2011) which uses a configura-
tion c = (�, �, A) where � = [s0, s1, ..] is a stack,
� = [b0, b1..] is a buffer and A is a set of depen-
dency arcs. The arc-hybrid system allows three
transitions: SHIFT , LEFTarc and RIGHTarc.
At each step the parser scores the possible transi-
tions and selects the highest scoring one.

The parser represents each configuration by the
concatenation of the BiLSTM embeddings of the
first word in the buffer (b0) and the three words
at the top of the stack (s0, s1 and s2). Then,
a multi-layer perceptron (MLP) with one hidden
layer scores the possible transitions given the cur-
rent configuration:

MLP✓(c) = W 2 · tanh(W 1 · c + b1) + b2 (3)
4The embedding vectors are initialized using the Xavier

initialization (Glorot and Bengio, 2010) and trained as part of
the BiLSTM.

Figure 1: A sketch of the KG16 arc-hybrid parser.

where ✓ = W 1, W 2, b1, b2 are the MLP parame-
ters and c = vs0 � vs1 � vs2 � vb0 .

The parser employs a margin-based loss (MBL)
function at each step:

MBL = max(0, 1 � max
to2G

MLP✓(c)[to]

+ max
tp2T\G

MLP✓(c)[tp])
(4)

where T is the set of possible transitions and G
is the set of correct transitions. The losses are
summed throughout the parsing of a sentence and
the parameters are updated accordingly.

The parser employs a dynamic oracle (Gold-
berg and Nivre, 2013), which enables exploration
in training. We next describe our modification of
the KG16 parser. Specifically, we change the tran-
sition logic so that it can directly account for the
query grammar defined in PRS16.

3.2 A Segmentation-Aware BiLSTM Parser
In order for our parser to directly account for the
forest-based query grammar of PRS16, we follow
previous work (e.g. Nivre (2009)) and modify its
set of actions and transition logic. Before we do
that, we start with a more standard modification.

An arc-eager KG16 parser The first step in the
design of our parser is changing the arc-hybrid
system of the KG16 parser to an arc-eager system
(Nivre, 2008). To do that we change the defini-
tions of the RIGHTarc and LEFTarc transitions
and add a REDUCE transition. The (original) arc-
hybrid and the (modified) arc-eager KG16 parsers
are denoted with PH and PE , respectively.

The motivation for this change is the addition
of the REDUCE transition that explicitly facili-
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tates segmentation. After the words in the stack �
are reduced, they cannot be connected to the un-
processed words in the buffer �. This state con-
stitutes a segmentation point. We use this con-
nection between the REDUCE transition and the
segmentation operation as an integral part of our
new segmentation-aware parser, and hence all the
following parsers extend this arc-eager parser.

A segmentation-aware parser In our parser,
denoted as PB (for BASIC), a configuration c =
(�, �1, �2, A) consists of a stack � = [s0, s1, ..],
two buffers: �1 = [b10, .., b1last] and �2 =
[b20, .., b2last], and a dependency arcs set A. The
buffers �1, �2 contain the unprocessed tokens, and
the words within �2 form the current segment. We
expand the configuration representation to include
not only the representations of the first token in the
buffer �1 (b10) and the three tokens at the top of
the stack � (s0, s1, s2) but also the representation
of the last token in the buffer �2 (b2last).

Given a sentence s = w1, . . . , wn, the initial
configuration is ([ROOT ], [wi | i > 1], [w1], ;).
In the final configuration the stack � contains only
the ROOT token (we refer to this as an empty
stack) and both buffers, �1 and �2 are empty. The
new transition set, described in Table 1, includes a
new transition: PushToSeg. This transition adds a
new token to the current segment by pushing the
top token of �1 to the end of �2. The REDUCE
transition preconditions have also been modified:
this transition is only allowed if �2 is empty or
there is more then one word in the stack.

This new parser performs a two-step process
that repeats until convergence, to induce a parse
forest. The first step is segment allocation, consist-
ing of a sequence of PushToSeg transitions. When
the parser reaches a configuration in which �2 and
� are empty, only this transition is allowed. There
can be one or more consecutive PushToSeg transi-
tions, each pushes a new token from �1 to �2. This
step ends once the parser selects any other tran-
sition, to form a segmentation point. In the sec-
ond step the allocated segment is parsed. In this
step the parser acts as an arc-eager parser with �2

as the main buffer, and the PushToSeg transition
and the �1 buffer being ignored until the segment
is completely parsed (the PushToSeg transition is
forbidden while the stack is not empty).

An example of the parsing process is provided
in Figure 2. Appendix A provides a proof that the
parser is complete and sound as required in Nivre

(2008) from any dependency parser.
We next describe two auxiliary segmentation

models that can be integrated with our parser.

3.3 Auxiliary Segmentation Models
We consider two models: one is independent of
the parser while the other is added as a component
to the parser.

Independent segmentation model Similarly to
our parser, this model, denoted as SEG, is a BiL-
STM that feeds an MLP classifier which predicts
for every input word whether it is a segmentation
point or not. The loss is a sum of word level MBL
functions (equation 4). The input word representa-
tion, xi, and the definition of the hidden word vec-
tor, vi, are as in equations 1 and 2, respectively;
the output scores vector oseg(wi) is derived from
the hidden vector, hseg, as in equation 3:

hseg(vi) = tanh(W 1
s · vi + b1

s)

oseg(vi) = W 2
s · hseg(vi) + b2

s

(5)

where W 1
s , W 2

s , b1
s, b

2
s are parameters.

We consider two ways through which our PB

parser uses the information from the SEG model.
The parser we denote with PS concatenates the
SEG hidden vector of the top word of the stack to
the configuration representation:

cseg = vs0 � vs1 � vs2 � vb10
� vb2last

� hseg(s0)

Alternatively, the parser we denote with PFS (for
FULL SEG) concatenates the hidden vectors of
all the configuration elements to the configuration
representation:

cfull seg =vs0 � vs1 � vs2 � vb10
� vb2last

�hseg(s0) � hseg(s1) � hseg(s2)

�hseg(b10) � hseg(b2last)

This segmentation model can be trained indepen-
dently of the parser or jointly with it. In develop-
ment data experiments independent training was
superior so we report results with this option.

Configuration-based segmentation model
This model, denoted as FLAG, predicts whether a
given parser configuration is a segmentation point.
The answer is positive if the processed words
(words in the stack �) are in the same segment
and the unprocessed words (words in the buffer
�2 or �1) are not in this segment.
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Transition Precondition
LEFTarc (�|i, �1, j|�2, A) ) (�, �1, j|�2, A [ (j, l, i)) ¬[i = 0] ^ ¬9k9l0[(k, l0, i) 2 A]
RIGHTarc (�|i, �1, j|�2, A) ) (�|i|j, �1, �2, A [ (i, l, j))
REDUCE (�|i, �1, �2, A) ) (�, �1, �2, A) [9k9l[(k, l, i) 2 A]]

^¬[size(�2)! = 0 ^ (size(�) == 1)]

SHIFT (�, �1, i|�2, A) ) (�|i, �1, �2, A)
PushToSeg (�, i|�1, �2, A) ) (�, �1, �2|i, A) size(�) == 1

Table 1: The transition logic of the segmentation-aware parser. The bold items are the new transitions
and conditions of our parser, compared to a standard arc-eager parser.

invent toy school project

root

dobj nn

root

Action �2 �1 � Arcs
1 PushToSeg [invent] [toy, school, project] [ROOT] ;

2 PushToSeg [invent, toy] [school, project] [ROOT] ;

3 RIGHTarc [toy] [school, project] [ROOT, invent] A = (ROOT, invent)
4 RIGHTarc [] [school, project] [ROOT, invent, toy] A = A [ (invent, toy)
5 REDUCE [] [school, project] [ROOT, invent] A
6 REDUCE [] [school, project] [ROOT] A
7 PushToSeg [school] [project] [ROOT] A
8 PushToSeg [school, project] [] [ROOT] A
9 SHIFT [project] [] [ROOT, school] A
10 LEFTarc [project] [] [ROOT] A = A [ (project, school)
11 RIGHTarc [] [] [ROOT, project] A = A [ (ROOT, project)
12 REDUCE [] [] [ROOT] A

Figure 2: Example of the application of our segmentation-aware parser to the multi-segment query invent
toy school project (borrowed from PRS16). First, a sequence of PushToSeg transitions is performed in
order to insert the first segment invent toy to the buffer �2 (transitions 1-2). Then, the segment is parsed
until the buffer �2 and the stack � are empty (3-6). Similarly, the second segment school project is
pushed to the buffer �2 through a sequence of PushToSeg transitions (7-8) and then parsed (9-12).

The model is a simple MLP that receives a
parser configuration as input and produces a hid-
den vector (denoted with hflag(c)) and a scores
vector (denoted with oflag(c)). The equations for
hflag(c) and oflag(c) are similar to equation 5, and
the loss is an MBL loss as in equation 4.

Information from this model is integrated into
the parser configuration representation through:

cflag(c) = c � hflag(c)

We refer to this parser as PF l (for FLAG). The
FLAG model must be trained jointly with the
parser as its input is a parser configuration.

As shown in § 7, adapting the KG16 parser to
explicitly account for multiple segments improves
over the KG16 parser in the task of query pars-
ing. We next show how additional gains can be
achieved when recognizing the role of NEs.

4 Entities in Query Parsing

In this section we explore the role of NEs in the
syntactic structure of queries. We first describe
our NE annotation process, and then qualitatively
demonstrate the valuable structural cues they pro-
vide. In § 5 we will describe extensions of the
segmentation-aware BiLSTM parser (§ 3.2) that
integrate information from a BiLSTM NE tagger.

Data We consider five entity types: Location
(e.g ”London”), Person (e.g ”Marilyn Monroe”),
Organization (e.g ”Google”), Product (e.g ”Iphone
4”) and Other (e.g. see Figure 4 for NEs such
as ”song name” and ”computer game”). Two hu-
man annotators annotated the dataset. Of the 4000
queries, 400 were randomly selected for initial
tagging by both annotators, so that they could dis-
cuss ambiguous cases and resolve conflicts (the
labeled micro-F1 score between the annotators at
this stage was 85.6). Then, the remaining 3600
queries were equally split between the two annota-
tors, who again consulted each other in ambiguous
cases (the inter-annotator micro-F1, measured on
a randomly sampled set of 100 queries, was 92.0).

NEs as a dependency parsing signal The
dataset consists of 3010 single-segment (hence-
forth SSG) and 990 multi-segment (henceforth
MSG) queries. 62.5% of the queries (59% of the
SSG and 72% of the MSG) contain at least one
NE. Figure 3 (top) provides segment and query
level NE statistics. The middle part of the fig-
ure shows the proportion of segments and queries
that start with an NE. Finally, the bottom part of
the table provides word level statistics. The fig-
ures clearly demonstrate the prominence of NEs
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Figure 3: Top: Query and segment level NE distri-
bution (numbers are averages across the queries in
the relevant subset). Middle: NE type distribution
(the ”only names” column refers to queries that
consist of named entities only, and the ”any name”
column refers to queries that contain at least one
named entity). Bottom: The percentage of queries
and segments that start with an NE.

in queries and the segmentation signal they pro-
vide. For example, as many as 35.4% of segments
within the MSG queries start with an NE (42% of
the first segments and 30% of the other segments).
Finally, Figure 4 presents three example queries
where NEs provide invaluable cues about the syn-
tactic structure.

Now that we have established the importance of
NEs for query parsing, we are ready to describe
our entity-aware query parser.

5 A Segmentation and Entity-Aware
BiLSTM Parser

Here we describe the integration of NE signals in
our segmentation-aware query parser (§ 3.2).

A BiLSTM NE tagger Our NE tagger is a BiL-
STM with an MLP classification layer, very simi-
lar to our independent segmentation model (SEG,
§ 3.3). We denote the MLP’s hidden state with
hne(wi) and its output scores vector with one(wi).
The model equations are:

hne(wi) = tanh(W 1
n · vi + b1

n)

one(wi) = W 2
n · hne(wi) + b2

n

(6)

The margin-based loss (MBL) function we use
in this model is:

MBL = max(0, 1 � MLP✓(wi)[necorrect]+

MLP✓(wi)[nepredicted])

(7)

where ✓ = (W 1
n , b1

n, W 2
n , b2

n) are the model pa-
rameters, nepredicted is the named entity type pre-
dicted by model and necorrect is the gold named
entity type. MLP✓(wi)[nei] is the score given by
the MLP to the nei named entity type.

NE-aware parsing We consider two methods
for integrating information from the NE tagger
into the parser. In both methods, we construct a
new feature representation for each input word,
denoted with vM

i , where M stands for the inte-
gration method. The new word representations are
then used in the configuration representation (§ 3).

The first method, denoted with Hi (for Hidden),
uses the hidden vector hne(wi):

vHi
i = vi � hne(wi)

The second method, denoted with Fi (for Final),
uses the NE embeddings:

vFi
i = vi � e(nepredicted(wi))

For both methods vi is the word representa-
tion generated by the parser (equation 2). For
vFi
i , nepredicted(wi) is the named entity type

predicted by the tagger for the word wi and
e(nepredicted(wi)) is its embedding (part of the
parser parametrization).
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premiere 16 and pregnant new zealand

root
cc

conj

amod
root root

(a) ”16 and pregnant” is a name
of a television series; ”new
zealand” is a name of a place.

tom waits chocolate jesus meaning

root
nnconj

root root

(b) ”tom waits” is a name of a
person; ”chocolate jesus” is a
name of a song.

skyrim marry jarl elisif

dobj

amod
rootroot

(c) ”skyrim” is a name of a
computer game; ”jarl elisif” is
a name of a character in the
game.

Figure 4: Three example queries from the PRS16 dataset, along with their parse trees. NEs provide an
important signal about the structure of the queries.

Tagger and parser training We consider two
approaches:

(a) Independent training: First, the tagger is
trained with the gold NEs of the training set (§ 4),
then the tagger is applied to the training set, and fi-
nally the parser is trained with the gold parse trees
and the tagger’s NE tagging of the training set.

(b) Joint training: The parameters of both mod-
els are updated together, each update is taking
place after observing a single input sentence. In
this joint model, the parser and the tagger are both
using the same BiLSTM to learn the word repre-
sentation vi. The loss function of this model is the
sum of the losses of the parser (sum of the step-
wise losses of Eq. 4) and the tagger (Eq. 7):

MBLjoint = MBLparser + MBLner (8)

6 Experiments

Task and data Our task is the query parsing
task of PRS16, but unlike them we do not use
millions of unannotated queries. Instead, we ex-
periment with a supervised setup were the parser
is trained on parsed web queries and no unanno-
tated queries are used. For our experiments we
randomly split the PRS16 dataset of 4000 queries
annotated with dependency structures and POS
tags,5 into train, development and test sections.
This split is done so that: (a) The train set con-
sists of 2500 queries while the dev and the test sets
consist of 750 queries each; (b) For each k � 1,
k-segment queries are split between the three sets
so that to keep the 2500:750:750 proportion. As a
result, the train, dev and test sets contain 618, 185
and 186 MSG queries, respectively, for the total of
989 MSG queries.

We consider the evaluation measures of PRS16:
(a) The standard dependency parsing Unlabeled
Attachment Score (UAS); and (b) Segmentation

5webscope.sandbox.yahoo.com (dataset L-28)

Hyper-parameter Value
Word embedding dim. 100, 200, 300
POS tag embedding dim. 25, 50, 100
Named entity embedding dim. 6
Hidden units in MLP 100
BiLSTM hidden dim. 50,125,200
BiLSTM output dim. 125
↵ (for word dropout) 0.25
pagg (for exploration training) 1

Table 2: The hyper-parameters considered in our
development data experiments.

F1-score, where a segment is considered correct if
both its start and end point are correctly identified.

Models and baselines We experiment with
three model families: (a) The baseline KG16
parser and our arc-eager variant of the parser
(§ 3.1, § 3.2); (b) Our segmentation-aware parsers
(§ 3.2, § 3.3); and (c) Our segmentation and entity-
aware parsers (§ 5) where the parser and the NE
tagger are trained either jointly or independently
(we also consider the integration of NE informa-
tion into the original (arc-hybrid) KG16 parser).6

Hyper-parameter tuning Following (Kiper-
wasser and Goldberg, 2016) and due to the large
number of models we experiment with, we con-
sider a relatively small grid of hyper-parameter
values, focused around the values chosen by these
authors, as described in Table 2.

To avoid a very large number of experiments,
we tune the parameters for the original KG16 arc-
hybrid model (PH ) and for our arc-eager ver-
sion of the parser (PE). We then report test-set
results for the PH model with its tuned hyper-
parameters, and for all the other models with the
hyper-parameters that were estimated for the PE

model. While this setup gives an unfair advantage

6A comment about naming conventions: unless H (for
the arc-hybrid KG16 parser) or E (for the arc-eager KG16
parser) is part of the model name, a model is an extension of
our P B parser.
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for the baseline PH model, it helps us avoid an ex-
pensive model-specific tuning process. The auxil-
iary segmentation models (§ 3.3) and the NE tag-
ger (§ 5) use the hyper-parameters of Table 2, but
for these models we do not perform any tuning –
for each hyper-parameter with more than one op-
tion, we use the leftmost number from the table.

7 Results

Our results are presented in Table 3. We focus
on selected members of each model family, and
within each model family we focus on the sim-
plest models (PH , PE and PB , with segmentation
and entity information when appropriate), and on
the most complex ones. We make sure to include
the best performing model of each category, which
happens to be one of the most complex models for
all families, emphasizing the quality of our model-
ing choices. The results for the full list of models
are in the spp. material.

The Baseline parsers section of the table
demonstrates the impact of moving from the arc-
hybrid variant to an arc-eager variant of KG16, to
better support segmentation. While the PH model
performs slightly better than PE in terms of UAS
(78.3 vs. 77.0), the segmentation F1-score of PE

is 4.3 points better (72.0 vs. 67.7). Interestingly,
this improvement is not achieved through better
segmentation of MSG queries, but by avoiding un-
necessary segmentation decisions on SSG queries.

The segmentation-aware parsers section of the
table shows that further extending the arc-eager
KG16 parser to explicitly account for segmenta-
tion results in substantial segmentation improve-
ments. Particularly, the overall F1-score of PB

– our segmentation-aware parser that does not
use information from any auxiliary segmentation
models – is as high as 77.4. This amounts to 5.4
and 9.7 additional F1 points compared to the arc-
eager and the original arc-hybrid KG16 parsers,
respectively. Information from auxiliary segmen-
tation models (PS+F l and PFS+F l) does not sub-
stantially increase performance in this family.

When considering entity information, the per-
formance of our models and of the PE baseline
substantially improves. However, while the UAS
of the PE baseline increases to 80.2 (PE+Fi with
independent training), its segmentation F1-score
does not cross the 66.9 bound (PE+Hi with joint
training).7 The gain of the segmentation-aware

7The UAS numbers of the pH models with entity infor-

Model UAS Seg. F1-score
all msg ssg all msg ssg

Baseline parsers
P H 77.0 74.9 78.3 67.7 51.5 77.9
P E 75.4 70.5 77.0 72.0 47.6 87.6

Seg. aware parsers - no entity information
P B 76.7 73.4 77.8 77.4 48.7 95.6
P S+Fl 77.1 74.1 78.1 76.0 53.3 90.8
P FS+Fl 76.6 72.1 78.0 77.4 52.1 93.8

Seg. and entity parsers - independent training
P E+Hi 80.2 70.3 83.3 63.3 34.3 80.3
P E+Fi 80.2 70.8 83.2 61.4 42.0 73.2
P Hi 79.3 68.3 82.8 63.3 40.5 100
P Fi 80.9 69.5 84.5 79.1 45.2 100
P S+Fl+Hi 80.6 70.5 83.8 77.0 48.3 100
P S+Fl+Fi 81.2 71.5 84.2 80.6 49.0 100
P FS+Fl+Hi 81.6 72.3 84.6 80.1 54.1 100
P FS+Fl+Fi 80.6 70.4 83.9 81.7 52.8 100

Seg. and entity parsers - joint training
P E+Hi 79.3 66.7 83.4 66.9 26.2 90.2
P E+Fi 79.8 67.7 83.6 66.1 36.9 83.6
P Hi 79.7 66.5 83.4 75.1 33.1 100
P Fi 81.6 70.5 85.1 78.6 43.7 100
P S+Fl+Hi 81.6 71.9 84.6 82.0 53.4 100
P S+Fl+Fi 83.5 73.2 86.7 84.5 60.7 100
P FS+Fl+Hi 79.6 67.3 83.5 76.0 36.1 100
P FS+Fl+Fi 82.4 72.1 85.7 81.2 51.4 100

Table 3: Results. Best numbers within each model
section are highlighted in bold. H and E stand for
the arc-hybrid and arc-eager KG16 parser, while
B is our segmentation aware parser without any
auxiliary segmentation model or NE information.
All models where these letters do not appear re-
fer to extensions of our segmentation-aware parser
(B). S: independent segmentation model. FS:
full independent segmentation model. Fl: config-
uration based segmentation model. Hi: NE aware
parser (Hidden). Fi: NE aware parser (Final).

parser from entity information is much more sub-
stantial. First, regardless of how the entity infor-
mation is integrated into the model (Hi vs. Fi)
and of whether the auxiliary segmentation mod-
els (S, FS and Fl) are used or not, the model
perfectly segments the SSG queries. Moreover, it
demonstrates substantial performance boosts with
respect to all measures. Our best performing
model, PS+F l+Fi with joint training (bold result
in the bottom model section of the table) improves
the original KG16 parser (PH , top row of the ta-
ble) by 6.5 UAS points (83.5 vs. 77.0) and by 16.8
segmentation F1 scores (84.5 vs. 67.7).

Overall, joint training of the parsing and NER

mation are similar to those of the pE models, but their seg-
mentation quality is lower. Due to space limitations, we do
not provide these numbers.
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saddest love story anime

nsubj

amod
root root

(a) Gold tree.

saddest love story anime

nsubj

amod
root root

(b) The P B parser (perfect)
tree.

saddest love story anime

amod dobj
root root

(c) The P H parse tree.

Figure 5: Example multi-segment query where PB succeeds and PH fails.

pokemon strong dragon types

dep

xcomp
root root

(a) Gold tree.

pokemon strong dragon types

dep

xcomp
root root

(b) The (perfect) tree of the
P S+Fl+Fi parser when trained
jointly with the named entity
tagger.

pokemon strong dragon types

dobj
root root root

(c) The P S+Fl parse tree.

Figure 6: Example multi-segment query where the PS+F l+Fi parser succeeds when trained jointly with
the named entity tagger, and PS+F l fails.

verizon lg v8 lost lock code

aux dobj dobj

dobj
root root

(a) Gold tree.

verizon lg v8 lost lock code

aux dobj dobj

dobj
root root

(b) The (perfect) tree of the
P S+Fl+Fi parser when trained
jointly with the named entity
tagger.

verizon lg v8 lost lock code

aux aux dobj dobj dobj
root

(c) The erroneous tree of the
P S+Fl+Fi parser when trained
independently of the named en-
tity tagger.

Figure 7: Example multi-segment query where the PS+F l+Fi parser succeeds when trained jointly with
the named entity tagger, and fails when using a pre-trained named entity tagger.

models improves over independent training for
both segmentation F1 and parsing UAS (in 5 of
8 cases for each measure, two bottom model sec-
tions of the table). This improvement comes
mostly from SSG queries (7 of 8 UAS cases and
the 2 cases where segmentation F1 could im-
prove), but at the cost of some degradation on
MSG queries. Moreover, our best model is a
jointly trained one.

While the goal of this paper is mostly to im-
prove the syntactic analysis of web queries, our
simple NE tagger provides decent results. When
trained independently of the parser its test-set (la-
beled) micro-F1 score is 85.6. When trained
jointly with the parser it achieves similar scores in
some cases: e.g. when jointly trained with the best
performing parsing model, PS+F l+Fi, it achieves
a micro-F1 of 85.2. Yet, in other cases such as
joint training with PS+H and PS+Fi its micro-F1
drops to 78.0 and 78.5, respectively.

Finally, figure 5-7 provide some qualitative
analysis of our models and baselines.

8 Conclusions

We presented a new BiLSTM transition-based
parser for web queries. Our parser is the first
that explicitly accounts for the forest-based query
grammar of PRS16. Moreover, we demonstrated
the importance of NEs for understanding the syn-
tactic structure of web queries, annotated the
Query Treebank of PRS16 with NEs, and demon-
strated how to effectively use NE information in
the syntactic parsing of web queries.

In future work we intend to explore methods for
closing the performance gap our algorithms still
have for MSG queries (both UAS and segmenta-
tion F1) and for SSG queries (UAS only). Rel-
evant directions include improving the transition
logic of our parser, the BiLSTM NE model and
the interactions between the two models.
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A Parser correctness

In this appendix we discuss the correctness of
our segmentation-aware dependency parser, as de-
scribed in §3.2 of the main paper.

According to Nivre (2008), a parsing system is
correct for a class G of dependency graphs if and
only if it is sound and complete for G. We prove
correctness for the set G of all possible depen-
dency trees. The system is sound if and only if
for every sentence x and every transition sequence
C0,m for x, it holds that GC0,m 2 G. The system
is complete for the class G of all possible depen-
dency trees if and only if for every sentence x and
every dependency graph Gx 2 G, there is a transi-
tion sequence C0,m for x such that GC0,m = Gx.

We prove that our segmentation-aware parser is
sound by showing that its resulting dependency
graph is necessarily a valid parse tree. In order
to do that we show that in every possible out-
put graph of the parser each word has exactly one
head.

We start by showing that a word must have at
least one head. This stems from the fact that a
word processing is completed once it is reduced.
This can be done using the REDUCE transition
or the LEFTarc transition. The preconditions of
the REDUCE transition prevent a node from be-
ing reduced without a head. The LEFTarc transi-
tion, by definition, reduces the node after assign-
ing it with a head. There can be no more than one
head to each node as the arcs are created using
the RIGHTarc and LEFTarc transitions. If the
RIGHTarc transition is applied to a word, it in-
serts the node to the stack. Once a node is in the
stack, RIGHTarc cannot be applied to it and the
LEFTarc preconditions prevent the generation of
a second head. If the LEFTarc transition applies
to the word, the word is automatically reduced and
cannot have additional heads, as discussed above.

To prove completeness we develop a valid tran-
sition sequence that produces any given depen-
dency tree Gx for a sentence x. We denote the
transition sequence that produces a dependency

graph Gx for a sentence x in the arc-eager sys-
tem as Ceager

0,m (x, Gx). Ceager
0,m (x, Gx) exists ac-

cording to the completeness of the arc-eager sys-
tem. We also denote the sub-graph of a segment
s within a dependency tree Gx as Gs

x. An in-
put sentence contains one or more segments. We
construct the transition sequence by performing
|s| PushToSeg transitions for every segment s in
x followed by performing Ceager

0,m0 (s, Gs
x) with the

stack � and the buffer �2. This transition sequence
produces a valid tree Gx for sentence x.
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Abstract

We provide a comprehensive analysis of the
interactions between pre-trained word embed-
dings, character models and POS tags in a
transition-based dependency parser. While
previous studies have shown POS information
to be less important in the presence of char-
acter models, we show that in fact there are
complex interactions between all three tech-
niques. In isolation each produces large im-
provements over a baseline system using ran-
domly initialised word embeddings only, but
combining them quickly leads to diminishing
returns. We categorise words by frequency,
POS tag and language in order to systemati-
cally investigate how each of the techniques
affects parsing quality. For many word cat-
egories, applying any two of the three tech-
niques is almost as good as the full combined
system. Character models tend to be more im-
portant for low-frequency open-class words,
especially in morphologically rich languages,
while POS tags can help disambiguate high-
frequency function words. We also show that
large character embedding sizes help even for
languages with small character sets, especially
in morphologically rich languages.

1 Introduction

The last few years of research in natural language
processing (NLP) have witnessed an explosion in
the application of neural networks and word em-
beddings. In tasks ranging from POS tagging
to reading comprehension to machine translation,
a unique dense vector is learned for each word
type in the training data. These word embeddings
have been shown to capture essential semantic
and morphological relationships between words
(Mikolov et al., 2013), and have precipitated the
enormous success of neural network-based archi-
tectures across a wide variety of NLP tasks (Plank
et al., 2016; Dhingra et al., 2017b; Vaswani et al.,

2017).

When task-specific training data is scarce or the
morphological complexity of a language leads to
sparsity at the word-type level, word embeddings
often need to be augmented with sub-word or part-
of-speech (POS) tag information in order to re-
lease their full power (Kim et al., 2016; Sennrich
et al., 2016; Chen and Manning, 2014). Initialis-
ing vectors with embeddings trained for a different
task, typically language modelling, on huge un-
labelled corpora has also been shown to improve
results significantly (Dhingra et al., 2017a). In de-
pendency parsing, the use of character (Ballesteros
et al., 2015) and POS (Dyer et al., 2015) models
is widespread, and the majority of parsers make
use of pre-trained word embeddings (Zeman et al.,
2017).

While previous research has examined in de-
tail the benefits of character and POS models in
dependency parsing and their interactions (Balles-
teros et al., 2015; Dozat et al., 2017), there has
been no systematic investigation into the way
these techniques combine with the use of pre-
trained embeddings. Our results suggest a large
amount of redundancy between all three tech-
niques: in isolation, each gives large improve-
ments over a simple baseline model, but these im-
provements are not additive. In fact combining
any two of the three methods gives similar results,
close to the performance of the fully combined
system.

We set out to systematically investigate the
ways in which pre-trained embeddings, char-
acter and POS models contribute to improving
parser quality. We break down results along
three dimensions—word frequency, POS tag, and
language—in order to tease out the complex inter-
actions between the three techniques. Our main
findings can be summarized as follows:
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• For all techniques, improvements are largest
for low-frequency and open-class words and
for morphologically rich languages.

• These improvements are largely redundant
when the techniques are used together.

• Character-based models are the most effec-
tive technique for low-frequency words.

• Part-of-speech tags are potentially very effec-
tive for high-frequency function words, but
current state-of-the-art taggers are not accu-
rate enough to take full advantage of this.

• Large character embeddings are helpful for
morphologically rich languages, regardless
of character set size.

2 Related Work

Chen and Manning (2014) introduced POS tag
embeddings: a learned dense representation of
each tag designed to exploit semantic similari-
ties between tags. In their greedy transition-based
parser, the inclusion of these POS tag embeddings
improved labelled attachment score (LAS) by 1.7
on the English Penn Treebank (ETB) and almost
10 on the Chinese Penn Treebank (CTB). They
also tested the use of pre-trained word embeddings
for initialisation of word vectors, finding gains of
0.7 for PTB and 1.7 for CTB.

Dyer et al. (2015) in their Stack Long Short-
Term Memory (LSTM) dependency parser, show
that POS tag embeddings in their architecture im-
prove LAS by 0.6 for English and 6.6 for Chi-
nese. Unlike Chen and Manning (2014), they do
not use pre-trained word embeddings for initialisa-
tion, instead concatenating them as a fixed vector
representation to a separate randomly-initialised
learned representation. This leads to improve-
ments in LAS of 0.9 and 1.6 of English and Chi-
nese, respectively.

Following on from the work of Dyer et al.
(2015), Ballesteros et al. (2015) introduced the
first character-based parsing model. They found
that a model based purely on character informa-
tion performed at the same level as a model using
a combination of word embeddings and POS tags.
Combining character and POS models produced
even better results, but they conclude that POS
tags are less important for character-based parsers.
They also showed that character models are par-
ticularly effective for morphologically rich lan-
guages, but that performance remains good in lan-
guages with little morphology, and that character

models help substantially with out-of-vocabulary
(OOV) words, but that this does not fully explain
the improvements they bring. The use of pre-
trained embeddings was not considered in their
work.

Kiperwasser and Goldberg (2016), in the
transition-based version of their parser based on
BiLSTM feature extractors, found that POS tags
improved performance by 0.3 LAS for English and
4.4 LAS for Chinese. Like Dyer et al. (2015), they
concatenate a randomly-initialised word embed-
dings to a pre-trained word vector; however in this
case the pre-trained vector is also updated during
training. They find that this helps LAS by 0.5–0.7
for English and 0.9–1.2 for Chinese, depending on
the specific architecture of their system.

Dozat et al. (2017), building on the graph-based
version of Kiperwasser and Goldberg (2016), con-
firmed the relationship between character models
and morphological complexity, both for POS tag-
ging and parsing. They also examined the im-
portance of the quality of POS tags on parsing,
showing that their own tagger led to better parsing
results than a baseline provided by UDPipe v1.1
(Straka et al., 2016).

3 The Parser

We use and extend UUParser1 (de Lhoneux et al.,
2017a; Smith et al., 2018), a variation of the
transition-based parser of Kiperwasser and Gold-
berg (2016) (K&G). The K&G architecture can be
adapted to both transition- and graph-based depen-
dency parsing, and has quickly become a de facto
standard in the field (Zeman et al., 2017). In a
K&G parser, BiLSTMs (Hochreiter and Schmid-
huber, 1997; Graves, 2008) are employed to learn
useful representations of tokens in context. A
multi-layer perceptron (MLP) is trained to predict
transitions and possible arc labels, taking as in-
put the BiLSTM vectors of a few tokens at a time.
Crucially, the BiLSTMs and MLP are trained to-
gether, enabling the parser to learn very effective
token representations for parsing. For further de-
tails we refer the reader to Nivre (2008) and Kiper-
wasser and Goldberg (2016), for transition-based
parsing and BiLSTM feature extractors, respec-
tively.

Our version of the K&G parser is extended with
a SWAP transition to facilitate the construction

1https://github.com/UppsalaNLP/
uuparser
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of non-projective dependency trees (Nivre, 2009).
We use a static-dynamic oracle to allow the parser
to learn from non-optimal configurations at train-
ing time in order to recover better from mistakes
at test time, as described in de Lhoneux et al.
(2017b).

In this paper we experiment with a total of eight
variations of the parser, where the difference be-
tween each version resides in the vector represen-
tations xi of word types wi before they are passed
to the BiLSTM feature extractors (see Section 3
of Kiperwasser and Goldberg (2016)). In the sim-
plest case, we set xi equal to the word embedding
er(wi):

xi = er(wi)

The superscript r refers to the fact that the word
embeddings are initialised randomly at training
time. This is the setup in our BASELINE system.

For our +CHAR system, the word embedding
er(wi) is concatenated to a character-based vector,
obtained by running a BiLSTM over the characters
ch1:m of wi:

xi = er(wi) � BiLSTM(ch1:m)

In the +POS setting, the word embedding is in-
stead concatenated to an embedding p(wi) of the
word’s universal POS tag (Nivre et al., 2016):

xi = er(wi) � p(wi)

This scenario necessitates knowledge of the POS
tag of wi; at test time, we therefore need a POS
tagger to provide predicted tags.

In another version of our parser (+EXT), pre-
trained embeddings are used to initialise the word
embeddings.2 We use the superscript t to distin-
guish these from randomly initialised vectors:

xi = et(wi)

We use the embeddings that were released as part
of the 2017 CoNLL Shared Task on Universal De-
pendency Parsing (CoNLL-ST-17) (Zeman et al.,
2017). Words in the training data that do not have
pre-trained embeddings are initialised randomly.
At test time, we look up the updated embeddings
for all words seen in the training data; OOV words
are assigned their un-updated pre-trained embed-
ding where it exists, otherwise a learnt OOV vec-
tor.

2This strategy proved more successful in preliminary ex-
periments than others for incorporating pre-trained embed-
dings discussed in Section 2.

In our COMBINED setup, we include pre-trained
embeddings along with the character vector and
POS tag embedding:

xi = et(wi) � BiLSTM(ch1:m) � p(wi)

The three remaining versions of the vector xi con-
stitute all possible combinations of two techniques
of pre-trained embeddings, the character model
and POS tags. We refer to these versions of the
parser as �EXT, �CHAR, and �POS, respectively.

4 Experimental setup

4.1 Data
We ran our experiments on nine treebanks from
Universal Dependencies (Nivre et al., 2016)
(v2.0): Ancient Greek PROIEL, Arabic, Chinese,
English, Finnish, Hebrew, Korean, Russian and
Swedish. Inspired partially by de Lhoneux et al.
(2017c), these treebanks were chosen to reflect a
diversity of writing systems, character set sizes,
and morphological complexity. As error analysis
is carried out on the results, we perform all exper-
iments on the dev data sets.

Table 1 shows some statistics of each treebank.
Of particular note are the large character set sizes
in Chinese and Korean, an order of magnitude big-
ger than those of all other treebanks. The high
type-token ratio for Finnish, Russian and Korean
also stands out; this is likely due to the high mor-
phological complexity of these languages.

Treebank Sentences TTR Chars
Ancient Greek 14864 1019 0.15 179
Arabic 6075 909 0.10 105
Chinese 3997 500 0.16 3571
English 12534 2002 0.07 108
Finnish 12217 1364 0.26 244
Hebrew 5241 484 0.11 53
Korean 4400 950 0.46 1730
Russian 3850 579 0.30 189
Swedish 4303 504 0.16 86

Table 1: Treebank statistics. Number of sentences
in train and dev sets, type-token ratio (TTR), and
character set size.

4.2 Parser settings
The parser is trained three times for each language
with different random seeds for 30 epochs each.
At the end of each epoch we parse the dev data
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Word embedding size 100
Character embedding size 500
Character BiLSTM output size 100
POS tag embedding size 20

Table 2: Embedding sizes.

and calculate LAS. For each training run, results
are averaged over the five best epochs for each lan-
guage. In this way, we attempt to make our results
more robust to variance due to randomness in the
training procedure.3 Our macro-averaged scores
are based on a total of 135 different epochs (3 ran-
dom seeds ⇥ 5 best epochs ⇥ 9 languages).

Table 2 shows the embedding sizes we found
to produce best results in preliminary work and
which we use in all experiments in Section 5. Note
our unusually large character embedding size; we
will discuss this in more detail in Section 6. We
use predicted UPOS tags from the system of Dozat
et al. (2017) for experiments with POS tags,4 other
than in Section 7 where we compare results with
different taggers and gold POS tags, in order to
set a ceiling on the potential gains from a perfect
POS tagger. For all other hyperparameters we use
default values (Smith et al., 2018).

4.3 Analysis
The hypothesis underlying our choice of analysis
is that the three techniques under study here—pre-
trained embeddings, character vectors and POS
tag embeddings—affect words differently depend-
ing on their frequencies, POS tags, and the lan-
guage of the sentence. We do not claim this to
be an exhaustive list; many other dimensions of
analysis are clearly possible (dependency relation
would be another obvious choice for example), but
we believe that these are likely to be three of the
most informative factors. In the frequency and
POS tag cases, we want to examine the overall
contribution to LAS of words from each category.
We expect changing the representation of a token
to affect how likely it is to be assigned the correct
head in the dependency tree, but also how likely
it is to be assigned correctly as the head of other
words. We thus introduce a new metric for this
part of the analysis: the head and dependents la-
belled attachment score, which we refer to as HD-

3Changing the random seed has been shown to produce
results that appear statistically significant different in neural
systems (Reimers and Gurevych, 2017).

4Available at
https://web.stanford.edu/˜tdozat/.

LAS.
When calculating HDLAS, the dependency

analysis for a given token is only considered cor-
rect if the token has the correct labelled head and
the complete set of correctly labelled dependents.
This is a harsher metric than LAS, which only
considers whether a token has the correct labelled
head. Note that when calculating HDLAS for all
tokens in a sentence, each dependency relation is
counted twice, once for the head word and once
for the dependent. It only makes sense to use this
metric when analysing individual tokens in a sen-
tence, or when grouping tokens into different cat-
egories across multiple sentences.

4.3.1 Frequency
In this analysis, we first label each token in the dev
data for each language by its relative frequency
in the train data, with add-one smoothing.5 Fre-
quency categories are created by rounding the log
relative frequency down to the nearest integer. We
calculate the HDLAS for each frequency category
for each language, before macro-averaging the re-
sults across the nine languages to produce a final
score for each frequency class.

4.3.2 POS tag
In this case, we label each word from the dev data
by its gold POS tag, before calculating HDLAS
for each category and taking the macro average
across languages. Here the total number of to-
kens in each category varies across several orders
of magnitude: the most common category NOUNs
make up 26.0% of all words, while the smallest
class SYM represents just 0.1%. For this reason,
and to make our graphs more readable, we do not
show results for the six smallest categories: INTJ,
NUM, PART, SCONJ, SYM, and X.

4.3.3 Language
Here we consider LAS directly for each language;
the HDLAS metric used in the previous two sec-
tions is not relevant as all tokens in a given sen-
tence are assigned to the same category deter-
mined by the language of the sentence.

5 Results

Table 3 gives the LAS for each of the eight sys-
tems described in Section 3. We observe that pre-

5 The smoothing ensures that OOV tokens, those that ap-
pear in dev but not train, are not assigned zero frequency;
this alleviates the problem of taking log(0) in the subsequent
conversion to log relative frequency.
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BASELINE 67.7 COMBINED 81.0
+EXT 76.1 �EXT 79.9
+CHAR 78.3 �CHAR 79.2
+POS 75.9 �POS 80.3

Table 3: Mean LAS across nine languages for
a baseline system employing randomly-initialised
word embeddings only, compared to three sepa-
rate systems using pre-trained word embeddings
(+EXT), a character model (+CHAR), and POS
tags (+POS). Scores are also shown for a com-
bined system that utilises all three techniques and
corresponding systems where one of the three
techniques is ablated (�EXT, �CHAR and �POS).

trained embeddings (+8.4), the character model
(+10.6) and POS tags (+8.2) all give large im-
provements in LAS over the baseline system. The
combined system is the best overall, but the im-
provement of 13.3 LAS is far from the sum of its
components. Employing two of the techniques at
a time reduces LAS by only 0.7–1.8 compared to
the combined system.

5.1 Frequency

Fig. 1 and Fig. 2 compare systems by word fre-
quency. As expected, accuracy improves with fre-
quency for all systems: the parser does better with
words it sees more often during training. There
is a levelling off for the highest frequency words,
probably due to the fact that these categories con-
tain a small number of highly polysemous word
types.

Fig. 1 demonstrates a clear trend in the im-
provement achieved by each of the individual
techniques over the baseline, with larger gains

Figure 1: BASELINE system compared to pre-
trained embeddings (+EXT), character model
(+CHAR) and POS tags (+POS).

Figure 2: COMBINED system compared to ablated
systems where pre-trained embeddings (�EXT),
character models (�CHAR) and POS tags (�POS)
are removed.

for lower frequency words. This confirms a re-
sult from Ballesteros et al. (2015), who found
that character models help substantially with OOV
words. We can generalise this to say that charac-
ter models improve parsing quality most for low
frequency words (including OOV words), and that
this is also true, albeit to a slightly lesser effect,
of POS tags and pre-trained word embeddings. It
is notable however that HDLAS increases univer-
sally across all frequency classes: even the highest
frequency words benefit from enhancements to the
basic word representation.

What immediately stands out in Fig. 2 is that
for mid- and high frequency words, there is little
difference in HDLAS between different combina-
tions of two of the three techniques, and for the
highest frequency words this is at a level almost in-
distinguishable from the full COMBINED system.
The slight improvements we see for COMBINED
in Table 3 compared to the three ablated systems
thus principally also come from the low-frequency
range.

5.2 POS tags
In Fig. 3 systems are compared by POS tag. We
observe a universal improvement across all POS
tags for each of the three variations of the system
compared to the baseline. However, it is notable
that the biggest gains in HDLAS are for open word
classes: NOUNs, VERBs and ADJs. As these
make up a large overall proportion of words, these
differences have an overall relatively large impact
on LAS.

For the most frequent POS categories NOUN
and VERB we again see a clear victory for the
character model (note that while these POS cat-
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egories are frequent, they contain a large num-
ber of low-frequency words). Overall the charac-
ter model succeeds best for the open-class POS
categories, while having the right POS tag is
marginally better for closed-class categories such
as DET, CCONJ, and AUX. It is interesting that
the character model is not as strong for PROPN,
despite the fact that these are open-class low-
frequency words; for these words pre-trained em-
beddings are the best single technique. This may
be due to the fact that the rules governing the com-
position of names at the character level are differ-
ent from other words in the language.

It is perhaps surprising that the advantage of
POS tag embeddings is not greater when it comes
to auxiliary verbs, for example, where the distinc-
tion from main verbs can be difficult and crucial
for a correct syntactic analysis. The reason prob-
ably lies in the fact that this distinction is equally
difficult for the POS tagger. We will investigate
this further in Section 7.

Figure 3: Comparison by POS tag of BASELINE
system to +EXT, +CHAR, and +POS. Tags are
sorted by frequency.

5.3 Language

Fig. 4 compares the systems by language. Once
again improvement is universal for each system
compared to the baseline. There are however sub-

Figure 4: Comparison by language of BASELINE
system to +EXT, +CHAR, and +POS.

stantial differences between languages. The three
biggest overall improvements are for Finnish, Ko-
rean and Russian, with a particularly notable in-
crease in the Korean case. This suggests that the
baseline model struggles to learn adequate repre-
sentations for each word type in these languages.
These are the three languages we identified in Sec-
tion 4.1 as having high type-token ratios in their
training data. It is also notable that the character
model becomes more important compared to other
methods for these three languages. In fact, despite
the overall superiority of the character model (see
Table 3), it is only the best single technique for
4 of the 9 languages, the three already mentioned
plus Ancient Greek.

6 Character Embedding Size

All results with character models observed thus
far make use of a character embedding of dimen-
sion 500. This value is large compared to typ-
ical sizes used for character models (Kim et al.,
2016; Ballesteros et al., 2015). A common belief
is that larger character embedding sizes are justi-
fied for languages with larger character set sizes
such as Chinese: in other words, the embedding
size should be related to the number of entities be-
ing embedded (Shao, 2018).

In Table 4, we show how LAS varies with a
few values of this hyperparameter when averaged
across our nine-language sample. We see a steady
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BASELINE 67.7 �CHAR 79.2
+CH-24 76.8 +CH-24 80.5
+CH-100 77.7 +CH-100 80.6
+CH-500 78.3 +CH-500 81.0

Table 4: Mean LAS across nine languages for
BASELINE system compared to systems with char-
acter vectors of different sizes. Comparison also
shown for systems employing pre-trained word
vectors and POS tag embeddings.

improvement in LAS as the character embedding
size increases, both when compared to a baseline
with randomly initialised word embeddings only
and when compared to a system that also em-
ploys pre-trained word vectors and POS tag em-
beddings.6

It is particularly interesting to break down the
effects here by language. In Table 5 we show re-
sults for Chinese, Finnish, Korean and Russian. It
is particularly striking that the larger character em-
beddings do not help for Chinese; the score for
the largest character embedding size is actually
marginally lower than a baseline without a char-
acter model at all. This is despite the fact that a
small character embedding improves LAS, albeit
marginally, suggesting that there is some useful in-
formation in the characters even when pre-trained
embeddings and POS tags are present. Conversely,
the large character models are very effective for
Finnish, a treebank with a character set less than a
tenth of the size of Chinese (see Table 1).

�CHAR +CH-24 +CH-100 +CH-500
Chinese 76.0 76.1 75.9 75.8
Finnish 81.9 83.7 83.8 84.7
Korean 70.1 78.0 78.2 79.4
Russian 82.0 81.4 81.5 82.5

Table 5: Comparison by language of different char-
acter embedding sizes.

We claim therefore that character set size is not
in fact a good metric to use in determining char-
acter embedding sizes. Our tentative explanation
is that while languages like Finnish have relatively
small character sets, those characters interact with

6Note that for character embeddings of dimension 24, we
use an output size for the character BiLSTM of 50, for char-
acter embeddings of dimension 100, we use an output size of
75, and for character embeddings of dimension 500, we use
an output size of 100. We checked in separate experiments
that the improvements are not simply due to the increase in
output size.

each other in much more complex ways, thus re-
quiring larger embeddings to store all the neces-
sary information. While there are many characters
in Chinese, the entropy in the interactions between
characters appears to be smaller, enabling smaller
character embeddings to do just as good a job.

It is also worth noting from Tables 4 and 5 that,
in the presence of POS tags and pre-trained em-
beddings, the improvement gained from increas-
ing the character embedding size from 24 to 100
is small (0.1 LAS for Finnish, 0.2 for Korean, 0.1
for Russian; 0.1 on average across the nine tree-
banks). This perhaps gives the impression of di-
minishing returns; that going even larger is likely
to lead to ever smaller improvements. This may be
the reason that smaller character embeddings have
generally been preferred previously. However, we
in fact observe a much greater gain when increas-
ing from 100 to 500 (0.9 for Finnish, 1.2 for Ko-
rean, 1.0 for Russian; 0.4 on average across the
nine treebanks), suggesting that very large charac-
ter embeddings are effective, and particularly use-
ful for morphologically rich languages.

7 POS tagger
In this section we apply our POS tag analysis to
the effect of the POS tagger used to produce tags
at test time. We compare three setups: firstly using
tags predicted by UDPipe (Straka and Straková,
2017), which was the baseline model for CoNLL-
ST-2017, secondly using tags predicted by the
winning Stanford system (Dozat et al., 2017), and
thirdly using gold tags. Note that for the Stanford
system, we train on gold tags and use predicted
tags at test time, while for UDPipe we train on a
jackknifed version of the train data with predicted
tags that was released as part of CoNLL-ST-2017.

BASELINE 67.7 �POS 80.3
UDPipe 73.4 UDPipe 80.2
Stanford 75.9 Stanford 81.0
Gold 78.4 Gold 83.8

Table 6: Mean LAS across nine languages for
BASELINE system compared to systems with POS
tags predicted by different systems. Compari-
son also shown for systems employing pre-trained
word vectors and a character vector.

Table 6 shows how LAS varies with the differ-
ent POS taggers when averaged across the nine-
language sample. We see a clear improvement
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Figure 5: Comparison by POS tag of POS taggers.

from UDPipe to Stanford and then from Stanford
to gold tags over the baseline system. This par-
tially confirms results from Dozat et al. (2017),
where the Stanford tagger was found to improve
parsing results significantly over the UDPipe base-
line. More surprising perhaps is the result when
comparing to the �POS system, which also makes
use of pre-trained word embeddings and a char-
acter model. Here, results do not improve at all
by adding predicted tags from UDPipe. Stanford
tags do give an improvement of 0.7 LAS over
�POS, but this is a long way from the improve-
ment of 8.2 LAS we see when adding them on top
of BASELINE. Gold tags do however still give a
big improvement over �POS (3.5 LAS), suggest-
ing strongly that both UDPipe and Stanford strug-
gle with the decisions that would be most benefi-
cial to parsing accuracy.

In Fig. 5 we present the parsing results bro-
ken down by POS tag for the various POS tag-
gers. It is particularly notable that results when
tagging with UDPipe are no better than for �POS,
which does not use POS tags at all, across most
categories, and particularly for the closed-classes
ADP, PRON, DET, CCONJ and AUX. Stanford
tags do marginally better, but access to gold tags
is particularly important in these cases; we see a
particularly striking improvement when ADPs and
AUXs are correctly tagged over an already strong

baseline.

8 Parser speed

It should be noted that increasing the character
embedding size and character BiLSTM output di-
mension as in Section 6 slows down the parser
during training and at test time. We found no
noticeable difference in speed between the base-
line system and versions of the parser with smaller
character embedding sizes (24/100), with approx-
imately 20 sentences per second being processed
on average during training and 65 sentences per
second parsed at test time on the Taito super clus-
ter.7 There was however a discernible difference
when the character embedding size was increased
to 500, with only 12 sentences processed per sec-
ond during training and 44 during testing.

Adding a POS tag embedding makes no appre-
ciable difference to parser speed,8 but necessitates
a pipeline system that first predicts POS tags (as-
suming gold tags are unavailable). The applica-
tion of pre-trained embeddings, meanwhile, re-
quires expensive pre-training on large unlabelled
corpora. Loading these embeddings into the parser
takes time and can occupy large amounts of mem-
ory, but does not directly impact the time it takes
to process a sentence during training or parsing.

9 Conclusions and Future Work

In this article we examined the complex interac-
tions between pre-trained word vectors, character
models and POS tags in neural transition-based
dependency parsing. While previous work had
shown that POS tags are not as important in the
presence of character models, we extend that con-
clusion to say that in the presence of two of the
three techniques, the third is never as important.
The best system, however, is always a combina-
tion of all three techniques.

We introduced the HDLAS metric to capture the
overall effect on parsing quality of changes to the
representation of a particular word. We found that
all three techniques produce substantial improve-
ments across a range of frequency classes, POS
tags, and languages, but the biggest improvements
for all techniques were for low-frequency, open-
class words. We suggest that this goes some way

7https://research.csc.fi/
taito-supercluster

8Note that the POS tag embedding we use is small relative
to the other components of the word type representation (see
Table 2).
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to explaining the redundancy between the three
techniques: they target the same weaknesses in the
baseline word-type level embedding.

We confirmed a previous result that the char-
acter model is particularly important for morpho-
logically rich languages with high type-token ra-
tios, and went on to show that these languages also
benefit from larger character embedding sizes,
whereas morphologically simpler languages make
do with small character embeddings, even if the
character set size is large.

POS tag embeddings can improve results for
difficult closed-class categories, but our current
best POS taggers are not capable of making the
distinctions necessary to really take advantage of
this. The strength of pre-trained embeddings is
that they are trained on much larger corpora than
the task-specific data; the use of character mod-
els and POS tag embeddings however seems to al-
low us to generalise much better from smaller data
sets, as each character and each POS tag is nor-
mally seen many times, even if each word type is
rare.

We saw that increasing the character embedding
size slows the parser down; whether this trade-
off is worthwhile will depend on the application
in question. If accuracy is all that matters, we
recommend using a fully combined system with
large character embeddings in tandem with POS
tags and pre-trained embeddings. Where speed is
more important, it may be worth considering a sys-
tem that employs a smaller character embedding
and does without POS tags, using just pre-trained
embeddings.

In future work it would be interesting to investi-
gate whether the patterns observed here also hold
true for other types of models in dependency pars-
ing; possible variations to examine include alter-
native character models such as convolutional neu-
ral networks, joint tagging-parsing models, and
graph-based parsers.
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Abstract

There have been several recent attempts to im-
prove the accuracy of grammar induction sys-
tems by bounding the recursive complexity
of the induction model (Ponvert et al., 2011;
Noji and Johnson, 2016; Shain et al., 2016; Jin
et al., 2018). Modern depth-bounded gram-
mar inducers have been shown to be more ac-
curate than early unbounded PCFG inducers,
but this technique has never been compared
against unbounded induction within the same
system, in part because most previous depth-
bounding models are built around sequence
models, the complexity of which grows ex-
ponentially with the maximum allowed depth.
The present work instead applies depth bounds
within a chart-based Bayesian PCFG inducer
(Johnson et al., 2007b), where bounding can
be switched on and o↵, and then samples trees
with and without bounding.1 Results show that
depth-bounding is indeed significantly e↵ec-
tive in limiting the search space of the inducer
and thereby increasing the accuracy of the re-
sulting parsing model. Moreover, parsing re-
sults on English, Chinese and German show
that this bounded model with a new inference
technique is able to produce parse trees more
accurately than or competitively with state-of-
the-art constituency-based grammar induction
models.

1 Introduction

Unsupervised grammar inducers hypothesize hi-
erarchical structures for strings of words. Us-
ing context-free grammars (CFGs) to define these
structures, previous attempts at either CFG param-
eter estimation (Carroll and Charniak, 1992; Sch-
abes and Pereira, 1992; Johnson et al., 2007b) or
directly inducing a CFG as well as its probabilities
(Liang et al., 2009; Tu, 2012) have not achieved

1The public repository can be found at https://
github.com/lifengjin/dimi_emnlp18.

as much success as experiments with other kinds
of formalisms (Klein and Manning, 2004; Seginer,
2007; Ponvert et al., 2011). The assumption has
been made that the space of grammars is so big
that constraints must be applied to the learning
process to reduce the burden of the learner (Gold,
1967; Cramer, 2007; Liang et al., 2009).

One constraint that has been applied is recur-
sion depth (Schuler et al., 2010; Ponvert et al.,
2011; Shain et al., 2016; Noji and Johnson, 2016;
Jin et al., 2018), motivated by human cognitive
constraints on memory capacity (Chomsky and
Miller, 1963). Recursion depth can be defined in
a left-corner parsing paradigm (Rosenkrantz and
Lewis, 1970; Johnson-Laird, 1983). Left-corner
parsers require only minimal stack memory to pro-
cess left-branching and right-branching structures,
but require an extra stack element to process each
center embedding in a structure. For example, a
left-corner parser must add a stack element for
each of the first three words in the sentence, For
parts the plant built to fail was awful, shown in
Figure 1. These kinds of depth bounds in sentence
processing have been used to explain the relative
di�culty of center-embedded sentences compared
to more right-branching paraphrases like It was
awful for the plant’s parts to fail.

However, depth-bounded grammar induction
has never been compared against unbounded in-
duction in the same system, in part because most
previous depth-bounding models are built around
sequence models, the complexity of which grows
exponentially with the maximum allowed depth.
In order to compare the e↵ects of depth-bounding
more directly, this work extends a chart-based
Bayesian PCFG induction model (Johnson et al.,
2007b) to include depth bounding, which allows
both bounded and unbounded PCFGs to be in-
duced from unannotated text.

Experiments reported in this paper confirm that
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Figure 1: Stack elements after the word the in a left-
corner parse of the sentence For parts the plant built to
fail was awful.

depth-bounding does empirically have the e↵ect of
significantly limiting the search space of the in-
ducer. Analyses of this model also show that the
posterior samples are indicative of implicit depth
limits in the data. This work also shows for the
first time that it is possible to induce an accurate
unbounded PCFG from raw text with no strong
linguistic constraints. With a novel grammar-
level marginalization in posterior inference, com-
parisons of the accuracy of bounded grammar in-
duction using this model against other recent con-
stituency grammar inducers show that this model
is able to achieve state-of-the-art or competitive
results on datasets in multiple languages.

2 Related work

Induction of PCFGs has long been considered
a di�cult problem (Carroll and Charniak, 1992;
Johnson et al., 2007b; Liang et al., 2009; Tu,
2012). Lack of success for direct estimation was
attributed either to a lack of correlation between
the linguistic accuracy and the optimization objec-
tive (Johnson et al., 2007b), or the likelihood func-
tion or the posterior being filled with weak local
optima (Smith, 2006; Liang et al., 2009). Much of
this grammar induction work used strong linguisti-
cally motivated constraints or direct linguistic an-
notation to help the inducer eliminate some local
optima. Schabes and Pereira (1992) use brack-
eted corpora to provide extra structural informa-
tion to the inducer. Use of part-of-speech (POS)

sequences in place of word strings is popular in the
dependency grammar induction literature (Klein
and Manning, 2002, 2004; Berg-Kirkpatrick et al.,
2010; Jiang et al., 2016; Noji and Johnson, 2016).
Combinatory Categorial Grammar (CCG) induc-
tion also relies on POS tags to assign basic cat-
egories to words (Bisk and Hockenmaier, 2012,
2013), among other constraints such as CCG com-
binators. Other linguistic constraints such as con-
straints of root nodes (Noji and Johnson, 2016),
attachment rules (Naseem et al., 2010) or acoustic
cues (Pate, 2013) have also been used in induction.

Depth-like constraints have been applied in
work by Seginer (2007) and Ponvert et al. (2011)
to help with the search. Both of these systems
are successful in inducing phrase structure trees
from only words, but only generate unlabeled con-
stituents.

Depth-bounds are directly used by induction
models in work by Noji and Johnson (2016), Shain
et al. (2016) and Jin et al. (2018), and are shown
to be beneficial to induction. Noji and John-
son (2016) apply depth-bounding to dependency
grammar induction with POS tags. However the
constituency parsing evaluation scores they report
are low compared to other induction systems. The
model in Shain et al. (2016) is a hierarchical se-
quence model instead of a PCFG. Although depth-
bounding limits the search space, the sequence
model has more parameters than a PCFG, there-
fore benefits brought by depth-bounding may be
o↵set by this larger parameter space.

Jin et al. (2018) also apply depth-bounding
to a grammar inducer and induce depth-bounded
PCFGs and show that the depth-bounded gram-
mar inducer can learn labeled PCFGs competitive
with state-of-the-art grammar inducers that only
produce unlabeled trees. However, because of
the cognitively motivated left-corner HMM sam-
pler used in the model, its state space grows expo-
nentially with the maximum depth and polynomi-
ally with the number of categories. This renders
the transition matrix and the trellis of the inducer
too big to be practical in exploring models with
higher depth limits, let alone unbounded models.
By using Gibbs sampling for PCFGs (Goodman,
1998; Johnson et al., 2007b), here described as the
inside-sampling algorithm, the state space of the
model proposed in this work grows only polyno-
mially with both the maximum depth and the num-
ber of categories. This allows experiments with
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more complex models and also achieves a faster
processing speed due to an overall smaller state
space.

3 Proposed model

The model described in this paper follows Jin
et al. (2018) to induce a depth-bounded PCFG by
first inducing an unbounded PCFG and then de-
terministically deriving the parameters of a depth-
bounded PCFG from it. The main di↵erence be-
tween this model and the model in Jin et al. (2018)
is that they use the bounded PCFG to derive pa-
rameters for a factored HMM sequence model,
where a forward-filtering backward-sampling al-
gorithm (Carter and Kohn, 1996) can be used in
inference. In contrast, the model described in
this paper transforms the unbounded PCFG into a
bounded PCFG, and then uses the inside-sampling
algorithm (Goodman, 1998) to sample from the
posterior of the parse trees given the bounded
PCFG in inference. This section first gives an
overview of the model, then briefly reviews the
depth-bounding algorithm for PCFGs (van Schi-
jndel et al., 2013; Jin et al., 2018), and finally de-
scribes the inference.

As defined in Jin et al. (2018), a Chomsky nor-
mal form (CNF) unbounded PCFG is a matrix G
of binary rule probabilities with one row for each
of C parent symbols c and one column for each of
C2+W combinations of left and right child sym-
bols a and b, which can be pairs of nonterminals
or observed words from vocabulary W followed by
null symbols ?:

G =
X

a,b,c

P(c! a b | c) �c (�a ⌦ �b)> (1)

where �c is a Kronecker delta (a vector with value
one at index c and zeros elsewhere) and ⌦ is a Kro-
necker product (multiplying two matrices2 of di-
mension m ⇥ n and o ⇥ p into a matrix of dimen-
sion mo ⇥ np composed of products of all pairs of
elements in the operands). A deterministic depth-
bounding transform � is then applied to G to create
a depth-bounded version GD. A depth-bounded
grammar is composed of a set of side- and depth-
specific distributions Gs,d:

GD =
X

s2{1,2}

X

d2{1..D}
Ds,d Gs,d Es,d

> (2)

2or vectors in case n and p equal one

where side s 2 {1, 2} indicates left (1) or right (2)
child. Categories in GD are made to be side- and
depth-specific using transforms Ds,d and Es,d:3

Ds,d = �s ⌦ �d ⌦ I (3a)
E1,d = �1 ⌦ �d ⌦ I ⌦ �2 ⌦ �d ⌦ I (3b)
E2,d = �1 ⌦ �d+1 ⌦ I ⌦ �2 ⌦ �d ⌦ I (3c)

The generative story of this model is as follows.
The model first generates an unbounded grammar
G from the Dirichlet prior. Distributions over ex-
pansions P(c ! a b | c) of each category c in this
model are drawn from a Dirichlet with symmetric
parameter �:

G ⇠ Dirichlet(�) (4)

Trees for sentences 1..N are each drawn from a
PCFG given parameters GD = �(G):

⌧1..N ⇠ PCFG(GD) (5)

Each tree ⌧ is a set {⌧✏ , ⌧1, ⌧2, ⌧11, ⌧12, ⌧21, ...} of
category labels ⌧⌘ where ⌘ 2 {1, 2}⇤ is a Gorn ad-
dress specifying a path of left or right branches
from the root. Categories of every pair of left and
right children ⌧⌘1, ⌧⌘2 are drawn from a multino-
mial defined by the grammar GD and the category
of the parent ⌧⌘:

⌧⌘1, ⌧⌘2 ⇠ Multinomial(�⌧⌘
>GD) (6)

where PGD(a b | w) = PGD(a b | ?) = Ja, b=?,?K
for w 2 W, and J·K is an indicator function.

In inference, a Gibbs sampler can be used to it-
eratively draw samples from the conditional pos-
teriors of the unbounded grammar and the parse
trees. For example, at iteration t:

Gt ⇠ P(Gt | ⌧t�1
1..N ,�⌧t�1

1..N
, �) (7)

⌧t1...N ⇠ P(⌧t1..N | Gt
D,�⌧t1..N ) (8)

where �⌧ denotes the terminals in ⌧. These distri-
butions will be defined in Section 3.2.

3.1 Depth-bounding a PCFG
This section summarizes the depth-bounding func-
tion � for PCFGs described in van Schijndel et al.
(2013) and Jin et al. (2018). Depth-bounding es-
sentially creates a set of PCFGs with depth- and
side-specific categories where no tree that exceeds

3Note that this correctly stipulates depth increases for left
children of right children.
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its depth bound can be generated by the bounded
grammar. Because depth increases when a left
child of a right child of some parent category per-
forms non-terminal expansion, the probability of
such expansions at the maximum depth limit as
well as non-depth-increasing expansions beyond
the maximum depth limit must be removed from
the unbounded grammar. Following van Schijndel
et al. (2013) and Jin et al. (2018), this can be done
by iteratively defining a side- and depth-specific
containment likelihood h(i)

s,d for left- or right-side
siblings s 2 {1, 2} at depth d 2 {1..D} at each iter-
ation i 2 {1..I}, as a vector with one row for each
nonterminal or terminal symbol (or null symbol
?) in G, containing the probability of each sym-
bol generating a complete yield within depth d as
an s-side sibling:

h(0)
s,d = 0 (9a)

h(i)
1,d =

8>><
>>:

G (1 ⌦ �? + h(i�1)
1,d ⌦ h(i�1)

2,d ) if d  D + 1
0 if d > D + 1

(9b)

h(i)
2,d =

8>>>>><
>>>>>:

�T if d = 0
G (1 ⌦ �? + h(i�1)

1,d+1 ⌦ h(i�1)
2,d ) if 0 < d  D

0 if d > D
(9c)

where ‘T’ is a top-level category label at depth
zero. Following previous work, experiments de-
scribed in this paper use I = 20.

A depth-bounded grammar Gs,d can then be de-
fined to be the original grammar G reweighted and
renormalized by this containment likelihood:

G1,d =
G diag(1 ⌦ �? + h(I)

1,d ⌦ h(I)
2,d)

h(I)
1,d

(10a)

G2,d =
G diag(1 ⌦ �? + h(I)

1,d+1 ⌦ h(I)
2,d)

h(I)
2,d

(10b)

3.2 Gibbs sampling of unbounded grammars
and bounded trees

As defined above, this model samples itera-
tively from the conditional posteriors of P(G |
⌧0..N ,�⌧0..N , �) and P(⌧0..N | GD,�⌧0..N ) in infer-
ence, extending the Gibbs sampling algorithm
for PCFG induction introduced in Johnson et al.
(2007b) to depth-bounded grammars. The below
equations will omit the superscript t for the itera-
tion number of inference for clarity.

To sample from the conditional posterior of G,
it is necessary to first sum over all rule applications
in all sampled trees:

CD =
X

⌧2⌧1..N

X

⌧⌘2⌧
�⌧⌘ (�⌧⌘1 ⌦ �⌧⌘2 )> (11)

then remove side- and depth-specificity from cate-
gory labels:

C =
X

s

X

d

Ds,d
>CD Es,d (12)

A side- and depth-independent grammar is then
sampled from these counts, plus the pseudo-
count �:

G ⇠ Dirichlet(� + C) (13)

Inside-sampling (Goodman, 1998; Johnson
et al., 2007b) is then used to sample from the pos-
terior of trees P(⌧0..N | GD,�⌧0...N ). Given a depth-
bounded grammar and a sentence, this algorithm
first constructs the inside chart V 2 RL⇥L⇥C , where
L is the length of the sentence. A chart vector
V[i, j,1..C] for the span i, j where i < j  L in some
sentence w1..L is the likelihood PGD(wi.. j | c) of the
span for all side- and depth-specific categories c:

V[i, j,1..C] =
8>><
>>:

GD (�wi ⌦ �?) if j�i = 1
P

k GD (V[i,k,1..C] ⌦ V[k, j,1..C]) if j�i > 1
(14)

Trees are sampled iteratively from the top down
by first choosing a split point ki, j for the current
span i, j such that i < ki, j < j:

ki, j ⇠ Mul

0
BBBBBB@
X

k

�k �
>
ci, j

GD (V[i,k,1..C] ⌦ V[k, j,1..C])

1
CCCCCCA

(15)
The algorithm then samples pairs of category la-
bels ci,ki, j and cki, j, j adjacent at this split point ki, j:

ci,k, ck, j ⇠ Mul
⇣
�>ci, j

GD diag(V[i,k,1..C] ⌦ V[k, j,1..C])
⌘

(16)
Empirically the sampler spends most of its time

constructing the inside chart. The model described
in this paper therefore e�ciently computes the in-
side chart using matrix multiplication, which is
able to exploit GPU optimization.
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Figure 2: Example of matrix multiplication in place of
looping over break points for the span (0,5). Each chart
cell represents a likelihood vector for the span between
i and j where i is the leftmost delimiting index of the
span and j the rightmost. The arrows represent the or-
der in which the cells are stored in the chart matrices V
and V0.

E�cient inside score calculation
The complexity of the inside algorithm is cubic
on the length of the sentence because it has to it-
erate over all start points i, all end points j and
all split points k of a span. For a dense PCFG
with a large number of states, the explicit loop-
ing is undesirable, especially when it can be for-
mulated as matrix multiplication. The split point
loop is therefore replaced with a matrix multipli-
cation in order to take advantage of highly opti-
mized GPU linear algebra packages like cuBLAS
and cuSPARSE, whereas previous work explores
how to parse e�ciently on GPUs (Johnson, 2011;
Canny et al., 2013; Hall et al., 2014).

Inside likelihoods are propagated using a
copy V0 of the inside likelihood tensor V with the
first and second indices reversed:

V0[ j,i,c] = V[i, j,c] (17)

This reversal allows the sum over split points k 2
{i+1, ..., j�1} to be calculated as a product of con-
tiguous matrices, which can be e�ciently imple-
mented on a GPU:

V[i, j,1..C] = GD vec(V[i,i+1.. j�1,1..C]
>V0[ j,i+1.. j�1,1..C])

(18)
where vec(M) flattens a matrix M into a vector.

3.3 Posterior inference on constituents
Prior work (Johnson et al., 2007a) shows that us-
ing EM-like algorithms, which seek to maximize
the likelihood of data marginalizing out the latent
trees, does not yield good performance. Because
trees are the main target for evaluation, it may be
preferable to find the most probable tree struc-
tures given the marginal posterior of tree struc-
tures compared to finding the most probable gram-

mar. Some recent work (McClosky and Char-
niak, 2015; Keith et al., 2018) explores how to
use marginal distributions of tree structures from
supervised parsers to create more accurate parse
trees. Based on these arguments, this model per-
forms maximum a posteriori (MAP) inference on
constituents (PIoC) using approximate conditional
posteriors of spans to create final parses for evalu-
ation.

Formally, let �?i, j be an MAP unlabeled span of
words in a sentence from a corpus �, with start
point i and end point j, and �i,k,�k, j its possi-
ble children. This algorithm iteratively looks for
the best pair of children �?i,k,�

?
k, j according to the

posterior of the children, using all posterior sam-
ples. The spans are sentence-specific, but the be-
low equations omit the sentence index for brevity:

�?i,k,�
?
k, j = arg max

�i,k ,�k, j

P(�i,k,�k, j | �?i, j,�)

= arg max
�i,k ,�k, j

Z
P(�i,k,�k, j,G | �?i, j,�) dG

⇡ arg max
�i,k ,�k, j

X

Ĝ⇠P(G|�)

P(�i,k,�k, j, Ĝ | �?i, j,�)

(19)

where � is the training corpus. Starting from
the whole sentence �0,N , this algorithm finds the
best children for a span from the Monte Carlo
estimation of the marginal posterior distribution
of children for the span, and then continues to
split the found children spans. Because samples
from di↵erent runs at di↵erent iterations can be
used to approximate the span posteriors, the pro-
cess marginalizes out sampled grammars, whole-
sentence parse trees and constituent labels to only
consider split points for spans. In terms of input
and output, the PIoC algorithm takes in posterior
samples of trees for a sentence, and outputs an un-
labeled binary-branching tree.

There are a few benefits of doing posterior in-
ference on constituents. First, the distribution
P(�i,k,�k, j | �?i, j,�) quantifies how much uncer-
tainty there is in splitting a span �i, j at all possible
k’s. One way of using this uncertainty information
is to merge spans where uncertainty is high, ef-
fectively weakening or removing the constraint of
binary-branching from the grammar inducer. Sec-
ond, this algorithm produces trees that may not
be seen in the samples, potentially helping aggre-
gate evidence across di↵erent iterations within a
run and across runs. Third, the multimodal na-
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ture of the joint posterior of grammars and trees
often makes the sampler get stuck at local modes,
but doing MAP on constituents may allow infor-
mation about trees from di↵erent modes to come
together. If di↵erent grammars all consider cer-
tain children for a span to be highly likely, then
these children should be in the final parse output.
Finally, it is a nonparametric way of doing model
selection. As will be shown, model selection relies
on the log likelihood of the data, but the log like-
lihood of the data is only weakly correlated with
parsing accuracy. Performing PIoC with multiple
runs can increase accuracy without depending too
heavily on log likelihood for model selection.

4 Model analysis and evaluation

The model described above has hyperparameters
for maximum depth D, number of categories C
and the symmetric Dirichlet prior �. Following
Jin et al. (2018), this evaluation uses the first
half of the WSJ20 corpus as the development set
(WSJ20dev) for all experiments. However instead
of using the development set only to set the hyper-
parameters of the model, this evaluation also uses
it to explore interactions among parsing accuracy,
model fit, depth limit and category domain. The
first set of experiments explores various settings
of D in the hope of acquiring a better picture of
how depth-bounding a↵ects the inducer. The sec-
ond set of experiments uses the value of D tuned
in the first experiments, and does PIoC on di↵er-
ent sets of samples to examine the e↵ect it has
on parse quality. Optimal parameter values from
these first two experiments are then applied in ex-
periments on English (The Penn Treebank; Mar-
cus et al., 1993), Chinese (The Chinese Treebank
5.0; Xia et al., 2000) and German (NEGRA 2.0;
Skut et al., 1998) data to show how the model per-
forms compared with competing systems.

Each run in evaluation uses one sample of
parse trees from the posterior samples after con-
vergence. Preliminary experiments show that the
samples after convergence are very similar within
a run and their parsing accuracies di↵er very lit-
tle. This evaluation follows Seginer (2007) by
running unlabeled PARSEVAL on parse trees col-
lected from each run. Punctuation is retained in
the raw text in induction, and removed in evalua-
tion, also following Seginer (2007).

Figure 3: PARSEVAL scores for runs with di↵erent
depth limits. The di↵erence of all PARSEVAL scores
between depth 1 and depth 2 is significant (p=0.017,
Student’s t test).

4.1 Analysis of model behavior

The first experiment explores the e↵ects of depth-
bounding on linguistic grammar quality. The hy-
pothesis is that depth-bounding limits the search
space of possible grammars, so the inducer will be
less likely to find low-quality local optima where
cognitively implausible parse trees are assigned
non-zero probabilities, because such local optima
would be removed from the posterior by limiting
the maximum depth of parse trees to a small num-
ber d.

The e↵ect of depth-bounding
Figure 3 shows the e↵ect of depth bounding us-
ing 60 data points of unlabeled PARSEVAL scores
from 20 di↵erent runs for each of three di↵erent
depth bounds: 2, 3, and 1 (unbounded). The
range of possible parsing accuracy scores is very
wide, as mapped out by the runs. Although the un-
bounded model is able to reach the performance
upper bound seen from the figure, most of the
time its results are in the middle of the range. By
bounding the maximum depth to 2, the sampler is
able to stay in the region of high parsing accuracy.
This may be because the majority of the modes in
the region of low parsing accuracy require higher
depth limits, and humans who produce the sen-
tences do not have access to those higher depth
limits. The di↵erence between depth 1 and depth
2 is significant (p=0.017, Student’s t test), show-
ing that depth-bounding does have a positive ef-
fect on the linguistic grammar quality of the in-
duced grammars. Data from depth 3 also shows
a positive trend of inducing better grammars than
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Figure 4: The correlation between data likelihood and
parsing accuracy of all 60 runs. Calculations show that
there is a significant (p = 0.007) positive correlation
(Pearson’s r=0.39) between data likelihood and parsing
accuracy at convergence for our model.

unbounded.
A purely right-branching baseline achieves an

F1 score of 48 on the WSJ20 development dataset.
A majority of induction runs perform better than
this baseline, which indicates that the PCFG in-
duction model with the inside-sampling algorithm
is able to find good solutions, most of the time
much better than the right-branching baseline.
This is especially interesting when the grammar is
unbounded with almost no other constraint, which
had previously been shown to converge to weak
local optima.

Correlation of model fit and parsing accuracy
Model fit, or data likelihood, has been reported
not to be correlated or to be correlated only
weakly with parsing accuracy for some unsuper-
vised grammar induction models (Smith, 2006;
Johnson et al., 2007b; Liang et al., 2009) when the
model has converged to a local maximum. Figure
4 shows the correlation between data likelihood
and parsing accuracy at convergence for all the
runs. There is a significant (p = 0.007) positive
correlation (Pearson’s r=0.39) between data likeli-
hood and parsing accuracy at convergence for our
model. This indicates that although noisy and un-
reliable, the data likelihood can be used as a metric
to do preliminary model selection.

The bounded unbounded PCFG
We also examine the distribution of tree depths in
unbounded runs. For a run, we compute the per-
centage of parse trees with a certain depth, and
then examine how these percentages vary across

Figure 5: The usage of di↵erent depths for parse trees
in the samples from 20 runs with the unbounded gram-
mar.

di↵erent runs. Theoretically the possible maxi-
mum depth of a parse for a sentence is the sentence
length divided by 2. For example, a 20-word sen-
tence can have a parse of depth 10 because at least
two words are needed to create a new depth with
a center embedded phrase, but under most PCFGs
this maximally center embedded configuration is
not very likely. Figure 5 shows the percentage
of tree depths from samples in the beginning of
each unbounded run and at convergence. It shows
that at the beginning of the sampling process with
a random model sampled from the prior, the dis-
tribution of parse tree depths seems to be cen-
tered around depth 2 and 3, with non-negligible
probability mass at other depth levels. At con-
vergence, the distribution of parse tree depths is
very peaked with a large portion of the proba-
bility mass concentrated at depth 2. Given that
an unbounded PCFG has no constraint on depth,
this convergence of the marginal posterior distri-
bution of parse tree depth shows that the depth
limit seems to be a natural tendency in the data,
rather than an arbitrary preference of corpus anno-
tators.

4.2 Posterior uncertainty of constituents

Experiments were also conducted to determine
whether posterior inference on constituents (PIoC)
has any e↵ect on parsing accuracy. These experi-
ments use 10 runs on WSJ20dev with depth 2 that
have the highest log-likelihoods for exploration.
In this data, some spans have a strikingly higher
degree of uncertainty than other spans. For exam-
ple, the posterior probability of splitting the phrase
the old story, into the old and story is 0.55, and the
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System Rec Prec F1
Best 73.65 55.66 63.40
Best w/ PIoC 73.59 56.41 63.87
All w/ PIoC 72.99 59.21 65.38
All w/ PIoC w/o best 73.00 59.06 65.29

Table 1: Development results for di↵erent systems us-
ing posterior inference on constituents (PIoC).

probability of splitting it into the and old story is
0.45. Some other spans like use old tools have vir-
tually no uncertainty in how the inducer evaluates
the splits. Many such spans with high uncertainty
are noun phrases, which are not annotated with
subconstituents in the Penn Treebank annotation.
The parser can therefore avoid precision losses by
not splitting constituents with 3 or 4 words if there
is large uncertainty in this posterior.4 This exper-
iment only merges spans that would cover 3 or 4
words and leave merging spans with larger cover-
age to future work.

Table 1 shows parsing results on the WSJ20dev
dataset. The Best result is from an arbitrary sam-
ple at convergence of the oracle best run. The Best
with PIoC is the same run, but with PIoC to ag-
gregate 100 posterior samples at convergence. All
with PIoC uses 100 posterior samples from all of
the 10 chosen runs, and finally All with PIoC with-
out best excludes the best run in PIoC calculation.

There is almost a point of gain in precision go-
ing from Best to Best with PIoC with virtually no
recall loss, showing that the posterior uncertainty
is helpful in flattening binary trees. As more sam-
ples from the posterior are collected, as shown in
All with PIoC without best, the precision gain is
even more substantial. This shows that with PIoC
there is no need to know which sample from which
run is the best. Model selection in this case is only
needed to weed out the runs with very low likeli-
hood.

4.3 Multilingual PARSEVAL
A final set of experiments compare the proposed
model with several state-of-the-art constituency
grammar induction systems on three di↵erent lan-
guages. The competing systems are CCL (Seginer,
2007)5 and UPPARSE (Ponvert et al., 2011).6 We
also include the published results of DB-PCFG

4I.e. if the di↵erence between the first and the second
highest posterior probabilities is smaller than 0.3.

5https://github.com/DrDub/cclparser
6https://github.com/eponvert/upparse

(Jin et al., 2018) on English for comparison.7 The
corpora used are the WSJ20test dataset used in Jin
et al. (2018), the CTB20 (sentences with 20 words
or fewer from the Chinese Treebank) and NE-
GRA20 (sentences with 20 words or fewer from
the German NEGRA Treebank) datasets used in
Seginer (2007). All systems are trained and evalu-
ated on the same datasets to ensure fair and direct
comparison. Five di↵erent induction runs were
run on each dataset with the same hyperparame-
ters D=2,C=15, �=0.2 as tuned on the develop-
ment set, and three runs with the highest likeli-
hood at convergence were chosen for comparison
with other models. Parse trees were then calcu-
lated using PIoC as previously described, remov-
ing punctuation to calculate the unlabeled PARSE-
VAL scores with EVALB. Multiple runs of CCL
and UPPARSE on the same data yield the same
results.

Table 2 shows the unlabeled PARSEVAL scores
for the competing systems. The model described
in this paper shows strong performance in all lan-
guages. On English and Chinese, this model
achieves the new state-of-the-art recall and F1
numbers. On German, this model also achieves
the best recall scores among all models, showing
that more constituents found in the gold annotation
are discovered. It is worth noting that the CCL and
UPPARSE models do take advantage of additional
linguistic constraints, e.g. using punctuation as de-
limiters of constituents. Experiments described in
this paper show that this system can perform bet-
ter than or competitive with these existing models
without similar heuristics and constraints.

The model described in this paper performs rel-
atively poorly on precision due to the fact that
trees produced by this system are mostly binary-
branching with some constituents flattened by
PIoC. This issue is most evident on Negra, where
fully binary-branching trees have nearly twice as
many constituents as are annotated in gold. This
puts any system that produces binary-branching
trees under a precision celling of 0.51, and F1
celling of 0.675.

5 Conclusion

Experiments in this work confirm that depth-
bounding does empirically have the e↵ect of limit-
ing the search space of an unsupervised PCFG in-

7We are not able to run DB-PCFG on the other languages
due to its substantial resource requirements.
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System WSJ20test CTB20 NEGRA20
Rec Prec F1 Rec Prec F1 Rec Prec F1

CCL 61.7 60.1 60.9 35.3 39.2 37.1 44.4 27.2 33.7
UPPARSE 40.5 47.8 43.9 33.8 44.0 38.2 55.5 41.9 47.7
DB-PCFG 70.5 53.0 60.5 - - - - - -
this work 73.1 55.6 63.1 43.8 35.1 38.9 59.1 31.2 40.8

Table 2: PARSEVAL scores for di↵erent constituency grammar induction systems.

ducer. Analysis of a depth-bounded model demon-
strates desirable engineering properties, includ-
ing a significant correlation between parsing accu-
racy and data likelihood, and interesting linguis-
tic properties such as implicit bounding for un-
bounded grammars. This paper also introduces the
Posterior Inference on Constituents technique for
model selection and shows for the first time that it
is possible to accurately induce a PCFG with no
strong universal linguistic constraints. Compar-
isons of the proposed model with other state-of-
the-art constituency grammar inducers show that
this model is able to achieve state-of-the-art or
competitive results on datasets in multiple lan-
guages.
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Abstract

In natural language processing, a common task
is to compute the probability of a given phrase
appearing or to calculate the probability of
all phrases matching a given pattern. For in-
stance, one computes affix (prefix, suffix, in-
fix, etc.) probabilities of a string or a set of
strings with respect to a probability distribu-
tion of patterns.

The problem of computing infix probabili-
ties of strings when the pattern distribution is
given by a probabilistic context-free grammar
or by a probabilistic finite automaton is al-
ready solved, yet it was open to compute the
infix probabilities in an incremental manner.
The incremental computation is crucial when
a new query is built from a previous query.
We tackle this problem and suggest a method
that computes infix probabilities incrementally
for probabilistic finite automata by represent-
ing all the probabilities of matching strings as
a series of transition matrix calculations. We
show that the proposed approach is theoreti-
cally faster than the previous method and, us-
ing real world data, demonstrate that our ap-
proach has vastly better performance in prac-
tice.

1 Introduction

Probabilistic grammars and finite automata are
commonly used to model distributions in natural
language processing. Among language models,
probabilistic finite automata (PFAs) provide a sim-
ple, yet powerful and well-understood representa-
tion of many probabilistic language phenomena.
Numerous speech processing tasks rely on PFAs in
practice (Gyawali et al., 2013; Mohri et al., 2002;
Wilson and Raaijmakers, 2008; Ng et al., 2000).

An important problem regarding PFAs is to cal-
culate the probability of some affix (prefix, suffix,
infix, etc.) of a string with respect to a given dis-
tribution. That is, given a PFA P and a string w,

one might ask the probability of w appearing as
a prefix, suffix, or infix in the distribution mod-
eled by P—in other words, the sum of the prob-
abilities of all strings in the form of wx, xw, or
xwy with respect to P , for some strings x and
y. A more general problem is to compute the
sum of the probabilities of all strings in a regu-
lar language with respect to a PFA. Computing af-
fix probabilities in probabilistic models is an im-
portant problem in natural language processing.
For probabilistic context-free grammars (PCFGs)
and PFAs, the problem of calculating the prefix
or suffix probability of a string can be efficiently
solved (Fred, 2000; Corazza et al., 1991). How-
ever, calculating the infix probability of a string
or the weight of a regular language is not as
straightforward (Corazza et al., 1991). Addition-
ally, computing affix probabilities for more gen-
eral probabilistic language models has proven to
be quite difficult. Nevertheless, there are some ap-
proaches for computing the exact affix probabil-
ities over a variety of models. Lattice posterior
probabilities for n-grams, which are a restricted
form of PFA (Vidal et al., 2005b), have a vari-
ety of uses in speech processing and can be com-
puted efficiently (de Gispert et al., 2013; Can and
Narayanan, 2015). For several affixes, Corazza
et al. (1991) described algorithms to determine the
probability of a string appearing as that affix in
a PCFG. They made an important note that, un-
like computing prefix or suffix probabilities, infix
probability calculations are prone to double count-
ing in the event of the infix appearing multiple
times in a string. Then, they provided an algorithm
for computing the infix probability of a string in
restricted cases. Stolcke (1995) described a series
of recurrences that can be used to compute affix
probabilities and variations of the most probable
parse of a string for PCFGs. For the general class
of linear context-free rewriting systems, a method
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to compute prefix probabilities is known (Neder-
hof and Satta, 2011b). Fred (2000) also consid-
ered these problems and described a method to
compute the infix probabilities under the condi-
tion that the infix appears at most once in any non-
zero probability string when the language model is
a stochastic regular grammar, which is equivalent
in power to a PFA. These assumptions are rather
strict and led researchers to consider a more gen-
eral problem. Nederhof and Satta (2011a) solved
the general infix probability problem for PCFGs.
In fact, their method can be used to compute the
weight of any regular language with respect to a
PCFG. They also proposed an open problem of
incrementally computing the infix probability of
a string—using the numerical result of one infix
computation to speed up the evaluation of another.

We design a new method for solving the in-
fix probability problem for PFAs incrementally.
Unlike the previous methods involving recur-
rence calculations or intersection constructions,
our method is based on evaluating a series of ma-
trices formed from regular expressions. Addition-
ally, our method has no constraints on the input
string. We show that our method is both theoreti-
cally and practically more performant than the pre-
vious algorithms. Our experimental results show a
greater than 80% performance improvement. In
Section 2, we review PFAs and other necessary
formalisms. We recall how to obtain unambigu-
ous regular expressions in Section 3, and introduce
a matrix representation for computing the weight
of a regular language in Section 4. In Section 5,
we propose an algorithm to incrementally com-
pute the infix probability of a given string. We val-
idate the practical performance of the incremental
method using a test set of PFAs obtained from real
life data in Section 6 and conclude with a discus-
sion and some open problems in Section 7.

2 Preliminaries

2.1 Finite Automata and PFAs
Following standard notation in automata theory,
we let ⌃ be a set of characters and ⌃⇤ be the set of
all strings. For a string w = w1w2 . . . wn 2 ⌃⇤,
we write |w| = n as its length. The empty string
is written as �.

A deterministic finite automaton (DFA) is a 5-
tuple D = (Q, ⌃, �, s, F ), where Q is a finite set of
states, ⌃ is a finite alphabet, � : Q⇥⌃! Q is the
transition function, s 2 Q is the initial state, and

F ⇢ Q is the set of final states. A language is a
set of strings, and D recognizes a regular language
denoted by L(D). For a summary of automata
theory (including regular expressions and formal
language theory), we direct the reader to Hopcroft
and Ullman (1979).

A PFA is a weighted finite automaton that com-
putes a function P : ⌃⇤ ! [0, 1]. We abuse
function notation and write P(w) or P(⇡) to de-
note the weight of a word or a path, respectively.
These values are defined later. A PFA P is spec-
ified by a 5-tuple P = (Q, ⌃, �, I, F ), where
Q is a finite set of states, ⌃ is a finite alphabet,
� : Q ⇥ ⌃ ⇥ Q ! [0, 1] is the transition func-
tion, I : Q ! [0, 1] and F : Q ! [0, 1] are the
initial and final functions, respectively. The tran-
sition function is assumed to have a default value
of 0, in other words, if a transition does not exist it
can be considered as having weight 0. A PFA has
three additional requirements:

1.
P
q2Q

I(q) = 1

2. 8q 2 Q, F (q) +
P

q02Q,c2⌃
�(q, c, q0) = 1

3. All states are both accessible and co-
accessible1.

If these conditions hold, then for all strings w,
0  P(w)  1 and

P
w2⌃⇤ P(w) = 1. A

PFA can be represented in the form of transition
matrices, which simplifies several computations.
We denote the matrix formulation of a PFA by
P = (Q, ⌃, {M(c)}c2⌃, I, F) where {M(c)}c2⌃

is a set of |Q| ⇥ |Q| transition matrices with
M(c)i,j = �(qi, c, qj). Likewise, I and F are
1 ⇥ |Q| and |Q| ⇥ 1 vectors with Ii = I(qi) and
Fj = F (qj).

Consider a string w = w1w2 · · · wn 2 ⌃⇤ and
a corresponding labeled path

⇡ = (q0, w1, q1), (q1, w2, q2), . . . , (qn�1, wn, qn)

in P . Then the probability of a path ⇡ in P is

P(⇡) = I(q0)

 
nY

i=1

�(qi�1, wi, qi)

!
F (qn).

Let �w be the set of all labeled paths corre-
sponding to w. The probability of w is now

1Accessible states are states reachable from a state with
non-zero initial weight and co-accessible states are those that
can reach a state with non-zero final weight.
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P
⇡2�w

P(⇡). There exist two equivalent dy-
namic programming methods—the forwards and
backwards algorithms—to compute the probabil-
ity of a given string (Vidal et al., 2005a). Using
the matrix formulation, the probability of a string
is given succinctly as

I

|w|Y

i=1

M(wi)F.

For brevity, we write M(⌃) =
P

c2⌃ M(c) and
0 and 1 for the zero and identity matrices when
the dimensions are clear. Further, we compute

1X

i=0

M(⌃)i = (1�M(⌃))�1,

which we denote M(⌃⇤). We can compute the pre-
fix and suffix probabilities of a string w as

P(w⌃⇤) = I

0

@
|w|Y

i=1

M(wi)

1

AM(⌃⇤)F

and

P(⌃⇤w) = IM(⌃⇤)

0

@
|w|Y

i=1

M(wi)

1

AF,

respectively. If an automaton M satisfies all
of the requirements for a PFA except thatP

q2Q I(q)  1 or 8 q 2 Q, F (q) +P
q02Q,c2⌃ �(q, c, q0)  1, then we call M a

sub-PFA. These machines have the property that
for any string w over ⌃, 0  M(w)  1 andP

w2⌃⇤ M(w)  1. Since a sub-PFA M may
not describe a probability distribution over strings,
we call M(w) the weight of w instead of prob-
ability. A stochastic language over an alphabet
⌃ is a set S ✓ ⌃⇤ where each string in S has
an associated probability, 0  PrS(w)  1,
such that

P
w2⌃⇤ PrS(w) = 1. Given a stochas-

tic language S , if there exists a PFA P such that
8w 2 ⌃⇤, P(w) = PrS(w), we call S a regular
stochastic language.

2.2 Unambiguous Regular Expressions
Regular expressions are a common representation
of regular languages. A string that can be matched
with a regular expression is said to be in the lan-
guage of the regular expression. A match occurs
when there is a valid assignment of symbols in the

a, 0.2 | b, 0.2

a
,0

.3
|b

,0
.1

0.8 | 0.3 0.1 | 0.2

0.0 | 0.30.0 | 0.5

0.1 | 0.6

a, 0.5 | b, 0.2

b, 0.7

b, 0
.2

a,
0.4

a, 0.1

b, 0.2

Figure 1: An example PFA over ⌃ = {a, b}. Each state
has an initial and final probability, separated by a bar.
The edges hold a character and the probability of the
corresponding transition.

regular expression to the queried string. We de-
note the set of all strings that match a regular ex-
pression as L(R). An unambiguous regular ex-
pression has only one valid assignment for any
string in the language. For example, consider the
regular expression (a [ b)⇤aa(a [ b)⇤, which ac-
cepts the set of strings over ⌃ = {a, b} containing
aa as an infix. We assign different subscripts to
symbols that appear in more than one position to
form (a1 [ b1)⇤a2a3(a4 [ b2)⇤. Given the string
baaa, we find that b1a1a2a3 and b1a2a3a4 are both
valid assignments, hence baaa is in the language.
However, since there are two valid assignments,
we say that this regular expression is ambigu-
ous (Book et al., 1971). An unambiguous expres-
sion for the same language is b⇤a(bb⇤a)⇤a(a[b)⇤.

2.3 Intersecting a DFA and a PFA
The standard method to compute the weight of a
regular language with respect to a PFA is to in-
tersect its DFA representation with the PFA. This
construction was already discussed in (Vidal et al.,
2005a). Nederhof and Satta (2011a) considered
a similar construction for DFAs and PCFGs and
solved the infix problem for that class of machine.
The construction creates a new sub-PFA [D \ P]
such that:

[D \ P ](w) =

(
P(w), w 2 L(D);

0, otherwise.

It follows that
X

w2⌃⇤

[D \ P ](w) =
X

w2L(D)

P(w),

as desired.
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The intersection algorithm is similar to that
of the cross product of two automata from clas-
sical automata theory. Given a DFA D and a
PFA P , we construct a new machine W with states
QW = QD ⇥ QP . For two states (x, y), (x0, y0)
and a character c 2 ⌃, �W((x, y), c, (x0, y0)) =
�P(y, c, y0) if �D(x, c) = x0 and 0 otherwise.
Likewise, IW((p, q)) = IP(q) if p is the initial
state of D and FW((p0, q0)) = FP(q0) if p0 is a
final state of D and are 0 otherwise.

Using Algorithm 1, we can now efficiently com-
pute the sum of the weight of all strings in L(D)
by evaluating

I[D \ P](1�M[D \ P](⌃))�1
F[D \ P].

Algorithm 1 DFA/PFA intersection
1: procedure INTERSECT(DFA D, PFA P)
2: Q0 = QD ⇥QP
3: for (d, p) 2 Q0 do
4: if d is q0 then
5: I 0((d, p)) = I(p)
6: else
7: I 0((d, p)) = 0
8: end if
9: if d 2 FD then

10: F 0((d, p)) = F (p)
11: else
12: F 0((d, p)) = 0
13: end if
14: for c 2 ⌃, (d0, p0) 2 Q0 do
15: if �D(d, c) = d0 then
16: �0((d, p), c, (d0, p0)) = �P(p, c, p0)
17: else
18: �0((d, p), c, (d0, p0)) = 0
19: end if
20: end for
21: end for
22: return [D \ P ] = (Q0, ⌃, �0, I 0, F 0)
23: end procedure

To find the infix probability of a given string
w = w1w2 · · · wn, we take D to be a DFA that
recognizes the language of all strings containing
w as an infix. The Knuth-Morris-Pratt (KMP) al-
gorithm produces such a DFA (with O(n) states)
in O(n) time (Knuth et al., 1977). Thus, comput-
ing the infix probabilities of each of w’s prefixes
takes O(n(n|QP |)m) time, where m is the matrix

multiplication constant2, as at each step one needs
to rebuild the entire intersection automaton for the
current prefix and compute an inverse on its tran-
sition matrices.

Nederhof and Satta (2011a) demonstrated that a
similar method can be used to compute the infix
probability of a given string in PCFGs.

3 Generating Unambiguous Regular
Expressions

Book et al. (1971) showed that, given a regular
language (in the form of an automaton or regular
expression), one can find an equivalent unambigu-
ous regular expression by constructing an equiva-
lent DFA and using state elimination on the result-
ing DFA.

Let D = (Q, ⌃, �, q1, F ) be a DFA with |Q| =
n and the states being ordered from 1 to n. We
add two new states, q0 and qn+1 such that q0 is the
new start state and qn+1 is the only final state, and
add the following transitions: �(q0, �) = q1 and
8q 2 F, �(q,�) = qn+1. We then dynamically
eliminate states using the following recurrence:

↵k
i,j = ↵k�1

i,j + ↵k�1
i,k (↵k�1

k,k )⇤↵k�1
k,j

with the base cases:

↵0
i,j =

8
><

>:

�, i = 0, j = 1;

�, qi 2 F ^ j = n + 1;

{c | �(qi, c) = qj}, otherwise.

The equations follow the general concatenation,
union, and Kleene star rules for regular expres-
sions. In addition, we have:

• ;+ c = c + ; = c, for c 2 ⌃

• ;c = c; = ;, for c 2 ⌃

• �c = c� = c, for c 2 ⌃

• ;⇤ = �.

The term ↵k�1
i,j corresponds to the set of strings

for which, starting from state qi, describe a path
to qj where all intermediate states are of the form
q`, where ` < k (the terminal state in the path has
no such restriction). Similarly, ↵k�1

i,k (↵k�1
k,k )⇤↵k�1

k,j
corresponds to all of the strings which, beginning

2The matrix multiplication constant, m, is the order of the
polynomial for the runtime of multiplying two n⇥n matrices
together, i.e. a function in O(nm). In practice, Strassen’s
algorithm is often used, yielding m ⇡ 2.81 (Strassen, 1969).
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at state qi, end at qj going through qk, where
all intermediate states have label at most k (Mc-
Naughton and Yamada, 1960).

We extract ↵n
0,n+1, which is an unambiguous

regular expression for the language recognized by
D (Book et al., 1971). Note that the requirement
of an input automaton being deterministic is not
strict. In fact, state elimination generates unam-
biguous regular expressions from any unambigu-
ous automaton.

From now on, we only consider unambiguous
regular expressions for any regular languages.

4 The Weight of a Regular Language

In Section 2.3, we reviewed the classical way of
computing the weight of a regular language with
respect to a PFA using an intersection construc-
tion. Here, we present a new method based on
unambiguous regular expressions. We describe a
simple transformation to convert regular expres-
sions into operations on transition matrices. Con-
sider the following mapping from regular expres-
sions to matrices:

• ; ! 0

• �! 1

• c 2 ⌃!M(c).

Now, let R and S be regular expressions with
M(R) and M(S) being their corresponding ma-
trices:

• R [ S !M(R) + M(S)

• RS !M(R)M(S)

• R⇤ ! (1�M(R))�1.

Using these definitions, we can build a ma-
trix calculation out of a given regular expression.
We then obtain the weight of a regular expres-
sion R with respect to some PFA P by evaluat-
ing IPMP(R)FP . However, the straightforward
application of this method is prone to overcount-
ing when there are many ways for a string to be
matched to the expression.

We present a simple example where an am-
biguous expression overcounts whereas an unam-
biguous expression returns the correct result when
transformed into matrix calculations:

Let R = b⇤a(bb⇤a)⇤a(a [ b)⇤ and S = (a [
b)⇤aa(a [ b)⇤, which are both regular expressions

for all strings containing aa as an infix. Using the
PFA in Figure 1, we have:

IM(b⇤a(bb⇤a)⇤a(a [ b)⇤)F ⇡ 0.153,

IM((a [ b)⇤aa(a [ b)⇤)F ⇡ 0.198.

This gap can be made arbitrarily large by
adding ambiguity to the regular expression with-
out changing the described language.

We now show that, given a PFA P and a DFA D,
we can compute the weight of L(D) with respect
to P .

Lemma 1. Let P be a PFA, D be a DFA
and R be an unambiguous regular expression
for L(D) generated by state elimination. Then
IPMP(R)FP =

P
w2L(D) P(w).

Proof. Let D have n states, labeled q1 to qn. We
proceed as in (Book et al., 1971) by adding two
new states, q0 and qn+1. We fill out the base case
table ↵0. We then construct a new table, � where
�k

i,j = MP(↵k
i,j). In other words, ↵ holds the

regular expressions generated during state elimi-
nation while � holds the corresponding matrices.
Since ↵0 contains only unambiguous regular ex-
pressions, MP(↵0

i,j) is the matrix corresponding
to the sum of MP (w) for all w that, starting from
state qi travel to state qj without passing through
any states with label greater than 0. We continue
the elimination process until we reach ↵n and �n.
The regular expression in ↵n

0,n+1 corresponds to
the unambiguous regular expression containing all
strings accepted by D. Thus, the matrix stored in
�n

0,n+1 is the matrix such that

IPMP(↵n
0,n+1)FP = IP�n

0,n+1FP =
X

w2L(D)

P(w).

5 Incremental Infix Calculation

We now tackle the open problem of incrementally
computing the infix probability of a string with re-
spect to a PFA. Suppose we have computed the in-
fix probability of a string w. We want to use the re-
sult of that computation to compute the infix prob-
ability of wa without simply starting the computa-
tion again from scratch. Such a calculation is rel-
atively easy for other affixes. For the prefix prob-
ability of a string represented by the unambiguous
regular expression w⌃⇤, one can simply compute
IM(w)M(⌃⇤)F and save the vector IM(w). When
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the prefix is extended to wa, the saved vector can
be multiplied by M(a)M(⌃⇤)F and obtain the re-
sult (we can save the vector IM(w)M(a) to use
in future incremental calculations). A similar pro-
cess works for the incremental suffix probability
of a string (⌃⇤w to ⌃⇤aw). These incremental ap-
proaches are due to the inherent unambiguity of
regular expressions for strings appearing as a pre-
fix or suffix.

Unfortunately, the analogous method for infix
probabilities is not as straightforward. We cannot
simply append (or prepend) the desired character
to a precomputed regular expression because the
resulting expression may not be unambiguous or
may represent the a different language. To tackle
this problem, we first define the language F(w) to
be the set of strings that end in the first occurrence
of w. In other words,

F(w) = {x | w appears only as a suffix of x}.

It follows that F(w) · ⌃⇤ is exactly the set of
strings containing w as an infix. Thus, given an
unambiguous regular expression for F(w), we can
build an unambiguous regular expression for the
infix of w by concatenating with ⌃⇤.

Next, we find a regular language L such that
F(wa) = F(w) · L for a character a 2 ⌃, which
gives rise to an incremental computation using the
previous result F(w). Given two languages R and
S, we define the left quotient R\S to be:

R\S = {y | 9x 2 R such that xy 2 S}.

It is known that regular languages are closed under
the left quotient operation (Hopcroft and Ullman,
1979).

Corollary 2 follows from the definition of the
left quotient and describes the desired L.

Corollary 2. Given F(w) and F(w)\F(wa),
F(wa) = F(w) · F(w)\F(wa).

We use this characteristic and compute
F(w)\F(wa) without explicitly computing
F(wa) based on state elimination—the procedure
is detailed later in this section. Figure 2 is
an annotated example of unambiguous regular
expressions for F of a, aa, and aab.

Let D be the DFA for F(w1w2 · · · wn) gener-
ated by the KMP algorithm (Knuth et al., 1977).
Two examples are depicted in Figure 3. D has
n + 1 states, with state qn+1 being final and hav-
ing no outgoing transitions. Furthermore, each

F(a) = b⇤a

F(aa) = b⇤a · (bb⇤a)⇤a

F(aab) = b⇤a(bb⇤a)⇤a · a⇤b
F(a) F(a)\F(aa)

F(aa) F(aa)\F(aab)

Figure 2: An example of F for a, aa, aab. We anno-
tate them to show how F can be built up incrementally
using previously computed regular expressions.

state qi with i < n + 1 has exactly one outgo-
ing transition to state qi+1 and all other transitions
are to states with labels at most i. Thus, removing
state qn+1 and all incoming and outgoing transi-
tions and making qn the only final state results in
the DFA for F(w1w2 · · · wn�1). This process can
be repeated until the empty string is reached. This
leads to the observation that, when constructing an
unambiguous expression for F(w1w2 · · · wn), we
can recover the expression for F(w1w2 · · · wn�1)
extracting the regular expression at ↵n�1

0,n . Simi-
larly, the expression for F(w1w2 · · · wk) is stored
at ↵k

0,k+1.
At stage k of the state elimination procedure on

D, state q0 is only connected to states up to label
k � 1, thus ↵k�1

0,k+1 = ;. Since

↵k
0,k+1 = ↵k�1

0,k+1 + ↵k�1
0,k (↵k�1

k,k )⇤↵k�1
k,k+1,

we can simplify the expression as

↵k
0,k+1 = ↵k�1

0,k (↵k�1
k,k )⇤↵k�1

k,k+1.

In addition, we recall

↵k�1
0,k = F(w1w2 · · · wk�1).

Therefore,

F(w1 · · · wk) = F(w1 · · · wk�1)(↵
k�1
k,k )⇤↵k�1

k,k+1

and

(↵k�1
k,k )⇤↵k�1

k,k+1 = F(w1 · · · wk�1)\F(w1 · · · wk).

Algorithm 2 is for the offline setting—we know
the entire string ahead of time and compute the in-
fix probabilities of each of its prefixes incremen-
tally. In Algorithm 2, following Section 3 and
the relationship between the tables ↵ and � in
the proof of Lemma 1, we run the matrix eval-
uations of each regular expression instead of the
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Figure 3: DFAs generated by the KMP algorithm. DFA A) accepts F(aab) and B) accepts F(aabb). The automata
below are the new finite automata after adding the new initial and final state for the state elimination procedure, as
described in Section 3.

regular expressions directly. At any step k, we
only consider tables ↵k and ↵k�1 and, thus, we
can employ a standard sliding window technique
for dynamic programming to reduce the required
space complexity. In this scheme, instead of hold-
ing all tables up to ↵k, we simply hold the two
most previous ones, reducing the space complex-
ity required by a factor of O(k). We call our two
tables T and T 0 and, to simplify the pseudocode,
make elements of these two tables behave as both
matrices and regular expressions. For example,
(Ti,j)⇤ simultaneously corresponds to the regular
expression (↵i,j)⇤ and the matrix M((↵i,j)⇤) =
(1�M(↵i,j))�1.

Algorithm 2 Offline Incremental Infix
1: procedure INFIX(w = w1w2 · · · wn 2 ⌃⇤)
2: D  DFA accepting F(w)
3: T  (n + 3)⇥ (n + 3) table
4: T0,1  1
5: Tn+1,n+2  1
6: for i 2 [1, n + 2]; j 2 [1, n + 2]; c 2 ⌃ do
7: if �(qi, c) = qj then
8: Ti,j  Ti,j + M(c)
9: end if

10: end for
11: V I

12: for k 2 [0, n + 1] do
13: V V(Tk,k)⇤Tk,k+1

14: yield VM(⌃⇤)F
15: T 0  (n + 3)⇥ (n + 3) table
16: for i 2 [0, n + 2]; j 2 [0, n + 2] do
17: T 0

i,j  Ti,j + Ti,k(Tk,k)⇤Tk,j

18: end for
19: T  T 0

20: end for
21: end procedure

Algorithm 2 begins by constructing DFA for

F(w), which takes linear time in the length of
w (Knuth et al., 1977) on Line 2. This DFA is
modified to contain the new start and end state
as described in Section 3 for a total of n + 3
states. We then begin to step through the state
elimination algorithm. After constructing the ini-
tial table based on the base cases described in Sec-
tion 3 from Line 3 to 10, we prepare our vector
V that will record results from the previous in-
fix calculation. At the beginning, V should hold
IM(F(�)) = I. In the first step, we eliminate state
q1 of the automaton. Since state q0 leads to state
q1 with a �-transition, F at this step corresponds
to F(�) and F(�) · ⌃⇤ = ⌃⇤, which trivially has
infix probability 1. At stage k of the for loop,
we compute F(w1w2 · · · wk�1)\F(w1w2 · · · wk)
on Line 13. We multiply this by V, which
holds F(w1w2 · · · wk�1), which makes V now
store F(w1w2 · · · wk). On Line 14, we emit
the infix probability of w1w2 · · · wk by evaluat-
ing VMP(⌃⇤)FP . From Line 15 to 18, we up-
date our state elimination table. On Line 19, we
use the sliding window technique and copy our
updated table into T which allows for T 0 to be
safely overwritten in the next iteration. This pro-
cess repeats until we have removed all states qi for
1  i  n + 1, and therefore have computed the
infix probability of each prefix of w.

The loop starting on Line 12 executes O(|w|)
times since the automaton has |w| + 3 states. At
each iteration, we recompute the state-elimination
table, which has size O(|w|2). For each ele-
ment of the table we must perform one matrix
addition, two matrix multiplications, and one ma-
trix inverse on the matrices from the PFA, which
has overall time complexity O(|Q|m). Thus, the
runtime of Algorithm 2 is O(|w|(|w|2|Q|m)) =
O(|w|3|Q|m), where m is the matrix multi-
plication constant. Throughout the computa-
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States |Q| = 614 |Q| = 1028 |Q| = 1455

Infix
Length Incremental Intersection Incremental Intersection Incremental Intersection

1 0.226 0.147 0.857 0.468 2.383 1.079
2 0.272 0.316 1.072 1.235 3.000 3.112
3 0.334 0.637 1.327 2.634 3.693 6.997
4 0.399 1.133 1.586 4.864 4.442 13.250
5 0.465 1.934 1.855 8.104 5.124 22.357
6 0.527 3.375 2.088 12.562 5.815 35.065
7 0.584 4.129 2.347 18.414 6.593 51.709
8 0.649 5.791 2.591 25.614 7.224 72.512
9 0.711 7.879 2.851 34.959 7.950 99.347

Total 4.169 25.342 16.574 108.853 46.224 305.428

Table 1: Experimental results (in seconds) for the incremental regular expression method and the intersection
method. The average of 10 runs is reported. For the incremental test, we measure the time for the step of building
the state elimination table and outputting the current infix probability.

tion, we generate a series of tables of size
O(|w| ⇥ |w|) with elements of size O(|QP | ⇥
|QP |). However, since we use the sliding win-
dow technique, we only save O(1) of these ta-
bles, leading to an overall space complexity of
O((|w||QP |)2). Note that the space complex-
ity matches that of the intersection method, but
the time complexity of the incremental method is
asymptotically faster; O(|w|3|QP |m) compared to
O(|w|(|w||QP |)m) = O(|w|m+1|QP |m).

6 Experimental Results

We verify the effectiveness of our method using
real-world data. We present 3 n-grams3 (two 2-
grams and one 3-gram) and their 3 PFAs with 614,
1028, and 1455 states extracted from the Brown
Corpus tagged with the Penn Tree Bank tagset us-
ing the NLTK library (Bird and Loper, 2004). As
a preprocessing step, we convert all punctuation to
the PUNC tag for a total of 35 tags. The n-grams
are built by computing the probability of reading
a given tag under the condition that we have just
seen a specific sequence of n tags. We then ran-
domly select a sequence of 9 tags as our string
across all experiments. For each of the n-grams,
we calculate the infix probability of each prefix of
our input string using the incremental regular ex-
pression method and the intersection method. We
record the average of 10 runs per infix calcula-
tion. All experiments were written in Python 3.5
and the automata and matrices were implemented
using NumPy. The experiments were run on an
AMD Ryzen 7 1700 (3.0 GHz) 8-Core Processor

3We have a similar performance improvement for all other
test cases that we extract from the dataset.

with 16GB of RAM.
In the worst-case (the case when |Q| = 1028 in

Table 1), the cumulative time for the incremental
shows an 556.77% speed-up. The largest individ-
ual infix probability calculation is in the experi-
ment with |Q| = 1455 when calculating the infix
of length 9, where the incremental method obtains
a 560.76% speed-up. These results show that the
incremental method is not only theoretically faster,
but also much faster in practice when compared to
the intersection method.

The runtime gap is quite large compared to what
is expected from the theoretical analysis of the
two algorithms. Additionally, in theory, the time
for each step of the incremental calculation should
remain essentially constant, but the experimental
results show that it grows at a slow rate. These
are most likely implementation issues stemming
from the large memory requirements involved in
the calculations.

The experimental results show that the incre-
mental infix method vastly outperforms the naive
intersection method. The ability to memoize
previous calculations allows the incremental ap-
proach to calculate the next infix probability much
faster than simply restarting the entire calculation.
This empirically verifies the asymptotic analysis
of the two approaches.

7 Conclusions

We have presented a new method for solving the
open problem of incrementally computing the in-
fix probabilities of a given string with respect to
a PFA. Our method utilizes unambiguous regular
expressions and is distinguished from the previous

2739



methods in that it does not alter the structure of
the PFA during the evaluation. Similarly to the al-
gorithm presented in (Nederhof and Satta, 2011a),
this method imposes no restrictions on the input
string.

We have showed that our method is asymp-
totically faster than the previously best-known
method. Furthermore, we have experimentally
evaluated the performance of our algorithm on a
real life dataset and have observed that the pro-
posed algorithm performs significantly better than
the intersection method in all cases.

Future directions of this line of research are to
determine a method for two sided incremental in-
fix computation—that is, given a computation for
the infix of w, compute the infix of wa or aw at
will. Currently, it is only possible to do one sided
incremental infix calculations. Computing the in-
fix incrementally in an online fashion—in which
we do not know the entire string ahead of time and
receive new characters in a stream—would be an-
other improvement. We believe that the current
method can be modified to work in an online set-
ting, possibly with an increase in runtime. Fur-
thermore, finding new classes of problems that can
benefit from a similar incremental calculation is
also interesting. Finally, extending this method to
work for PCFGs and more complex probabilistic
models is an important open problem.

Acknowledgements
The authors thank the reviewers for their detailed
and constructive comments.

This work was supported by the Institute for
Information & Communications Technology Pro-
motion (IITP) grant funded by the Korea govern-
ment (MSIP) (2018-0-00247, 2018-0-00276).

References
Steven Bird and Edward Loper. 2004. NLTK: The nat-

ural language toolkit. In Proceedings of the ACL
2004 on Interactive Poster and Demonstration Ses-
sions.

Ronald Book, Shimon Even, Sheila Greiback, and
Gene Ott. 1971. Ambiguity in graphs and expres-
sions. IEEE Transactions on Computers, 20:149–
153.

Dogan Can and Shrikanth Narayanan. 2015. A dy-
namic programming algorithm for computing n-
gram posteriors from lattices. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP, pages 2388–2397.

Anna Corazza, Renato De Mori, Roberto Gretter, and
Giorgio Satta. 1991. Computation of probabili-
ties for an island-driven parser. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
13(9):936–950.

Ana L. N. Fred. 2000. Computation of substring proba-
bilities in stochastic grammars. In Grammatical In-
ference: Algorithms and Applications, pages 103–
114.
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Abstract

We propose a novel strategy to encode the
syntax parse tree of sentence into a learnable
distributed representation. The proposed syn-
tax encoding scheme is provably information-
lossless. In specific, an embedding vector is
constructed for each word in the sentence, en-
coding the path in the syntax tree correspond-
ing to the word. The one-to-one correspon-
dence between these “syntax-embedding” vec-
tors and the words (hence their embedding
vectors) in the sentence makes it easy to inte-
grate such a representation with all word-level
NLP models. We empirically show the bene-
fits of the syntax embeddings on the Author-
ship Attribution domain, where our approach
improves upon the prior art and achieves new
performance records on five benchmarking
data sets.

1 Introduction

Syntactic parse information plays an essential role
in interpreting natural languages because natural
language sentences are typically structured in a
linguistic grammar. As such, in many NLP ap-
plications it is desirable to extract syntactic fea-
tures from text or sentences, for which there exist
a rich body of literature (Baayen et al., 1996; Hirst,
2007; Massung et al., 2013; Wang et al., 2015;
Socher et al., 2011; Zhu et al., 2015b; Tai et al.,
2015; Zhu et al., 2015a)

To date, existing approaches to exploit syntac-
tic information can be categorized into two cate-
gories. The first category may be regarded as “syn-
tactic feature engineering”. In such approaches,
certain properties or statistics are extracted from
the syntax parse tree of a sentence as the syntacti-
cal feature. For example, the extracted feature may
include the depths of the tree, frequency of certain
structural patterns in the tree and so on (Massung
et al., 2013; Wang et al., 2015). The advantage
of such a method is that the extracted feature can

be used for any kind of classifier, if the feature
is deemed relevant to the classification task. The
limitation of such an approach is however that rich
structural information contained in the syntax tree
is lost in the feature extraction process. Addition-
ally, with such a strategy, the model designer is of-
ten required to design syntactic feature extractors
specific for his tasks.

The second category may be regarded as
“syntax-assisted sentence coding”. This category
of approaches build upon neural network mod-
els. Examples of such approaches include Tree-
LSTM (Tai et al., 2015; Zhu et al., 2015b) and Re-
cursive Neural Networks (Socher et al., 2011), in
which the networks are structured according to the
syntax tree of the input sentence. The network,
after being trained, is capable of encoding a se-
quence of word embeddings, in a bottom-up man-
ner, to a vector representing the entire sentence. It
is worth noting that with these approaches, the en-
coded feature vector, although containing syntac-
tical information, mainly serves as a semantic rep-
resentation of the input sentence, and the syntactic
information exploited therein primarily serves to
assist the semantic representation. Additionally,
such an approach is not flexible enough to be inte-
grated with another popular class of NLP models,
CNN.

One motivation of this work is to develop a
generic representation of the parse structure of
sentences. Ideally, we would like the representa-
tion to maximally preserve the syntactical infor-
mation and can be integrated easily with any neu-
ral network NLP models. This latter requirement
is particularly desirable, in light of the competi-
tive performance of CNN and their advantages in
training efficiency.

Another motivation of this work is the applica-
tion of Authorship Attribution (AA) (Hirst, 2007;
Stamatatos, 2009; Ouamour and Sayoud, 2012;
Stamatatos, 2011; De Vel et al., 2001; Rocha et al.,
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2017b; Binongo, 2003; Sohn et al., 2015; Shrestha
et al., 2017b). In this application, one is to ex-
tract information from a document so as to infer
the document’s author, from a given list of can-
didates. There have been a variety of use cases
of AA in practice, which include, amongst many
others, plagiarism detection (Stamatatos and Kop-
pel, 2011), forensics (Rocha et al., 2017a), suicidal
note verification (Chaski, 2005), and intelligent
question answering (Stamatatos, 2006). In this
application, previous works have mostly focused
on building a classifier based on content-level fea-
tures. The hypothesis underlying our approach to
AA in this paper is that syntactic information is
a useful additional feature that can characterize an
author. This is not only because that syntactical in-
formation complements the document content in
language understanding, it is also due to the fact
that different authors may construct sentences with
varying distributions of syntactical structures. In a
sense, the “syntactical pattern” of an author may
characterize in part the “writing style” of the au-
thor, which is independent of the content he writes
and the semantics of the document.

To that end, we propose a novel strategy to
encode the syntax parse tree of sentence into a
learnable distributed representation. Briefly, in
this representation, an embedding vector is con-
structed for each word in the sentence, encoding
the path in the syntax tree corresponding to the
word. The one-to-one correspondence between
these “syntax-embedding” vectors and the words
(hence their embedding vectors) in the sentence
makes it easy to integrate such a representation
with all word-level NLP models.

The proposed syntax encoding scheme has a
remarkable property, namely that it is provably
information-lossless, as long as the syntax embed-
ding space has adequate dimension. This property
also distinguishes the proposed scheme from other
distributed representations of syntax.

We apply the proposed syntax encoding ap-
proach to the state-of-the-art CNN-based AA
model and evaluate its performance over five
benchmarking datasets. Experimental study ver-
ifies the effectiveness of the proposed syntax en-
coding scheme. In fact, over all five datasets,
syntax-augmented CNN model demonstrates new
state-of-the-art performance.

2 Related Work

The aim of the related work here is twofold: syn-
tax encoding and authorship attribution.

2.1 Syntax Encoding
Including syntactic parse information to benefit
NLP models have been actively investigated in
decades. Syntactic feature engineering refers to
efforts to statically extract domain specific fea-
tures from syntax parse tree of the given text (Mas-
sung et al., 2013; Wang et al., 2015). Recent
attempts also include leveraging syntactic parse
tree structure to recursively generate sentence rep-
resentations bottom-up (Socher et al., 2011; Zhu
et al., 2015b; Tai et al., 2015; Zhu et al., 2015a).

Both the above two categories of methods have
severe limitations. The former parse represen-
tation typically fails to encode the parse tree
structure, and the latter is constrained by the
tree structures favored by the parser. Further-
more, the recent distributed word embedding tech-
niques, such as Glove (Pennington et al., 2014)
and W2V (Mikolov et al., 2013), have been shown
to encode limited syntax knowledge of the given
corpus (Andreas and Klein, 2014). This short-
coming has also promoted recent research on cre-
ating syntax-aware word embedding, which en-
hances the distributed embedding vectors with po-
sition information of the word within its surround-
ing context (Cheng and Kartsaklis, 2015), which
again encodes limited syntax information.

Our syntax embedding method overcomes the
above mentioned limitations, as previously dis-
cussed in Section 1.

2.2 Authorship Attribution
Various AA models make use of SVM classifiers
on some carefully engineered lexical or syntactic
feature. These works include (Pillay and Solorio,
2010; Varela et al., 2011; Segarra et al., 2013;
Seker et al., 2013; Seroussi et al., 2010; Castillo
et al., 2015). In many of these models and among
many others (e.g., (Koppel et al., 2009; Peng et al.,
2003; Apté et al., 1994)), character n-grams are
chosen as an important feature.

Recently, researchers have relied on CNN to ex-
tract features automatically. In (Ferracane et al.,
2017), for instance, a CNN is used on 2-gram em-
beddings to learn the discourse information for the
AA task. In (Shrestha et al., 2017b), a CNN is
employed on n-gram embeddings to learn richer
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S

VP

NP

NNS

claims

JJ

absolute

DT

no

VBP

are

NP

EX

there

Figure 1: Syntax Tree Example

Words Syntax Path
there S!NP!EX

are S!VP!VBP
no S!VP!NP!DT

absolute S!VP!NP!JJ
claims S!VP!NP!NNS

Table 1: Syntax Path Example

features. A study by (Tang, 2013) considers using
SVM as an activation layer for the CNN, replacing
the soft-max layer. Nevertheless, a small perfor-
mance advantage is demonstrated by the method
at a high computation cost.

Our proposed model, apart from syntax encod-
ing, is the most close to the CNN architecture of
(Shrestha et al., 2017b) where n-grams are used
to extract global content information representing
content features. The detailed model architecture
will be given in a later section.

3 Syntax Encoding

The syntactical structure of a given sentence can
be uniquely represented by a tree, which we refer
to as the syntax tree. An example of such a syntax
tree is given in Figure 1. As seen in the example, a
syntax tree has labeled nodes. Specifically, the la-
bel of each node is a “syntax token”, such as S, NP,
VP, etc., representing the grammatical property of
the word sequences covered by tree branches un-
derneath the node. For example, the root of the
tree is always labeled by S (“sentence”), and the
branches underneath the tree cover the entire sen-
tence. On the other hand, the labels for terminals
or leafs of the tree, such as EX, VBP, JJ etc., cor-
respond to “part-of-speech” tags of each word in
this sentence. We will denote by T the set of all
syntax tokens.

Given this syntactic tree structure for a sentence
s, each word w in sentence s has a unique path in
the tree leaving the root and arriving at a terminal.
Such a “syntax path” for the word w can then be
represented by a sequence of node labels along the
path. Some examples of syntax paths are given in
Table 1. The following lemma is easy to verify.
Lemma 1 Let a sentence s be written as a se-
quence of words (w1, w2, . . . , wn). For each word
position i = 1, 2, . . . , n, let r(wi) denote the syn-
tax path of word wi. Let R := {(i, r(wi)) : i =
1, 2, . . . , n} be an (unordered) set containing pre-
cisely all syntax paths for the words in s. Then the
syntax tree of s can be uniquely recovered by R.

In the lemma, we note that R is an unordered
set. That is, regardless of the ordering of the paths
in R, one can always recover the syntax tree from
R.

Let r(w) be the syntax path of a word w in the
sentence s of interest. Specifically, r(w) can be
written as the sequence (t1, t2, . . . , tL), where L
is the number of nodes in the path r, and each ti is
a syntax token.

Let the Euclidean space R
K be the embedding

space which we will use to encode syntax. We
now describe a method that encodes the path r(w)
into a vector r(w) 2 R

K .
Let Lmax be maximum depth of the syntax trees

in the corpus. For each i = 1, 2, . . . , Lmax, let pi

be a vector in R
K serving as the embedding for in-

teger i. Here integer i is meant to indicate the lo-
cation of a token in a syntax path. For each t 2 T ,
let t also be a vector in R

K , serving as the embed-
ding for syntax token t. Let vector r(w) 2 R

K ,
the embedding of path r(w), be defined by

r(w) :=
X

tj2r(w)

tj � pj (1)

where � is the element-wise product operation.
For example in Table 1, the syntax path for word
“there” will have embedding NP � p1 + EX � p2;
the syntax path for word “no” will have embed-
ding VP�p1 +NP�p2 +DT�p3. Note that when
embedding a syntax path, the beginning token S
is removed from the path since it exists in every
path.
Lemma 2 There exists a random assignment of
the vectors {t : t 2 T } and {pi : i = 1, 2, . . . , L}
such that the syntax path r(w) can be recovered
from its embedding r(w) almost surely for suffi-
ciently large K.
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This lemma (proof given in Appendix) sug-
gests that as long as we choose a sufficiently
large embedding dimension K, the above intro-
duced encoding for syntax paths is essentially
lossless. Thus, for a given n-word sentence
s = (w1, w2, . . . , wn), if we collect the embed-
ding vectors r(w1), r(w2), . . . , r(wn) of all syn-
tax paths and list them as the columns of a K ⇥ n
matrix, then by Lemmas 1 and 2, the syntax tree
of s can be recovered from the matrix. Such a ma-
trix is then an information lossless encoding of the
syntax tree.

We note however that in practice, when the to-
kens embeddings and the position (integer) em-
beddings are learned, there is no longer a guar-
anty that a syntax path can be recovered from its
embedding. This is particularly the case for su-
pervised tasks. During the training for such tasks,
the information irrelevant to the training objective
is necessarily “squeezed out”, and the represen-
tations of those syntax paths that provide no dis-
tinguishing features are “pulled closer”. This will
cause these paths non-distinguishable (and hence
non-recoverable) from their embeddings. This is
also the reason that in practice there is no need to
have very large embedding dimension K.

Nonetheless, since different supervised tasks
may have distinct training objectives, a “lossy”
syntax encoding suitable for one task may prove
ineffective for other tasks. Thus it is still essential
to adopt an information-lossless encoding frame-
work, as we propose in this paper, that is univer-
sally applicable.

Next, we will discuss the application of our syn-
tax encoding approach to AA models.

4 Authorship Attribution Model
4.1 Problem Definition
The objective of Authorship Attribution is to de-
velop a classifier that predicts the authors of un-
seen documents based on a given set of documents
and their corresponding authors. Despite the pre-
vious successes in solving the AA problem dis-
cussed in a previous section, we argue that the
syntactic parse information in an author’s writing
can characterize in part the “writing style” of the
author. Specifically, even when writing the same
content, two authors may prefer using different
syntax structure in constructing their sentences.
Consider the following two sentences.

A1: Take a left at the end of the street, you will

see the house.

A2: You will see the house, if you go down to the
end of the street and take a left.

The two sentences have the same meaning and yet
two different authors may favor different ones over
the other. This provides opportunity for leveraging
such syntactical information as an additional fea-
ture, beyond the lexical and semantic features, to
distinguish the two authors.

Detecting the syntactical differences among au-
thors suits well the application scope of the pro-
posed syntax encoding scheme. As such, in this
work, we will use the AA problem as an test bed
to examine the effectiveness of our scheme.

Figure 2: Single Layer CNN Architecture

4.2 Syntax-augmented CNN Model
The overall architecture of our model is shown
in Figure 2. Our model takes advantage of
the expressive power of convolutional neural net-
works(CNNs) to learn the embeddings for both
of the content-level features and the syntax-level
features. The model consists of 5 types of lay-
ers: Syntax-level feature embedding, Content-level
feature embedding, Convolution, Max-pooling and
Softmax.

4.2.1 Overall Structure
The model takes both the context-level features
and the syntax-level features as the input.

As the character n-gram features have been
used successfully in both of the text classification
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tasks (Kim, 2014; Chen et al., 2017) and the AA
tasks (Shrestha et al., 2017b; Sapkota et al., 2015;
Shrestha et al., 2017a; Sari et al., 2017; Ruder
et al., 2016), in this study, we use the character
n-grams to represent the content-level features.

We align in tandem the embedding vectors of
consecutive n-grams of a document to form a
content-level embedding matrix, and the consecu-
tive syntax-path embeddings of each word to form
the syntax-level embedding matrix. These embed-
ding matrices are individually passed to 2 paral-
lel CNNs having different filter lengths. The con-
volutional layer outputs feature maps via convolu-
tional filtering. The max-pool layer is then applied
across different feature maps to form the content-
level and syntax-level representation of a docu-
ment respectively. These two representations are
then concatenated to form the final feature vector
characterizing the author of the document. Finally,
this feature vector is passed to a learnable softmax
layer. The number of outputs of the softmax layer
is the number of authors, which the ith output is
the probability that the document written by au-
thor i.

4.2.2 Convolution and Max-pool
In the convolutional layer, we capture local con-
textual information using kernels, which combine
the vectors within it’s window as it slides over the
embedding matrix. A linear transformation pro-
cesses the output of the kernel.

We present a clean description for this opera-
tion. Let E 2 R

k⇥d be the embedding matrix con-
taining embeddings e1:k, where ei 2 R

d is the i-th
embedding in E, l is the number of filters and w
is the filter length or window size. Let F 2 R

w⇥d

be the filter matrix and a bias vector b. We define
the vector gi 2 R

w⇥d as the concatenation of w
embeddings in the i-th window, where

gi = ei�w+1:i 1  i  k + w � 1 (2)

The result of filter F across embedding matrix
E outputs a feature map fj 2 R

d for the j-th ker-
nel where the i-th value of fj is computed as

fji = F ⌦ gi + b (3)

where ⌦ denotes the convolution operator. Let
f 2 R

l⇥d denote the concatenation of the l fea-
ture maps for compactness. Further to this, we
apply a ReLU activation function before passing

the output to the max-pool layer. Given l filters
of different dimensions, we obtain l feature maps.
Each feature map encodes different types of ab-
stract contextual information globally for the ma-
trix E. To obtain the most relevant features from
each dimension of the feature maps, we max-over
feature map dimensions expressed as:

mi = max(f(·, i)), 1  i  d (4)

where mi represents the maximum value for di-
mension i across the l feature maps. The feature
vector m from the max-pool operation is the con-
catenation of all mi. For our 2 CNN’s we obtain
a content-level vector representation and a syntax-
level representation for an author’s text. We de-
note m̄ 2 R

t as the concatenation of these 2 vec-
tors representing an author’s style. We obtain the
confidence of an author’s attribution to a text by
feeding this final vector to a softmax layer. In
the next section, we give a brief description of the
softmax layer.

4.2.3 Softmax Layer
Given a text input x and CNN parameters ✓, this
layer outputs a score for all n authors. The output
of the softmax layer is a vector with dimension
equal to the number of author labels. To compute
the confidence of author’s attribution, the author’s
style representation m̄ is transformed by a trans-
formation matrix W 2 R

n⇥t.

o = Wm̄ (5)

where the i-th component of o corresponds to the
confidence score of author i. A softmax operation
is called on o to compute the conditional proba-
bility for each dimension. This is calculated by:

p(i|x, ✓) =
eoi

Pn
j=1 eoj

(6)

To train our model, the log-likelihood of the
probability should be maximized. To predict the
attribution of authors, the label with the highest
probability is selected. For the optimization of our
model, we use SGD algorithm to solve the opti-
mization problem.

We denote our syntax augmented CNN model
as Syntax-CNN.

5 Experimental Studies
We first empirically show the predictive perfor-
mance of the Syntax-CNN strategy, which es-
tablishes new state-of-the-art accuracy for several
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Description CCAT10 CCAT50 IMDB62 blogs10 blogs50
Avg # of words per doc 580 584 345 108.6 117.1
Avg # of chars per doc 3,089 3,010 1742 502.3 541.5
Docs per author 100 100 1000 2353.4 1470.1
Max # of chars 8,716 8,716 11617 30712 30712
Min # of chars 483 345 82 3 3

Table 2: Statistics of Datasets

benchmarking data sets. We then provide ablation
studies, aiming at better understanding the contri-
butions of the syntax embeddings to the Syntax-
CNN method.

5.1 Experimental Setup
5.1.1 Datasets
We test the Syntax-CNN approach on several
benchmarking datasets. Summary statistics of the
datasets are in Table 2.
CCAT10: 100 newswire stories, written by 10 au-
thors, in English taken from Reuters Corpus Vol-
ume 1 (RCV1) (Stamatatos, 2008).
CCAT50: Same as CCAT10 but with 100 news
article written by 50 authors.
IMDB62: 62,000 movie reviews and 17,550 mes-
sage posts from 62 prolific authors obtained from
Internet Movie Database(IMDb) (Seroussi et al.,
2010).
Blogs10: The original data set contains 681,288
blog posts by 19,320 bloggers for blogger.com.
Posts written by the top ten bloggers are selected
for the Blogs10 data set (Schler et al., 2006).
Blogs50: Same as Blogs50 but with the posts writ-
ten by the top 50 bloggers.

5.1.2 Compared Prior Art
We compare our method with various baseline ap-
proaches, which represent the current art in the
AA problem. They include SCAP (Frantzeskou
et al., 2007), SVM with 2,500 most frequent
3-grams (Plakias and Stamatatos, 2008), SVM
with bag of local histogram (Escalante et al.,
2011), Imposters (Koppel et al., 2011), LDAH-
S (Seroussi et al., 2011),SVM with affix and punc-
tuation 3-grams (Sapkota et al., 2015), CNN-
char (Ruder et al., 2016), Continuous n-gram
representation (Sari et al., 2017), and N-gram
CNN (Shrestha et al., 2017a). Except the last
two methods, all the results reported in this paper
were obtained from their respective papers. In all
our experiments, we partitioned the datasets into

train/dev/test in the same way as are used in the
literature in order for fair comparison.

5.1.3 Hyperparameters and Training
Our experimental setup follows that of the
current state-of-the-art AA method (Shrestha
et al., 2017b). In specific, the networks are
trained using mini-batches with size of either 16
(for IMDB62,Blogs10 and Blogs50) or 32 (for
CCAT10 and CCAT50). We use 3-gram with em-
bedding size of 300 for character, and embedding
size of 60 for syntax vector; these embeddings are
randomly initialized. We apply Adagrad (Duchi
et al., 2011) with initial learning rate of 1e-4. For
the CNN, we use filter sizes of 3, 4, and 5 with
50 feature maps for syntax embedding; 500 di-
mensional character embedding for CCAT, IMDB,
and Blogs50, and 200 for Blog10. We train for at
most 300 epochs, with a dropout rate of 0.25. We
deploy early stop strategy for the training using a
validation data set, which contain 10% of the ran-
domly selected samples from the training set. We
stop the training when the validation loss goes up.

In our experiments, we use the Stanford
CoreNLP parser. For documents contain more
than one sentences, each sentence is parsed sepa-
rately. The syntax encoding for each word is done
according to its syntax path in syntax tree contain-
ing the word. The syntax embeddings of all words
in the document form the input matrix to the CNN
responsible for extracting syntactical features.

5.2 Predictive Performance
Table 3 presents the accuracy obtained by var-
ious testing methods on the five benchmarking
datasets, where the best result of each data set is
highlighted in bold.

5.2.1 Accuracy Obtained by Syntax-CNN
Results in Table 3 indicate that the Syntax-CNN
outperformed all the testing methods on the five
benchmarking datasets, beating the current best
records on these testing AA tasks. Our further
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Model CCAT10 CCAT50 IMDB62 Blogs10 Blogs50
SCAP(2007) # # 94.8 48.6 41.6
SVM with most frequent 3-grams(2008) 80.8 67 81.4 # #
SVM with bag of local histogram(2011) 86.4 # # # #
Imposters(2011) # # 76.9 35.4 22.6
LDAH-S(2011) # # 72.0 52.5 18.3
SVM with affix+punctuation 3-grams(2015) 78.8 69.3 # # #
CNN-char(2016) # # 91.7 61.2 49.4
Continuous n-gram representations(2017) 74.8 72.6 95.12 61.34 52.82
N-gram CNN(2017) 86.8 76.5 95.21 63.74 53.09
Syntax 22.8 10.08 83.48 48.64 42.91
Syntax-CNN 88.20 81.00 96.16 64.10 56.73

Table 3: Accuracy obtained by the testing methods; best result for each data set is in bold.

Quality metrics CCAT10 CCAT50 IMDB62 Blogs10 Blogs50
normal 18.58% 18.79% 55.81% 82.15% 82.13%
hard 5.96% 6.3% 19.05% 8.61% 8.9%
very hard 75.46% 74.91% 25.14% 9.24% 8.97%

Table 4: Syntax correctness as measured by the Heminway Editor tool

analysis also shows that, the predictive improve-
ment on some datasets is large. For example,
against the CCAT50 and Blogs50 datasets, the rel-
ative error reductions over the current state-of-the-
art result are 5.5% and 3.64% , respectively.

5.2.2 Contribution of Syntax Encoding
We also include the accuracy obtained by using the
syntax embeddings alone on the second last row in
Table 3. These results indicate that using only the
syntax style embeddings achieved very low accu-
racy on some of the datasets, for example, with
only 10.08% on the CCAT50 dataset. As shown
in Table 4, the CCAT50 is, indeed, one of hard-
est datasets, as judged by the Hemingway Editor
tool 1, which aims to measure the syntax correc-
tion of a given piece of text. Nevertheless, such
syntax style embeddings can bring significant ac-
curacy gain to the CNN strategies. As shown in
Table 3, for the CCAT50 dataset, a relative error
reduction of 5.5% (which represents the largest
error reduction of the five testing datasets) was
achieved by Syntax-CNN over the best performed
CNN model, i.e., the N-gram CNN. Similar be-
havior can also been observed for the CCAT10
dataset as shown in Tables 4 and 3. These results
suggest that the Syntax-CNN may favor sentences
with syntax difficulties.

1http://www.hemingwayapp.com

We also provide, in Table 5, further information
about the percentage of classifications corrected
or mislabeled when enabling the syntax style em-
beddings in the Syntax-CNN method on both the
CCAT10 and CCAT50 datasets. Table 5 clearly
indicates that with the syntax style embeddings
deployed, the Syntax-CNN was able to, respec-
tively for the CCAT10 and CCAT50 datasets, cor-
rect 43.48% and 37.7% of the testing examples
which were mislabeled when the syntax embed-
dings was disabled in the Syntax-CNN.

data set CCAT10 CCAT50
wrong-to-correct 43.48% 37.7%
correct-to-wrong 4.87% 6.1%

Table 5: Percentage of classifications cor-
rected (wrong-to-correct) or mislabeled (correct-
to-wrong) when using the syntax style embed-
dings.

5.2.3 Syntactic Style Examples
The contributions of the syntax information is fur-
ther justified by examining documents whose clas-
sifications are corrected when enabling the syntax
embedding of the Syntax-CNN. For example, the
following two excerpts, extracted from documents
written by two different authors, share great se-
mantic similarity. But they show a difference in
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terms of syntax information contained. In particu-
lar, the former is constructed by deep parse trees,
but the later has a succinct parse tree structure.

author1:

China’s long-delayed bid to enter the
World Trade Organization will fall un-
der the spotlight when the world’s rich-
est nations meet to discuss its applica-
tion this week. United States says Bei-
jing must comply with a ”road map” to
open its markets and eliminate trade and
non-trade barriers before it can win U.S.
support for its entry.

author2:

China must make real changes to its
economy if it wants to join the World
Trade Organization and should replace
anti-U.S. rhetoric with international co-
operation.

Using the two documents containing these two
excerpts, we perform a separate small experiment.
When we remove syntax encoding and its cor-
responding feature from Syntax-CNN, the model
fails to classify the authors of the two documents.
But when syntax encoding is included, the model
can distinguish the two authors. Additionally, on
the syntax encoding side, when we only keep the
syntax path encoding for these two excerpts in
their respective documents and remove all other
sentences from the two documents, Syntax-CNN
is still able to classify the two authors correctly.

This suggests that syntactic information is in-
deed useful for authorship attribution, and Syntax-
CNN is able to extract such information effec-
tively.

5.3 Model Behaviors
This section aims to further evaluate the behaviors
of the Syntax-CNN model.

5.3.1 Sensitivity to Syntax Embedding
Dimension

To understand the impact of the embedding size
of the syntax tree in the Syntax-CNN method,
we conduct further experiments on the Blogs50
dataset. We vary the dimension of the syntax tree
embedding, from 5 up to 150. The experimental
results are reported in Table 6.

Table 6 shows that Syntax-CNN is robust to the
dimension size of syntax style embedding. The

dimension Syntax-CNN
5 54.96
30 55.86
60 56.82
100 56.42
150 53.34

Table 6: Accuracy obtained by Syntax-CNN on the
Blogs50 while varying the syntax style embedding
dimension.

data set with without
Blogs50 56.73 55.05
Blogs10 64.10 62.70

Table 7: Accuracy obtained by Syntax-CNN with
and without position vector.

lowest accuracy was obtained by Syntax-CNN
with an embedding dimension of 150. Although
we have noted earlier that using a higher syntax
embedding dimension allows the syntactical infor-
mation to be better preserved. A downside of such
a choice is however the risk of overfitting, which
is expectedly the cause of the degradation of the
performance at dimension 150. Note that even in
this case, the performance of Syntax-CNN is still
higher than the current state-of-the-art accuracy of
53.09% achieved by the N-gram CNN.

5.3.2 Impact of Position Vector
We further evaluate the impact of the position em-
bedding vectors (i.e., the pj vectors in Section 3 )
in syntax encoding. We conduct experiments on
both the Blogs10 and Blogs50 datasets with and
without the position embedding. In particular, by
“without position”, we mean that the element-wise
multiplication with the pj is removed from equa-
tion (1) in Section 3. The results are reported in
Table 7.

Table 7 indicates that the position vectors play
an important role in capturing syntactical informa-
tion. In fact, it is possible to prove that without
multiplying with the position vectors, in general
the syntax tree is no longer recoverable from the
encoding r(w) of syntax path r(w). Additionally,
the results in Table 7 suggest that depth informa-
tion in the syntax tree is an important feature for
distinguishing the writing styles of the authors.

6 Conclusion
We propose a novel strategy to encode a syn-
tax tree into a learnable distributed representation.
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This representation can be easily integrated into
any NLP neural network model and entails no loss
of information. Using this representation as an ad-
ditional input, we extend the CNN architecture in-
troduced in (Shrestha et al., 2017b) for the author-
ship attribution problem. Experimental evaluation
of the extended model on the standard author attri-
bution datasets demonstrates the effectiveness of
the proposed syntax encoding approach. Record-
breaking performances are obtained.
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Appendix: Proof of Lemma 2
We first establish some elementary results.
Lemma 3 Suppose that random variables
X, Y, Z, U are independent standard normal
random variables. Then

1. E(XY ZU) = 0 and VAR(XY ZU) = 1.

2. E(X2Y Z) = 0 and VAR(X2Y Z) = 3.

3. E(X2Y 2) = 1 and VAR(X2Y 2) = 8.

These results follow from the independence
among (X, Y, Z, U) and the fact that the square of
a standard normal random variable is a Chi-Square
random variable.

We now construct a random assignment scheme
and a recovery scheme.
Random Assignment: Generate each vector in {t :
t 2 T } and in {pi : i = 1, 2, . . . , Lmax} by as-
signing independent values drawn from a standard
normal distribution.
Recovery Scheme: Let a path embedding r(w)
be given. For each token-integer pair (u, i) 2
T ⇥ {1, 2, . . . , Lmax}, compute vector a 2 R

K

and scalar b by

a := r(w) � u � pi, b :=
1

K

KX

k=1

a[k]

where a[k] is the kth element of a. Choose an
arbitrary positive value ✏ < 1/2. If |b � 1| < ✏,
claim the ith token on path r(w) is u.

Now we prove that using this scheme, when the
embedding dimension K is sufficiently large, one
can recover the path r(w) with probability arbi-
trarily close to 1.

First

a =
X

tj2r(w)

tj � pj � u � pi

Note that this summation contains summing
of L K-vectors, which we will re-denote by
c1, c2, . . . , cL. Also we denote

Cl :=
1

K

KX

k=1

cl[k].

Then we have

a =
LX

l=1

cl (7)

and

b =
LX

l=1

Cl (8)

Each of cl terms in Equation (7) corresponds to
one of the four cases below.
Case 1: i = j and u = tj . This corresponds to
case 3 of Lemma 3, and we have E(cl[k]) = 1 and
VAR(c[k]) = 8. It follows that E(Cl) = 1 and
VAR(Cl) = 8/K.
Case 2: i = j and u 6= tj . This corresponds to
case 2 of Lemma 3, and we have E(cl[k]) = 0 and
VAR(c[k]) = 3. It follows that E(Cl) = 0 and
VAR(Cl) = 3/K.
Case 3: i 6= j and u = tj . This also corresponds
to case 2 of Lemma 3, and we also have E(Cl) = 0
and VAR(Cl) = 3/K.
Case 4: i 6= j and u 6= tj . This corresponds to
case 1 of Lemma 3, and we have E(cl[k]) = 0 and
VAR(c[k]) = 1. It follows that E(Cl) = 0 and
VAR(Cl) = 1/K.

For each of these cases, the distribution of Cl

can be made concentrated at its mean when K is
made large enough (by invoking either the Weak
Law of Large Number or the Central Limit Theo-
rem). Therefore, if there exists a token in the path
r(w) that makes Case 1 satisfied, the distribution
of b is concentrated at 1, and our recovery scheme
will detect, with probability close to 1, the token
and its position in the path. On the other hand, if
there is no such token, the distribution of b is con-
centrated at 0, and with probability close to 0 our
scheme will make a false detection. 2
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Abstract
The paper introduces end-to-end neural net-
work models that tokenize Sanskrit by jointly
splitting compounds and resolving phonetic
merges (Sandhi). Tokenization of Sanskrit de-
pends on local phonetic and distant seman-
tic features that are incorporated using convo-
lutional and recurrent elements. Contrary to
most previous systems, our models do not re-
quire feature engineering or extern linguistic
resources, but operate solely on parallel ver-
sions of raw and segmented text. The models
discussed in this paper clearly improve over
previous approaches to Sanskrit word segmen-
tation. As they are language agnostic, we will
demonstrate that they also outperform the state
of the art for the related task of German com-
pound splitting.

1 Introduction
Sanskrit is an Indo-Aryan language that served as
lingua franca for the religious, scientific and liter-
ary communities of ancient India. Text production
in Sanskrit started in the 2. millenium BCE and
has continued until today.1 A 19th century cata-
loguing project recorded more than 40,000 San-
skrit texts known at that time (Aufrecht, 1891–
1903), which covers only a small part of the extant
Sanskrit literature. Apart from the oldest Vedic
texts, Sanskrit has little diachronic variation on the
morphological level, because it was regularized by
the grammarian Pān. ini in the 3rd c. BCE.

NLP of Sanskrit is challenging due to com-
pounding (see Ex. 1) and the phonetic processes
called Sandhi (‘connection’; see Ex. 2–5). Com-
pounding is widely used in other languages, and
NLP has developed methods for analyzing com-
pounds (Macherey et al., 2011; Ma et al., 2016). In

1Text production was oral until the first centuries BCE
(Falk, 1993). The texts were transmitted by memorization in
this period, making them less (!) prone to transmission errors
than in written form.

Sanskrit, however, syntactic co- and subordination
tend to be diachronically replaced by compound-
ing (Lowe 2015; see also Sec. 3), so that many
sentences in later literature consist only of a few
long compounds that are loosely connected by a
semantically light verb or an (optional) copula, as
shown in this example:

(1) āśrayabhūtakhādikathanena
foundation-become-air-etc.-mentioning
“(Something is described) by mentioning air
etc. that have become [its] foundations.”

The term Sandhi denotes a set of phonetic pro-
cesses by which the contact phonemes of neigh-
boring word tokens are changed and merged, and
which create unseparated strings spanning multi-
ple tokens (Whitney, 1879). Sandhi occurs be-
tween adjacent vowels (vocalic Sandhi; Ex. 2),
between consonants and vowels (Ex. 4) and be-
tween adjacent consonants (Ex. 5):

(2) rājā+uvāca ‘the king said’ ā+u=o�! rājovāca

(3) *rāja+uvāca ‘O king, he said’ a+u=o�! rājovāca

(4) prāc+eva ‘before indeed’ c+e=ge�! prāgeva

(5) tad+hi ‘because this ...’ d+h=ddh�! taddhi

In addition, Sandhi occurs between independent
inflected words (Ex. 2–5) as well as between
members of compounds.2 Because different com-
binations of unsandhied phonemes can result in
the same surface phoneme, Sandhi resolution is
non-deterministic and depends on the semantic
context of the sentence (see Ex. 3 for a morpho-
logically and lexically valid, but semantically dis-
preferred reading of the string rājovāca).

2The compound in Ex. 1 is split as āśraya-bhūta-kha-ādi-
kathanena, and kha +ādi = khādi is a Sandhi phenomenon.
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Scriptorial and editorial conventions further
complicate the analysis of compounds and Sandhi.
While most Indian manuscripts don’t insert spaces
between strings, modern editors use spaces a
gusto. Moreover, the (correct) application of
Sandhi is not followed by all authors and editors
to the same extent, so that the unsandhied tokens
tat hi asti (‘as this is . . . ’) can occur as taddhyasti,
taddhy asti, tad dhy asti, tad dhyasti or even tat hi
asti (unchanged).

Our models aim at transforming a given sen-
tence into a sequence of unsandhied tokens. We
refer to this task as Sanskrit word splitting (SWS),
and subsume Sandhi and compounding phenom-
ena under the common term splits. We address
SWS by using a combination of convolutional and
recurrent elements. The recurrent elements inte-
grate sentence level information that leads to qual-
ified decisions about the semantic meaningfulness
of possible compound and Sandhi splits (see Ex. 2
and 3), while the convolutional elements are meant
to replace n-gram extraction, which is frequently
used in word segmentation architectures. As our
models operate on the character level, SWS can
be formulated in a sequence labeling framework.

Consequently, this paper has three main contri-
butions:

1. We introduce novel character-based models
for SWS that beat state of the art models by
large margins.

2. We compare against sequence-to-sequence
models and demonstrate that our models
work on par with them, but need significantly
less time for training and inference.

3. We publish a new dataset for Sanskrit word
splitting that consists of more than 560,000
sentences with manually validated splits. The
dataset and the code are released at https:
//github.com/OliverHellwig/
sanskrit/papers/2018emnlp.

In the rest of this paper, we use the following ter-
minology. A token is an unsandhied word that is
not itself a compound. A string is a sequence of
characters that is delimited by a space or a dan. d. a.
Each string contains at least one token, at least one
compound (that itself consists of at least two to-
kens) or a Sandhied mixture of both. A sentence
is a piece of Sanskrit text that is terminated by the

punctuation mark called dan. d. a “stick” (|) and con-
sists of at least one string. Any sentence can con-
sist of multiple independent clauses, which are not
demarcated by punctuation in Sanskrit, or consist
of a part of a larger clause only.

The paper proceeds as follows: Section 2 gives
an overview of related work in NLP. Section 3 in-
troduces our SWS dataset. Section 4 describes the
sequence labeling models developed for this pa-
per and three baseline systems, whose evalution is
presented in Sec. 5. Section 6 summarizes the pa-
per.

2 Related Research

Most NLP systems for SWS combine Pān. inis
phonetic and morphological rules with a lexi-
cal resource, either by using formal (Huet, 2005;
Goyal et al., 2009; Kulkarni and Shukla, 2009) or
statistical methods, including Dirichlet processes
(Natarajan and Charniak, 2011), finite state meth-
ods (Mittal, 2010), graph queries (Krishna et al.,
2016) and hybrid systems (Hellwig, 2015a).

A number of recent papers approaches SWS
with deep learning models. Hellwig (2015b) splits
isolated strings by applying a one-layer bidirec-
tional LSTM to two parallel character based rep-
resentations of a string. The restriction to isolated
strings is problematic, because SWS relies on the
grammatical and semantic context of the full sen-
tence in many cases. Restricting a model to iso-
lated strings ignores these linguistic clues.

Reddy et al. (2018) formulate SWS as a trans-
lation task on the sentence level. They transform
surface and unsandhied sentences using the sen-
tencepiece model and “translate” the surface into
the unsandhied sentence using a seq2seq model
with attention. Gantayat et al. (2018) use an
encoder-decoder architecture with a global atten-
tion mechanism and apply their model to iso-
lated strings from a small dataset (Bhardwaj et al.,
2018). So far, no direct comparison of deep learn-
ing models for SWS has been done, because the
authors used different, partly unpublished datasets
and reported performance on different linguistic
levels (sentence, string) and with different evalu-
ation methods. We will therefore try to make a
fair and comprehensive comparison with the state
of the art in Sec. 5.

SWS is closely related to word segmenta-
tion for other Asian languages such as Thai
(Haruechaiyasak et al., 2008), Chinese or Japanese

2755



(Kanji), with most research being done for Chi-
nese and Japanese. Contrary to Sanskrit, Chinese
and Japanese don’t exhibit Sandhi phenomena and
their logographic scripts condense information,
making it possible to use “word-level” CRFs on
the output, for example. Chen et al. (2015) in-
terpret Chinese word segmentation (CWS) as a
sequence labeling task and evaluate a range of
(stacked) bidirectional recurrent architectures that
are combined with a final sentence level likelihood
layer (Collobert et al., 2011) maximizing the tran-
sition score of the BMES encoded target sequence.
Their best model uses a single layer bidirectional
LSTM with bigrams of pre-trained character em-
beddings as inputs. Cai and Zhao (2016) deal
with CWS by first forming word hypotheses from
characters using a gated unit and then process-
ing the word hypotheses with an LSTM-based lan-
guage model. They minimize the combined word
and sentence level scores using a structured mar-
gin loss and achieve better performance than Chen
et al. (2015) on standard CWS datasets. Kitagawa
and Komachi (2017) adapt the model proposed
by Chen et al. (2015) for Japanese word splitting,
but use characters, character n-grams and lexicon-
based word boundary features as inputs. The au-
thors report state of the art performance, but ob-
serve a clear drop in the F score of their model,
when texts contain a high proportion of Hiragana
characters and thus come closer to syllabic or al-
phabetic scripts.

3 Data

Several datasets for SWS have been published in
the last years. While the dataset of Bhardwaj et al.
(2018) may be too small and unvaried for train-
ing deep learning models, Krishna et al. (2017) re-
analyze 560,000 sentences from the Digital Cor-
pus of Sanskrit (DCS)3 using the Sanskrit Her-
itage Reader (Goyal and Huet, 2016). Re-analysis
is necessary, because the DCS stores the morpho-
lexical analysis of strings, but does not record
split points and Sandhi rules applied. Due to dif-
ferent linguistic choices (Pān. inian vs. corpus-
oriented) and to different ideas about the (non-
)compositional meanings of compounds their final
dataset contains only 115,000 sentences (see the
discussion in Krishna et al. 2017 and the analysis
in Sec. 3.1). As the size of the dataset is crucial for

3http://kjc-sv013.kjc.uni-heidelberg.
de/dcs/

Surface r ā j o v ā c a
Unsandhied r ā j ā-u v ā c a

Table 1: Data extracted from the string rājovāca,
which is split into the two tokens rājā (“king”) and
uvāca (“(he, she) said”; see Ex. 2).

most deep learning methods, we decided to release
a new dataset along with this paper. Each sentence
contained in the DCS is re-analyzed using the San-
skritTagger software (Hellwig, 2009). Our dataset
contains the surface forms of sentences in the DCS
and the split points and Sandhi rules that the tag-
ger proposes for their morpho-lexical gold analy-
ses stored in the DCS. We didn’t differentiate be-
tween compound and inter-word splits, as this dis-
tinction introduces morphological categories into
the dataset. Table 1 shows an example of the an-
notation format.

Table 2 shows the statistics of our dataset, split
by text genres (first column). The dataset contains
2,978,509 strings and 4,171,682 tokens in 561,596
sentences. Most sentences come from the Epic
and scientific (medicine, alchemy, astronomy) do-
main. While Epic texts are mostly written in easy,
plain Sanskrit, the scientific works use many un-
common terms (likely to reoccur in the lexico-
graphic domain) and long compounds. Sentence
length is higher in the prose subcorpora (Buddhist,
Vedic prose, ritualistic texts).

The fourth column shows that split phenomena
are frequent in Sanskrit, occurring for more than
8% of all characters. Columns 5 and 6 report the
proportions of complicated splits in relation to all
splits. While 15% of all splits are resolved into
a vocalic Sandhi, compound breaks are the dom-
inant split type, which is also responsible for the
majority of errors and ambiguities (see Sections
3.1 and 5.2). The last column also reflects the di-
achronic development from earlier texts with lim-
ited compounding (Vedic, ritualistic and Dharma
texts) towards classical Sanskrit, which shows a
strong preference for compounding. We use a
fixed split of 90% of the sentences for training, a
development set of 5% for parameter optimization
and 5% for testing.
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Genre #sen ¯|S|
s̄pl
S

v̄oc
spl

c̄p
spl

Epos 322811 42 0.081 0.144 0.355
Science 105597 50 0.096 0.148 0.478
Literature 36989 50 0.085 0.173 0.382
Religious 24055 48 0.091 0.174 0.413
Dharma 18506 42 0.08 0.162 0.276
Buddhist 13739 78 0.083 0.143 0.442
Lexicogragphy 13015 44 0.077 0.146 0.376
Vedic prose 11425 58 0.081 0.181 0.097
Philosopy 7277 50 0.088 0.185 0.379
Vedic poetry 4355 46 0.071 0.106 0.079
Ritual 3222 71 0.069 0.183 0.215
Grammar 605 32 0.054 0.194 0.344
Overall 561596 46 0.084 0.150 0.375

Table 2: Statistics of the full dataset; ¯|S|: average
sentence length in characters; columns 4-6 give
the average proportion of splits/string s̄pl

S , of vo-
calic Sandhis/split v̄oc

spl and of compound splits/split
c̄p
spl

3.1 Quality of the training data
The dataset released by Krishna et al. (2017) and
the one released with this paper both build on the
DCS as gold standard. As this corpus was curated
by a single user and the project never released
a proper annotation guideline, one may suspect
that it contains a certain level of inconsistencies
and errors that influence the quality of the models
and impose an upper limit for the model accuracy.
In order to estimate the size of these effects, the
authors of this paper independently corrected the
analyses of 50 sentences randomly drawn from the
training set (250 words, 2,354 characters includ-
ing spaces). The corrections made by the authors
differed at 23 character positions, corresponding
to 20 strings in 15 sentences. 16 of these dif-
ferences concerned compound splits, where the
authors disagreed about the (non-)compositional
meaning of compounds. A good example for such
a disagreement is the string rājayoga, which was
split as rāja-yoga “king-Yoga” = “Yoga of a king”
by one author (compositional reading), but left un-
changed as the name of a school of Yoga by the
other one (non-compositional reading). After ad-
judicating these disagreements, there remain 5 of
250 strings with annotation errors in the training
data, which corresponds to an error level of 2% of
all strings and 0.2% of all characters for this sam-
ple.

We further explored the effect of composition-
ality by independently splitting 56 sentences of the

Buddhist treatise Trim. śikāvijñaptibhās.ya, which
is not part of the DCS. As the text uses highly tech-
nical terminology, the degree of disagreement can
be expected to be higher than for plain narrative
texts. We adjudicated our Sandhi annotations, but
kept conflicts in compound splitting unresolved.
94.5% of all strings (394 of 417) and 69.7% of
all sentences obtained the same compound analy-
sis by both authors. Again, the majority of differ-
ences (11 of 23) showed up when a compound can
have a non-compositional meaning that is closely
connected with its compositional reading. Evalua-
tion will show that these cases are responsible for
a large parts of the model errors.

4 Models

4.1 Input Features
The character based models are trained with em-
beddings of the indidual surface characters, which
are initialized with uniform random values from
[�1, +1] and updated during training. Follow-
ing Kitagawa and Komachi (2017), the input can
be enriched with multinomial split probabilities
that are built from the training data. When
the training data contain a split rule for surface
character ti at position i, we extract left (gL

i,n)
and right (gR

i,n) character n-grams with lengths
n 2 [2, 7]4 that end/start at position i, so
that gL

i,n = {ti�n+1, ti�n+2, . . . ti} and gR
i,n =

{ti, ti+1, . . . ti+n�1}. Counts #(.) for individual
n-grams are accumulated over the whole training
set. At training and test time, a vector vp 2
R

2·(7�2+1)=12 is assigned to each character posi-
tion. Its element corresponding to the left n-gram
of length 2, for example, is calculated as

vp(L, 2) =
#(gL

i,2)

max #(gL
⇤,2)

(6)

We evaluate the influence of split probabilities in
the ablation study (Sec. 5.2).

4.2 Extern Models for Comparison
We compare our models against the following
baselines:

Bidirectional RNN We re-implement the model
described in Hellwig (2015b), but apply it to full
sentences instead of isolated strings. Character
embeddings are fed into a bidirectional recurrent

4Longer n-grams did not produce improvements on the
dev set.
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layer with LSTM units. The output of the re-
current layer is additionally regularized by us-
ing dropout (Srivastava et al., 2014), and classi-
fication is performed using softmax with cross-
entropy loss. We decode the output of the softmax
in a greedy fashion without considering interac-
tions between adjacent output classes.

seq2seq We retrain the model described in
Reddy et al. (2018) with our data after pre-
processing them with the unsupervised text to-
kenizer sentencepiece (Schuster and Nakajima,
2012).5

Transformer As an alternative to recurrency
based seq2seq, we apply the model described in
Vaswani et al. (2017) to the input pre-processed
with sentencepiece. This model relies entirely on
an attention mechanism to draw global dependen-
cies between input and output. To our best knowl-
edge, this is the first time that this model has been
used for SWS. We use the publicy available imple-
mentation tensor2tensor.6.

4.3 Models Combining RNN and CNN
Convolutional Element Combinations of recur-
rent and convolutional (LeCun et al., 1998) ele-
ments are effective for tasks where complex local
features are extracted by the convolutional element
and then considered in larger contexts by the re-
current element (and vice versa; see Bjerva et al.
2016 or Ma and Hovy 2016). We use convolu-
tional features ci as proposed by Kim (2014). Let
w denote the width of the input matrix X of the
convolution (= number of time steps), h its height,
n the width of the convolutional filter fn 2 R

n⇥h,
�(.) a non-linearity (Rectified Linear Units (Nair
and Hinton, 2010) in this paper) and b a bias. A
convolutional feature at character position i and
for filter j is defined as:

cn
ij = �(fn

j · X[i:i+n�1,⇤] + b) (7)

The feature map cn
i for m different filters is

formed by concatenating the convolutional fea-
tures (cn

i = [cn
i1, c

n
i2, . . . c

n
im]) and the output c of

the convolutional element is formed by concate-
nating the feature maps (ci = c1

i � c3
i � . . .). We

use use odd filter widths only to avoid problems
5Code for the model: https://github.com/

cvikasreddy/skt; for the tokenizer: https://
github.com/google/sentencepiece

6https://github.com/tensorflow/
tensor2tensor

with patch alignment. We tested convolution with
small quadratic filters as used in image convolu-
tion as well as other methods for combining the
learned filter such as averaging, addition or max-
pooling of the stacked filters, but did not observe
improved performance on the dev set.

Model 1: Convolution ! Recurrency (crNN)
As an alternative to n-gram extraction (Chen et al.,
2015; Kitagawa and Komachi, 2017), a convolu-
tional element is applied to the character embed-
dings (see Fig. 1a). Its outputs (Eq. 7) are fed
into a bidirectional recurrent layer (Schuster and
Paliwal, 1997). As in the baseline RNN (Sec.
4.2), dropout is inserted after the recurrent layer,
and classification is performed using softmax with
cross-entropy loss and greedy decoding.

Model 2: Recurrency ! Convolution (rcNN)
The order of convolutional and recurrent elements
is switched (see Fig. 1b), so that the convolutional
operation replaces additive n-gram formation be-
fore the classification layer. The remaining archi-
tecture is identical to that of crNN

Model 3: rcNN with Shortcuts (rcNNshort)
This model extends rcNN by adding shortcut con-
nections (Bishop, 2000) that concatenate the char-
acter embeddings and the RNN outputs with the
concatenated feature maps c (see Fig. 1c). When
ei denotes the embedding of character i and ri the
output of the recurrent layer at position i, the input
to the classification layer is defined as ei �ri �ci.
Shortcuts are evaluated because we hypothesized
that the access to unconvolved information about
the input sequence and the output of the recur-
rent layer would facilitate the exact prediction of
split locations. For a better control of informa-
tion flow, we also experimented with residual (He
et al., 2016) and highway (Srivastava et al., 2015)
instead of shortcut layers, but could not observe
improvements on the dev set, most probably be-
cause our models are not deep enough for these
layer types to show effects.

5 Evaluation

5.1 Evaluation Settings
We use the following settings found on the dev set
for the character based models: embedding size:
128; 200 hidden recurrent units; 100 convolutional
feature maps with filter widths of 3,5 and 7. We
use regularized (Zaremba et al., 2014) instead of
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j o v ...

concat.

conv.

bidir. RNN

j ā-u v
softmax

(a) crNN

j o v ...

j ā-u v

(b) rcNN

j o v ...

sh
or

tc
ut

j ā-u v

(c) rcNNshort

Figure 1: Character based models, unfolded for the sequence labeling task j+o+v ! j+a-u+v.

vanilla LSTM units. All models are trained with
the Adam optimizer (Kingma and Ba, 2015), an
initial learning rate of 0.005 and batch size of 100.
Gradients with a magnitude higher than 5.0 are
cut. The models used for model selection (Sec.
5.2) are trained for 5, the other character-based
models for 10 iterations. We train the Transformer
in its default configuration as described in Vaswani
et al. (2017) with a vocabulary size 5k7 and report
performance on the test set based on evaluations
on the dev set. The model of Reddy et al. (2018)
is trained for 80 epochs with our training data and
the same parameters as described in the original
paper. All calculations are run on a Maxwell Ti-
tan X GPU. We compare the models using sen-
tence accuracy (#sens. with errors

#all sens. ) and string based
P(recision), R(ecall) and F score (Ma et al., 2016),
where P and R are equivalent to the measures used
in the CWS bakeoffs (Sproat and Emerson, 2003).

5.2 Model Selection
The upper half of Tab. 3 compares the evalua-
tion metrics for the three character based models
introduced in this paper trained with and with-
out split probabilities (Sec. 4.1). We test dif-
ferences in string accuracy using the McNemar
test.8 In general, all models that use recurrency
before convolution (rcNN*) have string accuracy
rates that are significantly higher at the 0.001 level
than for models that use convolution before recur-
rency (crNN).

7Larger vocabulary sizes did not improve on the dev set,
but performance gains by further decreasing the vocabulary
size appear to be possible.

8Testing the sentence accuracy produced highly corre-
lated test statistics. Results are therefore not discussed.

Table 3 shows that the differences in the per-
formance of crNN and rcNN* are almost as large
as between the RNN baseline and the best model
from this paper (lower half of Tab. 3), although
crNN and rcNN* differ only by the switched or-
der of recurrent and convolutional elements. We
found this result surprising, because applying con-
volution to the character embeddings appeared
like a good parametrized alternative to n-gram ex-
traction, which is often the first step in architec-
tures for Chinese and Japanese word segmenta-
tion.

To further investigate this phenomenon, we
evaluated 60 randomly chosen strings from the test
set in which either crNNsplit or (XOR) rcNNsplit

short
made an error. 45 of the errors relate to compound
splitting, partly combined with vocalic Sandhi, ei-
ther by missing a split (rcNNsplit

short: 11, crNNsplit:
15) or by oversegmenting compounds (rcNNsplit

short:
13, crNNsplit: 6). Most notably, rcNNsplit

short tends
to insert more splits than crNNsplit. This behav-
ior can be observed for missing splits and espe-
cially for oversegmentations. A more detailed in-
spection shows that 11 of 13 oversegmentations
actually induce a compositional reading of a com-
pound. saralāṅga “name of a pine resin”, for ex-
ample, is oversegmented into sarala-aṅga “pine-
limb”, which is the etymological derivation of this
compound. In contrast, crNN creates oversegmen-
tations such as śr. ṅgavanti-ah. , where śr. ṅgavanti
“having horns” (nom. pl. neutre) is a valid form,
while ah. is not an independent word form in San-
skrit. Interestingly, rcNNsplit

short mis-segments the
same string into śr. ṅga-vantyah. in another sen-
tence of the test set. Though differing from the
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Sen. String
Model sp? A P R A

Model selection
crNN 75.7 90.8 90.8 94.2
crNN X 75.4 90.6 90.9 94.2
rcNN 81.9 93.2 93.6 95.8
rcNN X 82.2 93.3 93.8 95.9
rcNNshort 81.7 93.1 93.5 95.8
rcNNshort X 82.6 93.6 93.8 96

Comparison with other models
Hellwig (2015b) 77.7 91.8 91.8 94.8
Reddy et al. (2018) 72.3 90.2 88.4 93.3
Transformer 5K 84.9 94.9 94.5 96.5
rcNNsplit

short X 85.2 94.6 94.8 96.7

Table 3: Upper half: Results for model selection
(Sec. 5.2); lower half: Comparison with baseline
models (Sec. 4.2 and 5.3)

gold analysis, this segmentation gives the correct
derivational analysis of the adjective (noun śr. ṅga
“horn” + inflected form of the adjectivizing pos-
sessive affix -vat). The results of rcNNsplit

short thus re-
flect the inherent inconsistencies of the dataset on
the level of compound splitting (see Sec. 3.1), and
their erroneous splits are frequently semantically
meaningful while glossing over minute semantic
distinctions. Errors of crNN, in contrast, tend to
be real mis-segmentations, indicating that its abil-
ity to reflect the semantic level is underdeveloped.

Split probabilities (Sec. 4.1) have a small, but
positive effect on string accuracy of the rcNN*
models. When the same model with and without
split probabilities is compared using the McNemar
test, split probabilities significantly increase string
accuracy at the 0.1 level for rcNN and at the 0.001
level for rcNNshort, while they don’t result in sig-
nificantly better performance for crNN.

5.3 Comparison with Baseline Models
The lower half of Tab. 3 compares the best model
introduced in this paper (rcNNsplit

short) with baselines
proposed for SWS in previous research. rcNNsplit

short
outperforms the character based RNN described
in Hellwig (2015b) by a wide margin. While
Tab. 3 shows differences of almost 8% in sen-
tence and 3% in string accuracy, Tab. 4 presents
the improvements for the single surface character

Hellwig (2015b) rcNNsplit
short (this paper)

Rule P R F P R F
ā 98.09 97.82 97.95 99.24 99.1 99.17
ā- 84.6 87.72 86.13 89.81 93.27 91.5
a-a 89.08 92.67 90.84 94.36 96.34 95.34
a-ā 88.26 86.48 87.36 91.5 95.6 93.51
ā-a 83.59 75 79.06 92.29 84.76 88.36
ā-ā 72.45 58.97 65.02 90.76 72.24 80.45
āh. 73.13 77.66 75.33 91.48 89.44 90.45

Table 4: P, R and F for rules that produce the sur-
face phoneme ā. Data in the left half are from
the original publication. As all metrics are consis-
tently better for this paper, we refrain from high-
lighting the best results in the right half of the ta-
ble.

ā, which can correspond to a compound split (ā-)
or to various vocalic Sandhis (a-a etc.). For this
complicated character, rcNNsplit

short achieves consis-
tent improvements of up to 15% on all metrics.
We found it especially relevant to observe that
rcNNsplit

short made large progress for rare rule types
such as ā-ā or ā-a, indicating its increased ability
for semantic generalization.

The seq2seq model (Reddy et al., 2018) per-
forms on a similar level of accuracy as the one
proposed in Hellwig (2015b). Similar to crNN
(Sec. 5.2) it tends to miss splits and to insert faulty
ones (e.g., dānādānaratih. , should: dāna-ādāna-
ratih. “pleasure in giving and taking”, is: dānāt-
ānaratih. “from giving . . . UNK”).

Gantayat et al. (2018) evaluate their model us-
ing location and split9 prediction accuracy. The
authors report 95.0 location and 79.5 split accu-
racy, but don’t specify how they calculated these
values. For this reason and because they evalu-
ate on isolated strings only, we cannot compare
directly against their work, but would like to re-
port the following measures for rcNNsplit

short:

• P, R and F for location prediction10:
97.64/98.19/97.91

• Micro-averaged P, R and F for individual rule
types such as vocalic Sandhi or compound

9This seems to mean prediction of the correct Sandhi rule;
see Gantayat et al. (2018, 4.2).

10P = TP
TP+FP , R = TP

TP+FN , TP: number of characters
for which gold and model both record a split (though not nec-
essarily of the same type), FP: number of characters at which
the model over-segmentates, FN: number of character where
the model fails to detect a valid split.
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Model S/A P R A
Trim. śikāvijñaptibhās.ya

rcNNsplit
short 73.9 78.7 68.6 87.1

Transformer (5K) 72.6 77.5 66.9 86.8
Nyāyamañjarı̄

rcNNsplit
short 60.2 66.4 63.3 84.8

Transformer (5K) 62.1 68.6 63.5 85.2

Table 5: Results for evaluation on the Trim. śikā-
vijñaptibhās.ya and the Nyāyamañjarı̄; S/A: sen-
tence accuracy

split: 95.12/95.12/95.12

The Transformer performs almost on par with
rcNNsplit

short, and the differences in string accuracy
are not statistically significant, although rcNNsplit

short
takes less time for training (2 h vs. 55 h) and in-
ference (less than 1 min vs. 30 min when analyz-
ing the test set). To better understand if the sys-
tems make orthogonal errors and could therefore
be used in a mixture of experts, we performed a
domain-specific evaluation with 73 sentences from
the Buddhist treatise Trim. śikāvijñaptibhās. ya and
104 sentences from the philosophical text Nyāya-
mañjarı̄. We preserved the non-standard orthog-
raphy of both texts in order to simulate the ap-
plication of the models to real-world data. This
includes the presence of typos, unsolved textual
problems and erratic (non)-application of Sandhi.

Both models show a significant drop in overall
performance when applied to these data (see Tab.
5). This is not surprising, because the input con-
ventions of these files do not match the conven-
tions of the training-data. Most errors arise again
from disagreement about the (non-)compositional
reading of technical compounds such as sarva-
jña-tva “all-knowing-ness” (see Sec. 3.1). It has to
be noted that both models agree well in their cor-
rect decisions and in the type of errors they pro-
duce on these data. This indicates that the dis-
crepancy in the orthographical conventions is in-
deed responsible for a large part of the drop in
performance. Given the fact that both texts exhibit
a lot of special vocabulary that is not present or
used in a very different way in the training set,
both models perform surprisingly well. Typical
errors common to both models are for example
svalpam instead of su-alpam “very small”. Both

Model P R A
Ma et al. (2016) 0.955 0.941 0.943
rcNNshort, no sp 0.958 0.958 0.955

Table 6: Results for splitting German compounds;
evaluation metrics according to Koehn and Knight
(2003)

models have difficulties to seperate Sandhi in pas-
sages that do not adhere to the common practice
for typesetting of Indian texts in Latin translit-
eration. ayam. parin. āmah. , for example, was not
separated into the usual form ayam. parin. āmah. .
There are certain cases of disagreement between
both models that are noteworthy. While Trans-
former has changed the misspelled word abhu-
pagamyate to the correct form abhyupagamyate in
one case (overlooked by rcNNsplit

short), rcNNsplit
short cor-

rectly identified the verbal form upacaryante iti,
where Transformer inserted the semantically dis-
preferred, but grammatically possible present par-
ticiple upacaryantah. iti. Overall, none of the mod-
els shows a generally better or worse performance
in these cases of disagreement.

5.4 Application to German Compounds
In order to test if the character based models gen-
eralize well to other languages with limited train-
ing resources, we applied rcNNshort with split prob-
abilities and the same settings as for SWS to the
task of splitting German compounds. The cur-
rent state of the art is set with a CRF operating
on n-grams of characters (Ma et al., 2016). Ta-
ble 6 shows that our model achieves an improve-
ment of about 1% for recall and accuracy when
trained with the training set of Ma et al. (2016)
only. We sampled 20 examples for the three er-
ror classes “wrong split”, “wrong faulty split” and
“wrong non-split” (Ma et al., 2016, 78). While our
model failed to detect splits for all 20 examples of
the type “wrong non-split”, the type “wrong split”
contained 10 cases, where the split(s) proposed by
the model make(s) good sense for us, but are not
recorded in the test set (e.g. “Viermaster” ‘four-
master’, “Viermaster” in test; already remarked by
Ma et al. 2016). We observed a similar level of
inconsistencies for the “wrong faulty split” type
(8 instances), where, for example, our model an-
alyzed “Bundes-tags-vize-präsident” ‘vice presi-
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dent of the Federal Parliament’, while the test set
had “Bundes-tags-vizepräsident”.

6 Conclusion

While the models discussed in this paper have
produced clear performance gains when compared
with previous research on SWS, we expect that fu-
ture research will improve over our results, but
it will be difficult to approach error-free per-
formance. The reservation is due to the errors
in the training data and especially the question
of (non-)compositional readings of compounds,
which seems to produce related levels of confu-
sion for human annotators and ML models. While
following this track of research, we would like to
expand its scope to joint learning of splits, lexical
and morphological annotations. Here, we expect
that especially lexical and morphological analy-
sis will benefit from a joint model. We hypothe-
size that CTC (Graves, 2012) trained as a co-task
or segmental NNs (Lu et al., 2016) with a mod-
ified objective (including split probabilities) may
be suitable for this task.
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Abstract

We propose to generalize language models
for conversational speech recognition to al-
low them to operate across utterance bound-
aries and speaker changes, thereby capturing
conversation-level phenomena such as adja-
cency pairs, lexical entrainment, and topical
coherence. The model consists of a long-short-
term memory (LSTM) recurrent network that
reads the entire word-level history of a conver-
sation, as well as information about turn taking
and speaker overlap, in order to predict each
next word. The model is applied in a rescor-
ing framework, where the word history prior to
the current utterance is approximated with pre-
liminary recognition results. In experiments
in the conversational telephone speech domain
(Switchboard) we find that such a model gives
substantial perplexity reductions over a stan-
dard LSTM-LM with utterance scope, as well
as improvements in word error rate.

1 Introduction

Over the past decade the state of the art in lan-
guage modeling has shifted from N-gram models
to feed-forward networks (Bengio et al., 2006),
and then to recurrent neural networks (RNNs) that
read a list of words sequentially and predict the
next word at each position. Starting with stan-
dard recurrent networks (Mikolov et al., 2010) the
sequential modeling approach was later improved
using the long-short-term memory (LSTM) archi-
tecture of (Hochreiter and Schmidhuber, 1997) for
further gains (Sundermeyer et al., 2012; Meden-
nikov et al., 2016; Xiong et al., 2017). RNN mod-
els give two fundamental advantages over the old
N-gram framework. First, the continuous-space
embedding of word identities allows word simi-
larities to be exploited for generalization (Bengio
et al., 2006; Mikolov et al., 2013). Second, the
recurrent architecture allows, in principle at least,

an unlimited history to condition the prediction of
next words.

The potential advantage of unlimited history,
however, is not commonly used to its full benefit,
since the language model (LM) is typically “re-
set” at the start of each utterance in current state-
of-the-art recognition systems (Saon et al., 2017;
Xiong et al., 2018). This presumes that each ut-
terance is independent of the others, and clearly
violates what we know about how language and
conversation works, as discussed in the next sec-
tion. Consequently, there have been many pro-
posals to inject information from a longer context
into standard LM architectures, going back to N-
gram models (Bellegarda, 2004), or to generalize
N-grams LMs to operate across utterance bound-
aries and speakers (Ji and Bilmes, 2004). Based on
the RNN framework, (Mikolov and Zweig, 2012)
proposed augmenting network inputs with a more
slowly varying context vector that would encode
longer-range properties of the history, such as a
latent semantic indexing vector. The problem with
these approaches is that the modeler has to make
design decisions about how to encapsulate contex-
tual information as network inputs. Therefore, our
approach here is to simply provide the entire con-
versation history as input to a standard LSTM-LM,
and let the network learn the information that is
relevant to next-word prediction.

We start by discussing linguistic phenomena
that could potentially help in conversational LM
(Section 2), followed by a description of the
LSTM model we propose to capture them (Sec-
tion 3). Section 4 describes the data and recogni-
tion system we used to test our models, with re-
sults reported in Section 5. We end with conclu-
sions and future directions.
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2 Conversation-level Phenomena

Here we review a few of the conversation-level
phenomena that could be used for predicting
words from longer context. Perhaps the most
widely studied effect is topical coherence, or the
tendency of words that are semantically related to
one or more underlying topics to appear together
in the conversation. Consequently, topic-related
words are bound to re-occur across utterances, or
certain related words appear to trigger one another
(such as “children” and “school”). This should
be especially true for conversations in the Switch-
board (and Fischer) corpora, which were collected
by pairing up strangers to talk about a mutually
agreeable topic.

Another phenomenon that could lead to words
reoccurring is lexical entrainment (Brennan and
Clark, 1996), or the tendency of conversants to
adopt the same words and phrases. Entrainment
can also apply to speaking style, so the use of com-
mon discourse particles, syntactic patterns (like
question tags), or even disfluencies could be trig-
gered across speakers.

Other phenomena operate more locally, but
across speaker turn boundaries. Linguistic conver-
sation analysis has long noted that utterance types
come in adjacency pairs (Schegloff, 1968), with
preferences for certain pairs over others (like a
statement is preferentially followed by agreement
rather than disagreement). Therefore, words in an
utterance should be more predicable based on the
previous utterance. In the past, this has been mod-
eled by conditioning utterance words on an under-
lying dialog act label, which in turn is conditioned
on adjacent dialog act labels via a dialog act gram-
mar (Stolcke et al., 2000).

A good part of conversational behavior has to
do with how turn-taking is negotiated (Sacks et al.,
1974). Speakers use special discourse devices,
such as backchannel words and pause fillers, to
signal when they want to take the floor, or to signal
that the other party should keep the floor. Conver-
sants also anticipate the ends of turns and jump in
before the other speaker is completely done, mak-
ing for very efficient use of time. As a result of
all of these mechanisms, a good portion of con-
versations consists of overlapping (simultaneous)
speaking. It was shown (Shriberg et al., 2001) that
such overlap locations can be partly predicted by
word-based language models. This suggests re-
versing the modeling and using overlap (the tim-

Figure 1: Use of conversation-level context in session-
based LM. The utterance numbering shows how over-
lapping utterances are serialized (according to onset
times).

ing of utterances) to help predict the words.

3 Models

Our baseline language model is a standard LSTM
that models utterances independently from one an-
other, i.e., the history at the onset of each utterance
is the start-of-sentence token. In fact, we used two
version of this basic LSTM-LM:

• Word inputs encoded with one-hot vectors,
combined with a jointly trained embedding
layer

• Words encoded by multiple-hot vectors cor-
responding to the letter trigrams making up
the words.

Both types of LSTM-LMs use three 1000-
dimensional hidden layers with recurrence. The
word embedding layer is also of size 1000, and the
letter-trigram encoding has size 7190 (the number
of unique trigrams in our vocabulary).

The main addition for session-level modeling is
that the LSTM history consists of all the utterances
preceding the current utterance, followed by all
words in the current utterance preceding the word
to be predicted. The preceding utterances are se-
rialized in the order of their onset times, so that
the flow of words within an utterance is not dis-
rupted. The resulting total word history and next-
word prediction is depicted in Figure 1. Informa-
tion about utterance boundaries is encoded using
a boundary tag, similar to the start-of-sentence to-
ken that is commonly used in LMs.

Several of the conversational phenomena de-
scribed in Section 2 refer to turn-taking between
speakers; to capture this in the model we augment
the word input encoding with an extra bit that indi-
cates whether a speaker change occurred. This bit
is turned on only for the start-of-utterance token.

We also want to capture some information
about utterance overlap, since, as described earlier,
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speech overlap interacts with word choice. Pos-
sible events to model would be overlap (exceed-
ings a time threshold) at the starts and ends of ut-
terances, or maybe a continuous measure of such
overlaps. As a first proof of concept we chose to
encode only one type of overlap, i.e., when the ut-
terance in question is completely overlapped tem-
porally by the other speaker’s turn. This is typi-
cal of backchannel acknowledgments (“uh-huh”)
and short utterances that attempt to grab the floor
(“um”, “but”). Complete utterance overlap is also
encoded by an additional input bit that is turned on
for the start-of-utterance token.

4 Experiments

4.1 Recognition system
We used a single bidirectional LSTM acoustic
model in experiments reported here, trained on the
commonly used conversational telephone speech
corpora (Switchboard, Fisher, CallHome English),
estimating frame-level posterior probabilities for
9000 context-dependent phone units. The sys-
tem decodes speech utterances using a 4-gram
language model, generating lattices. These are
then expanded to 500-best lists, which in turn are
rescored using the various LMs.

The recognition system and the N-gram LM
used in decoding have a vocabulary of 165k
words, but the LSTM-LMs are trained on only
the 38k words occurring at least twice in the in-
domain conversational training data. Words out-
side of the LSTM-LM vocabulary are penalized
in rescoring with a constant weight that is empiri-
cally optimized on the development set.

4.2 Data
Language model training uses the Switchboard-
1, BBN Switchboard-2, Fisher, and English Call-
Home transcripts (about 23 million words in to-
tal) as well as the UW conversational Web corpus
(Bulyko et al., 2003) for pre-training (see below).
The N-gram LM used for N-best generation also
includes the LDC Hub4 (Broadcast News) corpus.
The Switchboard-1 and Switchboard-2 portions of
the NIST 2002 CTS test set were used for tun-
ing and development. Evaluation is carried out on
the NIST 2000 CTS test set, consisting of Switch-
board (SWB) and CallHome (CH) subsets.

As an expedient, we refrained from reseg-
menting utterances based on forced alignments of
words, and instead use utterance boundaries as

Table 1: Perplexities with session-based LSTM-LMs.
The last two lines reflect use of errorful recognition
output for preceding utterances.

Model inputs devset test test
SWB SWB CH

Utterance words, letter-3grams 48.90 44.56 54.57
+ session history words 38.86 36.81 44.31

+ speaker change 37.25 35.33 42.23
+ speaker overlap 37.09 35.12 42.02

Using recognized word histories
single system 39.55 37.45 46.49
full system (Xiong et al., 2018) 39.41 37.29 45.99

given in the available transcripts (corresponding
to the audio segments used in acoustic training).
Similarly, in testing, we use the presegmented ut-
terances provided by NIST. No doubt there are in-
consistencies in how the different corpora define
utterance units, and a consistent, alignment-based
resegmentation of all training and test data based
on the durations nonspeech regions and/or lexical
tagging might give improved results.

4.3 Model training
All LSTM-LMs are trained using the Microsoft
Cognitive Toolkit, or CNTK (Yu et al., 2014; Mi-
crosoft Research, 2016) on a Linux-based multi-
GPU server farm. Training is parallelized using
CNTK’s distributed stochastic gradient descent
(SGD) with 1-bit gradient quantization (Seide
et al., 2014). We use the CNTK “FsAdaGrad”
learning algorithm, which is an implementation of
Adam (Kingma and Ba, 2015).

All LSTM-LMs are pretrained for one or two
epochs on a large corpus of “conversational Web”
data (Bulyko et al., 2003), followed by normal
training to convergence on the in-domain data.
Each utterance in the Web data is treated as a sin-
gle session for purposes of session-based LM, i.e.,
the extra bits for speaker change and overlap are
never turned on.

5 Results

When evaluating the session-based LMs on speech
test data, the true utterance contexts are not
known, and we must use hypothesized words for
word histories preceding the current utterance. In
our case, the histories were obtained using the out-
put of our best recognition system, which uses
a combination of acoustic models (Xiong et al.,
2018), but excluding the session-based LM.1 Per-

1We also omitted the final confusion network rescoring
stage described in (Xiong et al., 2018).
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Table 2: Recognition results with standard and session-based LSTM-LMs, measured by word error rates (WER).
Word encoding Model WER WER test

devset SWB CH
Letter 3gram LSTM-LM 10.01 6.88 12.79

Session LSTM-LM 9.67 6.81 12.54
Session LSTM-LM, 2nd iteration 9.66 6.77 12.56

One-hot LSTM-LM 9.81 6.89 13.02
Session LSTM-LM 9.47 6.81 12.60
Session LSTM-LM, 2nd iteration 9.50 6.83 12.73

Letter 3gram LSTM-LM 9.66 6.63 12.77
+ One-hot Session LSTM-LM 9.28 6.52 12.34

LSTM-LM + Session LSTM-LM 9.22 6.45 12.11

plexity was evaluated on reference transcripts, as
is customary.

Table 1 shows the effect of session-level model-
ing and of optional model elements on perplexity,
based on LSTMs using letter-trigram encoding.
Baseline is the standard utterance-scope LSTM-
LM. We see a large perplexity reduction of 17-
21% by conditioning on session history words,
with smaller incremental reductions from adding
speaker change and overlap information.

The last two table rows show that some of the
perplexity gain over the baseline is negated by the
use of errorful recognition output for the conver-
sation history. It does not make much difference
whether the recognized word history is generated
by just the subsystem being rescored (“single sys-
tem”, with 6% word error on SWB) or the full
recognition system using multiple acoustic mod-
els (“full system”, with about 5% word error rate
on SWB and 10% on CH). Using recognition out-
put as history, the perplexity degrades about 6%
relative for SWB, and 11% on CH, relative to us-
ing the true word histories. Even with the more
errorful recognition on CH, the session-based LM
still gives a perplexity reduction of 14% relative to
the baseline.

Table 2 presents recognition results, compar-
ing baseline LSTM-LMs to the full session-based
LSTM-LMs. Both the letter-trigram and one-word
word encoding versions are reported. The differ-
ent models may also be used jointly, using log-
linear score combination in rescoring, shown in
the third section of the table. We also tried iterat-
ing the session LM rescoring, after the recognized
word histories were updated from the first rescor-
ing pass (shown as “2nd iteration” in the table).

Results show that the session-based LM yields
between 1% and 4% relative word error reduction
for the two word encodings, and test sets. When
the two word encoding types are combined by log-

linear combination of model scores, the gain from
session-based modeling is preserved. Iterating the
session LM rescoring to improve the word histo-
ries did not give consistent gains.

Even though the session-based LSTM sub-
sumes all the information used in the standard
LSTM, there is an additional gain to be had from
combining those two model types (last row in the
table). Thus, the overall gain from adding the
session-based models to the two baseline models
is 3-5% relative word error reduction.

6 Conclusion and Future Work

We have proposed a simple generalization of
utterance-level LSTM language models aimed at
capturing conversational phenomena that operate
across utterances and speakers, such as lexical en-
trainment, adjacency pairs, speech overlap, and
topical coherence. To capture non-local condition-
ing information, the LSTM-LM is trained to read
the entire sequence of utterances making up a con-
versation, along with side information encoding
speaker changes and overlap of utterances. This
is found to reduce perplexity by about 25%, most
of which is retained when errorful recognition out-
put is used to represent the word history in previ-
ous utterances. The session-based LM yields up
to 5% relative reduction in word error when the
utterance- and session-based LMs are combined.

It would be worthwhile to investigate which
conversational phenomena are actually being ex-
ploited by the session LSTM model. The ease
with which additional information can be input to
the LSTM-LM also suggests encoding other con-
ditioning information, such a more details about
utterance timing, as well as semantic features that
capture topical coherence.
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Abstract

Sequence-to-sequence neural generation mod-
els have achieved promising performance on
short text conversation tasks. However, they
tend to generate generic/dull responses, lead-
ing to unsatisfying dialogue experience. We
observe that in conversation tasks, each query
could have multiple responses, which forms a
1-to-n or m-to-n relationship in the view of the
total corpus. The objective function used in
standard sequence-to-sequence models will be
dominated by loss terms with generic patterns.
Inspired by this observation, we introduce a
statistical re-weighting method that assigns
different weights for the multiple responses of
the same query, and trains the standard neu-
ral generation model with the weights. Experi-
mental results on a large Chinese dialogue cor-
pus show that our method improves the accep-
tance rate of generated responses compared
with several baseline models and significantly
reduces the number of generated generic re-
sponses.

1 Introduction

Many recent works have been proposed to use
neural networks to generate responses for open-
domain dialogue systems (Shang et al., 2015; Sor-
doni et al., 2015; Vinyals and Le, 2015; Li et al.,
2016a,c; Serban et al., 2017; Shen et al., 2017;
Li et al., 2017; Yu et al., 2017; Xu et al., 2017).
These methods are inspired by the sequence-to-
sequence (Seq2Seq) framework (Sutskever et al.,
2014), which is originally applied for Neural Ma-
chine Translation (NMT). They aim at maximizing
the probability of generating a response given an
input query, and generally use the maximum likeli-
hood estimation (MLE) as their objective function.
However, various problems occur when Seq2Seq

⇤This work was done while Yahui Liu was with Tencent
AI Lab.

†Corresponding author

models are used for dialogue generation tasks. One
of the most important problems is that such models
are inclined to generate generic and dull responses
(e.g., I don’t know), rather than meaningful and
specific answers (Sordoni et al., 2015; Serban et al.,
2016; Li et al., 2016a,c; Kannan et al., 2016; Li
et al., 2017; Xie, 2017; Wei et al., 2017; Mou et al.,
2017).

Until now, it has attracted increasing studies to
address the issue of generating generic response.
For example, Li et al. (2016a) used the mutual infor-
mation theory to reconstruct MLE, but this model is
easy to generate ungrammatical outputs. They fur-
ther proposed a fast diverse decoding approach (Li
et al., 2016b), which modifies the beam search to
re-rank meaningful responses into higher positions.
Similar works explore different ways to encour-
age response diversity for picking less generic re-
sponses in the decoding search (Vijayakumar et al.,
2016; Li and Jurafsky, 2016). In the reinforcement
learning framework (Li et al., 2016c), the reward
function used in the decoding considers the ease
of answering, which is measured by a distance to-
wards a set of 8 generic responses. Thus, it can
also alleviate the problem of generating generic re-
sponses to some extent. Lison and Bibauw (2017)
proposed to add a weighting model to learn the
“quality” of the query and response pair, but it re-
lies heavily on additional inputs. All these works
tried to add extra optimized terms in the encod-
ing or decoding modules in Seq2Seq, making the
training or prediction more complicated.

In this work, we consider the reason why
Seq2Seq often generates generic responses by an-
alyzing the MLE objective function directly. We
notice that multiple responses are often associated
with one single input query. As shown in Figure 1,
the relationship between queries and responses is
much looser in conversation models than that in
NMT, since the space of possible responses is much
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larger than the space of possible translations for a
given sentence. On one hand, the information of
these responses is only required to be relevant to
the input query but usually differs from it. On the
other hand, a query accepts large semantic diversity
among its responses. Hence, it is a 1-to-n relation-
ship between a query and its responses (Vinyals
and Le, 2015; Zhou et al., 2017). Meanwhile, we
can see there is a m-to-n relationship between all
queries and responses in the training corpus. Then,
we find that MLE, which learns a 1-to-1 mapping
in response generation, naturally puts more empha-
sis on optimizing the frequent patterns. Thus, the
converged local optimum is easy to output these
patterns or their combinations, leading to generic
responses.

Source1 Target1

Source2 Target2

Source3 Target3
(a) NMT

Query1 Response1

Query2 Response2

Query3 Response3

Response4
(b) Dialogue

Figure 1: An illustration of the differences between
NMT and dialogue generation. Response4 is the po-
tential cases that are not collected in corpus.

Inspired by this observation, we propose a statis-
tical re-weighting method which modifies MLE by
re-weighting the multiple responses for each query
such that MLE will not be dominated by the fre-
quent patterns or their combinations. The proposed
method calculates the weights of a response with
the consideration of two statistical features: simi-
larity frequency and sentence length. Our model is
simple and efficient to optimize without adding ad-
ditional terms into the original Seq2Seq objective
function. We validate the performance of our pro-
posed method on a large Chinese dialogue corpus.
Results show that it can improve the acceptance
rate of the generated responses and significantly
suppress the number of generic responses.

2 Proposed Method

Standard Seq2Seq models for NMT and dialogue
generation aim at estimating the conditional proba-
bility p(y|x) where x = (x1, . . . , xT ) is an input
sequence and y = (y1, . . . , yT 0) is its correspond-
ing output sequence whose length T

0 may differ
from T . During training, we learn all the model pa-
rameters ✓✓✓ by summing the negative log likelihood

of each sample pair (x,y) in the training corpus C:

`(x,y,✓✓✓) = �
T 0X

t=1

log p(yt|x,y[t�1];✓✓✓), (1)

L(C,✓✓✓) =
X

(x,y)2C

`(x,y,✓✓✓). (2)

Recall that generic responses are those that are
safe and universal for many queries and thus fre-
quently appear in the training corpus. Hence, if we
have two responses of x in which one is generic and
the other one contains more meaningful content,
using L(C,✓✓✓) in Eq. 1 will put the same emphasis
on optimizing each of their loss terms. Therefore,
L(C,✓✓✓) contains a large amount of patterns from
the generic responses, thus it is not surprised to see
that the trained models are stuck into local opti-
mum that are inclined to generate these patterns or
their combinations.

Based on this observation, we argue that a
good loss function of Seq2Seq for dialogue gen-
eration should not be dominated by the patterns
from generic responses. Here, we propose a re-
weighting method for responses of a query x.
Specifically, `(x,y,✓✓✓) in Eq. 1 is modified to be:

`w(x,y,✓✓✓) = w(y|x)`(x,y,✓✓✓), (3)

where w(y|x) 2 (0, 1] is a soft weight for a re-
sponse y of a query x. In the implementation,
we make the normalization of this loss at the
mini-batch level for better computational efficiency.
Hence, the loss of Eq. 2 for a mini-batch L(B,✓✓✓)
takes the form:

L(B,✓✓✓) =

P
x,y2B

`w(x,y,✓✓✓)
P

x,y2B
w(y|x)

. (4)

We summarize two common properties for the
responses:

• Responses with the patterns of frequently
appearing in the training corpus tend to be
generic. Here, the patterns refer to both the
whole sentence or n-grams which can be de-
scribed by similarities among responses.

• Very short and long responses should be avoid.
Owing to the MLE objective function, the
Seq2Seq frameworks are inclined to gener-
ate short responses that are universal replies.
While long responses usually contain more
specific information which may not be gener-
alized to most conversation scenarios. Hence,
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high-quality responses tend to be with moder-
ate length.

We propose an estimator by considering these two
properties:

w(y|x, R, C) =
�(y)

maxr2R{�(r)} , (5)

where R denotes all collected responses of x in C.
For each response, the estimator gives a weight by:

�(y) = ↵E(y) + �F(y). (6)

Here, E(y) and F(y) correspond to the mentioned
two properties respectively:

• E(y) = e�af(y), where f(y) is a function re-
lated to the frequency of response y. It could
be formulated as

f(y) = max{0, Count(D(y,yj) � ⌧) � b}
8j 2 |C|,

where D(·) refers to the similarity between
two sentences, a is a scale factor, b is bias
and ⌧ 2 [0, 1] is a threshold specifying the
similarity that two responses will be consid-
ered identical. For instance, it could be the
simplest strictly matching, which is used in
our experiments. Other methods like cosine
distance of TF-IDF (token or n-grams) can
also be applied, but may encounter compu-
tational issues for large corpus. A response
with a higher frequency will be assigned with
a smaller E(y).

• F(y) = e�c||y|�|ŷ||, where |y| denotes the
number of tokens in y, |ŷ| = 1

|C|
P

r2C
|r|

refers to the average length of responses in
the total training corpus, and c is a scale fac-
tor. Here, the “moderate length” is set to the
average length of responses of the total train-
ing corpus. In practice, we have tried to use
long responses (longer than average length)
to fine-tune the Seq2Seq model. Though it
slightly increases the average length of gener-
ated responses, the generated responses suffer
from more ungrammatical and influent issues.
Hence, if a response is too short or long, it
will receive a low score of F(y).

Mentioned hyper-parameters {↵, �, a, b, ⌧, c} are
constant values in the following experiments,
which are set to {0.5, 0.5, 0.33, 3, 1.0, 0.33}. When

we performed our experiments, we tried several
hyper-parameter settings and found that our method
is not sensitive to different hyper-parameters and
achieves stable results in general. Hence, we do
not spend many efforts to specifically tune these
hyper-parameters.

Response (frequency/length) w(y|x) E(y) F(y)

�ÙU´ (70/2) 0.047 0.014 0.066Single till now.
B§Ä (173/2) 0.039 0.000 0.066Would you like to have a date with me?
I`↵0+∫⌧⌧1ÂS�*∫Ñ€
ÊÜ (2/13) 0.769 1.000 0.560Once seeing the happy lovers, you will
feel sad.
îÂÿ(Ì' (1/5) 0.665 1.000 0.176You may be crying now.
U´◊ÑÍ⌘âp (2/4) 0.622 1.000 0.128Morale-boosting of singles.
⌘_/ŸH…ó (30/6) 0.149 0.052 0.248I think so.
U´�},U´23t,dU*EÜ (1/10)

1.000 1.000 0.924Given being single for 23 years, it’s not
so good.
⇢H√^ÑÜü (1/4) 0.623 1.000 0.128What a painful understanding!

Table 1: Weights of the responses for a query “vûU
´_:}Ñ (It’s pretty good to be single)”.

To validate that our design function in Eq. 5 and
Eq. 6 are effective to weight the responses, Table 1
shows the weights of 8 responses for a query “vû
U´_:}Ñ (It’s pretty good to be single)”. As
can be seen, the weights are reasonable, in which
the higher-ranked responses are more informative
ones with low similarity frequency and moderate
length.

3 Experiments
3.1 Corpus and Evaluation
We crawl conversation pairs from some popular
Chinese social media websites1, and select 7M
high-quality pairs as our training corpus. Conven-
tional metrics such as BLEU (Papineni et al., 2002)
and perplexity, are improper to be used for response
generation tasks. Following previous works (Li
et al., 2016c, 2017), we apply human annotations.
We randomly sample 500 queries (not used in train-
ing) as our test samples, and recruit 3 annotators to
evaluate each generated response from two aspects:

• Fluency: 0 (unreadable), 1 (readable but with
some grammar mistakes), 2 (fluent);

• Relevance: 0 (not relevant at all), 1 (relevant
at a distant level), 2 (relevant, including the

1Weibo: www.weibo.com, Baidu Tieba: tieba.
baidu.com, and Zhihu: www.zhihu.com
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generic responses), 3 (relevant as well as in-
teresting).

Acceptance is then automatically calculated as a
metric reflecting whether the response is acceptable
to real users. A response will be assigned 1 when
it gets Fluency�1 and Relevance�2, otherwise it
will be assigned 0.

We implement our baseline Seq2Seq model us-
ing its standard objective function in Eq. 1 with two
LSTM layers for encoding/decoding and a standard
beam search with a beam size of 5 (the best set-
ting), termed as Seq2Seq. We also compare several
Seq2Seq variants:

• Seq2Seq-RS: training with a subset by ran-
domly sampling only one from the multiple
responses for each query;

• Seq2Seq-MMI: applying the maximum mu-
tual information (Li et al., 2016a) (only the
MMI-bidi);

• Seq2Seq-DD: applying the diverse decoding
algorithm (Li et al., 2016b);

• Ours-RW: calculating weights via our re-
weighting method proposed in Section 2.
Without applying any other tricks, we imple-
ment three versions of our method by using
E(·) only, F(·) only, a linear combination
of E(·) and F(·) in Eq 6, termed as Ours-
RW{E,F,EF}.

3.2 Results and Discussion
Human annotation results are shown in Table 2.
Several observations can be made. First, Seq2Seq-
RS performs slightly worse than the baseline model.
This means that it does not work to simply discard
a large amount of training data to construct a 1-
to-1 query-response subset for training. Second,
Seq2Seq-MMI not only provides no improvement
for the baseline but also inclines to generate generic
response. Third, Seq2Seq-DD obtains higher rel-
evance and acceptance scores than the baseline,
which shows its effectiveness by re-ranking more
meaningful responses into higher positions in beam
search. Fourth, our method achieves the best perfor-
mance on almost all metrics. When we use strictly
matched frequency of each response, Ours-RWE
does not perform better than the baseline model
because that the percentage of responses with fre-
quency higher than 3 is about 0.5% in our training
corpus. However, it still enhances the performance

in Ours-RWEF, which performs the best and in-
creases the acceptance of the baseline model from
0.42 to 0.55. This validates that the properties
about similarity frequency and sentence length play
important roles in generating better responses.

Model Evaluation Metrics
Fluency Relevance Acceptance

Seq2Seq 1.96±3.8e-5 1.31±5.3e-3 0.42±4.7e-4
Seq2Seq-RS 1.97±8.1e-5 1.30±2.1e-3 0.42±9.9e-4

Seq2Seq-MMI 1.94±7.2e-5 1.19±4.0e-3 0.41±1.9e-4
Seq2Seq-DD 1.86±2.8e-3 1.40±1.5e-2 0.49±2.4e-3
Ours-RWE 1.95±1.9e-4 1.30±5.1e-3 0.42±4.2e-4
Ours-RWF 1.97±1.5e-4 1.47±2.1e-3 0.51±6.3e-4
Ours-RWEF 1.96±8.3e-5 1.59±1.9e-2 0.55±4.4e-3

Table 2: Human annotation results.

Specifically, the average percentage of the gener-
ated responses that are assigned to relevance rating
2 (relevant, including the generic responses) and
3 (relevant as well as interesting) are presented in
Table 4. It shows that our method achieves higher
relevance score owing to generating more high-
quality responses with rating 3.

To validate that our method is effective to reduce
the number of generated generic responses, we
calculated the distinct-1 and distinct-2 (Li et al.,
2016a) for the compared methods respectively,
which are the number of distinct unigrams and bi-
grams divided by total number of generated words
respectively. As shown in Table 5, Ours-RWEF
achieves the best performance on the two metrics.
This indicates that our model often outputs more
meaningful and relevant responses than the other
compared methods.

We further randomly sample another 100K
queries (not used in training) and use the various
models to generate responses. We compare the
frequencies of several common generic responses
appearing in the generated results, as shown in Ta-
ble 6. It shows that our method can significantly
reduce the number of generic responses. For in-
stance, we reduce about 75% of the case “⌘_
�ÂS (I don’t know, either.)” and 77% of the
case “⌘_ÛÂS (I want to know, too)” to be
generated.

4 Conclusion

In this paper, we propose a statistical re-weighting
method to weight multiple responses differently
and optimize the MLE objective function. The
weight of each response is calculated based on
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Query Response
Seq2Seq Seq2Seq-MMI Seq2Seq-DD Ours-RWEF

⌘Å�Ü ⌘_�Ü �Ü ⌘_�Ü �Å�
I’m going to be angry. So do I. I’m angry. So do I. Don’t be angry.
�— ¿H}f®P ↵`ú"¿H{ãÑ ⌘_Ûª↵5q `ú"¿H{ãÑ ⌦¢|¶↵
Would you like to recom-
mend me some good books?

It depends on what kind
of books you like?

I want to see the
movie, too.

What kind of books
do you like?

Dream of the Red
Chamber

Z∫��öÅŒŒII �öÅ ⌘_�ÂS /J⇥⇥⇥ Z∫�öÅÑo
It’s not necessary to be a suc-
cessful and grand man.

Must be I don’t know, ei-
ther.

Yes... Everyone should try
to be a kind man.

Ÿ‡)”Pº ⌘_�ÂS ⌘_Ûª ⌘_/⇥⇥⇥ ⌘Ÿ$)_/
I have a sore throat recently. I don’t know, either. I want to go, too So do I... So do I these days .
å˜dˇ>‡)G GÑ ⌘_Û>G GÑ�GÑ ⌘>Ü3)
How many days did people
in No.2 coal mine take off?

False I want to have a
holiday, too

False, False I took three days off.

_∞n16◆%ó�� ⌘_Û⇤ ⌘_Ûù ¡¬Û�6�6�6 ⌘ú"ù6
An advertising of Mengji’s
Pu’er tea shop.

I want to eat, too. I want to drink, too. Tat-Kuan-Yin Tea,
tea, tea, tea

I like drinking tea.

Table 3: Examples of responses generated by Seq2Seq, Seq2Seq-MMI, Seq2Seq-DD and Ours-RWEF.

Model rating 2(%) rating 3(%)

Seq2Seq 31.3 10.6
Seq2Seq-MMI 35.8 4.4
Seq2Seq-DD 37.1 11.7
Ours-RWEF 36.8 18.1

Table 4: Comparisons on the average percentage of
the generated responses that are assigned to relevance
rating 2 and 3.

Model distinct-1 distinct-2

Seq2Seq 0.170 0.307
Seq2Seq-MMI 0.140 0.259
Seq2Seq-DD 0.131 0.170
Ours-RWEF 0.173 0.359

Table 5: Performances on the metrics distinct-1 and
distinct-2.

two terms according to the similarity frequency
and its length. Experiments show that our ap-
proach improves the performance over the base-
line models and reduces the number of generated
generic responses significantly. It indicates that
mismatching issue of objective function can be
alleviated through such similar re-weighting meth-
ods, by which current encoder-decoder architec-
tures can take full use of the m-to-n training corpus
and model the dialogue generation tasks better.
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Abstract

Current dialogue systems are not very engag-
ing for users, especially when trained end-to-
end without relying on proactive reengaging
scripted strategies. Zhang et al. (2018) showed
that the engagement level of end-to-end di-
alogue models increases when conditioning
them on text personas providing some person-
alized back-story to the model. However, the
dataset used in (Zhang et al., 2018) is synthetic
and of limited size as it contains around 1k dif-
ferent personas. In this paper we introduce a
new dataset providing 5 million personas and
700 million persona-based dialogues. Our ex-
periments show that, at this scale, training us-
ing personas still improves the performance of
end-to-end systems. In addition, we show that
other tasks benefit from the wide coverage of
our dataset by fine-tuning our model on the
data from (Zhang et al., 2018) and achieving
state-of-the-art results.

1 Introduction

End-to-end dialogue systems, based on neural ar-
chitectures like bidirectional LSTMs or Memory
Networks (Sukhbaatar et al., 2015) trained directly
by gradient descent on dialogue logs, have been
showing promising performance in multiple con-
texts (Wen et al., 2016; Serban et al., 2016; Bordes
et al., 2016). One of their main advantages is that
they can rely on large data sources of existing di-
alogues to learn to cover various domains without
requiring any expert knowledge. However, the flip
side is that they also exhibit limited engagement,
especially in chit-chat settings: they lack consis-
tency and do not leverage proactive engagement
strategies as (even partially) scripted chatbots do.

Zhang et al. (2018) introduced the PERSONA-
CHAT dataset as a solution to cope with this issue.
This dataset consists of dialogues between pairs of
agents with text profiles, or personas, attached to

each of them. As shown in their paper, condition-
ing an end-to-end system on a given persona im-
proves the engagement of a dialogue agent. This
paves the way to potentially end-to-end personal-
ized chatbots because the personas of the bots, by
being short texts, could be easily edited by most
users. However, the PERSONA-CHAT dataset was
created using an artificial data collection mecha-
nism based on Mechanical Turk. As a result, nei-
ther dialogs nor personas can be fully represen-
tative of real user-bot interactions and the dataset
coverage remains limited, containing a bit more
than 1k different personas.

In this paper, we build a very large-scale
persona-based dialogue dataset using conversa-
tions previously extracted from REDDIT1. With
simple heuristics, we create a corpus of over 5
million personas spanning more than 700 million
conversations. We train persona-based end-to-end
dialogue models on this dataset. These models
outperform their counterparts that do not have ac-
cess to personas, confirming results of Zhang et al.
(2018). In addition, the coverage of our dataset
seems very good since pre-training on it also leads
to state-of-the-art results on the PERSONA-CHAT
dataset.

2 Related work

With the rise of end-to-end dialogue systems, per-
sonalized trained systems have started to appear.
Li et al. (2016) proposed to learn latent vari-
ables representing each speaker’s bias/personality
in a dialogue model. Other classic strategies in-
clude extracting explicit variables from structured
knowledge bases or other symbolic sources as in
(Ghazvininejad et al., 2017; Joshi et al., 2017;
Young et al., 2017). Still, in the context of per-

1https://www.reddit.com/r/datasets/
comments/3bxlg7/
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sonal chatbots, it might be more desirable to con-
dition on data that can be generated and inter-
preted by the user itself such as text rather than
relying on some knowledge base facts that might
not exist for everyone or a great variety of situ-
ations. PERSONA-CHAT (Zhang et al., 2018) re-
cently introduced a dataset of conversations re-
volving around human habits and preferences. In
their experiments, they showed that conditioning
on a text description of each speaker’s habits, their
persona, improved dialogue modeling.

In this paper, we use a pre-existing REDDIT data
dump as data source. REDDIT is a massive on-
line message board. Dodge et al. (2015) used it to
assess chit-chat qualities of generic dialogue mod-
els. Yang et al. (2018) used response prediction on
REDDIT as an auxiliary task in order to improve
prediction performance on natural language infer-
ence problems.

3 Building a dataset of millions of
persona-based dialogues

Our goal is to learn to predict responses based on
a persona for a large variety of personas. To that
end, we build a dataset of examples of the follow-
ing form using data from REDDIT:

• Persona: [“I like sport”, “I work a lot”]

• Context: “I love running.”

• Response: “Me too! But only on weekends.”

The persona is a set of sentences representing
the personality of the responding agent, the con-
text is the utterance that it responds to, and the re-
sponse is the answer to be predicted.

3.1 Preprocessing
As in (Dodge et al., 2015), we use a preexist-
ing dump of REDDIT that consists of 1.7 billion
comments. We tokenize sentences by padding all
special characters with a space and splitting on
whitespace characters. We create a dictionary con-
taining the 250k most frequent tokens. We trun-
cate comments that are longer than 100 tokens.

3.2 Persona extraction
We construct the persona of a user by gathering
all the comments they wrote, splitting them into
sentences, and selecting the sentences that satisfy
the following rules: (i) each sentence must contain
between 4 and 20 words or punctuation marks, (ii)
it contains either the word I or my, (iii) at least

one verb, and (iv) at least one noun, pronoun or
adjective.

To handle the quantity of data involved, we limit
the size of a persona to N sentences for each user.
We compare four different setups for persona cre-
ation. In the rules setup, we select up to N random
sentences that satisfy the rules above. In the rules
+ classifier setup, we filter with the rules then
score the resulting sentences using a bag-of-words
classifier that is trained to discriminate PERSONA-
CHAT persona sentences from random comments.
We manually tune a threshold on the score in order
to select sentences. If there are more than N eli-
gible persona sentences for a given user, we keep
the highest-scored ones. In the random from user
setup, we randomly select sentences uttered by the
user while keeping the sentence length require-
ment above (we ignore the other rules). The ran-
dom from dataset baseline refers to random sen-
tences from the dataset. They do not necessarily
come from the same user. This last setup serves
as a control mechanism to verify that the gains in
prediction accuracy are due to the user-specific in-
formation contained in personas.

In the example at the beginning of this section,
the response is clearly consistent with the persona.
There may not always be such an obvious relation-
ship between the two: the discussion topic may not
be covered by the persona, a single user may write
contradictory statements, and due to errors in the
extraction process, some persona sentences may
not represent a general trait of the user (e.g. I am
feeling happy today).

3.3 Dataset creation

We take each pair of successive comments in a
thread to form the context and response of an ex-
ample. The persona corresponding to the response
is extracted using one of the methods of Sec-
tion 3.2. We split the dataset randomly between
training, validation and test. Validation and test
sets contain 50k examples each. We extract per-
sonas using training data only: test set responses
cannot be contained explicitly in the persona.

In total, we select personas covering 4.6m users
in the rule-based setups and 7.2m users in the ran-
dom setups. This is a sizable fraction of the total
13.2m users of the dataset; depending on the per-
sona selection setup, between 97 and 99.4 % of the
training set examples are linked to a persona.
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4 End-to-end dialogue models

We model dialogue by next utterance retrieval
(Lowe et al., 2016), where a response is picked
among a set of candidates and not generated.

4.1 Architecture

The overall architecture is depicted in Fig. 1. We
encode the persona and the context using separate
modules. As in Zhang et al. (2018), we combine
the encoded context and persona using a 1-hop
memory network with a residual connection, us-
ing the context as query and the set of persona
sentences as memory. We also encode all candi-
date responses and compute the dot-product be-
tween all those candidate representations and the
joint representation of the context and the persona.
The predicted response is the candidate that maxi-
mizes the dot product.

We train by passing all the dot products through
a softmax and maximizing the log-likelihood of
the correct responses. We use mini-batches of
training examples and, for each example therein,
all the responses of the other examples of the same
batch are used as negative responses.

4.2 Context and response encoders

Both context and response encoders share the
same architecture and word embeddings but have
different weights in the subsequent layers. We
train three different encoder architectures.

Bag-of-words applies two linear projections
separated by a tanh non-linearity to the word em-
beddings. We then sum the resulting sentence rep-
resentation across all positions in the sentence and
divide the result by

p
n where n is the length of

the sequence.

LSTM applies a 2-layer bidirectional LSTM.
We use the last hidden state as encoded sentence.

Transformer is a variation of an End-to-end
Memory Network (Sukhbaatar et al., 2015) intro-
duced by Vaswani et al. (2017). Based solely on
attention mechanisms, it exhibited state-of-the-art
performance on next utterance retrieval tasks in di-
alogues (Yang et al., 2018). Here we use only its
encoding module. We subsequently average the
resulting representation across all positions in the
sentence, yielding a fixed-size representation.

hits@k
Persona k=1 k=3 k=10

IR Baseline No 5.6 9.9 19.5
BOW No 51.7 64.7 77.9
BOW Yes 53.9 67.9 81.9
LSTM No 63.1 75.6 87.3
LSTM Yes 66.3 79.5 90.6
Transformer No 69.1 80.7 90.7
Transformer Yes 74.4 85.6 94.2

Table 1: Test results when classifying the correct an-
swer among a total of 100 possible answers.

4.3 Persona encoder

The persona encoder encodes each persona sen-
tence separately. It relies on the same word em-
beddings as the context encoder and applies a lin-
ear layer on top of them. We then sum the repre-
sentations across the sentence.

We deliberately choose a simpler architecture
than the other encoders for performance reasons
as the number of personas encoded for each batch
is an order of magnitude greater than the number
of training examples. Most personas are short sen-
tences; we therefore expect a bag-of-words repre-
sentation to encode them well.

5 Experiments

We train models on the persona-based dialogue
dataset described in Section 3.3 and we evaluate
its accuracy both on the original task and when
transferring onto PERSONA-CHAT.

5.1 Experimental details

We optimize network parameters using Adamax
with a learning rate of 8e�4 on mini-batches of
size 512. We initialize embeddings with FastText
word vectors and optimize them during learning.

REDDIT LSTMs use a hidden size of 150; we
concatenate the last hidden states for both direc-
tions and layers, resulting in a final representation
of size 600. Transformer architectures on reddit
use 4 layers with a hidden size of 300 and 6 at-
tention heads, resulting in a final representation of
size 300. We use Spacy for part-of-speech tag-
ging in order to verify the persona extraction rules.
We distribute the training by splitting each batch
across 8 GPUs; we stop training after 1 full epoch,
which takes about 3 days.
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Figure 1: Persona-based network architecture.

Context (Persona) Predicted Answer
Where do you come from?
(I was born in London.) I’m from London, studying in Scotland.
(I was born in New York.) I’m from New York.
What do you do?
(I am a doctor.) I am a sleep and respiratory therapist.
(I am an engineer.) I am a software developer.

Table 2: Sample predictions from the best model. In all selected cases the persona consists of a single sentence.
The answer is constrained to be at most 10 tokens and is retrieved among 1M candidates sampled randomly from
the training set.

PERSONA-CHAT We used the revised version
of the dataset where the personas have been
rephrased, making it a harder task. The dataset
being only a few thousands samples, we had to re-
duce the architecture to avoid overfitting for the
models trained purely on PERSONA-CHAT. 2 lay-
ers, 2 attention heads, a dropout of 0.2 and keeping
the size of the word embeddings to 300 units yield
the highest accuracy on the validation set.

IR Baseline As basic baseline, we use an infor-
mation retrieval (IR) system that ranks candidate
responses according to a TF-IDF weighted exact-
match similarity with the context alone.

5.2 Results
Impact of personas We report the accuracy of
the different architectures on the reddit task in Ta-
ble 1. Conditioning on personas improves the pre-
diction performance regardless of the encoder ar-
chitecture. Table 2 gives some examples of how
the persona affects the predicted answer.

Influence of the persona extraction In Table 3,
we report precision results for several persona ex-
traction setups. The rules setup improves the re-
sults somewhat, however adding the persona clas-
sifier actually degrades the results. A possible in-
terpretation is that the persona classifier is trained
only on the PERSONA-CHAT revised personas, and
that this selection might be too narrow and lack di-

N Persona selection hits@1
0 – 69.1

20 rules + classifier 70.7
20 rules 71.3
100 rules + classifier 72.5
100 rules 74.4
100 random from user 73.8
100 random from dataset 66.9

Table 3: Retrieval precision on the REDDIT test set us-
ing a Transformer and different persona selection sys-
tems. N : maximum number of sentences per persona.

versity. Increasing the maximum persona size also
improves the prediction performance.

Transfer learning We compare the perfor-
mance of transformer models trained on REDDIT
and on PERSONA-CHAT on both datasets. We re-
port results in Table 4. This architecture provides
a strong improvement over the results of (Zhang
et al., 2018), jumping from 35.4% hits@1 to
42.1%. Pretraining the model on REDDIT and then
fine-tuning on PERSONA-CHAT pushes this score
to 60.7%, largely improving the state of the art. As
expected, fine-tuning on PERSONA-CHAT reduces
the performance on REDDIT. However, directly
testing on PERSONA-CHAT the model trained on
REDDIT without fine-tuning yields a very low re-
sult. This could be a consequence of a discrepancy
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Validation set
Training set PERSONA-CHAT REDDIT

PERSONA-CHAT 42.1 3.04
REDDIT 25.6 74.4
FT-PC 60.7 65.5
IR Baseline 20.7 5.6
(Zhang et al., 2018) 35.4 –

Table 4: hits@1 results for the best found Transformer
architecture on different test sets. FT-PC: REDDIT-
trained model fine-tuned on the PERSONA-CHAT train-
ing set. To be comparable to the state of the art on each
dataset, results on PERSONA-CHAT are computed using
20 candidates, while results on REDDIT use 100.

between the style of personas of the two datasets.

6 Conclusion

This paper shows how to create a very large
dataset for persona-based dialogue. We show that
training models to align answers both with the
persona of their author and the context improves
the predicting performance. The trained models
show promising coverage as exhibited by the state-
of-the-art transfer results on the PERSONA-CHAT
dataset. As pretraining leads to a considerable im-
provement in performance, future work could be
done fine-tuning this model for various dialog sys-
tems. Future work may also entail building more
advanced strategies to select a limited number of
personas for each user while maximizing the pre-
diction performance.
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Abstract

Dialogue state tracking is the core part of a
spoken dialogue system. It estimates the be-
liefs of possible user’s goals at every dialogue
turn. However, for most current approaches,
it’s difficult to scale to large dialogue domains.
They have one or more of following limita-
tions: (a) Some models don’t work in the sit-
uation where slot values in ontology changes
dynamically; (b) The number of model param-
eters is proportional to the number of slots;
(c) Some models extract features based on
hand-crafted lexicons. To tackle these chal-
lenges, we propose StateNet, a universal di-
alogue state tracker. It is independent of the
number of values, shares parameters across all
slots, and uses pre-trained word vectors in-
stead of explicit semantic dictionaries. Our
experiments on two datasets show that our ap-
proach not only overcomes the limitations, but
also significantly outperforms the performance
of state-of-the-art approaches.

1 Introduction

A task-oriented spoken dialogue system (SDS) is
a system that can continuously interact with a
human to accomplish a predefined task through
speech. It usually consists of three modules: in-
put, output, and control. The control module is
also referred to as dialogue management (Young
et al., 2010; Yu et al., 2014). It has two missions:
dialogue state tracking (DST) and decision mak-
ing. At each dialogue turn, a state tracker main-
tains the internal state of the system based on the
information received from the input module. Then
a machine action is chosen based on the dialogue
state according to a dialogue policy to direct the
dialogue (Chen et al., 2018).

The dialogue state is an encoding of the ma-
chine’s understanding of the whole conversation.
Traditionally, it is usually factorized into three dis-
tinct components (Young et al., 2013): the user’s
goal, the user’s action, and the dialogue history.

Among them, the user’s goal is most important,
which is often simply represented by slot-value
pairs. In this paper, we focus on the tracking of
the user’s goal.

Recently, the dialogue state tracking challenges
(DSTCs) (Williams et al., 2013; Henderson et al.,
2014a,d) are organized to provide shared tasks for
comparing DST algorithms. A various of mod-
els are proposed, e.g. rule-based models (Wang
and Lemon, 2013; Sun et al., 2014a; Yu et al.,
2015, 2016; Sun et al., 2016b), generative statis-
tical models (Thomson and Young, 2010; Young
et al., 2010, 2013), and discriminative statistical
models (Lee and Eskenazi, 2013; Lee, 2013; Sun
et al., 2014b; Xie et al., 2015; Sun et al., 2016a;
Xie et al., 2018). And the state-of-the-art one is
the deep learning-based approach. However, most
of these models have some limitations. First, some
models can only work on a fixed domain ontology,
i.e. the slots and values are defined in advance, and
can’t change dynamically. However, this is not
flexible in practice (Xu and Hu, 2018). For exam-
ple, in the tourist information domain, new restau-
rants or hotels are often added, which results in
the change of the ontology. Second, in many ap-
proaches the models for every slot are different.
Therefore, the number of parameters is propor-
tional to the number of slots. Third, some mod-
els extract features based on text delexicalisation
(Henderson et al., 2014b), which depends on pre-
defined semantic dictionaries. In large scale do-
mains, it’s hard to manually construct the semantic
dictionaries for all slots and values (Mrkšić et al.,
2017).

To tackle these challenges, here we propose a
universal dialogue state tracker, StateNet. For
each state slot, StateNet generates a fixed-length
representation of the dialogue history, and then
compares the distances between this representa-
tion and the value vectors in the candidate set for
making prediction. The set of candidate values
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Figure 1: General model architecture of StateNet.

can change dynamically. StateNet only needs the
following three parts of the data: (1) the original
ASR information (or the transcript) of the user ut-
terance; (2) the information of the machine act;
(3) the literal names of the slots and the values.
The manually-tagging of the user utterance is not
needed as a part of the data. StateNet shares pa-
rameters among all slots, through which we can
not only transfer knowledge among slots but also
reduce the number of parameters.

2 StateNet: A Universal Dialogue State
Tracker

For each dialogue turn, StateNet takes the multi-
ple n-gram user utterance representation, rn

u, the
n-gram machine act representation, rn

a , the value
set, Vs, and the word vector of the slot, s, as the
input. Then StateNet applies the Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) to track the inner dialogue states among the
dialogue turns. And for each slot, StateNet out-
puts a corresponding probability distribution, ps,
over the set of possible values, Vs, at each of the
dialogue turn,

ps = StateNet(rn
u, rn

a , s, Vs).

The general model architecture is shown in Fig-
ure 1.

2.1 User Utterance Representation
At the t-th dialogue turn, the user utterance, Ut,
may consist of l number of words, ui, with their
corresponding word vectors, ui, (1  i  l). The
user utterance may also have its corresponding m-
best ASR hypotheses with the normalized confi-
dence scores (Chen et al., 2017), qj ,(1  j  m).

In this case, we can calculate the weighted word
vectors, u0

i,

u0
i =

mX

j=1

qjui,j ,

where ui,j represents the word vector ui presented
at the j-th ASR hypothesis, and the zero vectors
are padded at the end of all the hypotheses that are
shorter than the longest one to have a same length
of the utterance.

Based on the weighted word vectors generaliz-
ing the information from the ASR hypothesis, we
can then construct the n-gram weighted word vec-
tors, as proposed by Mrkšić et al. (2017),

u0n
i = u0

i � ... � u0
i+n�1,

where � is the concatenation operator between the
word vectors.

An n-gram user utterance representation is then
constructed through a sum of the n-gram weighted
word vectors,

rn
u =

l�n+1X

i=1

u0n
i .

2.2 Multi-scale Receptors Layer

Figure 2: Multi-scale Receptors Layer.

For each gram k of the user utterance represen-
tation, rk

u, (1  k  n), the Multi-scale Recep-
tors Layer has c number of linear neural networks
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(with the same number of neurons, Nc). Each of
them takes the representation as input and is ex-
pected to work as the specialized receptor to am-
plify the signals from some of the word vectors in
the utterance representation,

r̂k
u = �c

j=1(W
j
kr

k
u + bj

k),

where Wj
k means the weight of the j-th linear

layer, bj
k means the corresponding bias, and � is

the concatenation operator between the neurons of
these linear layers. Note that each receptor does
not necessarily has to be a single linear neural net-
work and can be sophisticated with multiple layers
and non-linearity for better detection performance.
Here we only use the linear layer to provide a base-
line of this kind of structure design.

These c number of linear layers (or receptors)
for different grams (or scales) of the representation
r̂k
u is then summed together to be layer-normalized

(Ba et al., 2016). After that, the ReLU activation
function is applied, followed by a linear layer with
the size Nc that maps all the receptors to a user
feature vector, fu,

fu = Linear(ReLU(LayerNorm(
nX

k=1

r̂k
u))).

2.3 Machine Act Representation
We represent the machine act in the m order n-
gram of bag of words, rm

a , based on the vocab-
ularies generalized from the machine acts in the
training set of a given data set. The machine act
feature, fa, is then simply generated through a lin-
ear layer of size Nc with the ReLU activation func-
tion,

fa = ReLU(Linear(rm
a )).

2.4 Slot Information Decoding
Since a slot, e.g. area or food, is usually indicated
as a word or a short word group, then it can be
represented as a single word vector (with multiple
word vectors summed together), s. A single lin-
ear layer with the size 2Nc is applied to the word
vector s, followed by the ReLU non-linear layer,

fs = ReLU(Linear(s)).

The turn-level feature vector, is, is then gen-
erated through a point-wise multiplication ⌦ be-
tween the slot feature and the concatenation of the
user feature and the machine act feature,

is = fs ⌦ (fu � fa).

In this way, the turn-level feature vector is in-
tended to amplify the large magnitude signals that
are from both the user and machine act feature
vector and the slot feature vector.

2.5 Fixed-length Value Prediction
Given the turn-level feature vector, is, we can now
track the dialogue state throughout the dialogue
turns by LSTM. For the current turn t, the LSTM
takes the is and the previous hidden state, qt�1, as
the input. We can then obtain a fixed-length value
prediction vector, os, whose length is equal to Nw,
i.e. the dimension of the word vectors which are
fed into the model,

os = ReLU(Linear(LSTM(is,qt�1))),

where the linear layer has Nw neurons. In this
way, the prediction of the model is independent
of the number of the given values, so it is possible
for the model to perform parameter sharing among
each of the slots. The fixed-length prediction can
somehow be interpreted as a word vector that is
ready for the calculation of the similarity between
the prediction and the true value label.

2.6 2-Norm Distance
For a specific semantic slot, since there may be
no corresponding value in a given dialogue turn,
thus we always add a literally “none” value to the
value set for the model to track this state. For
the evaluation of the similarity between the pre-
diction and the value, we calculate the 2-Norm
distance between the prediction vector and each
of the word vectors of the values in the value set.
Softmax function is performed with respect to all
the negative relative distances to give a distribu-
tion of probabilities for the values, vi 2 Vs,

ps(vi) = Softmax(�||os � vi||),

where vi is the representation vector of vi. If the
slot value vi consists of more than one word, vi

will then be the summation of all corresponding
word vectors. When training the model, we mini-
mize the Cross-Entropy (CE) loss between the out-
put probabilities and the given label.

StateNet requires the user utterance, the seman-
tic slots, and slot values to be able to be expressed
in words and have their corresponding word vec-
tors. We use the fixed word embedding for ev-
ery word, and do not fine-tune the word embed-
dings in the model. Since the word embeddings
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are distributed on a fixed-dimension vector space
and hold rich semantic information, StateNet may
have the ability to track the dialogue state for any
new slot or value, as long as the corresponding
word embedding can be found. This is the rea-
son why we call the StateNet a universal dialogue
state tracker.

3 Experiments

Experiments are conducted to assess the perfor-
mance on joint goal. Two datasets are used by
us for training and evaluation. One is the sec-
ond Dialogue State Tracking Challenge (DSTC2)
dataset (Henderson et al., 2014a), and the other is
the second version of Wizard-of-Oz (WOZ 2.0)
dataset (Wen et al., 2017). Both of them are the
conversations between users and a machine sys-
tem. The user’s goal is to find a suitable restau-
rant around Cambridge. The ontology of these two
datasets is identical, which is composed of three
informable slots: food, pricerange and area. The
main difference between them is that in WOZ 2.0,
users typed instead of using speech directly. This
means the users can use far more sophisticated lan-
guage than they can in the DSTC2, which is a big
challenge for the language understanding ability
of the model. Thus, it allows WOZ 2.0 to be more
indicative of the model’s actual performance since
it is immune to ASR errors.

Based on the model structure as described in
Section 2, we implement three kinds of dialogue
state tracker. The difference among them lies in
the utilization of parameter sharing and parameter
initialization.

• StateNet: It doesn’t have shared param-
eters among different slots. In other words,
three models for three slots are trained sep-
arately using RMSProp optimizer, learning
rate set to 0.0005. And its parameters are not
initialized with any pre-trained model.

• StateNet PS: Parameter sharing is con-
ducted among three slots. For each slot
in a batch, we infer the model with the
slot information and the same dialogue in-
formation. The losses are calculated based
on the corresponding value set. After each
slot is inferred, we back-propagate all the
losses and do the optimization. So we just
train one model in total using RMSProp op-
timizer, learning rate set to 0.0005. As
a result, the amount of model parameters

is one third of that of StateNet, which
means StateNet PS can significantly save
the memory usage during inferring.

• StateNet PSI: Parameter sharing is
conducted within this model, same as
StateNet PS, but its parameters are
initialized with a pre-trained model. For
pre-training, we only allow the model to
track one single slot and make predictions on
its value set. After the training ends, we save
the model parameters and use them to ini-
tialize the model parameters for the training
of the multi-slot tracking. The pre-trained
model with the best performance on the
validation set is selected for initialization.
Here, we choose the food slot for pre-training
since StateNet has the lowest prediction
accuracy on the food slot. StateNet PSI
is trained using Adam optimizer and learning
rate is set to 0.001. Since the model has
obtained the basic knowledge from the
pre-trained model, then a more aggressive
learning process is preferred. Adam with a
higher learning rate can help a lot compared
to RMSProp optimizer.

The hyperparameters are identical for all three
models, Nc = 128, Nw = 300, n = 2, m = 3.
We use c = 4 for the number of the receptors for
each slot, where the number is determined through
the grid search. The word embeddings used by us
is the semantically specialised Paragram-SL999
vectors (Wieting et al., 2015) with the dimension
of 300, which contain richer semantic contents
compared to other kinds of word embeddings. Im-
plemented with the MXNet deep learning frame-
work of Version 1.1.0, the model is trained with
a batch size of 32 for 150 epochs on a single
NVIDIA GTX 1080Ti GPU.

The results in Table 1 show the effective-
ness of parameter sharing and initialization.
StateNet PS outperforms StateNet, and
StateNet PSI performs best among all 3 mod-
els. It is because the parameter sharing can
not only prevent the model diverging from the
right learning process but also transfer necessary
knowledge among different slots. And the param-
eter initialization provides the model with the op-
portunity to gain some basic while essential se-
mantic information at the very beginning since
the food slot is the most important and difficult
one. Besides, StateNet PSI beats all the mod-
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DST Models Joint Acc.
DSTC2

Joint Acc.
WOZ 2.0

Delexicalisation-Based (DB) Model (Mrkšić et al., 2017) 69.1 70.8
DB Model + Semantic Dictionary (Mrkšić et al., 2017) 72.9 83.7

Scalable Multi-domain DST (Rastogi et al., 2017) 70.3 -
MemN2N (Perez and Liu, 2017) 74.0 -

PtrNet (Xu and Hu, 2018) 72.1 -
Neural Belief Tracker: NBT-DNN (Mrkšić et al., 2017) 72.6 84.4
Neural Belief Tracker: NBT-CNN (Mrkšić et al., 2017) 73.4 84.2

Belief Tracking: Bi-LSTM (Ramadan et al., 2018) - 85.1
Belief Tracking: CNN (Ramadan et al., 2018) - 85.5

GLAD (Zhong et al., 2018) 74.5 88.1
StateNet 74.1 87.8

StateNet PS 74.5 88.2
StateNet PSI 75.5 88.9

Table 1: Joint goal accuracy on DSTC2 and WOZ 2.0 test set vs. various approaches as reported in the literature.

els reported in the previous literature, whether
the model with delexicalisation (Henderson et al.,
2014b,c; Rastogi et al., 2017) or not (Mrkšić et al.,
2017; Perez and Liu, 2017; Xu and Hu, 2018; Ra-
madan et al., 2018; Zhong et al., 2018).

Initialization Joint Acc.
DSTC2

Joint Acc.
WOZ 2.0

food 75.5 88.9
pricerange 73.6 88.2

area 73.5 87.8

Table 2: Joint goal accuracy on DSTC2 and WOZ 2.0
of StateNet PSI using different pre-trained models
based on different single slot.

We also test StateNet PSI with different
pre-trained models, as shown in Table 2. The
fact that the food initialization has the best perfor-
mance verifies our selection of the slot with the
worst performance for pre-training. This is be-
cause the good performance on joint goal requires
a model to make correct predictions on all of the
slots. A slot on which the model has the worst
accuracy, i.e. the most difficult slot, will dramat-
ically limit the overall model performance on the
metric of the joint goal accuracy. Thus, the initial-
ization with a model pre-trained on the most diffi-
cult slot can improve the performance of the model
on its weakness slot and boost the joint goal accu-
racy, while the initialization of a strength slot may
not help much for the overall accuracy but in turn
causes the over-fitting problem of the slot itself.

4 Conclusion
In this paper, we propose a novel dialogue state
tracker that has the state-of-the-art accuracy as
well as the following three advantages: 1) the
model does not need manually-tagged user utter-
ance; 2) the model is scalable for the slots that
need tracking, and the number of the model pa-
rameters will not increase as the number of the
slots increases, because the model can share pa-
rameters among different slots; 3) the model is
independent of the number of slot values, which
means for a given slot, the model can make the
prediction on a new value as long as we have the
corresponding word vector of this new value. If
there are a great number of values for a certain
slot, to reduce the computational complexity, we
can utilize a fixed-size candidate set (Rastogi et al.,
2017), which dynamically changes as the dialogue
goes on. Experiment results demonstrate the ef-
fectiveness of parameter sharing & initialization.

Our future work is to evaluate the performance
of our models in the scenario where there are new
slots and more unobserved slot values, and to eval-
uate the domain-transferring ability of our models.
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Abstract

Task oriented dialog systems typically first
parse user utterances to semantic frames com-
prised of intents and slots. Previous work
on task oriented intent and slot-filling work
has been restricted to one intent per query
and one slot label per token, and thus cannot
model complex compositional requests. Al-
ternative semantic parsing systems have rep-
resented queries as logical forms, but these
are challenging to annotate and parse. We
propose a hierarchical annotation scheme for
semantic parsing that allows the representa-
tion of compositional queries, and can be effi-
ciently and accurately parsed by standard con-
stituency parsing models. We release a dataset
of 44k annotated queries 1, and show that pars-
ing models outperform sequence-to-sequence
approaches on this dataset.

1 Introduction

Intelligent personal assistants are now ubiquitous,
but modeling the semantics of complex compo-
sitional natural language queries remains chal-
lenging. Typical systems classify the intent of
a query (e.g. GET DIRECTIONS) and tag the
necessary slots (e.g. San Francisco) (Mes-
nil et al., 2013; Liu and Lane, 2016). It is dif-
ficult for such representations to adequately rep-
resent nested queries such as “Driving direc-
tions to the Eagles game”, which is composed
of GET DIRECTIONS and GET EVENT intents.
We explore a hierarchical representation for such
queries, which dramatically improves the expres-
sive power while remaining accurate and efficient
to annotate and parse (see Figure 1).

We introduce a Task Oriented Parsing (TOP)
representation for intent-slot based dialog sys-
tems. This hierarchical representation is expres-
sive enough to capture the semantics of com-

1http://fb.me/semanticparsingdialog

plex nested queries, but is easier to annotate and
parse than alternative representations such as logi-
cal forms or dependency graphs. We show empir-
ically that our representation is expressive enough
to model the vast majority of human-generated re-
quests in two domains.

A key advantage of our representation is that
it has a structure similar to standard constituency
parses, allowing us to easily adapt algorithms de-
veloped for phrase structure parsing for inference.
In particular, we use linear-time Recurrent Neural
Network Grammars (RNNG) (Dyer et al., 2016)
and show that the inductive bias provided by this
model significantly improves the accuracy com-
pared to strong sequence-to-sequence (seq2seq)
models based on CNNs, LSTMs and Transform-
ers.

Our contributions in this paper are:
1. A hierarchical semantic representation for

task oriented dialog systems that can model
compositional and nested queries.

2. A publicly available dataset of 44k requests
annotated with our representation. We show
that our representation has very high cover-
age of these requests, and that inter-annotator
agreement is high.

3. We show that the representation is learnable
by standard algorithms. In particular, we
show that the RNNG parsing model outper-
forms seq2seq baselines.

2 Representation

Designing semantic annotation schemes requires
trade-offs between how expressive the representa-
tion is on one hand, and how easily can it be anno-
tated, parsed, and executed on the other. Most ex-
isting annotations for task oriented dialog systems
have fallen on the extremes of non-recursive intent
and slot tagging, such as in the ATIS dataset (Mes-
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IN:GET DIRECTIONS``````̀
       Driving directions to SL:DESTINATION

IN:GET EVENThhhhhhh⇢⇢
(((((((

the SL:NAME EVENT

Eagles

SL:CAT EVENT

game

IN:GET DISTANCE`````̀
      

How far is SL:DESTINATION

IN:GET RESTAURANT LOCATIONXXXXXX⇧⇧
⇠⇠⇠⇠⇠⇠

the SL:TYPE FOOD

coffee

shop

Figure 1: Example TOP annotations of utterances. Intents are prefixed with IN: and slots with SL:. In
a traditional intent-slot system, the SL:DESTINATION could not have an intent nested inside it.

nil et al., 2013; Liu and Lane, 2016), and full log-
ical forms (Zettlemoyer and Collins, 2012).

We introduce a hierarchical representation, sim-
ilar to a constituency syntax tree, with words as
terminals. Non-terminals are either intents or
slots, and the root node is an intent. We allow
intents to be nested inside a slot, resulting in the
ability to compose requests and call multiple APIs.
Using this compositional tree representation, we
can enable answering compositional queries over
multiple domains.

We introduce the following constraints in our
representation: 1. The top level node must be an
intent, 2. An intent can have tokens and/or slots
as children, 3. A slot can have either tokens as
children or one intent as a child.

Executing queries such as those in Figure 1 is
straightforward because of the explicit tagging of
the outer location slot: first we fetch ‘the Eagles
game’ event (or the relevant coffee shop), extract
the location, and pass it as the destination slot to
the navigation domain intent.

Compositional queries are frequent. In our
dataset of crowd-sourced utterances, we found that
30% could not be adequately represented with tra-
ditional intent-slot tagging.2 This shows that more
expressive representations are often necessary.

While our representation is capable of model-
ing many complex queries, some utterances are
beyond its scope. For example, in Set an alarm
at 8 am for Monday and Wednesday, 8 am needs
to be associated with both Monday and Wednes-
day which would require graph-structured repre-

2In our dataset, 35% of queries have depth >2, which
means that the traditional intent-slot tagging systems would
not have been able to annotate or predict these annotations. In
addition, to avoid the depth-based statistic being influenced
by our label set specification, we manually performed anal-
ysis of 100 samples that showed that 30% of the queries re-
quired compositional representation.

sentations. However, we found that just 0.3% of
our dataset would require a more expressive rep-
resentation to model adequately.3 More expres-
sive representations, such as dependency graphs
or logical forms, would only bring marginal gains
but would add significant challenges for annota-
tion and learning.

Together, these results suggest that our tree-
structured approach offers a useful compromise
between traditional intent-slot tagging and logical
forms, by providing very high coverage of queries
while avoiding the complexities of annotating and
learning more expressive representations.

In summary, our representation has the follow-
ing attractive properties:

• Expressiveness Compared to traditional
intent-slot annotations, it can express com-
plex hierarchical queries, improving cover-
age of queries by 30%. We found that more
general representations are required for only
0.3% of queries.

• Easy Annotation Annotating our representa-
tion simply requires labeling spans of a sen-
tence, which is much more straightforward
than alternatives such as creating a logical
form for the sentence, or an arbitrary depen-
dency graph. This fact allows us to quickly
create a large dataset.

• Efficient and Accurate Parsing Since our
representation closely resembles syntactic
trees, we can easily re-use models from the
large literature on constituency parsing.

3Utterances that could not be annotated with the label
sets and corresponding instructions were marked as ‘unsup-
ported’ (9.14% of the dataset), including the ones that needed
more expressive representation than a tree. Analysis of a ran-
dom sample of 120 unsupported utterances shows that only
four instances cannot be supported because of the tree rep-
resentation constraint, estimating that there are only 0.3%
queries that would require a more general (e.g graph-based)
representation.
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• Execution Our approach can be seen as a
simple generalization of traditional dialog
systems, meaning that existing infrastructure
can easily be adapted to execute the intents.

3 Dataset

We asked crowdsourced workers to generate nat-
ural language sentences that they would ask a
system that could assist in navigation and event
queries. These requests were then labeled by two
annotators. If these annotations weren’t identi-
cal then we adjudicated with a third annotator. If
all three annotators disagreed then we discarded
the utterance and its annotations. 63.40% of ut-
terances were resolved with 2 annotations and
94.09% were resolved after getting 3 annotations.
We also compared percentage of utterances that
were resolved after 2 annotations for depth  2
(traditional slot filling) and for depth > 2 (com-
positional): 68.87% vs 62.03%, noting that the
agreement rate is similar.

We collected a total of 44783 annotations with
25 intents and 36 slots, randomly split into 31279
training, 4462 validation and 9042 test utterances.
The dataset has utterances that are focused on nav-
igation, events, and navigation to events.

The median (mean) depth of the trees is 2
(2.54), and the median (mean) length of the utter-
ances is 8 (8.93) tokens. 35% of trees have depth
more than 2. The dataset has 4646 utterances that
contain both navigation and event intents. Figure
2 shows the distribution of instances in the full
dataset over the utterance length and tree depth.

4 Models

We experiment with two types of models: stan-
dard sequence-to-sequence learning models, and
a model adapted from syntactic parsing, Recur-
rent Neural Network Grammars (Dyer et al., 2016)
(RNNG). RNNG is a top-down transition-based
parser and was originally proposed for parsing
syntax trees and language modeling. We trained
the RNNG parser discriminatively and not gen-
eratively to reduce training time of the model.
While sequence-to-sequence learning can model
arbitrary sequence transduction, we hypothesize
that parsing models like RNNG, which can only
output well-formed trees, will give better inductive
bias and flexibility for predicting compositional
and cross-domains scenarios on the fly, particu-
larly for domains with less training data available.

We briefly review the RNNG model – The parse
tree is constructed using a sequence of transitions,
or ‘actions’. The transitions are defined as a set
of SHIFT, REDUCE, and the generation of intent
and slot labels. SHIFT action consumes an input
token (that is, adds the token as a child of the right
most ‘open’ sub-tree node) and REDUCE closes
a sub-tree. The third set of actions is generating
non-terminals – the slot and intent labels. Note
that at each step, there are only a subset of valid
actions. For examples, if all the input tokens have
been added to the tree, the only valid action is RE-
DUCE.

5 Experiments and Results

Baselines
We compared RNNG with implementa-
tions of sequence-to-sequence models using
CNNs (Gehring et al., 2017), LSTMs (Wise-
man and Rush, 2016) and Transformer net-
works (Vaswani et al., 2017) in fairseq4.

Metrics
We used three metrics to evaluate the systems. Ex-
act match accuracy is defined as the number of
utterances whose full trees are correctly predicted.
The second metric is a commonly used scoring
method for syntactic parsing – labeled bracketing
F1 scores (Black et al., 1991) (called F1 hence-
forth). We used the pre-terminals as well in the
calculations. One downside of this metric is that
it only considers the token spans for a given non-
terminal but not the internal structure. Tree sub-
structures are rather important for task completion.
Thus, we introduce a third metric, Tree-Labeled
(TL) F1, which compares the sub-tree structure for
a non-terminal, instead of just the token span. Ex-
act match accuracy is the strictest metric and F1 is
the least strict metric. Tree Validity is the percent-
age of predictions which formed valid trees (via
bracket matching).

Preprocessing and Hyperparameters
We used the same preprocessing of unknown
words as used in (Dyer et al., 2016) and mapped
numbers to a constant. We used pre-trained GloVe
embeddings (Pennington et al., 2014) and tuned
hyperparameters on the validation set.

• RNNG - We used 2-layer 164-unit LSTM
with a bidirectional LSTM compositional

4https://github.com/pytorch/fairseq
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Figure 2: Count statistics of the full dataset.

Model Exact match F1 Precision Recall TL-F1 TL-Precision TL-Recall Tree Validity
RNNG 78.51 90.23 90.62 89.84 84.27 84.64 83.91 100.00
seq2seq-CNN (LOTV) 75.87 88.56 89.25 87.88 82.31 82.92 81.72 99.75
seq2seq-LSTM (LOTV) 75.31 87.69 88.35 87.03 81.15 81.72 80.58 99.94
seq2seq-Transformer 72.20 86.60 87.09 86.11 78.54 78.99 78.19 99.55

Table 1: Performance (in percentage) of RNNG and seq2seq models based on LSTMs, CNNs, and Trans-
former networks. The CNN and LSTM models were trained with a Limited Output Token Vocabulary
(LOTV) of just a single element.

Figure 3: Exact match statistics of the different models on the testset

function, trained with a learning rate of
0.0004, weight decay of 0.00004, dropout of
0.34 with Adam optimizer for 1 epoch with
16 workers using Hogwild updates.

• seq2seq CNN - We used 3x3 convolutions (9
layers of 512 units, 4 units of 1024 units),
followed by 1x1 convolutions (2 layers of
2048 units) with attention, trained with ini-
tial learning rate of 0.9, dropout of 0.2, gra-
dient clipping of 0.1 with NAG optimizer for
30 epochs, inferred with beam size 5.

• seq2seq Transformer - We used 3 layers of
4 FFN attention heads of embedding dimen-
sion 512, trained with initial learning rate of

0.01, dropout of 0.2, gradient clipping of 5
with Adam optimizer for 50 epochs, inferred
with beam size 5.

• seq2seq LSTM - We used 1-layer 256 unit
LSTMs with attention, trained with initial
learning rate of 0.7, dropout of 0.2, gradient
clipping of 0.1 with NAG optimizer for 40
epochs, inferred with beam size 5.

Results
The experimental results in Table 1 and Figure 3
show that existing approaches for syntactic pars-
ing, such as RNNG, perform well for this task,
achieving perfect outputs on over 75% of queries.
RNNG performs better than sequence-to-sequence
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models, especially in predicting exact trees, which
is important for task completion. We present re-
sults for the CNN and LSTM models with an out-
put terminal token vocabulary of just a single el-
ement (LOTV), which performed better than the
regular token vocabulary (exact match accuracy
of 75.63% and 68.39%, respectively). We believe
LOTV makes the models focus on learning to pre-
dict the tree structure rather than to reproduce the
input tokens. But we observed that this vocabu-
lary reduction resulted in significantly poorer per-
formance for the Transformer model.

Below we discuss how varying the beam size
during inference affects accuracy. The seq2seq re-
sults in Table 1 are accuracy for the top prediction
when a beam of size 5 was run and the RNNG
results are for greedy inference. For RNNG, the
accuracy of top prediction did not change much
when a beam of size 5 was run. We also mea-
sured how often the correct tree annotation was in
the top k predictions for the models when a beam
of size k was run during inference, called as Top-
k. For RNNG, Top-3 was 90.21 and Top-5 was
92.48, compared to 78.51 for k=1. For seq2seq-
CNN, the Top-3 score was 88.08 and Top-5 score
was 90.21. For seq2seq-LSTM, Top-3 was 86.55
and Top-5 was 88.76. We note that Top-5 is sub-
stantially higher than the accuracy of the top pre-
diction. These top-k predictions could be used by
a hypothesis ranker downstream, which can take
into account agent capabilities.

We also experimented with more minimal rep-
resentations of the RNNG model (Kuncoro et al.,
2017). Removing the actions LSTM dropped Ex-
act match score slightly to 78.08. Separately, re-
moving the stack LSTM dropped it to 75.31. Re-
moving the buffer LSTM caused a unusable de-
crease to 13.78.

While sequence-to-sequence models have
shown strong parsing performance when trained
on very large amounts of data (Vinyals et al.,
2015); in our setting the inductive bias provided
by the RNNG model is crucial to achieving high
performance. The model has several useful biases,
such as guaranteeing a well-formed output tree,
and shortening the dependencies between intents
and their slots.

A further advantage of RNNG is that inference
has linear time complexity, whereas seq2seq mod-
els are quadratic because attention is recomputed
at every time step.

6 Related Work

Many annotation schemes have previously been
proposed for representing the semantics of natu-
ral language. We briefly compare our method with
these.

Most work on task oriented dialog systems has
focused on identifying a single user intent and then
filling the relevant slots – for example, the repre-
sentations used on the ATIS dataset (Mesnil et al.,
2013; Liu and Lane, 2016; Zhu and Yu, 2017) and
in the Dialog State Tracking Challenge (Williams
et al., 2016). We showed that hierarchical repre-
sentations with nested intents can improve cover-
age of requests in our domains.

The semantic parsing literature has focused
on representing language with logical forms
(Liang, 2016; Zettlemoyer and Collins, 2012;
Kwiatkowski et al., 2010). Logical forms are more
expressive than our representation, as they are less
tightly coupled to the input query, and can be exe-
cuted directly. However, logical forms are difficult
to annotate and no large-scale datasets are avail-
able.

While we used a tree-structured representation,
others have used arbitrary graphs, such as Abstract
Meaning Representation (Banarescu et al., 2013)
and Alexa Meaning Representation (Fan et al.,
2017). These approaches can represent complex
constructions that are beyond the scope of our ap-
proach, but with significantly challenging parsing
(Artzi et al., 2015). We showed that such cases are
very rare in our data.

7 Conclusions

Drawing on ideas from slot-filling and seman-
tic parsing, we introduce a hierarchical gener-
alization of traditional intents and slots that al-
lows the representation of complex nested queries,
leading to 30% higher coverage of user requests.
We show that the representation can be annotated
with high agreement. We are releasing a large
dataset of annotated utterances at http://fb.
me/semanticparsingdialog. The repre-
sentation allows the use of existing constituency
parsing algorithms, resulting in higher accuracy
than sequence-to-sequence models.
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Abstract
In this paper, we provide empirical ev-
idence based on a rigourously studied
mathematical model for bi-populated net-
works, that a glass ceiling within the
field of NLP has developed since the mid
2000s.

1 Introduction
The glass ceiling is a powerful metaphor for the
unethical, invisible, and yet virtually impenetrable
barrier that prevents highly achieving women and
minorities from obtaining equal access to senior
career opportunities. The existence of a glass ceil-
ing is well documented both in STEM1 and specif-
ically in Computer Science (Moss-Racusin et al.,
2012; Shen, 2013; Larivière et al., 2013; Van der
Lee and Ellemers, 2015; Way et al., 2016, for ex-
ample). To date there has been no published study
on this topic for the field of NLP.

In most countries, Computer Science has long
been struggling to support female researchers suf-
ficiently: female representation in Computer Sci-
ence is not only disproportional to the population,
but it is lower than the average STEM field. More-
over, as opposed to STEM fields in general, the
proportion of women in Computer Science has
been on a marked decline for the past two decades
(Sax et al., 2017; Williams et al., 2017), placing
the entire the tech field in a diversity crisis today.

The discussion of gender representation or even
the existence of a glass ceiling is rather more com-
plex for NLP due to its fundamental interdisci-
plinarity especially across the fields of Linguis-
tics, Computer Science, and Statistics. That is,
much mainstream research in NLP follows trends
that are heavily situated in one of the main sub-
disciplines. Can we witness any emergent glass

1Science, technology, engineering and mathematics
fields.

ceiling for female researchers in the wake of an in-
creasing concentration on deep learning engineer-
ing techniques applied to NLP problems? What
about the preceding Machine Learning wave from
the mid 2000s? In this paper we answer this ques-
tion in the affirmative.

We acquired a gender-annotated co-author
dataset covering arguably the most central ACL
publication venues for the past 52 years. We carry
out basic data analysis over this dataset and the bi-
populated (female and male researcher) mentor-
mentee network derived from it. We make the fol-
lowing concerning empirical observations:

1. There is a growing mentor gender gap. There
is a growing disparity between the propor-
tions of female and male NLP researchers who
achieve mentor status, with a higher proportion
of male researchers becoming mentors, espe-
cially since the mid 2000s.

2. There is a significant time gap to mentor sta-
tus across genders. Female NLP researchers
must wait a considerable time longer to achieve
mentor status than their male colleagues.

3. In-gender mentorship correlates with future
success. Female NLP researchers who take a
male supervisor will have greater difficulty in
becoming a mentor than if they take a female
supervisor, on average.

4. Homophily is on the rise. There is con-
sistently increasing homophily in our field–
the preference to establish in-gender mentor-
mentee relationships.

Following this analysis, we employ Avin et al.
(2015)’s rigorously studied conditions for power
inequality and the glass-ceiling effect for complex
systems data structured like ours to show that these
empirical observations indicate quite precisely the
existence of a glass ceiling effect for the field of
NLP.
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Figure 1: Proportion of male (red line) and female (blue line) mentors from 1966 to 2017, for different
thresholds of “mentor seniority”. A disparity in these proportions has been increasing since the 1990s,
which follows the general field of Computer Science. The whiter the background the more significant
the difference in proportions for the corresponding year, with the p-value for 2017 in the title.

2 Acquiring a gender-annotated
mentor-mentee network

We scraped all meta-information available from
the ACL Anthology2 for arguably the most cen-
tral publication venues in NLP. This includes all
papers from CoNLL, EACL, TACL, CL, ACL,
EMNLP, COLING, ANLP, NAACL, *Sem/Se-
mEval from 1965 to 2017: 19,552 papers in total.

We carried out some normalisation of the author
names scraped by lower-casing, normalising for
order (first name then last name), removing middle
initials and title abbreviations, and removing ac-
cents and punctuation, collapsing the extracted list
of 18,437 author names to a list of 17,232 author
names. Following this, we applied several gen-
dered first-name lists to automatically annotate a
large portion of the author names with gender.3

This resulted in 13,435 automatically annotated
author names. Of the remaining 3797 unannotated
names, we automatically label as ’unknown’ all
author names with only an initial standing for the
first name, effectively filtering out a further 565
author names. The remaining 3232 author names

2http://www.aclweb.org/anthology
3The lists are discussed in the appendix.

were annotated by the current authors by manually
inspecting the results of Google Image queries for
the full name.

The resulting dataset spans 52 years and in-
cludes 17,232 authors, of which we labeled 10,382
as male, 5,227 as female and 1,623 whose gen-
der we could not identify. In what remains of our
study, we discard these latter authors. This leaves
a total of 15,609 researchers.

Power in academia. In our study, we need to
account for mentor status–a type of seniority and
power. As in many other fields, in NLP it is cus-
tomary for mentors to take the last-authorship po-
sition of papers. Though there can be exceptions
to this custom, the assumption of mentor last-
authorship is simple, and with this large dataset,
we believe it provides a robust approximation of
mentorship in the absence of other more precise
indications like centralised supervision logs. This
method was also adopted by Avin et al. (2015).

We use the assumption of mentor last-
authorship to provide an empirical definition of
a mentor in our dataset. We say that after
t last-authored papers for some threshold t 2
{1, . . . , 10}, and excluding all sole-author papers,
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a researcher is considered to hold mentor standing
with seniority threshold t.

We model the interactions between researchers
by creating the bi-populated (for female and male
populations) mentor-mentee network. The net-
work’s nodes therefore are researchers and there
is an edge between two co-authors of a paper in
our dataset if and only if one of the co-authors is
the last author. This leaves a mentor-mentee net-
work with 14248 nodes, 25211 edges, and average
degree 3.539. This network allows us to observe
whether the current system of mentor-mentee rela-
tionships entails a glass ceiling effect in the mod-
eled community. We now present the results of
this analysis.

3 Evidence of a rising gender gap
We provide some basic empirical evidence which
could be indicative of the presence of a glass ceil-
ing effect in NLP. In Section 4, we then prove that
there is indeed a glass ceiling.
3.1 Growing mentor standing disparity
A researcher who has achieved some seniority is
generally eligible to become a mentor and super-
vise students. As such, the rise to becoming a
mentor is a measurable criterion of success for
a researcher in academia. Concretely, in some
countries, the mentor role is reserved for perma-
nent/tenured faculty (for example, in Denmark).
Therefore a barrier to mentor standing for females
can lead to an important under-representation of
women. This under-representation in turn may
perpetuate itself through the lower availability of
same-gender advisors for female students, which
we show to be of central importance for rising
NLP researchers (in Section 3.3).

Figure 2: The proportion of female researchers
(blue line) in NLP has been gradually increasing
since 1965, but seems to be leveling off at around
33.5%, with a very slight decrease since 2014. A
corresponding decrease is observed for male NLP
researchers (red line).

For thresholds of “mentor seniority” t 2
{2, . . . , 10} we examined the proportion of men-
tors with respect to the pool of researchers of the
same gender over time from 1966 to today. Fig-
ure 1 shows the resulting time series. Across
all thresholds, we observe that the proportion of
male supervisors with respect to the total num-
ber of male researchers is increasing faster than
the proportion of female supervisors within the
general pool of female researchers. In fact, the
discrepancy between these two proportions seems
to slowly close until the early-to-mid 2000s after
which it steadily increases again. And in almost all
cases this difference in proportions develops into a
statistically significant difference (with a 1-sided
z-test for proportions, and p-value 0.05). This is
despite there being no corresponding development
in mentor-mentee proportions as shown in Figure
2.

3.2 Time to seniority gap
We further investigate the subset of female re-
searchers who achieved mentor standing, and
compare their difficulty in doing so with that of
the respective pool of male researchers. One mea-
surable factor from our dataset is time. Isolat-
ing a substantially larger delay to achieving men-
tor standing for female researchers is one way to
use our dataset to measure the difficulty in transi-
tioning female researchers from mentee to mentor
standing. We consider the average time it takes
to achieve mentor standing between the two pop-
ulations. For consecutive periods of two years,
we compute the average number of years for re-
searchers to achieve mentor standing at thresh-
old t 2 {2, . . . , 10}. We provide a visualisation
of the results in Figure 3. We do a two sample
t-test to expose the statistical significance in the
non-equality of the respective means. We observe
that across all thresholds for mentor standing, fe-
male researchers are substantially more delayed
than male researchers in becoming mentors. For
the most recent numbers, the result is most sig-
nificant where there is the most data, at seniority
t = 3, with p-level 0.04. However we note the
general whitening of the plots (indicating statisti-
cal significance) after the mid-2000s.

3.3 The effects of in-gender supervision
The availability of female mentors been has shown
to correlate with mentees’ future success–in par-
ticular, females in Chemistry who are mentored by
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Figure 3: The average time it takes in years, across
the past 52 years, for female researchers (blue line)
and male researchers (red line) to achieve mentor
status in the NLP field. The more significant the
difference in means, the whiter the background.
The relative number of data points for each year
and gender are indicated by the size of the scatter
points (blue for females and red for males). The
last recorded p-level for each seniority threshold
is provided in the corresponding plot’s title.

mentor
male female male female male female

mentee t = 2 t = 3 t = 4

male 12.26 5.69 6.98 4.21 4.95 3.29
female 7.29 10.73 4.96 6.12 3.69 4.11

t = 5 t = 6 t = 7

male 3.91 2.72 3.25 2.4 2.64 1.99
female 2.83 3.08 2.31 2.47 2.01 2.1

t = 8 t = 9 t = 10

male 2.26 1.74 2.03 1.58 1.85 1.46
female 1.8 1.87 1.61 1.65 1.38 1.4

Table 1: Probabilities (as % here) that a mentee
of the row gender, supervised by a mentor of the
column gender will achieve mentor standing, for
various thresholds t.

female supervisors are considerably more likely
to become faculty themselves (Gaule and Piacen-
tini, 2018). In Table 1 we observe a similar trend

for in-gender mentorship. In particular, female
researchers who have female mentors are much
more likely to become mentors themselves. This
is a particular problem if, as Sections 3.1 and 3.2
show, the proportion of female NLP mentors is not
increasing at the same rate as that of male NLP
researchers, possibly due in part to the added de-
lay in achieving mentor status for women. Indeed
this delay in access, perpetuated due to the lack of
in-gender supervision, can be the result of a glass
ceiling in NLP. In the next section we investigate
the likelihood of such a glass ceiling.

4 The glass ceiling effect in NLP
In order to understand better how the population
of female researchers in NLP can be increasing,
but the growth level of seniority/mentor standing
still falls significantly below that of the male pop-
ulation and that this gap is widening, we turn to
an investigation of power inequality and the glass
ceiling effect.

First three key observations can be made of the
mentor-mentee network introduced in Section 2
vis-à-vis three well-accepted mechanisms of ob-
served human behavior.

(O1) Minority-majority partition. Figure 2 shows
the resulting proportion of male and female re-
searchers in NLP through the 52 years. Our
network displays a minority-majority partition:
the proportion of females has hovered around
33.5% for the past decade now.

(O2) Homophily is the is the tendency of individuals
to associate with people similar to them.
Easley and Kleinberg (2010) provide the fol-
lowing test for homophily. Given the propor-
tions of male and female ended edges in the
network, we should be able to calculate the ap-
proximate proportion of mixed edges (the prob-
ability that we select a mixed-gendered edge at
random). If the true fraction is significantly be-
low the expected amount, the network is ex-
hibiting homophily. Figure 4 shows that ho-
mophily is a consistently worsening problem in
the NLP community. All numbers are signifi-
cant with p-value virtually 0 (1-sided z-test for
proportions). Note that the plot includes error
bars, which are so small they are not visible.

(O3) The “rich-get-richer” feedback mechanism
describes and explains the process of wealth
concentration, by which the future distribution
of wealth is predictable from empirical data
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based on the current wealth distribution.
In our network, the degree of a node captures
its level of social wealth: people may try to
connect more often to people who already have
many connections, either in order to profit from
their social wealth or because they are more
visible in the network. In our NLP mentor-
mentee network, the average degree for male
researcher nodes is 3.356, while for females
it is 3.186. Hence our mentor-mentee net-
work exhibits a “rich-get-richer” mechanism in
favour of male researchers.

Figure 4: Evidence of ever-increasing homophily.
The expected number of mixed-gender interac-
tions is higher than the observed.

The biased preferential attachment model.
Avin et al. (2015) extend Barabási and Albert
(1999)’s preferential attachment model that was
originally based on the “rich-get-richer” feedback
mechanism to a biased preferential attachment
model of mentor-mentee dynamics, G(n, f, p),
where there further is (1) a minority-majority par-
tition (the proportion of female nodes is less than
half, f < 1

2 ) and (2) homophily. The model
works as follows, instantiated to our context. Over
time, a sequence of bi-populated mentor-mentee
networks is constructed, Gt = (Vt, Et), like the
one described in Section 2. Vt = Ft [ Mt is the
set of Gt’s nodes, and Et its edges, where Ft(Mt)
is the set of female (male) nodes. G0 is the empty
graph. At each time t > 0 a mentee enters the net-
work. The mentee is a female with probability f
and a male with probability m = 1�f . Assuming
a rich-get-richer mechanism, the mentee chooses a
potential mentor according to that mentor’s impor-
tance in the network: with probability �t(u)P

v2Vt
�t(v)

where �t(v) is the degree of v 2 Vt. If this su-
pervision is in-gender, then a relation (edge) is es-
tablished. However if genders differ, then the re-
lation (edge) is established according to the prob-
ability of homophily (p); otherwise (with proba-

bility (1 � p)) it is rejected and the mentee must
restart the process of finding a mentor. Once an ad-
visor for the mentee has been found, t increments
to the next time step.

We now introduce definitions and the main the-
orem established by (Avin et al., 2015) for con-
ditions of the existence of power inequality and a
glass ceiling effect in bi-populated networks. Then
we empirically check for these conditions in our
NLP mentor-mentee network for the main result.
Power inequality definition. The sequence of
mentor-mentee networks Gt is said to exhibit
a power inequality effect for females if the
average power of a female node is strictly
bounded by the power of a male node: i.e.,

limt!1
1

|Ft|

P
v2Ft

�t(v)
1

|Mt|

P
v2Mt

�t(v)
< 1.

Tail and moment glass ceiling definitions. Let
topk(Ft) (topk(Mt)) denote the number of female
(male) nodes that have degree of at least k in Gt–
this is the group of scholars whose wealth in re-
lations in the network is at level at least k; this
wealth of relations is a form of power. The glass
ceiling effect for the minority of females describes
a process by which the proportion of access to this
wealth of relations is limited for females but not
for males. Formally, the sequence Gt is said to
exhibit a tail glass ceiling effect for the female
nodes (the minority) if there exists an increasing
sequence kt such that limt!1 topkt

(Mt) = 1
and limt!1

topkt
(Ft)

topkt
(Mt)

= 0. Gt exhibits a mo-
ment glass ceiling g for the female nodes, if g =

limt!1
1

|Ft|

P
v2Ft

�t(v)2

1
|Mt|

P
v2Mt

�t(v)2
. And if g = 0, Gt has a

strong glass ceiling effect.

The main result: Power inequality and glass
ceiling. Avin et al. (2015) proved that if 0 <
f < 1

2 and 0 < p < 1, then for G(n, f, p)
produced by the biased preferential attachment
model, G(n, f, p) exhibits both power inequality
and a tail and strong glass ceiling effects. In ob-
servations (O2) and (O3), we identified the con-
ditions f = 0.335 < 0.5 and the existence of
homophily (i.e., 0 < p < 1) in our NLP mentor-
mentee network. We have therefore shown there to
exist power inequality and a glass ceiling in NLP.

5 Concluding remarks
Given our study of the mentee-mentor network for
NLP, we have shown that there is a glass ceiling
for female researchers in NLP that has taken a hold
of the field since the mid-2000s.
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Abstract

Abusive language detection models tend to
have a problem of being biased toward iden-
tity words of a certain group of people be-
cause of imbalanced training datasets. For
example, “You are a good woman” was con-
sidered “sexist” when trained on an existing
dataset. Such model bias is an obstacle for
models to be robust enough for practical use.
In this work, we measure gender biases on
models trained with different abusive language
datasets, while analyzing the effect of differ-
ent pre-trained word embeddings and model
architectures. We also experiment with three
bias mitigation methods: (1) debiased word
embeddings, (2) gender swap data augmenta-
tion, and (3) fine-tuning with a larger corpus.
These methods can effectively reduce gender
bias by 90-98% and can be extended to correct
model bias in other scenarios.

1 Introduction

Automatic detection of abusive language is an im-
portant task since such language in online space
can lead to personal trauma, cyber-bullying, hate
crime, and discrimination. As more and more peo-
ple freely express their opinions in social media,
the amount of textual contents produced every day
grows almost exponentially, rendering it difficult
to effectively moderate user content. For this rea-
son, using machine learning and natural language
processing (NLP) systems to automatically detect
abusive language is useful for many websites or
social media services.

Although many works already tackled on train-
ing machine learning models to automatically de-
tect abusive language, recent works have raised
concerns about the robustness of those systems.
Hosseini et al. (2017) have shown how to easily
cause false predictions with adversarial examples
in Google’s API, and Dixon et al. (2017) show that

classifiers can have unfair biases toward certain
groups of people.

We focus on the fact that the representations of
abusive language learned in only supervised learn-
ing setting may not be able to generalize well
enough for practical use since they tend to over-
fit to certain words that are neutral but occur fre-
quently in the training samples. To such classi-
fiers, sentences like “You are a good woman” are
considered “sexist” probably because of the word
“woman.”

This phenomenon, called false positive bias,
has been reported by Dixon et al. (2017). They
further defined this model bias as unintended, “a
model contains unintended bias if it performs bet-
ter for comments containing some particular iden-
tity terms than for comments containing others.”

Such model bias is important but often unmea-
surable in the usual experiment settings since the
validation/test sets we use for evaluation are al-
ready biased. For this reason, we tackle the is-
sue of measuring and mitigating unintended bias.
Without achieving certain level of generalization
ability, abusive language detection models may
not be suitable for real-life situations.

In this work, we address model biases specific
to gender identities (gender bias) existing in abu-
sive language datasets by measuring them with a
generated unbiased test set and propose three re-
duction methods: (1) debiased word embedding,
(2) gender swap data augmentation, (3) fine-tuning
with a larger corpus. Moreover, we compare the
effects of different pre-trained word embeddings
and model architectures on gender bias.

2 Related Work

So far, many efforts were put into defining and
constructing abusive language datasets from dif-
ferent sources and labeling them through crowd-
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sourcing or user moderation (Waseem and Hovy,
2016; Waseem, 2016; Founta et al., 2018; Wul-
czyn et al., 2017). Many deep learning approaches
have been explored to train a classifier with those
datasets to develop an automatic abusive language
detection system (Badjatiya et al., 2017; Park and
Fung, 2017; Pavlopoulos et al., 2017). However,
these works do not explicitly address any model
bias in their models.

Addressing biases in NLP models/systems have
recently started to gain more interest in the re-
search community, not only because fairness in AI
is important but also because bias correction can
improve the robustness of the models. Bolukbasi
et al. (2016) is one of the first works to point out
the gender stereotypes inside word2vec (Mikolov
et al., 2013) and propose an algorithm to correct
them. Caliskan et al. (2017) also propose a method
called Word Embedding Association Test (WEAT)
to measure model bias inside word embeddings
and finds that many of those pretrained embed-
dings contain problematic bias toward gender or
race. Dixon et al. (2017) is one of the first works
that point out existing “unintended” bias in abu-
sive language detection models. Kiritchenko and
Mohammad (2018) compare 219 sentiment analy-
sis systems participating in SemEval competition
with their proposed dataset, which can be used
for evaluating racial and gender bias of those sys-
tems. Zhao et al. (2018) shows the effectiveness
of measuring and correcting gender biases in co-
reference resolution tasks. We later show how we
extend a few of these works into ours.

3 Datasets

3.1 Sexist Tweets (st)

This dataset consists of tweets with sexist tweets
collected from Twitter by searching for tweets that
contain common terms pertaining to sexism such
as “feminazi.” The tweets were then annotated by
experts based on criteria founded in critical race
theory. The original dataset also contained a rel-
atively small number of “racist” label tweets, but
we only retain “sexist” samples to focus on gen-
der biases. Waseem and Hovy (2016); Waseem
(2016), the creators of the dataset, describe “sex-
ist” and “racist” languages as specific subsets of
abusive language.

Name Size Positives (%) µ � max

st 18K 33% 15.6 6.8 39
abt 60K 18.5% 17.9 4.6 65

Table 1: Dataset statistics. µ, �, max are mean,
std.dev, and maximum of sentence lengths

3.2 Abusive Tweets (abt)
Recently, Founta et al. (2018) has published a
large scale crowdsourced abusive tweet dataset
with 60K tweets. Their work incrementally and
iteratively investigated methods such as boosted
sampling and exploratory rounds, to effectively
annotate tweets through crowdsourcing. Through
such systematic processes, they identify the most
relevant label set in identifying abusive behaviors
in Twitter as {None, Spam, Abusive, Hateful}
resulting in 11% as ’Abusive,’ 7.5% as ’Hateful’,
22.5% as ’Spam’, and 59% as ’None’. We trans-
form this dataset for a binary classification prob-
lem by concatenating ’None’/’Spam’ together, and
’Abusive’/’Hateful’ together.

4 Measuring Gender Biases

4.1 Methodology
Gender bias cannot be measured when evaluated
on the original dataset as the test sets will follow
the same biased distribution, so normal evaluation
set will not suffice. Therefore, we generate a sep-
arate unbiased test set for each gender, male and
female, using the identity term template method
proposed in Dixon et al. (2017).

The intuition of this template method is that
given a pair of sentences with only the identity
terms different (ex. “He is happy” & “She is
happy”), the model should be able to generalize
well and output same prediction for abusive lan-
guage. This kind of evaluation has also been per-
formed in SemEval 2018: Task 1 Affect In Tweets
(Kiritchenko and Mohammad, 2018) to measure
the gender and race bias among the competing sys-
tems for sentiment/emotion analysis.

Using the released code1 of Dixon et al. (2017),
we generated 1,152 samples (576 pairs) by filling
the templates with common gender identity pairs
(ex. male/female, man/woman, etc.). We created
templates (Table 2) that contained both neutral and
offensive nouns and adjectives inside the vocabu-

1https://github.com/conversationai/
unintended-ml-bias-analysis
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Example Templates
You are a (adjective) (identity term).

(verb) (identity term).
Being (identity term) is (adjective)

I am (identity term)
I hate (identity term)

Table 2: Example of templates used to generated
an unbiased test set.

Type Example Words
Offensive disgusting, filthy, nasty,

rude, horrible, terrible, aw-
ful, worst, idiotic, stupid,
dumb, ugly, etc.

Non-offensive help, love, respect, believe,
congrats, hi, like, great,
fun, nice, neat, happy,
good, best, etc.

Table 3: Example of offensive and non-offensive
verbs & adjectives used for generating the unbi-
ased test set.

lary (See Table 3) to retain balance in neutral and
abusive samples.

For the evaluation metric, we use 1) AUC scores
on the original test set (Orig. AUC), 2) AUC
scores on the unbiased generated test set (Gen.
AUC), and 3) the false positive/negative equal-
ity differences proposed in Dixon et al. (2017)
which aggregates the difference between the over-
all false positive/negative rate and gender-specific
false positive/negative rate. False Positive Equal-
ity Difference (FPED) and False Negative Equal-
ity Difference (FNED) are defined as below, where
T = {male, female}.

FPED =
X

t2T

|FPR � FPRt|

FNED =
X

t2T

|FNR � FNRt|

Since the classifiers output probabilities, equal er-
ror rate thresholds are used for prediction decision.

While the two AUC scores show the perfor-
mances of the models in terms of accuracy, the
equality difference scores show them in terms of
fairness, which we believe is another dimension
for evaluating the model’s generalization ability.

4.2 Experimental Setup
We first measure gender biases in st and abt
datasets. We explore three neural models used
in previous works on abusive language classifica-
tion: Convolutional Neural Network (CNN) (Park

Model Embed. Orig.
AUC

Gen.
AUC FNED FPED

CNN
random .881 .572 .261 .249
fasttext .906 .620 .323 .327
word2vec .906 .635 .305 .263

GRU
random .854 .536 .132 .136
fasttext .887 .661 .312 .284
word2vec .887 .633 .301 .254

↵-GRU
random .868 .586 .236 .219
fasttext .891 .639 .324 .365
word2vec .890 .631 .315 .306

Table 4: Results on st. False negative/positive
equality differences are larger when pre-trained
embedding is used and CNN or ↵-RNN is trained

and Fung, 2017), Gated Recurrent Unit (GRU)
(Cho et al., 2014), and Bidirectional GRU with
self-attention (↵-GRU) (Pavlopoulos et al., 2017),
but with a simpler mechanism used in Felbo et al.
(2017). Hyperparameters are found using the val-
idation set by finding the best performing ones in
terms of original AUC scores. These are the used
hyperparameters:

1. CNN: Convolution layers with 3 filters
with the size of [3,4,5], feature map
size=100, Embedding Size=300, Max-
pooling, Dropout=0.5

2. GRU: hidden dimension=512, Maximum Se-
quence Length=100, Embedding Size=300,
Dropout=0.3

3. ↵-GRU: hidden dimension=256 (bidirec-
tional, so 512 in total), Maximum Sequence
Length=100, Attention Size=512, Embed-
ding Size=300, Dropout=0.3

We also compare different pre-trained embed-
dings, word2vec (Mikolov et al., 2013) trained
on Google News corpus, FastText (Bojanowski
et al., 2017)) trained on Wikipedia corpus, and
randomly initialized embeddings (random) to ana-
lyze their effects on the biases. Experiments were
run 10 times and averaged.

4.3 Results & Discussions
Tables 4 and 5 show the bias measurement exper-
iment results for st and abt, respectively. As
expected, pre-trained embeddings improved task
performance. The score on the unbiased generated
test set (Gen. ROC) also improved since word em-
beddings can provide prior knowledge of words.

However, the equality difference scores tended
to be larger when pre-trained embeddings were
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Model Embed. Orig.
AUC

Gen.
AUC FNED FPED

CNN
random .926 .893 .013 .045
fasttext .955 .995 .004 .001
word2vec .956 .999 .002 .021

GRU
random .919 .850 .036 .010
fasttext .951 .997 .014 .018
word2vec .952 .997 .017 .037

↵-GRU
random .927 .914 .008 .039
fasttext .956 .998 .014 .005
word2vec .955 .999 .012 .026

Table 5: Results on abt. The false nega-
tive/positive equality difference is significantly
smaller than the st

used, especially in the st dataset. This confirms
the result of Bolukbasi et al. (2016). In all ex-
periments, direction of the gender bias was to-
wards female identity words. We can infer that
this is due to the more frequent appearances of fe-
male identities in “sexist” tweets and lack of neg-
ative samples, similar to the reports of Dixon et al.
(2017). This is problematic since not many NLP
datasets are large enough to reflect the true data
distribution, more prominent in tasks like abusive
language where data collection and annotation are
difficult.

On the other hand, abt dataset showed sig-
nificantly better results on the two equality dif-
ference scores, of at most 0.04. Performance in
the generated test set was better because the mod-
els successfully classify abusive samples regard-
less of the gender identity terms used. Hence, we
can assume that abt dataset is less gender-biased
than the st dataset, presumably due to its larger
size, balance in classes, and systematic collection
method.

Interestingly, the architecture of the models also
influenced the biases. Models that “attend” to
certain words, such as CNN’s max-pooling or ↵-
GRU’s self-attention, tended to result in higher
false positive equality difference scores in st
dataset. These models show effectiveness in catch-
ing not only the discriminative features for clas-
sification, but also the “unintended” ones causing
the model biases.

5 Reducing Gender Biases

We experiment and discuss various methods to re-
duce gender biases identified in Section 4.3.

Model DE GS FT Orig.
AUC

Gen.
AUC FNED FPED

CNN

. . . .906 .635 .305 .263
O . . .902 .627 .333 .337
. O . .898 .676 .164 .104
O O . .895 .647 .157 .096
. . O .896 .650 .302 .240
. O O .889 .671 .163 .122
O O O .884 .703 .135 .095

GRU

. . . .887 .633 .301 .254
O . . .882 .658 .274 .270
. O . .879 .657 .044 .040
O O . .873 .667 .006 .027
. . O .874 .761 .241 .181
. O O .862 .768 .141 .095
O O O .854 .854 .081 .059

↵-GRU

. . . .890 .631 .315 .306
O . . .885 .656 .291 .330
. O . .879 .667 .114 .098
O O . .877 .689 .067 .059
. . O .874 .756 .310 .212
. O O .866 .814 .185 .065
O O O .855 .912 .055 .030

Table 6: Results of bias mitigation methods on
st dataset. ‘O’ indicates that the corresponding
method is applied. See Section 5.3 for more anal-
ysis.

5.1 Methodology

Debiased Word Embeddings (DE) (Bolukbasi
et al., 2016) proposed an algorithm to correct
word embeddings by removing gender stereotyp-
ical information. All the other experiments used
pretrained word2vec to initialized the embedding
layer but we substitute the pretrained word2vec
with their published embeddings to verify their ef-
fectiveness in our task.

Gender Swap (GS) We augment the training data
by identifying male entities and swapping them
with equivalent female entities and vice-versa.
This simple method removes correlation between
gender and classification decision and has proven
to be effective for correcting gender biases in co-
reference resolution task (Zhao et al., 2018).

Bias fine-tuning (FT) We propose a method to use
transfer learning from a less biased corpus to re-
duce the bias. A model is initially trained with a
larger, less-biased source corpus with a same or
similar task, and fine-tuned with a target corpus
with a larger bias. This method is inspired by the
fact that model bias mainly rises from the imbal-
ance of labels and the limited size of data samples.
Training the model with a larger and less biased
dataset may regularize and prevent the model from
over-fitting to the small, biased dataset.
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5.2 Experimental Setup

Debiased word2vec Bolukbasi et al. (2016) is
compared with the original word2vec (Mikolov
et al., 2013) for evaluation. For gender swapping
data augmentation, we use pairs identified through
crowd-sourcing by Zhao et al. (2018).

After identifying the degree of gender bias of
each dataset, we select a source with less bias and
a target with more bias. Vocabulary is extracted
from training split of both sets. The model is first
trained by the source dataset. We then remove fi-
nal softmax layer and attach a new one initialized
for training the target. The target is trained with a
slower learning rate. Early stopping is decided by
the valid set of the respective dataset.

Based on this criterion and results from Section
4.3, we choose the abt dataset as source and st
dataset as target for bias fine-tuning experiments.

5.3 Results & Discussion

Table 6 shows the results of experiments using the
three methods proposed. The first rows are the
baselines without any method applied. We can see
from the second rows of each section that debiased
word embeddings alone do not effectively correct
the bias of the whole system that well, while gen-
der swapping significantly reduced both the equal-
ity difference scores. Meanwhile, fine-tuning bias
with a larger, less biased source dataset helped to
decrease the equality difference scores and greatly
improve the AUC scores from the generated unbi-
ased test set. The latter improvement shows that
the model significantly reduced errors on the un-
biased set in general.

To our surprise, the most effective method was
applying both debiased embedding and gender
swap to GRU, which reduced the equality differ-
ences by 98% & 89% while losing only 1.5% of
the original performance. We assume that this may
be related to the influence of “attending” model ar-
chitectures on biases as discussed in Section 4.3.
On the other hand, using the three methods to-
gether improved both generated unbiased set per-
formance and equality differences, but had the
largest decrease in the original performance.

All methods involved some performance loss
when gender biases were reduced. Especially,
fine-tuning had the largest decrease in original test
set performance. This could be attributed to the
difference in the source and target tasks (abusive &
sexist). However, the decrease was marginal (less

than 4%), while the drop in bias was significant.
We assume the performance loss happens because
mitigation methods modify the data or the model
in a way that sometimes deters the models from
discriminating important “unbiased” features.

6 Conclusion & Future Work

We discussed model biases, especially toward gen-
der identity terms, in abusive language detection.
We found out that pre-trained word embeddings,
model architecture, and different datasets all can
have influence. Also, we found our proposed
methods can reduce gender biases up to 90-98%,
improving the robustness of the models.

As shown in Section 4.3, some classification
performance drop happens when mitigation meth-
ods. We believe that a meaningful extension of
our work can be developing bias mitigation meth-
ods that maintain (or even increase) the classifica-
tion performance and reduce the bias at the same
time. Some previous works (Beutel et al.; Zhang
et al., 2018) employ adversarial training methods
to make the classifiers unbiased toward certain
variables. However, those works do not deal with
natural language where features like gender and
race are latent variables inside the language. Al-
though those approaches are not directly compa-
rable to our methods, it would be interesting to ex-
plore adversarial training to tackle this problem in
the future.

Although our work is preliminary, we hope that
our work can further develop the discussion of
evaluating NLP systems in different directions, not
merely focusing on performance metrics like ac-
curacy or AUC. The idea of improving models by
measuring and correcting gender bias is still un-
familiar but we argue that they can be crucial in
building systems that are not only ethical but also
practical. Although this work focuses on gender
terms, the methods we proposed can easily be ex-
tended to other identity problems like racial and to
different tasks like sentiment analysis by follow-
ing similar steps, and we hope to work on this in
the future.
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Abstract

With the recent rise of #MeToo, an increasing
number of personal stories about sexual ha-
rassment and sexual abuse have been shared
online. In order to push forward the fight
against such harassment and abuse, we present
the task of automatically categorizing and an-
alyzing various forms of sexual harassment,
based on stories shared on the online forum
SafeCity. For the labels of groping, ogling,
and commenting, our single-label CNN-RNN
model achieves an accuracy of 86.5%, and
our multi-label model achieves a Hamming
score of 82.5%. Furthermore, we present
analysis using LIME, first-derivative saliency
heatmaps, activation clustering, and embed-
ding visualization to interpret neural model
predictions and demonstrate how this helps
extract features that can help automatically
fill out incident reports, identify unsafe areas,
avoid unsafe practices, and ‘pin the creeps’.

1 Introduction

The hashtag #MeToo1 has been prevalent on vari-
ous social media platforms as a campaign centered
around sharing stories of sexual harassment in an
act of solidarity with other victims and spread-
ing awareness of a widespread and endemic issue.
With vast amounts of personal stories on the in-
ternet, it is important that we make scientific use
of this data to push these movements forward and
enable real-world change. Manually sorting and
comprehending the information shared in these
stories is an arduous task, and the power of natural
language processing (NLP) can serve as the miss-
ing link between online activism and real change.

We present several neural NLP models that al-
low us to automatically classify, aggregate, and
analyze vast amounts of harassment data found
on social media, becoming an effective tool for

1https://metoomvmt.org

Type of behavior experienced 
(please check all that apply): 

Catcalls

Stalking

Public Indecency

Commenting

Online Sexual Violence and Sexual 
Harassment Incident Report Form

Narrative Description: 

“Was walking on the street, a guy 
stands leaning on the gate of his 
home and whistles and calls out 
to me the whole time I cross his 
home. I take that road daily, 
except Sunday, to go to music 
classes. This went on for a month 
and I finally quit music classes. I 
was 13 then.”

Figure 1: Task of sexual harassment story classifica-
tion to help fill online incident reports.

spreading awareness, increasing understanding,
and allowing faster action. This large-scale au-
tomatic categorization, summarization, and anal-
ysis of personal abuse stories can help activist
groups enlighten the public and advocate for so-
cial change in a timely manner.

We present single-label and multi-label clas-
sification of diverse forms of sexual harassment
present in abuse stories shared online through the
forum SafeCity, a crowd-sourcing platform for
personal stories of sexual harassment and abuse.
Each story includes one or more tagged forms of
sexual harassment, along with a description of the
occurrence. For example, the description “My col-
lege was nearby. This happened all the time. Guys
passing comments, staring, trying to touch. Frus-
trating” is positive for three classes: commenting,
ogling/staring, and touching/groping.

We use CNN-RNN architectures (with
character-level CNN embeddings and bidirec-
tional RNNs) to classify the three forms of sexual
harassment mentioned above using both single-
and multi-label setups. Our models achieve strong
performances of 80-86% on these setups. This
automatic classification of different forms of sex-
ual harassment can help victims and authorities
to partially automate and speed up the process of
filling online sexual violence reporting forms (see
Figure 1), which usually requires the victim to
detail each form of sexual harassment that took
place. The act of partially filling out the report
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(by our classifier) in itself makes it more likely
for the victim to file a report. A study by the
Bureau of Justice found that victims who report
sexual assault are more likely to seek medical
treatment for injuries, which also allows for more
immediate prosecution and a better chance of
finding DNA evidence to convict the offender
(Rennison, 2002). Further, it can also be used to
fulfill the need to automatically categorize and
summarize large numbers of online testimonials
describing or reporting sexual harassment.

Next, in order to further utilize these stories
as an important tool for harassment understand-
ing and to help prevent similar situations from
happening to others, we present interpretability
analysis of our neural classification results in the
forms of LIME analysis, first-derivative saliency
heatmaps, activation clustering, and t-SNE em-
bedding visualization. We show how these anal-
ysis techniques hold promise as avenues for future
work and can potentially provide insightful clues
towards building (1) a tool to analyze the most
common circumstances around each distinct form
of harassment to provide more detailed and accu-
rate safety advice, (2) a map of unsafe areas to help
others avoid dangerous spaces, and 3) an unoffi-
cial sex offender registry that marks frequently-
mentioned offenders to warn potential victims.
This paper seeks to provide an avenue to utilize
the millions of stories shared on social media de-
scribing instances of sexual harassment, including
#MeToo, #WhyILeft, and #YesAllWomen. With
this task and analysis, we hope that these stories
can be used to prevent future sexual harassment.

2 Related Work
Analyzing personal sexual harassment stories
from online social forums is fairly unexplored,
to the best of our knowledge. However, recent
works in a similar vein include detecting the pres-
ence of domestic abuse stories on social media
sites (Schrading et al., 2015a; Schrading, 2015;
Schrading et al., 2015b). In more distantly related
work, NLP has been used for various socially-
driven tasks, such as detecting the presence of
cyberbullying or incivility (Ziegele et al., 2018;
Founta et al., 2018; Chen et al., 2012; Zhao et al.,
2016; Agrawal and Awekar, 2018; Van Hee et al.,
2018), and detecting and providing aid for signs
of depression or suicidal thoughts (Pestian et al.,
2010; Yazdavar et al., 2017; Stepanov et al., 2017;
Fitzpatrick et al., 2017).
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Figure 2: Multi-label CNN-RNN model with CNN-
based character embeddings and bidirectional RNNs.

3 Classification Models
For our single-label binary classification task, the
two output classes can be [commenting, non-
commenting], [ogling, non-ogling], or [groping,
non-groping]. For our multi-label scenario, there
are a total of 8 combinations (true or false for three
types of sexual harassment), including a label for
none of the three classes present in the description.
CNN: For each input description, an embedding
and convolutional layer are applied. This is fol-
lowed by a max-pooling layer (Collobert et al.,
2011). Filters of varying window sizes are ap-
plied to each window of word vectors, the result
of which is then passed through a softmax layer to
produce probabilities over the output classes.
LSTM-RNN: As CNNs are not designed to cap-
ture sequential relationships (Pascanu et al., 2014),
we adopted an RNN model that consisted of word
vectors fed into LSTM layer, the final state of
which was fed into a fully-connected layer. The
result is passed through a softmax layer to output
the probability over all output classes.
CNN-RNN: As both models have strengths and
weaknesses, we experimented with a hybrid ar-
chitecture in which our LSTM-RNN model after
the embedding layer is laid on top of our CNN
model before the max-pooling (related to Zhou
et al. (2015)). For single-label models, the final
fully-connected layer is fed into a softmax to give
final output probabilities.
Multi-Label Classification We also present
multi-label classification (Boutell et al., 2004;
Tsoumakas and Katakis, 2006; Katakis et al.,
2008), which allows for models to predict multi-
ple categories simultaneously for the same input.
We further utilized CNN-based character embed-
dings in addition to word embeddings, and also
employed bidirectional RNNs (see Figure 2). The
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outputs of the final fully-connected layer (F) are
fed into a sigmoid function. The classification for
each category (C) are seen as positive (1) if the
output is above threshold t and negative (0) if the
output is below threshold t, a hyperparameter, giv-
ing the equation: C = (�(F ) � t).

4 Experimental Setup
4.1 Dataset

SafeCity2 is, to the best of our knowledge, the
largest publicly-available online forum for report-
ing sexual harassment. Its motto is “pin the
creeps”. Victims of sexual harassment share
personal stories, with the objective of spread-
ing awareness of ongoing sexual harassment and
showcasing location-based trends. The language
styles of SafeCity forums are very diverse, and
therefore can potentially be used for a variety of
test cases, such as emails or tweets.

Each of the 9,892 stories includes a descrip-
tion of the incident, the location, and tagged
forms of harassment, with all identifying infor-
mation removed. SafeCity has explicitly given
us permission to use this data. The dataset3

contains descriptions of text submitted by forum
users, along with tags of 13 forms of sexual ha-
rassment. We chose the top three most dense
categories—groping/touching, staring/ogling, and
commenting—to use as our dataset, as the others
were more sparse. Each description may fall into
none, some, or all of the categories.

4.2 Evaluation

The single-label models were evaluated using ac-
curacy. The multi-label models were evaluated us-
ing exact match ratio and Hamming score (calcu-
lated as the complement of Hamming loss). Ham-
ming loss was used as detailed by Tsoumakas and
Katakis (2006). Hamming loss (y) is equal to 1
over |D| (number of multi-label samples), mul-
tiplied by the sum of the symmetric differences
between the predictions (Z) and the true labels
(Y), divided by the number of labels (L), giving

y = 1
|D|

|D|P
i=1

|Yi�Zi|
|L| .

2http://safecity.in
3We release our dataset splits at https://github.

com/swkarlekar/safecity. Please follow SafeCity
guidelines for usage.

Model Commenting Ogling Groping
Linear SVM 42.2 35.0 55.8

Gaussian NB 46.8 74.7 66.0
Logistic Reg. 61.4 78.0 69.1

SVM 65.5 79.0 70.3
CNN 80.9 82.2 86.0
RNN 81.0 82.2 86.2

CNN-RNN 81.6 84.1 86.5
Table 1: Single-label classification (accuracy) results.

Model Exact Match Hamming
Random Forest 35.0 70.2

CNN 53.7 80.2
RNN 57.1 81.5

CNN-RNN 59.2 82.3
CNN-RNN (bidirec + char) 62.0 82.5

Table 2: Multi-label classification results.

4.3 Training Details
All models have vocabulary size of 10, 000, and
use AdamOptimizer (Kingma and Ba, 2015) with
a learning rate of 1e�4. All gradient norms are
clipped to 2.0 (Pascanu et al., 2013; Graves, 2013).
For each model, the hyperparameters are tuned us-
ing the development set.
CNN We use a 2-D CNN. Filter sizes of [3, 4,
5] are used with 128 filters per filter size. Batch
size is set to 128, and a dropout (Srivastava et al.,
2014) of 0.80 is applied.
LSTM Our LSTM has 2 layers with 60 hidden
units. Batch size is 64 with a dropout of 0.75.
CNN-LSTM Our CNN-LSTM model consists
of an LSTM on top of a CNN. The CNN has 100
filters per filter size of [3, 4, 5]. Embedding di-
mensions of 300 are used. An LSTM with 300
hidden units is used. For the character level em-
beddings, we use an additional CNN with 100 fil-
ters per filter size of [3, 4, 5]. Bidirectional RNNs
of 300 units are used.
5 Results
See Table 1 for single-label results on the selected
harassment categories, where CNN-RNN was the
best performing model compared to several non-
neural and neural baselines. See Table 2 for
multi-label classification results, where the Ham-
ming score for the multi-label CNN-RNN model
is 82.5%, showing potential for real-world use as
well as substantial future research scope.

6 Analysis
We provide various visualization techniques to an-
alyze our models. Each of these techniques em-
ploys a different approach and offers new infor-
mation or supports previous findings.
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A man standing too close to me in a 
semicrowded metro continued to touch me 
indecently till pushed away. 

True label: Groping
Predicted: Groping

The guy at first was staring at me and later 
started passing cheap comments. 

True label: Commenting
Predicted: Commenting

touching/groping, commenting, ogling, sexual
invites

True label: Ogling
Predicted: Ogling

Figure 3: LIME analysis. Left : Correctly-classified example of groping. Middle: Correctly-classified example
of commenting. Right: Correctly-classified example of ogling/staring.
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Figure 4: First derivative saliency heatmaps. Left: Correctly-classified example of commenting. Middle:
Correctly-classified example of commenting. Right: Incorrectly-classified example of commenting.

Harassment Type Observed t-SNE Cluster
Groping abusively, encounter, talk, under-

age, surrounded, embarrassed
Ogling boobs, leering, disturbing, ges-

tures, voyeur, visually, gestures
Commenting shameful, vulgar, inappropriately,

indecent, invites, stalked, strong
Table 3: Relevant word clusters found via t-SNE word
embedding clustering.

6.1 Word Embedding Visualization
We selected seed words that corresponded to class
labels and found the nearest neighbors of each
seed word’s vector by reducing the dimension-
ality of the word embeddings using t-SNE (see
Table 3) (Maaten and Hinton, 2008). This form
of visualization not only ensures that our model
has learned appropriate word embeddings, but also
demonstrates that each form of sexual harassment
has a unique and distinct context. Furthermore,
this shows that our model learns related words and
concepts for each type of harassment.

6.2 LIME Analysis
LIME analysis (Ribeiro et al., 2016), or Local
Interpretable Model-Agnostic Explanation, inter-
prets the local reasoning of a model around an in-
stance. Results of LIME (⇠) are found by taking
the minimum of L, which is the measure of how
unfaithful the interpretable model (g) is to approx-
imating the probability that an input (x) belongs
to a certain class (f ) in the locally defined area
(⇡x) summed with complexity measures ⌦, giving
⇠(x) = argmin L(f, g, ⇡x) + ⌦(g). In Figure 3
(left), the words “touch”, “man”, and the collective
words “indecently till pushed away” are the most
important to the local classification of “groping”.
Furthermore, the word “metro” has importance in
the classification, suggesting that this may be a fre-

quent location in which groping takes place. In
Figure 3 (middle), the words with the most im-
portance are “comments” and “staring”, indicating
that ogling may coincide with commenting very
frequently. In Figure 3 (right), the words “ogling”,
“sexual”, and “commenting” had the most im-
portance, which further supports the notion that
ogling and commenting often occur together. As
verified by the data, ogling and commenting to-
gether is more common than ogling alone.

6.3 First Derivative Saliency
Saliency heatmaps (Simonyan et al., 2014; Li
et al., 2016) illustrate which words of an input
have the biggest impact on the final classifica-
tion by taking the gradient of the final scores out-
putted by the neural network (S) with respect to
the embedding (E), given the true label (L), giving
@SL(E)

@E . While LIME analysis and first derivative
saliency are both used to find word-level contribu-
tions, first derivative saliency is model-dependent
and gives reasoning behind classification based on
the whole model, in contrast to the locally-faithful,
model-agnostic LIME analysis technique.

In Figure 4 (left), the word “commenting” and
the words “one boy” have the most influence
on the classification. The influence of the word
“lighting” indicates poor lighting is often present
in situations where sexual harassment takes place.
In Figure 4 (middle), the classification of “com-
menting” was most influenced by the word “com-
menting”, followed by the word “age”. This sug-
gests the possibility of using descriptors of of-
fenders as a classification tool. Figure 4 (right)
is an incorrectly classified example. We see that
the word “body”, followed by “language”, had the
most influence on the classification of this exam-
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ple as “commenting”. Our model identifies syn-
onyms and hyponyms like the word “language” in
relation to the category of commenting. However,
the true label was “non-commenting”, as the word
was not used in a context of sexual language, but
rather as “vague language” and “body language”.

6.4 Activation Clustering
Activation clustering (Girshick et al., 2014;
Aubakirova and Bansal, 2016) accesses the ac-
tivation values of all n neurons and treats the
activation values per input as coordinates in n-
dimensional space. K-means clustering was per-
formed to group activation clusters and find com-
mon themes in these reports. Activation cluster-
ing is distinct from both LIME analysis and first
derivative saliency in that it finds patterns and
clusterings at a description-level.
Circumstances of Harassment: One of the clus-
ters was classified as “ogling”: {‘a group of boys
was standing near us and were making weird ex-
pressions and as we moved away they started fol-
lowing’; ‘a group of guys lurking around the the-
ater...’}. Another cluster was classified as “com-
menting”: {’a group of men were standing who
commented on every girl who passed by the’,
’a group of boys were standing there... as we
started moving one of them commented on us’}
Both of these clusters contained examples describ-
ing circumstances of the harassment, following
the pattern of “a group of boys/men were stand-
ing/lurking and...” It can be inferred that certain
forms of sexual harassment are more likely to hap-
pen with large groups of men. Activation cluster-
ing can identify the circumstances of harassment,
helping potential victims to be better prepared.
Location and Time of Harassment: Some clus-
ters contain examples that point to specific loca-
tions of harassment, e.g., a groping cluster: {‘i
was in the bus and there was this man who pur-
posely fell on me and touched me inappropri-
ately’; ‘while traveling in a crowded bus most of
the time men try to grind their intimate part over
my body’; ‘i was in the bus when a man standing
tried to put his d**k on my hand’}. Specific lo-
cations can also be found: {‘the gurgaon sohna
road is very unsafe at night especially if you are
alone with no street lights’; ‘kurla station really
gets scary at night once i was trying to get a train
from kurla station around 10’; ‘mathura highway
, not enough lights on the way during nights so
is not safe for a individual to journey’}. Notice

that the second cluster examples also contain the
word “night”. With data that contains more spe-
cific locations or times of day, activation clusters
can serve as an automatic way to map out unsafe
areas based on location and time of day.
Identifying Offenders: Examples from another
groping cluster include: {‘...her step father abused
her physically for a year’; ‘one of the girl of about
6 years got raped by her own father’; ‘it happened
at my house my brother harassed me and also mis-
behaved with me one night its been six months’}.
This shows that clusters can point to common rela-
tionships or titles for offenders. This phenomenon
can be presumed to happen with names of offend-
ers as well. If many reports have been filed around
this offender, clusters will form around his/her
name. Instead of a case of “he said, she said”, ac-
tivation clustering provides an avenue towards “he
said, they said”, as clusters form when multiple
reports have been filed around the same name.

The main purpose of our visualization tech-
niques is to explain what the black-box deep learn-
ing models are learning, such as locations, offend-
ers, or times of day. With more detailed data in the
future, we may be able to uncover more nuanced
circumstances behind harassment.

7 Conclusion
We presented the novel task of identifying vari-
ous forms of sexual harassment in personal stories.
Our accurate multi-label classification models il-
lustrate the plausibility of automatically filling out
incident reports. Using visualization techniques,
we found circumstances surrounding forms of ha-
rassment and the possibility of automatically iden-
tifying safe areas and repeat offenders. In future
work, we hope to experiment with the transfer-
ability of our model to other datasets to encompass
the diverse mediums through which these personal
stories are shared. Honoring the courage that these
victims demonstrated in sharing their stories on-
line, we use these descriptions not only to help
summarize online testimonials and provide more
detailed safety advice, but also to help others re-
port similar occurrences to hopefully prevent fu-
ture sexual harassment from occurring.
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Abstract

As the incidence of Alzheimer’s Disease (AD)
increases, early detection becomes crucial.
Unfortunately, datasets for AD assessment are
often sparse and incomplete. In this work, we
leverage the multiview nature of a small AD
dataset, DementiaBank, to learn an embedding
that captures different modes of cognitive im-
pairment. We apply generalized canonical cor-
relation analysis (GCCA) to our dataset and
demonstrate the added benefit of using mul-
tiview embeddings in two downstream tasks:
identifying AD and predicting clinical scores.
By including multiview embeddings, we ob-
tain an F1 score of 0.82 in the classification
task and a mean absolute error of 3.42 in the
regression task. Furthermore, we show that
multiview embeddings can be obtained from
other datasets as well.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenera-
tive progressive disease whose symptoms include
memory loss, disorientation, and behavioral issues
(Ballard et al., 2011). In 2017, 5.7 million Amer-
icans were living with AD, and the disease ac-
counted for $11.4 billion in healthcare costs in the
United States (Alzheimer’s Association, 2018).
AD is diagnosed through clinician-administered
questionnaires, such as the Mini-Mental State Ex-
amination (MMSE), which assigns a score be-
tween 0 and 30 based on responses to questions
testing memory, recall, and orientation (Folstein
et al., 1975). For context, a MMSE score of 23
and below is associated with cognitive decline.

AD affects language and some of its symptoms
include difficulties in word-finding and changes
in the voice. Detecting these subtle changes can
help identify AD at an early stage. Indeed, many
studies have applied a combination of natural lan-
guage processing and machine learning techniques

to detect AD. On the DementiaBank (DB) dataset,
which includes audio files and corresponding tran-
scripts of participants completing a picture de-
scription task, Wankerl et al. (2017) employed
an n-gram based approach to classify between
participants with and without AD. On the same
dataset, Fraser et al. (2015) extracted an exten-
sive list of lexicosyntactic features from the tran-
scripts and identified participants with AD with
an accuracy of 81%. More recently, Hernández-
Domı́nguez et al. (2018) looked at the information
content units of the pictures and compared them to
healthy population-specific references to achieve
an F-score of 0.81.

Predicting clinical scores is a harder task and
is more common in image processing, where re-
searchers make use of brain scans. For exam-
ple, Huang et al. (2016) used MRI scans from
805 subjects and relied on the longitudinal aspect
of their dataset to predict MMSE scores. Spe-
cific to the DB dataset, Yancheva et al. (2015)
extracted linguistic features and used a bivariate
dynamic Bayes net to represent the longitudinal
nature of the data, and obtained a mean absolute
error (MAE) of 3.83. Focusing on subjects with
larger samples of data yielded a MAE of 2.91.

In instances where multiple views of the same
data are available, it makes sense to learn a vec-
tor representation (an embedding) that encapsu-
lates the different sources of information. Benton
et al. (2016) used different representations of their
data (e.g., bag-of-words, word vectors) to learn
multiview embeddings for Twitter users, and ob-
tained promising results when evaluating their em-
beddings in downstream prediction tasks.

In this work, we leverage the multiview nature
of DB to learn an embedding for each user. We
evaluate the utility of the multiview embedding
in two downstream tasks: classification of AD vs
non-AD participants, and clinical score prediction.
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2 Methods

2.1 Dataset

We use the DementiaBank (DB) corpus (Becker
et al., 1994), which consists of adults aged 44 and
older, assigned to either the ‘Dementia’ (N =
167) or ‘Healthy’ (N = 97) group based on a bat-
tery of neuropsychological tests and on their med-
ical histories. In DB, participants performed the
“Cookie Theft” picture description task from the
Boston Diagnostic Aphasia Examination (Good-
glass and Kaplan, 1983), in which they verbally
describe the contents of a picture. Additionally,
participants in the ‘Dementia’ group completed
the category fluency (i.e., naming words belong-
ing to a given category), letter fluency (i.e., nam-
ing words that start with a given letter), sentence
construction, and story recall tasks. The picture
description and both fluency tasks were profes-
sionally transcribed and annotated with instances
of filled pauses. Previous experiments in the liter-
ature on DB have been limited to the picture de-
scription task, most likely because the other tasks
are not available for all participants.

2.2 Linguistic features

From transcripts of the picture description, cat-
egory fluency and letter fluency tasks, we ex-
tract 565 linguistic features1. We compute lexi-
cal features (e.g., the mean number of syllables
per word, the vocabulary richness as measured
by the type-token-ratio2), semantic features (e.g.,
the mean specificity of words as measured by
their depth in WordNet3), and syntactic features
(e.g., the proportion of various parts-of-speech
tags, such as nouns and adjectives). We also au-
tomatically extract various subjective measures,
such as the mean imageability (i.e., a word’s abil-
ity to evoke a mental image) and the mean age-of-
acquisition of words using norms derived from the
Bristol (Stadthagen-Gonzalez and Davis, 2006)
and Gilhoolie-Logie (Gilhooly and Logie, 1980)
norms. Finally, we train an LDA model of 100
topics (Blei et al., 2003) using a Wikipedia snap-

1The code to extract these is being made available at
https://github.com/SPOClab-ca/COVFEFE.

2The type-token ratio is obtained by dividing the number
of types (i.e., the total number of different words) by the num-
ber of tokens (i.e., the total number of words).

3WordNet (Miller, 1995) is a lexical database which
groups English words into collections of synonyms. The
database is ordered from most generic (e.g., “plant”) to most
specific (e.g., “rose”).

shot, and compute the topic probabilities for each
transcript.

2.3 Learning a multiview embedding
We apply generalized canonical correlation anal-
ysis (GCCA) to our dataset to obtain a multiview
embedding. We use GCCA as described by Ben-
ton et al. 2016 to learn linear transformations Uj

which project different views of our data into the
embedding G. In our experiments, we consider
the following views of DB: linguistic features of
the picture description, category fluency and letter
fluency tasks, and demographic information.

Given X 2 R
d⇥N , X 0 2 R

d0⇥N 0 , where N
is the total number of data points, N 0 is the to-
tal number of data points for which all views J
are available, and d and d0 are the dimensions of
X and X 0; let Xj and X 0

j denote views j of X
and X 0. Here, j 2 {PD, CAT, LET, DEM},
which correspond to the picture description, cate-
gory fluency, and letter fluency linguistic features,
and demographic information, respectively.

1. We use GCCA to learn Uj from X 0
PD,

X 0
CAT , X 0

LET , X 0
DEM , such that:

minimize
Uj ,G0

X

j2J

||G0 � UT
j X 0

j ||2F

Uj 2 R
dj⇥k, G0 2 R

k⇥N 0 .

2. We compute G = UT
PDXPD. Since UPD 2

R
dPD⇥k and XPD 2 R

dPD⇥N , then G 2
R

k⇥N .

3. We concatenate G to a subset of the pic-
ture description linguistic features, X⇤

PD,
to obtain C = (X⇤

PD, G), where C 2
R

(k+d⇤

PD)⇥N .

4. We use the augmented set of features C for
two downstream tasks: AD classification and
clinical score prediction.

3 Results

We run all experiments with 10-fold cross valida-
tion and test various settings of k, the dimension
of the multiview embedding.

3.1 GCCA and classification
We select the top n linguistic features, ordered
through a one-way ANOVA and concatenate them
with multiview embeddings of size k. The n + k
features are then given as input to a random forest
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Figure 1: Classification of ‘Dementia’ vs ‘Healthy’
participants in DB. We report the F1 score as we in-
crease the number of significant features used in our
random forest classifier. The dark black line denotes
the baseline (i.e., no GCCA) with the shaded grey re-
gion corresponding to the standard deviations, and the
colored dotted lines denote experiments with multiview
embeddings of size k.

classifier with 100 decision trees, and we report
the F1 scores in Figure 1. Our best classification
result (F1 = 0.823 ± 0.032) is achieved with a
multiview embedding of size k = 35 using the
best n = 75 linguistic features. Adding GCCA
embeddings improves classification results: an
ANOVA test reveals a significant difference be-
tween F1 results with and without GCCA (F =
15.85, p = 0.00018), and a post-hoc Tukey’s
honest significant difference test reveals that F1
scores are significantly higher in experiments us-
ing GCCA embeddings (p = 0.00018).

Next, we look at multiview embeddings gener-
ated from different combinations of DB views, and
report our F1 scores in Table 1 for embeddings of
size k = 35 and using the top n = 75 features.
Adding multiview embeddings always improves
classification, and we obtain our best results by
learning an embedding from the picture descrip-
tion and category fluency views.

3.2 GCCA and regression

To predict MMSE scores, we select the top n best
features, ordered through a continuous one-way

Views F1
None (baseline) 0.782 (0.042)
X 0

PD, X 0
CAT , X 0

LET , X 0
DEM 0.811 (0.045)

X 0
PD, X 0

CAT , X 0
LET 0.817 (0.037)

X 0
PD, X 0

LET , X 0
DEM 0.815 (0.043)

X 0
PD, X 0

CAT , X 0
DEM 0.818 (0.042)

X 0
PD, X 0

CAT 0.824 (0.052)
X 0

PD, X 0
LET 0.805 (0.055)

X 0
PD, X 0

DEM 0.816 (0.057)

Table 1: Classification results with GCCA applied on
different views of DB. We report the different views
used to learn our multiview embedding and the result-
ing F1 scores (with standard deviation in parenthesis)
on 10-fold cross-validation experiments. X 0 denotes
the data points for which all views are present (i.e., the
data used to learn multiview embeddings), and the sub-
scripts PD, CAT , LET , DEM are used to represent
the following views: picture description text features,
category fluency text features, letter fluency text fea-
tures, and demographic information.

ANOVA, and concatenate them with our multi-
view embedding of size k. The n + k features are
then given as input to a linear regression model
and we report the mean absolute error (MAE). 10-
fold cross-validation results are given in Figure 2.
Our lowest MAE of 3.412 ± 0.300 was obtained
using a GCCA embedding of size k = 5 and re-
taining the top n = 75 linguistics features. Adding
multiview embeddings yields the best results, but
an ANOVA test reveals no significant difference
(F = 0.41, p = 0.53).

3.3 Learning a multiview embedding from
another dataset

We then perform the same experiments as de-
scribed in sections 3.1 and 3.2, but we learn
our UPD linear projection matrix with a differ-
ent dataset. We use Talk2Me4, an online lan-
guage assessment from the University of Toronto,
in which participants use the web to complete a
variety of language tasks, including the picture de-
scription task, the vocabulary task, the Winograd
task (Levesque et al., 2011), and the word flu-
ency task (including both category and letter flu-
ency). For all tasks in Talk2Me, we transcribe the
audio recordings using the Kaldi open-source au-
tomatic speech recognition engine (Povey et al.,
2011), and extract the same set of text features as
in Section 2.2. Next, we apply GCCA to learn a

4https://www.cs.toronto.edu/talk2me
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Figure 2: Clinical score prediction. We report the mean
absolute error (lower is better) in predicting MMSE
score as we increase the number of significant features
used in our linear regression model. The black line
denotes the baseline (i.e., no GCCA) with the shaded
grey region corresponding to the standard deviations,
and the colored dotted lines denote experiments with
multiview embeddings of size k.

multiview embedding from the following views:
picture description, story recall, vocabulary, flu-
ency, and image naming tasks, and demographics.

As in previous experiments, we concatenate the
multiview embedding with the DB picture de-
scription linguistic features, and use these to clas-
sify AD participants and to predict MMSE scores.
In the regression task, the GCCA features from
Talk2Me greatly hinder performance. The best
result we obtain with Talk2Me multiview embed-
dings is an MAE of 3.929±1.37. In classification,
we observe improvements, as shown in Figure 3,
and obtain an F1 of 0.793 ± 0.052. However, an
ANOVA test reveals no significant difference with
multiview embeddings (F = 0.45, p = 0.50).

4 Discussion

In our experiments, we use GCCA to learn a mul-
tiview embedding and augment our existing set of
features. The multiview embedding consists of a
vector representation which encapsulates informa-
tion from various sources of information (i.e., the
picture description task, the category and letter flu-
ency tasks, and demographic data). We hypothe-
size that the additional information contained in
this embedding would be useful in downstream

Figure 3: Classification task using multiview embed-
dings learned from the Talk2Me dataset. We report
the F1 scores as we increase the number of significant
features. The black line denotes the baseline (i.e., no
GCCA) with the shaded grey region corresponding to
the standard deviations, and the dotted colored lines de-
note experiments with multiview embeddings of size k
obtained through GCCA on Talk2Me views.

tasks such as classification and regression. In-
deed, the multiview embedding obtained from DB
improves AD detection and clinical score predic-
tion. Similarly, we also observe an improvement
in classification when using a multiview embed-
ding learned from a normative dataset.

Our results are better in the classification task
than in the regression task, since the MMSE score
is mainly used as a screening tool (i.e., determin-
ing if a person has AD or not) and has restricted
sensitivity, especially for identifying milder stages
of AD (Trzepacz et al., 2015).

5 Conclusion

We have shown that we can make use of the multi-
view aspect of a small dataset such as DB to learn
a multiview embedding. This embedding can sub-
sequently be used to improve models for classifi-
cation and regression. In our experiments, multi-
view embeddings allowed the use of both the cat-
egory and letter fluency data in DB, even though
they were only available for the ‘Dementia’ partic-
ipants. Benefits are also possible using secondary
datasets to learn multiview embeddings.
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Extracting acoustic features – such as pause ra-
tio, pitch, and Mel-frequency cepstral coefficients
(MFCCs) – and treating them as an additional
view is part of our future work. Furthermore, we
will look into other secondary datasets as well as
different approaches of obtaining multiview em-
beddings. While GCCA allows for an arbitrary
number of views, it is limited in that it only learns
linear projections to the embedding space. A pos-
sible alternative is deep generalized canonical cor-
relation analysis (DGCCA), which makes use of
neural networks to learn non-linear mappings to
the embedding space (Benton et al., 2017).
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Abstract

We present a corpus that encompasses the
complete history of conversations between
contributors to Wikipedia, one of the largest
online collaborative communities. By record-
ing the intermediate states of conversations—
including not only comments and replies,
but also their modifications, deletions and
restorations—this data offers an unprece-
dented view of online conversation. This
level of detail supports new research ques-
tions pertaining to the process (and challenges)
of large-scale online collaboration. We illus-
trate the corpus’ potential with two case stud-
ies that highlight new perspectives on earlier
work. First, we explore how a person’s conver-
sational behavior depends on how they relate
to the discussion’s venue. Second, we show
that community moderation of toxic behavior
happens at a higher rate than previously esti-
mated. Finally the reconstruction framework
is designed to be language agnostic, and we
show that it can extract high quality conversa-
tional data in both Chinese and English.

1 Introduction

Compared to large-scale collections of conver-
sations from social media (Felbo et al., 2017;
Luo et al., 2012; Zhang et al., 2017; Tan et al.,
2016) or news comments (Napoles et al., 2017),
Wikipedia talk pages offer a unique perspective
into goal-oriented discussions between thousands
of volunteer contributors coordinating to write
the largest online encyclopedia. Talk page data

already underpins research on social phenom-
ena such as conversational behavior (Danescu-
Niculescu-Mizil et al., 2012, 2013), disputes
(Wang and Cardie, 2014b), antisocial behavior
(Wulczyn et al., 2017; Zhang et al., 2018) and
collaboration (Kittur et al., 2007; Halfaker et al.,
2009). However, the scope of such studies has so
far been limited by a view of the conversation that
is incomplete in two crucial ways: first, it only
captures a subset of all discussions; and second, it
only accounts for the final form of each conversa-
tion, which frequently differs from the interlocu-
tors experience as the conversation develops.

In this paper, we undertake the challenge of
reconstructing a complete and structured history
of the conversational process in Wikipedia talk
pages, containing detailed information about all
the interlocutors’ actions, such as adding and re-
plying to comments, modifying or deleting them.
To this end, we devise a methodology for identi-
fying and structuring these actions, while also ad-
dressing the challenges spurring from the incon-
sistent formatting and the raw scale of existing
records. This results in the largest public dataset
of goal-oriented conversations, WikiConv, span-
ning five languages. The largest component of
this dataset is based on the English Wikipedia, and
contains roughly 91 million conversations consist-
ing of 212 million conversational actions taking
place in 24 million talk pages.

By including details about how each conver-
sation evolved, this corpus provides an unprece-
dented view into the conversational process, as ex-
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perienced by the interlocutors. In fact, we find that
about 40% of discussion activity would be missed
by approaches that do not consider comment mod-
ifications and deletions, and even more is missed
when only considering the (final) static snapshots
of conversations. Furthermore, a manual review
of the English Wikipedia portion of the dataset re-
veals that 98% of the reply structure is recovered
correctly and 98% of the interlocutor’s actions are
categorized correctly.

Since the reconstruction pipeline does not rely
on any language specific heuristics, we also ap-
ply it to Chinese, German, Greek and Russian
Wikipedia Talk page archives, in addition to
those from English Wikipadia. A manual review
of the conversations obtained from the Chinese
Wikipedia Talk pages shows a similarly high re-
construction accuracy with that obtained from the
English Wikipedia, suggesting that it is reasonable
to apply the reconstruction pipeline to different
languages. To encourage further validation, refine-
ments and updates, we have open sourced the code
and published the datasets.1

Finally, we present two case studies illustrat-
ing how the corpus can bring new insights into
previously observed phenomena. We first analyze
the conversational behavior of a subset of English
Wikipedia contributors across the entire range of
talk pages, and show that their levels of linguistic
coordination vary according to where the conver-
sation takes place. Second, we investigate the tox-
icity of deleted comments, and show that commu-
nity moderation of undesired behavior takes place
at a much higher rate than previously estimated.

2 Further Related Work

Past efforts aimed at characterizing conversa-
tions on Wikipedia talk pages have either focused
on snapshots of discussion threads (Danescu-
Niculescu-Mizil et al., 2012; Prabhakaran and
Rambow, 2016; Wang and Cardie, 2014b,a), or
have considered text segments in talk page history
as incremental comments, ignoring conversational
turns and reply structures within these conversa-
tions (Wulczyn et al., 2017). The limitations of
these approaches can be seen in Figure 2, where,
if we limit our analysis to only a snapshot of the
final state of the conversation, we miss the abusive
comment introduced in revision 3 and removed in
revision 4, and thus miss an important part of the

1github.com/conversationai/wikidetox

experience of the participants. In fact, this “hid-
den” activity accounts for one third of all actions
taken on talk pages in English Wikipedia.

The closest dataset to our work is Bender et al.
(2011) which introduces the Authority and Align-
ment in Wikipedia discussions corpus (AAWD),
containing 365 talk page discussions. While ac-
knowledging the complexity of conversational be-
haviors on Wikipedia talk pages, the AAWD work
falls short of providing data on the deletions and
follow-up changes to existing comments. Beyond
addressing this shortcoming, the dataset we intro-
duce in this paper is many orders of magnitude
larger, containing 91 million conversations in En-
glish Wikipedia alone.

Figure 1: An example Wiki markdown and its ren-
dered form from Wikipedia Talk Page Help2.

3 Conversation Reconstruction

Technically, comments are added to Wikipedia
talk pages the same way content is added to ar-
ticle pages: contributors simply edit the mark-
down of any part of the talk page without rely-
ing on any functionality specialized for structur-
ing the conversations. Figure 1 gives an example
of the discussion interface and the resulting ren-
dered conversation. Each edit results in a revision
of the whole page that is permanently stored in a
public historical record.3 Because conversations
on Wikipedia have no ‘official’ underlying struc-
ture, and instead are organized using indentation
markup and other ad hoc visual cues, computa-
tional heuristics are necessary to interpret conver-
sational structure.
Actions. We model the conversational structure of

2mediawiki.org/wiki/Help:Talk_pages
3In some rare cases revisions are deleted, for example, if

personal information is accidentally written into a page.
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Figure 2: Example conversation reconstruction. The action id in the ReplyTo column defines the con-
versation’s structure; The Parent column indicates history, showing how actions change earlier actions.
Note that each revision (color-coded) can introduce multiple actions.

English Wikipedia Reconstruction Accuracy by Action Type
Number of Action Type Breakdown Boundary Type ReplyTo Parent
Distinct users 4.4M Creation 21% 100% 100% 100% 100%
Talk Pages 24M Addition 39% 96% 100% 95% 100%
Revisions 120M Modification 13% 97% 95% 97% 95%
Conversations 91M Deletion 24% 94% 96% 100% 100%
Actions 212M Restoration 3% 84% 98% 100% 99%

All actions: 96% 98% 98% 99%
Chinese Wikipedia Reconstruction Accuracy by Action Type

Number of Action Type Breakdown Boundary Type ReplyTo Parent
Distinct users 87K Creation 22% 100% 100% 100% 100%
Talk Pages 2.2M Addition 50% 96% 100% 100% 100%
Revisions 4.6M Modification 9% 84% 94% 99% 97%
Conversations 4.4M Deletion 16% 99% 90% 100% 98%
Actions 6.4M Restoration 3% 97% 98% 100% 98%

All actions: 96% 98% 99% 99%

Table 1: Summary statistics and reconstruction accuracy for the English and Chinese Wikipedia
talk page corpora. These statistics exclude actions that result in empty content after markup cleaning
(e.g., purely formatting edits).

interactions as a graph of actions, as illustrated in
Figure 2. Actions are categorized into five types:
• Creation: the start of a conversation thread based
on a markup section heading being added (e.g. Ac-
tion 1 in Figure 2).
• Addition: the addition of a new comment to a
thread (e.g. Actions 2 and 3).
• Modification: modification of an existing com-
ment (e.g. Action 5); with the original specified as
the Parent-id.
• Deletion: the removal of a comment or heading
(e.g. Action 4) where the Parent-id specifies the
comment or heading’s most recent action.
• Restoration: a revert specifies the deleted action

being undone as the Parent-id.

All action types except thread creations, thread
deletions and thread restorations also include a
ReplyTo-id indicating the target of the reply.
From Page Revisions to Actions. Our recon-
struction pipeline is a Python program written for
Google Cloud Dataflow (also known as Apache
Beam)4 that operates on pages in parallel and on
the revisions of each page sequentially in temporal
order.

Due to the large scale of Wikipedia data, we use
external sorting for pages that contains too many
revisions to fit in a Dataflow worker’s memory.

4cloud.google.com/dataflow/
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When the number of revisions is too large for a
Dataflow worker’s local disk, the computation is
performed in stages, a few years at a time.

Given the sorted set of a page-revisions, token-
level diffs between sequential revisions are com-
puted using a longest common sequence (LCS)
algorithm.5 Each sequential diff is then decom-
posed into the set of atomic conversation actions
attributed to the user who submitted the page revi-
sion. During the sequential processing of a page’s
revisions, two data structures are maintained: each
comment’s current character offset, and a list of
deleted comments. The comment offsets are used
to interpret the difference between modification
actions (edits within the bounds of an existing ac-
tion) and additions; the deleted comments are used
to identify restoration of comments.

We store the most recent 100 deleted com-
ments between 10 to 1000 characters long, for
each page. This is used to compute when a com-
ment is restored by looking up deleted comments
in a trie. The token length lower bound param-
eter avoids short commonly added comments—
like “Thanks!”—from being interpreted as restora-
tions. The upper bound ensures that occasional
very long deleted comments are skipped, to bound
Dataflow workers’ memory usage.

Finally, reconstructed actions are processed us-
ing mwparserfromhell 6 to clean the MediaWiki
formating. Note that, since arbitrary page changes
are allowed, some actions cannot be processed by
the parser (about 1 in 200,000); in such cases, an
action’s raw MediaWiki markup is stored.

Table 1 shows summary statistics of the final
dataset on English and Chinese Wikipedia. The
version of the raw data dumps processed were re-
trieved on July 1st 2018.

4 Evaluation of Reconstruction Quality

We evaluate the quality of the automatic recon-
struction by manually verifying a randomly drawn
subset of (at least) 100 examples from each action
category. For each action we verify the accuracy
of (1) the assigned action type, (2) the token-level
boundary of the comment, (3) the ReplyTo rela-
tion and (4) the action’s Parent relation.

We conduct the evaluation for both English and
Chinese data (Table 1). With over 98% of actions
classified correctly in both languages, the dataset

5github.com/google/diff-match-patch
6github.com/earwig/mwparserfromhell

exhibits a high annotation quality given its scale
and detail. From the error cases in the English
data, 10% result from limitations in the current
technologies for HTML parsing and LCS match-
ing. User behavior that we could interpret but is
not yet captured by our algorithm, such as mov-
ing ongoing conversations to another talk pages
accounts for another 24%. The remaining errors
were from edits that we were unable to interpret.
By open sourcing the reconstruction code, we en-
courage further refinements.

5 Case Studies

We now briefly present two studies on English
Wikipedia that highlight the importance of (1) col-
lecting the full history of Wikipedia across all
pages and (2) capturing the various types of in-
teractions.
Linguistic Coordination. Danescu-Niculescu-
Mizil et al. (2012) studied language coordinations
(i.e., in a conversation between a and b, to what
degree is b systematically adopting a’s language
patterns when replying to a) on a conversational
corpus derived from 5, 657 User Talk pages: those
associated with, and managed by, a specific user.
The study showed that social status mediates the
amount of linguistic coordination, with contrib-
utors imitating more the linguistic style of those
with higher status in the community.

We now show that the coordination pattern of
the page owners in the previous dataset differs sig-
nificantly based on where the conversation takes
place. We compare each contributor’s coordina-
tion patterns on their own user talk page to pat-
terns exhibited on talk pages of other contribu-
tors, as well as to those on article talk pages—
talk pages associated with a Wikipedia article. To
avoid confounding different populations (and fall
into the trap of Simpson’s paradox), we only in-
clude in the comparison users that had a sufficient
amount of contributions across all three venues.
Figure 3 shows the three aggregated coordination
values computed by applying the methodology of
the original paper on 4 million addition actions
that occurred before 2012.

Our results show with significant difference
(p < 0.001 calculated by one-way ANOVA) that
contributors coordinate the least when replying on
other users’ talk pages, and most on their own talk
page. This leads us to speculate a new hypothesis:
contributors have a different perception of status
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Figure 3: (Left) Linguistic coordination depends on the discussion’s venue. Error bars are estimated
by bootstrap resampling. (Right) Deletion rate of content over varying time periods.

or respect on their own page than on others. Such
questions, which require more thorough investiga-
tion that depends on observing how contributors
interact across different discussion venues, can be
studied using the WikiConv corpus.
Moderation of toxic behavior. Wulczyn et al.
(2017) measured prevalence of personal attacks
in a Wikipedia talk page corpus, and evaluated
the fraction of attacks that moderators follow up
on with a block or warning (17.9%). However,
because there was no structured history of com-
ment deletion, the authors were unable to mea-
sure the rate at which toxic comments are mod-
erated through deletion. Using the more complete
datasets provided by WikiConv we show that the
fraction of problematic comments moderated by
Wikipedians is significantly higher than their ini-
tial estimate suggests.

We used the Perspective API7 to score the tox-
icity of all addition and creation actions (which
we refer to as “comments” here).8 Each com-
ment is further classified as toxic or non-toxic ac-
cording to the equal error rate threshold, follow-
ing the methodology of (Wulczyn et al., 2017),
where false positives are offset by false negatives.
The threshold is calculated by on the human la-
bels in the Kaggle Toxicity dataset of Wikipedia
comments 9. Classification at this threshold yields
86% precision and 84% recall.

We used the same method to labeled comments
with the severe toxic model. Figure 3 shows the
fraction of comments deleted by Wikipedians who
are not the author of the comment for different
lengths of time; distinguishing between comments
labeled as toxic, severely toxic, and the back-
ground distribution. The key results here are that

7www.perspectiveapi.com
8We release the scores with the dataset.
9The Jigsaw Toxicity Kaggle Competition: goo.gl/

N6UGPK

nearly 33% of toxic comments are removed within
a day; And over 82% of severely toxic comments
are deleted within a day. This complements re-
sults previously reported by Wulczyn et al. (2017),
accounting for an additional type of community
moderation that is revealed using the detailed in-
formation about the history of the conversation
provided by our corpus.

6 Conclusion and Future Work

We introduced a pipeline that extracts the com-
plete conversational history of Wikipedia talk
pages at a level of detail that was not previously
available. We applied this pipeline to Wikipedia
in multiple languages and evaluated its quality on
the English and Chinese Talk page corpora, ob-
taining a high reconstruction accuracy for both
the Chinese and English datasets (9̃8%). This
level of detail and completeness opens avenues for
new research, as well as revisiting and extending
existing work on online conversational and col-
laboration behavior. For example, while in our
use cases we have focused on contributors delet-
ing toxic comments, one could seek to understand
why and when an editor is deleting or rewording
their own comments. Beyond refining the heuris-
tics and parsing methods used in our reconstruc-
tion pipeline, and reducing the time needed to up-
date the corpus, a significant remaining challenge
is to capture conversations that happen across page
boundaries.
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Abstract
Extracting typed entity mentions from text is
a fundamental component to language under-
standing and reasoning. While there exist sub-
stantial labeled text datasets for multiple sub-
sets of biomedical entity types—such as genes
and proteins, or chemicals and diseases—
it is rare to find large labeled datasets con-
taining labels for all desired entity types to-
gether. This paper presents a method for
training a single CRF extractor from multi-
ple datasets with disjoint or partially overlap-
ping sets of entity types. Our approach em-
ploys marginal likelihood training to insist on
labels that are present in the data, while fill-
ing in “missing labels”. This allows us to
leverage all the available data within a single
model. In experimental results on the Biocre-
ative V CDR (chemicals/diseases), Biocreative
VI ChemProt (chemicals/proteins) and Med-
Mentions (19 entity types) datasets, we show
that joint training on multiple datasets im-
proves NER F1 over training in isolation, and
our methods achieve state-of-the-art results.

1 Introduction

Identifying entities in text is a vital component
in language understanding, facilitating knowledge
base construction (Riedel et al., 2013), question
answering (Bordes et al., 2015), and search. Iden-
tifying these entities are particularly important in
biomedical data. While large scale Named En-
tity Recognition (NER) datasets exist in news and
web data (Tjong Kim Sang and De Meulder, 2003;
Hovy et al., 2006), biomedical NER datasets are
typically smaller and contain only one or two types
per dataset. Ultimately, we would like to identify
all entity types present across the union of the la-
bel sets during inference while leveraging all the
available annotations to train our models.

While one may train a single model across the
union of all the datasets available, this training

procedure assumes that all labels (from the union
of the tag set) are correctly annotated in every
training instance – which is incorrect. On the other
hand, training separate models on each available
dataset does not take advantage of shared statis-
tical strength from the multiple sources of infor-
mation, and requires resolution of the conflicting
predictions output by the different models.

To remedy these problems, we propose methods
to train a joint model across the multiple tag-sets
of the different datasets, sharing statistical strength
by using a single feature encoder across datasets
while respecting the incompleteness of the labels
during training. Thus, our single model can take
full advantage of all the available annotated re-
sources and predict the full set of relevant types
given a piece of text.

In experiments on three datasets, we show our
methods outperform models that do not consider
the incomplete annotations. We also show that
jointly training on multiple datasets improves per-
formance further and achieves state-of-the-art per-
formance on the Biocreative V CDR dataset.

2 Model

Our models build on state-of-the-art NER systems
(Lample et al., 2016) based on bi-directional Long
Short Term Memory (BiLSTM) feature extractors
fed into a conditional random field (CRF).

The data consists of input sequence of tokens
x = {x1, . . . , xT } where each token is a sequence
of characters xt = {c1, . . . , cKt}. The output con-
sists of labels for each token in the sequence y =
{y1, . . . , yT }. Labeling is done using the BILOU
tagging scheme, following previous observations
that it outperforms the BIO tagging scheme (Rati-
nov and Roth, 2009). We have D such datasets of
input tokens and output labels.
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Figure 1: Training example where one label set con-
tains Chemical/Protein and the other contains Chemi-
cal/Disease. Here Chemical and Disease annotations
are given and Outside is ambiguous. Tokens labeled as
Outside could potentially be either Outside or Protein
(top). The shaded labels are the gold labels. The EM
CRF marginalizes over all potential sequences (bot).

2.1 Feature Encoder BiLSTM
Our model takes a sequence of tokens from a sin-
gle abstract as input. Tokens are generated using
byte-pair encodings (BPE) (Gage, 1994; Sennrich
et al., 2016), which have recently been shown to
be effective for tokenization of biological texts by
addressing the issue of rare or out-of-vocabulary
tokens (Verga et al., 2018). BPE starts from white
space tokenization and breaks down the tokens
further. Because all of the evaluations are on the
span level rather than the token level, the use of
BPE does not impact any numerical performance.
Each token t produced from BPE is mapped to a d
dimensional word embedding w.

Character level features have been shown to im-
prove NER accuracy (Lafferty et al., 2001; Lam-
ple et al., 2016; Passos et al., 2014). We encode
characters in a word using another BiLSTM, sim-
ilar to Lample et al. (2016), and obtain a character
based embedding for every word by concatenating
the last hidden state of the forward and backward
character LSTM. We concatenate this character
based embedding with the d-dimensional word
embedding and input it to the word-level BiLSTM.
This feature representation is then projected to the
label dimension L using a linear layer, giving a
matrix of scores [fil] where fil is the score for pre-
dicting label l 2 [L] for token i 2 [T ].

2.2 Conditional Random Field (CRF)
BiLSTM-CRF models used for named entity
recognition add a CRF layer (Lafferty et al., 2001)

on the output representations from the BiLSTM
model described. The CRF layer scores all pos-
sible labelings to give a probability of the cor-
rect label sequence under the model. Given an
input sequence of tokens x = {x1, . . . , xT } and
the output matrix of scores [fil], the score for an
output labeling y = {y1, . . . , yT } is given by:
s(x,y) =

PT
t=1

�
Ayt�1,yt + ft,yt

�
, where A is an

L ⇥ L matrix of parameters for transitioning be-
tween output labels. The CRF then generates the
likelihood for the correct labeling by normalizing
this score over all possible output labelings:

log P (y|x) = s(x,y) � logsumexp
y0

s(x,y0) (1)

The log normalization term here is:
logsumexp

y0

s(x,y0) = log
P

y0 exp s(x,y0)

where the sum goes over all possible labelings y0

of the sequence and is computed efficiently using
dynamic programming (Lafferty et al., 2001).

2.3 Tagging Multiple Datasets
One way to tag multiple datasets is to concatenate
all the datasets with all the output labels and train
a single BiLSTM-CRF model. However, this as-
sumes that each text snippet is completely anno-
tated across the label sets, which is not true. We
now discuss two models which do not make this
assumption.

2.3.1 Multiple CRFs
We first propose one simple method to get around
the assumption of complete annotation – train sep-
arate CRFs for the label set of each dataset. In par-
ticular, to share statistical strengths on the input to-
kens, we share the BiLSTM feature encoder across
the datasets but use separate CRF layers for each
of the datasets. This is a multi-task learning model
(Caruana, 1998) and is expected to perform bet-
ter than the naive model as it no longer makes the
strict assumption of complete annotation (by us-
ing separate CRFs), and shares statistical strength
across datasets. However, given a new abstract to
tag, this model will generate multiple possible la-
belings from the different CRFs. Moreover, the
labelings output by the different CRFs may be in-
consistent, and how to combine these multiple la-
belings is not obvious. We propose and evaluate
a simple heuristic procedure for merging the out-
puts of the different CRF predictions. Whenever
the different CRF predictions disagree on a span
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of tokens, we choose the prediction from the CRF
that has higher marginal probability of predicting
that span of tokens (Alg. 1 in supplementary).

2.3.2 EM Marginal CRF
We also propose an alternative principled ap-
proach that does not require a heuristic merging
process. In order to label D datasets with some
disjoint labels, we only consider the probability of
the “observed labels” and allow the “unobserved”
tokens to be free. Thus, when tagging dataset
i 2 [D], we treat the non-entity tokens as poten-
tially taking any entity type label from any of the
other datasets as well as the ‘O’ label.

For a particular input x of length T from a
dataset i 2 [D] with label set Si, let y be the gold
output label. Let E ⇢ [T ] be the index of tokens
with any entity type label in Si and N ⇢ [T ] be
the index of tokens with ‘O’ label, and let yE be
the output sequence corresponding to indices in
E, and similarly yN be the output sequence for
indices in N . Then, from (1), we get the like-
lihood Pi(yE [ yN|x), and a naive CRF trained
on the concatenation of all the data will maximize
this probability. However, since we cannot make
the complete annotation assumption, we should
instead maximize only the marginal probability of
the observed entities on the dataset i, Pi(yE|x),
allowing yN to take any values from the labels of
the other datasets: [D

j 6=iSj . Thus,

log Pi(yE|x) = log
X

yN2[j 6=iSj

Pi(yE,yN|x)

log Pi(yE|x) = logsumexp
yN2[j 6=iSj

s(x,yE ,yN ) � log Z

where log Z is the log normalization term which is
the same as in (1). Note that since the normaliza-
tion term is the same here as for a standard CRF,
we can still use the same dynamic programming
algorithm as for a regular CRF to compute this
log Z. Now, in order to compute the first term,
we note that it is similar to the computation re-
quired to compute log Z – whereas log Z is ob-
tained by summing over all possible output se-
quences, this term is obtained by summing over all
possible output sequences which have indices in E
fixed to the correct label and indices in N taking
values from [j 6=iSj . Thus, this can be computed
using the same dynamic programming algorithm
(Tsuboi et al., 2008), and the implementation of
training this model is compatible with modern au-
tomatic differentiation libraries.

3 Experimental Results

We perform experiments on two benchmark
Biocreative datasets as well as the recently in-
troduced MedMentions data (Murty et al., 2018).
Our experiments consider three types of models.
The single CRF model naively concatenates all
training datasets together and assumes complete
labeling, multi CRF has a single Bi-LSTM fea-
ture encoder with a separate CRF for each dataset
(Section 2.3.1), and EM CRF has a single fea-
ture encoder and a single CRF trained with EM
marginalization (Section 2.3.2). For full dataset
statistics and specific implementation details see
supplementary material.

3.1 Biocreative V / VI
Biocreative V Chemical Disease Relation
(CDR): consists of 1,500 titles and abstracts from
PubMed, human annotated with chemical and
disease mentions (Li et al., 2016), and has been
used in previous NER evluations (Fries et al.,
2017; Leaman and Lu, 2016). Biocreative VI
ChemProt (CP): consists of 2,432 PubMed titles
and abstracts, and contains human annotated men-
tions of both chemicals and proteins (Krallinger
et al., 2017)1.

Our results are shown in Table 1. The top por-
tion of the table shows models trained on single
datasets, and the bottom portion shows models
trained on both CDR and CP. Comparing the top
and bottom portions of the table, we can see that
models trained on both CP and CDR outperform
training on either in isolation. Further, we see in
the bottom section that our EM CRF outperforms
the single CRF model and is generally better than
the multi CRF model.

3.2 Adding Additional Data
Weakly Labeled data The addition of weakly la-
beled data has been used recently to improve the
performance of relation extraction systems (Peng
et al., 2016; Verga et al., 2018). In these ap-
proaches, titles and abstracts from PubMed are an-
notated using Pubtator, a state of the art entity tag-
ging and linking/normalization system (Wei et al.,
2013). We use the same weakly labeled data from
Verga et al. (2018).

Results when adding in the additional weakly
labeled data is shown in Table 2. Our models

1To the best of our knowledge, there is no benchmark re-
sult for this dataset
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CDR ChemProt
Chemical Disease Chemical Protein

Model P R F1 P R F1 P R F1 P R F1
CDR single CRF 91.8 84.7 88.1 80.7 75.0 77.8 - - - - - -
CP single CRF - - - - - - 85.9 84.2 85.0 83.3 81.3 82.3
CDR+CP
single CRF 93.3 91.9 92.6 82.0 75.5 78.6 87.8 86.8 87.3 82.9 83.2 83.0
multi CRF 94.1 91.8 92.9 82.7 76.8 79.6 84.8 88.4 86.6 83.7 81.6 82.6
EM CRF 94.0 91.8 92.9 81.1 77.7 79.4 87.1 87.6 87.3 83.2 83.6 83.4

Table 1: Precision, recall, and F1 for Biocreative V CDR and Biocreative VI ChemProt(CP) Datasets. The top
portion of the table shows models trained on single datasets, the bottom portion trains on both CDR and CP, and
the bottom portion trains on CDR and CP. Highest F1 scores in each section are bolded.

CDR ChemProt
Chemical Disease Chemical Protein

Model P R F1 P R F1 P R F1 P R F1
TaggerOne 92.4 84.7 88.4 83.1 76.4 79.6 - - - - - -
TaggerOne † 94.2 88.8 91.4 85.2 80.2 82.6 - - - - - -
WLD single CRF 97.5 85.2 91.0 84.4 83.0 83.7 86.3 77.5 81.6 80.0 63.7 70.9
CDR+CP+WLD
single CRF 95.7 92.4 94.0 84.5 82.9 83.7 87.6 87.2 87.4 82.0 84.7 83.3
multi CRF 95.6 93.2 94.4 85.7 84.0 84.8 85.6 90.0 87.7 87.3 81.8 84.5
EM CRF 96.6 92.1 94.3 84.9 83.6 84.2 88.9 87.5 88.2 84.0 86.1 85.0

Table 2: WLD trains with weakly labeled data. Highest F1 scores in each section are bolded. † jointly performs
NER and entity linking.

improve further, outperforming the state-of-the-art
TaggerOne model (Leaman and Lu, 2016).

3.3 MedMentions

MedMentions (Murty et al., 2018) is a recently in-
troduced large dataset of PubMed abstracts con-
taining entity linked mentions of many different
semantic types. We used this data to create an ar-
tificially extreme example where two training sets
contain 9 and 10 entity types each. The two type
sets are fully disjoint (further details in supple-
mentary).

In Table 3, we see that the single CRF model
performs very poorly in this extreme setting due
to the large amount of missing annotations. The
multi CRF and EM CRF both perform well and
come close to the performance of a single CRF
trained on the full data, which is approximately
twice as much annotated data.

Model P R F1
single CRF 65.0 24.3 35.3
multi CRF 62.5 50.9 56.1
EM CRF 59.7 54.2 56.8
Full single CRF 60.5 58.3 59.4

Table 3: MedMentions results. Full single CRF is
trained on the full set of annotations. Other models are
trained on the two disjoint training sets.

4 Related Work

Until recently, feature engineered machine learn-
ing models were the highest performing ap-
proaches to NER (Ratinov and Roth, 2009; Passos
et al., 2014). More recently, neural network based
approaches have become state-of-the-art (Lample
et al., 2016; Strubell et al., 2017; Peters et al.,
2017). In BioNLP, many highest performing sys-
tems still use engineered features fed into a CRF
(Wei et al., 2015; Leaman et al., 2015; Leaman and
Lu, 2016). In addition to the two datasets we ex-
plored in this work, there are several other pop-
ular bio NER datasets for chemicals (Krallinger
et al., 2015), species (Wang et al., 2010), diseases
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(Doğan et al., 2014), and genes (Tanabe et al.,
2005).

In concurrent work, Wang et al. (2018) train a
model very similar to our multi-CRF model on
multiple biological NER datasets with non-fully
overlapping labels. Additionally, they experiment
with different ways of sharing the parameters of
the BiLSTM encoder. We believe this work is
complementary to ours, and in many ways deals
with a simpler subset of the tasks we address.
Wang et al. assumes complete labeling in each of
their datasets, and does not attempt to merge the
final results of the multiple CRFS. On the other
hand, we focus on the problem of cohesively la-
beling a dataset with the joint set of the different
label sets, either directly through the EM model or
by the merging process of the multi-CRF model.

Our method of training via marginal likelihood
is the same as Tsuboi et al. (2008), who trained
CRF models for Japanese word segmentation and
POS tagging where only partial annotations of
sentences are available. In comparison, we use the
marginal likelihood training in conjunction with
state-of-the art deep learning models for NER and
use it to tag across multiple disjoint labels sets.

5 Conclusions and Future Work

We’ve introduced a method for training NER mod-
els on multiple datasets containing disjoint label
sets. We show experimentally that this joint train-
ing improves performance and that our EM CRF
methods outperform models using a single CRF.

One interesting problem that our models do not
account for is the existence of overlapping and
non-continuous entity spans. Particularly when
annotating using disjoint label sets, a token could
belong to multiple entity spans from different label
sets. We are interested in investigating this prob-
lem in future work.
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Abstract

Adversarial training (AT) is a regularization
method that can be used to improve the ro-
bustness of neural network methods by adding
small perturbations in the training data. We
show how to use AT for the tasks of entity
recognition and relation extraction. In par-
ticular, we demonstrate that applying AT to a
general purpose baseline model for jointly ex-
tracting entities and relations, allows improv-
ing the state-of-the-art effectiveness on sev-
eral datasets in different contexts (i.e., news,
biomedical, and real estate data) and for dif-
ferent languages (English and Dutch).

1 Introduction

Many neural network methods have recently been
exploited in various natural language processing
(NLP) tasks, such as parsing (Zhang et al., 2017),
POS tagging (Lample et al., 2016), relation extrac-
tion (dos Santos et al., 2015), translation (Bah-
danau et al., 2015), and joint tasks (Miwa and
Bansal, 2016). However, Szegedy et al. (2014)
observed that intentional small scale perturbations
(i.e., adversarial examples) to the input of such
models may lead to incorrect decisions (with high
confidence). Goodfellow et al. (2015) proposed
adversarial training (AT) (for image recognition)
as a regularization method which uses a mixture
of clean and adversarial examples to enhance the
robustness of the model. Although AT has recently
been applied in NLP tasks (e.g., text classifica-
tion (Miyato et al., 2017)), this paper — to the best
of our knowledge — is the first attempt investigat-
ing regularization effects of AT in a joint setting
for two related tasks.

We start from a baseline joint model that per-
forms the tasks of named entity recognition (NER)
and relation extraction at once. Previously pro-
posed models (summarized in Section 2) exhibit

several issues that the neural network-based base-
line approach (detailed in Section 3.1) overcomes:
(i) our model uses automatically extracted features
without the need of external parsers nor manually
extracted features (see Gupta et al. (2016); Miwa
and Bansal (2016); Li et al. (2017)), (ii) all enti-
ties and the corresponding relations within the sen-
tence are extracted at once, instead of examining
one pair of entities at a time (see Adel and Schütze
(2017)), and (iii) we model relation extraction in a
multi-label setting, allowing multiple relations per
entity (see Katiyar and Cardie (2017); Bekoulis
et al. (2018a)). The core contribution of the paper
is the use of AT as an extension in the training pro-
cedure for the joint extraction task (Section 3.2).

To evaluate the proposed AT method, we per-
form a large scale experimental study in this joint
task (see Section 4), using datasets from different
contexts (i.e., news, biomedical, real estate) and
languages (i.e., English, Dutch). We use a strong
baseline that outperforms all previous models that
rely on automatically extracted features, achieving
state-of-the-art performance (Section 5). Com-
pared to the baseline model, applying AT during
training leads to a consistent additional increase in
joint extraction effectiveness.

2 Related work

Joint entity and relation extraction: Joint mod-
els (Li and Ji, 2014; Miwa and Sasaki, 2014)
that are based on manually extracted features have
been proposed for performing both the named en-
tity recognition (NER) and relation extraction sub-
tasks at once. These methods rely on the availabil-
ity of NLP tools (e.g., POS taggers) or manually
designed features leading to additional complex-
ity. Neural network methods have been exploited
to overcome this feature design issue and usu-
ally involve RNNs and CNNs (Miwa and Bansal,
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2016; Zheng et al., 2017). Specifically, Miwa
and Bansal (2016) as well as Li et al. (2017) ap-
ply bidirectional tree-structured RNNs for differ-
ent contexts (i.e., news, biomedical) to capture
syntactic information (using external dependency
parsers). Gupta et al. (2016) propose the use
of various manually extracted features along with
RNNs. Adel and Schütze (2017) solve the sim-
pler problem of entity classification (EC, assum-
ing entity boundaries are given), instead of NER,
and they replicate the context around the entities,
feeding entity pairs to the relation extraction layer.
Katiyar and Cardie (2017) investigate RNNs with
attention without taking into account that relation
labels are not mutually exclusive. Finally, Bek-
oulis et al. (2018a) use LSTMs in a joint model for
extracting just one relation at a time, but increase
the complexity of the NER part. Our baseline
model enables simultaneous extraction of multi-
ple relations from the same input. Then, we fur-
ther extend this strong baseline using adversarial
training.

Adversarial training (AT) (Goodfellow et al.,
2015) has been proposed to make classifiers more
robust to input perturbations in the context of im-
age recognition. In the context of NLP, several
variants have been proposed for different tasks
such as text classification (Miyato et al., 2017), re-
lation extraction (Wu et al., 2017) and POS tag-
ging (Yasunaga et al., 2018). AT is considered
as a regularization method. Unlike other regu-
larization methods (i.e., dropout (Srivastava et al.,
2014), word dropout (Iyyer et al., 2015)) that in-
troduce random noise, AT generates perturbations
that are variations of examples easily misclassified
by the model.

3 Model

3.1 Joint learning as head selection
The baseline model, described in detail in Bek-
oulis et al. (2018b), is illustrated in Fig. 1. It aims
to detect (i) the type and the boundaries of the en-
tities and (ii) the relations between them. The in-
put is a sequence of tokens (i.e., sentence) w =
w1, ..., wn. We use character level embeddings
to implicitly capture morphological features (e.g.,
prefixes and suffixes), representing each character
by a vector (embedding). The character embed-
dings are fed to a bidirectional LSTM (BiLSTM)
to obtain the character-based representation of the
word. We also use pre-trained word embeddings.

Smith lives in California 

Word/Character 
 Embeddings 

BiLSTM 

sigmoid  

lives 
N Relations 

Heads California 
N 

in 
N 

O CRF Layer O O B-LOC 

Label  
Embeddings 

LSTM 

B-PER 

California 
Lives in 

. 

LSTM LSTM LSTM LSTM 

4 0 1 2 3 perturbation 

. 
N 

Figure 1: Our model for joint entity and relation ex-
traction with adversarial training (AT) comprises
(i) a word and character embedding layer, (ii) a
BiLSTM layer, (iii) a CRF layer and (iv) a relation
extraction layer. In AT, we compute the worst-case
perturbations ⌘ of the input embeddings.

Word and character embeddings are concatenated
to form the final token representation, which is
then fed to a BiLSTM layer to extract sequential
information.

For the NER task, we adopt the BIO (Begin-
ning, Inside, Outside) encoding scheme. In Fig. 1,
the B-PER tag is assigned to the beginning token
of a ‘person’ (PER) entity. For the prediction of
the entity tags, we use: (i) a softmax approach for
the entity classification (EC) task (assuming entity
boundaries given) or (ii) a CRF approach where
we identify both the type and the boundaries for
each entity. During decoding, in the softmax set-
ting, we greedily detect the entity types of the to-
kens (i.e., independent prediction). Although in-
dependent distribution of types is reasonable for
EC tasks, this is not the case when there are strong
correlations between neighboring tags. For in-
stance, the BIO encoding scheme imposes several
constraints in the NER task (e.g., the B-PER and I-
LOC tags cannot be sequential). Motivated by this
intuition, we use a linear-chain CRF for the NER
task (Lample et al., 2016). For decoding, in the
CRF setting, we use the Viterbi algorithm. Dur-
ing training, for both EC (softmax) and NER tasks
(CRF), we minimize the cross-entropy loss LNER.
The entity tags are later fed into the relation ex-
traction layer as label embeddings (see Fig. 1), as-
suming that knowledge of the entity types is ben-
eficial in predicting the relations between the in-
volved entities.

We model the relation extraction task as
a multi-label head selection problem (Bekoulis

2831



et al., 2018b; Zhang et al., 2017). In our model,
each word wi can be involved in multiple relations
with other words. For instance, in the example il-
lustrated in Fig. 1, “Smith” could be involved not
only in a Lives in relation with the token “Cali-
fornia” (head) but also in other relations simulta-
neously (e.g., Works for, Born In with some corre-
sponding tokens). The goal of the task is to predict
for each word wi, a vector of heads ŷi and the vec-
tor of corresponding relations r̂i. We compute the
score s(wj , wi, rk) of word wj to be the head of
wi given a relation label rk using a single layer
neural network. The corresponding probability is
defined as: P(wj , rk | wi; ✓) = �(s(wj , wi, rk)),
where �(.) is the sigmoid function. During train-
ing, we minimize the cross-entropy loss Lrel as:

nX

i=0

mX

j=0

� log P(yi,j , ri,j | wi; ✓) (1)

where m is the number of associated heads (and
thus relations) per word wi. During decoding, the
most probable heads and relations are selected us-
ing threshold-based prediction. The final objective
for the joint task is computed as LJOINT(w; ✓) =
LNER + Lrel where ✓ is a set of parameters. In the
case of multi-token entities, only the last token of
the entity can serve as head of another token, to
eliminate redundant relations. If an entity is not
involved in any relation, we predict the auxiliary
“N” relation label and the token itself as head.

3.2 Adversarial training (AT)
We exploit the idea of AT (Goodfellow et al.,
2015) as a regularization method to make our
model robust to input perturbations. Specifically,
we generate examples which are variations of the
original ones by adding some noise at the level
of the concatenated word representation (Miyato
et al., 2017). This is similar to the concept intro-
duced by Goodfellow et al. (2015) to improve the
robustness of image recognition classifiers. We
generate an adversarial example by adding the
worst-case perturbation ⌘adv to the original em-
bedding w that maximizes the loss function:

⌘adv = argmax
k⌘k✏

LJOINT(w + ⌘; ✓̂) (2)

where ✓̂ is a copy of the current model parameters.
Since Eq. (2) is intractable in neural networks,
we use the approximation proposed in Goodfellow
et al. (2015) defined as: ⌘adv = ✏g/ kgk , with g =

rwLJOINT(w; ✓̂), where ✏ is a small bounded norm
treated as a hyperparameter. Similar to Yasunaga
et al. (2018), we set ✏ to be ↵

p
D (where D is

the dimension of the embeddings). We train on
the mixture of original and adversarial examples,
so the final loss is computed as: LJOINT(w; ✓̂) +
LJOINT(w + ⌘adv; ✓̂).

4 Experimental setup

We evaluate our models on four datasets, us-
ing the code as available from our github code-
base.1 Specifically, we follow the 5-fold cross-
validation defined by Miwa and Bansal (2016) for
the ACE04 (Doddington et al., 2004) dataset. For
the CoNLL04 (Roth and Yih, 2004) EC task (as-
suming boundaries are given), we use the same
splits as in Gupta et al. (2016); Adel and Schütze
(2017). We also evaluate our models on the NER
task similar to Miwa and Sasaki (2014) in the
same dataset using 10-fold cross validation. For
the Dutch Real Estate Classifieds, DREC (Bek-
oulis et al., 2017) dataset, we use train-test splits
as in Bekoulis et al. (2018a). For the Adverse
Drug Events, ADE (Gurulingappa et al., 2012),
we perform 10-fold cross-validation similar to Li
et al. (2017). To obtain comparable results that
are not affected by the input embeddings, we use
the embeddings of the previous works. We em-
ploy early stopping in all of the experiments. We
use the Adam optimizer (Kingma and Ba, 2015)
and we fix the hyperparameters (i.e., ↵, dropout
values, best epoch, learning rate) on the valida-
tion sets. The scaling parameter ↵ is selected from
{5e�2, 1e�2, 1e�3, 1e�4}. Larger values of ↵
(i.e., larger perturbations) lead to consistent per-
formance decrease in our early experiments. This
can be explained from the fact that adding more
noise can change the content of the sentence as
also reported by Wu et al. (2017).

We use three types of evaluation, namely:
(i) S(trict): we score an entity as correct if
both the entity boundaries and the entity type
are correct (ACE04, ADE, CoNLL04, DREC),
(ii) B(oundaries): we score an entity as correct
if only the entity boundaries are correct while the
entity type is not taken into account (DREC) and
(iii) R(elaxed): a multi-token entity is considered
correct if at least one correct type is assigned to
the tokens comprising the entity, assuming that the

1https://github.com/bekou/multihead_
joint_entity_relation_extraction
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Settings Features Eval. Entity Relation Overall
A

C
E

04
Miwa and Bansal (2016) 3 S 81.80 48.40 65.10

Katiyar and Cardie (2017) 7 S 79.60 45.70 62.65
baseline 7 S 81.16 47.14 64.15

baseline + AT 7 S 81.64 47.45 64.54

C
oN

LL
04

Gupta et al. (2016) 3 R 92.40 69.90 81.15
Gupta et al. (2016) 7 R 88.80 58.30 73.60

Adel and Schütze (2017) 7 R 82.10 62.50 72.30
baseline EC 7 R 93.26 67.01 80.14

baseline EC + AT 7 R 93.04 67.99 80.51
Miwa and Sasaki (2014) 3 S 80.70 61.00 70.85

baseline 7 S 83.04 61.04 72.04
baseline + AT 7 S 83.61 61.95 72.78

D
R

EC

Bekoulis et al. (2018a) 7 B 79.11 49.70 64.41
baseline 7 B 82.30 52.81 67.56

baseline + AT 7 B 82.96 53.87 68.42
baseline 7 S 81.39 52.26 66.83

baseline + AT 7 S 82.04 53.12 67.58

A
D

E

Li et al. (2016) 3 S 79.50 63.40 71.45
Li et al. (2017) 3 S 84.60 71.40 78.00

baseline 7 S 86.40 74.58 80.49
baseline + AT 7 S 86.73 75.52 81.13

Table 1: Comparison of our method with the state-
of-the-art in terms of F1 score. The proposed mod-
els are: (i) baseline, (ii) baseline EC (predicts only
entity classes) and (iii) baseline (EC) + AT (reg-
ularized by AT). The 3and 7 symbols indicate
whether the models rely on external NLP tools.
We include different evaluation types (S, R and B).

boundaries are known (CoNLL04), to compare to
previous works. In all cases, a relation is consid-
ered as correct when both the relation type and the
argument entities are correct.

5 Results

Table 1 shows our experimental results. The name
of the dataset is presented in the first column while
the models are listed in the second column. The
proposed models are the following: (i) baseline:
the baseline model shown in Fig. 1 with the CRF
layer and the sigmoid loss, (ii) baseline EC: the
proposed model with the softmax layer for EC,
(iii) baseline (EC) + AT: the baseline regular-
ized using AT. The final three columns present
the F1 results for the two subtasks and their av-
erage performance. Bold values indicate the best
results among models that use only automatically
extracted features.

For ACE04, the baseline outperforms Katiyar
and Cardie (2017) by ⇠2% in both tasks. This
improvement can be explained by the use of:
(i) multi-label head selection, (ii) CRF-layer and
(iii) character level embeddings. Compared to
Miwa and Bansal (2016), who rely on NLP tools,
the baseline performs within a reasonable margin
(less than 1%) on the joint task. On the other
hand, Li et al. (2017) use the same model for

the ADE biomedical dataset, where we report a
2.5% overall improvement. This indicates that
NLP tools are not always accurate for various con-
texts. For the CoNLL04 dataset, we use two eval-
uation settings. We use the relaxed evaluation
similar to Gupta et al. (2016); Adel and Schütze
(2017) on the EC task. The baseline model outper-
forms the state-of-the-art models that do not rely
on manually extracted features (>4% improve-
ment for both tasks), since we directly model the
whole sentence, instead of just considering pairs
of entities. Moreover, compared to the model
of Gupta et al. (2016) that relies on complex fea-
tures, the baseline model performs within a margin
of 1% in terms of overall F1 score. We also re-
port NER results on the same dataset and improve
overall F1 score with ⇠1% compared to Miwa and
Sasaki (2014), indicating that our automatically
extracted features are more informative than the
hand-crafted ones. These automatically extracted
features exhibit their performance improvement
mainly due to the shared LSTM layer that learns
to automatically generate feature representations
of entities and their corresponding relations within
a single model. For the DREC dataset, we use two
evaluation methods. In the boundaries evaluation,
the baseline has an improvement of ⇠3% on both
tasks compared to Bekoulis et al. (2018a), whose
quadratic scoring layer complicates NER.

Table 1 and Fig. 2 show the effectiveness of the
adversarial training on top of the baseline model.
In all of the experiments, AT improves the pre-
dictive performance of the baseline model in the
joint setting. Moreover, as seen in Fig. 2, the
performance of the models using AT is closer to
maximum even from the early training epochs.
Specifically, for ACE04, there is an improvement
in both tasks as well as in the overall F1 perfor-
mance (0.4%). For CoNLL04, we note an im-
provement in the overall F1 of 0.4% for the EC
and 0.8% for the NER tasks, respectively. For the
DREC dataset, in both settings, there is an overall
improvement of ⇠1%. Figure 2 shows that from
the first epochs, the model obtains its maximum
performance on the DREC validation set. Finally,
for ADE, our AT model beats the baseline F1 by
0.7%.

Our results demonstrate that AT outperforms
the neural baseline model consistently, consider-
ing our experiments across multiple and more di-
verse datasets than typical related works. The im-
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Abstract
We propose a model for tagging unstructured
texts with an arbitrary number of terms drawn
from a tree-structured vocabulary (i.e., an on-
tology). We treat this as a special case of
sequence-to-sequence learning in which the
decoder begins at the root node of an onto-
logical tree and recursively elects to expand
child nodes as a function of the input text, the
current node, and the latent decoder state. In
our experiments the proposed method outper-
forms state-of-the-art approaches on the im-
portant task of automatically assigning MeSH
terms to biomedical abstracts.

1 Introduction

We consider the task of multilabel text anno-
tation, where labels are drawn from an ontol-
ogy. We are motivated by problems in biomed-
ical NLP (Zweigenbaum et al., 2007; Demner-
Fushman et al., 2016). Specifically, scientific ab-
stracts in this domain are typically associated with
multiple Medical Subject Heading (MeSH) terms.
MeSH is a controlled, hierarchically structured vo-
cabulary that facilitates semantic labeling of texts
at varying levels of granularity. This in turn sup-
ports semantic indexing of biomedical literature,
thus facilitating improved search and retrieval.1

At present, MeSH annotation is largely per-
formed manually by highly skilled annotators
employed by the National Library of Medicine
(NLM). Automating this annotation task is thus
highly desirable, and there have been considerable
efforts to do so. The BIOASQ2 challenge, in par-
ticular, concerns MeSH annotation, and competi-
tive systems have emerged from this in past years
(Liu et al., 2014; Tsoumakas et al., 2013); these
constitute baseline approaches in the present work.

1This problem also resembles tagging clinical notes with
ICD codes (Mullenbach et al., 2018).

2http://bioasq.org/
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Figure 1: Illustration of the proposed Neural Tree
Decoding (NTD) model. Input text is encoded,
and a decoder then conditionally traverses the la-
bel tree to select all relevant nodes to apply, with
node-wise attention induced over the input text.

More generally, MeSH annotation is a specific
instance of multi-label classification, which has
received substantial attention in general (Elisseeff
and Weston, 2002; Fürnkranz et al., 2008; Read
et al., 2011; Bhatia et al., 2015; Daumé III et al.,
2017; Chen et al., 2017; Jernite et al., 2016). Our
work differs from these prior efforts in that MeSH
tagging involves structured multi-label classifica-
tion: the label space is a tree3 in which nodes
represent nested semantic concepts, and the speci-
ficity of these increases with depth.

Past efforts in multi-label classification have
considered hierarchical and tree-based approaches
for tagging (Jernite et al., 2016; Beygelzimer et al.,
2009; Daumé III et al., 2017), but these have not
assumed a given structured label space; instead,
these efforts have attempted to induce trees to im-
prove inference efficiency. By contrast, we pro-
pose to explicitly capitalize on a known output
structure codified here by the target ontology from
which tags are drawn. We realize this by recur-
sively traversing the tree to make (conditional) bi-

3Technically, MeSH comprises multiple trees, but we join
these by insertion of an overarching root node.
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nary tag application predictions.
The contribution of this work is a neural

sequence-to-sequence (seq2seq) model (Bahdanau
et al., 2014) for structured multi-label classifica-
tion. Our approach entails encoding the input text
to be tagged using an RNN, and then decoding into
the ontological output space. This involves a tree
traversal beginning at the root of the tree. At each
step, the decoder decides whether to ‘expand’ chil-
dren as a function of a hidden state vector, node
embeddings, and induced attention weights over
the input text. This approach is schematized in
Figure 1. Expanded nodes are added to the pre-
dicted tag set. This process is repeated recursively
until either leaf nodes are reached or no children
are selected for expansion. This neural tree de-
coding (NTD) model outperforms state-of-the-art
models for MeSH tagging.

2 Model

Overview. Our model is an instance of an
encoder-decoder architecture. For the encoder,
we adopt a standard Gated Recurrent Unit (GRU)
network (Cho et al., 2014a), which yields hidden
states for the tokens comprising an input docu-
ment. The decoder network consumes these out-
puts and begins at the root of the ontological tree.
It induces an attention distribution over encoder
states, which is used together with the current de-
coder state vector to inform which (if any) of its
immediate children are applicable to the input text
(Figure 1). This decoding process proceeds recur-
sively for all children deemed relevant. Below we
provide more in-depth technical detail regarding
the constituent modules.

The encoder (ENC) consumes as input a raw
sequence of words, here composing an abstract.
These are passed through an embedding layer, pro-
ducing a sequence of word embeddings x (for clar-
ity we omit a document index here), which are
then passed through a GRU (Cho et al., 2014b)
to obtain a sequence of hidden vectors h =
{h0, · · · , h|x|�1}, where ht = GRU(xt, ht�1).

These are then passed to our neural tree decoder,
which is responsible for tagging the encoded text
with an arbitrary number of terms from the label
tree, i.e., sequences in the structured output space.
This module traverses the label space top-down,
beginning at the root, thus exploiting the concept
hierarchy codified by the tree structure.

At each step in the decoding process, the de-

coder will be positioned at a particular node in
the tree n. Children — immediate descendents —
of this node are then considered for expansion in
turn, based on a hidden state vector sn, and a con-
text vector cn. Both of these are initialized to zero
vectors and recursively updated during traversal,
i.e., as nodes are selected for expansion (and hence
added to the predicted tag set). More specifically,
the context vector that informs the decision to ex-
pand node v in the label hierarchy from its parent
node n is a weighted sum of the encoder hidden
states h, where weights reflect induced attention
over inputs, conditioned on n. That is:

cn =
X

j

↵njhj (1)

where

↵nj =
exp{a(sn, hj)|✓n}P
l exp{a(sn, hl)|✓n} (2)

and a is a simple multi-layer perceptron (MLP),
with node-specific parameters ✓n. Here both sums
range over the length of the input text.

Given cn, we then estimate the probability that
child label v is applicable to the current input text
as a function of the decoder state vector (sn), the
current context vector (cn) and the decoder pa-
rameters. In particular, this is realized via a stan-
dard linear layer with sigmoid activations, param-
eterized by a weight matrix W comprising inde-
pendent weight vectors for each output node v.
Thus the score for a particular output node v is
�(Wv · [sn, cn]), where Wv denotes the weight
vector for output node v.

Pseudocode for the training and decoding pro-
cedures are presented in Algorithm 1. In the
NODELOSS function, n denotes a particular node.
The set of hidden vectors induced by the encoder
(corresponding to the inputs) are denoted by h, s
is the hidden state of the decoder, and y is the
reference label (this encodes a path in the output
tree). We assume the decoder, DEC, consumes
input representations, a node index and a hidden
state and yields a context vector for n, cn and an
updated state vector sn; in our case the latter is
implemented via a GRU. The advantage of using
an RNN during decoding is that this allows the ex-
ploitation of learned, distributed hidden represen-
tations of partial tree paths, which inform node-
wise attention and subsequent predictions.
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Algorithm 1 RECURSIVETREEDECODING

1: function NODELOSS(n, h, s, y)
2: ln 0
3: cn, sn DEC(h, n, s)
4: for each child v 2 children(n) do
5: ŷv  �(Wv · [sn, cn])
6: pv  / depth in tree
7: Bv ⇠ Ber(pv)
8: if Bv then
9: ln ln + L(ŷv, y)

10: if ŷv > ⌧ then
11: ln ln + NODELOSS(v, h, sn, y)

return ln

12: function TRAIN(x, y, ↵, epochs)
13: ✓  INIT(✓)
14: e 0
15: while e < epochs do
16: for each instance xi 2 x do
17: hi  ENC(xi)
18: s0  0

19: li  NODELOSS(ROOT, hi, s0, yi)
20: �✓  BACKPROP(li)
21: ✓  ✓ + ↵�✓
22: e e + 1

return ✓

Incurring loss for all nodes along the path spec-
ified by y would place a disproportionate amount
of emphasis on correctly applying terms that are
‘higher’ in the ontology, as loss will be propagated
for the initial predictions concerning the applica-
tion of these and then also, due to recursive appli-
cation, for all of their children (and so on). Thus
we only incur (and hence backpropagate) loss for
a node v stochastically, according to a Bernoulli
distribution B with parameter pv. We set pv to
be proportional to the depth of node v in the tree
such that we are likely to incur larger loss for
deeper (rarely occurring) nodes. We operational-
ize this as: pv = min(1, 0.5 + m

fv
), where m is

the count corresponding to the least frequently ob-
served node in the training corpus and fv is the
count for node v. In Section 4 we demonstrate the
benefit of this approach.

At train time we use teacher forcing (Williams
and Zipser, 1989) during decoding. That is, we
revert the model back to the correct (training) tree
subsequence when it goes off-course, and continue
decoding from there. We have elided this detail
from the pseudocode for clarity.

3 Experimental setup

Below we describe experimental details concern-
ing our implementation, datasets and baselines.
Code and data to reproduce our results is available
at https://github.com/gauravsc/NTD.

3.1 Implementation Details
We limited the vocabulary to the 50, 000 most fre-
quent words. Word embeddings were initialized to
pre-trained vectors induced via word2vec, trained
over a large set of abstracts indexed on PubMed.4

Ontology node embeddings were pre-trained using
DeepWalk (Perozzi et al., 2014), fit over PubMed.

3.2 Dataset
Our dataset comprises abstracts of articles de-
scribing randomized controlled trials (RCTs) from
PubMed along with their MeSH terms. The MeSH
annotations were manually applied by profession-
als at the National Library of Medicine (NLM).
The label space underlying MeSH terms is codi-
fied by a publicly available ontology.5

We split this dataset into disjoint sets for train-
ing/development and final evaluation (Table 1).
We further separated the former into train, vali-
dation and development test subsets, to refine our
approach. For our final evaluation we used a held-
out set of 10,000 abstracts that were not seen in
any way during model development and/or hyper-
parameter tuning. We performed extensive hyper-
parameter tuning for the baseline models to ensure
fair comparison; details regarding this tuning are
provided in the Appendix.

3.3 Baselines
We compare our proposed approach to three base-
lines, including two prior winners of the annual
BioASQ challenge, which includes an automated
MeSH annotation task. However, it is important
to note that we used a different (and considerably
smaller) dataset in the current work, as compared
to the corpus used in the BioASQ challenge.
LSSI (Tsoumakas et al., 2013) use an approach
that involves predicting both the number of terms
and which to apply to a given abstract. They use
linear models for both tasks, which operate over
TF-IDF representations of abstracts. Specifically,
they train a regressor to predict k, the number of
MeSH terms to be applied to an abstract. Simul-
taneously, a binary linear SVM is trained indepen-
dently for each MeSH term appearing in the train
set. At test time, these SVMs provide scores for
each term and the top k̂ terms are applied, where k̂
is the estimate from the aforementioned regressor.

4A repository of biomedical literature.
5https://meshb-prev.nlm.nih.gov/

treeView
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Train 20000
Validation 4000
Dev test 18884
Test (held-out) 10000
Mean MeSH terms per article 15.33
Total unique MeSH terms 27892
Unique MeSH terms in dataset 3781

Table 1: Dataset statistics.

UIUC (Liu et al., 2014) uses a learning-to-rank
model to identify the top MeSH terms for an ab-
stract from a candidate set of terms, which is ob-
tained from the nearest neighbours of the abstract.
Additionally, one SVM classifier is trained for
each of the MeSH terms (similar to the above ap-
proach), and scores for each are used to obtain ad-
ditional terms to be added to the candidate set. In
the end, a threshold (tuned on the validation set) is
used to select the final set of terms to be assigned.
Finally, we consider a deep multilabel classifica-
tion model DML (Rios and Kavuluru, 2015) that
takes as input unstructured abstracts and activates
the output nodes corresponding to the relevant
MeSH terms. In brief, embedded tokens are fed
through a CNN to induce a vector representation,
which is then passed on to the dense output layer.
Finally, this is passed through a sigmoid activation
function. Note that this model exploits the same
pre-trained word embeddings as our model does.

3.4 Evaluation metrics
We first evaluate model performance via output
node-wise precision, recall and F1 measure. How-
ever, these metrics are overly strict in the sense
that a model will be penalized equally for all mis-
takes, regardless of whether they are nearby or far
from the target in the label tree. This is problem-
atic because whether to apply a specific MeSH
term or its immediate parent may be somewhat
subjective in practice. To quantify this, and to ex-
plore the extent to which explicitly decoding into
the target label space yields improved predictions,
we also consider a measure that we refer to as se-
mantic distance (SD):

SD =
1

|Y|
X

u2Y
min
v2Ŷ

dist(u, v) (3)

where Y and Ŷ are the sets of target and predicted
terms respectively, and dist is a function that re-
turns the shortest distance between two nodes in

Method Precision Recall F1 SD
LSSI 0.326 0.293 0.309 1.518
UIUC 0.236 0.388 0.291 1.433
DML 0.378 0.223 0.275 1.516

NTD-d 0.434 0.235 0.299 1.209
NTD-s 0.425 0.265 0.327 1.130

Table 2: Results on the held-out test dataset. SD
refers to semantic distance, defined in Eq. 3.

the label ontology tree. The idea is that this penal-
izes less for ‘near misses’. Thus if a model fails to
apply a particular tag t, but does apply one near to
t in the label tree, then it is penalized less.6 We
hypothesize that our model will improve results
markedly with respect to this metric, given our ex-
ploitation of the tree structure.

As in the case of recall, SD can be ‘gamed’: one
can achieve a perfect score by predicting that all
nodes apply to a given abstract. Thus this is only
meaningful alongside complementary metrics like
F1.

4 Results

Results on the test set (which was completely
held out during development) are reported in Ta-
ble 2. The proposed Neural Tree Decoding model
with stochastic backpropagation (NTD-s) bests the
most competitive baseline (LSSI) in F1 score by
over 2 points.

To explore the effect of backpropagating loss
from nodes in proportion to their depth in the on-
tology, we also include results for a deterministic
variant that does not do this, NTD-d. This version
does not perform as well, demonstrating the utility
of the proposed training approach.

The metrics reported thus far do not account of
the structure in the output space. We thus addi-
tionally report results with respect to the the se-
mantic distance (SD) metric (Eq. 3). We ob-
serve a marked performance increase of ⇠21%
over the best performing baseline. This is intuitive
given that we are explicitly decoding into the label
tree structure, and demonstrates the ability of our
model to learn the ontological structure, thereby
predicting semantically appropriate terms.

6This metric is equivalent to the sum of two metrics (”di-
vergent path to gold standard” and ”divergent path to predic-
tion”) defined in (Perotte et al., 2013).
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5 Conclusions, Discussion & Limitations

We developed a neural attentive sequence tree de-
coding model for structured multilabel classifica-
tion where labels are drawn from a known ontol-
ogy. The proposed method can decode an input
text into a tree of labels, effectively using the struc-
ture in the output space. We demonstrated that
this model outperformed SOTA approaches for
the important task of tagging biomedical abstracts
with Medical Subject Heading (MeSH) terms on a
modestly sized training corpus. Code and data to
reproduce these results are available at https:
//github.com/gauravsc/NTD.

One limitation of our model is that it is com-
paratively slow, due to having to traverse the tree
structure during decoding. Prediction speed may
not be a major issue in practice, as articles on
PubMed could be batch tagged nightly as they ar-
rive. However, slow decoding also means lengthy
training (see Appendix, section A.2 for details).
For this reason we have here used a modest train-
ing set of ⇠20k abstracts, which is smaller than
corpora used in prior work on this task. Given the
relative expressiveness of our model, we expect
it to benefit substantially from additional training
data, moreso than the simpler baseline architec-
tures. But at present this is only a conjecture.

In future work we thus hope to apply this model
to larger datasets, and to address the efficiency is-
sue. Concerning the latter, sibling subtrees may
be traversed in parallel, conditioned on the hidden
state of their parent. Another promising direction
would be to move to convolutional encoder and
decoder architectures, designing the latter in a way
similarly capitalizes on the label space tree struc-
ture.
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Abstract

We propose a simple deep neural model for
nested named entity recognition (NER). Most
NER models focused on flat entities and ig-
nored nested entities, which failed to fully cap-
ture underlying semantic information in texts.
The key idea of our model is to enumerate all
possible regions or spans as potential entity
mentions and classify them with deep neural
networks. To reduce the computational costs
and capture the information of the contexts
around the regions, the model represents the
regions using the outputs of shared underly-
ing bidirectional long short-term memory. We
evaluate our exhaustive model on the GENIA
and JNLPBA corpora in biomedical domain,
and the results show that our model outper-
forms state-of-the-art models on nested and
flat NER, achieving 77.1% and 78.4% respec-
tively in terms of F-score, without any external
knowledge resources.

1 Introduction

Named entity recognition (NER) is a task of find-
ing entities with specific semantic types such as
Protein, Cell, and RNA in text. NER is generally
treated as a sequential labeling task, where each
token is tagged with a label that corresponds to its
surrounding entity. However, when entities over-
lap or are nested within one another, treating the
task as a sequential labeling task becomes diffi-
cult because an individual token can be included
in several entities and defining a label for each to-
ken can be difficult. For example, in the following
phrase from the GENIA corpus (Kim et al., 2004),
four levels of nested entities occur and the token
“IL-2” is a Protein on its own, and it is also a part
of two other Proteins and one DNA.

[[[[IL-2]Protein receptor]Protein (IL-2R) alpha
chain]Protein gene]DNA

NER has drawn considerable attention as the
first step towards many natural language pro-
cessing (NLP) applications including relation ex-
traction (Miwa and Bansal, 2016), event extrac-
tion (Feng et al., 2016), co-reference resolu-
tion (Fragkou, 2017; Stone and Arora, 2017), and
entity linking (Gupta et al., 2017). Much work on
NER, however, has ignored nested entities and in-
stead chosen to focus on the non-nested entities,
which are also referred to as flat entities. Only a
few studies target the nested named entity recog-
nition (Muis and Lu, 2017; Lu and Roth, 2015;
Finkel and Manning, 2009).

Recent successes in neural networks have
shown impressive performance gains on
flat named entity recognition in several do-
mains (Lample et al., 2016; Ma and Hovy, 2016;
Gridach, 2017; Strubell et al., 2017). Such models
achieve state-of-the-art results without requiring
any hand crafted features or external knowledge
resources. In contrast, fewer approaches have
emphasized the nested entity recognition problem.
Existing approaches to nested NER (Shen et al.,
2003; Alex et al., 2007; Finkel and Manning,
2009; Lu and Roth, 2015; Xu et al., 2017; Muis
and Lu, 2017) are mostly feature-based and
thus suffer from heavy feature engineering. In
this paper, we present a novel neural exhaustive
model that reasons over all the regions within a
specified maximum size. The model represents
each region using the outputs of bidirectional long
short-term memory (LSTM) by combining the
boundary representation of a region and inside
representation that simply treats all the tokens in
a region equally by taking the average of LSTM
outputs corresponding to tokens inside the region.
It then classifies regions into their entity types or
non-entity. Unlike the existing model that relies
on token-level labels, our model directly employs
an entity type as the label of a region. The model
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does not rely on any external knowledge resources
or NLP tools like part-of-speech taggers. We
evaluated our model on the GENIA and JNLPBA
corpora in the biomedical domain and the model
achieved 77.1% and 78.4% respectively in terms
of F-score, which are the new state-of-the-art
performances on the corpora.

2 Neural Exhaustive Model

The proposed model exhaustively considers all
possible regions in a sentence using a single neu-
ral network; we thus call the model neural exhaus-
tive model. Our model is built upon a shared bidi-
rectional LSTM layer. The model enumerates all
possible regions or spans that can include all the
nested entities. It then represent the regions by us-
ing the outputs of the LSTM layer and detect the
entities from the regions. The number of possible
regions depend on the predefined maximum size.
In this section, we describe the architecture of our
neural exhaustive model in detail, which is sum-
marized in Figure 1.

2.1 Word Representation
We represent each word by concatenating word
embeddings and character-based word representa-
tions. Pre-trained word embeddings are used to
initialize word embeddings (Chiu et al., 2016). For
the character-based word representations, we en-
code the character-level information of each word
following the successes of Ma and Hovy (2016)
and Lample et al. (2016) that utilized character
embeddings for the flat NER task. The embedding
of each character in a word is randomly initial-
ized. We feed the sequence of character embed-
dings comprising a word to a bidirectional LSTM
layer and concatenate the forward and backward
output representations to obtain the word repre-
sentations.

2.2 Exhaustive Combination using LSTM
Given an input sentence sequence X =
{x1, x2, ...xn}, where xi denotes the i-th word and
n denotes the number of words in the sentence se-
quence, the distributed embeddings of words and
characters are fed into a bidirectional LSTM layer
that computes the hidden vector sequence in for-
ward

�!
h =

n�!
h1,
�!
h2, . . . ,

�!
hn

o
and backward

 �
h =

n �
h1,
 �
h2, . . . ,

 �
hn

o
manners. We concatenate the

forward and backward outputs as hi =
h�!
hi;
 �
hi

i
,

where [; ] denotes concatenation.
With the LSTM output hi, our exhaustive model

shares the underlying representations of all possi-
ble regions by exhaustive combination. We gen-
erate all possible regions with the sizes less than
or equal to the maximum region size L. We use
a region(i, j) to represent the region from i to j
inclusive, where 1  i < j  n and j � i < L.

2.3 Region Representation and Classification
We represent the region by separating the region
into the boundary and inside representations. The
boundary representation is important to capture
the contexts surrounding the region. We sim-
ply rely on the outputs of the bidirectional LSTM
layer corresponding to the boundary words of a
target region for this purpose. For the inside rep-
resentation, we simply average the outputs of the
bidirectional LSTM layer in the region to treat
them equally. We include the outputs for the
boundary words to guarantee that the inside rep-
resentation has corresponding outputs. In sum-
mary, we obtain the representation R(i, j) of the
region(i, j) as follows:

R(i, j) =

"
hi;

1

j � i + 1

jX

k=i

hk;hj

#
. (1)

We then feed the representation of each seg-
mented region to a rectified linear unit (ReLU) as
an activation function. Finally, the output of the
activation layer is passed to a softmax output layer
to classify the region into a specific entity type or
non-entity.

The exhaustive model represents all possible re-
gions based on maximum entity length and clas-
sify all of them. The overall number of classifi-
cations for each sentence in the exhaustive model
is in O(lmn), where l is a total number of words
in the sentence, m is the maximum entity length
and n is the total number of possible entity types.
Finkel and Manning (2009) and Alex et al. (2007)
proposed featured-based approaches for handling
nested NER. The time complexity of their mod-
els are expensive, i.e., cubic in the number of the
words in the sentence. The exhaustive approach is
fast since we run the LSTM once and the classifi-
cations can be performed in parallel on the combi-
nations created from the LSTM outputs.

The exhaustive model classify each region inde-
pendently unlike word-level taggers. This makes
the model flexible so that it can incorporate
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Figure 1: Architecture of the proposed neural exhaustive model. The model considers all possible regions
up to a maximum size, but we depict here only a small subset for brevity. “IL-2”, “IL-2 receptor”, “IL-2
receptor (IL-2R) alpha”, and “IL-2 receptor (IL-2R) alpha chain gene” are nested entities.

phrase-level dictionary information directly and
we can tune biases for each type unlike CRF. We
leave this evaluation to our future work.

3 Experimental Settings

We evaluated our exhaustive model on GE-
NIA1 (Kim et al., 2003) and JNLPBA2 (Kim et al.,
2004) datasets to provide empirical evidence for
the effectiveness of our model both in nested and
flat NER. Table 1 shows the statistics of GENIA
dataset.

Our model was implemented in Chainer3 deep
learning framework. We employed pre-trained
word embeddings that were trained on MEDLINE
abstracts (Chiu et al., 2016), which included 200-
dimensional embeddings of 2,231,686 vocabulary.
We used ADAM (Kingma and Ba., 2015) for
learning with a mini-batch size of 100. We used
the same hyper-parameters in all the experiments;
we set the dimension of word embedding to 200,
the dimension of character embedding to 25, the
hidden layer size to 200, the gradient clipping to
5, and the ADAM hyper-parameters to its default
values (Kingma and Ba., 2015).

1http://www.geniaproject.org/
genia-corpus/term-corpus

2http://www.nactem.ac.uk/tsujii/GENIA/
ERtask/report.html

3https://chainer.org/

Item Train Dev Test
Documents 1,599 189 212
Sentences 15,022 1,669 1,855
Split(%) 81 9 10
DNA 7,921 1061 1,283
RNA 730 140 117-
protein 29,032 2,338 3,098
cell line 3,149 340 460
cell type 6,021 563 617
outermost entity 42,462 4,020 4,942
nested level 4 3 3
entity avg. length 2.87 3.13 2.93
multi-token entity 33951 3554 4203
overall nested entity 8301 803 1202
overall entity 46,853 4,442 5,575

Table 1: Statistics of GENIA

To deeply understand the model parameters, we
compared the models in different regions. We
chose the maximum region size from 3, 6, 8 and
10. We also employed different region repre-
sentation. We tried only the boundary represen-
tation (boundary), only the inside representation
(inside), and our region representation (bound-
ary+inside).

We employed precision, recall, and F-score to
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Model P(%) R(%) F(%)
Exhaustive Model 93.2 64.0 77.1
Ju et al. (2018) 78.5 71.3 74.7
Katiyar and Cardie 76.7 71.1 73.8
Muis and Lu (2017) 75.4 66.8 70.8
Lu and Roth (2015) 72.5 65.2 68.7
Finkel and Manning 75.4 65.9 70.3

Table 2: Performance comparison of the state-of-
the-art nested NER models on the test dataset.

Entity Level P(%) R(%) F(%)
Single-token 91.6 58.4 69.9
Multi-token 95.9 65.8 77.9
Top Level 92.7 69.8 79.3
Nested 94.3 59.3 72.7
All entities 93.2 64.0 77.1

Table 3: Performances of our model on different
entity level on the test dataset.

evaluate our model. We also compared the perfor-
mances for single-token v.s. multi-token entities
and top-level v.s. nested entities.

4 Results and Discussions

4.1 Nested NER

Table 2 shows the comparison of our model with
several previous state-of-the nested NER models
on the test dataset. Our model outperforms the
state-of-the-art models in terms of F-score. Our
results on Table 2 is based on bidirectional LSTM
with character embeddings and the maximum re-
gion size is 10.

Table 3 describes the performances of our
model on different entity levels on the test dataset.
The model performs well on multi-token and top-
level entities. This is interesting because they are
often considered difficult for sequential labeling
models.

Table 4 shows the performances on the five
entity types on the test dataset. We here show
the performance by Finkel and Manning (2009)
(F&M) for the reference. Our system performs
better than their model except for the RNA type.

4.2 Ablation Tests

We show the differences in the performance on the
development dataset to compare the possible sce-
narios of the proposed approach and to report the

Label P(%) R(%) F(%) F&M F(%)
DNA 92.6 58.7 71.8 65.2
RNA 98.8 57.1 72.4 74.7
cell line 94.6 53.1 67.9 64.0
cell type 88.4 70.0 78.1 67.1
protein 94.1 70.8 80.8 73.8

Table 4: Categorical performances on the GENIA
test dataset.

Region Ratio(%) P(%) R(%) F(%)
size = 3 89.6 92.9 69.8 79.5
size = 6 98.9 93.6 66.7 77.5
size = 8 99.4 93.7 66.5 77.6
size = 10 100 93.5 67.6 78.2

Table 5: Performance of our model with differ-
ent maximum region sizes on the development
dataset. Ratio refers to the coverage ratio of en-
tity mentions.

Setting P(%) R(%) F(%)
Bi-LSTM 94.1 65.7 77.1
Bi-LSTM + Character? 93.5 67.6 78.2
Boundary? 94.1 54.3 68.5
Inside? 93.2 46.4 61.2
Boundary+Inside? 93.5 67.6 78.2

Table 6: Performance of our model with different
model architectures on the development dataset. ?

indicates results using character embeddings.

Label P(%) R(%) F(%)
DNA 95.2 56.8 71.4
RNA 96.1 61.4 75.2
cell line 86.2 44.1 58.8
cell type 96.7 61.5 75.3
protein 97.1 72.2 82.6
overall 96.4 66.8 78.4

Table 7: Categorical and overall performances of
the JNLPBA test dataset.

importance of each component in our exhaustive
model.

Table 5 shows the coverage ratio and the per-
formance with different maximum region sizes.
Since the average entity mention length of GE-
NIA dataset is less than 4, the system can cover
almost all the entities for the maximum sizes of
6 or more. The longer maximum region size is
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desirable to cover all the mentions, but it requires
more computational costs. Fortunately, the per-
formance did not degrade with the long maximum
region size, despite the fact that it introduces more
out-of-entity regions.

Ablations on character embeddings in Table 6
also show the importance of character embed-
dings. It also shows that both the boundary infor-
mation and the inside information, i.e., average of
the embeddings in a region, are necessary to im-
prove the performance.

4.3 Flat NER

We evaluated our model on JNLPBA as a flat
dataset, where nested and discontinuous entities
are removed. Table 7 shows the performances of
our model on JNLPBA dataset. We compared our
result with the state-of-the-art result of Gridach
(2017) which achieved 75.8% in F-score, where
our model obtained 78.4% in terms of F-score.

5 Related Work

Interests in nested NER detection have increased
in recent years, but it is still the case that NER
models deals with only one flat level at a time.
Zhou et al. (2004) detected nested entities in a
bottom-up way. They detected the innermost flat
entities and then found other NEs containing the
flat entities as substrings using rules derived from
the detected entities. The authors reported an
improvement of around 3% in the F-score un-
der certain conditions on the GENIA corpus (Col-
lier et al., 1999). Katiyar and Cardie (2018) pro-
posed a neural network-based approach that learns
hypergraph representation for nested entities us-
ing features extracted from a recurrent neural net-
work (RNN). The authors reported that the model
outperformed the existing state-of-the-art feature-
based approaches.

Recent studies show that the conditional ran-
dom fields (CRFs) can significantly produce
higher tagging accuracy in flat (Athavale et al.,
2016) or nested (stacking flat NER to nested rep-
resentation) (Son and Minh, 2017) NERs. Ju
et al. (2018) proposed a novel neural model to ad-
dress nested entities by dynamically stacking flat
NER layers until no outer entities are extracted.
A cascaded CRF layer is used after the LSTM
output in each flat layer. The authors reported
that the model outperforms state-of-the-art results
by achieving 74.5% in terms of F-score. Finkel

and Manning (2009) proposed a tree-based rep-
resentation to represent each sentence as a con-
stituency tree of nested entities. All entities were
treated as phrases and represented as subtrees fol-
lowing the whole tree structure and used a CRF-
based approach driven by entity-level features to
detect nested entities. We demonstrate that the
performance can be improved significantly with-
out CRFs, by training an exhaustive neural model
that learns which regions are entity mentions and
how to best classify the regions.

6 Conclusion

This paper presented a neural exhaustive model
that considers all possible regions exhaustively for
nested NER. The model obtains the representation
of each region from an underlying shared LSTM
layer, and it represents the region by concatenat-
ing boundary representations of the region and in-
side representation that averages embeddings of
words in the region. It then classifies the region
into its entity type or non-entity. The model does
not depend on any external NLP tools. In the ex-
periment, we show that our model learns to detect
nested named entities from the generated mention
candidates of all possible regions. Our exhaustive
model outperformed existing models with a sig-
nificant margin in terms of F-score in both flat and
nested NER.

For future work, we would like to investigate the
use of region-level information. We also consider
modeling the dependencies between regions.
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Abstract

Conventional wisdom is that hand-crafted fea-
tures are redundant for deep learning mod-
els, as they already learn adequate represen-
tations of text automatically from corpora. In
this work, we test this claim by proposing a
new method for exploiting handcrafted fea-
tures as part of a novel hybrid learning ap-
proach, incorporating a feature auto-encoder
loss component. We evaluate on the task of
named entity recognition (NER), where we
show that including manual features for part-
of-speech, word shapes and gazetteers can im-
prove the performance of a neural CRF model.
We obtain a F1 of 91.89 for the CoNLL-2003
English shared task, which significantly out-
performs a collection of highly competitive
baseline models. We also present an abla-
tion study showing the importance of auto-
encoding, over using features as either inputs
or outputs alone, and moreover, show includ-
ing the autoencoder components reduces train-
ing requirements to 60%, while retaining the
same predictive accuracy.

1 Introduction

Deep neural networks have been proven to be a
powerful framework for natural language process-
ing, and have demonstrated strong performance on
a number of challenging tasks, ranging from ma-
chine translation (Cho et al., 2014b,a), to text cat-
egorisation (Zhang et al., 2015; Joulin et al., 2017;
Liu et al., 2018b). Not only do such deep models
outperform traditional machine learning methods,
they also come with the benefit of not requiring
difficult feature engineering. For instance, both
Lample et al. (2016) and Ma and Hovy (2016)
propose end-to-end models for sequence labelling
task and achieve state-of-the-art results.

⇤https://github.com/minghao-wu/CRF-AE
†Work carried out at The University of Melbourne

Orthogonal to the advances in deep learning is
the effort spent on feature engineering. A rep-
resentative example is the task of named entity
recognition (NER), one that requires both lexi-
cal and syntactic knowledge, where, until recently,
most models heavily rely on statistical sequential
labelling models taking in manually engineered
features (Florian et al., 2003; Chieu and Ng, 2002;
Ando and Zhang, 2005). Typical features include
POS and chunk tags, prefixes and suffixes, and ex-
ternal gazetteers, all of which represent years of
accumulated knowledge in the field of computa-
tional linguistics.

The work of Collobert et al. (2011) started
the trend of feature engineering-free modelling
by learning internal representations of compo-
sitional components of text (e.g., word embed-
dings). Subsequent work has shown impressive
progress through capturing syntactic and semantic
knowledge with dense real-valued vectors trained
on large unannotated corpora (Mikolov et al.,
2013a,b; Pennington et al., 2014). Enabled by
the powerful representational capacity of such em-
beddings and neural networks, feature engineering
has largely been replaced with taking off-the-shelf
pre-trained word embeddings as input, thereby
making models fully end-to-end and the research
focus has shifted to neural network architecture
engineering.

More recently, there has been increasing recog-
nition of the utility of linguistic features (Li et al.,
2017; Chen et al., 2017; Wu et al., 2017; Liu et al.,
2018a) where such features are integrated to im-
prove model performance. Inspired by this, tak-
ing NER as a case study, we investigate the util-
ity of hand-crafted features in deep learning mod-
els, challenging conventional wisdom in an at-
tempt to refute the utility of manually-engineered
features. Of particular interest to this paper is
the work by Ma and Hovy (2016) where they
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Figure 1: Main architecture of our neural network.
Character representations are extracted by a character-
level CNN. The dash line indicates we use an auto-
encoder loss to reconstruct hand-crafted features.

introduce a strong end-to-end model combining
a bi-directional Long Short-Term Memory (Bi-
LSTM) network with Convolutional Neural Net-
work (CNN) character encoding in a Conditional
Random Field (CRF). Their model is highly capa-
ble of capturing not only word- but also character-
level features. We extend this model by integrating
an auto-encoder loss, allowing the model to take
hand-crafted features as input and re-construct
them as output, and show that, even with such a
highly competitive model, incorporating linguistic
features is still beneficial. Perhaps the closest to
this study is the works by Ammar et al. (2014) and
Zhang et al. (2017), who show how CRFs can be
framed as auto-encoders in unsupervised or semi-
supervised settings.

With our proposed model, we achieve strong
performance on the CoNLL 2003 English NER
shared task with an F1 of 91.89, significantly out-
performing an array of competitive baselines. We
conduct an ablation study to better understand the
impacts of each manually-crafted feature. Finally,
we further provide an in-depth analysis of model
performance when trained with varying amount of
data and show that the proposed model is highly
competent with only 60% of the training set.

2 Methodology

In this section, we first outline the model archi-
tecture, then the manually crafted features, and fi-
nally how they are incorporated into the model.

2.1 Model Architecture

We build on a highly competitive sequence la-
belling model, namely Bi-LSTM-CNN-CRF, first

introduced by Ma and Hovy (2016). Given an in-
put sequence of x = {x1, x2, . . . , xT } of length
T , the model is capable of tagging each input with
a predicted label ŷ, resulting in a sequence of ŷ =
{ŷ1, ŷ2, . . . , ŷT } closely matching the gold label
sequence y = {y1, y2, . . . , yT }. Here, we extend
the model by incorporating an auto-encoder loss
taking hand-crafted features as in/output, thereby
forcing the model to preserve crucial information
stored in such features and allowing us to eval-
uate the impacts of each feature on model per-
formance. Specifically, our model, referred to
as Neural-CRF+AE, consists of four major com-
ponents: (1) a character-level CNN (char-CNN);
(2) a word-level bi-directional LSTM (Bi-LSTM);
(3) a conditional random field (CRF); and (4) an
auto-encoder auxiliary loss. An illustration of the
model architecture is presented in Figure 1.

Char-CNN. Previous studies (Santos and
Zadrozny, 2014; Chiu and Nichols, 2016; Ma
and Hovy, 2016) have demonstrated that CNNs
are highly capable of capturing character-level
features. Here, our character-level CNN is similar
to that used in Ma and Hovy (2016) but differs in
that we use a ReLU activation (Nair and Hinton,
2010).1

Bi-LSTM. We use a Bi-LSTM to learn contex-
tual information of a sequence of words. As in-
puts to the Bi-LSTM, we first concatenate the
pre-trained embedding of each word wi with its
character-level representation cwi (the output of
the char-CNN) and a vector of manually crafted
features fi (described in Section 2.2):

�!
h i =

����!
LSTM(

�!
h i�1, [wi; cwi ; fi]) (1)

 �
h i =

 ����
LSTM(

 �
h i+1, [wi; cwi ; fi]) , (2)

where [; ] denotes concatenation. The outputs of
the forward and backward pass of the Bi-LSTM
is then concatenated hi = [

�!
h i;
 �
h i] to form the

output of the Bi-LSTM, where dropout is also ap-
plied.

CRF. For sequence labelling tasks, it is intuitive
and beneficial to utilise information carried be-
tween neighbouring labels to predict the best se-
quence of labels for a given sentence. Therefore,

1While the hyperbolic tangent activation function results
in comparable performance, the choice of ReLU is mainly
due to faster convergence.
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x U.N. official Ekeus heads for Baghdad .

POS NNP NN NNP VBZ IN NNP .
Word shape X.X. xxxx Xxxxx xxxx xxx Xxxxx .
Dependency tags compound compound compound ROOT prep pobj punct
Gazetteer O O PER O O LOC O

y B-ORG O B-PER O O B-LOC O

Table 1: Example sentence (top), showing the different types of linguistic features used in this work as additional
inputs and auxiliary outputs (middle), and its labelling (bottom).

we employ a conditional random field layer (Laf-
ferty et al., 2001) taking as input the output of
the Bi-LSTM hi. Training is carried out by max-
imising the log probability of the gold sequence:
LCRF = log p(y|x) while decoding can be effi-
ciently performed with the Viterbi algorithm.

Auto-encoder loss. Alongside sequence la-
belling as the primary task, we also deploy, as aux-
iliary tasks, three auto-encoders for reconstruct-
ing the hand-engineered feature vectors. To this
end, we add multiple independent fully-connected
dense layers, all taking as input the Bi-LSTM out-
put hi with each responsible for reconstructing a
particular type of feature: f̂

t
i = �(W t

hi) where
� is the sigmoid activation function, t denotes the
type of feature, and W

t is a trainable parameter
matrix. More formally, we define the auto-encoder
loss as:

Lt
AE =

TX

i=0

XEntropy(f t
i , f̂

t
i ) . (3)

Model training. Training is carried out by opti-
mising the joint loss:

L = LCRF +
X

t

�tLt
AE , (4)

where, in addition to LCRF , we also add the auto-
encoder loss, weighted by �t. In all our experi-
ments, we set �t to 1 for all ts.

2.2 Hand-crafted Features
We consider three categories of widely used fea-
tures: (1) POS tags; (2) word shape; and (3)
gazetteers and present an example in Table 1.
While POS tags carry syntactic information re-
garding sentence structure, the word shape feature
focuses on a more fine-grained level, encoding
character-level knowledge to complement the loss
of information caused by embedding lookup, such
as capitalisation. Both features are based on the
implementation of spaCy.2 For the gazetteer fea-

2https://spacy.io/

ture, we focus on PERSON and LOCATION and
compile a list for each. The PERSON gazetteer
is collected from U.S. census 2000, U.S. cen-
sus 2010 and DBpedia whereas GeoNames is the
main source for LOCATION, taking in both of-
ficial and alternative names. All the tokens on
both lists are then filtered to exclude frequently
occurring common words.3 Each category is con-
verted into a one-hot sparse feature vector f

t
i and

then concatenated to form a multi-hot vector fi =
[fPOS

i ; f shape
i ; f gazetteer

i ] for the i-th word. In addi-
tion, we also experimented with including the la-
bel of the incoming dependency edge to each word
as a feature, but observed performance deteriora-
tion on the development set. While we still study
and analyse the impacts of this feature in Table 3
and Section 3.2, it is excluded from our model
configuration (not considered as part of fi unless
indicated otherwise).

3 Experiments

In this section, we present our experimental setup
and results for name entity recognition over the
CoNLL 2003 English NER shared task dataset
(Tjong Kim Sang and De Meulder, 2003).

3.1 Experimental Setup

Dataset. We use the CoNLL 2003 NER shared
task dataset, consisting of 14,041/3,250/3,453 sen-
tences in the training/development/test set respec-
tively, all extracted from Reuters news articles dur-
ing the period from 1996 to 1997. The dataset
is annotated with four categories of name en-
tities: PERSON, LOCATION, ORGANIZATION
and MISC. We use the IOBES tagging scheme, as
previous study have shown that this scheme pro-
vides a modest improvement to the model per-
formance (Ratinov and Roth, 2009; Chiu and
Nichols, 2016; Lample et al., 2016; Ma and Hovy,
2016).

3Gazetteer data is included in the code release.
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Model configuration. Following the work of
Ma and Hovy (2016), we initialise word embed-
dings with GloVe (Pennington et al., 2014) (300-
dimensional, trained on a 6B-token corpus). Char-
acter embeddings are 30-dimensional and ran-
domly initialised with a uniform distribution in
the range [�

q
3

dim , +
q

3
dim ]. Parameters are opti-

mised with stochastic gradient descent (SGD) with
an initial learning rate of ⌘ = 0.015 and momen-
tum of 0.9. Exponential learning rate decay is ap-
plied every 5 epochs with a factor of 0.8. To re-
duce the impact of exploding gradients, we em-
ploy gradient clipping at 5.0 (Pascanu et al., 2013).

We train our models on a single GeForce GTX
TITAN X GPU. With the above hyper-parameter
setting, training takes approximately 8 hours for a
full run of 40 epochs.

Evaluation. We measure model performance
with the official CoNLL evaluation script and re-
port span-level named entity F-score on the test set
using early stopping based on the performance on
the validation set. We report average F-scores and
standard deviation over 5 runs for our model.

Baseline. In addition to reporting a number of
prior results of competitive baseline models, as
listed in Table 2, we also re-implement the Bi-
LSTM-CNN-CRF model by Ma and Hovy (2016)
(referred to as Neural-CRF in Table 2) and report
its average performance.

3.2 Results
The experimental results are presented in Table 2.
Observe that Neural-CRF+AE, trained either on
the training set only or with the addition of the de-
velopment set, achieves substantial improvements
in F-score in both settings, superior to all but one
of the benchmark models, highlighting the utility
of hand-crafted features incorporated with the pro-
posed auto-encoder loss. Compared against the
Neural-CRF, a very strong model in itself, our
model significantly improves performance, show-
ing the positive impact of our technique for ex-
ploiting manually-engineered features. Although
Peters et al. (2018) report a higher F-score using
their ELMo embedding technique, our approach
here is orthogonal, and accordingly we would ex-
pect a performance increase if we were to incor-
porate their ELMo representations into our model.

Ablation Study To gain a better understanding
of the impacts of each feature, we perform an ab-

Model F1

Chieu and Ng (2002) 88.31
Florian et al. (2003) 88.76
Ando and Zhang (2005) 89.31
Collobert et al. (2011) 89.59
Huang et al. (2015) 90.10
Passos et al. (2014) 90.90
Lample et al. (2016) 90.94
Luo et al. (2015) 91.20
Ma and Hovy (2016) 91.21
Yang et al. (2017) 91.62
Peters et al. (2018) 90.15
Peters et al. (2018)+ELMo 92.22 (± 0.10)
Neural-CRF‡ 91.06 (± 0.18)
Neural-CRF+AE‡⇤ 91.89 (± 0.23)

Ratinov and Roth (2009)† 90.80
Chiu and Nichols (2016)† 91.62
Neural-CRF+AE† ‡ 92.29 (± 0.20)

Table 2: NER Performance on the CoNLL 2003 En-
glish NER shared task test set. Bold highlights best
performance. † marks models trained on both the train-
ing and development sets. ‡ indicates average perfor-
mance over 5 runs. ⇤ indicates statistical significance
on the test set against Neural-CRF by two-sample Stu-
dent’s t-test at level ↵ = 0.05.

lation study and present the results in Table 3.
We observe performance degradation when elim-
inating POS, word shape and gazetteer features,
showing that each feature contributes to NER per-
formance beyond what is learned through deep
learning alone. Interestingly, the contribution of
gazetteers is much less than that of the other fea-
tures, which is likely due to the noise introduced in
the matching process, with many incorrectly iden-
tified false positives.

Including features based on dependency tags
into our model decreases the performance slightly.
This might be a result of our simple implemen-
tation (as illustrated in Table 1), which does not
include dependency direction, nor parent-child re-
lationships.

Next, we investigate the impact of different
means of incorporating manually-engineered fea-
tures into the model. To this end, we experi-
ment with three configurations with features as:
(1) input only; (2) output only (equivalent to
multi-task learning); and (3) both input and out-
put (Neural-CRF+AE) and present the results in
Table 4. Simply using features as either input or
output only improves model performance slightly,
but insignificantly so. It is only when features are
incorporated with the proposed auto-encoder loss
do we observe a significant performance boost.
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Model Dev F1 Test F1

Neural-CRF+AE 94.87 (± 0.21) 91.89 (± 0.23)
� POS tagging⇤ 94.78 (± 0.17) 91.30 (± 0.28)
� word shape⇤ 94.83 (± 0.31) 91.36 (± 0.30)
� gazetteer 94.85 (± 0.20) 91.80 (± 0.19)
+ dependencies 94.74 (± 0.16) 91.66 (± 0.18)

Table 3: Ablation study. Average performance over 5
runs with standard deviation. + and � denote adding
and removing a particular feature (to/from Neural-
CRF+AE trained on the training set only with POS tag-
ging, word shape and gazetteer features). ⇤ indicates
statistical significance on the test set against Neural-
CRF+AE by two-sample Student’s t-test at level ↵ =
0.05. Note that in this table, ⇤ measures the drop in
performance.

Model Dev F1 Test F1

Neural-CRF 94.53 (± 0.21) 91.06 (± 0.18)
+ input 94.63 (± 0.23) 91.17 (± 0.25)
+ output 94.69 (± 0.22) 91.23 (± 0.19)
+ input & output⇤ 94.87 (± 0.21) 91.89 (± 0.23)

Table 4: Average performance of Neural-CRF with dif-
ferent features configurations over 5 runs with stan-
dard deviation. Note that + input & output = Neural-
CRF+AE. ⇤ indicates statistical significance on the test
set against Neural-CRF by two-sample Student’s t-test
at level ↵ = 0.05.

Training Requirements Neural systems typi-
cally require a large amount of annotated data.
Here we measure the impact of training with vary-
ing amount of annotated data, as shown in Fig-
ure 2. Wtih the proposed model architecture, the
amount of labelled training data can be drastically
reduced: our model, achieves comparable perfor-
mance against the baseline Neural-CRF, with as
little as 60% of the training data. Moreover, as
we increase the amount of training text, the perfor-
mance of Neural-CRF+AE continues to improve.

Hyperparameters Three extra hyperparameters
are introduced into our model, controlling the
weight of the autoencoder loss relative to the CRF
loss, for each feature type. Figure 3 shows the ef-
fect of each hyperparameter on test performance.
Observe that setting �i = 1 gives strong perfor-
mance, and that the impact of the gazetteer is less
marked than the other two feature types. While in-
creasing � is mostly beneficial, performance drops
if the �s are overly large, that is, the auto-encoder
loss overwhelms the main prediction task.
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Neural-CRF+AE
Baseline

Figure 2: Comparing the Neural-CRF+AE (red solid
line) trained with varying amounts of data vs. a Neural-
CRF baseline (blue dashed line), trained on the full
training set. Performance averaged over 5 runs, and
error bars show ± 1 std.dev.
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Figure 3: Effect of hyperparameter values on model
performance. Each curve shows the effect of �i, for
feature type i, with all other �j = 1, j 6= i. Perfor-
mance averaged over 5 runs, and error bars show ± 1
variance.

4 Conclusion

In this paper, we set out to investigate the utility
of hand-crafted features. To this end, we have
presented a hybrid neural architecture to validate
this hypothesis extending a Bi-LSTM-CNN-CRF
by incorporating an auto-encoder loss to take man-
ual features as input and then reconstruct them. On
the task of named entity recognition, we show sig-
nificant improvements over a collection of com-
petitive baselines, verifying the value of such fea-
tures. Lastly, the method presented in this work
can also be easily applied to other tasks and mod-
els, where hand-engineered features provide key
insights about the data.
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Abstract

Pre-trained word embeddings and language
model have been shown useful in a lot of tasks.
However, both of them cannot directly cap-
ture word connections in a sentence, which
is important for dependency parsing given its
goal is to establish dependency relations be-
tween words. In this paper, we propose to im-
plicitly capture word connections from unla-
beled data by a word ordering model with self-
attention mechanism. Experiments show that
these implicit word connections do improve
our parsing model. Furthermore, by combin-
ing with a pre-trained language model, our
model gets state-of-the-art performance on the
English PTB dataset, achieving 96.35% UAS
and 95.25% LAS.

1 Introduction

Dependency parsing is a fundamental task for lan-
guage processing which aims to establish syntac-
tic relations between words in a sentence. Graph-
based models (McDonald et al., 2005; McDon-
ald and Pereira, 2006; Carreras, 2007; Koo and
Collins, 2010) and transition-based models (Nivre,
2008; Zhang and Nivre, 2011) are the most suc-
cessful solutions to the challenge.

Recently, neural network methods have been
successfully introduced into dependency parsing.
Deep feed-forward neural network models (Chen
and Manning, 2014; Pei et al., 2015; Weiss et al.,
2015) are proposed firstly. It alleviates the heavy
burden of feature engineering. LSTM networks
(Hochreiter and Schmidhuber, 1997) are then ap-
plied to dependency parsing (Dyer et al., 2015;
Cross and Huang, 2016; Wang and Chang, 2016;
Kiperwasser and Goldberg, 2016; Dozat and Man-
ning, 2016) due to its ability to capture contextual
information. Generative neural network models
(Dyer et al., 2016; Smith et al., 2017; Choe and

Charniak, 2016) also show promising parsing per-
formance.

Different from Machine Translation task where
massive sets of labeled data could be easily ob-
tained, parsing performance is limited by the rel-
atively small size of available treebank. Vinyals
et al. (2015) and Weiss et al. (2015) adopt an ap-
proach of tri-training to augment the labeled data.
They generate large quantities of parse trees by
parsing unlabeled data with two existing parsers
and selecting only the sentences for which the two
parsers produced the same trees. However, the
trees produced this way have noise1 and tend to
be short sentences, since it is easier for different
parsers to get consistent results.

Pre-trained neural networks are another meth-
ods to take advantage of unlabeled data. Pre-
trained word embeddings (Mikolov et al., 2013)
and language model (Józefowicz et al., 2016; Pe-
ters et al., 2017, 2018) have been shown useful
in modelling NLP tasks since word embeddings
could capture word semantic information and lan-
guage model could capture contextual information
at the sentence level. However, connections be-
tween words in the sentence cannot be directly
captured by word embeddings or language model,
which are crucial for dependency parsing given
its goal is to establish dependency relations be-
tween words. In this paper, we propose to im-
plicitly model word connections by a word or-
dering model. The purpose of word ordering
model is to generate a well-formed sentence given
a bag of words. We human could make sentences
easily from unordered words since we have syn-
tactic knowledge, thus a model generating well-
formed sentences from the bag of words encodes
syntactic information. In addition, word order-
ing task allows us to use self-attention mechanism

1The tri-training approach accuracy on the tune set is
97.26% UAS (Weiss et al., 2015).
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to model connections between words in the sen-
tence. Different from the tri-training approach, our
approach takes advantage of implicit word con-
nections learned by self-attended word ordering
model in an unsupervised way.

Experiments show that pre-trained word or-
dering model significantly improves our depen-
dency parsing model. Ablation tests also show
self-attention mechanism is critical. Moreover,
by combining word ordering model and lan-
guage model, our graph-based dependency pars-
ing model achieves SOTA performance on the En-
glish Penn Treebank (Marcus et al., 1993) with
96.35% UAS and 95.25% LAS.

eating He likesapples

LSTM LSTM LSTM

A bag of words

Self-attention

<BOS> He

Encoder layer

Softmax Softmax Softmax

He likes eating

Decoder layer
Output embeddings
for the bag of words

Average of word 
embeddings

likes

Figure 1: Overview of our word ordering model.

2 Neural Word Ordering Model

The target of word ordering is to generate a well-
formed sentence given a bag of words. To cap-
ture word connections implicated in the sentence,
an LSTM-based word ordering model with self-
attention is proposed. Self-attention mechanism
effectively decides which words in the word bag
are more important in generating the next word. It
improves the ability of our model to capture word
connections. As illustrated in Figure 1, the pro-
posed word ordering model consists of two layers:

Encoder Layer
Given a bag of words w1, w2, ..., wn, we encode
each word by a character-level BiLSTM (cwo

w1:n
),

which could reduce the parameters used in our
model compared with word embeddings. For
the input word of current time-step (wi), a self-
attention layer is utilized to align the word with its

related words, producing its self-attended vector
(sawo

wi
) as following:

si
j = vTReLU(W sa[cwo

wi
; cwo

wj
]) (1)

ai
t = exp(si

t)/⌃n
j=1exp(si

j) (2)

sawo
wi

= ⌃n
j=1a

i
jc

wo
wj

(3)

The scores si
1:n in self-attention explicitly repre-

sent the connections between words.
We then concatenate the character-level word

embedding (cwo
wi

) and its self-attended vector
(sawo

wi
):

xwo
i = [cwo

wi
; sawo

wi
] (4)

xwo
i is fed into the decoder layer to generate the

next word.

Decoder Layer
Given the current input vector (xwo

i ), which con-
tains current word information and weighted infor-
mation of related words, a forward LSTM is used
to generate the next word. We initialize the for-
ward LSTM with an average of the input word em-
beddings (cwo

wi:n
). A virtual token hBOSi is added

as the input of the first LSTM time-step:

�!
h wo

i = LSTM(xwo
i ,
�!
h wo

i�1) (5)

At each time-step, the hidden state
�!
h wo

i is utilized
to predict the next word. Due to the output vocab-
ulary is limited in the bag of words, we just com-
pute scores for the given words (w1:n):

soi
j = vTReLU(W o[

�!
h wo

i ; cdwo
wj

])+
�!
h wo

i

T
Mwdwo

wj

(6)

To reduce the parameters, each output word is
represented by a character-level BiLSTM embed-
ding (cdwo

wj
) and a low-dimensional word embed-

ding2 (wdwo
wj

). M is a matrix projecting a low-
dimensional embedding back up to the dimension-
ality of LSTM hidden states. The scores soi

1:n are
then normalized with Softmax, and the word with
max probability is chosen as the next token.

The word ordering model could be trained eas-
ily in an unsupervised manner. Given a large set of
unlabeled sentences, we can just ignore the word

2Character-level representations lack the capacity to dif-
ferentiate between words that have very different meanings
but that are spelled similarly. Low-dimensional word embed-
dings are added to improve the ability.
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order of sentence and train the model to gener-
ate the corresponding well-formed sentence in the
training set. To be specific, we minimize the sum
of negative log probabilities of the ground truth
words on the unlabeled data set. Different from
language model, the choice for each decoder step
is limited in the bag of words. Moreover, self-
attention can be introduced into the word order-
ing model since we have known the bag of words,
which could capture the dependency connections
between words. We also pre-train a backward
word ordering model to generate sentences in re-
verse order. The forward and backward models
share character-level BiLSTM embeddings, self-
attention layer, and Softmax layer.

Different from previous word ordering mod-
els (Liu et al., 2015; Schmaltz et al., 2016), self-
attention mechanism is introduced into our model
to capture word connections. Moreover, our more
important goal is to implicitly utilize large-scale
unlabeled data to help dependency parsing.

3 Neural Graph-based Parsing Model

We implement an LSTM-based neural network
model as our graph-based dependency parsing
baseline, which is similar to (Kiperwasser and
Goldberg, 2016; Wang and Chang, 2016). As
shown in the Figure 2, it consists of three layers:

Input vectors

He …

LSTM LSTM

likes eating

LSTM

H D H D H D

(𝑆𝑐𝑜𝑟𝑒𝑎𝑟𝑐, 𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑏𝑒𝑙)

Concat

Highway 
networks

for head&dep

Dependent representations

Encoder layer

Output scores

Head representations

Concat Concat

Word Char WOPOS Word Char WOPOS Word Char WOPOS

Figure 2: Overview of neural graph-based dependency
parsing model. WO represents pre-trained vectors from
word ordering model.

Input Layer
Given a n-words input sentence s with words
w1, w2, ..., wn and its POS tags p1, p2, ..., pn. The
input layer creates a sequence of input vectors

x1:n in which each xi is a concatenation of its
word embedding (ewi), POS tag embedding (epi),
character-level BiLSTM embedding (cwi), and
word ordering model pre-trained vector (wowi):

xi = [ewi ; epi ; cwi ; wowi ] (7)

To get the word ordering model pre-trained vec-
tor (wowi), the sentence s is fed into the pre-
trained word ordering model. Following Peters
et al. (2018), we then combine the input vector
(xwo

i =[cwo
wi

; sawo
wi

]) and L-layer BiLSTM vectors
(hwo

i,j =[
�!
h wo

i,j ;
 �
h wo

i,j ] | j=1, 2, ..., L) by a Softmax-
normalized weight (Wwoc) and a scalar parameter
(�):

wowi = �(Wwoc
0 xwo

i +⌃L
j=1W

woc
j hwo

i,j ) (8)

The parameters of word ordering model are fixed
during the training of parsing model. However,
the weight and scalar parameters are tuned to bet-
ter adapt to it. The combined output wowi contains
word connections from self-attention, word infor-
mation from character-level embedding and con-
textual information from LSTM.

Encoder & Output Layer
To introduce more contextual information, we en-
code each input element by deep BiLSTMs:

vi = BiLSTM(x1:n, i) (9)

Two different highway networks (Srivastava et al.,
2015) are then used to encode head word repre-
sentations (vhead

1:n ) and dependent word represen-
tations (vdep

1:n ). For a head-dependent dependency
pair (wh, wd), the dependency arc and label score
are computed by two MLP networks:

ih,d = [vhead
h ; vdep

d ; vhead
h � vdep

d ] (10)
sarc
h,d = W arc

1 ReLU(W arc
2 ih,d) (11)

slabel
h,d = W label

1 ReLU(W label
2 ih,d) (12)

We use the Max-Margin criterion to train our
parsing model, which is the same as (Kiperwasser
and Goldberg, 2016; Wang and Chang, 2016).

4 Experiments

4.1 Datasets
We conduct experiments on the English Penn
Treebank and the CoNLL 09 English dataset. For
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Method PTB CONLL 09
UAS / LAS UAS / LAS

Bohnet2012 - / - 92.87 / 90.60
Weiss2015 94.26 / 92.41 - / -
Alberti2015 94.23 / 92.36 92.7 / 90.56
Kiperwasser2016 93.9 / 91.9 - / -
Wang2016 94.08 / 91.82 - / -
Andor2016 94.61 / 92.79 93.22 / 91.23
Dozat2016 95.74 / 94.08 95.21 / 93.20
Smith2017 95.8 / 94.6 - / -
Choe2016 95.9 / 94.1 - / -
Baseline 95.12 / 93.98 93.61 / 91.70
Baseline+WO 95.66 / 94.54 94.21 / 92.27
Baseline+LM 96.05 / 94.88 94.50 / 92.70
Baseline+LM&WO 96.35 / 95.25 94.83 / 93.05

Table 1: Results on the English PTB dataset and
CoNLL 09 English dataset. WO represents the pre-
trained word ordering model. LM represents the pre-
trained language model from Peters et al. (2018).

PTB dataset, we follow the standard splits. Us-
ing section 2-21 for training, section 22 as devel-
opment set and 23 as test set. The treebank is
converted to Stanford Basic Dependencies (Marn-
effe et al., 2006) by version 3.3.03 of the Stan-
ford parser. The Stanford POS Tagger (Toutanova
et al., 2003) is used for assigning POS tags. Fol-
lowing previous work, UAS (unlabeled attach-
ment scores) and LAS (labeled attachment scores)
are calculated by excluding punctuation. For the
CoNLL 09 English dataset, we follow the standard
practice and include all punctuation in the evalua-
tion. We pre-train our word ordering model on the
1 billion word benchmark (Chelba et al., 2014).

4.2 Implementation Details
The graph-based dependency parsing model and
word ordering model are optimized with Adam
with an initial learning rate of 2e�3. The �1 and
�2 used in Adam are 0.9 and 0.999 respectively.

The following hyper-parameters are used in all
graph-based dependency parsing models: word
embedding size = 300, POS tag embedding size
= 32, character embedding size = 50, word-level
LSTM hidden vector size = 200, word-level BiL-
STM layer number = 3, character-level LSTM
hidden vector size = 50, character-level BiLSTM
layer number = 2, batch size = 32. We also
apply dropout for the input and each layer with
dropout rate of 0.3. We use pre-trained case-
sensitive GloVe embeddings4 to initialize word
embeddings. These word embeddings are fine

3http://nlp.stanford.edu/software/
lex-parser.shtml

4Downloaded from http://nlp.stanford.edu/

tuned with the graph-based dependency parsing
model. The parameters of pre-trained word or-
dering model are fixed during the training of de-
pendency parsing model. For deep BiLSTM, we
concatenate the outputs of each layer as its final
outputs.

For our word ordering model: input character-
level LSTM hidden vector size = 512, input
character-level BiLSTM layer number = 1, word-
level LSTM hidden vector size = 1024, word-level
LSTM layer number = 2, output character-level
LSTM hidden vector size = 512, output character-
level BiLSTM layer number = 1, output low-
dimensional word embedding size = 64, batch size
= 32, dropout for the input and each layer = 0.5.

4.3 Main Results & Ablation Study

Table 1 shows the performance of our model and
previous work on two English benchmarks. Our
model achieves promising results on both datasets.
Two sets of experiments are provided to show the
effectiveness of pre-trained word ordering model.
Although our baseline system is similar to (Kiper-
wasser and Goldberg, 2016; Wang and Chang,
2016) but with subtle differences in architecture,
the baseline could perform much better to our
surprise and thus constitutes a very strong base-
line. Compared with this baseline, introducing
the pre-trained word ordering model achieves a
significant improvement (almost 0.6% UAS gains
for both datasets, p < 0.001). To further show
the effectiveness of word ordering model, we also
implement an even stronger baseline with pre-
trained language model5. Compared with this
much stronger baseline, incorporating pre-trained
word ordering model still achieves a significant
improvement (0.3% UAS gains for both datasets,
p < 0.01). We attribute the improvement to the
ability of word ordering model to capture word
connections, which cannot be directly captured by
language model. Moreover, by combining with
a pre-trained language model, our model outper-
forms current SOTA model from 95.9% UAS to
96.35% UAS on the PTB dataset. The introduction

data/glove.840B.300d.zip.
5We use the pre-trained language model provided by Pe-

ters et al. (2018), which can be downloaded at http://
allennlp.org/elmo. The pre-trained language model
vectors are added in the input layer, which are included in
the same way as word ordering model. Peters et al. (2018)
found the pre-trained language model works extremely well
in six NLP tasks including QA, SRL, and others, we confirm
its effectiveness in parsing task.
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Model UAS / LAS
Baseline+WO 95.66 / 94.54
-Self-attention vectors 95.38 / 94.27
Baseline+LM&WO 96.35 / 95.25
-Self-attention vectors 96.13 / 94.98

Table 2: Ablation tests of self-attention mechanism on
the PTB dataset.

of POS tag features could contribute about 0.2%
improvement in our experiments. The word order-
ing model could be more helpful without POS tag
features and seem to compensate for the lack of
POS tag features.

To show the importance of self-attention mech-
anism, we do ablation tests on the models with
pre-trained word ordering model vectors. We re-
move self-attention vectors by replacing it with
the character-level representations. As shown
in table 2, self-attention further improves depen-
dency parsing. Word connections modeled by self-
attention are important for dependency parsing.

Figure 3 shows an example of word connec-
tions learned by the model, where we use the solid
line to indicate the word connections learned by
the word-ordering model and dashed line to the
expected dependencies. We can see meaningful
overlap could be observed in the example. The
percentage of overlap between connections and
dependency arcs is over 40% for the sentences less
than 10 words. The differences between connec-
tions and dependency arcs are because that our
word ordering model trained without any super-
vised dependency information. The connections
are actually built to increase the likelihood.

This may sound strangely optimistic .

Figure 3: An example of self-attention. The solid line
denotes the mostly attended word when generating the
next word, dashed line denotes the correct dependency.

5 Conclusion

In this paper, we propose to implicitly capture
word connections from large-scale unlabeled data
by a word ordering model with self-attention. Ex-
periments show these features are helpful for de-
pendency parsing. Moreover, with the help of

word ordering model and language model, our
model achieves SOTA results on the PTB dataset.
As for future work, we are testing on languages
other than English.
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Abstract

This paper presents a simple framework for
characterizing morphological complexity and
how it encodes syntactic information. In par-
ticular, we propose a new measure of morpho-
syntactic complexity in terms of governor-
dependent preferential attachment that ex-
plains parsing performance. Through ex-
periments on dependency parsing with data
from Universal Dependencies (UD), we show
that representations derived from morpholog-
ical attributes deliver important parsing per-
formance improvements over standard word
form embeddings when trained on the same
datasets. We also show that the new morpho-
syntactic complexity measure is predictive of
the gains provided by using morphological at-
tributes over plain forms on parsing scores,
making it a tool to distinguish languages using
morphology as a syntactic marker from others.

1 Introduction
While word embedding has proven a good solution
to reduce data sparsity in parsing (Koo et al., 2008),
treating word forms as atomic units is at odds with
the fact that words have a potentially complex in-
ternal structure. Furthermore, it makes parameters
estimation difficult for morphologically rich lan-
guages (MRL) in which the number of possible
forms a word can take can be very large1.

Recently, researchers have started to work on
morphologically informed word embeddings (Cao
and Rei, 2016; Botha and Blunsom, 2014), aiming
at better capturing both lexical, syntactic and mor-
phological information. But encoding lexicon and
morphology in the same space makes it difficult to
distinguish the role of each in syntactic tasks such

1A typical English noun has 2 forms while a Finnish one
may have more than 30. This shows in data as English lemmas
have 1.39 forms on average while Finnish ones have 2.19, as
measured on UD data (Nivre et al., 2016).

as dependency parsing. Furthermore, morpholog-
ically rich languages for which we hope to see a
real impact from those morphologically aware rep-
resentations, might not all rely to the same extent
on morphology for syntax encoding. Some might
benefit mostly from reducing data sparsity while
others, for which paradigm richness correlate with
freer word order (Comrie, 1981), will also benefit
from morphological information encoding.

This paper aims at characterizing the role of
morphology as a syntax encoding device for vari-
ous languages. Using simple word representations,
we measure the impact of morphological informa-
tion on dependency parsing and relate it to two
measures of language morphological complexity:
the basic form per lemma ratio and a new measure
(HPE) defined in terms of head attachment prefer-
ence encoded by its morphological attributes. We
show that this new measure is predictive of parsing
result differences observed when using different
word representations and that it allows one to dis-
tinguish amongst morphologically rich languages,
those that use morphology for syntactic purpose
from those using morphology as a more semantic
marker. To the best of our knowledge, this work
is the first attempt at systematically measuring the
syntactic content of morphology in a multi-lingual
environment.

Section 2 presents the representation learning
method and the dependency parsing model. It also
defines two measures of morphological complex-
ity. Section 3 describes the experimental setting
and analyses parsing results in terms of the pre-
viously defined morphological complexity mea-
sures. Section 4 gives some conclusions and future
work perspectives.
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2 Framework
This section details: (i) our method for learn-
ing lexical and morphological representations, (ii)
how these can be used for graph-based dependency
parsing, and (iii) how to measure morphological
complexity. Our representation learning and pars-
ing techniques are purposely very simple in order
to let us separate lexical and morphological infor-
mation and weight the role of morphology in de-
pendency parsing of MRL.

2.1 Word Representation
We construct separate vectorial representations for
lemmas, forms and morphological attributes, ei-
ther learned via dimension reduction of their own
cooccurrence count matrices or represented as raw
one-hot vectors.

Let V be a vocabulary (it can be lemmas or forms
or morphological attributes (incl. values for POS,
number, case, tense, mood...)) for a given lan-
guage. Correspondingly, let C be the set of con-
texts defined over elements of V . That is, lem-
mas appear in the context of other lemmas, forms
in the context of forms, and attributes in the con-
text of attributes. Then, given a corpus annotated
with lemmas and morphological information, we
can gather the cooccurrence counts in the matrix
M 2 N

|V|⇥|C|, such that M ij is the frequency of
lemma (form or morphological attributes) Vi ap-
pearing in context Cj in the corpus. Here, we con-
sider plain sequential contexts (i.e. surrounding
bag of “words”) of length 1, although we could
extend them to more structured contexts (Bansal
et al., 2014). Those cooccurrence matrices are then
reweighted by unshifted Positive Point-wise Mu-
tual Information (PPMI) and reduced via Singular
Value Decomposition (SVD). For more informa-
tion on word embedding via matrix factorization,
please refer to (Levy et al., 2015).

Despite its apparent simplicity, this model is as
expressive as more popular state of the art em-
bedding techniques. Indeed, Goldberg and Levy
(2014) have shown that the SkipGram objective
with negative sampling of Mikolov’s Word2vec
(2013) can be framed as the factorization of a
shifted PMI weighted cooccurrence matrix.

This matrix reduction procedure gives us vectors
for lemmas, forms and morphological attributes,
noted R. Note that while a word has only one
lemma and one form, it will often realize several
morphological attributes. We tackle this issue by

simply summing over all the attributes of a word
(noted Morph(w)). If we note rw the vectorial
representation of word w we have:

rw =
X

a2Morph(w)

Ra.

Simple additive models have been shown to be
very efficient for compositionally derived embed-
dings (Arora et al., 2017).

2.2 Dependency Parsing
We work with graph-based dependency parsing,
which offers very competitive parsing models as
recently re-emphasized by Dozat et al. (2017) in
the CONLL 2017 shared-task on dependency pars-
ing (Zeman et al., 2017).

Let x = (w1, w2, ..., wn) be a sentence, Tx be
the set of all possible trees over it, ŷ the tree that we
predict for x, and Score(•, •) a scoring function
over sentence-tree pairs :

ŷ = argmax
t2Tx

Score(x, t).

We use edge factorization to make the inference
problem tractable. A tree score is thus the sum of
its edges scores. We use a simple linear model:

Score(x, t) =
X

e2t

✓
> · �(x, e),

where �(x, e) is a feature vector representing edge
e in sentence x, and ✓ 2 R

m is a parameter vector
to be learned.

The vector representation of an edge eij whose
governor is the i-th word wi and dependent is the
j-th word wj , is defined by the outer product of
their respective representations in context. Let �
note vector concatenation, ⌦ the outer product and
wk±1 be the word just before/after wk, then: vi =
wi�1 �wi �wi+1, vj = wj�1 �wj �wj+1 and

�(x, eij) = vec(vi ⌦ vj) 2 R
9d2

.

Recall that wi of length d ⌧ V is a vector from R.
We use the averaged Passive-Aggressive on-

line algorithm for structured prediction (Crammer
et al., 2006) for learning the model ✓. Given a
score for each edge, we use Eisner algorithm (Eis-
ner, 1996) to retrieve the best projective spanning
tree. Even though some languages display a fair
amount of non-projective edges, on average Eisner
algorithm scores higher than Chu-Liu-Edmonds
algorithm (Chu and Liu, 1965) in our setting.

2865



2.3 Measuring Morpho-Syntactic Complexity
Some languages use morphological cues to encode
syntactic information while other encode more se-
mantic information with them. For example, the
Case feature (especially core cases) is of prime
syntactic importance, for it encodes the type of re-
lation words have with each other. On the contrary,
the Possessor feature (in Hungarian for example) is
more semantic in nature and need not impact sen-
tence structure. This remark would support differ-
ent treatment for each language. However, those
languages tend to be treated equally in works deal-
ing with MRL.

Form to Lemma Ratio A basic measure of mor-
phological complexity is the form per lemma ratio,
we note it F/L. It captures the tendency of words to
inflect in a given language. Because some word
classes tend not to inflect and not all forms are
equally productive, we note F/iL the ratio of form
per inflected lemma. Given a language l with a
lemma vocabulary V l and a form counting func-
tion c : V l ! N that returns the number of forms
a lemma can take, we have:

F/L(l) =
1

|V l|
X

w2Vl

c(w),

F/iL(l) =
1

|V l
i |

X

w2Vl
i

c(w), V l
i = {w 2 V l|c(w) > 1}

F/L and F/iL do not measure the informative con-
tent of morphology, but simply its productivity.
Bentz et al. (2016) compared five different mea-
sures of morphological complexity amongst which
word entropy and the micro-averaged version of
F/L (they call it TTR) and showed that they all have
high positive correlation given enough data.

Head POS Entropy In order to compare the
morpho-syntactic complexity of different lan-
guages, we introduce a new measure called Head
Part-of-speech Entropy or HPE. The HPE of a to-
ken t represents the amount of information t has
about the part-of-speech of its governor. More
formally, let POS(Gov(t)) be the set of parts-
of-speech that t can depend on, and let ⇡t(p) be
the probability of t actually depending on part-of-
speech p, then the HPE is defined as:

HPE(t) =
X

p2POS(Gov(t))

�⇡t(p)log2(⇡t(p)).

This is a measure of a token preferencial attach-
ment to its head. A token with a low HPE tends to
attach often to the same part-of-speech, while a to-
ken with a high HPE will attach to many different
parts-of-speech. Thus a language with a low HPE
will tend to encode a lot of syntactic information
in the morphology, rather than in word order say.

For example, a noun can attach to another noun
like a genitive, or to a verb as a subject or object,
or even to an adjective in the case of transitive ad-
jective. French nouns do not inflect for case, thus
attachment to another noun or verb can only be in-
fered from words relative positions. On the con-
trary, Gothic nouns do inflect for case, thus mak-
ing verb or noun attachment clear directly from the
morphological analysis.

We compute the HPE of a language as the aver-
aged HPE of its attributes sets over a given corpus.
Likewise, we use the empirical counts as a surro-
gate for c in F/L and F/iL.

3 Experiments
In order to test the hypothesis that morphologi-
cal representations contain syntactic information
crucial for dependency parsing of morphologically
rich languages, but that this information is not
equally distributed across MRL, we run experi-
ments on data from the Universal Dependencies
(Nivre et al., 2016) project.

Data Description For conciseness, we focused
on eleven languages that display varying degrees of
morphological complexity and belong to four dif-
ferent language families. Basque (eu) is an isolate
and it is an ergative language. English (en), Gothic
(got), Danish (da) and Swedish (sv) are Germanic
languages, and French (fr) and Romanian (ro) are
Romance languages (Indo-European). Finnish (fi),
Estonian (et) and Hungarian (hu) are Finno-Ugric
languages. Hebrew (he) is a Semitic language. Ba-
sic statistics are provided in Table 1.

Experimental Settings For the experiments we
use the train/dev/test data provided by UD 2.0.
Basic statistics about the data are reported in the
appendix. Lemmas and forms are embedded in
150 dimensions, while Morphological attributes
are embedded in 50 dimensions, because they are
much less numerous (less than 100). All embed-
dings are induced on their language respective train
set only using a context window of size 1 (i.e. the
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da en et eu fi fr got he hu ro sv
Train 4383 12543 2263 5396 12217 14553 3387 5241 910 8043 4303
POS 17 17 16 16 15 17 14 16 16 17 16
Feats 44 35 58 69 88 36 40 48 73 59 39
F/L 1.44 1.39 1.60 2.32 2.19 1.38 2.44 1.83 1.46 2.03 1.59
F/iL 2.80 2.76 3.35 4.29 4.68 3.15 4.20 3.39 3.03 3.76 2.91
HPE 1.07 1.12 0.55 0.51 0.57 0.87 0.60 1.01 0.60 0.71 0.84

Table 1: Basic datasets statistics. The first line gives the number of train sentences for each language.
The second and third give the number of part-of-speech and of morphological attribute values for each
language. The fourth and fifth lines reports forms per lemma ratios. Last line gives the HPE.

da en et eu fi fr got he hu ro sv

Lem OH 58.47 67.05 44.96 60.27 56.06 70.93 60.63 65.70 47.32 68.69 61.30
Emb 68.33 75.21 59.23 69.59 66.90 71.90 71.14 72.52 51.04 72.83 73.27

Form OH 56.92 65.83 41.36 57.67 51.50 70.35 58.68 67.08 44.35 67.2 58.54
Emb 70.64 75.13 57.36 65.64 60.38 76.05 68.72 72.68 55.06 73.21 72.72

Morph OH 73.76 76.27 71.21 73.81 75.58 78.67 76.88 77.65 69.67 76.57 76.42
Emb 73.27 76.17 70.20 73.21 73.33 78.79 76.37 76.95 69.38 76.32 76.02

Table 2: UAS scores for parsers using lemmas (Lem), word forms (Form) or morphological attributes
(Morph) representations as features. For each type, we report results using one-hot representation (OH)
and results using embeddings (Emb).

directly preceding and following words).
Parsers are trained for 10 iterations using ei-

ther lemma, form or morphological representa-
tions, and we pick the best iteration on the basis
of UAS on the development set.

While we used gold lemmas as provided in the
corpora, we ran two experiments for morpholog-
ical attributes, one with gold attributes and one
with predicted attributes. Morphological attributes
are predicted with a simple multinomial logistic
regression per attribute (POS, Tense, Case, Gen-
der...), where we add a special undef value (ex-
cept for POS) to represent the lack of an attribute
(e.g., nouns have no Tense in English). The mod-
els predict attribute values for the center word of
trigrams represented by feature vectors encoding
word prefixes and suffixes of length 1, 2 and 3,
word length and capitalization. We used the lo-
gistic regression implemented in the Scikit-Learn
(Pedregosa et al., 2011) library with the default set-
tings. It can output an argmaxed decision or a soft-
maxed decision, thus we tried both as input to the
parser. The argmaxed decision gives a vector of ze-
ros and ones, while the softmaxed decision gives a
continuous vector with each each attributes sum-
ming to one (the probability assigned to each pos-
sible value for Gender like Masculine, Feminine,

Neuter and Undef must sum to one). Then those
vectors are used unchanged for the one-hot repre-
sentation or passed through an embedding matrix
for the embedding representation.

Results For clarity, we focus on comparing re-
sults using form embeddings and gold morpholog-
ical representations. They are given in Table 2. Be-
cause the analysis carries to the labeled case, we
stick to unlabeled scores (UAS) for the analysis. A
more complete table is provided in the appendix as
well as a complete labeled accuracy score (LAS)
table. Morphological complexity measures are
also reported.

One-hot gold morphological attributes consis-
tently outerperform form embeddings. This is ex-
pected since forms embedding were trained on
much fewer data than usually considered neces-
sary. However, improvements are not consistent
across languages, ranging from 1.14 point for En-
glish to 15.20 points for Finnish. While those dif-
ferences are not explained by morphological pro-
ductivity alone (Figure 1a), a measure of prefer-
ential attachment gives a good account of them
(Figure 1b). Those inconsistencies become even
more striking, considering results using predicted
attributes. We notice that despite a general drop
of performance of 5-12 points, predicted attributes
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Figure 1: Accuracy differences (y-axis) between parsers using form embeddings and parsers using one-
hot attributes, with respect to morphological complexity (x-axis). Red dots represent the gold attributes
scores and blue squares the predicted attributes scores.

still perform significantly better than form em-
beddings for those morphologically rich languages
that have an HPE lower than 0.65 as depicted on
Figure 1b.

Figures 1a and 1b plot the differences in parsing
scores. For each language, the red dot corresponds
to the score difference between using form embed-
dings and gold attributes one-hot representations,
and the blue square corresponds to the score differ-
ence between using the same form embeddings and
predicted attributes softmax representations (the
complete scores are given in the appendix). Fig-
ure 1a plots those differences with regard to the
form per inflected lemma ratio (F/iL) and Figure
1b plots those differences with regard to the head
POS entropy (HPE).

Both Figures show trends. Score differences
seem to increase with F/iL and decrease with HPE.
But while the F/iL plot suffers outliers (Hungarian,
Estonian and Romanian), the HPE plot shows a
clear boundary between languages benefiting fully
from morphological information (even predicted)
and those benefiting primarily from reducing data
sparsity. While Hebrew seems to be an outlier, it
might be due to its annotation style, where attached
prepositions, articles and possessive markers are
treated as independent words rather than morpho-
logical inflection as other languages do, thus artifi-
cially increasing the parsing accuracy with a lot of
trivial dependencies.

This shows that indeed, HPE is a good measure

of the syntactic informativeness of a language mor-
phology, and that it can help deciding between en-
coding morphological information or just reducing
data sparsity. Furthermore, it seems to be link to
the distinction that Kibort and Corbett (2010) do
between morphosyntax and morphosemantic.

4 Conclusion
We have contributed a new measure of morpho-
syntactic complexity (HPE) that helps distinguish-
ing languages that use morphology for syntactic
purpose from languages that use morphology to
encode more semantic information. We showed
that this measure correlates much more with differ-
ences in parsing results using morphological rep-
resentations than the simple form per lemma ratio.
It could thus be used to help designing language
specific word representations.

It is worth mentioning that we focused here on
dependent marked head selection. It would be
interesting to have a similar measure for head-
marking situations with dependencies marked on
the governor. We leave it for future work.
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da en et eu fi fr got he hu ro sv
POS 87.37 87.24 84.49 86.09 86.14 90.60 90.44 90.93 88.43 90.64 89.23
Attributes 98.02 97.74 96.20 97.56 97.09 97.60 96.00 97.84 92.76 97.76 96.88
Form Emb 70.64 75.13 57.36 65.64 60.38 76.05 68.72 72.68 55.06 73.21 72.72

M
or

ph

Hard OH 64.69 69.32 57.16 64.51 64.33 72.82 69.94 71.60 61.80 71.36 67.99
Soft OH 65.43 71.36 58.76 67.02 66.84 73.29 70.86 72.75 61.91 72.03 69.48
Hard Emb 64.19 69.51 55.53 64.10 62.58 72.28 69.29 71.51 59.62 70.86 67.82
Soft Emb 65.33 70.75 57.24 66.18 65.04 73.18 70.46 71.85 60.64 71.34 68.60

Table 3: UAS scores for parsers using predicted morphological attributes. The two first rows are POS
and averaged attributes prediction accuracy. The third row reports UAS using form representations for
comparison purpose. Rows 4 to 7 give UAS using morphological representations, either one-hot or em-
bedding. Regressors output a probability distribution per morphological feature, we either use those soft
decision as input for the parser (Soft) or apply argmax first (Hard).

da en et eu fi fr got he hu ro sv

Lem OH 48.09 57.09 25.30 45.96 40.78 64.88 46.85 54.91 27.80 56.89 48.61
Emb 62.47 70.95 48.17 62.52 59.34 65.62 61.37 64.41 41.59 64.76 65.70

Form OH 45.12 54.97 21.29 40.53 34.59 61.95 45.19 55.82 25.60 53.83 45.00
Emb 65.09 71.20 45.79 57.42 52.67 70.81 59.35 66.92 44.30 65.13 64.93

Morph OH 69.19 72.32 64.06 68.19 71.00 73.92 71.04 72.66 64.31 68.94 69.97
Emb 68.71 72.22 62.81 67.30 68.70 73.96 70.41 71.77 63.45 68.76 69.69

Table 4: LAS scores for parsers using lemmas (Lem), forms (Form) or morphosyntactic attributes (Morph)
representations as features. Representations are either embeddings or one-hot.

da en et eu fi fr got he hu ro sv
Form Emb 65.09 71.20 45.79 57.42 52.67 70.81 59.35 66.92 44.30 64.13 65.93

M
or

ph

hard OH 58.33 62.64 43.80 55.81 54.42 66.66 59.73 63.74 52.41 62.10 60.29
soft OH 59.68 65.59 47.05 59.43 58.74 67.39 62.36 66.25 53.63 63.26 62.44
hard Emb 57.72 62.73 42.22 55.06 52.79 66.25 59.14 63.57 49.99 61.67 60.03
soft Emb 59.13 64.97 45.64 58.25 56.51 67.00 62.02 65.33 52.61 62.65 61.47

Table 5: LAS scores for parsers using predicted morpho-syntactic attributes. First row is LAS using form
representation. Rows 2 to 5 are LAS using morphological representation, either one-hot or embedding
and either hard decisions or soft decisions.

Appendix A: Supplementary Tables
Table 3 reports results for the predicted attributes
experiment. The POS and averaged attributes pre-
diction accuracies are given. Are also reported,
scores for the four representation regimes of pre-
dicted attributes. Predictions can be either prob-
ability distributions (Soft) or argmax (Hard) and
either used as such (OH) or passed through an em-
bedding (Emb).

Table 4 reports all the labeled accuracy scores

for parsers using either gold lemmas, forms
or gold attributes, either as one-hot vectors or as
dense embeddings.

Table 5 reports results for the predicted at-
tributes experiment. Are also reported, scores for
the four representation regimes of predicted at-
tributes as in table 4. Predictions can be either
probability distributions (Soft) or argmax (Hard)
and either used as such (OH) or passed through an
embedding (Emb).
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Abstract

Neural sequence-to-sequence models have
proven very effective for machine translation,
but at the expense of model interpretability. To
shed more light into the role played by lin-
guistic structure in the process of neural ma-
chine translation, we perform a fine-grained
analysis of how various source-side morpho-
logical features are captured at different lev-
els of the NMT encoder while varying the tar-
get language. Differently from previous work,
we find no correlation between the accuracy
of source morphology encoding and transla-
tion quality. We do find that morphological
features are only captured in context and only
to the extent that they are directly transferable
to the target words.

1 Introduction

The advent of Neural Machine Translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2014) has
led to remarkable improvements in machine trans-
lation quality (Bentivogli et al., 2016) but has also
produced models that are much less interpretable.
In particular, the role played by linguistic features
in the process of understanding the source text and
rendering it in the target language remains hard to
gauge. Acquiring this knowledge is important to
inform future research in NMT, especially regard-
ing the usefulness of injecting linguistic informa-
tion into the NMT model, e.g. by using supervised
annotation (Sennrich and Haddow, 2016).

Hill et al. (2014) gave a first answer to this
question, reporting high accuracies by source-side
NMT word embeddings on the well-known anal-
ogy task by Mikolov et al. (2013) which also in-
cludes a number of derivational and inflectional
transformations in the morphologically poor En-
glish language. More recent work (Shi et al.,
2016) has shown that source sentence representa-
tions produced by NMT encoders contain a great

deal of syntactic information. Belinkov et al.
(2017a) focused on the word level and examined
to what extent part-of-speech and morphological
information can be extracted from various NMT
word representations. The latter study found that
source-side morphology is captured slightly bet-
ter by the first recurrent layer than by the word
embedding and the final recurrent layer. Another,
somewhat surprising finding was that source-side
morphology is learned better when translating into
an ‘easier’ target language than into a related one,
even if the ’easier’ language is morphologically
poor.

In this paper, we also focus on source-side mor-
phology but perform a finer-grained analysis of
how morphological features are captured by differ-
ent components of the NMT encoder while vary-
ing the target language. We argue that predicting
generic morphological tags where all features are
mixed, as done by Belinkov et al. (2017a), can
only give us a limited insight into the linguistic
competence of the model. Hence, we predict mor-
phological features independently from one an-
other and ask the following questions:

• Are different morphological features cap-
tured by the NMT encoder to substantially
different extents and, if yes, why?

• Are morphological features captured as a
word type property (i.e. at the word embed-
ding level) or are they mostly computed in
context (i.e. at the recurrent state level)?

• How does source-target language relatedness
affect the morphological competence of the
NMT encoder?

More specifically, we look at whether the NMT
encoder only learns those morphological features
that can be directly transferred to the target words

2871



FR: Les arbrespl sont hauts.
IT: Gli alberipl sono alti.

DE: Die Bäumepl sind hoch.
EN:The treespl are high.

FR: La pommef est petite.
IT: La melaf è piccola.

DE: Der Apfelm ist klein.
EN: The apple is small.

Figure 1: Two example French sentences translated
to Italian, German, and English. Number (top) is
usually carried over to the three target languages,
while gender (bottom) is less predictable. Colored
fonts mark agreement with the noun in boldface.

(such as number) or whether it also learns features
that are not directly transferable but can still be
useful to correctly parse and infer the meaning of
a sentence (such as gender). See example in Fig. 1.

We focus on French and similarly to previous
work (Shi et al., 2016; Belinkov et al., 2017a) we
use the continuous word representations produced
by a trained NMT system to build and evaluate a
number of linguistic feature classifiers. Classifier
accuracy represents the extent to which a given
feature is captured by the NMT encoder.

2 Methods

We train NMT systems on the following language
pairs: French-Italian (FRIT ), French-German
(FRDE), and French-English (FREN ). We chose
these language pairs for their different levels of
language relatedness and morphological feature
correspondence. Grammatical gender is especially
interesting as it is marked in French, Italian and
German, but not in English (except for a few pro-
nouns). The gender of Italian nouns often cor-
responds to that of French because of their com-
mon language ancestor, whereas German gender
is mostly unrelated from French gender (see ex-
ample in Fig. 1).

The continuous word representations produced
by the three NMT systems while encoding a cor-
pus of French sentences are used to build and eval-
uate several specialized classifiers: one per mor-
phological feature. If a classifier significantly out-
performs the majority baseline, we conclude that
the corresponding feature is captured by the NMT
encoder. While this methodology is similar to that
of previous work (Köhn, 2015; Belinkov et al.,
2017a,b; Dalvi et al., 2017) we make sure that our
results are not affected by overfitting by eliminat-

ing any vocabulary overlap between the classifier’s
training and test sets. We find this step crucial to
ensure that the redundancy in this type of data does
not lead to over-optimistic conclusions. We now
provide more details on the experimental setup.

Parallel corpora. For a fair comparison among
target languages, we extract the intersection of the
Europarl corpus (Koehn, 2005) in our three lan-
guage pairs so that the source side data is identi-
cal for all NMT systems. Sentences longer than
50 tokens are ignored. This data is then split into
an NMT training, validation, and test set of 1.3M,
2.5K, and 2.5K sentence pairs respectively.

NMT model. The NMT architecture is an at-
tentional encoder-decoder model similar to (Lu-
ong et al., 2015) and uses a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
as the recurrent cell. The models have 3 stacked
LSTM layers and are trained for 15 epochs. Em-
bedding and hidden state sizes are set to 1000.
Source and target vocabularies are limited to the
30,000 most frequent words on each side of the
training data.1 The NMT models achieve a test
BLEU score of 32.6, 25.4 and 39.4 for French-
Italian, French-German and French-English re-
spectively.

Continuous word representations. Given a
source sentence, the NMT system first encodes
it into a sequence of word embeddings (context-
independent representations), and then into a se-
quence of recurrent states (context-dependent rep-
resentations). As we are mostly interested in the
impact of context on word representations, we
compare the word embeddings against the final
layer of the stacked LSTMs (corresponding to lay-
ers 0 and 3 in Belinkov et al. (2017a)’s terms)
while disregarding the intermediate layers.

Morphological classification. The continuous
word representations are used to train a logis-
tic regression classifier2 for each morphological
feature: gender and number for noun and adjec-
tives; tense for verbs (with labels: present, fu-

1Subword/character-level representations are not included
in this study since we are interested in the models’ ability to
learn morphology from word usage, rather than word form.

2We use linear classifiers since their accuracies can be
interpreted as a measure of supervised clustering accuracy,
which gives a better insight on the structure of the vector
space (Köhn, 2015). Results with a simple multi-layer per-
ceptron were consistent with the findings by the linear classi-
fier, with slightly better performance overall.
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ture, imperfect, or simple past). Word labels are
taken from the Lefff French morphological lexicon
(Sagot, 2010)3. To ensure a fair comparison be-
tween context-independent and context-dependent
embedding classification, words that are ambigu-
ous with respect to a given feature are excluded
from the respective classifier’s training and test
data.

Classifiers’ training/test data. The classifiers
are trained on a 50K-sentence subset of the NMT
training data and tested on the NMT test sets
(2.5K). For each experiment, we extract one vec-
tor per token from the NMT encoder. While this is
the only possible setup for context-dependent rep-
resentations, it leads to a problematic training/test
overlap in the word embedding experiment be-
cause all occurrences of the same word are associ-
ated to exactly the same vector. We find that, due
to this overlap, a dummy binary feature assigned
to a random half of the vocabulary can be pre-
dicted from the word embeddings with very high
accuracy (86% for a linear, 98% for a non-linear
classifier) leading to over-optimistic conclusions
on the linguistic regularities of these representa-
tions. To avoid this, we split the vocabulary in two
parts of 15K types: the first is used to filter the
training samples and the second to filter the test
samples. We repeat each experiment five times us-
ing five different random vocabulary splits and re-
port mean accuracies. This process is applied to
all experiments (including those on hidden states)
to allow for a fair comparison of the results.

3 Results and Discussion

This section presents our results along three di-
mensions: context-dependency of the word repre-
sentations (§3.1), different morphological features
(§3.2), and target language impact (§3.3). Unless
explicitly stated, all discussed results are statisti-
cally significant (computed using a t-test for a one-
tailed hypothesis and independent means).

3.1 Word embeddings vs recurrent states
One of our goals was to discover whether morpho-
logical features are captured as a word type prop-
erty or in context. Fig. 2 shows the extent to which
the NMT encoder captures different features at the
word level (word embeddings) compared to the
recurrent state level (LSTM state), averaged over

3Lexique des Formes Fléchies du Français: http://
alpage.inria.fr/˜sagot/lefff-en.html

Figure 2: Classifier accuracy for different morpho-
logical features, averaged over target languages.

all target languages. We can see that each fea-
ture is clearly captured at the recurrent state level,
confirming that source-side morphology is indeed
successfully exploited by NMT models. However,
at the word embedding level, accuracies are com-
parable to the majority class baseline (these dif-
ferences are not significant), which implies that
the source-side lexicon of our NMT systems does
not encode morphology in a systematic way. This
might be partly explained by the fact that learning
morphological features at the word level is diffi-
cult due to data sparsity – indeed the rarest French
words in our dataset are observed only 10 times in
the training data. However, additional experiments
showed that our finding is consistent across differ-
ent word frequency bins: that is, even the embed-
dings of frequent words do not encode morpholog-
ical features better than the majority baseline.

This result is surprising, considering that our
morphological features are usually easy to in-
fer from the immediate context of French words
(see examples in Fig.1) and that morphology was
shown to be well captured by monolingual word
embeddings in various European languages in-
cluding French (Köhn, 2015). By contrast, our
NMT encoders choose not to store morphology at
the word type level, perhaps in order to allocate
more capacity to semantic information.

3.2 Different morphological features
Secondly, we asked whether the NMT encoder
captured different morphological features to dif-
ferent extents. For this question, we disregard the
word embedding results because none of the fea-
tures are significantly captured at this level.

Fig. 2 shows that the mean accuracy of number
is the highest, followed by tense and then by gen-
der. However, it should be noted that the majority
baselines for number and tense are much higher
than the one for gender. In both absolute and rela-
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Figure 3: Translation quality (left) and classifier accuracy for each morphological feature in the three
different language pairs. IT* denotes a modified Italian language where gender marking is removed.

tive terms, the best performing feature is number.
This can be explained by the fact that number re-
mains most often unchanged through translation,
and is marked in all target languages – albeit to
different extents. On the other hand, tense is de-
termined by the semantics but also by language-
specific usage, while gender has little semantic
value and is mostly assigned to nouns arbitrarily.

The fact that the results of different morpholog-
ical features are so variable confirms the setup of
examining each feature independently.

3.3 Source-target language relatedness

Fig. 3 shows the impact of the target language on
the encoded morphology accuracy. We again fo-
cus our analysis on the LSTM state level since em-
bedding level results are mostly near the baseline.

Differently from Belinkov et al. (2017a) we do
not find that source-side morphology is captured
better when translating into the ‘easiest’ language,
which in our case is English, both in terms of mor-
phological complexity and BLEU performance.
We note that their findings were based on very
small, possibly not significant differences, and on
the prediction of all morphological features simul-
taneously. By contrast, our fine-grained analysis
reveals that the impact of target language is signif-
icant and even major on only one feature, namely
gender, where it agrees with our linguistic intu-
ition. Indeed this feature differs from the oth-
ers because it varies largely among languages and,
when present, is semantically determined only to a
very limited extent. FRIT , where source gender is
a good predictor of target gender, shows the high-
est accuracy; FREN , where target gender is not
marked, shows the lowest; FRDE , where source
gender is often confounding for target gender, lies
in-between.

Is language relatedness the main explaining

variable? To find that out, we experiment with
a modified Italian target language without gen-
der marking, i.e. all gender-marked words are re-
placed by their masculine form (FRIT ∗). This
language pair achieves a slightly higher BLEU
score than FRIT (33.2 vs 32.6), which can be at-
tributed to the smaller target vocabulary. How-
ever its source gender accuracy is much worse (see
Fig. 3), which indicates that the high performance
of the FRIT encoder is mostly due to the ubiqui-
tous gender marking in the target language, rather
than to language relatedness. All this suggests that
source morphological features contribute to sen-
tence understanding to some degree, but the incen-
tive to learn them mostly depends on how directly
they can be transferred to the target sentence.

Finally, we look at what happens when a sin-
gle NMT system is trained in a multitarget fash-
ion on our three language pairs. Following the
setup of Johnson et al. (2017), we prepend a to-
target-language tag {2it,2de,2en} to the source
side of each sentence pair and mix all language
pairs in the NMT training data. Results are pre-
sented for gender in Fig. 3 (right).4 Note that,
while word embeddings are identical for the three
language pairs, recurrent states change according
to the language tag. In this setup the target lan-
guage impact is less visible and gender accuracy at
the LSTM state level is overall much higher than
that of the mono-target systems (0.77 vs 0.68 on
average) whereas BLEU scores are slightly lower
(−0.9% on average). While this is only an ini-
tial exploration of multilingual NMT systems, our
results suggest that this kind of multi-task objec-
tive pushes the model to learn linguistic features
in a more consistent way (Bjerva, 2017; Engue-
hard et al., 2017).

4Multitarget results for tense and number did not differ
significantly from the corresponding monotarget results.
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4 Conclusion

We have confirmed previous findings that mor-
phological features are significantly captured by
word-level NMT encoders. However, the features
are not captured at the word type level but only
at the recurrent state level where word representa-
tions are context-dependent. Secondly, there is a
visible difference in the extent to which different
morphological features are learned: Semantic cat-
egories like number and verb tense are well cap-
tured in all language pairs, whereas grammatical
gender with its only agreement-triggering func-
tion, is dramatically affected by the target lan-
guage. Source-side gender is encoded well only
when it is a good predictor of target gender and
when target-side marking is extensive, i.e. when
translating from French to Italian.

Our findings indicate that the importance of lin-
guistic structure for the neural translation process
is very variable and language-dependent. They
also suggest that the NMT encoder is rather ‘lazy’
when it comes to learning grammatical features of
the source words, unless these are directly trans-
ferable to their target equivalents.
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Abstract

We employ imitation learning to train a neural
transition-based string transducer for morpho-
logical tasks such as inflection generation and
lemmatization. Previous approaches to train-
ing this type of model either rely on an exter-
nal character aligner for the production of gold
action sequences, which results in a subopti-
mal model due to the unwarranted dependence
on a single gold action sequence despite spu-
rious ambiguity, or require warm starting with
an MLE model. Our approach only requires a
simple expert policy, eliminating the need for
a character aligner or warm start. It also ad-
dresses familiar MLE training biases and leads
to strong and state-of-the-art performance on
several benchmarks.

1 Introduction

Recently, morphological tasks such as inflection
generation and lemmatization (Figure 1) have
been successfully tackled with neural transition-
based models over edit actions (Aharoni and
Goldberg, 2017; Robertson and Goldwater, 2018;
Makarov and Clematide, 2018; Cotterell et al.,
2017b). The model, introduced in Aharoni and
Goldberg (2017), uses familiar inductive biases
about morphological string transduction such as
conditioning on a single input character and mono-
tonic character-to-character alignment. Due to
this, the model achieves lower time complexity
(compared to soft-attentional seq2seq models) and
strong performance on several datasets.

Aharoni and Goldberg train the model by
maximizing the conditional log-likelihood (MLE)
of gold edit actions derived by an independent
character-pair aligner. The MLE training proce-
dure is therefore a pipeline, and the aligner is
completely uninformed of the end task. This re-
sults in error propagation and the unwarranted
dependence of the transducer on a single gold

X‰ ⇤ Xhµ»L
{V, PAST, FORMAL POLITE,

INTERROGATIVE, HONORIFIC}

Xhµ»L ⇤ X‰

Figure 1: Morphological tasks with examples
in Korean: inflection generation (top) and
lemmatization (bottom). (McCune-Reischauer:
X‰=hada,Xhµ»L=hasyŏssŭmnikka).

action sequence—in contrast to weighted finite-
state transducers (WFST) that take into account
all permitted action sequences. Although these
problems—as well as the exposure bias and the
loss-metric mismatch arising from this MLE train-
ing (Wiseman and Rush, 2016)—can be addressed
by reinforcement learning-style methods (Ranzato
et al., 2016; Bahdanau et al., 2017; Shen et al.,
2016, RL), for an effective performance, all these
approaches require warm-start initialization with
an MLE-pretrained model. Another shortcoming
of the RL-style methods is delayed punishment:
For many NLP problems, including morphological
string transduction, one can pinpoint actions that
adversely affect the global score. For example, it
is easy to tell if inserting some character c at step
t would render the entire output incorrect. Assign-
ing individual blame to single actions directly—
as opposed to scoring the entire sequence via a
sequence-level objective—simplifies the learning
problem.

Faced with problems similar to those arising
in transition-based dependency parsing with static
oracles (Goldberg and Nivre, 2012), we train this
model in the imitation learning (IL) framework
(Daumé III et al., 2009; Ross et al., 2011; Chang
et al., 2015), using a simple expert policy. Our
approach eliminates both all dependency on an
external character aligner and the need for MLE
pre-training. By making use of exploration of past
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and future actions and having a global objective, it
addresses the MLE training biases, while provid-
ing relevant action-level training signal. The ap-
proach leads to strong and state-of-the-art results
on a number of morphological datasets, outper-
forming models trained with minimum risk train-
ing (MRT).

2 Model Description

We use a variant of the seq2seq state-transition
system by Aharoni and Goldberg (2017). The
model transduces the input string into the out-
put string by performing single-character edits (in-
sertions, deletions). The encoder RNN computes
context-enriched representations of input charac-
ters, which are pushed onto the buffer at the be-
ginning of transduction. The decoder RNN keeps
track of the history of edits. Transitions—edits—
are scored based on the output of the decoder
state and can write a character or pop the rep-
resentation of a character from the top of the
buffer. We choose the model variant of Makarov
and Clematide (2018), who add the copy edit,
which results in strong performance gains in low-
resource settings.

Let x = x1 . . . xn, xi 2 ⌃x be an input
sequence, y = y1 . . . yp, yj 2 ⌃y an output se-
quence, and a = a1 . . . am, at 2 ⌃a an action se-
quence. Let {fh}H

h=1 be the set of all features. The
morpho-syntactic description of a transduction is
then an n-hot vector e 2 {0, 1}H .

The model employs a bidirectional long short-
term memory (LSTM) encoder (Graves and
Schmidhuber, 2005) to produce representations
for each character of the input x:

h1, . . . ,hn = BiLSTM(E(x1), . . . , E(xn)), (1)

where E returns the embedding for xi. We push
h1, . . . ,hn in reversed order onto the buffer. The
transduction begins with the full buffer and the
empty decoder state.

Transitions are scored based on the output of the
LSTM decoder state (Hochreiter and Schmidhu-
ber, 1997):

st = LSTM(ct�1, [A(at�1) ; hi]), (2)

where ct�1 is the previous decoder state, A(at�1)
is the embedding of the previous edit action, and
hi is the input character representation at the top
of the buffer. If features are part of the input in the

task, then the input to the decoder also contains the
representation of morpho-syntactic description e,
[F (f1) ; . . . ; F (fH)], which is a concatenation of
the embedded features and a designated embed-
ding F (0) is used instead of F (fh) if eh = 0.

The probabilities of transitions are computed
with a softmax classifier:

P (at = k | a<t,x, ⇥) = softmaxk(W·st+b) (3)
Model parameters ⇥ include W, b, the embed-
dings, and the parameters of the LSTMs.

The alphabet of edit actions ⌃a contains IN-
SERT(c) for each c 2 ⌃y, DELETE, and COPY. An
INSERT(c) action outputs c; DELETE pops hi from
the top of the buffer; COPY pops hi from the top of
the buffer and outputs xi. The system exhibits spu-
rious ambiguity: Multiple action sequences lead to
the same output string.

2.1 MLE Training
Aharoni and Goldberg train their model by mini-
mizing the negative conditional log-likelihood of
the data D = {(x(l),a(l))}N

l=1:

L(D, ⇥) = �
NX

l=1

mX

t=1

logP (a(l)
t |a(l)

<t,x
(l),⇥), (4)

where gold action sequences a(l) are determinis-
tically computed from a character-pair alignment
of the input and output sequences (x(l),y(l)). The
character-pair aligner is trained separately to op-
timize the likelihood of the actual training data
T = {(x(l),y(l))}N

l=1. For the details, we refer the
reader to Aharoni and Goldberg (2017).

3 IL Training

One problem with the MLE approach is that the
aligner is trained in a disconnect from the end task.
As a result, alignment errors lead to the learning
of a suboptimal transducer. Switching to a differ-
ent aligner can dramatically improve performance
(Makarov and Clematide, 2018). More fundamen-
tally, in the face of the vast spurious ambiguity,
the transducer is forced to adhere to a single gold
action sequence whereas typically, legitimate and
equally likely alternative edit sequences exist. This
uncertainty is not accessible to the transducer, but
could be profitably leveraged by it.

We address this problem within the IL frame-
work and train the model to imitate an expert
policy (dynamic oracle), which is a map—on the
training data—from configurations to sets of opti-
mal actions. Actions are optimal if they lead to the
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lowest sequence-level loss, under the assumption
that all future actions are also optimal (Daumé III
et al., 2009). In the roll-in stage, we run the model
on a training sample and follow actions either re-
turned by the expert policy (as in teacher forc-
ing) or sampled from the model (which itself is
a stochastic policy). In this way, we obtain a se-
quence of configurations summarized as decoder
outputs s1, . . . , sm. In the roll-out stage, we com-
pute the sequence-level loss for every valid action
a in each configuration st. To this end, we execute
a and then either query the expert to obtain the loss
for the optimal action sequence following a or run
the model for the rest of the input and evaluate the
loss of the resulting action sequence. Finally, the
sequence-level losses obtained in this way for all
actions a enter the action-level loss for configura-
tion st that we minimize with respect to ⇥.

Sequence-level loss We define the loss in terms
of the Levenshtein distance (Levenshtein, 1966)
between the prediction and the target and the edit
cost of the action sequence. Given input x(l) with
target y(l), the loss from producing an action se-
quence a is:

`(a,x(l),y(l)) = � distance(y,y(l))+cost(a), (5)

where y is computed from a and x(l) and � � 1
is some penalty for unit distance.1 The first term
represents the task objective. The second term en-
forces that the task objective is reached with a min-
imum number of edits.

The second term is crucial as it takes over the
role of the character aligner. Initially, we also ex-
perimented with only Levenshtein distance as loss,
similar to previous work on character-level prob-
lems (Leblond et al., 2018; Bahdanau et al., 2017).
However, models did not learn much, which we
attribute to sparse training signal as all action
sequences producing the same y would incur
the same sequence-level loss, including intuitively
very wasteful ones, e.g. first deleting all of x(l) and
then inserting of all of y(l).

Expert The expert policy keeps track of the pre-
fix of the target y(l) in the predicted sequence y<t

and returns actions that lead to the completion of
the suffix of y(l) using an action sequence with
the lowest edit cost. The resulting prediction y at-
tains the minimum edit distance from y(l). For ex-
ample, if x(l) = walk and y(l) = walked, the

1We use unit costs to compute edit cost and distance.

top of the buffer is h3 representing x3 = l, and
y<3 = wad due to a sampling error from a roll-in
with the model, the expert returns {COPY}.

Action-level loss Given sequence-level losses,
we compute the regret for each action a:

rt(a) = `(a,x(l),y(l))�min
a02A(st)

`(a0,x(l),y(l)), (6)

where a (or a0) is the action sequence resulting
from taking a (or a0) at st and A(st) is the set of
valid actions. Thus, rt(a), which quantifies how
much we suffer from taking action a relative to the
optimal action under the current policy, constitutes
the direct blame of a in the sequence-level loss.

Classic IL employs cost-sensitive classification,
with regrets making up costs (Daumé III et al.,
2009; Chang et al., 2015). Our initial experi-
ments with cost-sensitive classification resulted in
rather inefficient training and not very effective
models. Instead, we choose to minimize the neg-
ative marginal log-likelihood of all optimal ac-
tions (Riezler et al., 2000; Goldberg, 2013; Balles-
teros et al., 2016). Given the training data T =
{(x(l),y(l))}N

l=1, the action-level loss is:

L(T, ⇥)=�
NX

l=1

mX

t=1

log
X

a2At

P (a |a<t,x
(l),⇥), (7)

where At = {a 2 A(st) : rt(a) = 0}, the set of
optimal actions under the current policy. Depend-
ing on the roll-in schedule, the next edit at+1 is
sampled either uniformly at random from At or
from the distribution of valid edits. To include all
the computed regrets into the loss, we also exper-
iment with the cost-augmented version of this ob-
jective (Gimpel and Smith, 2010), where regrets
function as costs.

The downside of IL is that roll-outs are costly.
We avoid computing most of the roll-outs by
checking if an action increases the edit distance
from y(l). If it does, we heuristically assign this
action a regret of �. We use this heuristic in both
expert and model roll-outs.

4 Experiments

We demonstrate the effectiveness of our approach
on three tasks: inflection generation (using the
typologically diverse SIGMORPHON 2016 and
SIGMORPHON 2017 datasets of Cotterell et al.
(2016, 2017a)), reinflection (the small-sized Ger-
man CELEX dataset of Dreyer et al. (2008)), and
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Model RU DE ES KA FI TR HU NV AR MT Avg.
MED 91.5 95.8 98.8 98.5 95.5 98.9 96.8 91.5 99.3 89.0 95.6
SOFT 92.2 96.5 98.9 98.9 97.0 99.4 97.0 95.4 99.3 88.9 96.3
HA 92.2 96.6 98.9 98.1 95.9 98.0 96.2 93.0 98.8 88.3 95.6
HA* 92.0 96.3 98.9 97.9 95.8 97.6 98.8 92.1 95.1 87.8 95.2
CA 91.9 96.4 98.8 98.3 96.5 97.7 98.9 92.1 94.6 87.7 95.3
CA-D 92.4 96.6 98.9 98.7 97.2 98.5 99.3 95.2 96.5 89.2 96.2
CA-R 92.3 96.5 98.9 98.9 97.3 98.9 99.4 95.2 96.1 88.8 96.2

Table 1: Results on SIGMORPHON 2016 data.2

Model 13SIA 2PIE 2PKE rP Avg.
LAT 87.5 93.4 87.4 84.9 88.3
NWFST 85.1 94.4 85.5 83.0 87.0
HA⇤ 84.6 93.9 88.1 85.1 87.9
CA 85.0 94.5 88.0 84.9 88.1
HA⇤-MRT 84.8 94.0 88.1 85.2 88.0
CA-MRT 85.6 94.6 88.0 85.3 88.4
CA-D 85.7 94.4 88.4 85.1 88.4
CA-R 85.6 94.4 88.3 85.3 88.4
CA-RM 84.9 94.1 88.3 85.0 88.1

Model EU EN GA TL Avg.
LAT 93.6 96.9 97.9 88.6 94.2
NWFST 91.5 94.5 97.9 97.4 95.3
LEM3 96.5 96.3 98.7 98.8 97.6
HA⇤ 97.0 97.5 97.9 98.3 97.7
CA 96.3 96.9 97.7 98.3 97.3
CA-D 96.1 97.0 97.7 98.4 97.3
CA-R 96.6 97.2 97.5 98.3 97.4
CA-RM 96.5 97.0 97.8 98.3 97.4

Table 2: Results on CELEX data. Table 3: Lemmatization results.

Model L M
SGM17TOP 50.6 82.8
HA⇤ 31.5 80.2
CA 48.8 81.0
HA⇤-MRT 33.1 81.5
CA-MRT 49.9 82.9
CA-MRT-A 49.9 82.7
CA-D 50.3 82.6
CA-R 51.6 83.8
CA-RM 50.6 84.0

Table 4: Results on Low and
Medium settings of SIGMOR-
PHON 2017 data (averaged
over 52 languages).
-MRT: minimum risk train-
ing; -MRT-A: MRT with ac-
tion cost in the loss; -D:
only expert roll-outs; -R: ex-
pert and model roll-outs; -RM:
softmax-margin, expert and
model roll-outs

Experimental results. Soft-attention seq2seq models: MED=Kann and Schütze (2016) (cited from Aha-
roni and Goldberg (2017)), SOFT=Aharoni and Goldberg (2017), LEM=Bergmanis and Goldwater (2018).
WFSTs: LAT=Dreyer et al. (2008), NWFST=Rastogi et al. (2016). Transition-based models: HA=Aharoni
and Goldberg (2017), SGM17TOP=Makarov et al. (2017), and from Makarov and Clematide (2018):
HA⇤=reimplementation of HA, CA=model in §2, and HA⇤-MRT, CA-MRT (risk=normalized edit distance).
We report exact-match accuracies for ensembles of 5 models (SIGM. 2016 and 2017) and single-model
averages over 5 folds (CELEX) and 10 folds (lemmatization).

lemmatization (the standard subset of the Wicen-
towski (2002) dataset).

We use character and feature embeddings of
size 100 and 20, respectively, and one-layer
LSTMs with hidden-state size 200. Following
Aharoni and Goldberg, for every character c 2
⌃x \ ⌃y, we let A(INSERT(c)) := E(c), i.e. the
same embedding represents both c and the inser-
tion of c. We optimize with ADADELTA (Zeiler,
2012), use early stopping and batches of size 1.
We set the penalty for unit distance � = 5 and
roll in with an inverse-sigmoid decay schedule as
in Bengio et al. (2015). CA-D models are trained
with expert roll-outs only (as is often the case in
dynamic-oracle parsing). CA-R and CA-RM mod-
els mix expert and learned roll-outs with probabil-
ity 0.5 as in Chang et al. (2015). CA-RM models
optimize softmax-margin.

For comparison, we also train models with MRT
(CA-MRT-A) as in Shen et al. (2016), using a
global objective similar to our sequence-level loss
(Eq. 5). We use batches of at most 20 unique sam-
ples per training example. The risk is a convex
combination of normalized Levenshtein distance

and the action sequence cost, which we min-max
scale, within a batch, to the [0, 1] interval.

We decode all our models using beam search
with beam width 4.

Our approach performs best on most languages
of the SIGMORPHON 2016 data (Table 1) and both
limited-resource settings of SIGMORPHON 2017
(Table 4). It achieves marginal improvement over
an MRT model on the reinflection task (Table 2)
with consistent gains on the 2PKE7!z transforma-
tion (Dreyer et al., 2008), that involves infixation.
Using mixed roll-outs (CA-R, CA-RM) improves
performance on the SIGMORPHON 2017 inflec-
tion data (Table 4), otherwise the results are close
to CA-D. We also note strong gains over CA-MRT-
A trained with a similar global loss (Table 4). Gen-
erally, improvements are most pronounced in in-
flection generation, the only task where the model
could profit from adjusting alignment to available
feature information (cf. Table 3).

2Language codes: RU=Russian, DE=German,
ES=Spanish, KA=Georgian, FI=Finnish, TR=Turkish,
HU=Hungarian, NV=Navajo, AR=Arabic, MT=Maltese,
EU=Basque, EN=English, GA=Irish, TL=Tagalog.

3Personal communication.
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We take a closer look at the results in the SIG-
MORPHON 2017 medium data-size setting (1,000
training examples per language). CA-RM makes
the largest performance gains on languages with
complex morphological phenomena (Semitic and
Uralic languages, Navajo) and an above average
number of unique morpho-syntactic descriptions.
Khaling and Basque, outliers with 367 and 740
unique morpho-syntactic descriptions in the train-
ing data, are among the top five languages with the
largest gains. The lowest gains and rare losses are
made for Romance and Germanic languages and
languages with many unique morpho-syntactic
descriptions but regular morphologies (Quechua,
Urdu/Hindi).

5 Related work

Traditionally, morphological string transduction
has been approached with discriminative weighted
finite-state transducers (Rastogi et al., 2016; Cot-
terell et al., 2014; Dreyer et al., 2008; Eisner,
2002). Yu et al. (2016) and Graves (2012) tackle
the modeling of unbounded dependencies in the
output, while preserving latent monotonic hard
character alignment. Faruqui et al. (2016); Kann
and Schütze (2016) successfully apply seq2seq
modeling to the task. Aharoni and Goldberg
(2017) introduce a neural version of the transition-
based model over edits. Makarov and Clematide
(2018) show gains from using the copy edit and
address the MLE training biases with MRT.

The limitations of teacher forcing have recently
been the focus of intense research (Edunov et al.,
2017; Wiseman and Rush, 2016; Shen et al.,
2016), including the adaptation of RL methods
(Ranzato et al., 2016; Bahdanau et al., 2017). Most
of these approaches require warm start with an
MLE model and themselves introduce discrepan-
cies between training with sampling and search-
based decoding. Such biases do not arise from
IL, which has recently been proposed for seq2seq
models (Leblond et al., 2018). Our approach, re-
lated to Leblond et al. (2018), additionally ad-
dresses the problem of spurious ambiguity, which
is not present in seq2seq models.

6 Conclusion

We show that training to imitate a simple ex-
pert policy results in an effective neural transition-
based model for morphological string transduc-

tion. The fully end-to-end approach addresses var-
ious shortcomings of previous training regimes
(the need for an external character aligner, warm-
start initialization, and MLE training biases), and
leads to strong empirical results. We make our
code and predictions publicly available.4
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Abstract

The Paradigm Cell Filling Problem in mor-
phology asks to complete word inflection ta-
bles from partial ones. We implement novel
neural models for this task, evaluating them on
18 data sets in 8 languages, showing perfor-
mance that is comparable with previous work
with far less training data. We also publish a
new dataset for this task and code implement-
ing the system described in this paper.1

1 Introduction

An important learning question in morphology—
both for NLP and models of language
acquisition—is the so-called Paradigm Cell
Filling Problem (PCFP). So dubbed by Ackerman
et al. (2009), this problem asks how it is that
speakers of a language can reliably produce
inflectional forms of most lexemes without ever
witnessing those forms before. For example, a
Finnish noun or adjective can be inflected in 2,263
ways if one includes case forms, number, and
clitics (Karlsson, 2008). However, it is unlikely
that a Finnish speaker would have heard all forms
for even a single, highly frequent lexical item. It
is also unlikely that all 2,263 forms are found in
the aggregate of all the witnessed inflected forms
over different lexemes and speakers must be able
to assess the felicity of, and possibly produce
such inflectional combinations they have never
witnessed for any noun or adjective. Figure 1
illustrates the PCFP.

This paper investigates PCFP in three different
settings: (1) when we know n > 1 randomly se-
lected forms in each of a number of inflection ta-
bles, (2) when we know a set of frequent word
forms in each table (this most closely resembles
an L1 language learning setting), and finally (3)

1https://github.com/mpsilfve/pcfp-data

when we know exactly n = 1 word form from
each table.

We treat settings (1) and (2) as traditional
morphological reinflection tasks (Cotterell et al.,
2016) as explained in Section 2. In contrast, set-
ting (3) is substantially more challenging because
it cannot be handled using a traditional reinflec-
tion approach. To overcome this problem, we uti-
lize an adaptive dropout mechanism which will be
discussed in Section 2. This allows us to train the
reinflection system in a manner reminiscent of de-
noising autoencoders (Vincent et al., 2008).

pondrá

ponga haga

hiciera

… …

hablar

…

hablen

SBJV;PRS;3;SG

IND;FUT;3;SG

SBJV;PRS;3;SG

SBJV;PST;1;SG

NFIN SBJV;PRS;3;PL

…
SBJV;PRS;2;SGSBJV;PRS;2;SG SBJV;PRS;2;SG

SBJV;PST;1;SG SBJV;PST;1;SG

IND;FUT;3;SG IND;FUT;3;SG

NFINNFIN SBJV;PRS;3;PLSBJV;PRS;3;PL

SBJV;PRS;3;SGSBJV;PRS;1;SG SBJV;PRS;1;SGSBJV;PRS;1;SG

SBJV;PST;3;SGSBJV;PST;3;SG SBJV;PST;3;SG

Figure 1: Illustration of the PCFP using a fraction of Spanish
verb tables: given such partially filled paradigms, the task is
to fill in all the missing forms.

Related Work Neural models have recently
been shown to be highly competitive in many dif-
ferent tasks of learning supervised morphological
inflection (Faruqui et al., 2016; Kann and Schütze,
2016; Makarov et al., 2017; Aharoni and Gold-
berg, 2017) and derivation (Cotterell et al., 2017b).
Most current architectures are based on encoder-
decoder models (Sutskever et al., 2014), and usu-
ally contain an attention component (Bahdanau
et al., 2015).

The SIGMORPHON (Cotterell et al., 2016) and
CoNLL-SIGMORPHON (Cotterell et al., 2017a,
2018) shared tasks in recent years have explored
morphological inflection but not explicitly the
PCFP. In the 2017 task, participants were given
full paradigms—i.e. a listing of all forms—of
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lexemes during training after which they were
given incomplete paradigms which had to be com-
pleted at test time. This is a slightly unrealistic
setting in an L1-style learning scenario (Blevins
and Blevins, 2009) where arguably very few full
paradigms are ever witnessed and where general-
ization has to proceed on a number of very gappy
paradigms. Of course, such gaps form a distri-
bution where frequently used lexemes have fewer
gaps than infrequent ones, which we will attempt
to model in this work.

Silfverberg et al. (2018) evaluate an extension
to a linguistically informed symbolic paradigm
model based on stem extraction from the longest
common subsequence (LCS) shared among re-
lated forms (Ahlberg et al., 2014, 2015). While
the original LCS paradigm extraction method was
intended to learn from complete inflection ta-
bles (Hulden, 2014), Silfverberg et al. (2018)
present modifications to allow learning from in-
complete paradigms as well, and apply it to the
PCFP. Comparing against their results, shows that
our neural model consistently outperforms such a
subsequence-based learning model.

Kann et al. (2017) report results on so-called
multi-source reinflection in which several input
forms are used to generate one output form. This
task is related to the PCFP; however, Kann et al.
(2017) use full inflection tables for training. More-
over, their approach is applicable for PCFP only
when 3 or more forms are given in the input ta-
bles. Since this mostly excludes our experimental
settings, we do not compare to their system. Mal-
ouf (2016, 2017) documents an experiment with a
generator LSTM in completing inflection tables in
up to seven languages with either 10% or 40% of
table entries missing. Our work differs from this in
that Malouf gives as input a two-hot encoding of
both the lexeme and the desired slot during train-
ing and testing for which an inflection table is to be
completed, which means the system cannot com-
plete paradigms which it has not seen examples of
in the training data. By contrast, our system has
no notion of lexeme and we simply work from the
symbol strings which are collections of inflected
forms of a lexeme given in the test data which
may in principle be completely disjoint from train-
ing data lexemes. We use the Malouf system as a
baseline to compare against.

2 Encoder-Decoder Models for PCFP

We explore two different models for paradigm fill-
ing. The first model is applicable when n > 1
forms are given in each inflection table. When ex-
actly one (n = 1) form is given, we use another
model.

Case n>1 When more than one form is given
in training tables, PCFP can be treated as a mor-
phological reinflection task (Cotterell et al., 2016),
where the aim is to translate inflected word forms
and their tags into target word forms. For ex-
ample, a model would translate tried+PAST into
the present participle (PRES,PCPLE) form try-
ing. We adopt a common approach employed
by Kann and Schütze (2016) and many oth-
ers: we build a model which translates an input
word form, its tag and a target tag, for example
tried+PAST+PRES,PCPLE, into the target word
form trying.

Our model closely follows the formulation of
the encoder-decoder LSTM model for morpholog-
ical reinflection proposed by Kann and Schütze
(2016). We use a 1-layer bidirectional LSTM en-
coder for encoding the input word form into a se-
quence of state vectors and a 1-layer LSTM de-
coder with an attention mechanism over encoder
states for generating the output word form.

We form training pairs by using the given forms
in each table, i.e. take the cross-product of the
given forms and learn to reinflect each given form
in a table to another given form in the same table
as demonstrated in Figure 2.2 During test time,
we predict forms for missing slots based on each
of the given forms in the table and take a majority
vote of the results.3

Case n=1 When only one form is given in each
inflection table, we cannot train the model as a tra-
ditional reinflection model. The best we can do is
to train a model to reinflect forms into the same
form walked+PAST+PAST 7! walked and then
try to apply this model for reinflection to fill in
missing forms walked+PAST+PRES,PCPLE 7!
walking. According to preliminary experiments,
this however leads to massive over-fitting and the
model simply learns to only copy input forms.

2Note that the CoNLL-SIGMORPHON data provides a
‘citation form’ that identifies each table; we do not use this
form and the model has no knowledge of it.

3When only two forms are given in the partial inflection
table, we randomly choose one of the resulting output forms
since the vote is always tied.
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augšanai   N,DAT,SG
augšanā    N,LOC,SG
augšana    N,NOM,SG
augšana    N,VOC,SG
augšanas   N,GEN,SG
augšanu    N,ACC,SG
augšanu    N,INST,SG

augšanu+N,ACC,SG+N,DAT,SG  ! augšanai
augšanai+N,DAT,SG+N,ACC,SG ! augšanu

Figure 2: Partial inflection table for the Latvian noun au-
gana ’growth’. From a partial inflection table with two given
forms, we get two training examples. With n given forms in
a table, we hence produce n(n � 1) training examples.

si l e y d es s ä
stem

g e r a m m t
r e s i g n e r

0.000.250.751.00 0.50

Figure 3: Language model confidences for a Finnish noun
(singular inessive of sileys ’smoothness’), a German past par-
ticiple (of rammen ’to ram’) and a French verb (infinitive
form of resigner ’to resign’). The figure demonstrates that
confidence is higher in the inflectional affixes than in the stem
in general. It is also high at the stem-affix boundary.

The idea for our approach in case n = 1 is
to first learn to segment word forms into a stem
and an affix, for example walk+ed. We then hide
the affix in the input form and learn to inflect. In
other words, we map the word form walked into
walk$$ and then learn a mapping walk$$+PAST
7! walked. This model suffers less from over-
fitting and we can use it to find missing forms in
partial inflection tables.

Since we do not have access to segmented train-
ing data, we cannot directly train a segmentation
model. Instead, we use the forms in the train-
ing data to train an LSTM language model con-
ditioned on morphological tags. We then use the
language model for identifying which characters
belong to stems and which characters belong to
affixes.

As shown in Figure 3, the language model in
general gives higher confidence for predictions of
characters in the affix than in the word stem. Nev-
ertheless, it only gives a probabilistic segmenta-
tion into a stem and affix(es). Therefore, we do
not perform a deterministic segmentation. Instead
we use the language model to guide a character
dropout mechanism in our word inflection model.
When the language model is very confident, as in
the case of affix characters, we frequently drop
characters. In contrast, when the language model

Our baseline Malouf (2017)

FINNISH NOUNS 99.50 99.27 ±0.09
FRENCH VERBS 99.88 99.92 ± 0.02
IRISH NOUNS 85.11 85.69 ±1.71
KHALING VERBS 99.66 99.29 ±0.08
MALTESE VERBS 98.65 98.93 ±0.32
P. CHINANTEC VERBS 91.16 91.20 ±0.97
RUSSIAN NOUNS 95.90 96.34 ±0.96

Table 1: We reproduce experiments in Malouf (2017) using
our own implementation of the model. In contrast to Malouf
(2017), who used cross-validation, we train one system for
each language. Therefore, we only report standard deviation
for the results in Column 2.

is less confident, as in the case of stem characters,
we typically keep the character. Apart from this
adaptive dropout applied during training, our in-
flection system in case n = 1 is exactly the same
as in case n > 1.

More precisely, given an input word form,
which is a sequence of characters x = x1, ..., xT ,
the LSTM language model emits a probabil-
ity p(xt+1,ht, Ext , Ey) for the next character
xt+1 based on the entire previous input sequence
x1, ..., xt. Here ht is the hidden state vector of
the language model at position t, E a joint tag
and character embedding and y the morphologi-
cal tag of the input word form. The embedding
vector Ey is in fact a sum of sub-tag embeddings.
For example, EPAST+PCPLE denotes EPAST+EPCPLE.
This allows us to handle combinations of sub-
tags which we have not seen in the training data.
Guided by the language model, we replace in-
put characters xt+1 during training of the rein-
flection system with a dropout character $ with
probability equal to language model confidence
p(xt+1,ht, Ext , Ey).4

Baseline Model As a baseline model, we use the
neural system presented by Malouf (2016, 2017)
for solving PCFP. It is an LSTM generator which
is conditioned on the table number of the partial
inflection tables and the morphological tag index.
The model is trained to generate training word
forms in inflection tables. During testing, it can
then generate missing forms by conditioning on
morphological tags for the missing forms.

In order to assure fair comparison, we perform
the paradigm completion experiment described in
Malouf (2017), where 90% of the word forms in
the data set is used for training and the remaining
10% for testing. 5 As the results in Table 1 show,

4In practice, we pad input forms with end-of-sequence
characters in order to be able to drop x1 if needed.

5We perform the the experiments on the original data sets,
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our results very closely replicate those reported by
Malouf (2017).

Implementation details We use 1-layer bidirec-
tional LSTM encoders, decoders and generators
with embeddings and hidden states of size 100.
We train the language model for case n > 1 for 20
epochs and all other models for 60 epochs with-
out batching. We train 10 models for every lan-
guage and part-of-speech and apply majority vot-
ing to get the final output forms. All models were
implemented using DyNet (Neubig et al., 2017).

3 Data

We use UniMorph morphological paradigm data
in our experiments (Kirov et al., 2018). Uni-
morph data sets are crowd-sourced collections
of morphological inflection tables based on Wik-
tionary. We conduct experiments on noun and verb
paradigms from eight languages.6 Not all lan-
guages have 1,000 noun and verb tables. Hence,
our selection is not complete as seen in Table 3.

We conduct experiments on two different sets
of tables: (1) we randomly sample 1,000 tables for
each language and part-of-speech, and (2) we se-
lect Unimorph tables including some of the 10,000
most common word forms according to Wikipedia
frequency. The Wikipedia word frequencies are
based on plain Wikipedia text dumps from the
Polyglot project (Al-Rfou et al., 2013). Georgian
and Latin did not have a Polyglot Wikipedia so
we excluded those. Moreover, we excluded Lat-
vian verbs because there was very little overlap
between the most frequent Wikipedia word forms
and Unimorph table entries (< 200 forms occurred
in both). Details for both types of data sets are
given in Tables 3 and 2.

# Tables Table Size

FINNISH NOUNS 1,335 27.3
FINNISH VERBS 513 38.9
FRENCH VERBS 1,131 47.8
GERMAN VERBS 657 24.9
LATVIAN NOUNS 802 12.8
SPANISH VERBS 1,067 62.8
TURKISH NOUNS 884 78.5

Table 2: Details for inflection tables chosen according to
Wikipedia word frequency.

however, we did not have access to the exact splits into train-
ing and test data used by Malouf (2017). This may influence
results.

6Finnish (fin), French (fre), Georgian (geo), German
(ger), Latin (lat), Latvian (lav), Spanish (spa) and Turkish
(tur).

Table Size Unique Forms
per Table

FIN N 27.7 25.7
FIN V 39.0 37.6
FRE V 47.5 36.1
GEO N 19.0 16.9
GER V 28.9 12.3
LAT N 11.9 7.2
LAT V 99.8 94.8
LAV N 11.6 7.6
SPA V 62.5 52.1
TUR N 74.4 54.8

Table 3: Details for randomly sampled inflection tables. The
data for each language and part-of-speech consist of 1,000
tables.

Our system Baseline

FINNISH NOUNS 63.64 ± 3.24 25.63 ± 1.63
FINNISH VERBS 24.82 ± 1.13 16.14 ± 1.14
FRENCH VERBS 31.34 ± 1.18 14.34 ± 0.87
GERMAN NOUNS 18.73 ± 1.26 67.16 ± 3.20
GERMAN VERBS 61.21 ± 1.85 50.18 ± 2.58
LATVIAN NOUNS 76.90 ± 5.30 57.28 ± 2.05
SPANISH VERBS 27.27 ± 0.72 16.61 ± 0.70
TURKISH NOUNS 33.87 ± 2.03 25.00 ± 2.52

Table 4: Overall results for filling in missing forms when the
10,000 most frequent forms are given in the inflection tables.
We give the 0.99 confidence intervals as given by a one-sided
t-test. Figures where one system significantly outperforms
the other one are in boldface.

4 Experiments and Results

We perform two experiments. In the first one, we
take the set of 1,000 randomly sampled inflection
tables for each language and part-of-speech and
then randomly select n=1, 2 or 3 training forms
from each table. We then train a reinflection sys-
tem on these forms and use the resulting system
to predict the missing forms. We report accuracy
on correctly predicted missing forms and on re-
constructing the entire paradigm correctly. In our
second experiment, we consider Unimorph tables
which contain entries from a list of 10,000 most
common word tokens compiled using a Wikipedia
dump of the language as explained above. We take
the forms in the top-10,000 list as given and train a
model which is used to reconstruct the remaining
forms in each table. We train an identical model
as in the case n > 1 on tables with more than one
given form. As in the first task, we evaluate with
regard to accuracy for reconstructed forms and full
tables. Results are presented in Tables 4 and 5, and
Figure 4.

5 Discussion and Conclusions

Table 4 shows results for completing tables for
common lexemes. Our system significantly out-
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Our System Baseline
1 form 2 forms 3 forms 1 form 2 forms 3 forms

FIN N 18.87 ± 0.41 (0.00 ± 0.00) 81.72 ± 0.78 (16.50 ± 3.76) 93.07 ± 0.71 (54.80 ± 4.27) 6.07 ± 0.29 (0.00 ± 0.00) 46.64 ± 0.97 ( 0.00 ± 0.00) 65.60 ± 1.25 ( 0.80 ± 0.65)
FIN V 19.88 ± 0.69 (0.00 ± 0.00) 87.73 ± 0.36 (59.20 ± 5.73) 94.63 ± 0.41 (75.50 ± 3.82) 12.35 ± 0.58 (0.00 ± 0.00) 63.56 ± 0.89 ( 0.90 ± 0.90) 81.49 ± 0.42 (17.20 ± 2.21)
FRE V 15.66 ± 0.65 (0.00 ± 0.00) 78.30 ± 0.66 (23.50 ± 4.06) 83.64 ± 0.72 (35.60 ± 4.63) 11.46 ± 0.33 (0.00 ± 0.00) 61.01 ± 0.79 ( 0.40 ± 0.53) 74.07 ± 1.00 ( 7.60 ± 2.53)
GEO N 28.66 ± 1.12 (0.00 ± 0.00) 90.53 ± 0.48 (53.20 ± 6.03) 96.02 ± 0.48 (84.80 ± 3.28) 21.14 ± 0.84 (0.00 ± 0.00) 78.91 ± 0.56 (23.50 ± 4.03) 90.61 ± 0.76 (51.30 ± 6.19)
GER N 39.46 ± 2.18 (2.50 ± 1.83) 84.65 ± 2.00 (61.30 ± 4.33) 93.38 ± 0.86 (78.30 ± 3.14) 40.25 ± 2.09 (4.40 ± 1.83) 72.26 ± 1.70 (32.70 ± 4.70) 86.49 ± 2.09 (57.30 ± 5.11)
GER V 43.38 ± 0.68 (0.00 ± 0.00) 92.73 ± 0.41 (54.70 ± 3.75) 95.83 ± 0.38 (70.00 ± 4.99) 33.97 ± 1.13 (0.00 ± 0.00) 83.32 ± 0.48 (17.10 ± 3.27) 90.51 ± 0.62 (34.90 ± 3.92)
LAT N 16.89 ± 1.20 (0.00 ± 0.00) 83.59 ± 1.20 (49.50 ± 5.13) 91.02 ± 0.76 (68.70 ± 4.47) 23.62 ± 1.19 (0.10 ± 0.32) 63.27 ± 1.25 (17.40 ± 4.09) 77.96 ± 1.34 (32.90 ± 5.60)
LAT V 17.34 ± 0.37 (0.00 ± 0.00) 83.01 ± 0.30 (27.00 ± 2.65) 89.66 ± 0.44 ( 2.80 ± 1.35) 5.96 ± 0.21 (0.00 ± 0.00) 52.68 ± 0.43 ( 0.00 ± 0.00) 68.95 ± 0.47 ( 0.00 ± 0.00)
LAV N 30.11 ± 1.27 (2.00 ± 1.37) 85.41 ± 1.07 (48.50 ± 4.00) 94.83 ± 0.53 (83.40 ± 4.37) 22.35 ± 0.88 (2.60 ± 1.39) 64.76 ± 1.28 (22.20 ± 3.17) 79.21 ± 1.13 (40.80 ± 4.41)
SPA V 27.78 ± 0.69 (0.00 ± 0.00) 87.44 ± 0.34 (32.20 ± 5.71) 94.81 ± 0.25 (59.00 ± 6.71) 10.88 ± 0.35 (0.00 ± 0.00) 70.67 ± 0.27 ( 0.40 ± 0.53) 84.08 ± 0.38 (11.60 ± 2.91)
TUR N 15.70 ± 0.44 (0.00 ± 0.00) 88.90 ± 0.60 (19.20 ± 4.89) 92.07 ± 0.37 (22.80 ± 4.22) 7.94 ± 0.39 (0.00 ± 0.00) 61.95 ± 0.72 ( 5.60 ± 2.95) 77.02 ± 0.49 (11.40 ± 3.82)

Table 5: Accuracy for filling in missing forms when n=1,2 or 3 forms are given in the inflection table (accuracy for complete
paradigms in parentheses). We give the 0.99 confidence intervals as given by a one-sided t-test. Figures where one system
significantly outperforms the other one are in boldface.
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Figure 4: Detailed results for filling in missing forms when the 10,000 most frequent forms are given in the inflection tables.
The blue bars (on the left) denote accuracy for our system and green bars (on the right) accuracy for the baseline system. The
graphs show accuracy separately for tables where 1, 2, 3, 4, and > 4 forms are given.

performs the baseline on all other datasets apart
from German nouns. We believe that the rea-
son for the German outlier is the high degree of
syncretism in German noun tables. To see why
syncretism is harmful, consider the German noun
Gräben. Its paradigm consists of eight forms but
four of those are identical: Gräben. Only this
form is observed among the top 10,000 forms in
the German Wikipedia. Following Section 2, this
gives rise to 12 training examples where both the
input and output form are Gräben. This strongly
biases the system to copying input forms into the
output. However, this will never give the correct
output because, by design, missing forms cannot
be Gräben.7 This can be seen as a problem with
our datasets rather than the model itself. Conse-
quently, an important future work in addressing
the PCFP from an acquisition perspective is to
create realistic and accurate data sets that model

7If the same word form occurs in multiple slots, all of
them are considered known.

learner exposure both in word types and frequen-
cies to enable assessment of the true difficulty of
the PCFP.

There is a notable transition from witnessing
one form in each inflection table to witnessing two
forms. With only two forms given, we already ap-
proach accuracies reported in earlier work (Mal-
ouf, 2016, 2017) that used almost complete tables
to train—only 10% of the forms were missing.
Additionally, our encoder-decoder model strongly
outperforms that generator model designed for the
same task with the same amount of training data
on nearly all of our datasets.
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Abstract
Deep neural networks (DNNs) are vulnera-
ble to adversarial examples, perturbations to
correctly classified examples which can cause
the model to misclassify. In the image do-
main, these perturbations are often virtually
indistinguishable to human perception, caus-
ing humans and state-of-the-art models to dis-
agree. However, in the natural language do-
main, small perturbations are clearly percep-
tible, and the replacement of a single word
can drastically alter the semantics of the doc-
ument. Given these challenges, we use a
black-box population-based optimization al-
gorithm to generate semantically and syntac-
tically similar adversarial examples that fool
well-trained sentiment analysis and textual en-
tailment models with success rates of 97% and
70%, respectively. We additionally demon-
strate that 92.3% of the successful sentiment
analysis adversarial examples are classified to
their original label by 20 human annotators,
and that the examples are perceptibly quite
similar. Finally, we discuss an attempt to use
adversarial training as a defense, but fail to
yield improvement, demonstrating the strength
and diversity of our adversarial examples. We
hope our findings encourage researchers to
pursue improving the robustness of DNNs in
the natural language domain.

1 Introduction
Recent research has found that deep neural net-
works (DNNs) are vulnerable to adversarial ex-
amples (Goodfellow et al., 2015; Szegedy et al.,
2014). The existence of adversarial examples has
been shown in image classification (Szegedy et al.,
2014) and speech recognition (Carlini and Wag-
ner, 2018). In this work, we demonstrate that
adversarial examples can be constructed in the
context of natural language. Using a black-box

⇤ Moustafa Alzantot and Yash Sharma contribute equally
to this work.

population-based optimization algorithm, we suc-
cessfully generate both semantically and syntac-
tically similar adversarial examples against mod-
els trained on both the IMDB (Maas et al., 2011)
sentiment analysis task and the Stanford Natural
Language Inference (SNLI) (Bowman et al., 2015)
textual entailment task. In addition, we validate
that the examples are both correctly classified by
human evaluators and similar to the original via
a human study. Finally, we attempt to defend
against said adversarial attack using adversarial
training, but fail to yield any robustness, demon-
strating the strength and diversity of the generated
adversarial examples.

Our results show that by minimizing the seman-
tic and syntactic dissimilarity, an attacker can per-
turb examples such that humans correctly classify,
but high-performing models misclassify. We are
open-sourcing our attack1 to encourage research
in training DNNs robust to adversarial attacks in
the natural language domain.

2 Natural Language Adversarial
Examples

Adversarial examples have been explored primar-
ily in the image recognition domain. Exam-
ples have been generated through solving an op-
timization problem, attempting to induce misclas-
sification while minimizing the perceptual distor-
tion (Szegedy et al., 2014; Carlini and Wagner,
2017; Chen et al., 2018; Sharma and Chen, 2018).
Due to the computational cost of such approaches,
fast methods were introduced which, either in one-
step or iteratively, shift all pixels simultaneously
until a distortion constraint is reached (Goodfel-
low et al., 2015; Kurakin et al., 2017; Madry et al.,
2018). Nearly all popular methods are gradient-
based.

1https://github.com/nesl/nlp_
adversarial_examples
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Such methods, however, rely on the fact that
adding small perturbations to many pixels in the
image will not have a noticeable effect on a human
viewer. This approach obviously does not transfer
to the natural language domain, as all changes are
perceptible. Furthermore, unlike continuous im-
age pixel values, words in a sentence are discrete
tokens. Therefore, it is not possible to compute the
gradient of the network loss function with respect
to the input words. A straightforward workaround
is to project input sentences into a continuous
space (e.g. word embeddings) and consider this as
the model input. However, this approach also fails
because it still assumes that replacing every word
with words nearby in the embedding space will not
be noticeable. Replacing words without account-
ing for syntactic coherence will certainly lead to
improperly constructed sentences which will look
odd to the reader.

Relative to the image domain, little work has
been pursued for generating natural language ad-
versarial examples. Given the difficulty in gener-
ating semantics-preserving perturbations, distract-
ing sentences have been added to the input docu-
ment in order to induce misclassification (Jia and
Liang, 2017). In our work, we attempt to gener-
ate semantically and syntactically similar adver-
sarial examples, via word replacements, resolv-
ing the aforementioned issues. Minimizing the
number of word replacements necessary to in-
duce misclassification has been studied in previ-
ous work (Papernot et al., 2016), however with-
out consideration given to semantics or syntactics,
yielding incoherent generated examples. In recent
work, there have been a few attempts at generat-
ing adversarial examples for language tasks by us-
ing back-translation (Iyyer et al., 2018), exploit-
ing machine-generated rules (Ribeiro et al., 2018),
and searching in underlying semantic space (Zhao
et al., 2018). In addition, while preparing our sub-
mission, we became aware of recent work which
target a similar contribution (Kuleshov et al.,
2018; Ebrahimi et al., 2018). We treat these con-
tributions as parallel work.

3 Attack Design
3.1 Threat model
We assume the attacker has black-box access to
the target model; the attacker is not aware of the
model architecture, parameters, or training data,
and is only capable of querying the target model
with supplied inputs and obtaining the output pre-

dictions and their confidence scores. This set-
ting has been extensively studied in the image do-
main (Papernot et al., 2017; Chen et al., 2017a;
Alzantot et al., 2018), but has yet to be explored in
the context of natural language.

3.2 Algorithm
To avoid the limitations of gradient-based attack
methods, we design an algorithm for constructing
adversarial examples with the following goals in
mind. We aim to minimize the number of modified
words between the original and adversarial exam-
ples, but only perform modifications which retain
semantic similarity with the original and syntactic
coherence. To achieve these goals, instead of rely-
ing on gradient-based optimization, we developed
an attack algorithm that exploits population-based
gradient-free optimization via genetic algorithms.

An added benefit of using gradient-free opti-
mization is enabling use in the black-box case;
gradient-reliant algorithms are inapplicable in this
case, as they are dependent on the model being dif-
ferentiable and the internals being accessible (Pa-
pernot et al., 2016; Ebrahimi et al., 2018).

Genetic algorithms are inspired by the process
of natural selection, iteratively evolving a popu-
lation of candidate solutions towards better solu-
tions. The population of each iteration is a called a
generation. In each generation, the quality of pop-
ulation members is evaluated using a fitness func-
tion. “Fitter” solutions are more likely to be se-
lected for breeding the next generation. The next
generation is generated through a combination of
crossover and mutation. Crossover is the pro-
cess of taking more than one parent solution and
producing a child solution from them; it is anal-
ogous to reproduction and biological crossover.
Mutation is done in order to increase the diver-
sity of population members and provide better ex-
ploration of the search space. Genetic algorithms
are known to perform well in solving combina-
torial optimization problems (Anderson and Fer-
ris, 1994; Mühlenbein, 1989), and due to employ-
ing a population of candidate solutions, these al-
gorithms can find successful adversarial examples
with fewer modifications.

Perturb Subroutine: In order to explain our
algorithm, we first introduce the subroutine
Perturb. This subroutine accepts an input sen-
tence xcur which can be either a modified sentence
or the same as xorig. It randomly selects a word w
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in the sentence xcur and then selects a suitable re-
placement word that has similar semantic mean-
ing, fits within the surrounding context, and in-
creases the target label prediction score.
In order to select the best replacement word,
Perturb applies the following steps:

• Computes the N nearest neighbors of the se-
lected word according to the distance in the
GloVe embedding space (Pennington et al.,
2014). We used euclidean distance, as we
did not see noticeable improvement using
cosine. We filter out candidates with dis-
tance to the selected word greater than �.
We use the counter-fitting method presented
in (Mrkšić et al., 2016) to post-process the
adversary’s GloVe vectors to ensure that the
nearest neighbors are synonyms. The result-
ing embedding is independent of the embed-
dings used by victim models.

• Second, we use the Google 1 billion words
language model (Chelba et al., 2013) to fil-
ter out words that do not fit within the context
surrounding the word w in xcur. We do so by
ranking the candidate words based on their
language model scores when fit within the re-
placement context, and keeping only the top
K words with the highest scores.

• From the remaining set of words, we pick the
one that will maximize the target label pre-
diction probability when it replaces the word
w in xcur.

• Finally, the selected word is inserted in place
of w, and Perturb returns the resulting sen-
tence.

The selection of which word to replace in the
input sentence is done by random sampling with
probabilities proportional to the number of neigh-
bors each word has within Euclidean distance � in
the counter-fitted embedding space, encouraging
the solution set to be large enough for the algo-
rithm to make appropriate modifications. We ex-
clude common articles and prepositions (e.g. a, to)
from being selected for replacement.

Optimization Procedure: The optimization al-
gorithm can be seen in Algorithm 1. The algo-
rithm starts by creating the initial generation P0 of
size S by calling the Perturb subroutine S times
to create a set of distinct modifications to the orig-
inal sentence. Then, the fitness of each popula-
tion member in the current generation is computed
as the target label prediction probability, found by

Algorithm 1 Finding adversarial examples
for i = 1, ..., S in population do

P0
i  Perturb(xorig, target)

for g = 1, 2...G generations do
for i = 1, ..., S in population do

F g�1
i = f(Pg�1

i )target

xadv = Pg�1

arg maxj F g�1
j

if arg maxc f(xadv)c == t then
return xadv . {Found successful attack}

else
Pg

1 = {xadv}
p = Normalize(F g�1)
for i = 2, ..., S in population do

Sample parent1 from Pg�1 with probs p
Sample parent2 from Pg�1 with probs p
child = Crossover(parent1, parent2)
childmut = Perturb(child, target)
Pg

i = {childmut}

querying the victim model function f . If a pop-
ulation member’s predicted label is equal to the
target label, the optimization is complete. Other-
wise, pairs of population members from the cur-
rent generation are randomly sampled with prob-
ability proportional to their fitness values. A new
child sentence is then synthesized from a pair of
parent sentences by independently sampling from
the two using a uniform distribution. Finally, the
Perturb subroutine is applied to the resulting
children.

4 Experiments
To evaluate our attack method, we trained models
for the sentiment analysis and textual entailment
classification tasks. For both models, each word
in the input sentence is first projected into a fixed
300-dimensional vector space using GloVe (Pen-
nington et al., 2014). Each of the models used
are based on popular open-source benchmarks,
and can be found in the following repositories23.
Model descriptions are given below.

Sentiment Analysis: We trained a sentiment
analysis model using the IMDB dataset of movie
reviews (Maas et al., 2011). The IMDB dataset
consists of 25,000 training examples and 25,000
test examples. The LSTM model is composed of
128 units, and the outputs across all time steps are

2https://github.com/keras-team/keras/
blob/master/examples/imdb_lstm.py

3https://github.com/Smerity/keras_
snli/blob/master/snli_rnn.py
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Original Text Prediction = Negative. (Confidence = 78.0%)
This movie had terrible acting, terrible plot, and terrible choice of actors. (Leslie Nielsen ...come on!!!)
the one part I considered slightly funny was the battling FBI/CIA agents, but because the audience was
mainly kids they didn’t understand that theme.
Adversarial Text Prediction = Positive. (Confidence = 59.8%)
This movie had horrific acting, horrific plot, and horrifying choice of actors. (Leslie Nielsen ...come
on!!!) the one part I regarded slightly funny was the battling FBI/CIA agents, but because the audience
was mainly youngsters they didn’t understand that theme.

Table 1: Example of attack results for the sentiment analysis task. Modified words are highlighted in green and
red for the original and adversarial texts, respectively.

Original Text Prediction: Entailment (Confidence = 86%)
Premise: A runner wearing purple strives for the finish line.
Hypothesis: A runner wants to head for the finish line.
Adversarial Text Prediction: Contradiction (Confidence = 43%)
Premise: A runner wearing purple strives for the finish line.
Hypothesis: A racer wants to head for the finish line.

Table 2: Example of attack results for the textual entailment task. Modified words are highlighted in green and red
for the original and adversarial texts, respectively.

Sentiment Analysis Textual Entailment
% success % modified % success % modified

Perturb baseline 52% 19% – –
Genetic attack 97% 14.7% 70% 23%

Table 3: Comparison between the attack success rate and mean percentage of modifications required by the genetic
attack and perturb baseline for the two tasks.

averaged and fed to the output layer. The test accu-
racy of the model is 90%, which is relatively close
to the state-of-the-art results on this dataset.

Textual Entailment: We trained a textual en-
tailment model using the Stanford Natural Lan-
guage Inference (SNLI) corpus (Bowman et al.,
2015). The model passes the input through a
ReLU “translation” layer (Bowman et al., 2015),
which encodes the premise and hypothesis sen-
tences by performing a summation over the word
embeddings, concatenates the two sentence em-
beddings, and finally passes the output through 3
600-dimensional ReLU layers before feeding it to
a 3-way softmax. The model predicts whether the
premise sentence entails, contradicts or is neutral
to the hypothesis sentence. The test accuracy of
the model is 83% which is also relatively close to
the state-of-the-art (Chen et al., 2017b).
4.1 Attack Evaluation Results
We randomly sampled 1000, and 500 correctly
classified examples from the test sets of the two
tasks to evaluate our algorithm. Correctly classi-
fied examples were chosen to limit the accuracy
levels of the victim models from confounding our

results. For the sentiment analysis task, the at-
tacker aims to divert the prediction result from
positive to negative, and vice versa. For the tex-
tual entailment task, the attacker is only allowed
to modify the hypothesis, and aims to divert the
prediction result from ‘entailment’ to ‘contradic-
tion’, and vice versa. We limit the attacker to
maximum G = 20 iterations, and fix the hyper-
parameter values to S = 60, N = 8, K = 4, and
� = 0.5. We also fixed the maximum percentage
of allowed changes to the document to be 20% and
25% for the two tasks, respectively. If increased,
the success rate would increase but the mean qual-
ity would decrease. If the attack does not succeed
within the iterations limit or exceeds the specified
threshold, it is counted as a failure.

Sample outputs produced by our attack are
shown in Tables 1 and 2. Additional outputs can
be found in the supplementary material. Table 3
shows the attack success rate and mean percent-
age of modified words on each task. We compare
to the Perturb baseline, which greedily applies
the Perturb subroutine, to validate the use of
population-based optimization. As can be seen
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from our results, we are able to achieve high suc-
cess rate with a limited number of modifications
on both tasks. In addition, the genetic algorithm
significantly outperformed the Perturb baseline
in both success rate and percentage of words mod-
ified, demonstrating the additional benefit yielded
by using population-based optimization. Testing
using a single TitanX GPU, for sentiment analy-
sis and textual entailment, we measured average
runtimes on success to be 43.5 and 5 seconds per
example, respectively. The high success rate and
reasonable runtimes demonstrate the practicality
of our approach, even when scaling to long sen-
tences, such as those found in the IMDB dataset.

Speaking of which, our success rate on textual
entailment is lower due to the large disparity in
sentence length. On average, hypothesis sentences
in the SNLI corpus are 9 words long, which is
very short compared to IMDB (229 words, lim-
ited to 100 for experiments). With sentences that
short, applying successful perturbations becomes
much harder, however we were still able to achieve
a success rate of 70%. For the same reason, we
didn’t apply the Perturb baseline on the textual
entailment task, as the Perturb baseline fails to
achieve any success under the limits of the maxi-
mum allowed changes constraint.

4.2 User study
We performed a user study on the sentiment anal-
ysis task with 20 volunteers to evaluate how per-
ceptible our adversarial perturbations are. Note
that the number of participating volunteers is sig-
nificantly larger than used in previous studies (Jia
and Liang, 2017; Ebrahimi et al., 2018). The user
study was composed of two parts. First, we pre-
sented 100 adversarial examples to the participants
and asked them to label the sentiment of the text
(i.e., positive or negative.) 92.3% of the responses
matched the original text sentiment, indicating that
our modification did not significantly affect human
judgment on the text sentiment. Second, we pre-
pared 100 questions, each question includes the
original example and the corresponding adversar-
ial example in a pair. Participants were asked to
judge the similarity of each pair on a scale from
1 (very similar) to 4 (very different). The average
rating is 2.23 ± 0.25, which shows the perceived
difference is also small.

4.3 Adversarial Training
The results demonstrated in section 4.1 raise the
following question: How can we defend against

these attacks? We performed a preliminary exper-
iment to see if adversarial training (Madry et al.,
2018), the only effective defense in the image do-
main, can be used to lower the attack success rate.
We generated 1000 adversarial examples on the
cleanly trained sentiment analysis model using the
IMDB training set, appended them to the existing
training set, and used the updated dataset to ad-
versarially train a model from scratch. We found
that adversarial training provided no additional ro-
bustness benefit in our experiments using the test
set, despite the fact that the model achieves near
100% accuracy classifying adversarial examples
included in the training set. These results demon-
strate the diversity in the perturbations generated
by our attack algorithm, and illustrates the diffi-
culty in defending against adversarial attacks. We
hope these results inspire further work in increas-
ing the robustness of natural language models.

5 Conclusion

We demonstrate that despite the difficulties in gen-
erating imperceptible adversarial examples in the
natural language domain, semantically and syntac-
tically similar adversarial examples can be crafted
using a black-box population-based optimization
algorithm, yielding success on both the sentiment
analysis and textual entailment tasks. Our human
study validated that the generated examples were
indeed adversarial and perceptibly quite similar.
We hope our work encourages researchers to pur-
sue improving the robustness of DNNs in the nat-
ural language domain.
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Abstract

Multi-head attention is appealing for the abil-
ity to jointly attend to information from dif-
ferent representation subspaces at different po-
sitions. In this work, we introduce a dis-
agreement regularization to explicitly encour-
age the diversity among multiple attention
heads. Specifically, we propose three types
of disagreement regularization, which respec-
tively encourage the subspace, the attended
positions, and the output representation asso-
ciated with each attention head to be differ-
ent from other heads. Experimental results on
widely-used WMT14 English)German and
WMT17 Chinese)English translation tasks
demonstrate the effectiveness and universality
of the proposed approach.

1 Introduction

Attention model is now a standard component
of the deep learning networks, contributing to
impressive results in neural machine transla-
tion (Bahdanau et al., 2015; Luong et al., 2015),
image captioning (Xu et al., 2015), speech recog-
nition (Chorowski et al., 2015), among many other
applications. Recently, Vaswani et al. (2017) in-
troduced a multi-head attention mechanism to cap-
ture different context with multiple individual at-
tention functions.

One strong point of multi-head attention is the
ability to jointly attend to information from dif-
ferent representation subspaces at different posi-
tions. However, there is no mechanism to guar-
antee that different attention heads indeed capture
distinct features. In response to this problem, we
introduce a disagreement regularization term to
explicitly encourage the diversity among multiple
attention heads. The disagreement regularization

⇤ Zhaopeng Tu is the corresponding author of the paper.
This work was mainly conducted when Jian Li and Baosong
Yang were interning at Tencent AI Lab.

serves as an auxiliary objective to guide the train-
ing of the related attention component.

Specifically, we propose three types of disagree-
ment regularization, which are applied to the three
key components that refer to the calculation of fea-
ture vector using multi-head attention. Two regu-
larization terms are respectively to maximize co-
sine distances of the input subspaces and output
representations, while the last one is to disperse
the positions attended by multiple heads with
element-wise multiplication of the corresponding
attention matrices. The three regularization terms
can be either used individually or in combination.

We validate our approach on top of advanced
TRANSFORMER model (Vaswani et al., 2017)
for both English)German and Chinese)English
translation tasks. Experimental results show that
our approach consistently improves translation
performance across language pairs. One encour-
aging finding is that TRANSFORMER-BASE with
disagreement regularization achieves comparable
performance with TRANSFORMER-BIG, while the
training speed is nearly twice faster.

2 Background: Multi-Head Attention
Bush held a talk with Sharon

head1

head2

Bush held a talk with Sharon

head1

head2

Figure 1: Illustration of the multi-head attention,
which jointly attends to different representation
subspaces (colored boxes) at different positions
(darker color denotes higher attention probability).

Attention mechanism aims at modeling the
strength of relevance between representation pairs,
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such that a representation is allowed to build a di-
rect relation with another representation. Instead
of performing a single attention function, Vaswani
et al. (2017) found it is beneficial to capture dif-
ferent context with multiple individual attention
functions. Figure 1 shows an example of a two-
head attention model. For the query word “Bush”,
green and red head pay attention to different posi-
tions of “talk” and “Sharon” respectively.

Attention function softly maps a sequence of
query Q = {Q1, . . . , QN} and a set of key-value
pairs {K, V } = {(K1, V1), . . . , (KM , VM )} to
outputs. More specifically, multi-head attention
model first transforms Q, K, and V into H sub-
spaces, with different, learnable linear projections,
namely:

Qh, Kh, V h = QWQ
h , KWK

h , V W V
h ,

where {Qh, Kh, V h} are respective the query,
key, and value representations of the h-th head.
{WQ

h , WK
h , W V

h } 2 R
d⇥dk denote parameter ma-

trices, d and dk represent the dimensionality of the
model and its subspace. Furthermore, H atten-
tion functions are applied in parallel to produce
the output states {O1, . . . , OH}, among them:

Oh = AhV h with Ah = softmax(
QhKhT

p
dk

).

Here Ah is the attention distribution produced by
the h-th attention head. Finally, the output states
are concatenated to produce the final state.

3 Approach

Multi-head attention allows the model to jointly
attend to information from different representation
subspaces at different positions. To further guaran-
tee the diversity, we enlarge the distances among
multiple attention heads with disagreement regu-
larization (Section 3.1). Specifically, we propose
three types of disagreement regularization to en-
courage each head vector Oi to be different from
other heads (Section 3.2).

3.1 Framework
In this work, we take the machine translation tasks
as application. Given a source sentence x and its
translation y, a neural machine translation model
is trained to maximize the conditional translation
probability over a parallel training corpus.

We introduce an auxiliary regularization term in
order to encourage the diversity among multiple

attention heads. Formally, the training objective is
revised as:

J(✓) = arg max
✓

�
L(y|x; ✓)| {z }
likelihood

+�⇤D(a|x,y; ✓)| {z }
disagreement

 
,

where a is the referred attention matrices, � is
a hyper-parameter and is empirically set to 1.0
in this paper. The auxiliary regularization term
D(·) guides the related attention component to
capture different features from the corresponding
projected subspaces.

Note that the introduced regularization term
works like L1 and L2 terms, which do not intro-
duce any new parameters and only influence the
training of the standard model parameters.

3.2 Disagreement Regularization
Three types of regularization term, which are ap-
plied to three parts of the original multi-head at-
tention, are introduced in this section.

Disagreement on Subspaces (Sub.) This dis-
agreement is designed to maximize the cosine dis-
tance between the projected values. Specifically,
we first calculate the cosine similarity cos(·) be-
tween the vector pair V i and V j in different value
subspaces, through the dot product of the normal-
ized vectors1, which measures the cosine of the an-
gle between V i and V j . Thus, the cosine distance
is defined as negative similarity, i.e, � cos(·). Our
training objective is to enlarge the average cosine
distance among all head pairs. The regularization
term is formally expressed as:

Dsubpace = � 1

H2

HX

i=1

HX

j=1

V i · V j

kV ikkV jk . (1)

Disagreement on Attended Positions (Pos.)
Another strategy is to disperse the attended po-
sitions predicted by multiple heads. Inspired by
the agreement regularization (Liang et al., 2006;
Cheng et al., 2016) which encourages multiple
alignments to be similar, in this work, we deploy
a variant of the original term by introducing an
alignment disagreement regularization. Formally,
we employ the sum of element-wise multiplica-
tion of corresponding matrix cells2, to measure the

1We did not employ the Euler Distance between vectors
since we do not care the absolute value in each vector.

2We also used the squared element-wise subtraction of
two matrices in our preliminary experiments, and found it
underperforms its multiplication counterpart, which is con-
sistent with the results in (Cheng et al., 2016).
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similarity between two matrices Ai and Aj of two
heads:

Dposition = � 1

H2

HX

i=1

HX

j=1

|Ai � Aj |. (2)

Disagreement on Outputs (Out.) This dis-
agreement directly applies regularization on the
outputs of each attention head, by maximizing the
difference among them. Similar to the subspace
strategy, we employ negative cosine similarity to
measure the distance:

Doutput = � 1

H2

HX

i=1

HX

j=1

Oi · Oj

kOikkOjk . (3)

4 Related Work

The regularization on attended positions is in-
spired by agreement learning in prior works,
which encourages alignments or hidden variables
of multiple models to be similar. Liang et al.
(2006) first assigned agreement terms for jointly
training word alignment in phrase-based statistic
machine translation (Koehn et al., 2003). The
idea was further extended into other natural lan-
guage processing tasks such as grammar induc-
tion (Liang et al., 2008). Levinboim et al.
(2015) extended the agreement for general bidi-
rectional sequence alignment models with model
inevitability regularization. Cheng et al. (2016)
further explored the agreement on modeling the
source-target and target-source alignments in neu-
ral machine translation model. In contrast to
the mentioned approaches which assigned agree-
ment terms into loss function, we deploy an align-
ment disagreement regularization by maximizing
the distance among multiple attention heads.

As standard multi-head attention model lacks
effective control on the influence of different
attention heads, Ahmed et al. (2017) used a
weighted mechanism to combine them rather
than simple concatenation. As an alternative
approach to multi-head attention, Shen et al.
(2018a) and Shen et al. (2018b) extended the sin-
gle relevance score to multi-dimensional attention
weights, demonstrating the effectiveness of mod-
eling multiple features for attention networks. Our
approach is complementary to theirs: our model
encourages the diversity among multiple heads,
while theirs enhance the power of each head.

# Regularization Speed BLEUSub. Pos. Out.
1 × × × 1.21 24.13
2 X × × 1.15 24.64
3 × X × 1.14 24.42
4 × × X 1.15 24.78
5 X × X 1.12 24.73
6 X X × 1.11 24.38
7 X X X 1.05 24.60

Table 1: Effect of regularization terms, which are
applied to the encoder self-attention only. “Speed”
denotes the training speed (steps/second).

5 Experiments

5.1 Setup

To compare with the results reported by previous
work (Gehring et al., 2017; Vaswani et al., 2017;
Hassan et al., 2018), we conduct experiments on
both WMT2017 Chinese)English (Zh)En) and
WMT2014 English)German (En)De) transla-
tion tasks. The Zh)En corpus consists of 20M
sentence pairs, and the En)De corpus consists of
4M sentence pairs. We follow previous work to
select the validation and test sets. Byte-pair en-
coding (BPE) is employed to alleviate the Out-of-
Vocabulary problem (Sennrich et al., 2016) with
32K merge operations for both language pairs.
We use the case-sensitive 4-gram NIST BLEU
score (Papineni et al., 2002) as evaluation metric,
and sign-test (Collins et al., 2005) for statistical
significance test.

We evaluate the proposed approaches on the
advanced TRANSFORMER model (Vaswani et al.,
2017), and implement on top of an open-source
toolkit – THUMT (Zhang et al., 2017). We fol-
low Vaswani et al. (2017) to set the configurations
and have reproduced their reported results on the
En)De task. All the evaluations are conducted
on the test sets. We have tested both Base and
Big models, which differ at hidden size (512 vs.
1024) and number of attention heads (8 vs. 16).
We study model variations with Base model on
the Zh)En task (Section 5.2 and 5.3), and eval-
uate overall performance with Big model on both
Zh)En and En)De tasks (Section 5.4).

5.2 Effect of Regularization Terms

In this section, we evaluate the impact of differ-
ent regularization terms on the Zh)En task us-
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System Architecture Zh)En En)De
Speed BLEU Speed BLEU

Existing NMT systems
(Wu et al., 2016) GNMT n/a n/a n/a 26.30
(Gehring et al., 2017) CONVS2S n/a n/a n/a 26.36

(Vaswani et al., 2017) TRANSFORMER-BASE n/a n/a n/a 27.3
TRANSFORMER-BIG n/a n/a n/a 28.4

(Hassan et al., 2018) TRANSFORMER-BIG n/a 24.2 n/a n/a
Our NMT systems

this work

TRANSFORMER-BASE 1.21 24.13 1.28 27.64
+ Disagreement 1.06 24.85* 1.10 28.51*

TRANSFORMER-BIG 0.58 24.56 0.61 28.58
+ Disagreement 0.47 25.08* 0.51 29.28*

Table 3: Comparing with existing NMT systems on WMT17 Chinese)English and WMT14
English)German translation tasks. “*” indicates that the model is significantly better than its base-
line counterpart (p < 0.01).

Applying to Speed BLEUEnc E-D Dec
× × × 1.21 24.13
X × × 1.15 24.78
X X × 1.10 24.67
X × X 1.11 24.69
X X X 1.06 24.85

Table 2: Effect of regularization on different atten-
tion networks, i.e., encoder self-attention (“Enc”),
encoder-decoder attention (“E-D”), and decoder
self-attention (“Dec”).

ing TRANSFORMER-BASE. For simplicity and
efficiency, here we only apply regularizations on
the encoder side. As shown in Table 1, all the
models with the proposed disagreement regular-
izations (Rows 2-4) consistently outperform the
vanilla TRANSFORMER (Row 1). Among them,
the Output term performs best which is +0.65
BLEU score better than the baseline model, the
Position term is less effective than the other two.
In terms of training speed, we do not observe ob-
vious decrease, which in turn demonstrates the ad-
vantage of our disagreement regularizations.

However, the combinations of different dis-
agreement regularizations fail to further improve
translation performance (Rows 5-7). One pos-
sible reason is that different regularization terms
have overlapped guidance, and thus combining
them does not introduce too much new informa-
tion while makes training more difficult.

5.3 Effect on Different Attention Networks

The TRANSFORMER consists of three attention
networks, including encoder self-attention, de-
coder self-attention, and encoder-decoder atten-
tion. In this experiment, we investigate how each
attention network benefits from the disagreement
regularization. As seen from Table 2, all mod-
els consistently improve upon the baseline model.
When applying disagreement regularization to all
three attention networks, we achieve the best per-
formance, which is +0.72 BLEU score better than
the baseline model. The training speed decreases
by 12%, which is acceptable considering the per-
formance improvement.

5.4 Main Results

Finally, we validate the proposed disagree-
ment regularization on both WMT17 Chinese-to-
English and WMT14 English-to-German transla-
tion tasks. Specifically, we adopt the Output dis-
agreement regularization, which is applied to all
three attention networks. The results are con-
cluded in Table 3. We can see that our im-
plementation of TRANSFORMER outperforms all
existing NMT systems, and matches the results
of TRANSFORMER reported in previous works.
Incorporating disagreement regularization consis-
tently improves translation performance for both
base and big TRANSFORMER models across lan-
guage pairs, demonstrating the effectiveness of the
proposed approach. It is encouraging to see that
TRANSFORMER-BASE with disagreement regu-
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Regularization on Disagreement on
Sub. Pos. Out.

n/a 0.882 0.007 0.881
Subspace 0.999 0.006 0.935
Position 0.882 0.219 0.882
Output 0.989 0.006 0.997

Table 4: Effect of different regularization terms on
the three disagreement measurements. “n/a” de-
notes the baseline model without any regulariza-
tion term. Larger value denotes more disagree-
ment (at most 1.0).

Reg. Layer
1 2 3 4 5 6

n/a 0.040 0.009 0.002 0.003 0.008 0.006
Sub. 0.039 0.009 0.001 0.003 0.006 0.005
Pos. 0.217 0.167 0.219 0.242 0.233 0.249
Out. 0.048 0.009 0.002 0.003 0.008 0.006

Table 5: Disagreement on attended positions with
respect to the levels of the encoder layers.

larization achieves comparable performance with
TRANSFORMER-BIG, while the training speed is
nearly twice faster.

5.5 Quantitative Analysis of Regularization

In this section, we empirically investigate how the
regularization terms affect the multi-head atten-
tion. To this end, we compare the disagreement
scores on subspaces (“Sub.”), attended positions
(“Pos.”), and outputs (“Out.”). Since the scores
are negative values, we list exp(D) for readabil-
ity, which has a maximum value of 1.0. Table 4
lists the results of encoder-side multi-head atten-
tion on the Zh)En validation set. As seen, the
disagreement score on the individual component
indeed increases with the corresponding regular-
ization term. For example, the disagreement of
outputs increases to almost 1.0 by using the Output
regularization, which means that the output vec-
tors are almost perpendicular to each other as we
measure the cosine distance as the disagreement.

One interesting finding is that attending to dif-
ferent positions may not be the essential strength
of multi-head attention on the translation task. As
seen, the disagreement score on the attended posi-
tions for the standard multi-head attention is only
0.007, which indicates that almost all the heads at-
tend to the same positions. Table 5 shows the dis-
agreement scores on attended positions across en-

coder layers. Except for the 1st layer that attends
to the input word embeddings, the disagreement
scores on other layers (i.e. ranging from the 2nd to
6th layer) are very low, which confirms out above
hypothesis.

Concerning the regularization terms, except that
on position, the other two regularization terms (i.e.
“Sub.” and “Out.”) do not increase the disagree-
ment score on the attended positions. This can
explain why positional regularization term does
not work well with the other two terms, as shown
in Table 1. This is also consistent with the find-
ing in (Tu et al., 2016), which indicates that neu-
ral networks can model linguistic information in
their own way. In contrast to attended positions, it
seems that the multi-head attention prefer to en-
coding the differences among multiple heads in
the learned representations.

6 Conclusion

In this work, we propose several disagreement reg-
ularizations to augment the multi-head attention
model, which encourage the diversity among at-
tention heads so that different head can learn dis-
tinct features. Experimental results across lan-
guage pairs validate the effectiveness of the pro-
posed approaches.

The models also suggest a wide range of poten-
tial advantages and extensions, from being able to
improve the performance of multi-head attention
in other tasks such as reading comprehension and
language inference, to being able to combine with
other techniques (Shaw et al., 2018; Shen et al.,
2018a; Dou et al., 2018; Yang et al., 2018) to fur-
ther improve performance.
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Abstract
Several recent papers investigate Active
Learning (AL) for mitigating the data-
dependence of deep learning for natural lan-
guage processing. However, the applicability
of AL to real-world problems remains an open
question. While in supervised learning, prac-
titioners can try many different methods, eval-
uating each against a validation set before se-
lecting a model, AL affords no such luxury.
Over the course of one AL run, an agent anno-
tates its dataset exhausting its labeling budget.
Thus, given a new task, an active learner has
no opportunity to compare models and acqui-
sition functions. This paper provides a large-
scale empirical study of deep active learning,
addressing multiple tasks and, for each, multi-
ple datasets, multiple models, and a full suite
of acquisition functions. We find that across all
settings, Bayesian active learning by disagree-
ment, using uncertainty estimates provided ei-
ther by Dropout or Bayes-by-Backprop signif-
icantly improves over i.i.d. baselines and usu-
ally outperforms classic uncertainty sampling.

1 Introduction

While over the past several years, deep learning
has pushed the state of the art on numerous tasks,
its extreme data-dependence presents a formidable
obstacle under restricted annotation budgets. Ac-
tive Learning (AL) presents one promising ap-
proach to reduce deep learning’s data require-
ments (Cohn et al., 1996). Strategically selecting
points to annotate over alternating rounds of label-
ing and learning, an active learner is hoped to out-
perform budget-matched i.i.d. labeling. Typical
acquisition functions select examples for which
the current predictor is most uncertain. However,
how precisely to quantify uncertainty, especially
for neural networks, remains an open question.

Classical approaches interpret either the en-
tropy or the negative argmax of the predictive (e.g.

softmax) distribution as the model’s uncertainty,
yielding the maximum entropy and least confi-
dence heuristics, respectively. These approaches
account for aleatoric but not epistemic uncertainty
(Kendall and Gal, 2017). Several recent Bayesian
formulations of deep learning provide alternative
techniques for extracting uncertainty estimates
from deep networks, including a dropout-based
approach (Gal and Ghahramani, 2016b), previ-
ously employed in Deep Active Learning (DAL)
for image classification (Gal et al., 2017) and
named entity recognition (Shen et al., 2018), and
Bayes-by-Backprop (Blundell et al., 2015). To our
knowledge, our paper is the first to apply Bayes-
by-Backprop in the context of DAL.

While the results in recent papers hint at DAL’s
potential, its suitability in practice has yet to be
proven. That’s because papers often address just
a single task, just a single model, and sometimes
just one or two datasets. However, it’s not enough
to look back retrospectively after a final round of
experiments and declare that one acquisition func-
tion outperforms an i.i.d. baseline. To apply DAL
in practice, we must be confident that the tech-
nique will work correctly—the first time—on a
dataset that we have never seen before. Otherwise,
we might exhaust the annotation budget while per-
forming worse than an i.i.d. baseline. Once we’ve
exhausted our resources for labeling, there’s no
going back. Moreover, many DAL papers suffer
from implicit target leaks. The architectures and
hyper-parameters are often tuned using the full
dataset, before concealing the labels and simulat-
ing AL.

In this paper, we present a large-scale study1,
comparing various acquisition functions across
multiple tasks: Sentiment Classification (SC),

1Code for all of our models and for running active learn-
ing experiments can be found at https://github.com/
asiddhant/Active-NLP
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Named Entity Recognition (NER), and Semantic
Role Labeling (SRL). For each task we consider,
with multiple datasets, multiple models, and mul-
tiple acquisition functions. Moreover, in all ex-
periments, we set hyper-parameters on warm-start
data, allowing for a more honest assessment. This
paper does not seek to champion any one approach
but instead to ask, is there any single method that
we can reliably expect to work out-of-the-box on a
new problem?

To our surprise, we find that BALD (Houlsby
et al., 2011), which measures uncertainty by the
frequency over multiple Monte Carlo draws from
a stochastic model with which the drawn models
disagree with the plurality, proved effective across
all combinations of task, dataset, and model.
Moreover both variants of the approach, draw-
ing samples according to the dropout method (Gal
et al., 2017) and from a Bayes-by-Backprop net-
work (Blundell et al., 2015), performed similarly
well across most tasks, datasets, and models.

Related Work Only a few papers have ad-
dressed DAL for NLP, notably Shen et al. (2018)
for NER and Zhang et al. (2017) who address
text classification, proposing to select examples
according to the expected magnitude of updates
to word embeddings. In this paper, we do not
consider the latter heuristic because we address
sequence tagging tasks, where the difficulty of
marginalizing over all possible labels blows up ex-
ponentially with sequence length. While both pre-
vious papers do conduct experiments on multiple
datasets (2 and 3, respectively) they each consider
just one task and just one model.

Gal et al. (2017) apply the dropout-based un-
certainty estimates due to (Gal and Ghahramani,
2016a) together with the BALD framework due
to (Houlsby et al., 2011) for image classification
with convolutional neural networks. They obtain
significant improvement over classic uncertainty-
based acquisition functions on the MNIST dataset
and for diagnosing skin cancer from lesion images
(ISIC2016 task). Our work builds on theirs, both
by offering a large-scale evaluation of BALD for
NLP tasks and models, and by exploring BALD
with another method for estimating uncertainty:
the uncertainty of the weights as modeled by a
Bayes-by-Backprop network.

2 Bayesian Deep Learning

While space constraints preclude an extensive dis-
cussion of the various Bayesian formulations of
neural nets, we briefly summarize the methods
compared in this paper, pointing out various de-
sign decisions that are important for reproducing
our results.

Monte Carlo Dropout According to (Gal and
Ghahramani, 2016b), the dropout regularization
techniques for neural networks can be interpreted
as a Bayesian approximation to Gaussian pro-
cesses (Rasmussen, 2004). Here, unlike standard
uses of dropout, we apply it at prediction time.
Uncertainty estimates are produced by compar-
ing the output of a trained neural network using
T different stochastic passes through the neural
network. The extension to CNNs is straightfor-
ward. To apply dropout to RNNs, we follow the
approach due to (Gal and Ghahramani, 2016c),
who extended their variational analysis to RNNs,
arguing that dropout ought to be applied to the re-
current layers (and not just the synchronous con-
nections, per previous standard practice (Zaremba
et al., 2014)) by applying identical dropout masks
at each sequence step.

Bayes by Backprop In this approach due to
Blundell et al. (2015), instead of maintaining
a point estimate for each weight, we main-
tain a probability distribution over the weights.
A standard L-layer MLP model P (y|x, w) is
parametrized by weights w = {Wl, bl}L

l=1 2 d.
Then, ŷ = �(WL · ... · +�(W1 · x + b1) + .. + bL)
where � is an activation function such as tanh or
ReLU. Bayes-by-Backprop represents imposes a
prior over the weights, p(w) and seeks to learn
the posterior distribution p(w|D) given training
data D = {xi, yi}N

i=1. To deal with intractability,
Bayes-by-Backprop approximates p(w|D) by a
variational distribution q(w|✓), typically choosing
q to be a Gaussian with diagonal covariance and
each weight sampled from N (µi, �2

i ). To enforce
non-negativity, the �i are further parametrized via
the softplus function �i = log(1+exp(⇢i)) giving
variational parameters ✓ = {µi, ⇢i}d

i=1.
Our objective in optimizing the variational

parameters is to minimize the KL divergence
between q(✓) and p(w|D). Some simpli-
fication of the objective gives L(D, ✓) =PN

j=1

⇥
log q(wj |✓) � log p(wj) � log p(D|wj)

⇤
,

where wj denotes the j-th Monte Carlo sam-
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ple drawn from q(w|✓) (we use N = 1). In
Bayes-by-Backprop, the parameters are opti-
mized by stochastic gradient descent, using the
re-parameterization trick popularized by Kingma
and Welling (2014). Extending Bayes-by-
Backprop to CNNs and RNNs is straightforward
with the latter requiring minor adjustments
for truncated back-propagation through time
(Fortunato et al., 2017). Uncertainty estimates
calculated via Bayes-by-Backprop have been
shown to be useful for efficient exploration in
reinforcement learning (Lipton et al., 2018).

3 Experimental Setup

3.1 Acquisition functions
In this work, we consider only uncertainty-based
acquisition. In particular, we consider least
confidence (LC) for classification and maximum
length-normalized log probability (MNLP) for se-
quence labeling tasks (Shen et al., 2018). LC
chooses that example with for which the predic-
tion has lowest predicted probability. MNLP ex-
tends this to sequences, selecting by log probabil-
ity normalized by length, removing the bias for the
model to preferentially select longer sequences.

BALD We briefly articulate the details of
the Bayesian Active Learning by Disagreement
(BALD) approach due to Houlsby et al. (2011),
upon which both our Bayesian approaches are
based. We denote Monte Carlo Dropout Disagree-
ment by DO-BALD and its Bayes-by-Backprop
counterpart as BB-BALD. BALD originally se-
lects samples that maximise the information
gained about the model parameters. This boils
down to choosing data points which each stochas-
tic forward pass through the model would have
the highest probability assigned to a different class
(Gal et al., 2017). Our measure of uncertainty is
the fraction of models, across MC samples from
the network, that that disagree with most popular
choice. This can be mathematically represented as

arg max
j

 
1 �

count(mode(ỹ(1)
j , ..., ỹ(T )

j ))

T

!

Here ỹ(t)
j represents the prediction (argmax) ap-

plied to the tth forward pass on jth sample ỹ(t)
j =

argmax(ŷ(t)
j ). We resolve ties by choosing the

least confident predictions as determined by the
mean probability assigned to the consensus class.

For sequences, we look at agreement on the entire
sequence tag, noting that this may exhibit a bias to
preferentially sample longer sentences. Because
we measure the budget at each round in words
(not sentences), while this constitutes a bias, it
does not constitute an unfair advantage. Moreover,
we note that all AL necessarily consists of biased
sampling.

3.2 Training details
The active learning process begins with a ran-
dom acquisition of 2% warmstart samples from
the dataset. We train an initial model on this data.
Then based on this model’s uncertainty estimates,
we apply our chosen acquisition function to sam-
ple an additional 2% of examples and train a new
model based on this data In each round, we train
from scratch to avoid badly overfitting the data
collected in earlier rounds per observations by Hu
et al. (2018). We continue with alternating rounds
of labeling and training until we have annotated
50% of the dataset. For classification tasks, the
we measure the budget in sentences while for se-
quence labeling, we measure the budget by the
number of words because the annotator must pro-
vide one tag per word.

In each iteration, we train each model to con-
vergence, decided based on early stopping with
a patience of 1 epoch, or 25 epochs (whichever
comes earlier). For datasets with fixed validation
sets such as Conll 2003, instead of using the en-
tire validation set for early stopping, we use the
percentage of validation data equivalent to that in
our current training pool. Our motivation here is
to keep the simulation realistic. Essentially, we as-
sume that given a large annotation budget, one will
collect both a larger training set and a larger vali-
dation set. As a motivating example, it seems un-
reasonable that a practitioner might have only 500
training examples but 10,000 examples available
for early stopping. Our reported results are aver-
aged over 3 runs with different warmstart samples.

3.3 Sentence Classification
We use two datasets for simulation: one question
classification dataset TrecQA (Roth et al., 2002)
and one sentiment analysis dataset (Pang and Lee,
2005) and two architectures for training: CNNs
and BiLSTMs. For implementation of the CNNs
on both these datasets, we follow the setup of Kim
(2014) and for BiLSTMs, we use a single layer
model with 300 hidden units for both datasets. We
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Figure 1: Performance of various models and acquisition functions for two SC datasets

Figure 2: Performance of various models and acquisition functions for two NER datasets

Figure 3: Performance of different acquisition functions on SRL task for two datasets
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use 300-dimensional glove embeddings (Penning-
ton et al., 2014) pretrained on 6B tokens for all 4
settings, a dropout rate of 0.5, and the Adam opti-
mizer (Kinga and Adam, 2015) with initial learn-
ing rate 1e-3. We use a batch size set to be either
50 or the number required for at least 10 updates
whichever is lower. This is done to ensure that
when the training pool is small, the batch size is
not too large and models get sufficient number of
updates in an epoch. We also train a Unigram +
Bigram + Linear SVM model with LC acquisition
as a shallow AL baseline.

3.4 Named Entity Recognition
Again, we use two datasets: CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) and OntoNotes
5.0. The two architectures used for training are
CNN-BiLSTM-CRF (CNN for character-level en-
coding, BiLSTM for word-level encoding, and
CRF for decoding) (Ma and Hovy, 2016) and
CNN-CNN-LSTM (CNN for character-level en-
coding, CNN for word-level encoding, and LSTM
for decoding) (Shen et al., 2018). We follow the
exact experimental settings of these papers ex-
cept that batch size is 16 for CoNLL and 80 for
OntoNotes (minimum 10 updates heuristic is fol-
lowed here too).

We note that our NER models consist of multi-
ple modular components, and that we only train
a subset of those units in a Bayesian fashion.
In both DO-BALD and BB-BALD, we apply
dropout/stochastic weights on the word-level lay-
ers, but not on the character-level encoders or de-
coding layers. For example, with DO-BALD, we
apply recurrent dropout in the BiLSTM word-level
component of CNN-BiLSTM-CRF and we apply
normal dropout in the word-level (middle) CNN
layer of the CNN-CNN-LSTM. For NER, as a
shallow AL baseline, we have a linear chain CRF
model with MNLP acquisition.

3.5 Semantic Role Labeling
We consider two datasets: CoNLL 2005 (Carreras
and Màrquez, 2005) and CoNLL 2012, focusing
only on an LSTM-based model this time. Our
model resembles He et al. (2017), but instead of
using contained A* decoding, we use a CRF de-
coder, noting that while this causes a 2% drop in
performance (at 100% annotation), our goal is to
compare acquisition functions, not achieve record-
setting performance. We follow the experimental
setup of the paper but use a higher dropout rate

of 0.25, adjusting the batch size according to the
minimum update heuristic.

3.6 Results

We plot the performance for various annotation
budgets for all combinations of dataset, model,
and acquisition function, for the SC, NER, and
SRL tasks in Figures 1, 2, and 3, respectively. In
all cases, the active learning methods perform bet-
ter than random i.i.d. baseline. We note that across
the board, DAL methods show significant im-
provement over shallow baselines. The Bayesian
acquisition functions, DO-BALD and BB-BALD
consistently outperform classic uncertainly sam-
pling, although in a few cases including the setting
considered by Shen et al. (2018), the improvement
is only marginal. This finding underscores the im-
portance of examining proposed AL methods on a
broad set of representative tasks and with a broad
set of representative models.

In general, we find that the advantages of DAL
can be substantial. For example, on NER tasks, we
achieve roughly 98-99% of the full-dataset perfor-
mance while labeling only 20% of the samples for
both CNN-BiLSTM-CRF and CNN-CNN-LSTM
models. By comparison, the i.i.d. baseline re-
quires 50% of the data to achieve comparable F
score. While the reduction in the percentage of
data required is not as dramatic in the classifi-
cation datasets (possibly owing to their compar-
atively small size), the relative improvement over
i.i.d. baselines remains significant.

4 Conclusion

This paper set out to investigate the practical util-
ity of DAL for NLP. Our study consisted of over
40 experiments, each repeated for 3 times to av-
erage results and consisting of roughly 25 rounds
of retraining, adding up to 3000 training runs to
completion. Our goal was not to champion any
one approach, but to ask if there was any consis-
tent story at all: can active learning be applied
on a new dataset with an arbitrarily architecture,
without peeking at the labels to perform hyper-
parameter tuning? To our surprise, we found that
across many tasks, both classic uncertainty sam-
pling and Bayesian approaches outperform i.i.d.
baselines and that DO-BALD and BB-BALD con-
sistently perform best.
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Abstract
In natural language processing, a lot of the
tasks are successfully solved with recurrent
neural networks, but such models have a huge
number of parameters. The majority of these
parameters are often concentrated in the em-
bedding layer, which size grows proportion-
ally to the vocabulary length. We propose
a Bayesian sparsification technique for RNNs
which allows compressing the RNN dozens
or hundreds of times without time-consuming
hyperparameters tuning. We also generalize
the model for vocabulary sparsification to filter
out unnecessary words and compress the RNN
even further. We show that the choice of the
kept words is interpretable.

1 Introduction

Recurrent neural networks (RNNs) are among the
most powerful models for natural language pro-
cessing, speech recognition, question-answering
systems (Chan et al., 2016; Ha et al., 2017; Wu
et al., 2016; Ren et al., 2015). For complex tasks
such as machine translation (Wu et al., 2016) mod-
ern RNN architectures incorporate a huge number
of parameters. To use these models on portable de-
vices with limited memory the model compression
is desired.

There are a lot of RNNs compression meth-
ods based on specific weight matrix representa-
tions (Tjandra et al., 2017; Le et al., 2015) or
sparsification (Narang et al., 2017; Wen et al.,
2018). In this paper we focus on RNNs compres-
sion via sparsification. One way to sparsify RNN
is pruning where the weights with a small abso-
lute value are eliminated from the model. Such
methods are heuristic and require time-consuming
hyperparameters tuning. There is another group
of sparsification techniques based on Bayesian ap-
proach. Molchanov et al. (2017) describe a model

⇤ Equal contribution.

called SparseVD in which parameters controlling
sparsity are tuned automatically during neural net-
work training. However, this technique was not
previously investigated for RNNs. In this pa-
per, we apply Sparse VD to RNNs taking into
account the specifics of recurrent network struc-
ture (Section 3.2). More precisely, we use the in-
sight about using the same sample of weights for
all timesteps in the sequence (Gal and Ghahra-
mani, 2016; Fortunato et al., 2017). This modifica-
tion makes local reparametrization trick (Kingma
et al., 2015; Molchanov et al., 2017) not applicable
and changes SparseVD training procedure.

In natural language processing tasks the ma-
jority of weights in RNNs are often concentrated
in the first layer that is connected to the vocabu-
lary, for example in embedding layer. However,
for some tasks the most of the words are unnec-
essary for accurate predictions. In our model we
introduce multiplicative weights for the words to
perform vocabulary sparsification (Section 3.3).
These multiplicative weights are zeroing out dur-
ing training causing filtering corresponding unnec-
essary words out of the model. It allows to boost
RNN sparsification level even further.

To sum up, our contributions are as follows:
(i) we adapt SparseVD to RNNs explaining the
specifics of the resulting model and (ii) we gen-
eralize this model by introducing multiplicative
weights for words to purposefully sparsify the vo-
cabulary. Our results show that Sparse Variational
Dropout leads to a very high level of sparsity in re-
current models without a significant quality drop.
Models with additional vocabulary sparsification
boost compression rate on text classification tasks
but do not help that much on language model-
ing tasks. In classification tasks the vocabulary
is compressed dozens of times, and the choice of
words is interpretable.
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2 Related work

Reducing RNN size is an important and rapidly
developing area of research. There are three re-
search directions: approximation of weight ma-
tries (Tjandra et al., 2017; Le et al., 2015), re-
ducing the precision of the weights (Hubara et al.,
2016) and sparsification of the weight matri-
ces (Narang et al., 2017; Wen et al., 2018). We
focus on the last one. The most popular approach
here is pruning: the weights of the RNN are cut off
on some threshold. Narang et al. (2017) choose
threshold using several hyperparameters that con-
trol the frequency, the rate and the duration of the
weights eliminating. Wen et al. (2018) propose
to prune the weights in LSTM by groups corre-
sponding to each neuron, this allows to accelerate
forward pass through the network.

Another group of sparsification methods relies
on Bayesian neural networks (Molchanov et al.,
2017; Neklyudov et al., 2017; Louizos et al.,
2017). In Bayesian NNs the weights are treated
as random variables, and our desire about sparse
weights is expressed in a prior distribution over
them. During training, the prior distribution is
transformed into the posterior distribution over
the weights, used to make predictions on test-
ing phase. Neklyudov et al. (2017) and Louizos
et al. (2017) also introduce group Bayesian sparsi-
fication techniques that allow to eliminate neurons
from the model.

The main advantage of the Bayesian sparsifica-
tion techniques is that they have a small number
of hyperparameters compared to pruning-based
methods. Also, they lead to a higher sparsity
level (Molchanov et al., 2017; Neklyudov et al.,
2017; Louizos et al., 2017).

There are several works on Bayesian recurrent
neural networks (Gal and Ghahramani, 2016; For-
tunato et al., 2017), but these methods are hard
to extend to achieve sparsification. We apply
sparse variational dropout to RNNs taking into ac-
count its recurrent specifics, including some in-
sights highlighted by Gal and Ghahramani (2016),
Fortunato et al. (2017).

3 Proposed method

3.1 Notations

In the rest of the paper x = [x0, . . . , xT ] is an in-
put sequence, y is a true output and ŷ is an out-
put predicted by the RNN (y and ŷ may be single

vectors, sequences, etc.), X, Y denotes a training
set {(x1, y1), . . . , (xN , yN )}. All weights of the
RNN except biases are denoted by !, while a sin-
gle weight (an element of any weight matrix) is
denoted by wij . Note that we detach biases and de-
note them by B because we do not sparsify them.

For definiteness, we will illustrate our model on
an example architecture for the language modeling
task, where y = [x1, . . . , xT ]:

embedding : x̃t = we
xt

;

recurrent : ht+1 = �(W hht + W xx̃t+1 + br);

fully-connected : ŷt = softmax(W dht + bd).

In this example ! = {W e, W x, W h, W d} ,
B = {br, bd}. However, the model may be di-
rectly applied to any recurrent architecture.

3.2 Sparse variational dropout for RNNs
Following Kingma et al. (2015), Molchanov
et al. (2017), we put a fully-factorized log-uniform
prior over the weights:

p(!) =
Y

wij2!

p(wij), p(wij) / 1

|wij |

and approximate the posterior with a fully factor-
ized normal distribution:

q(w|✓,�) =
Y

wij2!

N
�
wij |✓ij , �

2
ij

�
.

The task of posterior approximation
min✓,�,B KL(q(!|✓,�)||p(!|X, Y, B)) is
equivalent to variational lower bound opti-
mization (Molchanov et al., 2017):

�
NX

i=1

Z
q(!|✓,�) log p(yi|xi

0, . . . , x
i
T , !, B)d!+

+
X

wij2!

KL(q(wij |✓ij , �ij)||p(wij)) ! min
✓,�,B

.

(1)

Here the first term, a task-specific loss, is ap-
proximated with one sample from q(!|✓,�). The
second term is a regularizer that moves posterior
closer to prior and induces sparsity. This regu-
larizer can be very closely approximated analyti-
cally (Molchanov et al., 2017):

KL(q(wij |✓ij , �ij)||p(wij)) ⇡ k

✓
�2

ij

✓2
ij

◆
, (2)
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k(↵) ⇡ 0.64�(1.87 + 1.49 log ↵) �
1
2

log
⇣
1 +

1
↵

⌘
.

To make integral estimation unbiased, sampling
from the posterior is performed with the use of
reparametrization trick (Kingma and Welling,
2014):

wij = ✓ij + �ij✏ij , ✏ij ⇠ N (✏ij |0, 1) (3)

The important difference of RNNs compared
to feed-forward networks consists in sharing the
same weight variable between different timesteps.
Thus, we should use the same sample of weights
for each timestep t while computing the like-
lihood p(yi|xi

0, . . . , x
i
T , !, B) (Gal and Ghahra-

mani, 2016; Fortunato et al., 2017).
Kingma et al. (2015), Molchanov et al. (2017)

also use local reparametrization trick (LRT) that
is sampling preactivation instead of individual
weights. For example,

(W xxt)i =
X

j

✓x
ijxtj + ✏i

X

j

(�x
ij)

2x2
tj .

Tied weight sampling makes LRT not applicable
to weight matrices that are used in more than one
timestep in the RNN.

For the hidden-to-hidden matrix W h the linear
combination (W hht) is not normally distributed
because ht depends on W h from the previous
timestep. As a result, the rule about the sum of in-
dependent normal distributions with constant co-
efficients is not applicable. In practice, network
with LRT on hidden-to-hidden weights cannot be
trained properly.

For the input-to-hidden matrix W x the lin-
ear combination (W xxt) is normally distributed.
However, sampling the same W x for all timesteps
and sampling the same noise ✏i for preactivations
for all timesteps are not equivalent. The same
sample of W x corresponds to different samples of
noise ✏i at different timesteps because of the differ-
ent xt. Hence theoretically LRT is not applicable
here. In practice, networks with LRT on input-to-
hidden weights may give the same results and in
some experiments, they even converge a little bit
faster.

Since the training procedure is effective only
with 2D noise tensor, we propose to sample the
noise on the weights per mini-batch, not per indi-
vidual object.

To sum up, the training procedure is as fol-
lows. To perform forward pass for a mini-batch,

we firstly sample all weights ! following (3) and
then apply RNN as usual. Then the gradients of (1)
are computed w.r.t ✓, log �, B.

During the testing stage, we use the mean
weights ✓ (Molchanov et al., 2017). Regular-
izer (2) causes the majority of ✓ components ap-
proach 0, and the weights are sparsified. More
precisely, we eliminate weights with low signal-
to-noise ratio

✓2
ij

�2
ij

< ⌧ (Molchanov et al., 2017).

3.3 Multiplicative weights for vocabulary
sparsification

One of the advantages of Bayesian sparsification is
an easy generalization for the sparsification of any
groups of the weights that doesn’t complicate the
training procedure (Louizos et al., 2017). To do so,
one should introduce shared multiplicative weight
per each group, and elimination of this multiplica-
tive weight will mean the elimination of the cor-
responding group. In our work we utilize this ap-
proach to achieve vocabulary sparsification.

Precisely, we introduce multiplicative proba-
bilistic weights z 2 R

V for words in the vocab-
ulary (here V is the size of the vocabulary). The
forward pass with z looks as follows:

1. sample vector zi from the current approxima-
tion of the posterior for each input sequence
xi from the mini-batch;

2. multiply each one-hot encoded token xi
t from

the sequence xi by zi (here both xi
t and zi are

V -dimensional);

3. continue the forward pass as usual.

We work with z in the same way as with other
weights W : we use a log-uniform prior and ap-
proximate the posterior with a fully-factorized
normal distribution with trainable mean and vari-
ance. However, since z is a one-dimensional vec-
tor, we can sample it individually for each object
in a mini-batch to reduce the variance of the gradi-
ents. After training, we prune elements of z with a
low signal-to-noise ratio and subsequently, we do
not use the corresponding words from the vocab-
ulary and drop columns of weights from the em-
bedding or input-to-hidden weight matrices.

4 Experiments

We perform experiments with LSTM architecture
on two types of problems: text classification and
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language modeling. Three models are compared
here: baseline model without any regularization,
SparseVD model and SparseVD model with mul-
tiplicative weights for vocabulary sparsification
(SparseVD-Voc).

To measure the sparsity level of our models
we calculate the compression rate of individual
weights as follows: |w|/|w 6= 0|. The sparsifica-
tion of weights may lead not only to the compres-
sion but also to the acceleration of RNNs through
group sparsity. Hence, we report the number of re-
maining neurons in all layers: input (vocabulary),
embedding and recurrent. To compute this number
for vocabulary layer in SparseVD-Voc we use in-
troduced variables zv. For all other layers in Spar-
seVD and SparseVD-Voc, we drop a neuron if all
weights connected to this neuron are eliminated.

We optimize our networks using
Adam (Kingma and Ba, 2015). Baseline networks
overfit for all our tasks, therefore, we present
results for them with early stopping. For all
weights that we sparsify, we initialize log � with
-3. We eliminate weights with signal-to-noise
ratio less then ⌧ = 0.05. More details about
experiment setup are presented in Appendix A.

4.1 Text Classification

We evaluated our approach on two stan-
dard datasets for text classification: IMDb
dataset (Maas et al., 2011) for binary classifica-
tion and AGNews dataset (Zhang et al., 2015)
for four-class classification. We set aside 15%
and 5% of training data for validation purposes
respectively. For both datasets, we use the
vocabulary of 20,000 most frequent words.

We use networks with one embedding layer
of 300 units, one LSTM layer of 128 / 512
hidden units for IMDb / AGNews, and finally,
a fully connected layer applied to the last out-
put of the LSTM. Embedding layer is initial-
ized with word2vec (Mikolov et al., 2013) /
GloVe (Pennington et al., 2014) and SparseVD
and SparseVD-Voc models are trained for 800 /
150 epochs on IMDb / AGNews.

The results are shown in Table 1. SparseVD
leads to a very high compression rate without a
significant quality drop. SparseVD-Voc boosts the
compression rate even further while still preserv-
ing the accuracy. Such high compression rates are
achieved mostly because of the sparsification of
the vocabulary: to classify texts we need to read

only some important words from them. The re-
maining words in our models are mostly inter-
pretable for the task (see Appendix B for the list
of remaining words for IMBb). Figure 1 shows
the only kept embedding component for remain-
ing words on IMDb. This component reflects the
sentiment score of the words.

Figure 1: IMDB: remained embedding component vs
sentiment score ((#pos. - #neg.) / #all texts with the
word).

4.2 Language Modeling
We evaluate our models on the task of character-
level and word-level language modeling on the
Penn Treebank corpus (Marcus et al., 1993) ac-
cording to the train/valid/test partition of Mikolov
et al. (2011). The dataset has a vocabulary of 50
characters or 10,000 words.

To solve character / word-level tasks we use net-
works with one LSTM layer of 1000 / 256 hidden
units and fully-connected layer with softmax acti-
vation to predict next character or word. We train
SparseVD and SparseVD-Voc models for 250 /
150 epochs on character-level / word-level tasks.

The results are shown in Table 2. To obtain
these results we employ LRT on the last fully-
connected layer. In our experiments with lan-
guage modeling LRT on the last layer acceler-
ate the training without harming the final result.
Here we do not get such extreme compression
rates as in the previous experiment but still, we are
able to compress the models several times while
achieving better quality w.r.t. the baseline because
of the regularization effect of SparseVD. Vocab-
ulary is not sparsified in the character-level task
because there are only 50 characters and all of
them matter. In the word-level task more than a
half of the words are dropped. However, since
in language modeling almost all words are impor-
tant, the sparsification of the vocabulary makes the
task more difficult to the network and leads to the
drop in quality and the overall compression (net-
work needs more difficult dynamic in the recurrent
layer).
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Task Method Accuracy % Compression Vocabulary Neurons x̃ - h
Original 84.1 1x 20000 300 � 128

IMDb SparseVD 85.1 1135x 4611 16 � 17
SparseVD-Voc 83.6 12985x 292 1 � 8
Original 90.6 1x 20000 300 � 512

AGNews SparseVD 88.8 322x 5727 179 � 56
SparseVD-Voc 89.2 469x 2444 127 � 32

Table 1: Results on text classification tasks. Compression is equal to |w|/|w 6= 0|. In last two columns number of
remaining neurons in the input, embedding and recurrent layers are reported.

Task Method Valid Test Compression Vocabulary Neurons h
Original 1.498 1.454 1x 50 1000

Char PTB SparseVD 1.472 1.429 4.2x 50 431
Bits-per-char SparseVD-Voc 1.4584 1.4165 3.53x 48 510

Original 135.6 129.5 1x 10000 256
Word PTB SparseVD 115.0 109.0 14.0x 9985 153
Perplexity SparseVD-Voc 126.3 120.6 11.1x 4353 207

Table 2: Results on language modeling tasks. Compression is equal to |w|/|w 6= 0|. In last two columns number
of remaining neurons in input and recurrent layers are reported.
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Abstract
Graphemes of most languages encode pro-
nunciation, though some are more ex-
plicit than others. Languages like Spanish
have a straightforward mapping between its
graphemes and phonemes, while this mapping
is more convoluted for languages like English.
Spoken languages such as Cantonese present
even more challenges in pronunciation mod-
eling: (1) they do not have a standard writ-
ten form, (2) the closest graphemic origins are
logographic Han characters, of which only a
subset of these logographic characters implic-
itly encodes pronunciation. In this work, we
propose a multimodal approach to predict the
pronunciation of Cantonese logographic char-
acters, using neural networks with a geomet-
ric representation of logographs and pronun-
ciation of cognates in historically related lan-
guages. The proposed framework improves
performance by 18.1% and 25.0% respective
to unimodal and multimodal baselines.

1 Introduction
In phonographic languages, there is a di-
rect correspondence between graphemes and
phonemes (Defrancis, 1996), though this corre-
spondence is not always one-to-one. For exam-
ple, in English, the word table corresponds to
the pronunciation [‘‘teI.bl], in which each alpha-
betic character corresponds to one phoneme, and
the character e is mapped to silence. However,
in logographic languages, the correspondence be-
tween graphemes and phonemes is more ambigu-
ous (Defrancis, 1996), as only some sub-units in a
grapheme are indicative of its phonemes. Korean1,
Vietnamese2 and Chinese languages (e.g. Can-
tonese) are examples of logographic languages, all

1A large portion of Korean vocabulary are Sino-Korean
written in Hanja (Korean logographs) (Sohn, 2001)

2Traditional Vietnamese vocabulary comprises of Sino-
Vietnamese words written by Chinese logographs and
locally-invented Nom logographs (Alves, 1999).

belonging to the Han logographic family. Sim-
ilar to pronunciation modeling in phonographic
languages, in which words are broken down into
characters and modeling is done at the character
level, pronunciation modeling in logographic lan-
guages requires decomposing logographs into sub-
units and extracting only sub-units carrying pro-
nunciation hints. As the correspondence of Han
logograph to phoneme is intricately complex with
many sub-rules or exceptions (Hashimoto, 1978),
it is challenging to computationally model these
correspondences using white box approaches (e.g.
graphical model). Instead, we exploit neural net-
works, as they (1) can flexibly model the im-
plicit similarity of grapheme-phoneme relation-
ships across languages with Han origin, (2) can au-
tomatically learn the most relevant knowledge rep-
resentation with minimal feature engineering (Le-
Cun et al., 2015), such as extracting pronunciation
hints from logographic representations.

Due to historical contact, there is much lexi-
cal overlap across Han logographic languages, as
they borrowed words from one another (Rokuro,
1969; Miyake, 1997; Loveday, 1996; Sohn, 2001;
Alves, 1999). As a result, cognates in different
languages are written using identical graphemes
but pronounced differently. For example, [she]

in Mandarin and [sip] in Cantonese are cog-
nates; their pronunciations are different yet they
are written using the same logograph (˛), which
represents “admire”. Though Han logographic
languages are mutually unintelligible (Tang and
Van Heuven, 2009; Handel, 2015), the correspon-
dence of Han logographic graphemes to phonemes
across languages is often similar in systematic
ways (Cai et al., 2011; Frellesvig and Whitman,
2008; Miyake, 1997). The shared characteristics
in pronunciation of cognates could be leveraged in
deciphering the pronunciation of Han logographs.
In this work, we proposed a neural pronuncia-

2916



tion model that exploits both embeddings of lo-
gographs and cognates’ phonemes. The proposed
model significantly improves pronunciation pre-
diction of logographs in Cantonese.

2 Related Work

The basic units in writing (graphemes) of Han lo-
gographic languages are logographs. A word con-
tains one or more logographs and a logograph con-
sists of one or more radicals. The pronunciation of
a logograph corresponds to a syllable which has
three phonemes: onset, nucleus and coda.

Grapheme-to-phoneme (G2P) approaches such
as (Xu et al., 2004; Chen et al., 2016) predicted a
Han logograph’s pronunciation from its local con-
text in a phrase. This was similar to predicting
a Latin word’s pronunciation from its surrounding
words, essentially treated individual logographs as
the basic units of the model and did not delve fur-
ther into the logographic sub-units (the radicals).

While we are unaware of any work that de-
rives features for pronunciation prediction from
logographs, there are recent work in deriving rep-
resentation of logographs for various semantic
tasks. Some methods (Shi et al., 2015; Ke and
Hagiwara, 2017; Nguyen et al., 2017; Zhuang
et al., 2017) decomposed logographs into sub-
units using expert-defined rules and then extracted
the relevant semantic features. Other methods use
convolutional neural network to extract features
from the images of logographs (Dai and Cai, 2017;
Liu et al., 2017; Toyama et al., 2017). Other works
combined multiple level of information for feature
extraction, using both logograph and sub-units ob-
tained from logograph decomposition (Dong et al.,
2016; Han et al., 2017; Peng et al., 2017; Yu et al.,
2017; Yin et al., 2016).

In this work, we explicitly looked at the rela-
tionship between a logograph’s constituent rad-
icals and its pronunciation. Among Han lo-
gographs, 81% of frequently used logographs
are semantic-phonetic compounds (Li and Kang,
1993) which consist of radicals that might contain
phonetic or semantic hints (Hsiao and Shillcock,
2006). The pronunciation of a logograph could
conceivably be predicted from the phonetic radi-
cals. Furthermore, the relative position of radicals
in the logograph might also offer clues about it
pronunciation. Table 1 shows an example of such
intricate relationships between a logograph’s pro-
nunciation and its constituent radicals. All Han

logographs in the table have a common phonetic
radical (in red), which offers an inkling of the pro-
nunciation of these logographs. For instance, lo-
gographs that have the phonetic radical on the left
(V and Ë) share a similar pronunciation in Ko-
rean (in blue) while logographs that have the pho-
netic radical on the right (j, ‡, and ”) share
a similar pronunciation in Mandarin, Cantonese
and Vietnamese. Note that for each logograph,
their pronunciations across the different languages
share similarities: when the phonetic radical is on
the left, the nucleus ends in a back vowel like u
or o, whereas when the phonetic radical is on the
right, the nucleus ends in a front vowel like i.

Mandarin pou bu pei pei bei
Cantonese fau bou pui pui bui
Korean pwu pwu pay pay pay
Vietnamese phau bo boi boi bui

Position of �

Logograph

Table 1: The position of radicals affects pronuncia-
tions. All logographs share a common radical in red.
Similar pronunciations for V and Ë are bolded in
blue. Similar pronunciations for j, ‡, and ” are
bolded in green. The pronunciation of a logograph in
Mandarin, Cantonese, Korean and Vietnamese are rep-
resented by Pinyin, Jyutping, Yale, and Vietnamese al-
phabet symbols respectively.

The example in Table 1 explains the motivation
for our proposed approach to predict a logograph’s
pronunciation by modelling both the constituent
radicals and their geometric positions. Further-
more, the proposed approach can generalize to un-
seen logographs if the co-occurrence patterns of
their constituent radicals have been learnt.

3 Model

We first describe a geometric decomposition of lo-
gographs and then different neural pronunciation
models for logographs. Finally, we present a mul-
timodal neural model that incorporates both logo-
graphic input and the cognates’ phonemes in pre-
dicting pronunciation of logographs.

Representation of Han logographs
The majority of logographs (characters) in Han lo-
gographic language family comprise of a radical
that indicates its nominal semantic category and a
phonetic radical that gives an inkling of the pro-
nunciation (Defrancis, 1996). Thus, patterns of
co-occurrence of radicals across logographs might
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Figure 1: Geometric representation of the logograph
“admire”. A, B and C are equivalent decomposition of
the same logograph but with different levels of granu-
larity. The geometric representation comprises of both
the radicals and geometric operators, which can be
used to reconstruct the original logograph.

be exploited to find the phonetic radicals, which in
turn can suggest the corresponding pronunciation
of a logograph. Using this intuition, we model the
pronunciation of logographs at the radical level.

We investigated two representations of radicals
in a logograph. In the first approach, a logograph
is represented as a bag of its unordered constituent
radicals (BoR), encoded as a vector of radical
counts. The second approach is to use a decom-
position of radicals in the logograph that retains
the original geometric organization of the radi-
cals. The geometric decomposition (GeoD) ap-
proach preserves important cues about the word’s
pronunciation in the relative position of the rad-
icals. For example, differentiating the left radi-
cal from the right radical in a left-right semantic-
phonetic compound allows more effective extrac-
tion of pronunciation hints. In addition, radi-
cals that should be interpreted together are closer
spatially in the GeoD representation, making the
knowledge representation easier to learn. Note
that the GeoD representation is lossless as the
original logograph can be reconstructed perfectly
(details in Appendix A). Figure 1 shows the geo-
metric decomposition of the Han logograph “ad-
mire” at three levels of granularity.

Neural pronunciation prediction models

Figure 2 and Figure 3 show two neural pronuncia-
tion prediction models of logographs. In Figure 2,
each logograph is treated as an ordered “bag of
radicals” (BoR). For example, assume the vocab-
ulary of radicals in the whole dataset is [ƒ, 5,
3, l], the word ˛ (“admire” - see Figure 1) is
represented by a vector of counts [1, 0, 3, 0], cor-
responding to one radicalƒ and three radicals3.

The BoR is input to a multilayer perceptron (MLP)
with three layers of size 750, 500, 250. L2 regular-
ization of 1e-4 is applied to the hidden layers. The
three dropout layers have dropout probabilities of
0.5, 0.5, and 0.2, respectively. As the output vari-
ables are categorical, cross-entropy loss was used.

We investigated two structures for predicting
output phonemes (i.e. onset, nucleus, coda). In the
first structure, output phonemes were predicted in-
dependently using the last hidden layer. The sec-
ond structure made a sequential prediction (1) the
coda was first predicted using the last hidden layer
(2) the nucleus was predicted using both the final
hidden layer and the predicted coda, and (3) the
onset was predicted using the last hidden layer to-
gether with the predicted coda and nucleus. The
second structure was motivated by a stronger de-
pendency between the nuclues and coda. For ex-
ample, the nucleus and coda are often grouped to-
gether as a single unit (rime/final) in the syllabic
structure of most languages (Kessler and Treiman,
2002). In our experiments, the sequential structure
yielded lower error rates so it is used in all neural
network models.
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Figure 2: Pronunciation model of logographs using
multilayer perceptron (MLP). FC: Fully connected.

In Figure 3, each logograph is represented by
its geometric decomposition (GeoD). For exam-
ple, the logograph˛ is represented by a sequence
of radicals and geometric operators shown in Fig-
ure 1C. The neural prediction model consists of
two LSTM layers with 256 memory cells each. In-
put and recurrent dropout (Gal and Ghahramani,
2016) of 0.2 and 0.5 are applied to the LSTM lay-
ers to prevent overfitting.
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Figure 3: Neural pronunciation model with geometric
decomposition of logographs.

2918



Multimodal neural pronunciation model of
logographs
In this section, we want to model the pronuncia-
tions of a logograph in the target language Can-
tonese using multimodal information from both
the logograph and phonemes of the cognates,
as shown in Figure 4. Given a vocabulary of
phonemes in the source languages related to Can-
tonese (Mandarin, Korean, Vietnamese), the cog-
nates’ phonemes are encoded as an indicator vec-
tor, with an element equals 1 if the corresponding
phoneme in the vocabulary appears in a cognate’s
pronunciation, and 0 otherwise.

The geometric decomposition (GeoD) of the lo-
gograph is fed to two LSTM layers. The output at
the last time step is concatenated together with the
multilingual phonemic vector and used as input
for a multi-layer perceptron (MLP). The MLP and
LSTM setups are the same as those in Figure 2 and
Figure 3 respectively. Deep supervision (Szegedy
et al., 2015) was applied by using the output of
the LSTM to make auxiliary prediction of the out-
put phonemes. Note that the auxiliary prediction
should be identical to the main prediction. While
predicting the same target, the main prediction
used both cognate phonemes and the logograph
while the auxiliary prediction used only the logo-
graph. This was to ensure features extracted from
the logographs are useful for pronunciation pre-
diction and are complementary to the features ex-
tracted from the multilingual phonemes.

4 Experiments

We investigate whether Cantonese phonemes
could be predicted using Han logographs and the
cognates’ phonemes from Mandarin, Korean, and
Vietnamese. The prediction output are Cantonese
onsets, nuclei and codas. The experimental de-
sign is motivated by the nature of Han-logographic
languages. A Chinese logograph (character) is
phonologically equivalent to a syllable in English
while the constituent radicals are analogous to al-
phabet letters (with far less phonetic information).
While in most languages, a syllable’s pronuncia-
tion is influenced by neighboring syllables, most
Han-logographic languages are monosyllabic and
a logograph’s pronunciation is rarely affected by
neighboring logographs. Therefore, pronunciation
prediction at the logograph (character) level for
Han logographs is more appropriate. We use string
error rate (SER) and token error rate (TER) as

evaluation metrics. A wrongly predicted phoneme
(onset, nucleus or coda) is counted as one token er-
ror. A syllable containing token error(s) is counted
as one string error. All the neural networks were
trained using Adam (Kingma and Ba, 2014).

Data
The dataset is extracted from the UniHan
database,3 which is a pronunciation database of
logographs from Han logographic languages and
maintained by the Unicode consortium. For each
entry in the dataset, a logograph corresponds to
phonemes in Cantonese, Mandarin, Korean and
Vietnamese, represented by Jyutping,4 Pinyin,5

Yale,6 and Vietnamese alphabet symbols respec-
tively.7 We randomly partition the dataset into two
sets, with 80% for training and the other 20% for
testing. Overall, there are 16,011 entries in the
training set and 4,002 entries in the test set. 1000
entries of the training set are used as the develop-
ment set for hyper-parameters fine-tuning.

In the test set, only 16% of logographs have
pronunciations in all non-target languages, while
6% of logographs have no non-target language
pronunciation. The availability of pronunciations
in non-target languages differs from logograph to
logograph. For example, some logographs have
Mandarin and Korean pronunciations, while oth-
ers only have Mandarin pronunciations.

Predicting pronunciation using logograph
input
We compared the neural networks against a deci-
sion tree baseline. The decision tree baseline was
implemented using scikit-learn (Pedregosa et al.,
2011). The input of the decision tree (DT) model
is the BoR representation of the logograph, while
the input of neural networks can be either BoR or
GeoD. The MLP network in Figure 2 uses BoR,
while the LSTM in Figure 3 uses GeoD as input.
All models output phonemes in Cantonese.

From Table 2, the neural network (MLP) out-
performs decision tree when using BoR input.
Both the SER and TER of the MLP model are
lower than those of the decision tree. The LSTM
model using GeoD leads to the lowest SER and
TER, suggesting the benefits of relative positional

3https://www.unicode.org/charts/unihan.html
4https://en.wikipedia.org/wiki/Jyutping
5https://en.wikipedia.org/wiki/Pinyin
6https://en.wikipedia.org/wiki/Yale romanization of Korean
7https://en.wikipedia.org/wiki/Vietnamese alphabet
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information of radicals in predicting pronuncia-
tion. The trends of onset, nucleus and coda er-
ror rates are similar to those of TER and SER.
However, as the gap of of error rate between MLP
(BoR) and LSTM (GeoD) for TER and SER are
quite small, using BoR instead of GeoD can be a
good computation-accuracy trade-off.

Method SER TER On. Nu. Cd.

DT (BoR) 63.8 39.8 50.7 45.7 22.9

MLP (BoR) 59.2 33.6 44.5 38.6 17.8

LSTM (GeoD) 58.4 32.6 43.3 37.4 17.1

Table 2: Prediction error rates of Cantonese
phonemes by decision tree (DT), MLP and LSTM us-
ing only logographic input. Best results are in bold.

Predicting pronunciation using multimodal
input

The input of the models are logographs and cog-
nate phonemes from Mandarin, Korean and Viet-
namese. Table 3 shows that the proposed multi-
modal neural network exploits multimodal and ge-
ometric information effectively. The relative im-
provement reaches 18.2% and 33.3% for SER and
TER respectively. The last rows in Table 2 and
Table 3 show that by combining Korean, Man-
darin and Vietnamese phonemes input with GeoD,
the prediction performance improves by 54.1%
relative in TER and by 65.5% relative in SER.
Moreover, using solely logograph input resulted
in higher onset error (43.3%) than nucleus error
(37.4%) while using both logographs and multilin-
gual phonemes improves the onset error (23.5%)
to be lower than nucleus error (24.6%). This
suggests that logographs and phonemes of cog-
nates provide complementary information about
the pronunciation of a logograph, which in this

case, most notably at the onset position. While
logographs usually carry hints about phonemes at
the nucleus and coda position but not at the onset
position, multilingual phonemes input might carry
hints about pronunciation at all three positions.

Method SER TER On. Nu. Cd.

DT (BoR, ph) 44.0 24.8 29.8 29.9 14.7

MLP (BoR, ph) 38.5 19.6 23.4 24.8 10.5

LSTM (GeoD, ph) 37.2 18.6 22.6 23.4 9.8

Table 3: Prediction error rates of Cantonese
phonemes by multimodal models; BoR: Bag of Radi-
cals; GeoD: Geometric Decomposition; ph:phonemes.
Best results are in bold.

5 Discussion

We have empirically shown that the systematic yet
tenuous correspondence between pronunciations
of cognates in Han logographic languages can be
exploited for pronunciation modeling using neural
networks. Moreover, combining logograph with
cognate pronunciations further improves pronun-
ciation prediction. These results could be poten-
tially applied to speech processing tasks such as
speech synthesis, where the construction of pro-
nunciation dictionaries are expert labor-intensive,
especially for under-resourced spoken languages.

For future work, recursive neural network (Tai
et al., 2015) can be used as it is better suited for the
hierarchical logographic decomposition. Besides,
incorporating more detailed relationship between
radicals (e.g. (Zhuang et al., 2017)) can help im-
prove the model. The proposed approaches can
also be applied to other languages such as Min
Nan or Hakka, which are spoken languages that
are even less well-documented than Cantonese.
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Abstract

Chinese pinyin input method engine (IME)
converts pinyin into character so that Chinese
characters can be conveniently inputted into
computer through common keyboard. IMEs
work relying on its core component, pinyin-
to-character conversion (P2C). Usually Chi-
nese IMEs simply predict a list of character
sequences for user choice only according to
user pinyin input at each turn. However, Chi-
nese inputting is a multi-turn online procedure,
which can be supposed to be exploited for fur-
ther user experience promoting. This paper
thus for the first time introduces a sequence-
to-sequence model with gated-attention mech-
anism for the core task in IMEs. The pro-
posed neural P2C model is learned by en-
coding previous input utterance as extra con-
text to enable our IME capable of predicting
character sequence with incomplete pinyin in-
put. Our model is evaluated in different bench-
mark datasets showing great user experience
improvement compared to traditional models,
which demonstrates the first engineering prac-
tice of building Chinese aided IME.

1 Introduction

Pinyin is the official romanization representation
for Chinese and the P2C converting the inputted
pinyin sequence to Chinese character sequence is
the most basic module of all pinyin based IMEs.

Most of the previous research (Chen, 2003;
Zhang et al., 2006; Lin and Zhang, 2008; Chen
and Lee, 2000; Jiang et al., 2007; Cai et al., 2017a)
for IME focused on the matching correspondence

⇤ Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100), National Natural Science
Foundation of China (No. 61672343 and No. 61733011),
Key Project of National Society Science Foundation of China
(No. 15-ZDA041), The Art and Science Interdisciplinary
Funds of Shanghai Jiao Tong University (No. 14JCRZ04),
and the joint research project with Youtu Lab of Tencent.

between pinyin syllables and Chinese characters.
(Huang et al., 2018; Yang et al., 2012; Jia and
Zhao, 2014; Chen et al., 2015) regarded the P2C as
a translation between two languages and solved it
in statistical or neural machine translation frame-
work. The fundamental difference between (Chen
et al., 2015) work and ours is that our work is a
fully end-to-end neural IME model with extra at-
tention enhancement, while the former still works
on traditional IME only with converted neural net-
work language model enhancement. (Zhang et al.,
2017) introduced an online algorithm to construct
appropriate dictionary for P2C. All the above men-
tioned work, however, still rely on a complete in-
put pattern, and IME users have to input very long
pinyin sequence to guarantee the accuracy of P2C
module as longer pinyin sequence may receive less
decoding ambiguity.

The Chinese IME is supposed to let user in-
put Chinese characters with least inputting cost,
i.e., keystroking, which indicates extra content
predication from incomplete inputting will be ex-
tremely welcomed by all IME users. (Huang et al.,
2015) partially realized such an extra predication
using a maximum suffix matching postprocess-
ing in vocabulary after SMT based P2C to predict
longer words than the inputted pinyin.

To facilitate the most convenience for such an
IME, in terms of a sequence to sequence model as
neural machine translation (NMT) between pinyin
sequence and character sequence, we propose a
P2C model with the entire previous inputted ut-
terance confirmed by IME users being used as a
part of the source input. When learning the type
of the previous utterance varies from the previous
sentence in the same article to the previous turn of
utterance in a conversation, the resulting IME will
make amazing predication far more than what the
pinyin IME users actually input.

In this paper, we adopt the attention-based NMT
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Figure 1: Architecture of the proposed model.

framework in (Luong et al., 2015) for the P2C
task. In contrast to related work that simply ex-
tended the source side with different sized context
window to improve of translation quality (Tiede-
mann and Scherrer, 2017), we add the entire input
utterance according to IME user choice at previous
time (referred to the context hereafter). Hence the
resulting IME may effectively improve P2C qual-
ity with the help of extra information offered by
context and support incomplete pinyin input but
predict complete, extra, and corrected character
output. The evaluation and analysis will be per-
formed on two Chinese datasets, include a Chi-
nese open domain conversations dataset for veri-
fying the effectiveness of the proposed method.

2 Model

As illustrated in Figure 1, the core of our P2C
is based the attention-based neural machine trans-
lation model that converts at word level. Still,
we formulize P2C as a translation between pinyin
and character sequences as shown in a traditional
model in Figure 1(a). However, there comes a
key difference from any previous work that our
source language side includes two types of inputs,
the current source pinyin sequence (noted as P ) as
usual, and the extended context, i.e., target charac-
ter sequence inputted by IME user last time (noted
as C). As IME works dynamically, every time
IME makes a predication according to a source
pinyin input, user has to indicate the ’right answer’
to output target character sequence for P2C model
learning. This online work mode of IMEs can be
fully exploited by our model whose work flow is
shown in Figure 1(b).

As introduced a hybrid source side input, our
model has to handle document-wide translation
by considering discourse relationship between two
consecutive sentences. The most straightforward
modeling is to simply concatenate two types of
source inputs with a special token ’BC’ as sepa-
rator. Such a model is in Figure 1(c). However,
the significant drawback of the model is that there
are a slew of unnecessary words in the extended
context (previous utterance) playing a noisy role
in the source side representation.

To alleviate the noise issue introduced by the
extra part in the source side, inspired by the
work of (Dhingra et al., 2016; Pang et al., 2016;
Zhang et al., 2018c,a,b; Cai et al., 2017b), our
model adopts a gated-attention (GA) mechanism
that performs multiple hops over the pinyin with
the extended context as shown in Figure 1(d).
In order to ensure the correlation between each
other, we build a parallel bilingual training cor-
pus and use it to train the pinyin embeddings and
the Chinese embeddings at once. We use two
Bidirectional gated recurrent unit (BiGRU) (Cho
et al., 2014) to get contextual representations of
the source pinyin and context respectively, Hp =
BiGRU(P ), Hc = BiGRU(C), where the repre-
sentation of each word is formed by concatenating
the forward and backward hidden states.

For each pinyin pi in Hp, the GA module
forms a word-specific representation of the con-
text ci 2 Hc using soft attention, and then adopts
element-wise product to multiply the context rep-
resentation with the pinyin representation. ↵i =
softmax(HT

c pi), �i = C↵i, xi = pi � �i, where
� is multiplication operator.

The pinyin representation H̃p = x1, x2, ..., xk
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is augmented by context representation and then
sent into the encoder-decoder framework. The
encoder is a bi-directional long short-term mem-
ory (LSTM) network (Hochreiter and Schmidhu-
ber, 1997). The vectorized inputs are fed to for-
ward and backward LSTMs to obtain the internal
representation of two directions. The output for
each input is the concatenation of the two vec-
tors from both directions. Our decoder based on
the global attentional models proposed by (Luong
et al., 2015) to consider the hidden states of the en-
coder when deriving the context vector. The prob-
ability is conditioned on a distinct context vector
for each target word. The context vector is com-
puted as a weighted sum of previous hidden states.
The probability of each candidate word as being
the recommended one is predicted using a soft-
max layer over the inner-product between source
embeddings and candidate target characters.

This work belongs to one of the first line which
fully introduces end-to-end deep learning solution
to the IME implementation following a series of
our previous work (Zhu et al., 2018; Wu and Zhao,
2018; Zhang and Zhao, 2018; Bai and Zhao, 2018;
Cai et al., 2018; He et al., 2018; Qin et al., 2018;
Li et al., 2018; Jia et al., 2013).

3 Experiment

3.1 Definition of Incomplete Input for IME
The completeness in IME is actually uneasily
well-defined as it is a relative concept for inputting
procedure. Note that not until user types the re-
turn key enter, user will not (usually) really make
the input choice. Meanwhile, even though the en-
tire/complete input can be strictly defined by the
time when user types enter, user still can make de-
cision at any time and such incompleteness cannot
be well evaluated by all the current IME metrics.
As the incomplete from is hard to simulate and it
is diverse in types, we have to partially evaluate it
in the following two ways1,

The incomplete pinyin as abbreviation pinyin
To compare with previous work directly, we fol-
lowed (Huang et al., 2015) and focused on the ab-
breviated pinyin (the consonant letter only) to per-
form evaluation (i.e., tian qi to t q).

Take incomplete user input as the incomplete
As IME works as an interactive system, it will al-
ways give prediction only if users keep typing. If

1Our code is at https://github.com/YvonneHuang/gaIME

user’s input does not end with typing enter, we can
regard the current input pinyin sequence is an in-
complete one.

3.2 Datasets and Settings

PD DC
Train Test Train Test

# Sentence 5.0M 2.0K 1.0M 2.0K
L < 10 % 88.7 89.5 43.0 54.0
L < 50 % 11.3 10.5 47.0 42.0
L > 50 % 0.0 0.0 4.0 2.0
Relativity % 18.0 21.1 65.8 53.4

Table 1: Data statistics for the sentence number and sen-
tence length (L) of two corpora.

Our model is evaluated on two datasets, namely
the People’s Daily (PD) corpus and Douban con-
versation (DC) corpus. The former is extracted
from the People’s Daily from 1992 to 1998 that
has word segmentation annotations by Peking
University. The DC corpus is created by (Wu
et al., 2017) from Chinese open domain conversa-
tions. One sentence of the DC corpus contains one
complete utterance in a continuous dialogue situ-
ation. The statistics of two datasets is shown in
Table 1. The relativity refers to total proportion of
sentences that associate with contextual history at
word level. For example, there are 65.8% of sen-
tences of DC corpus have words appearing in the
context. With character text available, the needed
parallel corpus between pinyin and character texts
is automatically created following the approach
proposed by (Yang et al., 2012).

Our model was implemented using the Py-
Torch2 library, here is the hyperparameters we
used: (a) the RNNs used are deep LSTM models, 3
layers, 500 cells, (c) 13 epoch training with plain
SGD and a simple learning rate schedule - start
with a learning rate of 1.0; after 9 epochs, halve
the learning rate every epoch, (d) mini-batches
are of size 64 and shuffled, (e) dropout is 0.3.
Word embeddings are pre-trained by word2vec
(Mikolov et al., 2013) toolkit on the adopted cor-
pus and unseen words are assigned unique random
vectors. (f) the gated attention layers size is 3, the
hidden units number of BiGRU is 100.

Two metrics are used: Maximum Input
Unit (MIU) accuracy (Zhang et al., 2017) and
KeyStroke Score (KySS) (Jia and Zhao, 2013).

2https://github.com/pytorch/pytorch
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DC PD
Top-1 KySS Top-1 KySS

CoCat? 49.72 0.7393 48.78 0.7868
Basic P2C? 52.31 0.7305 47.95 0.7879

Simple C+ P2C? 23.83 0.5431 43.95 0.7495
Gated C+ P2C? 53.76 0.8896 48.31 0.7931

CoCat 59.15 0.7651 61.42 0.7933
Basic P2C 71.31 0.8845 70.5 0.8301

Simple C+ P2C 61.28 0.7963 60.87 0.7883
Gated C+ P2C 73.89 0.8935 70.98 0.8407

Table 2: The effect of P2C modules with Different Input Forms. ? means that the input is incomplete.

The former measures the conversion accuracy of
MIU, whose definition is the longest uninterrupted
Chinese character sequence during inputting. As
the P2C conversion aims to output a rank list
of the corresponding character sequences candi-
dates, the Top-K MIU accuracy means the pos-
sibility of hitting the target in the first K predicted
items. The KySS quantifies user experience by us-
ing keystroke count. For an ideal IME with com-
plete input, we have KySS = 1. An IME with
higher KySS is supposed to perform better.

3.3 Model Definition

We considered the following baselines: (a) Google
IME: the only commercial Chinese IME providing
a debuggable API in the market now; (b) OMWA:
online model for word acquisition proposed by
(Zhang et al., 2017); (c) CoCat: an SMT based in-
put method proposed by (Huang et al., 2015) that
supports incomplete pinyin inputs.

Three models with incomplete or complete in-
puts will be evaluated: (a) Basic P2C, the basic
P2C based on attention-NMT model; (b) Basic
C2C, the basic C to C model based on Seq2Seq
model; (b) Simple C+ P2C, the simple con-
catenated P2C conversion model that concatenate
context to pinyin representation; (c) Gated C+
P2C, our gated attention based context-enhanced
pinyin-to-character model. Pinyin in model * has
been actually set to abbreviation form when we
say it goes to (Huang et al., 2015) incomplete def-
inition.

3.4 Result and Analysis

Effect of Gated Attention Mechanism Table 3
shows the Effect of gated attention mechanism.
We compared models with Gated C+ P2C and
Simple C+ P2C. The MIU accuracy of the P2C

  e luo si tao wa ye man hao de’ ’’ ’ ’’ ’ ’

1. 黑色 (Black) 2. 香水 (Perfume) 3. 京东 (Joybuy.com ) 4.额(brow)

Context:
Input:
Gold:

IME:

给十岁的小女孩买什么礼物？(what gift is bought for the little girl?)
e luo si tao wa ye man hao de
俄罗斯套娃也蛮好的。(Russian doll is fine.)

  shang hai’

1. 上海 (Shanghai) 2. 北京 (Beijing) 3. 南京(Nanjing) 

Context:
Input:
Gold:

IME:

中国的首都是哪里？(Where is the capital of China?)
shang hai
北京 (Beijing) 

(a)

(b)

Figure 2: Examples of the candidates list given by the pro-
posed IMEs.

Figure 3: Attention visualization. Deeper color mean larger
value.

model has over 10% improvement when changing
the operate pattern of the extra information proves
the effect of GA mechanism. The Gated C+ P2C
achieves the best in DC corpus, suggesting that the
gated-attention works extremely well for handling
long and diverse context.

Effect of P2C modules with Different Input
Forms Table 2 shows the evaluation results of
P2C modules with different input forms. It should
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DC PD
Top-1 Top-5 Top-10 KySS Top-1 Top-5 Top-10 KySS

Google IME 62.13 72.17 74.72 0.6731 70.93 80.32 82.23 0.7535
CoCat 59.15 71.85 76.78 0.7651 61.42 73.08 78.33 0.7933

OMWA 57.14 72.32 80.21 0.7389 64.42 72.91 77.93 0.7115
basic P2C 71.31 89.12 90.17 0.8845 70.5 79.8 80.1 0.8301

Simple C+ P2C 61.28 71.88 73.74 0.7963 60.87 71.23 75.33 0.7883
Gated C+ P2C 73.89 90.14 91.22 0.8935 70.98 80.79 81.37 0.8407

Table 3: Comparison with previous state-of-the-art models.

not surprise that straightforward concatenation
strategy for source inputs performs poorly when
the input pinyin is incomplete in DC corpus, due
to obvious noise in too long context. The rela-
tively small gap between the results of CoCat? and
CoCat indicate that statistical learning model may
be helpful in obtaining some useful patterns from
limited input. When the input statement contains
adequacy information, the MIU accuracy of Gated
C+ P2C system achieves more than 20% improve-
ment in both corpora. However, we find that the
KySS scores are much more close even with dif-
ferent pinyin integrity, which indicates that user
experience in terms of KySS are more hard im-
proved.

Instance Analysis We input a dialogue in won-
der to how much of the contextual information is
used when P2C module find the input pinyin is un-
known. Figure 2 demonstrates the effect of the
gated attention mechanism on candidates offering
and unknown word replacement. As shown in Fig-
ure 2(a), we find that our IME suggests a more
suitable candidates to the user when user is ob-
viously not consistent with what the model has
learned previously, which shows our model ex-
ceeds the Simple C+ P2C learning for maximally
matching the inputted pinyin, but become capable
of effectively resisting user pinyin input noise, and
turns to learn potential language knowledge in pre-
vious input history3.

As the ability predict user input from incom-
plete pinyin cannot be covered by any current
IME performance metrics, thus the reported re-
sults yielded by our model actually underestimate
our model performance to some extent. We illus-
trate the empirical discoveries of Figure 2(b) to

3Note as we evaluate our model only on two available cor-
pora, but not the real world case from true user inputting his-
tory, which makes the instance situation limit to the domain
feature of the given corpora.

demonstrate the extra effect of our P2C system
on such situation, which indicates that the gated-
attention pattern has taken great advantage of con-
textual information when given an unknown word.
Or, namely, our model enables the incomplete in-
put prediction though has to let it outside the cur-
rent IME performance measurement. We display
the attention visualization of Figure 2(b) in Figure
3 for better reference to explain the effect extended
context plays on the generation of target charac-
ters.

Main Result Our model is compared to other
models in Table 3. So far, (Huang et al., 2015)
and (Zhang et al., 2017) reported the state-of-the-
art results among statistical models. We list the
top-5 accuracy contrast to all baselines with top-
10 results, and the comparison indicates the no-
ticeable advancement of our P2C model. To our
surprise, the top-5 result on PD of our best Gated
C+ P2C system approaches the top-10 accuracy of
Google IME. On DC corpus, our Gated C+ P2C
model with the best setting achieves 90.14% accu-
racy, surpassing all the baselines. The comparison
shows our gated-attention system outperforms all
state-of-the-art baselines with better user experi-
ence.

4 Conclusion

For the first time, this work makes an attempt to
introduce additional context in neural pinyin-to-
character converter for pinyin-based Chinese IME
as to our best knowledge. We propose a gated-
attention enhanced model for digging significant
context information to improve conversion qual-
ity. More importantly, the resulting IME supports
incomplete user pinyin input but returns complete,
extra and even corrected character outputs, which
brings about a story-telling mode change for all
existing IMEs.
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Appendices
A Architecture of the Evaluation Models

气 怎 么 样 tian qi bu cuo EOSBC

天 气 不 错

天

EOS

(b)Simple C+ P2C Model: Simple context-enhanced pinyin-to-character model,  
straightforwardly concat the context to the source pinyin sequence.

(How's the weather) (Weather is not bad)

Source Emb.

Target Emb.

BiLSTM Encoder
RNN Decoder

Gated Attention

Context Emb.

天 气 不 错

tian qi bu cuo EOS

EOS

气 怎 么 样天

BiGRU

(d) Gated C+ P2C Model: Gated Attention based Context-enhanced Pinyin-to-Character model.

天 气 不 错

tian qi bu cuo

EOS

BiGRU

(c) Gated P+ C2C Model: Gated Attention based Pinyin-enhanced Context-to-Character model.
气 怎 么 样天 EOS

天 气 不 错 EOS

(a) Basic C2C Model: basic context-to-character model,  straightforwardly generate
 the response candidate list from the context utterance.

气 怎 么 样天 EOS
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Abstract

Recurrent neural network language models
(RNNLMs) are the current standard-bearer
for statistical language modeling. However,
RNNLMs only estimate probabilities for com-
plete sequences of text, whereas some applica-
tions require context-independent phrase prob-
abilities instead. In this paper, we study how
to compute an RNNLM’s marginal probabil-
ity: the probability that the model assigns to
a short sequence of text when the preceding
context is not known. We introduce a sim-
ple method of altering the RNNLM training
to make the model more accurate at marginal
estimation. Our experiments demonstrate that
the technique is effective compared to base-
lines including the traditional RNNLM prob-
ability and an importance sampling approach.
Finally, we show how we can use the marginal
estimation to improve an RNNLM by training
the marginals to match n-gram probabilities
from a larger corpus.

1 Introduction

Recurrent neural networks (RNNs) are the state-
of-the-art architecture for statistical language
modeling (Jozefowicz et al., 2016; Melis et al.,
2018), the task of assigning a probability distri-
bution to a sequence of words. The relative like-
lihoods of the sequences are useful in applica-
tions such as speech recognition, machine transla-
tion, automated conversation, and summarization
(Mikolov et al., 2010; Bahdanau et al., 2014; See
et al., 2017; Wen et al., 2017). Typically, RNN
language models (RNNLMs) are trained on com-
plete sequences (e.g., a sentence or an utterance),
or long sequences (e.g. several documents), and
used in the same fashion in applications or testing.

⇤thanapon.nor@mahidol.edu
† d-downey@northwestern.edu
‡ lyndonbig@tencent.com

A question arises when we want to compute the
probability of a short sequence without the preced-
ing context. For instance, we may wish to query
for how likely the RNNLM is to generate a partic-
ular phase aggregated over all contexts. We refer
to this context-independent probability of a short
phrase as a marginal probability, or marginal.

These marginal probabilities are useful in three
board categories of applications. First, they allow
us to inspect the behavior of a given RNNLM. We
could check, for example, whether an RNNLM-
based generator might ever output a given offen-
sive phrase. Second, the marginals could be used
in phrase-based information extraction, such as
extracting cities by finding high-probability x’s in
the phrase “cities such as x” (Soderland et al.,
2004; Bhagavatula et al., 2014). Finally, we can
use the phrase probabilities to train an RNNLM
itself, e.g. updating the RNNLM according to
n-gram statistics instead of running text (Chelba
et al., 2017; Noraset et al., 2018). In our experi-
ments, we show an example of the last application.

Estimating marginals from an RNNLM is chal-
lenging. Unlike an n-gram language model (Chen
and Goodman, 1996), an RNNLM does not explic-
itly store marginal probabilities as its parameters.
Instead, previous words are recurrently combined
with the RNN’s hidden state to produce a new
state, which is used to compute a probability dis-
tribution of the next word (Elman, 1990; Mikolov
et al., 2010). When the preceding context is ab-
sent, however, the starting state is also missing. In
order to compute the marginal probability, in prin-
ciple we must marginalize over all possible previ-
ous contexts or all continuous-vector states. Both
options pose a severe computational challenge.

In this paper, we study how to efficiently
approximate marginal probabilities from an
RNNLM, without generating a large amount of
text. Given an RNNLM and a phrase, our goal is
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to estimate how frequently the phrase will occur in
text generated by the RNNLM. We present two ap-
proaches that can be used to estimate the marginal
probabilities: sampling for the starting state, and
using a single starting state with altered RNNLM
training. We show empirically that we can use a
zero vector as a starting state of an RNNLM to
compute accurate marginal estimates, but we must
randomly reset the RNNLM state to zero during
training and add a unigram likelihood term to the
RNNLM training objective. Finally, we demon-
strate that we can use marginal estimation to in-
corporate n-gram statistics from a larger corpus to
improve the perplexity of an RNNLM trained on a
similar, but smaller corpus.

2 Marginal Estimation

The goal of marginal estimation is to determine
the likelihood of a short phrase where the preced-
ing context is not known; we refer to this likeli-
hood as a marginal probability. In other words,
the marginal probability of a query refers to how
likely a language model will generate a query re-
gardless of context.

2.1 Problem settings
An RNNLM (Mikolov et al., 2010) defines a prob-
ability distribution over words conditioned on pre-
vious words as the following:

P (w1:T ) =
TY

t=1

P (wt|w1:t�1)

P (wt|w1:t�1) = P (wt|ht) / exp(✓(w)
o ht)

ht = g(ht�1, wt�1)

where w1:t�1 is a sequence of previous words, ✓w
o

denotes the output weights of a word w, and g(·) is
a recurrent function such as an LSTM (Hochreiter
and Schmidhuber, 1997) or GRU unit (Cho et al.,
2014).

An initial state, h1 is needed to start the recur-
rent function g(h1, w1), and also defines the prob-
ability distribution of the first word P (w1|h1).
In the standard language model setting, we com-
pute h1 using a start-of-sentence symbol for w0

(“<s>”), and a special starting state h0 (usually
set to be a vector of zeros ~0). This initialization
approach works fine for long sequences, because
it is only utilized once and its effect is quickly
swamped by the recurrent steps of the network.
However, it is not effective for estimating marginal

probabilities of a short phrase. For example, if
we naively apply the standard approach to com-
pute the probability of the phrase “of the”, we
would obtain:

P (of the) =P (of|h1 = g(~0,<s>))⇥
P (the|h2 = g(h1,the))

The initial setting of the network results in low
likelihoods of the first few tokens in the evalu-
ation. For instance, the probability P (of the)
computed in the above fashion will likely be a bad
underestimate, because “of the” does not usu-
ally start a sentence.

We would like to compute the likelihood of
standalone phrases, where rather than assuming
the starting state we instead marginalize out the
preceding context. Let the RNN’s state prior to our
query sequence be z 2 R

d, a vector-valued ran-
dom variable representing the RNN initial state,
and let w1:T be a short sequence of text. The
marginal probability is defined as:

P (w1:T ) =

Z
P (w1:T |z)P (z)dz (1)

The integral form of the marginal probability is in-
tractable and requires an unknown density estima-
tor of the state, P (z).

2.2 Trace-based approaches
The integral form of the marginal probability in
Eq 1 can be approximated by sampling for z. In
this approach, we assume that there is a source of
samples which asymptotically approaches the true
distribution of the RNN states as the number of
samples grows. In this work, we use a collection
of RNN states generated in an evaluation, called a
trace.

Given a corpus of text, a trace of an RNNLM
is the corresponding list of RNN states, H(tr) =

(h(tr)
1 , h(tr)

2 , ..., h(tr)
M ), produced when evaluating

the corpus. We can estimate the marginal prob-
ability by sampling the initial state z from H as
follows:

P (w1:T ) = Ez⇠H(tr)

⇥
P (w1|z)

TY

t=2

p(wt|ht)
⇤

(2)

where h2 = g(z , w1) and ht = g(ht�1, wt�1) for
t > 2 (i.e. the following states are the determin-
istic output of the RNN function). Given a large
trace this may produce accurate estimates, but it
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is intractably expensive and also wasteful, since in
general there are very few states in the trace that
yield a high likelihood for a sequence.

To reduce the number of times we run the model
on the query, we use importance sampling over the
trace. We train an encoder to output for a given n-
gram query a state “near” the starting state(s) of
the query, z� = q�(w1:T ). We define a sampling
weight for a state in the trace, h(tr), proportional
to the dot product of the state and the output of the
encoder, z� , as the following:

P (h(tr)|w1:T ) =
exp(z�h(tr))P

h0(tr)2H(tr)

exp(z�h0(tr))

This distribution is biased to toward states that are
likely to precede the query w1:T . We can estimate
the marginal probability as the following:

P (w1:T ) =

E
z⇠P (h(tr)|w1:T )


P (z)

P (z|w1:T )
P (w1|z)

TY

t=2

p(wt|ht)

�

Here the choice of the prior P (z) is a uniform dis-
tribution over the states in the trace. The encoder,
q�(w1:T ), is a trained RNN with its input reversed,
and z� is the final output state of q�. To train the
encoder, we randomly draw sub-strings wi:i+n of
random length from the text used to produce the
trace, and minimize the mean-squared difference
between z� and h(tr)

i .

2.3 Fixed-point approaches
While the trace-based approaches work on an
existing (already trained) RNNLM, they might
take several samples to accurately estimate the
marginal probability. We would like to have a sin-
gle point as the starting state, named z . We can
either train this vector or simply set it to a zero
vector. Then the marginal probability in Eq 1 can
be estimated with a single run i.e. p(z ) = 1.0 and
p(z) = 0.0 if z 6= z . The computation is reduced
to:

P (w1:T ) = P (w1|z )
TY

t=2

P (wt|ht) (3)

where h2 = g(z , w1) and the rest of the state
process is as usual, ht = g(ht�1, wt�1). In this
paper, we set z to be a zero vector, and call this
method Zero.

As we previously discussed, our fixed-point
state, z , is not a suitable starting state of all n-
grams for any given RNNLM, so we need to train
an RNNLM to adapt to this state. To achieve this,
we use a slight modification of the RNN’s trun-
cated back-propagation through time training al-
gorithm. We randomly reset the states to z when
computing a new state during the training of the
RNNLM (a similar reset was used for a different
purpose—regularization—in Melis et al. (2018)).
This implies that z is trained to maximize the
likelihood of different subsequent texts of different
lengths, and thus is an approximately good starting
point for any sequence. Specifically, a new state is
computed during the training as follows:

ht = rz + (1 � r)g(ht�1, wt�1)

where r ⇠ Bern(⇢) and ⇢ is a hyper-parameter
for the probability of resetting a state. Larger ⇢
means more training with z , but it could disrupt
the long-term dependency information captured in
the state. We keep ⇢ relatively small at 0.05.

In addition to the state reset, we introduce a uni-
gram regularization to improve the accuracy of the
marginal estimation. From Eq 3, z is used to pre-
dict the probability distribution of the first token,
which should be the unigram distribution. To get
this desired behavior, we employ regularization to
maximize the likelihood of each token in the train-
ing data independently (as if reset every step). We
call this a unigram regularizer:

LU = �
TX

t=1

logP (wt|z )

and we add it to the training objective: Ltext =
�

PT
t=1 logP (wt|ht). Thus, the overall training

loss is: L = Ltext + LU .

3 Experiments and Results

3.1 Experimental Settings
We experiment with a standard medium-size
LSTM language model (Zaremba et al., 2014)
over 2 datasets: Penn Treebank (PTB) (Mikolov
et al., 2010) and WikiText-2 (WT-2) (Merity et al.,
2017). We use weight tying (Inan et al., 2017)
and train all models with Adam (Kingma and Ba,
2014) for 40 epochs with learning rate starting
from 0.003 and decaying every epoch at the rate
of 0.85. We use a batch size of 64 and trun-
cated backpropagation with 35 time steps, and
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PTB WT-2
E(·) PPL E(·) PPL

Zero 3.828 90.18 4.432 104.08
Zero(RU) 0.425 91.92 0.801 106.23
Trace-IW 0.661 - 0.862 -
Zero(R) 2.968 93.70 3.519 109.02
Zero(U) 1.007 90.15 1.713 102.56
Trace-Rand 1.105 - 1.742 -
n-grams 26,070 47,130

Table 1: The average error of different marginal es-
timation approaches and the testing perplexity. The
RNNLM trained with state-reset (R) and unigram (U)
regularization has the lowest error when using a zero
starting state to estimate the marginals.

employ variational dropout (Gal and Ghahramani,
2016). The final parameter set is chosen as the one
minimizing validation loss. For the query model
q�(w1:T ) used in importance sampling, we use the
same settings for the model and the training pro-
cedure as the above.

3.2 Marginal Estimation
In this subsection, we evaluate the accuracy of
each approach at estimating marginal probabili-
ties. Given a model and a phrase, we first obtain
a target marginal probability, Ptext(w1:T ), from a
frequency of the phrase occurring in a text gener-
ated by the model. Then, we use each approach
to estimate the marginal probability of the phrase,
Pest(w1:T ). To measure the performance, we com-
pute the absolute value of the log ratio (lower is
better) between the target marginal probability and
the estimated marginal probability (Pest):

E(w1:T ) =
��log(Ptext(w1:T )/Pest(w1:T ))

�� (4)

This evaluation measure gives equal importance to
every n-gram regardless of its frequency.

In the following experiments, we generate ap-
proximately 2 million and 4 million tokens for
PTB and WT-2 models respectively. The prob-
ability of phrases occurring in the generated text
serves as our target marginal. We form a test set
consisting of all n-grams in the generated text for
n  5 words, excluding n-grams with frequency
less than 20 to reduce noise from the generation.
For the trace-based estimations, we average the
marginal probabilities from 100 samples.

Table 1 shows the average discrepancy between
marginal probabilities estimated by generated-text

1 2 3 4 5
Zero 1.02 4.18 6.15 8.78 10.8
Zero(RU) 0.38 0.72 0.95 1.54 2.10
Trace-IW 0.70 0.81 0.92 1.22 1.48
n-grams 10.7 20.7 10.5 3.7 1.5

Table 2: The error aggregate by n-gram lengths. This
shows the same trend as in Table 1, but Trace-IW per-
forms better for longer n-grams.

statistics and the methods discussed in Section
2 (Eq 4). From the table, the RNNLM trained
with the state-reset and the unigram regulariza-
tion (Zero(RU)) performs better than both zero-
start and trace-based approaches on the traditional
model. The importance sampling method (Trace-
IW) has the second lowest error and performs bet-
ter than random sampling (Trace-Rand). Abla-
tion analysis shows that both state-reset and the
unigram regularization contribute to the accuracy.
Note that the trace-based methods use the same
model as Zero.

To show how performance varies depending on
the query, we present results aggregated by n-
gram lengths. Table 2 shows the errors of the
WT-2 dataset. When the n-gram length is greater
than 2, Trace-IW has better accuracy. This makes
sense because the encoder has more evidence to
use when inferring the likely start state.

3.3 Training with marginal probabilities
We now turn to an application of the marginal es-
timation. One way that we can apply our marginal
estimation techniques is to train an RNNLM with
n-gram probabilities in addition to running text.
This is helpful when we want to efficiently in-
corporate data from a much larger corpus without
training the RNNLM on it directly (Chelba et al.,
2017; Noraset et al., 2018). In this work, we frame
the problem as a regression and use a loss equal to
the squared difference of log probabilities:

LN =
↵

2K

KX

k

(logPtext(x
(k)
1:T ) � logPest(x

(k)
1:T ))2

where ↵ is a hyper-parameter and set to 0.1. Fol-
lowing the result in Table 1, we use the Zero
method to estimate Pest(x

(k)
1:T ) as in Eq 3, and add

LN to the training losses that use the running text
corpus.

To evaluate the approach, we follow the Noraset
et al. (2018) experiment in which bi-gram statis-
tics from the training text of WT-103 are used to
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Loss PPL
L(2)

text (Zero) 104.08
L(2)

text + L(2)
U (Zero(U)) 102.56

L(2)
text + L(2)

U + L(103)
N 93.95

Table 3: Test perplexities of RNNLMs trained on dif-
ferent loss functions. Using n-gram probabilities from
a larger corpus (WT-103) improves perplexities.

improve an RNNLM trained using WT-2. In our
experiment, we use n-grams up to n = 5 with fre-
quency greater than 50. We ignore n-gram con-
taining <unk>, because the vocabulary sets are
different. Table 3 shows the result. Since we do
not use the same setting as in the original work,
we cannot directly compare to that work – they
use different optimization settings, more expen-
sive n-gram loss, and Kneser-Ney bi-gram lan-
guage model. However, we see that the proposed
n-gram loss is beneficial when combined with the
unigram loss. Importantly, unlike the approach
in Noraset et al. (2018), our approach requires no
sampling which makes it several times faster.

In addition, we present our preliminary result
comparing training with the marginal probabil-
ity of n-grams to training with the complete data.
Given a limited budget of optimization steps, we
ask whether training on n-grams is more valu-
able than training on the full corpus. To keep
the results compatible, we use the vocabulary set
of WikiText-2 and convert all OOV tokens in the
training data of WikiText-103 to the “<unk>” to-
ken. Figure 1 shows the loss (average negative
log-likelihood) of the validation data as the num-
ber of optimization steps increases.

We can see that training with the marginals does
not perform as well as training with WikiText-103
training data, but outperforms the model trained
only with WikiText-2 training data. This might
be due to our choice of n-grams and optimiza-
tion settings such as a number of n-grams per
batch, weight of the n-gram loss, and the learning
rate decay rate. We leave exploring these hyper-
parameters as an item of future work.

4 Conclusion

We investigated how to estimate marginal prob-
abilities of n-grams from an RNNLM, when the
preceding context is absent. We presented a sim-
ple method to train an RNNLM in which we occa-
sionally reset the RNN’s state and also maximize

Figure 1: Loss in negative log-likelihood over steps
in training. The loss computed using the valid data
from WikiText-2 corpus. Training with n-grams from a
larger corpus is helpful, but not as well as training with
the running text from a larger corpus itself.

unigram likelihood along with the traditional ob-
jective. Our experiments showed that an RNNLM
trained with our method outperformed other base-
lines on the marginal estimation task. Finally, we
showed how to improve RNNLM perplexity by
efficiently using additional n-gram probabilities
from a larger corpus.

For future work, we would like to evaluate our
approaches in more applications. For example, we
can use the marginal statistics for information ex-
traction, or to detect and remove abnormal phrases
in text generation. In addition, we would like to
continue improving the marginal estimation by ex-
perimenting with recent density estimation tech-
niques such as NADE (Uria et al., 2016).
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Abstract
Recent state-of-the-art neural language mod-
els share the representations of words given by
the input and output mappings. We propose a
simple modification to these architectures that
decouples the hidden state from the word em-
bedding prediction. Our architecture leads to
comparable or better results compared to pre-
vious tied models and models without tying,
with a much smaller number of parameters.
We also extend our proposal to word2vec mod-
els, showing that tying is appropriate for gen-
eral word prediction tasks.

1 Introduction

In neural models, reusing representations of the
same type of data (e.g., sentences or words) in dif-
ferent parts of the architecture can be a powerful
way to aid learning: it reduces parameters, en-
abling more compact models and faster learning.
Recurrent neural network (RNN) language models
(Mikolov et al., 2010; Sundermeyer et al., 2012;
Zaremba et al., 2014) have two word mappings:
From the input word onto its embedding repre-
sentation, and from the internal representation of
the network (the hidden layer) to the weights for
the prediction of the next word. In standard mod-
els, these representations are different. Recently,
Inan et al. (2017) and Press and Wolf (2017) pro-
posed to instead use a single word representation,
tying the input and output mappings. Intuitively,
both are representations of the same type of data
(words), and information learnt when observing a
word as input can be reused when predicting this
word as output. Tied language models obtained
better perplexity and better word similarity scores
of embedding matrices while reducing the number
of parameters. The models that achieve the latest
state-of-the art results incorporate this technique
(see, e.g., Merity et al., 2018).

However, note that, by tying the output map-
ping to the input mapping, the hidden layer of the
network is optimised to match the representation
of the predicted word. We suggest that this intro-
duces a constraint that conflicts with the function
of the hidden layer in language models to repre-
sent the previous context and transmit information
to the next timestep. In this paper, we propose a
minimal modification to tied LM architectures to
address this issue: we add a linear transformation
between the hidden layer and the word embedding
prediction, partially decoupling the two. This has
an important advantage. Standard tied architec-
tures require the hidden layer to have the same
dimensionality as the word embeddings. We lift
this constraint in our architecture: by separating
the hidden layer and the word mapping, we can
choose a large hidden layer dimensionality while
keeping the embedding dimensionality and, con-
sequently, the size of the embedding matrix small.

In a set of experiments on LM, we show that
our tied models achieve results similar to or better
than models with standard or no tying, with much
smaller embedding sizes and a reduction of 30-
60% in the overall number of parameters. Notably,
the word embeddings obtained with the modified
model have a higher quality than double-sized em-
beddings obtained with standard tied models, as
measured on word similarity.

We further extend this idea to word represen-
tation learning models (in particular, word2vec),
which have a similar architecture and objective
function to language models. For instance, the
standard skipgram model (Mikolov et al., 2013)
has two mappings, one for the context words and
one for the target word. While tying these two ma-
trices directly constraints learning too strongly, an
additional linear mapping adds the sufficient ca-
pacity to learn embeddings of the same quality as
the standard model using only half the parameters.
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2 Tied LM architectures

2.1 Previous work
Equations (1) through (4) define a standard RNN
language model (Mikolov et al., 2010):

x̂t = xtE (1)

ht = LSTM(x̂t,ht�1) (2)

o = htW
T (3)

p = softmax(o), (4)

where xt is the one-hot encoding of the input word
at time t, x̂t is its embedded representation and E
is the embedding matrix (input mapping). We fol-
low the majority of previous work in adopting an
LSTM (Hochreiter and Schmidhuber, 1997) as the
recurrent unit, as it was shown to outperform other
recurrent architectures for LM (Jozefowicz et al.,
2015). The hidden vector ht is used as input to the
LSTM for the next time step and also as input to a
linear transformation W (output mapping) which
produces the output weights. These weights are
normalised into probability scores using the soft-
max function.

The tied models proposed by Inan et al. (2017)
and Press and Wolf (2017) set W to be equal to E
(Figure 1b). Note that since E is of size |V | ⇥ m,
where m is the embedding size, and W is of size
|V |⇥n, where n is the hidden state size, the hidden
and embedding dimensions must be equal, that is,
m = n.

Press and Wolf (2017) observe that the output
matrix W represents an embedding matrix since
two similar words with indices i and j are learnt
to receive similar probabilities given a context and
hence the rows Wi and Wj should also be similar.
Indeed, they show that on some word similarity
evaluation tasks the output matrix W outperforms
significantly the input matrix E. Tying E and W
makes the model share the representations for the
input and output vocabularies.

Inan et al. (2017) suggest a theoretical moti-
vation for the tying technique and derive it as an
instance of a more general approach of augment-
ing the cross-entropy loss. They show that a loss
that takes into account not only the target word
(i.e., log pi for cross-entropy) but the scores for all
words in the vocabulary according to their similar-
ity to the target (computed as dot-product of em-
beddings in E) improves performance on LM.

(a) Non-tied model

(b) Tied model

(c) Tied+L model

Figure 1: Effect of the three architectures on map-
ping sizes. Note that the actual difference between
vocabulary size |V | and n, m is of 2 to 3 orders of
magnitude.

One important practical advantage of tying in-
put and output matrices is the reduction in num-
ber of parameters with respect to a standard model
with the same hidden and embedding dimensions,
since instead of two matrices E and W of size
|V |⇥m we have only one matrix of size |V |⇥m.

2.2 Proposed modification

One potential problem with the tied model, where
E = W , is that the hidden state ht is optimised
to be close to the embedding of the target word.
To see this, consider that oj = ej · ht, 8j. The
cross-entropy objective is to maximise log pi for
the target word with index i and consequently to
minimise log pj8j 6= i. Hence, oi = ei · ht will
be increased by the gradient descent update and ht

will be aligned closer with ei (for each dimension
k of the two vectors, htk · eik will be increased).
This association between ht and word embedding
space could prevent efficient retention of LSTM
history in ht, which is used as input for the fol-
lowing time step.

To address this issue, we propose a simple mod-
ification to the standard tied model, replacing the
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output transformation (3) as follows:

ĥt = htL

o = ĥtE
T .

(5)

L is an additional linear transformation that de-
couples the hidden state ht, which is passed to the
next time step and represents the previous, possi-
bly long-term, linguistic context, from ĥt, which
is instead optimised to match the embedding of the
output word.

As Figure 1 illustrates, an important advantage
of the additional transformation L is that a model
can have different dimensions for the hidden vec-
tor (n) and the embedding vectors (m). The em-
bedding matrix is the largest part of the model
when the vocabulary is large (|V | � n). Re-
ducing the size of the embedding m leads to a
significant reduction in the number of parameters,
proportional to |V |, and the acceleration of soft-
max computation. On the other hand, the size of
the additional matrix L is only n ⇥ m and con-
tributes very little to the overall size of the model.
We test empirically how reducing the embedding
size affects the performance of language models
by varying hidden and embedding sizes in our ex-
periments and evaluating embedding matrices on
word similarity tasks.

Standardly used LM models often have two lay-
ers of LSTM cells. Thus, the issue we identifed
might be mitigated in practice, since the hidden
state of the first layer is not directly affected by ty-
ing the output and input transformation matrices.
Moreover, an LSTM cell carries over information
both through the hidden state and a memory state;
the latter is affected by tying only indirectly (see
Hochreiter and Schmidhuber (1997) for details on
LSTM architectures). However, our experiments
show that, in practice, two-layer LSTM LMs are
still affected by tying despite these caveats.

2.3 Extending the tied technique to word2vec
The tied technique, as formulated above, can be in
principle applied to any model which has the same
general objective of LM: predicting a target word
given context words. The CBOW word2vec model
for word representation learning (Mikolov et al.,
2013) is the primary candidate for testing the ap-
plicability of the tied technique beyond LM, since
we can see it as substituting the LSTM function
(2) with a simple sum of context word embeddings
h =

P
i x̂i (where xi are words in the context win-

dow, e.g., of size 5). Similarly then, the equations
in (5) describe the tied version of CBOW model.
The linear step here provides the capacity to learn
a transformation from the sum of embeddings to
the predicted embedding ĥ. Without such trans-
formation, the tying model would assume that the
sum function is always a good approximation of
the output embedding.

The skipgram word2vec model (Mikolov et al.,
2013) employs a variant of the LM objective: It
is trained to predict context words given a word,
instead of the opposite. As in CBOW and neural
language models, words are both inputs and tar-
gets, making the use of tying an option also for
this architecture. Press and Wolf (2017) apply di-
rect tying to this architecture and report that the
quality of the obtained embeddings is below the
quality of non-tied skipgram embeddings. Unlike
CBOW or LSTM, the input-to-hidden state func-
tion of the skipgram model is identity, reducing
the tying model objective to x̂i = x̂j for every pair
of input-output words i, j. It is thus not surprising
that enforcing the tying constraint leads to poor
empirical results. We test whether adding an addi-
tional linear transformation improves performance
of the tied technique also for a skipgram model.

3 Experiments and results

3.1 Evaluation data
We use two corpora for the evaluation of lan-
guage models. First, we employ a medium-
sized corpus of approximately 100M tokens with
a relatively large vocabulary, 50K words, created
from a Wikipedia dump (henceforth, Wiki).1 To
allow comparison with previous work, we also
evaluate on the Penn Treebank (PTB), which is
small but has been used as a benchmark for LM
since Mikolov et al. (2011). The PTB has approx-
imately 1M tokens and is preprocessed to have
10K vocabulary words; we use the standard train-
validation-test split.

Furthermore, to evaluate the quality of the em-
beddings induced by the language models, as well
as for the word representation experiments in Sec-
tion 3.4, we use three standard word similarity
datasets: SimLex-999 (Hill et al., 2015; SimLex),
MEN (Bruni et al., 2014), and RareWords (Lu-
ong et al., 2013; RW). The performance on these
datasets is evaluated in terms of Spearman corre-

1https://dumps.wikimedia.org/enwiki/
20180301/

2938



Hid Emb Model Valid Test � Size

200 200 non-tied 95.0 91.1 4.7M
tied 90.8 86.6 -4.5 2.7M
tied+L 89.8 85.8 -5.3 2.7M

400 200 non-tied 89.4 85.3 8.3M
tied+L 83.4 80.3 -5.0 4.3M

400 non-tied 87.2 83.5 10.6M
tied 82.0 78.2 -5.3 6.6M
tied+L 81.9 78.0 -5.5 6.7M

600 400 non-tied 85.8 82.4 15.3M
tied+L 79.0 76.0 -6.4 9.5M

600 non-tied 84.3 81.3 17.8M
tied 79.7 76.1 -5.2 11.8M
tied+L 78.7 75.5 -5.8 12.1M

Inan2017 VD tied 650 77.1 73.9 -
Zaremba2014 1500 82.2 78.4 66M
P&W2016 tied 1500 77.7 74.3 51M

Table 1: LM perplexity results on PTB. �: differ-
ence in test perplexity of the tied models with re-
spect to the non-tied model with the same number
of hidden units.

lation between the cosine similarity of word pairs
and human judgments.2

3.2 Training setup
As our base language models, we adopt the ones
proposed in Zaremba et al. (2014). We use 2-layer
LSTMs with dropout applied to the input embed-
ding, to the output of the first LSTM layer and
to the output of the second layer. We used the
PyTorch implementation3 and modified it to in-
clude the additional linear layer for our tied mod-
els. We report the best model after the hyperpa-
rameter search for dropout and learning rate (see
the details in Appendix A).

3.3 Language modelling results
We present the LM results for the standard non-
tied model, the tied model as in Inan et al. (2017)
and Press and Wolf (2017), and our tied model
with an additional linear transformation (tied+L)
in Tables 1 (PTB) and 2 (Wiki).

2We computed correlation on the word pairs covered by
the Wiki corpus, namely 98%, 88% and 31% (973, 2648 and
623 datapoints) for SimLex, MEN, and RW, respectively.

3https://github.com/pytorch/examples/
tree/master/word_language_model

Table 1 confirms that tying generally brings
gains with respect to not tying. This is also true
for the cases when the hidden and embedding sizes
are different (e.g. 400/200 and 600/400), where
our tied+L model outperforms the non-tied model
by 5 to 6.4 points having around 40% less param-
eters. Furthermore, our decoupled model slightly
but consistently improves results with respect to
standard tying, confirming our intuition that the
coupling of the hidden state to the embedding rep-
resentation is a limiting constraint. Smaller tied+L
models perform well compared to larger tied mod-
els. In particular, the tied+L model with 600/400
units has perplexity of 76.0, compared to 76.1 of
the tied 600/600 model, with 55% the number of
parametres. Note that our results are comparable
to previously reported perplexity values on PTB
for similar models. Our best results of 75.5 test
perplexity is only 1.2 points behind the large tied
model with 1500 units reported in Press and Wolf
(2017) and is only 1.6 points behind the medium
tied model with 650 units and variational dropout
(Gal and Ghahramani, 2016) reported in Inan et al.
(2017).

On the Wiki corpus with larger vocabulary (Ta-
ble 2), we find that tied models achieve slightly
lower perplexity than non-tied models with half
the number of parameters, and our proposed
tied+L model achieves lower perplexity than the
tied model. The most relevant result of the present
experiment, however, is that the tied+L model
with 300 embedding units is actually better than
the tied model with 600 units (38.5 vs 39.7 points;
the tied+L model has 20M parameters compared
to 36M of the tied model) – that is, a smaller
model outperforms a larger model. Thus, our
decoupling mechanism not only allows models
to have better perplexity, but also more compact
word embeddings, which are of a higher quality
also as measured on word similarity: .42/.61/.68
for the tied+L embeddings of size 300, compared
to .39/.55/.64 for the tied embeddings of size 600.

3.4 Experiments on word2vec models

Table 3 presents the evaluation of word2vec mod-
els on the three word similarity datasets. We ran
the experiments only on the Wiki corpus due to its
higher coverage (50K vocabulary), and used em-
beddings of size 300.

Our results on CBOW show that the tied+L ar-
chitecture obtains comparable results to the non-
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Perplexity Spearman’s ⇢
Hidden Emb Model Size Valid Test SimLex RW MEN

600 300 non-tied 50M 40.0 39.2 .33/.34 .52/.50 .55/.60
tied+L 20M 39.3 38.5 .42 .61 .68

600 non-tied 66M 40.8 40.0 .33/.34 .52/.50 .55/.60
tied 36M 40.5 39.7 .39 .55 .64
tied+L 36M 38.6 37.9 .42 .59 .70

Table 2: Results on Wiki on LM (perplexity; lower is better) and word similarity (Spearman’s ⇢; for
non-tied models, results for input and output matrix are reported).

Model Type SimLex RW MEN

CBOW non-tied .38 .51 .63
tied+L .38 .50 .65

skipgram non-tied .39 .52 .74
tied .18 .25 .50
tied+L .35 .51 .72

Table 3: Results (⇢) for word2vec models.

tied architecture with almost half the parameters
(15.1M vs 30M). This confirms that tying with an
additional linear transformation is appropriate not
only for language models but for word learning
models more generally.

The skipgram algorithm shows a small degra-
dation of performance for the tied+L architecture
with respect to the non-tied one; note that, as ex-
plained in Section 2.3, tying makes the most sense
for CBOW. However, the fact that standard tying
obtains much worse results (similarly to the re-
sults of Press and Wolf, 2017) shows that the linear
mapping substantially relaxes the tying constraint.

4 Conclusions

Overall, our simple modification to tied language
modelling architectures generalises previous work
by allowing tying without imposing constraints
on the number of hidden and embedding dimen-
sions. This leads to flexible architectures with a
more efficient use of both hidden states and em-
beddings. For word representation learning mod-
els, having an additional linear transformation re-
duces the number of parameters while maintain-
ing learning capacity. In general, reducing model
size without harming performance is a desirable
feature in practice, for example in the case of lan-
guage models running on mobile devices, and it is

also desirable on theoretical grounds, since it is a
better use of the learning capacity of neural net-
works.
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Abstract

Neural language models are a critical compo-
nent of state-of-the-art systems for machine
translation, summarization, audio transcrip-
tion, and other tasks. These language models
are almost universally autoregressive in nature,
generating sentences one token at a time from
left to right. This paper studies the influence of
token generation order on model quality via a
novel two-pass language model that produces
partially-filled sentence “templates” and then
fills in missing tokens. We compare various
strategies for structuring these two passes and
observe a surprisingly large variation in model
quality. We find the most effective strategy
generates function words in the first pass fol-
lowed by content words in the second. We be-
lieve these experimental results justify a more
extensive investigation of generation order for
neural language models.

1 Introduction

Neural networks have been extremely successful
statistical models of text in language modeling and
machine translation. Despite differences in model
architectures, state of the art neural nets gener-
ate sequences from left to right (Vaswani et al.,
2017; Jozefowicz et al., 2016; Wu et al., 2016).
Although in some sense humans produce and con-
sume language from left to right as well, there are
many other intuitively appealing ways to gener-
ate text. For instance, language is slow enough
on a neurological time scale for multiple passes
of generation that incorporate feedback to occur.
Linguistic intuition might suggest that we should
first generate some abstract representation of what
we want to say and then serialize it, a process that
seems more universally appropriate given the ex-
istence of languages with freer word order such as
Czech and Polish.

⇤Work done as a member of the Google AI Residency
program (g.co/airesidency)

There has been interest in moving beyond the
left-to-right generation order by developing alter-
native multi-stage strategies such as syntax-aware
neural language models (Bowman et al., 2016)
and latent variable models of text (Wood et al.,
2011). Before embarking on a long-term research
program to find better generation strategies that
improve modern neural networks, one needs ev-
idence that the generation strategy can make a
large difference. This paper presents one way of
isolating the generation strategy from the general
neural network design problem. Our key techni-
cal contribution involves developing a flexible and
tractable architecture that incorporates different
generation orders, while enabling exact computa-
tion of the log-probabilities of a sentence. Our ex-
periments demonstrate that even when using a few
simple two-pass generation orders, the differences
between good and bad orderings are substantial.

We consider ways of reordering the tokens
within a sequence based on their identities. The
best ordering we tried generates function words
first and content words last, which cuts against the
idea of committing to the general topic of a sen-
tence first and only then deciding exactly how to
phrase it. We offer some possible explanations in
Section 3, and we conclude that our experimen-
tal results justify a more extensive investigation of
the generation order for language and translation
models.

2 Two-pass Language Models

We develop a family of two-pass language mod-
els that depend on a partitioning of the vocabu-
lary into a set of first-pass and second-pass tokens
to generate sentences. We perform a preprocess-
ing step on each sequence y, creating two new se-
quences y(1) and y(2). The sequence y(1), which
we call the template, has the same length as y,
and consists of the first-pass tokens from y to-
gether with a special placeholder token wherever
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sentence common first rare first function first content first odd first
” all you need to do
if you want the na-
tion ’s press camped
on your doorstep is to
say you once had a
[UNK] in 1947 , ”
he noted memorably in
his diary . [EOS]

” all you to if you
the ’s on
is to you had a

[UNK] in , ” he
in his . [EOS]

need do
want nation

press camped your
doorstep say
once 1947

noted memorably
diary [EOS]

” all you to if you
the ’s on your
is to you a

in , ” he in his
. [EOS]

need do
want nation press
camped doorstep

say once had
[UNK] 1947
noted memorably
diary [EOS]

” all you need
you the nation ’s

press camped on your
doorstep say you
once had
” noted his .
[EOS]

the team announced
thursday that the 6-
foot-1 , [UNK] starter
will remain in detroit
through the 2013 sea-
son . [EOS]

the that the ,
[UNK] will in

the . [EOS]

team announced
thursday 6-foot-1

starter remain
detroit through

2013 season [EOS]

the that the
, will in
through the .

[EOS]

team announced
thursday 6-foot-1

[UNK] starter
remain detroit
2013 season [EOS]

the team announced
the 6-foot-1
will remain

through the 2013 .
[EOS]

scotland ’s next game
is a friendly against
the czech republic at
hampden on 3 march .
[EOS]

’s is a the
at on . [EOS]

scotland next game
friendly against

czech republic ham-
pden 3 march
[EOS]

’s is a against
the at on .
[EOS]

scotland next game
friendly

czech republic ham-
pden 3 march
[EOS]

’s next game
the czech republic at

hampden on 3 march .
[EOS]

of course , millions of
additional homeown-
ers did make a big mis-
take : they took ad-
vantage of ” liar loans
” and other [UNK]
deals to buy homes
they couldn ’t afford .
[EOS]

of , of
a : they of
” ” and [UNK]

to they ’t .
[EOS]

course millions
additional homeown-
ers did make big
mistake took ad-
vantage liar loans

other deals
buy homes couldn
afford [EOS]

of , of a
: they of ”

” and to
they . [EOS]

course millions
additional home-

owners did make
big mistake

took advantage
liar loans other
[UNK] deals buy
homes couldn ’t
afford [EOS]

of of additional
big

they advantage of
” liar ” and other

deals buy homes
they couldn afford .
[EOS]

Table 1: Some example sentences from the dataset and their corresponding templates. The placeholder token is
indicated by “ ”.

y had a second-pass token. The sequence y(2) has
length equal to the number of these placeholders,
and consists of the second-pass tokens from y in
order.

We use a neural language model p1 to generate
y(1), and then a conditional translation model p2

to generate y(2) given y(1). Note that, since the
division of the vocabulary into first- and second-
pass tokens is decided in advance, there is a one-
to-one correspondence between sequences y and
pairs (y(1),y(2)). The total probability of y is then

p(y) = p1(y
(1)) p2(y

(2) | y(1)) . (1)

Two-pass language models present a unique op-
portunity to study the importance of generation or-
der because, since the template is a deterministic
function of y, the probability of y can be com-
puted exactly. This is in contrast to a language
model using a latent generation order, which re-
quires a prohibitive marginalization over permu-
tations to compute the exact probabilities. Given
the tractable nature of the model, exact learning
based on log-likelihood is possible, and we can
compare different vocabulary partitioning strate-
gies both against each other and against a single-
pass language model.

Our implementation consists of two copies of
the Transformer model from Vaswani et al. (2017).
The first copy just generates the template, so it has
no encoder. The second copy is a sequence-to-

sequence model that translates the template into
the complete sentence. There are three places in
this model where word embeddings appear — the
first-phase decoder, the second-phase encoder, and
the second-phase decoder — and all three sets
of parameters are shared. The output layer also
shares the embedding parameters.1

For the second pass, we include the entire target
sentence, not just the second-pass tokens, on the
output side. In this way, when generating a token,
the decoder is allowed to examine all tokens to the
left of its position. However, only the second-pass
tokens count toward the loss, since in the other po-
sitions the correct token is already known. Our
loss function is then the sum of all of these num-
bers (from both copies) divided by the length of
the original sentence, which is the log-perplexity
that our model assigns to the sentence.

We tried five different ways of splitting the vo-
cabulary:

Common First and Rare First: The vocabu-
lary was sorted by frequency and then a cutoff was
chosen, splitting the vocabulary into “common”
and “rare” tokens. The location of the cutoff2 was
chosen so that the number of common tokens and
the number of rare tokens in the average sentence
were approximately the same. In “common first”

1This behavior is enabled in the publicly available im-
plementation of Transformer using the hyperparameter called
shared embedding and softmax weights.

2In our experiments on LM1B, this is at index 78.
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we place the common tokens in the first pass, and
in “rare first” we start with the rare tokens.

Function First and Content First: We parsed
about 1% of LM1B’s training set using Parsey Mc-
Parseface (Andor et al., 2016) and assigned each
token in the vocabulary to the grammatical role it
was assigned most frequently by the parser. We
used this data to divide the vocabulary into “func-
tion” words and “content” words; punctuation,
adpositions, conjunctions, determiners, pronouns,
particles, modal verbs, “wh-adverbs” (Penn part-
of-speech tag WRB), and conjugations of “be” were
chosen to be function words. In “function first” we
place the function words in the first phase and in
“content first” we start with the content words.

Odd First: As a control, we also used a linguis-
tically meaningless split where tokens at an odd
index in the frequency-sorted vocabulary list were
assigned to the first pass and tokens with an even
index were assigned to the second pass.

A few sentences from the dataset are shown in
Table 1 together with their templates. Note that the
common and function tokens are very similar; the
main differences are the “unknown” token, conju-
gations of “have,” and some prepositions.

3 Experimental Results and Discussion

We ran experiments with several different ways of
splitting the vocabulary into first-pass and second-
pass tokens. We trained all of these models on the
One Billion Word Language Modeling benchmark
(LM1B) dataset (Chelba et al., 2013). One sixth
of the training data was used as a validation set.
We used a vocabulary of size 65,536 consisting of
whole words (rather than word pieces) converted
to lower-case.

We compared the two-pass generation strategies
to a baseline version of Transformer without an
encoder, which was trained to unconditionally pre-
dict the target sentences in the ordinary way. Be-
cause the two-pass models contain slightly more
trainable parameters than this baseline, we also
compare to an “enhanced baseline” in which the
size of Transformer’s hidden space was increased
to make the number of parameters match the two-
pass models.

Both the two-pass models and the baselines
used the hyperparameters referred to as base in
the publicly available implementation of Trans-
former,3 which has a hidden size of 512, a filter

3github.com/tensorflow/tensor2tensor

size of 2048, and 8 attention heads, except that the
enhanced baseline used a hidden size of 704. We
used a batch size of 4096. All models were trained
using ADAM (Kingma and Ba, 2014), with �1 =
0.85, �2 = 0.997, and ✏ = 10�6. The learning rate
was tuned by hand separately for each experiment
and the experiments that produced the best results
on the validation set are reported. Dropout was
disabled after some initial experimentation found
it to be detrimental to the final validation loss.

Table 2 shows the results for all the two-pass
generation strategies we tried as well as the base-
lines, sorted from worst to best on the validation
set. Strikingly, the linguistically meaningless odd
first generation strategy that splits words arbitrar-
ily between the two phases is far worse than the
baseline, showing that the two-pass setup on its
own provides no inherent advantage over a single
phase. The common first and closely related func-
tion first strategies perform the best of all the two-
pass strategies, whereas the rare first and closely
related content first strategies are much worse.
Since the control, rare first, and content first order-
ings are all worse than the baseline, the gains seen
by the other two orderings cannot be explained by
the increase in the number of trainable parameters
alone.

The enhanced version of the baseline achieved
slightly better perplexity than the best of the two-
pass models we trained. Given that state-of-the-
art results with Transformer require models larger
than the ones we trained, we should expect grow-
ing the embedding and hidden size to produce
large benefits. However, the two-pass model we
proposed in this work is primarily a tool to under-
stand the importance of sequence generation or-
der and was not designed to be parameter efficient.
Thus, as these results indicate, increasing the em-
bedding size in Transformer is a more effective use
of trainable parameters than having extra copies
of the other model parameters for the second pass
(recall that the embeddings are shared across both
passes).

One potential explanation for why the func-
tion first split performed the best is that, in or-
der to generate a sentence, it is easier to first de-
cide something about its syntactic structure. If
this is the primary explanation for the observed
results, then common first’s success can be at-
tributed to how many function words are also com-
mon. However, an alternative explanation might
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Model Train Validation Test
odd first 39.925 45.377 45.196
rare first 38.283 43.293 43.077

content first 38.321 42.564 42.394
common first 36.525 41.018 40.895
function first 36.126 40.246 40.085

baseline 38.668 41.888 41.721
enhanced baseline 35.945 39.845 39.726

Table 2: The perplexities achieved by the best version of each of our models.

simply be that it is preferable to delay committing
to a rare token for as long as possible as all subse-
quent decisions will then be conditioning on a low-
probability event. This is particularly problematic
in language modeling where datasets are too small
to cover the space of all utterances. We lack suffi-
cient evidence to decide between these hypotheses
and believe further investigation is necessary.

Ultimately, our results show that content-
dependent generation orders can have a surpris-
ingly large effect on model quality. Moreover, the
gaps between different generation strategies can
be quite large.

4 Related Work

For tasks conditioning on sequences and sets, it is
well known that order significantly affects model
quality in applications such as machine transla-
tion (Sutskever et al., 2014), program synthesis
(Vinyals et al., 2016), and text classification (Yo-
gatama et al., 2016). Experimentally, Khandelwal
et al. (2018) show that recurrent neural networks
have a memory that degrades with time. Tech-
niques such as attention (Bahdanau et al., 2014)
can be seen as augmenting that memory.

Text generation via neural networks, as in lan-
guage models and machine translation, proceeds
almost universally left-to-right (Jozefowicz et al.,
2016; Sutskever et al., 2014). This is in stark con-
trast to phrase-based machine translation systems
(Charniak et al., 2003) which traditionally split
token translation and “editing” (typically via re-
ordering) into separate stages. This line of work is
carried forward in Post-Editing Models (Junczys-
Dowmunt and Grundkiewicz, 2016), Deliberation
Networks (Xia et al., 2017), and Review Network
(Yang et al., 2016) which produce a “draft” de-
coding that is further edited. As any valid se-
quence may be used in a draft, calculating perplex-
ity in these models is unfortunately intractable,

and model quality can only be evaluated via ex-
ternal tasks.

In addition to surface-form intermediate rep-
resentation, syntax-based representations have a
rich history in text modeling. Chelba and Je-
linek (1998); Yamada and Knight (2001); Graham
and Genabith (2010); Shen et al. (2018) integrate
parse structures, explicitly designed or automati-
cally learned, into the decoding process.

Similar to the second phase of this work’s pro-
posed model, (Fedus et al., 2018) directly tackles
the problem of filling in the blank, akin to the sec-
ond stage of our proposed model. The Multi-Scale
version of PixelRNN in (Van Oord et al., 2016)
was also an inspiration for the two-pass setup we
used here.

5 Conclusion and Future Work

To investigate the question of generation order
in language modeling, we proposed a model that
generates a sentence in two passes, first generat-
ing tokens from left to right while skipping over
some positions and then filling in the positions that
it skipped. We found that the decision of which to-
kens to place in the first pass had a strong effect.

Given the success of our function word first
generation procedure, we could imagine taking
this idea beyond splitting the vocabulary. One
could run a parser on each sentence and use the
resulting tree to decide on the generation order.
Such a scheme might shed light on which aspect
of this split was most helpful. Finally, filling in a
template with missing words is a task that might be
interesting in its own right. One might want to pro-
vide partial information about the target sentence
as part of scripting flexible responses for a dia-
logue agent, question answering system, or other
system that mixes a hand-designed grammar with
learned responses.
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‡École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

{lmiculicich, dram, npappas, jhenderson}@idiap.ch

Abstract
Neural Machine Translation (NMT) can be im-
proved by including document-level contex-
tual information. For this purpose, we propose
a hierarchical attention model to capture the
context in a structured and dynamic manner.
The model is integrated in the original NMT
architecture as another level of abstraction,
conditioning on the NMT model’s own previ-
ous hidden states. Experiments show that hi-
erarchical attention significantly improves the
BLEU score over a strong NMT baseline with
the state-of-the-art in context-aware methods,
and that both the encoder and decoder benefit
from context in complementary ways.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2015; Wu et al., 2016; Vaswani et al., 2017)
trains an encoder-decoder network on sentence
pairs to maximize the likelihood of predicting
a target-language sentence given the correspond-
ing source-language sentence, without consider-
ing the document context. By ignoring discourse
connections between sentences and other valuable
contextual information, this simplification poten-
tially degrades the coherence and cohesion of a
translated document (Hardmeier, 2012; Meyer and
Webber, 2013; Sim Smith, 2017). Recent studies
(Tiedemann and Scherrer, 2017; Jean et al., 2017;
Wang et al., 2017; Tu et al., 2018) have demon-
strated that adding contextual information to the
NMT model improves the general translation per-
formance, and more importantly, improves the co-
herence and cohesion of the translated text (Baw-
den et al., 2018; Lapshinova-Koltunski and Hard-
meier, 2017). Most of these methods use an ad-
ditional encoder (Jean et al., 2017; Wang et al.,
2017) to extract contextual information from pre-
vious source-side sentences. However, this re-
quires additional parameters and it does not ex-

ploit the representations already learned by the
NMT encoder. More recently, Tu et al. (2018)
have shown that a cache-based memory network
performs better than the above encoder-based
methods. The cache-based memory keeps past
context as a set of words, where each cell cor-
responds to one unique word keeping the hidden
representations learned by the NMT while trans-
lating it. However, in this method, the word repre-
sentations are stored irrespective of the sentences
where they occur, and those vector representations
are disconnected from the original NMT network.

We propose to use a hierarchical attention net-
work (HAN) (Yang et al., 2016) to model the
contextual information in a structured manner us-
ing word-level and sentence-level abstractions. In
contrast to the hierarchical recurrent neural net-
work (HRNN) used by (Wang et al., 2017), here
the attention allows dynamic access to the context
by selectively focusing on different sentences and
words for each predicted word. In addition, we in-
tegrate two HANs in the NMT model to account
for target and source context. The HAN encoder
helps in the disambiguation of source-word repre-
sentations, while the HAN decoder improves the
target-side lexical cohesion and coherence. The
integration is done by (i) re-using the hidden rep-
resentations from both the encoder and decoder
of previous sentence translations and (ii) provid-
ing input to both the encoder and decoder for the
current translation. This integration method en-
ables it to jointly optimize for multiple-sentences.
Furthermore, we extend the original HAN with a
multi-head attention (Vaswani et al., 2017) to cap-
ture different types of discourse phenomena.

Our main contributions are the following:
(i) We propose a HAN framework for translation
to capture context and inter-sentence connections
in a structured and dynamic manner. (ii) We in-
tegrate the HAN in a very competitive NMT ar-
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chitecture (Vaswani et al., 2017) and show signif-
icant improvement over two strong baselines on
multiple data sets. (iii) We perform an ablation
study of the contribution of each HAN configura-
tion, showing that contextual information obtained
from source and target sides are complementary.

2 The Proposed Approach

The goal of NMT is to maximize the likelihood
of a set of sentences in a target language repre-
sented as sequences of words y = (y1, ..., yt)
given a set of input sentences in a source language
x = (x1, ..., xm) as:

max
⇥

1

N

NX

n=1

log(P⇥(yn|xn)) (1)

so, the translation of a document D is made by
translating each of its sentences independently. In
this study, we introduce dependencies on the pre-
vious sentences from the source and target sides:

max
⇥

1

N

NX

n=1

log(P⇥(yn|xn,Dxn ,Dyn)) (2)

where Dxn = (xn�k, ...,xn�1) and Dyn =
(yn�k, ...,yn�1) denote the previous k sentences
from source and target sides respectively. The con-
texts Dxn and Dyn are modeled with HANs.

2.1 Hierarchical Attention Network

The proposed HAN has two levels of abstraction.
The word-level abstraction summarizes informa-
tion from each previous sentence j into a vector sj

as:
qw = fw(ht) (3)

sj = MultiHead
i

(qw, hj
i ) (4)

where h denotes a hidden state of the NMT net-
work. In particular, ht is the last hidden state of
the word to be encoded, or decoded at time step
t, and hj

i is the last hidden state of the i-th word
of the j-th sentence of the context. The function
fw is a linear transformation to obtain the query
qw. We used the MultiHead attention function pro-
posed by (Vaswani et al., 2017) to capture differ-
ent types of relations among words. It matches the
query against each of the hidden representations
hj

i (used as value and key for the attention).
The sentence-level abstraction summarizes the

contextual information required at time t in dt as:

Figure 1: Integration of HAN during encoding at time
step t, h̃t is the context-aware hidden state of the word
xt. Similar architecture is used during decoding.

qs = fs(ht) (5)

dt = FFN(MultiHead
j

(qs, s
j)) (6)

where fs is a linear transformation, qs is the query
for the attention function, FFN is a position-wise
feed-forward layer (Vaswani et al., 2017). Each
layer is followed by a normalization layer (Lei Ba
et al., 2016).

2.2 Context Gating
We use a gate (Tu et al., 2018, 2017) to regulate the
information at sentence-level ht and the contextual
information at document-level dt. The intuition
is that different words require different amount of
context for translation:

�t = �(Whht + Wddt) (7)
eht = �tht + (1 � �t)dt (8)

where Wh, Wp are parameter matrices, and eht is
the final hidden representation for a word xt or yt.

2.3 Integrated Model
The context can be used during encoding or de-
coding a word, and it can be taken from previously
encoded source sentences, previously decoded tar-
get sentences, or from previous alignment vectors
(i.e. context vectors (Bahdanau et al., 2015)). The
different configurations will define the input query
and values of the attention function. In this work
we experiment with five of them: one at encod-
ing time, three at decoding time, and one combin-
ing both. At encoding time the query is a func-
tion of the hidden state hxt of the current word
to be encoded xt, and the values are the encoded
states of previous sentences hj

xi (HAN encoder).
At decoding time, the query is a function of the
hidden state hyt of the current word to be decoded
yt, and the values can be (a) the encoded states
of previous sentences hj

xi (HAN decoder source),
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(b) the decoded states of previous sentences hj
yi

(HAN decoder), and (c) the alignment vectors cj
i

(HAN decoder alignment). Finally, we combine
complementary target-source sides of the context
by joining HAN encoder and HAN decoder. Fig-
ure 1 shows the integration of the HAN encoder
with the NMT model; a similar architecture is ap-
plied to the decoder. The output h̃t is used by the
NMT model as replacement of ht during the final
classification layer.

3 Experimental Setup

3.1 Datasets and Evaluation Metrics
We carry out experiments with Chinese-to-English
(Zh-En) and Spanish-to-English (Es-En) sets on
three different domains: talks, subtitles, and news.

TED Talks is part of the IWSLT 2014 and 2015
(Cettolo et al., 2012, 2015) evaluation campaigns1.
We use dev2010 for development; and tst2010-
2012 (Es-En), tst2010-2013 (Zh-En) for testing.
The Zh-En subtitles corpus is a compilation of TV
subtitles designed for research on context (Wang
et al., 2018). In contrast to the other sets, it has
three references to compare. The Es-En corpus is
a subset of OpenSubtitles2018 (Lison and Tiede-
mann, 2016)2. We randomly select two episodes
for development and testing each. Finally, we use
the Es-En News-Commentaries113 corpus which
has document-level delimitation. We evaluate on
WMT sets (Bojar et al., 2013): newstest2008 for
development, and newstest2009-2013 for testing.
A similar corpus for Zh-En is too small to be com-
parable. Table 2 shows the corpus statistics.

For evaluation, we use BLEU score (Papineni
et al., 2002) (multi-blue) on tokenized text, and we
measure significance with the paired bootstrap re-
sampling method proposed by Koehn (2004) (im-
plementations by Koehn et al. (2007)).

3.2 Model Configuration and Training
As baselines, we use a NMT transformer, and a
context-aware NMT transformer with cache mem-
ory which we implemented for comparison fol-
lowing the best model described by Tu et al.
(2018), with memory size of 25 words. We used
the OpenNMT (Klein et al., 2017) implementation
of the transformer network. The configuration is
the same as the model called “base model” in the
1https://wit3.fbk.eu
2http://www.opensubtitles.org
3http://opus.nlpl.eu/News-Commentary11.php

original paper (Vaswani et al., 2017). The encoder
and decoder are composed of 6 hidden layers each.
All hidden states have dimension of 512, dropout
of 0.1, and 8 heads for the multi-head attention.
The target and source vocabulary size is 30K. The
optimization and regularization methods were the
same as proposed by Vaswani et al. (2017). In-
spired by Tu et al. (2018) we trained the models
in two stages. First we optimize the parameters
for the NMT without the HAN, then we proceed
to optimize the parameters of the whole network.
We use k = 3 previous sentences, which gave the
best performance on the development set.

4 Experimental Results

4.1 Translation Performance
Table 1 shows the BLEU scores for different mod-
els. The baseline NMT transformer already has
better performance than previously published re-
sults on these datasets, and we replicate previous
previous improvements from the cache method
over the this stronger baseline. All of our proposed
HAN models perform at least as well as the cache
method. The best scores are obtained by the com-
bined encoder and decoder HAN model, which
is significantly better than the cache method on
all datasets without compromising training speed
(2.3K vs 2.6K tok/sec). An important portion of
the improvement comes from the HAN encoder,
which can be attributed to the fact that the source-
side always contains correct information, while
the target-side may contain erroneous predictions
at testing time. But combining HAN decoder with
HAN encoder further improves translation perfor-
mance, showing that they contribute complemen-
tary information. The three ways of incorporating
information into the decoder all perform similarly.

Table 3 shows the performance of our best HAN
model with a varying number k of previous sen-
tences in the test-set. We can see that the best per-
formance for TED talks and news is archived with
3, while for subtitles it is similar between 3 and 7.

4.2 Accuracy of Pronoun/Noun Translations
We evaluate coreference and anaphora using the
reference-based metric: accuracy of pronoun
translation (Miculicich Werlen and Popescu-Belis,
2017b), which can be extended for nouns. The list
of evaluated pronouns is predefined in the met-
ric, while the list of nouns was extracted using
NLTK POS tagging (Bird, 2006). The upper part
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TED Talks Subtitles News
Zh–En Es–En Zh–En 4 Es–En Es–En

Models BLEU � BLEU � BLEU � BLEU � BLEU �
NMT transformer 16.87 35.44 28.60 35.20 21.36
+ cache (Tu et al., 2018) 17.32 (+0.45)⇤⇤⇤ 36.46 (+1.02)⇤⇤⇤ 28.86 (+0.26) 35.49 (+0.29) 22.36 (+1.00)⇤⇤⇤

+ HAN encoder 17.61 (+0.74)⇤⇤⇤

††
36.91 (+1.47)⇤⇤⇤

†† 29.35 (+0.75)⇤

† 35.96 (+0.76)⇤

† 22.36 (+1.00)⇤⇤⇤

+ HAN decoder 17.39 (+0.52)⇤⇤⇤ 37.01 (+1.57)⇤⇤⇤

††† 29.21 (+0.61)⇤ 35.50 (+0.30) 22.62 (+1.26)⇤⇤⇤

†††

+ HAN decoder source 17.56 (+0.69)⇤⇤⇤

†† 36.94 (+1.50)⇤⇤⇤

†† 28.92 (+0.32) 35.71 (+0.51)⇤ 22.68 (+1.32)⇤⇤⇤

†††

+ HAN decoder alignment 17.48 (+0.61)⇤⇤⇤

† 37.03 (+1.60)⇤⇤⇤

††† 28.87 (+0.27) 35.63 (+0.43) 22.59 (+1.23)⇤⇤⇤

†††

+ HAN encoder + HAN decoder 17.79 (+0.92)⇤⇤⇤

††† 37.24 (+1.80)⇤⇤⇤

††† 29.67 (+1.07)⇤⇤

† 36.23 (+1.03)⇤⇤

†† 22.76 (+1.40)⇤⇤⇤

†††

Table 1: BLEU score for the different configurations of the HAN model, and two baselines. The highest score
per dataset is marked in bold. � denotes the difference in BLEU score with respect of the NMT transformer.
The significance values with respect to the NMT and the cache method are denoted by ⇤, and † respectively. The
repetitions correspond to the p-values: ⇤

†
< .05,⇤⇤

††
< .01,⇤⇤⇤

†††
< .001.

TED Talks Subtitles News
Zh–En Es–En Zh–En Es–En Es–En

Training 0.2M 0.2M 2.2M 4.0M 0.2M
Development 0.8K 0.8K 1.1K 1.0K 1.9K
Test 5.5K 4.7K 1.2K 1.0K 13.5K

Table 2: Dataset statistics in # sentence pairs.

of Table 4 shows the results. For nouns, the joint
HAN achieves the best accuracy with a significant
improvement compared to other models, showing
that target and source contextual information are
complementary. Similarity for pronouns, the joint
model has the best result for TED talks and news.
However, HAN encoder alone is better in the case
of subtitles. Here HAN decoder produces mis-
takes by repeating past translated personal pro-
nouns. Subtitles is a challenging corpus for per-
sonal pronoun disambiguation because it usually
involves dialogue between multiple speakers.

4.3 Cohesion and Coherence Evaluation

We use the metric proposed by Wong and Kit
(2012) to evaluate lexical cohesion. It is defined as
the ratio between the number of repeated and lex-
ically similar content words over the total number
of content words in a target document. The lexi-
cal similarity is obtained using WordNet. Table 4
(bottom-left) displays the average ratio per tested
document. In some cases, HAN decoder achieves
the best score because it produces a larger quan-
tity of repetitions than other models. However,
as previously demonstrated in 4.2, repetitions do
not always make the translation better. Although
HAN boosts lexical cohesion, the scores are still
far from the human reference, so there is room for
improvement in this aspect.

For coherence, we use a metric based on Latent
Semantic Analysis (LSA) (Foltz et al., 1998). LSA
is used to obtain sentence representations, then co-
sine similarity is calculated from one sentence to

TED Talks Subtitles News
k Zh–En Es–En Zh–En Es–En Es–En
1 17.70 37.20 29.35 36.20 22.46
3 17.79 37.24 29.67 36.23 22.76
5 17.49 37.11 29.69 36.22 22.54
7 17.00 37.22 29.64 36.21 22.64

Table 3: Performance for variable context sizes k with
the HAN encoder + HAN decoder.

the next, and the results are averaged to get a doc-
ument score. We employed the pre-trained LSA
model Wiki-6 from (Stefanescu et al., 2014). Ta-
ble 4 (bottom-right) shows the average coherence
score of documents. The joint HAN model consis-
tently obtains the best coherence score, but close
to other HAN models. Most of the improvement
comes from the HAN decoder.

4.4 Qualitative Analysis
Table 5 shows an example where HAN helped
to generate the correct translation. The first box
shows the current sentence with the analyzed word
in bold; and the second, the past context at source
and target. For the context visualization we use
the toolkit provided by Pappas and Popescu-Belis
(2017). Red corresponds to sentences, and blue
to words. The intensity of color is proportional to
the weight. We see that HAN correctly translates
the ambiguous Spanish pronoun “su” into the En-
glish “his”. The HAN decoder highlighted a previ-
ous mention of “his”, and the HAN encoder high-
lighted the antecedent “Nathaniel”. This shows
that HAN can capture interpretable inter-sentence
connections. More samples with different atten-
tion heads are shown in the Appendix ??.

5 Related Work

Statistical Machine Translation (SMT) Initial
studies were based on cache memories (Tiede-
4NIST BLEU: NMT transformer 35.99, cache 36.52, and HAN 37.15.
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Noun Translation Pronoun Translation
TED Talks Subtitles News TED Talks Subtitles News

Model Zh–En Es–En Zh–En Es–En Zh–En Es–En Zh–En Es–En Zh–En Es–En
NMT Transformer 40.16 65.97 46.65 61.79 47.94 63.44 68.00 69.71 65.83 47.22
+ cache 40.87 66.75 46.00 61.87 49.91 63.53 68.66 69.97 66.27 49.34
+ HAN encoder 41.93 67.75 46.78 61.52 50.06 64.05 69.17 71.04 68.56 49.57
+ HAN decoder 41.61 67.35 46.78 61.99 50.03 64.02 69.36 70.50 67.03 49.33
+ HAN encoder + HAN decoder 42.99 67.81 47.43 62.30 50.40 64.35 69.60 70.60 67.47 49.59

Lexical cohesion Coherence
NMT Transformer 54.26 51.98 51.87 51.77 30.06 0.298 0.299 0.283 0.262 0.279
+ HAN encoder 54.87 52.35 51.89 52.33 30.34 0.304 0.299 0.285 0.262 0.280
+ HAN decoder 54.95 52.43 52.33 52.43 30.41 0.302 0.301 0.287 0.265 0.282
+ HAN enc. + HAN dec. 55.40 52.36 51.94 52.75 30.58 0.305 0.302 0.287 0.265 0.282
Human reference 56.08 57.02 54.81 58.19 35.12 0.310 0.314 0.296 0.270 0.298

Table 4: Evaluation on discourse phenomena. Noun and pronoun translation: Accuracy with respect to a human
reference. Lexical cohesion: Ratio of repeated and lexically similar words over the number of content words.
Coherence: Average cosine similarity of consecutive sentences (i.e. average of LSA word-vectors)

Currently Translated Sentence
Src.: y esto es un escape de su estado atormentado .
Ref.: and that is an escape from his tormented state .
Base: and this is an escape from its < unk > state .
Cache: and this is an escape from their state .
HAN: and this is an escape from his < unk > state .

Context from Previous Sentences
HAN decoder context with target. Query: his (En)

HAN encoder context with source. Query: su (Es)

Table 5: Example of pronoun disambiguation using
HAN (TED Talks Es-En).

mann, 2010; Gong et al., 2011). However, most
of the work explicitly models discourse phe-
nomena (Sim Smith, 2017) such as lexical co-
hesion (Meyer and Popescu-Belis, 2012; Xiong
et al., 2013; Loáiciga and Grisot, 2016; Pu
et al., 2017; Mascarell, 2017), coherence (Born
et al., 2017), and coreference (Rios Gonzales and
Tuggener, 2017; Miculicich Werlen and Popescu-
Belis, 2017a). Hardmeier et al. (2013) introduced
the document-level SMT paradigm.
Sentence-level NMT Initial studies on NMT en-
hanced the sentence-level context by using mem-
ory networks (Wang et al., 2016), self-attention
(Miculicich Werlen et al., 2018; Zhang et al.,
2016), and latent variables (Yang et al., 2017).
Document-level NMT Tiedemann and Scherrer
(2017) use the concatenation of multiple sentences

as NMT’s input/output, Jean et al. (2017) add a
context encoder for the previous source sentence,
Wang et al. (2017) includes a HRNN to summa-
rize source-side context, and Tu et al. (2018) use
a dynamic cache memory to store representations
of previously translated words. Recently, Baw-
den et al. (2018) proposed test-sets for evaluating
discourse in NMT, Voita et al. (2018) shows that
context-aware NMT improves the of anaphoric
pronouns, and Maruf and Haffari (2018) proposed
a document-level NMT using memory-networks.

6 Conclusion

We proposed a hierarchical multi-head HAN NMT
model5 to capture inter-sentence connections. We
integrated context from source and target sides
by directly connecting representations from pre-
vious sentence translations into the current sen-
tence translation. The model significantly outper-
forms two competitive baselines, and the ablation
study shows that target and source context is com-
plementary. It also improves lexical cohesion and
coherence, and the translation of nouns and pro-
nouns. The qualitative analysis shows that the
model is able to identify important previous sen-
tences and words for the correct prediction. In fu-
ture work, we plan to explicitly model discourse
connections with the help of annotated data, which
may further improve translation quality.
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Abstract

Due to the benefits of model compactness,
multilingual translation (including many-to-
one, many-to-many and one-to-many) based
on a universal encoder-decoder architecture at-
tracts more and more attention. However, pre-
vious studies show that one-to-many transla-
tion based on this framework cannot perform
on par with the individually trained models.
In this work, we introduce three strategies to
improve one-to-many multilingual translation
by balancing the shared and unique features.
Within the architecture of one decoder for all
target languages, we first exploit the use of
unique initial states for different target lan-
guages. Then, we employ language-dependent
positional embeddings. Finally and especially,
we propose to divide the hidden cells of the
decoder into shared and language-dependent
ones. The extensive experiments demonstrate
that our proposed methods can obtain remark-
able improvements over the strong baselines.
Moreover, our strategies can achieve compa-
rable or even better performance than the indi-
vidually trained translation models.

1 Introduction

Encoder-decoder based neural machine translation
(NMT) has achieved the new state-of-the-art due
to powerful end-to-end modeling (Sutskever et al.,
2014; Bahdanau et al., 2015; Wu et al., 2016; Has-
san et al., 2018). Under this end-to-end frame-
work, many researchers attempt to improve the
translation quality between two languages by ex-
ploiting monolingual data (Sennrich et al., 2016;
Zhang and Zong, 2016), taking advantage of both
NMT and statistical machine translation (Wang
et al., 2017a; Tang et al., 2016; Zhao et al., 2018;
Zhou et al., 2017) and so on.

⇤ Jiajun Zhang is the corresponding author and the work
is done while Yining Wang is doing research intern at Sogou
Inc.

Another research direction about how to per-
form multilingual translation within this encoder-
decoder architecture has recently drawn more and
more attention (Zoph and Knight, 2016; Dong
et al., 2015; Luong et al., 2016; Johnson et al.,
2017; Firat et al., 2016b).

In multilingual translation scenarios, one can
employ multi-task learning framework to per-
form many-to-one or one-to-many translation us-
ing multiple encoders or multiple decoders (Luong
et al., 2016; Dong et al., 2015). Firat et al. (2016a)
and Lu et al. (2018) further propose to share a
universal attention mechanism for many-to-many
translations. In these methods, encoder or decoder
is language dependent and network parameters in-
crease linearly with the number of languages.

Johnson et al. (2017) and Ha et al. (2016)
present an appealing approach in which a universal
encoder-decoder framework is designed for many-
to-one, many-to-many and one-to-many multilin-
gual translation tasks. The network model is com-
pact and the model size does not grow as the
number of languages increases. However, John-
son et al. (2017) observe that only the many-to-
one paradigm can achieve better translation results
than the individually trained models. For the other
two paradigms, there are various degrees of qual-
ity degradation. In this work, we focus on one-to-
many multilingual translation under the universal
encoder-decoder framework and attempt to boost
its performance while maintaining the model com-
pactness.

To this end, we propose three strategies which
exploit the unique features of each target language
and keep as many parameters shared as possible.
First, we design two special labels at the tail of
encoder and the head of decoder to mark the tar-
get language and guide the generation of different
target languages. Then, we introduce language-
dependent positional embeddings into the bottom
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layer of the decoder network and correspondingly
the structural difference between target languages
can be well captured. Finally and especially, we
propose a new parameter-sharing mechanism in
which we divide the hidden units of each decoder
layer into shared and language-dependent ones.

We verify the effectiveness of our proposed
methods on two one-to-many tasks: Chinese-
to-English/Japanese translation and English-to-
German/French translation. The experimental re-
sults demonstrate that the three strategies can
significantly outperform the baseline multilingual
models and they can achieve comparable or even
better performance than the individually trained
translation models.

Specifically, our contributions in this paper are
two-fold:

• The proposed three strategies can take advan-
tage of unique features of each target lan-
guage while sharing the network parameters
as many as possible.

• The extensive experiments on multiple trans-
lation tasks show that the three proposed
strategies improve the translation quality.
Moreover, the effects of the strategies are
complementary and the combined one can
perform on par with or better than the indi-
vidually optimized translation models.

2 Background
Our proposed approach can be applied to any
encoder-decoder architecture. Considering the
excellent translation performance of Transformer
network (Vaswani et al., 2017), we implement our
method entirely based on it in this work. Trans-
former consists of stacked encoder and decoder
layers. The encoder maps an input sequence
x = (x1, x2, · · · , xn) to a sequence of continuous
representations z = (z1, z2, · · · , zn) whose size
varies with respect to the source sentence length.
The decoder generates an output sequence y =
(y1, y2, · · · , ym) from the continuous representa-
tions z. Since the Transformer network contains
no recurrence, positional embeddings are used in
model to make use of sequence order. The encoder
and decoder are trained to maximize the condi-
tional probability of target sequence given a source
sequence:

L(✓) =
NX

t=1

log P (yt|y<t, x; ✓) (1)

For the sake of brevity, we refer the reader to
Vaswani et al. (2017) for more details regarding
the architecture.

3 Method Description

In this section, we introduce our general strategies
for extending the transformer network to one-to-
many translation task. We decompose the proba-
bility of the target sequences into the products of
per token probabilities in all translation forms:

L(✓) =
MX

t=1

NlX

l=1

log(P (yl
t|x, yl

<t; ✓)) (2)

where M is number of target languages, and
P (yl

t|x, yl
<t; ✓) denotes the translation probability

of t-th word of the l-th target language. Note that
the translation process for all target languages uses
the same parameter set ✓.

Our methods mainly concentrate on improv-
ing one-to-many multilingual translation by de-
signing new decoder structure under the univer-
sal encoder-decoder framework. The idea is to
exploit the shared and unique features of differ-
ent target languages, and we respectively pro-
pose three strategies including special label initial-
ization, language-dependent positional embedding
and a new parameter-sharing mechanism.

3.1 Special Label Initialization
In the universal encoder-decoder network for one-
to-many multilingual translation (Johnson et al.,
2017), a special token (e.g. en2fr) is added at the
end of the source sentence to indicate the transla-
tion direction. Although it is an effective mecha-
nism, we find that the initial states of the decoder
are very important to guide the generation process
for different target languages. In order to enhance
the model, we utilize another special language-
dependent label at the beginning of the decoder
and we regard it as the first generated token of the
target language (e.g. 2fr).

3.2 Language-dependent Positional
Embedding

Positional embeddings give the model the sense of
which part of the sequence is currently being dealt
with. Intuitively, different target languages should
have different positional embeddings to distin-
guish the structural difference between multiple
target languages. Therefore, we design language-
dependent positional embeddings in the universal
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shared cells tar-1 cells tar-2 cells tar-n cells 

… 

Figure 1: The hidden units of decoder network. Blue
part represents the shared units, and yellow, green and
red parts denote different language-dependent units re-
spectively.

encoder-decoder multilingual translation. For the
fixed embedding method (Vaswani et al., 2017),
sine(x) and cosine(x) functions are used to gen-
erate positional embeddings. In this case, we in-
troduce trigonometric functions with different or-
ders or offsets on the decoder to distinguish differ-
ent target languages. For the dynamic embedding
method (Gehring et al., 2017), we equip the tar-
get inputs by embedding the absolute position of
different languages separately.

3.3 Shared and Language-dependent Hidden
Units per Layer

In the universal encoder-decoder multilingual
translation, the hidden layers of the decoder are re-
sponsible for generating different target language
sentences. As a result, the hidden layers should
embody some language-dependent information.

In this work, we propose to divide the hid-
den units of each decoder layer into shared units
and language-dependent ones. On the one hand,
shared units can learn the commonality of lan-
guages and enable one-to-many translation to
share the network parameters as many as possi-
ble. On the other hand, language-dependent units
are capable of capturing the characteristic of each
specific language.

Figure 1 gives a brief description of our pro-
posed strategy. For instance, in training step for
one target language (tar-1), we tune the shared
units and the language-dependent units of tar-1,
and mask out other parts. In decoding step, we
only use the shared and language-dependent hid-
den units of target language tar-1 to predict trans-
lation results.

4 Experiments Settings

In this section, we test the proposed methods
on two one-to-many translation tasks, including
(i) Chinese!English/Japanese in general domain,
and (ii) English!French/German in WMT14

task.
Chinese!English/Japanese For this transla-

tion task, the training sets of Chinese-to-English
(briefly, Zh!En) and Chinese-to-Japanese
(briefly, Zh!Ja) both contain about 10 million
parallel corpora. We evaluate our methods on
NIST03-06 (MT03-06) for Zh!En translation
and 400 sentences extracted from our general
corpus for Zh!Ja translation.

English!French/German The training set
consists of about 4.5 million bilingual sen-
tence pairs in WMT14 English-German (briefly,
En!De) task and about 36 million sentence
pairs in WMT14 English-French (briefly, En!Fr)
task1. We use the combination of newstest2012
and newstest2013 as our validation set, and we
use newstest2014 as our test set on En!De and
En!Fr tasks.

We adopt the tensor2tensor2 library for train-
ing and evaluating our basic Transformer transla-
tion model. We use wordpiece method (Wu et al.,
2016; Schuster and Nakajima, 2012) to encode
source side sentences and the combination of tar-
get side sentences. The vocabulary size is 37,000
for both sides. We train our models using config-
uration transformer big adopted by Vaswani et al.
(2017), which contains a 6-layer encoder and a 6-
layer decoder with 1024-dimensional hidden rep-
resentations. During training, each mini-batch on
one GPU contains a set of sentence pairs with
roughly 3,072 source and 3,072 target tokens. We
use Adam optimizer (Kingma and Ba, 2014) with
�1=0.9, �2=0.98, and ✏=10�9. For our model,
we train for 400,000 steps on one machine with
8 NVIDIA Tesla M40 GPUs.

5 Results and Analysis

We show the results of one-to-many transla-
tion experiments using our proposed strategies.
The translation performance is evaluated by
case-insensitive BLEU4 for Zh!En translation,
character-level BLEU5 for Zh!Ja translation, and
case-sensitive BLEU4 (Papineni et al., 2002) for
En!De/Fr translation task.

5.1 Our Strategies vs. Baseline
Table 1 reports the main translation results of
Zh!En/Ja and En!De/Fr translation tasks. We
conduct universal one-to-many translation using

1http://www.statmt.org/wmt14/translation-task.html
2https://github.com/tensorflow/tensor2tensor
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Methods Zh!En Zh!Ja En!De En!Fr

MT03 MT04 MT05 MT06 Ave test test test

Indiv 43.59 43.95 45.34 44.05 44.23 40.71 27.84 41.50

O2M 43.20 43.55 44.68 43.93 43.84 42.09 26.42 41.32

O2M + 1 43.91 44.01 45.12 44.14 44.30 42.54 26.78 41.56
O2M + 1 + 2 (Dyn) 44.24 44.45 45.43 44.51 44.66 42.77 26.98 41.78
O2M + 1 + 2 (Fixed) 44.13 44.57 45.22 44.68 44.65 42.70 26.90 41.75
O2M + 1 + 3 44.78 45.23 45.78 45.22 45.25 42.97 27.11 41.98
O2M + 1 + 2 (Dyn)+ 3 44.85 45.51 45.91 45.38 45.41 43.03 27.23 41.92

Table 1: Translation performance of our methods on Zh!En/Ja and En!De/Fr tasks. Indiv means translation
model of individual pair. O2M is the our baseline system. 1 , 2 and 3 denote our proposed three strategies
of special label initialization, language-dependent positional embedding and the new parameter-sharing mecha-
nism separately. 2 (Dyn) and 2 (Fixed) represent the two ways of language-dependent positional embedding
method. For shared and language-dependent method, we set one-half of hidden units as shared units, and for
another half, we use a quarter hidden units to denote two output languages respectively.

Johnson et al. (2017) method on Transformer
framework as our baseline system (briefly, O2M
method). From the first two lines, we can see that
the O2M method cannot perform on par with the
individually trained systems in most cases.

We mentioned before that our goal is to improve
the universal one-to-many multilingual translation
framework while maintaining the parameter shar-
ing property. We can observe from the table that
all our proposed strategies (last part in Table 1) im-
prove the translation performance compared to the
baseline (O2M). Specifically, the combined use of
three strategies performs best and it can achieve
the improvements up to 1.96 BLEU points (45.51
vs. 43.55 on Zh!En MT04). As for language-
dependent positional embedding, we find that both
fixed and dynamic styles perform similarly.

Our ultimate goal is to make the universal one-
to-many framework as good as or better than the
individually trained systems. Table 1 demon-
strates some encouraging results. It is shown in
the table that the universal one-to-many architec-
ture enhanced with our strategies can outperform
the individually trained models on three out of four
language translations (Zh!En, Zh!Ja, En!Fr).
The results verify the effectiveness of our pro-
posed methods.

5.2 Comparison of Shared Unit Size

For the new parameter-sharing mechanism, it is an
open question to decide how many hidden units
should be shared and how many ones should be
language dependent. To figure out this question,
we further conduct an experiment to investigate

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
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Figure 2: The comparison of different shared units.

different settings. For example, we keep a quarter
of the hidden units of each decoder layer as shared
and make the left three quarters evenly distributed
to different target languages.

Figure 2 reports the results. We can observe
different trends for different language pairs. On
the En!De/Fr translation task, the performance is
best when we share one-half of the hidden units. In
contrast, it obtains the best results when we share
only 37.5% of hidden units on Zh!En/Ja trans-
lation. It indicates that similar languages (De/Fr)
can share more hidden units and languages with
a great difference (En/Ja) may share less hidden
units.

6 Related Work

In this work, we explore the balancing problem
of shared and unique parameters, and attempt to
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incorporate the language-dependent presentation
features to distinguish different target languages
under the scenario of one-to-many multilingual
translation.

Multilingual translation has been extensively
studied in Dong et al. (2015), Firat et al. (2016a),
Luong et al. (2016) and Johnson et al. (2017).
Owing to excellent translation performance and
ease of use, many researchers (Blackwood et al.,
2018; Lakew et al., 2018) have conduct transla-
tion of multiple languages based on the framework
of Johnson et al. (2017) and Ha et al. (2016). As
for low-resource translation scenario (Zoph et al.,
2016; Chen et al., 2017; Wang et al., 2017b),
similar to above method, Gu et al. (2018) en-
able sharing of lexical and sentence representa-
tion across multiple languages especially for low-
resource multilingual NMT. Different from pre-
vious methods, our work mainly focuses on im-
proving the one-to-many multilingual translation
framework while sharing as many parameters as
possible.

7 Conclusion

In this paper, we have proposed three effective
strategies to improve the universal one-to-many
multilingual translation, including special label
initialization, language-dependent positional em-
bedding and a new parameter-sharing mechanism.
The empirical experiments on four language pairs
demonstrate that our strategies can obtain signif-
icant improvement over the strong baseline, and
can achieve comparable or even better results than
the individually trained models.

For future work, we plan to extend our strategies
on many-to-many multilingual translation scenar-
ios, and explore other effective strategies to bal-
ance parameter sharing.

Acknowledgments

The research work described in this paper has
been supported by the National Key Research and
Development Program of China under Grant No.
2016QY02D0303 and the Natural Science Foun-
dation of China under Grant No. 61673380. The
research work in this paper has also been sup-
ported by Beijing Advanced Innovation Center for
Language Resources and Sogou Inc.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR 2015.

Graeme Blackwood, Miguel Ballesteros, and Todd
Ward. 2018. Multilingual neural machine transla-
tion with task-specific attention. In Proceedings of
COLING 2018, pages 3112–3122.

Yun Chen, Yong Cheng, Yang Liu, and Li Victor,
O.K. 2017. A teacher-student framework for zero-
resource neural machine translation. In Proceedings
of ACL 2017, pages 1925–1935.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of ACL
2015, pages 1723–1732.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016a. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
Proceedings of NAACL-HLT 2016, pages 866–875.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T. Yarman Vural, and Kyunghyun Cho. 2016b.
Zero-resource translation with multi-lingual neural
machine translation. In Proceedings of EMNLP
2016, pages 268–277.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convolu-
tional sequence to sequence learning. arXiv preprint
arXiv:1601.03317.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor OK
Li. 2018. Universal neural machine translation for
extremely low resource languages. In Proceedings
of NAACL-HLT 2018, pages 344–354.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. In Pro-
ceedings of IWSLT 2016.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving hu-
man parity on automatic Chinese to English news
translation. arXiv preprint arXiv:1803.05567.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

2959



Surafel Melaku Lakew, Mauro Cettolo, and Marcello
Federico. 2018. A comparison of transformer and
recurrent neural networks on multilingual neural
machine translation. In Proceedings of COLING
2018, pages 641–652.

Yichao Lu, Phillip Keung, Faisal Ladhak, Vikas Bhard-
waj, Shaonan Zhang, and Jason Sun. 2018. A neu-
ral interlingua for multilingual machine translation.
arXiv preprint arXiv:1804.08198.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of
ICLR 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
ACL, pages 311–318.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In Proceedings of ICASSP
2012.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of ACL
2016, pages 86–96.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS, pages 3104–3112.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li,
and Philip LH Yu. 2016. Neural machine transla-
tion with external phrase memory. arXiv preprint
arXiv:1606.01792.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, and
Łukasz Kaiser. 2017. Attention is all you need. In
Proceedings of NIPS 2017, pages 30–34.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang
Li, Deyi Xiong, and Min Zhang. 2017a. Neural
machine translation advised by statistical machine
translation. In Proceedings of AAAI 2017.

Yining Wang, Yang Zhao, Jiajun Zhang, Chengqing
Zong, and Zhengshan Xue. 2017b. Towards neural
machine translation with partially aligned corpora.
In Proceedings of IJCNLP 2017, pages 384–393.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural machine
translation. In Proceedings of EMNLP 2016, pages
1535–1545.

Yang Zhao, Yining Wang, Jiajun Zhang, and
Chengqing Zong. 2018. Phrase table as recommen-
dation memory for neural machine translation. In
Proceedings of IJCAI 2018, pages 4609–4615.

Long Zhou, Wenpeng Hu, Jiajun Zhang, and
Chengqing Zong. 2017. Neural system combina-
tion for machine translation. In Proceedings of ACL
2017, pages 378–384.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of NAACL-HLT
2016, pages 30–34.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of
EMNLP 2016, pages 1568–1575.

2960



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2961–2966
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Multi-Source Syntactic Neural Machine Translation

Anna Currey
University of Edinburgh

a.currey@sms.ed.ac.uk

Kenneth Heafield
University of Edinburgh

kheafiel@inf.ed.ac.uk

Abstract

We introduce a novel multi-source technique
for incorporating source syntax into neural
machine translation using linearized parses.
This is achieved by employing separate en-
coders for the sequential and parsed ver-
sions of the same source sentence; the re-
sulting representations are then combined us-
ing a hierarchical attention mechanism. The
proposed model improves over both seq2seq
and parsed baselines by over 1 BLEU on
the WMT17 English!German task. Further
analysis shows that our multi-source syntactic
model is able to translate successfully without
any parsed input, unlike standard parsed meth-
ods. In addition, performance does not dete-
riorate as much on long sentences as for the
baselines.

1 Introduction

Neural machine translation (NMT) typically
makes use of a recurrent neural network (RNN)
-based encoder and decoder, along with an at-
tention mechanism (Bahdanau et al., 2015; Cho
et al., 2014; Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014). However, it has been
shown that RNNs require some supervision to
learn syntax (Bentivogli et al., 2016; Linzen et al.,
2016; Shi et al., 2016). Therefore, explicitly incor-
porating syntactic information into NMT has the
potential to improve performance. This is partic-
ularly true for source syntax, which can improve
the model’s representation of the source language.

Recently, there have been a number of propos-
als for using linearized representations of parses
within standard NMT (Aharoni and Goldberg,
2017; Li et al., 2017; Nadejde et al., 2017). Lin-
earized parses are advantageous because they can
inject syntactic information into the models with-
out significant changes to the architecture. How-
ever, using linearized parses in a sequence-to-

sequence (seq2seq) framework creates some chal-
lenges, particularly when using source parses.
First, the parsed sequences are significantly longer
than standard sentences, since they contain node
labels as well as words. Second, these systems
often fail when the source sentence is not parsed.
This can be a problem for inference, since the
external parser may fail on an input sentence at
test time. We propose a method for incorporat-
ing linearized source parses into NMT that ad-
dresses these challenges by taking both the se-
quential source sentence and its linearized parse
simultaneously as input in a multi-source frame-
work. Thus, the model is able to use the syntac-
tic information encoded in the parse while falling
back to the sequential sentence when necessary.
Our proposed model improves over both standard
and parsed NMT baselines.

2 Related Work

2.1 Seq2seq Neural Parsing
Using linearized parse trees within sequential
frameworks was first done in the context of neural
parsing. Vinyals et al. (2015) parsed using an at-
tentional seq2seq model; they used linearized, un-
lexicalized parse trees on the target side and sen-
tences on the source side. In addition, as in this
work, they used an external parser to create syn-
thetic parsed training data, resulting in improved
parsing performance. Choe and Charniak (2016)
adopted a similar strategy, using linearized parses
in an RNN language modeling framework.

2.2 NMT with Source Syntax
Among the first proposals for using source syntax
in NMT was that of Luong et al. (2016), who in-
troduced a multi-task system in which the source
data was parsed and translated using a shared en-
coder and two decoders. More radical changes to
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the standard NMT paradigm have also been pro-
posed. Eriguchi et al. (2016) introduced tree-to-
sequence NMT; this model took parse trees as in-
put using a tree-LSTM (Tai et al., 2015) encoder.
Bastings et al. (2017) used a graph convolutional
encoder in order to take labeled dependency parses
of the source sentences into account. Hashimoto
and Tsuruoka (2017) added a latent graph parser
to the encoder, allowing it to learn soft dependency
parses while simultaneously learning to translate.

2.3 Linearized Parse Trees in NMT

The idea of incorporating linearized parses into
seq2seq has been adapted to NMT as a means of
injecting syntax. Aharoni and Goldberg (2017)
first did this by parsing the target side of the train-
ing data and training the system to generate parsed
translations of the source input; this is the in-
verse of our parse2seq baseline. Similarly, Nade-
jde et al. (2017) interleaved CCG supertags with
words on the target side, finding that this improved
translation despite requiring longer sequences.

Most similar to our multi-source model is the
parallel RNN model proposed by Li et al. (2017).
Like multi-source, the parallel RNN used two en-
coders, one for words and the other for syntax.
However, they combined these representations at
the word level, whereas we combine them on the
sentence level. Their mixed RNN model is also
similar to our parse2seq baseline, although the
mixed RNN decoder attended only to words. As
the mixed RNN model outperformed the parallel
RNN model, we do not attempt to compare our
model to parallel RNN. These models are similar
to ours in that they incorporate linearized parses
into NMT; here, we utilize a multi-source frame-
work.

2.4 Multi-Source NMT

Multi-source methods in neural machine transla-
tion were first introduced by Zoph and Knight
(2016) for multilingual translation. They used one
encoder per source language, and combined the
resulting sentence representations before feeding
them into the decoder. Firat et al. (2016) expanded
on this by creating a multilingual NMT system
with multiple encoders and decoders. Libovickỳ
and Helcl (2017) applied multi-source NMT to
multimodal translation and automatic post-editing
and explored different strategies for combining at-
tention over the two sources. In this paper, we

apply the multi-source framework to a novel task,
syntactic neural machine translation.

3 NMT with Linearized Source Parses

We propose a multi-source method for incorporat-
ing source syntax into NMT. This method makes
use of linearized source parses; we describe these
parses in section 3.1. Throughout this paper, we
refer to standard sentences that do not contain any
explicit syntactic information as sequential; see
Table 1 for an example.

3.1 Linearized Source Parses
We use an off-the-shelf parser, in this case Stan-
ford CoreNLP (Manning et al., 2014), to create
binary constituency parses. These parses are lin-
earized as shown in Table 1. We tokenize the
opening parentheses with the node label (so each
node label begins with a parenthesis) but keep the
closing parentheses separate from the words they
follow. For our task, the parser failed on one
training sentence of 5.9 million, which we dis-
carded, and succeeded on all test sentences. It took
roughly 16 hours to parse the 5.9 million training
sentences.

Following Sennrich et al. (2016b), our networks
operate at the subword level using byte pair encod-
ing (BPE) with a shared vocabulary on the source
and target sides. However, the parser operates at
the word level. Therefore, we parse then break
into subwords, so a leaf may have multiple tokens
without internal structure.

The proposed method is tested using both lex-
icalized and unlexicalized parses. In unlexical-
ized parses, we remove the words, keeping only
the node labels and the parentheses. In lexical-
ized parses, the words are included. Table 1
shows an example of the three source sentence for-
mats: sequential, lexicalized parse, and unlexical-
ized parse. Note that the lexicalized parse is sig-
nificantly longer than the other versions.

3.2 Multi-Source
We propose a multi-source framework for inject-
ing linearized source parses into NMT. This model
consists of two identical RNN encoders with no
shared parameters, as well as a standard RNN de-
coder. For each target sentence, two versions of
the source sentence are used: the sequential (stan-
dard) version and the linearized parse (lexicalized
or unlexicalized). Each of these is encoded simul-

2962



Example Sentence
sequential history is a great teacher .
lexicalized parse (ROOT (S (NP (NN history ) ) (VP (VBZ is ) (NP (DT a ) (JJ great ) (NN teacher ) ) ) (. . ) ) )
unlexicalized parse (ROOT (S (NP (NN ) ) (VP (VBZ ) (NP (DT ) (JJ ) (NN ) ) ) (. . ) ) )
target sentence die Geschichte ist ein großartiger Lehrmeister .

Table 1: Example source training sentence with sequential, lexicalized parse, and unlexicalized parse versions.
We include the corresponding target sentence for reference.

taneously using the encoders; the encodings are
then combined and used as input to the decoder.
We combine the source encodings using the hi-
erarchical attention combination proposed by Li-
bovickỳ and Helcl (2017). This consists of a sep-
arate attention mechanism for each encoder; these
are then combined using an additional attention
mechanism over the two separate context vectors.
This multi-source method is thus able to combine
the advantages of both standard RNN-based en-
codings and syntactic encodings.

4 Experimental Setup

4.1 Data

We base our experiments on the WMT17 (Bojar
et al., 2017) English (EN) ! German (DE) news
translation task. All 5.9 million parallel train-
ing sentences are used, but no monolingual data.
Validation is done on newstest2015, while new-
stest2016 and newstest2017 are used for testing.

We train a shared BPE vocabulary with 60k
merge operations on the parallel training data. For
the parsed data, we break words into subwords af-
ter applying the Stanford parser. We tokenize and
truecase the data using the Moses tokenizer and
truecaser (Koehn et al., 2007).

4.2 Implementation

The models are implemented in Neural Mon-
key (Helcl and Libovickỳ, 2017). They are trained
using Adam (Kingma and Ba, 2015) and have
minibatch size 40, RNN size 512, and dropout
probability 0.2 (Gal and Ghahramani, 2016). We
train to convergence on the validation set, using
BLEU (Papineni et al., 2002) as the metric.

For sequential inputs and outputs, the maximum
sentence length is 50 subwords. For parsed inputs,
we increase maximum sentence length to 150 sub-
words to account for the increased length due to
the parsing labels; we still use a maximum output
length of 50 subwords for these systems.

System 2016 2017

baseline seq2seq 25.0 20.8
parse2seq 25.4 20.9

proposed multi-source lex 26.5 21.9
multi-source unlex 26.4 21.7

Table 2: BLEU scores on newstest2016 and new-
stest2017 datasets for the baselines, unlexicalized (un-
lex), and lexicalized (lex) systems.

4.3 Baselines
Seq2seq
The proposed models are compared against two
baselines. The first, referred to here as seq2seq, is
the standard RNN-based neural machine transla-
tion system with attention (Bahdanau et al., 2015).
This baseline does not use the parsed data.

Parse2seq
The second baseline we consider is a slight modi-
fication of the mixed RNN model proposed by Li
et al. (2017). This uses an identical architecture
to the seq2seq baseline (except for a longer max-
imum sentence length in the encoder). Instead of
using sequential data on the source side, the lin-
earized parses are used. We allow the system to
attend equally to words and node labels on the
source side, rather than restricting the attention to
words. We refer to this baseline as parse2seq.

5 Results

Table 2 shows the performance on EN!DE trans-
lation for each of the proposed systems and the
baselines, as approximated by BLEU score.

The multi-source systems improve strongly
over both baselines, with improvements of up to
1.5 BLEU over the seq2seq baseline and up to
1.1 BLEU over the parse2seq baseline. In addi-
tion, the lexicalized multi-source systems yields
slightly higher BLEU scores than the unlexical-
ized multi-source systems; this is surprising be-
cause the lexicalized systems have significantly
longer sequences than the unlexicalized ones. Fi-
nally, it is interesting to compare the seq2seq
and parse2seq baselines. Parse2seq outperforms
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System Source Data 2016 2017
parse2seq seq 0.6 0.5
multi-source lex seq + seq 23.6 20.0

seq + null 23.1 19.3
multi-source unlex seq + seq 23.7 19.9

seq + null 23.6 20.9

Table 3: BLEU scores on newstest2016 and new-
stest2017 when no parsed data is used during inference.

seq2seq by only a small amount compared to
multi-source; thus, while adding syntax to NMT
can be helpful, some ways of doing so are more
effective than others.

6 Analysis

6.1 Inference Without Parsed Sentences
The parse2seq and multi-source systems require
parsed source data at inference time. However,
the parser may fail on an input sentence. There-
fore, we examine how well these systems do when
given only unparsed source sentences at test time.

Table 3 displays the results of these experi-
ments. For the parse2seq baseline, we use only
sequential (seq) data as input. For the lexical-
ized and unlexicalized multi-source systems, two
options are considered: seq + seq uses identical
sequential data as input to both encoders, while
seq + null uses null input for the parsed encoder,
where every source sentence is “( )”.

The parse2seq system fails when given only se-
quential source data. On the other hand, both
multi-source systems perform reasonably well
without parsed data, although the BLEU scores are
worse than multi-source with parsed data.

6.2 BLEU by Sentence Length
For models that use source-side linearized parses
(multi-source and parse2seq), the source se-
quences are significantly longer than for the
seq2seq baseline. Since NMT already performs
relatively poorly on long sentences (Bahdanau
et al., 2015), adding linearized source parses may
exacerbate this issue. To detect whether this oc-
curs, we calculate BLEU by sentence length.

We bucket the sentences in newstest2017 by
source sentence length. We then compute BLEU
scores for each bucket for the seq2seq and
parse2seq baselines and the lexicalized multi-
source system. The results are in Figure 1.

In line with previous work on NMT on long sen-
tences (Bahdanau et al., 2015; Li et al., 2017), we
see a significant deterioration in BLEU for longer
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Figure 1: BLEU by sentence length on newstest2017
for baselines and lexicalized multi-source.

sentences for all systems. In particular, although
the parse2seq model outperformed the seq2seq
model overall, it does worse than seq2seq for sen-
tences containing more than 30 words. This indi-
cates that parse2seq performance does indeed suf-
fer due to its long sequences. On the other hand,
the multi-source system outperforms the seq2seq
baseline for all sentence lengths and does particu-
larly well for sentences with over 50 words. This
may be because the multi-source system has both
sequential and parsed input, so it can rely more on
sequential input for very long sentences.

7 Conclusion

In this paper, we presented a multi-source method
for effectively incorporating linearized parses of
the source data into neural machine translation.
This method, in which the parsed and sequential
versions of the sentence were both taken as input
during training and inference, resulted in gains of
up to 1.5 BLEU on EN!DE translation. In ad-
dition, unlike parse2seq, the multi-source model
translated reasonably well even when the source
sentence was not parsed.

In the future, we will explore adding back-
translated (Sennrich et al., 2016a) or copied (Cur-
rey et al., 2017) target data to our multi-source sys-
tem. The multi-source model does not require all
training data to be parsed; thus, monolingual data
can be used even if the parser is unreliable for the
synthetic or copied source sentences.
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Abstract

Corpus-based approaches to machine trans-
lation rely on the availability of clean par-
allel corpora. Such resources are scarce,
and because of the automatic processes in-
volved in their preparation, they are often
noisy. This paper describes an unsupervised
method for detecting translation divergences
in parallel sentences. We rely on a neural
network that computes cross-lingual sentence
similarity scores, which are then used to ef-
fectively filter out divergent translations. Fur-
thermore, similarity scores predicted by the
network are used to identify and fix some
partial divergences, yielding additional par-
allel segments. We evaluate these methods
for English-French and English-German ma-
chine translation tasks, and show that using fil-
tered/corrected corpora actually improves MT
performance.

1 Introduction

Parallel sentence pairs are the only necessary re-
source to build Machine Translation (MT) sys-
tems. In the case of neural MT, a large neural
network is trained through maximising a proxy
of translation performance on a parallel corpus.
Therefore, the quality of MT engines is heavily
dependent on the amount but also the quality of
available parallel sentences.1

Parallel texts are unfortunately, scarce re-
sources: There are relatively few language pairs
for which parallel corpora of large sizes exist, and
even for those pairs, available corpora only con-
cern few restricted domains. To alleviate the lack
of parallel data, several approaches have been de-
veloped over the years. They range from methods
using non-parallel, or comparable data (Zhao and

1Recent work on neural MT (Lample et al., 2018; Artetxe
et al., 2018) completely dispenses with parallel data, using
unsupervised methods to obtain performance improvements
over word-by-word statistical MT. These systems however
lag far behind supervised systems, as considered in this work.

Vogel, 2002; Fung and Cheung, 2004; Munteanu
and Marcu, 2005; Grégoire and Langlais, 2018;
Grover and Mitra, 2017; Schwenk, 2018) to tech-
niques that produce synthetic parallel data from
monolingual corpora (Sennrich et al., 2016a;
Chinea-Rios et al., 2017), using automated align-
ment/translation engines that are prone to the in-
troduction of noise in the resulting parallel sen-
tences. Mismatches in parallel sentences extracted
from translated texts are also reported (Tiede-
mann, 2011; Xu and Yvon, 2016). This problem
is mostly ignored in MT, where parallel sentences
are considered to convey the exact same meaning;
yet it seems particularly important for neural MT
engines (Chen et al., 2016).

en What do you feel, Spock?
fr Que ressentez-vous?
gl What do you feel?
en How much do you get paid?
fr T’es payé combien de l’heure?
gl How much do you get paid per hour?
en That seems a lot.
fr 40 livres?
gl 40 pounds?
en I brought you french fries!
fr Je t’ai rapporté des saucisses!
gl I brought you sausage!

Table 1: Examples of semantically divergent parallel sen-
tences. English (en), French (fr) and gloss of French (gl).
Divergences are in bold letters.

Table 1 gives some examples of English-French
parallel sentences that are not completely semanti-
cally equivalent, extracted from the OpenSubtitles
corpus (Lison and Tiedemann, 2016).

Multiples types of translation divergences are
found in parallel corpora: Additional segments are
included on either side of the parallel sentences
(first and second rows) most likely due to errors
in sentence segmentation; Some translations may
be completely uncorrelated (third row); Inaccurate
translations also exist (fourth row). Note that di-
vergent translations can be due various reasons (Li
et al., 2014), the study of which is beyond the

2967



scope of this paper.
In this work, we present an unsupervised

method for building cross-lingual sentence em-
beddings based on modelling word similarity, re-
lying on a neural architecture (see § 3) that is able
to identify several types of common cross-lingual
divergences. The resulting embeddings are then
used to measure semantic equivalence between
sentences. To evaluate our method, we show in
§ 4 that translation accuracy can be improved after
filtering out divergent sentence pairs in an English-
to-French and an English-to-German translation
tasks. We also show that in some cases, divergent
sentences can be fixed by removing divergent seg-
ments, further increasing translation quality. All
the code used in this paper is freely available.2

2 Related Work

Attempts to measure the impact of translation di-
vergences in MT have focused on the introduc-
tion of noise in sentence alignments (Goutte et al.,
2012), showing that statistical MT is highly robust
to noise, and that performance only degrades seri-
ously at very high noise levels. In contrast, neu-
ral MTs seem to be more sensitive to noise (Chen
et al., 2016), as they tend to assign high probabili-
ties to rare events (Hassan et al., 2018).

Efforts devoted to characterising the degree of
semantic equivalence between two snippets of
texts in the same or different languages are pre-
sented (Agirre et al., 2016). In (Mueller and Thya-
garajan, 2016), a monolingual sentence similar-
ity network is proposed, making use of a simple
LSTM layer to compute sentence representations.
The authors show that a simple SVM classifier
exploiting such sentence representations achieves
state-of-the-art results in a textual entailment task.
With the same objective, the system of He and
Lin (2016) uses multiple convolutional layers and
models pairwise word interactions.

Our work is inspired by Carpuat et al. (2017),
who train a SVM-based cross-lingual divergence
detector using word alignments and sentence
length features. Their work shows that an NMT
system trained only on non-divergent sentences
yields slightly better translation scores, while re-
quiring less training time. A follow-up study by
the same authors (Vyas et al., 2018) achieves even
better results, using the neural architecture of He
and Lin (2016). Our work differs from theirs as we

2https://github.com/jmcrego/similarity

make use of a network with a different, arguably
simpler, topology. We model sentence similarity
by means of optimising a loss function based on
word alignments. Furthermore, the network pre-
dicts word similarity scores that we further use to
correct divergent sentences.

3 Neural Divergence Classifier

The architecture of our network is inspired by the
work on word alignment of Legrand et al. (2016),
using however contextual, rather than fixed, word
embeddings (see Figure 1).

Figure 1: Illustration of the model.

It computes the similarity of any source-target
sentence pair (s, t), where s = (s1, ..., sI) and
t = (t1, ..., tJ). The model is composed of
2 bi-directional LSTM subnetworks, nets and
nett, which respectively encode source and tar-
get sentences. Since both nets and nett take
the same form, we only describe the former net-
work: it outputs forward and backward hidden
states,

�!
h src

i and
 �
h src

i , which are then concate-
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nated into a vector encoding the ith source word
as hsrc

i = [
�!
h src

i ;
 �
h src

i ]. In addition, the last for-
ward/backward hidden states (in dark grey on Fig-
ure 1) are also concatenated to represent whole
sentences hsrc = [

�!
h src

I ;
 �
h src

1 ]. The similarity be-
tween sentence pairs can then be obtained using
eg. the cosine similarity:

sim(hsrc, htgt) =
hsrc· htgt

||hsrc|| ⇤ ||htgt||
(1)

Our model is trained to maximize word align-
ment scores between words in both sentences,
using aggregation functions that summarise the
alignment scores for each source/target word.
Similar to (Legrand et al., 2016), alignment scores
S(i, j) are given by the dot-product S(i, j) =
hsrc

i · htgt
j , further aggregated as follows:

aggrs(i, S) =
1

r
log

0

@
JX

j=1

er⇤S(i,j)

1

A

aggrt(j, S) =
1

r
log

 
IX

i=1

er⇤S(i,j)

! (2)

The training loss function is then defined as:

L(src, tgt) =

IX

i=1

log(1 + eaggrs(i,S)⇤signi) +

+
JX

j=1

log(1 + eaggrt(j,S)⇤signj )

(3)

3.1 Training with Negative Examples

Training is performed by minimizing Eq. (3), for
which annotated examples of source (signi) and
target (signj) words are needed. As positive ex-
amples, we use paired sentences of a parallel cor-
pus; all words in such sentences are labelled as
parallel (8i, j, signi = signj = �1). We con-
sider three types of negative instances: the basic
case uses random unpaired sentences; in this case,
all words are labelled as divergent (8i, j, signi =
signj = +1.). Since negative pairs may be very
easy to classify and we want our network to detect
less obvious divergences, we further create more
difficult negative examples as follows.

We first replace random sequences of words in
source or target by a sequence of words with the

same part-of-speeches.3 Words that are not re-
placed are deemed parallel (signi = �1) while
those replaced are annotated as signi = +1.
Words aligned to some replaced words are also
assigned the divergent label (signi = +1). For
instance, given the original sentence pair:

src: What do you feel ?

tgt: Que ressentez-vous ?
,

we may replace ’you feel’, with part-of-speech
tags ’PRP VB’, by another sequence with same
tags (i.e. ’we want’), yielding a new negative
instance (divergent words are in bold):

src: What do we want ?

Ysrc: -1 -1 +1 +1 -1

tgt: Que ressentez-vous ?

Ytgt: -1 +1 -1

Note that we need word alignments to identify
as divergent the sequence ’ressentez-vous’,
which was aligned to ’you feel’ in the original
sentence. Finally, motivated by sentence segmen-
tation errors observed in many corpora, we also
build negative examples by inserting a sentence at
the beginning (or end) of the source (or target) sen-
tence. Words in the original sentence pair are an-
notated signi = �1, while the new words inserted
are considered divergent (signi = +1). Given the
same sentence pair as above, a negative example is
created by inserting the sentence ’Not .’ at the
end of the original source:

src: What do you want ? Not .
Ysrc: -1 -1 -1 -1 -1 +1 +1
tgt: Que ressentez-vous ?

Ytgt: -1 -1 -1

To finally avoid the generation of easy negative
sentence pairs having a large difference in sen-
tence length, we restrict negative examples to have
a length ratio < 2.0 (3.0 for shortest sentences).

3.2 Divergence Correction
Our training corpora contains many divergent sen-
tences that follow a common pattern, consisting of
adding some extra leading/trailing words. Accord-
ingly, we implemented a simple algorithm that dis-
cards sequences of leading/trailing words on both

3The rationale is to try to keep the generated sentences as
grammatical as possible; Otherwise, the network could learn
to flag non-grammatical sentences as non-parallel.
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sides. To find optimal source (u, v) and target
(x, y) indices that enclose parallel segments within
the original sentence, we compute:

arg max
u,v,x,y

n X

uIv

max
xjy

{S(i, j)}
o

The N -best sequences (sv
u, tyx) are considered as

likely corrections, in which we use the one having
the highest similarity score to replace the original
(sI

1, t
J
1 ). Note that short sentences are not consid-

ered and we enforce v � u > ⌧ and y � x > ⌧ .
Figure 2 (left) displays an example of an align-
ment matrix S(i, j). An acceptable correction is:
Que ressentez-vous ? , What do you feel ?. cor-
responding to u = 1, v = 5, x = 1 and y = 3.

4 Experiments
4.1 Corpora
We filter out divergences from the English-French
OpenSubtitles corpus (Lison and Tiedemann,
2016), which consists of a collection of movie and
TV subtitles. We also use the very noisy English-
German Paracrawl4 corpus. Both corpora present
many potential divergences. To evaluate English-
French translation performance, we use the En-
Fr Microsoft Spoken Language Translation cor-
pus, created from actual Skype conversations (Fe-
dermann and Lewis, 2016). English-German per-
formance is evaluated on the publicly available
Newstest-2017 (Bojar et al., 2017), corresponding
to news stories selected from online sources.

In order to better assess the quality of our clas-
sifier when facing different word divergences, we
also collected from the original OpenSubtitles cor-
pus 500 sentences containing different types of ex-
amples: 200 paired sentences; 100 unpaired sen-
tences; 100 sentences with replace examples; and
100 sentences with insert examples (see § 3.1).
All data is preprocessed with OpenNMT5, per-
forming minimal tokenisation. After tokenisation,
each out-of-vocabulary word is mapped to a spe-
cial UNK token, assuming a vocabulary contain-
ing the 50, 000 more frequent words.

4.2 Neural Divergence
Word embeddings of Es = Et = 256 cells
are initialised using fastText,6 further aligned
by means of MUSE7 following the unsupervised

4http://paracrawl.eu/
5http://opennmt.net
6https://github.com/facebookresearch/fastText
7https://github.com/facebookresearch/MUSE

method of Lample et al. (2018). Both bi-LSTMs
use 256-dimensional hidden representations (E =
512). Network optimization is done using SGD
with gradient clipping (Pascanu et al., 2013). For
each epoch, we randomly select 1 million sentence
pairs that we place in batches of 32 examples. We
run 10 epochs and start decaying at each epoch by
0.8 when the loss on validation set increases. Di-
vergence is computed as in equation (1) and set-
ting r = 1.0 ; For divergence correction, we use
N = 20 and ⌧ = 3. The same number of exam-
ples are always generated for each type of exam-
ple (Paired, Unpaired, Replace and Insert). Align-
ments needed for Replace and Insert methods are
performed using fast align8.

4.3 Neural Translation

In addition to the basic tokenisation detailed
above, we perform Byte-Pair Encoding (Sennrich
et al., 2016b) with 30000 merge operations learned
by joining both language sides. Neural systems
are based on the open-source project OpenNMT;
using a Transformer model similar to the model
of Vaswani et al. (2017): both encoder and de-
coder have 6 layers; Multi-head attention is per-
formed over 8 head; the hidden layer size is 512;
and the inner layer of feed forward network is of
size 2048. Word embeddings have 512 cells. We
set the dropout probability to 0.1 and the batch size
to 3072. The optimiser is Lazy Adam with �1 =
0.9, �2 = 0.98, ✏ = 10�9, warmup steps =
4000. Training stops after 30 epochs.

5 Results

We first evaluate the ability of our divergence clas-
sifier to predict different types of divergences at
the level of words. We use the test set manually an-
notated for that purpose and train our model on the
OpenSubtitles corpus. A word is considered di-
vergent when associated to a negative aggregation
score (see Equation (2)). Accuracies obtained for
various combinations of negative examples, where
we see that non-divergent words in parallel and un-
paired sentences (columns P and U) are easy to
spot, as long as the model has seen these types
of examples in training. However, the accuracy
drops dramatically when the model is not trained
with unpaired sentences (rows PR, PI and PRI).
Regarding columns R and I, accuracies are lower

8https://github.com/clab/fast align
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since these sentences contain a mix of divergent
and non-divergent words.

Accuracy Test examples
P U R I PURI

Tr
ai

n
ex

am
pl

es

PU 0.996 0.994 0.671 0.673 0.874
PR 0.995 0.033 0.951 0.689 0.746
PI 0.998 0.071 0.697 0.725 0.705

PUR 0.994 0.989 0.919 0.710 0.932
PUI 0.995 0.996 0.662 0.769 0.887
PRI 0.991 0.161 0.924 0.719 0.768

PURI 0.995 0.980 0.916 0.788 0.942

Table 2: Word divergence accuracies according to different
type of examples used in train/test.

Models that were trained with the matching ex-
amples (R and I) obtain the highest accuracies (in
bold letters). Column PURI gives results for the
complete test set, mixing all type of examples. As
expected, the best accuracy is also obtained when
training on all types of examples.

Figure 2 illustrates the output of our network
when trained using PU examples (right) and PURI
examples (left). The former (right) fails to predict
some divergences, most likely because its train-
ing set does not contain sentences mixing diver-
gent and non-divergent words. Furthermore, the
network trained with PURI examples correctly as-
signs a lower similarity score to this pair, as both
sentences do not convey the exact same meaning.

Figure 2: Sentence pair with similarity scores produced
by our model when trained with PU examples (right) and
over PURI examples (left). Aggregation scores (Eq. (2))
are shown next to words. Matrices contain alignment scores.
Sentence similarities (Eq. (1)) are below matrices.

Finally, BLEU scores obtained with varying
training data configurations are in Table 3: The en-
tire9 data sets (all); The most similar pairs after

9Paracrawl contains more than 100M sentences. We re-
duced its size to 22.2M using standard filtering techniques.

optimizing Eq. (3) (sim); After applying the cor-
rection algorithm of § 3.2 (sim+fix). Columns
Ref and Fix indicate the number of original and
corrected sentences (in millions) used in training.

Data Ref (M) Fix (M) Test (BLEU)
OpenSubtitles English-French

all 27.2 - 42.18
sim 15.5 - 43.12 (+0.94)
sim 18.0 - 43.19 (+1.01)
sim+fix 15.5 2.5 44.19 (+2.01)

Paracrawl English-German
all 22.2 - 19.27
sim 15.0 - 21.52 (+2.25)
sim 17.5 - 21.97 (+2.70)
sim+fix 15.0 2.5 22.42 (+3.15)

Table 3: BLEU scores obtained by neural MT using differ-
ent subsets of the OpenSubtitles and Paracrawl corpora.

Results obtained after filtering sentence pairs
(sim) clearly outperform the baseline (all) by
+0.94 and +2.25 BLEU respectively. Regarding
OpenSubtitles, when fixing 2.5M sentences (4th

row) the accuracy is further boosted to +2.01,
whereas the same sentence pairs do not show any
improvement when added in their original form
(3rd row). Similar results are obtained for the
Paracrawl corpus. Results after fixing 2.5M sen-
tences (4throw) outperform those obtained with
their original form (3rdrow).

6 Conclusions and outlook

We presented an unsupervised method based on
deep neural networks for detecting translation di-
vergences in parallel corpora. Our model op-
timizes word alignments, and computes a fine
grained divergence prediction at the level of
words. Misaligned/divergent words can then be
filtered out, yielding larger and better training sets.
Our experiments on two machine translation tasks
show significant improvements in comparison to
training with the entire data set.

We plan to use our model to predict sentence
embeddings over monolingual corpora, allowing
to collect parallel pairs through vector similarity
measures. In addition, we would like to mea-
sure the performance of our model after applying
subword tokenisation, as well as using multiple
LSTM layers, a technique well known to capture
hierarchical structure in the context of MT.
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Abstract
The promise of combining vision and lan-
guage in multimodal machine translation is
that systems will produce better translations by
leveraging the image data. However, incon-
sistent results have lead to uncertainty about
whether the images actually improve transla-
tion quality. We present an adversarial eval-
uation method to directly examine the utility
of the image data in this task. Our evaluation
measures whether multimodal translation sys-
tems perform better given either the congruent
image or a random incongruent image, in ad-
dition to the correct source language sentence.
We find that two out of three publicly available
systems are sensitive to this perturbation of the
data, and recommend that all systems pass this
evaluation in the future.

1 Introduction

Multimodal machine translation is the task of
translating sentences situated in a visual context,
such as captioned images on social media. The
core argument of this area of research is that we
can produce better translations by exploiting both
the source language sentence and the visual con-
text (Elliott et al., 2015; Hitschler et al., 2016).
There is some evidence to support this argument
for human translation: Frank et al. (2018) found
that 13% of the German evaluation data in the
Multi30K dataset (Elliott et al., 2016) needed at
least one post-edit to reflect the joint meaning of
the visual and linguistic context. However, the
evidence that visual context helps computational
models is less clear. Consider the three teams that
submitted contrastive multimodal and text-only
variants of their systems to the 2017 Multimodal
Translation Shared Task (Elliott et al., 2017): the
University of Le Mans’ multimodal system out-
performed their text-only variant (Caglayan et al.,

⇤Work carried out at the University of Edinburgh.

Two dogs play with an
orange toy in tall grass.

Model

Zwei Hunde spielen im
hohen Gras mit einem

orangen Spielzeug.

Figure 1: An adversarial evaluation for multimodal
translation. We measure the difference in perfor-
mance when a model sees a congruent image (left)
or an incongruent image (right).

2017); the Oregon State University text-only sys-
tem outperformed their multimodal variant (Ma
et al., 2017); and the performance of the Charles
University systems depended on the language pair
(Libovický and Helcl, 2017). In light of these re-
sults, we need a better understanding of the role of
visual context in multimodal translation systems.

We propose an adversarial evaluation Method
to determine whether multimodal translation sys-
tems are aware of the visual context. We introduce
a measure of image awareness to quantify the dif-
ference in performance in two settings: (i) when
a system is presented with congruent visual data;
(ii) when it is presented with incongruent visual
data. In both settings, a system is presented with
the correct source language sentence. See Figure
1 for an illustration of our evaluation. We hypoth-
esise that if a system is aware of the visual con-
text, i.e. it is actually using the image for trans-
lation, then the system will perform better when
it is presented with the congruent visual data than
incongruent visual data. Our evaluation is related
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to the foiled image captions evaluation, in which
the performance of an image captioning system is
measured when a single word is replaced with an
incorrect, but similar word (Shekhar et al., 2017);
the main difference is that we replace the visual
data instead of manipulating the text. Our work
is also related to a study of question-answering
systems, in which additional text was appended
to the end of a document (Jia and Liang, 2017).
They found that these additional text segments dis-
tracted QA systems from producing the correct an-
swer. In contrast, our evaluation does not manipu-
late the textual data, instead we replace the origi-
nal visual input with a random distractor.

We evaluate three publicly available multimodal
translation systems with our adversarial evalua-
tion. The main finding of this paper is that one
publicly available multimodal translation system
is not aware of the congruent image data. This
finding raises doubts about whether state-of-the-
art multimodal translation systems actually use the
visual context to produce better translations. We
conclude this paper by discussing whether this is
likely to be due to problems with the data or with
the model architectures.

2 Adversarial Evaluation

2.1 Image Awareness
We propose an adversarial evaluation method for
multimodal machine translation. This method
measures how a system performs when it is pre-
sented with the correct text data and either the con-
gruent image or with an incongruent image. In this
section we define two image awareness functions
to measure whether a multimodal translation sys-
tem is aware of the congruent visual data.

Let x be a source language sentence, y be a tar-
get language sentence, v be the congruent image,
and v̄ be an incongruent image. Image awareness
is calculated using an evaluable performance mea-
sure E . The overall image awareness of a model
M on an evaluation dataset D is:

�-Awareness =
1

|D|

|D|X

i

aM(xi, yi, vi, v̄i) (1)

The image awareness of a model M for a single
instance aM(xi, yi, vi, v̄i) is given by:

aM(xi, yi, vi, v̄i) = E(xi, yi, vi) � (2)
E(xi, yi, v̄i)

Under this definition, the output of the evalu-
able performance measure should be higher in the
presence of the congruent data than the incongru-
ent data, i.e. E(xi, yi, vi) > E(xi, yi, v̄i).1 If this is
the case, on average, then the overall image aware-
ness of a model �-Awareness is positive. This
can only happen when model outputs are evaluated
more favourably in the presence of the the congru-
ent image data than the incongruent image data.

2.2 Model-internal awareness �I

A model-internal image measure of awareness is
the difference in the probability assigned to the
target language sentence y in the congruent and
incongruent conditions. This is model-internal
because it has the same form as the maximum-
likelihood objective used to train the translation
model. In this case, E = p(y|x, ·), and the dif-
ference in performance for a single instance is:

aM = �I = p(yi|xi, vi) � p(yi|xi, v̄i) (3)

2.3 Model-external awareness �E

A model-external awareness measure could be a
text-similarity evaluation or human judgement. In
this paper, we use the Meteor text-similarity score
(Denkowski and Lavie, 2014) because it naturally
decomposes to the sentence level, and it is already
the de-facto evaluation metric for multimodal ma-
chine translation (Specia et al., 2016). Let E be
any text-similarity scoring function T that decom-
poses to the sentence level. The difference in per-
formance for a single instance is defined as:

aM = �E = T (xi, yi, vi) � T (xi, yi, v̄i) (4)

3 Systems Evaluation

We evaluate the image awareness of three pre-
trained multimodal translations systems that we
received by direct correspondence:

decinit: The initial state of the decoder net-
work is set with a learned transformation of
the visual data (Caglayan et al., 2017).

trgmul: The target language word embed-
dings are modulated by an element-wise mul-
tiplication with a learned transformation of
the visual data (Caglayan et al., 2017).

1This assumes that a higher score means better perfor-
mance for the performance measure E . Swap the order of
the operands if lower performance means better.
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C I �E-Awareness

trgmul 57.3 57.3 ± 0.2 -0.001 ± 0.002

decinit 57.0 56.8 ± 0.1 0.003 ± 0.001

hierattn 55.0 53.3 ± 0.3 0.019 ± 0.003

Table 1: Corpus-level Meteor scores in the
Congruent and Incongruent settings, along with
the Meteor-awareness results. Incongruent and
�E-Awareness scores are the mean and standard
deviation of five permutations of the visual data.

hierattn: The decoder network learns to se-
lectively attend to a combination of the
source language and the visual data (Li-
bovický and Helcl, 2017).

Each system was trained on the 29,000 English–
German–image tuples in the Multi30K dataset (El-
liott et al., 2016). We evaluate the image aware-
ness of these systems using the 1,014 tuples in the
validation data, which is typically used for model
selection. We select the incongruent images v̄ by
randomly shuffling the order in which the images
v are associated with the source language text x.
In our evaluation, we report the mean and stan-
dard deviation of randomly shuffling the image
data five times. The code to evaluate your own
system is publicly available.2

3.1 Statistical test

To determine if a model passes the proposed eval-
uation, we conduct a non-parametric Wilcoxon
signed-rank test of the following hypothesis:

H1: Congruent images improve the quality
of multimodal translation compared to
incongruent images.

H0: Congruent images make no difference
to the quality of multimodal translation
compared to incongruent images.

We conduct this statistical test using the pairs
of values that are calculated in the process of com-
puting the the image awareness scores (Eq. 2), i.e.
E(xi, yi, vi) and E(xi, yi, v̄i).

We combine the k=5 separate p values from
each test using Fisher’s method and reject the null

2http://github.com/elliottd/awareness

Figure 2: Violin plots of the Meteor-awareness
scores for evaluated models. The white dot marks
the median value, the thick gray bar shows the in-
terquartile range, and the thin gray bar is the 95%
confidence interval. The width of the plots show
the kernel density estimate of the distributions.

hypothesis H0 if the result of the �2 test with 2k
degrees of freedom is p  0.005.3

3.2 Results

Table 1 shows the corpus-level results of a Meteor-
based evaluation and the Meteor-awareness evalu-
ation. We find that images improve the quality of
the hierattn system (�2 = 136.74, p < 0.0001),
and images also improve the quality of the decinit
system (�2 = 32.79, p = 0.0003). Images make no
difference to the quality of the translations gener-
ated by the trgmul system (�2 = 8.98, p = 0.533).
To complement these tests, Figure 2 shows vio-
lin plots of the Meteor-awareness scores. These
show that the translations generated by the trgmul
and decinit systems are most likely to result in no
difference in Meteor score between the congruent
and incongruent conditions.

We now turn our attention to the results of
the probability-awareness evaluation. Images im-
prove the quality of the trgmul system (�2 =
52.55, p < 0.0001), and images also improve the
quality of the hierattn system (�2 = 622.03, p <
0.0001). Images make no difference to the quality
of decinit system (�2 = 6.49, p = 0.772).

Figure 3 shows examples of translations pro-

3We use a stricter threshold to reduce the chance of false
positive findings (Benjamin et al., 2018).
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Man with Mardi Gras beads
around his neck holding

pole with banner.

Model

Ein Mann mit kahlem
Kopf ist um seinen Hals
hält und hält eine Stange
mit einem Banner.

Ein Mann mit einem
Hawaii Hemd auf dem Hals
hält eine Stange mit einem
Banner um seinen Hals.

Meteor

Mann mit Mardi-Gras-Perlen um den
Hals trägt Stange mit Banner.

45.9 40.9

(a) Congruent is better than Incongruent

Two cyclists cross the
street on a very breezy

California day.

Model

Zwei Radfahrer
überqueren auf einer
stark befahrenen Straße
am Abend die Straße.

Zwei Radfahrer
überqueren auf einer
stark befahrenen
Straße die Straße.

Meteor

Zwei Radfahrer überqueren die Straße an
einem sehr windigen Tag in Kalifornien.

35.3 35.6

(b) Incongruent is better than Congruent

Figure 3: Examples of the difference in Meteor awareness for the hierattn system. In each example,
the source sentence is shown at the top and the reference sentence is shown at the bottom, both in
Typewriter font. The congruent image is on the left, and the incongruent image is on the right.

duced by the hierattn system for sentences paired
with congruent / incongruent images. Figure 3 (a)
shows an example with high positive difference in
Meteor score. The incongruent image causes the
translation system to refer to an unseen Hawai-
ian shirt. In neither setting does the system trans-
late the phrase “Mardi Gras”. Figure 3 (b) shows
an example with a negative difference in Meteor
score. The congruent image results in a long trans-
lation with poor coverage of the reference, which
Meteor punishes more severely than the shorter
translation arising from the incongruent image. In
neither setting does the model translate the prepo-
sitional phrase “on a very breezy California day”.

4 Discussion

4.1 Data problems
We posit that the current Multi30K training data
does not necessarily require systems to use the vi-
sual context to solve the translation task. Elliott
et al. (2016) note that the German translation data
was produced without showing the translators the
images, and Frank et al. (2018) found that 13% of
the Multi30K test data needed to be post-edited to
reflect the joint semantics of both modalities. We
recommend that entirety of the German Multi30K
training data should be post-edited so that future
systems are more likely to require a joint under-

standing of the visual and linguistic context.4 We
note that a similar issue was found in a visual ques-
tion answering dataset, resulting in the creation of
a new “balanced” dataset (Goyal et al., 2017).

4.2 The role of model architectures
The key difference between the systems evaluated
in this paper is how they use the visual context.
The hierattn system learns a timestep-dependent
context vector over a location-preserving 3D vol-
ume of image features, whereas the trgmul and
decinit systems use an average-pool of the 3D
location-preserving features. In our evaluation, the
only system that is aware of the congruent image
data for both types of image-awareness is the hi-
erattn system that learns a spatial context over the
image. Learning to attend to specific regions of
the image may prove to be crucial to improving
translations with visual context.

5 Conclusion

We proposed an adversarial evaluation method to
determine whether multimodal translation systems
are aware of the visual context. This evalua-
tion method measures the difference in the perfor-

4We planned to repeat the adversarial evaluation with the
Multi30K French data, which was created by showing the an-
notators the images. However, we did not receive pre-trained
models for all the systems for English–French translation.
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mance of a system given the congruent or an in-
congruent image as additional context. We found
that two out of three publicly available multimodal
translation systems were improved by the congru-
ent visual context, when compared to the incon-
gruent visual context. We encourage researchers
to use this method to evaluate their own sys-
tems. Future work includes augment existing mul-
timodal translation models with an additional ad-
versarial objective that forces the model to per-
form better in the presence of the congruent im-
age than a random incongruent image. We will
also apply this evaluation method to other tasks
that use additional context, e.g. images in visual-
question answering, or part-of-speech tags in neu-
ral machine translation.
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Aurélie Herbelot, Moin Nabi, Enver Sangineto, and
Raffaella Bernardi. 2017. FOIL it! Find One mis-
match between Image and Language caption. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 255–265, Vancouver, Canada.

Lucia Specia, Stella Frank, Khalil Sima’an, and
Desmond Elliott. 2016. A Shared Task on Mul-
timodal Machine Translation and Crosslingual Im-
age Description. In Proceedings of the First Con-
ference on Machine Translation, pages 543–553,
Berlin, Germany.

2978



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2979–2984
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Loss in Translation:
Learning Bilingual Word Mapping with a Retrieval Criterion

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou and Edouard Grave
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Abstract
Continuous word representations learned sepa-
rately on distinct languages can be aligned so
that their words become comparable in a com-
mon space. Existing works typically solve a
quadratic problem to learn a orthogonal matrix
aligning a bilingual lexicon, and use a retrieval
criterion for inference. In this paper, we pro-
pose an unified formulation that directly op-
timizes a retrieval criterion in an end-to-end
fashion. Our experiments on standard bench-
marks show that our approach outperforms the
state of the art on word translation, with the
biggest improvements observed for distant lan-
guage pairs such as English-Chinese.

1 Introduction

Previous work has proposed to learn a linear map-
ping between continuous representations of words
by employing a small bilingual lexicon as supervi-
sion. The transformation generalizes well to words
that are not observed during training, making it
possible to extend the lexicon. Another applica-
tion is to transfer predictive models between lan-
guages (Klementiev et al., 2012).

The first simple method proposed by Mikolov
et al. (2013b) has been subsequently improved
by changing the problem parametrization. One
successful suggestion is to `2–normalize the word
vectors and to constrain the linear mapping to
be orthogonal (Xing et al., 2015). An alignment
is then efficiently found using orthogonal Pro-
crustes (Artetxe et al., 2016; Smith et al., 2017),
improving the accuracy on standard benchmarks.

Yet, the resulting models suffer from the so-
called “hubness problem”: some word vectors tend
to be the nearest neighbors of an abnormally high
number of other words. This limitation is now ad-
dressed by applying a corrective metric at inference
time, such as the inverted softmax (ISF) (Smith
et al., 2017) or the cross-domain similarity local

scaling (CSLS) (Conneau et al., 2017). This is
not fully satisfactory because the loss used for in-
ference is not consistent with that employed for
training. This observation suggests that the square
loss is suboptimal and could advantageously be
replaced by a loss adapted to retrieval.

In this paper, we propose a training objective
inspired by the CSLS retrieval criterion. We in-
troduce convex relaxations of the corresponding
objective function, which are efficiently optimized
with projected subgradient descent. This loss can
advantageously include unsupervised information
and therefore leverage the representations of words
not occurring in the training lexicon.

Our contributions are as follows. First we in-
troduce our approach and empirically evaluate it
on standard benchmarks for word translation. We
obtain state-of-the-art bilingual mappings for more
than 25 language pairs. Second, we specifically
show the benefit of our alternative loss function
and of leveraging unsupervised information. Fi-
nally, we show that with our end-to-end formu-
lation, a non-orthogonal mapping achieves better
results. The code for our approach is a part of
the fastText library1 and the aligned vectors are
available on https://fasttext.cc/.

2 Preliminaries on bilingual mappings

This section introduces pre-requisites and prior
works to learn a mapping between two languages,
using a small bilingual lexicon as supervision.

We start from two sets of continuous representa-
tions in two languages, each learned on monolin-
gual data. Let us introduce some notation. Each
word i 2 {1, . . . , N} in the source language (re-
spectively target language) is associated with a vec-
tor xi 2 R

d (respectively yi 2 R
d). For simplicity,

1https://github.com/facebookresearch/
fastText/tree/master/alignment/
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we assume that our initial lexicon, or seeds, cor-
responds to the first n pairs (xi,yi)i2{1,...,n}. The
goal is to extend the lexicon to all source words i 2
{n + 1, . . . , N} that are not seeds. Mikolov et
al. (2013b) learn a linear mapping W 2 R

d⇥d be-
tween the word vectors of the seed lexicon that min-
imizes a measure of discrepancy between mapped
word vectors of the source language and word vec-
tors of the target language:

min
W2Rd⇥d

1

n

nX

i=1

`(Wxi,yi), (1)

where ` is a loss function, typically the square loss
`2(x,y) = kx � yk2

2. This leads to a least squares
problem, which is solved in closed form.

Orthogonality. The linear mapping W is con-
strained to be orthogonal, i.e. such that W>W =
Id, where Id is the d-dimensional identity ma-
trix. This choice preserves distances between word
vectors, and likewise word similarities. Previous
works (Xing et al., 2015; Artetxe et al., 2016; Smith
et al., 2017) experimentally observed that constrain-
ing the mapping in such a way improves the quality
of the inferred lexicon. With the square loss and
by enforcing an orthogonal mapping W, Eq. (1)
admits a closed form solution (Gower and Dijkster-
huis, 2004): W⇤ = UV>, where UDV> is the
singular value decomposition of the matrix Y>X.

Inference. Once a mapping W is learned, one
can infer word correspondences for words that are
not in the initial lexicon. The translation t(i) of a
source word i is obtained as

t(i) 2 arg min
j2{1,...,N}

`(Wxi,yj). (2)

When the squared loss is used, this amounts to com-
puting Wxi and to performing a nearest neighbor
search with respect to the Euclidean distance:

t(i) 2 arg min
j2{1,...,N}

kWxi � yjk2
2. (3)

Hubness. A common observation is that near-
est neighbor search for bilingual lexicon inference
suffers from the “hubness problem” (Doddington
et al., 1998; Dinu et al., 2014). Hubs are words that
appear too frequently in the neighborhoods of other
words. To mitigate this effect, a simple solution is
to replace, at inference time, the square `2-norm
in Eq. (3) by another criterion, such as ISF (Smith
et al., 2017) or CSLS (Conneau et al., 2017).

This solution, both with ISF and CSLS criteria,
is applied with a transformation W learned using
the square loss. However, replacing the loss in
Eq. (3) creates a discrepancy between the learning
of the translation model and the inference.

3 Word translation as a retrieval task

In this section, we propose to directly include the
CSLS criterion in the model in order to make learn-
ing and inference consistent. We also show how to
incorporate unsupervised information..

The CSLS criterion is a similarity measure be-
tween the vectors x and y defined as:

CSLS(x,y) = �2 cos(x,y)

+
1

k

X

y02NY (x)

cos(x,y0)+
1

k

X

x02NX(y)

cos(x0,y),

where NY (x) is the set of k nearest neighbors
of the point x in the set of target word vec-
tors Y = {y1, . . . ,yN}, and cos is the cosine sim-
ilarity. Note, the second term in the expression of
the CSLS loss does not change the neighbors of x.
However, it gives a loss function that is symmet-
rical with respect to its two arguments, which is a
desirable property for training.

Objective function. Let us now write the opti-
mization problem for learning the bilingual map-
ping with CSLS. At this stage, we follow previ-
ous work and constrain the linear mapping W
to belong to the set of orthogonal matrices Od.
Here, we also assume that word vectors are `2-
normalized. Under these assumptions, we have
cos(Wxi,yi) = x>

i W>yi. Similarly, we have
kyj � Wxik2

2 = 2 � 2x>
i W>yj . Therefore, find-

ing the k nearest neighbors of Wxi among the ele-
ments of Y is equivalent to finding the k elements
of Y which have the largest dot product with Wxi.
We adopt this equivalent formulation because it
leads to a convex formulation when relaxing the
orthogonality constraint on W. In summary, our
optimization problem with the Relaxed CSLS loss
(RCSLS) is written as:

min
W2Od

1

n

nX

i=1

�2x>
i W>yi

+
1

k

X

yj2NY (Wxi)

x>
i W>yj

+
1

k

X

Wxj2NX(yi)

x>
j W>yi. (4)
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Convex relaxation. Eq. (4) involves the min-
imization of a non-smooth cost function over
the manifold of orthogonal matrices Od. As
such, it can be solved using manifold optimiza-
tion tools (Boumal et al., 2014). In this work, we
consider as an alternative to the set Od, its convex
hull Cd, i.e., the unit ball of the spectral norm. We
refer to this projection as the “Spectral” model. We
also consider the case where these constraints on
the alignment matrix are simply removed.

Having a convex domain allows us to reason
about the convexity of the cost function. We ob-
serve that the second and third terms in the CSLS
loss can be rewritten as follows:

X

yj2Nk(Wxi)

x>
i W>yj = max

S2Sk(n)

X

j2S

x>
i W>yj ,

where Sk(n) denotes the set of all subsets of
{1, . . . , n} of size k. This term, seen as a func-
tion of W, is a maximum of linear functions of W,
which is convex (Boyd and Vandenberghe, 2004).
This shows that our objective function is convex
with respect to the mapping W and piecewise lin-
ear (hence non-smooth). Note, our approach could
be generalized to other loss functions by replac-
ing the term x>

i W>yj by any function convex in
W. We minimize this objective function over the
convex set Cd by using the projected subgradient
descent algorithm.

The projection onto the set Cd is solved by tak-
ing the singular value decomposition (SVD) of the
matrix, and thresholding the singular values to one.

Extended Normalization. Usually, the number
of word pairs in the seed lexicon n is small with
respect to the size of the dictionaries N . To benefit
from unlabeled data, it is common to add an itera-
tive “refinement procedure” (Artetxe et al., 2017)
when learning the translation model W. Given a
model Wt, this procedure iterates over two steps.
First it augments the training lexicon by keeping
the best-inferred translation in Eq. (3). Second it
learns a new mapping Wt+1 by solving the prob-
lem in Eq. (1). This strategy is similar to standard
semi-supervised approaches where the training set
is augmented over time. In this work, we propose
to use the unpaired words in the dictionaries as
“negatives” in the RCSLS loss: instead of comput-
ing the k-nearest neighbors NY (Wxi) amongst
the annotated words {y1, . . . ,yn}, we do it over
the whole dictionary {y1, . . . ,yN}.

4 Experiments

This section reports the main results obtained with
our method. We provide complementary results
and an ablation study in the appendix. We refer
to our method without constraints as RCSLS and
as RCSLS+spectral if the spectral constraints are
used.

4.1 Implementation details
We choose a learning rate in {1, 10, 25, 50} and
a number of epochs in {10, 20} on the validation
set. For the unconstrained RCSLS, a small `2 regu-
larization can be added to prevent the norm of W
to diverge. In practice, we do not use any regular-
ization. For the English-Chinese pairs (en-zh), we
center the word vectors. The number of nearest
neighbors in the CSLS loss is 10. We use the `2-
normalized fastText word vectors by Bojanowski
et al. (2017) trained on Wikipedia.

4.2 The MUSE benchmark
Table 1 reports the comparison of RCSLS with stan-
dard supervised and unsupervised approaches on
5 language pairs (in both directions) of the MUSE
benchmark (Conneau et al., 2017). Every approach
uses the Wikipedia fastText vectors and supervi-
sion comes in the form of a lexicon composed of
5k words and their translations. Regardless of the
relaxation, RCSLS outperforms the state of the art
by, on average, 3 to 4% in accuracy. This shows
the importance of using the same criterion during
training and inference. Note that the refinement
step (“refine”) also uses CSLS to finetune the align-
ments but leads to a marginal gain for supervised
methods.

Interestingly, RCSLS achieves a better perfor-
mance without constraints (+0.8%) for all pairs.
Contrary to observations made in previous works,
this result suggests that preserving the distance be-
tween word vectors is not essential for word trans-
lation. Indeed, previous works used a `2 loss where,
indeed, orthogonal constraints lead to an improve-
ment of +5.3% (Procrustes versus Least Square
Error). This suggests that a linear mapping W
with no constraints works well only if it is learned
with a proper criterion.

Impact of extended normalization. Table 2 re-
ports the gain brought by including words not in
the lexicon (unannotated words) to the performance
of RCSLS. Extending the dictionary significantly
improves the performance on all language pairs.
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Method en-es es-en en-fr fr-en en-de de-en en-ru ru-en en-zh zh-en avg.

Adversarial + refine 81.7 83.3 82.3 82.1 74.0 72.2 44.0 59.1 32.5 31.4 64.3
ICP + refine 82.2 83.8 82.5 82.5 74.8 73.1 46.3 61.6 - - -
Wass. Proc. + refine 82.8 84.1 82.6 82.9 75.4 73.3 43.7 59.1 - - -

Least Square Error 78.9 80.7 79.3 80.7 71.5 70.1 47.2 60.2 42.3 4.0 61.5
Procrustes 81.4 82.9 81.1 82.4 73.5 72.4 51.7 63.7 42.7 36.7 66.8
Procrustes + refine 82.4 83.9 82.3 83.2 75.3 73.2 50.1 63.5 40.3 35.5 66.9

RCSLS + spectral 83.5 85.7 82.3 84.1 78.2 75.8 56.1 66.5 44.9 45.7 70.2
RCSLS 84.1 86.3 83.3 84.1 79.1 76.3 57.9 67.2 45.9 46.4 71.0

Table 1: Comparison between RCSLS, Least Square Error, Procrustes and unsupervised approaches in the setting
of Conneau et al. (2017). All the methods use the CSLS criterion for retrieval. “Refine” is the refinement step
of Conneau et al. (2017). Adversarial, ICP and Wassertsein Proc. are unsupervised (Conneau et al., 2017; Hoshen
and Wolf, 2018; Grave et al., 2018).

en-es en-fr en-de en-ru avg.

Train 80.7 82.3 74.8 51.9 72.4
Ext. 84.1 83.3 79.1 57.9 76.1

Table 2: Accuracy with and without an extended nor-
malization for RCSLS. “Ext.” uses the full 200k vocab-
ulary and “Train” only uses the pairs from the training
lexicon.

en-it it-en

Adversarial + refine + CSLS 45.1 38.3

Mikolov et al. (2013b) 33.8 24.9
Dinu et al. (2014) 38.5 24.6
Artetxe et al. (2016) 39.7 33.8
Smith et al. (2017) 43.1 38.0
Procrustes + CSLS 44.9 38.5

RCSLS 45.5 38.0

Table 3: Accuracy on English and Italian with the set-
ting of Dinu et al. (2014). “Adversarial” is an unsuper-
vised technique. The adversarial and Procrustes results
are from Conneau et al. (2017). We use a CSLS crite-
rion for retrieval.

4.3 The WaCky dataset

Dinu et al. (2014) introduce a setting where word
vectors are learned on the WaCky datasets (Baroni
et al., 2009) and aligned with a noisy bilingual
lexicon. We select the number of epochs within
{1, 2, 5, 10} on a validation set. Table 3 shows that
RCSLS is on par with the state of the art. RCSLS
is thus robust to relatively poor word vectors and
noisy lexicons.

Original Aligned

Sem. Synt. Tot. Sem. Synt. Tot.

CS 26.4 76.7 63.7 27.3 77.7 64.6
DE 62.2 56.9 59.5 61.4 57.1 59.3
ES 54.5 59.4 56.8 55.1 61.1 57.9
FR 76.0 54.7 68.5 75.2 55.1 68.1
IT 51.8 62.0 56.9 52.7 63.8 58.2
PL 49.7 62.4 53.4 50.9 63.2 54.5
ZH 42.6 - 42.6 47.2 - 47.2

Avg. 51.9 62.0 57.3 52.8 58.5 58.5

Table 4: Performance on word analogies for differ-
ent languages. We compare the original embeddings to
their mapping to English. The mappings are learned
using the full MUSE bilingual lexicons. We use the
fastText vectors of Bojanowski et al. (2017).

4.4 Comparison with existing aligned vectors
Recently, word vectors based on fastText have been
aligned and released by Smith et al. (2017, Baby-
lonPartners, BP) and Conneau et al. (2017, MUSE).
Both use a variation of Procrustes to align word
vectors in the same space.

We compare these methods to RCSLS and re-
port results in Table 5. RCSLS improves the perfor-
mance by +3.5% over MUSE vectors when trained
with the same lexicon (Original). Training RSCSL
on the full training lexicon (Full) brings an addi-
tional improvement of +2.9% on average with a
CSLS criterion, and +6.1% with a NN criterion.
For reference, the performance of Procrustes only
improves by +1.4% with CSLS and even degrades
with a NN criterion. RCSLS benefits more from
additional supervision than Procrustes. Finally,
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BP⇤ MUSE Proc. RCSLS

Orig. Full Orig. Full

BG 55.7 57.5 58.1 63.9 65.2
CA 66.5 70.9 70.5 73.8 75.0
CS 63.9 64.5 66.3 68.2 71.1
DA 66.8 67.4 68.3 71.1 72.9
DE 68.9 72.7 73.5 76.9 77.6
EL 54.9 58.5 60.1 62.7 64.5
ES 82.1 83.5 84.5 86.4 87.1
ET 41.5 45.7 47.3 49.5 53.7
FI 56.7 59.5 61.9 65.8 69.9
FR 81.7 82.4 82.5 84.7 84.7
HE 51.5 54.1 55.4 57.8 60.0
HR 48.9 52.2 53.4 55.6 60.2
HU 61.9 64.9 66.1 69.3 73.1
ID 62.8 67.9 67.9 69.7 72.9
IT 75.3 77.9 78.5 81.5 82.8
MK 53.9 54.6 55.4 59.9 60.4
NL 72.0 75.3 76.1 79.7 80.5
NO 65.3 67.4 68.3 71.2 73.3
PL 63.3 66.9 68.1 70.5 73.5
PT 77.7 80.3 80.4 82.9 84.6
RO 66.3 68.1 67.6 74.0 73.9
RU 61.3 63.7 64.3 67.1 70.3
SK 55.1 55.3 57.9 59.0 61.7
SL 51.1 50.4 52.5 54.2 58.2
SV 55.9 60.0 64.0 63.7 69.5
TR 57.4 59.2 61.4 61.9 65.8
UK 48.7 49.3 51.3 51.5 55.5
VI 35.0 55.8 63.0 55.8 66.9

CSLS 60.8 63.8 65.2 67.4 70.2

NN 54.6 57.4 57.5 62.4 68.5

Table 5: Comparison with publicly available aligned
vectors over 28 languages. All use supervision. Aligne-
ments are learned either on the “Original” or “Full”
MUSE training. We report the detailed performance
with a CSLS criterion and the average for both NN and
CSLS criteria.
⇤BP uses a different training set of comparable size.

the gap between RCSLS and the other methods is
higher with a NN criterion, suggesting that RCSLS
imports some of the properties of CSLS to the dot
product between aligned vectors.

4.5 Impact on word vectors

Non-orthogonal mapping of word vectors changes
their dot products. We evaluate the impact of this
mapping on word analogy tasks (Mikolov et al.,

Original Aligned

DE
GUR350 72 74
WS350 68 70
ZG222 46 44

ES WS353 59 61

IT WS350 64 64

PT WS353 60 58

RO WS353 58 55

HJ 67 65
WS350 59 58

ZH SIM 35 44

Avg. 58.8 59.2

Table 6: Performance on word similarities for differ-
ent languages. We compare the original embeddings
to their mapping to English. The mappings are learned
with the full MUSE bilingual lexicons over the fastText
vectors of Bojanowski et al. (2017).

2013a). In Table 4, we report the accuracy on analo-
gies for raw word vectors and our vectors mapped
to English with an alignement trained on the full
MUSE training set. Regardless of the source lan-
guage, the mapping does not negatively impact the
word vectors. Similarly, our alignement has also lit-
tle impact on word similarity, as shown in Table 6.

We confirm this observation by running the re-
verse mapping, i.e., by mapping the English word
vectors of Mikolov et al. (2018) to Spanish. It leads
to an improvement of 1% both for vectors trained
on Common Crawl (85% to 86%) and Wikipedia +
News (87% to 88%).

5 Conclusion

This paper shows that minimizing a convex relax-
ation of the CSLS loss significantly improves the
quality of bilingual word vector alignment. We use
a reformulation of CSLS that generalizes to convex
functions beyond dot products and provides a sin-
gle end-to-end training that is consistent with the
inference stage. Finally, we show that removing
the orthogonality constraint does not degrade the
quality of the aligned vectors.
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Abstract

Most of the Neural Machine Translation
(NMT) models are based on the sequence-to-
sequence (Seq2Seq) model with an encoder-
decoder framework equipped with the atten-
tion mechanism. However, the conventional
attention mechanism treats the decoding at
each time step equally with the same matrix,
which is problematic since the softness of the
attention for different types of words (e.g. con-
tent words and function words) should dif-
fer. Therefore, we propose a new model with
a mechanism called Self-Adaptive Control of
Temperature (SACT) to control the softness
of attention by means of an attention temper-
ature. Experimental results on the Chinese-
English translation and English-Vietnamese
translation demonstrate that our model out-
performs the baseline models, and the anal-
ysis and the case study show that our model
can attend to the most relevant elements in the
source-side contexts and generate the transla-
tion of high quality.

1 Introduction

In recent years, Neural Machine Translation
(NMT) has become the mainstream method of
machine translation as it, in a great number of
cases, outperforms most models based on Statis-
tical Machine Translation (SMT), let alone the
linguistics-based methods. One of the most pop-
ular baseline models is the sequence-to-sequence
(Seq2Seq) model (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Cho et al., 2014) with
attention mechanism (Bahdanau et al., 2014; Lu-
ong et al., 2015). However, the conventional at-
tention mechanism is problematic in real practice.
The same weight matrix for attention is applied to
all decoder outputs at all time steps, which, how-
ever, can cause inaccuracy. Take a typical exam-
ple from the perspective of linguistics. Words can
be categorized into two types, function word, and
content word. Function words and content words

execute different functions in the construction of
a sentence, which is relevant to syntactic struc-
ture and semantic meaning respectively. Our mo-
tivation is that the attention mechanism for differ-
ent types of words, especially function word and
content word, should be different. When decod-
ing a content word, the attention scores on the
source-side contexts should be harder so that the
decoding can be more focused on the concrete
word that is semantic referent in the source text.
But when decoding a function word, the attention
scores should be softer so that the decoding can
pay attention to its syntactic constituents in the
source text that may be several words instead of
one word.

To tackle the problem mentioned above, we pro-
pose a mechanism called Self-Adaptive Control of
Temperature (SACT) to control the softness of at-
tention for the RNN-based Seq2Seq model1. We
set a temperature parameter, which can be learned
by the model based on the attention in the previ-
ous decoding time steps as well as the output of
the decoder at the current time step. With the tem-
perature parameter, the model is able to automati-
cally tune the degree of softness of the distribution
of the attention scores. To be specific, the model
can learn a soft distribution of attention which is
more uniform for generating function word and a
hard distribution which is sparser for generating
content words.

Our contributions in this study are in the follow-
ing: (1). We propose a new model for NMT, which
contains a mechanism called Self-Adaptive Con-
trol of Temperature (SACT) to control the softness
of the attention score distribution. (2). Experi-
mental results demonstrate that our model outper-
forms the attention-based Seq2Seq model in both
Chinese-English and English-Vietnamese transla-
tion, with a 2.94 BLEU point and 2.19 BLEU

1The code is available at https://github.com/
lancopku/SACT
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score advantage respectively2. (3). The analysis
shows that our model is more capable of translat-
ing long texts, compared with the baseline models.

2 Our Model

As is mentioned above, our model is substantially
a Seq2Seq framework improved by the SACT
mechanism. In this section, we first briefly de-
scribe the Seq2Seq model, then introduce the
SACT mechanism in detail.

2.1 Seq2Seq Model

We implement the encoder with bidirectional
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), where the encoder out-
puts from two directions at each time step are
concatenated, and we implement the decoder with
unidirectional LSTM. We train our model with the
Cross-Entropy Loss, which is equivalent to the
maximum likelihood estimation. In the following,
we introduce the details of our proposed attention
mechanism.

2.2 Self-Adaptive Control of Temperature

In our assumption, due to the various functions of
words, decoding at each time step should not use
the identical attention mechanism to extract the re-
quired information from the source-side contexts.
Therefore, we propose our Self-Adaptive Control
of Temperature (SACT) to improve the conven-
tional attention mechanism, so that the model can
learn to control the scale of the softness of atten-
tion for the decoding of different words. In the
following, we present the details of our design of
the mechanism.

We set a temperature parameter ⌧ to control the
softness of the attention at each time step. The
temperature parameter ⌧ can be learned by the
model itself. In our assumption, the temperature
parameter is learned based on the information of
the decoding at the current time step as well as
the attention in the previous time steps, referring
to the information about what has been translated
and what is going to be translated. Specifically, it

2What should be mentioned is that though the “Trans-
former” model is recently regarded as the best, the model
architecture is not the focus of our study. Furthermore, our
proposed mechanism can also be applied to the aforemen-
tioned model, which will be a part of our future study.

is defined as below:

⌧t = ��t (1)
�t = tanh(Wcc̃t�1 + Usst) (2)

where st is the output of the LSTM decoder as
mentioned above, c̃t�1 is the context vector gen-
erated by our attention mechanism at the last time
step (initialized with the initial state of the decoder
for the decoding at the first time step), and � is a
hyper-parameter, which decides the upper bound
and the lower bound of the scale for the softness
of attention. To be specific, � should be a number
larger than 13. The range of the output value of
tanh function is (�1, 1), so the range of the ⌧ is
( 1

� , �). Furthermore, the temperature parameter is
applied to the conventional attention mechanism.

Different from the conventional attention mech-
anism, the temperature parameter is applied to the
computation of attention score ↵ so that the scale
of the softness of attention can be changed. We
define the new attention score and context vector
as ↵̃ and c̃, which are computed as:

c̃t =
nX

i=1

↵̃t,ihi (3)

↵̃t,i =
exp(⌧�1

t et,i)Pn
j=1exp(⌧�1

t et,j)
(4)

From the definition above, it can be inferred that
when the temperature increases, the distribution
of the attention score ↵ is smoother, meaning that
softer attention is required, and when the tempera-
ture is low, the distribution is sparser, meaning that
harder attention is required. Therefore, the model
can tune the softness of the attention distribution
self-adaptively based on the current output for the
decoder and the history of attention, and learns
when to attend to only corresponding words and
when to attend to more relevant words for further
syntactic and semantic information.

3 Experiment

In the following, we introduce the experimental
details, including the datasets and the experiment
setting.

3In our experiments, we use � of different values, ranging
from 2 to 10. The performance differences of models with
different � values are not significant, and we report the results
of the model with 4 as the value of � as it achieves the best
performance.
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Model MT-03 MT-04 MT-05 MT-06 Ave.
Moses 32.43 34.14 31.47 30.81 32.21
RNNSearch 33.08 35.32 31.42 31.61 32.86
Coverage 34.49 38.34 34.91 34.25 35.49
MemDec 36.16 39.81 35.91 35.98 36.97
Seq2Seq 35.32 37.25 33.52 33.54 34.91
+SACT 38.16 40.48 36.81 35.95 37.85

Table 1: Results of the models on the Chinese-English translation

3.1 Datasets

Chinese-English Translation We train our model
on 1.25M sentence pairs4 with 27.9M Chinese
words and 34.5M English words, and we vali-
date our model on the dataset for the NIST 2002
translation task and test our model on the datasets
for the NIST 2003, 2004, 2005, 2006 translation
tasks. We use the most frequent 30K words for the
Chinese vocabulary and the English vocabulary re-
spectively, covering about 97.4% and 99.7% of the
corpora. The evaluation metric is case-insensitive
BLEU score computed by mteval-13a.perl
(Papineni et al., 2002).
English-Vietnamese Translation The training
data is from the translated TED talks, contain-
ing 133K training sentence pairs provided by the
IWSLT 2015 Evaluation Campaign (Cettolo et al.,
2015). The validation set is the TED tst2012 with
1553 sentences and the test set is the TED tst2013
with 1268 sentences. The English vocabulary is
17.7K words and the Vietnamese vocabulary is 7K
words. The evaluation metric is also BLEU as
mentioned above5.

3.2 Setting

Our model is implemented with PyTorch on an
NVIDIA 1080Ti GPU. Both the size of word em-
bedding and the size of the hidden layers in the en-
coder and decoder are 512. Gradient clipping for
the gradients is applied with the largest gradient
norm 10 in our experiments. Dropout is used with
the dropout rate set to 0.3 for the Chinese-English
translation and 0.4 for the English-Vietnamese
translation, in accordance with the evaluation on
the development set. Batch size is set to 64. We
use Adam optimizer (Kingma and Ba, 2014) to

4The dataset is extracted from LDC2002E18,
LDC2003E07, LDC2003E14, Hansards portion of
LDC2004T07, LDC2004T08 and LDC2005T06

5For comparison with the existing system, we use
multi-bleu.perl instead.

train the model6.

3.3 Baselines
In the following, we introduce our baseline mod-
els for the Chinese-English translation and the
English-Vietnamese translation respectively.

For the Chinese-English translation, we com-
pare our model with the most recent NMT sys-
tems, illustrated in the following. Moses is
an open source phrase-based translation system
with default configurations and a 4-gram language
model trained on the training data for the tar-
get language; RNNSearch is an attention-based
Seq2Seq with fine-tuned hyperparameters; Cover-
age is the attention-based Seq2Seq model with a
coverage model (Tu et al., 2016); MemDec is the
attention-based Seq2Seq model with the external
memory (Wang et al., 2016).

For the English-Vietnamese translation, the
models to be compared are presented below.
RNNSearch The attention-based Seq2Seq model
as mentioned above, and we present the results of
(Luong and Manning, 2015); NPMT is the Neu-
ral Phrase-based Machine Translation model by
Huang et al. (2017).

4 Results and Analysis

In the following, we present the experimental re-
sults as well as our analysis of temperature and
case study.

4.1 Results
We present the performance of the baseline mod-
els and our model on the Chinese-English trans-
lation in Table 1. As to the recent models on the
same task with the same training data, we extract
their results from their original articles. Com-
pared with the baseline models, our model with
the SACT for the softness of attention achieves

6↵ = 0.0003, �1 = 0.9, �2 = 0.999 and ✏ = 1 ⇥ 10�8
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Model BLEU
RNNSearch 26.10
NPMT 27.69
Seq2Seq 26.93
+SACT 29.12

Table 2: Results of the models on the English-
Vietnamese translation

better performance, with the advantages of BLEU
score 2.94 over the conventional attention-based
Seq2Seq model. The SACT effectively learns the
temperature to control the softness of attention so
that the model can utilize the information from the
source-side contexts more efficiently.

We present the results of the models on the
English-Vietnamese translation in Table 2. Com-
pared with the attention-based Seq2Seq model,
our model with the SACT can outperform it with a
clear advantage of 2.17 BLEU score. We also dis-
play the most recent model NPMT (Huang et al.,
2017) trained and tested on the dataset. Com-
pared with NPMT, our model has an advantage
of BLEU score of 1.43. It can be indicated
that for low-resource translation, the information
from the deconvolution-based decoder is impor-
tant, which brings significant improvement to the
conventional attention-based Seq2Seq model.

4.2 Analysis
In order to verify whether the automatically
changing temperature can positively impact the
performance of the model, we implement a series
of models with fixed values, ranging from 0.8 to
1.2, for the temperature parameter. From the re-
sults shown in Figure1, it can be found that the au-
tomatically changing temperature can encourage
the model to outperform those with fixed temper-
ature parameter.

Furthermore, as our model generates a temper-
ature parameter at each time step of decoding, we
present the heatmaps of two translations from the
testing on the NIST 2003 for the Chinese-English
translation on Figure 2. From the heatmaps, it can
be found that the model can adapt the tempera-
ture parameter to the generation at the current time
step. In Figure 2(a), when translating words such
as “to” and “from”, which are syntactic-relevant
prepositions and both lack direct corresponding
words in the source text or pronoun such as “they”,
whose corresponding word “tamen” in the source

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
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Figure 1: BLEU scores of the Seq2Seq models
with fixed values for the temperature parameter.
Models are tested on the test set of the English-
Vietnamese translation.

may be a part of the possessive case or the objec-
tive case, the temperature parameter increases to
soften the attention distribution so that the model
can attend to more relevant elements for accurate
extraction of the information from the source-side
contexts. On the contrary, when translating con-
tent words or phrases such as “pay attention” and
“nuclear”, where there are direct corresponding
words “zhuyi” and “hezi” in the source text, the
temperature decreases to harden the attention dis-
tribution so that the model can focus on the cor-
responding information in the source text for ac-
curate translation. In Figure 2(b), the temperature
parameters for the punctuations are high as they
are highly connected to the syntactic structure and
those for the content words with concrete corre-
spondences such as location “paris”, name of or-
ganization “xinhua”, name of person “wang” and
nationality “french”.

4.3 Case Study

We present two examples of the translation of
our model in comparison with the translation of
the conventional attention-based Seq2Seq model
and the golden translation. In Table 3(a), it
can be found that the translation of the conven-
tional Seq2Seq model does not give enough credit
to the word “chengzhang” (meaning “growth”),
while our model can not only concentrate on
the word but also recognize the word as a noun
(“chengzhang” in Chinese can be both noun and
verb). Even compared with the golden translation,
the translation of our model seems better, which
is a grammatical and coherent sentence. In Table
3(b), although the Seq2Seq model can generate the
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(a)

(b)

Figure 2: Examples of the heatmaps of tempera-
ture parameter The dark color refers to low tem-
perature, while the light color refers to high tem-
perature.

translation about the increase in the crude oil, it
wrongly connects the increase with the threat of
war in Iraq. In contrast, as our model has more
capability of analyzing the syntactic structure by
softening the attention distribution in the genera-
tion of syntax-relevant words, it extracts the causal
relationship in the source text and generates the
correct translation.

5 Related Work

Most systems for Neural Machine Translation
are based on the sequence-to-sequence model
(Seq2Seq) (Sutskever et al., 2014), which is an
encoder-decoder framework (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014; Sutskever et al.,
2014). To improve NMT, a significant mechanism
for the Seq2Seq model is the attention mechanism
(Bahdanau et al., 2014). Two types of attention
are the most common, which are proposed by Bah-
danau et al. (2014) and Luong et al. (2015) respec-
tively.

Though the attention mechanism is powerful
for the requirements of alignment in NMT, some
prominent problems still exist. To tackle the im-
pact of the attention historyTu et al. (2016); Mi
et al. (2016); Meng et al. (2016); Wang et al.
(2016); Lin et al. (2018a) take the attention history
into consideration. An important breakthrough in
NMT is that Vaswani et al. (2017) applied the
fully-attention-based model to NMT and achieved
the state-of-the-art performance. To further eval-
uate the effect of our attention temperature mech-
anism, we will implement it to the “Transformer”
model in the future. Besides, the studies on the at-

Source: -˝'FK:(7⇣�⌃œ◆
Gold: growth of mobile phone users in mainland china to
slow down
Seq2Seq: mainland cell phone users slow down
SACT: the growth of cell phone users in chinese main-

land will slow down

(a)
Source: Í ªt 12 Âe, ◊ ‘Ö^… ˝Ö 'bÂ å
⌦…K⇠âÑqÕ,˝E⇥: üπ˜<�Ì⌦®⇥
Gold: since december last year , the price of crude oil on
the international market has kept rising due to the general
strike in venezuela and the threat of war in iraq .
Seq2Seq: since december last year , the international mar-
ket has continued to rise in the international market and
the threat of the iraqi war has continued to rise .
SACT: since december last year , the interna-
tional market of crude oil has continued to rise
because of the strike in venezuela and the war in iraq .

(b)

Table 3: Two examples of the translation on the
NIST 2003 Chinese-English translation task. The
difference between Seq2Seq and SACT is shown
in color.

tention mechanism have also contributed to some
other tasks (Lin et al., 2018b; Liu et al., 2018)

Beyond the attention mechanism, there are also
important methods for the Seq2Seq that contribute
to the improvement of NMT. Ma et al. (2018) in-
corporates the information about the bag-of-words
of the target for adapting to multiple translations,
and Lin et al. (2018c) takes the target context into
consideration.

6 Conclusion and Future Work

In this paper, we propose a novel mechanism for
the control over the scope of attention so that
the softness of the attention distribution can be
changed adaptively. Experimental results demon-
strate that the model outperforms the baseline
models, and the analysis shows that our tempera-
ture parameter can change automatically when de-
coding diverse words. In the future, we hope to
find out more patterns and generalized rules to ex-
plain the model’s learning of the temperature.
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Abstract

In order to extract the best possible perfor-
mance from asynchronous stochastic gradient
descent one must increase the mini-batch size
and scale the learning rate accordingly. In or-
der to achieve further speedup we introduce a
technique that delays gradient updates effec-
tively increasing the mini-batch size. Unfor-
tunately with the increase of mini-batch size
we worsen the stale gradient problem in asyn-
chronous stochastic gradient descent (SGD)
which makes the model convergence poor. We
introduce local optimizers which mitigate the
stale gradient problem and together with fine
tuning our momentum we are able to train a
shallow machine translation system 27% faster
than an optimized baseline with negligible
penalty in BLEU.

1 Introduction

With training times measured in days, paralleliz-
ing stochastic gradient descent (SGD) is valuable
for making experimental progress and scaling data
sizes. Synchronous SGD sums gradients com-
puted by multiple GPUs into one update, equiva-
lent to a larger batch size. But GPUs sit idle unless
workloads are balanced, which is difficult in ma-
chine translation and other natural language tasks
because sentences have different lengths. Asyn-
chronous SGD avoids waiting, which is faster in
terms of words processed per second. However
asynchronous SGD suffers from stale gradients
(Abadi et al., 2016) that degrade convergence, re-
sulting in an almost no improvement in time to con-
vergence (Hadjis et al., 2016). This paper makes
asynchronous SGD even faster and deploys a series
of convergence optimizations.

In order to achieve fastest training (and inspired
by Goyal et al. (2017) we increase the mini-batch
size, making the matrix operations more efficient
and reducing the frequency of gradient communica-

tion for the optimizer step. Unlike their task (image
classification), text training consumes a lot of GPU
Memory (Table 1) for word embedding activations
making it impossible to fit mini-batches of similar
magnitude as Goyal et al. (2017).

Our main contributions are as follows:
1. We introduce a delayed gradient updates

which allow us to work with much larger mini-
batches which would otherwise not be possi-
ble due to limited GPU memory.

2. We introduce local optimizers which run on
each worker to mitigate the extra staleness and
convergence issues (Dekel et al., 2010; Keskar
et al., 2017) caused by large mini-batches.

3. We highlight the importance of tuning the op-
timizer momentum and show how it can be
used as a cooldown strategy.

VRAM ⌧ Words WPS
3 GB 1 3080 19.5k
7 GB 1 7310 36.6k
10 GB 1 10448 40.2k
20* GB 2 20897 44.2k
30* GB 2 31345 46.0k
40* GB 4 41794 47.6k

Table 1: Relationship between the GPU Mem-
ory (VRAM) budget for batches (* means emu-
lated by summing ⌧ smaller batches), number of
source words processed in each batch and words-
per-second (WPS) measured on a shallow model.

2 Experiments

This section introduces each optimization along
with an intrinsic experiment on the WMT 2016
Romanian!English task (Bojar et al., 2016).

The translation system is equivalent to Sennrich
et al. (2016), which was the first place constrained
system (and tied for first overall in the WMT16
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shared task.). The model is a shallow bidirectional
GRU (Bahdanau et al., 2014) encoder-decoder
trained on 2.6 million parallel sentences. Due to
variable-length sentences, machine translation sys-
tems commonly fix a memory budget then pack
as many sentences as possible into a dynamically-
sized batch. The memory allowance for mini-
batches in our system is 3 GB (for an average batch
size of 2633 words). Adam (Kingma and Ba, 2015)
is used to perform asynchronous SGD with learn-
ing rate of 0.0001. This is our baseline system. We
also compare with a synchronous baseline which
uses modified Adam parameters, warmup of 16000
mini-batches and inverse square root cooldown fol-
lowing Vaswani et al. (2017). We used 4 Tesla P
100 GPUs in a single node with the Marian NMT
framework for training (Junczys-Dowmunt et al.,
2018). Since we apply optimizations over asyn-
chronous SGD we performed a learning rate and
mini-batch-size parameter sweep over the baseline
system and settled on a learning rate of 0.00045
and 10 GB memory allowance for mini-batches
(average batch size of 10449 words). This is the
fastest system we could train without sacrificing
performance before adding our improvements. In
our experiments on Table 2 we refer to this sys-
tem as ”Optimized asynchronous”. All systems
were trained until 5 consecutive stalls in the cross-
entropy metric of the validation set. Note that some
systems require more epochs to reach this criteria
which indicates poor model convergence.

2.1 Larger Batches and delayed updates

This experiment aims to increase speed, in words-
per-second (WPS), by increasing the batch size.
Larger batches have two well-known impacts on
speed: making more use of GPU parallelism and
communicating less often.

After raising the batch size to the maximum that
fits on the GPU,1 we emulate even larger batches
by processing multiple mini-batches and summing
their gradients locally without sending them to the
optimizer. This still increases speed because com-
munication is reduced (Table 1). We introduce
parameter ⌧ , which is the number of iterations a
GPU performs locally before communicating exter-
nally as if it had run one large batch. The Words-

1The Tesla P100 has 16 GB of GPU memory and we opt to
use 10 GBs of mini-batches and the rest is used to store model
parameters, shards, optimizers and additional system specific
elements such as the cache vectors for gradient dropping (Aji
and Heafield, 2017).

per-second (WPS) column on Table 1 shows the
effect on corpora processing speed when applying
delayed gradients updates for different values of
⌧ . While we reduce the overall training time if we
just apply delayed gradient updates we worsen the
overall convergence (Table 2).

When increasing the mini-batch size ⌧ times
without touching the learning rate, we effectively
do ⌧ times less updates per epoch. On the sur-
face, it might seem that these less frequent updates
are counterbalanced by the fact that each update
is accumulated over a larger batch. But practical
optimization heuristics like gradient clipping mean
that in effect we end up updating the model less
often, resulting in slower convergence. Goyal et al.
(2017) recommend scaling the learning rate lin-
early with the mini-batch size in order to maintain
convergence speed.

2.2 Warmup
Goyal et al. (2017) point out that just increasing
the learning rate performs poorly for very large
batch sizes, because when the model is initialized
at a random point, the training error is large. Large
error and large learning rate result in bad ”jerky”
updates to the model and it can’t recover from those.
Goyal et al. (2017) suggest that initially model
updates should be small so that the model will not
be pushed in a suboptimal state. Afterwards we no
longer need to be so careful with our updates.

2.2.1 Lowering initial learning rate
Goyal et al. (2017) lower the initial learning rate
and gradually increase it over a number of mini-
batches until it reaches a predefined maximum.
This technique is also adopted in the work of
Vaswani et al. (2017). This is the canonical way to
perform warmup for neural network training.

2.2.2 Local optimizers
We propose an alternative warm up strategy and
compare it with the canonical method. Since we
emulate large batches by running multiple smaller
batches, it makes sense to consider whether to op-
timize locally between each batch by adapting the
concept of local per-worker optimizers from Zhang
et al. (2014). In asynchronous SGD setting each
GPU has a full copy of the model as well as the mas-
ter copy of 1/N th of the parameters in its capacity
as parameter server. We use the local optimizers to
update the local model shard in between delayed
gradient updates, which helps mitigate staleness.

2992



Unlike prior work, we also update the shard of the
global model that happens to be on the same GPU.
Local updates are almost free because we avoid
remote device communication.

Updating the parameter shard of the global
model bears some resemblance to the Hogwild
method (Recht et al., 2011) as we don’t synchro-
nize the updates to the shard, however, global up-
dates are still synchronised. As before, once every
⌧ iterations we run a global optimizer that updates
the sharded parameter set and then distributes the
updated model across all devices. Any local model
divergences are lost at this point. We found that this
strategy improves model convergence in the early
epochs but tends to be harmful later on. We hypoth-
esize that initially partial model updates reduce
staleness, but when the model starts to converge,
local optimizers introduce extra noise in the train-
ing, which is harmful. We use local optimizers
purely as a warmup strategy, turning them off after
the initial phase of the training. Empirically, we
found that we can get the best convergence by us-
ing them for the first 4000 mini-batches that each
device sees. On Table 2 we compare and contrast
the two warmup strategies. By itself learning-rate
warmup offers slower convergence but to a better
point compared to local optimizers. The reader may
notice that if we apply delayed gradient updates,
the effective batch size that the global optimizer
deals with is ⌧ times larger than the mini-batch
size on which the local optimizers runs. Therefore
we use ⌧ times lower learning rate for the local
optimizers compared to the global optimizers.

2.3 Momentum cooldown and tuning

Goyal et al. (2017) and Vaswani et al. (2017) both
employ cooldown strategies that lower the learning
rate towards the end of training. Inspired by the
work of Hadjis et al. (2016) however we decided to
pursue a different cooldown strategy by modifying
the momentum inside Adam’s parameters.

Momentum tuning is not a well explored area in
deep learning. Most researchers simply use the de-
fault values for momentum for a chosen optimizer
(Hadjis et al., 2016) (in the case of NMT, this is
usually Adam). Hadjis et al. (2016) argue that this
is an oversight especially when it comes to asyn-
chronous SGD, because the asynchronisity adds
extra implicit momentum to the training which is
not accounted for. Because of this, asynchronous
SGD has been deemed ineffective, as without mo-

mentum tuning, the observed increase in training
speed is negated by the lower convergence rate, re-
sulting in near-zero net gain (Abadi et al., 2016).
However, Hadjis et al. (2016) show that after per-
forming a grid search over momentum values, it is
possible to achieve convergence rates typical for
synchronous SGD even when working with many
asynchronous workers. The downside of momen-
tum tuning is that we can’t offer rule-of-thumb
values, as they are individually dependent on the
optimizer used, the neural model, the number of
workers and the batch size. In our experiments, we
lowered the overall momentum and in addition per-
formed momentum cooldown where we reduced
the momentum of our optimizer (Adam) after the
first few thousand batches.

2.4 Results
Table 2 shows the effect of modifying momentum
values. When using just delayed gradient updates,
training is noticeably faster, but there are signifi-
cant regressions in BLEU and CE (system 2). In
order to mitigate those, when using delayed gradi-
ent updates, we tune the momentum and apply mo-
mentum cooldown on top of either of our warmup
strategies. By doing this we not only further reduce
training time, but also recover the loss of accuracy.
Compared to the optimized baseline system (1), our
best system (4) reduces the training time by 27%.
Progression of the training can be seen on figures
1 and 2. Our system starts poorly compared to the
baselines in terms of epoch-for-epoch convergence,
but catches up in the later epochs. Due to faster
training speed however, the desired BLEU score is
achieved faster (Figure 2).

Local optimizers as a warmup strategy show
faster convergence compared to learning rate
warmup at almost no penalty to BLEU or cross-
entropy (System 4 vs system 6). Against the sys-
tem used in WMT 16 (Sennrich et al., 2016), we
achieve nearly 4 times faster training time with no
discernible penalty in BLEU or CE. In contrast, the
other communication reducing method tested, the
work of Aji and Heafield (2017), is slower than our
work and achieves worse BLEU and CE.

2.5 Using even larger mini-batches
We can achieve even greater processing speed by
further increasing ⌧ but we were unable to maintain
the same convergence with the Romanian-English
shallow model. We found that larger ⌧ values are
useful when dealing with the larger deep RNN mod-
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System Time (hours) Epochs BLEU CE WPS
synchronous 14.3 11 35.3 50.63 15.7k
asynchronous (0) 12.2 13 35.61 50.47 19.5k
(0) + Aji and Heafield (2017) 6.23 12 35.16 50.86 26.9k
optimized asynchronous (1) 4.97 10 35.56 50.90 40.2k
(1) + Aji and Heafield (2017) 4.32 11 35.16 52.02 41.5k
(1) + delayed updates ⌧ = 2 (2) 4.20 11 34.82 51.68 44.2k
(2) + local optimizers (3) 3.66 10 35.45 51.32 44.2k
(3) + momentum tuning (4) 3.66 10 35.48 50.87 44.2k
(2) + warmup (5) 4.87 13 35.29 50.78 44.2k
(5) + momentum tuning (6) 3.98 11 35.76 50.73 44.2k

Table 2: Romanian-English results from our exploration and optimizations. We also compare our methods
against the work of Aji and Heafield (2017) which also reduces communication. We use system (1) as our
reference baseline upon which we improve. The system that achieved the best training time is bolded.
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Figure 1: Cross-entropy training progression per
epoch for our ro-en systems.

els. With deep RNN models the parameters take the
majority of the available VRAM leaving very little
for mini-batches. In this scenario we can apply
⌧ = 4 without negative effect towards convergence.
We demonstrate the effectiveness of larger ⌧ on Ta-
ble 3. The baseline system is equivalent to the win-
ning system for English-German at the WMT 2017
competition (Sennrich et al., 2017). The baseline is
trained with synchronous SGD and our system uses
asynchronous SGD, delayed gradient updates by
a factor of 4, local optimizers and the momentum
is tuned and further reduced after the first 16000
mini-batches. We found learning rate of 0.0007 to
work the best. We do not report the numbers for
asynchronous baseline because we were unable to
achieve competitive BLEU scores without using
delayed gradient updates. We speculate this is be-
cause with this type of deep model, our mini-batch

0 5000 10000 15000 20000 25000
Time (seconds)

26

28

30

32

34

36

B
LE

U

Romanian-English on 4 GPUs BLEU against time
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asynchronous + delayed updates ⌧ = 2 +
local optimizers + momentum tuning (4)

Figure 2: BLEU scores for our ro-en systems.

size is very small leading to very jerky and unstable
training updates. Larger mini-batches ensure the
gradients produced by different workers are going
to be closer to one another. Our training progres-
sion can be seen on figures 3 and 4. We show that
even though we use 4 times larger mini-batches we
actually manage to get lower Cross-Entropy epoch
for epoch compared to the baseline (Figure 3). This
coupled with out higher training speed makes our
method reach the best BLEU score 1.6 times faster
than the baseline (Figure 4).

3 Related work

We use larger mini-batches and delay gradient up-
dates in order to increase the speed at which the
dataset is processed. The principal reason why this
works is because when mini-batch size is increased
n (also includes delayed updates) times, commu-
nication is reduced by the same amount. This as-
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System Time (h) BLEU CE
Baseline 51.3 25.1 47.31
Async (4) + ⌧ = 4 39.7 25.07 46.59

Table 3: Training times for English-German deep
RNN system trained on WMT17 data. Our asyn-
chronous system includes the optimizations of sys-
tem (4) from Table 2.
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Figure 3: CE scores for our en-de systems.

pect of our work is similar to the work of Aji and
Heafield (2017) where they drop the lower 99% of
the gradient updates based on absolute value thus
reducing the memory traffic. Compared with them
we achieve faster dataset processing speed and also
better model convergence as shown on Table 2.

Independently from us Mao et al. (2018) extend
the work of Aji and Heafield (2017) aiming to re-
duce gradient communication without suffering any
of the negative effects we have noted. In process
they independently arrive to some of the methods
that we use, notably tuning the momentum and
applying warmup to achieve better convergence.

Independently from us Shazeer and Stern (2018)
have done further exploratory work on ADAM’s
momentum parameters using the Transformer
model (Vaswani et al., 2017) as a case study and
have offered a mathematical explanation about why
different stages of the training require different mo-
mentum values.2

Independently from us Saunders et al. (2018)
have employed delayed gradient updates in syntax
NMT setting, where the sequences are much longer
due to the syntax annotation and delayed updates
are necessary because video RAM is limited.3

2This work was published on 11.04.2018.
3This work was published on 01.05.2018.
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Figure 4: BLEU scores for our en-de systems.

Independently from us Lin et al. (2018) have
developed their own local optimizer solution as an
alternative to increasing mini-batch sizes.4

4 Conclusion and Future work

We show that we can increase speed and main-
tain convergence rate for very large mini-batch
asynchronous SGD by carefully adjusting momen-
tum and applying warmup and cooldown strate-
gies. While we have demonstrated our methods
on GPUs, they are hardware agnostic and can be
applied to neural network training on any multi-
device hardware such as TPUs or Xeon Phis. We
were able to achieve end-to-end training on multi-
ple tasks a lot faster than the baseline systems. For
our Romanian-English model, we train nearly 3X
faster than the commonly used baseline and 1.5X
faster over a specifically optimised baseline. When
experimenting with English-German we are able
to train our model 1.3X faster than the baseline
model, achieving practically the same BLEU score
and much better model cross-entropy.

In the future we would like to apply local opti-
mizers in distributed setting where the communi-
cation latency between local and remote devices
varies significantly we could use local optimizers
to synchronize remote models less often.
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Abstract

Pronouns are frequently omitted in pro-drop
languages, such as Chinese, generally lead-
ing to significant challenges with respect to
the production of complete translations. Re-
cently, Wang et al. (2018) proposed a novel
reconstruction-based approach to alleviating
dropped pronoun (DP) translation problems
for neural machine translation models. In this
work, we improve the original model from two
perspectives. First, we employ a shared recon-
structor to better exploit encoder and decoder
representations. Second, we jointly learn to
translate and predict DPs in an end-to-end
manner, to avoid the errors propagated from
an external DP prediction model. Experimen-
tal results show that our approach significantly
improves both translation performance and DP
prediction accuracy.

1 Introduction

Pronouns are important in natural languages as
they imply rich discourse information. How-
ever, in pro-drop languages such as Chinese and
Japanese, pronouns are frequently omitted when
their referents can be pragmatically inferred from
the context. When translating sentences from a
pro-drop language into a non-pro-drop language
(e.g. Chinese-to-English), translation models gen-
erally fail to translate invisible dropped pronouns
(DPs). This phenomenon leads to various trans-
lation problems in terms of completeness, syntax
and even semantics of translations. A number of
approaches have been investigated for DP trans-
lation (Le Nagard and Koehn, 2010; Xiang et al.,
2013; Wang et al., 2016, 2018).

Wang et al. (2018) is a pioneering work to
model DP translation for neural machine trans-

⇤ Zhaopeng Tu is the corresponding author of the paper.
This work was conducted when Longyue Wang was studying
and Qun Liu was working at the ADAPT Centre in the School
of Computing at Dublin City University.

lation (NMT) models. They employ two sepa-
rate reconstructors (Tu et al., 2017) to respectively
reconstruct encoder and decoder representations
back to the DP-annotated source sentence. The
annotation of DP is provided by an external pre-
diction model, which is trained on the parallel cor-
pus using automatically learned alignment infor-
mation (Wang et al., 2016). Although this model
achieved significant improvements, there nonethe-
less exist two drawbacks: 1) there is no interaction
between the two separate reconstructors, which
misses the opportunity to exploit useful relations
between encoder and decoder representations; and
2) the external DP prediction model only has an
accuracy of 66% in F1-score, which propagates
numerous errors to the translation model.

In this work, we propose to improve the orig-
inal model from two perspectives. First, we use
a shared reconstructor to read hidden states from
both encoder and decoder. Second, we integrate
a DP predictor into NMT to jointly learn to trans-
late and predict DPs. Incorporating these as two
auxiliary loss terms can guide both the encoder
and decoder states to learn critical information rel-
evant to DPs. Experimental results on a large-
scale Chinese–English subtitle corpus show that
the two modifications can accumulatively improve
translation performance, and the best result is +1.5
BLEU points better than that reported by Wang
et al. (2018). In addition, the jointly learned DP
prediction model significantly outperforms its ex-
ternal counterpart by 9% in F1-score.

2 Background

As shown in Figure 1, Wang et al. (2018) in-
troduced two independent reconstructors with
their own parameters, which reconstruct the DP-
annotated source sentence from the encoder and
decoder hidden states, respectively. The central
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Figure 1: Architecture of separate reconstructors.

Prediction F1-score Example
DP Position 88% `̀̀‰Ñ #DP#⌫ ?
DP Words 66% `̀̀‰ÑÉÉÉ⌫ ?

Table 1: Evaluation of external models on predict-
ing the positions of DPs (“DP Position”) and the
exact words of DP (“DP Words”).

idea underpinning their approach is to guide the
corresponding hidden states to embed the recalled
source-side DP information and subsequently to
help the NMT model generate the missing pro-
nouns with these enhanced hidden representations.

The DPs can be automatically annotated for
training and test data using two different strate-
gies (Wang et al., 2016). In the training phase,
where the target sentence is available, we anno-
tate DPs for the source sentence using alignment
information. These annotated source sentences
can be used to build a neural-based DP predic-
tor, which can be used to annotate test sentences
since the target sentence is not available during
the testing phase. As shown in Table 1, Wang
et al. (2016, 2018) explored to predict the exact
DP words1, the accuracy of which is only 66% in
F1-score. By analyzing the translation outputs, we
found that 16.2% of errors are newly introduced
and caused by errors from the DP predictor. For-
tunately, the accuracy of predicting DP positions
(DPPs) is much higher, which provides the chance
to alleviate the error propagation problem. Intu-
itively, we can learn to generate DPs at the pre-
dicted positions using a jointly trained DP predic-
tor, which is fed with informative representations
in the reconstructor.

1Unless otherwise indicated, in the paper, the terms “DP”
and “DP word” are identical.

3 Approach
3.1 Shared Reconstructor
Recent work shows that NMT models can benefit
from sharing a component across different tasks
and languages. Taking multi-language translation
as an example, Firat et al. (2016) share an attention
model across languages while Dong et al. (2015)
share an encoder. Our work is most similar to
the work of Zoph and Knight (2016) and Anas-
tasopoulos and Chiang (2018), which share a de-
coder and two separate attention models to read
from two different sources. In contrast, we share
information at the level of reconstructed frames.

The architectures of our proposed shared recon-
struction model are shown in Figure 2(a). For-
mally, the reconstructor reads from both the en-
coder and decoder hidden states, as well as the
DP-annotated source sentence, and outputs a re-
construction score. It uses two separate attention
models to reconstruct the annotated source sen-
tence x̂ = {x̂1, x̂2, . . . , x̂T } word by word, and
the reconstruction score is computed by

R(x̂|henc,hdec) =
TY

t=1

gr(x̂t�1,h
rec
t , ĉenc

t , ĉdec
t )

where hrec
t is the hidden state in the reconstructor,

and computed by Equation (1):

hrec
t = fr(x̂t�1,h

rec
t�1, ĉ

enc
t , ĉdec

t ) (1)

Here gr(·) and fr(·) are respectively softmax and
activation functions for the reconstructor. The
context vectors ĉenc

t and ĉdec
t are the weighted sum

of henc and hdec, respectively, as in Equation (2)
and (3):

ĉenc
t =

PJ
j=1 ↵̂

enc
t,j · henc

j (2)

ĉdec
t =

PI
i=1 ↵̂

dec
t,i · hdec

i (3)

Note that the weights ↵̂enc and ↵̂dec are calculated
by two separate attention models. We propose two
attention strategies which differ as to whether the
two attention models have interactions or not.

Independent Attention calculates the two
weight matrices independently, as in Equation (4)
and (5):

↵̂enc = ATTenc(x̂t�1,h
rec
t�1,h

enc) (4)

↵̂dec = ATTdec(x̂t�1,h
rec
t�1,h

dec) (5)

where ATTenc(·) and ATTdec(·) are two separate
attention models with their own parameters.
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(a) Shared reconstructor.
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(b) Shared reconstructor with joint prediction.

Figure 2: Model architectures in which the words in red are automatically annotated DPs and DPPs.

Interactive Attention feeds the context vector
produced by one attention model to another atten-
tion model. The intuition behind this is that the
interaction between two attention models can lead
to a better exploitation of the encoder and decoder
representations. As the interactive attention is di-
rectional, we have two options (Equation (6) and
(7)) which modify either ATTenc(·) or ATTdec(·)
while leaving the other one unchanged:

• enc!dec:

↵̂dec = ATTdec(x̂t�1,h
rec
t�1,h

dec, ĉenc
t ) (6)

• dec!enc:

↵̂enc = ATTenc(x̂t�1,h
rec
t�1,h

enc, ĉdec
t ) (7)

3.2 Joint Prediction of Dropped Pronouns
Inspired by recent successes of multi-task learn-
ing (Dong et al., 2015; Luong et al., 2016), we
propose to jointly learn to translate and predict
DPs (as shown in Figure 2(b)). To ease the learn-
ing difficulty, we leverage the information of DPPs
predicted by an external model, which can achieve
an accuracy of 88% in F1-score. Accordingly, we
transform the original DP prediction problem to
DP word generation given the pre-predicted DP
positions. Since the DPP-annotated source sen-
tence serves as the reconstructed input, we in-
troduce an additional DP-generation loss, which
measures how well the DP is generated from the
corresponding hidden state in the reconstructor.

Let dp = {dp1, dp2, . . . , dpD} be the list of
DPs in the annotated source sentence, and hrec =
{hrec

1 ,hrec
2 , . . . ,hrec

D } be the corresponding hid-
den states in the reconstructor. The generation

probability is computed by

P (dp|hrec) =
DY

d=1

P (dpd|hrec
d )

=
DY

d=1

gp(dpd|hrec
d )

(8)

where gp(·) is softmax for the DP predictor.

3.3 Training and Testing
We train both the encoder-decoder and the shared
reconstructors together in a single end-to-end pro-
cess, and the training objective is

J(✓, �, ) = arg max
✓,�, 

⇢
log L(y|x; ✓)| {z }

likelihood
+ log R(x̂|henc,hdec; ✓, �)| {z }

reconstruction

+ log P (dp|ĥrec; ✓, �, )| {z }
prediction

�
(9)

where {✓, �, } are respectively the parameters
associated with the encoder-decoder, shared re-
constructor and the DP prediction model. The
auxiliary reconstruction objective R(·) guides the
related part of the parameter matrix ✓ to learn
better latent representations, which are used to
reconstruct the DPP-annotated source sentence.
The auxiliary prediction loss P (·) guides the re-
lated part of both the encoder-decoder and the re-
constructor to learn better latent representations,
which are used to predict the DPs in the source
sentence.

Following Tu et al. (2017) and Wang
et al. (2018), we use the reconstruction score
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# Model #Params Speed BLEUTrain Decode
Existing system (Wang et al., 2018)

1 Baseline 86.7M 1.60K 15.23 31.80
2 Baseline (+DPs) 86.7M 1.59K 15.20 32.67
3 Separate-Recs)(+DPs) +73.8M 0.57K 12.00 35.08

Our system
4 Baseline (+DPPs) 86.7M 1.54K 15.19 33.18
5 Shared-Recindependent)(+DPPs) +86.6M 0.52K 11.87 35.27†‡

6 Shared-Recindependent)(+DPPs) + joint prediction +87.9M 0.51K 11.88 35.88†‡

7 Shared-Recenc!dec)(+DPPs) + joint prediction +91.9M 0.48K 11.84 36.53†‡

8 Shared-Recdec!enc)(+DPPs) + joint prediction +89.9M 0.49K 11.85 35.99†‡

Table 2: Evaluation of translation performance for Chinese–English. “Baseline” is trained and evaluated
on the original data, while “Baseline (+DPs)” and “Baseline (+DPPs)” are trained on the data anno-
tated with DPs and DPPs, respectively. Training and decoding (beam size is 10) speeds are measured
in words/second. “†” and “‡” indicate statistically significant difference (p < 0.01) from “Baseline
(+DDPs)” and “Separate-Recs)(+DPs)”, respectively.

as a reranking technique to select the best trans-
lation candidate from the generated n-best list at
testing time. Different from Wang et al. (2018),
we reconstruct DPP-annotated source sentence,
which is predicted by an external model.

4 Experiment

4.1 Setup

To compare our work with the results reported by
previous work (Wang et al., 2018), we conducted
experiments on their released Chinese)English
TV Subtitle corpus.2 The training, validation, and
test sets contain 2.15M, 1.09K, and 1.15K sen-
tence pairs, respectively. We used case-insensitive
4-gram NIST BLEU metrics (Papineni et al.,
2002) for evaluation, and sign-test (Collins et al.,
2005) to test for statistical significance.

We implemented our models on the code repos-
itory released by Wang et al. (2018).3 We used
the same configurations (e.g. vocabulary size =
30K, hidden size = 1000) and reproduced their re-
ported results. It should be emphasized that we
did not use the pre-train strategy as done in Wang
et al. (2018), since we found training from scratch
achieved a better performance in the shared recon-
structor setting.

2https://github.com/longyuewangdcu/
tvsub

3https://github.com/tuzhaopeng/nmt

4.2 Results

Table 2 shows the translation results. It is clear
that the proposed models significantly outperform
the baselines in all cases, although there are con-
siderable differences among different variations.

Baselines (Rows 1-4): The three baselines
(Rows 1, 2, and 4) differ regarding the training
data used. “Separate-Recs)(+DPs)” (Row 3) is
the best model reported in Wang et al. (2018),
which we employed as another strong baseline.
The baseline trained on the DPP-annotated data
(“Baseline (+DPPs)”, Row 4) outperforms the
other two counterparts, indicating that the error
propagation problem does affect the performance
of translating DPs. It suggests the necessity of
jointly learning to translate and predict DPs.

Our Models (Rows 5-8): Using our shared re-
constructor (Row 5) not only outperforms the cor-
responding baseline (Row 4), but also surpasses
its separate reconstructor counterpart (Row 3). In-
troducing a joint prediction objective (Row 6) can
achieve a further improvement of +0.61 BLEU
points. These results verify that shared reconstruc-
tor and jointly predicting DPs can accumulatively
improve translation performance.

Among the variations of shared reconstructors
(Rows 6-8), we found that an interaction attention
from encoder to decoder (Row 7) achieves the best
performance, which is +3.45 BLEU points better
than our baseline (Row 4) and +1.45 BLEU points
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better than the best result reported by Wang et al.
(2018) (Row 3). We attribute the superior per-
formance of “Shared-Recenc!dec” to the fact that
the attention context over encoder representations
embeds useful DP information, which can help to
better attend to the representations of the corre-
sponding pronouns in the decoder side. Similar
to Wang et al. (2018), the proposed approach im-
proves BLEU scores at the cost of decreased train-
ing and decoding speed, which is due to the large
number of newly introduced parameters resulting
from the incorporation of reconstructors into the
NMT model.

4.3 Analysis

Models Precision Recall F1-score
External 0.67 0.65 0.66
Joint 0.74 0.76 0.75

Table 3: Evaluation of DP prediction accu-
racy. “External” model is separately trained on
DP-annotated data with external neural methods
(Wang et al., 2016), while “Joint” model is jointly
trained with the NMT model (Section 3.2).

DP Prediction Accuracy As shown in Table 3,
the jointly learned model significantly outper-
forms the external one by 9% in F1-score. We
attribute this to the useful contextual informa-
tion embedded in the reconstructor representa-
tions, which are used to generate the exact DP
words.

Model Test 4
Baseline (+DPPs) 33.18 –
Separate-Recs (+DPs) 34.02 +0.84
Shared-Rec (+DPPs) 34.80 +1.62

Table 4: Translation results when reconstruction
is used in training only while not used in testing.

Contribution Analysis Table 4 lists translation
results when the reconstruction model is used in
training only. We can see that the proposed model
outperforms both the strong baseline and the best
model reported in Wang et al. (2018). This is en-
couraging since no extra resources and compu-
tation are introduced to online decoding, which
makes the approach highly practical, for example
for translation in industry applications.

Model Auto. Man. 4
Seperate-Recs (+DPs) 35.08 38.38 +3.30
Shared-Rec (+DPPs) 36.53 38.94 +2.41

Table 5: Translation performance gap (“4”)
between manually (“Man.”) and automatically
(“Auto.”) labelling DPs/DPPs for input sentences
in testing.

Effect of DPP Labelling Accuracy For each
sentence in testing, the DPs and DPPs are labelled
automatically by two separate external prediction
models, the accuracy of which are respectively
66% and 88% measured in F1 score. We investi-
gate the best performance the models can achieve
with manual labelling, which can be regarded as
an “Oracle”, as shown in Table 5. As seen, there
still exists a significant gap in performance, and
this could be improved by improving the accuracy
of our DPP generator. In addition, our models
show a relatively smaller distance in performance
from the oracle performance (“Man”), indicating
that the error propagation problem is alleviated to
some extent.

5 Conclusion

In this paper, we proposed effective approaches of
translating DPs with NMT models: shared recon-
structor and jointly learning to translate and pre-
dict DPs. Through experiments we verified that
1) shared reconstruction is helpful to share knowl-
edge between the encoder and decoder; and 2)
joint learning of the DP prediction model indeed
alleviates the error propagation problem by im-
proving prediction accuracy. The two approaches
accumulatively improve translation performance.
The method is not restricted to the DP transla-
tion task and could potentially be applied to other
sequence generation problems where additional
source-side information could be incorporated.

In future work we plan to: 1) build a fully
end-to-end NMT model for DP translation, which
does not depend on any external component (i.e.
DPP predictor); 2) exploit cross-sentence context
(Wang et al., 2017) to further improve DP trans-
lation; 3) investigate a new research strand that
adapts our model in an inverse translation direc-
tion by learning to drop pronouns instead of re-
covering DPs.
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Abstract

Speakers of different languages must attend
to and encode strikingly different aspects of
the world in order to use their language cor-
rectly (Sapir, 1921; Slobin, 1996). One such
difference is related to the way gender is ex-
pressed in a language. Saying “I am happy”
in English, does not encode any additional
knowledge of the speaker that uttered the sen-
tence. However, many other languages do
have grammatical gender systems and so such
knowledge would be encoded. In order to
correctly translate such a sentence into, say,
French, the inherent gender information needs
to be retained/recovered. The same sentence
would become either “Je suis heureux”, for a
male speaker or “Je suis heureuse” for a fe-
male one. Apart from morphological agree-
ment, demographic factors (gender, age, etc.)
also influence our use of language in terms of
word choices or even on the level of syntac-
tic constructions (Tannen, 1991; Pennebaker
et al., 2003). We integrate gender information
into NMT systems. Our contribution is two-
fold: (1) the compilation of large datasets with
speaker information for 20 language pairs, and
(2) a simple set of experiments that incorpo-
rate gender information into NMT for multi-
ple language pairs. Our experiments show that
adding a gender feature to an NMT system sig-
nificantly improves the translation quality for
some language pairs.

1 Introduction

In the field of linguistics, the differences between
male and female traits within spoken and written
language have been studied both empirically and
theoretically, revealing that the language used by
males and females differs in terms of style and
syntax (Coates, 2015). The increasing amount of
work on automatic author classification (or ‘au-
thor profiling’) reaching relatively high accuracies

on domain-specific data corroborates these find-
ings (Rangel et al., 2013; Santosh et al., 2013).
However, determining the gender of an author
based solely on text is not a solved issue. Like-
wise, the selection of the most informative fea-
tures for gender classification remains a difficult
task (Litvinova et al., 2016).

When translating from one language into an-
other, original author traits are partially lost, both
in human and machine translations (Mirkin et al.,
2015; Rabinovich et al., 2017). However, in the
field of Machine Translation (MT) one of the most
observable consequences of this missing informa-
tion are morphologically incorrect variants due to
a lack of agreement in number and gender with
the subject. Such errors harm the overall fluency
and adequacy of the translated sentence. Further-
more, gender-related errors are not just harming
the quality of the translation as getting the gender
right is also a matter of basic politeness. Current
systems have a tendency to perpetuate a male bias
which amounts to negative discrimination against
half the population and this has been picked up by
the media.1

Human translators rely on contextual informa-
tion to infer the gender of the speaker in order to
make the correct morphological agreement. How-
ever, most current MT systems do not; they simply
exploit statistical dependencies on the sentence
level that have been learned from large amounts
of parallel data. Furthermore, sentences are trans-
lated in isolation. As a consequence, pieces of
information necessary to determine the gender of
the speakers, might get lost. The MT system will,
in such cases, opt for the statistically most likely
variant, which depending on the training data, will

1https://www.theguardian.
com/technology/2017/apr/
13/ai-programs-exhibit
-racist-and-sexist-biases-research
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be either the male or the female form. Addition-
ally, in the field of MT, training data often con-
sists of both original and translated parallel texts:
large parts of the texts have already been trans-
lated, which, as studied by Mirkin et al. (2015),
does not preserve the original demographic and
psychometric traits of the author, making it very
hard for a Neural MT (NMT) system to determine
the gender of the author.

With this in mind, a first step towards the preser-
vation of author traits would be their integration
into an NMT system. As ‘gender’ manifests itself
not only in the agreement with other words in a
sentence, but also in the choice of context-based
words or on the level of syntactic constructions,
the sets of experiments conducted in this paper
focus on the integration of a gender feature into
NMT for multiple language pairs.

The structure of the paper is the following: re-
lated work is described in Section 2; Section 3 de-
scribes and analyses the datasets that were com-
piled; the experimental setup is discussed in Sec-
tion 4; the results are presented in Section 5; fi-
nally, we conclude and provide some ideas for fu-
ture work in Section 6.

2 Related Work

Differences in the language between male and
female speakers have been studied within vari-
ous fields related to linguistics, including Natural
Language Processing (NLP) for author profiling,
conversational agents, recommendation systems
etc. Mirkin et al. (2015) motivated the need for
more personalized MT. Their experiments show
that MT is detrimental to the automatic recogni-
tion of linguistic signals of traits of the original au-
thor/speaker. Their work suggests using domain-
adaptation techniques to make MT more personal-
ized but does not include any actual experiments
on the inclusion of author traits in MT.

Rabinovich et al. (2017) conducted a series of
experiments on preserving original author traits,
focusing particularly on gender. As suggested
by Mirkin et al. (2015), they treat the person-
alization of Statistical MT (SMT) systems as a
domain-adaptation task treating the female and
male gender as two different domains. They
applied two common simple domain-adaptation
techniques in order to create personalized SMT:
(1) using gender-specific phrase-tables and lan-
guage models, and (2) using a gender-specific tun-

ing set. Although their models did not improve
over the baseline, their work provides a detailed
analysis of gender traits in human and machine
translation.

Our work is, to the best of our knowledge, the
first to attempt building a speaker-informed NMT
system. Our approach is similar to the work of
Sennrich et al. (2016) on controlling politeness,
where some sentence of the training data are fol-
lowed with an ‘informal’ or ‘polite’ tag indicating
the level of politeness expressed.

3 Compilation of Datasets

One of the main obstacles for more personalized
MT systems is finding large enough annotated
parallel datasets with speaker information. Rabi-
novich et al. (2017) published an annotated paral-
lel dataset for EN–FR and EN–DE. However, for
many other language pairs no sufficiently large an-
notated datasets are available.

To address the aforementioned problem, we
published online a collection of parallel corpora
licensed under the Creative Commons Attribu-
tion 4.0 International License for 20 language
pairs (Vanmassenhove and Hardmeier, 2018).2

We followed the approach described by Rabi-
novich et al. (2017) and tagged parallel sentences
from Europarl (Koehn, 2005) with speaker infor-
mation (name, gender, age, date of birth, euroID
and date of the session) by retrieving speaker in-
formation provided by tags in the Europarl source
files. The Europarl source files contain informa-
tion about the speaker on the paragraph level and
the filenames contain the data of the session. By
retrieving the names of the speakers together with
meta-information on the members of the Euro-
pean Parliament (MEPs) released by Rabinovich
et al. (2017) (which includes among others name,
country, date of birth and gender predictions per
MEP), we were able to retrieve demographic an-
notations (gender, age, etc.). An overview of the
language pairs as well as the amount of annotated
parallel sentences per language pair is given in Ta-
ble 1.

3.1 Analysis of the EN–FR Annotated
Dataset

We first analysed the distribution of male and fe-
male sentence in our data. In the 10 different

2https://github.com/evavnmssnhv/
Europarl-Speaker-Information
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Languages # sents Languages # sents
EN–BG 306,380 EN–IT 1,297,635
EN–CS 491,848 EN–LT 481,570
EN–DA 1,421,197 EN–LV 487,287
EN–DE 1,296,843 EN–NL 1,419,359
EN–EL 921,540 EN–PL 478,008
EN–ES 1,419,507 EN–PT 1,426,043
EN–ET 494,645 EN–RO 303,396
EN–FI 1,393,572 EN–SK 488,351
EN–FR 1,440,620 EN–SL 479,313
EN–HU 251,833 EN–SV 1,349,472

Table 1: Overview of annotated parallel sentences per lan-
guage pair

datasets we experimented with, the percentage of
sentences uttered by female speakers is very sim-
ilar, ranging between 32% and 33%. This simi-
larity can be explained by the fact that Europarl
is largely a multilingual corpus with a big overlap
between the different language pairs.

We conducted a more focused analysis on one
of the subcorpora (EN–FR) with respect to the
percentage of sentences uttered by males/females
for various age groups to obtain a better grasp of
what kind of data we are using for training. As
can be seen from Figure 1, with the exception of
the youngest age group (20–30), which represents
only a very small percentage of the total amount
of sentences (0.71%), more male data is available
in all age groups. Furthermore, when looking at
the entire dataset, 67.39% of the sentences are pro-
duced by male speakers. Moreover, almost half of
the total number of sentences are uttered by the
50–60 age group (43.76%).

20-30 30-40 40-50 50-60 60-70 70-80 80-90

0%

10%

20%
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100%
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Figure 1: Percentage of female and male speakers per age
group

The analysis shows that indeed, there is a gen-
der unbalance in the Europarl dataset, which will
be reflected in the translations that MT systems
trained on this data produce.

4 Experimental Setup

4.1 Datasets
We carried out a set of experiments on 10 lan-
guage pairs (the ones for which we compiled more
than 500k annotated Europarl parallel sentences):
EN–DE, EN–FR, EN–ES, EN–EL, EN–PT, EN–
FI, EN–IT, EN–SV, EN–NL and EN–DA. We aug-
mented every sentence with a tag on the English
source side, identifying the gender of the speaker,
as illustrated in (1). This approach for encoding
sentence-specific information for NMT has been
successfully exploited to tackle other types of is-
sues, multilingual NMT systems (e.g., Zero Shot
Translation (Johnson et al., 2017)), domain adap-
tation (Sennrich et al., 2016), etc.

(1) “FEMALE Madam President, as a...”

For each of these language pairs we trained two
NMT systems: a baseline and a tagged one. We
evaluated the performance of all our systems on a
randomly selected 2K general test set. Moreover,
we further evaluated the EN–FR systems on 2K
male-only and female-only test sets to have a look
at the system performance with respect to gender-
related issues. We also looked at two additional
male and female test sets in which the first person
singular pronoun appeared.

4.2 Description of the NMT Systems
We used the OpenNMT-py toolkit (Klein et al.,
2017) to train the NMT models. The models
are sequence-to-sequence encoder-decoders with
LSTMs as the recurrent unit (Bahdanau et al.,
2014; Cho et al., 2014; Sutskever et al., 2014)
trained with the default parameters. In order to by-
pass the OOV problem and reduce the number of
dictionary entries, we use word-segmentation with
BPE (Sennrich, 2015). We ran the BPE algorithm
with 89,500 operations (Sennrich, 2015). All sys-
tems are trained for 13 epochs and the best model
is selected for evaluation.

5 Results

In this section we discuss some of the results ob-
tained. We hypothesized that the male/female
tags would be particularly helpful for French, Por-
tuguese, Italian, Spanish and Greek, where adjec-
tives and even verb forms can be marked by the
gender of the speaker. Since, according to the
literature, women and men also make use of dif-
ferent syntactic constructions and make different
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word choices, we also tested the approach on other
languages that do not have morphological agree-
ment with the gender of the speaker such as Dan-
ish (DA), Dutch (NL), Finnish (FI), German (DE)
and Swedish (SV).

First, we wanted to see how our tagged systems
performed on the general test set compared to the
baseline. In Table 2, the BLEU scores for 10 base-
line and 10 gender-enhanced NMT systems are
presented.

Systems EN EN-TAG
FR 37.82 39.26*
ES 42.47 42.28
EL 31.38 31.54
IT 31.46 31.75*
PT 36.11 36.33
DA 36.69 37.00*
DE 28.28 28.05
FI 21.82 21.35*
SV 35.42 35.19
NL 28.35 28.22

Table 2: BLEU scores for the 10 baseline (denoted with
EN) and the 10 gender-enhanced NMT (denoted with EN-
TAG) systems. Entries labeled with * present statistically
significant differences (p < 0.05). Statistical significance was
computed with the MultEval tool (Clark et al., 2011).

While most of the BLEU-scores (Papineni et al.,
2002) in Table 2 are consistent with our hy-
pothesis, showing (significant) improvements for
the NMT systems enriched with a gender tag
(EN-TAG) over the baseline systems (EN) for
French, Italian, Portuguese and Greek, the Span-
ish enriched system surprisingly does not (–0.19
BLEU). As hypothesized, the Dutch, German,
Finnish and Swedish systems do not improve.
However, the Danish (EN–DA) enriched NMT
system does achieve a significant +0.31 BLEU im-
provement.

We expected to see the strongest improvements
in sentences uttered by female speakers as, accord-
ing to our initial analysis, the male data was over-
represented in the training. To test this hypothe-
sis, we evaluated all systems on a male-only and
female-only test set. Furthermore, we also experi-
mented on test sets containing the pronoun of the
first person singular as this form is used when a
speaker refers to himself/herself. The results on
the specific test set for the EN–FR dataset are pre-
sented in Table 3. As hypothesized, the biggest
BLEU score improvement is observed on the fe-
male test set, particularly, the test sets containing
first person singular pronouns (F1).

We had a closer look at some of the transla-

Test Sets EN EN-TAG
FR (M) 37.58 38.71*
FR (F) 37.75 38.97*
FR (M1) 39.00 39.66*
FR (F1) 37.32 38.57*

Table 3: BLEU-scores on EN–FR comparing the baseline
(EN) and the tagged systems (EN–TAG) on 4 different test
sets: a test set containing only male data (M), only female
data (F), 1st person male data (M1) and first person female
data (F1). All the improvements of the EN-TAG system are
statistically significant (p < 0.5), as indicated by *.

tions.3 There are cases where the gender-informed
(TAG) system improves over the baseline (BASE)
due to better agreement. Interestingly, in (2)
the French female form of vice-president (vice-
présidente) appears in the translation produced by
the BASE system while the male form is the cor-
rect one. The gender-informed system does make
the correct agreement by using the female variant.
In (3) the speaker is female but the baseline sys-
tem outputs a male form of the adjective ‘happy’
(‘heureux’).

(2)
(Ref) En tant que vice-président...
(BASE) En tant que vice-présidente...
(TAG) En tant que vice-président...

(3)
(Ref) ... je suis heureuse que...
(BASE) ... je suis heureux que...
(TAG) ... je suis heureuse que...

However, we also encountered cases where the
gender-informed system fails to produce the cor-
rect agreement, as in (4), where both the BASE
and the TAG system produce a male form (‘em-
barassé’) instead of the correct female one (‘em-
barassée’ or ‘gênée’).

(4)
(Ref) je suis gênée que...
(BASE) je suis embarassé que...
(TAG) je suis embarassé que...

For some language pairs the gender-informed
system leads to a significant improvement even
on a general test set. This implies that the im-
provement is not merely because of better mor-
phological agreement, as these kinds of improve-
ments are very hard to measure with BLEU, espe-
cially given the fact that Europarl consists of for-
mal spoken language and does not contain many
sentences using the first person singular pronoun.
From our analysis, we observe that in many cases
the gender-informed systems have a higher BLEU

3We used the tool provided by Tilde https://www.
letsmt.eu/Bleu.aspx to see where the BLEU score
between the baseline and our tagged systems varied the most.
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score than the baseline system due to differences
in word choices as in (5) and (6), where both trans-
lations are correct, but the gender-informed sys-
tem picks the preferred variant.

The observations with respect to differences in
word preferences between male and female speak-
ers are in accordance with corpus linguistic stud-
ies, which have shown that gender does not only
have an effect on morphological agreement, but
also manifests itself in other ways as males and
females have different preferences when it comes
to different types of constructions, word choices
etc. (Newman et al., 2008; Coates, 2015). This
also implies that, even for languages that do not
mark gender overtly (i.e. grammatically), it can
still be beneficial to take the gender of the au-
thor/speaker into account.

(5)
(Ref) Je pense que ...
(BASE) Je crois que...
(TAG) Je pense que...

Although more research is required in order
to draw general conclusions on this matter, from
other linguistic studies, it appears that it is indeed
the case that there is a relation between the use
of the word “pense” (“think”) / “crois” (“believe”)
and the gender of the speaker. To see whether
there is a difference in word choice and whether
this is reflected in our data, we compiled a list
of the most frequent French words for the male
data and the female data. Our analysis reveals that
“crois” is, in general, used more by males (hav-
ing position 303 in the most frequent words for
males, but only position 373 for females), while
“pense” is found at a similar position in both lists
(position 151 and 153). These findings are in ac-
cordance with other linguistic corpus studies on
language and gender stating that women use less
assertive speech (Newman et al., 2008). “Croire”
and “penser” are both verbs of cognition but there
is a difference in the degree of confidence in the
truth value predicated: the verb “croire” denotes
more confidence in the truth of the complement
clause than the verb “penser” does. In the future,
we would like to perform a more detailed analy-
sis of other specific differences in lexical choices
between males and females on multiple language
pairs.

(6)
(Ref) J’ ai plusieurs remarques...
(BASE) J’ ai un nombre de commentaires...
(TAG) J’ ai plusieurs remarques...

6 Conclusions and Future Work

In this work, we experimented with the incorpora-
tion of speaker-gender tags during the training of
NMT systems in order to improve morphological
agreement. We focused particularly on language
pairs that express grammatical gender but included
other language pairs as well, as linguistic studies
have shown that the style and syntax of language
used by males and females differs (Coates, 2015).

From the experiments, we see that informing
the NMT system by providing tags indicating the
gender of the speaker can indeed lead to signif-
icant improvements over state-of-the-art baseline
systems, especially for those languages expressing
grammatical gender agreement. However, while
analyzing the EN–FR translations, we observed
that the improvements are not always consistent
and that, apart from morphological agreement, the
gender-aware NMT system differs from the base-
line in terms of word choices.

In the future, we would like to conduct fur-
ther manual evaluation on the translations to fur-
ther analyze the differences with the baseline sys-
tem. Furthermore, we aim to experiment with
other ways of integrating speaker information. We
envisage working on gender classification tech-
niques in order to work on other types (more in-
formal) of corpora that are more likely to express
speaker characteristics.
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Abstract

This work investigates an alternative model for
neural machine translation (NMT) and pro-
poses a novel architecture, where we employ
a multi-dimensional long short-term mem-
ory (MDLSTM) for translation modeling. In
the state-of-the-art methods, source and target
sentences are treated as one-dimensional se-
quences over time, while we view translation
as a two-dimensional (2D) mapping using an
MDLSTM layer to define the correspondence
between source and target words. We extend
beyond the current sequence to sequence back-
bone NMT models to a 2D structure in which
the source and target sentences are aligned
with each other in a 2D grid. Our proposed
topology shows consistent improvements over
attention-based sequence to sequence model
on two WMT 2017 tasks, German$English.

1 Introduction

The widely used state-of-the-art neural machine
translation (NMT) systems are based on an
encoder-decoder architecture equipped with at-
tention layer(s). The encoder and the de-
coder can be constructed using recurrent neu-
ral networks (RNNs), especially long-short term
memory (LSTM) (Bahdanau et al., 2014; Wu
et al., 2016), convolutional neural networks
(CNNs) (Gehring et al., 2017), self-attention units
(Vaswani et al., 2017), or a combination of them
(Chen et al., 2018). In all these architectures,
source and target sentences are handled separately
as a one-dimensional sequence over time. Then,
an attention mechanism (additive, multiplicative
or multihead) is incorporated into the decoder to
selectively focus on individual parts of the source
sentence.

One of the weaknesses of such models is that
the encoder states are computed only once at the
beginning and are left untouched with respect to

the target histories. In this case, at every decod-
ing step, the same set of vectors are read repeat-
edly. Hence, the attention mechanism is limited in
its ability to effectively model the coverage of the
source sentence. By providing the encoder states
with the greater capacity to remember what has
been generated and what needs to be translated,
we believe that we can alleviate the coverage prob-
lems such as over- and under-translation.

One solution is to assimilate the context from
both source and target sentences jointly and to
align them in a two-dimensional grid. Two-
dimensional LSTM (2DLSTM) is able to pro-
cess data with complex interdependencies in a 2D
space (Graves, 2012).

To incorporate the solution, in this work,
we propose a novel architecture based on the
2DLSTM unit, which enables the computation of
the encoding of the source sentence as a function
of the previously generated target words. We treat
translation as a 2D mapping. One dimension pro-
cesses the source sentence, and the other dimen-
sion generates the target words. Each time a tar-
get word is generated, its representation is used to
compute a hidden state sequence that models the
source sentence encoding. In principle, by updat-
ing the encoder states across the second dimension
using the target history, the 2DLSTM captures the
coverage concepts internally by its cell states.

2 Related Works

MDLSTM (Graves, 2008, 2012) has been suc-
cessfully used in handwriting recognition (HWR)
to automatically extract features from raw images
which are inherently two-dimensional (Graves and
Schmidhuber, 2008; Leifert et al., 2016a; Voigt-
laender et al., 2016). Voigtlaender et al. (2016)
explore a larger MDLSTM for deeper and wider
architectures using an implementation for the
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graphical processing unit (GPU). It has also been
applied to automatic speech recognition (ASR)
where a 2DLSTM scans the input over both time
and frequency jointly (Li et al., 2016; Sainath and
Li, 2016). As an alternative architecture to the
concept of MDLSTM, Kalchbrenner et al. (2015)
propose a grid LSTM that is a network of LSTM
cells arranged in a multidimensional grid, in which
the cells are communicating between layers as
well as time recurrences. Li et al. (2017) also ap-
ply the grid LSTM architecture for the endpoint
detection task in ASR.

This work, for the first time, presents an end-to-
end 2D neural model where we process the source
and the target words jointly by a 2DLSTM layer.

3 Two-Dimensional LSTM

cj,i

Cell

◊ sj,i◊c̃j,i

◊
⁄j,i Lambda Gatef j,i Forget Gate

ij,iInput Gate oj,iOutput Gate

xj,i

sj,i≠1

sj≠1,i

xj,i
sj,i≠1sj≠1,i

xj,i
sj,i≠1sj≠1,i

xj,i

sj,i≠1sj≠1,i
xj,i

sj,i≠1sj≠1,i

Figure 1: 2DLSTM unit. The additional links vs.
standard LSTM are marked in blue.

The 2DLSTM has been introduced by (Graves,
2008) as a generalization of standard LSTM. Fig-
ure 1 illustrates one of the stable variants proposed
by (Leifert et al., 2016b). A 2DLSTM unit pro-
cesses a 2D sequential data x 2 R

J⇥I of arbitrary
lengths, J and I . At time step (j, i), the computa-
tion of its cell depends on both vertical sj,i�1 and
horizontal hidden states sj�1,i (see Equations (1)–
(5)). Similar to the LSTM cell, it maintains some
state information in an internal cell state cj,i. Be-
sides the input ij,i, the forget fj,i and the output
oj,i gates that all control information flows, 2DL-
STM employs an extra lambda gate �j,i. As
written in Equ. 5, its activation is computed anal-
ogously to the other gates. The lambda gate is
used to weight the two predecessor cells cj�1,i and
cj,i�1 before passing them through the forget gate
(Equation 6). g and � are the tanh and the sig-
moid functions. V s, W s and Us are the weight
matrices.

In order to train a 2DLSTM unit, back-
propagation through time (BPTT) is performed
over two dimensions (Graves, 2008, 2012). Thus,
the gradient is passed backwards from the time
step (J, I) to (1, 1), the origin. More details, as
well as the derivations of the gradients, can be
found in (Graves, 2008).

ij,i = �
⇣
W1xj,i + U1lsj�1,i + V1sj,i�1

⌘
(1)

fj,i = �
⇣
W2xj,i + U2sj�1,i + V2sj,i�1

⌘
(2)

oj,i = �
⇣
W3xj,i + U3sj�1,i + V3sj,i�1

⌘
(3)

c̃j,i = g
⇣
W4xj,i + U4sj�1,i + V4sj,i�1

⌘
(4)

�j,i = �
⇣
W5xj,i + U5sj�1,i + V5sj,i�1

⌘
(5)

cj,i = fj,i �
⇥
l�j,i � cj�1,i + (1 � �j,i) � cj,i�1

⇤

+ c̃j,i � ij,i (6)
sj,i = g (cj,i) � oj,i (7)

4 Two-Dimensional Sequence to
Sequence Model

We aim to apply a 2DLSTM to map the source
and the target sequences into a 2D space as
shown in Figure 2. We call this architec-
ture, the two-dimensional sequence to sequence
(2D-seq2seq) model.

yi+1 ŷi+1softmax

yi ŷisoftmax

yi≠1 ŷi≠1softmax

sj≠1,i sj,i

sj,i≠1

hj≠1 hj hj+1

xj≠1 xj xj+1

2DLSTM layer

Figure 2: Two-dimensional sequence to sequence
model (2D-seq2seq).

Given a source sequence xJ
1 = x1, . . . , xJ and

a target sequence yI
1 = y1, . . . , yI , we scan the

source sequence from left to right and the target
sequence from bottom to top as shown in Figure
2. In the 2D-seq2seq model, one dimension of
the 2DLSTM (horizontal-axis in the figure) serves
as the encoder and another (vertical axis) plays
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the role of the decoder. As a pre-step before the
2DLSTM, in order to have the whole source con-
text, a bidirectional LSTM scans the input words
once from left to right and once from right to left
to compute a sequence of encoder states hJ

1 =
h1, . . . , hJ . At time step (j, i), the 2DLSTM re-
ceives both encoder state, hj , and the last target
embedding vector, yi�1, as an input. It repeatedly
updates the source information, hJ

1 , while generat-
ing new target word, yi. The state of the 2DLSTM
is computed as follows.

sj,i =  
⇣
W

⇥
hj ; yi�1

⇤
, Usj�1,i, V sj,i�1

⌘
(8)

where  stands for the 2DLSTM as a function.
At each decoder step, once the whole source se-
quence is processed from 1 to J , the last hidden
state of the 2DLSTM, sJ,i, is used as the context
vector. It means, at time step i, ti = sJ,i. In order
to generate the next target word, yi, a transforma-
tion followed by a softmax operation is applied.
Therefore:

pi(yi = w|yi�1
1 , xJ

1 ) =
exp(Wotiw)

P|Vt|
v=1 exp(Wotiv)

(9)

where Wo and |Vt| are the weight matrix and the
target vocabulary respectively.

4.1 Training versus Decoding
One practical concern that should be noticed is the
difference between the training and the decoding.
Since the whole target sequence is known during
training, all states of the 2DLSTM can be com-
puted once at the beginning. Slices of it can then
be used during the forward and backward train-
ing passes. In theory, the complexity of training is
O(JI). But, in practice, the training computation
can be optimally parallelized to take linear time
(Voigtlaender et al., 2016). During the decoding,
only the already generated target words are avail-
able. Thus, either all 2DLSTM states have to be
recomputed, or it has to be extended by an addi-
tional row at every time step i that cause higher
complexity.

5 Experiments

We have done the experiments on the WMT
2017 German!English and English!German
news tasks consisting of 4.6M training sam-
ples collected from the well-known data sets
Europarl-v7, News-Commentary-v10

and Common-Crawl. We use newstest2015
as our development set and newstest2016 and
-2017 as our test sets, which contain 2169, 2999
and 3004 sentences respectively. No synthetic
data and no additional features are used. Our goal
is to keep the baseline model simple and standard
to compare methods rather that advancing the
state-of-the-art systems.

After tokenization and true-casing using
Moses toolkit (Koehn et al., 2007), byte pair
encoding (BPE) (Sennrich et al., 2016) is used
jointly with 20k merge operations. We remove
sentences longer than 50 subwords and batch
them together with a batch size of 50. All models
are trained from scratch by the Adam optimizer
(Kingma and Ba, 2014), dropout of 30% (Srivas-
tava et al., 2014) and the norm of the gradient
is clipped with the threshold of 1. The final
models are the average of the 4 best checkpoints
of a single run based on the perplexity on the
development set (Junczys-Dowmunt et al., 2016).
Decoding is performed using beam search of size
12, without ensemble of various networks.

We have used our in-house implementation
of the NMT system which relies on Theano
(Bastien et al., 2012) and Blocks (Merriënboer
et al., 2015). Our implementation of 2DLSTM is
based on CUDA code adapted from (Voigtlaender
et al., 2016; Zeyer et al., 2018), leveraging some
speedup.

The models are evaluated using case-sensitive
BLEU (Papineni et al., 2002) computed by
mteval-v13a1 and case-sensitive TER (Snover
et al., 2006) using tercom2. We also report per-
plexities on the development set.

Attention Model: the attention based sequence
to sequence model (Bahdanau et al., 2014) is se-
lected as our baseline that performs quite well.
The model consists of one layer bidirectional en-
coder and a unidirectional decoder with an addi-
tive attention mechanism. All words are projected
into a 500-dimensional embedding on both sides.
To explore the performance of the models with re-
spect to hidden size, we try LSTMs (Hochreiter
and Schmidhuber, 1997) with both 500 and 1000
nodes.

2D-Seq2Seq Model: we apply the same em-
bedding size of that of the attention model. The
2DLSTM, as well as the bidirectional LSTM

1ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v13a.pl
2http://www.cs.umd.edu/ snover/tercom/
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Models Hidden Size
De!En En!De

devset newstest2016 newstest2017 devset newstest2016 newstest2017
PPL BLEU TER BLEU TER PPL BLEU TER BLEU TER

1 attention
n=500

7.3 31.9 48.6 27.5 53.1 7.0 27.0 53.9 22.1 60.5
2 2D-seq2seq 6.5 32.6 47.8 28.2 52.7 6.1 27.5 53.8 22.4 60.6
3 + weighting 6.5 32.3 47.1 27.9 51.7 6.3 27.5 53.3 22.4 60.0
1 attention

n=1000
6.4 33.1 47.5 29.0 51.9 6.5 27.4 53.9 22.9 60.2

2 2D-seq2seq 5.7 33.7 46.9 29.3 51.9 5.3 28.9 52.6 23.2 59.5
3 + weighting 6.1 32.7 47.1 28.0 51.9 5.7 27.8 53.0 22.7 60.0
4 coverage n=1000 6.3 33.1 47.5 28.7 51.9 5.8 28.6 52.4 23.0 59.4
5 fertility 6.2 33.4 46.9 28.9 51.6 5.8 28.4 52.1 23.2 59.1

Table 1: BLEU [%] and TER [%] on the test sets and perplexity (PPL) on the development set.

layer, are structured using the same number of
nodes (500 or 1000). The 2D-seq2seq model is
trained with the learning rate of 0.0005 vs. 0.001
for the attention model.

Translation Performance: in the first set of
experiments, we compare the 2D-seq2seq model
with the attention sequence to sequence model.
The results are shown in Table 1 in the rows 1
and 2. As it is seen, for size n = 500, the 2D-
seq2seq model outperforms the standard attention
model on average by 0.7% BLEU and 0.6% TER
on De!En, 0.4% BLEU and no improvements in
TER on En!De. The model is also superior for
larger hidden size (n = 1000) on average by 0.5%
BLEU and 0.3% TER on De!En, 0.9% BLEU and
1.0% TER on En!De. In both cases, the perplex-
ity of the 2D-seq2seq model is lower compared to
that of the attention model.

The 2D-seq2seq topology is analogous to the
bidirectional encoder-decoder model without at-
tention. To examine whether the 2DLSTM re-
duces the need of attention, in the second set of
experiments, we equip our model with a weighted
sum of 2DLSTM states, ti, over j positions to dy-
namically select the most relevant information. In
other words:

�j,i = softmax
j

⇣
vT tanh

�
Wsj,i

�⌘
(10)

ti =
JX

j=1

�j,isj,i (11)

In these equations, �j,i is the normalized weight
over source positions, sj,i is the 2DLSTM states
and W and v are weight matrices. As the results
shown in the Table 1 in the rows 2 and 3, adding an
additional weighting layer on top of the 2DLSTM
layer does not help in terms of BLEU and rarely
helps in TER.

By updating the encoder states across the sec-
ond dimension with respect to the target his-
tory, the 2D-seq2seq model can internally indi-
cate which source words have already been trans-
lated and where it should focus next. Therefore,
it reduces the risk of over- and under-translation.
To examine our assumption, we compare the 2D-
seq2seq model with two NMT models where the
concepts such as fertility and coverage have been
addressed (Tu et al., 2016; Cohn et al., 2016).

Coverage Model: in the coverage model, we
feed back the last alignments from the time step
i � 1 to compute the attention weight at time step
i. Therefore, in the coverage model, we redefine
the attention weight, ↵i,j , as:

↵i,j = a
�
si�1, hj ,↵i�1,j

�
(12)

where a is an attention function followed by the
softmax. hj and si�1 are the the encoder and the
previous decoder states respectively. In our exper-
iments, we use additive attention similar to (Bah-
danau et al., 2014).

Fertility Model: in the fertility model, we feed
back the sum of the alignments over the past de-
coder steps to indicate how much attention has
been given to the source position j up to step i and
divide it over the fertility of source word at posi-
tion j. This term depends on the encoder states
and it varies if the word is used in a different con-
text (Tu et al., 2016).

�i,j =
1

N · �(�>
� · hj)

i�1X

k=1

↵i,j (13)

↵i,j = a
�
si�1, hj ,�i,j

�
(14)

where N specifies the maximum value for the fer-
tility which set to 2 in our experiments. �� is a
weight vector.
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source HP beschäftigte zum Ende des Geschäftsjahres 2013/14 noch rund 302.000 Mitarbeiter.
reference At the end of the 2013/14 business year HP still employed around 302,000 staff.
attention At the end of the financial year, HP employed some 302,000 employees at the end of the financial year

of 2013/14.
2D-seq2seq HP still employs about 302,000 people at the end of the financial year 2013/14.
coverage HP employed around 302,000 employees at the end of the fiscal year 2013/14.
fertility HP employed some 302,000 people at the end of the fiscal year 2013/14.

Table 2: An example of over-translation.

As it is seen in Table 1, rows 2, 4 and 5, our
proposed model is 0.3% BLEU ahead and 0.3%
TER worse compared to the fertility approach
and slightly better compared to the coverage one.
We note, the fertility and coverage models were
trained using embedding size of 620.

We have also qualitatively verified the coverage
issue in Table 2 by showing an example from the
test set. Without the knowledge of which source
words have already been translated, the attention
layer is at risk of attending to the same positions
multiple times. This could lead to over-translation.
Similarly, under-translation could be occur when
the attention model rarely focusing at the corre-
sponding source positions. As shown in the ex-
ample, the 2DLSTM can internally track which
source positions have already contributed to the
target generation.

Speed: we have also compared the models in
terms of speed on a single GPU training. In gen-
eral, the training and decoding speed of the 2D-
seq2seq model is 791 and 0.7 words/s respectively
compared to those of standard attention model
which is 2944 and 48 words/s. The computation
of the added weighting mechanism is negligible
in this case. This is still an initial architecture
which indicates the necessity of multi-GPU usage.
We also expect to speedup the decoding phase by
avoiding the unnecessary recomputation of previ-
ous 2DLSTM states. In the current implementa-
tion, at each target step, we re-compute the 2DL-
STM states from time step 0 to i � 1, while we
only need to store the states from the last step i�1.
This does not influence our results, as it is purely
an implementation issue, not algorithm. However,
decoding will still be slower than the training. One
suggestion for further speedup of training phase is
applying truncated BPTT on both directions to re-
duce the number of updates.

The 2DLSTM can be simply combined with
self-attention layers (Vaswani et al., 2017) in the
encoder and the decoder for better context repre-

sentation as well as RNMT+ (Chen et al., 2018)
that is composed of standard LSTMs. We believe
that 2D-seq2seq model can be potentially applied
to the other applications where sequence to se-
quence modeling is helpful.

6 Conclusion and Future Works

We have introduced a novel 2D sequence to se-
quence model (2D-seq2seq), a network that ap-
plies a 2DLSTM unit to read both the source and
the target sentences jointly. Hence, in each decod-
ing step, the network implicitly updates the source
representation conditioned on the generated target
words so far. The experimental results show that
we outperform the attention model on two WMT
2017 translation tasks. We have also shown that
our model implicitly handles the coverage issue.

As future work, we aim to develop a bidi-
rectional 2DLSTM and consider stacking up
2DLSTMs for a deeper model. We consider the
results promising and try more language pairs and
fine-tune the hyperparameters.
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Roger Labahn. 2016a. Citlab ARGUS for historical
handwritten documents. CoRR, abs/1605.08412.

Gundram Leifert, Tobias Strauß, Tobias Grüning, Welf
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Abstract

Autoregressive decoding is the only part of
sequence-to-sequence models that prevents
them from massive parallelization at inference
time. Non-autoregressive models enable the
decoder to generate all output symbols inde-
pendently in parallel. We present a novel non-
autoregressive architecture based on connec-
tionist temporal classification and evaluate it
on the task of neural machine translation. Un-
like other non-autoregressive methods which
operate in several steps, our model can be
trained end-to-end. We conduct experiments
on the WMT English-Romanian and English-
German datasets. Our models achieve a signif-
icant speedup over the autoregressive models,
keeping the translation quality comparable to
other non-autoregressive models.

1 Introduction

Parallelization is the key ingredient for making
deep learning models computationally tractable.
While the advantages of parallelization are ex-
ploited on many levels during training and infer-
ence, autoregressive decoders require sequential
execution.

Training and inference algorithms in sequence-
to-sequence tasks with recurrent neural networks
(RNNs) such as neural machine translation (NMT)
have linear time complexity w.r.t. the target se-
quence length, even when parallelized (Sutskever
et al., 2014; Bahdanau et al., 2014).

Recent approaches such as convolutional
sequence-to-sequence learning (Gehring et al.,
2017) or self-attentive networks a.k.a. the Trans-
former (Vaswani et al., 2017) replace RNNs with
parallelizable components in order to reduce the
time complexity of the training. In these models,
the decoding is still sequential, because the
probability of emitting a symbol is conditioned on
the previously decoded symbols.

In non-autoregressive decoders, the inference
algorithm can be parallelized because the decoder
does not depend on its previous outputs. The
apparent advantage of this approach is the near-
constant time complexity achieved by the paral-
lelization. On the other hand, the drawback is that
the model needs to explicitly determine the target
sentence length and reorder the state sequence be-
fore it starts generating the output. In the current
research contributions on this topic, these parts are
trained separately and the inference is done in sev-
eral steps.

In this paper, we propose an end-to-end non-
autoregressive model for NMT using Connec-
tionist Temporal Classification (CTC; Graves
et al. 2006). The proposed technique achieves
promising results on translation between English-
Romanian and English-German on the WMT
News task datasets.

The paper is organized as follows. In Sec-
tion 2, we summarize the related work on non-
autoregressive NMT. Section 3 describes the ar-
chitecture of our proposed model. Section 4
presents details of the conducted experiments. The
results are discussed in Section 5. We conclude
and present ideas for future work in Section 6.

2 Non-Autoregressive NMT

In this section, we describe two methods for non-
autoregressive decoding in NMT. Both of them are
based on the Transformer architecture (Vaswani
et al., 2017), with the encoder part unchanged.

Gu et al. (2017) use a latent fertility model to
copy the sequence of source embeddings which
is then used for the target sentence generation.
The fertility (i.e. the number of target words for
each source word) is estimated using a softmax
on the encoder states. In the decoder, the input
embeddings are repeated based on their fertility.
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The decoder has the same architecture as the en-
coder plus the encoder attention. The best re-
sults were achieved by sampling fertilities from
the model and then rescoring the output sentences
using an autoregressive model. The reported infer-
ence speed of this method is 2–15 times faster than
of a comparable autoregressive model, depending
on the number of fertility samples.

Lee et al. (2018) propose an architecture with
two decoders. The first decoder generates a can-
didate translation from a source sentence padded
to an estimated target length. The explicit length
estimate is done with a softmax over possible sen-
tence lengths (up to a fixed maximum). The output
of the first decoder is then fed as an input to the
second decoder. The second decoder is used as a
denoising auto-encoder and can be applied itera-
tively. Both decoders have the same architecture
as in Gu et al. (2017). They achieved a speedup of
16 times over the autoregressive model with a sin-
gle denoising iteration. They report the best result
in terms of BLEU (Papineni et al., 2002) after 20
iterations with almost no inference speedup com-
pared to their autoregressive baseline.

3 Proposed Architecture

Similar to the previous work (Gu et al., 2017; Lee
et al., 2018), our models are based on the Trans-
former architecture as described by Vaswani et al.
(2017), keeping the encoder part unchanged. Fig-
ure 1 illustrates our method and highlights the dif-
ferences from the Transformer model.

In order to generate output words in parallel, we
formulate the translation as a sequence labeling
problem. Neural architectures used for encoding
input in NLP tasks usually generate sequences of
hidden states of the same or shorter length as the
input sequence. For this reason, we cannot apply
the sequence labeling directly over the states be-
cause the target sentence might be longer than the
source sentence.

To enable the labeler to generate sentences that
are longer than the source sentence, we project the
encoder output states h into a k-times longer se-
quence s, such that:

sci+b =
�
Wsplhc + bspl

�
bd:(b+1)d

(1)

for b = 0 . . . k �1, and c = 0 . . . Tx where d is the
Transformer model dimension, Tx is the length of
the source sentence, and Wspl 2 R

d⇥kd and bspl 2
R

kd are trainable projection parameters. In other

Input token embeddings

Encoder

h

Wsplh

s

Decoder

Connectionist Temporal Classification

w1 w2 w3 ? w4 ? w5 w6 ? ? ? w7 w8 ? w9 ?

Output tokens / null symbols

Figure 1: Scheme of the proposed architecture. The
part between the encoder and the decoder is expressed
by Equation 1.

words, after a linear projection, each state is sliced
to k vectors, creating a sequence of length kTx.

In the next step, we process the sequence s with
a decoder. Unlike the Transformer architecture,
our decoder does not use the temporal mask in the
self-attention step.

Finally, the decoder states are labeled either
with an output token or a null symbol. The num-
ber of combinations of the possible positions of
the null symbols in the output sequence given ref-
erence sequence length Ty is

�kTx
Ty

�
. Because there

is no prior alignment between the input and out-
put symbols, we consider all output sequences that
yield the correct output in the loss function. Be-
cause summing the exponential number of com-
binations directly is not tractable, we we use the
CTC loss (Graves et al., 2006) which employs dy-
namic programming to compute the negative log-
likelihood of the output sequence, summed over
all the combinations.

The loss can be computed using a linear al-
gorithm similar to training Hidden Markov Mod-
els (Rabiner, 1989). The algorithm computes and
stores partial log-probabilities sums for all pre-
fixes and suffixes of the output symbol sequence
using dynamic programming. The table of pre-
computed log-probablities allows us to compute
the probability of being a part of a correct output
sequence by combining the log-probabilities of its
prefix and suffix.

An appealing property of training using the
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CTC loss is that the models support left-to-right
beam search decoding by recombining prefixes
that yield the same output. Unlike the greedy
decoding this can no longer be done in parallel.
However, the linear computation is in theory still
faster than autoregressive decoding.

4 Experiments

We experiment with three variants of this archi-
tecture. All of them have the same total number of
layers. First, the deep encoder uses a stack of self-
attentive layers only. We apply the state splitting
and the labeler on the output of the last encoder
layer. In contrast to Figure 1, this variant omits the
decoder part. Second, the encoder-decoder con-
sists of two stacks of self-attentive layers – en-
coder and decoder. The outputs of the encoder
are transformed using Equation 1 and processed
by the decoder. In each layer, the decoder part at-
tends to the encoder output. Third, we extend the
encoder-decoder variant with positional encoding
(Vaswani et al., 2017). The positional encoding
vectors are added to the decoder input s.

In all the experiments, we used the same hyper-
parameters. We set the model dimension to 512
and the feed-forward layer dimension to 4096. We
use multi-head attention with 16 heads. In the
deep encoder setup, we use 12 layers in the en-
coder, in the encoder-decoder setup, we use 6 lay-
ers for the encoder and 6 layers for the decoder.
We set the split factor k to 3, so the encoder states
are projected to vectors of 1536 units.

We conduct our experiments on English-
Romanian and English-German translation. These
language pairs were selected by the authors of the
previous work because the training datasets for
these language pairs are of considerably different
sizes. We follow these choices in order to present
comparable results.

For English-Romanian experiments, we used
the WMT16 (Bojar et al., 2016) news dataset. The
training data consists of 613k sentence pairs, vali-
dation 2k and test 2k. We used a shared vocabulary
of 38k wordpieces (Wu et al., 2016; Johnson et al.,
2017).

The English-German dataset consists of 4.6M
training sentence pairs from WMT competitions.
As a validation set, we used the test set from
WMT13 (Bojar et al., 2013), which contains 3k
sentence pairs. To enable comparison to other
non-autoregressive approaches, we evaluate our

models on the test sets from WMT14 (Bojar et al.,
2014) with 3k sentence pairs and WMT15 (Bojar
et al., 2015) with 2.1k sentence pairs. As in the
previous case, we used shared vocabulary for both
languages which contained 41k wordpieces.

The experiments were conducted using Neural
Monkey1 (Helcl and Libovický, 2017). We evalu-
ate the models using BLEU score (Papineni et al.,
2002) as implemented in SacreBLEU,2 originally
a part of the Sockeye toolkit (Hieber et al., 2017).

5 Results

Quantitative results are tabulated in Table 1. In
general, our models achieve a similar performance
to other non-autoregressive models. In case of
English-German, our results in both directions are
comparable on the WMT 14 test set and slightly
better on the WMT 15 test set. This might be
given by the fact that our autoregressive baseline
performs better for this language pair than for
English-Romanian.

The encoder-decoder setup outperforms the
deep encoder setup. Including positional encod-
ing seems beneficial when translating into Ger-
man. Weight averaging from the 5 models with
the highest validation score during the training im-
proves the performance consistently.

We performed a manual evaluation on 100
randomly sampled sentences from the English-
German test sets in both directions. The results
of the analysis are summarized in Table 2.

Non-autoregressive translations of sentences
that had errors in the autoregressive translation
were often incomprehensible. In general, less than
a quarter of the sentences was completely cor-
rect and over two thirds (one half in the de!en
direction) were comprehensible. The most fre-
quent errors include omitting verbs at the end of
German sentences and corruption of named enti-
ties and infrequent words that are represented by
more wordpieces. Most of these errors can be
attributed to insufficient language-modeling capa-
bilities of the model. The results suggest that in-
tegrating an external language model into an effi-
cient beam search implementation could boost the
translation quality while preserving the speedup
over the auto-regressive models.

We also evaluated the translations using
sentence-level BLEU score (Chen and Cherry,

1https://github.com/ufal/neuralmonkey
2https://github.com/mjpost/sacreBLEU
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WMT 16 WMT 14 WMT 15
en-ro ro-en en-de de-en en-de de-en

autoregressive b = 1 31.93 31.55 22.71 26.39 23.40 26.49
autoregressive b = 4 32.40 32.06 23.45 27.02 24.12 27.05
Gu et al. (2017) greedy 27.29 29.06 17.69 21.47 — —
Gu et al. (2017) NPD w/ 100 samples 29.79 31.44 19.17 23.20 — —
Lee et al. (2018) 1 iteration 24.45 23.73 — — 12.65 14.48
Lee et al. (2018) best result 29.49 30.41 — — 19.13 21.69
our autoregressive b = 1 21.19 29.64 22.94 28.58 25.12 28.89
deep encoder 17.33 22.85 12.21 12.53 13.14 18.34

+ weight averaging 18.47 24.68 14.65 16.72 16.74 18.47
+ beam search 18.70 25.28 15.19 17.58 17.59 18.70

encoder-decoder 18.51 22.37 13.29 17.98 16.01 19.55
+ weight averaging 19.54 24.67 16.56 18.64 19.46 21.74
+ beam search 19.81 25.21 17.09 18.80 20.59 22.55

encoder-decoder w/ pos. encoding 18.13 22.75 12.51 11.35 15.35 19.30
+ weight averaging 19.31 24.21 17.37 18.07 20.30 19.64
+ beam search 19.93 24.71 17.68 19.80 20.67 20.43

Table 1: Quantitative results in terms of BLEU score of the proposed methods compared to other non-
autoregressive models. Note that our method uses only a single pass through the network and should be compared
with greedy decoding by Gu et al. (2017) and 1 model iteration by Lee et al. (2018).

en ! de de ! en
AR NAR AR NAR

Correct 65 23 67 13
Comprehensible 93 71 92 51
Too short 1 16 0 36
Missing verb 4 35 0 8
Corrupt. named entity 1 27 8 21
Corrupt. other words 1 20 0 46

Table 2: Results of manual evaluation of the autore-
gressive (AR) and non-autoregressive (NAR) models
(in percents).

2014) and measure the Pearson correlation with
the length of the source sentence and the number
of null symbols generated in the output. With a
growing sentence length, the scores degrade more
in the non-autoregressive model (r = �0.42) than
in its autoregressive counterpart (r = �0.39).
The relation between sentence-level BLEU and
the source length is plotted in Figure 2. The
sentence-level score is mildly correlated with the
number of null symbols in the non-autoregressive
output (r = 0.15). This suggests that increasing
the splitting factor k in Equation 1 might improve
the model performance. However, it also reduces
the efficiency in terms of GPU memory usage.

Figure 3 shows the comparison of the decod-
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Figure 2: Comparison of the sentence-level BLEU of
our English-to-German autoregresssive (AR) and non-
autoregressive (NAR) models given the length of the
source sentence.

ing time by autoregressive and non-autoregressive
models. The average times of decoding a single
sentence are shown in Table 3. We suspect that
the small difference between CPU and GPU times
in the non-autoregressive setup is caused by the
CPU-only implementation of the CTC decoder in
TensorFlow (Abadi et al., 2015).

6 Conclusions

In this work, we presented a novel method for
training a non-autoregressive model end-to-end
using connectionist temporal classification. We
evaluated the proposed method on neural machine
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Figure 3: Comparison of CPU decoding time by
our autoregressive (AR) and non-autoregressive (NAR)
models based on the source sentence length.

CPU GPU
AR, b = 1 2247 ms 1200 ms
NAR 386 ms 350 ms

Table 3: Average per sentence decoding time for en-de
translation.

translation in two language pairs and compared the
results to the previous work.

In general, the results match the translation
quality of equivalent variants of the models pre-
sented in the previous work. The BLEU score is
usually around 80–90% of the score of the au-
toregressive baselines. We measured a 4-times
speedup compared to our autoregressive baseline,
which is a smaller gain than reported by the au-
thors of the previous work. We suspect this might
be due to a larger overhead with data loading and
processing in Neural Monkey compared to Ten-
sor2Tensor (Vaswani et al., 2018) used by others.

As a future work, we can try to improve the per-
formance of the model by iterative denoising as
done by Lee et al. (2018) while keeping the non-
autoregressive nature of the decoder.

Another direction of improving the model
might be efficient implementation of beam search
which can contain rescoring using an external lan-
guage model as often done in speech recogni-
tion (Graves et al., 2013). The non-autoregressive
model would play a role a of the translation model
in the traditional statistical MT problem decompo-
sition.
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Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 1–44, Sofia, Bulgaria. As-
sociation for Computational Linguistics.
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Abstract

Simultaneous speech translation aims to main-
tain translation quality while minimizing the
delay between reading input and incremen-
tally producing the output. We propose a new
general-purpose prediction action which pre-
dicts future words in the input to improve qual-
ity and minimize delay in simultaneous trans-
lation. We train this agent using reinforce-
ment learning with a novel reward function.
Our agent with prediction has better transla-
tion quality and less delay compared to an
agent-based simultaneous translation system
without prediction.

1 Introduction
One of the next significant challenges in machine
translation research is to make translation ubiq-
uitous using real-time translation. Simultaneous
machine translation aims to address this issue by
interleaving reading the input with writing the
output translation. Current Simultaneous Neural
Machine Translation (SNMT) systems (Satija and
Pineau, 2016; Cho and Esipova, 2016; Gu et al.,
2017) use an AGENT to control an incremental
encoder-decoder (or sequence to sequence) NMT
model. Each READ adds more information to the
encoder RNN, and each WRITE produces more
output using the decoder RNN. In this paper, we
propose adding a new action to the AGENT: a
PREDICT action that predicts what words might
appear in the input stream. Prediction was pre-
viously proposed in simultaneous statistical ma-
chine translation (Grissom II et al., 2014) but has
not been studied in the context of Neural Machine
Translation (NMT). In SNMT systems, prediction
of future words augments the encoder-decoder
model with possible future contexts to produce
output translations earlier (minimize delay) and/or
produce better output translations (improve trans-
lation quality). Our experiments show that predic-
tion improves SNMT in both these measures.

2 Simultaneous Translation Framework
An agent-based framework whose actions decide
whether to translate or wait for more input is a
natural way to extend neural MT to simultaneous
neural MT and has been explored in (Satija and
Pineau, 2016; Gu et al., 2017) which contains two
main components: The ENVIRONMENT which re-
ceives the input words X = {x1, . . . , xN} from
the source language and incrementally generates
translated words W = {w1, . . . , wM} in the tar-
get language; And the AGENT which decides an
action for each time step, at. The AGENT gen-
erates an action sequence A = {a1, . . . , aT } to
control the ENVIRONMENT.

Previous models only include two actions:
READ and WRITE. We extend the model by
adding the third action called PREDICT. Action
READ is simply sending a new word to the EN-
VIRONMENT and generating a candidate word in
the target language. In action WRITE, the AGENT
takes current candidate word and sends it to the
output. For PREDICT, the AGENT predicts the
next word in the input and treats it like a READ
action. The following section explains how the
ENVIRONMENT deals with different actions.

2.1 ENVIRONMENT

The ENVIRONMENT is an attention-based
Encoder-Decoder MT system (Bahdanau et al.,
2014) which is adopted to simultaneous transla-
tion task. The Encoder receives the embedded
representation of the input words (including
predicted ones) and converts them into context
vectors H⇢

n = {h1, . . . , hn+⇢} using a gated
RNN (GRU) where n is the number of input
words so far and ⇢ is the number of predicted
words since the last READ. Whenever the
AGENT decides to READ, ⇢ will be set to 0, and
hn = fENC(hn�1, xn), where xn is the next input
words (n  N ). But if the action is PREDICT,
⇢ > 0, the AGENT predicts a new word x0

⇢ and the
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context vector hn+⇢ = fENC(hn+⇢�1, x0
⇢) will be

added to H⇢
n = {h1, . . . , hn+⇢}.

At each time step t, the decoder uses the current
context vectors (H⇢

n) to generate the next candi-
date output (yt):

ct = aATT(zm�1, H
⇢
n)

st = fDEC(zm�1, wm�1, ct)
p(yt|y<t, H

⇢
n) = g(wm�1, zm, ct)

yt = arg max
y

p(y|y<t, H
⇢
n)

where wm�1 is the previous output word, and aATT
is an attention model (Bahdanau et al., 2014), f
and g are nonlinear functions, and ct is the current
context vector.

If the action at is either READ or PREDICT the
current candidate yt will be ignored (wait for bet-
ter predictions). But in the case of WRITE, the
candidate yt is produced as the next output word
wm and then the decoder state will be updated
(wm  yt, zm  st).

Note that as soon as the AGENT decides to
READ, all the hidden vectors generated by PRE-
DICT actions will be discarded (H⇢

n = H0
n =

{h1, . . . , hn}).
Figure 1 shows an example of how a sentence

can be translated using our modified translation
framework 1.

2.2 AGENT

The AGENT is a separate component which exam-
ines the ENVIRONMENT at each time step and de-
cides on the actions that lead to better translation
quality and lower delay. The agent in the greedy
decoding framework (Gu et al., 2017) was trained
using reinforcement learning with the policy gra-
dient algorithm (Williams, 1992), which observes
the current state of the ENVIRONMENT at time
step t as ot where ot = [ct; st; wm]. A RNN with
one hidden layer passed through a softmax func-
tion generates the probability distribution over the
actions at at each step. Therefore, policy ⇡✓ will
be computed as:

ut = f✓(ut�1, ot)
⇡✓(at|a < t, o  t) / g✓(ut)

Where ut is the hidden state of the AGENT’s
RNN.

3 Training the AGENT with Prediction
In order to speed-up the training process, we have
restricted AGENT’s options by removing redun-
dant operations. As illustrated in Figure 2, af-

1The pseudo-code is available in supplementary material
(Algorithm 1).

Figure 1: A schematic of our model. The ENVIRONMENT
starts with reading the ’Start of Sentence’ symbol as x1 and
generating y1 from the decoder. Based on the output of the
network at each time step, the AGENT decides whether to
READ, WRITE or PREDICT for the following time steps.

R P W

Figure 2: Action transition graph. R, P, and W stands for
READ, PREDICT and WRITE actions respectively.

ter a series of WRITE, the AGENT cannot choose
to PREDICT, and after a sequence of PREDICTs,
READ is not an option.
Reward Function: The total reward at any time
step is calculated as the cumulative sum of rewards
for actions at each preceding step. All the evalu-
ation metrics have been modified to be computed
for every time step.
Quality: We use a modified smoothed version of
BLEU score (Chen and Cherry, 2014) multiplied
by Brevity Penalty (Lin and Och, 2004) for evalu-
ating the impact of each action on translation qual-
ity. At each point in time, the reward for transla-
tion quality is:

rQ
t =

(
�BLEU(t) t < T

BLEU(W, W ⇤) t = T
The �BLEU(t) is the difference between BLEU
score of the translated sentence at the previous
time step and the current time step; �BLEU(t) =
BLEU(W t, W ⇤)�BLEU(W t�1, W ⇤); where W t

is the prefix of the translated sentence at time t.
Delay: The Delay reward is used to motivate the
AGENT to minimize delay. We use Average Pro-
portion (AP) (Cho and Esipova, 2016) for this pur-
pose, which is the average number of source words
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needed when translating each word. Given the
source words X and translated words W , AP can
be computed as:

d(X, W ) =
1

|X||W |
X

t

s(t)

rD
t =

(
0 t < T

d(X,W ) t = T
Where s(t) denotes the number of source words

the WRITE action uses at time step t (for any other
actions, s(t) would be zero). The delay reward is
smoothed using a Target Delay which is a scalar
constant denoted by d⇤ (Gu et al., 2017):

rD
t = bdt � d⇤c

Prediction Rewards for Quality and Delay alone
do not motivate the AGENT to choose prediction
and in preliminary experiments, after a number
of steps, the number of prediction actions became
zero. We address this problem by defining Predic-
tion Quality (PQ) which rewards the AGENT for
changes in BLEU score after each prediction ac-
tion. By initializing rp

0 = 0, the prediction reward
can be written as:

rp
t =

8
><

>:

�BLEU(t) at = W, at�1 = P
rp
t�1 at = W, at�1 6= P

0 otherwise
Final Reward The final reward function is cal-

culated as the combination of quality, delay, and
prediction rewards:

rt = ↵ rQ
t + � rD

t + � rp
t (1)

The trade-off between better translation quality
and minimal delay is achieved by modifying the
parameters ↵, �, and �.
Reinforcement Learning is used to train
the AGENT using a policy gradient algo-
rithm (Gu et al., 2017; Williams, 1992)
which searches for the maximum in
J(✓) = E⇡✓

hPT
t=1 rt

i
using the gradient:

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(a|s)Q⇡✓(s, a)] where
Q =

PT
t=1 rt. The gradient for a sentence is the

cumulative sum of gradients at each time step. We
pre-train the ENVIRONMENT on full sentences
using log-loss log p(y|x).

4 Experiments
We train and evaluate our model on English-
German (EN-DE) in both directions. We use
WMT 2015 for training and Newstest 2013 for
validation and testing. All sentences have been to-
kenized and the words are segmented using byte
pair encoding (BPE) (Sennrich et al., 2016).
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Figure 3: Action distribution for English to German trans-
lation in the first 25000 iterations. The numbers in each bar
are the average action percentage over the previous 5000 it-
erations.

Model Configuration For a fair comparison, we
follow the settings that worked the best for the
greedy decoding model in (Gu et al., 2017) and set
the target delay d⇤ for the AGENT to 0.7. The EN-
VIRONMENT consists of two unidirectional layers
with 1028 GRU units for encoder and decoder.
We train the network using AdaDelta optimizer, a
batch of size 32 and a fixed learning rate of 0.0001
without decay. We use softmax policy via recur-
rent networks with 512 GRU units and a softmax
function for the AGENT and train it using Adam
optimizer (Kingma and Ba, 2014). The batch size
for the AGENT is 10, and the learning rate is 2e-
6. The word predictor is a two layer RNN Lan-
guage model which consists of two layers of 1024
units, followed by a softmax layer. The batch size
is 64 with a learning rate of 2e-5. The predic-
tor has been trained on the WMT’16 dataset and
tested on Newstest’16 corpora for both languages.
The perplexity of our language model is reported
in Table 1. We set ↵ = 1, � = 0.5 and � = 0.5.
We tried different settings for these hyperparame-
ters during training and picked values that gave us
the best Quality and Delay on the training data.
Results and Analysis Figure 4 shows that as the
sentence length increases, prediction helps transla-
tion quality due to complex reordering and multi-
clausal sentences; However, for shorter samples
where the structure of the sentences are simpler,
the prediction action cannot improve translation
quality. Table 2 compares our model with the
Greedy Decoding (GD) model in terms of trans-
lation quality and latency. It shows that the pre-
diction mechanism outperforms the GD model in
terms of BLEU and average proportion (AP).

The delay evaluation measure (AP) counts
about the same number of READs and WRITEs. It
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Figure 4: Comparing translation quality between prediction model and greedy decoding method for various sentence lengths.

Perplexity
Test Train

English 17.5917 8.1350
German 19.8532 11.1808

Table 1: Performance of our predictor for both English and
German languages.

does not account for less delay as longer sentences
are produced. A better measure than AP might
be needed to emphasize delay differences. There-
fore we also report the average segment length
(µ), which is computed as the average number
of consecutive READs in each sentence. In both
EN!DE and DE!EN experiments, our model
constantly decreases the segment length by around
1 word which results in less latency.

In order to evaluate the effectiveness of our
proposed reward function for PREDICT action,
we have explored various values for its hyper-
parameters (↵, �, and �). Our empirical re-
sults show that the best trade-off between quality
and delay is achieved when around 20 percent of
the actions are PREDICT for both EN!DE and
DE!EN translation tasks (Figure 3). When there
is no reward for PREDICT action (� = 0), the
AGENT prefers other actions, and the number of
PREDICT actions turns into zero immediately af-
ter training the AGENT. If the reward for predic-
tion is valued too highly, the ENVIRONMENT de-
pends more on predicted words and the translation
quality decreases2.

5 Related work
Early work in SNMT was done in speech, where
the incoming signals were segmented based on
acoustic or statistical cues (Bangalore et al., 2012;
Fügen et al., 2007). (Sridhar et al., 2013; Matusov

2See Figure 6 in supplementary materials for more numer-
ical results.

EN!DE DE!EN
BLEU AP µ BLEU AP µ

GD 16.75 0.79 5.6 21.43 0.77 6
PM 17.54 0.74 4.7 21.83 0.70 5.2

Table 2: Comparison of translation quality (BLEU), Av-
erage Proportion (AP), and average segment length (µ) for
Greedy Decoding (GD) model with Prediction Mechanism
(PM) model.

et al., 2007; Yarmohammadi et al., 2013; Siah-
bani et al., 2014) use a separate segmentation step
and incrementally translate each segment using a
standard phrase-based MT system. (Matsubara
et al., 2000) applied pattern matching to predict
target-side verbs in Japanese to English transla-
tion. (Grissom II et al., 2014) used reinforcement
learning to predict the next word and the sentence-
final verb in a statistical MT model. These mod-
els reduce the delay but are not trained end-to-
end like our agent-based SNMT system. (Cho and
Esipova, 2016) proposed a non-trainable heuristic
agent which is not able to trade-off quality with
delay. It always prefers to read more words from
the input and this approach does not work well in
practice. (Satija and Pineau, 2016) introduced a
trainable agent which they trained using Deep Q
networks (Mnih et al., 2015). We modified the
SNMT trainable agent in (Gu et al., 2017) and
added a new non-trivial PREDICT action to the
agent. We compare to their model and show better
results in delay and quality.

6 Conclusion

We introduce a new prediction action in a train-
able agent for simultaneous neural machine trans-
lation. With prediction, the agent can be informed
about future time steps in the input stream. Com-
pared to a very strong baseline our results show
that prediction can lower delay and improve the
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translation quality, especially for longer sentences
and translating from an SOV (subject-object-verb)
language (DE) to an SVO language (EN).
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Christian Fügen, Alex Waibel, and Muntsin Kolss.
2007. Simultaneous translation of lectures and
speeches. Machine Translation, 21(4):209–252.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
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Abstract
While current state-of-the-art NMT models,
such as RNN seq2seq and Transformers, pos-
sess a large number of parameters, they are
still shallow in comparison to convolutional
models used for both text and vision applica-
tions. In this work we attempt to train sig-
nificantly (2-3x) deeper Transformer and Bi-
RNN encoders for machine translation. We
propose a simple modification to the atten-
tion mechanism that eases the optimization of
deeper models, and results in consistent gains
of 0.7-1.1 BLEU on the benchmark WMT’14
English-German and WMT’15 Czech-English
tasks for both architectures.

1 Introduction
The past few years have seen significant advances
in the quality of machine translation systems, ow-
ing to the advent of neural sequence to sequence
models. While current state of the art models
come in different flavours, including Transform-
ers (Vaswani et al., 2017), convolutional seq2seq
models (Gehring et al., 2017) and LSTMs (Chen
et al., 2018), all of these models follow the seq2seq
with attention (Bahdanau et al., 2015) paradigm.

While revolutionary new architectures have
contributed significantly to these quality improve-
ments, the importance of larger model capacities
cannot be downplayed. The first major improve-
ment in NMT quality since the switch to neural
models, amongst other factors, was brought about
by a huge scale up in model capacity (Zhou et al.,
2016; Wu et al., 2016). While there are multi-
ple approaches to increase capacity, deeper models
have been shown to extract more expressive fea-
tures (Mhaskar et al., 2016; Telgarsky, 2016; El-
dan and Shamir, 2015), and have resulted in signif-
icant gains for vision tasks over the past few years
(He et al., 2015; Srivastava et al., 2015).

⇤ Equal contribution.

Despite this being an obvious avenue for im-
provement, research in deeper models is often re-
stricted by computational constraints. Addition-
ally, deep models are often plagued by trainabil-
ity concerns like vanishing or exploding gradi-
ents (Bengio et al., 1994). These issues have
been studied in the context of capturing long range
dependencies in recurrent architectures (Pascanu
et al., 2012; Hochreiter et al., 2001), but resolv-
ing these deficiencies in Transformers or LSTM
seq2seq models deeper than 8 layers is unfortu-
nately under-explored (Wang et al., 2017; Barone
et al., 2017; Devlin, 2017).

In this study we take the first step towards
training extremely deep models for translation, by
training deep encoders for Transformer and LSTM
based models. As we increase the encoder depth
the vanilla Transformer models completely fail to
train. We also observe sub-optimal performance
for LSTM models, which we believe is associ-
ated with trainability issues. To ease optimiza-
tion we propose an enhancement to the attention
mechanism, which allows us to train deeper mod-
els and results in consistent gains on the WMT’14
En!De and WMT’15 Cs!En tasks.

2 Transparent Attention

While the effect of attention on the forward pass
is exalted with visualizations and linguistic inter-
pretations, its influence on the gradient flow is of-
ten forgotten. Consider the original seq2seq model
without attention (Sutskever et al., 2014). To prop-
agate the error signal from the last layer of the de-
coder to the first layer of the encoder, it has to pass
through multiple time-steps in the decoder, survive
the encoder-decoder bottleneck, and pass through
multiple time-steps in the encoder, before reach-
ing the parameter to be updated. There is some
loss of information at every step, especially in
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Figure 1: Grad-norm ratio (rt) vs training step (t)
comparison for a 6 layer (blue) and 20 layer (red)
Transformer trained on WMT 14 En!De.

the early stages of training. Attention (Bahdanau
et al., 2015) creates a direct path from the de-
coder to the topmost layer of the encoder, ensuring
its efficient dispersal over time. This increase in
inter-connectivity significantly shortens the credit-
assignment path (Britz et al., 2017), making the
network less susceptible to optimization patholo-
gies like vanishing gradients.

For deeper networks the error signal also needs
to traverse along the depth of the encoder. We
propose an extension to the attention mechanism
that behaves akin to creating weighted residual
connections along the encoder depth, allowing the
dispersal of error signal simultaneously over en-
coder depth and time. Using trainable weights,
this ‘transparent’ attention allows the model the
flexibility to adjust the gradient flow to different
layers in the encoder depending on its training
phase.

2.1 Experimental Setup
We train our models on the standard WMT’14
En!De dataset. Each sentence is tokenized with
the Moses tokenizer before breaking into sub-
word units similar to (Sennrich et al., 2016). We
use a shared vocabulary of 32k units for each lan-
guage pair. We report all our results on newstest
2014, and use a combination of newstest 2012 and
newstest 2013 for validation. To verify our re-
sults, we also evaluate our models on WMT’15
Cs!En. Here we use newstest 2013 for valida-
tion and newstest 2015 as the test set. To eval-
uate the models we compute BLEU on the tok-
enized, true-case output. We report the mean post-
convergence score over a window of 21 check-
points, obtained using dev performance, following
(Chen et al., 2018).

Figure 2: Grad-norm ratio (rt) vs training step (t)
comparison for a 6 layer (blue) and 20 layer (red)
RNMT+ model trained on WMT 14 En!De.

2.2 Baseline Experiments
We base our study on two architectures: Trans-
former (Vaswani et al., 2017) and RNMT+ (Chen
et al., 2018). We choose a smaller version of each
model to fit deep encoders with up to 20 layers
on a single GPU. All our models are trained on
eight P100 GPUs with synchronous training, and
optimized using Adam (Kingma and Ba, 2014).
For both architectures we train four models, with
6, 12, 16 and 20 encoder layers. We use 6
and 8 decoder layers for all our transformers and
RNMT+ experiments respectively. We also re-
port performance for the standard Transformer
Big and RNMT+ setups, as described in (Chen
et al., 2018), for comparison against higher capac-
ity models.

Transformer: We use the latest version of the
Transformer base model, using the implementa-
tion from (Chen et al., 2018). We modify the
learning rate schedule to use a learning rate of 3.0
and 40, 000 warmup steps.

RNMT+: We implemented a smaller version of
the En!De RNMT+ model based on the descrip-
tion in (Chen et al., 2018), with 512 LSTM nodes
in both encoder and decoder.

2.3 Analysis
From Tables 1 and 2, we notice that the
deeper Transformer encoders completely fail to
train. To understand what goes wrong we
keep track of the grad norm ratio rt =⇣
krh1L

(t)k
.

krhN L(t)k
⌘

, t = 1 . . . T , where
L(t) is the loss at time step t, N is the number
of layers in the encoder, h1 is the output of the
first encoder layer, hN is the output of the N -th
encoder layer, and T is the total number of train-
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Figure 3: Grad-norm ratio (rt) vs training step for
20 layer Transformer with transparent attention.

ing steps. We use rt as a diagnostic measure for
two reasons: First, it indicates if training is suffer-
ing from exploding or vanishing gradients. Sec-
ond, when a network is properly trained the lowest
layers usually converge quickly, whereas the top-
most layers take longer (Raghu et al., 2017). We
therefore expect that, for a healthy training pro-
cess, rt is relatively large during the early stages
of training when updates to lower layers are larger
than upper layers. We observe this in most suc-
cessful Transformer and RNMT+ training runs.

Figure 1 illustrates the rt curves for the 6-layer
and 20-layer Transformers. As expected, the shal-
low model has a high rt value during early stages
of training. For the deep model, however, rt re-
mains flat at a much smaller value throughout
training. We also observe that rt remains below
1.0 for both models, although the problem seems
much less severe for the shallow model.

From Tables 3 and 4, we also observe that the
performance of deep RNMT+ encoders is not sig-
nificantly impacted, reaching the level of the 6
layer model. This is supported by the RNMT+ rt

curves in Figure 2, which indicate few differences
in the learning dynamics of the shallow and deep
models. This contrasts with the Transformer ex-
periments, where increasing the depth leads to an
unstable training process.

To gain further insights into the stability of the
two architectures we completely remove the resid-
ual connections from their encoders. Residual
connections have been shown, in theory and prac-
tice, to improve training stability and performance
of deeper networks (see (He et al., 2015; Philipp
et al., 2017; Hardt and Ma, 2017; Orhan, 2017)).
Removing residual connections leads to disastrous
results for the Transformer, where the training pro-

Figure 4: Plot illustrating the variations in the
learned attention weights si,6 for the 20 layer
Transformer encoder over the training process.

cess either does not converge or results in signifi-
cantly worse results. On the other hand, the 6 layer
RNMT+ converges with only a slight degradation
in quality. Deeper versions of RNMT+ fail to train
in the absence of residual connections.

2.4 Regulating Deep Encoder Gradients with
Transparent Attention

Our baseline experiments reveal that mechanisms
to regulate gradient flow can be critical to improv-
ing the optimization of deeper encoders. Since
the only difference between our shallow and deep
models is the number of layers in the encoder, the
trainability issues are likely to be associated with
gradient flow through the encoder.

To improve gradient flow we let the decoder at-
tend weighted combinations of all encoder layer
outputs, instead of just the top encoder layer. Sim-
ilar approaches have been found to be useful in
deep convolutional networks, for example (Shen
and Zeng, 2016; Huang et al., 2016a; Srivastava
et al., 2015; Huang et al., 2016b), but this remains
un-investigated in sequence-to-sequence models.
We formulate our proposal below.

Assume the model has N encoder layers and
M encoder-decoder attention modules. For Trans-
former models each decoder layer attends the en-
coder, so M is equivalent to the number of decoder
layers (M = 6). For RNMT+, attention is only
applied in the first decoder layer, thus M = 1.
Let the activations from the i-th encoder layer be
{hi

t|t = 1 . . . T}, and embeddings be layer 0.
Then the traditional attention module attends to
{hN

t | t = 1 . . . T}. In transparent attention we
evaluate M weighted combinations of the encoder
outputs, one corresponding to each attention mod-

3030



En!De WMT 14 Transformer (Base) (Big)
Encoder layers 6 12 16 20 6

Num. Parameters 94M 120M 137M 154M 375M
Baseline 27.26 * * * 27.94

Baseline - residuals * 6.00 * * N/A
Transparent 27.52 27.79 28.04 27.96 N/A

Table 1: BLEU scores on En!De newstest 2014 with Transformers. * indicates that a model failed to
train.

Cs!En WMT 15 Transformer (Base) (Big)
Encoder layers 6 12 16 20 6

Num. Parameters 94M 120M 137M 154M 375M
Baseline 27.20 * * * 27.76

Baseline - residuals 25.83 * * * N/A
Transparent 27.41 27.69 27.93 27.80 N/A

Table 2: BLEU scores Cs!En newstest 2015 with Transformers. * indicates that a model failed to train.

ule. We define a (N + 1) ⇥ M weight vector
W , which is learned during training.1 We apply
dropout to W since we empirically found it help-
ful to stabilize training. We then compute softmax
s to normalize the weights.

si,j =
eWi,j

⌃N
k=0e

Wk,j
, j = 1 . . . M (1)

We now define

zj
t = ⌃N+1

i=1 si,jh
i
t, t = 1 . . . T, j = 1 . . . M

(2)
Now attention module j attends to {zj

t | t =
1 . . . T}. Since in RNMT+ a projection is applied
to the encoder final layer output, we apply a pro-
jection to the weighted combination of encoder
outputs before the attention module.

3 Results and Analysis

Our results, from tables 1 and 2, indicate that
adding transparent attention improves the perfor-
mance of most of our transformer experiments, but
the gains are most pronounced for deeper models.
While the baseline transformer fails to train with
12 layers or deeper encoders, transparent atten-
tion allows us to train encoders with up to 20 lay-
ers, improving by more than 0.7 BLEU points on
both datasets. Relative to Transformer Big, deeper
models seem to result in better or comparable per-
formance with less than half the model capacity.

1Here +1 is for the embedding layer.

We also observe gains of 0.7 and 1.0 BLEU
for RNMT+ models, on En!De and Cs!En re-
spectively, as indicated by Tables 3 and 4. How-
ever, experiments comparing wide models against
deeper ones are inconclusive. While deeper mod-
els perform slightly better than a wide model with
double their capacity on Cs-En, they are clearly
out-performed by the larger model on En-De.

The rt plot in Figure 3, also indicates that the
learning dynamics now resemble what we expect
to see with stable training. We also notice that
the scale of rt now resembles that of the RNMT+
model, although the lower layers converge more
slowly for the Transformer, possibly because it
uses a much smaller learning rate.

A plot of the weights si,j , in Figure 4, also
seems to support our findings. The scalar weights
for the lowest embeddings layer grow rapidly in
the early stages of training, but once these layers
converge the weights for layers 16 and 20 become
much larger. The weights for the top few layers re-
main comparable at convergence, suggesting that
the observed gains in performance might also be
partially associated with an ensembling effect of
the encoder features, similar to the effect observed
in (Peters et al., 2018).
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En!De WMT 14 RNMT+ (512) (1024)
Encoder layers 6 12 16 20 6

Num. Parameters 128M 165M 191M 216M 379M
Baseline 26.63 26.32 26.49 26.33 28.49

Baseline - residuals 26.37 * * * N/A
Transparent 26.61 26.87 27.07 27.33 N/A

Table 3: BLEU scores on En!De newstest 2014 with RNMT+. * indicates that a model failed to train.

Cs!En WMT 15 RNMT+ (512) (1024)
Encoder layers 6 12 16 20 6

Num. Parameters 128M 165M 191M 216M 379M
Baseline 25.77 25.86 26.02 25.75 26.66

Baseline - residuals 25.43 * * * N/A
Transparent 26.69 26.74 26.79 26.72 N/A

Table 4: BLEU scores Cs!En newstest 2015 with RNMT+. * indicates that a model failed to train.

4 Conclusions and Future Work

In this work we explore deeper encoders for Trans-
former and RNMT+ based machine translation
models. We observe that Transformer models are
extremely difficult to train when encoder depth is
increased beyond 12 layers. While RNMT+ mod-
els train with deeper encoders, we did not observe
any big performance improvements.

We associated the difficulty in training deeper
encoders with hindered gradient flow, and re-
solved it by proposing the transparent attention
mechanism. This enabled us to successfully train
deeper Transformer and RNMT+ models, result-
ing in consistent gains in translation quality on
both WMT’14 En!De and WMT’15 Cs!En.

Our results show that there is potential for im-
provement in translation quality by training deeper
architectures, even though they pose optimization
challenges. While this study explores training
deeper encoders for narrow models, we plan to
further study extremely deep and wide models to
utilize the full strength of these architectures.

5 Acknowledgments

We would like to thank the Google Brain and
Google Translate teams for their foundational con-
tributions to this project.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly

learning to align and translate. In International Con-
ference on Learning Representations.

Antonio Valerio Miceli Barone, Jindřich Helcl, Rico
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Abstract
Neural machine translation systems with sub-
word vocabularies are capable of translating
or copying unknown words. In this work, we
show that they learn to copy words based on
both the context in which the words appear as
well as features of the words themselves. In
contexts that are particularly copy-prone, they
even copy words that they have already learned
they should translate. We examine the influ-
ence of context and subword features on this
and other types of copying behavior.

1 Introduction
In translation, certain tokens – often names and
numbers – should be copied from the source sen-
tence to the target sentence. Word copying is
fairly straightforward in phrase-based statistical
machine translation, where unknown words can be
left untranslated (copied to the target). It poses
more of a challenge in neural machine transla-
tion systems, which often use limited or subword
vocabularies and soft attention rather than strict
alignment. This has resulted in a variety of ap-
proaches to copying, which make use of pre-/post-
processing and/or network modifications (e.g. ex-
plicit switching between generation and copying).

Neural machine translation models that use sub-
word vocabularies to perform open-vocabulary
translation have been observed to correctly trans-
late unknown words or copy words (one subword
at a time, if need be) even when the full word to be
translated or copied was not observed in training.
Koehn and Knowles (2017) found that neural ma-
chine translation systems using subword vocab-
ularies outperformed phrase-based statistical ma-
chine translation systems on the translation of un-
known words. This raises the questions that we
seek to answer: to what extent does byte-pair en-
coding1 solve the copying problem (without re-
quiring modifications to the network structure)?

1A type of subword vocabulary (Sennrich et al., 2016b).

More generally, what are subword neural machine
translation models learning about copying?

We find that neural machine translation systems
(with attention, trained on subword vocabularies)
learn to copy words (both novel and observed)
based on their sentential contexts. Additionally,
though the models have no knowledge about the
components of each subword unit, they learn that
certain categories of tokens (e.g. capitalized to-
kens) tend to be copied. We use quantitative and
qualitative evaluations to shed light on what these
models learn about copying tokens and about the
contexts in which copying occurs.

2 Related Work

Prior work on copying in neural machine trans-
lation has typically focused on rare or unknown
words. Luong et al. (2015) augment data with
word alignments to train a neural machine trans-
lation system (without attention) that emits both a
translation and source word positions for any out-
of-vocabulary (OOV) tokens emitted. They post-
process OOVs with a dictionary or by copying.
Currey et al. (2017) augment training data with
monolingual target language text as bitext and find
that it improves copying in low-resource settings.
Ott et al. (2018) and Khayrallah and Koehn (2018)
examine negative effects of source copying.

Both Gu et al. (2016) and Gulcehre et al. (2016)
modify neural sequence to sequence models to ex-
plicitly perform copying. Gu et al. (2016) focus on
monolingual tasks (dialogue systems and summa-
rization), proposing a model that can both gener-
ate and copy text. Gulcehre et al. (2016) perform
experiments on neural machine translation (with
attention), using whole-word vocabularies (and an
UNK token to represent unknown words). Their
model incorporates a switching variable that deter-
mines whether to copy or generate a translation.

In this work, we focus on subword vocabularies
for neural machine translation, using byte-pair en-
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Data % Tokens Copied
DE EN

Europarl 1.8% 2.0%
News Commentary 2.9% 3.3%

Full Training (EN–DE) 7.6% 8.1%
Full Training (DE–EN) 8.6% 9.2%

Table 1: Percentage of tokens which should be
copied, across training data sources.

coding (BPE, Sennrich et al. (2016b)). The other
approaches described are somewhat orthogonal to
the use of subword vocabularies, but may require
modifications to handle subwords.

3 Data and Models

We train German–English (DE–EN) and English–
German (EN–DE) neural machine translation
models with attention, similar to the University
of Edinburgh’s WMT 2016 submissions (Sennrich
et al., 2016a). Models are trained using the Mar-
ian toolkit (Junczys-Dowmunt et al., 2018).2 We
use the WMT parallel text3 (Europarl, News Com-
mentary, and CommonCrawl) along with synthetic
backtranslated data.4

4 Initial Analysis

We analyze the training data to learn about
the prevalence and characteristics of words that
should be copied in translation and the contexts in
which they occur. We consider both the full train-
ing data (including backtranslations and Common-
Crawl) and cleaner subsets. We restrict our search
for copied words to tokens of length 3 or more
characters.5 Our heuristic for detecting copied to-
kens is this: a word is a “copied token” if it appears
the same number of times in both the source and
target sentence.6 As we will show, copied words
tend to belong to specific categories (proper nouns,
numbers, etc.) which coincide with their repeated
appearance in certain contexts (e.g. names follow-
ing titles like “Ms” or “Prime Minister”).

2We use recommended settings and early stopping, with
results comparable to WMT 2016 systems, with BLEU scores
of 39.9 (DE–EN) and 33.2 (EN–DE) on the 2016 test set.

3http://www.statmt.org/wmt16/translation-task.html
4http://data.statmt.org/rsennrich/wmt16 backtranslations/
5This has the benefit of removing words like in which are

the same in German and English, but may nonetheless be con-
sidered translations rather than copies.

6In DE–EN, we find one notable exception to this heuris-
tic – was – which is a homograph, not a copy. It makes up
< 1% of copied tokens in Europarl/News Commentary.

4.1 Where do copied words appear?
In Table 1, we see that between 1.8% and 9.2% of
tokens are copied.7 Though the majority (or near-
majority) of sentences do not contain any copied
words (of length 3 or more), copied words are still
quite prevalent: approximately 18% of sentences
in each full training dataset contain one, 4% to 5%
contain four, and there is a long tail (one sentence
contains 70). Sentences with many copied words
often contain direct quotations, third language text
(not source/target), or a sequence of copied words
(e.g. comma-separated numbers or names).

The cleaner Europarl and News Commentary
corpora have lower percentages of copied tokens
than the overall training data. Of particular note,
the backtranslated data contains some examples
of copying that we’d prefer for the system not to
learn, such as target language words appearing un-
translated in the (backtranslated) source side data.

4.2 What words are copied?
We first examine the part-of-speech (POS) tags8

of copied words. In the EN–DE training data,
most copied words are tagged on the English
side as NNP (proper noun, singular), including
names of individuals, places, or organizations (eg.
González, Wales, Union). The next most frequent
categories are CD (cardinal number) – including
numbers like 42 that should be copied and ones
like seven which should be translated – and NN
(noun, singular or mass). The results are similar
for DE–EN training data (tagged on German with
a different tag set): PROPN (proper noun) is the
most frequent tag for copied words, followed by
NUM (numbers) and NOUN. Punctuation would
rank highly if we included short tokens.

5 Experiments and Analysis

We address two main questions: (1) Do certain
contexts encourage copying? (2) Do certain words
exhibit features that make them more likely to be
copied (regardless of context)?

5.1 Contexts
Working from the intuition that certain contexts
indicate that copying should occur – for exam-
ple, a name following a title like “Ms” or “Frau”

7The two full training sets differ due to the synthetic back-
translated data; the rest of the corpora are identical.

8POS tags are generated by the Stanford POS tagger
(Toutanova et al., 2003). For English: english-left3words-
distsim.tagger. For German: german-ud.tagger.
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S: Therefore, Mrs Ashton, your role in this is invaluable.
R: Darum, Frau Ashton, ist Ihre Aufgabe in diesem
Zusammenhang von unschätzbarem Wert.
T: Therefore, Mrs [NNP], your role in this is invaluable.
E1: Therefore, Mrs BBC, your role in this is invaluable.
D1: Deshalb, Frau BBC, ist Ihre Rolle hierbei von [...]
E2: Therefore, Mrs June, your role in this is invaluable.
D2: Deshalb, Frau June, ist Ihre Rolle dabei von [...]
E3: Therefore, Mrs Lutreo, your role in this is invaluable.
D3: Daher, Frau Lutreo, ist Ihre Rolle hierbei von [...]

Table 2: Source, reference, template, and examples
of template-token combinations. E1 has a word
usually (76.0% of the time) copied in training, E2
has one rarely (0.8% of the time) copied, and E3
has a novel one. In training, 84.8% of NNPs with
this left bigram context (“, Mrs”) were copied.

should often be copied – we examine the relation-
ship between context and copying, focusing on left
bigram contexts. We show that the machine trans-
lation system learns that certain contexts are so
indicative of copying that it will even copy (not
translate) words that it has learned to translate if
they are seen in a sufficiently copy-prone context.

For each POS, we collect a set of left bigram
contexts that precede a word with that tag. We
filter by frequency and diversity of tokens follow-
ing the bigram.9 For each context-POS pair, we
select 50 random templates from the training data
containing the bigram context followed by a word
with that POS.10 Each context-POS pair is associ-
ated with a percentage that represents how often it
exhibited copying in the training data. For exam-
ple, in the copy-prone context “thank Mrs [NNP]”
the NNP was copied 91.1% of the time, compared
to 15.3% of the time in “Republic of [NNP]”.11

We take all word types with a given POS tag
from the WMT 2016 test set, dividing them into
four categories based on two binary distinctions:
observed (in training data) or novel (not observed
in training), and copy (typically copied) or non-
copy (not typically copied) and filter the observed
ones based on training frequency. We count words
as non-copy if they were copied  30% of the
time, and as copy if they were copied � 70% of

9See Appendix A for details and examples of contexts.
10We select contexts and templates from the full training

data, rather than only Europarl/News Commentary, because
we are interested in what patterns the model is learning from
all data to which it has been exposed.

11For DE–EN translation, we see similar patterns: two of
the three most copy-prone PROPN left bigram contexts are
“sagte Frau” and “sagte Herr” (“said Ms/Mr”), while many
less copy-prone ones end with articles.

Figure 1: Percent of NNP (EN–DE) tokens copied
by how copy-prone the context is, by cate-
gory. Each point is the percentage of copying
for all within-category words, across all exam-
ple templates for one particular context (averaged
over between 1,100 (novel-non-copy) and 13,150
(observed-non-copy) binary copy values).

the time.12 We then combine each word with each
POS-appropriate example template and perform
preprocessing (including BPE) and translation.13

Table 2 shows examples.
For each context, we calculate the percent-

age (across all example templates for that con-
text and all words, separated by observed/novel
and copy/non-copy categories) of the time that the
words in that context were copied. We then com-
pare it to the percentage of the time that copying
occurred for that context-POS tag pair in training.

Figure 1 shows NNP (EN–DE) results. Both
observed-copy and novel-copy words behave al-
most identically, with copying percentages gen-
erally above 80%, and a slight trend upward as
contexts become more copy-prone (moving to the
right along the horizontal axis). Novel-non-copy
words shadow these, but with a drop in copying
percentage (see Section 5.3). Most interesting is
the observed-non-copy category. In contexts that
are not copy-prone, minimal copying occurs.14

However, as they are placed in increasingly copy-
prone contexts, even these words that the system
has learned it should translate are being copied.
We observe the same trend for words tagged NN
and CD, and for PROPN, NOUN, and NUM words
in the DE–EN direction. This demonstrates that
the machine translation system has learned that
certain contexts are copy-prone.

We manually analyze outliers that appear much
12See Appendix B for details.
13We use the Marian batch decoder, with recommended

settings: beam size 6 and length normalization penalty of 0.6.
14 Note that some of the non-copy words were sometimes

copied in training data, even if only in backtranslations.
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Drop Change Other
Novel-Copy 24 102 60

Novel-Non-Copy 14 128 50
Observed-Copy 51 6 126

Observed-Non-Copy 12 1 186

Table 3: Counts of automatically detected output
categories (drop, change, and other) for a sample
of NNP tokens (EN–DE) that were not copied.

more or less copy-prone than expected. In both
cases, the cause appears the same: the context oc-
curred repeatedly in many very similar sentences
in the training data. Highly copy-prone contexts
that produced copying percentages greater than
70% even in observed-non-copy tokens often ap-
peared in common boilerplate text (e.g. “stay at
[NNP]” or “rates for [NNP]” followed by “Ho-
tel”).15 Where we observe lower than expected
rates (e.g. “) of [NNP]”), we find that the system
may have memorized training sentences.

5.2 Analysis of Words That Are Not Copied
When words are not copied, what sort of output
is the system producing? We find that it typically
falls into one of four categories: drop (no target
token aligns with the source token), change (the
word is changed: partially translated, transliter-
ated, or inflected even if it is not a target language
word), substitution (the word is replaced with a
fluent but not adequate substitute), or translation
(translated into a target language word).

We begin with an automatic analysis. We
randomly sample 200 examples each of sen-
tences containing words that were not copied for
novel-copy, novel-non-copy, observed-copy, and
observed-non-copy NNPs (EN–DE). We retrans-
late each sentence and produce a soft alignment
matrix from the attention mechanism, then con-
vert the soft alignments between BPE segments
into hard alignments between the source word and
one or more target words.16 A word has been
dropped if it is unaligned. We count a word as be-
ing changed if any words it is aligned to have any
subword (BPE segment) overlap with the original
word’s subwords. Both substitution and transla-
tion fall under other; we analyze those manually.

Results are shown in Table 3.17 For all novel
15Since hidden representations contain whole sentence in-

formation, right side context may influence copying too.
16We use AmuNMT (Junczys-Dowmunt et al., 2016), pro-

ducing slightly different output. See Appendix C for details.
17Rows do not sum to 200 because some words in our ran-

words, the most frequent output type is change.
For example, the novel NNP Bishnu is changed
into Bischnu in German.18 Other changes include
translations of parts of the word, and concatena-
tion with other tokens. The output token often
starts with the same character or sequence of char-
acters as the source token.19

We manually inspect examples in the other cat-
egory. For observed-non-copy words, almost all
are translations (e.g. Sea translated correctly as
Meer), as expected. For observed-copy words, we
see a mix of translations and other changes to the
words, which are almost evenly split between sub-
stitutions and small changes. These include inflec-
tions (e.g. Bremen magazine reasonably translated
as Bremer Magazin20).

Within the other category, perhaps the most in-
teresting cases are those where words appear to
be substituted with a fluent but not adequate al-
ternative. Many substitutions occur when the rare
word is inserted next to a word that often forms
a collocation (like “United States” – in sentences
that include “in the [NNP] States” the transla-
tion sometimes defaults to a translation of “United
States” regardless of the actual NNP inserted in
place of “United”). Others have a less common
NNP swapped for one that belongs to a similar se-
mantic category (e.g. the place name Dublin be-
ing generated instead of the less common Halle
– as Arthur et al. (2016) and others observed).
For novel-copy words labeled as other, three quar-
ters are substitutions and one quarter exhibit small
changes. The reverse is true for novel-non-copy
words: the majority exhibit small changes while
almost thirty percent are substitutions.

5.3 Properties of Copied Words

Certain words exhibit properties that make them
more likely to be copied, regardless of context.
At first glance, it seems unintuitive that the rate
of copying of novel-copy words and novel-non-
copy words differs (Fig. 1) – the model has never
observed any of these words, and they are being
presented in identical contexts – why does it dif-
ferentiate between them? Doing so indicates that
the model has learned what makes a sequence of

dom sample were copied by the the AmuNMT decoder.
18A near-transliteration – the “sh”/“sch” transformation is

seen in EN–DE cognates, e.g. “ship” and “Schiff”.
19Appendix D contains examples of this and more.
20Bremen and Bremer are unique BPE segments, so the

change heuristic could not be applied.
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Figure 2: Copying rate based on casing and number
of BPE segments for novel NNP words (EN–DE),
averaged across all NNP contexts.

subwords likely to be copied.
Belinkov et al. (2017) observe that neural ma-

chine translation models may encode informa-
tion about part-of-speech, which could be used
when determining whether or not to copy (but
does not explain within-POS differences). For
numbers, it mainly learns to copy numerical por-
tions while changing commas to periods and vice
versa (as required by the target language’s conven-
tions). Nouns and proper nouns are more interest-
ing: some should be translated (e.g. novel noun
compounds like hallmate), or, in the case of mis-
spellings (e.g. manfacturer), corrected, while oth-
ers should be copied. For novel NN words, there is
another striking difference between copy and non-
copy: most of the former contain capital letters
and most of the latter do not.

5.4 Capitalization and Copying

To experiment with the influence of capitalization
on copying, we take each novel NNP word (96
copy and 22 non-copy) and convert it to lower-
case, leave it in its natural case (all have at least
one uppercase letter), or convert it to uppercase.
We then translate all of them in all NNP contexts
(from previous EN–DE experiments). Using only
novel words sidesteps the issue of truecasing.

Lowercase words are the least frequently copied
(average copy rate of 40.2%), uppercase words are
the most copied (94.4%), and the natural case falls
in the middle (81.7%). However, changing cas-
ing changes the BPE segmentation, and uppercase
words tend to be split into more pieces: a mean of
4.4 segments, as compared to means of 3.1 (low-
ercase) and 2.9 (natural case). The number of
subword segments correlates positively with copy-
ing rate (Fig. 2), but, controlling for that, we still
find that NNP words that are completely capital-

ized tend to be copied more than those with the
same number of subword segments but only low-
ercased letters, suggesting that the system is en-
coding information about the connection between
capitalization and copying. We also perform this
experiment with PROPN words in the DE–EN di-
rection, and find that increased capitalization in-
creases copying, though we do not find there that
an increase in the number of BPE segments in-
creases copying. The true casing of the word con-
sistently falls between these two extremes. The
high copying rate of fully-capitalized words is in-
tuitive: acronyms are often both uppercased and
copied from source to target. That is not to say
that the model always learns to copy acronyms;
it also learns to translate them when appropriate
(such as GDP to BIP). There is always an inter-
play between learned translations and features that
may encourage copying.

The connection between copying rate and capi-
talization provides one explanation for the gap in
behavior of the two novel word types, and demon-
strates that features of words influence copying.
Note that it learns this behavior based on training
data, without access to information at a finer gran-
ularity (character-level) than the subword units.

6 Conclusion

We show that subword vocabulary neural machine
translation systems learn about copying from con-
text and the subwords themselves. The effect of
context is strong enough to cause words that would
otherwise be translated to be copied. Characteris-
tics of subword tokens play a role in copying be-
havior, with capitalized tokens more likely to be
copied. We leave as future work a deeper analy-
sis of the level of character-awareness encoded in
representations of the BPE segments as a byprod-
uct of training. We provide an analysis of what
happens when words are not copied, showing ex-
pected differences between novel words and words
that were observed during training. Additionally,
we provide more examples and evidence of the
problem of substituting fluent but non-adequate
translations for rare or unknown words.

Acknowledgments We thank the reviewers and
our colleagues for comments and suggestions. Re-
becca Knowles was supported by a National Sci-
ence Foundation Graduate Research Fellowship
under Grant No. DGE-1232825. This work was
also funded by the IARPA MATERIAL project.

3038



References
Philip Arthur, Graham Neubig, and Satoshi Nakamura.

2016. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas. Association for Computational Linguistics.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
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Appendices

A Collection of Left Bigram Contexts

We use left bigram contexts as a proxy to evaluate
the contexts in which words are copied. Here, we
provide details of the context selection process de-
scribed in Section 5.1. In overview: for each POS,
we collect the full set of left bigram contexts that
ever precede a word with that tag, then filter by
frequency and subsequent token diversity.

For each POS, first, we find all left bigram con-
texts (tok0, tok1, copiedword) that occur in the
training data (where the copied word was tagged
with the given POS). We then filter this set so
that it only contains contexts (tok0, tok1) that ap-
peared at least 1000 times (left of NNP/PROPN)
or 500 times (left of CD/NN/NUM/NOUN) in the
training data. To ensure that we’re not simply cap-
turing collocations (“European Union”), we filter
out left bigram contexts that have been followed
by fewer than 150 unique types with that particular
POS. This results in between 53 and 276 contexts,
as shown in Table 4.

POS Num. Contexts
NNP 176
NN 82
CD 74
PROPN 276
NOUN 66
NUM 53

Table 4: Context counts by POS tag (NNP, NN, CD
for EN–DE; PROPN, NOUN, NUM for DE–EN),
selected as described in Appendix A.

Each context is then associated with a copying
rate, calculated as the number of times the token
(with the given POS tag) following (tok0, tok1)
is copied, divided by the total number of times
(tok0, tok1) was observed to be followed by a to-
ken with that POS tag. In Table 5, we show the
most- and least-copy-prone contexts for EN–DE
(those with the highest and lowest copying rates).

B Collection and Labeling of
Copy/Non-Copy Words

In Section 5.1, we give a high-level description of
how we collect and label words. All words that we
examine are labeled as either copy or non-copy.
For words that were observed in training, we filter

POS Context Copy Rate
NNP Finance Minister 94.5%

rates for 94.0%
congratulate Mr 91.7%
between the 10.5%
President , 7.7%

CD updated on 94.0%
the B 0.1%

NN notified when 97.3%
the first 0.6%

Table 5: Left bigram contexts with the high-
est/lowest copying rates (EN–DE), by POS tag.

Novel Observed
POS Copy Non-C. Copy Non-C.
NNP 96 22 251 263
NN 14 16 13 1664
CD 3 29 60 44
PROPN 92 76 463 418
NOUN 12 222 29 2176
NUM 2 29 55 68

Table 6: Counts of each word type by
novel/observed, copy/non-copy distinction
and POS tag (NNP, NN, CD are EN–DE; PROPN,
NOUN, NUM are DE–EN).

out those that appeared fewer than 1000 times. We
label them as copy if they were copied � 70% of
the time in training data (according to the heuris-
tic described in Section 4), and as non-copy if they
were copied  30% of the time in training data,
discarding the remainder. For words that were un-
observed in training, we used the same threshold
but calculate it over all instances in the test data
(with no requirement that they appear a certain
number of times). Table 6 shows the number of
words selected after filtering and thresholding.

C Attention and Alignments

We produce soft alignments (the attention ma-
trix) using the AmuNMT decoder with the “return-
nematus-alignment” flag set. It performs normal-
ization differently than Marian’s decoder (produc-
ing slightly different outputs for many sentences,
including sometimes copying words that were not
copied in our original translations).

For each target (subword) token, we align it
to the source (subword) token with the highest
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soft alignment weight. Given our source word
of interest s (composed of subword segments
s1 . . . sn), we define its translation to be the list of
all target words t (composed of subword segments
t1 . . . tm) for which any subword ti was aligned to
a subword sj of s.

D Additional Examples

D.1 Changes
Here we show additional examples of changes,
like the transliteration-like change of Bishnu to
Bischnu described in Section 5.2.

There are also partial translations when BPE
segments are full source language words –
like Thneed (segmented “Th@@ need”) be-
coming ThNotwendigkeit (segmented “Th@@
Notwendigkeit” – Notwendigkeit is a valid trans-
lation of need). Sometimes, a token is copied but
then concatenated with another token.

Even without overlap of BPE segments between
the source and the translation, changed words
sometimes share a number of characters (espe-
cially at the beginning or end of a word). Half
of the other category output of Thneed (“Th@@
need”) begin with the letter “T” (but not the BPE
token “Th@@”). This may suggest some level of
character-awareness in the representations of BPE
segments, produced as a byproduct of training. We
leave a deeper analysis of this to future work.

D.2 NNP Substitutions
Here we provide additional examples of substitu-
tions, as seen in Section 5.2. These findings pro-
vide additional support and nuance to the study
of this phenomenon of neural machine translation
system errors.

Many substitutions occur when the rare word is
inserted next to a word that often forms a colloca-
tion (like “United States” or “European Union” or
“Madam President”). For example, in a template
where “in the [NNP]” is followed by “States”, in-
serting the NNP Accies results in “in the Accies
States” – which was then translated by the sys-
tem as “in den Vereinigten Staaten” (gloss: “in the
United States”).

We also observe examples that may have to
do with a combination of (in)frequency of tokens
and the context. For example, we have the novel
NNP Sloveina (perhaps a misspelling of Slove-
nia), which is often replaced with Slowaken (Slo-
vakia) when translated to German. In another sen-

tence, we find that “this year, Angela expects”
is translated to “in diesem Jahr erwartet Merkel”
despite Merkel appearing nowhere in the source
text. The first and last names of German chan-
cellor Angela Merkel appear frequently together
in training data, and thus likely have sufficiently
similar representations. We see other similar sub-
stitutions: Mitt for Romney, US for Obama, and
Thomas for Sarah. Sometimes a specific name is
replaced with a title, such as “your prime minis-
ter, York” being translated as “ihr Premierminister,
Herr Präsident” (glossed as “your prime minister,
Mr. President”).

E Additional Plots

Here we include plots for DE–EN PROPN. Fig. 3
shows context experiments. It shows similar
trends to Fig. 1, but with a greater gap between
novel- copy/non-copy words. As noted, the DE–
EN capitalization experiments (Fig. 4) show the
same trends as EN–DE in terms of capitalization
(despite the capitalization of all nouns in German),
but not in terms of numbers of BPE segments.

Figure 3: Percent of PROPN (DE–EN) tokens
copied by how copy-prone the context is, by cate-
gory. Each point is the percentage of copying for
all within-category words, averaged across all ex-
ample templates for one particular context.

Figure 4: Copying rate based on casing and number
of BPE segments for novel PROPN words (DE–
EN), averaged across all PROPN contexts.
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Abstract
Translation memories (TM) facilitate human
translators to reuse existing repetitive transla-
tion fragments. In this paper, we propose a
novel method to combine the strengths of both
TM and neural machine translation (NMT) for
high-quality translation. We treat the target
translation of a TM match as an additional ref-
erence input and encode it into NMT with an
extra encoder. A gating mechanism is further
used to balance the impact of the TM match
on the NMT decoder. Experiment results on
the UN corpus demonstrate that when fuzzy
matches are higher than 50%, the quality of
NMT translation can be significantly improved
by over 10 BLEU points.

1 Introduction
Neural machine translation, an emerging machine
translation (MT) technology, has made remarkable
progress in the past few years (Cho et al., 2014;
Sutskever et al., 2014), which strongly encourages
many translation agencies to embrace it for prod-
uct deployment. A natural question during this
deployment is how the strengths of both the tra-
ditional TM and new NMT technologies can be
combined together for professional high-quality
translation.

Such attempts to the TM and MT combination
have been already conducted in the context of sta-
tistical machine translation (SMT). A variety of
efforts have been made to incorporate matched
translation segments from TM into SMT (Koehn
and Senellart, 2010). Partially inspired by these
efforts, we aim at combining TM and NMT in this
paper.

Different from TM and SMT, both of which
use symbolic fragments to construct translations,
NMT induces translations from a real-valued con-
tinuous space. Furthermore, NMT is trained in an

⇤ Corresponding author

end-to-end fashion, which makes it not easy to be
amenable to external intervention. Therefore, in-
corporating TM as external knowledge into NMT
is challenging.

In this paper, we propose a novel and effective
method to address this issue in the combination of
TM and NMT. The key idea behind this method is
to mimic human translators in translating a source
sentence given a similar source sentence with a
translation. We treat the matched TM translation
as an additional signal and try to encode it with a
new encoder to guide the NMT decoder to trans-
late the current sentence. Specifically, we first
find the sentence that is most similar to the current
source sentence from TM by calculating their se-
mantic similarity based on sentence embeddings.
In order to prevent the TM matched translation
from dominating the decoding process, we intro-
duce a gate mechanism to balance the TM transla-
tion signal and the current source sentence which
are encoded separately by two different encoders.

A series of experiments on the Chinese-English
UN corpus demonstrate that when fuzzy matches
are over 50%, the proposed method can signifi-
cantly improve NMT with the gated TM signal.
We also conduct an in-depth analysis on the TM
gate, which shows that the gate can indeed reg-
ulate the information flow from TM to the NMT
decoder.

2 Encoding Gated TM into NMT
In this section, we elaborate our proposed method
that encodes translation memories into neural ma-
chine translation with a gating mechanism. We re-
fer to our method as NMT-GTM, which consists
of three essential components: i) coupled encoders
that encodes both the source sentence and matched
TM translation separately, ii) a TM gating net-
work that controls the encoded signal from the TM
matched translation and iii) a TM-guided decoder
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that incorporates the gated TM signal into the de-
coding. The diagram of NMT-GTM is shown in
Figure 1.

For each source sentence src, we retrieve TM
to find the most similar sentence to it. Different
from the combination of TM and SMT, we de-
fine the best TM match as the sentence with the
highest cosine similarity which is calculated based
on sentence embeddings (Le and Mikolov, 2014),
instead of being selected based on fuzzy match
score. This is consistent with NMT that performs
in an embedding-defined semantic space. But we
display our results in experiments according to
fuzzy match scores for easy understanding. We
use tm s to denote the most semantically similar
sentence to src from TM and tm t its translation.

2.1 Coupled Encoders
We use a pair of encoders to separately encode the
source sentence src and its matched TM transla-
tion tm t. Both encoders are running indepen-
dently of each other with bidirectional GRU re-
current neural networks1 (Chung et al., 2014). Ac-
cordingly, two separate attention networks are em-
ployed to obtain context representations for both
src and tm t, which we denote as csrc and ctm t

respectively. The attention network for the TM
matched translation is able to help detect matched
translation segments from tm t for the decoder.

2.2 TM Gating Network
When we translate a source sentence, in addition
to the input of the sentence itself, we also have a
TM matched translation (tm t) semantically simi-
lar to the sentence as an additional input. We want
the additional input to act as a translation example
for providing positive guide to target word predic-
tion. In order to balance the information flow from
the two inputs (src and tm t) into the decoder, we
further introduce a TM gating network to control
the respective proportions of tm t and src, par-
tially inspired by Tu et al. (2017) who propose a
gating mechanism to combine source and target
contexts. We formulate the TM gating network as
follows:

gtm = f(st�1, yt�1, c
src, ctm t)

where st�1 is the previous hidden state, yt�1 is
the previously predicted target word, and f is a

1In this paper, we use GRU encoders and decoders. How-
ever, our method can be applicable to other encoders and de-
coders.

train dev test
#Sentences 1, 117, 452 804 1, 614

Average FMS 0.1890 0.5493 0.5392

Table 1: Statistics of the training data, develop-
ment and test set. FMS: fuzzy match score.

logistic sigmoid function.

2.3 TM-Guided Decoder
In the TM-guided decoder, we integrate the gated
TM information into the decoding process and use
the context representations of src and tm t to pre-
dict the hidden state of the decoder in each time
step. The decoder hidden state st is computed as
follows:

st = GRU(st�1, yt�1, c
src⇤(1�gtm), ctm t⇤gtm)

where * is an element-wise multiplication.
The conditional probability of the next word yt

is calculated as follows:

p(yt|y<t, src) = g(f(st, yt�1, c
src))

Please notice that we only incorporate the gated
TM into the hidden state of the decoder, rather
than the prediction of the next word. Our goal is
to correctly translate the source sentence with ref-
erence to the translation of the TM match tm t.
In other words, tm t only plays a supporting role
in translation. We don’t want too much infor-
mation from TM to affect the translation of the
source sentence. Therefore, we incorporate the
gated TM in a way that it can only indirectly influ-
ence the target generation via hidden states. In our
experiments, we observe that this helps our pro-
posed model to faithfully translate a source sen-
tence, instead of copying all information from the
TM matched translation, especially for source sen-
tences with slight differences (e.g., dates or num-
bers) from TM matches.

3 Experiments
We conducted a series of experiments on Chinese-
English corpus to evaluate the effectiveness of the
proposed NMT-GTM and analyzed the TM gate.

3.1 Experimental Settings
Our data come from the Chinese-English United
Nations Parallel Corpus (Rafalovitch et al., 2009),
which consists of official records and other par-
liamentary documents. Since large-scale public
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Figure 1: Model Architecture of NMT-GTM

FMS #Sentences
[0.9, 1.0) 171
[0.8, 0.9) 182
[0.7, 0.8) 178
[0.6, 0.7) 179
[0.5, 0.6) 181
[0.4, 0.5) 177
[0.3, 0.4) 180
[0.2, 0.3) 185
(0.0, 0.2) 181

Table 2: The numbers of sentences of the test set
in each fuzzy match score group.

translation memories are not easily available, we
built a translation memory from the UN corpus.
Specifically, we divided the Chinese-English UN
corpus into two parts UNa and UNb with equal
size. For each source sentence sa from UNa,
we chose the source sentence sb from UNb that
has the highest semantically similarity to sa, com-
puted in the way described in the last section. In
doing so, we built a corpus with matched pairs
(sa/ta, sb/tb) where ta/b are translations corre-
sponding to sa/b. Then we computed the fuzzy
match score for each pair of source sentences as

follows:

FMS(sa, sb) = 1 � Levenshtein(sa, sb)

max(|sa|, |sb|)

where Levenshtein(sa, sb) is the word-based
Levenshtein Distance between sa and sb. The
fuzzy match score can also be calculated with
other methods, e.g., the method introduced in
(Bloodgood and Strauss, 2015). We leave FMS es-
timated with different methods to our future work.
We selected all pairs (sa/ta, sb/tb) with a fuzzy
match score FMS >= 0.5. From those pairs
with FMS < 0.5, we randomly selected 20% of
them. These selected pairs were then divided into
9 groups according to their fuzzy match scores
(e.g., FMS 2 [0.5, 0.6)). We randomly chose
approximately the same number of sentences from
each group to create a development set and test set.
The remaining data were used to create the train-
ing data (i.e., {(sa, tb, ta)selected}) and translation
memory (i.e., {(sb, tb)selected}). Statistics of the
training data, development and test set are shown
in Table 1. The numbers of sentences of the test
set in each fuzzy match score group are presented
in Table 2.

We used RNNSearch as our NMT baseline. We
set the maximum sentence length of training cor-
pus to 50 words both for the Chinese and English
sides. The sizes of vocabularies of both sides were
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FMS RNNSearch NMT-GTM TM
[0.9, 1.0) 43.97 77.67 94.23
[0.8, 0.9) 47.32 79.78 79.84
[0.7, 0.8) 50.95 71.53 67.11
[0.6, 0.7) 56.12 65.39 58.93
[0.5, 0.6) 65.01 66.46 46.99
[0.4, 0.5) 67.83 66.30 34.67
[0.3, 0.4) 58.51 56.83 22.93
[0.2, 0.3) 46.12 44.42 9.72
(0.0, 0.2) 31.41 29.83 1.18
(0.0, 1.0) 51.11 61.43 47.16

Table 3: BLEU scores for translations from
RNNSearch, NMT-GTM and TM.

FMS ref as TM TM ave gate ref ave gate
[0.9, 1.0) 81.51 0.6712 0.6735
[0.8, 0.9) 85.94 0.6543 0.6582
[0.7, 0.8) 85.87 0.6385 0.6477
[0.6, 0.7) 83.13 0.6075 0.6267
[0.5, 0.6) 84.55 0.5995 0.6218
[0.4, 0.5) 85.13 0.5755 0.6035
[0.3, 0.4) 78.63 0.5721 0.6083
[0.2, 0.3) 76.78 0.5652 0.6409
(0.0, 0.2) 70.89 0.5633 0.6699
(0.0, 1.0) 81.04 0.6047 0.6388

Table 4: Changes of the TM gate. The second col-
umn shows the BLEU scores with reference trans-
lations being used as additional TM inputs. The
third column represents the average gate values of
the standard setting, while the last column repre-
sents the average gate values when references are
used as additional TM inputs.

set to 30k. For those words that are not in the vo-
cabulary, we replaced them with a special token
UNK. We set the dropout to 0.5. All the other set-
tings were the same as those described by Bah-
danau et al. (2014). We used the stochastic gra-
dient descent algorithm with Adam (Kingma and
Ba, 2014) to train NMT models. The learning rate
was set to 0.0004. The size of mini-batch was set
to 80 sentences. The beam size was set to 10 dur-
ing decoding.

For the proposed NMT-GTM model, we used
tuples (src, tm t, tgt) as input. The rest of the
parameter settings were consistent with the base-
line model. To calculate the cosine similarity, we
used the fasttext tool 2 with the dimension of 100
to obtain sentence embeddings.

2Available at: https://fasttext.cc/

3.2 Experimental Results
Table 3 shows the results of different NMT sys-
tems measured by BLEU (Papineni et al., 2002).
From the table, we can find that when fuzzy match
scores are over 50%, the extra introduction of TM
information can significantly help NMT to better
translate. Even when fuzzy match scores are lower
than 50%, the translation quality does not drop too
much. On the entire test set, the proposed gated
combination model of TM and NMT improves the
translation quality by 10.32 BLEU points over the
baseline.

In addition, in order to investigate how simi-
lar the matched TM translations tm t are to the
reference translations ref , we also measured the
BLEU scores of the matched TM translations
against the reference translations. The results are
also shown in Table 3, indicated as TM.

3.3 Analysis
We further took a deep look into how the TM gate
is varying when we incorporate TM matches with
different fuzzy match scores. As a comparison,
we used the reference translations as the matched
TM translations and incorporated them into NMT-
GTM to check the changes of the gate. The BLEU
scores measured when we used reference transla-
tions as matched TM translations as well as aver-
age gate values are shown in Table 4. The results
demonstrate that when the matched TM is seman-
tically closer to the current source sentence, the
TM gate is larger, indicating that more informa-
tion from the matched TM translation is used to
guide the decoder.

Table 5 shows an example from our test set. The
highlighted fragments of the source sentence and
the matched TM source sentence are not actually
the same in terms of their surface forms. However,
they are semantically close and can be translated
into the same target translation. Our proposed
NMT-GMT is able to successfully incorporate the
translation of such a fragment into the decoder.

4 Related Work
Various strategies have been proposed to combine
TM and SMT (Koehn and Senellart, 2010; He
et al., 2010). Their key ideas are to integrate the
translations of the same fragments from TM into
SMT, and let SMT only translate those different
parts. In order to better model this process, Wang
et al. (2013, 2014) use different features to allow
relevant TM information to guide SMT decoding.
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src ;-Ù�%Ù⇤Ê„h9nÆãƒ⇡ 43aÅB¬†ÂyÓÑ®∫
ref the chairman said that the representative of zimbabwe asked to participate in the discussion of the item in

accordance with rule 43 of the rules of procedure .
tm s ;-Ù�^Ùö„h˜BùnÆãƒ⇡, 43a¬�®∫yÓ
tm t the chairman said that the representative of serbia had asked to participate in the discussion of the item in

accordance with rule 43 of the rules of procedure .
RNNSearch the chairman said that the representative of zimbabwe, in accordance with rule 43, requested a discussion of

the item .
NMT-
GTM

the chairman said that the representative of zimbabwe had asked to participate in the discussion of the item
in accordance with rule 43 of the rules of procedure .

Table 5: A translation example from the test set. Semantically similar fragments are highlighted with red
color.

The related work on combining TM and NMT
is quite limited. Gu et al. (2017) propose a TM-
NMT model that first finds the most similar seg-
ments through search engines according to fuzzy
match scores and saves them as key-value pairs in
memory. In the subsequent decoding, the saved
information is used to help decoding. Our work is
significantly different from theirs in two aspects.
First, we use semantic similarity based on sen-
tence embeddings to detect the best TM matches
rather than the fuzzy match score. Second, we en-
code the entire TM matched translation rather than
segments into NMT with coupled encoders and a
gating network.

Our work is also related to multi-source NMT
(Zoph and Knight, 2016). The difference is that
in our case, the multiple source inputs are just se-
mantically similar, rather than identical. This is
the reason that we use a gate to combine these in-
puts.

5 Conclusion and Future work
In this paper, we have presented a novel gated
method to encode translation memory into NMT
so as to convey the information of the matched TM
translation into the NMT decoder. Extensive ex-
periments verify that our method can indeed effec-
tively improve translation quality, especially when
fuzzy match scores are higher than 50%. Further
analysis reveals that the proposed TM gate is able
to vary according to the similarity between the
matched TM translation and the current sentence.
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Abstract

Automated Post-Editing (PE) is the task of
automatically correcting common and repeti-
tive errors found in machine translation (MT)
output. In this paper, we present a neural
programmer-interpreter approach to this task,
resembling the way that humans perform post-
editing using discrete edit operations, which
we refer to as programs. Our model out-
performs previous neural models for inducing
PE programs on the WMT17 APE task for
German-English up to +1 BLEU score and -
0.7 TER scores.

1 Introduction

Automatic post-editing (APE) is the automated
task that aims to correct common systematic
and repetitive errors found in machine translation
(MT) output. APE systems can also be used to
adapt general-purpose MT output to specific do-
mains without re-training MT models, or to incor-
porate information which is not available or ex-
pensive to compute at MT decoding stage. Post-
editing is considered as the modification process
of a machine translated text with a minimum labor
effort rather than re-translation from scratch.

Previous studies in neural APE have primarily
concentrated on formalizing APE as a monolin-
gual MT problem in the target language, with or
without conditioning on the source sentence (Pal
et al., 2016; Chatterjee et al., 2017). MT approach
has suffered from over-correction where APE sys-
tem performs unnecessary correction leading to
paraphasing and the degradation of the output
quality (Bojar et al., 2016, 2017).

Recent works (Libovický et al., 2016; Berard
et al., 2017) have attempted to learn the predict
of sequence of post-editing operations, e.g. inser-
tion and deletion, to induce APE programs to turn
the machine translated text into the desired out-

put. Previous program induction approaches suf-
fer from over-cautiousness, where the APE system
tends to keep the machine translated text without
any modification (Bojar et al., 2017).

In this paper, we propose a programmer-
interpreter approach to the APE task to address the
over-cautiousness problem. Our architecture in-
cludes an interpreter module, which executes the
previous editing action before generating the next
one. This is in contrast to the previous work,
where the full program is induced before it is
executed. The ability of execution immediately
at every time step provides a proper condition-
ing context based on the actual partial edited sen-
tence to assist better prediction of the next op-
eration. Moreover, the execution module can be
pre-trained on monolingual target text, enabling
our architecture to benefit from monolingual data
in addition to PE data, which is hard to obtain.
Our model is jointly trained on translation task
and APE program induction task. The multi-task
architecture allows the model to reconstruct the
source-target alignment of the black-box MT sys-
tem and inject it into post-editing task.

We compare our programmer-interpreter archi-
tecture against previous works on the English-
German APE based on the data for this task in
WMT16 and WMT17. Compared to the previous
work on APE program induction, our architecture
achieves improvements up to +1 BLEU and -0.7
TER scores. Our analysis also shows that APE
programs generated by our model are not only bet-
ter at correcting errors but also attempt to perform
more editing actions.

2 Related Work

Pal et al. (2016) has applied the SEQ2SEQ model
to APE. Their monolingual MT learned to post-
edit English-Italian Google Translation output and
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Figure 1: An example of PE program when executing
on MT would return the PE reference. The color de-
notes the alignment between MT, reference PE and the
APE program. The number subscript shows the edit
position in original MT sentence.

was able to reduce the preposition related er-
rors. Blindly performing edition over MT out-
put, the monolingual APE has difficulty to cor-
rect missing word or information in the source
sentence. Neural multi-source MT architectures
are applied to better capture the connection be-
tween the source sentence/machine translated text
and the PE output (Libovický et al., 2016; Varis
and Bojar, 2017; Junczys-Dowmunt and Grund-
kiewicz, 2017). Chatterjee et al. (2017) ensemble
several different models including monolingual
MT (TGT!PE), bilingual MT (SRC!PE), and
multi-source (SRC,TGT!PE). Libovický et al.
(2016); Berard et al. (2017) have proposed learn-
ing to predict the sequence of edit operations, aka
the program, to produce the post-editing sentence
(c.f. §3).

Our work is motivated by Ling et al. (2017)
on learning to indirectly solve an algebraic word
problem by inducing a program which generates
the answer together with an explanation. It further
builds up on recent work on neural programmer-
interpreter (Reed and De Freitas, 2016), where a
neural network programmer learns to program an
interpreter. The architecture is then trained using
expert action trajectories as programs.

3 The NPI-APE Approach

Given a source sentence sss and a machine trans-
lated sentence mmm, the goal is to find a post-
edited sentence ttt = arg maxttt0 Pape(ttt0|mmm,sss) where
Pape(.) is our probabilistic APE model. In our pro-
posed approach, we aim to find an editing action
sequence zzz to execute in order to generate the de-
sired post-edited sentence,

Pape(ttt|mmm,sss) =
X

zzz2Z
Pape(ttt, zzz|mmm,sss).

We decompose the joint probability of a program
and an output as:

Pape(zzz, ttt|mmm,sss) =

|zzz|Y

i=1

Pprog(zi|tttji�1 ,mmm,sss) (1)

⇥Pintp(tji |mki , zi) (2)

where Pprog(zi|tttji�1 ,mmm,sss) is the programmer’s
probability in producing the next edit operation zi

given the post edited output tttji�1 generated from
the operations so far zzzi�1, and Pintp(tji |mki , zi)
is the interpreter’s probability of outputing tji

given the edit operation zi and the MT word mki .
Following Berard et al.(2017), our action se-

quence is performed on the MT sentence from left
to right. At each position, we can take one of
the following editing operations: (i) KEEP to keep
the word and go to the next word, (ii) DELETE to
delete the word and go to the next word, (iii) IN-
SERT(WORD) to insert a new WORD and stay in
that position, or (iv) STOP to terminate the pro-
cess. In other words, the size of the operation set
equals the size of the target vocabulary plus three,
where we add the symbols KEEP, DELETE, and
STOP as new tokens. Furthermore, ji is the num-
ber of KEEP and INSERT(WORD) operations, and
ki is the number of KEEP and DELETE operations
in the sequence of operations zzzi. This hard atten-
tion mechanism is the outcome of the semantics of
the operations, and injects task knowledge into the
model. Moreover, Pintp(t|m, z) is 1 if the output
word t is consistent with performing the operation
z on m, and zero otherwise.

Our decomposition of the joint probability of
a program and post-edited output is distinguished
from that proposed in (Berard et al., 2017),
Pape(ttt, zzz|mmm,sss) = Pintp(ttt|zzz,mmm)Pprog(zzz|mmm,sss). Cru-
cially, in our decomposition (eqns 1 and 2), the
programming and interpreting are interleaved at
each position, whereas in (Berard et al., 2017) the
programming is fully done before the interpreta-
tion phase and they are independent.

3.1 Neural Architecture and Joint Training
The architecture consists of three components (i)
A SEQ2SEQ model to translate the source sen-
tence to the target in the forced-decoding mode
(MT), (ii) A SEQ2SEQ model to incrementally
generate the sequence of edit operations (Action
Generator), and (iii) An RNN to summarize the
post edited sequence of words produced from the
execution of actions generated so far (Interpreter).
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Figure 2: Our proposed NPI-APE model

The encoder and decoder of the MT compo-
nent are a bidirectional and unidirectional LSTM,
whose states are denoted by hhhl and gggk, respec-
tively. Similarly, the encoder and decoder of the
AG (Action Generator) component are a bidirec-
tional and unidirectional LSTM, whose states are
denoted by hhh0

k and ggg0
i, respectively. The states of

the unidirectional RNN in the interpreter are de-
noted by vvvj .

The next edit operation zi is generated from the
decoder state of the AG ggg0

i (see Figure 2), which is
computed from the previous state ggg0

i�1 and a con-
text including the following: (i) hhh0

ki
where ki is

the index of the MT output word currently pro-
cessed, (ii) cccki which is the context vector from the
MT component when generating the current target
word, and (iii) vvvji�1 which is the last hidden state
of the interpreter RNN encoding the post edited
sentence generated so far.

The model is trained jointly for the translation
task (SRC!TGT), and for the post editing task
(SRC,TGT!OP,PE). For the training data, we
compute the lowest-cost sequence of editing op-
erations (OP) using dynamic programming, where
the cost of insertion and deletion are 1.

4 Experiments
Dataset. We evaluate the proposed approach on
the English-to-German (En-De) post-editing task
in the IT domain using the data from WMT161 and
WMT17.2 The official WMT’16 and WMT’17

1http://www.statmt.org/wmt16/ape-task.html
2http://www.statmt.org/wmt17/ape-task.html

dataset contains 12K and 11K post-editing triplets
(English, translated German, post-edited German)
respectively in IT domain. We concatenated
them to an 23K triplets. A synthetic corpus
of 500K triplets (Junczys-Dowmunt and Grund-
kiewicz, 2016) is also available as additional train-
ing data. We performed our experiment in two dif-
ferent settings with and without synthetic data for
comparison with Berard et al. (2017).

The RNN in the interpreter component can be
thought of as a language model. This paves
the way to pre-train it using monolingual text.
We collect in-domain IT text from OPUS3 from
the following sections: GNOME, KDE, KDEdoc,
OpenOffice, OpenOffice3, PHP and Ubuntu. Af-
ter tokenizing, filtering out sentences containing
special characters, and removing duplications, we
obtain around 170K sentences.

Setup. There are three components in our archi-
tecture: machine translation (MT), action genera-
tor (AG), and interpreter (LM). We compare our
MT+AG+LM architecture against MT+AG4 Be-
rard et al. (2017) which does not have the LM
component. The size of the hidden dimensions
(LSTMs in the MT and AG, and simple RNN in
the LM component) as well as word embedding in
these models is set to 128.

Furthermore, we compare against monolin-
gual SEQ2SEQ (TGT!PE) as well as the multi-
source SEQ2SEQ (SRC+TGT!PE) (Varis and
Bojar, 2017). Monolingual SEQ2SEQ (TGT!PE)
model is an attentional SEQ2SEQ model (Bah-
danau et al., 2015) that takes target sentence as
input and outputs desired PE sentence. In multi-
source SEQ2SEQ (SRC+TGT!PE), we use two
encoders for source and target sentences and con-
catenate their context vectors. In both models,
the encoder and decoder contain a single layer
of bidirectional and unidirectional LSTM respec-
tively. The size of the LSTM hidden dimensions
and word embedding in these models is set to 256
and 128, respectively. This ensures almost the
same number of parameters (⇠13M) in all archi-
tectures.

Training. We use a multi-task scenario to jointly
train the parameters of the components in MT+AG
as well as MT+AG+LM models. For the latter, we
warm start the embedding of the target words with

3http://opus.nlpl.eu/
4The AG decoder in MT+AG conditions a state on the last

generated action as well.
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dev test2016 test2017
Model TER BLEU TER BLEU TER BLEU

Original MT 24.81 62.92 24.76 62.11 24.48 62.49

12
K

TGT ! PE 63.76 21.32 60.96 22.11 65.13 18.13
SRC+TGT ! PE 51.41 34.04 48.27 35.24 50.98 31.52
MT+AG 23.74 65.95 23.53 65.22 23.77 64.34
MT+AG+LM 23.36† 66.24 23.24† 65.53† 23.45† 64.65†

50
0K

+1
2K TGT ! PE 50.91 30.88 48.62 32.55 52.07 27.98

SRC+TGT ! PE 30.97 53.97 30.20 53.92 32.82 50.30
MT+AG 22.82 66.51 22.87 65.67 23.58 64.35
MT+AG+LM 22.67 67.17† 22.53† 66.30† 23.03† 65.31†

23
K

TGT ! PE 57.02 27.87 55.52 27.8 60.06 22.78
SRC+TGT ! PE 38.06 47.42 36.61 47.93 39.86 43.52
MT+AG 23.10 66.60 22.82 66.15 23.14 65.19
MT+AG+LM 22.61† 67.19† 22.42† 66.53† 22.84† 65.52?†

50
0K

+2
3K TGT ! PE 48.89 34.29 47.12 34.75 51.13 29.59

SRC+TGT ! PE 28.61 57.47 27.79 57.61 30.34 53.26
MT+AG 22.38 67.34 22.14 66.53 22.71 65.34
MT+AG+LM 21.99?† 67.50? 22.07? 66.67? 22.58? 65.50

Table 1: TER and BLEU scores of our model (MT+AG+LM) v.s. the rest on various data conditions for the EN-DE
post-editing task. bold: Best results within a data condition; ?: Best results across data conditions

; †: Statistically significant compared to MT+AG with pvalue  0.05.

those obtained from training the LM component
on the monolingual text5.

All models are trained with SGD, where the
learning rate is initialised to 1 and decays after
each epoch. The learning rate is decayed 0.8 after
every epoch for model trained with official post-
editing data, and 0.5 every half epoch for model
with synthetic data. All models use the same vo-
cabulary on the same data condition. The Vocabu-
lary size is 30K for large dataset experiments, and
27K/19K for the 23K/12K data conditions. In all
experiments, the best model is selected based on
TER on the validation set. For decoding, we use
beam search with the beam size of 10.

4.1 Results

Table 1 shows the result on different training
datasets to compare our model against the base-
lines. Original MT is the strong standard do-
nothing baseline, i.e. copying the MT trans-
lation as the PE output. In all settings, our
MT+AG+LM models outperforms the MT+AG
and monolingual/multi-source SEQ2SEQ models.
Specifically, our model outperform MT+AG in
500K+12K training condition by almost 1 BLEU
score on test2017.

As expected, the models trained on 23K data
perform better than those trained on 12K; further
gains are obtained by adding 500K synthetic data.

5The MT, AG, and LM components share the target word
embedding table in our model. Similarly, MT and AG com-
ponents share the target embedding in the MT+AG model.

Sentences Actions
Model Mod Prec. Mod. Prec.

de
v

MT+AG 23K 546 61.17% 986 60.45%
MT+AG+LM 23K 558 65.59% 1098 65.21%
MT+AG 500+23K 673 61.81% 1477 62.02%
MT+AG+LM 500+23K 682 65.84% 1560 68.21%

te
st

20
16

MT+AG 23K 1039 60.92% 1766 62.63%
MT+AG+LM 23K 1041 66.09% 1919 65.61%
MT+AG 500+23K 1269 63.04% 2728 63.71%
MT+AG+LM 500+23K 1251 63.87% 2814 63.50%

te
st

20
17

MT+AG 23K 897 55.85% 1535 57.79%
MT+AG+LM 23K 952 61.24% 1853 60.44%
MT+AG 500+23K 1182 54.99% 2599 55.71%
MT+AG+LM 500+23K 1180 56.78% 2653 59.67%

Table 2: Sentence precision and action precision of
models trained on 23K and 500K+23K dataset.

Interestingly, training MT+AG and MT+AG+LM
models on 23K data lead to better TER/BLEU
than those trained on 500K+12K. This implies
the importance of in-domain training data, as the
synthetic corpus is created using general domain
Common-Crawl corpus.

4.2 Analysis
We perform fine-grained analysis of the changes
made by our model vs MT+AG in order to un-
derstand the sources of improvements. For dif-
ferent data conditions, Table 2 shows the number
of modified sentences by each model as well as
the sentence level precision defined as the fraction
of sentences with improved TER. Moreover, it re-
ports the total number of actions generated by the
model on sentences with improved TER, as well
as the precision of such actions, i.e. the fraction of
those observed in the ground truth action trajecto-
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ries.
As reported in Berard et al. (2017), one ma-

jor challenge of predicting action sequences is the
class imbalance. The model is often too conserva-
tive about its edits, and tends to use the KEEP far
more than the INSERT and DELETE actions. Our
Programmer-Interpreter model tackles this prob-
lem, as evidenced by its comparable number of
modified sentences, but with higher sentence and
action level precision in almost all cases.

5 Conclusion

In this paper, we have presented a neural
programmer-interpreter approach to automated
post-editing of MT output. Our approach inter-
leaves generating the sequence of edit actions by a
programmer component, and executing those ac-
tions with an interpreter component. This leads
to better capturing the history of the past gener-
ated actions when generating the next action. Our
approach achieves up to +1 BLEU and -.7 TER
improvement compared to a variant in which pro-
gramming is not interleaved with execution. Fu-
ture work includes inducing macro-actions com-
posed of simpler building block actions.
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Abstract

Beam search is widely used in neural ma-
chine translation, and usually improves trans-
lation quality compared to greedy search. It
has been widely observed that, however, beam
sizes larger than 5 hurt translation quality. We
explain why this happens, and propose sev-
eral methods to address this problem. Fur-
thermore, we discuss the optimal stopping cri-
teria for these methods. Results show that
our hyperparameter-free methods outperform
the widely-used hyperparameter-free heuristic
of length normalization by +2.0 BLEU, and
achieve the best results among all methods on
Chinese-to-English translation.

1 Introduction

In recent years, neural machine translation (NMT)
has surpassed traditional phrase-based or syntax-
based machine translation, becoming the new state
of the art in MT (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al.,
2014). While NMT training is typically done
in a “local” fashion which does not employ any
search (bar notable exceptions such as Ranzato
et al. (2016), Shen et al. (2016), and Wiseman
and Rush (2016)), the decoding phase of all NMT
systems universally adopts beam search, a widely
used heuristic, to improve translation quality.

Unlike phrase-based MT systems which enjoy
the benefits of very large beam sizes (in the or-
der of 100–500) (Koehn et al., 2007) , most NMT
systems choose tiny beam sizes up to 5; for exam-
ple, Google’s GNMT (Wu et al., 2016) and Face-
book’s ConvS2S (Gehring et al., 2017) use beam
sizes 3 and 5, respectively. Intuitively, the larger
the beam size is, the more candidates it explores,
and the better the translation quality should be.
While this definitely holds for phrase-based MT
systems, surprisingly, it is not the case for NMT:

many researchers observe that translation qual-
ity degrades with beam sizes beyond 5 or 10 (Tu
et al., 2017; Koehn and Knowles, 2017). We call
this phenomenon the “beam search curse”, which
is listed as one of the six biggest challenges for
NMT (Koehn and Knowles, 2017).

However, there has not been enough attention
on this problem. Huang et al. (2017) hint that
length ratio is the problem, but do not explain why
larger beam sizes cause shorter lengths and worse
BLEU. Ott et al. (2018) attribute it to two kinds
of “uncertainties” in the training data, namely the
copying of source sentence and the non-literal
translations. However, the first problem is only
found in European language datasets and the sec-
ond problem occurs in all datasets but does not
seem to bother pre-neural MT systems. Therefore,
their explanations are not satisfactory.

On the other hand, previous work adopts several
heuristics to address this problem, but with vari-
ous limitations. For example, RNNSearch (Bah-
danau et al., 2014) and ConvS2S use length nor-
malization, which (we will show in Sec. 6) seems
to somewhat alleviate the problem, but far from
being perfect. Meanwhile, He et al. (2016) and
Huang et al. (2017) use word-reward, but their re-
ward is a hyper-parameter to be tuned on dev set.

Our contributions are as follows:

• We explain why the beam search curse exists,
supported by empirical evidence (Sec. 3).

• We review existing rescoring methods, and
then propose ours to break the beam
search curse (Sec. 4). We show that our
hyperparameter-free methods outperfrom the
previous hyperparameter-free method (length
normalization) by +2.0 BLEU (Sec. 6).

• We also discuss the stopping criteria for our
rescoring methods (Sec. 5). Experiments
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show that with optimal stopping alone, the
translation quality of the length normaliza-
tion method improves by +0.9 BLEU.

After we finish our paper, we became aware of a
parallel work (Murray and Chiang, 2018) that also
reveals the same root cause we found for the beam
search curse: the length ratio problem.

2 Preliminaries: NMT and Beam Search

We briefly review the encoder-decoder architec-
ture with attention mechanism (Bahdanau et al.,
2014). An RNN encoder takes an input sequence
x = (x1, ..., xm), and produces a sequence of
hidden states. For each time step, the RNN de-
coder will predict the probability of next output
word given the source sequence and the previously
generated prefix. Therefore, when doing greedy
search, at time step i, the decoder will choose the
word with highest probability as yi. The decoder
will continue generating until it emits </eos>. In the
end, the generated hypothesis is y = (y1, ..., yn)
with yn =</eos>, with model score

S (x,y) =
P|y|

i=1 log p(yi | x, y1..{i�1}) (1)

As greedy search only explores a single path,
we always use beam search to improve search
quality. Let b denote the beam size, then at step
i the beam Bi is an ordered list of size b:

B0 =[h<s>, p(<s> | x)i]

Bi =
b

top{hy0� yi, s·p(yi|x,y)i | hy0, si 2 Bi�1}

In the most naive case, after reaching the maxi-
mum length (a hard limit), we get N possible can-
didate sequences {y1, ...,yN}. The default strat-
egy chooses the one with highest model score. We
will discuss more sophistcated ways of stopping
and choosing candidates in later sections.

3 Beam Search Curse

The most popular translation quality metric,
BLEU (Papineni et al., 2002), is defined as:

BLEU = bp · exp(1/4
P4

n=1 log pn) (2)

where bp = min{e1�1/lr , 1} (3)
where lr = |y|/|y⇤| (4)

Here pn are the n-gram precisions, and |y| and
|y⇤| denote the hypothesis and reference lengths,
while bp is the brevity penalty (penalizing short

BLEU

length ratio lr = |y|
|y�|

brevity penalty bp = min{e1�1/lr , 1}

Figure 1: As beam size increases beyond 3, BLEU
score on the dev set gradually drops. All terms are cal-
culated by multi-bleu.pl.

Figure 2: Searching algorithm with larger beams gen-
erates </eos> earlier. We use the average first, second
and third </eos> positions on the dev set as an example.

translations) and lr is the length ratio (Shi et al.,
2016; Koehn and Knowles, 2017), respectively.

With beam size increasing, |y| decrases, which
causes the length ratio to drop, as shown in Fig. 1.
Then the brevity penalty term, as a function of the
length ratio, decreases even more severely. Since
bp is a key factor in BLEU, this explains why the
beam search curse happens.1

The reason why |y| decreases as beam size in-
creases is actually twofold:

1. As beam size increases, the more candidates
it could explore. Therefore, it becomes eas-
ier for the search algorithm to find the </eos>

symbol. Fig. 2 shows that the </eos> indices
decrease steadily with larger beams.2

1The length ratio is not just about BLEU: if the hypoth-
esis length is only 75% of reference length, something that
should have been translated must be missing; i.e., bad ade-
quacy. Indeed, Murray and Chiang (2018) confirm the same
phenomenon with METEOR.

2Pre-neural SMT models, being probabilistic, also favor
short translations (and derivations), which is addressed by
word (and phrase) reward. The crucial difference between
SMT and NMT is that the former stops when covering the
whole input, while the latter stops on emitting </eos>.
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Figure 3: Candidate lengths vs. model score. This scat-
ter plot is generated from 242 finished candidates when
translated from one source sequence with beam size 80.

2. Then, as shown in Fig. 3, shorter candidates
have clear advantages w.r.t. model score.

Hence, as beam size increases, the search algo-
rithm will generate shorter candidates, and then
prefer even shorter ones among them.3

4 Rescoring Methods

We first review existing methods to counter the
length problem and then propose new ones to ad-
dress their limitations. In particular, we propose to
predict the target length from the source sentence,
in order to choose a hypothesis with proper length.

4.1 Previous Rescoring Methods
RNNSearch (Bahdanau et al., 2014) first intro-
duces the length normalization method, whose
score is simply the average model score:

Ŝlength norm(x,y) = S (x,y)/|y| (5)

This is the most widely used rescoring method
since it is hyperparameter-free.

GNMT (Wu et al., 2016) incorporates length
and coverage penalty into the length normalization
method, while also adding two hyperparameters to
adjust their influences. (please check out their pa-
per for exact formulas).

Baidu NMT (He et al., 2016) borrows the Word
Reward method from pre-neural MT, which gives
a reward r to every word generated, where r is a
hyperparameter tuned on the dev set:

ŜWR(x,y) = S (x,y) + r · |y| (6)
3Murray and Chiang (2018) attribute the fact that beam

search prefers shorter candidates to the label bias problem
(Lafferty et al., 2001) due to NMT’s local normalization.

Based on the above, Huang et al. (2017) propose
a variant called Bounded Word-Reward which
only rewards up to an “optimal” length. This
length is calculated using a fixed “generation ra-
tio” gr , which is the ratio between target and
source sequence length, namely the average num-
ber of target words generated for each source
word. It gives reward r to each word up to a
bounded length L(x,y) = min{|y|, gr · |x|}:

ŜBWR(x,y) = S (x,y) + r · L(x,y) (7)

4.2 Rescoring with Length Prediction
To remove the fixed generation ratio gr from
Bounded Word-Reward, we use a 2-layer MLP,
which takes the mean of source hidden states as
input, to predict the generation ratio gr⇤(x). Then
we replace the fixed ratio gr with it, and get our
predicted length Lpred (x) = gr⇤(x) · |x|.

4.2.1 Bounded Word-Reward
With predicted length, the new predicted bound
and final score would be:

L⇤(x,y) = min{|y|, Lpred (x)} (8)

ŜBWR⇤(x,y) = S (x,y) + r · L⇤(x,y) (9)

While the predicted length is more accurate, there
is still a hyperparameter r (word reward), so we
design two methods below to remove it.

4.2.2 Bounded Adaptive-Reward
We propose Bounded Adaptive-Reward to auto-
matically calculate proper reward based on the
current beam. With beam size b, the reward for
time step t is the average negative log-probability
of the words in the current beam.

rt = �(1/b)
Pb

i=1 log p(wordi) (10)

Its score is very similar to (7):

ŜAdaR(x,y) = S (x,y) +
PL⇤

t=1 rt (11)

4.2.3 BP-Norm
Inspired by the BLEU score definition, we propose
BP-Norm method as follows:

Ŝbp(x,y) = log bp + S (x,y)/|y| (12)

bp is the same brevity penalty term as in (3). Here,
we regard our predicted length as the reference
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length. The beauty of this method appears when
we drop the logarithmic symbol in (12):

exp(Ŝbp(x,y))=bp ·
� Q|y|

i=1 p(yi|...)
�1/|y|

=bp ·exp

✓
1

|y|
P|y|

i=1 log p(yi|...)
◆

which is in the same form of BLEU score (3).

5 Stopping Criteria

Besides rescoring methods, the stopping criteria
(when to stop beam search) is also important, for
both efficiency and accuracy.

5.1 Conventional Stopping Criteria

By default, OpenNMT-py (Klein et al., 2017)
stops when the topmost beam candidate stops, be-
cause there will not be any future candidates with
higher model scores. However, this is not the
case for other rescoring methods; e.g., the score
of length normalization (5) could still increase.

Another popular stopping criteria, used by
RNNSearch (Bahdanau et al., 2014), stops the
beam search when exactly b finished candidates
have been found. Neither method is optimal.

5.2 Optimal Stopping Criteria

For Bounded Word-Reward, Huang et al. (2017)
introduces a provably-optimal stopping criterion
that could stop both early and optimally. We also
introduce an optimal stopping criterion for BP-
Norm. Each time we generate a finished candi-
date, we update our best score Ŝ ?. Then, for the
topmost beam candidate of time step t, we have:

Ŝbp =
St,0

t
+ min{1 �

Lpred

t
, 0}  St,0

R
(13)

where R is the maximum generation length. Since
St,0 will drop after time step t, if St,0

R  Ŝ ?, we
reach optimality. This stopping criterion could
also be applied to length normalization (5).

Meawhile, for Bounded Adaptive-Reward, we
can have a similar optimal stopping criterion: If
the score of topmost beam candidate at time step
t > Lpred is lower than Ŝ ?, we reach optimality.

Proof. The first part of ŜAdaR in (11) will decrease
after time step t, while the second part stays the
same when t > Lpred . So the score in the future
will monotonically decrease.

Figure 4: The BLEU scores and length ratios (lr =
|y|/|y⇤|) of various rescoring methods.

6 Experiments

Our experiments are on Chinese-to-English trans-
lation task, based on the OpenNMT-py codebase.4

We train our model on 2M sentences, and ap-
ply BPE (Sennrich et al., 2015) on both sides,
which reduces Chinese and English vocabulary
sizes down to 18k and 10k respectively. We then
exclude pairs with more than 50 source or target
tokens. We validate on NIST 06 and test on NIST
08 (newswire portions only for both). We report
case-insensitive, 4 reference BLEU scores.

We use 2-layers bidirectional LSTMs for the
encoder. We train the model for 15 epochs, and
choose the one with lowest perplexity on the dev
set. Batch size is 64; both word embedding and
hidden state sizes 500; and dropout 0.3. The total
parameter size is 28.5M.

6.1 Parameter Tuning and Results
We compare all rescoring methods mentioned
above. For the length normalization method, we
also show its results with optimal stopping.

For Bounded Word-Reward method with and
without our predicted length, we choose the best
r on the dev set seperately. The length normal-

4https://github.com/OpenNMT/OpenNMT-py

3057



Figure 5: BLEU scores and length ratios on the dev
set over various input sentence lengths.

ization used by Wu et al. (2016) has two hyper-
parameters, namely ↵ for length penalty and � for
coverage penalty. We jointly tune them on the dev
set, and choose the best config. (↵=0.3, �=0.3).

Figure 4 show our results on the dev set. We
see that our proposed methods get the best per-
formance on the dev set, and continue growing
as beam size increases. We also observe that op-
timal stopping boosts the performance of length
normalization method by around +0.9 BLEU. In
our experiments, we regard our predicted length
as the maximum generation length in (13). We
further observe from Fig. 5 that our methods keep
the length ratio close to 1, and greatly improve the
quality on longer input sentences, which are noto-
riously hard for NMT (Shen et al., 2016).

Table 1 collects our results on both dev and test
sets. Without loss of generality, we show results
with both small and large beam sizes, which aver-
age over b=14,15,16 and b=39,40,41, respectively.

6.2 Discussion
From Table 1, we could observe that with our
length prediction model, Bounded word-reward
method gains consistent improvement. On the
other hand, results from length normalization
method show that optimal stopping technique

Small beam (b = 14, 15, 16) dev test

BLEU ratio BLEU ratio
Moses (b=70) 30.14 - 29.41 -
Default (b=5) 36.45 0.87 32.88 0.87
Length Norm. 37.73 0.89 34.07 0.89
+ optimal stopping⇤ 38.69 0.92 35.00 0.92
Wu et al. (2016) ↵=�=0.3 38.12 0.89 34.26 0.89
Bounded word-r. r=1.3 39.22 0.98 35.76 0.98
with predicted length
Bounded word-r. r=1.4⇤ 39.53 0.97 35.81 0.97
Bounded adaptive-reward⇤ 39.44 0.98 35.75 0.98
BP-Norm⇤ 39.35 0.98 35.84 0.99

Large beam (b = 39, 40, 41) dev test

BLEU ratio BLEU ratio
Moses (b=70) 30.14 - 29.41 -
Default (b=5) 36.45 0.87 32.88 0.87
Length Norm. 38.15 0.88 34.26 0.88
+ optimal stopping⇤ 39.07 0.91 35.14 0.91
Wu et al. (2016) ↵=�=0.3 38.40 0.89 34.41 0.88
Bounded word-r. r=1.3 39.60 0.98 35.98 0.98
with predicted length
Bounded word-r. r=1.4⇤ 40.11 0.98 36.13 0.97
Bounded adaptive-reward⇤ 40.14 0.98 36.23 0.98
BP-Norm⇤ 39.97 0.99 36.22 0.99

Table 1: Average BLEU scores and length ratios over
small and large beams. ? indicates our methods.

gains significant improvement by around +0.9
BLEU. While with both, our proposed methods
beat all previous methods, and gain improvement
over hyperparameter-free baseline (i.e. length nor-
malization) by +2.0 BLEU.

Among our proposed methods, Bounded word-
reward has the reward r as an hyper-parameter,
while the other two methods get rid of that.
Among them, we recommend the BP-Norm
method, because it is the simplest method, and yet
works equally well with others.

7 Conclusions

We first explain why the beam search curse exists
and then formalize all previous rescoring methods.
Beyond that, we also propose several new methods
to address this problem. Results from the Chinese-
English task show that our hyperparameter-free
methods beat the hyperparameter-free baseline
(length normalization) by +2.0 BLEU.
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Abstract

Knowledge bases (KBs) are paramount in
NLP. We employ multiview learning for in-
creasing accuracy and coverage of entity
type information in KBs. We rely on two
metaviews: language and representation. For
language, we consider high-resource and low-
resource languages from Wikipedia. For rep-
resentation, we consider representations based
on the context distribution of the entity (i.e.,
on its embedding), on the entity’s name (i.e.,
on its surface form) and on its description in
Wikipedia. The two metaviews language and
representation can be freely combined: each
pair of language and representation (e.g., Ger-
man embedding, English description, Spanish
name) is a distinct view. Our experiments on
entity typing with fine-grained classes demon-
strate the effectiveness of multiview learning.
We release MVET, a large multiview – and, in
particular, multilingual – entity typing dataset
we created. Mono- and multilingual fine-
grained entity typing systems can be evaluated
on this dataset.

1 Introduction

Accurate and complete knowledge bases (KBs)
are paramount in NLP. Entity typing, and in par-
ticular fine-grained entity typing, is an important
component of KB completion with applications
in NLP and knowledge engineering. Studies so
far have been mostly for English (Yaghoobzadeh
and Schütze, 2015), but also for Japanese (Suzuki
et al., 2016).

We employ multiview learning for increasing
accuracy and coverage of entity type information
in KBs. We rely on two metaviews: language and
representation. For language, we take high- and
low-resource languages from Wikipedia. For rep-
resentation, we consider representations based on
the context distribution of the entity (i.e., on its

embedding), on the entity’s name (i.e., on its sur-
face form) and on its description in Wikipedia.
The two metaviews language and representation
can be freely combined: each pair of language and
representation (e.g., German embedding, English
description, Spanish name) is a distinct view.

Views are defined as kinds of information about
an instance that have three properties (Blum and
Mitchell, 1998; Xu et al., 2013). (i) Sufficiency.
Each view is sufficient for classification on its
own. (ii) Compatibility. The target functions in
all views predict the same labels for cooccurring
features with high probability. (iii) Conditional
independence. The views are conditionally inde-
pendent given the class label.

As in most cases of multiview learning, these
three properties are only approximately true for
our problem. (i) Not every view is sufficient for
every instance. While a name like “George Wash-
ington Bridge” is sufficient for typing the entity
as “bridge”, the name “Washington” is not suffi-
cient for entity typing. (ii) Cases of incompatibil-
ity exist. For example, the “Bering Land Bridge”
is not a bridge. (iii) Views have some degree of
conditional dependence. For example, if a bridge
is a viaduct, not a bridge proper, then the descrip-
tion of the bridge will contain more occurrences of
the word “viaduct” than for proper bridges whose
name does not contain the word “viaduct”.

In summary, we make three main contributions.
(i) We formalize entity typing as a multiview prob-
lem by introducing two metaviews, language and
representation; each combination of instances of
these two metaviews defines a distinct view. (ii)
We show that this formalization is effective for en-
tity typing as a key task in KB completion: mul-
tiview and crossview learning outperform single-
view learning by a large margin, especially for rare
entities and low-resource languages. (iii) We re-
lease MVET (Multiview Entity Typing), a large
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Figure 1: Attention-based multiview learning. View
specific representations vj of the entity are transformed
to a shared space and summed by attention weights ↵j

into aggregated multiview representation p. A one-
hidden-layer perceptron computes output vector ŷ.

multiview and, in particular, multilingual dataset,
for entity typing1. This dataset can be used for
mono- and multilingual fine-grained entity typing
evaluations. In contrast to prior work on entity
typing based on Clueweb (a commercial corpus),
all our data can be released publicly because it is
based on Wikipedia.

2 Multilingual Multi-Representation
Entity Typing

We address the task of entity typing
(Yaghoobzadeh and Schütze, 2015), i.e., as-
signing to a given entity one or more types from a
set of types T . E.g., Churchill is a politician and
writer.

Our key idea is that we can tap two different
information sources for entity typing, which we
will refer to as metaviews: language and repre-
sentation. For the language metaview, we con-
sider N languages (English, German, . . . ). For the
representation metaview, we consider three repre-
sentations: based on the entity’s context distribu-
tion, based on its canonical name and based on its
description. Each combination of language and
representation defines a separate view of the en-
tity, i.e., we have up to 3N views. The views are
not completely independent of each other: what is
written about an entity in English and German is
correlated and information derived from the entity
name is correlated with its description; see discus-
sion in §1. Still, each view contains information
complementary to each other view.

1Our dataset and code are available at: http://
github.com/yyaghoobzadeh/MVET

For the context view of the representa-
tion metaview, we use entity embeddings
(Yaghoobzadeh and Schütze, 2015): each mention
of an entity in Wikipedia – identified using
Wikipedia hyperlinks – is replaced by the entity’s
unique identifier. We can then run standard
embedding learning. For the name view, we take
the sum of the embeddings of the words of the
entity name. The description view is based on the
entity’s Wikipedia page; see §3.

We represent view j of an entity e as the vector
or embedding vj 2 R

dj . We combine these em-
beddings into a multiview representation p 2 R

d

of entity e. As discussed above, each vj con-
tributes potentially complementary information.

After learning p, a one-hidden-layer perceptron
computes the type predictions ŷ 2 R

|T |:

ŷ = �
⇣
Wof

�
Whp

�⌘
(1)

f is leaky rectifier, Wh 2 R
h⇥d, Wo 2 R

|T |⇥h.
The cost function is binary cross entropy

summed over types and training examples:
X

i,t

(yi,t log(ŷi,t) + (1�yi,t)(log(1�ŷi,t))) (2)

where yi,t and ŷi,t are the gold and prediction for
type t of example i.

A simple and effective way of computing the
representation p of an entity is what we refer to
as MULTIVIEW-CON: a concatenation of the n
view embeddings, followed by a non-linear trans-
formation:

p = tanh(W1[v1; v2; ...;vn]|)

where W1 2 R
d⇥(⌃n

j=1dj) is the transformation
matrix.

Concatenation may not be effective because
some entities have pages in all Wikipedias and
thus have 200 ⇥ 3 = 600 views whereas others
occur only in one. Also, the views might have dif-
ferent qualities. Therefore, we consider attention-
based weighted average or MULTIVIEW-ATT
as an alternative to MULTIVIEW-CON. Embed-
dings vj live in different spaces, so we first trans-
form them using language specific matrices Wj 2
R

d⇥dj :
pj = tanh(Wjvj) (3)

Then, we compute the attention weights:
↵j = softmax(aTpj)
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where a 2 R
d is a vector that is trained to weight

the vectors pj . The MULTIVIEW-ATT repre-
sentation is then defined as:

p =
X

j

↵jpj

A schematic architecture is shown in Figure 1.
We also experiment with two alternatives.

MULTIVIEW-AVG: We set all ↵j = 1/n,
i.e., the entity representation is a simple average.
MULTIVIEW-MAX: We apply per-dimension
maxpooling, pi = maxj pj

i . The idea here is to
capture the most significant features across views.

3 Dataset and Experiments

In this section, we first introduce our new dataset
and then describe our results.

Multiview entity typing (MVET) dataset.
Wikipedia and Freebase are our sources for cre-
ation of MVET. We try to map each English
Wikipedia article of an entity to Freebase. Free-
base types are mapped to 113 FIGER tags (Ling
and Weld, 2012). We use Wikipedia interlin-
gual links to build multilingual datasets by iden-
tifying corresponding Wikipedia articles in non-
English languages. So for each entity, we have
the English article name as well as the names in
other languages (if they exist) and FIGER types of
the entity. We use these multilingual names and
Wikipedias to build our representation views as
described in §3.

We experiment with ten languages: English
(EN), German (DE), Farsi (FA), Spanish (ES);
and Arabic (AR), French (FR), Italian (IT). Pol-
ish (PL), Portuguese (PT), Russian (RU). The pro-
cedure described above gives us around 2M enti-
ties. We divide them into train (50%), dev (20%)
and test (30%) and, for efficient training, sample
them stratified by type to ensure enough entities
per type. The final dataset used in our experiments
contains about 74k / 35k / 50k train / dev / test enti-
ties and 102 FIGER types. Dev is used to optimize
model hyperparameters. Appendix A gives some
more statistics for MVET.

Learning representation views. We refer to
the three instances of the representation metaview
(see §1) as CTXT (contexts), NAME (name) and
DESC (description).

For learning CTXT embeddings, we train
WANG2VEC (Ling et al., 2015) on Wikipedia after
having replaced hyperlinked mentions of an entity

with its ID. NAME is derived from publicly avail-
able 300-dimensional fastText (Bojanowski et al.,
2017) embeddings. We use the average of the
words in a name as its NAME embedding2. If a
word does not have a fastText embedding, we ap-
ply the fastText model to compute it. So there are
no unknown words in our dataset. For DESC, we
extract the keywords (using tf-idf) of the first para-
graph of the Wikipedia article of an entity. The
DESC embedding is the average fastText embed-
ding of the keywords.

To reiterate the complementarity of the three
representation views: names are ambiguous, but
if we use the names of an entity in different lan-
guages, we can mitigate this ambiguity. E.g., “Ap-
ple” can refer to an entity or a fruit in English, but
only to an entity in French. Similarly, the descrip-
tion of an entity is a high quality textual source
to extract information from. The simplest case of
complementarity is that not all views are available.
An entity can be completely missing from one of
the languages; it may not have a description be-
cause only a stub is provided; etc.

3.1 Results
Evaluation metric. Following prior work in en-
tity typing (Yaghoobzadeh and Schütze, 2017), we
evaluate by micro F1, a global summary score of
all system predictions. Entity frequency is an im-
portant variable, so we report results for tail (fre-
quency <10, n=35,533), head (frequency >100,
n=2,638) and all entities.

Table 1 shows results for entity typing on
our dataset, MVET. We start with FIGMENT
(Yaghoobzadeh and Schütze, 2017) baseline re-
sults on MVET dataset (line 0), which is the state-
of-the-art system in entity typing. FIGMENT is
equivalent to our MULTIVIEW-CON model with
only English-CTXT, -NAME and -DESC repre-
sentations.

Lines 1–4, 9–12, 17–20 are singleview results,
e.g., F1 for tail is 62.0 for the English-CTXT view.
Lines 5–8, 13–16, 21–24 combine the four lan-
guages; so these are multiview results for the lan-
guage metaview. All four multiview models are
better than the corresponding singleview models
in the same block. Lines 25–28 show results for
the combination of the two metaviews; a total of

2Some of the Wikipedia titles contain a category inside
parentheses, e.g.., “Washington (state)”. We remove these
parentheses and their content from the titles, if they exist, and
then use the titles as our names.
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twelve views are combined (four languages times
three representations). The multi-multi-view mod-
els on lines 25–28 outperform all other results.
Comparing line 25 and FIGMENT (line 0), adding
representations from three more languages result
in .5%, .4%, .9% improvements for all, tail and
head entities. Line 26 by using ATT improves the
results further especially for the tail entities. These
results confirm the effectiveness of our contribu-
tions: adding language as a metaview, and using
ATT instead of CON to combine multiple views.

Lines 29–32 show results for using NAME rep-
resentations in six additional languages: AR, FR,
IT, PL, PT, RU. F1 is up to more than one percent
better than on lines 13–16. This demonstrates the
benefit of using more languages – although the ef-
fect is limited since only the long tail of entities
can improve.

Lines 33–36 vs. lines 25–28 make the same
comparison (NAME4 vs. NAME10) for multi-
multi-view. By ATT, we get a small improvement
for tail, but not for head (line 34 vs. line 26). Ap-
parently, there is noise added by considering more
languages and this hurts the results for head enti-
ties.

A general tendency is that ATT performs better
compared to MAX, AVG and CON as the number
of views increases (lines 30 and 34) and so the av-
erage number of views without information (i.e.,
missing views) for an entity increases. In contrast
to MAX, ATT can combine different views. In
contrast to CON and AVG, ATT can ignore some
of them based on low attention weights.

3.2 Analysis: Crossview Learning

To analyze whether sharing parameters across
views is important, Table 2 compares (i) SIN-
GLE: twelve different singleview models with (ii)
CROSS: a single crossview model that is trained
on a training set that combines the twelve indi-
vidual singleview training sets. For CROSS, we
use Eq. 3 with view specific transformation matri-
ces, mapping views in different spaces into a com-
mon space, and then Eq. 1 with shared parameters
across views. The number of parameters in appli-
cation is the same for SINGLE and CROSS.

Table 2 shows consistent and clear improve-
ments of CROSS compared to SINGLE, ex-
cept for English CTXT and NAME. The English
Wikipedia is much larger than the others, so that
embeddings based on it have high quality. But our

all tail head
0 FIGMENT 88.1 87.4 89.1

C
TX

T

1 EN 71.7 62.0 88.5
2 DE 31.7 14.6 76.6
3 ES 20.3 6.1 67.5
4 FA 09.3 04.5 42.3
5 MULTIVIEW-CON 73.7 64.6 89.6
6 MULTIVIEW-ATT 73.6 64.5 89.2
7 MULTIVIEW-MAX 73.7 64.2 89.8
8 MULTIVIEW-AVG 73.0 63.5 89.3

N
A

M
E4

9 EN 73.4 73.1 76.1
10 DE 34.1 23.8 68.5
11 ES 29.8 20.4 65.3
12 FA 17.2 13.0 47.3
13 MULTIVIEW-CON 75.8 75.0 81.0
14 MULTIVIEW-ATT 76.1 75.3 81.2
15 MULTIVIEW-MAX 75.9 75.2 81.0
16 MULTIVIEW-AVG 75.8 75.1 80.9

D
ES

C

17 EN 77.6 79.5 67.1
18 DE 28.9 20.6 51.4
19 ES 23.1 16.2 47.0
20 FA 12.2 10.7 29.3
21 MULTIVIEW-CON 81.6 82.3 78.2
22 MULTIVIEW-ATT 79.6 80.6 73.8
23 MULTIVIEW-MAX 79.5 80.5 74.4
24 MULTIVIEW-AVG 78.9 79.7 75.2

C
TX

T
+N

A
M

E4
+D

ES
C

25 MULTIVIEW-CON 88.6 87.8 90.0
26 MULTIVIEW-ATT 89.0 88.3 89.8
27 MULTIVIEW-MAX 87.9 86.9 89.6
28 MULTIVIEW-AVG 87.1 86.2 88.4

N
A

M
E1

0 29 MULTIVIEW-CON 76.7 75.8 82.4
30 MULTIVIEW-ATT 77.3 76.4 82.5
31 MULTIVIEW-MAX 77.0 76.1 81.9
32 MULTIVIEW-AVG 76.3 75.4 82.0

C
TX

T
+N

A
M

E1
0

+D
ES

C

33 MULTIVIEW-CON 88.5 87.7 89.9
34 MULTIVIEW-ATT 89.2 88.6 89.8
35 MULTIVIEW-MAX 87.6 86.5 89.4
36 MULTIVIEW-AVG 86.7 85.7 88.1

Table 1: Micro F1 for entity typing. NAME4/NAME10
= name embeddings from 4 or 10 languages.

results demonstrate that training one model with
common parameters over all inputs is helping the
classification for non high-resource views.

Multiview learning exploits the complementar-
ity of views: if an entity’s type cannot be inferred
from one view, then other views may have the re-
quired information. Table 2 shows that using mul-
tiple views has a second beneficial effect: even if
applied to a single view, a model trained on mul-
tiple views performs better. Kan et al. (2016)’s
image recognition and Pappas and Popescu-Belis
(2017)’s document classification findings are sim-
ilar. Thus, not only does the increased amount
of available information boost performance in the
multiview setup, but also we can enable crossview
transfer and learn a model that makes better pre-
dictions even if information is only available from
a single view.
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CTXT NAME DESC
SINGLE CROSS SINGLE CROSS SINGLE CROSS

EN 71.7 71.6 73.4 72.8 77.6 82.0
DE 31.7 32.3 34.1 34.7 28.9 35.7
ES 20.3 21.2 29.8 30.7 23.1 28.6
FA 9.3 9.5 17.2 18.3 12.2 15.3

Table 2: Micro F1 (all entities) for twelve singleview
models (SINGLE) and one crossview model (CROSS)

4 Related Work

Entity and mention typing. In this work, we as-
sume that a predefined set of fine-grained types is
given. Entity typing, i.e., predicting types of a
knowledge base entity (Neelakantan and Chang,
2015; Yaghoobzadeh and Schütze, 2015), is the
focus of this paper. Mention typing, i.e., pre-
dicting types of a mention in a particular con-
text (Ling and Weld, 2012; Rabinovich and Klein,
2017; Shimaoka et al., 2017; Murty et al., 2018),
is a related task. Mention typing models can be
evaluated for entity typing when aggregating their
predictions (Yaghoobzadeh and Schütze, 2015;
Yaghoobzadeh et al., 2017, 2018). Therefore, our
public and large entity typing dataset, MVET, can
be used as an alternative to the small manually
annotated mention typing datasets like the com-
monly used FIGER (Ling and Weld, 2012). We
leave this to the future work.

Multilingual entity typing. We build multilin-
gual dataset and models for entity typing. Most
work on entity typing has been monolingual; e.g.,
Yaghoobzadeh and Schütze (2015) (English); and
Suzuki et al. (2016) (Japanese). There is work
on mention typing (van Erp and Vossen, 2017).
Lin et al. (2017) that uses mono- and crosslin-
gual attention for relation extraction. Crosslingual
entity linking is an important related task, where
the task is to link mentions of entities in multi-
lingual text to a knowledge base (Tsai and Roth,
2016). Many entities are not sufficiently anno-
tated in Wikipedia, and therefore crosslingual en-
tity linking is necessary to learn informative con-
text representations from multiple languages.

Multi-representation of entities. Aggregat-
ing information from multiple sources to learn
entity representations has been explored for en-
tity typing (Yaghoobzadeh and Schütze, 2017;
Yaghoobzadeh et al., 2018), entity linking (Gupta
et al., 2017) and relation extraction (Wang and Li,
2016). Here, we add language as a new “dimen-
sion” to multi-representations: each language con-
tributes a different CTXT, NAME and DESC rep-

resentation.
Our multilingual and multi-representation mod-

els are examples of multiview learning. Xu et al.
(2013) and Zhao et al. (2017) review the litera-
ture on multiview learning. Amini et al. (2009)
cast multilingual text classification, a task related
to entity typing, as multiview learning. Qu et al.
(2017) address node classification and link predic-
tion by attention-based multiview representations
of graph nodes. We also adopt a similar approach
in our multiview representations for entity typing.

5 Conclusion

We formalized entity typing as a multiview prob-
lem by introducing two metaviews, language
and representation; each combination of their in-
stances defines a distinct view. Our experiments
showed the effectivess of this formalization by
outperforming the state-of-the-art model. Our ba-
sic idea of metaview learning is general and is ap-
plicable to related tasks, e.g., to relation extrac-
tion. We release a large and public multiview and,
in particular, multilingual, entity typing dataset.

A MVET Dataset Statistics

NAME CTXT DESC
EN 160,083 121,004 159,458
DE 50,853 37,054 45,516
ES 42,279 24,528 37,420
FA 23,389 11,725 18,735
RU 37,233 0 0
FR 54,434 0 0
AR 18,379 0 0
PT 31,879 0 0
PL 35,675 0 0
IT 41,686 0 0

Table 3: The statistics of our MVET dataset for each
language and representation view. The total number of
entities is 160,083 with 102 types.
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Abstract

We compare three existing bilingual word em-
bedding approaches, and a novel approach of
training skip-grams on synthetic code-mixed
text generated through linguistic models of
code-mixing, on two tasks - sentiment analy-
sis and POS tagging for code-mixed text. Our
results show that while CVM and CCA based
embeddings perform as well as the proposed
embedding technique on semantic and syntac-
tic tasks respectively, the proposed approach
provides the best performance for both tasks
overall. Thus, this study demonstrates that ex-
isting bilingual embedding techniques are not
ideal for code-mixed text processing and there
is a need for learning multilingual word em-
bedding from the code-mixed text.

1 Introduction

Word embeddings are useful for a variety of NLP
tasks, as they allow to generalize the system on
much larger corpora than the annotated dataset for
the task. In recent times, there has been some in-
terest in bilingual word embeddings, where words
from two languages are embedded into the same
space. The primary advantage of bilingual em-
beddings is in solving tasks involving reasoning
across two languages, such as Machine Transla-
tion (Zou et al., 2013; Gouws et al., 2015; Vulić
and Moens, 2016) and cross-lingual IR (Vulić and
Moens, 2015), as well as allowing transfer of mod-
els learnt on a resource-rich language on to a re-
source poor language (Adams et al., 2017; Fang
and Cohn, 2017). One of the potential, yet unex-
plored, applications of bilingual word embeddings
is in the processing of code-mixed language.

Code-mixing (CM) refers to fluid alternation be-
tween two or more languages in a single conver-
sation/sentence (Myers-Scotton, 1993). CM is a
common phenomenon observed in almost all mul-
tilingual societies (Parshad et al., 2016; Rijhwani

et al., 2017). Consequently, in recent times, pro-
cessing of CM text and speech has been receiv-
ing a growing amount of interest and attention
from the NLP community (Solorio and Liu, 2008;
Li and Fung, 2014; Solorio et al., 2014; Sharma
et al., 2016; Rudra et al., 2016). Since CM text
draws words and linguistic structures from multi-
ple languages, use of bilingual word embeddings
for processing of such text could not only be use-
ful, but also necessary. On the other hand, while
there is some work that uses embeddings for CM
text (Prabhu et al., 2016) (at sub-word level), we
do not know of any study that systematically ex-
plores the usefulness of bilingual word embedding
techniques in CM text processing.

Further, we argue that since all the standard
bilingual word embedding techniques are de-
signed to work on or across monolingual texts
rather than on a mixture of the two languages,
these techniques may not be ideal for learning em-
beddings for CM tasks. There are emergent syn-
tactic structures and cross-lingual semantic associ-
ations in CM text, that do not exist in the individ-
ual monolingual corpora (Sec 3). Hence, ideally,
word embeddings for CM tasks should be trained
on real CM data.

In this paper, we compare three popu-
lar bilingual word embedding techniques
(Sec 2): Bilingual correlation based embed-
dings (BiCCA) (Faruqui and Dyer, 2014), Bilin-
gual compositional model (BiCVM) (Hermann
and Blunsom, 2014) and Bilingual Skip-gram
(BiSkip) (Luong et al., 2015) on two tasks for
CM text - sentiment analysis, a semantic task, and
POS tagging, a syntactic task. On the same tasks,
we also compare word embeddings learnt from
synthetic CM data (generated using linguistic
models as proposed in a recent work (Pratapa
et al., 2018)) (Sec 3). Note that Wick et al.
(2016) use artificial code mixed data to learn
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multilingual embeddings for cross-lingual tasks,
but their aim is to generate bilingual embeddings
for monolingual or cross-lingual tasks.

Our study shows that even though in certain
NLP tasks specific embeddings might perform
well, in general bilingual embedding techniques
like BiCCA, BiCVM and BiSkip are not ideal for
processing CM language. Embeddings learnt from
CM data, even if artificially generated, performs
consistently better across tasks. Our initial results
are promising and provide several interesting di-
rections for further exploration.

2 Bilingual Embeddings

In the past few years, there has been a growing
interest in learning bilingual embeddings (Upad-
hyay et al., 2016; Ruder et al., 2017) with a focus
on cross-lingual transfer, which helps in building
NLP models for low-resource languages. Upad-
hyay et al. (2016) provide an empirical compar-
ison of four cross-lingual word embedding mod-
els varying in terms of the amount of supervi-
sion. Ruder et al. (2017) establishes the similari-
ties among numerous cross-lingual word embed-
ding models and shows that many models opti-
mize for similar objectives. Along similar lines
as Upadhyay et al. (2016), in this work, we chose
the following three representative bilingual word
embedding models for CM tasks. Training data is
described later in Section 4.

2.1 Bilingual Correlation Based Embeddings
(BiCCA)

Faruqui and Dyer (2014) proposed CCA based
bilingual embeddings, where bilingual evidence
is incorporated into word representations by per-
forming canonical correlation analysis (CCA) on
monolingual embeddings using a bilingual dictio-
nary. The monolingual embedding matrices WL1

and WL2 can be of different dimensions and words
with their translations from the dictionary are used
to obtain matrices W 0

L1
and W 0

L2
. Using CCA,

the individual projection matrices are computed,
which are then utilized to project the embeddings
into the same embedding space.

BiCCA embeddings were shown to perform
well on syntactic tasks like cross lingual depen-
dency parsing, but performed relatively poorly
on cross lingual semantic tasks (Upadhyay et al.,
2016). We learn the monolingual embeddings by
training a skip-gram model (Mikolov et al., 2013)

for 5 iterations with a window size of 5 and 10
negative samples. We built a bilingual dictio-
nary of approximately 38k pairs by using word
alignments. The dictionary contains word pairs
(w1, w2), such that w2 is aligned to w1 the high-
est number of times and vice-versa. We use the
crosslingual-cca1 toolkit. To remain con-
sistent with other embedding models, we choose
the top (k=) 200 correlated dimensions.

2.2 Bilingual Compositional Model (BiCVM)
This approach, proposed by Hermann and Blun-
som (2014), is based on the assumption that paral-
lel sentences from different languages have equiv-
alent meanings and thus should have similar sen-
tence representations. Along with monolingual
regularizers, the model optimizes for the aligned
sentences to be closer to each other than randomly
chosen negative samples, using a noise-contrastive
update.

BiCVM is found to perform well on mono-
lingual word similarity (SimLex-999, Upadhyay
et al. (2016)) and is comparable to BiSkip on se-
mantic tasks like cross-lingual document classifi-
cation. We use the bicvm2 toolkit to generate em-
beddings using the parallel English-Spanish data.
We train an additive model for 100 iterations, with
a hinge loss margin of 200, noise parameter of 10
and batch size of 50.

2.3 Bilingual Skip-gram Model (BiSkip)
The Skip-gram model proposed by Mikolov et al.
(2013) has been adapted to the bilingual setting
in Luong et al. (2015), where the model learns to
predict word contexts cross-lingually. Along with
the monolingual skip-gram with negative sam-
pling objectives, BiSkip includes two more objec-
tives L12 and L21 when predicting cross-lingually
from L1 to L2 and vice-versa.

It has the best performance compared to the
other embedding techniques on semantic tasks
like cross-lingual dictionary induction and cross-
lingual document classification. We use parallel
sentences and word level alignments to train the
biskip3 model. We train the model using the
toolkit for 5 iterations with 10 negative samples,
high frequency threshold of 0.001, window size of
5 and cross-lingual weight as 1.

1https://github.com/mfaruqui/
crosslingual-cca

2https://github.com/karlmoritz/bicvm/
3https://github.com/lmthang/bivec
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3 Synthetic CM data (gCM) based
Embeddings

The aforementioned embedding techniques, ow-
ing to their ability to project the words of the two
languages into a single space, are expected to be
helpful in processing of CM text. However, we
believe that CM text is distinct in its syntactic, se-
mantic and statistical properties from the corre-
sponding monolingual texts. For example, there
has been a lot of work on understanding and estab-
lishing the grammatical constraints of CM (Joshi,
1985; Poplack, 1980; DiSciullo et al., 1986) and
these syntactic constraints might introduce inter-
esting collocations in the word space, such as that
between English verbs and the Hindi verb “kar”
(to do) in English-Hindi CM (Kachru, 1978).

In a recent work (Pratapa et al., 2018), we pre-
sented a methodology to generate linguistic theory
based synthetic CM data (gCM) and showed its ef-
fectiveness in CM language modeling. Synthetic
CM data was generated by employing Equivalence
Constraint (EC) theory (Poplack, 1980; Sankoff,
1998). The generation model builds a lattice of
grammatically valid CM sentences by imposing
the EC theory constraints while utilizing monolin-
gual parallel data, word-level alignments and the
parse of English sentences. The Spanish parse is
formed by projecting the English parse onto the
Spanish sentence. For each monolingual pair of
input sentences, a large number (generally expo-
nential in terms of average input sentence length)
of CM sentences were generated. We observed
a non-uniform scaling of low and high frequency
words and proposed two sampling techniques to
overcome this frequency bias.

In the current work, we use this generation
model (as proposed in (Pratapa et al., 2018)) to
create training data for learning CM word embed-
dings. In fact, we also noticed the frequency bias
in the word embedding space (Figure 1a). We
adapt the two sampling strategies from the original
paper, 1. Random sampling (�-gCM), for every
monolingual pair, sample random k CM sentences
and, 2. SPF-based sampling (⇢-gCM), sample k
CM sentences for each monolingual pair such that
they have SPF (switch point fraction, i.e fraction
of word boundaries where the language changes)
distribution similar to real CM data (Pratapa et al.,
2018). We were able to alleviate the frequency
bias using the SPF-based sampling (Figure 1b).

(a) (b)

Figure 1: (a) PCA projections of skip-gram (with
negative sampling) embeddings trained on entire
gCM corpus, (b) ⇢-sampled gCM. The color gra-
dient (light ! dark) is based on the frequency of
word (low ! high) in gCM corpus.

4 Evaluation

Data: Though CM is a common phenomenon,
there is a scarcity of real code-mixed data in tex-
tual form. Hence, we learn CM embeddings from
the English-Spanish parallel corpora (for BiCCA,
BiCVM and BiSkip models) and the synthetic CM
data obtained from Pratapa et al. (2018). This con-
stitutes to approximately 4.5M parallel sentences
and also bilingual supervision in the form of word
and sentence alignments. The synthetic data cre-
ation procedure is described in the original paper.
Both the sampling techniques, with k=2 result in
a gCM corpus of approx. 8M sentences. We also
combine monolingual data with these gCM cor-
pus resulting in approx. 17M sentences. We train
a skip-gram model for 10 iterations, with a win-
dow size of 5 and 5 negative samples, resulting in
�-gCM-Skip and ⇢-gCM-Skip embeddings.

To quantitatively compare the embedding mod-
els, we chose two CM tasks, one semantic (Sen-
timent Analysis) and one syntactic task (POS tag-
ging). Our choice of tasks is primarily motivated
by the availability of annotated CM data. There
has been prior work on CM sentiment identifica-
tion (Vilares and Alonso, 2016; Joshi et al., 2016;
Rudra et al., 2016; Prabhu et al., 2016) and POS
tagging (Solorio and Liu, 2008; Vyas et al., 2014;
AlGhamdi et al., 2016; Ghosh et al., 2016). But we
are not aware of any work that utilizes pre-trained
bilingual embeddings for these tasks.

4.1 Sentiment Analysis

Vilares and Alonso (2016) provide 2103 sentiment
annotated CM tweets. The data contains 650 pos-
itive, 529 negative and 924 neutral tweets and we
split the data in 8:1:1 ratio (train:validation:test)
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Embedding Sentiment POS
CM Overall SemEval 2014 TASS 2016 CM Overall at SP

None 54.4 (1.3) 64.5 (0.6) 61.4 (1.0) 84.5 (0.3) 74.0 (0.7)

BiCCA 57.6 (3.0) 64.6 (1.0) 59.5 (1.8) 84.7 (0.8) 75.0 (1.8)

BiCVM 64.3 (1.3) 66.8 (1.0)) 61.9 (1.0) 82.0 (0.5) 70.6 (1.7)

BiSkip 61.5 (1.7) 66.6 (0.9) 63.9 (1.2) 84.4 (0.7) 73.8 (0.9)

�-gCM-Skip 62.0 (1.9) 67.4 (1.3) 63.2 (1.5) 84.8 (0.6) 74.0 (0.6)

⇢-gCM-Skip 64.6 (2.0) 67.7 (1.4) 63.8 (2.2) 84.9 (0.7) 75.3 (1.7)

Table 1: The performance of different pre-trained embeddings on Sentiment (F1 score) and POS tasks
(Accuracy). The reported values are mean and deviation (in parentheses) values computed over multiple
runs.

while ensuring the sentiment distribution remains
the same4.

Model: We train a LSTM based sequence
classifier with single hidden layer (dim=50) and
dropout of 0.5. We use ADAM optimizer with
learning rate of 0.001 and momentum parameter
of 0.9. We train the model for a maximum of 10
epochs with a mini-batch size of 100. Our model
is built using the Microsoft CNTK framework.
We varied the CM sample size (k) (described in
3) over {1,2,5,10,20} and found the best perfor-
mance with k=2. To check the robustness of CM
embeddings, we also evaluate them on monolin-
gual English5 (SemEval 2014 Subtask B, (7177,
1199, 2865)) and Spanish6 (TASS 2016, (6000,
1220, 1000)) tasks. The numbers in the parenthe-
sis indicate the number of train, validation and test
instances.

Results: Table 1 shows the results on Sen-
timent task. While all embedding models sig-
nificantly improve over the baseline (‘None’), ⇢-
gCM-Skip and BiCVM perform the best. Instead
of linguistically motivated data, we tried with CM
data created by random juxtaposition of monolin-
gual fragments and it gave a F1 score of 56.0% and
the minimal gain is possibly only because of the
monolingual fragments in the embedding training
data.

4.2 Part of Speech (POS) Tagging

Of the two corpora utilized in AlGhamdi et al.
(2016), we chose Bangor Miami Corpus7 over

4These statistics are for the re-crawled tweets; some of the
original tweets are no longer available.

5alt.qcri.org/semeval2014/task9/
6www.sepln.org/workshops/tass/2016/
7bangortalk.org.uk/speakers.php?c=

miami

Spanglish Corpus (Solorio and Liu, 2008) owing
to the larger size of the former corpus. Bangor
Miami corpus consists of conversations of Spanish
speakers in Florida but also fluent in English. In
contrast to AlGhamdi et al. (2016), we only con-
sider the code mixed utterances with significant
(�30%) fraction of English and Spanish. This ac-
counts to 982 sentences and 7705 tokens, split in
8:1:1 ratio.

Model: We use a bidirectional LSTM model
with CRF as the output layer (Rei and Yan-
nakoudakis, 2016)8, with hidden layer dimension
of 50 and dropout of 0.5. The model trains for a
maximum of 20 epochs and terminates if there is
no improvement in validation accuracy for 5 con-
secutive epochs. We use ADADELTA optimizer
with a learning rate of 1.0.

Results: ⇢-gCM-Skip, �-gCM-Skip perform
the best on the POS task (see Table. 1). Unlike
the sentiment task, BiCCA performs close to the
best while BiCVM does the worst. We also report
accuracies at switch points (SP), which we believe
is challenging for a CM POS tagger. As expected
these accuracies are lower, but ⇢-gCM-Skip and
BiCCA still perform the best.

5 Conclusion

As we expected, pretrained bilingual word embed-
dings help improve syntactic and semantic CM
processing tasks. Similar to (Upadhyay et al.,
2016), we also note that BiCVM operating at sen-
tence level performs better only on semantic tasks,
while BiCCA does well only on syntactic tasks
due to their usage of word alignments. Though ⇢-
gCM-Skip embeddings learnt from synthetic data

8https://github.com/marekrei/
sequence-labeler
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performed only marginally better than BiCVM
and BiCCA on semantic and syntactic tasks re-
spectively, it is the only embedding model that
did consistently well across tasks. Thus, our study
shows that standard bilingual embeddings are not
well suited, in general, for CM tasks; embed-
dings learnt from CM data, either real or synthetic,
seems much more useful. Further, along the lines
of (Pratapa et al., 2018), our study also shows that
synthetic CM data is a reasonably good proxy for
real data.

While our experiments show a promising direc-
tion towards obtaining bilingual embeddings for
CM tasks, there are several interesting ideas that
are worth exploring. In particular, the linguistic
model used for generating artificial CM data only
addresses the syntactic constraints of CM, but not
other kinds of constraints such as lexical choice
which in a particular CM context might be overly
skewed towards one language (like the English
words ‘school’ and ‘vote’ are more common than
their Hindi translations in English-Hindi CM (Bali
et al., 2014)), and semantic/pragmatic constraints
that make the choice of a particular language more
common in some contexts (e.g., Hindi used more
commonly for negative sentiment during English-
Hindi CM (Rudra et al., 2016)). Similarly, the
sense distribution of polysemous words can vary
widely between a monolingual and CM corpus.
For instance, the word ‘school’ in English has sev-
eral meanings such as (a) an institute of education,
(b) group of artists, writers etc., and (c) a large
group of fish. However, in a Spanish dominant
sentence or corpus, school is primarily, if not only,
used in sense (a).

As future work, it will be interesting to explore
techniques that can generate artificial CM data
following the lexical, semantic and pragmatic
constraints, or develop novel embedding tech-
niques that can appropriately interpolate between
real and artificial CM data to learn collocations
that arise due to not only syntactic but also lexical,
semantic and pragmatic aspects of code-mixing.
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Ivan Vulić and Marie-Francine Moens. 2015. Mono-
lingual and cross-lingual information retrieval mod-
els based on (bilingual) word embeddings. In Pro-
ceedings of the 38th international ACM SIGIR con-
ference on research and development in information
retrieval, pages 363–372. ACM.
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Abstract
Character-level patterns have been widely
used as features in English Named Entity
Recognition (NER) systems. However, to date
there has been no direct investigation of the
inherent differences between name and non-
name tokens in text, nor whether this property
holds across multiple languages. This paper
analyzes the capabilities of corpus-agnostic
Character-level Language Models (CLMs) in
the binary task of distinguishing name to-
kens from non-name tokens. We demonstrate
that CLMs provide a simple and powerful
model for capturing these differences, identi-
fying named entity tokens in a diverse set of
languages at close to the performance of full
NER systems. Moreover, by adding very sim-
ple CLM-based features we can significantly
improve the performance of an off-the-shelf
NER system for multiple languages.1

1 Introduction

In English, there is strong empirical evidence that
the character sequences that make up proper nouns
tend to be distinctive. Even divorced of con-
text, a human reader can predict that “hoeksten-
berger” is an entity, but “abstractually”2 is not.
Some NER research explores the use of character-
level features including capitalization, prefixes
and suffixes (Cucerzan and Yarowsky, 1999; Rati-
nov and Roth, 2009), and character-level models
(CLMs) (Klein et al., 2003) to improve the perfor-
mance of NER, but to date there has been no sys-
tematic study isolating the utility of CLMs in cap-
turing distinctions between name and non-name
tokens in English or across other languages.

We conduct an experimental assessment of the
discriminative power of CLMs for a range of lan-

1The code and resources for this publication can be found
at: https://cogcomp.org/page/publication_
view/846

2Not a real name or a real word.

Figure 1: Perplexity histogram of entity (left) and non-
entity tokens (right) in CoNLL Train calculated by en-
tity CLM for both sides. The graphs show the percent-
age of tokens (y axis) with different levels of CLM per-
plexities (x axis). The entity CLM gives a low aver-
age perplexity and small variance to entity tokens (left),
while giving non-entity tokens much higher perplexity
and higher variance (right).

guages: English, Amharic, Arabic, Bengali, Farsi,
Hindi, Somali, and Tagalog. These languages use
a variety of scripts and orthographic conventions
(for example, only three use capitalization), come
from different language families, and vary in their
morphological complexity. We demonstrate the
effectiveness of CLMs in distinguishing name to-
kens from non-name tokens, as illustrated by Fig-
ure 1, which shows perplexity histograms from a
CLM trained on entity tokens. Our models use
only individual tokens, but perform extremely well
in spite of taking no account of word context.

We then assess the utility of directly adding sim-
ple features based on this CLM implementation to
an existing NER system, and show that they have a
significant positive impact on performance across
many of the languages we tried. By adding very
simple CLM-based features to the system, our
scores approach those of a state-of-the-art NER
system (Lample et al., 2016) across multiple lan-
guages, demonstrating both the unique importance
and the broad utility of this approach.
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Train Test
Language Entity Non-entity Entity Non-entity

English 29,450 170,524 7,194 38,554
Amharic 5,886 46,641 2,077 16,235
Arabic 7,640 52,968 1,754 15,073
Bengali 15,288 108,592 4,573 32,929
Farsi 4,547 50,084 1,608 13,968
Hindi 5,565 69,267 1,947 23,853
Somali 6,467 51,034 1,967 14,545
Tagalog 11,525 102,894 3,186 29,228

Table 1: Data statistics for all languages, showing num-
ber of entity and non-entity tokens in Train and Test.

2 Methods

2.1 Character Language Models
We propose a very simple model in which we train
an entity CLM on a list of entity tokens, and a non-
entity CLM on a list of non-entity tokens. Both
lists are unordered, with all entries treated inde-
pendently. Each token is split into characters and
treated as a “sentence” where the characters are
the “words.” For example, “Obama” is an entity
token, and is split into “O b a m a”. From these
examples we learn a score measuring how likely it
is that a sequence of characters forms an entity. At
test time, we also split each word into characters
and determine perplexity using the entity and non-
entity CLMs. We assign the label corresponding
to the lower perplexity CLM.

We experiment with four different kinds of lan-
guage model: N-gram model, Skip-gram model,
Continuous Bag-of-Words model (CBOW), and
Log-Bilinear model (LB). We demonstrate that the
N-gram model is best suited for this task.

Following Peng and Roth (2016), we implement
N-gram using SRILM (Stolcke, 2002) with order
6 and Witten-Bell discounting.3 For Skip-Gram
and CBOW CLMs, we use the Gensim implemen-
tation (Rehurek and Sojka, 2010) for training and
inference, and we build the LB CLM using the
OxLM toolkit (Baltescu et al., 2014).

2.2 Data
To determine whether name identifiability applies
to languages other than English, we conduct ex-
periments on a range of languages for which
we had previously gathered resources (such as
Brown clusters): English, Amharic, Arabic, Ben-
gali, Farsi, Hindi, Somali, and Tagalog.

3We experimented with different orders on development
data, but found little difference between them.

For English, we use the original splits from
the ubiquitous CoNLL 2003 English dataset
(Sang and Meulder, 2003), which is a newswire
dataset annotated with Person (PER), Organiza-
tion (ORG), Location (LOC) and Miscellaneous
(MISC). To collect the list of entities and non-
entities as the training data for the Entity and
Non-Entity CLMs, we sample a large number of
PER/ORG/LOC and non-entities from Wikipedia,
using types derived from their corresponding Free-
Base entities (Ling and Weld, 2012).

For all other languages, we use a subset of the
corpora from the LORELEI project annotated for
the NER task (Strassel and Tracey, 2016). We
build our entity list using the tokens labeled as en-
tities in the training data, and our non-entity list
from the remaining tokens. These two lists are
then used to train two CLMs, as described above.

Our datasets vary in size of entity and non-entity
tokens, as shown in Table 1. The smallest, Farsi,
has 4.5K entity and 50K non-entity tokens; the
largest, English, has 29K entity and 170K non-
entity tokens.

3 CLM for Named Entity Identification

In this section, we first show the power of CLMs
for distinguishing between entity and non-entity
tokens in English, and then that this power is ro-
bust across a variety of languages.

We refer to this task as Named Entity Identifi-
cation (NEI), because we are concerned only with
finding an entity span, not its label. We differen-
tiate it from Named Entity Recognition (NER), in
which both span and label are required. To avoid
complicating this straightforward approach by re-
quiring a separate mention detection step, we eval-
uate at the token-level, as opposed to the more
common phrase-level evaluation. We also apply
one heuristic: if a word has length 1, we automat-
ically predict ‘O’ (or non-entity). This captures
most punctuation and words like ‘I’ and ‘a’.

Figure 1 shows that for the majority of entity
tokens, the entity CLM computes a relatively low
perplexity compared to non-entity tokens. Though
there also exist some non-entities with low entity
CLM perplexity, we can still reliably identify a
large proportion of non-entity words by setting a
threshold value for entity CLM perplexity. If a to-
ken perplexity lies above this threshold, we label
it as a non-entity token. The threshold is tuned on
development data.
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Model eng amh ara ben fas hin som tgl avg

Exact Match 43.4 54.4 29.3 47.7 30.5 30.9 46.0 23.7 37.5
Capitalization 79.5 - - - - - 69.5 77.6 -

SRILM 92.8 69.9 54.7 79.4 60.8 63.8 84.1 80.5 70.5
Skip-gram 76.0 53.0 29.7 41.4 30.8 29.0 51.1 61.5 42.4
CBOW 73.7 50.0 28.1 40.6 32.6 26.5 56.4 62.5 42.4
Log-Bilinear 82.8 64.5 46.1 70.8 50.4 54.8 78.1 74.9 62.8

CogCompNER (ceiling) 96.5 73.8 64.9 80.6 64.1 75.9 89.4 88.6 76.8
Lample et al. (2016) (ceiling) 96.4 84.4 69.8 87.6 76.4 86.3 90.9 91.2 83.8

Table 2: Token level identification F1 scores. Averages are computed over all languages other than English. Two
baselines are also compared here: Capitalization tags a token in test as entity if it is capitalized; and Exact Match
keeps track of entities seen in training, tagging tokens in Test that exactly match some entity in Train. The bottom
section shows state-of-the-art models which use complex features for names, including contextual information.
Languages in order are: English, Amharic, Arabic, Bengali, Farsi, Hindi, Somali, and Tagalog. The rightmost
column is the average of all columns excluding English.

Since we also build a CLM for non-entities, we
can also compare the entity and non-entity per-
plexity scores for a token. For those tokens not
excluded using the threshold as described above,
we compare the perplexity scores of the two mod-
els and assign the label corresponding to the model
yielding the lower score.

We compare SRILM against Skip-gram and
CBOW, as implemented in Gensim, and the Log-
Bilinear (LB) model. We trained both CBOW and
Skip-gram with window size 3, and size 20. We
tuned LB, and report results with embedding size
150, and learning rate 0.1. Despite tuning the neu-
ral models, the simple N-gram model outperforms
them significantly, perhaps because of the rela-
tively small amount of training data.4

We compare the CLM’s Entity Identification
against two state-of-the-art NER systems: Cog-
CompNER (Khashabi et al., 2018) and LSTM-
CRF (Lample et al., 2016). We train the NER sys-
tems as usual, but at test time we convert all pre-
dictions into binary token-level annotations to get
the final score. As Table 2 shows, the result of N-
gram CLM, which yields the highest performance,
is remarkably close to the result of state-of-the-
art NER systems (especially for English) given the
simplicity of the model.

4 Improving NER with CLM features

In this section we show that we can augment a
standard NER system with simple features based

4We also tried a simple RNN+GRU language model, but
found that the results were underwhelming.

on our entity/non-entity CLMs to improve perfor-
mance in many languages. Based on their superior
performance as reported in Section 3, we use the
N-gram CLMs.

4.1 Features

We define three simple features that capture infor-
mation provided by CLMs and which we expect to
be useful for NER.

Entity Feature We define one “isEntity” fea-
ture based on the perplexities of the entity and
non-entity CLMs. We compare the perplexity cal-
culated by entity CLM and non-entity CLM de-
scribed in Section 3, and return a boolean value
indicating whether the entity CLM score is lower.

Language Features We define two language-
related features: “isArabic” and “isRussian”. We
observe that there are many names in English
text that originate from other languages, result-
ing in very different orthography than native En-
glish names. We therefore build two language-
based CLMs for Arabic and Russian. We collect a
list of Arabic names and a list of Russian names
by scraping name-related websites, and train an
Arabic CLM and a Russian CLM. For each to-
ken, when the perplexity of either the Arabic or
the Russian CLM is lower than the perplexity of
the Non-Entity CLM, we return True, indicating
that this entity is likely to be a name from Ara-
bic/Russian. Otherwise, we return False.
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Model eng amh ara ben fas hin som tgl avg

Lample et al. (2016) Full 90.94 73.2 57.2 77.7 61.2 77.7 81.3 83.2 73.1
Unseen 86.11 51.9 30.2 57.9 41.4 62.2 66.5 72.8 54.7

CogCompNER Full 90.88 67.5 54.8 74.5 57.8 73.5 82.0 80.9 70.1
Unseen 84.40 42.7 25.0 51.9 31.5 53.9 67.2 68.3 48.6

CogCompNER+LM Full 91.21 71.3 59.1 75.5 59.0 74.2 82.1 78.5 71.4
Unseen 85.20 48.4 32.0 54.0 31.2 55.4 68.0 65.2 50.6

Table 3: NER results on 8 languages show that even a simplistic addition of CLM features to a standard NER
model boosts performance. CogCompNER is run with standard features, including Brown clusters; (Lample et al.,
2016) is run with default parameters and pre-trained embeddings. Unseen refers to performance on named entities
in Test that were not seen in the training data. Full is performance on all entities in Test. Averages are computed
over all languages other than English.

4.2 Experiments

We use CogCompNER (Khashabi et al., 2018) as
our baseline NER system because it allows easy
integration of new features, and evaluate on the
same datasets as before. For English, we add all
features described above. For other languages, due
to the limited training data, we only use the “isEn-
tity” feature. We compare with the state-of-the-
art character-level neural NER system of (Lample
et al., 2016), which inherently encodes compara-
ble information to CLMs, as a way to investigate
how much of that system’s performance can be at-
tributed directly to name-internal structure.

The results in Table 3 show that for six of the
eight languages we studied, the baseline NER can
be significantly improved by adding simple CLM
features; for English and Arabic, it performs bet-
ter even than the neural NER model of (Lample
et al., 2016). For Tagalog, however, adding CLM
features actually impairs system performance.

In the same table, the rows marked “unseen”
report systems’ performance on named entities in
Test that were not seen in the training data. This
setting more directly assesses the robustness of a
system to identify named entities in new data. By
this measure, Farsi NER is not improved by name-
only CLM features and Tagalog is impaired. Ben-
efits for English, Hindi, and Somali are limited,
but are quite significant for Amharic, Arabic, and
Bengali.

5 Discussion

Our results demonstrate the power of CLMs for
recognizing named entity tokens in a diverse range
of languages, and that in many cases they can im-
prove off-the-shelf NER system performance even

when integrated in a simplistic way.
However, the results from Section 4.2 show that

this is not true for all languages, especially when
only considering unseen entities in Test: Tagalog
and Farsi do not follow the trend for the other lan-
guages we assessed even though CLM performs
well for Named Entity Identification.

While the end-to-end model developed by
(Lample et al., 2016) clearly includes informa-
tion comparable to that in the CLM, it requires
a fully annotated NER corpus, takes significant
time and computational resources to train, and is
non-trivial to integrate into a new NER system.
The CLM approach captures a very large fraction
of the entity/non-entity distinction capacity of full
NER systems, and can be rapidly trained using
only entity and non-entity token lists – i.e., it is
corpus-agnostic. For some languages it can be
used directly to improve NER performance; for
others (such as Tagalog), the strong NEI perfor-
mance indicates that while it does not immediately
boost performance, it can ultimately be used to im-
prove NER there too.

6 Related Work

Cucerzan and Yarowsky (1999) is one of the earli-
est works to use character-based features (charac-
ter tries) for NER. The approach of Klein et al.
(2003) was one of the original papers in the
CoNLL 2003 NER shared task. Their approach,
which ranked in the top 3 for both English and
German shared tasks, used character-based fea-
tures for NER. They do two experiments: one with
a character-based HMM, another with using char-
acter n-grams as features to a maximum entropy
model. The focus on character-level patterns is
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similar to our work, but without the specific ex-
ploration of language models alone.

Using character-based models similar to ours,
Smarr and Manning (2002) show that unseen noun
phrases can be accurately classified into a small
number of categories using only a character-based
model independent of context. We tackle a some-
what more challenging task of distinguishing enti-
ties from non-entities. Lample et al. (2016) use
character embeddings in an LSTM-CRF model.
Their ablation studies show that character-level
features improve performance significantly.

We are not aware of any work that directly eval-
uates CLMs for identifying name tokens, nor of
work that demonstrates the utility of character-
level information for identifying names in multi-
ple languages.

7 Conclusions and Future Work

We have shown, in a series of simple experiments,
that in many languages names are identifiable by
character patterns alone, and that character level
patterns have strong potential for building better
NER systems.

In the future, we plan to make a more thorough
analysis of reasons for the high variance in NER
performance. In particular, we will study why it is
possible, as with Tagalog, to have high Named En-
tity Identification results but lose points in NER.

Acknowledgements

This work was supported by a grant from Google,
and by Contract HR0011-15-2-0025 with the
US Defense Advanced Research Projects Agency
(DARPA). Approved for Public Release, Distribu-
tion Unlimited. The views expressed are those of
the authors and do not reflect the official policy
or position of the Department of Defense or the
U.S. Government. We appreciate the helpful dis-
cussions and suggestions from Haoruo Peng and
Qiang Ning, and from the anonymous EMNLP re-
viewers.

References
Paul Baltescu, Phil Blunsom, and Hieu Hoang.

2014. Oxlm: A neural language modelling
framework for machine translation. The Prague
Bulletin of Mathematical Linguistics 102(1):81–
92. https://ufal.mff.cuni.cz/pbml/102/art-baltescu-
blunsom-hoang.pdf.

Silviu Cucerzan and David Yarowsky. 1999. Lan-
guage independent named entity recognition com-
bining morphological and contextual evidence. In
EMNLP.

Daniel Khashabi, Mark Sammons, Ben Zhou, Tom
Redman, Christos Christodoulopoulos, Vivek Sriku-
mar, Nicholas Rizzolo, Lev Ratinov, Guanheng Luo,
Quang Do, Chen-Tse Tsai, Subhro Roy, Stephen
Mayhew, Zhili Feng, John Wieting, Xiaodong Yu,
Yangqiu Song, Shashank Gupta, Shyam Upadhyay,
Naveen Arivazhagan, Qiang Ning, Shaoshi Ling,
and Dan Roth. 2018. CogCompNLP: Your swiss
army knife for nlp. In 11th Language Resources and
Evaluation Conference.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D. Manning. 2003. Named entity recognition
with character-level models. In CoNLL.

Guillaume Lample, Miguel Ballesteros, Sandeep K
Subramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In HLT-NAACL.

Xiao Ling and Daniel S Weld. 2012. Fine-grained
entity recognition. In Proceedings of the National
Conference on Artificial Intelligence (AAAI).
http://aiweb.cs.washington.edu/ai/pubs/ling-
aaai12.pdf.

Haoruo Peng and Dan Roth. 2016. Two dis-
course driven language models for semantics.
In Proc. of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL).
http://cogcomp.org/papers/PengRo16.pdf.

L. Ratinov and D. Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proc. of the Conference on Com-
putational Natural Language Learning (CoNLL).
http://cogcomp.org/papers/RatinovRo09.pdf.

Radim Rehurek and Petr Sojka. 2010. Software frame-
work for topic modelling with large corpora. In In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
CoNLL.

Joseph Smarr and Christopher D. Manning. 2002.
Classifying unknown proper noun phrases without
context.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Seventh international confer-
ence on spoken language processing.

Stephanie Strassel and Jennifer Tracey. 2016. Lorelei
language packs: Data, tools, and resources for tech-
nology development in low resource languages.

3077



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3078–3083
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Code-switched Language Models
Using Dual RNNs and Same-Source Pretraining

Saurabh Garg⇤ Tanmay Parekh⇤

Indian Institute of Technology, Bombay
{saurabhgarg,tanmayb,pjyothi}@cse.iitb.ac.in

Preethi Jyothi

Abstract

This work focuses on building language mod-
els (LMs) for code-switched text. We pro-
pose two techniques that significantly improve
these LMs: 1) A novel recurrent neural net-
work unit with dual components that focus on
each language in the code-switched text sep-
arately 2) Pretraining the LM using synthetic
text from a generative model estimated using
the training data. We demonstrate the effec-
tiveness of our proposed techniques by report-
ing perplexities on a Mandarin-English task
and derive significant reductions in perplexity.

1 Introduction

Code-switching is a widespread linguistic phe-
nomenon among multilingual speakers that in-
volves switching between two or more languages
in the course of a single conversation or within a
single sentence (Auer, 2013). Building speech and
language technologies to handle code-switching
has become a fairly active area of research and
presents a number of interesting technical chal-
lenges (Çetinoglu et al., 2016). Language mod-
els for code-switched text is an important prob-
lem with implications to downstream applications
such as speech recognition and machine transla-
tion of code-switched data. A natural choice for
building such language models would be to use
recurrent neural networks (RNNs) (Mikolov et al.,
2010), which yield state-of-the-art language mod-
els in the case of monolingual text. In this work,
we explore mechanisms that can significantly im-
prove upon such a baseline when applied to code-
switched text. Specifically, we develop two such
mechanisms:

• We alter the structure of an RNN unit to in-
clude separate components that focus on each

⇤Joint first authors

language in code-switched text separately while
coordinating with each other to retain contex-
tual information across code-switch boundaries.
Our new model is called a Dual RNN Language
Model (D-RNNLM), described in Section 2.

• We propose using same-source pretraining –
i.e., pretraining the model using data sampled
from a generative model which is itself trained
on the given training data – before training the
model on the same training data (see Section 3).
We find this to be a surprisingly effective strat-
egy.

We study the improvements due to these tech-
niques under various settings (e.g., with and with-
out access to monolingual text in the candidate
languages for pretraining). We use perplexity as
a proxy to measure the quality of the language
model, evaluated on code-switched text in English
and Mandarin from the SEAME corpus. Both the
proposed techniques are shown to yield significant
perplexity improvements (up to 13% relative) over
different baseline RNNLM models (trained with a
number of additional resources). We also explore
how to combine the two techniques effectively.

Related Work: Adel et al. (2013) was one of
the first works to explore the use of RNNLMs
for code-switched text. Many subsequent works
explored the use of external sources to enhance
code-switched LMs, including the use of part-of-
speech (POS) tags, syntactic and semantic fea-
tures (Yeh et al., 2010; Adel et al., 2014, 2015)
and the use of machine translation systems to gen-
erate synthetic text (Vu et al., 2012). Prior work
has also explored the use of interpolated LMs
trained separately on monolingual texts (Bhuvana-
giri and Kopparapu, 2010; Imseng et al., 2011;
Li et al., 2011; Baheti et al., 2017). Linguis-
tic constraints governing code-switching have also

3078



Out

LSTM (L1)0

0 LSTM (L0)

#0 #1

Emb0

Emb10

0

τ2b2

Out

LSTM (L1)0

0 LSTM (L0)

#0 #1

Emb0

Emb10

0

τ1b1

Figure 1: Illustration of the dual RNNLM (see the text for
a detailed description). The highlighted left-to-right path (in
green) indicates the flow of state information, when b1 = 0
and b2 = 1 (corresponding to token ⌧1 belonging to language
L0 and ⌧2 belonging to L1). The highlighted bottom-to-top
path (in orange) indicates the inputs and outputs.

been used as explicit priors to model when peo-
ple switch from one language to another. Fol-
lowing this line of enquiry, (Chan et al., 2004)
used grammar rules to model code-switching; (Li
and Fung, 2013, 2014) incorporated syntactic con-
straints with the help of a code-switch boundary
prediction model; (Pratapa et al., 2018) used a lin-
guistically motivated theory to create grammati-
cally consistent synthetic code-mixed text.

2 Dual RNN Language Models

Towards improving the modeling of code-
switched text, we introduce Dual RNN Language
Models (D-RNNLMs). The philosophy behind D-
RNNLMs is that two different sets of neurons will
be trained to (primarily) handle the two languages.
(In prior work (Garg et al., 2018), we applied sim-
ilar ideas to build dual N-gram based language
models for code-switched text.)

As shown in Figure 1, the D-RNNLM consists
of a “Dual LSTM cell” and an input encoding
layer. The Dual LSTM cell, as the name indi-
cates, has two long short-term memory (LSTM)
cells within it. The two LSTM cells are desig-
nated to accept input tokens from the two lan-
guages L0 and L1 respectively, and produce an
(unnormalized) output distribution over the tokens
in the same language. When a Dual LSTM cell is
invoked with an input token ⌧ , the two cells will be
invoked sequentially. The first (upstream) LSTM
cell corresponds to the language that ⌧ belongs to,
and gets ⌧ as its input. It passes on the resulting
state to the downstream LSTM cell (which takes

a dummy token as input). The unnormalized out-
puts from the two cells are combined and passed
through a soft-max operation to obtain a distribu-
tion over the union of the tokens in the two lan-
guages. Figure 1 shows a circuit representation
of this configuration, using multiplexers (shaded
units) controlled by a selection bit bi such that the
ith token ⌧i belongs to Lbi .

The input encoding layer also uses multiplexers
to direct the input token to the upstream LSTM
cell. Two dummy tokens #0 and #1 are added
to L0 and L1 respectively, to use as inputs to the
downstream LSTM cell. The input tokens are en-
coded using an embedding layer of the network
(one for each language), which is trained along
with the rest of the network to minimize a cross-
entropy loss function.

The state-update and output functions of the
Dual LSTM cell can be formally described as fol-
lows. It takes as input (b, ⌧) where b is a bit and
⌧ is an input token, as well as a state vector of the
form (h0, h1) corresponding to the state vectors
produced by its two constituent LSTMs. Below
we denote the state-update and output functions of
these two LSTMs as Hb(⌧, h) and Ob(⌧, h) (for
b = 0, 1):

H((b, ⌧), (h0, h1)) = (h0
0, h

0
1) where

(h0
0, h

0
1) =

(
(H0(⌧, h0), H1(#1, h0

0)) if b = 0

(H0(#0, h0
1), H1(⌧, h1)) if b = 1

O((b, ⌧), (h0, h1)) = softmax(o0, o1) where

(o0, o1) =

(
(O0(⌧, h0), O1(#1, h0

0)) if b = 0

(O0(#0, h0
1), O1(⌧, h1)) if b = 1.

Note that above, the inputs to the downstream
LSTM functions H1�b and O1�b are expressed in
terms of h0

b which is produced by the upstream
LSTM.

3 Same-Source Pretraining
Building robust LMs for code-switched text is
challenging due to the lack of availability of
large amounts of training data. One solution is
to artificially generate code-switched to augment
the training data. We propose a variant of this
approach – called same-source pretraining – in
which the actual training data itself is used to train
a generative model, and the data sampled from this
model is used to pretrain the language model.

Same-source pretraining can leverage powerful
training techniques for generative models to train a
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Train Dev Test
# Utterances 74, 927 9, 301 9, 552

# Tokens 977, 751 131, 230 114, 546
# English Tokens 316, 726 30, 154 50, 537

# Mandarin Tokens 661, 025 101, 076 64, 009

Table 1: Statistics of data splits derived from SEAME.

language model. We note that the generative mod-
els by themselves are typically trained to minimize
a different objective function (e.g., a discrimina-
tion loss) and need not perform well as language
models.⇤

Our default choice of generative model will
be an RNN (but see the end of this paragraph).
To complete the specification of same-source pre-
training, we need to specify how it is trained
from the given data. Neural language models
trained using the maximum likelihood training
paradigm tend to suffer from the exposure bias
problem during inference when the model gener-
ates a text sequence by conditioning on previous
tokens that may never have appeared during train-
ing. Scheduled sampling (Bengio et al., 2015) can
help bridge this gap between the training and in-
ference stages by using model predictions to syn-
thesize prefixes of text that are used during train-
ing, rather than using the actual text tokens. A
more promising alternative to generate text se-
quences was recently proposed by Yu et al. (2017)
where sequence generation is modeled in a genera-
tive adversarial network (GAN) based framework.
This model – referred to as “SeqGAN” – consists
of a generator RNN and a discriminator network
trained as a binary classifier to distinguish between
real and generated sequences. The main innova-
tion of SeqGAN is to train the generative model
using policy gradients (inspired by reinforcement
learning) and use the discriminator to determine
the reward function. We experimented with using
both naı̈ve and scheduled sampling based training;
using SeqGAN was a consistently better choice (5
points or less in terms of test perplexities) com-
pared to these two sampling methods. As such,
we use SeqGAN as our training method for the
generator. We also experiment with replacing the
RNN with a Dual RNN as the generator in the Se-
qGAN training and observe small but consistent
reductions in perplexity.

⇤In our experiments, we found the preplexity measures
for the generative models to be an order of magnitude larger
than that of the LMs we construct.

4 Experiments and Results

Dataset Preparation: For our experiments, we
use code-switched text from the SEAME cor-
pus (Lyu et al., 2010) which contains conversa-
tional speech in Mandarin and English. Since
there is no standardized task based on this corpus,
we construct our own training, development and
test sets using a random 80-10-10 split. Table 1
shows more details about our data sets. (Speakers
were kept disjoint across these datasets.)

Evaluation Metric: We use token-level per-
plexity as the evaluation metric where tokens are
words in English and characters in Mandarin.
The SEAME corpus provides word boundaries for
Mandarin text. However, we used Mandarin char-
acters as individual tokens since a large proportion
of Mandarin words appeared very sparsely in the
data. Using Mandarin characters as tokens helped
alleviate this issue of data sparsity; also, applica-
tions using Mandarin text are typically evaluated
at the character level and do not rely on having
word boundary markers (Vu et al., 2012).

Outline of Experiments: Section 4.1 will ex-
plore the benefits of both our proposed techniques
– (1) using D-RNNLMs and (2) using text gen-
erated from SeqGAN for pretraining – in isolation
and in combination. Section 4.2 will introduce two
additional resources (1) monolingual text for pre-
training and (2) a set of syntactic features used as
additional input to the RNNLMs that further im-
prove baseline perplexities. We show that our pro-
posed techniques continue to outperform the base-
lines albeit with a smaller margin. All these per-
plexity results have been summarized in Table 2.

4.1 Improvements Over the Baseline
This section focuses only on the numbers listed
in the first two columns of Table 2. The Base-
line model is a 1-layer LSTM LM with 512 hidden
nodes, input and output embedding dimensionality
of 512, trained using SGD with an initial learning
rate of 1.0 (decayed exponentially after 80 epochs
at a rate of 0.98 till 100 epochs) The develop-
ment and test set perplexities using the baseline
are 89.60 and 74.87, respectively.

The D-RNNLM is a 1-layer language model
with each LSTM unit having 512 hidden nodes.
The training paradigm is similar to the above-
mentioned setting for the baseline model.† We see

†D-RNNLMs have a few additional parameters. How-
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w/o syntactic features with syntactic features
w/o mono. data with mono. data w/o mono. data with mono. data
Dev Test Dev Test Dev Test Dev Test

Baseline 89.60 74.87 74.06 61.66 81.87 68.23 71.04 59.00
D-RNNLM 88.68 72.29 72.41 60.73 81.01 66.26 70.83 59.04

With RNNLM SeqGAN 79.16 65.96 72.51 60.56 77.30 63.75 68.43 55.71
With D-RNNLM SeqGAN 78.63 65.41 72.33 60.30 77.19 63.63 67.79 55.60

Table 2: Development set and test set perplexities using RNNLMs and D-RNNLMs with various pretraining strategies.

consistent improvements in test perplexity when
comparing a D-RNNLM with an RNNLM (i.e.
74.87 drops to 72.29).‡

Next, we use text generated from a SeqGAN
model to pretrain the RNNLM.§ We use our best
trained RNNLM baseline as the generator within
SeqGAN. We sample 157,440 sentences (with
a fixed sentence length of 20) from the Seq-
GAN model; this is thrice the amount of code-
switched training data. We first pretrain the base-
line RNNLM with this sampled text, before train-
ing it again on the code-switched text. This gives
significant reductions in test perplexity, bringing it
down to 65.96 (from 74.87).

Finally, we combine both our proposed tech-
niques by replacing the generator with our best-
trained D-RNNLM within SeqGAN. Although
there are other ways of combining both our pro-
posed techniques, e.g. pretraining a D-RNNLM
using data sampled from an RNNLM SeqGAN,
we found this method of combination to be most
effective. We see modest but consistent improve-
ments with D-RNNLM SeqGAN over RNNLM
SeqGAN in Table 2, further validating the utility
of D-RNNLMs.

4.2 Using Additional Resources
We employed two additional resources to further
improve our baseline models. First, we used
monolingual text in the candidate languages to
pretrain the RNNLM and D-RNNLM models. We
used transcripts from the Switchboard corpus¶ for
English; AIShellk and THCHS30⇤⇤ corpora for

ever, increasing the capacity of an RNNLM to exactly match
this number makes its test perplexity worse; RNNLM with
720 hidden units gives a development set perplexity of 91.44
and 1024 hidden units makes it 91.46.

‡Since D-RNNLMs use language ID information, we
also trained a baseline RNNLM with language ID features;
this did not help reduce the baseline test perplexities. In fu-
ture work, we will explore alternate LSTM-based models that
incorporate language ID information (Chandu et al., 2018)

§To implement SeqGAN, we use code from https://
github.com/LantaoYu/SeqGAN.

¶http://www.openslr.org/5/
khttp://www.openslr.org/33/

⇤⇤http://www.openslr.org/18/

Mandarin monolingual text data. This resulted in
a total of ⇡3.1 million English tokens and ⇡2.5
million Mandarin tokens. Second, we used an
additional set of input features to the RNNLMs
and D-RNNLMs that were found to be useful for
code-switching in prior work (Adel et al., 2014).
The feature set included part-of-speech (POS) tag
features and Brown word clusters (Brown et al.,
1992), along with a language ID feature. We ex-
tracted POS tags using the Stanford POS-tagger††

and we clustered the words into 70 classes using
the unsupervised clustering algorithm by Brown
et al. (1992) to get Brown cluster features.

The last six columns in Table 2 show the util-
ity of using either one of these resources or both
of them together (shown in the last two columns).
The perplexity reductions are largest (compared to
the numbers in the first two columns) when com-
bining both these resources together. Interestingly,
all the trends we observed in Section 4.1 still hold.
D-RNNLMs still consistently perform better than
their RNNLM counterparts and we obtain the best
overall results using D-RNNLM SeqGAN.

5 Discussion and Analysis

Eng-Eng Eng-Man Man-Eng Man-Man
RNNLM 133.18 157.18 2617.28 34.98

D-RNNLM 140.37 151.38 2452.16 32.89
Mono RNNLM 101.61 181.28 2510.48 30.00

Mono D-RNNLM 101.66 156.44 2442.81 29.64
RNNLM SeqGAN 120.28 154.44 2739.85 30.40

D-RNNLM SeqGAN 120.26 149.68 2450.85 30.60

Table 3: Decomposed perplexities on the development set
on all four types of tokens from various models.

Table 3 shows how the perplexities on the de-
velopment set from six of our prominent mod-
els decompose into the perplexities contributed by
English tokens preceded by English tokens (Eng-
Eng), Eng-Man, Man-Eng and Man-Man tokens.
This analysis reveals a number of interesting ob-
servations. 1) The D-RNNLM mainly improves
over the baseline on the “switching tokens”, Eng-

††https://nlp.stanford.edu/software/
tagger.shtml

3081



Man and Man-Eng. 2) The RNNLM with mono-
lingual data improves most over the baseline on
“the monolingual tokens”, Eng-Eng and Man-
Man, but suffers on the Eng-Man tokens. The D-
RNNLM with monolingual data does as well as
the baseline on the Eng-Man tokens and performs
better than “Mono RNNLM” on all other tokens.
3) RNNLM SeqGAN suffers on the Man-Eng to-
kens, but helps on the rest; in contrast, D-RNNLM
SeqGAN helps on all tokens when compared with
the baseline.

SeqGAN-RNNLM SeqGAN-DLM
Bigram 25.57 31.33
Trigram 75.88 83.86

Quadgram 137.98 145.71

Table 4: Percentage of new n-grams generated.

As an additional measure of the quality of text
generated by RNNLM SeqGAN and D-RNNLM
SeqGAN, in Table 4, we measure the diversity
in the generated text by looking at the increase
in the number of unique n-grams with respect to
the SEAME training text. D-RNNLM SeqGAN is
clearly better at generating text with larger diver-
sity, which could be positively correlated with the
perplexity improvements shown in Table 2.

While we do not claim same-source pretraining
may be an effective strategy in general, we show
it is useful in low training-data scenarios. Even
with only 1

16 th of the original SEAME training
data used for same-source pretraining, develop-
ment and test perplexities are reduced to 84.45 and
70.59, respectively (compared to 79.16 and 65.96
using the entire training data).

6 Conclusion

D-RNNLMs and same-source pretraining pro-
vide significant perplexity reductions for code-
switched LMs. These techniques may be of more
general interest. Leveraging generative models to
train LMs is potentially applicable beyond code-
switching; D-RNNLMs could be generalized be-
yond LMs, e.g. speaker diarization. We leave
these for future work to explore.
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Abstract

Code-switching, the use of more than one lan-
guage within a single utterance, is ubiquitous
in much of the world, but remains a chal-
lenge for NLP largely due to the lack of rep-
resentative data for training models. In this
paper, we present a novel model architecture
that is trained exclusively on monolingual re-
sources, but can be applied to unseen code-
switched text at inference time. The model
accomplishes this by jointly maintaining sep-
arate word representations for each of the
possible languages—or scripts in the case of
transliteration—allowing each to contribute to
inferences without forcing the model to com-
mit to a language. Experiments on Hindi-
English part-of-speech tagging demonstrate
that our approach outperforms standard mod-
els when training on monolingual text without
transliteration, and testing on code-switched
text with alternate scripts.

1 Introduction

Code-switching,1 the linguistic phenomenon of
switching between more than one language within
a single utterance, is ubiquitous in multilin-
gual societies worldwide, but presents particu-
lar challenges for even the most standard NLP
tasks. For example, state-of-the-art neural part-of-
speech (POS) taggers are trained on POS-annotated
data to learn the relationships between words
and tags, and rely on word embeddings trained
from large (usually unannotated) corpora to cap-
ture information about each word’s typical con-
texts (Ling et al., 2015; Wang et al., 2015). But
while monolingual corpora, both annotated and
unannotated, are relatively easy to acquire, code-
switched text is much more difficult to collect in
large quantities. Annotated code-switched texts

1The terms code-mixing and -switching are used for simi-
lar phenomena; for simplicity, we use only code-switching.

in particular are not only expensive to create, re-
quiring particularly skilled bilingual linguists as
annotators, but they will never exist for the com-
plete set of pairs (or triples, etc.) of languages
between which an individual may switch. Fur-
ther complicating the problem is that texts featur-
ing code-switching also tend to feature transliter-
ation—writing in a non-standard script—to avoid
having to switch keyboard settings mid-sentence.
When Hindi is transliterated from Devanagari to
Latin script, tokens are no longer easy to distin-
guish by language.2 Previous work addresses this
problem by first attempting to identify the correct
language and form of a word before feeding it into
an appropriate monolingual tagger (Vyas et al.,
2014; Solorio and Liu, 2008; Sharma et al., 2016).
As is typically the case in NLP, such pipelines suf-
fer from the problem of cascading errors; e.g., fail-
ures of the language identification will cause prob-
lems in the tag prediction (Barman et al., 2016).
Other approaches have trained supervised mod-
els on POS-annotated, code-switched data (Jamatia
et al., 2015; Ghosh et al., 2016; Gupta et al., 2017;
Barman et al., 2016; Sequiera et al., 2015, inter
alia), resources which are expensive to create and
unavailable for most language pairs.

In this work, we present a novel POS-tagging
model architecture that can be trained exclusively
on available monolingual standard-orthography
resources, but that can be applied to texts that
contain code-switching and transliteration. Be-
cause our model learns from monolingual training
data, we are able to learn a code-switched POS-
tagger for any combination of languages with POS-
annotated data, regardless of whether any existing

2We will use the term transliterated to imply conversion
from a standard script to a non-standard script, e.g., Devana-
gari to Latin for Hindi, and detransliterated to imply the re-
verse, and, for simplicity, when we say written in Devanagari
or Latin, we mean Devanagari or Latin script.
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(annotated or unannotated) code-switched corpus
exists. By allowing multiple word embeddings
(one for each of the possible languages) to jointly
represent each token, we avoid explicit language
identification and the resulting error propagation.

2 Task Setup

Training data We train our POS tagger using
the Universal Dependencies (UD) treebanks for
Hindi and English, which are annotated for part-
of-speech (Nivre et al., 2016).3 The English tree-
bank contains roughly 22K sentences; the Hindi
contains roughly 16K sentences. Sentences in
both languages are taken from news text and sim-
ilarly formal sources, and the Hindi is written en-
tirely in Devanagari.

Test data We evaluated our POS tagging mod-
els on the code-switched Twitter data released by
Bhat et al. (2018), which is annotated using the
UD POS tag set.4 All tweets are written entirely
in Latin script and have at least one token of both
Hindi and English, with 45% of the total tokens
being Hindi, 38% English, 17% labeled as univer-
sal, mixed, named entity, or acronym.

Word embeddings For monolingual word em-
beddings, we use indic-word2vec,5 for which the
English embeddings are trained from 280M sen-
tences and Hindi from 40M. The word vectors are
learned using a skip-gram model with negative
sampling, implemented in the word2vec toolkit
(Mikolov et al., 2013). We use the 50,000 most
frequent words in each vocabulary.

Transliteration To convert words between
scripts, we make use of the Indictrans open-
source transliterator,6 which is able to convert,
bidirectionally, between Latin and the scripts
of Indic languages (Bhat et al., 2015). Be-
cause Hindi does not have a formal system for
transliteration, those writing Hindi in Latin—or
English in Devanagari—tend to write phonetically
according to their own conventions. Thus, we
make use of the ability of Indictrans to generate
multiple transliteration alternatives, simulating
the variation in Hindi transliterated writing.

3universaldependencies.org/
4github.com/CodeMixed

UniversalDependencies/UD_Hindi_English
5bitbucket.org/irshadbhat/

indic-word2vec-embeddings
6github.com/libindic/indic-trans

3 Model

The central challenge of our task is to be able to
train on data that differs drastically from the text
seen at inference time. Because of the inherent
limitations on what kinds of data are available—
annotations and word embeddings are generally
only available on monolingual data written in stan-
dard scripts—we are interested in designing a
model that can be trained on monolingual sen-
tences in which English is written in Latin script
and Hindi in Devanagari, but is able to predict POS
tags on code-mixed text in which both English and
Hindi are written in Latin script.

We accomplish this by representing input words
not as a single vector (or as a word embedding af-
fixed to sub-word representations), but as a joint
representation that maintains embeddings for each
language such that they can be learned and up-
dated during training from the monolingual data,
and mixed appropriately at inference time without
having to commit to one or the other language. As
seen in Figure 1, our model represents an input as
the concatenation of four parts: a Hindi word em-
bedding, an English word embedding, the output
of a bi-LSTM over Hindi character embeddings,
and a bi-LSTM over English characters.

Since our model is trained on monolingual
Hindi and English sentences, when a token is en-
countered during training, we know what language
it is in. If we encounter an English sentence, then
for each token, we look up its word embedding in
the appropriate monolingual vector space to use in
the English side of the full representation, and we
use the word’s characters as input to the English
character LSTM. For Hindi sentences, the proce-
dure is similar but for the other side of the full rep-
resentation. In either case, when we are training
on a word in one language, we use zero vectors as
the inputs for the other language’s side of the full
input representation.

At inference time, we will encounter only Latin
script words, but we will not know the lan-
guage of any token. Therefore, we use our joint-
representation model to represent the token as
both languages simultaneously. The Latin word is
looked up in the English word embeddings to use
as input to the English side, and the Latin charac-
ters are used for the English character LSTM. For
the Hindi side we detransliterate the input word to
Devanagari and perform the same actions.

The design of our model has a few important
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Figure 2:  Our model.  All inputs are treated simultaneously as both languages.  At training time, for 
a (monolingual) Hindi input, only the contents of the orange/dotted boxes apply and the English half 
of the vector is all zeros; for English, only the green/dashed boxes apply.  At inference time, the full 
figure applies.

All Latin : 
yah 
actor 
Arya 

All Devanagari :  
य ह 
अ ! र 
अा य& 

Figure 1: Our model. All inputs are treated simultaneously as both languages. At training time, for a
(monolingual) Hindi input, only the contents of the orange/dotted boxes apply, and the English half of
the vector is all zeros; for (monolingual) English, only the green/dashed boxes apply. At inference time,
where the language of each token is unknown, the full figure applies.

advantages. First, because of Hindi’s lack of a for-
malized transliteration system, Latin-script Hindi
tends to have a very high amount of spelling vari-
ation. In our model (as opposed to the base-
line model described below), the script conver-
sion always goes from Latin to Devanagari, which
naturally allows us to take unpredictable vari-
ant spellings and collapse them into standardized
spellings, making it more likely for us to find the
word in the embeddings listing. Second, there are
some types of words for which it does not make
sense to say that they are in one language or an-
other. For example, a person’s name might be
equally valid as Devanagari Hindi or Latin En-
glish. In these cases, our model would allow both
to influence a prediction as well as the rest of the
bi-LSTM chain.

Finally, our model allows for the incorpo-
ration of external language prediction infor-
mation, including soft predictions. To test
this, we ran experiments in which we used a
fully-unsupervised token-level language identifi-
cation approach based on Rijhwani et al. (2017)
to estimate a probability distribution over lan-
guage labels for each token in the test data.
Our approach was to run Forward-Backward on
an HMM that was initialized to prefer same-
language transitions and whose emissions were
initialized using Laplace-smoothed maximum-
likelihood-estimated character n-gram probabil-
ities from each language’s monolingual corpus
(Dempster et al., 1977; Kupiec, 1992). We used
the induced language probabilities to weight each
side of the input representation at inference time:
if the unsupervised model’s output said that a par-

ticular test token’s probability of being Hindi was
70%, then we would multiply the Hindi side of
the input vector by 0.7 and the English side by
0.3, thus instructing the model to let the Hindi
word embedding (and character-LSTM output) ex-
ert more influence during POS prediction.

4 Experiments

In our evaluation, we used the framework of a
basic bi-LSTM tagger to compare our model for
generating representations of tokens that maintain
language ambiguity against a standard model that
uses a single word embedding. In this section, we
explain the experimental setup, baseline approach,
and our experimental variants.7

4.1 POS tagger framework

For all of our experiments, we follow the ba-
sic structure of the bi-LSTM architecture of
Bhat et al. (2018): word and sub-word embed-
dings are concatenated to form the input represen-
tations of each token, and connected together by
a bi-LSTM that outputs POS predictions via mul-
tilayer perceptron and softmax layers (Hochreiter
and Schmidhuber, 1997; Graves and Schmidhu-
ber, 2005; Ling et al., 2015; Wang et al., 2015).
Sub-word embeddings are the outputs of a bi-
LSTM over characters (20-dim); word embeddings
are initialized with indic-word2vec (64-dim) em-
beddings. Both character and word embeddings
are updated during training. The bi-LSTM has 100

7Our code, implemented in DyNet (Neubig et al.,
2017), can be found at https://github.com/kelseyball/cs-
transliterated-pos-tagging.
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Figure 1:  Baseline model.  All inputs are treated as if they are one language.  The contents of the dotted 
boxes only apply at training time and only to (monolingual) Hindi inputs since annotated Devanagari 
Hindi data must be converted to Latin script; at inference time, inputs are always in Latin script.
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Figure 2: Baseline model. All inputs are treated as if they are one language. The contents of the dotted
boxes only apply at training time and only to (monolingual) Hindi inputs since annotated Devanagari
Hindi data must be converted to Latin script; at inference time, inputs are always in Latin script.

hidden states. We use an SGD trainer with learn-
ing rate=0.1 and dropout of 0.3 across 20 epochs.
We train the model it by pooling POS-annotated
English and Hindi UD sentences; the English is
entirely Latin script, and Hindi is entirely Devana-
gari. Our baseline and experimental models differ
in how a token is represented.

4.2 Baseline
Previous work on code-switched POS tag-
ging has achieved accuracies as high as
90.20% (Bhat et al., 2018), but because those
kinds of accuracies require supervised, in-domain
training data, they are not directly comparable
with the scenario that we are concerned with.
Therefore, we compare against a natural baseline
for our task: use a monolingual tagger and treat
everything as if it were a single language. To
deal with the problem of separately trained word
embeddings, we use the approach and imple-
mentation of Artetxe et al. (2018)8 to transform
both sets of monolingual embeddings so that
translationally equivalent words have similar
embeddings. We also ran the baseline without
this transformation, but found that using the
transformed embeddings resulted in a 0.5%
absolute improvement in accuracy over just using
the separately trained embeddings directly.

Training For an English sentence, each token
concatenates the English-lookup embedding to the
character LSTM output, and similarly for Hindi,
with the exception that the word is transliterated
before inputting to the character LSTM. Because
of the high spelling variation, we selected Latin
spellings by sampling uniformly from the top-5

8github.com/artetxem/vecmap

Model Acc.

Baseline (monolingual representation) 70.92

Ours (multi-language representation) 75.29
Ours w/ forced language choice 76.04
Ours w/ languages weighted by HMM 77.40

Ours w/ oracle language choice 80.53
Bhat et al. (2018) w/ supervision 90.20

Table 1: Results showing POS prediction accuracy.
The baseline model treats all inputs as effectively
monolingual (§4.2); the middle three lines are our
model: giving equal weight to each language’s
side of the token’s representation, using the unsu-
pervised HMM 1-best output to zero-out one lan-
guage’s side of the token’s representation, and us-
ing the unsupervised HMM probability estimates
to weight each side of the token’s representation.
The oracle line is our model using gold language
labels to zero-out one language’s side.

transliteration results. Always taking the 1-best re-
sulted in a 4.3% absolute loss.

Inference Each word is looked up in the English
embeddings and its detransliteration is looked up
in the in the Hindi embeddings. If the word is
found in only one, that vector is used, and if found
in neither, we use an unknown word vector. For a
fair comparison to our model, if both lookups re-
turn results, we use the 1-best prediction from the
unsupervised language identification HMM as dis-
cussed in §3 to decide which to use.

4.3 Unsupervised soft language prediction
One feature of our model is its ability to incor-
porate externally-derived, per-token soft language
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predictions as weights at inference time without
having to make hard language decisions. To eval-
uate whether this improves accuracy, we used the
fully-unsupervised HMM language prediction (§3)
and tested our model using: no weighting, leav-
ing the embeddings untouched; using the HMM’s
1-best prediction to zero out the other language’s
inputs; and multiplying each language’s embed-
dings by its probability estimated by the HMM.

The results of our evaluation can be seen in
Table 1. While the best scenario for the base-
line tagger gives 70.92% accuracy, the most ba-
sic setup for our model yields 75.29%. Informing
our model with some fully-unsupervised HMM-
derived language information, but forcing a hard
language decision, is somewhat beneficial, yield-
ing 76.04%, though it trades off the benefits
of flexibility and generality in representation for
some extra information. And finally, using that
unsupervised information for soft weighting per-
forms even better, reaching 77.40%, a total ab-
solute improvement over the baseline of ⇠6.5%,
clearly demonstrating the value of maintaining
ambiguity about a word’s language.

5 Conclusion

In this paper, we presented a novel POS-tagging
model for code-mixed, transliterated text that
avoids the need for expensive, supervised cor-
pora or language-identification pipelines. We
demonstrated that avoiding explicit language iden-
tification in code-switched contexts is beneficial.
Though we emphasize the paucity of annotated
code-switched corpora, previous work has demon-
strated that a small amount of supervision can go
a long way (Garrette and Baldridge, 2013); fu-
ture work might explore how much supervision is
needed to close the gap between our model and
Bhat et al. (2018).

While we address some of the most promi-
nent issues with code-switching, our model does
not deal with style, formality, or domain mis-
matches between the formal training data and in-
formal evaluation data. This problem is treated
in recent work on POS-tagging for social media
text (Owoputi et al., 2013; Gimpel et al., 2011),
but these issues have yet to be fully explored in
code-switched contexts. We leave these for future
work.
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Abstract
User intent detection plays a critical role in
question-answering and dialog systems. Most
previous works treat intent detection as a clas-
sification problem where utterances are la-
beled with predefined intents. However, it
is labor-intensive and time-consuming to la-
bel users’ utterances as intents are diversely
expressed and novel intents will continually
be involved. Instead, we study the zero-shot
intent detection problem, which aims to de-
tect emerging user intents where no labeled ut-
terances are currently available. We propose
two capsule-based architectures: INTENT-
CAPSNET that extracts semantic features from
utterances and aggregates them to discriminate
existing intents, and INTENTCAPSNET-ZSL
which gives INTENTCAPSNET the zero-shot
learning ability to discriminate emerging in-
tents via knowledge transfer from existing in-
tents. Experiments on two real-world datasets
show that our model not only can better dis-
criminate diversely expressed existing intents,
but is also able to discriminate emerging in-
tents when no labeled utterances are available.

1 Introduction

With the increasing complexity and accuracy of
speech recognition technology, companies are
striving to deliver intelligent conversation under-
standing systems as people interact with soft-
ware agents that run on speaker devices or smart
phones via natural language interface (Hoy, 2018).
Products like Apple’s Siri, Amazon’s Alexa and
Google Assistant are able to interpret human
speech and respond them via synthesized voices.

With recent developments in deep neural net-
works, user intent detection models (Hu et al.,
2009; Xu and Sarikaya, 2013; Zhang et al., 2016;
Liu and Lane, 2016; Chen et al., 2016b) are pro-
posed to classify user intents given their diversely

⇤Indicates Equal Contribution

expressed utterances in the natural language. The
decent performances on intent detection usually
come with deep neural network classifiers opti-
mized on large-scale utterances which are human-
labeled among existing predefined user intents.

As more features and skills are being added
to devices which expand their capabilities to new
programs, it is common for voice assistants to en-
counter the scenario where no labeled utterance of
an emerging user intent is available in the train-
ing data, as illustrated in Figure 1. Current in-
tent detection methods train classifiers in a super-
vised fashion and they are good at discriminating
existing intents such as Get Weather and Play
Music whose labeled utterances are already avail-
able. However, these models, by the nature of de-
signs, are incapable to detect utterances of emerg-
ing intents like AddToPlaylist and RateABook,
since no labeled utterances are available. More-
over, it’s labor-intensive and time-consuming to
annotate utterances of emerging intents and retrain
the whole intent detection model.

Thus, it is imperative to develop intent detection
models with the zero-shot learning (ZSL) ability
(Lampert et al., 2014; Socher et al., 2013; Chang-
pinyo et al., 2016): the ability to expand classifiers
and the intent detection space beyond the existing
intents, of which we have labeled utterances dur-
ing training, to emerging intents, of which no la-
beled utterances are available.

The research on zero-shot intent detection is
still in its infancy. Previous zero-shot learning
methods for intent detection utilize external re-
sources such as label ontologies (Ferreira et al.,
2015a,b) or manually defined attributes that de-
scribe intents (Yazdani and Henderson, 2015) to
associate existing and emerging intents, which re-
quire extra annotation. Compatibility-based meth-
ods for zero-shot intent detection (Chen et al.,
2016a; Kumar et al., 2017) assume the capability
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•• How cold is it in Princeton Junction?
•• Should I bring an umbrella today?

•• Put Sungmin into my summer playlist

Existing Intents with 
Labeled Utterances

Get Weather

Play Music
•• I want to hear any tune from twenties.
•• Play me a song by charles neidich

Add to Playlist

Extracting interpretable 
semantic features

Aggregating semantic 
features for intent detection 

loss

Rate a Book

Zero-shot Dynamic 
RoutingEmerging Intents with 

Unlabeled Utterances 

DetectionCaps

Zero-shot 
DetectionCaps

…

SemanticCaps
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Figure 1: Illustration of the proposed INTENTCAPSNET-ZSL model for zero-shot intent detection: labeled utterances with
existing intents like GetWeather and PlayMusic are used to train an intent detection classifier among existing intents, in
which SemanticCaps extract intepretable semantic features and DetectionCaps dynamically aggregate semantic features for
intent detection using a novel routing-by-agreement mechanism. For emerging intents, INTENTCAPSNET-ZSL builds zero-shot
DetectionCaps that utilize the (1) outputs of SemanticCaps, (2) the routing information on existing intents from DetectionCaps,
and (3) similarities of the emerging intent label to existing intent labels to discriminate emerging intents like AddToPlayist
from RateABook. Solid lines indicate the training process and dash lines indicate the zero-shot inference process.

of learning a high-quality mapping from the utter-
ance to its intent directly, so that such mapping can
be further capitalized to measure the compatibility
of an utterance with emerging intents. However,
the diverse semantic expressions may impede the
learning of such mapping.

In this work, we make the very first attempt to
tackle the zero-shot intent detection problem with
a capsule-based (Hinton et al., 2011; Sabour et al.,
2017) model. A capsule houses a vector represen-
tation of a group of neurons, and the orientation of
the vector encodes properties of an object (like the
shape/color of a face), while the length of the vec-
tor reflects its probability of existence (how likely
a face with certain properties exists). The capsule
model learns a hierarchy of feature detectors via
a routing-by-agreement mechanism: capsules for
detecting low-level features (like nose/eyes) send
their outputs to high-level capsules (such as faces)
only when there is a strong agreement of their pre-
dictions to high-level capsules.

The aforementioned properties of capsule mod-
els could be quite appealing for text modeling,
specifically in this case, modeling the user utter-
ance for intent detection: low-level semantic fea-
tures such as the get action, time and city name
contribute to a more abstract intent (GetWeather)
collectively. A semantic feature, which may be
expressed quite differently among users, can con-
tribute more to one intent than others. The dy-
namic routing-by-agreement mechanism can be
used to dynamically assign a proper contribution
of each semantic and aggregate them to get an in-
tent representation.

More importantly, we discover the potential of

zero-shot learning ability on the capsule model,
which is not yet widely recognized. It makes the
capsule model even more suitable for text mod-
eling when no labeled utterances are available
for emerging intents. The ability to neglect the
disagreed output of low-level semantics for cer-
tain intents during routing-by-agreement encour-
ages the learning of generalizable semantic fea-
tures that can be adapted to emerging intents. For
each emerging intent with no labeled utterances,
a Zero-shot DetectionCaps is constructed explic-
itly by using not only semantic features Seman-
ticCaps extracted, but also existing routing agree-
ments from DetectionCaps and similarities of an
emerging intent label to existing intent labels.

In summary, the contributions of this work are:
• Expanding capsule neural networks to text

modeling, by extracting and aggregating seman-
tics from utterances in a hierarchical manner;

• Proposing a novel and effective capsule-based
model for zero-shot intent detection;

• Showing and interpreting the effectiveness of
our model on two real-world datasets.

2 Problem Formulation

In this section, we first define related concepts, and
formally state the problem.
Intent. An intent is a purpose, or a goal that under-
lies a user-generated utterance (Watson Assistant,
2017). An utterance can be associated with one or
multiple intents. We only consider the basic case
that an utterance is with a single intent. However,
utterances with multiple intents can be handled by
segmenting them into single-intent snippets using
sequential tagging tools like CRF (Lafferty et al.,
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2001), which we leave for future works.
Intent Detection. Given a labeled training dataset
where each sample has the following format:
(x, y) where x is an utterance and y is its intent la-
bel, each training example is associated with one
of K existing intents y 2 Y = {y1, y2, ..., yK}.
The intent detection task tries to associate an ut-
terance xexisting with its correct intent category in
the existing intent classes Y .
Zero-shot Intent Detection. Given the labeled
training set {(x, y)} where y2Y , the zero-shot
intent detection task aims to detect an utterance
xemerging which belongs to one of L emerging in-
tents z2Z = {z1, z2, ..., zL} where Y \Z = ?.

3 Approach

We propose two architectures based on cap-
sule models: INTENTCAPSNET that is trained
to discriminate among utterances with existing
labels, e.g. existing intents for intent detec-
tion; INTENTCAPSNET-ZSL that gives zero-shot
learning ability to INTENTCAPSNET for discrim-
inating unseen labels, i.e. emerging intents in this
case. As shown in Figure 2, the cores of the pro-
posed architectures are three types of capsules:
SemanticCaps that extract interpretable semantic
features from the utterance, DetectionCaps that
aggregate semantic features for intent detection,
and Zero-shot DetectionCaps which discriminate
emerging intents.

3.1 SemanticCaps

In the original capsule model (Sabour et al.,
2017), convolution-based PrimaryCaps are intro-
duced as the first layer to obtain different vector-
ized features from the raw input image. While
in this work, an intrinsically similar motivation is
adopted to extract different semantic features from
the raw utterance by a new type of capsule named
SemanticCaps. Unlike the PrimaryCaps which use
convolution operators with a large reception field
to extract spacial-proximate features, the Seman-
ticCaps is based on a bi-direction recurrent neural
network with multiple self-attention heads, where
each self-attention head focuses on certain part of
the utterance and extracts a semantic feature that
may not be expressed by words in proximity.

Given an input utterance x = (w1,w2, ...,wT)
of T words, each word is represented by a vector
of dimension DW that can be pre-trained using a
skip-gram language model (Mikolov et al., 2013).
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…
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M
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vectors
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Figure 2: The architecture of INTENTCAPSNET and
INTENTCAPSNET-ZSL. During training, utterances with ex-
isting intents are fed into the SemanticCaps which output vec-
torized semantic features, i.e. semantic vectors. Then Detec-
tionCaps combine these features into higher-level prediction
vectors and output an activation vector for intent detection on
each existing intent. During inference, emerging utterances
take advantages of the SemanticCaps trained in INTENTCAP-
SNET to extract semantic features from the utterance (shown
in 1), then the vote vectors on the existing intents are trans-
ferred to emerging intents (shown in 2) using similarities be-
tween existing and emerging intents (shown in 3). The ob-
tained activation vectors for emerging intents are used for
zero-shot intent detection.

A recurrent neural network such as a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) is ap-
plied to sequentially encode the utterance into hid-
den states:

!

ht = LSTMfw(wt,
 

ht�1),
 

ht = LSTMbw(wt,
 

ht+1).
(1)

For each word wt, we concatenate each for-
ward hidden state ~ht obtained from the forward
LSTMfw with a backward hidden state

 

ht from
LSTMbw to obtain a hidden state ht for the word
wt. The whole hidden state matrix can be defined
as H = (h1,h2, ...,hT ) 2 R

T⇥2DH , where DH

is the number of hidden units in each LSTM.
Inspired by the success of self-attention mech-

anisms (Vaswani et al., 2017; Lin et al., 2017)
for sentence embedding, we adopt a multi-head
self-attention framework where each self-attention
head is encouraged to be attentive to a specific se-
mantic feature of the utterance, such as certain sets
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of keywords or phrases in the utterance: one self-
attention may be attentive for the “get” action in
GetWeather, while another one may be attentive
to city name in GetWeather: it decides for itself
what semantics to be attentive to.

A self-attention weight matrix A is computed
as:

A = softmax
�
Ws2tanh

�
Ws1H

T
��

, (2)

where Ws1 2 R
DA⇥2DH and Ws2 2 R

R⇥DA are
weight matrices for the self-attention. DA is the
hidden unit number of self-attention and R is the
number of self-attention heads. The softmax func-
tion makes sure for each self-attention head, the
attentive scores on all the words sum to one.

A total number of R semantic features are ex-
tracted from the input utterance, each from a sep-
arate self-attention head: M = AH, where M =
(m1,m2, ...,mR) 2 R

R⇥2DH . Each mr is a
2DH�dimensional semantic vector.

Each semantic vector will have a distinguish-
able orientation when the objective is properly reg-
ularized (details in Equation 6), as we want each
attention to be attentive to a unique semantic fea-
ture of the utterance. The vector representation
adopted in capsules is suitable to portray the low-
level semantic properties as well as high-level in-
tents of the utterance, where the orientation of a
vector represents semantic/intent properties that
may slightly vary depending on the expressions.
The capsule encourages the learning of general-
izable semantic vectors: less informative seman-
tic properties for one intent may not be penalized
by their orientations: they simply possess small
norms as they are less likely to exist.

3.2 DetectionCaps

The output of SemanticCaps are low-level vector
representations of R different semantic features
extracted from the utterances. To combine these
features into higher-level representations, we build
DetectionCaps that choose different semantic fea-
tures dynamically so as to form an intent represen-
tation for each intent via an unsupervised routing-
by-agreement mechanism.

As a semantic feature may contribute differently
in detecting different intents, the DetectionCaps
first encode semantic features with respect to each
intent:

pk|r = mrWk,r, (3)

where k 2 {1, 2, ..., K}, r 2 {1, 2, ..., R}.
Wk,r 2 R

2DH⇥DP is the weight matrix of the De-
tectionCaps, pk|r is the prediction vector of the r-
th semantic feature of an existing intent k, and DP

is the dimension of the prediction vector.
Dynamic Routing-by-agreement. The predic-
tion vectors obtained from SemanticCaps route
dynamically to DetectionCaps. The Detection-
Caps computes a weighted sum over all prediction
vectors:

sk =
RX

r

ckrpk|r, (4)

where ckr is the coupling coefficient that deter-
mines how informative, or how much contribu-
tion the r-th semantic feature is to the intent yk.
ckr is calculated by an unsupervised, iterative
dynamic routing-by-agreement algorithm (Sabour
et al., 2017), which is briefly recalled in Algorithm
1. As shown in this algorithm, bkr is the initial
logit representing the log prior probability that a
SemanticCap r is coupled to an DetectionCap k.

Algorithm 1 Dynamic routing algorithm
1: procedure DYNAMIC ROUTING(pk|r, iter)
2: for all semantic capsule r and intent capsule k:

bkr  0.
3: for iter iterations do
4: for all SemanticCaps r: cr  softmax(br)
5: for all DetectionCaps k: sk  ⌃rckrpk|r
6: for all DetectionCaps k: vk = squash(sk)
7: for all SemanticCaps r and DetectionCaps k:

bkr  bkr + pk|r · vk

8: end for
9: Return vk

10: end procedure

The squashing function squash(·) is applied on
sk to get an activation vector vk for each existing
intent class k:

vk =
kskk2

1 + kskk2
sk

kskk
, (5)

where the orientation of the activation vector vk

represents intent properties while its norm indi-
cates the activation probability. The dynamic
routing-by-agreement mechanism assigns low ckr

when there is inconsistency between pk|r and vk,
which ensures the outputs of the SemanticCaps get
sent to appropriate subsequent DetectionCaps.
Max-margin Loss for Existing Intents. The loss
function considers both the max-margin loss on
each labeled utterance, as well as a regularization
term that encourages each self-attention head to be
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attentive to a different semantic feature of the ut-
terance:

L =
KX

k=1

{[[y = yk]] · max(0, m+ � kvkk)2

+ � [[y 6= yk]] · max(0, kvkk �m�)2}
+ ↵||AAT � I||2F ,

(6)

where [[]] is an indicator function, y is the ground
truth intent label for the utterance x, � is a down-
weighting coefficient, m+ and m� are margins. ↵
is a non-negative trade-off coefficient that encour-
ages the discrepancies among different attention
heads.

3.3 Zero-shot DetectionCaps
To detect emerging intents effectively, Zero-shot
DetectionCaps are designed to transfer knowledge
from existing intents to emerging intents.
Knowledge Transfer Strategies. As Semantic-
Caps are trained to extract semantic features from
utterances with various existing intents, a self-
attention head which has similar extraction behav-
ior among existing and emerging intents may help
transfer knowledge. For example, a self-attention
head that extracts the “play” action mentioned by
turn on/I want to hear in the beginning
of an utterance for PlayMusic is helpful if it is also
attentive to expressions for the “add” action like
add/I want to have in the beginning of an
utterance with an emerging intent AddtoPlaylist.

The coupling coefficient ckr learned by Detec-
tionCaps in a totally unsupervised fashion embod-
ies rich knowledge of how informative r-th seman-
tic is to the existing intent k. We can capitalize on
the existing routing information for emerging in-
tents. For example, how the word play routes to
GetWeather can be helpful in routing the word
add to AddtoPlaylist.

The intent labels also contain knowledge of
how two intents are similar with each other. For
example, an emerging intent AddtoPlaylist can
be closer to one existing intent PlayMusic than
GetWeather due to the proximity of the embed-
ding of Playlist to Play or Music, than Weather.

Build Vote Vectors. As the routing information
and the semantic extraction behavior are strongly
coupled (ckr is calculated by pk|r iteratively in
Line 4-6 of Algorithm 1) and their products are
summarized to get the activation vector vk for in-

tent k (Line 5-6 of Algorithm 1), we denote vec-
tors before summation as vote vectors:

gk,r = ckrpk|r, (7)

where gk,r is the r-th vote vector for an existing
intent k.
Zero-shot Dynamic Routing. The zero-shot dy-
namic routing utilizes vote vectors from existing
intents to build intent representations for emerg-
ing intents via a similarity metric between existing
intents and emerging intents.

Since there are K existing intents and L emerg-
ing intents, the similarities between existing and
emerging intents form a matrix Q2R

L⇥K . Specif-
ically, the similarity between an emerging intent
zl2Z and an existing intent yk2Y is computed as:

qlk =
exp {�d (ezl , eyk)}

PK
k=1 exp {�d (ezl , eyk)}

, (8)

where

d (ezl , eyk) = (ezl � eyk)T ⌃�1 (ezl � eyk) .
(9)

ezl , eyk 2 R
DI⇥1 are intent embeddings com-

puted by the sum of word embeddings of the in-
tent label. ⌃ models the correlations among intent
embedding dimensions and we use ⌃ = �2I . �
is a hyper-parameter for scaling. The prediction
vectors for emerging intents are thus computed as:

ul|r =
KX

k=1

qlkgk,r. (10)

We feed the prediction vector nl to Algorithm 1
and derive activation vectors nl on emerging in-
tents as the output. The final intent representa-
tion nl for each emerging intent is updated toward
the direction where it coincides with representa-
tive votes vectors.

We can easily classify the utterance of emerging
intents by choosing the activation vector with the
largest norm ẑ = arg max

zl2Z
knlk.

4 Experiment Setup

To demonstrate the effectiveness of our proposed
models, we apply INTENTCAPSNET to detect
existing intents in an intent detection task, and
use INTENTCAPSNET-ZSL to detect emerging in-
tents in a zero-shot intent detection task.
Datasets. For each task, we evaluate our pro-
posed models by applying it on two real-word
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Model SNIPS-NLU (on 5 existing intents) CVA (on 80 existing intents)
Accuracy Precision Recall F1 Accuracy Precision Recall F1

TFIDF-LR 0.9546 0.9551 0.9546 0.9545 0.7979 0.8104 0.7979 0.7933
TFIDF-SVM 0.9584 0.9586 0.9584 0.9581 0.7989 0.8111 0.7989 0.7942
CNN 0.9595 0.9596 0.9595 0.9595 0.8223 0.8288 0.8223 0.8210
RNN 0.9516 0.9522 0.9516 0.9518 0.8286 0.8330 0.8286 0.8275
GRU 0.9535 0.9535 0.9535 0.9534 0.8239 0.8281 0.8239 0.8216
LSTM 0.9569 0.9573 0.9569 0.9569 0.8319 0.8387 0.8319 0.8306
Bi-LSTM 0.9501 0.9502 0.9501 0.9502 0.8428 0.8479 0.8428 0.8419
Self-attention Bi-LSTM 0.9524 0.9522 0.9524 0.9522 0.8521 0.8590 0.8521 0.8513
INTENTCAPSNET 0.9621 0.9620 0.9621 0.9620 0.9088 0.9160 0.9088 0.9023

Table 1: Intention detection results using INTENTCAPSNET on two datasets. All the metrics (Accuray, Precision, Recall and
F1) are reported using the average value weighted by their support on per class.

datasets: SNIPS Natural Language Understand-
ing benchmark (SNIPS-NLU) and a Commercial
Voice Assistant (CVA) dataset. The statistical in-
formation on two datasets are shown in Table 2.
SNIPS-NLU1 is an English natural language cor-
pus collected in a crowdsourced fashion to bench-
mark the performance of voice assistants. CVA
is a Chinese natural language corpus collected
anonymously from a commercial voice assistant
on smart phones.

Dataset SNIPS-NLU CVA
Vocab Size 10,896 1,709
Number of Samples 13,802 9,992
Average Sentence Length 9.05 4
Number of Existing Intents 5 80
Number of Emerging Intents 2 20

Table 2: Dataset statistics.

Baselines. We first compare the proposed capsule-
based model INTENTCAPSNET with other text
classification alternatives on the detection of ex-
isting intents: 1) TFIDF-LR/TFIDF-SVM: we use
TF-IDF to represent the utterance and use logis-
tic regression/support vector machine as classi-
fiers. 2) CNN: a convolutional neural network
(Kim, 2014) that uses convolution and pooling
operations, which is popular for text classifica-
tion. 3) RNN/GRU/LSTM/BiLSTM: we adopt
different types of recurrent neural networks: the
vanilla recurrent neural network (RNN), gated
recurrent unit (GRU) (Tang et al., 2015), long
short-term memory networks (LSTM) (Hochre-
iter and Schmidhuber, 1997), and bi-directional
long short-term memory (Bi-LSTM) (Schuster
and Paliwal, 1997). Their last hidden states

1https://github.com/snipsco/nlu-benchmark/

are used for classification. 4) Self-Attention Bi-
LSTM: we apply a Bi-LSTM model with self-
attention mechanism (Lin et al., 2017) and the out-
put sentence embedding is used for classification.

We also compare our proposed model
INTENTCAPSNET-ZSL with different zero-
shot learning strategies: 1) DeViSE (Frome
et al., 2013) finds the most compatible emerging
intent label for an utterance by learning a linear
compatibility function between utterances and
intents; 2) CMT (Socher et al., 2013) introduces
non-linearity in the compatibility function; CMT
and DeViSE are originally designed for zero-shot
image classification based on pretrained CNN
features. We use LSTM to encode the utterance
and adopt their zero-shot learning strategies
in our task; 3) CDSSM (Chen et al., 2016a)
uses CNN to extract character-level sentence
features, where the utterance encoder shares the
weights with the label encoder; 4) Zero-shot DNN
(Kumar et al., 2017) further improves the per-
formance of CDSSM by using separate encoders
for utterances and intent. The proposed model
INTENTCAPSNET-ZSL can be seen as a hybrid
model: it has the advantages of the compatibil-
ity models to model the correlations between
utterances and intents directly; it also explicitly
derives intent representations for emerging intents
without labeled utterances.

Dataset DW DH DA R � ↵
SNIPS-NLU 300 32 20 3 4 0.0001
CVA 200 200 100 8 1 0.01

Table 3: Hyperparameter settings.

Implementation Details. The hyperparameters
used for experiments are shown in Table 3. We
use three fold cross-validation to choose hyperpa-
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Model SNIPS-NLU (on 2 emerging intents) CVA (on 20 emerging intents)
Accuracy Precision Recall F1 Accuracy Precision Recall F1

DeViSE (Frome et al., 2013) 0.7447 0.7448 0.7447 0.7446 0.7809 0.8060 0.7809 0.7617
CMT (Socher et al., 2013) 0.7396 0.8266 0.7396 0.7206 0.7721 0.7728 0.7721 0.7445
CDSSM (Chen et al., 2016a) 0.7588 0.7625 0.7588 0.7580 0.2140 0.4072 0.2140 0.1667
Zero-shot DNN (Kumar et al., 2017) 0.7165 0.7330 0.7165 0.7116 0.7903 0.8240 0.7903 0.7774
INTENTCAPSNET-ZSL w/o Self-attention 0.7587 0.7764 0.7588 0.7547 0.8103 0.8512 0.8103 0.8115
INTENTCAPSNET-ZSL w/o Bi-LSTM 0.7619 0.7631 0.7619 0.7616 0.8366 0.8770 0.8366 0.8403
INTENTCAPSNET-ZSL w/o Regularizer 0.7675 0.7676 0.7675 0.7675 0.8544 0.8730 0.8544 0.8553
INTENTCAPSNET-ZSL 0.7752 0.7762 0.7752 0.7750 0.8628 0.8751 0.8629 0.8635

Table 4: Zero-shot intention detection results using INTENTCAPSNET-ZSL on two datasets. All the metrics (Accuray, Preci-
sion, Recall and F1) are reported using the average value weighted by their support on per class.

rameters. The dimension of the prediction vector
DP is 10 for both datasets. DI = DW because
we use the averaged word embeddings contained
in the intent label as the intent embedding. An ad-
ditional input dropout layer with a dropout keep
rate 0.8 is applied to the SNIPS-NLU dataset. In
the loss function, the down-weighting coefficient
� is 0.5, margins m+

k and m�
k are set to 0.9 and

0.1 for all the existing intents. The iteration num-
ber iter used in the dynamic routing algorithm is
3. Adam optimizer (Kingma and Ba, 2014) is used
to minimize the loss.

5 Results

Quantitative Evaluation. The intention detection
results on two datasets are reported in Table 1,
where the proposed capsule-based model INTENT-
CAPSNET performs consistently better than bag-
of-word classifiers using TF-IDF, as well as vari-
ous neural network models designed for text clas-
sification. These results demonstrate the novelty
and effectiveness of the proposed capsule-based
model INTENTCAPSNET in modeling text for in-
tent detection.

Also, we report results on zero-shot inten-
tion detection task in Table 4, where our model
INTENTCAPSNET-ZSL outperforms other base-
lines that adopt different zero-shot learning strate-
gies. CMT has higher precision but low ac-
curacy and recall on the SNIPS-NLU dataset.
CDSSM fails on CVA dataset, probabily because
the character-level model is suitable for English
corpus but not for CVA, which is in Chinese.
Ablation Study. To study the contribution of
different modules of INTENTCAPSNET-ZSL for
zero-shot intent detection, we also report abla-
tion test results in Table 4. “w/o Self-attention”
is the model without self-attention: the last for-
ward/backward hidden states of the bi-LSTM re-
current encoder are used; “w/o Bi-LSTM” uses

the LSTM with only a forward pass; “w/o Reg-
ularizer” does not encourage discrepancies among
different self-attention heads: it adopts ↵ = 0 in
the loss function. Generally, from the lower part
of Table 4 we can see that all modules contribute
to the effectiveness of the model. On the SNIPS-
NLU dataset, each of the three modules has a com-
parable contribution to the whole model (around
2-3% improvement in F1 score). While on the
CVA dataset, the self-attention plays the most im-
portant role, which gives the model a 5.2% im-
provement in F1 score.
Discriminative Emerging Intent Representa-
tions. Besides quantitative evidences supporting
the effectiveness of the INTENTCAPSNET-ZSL,
we visualize activation vectors of emerging intents
in Figure 3. Since the activation vectors of utter-
ances with emerging intents are of high dimension
and we are interested in their orientations which
indicate their intent properties, t-SNE is applied
on the normal vector of the activation vectors to
reduce the dimension to 2. We color the utterances
according to their ground-truth emerging intent la-
bels.

Figure 3: t-SNE visualization of normal activation vectors
of utterances with 20 emerging intents in CVA.

As illustrated in Figure 3, INTENTCAPSNET-
ZSL has the ability to learn discriminative intent
representations for emerging intents in zero-shot
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DetectionCaps, so that utterances with different
intents naturally have different orientations. In the
meanwhile, utterances of the same emerging in-
tent but with nuances in expressions result in their
proximity in the t-SNE space. However, we do
observe less satisfied cases where the model mis-
take an emerging intent DecreaseScreenBright-
ness (No. 9) with ReduceFontSize (No. 10) and
SetColdColor (No. 11). When we check activa-
tion vectors of intents in Figure 3 we also find that
these three intents tend to have similar representa-
tions around the area (15, -5). We think it is due
to their inherent similarity as these three intents all
try to tune display configurations.

6 Interpretability

Capsule models try to bring more interpretability
when compared with traditional deep neural net-
works. We provide case studies here toward the
intepretability of the proposed model in 1) extract-
ing meaningful semantic features and 2) transfer-
ring knowledge from existing intents to emerging
intents.
Extracting Meaningful Semantic Features. To
show that SemanticCaps have the ability to extract
meaningful semantic features from the utterance,
we study the self-attention matrix A within the Se-
manticCaps and visualize the attention scores of
utterances on both existing and emerging intents.

Existing Intent: PlayMusic
• Play Action
play music by charlie adams from

i want to hear any tune from twenties

open up music on last fm

• Musician Name
i want to hear music by madeleine peyroux from on youtube

play me a song by charles neidich

use itunes to play artist ringo shiina track in heaven

Existing Intent: SearchCreativeWork
• Search Action
find fields of sacrifice movie

i m looking for music of nashville season saga

show me television show children in need rocks

• Creative Work Type
please find me platinum box ii song ?

show me a picture called heart like a hurricane

where can i buy a photograph called feel love ?

Table 5: Attentions on utterances with existing intents on
SNIPS-NLU.

From Table 5 we can see that each self-attention
head almost always focuses on one unique seman-
tic feature of the utterance. For example, in the in-
tent of PlayMusic one self-attention head always
focuses on the “play” action while another atten-
tion focuses on musician names. We also observe
that the learned attention adopts well to diverse ex-
pressions. For example, the self-attention head in

PlayMusic is attentive to various mentions of mu-
sician names when they are followed by words like
by, play and artist, even when named enti-
ties are not tagged and given to the model. The
self-attention head that extracts the “search” action
in SearchCreativeWork is able to be attentive
to various expressions such as find, looking
for and show.
Extraction-behavior Transfer by Semantic-
Caps. More importantly, we observe appealing
extraction behaviors of SemanticCaps on utter-
ances of emerging intents as well, even if they are
not trained to perform semantic extraction on ut-
terances of emerging intents.

Emerging Intent: RateBook
• Rate Action
i d rate this novel a five

add the rating for this current series a four out of points

i give ruled britannia a rating of five out of

• Book Name
give the televised morality series a one

i want to give the coming of the terraphiles a rating of

the chronicle charlie peace earns stars from me

• Rating Score
rate the grisly wife three points out of five

i would give this current chronicle three points

this saga deserves a score of four

Emerging Intent: AddToPlaylist
• Song/Artist Name
add star light star bright to my jazz classics playlist

i want a song by john schlitt in the bajo las estrellas playlist

put sungmin into my summer playlist

• Playlist Name
add an album to my list la mejor msica dance

can you add danny carey to my masters of metal playlist

i want to put a copy of this tune into skatepark punks

Table 6: Attentions on utterances with emerging intents on
SNIPS-NLU.

From Table 6 we observe that the same self-
attention head that extracts “play” action in the ex-
isting intent PlayMusic is also attentive to words
or phrases referring to the “rate” action in an
emerging intent RateABook: like rate, add
the rating, and give. Other self-attention
heads are almost always focusing on other aspects
of the utterances such as the book name or the ac-
tual rating score.

Such behavior not only shows that Seman-
ticCaps have the capacity to learn an intent-
independent semantic feature extractor, which ex-
tracts generalizable semantic features that either
existing or emerging intent representations are
built upon, but also indicates that SemanticCaps
has the ability to transfer extraction behaviors
among utterances of different intents.
Knowledge Transfer via Intent Similarity. Be-
side extracting semantic features and utilizing
existing routing information, we use similari-
ties between intent embeddings to help trans-
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fer vote vectors from INTENTCAPSNET to
INTENTCAPSNET-ZSL. We study the similarity
distribution of each emerging intents to all exist-
ing intents in Figure 4.

Figure 4: Accuracy vs. variance of the similarity distribution
for 20 emerging intents in CVA dataset.

The y axis is the zero-shot detection accuracy
on each emerging intent in the CVA dataset. The
x axis measures var(ql), the variance of the simi-
larity distribution of each emerging intent l to all
the existing intents. If an emerging intent has
a high variance in the similarity distribution, it
means that some existing intents have higher sim-
ilarities with this emerging intent than others: the
model is more certain about which existing intent
to transfer the similarity knowledge from, based
on intent label similarities. In this case, 13 out
of 20 emerging intents with high variances where
var(ql) > 0.005 always have a decent perfor-
mance (Accuracy>0.83). While a low variance
does not necessarily always lead to less satisfied
performances as some intents can rely on existing
intents more evenly together, but with less confi-
dence on each, for knowledge transfer.

7 Conclusions

In this paper, a capsule-based model, namely
INTENTCAPSNET, is first introduced to harness
the advantages of capsule models for text mod-
eling in a hierarchical manner: semantic fea-
tures are extracted from the utterances with self-
attention, and aggregated via the dynamic routing-
by-agreement mechanism to obtain utterance-level
intent representations. We believe that the in-
ductive biases subsumed in such capsule-based
hierarchical learning schema have broader appli-
cability on various text modeling tasks, besides

its evidenced performance on the intent detec-
tion task we studied in this paper. The proposed
INTENTCAPSNET-ZSL model further introduces
zero-shot learning ability to the capsule model
via various means of knowledge transfer from ex-
isting intents for discriminating emerging intents
where no labeled utterances or excessive exter-
nal resources are available. Experiments on two
real-world datasets show the effectiveness and in-
tepretability of the proposed models.
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Abstract

Prevalent models based on artificial neural net-
work (ANN) for sentence classification often
classify sentences in isolation without con-
sidering the context in which sentences ap-
pear. This hampers the traditional sentence
classification approaches to the problem of se-
quential sentence classification, where struc-
tured prediction is needed for better overall
classification performance. In this work, we
present a hierarchical sequential labeling net-
work to make use of the contextual informa-
tion within surrounding sentences to help clas-
sify the current sentence. Our model outper-
forms the state-of-the-art results by 2%-3% on
two benchmarking datasets for sequential sen-
tence classification in medical scientific ab-
stracts.

1 Introduction

Since 1665, over 50 million scholarly research
articles have been published (Jinha, 2010), with
approximately 2.5 million new scientific papers
coming out each year (Ware and Mabe, 2015).
While this enormous corpus provides us with the
ability to conclusively accept or reject hypotheses
and yields insight into promising research direc-
tions, it is getting harder and harder to extract use-
ful information from the literature in an efficient
and timely manner due to its sheer amount. There-
fore, an automatic and intelligent tool to help users
locate the information of interest quickly and com-
prehensively is highly desired.

When searching for relevant literature for a cer-
tain field, investigators first check the abstracts of
scientific papers to see whether they match the
criterion of interest. This process can be expe-
dited if the abstracts are structured; that is, if
the rhetorical structural elements of scientific ab-
stracts such as purpose, methods, results, and con-
clusions (American National Standards Institute,

1979) are explicitly stated. However, even to-
day, a significant portion of scientific abstracts is
still unstructured, which causes great difficulty in
information retrieval. In this paper, we develop
a machine-learning based approach to automati-
cally categorize sentences in scientific abstracts
into rhetorical sections so that the desired infor-
mation can be efficiently retrieved.

In a scientific abstract, each sentence can be as-
signed to a rhetorical structural element sequen-
tially. This rhetorical structure profiling process
can be formulated as a sequential sentence clas-
sification task, as the element assignment of any
single sentence is greatly associated with the as-
signments of the surrounding sentences. This is
in contrast to the general sentence classification
problem, where each sentence is classified individ-
ually and no contextual information can be used.
Previous state-of-the-art methods relied on Condi-
tional Random Fields (CRFs) to take into account
the inter-dependence between subsequent labels,
which improved joint sentence classification per-
formance by considering the label sequence infor-
mation. In this work, we add a bi-directional long
short-term memory (bi-LSTM) layer over the rep-
resentations of individual sentences so that it can
encode the contextual content and semantics from
preceding and succeeding sentences for better cat-
egorical inference of the current one.

In this work, we present a hierarchical neural
network model for the sequential sentence classi-
fication task, which we call a hierarchical sequen-
tial labeling network (HSLN). Our model first uses
a RNN or CNN layer to individually encode the
sentence representation from the sequence of word
embeddings, then uses another bi-LSTM layer to
take as input the individual sentence representa-
tion and output the contextualized sentence repre-
sentation, subsequently uses a single-hidden-layer
feed-forward network to transform the sentence

3100



representation to the probability vector, and finally
optimizes the predicted label sequence jointly via
a CRF layer. We evaluate our model on two
benchmarking datasets, PubMed RCT (Dernon-
court and Lee, 2017) and NICTA-PIBOSO (Kim
et al., 2011), which were both generated from
the PubMed database1. Our key contributions are
summarized as follows:

1. Based on the previous best performing archi-
tecture for sequential sentence classification
(Dernoncourt et al., 2016), we add one more
layer to extract contextual information from
surrounding sentences for more accurate pre-
diction of the current one. Together with the
CRF algorithm, this allows us to make use
of not only the preceding labels’ information
but also the content and semantics of adjacent
sentences to infer the label of the target sen-
tence.

2. We remove the need for a character-based
word embedding component without sacrific-
ing performance. For individual sentence en-
coding, we propose the use of a CNN module
as an alternative to RNN for small datasets,
suffering less from over-fitting as evidenced
by our experiments. Moreover, we incorpo-
rate attention-based pooling in both RNN and
CNN models to further improve the perfor-
mance.

3. We adopt dropout with expectation-linear
regularization instead of the standard one to
reduce the performance gap between training
and test phases.

4. We obtain state-of-the-art results on two
datasets for sequential sentence classification
in medical abstracts, outperforming the pre-
vious best models by at least 2% in terms of
F1 scores.

2 Related Work

Previous systems for sequential sentence classifi-
cation concentrate on the rhetorical structure anal-
ysis of biomedical abstracts. They are mainly
based on naive Bayes (Ruch et al., 2007), sup-
port vector machine (SVM) (McKnight and Srini-
vasan, 2003; Yamamoto and Takagi, 2005; Liu
et al., 2013), Hidden Markov Model (HMM) (Lin

1https://www.ncbi.nlm.nih.gov/pubmed/

et al., 2006), and CRF (Kim et al., 2011; Hassan-
zadeh et al., 2014; Hirohata et al., 2008; Chung,
2009). All these methods heavily rely on nu-
merous carefully hand-engineered features such as
lexical (bag-of-words (BOW)), semantic (hyper-
nyms, synonyms), structural (part of speech (POS)
tags, lemmas, orthographic shapes, headings), sta-
tistical (statistical distributions of token types) and
sequential (sentence position, surrounding fea-
tures, predicted labels) features.

In contrast, current emerging artificial neural
network (ANN) based models have removed the
need for manually selected features; instead, fea-
tures are self-learned from the token and/or char-
acter embeddings. These deep learning mod-
els have revolutionized the natural language pro-
cessing (NLP) field with state-of-the-art results
achieved in various tasks, including the most rel-
evant text classification task (Kim, 2014; Zhang
et al., 2016; Conneau et al., 2017; Lai et al., 2015;
Joulin et al., 2016; Ma et al., 2015). Most of these
models are built upon deep CNNs or RNNs as
well as combinations of them, where CNN is good
at extracting local n-gram features while RNN is
suitable for sequence modeling.

The above-mentioned works for short-text clas-
sification do not consider any context of sentence
semantics in the models, making them under-
perform in the sequential sentence classification
scenario, where surrounding sentences can play
a big role in inferring the label of the current
sentence. Recent works that apply deep neural
networks to the sequential sentence classification
problem include the system proposed by Lee et al.
(Lee and Dernoncourt, 2016), where the preceding
utterances were used to help classify the current
utterance in a dialog into the corresponding dia-
logue act. Most recent work from Dernoncourt et
al. (Dernoncourt et al., 2016) used a CRF layer
to optimize the predicted label sequence, where
the preceding labels have influence on determin-
ing the current label. This model outperformed
the state-of-the-art results on two datasets PubMed
RCT and NICTA-PIBOSO for sentence classifica-
tion in medical abstracts.

3 Proposed Model

Notation We denote scalars in italic lowercase
(e.g., k), vectors in bold italic lowercase (e.g., s)
and matrices in italic uppercase (e.g., W ). Colon
notations xi:j and si:j are used to denote the se-
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quence of scalars (xi, xi+1, ..., xj) and vectors
(si, si+1, ..., sj).

Our model is composed of four components:
the word embedding layer, the sentence encoding
layer, the context enriching layer, and the label se-
quence optimization layer. In the following sec-
tions they will be discussed in detail.

3.1 Word Embedding Layer
Given a sentence w =

⇥
w1 w2 · · · wN

⇤
com-

prising N words, this layer maps each word to a
real-valued vector as its lexical-semantic represen-
tation. Word representations are encoded by the
column vector in the embedding matrix Wword 2
R

dw⇥|V |, where dw is the dimension of the word
vector and V is the vocabulary of the dataset. Each
column Wword

i 2 R
dw is the word embedding

vector for the ith word in the vocabulary. The
word embeddings Wword can be pre-trained on
large unlabeled datasets using unsupervised algo-
rithms such as word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and fastText (Bo-
janowski et al., 2016).

3.2 Sentence Encoding Layer
This layer takes as input the embedding vector of
each token in a sentence from the word embed-
ding layer and produces a vector s to encode this
sentence. The sequence of embedding vectors is
first processed by a bi-directional RNN (bi-RNN)
or CNN layer, similar to the ones used in the text
classification before (Kim, 2014; Lee and Dernon-
court, 2016; Liu et al., 2016). This layer outputs a
sequence of hidden states h1:N (h 2 R

dhs) for a
sentence of N words with each hidden state cor-
responding to a word. To form the final repre-
sentation vector s of this sentence, attention-based
pooling is used, which can be described using the
following equations:

A = softmax(Us tanh(WsH + bs)), (1)

S = AHT , (2)

where H =
⇥
h1 h2 · · · hN

⇤
2 R

dhs⇥N ,
Ws 2 R

da⇥dhs is the transformation matrix for
soft alignment, bs 2 R

da is the bias vector, Us 2
R

r⇥da is the token level context matrix used to
measure the relevance or importance of each to-
ken with respect to the whole sentence, softmax is

performed along the second dimension of its input
matrix, and A 2 R

r⇥N is the attention matrix.
Here each row of Us is a context vector us 2

R
da and it is expected to reflect an aspect or com-

ponent of the semantics of a sentence. To repre-
sent the overall semantics of the sentence, we use
multiple context vectors to focus on different parts
of this sentence.

Finally, the sentence encoding vector s 2 R
rdhs

is obtained by reshaping the matrix S into a vector.

Figure 1: Model architecture. w: original word; e:
word embedding vector; h: sentence-level hidden state
output by the bi-RNN or CNN layer; s: sentence repre-
sentation vector; h

0: abstract-level hidden state output
by the bi-LSTM layer; r: sentence label probability
vector; y: predicted sentence label.

3.3 Context Enriching Layer
This layer takes as input the sequence of individ-
ual sentence encoding vectors in a given abstract
of n sentences obtained from the last sentence en-
coding layer, with each vector corresponding to a
sentence. It outputs a new sequence of contextu-
alized sentence encoding vectors, which are en-
riched with the contextual information from sur-
rounding sentences. Specifically, the sequence of
individual sentence encoding vectors is input into

3102



a bi-LSTM layer, which produces a sequence of
hidden state vectors h

0
1:n (h0 2 R

dhd) with each
corresponding to a sentence. Each of these vec-
tors is subsequently input to a feed-forward neural
network with only one hidden layer to get the cor-
responding probability vector r 2 R

l, which rep-
resents the probability that this sentence belongs
to each label, where l is the number of labels.

3.4 Label Sequence Optimization Layer

Within the abstract, the sequence of sentence cat-
egories implicitly follows some patterns. For ex-
ample, the category Results is always followed by
Conclusion, and the category Methods is certainly
after the Background. Making use of such patterns
can boost the classification performance via the
CRF algorithm (Lample et al., 2016). Given the
sequence of probability vectors r1:n from the last
context enriching layer for an abstract of n sen-
tences, this layer outputs a sequence of labels y1:n,
where yi represents the predicted label assigned to
the ith sentence.

In the CRF algorithm, in order to model depen-
dencies between subsequent labels, we incorpo-
rate a matrix T that contains the transition prob-
abilities between two subsequent labels; we define
T [i, j] as the probability that a token with label i is
followed by a token with the label j. The score of
a label sequence y1:n is defined as the sum of the
probabilities of individual labels and the transition
probabilities:

s(y1:n) =
nX

i=1

ri(yi) +
nX

i=2

T [yi�1, yi]. (3)

The score in the above equation can be trans-
formed into the probability of a certain label se-
quence by taking a softmax operation over all pos-
sible label sequences:

p(y1:n) =
es(y1:n)

P
ŷ1:n2Y es(ŷ1:n)

, (4)

where Y denotes the set of all possible label se-
quences. During the training phase, the objective
is to maximize the probability of the gold label se-
quence. In the testing phase, given an input se-
quence, the corresponding sequence of predicted
labels is chosen as the one that maximizes the
score, computed via the Viterbi algorithm (Forney,
1973).

4 Experiments

4.1 Datasets
We evaluate our model on two sources of bench-
marking datasets on medical scientific abstracts,
where each sentence of the abstract is annotated
with one label that is associated with the rhetori-
cal structure. Table 1 summarizes the statistics of
the two datasets.

NICTA-PIBOSO This dataset2 was shared
from the ALTA 2012 Shared Task (Amini et al.,
2012), the goal of which is to build automatic sen-
tence classifiers that can map the sentences from
biomedical abstracts into a set of pre-defined cate-
gories for Evidence-Based Medicine (EBM).

PubMed RCT This new dataset was curated by
(Dernoncourt and Lee, 2017)3 and is currently
the largest dataset for sequential sentence classi-
fication. It is based on the PubMed database of
biomedical literature and each sentence of each
abstract is labeled with its role in the abstract
using one of the following classes: background,
objective, method, result, and conclusion. Table
2 presents an example abstract comprising struc-
tured sentences with their annotated labels.

4.2 Training Settings
For both datasets, test performance is assessed
on the training epoch with best validation perfor-
mance and F1 scores (weighted average by sup-
port (the number of true instances for each label))
are reported as the results.

The token embeddings were pre-trained on a
large corpus combining Wikipedia, PubMed, and
PMC texts (Moen and Ananiadou, 2013) us-
ing the word2vec tool4 (denoted as “Word2vec-
wiki+P.M.”). They are fixed during the train-
ing phase to avoid over-fitting. We also
tried other types of word embeddings, such
as the word2vec embeddings pre-trained on the
Google News dataset5 (denoted as “Word2vec-
News”), word2vec embeddings pre-trained on
the Wikipedia corpus6 (denoted as “Word2vec-
wiki”), GloVe embeddings pre-trained on the cor-

2This dataset can be found online at
https://www.kaggle.com/c/alta-nicta-challenge2

3This dataset can be downloaded from
https://github.com/Franck-Dernoncourt/pubmed-rct

4The word vectors can be downloaded at
http://bio.nlplab.org/

5https://code.google.com/archive/p/word2vec/
6https://github.com/jind11/word2vec-on-wikipedia
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Dataset |C| |V | Train Validation Test
NICTA-PIBOSO 6 17k 720 (7.7k) 80 (0.9k) 200 (2.2k)
PubMed 20k 5 68k 15k (180k) 2.5k (30k) 2.5k (30k)
PubMed 200k 5 331k 190k (2.2M) 2.5k (29k) 2.5k (29k)

Table 1: Datasets statistics. |C| denotes the number of labels, |V | represents the vocabulary size. For the train,
validation, and test sets, we indicate the number of abstracts followed by the number of sentences in parentheses.

Category Sentences

BACKGROUND Emotional eating is associated with overeating and the development of obesity.
[...]

OBJECTIVES
The aim of this study was to test if attention bias for food moderates the effect
of self-reported emotional eating during sad mood (vs neutral mood) on actual
food intake. [...]

METHODS Participants (N = 85) were randomly assigned to one of the two experimental
mood induction conditions (sad/neutral). [...]

RESULTS
[...] Yet, attention maintenance on food cues was significantly related to
increased intake specifically in the neutral condition, but not in the sad mood
condition.

CONCLUSIONS
The current findings show that self-reported emotional eating (based on the
DEBQ) might not validly predict who overeats when sad, at least not in a
laboratory setting with healthy women. [...]

Table 2: A typical abstract example with structured sentences and their corresponding annotated labels. The PMID
of this abstract is 24854809.

pus of Wikipedia 2014 + Gigaword 57 (denoted
as “Glove-wiki”), fastText embeddings pre-trained
on Wikipedia8 (denoted as “FastText-wiki”), and
fastText embeddings initialized with the standard
GloVe Common Crawl embeddings and then fine-
tuned on PubMed abstracts plus MIMIC-III notes
(denoted as “FastText-P.M.+MIMIC”). The com-
parison results are summarized in the next section.

The model is trained using the Adam optimiza-
tion method (Kingma and Ba, 2014). The learning
rate is initially set as 0.003 and decayed by 0.9
after each epoch. For regularization, dropout (Sri-
vastava et al., 2014) is applied to each layer. For
the version of dropout used in practice (e.g., the
dropout function implemented in the TensorFlow
and Pytorch libraries), the model ensemble gen-
erated by dropout in the training phase is approxi-
mated by a single model with scaled weights in the
inference phase, resulting in a gap between train-
ing and inference. To reduce this gap, we adopted
the dropout with expectation-linear regularization
introduced by Ma et al. (2016) to explicitly control
the inference gap and thus improve the generaliza-

7http://nlp.stanford.edu/data/glove.6B.zip
8https://github.com/facebookresearch/fastText/blob/master/

pretrained-vectors.md

tion performance.
Hyperparameters were optimized via grid

search based on the validation set and the best con-
figuration is shown in Table 3. The window sizes
of the CNN encoder in the sentence encoding layer
are 2, 3, 4 and 5. The RNN encoder in the sentence
encoding layer is set as LSTM for the PubMed
datasets and gated recurrent unit (GRU) for the
NICTA-PIBOSO dataset. Code for this work is
available online9.

5 Results and Discussion

Table 4 compares our model against the best
performing models in the literature (Dernoncourt
et al., 2016; Liu et al., 2013). There are two vari-
ants of our model in terms of different implemen-
tations of the sentence encoding layer: the model
that uses bi-RNN to encode the sentence is called
HSLN-RNN; while the model that uses the CNN
module is named HSLN-CNN. We have evaluated
both model variants on all datasets. And as evi-
denced by Table 4, our best model can improve the
F1 scores by 2%-3% in absolute number compared
with the previous best published results for all

9https://github.com/jind11/HSLN-Joint-Sentence-
Classification
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Parameter PubMed NICTA
RNN CNN RNN CNN

dhs 200 - 200 -
dhd 200 200 200 300
da 200 100 250 75
dc - 200 - 150
r 15 1 5 4
� 0.01 0.001 0.01 0.01
dr 0.5 0.5 0.6 0.6

Table 3: Hyperparameter settings. dhs: hidden size of
the sentence-level RNN layer (single direction); dhd:
hidden size of the abstract-level bi-LSTM layer (single
direction); da: dimension of the context vector us; r:
number of context vectors; �: coefficient of the dropout
regularization added to the total loss; dr: dropout.

datasets. For the PubMed 20k and 200k datasets,
our HSLN-RNN model achieves better results;
however, for the NICTA dataset, the HSLN-CNN
model performs better. This makes sense because
the CNN sentence encoder has fewer parameters
to be optimized, thus the HSLN-CNN model is
less likely to over-fit in a smaller dataset such
as NICTA. With sufficient data, however, the in-
creased capacity of the HSLN-RNN model offers
performance benefits. To be noted, this perfor-
mance gap between RNN and CNN sentence en-
coder gets larger as the dataset size increases from
20k to 200k for the PubMed dataset.

Model PubMed NICTA20k 200k
Best Published
Marco Lui
(Lui, 2012) - - 82.0
bi-ANN
(Dernoncourt et al., 2016) 90.0 91.6 82.7

Our Models
HSLN-CNN 92.2 92.8 84.7
HSLN-RNN 92.6 93.9 84.3

Table 4: Comparison of F1 scores (weighted average
by support (the number of true instances for each la-
bel)) between our model and the best published meth-
ods. The presented results of our model are evaluated
on the test set of the run with the highest F1 score on
the validation set.

Table 5 presents the ablation analysis of our
model (on the PubMed 20k dataset), where we re-
move one component at a time and quantify the
performance drop (reported on F1 scores). As can
be seen from Table 5, our HSLN-CNN model uni-

formly suffers a little more from the component re-
moval than the HSLN-RNN model, indicating that
the HSLN-RNN model is more robust. When the
context enriching layer is removed, both models
experience the most significant performance drop
and can only be on par with the previous state-
of-the-art results, strongly demonstrating that this
proposed component is the key to the performance
improvement of our model. Furthermore, even
without the label sequence optimization layer, our
model still significantly outperforms the best pub-
lished methods that are empowered by this layer,
indicating that the context enriching layer we pro-
pose can help optimize the label sequence by
considering the context information from the sur-
rounding sentences. Last but not the least, the
dropout regularization and attention-based pool-
ing components we add to our system can help
further improve the model in a limited extent.

Model HSLN-RNN HSLN-CNN
Full Model 92.6 92.2
� context 90.0 89.0
� seq. opt. 92.3 91.8
� dropout reg. 92.4 91.9
� attention 92.4 91.7

Table 5: Ablation analysis. F1 scores are reported.
“� context” is our model without the context enrich-
ing layer. “� seq. opt.” is our model without the la-
bel sequence optimization layer. “� dropout reg.’ is
our model using the standard dropout strategy without
the expectation-linearization regularization. “� atten-
tion” refers to the model without attention-based pool-
ing, i.e., in the sentence encoding layer, the final hid-
den state is used for the HSLN-RNN model while max-
pooling is used for the HSLN-CNN model.

Table 6 and 7 detail the results of classifica-
tion for each label in terms of performance scores
(precision, recall and F1) and confusion matrix,
respectively (for our HSLN-RNN model trained
on the PubMed 20k dataset). These show that
the classifier is very good at predicting the la-
bels Methods, Results and Conclusions, whereas
the greatest difficulty the classifier has is in dis-
tinguishing Background sections from Objectives
sections. One fifth of Background sentences are
incorrectly classified as Objectives, while around
one forth of Objectives sentences are wrongly as-
signed to the label of Background. We conjec-
ture this difficulty mainly comes from the fact
that the difference between Background and Ob-
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jectives sentences in terms of writing style is less
obvious compared with the other sections of the
abstract. Moreover, our model has some difficulty
in telling Methods sentences apart from Results
sentences.

Label P R F1 Support
Background 78.5 80.0 79.2 3077
Objectives 74.2 69.9 72.0 2333
Methods 95.0 97.7 96.3 9884
Results 96.8 95.3 96.0 9713
Conclusions 97.6 96.5 97.1 4571
Total 92.6 92.7 92.6 29578

Table 6: Results (presented in percentage) in terms of
precision (P), recall (R) and F-measure (F1) on the test
set for each label obtained by our HSLN-RNN model
on the PubMed 20k dataset.

B C M O R
B 2460 4 69 537 7
C 4 4413 11 1 142
M 37 11 9657 27 152
O 632 0 68 1630 3
R 2 95 362 1 9253

Table 7: Confusion matrix obtained by our model on
the PubMed 20k dataset. Rows correspond to predicted
labels, and columns correspond to true labels. B rep-
resents background, O represents objectives, M repre-
sents methods, R represents results, and C represents
conclusions.

Table 8 presents a few examples of prediction
errors that are produced by our HSLN-RNN model
trained on the PubMed 20k dataset. This error
analysis suggests that one of the biggest model er-
ror sources could be from the debatable gold stan-
dard labels of the dataset. For example, the sen-
tence “Depressive disorders are one of the leading
components of the global burden of disease with
a prevalence of up to 14% in the general popula-
tion.” is indeed introducing the background of the
problem (depressive disorders) on which this arti-
cle is going to focus; however, the gold label clas-
sifies it into the Objective category. For another
instance, the sentence “A post hoc analysis was
conducted with the use of data from the evaluation
study of congestive heart failure and pulmonary
artery catheterization effectiveness (escape).” be-
longs to the Result label according to the gold stan-
dard, but it makes more sense that it should be
classified as a Method label.

Figure 2 presents an example of the transi-
tion matrix after the HSLN-RNN model has been
trained on the PubMed 20k dataset, which encodes
the transition probability between two subsequent
labels. It effectively reflects what label is the most
likely one that follows the current one. For ex-
ample, by comparing the transition scores in the
Result row in Figure 2, we can conclude that a
sentence pertaining to the Result is typically fol-
lowed by a sentence pertaining to the Conclusion
and is unlikely to be followed by a sentence in
the Background category (transition scores of 2.48
vs -5.46), which makes sense. From this transi-
tion matrix, we can figure out the most probable
label sequence: Background ! Objective !
Method ! Result ! Conclusion, which is
also consistent with our expectations.

Figure 2: Transition matrix of label sequence after the
HSLN-RNN model has been trained on the PubMed
20k dataset. The rows represent the label of the previ-
ous sentence, while the columns represent the label of
the current sentence.

In order to test the importance of pretrained
word embeddings, we performed experiments
with different sets of publicly published word em-
beddings, as well as our locally curated word em-
beddings, to initialize our model. Table 9 gives
the performance of six different word embeddings
for our HSLN-RNN model trained on the PubMed
20k dataset. According to Table 9, the training
methods that create the word embeddings do not
have a strong influence on model performance, but
the corpus they are trained on does. The combi-
nation of Wikipedia and PubMed abstracts as the
corpus for unsupervised word embedding training
yields the best result, and the individual use of ei-
ther the Wikipedia corpus or the PubMed abstracts
performs much worse. Although the dataset we
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Sentence Predicted Gold
Depressive disorders are one of the leading components of the global
burden of disease with a prevalence of up to 14% in the general
population. [25829103]

Background Objective

This study assessed whether diets with different fat quality and
supplementation with coenzyme Q10 (CoQ) affect the metabolomic
profile in urine. [24986061]

Objective Background

A post hoc analysis was conducted with the use of data from the
evaluation study of congestive heart failure. [24845963] Method Result

Hence, 47 secondary schools from all 12 districts of the city [...] are
participating in the study. [25150368] Result Method

This study investigated whether oxytocin can affect attentional bias in
social anxiety. [25552432] Objective Method

We hypothesize that BMC+Phone and BMC+Home will produce greater
reductions in BMI percentiles than BMC alone. [24456698] Conclusion Method

Table 8: Examples of prediction errors of our HSLN-RNN model trained on the PubMed 20k dataset. Each
sentence is followed by the PMID of the abstract that this sentence belongs to, which is enclosed in middle brackets.
The “Predicted” column indicates the label predicted by our model for a given sentence. The “Gold” column
indicates the gold label of the sentence.

are using for evaluation is also from PubMed ab-
stracts, using only the PubMed abstracts together
with MIMIC notes without the Wikipedia corpus
does not guarantee better result (see the “FastText-
P.M.+MIMIC” embeddings in Table 9), which
may be because the corpus size of PubMed ab-
stracts plus MIMIC notes (about 12.8 million ab-
stracts and 1 million notes) is not large enough for
good embedding training compared with the cor-
pus consisting of at least billion tokens such as the
Wikipedia.

Embedding Dimension P.M. 20k
Glove-wiki 200 92.0
FastText-wiki 300 92.2
FastText-P.M.+MIMIC 300 92.0
Word2vec-News 300 92.2
Word2vec-wiki 200 92.1
Word2vec-wiki+P.M. 200 92.6

Table 9: Comparison of performance with differ-
ent choices of word embeddings for our HSLN-RNN
model trained on the PubMed 20k dataset (reported on
F1-scores on the test set). “P.M.” means PubMed.

6 Conclusion
In this work, we have presented an ANN based
hierarchical sequential labeling network to clas-
sify sentences that appear sequentially in text.
We demonstrate that incorporating the contextual
information from surrounding sentences to help

classify the current one by using an LSTM layer
to sequentially process the encoded sentence rep-
resentations can improve the overall quality of pre-
dictions. Our model outperforms the state-of-the-
art results by 2%-3% on two datasets for sequen-
tial sentence classification in medical abstracts.
We expect that our proposed model can be gener-
alized to any problem that is related to sequential
sentence classification, such as the paragraph-level
sequential sentence categorization in full-text arti-
cles for better text mining and document retrieval
(Westergaard et al., 2018).

7 Future Work

Although the whole PubMed database contains
over 2 million abstracts with part of them accom-
panied by full-text articles, only a small fraction of
them are structured and contain the label informa-
tion utilized in this work. We plan to make use
of the rest unannotated abstracts or full texts to
pre-train our model and then fine tune it to the tar-
get annotated datasets inspired by the work from
(Howard and Ruder, 2018) so that the performance
can be further boosted.
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Abstract

In this study, we explore capsule networks
with dynamic routing for text classifica-
tion. We propose three strategies to sta-
bilize the dynamic routing process to al-
leviate the disturbance of some noise cap-
sules which may contain “background” in-
formation or have not been successfully
trained. A series of experiments are con-
ducted with capsule networks on six text
classification benchmarks. Capsule net-
works achieve competitive results over the
compared baseline methods on 4 out of
6 datasets, which shows the effectiveness
of capsule networks for text classifica-
tion. We additionally show that capsule
networks exhibit significant improvement
when transfer single-label to multi-label
text classification over the competitors. To
the best of our knowledge, this is the first
work that capsule networks have been em-
pirically investigated for text modeling1.

1 Introduction

Modeling articles or sentences computationally is
a fundamental topic in natural language process-
ing. It could be as simple as a keyword/phrase
matching problem, but it could also be a nontrivial
problem if compositions, hierarchies, and struc-
tures of texts are considered. For example, a news
article which mentions a single phrase “US elec-
tion” may be categorized into the political news
with high probability. But it could be very diffi-
cult for a computer to predict which presidential
candidate is favored by its author, or whether the

⇤ Corresponding author (min.yang@siat.ac.cn)
1Codes are publicly available at: https:

//github.com/andyweizhao/capsule_text_
classification.

author’s view in the article is more liberal or more
conservative.

Earlier efforts in modeling texts have achieved
limited success on text categorization using a sim-
ple bag-of-words classifier (Joachims, 1998; Mc-
Callum et al., 1998), implying understanding the
meaning of the individual word or n-gram is a
necessary step towards more sophisticated mod-
els. It is therefore not a surprise that distributed
representations of words, a.k.a. word embeddings,
have received great attention from NLP commu-
nity addressing the question “what” to be modeled
at the basic level (Mikolov et al., 2013; Penning-
ton et al., 2014). In order to model higher level
concepts and facts in texts, an NLP researcher has
to think cautiously the so-called “what” question:
what is actually modeled beyond word meanings.
A common approach to the question is to treat
the texts as sequences and focus on their spatial
patterns, whose representatives include convolu-
tional neural networks (CNNs) (Kim, 2014; Zhang
et al., 2015; Conneau et al., 2017) and long short-
term memory networks (LSTMs) (Tai et al., 2015;
Mousa and Schuller, 2017). Another common ap-
proach is to completely ignore the order of words
but focus on their compositions as a collection,
whose representatives include probabilistic topic
modeling (Blei et al., 2003; Mcauliffe and Blei,
2008) and Earth Mover’s Distance based model-
ing (Kusner et al., 2015; Ye et al., 2017).

Those two approaches, albeit quite different
from the computational perspective, actually fol-
low a common measure to be diagnosed regarding
their answers to the “what” question. In neural
network approaches, spatial patterns aggregated at
lower levels contribute to representing higher level
concepts. Here, they form a recursive process to
articulate what to be modeled. For example, CNN
builds convolutional feature detectors to extract lo-
cal patterns from a window of vector sequences
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and uses max-pooling to select the most promi-
nent ones. It then hierarchically builds such pat-
tern extraction pipelines at multiple levels. Being
a spatially sensitive model, CNN pays a price for
the inefficiency of replicating feature detectors on
a grid. As argued in (Sabour et al., 2017), one
has to choose between replicating detectors whose
size grows exponentially with the number of di-
mensions, or increasing the volume of the labeled
training set in a similar exponential way. On the
other hand, methods that are spatially insensitive
are perfectly efficient at the inference time regard-
less of any order of words or local patterns. How-
ever, they are unavoidably more restricted to en-
code rich structures presented in a sequence. Im-
proving the efficiency to encode spatial patterns
while keeping the flexibility of their representation
capability is thus a central issue.

A recent method called capsule network intro-
duced by Sabour et al. (2017) possesses this at-
tractive potential to address the aforementioned is-
sue. They introduce an iterative routing process to
decide the credit attribution between nodes from
lower and higher layers. A metaphor (also as an
argument) they made is that human visual system
intelligently assigns parts to wholes at the infer-
ence time without hard-coding patterns to be per-
spective relevant. As an outcome, their model
could encode the intrinsic spatial relationship be-
tween a part and a whole constituting viewpoint
invariant knowledge that automatically general-
izes to novel viewpoints. In our work, we follow
a similar spirit to use this technique in modeling
texts. Three strategies are proposed to stabilize
the dynamic routing process to alleviate the distur-
bance of some noise capsules which may contain
“background” information such as stop words and
the words that are unrelated to specific categories.
We conduct a series of experiments with capsule
networks on top of the pre-trained word vectors
for six text classification benchmarks. More im-
portantly, we show that capsule networks achieves
significant improvement when transferring single-
label to multi-label text classifications over the
compared baseline methods.

2 Our Methodology

Our capsule network, depicted in Figure 1, is
a variant of the capsule networks proposed in
Sabour et al. (2017). It consists of four layers: n-
gram convolutional layer, primary capsule layer,

convolutional capsule layer, and fully connected
capsule layer. In addition, we explore two capsule
frameworks to integrate these four components in
different ways. In the rest of this section, we elab-
orate the key components in detail.

2.1 N -gram Convolutional Layer
This layer is a standard convolutional layer which
extracts n-gram features at different positions of a
sentence through various convolutional filters.

Suppose x 2 R
L⇥V denotes the input sentence

representation where L is the length of the sen-
tence and V is the embedding size of words. Let
xi 2 R

V be the V -dimensional word vector cor-
responding to the i-th word in the sentence. Let
W a 2 R

K1⇥V be the filter for the convolution op-
eration, where K1 is the N -gram size while sliding
over a sentence for the purpose of detecting fea-
tures at different positions. A filter W a convolves
with the word-window xi:i+K1�1 at each possible
position (with stride of 1) to produce a column fea-
ture map ma 2 R

L�K1+1, each element ma
i 2 R

of the feature map is produced by

ma
i = f(xi:i+K1�1 � W a + b0) (1)

where � is element-wise multiplication, b0 is a
bias term, and f is a nonlinear activate function
(i.e., ReLU). We have described the process by
which one feature is extracted from one filter.
Hence, for a = 1, . . . , B, totally B filters with
the same N -gram size, one can generate B feature
maps which can be rearranged as

M = [m1,m2, ...,mB] 2 R
(L�K1+1)⇥B (2)

2.2 Primary Capsule Layer
This is the first capsule layer in which the cap-
sules replace the scalar-output feature detectors of
CNNs with vector-output capsules to preserve the
instantiated parameters such as the local order of
words and semantic representations of words.

Suppose pi 2 R
d denotes the instantiated pa-

rameters of a capsule, where d is the dimension of
the capsule. Let W b 2 R

B⇥d be the filter shared in
different sliding windows. For each matrix multi-
plication, we have a window sliding over each N -
gram vector denoted as Mi 2 R

B , then the corre-
sponding N -gram phrases in the form of capsule
are produced with pi = (W b)TMi.

The filter W b multiplies each N -gram vector
in {Mi}L�K1+1

i=1 with stride of 1 to produce a
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Figure 1: The Architecture of Capsule network for text classification. The processes of dynamic routing
between consecutive layers are shown in the bottom.

column-list of capsules p 2 R
(L�K1+1)⇥d, each

capsule pi 2 R
d in the column-list is computed as

pi = g(W bMi + b1) (3)

where g is nonlinear squash function through the
entire vector, b1 is the capsule bias term. For all
C filters, the generated capsule feature maps can
be rearranged as

P = [p1,p2, ...,pC] 2 R
(L�K1+1)⇥C⇥d, (4)

where totally (L � K1 + 1) ⇥ C d-dimensional
vectors are collected as capsules in P.

2.2.1 Child-Parent Relationships
As argued in (Sabour et al., 2017), capsule net-
work tries to address the representational limita-
tion and exponential inefficiencies of convolutions
with transformation matrices. It allows the net-
works to automatically learn child-parent (or part-
whole) relationships constituting viewpoint invari-
ant knowledge that automatically generalizes to
novel viewpoints.

In this paper, we explore two different types
of transformation matrices to generate prediction
vector (vote) ûj|i 2 R

d from its child capsule i to
the parent capsule j. The first one shares weights
W t1 2 R

N⇥d⇥d across child capsules in the layer
below, where N is the number of parent capsules
in the layer above. Formally, each corresponding
vote can be computed by:

ûj|i = W t1
j ui + b̂j|i 2 R

d (5)

where ui is a child-capsule in the layer below and
b̂j|i is the capsule bias term.

In the second design, we replace the shared
weight matrix W t1

j with non-shared weight ma-
trix W t2

i,j , where the weight matrices W t2 2
R

H⇥N⇥d⇥d and H is the number of child capsules
in the layer below.

2.3 Dynamic Routing

The basic idea of dynamic routing is to construct
a non-linear map in an iterative manner ensuring
that the output of each capsule gets sent to an ap-
propriate parent in the subsequent layer:

n
ûj|i 2 R

d
o

i=1,...,H,j=1...,N
7!

n
vj 2 R

d
oN

j=1
.

For each potential parent, the capsule network can
increase or decrease the connection strength by
dynamic routing, which is more effective than the
primitive routing strategies such as max-pooling in
CNN that essentially detects whether a feature is
present in any position of the text, but loses spatial
information about the feature. We explore three
strategies to boost the accuracy of routing process
by alleviating the disturbance of some noisy cap-
sules:

Orphan Category Inspired by Sabour et al.
(2017), an additional “orphan” category is added
to the network, which can capture the “back-
ground” information of the text such as stop words
and the words that are unrelated to specific cat-
egories, helping the capsule network model the
child-parent relationship more efficiently. Adding
“orphan” category in the text is more effective than
in image since there is no single consistent “back-
ground” object in images, while the stop words are
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consistent in texts such as predicate “s”, “am” and
pronouns “his”, “she”.

Leaky-Softmax We explore Leaky-Softmax
Sabour et al. (2017) in the place of standard soft-
max while updating connection strength between
the children capsules and their parents. Despite
the orphan category in the last capsule layer, we
also need a light-weight method between two
consecutive layers to route the noise child cap-
sules to extra dimension without any additional
parameters and computation consuming.

Coefficients Amendment We also attempt to
use the probability of existence of child capsules
in the layer below to iteratively amend the con-
nection strength as Eq.6.

Algorithm 1: Dynamic Routing Algorithm
1 procedure ROUTING(ûj|i, âj|i, r, l)
2 Initialize the logits of coupling coefficients

bj|i = 0

3 for r iterations do
4 for all capsule i in layer l and capsule j in

layer l + 1:
cj|i = âj|i · leaky-softmax(bj|i)

5 for all capsule j in layer l + 1:
vj = g(

P
i cj|iûj|i), aj = |vj |

6 for all capsule i in layer l and capsule j in
layer l + 1: bj|i = bj|i + ûj|i · vj

7 return vj ,aj

Given each prediction vector ûj|i and its prob-
ability of existence âj|i, where âj|i = âi, each it-
erative coupling coefficient of connection strength
cj|i is updated by

cj|i = âj|i · leaky-softmax(bj|i) (6)

where bj|i is the logits of coupling coefficients.
Each parent capsule vj in the layer above is a
weighted sum over all prediction vectors ûj|i:

vj = g(
X

i

cj|iûj|i), aj = |vj | (7)

where aj is the probabilities of parent capsules, g
is nonlinear squash function Sabour et al. (2017)
through the entire vector. Once all of the parent
capsules are produced, each coupling coefficient
bj|i is updated by:

bj|i = bj|i + ûj|i · vj (8)

For simplicity of notation, the parent capsules and
their probabilities in the layer above are denoted
as

v, a = Routing(û) (9)

where û denotes all of the child capsules in the
layer below, v denotes all of the parent-capsules
and their probabilities a.

Our dynamic routing algorithm is summarized
in Algorithm 1.

2.4 Convolutional Capsule Layer
In this layer, each capsule is connected only to
a local region K2 ⇥ C spatially in the layer be-
low. Those capsules in the region multiply trans-
formation matrices to learn child-parent relation-
ships followed by routing by agreement to produce
parent capsules in the layer above.

Suppose W c1 2 R
D⇥d⇥d and W c2 2

R
K2⇥C⇥D⇥d⇥d denote shared and non-shared

weights, respectively, where K2 · C is the number
of child capsules in a local region in the layer be-
low, D is the number of parent capsules which the
child capsules are sent to. When the transforma-
tion matrices are shared across the child capsules,
each potential parent-capsule ûj|i is produced by

ûj|i = W c1
j ui + b̂j|i (10)

where b̂j|i is the capsule bias term, ui is a child
capsule in a local region K2 ⇥ C and W c1

j is the
jth matrix in tensor W c1 . Then, we use routing-
by-agreement to produce parent capsules feature
maps totally (L�K1�K2+2)⇥D d-dimensional
capsules in this layer. When using the non-shared
weights across the child capsules, we replace the
transformation matrix W c1

j in Eq. (10) with W c2
j .

2.5 Fully Connected Capsule Layer
The capsules in the layer below are flattened into
a list of capsules and fed into fully connected
capsule layer in which capsules are multiplied by
transformation matrix W d1 2 R

E⇥d⇥d or W d2 2
R

H⇥E⇥d⇥d followed by routing-by-agreement to
produce final capsule vj 2 R

d and its probability
aj 2 R for each category. Here, H is the number
of child capsules in the layer below, E is the num-
ber of categories plus an extra orphan category.

2.6 The Architectures of Capsule Network
We explore two capsule architectures (denoted as
Capsule-A and Capsule-B) to integrate these four
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Figure 2: Two architectures of capsule networks.

components in different ways, as depicted in Fig-
ure 2.

Capsule-A starts with an embedding layer
which transforms each word in the corpus to a
300-dimensional (V = 300) word vector, fol-
lowed by a 3-gram (K1 = 3) convolutional layer
with 32 filters (B = 32) and a stride of 1 with
ReLU non-linearity. All the other layers are cap-
sule layers starting with a B ⇥ d primary cap-
sule layer with 32 filters (C = 32), followed by
a 3 ⇥ C ⇥ d ⇥ d (K2 = 3) convolutional capsule
layer with 16 filters (D = 16) and a fully con-
nected capsule layer in sequence.

Each capsule has 16-dimensional (d = 16) in-
stantiated parameters and their length (norm) can
describe the probability of the existence of cap-
sules. The capsule layers are connected by the
transformation matrices, and each connection is
also multiplied by a routing coefficient that is
dynamically computed by routing by agreement
mechanism.

The basic structure of Capsule-B is similar to
Capsule-A except that we adopt three parallel net-
works with filter windows (N ) of 3, 4, 5 in the
N -gram convolutional layer (see Figure 2). The
final output of the fully connected capsule layer is
fed into the average pooling to produce the final re-
sults. In this way, Capsule-B can learn more mean-
ingful and comprehensive text representation.

3 Experimental Setup

3.1 Experimental Datasets

In order to evaluate the effectiveness of our model,
we conduct a series of experiments on six bench-

marks including: movie reviews (MR) (Pang and
Lee, 2005), Stanford Sentiment Treebankan exten-
sion of MR (SST-2) (Socher et al., 2013), Subjec-
tivity dataset (Subj) (Pang and Lee, 2004), TREC
question dataset (TREC) (Li and Roth, 2002), cus-
tomer review (CR) (Hu and Liu, 2004), and AG’s
news corpus (Conneau et al., 2017). These bench-
marks cover several text classification tasks such
as sentiment classification, question categoriza-
tion, news categorization. The detailed statistics
are presented in Table 1.

Dataset Train Dev Test Classes Classification Task

MR 8.6k 0.9k 1.1k 2 review classification
SST-2 8.6k 0.9k 1.8k 2 sentiment analysis
Subj 8.1k 0.9k 1.0k 2 opinion classification
TREC 5.4k 0.5k 0.5k 6 question categorization
CR 3.1k 0.3k 0.4k 2 review classification
AG’s news 108k 12.0k 7.6k 4 news categorization

Table 1: Characteristics of the datasets.

3.2 Implementation Details
In the experiments, we use 300-dimensional
word2vec (Mikolov et al., 2013) vectors to ini-
tialize embedding vectors. We conduct mini-batch
with size 50 for AG’s news and size 25 for other
datasets. We use Adam optimization algorithm
with 1e-3 learning rate to train the model. We use
3 iteration of routing for all datasets since it opti-
mizes the loss faster and converges to a lower loss
at the end.

3.3 Baseline methods
In the experiments, we evaluate and compare our
model with several widely used baseline methods
including: LSTM/Bi-LSTM (Cho et al., 2014),
tree-structured LSTM (Tree-LSTM) (Tai et al.,
2015), LSTM regularized by linguistic knowl-
edge (LR-LSTM) (Qian et al., 2016), CNN-
rand/CNN-static/CNN-non-static (Kim, 2014),
very deep convolutional network (VD-CNN)
(Conneau et al., 2017), and character-level convo-
lutional network (CL-CNN) (Zhang et al., 2015).

4 Experimental Results

4.1 Quantitative Evaluation
In our experiments, the evaluation metric is classi-
fication accuracy. We summarize the experimental
results in Table 2. From the results, we observe
that the capsule networks achieve best results on
4 out of 6 benchmarks, which verifies the effec-
tiveness of the capsule networks. In particular, our
model substantially and consistently outperforms

3114



MR SST2 Subj TREC CR AG’s

LSTM 75.9 80.6 89.3 86.8 78.4 86.1
BiLSTM 79.3 83.2 90.5 89.6 82.1 88.2
Tree-LSTM 80.7 85.7 91.3 91.8 83.2 90.1
LR-LSTM 81.5 87.5 89.9 - 82.5 -

CNN-rand 76.1 82.7 89.6 91.2 79.8 92.2
CNN-static 81.0 86.8 93.0 92.8 84.7 91.4
CNN-non-static 81.5 87.2 93.4 93.6 84.3 92.3
CL-CNN - - 88.4 85.7 - 92.3
VD-CNN - - 88.2 85.4 - 91.3

Capsule-A 81.3 86.4 93.3 91.8 83.8 92.1
Capsule-B 82.3 86.8 93.8 92.8 85.1 92.6

Table 2: Comparisons of our capsule networks and
baselines on six text classification benchmarks.

Dataset Train Dev Test Description

Reuters-Multi-label 5.8k 0.6k 0.3k only multi-label data in test
Reuters-Full 5.8k 0.6k 3.4k full data in test

Table 3: Characteristics of Reuters-21578 corpus.

the simple deep neural networks such as LSTM,
Bi-LSTM and CNN-rand by a noticeable margin
on all the experimental datasets. Capsule net-
work also achieves competitive results against the
more sophisticated deep learning models such as
LR-LSTM, Tree-LSTM, VC-CNN and CL-CNN.
Note that Capsule-B consistently performs better
than Capsule-A since Capsule-B allows to learn
more meaningful and comprehensive text repre-
sentation. For example, a combination of N-gram
convolutional layer with filter windows of {3,4,5}
can capture the 3/4/5-gram features of the text
which play a crucial role in text modeling.

4.2 Ablation Study
To analyze the effect of varying different compo-
nents of our capsule architecture for text classifica-
tion, we also report the ablation test of the capsule-
B model in terms of using different setups of the
capsule network. The experimental results are
summarized in Table 5. Generally, all three pro-
posed dynamic routing strategies contribute to the
effectiveness of Capsule-B by alleviating the dis-
turbance of some noise capsules which may con-
tain “background” information such as stop words
and the words that are unrelated to specific cate-
gories.

5 Single-Label to Multi-Label Text
Classification

Capsule network demonstrates promising perfor-
mance in single-label text classification which as-
signs a label from a predefined set to a text (see Ta-
ble 2). Multi-label text classification is, however, a

more challenging practical problem. From single-
label to multi-label (with n category labels) text
classification, the label space is expanded from n
to 2n, thus more training is required to cover the
whole label space. For single-label texts, it is prac-
tically easy to collect and annotate the samples.
However, the burden of collection and annotation
for a large scale multi-label text dataset is gener-
ally extremely high. How deep neural networks
(e.g., CNN and LSTM) best cope with multi-label
text classification still remains a problem since ob-
taining large scale of multi-label dataset is a time-
consuming and expensive process. In this section,
we investigate the capability of capsule network
on multi-label text classification by using only the
single-label samples as training data. With fea-
ture property as part of the information extracted
by capsules, we may generalize the model better
to multi-label text classification without an over
extensive amount of labeled data.

The evaluation is carried on the Reuters-21578
dataset (Lewis, 1992). This dataset consists
of 10,788 documents from the Reuters financial
newswire service, where each document contains
either multiple labels or a single label. We re-
process the corpus to evaluate the capability of
capsule networks of transferring from single-label
to multi-label text classification. For dev and train-
ing, we only use the single-label documents in the
Reuters dev and training sets. For testing, Reuters-
Multi-label only uses the multi-label documents
in testing dataset, while Reuters-Full includes all
documents in test set. The characteristics of these
two datasets are described in Table 3.

Following (Sorower, 2010), we adopt Micro
Averaged Precision (Precision), Micro Averaged
Recall (Recall) and Micro Averaged F1 scores
(F1) as the evaluation metrics for multi-label text
classification. Any of these scores are firstly com-
puted on individual class labels and then averaged
over all classes, called label-based measures. In
addition, we also measure the Exact Match Ratio
(ER) which considers partially correct prediction
as incorrect and only counts fully correct samples.

The experimental results are summarized in Ta-
ble 4. From the results, we can observe that the
capsule networks have substantial and significant
improvement in terms of all four evaluation met-
rics over the compared baseline methods on the
test sets in both Reuters-Multi-label and Reuters-
Full datasets. In particular, larger improvement
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Reuters-Multi-label Reuters-Full

ER Precision Recall F1 ER Precision Recall F1

LSTM 23.3 86.7 54.7 63.5 62.5 78.6 72.6 74.0
BiLSTM 26.4 82.3 55.9 64.6 65.8 83.7 75.4 77.8

CNN-rand 22.5 88.6 56.4 67.1 63.4 78.7 71.5 73.6
CNN-static 27.1 91.1 59.1 69.7 63.3 78.5 71.2 73.3
CNN-non-static 27.4 92.0 59.7 70.4 64.1 80.6 72.7 75.0

Capsule-A 57.2 88.2 80.1 82.0 66.0 83.9 80.5 80.2
Capsule-B 60.3 95.4 82.0 85.8 67.7 86.4 80.1 81.4

Table 4: Comparisons of the capability for transferring from single-label to multi-label text classification
on Reuters-Multi-label and Reuters-Full datasets. For fair comparison, we use margin-loss for our model
and other baselines.

Iteration Accuracy

Capsule-B + Sabour’s routing 3 81.4

Capsule-B + our routing 1 81.4
Capsule-B + our routing 3 82.3
Capsule-B + our routing 5 81.6
w/o Leaky-softmax 3 81.7
w/o Orphan Category 3 81.9
w/o Amendent Coeffient 3 82.1

Table 5: Ablation study of Capsule-B on MR
dataset. The standard routing is routing-by-
agreement algorithm without leaky-softmax and
orphan category in the last capsule layer. More
ablations are discussed in Appendix.

is achieved on Reuters-Multi-label dataset which
only contains the multi-label documents in the test
set. This is within our expectation since the cap-
sule network is capable of preserving the instanti-
ated parameters of the categories trained by single-
label documents. The capsule network has much
stronger transferring capability than the conven-
tional deep neural networks. In addition, the good
results on Reuters-Full also indicate that the cap-
sule network has robust superiority over competi-
tors on single-label documents.

5.1 Connection Strength Visualization

To visualize the connection strength between cap-
sule layers clearly, we remove the convolutional
capsule layer and make the primary capsule layer
followed by the fully connected capsule layer di-
rectly, where the primary capsules denote N-gram
phrases in the form of capsules. The connection
strength shows the importance of each primary
capsule for text categories, acting like a parallel
attention mechanism. This should allow the cap-
sule networks to recognize multiple categories in

the text even though the model is trained on single-
label documents.

Due to space reasons, we choose a multi-
label document from Reuters-Multi-label test set
whose category labels (i.e., Interest Rates and
Money/Foreign Exchange) are correctly predicted
(fully correct) by our model with high confidence
(p > 0.8) to report in Table 6. The category-
specific phrases such as “interest rates” and “for-
eign exchange” are highlighted with red color. We
use the tag cloud to visualize the 3-gram phrases
for Interest Rates and Money/Foreign Exchange
categories. The stronger the connection strength,
the bigger the font size. From the results, we ob-
serve that capsule networks can correctly recog-
nize and cluster the important phrases with respect
to the text categories. The histograms are used
to show the intensity of connection strengths be-
tween primary capsules and the fully connected
capsules, as shown in Table 6 (bottom line).
Due to space reasons, five histograms are demon-
strated. The routing procedure correctly routes the
votes into the Interest Rates and Money/Foreign
Exchange categories.

To experimentally verify the convergence of the
routing algorithm, we also plot learning curve to
show the training loss over time with different it-
erations of routing. From Figure 3, we observe
that the Capsule-B with 3 or 5 iterations of routing
optimizes the loss faster and converges to a lower
loss at the end than the capsule network with 1 it-
eration.

6 Related Work

Early methods for text classification adopted the
typical features such as bag-of-words, n-grams,
and their TF-IDF features (Zhang et al., 2008) as
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U.K. MONEY RATES FIRM ON LAWSON STERLING TARGETS Interest Rates Money/Foreign Exchange

Interest rates on the London money market were slightly firmer on news U.K.
Chancellor of the Exchequer Nigel Lawson had stated target rates for sterling
against the dollar and mark, dealers said. They said this had come as a surprise
and expected the targets, 2.90 marks and 1.60 dlrs, to be promptly tested in the
foreign exchange markets. Sterling opened 0.3 points lower in trade weighted
terms at 71.3. Dealers noted the chancellor said he would achieve his goals
on sterling by a combination of intervention in currency markets and interest
rates. Operators feel the foreign exchanges are likely to test sterling on the
downside and that this seems to make a fall in U.K. Base lending rates even
less likely in the near term, dealers said. The feeling remains in the market,
however, that fundamental factors have not really changed and that a rise in
U.K. Interest rates is not very likely. The market is expected to continue at
around these levels, reflecting the current 10 pct base rate level, for some time.
The key three months interbank rate was 1/16 point firmer at 10 9-7/8 pct.

Orphan Mergers/AcquisitionsMoney/Foreign Exchange Trade Interest Rates

Table 6: Visualization of connection strength between primary capsules and the FC capsules by 3-gram
phrases cloud and histogram of the their intensities. x axis denotes primary capsules (3-gram phrases)
selected for demonstration, y axis denotes intensity of connection strength. The results are retrieved from
Capsule-B trained with 3 routing iterations. The category-specific key-phrases in red color in raw text
(first column) are annotated manually for reference.

Figure 3: Training loss of Capsule-B on Reuters-
Multi-label dataset.

input of machine learning algorithms such as sup-
port vector machine (SVM) (Joachims, 1998), lo-
gistic regression (Genkin et al., 2007), naive Bayes
(NB) (McCallum et al., 1998) for classification.
However, these models usually heavily relied on
laborious feature engineering or massive extra lin-
guistic resources.

Recent advances in deep neural networks and
representation learning have substantially im-
proved the performance of text classification tasks.
The dominant approaches are recurrent neural net-
works, in particular LSTMs and CNNs. (Kim,
2014) reported on a series of experiments with
CNNs trained on top of pre-trained word vectors
for sentence-level classification tasks. The CNN

models improved upon the state of the art on 4
out of 7 tasks. (Zhang et al., 2015) offered an
empirical exploration on the use of character-level
convolutional networks (Convnets) for text classi-
fication and the experiments showed that Convnets
outperformed the traditional models. (Joulin et al.,
2016) proposed a simple and efficient text classi-
fication method fastText, which could be trained
on a billion words within ten minutes. (Conneau
et al., 2017) proposed a very deep convolutional
networks (with 29 convolutional layers) for text
classification. (Tai et al., 2015) generalized the
LSTM to the tree-structured network topologies
(Tree-LSTM) that achieved best results on two text
classification tasks.

Recently, a novel type of neural network is pro-
posed using the concept of capsules to improve
the representational limitations of CNN and RNN.
Hinton et al. (2011) firstly introduced the con-
cept of “capsules” to address the representational
limitations of CNNs and RNNs. Capsules with
transformation matrices allowed networks to au-
tomatically learn part-whole relationships. Conse-
quently, Sabour et al. (2017) proposed capsule net-
works that replaced the scalar-output feature de-
tectors of CNNs with vector-output capsules and
max-pooling with routing-by-agreement. The cap-
sule network has shown its potential by achiev-
ing a state-of-the-art result on MNIST data. Un-
like max-pooling in CNN, however, Capsule net-

3117



work do not throw away information about the
precise position of the entity within the region. For
lowlevel capsules, location information is place-
coded by which capsule is active. (Xi et al., 2017)
further tested out the application of capsule net-
works on CIFAR data with higher dimensionality.
(Hinton et al., 2018) proposed a new iterative rout-
ing procedure between capsule layers based on the
EM algorithm, which achieves significantly bet-
ter accuracy on the smallNORB data set. (Zhang
et al., 2018) generalized existing routing methods
within the framework of weighted kernel density
estimation. To date, no work investigates the per-
formance of capsule networks in NLP tasks. This
study herein takes the lead in this topic.

7 Conclusion

In this paper, we investigated capsule networks
with dynamic routing for text classification. Three
strategies were proposed to boost the performance
of the dynamic routing process to alleviate the dis-
turbance of noisy capsules. Extensive experiments
on six text classification benchmarks show the ef-
fectiveness of capsule networks in text classifi-
cation. More importantly, capsule networks also
show significant improvement when transferring
single-label to multi-label text classifications over
the co baseline methods.
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Abstract

Many classification models work poorly on
short texts due to data sparsity. To address
this issue, we propose topic memory networks
for short text classification with a novel topic
memory mechanism to encode latent topic rep-
resentations indicative of class labels. Dif-
ferent from most prior work that focuses on
extending features with external knowledge
or pre-trained topics, our model jointly ex-
plores topic inference and text classification
with memory networks in an end-to-end man-
ner. Experimental results on four benchmark
datasets show that our model outperforms
state-of-the-art models on short text classifica-
tion, meanwhile generates coherent topics.

1 Introduction

Short texts have become an important form for
individuals to voice opinions and share informa-
tion on online platforms. A large body of daily-
generated contents, such as tweets, web search
snippets, news feeds, and forum messages, have
far outpaced the reading and understanding capac-
ity of individuals. As a consequence, there is a
pressing need for automatic language understand-
ing techniques for processing and analyzing such
texts (Zhang et al., 2018). Among those tech-
niques, text classification is a critical and funda-
mental one proven to be useful in various down-
stream applications, such as text summarization
(Hu et al., 2015), recommendation (Zhang et al.,
2012), and sentiment analysis (Chen et al., 2017).

Although many classification models like sup-
port vector machines (SVMs) (Wang and Man-
ning, 2012) and neural networks (Kim, 2014; Xiao
and Cho, 2016; Joulin et al., 2017) have demon-
strated their success in processing formal and
well-edited texts, such as news articles (Zhang

⇤ This work was mainly conducted when Jichuan Zeng
was an intern in Tencent AI Lab.

† Jing Li is the corresponding author.

Training instances
R1: [SuperBowl] I’ll do anything to see the Steelers win.
R2: [New.Music.Live] Please give wristbands, she have
major Bieber Fever.
Test instance
S: [New.Music.Live] I will do anything for wristbands,
gonna tweet till I win.

Table 1: Tweet examples for classification. Ri denotes
the i-th training instance; S denotes a test instance.
[class] is the ground-truth label. Bold words are in-
dicative of an instance’s class label.

et al., 2015b), their performance is inevitably com-
promised when directly applied to short and infor-
mal online texts. This inferior performance is at-
tributed to the severe data sparsity nature of short
texts, which results in the limited features avail-
able for classifiers (Phan et al., 2008). To alle-
viate the data sparsity problem, some approaches
exploit knowledge from external resources like
Wikipedia (Jin et al., 2011) and knowledge bases
(Lucia and Ferrari, 2014; Wang et al., 2017a).
These approaches, however, rely on a large vol-
ume of high-quality external data, which may be
unavailable to some specific domains or languages
(Li et al., 2016a).

To illustrate the difficulties in classifying short
texts, we take the tweet classification in Table 1 as
an example. In the test instance S, only given the
11 words it contains, it is difficult to understand
why its label is New.Music.Live. Without richer
context, classifiers are likely to classify S into the
same category as the training instance R1, which
happens to share many words with S, in spite of
the different categories they belong to,1 rather than
R2, which only shares the word “wristbands” with
S. Under this circumstance, how might we en-
rich the context of these short texts? If looking
at R2, we can observe that the semantic mean-
ing of “wristbands” can be extended from its co-

1R1 is about SuperBowl, the annual championship game
of the National Football League. R2 and S are both about
New.Music.Live, the flagship live music show.

3120



occurrence with “Bieber”, which is highly indica-
tive of New.Music.Live.2 Such relation can further
help in recognizing the word “wristbands” to be
important when classifying the test instance S.

Motivated by the above-mentioned observa-
tions, we present a novel neural framework, named
as topic memory networks (TMN), for short
text classification that does not rely on external
knowledge. Our model can identify the indica-
tive words for classification, e.g., “wristbands”
in S, via jointly exploiting the document-level
word co-occurrence patterns, e.g., “wristbands”
and “Bieber” in R2. To be more specific, built
upon the success of neural topic models (Srivas-
tava and Sutton, 2017; Miao et al., 2017), our
model is capable of discovering latent topics3,
which can capture the co-occurrence of words in
document level. To employ the latent topics for
short text classification, we propose a novel topic
memory mechanism, which is inspired by mem-
ory networks (Weston et al., 2014; Graves et al.,
2014), that allows the model to put attention upon
the indicative latent topics useful to classifica-
tion. With such corpus-level latent topic represen-
tations, each short text instance is enriched, which
thus helps alleviate the data sparsity issues.

In prior research, though the effects of topic
models for short text classification have been ex-
plored (Phan et al., 2008; Ren et al., 2016), exist-
ing methods tend to use pre-trained topics as fea-
tures. To the best of our knowledge, our model
is the first to encode latent topic representations
via memory networks for short text classification,
which allows joint inference of latent topics.

To evaluate our model, we experiment and com-
pare it with existing methods on four benchmark
datasets. Experimental results indicate that our
model outperforms state-of-the-art counterparts
on short text classification. The quantitative and
qualitative analysis illustrate the capability of our
model in generating topic representations that are
meaningful and indicative of different categories.

2 Topic Memory Networks

In this section, we describe our topic memory net-
works (TMN), whose overall architecture is shown

2Justine Bieber was on New.Music.Live in 2011. There
was a business activity for this event that gave free wristbands
to fans if they supported Bieber on Twitter.

3 Latent topics are the distributional clusters of words that
frequently co-occur in some of the instances instead of widely
appearing throughout the corpus (Blei et al., 2003).
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Figure 1: The overall framework of our topic mem-
ory networks. The dotted boxes from left to right show
the neural topic model, the topic memory mechanism,
and the classifier. Here the classifier allows multiple
options and the details are left out.

in Figure 1. There are three major components:
(1) a neural topic model (NTM) to induce la-
tent topics (described in Section 2.1), (2) a topic
memory mechanism that maps the inferred latent
topics to classification features (described in Sec-
tion 2.2), and (3) a text classifier, which produces
the final classification labels for instances. These
three components can be updated simultaneously
via a joint learning process, which is introduced
in Section 2.3. In particular, for the classifier, our
TMN framework allows the combination of mul-
tiple options, e.g., CNN and RNN, which can be
determined by the specific application scenario.

Formally, given X = {x1,x2, . . . ,xM} as the
input with M short text instances, each instance
x is processed into two representations: bag-of-
words (BoW) term vector xBoW 2 R

V and word
index sequence vector xSeq 2 R

L, where V is
the vocabulary size and L is the sequence length.
xBoW is fed into the neural topic model to induce
latent topics. Such topics are further matched with
the embedded xSeq to learn classification features
in the topic memory mechanism. Then, the classi-
fier concatenates the representations produced by
the topic memory mechanism and the embedded
xSeq to predict the classification label y for x.

2.1 Neural Topic Model

Our topic model is inspired by neural topic model
(NTM) (Miao et al., 2017; Srivastava and Sut-
ton, 2017) that induces latent topics in neural net-
works. NTM is based on variational auto-encoder
(VAE) (Kingma and Welling, 2013), involved with
a continuous latent variable z as an intermediate
representation. Here in NTM, the latent variable
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Figure 2: Topic memory network with three hops.

z 2 R
K , where K denotes the number of topics.

In the following, we describe the generation and
the inference of the model in turn.

NTM Generation. Similar to LDA-style topic
models, we assume x having a topic mixture
✓ represented as a K-dimensional distribution,
which is generated via Gaussian softmax construc-
tion (Miao et al., 2017). Each topic k is repre-
sented by a word distribution �k over the vocabu-
lary. Specifically, the generation story for x is:

• Draw latent variable z ⇠ N (µ, �2)
• ✓ = softmax(f✓(z))
• For the n-th word in x:

– Draw word wn ⇠ softmax(f�(✓))
where f⇤(·) is a neural perceptron that linearly
transforms inputs, activated by a non-linear trans-
formation. Here we use rectified linear units (Re-
LUs) (Nair and Hinton, 2010) as activate func-
tions. The prior parameters of z, µ and �, are
estimated from the input data and defined as:

µ = fµ(fe(xBoW )), log � = f�(fe(xBoW ))
(1)

Note that NTM is based on VAE, where an en-
coder estimates the prior parameters and a decoder
describes the generation story. Compared with the
basic VAE, NTM includes the additional distribu-
tional vectors ✓ and �, which can yield latent topic
representations and thus ensuring their better inter-
pretability in learning process (Miao et al., 2017).

NTM Inference. In NTM, we use variational in-
ference (Blei et al., 2016) to approximate a poste-
rior distribution over z given all the instances. The
loss function of NTM is defined as

LNTM = DKL(q(z) || p(z |x)) � Eq(z)[p(x | z)]
(2)

the negative of variational lower bound, where
q(z) is a standard Normal prior N (0, I). p(z |x)
and p(x | z) are probabilities to describe encoding
and decoding processes, respectively.4 Due to the

4In implementation, to smooth the gradients, we apply
reparameterization on z following previous work (Kingma
and Welling, 2013; Rezende et al., 2014).

space limitation, we leave out the derivation de-
tails and refer the readers to Miao et al. (2017).

2.2 Topic Memory Mechanism

We exploit a topic memory mechanism to map
the latent topics produced by NTM (described in
Section 2.1) to the features for classification. In-
spired by memory networks (Weston et al., 2014;
Sukhbaatar et al., 2015), we design two memory
matrices, a source memory S and a target mem-
ory T , both of which are in K ⇥E size (K for the
number of topics and E for the pre-defined size
of word embeddings). S and T are produced by
two ReLU-actived neural perceptrons, both taking
the topic-word weight matrix W

� 2 R
K⇥V as in-

puts. Recall that in NTM, we use f�(·) to compute
the word distributions given ✓. W

� is the kernel
weight matrix of f�(·), where W

�
k,v represents the

importance of the v-th word in reflecting the k-th
topic. Assuming U as the embedded xSeq (word
sequence form of x), in source memory, we com-
pute the match between the k-th topic and the em-
bedding of the l-th word in xSeq by

P k,l = sigmoid(Ws[Sk; U l] + bs) (3)

where [x;y] denotes the merge of x and y, and
we use concatenation operation here (Dou, 2017;
Chen et al., 2017). Ws and bs are parameters to
be learned. To further combine the instance-topic
mixture ✓ with P , we define the integrated mem-
ory weights as

⇠k = ✓k + �
X

l

P k,l (4)

where � is the pre-defined coefficient. Then, in
target memory, via weighting target memory ma-
trix T with ⇠, we obtain the output representation
R of the topic memory mechanism:

Rk = ⇠kT k (5)

The concatenation of R and U (embedded xSeq)
further serves as the features for classification.

In particular, similar to the memory networks in
prior research (Sukhbaatar et al., 2015; Chen et al.,
2017), our model can be extended to handle mul-
tiple computation layers (hops). As shown in Fig-
ure 2, each hop contains a source matrix and a tar-
get matrix, and different hops are stacked follow-
ing the way presented in Sukhbaatar et al. (2015).
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Dataset # of # of Avg len Vocab sizelabels docs per doc
Snippets 8 12,332 17 7,334
TagMyNews 7 32,567 8 9,433
Twitter 50 15,056 5 6,962
Weibo 50 21,944 6 10,121

Table 2: Statistics of the experimental datasets. Labels
refers to class labels. Avg len per doc refers to the av-
erage count of words in each document instance.

2.3 Joint Learning
The entire TMN model integrates the three mod-
ules in Figure 1, i.e., the neural topic model,
the topic memory mechanism, and the classi-
fier, which can be updated simultaneously in one
framework. In doing so, we jointly tackle topic
modeling and classification, and define the loss
function of the overall framework to combine the
two effects as following:

L = LNTM + �LCLS (6)

where LNTM represents the loss of NTM and
LCLS is the cross entropy reflecting classification
loss. � is the trade-off parameter controlling the
balance between topic model and classification.

3 Experiment Setup

3.1 Datasets
We conduct experiments on four short text
datasets, namely, Snippets, TagMyNews, Twitter,
and Weibo. Their details are described as follows.

Snippets. This dataset contains Google search
snippets released by Phan et al. (2008). There are
eight ground-truth labels, e.g., health and sport.

TagMyNews. We use the news titles as in-
stances from the benchmark classification dataset
released by Vitale et al. (2012).5 This dataset con-
tains English news from really simple syndication
(RSS) feeds. Each news feed (with its title) is an-
notated with one from seven labels, e.g., sci-tech.

Twitter. This dataset is used to evaluate tweet
topic classification, which is built on the dataset
released by TREC2011 microblog track.6 Follow-
ing previous settings (Yan et al., 2013; Li et al.,
2016a), hashtags, i.e., user-annotated topic la-
bels in each tweet such as “#Trump” and “#Su-
perBowl”, serve as our ground-truth class labels.

5http://acube.di.unipi.it/tmn-dataset/
6http://trec.nist.gov/data/tweets

Specifically, we construct the dataset with the fol-
lowing steps. First, we remove the tweets without
hashtags. Second, we rank hashtags by their fre-
quencies. Third, we manually remove the hashtags
that cannot mark topics, such as “#fb” for indicat-
ing the source of tweets from Facebook, and com-
bine the hashtags referring to the same topic, such
as “#DonaldTrump” and “#Trump”. Finally, we
select the top 50 frequent hashtags, and all tweets
containing these hashtags.

Weibo. To evaluate our model on a different lan-
guage other than English, we employ a Chinese
dataset with short segments of text for topic clas-
sification. This dataset is released by Li et al.
(2016b) with a collection of messages posted in
June 2014 on Weibo, a popular Twitter alike plat-
form in China.7 Similar to Twitter, Weibo allows
up to 140 Chinese characters in its messages. In
this Weibo dataset, each Weibo message is labeled
with a hashtag as its category, and there are 50
distinct hashtag labels in total, following the same
procedure performed for the Twitter dataset.

Table 2 shows the statistic information of the
four datasets. Each dataset is randomly split
into 80% for training and 20% for test. 20% of
randomly selected training instances are used to
form development set. We preprocess our English
datasets, i.e., Snippets, TagMyNews, and Twit-
ter, with gensim tokenizer8 for tokenization. As
to the Chinese Weibo dataset, we use FudanNLP
toolkit (Qiu et al., 2013)9 for word segmentation.
In addition, for each dataset, we maintain a vocab-
ulary built based on the training set with removal
of stop words10 and words occurring less than 3
times. The inputs of topic models xBoW are con-
structed based on this vocabulary following com-
mon topic model settings (Blei et al., 2003; Miao
et al., 2016). Differently, we use the raw word se-
quence (without words removal) for the inputs of
classification xSeq as is done in previous work of
text classification (Kim, 2014; Liu et al., 2017).

3.2 Model Settings
We use pre-trained embeddings to initialize all
word embeddings. For Snippets and TagMyNews

7The original dataset contains conversations to enrich the
context of Weibo posts, which are not considered here.

8https://radimrehurek.com/gensim/
utils.html

9https://github.com/FudanNLP/fnlp
10https://radimrehurek.com/gensim/

parsing/preprocessing.html
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Models Snippets TagMyNews Twitter Weibo
Acc Avg F1 Acc Avg F1 Acc Avg F1 Acc Avg F1

Comparison models
Majority Vote 0.202 0.068 0.247 0.098 0.073 0.010 0.102 0.019
SVM+BOW (Wang and Manning, 2012) 0.210 0.080 0.259 0.058 0.070 0.009 0.116 0.039
SVM+LDA (Blei et al., 2003) 0.689 0.694 0.616 0.593 0.159 0.111 0.192 0.147
SVM+BTM (Yan et al., 2013) 0.772 0.772 0.686 0.677 0.232 0.164 0.331 0.277
SVM+NTM (Miao et al., 2017) 0.779 0.776 0.664 0.654 0.261 0.177 0.379 0.348
AttBiLSTM (Zhang and Wang, 2015) 0.943 0.943 0.838 0.828 0.375 0.348 0.547 0.547
CNN (Kim, 2014) 0.944 0.944 0.843 0.843 0.381 0.362 0.553 0.550
CNN+TEWE (Ren et al., 2016) 0.944 0.944 0.846 0.846 0.385 0.368 0.537 0.532
CNN+NTM 0.945 0.945 0.844 0.844 0.382 0.365 0.556 0.556
Our models
TMN (Separate TM Inference) 0.961 0.961 0.848 0.847 0.394 0.386 0.568 0.569
TMN (Joint TM Inference) 0.964 0.964 0.851 0.851 0.397 0.375 0.591 0.589

Table 3: Comparisons of accuracy (Acc) and average F1 (Avg F1) on four benchmark datasets. Our TMN, either
with separate or joint TM inference, performs significantly better than all the comparisons (p < 0.05, paired t-test).

datasets, we use pre-trained GloVe embed-
dings (Pennington et al., 2014)11. For Twitter and
Weibo datasets, we pre-train embeddings on large-
scale external data with 99M tweets and 467M
Weibo messages, respectively. For the number
of topics, we follow previous settings (Yan et al.,
2013; Das et al., 2015; Dieng et al., 2016) to
set K = 50. For all the other hyperparame-
ters, we tune them on the development set by grid
search. For our classifier, we employ CNN in
experiment because of its better performance in
short text classification than its counterparts such
as RNN (Wang et al., 2017a). The hidden size of
CNN is set as 500. The dimension of word em-
bedding E = 200. � = 0.8 for trading off ✓ and
P , and � = 1.0 for controlling the effects of topic
model and classification. In the learning process,
we run our model for 800 epochs with early-stop
strategy applied (Caruana et al., 2000).

3.3 Comparison Models

For comparison, we consider a weak baseline of
majority vote, which assigns the major class labels
in training set to all test instances. We further com-
pare with the widely-used baseline SVM+BOW,
SVM with unigram features (Wang and Man-
ning, 2012). We also consider other SVM-based
baselines: SVM+LDA, SVM+BTM, SVM+NTM,
whose features are topic distributions for instances
learned by LDA (Blei et al., 2003), BTM (Yan
et al., 2013), and NTM (Miao et al., 2017), respec-
tively. In particular, BTM is one of the state-of-
the-art topic models for short texts. To compare
with neural classifiers, we test bidirectional long

11http://nlp.stanford.edu/data/glove.
6B.zip (200d)

short-term memory with attention (AttBiLSTM)
(Zhang et al., 2015a) and convolutional neural net-
work (CNN) classifiers (Kim, 2014). No topic
representation is encoded in these two classifiers.
We also compare with the state-of-the-art short-
text classifier CNN+TEWE (Ren et al., 2016), i.e.,
CNN classifier with topic-enriched word embed-
dings (TEWE), where the word embeddings are
enriched by pre-trained NTM-inferred topic mod-
els. Moreover, to investigate the effectiveness of
our proposed topic memory mechanism, we com-
pare with CNN+NTM, which concatenates the
representations learned by CNN and topics in-
duced by NTM as classification features. In ad-
dition, we compare with our variant, TMN (Sepa-
rate TM Inference), where topics are induced sep-
arately before classification, and only used for ini-
tializing the topic memory. To be consistent, our
model with a joint learning process for topic mod-
eling and classification, described in Section 2.3,
is named as TMN (Joint TM Inference). Note
that the comparison CNN-based models share the
same settings as our model, and the hidden size for
each direction of BiLSTM is set to 100.

4 Experimental Results

4.1 Classification Comparison
Table 3 shows the comparison on classification re-
sults, where the accuracy and average F1 scores on
different classes labels are reported. We have the
following observations.

• Topic representations are indicative features.
On all four datasets, simply by combining topic
representations into features, SVM models pro-
duce better results than the models without ex-
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Model Snippets TagMyNews Twitter
LDA 0.436 0.449 0.436
BTM 0.435 0.463 0.435
NTM 0.463 0.468 0.463
TMN 0.487 0.499 0.468

Table 4: CV coherence scores for topics generated by
various models. Higher is better. The best result in
each column is in bold.

ploiting topic features (i.e., SVM+BOW). This ob-
servation indicates that latent topic representations
captured at corpus level are helpful to alleviate the
data sparsity problem in short text classification.

• Neural network models are effective. It is seen
that neural models based on either CNN or At-
tBiLSTM yield better results than SVM. This ob-
servation shows the effectiveness of representation
learning in neural networks for short texts.

• CNN serves as a better classifier for short texts
than AttBiLSTM. In comparison of CNN and
AttBiLSTM without taking topic features, we ob-
serve that CNN yields generally better results on
all the four datasets. This is consistent with the
discovery in Wang et al. (2017a), where CNN can
better encode short texts than sequential models.

• Topic memory is useful to classification. By
exploring topic representations in memory mech-
anisms, our TMN model, inferring topic mod-
els either separately or jointly with classifica-
tion, significantly outperform the best compari-
son models on each of the four datasets. Par-
ticularly, when compared with CNN+TEWE and
CNN+NTM, both concatenating topics as part of
the features, the results yielded by TMN are bet-
ter. This demonstrates the effectiveness of topic
memory to learn indicative topic representations
for short text classification.

• Jointly inferring latent topics is effective to text
classification. In comparison between two TMN
variants, TMN (Joint TM Inference) produces bet-
ter classification results, though large margin im-
provements are not observed on the three English
datasets, i.e., TagMyNews, Snippets, and Twitter.
This may be because the classifiers do not rely too
much on high-quality latent topics, since other fea-
tures may be sufficient to indicate the labels, e.g.,
word positions in the instance. As a result, bet-
ter topic models, learned via jointly induced with
classification, may not provide richer information
for classification. Nevertheless, we notice that on

LDA mubarak
::::
bring

::
run obama democracy speech

:::::
believe regime power bowl

BTM mubarak egypt push internet people govern-
ment

::::
phone hosni

::::
need son

NTM mubarak people egyptian egypt
::
stay

:::::::
tomorrow

protest news
:::::
phone protester

TMN mubarak protest protester tahrir square egyptian
al jazeera repo cairo

Table 5: Top 10 representative terms of the sample la-
tent topics discovered by various topic models from
Twitter dataset. We interpret the topics as “Egyptian
revolution of 2011” according to their word distribu-
tions.

::::::::
Non-topic

::::::
words are wave-underlined and in

blue, and off-topic words are underlined and in red.

Chinese Weibo dataset, the jointly trained topic
model improves the accuracy and average F1 by
2.3% and 2.0%, respectively. It may result from
the prevalence of word order misuse in informal
Weibo messages. This mis-order phenomenon is
common in Chinese and generally does not affect
understanding. The rich information conveyed by
Chinese characters are capable of indicating se-
mantic meanings of words even without correct or-
ders (Qin et al., 2016; Wang et al., 2017b). As a
result, the CNN classifier, which encodes orders
of words, may also bring such mis-order noise
to classification. For these instances with mis-
ordered words, a better topic model that learns text
instances as unordered words, provides useful rep-
resentations that compensate the loss of informa-
tion in word orders and in turn improves the per-
formance of text classification.

4.2 Topic Coherence Comparison
In Section 4.1, we find that TMN can significantly
outperform comparison models on short text clas-
sification. In this section, we study whether jointly
learning topic models and classification can be
helpful in producing coherent and meaningful top-
ics. We use the CV metric (Röder et al., 2015)
computed by Palmetto toolkit12 to evaluate the
topic coherence, which has been shown to give
the closest scores to human evaluation compared
to other widely-used topic coherence metrics like
NPMI (Bouma, 2009). Table 4 shows the compar-
ison results of LDA, BTM, NTM, and TMN on the
three English datasets.13 Note that we do not re-
port CV scores for Chinese Weibo dataset as the
Palmetto toolkit cannot process Chinese topics.

12https://github.com/dice-group/
Palmetto

13In the rest of this paper, without otherwise indicated,
TMN is used as a short form for TMN (Joint TM Inference).
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# of Hops Snippets TagMyNews Twitter Weibo
TMN-1H 0.958 0.841 0.382 0.568
TMN-2H 0.964 0.843 0.383 0.578
TMN-3H 0.962 0.845 0.384 0.581
TMN-4H 0.961 0.846 0.389 0.582
TMN-5H 0.960 0.851 0.397 0.591
TMN-6H 0.958 0.848 0.388 0.579

Table 6: The impact of the # of hops on accuracy.

As can be seen, TMN yields higher CV scores
by large margins than all others in comparison.
This indicates that jointly exploring classification
would be effective in producing coherent topics.
The reason is that the supervision from classifica-
tion labels can guide unsupervised topic models in
discovering meaningful and interpretable topics.
We also observe that NTM produces better results
than LDA and BTM, which implies the effective-
ness of inducing topic models by neural networks.

To further analyze the quality of yielded top-
ics, Table 5 shows the top 10 words of the sam-
ple latent topics reflecting “Egyptian revolution of
2011” discovered by various models. We find that
LDA yields off-topic word “bowl”. For the results
of BTM and NTM, though we do not find off-topic
words, non-topic words like “need” and “stay” are
included.14 The topic generated by TMN appears
to be the best, which presents indicative words like
“tahrir” and “cairo”, for the event.

4.3 Results with Varying Hyperparameters
We further study the impact of two important hy-
perparameters in TMN, i.e., the hop number and
the topic number, which will be discussed in turn.

Impact of Hop Numbers. Recall that Figure 2
shows the capacity of TMN in combining multi-
ple hops. Here we analyze the effects of hop num-
bers on the accuracy of TMN. Table 6 reports the
results, where NH refers to using N hops (N =
1, 2, ..., 6). As can be seen, generally, TMN with 5
hops achieves the best accuracy on most datasets
except for Snippets dataset. We also observe that,
although within a particular range, more hops can
produce better accuracy, the increasing trends are
not always monotonic. For example, TMN-6H al-
ways exhibits lower accuracy than TMN-5H. This
observation implies that the overall representation
ability of TMN is enhanced as the increasing com-
plexity of the model via combining more hops.

14Off-topic words are more likely to be interpreted to re-
flect other topics. Non-topic words cannot clearly indicate
the corresponding topic.

Figure 3: The impact of topic numbers, where the hori-
zontal axis shows the number of topics and the vertical
axis shows the accuracy.

However, this enhancement will reach saturation
when the hop number exceeds a threshold, which
is 5 hops for most datasets in our experiment.

Impact of Topic Numbers. Figure 3 shows the
accuracy of TMN and CNN+TEWE (the best
comparison model in Table 3) given varying K,
the number of topics on TagMyNews and Twit-
ter datasets.15 As we can see, the curves of all
the models are not monotonic and the best accu-
racy is achieved given a particular number of top-
ics, e.g., K=50 for TMN on TagMyNews dataset.
When comparing different curves, we observe
that TMN yields consistently better accuracy than
CNN+TEWE, a comparison model shown in Ta-
ble 3, which demonstrates the robust performance
of TMN over varying number of topics.

4.4 A Case Study on Topic Memory
Section 4.1 demonstrates the effectiveness of us-
ing topic memory on short text classification. To
further understand why, in this section, we use
the test instance S in Table 1 to analyze what
the information captured by topic memory is in-
dicative of class labels. Recall that the label of
S, which should be New.Music.Live, can be indi-
cated by containing word “wristbands” and the
collocation of “wristbands” and “Bieber” in train-
ing instance R2 labeled New.Music.Live. Figure 4
shows the heatmaps of the weight matrix P in
topic memory and the topic mixture ✓ captured
by NTM for instance S. As can be seen, the top
3 words for the latent topic with the largest value
in ✓ are “bieber”, “justine”, and “tuesday”, which
can effectively indicate the class label of S to be
New.Music.Live because Justine Bieber was there
on Tuesday. Interestingly, S contains none of the
top three words. The latent semantic relations of
S and these words are purely uncovered by the co-
occurrence of words in S with other instances in

15We observe similar distributions on Snippets and Weibo.
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Figure 4: Topic memory visualization for test instance S shown in Table 1. (a) Heatmaps of topic mixture ✓
(the upper one) and topic memory weight matrix P (the lower one) illustrating the relevance between the words
of S (left) and the learned topics (bottom, with top-2 words displayed). The red dotted rectangle indicates the
representation for “wristband”, the topical word in S. The red rectangles with solid frames indicates the 3 most
relevant topics ordered by ✓. (b) Top-10 words of these topics indicated by �.

the corpus, which further shows the benefit of us-
ing latent topics for alleviating the sparsity in short
texts. We also observe that topic memory learns
different representations for topical word “wrist-
band”, highly indicating instance label, and back-
ground words, such as “i” and “for”. This explains
why topic memory is effective to classification.

4.5 Error Analysis

In this section, we take our classification results on
TagMyNews dataset as an example to analyze our
errors. We observe that one major type of incorrect
prediction should be ascribed to the polysemy phe-
nomenon. For example, the instance “NBC gives
‘the voice’ post super bowl slot” should be catego-
rized as entertainment. However, failing to under-
stand the particular meaning of “the voice” here
as the name of a television singing competition,
our model mistakenly categorizes this instance as
sport because of the occurrence “super bowl”. In
future work, we would exploit context-sensitive
topical word embeddings (Witt et al., 2016), which
is able to distinguish the meanings of the same
word in different contexts. Another main error
type comes from the failure to capture phrase-level
semantics. Taking “On the merits of face time and
living small” as an example, without understand-
ing “face time” as a phrase, our model wrongly
predicts its category as business instead of its cor-
rect label as sci tech. Such errors can be reduced
by enhancing our NTM to phrase discovery topic
models (Lindsey et al., 2012; He, 2016), which is
worthy exploring in future work.

5 Related Work

Our work mainly builds on two streams of prior
work: short text classification and topic models.

Short Text Classification. In the line of short
text classification, most work focuses on alleviat-
ing the severe sparsity issues in short texts (Yan
et al., 2013). Some previous efforts encode knowl-
edge from external resource (Jin et al., 2011; Lucia
and Ferrari, 2014; Wang et al., 2017a; Ma et al.,
2018). Instead, our work learns effective repre-
sentations only from internal data. For some spe-
cific classification tasks, such as sentiment analy-
sis, manually-crafted features are designed to fit
the target task (Pak and Paroubek, 2010; Jiang
et al., 2011). Distinguished from them, we employ
deep learning framework for representation learn-
ing, which requires no feature engineering process
and thus ensures its general applicability to di-
verse classification scenarios. In comparison with
the established classifiers applying deep learning
methods (dos Santos and Gatti, 2014; Lee and
Dernoncourt, 2016), our work differs from them
in the leverage of corpus-level latent topic repre-
sentations for alleviating data sparsity issues. In
existing classification models using topic features,
pre-trained topic mixtures are leveraged as part of
features (Phan et al., 2008; Ren et al., 2016; Chen
et al., 2017). Differently, our model encodes topic
representations in a memory mechanism where
topics are induced jointly with text classification
in an end-to-end manner.
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Topic Models. Well-known topic models,
e.g., probabilistic latent semantic analysis
(pLSA) (Hofmann, 1999) and latent Dirichlet
allocation (LDA) (Blei et al., 2003), have shown
advantages in capturing effective semantic rep-
resentations, and proven beneficial to varying
downstream applications, such as summariza-
tion (Haghighi and Vanderwende, 2009) and
recommendation (Zeng et al., 2018; Bai et al.,
2018). For short text data, topic model variants
have been proposed to reduce the effects of spar-
sity issues on topic modeling, such as biterm topic
model (BTM) (Yan et al., 2013) and LeadLDA (Li
et al., 2016b). Recently, owing to the popularity
of variational auto-encoder (VAE) (Kingma and
Welling, 2013), it is able to induce latent topics
in neural networks, namely, neural topic models
(NTM) (Miao et al., 2017; Srivastava and Sutton,
2017). Although the concept of NTM has been
mentioned earlier in Cao et al. (2015), their model
is based on matrix factorization. Differently,
VAE-style NTM (Srivastava and Sutton, 2017;
Miao et al., 2017) follows the LDA fashion as
probabilistic generative models, which is easy to
interpret and extend. The NTM in our framework
is in VAE-style, whose effects on short text
classification serve as the key focus of our work.

6 Conclusion

We have presented topic memory networks that
exploit corpus-level topic representations with a
topic memory mechanism for short text classifica-
tion. The model alleviates data sparsity issues via
jointly learning latent topics and text categories.
Empirical comparisons with state-of-the-art mod-
els on four benchmark datasets have demonstrated
the validity and effectiveness of our model, where
better results have been achieved on both short text
classification and topic coherence evaluation.
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Abstract

Large multi-label datasets contain labels that
occur thousands of times (frequent group),
those that occur only a few times (few-shot
group), and labels that never appear in the
training dataset (zero-shot group). Multi-label
few- and zero-shot label prediction is mostly
unexplored on datasets with large label spaces,
especially for text classification. In this pa-
per, we perform a fine-grained evaluation to
understand how state-of-the-art methods per-
form on infrequent labels. Furthermore, we
develop few- and zero-shot methods for multi-
label text classification when there is a known
structure over the label space, and evaluate
them on two publicly available medical text
datasets: MIMIC II and MIMIC III. For few-
shot labels we achieve improvements of 6.2%
and 4.8% in R@10 for MIMIC II and MIMIC
III, respectively, over prior efforts; the corre-
sponding R@10 improvements for zero-shot
labels are 17.3% and 19%.

1 Introduction

Unlike in binary or multi-class problems, for
multi-label classification a model assigns a set of
labels to each input instance (Tsoumakas et al.,
2010). Large-scale multi-label text classification
problems can be found in several domains. For
example, Wikipedia articles are annotated with
labels used to organize documents and facilitate
search (Partalas et al., 2015). Biomedical arti-
cles indexed by the PubMed search engine are
manually annotated with medical subject head-
ings (Tsatsaronis et al., 2012). In healthcare fa-
cilities, medical records are assigned a set of
standardized codes for billing purposes (NCHS,
1978). Automatically annotating tweets with
hashtags, while the labels are not fixed, can also
be represented as a large-scale multi-label classifi-
cation problem (Weston et al., 2014).
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Figure 1: This plot shows the label frequency distribu-
tion of ICD-9 codes in MIMIC III.

There are two major difficulties when devel-
oping machine learning methods for large-scale
multi-label text classification problems. First, the
documents may be long, sometimes containing
more than a thousand words (Mullenbach et al.,
2018). Finding the relevant information in a large
document for a specific label results in needle in a
haystack situation. Second, data sparsity is a com-
mon problem; as the total number of labels grows,
a few labels may occur frequently, but most labels
will occur infrequently. Rubin et al. (2012) refer to
datasets that have long-tail frequency distributions
as “power-law datasets”. Methods that predict in-
frequent labels fall under the paradigm of few-shot
classification which refers to supervised methods
in which only a few examples, typically between 1
and 5, are available in the training dataset for each
label. With predefined label spaces, some labels
may never appear in the training dataset. Zero-
shot problems extend the idea of few-shot classi-
fication by assuming no training data is available
for the labels we wish to predict at test time. In
this paper, we explore both of these issues, long
documents and power-law datasets, with an em-
phasis on analyzing the few- and zero-shot aspects
of large-scale multi-label problems.
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In Figure 1, we plot the label frequency distri-
bution of diagnosis and procedure labels for the
entire MIMIC III (Johnson et al., 2016) dataset. A
few labels occur more than 10,000 times, around
5,000 labels occur between 1 and 10 times, and of
the 17,000 diagnosis and procedure labels, more
than 50% never occur. There are a few reasons
a label may never occur in the training dataset.
In healthcare, sevearl disorders are rare; there-
fore corresponding labels may not have been ob-
served yet in a particular clinic. Sometimes new
labels may be introduced as the field evolves lead-
ing to an emerging label problem. This is intu-
itive for applications such as hashtag prediction on
Twitter. For example, last year it would not have
made sense to annotate tweets with the hashtag
#EMNLP2018. Yet, as this year’s conference ap-
proaches, labeling tweets with the #EMNLP2018
will help users find relevant information.

Infrequent labels may not contribute heavily to
the overall accuracy of a multi-label model, but
in some cases, correct prediction of such labels
is crucial but not straightforward. For example,
in assigning diagnosis labels to EMRs, it is im-
portant that trained human coders are both accu-
rate and thorough. Errors may cause unfair finan-
cial burden on the patient. Coders may have an
easier time assigning frequent labels to EMRs be-
cause they are encountered more often. Also, fre-
quent labels are generally easier to predict using
machine-learning based methods. However, infre-
quent or obscure labels will be easily confused or
missed causing billing mistakes and/or causing the
coders to spend more time annotating each record.
Thus, we believe methods that handle infrequent
and unseen labels in the multi-label setting are im-
portant.

Current evaluation methods for large-scale
multi-label classification mostly ignore infrequent
and unseen labels. Popular evaluation measures
focus on metrics such as micro-F1, recall at
k (R@k), precision at k (P@k), and macro-F1. As
it is well-known that micro-F1 gives more weight
to frequent labels, papers on this topic also report
macro-F1, the average of label-wise F1 scores,
which equally weights all labels. Unfortunately,
macro-F1 scores are generally low and the corre-
sponding performance differences between meth-
ods are small. Moreover, it is possible to im-
prove macro-F1 by only improving a model’s per-
formance on frequent labels, further confounding

its interpretation. Hence we posit that macro-F1
is not enough to compare large-scale multi-label
learning methods on infrequent labels and it does
not directly evaluate zero-shot labels. Here, we
take a step back and ask: can the model predict
the correct few-shot (zero-shot) labels from the
set of all few-shot (zero-shot) labels? To address
this, we test our approach by adapting the general-
ized zero-shot classification evaluation methodol-
ogy by Xian et al. (2017) to the multi-label setting.

In this paper, we propose and evaluate a neural
architecture suitable for handling few- and zero-
shot labels in the multi-label setting where the out-
put label space satisfies two constraints: (1). the
labels are connected forming a DAG and (2). each
label has a brief natural language descriptor. These
assumptions hold in several multi-label scenar-
ios including assigning diagnoses/procedures to
EMRs, indexing biomedical articles with medical
subject headings, and patent classification. Tak-
ing advantage of this prior knowledge on labels is
vital for zero-shot prediction. Specifically, using
the EMR coding use-case, we make the following
contributions:

1. We overcome issues arising from processing
long documents by introducing a new neural
architecture that expands on recent attention-
based CNNs (ACNNs (Mullenbach et al.,
2018)). Our model learns to predict few- and
zero-shot labels by matching discharge sum-
maries in EMRs to feature vectors for each
label obtained by exploiting structured label
spaces with graph CNNs (GCNNs (Kipf and
Welling, 2017)).

2. We provide a fine-grained evaluation of state-
of-the-art EMR coding methods for frequent,
few-shot, and zero-shot labels. By evaluating
power-law datasets using an extended gen-
eralized zero-shot methodology that also in-
cludes few-shot labels, we present a nuanced
analysis of model performance on infrequent
labels.

2 Related Work

Large-Scale Text Classification. Linear meth-
ods have been successfully applied to large-scale
problems (Tang et al., 2009; Papanikolaou et al.,
2015; Rios and Kavuluru, 2015). For traditional
micro- and macro-F1 measures, Tang et al. (2009)
show that linear methods suffer using naive thresh-
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olding strategies because infrequent labels gener-
ally need a smaller threshold. Generative models
have also been promising for datasets with many
labels (Rubin et al., 2012). Intuitively, by us-
ing a prior distribution over the label space, in-
frequent labels can be modeled better. Finally,
large-scale classification is also pursued as “ex-
treme classification” (Yu et al., 2014; Bhatia et al.,
2015) where the focus is on ranking measures that
ignore infrequent labels. Neural networks (NNs)
perform well for many small-scale classification
tasks (Kim, 2014; Kalchbrenner et al., 2014). Re-
cently, researchers have been exploring NN meth-
ods for large-scale problems. Yang et al. (2016)
develop a hierarchical attentive NN for datasets
with over a million documents, but their datasets
contain few labels. Nam et al. (2014) show that
feed-forward NNs can be successfully applied to
large-scale problems through the use of a multi-
label binary cross-entropy loss function. Vani et al.
(2017) introduce a grounded recurrent neural net-
work (RNN) that iteratively updates its predictions
as it processes a document word-by-word. Baumel
et al. (2018) experiment with both CNNs and
RNNs for medical coding. Finally, Mullenbach
et al. (2018) expand on prior ACNNs (Yang et al.,
2016; Allamanis et al., 2016) to develop a label-
wise attention framework where the most infor-
mative ngrams are extracted for each label in the
dataset. Our attention mechanism extends their
work to the zero-shot setting.

Few-Shot and Zero-Shot Learning. While
neural networks are generally considered to need
large datasets, they have been shown to work well
on few-shot classification tasks. To handle in-
frequent labels, most NN methods use a k-NN-
like approach. Siamese NNs (Koch et al., 2015)
learn a nonlinear distance metric using a pair-
wise loss function. Matching networks (Vinyals
et al., 2016) introduce an instance-level attention
method to find relevant neighbors. Prototypical
Networks (Snell et al., 2017) average all instances
in each class to form “prototype label vectors”
and train using a traditional cross-entropy loss.
In our prior work (Rios and Kavuluru, 2018), we
combine matching networks with a sophisticated
thresholding strategy. However, in Rios and Kavu-
luru (2018) we did not explore the few- and zero-
shot settings.

Zero-shot learning has not been widely ex-
plored in the large-scale multi-label classification

scenario. Like neural few-shot methods, neural
zero-shot methods use a matching framework. In-
stead of matching input instances with other in-
stances, they are matched to predefined label vec-
tors. For example, the Attributes and Animals
Dataset (Xian et al., 2017) contains images of an-
imals and the label vectors consist of features de-
scribing the types of animals (e.g., stripes: yes).
When feature vectors for labels are not available,
the average of the pretrained word embeddings of
the class names have been used. The attribute la-
bel embedding method (Akata et al., 2016) uses a
pairwise ranking loss to match zero-shot label vec-
tors to instances. Romera-Paredes and Torr (2015)
introduced the “embarrassingly simple zero-shot
learning” (ESZSL) method which is trained us-
ing a mean squared error loss. A few zero-shot
methods do not translate well to multi-label prob-
lems. CONSE (Mikolov et al., 2013) averages
the embeddings for the top predicted supervised
label vectors to match to zero-shot label vectors.
CONSE assumes that both supervised and zero-
shot labels cannot be assigned to the same in-
stance. In this paper, we expand on the gen-
eralized zero-shot evaluation methodology intro-
duced by Xian et al. (2017) to large-scale multi-
label classification. Finally, it is important to note
that zero-shot classification has been previously
studied in the multi-label setting (Mensink et al.,
2014). However, they focus on image classifica-
tion and use datasets with around 300 labels.

Graph Convolutional Neural Networks. GC-
NNs generalize CNNs beyond 2d and 1d
spaces. Defferrard et al. (2016) developed spec-
tral methods to perform efficient graph convolu-
tions. Kipf and Welling (2017) assume a graph
structure is known over input instances and ap-
ply GCNNs for semi-supervised learning. GCNNs
are applied to relational data (e.g., link prediction)
by Schlichtkrull et al. (2018). GCNNs have also
had success in other NLP tasks such as semantic
role labeling (Marcheggiani and Titov, 2017), de-
pendency parsing (Strubell and McCallum, 2017),
and machine translation (Bastings et al., 2017).

There are three GCNN papers that share simi-
larities with our work. (i) Peng et al. (2018) use a
GCNN on a word co-occurrence graph for large-s-
cale text classification where the GCNN operates
on documents/words, while our GCNN operates
on the labels. (ii) Chen et al. (2017) use GC-
NNs on structured label spaces. However, their
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Figure 2: This figure provides a visual overview of our method. Intuitively, our method has two main components.
The first component is a CNN that operates operates on the EMRs. The other component is a 2-layer GCNN which
creates the label-specific attention vectors and label-vectors used for ranking using ICD-9 descriptions as input.

experiments focus on smaller label spaces and do
not handle/assess zero-shot and few-shot labels.
Also, their experiments for text classification do
not incorporate attention and simply use an aver-
age of word vectors to represent each document.
(iii) Wang et al. (2018) propose a zero-shot GCNN
image classification method for structured multi-
-class problems. We believe their method may
transfer to the multi-label text classification setting
but exact modifications to affect that are not clear
(i.e., their semi-supervised approach may not be
directly applicable). Likewise, porting to text is
nontrivial for long documents.

3 Method

Figure 2 shows the overall schematic of our archi-
tecture. Intuitively, we incorporate four main com-
ponents. First, we assume we have the full English
descriptor/gloss for each label we want to predict.
We form a vector representation for each label by
averaging the word embeddings for each word in
its descriptor. Second, the label vectors formed
from the descriptor are used as attention vectors
(label-wise attention) to find the most informative
ngrams in the document for each label. For each
label, this will produce a separate vector repre-
sentation of the input document. Third, the label
vectors are passed through a two layer GCNN to
incorporate hierarchical information about the la-
bel space. Finally, the vectors returned from the
GCNN are matched to the document vectors to

generate predictions.

Convolutional Neural Network. Contrary to
prior CNN methods for text (Kim, 2014), instead
of using a max-over-time pooling layer, we learn
to find relevant ngrams in a document for each
label via label-wise attention (Mullenbach et al.,
2018). The CNN will return a document feature
matrix D 2 R

(n�s+1)⇥u where each column of D
is a feature map, u is the total number of convolu-
tion filters, n is the number of words in the docu-
ment, and s is the width of convolution filters.

Label Vectors. To be able to predict labels that
were not in the training dataset, we avoid learn-
ing label specific parameters. We use the label
descriptors to generate a feature vector for each la-
bel. First, to preprocess each descriptor, we lower-
case all words and remove stop-words. Next, each
label vector is formed by averaging the remaining
words in the descriptor

vi =
1

|N |
X

j2N

wj , i = 1, . . . , L, (1)

where vi 2 R
d, L is the number of labels, and N

is the index set of the words in the descriptor. Prior
zero-shot work has focused on projecting input in-
stances into the same semantic space as the label
vectors (Sandouk and Chen, 2016). For zero-shot
image classification, this is a non-trivial task. Be-
cause we work with textual data, we simply share
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the word embeddings between the convolutional
layer and the label vector creation step to form vi.

Label-Wise Attention. Similar to the work
by Mullenbach et al. (2018), we employ label-wise
attention to avoid the needle in the haystack situa-
tion encountered with long documents. The issue
with simply using a single attention vector or using
max-pooling is that we assume a single vector can
capture everything required to predict every label.
For example, with a single attention, we would
only look at one spot in the document and assume
that spot contains the relevant information needed
to predict all labels. In the multi-class setting, this
assumption is plausible. However, for large multi-
label problems, the relevant information for each
label may be scattered throughout the document
– the problem is worse when the documents are
very long. Using label-wise attention, our model
can focus on different sections. We also need to
find relevant information for zero-shot classes. So
we use the label vectors vi rather than learning la-
bel specific attention parameters. First, we pass
the document feature matrix D through a simple
feed-forward neural network

D2 = tanh(DWb + bb)

where Wb 2 R
u⇥d and bb 2 R

d. This mapping is
important because the dimensionality of the ngram
vectors (rows) in D depends on u, the number of
scores we generate for each ngram. Given D2, we
generate the label-wise attention vector

ai = softmax(D2 vi), i = 1, . . . , L, (2)

where ai 2 R
n�s+1 measures how informative

each ngram is for the i-th label. Finally, we use
D, and generate L label-specific document vector
representations

ci = aT
i D, i = 1, . . . , L,

such that ci 2 R
u. Intuitively, ci is the weighted

average of the rows in D forming a vector repre-
sentation of the document for the i-th label.

GCNN Output Layer. Traditionally, the output
layer of a CNN would learn label specific param-
eters optimized via a cross-entropy loss. Instead,
our method attempts to match documents to their
corresponding label vectors. In essence, this be-
comes a retrieval problem. Before using each doc-
ument representation ci to score its corresponding

label, we take advantage of the structured knowl-
edge we have over our label space using a 2-layer
GCNN. For both the MIMIC II and MIMIC III
datasets, this information is hierarchical. A snip-
pet of the hierarchy can be found in Figure 2.

Starting with the label vectors vi, we combine
the label vectors of the children and parents for the
i-th label to form

v1
i = f(W1vi+

X

j2Np

W1
pvj

|Np|
+

X

j2Nc

W1
cvj

|Nc|
+b1

g)

where W1 2 R
q⇥d, W1

p 2 R
q⇥d, W1

c 2 R
q⇥d,

b1
g 2 R

q, f is the rectified linear unit (Nair and
Hinton, 2010) function, and Nc (Np) is the index
set of the i-th label’s children (parents). We use
different parameters to distinguish each edge type.
In this paper, given we only deal with hierarchies,
the edge types include edges from parents, from
children, and self edges. This can be adapted to
arbitrary DAGs, where parent edges represent all
incoming edges and the child edges represent all
outgoing edges for each node.

The second layer follows the same formulation
as the first layer with

v2
i = f(W2v1

i +
X

j2Np

W2
pv

1
j

|Np|
+

X

j2Nc

W2
cv

1
j

|Nc|
+b2

g)

where W2 2 R
q⇥q, W2

p 2 R
q⇥q, W2

c 2 R
q⇥q,

and b2
g 2 R

q. Next, we concatenate both the av-
eraged description vector (from equation (1)) with
the GCNN label vector to form

v3
i = vi || v2

i ,

where v3
i 2 R

d+q. Now, to compare the final label
vector v3

i with its document vector ci, we trans-
form the document vector into

ei = ReLU(Woci + bo), i = 1, . . . , L,

where Wo 2 R
(q+d)⇥u and bo 2 R

q+d. This
transformation is required to match the dimension
to that of v3

i . Finally, the prediction for each label
i is generated via

ŷi = sigmoid(eT
i v3

i ), i = 1, . . . , L.

During experiments, we found that using either the
output layer GCNN or a separate GCNN for the
attention vectors (equation (2)) did not result in an
improvement and severely slowed convergence.
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Training. We train our model using a multi-
label binary cross-entropy loss (Nam et al., 2014)

L =
LX

i=1

⇥
� yi log(ŷi) � (1 � yi) log(1 � ŷi)

⇤
,

where yi 2 {0, 1} is the ground truth for the i-th
label and ŷi is our sigmoid score for the i-th label.

4 Experiments

In this paper, we use two medical datasets for
evaluation purposes: MIMIC II (Jouhet et al.,
2012) and MIMIC III (Johnson et al., 2016).
Both datasets contain discharge summaries anno-
tated with a set of ICD-9 diagnosis and proce-
dure labels. Discharge summaries are textual doc-
uments consisting of, but not limited to, physi-
cian descriptions of procedures performed, diag-
noses made, the patient’s medical history, and dis-
charge instructions. Following a generalized zero-
shot learning evaluation methodology (Xian et al.,
2017), we split the ICD-9 labels into three groups
based on frequencies in the training dataset: The
frequent group S that contains all labels that oc-
cur > 5 times, the few-shot group F that contains
labels that occur between 1 and 5 times, and the
zero-shot group Z of labels that never occur in the
training dataset, but occur in the test/dev sets. The
groups are only used for evaluation. That is, dur-
ing training, systems are optimized over all labels
simultaneously. Instances that do not contain few-
or zero-shot classes are removed from their re-
spective groups during evaluation. This grouping
is important to assess how each model performs
across labels grouped by label frequency. Our
evaluation methodology differs from that of Xian
et al. (2017) in two ways. First, because each in-
stance is labeled with multiple labels, the same
instance can appear in all groups — S, F, and Z.
Second, instead of top-1 accuracy or HIT@k eval-
uation measures, we focus on R@k to handle mul-
tiple labels. At a high level, we want to examine
whether a model can distinguish the correct few-
shot (zero-shot) labels from the set of all few-shot
(zero-shot) labels. Therefore, the R@k measures
in Tables 2 and 3, and Figure 3 are computed rela-
tive to each group.

Evaluation Measures. The overall statistics for
these two datasets are reported in Table 1. For
reproducibility purposes, we use the same train-
ing/test splits of the MIMIC II as Perotte et al.

# Labels
Dataset # Train # Test S F Z

MIMIC II 18822 1711 3228 3459 355
MIMIC III 37016 1356 4403 4349 178

Table 1: Dataset statistics for MIMIC II and
MIMIC III.

(2013). Following the procedures in Perotte et al.
(2013) and Vani et al. (2017), for each diagnosis
and procedure label assigned to each medical re-
port, we add its parents using the ICD-9 hierarchy.
Each report in MIMIC II is annotated with nearly
37 labels on average using hierarchical label ex-
pansion.

MIMIC III does not contain a standardized
training/test split. Therefore, we create our own
split that ensures the same patient does not appear
in both the training and test datasets. Unlike the
MIMIC II dataset, we do not augment the labels
using the ICD-9 hierarchy. The ICD-9 hierarchy
has three main levels. For MIMIC III, level 0 la-
bels make up about 5% of all occurrences, level 1
labels make up about 62%, and level 2 (leaf level)
labels make up about 33%. Also, each MIMIC III
instance contains16 ICD-9 labels on average.

ICD-9 Structure and Descriptors. The Inter-
national Classification of Diseases (ICD) contains
alphanumeric diagnosis and procedure codes that
are used by hospitals to standardize their billing
practices. In the following experiments, we use
the 9th edition of the ICD1. Each ICD-9 identifier
contains between 3 to 5 alphanumeric characters
of the form abc.xy. The alphanumeric structure
defines a simple hierarchy over all ICD-9 codes.
For example, “systolic heart failure” (428.2) and
“diastolic heart failure” (428.3) are both children
of the “heart failure” code 428. Furthermore, se-
quential codes are grouped together. For instance,
numeric codes in the range 390-459 contain “Dis-
eases of the Circulatory System”. Furthermore,
each code, including groups of codes (390-459),
contain short descriptors, where the average de-
scriptor length contains seven words2. In this
work, we use both the group descriptors and in-

1The US transitioned from ICD-9 to ICD-10 in 2015. Un-
fortunately, at the time of publication, large publicly available
ICD-10 EMR datasets are unavailable.

2The descriptors and hierarchy used in this paper can be
found at https://bioportal.bioontology.org/
ontologies/ICD9CM
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S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 0.000 0.000 0.000 0.000 0.011 0.032 0.000 0.000

Logistic (Vani et al., 2017) * 0.137 0.247 0.001 0.003 – – – –
CNN (Baumel et al., 2018) * 0.138 0.250 0.050 0.082 – – – –
ACNN (Mullenbach et al., 2018) * 0.138 0.255 0.046 0.081 – – – –
Match-CNN (Rios and Kavuluru, 2018) 0.137 0.247 0.031 0.042 – – – –

ESZSL + W2V 0.074 0.119 0.008 0.017 0.080 0.172 0.020 0.041
ESZSL + W2V 2 0.050 0.086 0.025 0.044 0.103 0.189 0.043 0.076
ESZSL + GRALS 0.135 0.238 0.081 0.123 0.085 0.136 0.095 0.152

ZACNN 0.135 0.245 0.103 0.149 0.147 0.221 0.128 0.205
ZAGCNN 0.135 0.247 0.130 0.185 0.269 0.362 0.160 0.246

Table 2: MIMIC II results across frequent (S), few-shot (F), and zero-shot (Z) groups. We mark prior methods for
MIMIC datasets that we implemented with a *.

S F Z Harmonic Average
R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

Random 0.000 0.000 0.000 0.000 0.038 0.052 0.000 0.000

Logistic (Vani et al., 2017) * 0.273 0.427 0.014 0.014 – – – –
CNN (Baumel et al., 2018) * 0.269 0.413 0.058 0.085 – – – –
ACNN (Mullenbach et al., 2018) * 0.288 0.458 0.130 0.168 – – – –
Match-CNN (Rios and Kavuluru, 2018) 0.278 0.426 0.049 0.060 – – – –

ESZSL + W2V 0.135 0.191 0.031 0.051 0.157 0.257 0.065 0.105
ESZSL + W2V 2 0.127 0.189 0.031 0.048 0.148 0.305 0.063 0.102
ESZSL + GRALS 0.256 0.393 0.033 0.060 0.076 0.138 0.064 0.114

ZACNN 0.278 0.435 0.152 0.195 0.364 0.442 0.232 0.310
ZAGCNN 0.283 0.445 0.166 0.216 0.428 0.495 0.252 0.337

Table 3: MIMIC III results across frequent (S), few-shot (F), and zero-shot (Z) groups. We mark prior methods for
MIMIC datasets that we implemented with a *.

dividual descriptors as input to the GCNN. At test
time, we ignore the group codes.

Implementation Details. For the CNN com-
ponent of our model, we use 300 convolution
filters with a filter size of 10. We use 300 dimen-
sional word embeddings pretrained on PubMed
biomedical article titles and abstracts. To avoid
overfitting, we use dropout directly after the em-
bedding layer with a rate of 0.2. For training we
use the ADAM (Kingma and Ba, 2015) optimizer
with a minibatch size of 8 and a learning rate
of 0.001. q, the GCNN hidden layer size, is set
to 300. The code for our method is available
at https://github.com/bionlproc/
multi-label-zero-shot.

Thresholding has a large influence on traditional
multi-label evaluation measures such as micro-F1
and macro-F1 (Tang et al., 2009). Hence, we re-
port both recall at k (R@k) and precision at k

(P@k) which do not require a specific threshold.
R@k is preferred for few- and zero-shot labels,
because P@k quickly goes to zero as k increases
and gets bigger than the number of group specific
labels assigned to each instance. Furthermore, for
medical coding, these models are typically used as
a recommendation engine to help coders. Unless
a label appears at the top of the ranking, the anno-
tator will not see it. Thus, ranking metrics better
measure the usefulness of our systems.

Baseline Methods. For the frequent and few-
shot labels we compare to state-of-the-art meth-
ods on the MIMIC II and MIMIC III datasets in-
cluding ACNN (Mullenbach et al., 2018) and a
CNN method introduced in Baumel et al. (2018).
We also compare with the L1 regularized logistic
regression model used in Vani et al. (2017). Fi-
nally, we compare against our prior EMR coding
method, Match-CNN (Rios and Kavuluru, 2018).
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P@10 R@10 Macro-F1

CNN 0.562 0.407 0.028
ACNN 0.624 0.452 0.068
Match-CNN 0.561 0.415 0.033
ZACNN 0.577 0.429 0.037
ZAGCNN 0.587 0.439 0.038

Table 4: P@k, R@k, and macro-F1 results over all la-
bels (the union of S, F, and Z).

For zero-shot learning, we compare our results
with ESZSL (Romera-Paredes and Torr, 2015).
To use ESZSL, we must specify feature vectors
for each label. For zero-shot methods, the label
vectors used are crucial regardless of the learning
method used. Therefore, we evaluate ESZSL with
three different sets of label vectors. We average
200 dimensional ICD-9 descriptor word embed-
dings generated by Pyysalo et al. (2013) which are
pretrained on PubMed, Wikipedia, and PubMed
Central (ESZSL + W2V). We lowercased descrip-
tors and removed stop-words. We also compare
with label vectors derived from our own 300 di-
mensional embeddings (ESZSL + W2V 2) pre-
trained on PubMed indexed titles and abstracts.
Finally, we generate label vectors using the ICD-9
hierarchy. Specifically, let Y 2 R

N⇥L be the doc-
ument label matrix where N is the total number
of documents. We factorize Y into two matrices
U 2 R

N⇥300 and V 2 R
300⇥L using graph reg-

ularized alternating least squares (GRALS) (Rao
et al., 2015). Finally, we also report a baseline
using a random ordering on labels, which is im-
portant for zero-shot labels — because the total
number of such labels is small, the chance that the
correct label is in the top k is higher compared to
few-shot and frequent labels.

We compare two variants of our method: zero-
shot attentive GCNN (ZAGCNN), which is the full
method described in Section 3 and a simpler vari-
ant without the GCNN layers, zero-shot attentive
CNN (ZACNN)3.

Results. Table 2 shows the results for MIMIC II.
Because the label set for each medical record is
augmented using the ICD-9 hierarchy, we expect
methods that use the hierarchy to have an advan-

3We name our methods with the “zero-shot” prefix be-
cause they are primarily designed for such scenarios, al-
though as we show later that these methods are effective for
both few-shot and frequent labels
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Figure 3: This graph plots the MIMIC III R@k for few-
shot (F) labels at different k values.

tage. Table 2 results do not rely on thresholding
because we evaluate using the relative ranking of
groups with similar frequencies. ACNN performs
best on frequent labels. For few-shot labels, ZA-
GCNN outperforms ACNN by over 10% in R@10
and by 8% in R@5; compared to these R@k gains
for few-shot labels, our loss on frequent labels is
minimal (< 1%). We find that the word embed-
ding derived label vectors work best for ESZSL
on zero-shot labels. However, this setup is out-
performed by GRALS derived label vectors on the
frequent and few-shot labels. On zero-shot labels,
ZAGCNN outperforms the best ESZSL variant by
over 16% for both R@5 and R@10. Also, we find
that the GCNN layers help both few- and zero-
shot labels. Finally, similar to the setup in Xian
et al. (2017), we also compute the harmonic av-
erage across all R@5 and all R@10 scores. The
metric is only computed for methods that can pre-
dict zero-shot classes. We find that ZAGCNN out-
performs ZACNN by 4% for R@10.

We report the MIMIC III results in Table 3.
Unlike for MIMIC II, the label sets were not ex-
panded using the ICD-9 hierarchy. Yet, we find
substantial improvements on both few- and zero-
shot labels using a GCNN. ZAGCNN outperforms
ACNN by almost 5% and ZACNN by 1% in
R@10 on few-shot classes. However, ACNN still
outperforms all other methods on frequent labels,
but by only 0.3% when compared with ZAGCNN.
For zero-shot labels, ZAGCNN outperforms ZA-
CNN by over 5% and outperforms the best ES-
ZSL method by nearly 20% in R@10. We find
that ZACNN slightly underperforms ZAGCNN on
frequent labels with more prominent differences
showing up for infrequent labels.

In Table 4 we compare the P@10, R@10, and

3139



macro-F1 measures across all three groups (the
union of S, F , and Z) on the MIMIC III dataset.
We emphasize that the evaluation metrics are cal-
culated over all labels and are not averages of the
metrics computed independently for each group.
We find that R@10 is nearly equivalent to the
R@10 on the frequent group in Table 3. Further-
more, we find that ACNN outperforms ZAGCNN
in P@10 by almost 4%. To compare all meth-
ods with respect to macro-F1, we simply threshold
each label at 0.5. Both R@k and P@k give more
weight to frequent labels, thus it is expected that
ACNN outperforms ZAGCNN for frequent labels.
However, we also find that ACNN outperforms our
methods with respect to Macro-F1.

Given macro-F1 equally weights all labels, does
the higher macro score mean ACNN performs bet-
ter across infrequent labels? In Figure 3, we plot
the MIMIC III R@k for the neural methods with
k ranging from 1 to 100. We find as k increases,
the differences between ZAGCNN and ACNN be-
come more evident. Given Figure 3 and the scores
in Table 3, it is clear that ACNN does not per-
form better than ZAGCNN with respect to few-
and zero-shot labels. The improvement in macro-
F1 for ACNN is because it performs better on fre-
quent labels. In general, infrequent labels will
have scores much less than 0.5. If we rank all
labels (S [ F [ Z), we find that few-shot labels
only occur among the top 16 ranked labels (aver-
age number of labels for MIMIC III) for 6% of the
test documents that contain them. This suggests
that many frequent irrelevant labels have higher
scores than the correct few-shot label.

Why do the rankings among few- and zero-shot
labels matter if they are rarely ranked above irrel-
evant frequent labels? If we can predict which in-
stances contain infrequent labels (novelty detec-
tion), then we can help human coders by provid-
ing them with multiple recommendation lists — a
list of frequent labels and a list of infrequent/zero-
shot labels. Also, while we would ideally want a
single method that performs best for both frequent
and infrequent labels, currently we find that there
is a trade-off between them. Hence it may be rea-
sonable to use different methods in combination
depending on label frequency.

5 Conclusion and Future Work

In this paper, we performed a fine-grained evalu-
ation of few- and zero-shot label learning in the

large-scale multi-label setting. We also introduced
a neural architecture that incorporates label de-
scriptors and the hierarchical structure of the label
spaces for few- and zero-shot prediction. For these
infrequent labels, previous evaluation methodolo-
gies do not provide a clear picture about what
works. By evaluating power-law datasets using
a generalized zero-shot learning methodology, we
provide a staring point toward a better understand-
ing. Our proposed architecture also provides large
improvements on infrequent labels over state-of-
the-art automatic medical coding methods.

We believe there are two important avenues for
future work.

1. For medical coding, a wealth of unstructured
domain expertise is available in biomedical
research articles indexed by PubMed. These
articles are annotated with medical subject
headings (MeSH terms), which are organized
in a hierarchy. Relationships between MeSH
terms and ICD-9 codes are available in Uni-
fied Medical Language System (UMLS (Bo-
denreider, 2004)). If we can take advantage
of all this structured and unstructured infor-
mation via methods such as transfer learning
or multi-task learning, then we may be able
to predict infrequent labels better.

2. For our method to be useful for human
coders, it is important to develop an accurate
novelty detector. We plan to study methods
for determining if an instance contains an in-
frequent label and if it does, how many in-
frequent labels it should be annotated with.
In essence, this is an extension of the Meta-
Labeler (Tang et al., 2009) methodology and
open classification (Shu et al., 2017). If we
can predict if an instance contains infrequent
labels, then we can recommend few- and
zero-shot labels only when necessary.
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Abstract

Poetry is one of the most beautiful forms of
human language art. As a crucial step to-
wards computer creativity, automatic poetry
generation has drawn researchers’ attention for
decades. In recent years, some neural mod-
els have made remarkable progress in this
task. However, they are all based on maximum
likelihood estimation, which only learns com-
mon patterns of the corpus and results in loss-
evaluation mismatch. Human experts evalu-
ate poetry in terms of some specific criteria,
instead of word-level likelihood. To handle
this problem, we directly model the criteria
and use them as explicit rewards to guide gra-
dient update by reinforcement learning, so as
to motivate the model to pursue higher scores.
Besides, inspired by writing theories, we pro-
pose a novel mutual reinforcement learning
schema. We simultaneously train two learn-
ers (generators) which learn not only from the
teacher (rewarder) but also from each other
to further improve performance. We experi-
ment on Chinese poetry. Based on a strong
basic model, our method achieves better re-
sults and outperforms the current state-of-the-
art method.

1 Introduction

Language is one of the most important forms of
human intelligence and poetry is a concise and
graceful art of human language. Across different
countries, nationalities and cultures, poetry is al-
ways popular, having far-reaching influence on the
development of human society.

In this work, we concentrate on automatic po-
etry generation. Besides the long-term goal of
building artificial intelligence, research on this
task could become the auxiliary tool to better anal-
yse poetry and understand the internal mechanism
of human writing. In addition, these generation

⇤ Corresponding author: sms@mail.tsinghua.edu.cn.

Figure 1: An artistic illustration of our mutual rein-
forcement learning method.

systems are also helpful for electronic entertain-
ments and literary education.

In recent years, neural networks have proven
to be powerful on poetry generation. Some neu-
ral models are proposed and achieve significant
improvement. However, existing models are all
based on maximum likelihood estimation (MLE),
which brings two substantial problems. First,
MLE-based models tend to remember common
patterns of the poetry corpus (Zhang et al., 2017),
such as high-frequency bigrams and stop words,
losing some diversity and innovation for generated
poetry. Moreover, based on word-level likelihood,
two kinds of loss-evaluation mismatch (Wiseman
and Rush, 2016) arise. One is evaluation gran-
ularity mismatch. When evaluating, human ex-
perts usually focus on sequence level (a poem line)
or discourse level (a whole poem), while MLE
optimizes word-level loss, which fails to hold a
wider view of generated poems. The other is cri-
teria mismatch. Instead of the likelihood, humans
usually evaluate poetry in terms of some criteria.
In this work we focus on the main four criteria
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(Manurung, 2003; Zhang and Lapata, 2014; Yan,
2016; Yi et al., 2017): fluency (are the lines fluent
and well-formed?), coherence (is the poem as a
whole coherent in meaning and theme?), mean-
ingfulness (does the poem convey some certain
messages?), overall quality (the reader’s general
impression on the poem). This mismatch may
make the model lean towards optimizing easier
criteria, e.g., fluency, and ignore other ones.

To tackle these problems, we directly model
the four aforementioned human evaluation crite-
ria and use them as explicit rewards to guide gra-
dient update by reinforcement learning. This is a
criterion-driven training process, which motivates
the model to generate poems with higher scores on
these criteria. Besides, in writing theories, writing
requires observing other learners (Bandura, 2001).
It is also shown that writing is supported as an ac-
tivity in which writers will learn from more ex-
perienced writers, such as other students, teach-
ers, or authors (Prior, 2006). Therefore it is nec-
essary to equip generators with the ability of mu-
tual learning and communication. Inspired by this,
we propose a novel mutual reinforcement learn-
ing schema (Figure 1), where we simultaneously
train two learners (generators). During the train-
ing process, one learner will learn not only from
the teacher (rewarder) but also from the other. We
will show this mutual learning-teaching process
leads to better results.

In summary, our contributions are as follows:

• To the best of our knowledge, for the sake of
tackling the loss-evaluation mismatch prob-
lem in poetry generation, we first utilize re-
inforcement learning to model and optimize
human evaluation criteria.

• We propose a novel mutual reinforcement
learning schema to further improve perfor-
mance, which is transparent to model archi-
tectures. One can apply it to any poetry gen-
eration model.

• We experiment on Chinese quatrains. Both
automatic and human evaluation results show
that our method outperforms a strong basic
method and the state-of-the-art model.

2 Related Work

As a desirable entry point of automatic analysing,
understanding and generating literary text, the re-
search on poetry generation has lasted for decades.

In recent twenty years, the models can be catego-
rized into two main paradigms.

The first one is based on statistical machine
learning methods. Genetic algorithms (Manurung,
2003; Levy, 2001), Statistical Machine Transla-
tion (SMT) approaches (He et al., 2012; Jiang and
Zhou, 2008) and Automatic Summarization ap-
proaches (Yan et al., 2013) are all adopted to gen-
erate poetry.

More recently, the second paradigm, neural net-
work, has shown great advantages in this task,
compared to statistical models. Recurrent Neu-
ral Network (RNN) is first used to generate Chi-
nese quatrains by (Zhang and Lapata, 2014). To
improve fluency and coherence, Zhang’s model
needs to be interpolated with extra SMT features
as shown in their paper. Focusing on coher-
ence, some works (Yi et al., 2017; Wang et al.,
2016a) use sequence-to-sequence model with at-
tention mechanism (Bahdanau et al., 2015) to gen-
erate poetry. Wang et al. (2016b) design a special
Planning schema, which plans some sub-keywords
in advance by a language model and then gen-
erates each line with the planned sub-keyword
to improve coherence. Pursuing better overall
quality, Yan (2016) proposes an iterative polish-
ing schema to generate Chinese poetry, which re-
fines the poem generated in one pass for sev-
eral times. Aiming at enhancing meaningfulness,
Ghazvininejad et al. (2016) extend user keywords
to incorporate richer semantic information. Zhang
et al. (2017) combine a neural memory, which
saves hundreds of human-authored poems, with
a sequence-to-sequence model to improve innova-
tion of generated poems and achieve style transfer.

These neural structures have made some
progress and improved different aspects of gener-
ated poetry. Nevertheless, as discussed in Section
1, the two essential problems, lack of diversity and
loss-evaluation mismatch, are still challenging re-
sulting from MLE. Compared to further adjusting
model structures, we believe a better solution is to
design more reasonable optimization objectives.

Deep Reinforcement Learning (DRL) first
shows its magic power in automatic game playing,
such as Atari electronic games (Mnih et al., 2013)
and the game of Go (Silver et al., 2016). Soon,
DRL is used to playing text games (Narasimhan
et al., 2015; He et al., 2016) and then applied to
dialogue generation (Li et al., 2016b).

From the perspective of poetry education, the
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teacher will judge student-created poems in terms
of some specific criteria and guide the student to
cover the shortage, which naturally accords with
DRL process. Therefore we take advantage of
DRL. We design four automatic rewarders for the
criteria, which act as the teacher. Furthermore,
we train two generators and make them learn from
each other, which imitates the mutual learning of
students, as a step towards multi-agent DRL in lit-
erary text generation.

3 Methods

3.1 Basic Generation Model

We apply our method to a basic poetry genera-
tion model, which is pre-trained with MLE. There-
fore, we first formalize our task and introduce this
model.

The inputs are user topics specified by K key-
words, W = {wk}K

k=1. The output is a poem con-
sisting of n lines, P = L1, L2, · · · , Ln. Since we
take the line-by-line generation process, the task
can be converted to the generation of an i-th line
given previous i-1 lines L1:i�1 and W .

We use GRU-based (Cho et al., 2014) sequence-
to-sequence model.

�!
h t ,

 �
h t and st represent

the forward encoder, backward encoder and de-
coder hidden states respectively. For each topic
word wk = c1, c2, · · · , cTk , we feed characters
into the encoder and get the keyword representa-
tion vk = [

�!
h Tk ;

 �
h Tk ], where [;] means concate-

nation. Then we get the topic representation by1:

o = f(
1

K

KX

t=1

vk), (1)

where f defines a non-linear layer.
Denote the generated i-th line in decoder, Y =

(y1y2 . . . yTi). e(yt) is the word embedding of yt.
The probability distribution of each yt to be gen-
erated in Li is calculated by:

st = GRU(st�1, [e(yt�1); o; gi�1]), (2)
P (yt|y1:t�1, L1:i�1, W) = softmax(Wst), (3)

where W is the projection parameter. gi�1 is a
global history vector, which records what has been
generated so far and provides global-level infor-
mation for the model. Once Li is generated, it is

1For brevity, we omit biases in all equations.

updated by a convolutional layer:

at = f([st; · · · ; st+d�1]), (4)

gi = f(gi�1,
X

t

at), g0 = 0, (5)

where 0 is a vector with all 0-s and d is convo-
lution window size. Then the basic model is pre-
trained by minimizing standard MLE loss:

LMLE(✓) = �
MX

m=1

logP (Pm|Wm; ✓), (6)

where M is data size and ✓ is the parameter set
to be trained.

This basic model is a modified version of (Yan,
2016). The main differences are that we replace
vanilla RNN with GRU unit, use convolution to
calculate the line representation rather than di-
rectly use the last decoder hidden state, and we
remove the polishing schema to better obverse the
influence of DRL itself. We select this model
as our basic framework since it achieves satisfac-
tory performance and the author has done thor-
ough comparisons with other models, such as (Yan
et al., 2013) and (Zhang and Lapata, 2014).

3.2 Single-Learner Reinforcement Learning
Before presenting the single-learner version of our
method (abbreviated as SRL), we first design cor-
responding automatic rewarders for the four hu-
man evaluation criteria.

Fluency Rewarder. We use a neural language
model to measure fluency. Given a poem line Li,
higher probability Plm(Li) indicates the line is
more likely to exist in the corpus and thus may
be more fluent and well-formed. However, it’s in-
advisable to directly use Plm(Li) as the reward,
since over high probability may damage diversity
and innovation. We expect moderate probabilities
which fall into a reasonable range, neither too high
nor too low. Therefore, we define the fluency re-
ward of a poem P as:

r(Li) = max(|Plm(Li)� µ|� �1 ⇤ �, 0), (7)

R1(P) =
1

n

nX

i=1

exp(�r(Li)), (8)

where µ and � are the mean value and standard
deviation of Plm calculated over all training sets.
�1 is a hyper-parameter to control the range.

Coherence Rewarder. For poetry, good coher-
ence means each line Li should be coherent with
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previous lines in a poem. We use Mutual Infor-
mation (MI) to measure the coherence of Li and
L1:i�1. As shown in (Li et al., 2016a), MI of two
sentences, S1 and S2, can be calculated by:

MI(S1, S2) = logP (S2|S1)� �logP (S2), (9)

where � is used to regulate the weight of generic
sentences. Based on this, we calculate the coher-
ence reward as:

MI(L1:i�1, Li) = logPseq2seq(Li|L1:i�1)

� �logPlm(Li),
(10)

R2(P) =
1

n� 1

nX

i=2

MI(L1:i�1, Li),

(11)

where Pseq2seq is a GRU-based sequence-to-
sequence model, which takes the concatenation of
previous i-1 lines as input, and predicts Li. A bet-
ter choice is to use a dynamic � instead of a static
one. Here we directly set � = exp(�r(Li)) + 1,
which gives smaller weights to lines with extreme
language model probabilities.

Meaningfulness Rewarder. In dialogue gen-
eration task, neural models are prone to generate
generic sentences such as “I don’t know” (Li et al.,
2016a; Serban et al., 2016). We observed similar
issues in poetry generation. The basic model tends
to generate some common and meaningless words,
such as bu zhi (don’t know), he chu (where), and
wu ren (no one). It’s quite intractable to quantify
the meaningfulness of a whole poem, but we find
that TF-IDF values of human-authored poems are
significantly higher than values of generated ones
(Figure 2). Consequently, we utilize TF-IDF to
motivate the model to generate more meaningful
words. This is a simple and rough attempt, but it
makes generated poems more “meaningful” from
the readers perspective.

Direct use of TF-IDF leads to serious out-of-
vocabulary (OOV) problem and high variance, be-
cause we need to sample poems during the train-
ing process of DRL, which causes many OOV
words. Therefore we use another neural network
to smooth TF-IDF values. In detail, we have:

R3(P) =
1

n

nX

i=1

F (Li), (12)

where F (Li) is a neural network which takes
a line as input and predicts its estimated TF-IDF

value. For each line in training sets, we calculate
standard TF-IDF values of all words and use the
average as the line TF-IDF value. Then we use
them to train F (Li) with Huber loss.

Overall Quality Rewarder. The three kinds
of rewards above are all based on line-level. In
fact, human experts will also focus on discourse-
level to judge the overall quality of a poem, ig-
noring some minor defects. We train a neural
classifier to classify a given poem (in terms of
the concatenation of all lines) into three classes:
computer-generated poetry (class 1), ordinary
human-authored poetry (class 2) and masterpiece
(class 3). Then we get the reward by:

R4(P) =
3X

k=1

Pcl(k|P) ⇤ k. (13)

This classifier should be as reliable as possible.
Due to the limited amount of masterpieces, normal
classifiers don’t work well. Therefore we use an
adversarial training based classifier (Miyato et al.,
2017), which achieves F-1 0.96, 0.73, 0.76 for the
three classes respectively on the validation set.

Based on these rewarders, the total reward is:

R(P) =
4X

j=1

↵j ⇤ R̃j(P), (14)

where ↵j is the weight and the symbol ˜ means
the four rewards are re-scaled to the same magni-
tude. As (Gulcehre et al., 2018), we reduce the
variance by:

R
0

(P) =
R(P)� bup

�2
u + ✏

�B(P), (15)

where bu and �u are running average and stan-
dard deviation of R respectively. B(P) is a neu-
ral network trained with Huber loss, which takes a
poem as input and predicts its estimated reward.

DRL Process. For brevity, we use Pg(·|W; ✓)
to represent a basic generator and use REIN-
FORCE algorithm (Williams, 1992) to optimize
the model, which minimizes:

LDRL(✓) = �
MX

m=1

EP⇠Pg(·|Wm;✓)(R
0

(P)).

(16)

Training with solely Eq.(16) is unstable. Lack-
ing of original MLE supervisory signals, the
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Algorithm 1 Global Mutual Learning
1: Set history reward lists V1 and V2 empty;
2: for number of iterations do
3: Sample batch (Wm, Pm

g ) from training
data set;

4: for each Wm do
5: Sample Pm

1 ⇠ Pg(·|Wm; ✓1);
6: Sample Pm

2 ⇠ Pg(·|Wm; ✓2);
7: Add R(Pm

1 ) to V1, R(Pm
2 ) to V2

8: end for
9: Set LM (✓1)=L(✓1), LM (✓2)=L(✓2);

10: if mean value V2 > V1 ⇤ (1 + �3) then
11: LM (✓1)=L(✓1) + KL(Pg(✓2)||Pg(✓1));
12: else if V1 > V2 ⇤ (1 + �3) then
13: LM (✓2)=L(✓2) + KL(Pg(✓1)||Pg(✓2));
14: end if
15: Update ✓1 with LM (✓1), ✓2 with LM (✓2);
16: end for

model is easy to get lost and totally ignore the cor-
responding topics specified by W , leading to ex-
plosive increase of MLE loss. We use two steps to
alleviate this issue. The first one is the Teacher
Forcing (Li et al., 2017). For each W , we es-
timate E(R

0

(P)) by ns sampled poems, as well
as the ground-truth Pg whose reward is set to
max(R

0

(Pg), 0). The second step is to combine
MLE loss and DRL loss as:

L(✓) = (1� �) ⇤ LMLE(✓) + � ⇤ L̃DRL(✓),
(17)

where ˜ means the DRL loss is re-scaled to the
same magnitude with MLE loss. Ultimately, we
use Eq.(17) to fine-tune the basic model.

3.3 Mutual Reinforcement Learning
As discussed in Section 1 & 2, to further im-

prove the performance, we mimic the mutual writ-
ing learning activity by simultaneously training
two generators defined as Pg(✓1) and Pg(✓2). The
two learners (generators) learns not only from the
teacher (rewarders) but also from each other.

From the perspective of machine learning, one
generator may not explore the policy space suffi-
ciently and thus is easy to get stuck in the local
minima. Two generators can explore along differ-
ent directions. Once one generator finds a better
path (higher reward), it can communicate with the
other and lead it towards this path. This process
could also be considered as the ensemble of dif-
ferent generators during the training phase.

Models R̃1 R̃2 R̃3 R̃4 R
Base 0.156 0.214 0.509 0.351 0.282
Mem 0.192 0.257 0.467 0.383 0.308
MRL 0.207 0.268 0.613 0.494 0.369
GT 0.582 0.609 0.625 0.759 0.649
SRL 0.169 0.228 0.563 0.432 0.321

LMRL 0.187 0.246 0.602 0.467 0.348
GMRL 0.199 0.262 0.606 0.480 0.360
MRL 0.207 0.268 0.613 0.494 0.369

Table 1: Automatic rewards of different models and
strategies. R̃1: fluency, R̃2: coherence, R̃3: mean-
ingfulness, R̃4: overall quality, R: weighted-average
reward. LMRL: local MRL, GMRL: global MRL.

We implement the Mutual Reinforcement
Learning (abbreviated as MRL) by two methods.

Local MRL. The first one is a simple instance-
based method. For the same input, suppose P1,
P2 are generated by Pg(✓1) and Pg(✓2) respec-
tively. If R(P1) > R(P2)⇤(1+�2) and R̃j(P1) >
R̃j(P2) for all j, then Pg(✓2) uses P1 instead of P2

to update itself in Eq.(16) and vice versa. That is,
if a learner creates a significantly better poem, then
the other learner will learn it. This process gives a
generator more high-reward instances and allows
it to explore larger space along a more proper di-
rection so as to escape from the local minima.

Global MRL. During the training process, we
need to sample poems from the generator, and
hence local MRL may cause high variance. In-
stead of an instance, mutual learning can also be
applied on the distribution level. We can pull the
distribution of a generator towards that of the other
by minimizing KL divergence of them. We de-
tail this method in algorithm 1. The inner thought
is that if learner 1 is generally better than learner
2, that is, during the creating history, learner 1
achieves higher average rewards, then learner 2
should directly learn from learner 1, rather than
learn the poem itself. This process allows the gen-
erator to learn from long-period history and focus
on a higher level.

In practice, we combine these two methods by
simultaneously communicating high-reward sam-
ples and using KL loss, which leads to the best
testing rewards (Table 1).

4 Experiments

4.1 Data and Setups
Our corpus consists of three sets: 117,392 Chinese
quatrains (CQ), 10,000 Chinese regulated verses
(CRV) and 10,000 Chinese iambics (CI). As men-
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Models Bigram Ratio Jaccard
Base 0.126 0.214
Mem 0.184 0.183
MRL 0.181 0.066
GT 0.218 0.006

SRL 0.133 0.146
LMRL 0.178 0.085
GMRL 0.186 0.075
MRL 0.181 0.066

Table 2: Automatic evaluation results of diversity and
innovation. The Jaccard values are multiplied by 10 for
clearer observation. We expect higher bigram ratio and
smaller Jaccard values.

tioned, we experiment on the generation of qua-
train which is the most popular genre of Chinese
poetry and accounts for the largest part of our cor-
pus. From the three sets, we randomly select 10%
for validation. From CQ, we select another 10%
for testing. The rest are used for training.

For our model and baseline models, we run Tex-
tRank (Mihalcea and Tarau, 2004) on all training
sets and then extract four keywords from each qua-
train. Then we build four < keyword(s), poem >
pairs for each quatrain using 1 to 4 keywords re-
spectively, so as to enable the model to cope with
different numbers of keywords.

For the models and rewarders, the sizes of word
embedding and hidden state are 256 and 512 re-
spectively. History vector size is 512 and convolu-
tion window size d = 3. The word embedding is
initialized with pre-trained word2vec vectors. We
use tanh as the activation function. For other more
configurations of the basic model, we directly fol-
low (Yan, 2016).

Plm and Pseq2seq are trained with the three sets.
We train F (Li) and B(P) with the CQ, CRV and
120,000 generated poems. There are 9,465 mas-
terpieces in CQ. We use these poems, together
with 10,000 generated poems and 10,000 ordinary
human-authored poems to train the classifier Pcl.
For training rewarders, half of the generated po-
ems are sampled and the other half are generated
with beam search (beam size 20). For testing, all
models generate poems with beam search.

We use Adam (Kingma and Ba, 2015) with
shuffled mini-batches. The batch size is 64 for
MLE and 32 for DRL. For DRL, we random se-
lect batches to fine-tune the basic model. We set
�1 = 0.5, �2 = 0.1, �3 = 0.001, ↵1 = 0.25,

Figure 2: TF-IDF distributions of poems generated by
different models. We show real TF-IDF, instead of the
estimated R̃3.

↵2 = 0.31, ↵3 = 0.14, ↵4 = 0.30, ns = 4, and
� = 0.7.

A key point for MRL is to give the two pre-
trained generators some diversity, which can be
achieved by using different model structures or pa-
rameters. Here we simply initialize the generators
differently and train one of them for more epoches.

4.2 Models for Comparisons

We compare MRL2 (our model, with both local
and global mutual learning), GT (ground-truth,
namely human-authored poems), Base (the basic
model described in Section 3.1) and Mem (Zhang
et al., 2017). The Mem model is the current state-
of-the-art model for Chinese quatrain generation,
which also achieves the best innovation so far.

4.3 Automatic Evaluation

Some previous models (He et al., 2012; Zhang and
Lapata, 2014; Yan, 2016) adopt BLEU and per-
plexity as automatic evaluation metrics. Neverthe-
less, as discussed in Section 1, word-level likeli-
hood or n-gram matching will greatly diverge from
human evaluation manner. Therefore we dispense
with them and automatically evaluate generated
poems as follows:

Rewarder Scores. The four rewarder scores
are objective and model-irrelevant metrics which
approximate corresponding human criteria. They

2Due to length limit, we only display the better of the two
simultaneously trained generators. Our source code will be
available at https://github.com/XiaoyuanYi/MRLPoetry.
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Models Fluency Coherence Meaning Overall Quality
Base 3.28 2.77 2.63 2.58
Mem 3.23 2.88 2.68 2.68
MRL 4.05⇤⇤ 3.81⇤⇤ 3.68⇤⇤ 3.60⇤⇤

GT 4.14 4.11++ 4.16++ 3.97++

Table 3: Human evaluation results. Diacritic ** (p < 0.01) indicates MRL significantly outperforms baselines; ++
(p < 0.01) indicates GT is significantly better than all models.

Figure 3: Topic Distributions of different models.

can reflect poetry quality to some extent. As
shown in Table 1, on each criterion, GT gets much
higher rewards than all these models. Compared
to Base, MRL gets closer to GT and achieves
31% improvement on the weighted average re-
ward. Mem outperforms Base on the criteria ex-
cept for meaningfulness (R̃3). This is mainly be-
cause Mem generates more distinct words (Table
2), but these words tend to concentrate on the high-
frequency area, resulting in unsatisfactory TF-IDF
reward. We also test different strategies of MRL.
With naive single-learner RL, the improvement is
limited, only 14%. With mutual RL, the improve-
ment increases to 27%. Combining local MRL
and global MRL leads to another 4% improve-
ment. The results demonstrate our explicit opti-
mization (RL) is more effective than the implicit
ones and MRL gets higher scores than SRL.

Diversity and Innovation. Poetry is a kind of
literature text with high requirements on diversity
and innovation. Users don’t expect the machine
to always generate monotonous poems. We eval-
uate innovation of generated poems by distinct bi-
gram ratio as (Li et al., 2016b). More novel gener-
ated bigrams can somewhat reflect higher innova-

tion. The diversity is measured by bigram-based
average Jaccard similarity of each two generated
poems. Intuitively, a basic requirement for inno-
vation is that, with different inputs, the generated
poems should be different from each other.

As shown in Table 2, Mem gets the highest bi-
gram ratio, close to GT, benefiting from its spe-
cially designed structure for innovation. Our MRL
achieves 43% improvement over Base, compara-
ble to Mem. We will show later this satisfactory
performance may lie in the incorporation of TF-
IDF (Figure 2). On Jaccard, MRL gets the best re-
sult due to the utilization of MI. MI brings richer
context-related information which can enhance di-
versity as shown in (Li et al., 2016a). In fact,
human-authored poems often contain strong diver-
sity of personal emotion and experience. There-
fore, despite prominent improvement, there is still
a large gap between MRL and GT.

TF-IDF Distribution. As mentioned, the basic
model tends to generate common and meaningless
words. Consequently, we use TF-IDF as one of the
rewards. Figure 2 shows the TF-IDF distributions.
As we can see, Base generates poems with lower
TF-IDF compared to GT, while MRL pulls the dis-
tribution towards that of GT, making the model
generate more meaningful words and hence ben-
efiting innovation and diversity.

Topic Distribution. We run LDA (Blei et al.,
2003) with 20 topics on the whole corpus and then
inference the topic of each generated poem. Figure
3 gives the topic distributions. Poems generated by
Base center in a few topics, which again demon-
strates the claim: MLE-based models tend to re-
member the common patterns. In contrast, human-
authored poems spread on more topics. After fine-
tuning by our MRL method, the topic distribution
shows better diversity and balance.

4.4 Human Evaluation

From the testing set, we randomly select 80 sets
of keywords to generate poems with these mod-
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Figure 4: The learning curves of SRL and MRL.
Learner (generator) 2 is pre-trained for more epoches
to allow some diversity.

els. For GT, we select poems containing the given
words. Therefore, we obtain 320 quatrains (80*4).
We invite 12 experts on Chinese poetry to evaluate
these poems in terms of the four criteria: fluency,
coherence, meaningfulness and overall quality and
each needs to be scored in a 5-point scale ranging
from 1 to 5. Since it’s tiring to evaluate all poems
for one person, we randomly divide the 12 experts
into three groups. Each group evaluates the ran-
domly shuffled 320 poems (80 for each expert).
Then for each model, each poem, we get 3 scores
on each criterion and we use the average to allevi-
ate individual preference.

Table 3 gives human evaluation results. MRL
achieves better results than the other two models.
Since fluency is quite easy to be optimized, our
method gets close to human-authored poems on
Fluency. The biggest gap between MRL and GT
lies on Meaning. It’s a complex criterion involv-
ing the use of words, topic, emotion expression
and so on. The utilization of TF-IDF does amelio-
rate the use of words on diversity and innovation,
hence improving Meaningfulness to some extent,
but there are still lots to do.

4.5 Further Analyses and Discussions

In this section we give more discussions.
Learning Curve. We show the learning curves

of SRL and MRL in Figure 4. As we can see,
for SRL, the adequately pre-trained generator 2 al-

ways gets higher rewards than the other one dur-
ing the DRL training process. With the increase of
training steps, the gap between their rewards gets
larger. After several hundred steps, rewards of the
two generators converge.

For MRL, generator 2 gets higher rewards at
the beginning, but it is exceeded by generator 1
since generator 1 learns from it and keeps chas-
ing. Finally, the two generators converge to higher
rewards compared to SRL.

Case Study. We show some generated poems
in Figure 5. The Base model generates two words,
‘sunset’ and ‘moon’ in poem (1), which appear to-
gether and thus cause the conflict of time. The
word ‘fishing jetty’ is confusing without any nec-
essary explanation in the context. In contrast,
poem (2) describes a clearer scene and expresses
some emotion: a lonely man takes a boat from
morning till night and then falls asleep solitarily.

In poem (3), Mem generates some meaningful
words, such as ‘phoenix tree’, ‘wild goose’ and
‘friend’. However, there isn’t any clue to link them
together, resulting in poor coherence. On the con-
trary, things in poem (4) are tightly connected. For
example, ‘moonlight’ is related to ‘night’; ‘rain’,
‘frost’ and ‘dew’ are connected with ‘cold’.

Poem (5) expresses almost nothing. The first
two lines seem to talk about the change of time.
But the last two lines are almost unrelated to ‘time
change’. Poem (6) talks about an old poet, with the
description of cheap wine, poem and dream, ex-
pressing something about life and time. However,
the human-authored poem (7) does much better.
It seems to describe a mosquito, but in fact, it’s a
metaphor of the author himself.

5 Conclusion and Future Work

In this work, we address two substantial problems
in automatic poetry generation: lack of diversity,
and loss-evaluation mismatch, which are caused
by MLE-based neural models. To this end, we di-
rectly model the four widely used human evalu-
ation criteria and design corresponding automatic
rewarders. We use these explicit rewards to guide
gradient update by reinforcement learning. Fur-
thermore, inspired by writing theories, we pro-
pose a novel mutual learning schema to further
improve the performance. Mimicking the poetry
learning activity, we simultaneously train two gen-
erators, which will not only be taught by the re-
warders but also learn from each other. Experi-
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Figure 5: Sampled poems generated by different models. Poems between two solid lines are generated with the
same input keywords. Some defects are shown in red boxes.

mental results show our method achieves signifi-
cant improvement both on automatic rewards and
human evaluation scores, outperforming the cur-
rent state-of-the-art model3.

There are still lots to do. Can we better model
the meaningfulness of a whole poem? Can we
quantify some other intractable criteria, e.g, poet-
icness? Besides, we only tried two learners in this
work. Would the collaboration of more learners
lead to better results? How to design the methods
of communication among many generators? We
will explore these questions in the future.
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Abstract

Combining the virtues of probability graphic
models and neural networks, Conditional
Variational Auto-encoder (CVAE) has shown
promising performance in many applications
such as response generation. However, ex-
isting CVAE-based models often generate re-
sponses from a single latent variable which
may not be sufficient to model high variabil-
ity in responses. To solve this problem, we
propose a novel model that sequentially in-
troduces a series of latent variables to con-
dition the generation of each word in the re-
sponse sequence. In addition, the approxi-
mate posteriors of these latent variables are
augmented with a backward Recurrent Neural
Network (RNN), which allows the latent vari-
ables to capture long-term dependencies of fu-
ture tokens in generation. To facilitate train-
ing, we supplement our model with an auxil-
iary objective that predicts the subsequent bag
of words. Empirical experiments conducted
on the OpenSubtitle and Reddit datasets show
that the proposed model leads to significant
improvements on both relevance and diversity
over state-of-the-art baselines.

1 Introduction

Recently, variational Bayesian models have shown
attractive merits from both theoretical and practi-
cal perspectives (Kingma and Welling, 2013). As
one of the most successful variational Bayesian
models, Conditional Variational Auto-Encoder
(CVAE) (Kingma et al., 2014) was proposed to im-
prove upon the traditional Sequence-to-Sequence
(Seq2Seq) dialogue models. The CVAE based
models incorporate stochastic latent variables into
decoders in order to generate more relevant and
diverse responses (Serban et al., 2017; Zhao et al.,
2017; Shen et al., 2017). However, existing CVAE

⇤Corresponding author

based models normally rely on the unimodal dis-
tribution with a single latent variable to provide
the global guidance to response generation, which
is not sufficient to capture the complex semantics
and high variability of responses. As a result, the
autoregressive decoders used in response genera-
tion always tend to ignore these oversimple latent
variables and degrade the CVAE based model to
the simple Seq2Seq model (aka. the model col-
lapse problem).

Figure 1: Distributions of latent variable

As illustrated in Figure 1, the unimodal latent
variable z used in the conventional VAE usually
captures simple unimodal pattern of responses.
However, in open-domain conversations, an ut-
terance may have various responses which form
complex multimodal distributions. To overcome
this problem and improve the quality of gener-
ated responses, we propose a novel model, named
Variational Autoregressive Decoder (VAD) to iter-
atively incorporate a series of latent variables into
the autoregressive decoder. In particular, a dis-
tinct latent variable sampled from CVAE is asso-
ciated with each time step of the generation, and
it is used to condition the next state of the autore-
gressive decoder (e.g., the hidden state of a RNN).
These latent variables at different time steps are
integrated by autoregressive decoder to model mu-
tilmodal distribution of text sequences and capture
variability of responses as depicted in Figure 1.
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Partially inspired by the sequential VAE-based
models adopted in speech generation (Goyal et al.,
2017; Bayer and Osendorfer, 2014), in our VAD
the approximate posterior of the latent variable at
each time step is augmented by the corresponding
hidden state of a backward RNN running through
the remaining response sequence. Since the hid-
den states of the backward RNN contain the infor-
mation of the succeeding words in the response,
they can be used as the guidance for the latent vari-
ables to capture the long-term dependency on the
future content.

It has been found that auxiliary losses that pre-
dict another task-related objective could help la-
tent variables capture more information from dif-
ferent perspectives when training the VAE based
models (Zhao et al., 2017). To enhance VAD,
we propose a purposely designed auxiliary loss to
use the latent variable at each time step to predict
the Bag-Of-Words (BOW) of the succeeding sub-
sequence. The proposed auxiliary loss could es-
sentially help VAD to generate more coherent re-
sponses.

Experimental results show that the proposed
VAD model outperforms the conventional re-
sponse generation models when evaluated auto-
matically and manually on the OpenSubtitle and
Reddit datasets. The contributions in this work are
two-fold:

• We propose a novel VAD model for response
generation that can better capture the high
variability of responses by sequentially asso-
ciating latent variables to different time steps
of autoregressive decoder and approximating
the posterior of latent variables by augment-
ing the hidden states of a backward RNN.

• A BOW based auxiliary objective is proposed
to help preserving the diversity of generated
responses.

2 Related Work

2.1 Conversational Systems
As neural network based models dominate the re-
search in natural language processing, Seq2Seq
models have been widely used for response gen-
eration (Sordoni et al., 2015). However, Seq2seq
models suffer from the problem of generating
generic responses, such as I don’t know (Li et al.,
2016a). Various approaches have been proposed to
address this problem, including adding additional

information (Li et al., 2016b; Xing et al., 2017;
Zhou et al., 2017b) and modifying the architec-
ture of existing models (Li et al., 2016a; Xu et al.,
2017; Zhou et al., 2017a).

Another solution to address this problem is to
add stochastic latent variables in order to change
the deterministic structure of Seq2Seq models.
VAE (Kingma and Welling, 2013) is one of the
most successful models (Serban et al., 2017; Zhao
et al., 2017; Shen et al., 2017; Cao and Clark,
2017). However, VAE-based models only use a
single latent variable to encode the whole response
sequence, thus suffering from the model collapse
problem (Bowman et al., 2016). To overcome this
problem, we propose a novel model that based
on the variational autoregressive decoder to better
represent highly structural latent variables.

2.2 Variational Autoregressive Models

Recently, some works attempted to combine VAE
with autoregressive models to better process in-
put sequences. Broadly speaking, they can be
categorized into two groups. Methods in the
first group leverage autoregressive models to im-
prove the inference of traditional VAEs. The most
well-known model is Inverse Autoregressive Flow
(IAF), which used a series of invertible transfor-
mations based on the autoregressive model to con-
struct the latent variables (Kingma et al., 2016;
Chen et al., 2017). Methods in the second group
focus on improving autoregressive models like
RNNs by adding variational inference (Bayer and
Osendorfer, 2014; Chung et al., 2015; Fraccaro
et al., 2016; Goyal et al., 2017). These models
usually modeled continuous data such as images
and audio signals. For dealing with discrete data
such as text, (Li et al., 2017) applied variational
recurrent neural networks (VRNN) for text sum-
marization.

Our proposed framework is based on the second
line of research, but is different from the previous
research as it develops a new strategy of combin-
ing VAE with RNN for response generation.

3 Proposed VAD Model

As shown in Figure 2, we use the Seq2Seq model
as the basic architecture. The Seq2Seq model is an
encoder-decoder neural framework for mapping a
source sequence to a target sequence (Sutskever
et al., 2014). The input of Seq2seq response gen-
eration model is variable-length query sequence
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Figure 2: Sequence-to-sequence model using sequential variational decoder.

x = {x1, . . . , xm}, and the output is a response
sequence y = {y1, . . . , yn}. Both the encoder
and decoder are the Recurrent Neural Networks
(RNN) with Gated Recurrent Units (GRU) (Chung
et al., 2014).

The encoder is a bidirectional GRU that encodes
the query sequence as the concatenation of the hid-
den states of a forward and a backward GRUs. The
semantic of word t in the query sequence is repre-
sented by he

t = [
�!
he

t ,
 �
he

t ], where

�!
he

t =
��!
GRU(xt,

��!
he

t�1)
 �
he

t =
 ��
GRU(xt,

 ��
he

t+1)
(1)

The decoder is a GRU with hidden state hd
t at

each step. The input at step t is the concatenation
of previous word in response sequence yt�1 and
the context vector ct computed by a neural atten-
tion model. The context vector ct is the weighted
sum of the whole encoder’s hidden states com-
puted by:

↵s,t = fattention([he
s, h

d
t�1])

ct =
mX

s=1

↵s,th
e
s

(2)

where fattention is a one-layer neural network
that produces attention weights, ↵s,t is the atten-
tion weight evaluating the correlation between en-
coder’s hidden state he

s and hidden state of decoder
hd

t�1. The decoder predicts the next word ŷt by
jointly considering previous word yt�1, attentional
context ct and previous hidden state hd

t�1.

3.1 Conditional Variational Auto-Encoder
The decoder of VAD is based on the Condi-
tional VAE (CVAE) framework (Kingma et al.,
2014), which approximates the distribution of
random variable y (response) conditioned on x

(i.e., query) by incorporating an latent variable
z. CVAE introduces a parameterized conditional
posterior distribution q✓(z|y, x) to approximate
true posterior distribution p(z|y, x). By injecting
q✓(z|y, x), the conditional marginal distribution
of p(y|x) can be maximized by approximating the
Evidence Lower Bound (ELBO):

log p�(y|x) � log p(y|x) � KL(q✓(z|y, x)||p(z|y, x))

where KL denotes the Kullback-Leibler diver-
gence. ELBO can be rewritten as a regularized
auto-encoder function:

L = Eq✓(z|y,x) [p�(y|z, x)] � KL(q✓(z|y, x)||p�(z|x))

where p�(y|z, x) is the decoder that decodes y

from the latent variable z and conditional variable
x, q✓(z|y, x) is the inference model that approxi-
mates the true posterior, p�(z|x) is the prior model
that samples the latent variable from the prior dis-
tribution, ✓,� are the parameters of the inference
and decoder models, respectively. All parameter-
ized distributions are modeled by neural networks.

In the training phase, the latent variable z is
sampled from both the inference model and the
prior model. z from the inference model is
then used to condition the generated distribution
p(y|z, x). Meanwhile, CVAE minimizes the KL
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divergence between the latent variables from these
two models. This process makes it possible for
CVAE to samples z from the prior model only
when decoding in the testing phase.

Different from the previous work on CVAE-
based response generation that only relys on a sin-
gle latent variable (Serban et al., 2017; Zhao et al.,
2017; Shen et al., 2017), our proposed model in-
corporates a series of latent variables into the au-
toregressive decoder. Inspired by the work on
variational recurrent neural networks (Goyal et al.,
2017; Bayer and Osendorfer, 2014), our model se-
quentially decodes the response sequence condi-
tioned on the latent variable zt at each time step
by p�(y|z, x) =

Q
t p(yt|y<t, zt, x).

3.2 Variational Autoregressive Decoder
Traditional CVAE-based models only use a single
standard normal distribution to model the latent
variable z. They are usually difficult to model the
multi-modal distribution of responses p(y|z, x).
To overcome this limitation, we propose a Varia-
tional Autoregressive Decoder (VAD) that decom-
poses z into sequential variables zt at each time
step t during response generation. Owing to the
autoregressive structure of VAD, the hidden state
of backward RNN

 �
hd

t is used to condition the la-
tent variable zt, which can be seen as a long-term
guidance to the generation. Moreover, we propose
a novel auxiliary objective, which is specially de-
signed for VAD, to avoid model collapse.

At each time step, the decoder uses a forward
GRU to process the sequence and predicts the next
token by a feed-forward network foutput with the
softmax activation function. The input to GRU is
the combination of the previous word’s embedding
yt�1, the context vector produced by an attention
model ct and the latent variable zt. The process is
described by,

�!
hd

t =
��!
GRU([yt�1, ct, zt],

��!
hd

t�1) (3)

p�(yt|y<t, zt, x) = foutput([
�!
hd

t , ct]) (4)

where,
�!
hd

t is the hidden state produced by the
forward GRU at time step t. ct is the attentional
weighted sum of the encoder’s output.

Inference Model We use the hidden states of
the backward RNN running through the response
sequence as an additional input to the inference

model. The backward RNN processes the se-
quence by,

 �
hd

t =
 ��
GRU(yt+1,

 ��
hd

t+1) (5)

The backward hidden state
 �
hd

t contains the in-
formation of succeeding tokens, and it serves as
a future plan for generation. By combining the
information produced by the backward RNN, the
inference model has a better capability of approx-
imating the real posterior distribution.

Considering context variable ct at each time
step as a substitute of the condition variable x in
(3.1), ct is also fed to the inference model. The
inference model is a feed-forward neural network
finfer. The approximated distribution q(zt|y, x) is
a normal distribution N (µi, �i), which is parame-
terized by the output of finfer:

[µi, �i] = finfer([
��!
hd

t�1, ct,
 �
hd

t ]) (6)

q✓(zt|y, x) = N (µi, �i) (7)

where the sampling process of zt is done by re-
parameterization (Kingma and Welling, 2013).

Prior Model The prior network can only use the
observable variables in the testing phase to sample
zt. The observable variables include the previous
hidden state

��!
hd

t�1 and the context variable ct. The
prior model is also modeled by a feed-forward net-
work fprior as follows.

[µp, �p] = fprior([
��!
hd

t�1, ct]) (8)
p�(zt|y<t, x) = N (µp, �p) (9)

where µp, �p are the parameters of prior normal
distribution.

Auxiliary Objective As discussed in Section 1,
the decoder based on the autoregressive model
often ignores the latent variables and causes the
model to collapse. One way to alleviate this prob-
lem is to add an auxiliary loss to the training ob-
jective (Zhao et al., 2017; Goyal et al., 2017). To
allow the latent variables to capture the informa-
tion from a different perspective, we use Sequen-
tial Bag of Word (SBOW) as the auxiliary objec-
tive for the proposed VAD model. The idea of the
SBOW auxiliary objective is to sequentially pre-
dict the bag of succeeding words ybow(t+1,T ) in
the response using the latent variable zt at each
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time step. This auxiliary objective can be seen as
the prediction of candidate words for future gener-
ation.

Our SBOW is specially designed for VAD. It
is different from the Bag-of-Words (BOW) auxil-
iary loss used in the CVAE-based models (Zhao
et al., 2017), which only uses the latent variable to
predict the Bag-Of-Words of the whole sequence.
VAD with SBOW sequentially produces the aux-
iliary loss for each time step of generation. The
auxiliary loss at each time step is computed by

p⇠(ybow(t+1,T )|zt:T ) = fauxiliary(zt) (10)

where ybow(t+1,T ) is the bag-of-word vector of the
words from t+1 to T in the response, and fauxiliary
is a feed-forward neural network with the softmax
output.

3.3 Learning
The loss function of our model is the sum of the
losses at each time step, including the weighed
sum of the ELBO loss LELBO(t) and the auxil-
iary loss LAUX(t) where LELBO(t) can be further
decomposed into a log-likelihood loss and the KL
divergence:

L =
X

t

[LELBO(t) + ↵LAUX(t)]

=
X

t

[(LLL(t)� LKL(t)) + ↵LAUX(t)]

(11)
Here, LLL(t) denotes the log-likelihood loss

when predicting yt. LKL(t) is the KL-divergence
of the approximate posteriori q✓ and priori p� at
time step t. LAUX(t) is the auxiliary loss when
predicting SBOW as described in Section 3.2. ↵
is the weight controlling the auxiliary loss. The
losses are computed by

LLL(t) = Eq✓(zt|y,z) [log p✓(yt|y<t, zt, xt)]

LKL(t) = KL(q✓(zt|y, x)||p�(zt|y<t, x))

LAUX(t) = Eq✓(zt|y,z)

⇥
log p⇠(ybow(t+1,T )|zt)

⇤

All the parameters are learned by optimizing
Equation (11) and updated with back-propagation.

4 Experimental Setup
4.1 Datasets
We evaluate the proposed model on two datasets:
OpenSubtitles and Reddit. The OpenSubtitles

dataset contains subtitles for movies in various
languages. Here, we only choose the English
version of OpenSubtiles. The Reddit dataset is
crawled from comments of Reddit1 which is an
American social news discussion website. We col-
lected more than 10 million single-turn dialogues
from 100 topics posted in 2017. For each dataset,
we randomly select 6 million conversations for
training, 10k for validation and 5k for testing.
For every conversation, we remove the sentences
whose length is shorter than 6 words and only keep
the first 40 words for sentences longer than 40. We
keep top 15k frequent words as the vocabulary for
OpenSubtitles and 20k frequent words for Reddit.

4.2 Hyper-parameters and Training Setup
We use the pre-trained GloVe 300-dimensional
word embeddings for both the encoder and the de-
coder. The encoder is a bidirectional RNN with
GRU with the size of the hidden state set to 512.
The size of the hidden states of GRU in the de-
coder is also set to 512. We apply Layer Normal-
ization when training the decoder. The size of the
latent variables is set to 400. The inference net-
work and the prior network are all one-layer feed-
forward network. All weights are initialized by
the xavier method (Glorot and Bengio, 2010). The
model is trained end-to-end by Adam optimizer
(Kingma and Ba, 2014) with the learning rate set
to 10�4 and gradient clipped at 1. When gener-
ating text, we adopt the greedy strategy and the
KL-annealing strategy, with the temperature vary-
ing from 0 to 1 and increased by 10�5 after each
iteration of batch update.

4.3 Baselines
We compare our proposed model with the follow-
ing three baselines:

• Seq2Seq: Sequence-to-Sequence model with
attention (Sordoni et al., 2015).

• CVAE: Conditional Variational Auto-
Encoder for generating responses (Serban
et al., 2017). Different from our model,
CVAE uses a unimodal Gaussian distribution
to model the whole response and append
the output of VAE as an additional input
to decoder. We also use the KL annealing
strategy when training CVAE with the same
parameter setting as in our model.

1http://www.reddit.com
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• CVAE+BOW loss: CVAE model with the
auxiliary bag-of-words loss (Zhao et al.,
2017).

4.4 Metrics
We employ three types of commonly used auto-
matic evaluation metrics and human evaluation in
our experiments:

Embedding Similarity: Embedding-based met-
rics compute the cosine similarity between the
sentence embedding of a ground-truth response
and that of the generated one. There are vari-
ous ways to derive the sentence-level embedding
from the constituent word embeddings. In our ex-
periments, we apply three most commonly used
strategies to obtain the sentence-level embeddings.
EMBA calculates the average of word embeddings
in a sentence. EMBE takes the most extreme value
among all words for each dimension of word em-
beddings in a sentence. EMBG greedily calculates
the maximum of cosine similarity of each token in
two sentences and take the average of them to get
the final matching score (Liu et al., 2016).

RUBER Score: RUBER (Referenced metric
and Unreferenced metric Blended Evaluation
Routine) is a newly proposed metric for evaluating
the quality of response in conversations that show
high correlation with human annotation (Tao et al.,
2017). RUBER evaluates the generated responses
by taking into account both the ground-truth re-
sponses and the given queries. For the referenced
metric, RUBER calculates the embedding-based
cosine similarity between a generated response
and its corresponding ground-truth. For the un-
referenced metric, RUBER firstly trains a neural
network by a response retrieval task and evaluates
the relatedness between a generated response and
its query. Evaluating RUBER score can be treated
as a rough simulation to the well-known Turing
Test. For blending the two metrics, there are two
strategies: taking the geometric mean (RUBG) or
the arithmetic mean (RUBA). The RUBER score
ranges between 0 and 1 and higher scores imply
better relatedness.

Diversity: Diversity metrics evaluate the infor-
mativeness and diversity of generated responses.
In our experiments, we use Dist1 and Dist2 (Li
et al., 2016a) to evaluate the diversity and En-
tropy to measure the informativeness. Dist1 (or
Dist2) calculates the ratio of the number of unique

unigrams (or bigrams) against the total number of
unigrams (or bigrams). Higher Dist1 (or Dist2)
implies more diverse vocabularies used in re-
sponses. Entropy as a metric proposed by (Ser-
ban et al., 2017) calculates the average entropy
in a generated response. According to informa-
tion theory, it is known that low-frequent words
have higher entropy and carries more information.
Therefore, we use this Entropy to measure the in-
formativeness and diversity of the generated re-
sponses. The unit of Entropy is bit and Higher
Entropy correlates to more informative response.

Human Evaluation: In human evaluation, 10
research students are arranged to rate the gen-
erated responses generated by CVAE with BOW
auxiliary loss and our model. We randomly se-
lected 100 queries from the Reddit dataset2 and
used each model to generate the best responses.
Each query with its ground-truth response and
the two generated responses are simultaneously
shown to the human evaluators. The evaluators are
asked to rate the responses based on grammatical
correctness, coherence and relevance to queries
(tie is permitted).

5 Results

5.1 Quantitative Analysis
The experimental results evaluated by automatic
metrics on the OpenSubtitles and the Reddit
datasets are shown in Table 1 and 2, respectively.
It is observed that both CVAE-based models and
our proposed models outperform Seq2Seq by a
large margin, showing the effectiveness of adding
variational latent variable for response genera-
tion. However, using different structure of varia-
tional models leads to differences in performance
on both plausibility and diversity. Our model
with or without the SBOW auxiliary loss outper-
forms CVAE as observed by the significant boost
in semantic relevance-oriented metrics (embed-
ding similarities and RUBER score) and diversity-
oriented metrics. This is mainly due to the differ-
ent strategy employed for representing latent vari-
ables. CVAE only uses a unimodal latent vari-
able as the semantic signal of the whole response
sequence which limits its capability of capturing

2The reason of not conducting the human evaluation on
the OpenSubtitles dataset is that query-response pairs in the
OpenSubtitles dataset are extracted from movie scripts and
hence are more difficult to evaluate without the context infor-
mation.
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Method Embedding Similarity RUBER Diversity
EMBA EMBE EMBG RubG RubA Dist1 Dist2 Entropy

Ground Truth 1.000 1.000 1.000 0.872 0.881 0.091 0.423 11.886
Seq2Seq 0.572 0.493 0.487 0.441 0.462 0.015 0.053 6.730
CVAE 0.639 0.531 0.578 0.562 0.580 0.026 0.102 8.215

CVAE+BOW loss 0.659 0.530 0.526 0.602 0.597 0.041 0.302 9.519
Ours (without SBOW) 0.678 0.520 0.563 0.591 0.604 0.031 0.259 8.815

Ours 0.714 0.582 0.642 0.635 0.642 0.053 0.404 10.976

Table 1: Experimental results on the OpenSubtitles dataset.

Method Embedding Similarity RUBER Diversity
EMBA EMBE EMBG RubG RubA Dist1 Dist2 Entropy

Ground Truth 1.000 1.000 1.000 0.842 0.869 0.083 0.399 10.089
Seq2Seq 0.520 0.382 0.377 0.371 0.386 0.007 0.042 6.003
CVAE 0.602 0.496 0.531 0.541 0.555 0.019 0.097 7.010

CVAE+BOW loss 0.659 0.531 0.578 0.591 0.604 0.026 0.282 9.215
Ours (without SBOW) 0.628 0.540 0.563 0.607 0.610 0.021 0.216 8.222

Ours 0.692 0.556 0.598 0.622 0.629 0.046 0.391 10.043

Table 2: Experimental results on the Reddit dataset.

Models OpenSubtitles Reddit
Ground Truth 15.31 17.48
CVAE+BOW 9.66 10.83

Ours 11.81 14.09

Table 3: The average length of responses.

variability of response sequences. By incorporat-
ing a series of time-varying latent variables into
each step of autoregressive decoder, our model is
able to model more complicated multimodal dis-
tributions of response sequences and capture more
detailed semantic information.

Since adding the auxiliary loss could alleviate
the model collapse problem, we found that CVAE
model with the BOW auxiliary loss outperforms
our basic model without auxiliary loss, especially
on the diversity metrics. When adding the pro-
posed SBOW auxiliary loss into our model, we
found that our generated responses have shown
better diversity compared to those generated by
CVAE+BOW loss. The encouraging improve-
ment is attributed to the autoregressive structure
of our variational inferences, which makes it pos-
sible to gradually introduce additional informa-
tion of SBOW. To better demonstrate the impact
of SBOW, we calculate the average length of the
generated responses of our model and CVAE with
BOW loss and show the results in Table 3. It is
observed that our model with SBOW can generate

Models Wins Loses Ties
CVAE+BOW 0.207 0.678 0.115

Ours 0.685 0.200 0.115

Table 4: Results of human judgment on the generated
responses.

longer responses than CVAE+BOW. The results
validate the effectiveness of adding the SBOW
auxiliary objective into our model.

The evaluation results of human judgment is
shown in Table 4. It is observed that the responses
generated by our proposed VAD is more plausi-
ble than CVAE+BOW from human perspectives.
We also conduct t-test to compare our model with
CVAE+BOW. The results show that the improve-
ment of VAD over CVAE+BOW is statistically sig-
nificant (p < 0.01).

5.2 Qualitative Analysis

Case Study To empirically analyze the quality
of the generated responses, we show some ex-
ample responses generated by our model and two
baselines (Seq2Seq and CVAE+BOW) in Table 5.
It is observed that Seq2seq often generates generic
responses that starting with ‘I don’t know’ or ‘I
am not sure’, since the deterministic structure of
Seq2seq limits the diversity of generation. In-
jecting variational latent variables avoids dull re-
sponses as can be seen from the responses gen-
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Dataset Query Seq2seq CVAE+BOW Ours

OpenSub

why he is not here ? i do n’t know where he ’s not present . maybe he ’s been
caught in the rain too .

that wasn ’ t easy for
him . i ’ m not so sure i know. did he do good job and

good job ?
it ’s a tough job but it ’s
a great deal of money .

what is the alternative
solution ? i ’ m not interested. i am the solution. i ’ m afraid there is no

alternative .

Reddit

he looks exactly like
my australian uncle . he is NUM NUM lol , you know him , he

is my uncle .

nope , he ’s a young
man and was born in

LOC .

why no windows ? i ’ m not so sure you ’re
right .

do you like windows
NUM ?

cuz linux can be a great
os .

i hope the grand tour
will make an episode .

i ca n’t commit post
though .

i ’m wondering getting
it .

i would hope that it will
be on netflix as well .

Table 5: Example responses generated by our model and two baselines (Seq2Seq and CVAE+BOW) from the
OpenSubtitles and the Reddit Datasets.

erated by CVAE+BOW and our model. How-
ever, we found that CVAE+BOW tends to copy the
given queries (the first and fourth example in Ta-
ble 4) and repeatedly generate redundant tokens
(the second example). The generated responses of
our model are more fluent and relevant to queries.
Also, our model generates longer responses com-
pared to the baselines.

KL Divergence Visualization In order to
demonstrate that our model is able to alleviate the
model collapse problem of VAE, we visualize the
KL divergence between the approximate posterior
distribution q✓(z|y, x) and priori p�(z|x) during
the training process of our models and CVAE with
BOW loss in Figure 3. As we know, when varia-
tional models ignore the latent variable, the gener-
ated value y will be independent of the latent vari-
able z which causes the KL divergence in Equa-
tion (3.1) to approach 0. The higher KL value dur-
ing training means more dependence between y

and z. In this experiment, we use the same KL an-
nealing strategies for our model and CVAE+BOW
as described in Section 4.2. The KL divergence of
the two models on the OpenSubtitles and the Red-
dit datasets during training is plotted in Figure 3.
It is observed that the KL divergence of our model
converges to a higher value compared to that of
CVAE+BOW. It shows that our model could better
alleviate the model collapse problem.

6 Conclusion

In this paper, a novel variational autoregressive
decoder is proposed to improve the performance
of VAE-based models for open-domain response
generation. By injecting the variational inference
into the RNN-based decoder and applying care-

Figure 3: KL divergence during training.

fully designed conditional variables and auxiliary
objective for latent variables, the proposed model
is expected to better modeling semantic informa-
tion of text in conversations. Quantitative and
qualitative experimental results show clear perfor-
mance improvement of the proposed model over
competitive baselines. In future works, we will
explore the use of other attributes of responses
such as Part-of-Speech (POS) tags and chunking
sequences as additional conditions for better re-
sponse generation.
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Abstract

Sentence simplification aims to reduce the
complexity of a sentence while retaining its
original meaning. Current models for sen-
tence simplification adopted ideas from ma-
chine translation studies and implicitly learned
simplification mapping rules from normal-
simple sentence pairs. In this paper, we ex-
plore a novel model based on a multi-layer and
multi-head attention architecture and we pro-
pose two innovative approaches to integrate
the Simple PPDB (A Paraphrase Database
for Simplification), an external paraphrase
knowledge base for simplification that cov-
ers a wide range of real-world simplification
rules. The experiments show that the inte-
gration provides two major benefits: (1) the
integrated model outperforms multiple state-
of-the-art baseline models for sentence sim-
plification in the literature (2) through anal-
ysis of the rule utilization, the model seeks
to select more accurate simplification rules.
The code and models used in the paper
are available at https://github.com/
Sanqiang/text_simplification.

1 Introduction

Sentence simplification aims to reduce the com-
plexity of a sentence while retaining its original
meaning. It can benefit individuals with low-
literacy skills (Watanabe et al., 2009) including
children, non-native speakers and individuals with
language impairments such as dyslexia (Rello
et al., 2013), aphasic (Carroll et al., 1999).

Most of the previous studies tackled this task
in a way similar to machine translation (Xu et al.,
2015a; Zhang and Lapata, 2017), in which models
are trained on a large number of pairs of sentences,
each consisting of a normal sentence and a simpli-
fied sentence. Statistical and neural network mod-
eling are two major methods used for this task.
The statistical models have the benefit of easily in-
tegrating with human-curated rules and features,

thus they generally perform well even they are
trained with a limited number of data. In con-
trast, neural network models could learn the sim-
plifying rules automatically without the need for
feature engineering, but at the cost of requiring a
huge amount of training data. Even though models
based on neural networks have outperformed the
statistical methods in multiple Natural Language
Processing (NLP) tasks, their performance in sen-
tence simplification is still inferior to that of statis-
tical models (Xu et al., 2015a; Zhang and Lapata,
2017). We speculate that current training datasets
may not be large and broad enough to cover com-
mon simplification situations. However, human-
created resources do exist which can provide abun-
dant knowledge for simplification. This motivates
us to investigate if it is possible to train neural net-
work models with these types of resources.

Another limitation to using existing neural net-
work models for sentence simplification is that
they are only able to capture frequent transforma-
tions; they have difficulty in learning rules that
are not frequently observed despite their signifi-
cance. This may be due to nature of neural net-
works (Feng et al., 2017): during training, a neu-
ral network tunes its parameters to learn how to
simplify different aspects of the sentence, which
means that all the simplification rules are actu-
ally contained in the shared parameters. There-
fore, if one simplification rule appears more fre-
quently than others, the model will be trained to
be more focused on it than the infrequent ones.
Meanwhile, models tend to treat infrequent rules
as noise if they are merely trained using sentence
pairs. If we can leverage an additional memory
component to maintain simplification rules indi-
vidually, it would prevent the model from forget-
ting low-frequency rules as well as help it to dis-
tinguish real rules from noise. Therefore, we pro-
pose the Deep Memory Augmented Sentence Sim-
plification (DMASS) model. For comparison pur-

3164



pose, we also introduce another approach, Deep
Critic Sentence Simplification (DCSS) model, to
encourage applying the less frequently occurring
rules by revising the loss function. It this way,
simplification rules are encouraged to maintained
internally in the shared parameters while avoiding
the consumption of an unwieldy amount of addi-
tional memory.

In this study, we propose two improvements
to the neural network models for sentence sim-
plification. For the first improvement, we pro-
pose to use a multi-layer, multi-head attention ar-
chitecture (Vaswani et al., 2017). Compared to
RNN/LSTM (Recurrent Neural Network / Long
Short-term Memory), the multi-layer, multi-head
attention model would be able to selectively
choose the correct words in the normal sentence
and simplify them more accurately.

Secondly, we propose two new approaches
to integrate neural networks with human-curated
simplification rules. Note that previous studies
rarely tried to incorporate explicit human lan-
guage knowledge into the encoder-decoder model.
Our first approach, DMASS, maintains additional
memory to recognize the context and output of
each simplification rules. Our second approach,
DCSS, follows a more traditional approach to en-
code the context and output of each simplification
rules into the shared parameters.

Our empirical study demonstrates that our
model outperforms all the previous sentence sim-
plification models. They achieve both a good cov-
erage of rules to be applied (recall) and a high ac-
curacy gained by applying the correct rules (preci-
sion).

2 Related Work

Sentence Simplification For statistical model-
ing, Zhu et al. (2010) proposed a tree-based sen-
tence simplification model drawing inspiration
from statistical machine translation. Woodsend
and Lapata (2011) employed quasi-synchronous
grammar and integer programming to score the
simplification rules. Wubben et al. (2012) pro-
posed a two-stage model PBMT-R, where a stan-
dard phrase-based machine translation (PBMT)
model was trained on normal-simple aligned sen-
tence pairs, and several best generations from
PBMT were re-ranked based how dissimilar they
were to a normal sentence. Hybrid, a model pro-
posed by Narayan and Gardent (2014) was also a

two-stage model combining a deep semantic anal-
ysis and machine translation framework. SBMT-
SARI (Xu et al., 2016) achieved state-of-the-art
performance by employing an external knowledge
base to promote simplification. In terms of neu-
ral network models, Zhang and Lapata (2017) ar-
gued that the RNN/LSTM model generated sen-
tences but it does not have the capability to sim-
plify them. They proposed DRESS and DRESS-
LS that employ reinforcement learning to reward
simpler outputs. As they indicated, the perfor-
mance is still inferior due to the lack of external
knowledge. Our proposed model is designed to
address the deficiency of current neural network
models which are not able to integrate an external
knowledge base.

Augmented Dynamic Memory Despite posi-
tive results obtained so far, a particular problem
with the neural network approach is that it has
a tendency towards favoring to frequent observa-
tions but overlooking special cases that are not fre-
quently observed. This weakness with regard to
infrequent cases has been noticed by a number of
researchers who propose an augmented dynamic
memory for multiple applications, such as lan-
guage models (Daniluk et al., 2017; Grave et al.,
2016), question answering (Miller et al., 2016),
and machine translation (Feng et al., 2017; Tu
et al., 2017). We find that current sentence sim-
plification models suffer from a similar neglect of
infrequent simplification rules, which inspires us
to explore augmented dynamic memory.

3 Our Sentence Simplification Models

3.1 Multi-Layer, Multi-Head Attention

Our basic neural network-based sentence simplifi-
cation model utilizes a multi-layer and multi-head
attention architecture (Vaswani et al., 2017). As
shown in Figure 1, our model based on the Trans-
former architecture works as follows: given a pair
consisting a normal sentence I and a simple sen-
tence O, the model learns the mapping from I to
O.

The encoder part of the model (see the left part
of Figure 1) encodes the normal sentence with a
stack of L identical layers. Each layer has two sub-
layers: one layer is for multi-head self-attention
and the other one is a fully connected feed-forward
neural network for transformation. The multi-head
self-attention layer encodes the output from the
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Figure 1: Diagram of the Transformer architecture

previous layer into hidden state e(s,l) (step s and
layer l) as shown in Equation 1, where ↵enc

(s0,l) indi-
cates the attention distribution over the step s0 and
layer l. Each hidden state summarizes the hidden
states in the previous layer through the multi-head
attention function a() (Vaswani et al., 2017) where
H refers to the number of heads.

The right part of Figure 1 denotes the decoder
for generating the simplified sentence. The de-
coder also consists of a stack of L identical layers.
In addition to the same two sub-layers as those
in the encoder part, the decoder also inserts an-
other multi-head attention layer aiming to attend
on the encoder outputs. The bottom multi-head
self-attention plays the same role as the one in the
encoder, where the hidden state d(s,l) is computed
in the Equation 2. The upper multi-head attention
layer is used to seek relevant information from en-
coder outputs. Through the same mechanism, con-
text vector c(s,l) (step s and layer l) is computed in

the Equation 3.

e(s,l) =
X

s0

↵enc
(s0,l)e(s0,l�1), ↵enc

(s0,l) =a(e(s,l), e(s0,l�1), H)1

(1)

d(s,l) =
X

s0

↵dec
(s0,l)d(s0,l�1), ↵dec

(s0,l) =a(d(s,l), c(s0,l�1), H)2

(2)

c(s,l) =
X

s0

↵dec2
(s0,l)e(s0,L), ↵dec2

(s0,l) =a(d(s,l), e(s0,L), H)

(3)

The model is trained to minimize the negative
log-likelihood of the simple sentence, Lseq =
�logP (O|I, ✓) where ✓ represents all the param-
eters in the current model.

3.2 Integrating with Simple PPDB
A previous study (Xu et al., 2016) has demon-
strated the benefits of using an external knowledge
base in conjunction with a statistical simplification
model. However, as far as we know, no efforts
have been made to integrate neural network mod-
els with the knowledge base, and our study is the
first to meet this goal.

Weight Type Rule
0.99623 [VP] recipient ! have receive
0.75530 [NN] recipient ! winner
0.58694 [NN] recipient ! receiver
0.46935 [NN] recipient ! host

Table 1: Examples from the Simple PPDB

Simple PPDB (Pavlick and Callison-Burch,
2016) refers to a paraphrase knowledge base for
simplification. It is a refined version of another
knowledge, PPDB (Ganitkevitch et al., 2013),
which was originally designed to support para-
phrase. Simple PPDB contains 4.5 million para-
phrase rules, each of which provides the mapping
from a normal phrase to a simplified phrase, the
syntactic type of the normal phrase, and the sim-
plification weight. Table 1 shows four examples,
where “recipient” can be simplified to “winner”
with a weight 0.75530 if “recipient” is a singular
noun (NN).

3.2.1 Deep Critic Sentence Simplification
Model (DCSS)

The Simple PPDB offers guidance about whether
a word needs to be simplified and how it should

1The lowest hidden state e(:,0) is the word embedding.
2The lowest context vector c(:,0) is the word embedding.
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be simplified. The Deep Critic Sentence Simpli-
fication (DCSS) model is designed to apply rules
identified by the Simple PPDB by introducing a
new loss function. Different from the standard loss
function that minimizes the distance away from
the ground truth, the new loss function aims to
maximize the likelihood of applying simplification
rules. It also reweights the probability of generat-
ing each word by its simplification weight in order
to relieve the problem of overlooking infrequent
simplification rules.

For example, given a normal sentence in the
training set, “the recipient of the kate greenaway
medal”, the simplified sentence is “the winner of
the kate greenaway medal.”, where “recipient” is
simplified to “winner”, which is identified by Sim-
ple PPDB. The major goal of the loss functions is
to support the model in generating the simplified
word “winner” while deterring the model from
generating the word “recipient”. Specifically, for
an applicable simplification rule, our new loss
function maximizes the probability of generating
the simplified form (word “winner”) and mean-
while minimizes the probability of generating the
original form (word “recipient”). As in Equation
4, where wrule indicates the weight of the simpli-
fication rule provided by the Simple PPDB, once
the model generates “recipient”, the model is criti-
cized to generate word “winner”; when model pre-
dicts correctly with “winner”, the model is trained
to minimize the probability of “recipient”. In this
way, the model avoids selecting normal words and
instead becomes inclined to choose the simplified
words.

Lcritic =

8
>>><

>>>:

�wrulelogP (winner|I, ✓)

if model generates recipient
wrulelogP (recipient|I, ✓)

if model generates winner
(4)

The Lcritic merely focuses on the words identi-
fied by the Simple PPDB and Lseq focuses on the
entire vocabulary. So, the model is trained in an
end-to-end fashion by minimizing Lseq and Lcritic

alternately.

3.2.2 Deep Memory Augmented Sentence
Simplification Model (DMASS)

DCSS, similar to the majority of neural network
models, uses a piece of shared memory, i.e. the
parameters, as the media to store the learned rules
from the data. As a result, it still focuses much

more on rules that are frequently observed and ig-
nores the rules observed infrequently. However,
infrequent rules are still important, particularly
when the training data is limited.

In order to make full use of the rules in the
knowledge base, we introduce the Deep Memory
Augmented Sentence Simplification (DMASS)
model. DMASS has an augmented dynamic mem-
ory to record multiple key-value pairs for each rule
in the Simple PPDB. The key vector stores a con-
text vector that is computed based on the weighted
average of encoder hidden states and the current
decoder hidden states. The value vector stores the
output vector.

Our DMASS model is illustrated in Figure 2.
Given the same example normal sentence “ the re-
cipient of kate greenaway medal”, Simple PPDB
determines that the word “recipient” should be
simplified to “winner”. The encoder represents the
normal sentence as a list of hidden states, [e(1,L),
e(2,L), ...] where L indicates the final layer of
encoder hidden states. When predicting the next
word in the simplified sentence, the decoder of
layer j represents the previous words as hidden
states [d(1,j), ... ]. c(1,j) refers to the current con-
text vector following attention layer, which is the
weighted average of [e(1,L), e(2,L), ...] based on
d(1,j). A feed-forward fully connected neural net-
work (FFN) combines the output of the decoder
and the output from memory read module into the
final output rwinner. In addition to the word pre-
diction, c(1,j) and rwinner will be sent to memory
update module.

In the remainder of this section, we will in-
troduce the two modules of DMASS mentioned
above: Memory Read Module and Memory Up-
date Module.

Memory Read Module The memory read mod-
ule incorporates rules into prediction. As shown
in Figure 2, current augmented memory contains
three candidate rules for the word “recipient”,
which indicates that it can be simplified into “win-
ner”, “receiver” or “host”, respectively. The cur-
rent context vector c(1,j) is treated as a query
to search for suitable rules by using Equation 5,
where ↵r

i denotes the weight for ith rule, which is
computed through the dot product between current
context vector c(1,j) and ci. Then using Equation
6, ↵r

i weights each output vector to generate mem-
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Figure 2: Diagram of DMASS Model

ory read output.

↵r
i =

eiP
j ej

ei = exp(c(1,j) · ci) (5)

ro =
X

↵r
i rr rr 2 [rwinner, rreceiver, rhost] (6)

Memory Update Module The task of the mem-
ory update module is to update the key and value
vectors in the augmented memory. Once the
model predicts the output vector rwinner, both
rwinner and the current context vector c1,j are sent
to the memory update module. If the augmented
memory does not contain the key-value pair for the
rule, c1,j and rwinner are appended to the memory.
If the augmented memory contains the key-value
pair, the key vector is updated as the mean of cur-
rent key vector and c1,j . Similarly, the value vector
is also updated as the mean of current value vector
and rwinner.

4 Experiments

Dataset We utilize the dataset WikiLarge (Zhang
and Lapata, 2017) for training. It is the largest
Wikipedia corpus, constructed by merging previ-
ously created simplification corpora. Specifically,
the training dataset contains 296,402 normal-
simple sentence pairs gathered from (Zhu et al.,
2010; Woodsend and Lapata, 2011; Kauchak,
2013). For validation and testing, we use the
dataset Turk created by (Xu et al., 2016). In this
dataset, eight simplified reference sentences for
each normal sentence are used as the ground-truth,
all of which are generated by Amazon Mechani-
cal Turk workers. The Turk dataset contains 2,000

data samples for validation and 356 samples for
testing. We consider the Turk to be the most reli-
able data set because (1) it is human-generated and
(2) it contains multiple simplification references
for each normal sentence due to the existence of
multiple equally good simplifications of each sen-
tence. We also include the second test set Newsela,
a corpus introduced by (Xu et al., 2015b) who ar-
gue that only using normal-simple sentence pairs
from Wikipedia is suboptimal due to the automatic
sentence alignment which unavoidably introduces
errors, and the uniform writing style which leads
to systems that generalize poorly. The test set
contains 1,419 normal-simple sentence pairs3. To
demonstrate that our models are able to perform
well on a different style of corpus, we report the
results of Newsela test set by using the models
trained/tuned on Turk dataset. Following Zhang
and Lapata (2017)’s way, we tag and anonymize
name entities with a special token in the format of
NE@N, where NE includes {PER, LOC, ORG}
and N indicates the N th distinct NE type of entity.
We also replace those tokens occurring three times
or less in the training set with a mark “UNK” as
mentioned in (Zhang and Lapata, 2017).

Evaluation Metrics We report the results of
the experiment with two metrics that are widely
used in the literature: SARI (Xu et al., 2016)
and FKGL (Kincaid et al., 1975). FKGL com-
putes the sentence length and word length as a
way to measure the simplicity of a sentence. The
lower value of FKGL indicates simpler sentence.
FKGL measures the simplicity of a sentence with-
out considering the ground truth simplification ref-
erences and it correlates little with human judg-
ment (Xu et al., 2016), so we also use another
metric, SARI. SARI, which stands for “System
output Against References and against the normal
sentence”, computes the arithmetic mean of N-
grams (N includes 1,2,3 and 4) F1-score of three
rewrite operations: addition, deletion, and keep-
ing. Specifically, it rewards addition operations
where a word in the generated simplified sentence
does not appear in the normal sentence but is men-
tioned in the reference sentences. It also rewards
words kept or deleted in both the simplified sen-
tence and the reference sentences. In our experi-
ment, we also present the F1-score of three rewrite

3Because the earlier publications don’t provide pre-
process details, we use our own script to pre-process the arti-
cles into sentence pairs.
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operations: addition, deletion, and keeping. Xu
et al. (2016) demonstrated that SARI correlates
most closely to human judgments in sentence sim-
plification tasks. Thus, we treated SARI as the
most important measurement in our study.

Because SARI rewards deleting and adding sep-
arately, we also include another metric to measure
the correctness of lexical transformation, namely
word simplification, verified by Simple PPDB. By
comparing the normal sentence and ground truth
simplified references, we collect rules that are cor-
rect to be used for simplifying each normal sen-
tence. Then we calculate the precision, recall,
and F1 score for using the correct rules. As a re-
sult, the recall expresses the coverage of rules to
be applied, and the precision implies the accuracy
gained by applying the correct rules.

Training Details We initialized the encoder and
decoder word embedding lookup matrices with
300-dimensional Glove vectors(Pennington et al.,
2014). The word embedding dimensionality and
the number of hidden units are set to 300. During
the training, we regularize all layers with a dropout
rate of 0.2 (Srivastava et al., 2014). For multi-
layer and multi-head architecture, 4 encoder and
decoder layers (set L as 4) and 5 multi-attention
heads (set H as 5) are used. We will discuss
the trade-off between different layers and differ-
ent heads in Sections 4.1. For DMASS, we use
the context vector based on the first layer of the
decoder (set j as 1). For optimization, we use Ada-
grad (Duchi et al., 2011) with the learning rate set
to 0.1. The gradient is truncated by 4 (Pascanu
et al., 2013).

4.1 Impacts of Multi-Layer, Multi-Head
Attention Architecture

The reason to employ the Transformer architec-
ture in the sentence simplification task is that we
believe that its multi-layer, multi-head attention
provides a better capability of modeling both the
overall context and the important cues for sentence
simplification. In this section, we examine the
applicability of multi-layer, multi-head attention
architecture to the sentence simplification task.
We compare our results against the RNN/LSTM-
based sentence simplification models. Note that
the results of our models presented here have not
been integrated with the Simple PPDB.

Table 2 shows the experiment results where
LxHy indicates a run with Transformer using x

layers and y heads. When compared with results
of RNN/LSTM, our Transformer-based model
performed better in terms of SARI and FKGL val-
ues. In addition, with the increased number of lay-
ers or heads, the values of SARI and FKGL im-
prove accordingly. In the remainder of this sec-
tion, we analyze the insights of these results in de-
tail.

In our tasks, FKGL measures the sentence
length and the word length as two factors for
evaluating a simplified sentence. Therefore, we
include Wlen(Word Length) and Slen(Sentence
Length) into our analysis. As shown in Ta-
ble 2, models with higher numbers of layers and/or
heads do generally reduce the average word length
and the average sentence length, which indicates
that the higher number of layers and/or heads in
the model leads to simpler outcomes.

It has been found that SARI correlates most
closely to human judgment (Xu et al., 2016). To
further analyze the effects of SARI, we study the
impacts of three rewrite operations in SARI: add,
delete, and keep. As shown in Table 2, we find
that the improvement mostly results from cor-
rectly adding simplified words and deleting nor-
mal words, but not from keeping words. By an-
alyzing the outputs, the increased number of lay-
ers or heads results in better capability to simplify
the words. Specifically, models with the greater
number of layers or heads tend to remove the nor-
mal words and add simplified words. However,
they may introduce inaccurate simplified words,
thereby driving down the F1 score for keeping
words. We believe the Simple PPDB, which offers
guidance about whether words need to be simpli-
fied and how they should be simplified, provides
an ideal method to alleviate this issue.

4.2 Impacts of Integrating the Simple PPDB

In order to make comprehensive comparisons with
the state-of-the-art models, we include multiple
baselines from the literature, including PBMT-
R (Wubben et al., 2012), Hybrid (Narayan and
Gardent, 2014), and SBMT-SARI (Xu et al.,
2016). We also include several strong baselines
based on neural networks such as RNN/LSTM,
DRESS, DRESS-LS (Zhang and Lapata, 2017) as
shown in Tables 3 and 4 We developed three mod-
els for this experiment. They are DMASS, DCSS,
and DMASS+DCSS, where DMASS+DCSS indi-
cates the combination of DMASS and DCSS. The
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Model FKGL Factors in FKGL SARI F1 for operations in FKGL
WLen SLen Add Delete Keep

RNN/LSTM 8.67 1.34 21.68 35.66 3.00 28.95 75.03
Transformer (L1H5) 8.59 1.34 21.39 35.88 2.69 30.46 74.50
Transformer (L2H5) 8.11 1.33 20.52 36.88 3.48 33.26 73.91
Transformer (L3H5) 7.71 1.32 19.77 38.02 4.14 37.41 72.51
Transformer (L4H1) 7.49 1.31 19.41 37.88 4.05 37.35 72.23
Transformer (L4H2) 7.40 1.31 19.19 38.35 4.58 39.77 70.70
Transformer (L4H5) 7.22 1.30 19.00 38.84 4.78 41.19 70.53

Table 2: Comparison of transformers with different layers and heads of attention on Turk dataset

Model FKGL Factors in FKGL SARI F1 for operations of SARI Rule Utilization
WLen SLen Add Delete Keep Prec Recall F1

PBMT-R 8.35 1.30 22.08 38.56 5.73 36.93 73.02 14.60 22.29 15.01
Hybrid 4.71 1.28 13.38 31.40 5.49 45.48 46.86 10.62 7.61 7.62
SBMT-SARI 7.49 1.18 23.50 39.96 5.97 41.43 72.51 13.30 28.96 15.77
RNN/LSTM 8.67 1.34 21.68 35.66 3.00 28.95 75.03 13.67 14.83 11.65
DRESS 6.80 1.34 16.55 37.08 2.94 43.14 65.16 13.06 12.50 10.77
DRESS-LS 6.92 1.35 16.76 37.27 2.82 42.21 66.78 12.40 11.36 9.83
DMASS 7.41 1.29 20.00 39.81 5.04 41.94 72.46 17.97 25.54 18.12
DCSS 7.34 1.31 19.30 39.26 5.29 41.24 71.26 13.14 21.30 13.87
DMASS+DCSS 7.18 1.27 20.10 40.42 5.48 45.55 70.22 16.25 30.42 18.98
DMASSbeam=4 8.20 1.30 21.66 39.16 4.90 38.41 74.18 18.53 25.46 18.40
DCSSbeam=4 7.97 1.32 20.56 39.11 5.10 38.87 73.36 14.36 20.96 14.48
DMASS+DCSSbeam=4 7.93 1.28 21.49 40.34 5.73 42.55 72.74 18.55 31.56 20.81
DMASSbeam=8 8.23 1.30 21.68 39.15 4.95 37.80 74.69 18.44 25.34 18.32
DCSSbeam=8 7.97 1.32 20.56 39.11 5.10 38.87 73.36 14.37 20.96 14.80
DMASS+DCSSbeam=8 8.04 1.29 21.64 40.45 5.72 42.23 73.41 19.46 31.99 21.51

Table 3: Performance of baselines and proposed models on the Turk dataset.

Model FKGL Factors in FKGL SARI F1 for operations of SARI Rule Utilization
WLen SLen Add Delete Keep Prec Recall F1

RNN/LSTM 6.09 1.22 18.67 21.09 11.10 38.78 13.39 12.62 22.63 14.68
DRESS 4.96 1.23 15.27 25.70 10.65 52.59 13.86 12.56 17.88 13.28
DRESS-LS 5.07 1.24 15.47 24.91 11.21 49.74 13.76 12.61 17.50 13.42
DMASS 5.38 1.20 17.47 25.41 11.88 50.39 13.97 16.32 34.79 20.00
DCSS 5.64 1.22 17.58 24.31 13.52 45.60 13.81 15.20 30.38 18.39
DMASS+DCSS 5.17 1.18 17.60 27.28 11.56 56.10 14.19 15.98 40.64 20.98
DMASSbeam=4 5.64 1.21 17.79 24.09 13.96 44.47 13.85 17.40 35.97 21.37
DCSSbeam=4 5.80 1.22 17.85 23.28 15.28 40.76 13.81 16.77 31.81 20.06
DMASS+DCSSbeam=4 5.42 1.19 17.81 26.39 13.92 51.13 14.13 18.71 43.36 24.23
DMASSbeam=8 5.68 1.21 17.83 23.95 14.25 43.74 13.86 17.69 36.37 21.74
DCSSbeam=8 5.77 1.22 17.76 23.18 15.65 40.08 13.82 17.18 32.18 20.50
DMASS+DCSSbeam=8 5.43 1.19 17.83 26.29 14.08 50.62 14.17 18.89 43.54 24.47

Table 4: Performance of baselines and proposed models on the Newsela dataset.

subscript beam indicates the size of beam search.

Results with FKGL Metric As shown in Tables
3 and 4, Hybrid achieves the lowest (thus the best)
FKGL score, and DRESS and DRESS-LS have the
second best FKGL scores. All the other models in-
cluding ours do not perform as well as these two.
But FKGL measures the simplicity of a sentence
without considering the ground truth simplifica-
tion references, so high FKGL may be at the cost
of losing information and readability.

To further analyze the FKGL results, we exam-

ine the average sentence length and word length of
the outcomes of the models and they are listed as
WLen (Word Length) and SLen (Sentence Length)
in Tables 3 and 4. Hybrid, DRESS, and DRESS-
LS are good at generating shorter sentences, but
they are not as good at choosing shorter words.
In contrast, SBMT-SARI, DCSS, and DMASS all
generate shorter words. Therefore, we believe
that, by optimizing language model as a goal for
the reinforcement learning, DRESS and DRESS-
LS are tuned to simplify sentences by shortening
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the sentence lengths. In contrast, with the help
of an integrated external knowledge base, SBMT-
SARI and our models have more capability to gen-
erate shorter words in order to simplify sentences.
Therefore, these two sets of models complete sen-
tence simplification tasks via different routes, and
perhaps there should be an exploration of combin-
ing these two routes for even more successful sen-
tence simplification.

Another interesting finding is that the larger
beam search size increases average word length
slightly. This is because the larger beam search
size mitigates the issue of the inaccurate simplifi-
cation so that fewer words are simplified. To mea-
sure the correctness of simplification, we analyze
the SARI metric and Rule Utilization.

Results with SARI Metric SARI is the most
reliable metric for the sentence simplification
task (Xu et al., 2016), therefore we would like
to present more detailed discussion regarding the
SARI results. As shown in Tables 3 and 4,
DMASS+DCSS achieves the best SARI score,
which demonstrates the effectiveness of integrat-
ing the knowledge base Simple PPDB for sentence
simplification.

To further examine the impacts of the F1
scores for three operations in calculating the
SARI scores, as shown in Tables 3 and 4,
DMASS+DCSS, as well as other models with
high SARI performance benefit greatly by cor-
rectly adding and deleting words. We believe
these benefits mostly result from the integration
with the knowledge base, which provides reliable
guidance about which words to modify. SBMT-
SARI, which represents a previous state-of-the-art
model that also integrates with knowledge bases,
performs best in correctly adding new words but
performs inferiorly in deleting/keeping words. By
analyzing the outputs, SBMT-SARI acts aggres-
sively to simplify as many words as possible. But
it also results in incorrect simplification. DRESS
and DRESS-LS are inclined to generate the shorter
sentence, which leads to high F1 scores for delet-
ing words, but it lags behind other models in
adding/keeping words.

DMASS leverages an additional memory com-
ponent to maintain the simplification rules; DCSS
uses internal memory to store those rules. A
large number of simplification rules might con-
fuse the model with limited internal memory. This
might be the reason why DMASS works better

than DCSS. By taking a two-way advantage of
both models, DMASS+DCSS takes a two-fisted
approach to store the simplification rules in both
additional and internal memory. As a result,
DMASS+DCSS achieves the best performance in
SARI.

Results with Rule Utilization In this section,
we evaluate the models’ capabilities for word
transformation. The majority of previous ap-
proaches, except for the SBMT-SARI, perform
poorly in recall. We believe the knowledge base
Simple PPDB will reduce uncertainty in the word
selection.

As before, SBMT-SARI acts aggressively to
simplify every word in the sentence. Such an
aggressive action leads to relatively high perfor-
mance in recall. However, it does not achieve
a strong performance in precision. DMASS per-
forms better in terms of rule utilization as com-
pared to DCSS by leveraging an additional mem-
ory. DMASS+DCSS takes advantage of both ap-
proaches that store the simplification rules in addi-
tional and internal memory. This combined model
is guaranteed to apply more accurate rules.

As compared to the loose relationship between
SARI and beam search size, we find that that beam
search size correlates strongly with the perfor-
mance in rule utilization. Thus, we believe larger
beam search size contributes to good coverage of
rules to be applied as well as accuracy in applying
rules.

5 Conclusion

In this paper, we propose two innovative ap-
proaches for sentence simplification based on neu-
ral networks. Both approaches are based on multi-
layer and multi-head attention architecture and in-
tegrated with the Simple PPDB, an external sen-
tence simplification knowledge base, in differ-
ent ways. By conducting a set of experiments,
we demonstrate that the proposed models per-
form better than existing methods and achieve new
state-of-the-art in sentence simplification. Our ex-
periments firstly prove that the multi-layer and
multi-head attention architecture has an excellent
capability to understand the text by accurately se-
lecting specific words in a normal sentence and
then choosing right simplified words. Secondly,
by integrating with the knowledge base, our mod-
els outperform multiple state-of-the-art baselines
for sentence simplification. Compared to previous
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models which integrated with the knowledge base,
our models, especially, DMASS+DCSS, provide
both good coverage of rules to be applied and ac-
curacy in applying the correct rules. In future, we
would like to investigate deeper into the different
effects of additional memory and internal memory.
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Abstract

While neural, encoder-decoder models have
had significant empirical success in text gener-
ation, there remain several unaddressed prob-
lems with this style of generation. Encoder-
decoder models are largely (a) uninterpretable,
and (b) difficult to control in terms of their
phrasing or content. This work proposes a
neural generation system using a hidden semi-
markov model (HSMM) decoder, which learns
latent, discrete templates jointly with learning
to generate. We show that this model learns
useful templates, and that these templates
make generation both more interpretable and
controllable. Furthermore, we show that this
approach scales to real data sets and achieves
strong performance nearing that of encoder-
decoder text generation models.

1 Introduction

With the continued success of encoder-decoder
models for machine translation and related tasks,
there has been great interest in extending these
methods to build general-purpose, data-driven nat-
ural language generation (NLG) systems (Mei
et al., 2016; Dušek and Jurcıcek, 2016; Lebret
et al., 2016; Chisholm et al., 2017; Wiseman et al.,
2017). These encoder-decoder models (Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al.,
2015) use a neural encoder model to represent a
source knowledge base, and a decoder model to
emit a textual description word-by-word, condi-
tioned on the source encoding. This style of gen-
eration contrasts with the more traditional division
of labor in NLG, which famously emphasizes ad-
dressing the two questions of “what to say” and
“how to say it” separately, and which leads to sys-
tems with explicit content selection, macro- and
micro-planning, and surface realization compo-
nents (Reiter and Dale, 1997; Jurafsky and Martin,
2014).

Source Entity: Cotto
type[coffee shop], rating[3 out of 5],
food[English], area[city centre],
price[moderate], near[The Portland Arms]

System Generation:
Cotto is a coffee shop serving English food
in the moderate price range. It is located
near The Portland Arms. Its customer rating is
3 out of 5.

Neural Template:

| The

...
|

is a
is an

is an expensive
...

| |
providing
serving
offering

...

|

|
food

cuisine
foods

...
|

in the
with a

and has a
...

| |
price range

price bracket
pricing

...

| . |
It’s
It is

The place is
...

|
located in the
located near

near
...

| | . |
Its customer rating is

Their customer rating is
Customers have rated it

...

| | .

Figure 1: An example template-like generation from the E2E
Generation dataset (Novikova et al., 2017). Knowledge base
x (top) contains 6 records, and ŷ (middle) is a system gen-
eration; records are shown as type[value]. An induced
neural template (bottom) is learned by the system and em-
ployed in generating ŷ. Each cell represents a segment in
the learned segmentation, and “blanks” show where slots are
filled through copy attention during generation.

Encoder-decoder generation systems appear to
have increased the fluency of NLG outputs, while
reducing the manual effort required. However,
due to the black-box nature of generic encoder-
decoder models, these systems have also largely
sacrificed two important desiderata that are often
found in more traditional systems, namely (a) in-
terpretable outputs that (b) can be easily controlled
in terms of form and content.

This work considers building interpretable and
controllable neural generation systems, and pro-
poses a specific first step: a new data-driven gen-
eration model for learning discrete, template-like
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structures for conditional text generation. The
core system uses a novel, neural hidden semi-
markov model (HSMM) decoder, which provides
a principled approach to template-like text gener-
ation. We further describe efficient methods for
training this model in an entirely data-driven way
by backpropagation through inference. Generat-
ing with the template-like structures induced by
the neural HSMM allows for the explicit repre-
sentation of what the system intends to say (in the
form of a learned template) and how it is attempt-
ing to say it (in the form of an instantiated tem-
plate).

We show that we can achieve performance com-
petitive with other neural NLG approaches, while
making progress satisfying the above two desider-
ata. Concretely, our experiments indicate that we
can induce explicit templates (as shown in Figure
1) while achieving competitive automatic scores,
and that we can control and interpret our gener-
ations by manipulating these templates. Finally,
while our experiments focus on the data-to-text
regime, we believe the proposed methodology rep-
resents a compelling approach to learning discrete,
latent-variable representations of conditional text.

2 Related Work

A core task of NLG is to generate textual descrip-
tions of knowledge base records. A common ap-
proach is to use hand-engineered templates (Ku-
kich, 1983; McKeown, 1992; McRoy et al., 2000),
but there has also been interest in creating tem-
plates in an automated manner. For instance,
many authors induce templates by clustering sen-
tences and then abstracting templated fields with
hand-engineered rules (Angeli et al., 2010; Kon-
dadadi et al., 2013; Howald et al., 2013), or with a
pipeline of other automatic approaches (Wang and
Cardie, 2013).

There has also been work in incorporating prob-
abilistic notions of templates into generation mod-
els (Liang et al., 2009; Konstas and Lapata, 2013),
which is similar to our approach. However, these
approaches have always been conjoined with dis-
criminative classifiers or rerankers in order to ac-
tually accomplish the generation (Angeli et al.,
2010; Konstas and Lapata, 2013). In addition,
these models explicitly model knowledge base
field selection, whereas the model we present is
fundamentally an end-to-end model over genera-
tion segments.

Recently, a new paradigm has emerged around
neural text generation systems based on machine
translation (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015). Most of this
work has used unconstrained black-box encoder-
decoder approaches. There has been some work
on discrete variables in this context, including ex-
tracting representations (Shen et al., 2018), incor-
porating discrete latent variables in text model-
ing (Yang et al., 2018), and using non-HSMM seg-
mental models for machine translation or summa-
rization (Yu et al., 2016; Wang et al., 2017; Huang
et al., 2018). Dai et al. (2017) develop an approx-
imate inference scheme for a neural HSMM using
RNNs for continuous emissions; in contrast we
maximize the exact log-marginal, and use RNNs
to parameterize a discrete emission distribution.
Finally, there has also been much recent interest in
segmental RNN models for non-generative tasks
in NLP (Tang et al., 2016; Kong et al., 2016; Lu
et al., 2016).

The neural text generation community has also
recently been interested in “controllable” text gen-
eration (Hu et al., 2017), where various aspects
of the text (often sentiment) are manipulated or
transferred (Shen et al., 2017; Zhao et al., 2018; Li
et al., 2018). In contrast, here we focus on control-
ling either the content of a generation or the way it
is expressed by manipulating the (latent) template
used in realizing the generation.

3 Overview: Data-Driven NLG

Our focus is on generating a textual description
of a knowledge base or meaning representation.
Following standard notation (Liang et al., 2009;
Wiseman et al., 2017), let x = {r1 . . . rJ} be a
collection of records. A record is made up of
a type (r.t), an entity (r.e), and a value (r.m).
For example, a knowledge base of restaurants
might have a record with r.t = Cuisine, r.e =
Denny’s, and r.m = American. The aim is
to generate an adequate and fluent text description
ŷ1:T = ŷ1, . . . , ŷT of x. Concretely, we consider
the E2E Dataset (Novikova et al., 2017) and the
WikiBio Dataset (Lebret et al., 2016). We show
an example E2E knowledge base x in the top of
Figure 1. The top of Figure 2 shows an exam-
ple knowledge base x from the WikiBio dataset,
where it is paired with a reference text y = y1:T at
the bottom.

The dominant approach in neural NLG has been
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sopoulos, 2007; Turner et al., 2010). Generation is
divided into modular, yet highly interdependent, de-
cisions: (1) content planning defines which parts of
the input fields or meaning representations should
be selected; (2) sentence planning determines which
selected fields are to be dealt with in each output
sentence; and (3) surface realization generates those
sentences.

Data-driven approaches have been proposed to
automatically learn the individual modules. One ap-
proach first aligns records and sentences and then
learns a content selection model (Duboue and McK-
eown, 2002; Barzilay and Lapata, 2005). Hierar-
chical hidden semi-Markov generative models have
also been used to first determine which facts to dis-
cuss and then to generate words from the predi-
cates and arguments of the chosen facts (Liang et al.,
2009). Sentence planning has been formulated as a
supervised set partitioning problem over facts where
each partition corresponds to a sentence (Barzilay
and Lapata, 2006). End-to-end approaches have
combined sentence planning and surface realiza-
tion by using explicitly aligned sentence/meaning
pairs as training data (Ratnaparkhi, 2002; Wong and
Mooney, 2007; Belz, 2008; Lu and Ng, 2011). More
recently, content selection and surface realization
have been combined (Angeli et al., 2010; Kim and
Mooney, 2010; Konstas and Lapata, 2013).

At the intersection of rule-based and statisti-
cal methods, hybrid systems aim at leveraging hu-
man contributed rules and corpus statistics (Langk-
ilde and Knight, 1998; Soricut and Marcu, 2006;
Mairesse and Walker, 2011).

Our approach is inspired by the recent success of
neural language models for image captioning (Kiros
et al., 2014; Karpathy and Fei-Fei, 2015; Vinyals et
al., 2015; Fang et al., 2015; Xu et al., 2015), ma-
chine translation (Devlin et al., 2014; Bahdanau et
al., 2015; Luong et al., 2015), and modeling conver-
sations and dialogues (Shang et al., 2015; Wen et al.,
2015; Yao et al., 2015).

Our model is most similar to Mei et al. (2016)
who use an encoder-decoder style neural network
model to tackle the WEATHERGOV and ROBOCUP
tasks. Their architecture relies on LSTM units and
an attention mechanism which reduces scalability
compared to our simpler design.

Figure 1: Wikipedia infobox of Frederick Parker-Rhodes. The
introduction of his article reads: “Frederick Parker-Rhodes (21
March 1914 – 21 November 1987) was an English linguist,
plant pathologist, computer scientist, mathematician, mystic,
and mycologist.”.

3 Language Modeling for Constrained

Sentence generation

Conditional language models are a popular choice
to generate sentences. We introduce a table-
conditioned language model for constraining text
generation to include elements from fact tables.

3.1 Language model

Given a sentence s = w1, . . . , wT with T words
from vocabulary W , a language model estimates:

P (s) =
TY

t=1

P (wt|w1, . . . , wt�1) . (1)

Let ct = wt�(n�1), . . . , wt�1 be the sequence of
n � 1 context words preceding wt. An n-gram lan-
guage model makes an order n Markov assumption,

P (s) ⇡
TY

t=1

P (wt|ct) . (2)

3.2 Language model conditioned on tables

A table is a set of field/value pairs, where values are
sequences of words. We therefore propose language
models that are conditioned on these pairs.

Local conditioning refers to the information
from the table that is applied to the description of the
words which have already generated, i.e. the previ-
ous words that constitute the context of the language

Frederick Parker-Rhodes (21 March 1914 - 21 November
1987) was an English linguist, plant pathologist, computer
scientist, mathematician, mystic, and mycologist.

Figure 2: An example from the WikiBio dataset (Lebret
et al., 2016), with a database x (top) for Frederick Parker-
Rhodes and corresponding reference generation y (bottom).

to use an encoder network over x and then a condi-
tional decoder network to generate y, training the
whole system in an end-to-end manner. To gener-
ate a description for a given example, a black-box
network (such as an RNN) is used to produce a dis-
tribution over the next word, from which a choice
is made and fed back into the system. The entire
distribution is driven by the internal states of the
neural network.

While effective, relying on a neural decoder
makes it difficult to understand what aspects of
x are correlated with a particular system output.
This leads to problems both in controlling fine-
grained aspects of the generation process and in
interpreting model mistakes.

As an example of why controllability is im-
portant, consider the records in Figure 1. Given
these inputs an end-user might want to generate
an output meeting specific constraints, such as not
mentioning any information relating to customer
rating. Under a standard encoder-decoder style
model, one could filter out this information either
from the encoder or decoder, but in practice this
would lead to unexpected changes in output that
might propagate through the whole system.

As an example of the difficulty of interpret-
ing mistakes, consider the following actual gen-
eration from an encoder-decoder style system for

the records in Figure 2: ”frederick parker-rhodes
(21 november 1914 - 2 march 1987) was an en-
glish mycology and plant pathology, mathematics
at the university of uk.” In addition to not being
fluent, it is unclear what the end of this sentence
is even attempting to convey: it may be attempt-
ing to convey a fact not actually in the knowledge
base (e.g., where Parker-Rhodes studied), or per-
haps it is simply failing to fluently realize infor-
mation that is in the knowledge base (e.g., Parker-
Rhodes’s country of residence).

Traditional NLG systems (Kukich, 1983; McK-
eown, 1992; Belz, 2008; Gatt and Reiter, 2009), in
contrast, largely avoid these problems. Since they
typically employ an explicit planning component,
which decides which knowledge base records to
focus on, and a surface realization component,
which realizes the chosen records, the intent of the
system is always explicit, and it may be modified
to meet constraints.

The goal of this work is to propose an approach
to neural NLG that addresses these issues in a prin-
cipled way. We target this goal by proposing a
new model that generates with template-like ob-
jects induced by a neural HSMM (see Figure 1).
Templates are useful here because they represent
a fixed plan for the generation’s content, and be-
cause they make it clear what part of the genera-
tion is associated with which record in the knowl-
edge base.

4 Background: Semi-Markov Models

What does it mean to learn a template? It is nat-
ural to think of a template as a sequence of typed
text-segments, perhaps with some segments acting
as the template’s “backbone” (Wang and Cardie,
2013), and the remaining segments filled in from
the knowledge base.

A natural probabilistic model conforming with
this intuition is the hidden semi-markov model
(HSMM) (Gales and Young, 1993; Ostendorf
et al., 1996), which models latent segmentations
in an output sequence. Informally, an HSMM is
much like an HMM, except emissions may last
multiple time-steps, and multi-step emissions need
not be independent of each other conditioned on
the state.

We briefly review HSMMs following Murphy
(2002). Assume we have a sequence of ob-
served tokens y1 . . . yT and a discrete, latent state
zt 2 {1, . . . , K} for each timestep. We addition-
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ally use two per-timestep variables to model multi-
step segments: a length variable lt 2 {1, . . . , L}
specifying the length of the current segment, and a
deterministic binary variable ft indicating whether
a segment finishes at time t. We will consider in
particular conditional HSMMs, which condition
on a source x, essentially giving us an HSMM de-
coder.

An HSMM specifies a joint distribution on the
observations and latent segmentations. Letting ✓
denote all the parameters of the model, and using
the variables introduced above, we can write the
corresponding joint-likelihood as follows

p(y, z, l, f | x; ✓) =
T�1Y

t=0

p(zt+1, lt+1 | zt, lt, x)ft

⇥
TY

t=1

p(yt�lt+1:t | zt, lt, x)ft ,

where we take z0 to be a distinguished start-
state, and the deterministic ft variables are used
for excluding non-segment log probabilities. We
further assume p(zt+1, lt+1 | zt, lt, x) factors as
p(zt+1 | zt, x) ⇥ p(lt+1 | zt+1). Thus, the likeli-
hood is given by the product of the probabilities
of each discrete state transition made, the proba-
bility of the length of each segment given its dis-
crete state, and the probability of the observations
in each segment, given its state and length.

5 A Neural HSMM Decoder

We use a novel, neural parameterization of an
HSMM to specify the probabilities in the likeli-
hood above. This full model, sketched out in Fig-
ure 3, allows us to incorporate the modeling com-
ponents, such as LSTMs and attention, that make
neural text generation effective, while maintaining
the HSMM structure.

5.1 Parameterization

Since our model must condition on x, let rj 2 R
d

represent a real embedding of record rj 2 x, and
let xa 2 R

d represent a real embedding of the en-
tire knowledge base x, obtained by max-pooling
coordinate-wise over all the rj . It is also useful
to have a representation of just the unique types
of records that appear in x, and so we also define
xu 2 R

d to be the sum of the embeddings of the
unique types appearing in x, plus a bias vector and
followed by a ReLU nonlinearity.

x

z1

RNN

y1 y2 y3 y4

RNN

z4T

Figure 3: HSMM factor graph (under a known segmenta-
tion) to illustrate parameters. Here we assume z1 is in the
“red” state (out of K possibilities), and transitions to the
“blue” state after emitting three words. The transition model,
shown as T , is a function of the two states and the neural en-
coded source x. The emission model is a function of a “red”
RNN model (with copy attention over x) that generates words
1, 2 and 3. After transitioning, the next word y4 is generated
by the “blue” RNN, but independently of the previous words.

Transition Distribution The transition distribu-
tion p(zt+1 | zt, x) may be viewed as a K ⇥ K ma-
trix of probabilities, where each row sums to 1. We
define this matrix to be

p(zt+1 | zt, x) / AB + C(xu)D(xu),

where A 2 R
K⇥m1 , B 2 R

m1⇥K are state embed-
dings, and where C : R

d ! R
K⇥m2 and D :

R
d ! R

m2⇥K are parameterized non-linear func-
tions of xu. We apply a row-wise softmax to the
resulting matrix to obtain the desired probabilities.

Length Distribution We simply fix all length
probabilities p(lt+1 | zt+1) to be uniform up to a
maximum length L.1

Emission Distribution The emission model
models the generation of a text segment condi-
tioned on a latent state and source information,
and so requires a richer parameterization. Inspired
by the models used for neural NLG, we base this
model on an RNN decoder, and write a segment’s
probability as a product over token-level probabil-
ities,

p(yt�lt+1:t | zt = k, lt = l, x) =

ltY

i=1

p(yt�lt+i | yt�lt+1:t�lt+i�1, zt = k, x)

⇥ p(</seg> | yt�lt+1:t, zt = k, x) ⇥ 1{lt = l},

1We experimented with parameterizing the length distri-
bution, but found that it led to inferior performance. Forcing
the length probabilities to be uniform encourages the model
to cluster together functionally similar emissions of differ-
ent lengths, while parameterizing them can lead to states that
specialize to specific emission lengths.
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where </seg> is an end of segment token. The
RNN decoder uses attention and copy-attention
over the embedded records rj , and is conditioned
on zt = k by concatenating an embedding corre-
sponding to the k’th latent state to the RNN’s in-
put; the RNN is also conditioned on the entire x
by initializing its hidden state with xa.

More concretely, let h
k
i�1 2 R

d be the state of
an RNN conditioned on x and zt = k (as above)
run over the sequence yt�lt+1:t�lt+i�1. We let the
model attend over records rj using h

k
i�1 (in the

style of Luong et al. (2015)), producing a context
vector c

k
i�1. We may then obtain scores vi�1 for

each word in the output vocabulary,

vi�1 = W tanh(gk
1 � [hk

i�1, c
k
i�1]),

with parameters g
k
1 2 R

2d and W 2 R
V ⇥2d. Note

that there is a g
k
1 vector for each of K discrete

states. To additionally implement a kind of slot
filling, we allow emissions to be directly copied
from the value portion of the records rj using copy
attention (Gülçehre et al., 2016; Gu et al., 2016;
Yang et al., 2016). Define copy scores,

⇢j = r
T
j tanh(gk

2 � h
k
i�1),

where g
k
2 2 R

d. We then normalize the output-
vocabulary and copy scores together, to arrive at

evi�1 = softmax([vi�1, ⇢1, . . . , ⇢J ]),

and thus

p(yt�lt+i = w | yt�lt+1:t�lt+i�1, zt = k, x) =

evi�1,w +
X

j:rj .m = w

evi�1,V +j .

An Autoregressive Variant The model as spec-
ified assumes segments are independent condi-
tioned on the associated latent state and x. While
this assumption still allows for reasonable perfor-
mance, we can tractably allow interdependence
between tokens (but not segments) by having each
next-token distribution depend on all the previ-
ously generated tokens, giving us an autoregres-
sive HSMM. For this model, we will in fact use
p(yt�lt+i = w | y1:t�lt+i�1, zt = k, x) in defining
our emission model, which is easily implemented
by using an additional RNN run over all the pre-
ceding tokens. We will report scores for both
non-autoregressive and autoregressive HSMM de-
coders below.

5.2 Learning
The model requires fitting a large set of neu-
ral network parameters. Since we assume z, l,
and f are unobserved, we marginalize over these
variables to maximize the log marginal-likelihood
of the observed tokens y given x. The HSMM
marginal-likelihood calculation can be carried out
efficiently with a dynamic program analogous to
either the forward- or backward-algorithm famil-
iar from HMMs (Rabiner, 1989).

It is actually more convenient to use the
backward-algorithm formulation when using
RNNs to parameterize the emission distributions,
and we briefly review the backward recurrences
here, again following Murphy (2002). We have:

�t(j) = p(yt+1:T | zt = j, ft = 1, x)

=
KX

k=1

�⇤
t (k) p(zt+1 = k | zt = j)

�⇤
t (k) = p(yt+1:T | zt+1 = k, ft = 1, x)

=
LX

l=1

h
�t+l(k) p(lt+1 = l | zt+1 = k)

p(yt+1:t+l | zt+1 = k, lt+1 = l)
i
,

with base case �T (j) = 1. We can now
obtain the marginal probability of y as
p(y | x) =

PK
k=1 �⇤

0(k) p(z1 = k), where we
have used the fact that f0 must be 1, and we
therefore train to maximize the log-marginal
likelihood of the observed y:

ln p(y | x; ✓) = ln
KX

k=1

�⇤
0(k) p(z1 = k). (1)

Since the quantities in (1) are obtained from a
dynamic program, which is itself differentiable,
we may simply maximize with respect to the pa-
rameters ✓ by back-propagating through the dy-
namic program; this is easily accomplished with
automatic differentiation packages, and we use
pytorch (Paszke et al., 2017) in all experiments.

5.3 Extracting Templates and Generating
After training, we could simply condition on a new
database and generate with beam search, as is stan-
dard with encoder-decoder models. However, the
structured approach we have developed allows us
to generate in a more template-like way, giving us
more interpretable and controllable generations.
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[The Golden Palace]55 [is a]59 [coffee shop]12

[providing]3 [Indian]50 [food]1 [in the]17 [£20-
25]26 [price range]16 [.]2 [It is]8 [located in
the]25 [riverside]40 [.]53 [Its customer rating is]19

[high]23 [.]2

Figure 4: A sample Viterbi segmentation of a training text;
subscripted numbers indicate the corresponding latent state.
From this we can extract a template with S = 17 segments;
compare with the template used at the bottom of Figure 1.

First, note that given a database x and refer-
ence generation y we can obtain the MAP assign-
ment to the variables z, l, and f with a dynamic
program similar to the Viterbi algorithm familiar
from HMMs. These assignments will give us a
typed segmentation of y, and we show an example
Viterbi segmentation of some training text in Fig-
ure 4. Computing MAP segmentations allows us
to associate text-segments (i.e., phrases) with the
discrete labels zt that frequently generate them.
These MAP segmentations can be used in an ex-
ploratory way, as a sort of dimensionality reduc-
tion of the generations in the corpus. More im-
portantly for us, however, they can also be used to
guide generation.

In particular, since each MAP segmentation im-
plies a sequence of hidden states z, we may run
a template extraction step, where we collect the
most common “templates” (i.e., sequences of hid-
den states) seen in the training data. Each “tem-
plate” z(i) consists of a sequence of latent states,
with z(i) = z(i)

1 , . . . z(i)
S representing the S distinct

segments in the i’th extracted template (recall that
we will technically have a zt for each time-step,
and so z(i) is obtained by collapsing adjacent zt’s
with the same value); see Figure 4 for an example
template (with S = 17) that can be extracted from
the E2E corpus. The bottom of Figure 1 shows a
visualization of this extracted template, where dis-
crete states are replaced by the phrases they fre-
quently generate in the training data.

With our templates z(i) in hand, we can then
restrict the model to using (one of) them during
generation. In particular, given a new input x, we
may generate by computing

ŷ(i) = arg max
y0

p(y0, z(i) | x), (2)

which gives us a generation ŷ(i) for each extracted
template z(i). For example, the generation in Fig-
ure 1 is obtained by maximizing (2) with x set to
the database in Figure 1 and z(i) set to the template

extracted in Figure 4. In practice, the arg max in
(2) will be intractable to calculate exactly due to
the use of RNNs in defining the emission distribu-
tion, and so we approximate it with a constrained
beam search. This beam search looks very similar
to that typically used with RNN decoders, except
the search occurs only over a segment, for a par-
ticular latent state k.

5.4 Discussion
Returning to the discussion of controllability and
interpretability, we note that with the proposed
model (a) it is possible to explicitly force the gen-
eration to use a chosen template z(i), which is it-
self automatically learned from training data, and
(b) that every segment in the generated ŷ(i) is
typed by its corresponding latent variable. We ex-
plore these issues empirically in Section 7.1.

We also note that these properties may be use-
ful for other text applications, and that they offer
an additional perspective on how to approach la-
tent variable modeling for text. Whereas there has
been much recent interest in learning continuous
latent variable representations for text (see Sec-
tion 2), it has been somewhat unclear what the la-
tent variables to be learned are intended to capture.
On the other hand, the latent, template-like struc-
tures we induce here represent a plausible, proba-
bilistic latent variable story, and allow for a more
controllable method of generation.

Finally, we highlight one significant possible is-
sue with this model – the assumption that seg-
ments are independent of each other given the cor-
responding latent variable and x. Here we note
that the fact that we are allowed to condition on x
is quite powerful. Indeed, a clever encoder could
capture much of the necessary interdependence
between the segments to be generated (e.g., the
correct determiner for an upcoming noun phrase)
in its encoding, allowing the segments themselves
to be decoded more or less independently, given x.

6 Data and Methods

Our experiments apply the approach outlined
above to two recent, data-driven NLG tasks.

6.1 Datasets
Experiments use the E2E (Novikova et al., 2017)
and WikiBio (Lebret et al., 2016) datasets, ex-
amples of which are shown in Figures 1 and 2,
respectively. The former dataset, used for the
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2018 E2E-Gen Shared Task, contains approxi-
mately 50K total examples, and uses 945 distinct
word types, and the latter dataset contains approx-
imately 500K examples and uses approximately
400K word types. Because our emission model
uses a word-level copy mechanism, any record
with a phrase consisting of n words as its value is
replaced with n positional records having a single
word value, following the preprocessing of Lebret
et al. (2016). For example, “type[coffee shop]”
in Figure 1 becomes “type-1[coffee]” and “type-
2[shop].”

For both datasets we compare with published
encoder-decoder models, as well as with direct
template-style baselines. The E2E task is eval-
uated in terms of BLEU (Papineni et al., 2002),
NIST (Belz and Reiter, 2006), ROUGE (Lin,
2004), CIDEr (Vedantam et al., 2015), and ME-
TEOR (Banerjee and Lavie, 2005).2 The bench-
mark system for the task is an encoder-decoder
style system followed by a reranker, proposed by
Dušek and Jurcıcek (2016). We compare to this
baseline, as well as to a simple but competitive
non-parametric template-like baseline (“SUB” in
tables), which selects a training sentence with
records that maximally overlap (without including
extraneous records) the unseen set of records we
wish to generate from; ties are broken at random.
Then, word-spans in the chosen training sentence
are aligned with records by string-match, and re-
placed with the corresponding fields of the new set
of records.3

The WikiBio dataset is evaluated in terms of
BLEU, NIST, and ROUGE, and we compare with
the systems and baselines implemented by Lebret
et al. (2016), which include two neural, encoder-
decoder style models, as well as a Kneser-Ney,
templated baseline.

6.2 Model and Training Details
We first emphasize two additional methodological
details important for obtaining good performance.

Constraining Learning We were able to learn
more plausible segmentations of y by constraining
the model to respect word spans yt+1:t+l that ap-
pear in some record rj 2 x. We accomplish this by
giving zero probability (within the backward re-

2We use the official E2E NLG Challenge scoring scripts at
https://github.com/tuetschek/e2e-metrics.

3For categorical records, like “familyFriendly”, which
cannot easily be aligned with a phrase, we simply select only
candidate training sentences with the same categorical value.

currences in Section 5) to any segmentation that
splits up a sequence yt+1:t+l that appears in some
rj , or that includes yt+1:t+l as a subsequence of
another sequence. Thus, we maximize (1) subject
to these hard constraints.

Increasing the Number of Hidden States
While a larger K allows for a more expressive la-
tent model, computing K emission distributions
over the vocabulary can be prohibitively expen-
sive. We therefore tie the emission distribution be-
tween multiple states, while allowing them to have
a different transition distributions.

We give additional architectural details of our
model in the Supplemental Material; here we note
that we use an MLP to embed rj 2 R

d, and a 1-
layer LSTM (Hochreiter and Schmidhuber, 1997)
in defining our emission distributions. In order to
reduce the amount of memory used, we restrict our
output vocabulary (and thus the height of the ma-
trix W in Section 5) to only contain words in y
that are not present in x; any word in y present in x
is assumed to be copied. In the case where a word
yt appears in a record rj (and could therefore have
been copied), the input to the LSTM at time t+1 is
computed using information from rj ; if there are
multiple rj from which yt could have been copied,
the computed representations are simply averaged.

For all experiments, we set d = 300 and L = 4.
At generation time, we select the 100 most com-
mon templates z(i), perform beam search with a
beam of size 5, and select the generation with the
highest overall joint probability.

For our E2E experiments, our best non-
autoregressive model has 55 “base” states, dupli-
cated 5 times, for a total of K = 275 states, and
our best autoregressive model uses K = 60 states,
without any duplication. For our WikiBio exper-
iments, both our best non-autoregressive and au-
toregressive models uses 45 base states duplicated
3 times, for a total of K = 135 states. In all cases,
K was chosen based on BLEU performance on
held-out validation data. Code implementing our
models is available at https://github.com/
harvardnlp/neural-template-gen.

7 Results

Our results on automatic metrics are shown in
Tables 1 and 2. In general, we find that the
templated baselines underperform neural models,
whereas our proposed model is fairly competi-
tive with neural models, and sometimes even out-
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BLEU NIST ROUGE CIDEr METEOR

Validation

D&J 69.25 8.48 72.57 2.40 47.03
SUB 43.71 6.72 55.35 1.41 37.87
NTemp 64.53 7.66 68.60 1.82 42.46
NTemp+AR 67.07 7.98 69.50 2.29 43.07

Test

D&J 65.93 8.59 68.50 2.23 44.83
SUB 43.78 6.88 54.64 1.39 37.35
NTemp 55.17 7.14 65.70 1.70 41.91
NTemp+AR 59.80 7.56 65.01 1.95 38.75

Table 1: Comparison of the system of Dušek and Jurcıcek
(2016), which forms the baseline for the E2E challenge, a
non-parametric, substitution-based baseline (see text), and
our HSMM models (denoted “NTemp” and “NTemp+AR”
for the non-autoregressive and autoregressive versions, resp.)
on the validation and test portions of the E2E dataset.
“ROUGE” is ROUGE-L. Models are evaluated using the of-
ficial E2E NLG Challenge scoring scripts.

BLEU NIST ROUGE-4

Template KN † 19.8 5.19 10.7
NNLM (field) † 33.4 7.52 23.9
NNLM (field & word) † 34.7 7.98 25.8
NTemp 34.2 7.94 35.9
NTemp+AR 34.8 7.59 38.6

Seq2seq (Liu et al., 2018) 43.65 - 40.32

Table 2: Top: comparison of the two best neural systems of
Lebret et al. (2016), their templated baseline, and our HSMM
models (denoted “NTemp” and “NTemp+AR” for the non-
autoregressive and autoregressive versions, resp.) on the test
portion of the WikiBio dataset. Models marked with a † are
from Lebret et al. (2016), and following their methodology
we use ROUGE-4. Bottom: state-of-the-art seq2seq-style re-
sults from Liu et al. (2018).

performs them. On the E2E data, for example,
we see in Table 1 that the SUB baseline, despite
having fairly impressive performance for a non-
parametric model, fares the worst. The neural
HSMM models are largely competitive with the
encoder-decoder system on the validation data, de-
spite offering the benefits of interpretability and
controllability; however, the gap increases on test.

Table 2 evaluates our system’s performance on
the test portion of the WikiBio dataset, compar-
ing with the systems and baselines implemented
by Lebret et al. (2016). Again for this dataset we
see that their templated Kneser-Ney model under-
performs on the automatic metrics, and that neu-
ral models improve on these results. Here the
HSMMs are competitive with the best model of
Lebret et al. (2016), and even outperform it on
ROUGE. We emphasize, however, that recent, so-
phisticated approaches to encoder-decoder style

Travellers Rest Beefeater

name[Travellers Rest Beefeater], customerRating[3 out of 5],
area[riverside], near[Raja Indian Cuisine]

1. [Travellers Rest Beefeater]55 [is a]59 [3 star]43
[restaurant]11 [located near]25 [Raja Indian Cuisine]40 [.]53

2. [Near]31 [riverside]29 [,]44 [Travellers Rest Beefeater]55
[serves]3 [3 star]50 [food]1 [.]2

3. [Travellers Rest Beefeater]55 [is a]59 [restaurant]12
[providing]3 [riverside]50 [food]1 [and has a]17
[3 out of 5]26 [customer rating]16 [.]2 [It is]8 [near]25
[Raja Indian Cuisine]40 [.]53

4. [Travellers Rest Beefeater]55 [is a]59 [place to eat]12
[located near]25 [Raja Indian Cuisine]40 [.]53

5. [Travellers Rest Beefeater]55 [is a]59 [3 out of 5]5
[rated]32 [riverside]43 [restaurant]11 [near]25
[Raja Indian Cuisine]40 [.]53

Table 3: Impact of varying the template z(i) for a single x
from the E2E validation data; generations are annotated with
the segmentations of the chosen z(i). Results were obtained
using the NTemp+AR model from Table 1.

database-to-text generation have since surpassed
the results of Lebret et al. (2016) and our own,
and we show the recent seq2seq style results of Liu
et al. (2018), who use a somewhat larger model, at
the bottom of Table 2.

7.1 Qualitative Evaluation
We now qualitatively demonstrate that our gener-
ations are controllable and interpretable.

Controllable Diversity One of the powerful as-
pects of the proposed approach to generation is
that we can manipulate the template z(i) while
leaving the database x constant, which allows for
easily controlling aspects of the generation. In Ta-
ble 3 we show the generations produced by our
model for five different neural template sequences
z(i), while fixing x. There, the segments in each
generation are annotated with the latent states de-
termined by the corresponding z(i). We see that
these templates can be used to affect the word-
ordering, as well as which fields are mentioned in
the generated text. Moreover, because the discrete
states align with particular fields (see below), it is
generally simple to automatically infer to which
fields particular latent states correspond, allowing
users to choose which template best meets their re-
quirements. We emphasize that this level of con-
trollability is much harder to obtain for encoder-
decoder models, since, at best, a large amount of
sampling would be required to avoid generating
around a particular mode in the conditional distri-
bution, and even then it would be difficult to con-
trol the sort of generations obtained.
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kenny warren

name: kenny warren, birth date: 1 april 1946, birth name: kenneth warren deutscher, birth place: brooklyn, new york,
occupation: ventriloquist, comedian, author, notable work: book - the revival of ventriloquism in america

1. [kenneth warren deutscher]132 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]82 [author]20 [and]1
[ventriloquist and comedian]69 [.]88

2. [kenneth warren deutscher]132 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]82 [author]20
[best known for his]95 [the revival of ventriloquism]96 [.]88

3. [kenneth warren]16 [“kenny” warren]117 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is an american]127
[ventriloquist, comedian]28 [.]133

4. [kenneth warren]16 [“kenny” warren]117 [ ( ]75 [born]89 [april 1, 1946]101 [ ) ]67 [is a]104 [new york]98 [author]20 [.]133
5. [kenneth warren deutscher]42 [is an american]82 [ventriloquist, comedian]118 [based in]15 [brooklyn, new york]84 [.]88

Table 4: Impact of varying the template z(i) for a single x from the WikiBio validation data; generations are annotated with
the segmentations of the chosen z(i). Results were obtained using the NTemp model from Table 2.

Interpretable States Discrete states also pro-
vide a method for interpreting the generations pro-
duced by the system, since each segment is explic-
itly typed by the current hidden state of the model.
Table 4 shows the impact of varying the template
z(i) for a single x from the WikiBio dataset. While
there is in general surprisingly little stylistic varia-
tion in the WikiBio data itself, there is variation in
the information discussed, and the templates cap-
ture this. Moreover, we see that particular discrete
states correspond in a consistent way to particular
pieces of information, allowing us to align states
with particular field types. For instance, birth
names have the same hidden state (132), as do
names (117), nationalities (82), birth dates (101),
and occupations (20).

To demonstrate empirically that the learned
states indeed align with field types, we calculate
the average purity of the discrete states learned for
both datasets in Table 5. In particular, for each
discrete state for which the majority of its gen-
erated words appear in some rj , the purity of a
state’s record type alignment is calculated as the
percentage of the state’s words that come from
the most frequent record type the state represents.
This calculation was carried out over training ex-
amples that belonged to one of the top 100 most
frequent templates. Table 5 indicates that discrete
states learned on the E2E data are quite pure. Dis-
crete states learned on the WikiBio data are less
pure, though still rather impressive given that there
are approximately 1700 record types represented
in the WikiBio data, and we limit the number of
states to 135. Unsurprisingly, adding autoregres-
siveness to the model decreases purity on both
datasets, since the model may rely on the autore-
gressive RNN for typing, in addition to the state’s
identity.

NTemp NTemp+AR

E2E 89.2 (17.4) 85.4 (18.6)
WikiBio 43.2 (19.7) 39.9 (17.9)

Table 5: Empirical analysis of the average purity of dis-
crete states learned on the E2E and WikiBio datasets, for the
NTemp and NTemp+AR models. Average purities are given
as percents, and standard deviations follow in parentheses.
See the text for full description of this calculation.

8 Conclusion and Future Work

We have developed a neural, template-like gen-
eration model based on an HSMM decoder,
which can be learned tractably by backpropagat-
ing through a dynamic program. The method al-
lows us to extract template-like latent objects in
a principled way in the form of state sequences,
and then generate with them. This approach scales
to large-scale text datasets and is nearly competi-
tive with encoder-decoder models. More impor-
tantly, this approach allows for controlling the
diversity of generation and for producing inter-
pretable states during generation. We view this
work both as the first step towards learning dis-
crete latent variable template models for more dif-
ficult generation tasks, as well as a different per-
spective on learning latent variable text models in
general. Future work will examine encouraging
the model to learn maximally different (or mini-
mal) templates, which our objective does not ex-
plicitly encourage, templates of larger textual phe-
nomena, such as paragraphs and documents, and
hierarchical templates.
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A Supplemental Material

A.1 Additional Model and Training Details
Computing rj A record rj is represented by
embedding a feature for its type, its position, and
its word value in R

d, and applying an MLP with
ReLU nonlinearity (Nair and Hinton, 2010) to
form rj 2 R

d, similar to Yang et al. (2016) and
Wiseman et al. (2017).

LSTM Details The initial cell and hidden-
state values for the decoder LSTM are given
by Q1xa and tanh(Q2xa), respectively, where
Q1, Q2 2 R

d⇥d.
When a word yt appears in a record rj , the input

to the LSTM at time t + 1 is computed using an
MLP with ReLU nonlinearity over the concatena-
tion of the embeddings for rj’s record type, word
value, position, and a feature for whether it is the
final position for the type. If there are multiple rj

from which yt could have been copied, the com-
puted representations are averaged. At test time,
we use the MAP rj to compute the input, even if
there are multiple matches. For yt which could not
have been copied, the input to the LSTM at time
t+1 is computed using the same MLP over yt and
three dummy features.

For the autoregressive HSMM, an additional 1-
layer LSTM with d hidden units is used. We ex-
perimented with having the autoregressive HSMM
consume either tokens y1:t in predicting yt+1, or
the average embedding of the field types corre-
sponding to copied tokens in y1:t. The former
worked slightly better for the WikiBio dataset
(where field types are more ambiguous), while the
latter worked slightly better for the E2E dataset.

Transition Distribution The function
C(xu), which produces hidden state em-
beddings conditional on the source, is de-
fined as C(xu) = U2(ReLU(U1xu)), where

U1 2 R
m3⇥d and U2 2 R

K⇥m2⇥m3 ; D(x) is de-
fined analogously. For all experiments, m1 = 64,
m2 = 32, and m3 = 64.

Optimization We train with SGD, using a learn-
ing rate of 0.5 and decaying by 0.5 each epoch
after the first epoch in which validation log-
likelihood fails to increase. When using an au-
toregressive HSMM, the additional LSTM is op-
timized only after the learning rate has been de-
cayed. We regularize with Dropout (Srivastava
et al., 2014).

A.2 Additional Learned Templates
In Tables 6 and 7 we show visualizations of addi-
tional templates learned on the E2E and WikiBio
data, respectively, by both the non-autoregressive
and autoregressive HSMM models presented in
the paper. For each model, we select a set of five
dissimilar templates in an iterative way by greed-
ily selecting the next template (out of the 200 most
frequent) that has the highest percentage of states
that do not appear in the previously selected tem-
plates; ties are broken randomly. Individual states
within a template are visualized using the three
most common segments they generate.
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1. |
The Waterman

The Golden Palace
Browns Cambridge

...
|

is a
is an

is a family friendly
...

|
Italian
French

fast food
...

|
restaurant

pub
place
...

|
with a
with

with an
...

|
average

high
low
...

|
customer rating

price range
rating

...

|.

2. |
There is a

There is a cheap
There is an

...

|
restaurant

coffee shop
French restaurant

...
|

The Mill
Bibimbap House
The Twenty Two

...

|
located in the
located on the

located north of the
...

|
centre of the city

river
city centre

...

|
that serves

serving
that provides

...

|
fast food

sushi
take-away deliveries

...
|.

3. |
The Olive Grove

The Punter
The Cambridge Blue

...
| restaurant

pub
...

|
serves
offers
has
...

|
fast food

sushi
take-away deliveries

...
|.

4. |
The

Child friendly
The average priced

...

|
restaurant

coffee shop
French restaurant

...
|

The Mill
Bibimbap House
The Twenty Two

...

|
serves
offers
has
...

|
English
Indian
Italian

...

|
food

cuisine
dishes

...
|.

5. |
The Strada

The Dumpling Tree
Alimentum

...

|
provides
serves
offers

...
|

Indian
Chinese
English

...
|

food in the
food at a

food and has a
...

|
customer rating of

price range of
rating of

...

|
1 out of 5
average

5 out of 5
...

|.

1. |
The Eagle

The Golden Curry
Zizzi
...

|
provides
providing

serves
...

|
Indian

Chinese
English

...
|

food
cuisine
Food
...

|
in the
with a

and has a
...

|
high

moderate
average

...

|
price range

customer rating
rating

...

|. |
It is

They are
It’s
...

|
near

located in the
located near

...

|
riverside

city centre
Cafe Sicilia

...

|. |
Its customer rating is

It has a
The price range is

...

|
1 out of 5
average

high
...

|.

2. |
Located near

Located in the
Near
...

|
The Portland Arms

riverside
city centre

...
|

is an
is a family friendly

there is a
...

|
Italian

fast food
French

...
|

restaurant called
place called

restaurant named
...

|
The Waterman

Cocum
Loch Fyne

...
|.

3. |
A
An

A family friendly
...

|
Italian

fast food
French

...
|

restaurant
pub

coffee shop
...

|
is

called
named

...
|

The Waterman
Cocum

Loch Fyne
...

|.

4. |
Located near

Located in the
Near
...

|
The Portland Arms

riverside
city centre

...
| , |

The Eagle
The Golden Curry

Zizzi
...

|
is a

is a family friendly
is an
...

|
cheap

family-friendly
family friendly

...

|
Italian

fast food
French

...
|

restaurant
pub

coffee shop
...

|.

5. |
A
An

A family friendly
...

|
Italian

fast food
French

...
|

restaurant
pub

coffee shop
...

|
near

located in the
located near

...
|

riverside
city centre

Cafe Sicilia
...

|
is

called
named

...
|

The Waterman
Cocum

Loch Fyne
...

|.

Table 6: Five templates extracted from the E2E data with the NTemp model (top) and the Ntemp+AR model (bottom).
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1. |
william henry

george augustus frederick
marie anne de bourbon

...

|
(

was (
;
...

|
born

born on
born 1

...
|

1968
1960
1970
...

|
)
])
]
...

|
is an american

is a russian
was an american

...
|

politician
actor

football player
...

|.

2. |
sir

captain
lieutenant

...

|
john herbert

hartley
donald charles cameron

...

|
was a

was a british
was an english

...
|

world war i
world war

first world war
...

|
national team
organization
super league

...

|.

3. |
john herbert

hartley
donald charles cameron

...

|
is a

was a
is an
...

|
indie rock

death metal
ska
...

|
band

midfielder
defenceman

...
|

from
for

based in
...

|
australia

los angeles, california
chicago

...

|.

4. |
john herbert

hartley
donald charles cameron

...

|
was a
is a

is a former
...

|
american

major league baseball
australian

...

|
football

professional baseball
professional ice hockey

...

|
midfielder
defender

goalkeeper
...

|.

5. |
james

william john
william

...

|
“ billy ” wilson

smith
“ jack ” henry

...

| ( |
1900

c. 1894
1913
...

| – |
france

budapest
buenos aires

...

| ) |
is an american
is an english

was an american
...

|
footballer

professional footballer
rules footballer

...

|
who plays for

who currently plays for
who played with

...

|
paganese

south melbourne
fc dynamo kyiv

...
|

in the
of the

and the
...

|
vicotiral football league
national football league

australian football league
...

| ( |
vfl
nfl
afl
...

| ) |.

1. |
aftab ahmed

anderson da silva
david jones

...
| (

;
...

|
born

born on
born 1

...
|

1951
1970
1974
...

| )
]
...

|
is an american

was an american
is an english

...
|

actor
actress

cricketer
...

|.

2. |
aftab ahmed

anderson da silva
david jones

...
|

was a
is a former

is a
...

|
world war i

liberal
baseball

...
|

member of the
party member of the

recipient of the
...

|
austrian

pennsylvania
montana

...
|

house of representatives
legislature

senate
...

|.

3. |
adjutant

lieutenant
captain

...

|
aftab ahmed

anderson da silva
david jones

...
|

was a
is a former

is a
...

|
world war i

liberal
baseball

...
|

member of the
party member of the

recipient of the
...

|
knesset

scottish parliament
fc lokomotiv liski

...

|.

4. |
william

john william
james “

...

|
“ billy ” watson

smith
jim ” edward

...

| ( |
1913

c. 1900
1913
...

|
–
in
-
...

|
1917

surrey, england
british columbia

...

| ) |
was an american
was an australian

is an american
...

|
football player
rules footballer

defenceman
...

|
who plays for

who currently plays for
who played with

...

|
collingwood

st kilda
carlton

...

|
in the
of the

and the
...

|
victorial football league
national football league

australian football league
...

| ( |
vfl
afl
nfl
...

| ) |.

5. |
aftab ahmed

anderson da silva
david jones

...
|

is a
is a former
is a female

...
|

member of the
party member of the

recipient of the
...

|
knesset

scottish parliament
fc lokomotiv liski

...

|.

Table 7: Five templates extracted from the WikiBio data with the NTemp model (top) and the Ntemp+AR model (bottom).
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Abstract

Neural text generation, including neural ma-
chine translation, image captioning, and sum-
marization, has been quite successful recently.
However, during training time, typically only
one reference is considered for each exam-
ple, even though there are often multiple refer-
ences available, e.g., 4 references in NIST MT
evaluations, and 5 references in image cap-
tioning data. We first investigate several dif-
ferent ways of utilizing multiple human ref-
erences during training. But more impor-
tantly, we then propose an algorithm to gener-
ate exponentially many pseudo-references by
first compressing existing human references
into lattices and then traversing them to gener-
ate new pseudo-references. These approaches
lead to substantial improvements over strong
baselines in both machine translation (+1.5
BLEU) and image captioning (+3.1 BLEU /
+11.7 CIDEr).

1 Introduction

Neural text generation has attracted much atten-
tion in recent years thanks to its impressive gener-
ation accuracy and wide applicability. In addition
to demonstrating compelling results for machine
translation (MT) (Sutskever et al., 2014; Bahdanau
et al., 2014), by simple adaptation, practically very
same or similar models have also proven to be suc-
cessful for summarization (Rush et al., 2015; Nal-
lapati et al., 2016) and image or video captioning
(Venugopalan et al., 2015; Xu et al., 2015a).

The most common neural text generation
model is based on the encoder-decoder frame-
work (Sutskever et al., 2014) which generates a
variable-length output sequence using an RNN-
based decoder with attention mechanisms (Bah-
danau et al., 2014; Xu et al., 2015b). There are
many recent efforts in improving the generation
accuracy, e.g., ConvS2S (Gehring et al., 2017) and

Transformer (Vaswani et al., 2017). However, all
these efforts are limited to training with a single
reference even when multiple references are avail-
able.

Multiple references are essential for evaluation
due to the non-uniqueness of translation and gen-
eration unlike classification tasks. In MT, even
though the training sets are usually with sin-
gle reference (bitext), the evaluation sets often
come with multiple references. For example, the
NIST Chinese-to-English and Arabic-to-English
MT evaluation datasets (2003–2008) have in total
around 10,000 Chinese sentences and 10,000 Ara-
bic sentences each with 4 different English trans-
lations. On the other hand, for image caption-
ing datasets, multiple references are more com-
mon not only for evaluation, but also for train-
ing, e.g., the MSCOCO (Lin et al., 2014) dataset
provides 5 references per image and PASCAL-
50S and ABSTRACT-50S (Vedantam et al., 2015)
even provide 50 references per image. Can we use
the extra references during training? How much
can we benefit from training with multiple refer-
ences?

We therefore first investigate several different
ways of utilizing existing human-annotated refer-
ences, which include Sample One (Karpathy and
Fei-Fei, 2015), Uniform, and Shuffle methods (ex-
plained in Sec. 2). Although Sample One has been
explored in image captioning, to the best of our
knowledge, this is the first time that an MT system
is trained with multiple references.

Actually, four or five references still cover only
a tiny fraction of the exponentially large space
of potential references (Dreyer and Marcu, 2012).
More importantly, encouraged by the success of
training with multiple human references, we fur-
ther propose a framework to generate many more
pseudo-references automatically. In particular, we
design a neural multiple-sequence alignment algo-
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rithm to compress all existing human references
into a lattice by merging similar words across dif-
ferent references (see examples in Fig. 1); this
can be viewed as a modern, neural version of
paraphrasing with multiple-sequence alignment
(Barzilay and Lee, 2003, 2002). We can then gen-
erate theoretically exponentially more references
from the lattice.

We make the following main contributions:

• Firstly, we investigate three different methods
for multi-reference training on both MT and
image captioning tasks (Section 2).

• Secondly, we propose a novel neural
network-based multiple sequence alignment
model to compress the existing references
into lattices. By traversing these lattices,
we generate exponentially many new pseudo-
references (Section 3).

• We report substantial improvements over
strong baselines in both MT (+1.5 BLEU)
and image captioning (+3.1 BLEU / +11.7
CIDEr) by training on the newly generated
pseudo-references (Section 4).

2 Using Multiple References

In order to make the multiple reference training
easy to adapt to any frameworks, we do not change
anything from the existing models itself. Our mul-
tiple reference training is achieved by converting
a multiple reference dataset to a single reference
dataset without losing any information.

Considering a multiple reference dataset D,
where the ith training example, (xi, Yi), includes
one source input xi, which is a source sentence in
MT or image vector in image captioning, and a ref-
erence set Yi = {y1

i ,y
2
i , ...y

K
i } of K references.

We have the following methods to convert the mul-
tiple reference dataset to a single reference dataset
D0 (note that the following D0

sample one, D0
uniform

and D0
shuffle are ordered sets):

Sample One: The most straightforward way is to
use a different reference in different epochs dur-
ing training to explore the variances between refer-
ences. For each example, we randomly pick one of
the K references in each training epoch (note that
the random function will be used in each epoch).
This method is commonly used in existing image
captioning literatures, such as (Karpathy and Fei-
Fei, 2015), but never used in MT. This approach

can be formalized as:

D0
sample one =

|D|[

i=1

{(xi,y
ki
i )}, ki = rand(1, ..., K)

Uniform: Although all references are accessible
by using Sample One, it is not guaranteed that all
references are used during training. So we intro-
duce Uniform which basically copies xi training
example K times and each time with a different
reference. This approach can be formalized as:

D0
uniform =

|D|[

i=1

K[

k=1

{(xi,y
k
i )}

Shuffle is based on Uniform, but shuffles all the
source and reference pairs in random order before
each epoch. So, formally it is:

D0
shuffle = Shuffle(D0

uniform)

Sample One is supervised by different training
signals in different epochs while both Uniform and
Shuffle include all the references at one time. Note
that we use mini-batch during training. When we
set the batch size equal to the entire training set
size in both Uniform and Shuffle, they become
equivalent.

3 Pseudo-References Generation
In text generation tasks, the given multiple refer-
ences are only a small portion in the whole space
of potential references. To cover a larger number
of references during training, we want to generate
more pseudo-references which is similar to exist-
ing ones.

Our basic idea is to compress different refer-
ences y0,y1, ...,yK into a lattice. We achieve
this by merging similar words in the references.
Finally, we generate more pseudo-references by
simply traversing the compressed lattice and se-
lect those with high quality according to its BLEU
score.

Take the following three references from
the NIST Chinese-to-English machine translation
dataset as an example:

1. Indonesia reiterated its opposition
to foreign military presence

2. Indonesia repeats its opposition
against station of foreign troops in
Indonesia

3. Indonesia reiterates opposition to

garrisoning foreign armies
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(a)
Indonesia

Indonesia

Indonesia

reiterated its opposition to foreign military
presence

repeats its opposition against station of foreign troops in Indonesia

reiterates opposition to garrisoning foreign

armies

(b)

Indonesia

Indonesia

to
military presence

repeats

reiterated
its opposition

against station of

foreign troops in Indonesia

reiterates opposition to garrisoning foreign

arm
ies

(c)
Indonesia

to military presence

repeats

reiterated

its opposition

against station of

foreign

troops in Indonesiareiterates

garrisoning

✏

armies

(d)

Indonesia

Indonesia

to military presence

repeats

reiterated
its opposition

against station of

foreign

troops
in

Indonesia

reiterates opposition to garrisoning foreign

arm
ies

(e)
Indonesia

to
military presence

repeats

reiterated
its

✏

opposition against station of foreign troops in Indonesia

reiterates

garrisoning

✏ armies ✏

Figure 1: Lattice construction with word alignment. (b-c) is hard word alignment and 33 pseudo-references can be
generated. (d-e) is soft word alignment, 213 pseudo-references can be generated.

3.1 Naive Idea: Hard Word Alignment
The simplest way to compress different references
into a lattice is to do pairwise reference compres-
sion iteratively. At each time, we select two refer-
ences and merge the same words in them.

Considering the previous example, we can de-
rive an initial lattice from the three references as
shown in Fig. 1(a). Assume that we first do a
pairwise reference compression on first two ref-
erences, we can merge at four sharing words:
Indonesia, its, opposition and foreign, and
the lattice will turn to Fig. 1(b). If we further com-
press the first and third references, we can merge at
Indonesia, opposition, to and foreign, which
gives the lattice Fig. 1(c). By simply traversing
the final lattice, 33 new pseudo-references can be
generated. For example:

1. Indonesia reiterated its opposition

to garrisoning foreign armies

2. Indonesia repeats its opposition to
foreign military presence

3. Indonesia reiterates opposition to
foreign troops in Indonesia

4. ...

However, this simple hard alignment method
(only identical words can be aligned) suffers from
two problems:

1. Different words may have similar meanings
and need to be merged together. For exam-
ple, in the previous example, reiterated,
repeats and reiterates should be merged
together. Similarly, military, troops and
armies also have similar meanings. If the
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(a)

Two

Two elephants try to fit through a small entry

elephants in an enclosure next to a brick
building

(b)
Two elephants in an enclosure next

try

small entry
to

fit
through

✏

a

brick building

Figure 2: Mistakes from hard word alignment by merging at “to”.

lattice can align these words, we can gener-
ate the lattice shown in Fig. 1(e) which can
generate 213 pseudo-references.

2. Identical words may have different mean-
ing in different contexts and should not be
merged. Considering the following two ref-
erences from the COCO image captioning
dataset (corresponding picture is shown in
Fig. 2):

1. Two elephants in an enclosure next
to a brick building

2. Two elephants try to fit through a

small entry

Following the previously described algorithm,
we can merge the two references at “two
elephants”, at “to” and at “a”. However, “to” in
the two references are very different (it is a prepo-
sition in the first reference and an infinitive in the
second) and should not be merged. Thus, the lat-
tice in Fig. 2(b) will generate the following wrong
pseudo-references:

1. Two elephants try to a small entry

2. Two elephants in an enclosure next

to fit through a brick building

Therefore, we need to investigate a better
method to compress the lattice.

3.2 Measuring Word Similarity in Context
To tackle the above listed two problems of hard
alignment, we need to identify synonyms and
words with similar meanings. Barzilay and Lee
(2002) utilize an external synonyms dictionary to
get the similarity score between words. How-
ever, this method ignores the given context of each
word. For example, in Fig. 1(a), there are two
Indonesia’s in the second path of reference. If
we use a synonyms dictionary, both Indonesia to-
kens will be aligned to the Indonesia in the first

or third sentence with the same score. This incor-
rect alignment would lead to meaningless lattice.

Thus, we introduce the semantic substitution
matrix which measures the semantic similarity of
each word pairs in context. Formally, given a sen-
tence pair yi and yj , we build a semantic substi-
tution matrix M = R

|yi|⇥|yj |, whose cell Mu,v

represents the similarity score between word yi,u

and word yj,v.
We propose a new neural network-based mul-

tiple sequence alignment algorithm to take con-
text into consideration. We first build a language
model (LM) to obtain the semantic representation
of each word, then these word representations are
used to construct the semantic substitution matrix
between sentences.

Fig. 3 shows the architecture of the bidirectional
LM (Mousa and Schuller, 2017). The optimiza-
tion goal of our LM is to minimize the ith word’s
prediction error given the surrounding word’s hid-
den state:

p(wi |
��!
hi�1 �

 ��
hi+1) (1)

For any new given sentences, we concatenate
both forward and backward hidden states to rep-
resent each word yi,u in a sentence yi. We then
calculate the normalized cosine similarity score of
word yi,u and yj,v as:

Mu,v = cosine(
�!
hu �

 �
hu,
�!
hv �

 �
hv) (2)

w1 w2 w3

ŵ2

�!
h1

�!
h0

�!
h2

�!
h3

 �
h3

 �
h4

 �
h2

 �
h1

< s > < /s >

Figure 3: Bidirectional Language Model
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do
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Figure 4: Semantic Substitution Matrix

Fig. 4 shows an example of the semantic sub-
stitution matrix of first two sentences in example
references of Fig. 1(a).

3.3 Iterative Pairwise Word Alignment using
Dynamic Programming

With the help of semantic substitution matrix Mu,v

which measures pairwise word similarity, we need
to find the optimal word alignment to compress
references into a lattice.

Unfortunately, this computation is exponential
in the number of sequences. Thus, we use iter-
ative pairwise alignment which greedily merges
sentence pairs (Durbin et al., 1998).

Based on pairwise substitution matrix we can
define an optimal pairwise sequence alignment as
an optimal path from M0,0 to M|yi|,|yj |. This
is a dynamic programming problem with the
state transition function described in Equation (3).
Fig. 5 shows the optimal path according to the se-
mantic substitution matrix in Fig. 4. There is a gap
if the continuous step goes vertical or horizontal,
and an alignment if it goes diagonal.

opt(u, v)=

8
><

>:

opt(u�1, v�1)+Mu,v

opt(u�1, v)

opt(u, v�1)

(3)

What order should we follow to do the iter-
ative pairwise word alignment? Intuitively, we
need to compress the most similar reference pair
first, since this compression will lead to more
aligned words. Following this intuition, we order
reference pairs by the maximum alignment score
opt(|yi|, |yj |) (i.e. the score of bottom-right cell
in Fig. 5) which is the sum of all aligned words.

in
In
do
ne
si
a

I

Figure 5: Dynamic Programming on Semantic Substi-
tution Matrix

Using this order, we can iteratively merge each
sentence pair in descending order, unless both the
sentences have already been merged (this will pre-
vent generating a cyclic lattice).

Since the semantic substitution matrix Mu,v,
defined as a normalized cosine similarity, scales
in (0, 1), it’s very likely for the DP algorithm to
align unrelated words. To tackle this problem, we
deduct a global penalty p from each cell of Mu,v.
With the global penalty p, the DP algorithm will
not align a word pair (yi,u,yi,v) unless Mu,v � p.

After the pairwise references alignment, we
merge those aligned words. For example, in Fig. 1,
after we generate an initial lattice as shown in
Fig. 1(a), we then calculate the maximum align-
ment score of all sentence pairs. After that, the
lattice turns into Fig. 1(d) by merging the first two
references (assuming they have the highest score)
according to pairwise alignment shown in Fig. 5.
Then we pick the sentence pair with next highest
alignment score (assuming it’s the last two sen-
tences). Similar to the previous step, we find align-
ments according to the dynamic programming and
merge to the final lattice (see Fig. 1(e)).

3.4 Traverse Lattice and Pseudo-References
Selection by BLEU

We generate pseudo-references by simply travers-
ing the generated lattice. For example, if we tra-
verse the final lattice shown in Fig. 1(e), we can
generate 213 pseudo-refrences in total.

Then, we can put those generated pseudo-
references to expand the training dataset. To bal-
ance the number of generated pseudo-references
for each example, we force the total number
of pseudo-references from each example to be
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(a) Machine Translation Dataset

(b) Image Captioning Dataset

Figure 6: Analysis of generated references

K 0. For those examples generating k pseudo-
references and k > K 0, we calculate all pseudo-
references’ BLEU scores based on gold refer-
ences, and only keep top K 0�k pseudo-references
with highest BLEU score.

4 Experiments

To investigate the empirical performances of our
proposed algorithm, we conduct experiments on
machine translation and image captioning.

4.1 Machine Translation

We evaluate our approach on NIST Chinese-to-
English translation dataset which consists of 1M
pairs of single reference data and 5974 pairs of
4 reference data (NIST 2002, 2003, 2004, 2005,
2006, 2008). Table 1 shows the statistics of this
dataset. We first pre-train our model on a 1M pairs
single reference dataset and then train on the NIST
2002, 2003, 2004, 2005. We use the NIST 2006

dataset as validation set and NIST 2008 as test
sets.

Fig. 6(a) analyzes the number and quality
of generated references using our proposed ap-
proach. We set the global penalty as 0.9 and only
calculate the top 50 generated references for the
average BLEU analysis. From the figure, we can
see that when the sentence length grows, the num-
ber of generated references grows exponentially.
To generate enough references for the following
experiments, we set an initial global penalty as 0.9
and gradually decrease it by 0.05 until we collect
no less than 100 references. We train a bidirec-
tional language model on the pre-training dataset
and training dataset with Glove (Pennington et al.,
2014) word embedding size of 300 dimension, for
20 epochs to minimize the perplexity

We employ byte-pair encoding (BPE) (Sennrich
et al., 2015) which reduces the source and target
language vocabulary sizes to 18k and 10k. We
adopt length reward (Huang et al., 2017) to find
optimal sentence length. We use a two layer bidi-
rectional LSTM as the encoder and a two layer
LSTM as the decoder. We perform pre-training
for 20 epochs to minimize perplexity on the 1M
dataset, with a batch size of 64, word embedding
size of 500, beam size of 15, learning rate of 0.1,
learning rate decay of 0.5 and dropout rate of 0.3.
We then train the model in 30 epochs and use the
best batch size among 100, 200, 400 for each up-
date method. These batch sizes are multiple of the
number of references used in experiments, so it is
guaranteed that all the references of one single ex-
ample are in one batch for the Uniform method.
The learning rate is set as 0.01 and learning rate
decay as 0.75. We do each experiment three times
and report the average result.

Table 2 shows the translation quality on the dev-
set of machine translation task. Besides the orig-
inal 4 references in the training set, we gener-
ate another four dataset with 10, 20, 50 and 100
references including pseudo-references using hard
word alignment and soft word alignment. We
compare the three update methods (Sample One,
Uniform, Shuffle) with always using the first ref-
erence (First). All results of soft word alignment
are better than corresponding hard word alignment
results and the best result is achieved with 50 ref-
erences using Uniform and soft word alignment.
According to Table 3, Shuffle with original 4 refer-
ences has +0.7 BLEU improvement and Uniform
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Task Pre-training Training Validation Testing

Machine Translation # of examples 1,000,000 4,667 616 691
# of refs per example 1 4 4 4

Image Captioning # of examples - 113,287 5,000 5,000
# of refs per example - 5 5 5

Table 1: Statistics of datasets used in following experiments.

# of Refs Method BLEU
0 Pre-train 37.44
1 First⇤ 38.64

4
Sample One 38.81
Uniform 38.78
Shuffle 38.87

Includes Pseudo-Refs Hard Align Soft Align

10
Sample One 37.48 39.41
Uniform 39.20 39.35
Shuffle 39.13 39.53

20
Sample One 37.27 38.70
Uniform 39.14 39.46
Shuffle 39.12 39.42

50
Sample One 37.42 37.62
Uniform 39.30 39.65
Shuffle 38.98 39.08

100
Sample One 37.54 37.63
Uniform 39.23 39.46
Shuffle 38.88 39.03

Table 2: BLEU on the MT validation set. ⇤ Baseline

# of Refs Method BLEU
0 Pre-train 33.58
1 First⇤ 34.49
4 Shuffle 35.20 (+0.7)

†50 Uniform 35.98 (+1.5)

Table 3: BLEU on the MT test set. †Includes pseudo-
references generated by soft word alignment algorithm.
⇤Baseline.

with 50 references has +1.5 BLEU improvement.
From Fig. 7(b), we can see that using the Sam-
ple One method, the translation quality drops dra-
matically with more than 10 references. This may
be due to the higher variance of used reference in
each epoch.

4.2 Image Captioning

For the image captioning task, we use the widely-
used MSCOCO image captioning dataset. Follow-
ing prior work, we use the Kapathy split (Karpathy
and Fei-Fei, 2015). Table 1 shows the statistics of
this dataset. We use Resnet (He et al., 2016) to ex-
tract image feature of 2048 feature size and simple
fully connected layer of size 512 to an LSTM de-

# of Refs Method BLEU CIDEr
1 First 26.27 79.05

5
Sample One⇤ 29.03 85.39
Uniform 30.05 89.76
Shuffle 30.41 91.21

Includes Pseudo-Refs Hard Align Soft Align
BLEU CIDEr BLEU CIDEr

10
Sample One 30.63 91.76 30.98 92.02
Uniform 30.40 91.48 30.77 91.89
Shuffle 30.68 92.01 30.91 92.22

20
Sample One 30.69 92.25 30.91 92.32
Uniform 30.73 91.69 31.03 92.61
Shuffle 31.56 94.99 31.92 95.59

50
Sample One 30.76 91.81 31.07 92.17
Uniform 30.66 92.30 30.99 92.61
Shuffle 30.83 93.26 31.06 94.19

Table 4: BLEU/CIDEr on the image captioning valida-
tion set. ⇤Baseline.

# of Refs Method BLEU CIDEr
1 First 26.70 80.70
5 Sample One⇤ 28.67 85.41
5 Shuffle 30.94 (+2.3) 94.10 (+8.7)

†20 Shuffle 31.79 (+3.1) 97.10 (+11.7)

Table 5: BLEU/CIDEr on the image captioning test set
with soft. † Includes pseudo-references generated by
soft word alignment algorithm. ⇤ Baseline.

coder. We train every model for 100 epochs and
calculate the BLEU score on validation set and se-
lect the best model. For every update method, we
find the optimal batch size among 50, 250, 500,
1000 and we use a beam size of 5.

Fig. 6(b) analyzes the correlation between aver-
age references length with the number and quality
of generated references. We set global penalty as
0.6 (which is also adopted for the generated ref-
erences in the following experiments) and calcu-
late the top 50 generated references for the aver-
age BLEU analysis. Since the length of original
references is much shorter than the previous ma-
chine translation dataset, it has worse quality and
fewer generated references.

Table 4 shows that the best result is achieved
with 20 references using Shuffle. This result is
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Image Original References

a gray tabby cat is curled in a red bowl that sits on a table near a window

a brown and black cat is sleeping in a bowl on a table

a grey tiger cat sleeping in a brown bowl on a table

an image of a cat sitting inside of a bowl on the kitchen table

a cat asleep in a fruit bowl on a dining room table

Generated Lattice using Soft Alignment

✏

an image of

a

gray

brown

grey

tiger

and

✏

black

tabby

✏

cat

sitting

is

✏

curled

sleeping

asleep

inside of

in a

red

brown

fruit
✏

bowl
that sits

✏

on
a

the

kitchen
✏

dining room

table
✏

near a window

ID Pseudo-references BLEU
1 a grey tiger cat sleeping in a brown bowl on a table near a window 100.0
2 a grey tiger cat sleeping in a brown bowl on a dining room table 100.0
3 a brown and black cat is sleeping in a bowl on the kitchen table 100.0
... ... ...

48 a grey tiger cat sleeping in a fruit bowl on a table 97.1
49 a cat asleep in a red bowl that sits on a table 97.1
50 a gray tabby cat is sleeping in a bowl on a table 97.1
... ... ...

73723 a grey and tabby cat inside of a red bowl on the dining room table 0.0
73724 a grey and tabby cat inside of a red bowl on a kitchen table 0.0

Table 6: Training example that generates maximum number of pseudo-references (73724). The selected 8 pseudo-
references are sorted according to their BLEU score.

(a) Learning curve of different methods
with 50 References

(b) MT with different number of references

Figure 7: Translation quality of machine translation
task on dev-set with soft alignment

different from the result of machine translation
task where Uniform method is the best. This
may be because the references in image caption-
ing dataset are much more diverse than those in
machine translation dataset. Different captions
of one image could even talk about different as-
pects. When using the Uniform method, the high
variance of references in one batch may harm the
model and lead to worse text generation quality.
Table 5 shows that it outperforms Sample One
with 4 original references, which is adopted in
previous work (Karpathy and Fei-Fei, 2015), +3.1
BLEU score and +11.7 CIDEr.

4.3 Case Study

Fig. 6 shows a training example in the COCO
dataset and its corresponding generated lattice and
pseudo-references which is sorted according to its
BLEU score. Our proposed algorithm generates
73724 pseudo-references in total. All the top 50
pseudo-references’ BLEU scores are above 97.1
and the top three even achieve 100.0 BLEU score
though they are not identical to any original refer-
ences. Although the BLEU of last two sentences
is 0.0, they are still valid to describe this picture.
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(a) Learning curve of different methods with
20 References

(b) Image captioning with different number of
references

Figure 8: Text generation quality of image captioning
task on validation set with soft alignment

5 Conclusions

We introduce several multiple-reference training
methods and a neural-based lattice compression
framework, which can generate more training ref-
erences based on existing ones. Our proposed
framework outperforms the baseline models on
both MT and image captioning tasks.
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Abstract

The rapid development of knowledge graphs
(KGs), such as Freebase and WordNet, has
changed the paradigm for AI-related applica-
tions. However, even though these KGs are
impressively large, most of them are suffering
from incompleteness, which leads to perfor-
mance degradation of AI applications. Most
existing researches are focusing on knowl-
edge graph embedding (KGE) models. Nev-
ertheless, those models simply embed entities
and relations into latent vectors without lever-
aging the rich information from the relation
structure. Indeed, relations in KGs conform
to a three-layer hierarchical relation structure
(HRS), i.e., semantically similar relations can
make up relation clusters and some relations
can be further split into several fine-grained
sub-relations. Relation clusters, relations and
sub-relations can fit in the top, the middle and
the bottom layer of three-layer HRS respec-
tively. To this end, in this paper, we extend ex-
isting KGE models TransE, TransH and Dist-
Mult, to learn knowledge representations by
leveraging the information from the HRS. Par-
ticularly, our approach is capable to extend
other KGE models. Finally, the experiment re-
sults clearly validate the effectiveness of the
proposed approach against baselines.

1 Introduction

Knowledge Graphs (KGs) are extremely useful
resources for many AI-related applications, such
as question answering, information retrieval and
query expansion. Indeed, KGs are multi-relational
directed graphs composed of entities as nodes and
relations as edges. They represent information
about real-world entities and relations in the form
of knowledge triples, which is denoted as (h, r, t),
where h and t correspond to the head and tail enti-
ties and r denotes the relation between them, e.g.,
(Donald Trump, presidentOf, USA). Large

scale, collaboratively created KGs , such as Free-
base (Bollacker et al., 2008), WordNet (Miller,
1994), Yago (Suchanek et al., 2007), Gene On-
tology (Sherlock, 2009), NELL (Carlson et al.,
2010) and Google’s KG1, have recently become
available. However, despite the impressively large
sizes, the coverage of most existing KGs are far
from complete. This has motivated research in
knowledge base completion task, which includes
KGE methods aiming to embed entities and rela-
tions in KGs into low-dimensional embeddings.

In the literature, there are a number of studies
about KGE models. These models embed enti-
ties and relations into latent vectors and complete
KGs based on these vectors, such as TransE (Bor-
des et al., 2013), TransH (Wang et al., 2014) and
TransR (Lin et al., 2015b). However, most of the
existing works simply embed relations into vec-
tors. Less efforts have been made for investigating
the rich information from the relation structure.
Indeed, in this research, we define a three-layer hi-
erarchical relation structure (HRS), which can be
conformed by relation clusters, relations and sub-
relations in KGs.

• Relation clusters: Semantically similar rela-
tions are often observed in Large-scales KGs.
For example, the relation ’producerOf’ and ’di-
rectorOf’ may be semantically related if both of
them describe a relation between a person and
a film. These semantically similar relations can
make up relation clusters. We believe the in-
formation from semantically similar relations is
of great value, and relations in the same group
can be trained in a collective way to facilitate
the knowledge sharing when learning the em-
beddings of related relations.

• Relations: A relation connects the head and
1https://www.google.com/intl/es419/insidesearch/features/

search/knowledge.html
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tail entities in a knowledge triple, denoted as
(h, r, t), where h and t correspond to the head
and tail entities and r denotes the relation be-
tween them.

• Sub-relations: There are relations that have
multiple semantic meanings and can be split
into several sub-relations. For example, the
relation partOf has at least two seman-
tics: location-related as (New Y ork, partOf ,
USA) and composition-related as (monitor,
partOf , television). We believe the sub-
relations can give fine-grained descriptions for
each relation.

The relation clusters, relations and sub-relations
correspond to the top, middle and bottom layer of
the three-layer HRS.

In this paper, we extend state-of-the-art models
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014) and DistMult (Yang et al., 2015) to learn
knowledge representations by leveraging the rich
information from the HRS. Moreover, the same
technique can easily be used to extend other state-
of-the-art models and utilize the HRS information.
In the proposed models, for each knowledge triple
(h, r, t), the embedding of r is the sum of three
embedding vectors, which correspond to the three
layers of the HRS respectively and therefore, the
information from the HRS is leveraged. Particu-
larly, instead of using additional information like
text or paths, our model simply use the knowledge
triples in KGs and the rich information from the
HRS. Extensive experiments on popular bench-
mark data sets demonstrate the effectiveness of our
models.

In summary, we highlight our key contributions
as follows,

1. We propose a technique by making use of the
HRS information to conduct the KGE task, and
extend three state-of-the-art models to utilize
this technique. The technique can be easily ap-
plied to other KGE models.

2. Our proposed models don’t use additional in-
formation like text or paths, instead, we only
use the knowledge triples in KGs and take ad-
vantage of the rich information from the HRS.

3. We evaluate our models on popular bench-
mark data sets, and the results show that our

extended models achieve substantial improve-
ments against the original models as well as
other state-of-the-art baselines.

2 Preliminaries and Related Work

We extend three popular KGE models by lever-
aging the HRS information in this study. There-
fore, in this section, we first introduce the three
existing models TransE (Bordes et al., 2013),
TransH (Wang et al., 2014) and DistMult (Yang
et al., 2015) in detail. Then, we further summarize
other state-of-the-art models on the topic of KGE.

2.1 TransE, TransH and DistMult
Recently, a number of KGE models have been pro-
posed. These methods learn low-dimensional vec-
tor representations for entities and relations (Bor-
des et al., 2013; Wang et al., 2014; Lin et al.,
2015b).

TransE (Bordes et al., 2013) is one of the most
widely used model, which views relations as trans-
lations from a head entity to a tail entity on the
same low-dimensional hyperplane, i.e, h + r ⇡ t
when (h, r, t) holds. This indicates that t should
be the nearest neighbor of h + r. In this case, the
score function of TransE is defined as

fr(h, t) = kh + r � tkLn
, (1)

which can be measured by L1 or L2 norm. Posi-
tive triples are supposed to have lower scores than
negative ones.

TransH (Wang et al., 2014) introduces a mech-
anism of projecting entities into relation-specific
hyperplanes that enables different roles of an en-
tity in different relations. TransH models the rela-
tion as a vector r on a hyperplane wr and assumes
that h? + r ⇡ t? when (h, r, t) holds, where h?
and t? are the projection of h and t in the relation-
specific hyperplane. The score function of TransH
is defined as

fr(h, t) = kh? + r � t?k2
2 , (2)

where h? = h � w>
r hwr, t? = t � w>

r twr and
kwrk2 = 1. Like triples in TransE, positive triples
in TransH should have lower scores than negative
ones.

DistMult (Yang et al., 2015) adopts a bilinear
score function to compute the scores given (h, r, t)
triples. The score function is defined as

fr(h, t) = hMrt, (3)
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where Mr is a relation-specific diagonal matrix,
which represents the characteristics of a relation.
Different from TransE and TransH, positive triples
should have larger scores than negative ones.

2.2 Other KGE Models

Besides TransE, TransH and DistMult, there
are also many models on the topic of KGE.
TransR (Lin et al., 2015b) embeds entities and
relations into separate entity space and relation-
specific spaces. ComplEx (Welbl et al., 2016)
extends DistMult to embed entities and relations
into complex vectors instead of real-valued ones.
HolE (Nickel et al., 2016) employs circular cor-
relations to create compositional representations.
ProjE (Shi and Weninger, 2017) adopts a two-
layer network to embed entities and relations.
Other KGE models also try to embeds entities and
relations in various ways, such as Unstructured
Model (Bordes et al., 2012a, 2014), Structured
Embedding (Bordes et al., 2012b), Single Layer
Model (Socher et al., 2013), Semantic Match-
ing Energy (Bordes et al., 2012a, 2014), NTN
Model (Socher et al., 2013), etc.

Many efforts have been devoted to building
models using additional information like paths or
text. For instance, PTransE (Lin et al., 2015a) and
R-GCN (Schlichtkrull et al., 2017) use paths as
additional information, while DKRL (Xie et al.,
2016) and SSP (Xiao et al., 2017) adopt text to as-
sist the embedding task.

Some KGE works focus on making use of the
information from relations. CTransR (Lin et al.,
2015b), TransD (Ji et al., 2015) and TransG (Xiao
et al., 2016) try to find fine-grained representations
for each relation. However, these works didn’t uti-
lize the information from semantically similar re-
lations and the HRS is also not exploited. Dif-
ferent from the above studies, we believe seman-
tically similar relations can make up relation clus-
ters, and some relations may have multiple seman-
tic meanings and can be split into fine-grained sub-
relations. In this paper, we take advantage of the
three-layer HRS and conduct the KGE task by ex-
tending three widely used models.

3 Methodology

In this section, we provide the technical details of
how to extend existing KGE models by leveraging
the HRS information. We first formally define the
HRS and its integration with existing models.Then

we introduce the new loss functions of extended
models TransE-HRS, TransH-HRS and DistMult-
HRS. Finally, two variants of the HRS models and
implementation details are provided.

3.1 Hierarchical Relation Structure
Given a KG G = {(h, r, t)} ✓ E ⇥ R ⇥ E , where
E and R are the entity (node) set and relation
(edge) set respectively. We believe the relations
in KGs can make up relation clusters as well as
be split into fine-grained sub-relations. On the one
hand, large scale KGs always have semantically
related relations. The information from semanti-
cally similar relations is of great value and these
relations should be trained in a collective way. In
this way, meaningful associations among related
relations can be utilized and less frequent relations
can be enriched with more training data. On the
other hand, some relations may have multiple se-
mantic meanings and can be split into several sub-
relations, which can provide fine-grained descrip-
tions for each relation. In general, relations in KGs
conform to a three-layer HRS, as shown in Fig-
ure 1. The HRS include a relation cluster layer, a
relation layer and a sub-relation layer, which are
denoted in yellow, green and blue in Figure 1 re-
spectively.

For a triple (h, r, t) in the HRS model, the em-
bedding of r is comprised of three parts: the re-
lation cluster embedding rc, relation-specific em-
bedding r0 and sub-relation embedding rs, which
is denotes as

r = rc + r0 + rs. (4)

According to the above equation, the embedding
of each relation can leverage the information from
the three-layer HRS. The relation clusters and sub-
relations are determined by k-means algorithm
based on the results of TransE:

• Relation clusters. We first run TransE on a
given data set and obtain the embeddings of re-
lations r1, r2, r3, ..., r|R|, where |R| is the num-
ber of relations. Then, the k-means algorithm is
applied on these embeddings. In this way, we
get relation clusters C1, C2, C3, ..., C|C|, where
C is the set of relation clusters. Previous stud-
ies have shown that the embeddings of semanti-
cally similar relations locate near each other in
the latent space (Yang et al., 2015). In this way,
we are able to find relation clusters composed of
semantically related relations.
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Figure 1: Hierarchical Relation Structure

• Sub-relations. TransE assumes that t � h ⇡ r
when (h, r, t) holds. For each triple (h, r, t), we
define that br = t�h, where h and t are obtained
from the results of TransE. For each relation, we
collect all the br and adopt the k-means algorithm
to cluster these vectors into several groups Sr

1 ,
Sr

2 , Sr
3 , ..., Sr

nr
, where nr is the number of sub-

relations for relation r. Each group corresponds
to a fine-grained sub-relation.

3.2 Loss Function
The loss of the extended HRS model is comprised
of two parts, as is shown in Equation (5),

LTotal = LOrig + LHRS , (5)

where LOrig is the loss function of the original
model, while LHRS is the loss function for the
HRS information.

We know that TransE, TransH and DistMult all
adopt a margin-based ranking loss. Taking TransE
as an example, the loss function of TransE for the
first part LOrig is shown as Equation (6),

LOrig =

|C|X

c=1

X

r2Cc

X

(h,r,t)24r

X

(h0,r,t0)240
r

[� + fr(h, t)

� fr(h
0, t0)]+,

(6)
where [x]+ = max(0, x), 4r denotes the set
of positive triples for relation r and 40

r =
{(h0, r, t)|h0 2 E}[ {(h, r, t0)|t0 2 E} is the set of
negative ones for relation r. � is the margin sep-
arating the positive triples from the negative ones.
fr(h, t) is the score function as shown in Equation
(7),

fr(h, t) =
��h + rc + r0 + rs � t

��
Ln

, (7)

which can be measured by L1 or L2 norm. Posi-
tive triples are supposed to have lower scores than
negative ones.

The second part, LHRS , is composed of three
regularized terms, which is shown in Equation (8),

LHRS = �1

X

rc2C
krck2

2 + �2

X

r02R

��r0��2
2

+ �3

X

rs2S
krsk2

2 ,
(8)

where C = {C1, C2, ..., C|C|} is the set of relation
clusters, S = {Sr

1 , Sr
2 , Sr

3 , ..., Sr
nr

|r 2 R} is the
set of fine-grained sub-relations, nr is the number
of sub-relations for relation r. �1, �2 and �3 are
trade-off parameters. Large value of �1 will re-
sult in the separate training of each relation, while
large value of �2 will lead to all relations in the
same relation cluster sharing the same embedding
vector. �3 should be larger than �1 and �2 to re-
strict rs to be a small value, i.e., the sub-relations
from the same relation should be close.

3.3 Variants of the HRS Model and
Implementation details

Additionally, we introduce two variants of the
HRS model: the top-middle model and the
middle-bottom model. The top-middle model only
uses the HRS by leveraging the information from
the top to the middle layer. For this model, the re-
lation embedding and the loss for HRS is defined
as Equation (9) and (10).

r = rc + r0, (9)

LHRS = �1

X

rc2C
krck2

2 + �2

X

r02R

��r0��2
2
. (10)

While the middle-bottom model only utilizes the
information from the middle to the bottom layer.
The relation embedding and HRS loss are defined
as Equation (11) and (12).

r = r0 + rs, (11)
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LHRS = �2

X

r02R

��r0��2
2
+ �3

X

rs2S
krsk2

2 . (12)

The learning process of the extended models
is carried out by using the Adam (Kingma and
Ba, 2014) optimizer. For the extended models
of TransE, all the entity and relation embedding
parameters are initialized with a uniform distri-
bution U

h
� 6p

k
, 6p

k

i
following TransE, where k

is the dimension of the embedding space. For
the extended models of TransH and DistMult,
we initialize these parameters with the results of
TransE. For the relation cluster embeddings and
sub-relation embeddings, we initialize all the pa-
rameters with the value of zero.

4 Experiments

4.1 Data Sets
In this research, we evaluate the performances
of our extended models on popular bench-
marks FB15k (Bordes et al., 2013), FB15k-
237 (Toutanova and Chen, 2015), FB13(Socher
et al., 2013), WN18 (Bordes et al., 2013) and
WN11 (Socher et al., 2013). FB15k, FB15k-
237 and FB13 are extracted from Freebase (Bol-
lacker et al., 2008), which provides general facts
of the world. WN18 and WN11 are obtained from
WordNet (Miller, 1994), which provides seman-
tic knowledge of words. FB15k-237 and WN18
are used for the task of link prediction, FB13 and
WN11 are used for the triple classification task,
while FB15k is used for both tasks. The statistics
of the five data sets are summarized in Table 1.

Table 1: Statistics of the Five Datasets.
Dataset |E| |R| #triples in Train/Valid/Test
FB15k 14,951 1,345 483,142 / 50,000 / 59,071
FB15k-237 14,541 237 272,115 / 17,535 / 20,466
FB13 75,043 13 316,232 / 5,908 / 23,733
WN18 40,943 18 141,442 / 5,000 / 5,000
WN11 38,696 11 112,581 / 2,609 / 10,544

4.2 Baselines
To demonstrate the effectiveness of our models,
we compare results with the following baselines.

• TransE (Bordes et al., 2013): one of the most
widely used KGE models.

• TransH (Wang et al., 2014): a KGE model
which adopts relation-specific hyperplanes to
lay entities and relations.

• DistMult (Yang et al., 2015): a state of the art
model which uses a bilinear score function to
compute scores of knowledge triples.

• CTransR (Lin et al., 2015b): a pioneering KGE
model which exploits fine-grained sub-relations
for each relation.

• TransD (Ji et al., 2015): an improvement of
CTransR, which embeds KGs using dynamic
mapping matrices.

• TransG (Xiao et al., 2016): the first generative
KGE model that uses a non-parametric bayesian
model to embed KGs.

4.3 Link Prediction
Link prediction, a.k.a. knowledge graph comple-
tion, aims to fill the missing values into incom-
plete knowledge triples. More formally, the goal
of link prediction is to predict either the head en-
tity in a given query (?, r, t) or the tail entity in a
given query (h, r, ?).

4.3.1 Experimental Settings
All the parameters are set by some preliminary
test. For TransE-HRS, TransE-top-middle and
TransE-middle-bottom, �1, �2, �3 and the mar-
gin � are set as �1 = 1e � 5, �2 = 1e � 4, �3 =
1e�3, � = 2. For the extended models of TransH,
we set the parameters as �1 = 1e � 5, �2 =
1e � 5, �3 = 1e � 3, � = 1. For the extended
models of DistMult, the parameters are set as �1 =
1e � 5, �2 = 1e � 4, �3 = 1e � 3, � = 1. For all
the above models, the learning rate & , batch size b
and embedding size k are set as & = 1e � 3, b =
4096, k = 100. The L1 norm is adopted by the
score function of TransE and its extended models.
The number of relation clusters are set as 300, 120
and 10 for FB15k, FB15k-237 and WN18 respec-
tively. For all the data sets, we generate 3 sub-
relations for relations that have more than 500 oc-
currences in the training set. For all the extended
models and baselines, we produce negative triples
following the “bern” sampling strategy which was
introduced in TransH (Wang et al., 2014). For
baselines TransE, TransH and DistMult, the em-
bedding parameters of entities and relations are
initialized the same way as the extended models
for a fair comparison.

In the test phase, we replace the head and tail
entities with all the entities in KG in turn for each
triple in the test set. Then we compute a score for
each corrupted triple. Note that for each corrupted
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triple (h0, r, t0), the sub-relation is determined by
t0 � h0, i.e., the k-means model is adopted to as-
sign t0 �h0 to a specific sub-relation of r. We rank
all the candidate entities according to the scores.
Specifically, positive candidates are supposed to
precede negative ones. Finally, the rank of the cor-
rect entity is stored. We compare our models with
baselines using the following metrics: (1) Mean
Rank (MR, the mean of all the predicted ranks);
(2) Mean Reciprocal Rank (MRR, the mean of all
the reciprocals of predicted ranks); (3) Hits@n
(Hn, the proportion of ranks not larger than n).
Lower values of MR and larger values of MRR
and Hn indicate better performance. All the re-
sults are reported in the “filtered” setting (Bordes
et al., 2013).

4.3.2 Experimental Results
Evaluation results are shown in Table 2. We di-
vide all the results into 4 groups. The second, third
and forth group are results of TransE, TransH,
DistMult and their extended models respectively,
while the first group are results of other state-of-
the-art competitors. Results in bold font are the
best results in the group and the underlined results
denote the best results in the column. From Ta-
ble 1, we have the following findings: (1) Our
extended models outperform the original mod-
els, which indicates that the information learned
from the HRS is valuable; (2) For WN18, the re-
sults from ‘top-middle’ models of TransE, TransH
and DistMult are worse than the original models,
and HRS models can’t outperform middle-bottom
ones. We conjecture the reason lies as follows:
WN18 has only 18 relations and the semantic cor-
relation among relations is small. In this case,
the information learned from the top to the mid-
dle layer of the HRS may lead to worse results
since for each relation, even though the informa-
tion learned from semantically similar relations
are useful, the information learned from unrelated
relations may damage the results. The results in-
dicate that HRS models are especially useful for
KGs with dense semantic distributions over rela-
tions; (3) For WN18, TransE-middle-bottom and
DistMult-middle-bottom achieve the best results
on MRR, Hits@10, Hits@3 and Hits@1 while
failing to get the best results on MR in the same
group. Further analysis shows that in the results
of TransE-middle-bottom, 56 test triples get ranks
more than 10000, leading to more than 110 MR
loss. While in the results of DistMult-middle-

bottom, there exist 37 test triples whose ranks are
more than 7000, which would lead to about 50 MR
loss. Indeed, MR is sensitive to these high ranks,
which lead to worse results on the metric of MR;
(4) From all the results, based on the good basic
model DistMult, the extended models of DistMult
can achieve the best performance compared with
other state-of-the-art baselines CTransR, TransD
and TransG.

We also provide some case studies on rela-
tion clusters and sub-relations. Table 3 shows
some relation clusters of FB15k. Cluster 1 to
3 are Olympics-related, basketball-related and
software-related relations respectively. From Ta-
ble 3 we can see that semantically related relations
can join the same cluster. Table 4 shows some
(head, tail) pairs for the sub-relations of ‘/educa-
tional institution/education/degree’. Sub-relation
1 to 3 are about the degree of Doctor, Master
and Bachelor respectively. Table 5 gives some
(head, tail) pairs for the sub-relations of ’/mu-
sic/artist/genre’. Sub-relation 1 and 2 are about
rock music and pop music respectively while sub-
cluster 3 is about other kinds of music. From Ta-
ble 4 and 5, we can see that different sub-relations
give fine-grained descriptions for each relation.

4.3.3 Parameter Study

In this section, we study the performance affected
by the number of relation clusters N1 as well
as the number of sub-relations for each relation
N2. The results in Figure 2 and 3 clearly show
that there exists an optimal value of N1 and N2

for each dataset. All three models keep achiev-
ing better results as we increase the number of
clusters from 0 to the optimal value. Then, after
N1 and N2 exceed the optimal point, the perfor-
mance starts falling down. The reason lies as: (1)
Smaller value of N1 leads to large-sized relation
clusters. Some unrelated relations may join in the
same large-sized cluster and degrade the perfor-
mance of our models. Larger value of N1 leads
to small-sized relation clusters, thus less informa-
tion can be leveraged by each relation, leading to
the unsatisfying performance; (2) Smaller value
of N2 can’t provide sufficient representations for
each relation and degrade the performance of our
models. Larger value of N2 may lead to lacking of
training data for each sub-relation and also result
in the unsatisfying performance.
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Table 2: Link prediction results on FB15k, FB15k-237 and WN18. We implement TransE,
TransH, DistMult and their extended models by ourselves. The code of CTransR, TransD and
TransG are taken from https://github.com/thunlp/TensorFlow-TransX, https://github.com/thunlp/KB2E and
https://github.com/BookmanHan/Embedding respectively.

FB15k FB15k-237 WN18

MR MRR H10 H3 H1 MR MRR H10 H3 H1 MR MRR H10 H3 H1

CTransR 81 0.408 0.740 0.573 0.314 279 0.298 0.469 0.301 0.198 228 0.816 0.923 0.842 0.316
TransD 90 0.658 0.781 0.586 0.324 256 0.286 0.453 0.291 0.179 215 0.823 0.928 0.851 0.336
TransG 101 0.672 0.802 0.591 0.322 309 0.304 0.471 0.298 0.182 466 0.830 0.936 0.876 0.764

TransE 91 0.404 0.688 0.493 0.251 375 0.207 0.377 0.227 0.125 387 0.408 0.925 0.725 0.067
TransE-top-middle 61 0.463 0.730 0.556 0.315 286 0.258 0.440 0.286 0.170 609 0.402 0.919 0.710 0.058
TransE-middle-bottom 51 0.493 0.738 0.582 0.355 232 0.310 0.486 0.332 0.202 474 0.496 0.945 0.890 0.112
TransE-HRS 49 0.510 0.767 0.610 0.361 230 0.311 0.487 0.353 0.215 477 0.490 0.943 0.883 0.106

TransH 63 0.394 0.713 0.519 0.210 311 0.211 0.386 0.224 0.132 388 0.437 0.919 0.832 0.039
TransH-top-middle 65 0.477 0.737 0.561 0.308 275 0.272 0.461 0.291 0.185 411 0.416 0.890 0.813 0.034
TransH-middle-bottom 50 0.469 0.742 0.583 0.343 271 0.269 0.466 0.286 0.191 283 0.491 0.942 0.880 0.113
TransH-HRS 47 0.509 0.783 0.639 0.390 243 0.309 0.491 0.346 0.216 296 0.482 0.940 0.861 0.097

DistMult 95 0.642 0.813 0.726 0.523 251 0.244 0.423 0.261 0.159 261 0.806 0.931 0.904 0.713
DistMult-top-middle 85 0.677 0.830 0.746 0.589 243 0.286 0.461 0.291 0.192 246 0.769 0.903 0.853 0.681
DistMult-middle-bottom 83 0.682 0.828 0.758 0.606 246 0.291 0.475 0.306 0.199 226 0.912 0.947 0.913 0.879
DistMult-HRS 72 0.739 0.846 0.799 0.661 232 0.315 0.496 0.350 0.241 206 0.891 0.932 0.901 0.736

Table 3: Examples of Relation Clusters in FB15k
relations

1 /olympics/olympic athlete/medals won./olympics/olympic medal honor/country
/olympics/olympic athlete/country./olympics/olympic athlete affiliation/country

2
/sports/sports team/roster./basketball/basketball roster position/player,
/basketball/basketball team/roster./sports/sports team roster/player
/basketball/basketball team/roster./basketball/basketball roster position/player

3 /computer/software/developer, /computer/operating system/developer,
/cvg/computer videogame/developer

Table 4: Examples of Sub-relations for Relation ‘/educational institution/education/degree’ in FB15k
(head, tail)

1 (Munich Institute of Technology, Doctors of Medicine), (California Institute of Technology, Higher Doctorate), ...
2 (Central Michigan College of Education, M.Sc.), (The University of Pittsburgh, M.Sc.), ...
3 (University of Massaschusetts, Amherst, Bachelor’s Degree), (New Mexico State College, Bachelor’s Degree), ...

Table 5: Examples of Sub-relations for Relation ‘/music/artist/genre’ in FB15k
(head, tail)

1 (Steve Stills, Rock Music), (Velvet Underground, Rock Music), (Benjamin Chase Harper, Rock Music), ...
2 (Justin Beiber, Pop Music), (Natalie Maria Cole, Pop Music), (Peter Thorkelson, Pop Music), ...
3 (Billy Preston, R & B), (Earth Wind Fire, Funk Rap), (Alvin Joiner, Hip-hop), ...

4.4 Triple Classification

In order to testify the discriminative capability of
our models, we conduct a triple classification task
aiming to predict the label (True or False) of a
given triple (h, r, t).

4.4.1 Experimental Settings
In this paper, we use three datasets WN11, FB13
and FB15k to evaluate our models. The data sets
WN11 and FB13 released by NTN (Socher et al.,
2013) already have negative triples. The test set
of FB15k only contains correct triples, which re-

quires us to construct negative triples. In this
study, we construct negative triples following the
same setting used for FB13 (Socher et al., 2013).
For the extended models of TransE, �1, �2, �3 and
� are set as �1 = 1e�5, �2 = 1e�5, �3 = 1e�3
and � = 4. For the extended models of TransH,
we set �1 = 1e � 5, �2 = 1e � 4, �3 = 1e � 3
and � = 5. While for the extended models of
DistMult, parameters are set as �1 = 1e � 5,
�2 = 1e � 4, �3 = 1e � 2 and � = 4. For WN11
and FB13, we generate 2 sub-relations for each re-
lation. For FB15k, we generate 3 sub-relations for
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(a) FB15k (b) FB15k-237

Figure 2: The Change of Hits@10 with The Value of N1 Increasing.

(a) FB15k (b) FB15k-237

Figure 3: The Change of Hits@10 with The Value of N2 Increasing.

relations that have more than 500 occurrences in
the training set. Other parameters are set as in-
troduced in Section 4.3.1. We follow the same
decision process as NTN (Socher et al., 2013):
for TransE and TransH, a triple is predicted to be
positive if fr(h, t) is below a threshold, while for
DistMult, a triple is regarded as a positive one if
fr(h, t) is above a threshold; otherwise negative.
The thresholds are determined on the validation
set. We adopt accuracy as our evaluation metric.

4.4.2 Experimental Results
Finally, the evaluation results in Table 6 lead to
the following findings: (1) Our models outperform
other baselines on WN11 and FB15k, and obtain
comparable results with baselines on FB13, which
validate the effectiveness of our models; (2) The
extended models TransE-HRS, TransH-HRS and
DistMult-HRS achieve substantial improvements
against the original models. On WN11, TransE-

Table 6: Triple Classification Results. The results of
baselines on WN11 and FB13 are directly taken from
the original paper except DistMult. We obtain other
results by ourselves.

Model WN11 FB13 FB15k Avg
CTransR 85.7 - 84.4 -
TransD 86.4 89.1 88.2 87.9
TransG 87.4 87.3 88.5 87.7
TransE 75.9 81.5 78.7 78.7
TransH 78.8 83.3 81.1 81.1

DistMult 87.1 86.2 86.3 86.5
TransE-HRS 86.8 88.4 87.6 87.6
TransH-HRS 87.6 88.9 88.7 88.4

DistMult-HRS 88.9 89.0 89.1 89.0

HRS outperforms TransE with a margin as large
as 10.9%. These improvements indicates the tech-
nique of utilizing the HRS information is capable
to be extended to different KGE models. Figure 4
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shows the classification accuracy of different rela-
tions on WN11. We can see that extended models
significantly improve the original models in each
relation classification task, which again validate
the effectiveness of our models.

Figure 4: Classification Accuracies of Different Rela-
tions on WN11

5 Conclusion

In this paper, we found that relations in KGs con-
form to a three-layer HRS. This HRS model pro-
vides a critical capacity for embedding entities and
relations, and along this line we extended three
state-of-the-art models to leverage the HRS infor-
mation. The technique we used can be easily ap-
plied to extend other KGE models. Moreover, our
proposed models don’t need additional informa-
tion like text or paths, instead, we made full use
of the knowledge triples in KGs and the rich in-
formation from the HRS. We evaluate our model
on the link prediction task and triple classification
task. The results show that our extended models
achieve substantial improvements against the orig-
inal models as well as other baseline competitors.

In the future, we will utilize more sophisticated
models to leverage the HRS information, e.g, (1)
utilize the embeddings of the three layers in a more
sophisticated way instead of sum them together;

(2) determine the number of relation clusters and
sub-relations automatically instead of manually.
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Abstract

Representing entities and relations in an em-
bedding space is a well-studied approach for
machine learning on relational data. Exist-
ing approaches, however, primarily focus on
simple link structure between a finite set of
entities, ignoring the variety of data types
that are often used in knowledge bases, such
as text, images, and numerical values. In
this paper, we propose multimodal knowledge
base embeddings (MKBE) that use different
neural encoders for this variety of observed
data, and combine them with existing rela-
tional models to learn embeddings of the en-
tities and multimodal data. Further, using
these learned embedings and different neural
decoders, we introduce a novel multimodal
imputation model to generate missing multi-
modal values, like text and images, from in-
formation in the knowledge base. We enrich
existing relational datasets to create two novel
benchmarks that contain additional informa-
tion such as textual descriptions and images
of the original entities. We demonstrate that
our models utilize this additional information
effectively to provide more accurate link pre-
diction, achieving state-of-the-art results with
a considerable gap of 5-7% over existing meth-
ods. Further, we evaluate the quality of our
generated multimodal values via a user study.
We have release the datasets and the open-
source implementation of our models at https:
//github.com/pouyapez/mkbe.

1 Introduction

Knowledge bases (KB) are an essential part of
many computational systems with applications in
search, structured data management, recommen-
dations, question answering, and information re-
trieval. However, KBs often suffer from incom-
pleteness, noise in their entries, and inefficient in-
ference under uncertainty. To address these issues,
learning relational knowledge representations has

been a focus of active research (Bordes et al., 2011,
2013; Yang et al., 2015; Nickel et al., 2016; Trouil-
lon et al., 2016; Dettmers et al., 2018). These ap-
proaches represent relational triples, that consist
of a subject entity, relation, and an object entity,
by learning fixed, low-dimensional representations
for each entity and relation from observations, en-
coding the uncertainty and inferring missing facts
accurately and efficiently. The subject and the ob-
ject entities come from a fixed, enumerable set of
entities that appear in the knowledge base.

Knowledge bases in the real world, however,
contain a wide variety of data types beyond these
direct links. Apart from relations to a fixed set
of entities, KBs often not only include numeri-
cal attributes (such as ages, dates, financial, and
geoinformation), but also textual attributes (such
as names, descriptions, and titles/designations) and
images (profile photos, flags, posters, etc.). These
different types of data can play a crucial role as
extra pieces of evidence for knowledge base com-
pletion. For example the textual descriptions and
images might provide evidence for a person’s age,
profession, and designation. In the multimodal KB
shown in Figure 1 for example, the image can be
helpful in predicting of Carles Puyol’s occupation,
while the description contains his nationality. Incor-
porating this information into existing approaches
as entities, unfortunately, is challenging as they as-
sign each entity a distinct vector and predict miss-
ing links (or attributes) by enumerating over the
possible values, both of which are only possible
if the entities come from a small, enumerable set.
There is thus a crucial need for relational modeling
that goes beyond just the link-based view of KB
completion, by not only utilizing multimodal infor-
mation for better link prediction between existing
entities, but also being able to generate missing
multimodal values.

In this paper, we introduce multimodal knowl-
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“Carles Puyol Saforcada 
(born 13 April 1978) is a 
Spanish retired professional 
footballer. He was regarded 
as one of the best defenders 
of his generation.”
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Figure 1: Example of a Multimodal KB. Graph
representation of (a part of) a KB that consists of
regular links (in black) and multimodal ones (in
purple) that we support in this work.

edge base embeddings (MKBE) for modeling
knowledge bases that contain a variety of data
types, such as links, text, images, numerical, and
categorical values. We propose neural encoders and
decoders to replace initial layers of any embedding-
based relational model; we apply them to Dist-
Mult (Yang et al., 2015) and ConvE (Dettmers et al.,
2018) here. Specifically, instead of learning a dis-
tinct vector for each entity and using enumeration
to predict links, MKBE includes the following ex-
tensions: (1) introduce additional neural encoders
to embed multimodal evidence types that the rela-
tional model uses to predict links, and (2) introduce
neural decoders that use an entity’s embedding to
generate its multimodal attributes (like image and
text). For example, when the object of a triple is an
image, we encode it into a fixed-length vector us-
ing a CNN, while textual objects are encoded using
RNN-based sequence encoders. The scoring mod-
ule remains identical to the underlying relational
model; given the vector representations of the sub-
ject, relation, and object of a triple, we produce a
score indicating the probability that the triple is cor-
rect using DistMult or ConvE. After learning the
KB representation, neural decoders use entity em-
beddings to generate missing multimodal attributes,
for example, generating the description of a person
from their structured information in the KB. This
unified framework allows for flow of the informa-
tion across the different relation types (multimodal
or otherwise), providing a more accurate modeling
of relational data.

We provide an evaluation of our proposed ap-
proach on two relational KBs. Since we are intro-
ducing the multimodal KB completion setting, we
provide two benchmarks, created by extending the

existing YAGO-10 and MovieLens-100k datasets
to include additional relations such as textual de-
scriptions, numerical attributes, and images of the
entities. We demonstrate that MKBE utilizes the
additional information effectively to provide gains
in link-prediction accuracy, achieving state-of-the-
art results on these datasets for both the DistMult
and the ConvE scoring functions. We evaluate the
quality of multimodal attributes generated by the
decoders via user studies that demonstrate their re-
alism and information content, along with present-
ing examples of such generated text and images.

2 Multimodal KB Completion

As described earlier, KBs often contain differ-
ent types of information about entities including
links, textual descriptions, categorical attributes,
numerical values, and images. In this section, we
briefly introduce existing relational embedding ap-
proaches that focus on modeling the linked data
using distinct, dense vectors. We then describe
MKBE that extends these approaches to the multi-
modal setting, i.e., modeling the KB using all the
different information to predict the missing links
and impute the missing attributes.

2.1 Background on Link Prediction

Factual statements in a knowledge base are repre-
sented using a triple of subject, relation, and ob-
ject, hs, r, oi, where s, o 2 ⇠, a set of entities, and
r 2 R, a set of relations. Respectively, we con-
sider two goals for relational modeling, (1) to train
a machine learning model that can score the truth
value of any factual statement, and (2) to predict
missing links between the entities. In existing ap-
proaches, a scoring function  : ⇠ ⇥ R ⇥ ⇠ ! R

(or sometimes, [0, 1]) is learned to evaluate whether
any given fact is true, as per the model. For pre-
dicting links between the entities, since the set ⇠
is small enough to be enumerated, missing links
of the form hs, r, ?i are identified by enumerating
all the objects and scoring the triples using  (i.e.
assume the resulting entity comes from a known
set). For example, in Figure 1, the goal is to predict
that Carles Puyol plays for Barcelona.

Many of the recent advances in link prediction
use an embedding-based approach; each entity in ⇠
and relation in R are assigned distinct, dense vec-
tors, which are then used by  to compute the score.
In DistMult (Yang et al., 2015), for example, each
entity i is mapped to a d-dimensional dense vector
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(ei 2 R
d) and each relation r to a diagonal matrix

Rr 2 R
d⇥d, and consequently, the score for any

triple hs, r, oi is computed as  (s, r, o) = eT
s Rreo.

Along similar lines, ConvE (Dettmers et al., 2018)
uses vectors to represent the entities and the re-
lations, es, eo, rr 2 R

d⇥1, then, after applying a
CNN layer on es and rr, combines it with eo to
score a triplet, i.e. the scoring function  (s, r, o) is
f(vec(f([ēs; r̄r ⇤ w]))W )eo. Other relational em-
bedding approaches primarily vary in their design
of the scoring function (Bordes et al., 2013; Yang
et al., 2015; Nickel et al., 2016; Trouillon et al.,
2016), but share the shortcoming of assigning dis-
tinct vectors to every entity, and assuming that the
possible object entities can be enumerated. In this
work we focus on DistMult because of its sim-
plicity, popularity, and high accuracy, and ConvE
because of its state-of-the-art results.

2.2 Problem Setup

When faced with additional triples in form of mul-
timodal data, the setup of link prediction is slightly
different. Consider a set of all potential multimodal
objects, M, i.e. possible images, text, numerical,
and categorical values, and multimodal evidence
triples, hs, r, oi, where s 2 ⇠, r 2 R, and o 2 M.
Our goals with incorporating multimodal informa-
tion into KB remain the same: we want to be able
to score the truth of any triple hs, r, oi, where o is
from ⇠ (link data) or from M (multimodal data),
and to be able to predict missing value hs, r, ?i that
may be from ⇠ or M (depending on r). For the
example in Figure 1, in addition to predicting that
Carles Puyol plays for Barcelona from multimodal
evidence, we are also interested in generating an
image for Carles Puyol, if it is missing.

Existing approaches to this problem assume that
the subjects and the objects are from a fixed set of
entities ⇠, and thus are treated as indices into that
set, which fails for the multimodal setting primarily
for two reasons. First, learning distinct vectors for
each object entity does not apply to multimodal
values as they will ignore the actual content of the
multimodal attribute. For example, there will be
no way to generalize vectors learned during train-
ing to unseen values that might appear in the test;
this is not a problem for the standard setup due to
the assumption that all entities have been observed
during training. Second, in order to predict a miss-
ing multimodal value, hs, r, ?i, enumeration is not
possible as the search space is potentially infinite

(or at least intractable to search).

2.3 Multimodal KB Embeddings (MKBE)

To incorporate such multimodal objects into the
existing relational models like DistMult and ConvE,
we propose to learn embeddings for these types of
data as well. We utilize recent advances in deep
learning to construct encoders for these objects to
represent them, essentially providing an embedding
eo for any object value.

The overall goal remains the same: the model
needs to utilize all the observed subjects, objects,
and relations, across different data types, in order
to estimate whether any fact hs, r, oi holds. We
present an example of an instantiation of MKBE
for a knowledge base containing YAGO entities in
Figure 2a. For any triple hs, r, oi, we embed the
subject (Carles Puyol) and the relation (such as
playsFor, wasBornOn, or playsFor) using a direct
lookup. For the object, depending on the domain
(indexed, string, numerical, or image, respectively),
we use approrpiate encoders to compute its embed-
ding eo. As in DistMult and ConvE, these embed-
dings are used to compute the score of the triple.

Via these neural encoders, the model can use
the information content of multimodal objects to
predict missing links where the objects are from
⇠, however, learning embeddings for objects in M
is not sufficient to generate missing multimodal
values, i.e. hs, r, ?i where the object is in M. Con-
sequently, we introduce a set of neural decoders
D : ⇠ ⇥ R ! M that use entity embeddings to
generate multimodal values. An outline of our
model for imputing missing values is depicted in
Figure 2b. We will describe these decoders in Sec-
tion 2.5.

2.4 Encoding Multimodal Data

Here we describe the encoders we use for mul-
timodal objects. A simple example of MKBE is
provided in Figure 2a. As it shows, we use different
encoder to embed each specific data type.
Structured Knowledge Consider a triplet of in-
formation in the form of hs, r, oi. To represent
the subject entity s and the relation r as indepen-
dent embedding vectors (as in previous work), we
pass their one-hot encoding through a dense layer.
Furthermore, for the case that the object entity is
categorical, we embed it through a dense layer with
a recently introduced selu activation (Klambauer
et al., 2017), with the same number of nodes as the
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Figure 2: Multimodal KB Embeddings (MKBE): (a) Proposed architecture that, given any entity and
its relations, uses domain-specific encoders to embed each object. The embeddings of entities, and the
relation are then used to score the truth value of the triple by the Scorer. (b) Architecture of the proposed
work for multimodal attributes recovery. Given an entity, we use its learned embeddings from (a) as the
context for attribute-specific decoders to generate the missing values.

embedding space dimension.

Numerical Objects in the form of real numbers
can provide a useful source of information and
are often quite readily available. We use a feed
forward layer, after standardizing the input, in order
to embed the numbers (in fact, we are projecting
them to a higher-dimensional space, from R !
R

d). It is worth noting that existing methods treat
numbers as distinct entities, e.g., learn independent
vectors for numbers 39 and 40, relying on data to
learn that these values are similar to each other.

Text Since text can be used to store a wide vari-
ety of different types of information, for example
names versus paragraph-long descriptions, we cre-
ate different encoders depending on the lengths of
the strings involved. For attributes that are fairly
short, such as names and titles, we use character-
based stacked, bidirectional GRUs to encode them,
similar to Verga et al. (2016), using the final output
of the top layer as the representation of the string.
For strings that are much longer, such as detailed
descriptions of entities consisting of multiple sen-
tences, we treat them as a sequence of words, and
use a CNN over the word embeddings, similar to
Francis-Landau et al. (2016), in order to learn the
embedding of such values. These two encoders pro-
vide a fixed length encoding that has been shown
to be an accurate semantic representation of strings
for multiple tasks (Dos Santos and Gatti, 2014).

Images Images can also provide useful evidence
for modeling entities. For example, we can ex-

tract person’s details such as gender, age, job, etc.,
from image of the person (Levi and Hassner, 2015),
or location information such as its approximate
coordinates, neighboring locations, and size from
map images (Weyand et al., 2016). A variety of
models have been used to compactly represent the
semantic information in the images, and have been
successfully applied to tasks such as image classi-
fication, captioning (Karpathy and Fei-Fei, 2015),
and question-answering (Yang et al., 2016). To
embed images such that the encoding represents
such semantic information, we use the last hidden
layer of VGG pretrained network on Imagenet (Si-
monyan and Zisserman, 2015), followed by com-
pact bilinear pooling (Gao et al., 2016), to obtain
the embedding of the images.
Training We follow the setup from Dettmers et al.
(2018) that consists of binary cross-entropy loss
without negative sampling for both ConvE and Dis-
Mult scoring. In particular, for a given subject-
relation pair (s, r), we use a binary label vector
ts,r over all entities, indicating whether hs, r, oi is
observed during training. Further, we denote the
model’s probability of truth for any triple hs, r, oi
by ps,r

o , computed using a sigmoid over  (s, r, o).
The binary cross-entropy loss is thus defined as:
X

(s,r)

X

o

ts,ro log(ps,r
o ) + (1 � ts,ro ) log(1 � ps,r

o ).

We use the same loss for multimodal triples as
well, except that the summation is restricted to the
objects of the same modality, i.e. for an entity s
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and its text description, ts,r is a one-hot vector over
all descriptions observed during training.

2.5 Decoding Multimodal Data
Here we describe the decoders we use to generate
multimodal values for entities from their embed-
dings. The multimodal imputing model is shown
in Figure 2b, which uses different neural decoders
to generate missing attributes (more details are pro-
vided in supplementary materials).
Numerical and Categorical data To recover the
missing numerical and categorical data such as
dates, gender, and occupation, we use a simple
feed-forward network on the entity embedding to
predict the missing attributes. In other words, we
are asking the model, if the actual birth date of an
entity is not in the KB, what will be the most likely
date, given the rest of the relational information.
These decoders are trained with embeddings from
Section 2.4, with appropriate losses (RMSE for
numerical and cross-entropy for categories).
Text A number of methods have considered gen-
erative adversarial networks (GANs) to gener-
ate grammatical and linguistically coherent sen-
tences (Yu et al., 2017; Rajeswar et al., 2017; Guo
et al., 2017). In this work, we use the adversari-
ally regularized autoencoder (ARAE) (Zhao et al.,
2017) to train generators that decodes text from
continuous codes, however, instead of using the
random noise vector z, we condition the generator
on the entity embeddings.
Images Similar to text recovery, to find the missing
images we use conditional GAN structure. Specif-
ically, we combine the BE-GAN (Berthelot et al.,
2017) structure with pix2pix-GAN (Isola et al.,
2017) model to generate high-quality images, con-
ditioning the generator on the entity embeddings in
the knowledge base representation.

3 Related Work

There is a rich literature on modeling knowledge
bases using low-dimensional representations, dif-
fering in the operator used to score the triples. In
particular, they use matrix and tensor multiplication
(Nickel et al., 2011; Yang et al., 2015; Socher et al.,
2013), Euclidean distance (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015), circular corre-
lation (Nickel et al., 2016), or the Hermitian dot
product (Trouillon et al., 2016) as scoring function.
However, the objects for all of these approaches
are a fixed set of entities, i.e., they only embed the

Table 1: Data Statistics of the two benchmark
datasets we are using. The numbers in bold are
our contributions to the datasets.

MovieLens YAGO-10

#Link Types 13 45
#Entities 2,625 123,182
#Link Triples 100,000 1,079,040
#Numerical Attributes 2,625 111,406
#Image Attributes 1,651 61,246
#Text Attributes 1,682 107,326

structured links between the entities. Here, we use
different types of information (text, numerical val-
ues, images, etc.) in the encoding component by
treating them as relational triples.

A number of methods utilize an extra type of
information as the observed features for entities,
by either merging, concatenating, or averaging
the entity and its features to compute its embed-
dings, such as numerical values (Garcia-Duran and
Niepert, 2017) (we use KBLN from this work to
compare it with our approach using only numer-
ical as extra attributes), images (Xie et al., 2017;
Oñoro-Rubio et al., 2017) (we use IKRL from the
first work to compare it with our approach using
only images as extra attributes), text (McAuley and
Leskovec, 2013; Zhong et al., 2015; Toutanova
et al., 2015, 2016; Xie et al., 2016; Tu et al., 2017),
and a combination of text and image (Sergieh et al.,
2018). Further, Verga et al. (2016) address the
multilingual relation extraction task to attain a uni-
versal schema by considering raw text with no
annotation as extra feature and using matrix fac-
torization to jointly embed KB and textual rela-
tions (Riedel et al., 2013). In addition to treating
the extra information as features, graph embedding
approaches (Schlichtkrull et al., 2017; Kipf and
Welling, 2016) consider observed attributes while
encoding to achieve more accurate embeddings.

The difference between MKBE and these men-
tioned approaches is three-fold: (1) we are the first
to use different types of information in a unified
model, (2) we treat these different types of infor-
mation (numerical, text, image) as relational triples
of structured knowledge instead of predetermined
features, i.e., first-class citizens of the KB, and not
auxiliary features, and (3) our model represents
uncertainty in them, supporting the missing values
and facilitating recovery of missing values.
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Table 2: Rating Prediction in MovieLens. Re-
sults for models that use: rating information (R),
movie-attribute (M), user-attribute (U), movies’ ti-
tle text (T), and poster images (P).

Models MRR Hits@1 Hits@2 RMSE

D
ist

M
ul

t Ratings Only, R 0.62 0.40 0.69 1.48
R+M+U 0.646 0.423 0.708 1.37
R+M+U+T 0.650 0.424 0.73 1.23
R+M+U+P 0.652 0.413 0.712 1.27
R+M+U+T+P 0.644 0.42 0.72 1.3

C
on

vE

Ratings Only, R 0.683 0.47 0.81 1.47
R+M+U 0.702 0.49 0.83 1.39
R+M+U+T 0.728 0.513 0.85 1.13
R+M+U+P 0.726 0.512 0.83 1.13
R+M+U+T+P 0.726 0.512 0.84 1.09

4 Evaluation Benchmarks

To evaluate the performance of our multimodal
relational embeddings approach, we provide two
new benchmarks by extending existing datasets.
Table 1 provides the statistics of these datasets.

MovieLens-100k dataset (Harper and Konstan,
2016) is a popular benchmark in recommenda-
tion systems to predict user ratings with contex-
tual features, containing around 1000 users on
1700 movies. MovieLens already contains rich
relational data about occupation, gender, zip code,
and age for users and genre, release date, and
the titles for movies. We augment this data with
movie posters collected from TMDB (https://

www.themoviedb.org/). We treat the 5-point rat-
ings as five different relations in KB triple format,
i.e., huser, r = 5, moviei, and evaluate the rating
predictions as other relations are introduced.

YAGO-10 Even though MovieLens has a variety
of data types, it is still quite small, and is over a spe-
cialized domain. We also consider a second dataset
that is much more appropriate for knowledge graph
completion and is popular for link prediction, the
YAGO3-10 knowledge graph (Suchanek et al.,
2007; Nickel et al., 2012). This graph consists of
around 120,000 entities, such as people, locations,
and organizations, and 37 relations, such as kinship,
employment, and residency, and thus much closer
to the traditional information extraction goals. We
extend this dataset with the textual description (as
an additional relation) and the images associated
with each entity (for half of the entities), provided
by DBpedia (Lehmann et al., 2015). We also in-
clude additional relations such as wasBornOnDate

that have dates as values.

Table 3: Link Prediction in YAGO-10. Results
shown for models using: structured information
(S), textual description of the entities (D), dates as
numerical information (N), and images (I). Pub-
lished refers to Dettmers et al. (2018).

Models MRR Hits@1 Hits@3 Hits@10

D
ist

M
ul

t

Published 0.337 0.237 0.379 0.54
Links only, S 0.326 0.221 0.375 0.538
S+D 0.36 0.262 0.395 0.571
S+N 0.325 0.213 0.382 0.517
S+I 0.342 0.235 0.352 0.618
S+D+N 0.359 0.243 0.401 0.679
S+D+N+I 0.372 0.268 0.418 0.792

C
on

vE

Published 0.523 0.448 0.564 0.658
Links only, S 0.482 0.372 0.519 0.634
S+D 0.564 0.478 0.595 0.713
S+N 0.549 0.462 0.587 0.701
S+I 0.566 0.471 0.597 0.72
S+D+N 0.588 0.517 0.603 0.722
S+D+N+I 0.584 0.52 0.604 0.698

KBLN 0.503 0.41 0.549 0.658
IKRL 0.509 0.423 0.556 0.663

5 Experiment Results

In this section, we first evaluate the ability of
MKBE to utilize the multimodal information by
comparing to DistMult and ConvE through a va-
riety of tasks. Then, by considering the recovery
of missing multimodal values (text, images, and
numerical) as the motivation, we examine the ca-
pability of our models in generation. Details of the
hyperparameters and model configurations is pro-
vided in the supplementary material, and the source
code and the datasets to reproduce the results is
available at https://github.com/pouyapez/mkbe.

5.1 Link Prediction
In this section, we evaluate the capability of MKBE
in the link prediction task. The goal is to calculate
MRR and Hits@ metric (ranking evaluations) of
recovering the missing entities from triples in the
test dataset, performed by ranking all the entities
and computing the rank of the correct entity. Simi-
lar to previous work, here we focus on providing
the results in a filtered setting, that is we only rank
triples in the test data against the ones that never
appear in either train or test datasets.
MovieLens-100k We train the model using Rating

as the relation between users and movies. We use
a character-level GRU for the movie titles, a sep-
arate feed-forward network for age, zip code, and
release date, and finally, we use a VGG network on
the posters (for every other relation we use a dense
layer). Table 2 shows the link (rating) prediction
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Table 4: Per-Relation Breakdown showing performance of each model on different relations.

Relation Links Only +Numbers +Description +Images
MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

isAffiliatedTo 0.524 0.401 0.551 0.467 0.572 0.481 0.569 0.478
playsFor 0.528 0.413 0.554 0.471 0.574 0.486 0.566 0.476
hasGender 0.798 0.596 0.799 0.599 0.813 0.627 0.842 0.683
isConnectedTo 0.482 0.367 0.497 0.379 0.492 0.384 0.484 0.372
isMarriedTo 0.365 0.207 0.387 0.221 0.404 0.296 0.413 0.326

evaluation on MovieLens when test data is consist-
ing only of rating triples. We calculate our metrics
by ranking the five relations that represent ratings
instead of object entities. We label models that use
ratings as R, movie-attributes as M, user-attributes
as U, movie titles as T, and posters as P. As shown,
the model R+M+U+T outperforms others with a
considerable gap demonstrating the importance of
incorporating extra information. Hits@1 for the
baseline is 40%, matching existing recommenda-
tion systems (Guimerà et al., 2012). From these
results, we see that the models benefit more from
titles as compared to the posters.

YAGO-10 The result of link prediction on our
YAGO dataset is provided in Table 3. We label
models using structured information as S, entity-
description as D, numerical information as N, and
entity-image as I. We see that the model that en-
codes all type of information consistently performs
better than other models, indicating that the model
is effective in utilizing the extra information. On
the other hand, the model that uses only text per-
forms the second best, suggesting the entity de-
scriptions contain more information than others. It
is notable that model S is outperformed by all other
models, demonstrating the importance of using dif-
ferent data types for attaining higher accuracy. This
observation is consistent across both DistMult and
ConvE, and the results obtained on ConvE are the
new state-of-art for this dataset (as compared to
Dettmers et al. (2018)). Furthermore, we imple-
ment KBLN (Garcia-Duran and Niepert, 2017) and
IKRL (Xie et al., 2017) to compare them with our
S+N and S+I models. Our models outperform these
approaches, in part because both of these methods
require same multimodal attributes for both of the
subject and object in each triple.

Relation Breakdown We perform additional anal-
ysis on the YAGO dataset to gain a deeper under-
standing of the performance of our model using
ConvE method. Table 4 compares our models on

Table 5: Predicting Numbers and Categories for
YAGO (dates) and MovieLens (genres), using mod-
els with access with different information.

Models Search Decoding

S+N 62.49 58.7
S+N+D 59.42 56.2
S+N+I 59.86 55.8
All Info 57.62 54.1

(a) RMSE (years) in YAGO

Models Accuracy

R+M 71.82
R+M+U 71.98
R+M+U+T 73.01
R+M+U+P 73.77
All Info 75.89

(b) Genres in MovieLens

some of the most frequent relations. As shown, the
model that includes textual description significantly
benefits isAffiliatedTo, and playsFor relations, as
this information often appears in text. Moreover,
images are useful for hasGender and isMarriedTo,
while for the relation isConnectedTo, numerical
(dates) are more effective than images.

5.2 Imputing Multimodal Attributes
Here we present an evaluation on imputing multi-
modal attributes (text, image and numerical).
Numerical and Categorical Table 5a shows
performance of predicting missing numerical at-
tributes in the data, evaluated via holding out 10%
of the data. We only consider numerical values
(dates) that are more recent than 1000AD to fo-
cus on more relevant entities. In addition to the
neural decoder, we train a search-based decoder
as well by considering all 1017 choices in the in-
terval [1000, 2017], and for each triple in the test
data, finding the number that the model scores the
highest; we use this value to compute the RMSE.
As we can see, all info outperform other methods
on both datasets, demonstrating MKBE is able to
utilize different multimodal values for modeling
numerical information. Further, the neural decoder
performs better than the search-based one, showing
the importance of proper decoder, even for finite,
enumerable sets. Along the same line, Table 5b
shows genre prediction accuracy on 10% of held-
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Table 6: Evaluating Generated Titles for Movie-
Lens using movies embeddings conditioned on just
the ratings (R) and all the information. We present
the accuracy of the users in guessing whether the
generated title for a movie was real (yes/no), and
genre of the movie (4 choices).

Models Real vs Fake Genre

R 63 27.2
R+M+U+T+P 73 41.6
Reference 90 68

Table 7: Evaluating Generated Text and Images
for YAGO using entity embeddings conditioned on
just the links (S) or all information. We present
the accuracy of the users in guessing whether the
generated text/image for a person was real (yes/no),
gender of the person, age (<35, or �35), and occu-
pation (3 choices).

Models Real Gender Age Occup.

de
sc

rip
. S 57.1 72.1 59 71.4

S+N+D+I 59.2 77.2 63.4 78.6
Reference 67.8 83.2 69.5 90.4

im
ag

es S 60 67 53 43
S+N+D+I 67 77 53 52
Reference 96 1.0 83 82

out MovieLens dataset. Again, the model that uses
all the information outperforms other methods.
MovieLens Titles For generating movie titles, we
randomly consider 200 of them as test, 100 as vali-
dation, and the remaining ones as training data. The
goal here is to generate titles for movies in the test
data using the previously mentioned GAN struc-
ture. To evaluate our results we conduct a human
experiment on Amazon Mechanical Turk (AMT)
asking participant two questions: (1) whether they
find the movie title real, and (2) which of the four
genres is most appropriate for the given title. We

Table 8: Generated Descriptions for "Carles
Puyol" (and the corresponding reference from the
DBpedia) by embeddings trained from just the links
(S) and all of the information (S+N+D+I).

Model Generated Descriptions

Reference hsubjecti (born 13 April 1978) is a Spanish re-
tired professional footballer.

Only S hsubjecti (born 25 January 1949) is a Georgian
football coach and former professional player.

S+N+D+I hsubjecti (born 22 April 1967) is an English
former football player.

Table 9: Generated Images for YAGO. We con-
sider athletes, and male and female celebrities, and
compare their reference images with corresponding
ones generated from all the information.

Reference S+N+D+I

A
th

le
te

s
M

al
e

ce
le

br
iti

es
Fe

m
al

e
ce

le
br

iti
es

consider 30 movies each as reference titles, fake ti-
tles generated from only ratings as conditional data,
and fake titles conditioned on all the information.
Further, each question was asked for 3 participants,
and the results computed over the majority choice
are shown in Table 6. Fake titles generated with
all the information are more similar to reference
movie titles, demonstrating that the embeddings
that have access to more information effectively
generate higher-quality titles.

YAGO Descriptions The goal here is to generate
descriptive text for entities from their embeddings.
Since the original descriptions can be quite long,
we consider first sentences that are less than 30 to-
kens, resulting in 96, 405 sentences. We randomly
consider 3000 of them as test, 3000 as validation,
and the remaining as training data for the decoder.
To evaluate the quality of the generated descrip-
tions, and whether they are appropriate for the en-
tity, we conduct a user study asking participants
if they can guess the realness of sentences and the
occupation (entertainer, sportsman, or politician),
gender, and age (above or below 35) of the subject
entity from the description. We provide 30 exam-
ples for each model asking each question from 3
participants and calculate the accuracy of the ma-
jority vote. The results presented in Table 7 show
that the models are fairly competent in informing
the users of the entity information, and further,
descriptions generated from embeddings that had
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access to more information outperforms the model
with only structured data. Examples of generated
descriptions are provided in Table 8 (in addition
to screenshots of user study, more examples of
generated descriptions, and MovieLens titles are
provided in supplementary materials).
YAGO Images Here, we evaluate the quality of im-
ages generated from entity embeddings by humans
(31, 520, split into train/text). Similar to descrip-
tions, we conduct a study asking users to guess the
realness of images and the occupation, gender, and
age of the subject. We provide 30 examples for
each model asking each question from 3 partici-
pants, and use the majority choice.

The results in Table 7 indicate that the images
generated with embeddings based on all the infor-
mation are more accurate for gender and occupa-
tion. Guessing age from the images is difficult
since the image on DBpedia may not correspond
to the age of the person, i.e. some of the older
celebrities had photos from their youth. Examples
of generated images are shown in Table 9.

6 Discussion and Limitations

An important concern regarding KB embedding
approaches is their scalability. While large KBs are
a problem for all embedding-based link prediction
techniques, MKBE is not significantly worse than
existing ones because we treat multimodal infor-
mation as additional triples. Specifically, although
multimodal encoders/decoders are more expensive
to train than existing relational models, the cost is
still additive as we are effectively increasing the
size of the training dataset.

In addition to scalability, there are few other chal-
lenges when working with multimodal attributes.
Although multimodal evidence provides more in-
formation, it is not at all obvious which parts of this
additional data are informative for predicting the
relational structure of the KB, and the models are
prone to overfitting. MKBE builds upon the design
of neural encoders and decoders that have been
effective for specific modalities, and the results
demonstrate that it is able to utilize the information
effectively. However, there is still a need to further
study models that capture multimodal attributes in
a more efficient and accurate manner.

Since our imputing multimodal attributes model
is based on GAN structure and the embeddings
learned from KB representation, the generated at-
tributes are directly limited by the power of GAN

models and the amount of information in the em-
bedding vectors. Although our generated attributes
convey several aspects of corresponding entities,
their quality is far from ideal due to the size of our
datasets (both of our image and text datasets are or-
der of magnitude smaller than common datasets in
the existing text/image genration literature) and the
amount of information captured by embedding vec-
tors (the knowledge graphs are sparse). In future,
we would like to (1) expand multimodal datasets
to have more attributes (use many more entities
from YAGO), and (2) instead of using learned em-
beddings to generate missing attributes, utilize the
knowledge graph directly for generation.

7 Conclusion

Motivated by the need to utilize multiple sources
of information, such as text and images, to achieve
more accurate link prediction, we present a novel
neural approach to multimodal relational learning.
We introduce MKBE, a link prediction model that
consists of (1) a compositional encoding compo-
nent to jointly learn the entity and multimodal em-
beddings to encode the information available for
each entity, and (2) adversarially trained decoding
component that use these entity embeddings to im-
pute missing multimodal values. We enrich two
existing datasets, YAGO-10 and MovieLens-100k,
with multimodal information to introduce bench-
marks. We show that MKBE, in comparison to
existing link predictors DistMult and ConvE, can
achieve higher accuracy on link prediction by utiliz-
ing the multimodal evidence. Further, we show that
MKBE effectively incorporates relational informa-
tion to generate high-quality multimodal attributes
like images and text. We have release the datasets
and the open-source implementation of our models
at https://github.com/pouyapez/mkbe.
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Abstract

We introduce a multi-task setup of identifying
and classifying entities, relations, and coref-
erence clusters in scientific articles. We cre-
ate SCIERC, a dataset that includes annota-
tions for all three tasks and develop a uni-
fied framework called Scientific Information
Extractor (SCIIE) for with shared span rep-
resentations. The multi-task setup reduces
cascading errors between tasks and leverages
cross-sentence relations through coreference
links. Experiments show that our multi-task
model outperforms previous models in scien-
tific information extraction without using any
domain-specific features. We further show that
the framework supports construction of a sci-
entific knowledge graph, which we use to ana-
lyze information in scientific literature.1

1 Introduction

As scientific communities grow and evolve, new
tasks, methods, and datasets are introduced and
different methods are compared with each other.
Despite advances in search engines, it is still hard
to identify new technologies and their relationships
with what existed before. To help researchers more
quickly identify opportunities for new combina-
tions of tasks, methods and data, it is important to
design intelligent algorithms that can extract and
organize scientific information from a large collec-
tion of documents.

Organizing scientific information into structured
knowledge bases requires information extraction
(IE) about scientific entities and their relationships.
However, the challenges associated with scientific
IE are greater than for a general domain. First, an-
notation of scientific text requires domain expertise
which makes annotation costly and limits resources.

1Data and code are publicly available at: http://nlp.
cs.washington.edu/sciIE/

Figure 1: Example annotation: phrases that refer to
the same scientific concept are annotated into the
same coreference cluster, such as MORphological
PAser MORPA, it and MORPA (marked as red).

In addition, most relation extraction systems are de-
signed for within-sentence relations. However, ex-
tracting information from scientific articles requires
extracting relations across sentences. Figure 1 il-
lustrates this problem. The cross-sentence relations
between some entities can only be connected by
entities that refer to the same scientific concept,
including generic terms (such as the pronoun it,
or phrases like our method) that are not informa-
tive by themselves. With co-reference, context-free
grammar can be connected to MORPA through the
intermediate co-referred pronoun it. Applying ex-
isting IE systems to this data, without co-reference,
will result in much lower relation coverage (and a
sparse knowledge base).

In this paper, we develop a unified learning
model for extracting scientific entities, relations,
and coreference resolution. This is different from
previous work (Luan et al., 2017b; Gupta and Man-
ning, 2011; Tsai et al., 2013; Gábor et al., 2018)
which often addresses these tasks as independent
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components of a pipeline. Our unified model is
a multi-task setup that shares parameters across
low-level tasks, making predictions by leveraging
context across the document through coreference
links. Specifically, we extend prior work for learn-
ing span representations and coreference resolution
(Lee et al., 2017; He et al., 2018). Different from a
standard tagging system, our system enumerates all
possible spans during decoding and can effectively
detect overlapped spans. It avoids cascading errors
between tasks by jointly modeling all spans and
span-span relations.

To explore this problem, we create a dataset SCI-
ERC for scientific information extraction, which
includes annotations of scientific terms, relation
categories and co-reference links. Our experiments
show that the unified model is better at predict-
ing span boundaries, and it outperforms previous
state-of-the-art scientific IE systems on entity and
relation extraction (Luan et al., 2017b; Augenstein
et al., 2017). In addition, we build a scientific
knowledge graph integrating terms and relations
extracted from each article. Human evaluation
shows that propagating coreference can signifi-
cantly improve the quality of the automatic con-
structed knowledge graph.

In summary we make the following contribu-
tions. We create a dataset for scientific information
extraction by jointly annotating scientific entities,
relations, and coreference links. Extending a previ-
ous end-to-end coreference resolution system, we
develop a multi-task learning framework that can
detect scientific entities, relations, and coreference
clusters without hand-engineered features. We use
our unified framework to build a scientific knowl-
edge graph from a large collection of documents
and analyze information in scientific literature.

2 Related Work

There has been growing interest in research on au-
tomatic methods for information extraction from
scientific articles. Past research in scientific IE
addressed analyzing citations (Athar and Teufel,
2012b,a; Kas, 2011; Gabor et al., 2016; Sim et al.,
2012; Do et al., 2013; Jaidka et al., 2014; Abu-
Jbara and Radev, 2011), analyzing research com-
munity (Vogel and Jurafsky, 2012; Anderson et al.,
2012), and unsupervised methods for extracting sci-
entific entities and relations (Gupta and Manning,
2011; Tsai et al., 2013; Gábor et al., 2016).

More recently, two datasets in SemEval 2017

and 2018 have been introduced, which facilitate
research on supervised and semi-supervised learn-
ing for scientific information extraction. SemEval
17 (Augenstein et al., 2017) includes 500 para-
graphs from articles in the domains of computer
science, physics, and material science. It includes
three types of entities (called keyphrases): Tasks,
Methods, and Materials and two relation types:
hyponym-of and synonym-of. SemEval 18 (Gábor
et al., 2018) is focused on predicting relations be-
tween entities within a sentence. It consists of six
relation types. Using these datasets, neural mod-
els (Ammar et al., 2017, 2018; Luan et al., 2017b;
Augenstein and Søgaard, 2017) are introduced for
extracting scientific information. We extend these
datasets by increasing relation coverage, adding
cross-sentence coreference linking, and removing
some annotation constraints. Different from most
previous IE systems for scientific literature and gen-
eral domains (Miwa and Bansal, 2016; Xu et al.,
2016; Peng et al., 2017; Quirk and Poon, 2017;
Luan et al., 2018; Adel and Schütze, 2017), which
use preprocessed syntactic, discourse or corefer-
ence features as input, our unified framework does
not rely on any pipeline processing and is able to
model overlapping spans.

While Singh et al. (2013) show improvements
by jointly modeling entities, relations, and coref-
erence links, most recent neural models for these
tasks focus on single tasks (Clark and Manning,
2016; Wiseman et al., 2016; Lee et al., 2017; Lam-
ple et al., 2016; Peng et al., 2017) or joint entity
and relation extraction (Katiyar and Cardie, 2017;
Zhang et al., 2017; Adel and Schütze, 2017; Zheng
et al., 2017). Among those studies, many papers as-
sume the entity boundaries are given, such as (Clark
and Manning, 2016), Adel and Schütze (2017) and
Peng et al. (2017). Our work relaxes this constraint
and predicts entity boundaries by optimizing over
all possible spans. Our model draws from recent
end-to-end span-based models for coreference res-
olution (Lee et al., 2017, 2018) and semantic role
labeling (He et al., 2018) and extends them for the
multi-task framework involving the three tasks of
identification of entity, relation and coreference.

Neural multi-task learning has been applied to
a range of NLP tasks. Most of these models share
word-level representations (Collobert and Weston,
2008; Klerke et al., 2016; Luan et al., 2016, 2017a;
Rei, 2017), while Peng et al. (2017) uses high-order
cross-task factors. Our model instead propagates
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cross-task information via span representations,
which is related to Swayamdipta et al. (2017).

3 Dataset

Our dataset (called SCIERC) includes annotations
for scientific entities, their relations, and corefer-
ence clusters for 500 scientific abstracts. These ab-
stracts are taken from 12 AI conference/workshop
proceedings in four AI communities from the Se-
mantic Scholar Corpus2. SCIERC extends pre-
vious datasets in scientific articles SemEval 2017
Task 10 (SemEval 17) (Augenstein et al., 2017) and
SemEval 2018 Task 7 (SemEval 18) (Gábor et al.,
2018) by extending entity types, relation types, rela-
tion coverage, and adding cross-sentence relations
using coreference links. Our dataset is publicly
available at: http://nlp.cs.washington.
edu/sciIE/. Table 1 shows the statistics of SCI-
ERC.

Annotation Scheme We define six types for an-
notating scientific entities (Task, Method, Metric,
Material, Other-ScientificTerm and Generic) and
seven relation types (Compare, Part-of, Conjunc-
tion, Evaluate-for, Feature-of, Used-for, Hyponym-
Of). Directionality is taken into account except
for the two symmetric relation types (Conjunction
and Compare). Coreference links are annotated
between identical scientific entities. A Generic en-
tity is annotated only when the entity is involved
in a relation or is coreferred with another entity.
Annotation guidelines can be found in Appendix A.
Figure 1 shows an annotated example.

Following annotation guidelines from Qasem-
iZadeh and Schumann (2016) and using the BRAT
interface (Stenetorp et al., 2012), our annotators
perform a greedy annotation for spans and always
prefer the longer span whenever ambiguity occurs.
Nested spans are allowed when a subspan has a
relation/coreference link with another term outside
the span.

Human Agreements One domain expert anno-
tated all the documents in the dataset; 12% of the
data is dually annotated by 4 other domain experts
to evaluate the user agreements. The kappa score
for annotating entities is 76.9%, relation extraction
is 67.8% and coreference is 63.8%.

2These conferences include general AI (AAAI, IJCAI),
NLP (ACL, EMNLP, IJCNLP), speech (ICASSP, Interspeech),
machine learning (NIPS, ICML), and computer vision (CVPR,
ICCV, ECCV) at http://labs.semanticscholar.
org/corpus/

Statistics SCIERC SemEval 17 SemEval 18

#Entities 8089 9946 7483
#Relations 4716 672 1595
#Relations/Doc 9.4 1.3 3.2
#Coref links 2752 - -
#Coref clusters 1023 - -

Table 1: Dataset statistics for our dataset SCIERC
and two previous datasets on scientific information
extraction. All datasets annotate 500 documents.

Comparison with previous datasets SCIERC
is focused on annotating cross-sentence relations
and has more relation coverage than SemEval 17
and SemEval 18, as shown in Table 1. SemEval 17
is mostly designed for entity recognition and only
covers two relation types. The task in SemEval 18
is to classify a relation between a pair of entities
given entity boundaries, but only intra-sentence re-
lations are annotated and each entity only appears
in one relation, resulting in sparser relation cover-
age than our dataset (3.2 vs. 9.4 relations per ab-
stract). SCIERC extends these datasets by adding
more relation types and coreference clusters, which
allows representing cross-sentence relations, and
removing annotation constraints. Table 1 gives a
comparison of statistics among the three datasets.
In addition, SCIERC aims at including broader
coverage of general AI communities.

4 Model

We develop a unified framework (called SCIIE)
to identify and classify scientific entities, relations,
and coreference resolution across sentences. SCIIE
is a multi-task learning setup that extends previous
span-based models for coreference resolution (Lee
et al., 2017) and semantic role labeling (He et al.,
2018). All three tasks of entity recognition, re-
lation extraction, and coreference resolution are
treated as multinomial classification problems with
shared span representations. SCIIE benefits from
expressive contextualized span representations as
classifier features. By sharing span representations,
sentence-level tasks can benefit from information
propagated from coreference resolution across sen-
tences, without increasing the complexity of infer-
ence. Figure 2 shows a high-level overview of the
SCIIE multi-task framework.

4.1 Problem Definition
The input is a document represented as a sequence
of words D = {w1, . . . , wn}, from which we de-
rive S = {s1, . . . , sN}, the set of all possible
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Figure 2: Overview of the multitask setup, where all three tasks are treated as classification problems on
top of shared span representations. Dotted arcs indicate the normalization space for each task.

within-sentence word sequence spans (up to a rea-
sonable length) in the document. The output con-
tains three structures: the entity types E for all
spans S, the relations R for all pair of spans S ⇥ S,
and the coreference links C for all spans in S. The
output structures are represented with a set of dis-
crete random variables indexed by spans or pairs
of spans. Specifically, the output structures are
defined as follows.
Entity recognition is to predict the best entity type
for every candidate span. Let LE represent the set
of all possible entity types including the null-type ✏.
The output structure E is a set of random variables
indexed by spans: ei 2 LE for i = 1, . . . , N .
Relation extraction is to predict the best relation
type given an ordered pair of spans (si, sj). Let LR
be the set of all possible relation types including
the null-type ✏. The output structure R is a set of
random variables indexed over pairs of spans (i, j)
that belong to the same sentence: rij 2 LR for
i, j = 1, . . . , N .
Coreference resolution is to predict the best an-
tecedent (including a special null antecedent) given
a span, which is the same mention-ranking model
used in Lee et al. (2017). The output structure
C is a set of random variables defined as: ci 2
{1, . . . , i � 1, ✏} for i = 1, . . . , N .

4.2 Model Definition

We formulate the multi-task learning setup as
learning the conditional probability distribution
P (E, R, C|D). For efficient training and inference,
we decompose P (E, R, C|D) assuming spans are

conditionally independent given D:

P (E, R, C | D) = P (E, R, C, S | D) (1)

=
NY

i=1

P (ei | D)P (ci | D)
NY

j=1

P (rij | D),

where the conditional probabilities of each random
variable are independently normalized:

P (ei = e | D) =
exp(�E(e, si))P

e02LE
exp(�E(e0, si))

(2)

P (rij = r | D) =
exp(�R(r, si, sj))P

r02LR
exp(�R(r0, si, sj))

P (ci = j | D) =
exp(�C(si, sj))P

j02{1,...,i�1,✏} exp(�C(si, sj0))
,

where �E denotes the unnormalized model score
for an entity type e and a span si, �R denotes the
score for a relation type r and span pairs si, sj ,
and �C denotes the score for a binary coreference
link between si and sj . These � scores are further
decomposed into span and pairwise span scores
computed from feed-forward networks, as will be
explained in Section 4.3.

For simplicity, we omit D from the � functions
and S from the observation.

Objective Given a set of all documents D, the
model loss function is defined as a weighted sum of
the negative log-likelihood loss of all three tasks:

�
X

(D,R⇤,E⇤,C⇤)2D

n
�E log P (E⇤ | D) (3)

+ �R log P (R⇤ | D) + �C log P (C⇤ | D)
o
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where E⇤, R⇤, and C⇤ are gold structures of the en-
tity types, relations, and coreference, respectively.
The task weights �E, �R, and �C are introduced as
hyper-parameters to control the importance of each
task.

For entity recognition and relation extraction,
P (E⇤ | D) and P (R⇤ | D) are computed with
the definition in Equation (2). For coreference
resolution, we use the marginalized loss follow-
ing Lee et al. (2017) since each mention can have
multiple correct antecedents. Let C⇤

i be the set
of all correct antecedents for span i, we have:
log P (C⇤ | D) =

P
i=1..N log

P
c2C⇤

i
P (c | D).

4.3 Scoring Architecture
We use feedforward neural networks (FFNNs) over
shared span representations g to compute a set
of span and pairwise span scores. For the span
scores, �e(si) measures how likely a span si has
an entity type e, and �mr(si) and �mc(si) measure
how likely a span si is a mention in a relation or a
coreference link, respectively. The pairwise scores
�r(si, sj) and �c(si, sj) measure how likely two
spans are associated in a relation r or a coreference
link, respectively. Let gi be the fixed-length vec-
tor representation for span si. For different tasks,
the span scores �x(si) for x 2 {e, mc, mr} and
pairwise span scores �y(si, sj) for y 2 {r, c} are
computed as follows:

�x(si) =wx · FFNNx(gi)

�y(si, sj) =wy · FFNNy([gi,gj ,gi � gj ]),

where � is element-wise multiplication, and
{wx,wy} are neural network parameters to be
learned.

We use these scores to compute the different �:

�E(e, si) = �e(si) (4)
�R(r, si, sj) = �mr(si) + �mr(sj) + �r(si, sj)

�C(si, sj) = �mc(si) + �mc(sj) + �c(si, sj)

The scores in Equation (4) are defined for entity
types, relations, and antecedents that are not the
null-type ✏. Scores involving the null label are
set to a constant 0: �E(✏, si) = �R(✏, si, sj) =
�C(si, ✏) = 0.

We use the same span representations g from
(Lee et al., 2017) and share them across the three
tasks. We start by building bi-directional LSTMs
(Hochreiter and Schmidhuber, 1997) from word,
character and ELMo (Peters et al., 2018) embed-
dings.

For a span si, its vector representation gi is con-
structed by concatenating si’s left and right end
points from the BiLSTM outputs, an attention-
based soft “headword,” and embedded span width
features. Hyperparameters and other implementa-
tion details will be described in Section 6.

4.4 Inference and Pruning
Following previous work, we use beam pruning to
reduce the number of pairwise span factors from
O(n4) to O(n2) at both training and test time,
where n is the number of words in the document.
We define two separate beams: BC to prune spans
for the coreference resolution task, and BR for rela-
tion extraction. The spans in the beams are sorted
by their span scores �mc and �mr respectively, and
the sizes of the beams are limited by �Cn and �Rn.
We also limit the maximum width of spans to a
fixed number W , which further reduces the num-
ber of span factors to O(n).

5 Knowledge Graph Construction

We construct a scientific knowledge graph from
a large corpus of scientific articles. The corpus
includes all abstracts (110k in total) from 12 AI
conference proceedings from the Semantic Scholar
Corpus. Nodes in the knowledge graph correspond
to scientific entities. Edges correspond to scientific
relations between pairs of entities. The edges are
typed according to the relation types defined in Sec-
tion 3. Figure 4 shows a part of a knowledge graph
created by our method. For example, Statistical
Machine Translation (SMT) and grammatical error
correction are nodes in the graph, and they are con-
nected through a Used-for relation type. In order
to construct the knowledge graph for the whole
corpus, we first apply the SCIIE model over sin-
gle documents and then integrate the entities and
relations across multiple documents (Figure 3).

Extracting nodes (entities) The SCIIE model
extracts entities, their relations, and coreference
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Figure 3: Knowledge graph construction process.
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Figure 4: A part of an automatically constructed
scientific knowledge graph with the most frequent
neighbors of the scientific term statistical machine
translation (SMT) on the graph. For simplicity we
denote Used-for (Reverse) as Uses, Evaluated-for
(Reverse) as Evaluated-by, and replace common
terms with their acronyms. The original graph and
more examples are given Figure 10 in Appendix B.

clusters within one document. Phrases are heuris-
tically normalized (described in Section 6) using
entities and coreference links. In particular, we
link all entities that belong to the same coreference
cluster to replace generic terms with any other non-
generic term in the cluster. Moreover, we replace
all the entities in the cluster with the entity that has
the longest string. Our qualitative analysis shows
that there are fewer ambiguous phrases using coref-
erence links (Figure 5). We calculate the frequency
counts of all entities that appear in the whole cor-
pus. We assign nodes in the knowledge graph by
selecting the most frequent entities (with counts
> k) in the corpus, and merge in any remaining
entities for which a frequent entity is a substring.

Assigning edges (relations) A pair of entities
may appear in different contexts, resulting in differ-
ent relation types between those entities (Figure 6).
For every pair of entities in the graph, we calculate
the frequency of different relation types across the
whole corpus.We assign edges between entities by
selecting the most frequent relation type.

6 Experimental Setup

We evaluate our unified framework SCIIE on SCI-
ERC and SemEval 17. The knowledge graph for
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Figure 5: Frequency of detected entities with and
without coreferece resolution: using coreference
reduces the frequency of the generic phrase detec-
tion while significantly increasing the frequency of
specific phrases. Linking entities through corefer-
ence helps disambiguate phrases when generating
the knowledge graph.
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scientific community analysis is built using the Se-
mantic Scholar Corpus (110k abstracts in total).

6.1 Baselines
We compare our model with the following base-
lines on SCIERCdataset:

• LSTM+CRF The state-of-the-art NER sys-
tem (Lample et al., 2016), which applies CRF
on top of LSTM for named entity tagging, the
approach has also been used in scientific term
extraction (Luan et al., 2017b).

• LSTM+CRF+ELMo LSTM+CRF with
ELMO as an additional input feature.

• E2E Rel State-of-the-art joint entity and re-
lation extraction system (Miwa and Bansal,
2016) that has also been used in scientific lit-
erature (Peters et al., 2017; Augenstein et al.,
2017). This system uses syntactic features
such as part-of-speech tagging and depen-
dency parsing.
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• E2E Rel(Pipeline) Pipeline setting of E2E
Rel. Extract entities first and use entity results
as input to relation extraction task.

• E2E Rel+ELMo E2E Rel with ELMO as an
additional input feature.

• E2E Coref State-of-the-art coreference sys-
tem Lee et al. (2017) combined with ELMO.
Our system SCIIE extends E2E Coref with
multi-task learning.

In the SemEval task, we compare our model
SCIIE with the best reported system in the SemEval
leaderboard (Peters et al., 2017), which extends
E2E Rel with several in-domain features such as
gazetteers extracted from existing knowledge bases
and model ensembles. We also compare with the
state of the art on keyphrase extraction (Luan et al.,
2017b), which applies semi-supervised methods to
a neural tagging model.3

6.2 Implementation details
Our system extends the implementation and hyper-
parameters from Lee et al. (2017) with the follow-
ing adjustments. We use a 1 layer BiLSTM with
200-dimensional hidden layers. All the FFNNs
have 2 hidden layers of 150 dimensions each. We
use 0.4 variational dropout (Gal and Ghahramani,
2016) for the LSTMs, 0.4 dropout for the FFNNs,
and 0.5 dropout for the input embeddings. We
model spans up to 8 words. For beam pruning,
we use �C = 0.3 for coreference resolution and
�R = 0.4 for relation extraction. For constructing
the knowledge graph, we use the following heuris-
tics to normalize the entity phrases. We replace all
acronyms with their corresponding full name and
normalize all the plural terms with their singular
counterparts.

7 Experimental Results

We evaluate SCIIE on SCIERC and SemEval 17
datasets. We provide qualitative results and human
evaluation of the constructed knowledge graph.

7.1 IE Results
Results on SciERC Table 2 compares the result
of our model with baselines on the three tasks: en-
tity recognition (Table 2a), relation extraction (Ta-
ble 2b), and coreference resolution (Table 2c). As
evidenced by the table, our unified multi-task setup

3We compare with the inductive setting results.

Dev Test

Model P R F1 P R F1

LSTM+CRF 67.2 65.8 66.5 62.9 61.1 62.0
LSTM+CRF+ELMo 68.1 66.3 67.2 63.8 63.2 63.5
E2E Rel(Pipeline) 66.7 65.9 66.3 60.8 61.2 61.0
E2E Rel 64.3 68.6 66.4 60.6 61.9 61.2
E2E Rel+ELMO 67.5 66.3 66.9 63.5 63.9 63.7
SCIIE 70.0 66.3 68.1 67.2 61.5 64.2

(a) Entity recognition.

Dev Test

Model P R F1 P R F1

E2E Rel(Pipeline) 34.2 33.7 33.9 37.8 34.2 35.9
E2E Rel 37.3 33.5 35.3 37.1 32.2 34.1
E2E Rel+ELMO 38.5 36.4 37.4 38.4 34.9 36.6
SCIIE 45.4 34.9 39.5 47.6 33.5 39.3

(b) Relation extraction.

Dev Test

Model P R F1 P R F1

E2E Coref 59.4 52.0 55.4 60.9 37.3 46.2
SCIIE 61.5 54.8 58.0 52.0 44.9 48.2

(c) Coreference resolution.

Table 2: Comparison with previous systems on
the development and test set for our three tasks.
For coreference resolution, we report the average
P/R/F1 of MUC, B3, and CEAF�4 scores.

SCIIE outperforms all the baselines. For entity
recognition, our model achieves 1.3% and 2.4%
relative improvement over LSTM+CRF with and
without ELMO, respectively. Moreover, it achieves
1.8% and 2.7% relative improvement over E2E Rel
with and without ELMO, respectively. For rela-
tion extraction, we observe more significant im-
provement with 13.1% relative improvement over
E2E Rel and 7.4% improvement over E2E Rel with
ELMO. For coreference resolution, SCIIE outper-
forms E2E Coref with 4.5% relative improvement.
We still observe a large gap between human-level
performance and a machine learning system. We
invite the community to address this challenging
task.

Ablations We evaluate the effect of multi-task
learning in each of the three tasks defined in our
dataset. Table 3 reports the results for individual
tasks when additional tasks are included in the
learning objective function. We observe that per-
formance improves with each added task in the
objective. For example, Entity recognition (65.7)
benefits from both coreference resolution (67.5)
and relation extraction (66.8). Relation extrac-
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Task Entity Rec. Relation Coref.

Multi Task (SCIIE) 68.1 39.5 58.0

Single Task 65.7 37.9 55.3
+Entity Rec. - 38.9 57.1
+Relation 66.8 - 57.6
+Coreference 67.5 39.5 -

Table 3: Ablation study for multitask learning on
SCIERC development set. Each column shows
results for the target task.

tion (37.9) significantly benefits when multi-tasked
with coreference resolution (7.1% relative improve-
ment). Coreference resolution benefits when multi-
tasked with relation extraction, with 4.9% relative
improvement.

Results on SemEval 17 Table 4 compares the
results of our model with the state of the art on the
SemEval 17 dataset for tasks of span identification,
keyphrase extraction and relation extraction as well
as the overall score. Span identification aims at
identifying spans of entities. Keyphrase classifi-
cation and relation extraction has the same setting
with the entity and relation extraction in SCIERC.
Our model outperforms all the previous models
that use hand-designed features. We observe more
significant improvement in span identification than
keyphrase classification. This confirms the bene-
fit of our model in enumerating spans (rather than
BIO tagging in state-of-the-art systems). More-
over, we have competitive results compared to the
previous state of the art in relation extraction. We
observe less gain compared to the SCIERC dataset
mainly because there are no coference links, and
the relation types are not comprehensive.

7.2 Knowledge Graph Analysis

We provide qualitative analysis and human evalua-
tions on the constructed knowledge graph.

Scientific trend analysis Figure 7 shows the his-
torical trend analysis (from 1996 to 2016) of the
most popular applications of the phrase neural net-
work, selected according to the statistics of the
extracted relation triples with the ‘Used-for’ rela-
tion type from speech, computer vision, and NLP
conference papers. We observe that, before 2000,
neural network has been applied to a greater per-
centage of speech applications compared to the
NLP and computer vision papers. In NLP, neural
networks first gain popularity in language modeling
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Figure 7: Historical trend for top applications of the
keyphrase neural network in NLP, speech, and CV
conference papers we collected. y-axis indicates
the ratio of papers that use neural network in the
task to the number of papers that is about the task.
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Figure 8: Precision/pseudo-recall curves for human
evaluation by varying cut-off thresholds. The AUC
is 0.751 with coreference, and 0.695 without.

and then extend to other tasks such as POS Tag-
ging and Machine Translation. In computer vision,
the application of neural networks gains popularity
in object recognition earlier (around 2010) than
the other two more complex tasks of object detec-
tion and image segmentation (hardest and also the
latest).

Knowledge Graph Evaluation Figure 8 shows
the human evaluation of the constructed knowl-
edge graph, comparing the quality of automatically
generated knowledge graphs with and without the
coreference links. We randomly select 10 frequent
scientific entities and extract all the relation triples
that include one of the selected entities leading to
1.5k relation triples from both systems. We ask
four domain experts to annotate each of these ex-
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Span Indentification Keyphrase Extraction Relation Extraction Overall

Model P R F1 P R F1 P R F1 P R F1

(Luan 2017) - - 56.9 - - 45.3 - - - - - -
Best SemEval 55 54 55 44 43 44 36 23 28 44 41 43
SCIIE 62.2 55.4 58.6 48.5 43.8 46.0 40.4 21.2 27.8 48.1 41.8 44.7

Table 4: Results for scientific keyphrase extraction and extraction on SemEval 2017 Task 10, comparing
with previous best systems.

tracted relations to define ground truth labels. Each
domain expert is assigned 2 or 3 entities and all of
the corresponding relations. Figure 8 shows preci-
sion/recall curves for both systems. Since it is not
feasible to compute the actual recall of the systems,
we compute the pseudo-recall (Zhang et al., 2015)
based on the output of both systems. We observe
that the knowledge graph curve with coreference
linking is mostly above the curve without corefer-
ence linking. The precision of both systems is high
(above 84% for both systems), but the system with
coreference links has significantly higher recall.

8 Conclusion

In this paper, we create a new dataset and develop a
multi-task model for identifying entities, relations,
and coreference clusters in scientific articles. By
sharing span representations and leveraging cross-
sentence information, our multi-task setup effec-
tively improves performance across all tasks. More-
over, we show that our multi-task model is better at
predicting span boundaries and outperforms previ-
ous state-of-the-art scientific IE systems on entity
and relation extraction, without using any hand-
engineered features or pipeline processing. Using
our model, we are able to automatically organize
the extracted information from a large collection
of scientific articles into a knowledge graph. Our
analysis shows the importance of coreference links
in making a dense, useful graph.

We still observe a large gap between the perfor-
mance of our model and human performance, con-
firming the challenges of scientific IE. Future work
includes improving the performance using semi-
supervised techniques and providing in-domain
features. We also plan to extend our multi-task
framework to information extraction tasks in other
domains.
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A Annotation Guideline

A.1 Entity Category
• Task: Applications, problems to solve, sys-

tems to construct.

E.g. information extraction, machine reading
system, image segmentation, etc.

• Method: Methods , models, systems to use,
or tools, components of a system, frameworks.

E.g. language model, CORENLP, POS parser,
kernel method, etc.

• Evaluation Metric: Metrics, measures, or
entities that can express quality of a sys-
tem/method.

E.g. F1, BLEU, Precision, Recall, ROC curve,
mean reciprocal rank, mean-squared error, ro-
bustness, time complexity, etc.

• Material: Data, datasets, resources, Corpus,
Knowledge base.

E.g. image data, speech data, stereo images,
bilingual dictionary, paraphrased questions,
CoNLL, Panntreebank, WordNet, Wikipedia,
etc.

• Evaluation Metric: Metric measure or term
that can express quality of a system/method.

E.g. F1, BLEU, Precision, Recall, ROC
curve, mean reciprocal rank, mean-squared
error,robustness, compile time, time complex-
ity...

• Generic: General terms or pronouns that may
refer to a entity but are not themselves infor-
mative, often used as connection words.

E.g model, approach, prior knowledge, them,
it...

A.2 Relation Category
Relation link can not go beyond sentence boundary.
We define 4 asymmetric relation types (Used-for,
Feature-of, Hyponym-of, Part-of ), together with 2
symmetric relation types (Compare, Conjunction).
B always points to A for asymmetric relations

• Used-for: B is used for A, B models A, A is
trained on B, B exploits A, A is based on B.
E.g.

The TISPER system has been designed
to enable many text applications.

Our method models user proficiency.
Our algorithms exploits local soothness.

• Feature-of: B belongs to A, B is a feature of
A, B is under A domain. E.g.

prior knowledge of the model
genre-specific regularities of discourse
structure
English text in science domain

• Hyponym-of: B is a hyponym of A, B is a
type of A. E.g.

TUIT is a software library
NLP applications such as machine trans-
lation and language generation

• Part-of: B is a part of A... E.g.

The system includes two models: speech
recognition and natural language under-
standing
We incorporate NLU module to the sys-
tem.

• Compare: Symmetric relation (use blue to
denote entity). Opposite of conjunction, com-
pare two models/methods, or listing two op-
posing entities. E.g.

Unlike the quantitative prior, the qualita-
tive prior is often ignored...
We compare our system with previous
sequential tagging systems...

• Conjunction: Symmetric relation (use blue
to denote entity). Function as similar role or
use/incorporate with. E.g.

obtained from human expert or knowl-
edge base
NLP applications such as machine trans-
lation and language generation

A.3 Coreference
Two Entities that points to the same concept.

• Anaphora and Cataphora:

We introduce a machine reading system...
The system...
The prior knowledge include...Such
knowledge can be applied to...

• Coreferring noun phrase:

We develop a part-of-speech tagging sys-
tem...The POS tagger...
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A.4 Notes
1. Entity boundary annotation follows the

ACL RD-TEC Annotation Guideline (Qasem-
iZadeh and Schumann, 2016), with the exten-
tion that spans can be embedded in longer
spans, only if the shorter span is involved in a
relation.

2. Do not include determinators (such as the, a),
or adjective pronouns (such as this,its, these,
such) to the span. If generic phrases are not
involved in a relation, do not tag them.

3. Do not tag relation if one entity is:

• Variable bound:
We introduce a neural based approach..
Its benefit is...

• The word which:
We introduce a neural based approach,
which is a...

4. Do not tag coreference if the entity is

• Generically-used Other-ScientificTerm:
...advantage gained from local smooth-
ness which... We present algorithms ex-
ploiting local smoothness in more aggres-
sive ways...

• Same scientific term but refer to different
examples:
We use a data structure, we also use an-
other data structure...

5. Do not label negative relations:

X is not used in Y or X is hard to be applied
in Y

B Annotation and Knowledge Graph
Examples

Here we take a screen shot of the BRAT interface
for an ACL paper in Figure 9. We also attach the
original figure of Figure 3 in Figure 10. More
examples can be found in the project website4.

4http://nlp.cs.washington.edu/sciIE/
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Figure 9: Annotation example 1 from ACL

Figure 10: An example of our automatically generated knowledge graph centered on statistical machine
translation. This is the original figure of Figure 4.
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Abstract

The 20 Questions (Q20) game is a well known
game which encourages deductive reasoning
and creativity. In the game, the answerer first
thinks of an object such as a famous person
or a kind of animal. Then the questioner tries
to guess the object by asking 20 questions. In
a Q20 game system, the user is considered as
the answerer while the system itself acts as
the questioner which requires a good strategy
of question selection to figure out the correct
object and win the game. However, the op-
timal policy of question selection is hard to
be derived due to the complexity and volatil-
ity of the game environment. In this paper,
we propose a novel policy-based Reinforce-
ment Learning (RL) method, which enables
the questioner agent to learn the optimal pol-
icy of question selection through continuous
interactions with users. To facilitate training,
we also propose to use a reward network to
estimate the more informative reward. Com-
pared to previous methods, our RL method is
robust to noisy answers and does not rely on
the Knowledge Base of objects. Experimental
results show that our RL method clearly out-
performs an entropy-based engineering system
and has competitive performance in a noisy-
free simulation environment.

1 Introduction

The 20 Question Game (Q20 Game) is a classic
game that requires deductive reasoning and cre-
ativity. At the beginning of the game, the an-
swerer thinks of a target object and keeps it con-
cealed. Then the questioner tries to figure out
the target object by asking questions about it, and
the answerer answers each question with a simple
“Yes”, “No” or “Unknown”, honestly. The ques-
tioner wins the game if the target object is found
within 20 questions. In a Q20 game system, the

⇤The work was done when the first author was an intern
in Microsoft XiaoIce team.

user is considered as the answerer while the sys-
tem itself acts as the questioner which requires a
good question selection strategy to win the game.

As a game with the hype read your mind, Q20
has been played since the 19th century, and was
brought to screen in the 1950s by the TV show
Twenty Questions. Burgener’s program (Burgener,
2006) further popularized Q20 as an electronic
game in 1988, and modern virtual assistants like
Microsoft XiaoIce and Amazon Alexa also incor-
porate this game into their system to demonstrate
their intelligence.

However, it is not easy to design the algorithm
to construct a Q20 game system. Although the de-
cision tree based method seems like a natural fit
to the Q20 game, it typically require a well de-
fined Knowledge Base (KB) that contains enough
information about each object, which is usually
not available in practice. Burgener (2006) instead
uses a object-question relevance table as the pivot
for question and object selection, which does not
depend on an existing KB. Wu et al. (2018) further
improve the relevance table with a lot of engineer-
ing tricks. Since these table-based methods greed-
ily select questions and the model parameters are
only updated by rules, their models are very sen-
sitive to noisy answers from users, which is com-
mon in the real-world Q20 games. Zhao and Max-
ine (2016) utilizes a value-based Reinforcement
Learning (RL) model to improve the generaliza-
tion ability but still relies on the existing KB.

In this paper, we formulate the process of ques-
tion selction in the game as a Markov Deci-
sion Process (MDP), and further propose a novel
policy-based RL framework to learn the optimal
policy of question selection in the Q20 game. Our
questioner agent maintains a probability distribu-
tion over all objects to model the confidence of the
target object, and updates the confidence based on
answers from the user. At each time-step. the
agent uses a policy network ⇡✓(a|s) to take in
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Figure 1: The overview of our RL framework.

the confidence vector and output a question dis-
tribution for selecting the next question. To solve
the problem that there is no immediate reward for
each selected question, we also propose to employ
a RewardNet to estimate the appropriate immedi-
ate reward at each time-step, which is further used
to calculate the long-term return to train our RL
model. Our RL framework makes the agent robust
to noisy answers since the model parameters are
fully learnable and the question distribution from
⇡✓(a|s) provides us with a principled way to sam-
ple questions, which enables the agent to jump out
of the local optimum caused by incorrect answers
and also introduces more randomness during train-
ing to improve the model generalization ability.
Furthermore, the ability to sample questions, com-
pared to greedy selection, also improves the diver-
sity of the questions asked by our agent, which is
crucial for user experience.

Our contributions can be summarized as fol-
lows: (1) We propose a novel RL framework to
learn the optimal policy of question selection in
the Q20 game without any dependencies on the
existing KBs of target objects. Our trained agent
is robust to noisy answers and has a good diver-
sity in its selected questions. (2) To make the re-
ward more meaningful, we also propose a novel
neural network on reward function approximation
to deliver the appropriate immediate rewards at
each time-step. (3) Extensive experiments show
that our RL method clearly outperforms a highly
engineered baseline in the real-world Q20 games
where noisy answers are common. Besides, our
RL method is also competitive to that baseline on
a noise-free simulation environment.

2 Method

In this section, we first describe our RL framework
for playing the Q20 game, which is shown in the

Fig. 1. The user in our system is the answerer who
thinks of a target object otgt in the object set O
at the beginning of the game. Our policy-based
agent acts as the questioner that can ask 20 ques-
tions to figure out what exactly otgt is. Specifi-
cally, an internal state vector s is maintained by
our agent, which describes the confidence about
otgt. At each time-step t, the agent picks up the
promising action (select a question) according to
the policy ⇡✓(a|st), and transits from the state st

to the next state st+1 after receiving the answer
(“Yes”/“No”/“Unknown”) from the user. The his-
torical trajectories hst, at, rt+1, st+1i are stored in
a replay memory which enables the agent to be
trained on previously observed data by sampling
from it. Note that only when a guess is made about
otgt at the end of game can the agent receive a re-
ward signal, which makes it unable to distinguish
the importance of each selected question. There-
fore, we design a RewardNet to learn the more in-
formative reward at each time-step and thus lead
the agent to achieve the better performance.

In the rest of this section, we first describe how
to formulate the Q20 game into a RL framework,
and then introduce the RewardNet. Finally, we
will demonstrate our training procedure in detail.

2.1 Modeling of the Q20 Game
In the Q20 game, the goal of our agent is to figure
out the object otgt that the user thinks of at the be-
ginning of game by asking 20 questions. We for-
mulate the process of question selection as a finite
Markov Decision Process (MDP) which can be
solved with RL. A tuple hS , A, P , R, �i is defined
to represent the MDP, where S is the continuous
state space, A = {a1, a2, · · · , am} is the set of all
available actions, P(St+1 = s0|St = s, At = a) is
the transition probability matrix, R(s, a) is the re-
ward function and � 2 [0, 1] is the discount factor
used to calculate the long-time return. In the RL
framework, at each time-step t, the agent takes an
action at under the state st according to the policy
⇡✓(a|st). After interacting with the environment,
the agent receives a reward scalar rt+1 and tran-
sits to the next state st+1, then another time-step
begins. All these trajectories hst, at, rt+1, st+1i in
a game constitute an episode which is an instance
of the finite MDP. The long-time return Gt of the
time-step t is calculated as follows:

Gt =
TX

k=0

�krt+k+1 (1)
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In the following parts, we describe each compo-
nent of RL corresponding to the Q20 game.

Environment. The major component of our en-
vironment is the user in the Q20 game who de-
cides the target object otgt and answers questions
from the agent. Besides, the environment also
needs to deliver the reward based on the outcome
of the game and store historical data into the replay
memory (see Fig. 1).

Action. Since the agent interacts with the user by
asking questions, the action at 2 A taken by our
agent refers to selecting the question qat at time-
step t, and A is the set of the indices to all available
questions in the Q20 game.

State. In our method, we use the state st to keep
track of the current confidence of target object
otgt. Specifically st 2 R

|O| and
Pn

i=1 st,i = 1,
where O = {o1, o2, · · · , on} represents the set
of all the objects that can be chosen by the user.
Therefore, the state st is a probability distribution
over all the objects and st,i is the confidence that
the object oi is the target object otgt at time-step t.

The initial state s0 can either be a uniform dis-
tribution or initialized by the prior knowledge. We
observe that users typically prefer to choose popu-
lar objects which are more concerned by the pub-
lic. For example, the founder of Tesla Inc. and
the designer of SpaceX, “Elon Musk”, is more
likely to be chosen compared to a CEO of a new
startup. Motivated by this, we could use the yearly
retrieval frequency C(oi) of object oi on a com-
mercial search engine to calculate the initial state
s0, where s0,i = C(oi) /

Pn
j=1 C(oj).

Transition Dynamics. In our method, the transi-
tion dynamics is deterministic. Given the object
set O and the question set A, we collect the nor-
malized probabilities of the answer over “Yes”,
“No” and “Unknown” for each object-question
pair. And the rule of state transition is define as:

st+1 = st �↵ (2)

where ↵ depends on the answer xt to the question
qat which is selected by the agent at the step t:

↵ =

8
<

:

[R(1, at), . . . , R(|O|, at)], xt = Y es
[W (1, at), . . . , W (|O|, at)], xt = No
[U(1, at), . . . , U(|O|, at)], xt = Unk

(3)
where O is the object set and for each object-
question pair (oi, qj), R(i, j) and W (i, j) are cal-

culated as follows:

R(i, j) =
Cyes(i, j) + �

Cyes(i, j) + Cno(i, j) + Cunk(i, j) + �

W (i, j) =
Cno(i, j) + �

Cyes(i, j) + Cno(i, j) + Cunk(i, j) + �
(4)

R(i, j) and W (i, j) are probabilities of answering
“Yes” and “No” to question qj with respect to the
object oi respectively. Cyes(i, j), Cno(i, j) and
Cunk(i, j) are frequencies of answering “Yes”,
“No” and “Unknown” to question qj with respect
to the object oi. � and � are smoothing parameters.
Then the probability of answering “Unknown” to
question qj with respect to the object oi is:

U(i, j) = 1�R(i, j)�W (i, j) (5)

In this way, the confidence st,i that the object
oi is the target object otgt is updated following the
user’s answer xt to the selected question qat at the
time-step t.

Policy Network. We directly parameterize the
policy ⇡✓(a|st) with a neural network which maps
the state st to a probability distribution over all
available actions: ⇡✓(a|st) = P[a|st; ✓]. The pa-
rameters ✓ are updated to maximize the expected
return which is received from the environment. In-
stead of learning a greedy policy in value-based
methods like DQN, the policy network is able to
learn a stochastic policy which can increase the di-
versity of questions asked by our agent and poten-
tially make the agent more robust to noisy answers
in the real-world Q20 game. The policy ⇡✓(a|s) is
modeled by a Multi-Layer Perceptron (MLP) and
the output layer is normalized by using a masked
softmax function to avoid selecting the question
that has been asked before. Because asking the
same question twice does not provide extra infor-
mation about otgt in a game.

2.2 Problem of Direct Reward
For most reinforcement learning applications, it is
always a critical part to design reward functions,
especially when the agent needs to precisely take
actions in a complex task. A good reward function
can improve the learning efficiency and help the
agent achieve better performances.

In the Q20 game, however, the immediate re-
ward rt of selecting question qat is unknown at the
time-step t (t < T ) because each selected ques-
tion is just answered with a simple “Yes”, “No” or
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“Unknown” and there is no extra information pro-
vided by user. Only when the game ends (t = T )
can the agent receive a reward signal of win or
loss. So we intuitively consider the direct reward:
rT = 30 and �30 for the win and loss respec-
tively while rt = 0 for all t < T . Unfortu-
nately, the direct reward is not discriminative be-
cause the agent receives the same immediate re-
ward rt = 0 (t < T ) for selecting both good and
bad questions. For example, if the otgt is “Donald
Trump”, then selecting question (a) “Is your role
the American president?” should receive more im-
mediate reward rt than selecting question (b) “Has
your role been married?”. The reason is that as for
the otgt, question (a) is more relevant and can nar-
row down the searching space to a greater extent.

Therefore, it is necessary to design a better re-
ward function to estimate a non-zero immediate
reward rt, and make the long-time return Gt =PT

k=0 �krt+k+1 more informative.

2.3 Reward Function Approximation by
Neural Network

To solve the problem of the direct reward, we pro-
pose a reward function which employs a neural
network to estimate a non-zero immediate reward
rt at each time-step. So that Gt can be more infor-
mative, which thus leads to a better trained ques-
tioner agent.

The reward function takes the state-action pair
(st, at) as input and outputs the corresponding im-
mediate reward rt+1. In our method, we use a
MLP with sigmoid output to learn the appropri-
ate immediate reward during training, and this net-
work is referred as RewardNet. In each episode,
the long-term return Gt is used as a surrogate in-
dicator of rt+1 to train our RewardNet with the
following loss function:

L1(�) = (R(st, at; �)� sigmoid(Gt))
2 (6)

where � is the network parameters. Here we ap-
ply the sigmoid function on Gt so as to prevent
Gt from growing too large. Besides, we also use
the replay memory to store both old and recent ex-
periences, and then train the network by sampling
mini-batches from it. The training process based
on the experience replay technique can decorrelate
the sample data and thus make the training of the
RewardNet more efficient.

Furthermore, since the target object otgt can
be obtained at the end of each episode, we can

use the extra information provided by otgt to es-
timate a better immediate reward rt. To capture
the relevance between the selected questions and
otgt in an episode, we further propose a object-
aware RewardNet which takes the hst, at, otgti tu-
ple as input and produces corresponding rt+1 as
output. The detailed training algorithm is shown
in Algo. 1.

Algorithm 1: Training Object-Aware Reward-
Net

1 Initialize replay memory D1 to capacity N1

2 Initialize RewardNet with random weights �
3 for episode i 1 to Z do
4 User chooses object oi from O
5 Initialize temporary set S1 and S2

6 Play with policy ⇡✓(at|st), and store
(st, at) in S1, where t 2 [0, T ]

7 rT  30 or �30 for a win or loss
8 for (st, at) in S1 do
9 Get rt+1 from RewardNet

10 Store (st, at, rt+1) tuple in S2

11 for (st, at, rt+1) in S2 do
12 Gt  

PT
k=0 �krt+k+1

13 r0
t+1  sigmoid(Gt)

14 Store (st, at, oi, r0
t+1) in D1

15 if len(D1) > K1 then
16 Sample mini-batch from D1

17 Update � with loss L1(�) in Eq. 6

2.4 Training the Policy-Based Agent
We train the policy network using REIN-
FORCE (Williams, 1992) algorithm and the cor-
responding loss function is defined as follows:

L2(✓) = �E⇡✓ [log ⇡✓(at|st)(Gt � bt)] (7)

where the baseline bt is a estimated value of the ex-
pected future reward at the state st, which is pro-
duced by a value network V⌘(st). Similarly, the
value network V⌘(st) is modeled as a MLP which
takes the state st as input and outputs a real value
as the expected return. By introducing the base-
line bt for the policy gradient, we can reduce the
variance of gradients and thus make the training
process of policy network more stable. The net-
work parameters ⌘ are updated by minimizing the
loss function below:

L3(⌘) = (V⌘(st)�Gt)
2 (8)
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Note that, in our method, both the RewardNet
and the value network V⌘(st) approximate the re-
ward during training. But the difference lies in
that the RewardNet is designed to estimate a ap-
propriate non-zero reward rt and further derive the
more informative return Gt while V⌘(st) aims to
learn a baseline bt to reduce the variance of policy
gradients. We combine both of two networks to
improve the gradients for our policy network and
thus lead to a better agent. The training procedure
is described in Algo. 2.

Algorithm 2: Training the Agent
1 Initialize replay memory D2 to capacity N2

2 Initialize policy net ⇡ with random weights ✓
3 Initialize value net V with random weights ⌘
4 Initialize RewardNet with random weights �
5 for episode i 1 to Z do
6 Rollout, collect rewards, and save the

history in S2 (4-10 in Algo. 1)
7 for (st, at, rt+1) in S2 do
8 Gt  

PT
k=0 �krt+k+1

9 Update RewardNet (13-17 in
Algo. 1)

10 Store (st, at, Gt) in D2

11 if len(D2) > K2 then
12 Sample mini-batch from D2

13 Update ⌘ with loss L3 in Eq. 8
14 Update ✓ with loss L2 in Eq. 7

3 Experimental Setup

We use a user simulator to train our questioner
agent and test the agent with the simulated an-
swerer and real users. Specifically, our experi-
ments answer three questions: (1) Is our method
more robust in real-world Q20 games, compared
to the methods based on relevance table? (Sec-
tion. 4.2) And how does it perform in the simu-
lation environment? (Section. 4.1) (2) Does our
RewardNet help in the training process? (Sec-
tion. 4.3) (3) How the winning rate grows with the
number of questions, and whether it is possible to
stop earlier? (Section. 4.4)

3.1 User Simulator
Training the RL agent is challenging because the
agent needs to continuously interact with the envi-
ronment. To speed up the training process of the
proposed RL model, we construct a user simulator

which has enough prior knowledge to choose ob-
jects and answer questions selected by the agent.

We collect 1,000 famous people and 500 ques-
tions for them. Besides, for every person-question
pair in our dataset, a prior frequency distribution
over “Yes”, “No” and “Unknown” is also collected
from thousands of real users. For example, as for
“Donald Trump”, question (a) “Is your role the
American president?” is answered with “Yes” for
9,500 times, “No” for 50 times and “Unknown”
for 450 times. We use Eq.4 and 5 to construct three
matrices R, W, U 2 R

|O|⇤|A| (|O| = 1000, |A| =
500) which are used for state transition in the Sec-
tion. 2.1. Then given the object oi and question qj ,
the user simulator answers “Yes”, “No” and “Un-
known” when R(i, j), W (i, j), and U(i, j) has the
max value among them respectively.

Constructed by the prior knowledge, the sim-
ulator can give noise-free answer in most cases.
Because the prior frequency distribution for each
person-question pair is collected from thousands
of users with the assumption that most of them do
not lie when answering questions in the Q20 game.

In an episode, the simulator randomly samples a
person following the object distribution s0, which
is generated from the object popularity (see the
state part of Section. 2.1), as the target object.
Then the agent gives a guess when the number
of selected questions reaches 20. After that, the
simulator check the agent’s answer and return a
reward signal of win or loss. There is only one
chance for the agent to guess in an episode. The
win and loss reward are 30 and -30 respectively.

3.2 Implementation Details

While the architectures of the policy network, Re-
wardNet and value network can vary in different
scenarios, in this paper, we simply use the MLP
with one hidden layer of size 1,000 for all of them,
but with different parameters. These networks
take in the state vector directly, which is a prob-
ability distribution over all objects. The Reward-
Net further takes in the one-hot vector of action
at. Based on the input of RewardNet, the object-
aware RewardNet takes one more target object otgt

as the feature which is also a one-hot vector.
We use the ADAM optimizer (Kingma and Ba,

2014) with the learning rate 1e-3 for policy net-
work and 1e-2 for both RewardNet and value net-
work. The discounted factor � for calculating the
long-term return is 0.99. The model was trained up
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Figure 2: Win Rate Curves in Simulation Environment.

to 2,000,000 steps (2,00,000 games) and the pol-
icy network was evaluated every 5,000 steps. Each
evaluation records the agent’s performance with a
greedy policy for 2,000 independent episodes. The
2,000 target objects for these 2,000 episodes are
randomly selected following the distribution s0,
which is generated from the object popularity and
kept the same for all the training settings.

3.3 Competitor
We compare our RL method with the entropy-
based model proposed by Wu et al. (2018), which
utilizes the real-world answers to each object-
question pair to calculate an object-question rele-
vance matrix with the entropy-based method. The
relevance matrix is then used for question ranking
and object ranking via carefully designed formu-
las and engineering tricks. Since this method is
shown to be effective in their production environ-
ment, we consider it to be a strong baseline to our
proposed RL model.

4 Experimental Results

4.1 Simulated Evaluation
We first evaluate our agent and the entropy-based
baseline (referred to as EntropyModel, see
Section. 3.3) by using the simulated user (Sec-
tion. 3.1). To investigate which initialization strat-
egy of the state s0 is better (see the state part of
Section. 2.1), we further evaluate two variants of
our model: the agent with uniform distribution s0

(RL uniform) and the agent with the distribution
s0 initialized by the prior knowledge on the object
popularity (RL popularity).

Fig. 2 shows the curves on the win rate of these
methods evaluated on 2,000 independent episodes

with respect to the number of training steps. Note
that, the EntropyModel only needs to update
its statistics during training and has already accu-
mulated a significant number of data since it has
been run for over a year in their production envi-
ronment. Therefore, only a small fraction of its
statistics can be changed, which leads to a small
rise at the beginning of training, and its win rate
remains at around 95% afterwards.

On the other hand, both our RL models con-
tinuously improve the win rate with the growing
number of interactions with the user simulator, and
they achieve 50% win rate after around 20,000
steps. As we can see, although the s0 initial-
ized with the prior knowledge of object popular-
ity keeps consistent with the object selection strat-
egy of the simulator, the agent with uniform dis-
tribution s0 (RL uniform) still performs clearly
better than the agent with s0 based on the prior
knowledge (RL popularity). The reason is
that the former can explore the Q20 game environ-
ment more fully. The prior knowledge based s0

helps the agent narrow down the candidate space
more quickly when the target object is a popu-
lar object. However, it also becomes misleading
when the target object is not popular and makes
the agent even harder to correct the confidence of
the target object. On the contrary, the uniform dis-
tribution s0 makes the agent keep track of the tar-
get object only based on the user’s answers. And
the superior performance of the RL uniform in-
dicates that our question selection policy is highly
effective, which means it is not necessary to use
the RL popularity to increase the win rate of
hot objects in the game.

As shown in Fig. 2, RL uniform achieves win
rate 94% which is very close to EntropyModel.
Compared to our RL method, EntropyModel
needs more user data to calculate their entropy-
based relevance matrix and involves many engi-
neering tricks. The fact that RL uniform is com-
petitive to EntropyModel in the noise-free sim-
ulation environment indicates that our RL method
is very cost-effective: it makes use of user data
more efficiently and is easier to implement.

4.2 Human Evaluation

To further investigate the performance of our RL
method in the real-world Q20 game where noisy
answers are common, we also conduct an human
evaluation experiment. Specifically, we let real
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Win Rate

EntropyModel 71.3%
RL uniform 75.9%

Table 1: Win Rate on Human Evaluation.

users to play the game with EntropyModel and
RL uniform for 1,000 times respectively. In the
real-world Q20 game, users sometimes make mis-
takes when they answer the questions during the
game. For example, as for the target object “Don-
ald Trump”, question (a) “Is your role the Ameri-
can president?” is sometimes answered with “No”
or “Unknown” by real users. On the contrary,
the simulator hardly makes such mistakes since
we have provided it with enough prior knowl-
edge. As shown in Table. 1, RL uniform out-
performs EntropyModel by about 4.5% on win
rate in the real-world Q20 games. It shows that
our RL method is more robust to noisy answers
than EntropyModel. Specifically, the robust-
ness of our RL method to the noise is shown in the
following two aspects. First, compared to the rule-
based statistics update in EntropyModel, our
RL model can be trained by modern neural net-
work optimizers in a principled way, which results
in the better generalization ability of our model.
Secondly, different from the EntropyModel se-
lecting the top-ranked question at each time-step,
RL uniform samples a question following its
question probability distribution ⇡✓(a|s), which
enables our agent to jump out of the local optimum
caused by incorrect answers from users. And since
more randomness is introduced by sampling from
the question probability distribution during train-
ing, it also improves the tolerance of our model
towards the unexpected question sequences.

Besides, we also find some interesting cases
during human evaluation. Sometimes, the RL
agent selects a few strange questions which seems
to be not that much relevant to the chosen object,
but it can still find the correct answer at the end
of game. This situation is caused by the fact that
our method samples questions based on the output
of policy net, rather than greedy selection during
training. We find that this phenomenon increases
the user experience since it makes the agent more
unpredictable to the users.

Figure 3: Effectiveness of RewardNet.

4.3 The Effectiveness of RewardNet
To investigate the effectiveness of our RewardNet
(Section. 2.3), we further evaluate three variants
of our model in the simulation environment: the
model trained with with direct reward, Reward-
Net, and object-aware RewardNet, which are re-
ferred to as DirectReward, RewardNet, and
ObjectRewardNet respectively. They are all
trained with the uniform distribution s0.

As shown in Fig. 3, DirectReward con-
verges in the early steps and has a relatively
poor performance with the win rate 89%. Both
RewardNet and ObjectRewardNet achieve
the better performance with a win rate of 94% af-
ter convergence. This clear improvement shows
that the more informative long-term return, calcu-
lated with the immediate reward delivered by our
RewardNet method, significantly helps the train-
ing of the agent.

Furthermore, as shown in Fig. 3, we can also
see that ObjectRewardNet learns faster than
RewardNet in the early steps. This indicates that
ObjectRewardNet can estimate the immediate
reward more quickly with the extra information
provided by the target object, which leads to the
faster convergence of the agent.

4.4 Win Rate Regarding Question Numbers
In this section, we investigate how the win rate
grows with the number of asked questions and
whether a early-stop strategy can be adopted in the
game. We use the user simulator to play the game
with the RL uniform agent and two settings are
taken into account: the simulator samples the tar-
get object following the uniform object distribu-
tion (UnifSimulator), and samples following
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Figure 4: Win Rate Regarding Numbers of Questions.

the prior object distribution based on the object
popularity (PopSimulator). We perform 1,000
simulations for each number of questions, and the
win rate curve is shown in Fig. 4.

As we can see that UnifSimulator achieves
the win rate of 80% with only 14 questions in both
settings. And the flat curves in the region after
18 questions indicate that the game can be early
stopped with the almost same win rate at step 18.
Since a lower win rate is acceptable sometimes,
other early-stop strategies can also be derived for
the better user experience with the trade-off be-
tween the win rate and game steps.

Besides, the fact that RL uniform performs
similarly under both settings actually shows that
our RL method is robust to different objects. It
also performs well on infrequent objects where we
may have the limited user data for constructing a
well-tuned state transition dynamics.

4.5 Case Study

When our agent is playing the game with real
users, we select two cases from records. In the
first case, the person that the user chooses is Cris-
tiano Ronaldo, the famous football player. As we
can see in Tab. 2, our agent can still figure out the
target person while No.17 and No.19 questions are
answered wrong by the user, which indicates our
agent is robust to noisy answers. In the second
case, the chosen person is Napoleon Bonaparte
who was the French Emperor. Although there are
some other candidates satisfied the constraints, the
target person can be figured out because of the
people popularity, which is shown in Tab. 3.

5 Related Work

Q20. The Q20 game is popularized as an elec-
tronic game by the program of Robin Burgener
in 1988 (Burgener, 2006), which uses a object-
question relevance table to rank questions and tar-
get objects. Wu et al. (Wu et al., 2018) improves
the relevance table with entropy-based metrics,
and uses complicated engineering tricks to make
it perform quite well in their production environ-
ment. These table-based methods use rules to
update parameters, which makes them easily af-
fected by noisy answers. Besides, Zhao and Max-
ine (2016) also explores Q20 in their dialogue state
tracking research. However, they only use a small
toy Q20 setting where the designed questions are
about 6 person attributes in the Knowledge Base
(KB). Since their method relies on the KB for nar-
rowing down the scope of target object, it is not
applicable to real-world Q20 games where a well-
defined object KB is often unavailable. Compared
to previous approaches, our RL method is robust
to the answer noise and does not rely on the KB.

Deep Reinforcement Learning. DRL has wit-
nessed great success in playing complex games
like Atari games (Mnih et al., 2015) , Go (Silver
et al., 2016), and etc. In the natural language pro-
cessing (NLP), DRL is also used to play text-based
games (Narasimhan et al., 2015), and used to han-
dle fundamental NLP tasks like machine transla-
tion (He et al., 2016) and machine comprehen-
sion (Hu et al., 2017) as well. Our Q20 game lies
in the intersection of the field of game and NLP.
In this work, we propose a policy-based RL model
that acts as the questioner in the Q20 game, and
it exhibits the superior performance in our human
evaluation.

Natural Language Games. In the literature, there
are some works focusing on solving and generat-
ing English riddles (De Palma and Weiner, 1992;
Binsted, 1996) and Chinese character riddles (Tan
et al., 2016). Compared to riddles, the Q20 game
is a sequential decision process which requires
careful modeling of this property.

6 Conclusions

In this paper, we propose a policy-based RL
method to solve the question selection problem in
the Q20 Game. Instead of using the direct reward,
we further propose an object-aware RewardNet
to estimate the appropriate non-zero reward and
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thus make the long-time return more informative.
Compared to previous approaches, our RL method
is more robust to the answer noise which is com-
mon in the real-world Q20 game. Besides, our RL
agent can also ask various questions and does not
require the existing KB and complicated engineer-
ing tricks. The experiments on a noisy-free sim-
ulation environment show that our RL method is
competitive to an entropy-based engineering sys-
tem, and clearly outperforms it on the human eval-
uation where noisy answers are common.

As for the future work, we plan to explore meth-
ods to use machine reading to automatically con-
struct the state transition dynamics from corpora
like Wikipedia. In this way, we can further build
an end-to-end framework for the large-scale Q20
games in the real world.
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No. Question User’s Answer

1 Was the person born in Asia? No
2 Is the person very famous? Yes
3 Is the person a actor or actress? No
4 Is the person still alive? Yes
5 Was the person born in the 1990s? No
6 Is the person the founder of a famous company? No
7 Did the person finish the college in USA? No
8 Is the person a famous singer? No
9 Is the person male? Yes
10 Is the person related to sports? Yes
11 Is the person a football player? Yes
12 Is the person a midfielder? No
13 Is the person played for a European football club? Yes
14 Is the person playing in the Spanish Premier League? Yes
15 Is the person famous for the handsome or beautiful looks? Yes
16 Does the person have big muscles? Yes
17 Does the person have brown hair? No
18 Will you be happy when you see the person? Yes
19 Does the person have brothers or sisters in the family? No
20 Is the person engaged in many charity activities? Unknown

Table 2: The person that the user chooses is Cristiano Ronaldo, the famous football player. As we can see in table,
our agent can still figure out the target person while No.17 and No.19 are answered wrong by the user, which
indicates our agent is robust to noisy answers.

No. Question User’s Answer

1 Is the person female? No
2 Is the person still alive? No
3 Does the person have children? Yes
4 Does the person have brothers or sisters in the family? Yes
4 Is the person very smart? Yes
5 Was the person born in America? No
6 Is the person the white man? Yes
7 Is the person’s family very rich? No
8 Is the person a controversial figure in history? Yes
9 Is the person related to politics? Yes
10 Does the person have good looks? Unknown
11 Does the person have short hair? Yes
12 Is the person very famous? Yes
13 Has the person once been very powerful? Yes
14 Is the character of the person very aggressive? No
15 Has the person been the president of a country? Yes
16 Is the person a military? Yes
17 Has the person once killed men? No
18 Was the person born in Britain? No
19 Was the person one of famous leaders in the World War II? No
20 Has the person once been the emperor? Yes

Table 3: In this case, the person that the user chooses is Napoleon Bonaparte, the French Emperor. Although there
are some other candidates satisfied the constraints, our agent can figure out the target person because of the people
popularity.
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Abstract

Multi-hop reasoning is an effective approach
for query answering (QA) over incomplete
knowledge graphs (KGs). The problem can be
formulated in a reinforcement learning (RL)
setup, where a policy-based agent sequentially
extends its inference path until it reaches a
target. However, in an incomplete KG en-
vironment, the agent receives low-quality re-
wards corrupted by false negatives in the train-
ing data, which harms generalization at test
time. Furthermore, since no golden action se-
quence is used for training, the agent can be
misled by spurious search trajectories that in-
cidentally lead to the correct answer. We pro-
pose two modeling advances to address both
issues: (1) we reduce the impact of false nega-
tive supervision by adopting a pretrained one-
hop embedding model to estimate the reward
of unobserved facts; (2) we counter the sen-
sitivity to spurious paths of on-policy RL by
forcing the agent to explore a diverse set of
paths using randomly generated edge masks.
Our approach significantly improves over ex-
isting path-based KGQA models on several
benchmark datasets and is comparable or bet-
ter than embedding-based models.

1 Introduction

Large-scale knowledge graphs (KGs) support a
variety of downstream NLP applications such as
semantic search (Berant et al., 2013) and dialogue
generation (He et al., 2017). Whether curated au-
tomatically or manually, practical KGs often fail
to include many relevant facts. A popular ap-
proach for modeling incomplete KGs is knowl-
edge graph embeddings, which map both entities
and relations in the KG to a vector space and
learn a truth value function for any potential KG
triple parameterized by the entity and relation vec-
tors (Yang et al., 2014; Dettmers et al., 2018).

Barack_Obama John_McCain

collaborate_with

endorsed_by

U.S. Government

belong_to

belong_to?
Rudy_Giulian

collaborate

_with

Hawaii

born_in

Hillary_Clinton

collaborate

_withcollaborate_with?

U.S.locate_in live_in

live_in

belong_to

Figure 1: Example of an incomplete knowledge graph
which contains missing links (dashed lines) that can
possibly be inferred from existing facts (solid lines).

Embedding based approaches ignore the sym-
bolic compositionality of KG relations, which
limit their application in more complex rea-
soning tasks. An alternative solution for KG
reasoning is to infer missing facts by synthe-
sizing information from multi-hop paths, e.g.
bornIn(Obama, Hawaii) ^ locatedIn(Hawaii, US)
) bornIn(Obama, US), as shown in Figure 1.
Path-based reasoning offers logical insights of the
underlying KG and are more directly interpretable.
Early work treats it as a link prediction prob-
lem and perform maximum-likelihood classifica-
tion over either discrete path features (Lao et al.,
2011, 2012; Gardner et al., 2013) or their hidden
representations in a vector space (Guu et al., 2015;
Toutanova et al., 2016; McCallum et al., 2017).

More recent work formulates multi-hop reason-
ing as a sequential decision problem, and lever-
ages reinforcement learning (RL) to perform ef-
fective path search (Xiong et al., 2017; Das et al.,
2018; Shen et al., 2018; Chen et al., 2018). In par-
ticular, MINERVA (Das et al., 2018) uses the RE-
INFORCE algorithm (Williams, 1992) to train an
end-to-end model for multi-hop KG query answer-
ing: given a query relation and a source entity, the
trained agent searches over the KG starting from
the source and arrives at the candidate answers
without access to any pre-computed paths.
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Figure 2: Percentage of false negatives hit (where the
model predicted an answer that exists in the full KG but
cannot be identified by the training subset) in the first
20 epochs of walk-based QA training on the UMLS
knowledge graph (Kok and Domingos, 2007).

We refer to the RL formulation adopted by
MINERVA as “learning to walk towards the an-
swer” or “walk-based query-answering (QA)”.
Walk-based QA eliminates the need to pre-
compute path features, yet this setup poses sev-
eral challenges for training. First, because prac-
tical KGs are intrinsically incomplete, the agent
may arrive at a correct answer whose link to the
source entity is missing from the training graph
without receiving any reward (false negative tar-
gets, Figure 2). Second, since no ground truth
path is available for training, the agent may tra-
verse spurious paths that lead to a correct answer
only incidentally (false positive paths). Because
REINFORCE (Williams, 1992) is an on-policy RL
algorithm (Sutton and Barto, 1998) which encour-
ages past actions with high reward, it can bias the
policy toward spurious paths found early in train-
ing (Guu et al., 2017).

We propose two modeling advances for RL ap-
proaches in the walk-based QA framework to ad-
dress the aforementioned problems. First, in-
stead of using a binary reward based on whether
the agent has reached a correct answer or not,
we adopt pre-trained state-of-the-art embedding-
based models (Dettmers et al., 2018; Trouillon
et al., 2016) to estimate a soft reward for target
entities whose correctness cannot be determined.
As embedding-based models capture link seman-
tics well, unobserved but correct answers would
receive a higher reward score compared to a true
negative entity using a well-trained model. Sec-
ond, we perform action dropout which randomly
blocks some outgoing edges of the agent at each
training step so as to enforce effective exploration
of a diverse set of paths and dilute the negative im-
pact of the spurious ones. Empirically, our over-
all model significantly improves over state-of-the-

art multi-hop reasoning approaches on four out
of five benchmark KG datasets (UMLS, Kinship,
FB15k-237, WN18RR). It is also the first path-
based model that achieves consistently compara-
ble or better performance than embedding-based
models. We perform a thorough ablation study and
result analysis, demonstrating the effect of each
modeling innovation.

2 Approach

In this section, we first review the walk-based QA
framework (§2.2) and the on-policy reinforcement
learning approach proposed by Das et al. (2018)
(§2.3,§2.4). Then we describe our proposed so-
lutions to the false negative reward and spurious
path problems: knowledge-based reward shaping
(§2.5) and action dropout (§2.6).

2.1 Formal Problem Definition
We formally represent a knowledge graph as G =
(E , R), where E is the set of entities and R is the
set of relations. Each directed link in the knowl-
edge graph l = (es, r, eo) 2 G represents a fact
(also called a triple).

Given a query (es, rq, ?), where es is the source
entity and rq is the relation of interest, the goal
is to perform an efficient search over G and col-
lect the set of possible answers Eo = {eo} where
(es, rq, eo) /2 G due to incompleteness.

2.2 Reinforcement Learning Formulation
The search can be formulated as a Markov De-
cision Process (MDP) (Sutton and Barto, 1998):
starting from es, the agent sequentially selects an
outgoing edge l and traverses to a new entity until
it arrives at a target. Specifically, the MDP consists
of the following components (Das et al., 2018).

States Each state st = (et, (es, rq)) 2 S is a
tuple where et is the entity visited at step t and
(es, rq) are the source entity and query relation. et

can be viewed as the state-dependent information
while (es, rq) are the global context shared by all
states.

Actions The set of possible actions At 2 A at
step t consists of the outgoing edges of et in G,
i.e., At = {(r0, e0)|(et, r0, e0) 2 G}. To give the
agent the option to terminat a search, a self-loop
edge is added to every At. When search is unrolled
for a fixed number of steps T , the self-loop acts
similarly to a “stop” action.
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Transition A transition function � : S⇥A! S
is defined by �(st, At) = �(et, (es, rq), At). In
walk-based QA, the transition is determined by G.

Rewards In the default formulation, the agent
receives a terminal reward of 1 if it arrives at a
correct target entity when search ends and 0 other-
wise.

Rb(sT ) = {(es, rq, eT ) 2 G}. (1)

2.3 Policy Network
The search policy is parameterized using state in-
formation and global context, plus the search his-
tory (Das et al., 2018).

Specifically, every entity and relation in G is
assigned a dense vector embedding e 2 d and
r 2 d. A particular action at = (rt+1, et+1) 2
At is represented as the concatenation of the re-
lation embedding and the end node embedding
at = [r; e0

t].
The search history ht =

(es, r1, e1, . . . , rt, et) 2 H consists of the
sequence of actions taken up to step t, and can be
encoded using an LSTM:

h0 = LSTM(0, [r0; es]) (2)
ht = LSTM(ht�1,at�1), t > 0, (3)

where r0 is a special start relation introduced to
form a start action with es.

The action space At is encoded by stacking the
embeddings of all actions in it: At 2 |At|⇥2d.
And the policy network ⇡ is defined as:

⇡✓(at|st) = �(At ⇥W2 ReLU(W1[et;ht; rq])),
(4)

where � is the softmax operator.

2.4 Optimization
The policy network is trained by maximizing the
expected reward over all queries in G:

J(✓) = (es,r,eo)2G [ a1,...,aT ⇠⇡✓ [R(sT |es, r)]].
(5)

The optimization is done using the REIN-
FORCE (Williams, 1992) algorithm, which iter-
ates through all (es, r, eo) triples in G1 and updates

1This training strategy treats a query with n > 1 an-
swers as n single-answer queries. In particular, given a query
(es, rq, ?) with multiple answers {et1 , . . . etn

}, when train-
ing w.r.t. the example (es, rq, eti

), MINERVA removes all
{etj

|j 6= i} observed in the training data from the possible
set of target entities in the last search step so as to force the
agent to walk towards eti

. We adopt the same technique in
our training.

✓ with the following stochastic gradient:

r✓J(✓) ⇡ r✓

TX

t=1

R(sT |es, r) log ⇡✓(at|st).

(6)

2.5 Knowledge-Based Reward Shaping
According to Equation 1, the agent receives a bi-
nary reward based solely on the observed answers
in G. However, G is intrinsically incomplete and
this approach penalizes the false negative search
attempts identically to true negatives. To allevi-
ate this problem, we adopt existing KG embedding
models designed for the purpose of KG comple-
tion (Trouillon et al., 2016; Dettmers et al., 2018)
to estimate a soft reward for target entities whose
correctness is unknown.

Formally, the embedding models map E and R
to a vector space, and estimate the likelihood of
each fact l = (es, r, et) 2 G using f(es, r, et),
a composition function of the entity and relation
embeddings. f is trained by maximizing the like-
lihood of all facts in G. We propose the following
reward shaping strategy (Ng et al., 1999):

R(sT ) = Rb(sT ) + (1�Rb(sT ))f(es, rq, eT ).
(7)

Namely, if the destination eT is a correct answer
according to G, the agent receives reward 1. Oth-
erwise the agent receives a fact score estimated by
f(es, rq, eT ), which is pre-trained. Here we keep
f in its general form and it can be replaced by
any state-of-the-art model (Trouillon et al., 2016;
Dettmers et al., 2018) or ensemble thereof.

2.6 Action Dropout
The REINFORCE training algorithm performs on-
policy sampling according to ⇡✓(at|st), and up-
dates ✓ stochastically using Equation 6. Because
the agent does not have access to any oracle path, it
is possible for it to arrive at a correct answer eo via
a path irrelevant to the query relation. As shown
in Figure 1, the path Obama �endorsedBy! Mc-
Cain �liveIn! U.S.  locatedIn� Hawaii does
not infer the fact bornIn(Obama, Hawaii).

Discriminating paths of different qualities is
non-trivial, and existing RL approaches for walk-
based KGQA largely rely on the terminal reward
to bias the search. Since there are usually more
spurious paths than correct ones, spurious paths
are often found first, and following exploration can
be increasingly biased towards them (Equation 6).
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Figure 3: Overall training approach. At each time step t, the agent samples an outgoing link according to ⇡̃✓(at|st),
which is the stochastic REINFORCE policy ⇡✓(at|st) perturbed by a random binary mask m. The agent receives
reward 1 if stopped at an observed answer of the query (es, rq, ?); otherwise, it receives reward f(es, rq, eT )
estimated by the reward shaping (RS) network. The RS network is pre-trained and doesn’t receive gradient updates.

Entities with larger fan-in (in-degree) and fan-out
(out-degree) often exacerbate this problem.

Guu et al. (2017) identified a similar issue in
RL-based semantic parsing with weak supervi-
sion, where programs that do not semantically
match the user utterance frequently pass the tests.
To solve this problem, Guu et al. (2017) proposed
randomized beam search combined with a meri-
tocratic update rule to ensure all trajectories that
obtain rewards are up-weighted roughly equally.

Here we propose the action dropout tech-
nique which achieves similar effect as randomized
search and is simpler to implement over graphs.
Action dropout randomly masks some outgoing
edges for the agent in the sampling step of REIN-
FORCE. The agent then performs sampling2 ac-
cording to the adjusted action distribution

⇡̃✓(at|st) / (⇡✓(at|st) · m + ✏) (8)
mi ⇠ Bernoulli(1� ↵), i = 1, . . . |At|, (9)

where each entry of m 2 {0, 1}|At| is a binary
variable sampled from the Bernoulli distribution
with parameter 1 � ↵. A small value ✏ is used
to smooth the distribution in case m = 0, where
⇡̃✓(at|st) becomes uniform.

Our overall approach is illustrated in Figure 3.

3 Related Work
In this section, we summarize the related work and
discuss their connections to our approach.

2We only modify the sampling distribution and still use
⇡✓(at|st) to compute the gradient update in equation 6.

3.1 Knowledge Graph Embeddings
KG embeddings (Bordes et al., 2013; Socher
et al., 2013; Yang et al., 2014; Trouillon et al.,
2016; Dettmers et al., 2018) are one-hop KG
modeling approaches which learn a scoring func-
tion f(es, r, eo) to define a fuzzy truth value of
a triple in the embedding space. These mod-
els can be adapted for query answering by sim-
ply return the eo’s with the highest f(es, r, eo)
scores. Despite their simplicity, embedding-based
models achieved state-of-the-art performance on
KGQA (Das et al., 2018). However, such models
ignore the symbolic compositionality of KG rela-
tions, which limits their usage in more complex
reasoning tasks. The reward shaping (RS) strategy
we proposed is a step to combine their capabil-
ity in modeling triple semantics with the symbolic
reasoning capability of the path-based approach.

3.2 Multi-Hop Reasoning
Multi-hop reasoning focus on learning symbolic
inference rules from relational paths in the KG and
has been formulated as sequential decision prob-
lems in recent works (Xiong et al., 2017; Das et al.,
2018; Shen et al., 2018; Chen et al., 2018). In par-
ticular, DeepPath (Xiong et al., 2017) first adopted
REINFORCE to search for generic representative
paths between pairs of entities. DIVA (Chen et al.,
2018) also performs generic path search between
entities using RL and its variational objective can
be interpreted as model-based reward assignment.
MINERVA (Das et al., 2018) first introduced RL
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to search for answer entities of a particular KG
query end-to-end. MINERVA uses entropy reg-
ularization to softly encourage the policy to sam-
ple diverse paths, and we show that hard action
dropout is more effective in this setup. Reinforce-
Walk (Shen et al., 2018) further proposed to solve
the reward sparsity problem in walk-based QA
using off-policy learning. ReinforceWalk scores
the search targets with a value function which
is updated based on the search history cached
through epochs. In comparison, we leveraged ex-
isting embedding-based models for reward shap-
ing, which is much more efficient during training.

3.3 Reinforcement Learning
Recently, RL has seen a variety of applications in
NLP including machine translation (Ranzato et al.,
2015), summarization (Paulus et al., 2017), and se-
mantic parsing (Guu et al., 2017). Compared to
the domain of gaming (Mnih et al., 2013) where
RL is mostly applied for, RL formulations in NLP
often have a large discrete action space. For ex-
ample, in machine translation, the space of possi-
ble actions is the entire vocabulary of a language.
Walk-based QA also suffers from this problem,
as some entities may have thousands of neigh-
bors (e.g. U.S.). Since often there is no golden
path available for a KG reasoning problem, we
cannot leverage supervised pre-training to initial-
ize the path search following the common practice
in RL-based natural language generation (Ranzato
et al., 2015). On the other hand, the inference
paths being studied in a KG are often much shorter
(usually containing 2-5 steps) compared to the tar-
get sentences in the NL generation problems (of-
ten containing 20-30 words), which simplifies the
training to some extent.

4 Experiment Setup

We evaluate our modeling contributions on five
KGs from different domains and exhibiting differ-
ent graph properties (§ 4.1). We compare with two
classes of state-of-the-art KG models: multi-hop
neural symbolic approaches and KG embeddings
(§4.2). In this section, we describe the datasets and
our experiment setup in detail.

4.1 Dataset
We adopt five benchmark KG datasets for query
answering: (1) Alyawarra Kinship, (2) Unified
Medical Language Systems (Kok and Domingos,

Dataset #Ent #Rel #Fact #degree
mean median

Kinship 104 25 8,544 85.15 82
UMLS 135 46 5,216 38.63 28
FB15k-237 14,505 237 272,115 19.74 14
WN18RR 40,945 11 86,835 2.19 2
NELL-995 75,492 200 154,213 4.07 1

Table 1: KGs used in the experiments sorted by in-
creasing sparsity level.

2007), (3) FB15k-237 (Toutanova et al., 2015), (4)
WN18RR (Dettmers et al., 2018), and (5) NELL-
995 (Xiong et al., 2017). The statistics of the
datasets are shown in Table 1.

4.2 Baselines and Model Variations
We compare with three embedding based models:
DistMult (Yang et al., 2014), ComplEx (Trouillon
et al., 2016) and ConvE (Dettmers et al., 2018).
We also compare with three multi-hop neural sym-
bolic models: (a) NTP-�, an improved version of
Neural Theorem Prover (Rocktäschel and Riedel,
2017), (b) Neural Logical Programming (Neu-
ralLP) (Yang et al., 2017) and (c) MINERVA. For
our own approach, we include two model vari-
ations that use ComplEx and ConvE as the re-
ward shaping modules respectively, denoted as
Ours(ComplEx) and Ours(ConvE). We quote the
results of NeuralLP, NTP-� and MINERVA re-
ported in Das et al. (2018), and replicated the em-
bedding based systems.3

4.3 Implementation Details
Beam Search Decoding We perform beam
search decoding to obtain a list of unique en-
tity predictions. Because multiple paths may lead
to the same target entity, we compute the list of
unique entities reached in the final search step and
assign each of them the maximum score of all
paths that led to it. We then output the top-ranked
unique entities. We find this approach to improve
over directly taking the entities ranked at the beam
top, as many of them are repetitions.

KG Setup Following previous work, we treat
every KG link as bidirectional and augment the
graph with the reversed (eo, r�1, es) links. We use
the same train, dev, and test set splits as Das et al.
(2018). We exclude any link from the dev and

3 Das et al. (2018) reported MINERVA results with the en-
tity embedding usage as an extra hyperparameter – the quoted
performance of MINERVA in Table 2 on UMLS and Kinship
were obtained with entity embeddings setting to zero. In con-
trast, our system always uses trained entity embeddings.
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Model UMLS Kinship FB15k-237 WN18RR NELL-995
@1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR @1 @10 MRR

DistMult (Yang et al., 2014) 82.1 96.7 86.8 48.7 90.4 61.4 32.4 60.0 41.7 43.1 52.4 46.2 55.2 78.3 64.1
ComplEx (Trouillon et al., 2016) 89.0 99.2 93.4 81.8 98.1 88.4 32.8 61.6 42.5 41.8 48.0 43.7 64.3 86.0 72.6
ConvE (Dettmers et al., 2018) 93.2 99.4 95.7 79.7 98.1 87.1 34.1 62.2 43.5 40.3 54.0 44.9 67.8 88.6 76.1
NeuralLP (Yang et al., 2017) 64.3 96.2 77.8 47.5 91.2 61.9 16.6 34.8 22.7 37.6 65.7 46.3 – – –
NTP-� (Rocktäschel et. al. 2017) 84.3 100 91.2 75.9 87.8 79.3 – – – – – – – – –
MINERVA (Das et al., 2018) 72.8 96.8 82.5 60.5 92.4 72.0 21.7 45.6 29.3 41.3 51.3 44.8 66.3 83.1 72.5
Ours(ComplEx) 88.7 98.5 92.9 81.1 98.2 87.8 32.9 54.4 39.3 43.7 54.2 47.2 65.5 83.6 72.2
Ours(ConvE) 90.2 99.2 94.0 78.9 98.2 86.5 32.7 56.4 40.7 41.8 51.7 45.0 65.6 84.4 72.7

Table 2: Query answering performance compared to state-of-the-art embedding based approaches (top part) and
multi-hop reasoning approaches (bottom part). The @1, @10 and MRR metrics were multiplied by 100. We
highlight the best approach in each category.

test set (and its reversed link) from the train set.
Following Das et al. (2018), we cut the maximum
number of outgoing edges of an entity by thresh-
old ⌘ to prevent GPU memory overflow: for each
entity we keep its top-⌘ neighbors with the highest
PageRank scores (Page et al., 1999) in the graph.

Hyperparameters We set the entity and relation
embedding size to 200 for all models. We use
Xavier initialization (Glorot and Bengio, 2010) for
the embeddings and the NN layers. For ConvE, we
use the same convolution layer and label smooth-
ing hyperparameters as Dettmers et al. (2018). For
path-based models, we use a three-layer LSTM as
the path encoder and set its hidden dimension to
200. We perform grid search on the reasoning path
length (2, 3), the node fan-out threshold ⌘ (256-
512) and the action dropout rate ↵ (0.1-0.9). Fol-
lowing Das et al. (2018), we add an entropy regu-
larization term in the objective and tune the weight
parameter � within 0-0.1. We use Adam optimiza-
tion (Kingma and Ba, 2014) and search the learn-
ing rate (0.001-0.003) and mini-batch size (128-
512).4 For all models we apply dropout to the en-
tity and relation embeddings and all feed-forward
layers, and search the dropout rates within 0-0.5.
We use a decoding beam size of 512 for NELL-
995 and 128 for the other datasets.

Evaluation Protocol We convert each triple
(es, r, eo) in the test set into a query and com-
pute ranking-based evaluation metrics. The mod-
els take es, r as the input and output a list of can-
didate answers Eo = [e1, . . . , eL] ranked in de-
creasing order of confidence score. We compute

4On some datasets, we found larger batch size to con-
tinue improving the performance but had to stop at 512 due
to memory constraints.

reo , the rank of eo among Eo, after removing the
other correct answers from Eo and use it to com-
pute two types of metrics: (1) Hits@k which is
the percentage of examples where reo  k and (2)
mean reciprocal rank (MRR) which is the mean of
1/reo for all examples in the test set. We use the
entire test set for evaluation, with the exception of
NELL-995, where test triples with unseen entities
are removed following Das et al. (2018).

Our Pytorch implementation of all experi-
ments is released at https://github.com/
salesforce/MultiHopKG.

5 Results

5.1 Model Comparison
Table 2 shows the evaluation results of our pro-
posed approach and the baselines. The top
part presents embedding based approaches and
the bottom part presents multi-hop reasoning ap-
proaches.5

We find embedding based models perform
strongly on several datasets, achieving overall best
evaluation metrics on UMLS, Kinship, FB15K-
237 and NELL-995 despite their simplicity. While
previous path based approaches achieve com-
parable performance on some of the datasets
(WN18RR, NELL-995, and UMLS), they perform
significantly worse than the embedding based
models on the other datasets (9.1 and 14.2 absolute
points lower on Kinship and FB15k-237 respec-
tively). A possible reason for this is that embed-
ding based methods map every link in the KG into
the same embedding space, which implicitly en-
codes the connectivity of the whole graph. In con-
trast, path based models use the discrete represen-

5We report the model robustness measurements in § A.1.
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Model UMLS Kinship FB15k237 WN18RR NELL995

Ours(ConvE) 73.0 75.0 38.2 43.8 78.8
�RS 67.7 66.5 35.1 45.7 78.4
�AD 61.3 65.4 31.0 39.1 76.1

Table 3: Comparison of dev set MRR of Ours(ConvE)
and models without reward shaping and action dropout.

tation of a KG as input, and therefore have to leave
out a significant proportion of the combinatorial
path space by selection. For some path based ap-
proaches, computation cost is a bottleneck. In par-
ticular, NeuralLP and NTP-� failed to scale to the
larger datasets and their results are omitted from
the table, as Das et al. (2018) reported.

Ours is the first multi-hop reasoning approach
which is consistently comparable or better than
embedding based approaches on all five datasets.
The best single model, Ours(ConvE), improves
the SOTA performance of path-based models on
three datasets (UMLS, Kinship, and FB15k-237)
by 4%, 9%, and 39% respectively. On NELL-995,
our approach did not significantly improve over
existing SOTA. The NELL-995 dataset consists of
only 12 relations in the test set and, as we further
detail in the analysis (§ 5.3.3), our approach is less
effective for those relation types.

The model variations using different reward
shaping modules perform similarly. While a better
reward shaping module typically results in a better
overall model, an exception is WN18RR, where
ComplEx performs slightly worse on its own but
is more helpful for reward shaping. We left the
study of the relationship between the reward shap-
ing module accuracy and the overall model perfor-
mance as future work.

5.2 Ablation Study
We perform an ablation study where we remove
reward shaping (�RS) and action dropout (�AD)
from Ours(ConvE) and compare their MRRs to
the whole model on the dev sets.6 As shown in
Table 3, on most datasets, removing each com-
ponent results in a significant performance drop.
The exception is WN18RR, where removing the
ConvE reward shaping module improves the per-
formance.7 Removing reward shaping on NELL-

6According to Table 3 and Table 2, the dev and test set
evaluation metrics differ significantly on several datasets. We
discuss the cause of this in § A.2.

7A possible explanation for this is that as path-based mod-
els tend to outperform the embedding based approaches on
WN18RR, ConvE may be supplying more noise than useful

995 does not change the results significantly. In
general, removing action dropout has a greater im-
pact, suggesting that thorough exploration of the
path space is important across datasets.

5.3 Analysis

5.3.1 Convergence Rate
We are interested in studying the impact of each
proposed enhancement on the training conver-
gence rate. In particular, we expect reward shap-
ing to accelerate the convergence of RL (to a better
performance level) as it propagates prior knowl-
edge about the underlying KG to the agent. On
the other hand, a fair concern for action dropout is
that it can be slower to train, as the agent is forced
to explore a more diverse set of paths. Figure 4
eliminates this concern.

The first row of Figure 4 shows the changes in
dev set MRR of Ours(ConvE) (green ⇤) and the
two ablated models w.r.t. # epochs. In general, the
proposed approach is able to converge to a higher
accuracy level much faster than either of the ab-
lated models and the performance gap often per-
sists until the end of training (on UMLS, Kinship,
and FB15k-237). Particularly, on FB15k-237, our
approach still shows improvement even after the
two ablated models start to overfit, with �AD be-
ginning to overfit sooner. On WN18RR, introduc-
ing reward shaping hurt dev set performance from
the beginning, as discussed in § 5.2. On NELL-
995, Ours(ConvE) performs significantly better in
the beginning, but �RS gradually reaches a com-
parable performance level.

It is especially interesting that introducing ac-
tion dropout immediately improves the model per-
formance on all datasets. A possible explanation
for this is that by exploring a more diverse set of
paths the agent learns search policies that general-
ize better.

5.3.2 Path Diversity
We also compute the total number of unique paths
the agent explores during training and visualize its
change w.r.t. # training epochs in the second row
of Figure 4. When counting a unique path, we in-
clude both the edge label and intermediate entity.

information about the KG. Yet counter-intuitively, we found
that adding the ComplEx reward shaping module helps, de-
spite the fact that ComplEx performs slightly worse than
ConvE on this dataset. This indicates that dev set accuracy
is not the only factor which determines the effectiveness of
reward shaping.
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Figure 4: Illustration of convergence rate and path exploration efficiency. The three curves in each subplot
represents Ours(ConvE) (green ⇤) and the two ablated models: �RS (blue4) and �AD (orange �). The top row
shows the change of dev set MRR and the bottom row shows the growth of # unique paths explored w.r.t. # epochs.

Dataset To-many To-one
% Ours(ConvE) �RS �AD % Ours(ConvE) �RS �AD

UMLS 99.1 73.1 67.9 (-7%) 61.3 (-16%) 0.9 62.5 55.5 (-11%) 54.4 (-13%)
Kinship 100 75 66.5 (-11%) 65.4 (-13%) 0 – – –
FB15k-237 76.6 28.3 24.5 (-13%) 20.9 (-26%) 23.4 72 69.8 (-3%) 63.9 (-11%)
WN18RR 52.8 65 65.7 (+1%) 57.9 (-11%) 47.2 20.1 23.2 (+16%) 18.1 (-10%)
NELL-995 12.9 55.7 62.1 (+12%) 56.9 (+2%) 87.1 81.4 80.7 (-1%) 80.5 (-1%)

Table 4: MRR evaluation of different relation types (to-many vs. to-one) on five datasets. The % columns show
the percentage of examples of each relation type found in the development split of the corresponding dataset. In
general, our proposed techniques improve the prediction results for to-many relations more significantly.

First we observe that, on all datasets, the agent ex-
plores a large number of paths before reaching a
good performance level. The speed of path discov-
ery slowly decreases as training progresses. On
smaller KGs (UMLS and Kinship), the rate of en-
countering new paths is significantly lower after a
certain number of epochs, and the dev set accuracy
plateaus correspondingly. On much larger KGs
(FB15k-237, WN18RR, and NELL-995), we did
not observe a significant slowdown before severe
overfitting occurs and the dev set performance
starts to drop. A possible reason for this is that the
larger KGs are more sparsely connected compared
to the smaller KGs (Table 1), therefore it is less
efficient to gain generalizable knowledge from the
KG by exploring a limited proportion of the path
space through sampling.

Second, while removing action dropout signifi-
cantly lowers the effectiveness of path exploration
(orange � vs. green ⇤), we observe that removing
reward shaping (blue 4) slightly increases the #
paths visited if the action dropout rate is kept the
same. This indicates that the correlation between

# paths explored and dev set performance is not
strictly positive. The best performing model is not
always the model that explored the largest # paths.
It also demonstrates the role of reward shaping as
a regularizer which guides the agent to avoid noisy
paths with its prior knowledge.

5.3.3 Performance w.r.t. Relation Types
We investigate the behaviors of our proposed ap-
proach w.r.t different relation types. For each KG,
we classify its set of relations into two categories
based on the answer set cardinality. Specifically,
we define the metric ⇠r as the average answer set
cardinality of all queries with topic relation r. We
count r as a “to-many” relation if ⇠r > 1.5, which
indicates that most queries in relation r has more
than 1 correct answer; we count r as a “to-one”
relation otherwise, meaning most queries of this
relation have only 1 correct answer.

Table 4 shows the percentage of examples of to-
many and to-one relations on each dev dataset and
the MRR evaluation metrics of previously studied
models computed on the examples of each relation
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Dataset Seen Queries Unseen Queries
% Ours(ConvE) �RS �AD % Ours(ConvE) �RS �AD

UMLS 97.2 73.1 67.9 (-7%) 61.4 (-16%) 2.8 68.5 61.5 (-10%) 58.7 (-14%)
Kinship 96.8 75.1 66.5 (-11%) 65.8 (-12%) 3.2 73.6 64.3 (-13%) 53.3 (-27%)
FB15k-237 76.1 28.3 24.3 (-14%) 20.6 (-27%) 23.9 70.9 69.1 (-2%) 63.9 (-10%)
WN18RR 41.8 60.8 62.0 (+2%) 53.4 (-12%) 58.2 31.5 33.9 (+7%) 28.8 (-9%)
NELL-995 15.3 40.4 45.9 (+14%) 42.5 (+5%) 84.7 85.5 84.7 (-1%) 84.3 (-1%)

Table 5: MRR evaluation of seen queries vs. unseen queries on five datasets. The % columns show the percentage
of examples of seen/unseen queries found in the development split of the corresponding dataset.

type. Since UMLS and Kinship are densely con-
nected, they almost exclusively contain to-many
relations. FB15k-237 mostly contains to-many re-
lations. In Figure 4, we observe the biggest rela-
tive gains from the ablated models on these three
datasets. WN18RR is more balanced and con-
sists of slightly more to-many relations than to-
one relations. The NELL-995 dev set is a unique
one which almost exclusively consists of to-one
relations. There is no common performance pat-
tern over the two relation types across datasets:
on some datasets all models perform better on to-
many relations (UMLS, WN18RR) while others
show the opposite trend (FB15k-237, NELL-995).
We leave the study of these discrepancies to future
work.

We show the relative performance change of the
ablated models�RS and�AD w.r.t. Ours(ConvE)
in parentheses. We observe that in general our
proposed enhancements are effective in improving
query-answering over both relation types (more
effective for to-many relations). However, adding
the ConvE reward shaping module on WN18RR
hurts the performance over both to-many and to-
one relations (more for to-one relations). On
NELL-995, both techniques hurt the performance
over to-many relations.

5.3.4 Performance w.r.t. Seen Queries vs.
Unseen Queries

Since most benchmark datasets randomly split the
KG triples into train, dev and test sets, the queries
that have multiple answers may fall into multi-
ple splits. As a result, some of the test queries
(es, rq, ?) are seen in the training set (with a dif-
ferent set of answers) while the others are not. We
investigate the behaviors of our proposed approach
w.r.t. seen and unseen queries.

Table 5 shows the percentage of examples as-
sociated with seen and unseen queries on each
dev dataset and the corresponding MRR evalua-
tion metrics of previously studied models. On

most datasets, the ratio of seen vs. unseen queries
is similar to that of to-many vs. to-one relations
(Table 4) as a result of random data split, with
the exception of WN18RR. On some datasets, all
models perform better on seen queries (UMLS,
Kinship, WN18RR) while others reveal the op-
posite trend. We leave the study of these model
behaviors to future work. On NELL-995 both of
our proposed enhancements are not effective over
the seen queries. In most cases, our proposed en-
hancements improve the performance over unseen
queries, with AD being more effective.

6 Conclusions

We propose two modeling advances for end-to-
end RL-based knowledge graph query answer-
ing: (1) reward shaping via graph completion and
(2) action dropout. Our approach improves over
state-of-the-art multi-hop reasoning models con-
sistently on several benchmark KGs. A detailed
analysis indicates that the access to a more ac-
curate environment representation (reward shap-
ing) and a more thorough exploration of the search
space (action dropout) are important to the perfor-
mance boost.

On the other hand, the performance gap be-
tween RL-based approaches and the embedding-
based approaches for KGQA remains. In future
work, we would like to investigate learnable re-
ward shaping and action dropout schemes and ap-
ply model-based RL to this domain.
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Abstract
Neural state-of-the-art sequence-to-sequence
(seq2seq) models often do not perform well
for small training sets. We address paradigm
completion, the morphological task of, given a
partial paradigm, generating all missing forms.
We propose two new methods for the minimal-
resource setting: (i) Paradigm transduction:
Since we assume only few paradigms available
for training, neural seq2seq models are able
to capture relationships between paradigm
cells, but are tied to the idiosyncracies of the
training set. Paradigm transduction mitigates
this problem by exploiting the input subset of
inflected forms at test time. (ii) Source selec-
tion with high precision (SHIP): Multi-source
models which learn to automatically select one
or multiple sources to predict a target inflection
do not perform well in the minimal-resource
setting. SHIP is an alternative to identify
a reliable source if training data is limited.
On a 52-language benchmark dataset, we
outperform the previous state of the art by up
to 9.71% absolute accuracy.

1 Introduction

Morphological generation of previously unen-
countered word forms is a crucial problem in
many areas of natural language processing (NLP).
High performance can lead to better systems
for downstream tasks, e.g., machine translation
(Tamchyna et al., 2017). Since existing lexicons
have limited coverage, learning morphological
inflection patterns from labeled data is an important
mission and has recently been the subject of
multiple shared tasks (Cotterell et al., 2016, 2017a).

In morphologically rich languages, words inflect,
i.e., they change their surface form in oder to ex-
press certain properties, e.g., number or tense. A
word’s canonical form, which can be found in a
dictionary, is called the lemma, and the set of all in-
flected forms is referred to as the lemma’s paradigm.

Figure 1: The paradigm of the German noun “Schneemann”
(“snowman”). In this running example, the input subset is bold,
the output subset italic.

In this work, we address paradigm completion (PC),
the morphological task of, given a partial paradigm
of a lemma, generating all of its missing forms. For
the partial paradigm represented by the input subset
{(“Schneemannes”, GEN;SG), (“Schneemännern”,
DAT;PL)} of the German noun “Schneemann”
shown in Figure 1, the goal of PC is to generate the
output subset consisting of the six remaining forms.

Neural seq2seq models define the state of the
art for morphological generation if training sets are
large; however, they have been less successful in the
low-resource setting (Cotterell et al., 2017a). In this
paper, we address an even more extreme minimal-
resource setting: for some of our experiments, our
training sets only contain k⇡10 paradigms. Each
paradigm has multiple cells, so the number of forms
(as opposed to the number of paradigms) is not
necessarily minimal. However, we will see that
generalizing from paradigm to paradigm is a key
challenge, making the number of paradigms a good
measure of the effective training set size.

We propose two PC methods for the minimal-
resource setting: paradigm transduction and source
selection with high precision (SHIP). We define a
learning algorithm as transductive1 if its goal is to
generalize from specific training examples to spe-
cific test examples (Vapnik, 1998). In contrast, in-

1In order to avoid ambiguity, “transduction” is never used
in the sense of string-to-string transduction in this paper.
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ductive inference learns a general model that is inde-
pendent of any test set. Predictions of transductive
inference for the same item are different for different
test sets. There is no such dependence in inductive
inference. Our motivation for transduction is that, in
the minimal-resource setting, neural seq2seq mod-
els capture relationships between paradigm cells
like affix substitution and umlauting, but are tied to
the idiosyncracies of the k training paradigms. For
example, if all source forms in the training set start
with “b” or “d”, a purely inductive model may then
be unable to generate targets with different initials.
By transductive inference on the information avail-
able in the input subset at test time, i.e., the given par-
tial paradigm, our model can learn idiosyncracies.
For example, if the input subset sources start with
“p”, we can learn to generate output subset targets
that start with “p”. Thus, we exploit the input subset
for learning idiosyncracies at test time and then gen-
erate the output subset using a modified model. This
setup employs standard inductive training (on the
training set) for learning general rules of inflectional
morphology and transductive inference (on the test
set) for learning idiosyncracies. Our use of trans-
duction is innovative in that most previous work has
addressed unstructured problems whereas our prob-
lem is structured: we complete a paradigm, a com-
plex structure of forms, each of them labeled with a
morphological tag. Thus, the test set contains labels,
whereas, in transduction for unstructured problems,
the test set is a flat set of unlabeled instances. We
view our work as an extension of transduction to the
structured case, even though not all elements of the
theory developed by Vapnik (1998) carry over.

The motivation for our second PC method for lim-
ited training data, SHIP, is as follows. Multi-source
models can learn which combination of sources
most reliably predicts the target in the high-resource,
but less well in the minimal-resource setting. SHIP
models the relationship between paradigm slots
using edit trees (Chrupała et al., 2008), in order to
measure how deterministic each transformation is.
Then, it identifies the most deterministic source slot
for the generation of each target inflection.

Paradigm transduction and SHIP can be
employed separately or in combination. Our exper-
iments show that, in an extreme minimal-resource
setting, a combination of SHIP and a non-neural
approach is most effective; for slightly more
data, a combination of a neural model, paradigm
transduction and SHIP obtains the best results.

Contributions. (i) We introduce neural paradigm
transduction, which exploits the structure of the
PC task to mitigate the negative effect of limited
training data. (ii) We propose SHIP, a new algorithm
for picking a single reliable source for PC in the
minimal-resource setting. (iii) On average over all
languages of a 52-language benchmark dataset, our
approaches outperform state-of-the-art baselines
by up to 9.71% absolute accuracy.

2 Paradigm Completion

In this section, we formally define our task,
developing the notation for the rest of the paper.

Given the set of morphological tags T (w) of a
lemma w, we define the paradigm of w as the set
of tuples of inflected form fk and tag tk:

⇡(w)=
��

fk[w],tk
� 

tk2T (w)
(1)

The example in Figure 1 thus corresponds to:
⇡(Schneemann) =

��
“Schneemann”, NOM;SG

�

. . .
�
“Schneemänner”, ACC;PL

� 
.

A training set in our setup consists of complete
paradigms, i.e., all inflected forms of each lemma
are available. This simulates a setting in which a lin-
guist annotates complete paradigms, as done, e.g.,
in Sylak-Glassman et al. (2016). In contrast, each el-
ement of the test set is a partial paradigm, which we
refer to as the input subset. This simulates a setting
in which we collect all forms of a lemma occurring
in a (manually or automatically) annotated input
corpus; this set will generally not be complete. The
PC task consists of generating the output subset of
the paradigm, i.e., the forms belonging to form-tag
pairs which are missing from the collected subset.

3 Method

Our approach for PC is based on MED (Morpholog-
ical Encoder-Decoder), a state-of-the-art model for
morphological generation in the high-resource case,
which was developed by Kann and Schütze (2016b).
In this section, we first cover required background
on MED and then introduce our new approaches.

3.1 MED
Input and output format. MED converts one
inflected form of a paradigm into another, given
the two respective tags. Thus, the input of MED is
a sequence of subtags of the source and the target
form (e.g., NOM and SG are subtags of NOM;SG),
as well as the characters of the source form. All
elements are represented by embeddings, which are

3255



trained together with the model. The output of MED
is the character sequence of the target inflected form.

An example from the paradigm in Figure 1 is:

INPUT: DATS PLS GENT SGT S c h n e e m ä n n e r n
OUTPUT: S c h n e e m a n n e s

Encoder. The model’s encoder consists of a
bidirectional gated recurrent neural network (GRU)
with a single hidden layer. It reads an input vector
sequence x=(x1,...,xXt) and encodes it from two
opposite directions into two hidden representations�!
ht and

 �
ht as

�!
ht =GRU(xt,

��!
ht�1) (2)

 �
ht =GRU(xt,

 ��
ht+1) (3)

which are concatenated to

ht =
h�!
ht ;
 �
ht

i
(4)

Decoder. The decoder, another GRU with a single
hidden layer, defines a probability distribution over
the output vocabulary, which, for paradigm comple-
tion, consists of the characters in the language, as

p(y)=

TyY

t=1

GRU(yt�1,st�1,ct) (5)

st denotes the state of the decoder at step t, and
ct is the sum of the hidden representations of the
encoder, weighted by an attention mechanism.

Additional background on the general model ar-
chitecture is given in Bahdanau et al. (2015); details
on MED can be found in Kann and Schütze (2016b).

3.2 Semi-supervised MED
In order to make use of unlabeled data with MED,
Kann and Schütze (2017) defined an auxiliary
autoencoding task and proposed a multi-task
learning approach.

For this extension, an additional symbol is added
to the input vocabulary. Each input is then of the
form (A |M+)⌃+, with A being a novel tag for
autoencoding, ⌃ being the alphabet of the language,
and M being the set of morphological subtags of the
source and the target. As for the basic MED model,
all parts of the input are represented by embeddings.

The training objective is to maximize the joint
likelihood for the tasks of paradigm completion and
autoencoding:

L(✓)=
P

(s,tS ,tT ,w)2D logp✓(w |e✓(t
S ,tT ,s))

+
P

a2A logp✓(a |e✓(a))

where A is a set of autoencoding examples, e✓

is the encoder, and D is a labeled training set of
tuples of source s, morphological source tag tS ,
morphological target tag tT , and target w.

3.3 MED for Paradigm Completion
MED was originally developed for morphological
reinflection. Thus, it operates on pairs consisting
of a single source and a single target form. In order
to use it for paradigm completion, where multiple
source forms are given, and multiple target forms are
expected, we convert the given data into a suitable
format in the way described in the following.

For a lemma w, let J(w) be the set of tags in the
input subset. Recall that J(w) is a subset of T (w),
the set of all tags, at test time, but that training
paradigms are complete, i.e., J(w)=T (w) for the
training set.

For both training of the inductive model
and paradigm transduction, we generate
|J(w)|(|J(w)|�1) training examples

(ti,tj ,fi[w]) 7!fj [w]

one for each pair of different tags in J(w). We also
generate autoencoding training examples for all
tags in J(w) (removing duplicates):

�
A,fi[w]

�
7!fi[w]

For the German lemma “Schneemann”, assume:
J(Schneemann)={GEN;SG,DAT;PL}

at test time. We then produce the following
training examples for paradigm transduction:

(DATS PLS GENT SGT Schneemännern) 7! Schneemannes
(GENS SGS DATT PLT Schneemannes) 7! Schneemännern
(A Schneemannes) 7! Schneemannes
(A Schneemännern) 7! Schneemännern

For completing a partial paradigm, we then select
one source form per target slot (the lemma, unless
stated otherwise) and create all forms corresponding
to the tags in J(w)\T (w) one by one.

3.4 Paradigm Transduction
Motivation. In the minimal-resource setting,
parameter estimates are tied to the idiosyncracies
of the lemmas seen in training, due to overfitting.
Our example in §1 is that the model has difficulties
producing initial letters not seen during training.
However, within each paradigm, forms are gen-
erally similar; thus, input subset sources contain
valuable information about how to generate output
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Figure 2: Average amount of sources in the input subset for paradigm transduction, per language.

subset targets. Based on this observation, we solve
the problem of overfitting by transduction: we teach
the model test idiosyncracies by training it on the
input subset before generating the output subset.

Method description. We first train a general
model on the training set in the standard supervised
learning setup, i.e., the setup which is called
inductive inference by Vapnik (1998). At test
time, we take the general model as initialization
and continue training on examples generated from
the input subset as described in §3.3. We do this
separately for each lemma, satisfying the defining
criterion of transductive inference that predictions
depend on the test data. Also, different input subsets
(i.e., different subsets of the same paradigm) can
in general make different predictions on an output
subset target.

Paradigm transduction is expected to perform
best in a setting in which many forms of each
paradigm are given as input, i.e., when |J(w)| is
big. In Figure 2 we show the average sizes of the
input subsets for all languages in our experiments.

3.5 Source Selection with High Precision
During PC, some sources contain more information
relevant to generating certain targets than others.
For instance, the nominative singular and accusative
singular in German are generally identical (cf. Fig-
ure 1); thus, for generating the accusative singular,
we should use the nominative singular as source if
it is available—rather than, say, the dative plural.

Figure 3: Edit tree example. Each node gives lengths of the
parts before/after LCS, e.g., the root has LCS “Schneem”,
before part ✏ and after part “ann”, thus the lengths are “(0,3)”.
“sub” = “substitution”.

In fact, for many languages, the entire paradigm
of most lemmas is deterministic if the right source
forms are known and used for the right targets. A set
of forms that determines all other inflected forms
is called principal parts (Finkel and Stump, 2007).
Based on this theory, Cotterell et al. (2017b) induce
topologies and jointly decode entire paradigms,
thus making use of all available forms. However,
their method is only applicable if good estimates
of the probabilities p(fj [w]|fi[w]) for source fi[w]
and target fj [w] can be obtained, and they train on
hundreds of paradigms per part of speech (POS)
and language, which are not available in our setup.

We propose an alternative for the minimal-
resource setting: SHIP, which selects a single best
source for each target and is based on edit trees. An
edit tree e(fi[w],fj [w]) is a transformation from a
source fi[w] to a target fj [w] (Chrupała et al., 2008);
see Figure 3. It is constructed by first determining
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Figure 4: SHIP example for German plural forms (SET1). For the graph constructed in training (see §3.5), subgraphs are extracted
in testing for input subset sizes two (left) and three (right). Input subset: yellow and green. Output subset: white and red. For
generation of the target shown in red, SHIP selects the source shown in green.

the longest common substring (LCS) (Gusfield,
1997) of fi[w] and fj [w] and then modeling the
prefix and suffix pairs of the LCS recursively. In
the case of an empty LCS, e(fi[w],fj [w]) is the sub-
stitution operation that replaces fi[w] with fj [w].

We construct edit trees for each pair (fi[w],fj [w])
in the training set, count the number nij of different
edit trees for ti 7! tj , and construct a fully connected
graph. The tags are nodes of the graph, and the
counts nij are weights. Edges are undirected,
since edit trees are bijections (cf. Figure 4). We
then interpret the weight of an edge as a measure
of the (un)reliability of the corresponding two
source-target relationships. Our intuition is that the
fewer different edit trees relate source and target, the
more reliable the source is for generating the target.

At test time, we find for each target tj a source
tk such that nkjnij8i2J(w). We then use fk[w]
to generate fj [w]. Again, Figure 4 shows examples.

4 Experiments

4.1 Data

We run experiments on the datasets from task 2 of the
CoNLL–SIGMORPHON 2017 shared task, which
have been created using UniMorph (Kirov et al.,
2018). We give a short overview here; see (Cotterell
et al., 2017a) for details. The dataset contains, for
each of 52 languages, a development set of 50 partial
paradigms, a test set of 50 partial paradigms, and
three training sets of complete paradigms. Training
set sizes are 10 (SET1), 50 (SET2), and 200 (SET3).
Recall that we view the number of paradigms (not
the number of forms) as the best measure of the
amount of training data available. Even for SET3,
there are only 200 lemmas per language in the
training set, which are additionally distributed over
multiple POS tags, compared to >600 lemmas per
POS used by Cotterell et al. (2017b). We, thus,
want to emphasize that all settings—SET1, SET2,

and SET3—can be considered low-resource.
We produce training sets for our encoder-decoder

as described in §3.3, but limit the total number of
training examples to 200,000.

4.2 Hyperparameters
With our hyperparameters, we follow Kann and
Schütze (2016a). In particular, our encoder and
decoder GRUs have 100-dimensional hidden states.
Our embeddings are 300-dimensional. For training,
we use stochastic gradient descent, ADADELTA
(Zeiler, 2012), and minibatches of size 20. After
experiments on the development set, we decide on
training SET1, SET2, and SET3 models for 50, 30,
and 20 epochs, respectively. For paradigm transduc-
tion, we train all models for 25 additional epochs.

4.3 Baselines
In the following, we describe our baselines. COPY,
MED, and PT are used for ablation and SIG17 for
comparison with the state of the art.

COPY. As targets in many paradigm cells in many
languages are identical to the lemma, we consider
a copy baseline that simply copies the lemma.

MED. This is the model by Kann and Schütze
(2016b), which performed best at SIGMORPHON
2016. For decoding, the lemma is used. Since MED
is designed for the high-resource setting, we do not
expect good performance for our minimal-resource
scenario, but the comparison shows how much our
enhancements improve performance.

Pure paradigm transduction (PT). PT is a
seq2seq model exclusively trained on the input sub-
set. Its performance sheds light on the importance
of the initial inductive training.

SIG17. SIG17 is the official baseline of the
CoNLL–SIGMORPHON 2017 shared task, which
was developed to perform well with very little
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SET1 SET2 SET3
BL: COPY .0810 .0810 .0810
BL: MED .0004 .0432 .4211
BL: PT .0833 .0833 .0775
BL: SIG17 .5012 .6576 .7707
SIG17+SHIP .5971 .7355 .8008
MED+PT .5808 .7486 .8454
MED+PT+SHIP .5793 .7547 .8483

Table 1: Accuracy on PC for SIG17+SHIP (the shared task
baseline SIG17 with SHIP), MED+PT (MED with paradigm
transduction), MED+PT+SHIP (MED with paradigm trans-
duction and SHIP), as well as all baselines (BL). Results are
averaged over all languages, and best results are in bold; de-
tailed accuracies for all languages can be found in Appendix A.

training data. Its design follows Liu and Mao
(2016): SIG17 first aligns each input lemma and
output inflected form. Afterwards, it assumes that
each aligned pair can be split into a prefix, a stem,
and a suffix. Based on this alignment, the system
extracts prefix (resp. suffix) rules from the prefix
(resp. suffix) pairings. At test time, suitable rules
are applied to the input string to generate the target;
more details can be found in Cotterell et al. (2017a).

4.4 Results
Our results are shown in Table 1. For SET1,
SIG17+SHIP obtains the highest accuracy, while,
for SET2 and SET3, MED+PT+SHIP performs
best. This difference can be easily explained by
the fact that the performance of neural networks
decreases rapidly for smaller training sets, and,
while paradigm transduction strongly mitigates
this problem, it cannot completely eliminate it.
Overall, however, SIG17+SHIP, MED+PT, and
MED+PT+SHIP all outperform the baselines by
a wide margin for all settings.

Effect of paradigm transduction. On average,
MED+PT clearly outperforms SIG17, the strongest
baseline: by .0796 (.5808-.5012) on SET1, .0910
(.7486-.6576) on SET2, and .0747 (.8454-.7707)
on SET3.

However, looking at each language individually
(refer to Appendix A for those results), we find that
MED+PT performs poorly for a few languages,
namely Danish, English, and Norwegian (Bokmål
& Nynorsk). We hypothesize that this can most
likely be explained by the size of the input subset
of those languages being small (cf. Figure 2 for
average input subset sizes per language). Recall
that the input subset is explored by the model
during transduction. Most poorly performing

languages have input subsets containing only the
lemma; in this case paradigm transduction reduces
to autoencoding the lemma. Thus, we conclude that
paradigm transduction can only improve over MED
if two or more sources are given.

Conversely, if we consider only the languages
with an average input subset size of more than
15 (Basque, Haida, Hindi, Khaling, Persian, and
Quechua), the average accuracy of MED+PT for
SET1 is 0.9564, compared to an overall average
of 0.5808. This observation shows clearly that
paradigm transduction obtains strong results if
many forms per paradigm are given.

Effect of SHIP. Further, Table 1 shows that
SIG17+SHIP is better than SIG17 by .0959
(.5971-.5012) on SET1, .0779 (.7355-.6576) on
SET2, and .0301 (.8008-.7707) on SET3. Stronger
effects for smaller amounts of training data indicate
that SHIP’s strategy of selecting a single reliable
source is more important for weaker final models;
in these cases, selecting the most deterministic
source reduces errors due to noise.

In contrast, the performance of MED, the neural
model, is relatively independent of the choice of
source; this is in line with earlier findings (Cotterell
et al., 2016). However, even for MED+PT, adding
SHIP (i.e., MED+PT+SHIP) slightly increases
accuracy by .0061 (.7547-.7486) on SET2, and
.0029 (.8483-.8454) on SET3 (L53).

Ablation. MED does not perform well for either
SET1 or SET2. In contrast, on SET3 it even outper-
forms SIG17 for a few languages. However, MED
loses against MED+PT in all cases, highlighting
the positive effect of paradigm transduction.

Looking at PT next, even though PT does not
have a zero accuracy for any setting or language,
it performs consistently worse than MED+PT. For
SET3, PT is even lower than MED on average, by
.3436 (.4211-.0775). Note that, in contrast to the
other methods, PT’s performance is not dependent
on the size of the training set. The main determinant
for PT’s performance is the size of the input subset
during transductive inference. If the input subset
is large, PT can perform better than MED, e.g.,
for Hindi and Urdu. For Khaling SET1, PT even
outperforms both MED and SIG17. However, in
most cases, PT does not perform well on its own.

MED+PT outperforms both MED and PT.
This confirms our initial intuition: MED and PT
learn complementary information for paradigm
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input output
MED PT MED+PT

Schneemann N;GEN;PL GetGächen Scnneeeeennnnnnnnnnnnnnnnnnnnn Schneemänner
dish V;V.PTCP;PRS dising dish dishing
creer V;SBJV;PRS;1;PL crezcamos creyemos creamos

Table 2: Analysis of the outputs of MED, PT, and MED+PT for SET2. Top to bottom: German, English, Spanish. MED and
PT produce incorrect, MED+PT correct inflections.

Figure 5: Accuracy of MED+PT as a function of the average
input subset size. Red/diamonds: SET1; blue/circles: SET2;
green/triangles: SET3.

completion. The base model learns the general
structure of the language (i.e., correspondences
between tags and inflections) while paradigm
transduction teaches the model which character
sequences are common in a specific test paradigm.

5 Analysis

5.1 On the Size of the Input Subset

We expect paradigm transduction to become more
effective as the size of the input subset increases.
Figure 5 shows the accuracy of MED+PT as a
function of the average input subset size for SET1,
SET2, and SET3. Accuracy for languages with
input set sizes above 15 is higher than .8 in all
settings. In general, languages with larger input
set sizes perform better. The correlation is not
perfect because languages have different degrees
of morphological regularity. However, the overall
trend is clearly recognizable.

The organizers of CoNLL–SIGMORPHON
provided large input subsets in the development
and test sets of languages with large paradigms.
Thus, PT performs better for languages with many
inflected forms per paradigm, i.e., large |T (w)|.

5.2 On the Effect of Paradigm Transduction
We further analyze why paradigm transduction
improves the performance of the base model MED,
using the German, English, and Spanish SET2 exam-
ples for MED, PT, and MED+PT given in Table 2.

German. MED generates an almost random
sequence. However, it learns that the umlaut “ä”
must appear in the target. PT only produces correct
characters, but it produces far too many. The reason
may be that the model is trained on both a double
“e” and a double “n”, learning that “e” and “n” are
likely to appear repeatedly. MED+PT generates the
correct target.

English. MED fails to generate “h” because the
bigram “sh” did not occur in training, and so the
probability of “h” following “s” is estimated to be
low. PT fails to produce the suffix “ing”, since it
does not occur in the input subset, and, thus, PT has
no way of learning it. Again, MED+PT generates
the correct target.

Spanish. MED produces “crezcamos”, a form
that has the correct tag V;SBJV;PRS;1;PL, but
is a form of “crecer” (which appears in the
training set), not of “creer” (which does not). This
demonstrates the problems resulting from a lack
of lemma diversity during training. PT produces
a combination of several of the forms in the input
subset: subjunctive forms beginning with “crey”
and “creemos” V;IND;PRS;1;PL. Again, MED+PT
generates the correct target.

Overall, this analysis confirms that MED learns
relationships between paradigm cells, while
paradigm transduction adds knowledge about the
idiosyncracies of a partial test paradigm.

5.3 Comparison to Multi-Source Models
In this section, we explicitly compare our approach
to neural multi-source models for morphological
generation.

Following Kann et al. (2017a), we employ
attention-based RNN encoder-decoder networks
with two or four input sources. The input to a
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SET1 SET2 SET3
1 2 4 +PT 1 2 4 +PT 1 2 4 +PT

dutch .00 .00 .00 .49 .04 .01 .00 .78 .43 .65 .72 .87
german .00 .00 .00 .65 .00 .00 .01 .75 .44 .42 .59 .88
icelandic .00 .00 .00 .41 .03 .02 .02 .50 .24 .33 .35 .77
spanish .00 .00 .00 .92 .03 .09 .09 .98 .59 .63 .83 .99
welsh .00 .00 .00 .91 .05 .14 .15 .97 .35 .53 .70 .99

Table 3: MED accuracy on five randomly selected languages with 1, 2, and 4 sources and combined with paradigm transduction
(“+PT”). Best results in bold.

multi-source model is the concatenation of all
sources and corresponding tags. During training,
we randomly sample (with repetition) one or
three additional forms from the paradigm of each
example. At test time, we sample the additional
forms from the given partial paradigm; without
repetition first, but repeating if not enough inflected
forms are available. For autoencoding examples in
the training data, we simply concatenate two or four
copies of the source and the autoencoding tag. We
randomly select five languages for this experiment.

Table 3 shows that, for SET3, four sources
(column header “4”) are generally better than two
sources (“2”), which in turn are better than one
source (“1”); thus, as expected, making additional
sources available in training improves results. We
attribute one exception (German accuracy is .4391
for “1” and .4179 for “2”) to the noisiness of the
problem—training sets in terms of number of
paradigms are relatively small, even for SET3.

The improvements we see for SET3 are large.
This suggests that using more than four sources
would further improve results and perhaps reach
the level of performance of MED+PT, at the cost
of a long training time. However, for SET1 and
SET2, there is no consistent improvement from 1 to
2 to 4 sources. While it is possible that further opti-
mization could improve the best multi-source result
given in Table 3, the gap to MED+PT is very large,
and the improvement from 2 to 4 is small. This
indicates that multi-source methods cannot compete
with transductive learning for SET1 and SET2.

5.4 Qualitative Analysis of SHIP

For a qualitative analysis of SHIP, we look at the
sources it selects for French verbs on the develop-
ment set; the complete diagram is shown in Figure
6. For most verbs, future and conditional can be
predicted from COND;1;PL (e.g., “finirions”), and
indicative present, indicative imparfait and subjunc-
tive present from IND;PRS;3;PL (e.g., “finissent”).

Figure 6: Right: output set target to be generated. Left:
input set source selected by SHIP. Arrows for the two most
frequently selected sources are solid, arrows for the two least
frequently selected sources are dashed.

In case of ties, SHIP selects the alphabetically first
tag; this explains why COND;1;PL gets preference
over IND;PRS;3;PL for indicative present singular.
These two forms represent two of the principal
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parts of French conjugation, the infinitive (almost
always derivable from COND;1;PL) and the stem
that is used for plural indicative, imparfait, and
other paradigm cells—which is sometimes not
derivable from the infinitive as is the case for
“finir”. In comparison, IND;PST;3;SG;IPFV and
SBJV;PST;2;PL are less reliable sources. But they
are still reasonably accurate if no better alternative
is available; consider the following SBJV;PST;2;PL
! IND;PST;1;SG;PFV generations: “parlassiez”
7! “parlai”, “finissiez” 7! “finis”, “missiez” 7!
“mis”, “prissiez” 7! “pris”.

We thus conclude that SHIP indeed learns to
select appropriate source forms.

6 Related Work

Morphological generation. In the last two years,
most work on paradigm completion has been done
in the context of the SIGMORPHON 2016 and
the CoNLL–SIGMORPHON 2017 shared tasks
(Cotterell et al., 2016, 2017a). Due to the success of
neural seq2seq models in 2016 (Kann and Schütze,
2016b; Aharoni et al., 2016), systems developed for
the 2017 edition were mostly neural (Makarov et al.,
2017; Bergmanis et al., 2017; Zhou and Neubig,
2017). Besides the shared task systems, Kann and
Schütze (2017) presented a paradigm completion
model for a multi-source setting that made use of
an attention mechanism to decide which input form
to attend to at each time step. They used randomly
chosen, independent pairs of source and target
forms for training. This differs crucially from the
setting we consider in that no complete paradigms
were available in their training sets. Only Cotterell
et al. (2017b) addressed essentially the same task
we do, but they only considered the high-resource
setting: their models were trained on hundreds of
complete paradigms. The experiments reported
in §5.3 empirically confirm that inductive-only
models perform poorly in our setting.

Several ways to employ neural models for
morphological generation with limited data have
been proposed, e.g., semi-supervised training
(Zhou and Neubig, 2017; Kann and Schütze, 2017)
or simultaneous training on multiple languages
(Kann et al., 2017b). The total number of sources
in the training set in some of our settings may be
comparable to this earlier work, but our training
sets are less diverse since many forms come from
the same paradigm. We argue in §1 that the number
of paradigms (not the number of sources) measures

the effective size of the training set.
Other important work on morphological

generation—neural and non-neural—includes
Dreyer et al. (2008); Durrett and DeNero (2013);
Hulden et al. (2014); Nicolai et al. (2015); Faruqui
et al. (2016); Yin et al. (2016).

Seq2seq models in NLP. Even though neural
seq2seq models were originally designed for ma-
chine translation (Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015), their application has
not stayed limited to this area. Similar architectures
have been successfully applied to many seq2seq
tasks in NLP, e.g., syntactic parsing (Vinyals
et al., 2015), language correction (Xie et al.,
2016), normalization of historical texts (Bollmann
et al., 2017), or text simplification (Nisioi et al.,
2017). Transductive inference is similar to domain
adaptation, e.g., in machine translation (Luong and
Manning, 2015). One difference is that training set
and test set can hardly be called different domains
in paradigm completion. Another difference is that
explicit structured labels (the morphological tags
of the forms in the input subset) are available at test
time in paradigm completion.

7 Conclusion

We presented two new methods for minimal-
resource paradigm completion: paradigm transduc-
tion and SHIP. Paradigm transduction learns general
inflection rules through standard inductive training
and idiosyncracies of a test paradigm through trans-
duction. We showed that paradigm transduction
effectively mitigates the problem of overfitting due
to a lack of diversity in the training data. SHIP
is a robust non-neural method that identifies a
single reliable source for generating a target. In the
minimal-resource setting, this is an effective alter-
native to learning how to combine evidence from
multiple sources. Considering the average over all
languages of a 52-language benchmark dataset, we
outperform the previous state of the art by at least
7.07%, and up to 9.71% absolute accuracy.
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Abstract
This paper focuses on the most basic implica-
tional universals in phonological theory, called
T-orders after Anttila and Andrus (2006). It
shows that the T-orders predicted by stochas-
tic and categorical Optimality Theory coin-
cide. Analogously, the T-orders predicted by
stochastic and categorical Harmonic Gram-
mar coincide. In other words, these stochas-
tic constraint-based frameworks do not tamper
with the typological structure induced by the
corresponding categorical frameworks.

1 Introduction
Phonology has traditionally focused on alterna-
tions revealed by paradigms such as the German fi-
nal devoicing examples [ba:t]/[bE:d@] (‘bath-SG/PL’)
and [tsu:k]/[tsy:g@] (‘train-SG/PL’). These alterna-
tions are usually modeled through phonological
grammars which map from underlying represen-
tations (URs) to surface representations (SRs)
(Chomsky and Halle, 1968). Constraint-based im-
plementations of this combinatorial phonological
theory include Optimality Theory (OT; Prince and
Smolensky, 1997, 2004) and Harmonic Grammar
(HG; Legendre et al., 1990; Smolensky and Leg-
endre, 2006), reviewed below in sections 4 and 5.

More recently, phonology has extended its em-
pirical coverage from categorical alternations to
patterns of phonologically conditioned variation
and gradient phonological (or phonotactic) judge-
ments (see for instance Anttila, 2012 and Coetzee
and Pater, 2011). This extension of the empiri-
cal coverage has required a corresponding exten-
sion of the theoretical framework. A phonological
grammar cannot be construed anymore as a cate-
gorical function from URs to SRs. Instead, it must
be construed as a function from URs to probability
distributions over the entire set of SRs. Constraint-
based implementations of this stochastic theory in-
clude partial order OT (Anttila, 1997b), stochastic

OT (SOT; Boersma, 1997, 1998), and stochastic
HG (SHG; Boersma and Pater, 2016)1, recalled
below in sections 4 and 5. Another framework
explored in the recent literature on probabilis-
tic constraint-based phonology is MaxEnt (ME;
Goldwater and Johnson, 2003; Hayes and Wilson,
2008). Its T-orders are discussed in a companion
paper (Anttila and Magri, 2018).

How can we investigate and understand the
typological structure encoded by a probabilistic
phonological framework? In the case of a categor-
ical framework such as OT or HG, the predicted
typological structure can be investigated directly
by exhaustively listing all the grammars predicted
for certain constraint and candidate sets. That is
possible because the predicted typology of gram-
mars is usually finite. The situation is rather dif-
ferent for probabilistic frameworks: the predicted
typology always consists of an infinite number of
probability distributions which therefore cannot be
exhaustively listed and directly inspected. A more
indirect strategy is needed to chart the predicted
typological structure.

A natural indirect strategy that gets around the
problem raised by an infinite typology is to enu-
merate, not the individual languages in the typol-
ogy, but the set of implicational universals pre-
dicted by the typology. An implicational univer-
sal is an implication P

T�! bP which holds of a
given typology T whenever every language in the
typology that satisfies the antecedent property P
also satisfies the consequent property bP (Green-
berg, 1963). Since implicational universals take

1 Boersma and Pater (2016) actually use the term “noisy
HG” instead of “stochastic HG”. We prefer “stochastic HG”
to stress the analogy with Boersma’s earlier framework of
stochastic OT. Furthermore, we prefer to use “stochastic” to
describe a property of the framework, reserving “noisy” to
describe a property of the learning scenario (as opposed to
noise-free). Hayes (2017) discusses further stochastic vari-
ants of categorical HG.
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into account every language in the typology, they
chart the boundaries and measure the richness of
the typological structure predicted by T.

Which antecedent and consequent properties P
and bP should we focus on? To start from the sim-
plest case, let us consider a typology T of categor-
ical phonological grammars, construed tradition-
ally as mappings from URs to SRs. Within this
categorical framework, the simplest, most basic,
most atomic antecedent property P is the property
of mapping a certain specific UR x to a certain spe-
cific SR y. Analogously, the simplest consequent
property bP is the property of mapping a certain
specific UR bx to a certain specific SR by. We thus
focus on the following class of implications:
Definition 1 The implicational universal (x, y) T!
(bx,by) holds relative to a categorical typology T

provided each grammar in T which succeeds at the
antecedent mapping (i.e., it maps the UR x to the
SR y), also succeeds at the consequent mapping
(i.e., it maps the UR bx to the SR by). 2

The relation T! thus defined over mappings is a
partial order (under mild additional assumptions).
It is called the T-order induced by the typology
T (Anttila and Andrus, 2006). For example, any
dialect of English that deletes t/d at the end of a
coda cluster before a vowel also deletes it before a
consonant (Guy, 1991; Kiparsky, 1993; Coetzee,
2004). The implication (/cost.us/, [cos.us]) !
(/cost.me/, [cos.me]) thus holds relative to the ty-
pology T of English dialects.

Implicational universals can also be statistical.
For instance, in dialects of English where t/d dele-
tion applies variably, deletion has been found to be
more frequent before consonants than before vow-
els. To model these frequency effects, we need to
consider a typology T of probabilistic phonologi-
cal grammars, construed as functions from URs to
probability distributions over SRs. We propose to
extend the notion of T-orders from the categorical
to the probabilistic setting as follows:
Definition 2 The implicational universal (x, y) T!
(bx,by) holds relative to a probabilistic typology T

provided each grammar in T assigns a probabil-
ity to the consequent mapping (bx,by) which is at
least as large as the probability it assigns to the
antecedent mapping (x, y). 2

To illustrate, the implication (/cost.us/, [cos.us]) !
(/cost.me/, [cos.me]) also holds relative to the ty-
pology T of English dialects with variable dele-
tion because the probability of the consequent

(/cost.me/, [cos.me]) (i.e., the frequency of dele-
tion before a consonant) in any dialect is at
least as large as the probability of the antecedent
(/cost.us/, [cos.us]) (i.e., the frequency of deletion
before a vowel).

The original categorical definition 1 of T-orders
is a special case of the probabilistic definition 2. In
fact, suppose that a categorical grammar succeeds
on the antecedent mapping (x, y). That grammar
construed probabilistically thus assigns probabil-
ity 1 to the antecedent mapping. Definition 2 then
requires that grammar to also assign probability 1
to the consequent mapping (bx,by). In other words,
the grammar construed categorically succeeds on
the consequent mapping, as required by the origi-
nal definition 1 of categorical T-orders.

T-orders are defined at the level of mappings
from URs to SRs. They thus allow for cross-
framework comparisons, even bridging across cat-
egorical and probabilistic frameworks. This pa-
per (together with the companion Anttila and
Magri 2018) thus uses T-orders to compare the
probabilistic implementations of constraint-based
phonology with the original categorical imple-
mentations.

The main result reported in this paper is that
the T-orders predicted by stochastic OT (and by
partial order OT) coincide with those predicted by
categorical OT, no matter what the candidate and
constraint sets look like, as shown in section 4.
Analogously, the T-orders predicted by stochastic
HG coincide with those predicted by categorical
HG, as shown in section 5. In other words, these
stochastic frameworks do not tamper with the ty-
pological structure induced by the original cate-
gorical frameworks, at least when that structure is
measured in terms of T-orders. These specific re-
sults about OT and HG are derived as a special
case of a more general result on stochastic typolo-
gies, developed in sections 2 and 3.

As discussed in a companion paper (Anttila and
Magri, 2018), the situation is very different for
ME. Both ME and stochastic HG can be con-
strued as probabilistic variants of categorical HG.
Stochastic and categorical HG share the same T-
orders. The ME T-orders instead obey a rather
different underlying convex geometry and turn out
to be much sparser. In other words, ME yields a
much richer probabilistic extension of categorical
HG than stochastic HG does. Section 6 concludes
the paper by discussing these results in the context
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of the recent literature on probabilistic constraint-
based phonology.

2 Categorical and stochastic phonology

We assume a relation Gen which pairs each UR x
with a set Gen(x) of candidate SRs. As recalled
above, a categorical phonological grammar G
takes a UR x and selects a corresponding SR y =
G(x) from the candidate set Gen(x). A stochas-
tic phonological grammar G instead takes a UR x
and returns a probability distribution G(·| x) over
Gen(x) which assigns a probability G(y| x) to
each candidate SR y in Gen(x). This section il-
lustrates a general method to leverage a given ty-
pology T of categorical grammars into a typology
of stochastic grammars. Sections 4 and 5 will then
show that various stochastic frameworks in the re-
cent constraint-based literature (such as partial or-
der OT, stochastic OT, and stochastic HG) all fit
within this general scheme.

Following common practice in constraint-based
phonology, we assume that the categorical typol-
ogy T only contains a finite number of grammars.2

We consider a probability mass function p over T.
Thus, p assigns to each categorical grammar G in
T a nonnegative probability mass p(G) � 0 and
these masses sum up to 1, namely

P
G2T

p(G) =
1. We can then define the stochastic grammar Gp

corresponding to the probability mass function p
as the function which takes a UR x and returns the
probability distribution Gp(·| x) over the candidate
set Gen(x) defined as in (1). It says that the proba-
bility Gp(y | x) that the UR x is mapped to the SR y
is he probability mass allocated by p to the region
{G 2 T | G(x) = y} of the typology T consisting
of those categorical grammars which succeed on
the mapping (x, y).

Gp(y | x) =
X

{G2T | G(x)=y}
p(G) (1)

We assume next that each categorical grammar
in the typology T returns a unique SR y for each
UR x.3 This assumption suffices to ensure that Gp

2 This assumption always holds in OT, as the number of
constraint rankings is finite. It might fail in HG, but only in
rather pathological situations which do not seem germane to
natural language phonology.

3 Suppose instead that a categorical grammar were to re-
turn two different SRs y1 and y2 for some UR x. How should
we interpret such a scenario? Plausibly, we should interpret
the two SRs y1 and y2 as free variants with equal probability
of 0.5 (while all other candidates have probability 0). But this
means that our grammar is stochastic, not categorical.

is indeed a probability distribution, namely that
the sum of the probabilities Gp(y | x) over the can-
didates y in Gen(x) is equal to 1, as shown in (2).

X

y2Gen(x)

Gp(y | x)(a)
=

X

y2Gen(x)

X

{G2T | G(x)=y}
p(G)

(b)
=

X

G2T

p(G)
(c)
= 1 (2)

In step (2a), we have used the definition (1) of
Gp(y | x). In step (2b), we have used the fact that
every grammar in T maps x to a unique SR y, so
that the sets {G 2 T | G(x) = y} partition the ty-
pology T into disjoint sets as y spans the candidate
set Gen(x). In step (2c), we have used the fact that
p is a probability mass function over T and thus
adds up to 1.

A family P of probability mass functions
p1, p2, . . . over the finite categorical typology
T thus induces a typology {Gp1 , Gp2 , . . .} of
stochastic grammars. It is called the stochastic
typology corresponding to the categorical typol-
ogy T and the probability family P , and it is de-
noted by TP . We denote by T�! the T-order rel-
ative to the categorical typology T in the sense of
definition 1 and by TP�! the T-order relative to the
stochastic typology TP in the sense of definition
2. We want to investigate the relationship between
these categorical and stochastic T-orders.

3 Relationship between categorical and
stochastic T-orders

Let us suppose that the implication (x, y)
T! (bx,by)

holds between an antecedent mapping (x, y) and a
consequent mapping (bx,by) relative to a categorical
typology T. By definition 1, this means that ev-
ery categorical grammar G in the typology T that
maps the antecedent UR x to the antecedent SR
y (namely, G(x) = y) also maps the consequent
UR bx to the consequent SR by (namely, G(bx) = by),
yielding the inclusion (3).

{G 2 T | G(x)=y} ✓ {G 2 T | G(bx)=by}
grammars consistent
with the antecedent

mapping

grammars consistent
with the consequent

mapping

(3)

By (1), this inclusion (3) entails that the proba-
bility assigned by Gp to the consequent mapping
(bx,by) is at least as large as the probability assigned
to the antecedent mapping (x, y), as stated in (4).
This entailment follows from the sheer fact that
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probabilities are monotonic relative to set inclu-
sion. The entailment from the inclusion (3) to
the inequality (4) thus holds under no assump-
tions whatsoever on the probability mass function
p used to define the stochastic grammar Gp.

Gp(y | x)  Gp(by |bx)
probability of the

antecedent mapping
probability of the
consequent mapping

(4)

The latter inequality (4) finally says that the im-
plication (x, y)

TP�! (bx,by) holds also relative to
the stochastic typology TP in the sense of defi-
nition 2. In conclusion, a categorical T-order al-
ways entails the corresponding stochastic T-order,
no matter the shape of the family P of probability
mass functions used to derive the stochastic typol-
ogy TP from the categorical typology T.

We now turn to the reverse entailment. Sup-
pose that an implication (x, y)

TP�! (bx,by) holds
between an antecedent mapping (x, y) and a con-
sequent mapping (bx,by) relative to the stochastic
typology TP . By definition 2, this means in turn
that the inequality (4) holds between the probabil-
ities Gp(y | x) and Gp(by |bx) of the antecedent and
the consequent mappings relative to any probabil-
ity mass function p in the family P . Suppose by
contradiction that the corresponding implication
(x, y)

T�! (bx,by) relative to the original categori-
cal typology T instead fails. By definition 1, this
means that the set inclusion (3) fails because there
exists some grammar G0 with the properties in (5):
G0 succeeds on the antecedent mapping, namely it
maps x to y; but G0 fails on the consequent map-
ping, namely it maps bx to some loser candidate bz
different from the intended winner candidate by.

G0(x) = y, G0(bx) = bz 6= by (5)

We would like to derive a contradiction from
the assumption (4) that the stochastic implication
(x, y)

TP�! (bx,by) holds and the assumption (5) that
the categorical implication (x, y)

T�! (bx,by) fails.
Yet, no contradiction arises in the general case.

Indeed, suppose that the probability mass func-
tions in the family P all happen to assign zero
(or tiny) probability mass to this grammar G0

which flouts the categorical implication because
of (5). This problematic grammar G0 thus bears
no (or only a tiny) effect on the total probabilities
Gp(y | x) and Gp(by |bx) of the two mappings (x, y)
and (bx,by). The probability inequality (4) is there-
fore not necessarily compromised by the offensive

behavior (5) of G0, as long as the other grammars
in the typology comply.

In order to derive a contradiction from these two
conditions (4) and (5), we need to make some as-
sumptions on the family P of probability mass
functions. Indeed, the problem just discussed
arises when every probability mass function p in
P assigns zero (or tiny) probability to the prob-
lematic grammar G0. We need to rule out this sce-
nario. We propose to achieve that through the as-
sumption that the family P satisfies the following

Definition 3 The family P of probability mass
functions over the finite categorical typology T is
sufficiently rich in the sense that for every categor-
ical grammar G in T and for any two URs x and
bx, the following inequalities

Gp(G(x)| x) > 1/2, Gp(G(bx)|bx) > 1/2 (6)

hold for some probability mass function p in P . 2

Here is the intuition behind this definition. Sup-
pose that for every categorical grammar G, the
family P contains a probability mass function
p which assigns all the probability mass to that
grammar G. By (1), the corresponding stochastic
grammar Gp assigns probability 1 to the mappings
enforced by G, as stated in (7).

Gp(G(x)| x) = 1 for every UR x (7)

In other words, the stochastic grammar Gp “co-
incides” with the categorical grammar G and the
stochastic typology TP thus “contains” or “ex-
tends” the original categorical typology T. In this
special case, we obviously expect the stochastic
implication (x, y)

TP�! (bx,by) to entail the categori-
cal implication (x, y)

T�! (bx,by), as desired.
Condition (6) required by definition 3 is a

weaker version of the latter condition (7). First, it
is weaker because the requirement Gp(G(x)| x) =
1 is replaced with the weaker requirement
Gp(G(x)| x) > 1/2: the probability assigned to
the mappings enforced by G needs not be 1, as
long as it is large enough, namely larger than
1/2. Second, this requirement Gp(G(x)|x) > 1/2
needs not be satisfied by a unique mass p for all
URs: it suffices to look at just two URs at the time.

If the family P is sufficiently rich in the sense of
definition 3, the two conditions (4) and (5) are in-
deed contradictory. In fact, condition (5) now en-
sures that P contains a probability mass function
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p0 such that the corresponding stochastic grammar
Gp0 maps x to y with probability larger than 1/2
and it maps bx to bz with probability larger than 1/2.
The latter fact means in turn that Gp0 maps bx to
by with probability smaller than 1/2, because the
probabilities of the various candidates by,bz, . . . in
Gen(bx) must add up to 1. In conclusion, we have
obtained Gp0(y | x) > 1/2 and Gp0(by |bx) < 1/2,
in blatant contradiction of (4).

The preceding reasoning is summarized in the
following proposition 1, which says that the T-
order relative to a categorical typology T and the
T-order relative to the corresponding stochastic ty-
pology TP coincide, no matter what the family P
of probability mass functions looks like, as long as
it is sufficiently rich, in the sense of definition 3.
Identity of T-orders holds even when the family P
is infinite, so that the stochastic typology TP con-
tains an infinite number of stochastic grammars,
while the categorical typology T contains only a
finite number of grammars.

Proposition 1 Consider a finite typology T of cat-
egorical grammars and a family P of probability
mass functions on T. Let TP be the typology of
the corresponding stochastic grammars, defined
through (1). If P is sufficiently rich in the sense
of definition 3, the T-order T�! relative to the cat-
egorical typology T and the T-order TP�! relative
to the stochastic typology TP coincide. 2

In the rest of the paper, we apply this result to
various categorical and stochastic frameworks for
constraint-based phonology.

4 Categorial OT, partial order OT, and
stochastic OT induce the same T-orders

In this section, we focus on categorical and
stochastic OT. We assume a set of n constraints
C1, . . . , Ck, . . . , Cn and some candidacy relation
Gen. We recall that a constraint Ck prefers a map-
ping (x, y) to another mapping (x, z) provided Ck

assigns less violations to the former than to the
latter, namely Ck(x, y) < Ck(x, z). A constraint
ranking is an arbitrary linear order � over the con-
straint set. A constraint ranking � prefers a map-
ping (x, y) to another mapping (x, z) provided the
highest �-ranked constraint which distinguishes
between the two mappings (x, y) and (x, z) prefers
(x, y). The categorical OT grammar correspond-
ing to a ranking � maps a UR x to that SR y such
that � prefers the mapping (x, y) to the mapping

(x, z) corresponding to any other candidate z in
Gen(x) (Prince and Smolensky, 2004). We denote
by OT! the T-order corresponding to the typology T

of the categorical OT grammars corresponding to
all constraint rankings, in the sense of definition 2.

To illustrate, consider the following three con-
straints (from Kiparsky, 1993) for the process
of t/d deletion mentioned in section 1: C1 =
SYLLABLEWELLFORMEDNESS (SWF) penalizes
codas and tautosyllabic consonant clusters; C2 =
ALIGN penalizes resyllabification across word
boundaries; and C3 = MAX penalizes segment
deletion. Suppose that the UR /cost us/ comes
with the three candidate SRs [cost.us] (faithful),
[cos.us] (with deletion), and [cos.tus] (with resyl-
labification). Analogously, suppose that the UR
/cost me/ comes with the three candidate SRs
[cost.me], [cos.me], and [cos.tme]. It is easy to
verify that the implication (/cost.us/, [cos.us])

OT!
(/cost.me/, [cos.me]) holds relative to the OT ty-
pology generated by constraints C1, C2, C3 in
the sense of definition 1: every ranking of the
three constraints which succeeds on the antecedent
mapping (/cost.us/, [cos.us]) also succeeds on the
consequent mapping (/cost.me/, [cos.me]). In
other words, t/d deletion before a vowel entails
deletion before a consonant.

We now turn to the stochastic counterpart of
this categorical framework. A ranking vector
✓ = (✓1, . . . , ✓k, . . . , ✓n) 2 R

n assigns a nu-
merical ranking value ✓k to each constraint Ck.
The stochastic ranking vector ✓ + ✏ = (✓1 +
✏1, . . . , ✓n + ✏n) is obtained by adding to the rank-
ing values ✓1, . . . , ✓n some numbers ✏1, . . . , ✏n

sampled independently from each other according
to some distribution D on R. If the distribution D
is continuous, the probability that two stochastic
ranking values ✓h+✏h and ✓k+✏k coincide is equal
to zero. The stochastic ranking vector ✓ + ✏ thus
describes the unique ranking �✓+✏ which respects
the relative size of the stochastic ranking values:
a constraint Ch is ranked above a constraint Ck

according to �✓+✏ (namely, Ch �✓+✏ Ck) if
and only if the stochastic ranking value of the
former is larger than that of the latter (namely,
✓h + ✏h > ✓k + ✏k). A ranking vector ✓ thus
induces the probability mass function pD

✓ defined
in (8) over the categorical OT typology T. Ob-
viously, this definition yields a probability mass,
namely the sum of the masses pD

✓ (G) over all the
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(a) (/cost.us/, [cos.us]), ✓3 = �3 (b) (/cost.us/, [cos.us]), ✓3 = 0 (c) (/cost.us/, [cos.us]), ✓3 = 3

(d) (/cost.me/, [cos.me]), ✓3 = �3 (e) (/cost.me/, [cos.me]), ✓3 = 0 (f) (/cost.me/, [cos.me]), ✓3 = 3

Figure 1: SOT probabilities of the antecedent mapping (/cost.us/, [cos.us]) and the consequent mapping
(/cost.me/, [cos.me]) as a function of ✓1 (horizontal axis) and ✓2 (vertical axis) for three choices of ✓3

categorical OT grammars G in T is indeed 1.

pD
✓ (G) = the probability of sampling

✏1, . . . , ✏n
i.i.d.⇠ D such that the OT

grammar corresponding to the
ranking �✓+✏ is indeed G

(8)

The typology of stochastic grammars TP obtained
as in section 2 from the categorical OT typology
T and the family P = {pD

✓ | ✓ 2 R
n} of probabil-

ity mass functions pD
✓ corresponding to all ranking

vectors ✓ is called stochastic OT (SOT; Boersma,
1997, 1998). We denote by SOT�! the T-orders cor-
responding to SOT in the sense of definition 2.

What is the typological structure encoded by
SOT’s T-orders? Given that the original OT ty-
pology is finite (because there are only a finite
number of constraint rankings) while the SOT
typology is infinite (it contains an infinite num-
ber of grammars which assign different proba-
bilities), how much of OT’s typological structure
is preserved in SOT? These questions are cru-
cial for phonological theory but technically non-
trivial. To illustrate, figure 1 plots the SOT
probability of the mappings (/cost.us/, [cos.us])
and (/cost.me/, [cos.me]) relative to the three con-
straints C1, C2, C3 listed above as a function of
the ranking value ✓1 of constraint C1 (horizon-
tal axis) and the ranking value ✓2 of constraint
C2 (vertical axis) for three choices of the rank-

ing value ✓3 of constraint C3.4 These plots sug-
gest that the implication (/cost.us/, [cos.us])

SOT!
(/cost.me/, [cos.me]) holds in SOT: the probability
of the consequent (/cost.me/, [cos.me]) (plotted in
the bottom row) seems to be always larger than the
probability of the antecedent (/cost.us/, [cos.us])
(plotted in the top row). But how can this conjec-
ture be checked, given that SOT probabilities seem
not to admit a closed-form expression?

The result obtained in section 3 provides a
straightforward solution to this problem. Sup-
pose that there exists a positive constant � large
enough that the distribution D concentrates most
of the probability mass on the interval [��, +�],
as stated in (9). This assumption holds in particu-
lar when D has a bounded support or it is defined
through a density (such as a gaussian, as assumed
in Boersma, 1997, 1998).

(D([��, +�]))n > 1/2 (9)

For any constraint ranking �, consider a rank-
ing vector ✓ such that the top �-ranked constraint
has the largest ranking value; the second top �-
ranked constraint has the second largest ranking
value; and so on. Furthermore, assume that these
ranking values are spaced apart by more than 2�.
Since the numbers ✏1, . . . , ✏n are all bounded be-
tween �� and +� with probability at least 1/2

4 These plots (as well as those in figure 2) are obtained
by sampling for 10,000 times from each stochastic grammar.
The distribution D is a gaussian with mean 0 and variance 2.
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and since the ranking values are spaced apart by
more than 2�, the constraint ranking �✓+✏ cor-
responding to the stochastic ranking vector ✓ + ✏

coincides with the original ranking � with prob-
ability at least 1/2. In other words, the probabil-
ity mass function pD

✓ corresponding to this rank-
ing vector ✓ according to (8) assigns more than
half of the probability mass to the OT grammar
corresponding to the ranking �. The family P =
{pD

✓ | ✓ 2 R
n} is therefore sufficiently rich in the

sense of definition 3. Proposition 1 thus yields the
following
Corollary 1 Under the mild assumption (9) on the
distribution D, the T-order SOT�! relative to SOT is
identical to the T-order OT�! relative to categorical
OT for any constraint and candidate set. 2

In conclusion, despite the SOT typology being
infinite, SOT induces the same typological struc-
ture as categorical OT, at least when typological
structure is measured in terms of T-orders. Fur-
thermore, the technical problem of computing T-
orders relative to SOT is reduced to the much eas-
ier problem of computing T-orders relative to cate-
gorical OT, which indeed admits an efficient solu-
tion (Magri, 2018a). This result extends to partial
order OT (Anttila, 1997a), as the latter is a special
case of SOT.

5 Categorial HG and stochastic HG
induce the same T-orders

This section shows that completely analogous con-
siderations hold for HG. A weight vector w =
(w1, . . . , wk, . . . , wn) 2 R

n
+ assigns a nonnega-

tive weight wk � 0 to each constraint Ck. The
w-harmony of a mapping (x, y) is the weighted
sum of the constraint violations multiplied by �1,
namely �

Pn
k=1 wkCk(x, y). Because of the mi-

nus sign, mappings with a large harmony have few
constraint violations. The categorical HG gram-
mar corresponding to a weight vector w maps a
UR x to the surface form y such that the map-
ping (x, y) has a larger w-harmony than the map-
ping (x, z) corresponding to any other candidate z
in Gen(x) (Legendre et al., 1990; Smolensky and
Legendre, 2006). We denote by HG! the T-order
corresponding to the typology T of the categori-
cal HG grammars corresponding to all nonnega-
tive weight vectors, in the sense of definition 2.

To illustrate, it is easy to verify that the implica-
tion (/cost.us/, [cos.us])

HG! (/cost.me/, [cos.me])
considered above holds also relative to the HG

typology in the sense of definition 1: every
weighting of the three constraints which succeeds
on the antecedent mapping (/cost.us/, [cos.us])
also succeeds on the consequent mapping
(/cost.me/, [cos.me]). In general, the HG typology
is a proper superset of the OT typology (when the
set of URs is finite). The HG T-order is therefore
a subset of the corresponding OT T-order.

We now turn to the stochastic counterpart of this
categorical framework. The stochastic weight vec-
tor w + ✏ = (w1 + ✏1, . . . , wn + ✏n) is obtained
by adding to the weights w1, . . . , wn some num-
bers ✏1, . . . , ✏n sampled independently from each
other according to some distribution D on R.5 A
weight vector w induces the corresponding proba-
bility mass function pD

w on the categorical HG ty-
pology T defined in (10). Obviously, this defini-
tion yields a probability mass, namely the sum of
the masses pD

w(G) over all the categorical gram-
mars G in the HG typology T is equal to 1.

pD
w(G) = the probability of sampling

✏1, . . . , ✏n
i.i.d.⇠ D such that the

HG grammar corresponding to
the weight vector w + ✏ is G

(10)

The typology of stochastic grammars TP obtained
as in section 2 from the categorical HG typol-
ogy T and the family P = {pD

w |w 2 R
n
+} of

probability mass functions pD
w corresponding to all

nonnegative weight vectors w is called stochastic
HG (SHG; Boersma and Pater, 2016). We denote
by SHG�! the T-orders corresponding to SHG in the
sense of definition 2.

To illustrate, figure 2 plots the SHG proba-
bility of the mappings (/cost.us/, [cos.us]) and
(/cost.me/, [cos.me]) as a function of the ranking
values of the three constraints C1, C2, C3 listed
above. These plots suggest that the implica-
tion (/cost.us/, [cos.us])

SHG! (/cost.me/, [cos.me])
holds in SHG as well: the probability of the conse-
quent (/cost.me/, [cos.me]) (plotted in the bottom
row) seems to be always larger than the probabil-
ity of the antecedent (/cost.us/, [cos.us]) (plotted
in the top row). The result obtained in section 3
makes sense of this observation, as follows.

5 Some component wk+✏k of the corrupted weight vector
w+✏ could be negative. In this case, w+✏ could correspond
to no HG grammar in T and the probability mass defined in
(10) could therefore add up to less than 1. This problem
can be avoided simply by truncating the corrupted weights
at zero, namely by replacing wk + ✏k with max{wk + ✏k, 0}

in the definition of the corrupted weight vector w+✏ (Magri,
2015).
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(a) (/cost.us/, [cos.us]), ✓3 = �3 (b) (/cost.us/, [cos.us]), ✓3 = 0 (c) (/cost.us/, [cos.us]), ✓3 = 3

(d) (/cost.me/, [cos.me]), ✓3 = �3 (e) (/cost.me/, [cos.me]), ✓3 = 0 (f) (/cost.me/, [cos.me]), ✓3 = 3

Figure 2: SHG probabilities of the antecedent mapping (/cost.us/, [cos.us]) and the consequent mapping
(/cost.me/, [cos.me]) as a function of ✓1 (horizontal axis) and ✓2 (vertical axis) for three choices of ✓3

We consider two URs x and bx. We assume that
x comes with a finite number m + 1 of candidates
y, z1, . . . , zm and thatbx comes with a finite number
bm + 1 of candidates by,bz1, . . . ,bzbm. This assump-
tion is nonrestrictive. In fact, each UR admits only
a finite number of optima in HG (Magri, 2018b).
Candidate sets can thus be assumed to be finite
without loss of generality. We consider a categor-
ical HG grammar in the typology T and assume
that it maps x and bx to y and by, respectively. This
means that any weight vector w = (w1, . . . , wn)
corresponding to this HG grammar assigns a larger
harmony to the winner mappings (x, y) and bx,by)
than to any of the loser mappings (x, zi) and (bx,bzj)
respectively, as stated in (11).

min
i=1,...,m

X

k

wk(Ck(x, zi) � Ck(x, y))

| {z }
⇠

> 0

min
j=1,..., bm

X

k

wk(Ck(bx,bzj) � Ck(bx,by))

| {z }
b⇠

> 0
(11)

Let B be an upper bound on the constraint vio-
lation differences, so that |C(x, zi)�C(x, y)|  B
and |C(bx,bzj) � C(bx,by)|  B for every i =
1, . . . , m and j = 1, . . . , bm. Suppose again that
there exists a positive constant � large enough that
the distribution D concentrates most of the proba-

bility mass on [��, +�], in the sense that it sat-
isfies the inequality (9). We consider the weight
vector �w = (�w1, . . . , �wn) obtained by rescal-
ing the weight vector w by a positive scalar � > 0
sufficiently large, in the sense of (12).

� > max

⇢
n�B

⇠
,

n�B
b⇠

�
(12)

Whenever ✏ 2 [��, +�]n, the HG grammar
corresponding to the stochastic rescaled weight
vector �w + ✏ maps the UR x to the SR y, as
shown in (13). An analogous reasoning shows that
it also maps bx to by. In step (13a), we have used
the definition (11) of ⇠. In step (13b), we have
lower bounded C(x, zi) � C(x, y) with �B. In
step (13c), we have used the definition (12) of �.

X

k

(�wk + ✏k)(Ck(x, zi) � Ck(x, y)) =

= �
X

k

wk(Ck(x, zi) � Ck(x, y))+

+
X

k

✏k(Ck(x, zi) � Ck(x, y))

(a)
� �⇠ +

X

k

✏k(Ck(x, zi) � Ck(x, y))

(b)
� �⇠ � n�B

(c)
> 0

(13)

The intuition behind this reasoning (13) is as fol-
lows. The rescaled weight vector �w generates
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(VC, VC) (VC, CVC) (VC, V) (VC, CV)

(CVC, CVC) (V, V)) (V, CV) (CVC, CV)

(CV, CV)

Figure 3: Solid arrows are entailments that hold in OT, HG, SOT, SHG, and ME; dotted arrows are entailments that fail in ME.

the same HG grammar as the weight vector w. If �
is large, the nonzero weights of the rescaled vector
�w are very large (in absolute value). On the other
hand, the stochastic values ✏1, . . . , ✏n are instead
small (because bounded between �� and +�)
and therefore negligible relative to the rescaled
weights. The original weight vector w and the
stochastic rescaled vector ✏ + �w thus generate
the same HG grammar.

In conclusion, the SOT grammar GpD

�w
corre-

sponding to the probability mass function pD
�w

(corresponding to the rescaled weight vector �w)
satisfies the identities GpD

�w
(y | x) > 1/2 and

GpD

�w
(by |bx) > 1/2. This shows that the family

P = {pD
w |w 2 R

n
+} of probability masses is suf-

ficiently rich in the sense of definition 3. Proposi-
tion 1 thus yields the following:

Corollary 2 Under the mild assumption (9) on the
distribution D, the T-order SHG�! relative to SHG is
identical to the T-order HG�! relative to categori-
cal HG for any constraint set and any candidate
set which assigns a finite number of candidates to
each UR (while the number of URs can be infinite).
2

6 Conclusions

Phonology has traditionally focused on patterns of
categorical alternations modeled within categor-
ical frameworks such as OT and HG. More re-
cently, phonology has extended its empirical cov-
erage to quantitative data such as gradient judg-
ments and patterns of variation. This move has
required a parallel extension from categorical to
stochastic frameworks, such as partial order OT,
stochastic OT, and stochastic HG. These stochas-
tic frameworks are “extensions” of the original
categorical frameworks in the sense discussed in
section 3. One might thus expect the stochas-
tic frameworks to be typologically less restrictive
than the original categorical frameworks. This pa-

per has shown that is not the case, at least when
typological restrictiveness is measured in terms of
the most basic implicational universals, namely T-
orders. Indeed, the T-orders induced by partial or-
der and stochastic OT coincide with those induced
by categorical OT. Analogously, the T-orders in-
duced by stochastic HG coincide with those in-
duced by categorical HG.

As discussed in a companion paper (Anttila and
Magri, 2018), the situation is very different in ME.
To illustrate, consider the basic syllable system of
Prince and Smolensky (2004). The set of forms
consists of the four syllable types CV, CVC, V, and
VC. Each of them is a candidate of each other. The
constraint set consists of the four constraints ON-
SET, NOCODA, MAX, and DEP. The HG and
OT T-orders coincide and consist of 16 entail-
ments with a feasible antecedent, plotted in figure
3. These entailments extend to SOT and SHG, by
virtue of the corollaries 1 and 2 obtained above.

ME instead misses the eight dotted entailments.
Of the eight entailments which do survive in ME,
seven are such that the antecedent and the conse-
quent surface form coincide, plus the entailment
(VC, VC) ! (CV, CV), which is a quirk due to the
fact that VC is the most marked syllable type. This
restriction to entailments whose antecedent and
consequent surface forms coincide is not phono-
logically plausible. Anttila and Magri (2018) con-
clude that the ME formalism imposes typological
restrictions at odds with phonological intuition.
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Géraldine Legendre, Yoshiro Miyata, and Paul
Smolensky. 1990. Harmonic Grammar: A for-
mal multi-level connectionist theory of linguistic
well-formedness: Theoretical foundations. In An-
nual conference of the Cognitive Science Society 12,
pages 388–395, Mahwah, NJ. Lawrence Erlbaum.

Giorgio Magri. 2015. How to keep the HG weights
non-negative: the truncated Perceptron reweighing
rule. Journal of Language Modeling, 3.2:345–375.

Giorgio Magri. 2018a. Efficient computation of im-
plicational universals in constraint-based phonol-
ogy through the Hyperplane Separation Theorem.
Manuscript (CNRS).

Giorgio Magri. 2018b. Finiteness of optima in
constraint-based phonology. Manuscript (Stanford,
CNRS).

Alan Prince and Paul Smolensky. 1997. Optimality:
From neural networks to universal grammar. Sci-
ence, 275:1604–1610.

Alan Prince and Paul Smolensky. 2004. Optimality
Theory: Constraint Interaction in generative gram-
mar. Blackwell, Oxford. Original version, Techni-
cal Report CU-CS-696-93, Department of Computer
Science, University of Colorado at Boulder, and
Technical Report TR-2, Rutgers Center for Cogni-
tive Science, Rutgers University, April 1993. Avail-
able from the Rutgers Optimality Archive as ROA
537.
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Abstract

Character-level features are currently used in
different neural network-based natural lan-
guage processing algorithms. However, lit-
tle is known about the character-level patterns
those models learn. Moreover, models are of-
ten compared only quantitatively while a qual-
itative analysis is missing. In this paper, we
investigate which character-level patterns neu-
ral networks learn and if those patterns co-
incide with manually-defined word segmenta-
tions and annotations. To that end, we ex-
tend the contextual decomposition (Murdoch
et al., 2018) technique to convolutional neu-
ral networks which allows us to compare con-
volutional neural networks and bidirectional
long short-term memory networks. We evalu-
ate and compare these models for the task of
morphological tagging on three morphologi-
cally different languages and show that these
models implicitly discover understandable lin-
guistic rules.

1 Introduction

Character-level features are an essential part of
many Natural Language Processing (NLP) tasks.
These features are for instance used for language
modeling (Kim et al., 2016), part-of-speech tag-
ging (Plank et al., 2016) and machine translation
(Luong and Manning, 2016). They are especially
useful in the context of part-of-speech and mor-
phological tagging, where for example the suffix
-s can easily differentiate plural words from sin-
gular words in English or Spanish.

The use of character-level features is not new.
Rule-based taggers were amongst the earliest sys-
tems that used character-level features/rules for
grammatical tagging (Klein and Simmons, 1963).
Other approaches rely on fixed lists of affixes (Rat-
naparkhi, 1996; Toutanova et al., 2003). Next,
these features are used by a tagging model, such

ˆ e c o n ó m i c a s $
Number=Plur
Gender=Fem

-2.3
0
2.3

Figure 1: Individual character contributions of the
Spanish adjective económicas. The character a has
the highest positive (red) contribution for predict-
ing the label Gender=Fem, and the character s for
predicting the label Number=Plur. This coincides
with our linguistic knowledge of Spanish.

as a rule-based model or statistical model. Rule-
based taggers are transparent models that allow us
to easily trace back why the tagger made a certain
decision (e.g., Brill (1994)). Similarly, statistical
models are merely a weighted sum of features.

For example, Brill (1994)’s transformation-
based error-driven tagger uses a set of templates
to derive rules by fixing errors. The following rule
template:

"Change the most-likely tag X to Y if the last
(1,2,3,4) characters of the word are x",

resulted in the rule:

"Change the tag common noun to plural com-
mon noun if the word has suffix -s".

Subsequently, whenever the tagger makes a tag-
ging mistake, it is easy to trace back why this hap-
pened. Following the above rule, the word mis-
tress will mistakingly be tagged as a plural com-
mon noun while it actually is a common noun1.

This is in stark contrast with the most recent
generation of part-of-speech and morphological
taggers which mainly rely on neural networks.

1In Brill (1994), an additional rule encodes an exception
to this rule to correctly tag the word mistress.
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Words are split into individual characters and
are in general either aggregated using a Bidirec-
tional Long Short-Term Memory network (BiL-
STM) (Plank et al., 2016) or Convolutional Neural
Network (CNN) (dos Santos and Zadrozny, 2014).
However, it is currently unknown which character-
level patterns these neural network models learn
and whether these patterns coincide with our lin-
guistic knowledge. Moreover, different neural net-
work architectures are currently only compared
quantitatively and lack a qualitative analysis.

In this paper, we investigate which character
patterns neural networks learn and to what ex-
tent those patterns comprise any known linguistic
rules. We do this for three morphologically dif-
ferent languages: Finnish, Spanish and Swedish.
A Spanish example is shown in Figure 1. By vi-
sualizing the contributions of each character, we
observe that the model indeed uses the suffix -s to
correctly predict that the word is plural.

Our main contributions are as follows:

• We show how word-level tagging decisions
can be traced back to specific sets of charac-
ters and interactions between them.

• We extend the contextual decomposition
method (Murdoch et al., 2018) to CNNs.

• We quantitatively compare CNN and BiL-
STM models in the context of morphologi-
cal tagging by performing an evaluation on
three manually segmented and morphologi-
cally annotated corpora.

• We found out that the studied neural models
are able to implicitly discover character pat-
terns that coincide with the same rules lin-
guists use to indicate the morphological func-
tion of subword segments.

Our implementation is available online2.

2 Related Work
Neural network-based taggers currently outper-
form statistical taggers in morphological tagging
(Heigold et al., 2017) and part-of-speech tagging
(Plank et al., 2016) for a wide variety of lan-
guages. Character-level features form a crucial
part of many of these systems. Generally, two neu-
ral network architectures are considered for aggre-
gating the individual characters: a BiLSTM (Ling

2https://github.com/FredericGodin/
ContextualDecomposition-NLP

et al., 2015; Plank et al., 2016) or a CNN (dos
Santos and Zadrozny, 2014; Bjerva et al., 2016;
Heigold et al., 2017). These architectures outper-
form similar models that use manually defined fea-
tures (Ling et al., 2015; dos Santos and Zadrozny,
2014). However, it is still unclear which useful
character-level features they have learned. Ar-
chitectures are compared quantitatively but lack
insight into learned patterns. Moreover, Vania
and Lopez (2017) showed in the context of lan-
guage modeling that training a BiLSTM on ground
truth morphological features still yields better re-
sults than eight other character-based neural net-
work architectures. Hence, this raises the question
which patterns neural networks learn and whether
these patterns coincide with manually-defined lin-
guistic rules.

While a number of interpretation techniques
have been proposed for images (Springenberg
et al., 2014; Selvaraju et al., 2017; Shrikumar
et al., 2017), these are generally not applicable
in the context of NLP where LSTMs are mainly
used. Moreover, gradient-based techniques are
not trustworthy when strongly saturating activa-
tion functions such as tanh and sigmoid are used
(e.g., Li et al. (2016a)). Hence, current interpre-
tations in NLP are limited to visualizing the mag-
nitude of the LSTM hidden states of each word
(Linzen et al., 2016; Radford et al., 2017; Strobelt
et al., 2018), removing words (Li et al., 2016b;
Kádár et al., 2017) or changing words (Linzen
et al., 2016) and measuring the impact, or training
surrogate tasks (Adi et al., 2017; Chrupała et al.,
2017; Belinkov et al., 2017). These techniques
only provide limited local interpretations and do
not model fine-grained interactions of groups of
inputs or intermediate representations. In con-
trast, Murdoch et al. (2018) recently introduced an
LSTM interpretation technique called Contextual
Decomposition (CD), providing a solution to the
aforementioned issues. We will build upon this in-
terpretation technique and introduce an extension
for CNNs, making it possible to compare different
neural network architectures within a single inter-
pretation framework.

3 Method

For visualizing the contributions of character sets,
we use the recently introduced Contextual Decom-
position (CD) framework, as originally developed
for LSTMs (Murdoch et al., 2018), and extend it to
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CNNs. First, we introduce the concept of CD, fol-
lowed by the extension for CNNs. For details on
CD for LSTMs, we refer the reader to the afore-
mentioned paper. Finally, we explain how the CD
of the final classification layer is done.

3.1 Contextual decomposition
The idea behind CD is that, in the context of
character-level decomposition, we can decompose
the output value of the network for a certain class
into two distinct groups of contributions: (1) con-
tributions originating from a specific character or
set of characters within a word and (2) contri-
butions originating from all the other characters
within the same word.

More generally, we can decompose every out-
put value z of every neural network component
into a relevant contribution � and an irrelevant
contribution �:

z = � + � (1)

3.2 Decomposing CNN layers
A CNN typically consist of three components: the
convolution itself, an activation function and an
optional max-pooling operation. We will discuss
each component in the next paragraphs.

Decomposing the convolution Given a se-
quence of character embeddings x1, ..., xT 2 R

d1

of length T , we can calculate the convolution of
size n of a single filter over the sequence x1:T by
applying the following equation to each n-length
subsequence {xt+i, i = 0, .., n � 1}, denoted as
xt:t+n�1:

zt =
n�1X

i=0

Wi · xt+i + b, (2)

with zt 2 R and where W 2 R
d1⇥n and b 2 R

are the weight matrix and bias of the convolutional
filter. Wi denotes the i-th column of the weight
matrix W .

When we want to calculate the contribution of
a subset of characters, where S is the set of cor-
responding character position indexes and S ✓
{1, ..., T}, we should decompose the output of the
filter zt into three parts:

zt = �t + �t + b. (3)

That is, the relevant contribution �t originating
from the selected subset of characters with in-
dexes S, the irrelevant contribution �t originating

from the remaining characters in the sequence, and
a bias which is deemed neutral (Murdoch et al.,
2018).

This can be achieved by decomposing the con-
volution itself as follows:

�t =
n�1X

i=0

Wi · xt+i (t + i) 2 S, (4)

�t =
n�1X

i=0

Wi · xt+i (t + i) /2 S, (5)

Linearizing the activation function After ap-
plying a linear transformation to the input, a non-
linearity is typically applied. In CNNs, the ReLU
activation function is often used.

In Murdoch et al. (2018), a linearization method
for the non-linear activation function f is pro-
posed, based on the differences of partial sums
of all N components yi involved in the pre-
activation sum zt. In other words, we want to
split fReLU (zt) = fReLU (

PN
i=1 yi) into a sum

of individual linearized contributions LfReLU (yi),
namely fReLU (

PN
i=1 yi) =

PN
i=1 LfReLU (yi).

To that end, we compute LfReLU (yk), the lin-
earized contribution of yk as the average differ-
ence of partial sums over all possible permutations
⇡1, ..., ⇡MN of all N components yi involved:

Lf (yk) =

1

MN

MNX

i=1

[f(

⇡�1
i (k)X

l=1

y⇡i(l)) � f(

⇡�1
i (k)�1X

l=1

y⇡i(l))]

(6)

Consequently, we can decompose the output ct

after the activation function as follows:

ct =fReLU (zt) (7)
=fReLU (�z,t + �z,t + b) (8)
=LReLU (�z,t)

+ [LReLU (�z,t) + LReLU (b)] (9)
=�c,t + �c,t (10)

Following Murdoch et al. (2018), �c,t contains the
contributions that can be directly attributed to the
specific set of input indexes S. Hence, the bias b is
part of �c,t. Note that, while the decomposition in
Eq. (10) is exact in terms of the total sum, the in-
dividual attribution to relevant (�c,t) and irrelevant
(�c,t) is an approximation, due to the linearization.
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Max-pooling over time When applying a fixed-
size convolution over a variable-length sequence,
the output is again of variable size. Hence, a max-
pooling operation is executed over the time dimen-
sion, resulting in a fixed-size representation that is
independent of the sequence length:

c = max
t

(ct). (11)

Instead of applying a max operation over the �c,t

and �c,t contributions separately, we first deter-
mine the position t of the highest ct value and
propagate the corresponding �c,t and �c,t values.

3.3 Calculating the final contribution scores
The final layer is a classification layer, which is
the same for a CNN- or LSTM-based architecture.
The probability pj of predicting class j is defined
as follows:

pj =
eWj ·x+bj

PC
i=1 eWi·x+bi

, (12)

in which W 2 R
d2⇥C is a weight matrix and Wi

the i-th column, x 2 R
d2 the input, b 2 R

d2 the
bias vector and bi the i-th element, d2 the input
vector size and C the total number of classes.

The input x is either the output c of a CNN or
h of a LSTM. Consequently, we can decompose
x into � and � contributions. In practice, we only
consider the preactivation and decompose it as fol-
lows:

Wj · x + bj = Wj · � + Wj · � + bj . (13)

Finally, the contribution of a set of characters with
indexes S to the final score of class j is equal to
Wj · �. The latter score is used throughout the
paper for visualizing contributions of sets of char-
acters.

4 Experimental Setup

We execute experiments on morphological tagging
in three different languages: Finnish, Spanish and
Swedish. We describe the dataset in Section 4.1,
whereas model and training details can be found
in Section 4.2.

4.1 Dataset
For our experiments, we use the Universal De-
pendencies 1.4 (UD) dataset (Nivre et al., 2016),
which contains morphological features for a large
number of sentences. Additionally, we acquired

Table 1: Overview of the training, validation and
test set used.

Finnish Spanish Swedish

Train words 53547 62556 16295
Valid words 2317 4984 1731
Test words 2246 956 3538

Annotated
Test pairs 278 340 137

manually-annotated character-level morphologi-
cal segmentations and labels for a subset of the test
set for three morphological different languages:
Finnish, Spanish and Swedish. 3

For each language, Silfverberg and Hulden
(2017) selected the first non-unique 300 words
from the UD test set and manually segmented each
word according to the associated lemma and mor-
phological features in the dataset. Whenever pos-
sible, they assigned each feature to a specific sub-
set of characters. For example, the Spanish word
"económicas" is segmented as follows:

• económic : lemma=económico

• a : gender=feminine

• s : number=plural

For our experiments, we are only interested in
word/feature pairs for which a feature can be as-
signed to a specific subset of characters. Hence,
we filter the test set on those specific word/feature
pairs. In the above example, we have two
word/feature pairs. This resulted in 278, 340 and
137 word/feature pairs for Finnish, Spanish and
Swedish, respectively. Using the same procedure,
we selected relevant feature classes, resulting in
12, 6 and 9 feature classes for Finnish, Spanish
and Swedish, respectively.4 For each class, when
a feature was not available, we introduced an ad-
ditional Not Applicable (NA) label.

We always train and validate on the full UD
dataset for which we have filtered out all dupli-
cate words. After that, we perform our analysis
on either the UD test set or the annotated subset
of manually segmented and annotated words. An
overview can be found in Table 1.

3Available online: http://github.com/mpsilfve/ud-segmen
ter/commit/5959214d494cbc13e53e1b26650813ff950d2ee3

4Full list available as supplementary material
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4.2 Model
We experiment with both a CNN and BiLSTM ar-
chitecture for character-level modeling of words.

At the input, we split every word into charac-
ters and add a start-of-word (ˆ) and an end-of-word
($) character. With every character, we associate a
character embedding of size 50.

Our CNN architecture is inspired by Kim et al.
(2016) and consists of a set of filters of varying
width, followed by a ReLU activation function
and a max-over-time pooling operation. We adopt
their small-CNN parameter choices and have 25,
50, 75, 100, 125 and 150 convolutional filters of
size 1, 2, 3, 4, 5 and 6, respectively. We do not add
an additional highway layer.

For the character-level BiLSTM architecture,
we follow the variant used in Plank et al. (2016).
That is, we simply run a BiLSTM over all the char-
acters and concatenate the final forward and back-
ward hidden state. To obtain a similar number of
parameters as the CNN model, we set the hidden
state size to 100 units for each LSTM.

Finally, the word-level representation gener-
ated by either the CNN or BiLSTM architecture
is classified by a multinomial logistic regression
layer. Each morphological class type has a differ-
ent layer. We do not take into account context to
rule out any influence originating from somewhere
other than the characters of the word itself.

Training details For morphological tagging, we
train a single model for all classes at once.
We minimize the joint loss by summing the
cross-entropy losses of each class. We orthogo-
nally initialize all weight matrices, except for the
embeddings, which are uniformly initialized ([-
0.01;0.01]). All models are trained using Adam
(Kingma and Ba, 2015) with minibatches of size
20 and learning rate 0.001. No specific regulariza-
tion is used. We select our final model based on
early stopping on the validation set.

5 Experiments
First, we verify that the CD algorithm works cor-
rectly by executing a controlled experiment with a
synthetic token. Next, we quantitatively and qual-
itatively evaluate on the full test set.

5.1 Validation of contextual decomposition
for convolutional neural networks

To verify that the contextual decomposition of
CNNs works correctly, we devise an experiment

1 0.9 0.8 0.7 0.6 0.5
0%

25%

50%

75%

100%

Probability synthetic token (psyn)

Pe
rc

en
ta

ge
co

rr
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t

Prediction
Syn. char attr.
GT char attr.

Figure 2: Comparison of the contribution of the
synthetic character versus the Ground Truth (GT)
character for the class t = 1. The prediction curve
denotes the classification accuracy for class t = 1,
and consequently, the prediction curve denotes the
upper bound for the attributions.

in which we add a synthetic token to a word of a
certain class, testing whether this token gets a high
attribution score with respect to that specific class.

Given a word w and a corresponding binary la-
bel t, we add a synthetic character c to the be-
ginning of word w with probability psyn if that
word belongs to the class t = 1 and with prob-
ability 1 � psyn if that word belongs to the class
t = 0. Consequently, if psyn = 1, the model
should predict the label with a 100% accuracy,
thus attributing this to the synthetic character c.
When psyn = 0.5, the synthetic character does not
provide any additional information about the label
t, and c should thus have a small contribution.

Experimental setup We train a CNN model on
the Spanish dataset and only use words having the
morphological label number. This label has two
classes plur and sing, and assign those classes to
the binary labels zero and one, respectively. Fur-
thermore, we add a synthetic character to each
word with probability psyn, varying psyn from 1
to 0.5 with steps of 0.1. We selected 112 unique
word/feature pairs from our test set with label sing
or plur. While plurality is marked by the suf-
fix s, a variety of suffixes are used for the singu-
lar form. Therefore, we focus on the latter class
(t = 1). The corresponding suffix is called the
Ground Truth (GT) character.

To measure the impact of psyn, we add a syn-
thetic character to each word of the class t = 1 and
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Figure 3: Evaluation of the attributions of CNN and BiLSTM models on the three different languages.

calculate the contribution of each character by us-
ing the CD algorithm. We run the experiment five
times with a different random seed and report the
average correct attribution. The attribution is cor-
rect if the contribution of the synthetic/GT charac-
ter is the highest contribution of all character con-
tributions.

Results The results of our evaluation are de-
picted in Figure 2. When psyn = 1, all words of
the class t = 1 contain the synthetic character, and
consequently, the accuracy for predicting t = 1
is indeed 100%. Moreover, the correct predic-
tion is effectively attributed to the synthetic char-
acter (‘syn. char attr.’ in Figure 2 at 100%), with
the GT character being deemed irrelevant. When
the synthetic character probability psyn is lowered,
the synthetic character is less trustworthy and the
GT character becomes more important (increas-
ing ‘GT char attr.’ in Figure 2). Finally, when
psyn = 0.5, the synthetic character is equally plau-
sible in both classes. Hence, the contribution of
the synthetic character becomes irrelevant and the
model attributes the prediction to other characters.

Consequently, we can conclude that whenever
there is a clear character-level pattern, the model
learns the pattern and the CD algorithm is able to
accurately attribute it to the correct character.

5.2 Evaluation of character-level attribution

In this section, we measure and analyze (1) which
characters contribute most to the final prediction
of a certain label and (2) whether those contribu-
tions coincide with our linguistic knowledge about
a language. To that end, we train a model to
predict morphological features, given a particular
word. The model does not have prior word seg-

Table 2: Average accuracy of all models trained on
Finnish, Spanish and Swedish for the task of mor-
phological feature prediction for all unique words
in the full UD test set.

Finnish Spanish Swedish

Maj. Vote 82.20% 72.39% 69.79%
CNN 94.81% 88.93% 90.09%

BiLSTM 95.13% 89.33% 89.45%

mentation information and thus needs to discover
useful character patterns by itself. After training,
we calculate the attribution scores of each charac-
ter pattern within a word with respect to the correct
feature class using CD, and evaluate whether this
coincides with the ground truth attribution.

Model We train CNN and BiLSTM models on
Finnish, Spanish and Swedish. The average accu-
racies on the full test set are reported in Table 2.5

As a reference for the trained models’ ability to
predict morphological feature classes, we provide
a naive baseline, constructed from the majority
vote for each feature type.

Overall, our neural models yield substantially
higher average accuracies than the baseline and
perform very similar. Consequently, both the
CNN and LSTM models learned useful character
patterns for predicting the correct morphological
feature classes. Hence, this raises the question
whether these patterns coincide with our linguis-
tic knowledge.

Evaluation For each annotated word/feature
pair, we measure if the ground truth character se-

5The results of the individual classes are provided as sup-
plementary material.
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ˆ o l i v a t $
BiLSTM

CNN

-3.2
0
3.2

(a) Example of Finnish. Word (verb): olivat (were), target
class: Tense=Past

ˆ g r a t u i t a $
BiLSTM

CNN

-2.6
0
2.6

(b) Example of Spanish. Word (adjective): gratuita
(free), target: Gender=Fem.

ˆ k r o n o r $

$
r
o
n
o
r
k
ˆ CNN

BiLSTM

-5.5

0

5.5

(c) Example of Swedish. Word (noun): kronor (Swedish
valuta as in dollars), target: Number=Plur.

Figure 4: Character-level contributions for predict-
ing a particular class. Positive contributions are
highlighted in red and negative contributions in
blue. The ground truth character sequence is high-
lighted in bold.

quence corresponds to the set or sequence of char-
acters with the same length within the considered
word that has the highest contribution for predict-
ing the correct label for that word.

In the first setup, we only compare with charac-
ter sequences having a consecutive set of charac-
ters (denoted cons). In the second setup, we com-
pare with any set of characters (denoted all). We
rank the contributions of each character set and re-
port top one, two, and three scores. Because start-
of-word and end-of-word characters are not anno-
tated in the dataset, we do not consider them part
of the candidate character sets.

Results The aggregated results for all classes
and character sequence lengths are shown in Fig-

ure 3. In general, we observe that for almost all
models and setups, the contextual decomposition
attribution coincides with the manually-defined
segmentations for at least half of the word/feature
pairs. When we only consider the top two con-
secutive sequences (marked as cons), accuracies
range from 76% up to 93% for all three languages.
For Spanish and Swedish, the top two accuracies
for character sets (marked as all) are still above
67%, despite the large space of possible character
sets, whereas all ground truth patterns are consec-
utive sequences. While the accuracy for Finnish is
lower, the top two accuracy is still above 50%.

Examples for Finnish, Spanish and Swedish are
shown in Figure 4. For Finnish, the character
with the highest contribution i coincides with the
ground truth character for the CNN model. This is
not the case for the BiLSTM model which focuses
on the character v, even though the correct label
is predicted. For Spanish, both models strongly
focus on the ground truth character a for predict-
ing the feminine gender. For Swedish, the ground
truth character sequence is the suffix or which de-
notes plurality. Given that or consists of two char-
acters, all contributions of character sets of two
characters are visualized. As can be seen, the most
important set of two characters is {o,r} for the
CNN and {k,r} for the BiLSTM model. However,
{o,r} is the second most important character set for
the BiLSTM model. Consequently, the BiLSTM
model deemed the interaction between a root and
suffix character more important than between two
suffix characters.

5.3 Analysis of learned patterns

In the previous section, we showed that there is a
strong relationship between the manually-defined
morphological segmentation and the patterns a
neural network learns. However, there is still an
accuracy gap between the results obtained using
consecutive sequences only and results obtained
using all possible character sets. Hence, this leads
to the question which patterns the neural network
focuses on, other than the manually defined pat-
terns we evaluated before. To that end, for each of
the three languages, we selected a morphological
class of interest and evaluated for all words in the
full UD test set that were assigned to that class
what the most important character set of length
one, two and three was. In other words, we eval-
uated for each word for which the class was cor-
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Table 3: The most frequent character sets used by a model for predicting a specific class. The frequency
of occurrence is shown between brackets. An underscore denotes an unknown character.

One character Two characters Three characters Examples

Fi
nn

ish
Te

ns
e=

Pa
st

BiL. i (69%), t (22%),
v (4%), a (2%)

ti (13%), t_i (12%),
v_t (9%), ui (6%)

tti (8%), iv_t (5%),
t__ti (3%), sti (3%)

olivat,
näyttikään

CNN i (71%), t (8%), s
(6%), o (5%)

ui (12%), si (11%), ti
(11%), oi (9%)

a__ui (3%), tii (3%),
iv__$ (2%), ui__t (2%)

tiesi,
meidät

Sp
an

ish
G

en
d=

Fe
m BiL. a (69%), i (16%),

d (6%), e (4%)
as (23%), a$ (13%),

ad (7%), ia (5%)
ia$ (4%), ad$ (3%),
da$ (3%), ca$ (2%)

tolerancia,
ciudad

CNN a (77%), ó (14%),
n (4%), d (3%)

a$ (34%), as (20%),
da (8%), ió (7%)

dad (5%), da$ (4%),
a_ió (4%), sió (2%)

firmas,
precisión

Sw
ed

ish
N

um
b=

Pl
ur

BiL. n (25%), r (19%),
a (14%), g (7%)

na (13%), a__r (4%),
or (3%), n__r (3%)

iga (5%), rna (3%), ner
(1%), der (1%)

kronor,
perioder

CNN n (21%), a (18%),
r (15%), d (5%)

rn (8%), na (5%), or
(4%), er (3%)

rna (7%), arn (3%), iga
(2%), n_ar (2%)

krafterna,
saker

rectly predicted, which character set had the high-
est positive contribution towards predicting that
class. The results can be found in Table 3.

Finnish In Finnish, adding the suffix i to a verb,
transforms it in the past tense. Sometimes the
character s is added, resulting in the suffix si. The
latter is a frequently used bigram pattern by the
CNN but less by the BiLSTM. The BiLSTM com-
bines the suffix i with another suffix vat which de-
notes third person plural in the character pattern
iv_t.

Spanish While there is no single clear-cut rule
for the Spanish gender, in general the suffix a de-
notes the feminine gender in adjectives. However,
there exist many nouns that are feminine but do
not have the suffix a. Teschner and Russell (1984)
identify d, and ión as typical endings of feminine
nouns, which our models identified too as for ex-
ample ad$ or ió/sió.

Swedish In Swedish, there exist four suffixes
for creating a plural form: or, ar, (e)r and n.
Both models identified the suffix or. However,
similar to Finnish, multiple suffixes are merged.
In Swedish, the suffix na only occurs together
with one of the first three plural suffixes. Hence,
both models correctly identified this pattern as an
important pattern for predicting the class num-
ber=plural, rather than the linguistically-defined
pattern.

5.4 Interactions of learned patterns

In the previous section, the pattern a$ showed
to be the most important pattern in 34% of the
correctly-predicted feminine Spanish words in our
dataset. However, there exist many words that end
with the character a that are not feminine. For ex-
ample the third person singular form of the verb
gustar is gusta. Hence, this raises the question if
the model will classify gusta wrongly as feminine
or correctly as NA. As an illustration of the appli-
cability of CD for morphological analysis, we will
study this case in more detail.

From the full UD test set, we selected all words
that end with the character a and that do not be-
long to the class gender=feminine. Using the
Spanish CNN model, we predicted the gender
class for each word and divided the words into
two groups: predicted as feminine and predicted
as not-feminine (_NA_ or masculine). The re-
sulted in 44 and 199 words. Next, for each
word in both groups we calculated the most pos-
itively and negatively contributing character set
out of all possible character sets of any length
within the considered word, using the CD algo-
rithm. We compared the contribution scores in
both groups using a Kruskal-Wallis significance
test.6 While no significant (p < 0.05) difference
could be found between the positive contributions
of both groups (p=1.000), a borderline significant
difference could be found between the negative

6The full statistical analysis is provided as supplementary
material.
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ˆ g u s t a $

Masculine
Feminine

NA

-3.8

0

3.8

Figure 5: Visualization of the most positively and
negatively contributing character set for each class
of the morphological feature class gender for the
Spanish verb gusta (likes).

contributions of words predicted as feminine and
words predicted as not-feminine (p=0.070).

Consequently, the CNN model’s classification
decision is based on finding enough negative evi-
dence to counteract the positive evidence found in
the pattern a$, which CD was able to uncover.

A visualization of this interaction is shown in
Figure 5 for the word gusta. While the positive ev-
idence is the strongest for the class feminine, the
model identifies the verb stem gust as negative ev-
idence which ultimately leads to the correct final
prediction NA.

6 Conclusion

While neural network-based models are part of
many NLP systems, little is understood on how
they handle the input data. We investigated how
specific character sequences at the input of a neu-
ral network model contribute to word-level tag-
ging decisions at the output, and if those contri-
butions follow linguistically interpretable rules.

First, we presented an analysis and visualization
technique to decompose the output of CNN mod-
els into separate input contributions, based on the
principles outlined by Murdoch et al. (2018) for
LSTMs. This allowed us then to quantitatively and
qualitatively compare the character-level patterns
the CNNs and BiLSTMs learned for the task of
morphological tagging. We showed that these pat-
terns generally coincide with the morphological
segments as defined by linguists for three morpho-
logically different languages, but that sometimes
other linguistically plausible patterns are learned.
Finally, we showed that our CD algorithm for
CNNs is able to explain why the model made a
wrong or correct prediction.

By visualizing the contributions of each input
unit or combinations thereof, we believe that much
can be learned on how a neural network handles

the input data, why it makes certain decisions, or
even for debugging neural network models.
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Abstract

Much work in Natural Language Processing
(NLP) has been for resource-rich languages,
making generalization to new, less-resourced
languages challenging. We present two ap-
proaches for improving generalization to low-
resourced languages by adapting continuous
word representations using linguistically mo-
tivated subword units: phonemes, morphemes
and graphemes. Our method requires neither
parallel corpora nor bilingual dictionaries and
provides a significant gain in performance over
previous methods relying on these resources.
We demonstrate the effectiveness of our ap-
proaches onNamedEntity Recognition for four
languages, namely Uyghur, Turkish, Bengali
and Hindi, of which Uyghur and Bengali are
low resource languages, and also perform ex-
periments on Machine Translation. Exploit-
ing subwords with transfer learning gives us a
boost of +15.2 NER F1 for Uyghur and +9.7
F1 for Bengali. We also show improvements
in the monolingual setting where we achieve
(avg.) +3 F1 and (avg.) +1.35 BLEU.

1 Introduction
Continuous word representations have demon-
strated utility in state-of-the-art neural models for
several NLP tasks, such as named entity recogni-
tion (NER;Ma andHovy (2016)), machine reading
(Tan et al., 2017), sentiment analysis (Tang et al.,
2016; Yu et al., 2018), and machine translation
(MT; Qi et al. (2018)). While the training of these
word vectors does not rely on explicit human su-
pervision, their quality is highly contingent on the
size and quality of the unlabeled corpora available.
There are over 7000 languages in the world (Ham-
marström et al., 2018), and corpora with sufficient
size and coverage are available for just a handful,
making it unclear how these methods will perform
in the more common low-resource setting.

Disheartening though this high dependence on
resources sounds, several efforts (Adams et al.,
2017; Haghighi et al., 2008; Bharadwaj et al.,
2016; Mayhew et al., 2017) have shown consid-
erable performance gains across different tasks in
the low resource setting by transferring knowledge
from related high-resource languages. Most exist-
ing approaches for learning cross-lingual word em-
beddings (Ruder, 2017) either extend the monolin-
gual objective function by adding a cross-lingual
regularization objective which is then jointly opti-
mized or use mapping-based approaches to align
similar words across languages. These post-hoc
coordination methods rely on bilingual lexicons
or parallel corpora, which are typically of limited
quantity and uncertain quality.

In this paper, we take a different task: fo-
cusing instead on the similarity of the surface
forms, phonology, or morphology of the two trans-
fer languages. Specifically, inspired by Ling
et al. (2015), who demonstrate the effectiveness
of character-level modeling for knowledge shar-
ing in multilingual scenarios, we propose two ap-
proaches to transfer word embeddings using differ-
ent types of linguistically-inspired subword-level
information. Both approaches focus on mapping
the low resource language embeddings closer to
those of the high resource language and are ex-
ecuted using two different training regimes. We
explore the effect of different subword units—
characters, lemmas, inflectional properties, and
phonemes— as each one offers a unique linguis-
tic insight, discussed more in Section 3. Our pro-
posed approaches do require language specific re-
sources, but importantly do not depend on cross-
lingual resources and achieve considerable perfor-
mance gains over existing methods which do.

We evaluate our proposed approach on two
downstream tasks: NER, which deals with detect-
ing and classifying Named Entities (NEs) into pre-
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defined categories (Nadeau and Sekine, 2007), and
MT to English. For the purposes of error analy-
sis and discussion, we focus on the NER task in
particular. NEs are typically noun phrases and oc-
cur rarely in the corpus, making the generalization
across types and domains difficult. We chose NER
as our test bed because word vectors have a di-
rect impact on NER model performance— as sug-
gested by (Ruder, 2017) and observed by us in Ta-
ble 3, where themodel without any pre-trained em-
beddings scores an average of 18 F1 points less. It
thus provides a transparent way to measure the ef-
fectiveness of different subword units.

This paper makes the following contributions:

1. We show that embeddings trained on sub-
word representations yield better task per-
formance than those trained only on whole
words. This is especially true in a transfer set-
ting, where subword representations also out-
perform a word alignment based method. We
further show that embeddings trained onmor-
phological representations often outperform
those trained only on whole words.

2. We demonstrate that training embeddings
on character-based phonemic representations
presents substantial performance advantages
over training on orthographic characters in
some transfer settings, e.g. when there are
script differences across languages. These
advantages are in addition to those from mor-
phological representations (lemmas and mor-
phological properties).

3. We produce continuous representations for
each subword unit, giving researchers the
ability to use them in their own tasks as they
see fit. The code 1 for training word em-
beddings and the embeddings 2 which pro-
duced the best results are publicly available.
We also release morphological analyzers for
Hindi and Bengali3.

2 Skipgram Objective
The two most popular training objectives for
monolingual word embeddings are the skip-
gram and continuous-bag-of-words (CBOW), in-
troduced by Mikolov et al. (2013a). The skipgram

1https://github.com/Aditi138/Embeddings
2https://github.com/Aditi138/Embeddings/

tree/master/embeddings_released
3https://github.com/dmort27/mstem

model attempts to predict the context surrounding
a word, given the word itself whereas CBOW pre-
dicts the word given its context. Formally, given a
corpus having a sequence of words 𝑤1, 𝑤2, ⋯ , 𝑤𝑇,
the skip-grammodel maximizes the following log-
likelihood:

𝑇
∑𝑖=1 ∑𝑣∈𝐶𝑖

log 𝑝(𝑣|𝑤𝑖) (1)

where 𝐶𝑖 are the context tokens, within a specified
window of the focus word 𝑤𝑖 and 𝑝(𝑣|𝑤𝑖) is the
probability of observing context word 𝑣 given fo-
cus word 𝑤𝑖. The skipgram was originally defined
using the softmax function:

𝑝(𝑣|𝑤𝑖) = 𝑒𝑠(𝑣,𝑤𝑖)
∑𝑊𝑗=1 𝑒𝑠(𝑤𝑖,𝑗) (2)

where 𝑠 is a scoring function mapping 𝑣 and 𝑤𝑖
to ℝ. The summation in the denominator is over
the entire vocabulary 𝑊 whichmakes this formula-
tion computationally inefficient as cost of gradient
computation is proportional to 𝑊 which is quite
large (∼ 106). Mikolov et al. (2013b) hence em-
ploy negative sampling to make this computation
efficient and robust (Levy et al., 2015) and give
better representations for infrequent words4, which
is crucial for the low resource settings. Negative
sampling represents the above objective function
(Equation 1) using a binary logistic loss as shown
below:

𝑇
∑𝑖=1 ( ∑𝑤𝑐∈𝐶𝑖

𝑙(𝑠(𝑤𝑖, 𝑤𝑐)) + ∑𝑤𝑛∈𝑁𝑖
𝑙(−𝑠(𝑤𝑖, 𝑤𝑛))) (3)

where 𝑁𝑖 are the negative words sampled ran-
domly from vocabulary and 𝑙 is the log-sigmoid
function. The scoring function 𝑠 is a dot product
similarity function given by 𝑠(𝑤𝑖, 𝑤𝑐) = u⊤𝑤𝑖v𝑤𝑐
where u𝑤𝑖 and v𝑤𝑐 are the embeddings of the focus
word and its context word respectively.

3 Subword Representation
Mikolov et al. (2013b)’s model fails to capture
internal structure of words and does not general-
ize for out of vocabulary words that may share
morphemes with in-vocabulary words. The prob-
lems of this method are particularly salient for

4https://code.google.com/archive/p/
word2vec/
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graphemes ⟨قارىيالمايدۇ⟩
phonemes /qarijalmajdu/

morphemes /qari-jal-ma-jdu/
lemma+tag qari+Verb+Pot+Neg+Pres+A3sg

gloss ‘s/he can’t care for’

Figure 1: Representations of a word in Uyghur

morphologically rich languages such as Turkish,
Uyghur, Hindi, and Bengali. Although, given a
large enough training corpus, most or all morpho-
logical forms of a lexeme (of which there may be
many) could theoretically learn to have similar vec-
tor representations, it will be vastly more data ef-
ficient if we can take into account regularities of
their form to model morphology explicitly. We ex-
plore the following methods for doing so:

Orthographic units: Wieting et al. (2016) and
Bojanowski et al. (2016) show the utility of
character-level modeling by representing the focus
word 𝑤𝑖 as a set of its character ngrams, denoted
by u𝑤𝑖 = 1|𝐺| ∑𝑔∈𝐺 x𝑔, where 𝐺 is the set of char-
acter ngrams and x𝑔 is the vector representation of
ngram 𝑔. Such representations capture morpho-
logical information in a brute-force but principled
fashion—words that share the same morpheme are
more likely to share the same character ngrams
than words that do not.

Morphological units: Previous work has found
that morphological relationships between words
can be captured more directly if embeddings are
trained on morphological representations (Luong
et al., 2013; Botha and Blunsom, 2014; Cot-
terell and Schütze, 2015). Avraham and Goldberg
(2017) explicitly model lemmas (stems or citation
forms) and morphological properties (the sets of
which are sometimes called “tags”) for training the
word embeddings. Lemmas capture information
about the lexical identity of a word and are closely
correlated with the semantics of a word; tags cap-
ture information about the syntactic context of a
word. See Figure 1 for an example. We take inspi-
ration from the above work in adapting these sub-
word units for cross-lingual transfer.

Phonological units: Subword units other than
tags might seem to be of no use in closely-related
languages with different scripts (such as Serbian
and Croatian). Following Bharadwaj et al. (2016),
we convert text from its orthographic form into a

phoneme ngrams 𝑥<𝑞𝑎 + 𝑥𝑞𝑎𝑟 + ... + 𝑥𝑚𝑎𝑗𝑑𝑢>
lemma 𝑥qari

morphemes 𝑥𝑉𝑒𝑟𝑏 + 𝑥𝑃𝑜𝑡 + ... + 𝑥𝐴3𝑠𝑔
Figure 2: Vector representations of a word in Uyghur

phonemic representation, stated in terms of the In-
ternational Phonetic Alphabet (IPA). We then train
embeddings on this representation. This means
that, roughly speaking, morphemes that sound the
same will be represented in the same way across
languages.

4 Cross-lingual Transfer
In this section we discuss in detail both our ap-
proaches for cross-lingual transfer along with the
relevant baselines.

4.1 Proposed Approach
We propose to use phoneme ngrams, represented
using IPA, in addition to the lemma and morpho-
logical tags, to enable effective transfer across lan-
guages. Tsvetkov and Dyer (2016) demonstrate
the effectiveness of projecting words from ortho-
graphic space to phonemic space as related lan-
guages often share similar phonological patterns.
More formally, let 𝑃𝑤 be the set of linguistic prop-
erties of a word consisting of the phoneme ngrams
(I𝑔) , lemma (L) and individual morphological tags
(M𝑚). The focus word is then represented as the
average sum of its linguistically motivated sub-
word units:

v𝑤𝑐 = 1|𝑃𝑤𝑐 | ∑𝑝∈𝑃𝑤𝑐
x𝑝

where x𝑝 is the vector representation of subword
unit 𝑝 of word 𝑤𝑐. The average operation is im-
portant to remove any bias towards words having
too many or too few subword units. For instance,
the Uyghur word in Figure 1 is represented using
its phoneme-ngrams ranging from 3-grams to 6-
grams, lemma and morphological tags as shown in
Figure 2. Avraham and Goldberg (2017) instead
encode the different morphological inflections as
one tag, so that Verb+Pot+Neg+Pres+A3sg would
be encoded as 𝑥𝑉𝑒𝑟𝑏+𝑃𝑜𝑡+𝑁𝑒𝑔+𝑃𝑟𝑒𝑠+𝐴3𝑠𝑔. We encode
each property in a tag separately to avoid data spar-
sity issues and empirically find this approach to
perform better.

We present two training regimes for transferring
knowledge from a related language, namely CT-
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Joint and CT-FineTune by explicitly incorporat-
ing the subword units. We hypothesize that having
word representations of both languages lying in a
similar space will aid the low resource language in
leveraging resources from the high resource lan-
guage, including annotations for the downstream
task. These two regimes are described below:

CT-Joint: This model explicitly maps the
word representations of the two languages into the
same space by training simultaneously on both.
This is achieved simply by combining the corpora
of both the high-resource and the low-resource lan-
guage and training jointly using the skip-gram ob-
jective, discussed above. The central intuition is as
follows: once two related languages are placed in
the same phonological and morphological space,
they will share many subword units in common
and this will make joint training profitable. Duong
et al. (2016) and Gouws et al. (2015) have previ-
ously shown the advantages of joint training and
we observe this to be true in our case as well.

CT-FineTune: This model implicitly maps
the word representations of the two languages
into the same space. The model attempts this by
taking the learned continuous representations of
the high resource subword units, referred to by
x𝐻𝑖𝑆𝑊𝑈, and uses them to initialize the model for
the low resource language. The model is first
trained using all subword units on the high re-
source language and the learned representations
are then used for initializing the subword units for
the low resource language. To elucidate which pre-
trained subword helped the most on the low re-
source language, we use the same model for differ-
ent experiments, which is trained using all subword
units—phoneme-ngrams, lemma and morphologi-
cal properties. The linguistic intuition behind CT-
FineTune is similar to that behind CT-Joint. This
idea of transferring parameters from high resource
language has been previously explored by Zoph
et al. (2016) for low resource neural machine trans-
lation which showed considerable improvement.

5 Evaluation

In this section, we first describe the model setup
for training word embeddings followed by details
on NER and MT experiments.

5.1 Implementation details
We base our model on the C++ implementation of
fasttext5(Bojanowski et al., 2016) with modifica-
tions as described above.

Data: We represent a word in the training corpus
using the format presented by Avraham and Gold-
berg (2017). For instance, the Uyghur word in Fig-
ure 1 is represented as follows: phoneme ipa: qari-
jalmajdu, lemma l:qari, and morphological inflec-
tions m:Verb+Pot+Neg+Pres+A3sg. We con-
sider phoneme-ngrams ranging from 3-grams to 6-
grams and append a special start symbol < and end
symbol > to the word. We discard unigrams and
bigram ngrams on the assumption that they don’t
contribute much to the word.

Linguistic properties: We experiment with dif-
ferent subword units for both the transfer set-
ting and the monolingual setting. We use the
orthography-to-IPA tool Epitran (Mortensen et al.,
2018) to obtain the phonemic representations. The
lemmas andmorphological properties for a word in
context are obtained using a rule-based morpho-
logical analyzer in such a fashion as to produce
tags similar to the high resource language. For
Turkish we use the morphological disambiguator
developed by (Shen et al., 2016), which in turn is
based on an FST-basedmorphological analyzer de-
veloped by Oflazer (1994). For Uyghur, we took a
(parser combinator based) morphological analyzer
that had been developed for a DARPA LORELEI
evaluation and modified it to output part-of-speech
tags and to use a property set that was as close as
possible to that of the Oflazer Turkish analyzer.
The analyzer for Turkish produces 116 inflectional
properties and for Uyghur we get 54 properties,
of which 64% are shared with Turkish. Unfortu-
nately, we did not have access to existing mor-
phological analyzers for Hindi or Bengali. Many
Hindi morphological analyzers exist, but they are
not typically released publicly (Malladi and Man-
nem, 2013; Goyal and Lehal, 2008). We developed
our own analyzers using a stemmer-like frame-
work6 over a span of few weeks (2-3), which gave
8 unique morphological tags for Hindi and 10 for
Bengali (for both languages, noun inflection only)
of which just 2 were shared with Hindi.

Morphologically speaking, we only use inflec-
5https://github.com/facebookresearch/

fastText/
6https://github.com/dmort27/mstem

3288



tional properties. For most languages, we consid-
ered derivational affixes to be part of the stem,
since they change the meaning and grammatical
category of the word rather than simply express-
ing syntactic information. An exception to this was
Turkish, where the available morphological ana-
lyzer segments all affixes off from the root. How-
ever, even there we confined our use ofmorpholog-
ical properties to inflectional properties. Deriva-
tional affixes display scopal behavior; since we
wanted to treat the morphological properties of a
word as a set, rather than a sequence, we were re-
quired to choose this option.

Hyperparameters: During training, we con-
sider context tokens within a window size 3 of the
focus word and we sample 5 negative examples
from the vocabulary. We chose a window size
of only 3 based on the fact that we are working
with morphologically rich languages with a rela-
tively high information to token ratio (otherwise a
window size of 5 may be more appropriate). Sub-
word units are initialized with uniform samples
from [ −1𝑑𝑖𝑚 , 1𝑑𝑖𝑚 ] where 𝑑𝑖𝑚 = 100. We use the
same training regime as Bojanowski et al. (2016).
For CT-FineTune, instead of uniform samples we
initialize the subword units of the low resource lan-
guage from the learnt x𝐻𝑖𝑆𝑊𝑈.

Lang. Train Dev Test
Turkish 3376 1126 1126
Uyghur 1822 240 2448*
Hindi 3974 497 497
Bengali 1908 53 7012

Table 1: Sentences in train/dev/test set for NER. (*Un-
sequestered set. The full test set has 12,546 sentences.)

5.2 Baselines
For comparison, we train multilingual embeddings
using MultiCCA (Ammar et al., 2016) as our base-
line. It employs canonical correlation analysis by
projecting multiple languages in the same shared
space of one language, also referred to as multi-
language space. This method learns linear pro-
jections for each language into this common lan-
guage space using bilingual lexicons. English is
used as a common vector space due to availability
of corresponding bilingual lexicons between En-
glish and each of our languages. For a fair compar-
ison, we run MultiCCA on monolingual embed-

dings trained with different subword units. We use
100 dimension (Bojanowski et al., 2016) embed-
dings for English.

For NER, we also compare with Bharadwaj
et al. (2016) who use a neural attention model
over phonological features and report the best per-
formance for Turkish using transfer from Uzbek
and Uyghur, and Mayhew et al. (2017) who use
a cheap translation method to translate training
data from high-resource language into the low-
resource language and report best NER results for
Uyghur, as part of the LORELEI program. Our
work differs from these primarily on two fronts:
a) it is independent of the downstream task and
can easily be adapted across various tasks, and
b) it doesn’t require parallel corpora or bilingual
dictionaries. For our monolingual experiments,
we compare our proposed approach with models
using subword representations—Bojanowski et al.
(2016) and Avraham and Goldberg (2017).

5.3 Named Entity Recognition Task
We use state-of-the-art NER architecture (Ma and
Hovy, 2016) as our model for evaluation. The task
is to identify NEs and categorize them into four
types. Since this is a supervised model, the per-
formance is highly contingent on the quality of la-
beled data. F1 scores are used as the evaluation
metric.

5.3.1 Experiments
Weconduct the twomain sets of NER experiments,

1. Transfer experiments on the low resource
languages—Uyghur and Bengali—using
Turkish and Hindi as the high resource
languages respectively. We show results
using both our proposed models, CT-Joint
and CT-FineTune.

2. Monolingual experiments on all four lan-
guages: Uyghur, Turkish, Bengali and Hindi.
We do an ablation study using different com-
binations of subword units.

These language pairs were chosen partly out of
convenience—the data were available to us as part
of the DARPA LORELEI program—and partly
because they satisfied certain deeper desiderata.
Turkish andUyghur are fairly closely related to one
another, as are Hindi and Bengali. Despite this re-
lationship, the members of both pairs are written
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Model subword units Uyghur Bengali
CT-Joint phoneme-ngrams + lemma + morph 55.00 60.33

phoneme-ngrams + lemma 56.20 59.63
phoneme-ngrams 54.90 58.50
phoneme 51.30 53.75
char-ngrams + lemma + morph 50.20 55.10
char-ngrams + lemma 48.20 53.83
char-ngrams 49.60 52.77
word 51.80 53.69

CT-FineTune phoneme-ngrams + lemma + morph 48.60 56.19
lemma + morph 52.80 57.72
phoneme-ngrams + lemma 51.00 56.83
phoneme-ngrams 50.50 57.69
phoneme 49.20 59.86

MultiCCA char-ngrams + lemma + morph 41.00 50.63
(Baseline) char-ngrams + lemma 43.10 50.63

char-ngrams 45.80 38.06
word 42.70 45.86

Table 2: Transfer experiments on NER.Metric F1 (out of 100%). Uyghur transfer is from Turkish; Bengali transfer
is from Hindi

in different scripts (Roman and Perso-Arabic; De-
vanagari and Bengali). Finally, all four languages
are morphologically rich, especially Turkish and
Uyghur. These qualities allow us to showcase the
value of embeddings with subword units.

Data Preprocessing: We use data, comprised
of unlabeled corpora, English bilingual dictionar-
ies, annotations, from the Linguistic Data Consor-
tium (LDC) language packs—Turkish and Hindi
7, Bengali8, from which we generate train-dev-
test splits. Uyghur data was released as part of
LoReHLT16 task, organized by NIST 9 under the
aegis of DARPA, and training annotations were ac-
quired using native speakers as part of the task.
For Uyghur we evaluate on an unsequestered set
consisting of 199 annotated evaluation documents,
released by NIST. For Turkish, Hindi and Ben-
gali, we create our own train-dev-test splits (Ta-
ble 1). The exact documents from which May-
hew et al. (2017) and Bharadwaj et al. (2016) cre-
ated their test set is not apparent. The Uyghur
corpus has 27 million tokens and the Turkish cor-
pus has about 40 million tokens. Although Ben-
gali is widely-spoken and the unlabeled corpus

7LDC2014E115,LDC2017E62,http://www.cfilt.
iitb.ac.in/iitb_parallel/

8LDC2017E60, LDC2015E13
9https://www.nist.gov/

contains more than 140 million tokens, there are
very few named entity annotations available, mak-
ing it a low-resource language for the purposes of
this exercise. To have a fair experimental setup
across language pairs, we sub-sample the Bengali
and Hindi corpora to have comparable corpus sizes
with Uyghur and Turkish respectively. We also
up-sample the low resource data for both unla-
beled corpora and NER annotations, so the model
doesn’t become biased towards the high resource
language.
NER model setup: We train the model using
100-dimensional word embeddings, pre-trained
using the above discussed strategies, and use hid-
den dimension of size 100 for each direction of the
LSTM. Stochastic gradient descent was used as the
optimizer with a learning rate of 0.015. Dropout
of 0.5 was used in the LSTM layer to prevent
over-fitting. Uyghur and Turkish were trained for
100 epochs, Bengali and Hindi converged after 70
epochs.
5.3.2 Results and Discussion
Transfer Experiments: From Table 2 we note
that our CT-Joint model trained with phoneme-
ngrams, lemma, and morphological tags out-
performs the MultiCCA baseline by a signifi-
cant margin. MultiCCA strongly depends on
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Model subword units Turkish Uyghur Hindi Bengali
Ours Char-ngrams + Lemma + Morph 68.06 52.50 73.15 52.77

Char-ngrams + Lemma 68.61 52.40 73.37 52.09
Char-ngrams + Morph 67.97 47.80 73.46 52.06

prop2vec Word + Lemma 66.52 46.00 71.82 50.03
Word + Morph 64.45 46.00 71.52 49.27
Word + Lemma + Morph 68.46 47.70 70.51 48.16

fastText Char-ngrams 66.81 50.80 72.67 52.10
word2vec Word 62.85 46.80 72.04 49.83
Random No embedding 58.94 31.30 59.89 21.25

Table 3: NER results for monolingual experiments. Metric F1 (out of 100%)

Model Uyghur* (unseq.) Uyghur* Turkish Bengali
Ours 56.20 56.00 68.61 60.33
Bharadwaj et al. (2016) – 51.2 66.47 –
Mayhew et al. (2017) 51.32 55.6 53.44 45.70

Table 4: Comparison with previous work using data released by DARPA LORELEI. Metric F1 (out of 100%)
*Official NIST scores.

Figure 3: Recall for all languages (monolingual)
W:Word, NG:Char-ngrams, L:Lemma, M:Morph

bilingual dictionaries which is possibly why it
performs poorly in our low resource setting,
where these dictionaries are not of high qual-
ity. The advantage of phoneme-ngrams over
char-ngrams is quite apparent here. phoneme-
ngrams+lemma+morph performs +5.2 F1 points
better than char-ngram+lemma+morph for both
Uyghur and Bengali, and similar increase is ob-
served across other combinations, the only excep-
tion being the phoneme case for Uyghur which
performed -0.5 F1 with respect to its counterpart
word.

We find CT-Joint to be consistently better per-
forming than CT-FineTune. Interestingly, the per-
formance of CT-FineTune model converges to the
monolingual performance. We hypothesize that
the model forgets the pre-trained subword units as
training progresses.

For CT-FineTune, the column subword units in
Table 2 refers to the subword units which were pre-
trained on a high resource related language. For
example lemma + morph means lemma andmorph
embeddings are first pre-trained on the resouce-
rich language and then used to initialize the respec-
tive lemma and morph representations for the low
resource language.

Monolingual Experiments: Table 3 shows our
results on all languages. We get +5.8 F1 points
for Turkish, +4.8 F1 for Uyghur, +0.8 F1 for
Hindi and +0.7 F1 for Bengali over the exist-
ing methods. We observe that a combination of
character-ngrams, lemma andmorphological prop-
erties gives the best performance for Uyghur and
Bengali. Adding morph hurts in Turkish, in con-
trast to Hindi, where it helps. Section 5.3.3 dis-
cuses plausible reasons for this.

We report official NIST scores on the full eval-
uation set for Uyghur, as part of LORELEI Offical
Retest. Additionally, we compare our results with
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Model subword units Uyghur Bengali
CT-Joint phoneme-ngrams + lemma + morph 23.04 7.88

phoneme-ngrams + lemma 23.24 7.62
phoneme-ngrams 23.25 7.45

CT-FineTune lemma + morph 23.71 7.58

Table 5: Transfer experiments for MT. Metric: BLEU. Uyghur transfer is from Turkish; Bengali transfer is from
Hindi

Model subword units Uyghur Bengali
Ours Char-ngrams + Lemma + Morph 23.59 7.96

Char-ngrams + Lemma 23.91 7.77
Char-ngrams + Morph 23.27 7.88

fastText Char-ngrams 23.24 7.91
word2vec Word 23.31 6.64
Random No embedding 23.51 6.23

Table 6: MT results for monolingual experiments. Metric: BLEU

the best results reported on the same LORELEI
dataset. Results are seen in Table 4.

5.3.3 Error analysis
We plot recall curves for all languages. As seen
in Figure 3, adding subword units boosts the re-
call consistently across all languages, more so for
Uyghur. For Turkish, lemma performs better than
lemma+morph, perhaps because the morpholog-
ical analyzer outputs so many redundant proper-
ties which reduce the distance between words that
are not particularly similar. In contrast, morph
helps and lemma hurts in Hindi, perhaps because
the morph analyzer outputs only a small num-
ber of highly informative properties, but is a poor
general-purpose lemmatizer.

We analyze our results for Uyghur language, as
it was part of the LORELEI challenge and presents
a situation close to a real-life application. We base
our analysis on the unsequestered set since anno-
tations for full test data are not released. There are
1,341 NE’s in this set, 396 of which are covered
by the word embeddings when trained with just
monolingual corpus. One obvious advantage of
jointly training with a resource-rich corpus is that
coverage of NEs increases, as validated in our case
where jointly training with Turkish corpus adds
114 more NEs.

Figure 4 shows ten named entities in two
different embeddings (CT-Joint: phoneme-
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Figure 4: Two-dimensional PCA projection of select
NEs from word embeddings for Uyghur—CT-Joint
model trained with phoneme-ngrams+lemma+morph
(blue) and monolingual model trained with char-
ngrams+lemma+morph

ngrams+lemma+morph and monolingual:
char-ngram+lemma+morph). The difference
is striking—in the monolingual condition, the
NEs are widely dispersed, but in the bilingual
condition, the NEs cluster together. This suggests
that phonologically-mediated transfer through
Turkish is resulting in embeddings in which NEs
are close to one another, relative to monolingual
Uyghur embeddings.

5.4 Machine Translation Task
In addition to NER, we test the performance of our
proposed approaches on the MT task to test gen-
erality of our conclusions. We use XNMT toolkit
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(Neubig et al., 2018) to translate sentences from
the low-resource language to English. We run sim-
ilar transfer and monolingual experiments as done
for NER. Due to space limitations, we use select
subword combinations for the experiments, details
of which can be found in Appendix. BLEU is used
as the evaluation metric.

From Table 6, we observe that the combina-
tion of character-ngrams and lemma performs the
best for Uyghur (+0.1) and the combination of
character-ngrams, lemma andmorph gives the best
performance for Bengali (+1.7), over the word
baseline, which demonstrates the importance of
subword units for low-resource MT as well. One
likely reason that the combination of character-
ngrams and lemmas consistently show the best per-
formance is that, together, they capture lexical sim-
ilarity, which is more important to translation than
the syntactic information captured by morpholog-
ical inflection (“morph”). However, experiments
using CT-Joint and CT-FineTune (Table 5) do not
follow the same trend as that of NER. We hy-
pothesize that this is because the MT models were
trained on a training set that did not have transla-
tion pairs from the high resource language. As Qi
et al. (2018) note, when training MT systems on a
single language pair, it is less necessary for the em-
beddings to be coordinated across the languages.

6 Related Work
Word Embedding Models: Most algorithms for
learning embeddings take inspiration from lan-
guage modeling (Bengio et al., 2003), motivated
by distributional hypothesis (Harris, 1954), and
employ a shallow neural network to map the words
into a low dimensional space. Pennington et al.
(2014) built over the above local context window
model by combining it with global matrix factor-
ization (Levy and Goldberg, 2014). Recently, Pe-
ters et al. (2018) show significant gains across vari-
ous tasks by learning word vectors as hidden states
of a deep bi-directional language model. This was
originally conceived for resource-abundant lan-
guages, hence it is as-of-yet unclear how general-
izable they are to low-resource settings.
Modeling subword information: Various
methods have validated the importance of mod-
eling subword units in downstream tasks. Xu
et al. (2016); Chen et al. (2015) experiment at
the character level whereas Luong et al. (2013)
use morphemes as a basic unit in recursive neural

network (RNN) to get morphologically-aware
word representations. Xu and Liu (2017) in-
corporate the morphemes’ meanings as part of
the word representation to implicitly model the
morphological knowledge.

Transfer learning: Most recent works using
transfer in low resource setting are coupled tightly
with the downstream task. Jin and Kann (2017)
use morpheme units for cross-lingual transfer in
a paradigm completion task using sequence-to-
sequence models. Tsai et al. (2016) employ a
language-independent method for NER by ground-
ing non-English phrases to English Wikipedia. In-
terestingly, Kim et al. (2017) use separate encoders
for modeling language-specific and language-
agnostic features for part-of-speech (POS) tagging,
and make use of no cross-lingual resources.

7 Conclusion
In this paper, we explored two simple methods
for cross-lingual transfer, both of which are task-
independent and use transfer learning for leverag-
ing subword information from resource-rich lan-
guages, especially through phonological and mor-
phological representations. CT-Joint and CT-
FineTune do not require morphological analyzers,
but we have found that even a morphological ana-
lyzer built in 2-3 weeks can boost performance and
is a worthwhile investment of resources. Prelimi-
nary evaluation on a separate task of MT recon-
firms the utility of subword units and further re-
search will reveal what these learned subword rep-
resentations can contribute to other tasks.
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Abstract
Several NLP studies address the problem of
figurative language, but among non-literal
phenomena, they have neglected exaggeration.
This paper presents a first computational ap-
proach to this figure of speech. We explore the
possibility to automatically detect exaggerated
sentences. First, we introduce HYPO, a cor-
pus containing overstatements (or hyperboles)
collected on the web and validated via crowd-
sourcing. Then, we evaluate a number of mod-
els trained on HYPO, and bring evidence that
the task of hyperbole identification can be suc-
cessfully performed based on a small set of se-
mantic features.

1 Introduction

Very often, when humans recount their experi-
ences, describe objects or verbalize ideas, they
exaggerate in some respects. “All you need is
love”, sang The Beatles in one of their most iconic
recordings; many centuries before, Shakespeare
had Romeo say that there was “more danger in
Juliet’s eyes than in twenty swords”; and Maximus
Meridius, a Roman commander in the movie The
Gladiator, incited his legion to battle by the words
“At my signal, unleash hell”. Exaggerating, like in
these quotes, is a linguistic tendency that unfolds
in a variety of situations. From TV advertisements
to debates in politics, our verbal productions are
infused with statements, or more precisely over-
statements, that puff up facts.

The study of exaggeration dates back to ancient
Greece, and its centrality in the spectrum of figures
of speech has long been established. Empirical ev-
idence has shown that it is the most used rhetori-
cal device, second only to metaphor (Kreuz et al.,
1996), but in comparison to its kin tropes, this phe-
nomenon represents an under-researched field in
NLP. In effect, the problem of automatic detection
of exaggerations (or hyperboles) has been quite

dismissed. On the one hand, determining that a
sentence speaks an excess is often a complex and
context dependent act, on the other, no resource
has ever been made available to specifically ad-
dress the figure. To overcome this issue, we build
HYPO, the first dataset focused on exaggeration,
and introduce the task of automatic hyperbole de-
tection. Specifically, the goal of this work is to
find an automatic solution to establish if the topic
of a sentence is aggrandized or, on the contrary, is
presented as it is in reality.

Effective identification of overstatements would
benefit theoretical and applied approaches to natu-
ral language. It can represent both a deterministic
strategy to test hypotheses about exaggerations, as
well as a boost for dialogue systems, information
extraction, and all such AI endeavors to under-
stand how humans talk. In fact, automating the in-
tuition that a text says more than is true can meet a
number of useful applications. Endowed with this
ability, automatic tools might support our recog-
nition of some kind of fake news, which blow in-
formation out of proportion; they might ascertain
whether the promises of testimonials and politi-
cians constitute a form of puffery; they might even
be exploited for health-related objectives, as auxil-
iary tools for the diagnosis of psychological condi-
tions (e.g., depression, narcissistic disorder) which
use exaggerations to depict extremely unnuanced
views of the world.

To tackle the problem, the paper starts with a
synthesis of past theoretical work, which provides
a guideline for building HYPO. Data was collected
by a manual crawl on the web and its quality was
tested via crowdsourcing. We then use the over-
statements of HYPO for learning to classify a sen-
tence as hyperbolic or literal. Experimental results
show that a number of models can solve the prob-
lem with above chance accuracy, thus confirming
that the task is feasible and that HYPO can be ex-
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ploited for similar purposes in future work.

2 Related Work

A long lasting challenge in NLP is to reason about
figurative language, and in fact, scientists have
achieved groundbreaking results in the study of
a range of figures. Nevertheless, they have given
scarce attention to hyperbole – if any at all. Only
relatively recently has this trope become an object
of interest of corpus linguistics, and some insights
on its nature have been delivered by statistics ex-
tracted from written and spoken sources.

The bulk of research points out that a hyperbole
is not perceived nor produced as a lie. It makes
things sound bigger than they actually are, but
with the goal of emphasizing them, of clarifying
ideas, of adding interest and humor to the conver-
sation (Roberts and Kreuz, 1994). In other words,
speakers exaggerate to accentuate the one element,
account or aspect of reality that is important to
them, in order to make others see truth from their
perspective (Ritter, 2012). Hearers, on their part,
suspend disbelief towards the literal content of the
hyperbolic expression, which is mendacious, and
recover its intended meaning, which is instead in
accord with reality. Basically, to find this non-
literal content, they reformulate a hyperbole as a
paraphrase devoid of figures of speech, which is
softer than the hyperbole itself and still conveys a
strong concept (Fogelin, 1988).

Another point on which the literature agrees is
that hyperboles are pragmatic acts. They may en-
tirely rely on the concrete context of their produc-
tion, like in the statement “It took ages to build
the castle”, which carries both an exaggerated and
a literal sense, depending on whether it refers to
a playful sand castle or to a strong walled con-
struction. McCarthy and Carter (2004) endorse
this view based on the need of contextual, extra-
linguistic information, and claim that understand-
ing an overstatement is to perceive a ‘contrast’ be-
tween the expression itself and its referent, i.e. a
discrepancy between reality as it is and as is de-
scribed.

Focusing on this contrast, Cano Mora (2010)
provides a handcrafted framework of the seman-
tic fields in which it tends to arise. Her taxon-
omy develops along a quantitative and a qualita-
tive dimensions, suggesting that any exaggeration
inflates either a measurable or a subjective prop-
erty of the topic of discourse. However, given

that any type of speaking non-literal is a depar-
ture from actual facts, the notion of ‘contrast’ can
be referred to figures of speech in general. With
this regard, an important point is made about the
peculiarities of hyperbole (Colston and O’Brien,
2000; Carston and Wearing, 2011). Exaggerat-
ing presents facts with a greater degree, e.g. being
bigger, more desirable, so it prompts a contrast of
magnitude. Other tropes engender a contrast of
kind for they portray an object via some types of
qualities that it does not actually have. Metaphors,
for instance, borrow those qualities from the vehi-
cle term.

Therefore, the major contribution yielded by
past corpus research is to have made explicit a few
typically hyperbolic characteristics, which will
come handy for the construction of our corpus.

3 HYPO

Hyperboles over-blow the truth, by augmenting or
down-toning the qualities of the referent of dis-
course, e.g., an event, an object, a person, etc. If
a referent has a feature X, a hyperbole presents it
as having more of that X than warranted by reality
(Claridge, 2011): what is big becomes bigger (e.g.
[1]) and what is small becomes smaller (e.g. [2]).
This causes a discrepancy between the linguistic
expression and the actual state of affairs, and pro-
vides the former with a non-literal meaning.

[1] Her morning jog turned into a marathon.

[2] I’m ready in no time.

Drawing on example from (McCarthy and
Carter, 2004), we use this ‘contrast’ or ‘counter-
factuality’ as the central condition that makes a
statement hyperbolic. It can be noticed that the ex-
tent of the contrast corresponds to different types
of overstatements, which can go from slight distor-
tions of real situations (e.g. [1]), to representations
of absurd worlds (e.g. [2]). In the second instance,
the contrast is grasped with no need for pragmatic
information, but other types of overstatements can
be perceived as such only if one knows the con-
textual setting in which they were produced. In
those cases, readers evaluate the credibility of the
sentence, that is, they confront how the sentence
presents property X of the topic to how they ex-
pect it to be, given their previous experience and
their common knowledge about the world (Ferré,
2014). For instance, although one cannot verify if
proposition [1] is in contrast with the truth, hardly
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would one believe that a routine jog has equaled a
marathon.

[3] I won’t wait for you: it took you centuries to
get dressed.

[4] That bag is to die for!

The above examples picture some peculiar traits
of hyperboles. First, they require the possibility
to present concepts with different intensities, by
shifting ideally towards the extremes of a continu-
ous semantic scale. Second, there are two scales
on which this shift occurs (Cano Mora, 2010).
One is quantitative, and it allows to inflate objec-
tive, measurable features (e.g. time [3]), while the
other is qualitative and serves to augment subjec-
tive characteristics (e.g. appreciation [4]).

Another defining element of hyperboles is their
emotional bent. When we exaggerate, we ac-
centuate some pieces of evidence that supports
our thoughts and perspectives, while downplay-
ing competing alternatives. We present an extrav-
agant view of reality with the goal of manifest-
ing our positive or negative involvement towards
it. This might appear obvious for qualitative hy-
perboles such as [4], for the property they enlarge
is subjective, but quantitative overstatements have
an evaluative trait as well. As an example, the
overstatement [3] frames an antipathetic position
by increasing an impartial, unemotional measure.

To sum up, there are three criteria that were
deemed to characterize a hyperbole. They are the
non-literal meaning, the upsurge on a semantic
scale and a connotative trait. Hyperbolic candi-
dates entered the corpus only if they were consid-
ered to have a figurative content rather than a de-
ceptive one, if the figurative component emerged
as a contrast of magnitude with reality, and if the
contrast seemed to color reality with an evaluative
tone.

3.1 Dataset Description
HYPO is a collection of 709 objects that comply
with the three definitional requirements, and that
can be deemed exaggerated without knowing the
context in which they were originally produced1.

1As an example, rather than “It took ages to build the cas-
tle”, which can be read as hyperbolic or literal depending on
contextual information, our dataset would be appended with
“It took ages to build the castle. After a few minutes, my
little brother had already destroyed it!”, which is non-literal
regardless of the context of its production.

Sentences can be semantically grouped into ba-
sic and composite items, which respectively pre-
serve and modify the semantic domain of their ref-
erent (Claridge, 2011). For instance, [5] is basic,
because the intended and literal meanings have the
same domain (i.e. size) though they differ in mag-
nitude. Instead, the exclamation in [6] is com-
posite, as the intended meaning concerns human
emotions but is expressed with a quality inherent
to stones. This results both in a metaphor, since it
describes a psychological state by means of a do-
main transfer, and in a hyperbole, because among
all the things that have limited movement capabil-
ities, it pinpoints the stones, which are completely
motionless.

[5] The house is the size of a postage stamp.

[6] First I was afraid, I was petrified!

[7] I avoid crowded places like the plague.

[8] She agreed with every word of my argument.

Other hyperboles arise from the combination
with figures different than metaphors, such as
comparatives [7] and synecdoches [8].

From a syntactic point of view, exaggerations
in the data either spread over phrases, or pop up
as single words that belong to any sorts of gram-
matical classes. One peculiar instance is that of
Extreme Case Formulations (ECFs), which are ad-
jectives (“absolute, whole”), quantifiers and nouns
(“all, no, everybody”), adverbs (“always, never”),
phrases (“as good as it gets”) and superlative con-
structions (“ever, the most”) that engender ex-
treme utterances by evoking the highest degree
on a semantic scale (Pomerantz, 1986). Although
ECFs might not be “heard as absurd or counter-
factual and often display a degree of convention-
ality” (McCarthy and Carter, 2004), they share
the three fundamental characteristics of the trope:
they build expressions around semantic acmes,
which lessens their credibility and prompts hear-
ers to grasp their non-literal content, namely, one
that expresses an evaluation. Some ECFs are at
work in the following propositions.

[9] This is the best pizza in history.

[10] Everybody loves chocolate.

Within the above groups lie qualitative [9] and
quantitative [5] hyperboles, creative [7] and con-
ventional [10] ways of exaggerating. Notably,
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such categories can criss-cross (Peña and Ruiz de
Mendoza, 2017) like in “I’d bake cakes again and
again and again”, an instance of a quantitative hy-
perbole that encompasses multiple tokens, as it is
merged with a polysyndeton.

4 Resource Construction

The collection of data for HYPO proceeded along
two lines. One involved our own effort to invent
overstatements. The other consisted of a manual
crawl of the Internet and targeted the scripts of ani-
mated cartoons, advertisements, love letters, click-
bait headlines, as well as other material that al-
legedly fulfilled the communicative objectives of
exaggerations (see Roberts and Kreuz, 1994), and
therefore was likely to include instances of this fig-
ure of speech. A total of 804 overstatements was
obtained which comply with the definition pre-
sented in Section 3.

These candidate items underwent a validation
stage on the Crowdflower/Figure Eight platform2,
where their hyperbolicity was judged by external
annotators, and the final corpus was determined.
Ideally, our microtask was feasible by any English
speaker. It asked workers to read 10 sentences, one
of which was a test item, and to answer 6 questions
aimed at determining if and how the texts overstate
their topic. Gold units consisted of 42 hyperboles,
together with 50 non-hyperbolic statements to en-
sure that raters would not learn to mark all items
as exaggerated. Each of the 854 sentences was ex-
pected to be judged by 5 annotators provided with
minimal instructions on the subject at hand.

In particular, the annotators decided if a sen-
tence contained a hyperbole (Question 1), and if
so, they highlighted the words that caused its hy-
perbolic bent (Question 2), paraphrased it with-
out exaggerating (Question 3), classified the hy-
perbole as quantitative or qualitative (Question 4),
rated the degree of the exaggeration (Question 5)
and established whether it was creative or conven-
tional (Question 6).

With the first question, candidate items for
HYPO were validated. In the second, annotators
selected the smallest number of words (or minimal
units) that convey the exaggeration, like “million”
in “I’ve told you a million times”. This assign-
ment enabled us to collect the units perceived as
hyperbolic, and to use them for creating another
corpus, that is, a dataset of sentences which in-

2https://www.figure-eight.com

clude the hyperbolic tokens of HYPO, but without
their hyperbolic twist (see 4.2). Similarly, the ra-
tionale beyond the third question was the construc-
tion of a corpus devoid of exaggerations. People
had to paraphrase the sentences without exaggerat-
ing. They were encouraged to reword or delete the
portion of text highlighted in Question 2, such that
the resulting sentences would have differed from
the original ones only for the absence of hyper-
bolic tokens. Basically, we explored the idea that
understanding a hyperbole requires a sort of re-
adjustment, where concepts are toned down, but
still to a high degree. For instance, an overstate-
ment such as “I’ve told you a million times” could
have been modified as in “I’ve told you a lot of
times”.

In Question 4, the annotators decided if a hy-
perbole belonged to a quantitative or a qualitative
class, according to whether it exaggerated some-
thing which is objective and quantifiable with a
number (e.g. “He never says no”) or which is
subjective and unmeasurable (e.g. “He seems to
come from another world!”). This was meant to
label sentences with one of the two semantic di-
mensions along which a concept is aggrandized, as
proposed in the literature (Cano Mora, 2010). As
for Question 5, an exaggeration was rated as either
‘Possible’, if it denoted an extreme but conceiv-
able situation (e.g. “I avoid crowded places like
the plague”), or ‘Impossible’, when it described
an absurd or paradoxical situation (e.g. “My father
always works”). We collected these scores to test
the hypothesis that sentences with a higher hyper-
bolic degree are classified more accurately in the
experiment because their excess is easier to detect.
In the sixth question, exaggerations were judged
either as conventional (“He died of envy”) or cre-
ative ways to express an idea (“It got so cold that
all spoken words froze solid”). The answers were
expected to show if there is a correlation between
conventional and ‘Possible’ hyperboles of Ques-
tion 5 (i.e. if conventional items are perceived as
softer exaggerations)3.

4.1 Evaluation Measures

Only 750 sentence received 5 reliable judgments.
Therefore, to evaluate the quality of the results, the

3For the quality check, we only required the raters to cor-
rectly judge questions 1 and 2. Question 3 was not included
as no unique answer exists. Questions 4, 5 and 6 were also not
included because, due to their difficulty, we expected some
amount of disagreement among the raters.

3299



inter-annotator agreement was observed on those.
We calculated two measures of agreement for the
task of recognizing hyperboles (Question 1). First,
we measured the raw agreement (RA) that is the
proportion of items with unanimous judgments
(i.e. the sentences marked as either hyperbolic or
non-hyperbolic by all the workers) out of the to-
tal number of items with 5 judgments. The final
score showed that annotators agreed in 58.5% of
the cases, which we considered an acceptable met-
ric for the reliability of the annotation process.

That people had the same understanding of hy-
perboles in more than half the items seemed rea-
sonable, because it can be challenging to estab-
lish if a statement is extreme, especially for non-
expert workers. In fact, contextual knowledge,
which in everyday situations enables interlocutors
to grasp the inflation of a sentence, is neglected
in an experiment that revolves around isolated tex-
tual passages. Moreover, the RA measure is ex-
tremely sensitive to the inconsistency of results,
as the presence of one incongruous annotation out
of 5 is enough to lower the outcome.

Therefore, we used a second measure to take
into consideration the difficulty of having 5 people
agree. Since items were labeled by more than two
annotators, we computed a pairwise agreement, as
suggested by (Artstein and Poesio, 2008). We ex-
ploited the Observed Agreement (AO) as defined
in Fleiss’s , which consists of the proportion of
items on which pairs of annotators agree out of the
total number of judgment pairs. Also in this case
we observed a substantial agreement (AO=80.2%)
corroborating the quality of our results.

4.2 Final Datasets

The logic behind the validation of our resource
was to obtain adequate information to train a clas-
sifier of hyperboles. Given the consistency of
annotations, we selected the sentences to be in-
serted into the corpus of hyperboles and built two
control datasets. The outcome is a set of hyper-
boles (HYPO) with two types of non-figurative
counterparts, that is, their paraphrases, and literal
sentences that include the words that are hyper-
bolic in HYPO, but with a literal connotation. By
means of illustration, while HYPO would incor-
porate a sentence like “Her morning jog turned
into a marathon”, the Paraphrases corpus and the
Minimal Units Corpus would respectively include
“Her morning jog turned into a very long run” and

“There is a marathon in the city today”.

HYPO The sentences in HYPO are the items
that at least 3 annotators out of 5 perceived as ex-
aggerations. From the total of 854 judged sen-
tences, we discarded the non-hyperbolic units,
those that received less than 5 judgments and those
which were not classified as hyperbolic by the ma-
jority of annotators. The final result is a corpus of
709 hyperboles4.

Paraphrases Corpus The corpus of para-
phrases was created by choosing one paraphrase
for each hyperbolic sentence, i.e. the one that in-
troduced the smallest change in the syntax and the
semantics of the corresponding hyperbole. The re-
sult is a collection of 709 sentences which say the
same things as their hyperbolic counterparts but
are devoid of exaggerations.

Minimal Units Corpus To build this dataset,
we used the minimal units selected by the annota-
tors in Question 2. We wanted to end up with sen-
tences which are not hyperbolic and which contain
the same hyperbolic words of HYPO.

For each exaggeration we considered the tokens
that were selected by the majority of annotators.
They either consisted of a single term, or a phrase,
or long-distance words. Then, we extracted sen-
tences containing these tokens from sources such
as the WaCKy corpus, a dump of the English
Wikipedia, whose editorial criteria force the en-
tries to be neutral and verifiable, and thus, un-
likely to incorporate excessive statements. When-
ever this approach did not produce results, we ran
a Google search. The final corpus contains 698
non-hyperbolic sentences.

5 Experiment

The task of hyperbole detection is formulated as
a supervised learning problem, and specifically, as
a sentence-based classification with two classes,
that is, hyperbolic and literal.

5.1 Features Set
To describe sentences, we define two sets of
features that incorporate the qualitative and
quantitative criteria proposed in the literature5.

4The dataset will be made publicly available under a Cre-
ative Commons License for free cultural works.

5These terms do not refer to the semantic scale on which
the shift of meaning occurs, which vary depending on the
topic of hyperboles, but to the counterfactuality and the con-
notative traits that characterize them all.
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All of the features take on values in the interval
[-1,1], and some are encoded in multiple ways
to ensure richer information. As for the quantity
group, the notion that hyperboles say more of
X when X is the case is decomposed into two
features, i.e. imageability and unexpectedness,
while the qualitative marker of hyperboles, or the
view that they shape a speaker’s perspective about
X, is rendered by the polarity, the subjectivity and
the emotional strength of sentences.

Imageability is the degree to which a word
can evoke a mental image. Speakers hyperbolize
to convey meanings with strength, and we as-
sumed that such a goal might be backed by a
highly picturable vocabulary. This feature is
extracted from the resource of Tsvetkov et al.
(2014), who propagated the imageability ratings
of the MRC psycholinguistic database to 150.114
terms. For each sentence, we averaged the
imageability values of all its words.

Unexpectedness refers to the fact that hy-
perboles are less predictable expressions than
literals. Basically, minimal hyperbolic units
modify the real characteristics of X, and in this
sense, they are incoherent with the rest of dis-
course about X: they are out of context, and come
unexpected to the hearers of overstatements.

We conjecture that word vectors may capture
if an expression is being used “unexpectedly” be-
cause they encode the contexts in which terms fre-
quently occur, as well as contrasts and similari-
ties among their meanings. In fact, according to
the Distributional Hypothesis (Harris, 1954), lex-
ical items appearing in similar contexts tend to
have similar meanings. Our expectation is that the
words of a figurative sentence carry less similar
meanings compared to those of a literal instance,
and hence, that their vectorial representations turn
out to be more distant.

For every sentence in the dataset, we map
its words onto both the pre-trained vectors of
Mikolov et al. (2013), obtained from the Skip-
gram model, and the GloVe vectors by Pennington
et al. (2014). Then, we consider the cosine
distance between all possible word pairs to score
their semantic similarity. The unexpectedness
feature of a sentence is found in two ways: as the
average similarity among all of its word pairs, and
as the lowest of those pair similarities. Both mea-

sures are separately computed with Skip-Gram
and GloVe vectors, resulting in 4 scores.

Polarity corresponds to the sentiment of a
statement. It is extracted through both TextBlob
(Loria, 2014), a system that directly scores
sentences, and SentiWords (Gatti et al., 2016),
which lists polarity values for 155k POS-tagged
lemmas. With this lexicon, we find the sentiment
of a sentence by averaging the sentiment of all of
its word lemmas.

Subjectivity, found with TextBlob, which
specifies if a statement conveys an objective
information or a personal opinion. Ideally, the
higher the absolute value of polarity in the range
[0,1], the more subjective a sentence.

Emotional intensity stands for the strength
of sentiment. It captures if the utterer of a
sentence is sympathetic towards the thing being
said, while quantifying the emphasis with which
such position is communicated. The scores are
obtained from VADER (Hutto and Gilbert, 2014).

5.2 Experimental Setup and Results

A simple pre-processing is applied to HYPO,
the Paraphrases and the Minimal Units corpora
prior to the experiment. We remove the stop-
words, for which the quality scores are not avail-
able. The resulting sentences are represented by
9-dimensional vectors, in which 5 entries stand for
the quantity features and 4 belong to the quality
group.

For classification, we experiment with vari-
ous algorithms, such as Logistic Regression (LR),
Naive Baies (NB), k-Nearest Neighbors (KNN),
Decision Trees (DT), Support Vector Machine
(SVM) and Linear Discriminant Analysis (LDA).
The models are evaluated by comparing their aver-
age accuracy on a 10-fold cross-validation against
three baselines: a classifier that randomly asso-
ciates inputs to the hyperbolic and literal labels,
one that classifies sentences using the 300 features
of the pre-trained Skip-gram representations, and
a third that relies on the 300-dimensional GloVe
vectors trained by their authors. Sentences fed
to the baseline classifiers were represented as the
sum of their word vectors6.

6Other types of compositional methods yield results anal-
ogous to those in Table 1 and Table 2.
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Baseline1 QQ Skip-gram GloVe Skip-gram+QQ GloVe+QQ
LR .50 .64 .68 .66 .72 .69
KNN .50 .63 .47 .43 .52 .48
NB .50 .66 .69 .66 .69 .68
DT .50 .60 .54 .53 .55 .54
SVM .50 .64 .15 .62 .63 .64
LDA .50 .61 .67 .65 .68 .67

Table 1: Mean accuracy of 10-fold cross validation in the Hype-Par setting. Column QQ shows results for our
handcrafted quality and quantity features; the last two columns are concatenations of QQ with the Skip-gram and
GloVe baseline features.

Baseline1 QQ Skip-gram GloVe Skip-gram+QQ GloVe+QQ
LR .50 .44 .60 .58 .61 .59
KNN .50 .47 .49 .48 .50 .51
NB .50 .50 .64 .64 .62 .68
DT .50 .51 .51 .52 .56 .54
SVM .50 .02 .09 .59 .13 .60
LDA .50 .52 .54 .34 .57 .56

Table 2: Mean accuracy of 10-fold cross validation in the Hype-Min setting.

Cross-validation is conducted in two settings.
In one (Hype-Par), the non-hyperbolic sentences
are paraphrases, in the other (Hype-Min), literal
data come from the Minimal Units Corpus. The
results are shown in Table 1 and Table 2.

While in the Hype-Min setting the performance
is not satisfying, estimators achieve above chance
accuracy using paraphrases as literal inputs. In
fact, in Table 1, the accuracy scores based on
quantity-quality vectors (QQ column) suggest that
our handcrafted features are actually useful for de-
tecting hyperboles. Therefore, to gain further in-
sight on their informativeness, we conduct a re-
current feature ablation and observed how differ-
ent subsets affect predictions. Figure 1 illustrates
that 5 features can maximize the accuracy of LR.
SVM and LDA behave the same with a set of the
same size, and they all assign high weights to im-
ageability, unexpectedness and subjectivity. The
three models become comparable to, and yet do
not outperform, the second and third baselines.

In the attempt to improve the models’ descrip-
tion of the data, we repeat the experiment with yet
another set of features. We merge the QQ with
the Skip-Gram and GloVe features, by separately
concatenating the two types of vectors to our data
representations (Skip-Gram+QQ and GloVe+QQ
columns).

An interesting trend appears both for Hype-Par
and Hype-Min: with Skip-Gram+QQ, algorithms

perform better than relying on Skip-Gram or QQ
alone, and the same happens for Glove+QQ. The
new sets of features produce a consistent improve-
ment over the baselines and over our own fea-
tures. LR outstands other classifiers in the Skip-
Gram+QQ combination, reaching .72 mean accu-
racy and .76 average F1-score (see Table 3).

Figure 1: Recurrent Feature Elimination with LR in the
Hype-Par setting.

5.3 Analysis
The concatenation of vectors enhance perfor-
mances and it provides evidence that our quan-
tity and quality vectors enrich both Skip-Gram and
GloVe with some useful information about hyper-
bole. This observation, together with the outcome
of LR, suggests that the task introduced in the
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Hype-Par Hype-Min
(LR, Skip-Gram+QQ) (NB, GloVe+QQ)

Precision .76 .54
Recall .76 .53
F1-score .76 .52

Table 3: Average precision, recall and F-1 values ob-
tained in cross validation for the best performing mod-
els in Hype-Par and Hype-Min.

Conventional Measurable Possible
YES 50 18 20
NO 43 75 73

Table 4: Annotators’ judgments about 93 misclassified
hyperboles.

present work delineates a promising field of in-
quiry, and that it can benefit from our QQ features.

To deepen our understanding of the results, we
analyze the errors made in the Hype-Par classifica-
tion. This conclusive stage of the study serves to
probe if the overstatements that tend to be misclas-
sified share some characteristics that are missing
from our group of features.

From a test set of 468 data points, we collect
those that are incorrectly labeled by all of the mod-
els, which comprise 185 sentences, 93 of which
are hyperbolic. Examples are: “He’s more aged
than the hills” (Hype), “They will die of envy”
(Hype), “You get into that university, you won’t
get out alive” (Hype), “He hiccuped for a long
time” (Par).

We investigate the characteristics for which we
collected judgments in the Crowdflower experi-
ment (Questions 4, 5 and 6 in the Section above),
that is, the measurable trait of exaggerations, and
their degree of hyperbolicity and conventionality.
Table 4 details the judgments about misclassified
hyperboles, as rated by the the majority of their an-
notators. More than half hyperboles were declared
conventional, impossible and non-measurable.

It appears that conventional hyperboles are
more difficult to recognize (the test set comprises
an equal number of conventional and creative
items). This is not surprising if we consider that
the classifiers have especially relied on the unex-
pectedness feature. Vectors encode information
relative to the context where words occur, so they
might capture that the words of a conventional hy-
perbole are likely to be used together, since they

are highly common in language (e.g. [2]).
As for the second characteristic, the majority of

hyperboles amplifies, according to the annotators,
an unmeasurable trait of the topic of discourse.
This sheds light on the topic of the errors: un-
derstanding that a sentence overshoots reality with
respect to a subjective impression (e.g. heaviness
of commitment [3]) is harder than with an objec-
tive quality (e.g. age [1]). In future work, we may
investigate how to better formalize the counterfac-
tuality condition, by specifying different strategies
to use in the two cases.

Lastly, errors regarding the degree of hyperbol-
icity run up against our expectations. We hypoth-
esized that a more exaggerated hyperbole (i.e. im-
possible) is easier to identify, but statistics suggest
the opposite. Impossible hyperboles may be ob-
vious for humans, who use pragmatic knowledge,
but not for an agent which entirely relies on lin-
guistic information. Prospective research may test
if this problem can be overcome with the help of
multimodal strategies.

6 Conclusions

Hyperbole, the figure of exaggeration and one of
the hallmarks of human communication, is tack-
led in this paper from a computational perspec-
tive. Our research aimed at answering the question
whether it is possible to endow a system with the
ability to identify exaggerated sentences. Exper-
imental results showed promising directions for
their automatic detection and suggest that the ex-
ecution of this task can be based on semantic fea-
tures. As a novel approach to hyperboles, the
project started with no related studies to compare
to, nor useful resources to investigate. Hence, its
main contribution to the field of NLP is the pro-
posal of a new task together with the construction
of a corpus of hyperboles, and its main achieve-
ment is the devising of a procedure to learn such
figurative mechanism. Specifically, the described
experiment tested the hypothesis that quantity and
quality, which emerge from the body of literature
as two core features of exaggerations, are also use-
ful for the automatic processing of the figure.

As a future work, we plan to investigate if our
QQ-based models are enhanced by extra-linguistic
knowledge, and to incorporate contextual, multi-
modal features along semantic ones.
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Abstract

Capabilities to categorize a clause based on the
type of situation entity (e.g., events, states and
generic statements) the clause introduces to
the discourse can benefit many NLP applica-
tions. Observing that the situation entity type
of a clause depends on discourse functions the
clause plays in a paragraph and the interpre-
tation of discourse functions depends heav-
ily on paragraph-wide contexts, we propose
to build context-aware clause representations
for predicting situation entity types of clauses.
Specifically, we propose a hierarchical recur-
rent neural network model to read a whole
paragraph at a time and jointly learn represen-
tations for all the clauses in the paragraph by
extensively modeling context influences and
inter-dependencies of clauses. Experimen-
tal results show that our model achieves the
state-of-the-art performance for clause-level
situation entity classification on the genre-
rich MASC+Wiki corpus, which approaches
human-level performance.

1 Introduction

Clauses in a paragraph play different discourse
and pragmatic roles and have different aspectual
properties (Smith, 1997; Verkuyl, 2013) accord-
ingly. We aim to categorize a clause based on
its aspectual property and more specifically, based
on the type of Situation Entity (SE)1 (e.g., events,
states, generalizing statements and generic state-
ments) the clause introduces to the discourse, fol-
lowing the recent work by (Friedrich et al., 2016).
Understanding SE types of clauses is beneficial for
many NLP tasks, including discourse mode identi-

1The Situation Entity (SE) type of a clause is defined with
respect to three situation-related features: the main NP ref-
erent type (specific or generic), fundamental aspectual class
(stative or dynamic), and whether the situation evoked is
episodic or habitual (Friedrich and Palmer, 2014b).

fication2 (Smith, 2003, 2005), text summarization,
information extraction and question answering.

The situation entity type of a clause reflects
discourse roles the clause plays in a paragraph
and discourse role interpretation depends heavily
on paragraph-wide contexts. Recently, Friedrich
et al. (2016) used insightful syntactic-semantic
features extracted from the target clause itself for
SE type classification, which has achieved good
performance across several genres when evaluated
on the newly created large dataset MASC+Wiki.
In addition, Friedrich et al. (2016) implemented
a sequence labeling model with conditional ran-
dom fields (CRF) (Lafferty et al., 2001) for fine-
tuning a sequence of predicted SE types. However,
other than leveraging common SE label patterns
(e.g., GENERIC clauses tend to cluster together.),
this approach largely ignored the wider contexts a
clause appears in when predicting its SE type.

To further improve the performance and robust-
ness of situation entity type classification, we ar-
gue that we should consider influences of wider
contexts more extensively, not only by fine-tuning
a sequence of SE type predictions, but also in de-
riving clause representations and obtaining precise
individual SE type predictions. For example, we
distinguish GENERIC statements from GENER-
ALIZING statements depending on if a clause ex-
presses general information over classes or kinds
instead of specific individuals. We recognize the
latter two clauses in the following paragraph as
GENERALIZING because both clauses describe
situations related to the Amazon river:

(1): [Today, the Amazon river is experiencing
a crisis of overfishing.]STATE [Both subsistence
fishers and their commercial rivals compete in net-
ting large quantities of pacu,]GENERALIZING

2E.g., EVENTs and STATEs are dominant in narratives
while GENERALIZINGs and GENERICs are dominant in
informative discourses.
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[which bring good prices at markets in Brazil and
abroad.]GENERALIZING

If we ignore the wider context, the second
clause can be wrongly recognized as GENERIC
easily since “fishers” usually refer to one gen-
eral class rather than specific individuals. How-
ever, considering the background introduced in
first clause, “fishers” here actually refer to the fish-
ers who fish on Amazon river which become spe-
cific individuals immediately.

Therefore, we aim to build context-aware clause
representations dynamically which are informed
by their paragraph-wide contexts. Specifically,
we propose a hierarchical recurrent neural net-
work model to read a whole paragraph at a time
and jointly learn representations for all the clauses
in the paragraph. Our paragraph-level model
derive clause representations by modeling inter-
dependencies between clauses within a paragraph.
In order to further improve SE type classification
performance, we also add an extra CRF layer at
the top of our paragraph-level model to fine-tune
a sequence of SE type predictions over clauses
(Friedrich et al., 2016), which however is not our
contribution.

Experimental results show that our paragraph-
level neural network model greatly improves the
performance of SE type classification on the same
MASC+Wiki (Friedrich et al., 2016) corpus and
achieves robust performance close to human level.
In addition, the CRF layer further improves the SE
type classification results, but by a small margin.
We hypothesize that situation entity type patterns
across clauses may have been largely captured by
allowing the preceding and following clauses to
influence semantic representation building for a
clause in the paragraph-level neural net model.

2 Related Work

2.1 Linguistic Categories of SE Types
The situation entity types annotated in the
MASC+Wiki corpus (Friedrich et al., 2016) were
initially introduced by Smith (2003), which were
then extended by (Palmer et al., 2007; Friedrich
and Palmer, 2014b). The situation entity types can
be divided into the following broad categories:

• Eventualities (EVENT, STATE and RE-
PORT): for clauses representing actual hap-
penings and world states. STATE and
EVENT are two fundamental aspectual
classes of a clause (Siegel and McKeown,

2000) which can be distinguished by the se-
mantic property of dynamism. REPORT is a
subtype of EVENT for quoted speech.

• General Statives (GENERIC and GENER-
ALIZING): for clauses that express general
information over classes or kinds, or regular-
ities related to specific main referents. The
type GENERIC is for utterances describing a
general class or kind rather than any specific
individuals (e.g., People love dogs.). The
type GENERALIZING is for habitual utter-
ances that refer to ongoing actions or prop-
erties of specific individuals (e.g., Audubon
educates the public.).

• Speech Acts (QUESTION and IMPERA-
TIVE): for clauses expressing two types of
speech acts (Searle, 1969).

2.2 Situation Entity (SE) Type Classification
Although situation entities have been well-studied
in linguistics, there were only several previous
works focusing on data-driven SE type classi-
fication using computational methods. Palmer
et al. (2007) first implemented a maximum en-
tropy model for SE type classification relying on
words, POS tags and some linguistic cues as main
features. This work used a relatively small dataset
(around 4300 clauses) and did not achieve satisfied
performance (around 50% of accuracy).

To bridge the gap, Friedrich et al. (2016) cre-
ated a much larger dataset MASC+Wiki (more
than 40,000 clauses) and achieved better SE type
classification performance (around 75% accuracy)
by using rich features extracted from the target
clause. The feature sets include POS tags, Brown
cluster features, syntactic and semantic features of
the main verb and main referent as well as fea-
tures indicating the aspectual nature of a clause.
Friedrich et al. (2016) further improved the per-
formance by implementing a sequence labeling
(CRF) model to fine-tune a sequence of SE type
predictions and noted that much of the perfor-
mance gain came from modeling the label pattern
that GENERIC clauses often occur together. In
contrast, we focus on deriving dynamic clause rep-
resentations informed by paragraph-level contexts
and model context influences more extensively.

Becker et al. (2017) proposed a GRU based neu-
ral network model that predicts the SE type for
one clause each time, by encoding the content
of the target clause using a GRU and incorporat-
ing several sources of context information, includ-
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ing contents and labels of preceding clauses as
well as genre information, using additional sepa-
rate GRUs (Chung et al., 2014). This model is dif-
ferent from our approach that processes one para-
graph (with a sequence of clauses) at a time and
extensively models inter-dependencies of clauses.

Other related tasks include predicting aspectual
classes of verbs (Friedrich and Palmer, 2014a),
classifying genericity of noun phrases (Reiter
and Frank, 2010) and predicting clause habitual-
ity (Friedrich and Pinkal, 2015).

2.3 Paragraph-level Sequence Labeling

Learning latent representations and predicting a
sequence of labels from a long sequence of sen-
tences (clauses), such as a paragraph, is a chal-
lenging task. Recently, various neural network
models, including Convolution Neural Network
(CNN) (Wang and Lu, 2017), Recurrent Neural
Network (RNN) based models (Wang et al., 2015;
Chiu and Nichols, 2016; Huang et al., 2015; Ma
and Hovy, 2016; Lample et al., 2016) and Se-
quence to Sequence models (Vaswani et al., 2016;
Zheng et al., 2017), have been applied to the gen-
eral task of sequence labeling. Among them, the
bidirectional LSTM (Bi-LSTM) model (Schuster
and Paliwal, 1997) has been widely used to pro-
cess a paragraph for applications such as lan-
guage generation (Li et al., 2015), dialogue sys-
tems (Serban et al., 2016) and text summariza-
tion (Nallapati et al., 2016), because of its ca-
pabilities in modeling long-distance dependencies
between words. In this work, we use two lev-
els of Bi-LSTMs connected by a max-pooling
layer to abstract clause representations by ex-
tensively modeling paragraph-wide contexts and
inter-dependencies between clauses.

3 The Hierarchical Recurrent Neural
Network for SE Type Classification

We design an unified neural network to exten-
sively model word-level dependencies as well as
clause-level dependencies in deriving clause rep-
resentations for SE type prediction. Figure 1
shows the architecture of the proposed paragraph-
level neural network model which includes two
Bi-LSTM layers, one max-pooling layer in be-
tween and one final softmax prediction layer.

Given the word sequence of one paragraph as
input, the word-level Bi-LSTM will firstly gener-
ate a sequence of hidden states as word representa-

tions, then a max-pooling layer will be applied to
abstract clause embeddings from word represen-
tations within a clause. Next, another clause-level
Bi-LSTM will run over the sequence of clause em-
beddings and derive final clause representations by
further modeling semantic dependencies between
clauses within a paragraph. The softmax predic-
tion layer will then predict a sequence of situation
entity (SE) types with one label for each clause,
based on the final clause representations.

Word Vectors: To transform the one-hot repre-
sentation of each word into its distributed word
vector (Mikolov et al., 2013), we used the pre-
trained 300-dimension Google English word2vec
embeddings3. For the words which are not in-
cluded in the vocabulary of Google word2vec, we
randomly initialize their word vectors with each
dimension sampled from the range [�0.25, 0.25].

For situation entity type classification, it is im-
portant to recognize certain types of words such as
punctuation marks (e.g., “?” for QUESTION and
“!” for IMPERATIVE) as well as entities such as
locations and time values. We therefore created
feature-rich word vectors by concatenating word
embeddings with parts-of-speech (POS) tag and
named-entity (NE) tag one-hot embeddings4.

Deriving Clause Representations: In design-
ing the model, we focus on building clause rep-
resentations that sufficiently leverage cues from
paragraph-wide contexts for SE type prediction,
including both preceding and following clauses in
a paragraph. To process long paragraphs which
may contain a number of clauses, we utilize a two-
level bottom-up abstraction approach and progres-
sively obtain the compositional representation of
each word (low-level) and then compute a compo-
sitional representation of each clause (high-level),
with a max-pooling layer in between.

At both word-level and clause-level, we choose
the Bi-LSTM as our basic neural net component
for representation learning, mainly considering its
ability to capture long-distance dependencies be-
tween words (clauses) and to integrate influences
of context words (clauses) from both directions.

Given a word sequence X = (x1, x2, ..., xL)

3Downloaded from https://docs.google.com/
uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM

4Our feature-rich word vectors are of dimension 343, in-
cluding 300 dimensions for Google word2vec + 36 dimen-
sions for POS tags + 7 dimensions for NE tags. We used the
Stanford CoreNLP to generate POS tags and NE tags.
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Figure 1: The Paragraph-level Model Architecture for Situation Entity Type Classification.

in a paragraph as the input, the word-level Bi-
LSTM will process the input paragraph by using
two separate LSTMs, one processes the word se-
quence from the left to right while the other pro-
cesses the sequence from the right to left. There-
fore, at each word position t, we obtain two hidden
states

�!
ht ,
 �
ht and concatenate them to get the word

representation ht = [
�!
ht ,
 �
ht ]. Then we apply the

max-pooling operation over the sequence of word
representations for words within a clause in order
to get the initial clause embedding:

hClause[j] =
Clause end

max
t=Clause start

ht[j] (1)

where, 1  j  hidden unit size (2)

Next, the clause-level Bi-LSTM will process
the sequence of initial clause embeddings in
a paragraph and generate refined hidden states�����!
hClause t and

 �����
hClause t at each clause position

t. Then, we concatenate the two hidden states
for a clause to get the final clause representation
hClause t = [

�����!
hClause t,

 �����
hClause t].

Situation Entity Type Classification: Finally, the
prediction layer will predict the situation entity
type for each clause by applying the softmax func-
tion to its clause representation:

yt = softmax(Wy ⇤ hClause t + by) (3)

3.1 Fine-tune Situation Entity Predictions
with a CRF Layer

Previous studies (Friedrich et al., 2016; Becker
et al., 2017) show that there exist common SE la-
bel patterns between adjacent clauses. For exam-
ple, Friedrich et al. (2016) reported the fact that
GENERIC sentences usually occur together in a
paragraph. Following (Friedrich et al., 2016), in
order to capture SE label patterns in our hierarchi-
cal recurrent neural network model, we add a CRF
layer at the top of the softmax prediction layer
(shown in figure 2) to fine-tune predicted situation
entity types.

The CRF layer will update a state-transition ma-
trix, which can effectively adjust the current label
depending on its preceding and following labels.
Both the training and decoding procedures of the
CRF layer can be conducted efficiently using the
Viterbi algorithm. With the CRF layer, the model
jointly assigns a sequence of SE labels, one label
per clause, by considering individual clause repre-
sentations as well as common SE label patterns.
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Figure 2: Fine-tune a Situation Entity Label Se-
quence with a CRF layer.

3.2 Parameter Settings and Model Training
We finalized hyperparameters based on the best
performance with 10-fold cross-validation on the
training set. The word vectors were fixed dur-
ing model training. Both word representations and
clause representations in the model are of 300 di-
mensions, and all the Bi-LSTM layers contain 300
hidden units as well. To avoid overfitting, we
applied dropout mechanism (Hinton et al., 2012)
with dropout rate of 0.5 to both input and output
vectors of Bi-LSTM layers. To deal with the ex-
ploding gradient problem in LSTMs training, we
utilized gradient clipping (Pascanu et al., 2013)
with gradient L2-norm threshold of 5.0 and used
L2 regularization with � = 10�4 simultaneously.
These parameters remained the same for all our
proposed models including our own baseline mod-
els.

We chose the standard cross-entropy loss func-
tion for training our neural network models and
adopted Adam (Kingma and Ba, 2014) optimizer
with the initial learning rate of 0.001 and the batch
size5 of 128. All our proposed models were im-
plemented with Pytorch6 and converged to the best
result within 40 epochs. Note that to diminish the
effects of randomness in training neural network
models and report stable experimental results, we
ran each of the proposed models as well as our
own baseline models ten times and reported the
averaged performance across the ten runs.

4 Evaluation

4.1 Dataset and Preprocessing
The MASC+Wiki Corpus: We evaluated our
neural network model on the MASC+Wiki cor-
pus7 (Friedrich et al., 2016), which contains more

5Counted as the number of SEs rather than paragraph in-
stances.

6http://pytorch.org/
7www.coli.uni-saarland.de/projects/

sitent/page.php?id=resources

SE type MASC Wiki Count
STATE 49.8% 24.3% 18337
EVENT 24.3% 18.9% 9688
REPORT 4.8% 0.9% 1617
GENERIC 7.3% 49.7% 7582
GENERALIZING 3.8% 2.5% 1466
QUESTION 3.3% 0.1% 1056
IMPERATIVE 3.2% 0.2% 1046

Table 1: MASC+Wiki Dataset Statistics.

than 40,000 clauses and is the largest annotated
dataset for situation entity type classification. The
MASC+Wiki dataset is composed of documents
from Wikipedia and MASC (Ide et al., 2008) cov-
ering as many as 13 written genres (e.g., news,
essays, fiction, etc). Table 1 shows statistics of
the dataset, from which you can see that the SE
type distribution is highly imbalanced. The ma-
jority SE type of MASC documents is STATE
while the majority SE type of Wikipedia docu-
ments is GENERIC. To make our results compa-
rable with previous works (Friedrich et al., 2016;
Becker et al., 2017), we used the same 80:20 train-
test split with balanced genre distributions.

Preprocessing: As described in (Friedrich
et al., 2016), texts were split into clauses using
SPADE (Soricut and Marcu, 2003). There are
4,784 paragraphs in total in the corpus; and on
average, each paragraph contains 9.6 clauses. In
figure 4, the horizontal axis shows the distribution
of paragraphs based on the number of clauses in a
paragraph. The annotations of clauses are stored
in separate files from the text files. To recover the
paragraph contexts for each clause, we matched its
content with the corresponding raw document.

4.2 Systems for Comparisons
We compare the performance of our neural net-
work model with two recent SE type classification
models on the MASC+Wiki corpus as well as hu-
mans’ performance (upper bound).

• CRF (Friedrich et al., 2016): a CRF model
that relies heavily on features extracted from
the target clause itself.

• GRU (Becker et al., 2017): a GRU based neu-
ral network model that incorporates context
information by using separate GRU units and
predicts the SE type for one clause each time.

• Humans (Friedrich et al., 2016): one annota-
tor’s performance when using two other an-
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Model Macro Acc STA EVE REP GENI GENA QUE IMP
Humans 78.6 79.6 82.8 80.5 81.5 75.1 45.8 90.7 93.6
CRF (Friedrich et al., 2016) 71.2 76.4 80.6 78.6 78.9 68.3 29.4 84.4 75.3
Clause-level Bi-LSTM 74.4 78.3 82.6 81.3 84.9 66.2 36.1 88.5 80.9
Paragraph-level Model 77.6 81.2 84.3 82.1 85.3 76.4 43.2 90.8 81.2
Paragraph-level Model+CRF 77.8 81.3 84.3 82.0 85.7 77.0 43.5 90.4 81.5

Table 2: Situation Entity Type Classification Results on the Training Set of MASC+Wiki with 10-Fold
Cross-Validation. We report accuracy (Acc), macro-average F1-score (Macro) and class-wise F1 scores
for STATE (STA), EVENT (EVE), REPORT (REP), GENERIC (GENI), GENERALIZING (GENA),
QUESTION (QUE) and IMPERATIVE (IMP).

Model Macro Acc
CRF (Friedrich et al., 2016) 69.3 74.7
GRU (Becker et al., 2017) 68.0 71.1
Clause-level Bi-LSTM 73.5 76.7
Paragraph-level Model 77.0 80.0
Paragraph-level Model + CRF 77.4 80.7

Table 3: Situation Entity Type Classification Re-
sults on the Test Set of MASC+Wiki. We report
accuracy (Acc) and macro-average F1 (Macro).

notators’ annotation as “gold labels”. It has
been reported that labeling SE types is a non-
trivial task even for humans.

In addition, we implemented a clause-level Bi-
LSTM model as our own baseline, which takes a
single clause as its input. Since there is only one
clause, the upper Bi-LSTM layer shown in Figure
1 is meaningless and removed in the clause-level
Bi-LSTM model.

4.3 Experimental Results
Following the previous work (Friedrich et al.,
2016) on the same task and dataset, we report
accuracy and macro-average F1-score across SE
types on the test set of MASC+Wiki.

The first section of Table 3 shows the results of
the previous works. The second section shows the
result of our implemented clause-level Bi-LSTM
baseline, which already outperforms the previous
best model. This result proves the effectiveness of
the Bi-LSTM + max pooling approach in clause
representation learning (Conneau et al., 2017).
The third section reports the performance of the
paragraph-level models that uses paragraph-wide
contexts as input. Compared with the baseline
clause-level Bi-LSTM model, the basic paragraph-
level model achieves 3.5% and 3.3% of perfor-
mance gains in macro-average F1-score and ac-

curacy respectively. Building on top of the basic
paragraph-level model, the CRF layer further im-
proves the SE type prediction performance slightly
by 0.4% and 0.7% in macro-average F1-score and
accuracy respectively. Therefore, our full model
with the CRF layer achieves the state-of-the-art
performance on the MASC+Wiki corpus.

5 Analysis

5.1 10-Fold Cross-Validation

We noticed that the previous work (Friedrich et al.,
2016) did not publish the class-wise performance
of their model on the test set, instead, they reported
the detailed performance on the training set using
10-fold cross-validation. For direct comparisons,
we also report our 10-fold cross-validation results8

on the training set of MASC+Wiki.
Table 2 reports the cross-validation classifica-

tion results. Consistently, our clause-level base-
line model already outperforms the previous best
model. By exploiting paragraph-wide contexts,
the basic paragraph-level model obtains consistent
performance improvements across all the classes
compared with the baseline clause-level predic-
tion model, especially for the classes GENERIC
and GENERALIZING, where the improvements
are significant. After using the CRF layer to
fine-tune the predicted SE label sequence, slight
performance improvements were observed on the
four small classes. Overall, the full paragraph-
level neural network model achieves the best
macro-average F1-score of 77.8% in predicting SE
types, which not only outperforms all previous ap-
proaches but also reaches human-like performance
on some classes.

8The original folds split used by Friedrich et al. (2016) is
not available. So we manually split folds by ourselves with
even genre distribution across folds.
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Model Macro Acc STA EVE REP GENI GENA QUE IMP
CRF (Friedrich et al., 2016) 66.6 71.8 78.2 77.0 76.8 44.8 27.4 81.8 70.8
Clause-level Bi-LSTM 69.3 73.3 79.5 78.7 82.8 47.6 31.9 86.9 77.7
Paragraph-level Model 73.2 77.2 81.5 80.1 83.2 64.7 37.2 88.1 77.8
Paragraph-level Model+CRF 73.5 77.4 81.5 80.3 83.7 66.5 37.4 88.5 76.7

Table 4: Cross-genre Classification Results on the Training Set of MASC+Wiki. We report accuracy
(Acc), macro-average F1-score (Macro) and class-wise F1 scores.

Figure 3: Learning Curve of the Paragraph-level
Model + CRF on MASC+Wiki.

5.2 Impact of Genre

Considering that MASC+Wiki is rich in written
genres, we additionally conduct cross-genre clas-
sification experiments, where we use one genre of
documents for testing and the other genres of doc-
uments for training. The purpose of cross-genre
experiment is to see whether the model can work
robustly across genres.

Table 4 shows cross-genre experimental results
of our neural network models on the training set of
MASC+Wiki by treating each genre as one cross-
validation fold. As we expected, both the macro-
average F1-score and class-wise F1 scores are
lower compared with the results in Table 2 where
in-genre data were used for model training as well.
But the performance drop on the paragraph-level
models is little, which clearly outperform the pre-
vious system (Friedrich et al., 2016) and the base-
line model by a large margin. As shown in Ta-
ble 5, benefited from modeling wider contexts and
common SE label patterns, our full paragraph-
level model improves performance across almost
all the genres. The high performance in the cross-
genre setting demonstrates the robustness of our
paragraph-level model across genres.

Genre Baseline Full Model Humans
blog 66.7 70.3 72.9
email 71.1 71.5 67.0
essays 61.2 64.1 64.6
ficlets 67.9 68.8 81.7
fiction 70.2 72.1 76.7
gov-docs 68.6 68.9 72.6
jokes 70.0 75.0 82.0
journal 66.7 66.4 63.7
letters 68.6 71.2 68.0
news 70.4 72.7 78.6
technical 55.7 60.5 54.7
travel 51.3 53.6 48.9
wiki 55.2 60.6 69.2

Table 5: Cross-genre Classification Results by
Genre on the Training Set of MASC+Wiki.
Baseline: Clause-level Bi-LSTM; Full Model:
Paragraph-level Model + CRF. We report macro-
average F1-score for each genre.

5.3 Impact of Training Data Size
In order to understand how much training data is
required to train the paragraph-level model and
obtain a good performance for SE type classifi-
cation, we plot the learning curve shown in Fig-
ure 3 by training the full model several times us-
ing an increasing amount of training data. The
classification performance increased quickly be-
fore the amount of training data was increased to
30% of the full training set; then the learning curve
starts to become saturated afterwards. We con-
clude that the paragraph-level model can achieve
a high performance quickly without requiring a
large amount of training data.

5.4 Impact of Paragraph Length
To study the influence of paragraph lengths to
the performance of the paragraph-level models,
we report the performance of our proposed mod-
els on subsets of the test set, with paragraphs di-
vided based on the number of clauses in a para-
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Figure 4: Impact of Paragraph Lengths. We plot the macro-average F1-score for each paragraph length.

graph. The histogram in Figure 4 compares per-
formance of the two paragraph-level models and
the baseline model. Note that the last bucket (para-
graphs containing ten or more clauses) of the his-
togram is especially large and contains over 30%
of all the paragraphs in the test set. Clearly,
the paragraph-level model greatly outperforms the
baseline clause-level model on paragraphs con-
taining more than 6 clauses, which covers over
50% of the test set. Adding the CRF layer fur-
ther improves the performance of the paragraph-
level model on long paragraphs (with 10 or more
clauses), while the influences to the performance
are mixed on short paragraphs. Therefore, it is
beneficial to model wider paragraph-level contexts
and inter-dependencies between clauses for situ-
ation entity type classification, especially when
processing long paragraphs.

5.5 Impact of Discourse Connective Phrases

As one aspect of modeling context influences and
clause inter-dependencies in SE type identifica-
tion, we investigated the role of discourse connec-
tive phrases in determining the SE type of clauses
they connect. Our assumption is that discourse
connectives are important to glue clauses together
and removing them affects text coherence and in-
formation flow between clauses. Intuitively, the
connective “and” may occur between two clauses
with the same SE type; “for example” may indi-
cate that the following clause is not GENERIC.
Therefore, we designed a pilot experiment to see
whether discourse connective phrases are indis-
pensable in building clause representations.

In this pilot experiment, we extracted a list of
100 explicit discourse connectives. PDTB cor-
pus (Prasad et al., 2008) and identified clauses
that start with a discourse connecte9. Then we
ran the full paragraph-level model with one mod-
ification, i.e., disregarding words in connective
phrases when conducting the max-pooling oper-
ation in equation (1), thus we did not consider dis-
course connective phrases directly when building
a clause representation.

As shown in Table 6, for clauses containing a
discourse connective phrase, both macro-average
F1-score and accuracy dropped due to the exclu-
sion of discourse connective phrases. The perfor-
mance was negatively influenced across all the SE
types except the type of QUESTION and IMPER-
ATIVE10. The performance decreases on three SE
types, REPORT, GENERIC and GENERALIZ-
ING, are noticeable. To some extent, this pilot
study shows that modeling text coherence and the
overall discourse structure of a paragraph is im-
portant in situation entity type classification.

5.6 Confusion Matrix
Table 7 reports the confusion matrix of the
full model on the training set of MASC+Wiki
with cross-validation. We can see that the four
situation entity types, including two eventuali-
ties (STATE and EVENT) and two general sta-

9We found that 20.6% of clauses in the MASC+Wiki cor-
pus contain a discourse connective phrase.

10A possible explanation is that recognizing QUESTION
(IMPERATIVE) clauses mainly relies on seeing certain punc-
tuation marks and key words, such as “?” (“!”) and “why”
(“please”), which are independent from discourse connec-
tives.
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Macro Acc STA EVE REP GENI GENA QUE IMP
-1.2 -0.9 -1.0 -0.8 -2.3 -3.4 -2.2 0.5 0.3

Table 6: Impact of Discourse Connective Phrases. We report performance losses (percentages) on clauses
containing a connective phrase, when discourse connective phrases were excluded from clause represen-
tation building.

SE Type Predicted
STA EVE REP GENI GENA QUES IMP

Gold

STA 12558 980 32 931 155 51 85
EVE 819 6626 116 242 124 11 16
REP 42 143 1097 3 4 1 2
GENI 1157 175 3 4523 117 14 14
GENA 281 254 5 161 431 5 12
QUES 51 7 2 8 1 773 4
IMP 106 21 7 18 3 3 650

Table 7: Confusion Matrix of the Paragraph-level Model + CRF on the Training Set of MASC+Wiki with
10-Fold Cross-Validation.

tives (GENERIC and GENERALIZING), are of-
ten mutually confused with each other. To fur-
ther improve the performance of situation en-
tity type classification, it is important to accu-
rately detect events within a clause (for fixing
STATE/EVENT errors) and identify the generic-
ity of main referents (for fixing STATE/GENERIC
and GENERIC/GENERALIZING errors), which
can be potentially achieved by incorporating lin-
guistic features into neural net models.

6 Conclusion

We presented a paragraph-level neural network
model for situation entity (SE) type classification
which builds context-aware clause representations
by modeling inter-dependencies of clauses in a
paragraph. Evaluation shows that the paragraph-
level model outperforms previous systems for SE
type classification and approaches human-level
performance. In the future, we plan to incorpo-
rate SE type information in various downstream
applications, e.g., many information extraction ap-
plications that require distinguishing specific fact
descriptions from generic statements.
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Abstract

In news and discussions, many articles and
posts are provided without their related pre-
vious articles or posts. Hence, it is difficult
to understand the context from which the ar-
ticles and posts have occurred. In this paper,
we propose the Hierarchical Dirichlet Gaus-
sian Marked Hawkes process (HD-GMHP) for
reconstructing the narratives and thread struc-
tures of news articles and discussion posts.
HD-GMHP unifies three modeling strategies
in previous research: temporal characteris-
tics, triggering event relations, and meta in-
formation of text in news articles and discus-
sion threads. To show the effectiveness of
the model, we perform experiments in narra-
tive reconstruction and thread reconstruction
with real world datasets: articles from the New
York Times and a corpus of Wikipedia con-
versations. The experimental results show that
HD-GMHP outperforms the baselines of LDA,
HDP, and HDHP for both tasks.

1 Introduction

Online news sites and discussion forums generate
large volumes of articles and discussions, which
we can call “events”. To fully understand the dis-
cussions and the news stories, one often needs a
larger context for that text, such as what related
posts and relevant articles have been posted be-
fore. For instance, to understand a news article
about the presidential elections, we would need
to know the history of the candidates’ political
actions through relevant previous articles. While
there are some news articles with a curated set of
related articles and discussion threads with a well-
organized structure, there are many more articles
and discussion threads for which the structure is
absent or incomplete. In this context, automat-
ically reconstructing the narrative of articles and
thread structure is an important problem.

Generally, textual information and various meta
information such as location and keywords are
used as features to solve this problem of narra-
tive reconstruction. With these features, previous
research mainly focus on three modeling strate-
gies. First, they model the triggering relationship
of events to identify which preceding events led
to the occurrence of the current event. Second,
they use meta information such as location and
keywords. Third, they consider the temporal char-
acteristics in the event stream, such that events in
close temporal proximity are more likely to be re-
lated. However, there is no method that effectively
considers all three of these. In narrative recon-
struction, there are several approaches that focus
on using meta information and temporal character-
istics with clustering methods (Zhou et al., 2016;
Tang et al., 2015; Ahmed et al., 2011), and there
are several approaches using the Hawkes process
to model the temporal characteristics (Du et al.,
2015; Mavroforakis et al., 2017; Jankowiak and
Gomez-Rodriguez, 2017). In thread reconstruc-
tion, there are approaches that focus on modeling
triggering relationships of events and using meta
information (Kim et al., 2010; Louis and Cohen,
2015; Wang et al., 2011b).

In this paper, we propose a novel Gaussian
Marked Hawkes Process (GMHP) that effectively
reconstructs the narrative structure of articles and
the thread structure of discussions considering
all three modeling strategies. GMHP uses the
Hawkes process to model events in continuous
time, a Gaussian distribution for modeling the
meta information of text, and the mixture of Gaus-
sian for modeling the triggering relationships of
events. The detailed modeling strategies are de-
scribed as follows. We use the Hawkes process
to model time in the continuous domain, as the
Hawkes process is a stochastic process used to un-
derstand a sequence of events in continuous time
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(Iwata et al., 2013; Rong et al., 2015). To use meta
information, we represent text and meta informa-
tion in a general vector form and use the Hawkes
process to handle the vector of event information
with a Gaussian distribution. To model the trig-
gering relationships, we assume a model structure
parameterized by each preceding event so that an
event can be directly generated from a probability
distribution parameterized by preceding events.

The GMHP models a single narrative or thread
in event streams. To find the narratives or threads
from a mixture of event streams, we combine our
GMHP model with the Hierarchical Dirichlet Pro-
cess to build HD-GMHP.

We evaluate the effectiveness of our model
with two real world datasets: articles from the
New York Times, and discussion threads from
Wikipedia. In the New York Times dataset, we
perform a narrative reconstruction experiment and
compare the results with the human annotated nar-
rative labels. In the Wikipedia discussion cor-
pus, we perform two kinds of thread reconstruc-
tion experiment. One is grouping posts in the same
thread. The other is reconstructing the post-reply
structure of the posts. From these experiments, we
see that our model outperforms the state-of-the-art
model, the hierarchical Dirichlet Hawkes process
(HDHP) (Mavroforakis et al., 2017).

The contributions of our research are threefold.
First, we propose the Gaussian Marked Hawkes
Process that effectively models a single narrative
(event stream) with all three modeling strategies
used in previous research. Second, we propose
HD-GMHP, a combination of the GMHP model
with the HDP to reconstruct the narratives of ar-
ticles and the thread structure of discussions from
a mixture of event streams. Finally, we propose a
novel inference algorithm of the HD-GMHP with
the Sequential Monte Carlo method (Doucet et al.,
2001).

2 Related Work

Narrative Reconstruction: One major approach
to reconstructing narratives from news articles is
clustering articles by using a variant of the Chi-
nese Restaurant Process (CRP). Related work such
as (Zhou et al., 2016; Tang et al., 2015; Ahmed
et al., 2011) models chronologically ordered news
articles with text and various meta information in-
cluding author, organization, keywords, and loca-
tion. They use the CRP, distant-dependent CRP

(Blei and Frazier, 2011). There is research that
uses recurrent CRP (Ahmed and Xing, 2008) and
exponential time decaying kernel to model prob-
ability of time difference between two relevant
events. But they use discrete time information in-
stead of continuous form and handcrafted param-
eters of the kernel (Ahmed et al., 2011).

There is another approach that reconstructs nar-
ratives by directly extracting important sentences
from articles. (Xu et al., 2013) proposes a model
that considers the sentence and image level narra-
tive reconstruction as an optimization problem and
solves it by maximizing the divergence of narra-
tives with some constraints. (Wang et al., 2016)
solves the narrative reconstruction problem as a
sentence recommendation problem and uses ma-
trix factorization. But these existing models focus
on how to handle text and meta information of ar-
ticles, while our model uses the Hawkes process
to effectively model continuous time information
of events.
Discussion Thread Reconstruction: There are
several approaches to reconstruct threads from a
corpus of unstructured discussions. (Wang et al.,
2011a) uses Conditional Random Field to recon-
struct reply structure in discussion corpus. (Balali
et al., 2014) uses content, time and author infor-
mation as features of a single post with rank SVM
to reconstruct thread structure. (Dehghani et al.,
2013; Aumayr et al., 2011) uses SVM and a deci-
sion tree with meta information of posts.

However, a major limitation in these previous
research is that they are assuming that for each
post, the main thread where it belongs is given.
That is, the problem they solve is finding the post
for which a post is immediately replying, rather
than treating the corpus as a single set of posts
with no known information about the threads, the
initial post of each thread, and the posts that be-
long to each thread. This limitation of the previous
research means those approaches are not applica-
ble in more general online conversation data, such
as IRC or a Facebook group chat which is a mas-
sive unstructured online discussion for which the
initial post of a thread is not labeled. Unlike this
strong assumption in previous research, we use a
more general assumption that the initial posts are
unknown, so our approach would be applicable to
a wider, more general discussion data. Also, as
in the narrative reconstruction research area, pre-
vious research focuses on how to handle text and
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meta information in posts. Again, unlike previous
research, our research uses the Hawkes process to
model continuous time information.
Continuous Time Modeling: The Hawkes pro-
cess, a stochastic process that models continuous
time information of events with event occurrence
history, is an effective solution to model events
in continuous time. One of the main research
themes in the Hawkes process literature is find-
ing which events trigger which other events. (He
et al., 2015) models the topic diffusion patterns in
a social network by inferring the triggering node
with the Hawkes process. The Hawkes process
is also used to model social event streams (Rong
et al., 2015) and to classify rumors (Lukasik et al.,
2016), and a combination of the Hawkes process
and the Dirichlet mixture model is used to cluster
event streams (Xu and Zha, 2017).

Recent research clusters text streams with the
Hawkes process and the Chinese Restaurant Pro-
cess or the Chinese Restaurant Franchise (Mavro-
forakis et al., 2017; Du et al., 2015). They use the
bag-of-words representation of text in their model,
while (Jankowiak and Gomez-Rodriguez, 2017)
proposes a Hawkes process model that can han-
dle a more general vector representation of events.
The main difference of our model compared to this
research is that we add the triggering relationship
of two events. With this addition, our model can
reconstruct narratives with an explicit relation of
two documents.

3 Hawkes Processes

Before we describe our proposed model, we
briefly explain the Hawkes process, one of two
main stochastic processes used in our model. We
leave out the explanation of the HDP due to space.

The Hawkes process (Hawkes, 1971) is a sub-
class of temporal point processes, whose func-
tional form for intensity with exponential decay-
ing kernel is represented as

�⇤(t) = �0(t) +

Z t

0
↵�e��(t�s)dN(s),

where the intensity, �⇤(t) represents the condi-
tional probability of an event occurrence within
time window [t, t + dt). The Hawkes process is
used to model the number of occurrences of events
where one event can trigger other events. In the
equation above, the base intensity �0(t) models
the intensity of events that occur on their own ini-
tiative whereas ↵�e��(t�s) models the intensity of

events that are triggered by the previous event that
occurred at time s. Here, multiplication of ↵ and
� represents influence of the previous event and
� represents decaying rate of the influence. Thus,
the effect of the previous event exponentially de-
cays with respect to the time difference. From the
definition of intensity �⇤(t), the derived likelihood
form of the Hawkes process is as follows,

f(D|⇥) = e�⇤(T )
nY

i=1

�⇤(ti), (1)

where ⇤(T ) =
R T
0 �⇤(t)dt.

4 Problem Setting

In this section, we define the event stream and the
narrative and the thread reconstruction problems.

Definition of Event Stream: If a text appears
at time ti, we define the event si as (ti,~ei, zi, xi).
Here, ~ei is the feature vector of the text, xi is the
latent global cluster indicator of event si which
represents the cluster for events with similar text
information, and zi is the latent local cluster in-
dicator for events that are temporally related in
the same cluster. We define event stream S as
[s1, .., sn].

Assumptions: 1) We assume that two events in
same local cluster occur in near time and have sim-
ilar feature vectors ~e. These properties are called
temporal and spatial locality. 2) We assume hierar-
chy structure of a global cluster and a local cluster.
That is, one global cluster can consist of multiple
local clusters.

Problem Formulation: We formulate the spa-
tial locality of two events in the same local cluster
with a Gaussian distribution. If two events si and
sj are in the same local cluster and ti > tj , then
we assume the later event ~ei is generated from one
of two relations,

~ei ⇠ N (~ej , ⌃v), ~ei, ⇠ N (~e0, ⌃0).

Here, ~e0 is the base event vector and ⌃0 is the co-
variance matrix of the cluster. ⌃v is the covariance
matrix of the Gaussian distribution generated by a
past event in the cluster.

We use the Hawkes process to formulate the
temporal locality of two events in the same local
cluster. If event si and sj are in the same local
cluster and ti > tj , then ti is generated from in
either following relations,

ti ⇠ Poisson Process(µ),

ti � tj ⇠ Hawkes(↵,�).
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Here, if ti is generated from Hawkes process of
parameter ↵ and � with time tj and ~ei is generated
from ~ej , then we say that event sj is the parent
event of event si.

We formulate the hierarchy structure of the
global cluster and the local cluster with Hierarchi-
cal Dirichlet Process (Teh et al., 2006). If the pa-
rameters ✓zi of local clusters z1, z2, .., zn are equal
to the parameters of the global cluster ⇥x, then we
say that there is a hierarchy between all the local
clusters and the global cluster. And this hierarchy
structure can be written as follows,

⇥x = ✓z1 = ✓z2 = ... = ✓zn .

Now, we define the narrative reconstruction and
the thread reconstruction problem as a problem of
inferring the latent variables in S.

5 Model

We now describe clustering a mixture of event
stream S with the Gaussian Marked Hawkes Pro-
cess and the hierarchical Dirichlet process. We
first propose Gaussian Marked Hawkes Process
(GMHP) that models temporal and spatial local-
ity assumptions that described in section 4. And
after defining the GMHP, we propose Hierarchical
Dirichlet Gaussian Marked Hawkes Process (HD-
GMHP), a combination of the GMHP with the Hi-
erarchical Dirichlet Process. The GMHP models
event streams with the same local cluster z and
HDP groups the local clusters to one global cluster
x.

5.1 Gaussian Marked Hawkes Processes
5.1.1 Model Description
In GMHP, we assume events are generated by a
past event or by their own initiative. If event si is
generated by event sj , then we say that event sj is
the parent event of event si. If event si occurs on
their own initiative, the index of the parent event is
0. We define the intensity function with the given
parent event ci as follows,

�(ti|ci) =

(
µ if ci = 0

↵�e��(ti�tci ) otherwise
(2)

To model the spatial locality of two D-
dimensional event vectors ~ei, ~eci , we define prob-
ability distribution for ~ei as follows,

pci(~ei) =

(
N (~ei|~e0, ⌃0) if ci = 0

N (~ei| ~eci , ⌃v) otherwise
(3)

Here, ~e0 is the base event vector for when ci = 0.
⌃0 and ⌃v are covariance matrix for when an event
occurs by their own initiative or occurs by past
event. From the above definitions, we can calcu-
late the intensity of the event vector ~e at time t as
follows,

�~e(t) = µN (~e|~e0, ⌃0) +
X

tj<t

�(t|j)N (~e|~ej , ⌃v).

(4)
The total intensity of GMHP can be obtained by
integrating the above intensity with the event vec-
tor ~e.

�(t) =

Z

RD

�~e(t) d~e = µ +
X

tj<t

�(t|j). (5)

5.1.2 Parameter estimation
From equation 1, the likelihood of the observed
event stream can be computed as follows,

f(D|✓) = e�⇤(T )
nY

i=1

X

0j<i

pj(~ei)�(ti|j), (6)

where ⇤(T ) = µT +
nP

i=1
↵(1 � e��(T�ti)).

Since the likelihood of GMHP is hard to maxi-
mize, instead of using the likelihood, we define a
likelihood with the given parent events as follows,

f(D|C, ✓) =e�⇤(T ) ⇥
nY

i=1

{(µN (~ei|~e0, ⌃0))
Ci0⇥

i�1Y

j=1

(↵�e�(ti�tj)N (~ei|~ej , ⌃v))
Cij},

(7)

where Cij becomes 1 when ci = j and 0 other-
wise. By maximizing equation 7, we can estimate
the parameter ✓ = {µ,↵,~e0, ⌃0, ⌃v}. The infer-
ence step of the parent events is described in sec-
tion 6.

5.2 Modeling a Mixture of GMHP with the
HDP

When clustering a mixture of streams using the
Hawkes process, the exponential triggering func-
tion prevents two events with a large time differ-
ence from being assigned to the same global clus-
ter. To solve this problem, (Mavroforakis et al.,
2017) uses the HDP instead of using the Dirichlet
process used in (Du et al., 2015). The hierarchy
structure of the HDP assigns a cluster label with
a probability proportional to the size of the clus-
ter. This allows assignment of two events with a
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large time difference to the same cluster. For the
same reason, we use the HDP to model mixture
of the GMHP. We consider each GMHP in mix-
ture as a table in the Chinese Restaurant Franchise
metaphor. Since the intensity of k’th GMHP, �k(t)
represents how likely an event occurs in table k at
time t, we use the intensity as the number of cus-
tomers in the CRF metaphor. The whole genera-
tive process of HD-GMHP is as follows.

1. Initialize the number of local clusters K = 0,
the number of global clusters M = 0.

2. For n 2 1, 2, ..., N

(a) Draw tn from Hawkes(�0 +
KP

k=0
�k)

(b) Draw zn as follows.

zn ⇠ �0�(K + 1) +
KX

k=1

�k�(k) (8)

(c) If zn = K + 1, assign global cluster xn,
which is interpreted as parameter(✓xn)
for local cluster zn, and Increment K.
Here, Nm is number of local cluster in
global cluster m.

xn ⇠ ��(M + 1) +
MX

m=1

Nm�(m) (9)

(d) If xn = M + 1, increment M and draw
new parameter as follows.
↵xn ⇠ �(↵a,�a), µxn ⇠ �(↵µ,�µ)

1
⌃xn

0
⇠ �(↵0,�0), 1

⌃xn
v

⇠ �(↵v,�v)

~e0,xn ⇠ N (~e0, ⌃
xn
0 /~�e0)

Note that we assume that the covariance
matrix ⌃xn

v , and ⌃xn
0 are diagonal.

(e) Draw cn and ~en. Here, gxn(t) =
↵xn�e��(tn�t).

cn ⇠ µxn�(Nzn + 1) +

NznX

j=1

gxn(tj)�(j)

(10)
if cn = Nzn + 1, then replace cn with 0
and sample event vector.

~en ⇠
(

N (~e0,xn , ⌃xn
0 ) if cn = 0

N (~ecn , ⌃xn
v ) otherwise

(11)
�0, �, ~e0,~�e0 , (↵a,�a), (↵µ,�µ), (↵0,�0), and
(↵v,�v) are the hyperparameters used in HD-
GMHP.

6 Inference

To infer the latent variables z and x for each event
from an observed event stream s1:n

o where si
o =

(ti,~ei) with observation time T , we propose an

Algorithm 1 Inference
Input: Stream data So

Initialize wi
1 = 1

P , i 2 {1, 2, ..., P}.
for n = 1 to N do

for i = 1 to P do
Update ⇥ as described in section 6.2.
Sample (x, z, c)i

n with equation 16, 10
Update wi

n with equation 17
end for
Normalize w1:P

n

if ||wn||�2
2 < thresh then

Resample particles
end if

end for

online inference algorithm with Sequential Monte
Carlo (SMC) (Doucet et al., 2001). To calculate
the posterior of the latent variables z and x for
each timestamp ti in the inference, we need the es-
timated parameter to calculate the intensity at each
time ti, �(ti). As described in section 5.1.2, the
parameter estimation step needs the parent event
information. In our proposed inference, the par-
ent events are inferred from SMC. The inference
algorithm is summarized in algorithm 1.

6.1 Sequential Monte Carlo with parent
event inference

To approximate the posterior of the latent vari-
ables, SMC samples the latent variables from the
proposal distribution and calculates the weight of
each sampled variables which is called the parti-
cle weight. To infer the parent event in SMC, we
define the particle weight of our modified SMC as
follows:

wi
n =

p( i
1:n|s1:n

o )

q( i
1:n|s1:n

o )

p(ci
1:n| i

1:n, s1:n
o )

q(ci
1:n| i

1:n, s1:n
o )

(12)

Here,  i
n is (xi

n, zi
n). Let the left part on the right

hand term and right part on the right hand term
of the equation 12 are w i

n and wc
i
n. Then the

terms can be calculated by w i
n = ⌘ w i

n�1 and
wc

i
n = ⌘cwc

i
n�1, where the ⌘ is

p(~en, tn, n|s1:n�1
o , i

1:n�1)

q( i
n| i

1:n�1, s
1:n
o )

. (13)

and ⌘c is

p(~en|tn, s1:n�1
o , �i

1:n)
p(ci

n|tn, �i
1:n�1, s

1:n�1
o , i

n)

q(ci
n|�i

1:n�1, s
1:n
o , i

n)
.

(14)
Here, �i

n is (xi
n, zi

n, ci
n).
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We use p( n| 1:n�1, s1:n
o ) as the proposal dis-

tribution of  i
n in the equation 13 to minimize

the variance of wi
n (Doucet et al., 2000) and

p(cn|�1:n�1, n, tn, s1:n�1
o ) as the proposal distri-

bution of ci
n in the equation 14. From the above

proposal distribution, ⌘c
i
n can be calculated as

⌘c
i
n = p(~en|tn, s1:n�1

o , ci
1:n, 1:n) and ⌘ i

n can be
calculated by the following form .
⌘ 

i
n =p(tn| 1:n�1, zn, s1:n�1

o )

⇥
X

zn

(p(~en| 1:n�1, zn, tn, s1:n�1
o )

⇥ p(zn|tn, 1:n�1, s
1:n�1
o ))

(15)

From the proposal distribution of  i
n, we can

sample  i
n as follows:

p( n|rest) /p(~en| 1:n, tn, s1:n�1
o )

⇥ p( n| 1:n�1, tn, s1:n�1
o )

⇥ p(tn| 1:n�1, s
1:n�1
o )

(16)

Here, the term p(~en| 1:n, tn, s1:n�1
o ) ⇥

p( n| 1:n�1, tn, s1:n
o ) can be simply calcu-

lated by the student’s t-distribution derived from
the conjugate relation between the parameter
{~ek0, ⌃0,k, ⌃v,k} and the normal-inverse-gamma
and inverse-gamma prior in the generative process
of HD-GMHP.

From ⌘c
i
n = p(~en|tn, s1:n�1

o , ci
1:n, 1:n) and 15,

the particle weight can be updated by the follow-
ing,
wi

n /wi
n�1

⇥ p(tn|s1:n�1
o , i

1:n)p(~en|cn, tn, s1:n�1
o , 1:n)

⇥
X

zn

(p(~en|zn, 1:n�1, tn, s1:n�1
o )

⇥ p(zn|tn, 1:n�1, s
1:n�1
o )).

(17)

When calculating the probability of tn in 17, we
assume the parameters µ1:K ,↵1:K are given (Car-
valho et al., 2010). From the likelihood of GMHP,
the probability term p(tn| 1:n, s1:n�1

o ) in equa-
tion 17 can be calculated by �zn(tn)e�⇤(tn,tn�1).
Where ⇤(tn, tn � 1) is

�0(tn � tn�1) + (tn � tn�1)
KX

k=1

µk

+
1

�
(1 � e��(tn�tn�1))

KX

k=1

�k(tn�1).

(18)

In the case of the probability term p(~en|cn, rest)
and p(~en|zn, rest) in 17, as explained in the sam-
pling process of  n, we can calculate the terms by

student’s t-distribution. With the particle weight
update rule 17 and the parameter update rule de-
scribed in section 6.2, we infer latent variables
with algorithm 1.

6.2 Updating Parameter
From the equation 7 and the prior of the parame-
ters used in GMHP, we can estimate the parame-
ters by following form.

↵m =

↵a � 1 +
P

xi=m

P
0<j<i

Cij

�a +
P

xi=m
(1 � e��(T�ti))

(19)

µm =

↵µ � 1 +
P

xi=m
Ci0

�µ +
P

✓k=⇥m

(T � t0,k)
(20)

~e0,m =

~e0 � ~�e0 +
P

xi=m
Ci0~ei

~�e0 +
P

xi=m
Ci0

(21)

diag(⌃m
0 ) ={~�e0 � (~e0,m � ~e0)

2 + 2~�0

+
X

xi=m

Ci0(~ei � ~e0,m)2}

⇥ {2~↵0 + 3 +
X

xi=m

Ci0}�1

(22)

diag(⌃m
v ) =

2~�v +
P

xi=m

P
0<j<i

Cij(~ei � ~ej)2

2 + 2~↵v +
P

xi=m

P
0<j<i

Cij

(23)

6.3 Approximation
To reduce the computation time in the inference al-
gorithm, we use several approximation strategies.

6.3.1 Marginal distribution Approximation
To calculate p(~en|zn, 1:n�1, tn, so

1:n�1) in
the equation 17, we need marginalization of
p(~en, cn|zn, 1:n�1, tn, s1:n�1

o ) which takes
time complexity of O(n of events in zn) and
cause the time complexity of the equation 17
to be O(n). To reduce the time complex-
ity, we note that event vector ~en is sampled
from a Gaussian mixture that the influence
of each Gaussian distribution is exponentially
decreases. We assume the marginal distribution
p(~en|zn, 1:n�1, tn, s1:n�1

o ) can be approximated
to p(~en|c1:n = 0, zn, 1:n�1, tn, s1:n�1

o ). From
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the approximation, we can calculate the posterior
predictive with student’s t-distribution. The result
of approximation is as follows,

p(~en|zn, 1:n�1, tn, s1:n�1
o )

= t⌫n(~en|~mn,
~n + 1

~n⌫n

~Sn),

(24)

where

⌫n = 2↵0 + Nzn , n = ~�e0 + Nzn ,

~mn =

~�e0 � ~e0 +
P

zi=zn

~ei

~n
,

~Sn = 2�0 +
X

zi=zn

~e 2
i + ~�e0 � ~e 2

0 � n ~m
2
n .

To calculate p(~en|cn, tn, s1:n�1
o , 1:n) in the

equation 17, we need to calculate posterior pre-
dictive for each past event. To reduce the
computation time in the process of calcula-
tion, we approximate the probability distribution
p(~en|cn, tn, s1:n�1

o , 1:n) as follows.

p(~en|cn, tn, s1:n�1
o , 1:n)

⇡
(

N (~e0,xn , ⌃xn
0 ) if cn = 0

N (~ecn , ⌃xn
v ) otherwise

(25)

6.3.2 Sampling cn from recent W events
Sampling cn has time complexity of O(Nzn). To
reduce the time complexity to O(1), we sample cn

from recent W events in the local cluster zn.

7 Experiment

In this section, we demonstrate the narrative
reconstruction and thread reconstruction perfor-
mance of our model on a corpus of the New
York Times articles and the Wikipedia conversa-
tion dataset.

7.1 Dataset
New York Times Dataset: We collected 112,538
New York Times news articles from January 2016
to July 2017. The dataset contains the text, times-
tamp, the news section, and the keywords. These
keywords are semantic tags specified by the news-
room to indicate the main topics of the articles. We
select news articles in sections “U.S.”, “World”,
“Opinion”, and “Sports” that contain at least one

Table 1: Statistics of keywords. “N” column lists the
number of articles with the corresponding keyword.

Keyword N

Trump, Donald J 7940
Presidential Election of 2016 5737
United States Politics and Government 4986
Republican Party 2371
Clinton, Hillary Rodham 2330
Baseball 2058
United States International Relations 1817
Terrorism 1618
Obama, Barack 1551
Russia 1400

of the top ten most frequently used keywords. The
statistics of these keywords are described in table
1. Further, we select articles with more than ten
words in its body. The final number of articles
used in our experiment is 16,858. The dataset is
publicly available 1.
Wikipedia Conversation Dataset is released by
(Danescu-Niculescu-Mizil et al., 2012). The
dataset contains the timestamp, the initial post of
the conversation, “reply to” link information, and
the text information of each post in conversation
threads in Wikipedia talk pages. We select threads
that have ten or more posts from September 2010
to December 2010. The final number of posts used
in our experiment is 2,004 and the final number of
threads is 154.

7.2 Preprocessing

To apply our model to the real world datasets, we
represent each event with time information and an
event vector. For the time information, we take the
first article or post and set the time as zero, the last
article or post as one, and scale the timestamps of
all other articles and posts accordingly. To extract
the event vectors, we use different vectorization
methods for the two datasets. For the NYT dataset,
we use the document topic vector from LDA (Blei
et al., 2003). For the Wikipedia dataset, because
there are only a few words in each post, we cannot
use the LDA topic vector, so we use the averaged
word embedding vector (Mikolov et al., 2013) of
the words used in each post.

1https://github.com/yeonsw/NYT-dataset
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Table 2: Narrative reconstruction results in NYT
dataset and post grouping results in Wikipedia conver-
sation dataset.

AMI ARI

LDA + DBSCAN 0.0627 0.0117
HDP + DBSCAN 0.0260 0.0203
HDHP 0.1768 0.0746NYT

HD-GMHP (100D) 0.2479 0.1416

W2V + DBSCAN 0.0055 0.0001
HDHP 0.4240 0.3512Wiki
HD-GMHP (100D) 0.5848 0.3834

7.3 Task

Narrative reconstruction: To demonstrate the
narrative reconstruction performance of our
model, we apply the inference method to our cor-
pus of NYT articles. We use a set of multiple
keywords of each article as the ground truth la-
bel. Then we run our model and consider the set
of articles with the same global cluster information
as one narrative. We compare the results with the
ground truth labels using the common clustering
metrics AMI and ARI (Hubert and Arabie, 1985;
Vinh et al., 2010) to evaluate the narrative recon-
struction performance of our model. We compare
HD-GMHP with the following baselines: LDA
and HDP with DBSCAN, and the Hierarchical
Dirichlet Hawkes Process (HDHP) (Mavroforakis
et al., 2017) which is a state-of-the-art model for
text and continuous timestamps of an event. Also,
to measure the similarity of each recovered narra-
tive and the ground truth narrative, we use the F1
score of the top ten narratives.
Thread reconstruction: In this experiment, we
use two evaluation criteria. One is post grouping
and the other is reply structure recovery, which
is simply the recovery of the child nodes. Here,
we use a different child node recovery task com-
pared to the child node recovery used in previous
research. In our task, we do not give the initial
post of each thread, while previous research does.
This makes thread reconstruction problem more
general and more difficult.

In post grouping, we use the initial post of each
of the posts as the ground truth label and measure
the clustering metrics used in the NYT dataset. In
the child node recovery experiment, we use the
parent event information inferred from our method
as the recovered tree structure of the threads. We

Table 3: F1-score of each label

Label N HD-
GMHP HDHP

Baseball 2011 0.8114 0.8899
Trump, Donald
&Politics and
Government

1664 0.1833 0.2157

Terrorism 1260 0.6052 0.4059
Trump, Donald
&Election 1110 0.2537 0.1939

Trump, Donald 994 0.0975 0.1227
Politics and
Government 822 0.1677 0.1215

Clinton, Hillary
&Election
&Trump, Donald

755 0.1754 0.1402

Election 714 0.1378 0.1280
Clinton, Hillary
&Election 665 0.1669 0.1157

Russia 637 0.3177 0.2223

Micro F-score N/A 0.2874 0.2189
Macro F-score N/A 0.3637 0.3165

measure the performance with node precision and
node recall metrics (Wang et al., 2011a; Dehghani
et al., 2013). We compare our model with the fol-
lowing baselines: HDHP, and a naive baseline that
reconstructs threads in the form of a single linked
list of posts in chronological order.

7.4 Metrics
AMI, ARI are commonly used to measure cluster-
ing performance (Hubert and Arabie, 1985; Vinh
et al., 2010). Pnode, Rnode measure local simi-
larity between two thread structures (Wang et al.,
2011a).

Pnode =
1

N

X

i=1:N

|childGT(i) \ childE(i)|
|childE(i)|

Rnode =
1

N

X

i=1:N

|childGT(i) \ childE(i)|
|childGT(i)|

where, childGT(i) and childE(i) are the sets of
children of node i in the ground truth thread struc-
ture and the recovered thread structure, respec-
tively. The author (Wang et al., 2011a) also pro-
posed Ppath, Rpath to measure the similarity of the
global structure of two threads. The path metrics
are sensitive to the recovered initial post of each
thread, but since we do not give the initial post of
each thread in our experiment, the path metrics are
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Table 4: Reply structure recovery results in Wikipedia
conversation dataset.

Pnode Rnode F1node

Naive Baseline 0.3223 0.6501 0.4310
HDHP 0.5598 0.5834 0.5714
HD-GMHP 0.6433 0.5468 0.5911

no longer proper in our experiment. So we mea-
sure the node metrics only.

7.5 Results
Table 2 shows the clustering accuracy of our
method and the baseline methods in real world
datasets. We average the results with five runs for
each model. The highest value for each metric
is indicated with boldface. From the results, we
establish that our model outperforms the baseline
methods in both the NYT narrative reconstruction
task and the Wikipedia thread reconstruction task.

For the NYT, to see the accuracy of our model
in more detail, we compute and show the F-scores
for the top ten most frequent labels and the micro
and macro averages in table 3. To compute the
F-score between the true labels and the recovered
cluster labels, we select the cluster with the high-
est F-score as the corresponding cluster. From the
results, we establish that our model performs bet-
ter than the baseline model, HDHP.

Table 4 shows the thread reconstruction re-
sults of our model and the baseline models in the
Wikipedia conversation dataset. Since the HDHP
model does not infer the parent event, we recon-
struct threads in the form of chronologically or-
dered linked list of posts in each local cluster that
inferred from HDHP. From the F1node score of the
results, we establish our model performs better
than other baseline models.

To demonstrate the robustness of HD-GMHP on
dimensional change of the input vector, we mea-
sure the performance of each task in using 50, 100,
and 150 dimensional vectors. The results are de-
scribed in table 5 and 6. From the results, we ver-
ify there are no drastic changes in performance in
both the NYT dataset and the Wikipedia dataset.

8 Conclusion

In this paper, we defined the narrative and thread
reconstruction problems as clustering problems.
To cluster the event streams with continuous time
information and triggering event information, we

Table 5: Model Robustness on dimensional change of
input vectors in NYT dataset.

AMI ARI

HD-GMHP (50D) 0.2310 0.1518
HD-GMHP (100D) 0.2479 0.1416
HD-GMHP (150D) 0.2421 0.1191

Table 6: HD-GMHP model robustness on dimen-
sional change of input vector in Wikipedia conversation
dataset.

AMI ARI Pnode Rnode

50D 0.5836 0.3782 0.6466 0.5554
100D 0.5848 0.3834 0.6433 0.5468
150D 0.5948 0.3670 0.6450 0.5473

proposed the Gaussian Marked Hawkes process
that models event streams with additional event in-
formation represented in a vector form. Further-
more, we combined our model GMHP with the
HDP to cluster event streams (HD-GMHP). We
showed that our model performs better than sev-
eral baseline methods in both narrative reconstruc-
tion in a dataset of NYT articles and thread recon-
struction in a dataset of Wikipedia conversations.
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Abstract

Exponential growth in the number of scientific
publications yields the need for effective au-
tomatic analysis of rhetorical aspects of scien-
tific writing. Acknowledging the argumenta-
tive nature of scientific text, in this work we
investigate the link between the argumentative
structure of scientific publications and rhetori-
cal aspects such as discourse categories or ci-
tation contexts. To this end, we (1) augment
a corpus of scientific publications annotated
with four layers of rhetoric annotations with
argumentation annotations and (2) investigate
neural multi-task learning architectures com-
bining argument extraction with a set of rhetor-
ical classification tasks. By coupling rhetorical
classifiers with the extraction of argumentative
components in a joint multi-task learning set-
ting, we obtain significant performance gains
for different rhetorical analysis tasks.

1 Introduction

Scientific publications, as “tools of persuasion” in
research (Gilbert, 1977), are carefully composed
documents written to convince the reader of the
validity and merit of the researchers’ work. As
such, they are inherently argumentative and often
adhere to well-trodden rhetorical patterns and ar-
gumentation schemes of the respective research
field. The accelerated growth of scientific liter-
ature (Bornmann and Mutz, 2015) makes explo-
ration and analysis of relevant publications increas-
ingly difficult. This yields the need for automatic
analyses of these documents, including their argu-
mentative and rhetorical structure.

Accordingly, computational models already sup-
port publication analysis tasks, e.g., classification
of citation purpose and polarity (Jha et al., 2017;
Lauscher et al., 2017b, inter alia) and classification
of (sentential) discourse roles (Teufel et al., 1999;
Liakata et al., 2010, inter alia). Further, rhetorical

predictions at the (sub-)sentence level obtained us-
ing these models have been shown useful in higher-
level downstream tasks such as publication classifi-
cation (Teufel et al., 1999), (extractive) publication
summarization (Cohan and Goharian, 2015), and
research trend prediction (McKeown et al., 2016).

To allow for the holistic analysis of scientific
publications with respect to the interactions be-
tween different rhetorical aspects of scientific text
Fisas et al. (2016) created a corpus of scientific
publications with manual annotations of several
high-level rhetorical aspects of scientific writing
(e.g., sentence-level discourse roles), but without
annotations of the argumentative structure of publi-
cations. Despite (1) scientific texts being inher-
ently argumentative (Gilbert, 1976), (2) the ex-
istence of theoretical argumentative frameworks
(Toulmin, 2003; Kirschner et al., 2015), and (3)
a wide range of argument extraction models in
other domains (e.g., debates or essays, see Palau
and Moens (2009); Habernal and Gurevych (2017),
inter alia), there is still very little work on auto-
matic argumentation mining from scientific litera-
ture. Consequently, there has been no work analyz-
ing associations between argumentation and other
rhetorical constructs in scientific writing, although
such dependencies exist. Consider the following
example:

”In general, our OMR preserves the high
frequency content of the motion quite well
[claim], since

::::::
inverse

::::
rate

:::::::
control

::
is

:::::::
directed

::
by

:::::::::
Jacobian

::::::
values [data].”

Here, the authors make a claim (underlined text)
about their approach and support it with a techni-
cal fact (data) about the method (wave-underlined
text). At the same time, regarding other rhetorical
constructs, this sentence is stating the subjective
aspect of advantage (of the proposed method), be-
longs to the discourse category of outcome (of the
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authors’ work), and may be considered relevant
for the (extractive) summary of the publication.
We argue that these rhetorical dimensions are in-
terconnected and that fine-grained argumentation
underpins other rhetorical layers in scientific text.
For example, sentences stating an advantage of a
method are likely to be argumentative and may con-
tain claims that should be included in the summary.

Assuming that argumentation guides rhetorics
in scientific text, we investigate neural multi-task
learning (MTL) models which couple argument ex-
traction with several other rhetorical analysis tasks.
To this end, we augment the existing corpus of sci-
entific publications (Fisas et al., 2016), containing
several layers of rhetorical annotations, with an
additional layer of argumentative components and
relations. We then explore two neural MTL archi-
tectures based on shared recurrent encoders, intra-
sentence attention, and private task-specific classi-
fiers and couple the neural architectures with a joint
MTL objective with uncertainty-based weighting
of task-specific losses (Kendall et al., 2018). We
validate our approach by testing that it outperforms
traditional machine learning models in single-task
settings. We finally show that coupling rhetorical
analysis tasks with argument extraction using MTL
models significantly improves the results for the
rhetorical analysis tasks.

Contributions. We create the first corpus of sci-
entific publications in English annotated with fine-
grained argumentative structures and carry out
the first study on dependencies between different
rhetorical dimensions in scientific writing. Using
MTL models, we show that argumentation informs
other rhetorical analysis tasks. Finally, in the con-
text of MTL research, our results indicate that the
dynamic uncertainty-based loss weighting (Kendall
et al., 2018) is beneficial for high-level natural lan-
guage processing tasks.

2 Related Work

We provide an overview of (1) studies analyzing
rhetorical aspects in scientific publications and (2) a
large body of work on argumentation mining.

2.1 Rhetorical Analysis of Scientific Texts
Previous work has analyzed a number of rhetori-
cal aspects of scientific publications. Teufel et al.
(1999, 2009) analyzed the discourse structure of sci-
entific publications. They annotated sentences with
discourse categories named argumentative zones.

Liakata et al. (2010) proposed a more general dis-
course scheme dubbed core scientific concepts and
in subsequent work (Liakata et al., 2012) trained
a conditional random fields (CRF) model to as-
sign discourse labels to text spans. Several authors
focused on tasks relating to citations: extraction
of citation context (e.g., Abu-Jbara et al., 2013;
Jha et al., 2017), classification of citation polarity
(e.g., Athar, 2011) and purpose (e.g., Teufel et al.,
2006; Jochim and Schütze, 2012), and the auto-
matic detection of referenced parts of the cited pub-
lication (Jaidka et al., 2017). Both discourse and
citation information have been exploited for sum-
marizing scientific publications (Cohan and Go-
harian, 2015; Teufel and Moens, 2002; Abu-Jbara
and Radev, 2011; Chen and Zhuge, 2014; Lauscher
et al., 2017a). Intuitively, citation contexts may
contain information relevant to the summary. Simi-
larly, summaries commonly contain sentences with
diversified discourse properties.

Fisas et al. (2016) provided different layers of
rhetorical annotations on the same corpus of sci-
entific text.Their Dr. Inventor Corpus is annotated
with a combination of existing discourse annotation
schemes (Teufel et al., 2009; Liakata et al., 2010)
and citation-based annotations. Despite the argu-
mentative nature of scientific texts, the Dr. Inventor
Corpus contains no annotations of argumentative
components such as claims. Several computational
studies followed, addressing the rhetorical tasks
corresponding to the layers of the Dr. Inventor
Corpus (Ronzano and Saggion, 2015, 2016; Accu-
osto et al., 2017), but none of them investigated
dependencies between different tasks.

The work of Kirschner et al. (2015) is the closest
to ours, since they also annotated scientific publi-
cations with fine-grained argumentation. However,
their corpus is in German and contains no anno-
tations of other rhetorical dimensions. Moreover,
their corpus is significantly smaller than the Dr. In-
ventor Corpus (Fisas et al., 2016). In contrast, we
augment the Dr. Inventor Corpus with an argumen-
tation layer, effectively allowing for combinations
of argumentation extraction and other rhetorical
analysis tasks in MTL settings.

2.2 Argumentation Mining

Argumentation mining (AM) refers to extracting
(and ideally understanding) arguments from natu-
ral language text (Lippi and Torroni, 2015, 2016)
and includes tasks like argument detection (Palau
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and Moens, 2009), argument component identifica-
tion (Daxenberger et al., 2017), and argument rela-
tion classification (Boltužić and Šnajder, 2014). In
their pioneering work on automatic AM, Palau and
Moens (2009) discriminated argumentative from
non-argumentative sentences and proposed a rule-
based approach for extracting argumentative struc-
tures in documents. Habernal and Gurevych (2016,
2017) extracted argumentative components from
online discussions. They framed the argumentative
component extraction as a sequence labeling task
and applied structured SVMs as a learning model.

Recent work started exploiting dependencies be-
tween AM tasks using global optimization (Peld-
szus and Stede, 2015; Persing and Ng, 2016; Stab
et al., 2014) and MTL models (Eger et al., 2017;
Niculae et al., 2017). Peldszus and Stede (2015)
used decoding based on minimum spanning trees
to jointly predict argumentative segments and their
types as well as argumentative relations, to gener-
ate an argumentation graph from text. Persing and
Ng (2016) and Stab and Gurevych (2017) similarly
produced argumentative structures by globally op-
timizing local predictions of argumentative compo-
nents and relations. Potash et al. (2017) proposed a
neural architecture based on a pointer network for
jointly predicting types of argumentative compo-
nents and identifying argumentative relations. In
a similar effort, Eger et al. (2017) combined the
AM tasks using the MTL framework of Søgaard
and Goldberg (2016). Remedying for data sparsity,
Schulz et al. (2018) treated different argumentation
formalisms as different tasks and combined respec-
tive extraction tasks and datasets in a MTL setting.
In contrast to these efforts that combine several
AM subtasks or formalisms with joint optimization
and MTL models, in this work we examine the
dependencies between argumentative components
and other rhetorical aspects of scientific writing.

3 Data Annotation

We first briefly describe the Dr. Inventor Cor-
pus (Fisas et al., 2016), which we augment with ar-
gumentative annotations. We then explain in more
detail our argumentation annotation scheme and
the annotation process.

3.1 Dr. Inventor Corpus

We chose the Dr. Inventor Corpus (Fisas et al.,
2015, 2016) as a starting point for two reasons.
First, containing 40 publications with a total of

Annotation Layer Labels %

Discourse Role

Background 20
Challenge 5
Approach 57
Outcome 16
Future Work 2

Citation Purpose

Criticism 23
Comparison 9
Use 11
Substantiation 1
Basis 5
Neutral 53

Subjective Aspect

Advantage 33
Disadvantage 16
Adv.-Disadv. 3
Disadv.-Adv. 1
Novelty 13
Common Practice 32
Limitation 2

Summarization Relevance

Totally irrelevant 66
Should not appear 6
May appear 14
Relevant 6
Very relevant 8

Table 1: Annotation layers of the Dr. Inventor Cor-
pus (Fisas et al., 2016) with label distributions .

10, 789 sentences, it is one of the largest corpora
of scientific text manually labeled with rhetorical
information. Secondly, it contains four different
layers of rhetorical annotations: (1) a discourse
layer, specifying discourse roles of sentences, (2)
a citation context layer, specifying the textual con-
text of citations, (3) a layer with subjective aspect
categories assigned to sentences, and (4) a summa-
rization relevance layer, indicating how relevant
sentences are for the summary. The overview of
labels for all annotation layers with the distribution
of instances across labels is shown in Table 1. For
more details on the original Dr. Inventor Corpus
we refer the reader to (Fisas et al., 2015, 2016).

3.2 Argumentation Annotation Scheme

We considered several existing argumentation
frameworks (e.g., Anscombre and Ducrot, 1983;
Walton et al., 2008; Dung, 1995, inter alia) and
selected the Toulmin’s model (Toulmin, 2003) as
a starting point for our study. We chose the Toul-
min’s model because: (1) it is a well-established
in philosophy as well as in computer science (e.g,
Freeman, 1991; Bench-Capon, 1998; Verheij, 2009,
inter alia) and (2) it contains different types of argu-
mentative components and relations between them
into account, which is useful for fine-grained argu-
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mentative analyses.
To test the applicability of the framework for our

purposes,we first carried out a small preliminary
annotation round with two expert annotators and
adjusted the annotation scheme according to their
observations.

Argumentative components. We devised an
adapted version of the Toulmin model,1 containing
the following argumentative components:

• Background claim: An argumentative statement
related to the work of other authors, state-of-the-
art methods, or common practices;

”The range of breathtaking realistic 3D models
is only limited by the creativity of artists and
resolution of devices.”

• Own claim: An argumentative statement about
own work, covered by the publication itself;

”Using our method, character authors may use
any tool they like to author characters.”

• Data: A fact that the authors state as evidence
that either supports or contradicts a claim.

”SSD is widely adopted in games, virtual reality,
and other realtime applications due to

::
its

:::::
ease

::
of

::::::::::::::
implementation and

:::
low

::::
cost

:::
of

::::::::::
computing.”

Argumentative components are annotated as arbi-
trary spans of text (in terms of length, annotated
components ranged from a single token to multiple
sentences). Annotators were instructed to annotate
the shortest possible span of text that completely
captures the argumentative component. Thus, we
do not bind arguments to sentences, i.e., we allow
for fine-grained argumentative components.

Argumentative relations. Authors connect ar-
gumentative components in order to form convinc-
ing reasoning chains. To allow for the detection
of long argumentation chains, we also annotated
relations between argumentative components. Fol-
lowing proposals from previous work (Dung, 1995;
Bench-Capon, 1998), we distinguish between three
relation types:

• Supports: indicates that a claim component is
supported by a data component or another claim.
The (assumed) validity of the supporting compo-
nent (data or claim) contributes to the validity of
the supported claim.
1We omitted some of Toulmin’s component types (e.g.,

Backing) due to very rare occurrence in the corpus.

• Contradicts: indicates that the validity of a claim
decreases with the validity of another argumenta-
tive component. If an argumentative component
is assumed to be true, the claim it contradicts is
assumed to be false, and vice versa.

• Same claim: connects different mentions of what
is essentially the same claim. It is common to re-
peat important claims (e.g., the central claim) of
the work several times in the publication (claim
coreference).

Further details about the annotation scheme can be
found in the annotation guidelines we provided to
our annotators.2

3.3 Annotation Procedure and Results
Annotation process. We hired four annotators
for the task, one of whom we considered to be
an expert annotator3 and executed the process in
two phases. In the first phase, we calibrated the
annotators for the task in five iterations, on five pub-
lications from the Dr. Inventor Corpus. After all
annotators labeled one of the five documents, we
met with them, discussed the disagreements, iden-
tified erroneous annotations, and, when required,
revised the annotation guidelines. At the end of
the calibration phase, the annotators re-annotated
the five calibration publications and resolved the
remaining disagreements by consensus.

In Figure 1 we show the IAA for both compo-
nent identification and relation classification, in
terms of averaged pairwise F1 score,4 after each of
the five calibration iterations. It can be seen that
the discussions in the calibration phase helped to
get a common understanding of the task among
the annotators. However, we note that when con-
sidering argumentative relations in addition to the
components only, the agreement decreases. Apart
from the increased complexity compared to the
component identification only this is due to the
high ambiguity of argumentative structures, which
is one of the main challenges in argument mining,

2http://data.dws.informatik.
uni-mannheim.de/sci-arg/annotation_
guidelines.pdf

3A researcher in computer science, albeit not in computer
graphics, which is the domain of the corpus.

4We measured the agreement in terms of the F1 measure
because (1) it is straight-forward to compute, (2) it is directly
interpretable, and (3) it can account for spans of varying length,
allowing for computing relaxed agreements in terms of partial
overlaps, and (4) the chance-corrected measures, e.g., Cohen’s
Kappa, approach F1-measure when the number of negative
instances grows (Hripcsak and Rothschild, 2005).
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Figure 1: IAA evolution over calibration phases
(blue for argumentative components; green for re-
lations). We report both strict (annotated compo-
nents match in span and type; relations match in
type and components at both ends match strictly)
and relaxed agreement scores (components match
in type and overlap in span; relations match in type
and their components at both ends match according
to the relaxed criterion).

as suggested by Stab et al. (2014). Moreover, dis-
agreements in the argumentative component iden-
tification are propagated and cause disagreements
in relation annotations, since relation annotations
match only when the agreement criterion for the
components at both ends is met. Interestingly, the
average agreement of our expert annotator with
non-expert annotators was similar to the average
agreement between non-expert annotators. This is
encouraging, because it suggests that annotating
argumentative structures in scientific text does not
require expert knowledge of the domain. In the
second phase, we evenly split the remaining 35
documents of the Dr. Inventor Corpus among the
four annotators, without any overlaps.

The augmented corpus. We make the Dr. Inven-
tor Corpus augmented with argumentation anno-
tations (together with the annotation guidelines)
publicly available.5 The final corpus contains
12, 289 annotations of argumentative components
and 6, 530 relation annotations. We show the dis-
tributions of labels in Table 2.

The number of own claims doubles the num-
ber of background claims. This is not surprising
considering that the Dr. Inventor Corpus contains
only original research articles (i.e., no survey nor

5http://data.dws.informatik.
uni-mannheim.de/sci-arg/compiled_corpus.
zip

Category Label Occurrences %

Component
Background claim 2,751 22.4
Own claim 5,445 44.3
Data 4,093 33.3

Relation
Supports 5,790 88.7
Contradicts 696 10.7
Semantically same 44 0.7

Table 2: Distributions of labels of argumentative
components and relations in the corpus.

AC DR SA SR

AC – – – –
DR 0.22 – – –
SA 0.08 0.11 – –
SR 0.04 0.10 0.13 –
CC 0.18 0.10 0.04 0.01

Table 3: Normalized mutual information between
the label sets of the annotation layers indicating
argument components (AC), discourse roles (DR),
subjective aspects (SA), and citation contexts (CC)
in the extended Dr. Inventor Corpus.

position articles), in which authors primarily em-
phasize the contributions of their own work. There
are two main reasons for having a smaller num-
ber of data components compared to claims. On
one hand, there are longer argumentative chains in
which claims are supported by other claims (i.e.,
only the first claim is supported by the data com-
ponent). On the other hand, there is also a non-
negligible amount of standalone (i.e., unsupported
and unchallenged) claims, implied also by having
less annotated relations than claims.

To obtain an initial insight on the interrelations
between the different rhetorical aspects in scientific
writing, we conduct an information-theoretic anal-
ysis and assess the amount of information shared
among the annotation layers by computing the nor-
malized mutual information (Strehl and Ghosh,
2003). Normalized mutual information is a vari-
ant of mutual information, which has been shown
to correlate with the gains that can be obtained in
multi-task learning settings (Bjerva, 2017). The
results can be seen in Table 3. The strongest link is
observed between argument components and dis-
course roles, followed by argument components
and citation contexts.
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4 Multi-task Learning for Rhetorical
Analysis of Scientific Writing

We next exploit the augmented corpus to exploit
the dependencies between argumentation and other
rhetorical dimensions. To this end, we adopt neural
MTL as a methodological framework.

4.1 Tasks
The following are the rhetorical analysis and argu-
ment extraction tasks we investigate.

Argumentative Component Identification
(ACI). The task is to extract and classify
argumentative components. We frame ACI as
a token-level sequence labeling task: given a
sequence of tokens x = (x1, .., xn) of length
n, the task is to assign a sequence of tags
yaci = (y1, .., yn), yi 2 Yaci . The tagset Yaci

contains seven token-level tags, obtained by
combining the standard B-I-O annotation scheme
with three types of argumentative components:
Own claim, Background claim, and Data.

Discourse Role Classification (DRC). The
multi-class classification task in which each sen-
tence needs to be assigned one out of the set of
discourse roles Ydrc = {Background, Unspecified,
Challenge, FutureWork, Approach, Outcome}.

Citation Context Identification (CCI). The
task is to identify the span of the publication text
that introduces or explains a reference. It is also a
token-level sequence-labeling task – a sequence
of tags ycci = (y1, .., yn) with yi 2 Ycci =
{BCC , ICC , O} is assigned to a sequence of to-
kens x = (x1, .., xn).

Subjective Aspect Classification (SAC). An-
other sentence-level classification task in
which each sentence is assigned one of the
subjective aspect labels, Ysac = {None,
Limitation, Advantage, Disadvantage-Advantage,
Disadvantage, Common Practice, Novelty,
Advantage-Disadvantage}.

Summary Relevance Classification (SRC).
The task is to predict the relevance of a sentence for
the (extractive) summary of the publication. Each
sentence needs to be assigned one of the labels
Ysrc = {Very relevant, Relevant, May appear,
Should not appear, Totally irrelevant}.

ACI and CCI are token-level sequence labeling
tasks. The remaining three tasks can be cast as

either (1) plain sentence classification tasks or (2)
sentence-level sequence labeling tasks (assuming
that there are regularities in sequences of sentence-
level labels that can be captured). We propose one
MTL architecture for each of the two possibilities.

4.2 Multi-Task Learning Models

We propose two different MTL architectures for the
rhetorical and argumentative analysis of scientific
publications. The Simple model treats sentence-
level tasks (DRC, SAC, and SRC) as plain classifi-
cation tasks (i.e., the prediction for each sentence
ignores the content and labels of other, neighbor-
ing sentences). The Hierarchical model addresses
sentence-level tasks as sequence labeling tasks.
This model can be seen as a hierarchical sequence
labeling model, in which the sentence-level recur-
rent network is stacked on top of the token-level
sequence labeling network. Both architectures are
illustrated in Figure 2.

Token-level Predictions. Given a sentence si =
(xi1, .., xin) out of a sequence of sentences d =
(s1, .., sm) we first retrieve the pre-trained embed-
ding vector for each token xij .We then obtain
context-aware token representations hij by apply-
ing a bidirectional recurrent network with long
short-term memory cells (Hochreiter and Schmid-
huber, 1997) on the sequence of pre-trained word
embeddings:

hij = [
����!
LSTM (xi1, . . . , xij);

 ����
LSTM (xin, . . . , xij)] . (1)

This token-level Bi-LSTM encoder is shared be-
tween the tasks combined by the MTL models.
Next, we define a separate classifier for each of
the token-level (TL) tasks (i.e., ACI and CCI) and
feed the contextualized token representations hij to
these classifiers. Each of the classifiers is defined
as a feed-forward network with a single hidden
layer. The label probability distribution is obtained
by applying the softmax function on its output.

yijt = softmax(Wthij + bt) , (2)

where Wt 2 R
2K⇥|Yt| and bt 2 R

|Yt| are the task-
specific classification parameters for the task t,
with K being the size of the LSTM state and |Yt|
the number of discrete labels of task t.

Sentence-level Predictions. We learn to aggre-
gate a sentence representation si from contextu-
alized vectors of its tokens, hij (produced by the
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(a) Simple model.
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...

LSTM LSTM LSTM ...

SL DRC SL SRC SL SAC

yi 2 Yaci yi 2 Ycci

yi 2 Ydrc yi 2 Ysrc yi 2 Ysac

(b) Hierarchical model.

Figure 2: Neural MTL architectures for rhetorical and argumentative analysis of scientific publications: (a)
the Simple model addresses sentence-level tasks (DRC, SAC, SRC) as plain classification tasks, whereas
(b) the Hierarchical model treats sentence-level tasks as sequence labeling tasks. Both models address
ACI and CCI as token-level sequence labeling tasks.

token-level Bi-LSTM), using the intra-sentence at-
tention mechanism (Yang et al., 2016):

si =
X

j

↵ijhij , (3)

with the weights ↵i computed dynamically as:

↵i = softmax(Ui uatt) , (4)

where uatt is the trainable attention head vector
and Ui is a matrix with non-linearly transformed
token representations (hij) as rows:

Uij = tanh(Watthij + batt) . (5)

In the Simple architecture, sentence representa-
tions si are fed directly to the sentence-level task-
specific classifiers, which are also feed-forward
networks with a single hidden layer:

yit = softmax(Wtsi + bt) . (6)

Within the Hierarchical architecture, sentence rep-
resentations are first contextualized with repre-
sentations of other sentences via the sentence-
level Bi-LSTM layer (denoted with the function
Bi-LSTMS) and then forwarded to the classifier:

yit = softmax(WtBi-LSTMS(si) + bt) . (7)

Joint optimization and loss functions. All of
the tasks we consider are framed as multi-class clas-
sification tasks. Thus, we simply specify all task-
specific losses to be L2-regularized cross-entropy
errors. Let yto be the one-hot ground truth label

vector for the prediction instance o6 of the task t,
and let y0

to be the predicted probability distribution
over the task labels for the same instance. With Yt

as the set of labels for task t, the task-specific loss
Lt is computed as follows:

Lt = �k⌦tk2 �

X

o

|Yt|X

k=1

y(k)
to · ln

⇣
y0(k)

to

⌘
, (8)

where ⌦t is the set of model’s parameters relevant
for the task t7 and � is the regularization factor. We
train the MTL model jointly on different tasks by
defining and minimizing the joint loss function L
that combines task-specific losses Lt. Instead of us-
ing constant weights, we opt for dynamic weighting
of task-specific losses during the training process,
based on the homoscedastic uncertainty of tasks,
as proposed by Kendall et al. (2018):

L =
X

t

1
2�2

t

Lt + ln �2
t , (9)

where �t is the variance of the task-specific loss
over training instances, used to quantify the uncer-
tainty of task t. Kendall et al. (2018) show that
better MTL results can be obtained by dynamically

6The prediction instance is a token for ACI and CCI, and a
sentence for DRC, SAC, and SRC.

7The set of relevant parameters differs across tasks: for
token-level tasks (e.g., ARI) ⌦t denotes token-level Bi-LSTM
parameters and the parameters Wt and bt of task t’s classifier;
for a sentence-level task (e.g., DRC) within the Hierarchical
architecture, ⌦t includes all parameters of both token- and
sentence-level Bi-LSTMs, intra-sentence attention parameters,
and parameters of the task-specific classifier.
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assigning less weight to the more uncertain tasks,
as opposed to constant task weights throughout the
whole training process.

5 Evaluation

We run two sets of experiments. First, we evaluate
the performance of the Simple and the Hierarchical
neural models on individual tasks (i.e., in single-
task learning (STL) scenarios). We then evaluate
the impact of the argumentative signal on other
dimensions of rhetorical analysis by combining
them in joint MTL settings.

5.1 Experimental Setup.
We randomly split the corpus on the document-
level into train (roughly 70%, 28 documents con-
taining 6,697 sentences) and test portions (roughly
30%; 12 documents with 2,874 sentences). We
used roughly 20% of the train portion as the valida-
tion set for model selection.

Model configuration and training. We ran an
initial grid search on the validation set with pos-
sible values for the hyperparameters learning
rate ⌫ 2 {10�4, 10�5}, L2 regularization factor
� 2 {0.001, 0, 0001}, and LSTM states K 2
{64, 128, 256} and found the hyperparameter con-
figuration ⌫ = 10�4, � = 0.001, and K = 128
to be optimal for the vast majority of the STL and
MTL models. In all experiments, we represent
tokens with pre-trained 300-dimensional GloVe
embeddings (Pennington et al., 2014)8 and opti-
mize the model parameters using the Adam algo-
rithm (Kingma and Ba, 2015). We initialize all
model parameters using Xavier initialization (Glo-
rot and Bengio, 2010), train the models in batches
of N = 16 sentences and apply early stopping
based on the validation set performance.

Baselines. As a type of “sanity check”, we first
compare the performance of the two neural ar-
chitectures against traditional supervised machine
learning algorithms on each of the tasks separately.
For the token-level sequence labeling tasks (ACI
and CCI) we use Hidden Markov Models (HMM)
and Conditional Random Fields (CRF) (Lafferty
et al., 2001) as baselines. The HMM works directly
on the tokens, while we feed either the lexical repre-
sentation or the embedding representation of the to-
kens as features for the CRF. For the sentence clas-

8http://nlp.stanford.edu/data/glove.
840B.300d.zip.

ACI CCI

Model P R F P R F

HMM 30.8 17.2 20.8 18.3 13.1 15.0
CRFlexical 38.8 29.1 31.7 15.3 17.8 16.4
CRFembeddings 37.9 23.3 26.1 12.8 1.4 2.5

Neural: Simple 47.0 44.5 44.7 48.7 43.8 46.1

Table 4: Single-task results for token-level tasks
(macro-averaged F1 performances).

Model DRC SAC SRC

SVMtfidf 34.0 10.3 22.2
SVMembeddings 25.7 08.5 19.3

Neural: Simple 44.1 20.5 31.5
Neural: Hierarchical 42.6 19.1 33.2

Table 5: Single-task results for sentence-level tasks
(macro-averaged F1 scores).

sification tasks (DRC, SAC, and SRC), we evaluate
as baselines (1) the linear Support Vector Machines
(SVM) with TF-IDF feature vectors and (2) SVM
with RBF kernel and embedding features. In the
latter case we obtain a sentence representation by
averaging the pre-trained embeddings of sentence
words. We tune the hyperparameter values of the
SVM by conducting a grid search with possible pe-
nality parameter values c 2 {0.1, 1.0, 10.0} (linear
SVM and SVM with RBF kernel) and the parame-
ter of the radial basis function � 2 {0.01, 0.1, 1.0}
(SVM with RBF kernel). The possible hyperparam-
eter values for the L1 regularization coefficient c1
and for L2 regularization coefficient c2 of the CRF
are c1, c2 2 {0.1, 0.2, 0.001, 0.0001}.

In MTL experiments, we consider the respective
task performances from single-task experiments
and MTL with a joint loss function with equal
weighting of the task losses as baselines.

Single-Task Experiments. We first report the
model performances for individual tasks in STL
settings. Results for token-level tasks are shown
in Table 4, whereas Table 5 displays results for
sentence-level tasks. The scores (precision, recall,
and F1 score) are reported as macro-averages over
all task labels. Expectedly, our neural architec-
tures substantially outperform the traditional ma-
chine learning baselines on all tasks. For the three
sentence-level tasks, the Hierarchical architecture
outperforms the Simple model only when classify-
ing sentences by summary relevance (SRC). This
result seems intuitive – a Very relevant sentence
is likely to be surrounded with Relevant and May
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CCI DRC SAC SRC

Single Task
Simp 46.1 44.1 20.5 31.5
Hier – 42.6 19.1 33.2

Multi Task (w. ACI)
Simp0.5 43.8 (44.2) 43.5 (41.6) 18.0 (42.0) 32.2 (41.9)
Simpuncert 49.9 (40.5) 45.2 (38.6) 22.1 (39.4) 34.8 (41.0)
Hier0.5 – 41.6 (42.1) 17.8 (42.9) 30.3 (43.4)
Hieruncert – 43.9 (40.8) 18.9 (41.6) 34.8 (40.8)

Table 6: MTL results: rhetorical analysis tasks cou-
pled with argumentative component identification.
We report the F1 score macro-averaged over the
classes. The scores achieved for ACI are shown in
parentheses.9

appear sentences (and an Irrelevant sentence with
other Irrelevant and Should not appear sentences).
The fact that we observe no gains from the ad-
ditional sentence-level Bi-LSTM encoder for the
DRC and SAC tasks suggests that the content of
the sentence informs its discourse role and subjec-
tive aspect much more strongly than neighboring
sentences. In other words, the DRC and SAC seem
to be more localized classification tasks than SRC.

Multi-Task Learning Results. Our core re-
search question relates to the effect that recogniz-
ing fine-grained argumentative components has on
other rhetorical analysis tasks. This is why, in
our central set of experiments, we evaluate MTL
models with homoscedastic uncertainty weighting
which combine the ACI (as an auxiliary task) with
each of the four other tasks. In each multi-task
learning model, the token-level Bi-LSTM encoder
is shared between the two tasks. For sentence-
level tasks (DRC, SAC, SRC), we evaluate both
the Simple and Hierarchical architecture. In Table
6 we show the performance of the MTL models on
rhetorical analysis tasks (these can be compared
to the respective single-task model performances
from Tables 4 and 5.

When coupled in MTL settings with argumenta-
tion component identification (ACI) using the joint
loss formulation of Kendall et al. (2018), the results
significantly10 improve for all rhetorical analysis
tasks and models (except for SAC with the Hierar-
chical model), in comparison with the respective
single-task models. However, the performance for
the argumentation component identification does

9In the multi-task settings, the early stopping criterion was
based on the auxiliary task score.

10Differences significant at p < 0.05, tested using the non-
parametric stratified shuffling test (Yeh, 2000).

not improve in MTL. In other words, the extraction
of fine-grained argumentative components seems
to inform higher-level rhetorical analysis tasks, but
not vice-versa. This indeed supports the hypothe-
sis that argumentation guides scientific writing and
influences rhetorical structure of publications. Fur-
thermore, our results support the findings of Schulz
et al. (2018) who show that, opposed to initial re-
sults of Alonso and Plank (2017), MTL can yield
performance gains for higher-level semantic tasks.

6 Conclusion

Acknowledging the argumentative nature of scien-
tific text, we investigated the role of argumentation
in the rhetorical analysis of scientific publications.
We first extended an existing corpus annotated with
four different layers of rhetorical information with
annotations of argumentative components and re-
lations, creating the largest argumentation-labeled
corpus of scientific text in English. We explored in-
tuitive neural architectures with recurrent encoders
for argument extraction and rhetorical analysis
tasks and showed significant improvements over
traditional machine learning models. We then cou-
pled argument extraction with different rhetorical
analysis tasks in MTL models with dynamic loss
weighting and demonstrated that the argumentative
signal has a positive impact on high-level rhetorical
analysis tasks.

Admittedly, the corpus we used in this work
is limited to the domain of computer graphics.
Nonetheless, we believe that our findings relating
to the argumentative nature of scientific text and
links between argumentation and other rhetorical
aspects generalize to other domains too. This is
also supported by the comparable agreement ob-
served between expert and non-expert annotators.

In the future work, we would like to extend the
collection of scientific text to other fields. Next,
we intend to explore a wider range of MTL mod-
els, especially those involving more than two tasks.
Having annotated argumentative relations, we will
work on models for their automated identification
in scientific publications.
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Abstract

We design and build the first neural temporal
dependency parser. It utilizes a neural ranking
model with minimal feature engineering, and
parses time expressions and events in a text
into a temporal dependency tree structure. We
evaluate our parser on two domains: news re-
ports and narrative stories. In a parsing-only
evaluation setup where gold time expressions
and events are provided, our parser reaches
0.81 and 0.70 f-score on unlabeled and la-
beled parsing respectively, a result that is very
competitive against alternative approaches. In
an end-to-end evaluation setup where time ex-
pressions and events are automatically recog-
nized, our parser beats two strong baselines
on both data domains. Our experimental re-
sults and discussions shed light on the nature
of temporal dependency structures in different
domains and provide insights that we believe
will be valuable to future research in this area.

1 Introduction

Temporal relation classification is important for
a range of NLP applications that include but are
not limited to story timeline construction, ques-
tion answering, summarization, etc. Most work on
temporal information extraction models the task as
a pair-wise classification problem (Bethard et al.,
2007; Chambers et al., 2007; Chambers and Juraf-
sky, 2008; Ning et al., 2018a): given an individual
pair of time expressions and/or events, the system
predicts whether they are temporally related and
which specific relation holds between them. An
alternative approach is to model the temporal re-
lations in a text as a temporal dependency struc-
ture (TDS) for the entire text (Kolomiyets et al.,
2012). Such a temporal dependency structure has
the advantage that (1) it can be easily used to infer
additional temporal relations between time expres-
sions and/or events that are not directly connected

via the transitivity properties of temporal relations,
(2) it is computationally more efficient because a
model does not need to consider all pairs of time
expressions and events in a text, and (3) it is easier
to use for downstream applications such as time-
line construction.

However, most existing automatic systems are
pair-wise models trained with traditional statisti-
cal classifiers using a large number of manually
crafted features (Bethard et al., 2017). The few
exceptions include the work of Kolomiyets et al.
(2012), which describes a temporal dependency
parser based on traditional feature-based classi-
fiers, and Dligach et al. (2017), which describes a
system using neural network based models to clas-
sify individual temporal relations. More recently,
a semi-structured approach has also been proposed
(Ning et al., 2018b).

In this work, taking advantage of a newly avail-
able data set annotated with temporal dependency
structures – the Temporal Dependency Tree (TDT)
Corpus1 (Zhang and Xue, 2018), we develop a
neural temporal dependency structure parser us-
ing minimal hand-crafted linguistic features. One
of the advantages of neural network based models
is that they are easily adaptable to new domains,
and we demonstrate this advantage by evaluating
our temporal dependency parser on data from two
domains: news reports and narrative stories. Our
results show that our model beats a strong logistic
regression baseline. Direct comparison with exist-
ing models is impossible because the only similar
dataset used in previous work that we are aware of
is not available to us (Kolomiyets et al., 2012), but
we show that our models are competitive against
similar systems reported in the literature.

The main contributions of this work are:
• We design and build the first end-to-end neu-
1https://github.com/yuchenz/

structured_temporal_relations_corpus
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ral temporal dependency parser. The parser
is based on a novel neural ranking model that
takes a raw text as input, extracts events and
time expressions, and arranges them in a tem-
poral dependency structure.

• We evaluate the parser by performing exper-
iments on data from two domains: news re-
ports and narrative stories, and show that our
parser is competitive against similar parsers.
We also show the two domains have very dif-
ferent temporal structural patterns, an obser-
vation that we believe will be very valuable
to future temporal parser development.

The rest of the paper is organized as follows.
Since temporal structure parsing is a relatively
new task, we give a brief problem description in
§2. We describe our end-to-end pipeline system in
§3. Details of the neural ranking model are dis-
cussed in §4. In §5 we present and discuss our ex-
perimental results, and error analysis are presented
in §6. In §7 we discuss related work and situate our
work in the broader context, and we conclude our
paper in §8.

2 Problem Description

In this section we give a brief description of the
temporal dependency parsing task (more details in
Zhang and Xue (2018)). In a temporal structure
parsing task, a text is parsed into a dependency
tree structure that represents the inherent tempo-
ral relations among time expressions and events in
the text. The nodes in this tree are mostly time ex-
pressions and events which are represented as con-
tiguous spans of words in the text. They can also
be pre-defined meta nodes, which serve as refer-
ence times for other time expressions and events,
and they constitute the top-most part of the tree.
For example, Past Ref, Present Ref, Future Ref,
and Document Creation Time (DCT) are all pre-
defined meta nodes. The edges in the tree repre-
sent temporal relations between each parent-child
pair. The temporal relations can be one of In-
cludes, Before, Overlap, and After, or Depend-
on which holds between two time expressions.
Unlike syntactic dependency parsing where each
word in a sentence is a node in the dependency
structure, in a temporal dependency structure only
some of the words in a text are nodes in the struc-
ture. Therefore, this process naturally falls into
two stages: first time expression and event recog-
nition, and then temporal relation parsing. Fig-

ure 1 is an example temporal dependency tree for
a news report paragraph.

Due to the fact that different types of time ex-
pressions and events behave differently in terms of
what can be their antecedents, and recognition of
these types can be helpful for determining tempo-
ral relations, finer classifications of time expres-
sions and events are also defined. Time expres-
sions are further classified into Vague Time, Abso-
lute Concrete Time, and Relative Concrete Time,
according to whether or not the time expression
can be located on the timeline, and whether or
not the interpretation of its temporal location de-
pends on another time expression. Events are fur-
ther classified into Eventive Event, State, Habitual
Event, Completed Event, Ongoing Event, Modal-
ized Event, Generic Habitual, and Generic State,
according to the eventuality type of the event. Our
experiments will show that these fine-grained clas-
sifications are very helpful for the overall temporal
structure parsing accuracy.

3 A Pipeline System

We build a two-stage pipeline system to tackle this
temporal structure parsing problem. The first stage
performs event and time expression identification.
In this stage, given a text as input, spans of words
that indicate events or time expressions are identi-
fied and categorized. We model this stage as a se-
quence labeling process. A standard Bi-LSTM se-
quence model coupled with BIO labels is applied
here. Word representations are the concatenation
of word and POS tag embeddings.

The second stage performs the actual tempo-
ral structure parsing by identifying the antecedent
for each time expression and event, and identify-
ing the temporal relation between them. In this
stage, given events and time expressions identi-
fied in the first stage as input, the model outputs
a temporal dependency tree in which each child
node is an event or time expression that is tempo-
rally related to another event or time expression
or pre-defined meta node as its parent node. This
stage is modeled as a ranking process: for each
node, a finite set of neighboring nodes are first se-
lected as its candidate parents. These candidates
are then ranked with a neural network model and
the highest ranking candidate is selected as its par-
ent. We use a ranking model because it is sim-
ple, more intuitive and easier to train than a tradi-
tional transition-based or graph-based model, and
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Example News Paragrapha: 
Jorn Utzon, the Danish architect who designed the Sydney 
Opera House, has diede1 in Copenhagen. Borne2 in 1918t1, 
Mr Utzon was inspirede3 by Scandinavian functionalism in 
architecture, but made a number of inspirational tripse4, 
including to Mexico and Morocco. In 1957t2, Mr Utzon's 
now-iconic shell-like design for the Opera House 
unexpectedly wone5 a state government competition for 
the site on Bennelong Point on Sydney Harbour. However, 
he lefte6 the project in 1966t3. His plans for the interior of 
the building were not completeds1. The Sydney Opera 
House iss2 one of the world's most classic modern 
buildings and a landmark Australian structure. It was 
declarede7 a UNESCO World Heritage site last yeart4. 

a From a news report in The Telegraph.

Present_Ref

Figure 1: Example text and its temporal dependency
tree. DCT is Document Creation Time.

the learned model rarely makes mistakes that vio-
late the structural constraint of a tree.

Since the model we use for Stage 1 is a very
standard model with little modifications, we don’t
describe it in detail in this paper due to the limita-
tion of space. Our neural ranking model for Stage
2 is described in detail in the next section.

4 Neural Ranking Model

4.1 Model Description

We use a neural ranking model for the parsing
stage. For each time expression or event node i in
a text, a group of candidate parent nodes (time ex-
pressions, events, or pre-defined meta nodes) are
selected. In practice, we select a window from
the beginning of the text to two sentences after
node i, and select all nodes in this window and all
pre-defined meta nodes as the candidate parents
if node i is an event. Since the parent of a time
expression can only be a pre-defined meta node
or another time expression as described in Zhang
and Xue (2018), we select all time expressions in
the same window and all pre-defined meta nodes

as the candidate parents if node i is a time expres-
sion. Let y0

i be a candidate parent of node i, a score
is then computed for each pair of (i, y0

i).Through
ranking, the candidate with the highest score is
then selected as the final parent for node i.

Model architecture is shown in Figure 2. Word
embeddings are used as word representations (e.g.
wk). A Bi-LSTM sequence layer is built on each
word over the entire text, computing Bi-LSTM
output vectors for each word (e.g. w

⇤
k ). The node

representation for each time expression or event is
the summation of the Bi-LSTM output vectors of
all words in the text span (e.g. xi). The pair repre-
sentation for node i and one of its candidates y0

i is
the concatenation of the Bi-LSTM output vectors
of these two nodes gi,y0

i
= [xi, xy0

i
], which is then

sent through a Multi-Layer Perceptron to compute
a score for this pair si,y0

i
. Finally all pair scores of

the current node i are concatenated into vector ci,
and taking softmax on it generates the final dis-
tribution oi, which is the probability distribution
of each candidate being the parent of node i.

Formally, the Forward Computation is:

w
⇤
k = BiLSTM(wk)

xi = sum(w⇤
k�1, w

⇤
k , w⇤

k+1)

gi,y0

i
= [xi, xy0

i
]

hi,y0

i
= tanh(W1 · gi,y0

i
+ b1)

si,y0

i
= W2 · hi,y0

i
+ b2

ci = [si,1, ..., si,i�1, si,i+1, ..., si,i+t]

oi = softmax(ci)

4.2 Learning
Let D be the training data set of K texts, Nk the
number of nodes in text Dk, and yi the gold parent
for node i. Our neural model is trained to max-
imize P (y1, ..., yNk |Dk) over the whole training
set. More specifically, the cost function is defined
as follows:

C = �log
KY

k

P (y1, ..., yNk |Dk)

= �log
KY

k

NkY

i

P (yi|Dk)

=
KX

k

NkX

i

�logP (yi|Dk)

For each training example, cross-entropy loss is
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minimized:

L = �logP (yi|Dk)

= �log
exp[si,yi ]P
y0

i
exp[si,y0

i
]

where si,y0

i
is the score for child-candidate pair

(i, y0
i) as described in §4.1.

4.3 Decoding
During decoding, the parser constructs the tem-
poral dependency tree incrementally by identify-
ing the parent node for each event or time expres-
sion in textual order. To ensure the output parse
is a valid dependency tree, two constraints are ap-
plied in the decoding process: (i) there can only be
one parent for each node, and (ii) descendants of a
node cannot be its parent to avoid cycles. Candi-
dates violating these constraints are omitted from
the ranking process.2

4.4 Temporal Relation Labeling
The neural model described above generates an
unlabeled temporal dependency tree, with each
parent being the most salient reference time for the
child. However it doesn’t model the specific tem-
poral relation (e.g. “before”, “overlap”) between
a parent and a child. We extend this basic archi-
tecture to both identify parent-child pairs and pre-
dict their temporal relations. In this new model,
instead of ranking child-candidate pairs (i, y0

i),
we rank child-candidate-relation tuples (i, y0

i, lk),
where lk is the kth relation in the pre-defined set
of possible temporal relation labels L. We com-
pute this ranking by re-defining the pair score si,y0

i
.

Here, pair score si,y0

i
is no longer a scalar score but

a vector si,y0

i
of size |L|, where si,y0

i
[k] is the scalar

score for y0
i being the parent of i with temporal re-

lation lk. Accordingly, the lengths of ci and oi are
number of candidates ⇤ |L|. Finally, the tuple
(i, y0

i, lk) associated with the highest score in oi

predicts that y0
i is the parent for i with temporal

relation label lk.

4.5 Variations of the Basic Neural Model
4.5.1 Linguistically Enriched Models
A variation of the basic neural model is a model
that takes a few linguistic features as input ex-

2An alternative decoding approach would be to perform
a global search for a Maximum Spanning Tree. However,
due to the nature of temporal structures, our greedy decoding
process rarely hits the constraints.

…
…

…
…

word embedding (w)

pair representation (g)

concatenated scores (sc)

wkw1 wn

Bi-LSTM (w*)

hidden layer (h)

pair scores (sp)

output layer (o)

…… ……wk-1 wk+1

node representation (x) xi

took a trip…… ……He .

xa xb xc xd

Figure 2: Neural Ranking Model Architecture. xi is
the current child node, and xa, xb, xc, xd are the can-
didate parent nodes for xi. Arrows from Bi-LSTM
layer to xa, xb, xc, xd are not shown.

plicitly. In this model, we extend the pair rep-
resentation gi,y0

i
with local features: gi,y0

i
=

[xi, xy0

i
, �i,y0

i
].

Time and event type feature: Stage 1 of the
pipeline not only extracts text spans that are time
expressions or events, but also labels them with
pre-defined categories of different types of time
expressions and events. Readers are referred to
Zhang and Xue (2018) for the full category list.
Through a careful examination of the data, we no-
tice that time expressions or events are selective
as to what types of time expression or events can
be their parent. In other words, the category of
the child time expression or event has a strong
indication on which candidate can be its parent.
For example, a time expression’s parent can only
be another time expression or a pre-defined meta
node, and can never be an event; and an eventive
event’s parent is almost certainly another even-
tive event, and is highly unlikely to be a stative
event. Therefore, we include the time expression
and event type information predicted by stage 1 in
this model as a feature. More formally, we rep-
resent a time/event type as a fixed-length embed-
ding t, and concatenate it to the pair representation
gi,y0

i
= [xi, xy0

i
, ti, ty0

i
].

Distance features: Distance information can
be useful for predicting the parent of a child. In-
tuitively, candidates that are closer to the child are
more likely to be the actual parent. Through data
examination, we also find that a high percentage of
nodes have parents in close proximity. Therefore,
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we include two distance features in this model: the
node distance between a candidate and the child
ndi,y0

i
, and whether they are in the same sentence

ssi,y0

i
. One-hot representations are used for both

features to represent according conditions listed in
Table 1.

conditions for feature ndi,y0
i
:

i.node id � y0

i.node id = 1
i.node id � y0

i.node id > 1 and i.sent id = y0

i.sent id
i.node id � y0

i.node id > 1 and i.sent id 6= y0

i.sent id
i.node id � y0

i.node id < 1
conditions for feature ssi,y0

i
:

i.sent id = y0

i.sent id
i.sent id 6= y0

i.sent id

Table 1: Conditions for node distance and same sen-
tence features.

The final pair representation for our linguisti-
cally enriched model is as follows:

gi,y0

i
= [xi, xy0

i
, ti, ty0

i
, ndi,y0

i
, ssi,y0

i
]

4.5.2 Attention Model on Time and Event
Representation

In the basic neural model, a straight-forward sum-
pooling is used as the multi-word time expression
and event representation. However, multi-word
event expressions usually have meaning-bearing
head words. For example, in the event “took a
trip”, “trip” is more representative than “took” and
“a”. Therefore, we add an attention mechanism
(Bahdanau et al., 2014) over the Bi-LSTM out-
put vectors in each multi-word expression to learn
a task-specific notion of headedness (Lee et al.,
2017):

↵t = tanh(W · w
⇤
t )

wi,t =
exp[↵t]

PEND(i)
k=START (i) exp[↵k]

x̂i =
PEND(i)

t=START (i) wi,t · w
⇤
t

where x̂i is a weighted sum of Bi-LSTM output
vectors in span i. The weights wi,t are automati-
cally learned. The final pair representation for our
attention model is as follows:

gi,y0

i
= [xi, xy0

i
, ti, ty0

i
, ndi,y0

i
, ssi,y0

i
, x̂i, x̂y0

i
]

This model variation is also beneficial in an
end-to-end system, where time expression and
event spans are automatically extracted in Stage 1.
When extracted spans are not guaranteed correct
time expressions and events, an attention layer on

a slightly larger context of an extracted span has a
better chance of finding representative head words
than a sum-pooling layer strictly on words within
a event or time expression span.

5 Experiments

5.1 Data

All of our experiments are conducted on the
datasets described in Zhang and Xue (2018). This
is a temporal dependency structure corpus in Chi-
nese. It covers two domains: news reports and
narrative fairy tales. It consists of 115 news ar-
ticles sampled from Chinese TempEval2 datasets
(Verhagen et al., 2010) and Chinese Wikipedia
News3, and 120 fairy tale stories sampled from
Grimm Fairy Tales4. 20% of this corpus, dis-
tributed evenly on both domains, are double an-
notated with high inter-annotator agreements. We
use this part of the data as our development and
test datasets (10% documents for development and
10% for testing), and the remaining 80% as our
training dataset.

5.2 Baseline Systems

We build two baseline systems to compare with
our neural model. The first is a simple baseline
which links every time expression or event to its
immediate previous time expression or event. Ac-
cording to our data, if only position information is
considered, the most likely parent for a child is its
immediate previous time expression or event. This
baseline uses the most common temporal relation
edge label in the training datasets, i.e. “overlap”
for news data, and “before” for grimm data.

The second baseline is a more competitive base-
line for stage 2 in the pipeline. It takes the output
of the first stage as input, and uses a similar rank-
ing architecture but with logistic regression clas-
sifiers instead of neural classifiers. The purpose
of this baseline is to compare our neural models
against a traditional statistical model under oth-
erwise similar settings. We conduct robust fea-
ture engineering on this logistic regression model
to make sure it is a strong benchmark to compete
against. Table 2 lists the features and feature com-
binations used in this model.

3https://zh.wikinews.org
4https://www.grimmstories.com/zh/

grimm_tonghua/index
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time type and event type features:
i.type and y0

i.type
if i.type = absolute time and y0

i.type = root
if i.type = time and y0

i.type = root
are i.type and y0

i.type time, eventive, or stative
are i.type and y0

i.type root, time, or event
are i.type and y0

i.type root, time, eventive, or stative
if i.type = y0

i.type = event and ŷ.type = state,
for all ŷ between i and y0

i

distance features:
if i.sent id = y0

i.sent id
i.node id � y0

i.node id
if i.node id � y0

i.node id = 1
combination features:
if i.type = state and i.sent id 6= y0

i.sent id
if i.type = state and i.node id � y0

i.node id = 1
if i.type = y0

i.type = event and
i.node id � y0

i.node id = 1
if i.type = state and y0

i.type = event and
i.node id � y0

i.node id = 1 and
i.node id in sent = 1 and
i.sent id 6= 1

other features:
if i and y0

i are in quotation marks

Table 2: Features in the logistic regression system.

5.3 Evaluation
We perform two types of evaluations for our sys-
tems. First, we evaluate the stages of the pipeline
and the entire pipeline, i.e. end-to-end systems
where both time expression and event recognition,
as well as temporal dependency structures are au-
tomatically predicted. Our models are compared
against the two strong baselines described in §5.2.
These evaluations are described in §5.3.1.

The second evaluation focuses only on the tem-
poral relation structure parsing part of our pipeline
(i.e. Stage 2), using gold standard time expression
and event spans and labels. Since most previous
work on temporal relation identification use gold
standard time expression and event spans, this
evaluation gives us some sense of how our models
perform against models reported in previous work
even though a strict comparison is impossible be-
cause different data sets are used. These evalua-
tions are described in §5.3.2.

All neural networks in this work are imple-
mented in Python with the DyNet library (Neubig
et al., 2017). The code is publicly available5.

For Stage 1, all models are trained with Adam
optimizer with early stopping and learning rate
0.001. The dimensions of word embeddings, POS
tag embeddings, Bi-LSTM output vectors, and
MLP hidden layers are tuned on the dev set to 256,

5https://github.com/yuchenz/tdp_
ranking

evaluated news grimm
label p r f p r f

all span .81 .74 .78 .83 .74 .78
time .83 .81 .82 .97 .62 .76
event .81 .73 .77 .83 .74 .78

Table 3: Stage 1 cross-validation on span detection
and binary time/event recognition.

time/event type news grimm
vague time .77 .82

concrete absolute .67 -
concrete relative .75 -

event .61 .77
state .65 .61

completed .62 .26
modalized .46 .31

Table 4: Stage 1 (time/event type recognition) cross-
validation f1-scores on the full set.

32, 256, and 256 respectively. POS tags in Stage 1
are acquired using the joint POS tagger from Wang
and Xue (2014). The tagger is trained on Chinese
Treebank 7.0 (Xue et al., 2010). For Stage 2, the
dimensions of word embeddings, time/event type
embeddings, Bi-LSTM output vectors, and MLP
hidden layers are tuned on the dev set to 32, 16,
32, and 32 respectively. The optimizer is Adam
with early stopping and learning rate 0.001.

5.3.1 End-to-End System Evaluation
Stage 1: Time and Event Recognition For
Stage 1 in the pipeline, we perform BIO tagging
with the full set of time expression and event
types (i.e. a 11-way classification on all extracted
spans). Extracted spans will be nodes in the final
dependency tree, and time/event types will support
features in the next stage. We evaluate Stage 1
performance using 10-fold cross-validation of the
entire data set. We use the “exact match” evalua-
tion metrics for BIO sequence labeling tasks, and
compute precision, recall, and f-score for each la-
bel type.

We first ignore fine-grained time/event types
and only evaluate unlabeled span detection and
time/event binary classification to show how well
our system identify events and time expressions,
and how well our system distinguishes time ex-
pressions from events. Table 3 shows the cross-
validation results on these two evaluations. Span
detection and event recognition show similar per-
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model
news grimm

unlabeled f labeled f unlabeled f labeled f
dev test dev test dev test dev test

temporal relation
parsing with
gold spans

Baseline-simple .64 .68 .47 .43 .78 .79 .39 .39
Baseline-logistic .81 .79 .63 .54 .74 .74 .60 .63

Neural-basic .78 .75 .67 .57 .72 .74 .60 .63
Neural-enriched .80 .78 .67 .59 .76 .77 .63 .65
Neural-attention .83 .81 .76 .70 .79 .79 .66 .68

end-to-end
systems with

automatic spans

Baseline-simple .39 .40 .26 .25 .44 .47 .27 .25
Baseline-logistic .36 .34 .24 .22 .43 .49 .33 .37

Neural-basic .37 .36 .21 .23 .42 .45 .33 .35
Neural-enriched .51 .52 .32 .35 .44 .49 .33 .37
Neural-attention .54 .54 .36 .39 .44 .49 .35 .39

Table 5: Stage 2 results (f-scores) with gold spans and timex/event labels (top), and automatic spans and
timex/event labels generated by stage 1 (bottom). Best performances are in bold.

formance on both news and narrative domains.
Time expressions have a higher recognition rate
than events in news data, which is consistent with
the observation that time expressions usually have
a more limited vocabulary and more strict lexical
patterns. On the other hand, due to the scarcity of
time expressions in the Grimm data, time expres-
sion recognition in this domain has a very high
precision but low recall, which results in a much
lower f-score than news.

Labeled full set evaluation results on time/event
type classification are reported in Table 4. Time
expressions have higher recognition rates than
events on both domains, and dominant event types
(“event”, “state”, etc.) have higher and more sta-
ble recognition rates than other types. Event types
with very few training instances, such as “modal-
ized event” (<7%), achieve lower and more un-
stable recognition rates. Other types with less
than 2% instances achieve close to 0 recognition
f-scores, and are not reported in this table.

Stage 2: Temporal Dependency Parsing For
Stage 2 in the pipeline, we conduct experiments on
the five systems described above: a simple base-
line, a logistic regression baseline, a basic neural
model, a linguistically enriched neural model, and
an attention neural model. All models are trained
on automatically predicted spans of time expres-
sions and events, and time/event types generated
by Stage 1 using 10-fold cross-validation, with
gold standard edges (and edge labels) mapped
onto the automatic spans. Evaluations in Stage
2 are against gold standard spans and edges,
and evaluation metrics are precision, recall, and

f-score on hchild, parenti tuples for unlabeled
trees, and hchild, relation, parenti triples for la-
beled trees.

Bottom rows in Table 5 report the end-to-end
performance of our five systems on both domains.
On both labeled and unlabeled parsing, our ba-
sic neural model with only lexical input performs
comparable to the logistic regression model. And
our enriched neural model with only three sim-
ple linguistic features outperforms both the logis-
tic regression model and the basic neural model
on news, improving the performance by more than
10%. However, our models only slightly improve
the unlabeled parsing over the simple baseline on
narrative Grimm data. This is probably due to (1)
it is a very strong baseline to link every node to
its immediate previous node, since in an narrative
discourse linear temporal sequences are very com-
mon; and (2) most events breaking the temporal
linearity in a narrative discourse are implicit sta-
tive descriptions which are harder to model with
only lexical and distance features. Finally, atten-
tion mechanism improves temporal relation label-
ing on both domains.

5.3.2 Temporal Relation Evaluation
To facilitate comparison with previous work
where gold events are used as parser input, we re-
port our results on temporal dependency parsing
with gold time expression and event spans in Ta-
ble 5 (top rows). These results are in the same ball-
park as what is reported in previous work on tem-
poral relation extraction. The best performance
in Kolomiyets et al. (2012) are 0.84 and 0.65 f-
scores for unlabeled and labeled parses, achieved
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by temporal structure parsers trained and evalu-
ated on narrative children’s stories. Our best per-
forming model (Neural-attention) reports 0.81 and
0.70 f-scores on unlabeled and labeled parses re-
spectively, showing similar performance. It is im-
portant to note, however, that these two works use
different data sets, and are not directly compara-
ble. Finally, parsing accuracy with gold time/event
spans as input is substantially higher than that with
predicted spans, showing the effects of error prop-
agation.

6 Error Analysis

We perform error analysis on the output of our best
model (Neural-attention) on the development data
sets. We focus on analyzing our neural ranking
model (i.e. Stage 2), with gold time expression
and event spans and labels as input.

First, we look at errors by the types of an-
tecedents. Most events in both news and grimm
data depend on their immediate previous event
or time expression as their reference time parent.
71% of the events in the news data set and 78% of
the events in the Grimm data have the immediate
previous node as their antecedent. The confusion
matrix in Table 6 illustrates how strongly this bias
affects our models. Our model learns the bias and
incorrectly links around half of the events (47% in
news and 46% in grimm) to their immediate pre-
vious node when the correct temporal dependency
is further back in the text.

news grimm
pre far total pre far total

pre 317 11 328 750 60 810
far 65 72 137 104 122 226

total 382 83 465 854 182 1036

Table 6: Parent node confusion matrix. Rows are gold
parents and columns are automatically parsed parents.
“pre” means the parent is the immediate previous node
of the child event, “far” means the parent is further back
from the child event.

Second, we look at errors in temporal rela-
tion labels. Considering only correctly recognized
parent-child pairs, we draw a confusion matrix as
in Table 7. Our data has very few after relations
in both domains, which explains why the model
has difficulty identifying this relation. There are
also very few include and depend-on relations in
the Grimm data, however they are identified with a

news be af ov in de total
before 1 0 21 2 0 24
after 1 0 1 0 0 2

overlap 1 0 295 0 0 296
include 0 0 4 52 0 56

depend-on 0 0 0 0 117 117
total 3 0 321 54 117 495

grimm be af ov in de total
before 367 0 55 0 0 422
after 1 0 2 0 0 3

overlap 74 1 314 0 0 389
include 3 0 0 10 0 13

depend-on 0 0 0 0 12 12
total 445 1 371 10 12 839

Table 7: Temporal relation confusion matrix. Rows
are gold relation labels and columns are automatic re-
lation labels. “be, af, ov, in, de” stand for “before, after,
overlap, include, and depend-on”.

relatively high accuracy. This is probably because,
according to the temporal dependency structure
design (Zhang and Xue, 2018), these relations
hold only between restricted pairs of parent and
child: include requires a time expression parent
and an event child, and depend-on requires that
the parent be the rootf. The main confusion among
temporal relations is between before and overlap.
In news data, with a high occurrence of overlap
relations (60% overlap and 5% before), most be-
fore parents are wrongly recognized as overlap.
Grimm data has a more balanced distribution of
these two temporal relations (46% overlap and
50% before), however, 13% before and 17% over-
lap are wrongly labeled as the other.

7 Related Work

7.1 Related Work on Temporal Relation
Modeling

There is a significant amount of research on tem-
poral relation extraction (Bethard et al., 2007;
Bethard, 2013; Chambers and Jurafsky, 2008;
Chambers et al., 2014; Ning et al., 2018a). Most
of the previous work models temporal relation
extraction as pair-wise classification between in-
dividual pairs of events and/or time expressions.
Some of the models also add a global reasoning
step to local pair-wise classification, typically us-
ing Integer Linear Programming, to exploit the
transitivity property of temporal relations (Cham-
bers and Jurafsky, 2008). Such a pair-wise clas-
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sification approach is often dictated by the way
the data is annotated. In most of the widely
used temporal data sets, temporal relations be-
tween individual pairs of events and/or time ex-
pressions are annotated independently of one an-
other (Pustejovsky et al., 2003; Chambers et al.,
2014; Styler IV et al., 2014; O’Gorman et al.,
2016; Mostafazadeh et al., 2016).

Our work is most closely related to that of
Kolomiyets et al. (2012), which also treats tem-
poral relation modeling as temporal dependency
structure parsing. However, their dependency
structure, as described in Bethard et al. (2012),
is only over events, excluding time expressions
which are an important source of temporal infor-
mation, and it also excludes states (stative events),
which makes the temporal dependency structure
incomplete. Moreover, their corpus only consists
of data in the narrative stories domain. We instead
choose to develop our model based on the data
set described in Zhang and Xue (2018), which in-
troduces a more comprehensive and linguistically
grounded annotation scheme for temporal depen-
dency structures. This structure includes both
events and time expressions, and uses the linguis-
tic notion of temporal anaphora to guide the anno-
tation of the temporal dependency structure. Since
in this temporal dependency structure each parent-
child pair is considered to be an instance of tem-
poral anaphora, the parent is also called the an-
tecedent and the child is also referred to as the
anaphor. Their corpus consists of data from two
domains: news reports and narrative stories.

More recently, Ning et al. (2018b) proposed a
semi-structured approach to model temporal rela-
tions in a text. Based on the observation that not
all pairs of events have well-defined temporal re-
lations, they propose a multi-axis representation in
which well-defined temporal relations only hold
between events on the same axis. The temporal
relations between events in a text form multiple
disconnected subgraphs. Like other work before
them, their annotation scheme only covers events,
to the exclusion of time expressions.

7.2 Related Work on Neural Dependency
Parsing

Most prior work on neural dependency parsing is
aimed at syntactic dependency parsing, i.e. pars-
ing a sentence into a dependency tree that rep-
resents the syntactic relations among the words.

Recent work on dependency parsing typically
uses transition-based or graph-based architectures
combined with contextual vector representations
learned with recurrent neural networks (e.g. Bi-
LSTMs) (Kiperwasser and Goldberg, 2016).

Temporal dependency parsing is, however, dif-
ferent from syntactic dependency parsing. In tem-
poral dependency parsing, for each event or time
expression, there is more than one other event
or time expression that can serve as its reference
time, while the most closely related one is se-
lected as the gold standard reference time parent.
This naturally falls into a ranking process where
all possible reference times are ranked and the
best is selected. In this sense our neural ranking
model for temporal dependency parsing is closely
related to the neural ranking model for corefer-
ence resolution described in Lee et al. (2017), both
of which extract related spans of words (entity
mentions for coreference resolution, and events or
time expressions for temporal dependency pars-
ing). However, our temporal dependency parsing
model differs from Lee et al’s coreference model
in that the ranking model for coreference only
needs to output the best candidate for each indi-
vidual pairing and cluster all pairs that are coref-
erent to each other. In contrast, our ranking model
for temporal dependency parsing needs to rank
not only the candidate antecedents but also the
temporal relations between the antecedent and the
anaphor. In addition, the model also adds connec-
tivity and acyclic constraints in the decoding pro-
cess to guarantee a tree-structured output.

8 Conclusion and Future Work

In this paper, we present the first end-to-end neu-
ral temporal dependency parser. We evaluate the
parser with both gold standard and automatically
recognized time expressions and events. In both
experimental settings, the parser outperforms two
strong baselines and shows competitive results
against prior temporal systems.

Our experimental results show that the model
performance drops significantly when automati-
cally predicted event and time expressions are
used as input instead of gold standard ones, indi-
cating an error propagation problem. Therefore,
in future work we plan to develop joint models
that simultaneously extract events and time ex-
pressions, and parse their temporal dependency
structure.
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Abstract

Understanding causal explanations — reasons
given for happenings in one’s life — has been
found to be an important psychological factor
linked to physical and mental health. Causal
explanations are often studied through man-
ual identification of phrases over limited sam-
ples of personal writing. Automatic identifi-
cation of causal explanations in social media,
while challenging in relying on contextual and
sequential cues, offers a larger-scale alterna-
tive to expensive manual ratings and opens the
door for new applications (e.g. studying pre-
vailing beliefs about causes, such as climate
change). Here, we explore automating causal
explanation analysis, building on discourse
parsing, and presenting two novel subtasks:
causality detection (determining whether a
causal explanation exists at all) and causal ex-
planation identification (identifying the spe-
cific phrase that is the explanation). We
achieve strong accuracies for both tasks but
find different approaches best: an SVM for
causality prediction (F1 = 0.791) and a hier-
archy of Bidirectional LSTMs for causal ex-
planation identification (F1 = 0.853). Fi-
nally, we explore applications of our complete
pipeline (F1 = 0.868), showing demographic
differences in mentions of causal explanation
and that the association between a word and
sentiment can change when it is used within a
causal explanation.

1 Introduction

Explanations of happenings in one’s life, causal
explanations, are an important topic of study in so-
cial, psychological, economic, and behavioral sci-
ences. For example, psychologists have analyzed
people’s causal explanatory style (Peterson et al.,
1988) and found strong negative relationships with
depression, passivity, and hostility, as well as pos-
itive relationships with life satisfaction, quality of

Figure 1: A casual relation characterizes the connec-
tion between two discourse arguments, one of which is
the causal explanation.

life, and length of life (Scheier et al., 1989; Carver
and Gaines, 1987; Peterson et al., 1988).

To help understand the significance of causal
explanations, consider how they are applied
to measuring optimism (and its converse, pes-
simism) (Peterson et al., 1988). For example, in
“My parser failed because I always have bugs.”,
the emphasized text span is considered a causal
explanation which indicates pessimistic personal-
ity – a negative event where the author believes the
cause is pervasive. However, in “My parser failed
because I barely worked on the code.”, the expla-
nation would be considered a signal of optimistic
personality – a negative event for which the cause
is believed to be short-lived.

Language-based models which can detect
causal explanations from everyday social media
language can be used for more than automating
optimism detection. Language-based assessments
would enable other large-scale downstream tasks:
tracking prevailing causal beliefs (e.g., about cli-
mate change or autism), better extracting process
knowledge from non-fiction (e.g., gravity causes
objects to move toward one another), or detecting
attribution of blame or praise in product or service
reviews (“I loved this restaurant because the fish
was cooked to perfection”).
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In this paper, we introduce causal explanation
analysis and its subtasks of detecting the presence
of causality (causality prediction) and identifying
explanatory phrases (causal explanation identifi-
cation). There are many challenges to achiev-
ing these task. First, the ungrammatical texts in
social media incur poor syntactic parsing results
which drastically affect the performance of dis-
course relation parsing pipelines 1. Many causal
relations are implicit and do not contain any dis-
course markers (e.g., ‘because’). Further, Explicit
causal relations are also more difficult in social
media due to the abundance of abbreviations and
variations of discourse connectives (e.g., ‘cuz’ and
‘bcuz’).

Prevailing approaches for social media analy-
ses, utilizing traditional linear models or bag of
words models (e.g., SVM trained with n-gram,
part-of-speech (POS) tags, or lexicon-based fea-
tures) alone do not seem appropriate for this task
since they simply cannot segment the text into
meaningful discourse units or discourse arguments
2 such as clauses or sentences rather than random
consecutive token sequences or specific word to-
kens. Even when the discourse units are clear,
parsers may still fail to accurately identify dis-
course relations since the content of social media
is quite different than that of newswire which is
typically used for discourse parsing.

In order to overcome these difficulties of dis-
course relation parsing in social media, we sim-
plify and minimize the use of syntactic parsing re-
sults and capture relations between discourse ar-
guments, and investigate the use of a recursive
neural network model (RNN). Recent work has
shown that RNNs are effective for utilizing dis-
course structures for their downstream tasks (Ji
and Smith, 2017; Bhatia et al., 2015; Wieting
et al., 2015; Paulus et al., 2014), but they have yet
to be directly used for discourse relation predic-
tion in social media. We evaluated our model by
comparing it to off-the-shelf end-to-end discourse
relation parsers and traditional models. We found
that the SVM and random forest classifiers work
better than the LSTM classifier for the causality

1Off-the-shelf Penn Discourse Treebank (PDTB) end-to-
end parsers perform poorly on our Facebook causal predic-
tion dataset (see Table 3)

2Each discourse relation theory uses a different term for
minimal discourse text spans: ‘Elementary Discourse Unit
(EDU)’ in RST and ‘Discourse Argument’ in PDTB. We will
call it ‘Discourse Argument’ in this paper, since we adapted
the PDTB text segmentation method.

detection, while the LSTM classifier outperforms
other models for identifying causal explanation.

The contributions of this work include: (1) the
proposal of models for both (a) causality predic-
tion and (b) causal explanation identification, (2)
the extensive evaluation of a variety of models
from social media classification models and dis-
course relation parsers to RNN-based application
models, demonstrating that feature-based models
work best for causality prediction while RNNs are
superior for the more difficult task of causal ex-
planation identification, (3) performance analysis
on architectural differences of the pipeline and the
classifier structures, (4) exploration of the applica-
tions of causal explanation to downstream tasks,
and (5) release of a novel, anonymized causality
Facebook dataset along with our causality predic-
tion and causal explanation identification models.

2 Related Work

Identifying causal explanations in documents can
be viewed as discourse relation parsing. The
Penn Discourse Treebank (PDTB) (Prasad et al.,
2007) has a ‘Cause’ and ‘Pragmatic Cause’ dis-
course type under a general ‘Contingency’ class
and Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987) has a ‘Relations of Cause’. In
most cases, the development of discourse parsers
has taken place in-domain, where researchers have
used the existing annotations of discourse argu-
ments in newswire text (e.g. Wall Street Jour-
nal) from the discourse treebank and focused on
exploring different features and optimizing vari-
ous types of models for predicting relations (Pitler
et al., 2009; Park and Cardie, 2012; Zhou et al.,
2010). In order to further develop automated sys-
tems, researchers have proposed end-to-end dis-
course relation parsers, building models which are
trained and evaluated on the annotated PDTB and
RST Discourse Treebank (RST DT). These cor-
pora consist of documents from Wall Street Jour-
nal (WSJ) which are much more well-organized
and grammatical than social media texts (Biran
and McKeown, 2015; Lin et al., 2014; Ji and
Eisenstein, 2014; Feng and Hirst, 2014).

Only a few works have attempted to parse dis-
course relations for out-of-domain problems such
as text categorizations on social media texts; Ji and
Bhatia used models which are pretrained with RST
DT for building discourse structures from movie
reviews, and Son adapted the PDTB discourse re-
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lation parsing approach for capturing counterfac-
tual conditionals from tweets (Bhatia et al., 2015;
Ji and Smith, 2017; Son et al., 2017). These works
had substantial differences to what propose in this
paper. First, Ji and Bhatia used a pretrained model
(not fully optimal for some parts of the given
task) in their pipeline; Ji’s model performed worse
than the baseline on the categorization of legisla-
tive bills, which is thought to be due to legisla-
tive discourse structures differing from those of
the training set (WSJ corpus). Bhatia also used
a pretrained model finding that utilizing discourse
relation features did not boost accuracy (Bhatia
et al., 2015; Ji and Smith, 2017). Both Bhatia
and Son used manual schemes which may limit
the coverage of certain types of positive samples–
Bhatia used a hand-crafted schema for weighting
discourse structures for the neural network model
and Son manually developed seven surface forms
of counterfactual thinking for the rule-based sys-
tem (Bhatia et al., 2015; Son et al., 2017). We
use social-media-specific features from pretrained
models which are directly trained on tweets and
we avoid any hand-crafted rules except for those
included in the existing discourse argument ex-
traction techniques.

The automated systems for discourse relation
parsing involve multiple subtasks from segment-
ing the whole text into discourse arguments to
classifying discourse relations between the argu-
ments. Past research has found that different types
of models and features yield varying performance
for each subtask. Some have optimized models for
discourse relation classification (i.e. given a doc-
ument indicating if the relation existing) without
discourse argument parsing using models such as
Naive-Bayes or SVMs, achieve relatively stronger
accuracies but a simpler task than that associated
with discourse arguments (Park and Cardie, 2012;
Zhou et al., 2010; Pitler et al., 2009). Researchers
who, instead, tried to build the end-to-end parsing
pipelines considered a wider range of approaches
including sequence models and RNNs (Biran and
McKeown, 2015; Feng and Hirst, 2014; Ji and
Eisenstein, 2014; Li et al., 2014). Particularly,
when they tried to utilize the discourse struc-
tures for out-domain applications, they used RNN-
based models and found that those models are
advantageous for their downstream tasks (Bhatia
et al., 2015; Ji and Smith, 2017).

In our case, for identifying causal explana-

tions from social media using discourse structure,
we build an RNN-based model for its structural
effectiveness in this task (see details in section
3.2). However, we also note that simpler models
such as SVMs and logistic regression obtained the
state-of-the-art performances for text categoriza-
tion tasks in social media (Lynn et al., 2017; Mo-
hammad et al., 2013), so we build relatively simple
models with different properties for each stage of
the full pipeline of our parser.

3 Methods

We build our model based on PDTB-style dis-
course relation parsing since PDTB has a rela-
tively simpler text segmentation method;3 for ex-
plicit discourse relations, it finds the presence of
discourse connectives within a document and ex-
tracts discourse arguments which parametrize the
connective while for implicit relations, it consid-
ers all adjacent sentences as candidate discourse
arguments.

3.1 Dataset
We created our own causal explanation dataset by
collecting 3,268 random Facebook status update
messages. Three well-trained annotators manually
labeled whether or not each message contains the
causal explanation and obtained 1,600 causality
messages with substantial agreement ( = 0.61).
We used the majority vote for our gold standard.
Then, on each causality message, annotators iden-
tified which text spans are causal explanations.

For each task, we used 80% of the dataset for
training our model and 10% for tuning the hy-
perparameters of our models. Finally, we evalu-
ated all of our models on the remaining 10% (Ta-
ble 1 and Table 2). For causal explanation detec-
tion task, we extracted discourse arguments using
our parser and selected discourse arguments which
most cover the annotated causal explanation text
span as our gold standard.

3.2 Model
We build two types of models. First, we de-
velop feature-based models which utilize features
of the successful models in social media analysis
and causal relation discourse parsing. Then, we

3RST parsing builds fully hierarchical discourse tree
structures out of the whole span of target text which highly
depends on syntactic parsing and exact matching of elemen-
tary discourse units which are extremely hard to obtain from
social media texts
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Dataset Causality Non-Causal Total
Training 1,284 1,330 2,614
Validation 150 177 327
Test 164 163 327
Total 1,598 1,670 3,268

Table 1: Number of messages containing causality or
not in our dataset.

Causality messages CE DA Total DA
Training 1,278 5,606
Validation 160 652
Test 160 757
Total 1,598 7,015

Table 2: The number of discourse arguments in causal-
ity messages. Across 1,598 total causality messages,
we found 7,015 discourse arguments (Total DA) and
the one which covers annotated causal explanation are
used as causal explanation discourse arguments (CE
DA)

build a recursive neural network model which uses
distributed representation of discourse arguments
as this approach can even capture latent proper-
ties of causal relations which may exist between
distant discourse arguments. We specifically se-
lected bidirectional LSTM since the model with
the discourse distributional structure built in this
form outperformed the traditional models in simi-
lar NLP downstream tasks (Ji and Smith, 2017).

Discourse Argument Extraction As the first
step of our pipeline, we use Tweebo parser (Kong
et al., 2014) to extract syntactic features from mes-
sages. Then, we demarcate sentences using punc-
tuation (‘,’) tag and periods. Among those sen-
tences, we find discourse connectives defined in
PDTB annotation along with a Tweet POS tag for
conjunction words which can also be a discourse
marker. In order to decide whether these connec-
tives are really discourse connectives (e.g., I went
home, but he stayed) as opposed to simple con-
nections of two words (I like apple and banana)
we see if verb phrases 4 exist before and after the
connective by using dependency parsing results.
Although discourse connective disambiguation is
a complicated task which can be much improved
by syntactic features (Pitler and Nenkova, 2009),
we try to minimize effects of syntactic parsing and
simplify it since it is highly error-prone in social

4minimal discourse unit is verb phrases with very few ex-
ceptions (Prasad et al., 2007)

media. Finally, according to visual inspection,
emojis (‘E’ tag) are crucial for discourse relation
in social media so we take them as separate dis-
course arguments (e.g.,in “My test result... :(” the
sad feeling is caused by the test result, but it can-
not be captured by plain word tokens).

Feature Based Models We trained a linear
SVM, an rbf SVM, and a random forest with N-
gram, charater N-gram, and tweet POS tags, senti-
ment tags, average word lengths and word counts
from each message as they have a pivotal role in
the models for many NLP downstream tasks in so-
cial media (Mohammad et al., 2013; Lynn et al.,
2017). In addition to these features, we also ex-
tracted First-Last, First3 features and Word Pairs
from every adjacent pair of discourse arguments
since these features were most helpful for causal
relation prediction (Pitler et al., 2009). First-Last,
First3 features are first and last word and first three
words of two discourse arguments of the relation,
and Word Pairs are the cross product of words of
those discourse arguments. These two features en-
able our model to capture interaction between two
discourse arguments. (Pitler et al., 2009) reported
that these two features along with verbs, modal-
ity, context, and polarity (which can be captured
by N-grams, sentiment tags and POS tags in our
previous features) obtained the best performance
for predicting Contingency class to which causal-
ity belongs.

Recursive Neural Network Model We load
the GLOVE word embedding (Pennington et al.,
2014) trained in Twitter 5 for each token of ex-
tracted discourse arguments from messages. For
the distributional representation of discourse ar-
guments, we run a Word-level LSTM on the
words’ embeddings within each discourse argu-
ment and concatenate last hidden state vectors
of forward LSTM (

�!
h ) and backward LSTM

(
 �
h ) which is suggested by (Ji and Smith, 2017)

(DA = [
�!
h ;
 �
h ]). Then, we feed the sequence of

the vector representation of discourse arguments
to the Discourse-argument-level LSTM (DA-level
LSTM) to make a final prediction with log soft-
max function. With this structure, the model can
learn the representation of interaction of tokens
inside each discourse argument, then capture dis-
course relations across all of the discourse argu-

5http://nlp.stanford.edu/data/glove.
twitter.27B.zip
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Figure 2: LSTM classifier for causality detection and explanation identification

ments in each message (Figure 2). In order to
prevent the overfitting, we added a dropout layer
between the Word-level LSTM and the DA-level
LSTM layer.

Architectural Variants We also explore subsets
of the full RNN architecture, specifically with one
of the two LSTM layers removed. In the first
model variant, we directly input all word embed-
dings of a whole message to a BiLSTM layer and
make prediction (Word LSTM) without the help
of the distributional vector representations of dis-
course arguments. In the second model variant,
we take the average of all word embeddings of
each discourse argument (DAk = 1

Nk

PNk
i=1 Wi),

and use them as inputs to a BiLSTM layer (DA
AVG LSTM) as the average vector of embeddings
were quite effective for representing the whole se-
quence (Ji and Smith, 2017; Wieting et al., 2015).
As with the full architectures, for CP both of these
variants ends with a many-to-one classification per
message, while the CEI model ends with a se-
quence of classifications.

3.3 Experiment
Feature Based Model We explored three types
of models (RBF SVM, Linear SVM, and Ran-
dom Forest Classifier) which have previously been
shown empirically useful for the language analy-
sis in social media. We filtered out low frequency
Word Pairs features as they tend to be noisy and
sparse (Pitler et al., 2009). Then, we conducted
univariate feature selection to restrict all remain-
ing features to those showing at least a small rela-
tionship with the outcome. Specifically, we keep

all features passing a family-wise error rate of
↵ = 60 with the given outcome. After comparing
the performance of the optimized version of each
model, we also conducted a feature ablation test
on the best model in order to see how much each
feature contributes to the causality prediction.

Neural Network Model We used bidirectional
LSTMs for causality classification and causal ex-
planation identification since the discourse argu-
ments for causal explanation can show up either
before and after the effected events or results and
we want our model to be optimized for both cases.
However, there is a risk of overfitting due to the
dataset which is relatively small for the high com-
plexity of the model, so we added a dropout layer
(p=0.3) between the Word-level LSTM and the
DA-level LSTM.

For tuning our model, we explore the dimen-
sionality of word vector and LSTM hidden state
vectors of discourse arguments of 25, 50, 100, and
200 as pretrained GLOVE vectors were trained in
this setting. For optimization, we used Stochastic
Gradient Descent (SGD) and Adam (Kingma and
Ba, 2014) with learning rates 0.01 and 0.001.

We ignore missing word embeddings because
our dataset is quite small for retraining new word
embeddings. However, if embeddings are ex-
tracted as separate discourse arguments, we used
the average of all vectors of all discourse argu-
ments in that message. Average embeddings have
performed well for representing text sequences in
other tasks (Wieting et al., 2015).
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Model F1
(Biran and McKeown, 2015) 0.434
(Lin et al., 2014) 0.638
Linear SVM 0.791
RBF SVM 0.777
Random Forest 0.771
LSTM 0.758

Table 3: Causality prediction performance across dif-
ferent predictive models. Bold indicates significant im-
provement over the LSTM

Model F1
All 0.791
- First-Last, First3 0.788
- Word Pairs 0.787
- POS tags 0.734
- (Char + Word) N-grams 0.769
- Sentiment tags 0.791

Table 4: Feature ablation test of Linear SVM for
causality prediction

Model Evaluation We first use state-of-the-art
PDTB taggers for our baseline (Lin et al., 2014;
Biran and McKeown, 2015) for the evaluation
of the causality prediction of our models ((Biran
and McKeown, 2015) requires sentences extracted
from the text as its input, so we used our parser
to extract sentences from the message). Then,
we compare how models work for each task and
disassembled them to inspect how each part of
the models can affect their final prediction perfor-
mances. We conducted McNemar’s test to deter-
mine whether the performance differences are sta-
tistically significant at p < .05.

4 Results

We investigated various models for both causal-
ity detection and explanation identification. Based
on their performances on the task, we analyzed
the relationships between the types of models and
the tasks, and scrutinized further for the best per-
forming models. For performance analysis, we re-
ported weighted F1 of classes.

4.1 Causality Prediction
In order to classify whether a message contains
causal relation, we compared off-the-shelf PDTB
parsers, linear SVM, RBF SVM, Random forest
and LSTM classifiers. The off-the-shelf parsers
achieved the lowest accuracies ((Biran and McK-

Model Prec Rec F1
Linear SVM 0.773 0.727 0.743
RBF SVM 0.773 0.727 0.743
Random Forest 0.747 0.790 0.746
LSTM 0.851 0.858 0.853

Table 5: Causal explanation identification perfor-
mance. Bold indicates significant imrpovement over
next best model (p < .05)

eown, 2015) and (Lin et al., 2014) in Table 3).
This result can be expected since 1) these mod-
els were trained with news articles and 2) they are
trained for all possible discourse relations in ad-
dition to causal relations (e.g., contrast, condition,
etc). Among our suggested models, SVM and ran-
dom forest classifier performed better than LSTM
and, in the general trend, the more complex the
models were, the worse they performed. This sug-
gests that the models with more direct and simpler
learning methods with features might classify the
causality messages better than the ones more op-
timized for capturing distributional information or
non-linear relationships of features.

Causality Classifier Analysis Table 4 shows
the results of a feature ablation test to see how each
feature contributes to causality classification per-
formance of the linear SVM classifier. POS tags
caused the largest drop in F1. We suspect POS
tags played a unique role because discourse con-
nectives can have various surface forms (e.g., be-
cause, cuz, bcuz, etc) but still the same POS tag
‘P’. Also POS tags can capture the occurrences
of modal verbs, a feature previously found to be
very useful for detecting similar discourse rela-
tions (Pitler et al., 2009). N-gram features caused
0.022 F1 drop while sentiment tags did not af-
fect the model when removed. Unlike the previ-
ous work where First-Last, First3 and Word pairs
tended to gain a large F1 increase for multiclass
discourse relation prediction, in our case, they did
not affect the prediction performance compared to
other feature types such as POS tags or N-grams.

4.2 Causal Explanation Identification

In this task, the model identifies causal explana-
tions given the discourse arguments of the causal-
ity message. We explored over the same mod-
els as those we used for causality (sans the out-
put layer), and found the almost opposite trend of
performances (see Table 5). The Linear SVM ob-
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Model CP (F1) CEI (F1)
Full LSTM 0.758 0.853
DA AVG LSTM 0.685 0.818
Word LSTM 0.694 0.792

Table 6: The effect of Word-level LSTM (Word
LSTM) and discourse argument LSTM (DA AVG
LSTM) for causality prediction (CP) and causal expla-
nation identification (CEI). Note that, as described in
methods, there are architectural differences for CP and
CEI models with the same names, most notably that the
output layer is always a single classification for CP and
a sequence of classifications for CEI.

tained lowest F1 while the LSTM model made the
best identification performance. As opposed to the
simple binary classification of the causality mes-
sages, in order to detect causal explanation, it is
more beneficial to consider the relation across dis-
course arguments of the whole message and im-
plicit distributional representation due to the im-
plicit causal relations between two distant argu-
ments.

4.3 Architectural Variants

For causality prediction, we experimented with
only word tokens in the whole message without
help of Word-level LSTM layer (Word LSTM),
and F1 dropped by 0.064 (CP in Table 6). Also,
when we used the average of the sequence of
word embeddings of each discourse argument as
an input to the DA-level LSTM and it caused F1
drop of 0.073. This suggests that the informa-
tion gained from both the interaction of words in
and in between discourse arguments help when the
model utilizes the distributional representation of
the texts.

For causal explanation identification, in order
to test how the LSTM classifier works without its
capability of capturing the relations between dis-
course arguments, we removed DA-level LSTM
layer and ran the LSTM directly on the word em-
bedding sequence for each discourse argument for
classifying whether the argument is causal expla-
nation, and the model had 0.061 F1 drop (Word
LSTM in CEI in Table 6). Also, when we ran DA-
level LSTM on the average vectors of the word se-
quences of each discourse argument of messages,
F1 decreased to 0.818. This follows the similar
pattern observed from other types of models per-
formances (i.e., SVMs and Random Forest classi-
fiers) that the models with higher complexity for

Model Prec Rec F1
CP + CEIcausal 0.864 0.877 0.868
CP + CEIall 0.842 0.864 0.848
CEIcausal Only 0.847 0.788 0.810
CEIall Only 0.836 0.848 0.842

Table 7: The effect of Linear SVM Cauality model
(CP) within our pipeline. CEIall: LSTM CEI models
trained on all messages; CEIcausal: LSTM CEI mod-
els trained only on causality messages (CEIcausal); CP
+ CEIall|causal: the combination of Linear SVM and
each LSTM model. Bold: significant (p < .05) in-
crease in F1 over the next best model, suggesting the
two-step approach worked best.

capturing the interaction of discourse arguments
tend to identify causal explanation with the higher
accuracies.

For CEI task, we found that when the model
ran on the sequence representation of discourse ar-
gument (DA AVG LSTM), its performance was
higher than the plain sequence of word embed-
dings (Word LSTM). Finally, in both subtasks,
when the models ran on both Word-level and DA-
Level (Full LSTM), they obtained the highest per-
formance.

4.4 Complete Pipeline

Evaluations thus far zeroed-in on each subtask of
causal explanation analysis (i.e. CEI only focused
on data already identified to contain causal expla-
nations). Here, we seek to evaluate the complete
pipeline of CP and CEI, starting from all of test
data (those or without causality) and evaluating the
final accuracy of CEI predictions. This is intended
to evaluate CEI performance under an applied set-
ting where one does not already know whether a
document has a causal explanation.

There are several approaches we could take to
perform CEI starting from unannotated data. We
could simply run CEI prediction by itself (CEI
Only) or the pipeline of CP first and then only
run CEI on documents predicted as causal (CP
+ CEI). Further, the CEI model could be trained
only on those documents annotated causal (as was
done in the previous experiments) or on all train-
ing documents including many that are not causal.

Table 7 show results varying the pipeline and
how CEI was trained. Though all setups per-
formed decent (F1 > 0.81) we see that the
pipelined approach, first predicting causality (with
the linear SVM) and then predicting causal expla-
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nations only for those with marked causal (CP +
CEIcausal) yielded the strongest results. This also
utilized the CEI model only trained on those anno-
tated causal. Besides performance, an added ben-
efit from this two step approach is that the CP step
is less computational intensive of the CEI step and
approximately 2/3 of documents will never need
the CEI step applied.

Limitations. We had an inevitable limitation on
the size of our dataset, since there is no other
causality dataset over social media and the anno-
tation required an intensive iterative process. This
might have limited performances of more com-
plex models, but considering the processing time
and the computation load, the combination of the
linear model and the RNN-based model of our
pipeline obtained both the high performance and
efficiency for the practical applications to down-
stream tasks. In other words, it’s possible the lin-
ear model will not perform as well if the training
size is increased substantially. However, a linear
model could still be used to do a first-pass, com-
putationally efficient labeling, in order to short-
list social media posts for further labeling from an
LSTM or more complex model.

5 Exploration

Here, we explore the use of causal explanation
analysis for downstream tasks. First we look at the
relationship between use of causal explanation and
one’s demographics: age and gender. Then, we
consider their use in sentiment analysis for extract-
ing the causes of polarity ratings. Research involv-
ing human subjects was approved by the Univer-
sity of Pennsylvania Institutional Review Board.

Demographic differences. We first explored
variance in number of causality posts by de-
mographics. To do this, we used self-authored
posts from a random 300 consenting-users of the
MyPersonality dataset (Kosinski et al., 2013). For
each user we calculate a cp ratio, defined as the
number of causality predicted posts divided by
their total number of posts, indicating the percent-
age of their posts which include a causal explana-
tion. We then correlated this ratio with real-valued
age using Pearson correlation and looked the dif-
ferences by dichotomous gender using Cohen’s d
(the difference in standardized means; only bi-
nary gender was available). We found significant
(p < .05) moderate-sized associations for both,

CE Non-CE
Top Ngrams Top Ngrams

1 worst not
2 was no
3 not ”
4 the worst asked
5 horrible she
6 rude told
7 bad said
8 overpriced minutes
9 over ?
10 slow me

Table 8: Top words most associated with negative re-
views from within causal explanations (CE) and out-
side of causal explanation (Non-CE).

indicating both older individuals and females were
likely to use more causal explanations.

Causality in Sentiment Analysis We explored
the application of causality explanation identifi-
cation for sentiment analysis using the Yelp po-
larity dataset (Zhang et al., 2015). We randomly
selected 10,000 of both positive and negative re-
views and ran our complete pipeline on them to ex-
tract the causal explanations from the reviews. We
then analyzed the ngrams from (a) causal expla-
nation and (b) all other discourse arguments test-
ing for associations with polarity. We used the a
Bayesian interpretation of the log odds ratio us-
ing an informative dirichlet prior defined by Mon-
roe et al. (2008). We found difference in the top
ngrams depending on whether the argument the
ngram originated from was a causal explanation
or not (see Table 8). Top ngrams for causal expla-
nations included more content words (e.g. ‘rude’,
‘overpriced’, ‘slow’) suggesting analyzing causal
explanations within reviews can better target the
reasons for the negative review.

6 Conclusion

We developed a pipeline for causal explanation
analysis over social media text, including both
causality prediction and causal explanation iden-
tification. We examined a variety of model
types and RNN architectures for each part of the
pipeline, finding an SVM best for causality pre-
diction and a hierarchy of BiLSTMs for causal ex-
planation identification, suggesting the later task
relies more heavily on sequential information. In
fact, we found replacing either layer of the hier-
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archical LSTM architecture (the word-level or the
DA-level) with a an equivalent “bag of features”
approach resulted in reduced accuracy. Results of
our whole pipeline of causal explanation analysis
were found quite strong, achieving an F1 = 0.868
at identifying discourse arguments that are causal
explanations.

Finally, we demonstrated use of our models in
applications, finding associations between demo-
graphics and rate of mentioning causal explana-
tions, as well as showing differences in the top
words predictive of negative ratings in Yelp re-
views. Utilization of discourse structure in social
media analysis has been a largely untapped area
of exploration, perhaps due to its perceived diffi-
culty. We hope the strong results of causal expla-
nation identification here leads to the integration
of more syntax and deeper semantics into social
media analyses and ultimately enables new appli-
cations beyond the current state of the art.
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Abstract

Multimodal learning has shown promising
performance in content-based recommenda-
tion due to the auxiliary user and item in-
formation of multiple modalities such as text
and images. However, the problem of incom-
plete and missing modality is rarely explored
and most existing methods fail in learning a
recommendation model with missing or cor-
rupted modalities. In this paper, we propose
LRMM, a novel framework that mitigates not
only the problem of missing modalities but
also more generally the cold-start problem of
recommender systems. We propose modality
dropout (m-drop) and a multimodal sequen-
tial autoencoder (m-auto) to learn multimodal
representations for complementing and imput-
ing missing modalities. Extensive experiments
on real-world Amazon data show that LRMM
achieves state-of-the-art performance on rating
prediction tasks. More importantly, LRMM is
more robust to previous methods in alleviating
data-sparsity and the cold-start problem.

1 Introduction

Recommender systems (RS) are useful filtering
tools which aid customers in a personalized way to
make better purchasing decisions and whose rec-
ommendations are based on the customer’s pref-
erences and purchasing histories. Recommender
systems can be roughly divided into collabora-
tive filtering (CF) (Koren et al., 2009) or content-
based filtering (CBF) (Pazzani and Billsus, 2007)
methods. CF-based methods predict the product
preference of users based on their previous pur-
chasing and reviewing behavior by computing la-
tent representations of users and products. Stan-
dard matrix factorization (MF) and its variants are
widely used in CF approaches (Koren et al., 2009).
While CF-based approaches were demonstrated to

⇤ Work done in NEC Laboratories Europe.

"Excellent Optics."

"My son likes it!"

(a) (b)

(c) (d)

n.a.

IS  Ultra-Compact Binoculars Tongass National Forest Map

Lightweight and powerful, 
the ultra-compact 10x30 
Image Stabilization 
Binoculars delivers (...)

Durable camping watch.  
New in original packaging. 
Brown leather strap, 
backpack clip and compass.

Detailed Map Of Prince of 
Wales Island in Tongass 
National Forest. This Map 
is detailed (...)

Figure 1: Examples of typical multimodal product
data from online retailers: image, title, descrip-
tion, reviews, star ratings. The cold-start problem
is present in cases (b) and (c) where neither review
text nor ratings are available.

perform well in many application domains (Ricci
et al., 2015), these methods are based solely on the
sparse user-item rating matrix and, therefore, suf-
fer from the so-called cold-start problem (Schein
et al., 2002; Huang and Lin, 2016; Wang et al.,
2017) as shown in Figure 1(b)+(c). For new users
without a rating history and newly added products
with few or no ratings, the systems fail to generate
high-quality personalized recommendations.

Alternatively, CBF approaches incorporate aux-
iliary modalities/information such as product de-
scriptions, images, and user reviews to alleviate
the cold-start problem by leveraging the correla-
tions between multiple data modalities. Unfor-
tunately, a pure CBF method often suffers diffi-
culties in generating a recommendation on incom-
plete and missing data (Sedhain et al., 2015; Wang
et al., 2016b; Volkovs et al., 2017; Garcı́a-Durán
et al., 2018).

In this work, a multimodal imputation frame-
work (LRMM) is proposed to make RS robust
to incomplete and missing modalities. First,
LRMM learns multimodal correlations (Ngiam
et al., 2011; Srivastava and Salakhutdinov, 2012;
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Wang et al., 2016a, 2018) from product images,
product metadata (title+description), and product
reviews. We propose modality dropout (m-drop)
which randomly drops representations of some
data modalities. In combination with the modal-
ity dropout approach, a sequential autoencoder (m-
auto) for multi-modal data is trained to reconstruct
missing modalities and, at test time, is used to im-
pute missing modalities through its learned recon-
struction function.

Multimodal imputation for recommender sys-
tems is a non-trivial issue. (1) Existing RS meth-
ods usually assume that all data modalities are
available during training and inference. In prac-
tice, however, incomplete and missing data modal-
ities are very common. (2) At its core it addresses
the cold-start problem. In the context of missing
modalities, cold-start can be viewed as missing
user or item preference information.

With this paper we make the following contri-
butions:

• For the first time, we introduce multimodal
imputation in the context of recommender
systems.

• We reformulate the data-sparsity and cold-
start problem when data modalities are miss-
ing.

• We show that the proposed method achieves
state-of-the-art results and is competitive
with or outperforms existing methods on
multiple data sets.

• We conduct additional extensive experiments
to empirically verify that our approach alle-
viates the missing data modalities problem.

The rest of paper is structured as follows: Sec-
tion 2 introduces our proposed methods. Section 3
describes the experiments and reports on the em-
pirical results. In section 4 we discuss the method
and its advantages and disadvantages, and in sec-
tion 5 we discuss related work. Section 6 con-
cludes this work.

2 Proposed Methods

The general framework of LRMM is depicted in
Figure 2. There are two objectives for LRMM:
(1) learning multimodal embeddings that capture
inter-modal correlations, complementing missing
modalities (Sec. 2.1); (2) learning intra-modal

G G GG G G G G G
G

I itlike nice shirt ! shirtblack .

rating regression

s

Ù

multimodal embeddings

correlation
learning

s

Figure 2: Overview of LRMM. It adopts CNN for
visual embeddings (pink part) and three LSTMs
for textual embeddings of user review text (red
part), item review text (green part) and item meta-
data (blue part), respectively. The generative (au-
toencoder) model is used to reconstruct modality-
specific embeddings and impute missing modality.
Missing user and item review text lead to user- and
item-based cold-start respectively.

distributions where missing modalities are recon-
structed via a missing modality imputation mech-
anism (sec. 2.2 and 2.3).

2.1 Learning Multimodal Embeddings
We denote a user u having k review texts as
ru=(ru

o1
, ru

o2
, ..., ru

ok
) where ru

oi
represents review

text written by u for item oi. An item o is denoted
as ro=(ro

u1
, ro

u2
, ..., ro

up
) where ro

uj
represents the

review text written by user uj for item o. Follow-
ing Zheng et al. (2017), to represent each user and
item, the reviews of u and o are concatenated into
one review history document:

Du = ru
o1

� ru
o2

�, ..., �ru
ok

(1)

Do = ro
u1

� ro
u2

�, ..., �ro
up

(2)

where � is the concatenation operator. Similarly,
the metadata of each item o can be represented as
Dm. For readability, we use u, o, m, v to denote
user, item, metadata, and the image modality, re-
spectively.

For text-based representation learning for user
and item, unlike Zheng et al. (2017) in which
CNNs (Convolutional Neural Networks) with
Word2Vec (Mikolov et al., 2013) are employed,
our method treats text as sequential data and learns
embeddings over word sequences by maximizing
the following probabilities:
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1, ...,x
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YT g

t=1
p(xg

t |x
g
1, ...,x

g
t�1) (3)

p(xg
t |x

g
1, ...,x

g
t�1) = p(xg

t |e
g
t ) (4)

eg
t = Mg(eg

t�1,x
g
t ;⇥

g) (5)

where Mg, g 2 {u, o,m} is a recurrent model
and (xg

1, ...,x
g
T ) is the word sequence of either re-

view or metadata text, each xg
t 2 V and V is a

vocabulary set. T g is the length of input and out-
put sequence and eg

t is the hidden state computed
from the corresponding LSTM (Long Short Term
Memory) (Hochreiter and Schmidhuber, 1997) by:

0

BB@

it
ft
ot

gt

1

CCA =

0

BB@

sigm
sigm
sigm
tanh

1

CCAW

✓
xt

ht�1

◆
(6)

ct = ft � ct�1 + it � gt (7)
ht = ot � tanh(ct) (8)

where it, ft and ot are input, forget and output gate
respectively, ct is memory cell, ht is the hidden
output that we used for computing user or item
embedding eg, g 2 {u, o,m}.

As we treat each text document Dg as a word
sequence of length T g, we adopt average pooling
on word embeddings for each modality to obtain
document-level representations:

eg =

P
t2T g , g2{u,o,m} eg

t

T g
(9)

Visual embeddings ev are extracted with a pre-
trained CNN and transformed by a function f

ev = f(CNN(I,⇥c);⇥f ), (10)

where ⇥f 2 R
4096⇥d to ensure ev has same di-

mension as the user eu, item eo, and metadata
embedding em. The multimodal joint embedding
then can be learned by a shared layer and used for
making a prediction:

ŝ = fs(Ws(e
u � eo � em � ev) + bs) (11)

where fs : R
4⇥d ! R

1, parameterized with Ws

and bs, is a scoring function to map the multi-
modal joint embedding to a rating score.

2.2 Modality Dropout
Modality dropout (m-drop) is designed to re-
move a data modality during training according to
some parametric distribution. This is motivated

  

X1 X2 X3 X4
U

O
M

V

training inference

(a) (b) (c) (d)

Figure 3: Missing modality imputation. (a) Full
training data, (b) m-drop randomly drops modali-
ties, (c) m-auto learns to reconstruct missing data
based on existing data. (d) Inference with miss-
ing modalities. Dropping user and item view is
equivalent to learning models being able to ad-
dress cold-start problem.

by dropout (Srivastava et al., 2014) which ran-
domly masks hidden layer activations to zero to
increase the generalization capability of the under-
lying model. More formally, m-drop changes the
original feed-forward equation:

Z(L+1) = '(W(L+1))X(L) + b(L+1)) (12)

being able to randomly drop modality by:

r(L) ⇠ Bernoulli (pm) (13)

k(L) ⇠ Bernoulli (1 � 1/nm) (14)
eX(L) = (X(L) � r(L)) � k(L) (15)

Z(L+1) = '(W(L+1)) eX(L) + b(L+1)) (16)

where each sample X1 = x1, ..., xnm and nm is
the number of modalities. r(L) is a vector of inde-
pendent Bernoulli random variables each of which
has probability pm of being 1. k(L) is a vector of
independent variables which indicate the dropout
on modality with a given probability. '(·) is an
activation function.

Figure 3 (a-b) shows how m-drop works. Note
the differences between modality dropout (m-
drop) and original dropout: (1) m-drop targets
specifically the multimodal scenario where some
modalities are completely missing; and (2) m-drop
is performed on the input layer (L ⌘ 0).

2.3 Mutlimodal Sequential Autoencoder

The autoencoder has been used in prior work (Sed-
hain et al., 2015; Strub et al., 2016) to reconstruct
missing elements (mostly ratings) in recommender
systems. This is equivalent to the case of miss-
ing at random (MAR). For MAR, it is rare to
have a continuous large block of missing entries
(Tran et al., 2017). Differently, in recommending
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with missing modality, the missing entries typi-
cally occur in a large continuous block. For in-
stance, an extreme case is the absence of all item
reviews and ratings (data sparsity is 100%, leading
to the so-called item cold-start problem). Exist-
ing methods (Lee and Seung, 2000; Koren, 2008;
Marlin, 2003; Wang and Blei, 2011; McAuley
and Leskovec, 2013; Li et al., 2017; Zheng et al.,
2017) have difficulties when entire data modalities
are missing during the training and/or inference
stages.

To address this limitation, we propose a
multimodal sequence autoencoder (m-auto) to
impute textual sequential embeddings and vi-
sual embeddings for the missing modalities.
Modality-specific autoencoders are placed be-
tween the modality-specific encoders (i.e., CNN
and LSTMs) and the shared layer (equation
11). The reconstruction layers, therefore, can
capture the inter-modal and intra-modal correla-
tions. More formally, for each data modality
g 2 {u, o, m, v}, the modality-specific encoder is
given as

eg
hid = sigm(Wg

vhe
g
in + bg

vh) (17)

and the modality-decoder is given as

eg
recon =

1

T g

X

t2T g

sigm(Wg
hve

g
hid + bg

hv) (18)

where Wvh 2 R
d⇥dh and Whv 2 R

dh⇥d

are weights, bvh, bhv are biases receptively
for visible-to-hidden, and hidden-to-visible lay-
ers. eg

in, eg
hid present the original, hidden

word-level embeddings, and eg
recon is the recon-

structed document-level embeddings. The eg is a
modality-specific embedding.

m-auto is different from previous reconstruction
models(Sedhain et al., 2015; Strub et al., 2016) in
that its reconstructions are based on inter-modal
and intra-modal correlations in the context of mul-
timodal learning.

2.4 Model Optimization
The optimization of the network is formulated
as a regression problem by minimizing the mean
squared error (MSE) loss Lreg:

Lreg =
1

|D|
X

(u,o,m,v)2D
(̂s�s)2+� k ⇥r k2 (19)

where ŝ and s are the predicted and truth rating
scores. |D| is dataset size , � is weight decay pa-
rameter and ⇥r is regression model parameters.

To constrain the representations to be compact in
reconstruction, a penalty term is utilized

H =
hnX

i=1

log
⇢

⇢̂i
+ (1 � ⇢) log

1 � ⇢

1 � ⇢̂i
(20)

where ⇢ and ⇢̂ are sparsity parameters and aver-
age activation of hidden unit i, hn is the number
of hidden units. The reconstruction loss for each
modality is now

Lg
recon =

1

|D|
X

g2{u,o,m,v}
keg

recon � eg
ink2

+ �⇢

X

g2{u,o,m,v}
Hg

(21)

where �⇢ is a sparsity regularization term. The
objective of the entire model is then

L = ↵Lreg + �
X

g2{u,o,m,v}
Lg

recon (22)

where ↵ and � are learnable parameters. The
model is learned in an end-to-end fashion through
back-prorogation (LeCun et al., 1989).

3 Experiments
This section evaluates LRMM on rating prediction
tasks with real-world datasets. We firstly compare
LRMM with recent methods (sec. 3.4), then we
empirically show the effectiveness of LRMM in
alleviating the cold-start, the incomplete/missing
data, and the data sparsity problem (sec. 3.5-3.8).

3.1 Datasets and Evaluation Metrics
We conducted experiments on the Amazon
dataset (McAuley et al., 2015; He and McAuley,
2016)1, which is widely used for the study of rec-
ommender systems. It consists of different modal-
ities such as text, image, and numerical data. We
used 4 out of 21 categories: Sports and Out-
doors (S&O), Health and Personal Care (H&P),
Movies and TV, Electronics. Some statistics of the
datasets are listed in Table 1. We randomly split
each dataset into 80% training, 10% validation,
and 10% test data. Each input instance consists of
four parts x(i)=(x(i)

u ,x(i)
o ,x(i)

m ,x(i)
v ), where x(i)

u

and x(i)
i are the concatenated reviews of users and

items in the training data. V is the vocabulary that
was built based on reviews and metadata on the
training data. Words with an absolute frequency
of at least 20 are included in the vocabulary.

1http://jmcauley.ucsd.edu/data/amazon/
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Table 1: Datasets

Dataset S&O H&P Movie Electronics
Users 35494 38599 111149 192220
Items 16415 17909 27019 59782
Samples 272453 336769 974582 1614105
|V| 42095 47476 160117 198598

To evaluate the proposed models on the task
of rating prediction, we employed two metrics,
namely, Root Mean Square Error (RMSE)

RMSE =

vuut
1

|D|
X

(u,o,m,v)2D
(̂si,j � si,j)2 (23)

and Mean Absolute Error (MAE)

MAE =
1

|D|
X

(u,o,m,v)2D
|̂si,j � si,j | (24)

where ŝi,j and si,j represent the predicted rating
score and ground truth rating score that user i gave
to item j.

3.2 Baselines and Competing Methods
We compare our models with several baselines2.
The baselines can be categorized into three groups.

(1) Matrix factorization: NMF (Lee and Seung,
2000) and SVD++ (Koren, 2008).

(2) Topic model methods: URP (Marlin, 2003),
CTR (Wang and Blei, 2011), HFT (McAuley
and Leskovec, 2013) and RMR (Ling et al.,
2014).

(3) Deep learning models: NRT (Li et al., 2017)
and DeepCoNN (Zheng et al., 2017), which
are current state-of-the-art approaches.

We also include a naive method—Offset
(McAuley and Leskovec, 2013) which sim-
ply takes the average across all training ratings.

3.3 Implementation
We implemented LRMM with Theano3. The
weights for the non-recurrent layer were

2To make a fair comparison, implemented baselines are
trained with grid search (for NMF and SVD++, regularization
[0.0001, 0.0005, 0.001], learning rate [0.0005, 0.001, 0.005,
0.01]. For HFT, regularization [0.0001, 0.001, 0.01, 0.1, 1],
lambda [0.1, 0.25, 0.5, 1]). For DeepCoNN, we use the sug-
gested default parameters. The best scores are reported.

3http://www.deeplearning.net/software/
theano/

initialized by drawing from the intervalh
�

q
6

Nin+Nout
,
q

6
Nin+Nout

i
(N is the num-

ber of units) uniformly at random. We used 1024
hidden units for the autoencoder. The LSTMs
have 256 hidden units and the internal weights
W are orthogonally initialized (Saxe et al.,
2014). We used a batch size of 256, � = 0.0001,
sparsity parameter ⇢ = 0.05, �⇢ = 0.01, an
initial learning rate of 0.0001 and a dropout rate
of 0.5 after the recurrent layer. The models were
optimized with ADADELTA (Zeiler, 2012). The
length of the user, item and meta-data document
Du, Do, and Dm

o were fixed to L = 100. We
truncated documents with more than 100 words.
The image features are extracted from the first
fully-connected layer of CNN on ImageNet
(Russakovsky et al., 2015).

We implemented NMF and SVD++ with the
SurPrise package4. Offset and HFT were imple-
mented by modifying authors’ implementation5.
For DeepCoNN, we adapted the implementation
from (Chen et al., 2018)6. The numbers of other
methods are taken from Li et al. (2017).

3.4 Compare with State-of-the-art
First, we compare LRMM with state-of-the-art
methods listed in Sec. 3.2. In this setting, LRMM
is trained with all data modalities and tested with
different missing modality regimes. Table 2 lists
the results on the four datasets. By leveraging mul-
timodal correlations, LRMM significantly outper-
forms MF-based models (i.e. NMF, SVD++) and
topic-based methods (i.e., URP, CTR, RMR, and
HFT). LRMM also outperforms recent deep learn-
ing models (i.e., NRT, DeepCoNN) with respect to
almost all metrics.

LRMM is the only method with a robust per-
formance for the cold-start recommendation prob-
lem where user review or item review texts are
removed. While the cold-start recommendation
is more challenging, LRMM(-U) and LRMM(-
O) are still able to achieve a similar performance
to the baselines in the standard recommendation
setting. For example, RMSE 1.101 (LRMM(-
O)) to 1.107 (NRT) on Electronics, MAE 0.680
(LRMM(-O)) to 0.667 (DeepCoNN)on S&O.
We conjecture that the cross-modality dependen-

4http://surpriselib.com/
5http://cseweb.ucsd.edu/˜jmcauley/

code/code_RecSys13.tar.gz
6https://github.com/chenchongthu/

DeepCoNN
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Table 2: Comparison on datasets with the baselines. ‘+F’: tested with all modalities(U,O,M,V), ‘-X’:
dropping one modality, ‘-U’ and ‘-O’: user and item cold-start scenario.

Dataset S&O H&P Movie Electronics
Models RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Offset 0.979 0.769 1.247 0.882 1.389 0.933 1.401 0.928
NMF 0.948 0.671 1.059 0.761 1.135 0.794 1.297 0.904
SVD++ 0.922 0.669 1.026 0.760 1.049 0.745 1.194 0.847
URP - - - - 1.006 0.764 1.126 0.860
RMR - - - - 1.005 0.741 1.123 0.822
HFT 0.924 0.659 1.040 0.757 0.997 0.735 1.110 0.807
DeepCoNN 0.943 0.667 1.045 0.746 1.014 0.743 1.109 0.797
NRT - - - - 0.985 0.702 1.107 0.806
LRMM(+F) 0.886 0.624 0.988 0.708 0.983 0.716 1.052 0.766
LRMM(-U) 0.936 0.719 1.058 0.782 1.086 0.821 1.138 0.900
LRMM(-O) 0.931 0.680 1.039 0.805 1.074 0.855 1.101 0.864
LRMM(-M) 0.887 0.625 0.989 0.710 0.991 0.725 1.053 0.766
LRMM(-V) 0.886 0.624 0.989 0.708 0.991 0.725 1.052 0.766
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Figure 4: Performance with reduced reviews (rat-
ings) on S&O dataset. (% : performance drops for
SVD++ (in blue) and LRMM(+F) (in green))

cies (Srivastava and Salakhutdinov, 2012) make
LRMM more robust when modalities are missing.
Table 5 lists some randomly selected rating pre-
dictions. Similar to Table 2, missing user (-U) and
item (-O) preference significantly deteriorates the
performance.

3.5 Cold-Start Recommendation

Prior work (McAuley and Leskovec, 2013; Zhang
et al., 2017) has considered users (items) with
sparse preference information as the cold-start
problem (e.g., Figure 1(d)), that is, where there
is still some information available. In practice,
preference information could be missing in larger
quantities or even be entirely absent (e.g., Fig-
ure 1(b-c)). In this situation, the aforementioned

methods are not applicable as they require some
data to work with. In this experiment, we exam-
ine how LRMM leverages modality correlations to
alleviate the data sparsity problem when training
data becomes even sparser. To this end, we train
models for the item cold-start problem by reduc-
ing the number of reviews (for LRMM) and rat-
ings (for NMF and SVD++) of each item in the
training set.

Figure 4 demonstrates the robustness of LRMM
when the training data becomes more sparse. Note
that NMF and SVD++ fail to train models when
there is no ratings data available. In contrast,
LRMM is trained by leveraging item images and
metadata even if item reviews are completely
missing for a product. The average number of re-
views per item on this dataset is 16.7. Reducing
the number of ratings to 5 severely degrades the
performance of NMF, SVD++, and LRMM. How-
ever, LRMM remains rather stable in maintaining
good performance when considering the perfor-
mance degradation at 5, 1, and 0 reviews (ratings),
respectively. One interesting observation is that,
with a reduced number of reviews, the product
metadata plays a more and more important role in
maintaining the performance: LRMM(-V) is close
to LRMM(+F) in Figure 4 while the gap between
LRMM(-M) and LRMM(+F) is large.

3.6 Missing Modality Imputation
The proposed m-drop and m-auto methods al-
low LRMM to be more robust to missing data
modalities. Table 3 lists the results of train-
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Table 3: The performance of training with missing
modality imputation.

Dataset S&O H&P
Models RMSE MAE RMSE MAE
LRMM(+F) 0.997 0.790 1.131 0.912
LRMM(-U) 0.998 0.795 1.132 0.914
LRMM(-O) 0.999 0.796 1.133 0.917
LRMM(-M) 0.998 0.797 1.133 0.913
LRMM(-V) 0.997 0.791 1.132 0.913

(a) e
v (b) e

u (c) e
o (d) e

m

Figure 5: Visualization of embeddings (blue) and
reconstructed embeddings (red)

ing LRMM with missing data modalities for the
modality dropout ratio pm = 0.5 on the S&O
and H&P datasets, respectively. Both RMSE and
MAE of LRMM deteriorate but are still com-
parable to the MF-based approaches NMF and
SVD++. However, the proposed method LRMM
is robust to missing data in both training and in-
ference stages, a problem rarely addressed by ex-
isting approaches. In Figure 5, we visualized
the modality-specific embeddings and their re-
constructed embeddings of 100 randomly selected
samples with t-SNE (van der Maaten and Hinton,
2008). The plots suggest that it is more challeng-
ing to reconstruct item metadata and image em-
beddings as compared to the user or item embed-
dings. One possible explanation is that some se-
lected metadata contains noisy data (e.g., “ISBN
- 9780963235985”, “size: 24 ⇥46” and “Dimen-
sions: 15W ⇥ 22H”) for which visual data is more
diverse. This would increase the difficulty of in-
corporating visual data into the embeddings.

3.7 The Effect of Text Length

To alleviate the data sparsity problem, existing
work (McAuley and Leskovec, 2013; Zhang et al.,
2017) concatenates review texts and utilizes topic
modeling (e.g. HFT) or CNNs combined with
Word2Vec (e.g. DeepCoNN) to learn user or item
embeddings. Differently, LRMM treats the con-

Figure 6: RMSE and MAE with varied text lengths
on S&O and H&P datasets.

catenated reviews as sequential data and learns se-
quence embeddings with RNNs. In this experi-
ment, we show that learning sequential embedding
is beneficial on sparse data because it is unnec-
essary to exploit all reviews so as to reach good
performance. Figure 6 shows the performance of
LRMM with varied word sequence lengths. In
general, sequence embeddings learned with larger
length achieve better performance. Note that,
by considering a certain amount of words (e.g.
L=50), LRMM is able to achieve a result as good
as accounting more words (e.g. L=100 or 200).
Although this is dataset-dependent to some de-
gree, e.g., LRMM (L=200) improves RMSE and
MAE in a certain margin as compared to L=100
on the H&P data, it demonstrates the superiority
of sequential user or item embeddings as com-
pared to topic and CNN+Word2Vec embeddings
on more sparse data as shown in Table 2.

3.8 Cross-Domain Adaptation
To consider an even more challenging situation we
explore cases where the full training set is miss-
ing. Inspired by the recent success of domain
adaptation (DA) (Csurka, 2017), a special form
of transfer learning (Pan and Yang, 2010; Weiss
et al., 2016), we perform the recommendation task
on the target domain test set Dt

test (e.g., “Sport”)
but with the model C trained on a different do-
main training set Ds

train (e.g. “Movie”). This
is achieved by extracting the multimodal embed-
dings on the source domain and by performing
prediction on the target domain. Table 4 shows the
performance of LRMM when performing adapta-
tion from larger datasets to smaller datasets. Al-
though the performance is not as good as on Ds

test,
LRMM is still able to obtain decent results even
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Table 4: Cross-Domain Adaptation with LRMM

Ds ! Dt +F -U -O -M -V
Movie!S&O 1.061 1.013 1.071 1.061 1.062
Movie!H&P 1.190 1.140 1.170 1.190 1.190
Elect.!S&O 1.072 1.012 1.088 1.073 1.073
Elect.!H&P 1.191 1.137 1.180 1.191 1.192

Table 5: Exemplary rating prediction on S&O
datatset. ‘T’ means true ratings, the best predic-
tion is in blue, the worst prediction is in red.

Item image T +F -U -O -M -V
3 3.18 3.97 3.48 3.03 3.28
3 3.36 4.07 3.5 3.33 3.27
5 4.63 4.50 4.36 4.60 4.63
3 3.11 3.77 3.49 3.44 3.57
4 4.00 4.31 3.87 3.92 4.02

Table 6: Examples on H&P datatset with domain
adaptation. The model is trained on Movie dataset.

Item image T +F -U -O -M -V
4 4.01 4.18 3.70 4.04 4.05
2 2.58 3.85 2.82 2.82 2.76
3 2.97 4.33 2.77 2.99 2.96
4 4.09 3.68 4.14 4.09 4.04
5 4.99 4.39 4.47 4.94 5.01

without using training data Dt
train. Table 6 shows

some example rating predictions on DA for dif-
ferent categories of products. It demonstrates the
strong generalization capability of DA from one
product category to another.

4 Discussion

Empirically, we have shown that multimodal
learning (+F) plays an important role in mit-
igating the problems associated with missing
data/modality and, in particular, those associated
with the cold-start problem (-U and -O) of recom-
mender systems. The proposed method LRMM
is in line and grounded in recent developments
(e.g. DeepCoNN, NRT) to incorporate multi-
modal data. LRMM distinguishes itself from pre-
vious methods: (1) the cold-start problem is refor-
mulated in the context of missing modality; (2) A
novel multimodal imputation method which con-
sists of m-drop and m-auto is proposed to learn
models more robust to missing data modalities in
both the training and inference stages.

5 Related Work

Collaborative filtering (CF) is the most commonly
used approach for recommender systems. CF
methods generally utilize the item-user feedback
matrix. Matrix factorization (MF) is the most
popular CF method (Koren et al., 2009) due to
its simplicity, performance, and high accuracy as
demonstrated in previous work (Chen et al., 2015).
Another strength of MF, making it widely used
in recommender systems, is that side informa-
tion other than existing ratings can easily be in-
tegrated into the model to further increase its ac-
curacy. Such information includes social network
data (Li et al., 2015; Lagun and Agichtein, 2015;
Zhao et al., 2016; Xiao et al., 2017), locations of
users and items (Lu et al., 2017) and visual appear-
ance (He and McAuley, 2016; Salakhutdinov and
Mnih, 2007) proposed Probabilistic Matrix Factor-
ization (PMF) which extends MF to a probabilis-
tic linear model with Gaussian noise. Following
PMF, there are many extensions (Salakhutdinov
et al., 2007; Chen et al., 2013; Zheng et al., 2016;
Zhang et al., 2016; He et al., 2016b, 2017) aiming
to improve its accuracy.

Unfortunately, CF methods suffer from the
cold-start problem when dealing with new items
or users without rich information. Content based
filtering (CBF) (Pazzani and Billsus, 2007), on
the other hand, is able to alleviate the cold-start
problem by taking auxiliary product and user in-
formation (texts, images, videos, etc.) into con-
sideration. Recently, several approaches (Alma-
hairi et al., 2015; Xu et al., 2014; He et al., 2014;
Tan et al., 2016) were proposed to consider the in-
formation of review text to address the data spar-
sity problem which leads to the cold-start prob-
lem. The topic model (e.g. LDA (Blei et al.,
2003)) based approaches including CTR (Wang
and Blei, 2011), HFT (McAuley and Leskovec,
2013), RMR (Ling et al., 2014), TriRank (He
et al., 2015), and sCVR (Ren et al., 2017) achieve
significant improvements compared to previous
work on recommender systems.

Inspired by the recent success of deep learn-
ing techniques (Krizhevsky et al., 2012; He et al.,
2016a), some deep network based recommen-
dation approaches have been introduced (Wang
et al., 2015; Sedhain et al., 2015; Wang et al.,
2016b; Seo et al., 2017; Xue et al., 2017; Zhang
et al., 2017). Deep cooperative neural network
(Deep-CoNN) (Zheng et al., 2017) was introduced
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to learn a joint representation from items and
users using two coupled network for rating pre-
diction. It is the first approach to represent users
and items in a joint manner with review text.
TransNets (Catherine and Cohen, 2017) extends
Deep-CoNN by introducing an additional latent
layer representing the user-item pair. NRT (Li
et al., 2017) is a method for rating prediction and
abstractive tips generation (Zhou et al., 2017). A
four-layer neural network was used for rating re-
gression model. NRT outperforms the state-of-
the-art methods on rating prediction. There is a
large body of work for recommender systems and
we refer the reader to for surveys of state-of-the-
art CF based approaches, CBF methods, and deep
learning based methods, respectively (Shi et al.,
2014; Lops et al., 2011; Zhang et al., 2017).

Our work differs from previous work in that we
simultaneously address various types of missing
data together with the data-sparsity and cold-start
problems.

6 Conclusion

We presented LRMM, a framework that improves
the performance and robustness of recommender
systems under missing data. LRMM makes novel
contributions in two ways: multimodal imputa-
tion and jointly alleviating the missing modality,
data sparsity, and cold-start problem for recom-
mender systems. It learns to recommend when
entire modalities are missing by leveraging inter-
and intra-modal correlations from data through the
proposed m-drop and m-auto methods. LRMM
achieves state-of-the-art performance on multiple
data sets. Empirically, we analyzed LRMM in dif-
ferent data sparsity regimes and demonstrated the
effectiveness of LRMM. We aim to explore a gen-
eralized domain adaptation approach for recom-
mender systems with missing data modalities.
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Abstract

Background research is an essential part of
document writing. Search engines are great for
retrieving information once we know what to
look for. However, the bigger challenge is of-
ten identifying topics for further research. Au-
tomated tools could help significantly in this
discovery process and increase the productiv-
ity of the writer. In this paper, we formu-
late the problem of recommending topics to a
writer. We consider this as a supervised learn-
ing problem and run a user study to validate
this approach. We propose an evaluation met-
ric and perform an empirical comparison of
state-of-the-art models for extreme multi-label
classification on a large data set. We demon-
strate how a simple modification of the cross-
entropy loss function leads to improved results
of the deep learning models.

1 Introduction

An important part of writing about some topic is
researching relevant background material, which
can be a challenging and tedious task. If the au-
thor has a clear idea what to write about, web
search engines provide an excellent tool for re-
trieving information. However, the author often
first has to spend time discovering which topics
are related, i.e., she needs to conduct exploratory
search (White and Roth, 2009). This is challeng-
ing with traditional keyword-based search engines
like Google, which are tailored to providing the
information that a user is explicitly searching for
(Marie, 2014).

Exploratory search poses a challenge in the
writing process. It has been shown that the explo-
ration phase elicits strong negative feelings in stu-
dents writing essays (Smith and Campbell, 1999;
Kuhlthau, 1990) and that students consider the re-
search activity to be at the cost of other pending

commitments (Smith and Campbell, 1999). More-
over, exploratory search is more cognitively de-
manding than lookup search tasks (Marie, 2014).
Automatic tools tailored to exploratory search for
new content could significantly alleviate the diffi-
culty the writer faces in the research phase.

Intuitively, the tool should suggest topics for
further research which are relevant and interest-
ing. Hence the suggestions need to be related to
the document and should not be too obvious. For
instance, a student writing about the monarch but-
terfly might benefit from a suggestion milkweed as
it is both relevant and interesting. On the other
hand, insect would be a rather poor suggestion as
it is too obvious. To summarize, the key chal-
lenge we set out to address is: For a given piece
of text, what are the related topics and how impor-
tant are they? In Section 3.2 we describe a user
study where annotators evaluated usefulness of en-
tities, which we then use to identify characteristics
of good suggestions.

It is worth mentioning that systems for provid-
ing automatic recommendations of entities to a
document writer have recently been introduced by
the industry, including Google Explore in Docs1

and Microsoft Researcher2. The systems are pro-
prietary and their design is not published, making
the comparison not possible. To the best of our
knowledge this is the first documented attempt to
address the problem of recommending novel enti-
ties to a document writer. We hope this paper will
attract the interest of the research community and
inspire future work.

The contributions of this paper are:

1. Formulating the problem of recommending
future entities to a document writer.

1http://bit.ly/2f6CVeR
2http://bit.ly/29XaPAJ
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2. Conducting a user study to identify what
topic suggestions users find useful.

3. Formulating the problem and defining an au-
tomatic evaluation metric, both motivated by
the user study.

4. Evaluating state of the art approaches to ex-
treme multi-label classification.

5. Demonstrating how a modified loss function
helps improve over state of the art neural net-
work models.

2 Related Work

Recommending topics to a document writer can be
viewed in the context of different fields which we
discuss below.

Exploratory Search White and Roth (2009) de-
fine exploratory search as “information seeking
problem context that is open-ended, persistent,
and multi-faceted” and “information-seeking pro-
cesses that are opportunistic, iterative, and multi-
tactical”. Research on exploratory search focuses
on supporting a user in the interactive and iterative
process of seeking for information and includes:
designing better interfaces, visualization of search
results, clustering of results, supporting serendipi-
tous discoveries, supporting different user profiles
(Marie, 2014). Instead, in this work we aim to
fully automate discovery of relevant and interest-
ing topics to the document writer. Moreover, the
input in our case is an initial portion of a docu-
ment written by a user rather than a query or a sin-
gle entity, as is usually the case in the information
retrieval setups.

Extreme Multi-label Classification Extreme
multi-label classification (XML) is an instance of
a multi-label classification problem (i.e., where
multiple labels can be assigned to a single example
at the same time) under a large label space. There
are multiple works investigating XML, including
random forest (RF) (Prabhu and Varma, 2014; Jain
et al., 2016) and embedding (Bhatia et al., 2015)
approaches. These methods rely on bag of words
feature representation, ignoring the sequential na-
ture of text. Neural networks (NNs) have been
successful in modeling NLP tasks through their
ability to learn structure, however have not been
widely studied for XML problems. Covington et

al. (2016) applied NNs to YouTube video recom-
mendation, and Liu et al. (2017) showed a convo-
lutional neural network architecture to outperform
strong baselines on a range of NLP tasks. The
importance of label weighting for recommending
rare items has not been considered in the NNs for
extreme multi-label classification, which is a cen-
tral problem in our task, as in other tasks with ex-
treme label spaces (Jain et al., 2016). In Section 5
we describe the state of the art RF and NN ap-
proaches to XML.

Entity Retrieval and Tagging Assigning enti-
ties to an input has been considered, however in
different contexts. In tag recommendation, a text
is summarized with a set of entities (Song et al.,
2011) and in entity search one needs to answer
queries about entities against a set of documents
and entities (Cheng et al., 2007). These tasks are
different as no new content is predicted.

The Related Entity Finding (REF) challenge of
the Text Retrieval Conference (TREC) considered
a task where given a source entity, a relation and
a target type, a target entity needs to be identi-
fied satisfying the required relation (Balog et al.,
2010). This is a different problem since no spec-
ification for relations between the entities is pro-
vided in the input document from a user.

The work on semantic relatedness of entities
(Milne and Witten, 2008) is different since, as
explained in the introduction, good entity recom-
mendations are not necessarily those which are se-
mantically related to entities from the user text.
Bordino et al. (2013) considered retrieving enti-
ties related to a query in the question answering
scenario. The authors did not set the problem in a
supervised learning setup and instead find entities
closest in terms of similarity of documents con-
taining them. In contrast, in Section 3.2 we justify
a supervised learning setup of the task.

The TREC Complex Answer Retrieval Track
(CAR)3 is a challenge where based on a document
outline, related text passages and entities are re-
trieved (Dietz et al., 2017). In this formulation it is
assumed that a general outline of what a document
author intends to cover is given, thus providing a
clear guidance for what is relevant. Instead, our
input is an initial part of a document and we seek
to find novel entities based on the input.

3http://trec-car.cs.unh.edu
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Recommending Rare Items Information re-
trieval applications emphasized the importance
of retrieving rare labels rather than common
ones which are likely to be already known to a
user. Baeza-Yates and Ribeiro-Neto (1999) de-
fined novelty of a set of recommendations as
the proportion of unknown items to the user, a
challenging definition to work with when user’s
knowledge is unknown (Hurley and Zhang, 2011).
Bordino et al. (2013) explored the problem of re-
trieving serendipitous results when retrieving an-
swers to queries. The authors built an information
retrieval system based on finding entities most of-
ten co-occurring with a query entity and employed
IDF (inverse document frequency) for filtering out
overly generic answers. Also many other works
employ IDF for rewarding rare items (Zhou et al.,
2010; Vargas and Castells, 2011; Wu et al., 2014;
Jain et al., 2016). Here we take a supervised learn-
ing approach to the entity recommendation prob-
lem, demonstrate the usefulness of IDF scoring in
the context of our problem with a user study, and
utilize IDF in the evaluation metric.

Hurley and Zhang (2011) define novelty of an
item in the context of the set of relevant recom-
mendations using an average dissimilarity from
other items in the set. Similarly, the Maximal
Marginal Relevance metric evaluates a set of re-
trieved items in an information retrieval problem
by rewarding the diversity of the set (Carbonell
and Goldstein, 1998). Note this is a different no-
tion of novelty from that considered in this work.

3 Investigating the Problem

In this section we investigate the problem formu-
lation and what it means for an entity to be a useful
suggestion for a user.

3.1 Problem Definition
Let a document d be represented as a sequence of
entities (e1, . . . , e|d|) = E. We partition these en-
tities into two sets Cd and Fd: those which oc-
cur in the first h sentences (in our case h = 10)
and those which don’t. Hence, Cd \ Fd = ; and
Cd [ Fd = E.

We are not interested in retrieving all entities
that could occur in the future, because it is not
feasible to provide all such recommendations to
a user. Instead, we focus on ranking the target en-
tities, and selecting the most relevant k to suggest,
which is a standard practice in retrieval tasks (Jain

et al., 2016).

3.2 What Entities are Good Suggestions?
In this section we describe a user study we ran for
testing the hypotheses about which entities con-
stitute useful recommendations. In particular, we
test whether what a user writes next in a document
is actually considered to be a good recommenda-
tion by the raters and whether IDF score correlates
with how useful an entity is considered.

Human Evaluation Dataset We consider 1000
Wikipedia documents for a human evaluation
study. For each document, let E denote the set of
all entities that occur in the document and Ep de-
note entities occurring in the initial passage p. We
found 5 most co-occurring entities from E \ Ep

4

with the entities from Ep across sentences from a
large scale web documents corpus (the dataset de-
scribed later in Section 4). Annotators were then
asked to rate entity suggestions against an input
passage p in terms of how useful they are in the
process of continuing to write the document. Each
entity was rated by 3 annotators with a score rang-
ing from 1 to 5 and the total number of annotators
was 845. To evaluate agreement among raters, we
employ the Intraclass Coefficient for consistency5

(ICC; (McGraw and Wong, 1996)) for two-way
random effects model with the effects correspond-
ing to a rater and a rated entity. We found the aver-
age score ICC to be equal ICC(C, 3) = 0.69. We
refer the reader to the supplemental material for
details about how ICC was applied.

Evaluating the Supervised Setup We found
that the mean rating for entities which actually oc-
cur in the future is 3.24 ± 0.83, whereas the mean
rating for the other entities is 2.59±0.93. Running
an independent T-test for comparing means be-
tween the two groups yields a p-value p < 0.001.
This supports the supervised learning setup of en-
tity suggestion, where we split documents from
a corpus into two parts, and unseen entities from
later parts form labels for the initial parts.

Does IDF Correlate with Usefulness? One of
the requirements we set for the entity recommen-
dation is the interestingness of the entities. As

4I.e., excluding entities occurring in the passage.
5Intraclass Coefficient is an approach to evaluate inter-

rater reliability when ratings are organized into groups, as
in our case, where entities are grouped into passages against
which they are scored.
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reported in Section 2, one popular approach to
recommending rare items in information retrieval
tasks is weighting their utility by their IDF score
(Bordino et al., 2013; Jain et al., 2016). Let us
analyze in the document writing setup how useful
users perceive entities which score high in IDF.
To this end, we measure how the ground truth
reviewer (the average rating given by the human
annotators to an item) correlates against the base-
line rating B and how it correlates against the IDF
weighted rating W. Here, the baseline rating B
simply rates an entity with 0 if it does not oc-
cur in the future of the document and with 1 if
it does occur in the future of the document. The
IDF weighted rating W rates an entity with its IDF
score multiplied by the score returned by the re-
viewer B. We employ ICC(A, 1) to find the agree-
ments between pairs of ratings. We find ICC(A,
1) between the ground truth reviewer and B to be
0.30, and between the ground truth reviewer and
W to be 0.42. This shows that entities with high
IDF scores are perceived as more useful. Note
the potential space for improvement by finding a
metric which would yield even higher correlation
against the human rating than IDF.

3.3 Automatic Evaluation
Recall that we aim at rewarding entities which are
both relevant (i.e., within the target set of enti-
ties) and interesting (i.e., are not obvious, as the
entity insect was for the monarch butterfly exam-
ple from Section 1). Since we care only about the
k highest ranked recommendations from the sys-
tem, a potentially useful metric for evaluation is
prec@k= 1

k

Pk
j=1 I{pj2Fd}, where pj are the pre-

dictions. Even though prec@k captures relevancy,
it fails to distinguish between generic and specific
entities. Documents tend to contain many entities
in the target set, some of which are generic (e.g.
insect). Prec@k scores all entities the same and
rewards predictions of generic entities occurring
across almost all web documents (e.g. Internet),
which are arguably not interesting.

We propose a metric based on cumulative gain
(Järvelin and Kekäläinen, 2002), where we use
IDF for scoring the relevance of labels:

CG-IDF@k =
kX

j=1

I{pj2Fd}IDF(pj).

To facilitate interpretability, we use a normalized
version of CG-IDF@k, the normalized cumulative

gain (NCG-IDF@k). NCG-IDF@k is obtained by
dividing CG-IDF@k by the maximum sum of IDF
scores of k entities from the target set.

Why would IDF help make entities more inter-
esting? As shown by the user study in Section 3.2
IDF correlates with how relevant an entity is per-
ceived by a user. Moreover, as reported in Sec-
tion 2, IDF is widely used for boosting rare, novel
items (Bordino et al., 2013; Jain et al., 2016).

4 Dataset

We consider the problem of recommending top-
ics that an author writing a document might be
interested in writing about next. In Section 3.2
we used a human evaluation study to support a
supervised learning setup for this problem, where
what is written later in a document is deemed to
be a good recommendation for an initial part. The
Web is a rich source of documents which facili-
tates construction of large datasets. Below we de-
scribe details of how we construct the dataset com-
posed of web documents and report basic statistics
thereof.

Construction We collected a dataset of 10M
web documents with high pagerank (Page et al.,
1998) scores across the Web as of November
2017. We ran entity recognition and linking to the
Freebase knowledge graph using the Google NLP
cloud.6 Moreover, only the 100K most frequent
entities are kept.7 We randomly select 10K doc-
uments for the test set and 10K for the validation
set which we use for hyperparameter tuning.

Statistics As shown in Figure 1 the document
frequencies for the 100K most frequent entities
from the dataset follow a power law distribution,
with a small number of very frequent entities and
many infrequent ones. The average number of
documents per target entity is 4694.95, which is
3 orders of magnitude smaller than the maximum
frequency. We found that the average number of
future entities per document is 96, and the average
number of input entities is 10. In Figure 2 we show
the percentage of times a context entity is followed
by a particular target entity (row and column, re-
spectively). Notice the matrix is asymmetric. For

6http://tinyurl.com/h246dnz
7100K entities are kept due to the challenges in handling

larger output spaces by the models. Scaling to larger output
spaces is possible but requires modifications which we leave
for future work.
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Figure 1: Percentage of documents for which each tar-
get entity occurs.

Figure 2: A heatmap showing what percentage of times
a context entity (row) is followed by a particular target
entity (column).

instance, USA is more likely to be followed by Re-
search than the other way around.

5 Baselines and Models

In this section we describe the models that we ap-
plied to the entity recommendation problem.

5.1 Linear Models

Let us represent input entities via n-hot vector
representation, i.e., vector entries corresponding
to entities present in the input set are set to one,
whereas other entries are set to zero. We consider
linear models, where such an input vector is mul-
tiplied by a square weight matrix of size #entities
⇥ #entities, and a resulting vector contains scores
for predicted entities. There are different possibil-
ities for filling the entries of the weight matrix. We
considered multiple options:

1. N(C, F ) obtained by putting the raw co-
occurrences of the context entity C (corre-
sponding to a row) and the future entity F
(corresponding to a column).

2. P(F |C) obtained by normalizing the
N(C, F ) matrix row-wise.

3. PPMI(C, F ) (positive pointwise mutual in-
formation) aims to show how much more
likely an entity F is to occur for a context C
compared to observing them independently
(Jurafsky and Martin, 2000). PPMI is a pop-
ular preprocessing step on the co-occurrence
matrix before applying dimensionality reduc-
tion, such as SVD (see Section 5.2) (Herbelot
and Vecchi, 2015).

5.2 Matrix Factorization
Matrix factorization methods (MFM) are among
the most popular approaches for recommendation
systems (Koren et al., 2009). This approach works
similar to the linear model, except that the re-
sulting matrix is decomposed into a sequence of
smaller matrices, the product of which approxi-
mates the linear model. This approach reduces
the number of parameters, which speeds predic-
tions, saves memory, and may improve robustness
to overfitting. We employ SVD and reduce the
rank of the resulting matrix of the linear model
to 100. MFM is applied analogously to the linear
model, namely a vector encoding input entities is
mapped into a vector with scores of target entities.

5.3 Random Forests
FastXML FastXML (Prabhu and Varma, 2014)
is one of the most popular approaches to extreme
multi-label classification. Each tree in this random
forest model is grown recursively by splitting each
node by a separating hyperplane. The hyperplane
weight vector is chosen by optimizing for nDCG
score (a non-differentiable loss which poses issues
in the NN framework) and is additionally regular-
ized with `1 norm to induce sparsity. Each leaf
node contains a probability distribution over la-
bels. At prediction time, the distributions from
reached leaf nodes across the trees are aggregated
and a final ranking of entities is created.

PFastreXML PFastreXML (Jain et al., 2016)
builds on the FastXML model by introducing two
modifications. First, the nDCG loss function is
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replaced by a propensity weighted nDCG (in our
case, the IDF weighted nDCG), resulting in rare
items ranked higher. Second, the final ranking is
re-ranked using tail label classifiers, which aims at
further improvements in how highly rare items are
scored.

Experimental Setup The scale of our dataset
is bigger than that reported by Jain et al. (2016)
and consequently the size of the generated random
forests tends to be very large. Therefore, apart
from keeping most of the hyperparameters as re-
ported by Jain et al. (2016), in order to limit the
size of generated trees, we modify two hyperpa-
rameters: the maximum number of labels per leaf
node is set to 50 (instead of 10), and the maxi-
mum number of training examples per leaf node is
set to 50 (instead of 10). Even under such a setup,
the size of the generated models is around 150GB.

5.4 Neural models
Recently NN models have been applied to ex-
treme classification. In this section we discuss
the YouTube neural model used for recommending
YouTube videos (Covington et al., 2016) and next
the XML-CNN model which has been demon-
strated to achieve competitive results on a few
NLP tasks (Liu et al., 2017).

The YouTube Model A NN model (depicted
in Figure 3(a)) has been successfully applied for
the YouTube recommendation problem (Coving-
ton et al., 2016). In the model, the input entities
are embedded into a latent dimensionality V . The
embeddings are then summed, and the resulting
vector is passed through a number of layers, where
in each layer an input vector is passed through
matrix multiplication and a rectified linear unit
(RELU) (Nair and Hinton, 2010). Afterwards, the
resulting vector is converted into the space of di-
mensionality equal to the number of entities via
an output layer. This way, scores are obtained
over the entity space, which are used to choose
the highest scored entities for predictions. The
loss function is the cross-entropy (CE) between
the soft-maxed activations and a uniform distribu-
tion over the target entities.

XML-CNN Convolutional neural networks
(CNNs) have been successfully applied to a
range of NLP problems (Kim, 2014; Bitvai
and Cohn, 2015). Recently Liu et al. (2017)
demonstrated how CNNs can be effective for

XML problems. We depict their architecture in
Figure 3(b). The input sequence is embedded
in V dimensions, and passed through a convo-
lutional layer, a fully connected layer and an
output layer. After the convolutional layer the
authors employ dynamic pooling which helps
retain information about where in the input
sequence the convolutions got triggered. The
loss function is binary cross entropy (BCE),
which considers labels individually rather than
jointly. BCE is given by the formula BCE(p, y)=Pj=M

j=1 yj log(�(pj)) + (1 � yj) log(1 � �(pj)),
where � is the sigmoid function. Lastly, a hidden
bottleneck layer is used, which is motivated by
introducing better generalization. In the experi-
ments we did not find the dynamic max pooling to
be beneficial, and instead we found max pooling
with a higher number of filters (512 compared to
32 in (Liu et al., 2017)) to be better, keeping the
number of parameters.

Modified Loss Function A potential problem
with CE and BCE is that they reward all enti-
ties equally. However, as demonstrated in Sec-
tion 3.2, some entities are more valuable than oth-
ers. Since we would like to promote interest-
ing entities over generic ones, we consider an al-
ternative training loss function to BCE and CE
which incorporates the IDF scores of target en-
tities. We use CE, but instead of comparing the
soft-maxed activations to a uniform distribution
over target entities, we compare against normal-
ized IDF scores from the training set. We call
this loss function CE-IDF. When using CE-IDF
with XML-CNN, we found that adding `2 norm
of the weights and the cross-entropy regulariza-
tion (Pereyra et al., 2017) helps prevent the model
from overfitting. We select the hyperparameters
controlling these two regularization terms using a
held out validation set. This contribution is analo-
gous to that of PFastreXML over FastXML due to
Jain et al. (2016), where weighting the loss func-
tion in random forests by label propensity scores
helps achieve better propensity weighted results.

Experimental Setup To regularize the networks
we use a 50% dropout rate (Srivastava et al.,
2014). We set the dimensionality of the embed-
dings to 1000, and the hidden layer size to 512.
The hyperparameters for XML-CNN are set as
reported by Liu et al. (2017), except for the `2

and cross-entropy regularization hyperparameters
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Figure 3: Neural network architectures applied to the entity recommendation problem.

NCG-IDF prec model
@1 @3 @5 @7 @1 @3 @5 @7 size

p(F ) 14.86 14.50 14.61 14.56 36.76 32.69 31.12 30.23 28B

N(C, F ) base 20.12 19.95 19.43 18.91 46.92 42.89 40.29 38.15 4.7GB
SVD 19.99 19.79 19.20 18.72 46.68 42.60 39.88 37.81 0.1GB

P(F |C) base 22.92 22.77 22.17 21.86 51.50 47.81 44.97 43.19 4.7GB
SVD 21.56 21.00 20.65 20.31 48.79 44.44 42.22 40.54 0.1GB

PPMI(C, F ) base 22.92 20.86 19.45 18.42 23.95 21.17 19.33 18.01 4.7GB
SVD 18.22 18.22 18.03 17.89 26.49 25.36 24.31 23.49 0.1GB

Youtube base 31.30 31.12 31.07 31.02 54.85 52.62 51.09 49.79 1.8GB
IDF 32.95 32.24 32.00 31.62 50.95 49.07 47.63 46.57 1.8GB

XML-CNN base 33.13 32.20 31.93 31.75 58.72 53.60 52.05 50.35 1.8GB
IDF 33.89 33.42 33.02 32.76 51.99 49.54 48.40 47.24 1.8GB

FastXML 35.31 34.39 33.74 33.15 69.98 63.78 60.16 57.37 150GB
PFastreXML 36.19 34.94 34.12 33.31 55.09 51.51 49.50 47.85 150GB

Table 1: Experimental results for NCG-IDF@k and prec@k scores for different methods.

which were selected on the validation set. Note
we optimize all parameters, including the entity
embeddings, on the training data.

6 Experiments

In Table 1 we report results from the experiments
on the 10M web documents dataset for prec and
NDCG-IDF metrics for k = 1, 3, 5, 7, limiting k
to small values as is common in the recommenda-
tion problems from large sets of items (Jain et al.,
2016). The p(F ) baseline always predicts entities
according to their frequency over the training set.
It can be viewed as maximum likelihood estimate
(MLE) for the model which is only composed of
a bias vector (i.e., input entities are ignored). No-
tice the relatively high performance when the most
popular entities are taken. For example, in 36.76%
of cases entity Research (the most popular future
entity from the corpus) is in the future of the docu-
ment (as can be also seen from Figure 1, where the
entity Research corresponds to the leftmost point
of the graph). This constitutes a high value, as the
vocabulary consists of 100K entities.

Among the linear models, P(F |C) yields the

highest scores, significantly outperforming the
baselines. PPMI(F |C) model yields relatively
high NCG-IDF scores (although in most cases
lower than P(F |C)), and very low precision
scores. Notice that the SVD methods are consis-
tently worse than the linear models. This shows
that no additional generalization is gained when
lowering the number of parameters of the linear
models. When experimenting with higher ranks
for SVD decomposition we found the performance
increases, but does not improve over the linear
models.

NNs improve over linear models according to
both NCG-IDF and prec scores. This is espe-
cially apparent for NCG-IDF, where the relative
improvement is very significant. XML-CNN is
in all cases better than the Youtube model, which
shows how utilizing more linguistic structure than
simply bag of entities is helpful in the NN frame-
work. Both Youtube and XML-CNN models with
a modified loss function improve over the basic
NN models in terms of the NCG-IDF metrics,
showing that a simple adjustment of a loss func-
tion in the NN framework can lead to more rare
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input predictions
XML-CNN base XML-CNN IDF FastXML PFastreXML

NASA recently released a study suggesting
that the Antarctic Ice Sheet is gaining more
ice than it is losing – a finding that at first
blush seems to contradict the idea of global
warming.

glacier,
Greenland,
Earth,
research

sea level
rise, glacier,
temperature,
meltwater

ocean,
research,
temper-
ature,
understand-
ing

glacier mass
balance, ice
shelf, glaciol-
ogy, Greenland
ice sheet

Making your mobile web app talk: software
Architecture conference. Microservices train-
ing O’reilly.

learning,
project,
experience,
information

application
software,
Javascript,
presentation,
organization

technology,
service,
learning,
industry

technology,
application soft-
ware, project,
Open Source

Face recognition algorithms use a large
dataset of photos labeled as having a face or
not to estimate a function that predicts the
presence y of a face from pixels x. As em-
pirical economists, how can we use them?

number,
research,
information,
result

analysis, re-
sult, sample,
statistics

information,
data, num-
ber, result

result, analysis,
set, R program-
ming language

Here we report the isolation of an arsen-
ate reductase gene (PvACR2) from gameto-
phytes that can suppress the arsenate sensi-
tivity and arsenic hyperaccumulation pheno-
types of yeast (Saccharomyces cerevisiae).

information,
e-mail,
industry,
2017

e-mail, in-
formation,
learning,
reading

cell, addi-
tion, data,
analysis

Vector (biol-
ogy), DNA/RNA
primer, Plant
Physiology
Journal, Pri-
mary Structure

Table 2: Example inputs and corresponding top 4 entity predictions from the models.

entities being recommended. This comes at the
cost of lowering prec@k scores, which however
correlates with user judgments to a lesser extent,
as we showed in Section 3.2. The Random Forest
models turn out to be the most competitive. Notice
that no linguistic structure is captured in FastXML
models, only the bags of entities. This is in con-
trast with XML-CNN approach which looks at lo-
cal contexts of feature entities. FastXML performs
particularly well on the precision scores, which
however is not necessarily useful, as demonstrated
in the examples discussed later.

Last, we inspect the sizes of the different mod-
els reported in the rightmost column of Table 1.
Model size is an important factor to consider in
practical applications, e.g. when deploying a sys-
tem on the device. PFastreXML model takes
150GB, by far the most of all methods, resulting
in its capability in recommending tail entities. The
linear models take 4.7GB related to the fact that in
the full 100K ⇥ 100K co-occurrence matrix ap-
proximately 11% of entries are non-zero. Apply-
ing SVD matrix decomposition helps reduce this
size significantly. The NN models take around
2GB, significantly less than the random forests.

Analysis To demonstrate the usefulness of the
models, in Table 2 we report top 4 entity pre-
dictions from XML-CNN and FastXML models

for a few example inputs from the test set. No-
tice how predictions from XML-CNN base are
more generic than from XML-CNN IDF. In par-
ticular, for the first input related to Antarctic Ice
Sheet gaining ice entities Earth and research are
recommended. The relevance of them is clear,
however their usefulness is doubtful due to how
obvious to the writer they may be. Due to of-
ten making such safe predictions XML-CNN base
scores higher in precision than XML-CNN IDF.
XML-CNN IDF instead makes more specific rec-
ommendations, such as sea level rise or temper-
ature for the first input. This shows how much
more beneficial scoring high in NDCG-IDF com-
pared to precision is. An analogous phenomenon
takes place between FastXML and PFastreXML
– despite FastXML achieving very high precision
scores, the predictions tend to be less interesting.

When comparing PFastreXML results against
XML-CNN IDF, the results become even more
specific. For the first input the entities such
as glaciology or Greenland ice sheet are recom-
mended. For the third input about economet-
rics and machine learning, both XML-CNN base
and FastXML predict a generic entity informa-
tion, XML-CNN IDF predicts more specific statis-
tics, and PFastreXML recommends R program-
ming language, a popular statistics toolkit for
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statisticians and mathematicians with support for
machine learning. The usefulness of PFastreXML
predictions is particularly profound for the last
example about gene biology, where all other ap-
proaches back off to very generic entities.

7 Conclusions

In this paper we introduced the problem of entity
recommendation for a document writer. Good en-
tity recommendations need to be both relevant and
interesting, which we motivated with a user study.
In particular, we showed how entities which users
write in the document are considered as good rec-
ommendations and how IDF score correlates with
how useful an entity is considered to be. We cor-
roborated this with example predictions, showing
how models scoring higher in metrics weighted by
IDF provide more interesting suggestions.

The problem of recommending content to docu-
ment writers has recently been addressed by indus-
try with tools like Google Explore in Docs and Mi-
crosoft Researcher, however the systems are pro-
prietary and the methods have not been published.
In particular, this work is the first to formalize the
problem and provide insights about it to the re-
search community. We hope that this work will
inspire further research on recommending novel
content to document writers.

Many avenues for further work can be identi-
fied, including: finding a better metric capturing
novelty of entities, analyzing the influence of the
size of the input passage to quality of predictions,
and experimenting with new models. Moreover,
recent work has considered incorporating knowl-
edge graph information for better use of entity fea-
tures (Dalton et al., 2014; Liu et al., 2018). This
could also be explored for better feature represen-
tation in our problem.
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Saúl Vargas and Pablo Castells. 2011. Rank and rel-
evance in novelty and diversity metrics for recom-
mender systems. In Proceedings of the Fifth ACM
Conference on Recommender Systems, RecSys ’11,
pages 109–116, New York, NY, USA. ACM.

Ryen W. White and Resa A. Roth. 2009. Exploratory
Search: Beyond the Query-Response Paradigm.
Synthesis Lectures on Information Concepts, Re-
trieval, and Services. Morgan & Claypool Publish-
ers.

Hao Wu, Xiaohui Cui, Jun He, Bo Li, and Yijian Pei.
2014. On improving aggregate recommendation di-
versity and novelty in folksonomy-based social sys-
tems. Personal Ubiquitous Comput., 18(8):1855–
1869.

Tao Zhou, Zoltán Kuscsik, Jian-Guo Liu, Matúš Medo,
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Abstract

Likability prediction of books has many uses.
Readers, writers, as well as the publishing in-
dustry, can all benefit from automatic book lik-
ability prediction systems. In order to make
reliable decisions, these systems need to as-
similate information from different aspects of
a book in a sensible way. We propose a
novel multimodal neural architecture that in-
corporates genre supervision to assign weights
to individual feature types. Our proposed
method is capable of dynamically tailoring
weights given to feature types based on the
characteristics of each book. Our architecture
achieves competitive results and even outper-
forms state-of-the-art for this task.

1 Introduction

Book likability prediction is an important but chal-
lenging task. It can be a valuable resource for
supporting buying decisions. The experience of
choosing a book can be daunting for readers, con-
sidering the overwhelming number of books being
published. On the other hand, being able to predict
how a book will fare in the market has relevant
economic value for the publishing industry in or-
der to increase their revenue. The current process
is guided by humans, but this is error-prone, very
subjective, and a non-scalable process.

An alternative to the human-guided process is to
design a reliable automatic system that predicts the
likability of books. Such a system, we argue, must
be able to take into account all of the many aspects
involved in the eventual success of a book. These
include not only the topic of the book and the writ-
ing style of the author, but in the case of creative
writing, also include elements such as creativity,
plot structure, and the flow of sentiments (Hall,
2012; Archer and Jockers, 2016; Maharjan et al.,
2018; Kar et al., 2018). Other relevant aspects in-
fluencing readers’ interest for a book could be the

cover and the title of the book.
We believe that in addition to the ability to in-

corporate the different aspects, it is equally impor-
tant to have a robust mechanism that gives higher
weight to the most relevant aspects, while at the
same time disregards the noisy or redundant as-
pects. Traditionally, this is achieved by searching
through multiple feature combination experiments
for an optimal combination of different feature
types (Yang and Pedersen, 1997; Forman, 2003).
The main problem with these methods is that they
are time-consuming and too rigid. The resulting
feature types are fixed for every document. In
some books, the style of the author may contribute
more than the specific topic, whereas the reverse
may be true for other books. These methods lack
the ability to dynamically assign weights to differ-
ent features based on the characteristics of a par-
ticular test instance. Most likely, a more flexible
scheme that adjusts feature weights based on the
current book, can lead to better results.

This paper attempts to solve this problem by in-
troducing a novel method that is capable of au-
tomatically combining information from different
aspects and learning to weight them dynamically
for each book in order to improve likability predic-
tion. Our method also extends the attention model
to incorporate domain specific information like the
genre of books. As far as we know, we are the first
to use genre supervision while computing atten-
tion weights and to use them in the field of feature
importance. There are many potentially relevant
aspects of books that make them likable by read-
ers. Here we focus on different textual modalities,
like the lexical, stylistic, syntactic, and neural rep-
resentations, along with the visual modality from
book covers. Our main contributions in this paper
are as follows:

• We propose a novel neural architecture,
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which incorporates genre supervision for
computing attention weights to learn the im-
portance of hand-engineered and deep learn-
ing features coming from different modalities
for predicting the likability of books.

• We show through our results that an adaptive
combination of features with the genre-aware
attention model performs better than strong
baselines and also outperforms state-of-the-
art.

• We present visualizations that increase inter-
pretability of our results and also demonstrate
the advantages of our model.

Along with these contributions, we also show
that book cover images contain sufficient informa-
tion by themselves to perform likability classifica-
tion, although their contribution becomes negligi-
ble in the presence of strong textual features.

2 Methodology

We propose a model that we call Genre-Aware At-
tention model (GA), which dynamically weights
features coming from different aspects of a book
by using genre supervision. We first feed our
textual and visual features through a non-linear
layer to train higher feature representations. We
then use our genre-aware attention model to com-
pute appropriate weights for these feature repre-
sentations. The motivation to add genre infor-
mation comes from our previous work showing
that adding genre classification as an auxiliary task
to success prediction improved results (Maharjan
et al., 2017). Moreover, it is also reasonable to ex-
pect that different genres should have different sets
of features that are more relevant when trying to
predict whether readers will like the book. For in-
stance, in Science Fiction, the theme may be more
relevant than say, in Drama, where the characters
and their interactions or their struggles might be
more relevant for likeability prediction.

2.1 Features
For our features, we build on the work by Ma-
harjan et al. (2017) that provides a comprehen-
sive exploration of different hand-crafted features
and neural representations. They showed that a
combination of writing density (WR) (distribution

The source code and data for this paper can be down-
loaded from https://github.com/sjmaharjan/
genre_aware_attention

of word, character, sentences, and paragraphs),
Book2Vec, and recurrent neural network represen-
tations (RNN) works well for books. Similar to
their work, our textual features consist of word,
character, and typed character n-grams (Sap-
kota et al., 2015), syntactic features, sentiment
and sentic concepts and scores (SCS) (Cam-
bria et al., 2014), style-related WR and readabil-
ity (R), and neural representations learned using
Word2Vec (Mikolov et al., 2013), Doc2Vec and
RNN. We consider these categories of the textual
features as different modalities or sources since
they capture different aspects of a book and are
generated by different processes. In addition to
these features, we also add visual information ex-
tracted from the book covers. To extract the visual
features, we rely on state-of-the-art visual feature
extractor methods like VGG (Simonyan and Zis-
serman, 2014) and Resnet (He et al., 2016), ini-
tialized with the weights trained on the Imagenet
dataset.

2.2 Genre-Aware Attention Model

Figure 1: Genre-Aware Attention Model.

Figure 1 shows the overall architecture of our
Genre-Aware Attention model. Let X be a collec-
tion of books. For a book x✏X , let x1,x2, . . . ,xn

be the feature representations from the different
textual modalities and the visual modality. Since
these features have different dimensions, we first
pass them through a non-linear layer to project
them into a space with the same dimension us-
ing Equation 1. This will allow us to perform
a weighted average of features from different
modalities according to their importance:

hi = selu(Whxi + bh) (1)
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where i is the index of the modality whose feature
representation is fed into the network, Wh is the
weight matrix, xi is the input feature vector for
the ith modality, bh is the bias, and selu (Klam-
bauer et al., 2017) is the activation function. All
of these feature vectors from different modalities
may not be equally important to the final represen-
tation and in turn to the likability prediction task.
We use the genre-aware attention mechanism to
learn the importance of each of these features to-
wards our task and aggregate them to get the final
representation. The final book representation r is
the weighted sum of hi vectors:

r =
X

i

↵ihi (2)

where ↵i are the weights measuring the impor-
tance of the different modalities. The GA model
combines the genre vector g✏Rdg (dg being the di-
mension of the genre vector) while computing the
↵ weights. The ↵i weights are computed as fol-
lows:

↵i =
exp(score(hi,g))P
i0 exp(score(hi0 ,g))

(3)

and the score(.) function is defined as:

score(hi,g) = vT selu(Wahi+Wgg+ba) (4)

where, Wa and Wg are the weight matrices and
v is the weight vector. The addition of Wgg in-
corporates genre supervision. These parameters
are shared across all modalities. This will pre-
vent parameter explosion that is likely to occur
when the number of modalities is high, which is
the case for us. To further investigate the effect
of the genre, we also experiment by concatenat-
ing the genre vector g to the final weighted aver-
aged vectors from different modalities r to obtain
r;g. The dotted line from genre vector g repre-
sents this in Figure 1. We then use a non-linear
layer with sigmoid activation to project the book
representation (either r or the concatenation r;g)
to class probabilities.

p̂ = �(Wcr + bc) (5)

where, Wc is the weight matrix and bc is the
bias vector. Finally, we train the network by
minimizing the binary cross entropy loss using
Adam (Kingma and Ba, 2015).

L = �
X

i

pi log p̂i (6)

where, pi and p̂i are true labels and predictions,
respectively.

3 Dataset

We experiment with the dataset collected by Ma-
harjan et al. (2017). The dataset consists of books
from eight different genres: Detective Mystery,
Drama, Fiction, Historical Fiction, Love Stories,
Poetry, Science Fiction, and Short Stories. These
books have been reviewed by at least ten review-
ers. Based on the average rating received by the
books on Goodreads1, they labeled the books into
two categories: Successful and Unsuccessful. The
collection has a total of 1,003 books. However,
the dataset did not include book covers. We aug-
mented this dataset by downloading the covers
from Goodreads. Since this dataset only contains
publicly available books, all of them were pub-
lished over 100 years ago. Some of the books only
had the title of the book on a plain background
as their cover images on Goodreads. We manu-
ally searched for these books with Google Image
Search and found the actual covers for most of
them. However, even after an exhaustive search,
we were unable to obtain proper covers for 21
books. We did not remove these books from the
dataset for the sake of comparison with Maharjan
et al. (2017).

4 Experiments and Results

We used the same train and test folds as used
by Maharjan et al. (2017) for all of our experi-
ments. The dataset consists of 349 books belong-
ing to the Unsuccessful class and 654 books be-
longing to the Successful class. Since the dataset
is imbalanced, they as well as we use weighted F1-
score to evaluate the performance.

4.1 Baselines

The most naive baseline will be to predict the
majority class for all test instances. This majority
class baseline yields a weighted F1-score of
50.6% for the likability classification task. This
baseline will help to understand whether our
proposed model is actually learning from the
data at all. Apart from this, we compare with
the results from Maharjan et al. (2017) and we
also define several other baselines to validate the
superiority of our proposed model. All of the

1https://www.goodreads.com/
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baseline methods are listed below:

Mah’17: The current state-of-the-art for this
dataset by Maharjan et al. (2017). They have sev-
eral results on various combinations of textual fea-
tures.
Mah’17+Vis: This method is the extension of the
Mah’17 method with the addition of visual fea-
tures. Similar to them, we use the SVM classifier
under two settings: Single-task (ST) and Multi-
task (MT). In ST, we simply predict the likability
of books. In MT, along with predicting likability,
we also predict genre simultaneously. This exper-
iment will allow us to make a direct comparison
with Mah’17 regarding the effect of adding visual
modalities.
Concatenation: Similar to GA, we first feed the
features from different modalities through a non-
linear layer each having the same number of neu-
rons. We then concatenate them to obtain the final
representation for a book. We send this represen-
tation to a sigmoid layer for success prediction.
Average Pooling: Instead of concatenation, we
take an average of the features after passing them
through the non-linear layer. This is also compara-
ble to an attention model assigning equal weights
to all modalities.
Attention: We use a multilayer perceptron to learn
the appropriate weights for each of the features
from different modalities. This method is sim-
ilar to our proposed method, except that we do
not use genre information for computing the at-
tention weights. We compute the score(.) as
vT selu(Wahi + ba), without the genre informa-
tion. This experiment will help us understand the
importance of genre in computing weights for the
feature types.
Bilinear Model: We combine the non-linear
transformed modalities h1, . . . ,hn using
a bilinear form (hi

TWbhj + bb), where
Wb✏Rk⇥dhi

⇥dhj is the weight tensor and bb is
the bias vector (Socher et al., 2013; Laha and
Raykar, 2016; Fukui et al., 2016; Gao et al.,
2016). This operation gives us a k-dimensional
vector. In the case of more than two modalities,
we first create

�n
2

�
pairs of these modalities and

combine each of them using a bilinear form.
The final book vector is the concatenation of
the resulting vectors from each of these pairs.
Bilinear models are used in the visual question
answering community to fuse visual and textual

information (Fukui et al., 2016). This experiment
will help us understand how our proposed model
compares with other state-of-the-art multimodal
approaches.

For all these models as well, we also performed
additional experiments by concatenating the genre
vector g with the final representations r obtained
from each of these models to study the signifi-
cance of including genre explicitly for likability
prediction.

4.2 Experimental Settings
For the experiments involving the SVM classifier,
we tuned the C hyper-parameter with values {1e-
4, . . . , 1e4} by performing three-fold grid search
over the training data and then used the best hyper-
parameters to train the final model. For the neu-
ral network experiments, we first separated 20%
of the training data as a validation set and tuned
dropout rates {0.2, 0.4, 0.5}, different weights ini-
tialization schemes {Glorot Uniform (Glorot and
Bengio, 2010), LeCun Uniform (LeCun et al.,
1998)}, learning rate with Adam {1e-4, . . . , 1e-1},
number of hidden neurons in different layers {100,
200}, and batch size {1, 4, 8} with early stopping
criteria. We initialized the genre embeddings with
orthogonal vectors.

4.3 Results
Table 1 shows and compares our results with dif-
ferent baselines. We experimented with both low
performing as well as high performing features
and their combinations as found by Maharjan et al.
(2017). We obtained the best weighted F1-score
of 75.4% with our proposed GA+Genre concate-
nation model. This is 4.2% and 8.7% above the
corresponding results reported by Mah’17 with
their MT and ST settings, respectively. We also
see a significant* improvement of 6.5% (over
MT) and 22.2% (over ST) when using RNN fea-
tures with our proposed method as compared to
Mah’17. These results support the superiority of
our method in learning high-quality book repre-
sentations than Mah’17’s state-of-the-art methods.

The results also show that it is beneficial to use
at least some form of attention over just Average
Pooling. This suggests that using all available fea-
tures without regards to their individual contribu-
tion towards the task at hand can actually worsen
the performance. Our proposed model is capable

*We used the McNemar significance test.
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Mah’17 Mah’17+Vis Concatenation Average Pooling Bilinear Attention Genre Attention

Features ST
(SVM)

MT
(SVM)

ST
(SVM)

MT
(SVM) - +

Genre - +
Genre - +

Genre - +
Genre - +

Genre
Bigram 65.9 68.5 68.8 65.6 67.6 60.3 61.9 59.1 66.9 67.9 62.1 69.2 65.9 70.2
Clausal 50.6 55.8 59.0 53.9 57.0 58.2 60.7 60.1 55.9 67.4 50.6 66.5 50.7 67.4
Readability 50.6 63.4 60.8 58.8 54.3 59.3 59.3 58.3 60.8 60.8 53.6 65.7 52.1 67.6
RNN 52.9 68.6 68.9 68.9 71.9 69.3 67.6 68.4 69.5 71.9 71.4 70.7 75.1 73.7
Book2Vec (DBoW+DMM) 69.5 72.9 69.5 72.9 66.1 65.4 64.4 63.9 61.9 66.5 68.7 68.2 70.5 73.4
SCS,WR,Typed n-gram 72.0 71.0 69.2 68.8 67.9 60.8 63.1 66.7 67.6 69.2 69.2 69.1 72.5 73.0
WR,Book2Vec,RNN 70.1 73.5 66.1 71.6 70.6 69.0 66.7 70.1 70.1 66.4 70.0 70.5 73.7 73.1
All best handcrafted + RNN 66.7 71.2 69.3 72.2 68.1 67.4 66.6 65.7 50.6 50.6 69.8 70.6 70.2 75.4

Table 1: Weighted F1-scores(%) for different multimodal methods for books’ likability classification task
(ST=Single Task, MT=Multitask, SCS=Sentic Concepts and Scores, WR=Writing Density, RNN=Recurrent Neu-
ral Network Representations, + Genre= genre embedding g concatenated with the final book vector r). Our base-
lines and proposed method include visual features as well.

of assigning importance to these features and the
results clearly show that this works to our benefit.
The results also demonstrate the added advantage
of using genre supervision while computing fea-
ture weights. There is a considerable improvement
in the performance over the Attention method af-
ter taking the genre information into account using
our GA method. We suspect that the genre meta-
information is helping to learn more specialized
weights based on the genre of the books.

With the neural baseline methods like Concate-
nation and Average pooling, we do not always
see improvement in performance after combining
the genre information with the final book repre-
sentation. Apart from these two, the combination
of genre information does improve the results for
other methods. The Bilinear and Attention meth-
ods seem to be able to utilize this information well.
However, none of these methods are capable of do-
ing better than our method. GA and GA+Genre
concatenation models always achieve the best per-
formance for all experiments. This also illustrates
the latent power of our method to better exploit do-
main information like genre for performance im-
provement.

Another interesting finding is that with the ad-
dition of multiple modalities, the performance of
Bilinear methods degrades to the majority class
baseline (Table 1, last row). This may be due to
parameter explosion with the increase in the num-
ber of modalities. However, our method is able
to selectively weight the feature sources and dis-
count the effect of redundant and irrelevant fea-
tures to obtain the best performance, even with a
larger number of modalities. In short, we see that
our proposed method is able to cope with feature
pollution and parameter explosion.

Next, we investigate the addition of visual infor-
mation with the textual information for the likabil-
ity prediction of books. Under the ST setting with

SVMs, we see that the low performing textual fea-
tures are benefited significantly by the addition of
visual features, sometimes even outperforming the
MT setting (Table 1, rows 1-4). However, the vi-
sual features are not able to contribute much when
combined with strong textual features that were al-
ready performing well. On the other hand, for the
MT setting, the performance decreases for most of
the feature combinations with the addition of the
visual modality. We suspect that book covers are
not very helpful at predicting genre and thus the
MT setting does not do well with additional visual
features.
Visual Results: Our next set of experiments con-
siders only the visual information for books’ lika-
bility prediction. Even though we do believe that
this current corpus might not be ideal for using
cover features, we believe it is still interesting to
explore whether the current book covers have suf-
ficient information to perform likability classifica-
tion with reasonable accuracy. We used VGG and
Resnet to extract features from book cover images.
We replaced the top layers by a dense layer of 256
neurons, and a classification layer (eight neurons
with softmax for genre classification and one neu-
ron with sigmoid activation for success classifica-
tion). We also added a dropout layer in between
the dense and the classification layer. The layers
were initialized with weights trained on the Ima-
genet dataset.

Tasks Likability Genre
Features ST (F1) MT (F1) ST (F1) MT (F1)
VGG 59.9 61.8 24.7 24.1
Resnet 58.7 60.0 24.6 24.0
VGG + SVM 58.8 57.7 25.4 19.6
Resnet + SVM 59.5 54.5 25.9 19.7

Table 2: Weighted F1-scores(%) for visual features for
likability and genre classification of books with Single
Task (ST) and Multitask (MT) settings.

Table 2 shows the results with only the visual
features for likability and genre classification of
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books under the ST and MT settings. We ob-
tain the highest weighted F1-score of 61.8% and
25.9% for likability and genre classification tasks,
respectively. With the neural experimental setup,
we get similar performance under the ST and the
MT settings for both tasks. We also experimented
with transferring the visual feature vectors to the
SVM classifier under the ST and the MT settings.
We saw a decrease in performance under the MT
settings with both the VGG and Resnet features
(Table 2, last two rows). This is the opposite of
the Mah’17 results for the textual features as seen
in Table 1. The reason behind this may be due to
the fact that the textual features are better at both
the likability and the genre classification tasks in-
dividually, whereas the visual features are not as
good as the textual features for the genre classifi-
cation task. Iwana et al. (2016) also concluded that
genre classification with book covers is a difficult
task as book covers have images with few visual
features or ambiguous features.

These results also empirically verify the de-
crease in performance for the MT settings with
the addition of visual features for likability pre-
diction. Although these results are significantly
lower (p<0.001*) than our best results, they are
still better than the majority baseline (50.6% and
10.7% for success and genre classification tasks,
respectively). These results support our hypothe-
sis that the books’ cover images correlate with the
likability of books. Also, they dictate for the need
of extracting other features that consider different
aspects of books.

5 Attention Weights Visualization
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Figure 2: Feature importance for the feature combina-
tion: All best handcrafted, RNN, and visual (RNN =
Recurrent Neural Networks).

Figure 2 shows the average attention weights

given by the best model to the different feature
types for the books in the test set. The purpose
of this visualization is to understand which as-
pects of a book are deemed to be more important
by the model. The figure shows that most of the
weights are assigned to the Char 5-gram and the
RNN representations. The results in Table 1 also
support that RNN features are indeed one of the
most important features. The contribution of the
visual representations is negligible in the presence
of strong textual features. The results in Table 1
also validate this finding. These two textual fea-
tures also dominate over the other weaker textual
features. In the same way, as for the visual fea-
tures, we see negligible weights assigned to the
other textual features as well. Our model seems to
have learned that the Char 5-gram and the RNN
features can cover the information given by the
rest of the features. The Char 5-gram feature is
capable of capturing the content, topic, and style
of a text and as such might be able to cover the
Unigram and Sentic Concepts features. Likewise,
the Book2Vec features may be non-essential in the
presence of the RNN representations. The model
is reducing redundant information that does not
aid the classification task and instead might just
add noise.

In order to validate that features given the top
weights by our model are indeed the best features
for the task, we ran an experiment with only the
Char 5-gram and the RNN features. We were
able to obtain a weighted F1-score of 73.6% with
just these two features. This score is close to the
best score of 75.4%, showing that these features
are indeed good features for the task. Also, note
that our model was able to figure out this feature
set automatically, while using traditional methods
would have entailed performing multiple experi-
ments (2n �1 experiments, where n is the number
of feature types) which is often times not possi-
ble to do exhaustively. There is still an extra boost
when using the whole feature set rather than us-
ing just the Char 5-gram and the RNN features.
Since our method tailors the feature weights to
each book and its genre as well, the boost likely
comes from the presence of other visual and tex-
tual features, which at least for some books must
be informative.

We just saw that only two out of all feature types
are given most of the weights. However, the re-
sults in Table 1 show that even without these fea-
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Figure 3: Feature importance for feature combination
Sentic Concepts and Scores, Writing Density, Typed n-
gram, and Visual.

tures, we are able to get good performances. To
understand this, we analyze a model that does well
without these two features. Figure 3 plots the av-
erage attention weights for a model with Sentic
Concepts and Scores, Writing Density, Typed n-
grams, and Visual features’ combination. We see
that the weights now shift to Typed n-grams, and
Sentic Concepts and Scores. The topic and con-
tent captured through Sentic concepts and the style
with Typed n-grams prove important. These fea-
tures capture different aspects of books and are not
strongly correlated with one another. Our model is
capable of figuring out that in the absence of Char
5-gram, which encompasses all this information,
these other features need to be made more promi-
nent. We can also see that the model knows three
different feature types to capture the same amount
of information as captured by the two best ones
from before.

Figure 4: Average attention weights with respect to
genre for the best features from two models.

Figure 4 further breaks down the attention
weights by genre for RNN and Char 5-gram, and
Typed n-grams and Sentic Scores and Concepts.
From the figure, it is evident that different genres
respond differently to each feature type. Compar-

ing the two models, we see that Char 5-gram ac-
tivates similarly to Typed n-gram, and RNN simi-
larly to Sentic concepts for different genres.
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Figure 5: Feature importance as assigned by attention
weights for two most important features for six dif-
ferent books: A=The Count of Monte Cristo, B=The
Scouts of the Valley, C=The Daughter of the Comman-
dant, D=The Northern Light , E=The Great Secret,
F=House of the Seven Gables.

Figure 5 shows the feature importance for the
Char 5-gram and RNN feature types for six dif-
ferent books having different attention weights for
the two features. This validates our assumption
that the model is able to dynamically learn and as-
sign weights to different modalities, not only ac-
cording to the genre but also according to the char-
acteristics of each book. The high variance of at-
tention weights for the top features in Figures 2
and 3 also support this claim. This gives an edge
to our model and helps it excel over all other meth-
ods.

6 Error Analysis

(a) The Port of Missing Men (b) The Plague

Figure 6: Books misclassified by visual features but
correctly classified when textual features are added.

We took the books that were misclassified when
we used the visual features only but were correctly
predicted after the combination with the textual di-
mensions. As expected, we found that the books
without proper covers were misclassified by vi-
sual features. But upon addition of other textual
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(a) What’s He Doing in There? (b) When a Man Marries

Figure 7: Books misclassified by visual and text fea-
tures’ combination but correctly classified when only
visual features are used.

features, they were correctly classified. Figure 6
shows the cover image of two of such books. The
fact that the cover has no images with just plain
background, and title, leaves little information for
the visual modality. Similarly, we also analyzed
the books that were correctly classified by visual
features only and misclassified when textual fea-
tures were added. Figure 7 shows two such books.
Both the cover image and the title (present in the
cover) of these two books seem to be interesting
and are very likely to attract a reader’s attention.

7 Related Work

Prior works have shown that stylistic traits to be
useful features to predict success of books (Ashok
et al., 2013; Underwood and Sellers, 2016; Mahar-
jan et al., 2017). Ashok et al. (2013) used stylis-
tic features extracted using the first 1K sentences
from books to classify highly successful litera-
ture from less successful literature. van Cranen-
burgh and Bod (2017) used lexical and rich syn-
tactic tree features to distinguish the degrees of
high and less literary novels. Louis and Nenkova
(2013) defined genre-specific and general features
to predict the article quality in science journal-
ism domain. Maharjan et al. (2017) compared their
work with Ashok et al. (2013) and presented a
new dataset for the book success prediction task.
Their multitask approach with the combination of
deep representations and hand-crafted features im-
proved the classification results. Maharjan et al.
(2018) also showed that modeling sequential flow
of emotions across entire books improves lika-
bility prediction of books. Iwana et al. (2016)
used neural networks to learn relationships be-
tween book covers and genre. They showed that
book covers tend to have carefully designed color
and tone, objects, and text. Our work relies on
prior works’ hand-engineered and deep learning

features but differs in a way how these features are
combined to produce a meaningful book represen-
tations.

The attention mechanism (Bahdanau et al.,
2014) has been successfully applied in enhanc-
ing the document representation for several text
classification (Zhang et al., 2016; Wang et al.,
2016b), sentiment classification (Kar et al., 2017;
Nguyen and Shirai, 2015; Wang et al., 2016a),
question answering (Tan et al., 2015; Chen et al.,
2016a; Hermann et al., 2015), named entity recog-
nition (Bharadwaj et al., 2016; Aguilar et al.,
2017), summarization (Rush et al., 2015), image-
captioning (Xu et al., 2015) tasks. Zhang et al.
(2017) used summary vectors and position vectors
while computing the attention weights for the slot
filling problem. Chen et al. (2016b) applied user
preferences and product characteristics as atten-
tions to words and sentences in reviews to learn the
final representation for the sentences and reviews.
They used these representation to do the sentiment
classification task and showed that adding user in-
formation was much more effective in enhancing
the document representations than the product in-
formation. Similar to their idea, we fuse the genre
information while computing attention weights.

8 Conclusions and Future Work

We present a novel method to fuse the information
coming from different modalities using a genre-
aware attention mechanism to predict the likability
of books. We showed that our proposed method
outperforms strong baselines and state-of-the-art
by learning to distinguish the important features
from irrelevant or redundant ones. Other methods
either suffered from feature pollution or parame-
ter explosion and yielded low performance. Along
with this, our results also showed that the book
cover images by themselves also have sufficient
information to perform success prediction. How-
ever, the difficulty in predicting genre from book
covers decreased the performance in multi-task
settings with additional visual features. We also
used different visualizations to support our find-
ings and improve interpretability of our model. As
future work, we will extend the proposed method
to include components that learn weights for indi-
vidual feature elements and not only the entire fea-
ture type. This could likely result in higher quality
multimodal representations.
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Abstract

The task of thread popularity prediction and
tracking aims to recommend a few popular
comments to subscribed users when a batch of
new comments arrive in a discussion thread.
This task has been formulated as a reinforce-
ment learning problem, in which the reward
of the agent is the sum of positive responses
received by the recommended comments. In
this work, we propose a novel approach to
tackle this problem. First, we propose a deep
neural network architecture to model the ex-
pected cumulative reward (Q-value) of a rec-
ommendation (action). Unlike the state-of-
the-art approach, which treats an action as a
sequence, our model uses an attention mech-
anism to integrate information from a set of
comments. Thus, the prediction of Q-value is
invariant to the permutation of the comments,
which leads to a more consistent agent behav-
ior. Second, we employ a greedy procedure
to approximate the action that maximizes the
predicted Q-value from a combinatorial action
space. Different from the state-of-the-art ap-
proach, this procedure does not require an ad-
ditional pre-trained model to generate candi-
date actions. Experiments on five real-world
datasets show that our approach outperforms
the state-of-the-art.

1 Introduction

Online discussion forums allow people to join in-
depth conversations about different topics in form
of threads. Each thread corresponds to one con-
versation, which is initiated by a post and users
respond to it with comments. In addition, a com-
ment can be further replied by another comment,
forming a discussion tree. Users who are inter-
ested in a particular thread will subscribe to it. Af-
ter the subscription, users will receive a notifica-
tion when a new comment arrives in that thread.
However, the speed of content generation in a

well-known discussion forum is breakneck. For
instance, in Reddit1, there were more than 900
million comments posted in 2017 (Reddit, 2017).
Hence, merely pushing every new comment to the
subscribers leads to a poor user experience. Mo-
tivated by this issue, He et al. (2016c) proposed
the task of thread popularity prediction and track-
ing. When N new comments arrive in a thread,
the system performs one step of recommendation
by pushing K comments to the subscribers. We
want to maximize the sum of popularities of the
recommended comments over all recommendation
steps. The popularity of a comment is measured
by the number of positive reactions it received,
e.g., the rating. With the assumption that a user
needs to know the prior context in order to under-
stand a comment, the system can only recommend
new comments that are in the subtrees of previ-
ously recommended comments. Thus, the selec-
tion of comments at the current recommendation
step will affect the comments that we can choose
in the future recommendation steps.

To incorporate the long-term consequences of
recommendations, the task of thread popularity
prediction and tracking has been formulated as a
reinforcement learning problem, in which an agent
selects an action (a set of K comments) according
to its current state (previous recommended com-
ments), with the goal of maximizing the cumula-
tive reward (total popularities of the recommended
comments over all recommendation steps). The
optimal action of the agent at each step is the
action that maximizes the Q-function, Q(s, a),
which denotes the long-term reward of choosing
action a in state s. In practice, we learn this Q-
function using a parametric function, Q(s, a; ✓),
where ✓ is the model parameter vector. Thus, the
predicted optimal action of the agent is the action

1https://www.reddit.com/
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that maximizes Q(s, a; ✓).

This reinforcement learning problem has two
main challenges. First, we need to develop a para-
metric model, Q(s, a; ✓), to approximate the Q-
function. Second, finding the action that maxi-
mizes Q(s, a; ✓) requires the prediction of all

�N
K

�

possible actions, which is intractable. Thus, we
need a procedure to approximate the predicted op-
timal action from a combinatorial action space.

To address the first challenge, He et al.
(2016c) proposed a neural network model, DRRN-
BiLSTM, to approximate the Q-function. In this
model, a bi-directional long short-term memory
(LSTM) (Graves and Schmidhuber, 2005) is used
to encode the set of K comments in an action.
To address the second challenge, they proposed
the two-stage Q-learning procedure to approxi-
mate the predicted optimal action (He et al., 2017).
In this procedure, the agent uses a pre-trained and
less-sophisticated model to rank all possible ac-
tions, then it uses the DRRN-BiLSTM to re-rank
the top-M actions and selects the best one. How-
ever, this approach has two limitations. First of all,
bi-directional LSTM is a sequence model, which
treats the set of K comments in an action as a
sequence. Although they tried to fix this prob-
lem by feeding randomly-permuted comments to
the model, a different permutation of the same set
of comments leads to a different Q-value predic-
tion. Thus, the agent may not consistently select
the predicted optimal action. Secondly, the two-
stage Q-learning procedure requires an additional
pre-trained model to generate candidate actions.

Our work addresses these two limitations as
follows. We propose a novel neural network
model, DRRN-Attention, to approximate the Q-
function. In our model, we use an attention mech-
anism (Bahdanau et al., 2014) to integrate the
information from a set of comment into an ac-
tion embedding vector. In a nutshell, the atten-
tion mechanism outputs a weighted sum of the
comment representations, where the weights are
learned by a subnetwork to indicate the impor-
tance of each comment. Thus, the action embed-
ding is invariant to the permutation of the com-
ments, which leads to a permutation invariant Q-
value prediction. Next, we employ a greedy pro-
cedure to approximate the action that maximizes
Q(s, a; ✓). This procedure only requires the pre-
diction of O(NK) actions, which is significantly
lower than

�N
K

�
. Moreover, it does not require an

additional pre-trained model to generate candidate
actions.

In our experiments, we evaluate the perfor-
mance of our DRRN-Attention model and the
greedy approximation procedure against the base-
lines on five real-world datasets. Experimental re-
sults demonstrate that our approach beats the base-
lines on four of the datasets and achieves a com-
petitive performance on one of the datasets. Fur-
thermore, we analyze the performance of our ap-
proach across four action sizes (K = 2, 3, 4, 5).
Our approach consistently achieves a higher cu-
mulative reward than the baselines across all these
action sizes.

We summarize our contributions as follow: (1)
a new neural network architecture to model the Q-
value of the agent which is invariant to the per-
mutation of sub-actions; (2) a greedy procedure
for the agent to select an action from the com-
binatorial action space without an additional pre-
trained model; and (3) the new state-of-the-art per-
formances on five real-world datasets.

2 Related Work

2.1 Reinforcement Learning in Text-based
Tasks

Reinforcement learning has been widely applied
in various text-based tasks. There are several ar-
ticles in literature studying the tasks of mapping
instruction manuals to a sequence of commands,
such as game commands (Branavan et al., 2011),
software commands (Branavan et al., 2010), and
navigation directions (Vogel and Jurafsky, 2010).
In the task of text-based game, an agent selects
a textual command from a set of feasible com-
mands at every time step. Narasimhan et al.
(2016) considered a special case that all the tex-
tual commands have a fixed structure, while He
et al. (2016b) and Chen et al. (2017) considered
another case that all commands are free text.

In the task of thread popularity prediction and
tracking, the agent selects a set of K comments
from N available comments at every time step,
where each comment is a free text. He et al.
(2016c) proposed two different approaches to
tackle this task. In their first approach, the agent
uses the Deep Reinforcement Relevance Network
(DRRN) (He et al., 2016b) to model the Q-
function of selecting a comment. In their second
approach, the agent uses the DRRN-BiLSTM (He
et al., 2016c) to model the Q-function of an ac-
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tion. To due with the combinatorial action space,
the agent uses uniform sampling to generate a set
of M candidate actions. To improve this random
sampling scheme, they proposed the two-stage Q-
learning procedure in their later work (He et al.,
2017), which used a pre-trained model to gener-
ate M candidate actions. Their experimental re-
sults showed that using DRRN-BiLSTM with two-
stage Q-learning procedure outperforms all other
existing methods. The difference between our
model and DRRN-BiLSTM is that we use atten-
tion to encode a set of comments rather than using
a bi-directional LSTM. Besides, the greedy pro-
cedure in our approach does not require any extra
pre-trained model. He et al. (2017) also consid-
ered a special case that the agent can access an ex-
ternal knowledge source to augment the state rep-
resentation. This setting is orthogonal to this work
since we focus on the action encoding and the ap-
proximation of predicted optimal action.

One line of research focused on the in-
tegration of sequence-to-sequence (SEQ2SEQ)
model (Sutskever et al., 2014) and reinforcement
learning framework, examples including dialogue
generation (Dhingra et al., 2017; Li et al., 2016;
Su et al., 2016), question answering system (Buck
et al., 2017), and machine translation (He et al.,
2016a). In these tasks, the agent selects an action
by generating a free text using a SEQ2SEQ model.

2.2 Deep Learning on Sets

Most of the deep learning models on sets em-
ployed attention to integrate information from a
set of input. This idea was first introduced in
the read-process-and-write network (Vinyals et al.,
2016), which uses a process module to perform
multiple steps of attention over a set of vectors
to obtain a permutation-invariant embedding. Our
work adapts this idea to aggregate a set of com-
ment embedding vectors. In the domain of graph
learning, several models (Sukhbaatar et al., 2015;
Zhang et al., 2017) learn an embedding of a node
by attending over its neighboring nodes. All of
the above models can be interpreted as a special
case of memory network (Weston et al., 2015;
Sukhbaatar et al., 2015; Zhang et al., 2017), if we
view the set of feature vectors as external mem-
ory. Max-pooling is another promising technique
for the problem of learning on sets. Qi et al. (2017)
used max-pooling to aggregate the feature vectors
of a set of 3D geometry points. Recently, Zaheer

et al. (2017) derived the necessary and sufficient
conditions for a neural network layer to be permu-
tation invariant.

2.3 Popularity Prediction

Another related line of research is popularity
prediction problem in a supervised learning set-
ting. Yano and Smith (2010) used the LDA topic
model (Blei et al., 2003) to predict the number
of comments of a blog post in a political blog.
There are also several studies focused on the task
of predicting the number of reshares on Face-
book (Cheng et al., 2014) and the number of
retweets in tweeter based on the text content (Tan
et al., 2014; Hong et al., 2011). Recently, Cheng
et al. (2017) proposed a neural network model to
learn comment embeddings for the task of com-
munity endorsement prediction in a supervised
learning setting.

3 Preliminary

3.1 Discussion Tree

A discussion thread in an online forum can be rep-
resented as a tree. Each node in the tree stores a
free text. The root node represents the post of the
thread and each non-root node represents a com-
ment of the thread. There is a directed edge from
node u to node v if and only if a comment (or post)
u is replied by comment v. This tree keeps grow-
ing as new comments are submitted to the thread.

3.2 Problem Definition

The task of thread popularity prediction and track-
ing is formally defined as a reinforcement learning
problem. We use Mt to denote the set of com-
ments that are being tracked at time t. Given a
discussion thread, we start an episode as follows.
First, we initialize M1 to be the post of a thread.
Then, at each time step t the agent performs the
following operations:

• Read the current state st, which is all the pre-
viously tracked comments {M1, . . . , Mt}.

• Read N new comments, ct =
{ct,1, . . . , ct,N}, in the subtree of Mt.

• Select a set of K comments from ct to rec-
ommend, at = {c1

t , . . . , c
K
t }, where ci

t 2 ct

for i = 1, . . . , K and ci
t 6= cj

t for i 6= j.
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• Receive a reward, rt+1 =
PK

i=1 ⌘ci
t
, where

⌘ci
t

is the number of positive reactions re-
ceived by comment ci

t.

• Track the set of recommended comments in
the next time step, Mt+1 = at.

The episode terminates when no more new com-
ments appear in the subtree of Mt. The goal of the
agent is to maximize the cumulative reward.

3.3 Q-function
The state-action value function (or Q-function),
Q(s, a), is defined as the expected cumulative re-
ward starting from state s and taking action a.
More formally, Q(s, a) = E[

P+1
l=0 �lrt+1+l|st =

s, at = a], where � 2 (0, 1] is a discount factor
for future rewards. Since the goal of the agent
is to maximize the cumulative reward, the opti-
mal action for each state is the action that achieves
the highest Q-value. Thus, the Q-function is as-
sociated with an optimal policy: in every state,
the agent selects the action that maximizes the
Q-function, i.e., at = argmaxa Q(st, a), 8t.
Since this Q-function is unknown to the agent,
we approximate the Q-function using a paramet-
ric model, Q(s, a; ✓), and update the parameters ✓
using received rewards.

3.4 Exploration-Exploitation Trade-off
The agent needs to balance the exploration-
exploitation trade-off when selecting an action.
On one hand, the agent can choose the action with
the highest estimated Q-value to exploit its cur-
rent knowledge of the Q-function. On the other
hand, the agent can choose a non-greedy action to
get more information about the Q-value of other
actions. The balance between exploration and ex-
ploitation can be achieved by using the ✏-greedy
policy, in which the agent selects a random action
with probability ✏, and selects a greedy action with
probability 1 � ✏. Note that the term “greedy” in
the ✏-greedy policy means that the agent selects
the action that is predicted to be optimal, i.e., se-
lect at = argmaxa Q(st, a; ✓). It does not refer
to the greedy procedure, which is used to approxi-
mate the predicted optimal action in a combinato-
rial action space.

4 DRRN-Attention Model

In this work, we propose a new deep neural net-
work model, named DRRN-Attention, to approxi-

mate the Q-function for the task of thread popular-
ity prediction and tracking. The input to our model
is a state, st, and an action, at = {c1

t , . . . , c
K
t }, as

defined in Section 3.2. The output is the prediction
of Q-value, i.e., Q(st, at; ✓) 2 R. Figure 1 illus-
trates the overall architecture of DRRN-Attention.
We divide our model into three modules as fol-
lows.

4.1 Text Representation Module
The text representation module reads st and
at = {c1

t , . . . , c
K
t }. We first convert st, c1

t , . . . , c
K
t

into bag-of-words (BOW) representations,
bst , bc1t

, . . . , bcK
t

. Then, we use a 2-layer feed-
forward neural network to embed bst into a
d-dimensional state embedding vector, mst 2 R

d.
After that, we use another 2-layer feedforward
neural network to embed bci

t
into a d-dimensional

comment embedding vector, mci
t

2 R
d, for

i = 1, . . . , K. This module outputs mst and
{mc1t

, . . . , mcK
t

}.

4.2 Set Embedding Module
The input to this module is a set of d-dimensional
comment embeddings, {mc1t

, . . . , mcK
t

}. The out-
put is an action embedding vector, mat 2 R

h+d,
which is invariant to the ordering of comment em-
beddings. The module consists of a single-layer
LSTM with a hidden size of h, and a shared atten-
tion mechanism, f : R

h ⇥ R
d ! R. The initial

hidden state, q0 2 R
h, of the LSTM is a trainable

vector. Inspired by (Vinyals et al., 2016), we per-
form L steps of computations over the comment
embedding vectors. More specifically, at each step
of computation l = 0, 1, . . . , L � 1:

• The query vector, ql 2 R
h, is the current hid-

den state of the LSTM.

• Apply the attention mechanism to compute
an attention coefficient, ei,l, between the
query, ql, and a comment embedding, mci

t
,

for i = 1, . . . , K. In general, this framework
is agnostic to the underlying attention mech-
anism. In this work, we closely follow the
attentional setup in (Bahdanau et al., 2014),
as shown in the following equation.

ei,l = vT tanh(Wemci
t
+ Ueql), (1)

where v 2 R
h0 , We 2 R

h0⇥d, and Ue 2
R

h0⇥h.
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Figure 1: Architecture of DRRN-Attention model. The text representation module first converts state st and each
comment ci

t in action at into embedding vectors. Then, the comment embedding vectors are passed to the set
embedding module to learn an action embedding vector. Finally, the state embedding and the action embedding
are passed to the output module to output a prediction of Q-value.

• Apply softmax function to normalize the at-
tention coefficients,

↵i,l =
exp(ei,l)PK

j=1 exp(ej,l)
. (2)

• Use the normalized attention coefficients to
compute a weighted sum of the comment em-
bedding vectors, as the readout in this com-
putation step,

rl =
KX

i=1

↵i,lmci
t
. (3)

• The LSTM takes ql and rl as input and com-
putes the next hidden state, ql+1,

ql+1 = LSTM([ql, rl]). (4)

Note that swapping any two comment embed-
ding vectors, mci

t
and mcj

t
, will not affect the

query vector ql as well as the attention readout
rl. After L steps of computation, this module con-
catenates qL and rL to yield the final output action
embedding, mat = [qL, rL] 2 R

h+d.

4.3 Output Module
The input to this module is a state embedding vec-
tor, mst 2 R

d, and an action embedding vec-
tor, mat 2 R

h+d. We simply concatenate mst

and mat and pass them through a fully-connected
layer. The output is Q(st, at; ✓) 2 R, which is the
prediction of Q(st, at).

Algorithm 1 Greedy(st, ct, Q(·, ·; ✓), K)

1: a = ;
2: for i = 1 ! K do
3: c⇤ = argmaxc2ct\a Q(st, a [ c; ✓)
4: a = a [ c⇤

5: return a

5 Greedy Procedure

The next challenge that we need to address is
to approximate the predicted optimal action in a
combinatorial action space. Finding the predicted
optimal action, argmaxa Q(st, a; ✓), is intractable
since it requires the prediction of all

�N
K

�
actions.

In this work, we use a greedy procedure to com-
pute an approximation. The complete procedure
is shown in Algorithm 1. We start from an empty
action, at = ;, and then iteratively adds into at

the comments that leads to the largest increase in
Q(st, at; ✓), until |at| = K. The procedure con-
sists of K iterations. In each iteration i, we need
to predict the Q-value for n � i actions. In total,
it only requires the prediction of O(NK) actions,
which is tractable. The advantage of this proce-
dure over existing methods is that it does not re-
quire another pre-trained model to generate candi-
date actions.

6 Parameter Learning

We use the deep Q-learning algorithm (Mnih et al.,
2015), which is a variant of the traditional Q-
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learning algorithm (Watkins and Dayan, 1992), to
learn the model parameters of Q(s, a; ✓) from the
received rewards. The complete training proce-
dure is shown in Algorithm 2 in the Appendix.
The network parameters ✓ are first initialized ar-
bitrarily. At each time step t, the agent selects
an action at according to the ✏-greedy policy, re-
ceives a reward rt+1, and transits to the next state
st+1. Thus, it yields a transition tuple, ⇣t =
(st, at, rt+1, st+1). Instead of using the current
transition tuple, ⇣t, to update the parameters, we
first store ⇣t into an experience memory, D. This
experience memory has a limited capacity, |D|,
and the stored transition tuples are rewritten in a
first-in-first-out manner. Then, we sample mini-
batches of transition tuples (s, a, r, s0) from D uni-
formly at random. Using the sampled transition
tuples, we perform a step of stochastic gradient de-
scent to minimize the following loss function,

L(✓) = E(s,a,r,s0)⇠U(D)[(y � Q(s, a; ✓))2], (5)

where y = r + � maxa0 Q(s0, a0; ✓�) is the Q-
learning target, ✓� are the network parameters of
the Q-learning target. We update ✓� to match the
network parameters, ✓, after every F time steps,
where F is a hyperparameter.

7 Experimental Setup

In the experiments, we analyze the performances
of different neural network models and differ-
ent approximation procedures. First, their perfor-
mances are evaluated on five real-world datasets,
with a fix action size K. Then, we evaluate their
performances with different action sizes, on one
dataset. For each experiment setting, we do the
following comparative analysis:

• Compare the performance of our DRRN-
Attention model with the baseline models us-
ing different approximation procedures.

• Compare the performance of the greedy pro-
cedure with the baseline approximation pro-
cedures using different neural network mod-
els.

• Find the approach (combination of neural
network model and approximation proce-
dure) that achieves the best performance.

Finally, we conduct a case study to better illus-
trate the difference between our DRRN-Attention
model and the DRRN-BiLSTM baseline.

Subreddit # Posts # Comments
askscience 0.94k 0.15M
askmen 4.45k 0.94M
todayilearned 9.44k 4.65M
worldnews 8.00k 4.28M
nfl 11.73k 5.72M

Table 1: Basic statics of discussion threads data from
five subreddits.

7.1 Datasets

All the experiments are conducted on discussion
thread data from the Reddit discussion forum. In
Reddit, threads are grouped into different cate-
gories, called subreddits, according to different
discussion themes. Registered users are allowed to
give up-votes or down-votes to a comment, these
votes are then aggregated to compute a karma
score for the comment. We use it as the re-
ward for recommending that comment. Using
the post IDs provided by He et al. (2016c), we
crawl five datasets from five different subreddits
respectively, including askscience, askmen, today-
ilearned, worldnews, and nfl. These subreddits
cover a wide range of discussion topics and lan-
guage styles. The basic statistics of the datasets
are presented in Table 1. Since some of the posts
and comments were deleted by Reddit, we re-
move all the deleted posts and comments from the
datasets. Thus, the statistics of our datasets are
different from that in He et al. (2016c). For each
dataset, we use the simulator provided by He et al.
(2016c) to partition 90% of the data as a training
set, and 10% of the data as a testing set.

7.2 Evaluation

The evaluation metric is the cumulative reward per
episode averaged over 1,000 episodes (He et al.,
2016c). For each setting, we evaluate an agent as
follows. First, we train the agent on the training
set using Algorithm 2 in the Appendix for 3,500
episodes. Then, we test the agent using the test-
ing set for 1,000 episodes and choose every action
according to the ✏-greedy policy, but the agent can-
not use the received rewards to update the model
parameters. We repeat the testing for five repe-
titions and report the mean and the standard de-
viation of the evaluation metric. Throughout the
training and testing, we fix ✏ = 0.1.
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Models Procedure Askscience Askmen Todayilearned Worldnews NFL

DRRN-
BiLSTM

Random 546.9±21.8 183.1±7.2 654.9±27.3 427.4±21.9 438.7±16.1
Two-stage 643.2±28.2 184.3±9.2 659.0±25.6 424.0±14.0 455.9±18.7

Greedy 672.2±22.2 190.2±11.5 665.7±11.4 428.8±21.0 459.7±9.3

DRRN-
Mean

Random 594.5±21.9 184.7±6.9 649.6±21.7 413.9±11.7 434.1±22.9
Two-stage 581.1±13.0 183.3±5.6 670.4±29.7 426.7±24.2 441.9±20.3

Greedy 732.3±25.7 194.2±7.8 680.0±31.0 435.4±18.5 452.3±22.6

Our
model

Random 648.6±19.6 186.1±8.2 670.5±26.5 429.4±20.8 452.5±17.9
Two-stage 685.6±24.6 184.7±7.5 672.2±37.8 426.1±18.2 460.3±15.7

Greedy 757.4±10.9 210.6±11.3 689.5±13.3 436.0±21.9 454.2±12.0

Table 2: Comparison of average episodic reward on different datasets.

7.3 Baselines

Our DRRN-Attention model is compared with two
baselines. The first one is DRRN-BiLSTM, which
is the current state-of-the-art model to approxi-
mate the Q-value for this task (He et al., 2016c).
We modify the DRRN-BiLSTM model by replac-
ing the Bi-directional LSTM with a mean opera-
tor and call this new model DRRN-Mean. This
DRRN-mean is used as the second baseline model.
In addition, we compare the greedy procedure
with two baseline approximation procedures. The
first is random sampling procedure in (He et al.,
2016c). The second is the two-stage Q-learning
procedure in (He et al., 2017), which is the state-
of-the-art approximation procedure for this task.

7.4 Implementation Details

In preprocessing, we remove all punctuations and
lowercase all alphabetic characters. To construct
the bag-of-words representations, we use the dic-
tionary provided by He et al. (2016c). This dictio-
nary contains the most frequent 5,000 words in the
data. All model parameters are initialized by a uni-
form distribution within the interval [�0.1, 0.1].
In our DRRN-Attention model, we set the com-
ment embedding size d to 16, the hidden size of
the LSTM h to 16, the hidden size of the atten-
tion mechanism h0 to 16, and the steps of atten-
tion L to 2. In the text embedding module of
DRRN-Attention, each fully-connected layer has
a hidden size of 16. In the baseline models, we
set the hidden size of the bidirectional LSTM to
20, the comment embedding size to 20. The text
embedding module of the baselines has two lay-
ers and each layer has a hidden size of 20. For
the deep Q-learning algorithm, we set F = 1000.
We update the model parameters using stochas-
tic gradient descent with RMSprop (Tieleman and

Hinton, 2012). We set different initial learning
rates for different datasets (askscience: 0.00001;
askmen: 0.00008; todayilearned, worldnews, and
nfl: 0.00002). The mini batch size is 100. All
the above hyperparameters are tuned by five-fold
cross-validation. We also found that the model
performances tuned by five-fold cross-validation
are similar to that tuned by the testing set. We set
the remaining hyperparameters according to (He
et al., 2017). The memory size |D| is set to 10000.
The discount factor � is set to 0.9. The candidate
size m of the baseline approximation procedures
is set to 10.

8 Experimental Results

8.1 Agent Performances on Various Datasets
In this section, the performances of different neu-
ral network models and approximation procedures
are evaluated on five datasets with N = 10, K =
3. The results are shown in Table 2. We analyze
the performances of our DRRN-Attention model
in each approximation procedure. With the ran-
dom sampling procedure, our model achieves a
higher cumulative reward than the baseline mod-
els across all datasets. When using the two-
stage Q-learning procedure, or the greedy pro-
cedure, our model outperforms the baselines on
four of the datasets; its performance is compet-
itive to the baselines in the remaining dataset.
Next, we analyze the performances of the greedy
procedure in each neural network model. When
using the DRRN-BiLSTM model or the DRRN-
Mean model to parameterize the Q-function, the
greedy procedure achieves a higher cumulative re-
ward than other two baseline procedures across all
datasets. When using the DRRN-Attention model,
the greedy procedure outperforms the baseline
procedures in four of the datasets. In sum up, us-
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Models Procedure K=2 K=3 K=4 K=5

DRRN-BiLSTM
Random 431.6±18.8 546.9±21.8 743.7±15.9 899.5±53.9

Two-stage 484.3±10.6 643.2±28.2 765.7±32.8 928.6±20.5
Greedy 467.8±24.5 672.2±22.2 772.9±28.2 929.2±18.6

Our model
Random 482.7±18.1 648.6±19.6 806.0±13.5 941.2±7.3

Two-stage 537.5±26.1 685.6±24.6 772.8±22.8 903.5±22.4
Greedy 545.2±27.3 757.4±10.9 820.1±24.2 944.1±29.6

Table 3: Comparison of average episodic reward with different action sizes on askscience dataset.

ing DRRN-Attention model with the greedy pro-
cedure outperforms all the baselines in four of the
datasets.

8.2 Agent Performances on Various Action
Sizes

We evaluate all the neural network models and
approximation procedures across various action
sizes with K = 2, 3, 4, 5 and fix N = 10 on
the askscience dataset. The results are presented
in Table 3. Our DRRN-Attention model outper-
forms the baselines across all the action sizes form
K = 2 to K = 5 with the random sampling pro-
cedure or the greedy procedure. With the two-
stage Q-learning procedure, our model achieves a
higher cumulative reward than the baseline mod-
els when K = 2, 3, 4. Then, we analyze the per-
formance of the greedy procedure in each neural
network model. When using the DRRN-BiLSTM
to parameterize the Q-function, the greedy pro-
cedure outperforms the baseline procedures when
K = 3, 4, 5. When using our DRRN-Attention,
the greedy procedure achieves a higher cumulative
reward than the baselines when K = 2, 3, 5. Over-
all, using the DRRN-Attention model with the
greedy procedure achieves the best performances
across all the action sizes form K = 2 to K = 5.

8.3 Case Study

Table 4 presents an example of Q-value prediction
of a state and three sub-actions on the askscience
dataset. In this study, we enumerate every per-
mutation of these three sub-actions, e.g., (1, 3, 2)
denotes a permutation of comments that we place
comment (1) in the first position, comment (3) in
the second position, and comment (2) in the third
position. Then, we use a trained DRRN-BiLSTM
model and a trained DRRN-Attention model to
predict the Q-value of each permutation of com-
ments. When we use the DRRN-BiLSTM model,
a different permutation of comments yields a dif-

State
Is the heat I feel when I face a bonfire trans-
mitted to me mostly by infrared radiation or by
heated air?
Sub-actions (comments)
(1) Should it also be taken into consideration,
that electromagnetic radiation is received dif-
ferently depending on it’s wavelength?
(2) Are the light from the fire and it’s heat one
in the same? Because when I’m sitting at a
campfire and it starts making my face feel hot...
(3) The infrared radiation of a hot object is pro-
portional to the fourth power of T, where T is
the centigrade temperature + 273, ...

Permutation
Q(s, a; ✓) by

DRRN-
BiLSTM

Q(s, a; ✓) by
DRRN-

Attention
(1, 2, 3) 131.3 117.0
(1, 3, 2) 132.1 117.0
(2, 1, 3) 67.1 117.0
(2, 3, 1) 45.6 117.0
(3, 1, 2) 84.5 117.0
(3, 2, 1) 60.4 117.0

Table 4: A Q-value prediction example using DRRN-
BiLSTM and DRRN-Attention.

ferent Q-value prediction. The Q-value predic-
tion of the permutation (1, 3, 2) almost triples
that of the permutation (2, 3, 1). On the other
hand, any permutation of the comments does not
change the Q-value prediction when we use our
DRRN-Attention model. This example demon-
strates that the ordering of the comments can sig-
nificantly affect the predicted Q-value when we
use the DRRN-BiLSTM model.

8.4 Discussions

As mentioned in Section 7.1, the datasets that we
use have a fewer number of comments than the
datasets used by previous work. Table 5 com-
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Subreddit # Cmts (their) # Cmts (our)
askscience 0.32M 0.15M
askmen 1.06M 0.94M
todayilearned 5.11M 4.65M
worldnews 5.99M 4.28M
nfl 6.12M 5.72M

Table 5: The number of comments in the datasets used
by He et al. (2016c) and us.

Subreddit Reward (their) Reward (our)
askscience 833.9 643.2
askmen 148.0 184.3
todayilearned 697.9 659.0

Table 6: The cumulative reward achieved by the
DRRN-BiLSTM + two-stage Q-learning baseline re-
ported by He et al. (2017) and us.

pares the number of comments in the datasets used
by (He et al., 2016c) and us. The experiments
in (He et al., 2017) used three of the datasets
(askscience, askmen, and todayilearned) from (He
et al., 2016c). We compare our results and the re-
sults reported in (He et al., 2017) of the DRRN-
BiLSTM + two-stage Q-learning baseline on these
three datasets in Table 6. On the askscience and to-
dayilearned datasets, the results of our implemen-
tation are worse than the results reported by them.
Since the number of comments in our askscience
dataset is only half of that in (He et al., 2017), the
results of our implementation on the askscience
dataset are significantly worse than the results re-
ported by them. On the askmen dataset, the num-
ber of comments that we use is slightly less than
the askmen dataset used by them. However, the
results of our implementation on askmen are bet-
ter than the results reported by them. We suspect
that the deleted comments may have low karma
scores, which cause the agent to achieve a higher
cumulative reward.

9 Conclusion

In this work, we propose a new approach to the
task of thread popularity prediction and tracking.
In our approach, we propose a new neural network
architecture, DRRN-Attention, to approximate the
Q-function, which well respect the permutation in-
variance of the comments in an action. Moreover,
our approach employs the greedy procedure to
approximate the predicted optimal action, which
does not require an additional pre-trained model

to generate candidate actions. Empirical studies
on real data demonstrate that our approach beats
the current state-of-the-art in most of the experi-
mental settings.
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gio. 2017. Graph attention networks. CoRR,
abs/1710.10903.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2016. Order matters: Sequence to sequence for sets.
In ICLR, 2015.

Adam Vogel and Daniel Jurafsky. 2010. Learning to
follow navigational directions. In ACL, pages 806–
814, 2010.

Christopher JCH Watkins and Peter Dayan. 1992. Q-
learning. Machine learning, 8(3-4):279–292.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In ICLR, 2015.

Tae Yano and Noah A Smith. 2010. What’s worthy of
comment? content and comment volume in political
blogs. In ICWSM, 2010.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh,
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Abstract

Sentiment analysis has immense implications
in modern businesses through user-feedback
mining. Large product-based enterprises like
Samsung and Apple make crucial business de-
cisions based on the large quantity of user re-
views and suggestions available in different
e-commerce websites and social media plat-
forms like Amazon and Facebook. Sentiment
analysis caters to these needs by summariz-
ing user sentiment behind a particular object.
In this paper, we present a novel approach of
incorporating the neighboring aspects related
information into the sentiment classification
of the target aspect using memory networks.
Our method outperforms the state of the art by
1.6% on average in two distinct domains.

1 Introduction

Sentiment analysis plays a huge role in user-
feedback extraction from different popular e-
commerce websites like Amazon, eBay, etc. Large
enterprises are not only interested in the overall
user sentiment about a given product, but the sen-
timent behind the finer aspects of a product is also
very important to them. Companies allocate their
resources to research, development, and marketing
based on these factors. Aspect-based sentiment
analysis (ABSA) caters to these needs.

Users tend to express their opinion on differ-
ent aspects of a given product. For example, the
sentence “Everything is so easy to use, Mac soft-
ware is just so much simpler than Microsoft soft-
ware.” expresses sentiment behind three aspects:
“use”, “Mac software”, and “Microsoft software”
to be positive, positive, and negative respectively.
This leads to two tasks to be solved: aspect extrac-
tion (Shu et al., 2017) and aspect sentiment polar-
ity detection (Wang et al., 2016). In this paper, we

tackle the latter problem by modeling the relation
among different aspects in a sentence.

Recent works on ABSA does not consider the
neighboring aspects in a sentence during classifi-
cation. For instance, in the sentence “The menu is
very limited - I think we counted 4 or 5 entries.”,
the sub-sentence “I think ... entries” does not re-
flect the true sentiment behind containing aspect
“entries”, unless the other aspect “menu” is con-
sidered. Here, the negative sentiment of “menu”
induces “entries” to have the same sentiment. We
hypothesize that our architecture iteratively mod-
els the influence from the other aspects to generate
accurate target aspect representation.

In sentences containing multiple aspects, the
main challenge an Aspect-Based-Sentiment-
Analysis (ABSA) classifier faces is to correctly
connect an aspect to the corresponding sentiment-
bearing phrase (typically adjective). Let us
consider this sentence “Coffee is a better deal
than overpriced cosi sandwiches”. Here, we find
two aspects: “coffee” and “cosi sandwiches”. It
is clear in this sentence that the sentiment of “cof-
fee” is expressed by the sentimentally charged
word “better”; on the other hand, “overpriced”
carries the sentiment of “cosi sandwiches”. The
aim of the ABSA classifier is to learn these con-
nections between the aspects and their sentiment
bearing phrases.

In this work, we argue that during sentiment
prediction of an aspect (say “coffee” in this case),
the knowledge of the existence and representation
of the other aspects (“cosi sandwiches”) in the
sentence is beneficial. The sentiment of an aspect
in a sentence can influence the succeeding aspects
due to the presence of conjunctions. In particular,
for sentences containing conjunctions like and, not
only, also, but, however, though, etc., aspects tend
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to share their sentiments. In the sentence “Food is
usually very good, though I wonder about fresh-
ness of raw vegetables”, the aspect “raw vegeta-
bles” does not have any trivial sentiment marker
linked to it. However, the positive sentiment of
“food”, due to the word “”good”, and presence of
conjunction “though” determines the sentiment of
“raw vegetables” to be negative. Thus, aspects
when arranged as a sequence, reveal high correla-
tion and interplay of sentiments.

To model these scenarios, firstly, following
Wang et al. (2016), we independently generate
aspect-aware sentence representations for all the
aspects using gated recurrent unit (GRU) (Chung
et al., 2014) and attention mechanism (Luong
et al., 2015). Then, we employ memory net-
works (Sukhbaatar et al., 2015) to repeatedly
match the target aspect representation with the
other aspects to generate more accurate represen-
tation of the target aspect. This refined repre-
sentation is fed to a softmax classifier for final
classification. We empirically show below that
our method outperforms the current state of the
art (Ma et al., 2017) by 1.6% on average in two
distinct domains: restaurant and laptop.

The rest of the paper structured as follows: Sec-
tion 2 discusses previous works; Section 3 delves
into the method we present; Section 4 mentions
the dataset, baselines, and experimental settings;
Section 5 presents and analyzes the results; finally,
Section 6 concludes this paper.

2 Related Works

Sentiment analysis is becoming increasingly im-
portant due to the rise of the need to process
textual data in wikis, micro-blogs, and other so-
cial media platforms. Sentiment analysis requires
solving several related NLP problems, like aspect
extraction (Poria et al., 2016). Aspect based sen-
timent analysis (ABSA) is a key task of sentiment
analysis which focuses on classifying sentiment of
each aspect in the sentences.

In this paper, we focus on ABSA, which is a key
task of sentiment analysis that aims to classify sen-
timent of each aspect individually in a sentence. In
recent days, thanks to the increasing progress of
deep neural network research (Young et al., 2018),
novel frameworks have been proposed, achieving
notable performance improvement in aspect-based
sentiment analysis.

The common way of doing ABSA is feeding the

aspect-aware sentence representation to the neural
network for classification. This was first proposed
by Wang et al. (2016) where they appended as-
pect embeddings with the each word embeddings
of the sentence to generate aspect-aware sentence
representation. This representation was further fed
to an attention layer followed by softmax for final
classification.

More recently, Ma et al. (2017) proposed a
model where both context and aspect representa-
tions interact with each other’s attention mecha-
nism to generate the overall representation. Tay
et al. (2017) proposed word-aspect associations
using circular correlation as an improvement over
Wang et al. (2016)’s work. Also, Li et al. (2018)
used transformer networks for target-oriented sen-
timent classification.

ABSA has also been researched from a
question-answering perspective where deep mem-
ory networks have played a major role (Tang et al.,
2016b; Li et al., 2017). However, unlike our pro-
posed method, none of these methods have tried to
model the inter-aspect relations.

3 Method

In this section, we formalize the task and present
our method.

3.1 Problem Definition
Input We are given a sentence S =
[w1,w2, . . . ,wL], where wi are the words and L
is the maximum number of words in a sentence.
Also, the given aspect-terms for sentence S are
A1,A2, . . . ,AM , where Ai = [wk, . . . ,wk+m−1],
1 ≤ k ≤ L, 0 < m ≤ L − k + 1, and M is the
maximum number of aspects in a sentence.

Output Sentiment polarity (1 for positive, 0 for
negative, and 2 for neutral) for each aspect-term
Ai.

3.2 Model
The primary distinction between our model and
the literature is the consideration of the neighbor-
ing aspects in a sentence with the target aspect.
We assume that our inter-aspect relation modeling
(IARM) architecture1 models the relation between
the target aspect and surrounding aspects, while
filtering out irrelevant information. Fig. 1 depicts
our model.

1Implementation available on http://github.
com/senticnet/IARM

3403



3.2.1 Overview
Our IARM model can be summarized with the fol-
lowing steps:

Input Representation We replace the words
in the input sentences and aspect-terms with
pre-trained Glove word embeddings (Pennington
et al., 2014). For multi-worded aspect-terms, we
take the mean of constituent word embeddings as
aspect representation.

Aspect-Aware Sentence Representation Fol-
lowing Wang et al. (2016), all the words in a sen-
tence are concatenated with the given aspect repre-
sentation. These modified sequence of words are
fed to a gated recurrent unit (GRU)2 for context
propagation, followed by an attention layer to ob-
tain the aspect-aware sentence representation; we
obtain for all the aspects in a sentence.

Inter-Aspect Dependency Modeling We em-
ploy memory network (Sukhbaatar et al., 2015)
to model the dependency of the target aspect
with the other aspects in the sentence. This
is achieved through matching target-aspect-aware
sentence representation with aspect-aware sen-
tence representation of the other aspects. After a
certain number of iterations of the memory net-
work, we obtain a refined representation of the
sentence that is relevant to the sentiment classifi-
cation of the target aspect. Further, this represen-
tation is passed to a softmax layer for final classi-
fication. The following subsections discuss these
steps in details.

3.2.2 Input Representation
The words (wi) in the sentences are represented
with 300 (D) dimensional Glove word embed-
dings (Pennington et al., 2014), resulting sentence
S ∈ R

L×D.
Similarly, aspect terms are represented with

word embeddings. Multi-worded aspect terms are
averaged over the constituent words. This results
aspect representation ai ∈ R

D for ith aspect term.

3.2.3 Aspect-Aware Sentence Representation
It would be fair to assume that not all the words in
a sentence carry sentimental information of a par-
ticular aspect (e.g., stop words have no impact).
This warrants a sentence representation that re-
flects the sentiment of the given aspect. To achieve

2LSTM (Hochreiter and Schmidhuber, 1997) yields simi-
lar performance, but requires training more parameters

this, we first concatenate aspect ai to all the words
in the sentence S:

Sai = [w1 ⊕ ai,w2 ⊕ ai, . . . ,wL ⊕ ai] ∈ R
L×2D.

(1)

In order to propagate the context information
within the sentence, we feed Sai to a Gated Recur-
rent Unit (GRU) with output size Ds (kindly refer
to Table 1 for the value). We denote this GRU as
GRUs. GRU. is described as follows:

z = �(xtU
z
. + st−1W

z
. ), (2)

r = �(xtU
r
. + st−1W

r
. ), (3)

ht = tanh(xtU
h
. + (st−1 ∗ r)W h

. ), (4)
st = (1 − z) ∗ ht + z ∗ st−1, (5)

where ht and st are the hidden outputs and the
cell states respectively at time t. We obtain Rai =
GRUs(Sai), where Rai ∈ R

L×Ds and the GRUs

has the following parameters: U z
s ∈ R

2D×Ds ,
W z

s ∈ R
Ds×Ds , U r

s ∈ R
2D×Ds , W r

s ∈ R
Ds×Ds ,

Uh
s ∈ R

2D×Ds , W h
s ∈ R

Ds×Ds .
To amplify the sentimentally relevant words to

aspect ai, we employ an attention layer to obtain
the aspect-aware sentence representation (it is ef-
fectively a refined aspect representation) rai :

z = RaiWs + bs, (6)
↵ = softmax(z), (7)

rai = ↵T Rai , (8)

where z = [z1, z2, . . . , zL] ∈ R
L×1,

softmax(x) = [ex1�∑j exj , ex2�∑j exj , . . . ],
↵ = [↵1,↵2, . . . ,↵L] ∈ R

L×1, rai ∈ R
Ds ,

Ws ∈ R
Ds×1, and bs is a scalar.

3.2.4 Inter-Aspect Dependency Modeling
We feed R = [ra1 , ra2 , . . . , raM ] ∈ R

M×Ds to a
GRU (GRUa) of size Do (kindly refer to Table 1
for the value) to propagate aspect information
among the aspect-aware sentence representations
and obtain Q = GRUa(R), where Q ∈ R

M×Do

and GRUa has the following parameters: U z
a ∈

R
Ds×Do , W z

a ∈ R
Do×Do , U r

a ∈ R
Ds×Do , W r

a ∈
R

Do×Do , Uh
a ∈ R

Ds×Do , W h
a ∈ R

Do×Do . This par-
tially helps to model the dependency among as-
pects in a sentence.

After this, in order to further inter-aspect de-
pendency modeling, we employ memory net-
works (Sukhbaatar et al., 2015), where the target-
aspect representation (target-aspect-aware senti-
ment representation) rat is supplied as the query.
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rat is transformed into internal query state (q) with
a fully connected layer as

q = tanh(ratWT + bT ), (9)

where q ∈ R
Do , WT ∈ R

Ds×Do , and bT ∈ R
Do .

Input Memory Representation All the aspects
in the sentence are stored in memory. Each aspect
is represented by their corresponding aspect-aware
sentence representation in Q. An attention mecha-
nism is used to read these memories from Q (We-
ston et al., 2014). We compute the match between
the query q and the memory slots in Q with inner
product:

z = qQT , (10)
� = softmax(z), (11)

where z = [z1, z2, . . . , zM ] ∈ R
M×1, � =

[�1,�2, . . . ,�M ] ∈ R
M×1. Here, �i is the measure

of relatedness between target aspect and aspect i
i.e., the attention score.

Output Memory Representation We choose
the output memory vectors (Q′) to be a refined ver-
sion of the input memory vectors (Q), obtained by
applying a GRU of size Do (named GRUm) on Q.
Hence,

Q′ = GRUm(Q), (12)

where GRUm has the following parameters: U z
m ∈

R
Do×Do , W z

m ∈ R
Do×Do , U r

m ∈ R
Do×Do , W r

m ∈
R

Do×Do , Uh
m ∈ R

Do×Do , W h
m ∈ R

Do×Do .
The response vector o is obtained by summing

output vectors in Q′, weighted by the relatedness
measures in �:

o = �T Q′, (13)

where o ∈ R
Do .

Final Classification (Single Hop) In the case of
single hop, target aspect representation q is added
with memory output o to generate refined target
aspect representative. This sum is passed to a soft-
max classifier of size C (C = 3 due to the classes
of sentiment polarity):

P = softmax((q + o)Wsmax + bsmax), (14)
ŷ = argmax

i
(P[i]), (15)

where Wsmax ∈ R
Do×C , bsmax ∈ R

C , and ŷ is the
estimated sentiment polarity (0 for negative, 1 for
positive, and 2 for neutral).

Multiple Hops We use total H (kindly refer
to Table 1 for the value) number of hops in our
model. Each hop generates a finer aspect repre-
sentation q. Hence, we formulate the hops in the
following way:
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• Query (q) at the end of hop ⌧ is updated as

q(⌧+1) = q(⌧) + o. (16)

• Output memory vectors of hop ⌧ , Q′(⌧), is
updated as the input memory vectors of hop
⌧ + 1:

Q(⌧+1) = Q′(⌧). (17)

After H hops, q(H) becomes the target-aspect-
aware sentence representation vector for the final
classification:

P = softmax(q(H+1)Wsmax + bsmax), (18)
ŷ = argmax

i
(P[i]), (19)

where Wsmax ∈ R
Do×C , bsmax ∈ R

C , and ŷ is the
estimated sentiment polarity (0 for negative, 1 for
positive, and 2 for neutral). The whole algorithm
is summarized in Algorithm 1.

3.3 Training
We train the network for 30 epochs using categori-
cal cross entropy with L2-regularizer as loss func-
tion (L):

L = − 1

N

N

�
i=1

C−1
�
k=0

yik logP[k] + � �✓�2 , (20)

where N is the number of samples, i is the sample
index, k is the class value, � is the regularization
weight (we set it to 10−4),

yik =
�������

1, if expected class value of sample i is k,

0, otherwise,
(21)

and ✓ is the set of parameters to be trained, where

✓ = {U z
{s,a,m},W

z
{s,a,m}, U

r
{s,a,m},W

r
{s,a,m},

Uh
{s,a,m},W

h
{s,a,m},Ws, bs,WT , bT ,Wsmax,

bsmax}.

As optimization algorithm, Stochastic Gradient
Descent (SGD)-based ADAM algorithm (Kingma
and Ba, 2014) is used with learning-rate 0.001 due
to its parameter-wise adaptive learning scheme.

Hyper-Parameters We employed grid-search
to obtain the best hyper-parameter values. Table 1
shows the best choice of these values.

Algorithm 1 IARM algorithm

1: procedure TRAINANDTESTMODEL(U , V )
▷ U = train set, V = test set

2: Aspect-aware sentence representation extrac-
tion:

3: for i:[1,M] do▷ generate for all the aspects in
the sentence

4: rai
← AspectAwareSentRep(S, ai)

5: Query generation:
6: q ← FCLayer(rat

) ▷ Transform the
target-aspect-aware sentence representation to the query
of memory network

7: Memory networks:
8: Q← GRUa([ra1 , ra2 , . . . , raM

]) ▷ initial input
memory

9: Q′ ← GRUm(Q) ▷ initial output memory

10: for i:[1,H] do ▷ memory network hops
11: z ← qQT ▷ match with target aspect
12: � ← softmax(z)
13: o← �T Q′ ▷ response vector
14: Q← Q′ ▷ input memory for the next hop
15: q ← q + o ▷ update target-aspect-aware

sentence representation (query)

16: Classification:
17: ŷ = argmax

j
(softmax(q)[j]) ▷ softmax

classification
18: TestModel(V )

19: procedure ASPECTAWARESENTREP(S,a) ▷
generation of aspect-aware sentence representation

20: Ra ← GRUs([w1 ⊕ a,w2 ⊕ a, . . . ,wL ⊕ a]) ▷
S = [w1,w2, . . . ,wL]

21: z ← FCLayer(Ra)
22: ↵← softmax(z)
23: ra ← ↵T Ra

24: return ra

25: procedure TESTMODEL(V )
26: Similar to the training phase, V is passed through

the learnt models to get the classification outputs. Sec-
tion 3.3 mentions the trainable parameters (✓).

4 Experiments

In this section, we discuss the dataset used and dif-
ferent experimental settings devised for the evalu-
ation of our model.

4.1 Dataset Details
We evaluate our model with SemEval-2014 ABSA
dataset3. It contains samples from two different
domains: Restaurant and Laptop. Table 2 shows
the distribution of these samples by class labels.
Also, Table 3 shows the count of the samples with
single aspect sentence and multi-aspect sentence.

3http://alt.qcri.org/semeval2014/task4
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4.2 Baseline Methods
We compare our method against the following
baseline methods:

LSTM Following Wang et al. (2016), the sen-
tence is fed to a long short-term memory (LSTM)
network to propagate context among the con-
stituent words. The mean of all the hidden out-
puts from the LSTM is taken as the sentence rep-
resentation, which is fed to a softmax classifier.
Aspect-terms have no participation in the classifi-
cation process.

TD-LSTM Following Tang et al. (2016a), se-
quence of words preceding (left context) and suc-
ceeding (right context) target aspect term are fed to
two different LSTMs. Mean of the hidden outputs
of the LSTMs are concatenated and fed to softmax
classifier.

AE-LSTM Following Wang et al. (2016), the
sentence is fed to an LSTM for context propaga-
tion. Then, the hidden outputs are concatenated
with target-aspect representation, from which at-
tention scores are calculated. Hidden outputs are
pooled based on the attention scores to generate
intermediate aspect representation. Final repre-
sentation is generated as the sum of the affine
transformations of intermediate representation and
final LSTM hidden output. This representation is
fed to softmax classifier.

ATAE-LSTM Following Wang et al. (2016),
ATAE-LSTM is identical to AE-LSTM, except the
LSTM is fed with the concatenation of aspect-term
representation and word representation.

IAN Following Ma et al. (2017), target-aspect
and its context are sent to two distinct LSTMs and
the means of the hidden outputs are taken as inter-
mediate aspect representation and context repre-
sentation respectively. Attention scores are gen-
erated from the hidden outputs of both LSTMs
which is used to generate final aspect and con-
text representation. The concatenation of these
two vectors are sent to a softmax classifier for final
classification.

Hyper-Parameter Restaurant Laptop
Ds 300 400
Do 350 400

Hop Count 3 10

Table 1: Hyper-parameter choices.

Domain Positive Negative Neutral
Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196
Laptop 987 341 866 128 460 169

Table 2: Distribution of the samples by class labels
in SemEval 2014 dataset.

4.3 Experimental Settings
In order to draw a comprehensive comparison be-
tween our IARM model and the baseline methods,
we performed the following experiments:

Overall Comparison IARM is compared with
the baseline methods for both of the domains.

Single Aspect and Multi Aspect Scenarios In
this setup, samples with single aspect and multi
aspect sentences are tested independently on the
trained model. For IAN, we ran our own experi-
ments for this scenario.

Cross-Domain Evaluation Here, the model
trained for restaurant domain is tested with the test
set for laptop domain and vice versa. For IAN, we
ran our own experiments for this scenario.

5 Results and Discussion

We discuss the results of different experiments be-
low:

Overall Comparison We present the overall
performance of our model against the baseline
methods in Table 4.

It is evident from the results that our IARM
model outperforms all the baseline models, in-
cluding the state of the art, in both of the do-
mains. We obtained bigger improvement in lap-
top domain, of 1.7%, compared to restaurant do-
main, of 1.4%. This shows that the inclusion of the
neighboring aspect information and memory net-
work has an overall positive impact on the classi-
fication process.

Single Aspect and Multi-Aspect Scenarios
Following Table 5, our IARM model beats the

Domain Train Test
SA MA SA MA

Restaurant 1007 2595 285 835
Laptop 917 1396 259 379

Table 3: Distribution of the samples by single
aspect/multi aspect sentence criteria in SemEval
2014 (SA: Single Aspect, MA: Multi Aspect).
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Model Domain
Restaurant Laptop

Majority Voting 53.4 65.0
LSTM 74.3 66.5

TD-LSTM 75.6 68.1
AE-LSTM 76.2 68.9

ATAE-LSTM 77.2 68.7
IAN (SoA) 78.6 72.1

IARM 80.0 73.8

Table 4: Domain-wise accuracy (%) of the dis-
cussed models. Best accuracy for each domain is
marked with bold font.

state of the art in both single aspect and multi-
aspect scenarios in both of the domains. It is in-
teresting that both model perform better in multi-
aspect scenario for restaurant domain. However,
for laptop domain IAN performs better in sin-
gle aspect scenario, even though there are more
multi-aspect samples than single aspect samples
(shown in Table 3). This indicates the failure of
IAN model to learn multi-aspect scenario, where
IARM model performs significantly better.

Model Restaurant Laptop
SA MA SA MA

IAN (SoA) 75.4 77.7 72.5 71.6
IARM 78.6 80.48 73.4 74.1

Table 5: Accuracy of the models for single as-
pect and multi aspect scenario; SA: Single Aspect,
MA: Multi Aspect.

Cross-Domain Evaluation Following Table 6,
IARM outperforms the state of the art IAN by
2% in both cross-domain scenarios. This indicates
the ability of IARM in learning general domain-
independent semantic structures from the training
data.

Model Rest→ Lap Lap→ Rest
IAN (SoA) 64.6 72.0

IARM 66.7 74.0

Table 6: Accuracy for cross-domain evaluation;
Rest: Restaurant domain, Lap: Laptop domain; A
→ B signifies train-set is the train-set of domain A
and test-set is the test-set of domain B.

5.1 Case Study

We analyze and compare IARM and IAN with sin-
gle aspect and multi-aspect samples from the Se-
mEval 2014 dataset.

Single Aspect Case It is evident from Table 5,
that IARM outperforms IAN in single-aspect sce-
nario. For example, the sentence “I recommend
any of their salmon dishes......” having aspect
“salmon dishes”, with positive sentiment, fails to
be correctly classified by IAN as the attention net-
work focuses on the incorrect word “salmon”, as
shown in Fig. 2a. Since, “salmon” does not carry
any sentimental charge, the network generates a
ineffective aspect-aware sentiment representation,
which leads to misclassification.

On the other hand, IARM succeeds in this case,
because the word-level attention network gener-
ates correct attention value as ↵ in Eq. (7). ↵ for
this case is depicted in Fig. 2b, where it is clear
that the network emphasizes the correct sentiment-
bearing word “recommended”. This leads to effec-
tive aspect-aware sentence representation by the
network, making correct final classification.

Multi-Aspect Case IARM also outperforms
IAN in multi-aspect scenario, which can be ob-
served in Table 5. We suspect that the presence of
multiple aspects in sentence makes IAN network
perplexed as to the connection between aspect and
the corresponding sentiment-bearing word in the
sentence. For example, the sentence “Coffee is a
better deal than overpriced cosi sandwiches” con-
tains two aspects: “coffee” and “better”. Clearly,
the sentiment behind aspect “coffee” comes from
the word “better” and the same for aspect “cosi
sandwiches” comes from “overpriced”. However,
IAN fails to make this association for the as-
pect “cosi sandwiches”, evident from the attention
weights of IAN shown in Fig. 3a where the empha-
sis is on “better”. This leads to imperfect aspect-
aware sentence representation generation, result-
ing misclassification of the target aspect to be pos-
itive.

However, IARM resolves this issue with the
combination of word-level aspect aware attention
(↵) and the memory network. Since, the memory
network compares the target-aspect-aware sen-
tence representation with the sentence represen-
tations for the other aspects repeatedly, eventu-
ally the correct representation for the target aspect
emerges from the memory network.

Also, the consideration of surrounding as-
pects forces the network to better distinguish
the sentiment-bearing words for a particular as-
pect. These points are reflected in the ↵ attention
weights of the aspects “coffee” and “cosi sand-
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(a) Attention weight for aspect “salmon dishes” for IAN.

(b) Attention weight for aspect “salmon dishes” for IARM.

Figure 2: Attention weights for IAN and IARM for “I recommend any of their salmon dishes”.

(a) Attention weights for aspect “cosi sandwiches” for IAN.

(b) Attention weights for aspect “cosi sandwiches” for IARM.

(c) Attention weights for aspect “coffee” for IARM.

Figure 3: Attention weights for IAN and IARM for the sentence “Coffee is a better deal than overpriced
cosi sandwiches”.

wiches”, shown in Fig. 3b and Fig. 3c respec-
tively, where the network emphasizes the correct
sentiment-bearing words for each aspect, “better”
and “overpriced”, respectively. Again, the mem-
ory network compares the target aspect-aware sen-
tence representation for “cosi sandwiches” with
the same for “coffee” and incorporates relevant in-
formation into the target-aspect representation q in
Eq. (16) along several hops.

This phenomenon is indicated in Fig. 4a, where
the degree of incorporation of the aspect terms is
measured by the attention weights � in Eq. (11).
Here, the network is incorporating information
from aspect “coffee” into aspect “cosi sandwiches”
over three hops. We surmise that this information
is related to the sentiment-bearing word “better”
of the aspect “coffee”, because a comparison using
the word “better” implies the presence of a good
(“coffee”) and a bad (“cosi sandwiches”) object.
However, this semantics is misconstrued by IAN,
which leads to aspect misclassification.

IARM performs considerably well when con-
junction plays a vital role in understanding the
sentence structure and meaning for sentiment
analysis. For example, “my favs here are the tacos
pastor and the tostada de tinga” where the aspects

“tacos pastor” and “tostada de tinga” are con-
nected using conjunction “and” and both rely on
the sentiment bearing word favs. Such complex
relation between the aspects and the correspond-
ing sentiment-bearing word is grasped by IARM
as shown in Fig. 4b. Another example where the
inter-aspect relation is necessary for the correct
classification is shown in Fig. 5, where the aspects
“atmosphere” and “service” both rely on the sen-
timent bearing word “good”, due to the conjunc-
tion “and”.

(a) Memory network atten-
tion weights for the sen-
tence “Coffee is a better deal
than overpriced cosi sand-
wiches.”.

(b) Memory network atten-
tion weights for the sentence
“my favs here are the tacos
pastor and the tostada de
tinga.”.

Figure 4: Memory network attention weights for
IARM.
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Figure 5: Memory network attention weights for
IARM for the sentence “service was good and
so was the atmosphere.” The word importance
heatmap is for the aspect “atmosphere”.

Figure 6: Hop-Accuracy plot for both domains.

5.2 Error Analysis

IARM also fails to correctly classify in some
cases, e.g., in the sentence “They bring a sauce
cart up to your table and offer you 7 or 8 choices
of sauces for your steak (I tried them ALL).”, the
aspect “choices of sauces” is misclassified by our
network as neutral. This happened due to the
IARM’s inability to correctly interpret the positive
sentiment behind “7 or 8 choices of sauces” .

Again, the IARM could not correctly classify
aspect the “breads” to be positive in the sentence
“Try the homemade breads.”. This happened, be-
cause the word “try” itself is not sentimentally
charged, but can carry sentimental meaning given
the right context. This context was not recognized
by IARM, which led to misclassification.

5.3 Hop-Performance Relation
In our experiments, we tried different hop counts
of the memory network. We observed that the net-
work performs best with three hops for restaurant
domain and ten hops for laptop domain, which is
shown in the hop count - performance plot in Fig-
ure Fig. 6. It can be observed that the plot for
restaurant domain is smoother than the plot for
laptop domain. We assume that this is due to the
restaurant domain having higher number of sam-
ples than laptop domain, as shown in Table 2.

Also, the plot for restaurant domain shows a
downward trend over the increasing number of
hops, with spikes in hop 3, hop 10. This sug-
gests a irregular cyclic nature of the memory net-
work where those certain hop counts yields higher
quality representations than their neighbor. The
same cannot be said for laptop domain as the plot
presents a zig-zag pattern.

6 Conclusion

In this paper, we presented a new framework,
termed IARM, for aspect-based sentiment analy-
sis. IARM leverages recurrent memory networks
with multihop attention mechanism. We empiri-
cally illustrate that an aspect in a sentence is influ-
enced by its neighboring aspects. We exploit this
property to obtain state-of-the-art performance in
aspect-based sentiment analysis in two distinct do-
mains: restaurant and laptop. However, there
remains plenty of room for improvement in the
memory network, e.g., for generation of better
aspect-aware representations.
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Abstract

We propose Limbic, an unsupervised proba-
bilistic model that addresses the problem of
discovering aspects and sentiments and asso-
ciating them with authors of opinionated texts.
Limbic combines three ideas, incorporating
authors, discourse relations, and word embed-
dings. For discourse relations, Limbic adopts
a generative process regularized by a Markov
Random Field. To promote words with high
semantic similarity into the same topic, Lim-
bic captures semantic regularities from word
embeddings via a generalized Pólya Urn pro-
cess. We demonstrate that Limbic (1) dis-
covers aspects associated with sentiments with
high lexical diversity; (2) outperforms state-
of-the-art models by a substantial margin in
topic cohesion and sentiment classification.

1 Introduction

How can we understand opinionated texts, e.g., so-
cial media postings, expressing sentiments about
various entities? Three phenomena are key. First,
even for similar entities, authors may differ both
on aspects and sentiments about those aspects.
For example, when reviewing a hotel, Alice may
consider aspects such as Concierge and Room,
whereas Bob may consider aspects such as Nearby
and Room. Capturing similarities and differences
among authors can help produce recommenda-
tions for services that are better aligned with a
user’s expectations (Wang et al., 2013). Second,
reviews exhibit discourse structure, i.e., relations
between propositions, which carries valuable in-
formation about sentiment. Third, crucial relation-
ships between rare words are lost because each re-
view may be short and use distinct rare words.

Probabilistic topic models (Hofmann, 1999;
Blei et al., 2003) provide an unsupervised means
to learn latent constructs from texts. Author-
specific topic discovery associates texts with their

authors (Rosen-Zvi et al., 2004; Kim et al., 2012;
Diao and Jiang, 2013) but ignores sentiments.
Sentiment analysis methods jointly model aspects
and sentiments but exclude either authors (Lazari-
dou et al., 2013), discourse relations (Mukherjee
et al., 2014; Poddar et al., 2017), or both (Jo and
Oh, 2011; Lin et al., 2012; Kim et al., 2013).

Word co-occurrence sparsity plagues existing
approaches, which model documents as distribu-
tions over latent topics and estimate them from
word co-occurrence. Since word frequency fol-
lows a power law, most words are rare and rep-
resentative words of a topic rarely co-occur, es-
pecially in short opinionated texts, despite seman-
tic proximity. For example, a reviewer would not
use both spotless and immaculate to express a pos-
itive sentiment toward the cleanliness of a hotel
room. Losing information about word relatedness
impedes learning effectiveness, producing topics
that are not semantically cohesive.

We contribute Limbic, an unsupervised prob-
abilistic model for discovering author-based as-
pects and sentiments from opinionated texts that
incorporates discourse-level topic modeling and
semantic cohesion. (1) It associates authors and
sentiment-aspect pairs by generating a mixture
over sentiments and aspects for each author. (2) It
captures discourse relations by applying a Markov
Random Field over Sentiment Expression Units
(SEUs), i.e., text elements describing sentiment-
aspect pairs. (3) It promotes words with high
semantic similarity into the same topic by incor-
porating semantic regularities from word embed-
dings using a generalized Pólya Urn process.

We empirically compare Limbic with state-of-
the-art models using datasets from two domains.
Qualitatively, Limbic discovers aspect-sentiment
pairs with higher lexical diversity. Quantitatively,
Limbic obtains substantial improvements in topic
cohesion and sentiment classification.
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2 Model and Inference in Limbic

We now introduce our proposed model.

2.1 Sentiment Expression Unit (SEU)

Existing topic models represent documents as
bags of words or as sentences. Bag-of-words mod-
els, e.g., LDA (Blei et al., 2003), AT (Rosen-
Zvi et al., 2004), JST (Lin et al., 2012), JAST
(Mukherjee et al., 2014), and AATS (Poddar et al.,
2017), rely on word co-occurrence at the docu-
ment level, which is problematic when applied to
opinionated texts. Sentence-based models, e.g.,
ASUM (Jo and Oh, 2011), assume that words ap-
pearing in a sentence belong to the same aspect
and sentiment, which often fails to hold in real
text. For instance, the TripAdvisor review sen-
tence Service was good and friendly, location is
good and my room was spacious but oldish, ex-
hibits three aspects, Service, Location, and Room,
and two sentiments. Zhang and Singh’s (2014)
segmentation algorithm leverages transition cues
to convert sentences into segments. Although tran-
sition cues are good indicators for capturing senti-
ment change, their algorithm disregards syntactic
information in sentences, which also helps reveal
changes of aspects and sentiments.

ROOT

Service was

good and friendly

location is

good

and my room was

spacious

but oldish
NNP VBD

JJ CC JJ JJ

NN VBD CC NN VBDPRP

JJ

CC JJ

SEU1 SEU2 SEU3 SEU4

Figure 1: Generate SEUs from a sentence.

We propose a concept of sentiment expression
unit (SEU). Each SEU contains either a sentiment,
or an aspect, or both. We extract SEUs by incor-
porating both discourse and syntactic information.
We first split sentences in reviews into snippets
based on contradiction transition cues, such as but.
Then we apply a grammar parser on each snip-
pet. We extract phrases from snippets by using two
syntactic patterns commonly observed in opinion-
ated texts including (1) existential (EX) with verb
(VB) and adjective (JJ) and (2) noun (NN) with
verb (VB) and adjective (JJ). If a phrase matches
a pattern, we identify it as an SEU. Otherwise, the

phrase joins its following phrases iteratively un-
til the combination matches a pattern. Figure 1
demonstrates the process of generating SEUs from
the above hotel review sentence.

2.2 Discourse Relation

Markov Random Field (MRF) is a probabilistic
framework to model statistical dependencies be-
tween variables. Limbic applies an MRF to cap-
ture the discourse relations between SEUs. Given
a document containing N SEUs, let ai and si be
the aspect and sentiment assignments of SEUi,
respectively. Limbic creates an undirected edge
hsi, sji between the sentiment assignments of this
SEU and its preceding SEU. Let r be the discourse
relation between SEUs, Limbic imposes a binary
potential on the edge.

Limbic focuses on two discourse relations fre-
quently observed in opinionated texts: Compari-
son and Expansion. Comparison highlights promi-
nent differences between two SEUs and often
signals a change of sentiment regardless of the
change of aspect. For example, in SEU1: {The
location was great} and SEU2: {but it was just too
noisy}, we see that but indicates a sentiment dif-
ference. Other transition cues for Comparison in-
clude however, in contrast, and such.

Expansion extends the discourse and indicates
a continuation of sentiment across SEUs. For ex-
ample, in SEU3: {There are no safes here which
is unfortunate} and SEU4: {And speaking of un-
fortunate, the breakfast is hardly impressive}, we
see that and and unfortunate indicate the negative
sentiment in SEU3 continues toward aspect Break-
fast in SEU4. Other transition cues for Expansion
include also, moreover, and such.

Formally, Rr,i,j asserts discourse relation r be-
tween SEUi and SEUj . For Comparison, Rc,i,j

holds if si 6= sj , SEUj contains Comparison cues,
and (1) SEUj contains syntactic patterns described
in Section 2.1 and ai 6= aj or (2) SEUj contains
incomplete syntactic patterns and ai = aj .

For Expansion, Re,i,j holds if si = sj , SEUj

contains Expansion cues, and (1) SEUj contains
syntactic patterns and ai = aj or (2) SEUj con-
tains incomplete syntactic patterns and ai 6= aj .

Given document d, the joint probability of its
sentiment assignments is:
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p(s|✓d) =
Y

i

p(si|✓d)

exp{�
RX

r=1

(I(Rr,i�1,i))},
(1)

where R is the number of discourse relation types;
✓d is the sentiment distribution of d; I is an iden-
tity function that returns 1 if its argument is true;
� controls reinforcing the effects of discourse re-
lations.

Take the expansion relation, for example. Dur-
ing the sampling process, Equation 1 generates a
large value if two SEUs share an expansion rela-
tion and have the same sentiments and yields a
small value if the two SEUs have different senti-
ments. Therefore, SEUs in an expansion relation
have a high probability to be associated with the
same sentiment.

2.3 Generative Process
Figure 2 shows Limbic’s model. With Dir(·) and
Mul(·) as Dirichlet and multinomial distributions,
hyperparameter ↵ is the Dirichlet prior of the word
distribution �, � is the Dirichlet prior of the senti-
ment distribution ✓, and � is the Dirichlet prior of
the aspect distribution  . Given a set of reviews
D written by a set of authors U with regards to
a set of aspects T and a set of sentiments S, the
generative process in Limbic is as follows.

S

n

   

           N2

   

           N1

   

           N D

✓ �

t

a

w1

…

U
S

 

�

T
�

↵

s1 s2 sn

w2 … wn

Markov Random Field

G

Figure 2: Generative process of Limbic.

First, for each pair of aspect t and sentiment s,

draw a word distribution �t,s ⇠ Dir(↵). Second,
for each author a and each sentiment s, draw an
aspect distribution  s,a ⇠ Dir(�). Third, given
a review d written by a, draw a sentiment distri-
bution ✓d ⇠ Dir(�), and for each SEU in d, (a)
choose a sentiment s using Equation 1; (b) given
s, choose an aspect t ⇠ Mul( s,a); (c) given t and
s, sample word w ⇠ Mul(�t,s).

2.4 Model Inference
Limbic estimates p(s, t|w, a), the posterior distri-
bution of latent variables, sentiments s and aspects
t, given all words used in reviews written by au-
thor a. We factor the joint probability of the as-
signments of sentiments, aspects, and words for a:

p(s, t,w|a,↵,�,�)

= p(w|s, t,↵)p(t|s, a,�)p(s|�).
(2)

By integrating over � = {�i}S⇥T
i=1 , we calculate

the first term of Equation 2 as follows.

p(w|s,t,↵)=

Z
p(w|s,t,�)p(�|↵)d�

=

 
�(
PW

w=1↵w)
QW

w=1�(↵w)

!S⇥T

⇥
SY

s=1

TY

t=1

QW
w=1�(nw

s,t+↵w)

�
⇥PW

w=1(n
w
s,t+↵w)

⇤,

(3)

where W is the size of the vocabulary; nw
s,t

equals the number of occurrences of the word w
that are assigned to sentiment s and aspect t; and
�(·) is the Gamma function.

Next, by integrating over  a = { i}S
i=1, we

calculate the second term in Equation 2 as follows.

p(t|s,�,a)=

Z
p(t|s, a,a)p( a|�)d a

=

 
�(
PT

t=1�t)QT
t=1�(�t)

!S

⇥
SY

s=1

QT
t=1�(nt

s,a+�t)

�
⇥PT

t=1(n
t
s,a+�t)

⇤ ,
(4)

where nt
s,a equals the number of SEUs in author

a’s reviews associated with sentiment s and aspect
t.

Similarly, for the third term in Equation 2, by
integrating over ⇥ = {✓i}D

i=1, we obtain

p(s|�)=

Z
p(s|⇥)p(⇥|�)d⇥

=

 
�(
PS

s=1�s)QS
s=1�(�s)

!D

⇥
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d+�s)

�
⇥PS

s=1(n
s
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⇤

⇥
LY

l=1

exp{�
RX

r=1

(I(Rr,i�1,i))},

(5)
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where D is the number of reviews; ns
d is the

number of times that an SEU from review d is as-
sociated with sentiment s; and nd is the number of
SEUs in review d; L is the number of SEUs.

We obtain the conditional probability for a via
Gibbs sampling (Liu, 1994)

p(si = s, ti = t|s�i, t�i, w, a)

/
nt

s,a,�i + �t
PT

t=1(n
t
s,a,�i + �t)

⇥
ns

d,�i + �s
PS

s=1(n
s
d,�i + �s)

⇥
Q

v

QCi
v�1

c=0 (nv
t,s,�i + ↵v + c)

QCi�1
c=0 (nt,s,�i +

PW
w=1 ↵w + c)

⇥ exp{�
RX

r=1

(I(Rr,i�1,i))}

(6)

where nt
s,a, as in Equation 4, is the number of

SEUs associated with sentiment s and aspect t
from reviews written by author a; ns

d is the number
of SEUs from review d associated with sentiment
s; Ci is the number of words in SEUi; Ci

v is the
number of words v in SEUi; nv

t,s is the number
of words v assigned sentiment s and aspect t; nt,s

is the number of words assigned sentiment s and
aspect t in all reviews; an index of �i means we
exclude SEUi from the count; R, I , and R are as
in Equation 1.

Equations 7, 8, and 9, respectively, approximate
the probabilities of word w occurring given senti-
ment s and aspect t; of aspect t of an SEU occur-
ring given sentiment s and author a; of sentiment
s occurring given document d.

�s,t,w =
nw

s,t + ↵w
PW

w=1(n
w
s,t + ↵w)

. (7)

 s,t,a =
nt

s,a + �t
PT

t=1(n
t
s,a + �t)

. (8)

✓d,s =
ns

d + �sPS
s=1(n

s
d + �s)

. (9)

Incorporating Word Embeddings. Word em-
bedding approaches (Mikolov et al., 2013; Pen-
nington et al., 2014) leverage local contextual in-
formation surrounding words to map the words
into continuous vector representations. Word em-
beddings are known to effectively capture seman-
tic and syntactic regularities among words. Based
on word embeddings trained using Word2Vec on

a hotel review dataset, we observe that the gen-
erated word embeddings correctly link opinion-
ated words that are semantically correlated even
though they do not co-occur frequently. For ex-
ample, the three closest words of spotless are im-
maculate, clean, and well appointed.

A Generalized Pólya Urn Process. To promote
words with high semantic similarity into the same
topic, Limbic incorporates semantic regularities
from word embeddings using a generalized Pólya
Urn process (Mimno et al., 2011). Start with an
urn containing colored balls. At each time step,
randomly choose a ball from the urn, observe its
color, and return it to the urn with one replicated
ball of the same color. A Pólya Urn model de-
scribes a random sampling process with reinforce-
ment. In a generalized Pólya Urn process, given
a sampled ball with a color, we put back that ball
along with a certain number of balls of similar col-
ors. When applied to document generation, balls
of different colors represent distinct words. The
similarity of colors represents semantic similarity
of the words.

Given words v and w in vocabulary W , we com-
pute their semantic similarity sim(v, w) based on
the cosine similarity between their word embed-
dings. For word v, we create its similarity word
set Sv by adding all words w 2 W for which
sim(v, w) is higher than a predefined threshold ✏.
During sampling, if word v is drawn, we reinforce
w 2 Sv via a predefined weight ⇢ which controls
the reinforcement of semantically similar words.

Sentiment Alignment. Widely used Word em-
bedding approaches, such as Word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014),
and fastText (Bojanowski et al., 2017), are se-
mantically oriented and do not explicitly en-
code sentiment information in the generated word-
vector representations. Hence, semantically re-
lated words with opposite polarity may have close
vectors. For example, smell and aroma are syn-
onyms but smell often expresses a negative senti-
ment toward aspect Cleanliness whereas aroma is
often positive. Simply promoting all words may
adversely affect the generated topics. Therefore,
we calculate the sentiment alignment of each word
in a vocabulary based on its average cosine simi-
larity to the words in a general sentiment word list.
In the sampling process, we promote words only if
their sentiments align with sampled sentiments.

3415



3 Evaluation

To assess Limbic’s effectiveness, we prepare on-
line review datasets from two domains. Trip-
User is a collection of hotel reviews from Trip-
Advisor. It contains 28,165 reviews posted by
202 randomly selected reviewers, each of whom
contributes at least 100 hotel reviews. YelpUser
is a set of restaurant reviews from Yelp Dataset
Challenge (2017). It contains 23,873 restaurant
reviews posted by 144 users, each of whom con-
tributes at least 100 reviews. Table 1 reports statis-
tics on the datasets.

Table 1: Summary of the evaluation datasets.

Statistic TripUser YelpUser

Number of reviews 28,165 23,873
Number of SEUs 484,805 359,191
Average SEUs / review 17 15
Average words / SEU 7 6

We remove stop words and HTML tags, expand
typical abbreviations, and mark special named
entities using a rule-based algorithm (e.g., re-
place a monetary amount by #MONEY#) and
the Stanford Named Entity Recognizer (Finkel
et al., 2005). To handle negation, we employ
the Stanford Dependency Parser to detect nega-
tions. For any word in a negation relation, we
add the negated term as a prefix of the word, e.g.,
not work. Finally, we split each review into SEUs.
Datasets and source code are publicly available for
research purposes (Limbic, 2018).

3.1 Parameter Settings
Limbic includes three hand-tuned hyperparame-
ters that influence its sampling via a smoothing ef-
fect on the associated multinomial distribution. It
uses a short list of sentiment words shown in Ta-
ble 2 as prior knowledge to set asymmetric priors.

Consider hyperparameter ↵, the Dirichlet prior
of the word distribution. For any word in the pos-
itive list, ↵ = 0 if the word appears in an SEU
assigned a negative sentiment, and ↵ = 5 if the
word appears in an SEU assigned a positive sen-
timent, and conversely for words in the negative
list. For all remaining words, we set ↵ = 0.05.
And, hyperparameter � = 5 for both sentiments
is the Dirichlet prior of the sentiment distribution.
Using T as the number of aspects, hyperparame-
ter � = 50

T is the Dirichlet prior of the aspect dis-

Table 2: Sentiment words used as prior knowledge.

Positive

good, nice, excellent, positive, fortunate, correct, free, love
attractive, awesome, perfect, comfortable, enjoy, amazing
fun, glad, great, happy, impressive, superior, thank, best
satisfied, worth, not bad, recommend, fantastic, favorite

Negative

bad, nasty, poor, negative, unfortunate, wrong, inferior
slow, junk, mess, not good, not like, not recommend
unacceptable, upset, waste, small, worthless, problem
complain, terrible, trouble, regret, annoying, not worth
sorry, disappointed, worst, hate

tribution. We set the number of sentiments, S, to
two (positive and negative), although our approach
generalizes to additional sentiment categories.

For each fold in cross validation, we pretrain
two sets of Word2Vec (Mikolov et al., 2013) word
embeddings with 300 dimensions and a window
size of five using the training split in TripUser
(hotels) and YelpUser (restaurants). We exclude
words with frequency lower than three. We set the
reinforcement weight ⇢ to 0.3 and 0.1 for hotel and
restaurant reviews, respectively, and set the simi-
larity threshold ✏ to 0.6. For all models, we per-
form 1,000 Gibbs iterations with a burn-in phase
of 200 and a sampling gap of 50 iterations.

3.2 Sentiment Aspect Discovery

Our first experiment shows how Limbic discovers
sentiment-aspect pairs. We apply Limbic and all
baseline models (AT, JST, ASUM, and AATS) to
TripUser and YelpUser with the number of aspects
set to 30. We manually assign an aspect for each
cluster of words. ASUM generates the best results
among baseline models. For brevity, we show only
some aspects identified by Limbic and ASUM.

Table 3 (top) shows the results on hotel reviews.
We see that Limbic discovers word clusters with
higher lexical diversity than ASUM. For example,
for aspect Decoration, in addition to words, decor,
modern and design, Limbic discovers words con-
temporary, minimalist, chic, and so on. For as-
pect Service, comparing with ASUM, Limbic ex-
tracts an expanded list of sentiment words includ-
ing competent, knowledgeable, and so on.

Limbic discovers finer and more distinctive
word clusters than ASUM. For example, for aspect
Cleanliness, ASUM generates a word cluster that
includes negative sentiment words toward multi-
ple entities, such as carpet and hallway. Limbic
generates two distinctive word clusters for aspect
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Table 3: Top words discovered from hotel (top section) and restaurant (bottom section) reviews.

Decoration Service Cleanliness Environment

ASUM Limbic ASUM Limbic ASUM Limbic Limbic Limbic

room contemporary staff staff carpet smell carpet beautiful
modern decor friendly friendly smell room wallpaper setting
furniture colour helpful helpful stain cigarette old peaceful

decor tasteful desk attentive bathroom smoke furniture relaxing
wood room front courteous room floor paint golf
lobby marble english hostess dirty odor need lush
design chic professional professional furniture elevator stain gorgeous
wall lobby efficient gracious wall reek worn environment
color modern service accommodating hallway odour carpeting countryside
look elegant reception welcoming paint smelt bedspread atmosphere
style artwork attentive desk smoke smoking remodel ground

bathroom stone polite knowledgeable worn hallway update course
dark stylish speak competent clean stair room place

ceiling minimalist courteous front old non-smoking look quiet
decorate design pleasant service tile lift bathroom surroundings

Service Decoration Portion Mexican Seafood

ASUM Limbic ASUM Limbic ASUM Limbic Limbic Limbic

friendly friendly decor decor portion portion asada crab
server service atmosphere atmosphere size size carne lobster
staff attentive place sleek small half taco scallop

service staff modern interior large large tostada shrimp
attentive helpful feel vibe plate huge burrito roll
helpful efficient restaurant ambiance huge serving bean risotto

nice server cool clean price big refried salmon
waitress prompt inside modern big could corn mussel
owner consistently clean ambience share salad guacamole calamari

bartender nice vibe cozy #MONEY# eat cabbage bisque
waiter professional nice contemporary enough plate torta tuna
greet host like place half share pinto jumbo

manager great interior comfortable generous bowl guac clam
hostess quick space stylish bowl sandwich jalapeno ahi
table knowledgeable look inside inch generous flour tempura

Cleanliness. One cluster contains words, such as
smoke and reek, which describe bad odor in room
and hallway. The other cluster contains words
such as, worn and stain, describes negative senti-
ments toward carpets. By capturing word semantic
relatedness, Limbic discovers highly diverse as-
pects, including those that arise rarely in reviews,
such as peaceful, relaxing, and lush, as positive
words describing aspect Environment.

Limbic yields promising results for restaurant
reviews. In Table 3 (bottom), we see that Limbic
yields more specific sentiment words than ASUM.
Aspect Service in Limbic contains additional pos-
itive words, efficient, prompt, knowledgeable, and
so on. For aspect Decoration, Limbic produces
sleek, ambiance, and so on. By incorporating con-
straints from discourse relations, Limbic yields as-
pects that are more sentiment coherent. For exam-
ple, we see that positive aspect Portion in ASUM
contains the negative word small whereas words in
aspect Portion in Limbic are all positive.

We observe that restaurants associate more

complex aspects than hotels—presumably, be-
cause of the large variety of cuisines and thus, on
average, smaller data relevant to a cuisine. Titov
and McDonald’s (2008b) Multi-Grain LDA (MG-
LDA) model performs well for hotel reviews but
discovers only few ratable aspects from restaurant
reviews, which they ascribe to the relatively small
occurrences of words describing aspects for spe-
cific cuisines (e.g., Italian) and general categories
(e.g., Meat), compared with the words describing
major aspects, such as Service. In contrast, Limbic
discovers words describing specific cuisines, such
as Mexican and Seafood.

3.3 Quantitative Evaluation
Whether topics (word clusters) are semantically
cohesive is an important factor in assessing topic
modeling approaches. Normalized Pointwise Mu-
tual Information (NPMI) (Lau et al., 2014) has
strong correlation with human-judged topic coher-
ence ratings and is widely used for accessing topic
modeling approaches (Nguyen et al., 2015a,b;
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Table 4: Topic coherence: Hotel reviews.

NPMI T=10 T=20 T=30 T=40 T=50 T=60

AT 3.64 4.04 4.37 4.49 4.86 5.14
AATS 5.63 9.08 10.41 10.78 11.05 11.00
JST 8.99 10.78 11.45 11.54 11.56 11.46
ASUM 9.48 10.64 11.02 11.33 11.39 11.56
Limbic 16.04† 17.16† 17.75† 17.65† 17.16† 16.60†

W2V T=10 T=20 T=30 T=40 T=50 T=60

AT 0.10 0.10 0.10 0.09 0.09 0.09
AATS 0.13 0.16 0.18 0.18 0.18 0.18
JST 0.15 0.18 0.18 0.19 0.19 0.19
ASUM 0.17 0.18 0.18 0.18 0.18 0.18
Limbic 0.35† 0.37† 0.38† 0.37† 0.35† 0.34†

Table 5: Topic coherence: Restaurant reviews.

NPMI T=10 T=20 T=30 T=40 T=50 T=60

AT 5.64 5.21 5.30 5.65 6.54 7.94
AATS 6.05 8.02 9.03 9.35 9.90 9.95
JST 9.46 11.13 11.73 11.92 12.14 12.31
ASUM 8.81 9.7 9.92 10.09 10.07 10.04
Limbic 11.72† 13.41† 13.77† 13.06† 12.08 11.30

W2V T=10 T=20 T=30 T=40 T=50 T=60

AT 0.16 0.15 0.14 0.13 0.13 0.14
AATS 0.11 0.14 0.16 0.17 0.18 0.18
JST 0.21 0.21 0.20 0.20 0.20 0.19
ASUM 0.20 0.19 0.18 0.18 0.17 0.17
Limbic 0.28† 0.29† 0.27† 0.25† 0.25† 0.25†

Yang et al., 2017). More recently, O’Callaghan
et al. (2015) propose a topic coherence measure,
W2V, based on word embeddings. For complete-
ness, we adopt both metrics. Topics with higher
scores of NPMI and W2V are semantically more
coherent. We compare Limbic with four baselines:
AT, JST, ASUM, and AATS, using both TripUser
and YelpUser based on the top 15 words in each
sentiment-aspect pair. For each number of aspects,
we perform five-fold cross-validation. We perform
the two-tailed exact permutation test (Good, 2005)
on the improvement of Limbic over the best per-
forming baseline. (Throughout, ⇤ and † indicate
significance at 0.05 and 0.001, respectively.)

Table 4 shows average NPMI and W2V scores
of each model on hotel reviews for different num-
bers of aspects. We observe that Limbic statisti-
cally outperforms the other models for both met-
rics in all settings. Limbic yields substantial im-
provements, with average gains over the second
best models of 6.00 and 0.18 in NPMI and W2V,
respectively, which validates that the incorpora-
tion of semantic regularities helps Limbic promote
semantically equivalent and related words into the
same aspect-sentiment pair. Of the baseline mod-
els, AT yields the lowest topic coherence. AATS
outperforms AT but does not perform well when

the number of aspects is small, possibly due to
the undesirable mixture of words with different
aspects, topics, and sentiments in individual sen-
tences. ASUM, and JST yield comparable results
that are consistently better than AATS. Table 5
shows similar conclusions for restaurant reviews.

3.4 Sentiment Classification

We now evaluate Limbic for document-level sen-
timent classification vis à vis JST, ASUM, and
AATS. For comparison purposes, we add a super-
vised baseline, BiLSTM, using the bidirectional
LSTM model (Schuster and Paliwal, 1997). Bi-
LSTM uses 100 as hidden state size and 0.2 as
both the recurrent dropout rate and the dropout
rate in the last layer. For training, we run 20
epochs with a minibatch size of 1,000. We use
two datasets, TripUser and YelpUser. To collect
ground-truth labels, we use integer ratings (three
and above as positive and rest as negative). Note
that our review datasets are imbalanced. Our re-
sults are based on five-fold cross-validation (80%
of each author’s reviews for training and 20%
for testing) with the two-tailed exact permuta-
tion test. As our principal evaluation metrics,
we adopt accuracy; the receiver operating char-
acteristic (ROC) curve; and area under the curve
(AUC). ROC and AUC are standard metrics used
for evaluating classifiers on data with class imbal-
ance (Bradley, 1997; Hoens and Chawla, 2013).

Tables 6 and 7 report accuracy and AUC on ho-
tel and restaurant reviews. AATS yields high accu-
racy but low AUC due to a strong bias toward the
majority class. Compared with AATS, JST yields
higher AUC for both datasets but lower accuracy
for TripUser. ASUM outperforms JST, indicating
that sentences are more effective as units of senti-
ment analysis than bags of words. Limbic signifi-
cantly outperforms ASUM in all settings. For ho-
tel reviews, Limbic attains average gains of 4.0%
and 2.3% in accuracy and AUC, respectively. For
restaurant reviews, Limbic yields average gains of
5.1% and 3.0% in accuracy and AUC, respectively.
In Figure 3 and 4, we compare the ROC curves of
Limbic with baselines. The ROC curves show how
the true positive rate (TPR) (vertical axis) varies
with the false positive rate (FPR) (horizontal axis)
by moving the decision boundary. We see that
for all FPRs, Limbic yields the highest TPRs. Its
ROC curves dominate other models’ curves. The
results demonstrate that, among all models, Lim-
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Table 6: Accuracy and AUC of sentiment classification on hotel reviews.

T=10 T=20 T=30 T=40 T=50 T=60

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

BiLSTM 0.907 0.820 0.907 0.820 0.907 0.820 0.907 0.820 0.907 0.820 0.907 0.820

AATS 0.729 0.485 0.794 0.454 0.809 0.443 0.824 0.475 0.835 0.468 0.839 0.482
JST 0.601 0.813 0.609 0.818 0.634 0.826 0.641 0.830 0.654 0.835 0.665 0.836
ASUM 0.793 0.828 0.804 0.832 0.819 0.829 0.835 0.838 0.850 0.835 0.872 0.829
Limbic 0.838† 0.849* 0.859† 0.853* 0.868† 0.857* 0.870† 0.859* 0.885† 0.858* 0.890 0.858*

Table 7: Accuracy and AUC of sentiment classification on restaurant reviews.

T=10 T=20 T=30 T=40 T=50 T=60

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

BiLSTM 0.876 0.841 0.876 0.841 0.876 0.841 0.876 0.841 0.876 0.841 0.876 0.841

AATS 0.763 0.500 0.789 0.472 0.785 0.474 0.804 0.477 0.813 0.499 0.816 0.492
JST 0.579 0.708 0.589 0.713 0.595 0.724 0.606 0.731 0.629 0.727 0.642 0.733
ASUM 0.773 0.775 0.799 0.778 0.811 0.778 0.836 0.775 0.859 0.752 0.867 0.744
Limbic 0.872† 0.797* 0.873† 0.803† 0.874† 0.795† 0.876† 0.795† 0.877† 0.798‡ 0.876† 0.794†

bic achieves the best tradeoff between positive and
negative sentiment classes.

3.5 Model Analysis
To understand the contributions of incorporating
authors, discourse relations, and word embed-
dings, we evaluate variants of Limbic for SEU-
level sentiment classification on two datasets:
tSEU and tSEU(D). We create tSEU by randomly
selecting 200 hotel reviews by seven authors. We
manually annotate the sentiments of each SEU,
obtaining 2,692 SEUs. We create tSEU(D) by se-
lecting reviews in tSEU containing at least one
Comparison or Expansion. We define three vari-
ants of Limbic (L): LA with just authors, no dis-
course relations or word embeddings; LAD with
authors and discourse relations but no word em-
beddings; LAW with authors and word embeddings
but no discourse relations. Table 8 compares Lim-
bic with LA LAD, and LAW. We observe that
for both datasets, incorporating discourse relations
improves accuracy. By incorporating word em-
beddings, LAW yields better accuracy than LAD,
showing that word embeddings add more value to
Limbic than discourse relations do.

Table 8 (lower part) reports p-values (two-tailed
test using a �2 distribution) from McNemar’s Test
on pairwise comparisons (Alpaydin, 2010, p. 501).
We see that Limbic is significantly different from
each variant, including LA (omitted for space).

3.6 Related Work
Sentiment and aspect discovery are often based
on Latent Dirichlet Allocation (LDA) (Blei et al.,

Table 8: SEU sentiment classification accuracy.

Accuracy LA LAD LAW L

tSEU 0.702 0.723 0.733 0.750
tSEU(D) 0.692 0.715 0.716 0.735

p value LAD:LA LAW:LA LAD:LAW L:LAD L:LAW

tSEU 0.015 0.003 0.331 0.005 0.002
tSEU(D) 0.017 0.042 0.934 0.055 0.003

2003). LDA represents a document (for us, a re-
view) as a mixture of topics, each topic being a
multinomial distribution over words. The learn-
ing process approximates the topic and word dis-
tributions based on their co-occurrence in docu-
ments. Titov and McDonald’s (2008b) model han-
dles global and local topics involved in documents,
and their (2008a) framework discovers topics us-
ing aspect ratings provided by reviewers. JST (Lin
et al., 2012) and ASUM (Jo and Oh, 2011) model a
review via multinomial distributions of topics and
sentiments and use them to condition the proba-
bility of generating words. Kim et al. (2013) ex-
tend ASUM by allowing its probabilistic model to
discover a hierarchical structure of aspect-based
sentiments. Lazaridou et al. (2013) introduce dis-
course transitions into the document generating
process as aspect and sentiment shifters. Although
the above models produce good results, they omit
author information, which is an intrinsic attribute
of opinionated texts.

Rosen-Zvi et al.’s Author Topic model (AT)
(2004) captures authorship by building a topic dis-
tribution for each author. When generating a word
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Figure 3: ROC curves comparing the performance of three models on hotel reviews.

T=20 T=40 T=60

Figure 4: ROC curves comparing the performance of three models on restaurant reviews.

in a document, AT conditions the probability of the
topic assignment on the author of the document.
Kim et al.’s (2012) topic model captures entities
mentioned in documents and models the probabil-
ity of generating a word as conditioned on both
entity and topic. Diao and Jiang’s (2013) jointly
model topics, events, and users on Twitter. Al-
though these models capture the author associated
with a text, they do not handle sentiments.

Mukherjee et al.’s (2014) JAST model jointly
considers authors, sentiments, topics, and ratings.
JAST does not consider discourse relations and
word semantic similarity in its generative process.
Poddar et al. (2017) propose a model that jointly
considers author, aspect, sentiment, and the non-
repetitive generation of aspect sequences. The
model uses a Bernoulli process to capture the non-
repetitive nature of aspect sequences. This mecha-
nism does not consider discourse relations or syn-
tactic information.

4 Conclusion and Discussion

Limbic provides an unsupervised method to dis-
cover aspects and sentiments from opinionated

texts. By incorporating authors as a factor, Limbic
allows for reviews written by the same or similar
authors to exhibit an idiosyncratic preference to-
ward certain aspects and sentiments. It assigns as-
pects of SEUs by sampling author-specific aspect
distributions. This makes the model more suitable
for opinionated texts in which aspects and sen-
timents are tightly bound to authors who follow
their specific criteria and preferences when writ-
ing reviews. By incorporating a Markov Random
Field and word embeddings into its sampling pro-
cess, Limbic imposes constraints associated with
discourse relations, effectively captures word se-
mantic relatedness, and generates word clusters
with high topic cohesion and lexical diversity. In
future work, we plan to extend Limbic to capture
long-distance discourse relations and the influence
decay of discourse relations between SEUs as their
distance increases.
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Pádraig Cunningham. 2015. An analysis of the co-
herence of descriptors in topic modeling. Expert
Systems with Applications, 42(13):5645–5657.

3421



Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the
19th Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543,
Doha.

Lahari Poddar, Wynne Hsu, and Mong-Li Lee. 2017.
Author-aware aspect topic sentiment model to re-
trieve supporting opinions from reviews. In Pro-
ceedings of the 22nd Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 472–481, Copenhagen.

Michal Rosen-Zvi, Thomas L. Griffiths, Mark
Steyvers, and Padhraic Smyth. 2004. The author-
topic model for authors and documents. In Pro-
ceedings of the 20th Conference in Uncertainty in
Artificial Intelligence (UAI), pages 487–494, Banff,
Canada.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681.

Ivan Titov and Ryan T. McDonald. 2008a. A joint
model of text and aspect ratings for sentiment sum-
marization. In Proceedings of the 46th Annual
Meeting on Association for Computational Linguis-
tics (ACL), pages 308–316, Columbus, Ohio.

Ivan Titov and Ryan T. McDonald. 2008b. Modeling
online reviews with multi-grain topic models. In
Proceedings of the 17th International Conference on
World Wide Web (WWW), pages 308–316, Beijing.

Feng Wang, Weike Pan, and Li Chen. 2013. Rec-
ommendation for new users with partial preferences
by integrating product reviews with static specifica-
tions. In Proceedings of the 21st International Con-
ference on User Modeling, Adaptation, and Person-
alization (UMAP), pages 281–288, Rome.

Weiwei Yang, Jordan L. Boyd-Graber, and Philip
Resnik. 2017. Adapting topic models using lexical
associations with tree priors. In Proceedings of the
22nd Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1901–1906,
Copenhagen.

Yelp. 2017. Yelp dataset challenge. https:
//www.yelp.com/dataset challenge/. Accessed:
05/20/2018.

Zhe Zhang and Munindar P. Singh. 2014. ReNew: A
semi-supervised framework for generating domain-
specific lexicons and sentiment analysis. In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
542–551, Baltimore.

3422



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3423–3432
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

An Interpretable Neural Network with Topical Information for Relevant
Emotion Ranking

Yang Yang† Deyu Zhou⇤† Yulan He§

†School of Computer Science and Engineering, Key Laboratory of Computer Network
and Information Integration, Ministry of Education, Southeast University, China

§Department of Computer Science, University of Warwick, UK
{yyang, d.zhou}@seu.edu.cn, y.he@cantab.net

Abstract
Text might express or evoke multiple emotion-
s with varying intensities. As such, it is cru-
cial to predict and rank multiple relevant emo-
tions by their intensities. Moreover, as emo-
tions might be evoked by hidden topics, it is
important to unveil and incorporate such top-
ical information to understand how the emo-
tions are evoked. We proposed a novel inter-
pretable neural network approach for relevan-
t emotion ranking. Specifically, motivated by
transfer learning, the neural network is initial-
ized to make the hidden layer approximate the
behavior of topic models. Moreover, a nov-
el error function is defined to optimize the w-
hole neural network for relevant emotion rank-
ing. Experimental results on three real-world
corpora show that the proposed approach per-
forms remarkably better than the state-of-the-
art emotion detection approaches and multi-
label learning methods. Moreover, the extract-
ed emotion-associated topic words indeed rep-
resent emotion-evoking events and are in line
with our common-sense knowledge.

1 Introduction
With the growth of social web, people tend to
share their opinions, feelings and attitudes on the
social platforms such as online news sites and
blogs. Emotion detection can enhance the under-
standing of users’ emotional states, which is useful
in many downstream applications such as human-
computer interaction and personalized recommen-
dation. Therefore, it is crucial to predict emotions
from texts accurately (Picard and Picard, 1997).

Research on emotion detection can be rough-
ly categorized into two types: generative model
based and discriminative model based. Genera-
tive model based approaches (Bao et al., 2012;
Rao et al., 2014a) usually build on topic model-
s and assume texts are generated from emotions
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and hidden topics. While these models can extract
emotion-associated topics, they perform less sat-
isfactorily in emotion classification since they are
not optimized directly to minimize the misclassifi-
cation rate. Discriminative model based approach-
es consider each emotion category as a class la-
bel and typically cast emotion detection as a clas-
sification problem. Approaches to the prediction
of both multiple emotions and their intensities in-
clude (Zhou et al., 2018, 2016; Wang and Pal,
2015). Those approaches usually assumed word-
level representations and ignored the latent topical
information behind words, therefore failed to ef-
fectively distinguish different emotions carried by
the same word in different topical contexts.

In this paper, we focus on relevant emotion
ranking (RER) by differentiating relevant emo-
tions from irrelevant ones and only learning the
rankings of relevant emotions while ignoring the
irrelevant ones. A neural network with a novel
loss function is proposed to tackle the RER prob-
lem. A topic representing a real-world event, an
abstract entity, or an object could indicate the sub-
ject or context of the emotion. Different topics
might contain or invoke different emotions (Stoy-
anov and Cardie, 2008). Incorporating such latent
topics is essential for discovering topic-associated
emotions. Motivated by transfer learning, we in-
corporate hidden topics and the topic distributions
generated from a topic model into a neural net-
work for RER. The main contributions of the pa-
per are summarized below:

• A novel Interpretable Neural Network for
Relevant Emotion Ranking (INN-RER) is
proposed. A novel error function is employed
to optimize the whole network for parameter
estimation. To the best of our knowledge, it
is the first neural network based approach for
RER.
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• To understand how the emotions are evoked,
the neural network is initialized to make it-
s hidden layer approximate the behavior of
topic models so that the topical information
is unveiled and incorporated.

• Experimental results on three different real-
world corpora show that the proposed method
can effectively deal with the emotion de-
tection problem and perform better than the
state-of-the-art emotion detection methods
and multi-label learning methods. Moreover,
emotion-association topic words extracted by
INN-RER indeed represent emotion-evoking
events.

2 Related Work

In general, approaches for emotion detection can
be divided into two categories: generative mod-
el based and discriminative model based. Genera-
tive model based approaches typically built on top-
ic models. For example, the emotion-topic mod-
el (Bao et al., 2012) was proposed by adding an
extra emotion layer into traditional topic model-
s to capture the generation of both emotions and
topics from text at the same time. Other top-
ic model based approaches such as affective top-
ic model (Rao et al., 2014a), multi-label super-
vised topic model and sentiment latent topic mod-
el (Rao et al., 2014b) also modeled the emotions
and topics simultaneously. Contextual sentiment
topic model (Rao, 2016) assumed each word is ei-
ther drawn from a background theme, a contextual
theme or a topic and explicitly distinguished be-
tween context-dependent and context-independent
topics.

For discriminative model based methods, emo-
tion detection is often casted as a classification
problem by considering each emotion category as
a class label. If only choosing the strongest emo-
tion as the label for a given text, emotion detection
is essentially a single-label classification problem.
Lin et al. (2008) studied the classification of news
articles into different categories based on readers’
emotions with various combinations of feature set-
s. Strapparava and Mihalcea (2008) proposed sev-
eral knowledge-based and corpus-based methods
for emotion classification. Quan et al. (2015) pro-
posed a logistic regression model with emotion de-
pendency for emotion detection. Latent variables
were introduced to model the latent structure of
input text. Li et al. (2016) combined bi-term topic

model and conventional neural network to detect
single social emotion from short texts. To predict
multiple emotions simultaneously, emotion detec-
tion can be solved using multi-label classification.
Bhowmick (2009) presented a method for classi-
fying news sentences into multiple emotion cate-
gories using an ensemble based multi-label clas-
sification technique. Wang and Pal (2015) out-
put multiple emotions with intensities using non-
negative matrix factorization with several novel
constraints such as topic correlation and emotion
bindings. To predict multiple emotions with dif-
ferent intensities in a single sentence, Zhou et al.
(2016) proposed a novel approach based on emo-
tion distribution learning. Following this way, a
relevant label ranking framework for emotion de-
tection was proposed for predict multiple relevant
emotions as well as the ranking of emotions based
on their intensities (Zhou et al., 2018).

Our work is partly inspired by (Zhou et al.,
2018) for relevant emotion ranking, but with the
following differences: (1) our model takes into
account latent topics in texts for emotion detec-
tion, which was ignored in the model proposed
in (Zhou et al., 2018); (2) our model is built up-
on topic models and neural networks with a nov-
el objective function defined to consider the inter-
play between topics and emotions, while the mod-
el in (Zhou et al., 2018) was developed based on a
ranking framework with a linear objective function
which was not able to describe complex relations
between the input texts and their emotions.

3 The Proposed Approach

Assuming a set of T emotions L =
{e1, e2, ...eT } and a set of n text instances
X = {x1, x2, x3, ..., xn}, each instance xi 2 R

d

is associated with a ranked list of its relevant emo-
tions Ri ✓ L and also a list of irrelevant emotions
Ri = L � Ri. Relevant emotion ranking aims to
learn a score function g(xi) = [g1(xi), ..., gT (xi)]
which assigns a score gj(xi) to each emotion
ej , (j 2 {1, ..., T}). In order to differentiate
relevant emotions from irrelevant ones, we need
to define a threshold ⇥ which could be simply set
to a fixed value or learned from data (Fürnkranz
et al., 2008). Those emotions with scores lower
than the threshold will be considered as irrelevant
and hence discarded. The identification of rele-
vant emotions and their ranking can be obtained
simultaneously according to their scores assigned
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by the learned ranking function g. As mentioned
before, it is unnecessary to consider the rankings
of irrelevant emotions since they might introduce
errors into the model during the learning process.

We propose an Interpretable Neural Network
for Relevant Emotion Ranking (INN-RER) built
upon a multi-layer feed-forward neural network.
Instead of using the simple sum-of-squares error
function, a novel loss function is designed and em-
ployed. Accordingly, a new learning algorithm is
proposed to minimize the new loss function. Fur-
thermore, motivated by transfer learning, topical
information generated from a topic model is trans-
ferred into the neural network by making its hid-
den layer approximate the behavior of topic mod-
els.
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Figure 1: The overall framework of Interpretable Neu-
ral Network for Relevant Emotion Ranking (INN-
RER).

The overall framework of INN-RER is shown
in Figure 1. The left part is a typical topic mod-
el (Blei et al., 2003). It is designed for discover-
ing the main topics that pervade a large unstruc-
tured collection of documents. A document is al-
lowed to contain a mixture of topics with differ-
ent weights. As such, a document d can be rep-
resented by its topic distribution ✓d. The right
part is a three-layer neural network. It has d in-
put units corresponding to the d-dimensional fea-
ture vector of each training sample xi, T output
units corresponding to all possible emotion labels,
and one hidden layer with P hidden units corre-
sponding to the hidden topics. The input layer is
fully connected to the hidden layer with weights
V = [vqh](1  q  d, 1  h  P ) and the hidden
layer is fully connected to the output layer with
weights W = [whj ](1  h  P, 1  j  T ). The

bias parameters ↵h(1  h  P ) of the hidden u-
nits are considered as weights from an extra input
unit with a fixed value of 1. Similarly, the bias pa-
rameters �j(1  j  T ) of the output units are
considered as weights from an extra hidden unit,
with a fixed value of 1.

The learning process of INN-RER consists of
two main steps. Firstly, the first two layers
of the network are initialized based on the out-
put of the topic model. The feature transfor-
mation in neural network is conducted by mini-
mizing the Kullback-Leibler (KL) divergence be-
tween the topic distribution ✓ produced by the
topic model and the approximated distribution
[Topic1, T opic2, ..., T opicP ] learned by the first
two layers of the neural network, which is denoted
by the blue rectangular dash line boxes in Figure 1.
Then, the whole network is learnt and fine-tuned
based on the novel loss function, which is denoted
as the orange rectangular dash line boxes. Each
step will be described in details in the following
subsections.

3.1 INN-RER Initialization

As the number of hidden neurons and its seman-
tic meaning is usually treated as a black box in
conventional neural networks, the generated top-
ics from the topic model are employed for guid-
ing the construction of the hidden layer in the
proposed neural network. By doing that, seman-
tic topic information is incorporated to enhance
the interpretability and accuracy of the proposed
neural network. For a particular text sample xi

in training set G, the input layer takes its term-
frequency representation xq

i as the input and feeds
it to the hidden layer. Assuming the total num-
ber of topics is fixed as P , then the hidden layer
would contain P neurons. The topic mixture ✓xi

generated from the topic model is approximated
by the weights connecting the input and the hid-
den layers. Mathematically, the initialization pro-
cedure learns a function f(xq

i |vqh, ↵h) so that the
output of f(xq

i |vqh, ↵h) is as close to ✓xi as pos-
sible, where xq

i , vqh, ↵h and ✓xi denote the input,
weight vector, bias of the first two layers of the
network and the topic distribution of text xi gen-
erated from the topic model, respectively. A soft-
max function is applied to the output of the hid-
den layer, i.e., f(xq

i |vqh, ↵h), and the Kullback-
Leibler divergence (Leahy, 2006) is employed as
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follows:

L(✓, f) = ✓ log
✓

f
+ (1� ✓) log

1� ✓

1� f
(1)

where ✓ denotes a topic distribution derived
from the topic model, and f denotes the output
of the hidden layer. The KL divergence is a mea-
sure of the difference between two distributions.
It is always non-negative and equals to zero when
the two distributions are the same. As shown in
Equation 1, the KL divergence can describe the
difference between the topic distribution generat-
ed from topic models and the approximate dis-
tributions learned in the initialization procedure.
Note that the topic distribution for a documen-
t generated by the topic model is used as the su-
pervision information for initializing INN-RER.
Thus, maximizing the log-likelihood is equivalent
to minimizing the KL divergence according to E-
quation 1, and its gradients are as follows:

@L(✓, f)

@vqh
= �(✓xi,h � fh(xq

i |vqh, ↵h)) · xq
i (2)

@L(✓, f)

@↵h
= �(✓xi,h � fh(xq

i |vqh, ↵h)) (3)

According to the gradient descent method, the
first two layers can be initialized iteratively by E-
quation 2 and 3. The initialization procedure for
INN-RER is shown in Algorithm 1. ⌘init with the
subscript init represents the learning rate during
the initialization procedure and � is the penalty
term. Note that the first two layer should be learn-
t from topic model as much as possible in order
to incorporate topic information, thus the learning
rate term ⌘init should be larger than the learning
rate during training procedure.

3.2 INN-RER Learning
This step aims to optimize the three-layer neu-
ral network to tackle the relevant emotion ranking
problem. It can adjust the neural network initial-
ized at previous step at the same time. An intu-
itive way is to define the global error function for
the network on the training set. However, some
important characteristics of relevant emotion rank-
ing, such as ranking, not considering irrelevant e-
motions, are not considered in the classical back
propagation algorithm (Rumelhart et al., 1988).

Algorithm 1 Algorithm of INN-RER Initializa-
tion.
Input: xq

i : Term frequency of text xi; ✓xi : Topic
distribution of text xi

Output:�v, �↵: gradient approximation of ini-
tialization procedure

1: Initialize �v, �↵ as random values
2: for each iteration do
3: for each text xi 2 G do
4: for q = 1, ..., d, h = 1, ..., P do
5: �vqh  �vqh + ⌘init · (✓xi,h �

fh(xq
i |vqh, ↵h)) · xq

i + � · �vqh

6: end for
7: for h = 1, ..., P do
8: �↵h  �↵h + ⌘init · (✓xi,h �

fh(xq
i |vqh, ↵h)) + � · �↵h

9: end for
10: end for
11: end for

The error function defined in traditional neural
network such as mean-square error only focuses
on individual label discrimination, i.e. whether a
predicted label is correct or not. It does not con-
sider the correlations between different labels of
a training instance, e.g., relevant emotions should
be ranked higher than irrelevant ones and there is
a ranking for relevant emotions according to their
intensities. Therefore, to fulfil the requirements
of relevant emotion ranking, a novel global error
function is defined as follows:

E =
nX

i=1

X

et2Ri

X

es2�(et)

1

normt,s

[ exp(�(gt(xi)� gs(xi)))+

!ts(gt(xi)� gs(xi))
2 ]

(4)

Here, emotion et and emotion es are two emo-
tion labels and es is less relevant than emotion
et, represented by es 2� (et). The normaliza-
tion term normt,s is used to balance emotion pairs
(et, es) to avoid dominated terms by their set sizes.
The term gt(xi) � gs(xi) measures the difference
between two emotion outputs, et and es, of a giv-
en input text xi. We want the difference as larger
as possible. Furthermore, the negation of this dif-
ference is fed to the exponential function in order
to severely penalize the i-th error term if emotion
et is much smaller than es. As the relationship-
s among different emotions can provide important
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clues for emotion detection, we further incorpo-
rate the information into the loss function as con-
straints. Here, !ts is the relationship between e-
motion et and es which is calculated by Pearson
correlation coefficient (Nicewander, 1988).

The minimization of the global relevant emo-
tion ranking loss function defined in Equation 4
is carried out by gradient descent combined with
the back propagation (Rumelhart et al., 1988). For
training instance xi and its label set Li, the actu-
al output of the j-th output neuron is(omitting the
superscript i without loss of generality):

gj = f(netgj + �j) (5)

where �j is the bias of the j-th output neuron
which is a ”tanh” function:

netgj is the input to the j-th output neuron:

netgj =
PX

h=1

bhwhj (6)

where whj is the weight which connects the h-th
hidden neuron and the j-th output neuron, and P
is the number of hidden neurons, i.e., the topics.
bh is the output of the h-th hidden neuron:

bh = f(netbh + ↵h) (7)

where ↵h is the bias of the h-th hidden neuron, f()
is also a “tanh” function. netbh is the input to the
h-th hidden neuron:

netbh =
dX

q=1

xqvqh (8)

where xq is the q-th dimension of instance x. vqh

is the weight which connects the q-th input neuron
and the h-th hidden neuron.

“tanh” function is differentiable, the error of the
j-th output neuron can be defined as:

dj =
8
>>>>>>>>><

>>>>>>>>>:

⇥
1

normexp(�(gj � gs)) + 2!js(gj � gs)
⇤

(1 + gj)(1� gj), ifej 2 Ri&es 2� (ej)⇥
� 1

normexp(�(gt � gj))� 2!tj(gt � gj)
⇤

(1 + gj)(1� gj),

if(ej 2 Ri&ej 2� (et))or

(ej 2 Ri&ej 2� (et))

(9)

Similarly, the error of the h-th hidden neuron
can be defined as:

eh =

0

@
TX

j=1

gjwhj

1

A (1 + bh)(1� bh) (10)

In order to reduce the error of the neural net-
work INN-RER, we can use gradient descent s-
trategy:

�whj = �⌘
@Ei

@whj
= �⌘

@Ei

@netgj

@netgj

@whj

= ⌘dj

"
@[

PP
h=1 bhwhj ]

@whj

#
= ⌘djbh

(11)

�vqh = �⌘
@Ei

@vqh
= �⌘

@Ei

@netbh

@netbh

@vqh

= ⌘eh

"
@[

Pd
q=1 xqvqh]

@vqh

#
= ⌘ehxq

(12)

the biases are updated as follows:

��j = ⌘dj ; �↵h = ⌘eh (13)

where ⌘ is the learning rate.
The training process of the neural network is p-

resented in Algorithm 2.

Algorithm 2 Algorithm of INN-RER Learning.
Input: xq

i : Term frequency of text xi; �v, �↵:
Parameters after initialization; L: emotion labels
Output: A predictable neural network INN-
RER.

1: Initialize INN-RER network parameters from
Algorithm 1

2: for each iteration do
3: for each text xi 2 G do
4: Forward compute output of INN-RER’s

score function g given xi.
5: Backward compute the gradient accord-

ing to g and L based on the relevant e-
motion ranking loss function with learn-
ing rate of ⌘learn and penalty term �.

6: end for
7: end for

4 Experiments

We evaluate the proposed approach on the follow-
ing three corpora:
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Sina Social News (News) was collected from the
Sina news Society channel where readers can
choose one of the six emotions such as Amusemen-
t, Touching, Anger, Sadness, Curiosity, and Shock
after reading a news article. As Sina is one of the
largest online news sites in China, it is sensible to
carry out experiments to explore the readers’ emo-
tion (social emotion). News articles with less than
20 votes were discarded since few votes can not
be considered as proper representation of social
emotion. In total, 5,586 news articles published
from January 2014 to July 2016 were kept, togeth-
er with the readers’ emotion votes.
Ren-CECps corpus (Blogs) (Quan and Ren,
2010) contains 1,487 blogs in Chinese. Each
document is annotated with eight basic emotions
from writer’s perspective, including anger, anxi-
ety, expect, hate, joy, love, sorrow and surprise,
together with their emotion scores indicating the
level of emotion intensity in the range of [0, 1].
Higher scores represent higher emotion intensity.
SemEval (Strapparava and Mihalcea, 2007) is an
English data set containing 1,250 news headlines
extracted from Google news, CNN, and many
other portals. The news headlines are typically
short. Each headline was manually scored in a
fine-grained valence scale of 0 to 100 across 6
emotions (i.e., anger, disgust, fear, joy, sad and
surprise). After pruning 4 items with the total s-
cores equal to 0, 1246 headlines are got for the
experiments.

News Blogs SemEval
Category #Votes Category #Scores Category #Scores
Touching 694,006 Joy 349.2 anger 12042
Shock 572,651 Hate 174.2 disgust 7634
Amusement 869,464 Love 610.6 fear 20306
Sadness 837,431 Sorrow 408.4 joy 23613
Curiosity 212,559 Anxiety 422.6 sad 24039
Anger 1,109,315 Surprise 59.2 surprise 21495

Anger 116.4
Expect 385.5

All 4,295,426 All 2526.1 All 109,129

Table 1: Statistics for the three corpora used in our ex-
periments.

The statistics of the three corpora are shown in
Table 1. The first two corpora were preprocessed
by using the python jieba segmenter1 for word seg-
mentation and filtering. The third corpus SemEval
is in English and can be tokenized by white spaces.
Stop words and words appeared only once or in

1https://github.com/fxsjy/jieba

less than two documents were removed to allevi-
ate data sparsity. Next, TF-IDF (term frequency-
inverse document frequency) was used to extract
the features from text. TF-IDF is a numerical s-
tatistic method that is designed to reflect how im-
portant a word is to a document in a corpus. In
our experiments, we set the dimension of each text
representation to 2,000 according to the ranking of
the TF-IDF weights with each dimension of term-
frequency(TF) features. After that, the text rep-
resentations are fed into the proposed INN-RER
method.

⌘init, ⌘learn, �, the number of iterations and the
number of topics are set to 0.9, 0.1, 0.001, 100
and 60 respectively. The parameters were cho-
sen by 10-fold cross-validation. The topic distri-
bution used in INN-RER are derived in different
ways. For long text such as News and Blogs, La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
is employed for generating topic distributions. For
short texts in Semeval, bi-term topic model (BT-
M) (Cheng et al., 2014) was used, since short text
typically contains a few words which results in s-
parse word co-occurrence patterns. BTM is a vari-
ant of LDA which effectively infers the latent topic
distribution of short text by modeling the genera-
tion of bi-terms in the whole corpus and it allevi-
ates the problem of sparsity at the document level.
For each method, 10-fold cross validation is con-
ducted using the same feature construction method
to get the final performance.

Evaluation metrics typically used in multi-label
learning and label ranking are employed which are
different from those of classical single-label learn-
ing systems (Sebastiani, 2001). The detailed ex-
planation of evaluation metrics are presented in
Table 2. Note that metrics from PRO Loss to
F1exam work by evaluating performance on each
test example separately and returning the mean
value across test set. MicroF1 and MacroF1 work
by evaluating performance on each emotion cat-
egory separately and returning the macro/micro-
averaged value across all emotion categories.

4.1 Experimental Results

There are several approaches addressing multiple
emotions detection from texts. Three generative
model based baselines and three discriminative
model based baselines are chosen.

• Emotion Distribution Learning
(EDL) (Zhou et al., 2016) learns a mapping
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Corpus Category Method
Criteria

PL(#) HL(#) RL(#) OE(#) AP(") Cov(#) F1(") MiF1(") MaF1(")

News

Generative
MSTM 0.3343 0.4065 0.3097 0.2123 0.6677 3.3202 0.5666 0.5853 0.5044

SLTM 0.3205 0.3639 0.2753 0.2008 0.7326 2.9863 0.6095 0.6429 0.4899

ATM 0.3192 0.3743 0.2507 0.1947 0.7490 2.9369 0.6127 0.6412 0.4885

Discriminative
EDL 0.2348 0.2510 0.1616 0.2243 0.8372 2.1940 0.6260 0.6454 0.5703

EmoDetect 0.2157 0.2575 0.1538 0.1627 0.8605 2.1761 0.6697 0.6739 0.5359

RER 0.2142 0.2498 0.1491 0.1513 0.8633 2.1989 0.6820 0.6919 0.6198

Our model
INN-RER(-t) 0.1998 0.2420 0.1393 0.1456 0.8715 2.1377 0.7116 0.7137 0.6242

INN-RER 0.1973 0.2312 0.1353 0.1331 0.8764 2.1339 0.7108 0.7161 0.6282

Blogs

Generative
MSTM 0.3567 0.4171 0.3030 0.4761 0.6046 3.7005 0.5236 0.4978 0.4758

SLTM 0.3148 0.3769 0.2397 0.4598 0.6547 3.2513 0.5757 0.5865 0.5283

ATM 0.3493 0.3890 0.2885 0.4385 0.6278 3.4278 0.5105 0.5260 0.5026

Discriminative
EDL 0.3385 0.3916 0.2550 0.4206 0.6962 4.2491 0.5060 0.5396 0.4131

EmoDetect 0.3115 0.3848 0.2123 0.2880 0.7617 4.1650 0.5340 0.5492 0.4387

RER 0.3007 0.3657 0.2043 0.2728 0.7746 4.1638 0.5957 0.6084 0.5342

Our model
INN-RER(-t) 0.2868 0.3268 0.1993 0.2695 0.7751 3.9653 0.6132 0.6165 0.5069

INN-RER 0.2829 0.3209 0.1924 0.2626 0.7784 3.6418 0.6187 0.6225 0.5133

SemEval

Generative
MSTM 0.3524 0.3835 0.2796 0.3698 0.7653 3.1986 0.6902 0.7133 0.5854

SLTM 0.3155 0.3253 0.2370 0.3150 0.8052 2.9589 0.7016 0.7278 0.5889

ATM 0.3138 0.3276 0.2389 0.3767 0.8302 2.8976 0.7039 0.7292 0.5244

Discriminative
EDL 0.4130 0.4291 0.3401 0.3875 0.7345 3.3433 0.4002 0.4136 0.3813

EmoDetect 0.3176 0.3167 0.2411 0.2308 0.8241 3.0439 0.6275 0.6245 0.5385

RER 0.2907 0.3128 0.2389 0.2220 0.8302 2.9963 0.6839 0.6898 0.6283

Our model
INN-RER(-t) 0.3213 0.3026 0.2331 0.2388 0.8364 2.8773 0.7019 0.7118 0.5973

INN-RER 0.3194 0.3005 0.2302 0.2261 0.8379 2.8632 0.7081 0.7156 0.6093

Table 3: Experimental results of the proposed approach and the baselines. ’PL’ represent Pro Loss, ’HL’ represents
Hamming Loss, ’RL’ represents ranking loss, ’OE’ represents one error, ’AP’ represent average precision, ’Cov’
represent coverage, ’F1’ represents F1exam, MiF1’ represents MicroF1, ’MaF1’ represents MacroF1. “#” indi-
cates “the smaller the better”, while “"” indicates “the larger the better”. The best performance on each evaluation
measure is highlighted by boldface.

Name Definition
PRO Loss 1

n

Pn
i=1

P
et2Ri[{⇥}

P
es2�(et)

1
normt,s

lt,s

lt,s is a modified 0-1 error;normt,sis the set size of label pair(et, es)

Hamming Loss 1
nT

Pn
i=1 |R̂i4Ri| The predicted relevant emotions: R̂i.

Ranking Loss 1
n

Pn
i=1(

P
(et,es)2Ri⇥Ri

�[gt(xi) < gs(xi)])/(|Ri|⇥ |Ri|)
where � is the indicator function.

One Error 1
n

Pn
i=1 �[argmax

et

gt(xi) /2 Ri]

Average Precision 1
n

Pn
i=1

1
|Ri|⇥

(
P

t:et2Ri

|{es 2 Ri|gs(xi) > gt(xi)}|)/(|{es|gs(xi) > gt(xi)}|)

Coverage 1
n

Pn
i=1 maxt:et2Ri |{es|gs(xi) > gt(xi)}|

F1exam
1
n

Pn
i=1 2|Ri \ R̂i|/(|Ri| + |R̂i|)

MicroF1 F1(
TP

t=1
TPt,

TP
t=1

FPt,
TP

t=1
TNt,

TP
t=1

FNt)

MacroF1 1
T

TP
t=1

F1(TPt, FPt, TNt, FNt)

Table 2: Evaluation criteria for the Multi-Label Learn-
ing (MLL) methods. TPt, FPt, TNt, FNt represent
the number of true positive, false positive, true nega-
tive, and false negative test examples with respect to
emotion t respectively. F1(TPt, FPt, TNt, FNt) rep-
resent specific binary classification metric F1 (Man-
ning et al., 2008).

function from texts to their emotion distri-
butions based on label distribution learning.

• EmoDetect (Wang and Pal, 2015) outputs the
emotion distribution based on a dimension-
ality reduction method using non-negative
matrix factorization which combines sever-
al constraints such as emotions bindings and
topic correlations.

• RER (Zhou et al., 2018) predicts multiple e-
motions and their rankings from text based on
relevant emotion ranking using support vec-
tor machines.

• Multi-label supervised topic model (MST-
M) and Sentiment latent topic model (SLT-
M) (Rao et al., 2014b): As the variants of
supervised topic models, MSTM and SLTM
connect latent topics with evoked emotions of
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Touching Anger Amusement
Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2

Õ<(save) "ì(teacher) é‰(ru�an) ãÇ(sin) IÂ(men and women) !˛(network)
Ï!(take care of) "£(hard) r1(force) v¶<(suspect) U,(hotel) ÄÀ(drunkenness)
""(sacrifice) ·Y(fall into water) h!(obscenity) ‰-(imprisonment) —÷(service) u!"(procuratorate)
£"(cure) cî(youth) Â÷(girl) ã<(beat) Ï°(photo) ä{(illegal)
)!(life) æú(state of an illness) ‡#(murder) $ã(hit) #¥(call the police) v±(penalty)
P<(older) j±(persist) E§(cause) Û/(construction site) Å"(authenticate) N$(investigate)
a$(grateful) +Ø(public) "—§(police station) %¥(tra�c police) ¿¢(defraud) ä5(get out of line)
ö"(hospital) ê¡(tra�c accident) äY(commit a crime) Êñ(interview) !‰(internet) y7(cash)
aƒ(moved) aƒ(touching) k"(death) Õ1(exposure) l¥(divorce) ¥((police o�cer)

Sadness Curiosity Shock
Topic 1 Topic 2 Topic 1 Topic 2 Topic 1 Topic 2

îl(disappear) ê¡(car accident) ['(parents) iõ(monitoring) s (rob) Ë%(kitchen knife)
ÿ3(misfortune) &‹(thief) •I(China) OÂ(women) ôN(corpse) Œf(neck)
%&(pass away) ˙S(public security) ¥”(marriage) S!(spring festival) ;:(emergency) $w(sever illness)
‡#(murder) å*(watch) Ëx(health) ö"(hospital) y|(scene) /c(subway§
ãÇ(crime) Å"(identify) Âf(women) ~)(pregnancy) S&(security) #™(news)
;&(su↵er) 'k(apologize) cî(young) @˛(morning) £"(cure) æ,(unexpectedly)
˙S¤(Public Security Bureau) -ƒ(excite) (¥(marry up) sÕ(rescue) )!(life) ’1(bank)
—Ø(have an accident) â{(enforce the law) I5(men) ')(in vain) u$(examine) %Ä(compensate)
xN(media) "—§(police station) y7(money) UÅ(like) [·(family member) û§(consume)

1

Figure 2: The top topic words under each emotion category from the News corpus.

texts. MSTM first generates a set of topics
from words, and then samples emotions from
each topic. SLTM generates topics directly
from emotions.

• Affective topic model (ATM) (Rao et al.,
2014a) employs the exponential distribution
to generate ratings for each emotion.

We also evaluated INN-RER with random ini-
tialization instead of the proposed initialization
procedure, which is denoted as INN-RER(-t).

Experimental results on the three corpora are
summarized in Table 3. It can be observed from
the table that: (1) INN-RER outperforms the base-
lines on almost all evaluation metrics across all
the data sets; (2) INN-RER achieves better per-
formance on almost all the evaluation metrics
than INN-RER(-t), which further verifies the ef-
fectiveness of incorporating the topic information;
(3) Both INN-RER and INN-RER(-t) perform re-
markably better than RER which is based on lin-
ear models. It verifies the effectiveness of using
the neural networks for RER task, which are able
to learn dynamic and complex functions.

4.2 INN-RER Interpretation

In addition to comparing the performance of the
proposed model with several baselines, we al-
so present the experimental results from the per-
spective of result interpretation to fully under-
stand INN-RER. The topic words of each emo-
tion in three corpora are extracted according to
the ranking of weights learned by INN-RER, i.e.,
the probabilities of topics conditioned on emotions
(weights between the hidden layer and the output

Joy Anger Sad Disgust Fear Surprise
home kill flu sex kill sue
heart attack cancer immigr danger korea
game violenc terror scandal iran blast
youtub terror danger porn dead north
movie stop health charg state fight
friend fire kill insist fear war
sleep blast flood women terror nuclear
miss death crash held global shoot
award condemn end girl attack protest

1

Figure 3: The top topic words under each emotion cat-
egory from the Semeval corpus.

Joy Hate Love Sorrow
s!(flower) !’(lonely) !S(study) !·(corner)
#c(ney year) °È(face with) 'm(competition) F"(hope)
"#(baby) "ú(heartless) m%(happy) U,(heaven)
ê…(enjoy) !#(again) a˙(feeling) N((lonely)
ØW(happy) úX(emotion) %#(mood) /"(earthquake)
64(wish) î"(lose) ø˜(full of) ¶"(mission)
""(baby) óÌ(temper) ©z(culture) I*l(boyfriend)
m%(joyful) ¤£(pain) ä¨(production) lm(leave)
á%(smile) %#(entirely) ¥L(rich) "G(helpless)

Anxiety Surprise Anger Expect
íf(house) ÁÙ(rainbow) lm(leave) F"(hope)
¥”(marriage) %#$(Hokkaido) l¥(divorce) I?(responsible)
P˙(husband) $,(sudden) "G(helpless) Â5(women)
Üÿ(error) P¡(memory) {#(law) c$¨(Olympic)
%ú(mood) r‘(gift) ’1(bank) 34(happiness)
))(strange) ¤,(miracle) $%(morality) 1è(action)
[p(family) ‚`(reputedly) úa(emotion) „Â(strive)
˛Å(on duty) –¤(curious) &˙(sorrow) ±&(later)
¢%(city) G!(season) gC(self) &Á(splendid)

1

Figure 4: The top topic words for each emotion cate-
gory from the Blogs corpus.

layer) and words conditioned on topics (weight-
s between the input layer and the hidden layer).
Results are shown in Figure 2, 3, 4 respectively.
It can be observed that the extracted topics words
under each emotion category correspond to a cer-
tain event, which evokes the emotion. It is in ac-
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Corpus Method
Criteria

PL(#) HL(#) RL(#) OE(#) AP(") Cov(#) F1(") MiF1(") MaF1(")

News

RANK-SVM 0.2842 0.2872 0.2114 0.2034 0.7967 2.5358 0.5066 0.5656 0.5298
BP-MLL 0.2118 0.2399 0.1443 0.1544 0.8677 2.1738 0.6881 0.6915 0.6013
LIFT 0.2224 0.3363 0.1382 0.1411 0.8234 2.1394 0.6646 0.6801 0.6151
INN-RER 0.1973 0.2312 0.1353 0.1331 0.8764 2.1339 0.7108 0.7161 0.6282

Blogs

RANK-SVM 0.3888 0.3786 0.3356 0.3219 0.7030 4.0801 0.3489 0.3686 0.3210
BP-MLL 0.2987 0.3281 0.2141 0.2727 0.7267 3.9802 0.5844 0.6065 0.4833
LIFT 0.3452 0.3817 0.3089 0.3306 0.7557 3.1290 0.6053 0.6113 0.5155
INN-RER 0.2829 0.3209 0.1924 0.2626 0.7784 3.6418 0.6187 0.6225 0.5133

SemEval

RANK-SVM 0.3452 0.3617 0.3083 0.3006 0.7557 3.1290 0.6253 0.6472 0.5955
BP-MLL 0.3790 0.3656 0.3605 0.3790 0.7495 3.2097 0.5868 0.6101 0.5402
LIFT 0.4279 0.4651 0.3627 0.4113 0.7344 3.2823 0.6299 0.6469 0.6112
INN-RER 0.3194 0.3005 0.2302 0.2261 0.8379 2.8632 0.7081 0.7156 0.6093

Table 4: Comparison with Multi-Label Learning (MLL) Methods. The evaluation criteria are same as in Table 3.

cord with what has been observed in social psy-
chology (Stoyanov and Cardie, 2008). For exam-
ple, in the Sina corpus, Topic 1 under the emotion
touching is about “heroic rescue”; Topic 1 under
the emotion anger is about “sexual molestation
of a child” and Topic 2 under the emotion sad-
ness is about an “car accident”. In the SemEval
and the Blog corpora, we can also find that topic
words listed under each emotion category are re-
lated to some social events. For example, in the
SemEval corpus, the Joy topic is about “home en-
tertainment” and the Anger topic is about ”ter-
rorist attack”. In the Blog corpus, the sorrow
topic is about ”earthquake and the lost of their
loved ones”. The extracted emotion-associated
topic words unveil how the corresponding emotion
is evoked. By incorporating topical information
into neural network learning, we are able to obtain
more interpretable results from INN-RER.

4.3 Comparison with Multi-Label Methods

Since relevant emotion ranking can be seen as
an extension of multi-label learning, the proposed
INN-RER is also compared with three widely used
well-established multi-label learning methods
such as LIFT (Zhang, 2011), Rank-SVM (Zhang
and Zhou, 2014) and BP-MLL (Zhang and Zhou,
2006). In our experiments, LIFT used linear ker-
nel and Rank-SVM uses the RBF kernel with the
width � set to 1 using the threshold ⇥ which is
initialized as 0.15 after normalization.

The results of INN-RER in comparison with M-
LL baselines are presented in Table 4. It can be
observed that INN-RER outperforms all the base-

lines across all the datasets on all evaluation mea-
sures most of the time. This further verifies the
effectiveness of our proposed INN-RER for multi-
label emotion detection due to its consideration of
rankings of the relevant emotions and the incorpo-
ration of topic models.

5 Conclusion

In this paper, we have proposed a novel inter-
pretable neural network for relevant emotion rank-
ing. Specifically, motivated by transfer learning,
the neural network is initialized to make its hid-
den layer approximate the behavior of a topic
model. Moreover, a novel error function is de-
fined to optimize the whole neural network for
relevant emotion ranking. Experimental result-
s on three real-world corpora show that the pro-
posed approach performs remarkably better than
the state-of-the-art emotion detection approach-
es and multi-label learning methods. Moreover,
the extracted emotion-associated topic words in-
deed represent emotion-evoking events which are
in line with our common-sense knowledge. In the
future, we will explore the possibility of learning
a topic model and an emotion ranking function si-
multaneously in a unified framework.
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Abstract

We propose a novel multi-grained attention
network (MGAN) model for aspect level sen-
timent classification. Existing approaches
mostly adopt coarse-grained attention mecha-
nism, which may bring information loss if the
aspect has multiple words or larger context.
We propose a fine-grained attention mecha-
nism, which can capture the word-level in-
teraction between aspect and context. And
then we leverage the fine-grained and coarse-
grained attention mechanisms to compose the
MGAN framework. Moreover, unlike previ-
ous works which train each aspect with its
context separately, we design an aspect align-
ment loss to depict the aspect-level interac-
tions among the aspects that have the same
context. We evaluate the proposed approach
on three datasets: laptop and restaurant are
from SemEval 2014, and the last one is a twit-
ter dataset. Experimental results show that the
multi-grained attention network consistently
outperforms the state-of-the-art methods on all
three datasets. We also conduct experiments to
evaluate the effectiveness of aspect alignment
loss, which indicates the aspect-level interac-
tions can bring extra useful information and
further improve the performance.

1 Introduction

Aspect level sentiment classification is a funda-
mental task in sentiment analysis (Pang et al.,
2008; Liu, 2012), which aims to infer the senti-
ment polarity (e.g. positive, neutral, negative) of
sentence with respect to the aspects. For exam-
ple, in sentence “I like coming back to Mac OS
but this laptop is lacking in speaker quality com-
pared to my $400 old HP laptop”, the polarity of
the sentence towards the aspect “Mac OS” is pos-
itive while the polarity is negative in terms of as-
pect “speaker quality”.

⇤corresponding author.

Many statistical methods, such as support vec-
tor machine (SVM) (Wagner et al., 2014; Kir-
itchenko et al., 2014), are employed with well-
designed handcrafted features. In recent years,
neural network models (Socher et al., 2011; Dong
et al., 2014; Nguyen and Shirai, 2015) are stud-
ied to automatically learn low-dimensional repre-
sentations for aspects and their context. Attention
mechanism (Wang et al., 2016; Li et al., 2017;
Ma et al., 2017) is also be studied to character-
ize the effect of aspect on enforcing the model
to pay more attention on the important words of
the context. Previous works (Tang et al., 2016b;
Chen et al., 2017) mainly employed the simple av-
eraged aspect vector to learn the attention weights
on the context words. Ma et al. [2017] further
proposed the bidirectional attention mechanism,
which interactively learns the attention weights on
context/aspect words, with respect to the averaged
vector of aspect/context, respectively.

These above attention methods are all at the
coarse-grained level, which simply averages the
aspect/context vector to guide learning the atten-
tion weights on the context/aspect words. The
simple average pooling mechanism might cause
information loss, especially for the aspect with
multiple words or larger context. For example, in
sentence “I like coming back to Mac OS but this
laptop is lacking in speaker quality compared to
my $400 old HP laptop”, the simple averaged vec-
tor of long context might lose information when
steering the attention weights on aspect words.
Similarly, the simple averaged vector of aspect
(i.e. “speaker quality”) may deviate from the intu-
itive core meaning (i.e. “quality”) when enforcing
the model to pay varying attentions on the context
words. From another perspective, previous works
all regard the aspect and its context words as one
instance, and train each instance separately. How-
ever, they do not consider the relationship among
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the instances that have the same context words.
The aspect-level interactions among the instances
with same context might bring extra useful in-
formation. Considering the above example, in-
tuitively, the aspect “speaker quality” should pay
more attention on “lacking” and less attention on
“like”, compared with aspect “Mac OS”, since
they have different sentiment polarities.

In this paper, we propose a multi-grained at-
tention network to address the above two is-
sues in aspect level sentiment classification.
Specifically, we propose a fine-grained atten-
tion mechanism (i.e. F-Aspect2Context and F-
Context2Aspect), which is employed to character-
ize the word-level interactions between aspect and
context words, and relieve the information loss
occurred in coarse-grained attention mechanism.
In addition, we utilize the bidirectional coarse-
grained attention (i.e. C-Aspect2Context and C-
Context2Aspect) and combine them with fine-
grained attention vectors to compose the multi-
grained attention network for the final sentiment
polarity prediction, which can leverage the advan-
tages of them. More importantly, in order to make
use of the valuable aspect-level interaction infor-
mation, we design an aspect alignment loss in the
objective function to enhance the difference of the
attention weights towards the aspects which have
the same context and different sentiment polari-
ties. As far as we know, we are the first to explore
the interactions among the aspects with the same
context.

To evaluate the proposed approach, we conduct
experiments on three datasets: laptop and restau-
rant are from the SemEval 2014 Task 4 and the
third one is a tweet collection. Experimental re-
sults show that our method achieves the best per-
formance on all three datasets.

2 Related Work

Aspect-level sentiment analysis is a branch of sen-
timent classification, which requires considering
both the sentence and aspect information.

Traditional approaches (Jiang et al., 2011; Kir-
itchenko et al., 2014; Vo and Zhang, 2015) regard
this task as the text classification problem and de-
sign effective features, which are utilized in sta-
tistical learning algorithms for training a classi-
fier. Kiritchenko et al. [2014] proposed to use
SVM based on n-gram features, parse features and
lexicon features, which achieved the best perfor-

mance in SemEval 2014. Vo and Zhang [2015]
designed sentiment-specific word embedding and
sentiment lexicons as rich features for prediction.
These methods highly depend on the effectiveness
of the laborious feature engineering work and eas-
ily reach the performance bottleneck.

In recent works, there are growing studies on
neural network based methods due to their ca-
pability of encoding original features as continu-
ous and low-dimensional vectors without feature
engineering. Recursive Neural Network (Socher
et al., 2011; Dong et al., 2014; Nguyen and Shirai,
2015) are studied to conduct semantic composi-
tions on tree structures, and generate representa-
tions for prediction. Methods on LSTM (Hochre-
iter and Schmidhuber, 1997) were proposed to
model the context information and use an ag-
gregated vector for prediction. TD-LSTM (Tang
et al., 2016a) adopted LSTM to model the left
context and right context of the aspect, and con-
catenate them as the representation for prediction.
However, these works only focused on model-
ing the contexts without considering the aspects,
which performed an important role in estimate the
sentiment polarity.

Attention mechanisms (Wang et al., 2016; Lei
et al., 2016; Li et al., 2017) are studied to enhance
the influence of aspects on the final representa-
tion for prediction. Many approaches (Tang et al.,
2016b; Chen et al., 2017) adopted the averaged as-
pect vector to learn the attention weights on the
hidden vectors of context words. Ma et al. [2017]
further proposed bidirectional attention mecha-
nism, which also learns the attention weights on
aspect words towards the averaged vector of con-
text words. These attention methods only con-
sider the coarse-grained level attention, through
using the simple averaged aspect/context vector
to steer the attention weights learning on the con-
text/aspect words, which might cause some infor-
mation loss on the long aspect or context case.

In contrast, motivated by the bidirectional atten-
tion flow approaches (Seo et al., 2017; Pan et al.,
2017) in machine comprehension, we propose
a fine-grained attention mechanism which is re-
sponsible for linking and fusing information from
the aspect and the context words. Furthermore,
we leverage both the coarse-grained and fine-
grained attentions to compose the multi-grained
attention network (MGAN). In addition, existing
works train each instance separately. However, we
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observe that the interactions among the aspects,
which have the same context words, could bring
extra useful information. Thus we design the as-
pect alignment loss in the objective function to de-
pict such kind of relationship, which is the first
work to explore the aspect-level interactions.

3 Our Approach

3.1 Task Definition
Given a sentence s = {w1, w2, · · · , wN} con-
sisting of N words, and an aspect list A =
{a1, · · · , ak}, where the aspect list size is k and
each aspect ai = {wi1 , · · · , wiM } is a subse-
quence of sentence s, which contains M 2 [1, N)
words. Aspect-level sentiment classification eval-
uates sentiment polarity of the sentence s with re-
spect to each aspect ai.

We present the overall architecture of the pro-
posed Multi-grained Attention Network (MGAN)
model in Figure 1. It consists of the Input Em-
bedding layer, the Contextual Layer, the Multi-
grained Attention Layer and the Output Layer.

3.2 Input Embedding Layer
Input Embedding Layer maps each word to a high
dimensional vector space. We employ the pre-
trained word vector, GloVe (Pennington et al.,
2014), to obtain the fixed word embedding of
each word. Specifically, we denote the embedding
lookup matrix as L 2 R

dv⇥|V |, where dv is the
word vector dimension and |V | is the vocabulary
size.

3.3 Contextual Layer
We employ a bidirectional Long Short-Term
Memory Network (BiLSTM) on top of the em-
bedding layer to capture the temporal interactions
among words. Specifically, at time step t, given
the input word embedding x, the update process
of forward LSTM network can be formalized as
follows:

it = �(
�!
W i · [

�!
h t�1,�!x t] +

�!
b i) (1)

ft = �(
�!
W f · [

�!
h t�1,�!x t] +

�!
b f ) (2)

ot = �(
�!
W o · [

�!
h t�1,�!x t] +

�!
b o) (3)

gt = tanh(
�!
W g · [

�!
h t�1,�!x t] +

�!
b g) (4)

�!c t = ft ⇤ �!c t�1 + it ⇤ gt (5)
�!
h t = ot ⇤ tanh(�!c t) (6)

Where � is the sigmoid activation function, it, ft,
ot are the input gate, forget gate and output gate,
respectively. �!

W i,
�!
W f ,

�!
W o,
�!
W g 2 R

d⇤(d+dv),
�!
b i,
�!
b f ,
�!
b o,
�!
b g 2 R

d, and d is the hidden di-
mension size. The backward LSTM does the simi-
lar process and we can get the concatenated output
ht = [

�!
h t,
 �
h t] 2 R

2d. Given the word embed-
dings of a context sentence s and a corresponding
aspect aj , we will employ the BiLSTM separately
and get the sentence contextual output H 2 R

2d⇤N

and aspect contextual output Q 2 R
2d⇤M .

In addition, considering that the context words
with closer distance to an aspect may have higher
influence to the aspect, we utilize the position
encoding mechanism to simulate the observation.
Formally, the weight for a context word wj , which
has l word-level distance from the aspect (here we
treat the aspect phrase as a single unit), is defined
as follows:

wt = 1� l

N �M + 1
(7)

Specifically, we treat the weights of words within
the aspect as 0 in order to focus on the context
words in the sentence. Then we can obtain the
final contextual outputs of context words H =
[H1 ⇤ w1, · · · , HN ⇤ wN ].

3.4 Multi-grained Attention Layer
Attention mechanism is a common way to capture
the interactions between the aspect and context
words. Previous methods (Tang et al., 2016b; Ma
et al., 2017; Chen et al., 2017) only adopt coarse-
grained attentions, which simply use the aver-
aged aspect/context vector as the guide to learn
the attention weights on context/aspect. How-
ever, the simple average pooling in generating the
guide vector might bring some information loss,
especially for the aspect with multiple words or
larger context. We propose the fine-grained at-
tention mechanism, which is responsible for link-
ing and fusing information from the aspect and
context words. This mechanism is designed to
capture the word-level interactions which esti-
mate how each aspect/context word affect each
context/aspect word. In addition, we concate-
nate both the fine-grained and coarse-grained at-
tention vectors to obtain the final representation.
From other perspective, we observe the relation-
ship among aspects can introduce extra valuable
information. Hence, we propose an aspect align-
ment loss, which is designed to strengthen the at-
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Figure 1: The architecture of the proposed multi-grained attention network.

tention difference among aspects with same con-
text and different sentiment polarities.

Coarse-grained Attention
Coarse-grained attention is a widely used mech-
anism to capture the interactions between aspect
and context, which utilizes an averaged aspect
vector to steer the attention weights on the con-
text words. Follow the work in (Ma et al., 2017),
we employ the bidirectional attention mechanism,
namely C-Aspect2Context and C-Context2Aspect.

(1) C-Aspect2Context learns to assign atten-
tion scores to the context words with respect to the
averaged aspect vector. Here we employ an aver-
age pooling layer above aspect contextual output
Q to generate the averaged aspect vector Qavg 2
R

2d. For each word vector Hi in context, we can
compute the attention score aca

i as follows:

sca(Qavg, Hi) = Qavg ⇤Wca ⇤Hi (8)

aca
i =

exp(sca(Qavg, Hi))PN
k=1 exp(sca(Qavg, Hk))

(9)

Where the score function sca computes the weight
which indicates the importance of a context word
towards aspect sentiment. Wca 2 R

2d⇤2d is the
attention weight matrix. Then the weighted com-
bination of the context output mca 2 R

2d is calcu-

lated as follows:

mca =
NX

i=1

aca
i · Hi (10)

(2) C-Context2Aspect learns to assign atten-
tion weights on aspects words, which follows the
similar learning process with C-Aspect2Context.
We utilize the average pooling mechanism to ob-
tain the averaged context vector Havg, and com-
pute the weights for each word wi in the aspect
phrase. We compute the final weighted combina-
tion of aspect vector mcc 2 R

2d as follows:

scc(Havg, Qi) = Havg ⇤Wcc ⇤Qi (11)

acc
i =

exp(scc(Havg, Qi))PM
k=1 exp(scc(Havg, Qk))

(12)

mcc =
MX

i=1

acc
i · Qi (13)

where W cc 2 R
2d⇤2d is the attention weight ma-

trix.

Fine-grained Attention
As introduced above, we propose a fine-grained at-
tention mechanism to characterize the word-level
interactions and evaluate how each aspect/context
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word affect each context/aspect word. Consider-
ing the previous example “I like coming back to
Mac OS but this laptop is lacking in speaker qual-
ity compared to my $400 old HP laptop”, the word
“quality” in aspect “speaker quality” should have
more effect on the context words compared with
word “speaker”. Accordingly, the context words
should pay more attention on “quality” instead of
“speaker”.

Formally, we define an alignment matrix U 2
R

N⇤M , between the contextual output of and the
context H and the aspect Q, where Uij indicates
the similarity between i-th context word and j-th
aspect word. The similarity matrix U is computed
by

Uij = Wu([Hi; Qj ; Hi ⇤Qj ]) (14)

Where Wu 2 R
1⇤6d is the weight matrix, [; ] is the

vector concatenation across row, ⇤ is the elemen-
twise multiplication. Then we use U to calculate
the attention vectors in both directions.

(1) F-Aspect2Context estimates which context
word has the closest similarity to one of the aspect
word and are hence critical for determining the
sentiment. We can compute the attention weights
afa on context words by

sfa
i = max(Ui,:) (15)

afa
i =

exp(sfa
i )

PN
k=1 exp(sfa

k )
(16)

where sfa
i obtains the maximum similarity across

column. And then we can get the attended vector
mfa 2 R

2d as follows:

mfa =
NX

i=1

afa
i · Hi (17)

(2) F-Context2Aspect measures which aspect
words are most relevant to each context word. Let
afc

i 2 R
M be the attention weights on aspect

contextual output Q with respect to the i-th con-
text word vector Hi. The attended aspect vector
qfc 2 R

2d⇤N is defined as follows:

afc
ij =

exp(Uij)PM
k=1 exp(Uik)

(18)

qfc
i =

MX

j=1

afc
ij · Qj (19)

Then we use an average pooling layer on qfc to get
the attended vector mfc 2 R

2d:

mfc = Pooling([qfc
1 , · · · , qfc

N ]) (20)

3.5 Output Layer
At last, we concatenate both the coarse-grained
and fine-grained attention vectors as the final rep-
resentation m 2 R

8d, which will be fed to a soft-
max layer for determining the aspect sentiment po-
larity.

m = [mca; mcc; mfa; mfc] (21)

p = softmax(Wp ⇤m + bp) (22)

where p 2 R
C is the probability distribution for

the polarity of aspect sentiment, Wp 2 R
C⇤8d and

bp 2 R
C are the weight matrix and bias, respec-

tively. Here we set C = 3, which is the number of
aspect sentiment classes.

3.6 Model Training
Aspect Alignment Loss
Existing approaches train each aspect with its con-
text separately, without considering the relation-
ship among the aspects. However, we observe the
aspect-level interactions can bring extra valuable
information. In order to enhance the attention dif-
ferences of aspects, which have the same context
and different sentiment polarities, we design the
aspect alignment loss on the C-Aspect2Context at-
tention weights. C-Aspect2Context is employed to
find the important context words in terms of a spe-
cific aspect. With the constraint of aspect align-
ment loss, each aspect will pay more attention on
the important words through the comparisons with
other related aspects. In terms of the previous ex-
ample, the aspect “speaker quality” should pay
more attention on “lacking” and less attention on
“like”, compared with aspect “Mac OS” due to
their different sentiment polarities.

Specifically, for each aspect pair ai and aj in
aspect list A, we compute the square loss on the
coarse-grained attention vector aca

i and aca
j , and

also estimate the distance dij 2 [0, 1] between ai

and aj as the loss weight.

dij = �(Wd([Qi; Qj ; Qi ⇤Qj ]) (23)

Lalign = �
M�1X

i=1

MX

j=i+1,yi 6=yj

NX

k=1

dij · (aca
ik � aca

jk)
2

(24)
Where � is the sigmoid function, Wd 2 R

1⇤6d is
weight matrix for computing the distance, yi and
yj are the true labels of the aspect ai and aj , aca

ik
and aca

jk are the attention weights on k-th context
word towards aspect ai and aj , respectively.
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For training the multi-grained attention
network (MGAN), we should optimize all
the parameters ⇥ from the LSTM networks:
[Wi, Wo, Wf , Wg, bi, bo, bf , bg], the attention and
alignment loss parameters: [Wca, Wcc, Wu, Wd]
and softmax parameters: [Wp, bp]. The final loss
function is consisting of the cross-entropy loss,
aspect alignment loss and regularization item as
follows:

L = �
CX

i=1

yilog(pi) + �Lalign + � k⇥k2 (25)

Where � � 0 and � � 0 controls the influence
of the aspect alignment loss and the L2 regulariza-
tion item, respectively. We employ the stochastic
gradient descent (SGD) optimizer to compute and
update the training parameters. In addition, we uti-
lize dropout strategy to avoid overfitting.

4 Experiments

In this section, we conduct experiments to eval-
uate our two hypotheses: (1) whether the word-
level interaction between aspect and context can
help relieve the information loss and improve the
performance. (2) whether the relationship among
the aspects, which have the same context and dif-
ferent sentiment polarities, can bring extra useful
information.

4.1 Experiment Setting
We conduct experiments on three datasets, as
shown in Table 1. The first two are from the Se-
mEval 2014 Task 41 (Pontiki et al., 2014), which
contains the reviews in laptop and restaurants, re-
spectively. The third one is a tweet collection,
which are gathered by (Dong et al., 2014). Each
aspect with the context is labeled by three senti-
ment polarities, namely Positive, Neutral and Neg-
ative. In addition, we adopt Accuracy and Macro-
F1 as the metrics to evaluate the performance
of aspect-level sentiment classification, which is
widely used in previous works (Tang et al., 2016b;
Ma et al., 2017; Chen et al., 2017; Wang et al.,
2016).

In our experiments, word embeddings for
both context and aspect words are initialized by
Glove (Pennington et al., 2014). The dimension
of word embedding dv and hidden state d are

1The detailed task introduction can be found in
http://alt.qcri.org/semeval2014/task4/.

Dataset Positive Neutral Negative
Train Test Train Test Train Test

Laptop 994 341 870 128 464 169
Restaurant 2164 728 807 196 637 196

Twitter 1561 173 3127 346 1560 173

Table 1: The statistics of the datasets.

set to 300. The weight matrix and bias are ini-
tialized by sampling from a uniform distribution
U(0.01, 0.01). The coefficient � of L2 regulariza-
tion item is 10�5, the parameter � of aspect align-
ment loss and drop out rate are set to 0.5.

4.2 Compared Methods

To evaluate the performance of proposed ap-
proach, we compared with the following methods:
Majority is the basic baseline, which chooses the
largest sentiment polarity in the training set to each
instance in the test set.
Feature+SVM (Kiritchenko et al., 2014) uses n-
gram features, parse features and lexicon features
based on SVM, which achieves the state-of-the-art
performance in SemEval 2014.
LSTM (Wang et al., 2016) utilizes one LSTM net-
work to learn the hidden states and obtain the av-
eraged vector to predict the sentiment polarity.
ATAE-LSTM (Wang et al., 2016) learns attention
embeddings and combine them with the LSTM
hidden states to predict the polarity.
TD-LSTM (Tang et al., 2016a) employs two di-
rectional LSTM networks, which estimate the left
context and right context of the target aspect, re-
spectively. Finally it takes the last hidden states of
LSTM networks for prediction.
MemNet (Tang et al., 2016b) applys multi-hop at-
tentions on the word embeddings, learns the atten-
tion weights on context word vectors with respect
to the averaged query vector.
IAN (Ma et al., 2017) interactively learns the
coarse-grained attentions between the context and
aspect, and concatenate the vectors for prediction.
BILSTM-ATT-G (Liu and Zhang, 2017) mod-
els left and right context with two attention-based
LSTMs and utilizes gates to control the impor-
tance of left context, right context and the entire
sentence for prediction.
RAM(Chen et al., 2017) learns multi-hop atten-
tions on the hidden states of bidirectional LSTM
networks for context words, and proposes to use
GRU network to get the aggregated vector from
the attentions. Similar with MemNet, the atten-
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tion weights on context words are steered by the
simple averaged aspect vector.

We also list the variants of MGAN model,
which are used to analyze the effects of coarse-
grained attention, fine-grained attention and aspect
alignment loss, respectively.
MGAN-C only employs the coarse-grained atten-
tions for prediction, which is similar with IAN.
MGAN-F only utilizes the proposed fine-grained
attentions for prediction.
MGAN-CF adopts both the coarse-grained and
fine-grained attentions, while without applying the
aspect alignment loss.
MGAN is the complete multi-grained attention
network model.

4.3 Overall Performance Comparison

Table 2 shows the performance comparison results
of MGAN with other baseline methods. We can
have the following observations.

(1) Majority performs worst since it only uti-
lizes the data distribution information. Fea-
ture+SVM can achieve much better performance
on all the datasets, with the well-designed feature
engineering. Our method MGAN outperforms
Majority and Feature+SVM since MGAN could
learn the high quality representation for predic-
tion.

(2) ATAE-LSTM is better than LSTM since it
employs attention mechanism on the hidden states
and combines with attention embedding to gener-
ate the final representation. TD-LSTM performs
slightly better than ATAE-LSTM, and it employs
two LSTM networks to capture the left and right
context of the aspect. TD-LSTM performs worse
than our method MGAN since it could not prop-
erly pay more attentions on the important parts of
the context.

(3) IAN achieves slightly better results with the
previous LSTM-based methods, which interac-
tively learns the attended aspect and context vector
as final representation. Our method consistently
performs better than IAN since we utilize the fine-
grained attention vectors to relieve the informa-
tion loss in IAN. MemNet continuously learns
the attended vector on the context word embed-
ding memory, and updates the query vector at each
hop. BILSTM-ATT-G models left context and
right context using attention-based LSTMs, which
achieves better performance than MemNet. RAM
performs better than other baselines. It employs

bidirectional LSTM network to generate contex-
tual memory, and learns the multiple attended vec-
tor on the memory. Similar with MemNet, it uti-
lizes the averaged aspect vector to learn the atten-
tion weights on context words.

Our proposed MGAN consistently performs
better than MemNet, BILSTM-ATT-G and RAM
on all three datasets. On one hand, they only
consider to learn the attention weights on context
towards the aspect, and do not consider to learn
the weights on aspect words towards the context.
On the other hand, they just use the averaged as-
pect vector to guide the attention, which will lose
some information, especially on the aspects with
multiple words. From another perspective, our
method employs the aspect alignment loss, which
can bring extra useful information from the aspect-
level interactions.

4.4 Analysis of MGAN model

Table 3 shows the performance comparison among
the variants of MGAN model. We can have the
following observations.

(1) the proposed fine-grained attention mech-
anism MGAN-F, which is responsible for link-
ing and fusing the information between the con-
text and aspect word, achieves competitive per-
formance compared with MGAN-C, especially on
laptop dataset. To investigate this case, we col-
lect the percentage of aspects with different word
lengths in Table 4. We can find that laptop dataset
has the highest percentage on the aspects with
more than two words, and the second-highest per-
centage on two words. It demonstrates MGAN-
F has better performance on aspects with more
words, and make use of the word-level interactions
to relieve the information loss occurred in coarse-
grained attention mechanism.

(2) MGAN-CF is better than both MGAN-C
and MGAN-F, which demonstrates the coarse-
grained attentions and fine-grained attentions
could improve the performance from different per-
spectives. Compared with MGAN-CF, the com-
plete MGAN model gains further improvement
by bringing the aspect alignment loss, which is
designed to capture the aspect level interactions.
Specifically, we collect the statistics of sentence-
level with different aspect amounts, which is
shown in Table 5. We can observe that both laptop
and restaurant datasets have relatively high per-
centage on the sentences with multiple aspects.
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Method Laptop Restaurant Twitter
Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Majority 0.5350 0.3333 0.6500 0.3333 0.5000 0.3333
Feature-SVM 0.7049 - 0.8016 - 0.6340 0.6330
ATAE-LSTM 0.6870 - 0.7720 - - -

TD-LSTM 0.7183 0.6843 0.7800 0.6673 0.6662 0.6401
IAN 0.7210 - 0.7860 - - -

MemNet 0.7237 - 0.8032 - 0.6850 0.6691
BILSTM-ATT-G 0.7312 0.6980 0.7973 0.6925 0.7038 0.6837

RAM 0.7449 0.7135 0.8023 0.7080 0.6936 0.6730
MGAN 0.7539 0.7247 0.8125 0.7194 0.7254 0.7081

Table 2: The performance comparisons of different methods on the three datasets, where the results of baseline
methods are retrieved from published papers. The best performances are marked in bold.

Method Laptop Restaurant Twitter
Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

MGAN-C 0.7273 0.6933 0.8054 0.7099 0.7153 0.6952
MGAN-F 0.7398 0.7082 0.8000 0.7092 0.7110 0.6918

MGAN-CF 0.7445 0.7121 0.8089 0.7135 0.7254⇤ 0.7081⇤

MGAN 0.7539 0.7247 0.8125 0.7194 0.7254 0.7081

Table 3: The performance comparisons of MGAN variants. ⇤ means MGAN-CF and MGAN can be regarded as
the same method on twitter dataset.

Dataset #words=1 #words=2 #words>2
Laptop 61.60% 29.16% 9.24%

Restaurant 74.47% 17.32% 8.21%
Twitter 29.99% 69.91% 0.10%

Table 4: The percentage of aspects with different word
length on three datasets. Here we give the overall statis-
tic of each dataset.

The improved performance on the two datasets
shows the importance of capturing the aspect-level
interactions. In terms of twitter dataset, almost all
of the sentences only has one aspect. In this case,
the method MGAN can be regarded as MGAN-
CF.

Dataset #aspects=1 #aspects=2 #aspects>2
Laptop 63.94% 23.32% 12.74%

Restaurant 50.89% 28.60% 20.51%
Twitter 99.91% 0.09% 0.00%

Table 5: The percentage of sentences with different as-
pect numbers on three datasets. Aspects with the same
context are regarded as the same sentence.

4.5 Case Study

In order to demonstrate the effect of aspect align-
ment loss, we visualize the attention weights
of the C-Aspect2Context mechanism. Figure 2
shows the attention weights of two aspects “res-
olution” and “fonts”, whose sentiment polarities
are positive and negative, respectively. From

the above two bars, we can observe that the C-
Aspect2Context can enforce the model to pay
more attentions on the important words with re-
spect to the aspect. For example, in terms of
the aspect“resolution”, the words “has”, “higher”
and “but” have higher attention weights compared
with other words. In contrast, aspect “fonts”
pays more attentions on words “but”, “fonts” and
“small”. In addition, we evaluate the effect of as-
pect alignment loss, which enhances the attention
difference between the aspect “resolution” and
“fonts”. For the two bars at bottom, we can find
that aspect “fonts” has more attention on “small”
and less attention on “higher”, compared with the
aspect “resolution”. This phenomenon shows that
with the constraint of aspect alignment loss, C-
Aspect2Context can not only learn the important
context words for each aspect, but also can make
the attention gaps on the important words be as
large as possible for aspects with different polari-
ties.

5 Conclusion

In this paper, we propose a multi-grained atten-
tion network (MGAN) for aspect-level sentiment
classification. Specifically, we propose a fine-
grained attention mechanism, which is responsible
for linking and fusing the words from the aspect
and context, to capture the word-level interaction.
And we combine it with the coarse-grained atten-
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air has higher resolution but the fonts are small

Aspect resolution

Aspect fonts

Aspect resolution

Aspect fonts

C-Aspect2Context

C-Aspect2Context with 
Aspect Alignment Loss

Figure 2: The attention visualizations on aspect “resolution” and “fonts”. The above two bars are from the C-
Aspect2Context attention mechanism, and the two bars at bottom are from the C-Aspect2Context attention mech-
anism with the constraint of aspect alignment loss.

tion mechanism to compose the MGAN model.
In addition, we design an aspect alignment loss
to characterize the aspect-level interactions among
aspects, which have the same context and dif-
ferent sentiment polarities, to explore extra valu-
able information. Experimental results demon-
strate the effectiveness of our approach on three
public datasets.
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Abstract

This paper proposes a new neural architecture
that exploits readily available sentiment lexi-
con resources. The key idea is that that in-
corporating a word-level prior can aid in the
representation learning process, eventually im-
proving model performance. To this end, our
model employs two distinctly unique compo-
nents, i.e., (1) we introduce a lexicon-driven
contextual attention mechanism to imbue lex-
icon words with long-range contextual infor-
mation and (2), we introduce a contrastive
co-attention mechanism that models contrast-
ing polarities between all positive and nega-
tive words in a sentence. Via extensive ex-
periments, we show that our approach outper-
forms many other neural baselines on senti-
ment classification tasks on multiple bench-
mark datasets.

1 Introduction

Across the rich history of sentiment analysis re-
search (Kim and Hovy, 2004; Liu, 2012; Pang
et al., 2008), sentiment lexicons have been exten-
sively used as features for sentiment classification
tasks. Lexicons, either handcrafted or algorithmi-
cally generated, consist of words and their asso-
ciated polarity score. For instance, lexicons as-
sign a high positive score for the word ‘excellent’
but a negative score for the word ‘terrible’. Tradi-
tionally, the summation of lexicon scores has been
treated as a reasonable heuristic estimate (or fea-
ture) that is capable of supporting opinion mining
applications. Throughout the years, plenty of lex-
icon lists have been built for various specific do-
mains or general purposes (Hu and Liu, 2004; Mo-
hammad et al., 2013; Wilson et al., 2005). They
are indeed valuable resources that should be ex-
ploited.

⇤ Denotes equal contribution.

However, sentiment lexicons are in reality
hardly useful without context. After all, the com-
plexity and ambiguity of natural language pose
great challenges for the crude bag-of-words gen-
eralization of lexicons. Firstly, the concept of se-
mantic compositionality is non-existent in simple
lexicon approaches which raises problems when
handling flipping negation (not happy), content
word negation (ameliorates pain) or unbounded
dependencies (no body passed the exam). Sec-
ondly, lexicons also do not handle word sense,
e.g., not being able to differentiate the meaning of
hot in the phrases ‘a hot, attractive person’ and
a ‘a scorching hot day’. Thirdly, simple summa-
tion over lexicon scores cannot deal with sentences
with double contrasting polarities, e.g., the lexi-
con polarity score of ‘Thanks for making this un-
comfortable situation more comfortable’ becomes
negative because uncomfortable has a higher neg-
ative lexicon score over the positive score of the
word comfortable. Lastly, strongly positive or
negative words may occur in neutral context which
forces an inclination of predictions towards a non-
neutral polarity. As such, the exploitation of read-
ily available lexicon lists is an inherently challeng-
ing task.

Deep learning has demonstrated incredibly
competitive performance in many NLP tasks (Liu
et al., 2015; Bradbury et al., 2016; Tai et al., 2015).
With no exception, the task of sentiment anal-
ysis is recently also dominated by neural archi-
tectures. It has been proven from the fact that
the top systems from SemEval Sentiment analy-
sis challenges (e.g., notably 2016 and 2017) have
mainly leveraged the effectiveness of deep learn-
ing models. The main advantage of deep learning
approach is that it is effective in exploring both lin-
guistic and semantic relations between words, thus
can overcomes the problems of lexicon-based ap-
proach. However, current deep learning approach
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for sentiment analysis usually faces with the ma-
jor shortcoming, i.e., being limited by the quantity
of high quality labeled data. Manual labeling of
data, however, is costly and require domain expert
knowledge which is not always available in prac-
tice.

Given the pros and cons of previous two pre-
vious approaches, we aim to combine the best of
both worlds - the traditional sentiment lexicon and
modern deep learning architectures. To the best
of our knowledge, the only work that combines
the two paradigms within end-to-end neural net-
works is the Lexicon RNN model (Teng et al.,
2016). In their approach, sentiment lexicons are
extracted from the hidden states of a recurrent
neural network and passed through a simple feed-
forward neural network to produce a new polarity
weight. This approach, however, has some limita-
tions which will be illustrated using the following
example:

“Thanks for making this horrible situation at
work more bearable.”

Firstly, the Lexicon RNN does not consider the
interactions between positive or negative lexicon
words, which makes it susceptible to misleading
strong lexicon priors. In the above example, the
word ‘horrible’ is a strongly negative word in most
lexicons. As a result, the Lexicon RNN (and many
other lexicon based approaches in general) will as-
sign a negative polarity to the sentence. Clearly,
modeling similarity between two contrasting po-
larity words (‘horrible’ and ‘bearable’) can help
the model resolve this confusion. Secondly, the
RNN encoder in the Lexicon RNN is restricted by
the sequential nature of the recurrent model, re-
sulting in a limited global view of the entire sen-
tence. For example, the word pairs (‘horrible’,
‘bearable’) and (‘thanks’, ‘bearable’) are useful
for detecting the polarity of the sentence but do
not have any explicit interaction even with a se-
quential RNN encoder. Moreover, the word pair
(‘thanks’, ‘bearable’) is very far apart in the above
example sentence, making it challenging for RNN
encoders to capture interactions between them. Fi-
nally, the Lexicon RNN faces difficulty dealing
with more than two classes due to its design, i.e.,
linear combination of two scalar scores. In or-
der to cope with this weakness, the authors define
hardcoded dataset specific thresholds for 5-way
classification. Adapting this to 3-way (positive,
negative and neutral) is cumbersome as thresholds

have to be found by either maximizing over the
development set or defined heuristically.

In this paper, we introduce a new end to end
paradigm that integrates lexicon information into
neural network for the task of sentiment anal-
ysis. More specifically, instead of learning a
lexicon-based score, we propose to learn an aux-
iliary embedding by exploiting lexicon informa-
tion. The key motivation behind the auxiliary
representation is that compositional learning with
prior/global knowledge of positive and negative
inclined words can lead to improved represen-
tations. Next, a gating mechanism controls the
additive blend between this lexicon-based repre-
sentation and a standard attention-based recurrent
model. In essence, this supporting network aims
to learn a ‘lexicon-based’ view of the sentence and
can be interpreted as ‘learning to compose’ by ex-
ploiting lexicon information. Finally, instead of
the combination of two scalar values (the base lex-
icon score and sentence bias score) as in the Lex-
icon RNN model, we propose to use the k-class
softmax function at the final layer. Intuitively, it
is a more natural solution for fine-grained senti-
ment classification over the cumbersome tuning of
ad-hoc threshold values. Our contributions can be
summarized as follows:

• We propose to learn an auxiliary embedding
by exploiting lexicon information rather than
learning a lexicon-based score. Its design is a
more natural and flexible solution for k-class
sentiment classification.

• We propose a contextual attention (CA)
mechanism that learns to attend to lexicon
words based on the context. Unlike Lexi-
con RNN which extracts the hidden repre-
sentations from the recurrent model, contex-
tual attention allows a wider, global and more
complete view of the context (sentence) by
matching against every single word in the
sentence. In addition to semantic composi-
tionality, our model also benefits from se-
mantic similarity.

• We propose to model the interaction between
the positive and negative lexicon words in-
side the neural network. Positive and neg-
ative lexicon words are modeled seperately
and subsequently compared using contrasive
co-attention (CC) which learns the relative
importance of positive lexicons with respect
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to negative lexicons (and vice versa). Mod-
eling such intricacies between positive and
negative words allows our model to deal with
scenarios such as contrasting polarities, neu-
trality and also sarcasm. We also discover
that our CC mechanism produces a neutraliz-
ing effect which negates misleading attention
on words with intense polarity even though
the context is neutral.

Overall, we propose AGLR (Attentive Gated
Lexicon Reader), a new attention-based neural
architecture that exploits sentiment lexicons for
learning to compose an auxiliary sentence embed-
ding. Our model achieves state-of-the-art perfor-
mance on several benchmark datasets. Finally, our
AGLR, a single neural model, also achieves com-
petitive performance with respect to top teams in
SemEval runs which are mostly comprised of ex-
tensively engineered ensembles.

2 Related Work

Sentiment lexicons have a rich traditional in sen-
timent analysis research and have been exploited
in many statistical methods across the years (Hu
and Liu, 2004; Kim and Hovy, 2004; Agarwal
et al., 2011; Mohammad et al., 2013; Tang et al.,
2014b,a; Teng et al., 2016). It is easy to see how
sentiment lexicons are able to benefit opinion min-
ing applications. More specifically, sentiment lex-
icons form an integral role in the winning solutions
of SemEval 2013 (Mohammad et al., 2013) and
2014 (Miura et al., 2014). In many of these these
approaches, standard machine learning classifiers
(such as Support Vector Machines) are trained
on discrete features partly derived from resources
such as sentiment lexicon.

In recent years, we see a shift of the state-of-the-
art from discrete models to neural models (Socher
et al., 2013; Kim, 2014; Dong et al., 2014; Tang
et al., 2016; Tai et al., 2015; Ren et al., 2016;
Zhang et al., 2016; Teng and Zhang, 2016). This
ranges from learning sentiment-specific word em-
beddings (Tang et al., 2014b; Faruqui et al., 2015)
to end-to-end neural architectures (Teng et al.,
2016; Angelidis and Lapata, 2017). The win-
ning solution of SemEval 2016 (Deriu et al., 2016)
utilized ensembles of convolutional neural net-
works (CNN). Recurrent-based models such as the
bidirectional long short-term memory (BiLSTM)
(Hochreiter and Schmidhuber, 1997; Graves et al.,
2013) are popular and standard strong baselines

for many opinion mining tasks including senti-
ment analysis (Tay et al., 2017) and sarcasm detec-
tion (Tay et al., 2018c). These neural models such
as the BiLSTM are capable of modeling seman-
tic compositionality and produce a feature vector
which can be used for classification.

To integrate the information of lexicon inside
Lexicon RNN model, Teng et al. (2016) pro-
posed to use the hidden representations from a
BiLSTM to influence the lexicon score, i.e., learn-
ing context-sensitive lexicon features. However,
our method can be considered as a vastly different
paradigm and instead learns a d-dimensional em-
bedding using neural attention (Bahdanau et al.,
2014; Luong et al., 2015) instead of a lexicon
score. The key idea of neural attention is that it
allows neural networks to look (or attend) to cer-
tain words in a sequence. This concept has in-
deed profoundly impacted the fields of NLP, giv-
ing rise to many variant architectures including
end-to-end memory networks (Sukhbaatar et al.,
2015; Li et al., 2017).

Our approach draws inspiration from memory
networks and co-attentive models for machine
comprehension (Xiong et al., 2016; Seo et al.,
2016). In fact, the auxiliary network can be inter-
preted as a form of multi-layered attention which
draws connection to vanilla memory networks.
Attending over two sequences (or bidirectional at-
tention) are intuitive approaches for NLP tasks
such as information retrieval (Tay et al., 2018b)
and generic text matching (Tay et al., 2018a). In
our work, we adapt this to model the similarities
between (1) lexicon-context and (2) contrasting
polarities which borrows inspiration from (Riloff
et al., 2013). Since our matching problem is de-
rived from the same sequence (identified by a
lexicon prior), this work can be interpreted as a
form of self-attention (Vaswani et al., 2017) which
draws relations to the intra-attentive model for sar-
casm detection (Tay et al., 2018c).

3 Attentive Gated Lexicon Reader

In this section, we describe our proposed deep
learning model for sentiment classification. The
key idea of our model is to generate two repre-
sentations, i.e., a lexicon-based auxiliary embed-
ding of the sentence and also a generic compo-
sitional representation of the sentence. The for-
mer is generated via a supporting network that
consists of contextual attention and contrastive
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co-attention layers. The latter is generated by a
vanilla attention-based BiLSTM model. A gating
mechanism then combines them for prediction.

3.1 Embedding Layer
Firstly, we extract all lexicon words from the in-
put sequence and then separately1 denote them as
positive or negative words. Overall, our model ac-
cepts three sequences as an input. (1) the origi-
nal sentence, (2) a list of positive lexicon words
found in the sentence and (3) a list of negative lex-
icon words found in the sentence. The three se-
quences are indexed into a word embedding layer
W 2 R

|V |⇥d which outputs three matrices S 2
R

d⇥Ls (sentence embeddings), P 2 R
d⇥Gp (posi-

tive lexicon embeddings) and N 2 R
d⇥Gn (nega-

tive lexicon embeddings). d is the dimensionality
of the word embeddings and Ls, Gp and Gn are
the maximum sequence lengths of sentence, posi-
tive lexicon and negative lexicon respectively.

3.2 Learning Sentence Representation
To learn sentence representations of the input se-
quence, we pass S = (w1, w2 · · · wLs) into a
Bidirectional Long Short-Term Memory (LSTM)
layer. As such, the output of the BiLSTM is de-
scribed as follows:

ht = BiLSTM(ht�1, wt) (1)

where ht is the hidden representation at step t.
Given a sequence of inputs w1, w2 · · · wL, the out-
put of the BiLSTM layer is a sequence of hidden
states h1, h2 · · · hL. Note that since we use a bidi-
rectional LSTM, then ht 2 R

2r where r is the di-
mensionality of the BiLSTM layer. In our case r
is set to d

2 such that the output vector has dimen-
sionality d.

Sentence Attention To learn a final sentence
representation of the sentence, we adopt an atten-
tion mechanism. The attention mechanism is de-
fined by the following equations:

Y = tanh(Wy H) (2)

ac = softmax(wT
y Y) and s = H aT

c (3)

where s 2 R
d is the output sentence representa-

tion, Wy 2 R
d⇥d and wy 2 R

d are parameters of
1For our experiments, we mainly use ST140 lexicon and

therefore use score > 0 to separate positive and negative
words. Notably, about ⇡ 85% of all words in the sentence
has a lexicon assignment.

the attention layer. Intuitively, the attention layer
learns to pay attention to important segments of
the sentence, producing a weighted representation
of the hidden states of the BiLSTM layer.

3.3 Learning Auxiliary Lexicon Embedding
This layer aims to learn a single d-dimensional
lexicon-based representation of the sentence. In
order to learn the lexicon embedding, our model
adopts a two layer attention mechanism, namely
the contextual attention (CA) and contrastive co-
attention (CC).

Contextual Attention (CA) We utilize an atten-
tion mechanism to learn the relative importance of
each lexicon word based on the sentence represen-
tation. This layer is applied to and is functionally
identical for both P and N . As such, for notational
convenience, we use Q to represent either positive
(P ) or negative (N ), and G to represent the maxi-
mum number of lexicon words. Let Q 2 R

G⇥d be
a sequence of lexicon words and H 2 R

Ls⇥d be
the intermediate hidden representations obtained
from the contextual BiLSTM layer:

M = tanh(Q U HT ) (4)

where U 2 R
d⇥d are the parameters of this layer.

Next, we apply a column-wise max pooling of M .
The key idea is to generate an attention vector:

a = sm(max
col

(M)) ; ci = ai ⇤ qi (5)

where a 2 R
G. The softmax function normal-

izes the values of the vector maxcol(M) into a
probability distribution. To learn the context-
sensitive weight importance of each lexicon word,
we then apply the attention vector on Q. C =
{c1, c2 · · · cG} is the context-sensitive lexicon rep-
resentation of Q. Intuitively, the CA mechanism
attends to each lexicon word based on its maxi-
mum influence on each word of the main sentence.
There are several advantages to our context at-
tention mechanism. Unlike Lexicon RNN which
simply extracts the hidden representation (gener-
ated from BiLSTM) of the lexicon word, our ap-
proach has a global view of the entire sentence
which allows each lexicon word to benefit from
wider contextual knowledge as opposed to being
limited to the temporal compositionality provided
by the BiLSTM layer. Overall, the outputs of
this layer are two matrices (positive and negative
lexicon embeddings) which are context-sensitive.
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Figure 1: Illustration of our proposed Attentive Gated Lexicon Reader model (best viewed in color).

Note that these lexicon embeddings retain their di-
mensionality passing through this layer.

Contrastive Co-Attention (CC) This layer
aims to model the contrast between polarities. In-
tuitively, this layer helps to model sentences with
double or conflicting polarities. It also aims to
negate strongly positive or negative words in the
case of a neutral context. In order to do so, we em-
ploy a contrastive co-attention model that learns
to weight the relative importance of each positive
lexicon word based on the negative lexicon (and
vice versa). We accept the contextualized positive
and negative lexicon embeddings from the previ-
ous layer as an input. Let P̂ 2 R

G⇥d be the
contextualized positive lexicons and N̂ 2 R

G⇥d

be the contextualized negative lexicons, our co-
attention layer learns a soft attention alignment be-
tween positive and negative lexicon embeddings.
Similar to our contextual attention layer, we first
learn an affinity matrix Z that models the relation-
ship between positive and negative lexicon embed-
dings:

Z = tanh(P A NT ) (6)

Next, we apply both column-wise and row-wise
max-pooling on the affinity matrix Z to obtain
two attention vectors. The two attention vectors
are then normalized with the softmax function (de-

noted as sm).

ap = sm(max
col

(Z)) ; an = sm(max
row

(Z)) (7)

ap is the attention vector for the positive lexicon
embeddings and an is the attention vector for the
negative lexicon embeddings. The final vector rep-
resentations are therefore:

pf = P a>
p ; nf = N a>

n (8)

where pf 2 R
d and nf 2 R

d are the vector rep-
resentations for positive lexicon and negative lex-
icon respectively. Note that this layer, unlike the
contextual attention layer, is named ‘co-attention’
because both P and N are both ‘attended over’
concurrently. It is also good to note that attentions
are applied over the original embeddings P, N and
not the contextualized embeddings P̂ , N̂ .

Fully-Connected Layer Next, we pass the
concatenation of p and n through a fully-
connected layer to learn the final representation
for the auxiliary lexicon embedding, i.e., r =
tanh(Wh ([p; n]) + bh) where Wh 2 R

2d⇥d are
the parameters of the hidden layer and bh is the
bias value. The output r 2 R

d is the final auxil-
iary lexicon-based embedding.

Learning Final Representations To combine
the lexicon-based representation with the sentence
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representation, we adopt a gating mechanism.

ŝ = �(wg � r) � r + (1 � �(wg � r)) � s (9)

where wg 2 R
d are the parameters of this layer,

� is the sigmoid function. ŝ is the overall final
representation.

3.4 Final Layer and Optimization
Finally, we pass ŝ the overall final representation
into a softmax layer.

y = softmax(Wf ŝ + bf ) (10)

where y 2 R
k, where k is the number of classes

(2 for positive and negative and 3 including neu-
tral). Wf and bf are standard parameters of a lin-
ear regression layer. For optimization, we adopt
the standard cross entropy loss function with L2
regularization.

L = �
NX

i=1

[yi log oi + (1 � yi) log(1 � oi)] + R

(11)
where o is the output of the softmax layer and R =
� k k2

2 is the L2 regularization.

4 Empirical Evaluation

This section describes our empirical experiments.

4.1 Evaluation Procedure
In this section, we describe the datasets used, eval-
uation metric and implementation details.

Datasets We conduct our experiments2 on sub-
sets of sentiment analysis benchmarks from Se-
mEval 2013 (Nakov et al., 2013), SemEval 2014
(Rosenthal et al., 2014) and SemEval 2016 (Nakov
et al., 2016). More specifically, we focus on the
sentence level of sentiment analysis and evaluate
on the datasets of SemEval 2013 task 2, SemEval
2014 task 9 and SemEval 2016 task 4, which
we will name as SemEval13, SemEval14 and Se-
mEval16 respectively in this section. For fair com-
parison, we use the same setting of training, devel-
opment and testing as in SemEval competitions.
To further evaluate the performance of methods
when data is limited, for SemEval16, we experi-
ment on two different training settings. The first,
TRAIN, uses only the 2016 training set while the

2SemEval 2015 was omitted due to space in favor of Se-
mEval 2016 since testing sets are significantly larger in the
latter.

other, TRAIN-ALL, appends the 2013 training set
to the 2016 training set, following the official set-
ting of SemEval 2016 while TRAIN explores the
setting where training data is limited.

Evaluation Metrics We evaluate on two set-
tings, i.e., 3-way (positive, negative and neutral)
and also binary (positive and negative) classifica-
tion. We report the accuracy and macro-averaged
F1 score for all settings.

Compared Baselines In this section, we list the
neural baselines we use for comparisons.

• NBOW-MLP (Neural Bag-of-Words +
Multi-layered Perceptron) is a simple sum of
all word embeddings which is connected to a
2-layer MLP of 100 dimensions.

• CNN (Convolutional Neural Network) is an-
other popular neural encoder for learning
sentence representations. We use a filter size
of 3 and 150 filters.

• BiLSTM (Bidirectional Long Short-Term
Memory) is a standard strong neural baseline
for many NLP tasks. The size of the LSTM
is set to 150.

• AT-BiLSTM (Attention-based BiLSTM) is
an extension of the BiLSTM model with neu-
ral attention.

• Lexicon RNN (Lexicon Recurrent Neural
Network) is the model of (Teng et al., 2016).
The first neural model that incorporates sen-
timent lexicon. The size of the BiLSTM in
this model is also set to 150.

All models except Lexicon RNN optimize the
softmax cross entropy loss. The authors use Lex-
icon RNN for binary and 5-way classification. In
order to adapt Lexicon RNN to 3-way classifica-
tion (positive, negative, neutral), we adapt the 5-
way formulation that minimizes the MSE (mean
square error) loss to 3-way. The output is scaled3

to s 2 [�1, 1] where s > 0.25 is treated as posi-
tive, s < �0.25 is treated as negative and every-
thing in between is neutral.

3We experimented with other thresholds but found 0.25
to work the best.

3448



SemEval13 SemEval14
3-way Binary 3-way Binary AVG

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
NBOW-MLP 65.18 60.94 85.44 82.30 65.68 60.35 89.44 81.60 76.44 71.30

CNN 71.41 68.23 85.74 82.60 70.05 66.22 89.86 82.09 79.27 74.79
BiLSTM 72.06 70.00 85.89 82.79 71.62 68.34 90.20 83.09 79.94 76.06

AT-BiLSTM 72.21 69.89 86.13 83.22 71.83 68.01 90.20 83.46 80.09 76.15
Lexicon RNN 69.97 68.69 86.43 83.54 70.75 67.06 91.13 84.60 79.57 75.97

AGLR 73.27 71.79 86.72 84.18 73.29 70.48 90.37 84.15 80.91 77.65

Table 1: Experimental results on test datasets SemEval2013 and SemEval2014.
Sem2016 (TRAIN) Sem2016 (TRAIN-ALL)

3-way Binary 3-way Binary AVG
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

NBOW-MLP 54.31 52.90 79.69 77.33 61.09 55.91 84.90 82.01 70.00 67.04
CNN 54.67 52.17 79.79 75.28 62.68 57.71 84.10 81.31 70.31 66.62

BiLSTM 55.57 52.33 81.90 77.12 63.26 60.31 85.89 84.14 71.66 68.50
AT-BiLSTM 56.95 54.53 80.09 73.93 64.20 61.64 86.77 83.67 72.00 68.44

Lexicon RNN 51.02 50.45 81.72 79.00 61.41 60.50 86.68 83.82 70.21 68.44
AGLR 59.01 56.67 82.79 80.10 66.62 64.36 87.16 84.98 73.90 71.53

Table 2: Experimental results on Sem2016 with two training settings TRAIN and TRAIN-ALL.

Implementation Details Text are lowercased,
tokenized using NLTK’s tweet tokenizer and
padded to the maximum sequence length of the
dataset. For Lexicon RNN and AGLR, we use4 the
ST140 (Sentiment140) lexicon which was created
by distant supervision (Mohammad et al., 2013).
The maximum numbers of positive lexicons and
negative lexicons extracted per sample are tuned
amongst {5, 8, 10}. Models are trained for a max-
imum of 30 epochs with early stopping if the per-
formance on the development set does not improve
after 5 epochs. Results reported are the test scores
from the model that performed best on the de-
velopment set. The batch size is tuned amongst
{50, 100, 300}. L2 Regularization tuned amongst
{10�6, 10�7, 10�8}. Dropout is set to 0.5. We
optimized all networks with the RMSprop opti-
mizer and with initial learning rate tuned amongst
{0.01, 0.005, 0.001}. Word embeddings are ini-
tialized with Glove 27B (Pennington et al., 2014)
(d = 200) trained on tweets and are trainable pa-
rameters. The size of the BiLSTM is d = 100.

4.2 Experimental Results

Table 1 and Table 2 report the results of our ex-
periments. The results on TRAIN-ALL are higher

4We also used Bing Liu’s opinion lexicon but found it to
perform slightly worse.

than TRAIN for SemEval16 in lieu of the larger
dataset. Firstly, we observe that our proposed
AGLR outperforms all neural baselines on 3-way
classification. The overall performance of AGLR
achieves state-of-the-art performance. On aver-
age, AGLR outperforms Lexicon RNN and AT-
BiLSTM by 1% � 3% in terms of F1 score. We
also observe that AGLR always improves AT-
BiLSTM which ascertains the effectiveness of
learning auxiliary lexicon embeddings. The key
idea here is that the auxiliary lexicon embeddings
provide a different view of the sentence which sup-
ports the network in making predictions.

We also observe that Lexicon RNN does not
handle 3-way classification well. Even though it
has achieved good performance on binary classi-
fication, the performance on 3-way classification
is lackluster (the performance of AGLR outper-
forms Lexicon RNN by up to 8% on SemEval16
TRAIN). This could also be attributed to the MSE
based loss function. Conversely, by learning an
auxiliary embedding (instead of a scalar score),
our model becomes more flexible at the final layer
and can be adapted to using a k softmax func-
tion. Finally, we observe that BiLSTM and AT-
BiLSTM outperform Lexicon RNN on average
with Lexicon RNN being slightly better on binary
classification.
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Comparisons against Top SemEval Systems
Table 3 reports the results of our proposed ap-
proach against the top team of each SemEval run,
i.e., NRC-Canada (Mohammad et al., 2013) for
2013 Task 2, Team-X (Miura et al., 2014) for 2014
Task 9, SwissCheese (Deriu et al., 2016) for 2016
Task 4. We follow the exact training datasets al-
lowed for each SemEval run. Following the com-
petition setting, with the exception of accuracy for
SemEval 2016, all metrics reported are the macro
averaged F1 score of positive and negative classes.

Top System Ours
SemEval13 Tweets 69.02 70.10

SemEval14
Tweets 70.96 71.11

Sarcasm 56.50 58.87
LiveJournal 69.44 72.52

SemEval16 Tweets 63.30 61.90
Tweets (Acc) 64.60 66.60

Table 3: Comparisons against top SemEval sys-
tems. Results reported are the FPN metric scores
used in the SemEval tasks.

We observe that AGLR achieves competitive
performance relative to the top runs in SemEval
2013, 2014 and 2016. It is good to note that Se-
mEval approaches are often heavily engineered
containing ensembles and many handcrafted fea-
tures which include extensive use of sentiment
lexicons, POS tags and negation detectors. Re-
cent SemEval runs gravitate towards neural en-
sembles. For instance, the winning approach for
SwissCheese (SemEval 2016) uses an ensemble of
6 CNN models along with a meta-classifier (ran-
dom forest classifier). On the other hand, our pro-
posed model is a single neural model. In addi-
tion, SwissCheese also uses emoticon-based dis-
tant supervision which exploits a huge corpus of
sentences (millions) for training. Conversely, our
approach only uses the 2013 and 2016 training sets
which are significantly smaller. Given these condi-
tions, we find it remarkable that our single model
is able to achieve competitive performance relative
to the extensively engineered approach of Swiss-
Cheese. Moreover, we actually outperform sig-
nificantly in terms of pure accuracy. AGLR per-
forms competitively on SemEval 2013 and 2014
as well. The good performance on the sarcasm
dataset could be attributed to our contrastive at-
tention mechanism.

Ablation Study In this section, we study the im-
pacts and contribution of the different components

of our model. Specifically, we tested 3 settings.
The first, we removed CC only. In this case, pos-
itive and negative lexicons are summed instead of
a weighted summed using attention. In the next
setting, we removed CA only. Similarly, embed-
dings are summed instead of attentively summed.
Finally, we removed both CA and CC. In this case,
all lexicons are considered neural bag-of-words
(NBOW) and passed to the MLP layer. Table
4 shows the results of this ablation study on Se-
mEval16 using the TRAIN-ALL setting.

Model Acc F1
AT-BiLSTM only 64.20 (-2.42) 61.64 (-2.96)

AGLR (-CA and -CC) 62.42 (-4.20) 59.48 (-4.88)
AGLR (-CA) 65.81 (-0.81) 60.47 (-3.89)
AGLR (-CC) 64.38 (-2.24) 61.26 (-3.10)

AGLR 66.62 64.36

Table 4: Ablation study on SemEval16 (TRAIN-
ALL)

It is clear that both CC and CA are critical to
the performance of AGLR. Removing either or
both can cause performance to degrade. In partic-
ular, we also observe that CA seems to be less im-
portant than CC, i.e., performance drops more as
compared to removing CA. We also note that re-
moving both and a simple NBOW for lexicons can
degrade performance since the base AT-BiLSTM
is better than using NBOW lexicons as an auxil-
iary support. As such, the design of the auxiliary
embeddings must be treated with care.

Qualitative Analysis In order to study what
are the specific roles of the contextual and con-
trastive attention mechanism, we inspect the at-
tention maps over the positive and negative lexi-
cons. We use the following example in which the
ground truth label is positive: “Very excited about
Tuesday night @user free iced coffee and smooth-
ies courtesy of Dunkin Donuts will be set up.”.
Figure 2a shows the attention maps for contex-
tual attention. We observe that contextual atten-
tion focuses more on the context, i.e., focusing on
words such as ‘night’, ‘iced coffee’ and ‘smooth-
ies’. On the other hand, Figure 2b shows the atten-
tion maps after contrastive attention. We observe
that contrastive attention learns more polarity spe-
cific attentions, i.e., shifting some focus to ‘very
excited’. We also observe that the contrastive at-
tention tends to shift its attention weights to less
meaningful words for the negative lexicon if the
ground truth label is positive (and vice versa). We
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believe that this indicates that there is an absence
of negative sentiment.

(a) Attention over positive and negative lexicons for contextual
attention.

(b) Attention over positive and negative lexicons for contrastive
attention.

Figure 2: Visualization of Contextual Attention
and Contrastive Co-Attention.

5 Conclusion

We proposed a novel method of incorporating lex-
icons into neural models for the task of senti-
ment analysis. More specifically, we learn an aux-
iliary lexicon embedding using neural attention.
Our proposed model AGLR achieves an overall
state-of-the-art performance on multiple bench-
mark datasets outperforming strong neural base-
lines such as AT-BiLSTM and Lexicon RNN. The
performance of AGLR is also competitive relative
to top SemEval systems which utilized neural en-
sembles or very extensive feature engineering.
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Abstract

Multi-modal sentiment analysis offers various
challenges, one being the effective combina-
tion of different input modalities, namely text,
visual and acoustic. In this paper, we propose
a recurrent neural network based multi-modal
attention framework that leverages the con-
textual information for utterance-level senti-
ment prediction. The proposed approach ap-
plies attention on multi-modal multi-utterance
representations and tries to learn the contribut-
ing features amongst them. We evaluate our
proposed approach on two multi-modal senti-
ment analysis benchmark datasets, viz. CMU
Multi-modal Opinion-level Sentiment Inten-
sity (CMU-MOSI) corpus and the recently re-
leased CMU Multi-modal Opinion Sentiment
and Emotion Intensity (CMU-MOSEI) corpus.
Evaluation results show the effectiveness of
our proposed approach with the accuracies of
82.31% and 79.80% for the MOSI and MO-
SEI datasets, respectively. These are approxi-
mately 2 and 1 points performance improve-
ment over the state-of-the-art models for the
datasets.

1 Introduction

Traditionally, sentiment analysis (Pang and Lee,
2005, 2008) has been applied to a wide variety
of texts (Hu and Liu, 2004; Liu, 2012; Turney,
2002; Akhtar et al., 2016, 2017; Mohammad et al.,
2013). In contrast, multi-modal sentiment analysis
has recently gained attention due to the tremen-
dous growth of many social media platforms such
as YouTube, Instagram, Twitter, Facebook (Chen
et al., 2017; Poria et al., 2016, 2017d,b; Zadeh
et al., 2017, 2016) etc. It depends on the infor-
mation that can be obtained from more than one
modality (e.g. text, visual and acoustic) for the
analysis. The motivation is to leverage the vari-
eties of (often distinct) information from multiple
sources for building an efficient system. For ex-

ample, it is a non-trivial task to detect the senti-
ment of a sarcastic sentence “My neighbours are
home!! it is good to wake up at 3am in the morn-
ing.” as negative considering only the textual in-
formation. However, if the system has access to
some other sources of information, e.g. visual, it
can easily detect the unpleasant gestures of the
speaker and would classify it with the negative
sentiment polarity. Similarly, for some instances
acoustic features such as intensity, pitch, pause
etc. have important roles to play in the correctness
of the system. However, combining these informa-
tion in an effective manner is a non-trivial task that
researchers often have to face (Zadeh et al., 2017;
Chen et al., 2017).

A video provides a good source for extracting
multi-modal information. In addition to the visual
frames, it also provides information such as acous-
tic and textual representation of spoken language.
Additionally, a speaker can utter multiple utter-
ances in a single video and these utterances can
have different sentiments. The sentiment informa-
tion of an utterance often has inter-dependence on
other contextual utterances. Classifying such an
utterance in an independent manner poses many
challenges to the underlying algorithm.

In this paper, we propose a novel method that
employs a recurrent neural network based multi-
modal multi-utterance attention framework for
sentiment prediction.We hypothesize that apply-
ing attention to contributing neighboring utter-
ances and/or multi-modal representations may as-
sist the network to learn in a better way. The main
challenge in multi-modal sentiment analysis lies
in the proper utilization of the information ex-
tracted from multiple modalities. Although it is of-
ten argued that incorporation of all the available
modalities is always beneficial for enhanced per-
formance, it must be noted that not all the modal-
ities play equal role. Another concern in multi-
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modal framework is that the presence of noise in
one modality can affect the overall performance.
To better address these concerns we propose a
novel fusion method by focusing on inter-modality
relations computed between the target utterance
and its context. We argue that in multi-modal sen-
timent classification, not only the relation among
two modalities of the same utterance is important,
but also relatedness with the modalities across its
context are important.

Think of an utterance Ut that constitutes of
three modalities, say At (i.e. audio), Vt (i.e. vi-
sual) and Tt (i.e. text). Let us also assume Uk being
a member of the contextual utterances consisting
of the modalities - Ak, Vk and Tk. In this case,
our model computes the relatedness among the
modalities (for e.g., Vt and Tk) of Ut and Uk in or-
der to produce a richer multi-modal representation
for final classification. The attention mechanism
is then used to attend to the important contextual
utterances having higher relatedness or similarity
(computed using inter-modality correlations) with
the target utterance.

Unlike previous approaches that simply apply
attentions over the contextual utterance for classi-
fication, we attend over the contextual utterances
by computing correlations among the modali-
ties of the target utterance and the context ut-
terances. This explicitly helps us to distinguish
which modalities of the relevant contextual utter-
ances are more important for sentiment predic-
tion of the target utterance. The model facilitates
this modality selection by attending over the con-
textual utterances and thus generates better multi-
modal feature representation when these modali-
ties from the context are combined with the modal-
ities of the target utterance. We evaluate our pro-
posed approach on two recent benchmark datasets,
i.e. CMU-MOSI (Zadeh et al., 2016) and CMU-
MOSEI (Zadeh et al., 2018c), with one being the
largest (CMU-MOSEI) available dataset for multi-
modal sentiment analysis (c.f. Section 4.1). Evalu-
ation shows that the proposed attention framework
attains better performance than the state-of-the-art
systems for various combinations of input modal-
ities (i.e. text, visual & acoustic).

The main contributions of our proposed work
are three-fold: a) we propose a novel technique for
multi-modal sentiment analysis; b) we propose an
effective attention framework that leverages con-
tributing features across multiple modalities and

neighboring utterances for sentiment analysis; and
c) we present the state-of-the-art systems for senti-
ment analysis in two different benchmark datasets.

2 Related Work

A survey of the literature suggests that multi-
modal sentiment prediction is relatively a new area
as compared to textual based sentiment prediction
(Morency et al., 2011; Mihalcea, 2012; Poria et al.,
2016, 2017b; Zadeh et al., 2018a). A good re-
view covering the literature from uni-modal anal-
ysis to multi-modal analysis is presented in (Po-
ria et al., 2017a). An application of multi-kernel
learning based fusion technique was proposed in
(Poria et al., 2016), where they employed deep
convolutional neural networks for extracting the
textual features and fused it with other (visual &
acoustic) modalities for prediction.

Zadeh et al. (2016) introduced the multi-modal
dictionary to better understand the interaction be-
tween facial gestures and spoken words when ex-
pressing the sentiment. Authors introduced the
MOSI dataset, the first of its kind to enable the
studies of multi-modal sentiment intensity analy-
sis. Zadeh et al. (2017) proposed a Tensor Fusion
Network (TFN) model to learn the intra-modality
and inter-modality dynamics of the three modali-
ties (i.e. text, visual and acoustic). They reported
the improved accuracy using multi-modality on
the CMU-MOSI dataset. An application to lever-
age on the gated multi-modal embedded Long
Short Term Memory (LSTM) with temporal at-
tention (GME-LSTM(A)) for the word-level fu-
sion of multi-modality inputs is proposed in (Chen
et al., 2017). The Gated Multi-modal Embedding
(GME) alleviates the difficulties of fusion while
the LSTM with Temporal Attention (LSTM(A))
performs word-level fusion.

The works mentioned above did not take con-
textual information into account. Poria et al.
(2017b) proposed a LSTM based framework that
leverages the contextual information to capture
the inter-dependencies between the utterances. In
another work, Poria et al. (2017d) proposed an
user opinion based framework to combine the
three modality inputs (i.e. text, visual & acous-
tic) by applying a multi-kernel learning based
method. Zadeh et al. (2018a) proposed multi-
attention blocks (MAB) to capture information
across three modalities (text, visual & acoustic).
They reported improved accuracies in the range of
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2-3% over the state-of-the-art models for the dif-
ferent datasets.

The fundamental difference between our pro-
posed method and the existing works is that our
framework applies focus on the neighboring ut-
terances to leverage contextual information for
utterance-level sentiment prediction. To the best of
our knowledge, our current work is the very first
of its kind that attempts to employ multi-modal at-
tention block (exploiting neighboring utterances)
for sentiment prediction. We use multi-modal at-
tention framework that leverages contributing fea-
tures across multiple modalities and the neighbor-
ing utterances for sentiment analysis.

3 Proposed Methodology

In our proposed framework, we aim to leverage
the multi-modal and contextual information for
predicting the sentiment of an utterance. Utter-
ances of a particular speaker in a video represent
the time series information and it is logical that
the sentiment of a particular utterance would af-
fect the sentiments of the other neighboring utter-
ances. To model the relationship with the neigh-
boring utterances and multi-modality, we propose
a recurrent neural network based multi-modal at-
tention framework. The proposed framework takes
multi-modal information (i.e. text, visual & acous-
tic) for a sequence of utterances and feeds it into
three separate bi-directional Gated Recurrent Unit
(GRU) (Cho et al., 2014). This is followed by a
dense (fully-connected) operation which is shared
across the time-steps or utterances (one each for
text, visual & acoustic). We then apply multi-
modal attention on the outputs of the dense layers.
The objective is to learn the joint-association be-
tween the multiple modalities & utterances, and to
emphasize on the contributing features by putting
more attention to these. In particular, we employ
bi-modal attention framework, where an atten-
tion function is applied to the representations of
pairwise modalities i.e. visual-text, text-acoustic
and acoustic-visual. Finally, the outputs of pair-
wise attentions along with the representations are
concatenated and passed to the softmax layer for
classification. We call our proposed architecture
Multi-Modal Multi-Utterance - Bi-Modal Atten-
tion (MMMU-BA) framework. An overall archi-
tecture of the proposed MMMU-BA framework is
illustrated in Figure 1. Please refer to Figure 3 in
appendix for illustration of attention computation.

For comparison, we also experiment with
two other variants of the proposed MMMU-BA
framework i.e. a). Multi-Modal Uni-Utterance-
Self Attention (MMUU-SA) framework and b).
Multi-Utterance-Self Attention (MU-SA) frame-
work. The architecture of these variants differ
with respect to the attention computation module
and the naming conventions “MMMU”, “MMUU”
or “MU” signify the information that partici-
pates in the attention computation. For example,
in MMMU-BA, we compute attention over the
multi-modal and multi-utterance inputs, whereas
in MMUU-SA, the attention is computed over the
mutli-modal but uni-utterance inputs. In contrast,
we compute attention over only multi-utterance in-
puts in MU-SA. Rest of the components for all the
three variants remain same.

3.1 Multi-modal Multi-utterance - Bi-modal
Attention (MMMU-BA) Framework

Assuming a particular video has ‘u’ utterances, the
raw utterance level multi-modal features are rep-
resented as TR 2 R

u⇥300 (raw text), VR 2 R
u⇥35

(raw visual) and AR 2 R
u⇥74 (raw acoustic).

Three separate Bi-GRU layers with forward &
backward state concatenation are first applied on
the raw data followed by the fully-connected dense
layers, resulting in T 2 R

u⇥d (text), V 2 R
u⇥d

(visual) and A 2 R
u⇥d (acoustic), where ‘d’ is

the number of neurons in the dense layer. Finally,
pairwise-attentions are computed on various com-
binations of three modalities- (V, T), (T, A) & (A,
V). In particular the attention between V and T is
computed as follows:
• Bi-modal Attention: Modality representations of
V & T are obtained from the Bi-GRU network,
and hence contain the contextual information of
the utterances for each modality. At first, we com-
pute a pair of matching matrices M1, M2 2 R

u⇥u

over two representations that account for the cross-
modality information.

M1 = V.T T & M2 = T.V T

• Multi-Utterance Attention: As mentioned ear-
lier, in the proposed model we aim to leverage the
contextual information of each utterance for the
prediction. We compute the probability distribu-
tion scores (N1 2 R

u⇥u & N2 2 R
u⇥u) over

each utterance of bi-modal attention matrices M1

& M2 using a softmax function. This essentially
computes the attention weights for the contextual
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Figure 1: Overall architecture of the proposed MMMU-BA framework.

utterances. Finally, soft attention is applied over
the multi-modal multi-utterance attention matrices
to compute the modality-wise attentive representa-
tions (i.e. O1 & O2).

N1(i, j) =
eM1(i,j)

Pu
k=1 eM1(i,k)

for i, j = 1, .., u

N2(i, j) =
eM2(i,j)

Pu
k=1 eM2(i,k)

for i, j = 1, .., u.

O1 = N1.T & O2 = N2.V

• Multiplicative Gating & Concatenation: Fi-
nally, a multiplicative gating function following
(Dhingra et al., 2016) is computed between the
multi-modal utterance specific representations of
each individual modality and the other modalities.
This element-wise matrix multiplication assists in
attending to the important components of multiple
modalities and utterances.

A1 = O1 � V & A2 = O2 � T

Attention matrices A1 & A2 are then concatenated
to obtain the MMMU-BAVT 2 R

u⇥2d between V
and T.

MMMU-BAV T = concat[A1, A2]

MMMU-BAAV & MMMU-BATA computations:
Similar to MMMU-BAVT, we follow the same
procedure to compute MMMU-BAAV & MMMU-
BATA. For a data source comprising of raw vi-
sual (VR), acoustic (AR) & text (TR) modalities,
at first, we compute the bi-modal attention pairs
for each combination i.e. MMMU-BAVT, MMMU-
BAAV & MMMU-BATA. Finally, motivated by the
residual skip connection network (He et al., 2016),

we concatenate the bi-modal attention pairs with
individual modalities (i.e. V, A & T) to boost the
gradient flow to the lower layers. This concate-
nated feature is then used for final classification.

3.2 Multi-Modal Uni-Utterance - Self
Attention (MMUU-SA) Framework

MMUU-SA framework does not account for infor-
mation from the other utterances at the attention
level, rather it utilizes multi-modal information of
single utterance for predicting the sentiment. For a
video having ‘q’ utterances, ‘q’ separate attention
blocks are needed, where each block computes the
self-attention over multi-modal information of a
single utterance. Let Xup 2 R

3⇥d is the informa-
tion matrix of the pth utterance where the three ‘d’
dimensional rows are the outputs of the dense lay-
ers for the three modalities.

The attention matrix Aup 2 R
3⇥d is computed

separately for, p = 1st, 2nd, ... qth utterances. Fi-
nally, for each utterance p, Aup and Xup are con-
catenated and passed to the output layer for clas-
sification. Please refer to the appendix for more
details.

3.3 Multi-Utterance - Self Attention (MU-SA)
Framework

In MU-SA framework, we apply self attention on
the utterances of each modality separately, and use
these for classification. In contrast to MMUU-SA
framework, MU-SA utilizes the contextual infor-
mation of the utterances at the attention level. Let,
T 2 R

u⇥d (text), V 2 R
u⇥d (visual) and A 2

R
u⇥d (acoustic) are the outputs of the dense lay-

ers. For the three modalities, three separate atten-
tion blocks are required, where each block takes
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multi-utterance information of a single modality
and computes the self attention matrix. Attention
matrices At, Av and Aa are computed for text, vi-
sual and acoustic, respectively. Finally Av, At, Aa,
V , T & A are concatenated and passed to the out-
put layer for classification.

4 Datasets, Experiments and Analysis

In this section we describe the datasets used for
our experiments and report the results along with
the necessary analysis.

4.1 Datasets
We evaluate our proposed approach on two
benchmark datasets, namely CMU Multi-modal
Opinion-level Sentiment Intensity (CMU-MOSI)
corpus (Zadeh et al., 2016) and the recently pub-
lished CMU Multi-modal Opinion Sentiment and
Emotion Intensity (CMU-MOSEI) dataset (Zadeh
et al., 2018c). CMU-MOSI dataset consists of 93
videos spanning over 2199 utterances. Each utter-
ance has a sentiment label associated with it. It has
52, 10 & 31 videos in training, validation & test set
accounting for 1151, 296 & 752 utterances.

CMU-MOSEI has 3229 videos with 22676 ut-
terances from more than 1000 online YouTube
speakers. The training, validation & test set com-
prise of 16216, 1835 & 4625 utterances, respec-
tively. More details about these datasets are pre-
sented in the appendix.

Each utterance in CMU-MOSI dataset has been
annotated as either positive or negative, whereas in
CMU-MOSEI dataset labels are in the continuous
range of -3 to +3. However, in this work we project
the instances of CMU-MOSEI in a two-class clas-
sification setup with values � 0 signify positive
sentiments and values < 0 signify negative sen-
timents. We adopt such a strategy to be consistent
with the previous published works on CMU-MOSI
datasets (Poria et al., 2017b; Chen et al., 2017).

4.2 Feature extraction
We use the CMU-Multi-modal Data SDK1 (Zadeh
et al., 2018a) for feature extraction. For MOSEI
dataset, word-level features were provided where
text features were extracted by GloVe embeddings,
visual features by Facets2 & acoustic features by
CovaRep (Degottex et al., 2014). Thereafter, we

1https://github.com/A2Zadeh/
CMU-MultimodalDataSDK

2https://pair-code.github.io/facets/

compute the average of word-level features in an
utterance to obtain the utterance-level features.
For each word, the dimension of the feature vector
is set to 300 (text), 35 (visual) & 74 (acoustic).

In contrast, for MOSI dataset we use utterance-
level features3 provided in (Poria et al., 2017b).
These utterance-level features represent the out-
puts of a convolutional neural network (Karpathy
et al., 2014), 3D convolutional neural network (Ji
et al., 2013) & openSMILE (Eyben et al., 2010)
for text, visual & acoustic modalities, respectively.
Dimensions of utterance-level features are 100,
100 & 73 for text, visual & acoustic, respectively.

4.3 Experiments
We evaluate our proposed approach for CMU-
MOSI (test data) & CMU-MOSEI (dev data) 4.
Accuracy score is used as the evaluation metric.

We use Bi-directional GRUs having 300 neu-
rons, each followed by a dense layer consisting of
100 neurons. Utilizing the dense layer, we project
the input features of all the three modalities to the
same dimensions. We set dropout=0.5 (MOSI) &
0.3 (MOSEI) as a measure of regularization. In
addition, we also use dropout=0.4 (MOSI) & 0.3
(MOSEI) for the Bi-GRU layers. We employ ReLu
activation function in the dense layers, and soft-
max activation in the final classification layer. For
training the network we set the batch size=32, use
Adam optimizer with cross-entropy loss function
and train for 50 epochs. We report the average re-
sult of 5 runs for all our experiments.

We experiment with all the valid combinations
of uni-modal (where only one modality is taken
at a time), bi-modal (any two modalities are taken
at a time) and tri-modal (all three modalities are
taken at a time) inputs for text, visual and acoustic.
In multi-modal attention frameworks i.e. MMMU-
BA & MMUU-SA, the attention is computed over
at least two modalities, hence, these two frame-
works are not-applicable (NA) for uni-modal ex-
periments in Table 1).

For MOSEI dataset, we obtain better per-
formance with text. Subsequently, we take two
modalities at a time for constructing bi-modal in-
puts and feed it to the network. For text-acoustic
input pairs, we obtain the highest accuracies with
79.74%, 79.60% and 79.32% for MMMU-BA,

3https://github.com/SenticNet/
contextual-sentiment-analysis

4Gold annotation of CMU-MOSEI test data wasn’t re-
leased at the time of paper submission.
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Modality T V A
CMU-MOSEI CMU-MOSI

MMMU-BA MMUU-SA MU-SA MMMU-BA MMUU-SA MU-SA

Uni-modal
X - - NA NA 78.23 NA NA 80.18
- X - NA NA 74.84 NA NA 63.70
- - X NA NA 75.88 NA NA 62.10

Bi-modal
X X - 79.40 79.02 79.26 81.51 80.85 80.45
X - X 79.74 79.60 79.32 80.58 80.31 79.78
- X X 76.66 76.46 76.43 65.16 64.22 63.22

Tri-modal X X X 79.80 79.76 79.63 82.31 79.52 80.58

Table 1: Experimental results on CMU-MOSEI and CMU-MOSI datasets. MMMU-BA & MMUU-SA
frameworks require atleast two modalities to compute the attentions, hence, these two frameworks are
not-applicable (NA) for uni-modal inputs. All results are average of 5 runs with different random seeds.
T: Text, V: Visual, A: Acoustic. Results are reported in accuracy.

MMUU-SA and MU-SA frameworks, respectively.
The results that we obtain from the bi-modal com-
binations suggest that the text-acoustic combina-
tion is a better choice than the others as it improves
the overall performance. Finally, we experiment
with tri-modal inputs and observe an improved
performance of 79.80%, 79.76% and 79.63% for
MMMU-BA, MMUU-SA and MU-SA frameworks,
respectively. This improvement entails that combi-
nation of all the three modalities is a better choice.
The performance improvement was also found
to be statistically significant (T-test) than the bi-
modality and uni-modality inputs. Further, we ob-
serve that the MMMU-BA framework reports the
best accuracy of 79.80% for the MOSEI dataset,
thus supporting our claim that multi-modal atten-
tion framework (i.e. MMMU-BA) captures more
information than the self-attention frameworks
(i.e. MMUU-SA & MU-SA).

4.4 Analysis of Attention Mechanism

We analyze the attention values to understand the
learning behavior of the proposed architecture.
To illustrate, we take an example video from the
CMU-MOSI test dataset. The transcript of the ut-
terances for this particular video are presented in
Table 2. The gold sentiments are positive for all
the utterances except u3 & u4. We found that the
proposed tri-modal MMMU-BA model predicts the
labels of all the nine instances correctly, whereas
other models make at least one misclassification.
For the proposed tri-modal MMMU-BA model, the
heatmaps of the pair-wise MMMU-BA softmax at-
tention weights N1 & N2 of visual-text, acoustic-
visual & text-acoustic are illustrated in Figure 2a,
Figure 2b & Figure 2c, respectively. N1 & N2 are
the softmax attention weights obtained from the

pairwise matching matrices M1 & M2. Elements
of the rows of N1 & N2 matrices signify differ-
ent weights across multiple utterances. From the
attention heatmaps, it is evident that by applying
different weights across contextual utterances and
modalities the model is able to predict labels of all
the utterances correctly. All the heatmaps justify
that the model learns to incorporate multi-modal &
multi-utterance information and thus is able to cor-
rectly predict the labels of all the utterances. For
example, heatmap of MMMU-BAVT (Figure 2a)
signifies that elements of N1 are weighted higher
than N2, and thus the model puts more attention on
the textual part and relatively lesser on the visual
part (as N1 is multiplied with T & N2 is multiplied
with V). Also it can be concluded that textual fea-
tures of the first few utterances are the most help-
ful compared to the rest of the textual features and
visual features.

The softmax attention weights of text (Nt), vi-
sual (Nv) & acoustic (Na) in tri-modal MU-SA
model are illustrated in Figure 2d, Figure 2e &
Figure 2f, respectively. The attention matrices are
9*9 dimensional. This model wrongly predicts
the label of the utterance u5. On the other hand,
softmax attention weights in tri-modal MMUU-SA
model are illustrated in Figure 2g. Nine separate
attention weights (Nu1 , Nu2 , .., Nu9) are com-
puted for the nine utterances. This model wrongly
predicts the labels of the utterances u4 & u5.

We further analyze our proposed architecture
(i.e. MMMU-BA) with and without attention. In
MOSI for tri-modal inputs, the MMMU-BA archi-
tecture reports a reduced accuracy of 80.89% with-
out attention framework as compared to 82.31%
with attention. We observe similar performance
in the MOSEI dataset, where we obtain 79.02%
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Transcript Gold Label Predicted
MMMU-BA MMUU-SA MU-SA

u1 well he plays that well so he‘s good villain Positive Positive Positive Positive
u2 he also has some really cool guns so that its like a

desert eagle but it has to barrels to it
Positive Positive Positive Positive

u3 it‘s pretty pretty scary looking Negative Negative Negative Negative
u4 i wouldn‘t want that pointed at me Negative Negative Positive Negative
u5 and i who would i mean Positive Positive Negative Negative
u6 um like i said i thought the movie was great Positive Positive Positive Positive
u7 the action they do have is really well done Positive Positive Positive Positive
u8 um they did a good job with car Positive Positive Positive Positive
u9 they did a good job with fight scenes Positive Positive Positive Positive

Table 2: Transcript, gold labels and predicted labels of a video in CMU-MOSI dataset having nine utter-
ances. 7 utterances are labeled positive whereas 2 utterances are labeled negative. Predicted labels are
for our different tri-modal models. Bolded labels are misclassified by at least one model.

(a) Softmax attention weights N1 & N2

for MMMU- BAVT.
(b) Softmax attention weights N1 & N2

for MMMU- BAAV.
(c) Softmax attention weights N1 & N2

for MMMU- BATA.

(d) MU-SAtext matrix. (e) MU-SAvisual matrix. (f) MU-SAacoustic matrix.

(g) Softmax attention weights (Nu1 , Nu2 , .., Nu9 ) for MMUU-SA model.

Figure 2: (a), (b) & (c): Pair-wise softmax attention weights N1 & N2 of visual-text, acoustic-visual &
text-acoustic in Tri-modal MMMU-BA model. Solid line at the center represents boundary of N1 & N2.
The heatmaps represent attention weights of a particular utterance with respect to other utterances in N1

& N2. (d), (e) & (f) Softmax attention weights of text (Nt), visual (Nv) and acoustic (Na) in Tri-modal
MU-SA model. This model wrongly predicts the label of utterance u5. (g) Softmax attention weights of
the 9 utterances (NU1 , NU2 , .., NU9) in Tri-modal MMUU-SA model. This model wrongly predicts the
label of utterance u4 & u5. The Tri-modal MMMU-BA model predicts all 9 instances correctly, whereas,
the other two models makes at least one misclassification. Heatmap signifies that the model is able to
predict labels of all the utterances correctly by incorporating multi-modal & multi-utterance information.

3460



T V A
CMU-MOSEI CMU-MOSI

w/ attention w/o attention w/ attention w/o attention

X X - 79.40 78.27 81.51 80.71
X - X 79.74 78.12 80.58 80.18
- X X 76.66 76.32 65.16 63.69
X X X 79.80 79.02 82.31 80.89

Table 3: Analysis of attention mechanism in
MMMU-BA architecture. w/ attention ! with
multi-modal multi utterance attention mechanism
and w/o attention ! without attention mechanism.

accuracy without attention framework against
79.80% accuracy with attention framework. Sta-
tistical T-test shows these improvements to be sig-
nificant. We also observed the similar trends for
bi-modal inputs in both the datasets. All these ex-
periments (c.f. Table 3) suggest that the attention
framework is an important component in our pro-
posed architecture, and in absence of this the net-
work finds it more difficult for learning in all the
cases (i.e. bi-modal & tri-modal input setups).

We successfully show that attention computa-
tion on pairwise combination of modalities (i.e. bi-
modal attention framework) is more effective than
the combination of self-attention on single modal-
ity. Further for the completeness of the proposed
approach, we also experiment with tri-modal at-
tention framework (attention is computed on three
modalities at a time). Though the results that we
obtain are convincing, it does not improve the per-
formance over the bi-modal attention framework.
We obtain the accuracies of 79.58% & 81.25% on
MOSEI and MOSI, respectively, for the tri-modal
attention framework.

4.5 Comparative Analysis
For MOSI datasets we compare the performance
of our proposed approach with the the following
state-of-the-art systems: i). Poria et al. (2017b)-
LSTM-based sequence model to capture the con-
textual information of the utterances; ii). Poria
et al. (2017c)- Tensor level fusion technique for
combining all the three modalities; iii). Chen
et al. (2017)-A gated multi-modal embedded
LSTM with temporal attention (GME-LSTM(A))
for word-level fusion of multi-modality inputs.
and iv). Zadeh et al. (2018a)- Multiple attention
blocks for capturing the information across the
three modalities.

In Table 4 we present the comparative perfor-
mance between our proposed model and other
state-of-the-art systems. In MOSI dataset, Poria

et al. (2017b; 2017c) reported the accuracies of
80.3% & 81.3 %, respectively, utilizing tri-modal
inputs. Zadeh et al. (2018a) obtained an accuracy
of & 77.4%. Chen et al. (2017) reported accuracies
of 75.7% (LSTM(A)) & 76.5% (GME-LSTM(A))
for two variants of their model. In contrast to the
state-of-the-art systems, our proposed model at-
tains an improved accuracy of 82.31% when we
utilize all the three modalities, i.e. text, visual &
acoustic. Our proposed system also obtains better
performance as compared to the state-of-the-arts
for bi-modal inputs.

For MOSEI dataset, we evaluate against the fol-
lowing systems: i) Poria et al. (2017b), ii) Zadeh
et al. (2018a), and iii) Zadeh et al. (2018b), where
authors proposed a memory fusion network for
multi-view sequential learning. We evaluate the
system of Poria et al. (2017b) on MOSEI dataset
and obtain 77.64% accuracy with the tri-modal in-
puts. Authors in (Zadeh et al., 2018a) & (Zadeh
et al., 2018b) reported the accuracy 76.0% and
76.4%, respectively, with the tri-modal inputs. In
comparison, our proposed approach yields an ac-
curacy of 79.80%. As reported in Table 4 the pro-
posed approach also attains better performance for
all the bi-modal and uni-modal input combinations
when compared to Poria et al. (2017b).

As reported in Table 4, we observe that the per-
formance achieved in our proposed approach is
significantly better in comparison to the state-of-
the-art systems with p-value< 0.05 (obtained us-
ing T-test). For further analysis, we also report re-
sults for three-class classification (positive, neu-
tral & negative classes) problem setup for MOSEI
dataset in Table 7. Note that this setup is not feasi-
ble in MOSI as labels are only positive or negative.

4.6 Error Analysis

We perform error analysis on the predictions of
our proposed MMMU-BA model with all the three
input sources. Confusion matrices for both the
datasets are demonstrated in Table 5. For MO-
SEI dataset we observe that the precision and re-
call for positive class (84% precision & 88% re-
call; are quite encouraging. However, the same are
comparatively on the lower side for the negative
class (68% precision & 58% recall. In contrast, for
the MOSI dataset - which is relatively balanced -
we obtain quite similar performance for both the
classes i.e. positive (86% precision & 85% recall)
and negative (77% precision & 75% recall). Please
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Modality T V A
CMU-MOSEI CMU-MOSI

Poria
et al.

(2017b)

Zadeh
et al.

(2018a)

Zadeh
et al.

(2018b)

Proposed Poria
et al.

(2017b)

Poria
et al.

(2017c)

Chen et al. (2017) Zadeh
et al.

(2018a)

Proposed

LSTM(A) GME-
LSTM(A)

Uni-modal
X - - 76.75 - - 78.23 78.1 - 71.3 - - 80.18
- X - 71.84 - - 74.84 60.3 - 52.3 - - 63.70

- - X 70.94 - - 75.88 55.8 - 55.4 - - 62.10

Bi-modal
X X - 77.03 - - 79.40 79.3 79.9 74.3 - - 81.51
X - X 76.89 - - 79.74 80.2 80.1 73.5 - - 80.58
- X X 72.74 - - 76.66 62.1 62.9 - - - 65.16

Tri-modal X X X 77.64 76.0 76.4 79.80 80.3 81.3 75.7 76.5 77.4 82.31
T-test (p-values) - - - 0.0025 - - - - - 0.0006

Table 4: Comparative analysis of the proposed approach with recent state-of-the-art systems. Significance
T-test p-values < 0.05

MOSEI
102 234

1230 269
Positive Negative

63 215
404 70

Positive Negative

MOSI

Table 5: Con-
fusion matrix
for tri-modal
MMMU-BA.

Text Actual Predicted Possible Reason

M
O

SI

At first I thought the movie would appeal more to younger audience. negative positive
Implicit sentiment.

Its really non-stop from beginning to end. negative positive
But its action isn’t particularly memorable. negative positive

Negation & strong word.
I mean I don’t regret seeing it. positive negative
Um I was really looking forward to it. negative positive Sarcastic sentence.

M
O

SE
I

And when I was going to school it was really difficult for me to find
avenues and resources to be able to reach higher education.

negative positive
Implicit sentiment.

We could have a decision from the court on the stay any day now. positive negative
Holidays never really happen in online courses I guess. negative positive

Negation & strong word.Young people dropping out of the labour market are actually not
counted anymore as unemployed as they are inactive.

positive negative

Thank you for your efforts and consideration. negative positive Sarcastic sentence.

Table 6: Error Analysis: Frequent error cases and their possible reasons of failure
for the tri-modal MMMU-BA framework.

Metric

CMU-MOSEI
Poria et al.

(2017b)
MMMU-BA
(Tri-modal)

Accuracy 61.89 63.30
F1 Score 61.60 63.07

Table 7: Three class (positive, negative, neutral)
classification results in MOSEI dataset.

refer to the appendix for PR curves of different in-
put combinations.

We further analyze our outputs qualitatively and
list a few frequently occurring error categories
with examples in Table 6.

5 Conclusion

In this paper, we have proposed a recurrent neu-
ral network based multi-modal attention frame-
work that leverages the contextual information for
utterance-level sentiment prediction. The network
learns on top of three modalities, viz. text, vi-
sual and acoustic, considering sequence of utter-

ances in a video. Through evaluation results on
two benchmark datasets (one being the popular &
commonly used (MOSI) and other being the most
recent & largest (MOSEI) dataset for multi-modal
sentiment analysis), we successfully showed that
the proposed attention based framework performs
better than various state-of-the-art systems.

In future, we would like to investigate new tech-
niques, and explore the ways to handle implicit
sentiment and sarcasm. Future direction of work
also include adding more dimensions, e.g. emo-
tion analysis & intensity prediction.
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7 Appendix

7.1 Multi-Modal Uni-Utterance - Self
Attention (MMUU-SA) Framework

Let Xp 2 R
3⇥d is the information matrix of the

pth utterance where the three ‘d’ dimensional rows
are the outputs of the time-distributed dense layer
for the three modalities. Computation in the pth

attention block proceeds as follows:

Mup = Xup .X
T
up

Nup(i, j) =
eMup (i,j)

P3
k=1 eMup (i,k)

for i, j = 1, 2, 3;

Oup = Nup .Xup

Aup = Oup � Xup

The attention matrix Aup 2 R
3⇥d is computed

separately for, p = 1st, 2nd, ... qth utterances. Fi-
nally, for each utterance p, Aup and Xup are con-
catenated and passed to the output layer for classi-
fication.

7.2 Multi-Utterance - Self Attention (MU-SA)
Framework

In MU-SA framework, we apply self attention on
the utterances of each modality separately, and use
these for classification. In contrast to MMUU-SA
framework, MU-SA utilizes the contextual infor-
mation of the utterances at the attention level. Let,
T 2 R

u⇥d (text), V 2 R
u⇥d (visual) and A 2

R
u⇥d (acoustic) are the outputs of the dense lay-

ers. For the three modalities, three separate atten-
tion blocks are required, where each block takes
multi-utterance information of a single modality
and computes the self attention matrix. Specifi-
cally, the MU-SA attention (Av) on V (visual) will
be computed as follows,

Mv = V.V T

Nv(i, j) =
eMv(i,j)

Pu
k=1 eMv(i,k)

for i, j = 1, .., u

Ov = Nv.V

Av = Ov � V

The attention matrix Ap 2 R
3⇥d is computed for

p = 1st, 2nd, ...uth utterances. Finally, for each ut-
terance u, Ap and Xp are concatenated and passed
to the output layer with softmax activation for
classification.

7.3 Dataset Statistics

Dataset statistics are presented in Table 8.

7.4 Attention Computation

MMMU-BAVT attention computation is illustrated
in Figure 3.
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Statistics
CMU-MOSI CMU-MOSEI

Tr Dv Ts Tr Dv Ts

#Videos 52 10 31 2250 300 679
#Utterance 1151 296 752 16216 1835 4625
#Utterance/Video - Min 9 9 10 1 1 1
#Utterance/Video - Max 63 34 43 98 37 52
#Utterance/Video - Avg 24.692 22.9 22.129 7.207 6.116 6.821
#Positive 556 153 467 11498 1332 3281
#Negative 595 143 285 4718 503 1344
#Words/Utter. - Min 1 1 1 1 1 1
#Words/Utter. - Max 99 44 108 515 224 549
#Words/Utter. - Avg 11.533 10.786 13.176 18.227 18.498 18.658
#Utter-Len/Video - Min 0.219s 0.648s 0.229s 0.089s 0.22s 0.15s
#Utter-Len/Video - Max 38.233s 13.599s 31.957s 208.27s 90.42s 188.22s
#Utter-Len/Video - Avg 3.635s 3.538s 4.536s 6.896s 6.960s 7.158s
#Speakers 89 1000

(a) Data Statistics. Tr!Train set; Dv!Development set; Ts!Test set;

Table 8: Dataset statistics for MOSI (Zadeh et al., 2016) and MOSEI (Zadeh et al., 2018c).
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Figure 3: MMMU-BAVT attention computation.

7.5 Precision-Recall (PR) curve

We illustrate the precision, recall & f-measure for
different input combinations in Figure 4 & Figure
5.
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Figure 4: Precision, Recall & F-measure for differ-
ent input combinations in MMMU-BA architecture
of MOSI dataset.
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Figure 5: Precision, Recall & F-measure for differ-
ent input combinations in MMMU-BA architecture
of MOSEI dataset.
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Abstract

We consider the cross-domain sentiment clas-
sification problem, where a sentiment classi-
fier is to be learned from a source domain and
to be generalized to a target domain. Our ap-
proach explicitly minimizes the distance be-
tween the source and the target instances in
an embedded feature space. With the differ-
ence between source and target minimized,
we then exploit additional information from
the target domain by consolidating the idea
of semi-supervised learning, for which, we
jointly employ two regularizations – entropy
minimization and self-ensemble bootstrapping
– to incorporate the unlabeled target data for
classifier refinement. Our experimental results
demonstrate that the proposed approach can
better leverage unlabeled data from the target
domain and achieve substantial improvements
over baseline methods in various experimental
settings.

1 Introduction

In practice, it is often difficult and costly to anno-
tate sufficient training data for diverse application
domains on-the-fly. We may have sufficient la-
beled data in an existing domain (called the source
domain), but very few or no labeled data in a
new domain (called the target domain). This issue
has motivated research on cross-domain sentiment
classification, where knowledge in the source do-
main is transferred to the target domain in order to
alleviate the required labeling effort.

One key challenge of domain adaptation is that
data in the source and target domains are drawn
from different distributions. Thus, adaptation per-
formance will decline with an increase in distribu-
tion difference. Specifically, in sentiment analy-
sis, reviews of different products have different vo-
cabulary. For instance, restaurants reviews would
contain opinion words such as “tender”, “tasty”, or

“undercooked” and movie reviews would contain
“thrilling”, “horrific”, or “hilarious”. The intersec-
tion between these two sets of opinion words could
be small which makes domain adaptation difficult.

Several techniques have been proposed for ad-
dressing the problem of domain shifting. The
aim is to bridge the source and target domains
by learning domain-invariant feature representa-
tions so that a classifier trained on a source do-
main can be adapted to another target domain.
In cross-domain sentiment classification, many
works (Blitzer et al., 2007; Pan et al., 2010; Zhou
et al., 2015; Wu and Huang, 2016; Yu and Jiang,
2016) utilize a key intuition that domain-specific
features could be aligned with the help of domain-
invariant features (pivot features). For instance,
“hilarious” and “tasty” could be aligned as both
of them are relevant to “good”.

Despite their promising results, these works
share two major limitations. First, they highly de-
pend on the heuristic selection of pivot features,
which may be sensitive to different applications.
Thus the learned new representations may not ef-
fectively reduce the domain difference. Further-
more, these works only utilize the unlabeled tar-
get data for representation learning while the sen-
timent classifier was solely trained on the source
domain. There have not been many studies on ex-
ploiting unlabeled target data for refining the clas-
sifier, even though it may contain beneficial infor-
mation. How to effectively leverage unlabeled tar-
get data still remains an important challenge for
domain adaptation.

In this work, we argue that the information
from unlabeled target data is beneficial for do-
main adaptation and we propose a novel Domain
Adaptive Semi-supervised learning framework
(DAS) to better exploit it. Our main intuition is
to treat the problem as a semi-supervised learn-
ing task by considering target instances as unla-
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beled data, assuming the domain distance can be
effectively reduced through domain-invariant rep-
resentation learning. Specifically, the proposed
approach jointly performs feature adaptation and
semi-supervised learning in a multi-task learning
setting. For feature adaptation, it explicitly mini-
mizes the distance between the encoded represen-
tations of the two domains. On this basis, two
semi-supervised regularizations – entropy mini-
mization and self-ensemble bootstrapping – are
jointly employed to exploit unlabeled target data
for classifier refinement.

We evaluate our method rigorously under multi-
ple experimental settings by taking label distribu-
tion and corpus size into consideration. The re-
sults show that our model is able to obtain sig-
nificant improvements over strong baselines. We
also demonstrate through a series of analysis that
the proposed method benefits greatly from incor-
porating unlabeled target data via semi-supervised
learning, which is consistent with our motivation.
Our datasets and source code can be obtained from
https://github.com/ruidan/DAS.

2 Related Work

Domain Adaptation: The majority of feature
adaptation methods for sentiment analysis rely on
a key intuition that even though certain opinion
words are completely distinct for each domain,
they can be aligned if they have high correlation
with some domain-invariant opinion words (pivot
words) such as “excellent” or “terrible”. Blitzer
et al. (2007) proposed a method based on struc-
tural correspondence learning (SCL), which uses
pivot feature prediction to induce a projected fea-
ture space that works well for both the source and
the target domains. The pivot words are selected in
a way to cover common domain-invariant opinion
words. Subsequent research aims to better align
the domain-specific words (Pan et al., 2010; He
et al., 2011; Wu and Huang, 2016) such that the
domain discrepancy could be reduced. More re-
cently, Yu and Jiang (2016) borrow the idea of
pivot feature prediction from SCL and extend it
to a neural network-based solution with auxiliary
tasks. In their experiment, substantial improve-
ment over SCL has been observed due to the use
of real-valued word embeddings. Unsupervised
representation learning with deep neural networks
(DNN) such as denoising autoencoders has also
been explored for feature adaptation (Glorot et al.,

2011; Chen et al., 2012; Yang and Eisenstein,
2014). It has been shown that DNNs could learn
transferable representations that disentangle the
underlying factors of variation behind data sam-
ples.

Although the aforementioned methods aim to
reduce the domain discrepancy, they do not explic-
itly minimize the distance between distributions,
and some of them highly rely on the selection of
pivot features. In our method, we formally con-
struct an objective for this purpose. Similar ideas
have been explored in many computer vision prob-
lems, where the representations of the underlying
domains are encouraged to be similar through ex-
plicit objectives (Tzeng et al., 2014; Ganin and
Lempitsky, 2015; Long et al., 2015; Zhuang et al.,
2015; Long et al., 2017) such as maximum mean
discrepancy (MMD) (Gretton et al., 2012). In NLP
tasks, Li et al. (2017) and Chen et al. (2017) both
proposed using adversarial training framework for
reducing domain difference. In their model, a sub-
network is added as a domain discriminator while
deep features are learned to confuse the discrim-
inator. The feature adaptation component in our
model shares similar intuition with MMD and ad-
versary training. We will show a detailed compar-
ison with them in our experiments.
Semi-supervised Learning: We attempt to treat
domain adaptation as a semi-supervised learning
task by considering the target instances as unla-
beled data. Some efforts have been initiated on
transfer learning from unlabeled data (Dai et al.,
2007; Jiang and Zhai, 2007; Wu et al., 2009).
In our model, we reduce the domain discrep-
ancy by feature adaptation, and thereafter adopt
semi-supervised learning techniques to learn from
unlabeled data. Primarily motivated by (Grand-
valet and Bengio, 2004) and (Laine and Aila,
2017), we employed entropy minimization and
self-ensemble bootstrapping as regularizations to
incorporate unlabeled data. Our experimental re-
sults show that both methods are effective when
jointly trained with the feature adaptation objec-
tive, which confirms to our motivation.

3 Model Description

3.1 Notations and Model Overview
We conduct most of our experiments under an un-
supervised domain adaptation setting, where we
have no labeled data from the target domain. Con-
sider two sets Ds and Dt. Ds = {x(s)

i ,y(s)
i }|ns

i=1 is
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from the source domain with ns labeled examples,
where yi 2 R

C is a one-hot vector representation
of sentiment label and C denotes the number of
classes. Dt = {x(t)

i }|nt
i=1 is from the target domain

with nt unlabeled examples. N = ns +nt denotes
the total number of training documents including
both labeled and unlabeled1. We aim to learn a
sentiment classifier from Ds and Dt such that the
classifier would work well on the target domain.
We also present some results under a setting where
we assume that a small number of labeled target
examples are available (see Figure 3).

For the proposed model, we denote G parame-
terized by ✓g as a neural-based feature encoder that
maps documents from both domains to a shared
feature space, and F parameterized by ✓f as a
fully connected layer with softmax activation serv-
ing as the sentiment classifier. We aim to learn fea-
ture representations that are domain-invariant and
at the same time discriminative on both domains,
thus we simultaneously consider three factors in
our objective: (1) minimize the classification error
on the labeled source examples; (2) minimize the
domain discrepancy; and (3) leverage unlabeled
data via semi-supervised learning.

Suppose we already have the encoded features
of documents {�

(s,t)
i = G(x(s,t)

i ; ✓g)}|Ni=1 (see
Section 4.1), the objective function for purpose (1)
is thus the cross entropy loss on the labeled source
examples

L = � 1

ns

nsX

i=1

CX

j=1

y(s)
i (j) log ỹ(s)

i (j) (1)

where ỹ(s)
i = F(�(s)

i ; ✓f ) denotes the predicted la-
bel distribution. In the following subsections, we
will explain how to perform feature adaptation and
domain adaptive semi-supervised learning in de-
tails for purpose (2) and (3) respectively.

3.2 Feature Adaptation
Unlike prior works (Blitzer et al., 2007; Yu and
Jiang, 2016), our method does not attempt to align
domain-specific words through pivot words. In
our preliminary experiments, we found that word
embeddings pre-trained on a large corpus are able
to adequately capture this information. As we will

1Note that unlabeled source examples can also be in-
cluded for training. In that case, N = ns + nt + ns0 where
ns0 denotes the number of unlabeled source examples. This
corresponds to our experimental setting 2. For simplicity, we
only consider ns and nt in our description.

later show in our experiments, even without adap-
tation, a naive neural network classifier with pre-
trained word embeddings can already achieve rea-
sonably good results.

We attempt to explicitly minimize the distance
between the source and target feature represen-
tations ({�

(s)
i }|ns

i=1 and {�
(t)
i }nt

i=1). A few meth-
ods from literature can be applied such as Maxi-
mum Mean Discrepancy (MMD) (Gretton et al.,
2012) or adversary training (Li et al., 2017; Chen
et al., 2017). The main idea of MMD is to esti-
mate the distance between two distributions as the
distance between sample means of the projected
embeddings in Hilbert space. MMD is implicitly
computed through a characteristic kernel, which is
used to ensure that the sample mean is injective,
leading to the MMD being zero if and only if the
distributions are identical. In our implementation,
we skip the mapping procedure induced by a char-
acteristic kernel for simplifying the computation
and learning. We simply estimate the distribution
distance as the distance between the sample means
in the current embedding space. Although this ap-
proximation cannot preserve all statistical features
of the underlying distributions, we find it performs
comparably to MMD on our problem. The follow-
ing equations formally describe the feature adap-
tation loss J :

J = KL(gs||gt) + KL(gt||gs) (2)

g0
s =

1

ns

nsX

i=1

�
(s)
i , gs =

g0
s

kg0
sk1

(3)

g0
t =

1

nt

ntX

i=1

�
(t)
i , gt =

g0
t

kg0
tk1

(4)

L1 normalization is applied on the mean represen-
tations g0

s and g0
t, rescaling the vectors such that

all entries sum to 1. We adopt a symmetric ver-
sion of KL divergence (Zhuang et al., 2015) as the
distance function. Given two distribution vectors
P, Q 2 R

k, KL(P||Q) =
Pk

i=1 P(i) log( P(i)
Q(i)).

3.3 Domain Adaptive Semi-supervised
Learning (DAS)

We attempt to exploit the information in target
data through semi-supervised learning objectives,
which are jointly trained with L and J . Normally,
to incorporate target data, we can minimize the
cross entropy loss between the true label distri-
butions y(t)

i and the predicted label distributions
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ỹ(t)
i = F(�(t)

i ; ✓f ) over target samples. The chal-
lenge here is that y(t)

i is unknown, and thus we
attempt to estimate it via semi-supervised learn-
ing. We use entropy minimization and bootstrap-
ping for this purpose. We will later show in our
experiments that both methods are effective, and
jointly employing them overall yields the best re-
sults.
Entropy Minimization: In this method, y(t)

i is
estimated as the predicted label distribution ỹ(t)

i ,
which is a function of ✓g and ✓f . The loss can thus
be written as

� = � 1

nt

ntX

i=1

CX

j=1

ỹ(t)
i (j) log ỹ(t)

i (j) (5)

Assume the domain discrepancy can be effectively
reduced through feature adaptation, by minimiz-
ing the entropy penalty, training of the classifier
is influenced by the unlabeled target data and will
generally maximize the margins between the tar-
get examples and the decision boundaries, increas-
ing the prediction confidence on the target domain.

Self-ensemble Bootstrapping: Another way to
estimate y(t)

i corresponds to bootstrapping. The
idea is to estimate the unknown labels as the
predictions of the model learned from the pre-
vious round of training. Bootstrapping has
been explored for domain adaptation in previous
works (Jiang and Zhai, 2007; Wu et al., 2009).
However, in their methods, domain discrepancy
was not explicitly minimized via feature adap-
tation. Applying bootstrapping or other semi-
supervised learning techniques in this case may
worsen the results as the classifier can perform
quite bad on the target data.

Inspired by the ensembling method proposed
in (Laine and Aila, 2017), we estimate y(t)

i by
forming ensemble predictions of labels during
training, using the outputs on different training
epochs. The loss is formulated as follows:

⌦ = � 1

N

NX

i=1

CX

j=1

z̃(s,t)
i (j) log ỹ(s,t)

i (j) (6)

where z̃ denotes the estimated labels computed on
the ensemble predictions from different epochs.
The loss is applied on all documents. It serves
for bootstrapping on the unlabeled target data, and
it also serves as a regularization that encourages

Algorithm 1 Pseudocode for training DAS
Require: Ds, Dt, G, F
Require: ↵ = ensembling momentum, 0  ↵ < 1
Require: w(t) = weight ramp-up function

Z 0[N⇥C]

z̃ 0[N⇥C]

for t 2 [1, max-epochs] do
for each minibatch B(s), B(t), B(u) in

Ds, Dt, {x(s,t)
i }|Ni=1 do

compute loss L on [xi2B(s) ,yi2B(s) ]
compute loss J on [xi2B(s) ,xj2B(t) ]
compute loss � on xi2B(t)

compute loss ⌦ on [xi2B(u) , z̃i2B(u) ]
overall-loss L + �1J + �2� + w(t)⌦
update network parameters

end for
Z0

i  F(G(xi)), for i 2 N
Z ↵Z + (1� ↵)Z0

z̃ one-hot-vectors(Z)
end for

the network predictions to be consistent in differ-
ent training epochs. ⌦ is jointly trained with L,
J , and �. Algorithm 1 illustrates the overall train-
ing process of the proposed domain adaptive semi-
supervised learning (DAS) framework.

In Algorithm 1, �1, �2, and w(t) are weights
to balance the effects of J , �, and ⌦ respectively.
�1 and �2 are constant hyper-parameters. We set
w(t) = exp[�5(1 � t

max-epochs)
2]�3 as a Gaus-

sian curve to ramp up the weight from 0 to �3.
This is to ensure the ramp-up of the bootstrapping
loss component is slow enough in the beginning
of the training. After each training epoch, we com-
pute Z0

i which denotes the predictions made by the
network in current epoch, and then the ensemble
prediction Zi is updated as a weighted average of
the outputs from previous epochs and the current
epoch, with recent epochs having larger weight.
For generating estimated labels z̃i, Zi is converted
to a one-hot vector where the entry with the maxi-
mum value is set to one and other entries are set to
zeros. The self-ensemble bootstrapping is a gener-
alized version of bootstrappings that only use the
outputs from the previous round of training (Jiang
and Zhai, 2007; Wu et al., 2009). The ensemble
prediction is likely to be closer to the correct, un-
known labels of the target data.
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Domain #Pos #Neg #Neu Total
Book Set 1 2000 2000 2000 6000

Set 2 4824 513 663 6000
Electronics Set 1 2000 2000 2000 6000

Set 2 4817 694 489 6000
Beauty Set 1 2000 2000 2000 6000

Set 2 4709 616 675 6000
Music Set 1 2000 2000 2000 6000

Set 2 4441 785 774 6000

(a) Small-scale datasets

Domain #Pos #Neg #Neu Total
IMDB 55,242 11,735 17,942 84,919
Yelp 155,625 29,597 45,941 231,163
Cell Phone 148,657 24,343 21,439 194,439
Baby 126,525 17,012 17,255 160,792

(b) Large-scale datasets

Table 1: Summary of datasets.

4 Experiments
4.1 CNN Encoder Implementation
We have left the feature encoder G unspecified,
for which, a few options can be considered. In
our implementation, we adopt a one-layer CNN
structure from previous works (Kim, 2014; Yu and
Jiang, 2016), as it has been demonstrated to work
well for sentiment classification tasks. Given a re-
view document x = (x1, x2, ..., xn) consisting of
n words, we begin by associating each word with
a continuous word embedding (Mikolov et al.,
2013) ex from an embedding matrix E 2 R

V ⇥d,
where V is the vocabulary size and d is the embed-
ding dimension. E is jointly updated with other
network parameters during training. Given a win-
dow of dense word embeddings ex1 , ex2 , ..., exl ,
the convolution layer first concatenates these vec-
tors to form a vector x̂ of length ld and then the
output vector is computed by Equation (7):

Conv(x̂) = f(W · x̂ + b) (7)

✓g = {W, b} is the parameter set of the en-
coder G and is shared across all windows of the
sequence. f is an element-wise non-linear activa-
tion function. The convolution operation can cap-
ture local contextual dependencies of the input se-
quence and the extracted feature vectors are sim-
ilar to n-grams. After the convolution operation
is applied to the whole sequence, we obtain a list
of hidden vectors H = (h1,h2, ...,hn). A max-
over-time pooling layer is applied to obtain the fi-
nal vector representation � of the input document.

4.2 Datasets and Experimental Settings
Existing benchmark datasets such as the Amazon
benchmark (Blitzer et al., 2007) typically remove

reviews with neutral labels in both domains. This
is problematic as the label information of the tar-
get domain is not accessible in an unsupervised
domain adaptation setting. Furthermore, remov-
ing neutral instances may bias the dataset favor-
ably for max-margin-based algorithms like ours,
since the resulting dataset has all uncertain labels
removed, leaving only high confidence examples.
Therefore, we construct new datasets by ourselves.
The results on the original Amazon benchmark is
qualitatively similar, and we present them in Ap-
pendix A for completeness since most of previous
works reported results on it.
Small-scale datasets: Our new dataset was de-
rived from the large-scale Amazon datasets2 re-
leased by McAuley et al. (2015). It contains four
domains3: Book (BK), Electronics (E), Beauty
(BT), and Music (M). Each domain contains two
datasets. Set 1 contains 6000 instances with ex-
actly balanced class labels, and set 2 contains
6000 instances that are randomly sampled from
the large dataset, preserving the original label dis-
tribution, which we believe better reflects the label
distribution in real life. The examples in these two
sets do not overlap. Detailed statistics of the gen-
erated datasets are given in Table 1a.

In all our experiments on the small-scale
datasets, we use set 1 of the source domain as the
only source with sentiment label information dur-
ing training, and we evaluate the trained model on
set 1 of the target domain. Since we cannot con-
trol the label distribution of unlabeled data during
training, we consider two different settings:
Setting (1): Only set 1 of the target domain is used
as the unlabeled set. This tells us how the method
performs in a condition when the target domain
has a close-to-balanced label distribution. As we
also evaluate on set 1 of the target domain, this is
also considered as a transductive setting.
Setting (2): Set 2 from both the source and target
domains are used as unlabeled sets. Since set 2 is
directly sampled from millions of reviews, it better
reflects real-life sentiment distribution.
Large-scale datasets: We further conduct ex-
periments on four much larger datasets: IMDB4

2http://jmcauley.ucsd.edu/data/amazon/
3The original reviews were rated on a 5-point scale. We

label them with rating < 3, > 3, and = 3 as negative, posi-
tive, and neutral respectively.

4IMDB is rated on a 10-point scale, and we label reviews
with rating < 5, > 6, and = 5/6 as negative, positive, and
neutral respectively.
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(I), Yelp2014 (Y), Cell Phone (C), and Baby
(B). IMDB and Yelp2014 were previously used
in (Tang et al., 2015; Yang et al., 2017). Cell
phone and Baby are from the large-scale Amazon
dataset (McAuley et al., 2015; He and McAuley,
2016). Detailed statistics are summarized in Ta-
ble 1b. We keep all reviews in the original datasets
and consider a transductive setting where all target
examples are used for both training (without la-
bel information) and evaluation. We perform sam-
pling to balance the classes of labeled source data
in each minibatch B(s) during training.

4.3 Selection of Development Set
Ideally, the development set should be drawn from
the same distribution as the test set. However, un-
der the unsupervised domain adaptation setting,
we do not have any labeled target data at training
phase which could be used as development set. In
all of our experiments, for each pair of domains,
we instead sample 1000 examples from the train-
ing set of the source domain as development set.
We train the network for a fixed number of epochs,
and the model with the minimum classification er-
ror on this development set is saved for evaluation.
This approach works well on most of the problems
since the target domain is supposed to behave like
the source domain if the domain difference is ef-
fectively reduced.

Another problem is how to select the values for
hyper-parameters. If we tune �1 and �2 directly
on the development set from the source domain,
most likely both of them will be set to 0, as un-
labeled target data is not helpful for improving in-
domain accuracy of the source domain. Other neu-
ral network models also have the same problem for
hyper-parameter tuning. Therefore, our strategy is
to use the development set from the target domain
to optimize �1 and �2 for one problem (e.g., we
only do this on E!BK), and fix their values on the
other problems. This setting assumes that we have
at least two labeled domains such that we can op-
timize the hyper-parameters, and then we fix them
for other new unlabeled domains to transfer to.

4.4 Training Details and Hyper-parameters
We initialize word embeddings using the 300-
dimension GloVe vectors supplied by Pennington
et al., (2014), which were trained on 840 billion
tokens from the Common Crawl. For each pair of
domains, the vocabulary consists of the top 10000
most frequent words. For words in the vocabulary

but not present in the pre-trained embeddings, we
randomly initialize them.

We set hyper-parameters of the CNN en-
coder following previous works (Kim, 2014; Yu
and Jiang, 2016) without specific tuning on our
datasets. The window size is set to 3 and the size
of the hidden layer is set to 300. The nonlinear
activation function is Relu. For regularization, we
also follow their settings and employ dropout with
probability set to 0.5 on �i before feeding it to the
output layer F , and constrain the l2-norm of the
weight vector ✓f , setting its max norm to 3.

On the small-scale datasets and the Aamzon
benchmark, �1 and �2 are set to 200 and 1,
respectively, tuned on the development set of
task E!BK under setting 1. On the large-scale
datasets, �1 and �2 are set to 500 and 0.2, re-
spectively, tuned on I!Y. We use a Gaussian
curve w(t) = exp[�5(1 � t

tmax
)2]�3 to ramp up

the weight of the bootstrapping loss ⌦ from 0 to
�3, where tmax denotes the maximum number of
training epochs. We train 30 epochs for all exper-
iments. We set �3 to 3 and ↵ to 0.5 for all experi-
ments.

The batch size is set to 50 on the small-scale
datasets and the Amazon benchmark. We increase
the batch size to 250 on the large-scale datasets to
reduce the number of iterations. RMSProp opti-
mizer with learning rate set to 0.0005 is used for
all experiments.

4.5 Models for Comparison

We compare with the following baselines:
(1) Naive: A non-domain-adaptive baseline

with bag-of-words representations and SVM clas-
sifier trained on the source domain.

(2) mSDA (Chen et al., 2012): This is the state-
of-the-art method based on discrete input features.
Top 1000 bag-of-words features are kept as pivot
features. We set the number of stacked layers to 3
and the corruption probability to 0.5.

(3) NaiveNN: This is a non-domain-adaptive
CNN trained on source domain, which is a variant
of our model by setting �1, �2, and �3 to zeros.

(4) AuxNN (Yu and Jiang, 2016): This is a neu-
ral model that exploits auxiliary tasks, which has
achieved state-of-the-art results on cross-domain
sentiment classification. The sentence encoder
used in this model is the same as ours.

(5) ADAN (Chen et al., 2017): This method
exploits adversarial training to reduce representa-
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(a) Accuracy on the small-scale dataset under setting 1.
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(b) Accuracy on the small-scale dataset under setting 2.
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(c) Macro-F1 on the large-scale dataset.

Figure 1: Performance comparison. Average results over 5 runs with random initializations are reported
for each neural method. ⇤ indicates that the proposed method (either of DAS, DAS-EM, DAS-SE) is
significantly better than other baselines (baseline 1-6) with p < 0.05 based on one-tailed unpaired t-test.

tion difference between domains. The original pa-
per uses a simple feedforward network as encoder.
For fair comparison, we replace it with our CNN-
based encoder. We train 5 iterations on the dis-
criminator per iteration on the encoder and senti-
ment classifier as suggested in their paper.

(6) MMD: MMD has been widely used for min-
imizing domain discrepancy on images. In those
works (Tzeng et al., 2014; Long et al., 2017), vari-
ants of deep CNNs are used for encoding images
and the MMDs of multiple layers are jointly mini-
mized. In NLP, adding more layers of CNNs may
not be very helpful and thus those models from
image-related tasks can not be directly applied
to our problem. To compare with MMD-based
method, we train a model that jointly minimize
the classification loss L on the source domain and
MMD between {�

(s)
i |ns

i=1} and {�
(t)
i |nt

i=1}. For
computing MMD, we use a Gaussian RBF which
is a common choice for characteristic kernel.

In addition to the above baselines, we also show
results of different variants of our model. DAS
as shown in Algorithm 1 denotes our full model.
DAS-EM denotes the model with only entropy

minimization for semi-supervised learning (set
�3 = 0). DAS-SE denotes the model with only
self-ensemble bootstrapping for semi-supervised
learning (set �2 = 0). FANN (feature-adaptation
neural network) denotes the model without semi-
supervised learning performed (set both �2 and �3

to zeros).

4.6 Main Results

Figure 15 shows the comparison of adaptation re-
sults (see Appendix B for the exact numerical
numbers). We report classification accuracy on
the small-scale dataset. For the large-scale dataset,
macro-F1 is instead used since the label distribu-
tion in the test set is extremely unbalanced. Key
observations are summarized as follows. (1) Both
DAS-EM and DAS-SE perform better in most
cases compared with ADAN, MDD, and FANN,
in which only feature adaptation is performed.
This demonstrates the effectiveness of the pro-

5We exclude results of Naive, mSDA and AuxNN on the
large-scale dataset. Both Naive and mSDA have difficulties
to scale up to the large dataset. AuxNN relies on manually
selecting positive and negative pivots before training.
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Figure 2: Accuracy vs. percentage of unlabeled target training examples.
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Figure 3: Accuracy vs. number of labeled target training examples.

posed domain adaptive semi-supervised learning
framework. DAS-EM is more effective than DAS-
SE in most cases, and the full model DAS with
both techniques jointly employed overall has the
best performance. (2) When comparing the two
settings on the small-scale dataset, all domain-
adaptive methods6 generally perform better under
setting 1. In setting 1, the target examples are bal-
anced in classes, which can provide more diverse
opinion-related features. However, when consid-
ering unsupervised domain adaptation, we should
not presume the label distribution of the unlabeled
data. Thus, it is necessary to conduct experiments
using datasets that reflect real-life sentiment dis-
tribution as what we did on setting2 and the large-
scale dataset. Unfortunately, this is ignored by
most of previous works. (3) Word-embeddings are
very helpful, as we can see even NaiveNN can sub-
stantially outperform mSDA on most tasks.

To see the effect of semi-supervised learning
alone, we also conduct experiments by setting
�1 = 0 to eliminate the effect of feature adapta-
tion. Both entropy minimization and bootstrap-
ping perform very badly in this setting. En-
tropy minimization gives almost random predic-
tions with accuracy below 0.4, and the results
of bootstrapping are also much lower compared
to NaiveNN. This suggests that the feature adap-
tation component is essential. Without it, the
learned target representations are less meaning-
ful and discriminative. Applying semi-supervised

6Results of Naive and NaiveNN do not change under both
settings as they are only trained on the source domain.

learning in this case is likely to worsen the results.

4.7 Further Analysis
In Figure 2, we show the change of accuracy with
respect to the percentage of unlabeled data used
for training on three particular problems under set-
ting 1. The value at x = 0 denotes the accuracies
of NaiveNN which does not utilize any target data.
For DAS, we observe a nonlinear increasing trend
where the accuracy quickly improves at the be-
ginning, and then gradually stabilizes. For other
methods, this trend is less obvious, and adding
more unlabeled data sometimes even worsen the
results. This finding again suggests that the pro-
posed approach can better exploit the information
from unlabeled data.

We also conduct experiments under a setting
with a small number of labeled target examples
available. Figure 3 shows the change of accuracy
with respect to the number of labeled target exam-
ples added for training. We can observe that DAS
is still more effective under this setting, while the
performance differences to other methods gradu-
ally decrease with the increasing number of la-
beled target examples.

4.8 CNN Filter Analysis
In this subsection, we aim to better understand
DAS by analyzing sentiment-related CNN filters.
To do that, 1) we first select a list of the most re-
lated CNN filters for predicting each sentiment la-
bel (positive, negative neutral). Those filters can
be identified according to the learned weights ✓f
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best-value-at highly-recommend-! nars-are-amazing beauty-store-suggested since-i-love
good-value-at highly-advise-! ulta-are-fantastic durable-machine-and years-i-love
perfect-product-for gogeous-absolutely-perfect length-are-so perfect-length-and bonus-i-love
great-product-at love-love-love expected-in-perfect great-store-on appearance-i-love
amazing-product-⇤ highly-recommend-for setting-works-perfect beauty-store-for relaxing-i-love

(a) NaiveNN

prices-my-favorite so-nicely-! purchase-thanks-! feel-wonderfully-clean are-really-cleaning
brands-my-favorite more-affordable-price buy-again-! on-nicely-builds washing-and-cleaning
very-great-stores shampoo-a-perfect without-hesitation-! polish-easy-and really-good-shampoo
great-bottle-also an-excellent-value buy-this-! felt-cleanser-than deeply-cleans-my
scent-pleasantly-floral really-enjoy-it discount-too-! honestly-perfect-it totally-moisturize-our

(b) FANN

bath-’s-wonderful love-fruity-sweet feeling-smooth-radiant cleans-thoroughly-* excellent-everyday-lotion
all-pretty-affordable absorb-really-nicely love-lavender-scented loving-this-soap affordable-cleans-nicely
it-delivers-fabulous shower-lather-wonderfully am-very-grateful bed-of-love fantastic-base-coat
and-blends-nicely *-smells-fantastic love-fruity-fragrances shower-!-* nice-gentle-scrub
heats-quickly-love and-clean-excellent perfect-beautiful-shimmer radiant-daily-moisturizer surprisingly-safe-on

(c) DAS

Table 2: Comparison of the top trigrams (each column) from the target domain (beauty) captured by the
5 most positive-sentiment-related CNN filters learned on E!BT. ⇤ denotes a padding.

of the output layer F . Higher weight indicates
stronger relatedness. 2) Recall that in our im-
plementation, each CNN filter has a window size
of 3 with Relu activation. We can thus represent
each selected filter as a ranked list of trigrams with
highest activation values.

We analyze the CNN filters learned by
NaiveNN, FANN and DAS respectively on task
E!BT under setting 1. We focus on E!BT for
study because electronics and beauty are very dif-
ferent domains and each of them has a diverse
set of domain-specific sentiment expressions. For
each method, we identify the top 10 most related
filters for each sentiment label, and extract the top
trigrams of each selected filter on both source and
target domains. Since labeled source examples are
used for training, we find the filters learned by the
three methods capture similar expressions on the
source domain, containing both domain-invariant
and domain-specific trigrams. On the target do-
main, DAS captures more target-specific expres-
sions compared to the other two methods. Due
to space limitation, we only present a small sub-
set of positive-sentiment-related filters in Table 2.
The complete results are provided in Appendix C.
From Table 2, we can observe that the filters
learned by NaiveNN are almost unable to cap-
ture target-specific sentiment expressions, while
FANN is able to capture limited target-specific
words such as “clean” and “scent”. The filters
learned by DAS are more domain-adaptive, cap-
turing diverse sentiment expressions in the target
domain.

5 Conclusion

In this work, we propose DAS, a novel frame-
work that jointly performs feature adaptation and
semi-supervised learning. We have demonstrated
through multiple experiments that DAS can better
leverage unlabeled data, and achieve substantial
improvements over baseline methods. We have
also shown that feature adaptation is an essen-
tial component, without which, semi-supervised
learning is not able to function properly. The pro-
posed framework could be potentially adapted to
other domain adaptation tasks, which is the focus
of our future studies.
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Abstract
Many existing systems for analyzing and sum-
marizing customer reviews about products or
service are based on a number of prominent
review aspects. Conventionally, the promi-
nent review aspects of a product type are
determined manually. This costly approach
cannot scale to large and cross-domain ser-
vices such as Amazon.com, Taobao.com or
Yelp.com where there are a large number of
product types and new products emerge almost
everyday. In this paper, we propose a novel
framework, for extracting the most prominent
aspects of a given product type from textual
reviews. The proposed framework, ExtRA,
extracts K most prominent aspect terms or
phrases which do not overlap semantically au-
tomatically without supervision. Extensive ex-
periments show that ExtRA is effective and
achieves the state-of-the-art performance on a
dataset consisting of different product types.

1 Introduction
Online user review is an essential part of e-
commerce. Popular e-commerce websites feature
an enormous amount of text reviews, especially
for popular products and services. To improve
the user experience and expedite the shopping pro-
cess, many websites provide qualitative and quan-
titative analysis and summary of user reviews,
which is typically organized by different promi-
nent review aspects. For instance, Figure 1 shows
a short review passage from a customer on Tri-
pAdvisor.com, and the customer is also asked to
give scores on several specific aspects of the hotel,
such as location and cleanness. With aspect-based
reviews summary, potential customers can assess
a product from various essential aspects very ef-
ficiently and directly. Also, aspect-based review
summary offers an effective way to group prod-
ucts by their prominent aspects and hence enables
quick comparison.

Figure 1: An example user review about a hotel on TripAd-
visor. The grades are organized by different prominent review
aspects: value, rooms, etc.

Existing approaches for producing such promi-
nent aspect terms have been largely manual
work (Poria et al., 2014; Qiu et al., 2011). This
is feasible for web services that only sell (or re-
view) a small number of product types of the same
domain. For example, TripAdvisor.com only fea-
tures travel-related products, and Cars.com only
reviews automobiles, so that human annotators
can provide appropriate aspect terms for cus-
tomers based on their domain knowledge. While
it is true that the human knowledge is useful in
characterizing a product type, such manual ap-
proach does not scale well for general-purpose e-
commerce platforms, such as Amazon, eBay, or
Yelp, which feature too many product types, not
to mention that new product and service types are
emerging everyday. In these cases, manually se-
lecting and pre-defining aspect terms for each type
is too costly and even impractical.

Moreover, the key aspects of a product type may
also change over time. For example, in the past,
people care more about the screen size and signal
intensity when reviewing cell phones. These as-
pects are not so much of an issue in present days.
People instead focus on battery life and processing
speed, etc. Therefore, there is a growing need to
automatically extract prominent aspects from user
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reviews.
A related but different task is aspect-based

opinion mining (Su et al., 2008; Zeng and Li,
2013). Here techniques have been developed
to automatically mine product-specific “opinion
phrases” such as those shown in Figure 2. In
this example, the most frequently mentioned opin-
ion phrases about a phone model along with the
mention frequency are displayed. Their goal is
to get the fine-grained opinion summary on pos-
sibly overlapping aspects of a particular product.
For example, “good looks” and “beautiful screen”
both comments on the “appearance” aspect of the
phone. However, these aspects are implicit and
can’t be used in aspect-based review summariza-
tion directly. The main disadvantage of these opin-
ion phrases is that their aspects differ from prod-
uct to product, making it difficult to compare the
product side by side.

fast system (196) long battery-life (193)

good design (236) high call-quality (163)

nice functions (181) good value (282)
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Abstract—One popular way of summarizing users opinions
about a product or service is to grade it by a number of distinct
aspects which can be shared by the same type of product or
service. Traditionally, the aspects for a product type are deter-
mined manually but this doesn’t scale to large number of product
types for large e-commerce platform such as amazon.com or
taobao.com. In this paper, we propose a unsupervised multistage
clustering approach for automatically discovering the best aspect
words from massive amount of textual user reviews. This method
can be applied to reviews of any product or service types. Our
experiments showed that our approach is efficient and achieves
the state-of-the-art accuracies for a diverse set of products and
services.

I. INTRODUCTION

Online user review is an integral part of e-commerce.
Popular e-commerce websites feature enormous amount of
text reviews, especially for popular products and services.
To improve the user experience and expedite the shopping
process, many websites provides either qualitative or quanti-
tative summary of the user reviews, organized by important
aspects or characteristics of the target product or service. Two
examples of such aspect-based review summarization [1] are
shown in Fig. 1 and Fig. 2. In Fig. 1 from TripAdvisor, besides
the short review passage written by the user, the user are asked
to give discrete ratings (on the scale of 1-5) on various aspects
of the hotel room, e.g., location and cleanness. The ratings of
a product from individual reviews can then be aggregated into
an overall ratings of the same product by many users, such as
those shown about a specific car model in Fig. 2, a snapshot
from cars.com.

Aspect-based reviews have several advantages compared
to the more traditional review form that consists of a short
passage and an overall rating. In aspect-based reviews, more
details are provided quantitatively and more directly, and the
users can learn about various aspects of a product without
having to read the whole review passage. Another advantage of
aspect-based reviews is that different products within the same
category can be compared directly with respect to multiple
aspects, instead of just an overall rating. When researching on
products, users spend most of their time comparing different
brands and models. Aspect-based review summarization pro-
vides a effective and efficient way for doing such comparison,
saving the users both time and effort.

Fig. 1 User review from TripAdvisor.

Fig. 2 Review summarization from Cars.com.

At present, websites that offers aspect-based review sum-
maries typically only features a single or small number of
product categories, e.g., TripAdvisor.com only features travel
related products while car.com reviews automobiles. The rea-
son is that it takes in-depth knowledge about the product to
produce a set of words that best characterize the product, both
in terms of the coverage and user interests. It is such a difficult
task that these aspects are mostly manually chosen by the
website operator. Manual selection of aspects certainly cannot
scale to large number of product types as featured by gen-
eral e-commerce platforms such as amazon.com, taobao.com
and Yelp!. These platforms instead turn to automatic review
summarization, mined from the user review text.

looks good (462) beautiful screen (398)

nice functions (356) high resolution (872)

good camera (218) good value (628)

Fig. 3 Automatic review summarization for a mobile phone
from an e-commerce website.

Figure 2: Automatic review summarization for two mobile
phones on an e-commerce website

The goal of this paper is to develop an unsuper-
vised framework for automatically extracting K
most prominent, non-overlapping review aspects
for a given type of product from user review texts.
Developing such an unsupervised framework is
challenging for the following reasons:

• The extracted prominent aspects not only
need to cover as many customer concerns as
possible but also have little semantic overlap.

• The expression of user opinions is highly
versatile: aspect terms can be expressed ei-
ther explicitly or implicitly. For example,
the mention of “pocket” implies the aspect
“size”.

• Product reviews are information rich. A short
piece of comments may target multiple as-
pects, so topics transit quickly from sentence
to sentence.

Most previous unsupervised approaches for the
prominent aspect extraction task are variants of

topic modeling techniques (Lakkaraju et al., 2011;
Lin and He, 2009; Wang et al., 2011a). The main
problem of such approaches is that they typically
use only word frequency and co-occurrence infor-
mation, and thus degrade when extracting aspects
from sentences that appear different on the surface
but actually discuss similar aspects.

Given all review text about a certain product
type, our framework, ExtRA, extracts most promi-
nent aspect terms in four main steps: first it ex-
tracts potential aspect terms from text corpus by
lexico-syntactic analysis; then it associates the
terms to synsets in WordNet and induce a sub-
graph that connect these terms together; after that
it ranks the aspect terms by a personalized page
rank algorithm on the sub-graph; and finally picks
the top K non-overlapping terms using the sub-
sumption relation in the subgraph.

The main contributions in this paper are as fol-
lows:

1. We propose a novel framework for extracting
prominent aspects from customer review cor-
pora (Section 2), and provide an evaluation
dataset for future work in this research area.

2. Extensive experiments show that our unsu-
pervised framework is effective and outper-
forms the state-of-the-art methods by a sub-
stantial margin (Section 3).

2 Framework

In this section, we first state the review aspect ex-
traction problem, then present the workflow of our
method, shown in Figure 3.

2.1 Problem Statement
The review aspect extraction problem is given all
the text reviews about one type of product or ser-
vice, extract K words (or phrases), each of which
represents a prominent and distinct review aspect.

For instance, if the given product type is ho-
tel, we expect a successful extraction framework
to extract K = 5 aspect terms as follows: room,
location, staff, breakfast, pool.

2.2 Aspect Candidates Extraction
Following the observation of Liu (2004; 2015),
we assume that aspect terms are nouns and noun
phrases. First, we design a set of effective syn-
tactic rules, which can be applied across domains,
to collect the aspect candidates from review texts.
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Figure 3: Overall framework.

We mainly use the adjectival modifier dependency
relation (amod) and the nominal subject relation
(nsubj) to extract the aspect-opinion pairs hN, Ai.
In addition, we leverage the conjunction relation
(conj) between adjectives to complement the ex-
tracted pairs. Formally, the extraction rules can be
specified as follows:

Rule 1. If amod(N, A), then extract hN, Ai.

Rule 2. If nsubj(A, N), then extract hN, Ai.

Rule 3. If hN, Aii and conj(Ai, Aj), then extract
hN, Aji.

In this case, N indicates a noun, and A (e.g.
Ai, Aj) is an adjective. The dependencies (e.g.
amod(N, A)) are expressed as rel(head, depen-
dent), where rel is the dependency relation which
holds between head and dependent. Note that
many aspects are expressed by phrases, thus, we
extend the phrases as aspect candidates by intro-
ducing the extension rules as follows:

Rule E1. If hN, Ai and N�1 N 2 P , then use
hN�1 N, Ai to replace hN, Ai.

Rule E2. If hN, Ai and N N+1 2 P , then use
hN N+1, Ai to replace hN, Ai.

where N�1 and N+1 denotes the noun word, and
the subscript represents displacement to N in the
sentence. We use AutoPhrase (Liu et al., 2017)
to extract a set of phrases P with high coherence.
Then we use P to filter out the incoherent phrases
so as to obtain the high-quality phrases as aspect
candidates. The example in Figure 3 (Stage 1)
demonstrates the extraction process. For example,

we extract the pair h great, zoom lens i from sen-
tence (1) by applying Rule 1 and Rule E1. Simi-
larly, the extraction rules match h slower, autofo-
cus i, h noisy, shutter i, h cheap, lens cover i in
sentence (2) and h quick, shutter i, h quiet, shut-
ter i in sentence (3) as potential aspect-opinion
pairs. After extracting such pairs from the text re-
views, we sort them by the number of occurrences,
and extract the nouns and noun phrases in the top
pairs as aspect candidates, assuming that the most
prominent aspects are subsumed by those candi-
dates terms.

2.3 Aspect Taxonomy Construction

The aspect candidates extracted in the last stage
come with the counts modified by adjectives. We
can directly use such raw counts to rank the as-
pect candidates. This is one of the baseline models
in our experiments. However, such ranking usu-
ally suffers from the aspect overlapping problem
which obviously violates the principle of pursuing
both coverage and distinctiveness of prominent as-
pects. For example, given the number of promi-
nent aspects K as 5, we can extract both of ‘lo-
cation‘ and ‘place‘ aspects from the hotel reviews.
In order to solve this problem, we construct an as-
pect taxonomy to obtain such overlapping infor-
mation between aspect candidates by leveraging
the WordNet ontology.

2.3.1 WordNet Synset Matching
First, we need to match our aspect candidates onto
WordNet synsets. The accuracy of synset match-
ing is very important for our aspect taxonomy
construction. This is actually a classical word
sense disambiguation (WSD) problem. Our ini-
tial attempt is to use a Python WSD tool (Tan,
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2014). For each aspect candidate, we take it as
the target and randomly sample a bunch of sen-
tences that contain this target. We use the extended
word sense disambiguation algorithm (Banerjee
and Pedersen, 2003) in this tool. We count the to-
tal occurrences for each noun sense (synset) of the
candidate and match the candidate to the most fre-
quent synset. However, such a method is not good
enough for our problem, as shown in the results
later. It only considers the local context informa-
tion within the review sentence. Whats more, the
review sentences are usually very short and collo-
quial, which makes it more difficult to match prop-
erly by a common WSD algorithm. Therefore, it
is critical to construct more reliable contexts for
aspect candidate matching.

To achieve this goal, we cluster the aspect can-
didates with similar semantics together. Then, for
each aspect candidate, we take the other candi-
dates within the same cluster as its context for
later disambiguation. As shown in the first step
of stage 2 in Figure 3, the semantic similar aspect
candidates such as lens, lens cover, zoom lens, ex-
posure and shutter are clustered together. For ex-
ample, we can disambiguate the sense of shutter
by leveraging lens, lens cover, zoom lens, and ex-
posure. We observed that our aspect candidates
can be fine-grain clustered with a two-stage k-
means clustering method,1 which generates the
better context for the aspect candidates. More
specifically, for a particular aspect candidate at

from the cluster C = {a1, a2, ..., at, ..., an}, we
calculate the context vector of at as:

c(at) =
nX

i=1,i 6=t

E(ai), (1)

where c(at) denotes the context vector of at, and
E(ai) represents the embedding of ai. The set of
candidate synsets S(at) = {st

1, s
t
2, ..., s

t
m} con-

sists of the noun senses (e.g. st
i) of at from Word-

Net. Each sense st
i is associated with a gloss gt

i
(i.e. a brief definition of st

i) which covers the se-
mantics of the sense. Therefore, we encode st

i as
the summation of the word vectors in gt

i :

v(st
i) =

qX

j=1

E(wt,i
j ), (2)

W (gt
i) is the sequence of words in gt

i , i.e.,
W (gt

i) = [wt,i
1 , wt,i

2 , ..., wt,i
q ]. For each candidate

1The implementation details are in Section 3.2.

sense st
i of the aspect candidate at, we calculate

the cosine semantic similarity between v(st
i) and

c(at), and match at to the most similar st
i.

2.3.2 Aspect Taxonomy Extraction from
WordNet

In order to construct the aspect taxonomy from
WordNet, we first extract the hypernym paths for
every matched synsets in the previous step. By
definition, a hypernym path p of synset s is the
is-a relation path from s to the root synset (i.e.
entity.n.01 for nouns). We extract the hypernym
paths for each matched synset si in the WordNet
ontology. Next, we scan over all the collected
paths once to construct the aspect taxonomy which
is a directed acyclic graph (DAG). In p, s1 is the
synset matched from our potential aspects, and
si+1 is the hypernym of si. As shown in step 2
of Stage 2 in Figure 3, we match the aspect can-
didate shutter to shutter.n.01. The only one hy-
pernym path of shutter.n.01 is [shutter.n.01, opti-
cal device.n.01, device.n.01, ..., entity.n.01].

However, the matched synset usually has multi-
ple hypernym paths in WordNet. We use the fol-
lowing strategy to compact and minimize the as-
pect taxonomy:

• Among all the paths from an aspect candidate
s1, we will keep those paths that contain more
than 1 aspect candidates, unless there’s only
one path from s1. If all paths contain only 1
aspect candidate s1 each, we will keep all of
them.

• To further optimize the taxonomy structure,
we induce a minimum subgraph from the
original taxonomy using a heuristic algo-
rithm (Kou et al., 1981). Such a subgraph
satisfies the following conditions: 1) it con-
tains all the nodes matched from aspect can-
didates; 2) the total number of nodes in the
graph is minimal. Consequently, the induced
graph is a weakly connected DAG.

After acquiring the aspect taxonomy for the given
product or service, we can now tell if two aspects
are semantically overlapped or not.

2.4 Aspect Ranking
In this section, we propose a novel method based
on personalized page rank to compute the overall
rank values for the potential aspects by leveraging
the aspect taxonomy.
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Let the aspect taxonomy be a graph G =
(V, E). Each node v 2 V is a synset in the as-
pect taxonomy and encoded as a vector by instan-
tiating E as Glove embeddings in (2) . Each edge
e = hu, vi carries a weight which is the semantic
similarity between the nodes u and v, computed
using cosine similarity.

Next, we perform the random walks on our con-
structed aspect taxonomy. The propagation starts
from candidate aspect nodes in the aspect taxon-
omy, which are called seeds here. The rank values
(aspect importance) of all nodes are:

xt = (1 � ↵) ⇤ Axt�1 + ↵ ⇤ E, (3)

where t is the time step in random walk process.
In the initial state E(i.e. x0), the aspect impor-
tance only distributes on the seeds (v 2 Vb). Ei is
the i-th dimension of E, indicating the portion of
aspect importance on node si at time step 0. E is
calculated as follows:

Ei =

(
f(le(si))Pn

j=1 f(le(sj))
, if si is a seed

0 , otherwise,
(4)

where n is the number of nodes in the graph, si

is the synset node, le(si) denotes the lemma form
of si, and f(le(si)) represents the frequency that
le(si) is modified by adjectives.

The aspect importance is updated using the tran-
sition probabilities matrix A which are the normal-
ized weights on the edges of the taxonomy. ↵ is
the teleport probability, which is the probability
of returning to the initial distribution at each time
step. ↵ determines the distance of propagation of
the taxonomy.

2.5 Aspect Generation
Finally, we generate the prominent aspects using
the rank values of the aspects as well as the is-a
relations in the aspect taxonomy.

We sort le(si) in decreasing order by their rank
values. We essentially take the top aspects from
the sorted list. However there might be two types
of overlapping that we need to avoid: i) duplicate:
different synset nodes may map to the same as-
pects, i.e., le(si) = le(sj), si 6= sj ( aspects); ii)
taxonomy overlap: the later aspect in the list is the
hypernym or hyponym of the one of previous as-
pects. To this end, we just skip overlapped aspect,
and move along the list until we generate K non-
overlapping prominent aspects from the list.

3 Experiments

We compare the ExtRA framework with multiple
strong baselines on extracting aspect terms from
user reviews. We first introduce the dataset and
the competing models, then show the quantitative
evaluation as well as qualitative analysis for dif-
ferent models.

3.1 Dataset
We use the customer review corpora of 6 kinds of
product and service 2 collected from popular web-
sites, including Amazon, TripAdvisor and Yelp.
The number of hotel reviews (Wang et al., 2011b)
in the original corpus is huge. Therefore, we
randomly sample 20% of the reviews to perform
our experiments. The statistics of the corpora are
shown in Table 1.

Table 1: Dataset statistics.

Product type Source #Reviews
hotel TripAdvisor 3,155,765

mobile phone Amazon 185,980
mp3 player Amazon 30,996

laptop Amazon 40,744
cameras Amazon 471,113

restaurant Yelp 269,000

Existing published aspect extraction datasets
(Hu and Liu, 2004; Popescu and Etzioni, 2007;
Pavlopoulos and Androutsopoulos, 2014; Ding
et al., 2008) include only fine-grained aspects
from reviews, which are not suitable for evalu-
ating the performance of prominent aspects ex-
traction. Therefore, we build a new evaluation
dataset particularly for this task. Following the
previous work (Ganu et al., 2009; Brody and El-
hadad, 2010; Zhao et al., 2010; Wang et al., 2015)
as well as the popular commercial websites (e.g.
TripAdvisor), which most manually labeled 3-6
prominent aspects for rating, we set K as five.
Therefore, we ask each annotator who are famil-
iar with the domain to give 5 aspect terms which
they think are most important for each category.
We have five annotators in total. 3 One prominent
aspect can be expressed by different terms. Thus,
it is difficult to achieve a satisfied inner-agreement.
We propose two evaluation methods, especially
the soft accuracy in Section 3.3.1 to compensate

2The data is available from http://times.
cs.uiuc.edu/˜wang296/Data/ and https:
//www.yelp.com/dataset

3The complete labeled set of ExtRA is released at http:
//adapt.seiee.sjtu.edu.cn/extra/.
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this problem. To acquire a relatively higher inner-
agreement, we educate the annotators with top 100
frequent aspect candidates as hints. Though, they
are not required to pick up labels from the can-
didates. The inter-annotator agreement of each
product type shown in Table 3 is computed as the
average jaccard similarity between every two an-
notators.

3.2 Baselines and ExtRA

We introduce three topic modeling based baselines
for the task. These are LDA (Blei et al., 2003),
BTM (Cheng et al., 2014) and MG-LDA (Titov
and McDonald, 2008). MG-LDA is a strong base-
line which attempts to capture multi-grain topics
(i.e. global & local), where the local topics cor-
respond to the rateable prominent aspects. We
treat each review as a document and perform those
models to extract K topics. Then, we select most
probable words in each topic as our extracted as-
pect terms. To prevent extracting the same as-
pects (w) from different topics, we only keep w
for the topic t with the highest probability p(w|t)
value, then re-select aspects for the other topics
until we get K different aspects. For fair compar-
ison among different models, the number of target
aspects K is set as 5. The hyper-parameter of MG-
LDA (global topics) is set to 30 with fine-tuning.

Another syntactic rule-based baseline model
AmodExt is from the first stage of our framework.
After extracting the aspect candidates using amod-
rule in Section 2.2, we sort the aspect candidates
by their counts of extracted occurrences. Then se-
lect the top K candidates as the prominent aspects.

ABAE (He et al., 2017) is a neural based model
that can to infer K aspect types. Each aspect type
is a ranked list of representative words. To gener-
ate K prominent aspects, we first infer K aspect
types using ABAE, then select the most represen-
tative word from each aspect type.

For ExtRA, in the taxonomy construction stage,
we use a two-stage K-means clustering method
for synset matching task, and the cluster number
is auto-tuned using silhouette score (Rousseeuw,
1987). We use SkipGram (Mikolov et al., 2013)
model to train the embeddings on review texts
for k-means clustering. We set the dimension
of the embeddings as 100 and run 64 epochs for
each product corpora. In the aspect ranking stage,
we empirically set the teleport probability ↵ as
0.5 which indicates that the expected walk-length

from the seeds is 1
↵ = 2.

3.3 Evaluation
In this section, we compare ExtRA with five base-
line models both quantitatively and qualitatively.

3.3.1 Quantitative Evaluation
First, we perform two experiments to justify our
aspect taxonomy construction stage:

• To justify the synset matching step, we com-
pare our proposed cluster method with classi-
cal WSD algorithm (Lesk) on matching accu-
racy. We manually label 100 sampled synset
nodes for each category. The synset match-
ing accuracies are shown in Table 2. We can
see that our clustering method is effective for
the synset matching task.

• We induce the aspect taxonomy using a
heuristic algorithm to obtain more compact
and aspect-oriented subgraph. We show the
size of aspect taxonomy induced before and
after taxonomy minimization in Figure 4.

Next, we evaluate our model as well as above
baselines on the evaluation dataset described
above. We did not remove the duplicate aspect
labels for the qualitative evaluation, since the re-
peated aspects are assume to be better. For a
given category, we first calculate the percentage
of the 25 labels that exactly match one of the 5
aspect terms generated by the model as the hard
accuracy of the model. Formally, Aspects(m) =
[a1, a2, a3, a4, a5] denotes the five prominent as-
pects generated from model m for the given cate-
gory. L = [l1, l2, ..., l25] are the 25 golden aspect
terms, where L(h) = [l5h�4, ..., l5h] are from the
h-th human annotator. The hard accuracy is de-
fined as:

hacc(m) =

P25
i=1 hit(Aspects(m), li)

25
(5)

hit(Aspects(m), li) =

(
1, li 2 Aspects(m)

0, otherwise,
(6)

However, counting the number of exact matches
makes the accuracy score discrete and coarse. Be-
sides, it penalizes aspect terms that don’t match
the label but actually have similar meanings. To
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Table 2: WordNet Synset matching accuracies

hotel mp3 cameras mobile
phone laptop restaurant

LESK 0.71 0.59 0.62 0.64 0.53 0.65
Cluster 0.86 0.83 0.74 0.80 0.78 0.69

Table 3: Inner-annotator agreements

hotel mp3 cameras mobile
phone laptop restaurant

Jaccard 0.470 0.554 0.304 0.440 0.271 0.671
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Figure 4: Statistics of induced aspect taxonomy before and after taxonomy minimization

remedy this, we propose the soft accuracy eval-
uation measure. For each set of five golden la-
bels from h-th annotator, we first align each gen-
erated aspect ak 2 Aspects(m) with one golden
aspect lj 2 L(h) (i.e. align(h)(ak) = lj).
We align the exact match terms together, and
then choose the optimal alignment for the oth-
ers by permuting all possible alignments. The
optimal alignment align(h)(ak) acheives maxi-
mum soft accuracy. Then we calculate the soft
matching score between Aspects(m) and L(h) asPK

k=1 sim(ak, align(h)(ak)), where sim is the
cosine similarity computed by Glove (2014) 4. We
then compute the soft accuracy measure as fol-
lows:

sacc(m) =
1

5
⇤

5X

h=1

KX

k=1

sim(ak, align(h)(ak)),

(7)
where K = 5 in this case. The comparison results
are shown in Table 4.

Our model (ExtRA) outperforms all the other
baselines in all categories except cameras using
the hard accuracy measure. Besides, ExtRA is the
best model on four out of six products under the
soft accuracy measure. As shown in Table 2, the
accuracy for synset matching is relatively low for

4 We use the GloVe embeddings with 300 dimensions,
trained from 840B tokens using common crawl data.

Table 4: Comparison of hard (upper row) & soft (lower row)
accuracies using different models for aspect extraction.

LDA BTM MG-
LDA ABAE AmodExt ExtRA

hotel 0.16 0.16 0.16 0.16 0.44 0.56
0.50 0.49 0.67 0.35 0.65 0.70

mp3 0.0 0.08 0.08 0.0 0.35 0.44
0.47 0.49 0.47 0.32 0.58 0.60

camera 0.24 0.40 0.28 0.04 0.04 0.32
0.56 0.69 0.54 0.29 0.41 0.55

mobile
phone

0.16 0.0 0.28 0.0 0.52 0.60
0.58 0.33 0.58 0.31 0.73 0.71

laptop 0.08 0.24 0.24 0.0 0.24 0.28
0.40 0.50 0.50 0.22 0.51 0.53

restaurant 0.20 0.0 0.0 0.0 0.56 0.56
0.49 0.38 0.42 0.29 0.77 0.72

cameras and restaurant, resulting in the lower ac-
curacy in overall aspect extraction.

3.3.2 Qualitative Analysis

To qualitatively evaluate different models, we
present the extracted 5 aspect terms by each model
from each domain in Table 5. Our model (ExtRA)
has significant advantage over other baselines for
that we can do better aspect extraction with rea-
sonable results, and extract not only words but also
phrases as prominent aspects, e.g. sound qual-
ity, image quality. The proposed model avoid the
overlapping aspects appeared in our strong base-
line (AmodExt) by deduplication using generated
aspect taxonomy information. The overlapping as-
pects are marked in italics. For example, both lo-
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Table 5: The five prominent aspect terms

hotel

LDA room, pool, stay, good, nice
BTM walk, good, room, stay, check

MGLDA room, stay, good, location, staff
ABAE shouted, room, terrific, accommodation, alexan-

derplatz
AmodExt room, location, place, view, staff
ExtRA room, location, view, staff, service

mp3

LDA work, great, good, music, ipod
BTM battery, ipod, work, song, good

MGLDA battery, ipod, music, song, good
ABAE documentation, content, portability, bought, ta-

ble
AmodExt drive, quality, sound, feature, device
ExtRA drive, sound quality, feature, screen, software

cameras

LDA lens, picture, buy, video, mode
BTM battery, picture, function, lens, good

MGLDA battery, picture, good, mpcture, mode
ABAE toy, picture, mailed, ultrazoom, sharpness
AmodExt picture, photo, quality, feature, shot
ExtRA image quality, photograph, feature, shot, lens

mobile
phone

LDA battery, buy, good, apps, work
BTM core, good, work, para, apps

MGLDA work, battery, screen, good, card
ABAE cracked, amazing, continuously, archive, bought
AmodExt feature, screen, price, camera, quality
ExtRA feature, price, screen, quality, service

laptop

LDA screen, good, buy, drive, chromebook
BTM windows, screen, work, drive, good

MGLDA windows, battery, screen, good, year
ABAE salign, returned, affordable, downloads, position
AmodExt drive, machine, price, screen, life
ExtRA drive, price, screen, deal, performance

restaurant

LDA food, good, room, time, great
BTM good, room, pour, time, order

MGLDA great, good, place, time, make
ABAE jones, polite, told, chickpea, place
AmodExt food, service, place, experience, price
ExtRA service, food, experience, company, price

cation and place are extracted as top aspects, but
they mean nearly the same concept. The results
from other baseline methods, inevitably contain
some sentiment words and opinions, like good,
nice, great, etc. Our model resolves such draw-
back by extracting aspect candidates from only
nouns and using syntactic rules to find words that
are frequently modified by adjectives.

4 Related Work

Existing research on aspect-based review analy-
sis has focused on mining opinion based on given
aspects (Su et al., 2008; Zeng and Li, 2013) or
jointly extracting the aspects and sentiment (Lin
and He, 2009; Zhao et al., 2010; Qiu et al., 2011;
Wang et al., 2015; Liu et al., 2016). They are
mostly interested in detecting aspect words in a
given sentence, whereas our goal is to extract the
most prominent aspects of a type of product from
a large number of reviews about that product type.
We divide the existing work on review aspect ex-
traction into three types:

• rule-based methods, most of which utilize
handcrafted rules to extract candidate aspects
and then perform clustering algorithm on

them.

• topic modeling based methods, which di-
rectly model topics from texts and then ex-
tract aspects from the topics.

• neural network based methods, which takes
advantage of the recent deep neural network
models.

4.1 Rule-based Methods
These methods leverage word statistical and syn-
tactic features to manually design rules, recog-
nizing aspect candidates from texts. Poria et al.
(2014) use manually crafted mining rules. Qiu et
al. (2011) also used rules, plus the Double Propa-
gation method to better relate sentiment to aspects.
Gindl et al. (2013) cooperate the Double Prop-
agation with anaphora resolution for identifying
co-references to improve the accuracy. Su et al.
(2008) used a clustering method to map the im-
plicit aspect candidates (which were assumed to
be the noun form of adjectives in the paper) to
explicit aspects. Zeng et al. (2013) mapped im-
plicit features to explicit features using a set of
sentiment words and by clustering explicit feature-
sentiment pairs. Rana et al. (2017) propose a two-
fold rules-based model, using rules defined by se-
quential patterns. Their first fold extracts aspects
associated with domain independent opinions and
the second fold extracts aspects associated with
domain dependent opinions.

However, such rule-based models are designed
for extracting product features which can not eas-
ily adapt to our K most prominent aspect extrac-
tion problem. Besides, most of them require hu-
man efforts to collect lexicons and to carefully de-
sign complex rules and thus do not scale very well.

4.2 Topic Modeling Based Methods
Most work in this domain are based on two ba-
sic models, pLSA(Hofmann, 1999) and LDA(Blei
et al., 2003). The variants of these models consider
two special features of review texts: 1) topics shift
quickly between sentences, 2) sentiment plays an
important role and there is a strong correlation be-
tween sentiments and aspects. The approach of
Lin et al. (2011) models are parallel aspects and
sentiments per review. Lin et al. (2009) models the
dependency between the latent aspects and ratings.
Wang et al. (2011a) proposed a generative model
which incorporates topic modeling technique into
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the latent rating regression model (Wang et al.,
2010). Moghaddam et al. (2012) made a nice
summarization of some basic variations of LDA
for opinion mining. In stead of using topics,
our method relies on word embeddings to cap-
ture the latent semantics of words and phrases and
achieves better results. MG-LDA (Titov and Mc-
Donald, 2008) is a variant of LDA that can also
model topics at different granularities, which are
based on extensions to standard topic modeling
methods such as LDA and PLSA to induce multi-
grain topics. D-PLDA (Moghaddam and Ester,
2012), is a variant of LDA models, which is de-
signed specifically for modeling topics from user
reviews. D-PLDA only considers opinion-related
terms and phrases, and nouns and phrases are con-
trolled by two separate hidden parameters. Thus,
the model needs aspects, ratings, and phrases as
input, which are all very expensive.

4.3 Neural Network Based Methods

He et al. (2017) propose a neural attention model
for identifying aspect terms. Their goal is simi-
lar to ours but instead of directly comparing their
extracted terms with the gold standard, they ask
human judges to map the extracted terms to one
of the prominent gold aspects manually before
computing the precision/recall. This evaluation
methodology mixed machine results with human
judgment and is problematic in our opinion. Our
experiments showed that their output aspects are
too fine-grained and can not be used as prominent
aspects.

5 Conclusion

In this paper, we propose an unsupervised frame-
work ExtRA for extracting the most prominent
aspect terms about a type of product or service
from user reviews, which benefits both qualitative
and quantitative aspect-based review summariza-
tion. Using WordNet as a backbone, and by run-
ning personalized page rank on the network, we
can produce aspect terms that are both important
and non-overlapping. Results show that this ap-
proach is more effective than a number of other
strong baselines.
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Abstract

With the increasing popularity of smart de-
vices, rumors with multimedia content become
more and more common on social networks.
The multimedia information usually makes ru-
mors look more convincing. Therefore, find-
ing an automatic approach to verify rumors
with multimedia content is a pressing task.
Previous rumor verification research only uti-
lizes multimedia as input features. We propose
not to use the multimedia content but to find
external information in other news platforms
pivoting on it. We introduce a new features
set, cross-lingual cross-platform features that
leverage the semantic similarity between the
rumors and the external information. When
implemented, machine learning methods uti-
lizing such features achieved the state-of-the-
art rumor verification results.

1 Introduction

Social network’s unmoderated nature leads to the
spread and emergence of information with ques-
tionable sources. With the increasing popularity
of the social media, we are exposed to a plethora
of rumors. Here we borrow the rumor definition
from DiFonzo and Bordia (2007) as unverified in-
formation. Unmoderated rumors have not only
caused financial losses to trading companies but
also panic for the public (Matthews, 2013). Es-
pecially if rumors contain multimedia content, the
public generally accepts the multimedia informa-
tion as a “proof of occurrence” of the event (Sen-
car and Memon, 2009). Readers usually don’t
have time to look through similar events across
different platforms to make an informed judgment.
Therefore, even if a credible platform, such as
CNN, has debunked a rumor, it can still go viral
on other social media platforms.

Intuitively, people believe fake rumors would
contain fabricated multimedia content. Boididou

et al. (2015b) used forensics features for detecting
multimedia fabrication to verify rumors. However,
these features did not lead to noticeable improve-
ment. We suspect that this is because un-tampered
multimedia content can still convey false informa-
tion when paired with fake news from a separate
event. For example, Figure 1 shows one fake post
on MH 370 that used a real video about US Air-
ways Flight 1549. Inspired by the fact that readers

Figure 1: A video of US Airways Flight 1549 was bor-
rowed by news on Malaysia Airlines Flight 370.

tend to search related information covered by dif-
ferent media outlets to garner an objective view,
we propose to verify rumors pivoting on multime-
dia content to tackle such problems. Compared to
keywords, searching information pivoting on the
visual content is more effective and accurate.

In order to access information from different
platforms easily, we created a new rumor verifica-
tion dataset by expanding a Twitter rumor dataset
to include webpages from different social me-
dia platforms using search engines. Previous ru-
mor verification datasets are mainly monolingual,
such as English (Derczynski et al., 2017) or Chi-
nese (Wu et al., 2015). However, textual informa-
tion in the native language where the rumor hap-
pened can be more helpful when it comes to ver-
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ifying worldwide rumors. Therefore, we not only
indexed English webpages by searching Google
with images but also included Chinese webpages
via Baidu.

We next introduced our cross-lingual cross-
platform features which capture the similarity
and agreement among rumors with posts from
different social media. We built an automatic
verification model using the proposed features
and achieved the state-of-the-art performance on
the MediaEval 2015’s Verifying Multimedia Use
(VMU 2015) dataset (Boididou et al., 2015a) uti-
lizing information from Google.

Collecting and annotating rumors in foreign
languages is difficult and time-consuming, espe-
cially for languages with low rumor verification
labeling. Finding out an automatic way to verify
those rumors in an unsupervised way is also mean-
ingful. Since our cross-lingual cross-platform fea-
tures are adaptable to rumors in different lan-
guages, we demonstrated that these features could
transfer learned knowledge by training on one lan-
guage and testing on another. Such cross-lingual
adaptation ability is especially useful for predict-
ing rumors that have low annotation resource with
available annotated rumors in languages such as
English.

We published our code and dataset on GitHub1.

2 Related work

Previous research has utilized multimedia infor-
mation for rumor verification in various ways.
Zampoglou et al. (2015); Jin et al. (2015); Boi-
didou et al. (2015b) verified rumors by leverag-
ing forensic features which are extracted to en-
sure the digital images are not tempered (Sencar
and Memon, 2009). However, none of these stud-
ies found such information useful for rumor ver-
ification on a Twitter-based multimedia dataset.
Jin et al. (2017) incorporated image features us-
ing a pre-trained deep convolutional neural net-
work (Krizhevsky et al., 2012) on the extended
Twitter-based multimedia dataset. Although the
image features improve their results, their frame-
work cannot outperform methods other than mul-
timodal fusing networks. One possible reason is
that the multimedia content in fake rumors is bor-
rowed from another real event and usually their
content corresponds to the text of the rumors. In
this case, the image itself is real but not real in

1https://github.com/WeimingWen/CCRV

the context of the fake news. We thus propose
to leverage the multimedia information by finding
the agreement and disagreement among posts that
are from different social media platforms but share
similar visual contents.

The agreement between rumors and their com-
ments is used heavily in automatic verification.
Mendoza et al. (2010) declared that fake rumors
tended to have more people question their validity.
Later, Qazvinian et al. (2011) first annotated com-
ments on tweets as supporting, denying or query-
ing, and then used such stance information in the
classification to leverage the “wisdom of crowds”.
Recently, the best performing system (Enayet and
El-Beltagy, 2017) in RumourEval shared task at
SemEval 2017 (Derczynski et al., 2017) also used
such information. However, the crowd is not al-
ways wise. For example, Starbird et al. (2014)
suspected the correctness of public opinions in
rumors, pointing out some certain fake news re-
ceived more support than questions. In our work,
instead of using the “wisdom of crowds”, we used
the knowledge from different news platforms to
assist rumor verification.

Computational journalism (Cohen et al., 2011)
exploits external knowledge widely. Diakopoulos
et al. (2012) first leveraged information from reli-
able sources in the context of journalism. They de-
veloped a tool for journalists to search for and as-
sess sources in social media around breaking news
events. Ciampaglia et al. (2015) utilized factual
knowledge bases, such as Wikipedia, to assess the
truth of simple statements. Shao et al. (2016) de-
signed a system for tracking rumors on different
platforms, which is probably the closest work to
ours. However, they did not utilize cross-platform
information for rumor verification. Our proposed
method is able to leverage information on any plat-
form to verify rumors as long as it has both textual
and multimedia information.

3 CCMR dataset

We created a cross-lingual cross-platform multi-
media rumor verification dataset (CCMR) to study
how to leverage information from different me-
dia platforms and different languages to verify
rumor automatically. CCMR consists of three
sub-datasets: CCMR Twitter, CCMR Google, and
CCMR Baidu.

CCMR Twitter is borrowed from VMU 2015
dataset (Boididou et al., 2015a). There are 17
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ID Event Twitter Google Baidu
Real Fake Real Fake Others Real Fake Others

01 Hurricane Sandy 4,664 5,558 1,836 165 203 693 134 291
02 Boston Marathon bombing 344 189 619 54 49 317 55 16
03 Sochi Olympics 0 274 139 132 76 64 124 53
04 MA flight 370 0 310 143 65 115 80 59 31
05 Bring Back Our Girls 0 131 29 42 37 2 6 4
06 Columbian Chemicals 0 185 35 2 26 19 1 0
07 Passport hoax 0 44 24 0 2 16 0 4
08 Rock Elephant 0 13 3 17 0 4 2 14
09 Underwater bedroom 0 113 1 58 0 0 37 13
10 Livr mobile app 0 9 0 4 11 0 0 0
11 Pig fish 0 14 3 13 4 1 12 7
12 Solar Eclipse 140 137 40 64 39 0 10 91
13 Girl with Samurai boots 0 218 2 52 6 2 48 0
14 Nepal Earthquake 1,004 356 257 60 107 159 19 81
15 Garissa Attack 73 6 60 0 3 36 1 0
16 Syrian boy 0 1,786 4 1 3 0 0 0
17 Varoufakis and zdf 0 61 2 0 18 0 0 0

Total 6,225 9,404 3,197 729 699 1,393 508 605

Table 1: CCMR dataset statistics.

events containing fake and real posts with images
or videos shared on Twitter. We created CCMR
Google and CCMR Baidu by searching Google
and Baidu indexed webpages that share similar
multimodal content with CCMR Twitter. The up-
per part of Figure 2 shows the collection pro-
cess. We searched Google with every image (URL
for video) in CCMR Twitter to get English web-
pages. Then we indexed those webpages to form
CCMR Google. Similarly, we searched Baidu to
get Chinese webpages and created CCMR Baidu.
Two human annotators manually annotated both
datasets. The annotation is for better analysis and
dataset quality control. None of it is utilized dur-
ing our feature extraction process. Annotators
were asked to label collected webpages based on
their title and multimedia content. If they are not
enough to tell fake news from real news, the web-
page is labeled as “others”. The Cohen’s kappa
coefficient for two annotators is 0.8891 in CCMR
Google and 0.7907 in CCMR Baidu. CCMR has
15,629 tweets indexed by CCMR Twitter (Twit-
ter), 4,625 webpages indexed by CCMR Google
(Google) and 2,506 webages indexed by CCMR
Baidu (Baidu) related to 17 events. The webpages
from Google and Baidu are in English and Chinese
respectively. The statistics of the CCMR dataset
with respect to each event is listed in Table 1.

3.1 Observation in Annotation

We observe that 15.7% of webpages are fake in
CCMR Google while 20.3% in CCMR Baidu. We
speculate that this is because all events in CCMR
dataset took place outside China. Chinese web-

pages searched via Baidu are thus more likely to
mistake the information. In the manual annota-
tion process, we found that many images are actu-
ally borrowed from other events, which confirms
our assumption. Another interesting observation
is that webpages indexed by Baidu tend to have
more exaggerating or misleading titles to attract
click rates. We labeled such webpages as fake if
they also convey false information through their
multimedia content.

We also found that news in different lan-
guages has different distributions concerning the
subtopics of the event. For example, in the
Boston marathon bombing, Baidu indexed Chi-
nese reports generally put more emphasis on a
Chinese student who is one of the victims, while
Google indexed English reports cover a wider
range of subtopics of the event, such as the pos-
sible bomber. This phenomenon is understandable
as social media from a specific country usually fo-
cus more on information related to their readers.

4 Framework Overview

Figure 2 describes the overview of our framework.
After collecting CCMR dataset in Section 3, we
first performed Twitter rumor verification leverag-
ing Google in Section 6 as shown in the bottom
left of the figure. We extracted cross-lingual cross-
platform features for tweets in CCMR Twitter
leveraging webpages from CCMR Google (TFG).
Section 5 discusses the automatic construction of
this feature set. We then use the features to verify
rumors automatically.

We then performed Twitter rumor verification
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Figure 2: The information flow of our proposed pipeline. TFG represents the cross-lingual cross-platform features
for tweets leveraging Google information, while TFB is similar but leverages Baidu information instead. BFG
means cross-lingual cross-platform features for Baidu leveraging Google information.

leveraging Baidu in Section 7 to test if our method
can verify rumors by borrowing information from
different languages and platforms. This experi-
ment is meant to demonstrate that our method is
language and platform agnostic. Such an advan-
tage also enables our method to use one language
information to predict in another language (see
the experiment in Section 8). We extracted cross-
lingual cross-platform features for tweets leverag-
ing webpages from CCMR Baidu instead (TFB)
and used it to verify tweets in Section 6.

In Section 8, we performed Baidu rumor ver-
ification via transfer learning to test the cross-
lingual adaptation ability of the cross-lingual
cross-platform features. We treated Chinese web-
pages in CCMR Baidu as rumors and empirically
verified them via transfer learning. We extracted
cross-lingual cross-platform features for Baidu
webpages leveraging Google (BFG) in Section 6.
Since BFG and TFG are both cross-lingual cross-
platform features leveraging Google, we adopted

the classifier pre-trained with TFG on CCMR
Twitter to verify webpages in CCMR Baidu using
BFG, under the assumption that tweets and web-
pages follow a similar distribution.

Although we labeled webpages in CCMR
Google and CCMR Baidu, we did not leverage
the annotation here because annotation is time-
consuming and using annotation information is
not generalizable to other datasets.

5 Cross-lingual Cross-platform Features

We propose a set of cross-lingual cross-platform
features to leverage information across different
social media platforms. We first embed both the
rumor and the titles of the retrieved webpages into
300-dimension vectors with a pre-trained multi-
lingual sentence embedding. It is trained using
English-Chinese parallel news and micro-blogs
in UM-Corpus (Tian et al., 2014). We encode
English-Chinese parallel sentences with the same
word dictionary, as they share some tokens such as
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URLs and punctuation. We then use a two-layer
bidirectional gated recurrent unit (GRU) (Cho
et al., 2014) to generate hidden states. We obtain
the embedding by averaging the hidden states of
the GRU. A pairwise ranking loss is used to force
the cosine distance between embeddings of paired
sentences to be small and unpaired sentences to be
large. We train our multilingual sentence embed-
ding on 453,000 pairs of English-Chinese parallel
sentences and evaluated it on another 2000 sen-
tence pairs. Our published code includes the im-
plementation details of the multilingual sentence
embedding.

After obtaining the embeddings of the rumor
and the titles of the retrieved webpages, we fur-
ther calculate the distance and agreement features
between these embeddings to create a set of cross-
lingual cross-platform features. In total, there are
10 features, two for distance features and eight for
agreement features.

5.1 Distance Features
We compute the cosine distances between the em-
beddings of the target rumors and the titles of the
retrieved webpages. The distance indicates if the
rumor has similar meaning with the retrieved web-
pages that have similar multimedia content. We
calculate the mean and variance of the distance.

The mean of the distance indicates the aver-
age similarity between a rumor and its correspond-
ing webpages from other platforms. A high value
in mean suggests that the rumor is very differ-
ent from the retrieved information from other plat-
forms. We suspect that rumors with this property
have a higher probability of being fake. Because
the rumor might have borrowed the image from
another event that was covered in the retrieved in-
formation. Meanwhile, the variance indicates how
much these retrieved webpages are different from
each other. A high variance indicates that the mul-
timedia information is used by different events or
is described in different statements. So the event
or the statement the rumor covers could be fake.

5.2 Agreement Features
We first pre-train an agreement classifier on a
stance detection dataset provided by the Fake
News Challenge2. This dataset provides pairs of
English sentences with their agreement annota-
tions in “agree”, “disagree”, “discuss” and “unre-

2http://www.fakenewschallenge.org/

lated”. Figure 3 shows four example body texts of
a headline corresponding to each type of annota-
tion in the dataset. During the training process, we
embed the sentences in the Fake News Challenge
dataset using our pre-trained multilingual sentence
embedding. We then concatenate the embeddings
of the sentence pair as the input. We use a multi-
layer perceptron to pre-train our agreement classi-
fier. We randomly select a balanced development
set containing 250 pairs for each label (1000 in to-
tal) and train our agreement classifier on the rest
of 74,385 pairs. The agreement classifier achieves
0.652 in the macro-averaged F1-score on the de-
velopment set. Our published code also includes
the details.

Figure 3: An example headline and its body texts of the
Fake News Challenge dataset.

We calculate the agreement features using the
mean and variance of the prediction probability
between the rumor and all the retrieved webpages.
There are in total four agreement labels. There-
fore, we have eight agreement features in total.
Agreement features capture information about if
the rumor’s statement agrees with the correspond-
ing information in other platforms. Besides being
able to gain similar benefits as distance features,
our agreement features also capture the case that
the information stance is portrayed differently by
different resource rumors. Conflicting information
will also be an indicator of fake news.
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6 Rumor Verification Leveraging
Cross-platform Information

We extracted cross-lingual cross-platform features
for tweets in CCMR Twitter leveraging Google
(TFG) and evaluated the effectiveness of TFG on
rumor verification tasks.

We proposed a simple multi-layer perceptron
classifier (MLP) to leverage the extracted features.
MLP has two fully-connected hidden layers of
20 neurons with ReLU as the activation function.
Each layer is followed by a dropout of 0.5. We
evaluated TFG in two settings: task and event.
1) The task setting used event 1-11 for training
and event 12-17 for testing according to (Boidi-
dou et al., 2015a). 2) The event setting evaluated
the model performance on a leave-one-event-out
cross-validation fashion. F1-score is used for eval-
uation metric. Since both collecting source rumors
from Google and doing feature extraction for a
given tweet can be done automatically, it is fair to
compare the performance of our model with base-
lines described below.

6.1 Baselines

We adopted three best performing models in the
VMU 2015 task as our baselines:

UoS-ITI (UoS) (Middleton, 2015) uses a natural
language processing pipeline to verify tweets. It is
a rule-based regular expression pattern matching
method. It ranks evidence from Twitter according
to the most trusted and credible sources.

MCG-ICT (MCG) (Jin et al., 2015) is an ap-
proach including two levels of classification. It
treats each image or video in the dataset as a topic
and uses the credibility of these topics as a new
feature for the tweets. They used the tweet-based
and user-based features (Base), such as the num-
ber of hashtags in the tweet or the number of
friends of the user who posted the tweet.

CERTH-UNITN (CER) (Boididou et al., 2015b)
uses an agreement-based retraining scheme. It
takes advantage of its own predictions to combine
two classifiers built from tweet-based and user-
based features (Base). Besides features provided
by the task, it included some additional features
such as the number of nouns in tweets and trust
scores of URLs in tweets obtained from third-
party APIs.

Method F1-Task F1-Event
UoS-ITI 0.830 0.224
MCG-ICT 0.942 0.756
CERTH-UNITN 0.911 0.693
TFG 0.908 0.822
BFG 0.810 0.739
Combo 0.899 0.816

Table 2: The task and event settings performance.

ID UoS MCG CER TFG TFB
01 0.658 0.594 0.718 0.715 0.704
02 0.007 0.494 0.745 0.557 0.448
03 0.057 0.882 0.595 0.956 0.822
04 0.538 0.826 0.717 0.856 0.678
05 0.000 0.988 0.947 0.969 0.956
06 0.555 0.949 0.916 0.912 1.000
07 0.000 1.000 0.475 0.989 0.989
08 0.000 0.870 1.000 0.960 1.000
09 0.000 0.772 0.996 1.000 0.996
10 0.000 0.615 0.821 0.875 -
11 0.000 0.963 0.000 0.963 0.667
12 0.000 0.655 0.754 0.677 0.656
13 0.000 0.954 0.795 0.998 0.850
14 0.000 0.330 0.419 0.409 0.430
15 0.000 0.130 0.156 0.145 0.154
16 1.000 0.990 0.999 0.996 -
17 1.000 0.827 1.000 0.992 -
Avg 0.224 0.756 0.693 0.822 0.739

Table 3: F1-scores for each event.

6.2 Results

We describe the task setting results in Table 2,
and detailed per-event results in Table 3. Al-
though TFG does not achieve the highest F1-score
in the task setting, it is mainly due to the split of
the dataset. More than half of the tweets in the
test set do not have images. Thus we can only
leverage cross-platform information by searching
videos’ URLs, which results in less accurate cross-
lingual cross-platform features. In the event set-
ting, which has a more fair comparison, TFG
outperformed other methods with a big margin
(p<0.001). It is surprising to see that only 10 fea-
tures extracted from external resources indexed by
search engines leveraged by a simple classifier can
bring such a big performance boost.

To further explore the quality of the cross-
lingual cross-platform features, we calculated the
Pearson correlation coefficient (PCC) between
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each feature with respect to the tweet’s label (fake
or real). We evaluated both TFG and features used
by baseline models. Table 4 lists the top six fea-
tures with the highest absolute PCC values. A pos-
itive value indicates this feature positively corre-
lates with fake news. We can see four out of the
top six features are cross-lingual cross-platform
features. The variance of the unrelated probability
(unrelated variance) has the highest score, which
further validates our design intuition that tweets
might convey false information when they have
different agreement with all other webpages that
shared similar multimedia content. The second
feature, “distance var” is also highly correlated
with fake news. This result supports our hypothe-
sis that if there is a large information dissimilarity
across different platforms, there is a high probabil-
ity of fake information involved. The only feature
from baselines (56 features in total) in the top six
features is whether a tweet contains an exclama-
tion mark or not (containsExclaimationMark).

Feature PCC
unrelated variance 0.306
distance variance 0.286
agree variance 0.280
discuss mean -0.231
unrelated mean 0.210
containsExclamationMark 0.192

Table 4: Top six features correlated with fake news.

6.3 Analysis
We found that Google webpages usually cover a
complete set of different information. There are
usually both fake news and real news that debunk
these fake ones. As a result, there is a big in-
formation variance among all those webpages’ ti-
tles, which is captured by the cross-lingual cross-
platform features. Therefore, TFG performs much
better than baselines in a number of events, such
as Event 03 (Sochi Olympics). The statistics of the
CCMR dataset, described in Table 1, also supports
our observation that the labels of posts in CCMR
Google are distributed more evenly compared to
other media sources.

However, the F1-score of TFG is very low in
Event 15 (Garissa Attack). Gunmen stormed the
Garissa University College in this event. We an-
alyzed the Google webpages’ titles that share the
same image in this event. Although some titles

are related to the event, more of them are talk-
ing about completely unrelated information such
as “Daily Graphic News Sun 20th Oct, 2013 —
GhHeadlines Total News ...”. This webpage’s ti-
tle only shows its published date and the name
of the website. Such noise hurt the performance
of the cross-lingual cross-platform features. Since
we did not perform any manual labeling or filter-
ing, sometimes the crawled webpages can be mis-
leading. To analyze the prevalence of such noise,
we randomly picked 100 Google webpages and
100 Baidu webpages from CCMR and counted the
number of noisy posts. The ratio of noise is 22%
in Google and 18% in Baidu. However, even with
such noise, our proposed methods can still outper-
form current state-of-the-art methods.

7 Rumor Verification Leveraging
Cross-lingual Information

We tested if our cross-lingual cross-platform fea-
tures are able to leverage external information
from another language for rumor verification. We
simply replaced the Google webpages with Baidu
webpages to extract features for tweets (TFB), be-
cause we have a pre-trained multilingual sentence
embedding that can project Chinese and English to
a shared embedding space. We used the same clas-
sifier, MLP to evaluate the performance of TFB
with both baselines and TFG.

7.1 Results

Experiment results using the task setting are
shown in Table 2 and the detailed per-event results
are listed in Table 3. Similar to the problem in
TFG, we can not obtain any Chinese webpages re-
lated to events such as Syrian boy, Varoufakis and
zdf, which cover most tweets in the test set. Those
missing features make TFB perform poorly in the
task setting. However, TFB performs better than
two of the baselines in the event setting. If we ex-
clude events without Baidu webpages (event 10,
16 and 17), the average F1-score of UoS, MCG
and CER are 0.130, 0.732 and 0.660, which are
all lower than TFB’s. The performance of TFB
proves that our method can be generalized across
languages or platforms.

To further test the robustness of our cross-
lingual cross-platform features, we also examined
if it would still work when leveraging external in-
formation that contains different languages. We
extracted the cross-lingual cross-platform features
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for tweets leveraging Google and Baidu webpages
together (Combo) and accessed the performance
of Combo using MLP similarly. The performance
of Combo is also listed in Table 2. Since Combo
would contain noise introduced from combining
webpages indexed by different search engines, it is
not surprising that Combo performs slightly worse
than TFG extracted from Google webpages which
already cover a wide range of information solely.
However, Combo performs much better than TFB
which only leverages Baidu webpages. It proves
that our cross-lingual cross-platform features are
robust enough to utilize combined external infor-
mation from different languages and platforms.

7.2 Analysis
We checked the actual titles of webpages from
CCMR in certain events to analyze the reason for
TFB’s worse performance exhaustively. We found
that those Baidu webpages’ titles often talk about
subtopics different from the target rumor’s on
Twitter, while Google webpages are more related.
For example, the F1-score of TFB is much lower
than TFG’s in event 02 (Boston Marathon bomb-
ing). This performance corresponds to our obser-
vation in Section 3 that Baidu webpages mainly
focus on a subtopic related to the Chinese student
instead of other things discussed on Twitter.

8 Low-resource Rumor Verification via
Transfer Learning

We extracted cross-lingual cross-platform features
of webpages in CCMR Baidu leveraging informa-
tion from Google (BFG). Then we applied Trans-
fer, MLP in Section 6 trained on the whole CCMR
Twitter using TFG, to verify those webpages. Be-
cause this pre-trained model is for binary classi-
fication, only webpages labeled as real or fake in
CCMR Baidu are involved.

Since webpages in CCMR Baidu do not share
the same features with tweets, such as the number
of likes and retweets, we adopted a random selec-
tion model as our baseline. It would predict a ru-
mor as real or fake with the same probability. We
compared the performance of the Transfer model
with this baseline on each event. F1-score is also
used for evaluation metric.

8.1 Results
Table 5 lists the detailed results of our transfer
learning experiment. We achieved much better

performance compared to the baseline with statis-
tical significance (p<0.001), which indicates that
our cross-lingual cross-platform feature set can be
generalized to rumors in different languages. It
enables the trained classifier to leverage the infor-
mation learned from one language to another.

ID Event Random Transfer
01 Hurricane Sandy 0.247 0.287
02 Boston Marathon bombing 0.230 0.284
03 Sochi Olympics 0.555 0.752
04 MH flight 370 0.407 0.536
05 Bring Back Our Girls 0.500 0.923
06 Columbian Chemicals 0.000 0.100
07 Passport hoax 0.000 0.000
08 Rock Elephant 0.000 0.500
09 Underwater bedroom 0.577 0.972
10 Livr mobile app - -
11 Pig fish 0.375 1.00
12 Solar Eclipse 0.571 0.889
13 Girl with Samurai boots 0.559 0.925
14 Nepal Earthquake 0.227 0.211
15 Garissa Attack 0.125 0.059
16 Syrian boy - -
17 Varoufakis and zdf - -

Avg 0.312 0.531

Table 5: Rumor verification performance on the
CCMR Baidu, where - indicates there is no webpage
in that event.

8.2 Analysis
In event 11 (Pig fish), Transfer achieves much
higher performance than the random baseline.
Generally, Baidu webpages’ titles are semantically
different from tweets. However, in this particular
event, the textual information of those titles and
tweets are semantically close. As a result, mod-
els learned from English rumors can easily work
on Chinese rumors, which is helpful for our trans-
fer learning. Figure 4 shows three Twitter-Baidu
rumor pairs with similar meaning in this event.

Transfer obtains pretty low F1-scores in event
07 (Passport hoax). The annotation conflict caused
its weak performance. This event is about a Child
drew all over his dads passport and made his dad
stuck in South Korea. During the manual annota-
tion process, we found out that it is a real event
confirmed by official accounts according to one
news article from Chinese social media3, while
CCMR Twitter labeled such tweets as fake. Since
Transfer is pre-trained using Twitter dataset, it is
not surprising that Transfer achieves 0 in F1-score
on this event. The annotation conflict also brings
out that rumor verification will benefit from utiliz-
ing cross-lingual and cross-platform information.

3http://new.qq.com/cmsn/20140605/20140605002796
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Figure 4: Example parallel rumors in the Pig fish event.

9 Conclusion

We created a new multimedia rumor verification
dataset by extending a multimedia Twitter dataset
with external webpages from Google and Baidu
that share similar image content. We designed
a set of cross-lingual cross-platform features that
leverage the similarity and agreement between
information across different platforms and lan-
guages to verify rumors. The proposed features
are compact and generalizable across languages.
We also designed a neural network based model
that utilizes the cross-lingual cross-platform fea-
tures and achieved state-of-the-art results in auto-
matic rumor verification.
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Abstract

We introduce an adversarial method for pro-
ducing high-recall explanations of neural text
classifier decisions. Building on an existing ar-
chitecture for extractive explanations via hard
attention, we add an adversarial layer which
scans the residual of the attention for remain-
ing predictive signal. Motivated by the impor-
tant domain of detecting personal attacks in so-
cial media comments, we additionally demon-
strate the importance of manually setting a se-
mantically appropriate “default” behavior for
the model by explicitly manipulating its bias
term. We develop a validation set of human-
annotated personal attacks to evaluate the im-
pact of these changes.

1 Introduction

The task of explaining classifier decisions has re-
cently attracted increased attention from the re-
search community. It is important for several rea-
sons, including: 1) The increasing performance
gap between simple-and-interpretable models and
complex-but-opaque models (which demand more
sophisticated explanation techniques); 2) The in-
creasing ubiquity of machine learning in busi-
ness and government and the concomitant need
to understand the decisions of models in high-
stakes situations; and 3) A rising awareness of the
limitations of machine learning and the need for
ways to better utilize intrinsically unreliable mod-
els (whose weaknesses can potentially be amelio-
rated by good explanations).

A common way to explain why a model clas-
sified an example a certain way is to extract a
sparse subset of features that were responsible for
the model’s decision, sometimes described as a
saliency mask or “rationale” in the case of text
(Guidotti et al., 2018). This type of local expla-
nation may not completely elucidate why a given

example is assigned a given outcome, but it does
simplify the relationship by identifying what at-
tributes were considered in the decision.

Existing work on this topic has not explicitly ad-
dressed the problem of local feature redundancy.
That is, when two features are equally predictive
of an outcome, which of them should be included
in the saliency mask for that decision? Typical
sparsity constraints encourage minimal sufficient
masks–unveiling just enough of the example to
justify the outcome.

There are domains, however, where it may be
important to produce complete explanations rather
than minimal explanations. One example is the
task of detecting content in online social media
that violates a platform’s policies. Explanatory
models can potentially help human moderators
make quicker and more consistent decisions about
whether to remove comments (Lakkaraju et al.,
2016). However, we propose that truly minimal
explanations are liable to give only a partial por-
trait of why a comment is objectionable, making
it harder to render a fair holistic decision. If used
to explain to a poster why their post was removed,
a minimal explanation can actually be misleading,
by implying that some of what was objectionable
about their post was benign just because it didn’t
add marginal signal to the overall classification.

We use an extractive explanatory neural net-
work to identify which social media comments
contain personal attacks and which words in those
comments are the basis for classifying them as
containing personal attacks. We train this model
on a large dataset (Wulczyn et al., 2017) of com-
ments labeled for the presence of such attacks, and
use the explanatory capacity of the model to iden-
tify spans that constitute personal attacks within
those comments. We extend the work of (Lei et al.,
2016) in using one recurrent neural net (RNN)
to produce an explanatory hard-attention rationale
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Figure 1: An example of a highly-attacking comment from the test set, rationalized by the model

and a second RNN to make a prediction, the two
models trained in an end-to-end fashion.

To produce complete (i.e high-recall) explana-
tions, we add to this existing architecture a sec-
ond, adversarial predictive layer whose purpose is
to try to make predictions based on what is left out
of the rationale. We then add a term to the atten-
tion layer objective function which encourages it
to fool this secondary predictive layer into making
poor predictions by including all predictive signal
(i.e personal attacks) in the mask that it generates.

We also show that manipulating the model bias
term to set a semantically appropriate “default be-
havior” or “null hypothesis” for the model sig-
nificantly improves performance. That is, by ex-
plicitly choosing what output a zero-information,
empty explanation should correspond to, the
model is able to learn explanations that correspond
more closely with human-generated data.

To summarize, the contributions of this paper
are as follows:

• We articulate explanation as an adversarial
problem and introduce an adversarial scheme
for extraction of complete (high-recall) ex-
planations for text classifier decisions.

• We demonstrate the value of explicitly setting
a default output value in such an explanatory
model via bias term manipulation.

• We apply explanatory machine learning for
the first time to the task of detecting personal
attacks in social media comments, and de-
velop a validation dataset for this purpose.

2 Related work

2.1 Online abuse
Online abuse (of which personal attacks are a ma-
jor dimension) has recently attracted increased at-
tention as a computational problem. Scholarly
work has assessed the prevalence and impact of
such abuse (Lenhart et al., 2016; Anderson et al.,
2014; Pew, 2016; Anderson et al., 2016), while
several initiatives have sought to construct datasets
for its study (Wulczyn et al., 2017; Abbott et al.,
2016; Kennedy et al., 2017; Napoles et al., 2017;
Golbeck et al., 2017).

Naturally, much recent work has gone into the
use of machine learning to detect online abuse and
its perpetrators (Nobata et al., 2016; Pavlopoulos
et al., 2017; Cheng et al., 2015), including a work-
shop at the most recent ACL conference (Associ-
ation for Computational Linguistics, 2017). How-
ever, the idea of fully-automated moderation by
machine learning has attracted criticism as being
subject to bias, inaccuracy, manipulation and frus-
tration on the user end (Pavlopoulos et al., 2017;
Binns et al., 2017; Blackwell et al., 2018; Hosseini
et al., 2017; Adams and Dixon, 2017). We propose
interpretable models as one potential solution to
some of these problems.

2.2 Interpretable machine learning
Major points of division in the interpretability lit-
erature include: 1) local vs. global interpretability;
2) post-hoc vs. built-in interpretability; 3) expla-
nation type; 4) input data type; and 5) evaluation
metric. Our model is a built-in, feature-based lo-
cally interpretable model for text that we evaluate

Figure 2: An example of a not-very-attacking example from the test set, rationalized by the model
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relative to a human gold-standard. Guidotti et al.
(2018) provides a recent survey of the field.

Recent work on interpretability has focused
on local (i.e. instancewise) feature-based ex-
planations. Attention models implicitly produce
this type of explanation in the form of attention
weights over input features. Lei et al. (2016) uti-
lizes a regularized hard attention mechanism to
identify the locally minimum sufficient subset of
tokens to make accurate predictions.

Post-hoc methods seek to retroactively probe
the behavior of an existing non-explanatory
model. These include model-specific gradient-
based attribution methods, pioneered by Si-
monyan et al. (2013) and reviewed recently by
Ancona et al. (2017), which have tended to origi-
nate in the image classification domain and trans-
fer to other domains such as text (e.g. Arras et al.
(2017)). Conversely, LIME (Ribeiro et al., 2016)
is a prominent recent model-agnostic work in this
space, building local linear approximations of a
model and using the coefficients thereof to explain
its behavior. Li et al. (2016) trains a hard attention
layer to flip the decisions of an existing model.

While feature-based explanations are the most
common approach, other forms have been pro-
posed, including: similarity to learned ”proto-
types” which represent clusters of items from
the training data (Li et al., 2017); high-precision
feature interaction rules (Ribeiro et al., 2018);
reference to predefined human-friendly concepts
(Kim et al., 2017); and generated natural lan-
guage (Ehsan et al., 2017). Likewise, many evalu-
ation criteria have been proposed. These include
fully automated evaluation (Arras et al., 2017);
comparison to human gold standards (Lei et al.,
2016); and human task performance (Nguyen,
2018). Doshi-Velez and Kim (2017) and Gilpin
et al. (2018) both present reviews and taxonomies
of evaluation types.

2.3 Adversarial learning

Generative Adversarial Networks (Goodfellow
et al., 2014) involve the use of a discriminative
model to help a generative model match its out-
put to an existing data distribution via an adver-
sarial minimax game. Such models have achieved
good results on various generative tasks such as
image synthesis (Zhang et al., 2018) and text gen-
eration (Yu et al., 2016). Recently, adversarial
schemes have begun to be adapted for non-strictly-

generative tasks such as fake review detection
(Aghakhani et al., 2018), improving the robustness
of predictive models to adversarial attacks (Zhao
et al., 2017) and image retrieval (Song, 2017).

Ideas similar to the adversarial scheme used in
this paper have come not from interpretability but
rather from weakly-supervised object localization.
Wei et al. (2017) uses a similar scheme to accom-
plish more complete detection of object shapes in
images by iteratively erasing the regions that a pre-
dictive model lends the most attention, and forc-
ing it to adjust to the occluded image. Edwards
and Storkey (2016) is also similar, using an au-
toencoder rather than a masking layer to remove
identifying information from images.

3 Model

The goal of our architecture is to highlight per-
sonal attacks in text when such are present, and
to highlight little or nothing when there are none,
while also performing accurate overall prediction.

These requirements prompt two important edge
cases: first, there may be no particular predictive
signal in the comment text (i.e. no personal at-
tacks); in a more typical explanatory setting there
is always assumed to be some explanation for a de-
cision. Second, there may be redundant signal (i.e.
multiple personal attacks), more than is strictly re-
quired for accurate prediction, and we assume that
it is desirable to identify all of it. We address both
of these cases with modifications to the original
model architecture.

The model (Figure 3A) is a hard attention ar-
chitecture which uses one RNN to extract an at-
tention mask of either 0 or 1 for each token, and
a different RNN to make a prediction from the
attention-masked text (detailed in Figure 3B). Fol-
lowing (Lei et al., 2016), we refer to the mask-
producing layer g as the generator, but for clarity
we call the predictive layer f the predictor rather
than the encoder. Again following previous work,
we refer to the output z of the generator as the ra-
tionale, in that it rationalizes the prediction of the
predictor. We also refer to the inverse rationale,
defined as 1-z , as the antirationale.

To this basic two-layer scheme, we add a sec-
ondary, adversarial predictor f2, which views the
text masked by the antirationale rather than the ra-
tionale. The secondary predictor’s role is to act
as an adversarial discriminator–it tries to make ac-
curate predictions on the antirationale, while the
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Figure 3: (A) Overall architecture. Generator and predictors are RNNs; (B) Detail of interaction between generator
and one predictor layer. G and P are recurrent units of any kind. O is a sigmoid output layer.

generator tries to prevent it from doing so, which
ensures that all predictive signal ends up in the ra-
tionale.

3.1 Primary predictor
The primary predictor f is an RNN which views
the input text masked by the rationale produced
by the generator. Its objective is simply to reduce
its own squared loss:

costf (z, x, y) =
⇥
f(x, z) � y

⇤2 (1)

3.1.1 Default behavior via predictor bias
term manipulation

The default behavior of the model is the prediction
the predictor makes if the input is entirely masked
by the rationale: f(x, 0). When working with a
recurrent unit that has no internal bias term, this
behavior is entirely determined by the bias term of
the final sigmoid output layer, �(wx + b), which
with typical random initialization of b results in a
default predicted value of roughly 0.5.

However, this 0.5 default value is not always op-
timal or semantically appropriate to the predictive
task. In the personal attack detection task, if no
attacks can be detected, the “natural” default tar-
get value for a text should be close to 0. We show
in the experiments that manually setting the out-
put layer bias term b to logit(0.05) = �2.94, so
that the default predicted value is 0.05, improves
model performance.

3.2 Secondary adversarial predictor
The secondary adversarial predictor is an RNN
which views the input text masked by the antira-

tionale, defined as 1 minus the rationale z. Its pur-
pose is to encourage high-recall explanations by
trying to make accurate predictions from the an-
tirationale, while the generator tries to prevent it
from doing so.

However, if the adversarial predictor’s objec-
tive function were simply

⇥
f2(x, 1 � z) � y

⇤2, it
would be able to gain an unfair advantage from
the presence of masking in the antirationale. See-
ing evidence of ”blanked-out” tokens would tell
it that personal attacks were present in that com-
ment, giving it strong hint that the target value is
close to 1.0 and vice-versa (see figure 4A).

To take away this advantage, the input to the
adversarial predictor has to be permuted such that
the mask itself is no longer correlated with the tar-
get value, while still allowing it to scan the antira-
tionale for residual predictive signal.

Our solution is to replace the masks of half the
items in a training batch with the masks of other
items in the batch. We order the batch by target
value. If item xi is selected for replacement, it
gets the mask of item xN�i where N is the size of
the batch. We call this permutation function c:

c(zi) = c(g(xi)) =

(
g(xi) if ki = 1

g(xN�i) if ki = 0

xi 2 {x0, ..., xN} ki ⇠ Bernoulli(0.5)

This ensures that low-target-value items get
masks associated with high target values and
vice-versa, to maximize the dissociation between
masks and target values. Figure 4B demonstrates
an example of such permutation. This may slow
down the learning, since the adversarial predictor
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Figure 4: (A) Fabricated sample batch masked by antirationales. Note the correlation between mask and target;
(B) The batch with some antirationales switched with those of other items. The correlation no longer holds.

will sometimes have access to somewhat different
features of the input than it will have on the test
data, but it should not lead to incorrect learning,
since the training data always has the correct la-
bel, regardless of the mask.

With c(1 � z) as the permuted antirationale re-
sulting from applying this randomization process.
The objective for the secondary, adversarial pre-
dictor is its predictive accuracy on this permuted
antirationale:

costf2(z, x, y) =
⇥
f2(x, c(1 � z)) � y

⇤2 (2)

3.3 Generator
Given that the two predictors are trying to mini-
mize error on the rationale and (permuted) antira-
tionale respectively, the objective function for the
generator is as follows:

costg(z, x, y) = (3)
⇥
f(x, z) � y

⇤2 (3.1)
+�1||z|| (3.2)

+�1�2

X

t

|zt � zt�1| (3.3)

+�3
⇥
f2(x, 1 � z) � f2(x, 0)

⇤2 (3.4)

Terms 3.1-3.3 are present in the model of Lei
et al. Term 3.1 encourages the generator to al-
low the primary predictor to make accurate predic-
tions, prevents it from obscuring any tokens that
would prevent the predictor from doing so. Term
3.2 encourages the generator to produce minimal
rationales; obscuring as many tokens as possible.
Term 3.3 encourages rationale coherence by pun-
ishing the number of transitions in the rationale;
it encourages few contiguous phrases rather than
many fragments in the rationale.

In theory, these three terms ensure high pre-
cision, selecting the minimal (term 3.2) rationale
with sufficient signal for accurate prediction (term
3.1), subject to a coherence constraint (term 3.3).

Term 3.4, which is new, ensures recall by en-
couraging the adversarial predictor’s prediction on
the antirationale to be similar to the prediction it
would make with no information at all (aka the
default value). That is, the antirationale should
contain no predictive signal. Any personal at-
tacks left out of the rationale would appear in
the antirationale, letting the adversarial predictor
make a more accurate prediction, which would be
penalized by term 3.4.

3.4 Extractive Adversarial Network

In the GAN framework (Goodfellow et al., 2014),
a discriminator attempts to accurately classify syn-
thetic examples which a generator is striving to
match to the distribution of the true data. In our
framework, the adversarial predictor attempts to
accurately classify censored examples which the
generator is striving to strip of all predictive sig-
nal. The discriminator in the GAN framework is
trained half on real data, and half on fakes; our
adversarial predictor is trained half on correctly-
masked items and half on items with permuted
masks. Where our framework differs from GAN is
instead of generating adversarial examples which
are compared to true examples, our architecture
extracts a modified example out of an existing ex-
ample, and so can therefore be described as an Ex-
tractive Adversarial Network (EAN).

3.5 Implementation details

For comparability with the original algorithm,
we use the same recurrent unit (RCNN) and
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REINFORCE-style policy gradient optimization
process (Williams, 1992) as Lei et al. (2016) to
force the generator outputs to be a discrete 0 or
1. In this framework, the continuous output of the
generator on each token is treated as a probability
from which the mask is then sampled to produce a
discrete value for each token. The gradient across
this discontinuity is approximated as:

@Ez⇠g(x)[costg(z, x, y)]

@✓g

= Ez⇠g(x)

"
costg(z, x, y)

@ log p(z|x)

@✓g

#

In theory, one would sample z several times
from the generator g to produce a good estimate
of the gradient. In practice, we find that a single
sample per epoch is sufficient. The predictors f
and f2 are trained as normal, as the error gradient
with respect to their parameters is smooth.

We employ a particular hard attention model,
but the idea of an adversarial critic is not limited
to either hard attention or any particular recurrent
unit. In a soft attention setting, our adversarial
scheme will actually encourage ”harder” attention
by encouraging any non-zero attention weight to
go to 1.0 (or else the inverse of that weight will
leave predictive signal in the anti-explanation).

The attention weights produced by the genera-
tor are applied to the predictor at the output rather
than the input level. When the recurrent unit P of
the predictor operates on a token xt modified by
attention weight zt, it ingests xt normally, but de-
pending on zt it either produces its own output or
forwards that of the previous token:

P (xt, zt) = ztPbase(xt) · (1 � zt)Pbase(xt�1)

We investigate a similar range of sparsity hy-
perparameter values as the original model 1. The
weight on the inverse term only matters relative to
the model sparsity, as that term cooperates rather
than competing with the predictive accuracy term
(because it almost never hurts accuracy to add
more to the rationale). Therefore we set �3 to 1.0
when we want to include the inverse term.

We use Word2Vec (Mikolov et al., 2013) to cre-
ate input token word vectors and Adam (Kingma
and Ba, 2014) for optimization.

1�1=[0.0003, 0.0006, 0.0009, 0.0012, 0.0015, 0.0018,
0.0021], �2=[0, 1, 2]

4 Data

To train our model of personal attacks, we use
the dataset introduced by (Wulczyn et al., 2017),
which consists of roughly 100,000 Wikipedia re-
vision comments labeled via crowsourcing for ag-
gression, toxicity and the presence of personal at-
tacks. This dataset includes its own training, de-
velopment and test set split, which we also use.

To this dataset we add a small validation set of
personal attack rationales. 40 undergraduate stu-
dents used Brat (Stenetorp et al., 2012) to high-
light sections of comments that they considered to
constitute personal attacks. Comments were sam-
pled in a stratified manner from the development
and test sets of the Wulczyn et al. dataset, and
each student annotated roughly 150 comments,
with each comment viewed by roughly 4 anno-
tators. To calculate gold-standard rationales, we
take the majority vote among annotators for each
token in each comment. 1089 distinct comments
were annotated, split between a development and
test set of 549 and 540 examples respectively.

The Krippendorff’s alpha on our validation set
is 0.53 at the whole-comment level. This value
is comparable with that of Wulczyn et al. (2017)
(0.45). Agreement at the token level is a lower
0.41, because this includes tokens which are a
matter of preference among annotators, such as ar-
ticles and adverbs, as well as content tokens.

5 Experiments

We show that both modifications to the original al-
gorithm, bias term manipulation and inverse term,
increase the tokenwise F1 of the predicted ratio-
nales relative to our human-annotated test set. All
hyperparameters were tuned to maximize token-
wise F1 on the development set. 2

5.1 Baselines
We generate six baselines for comparison with our
variant of the (Lei et al., 2016) architecture. These
include the following:
Sigmoid predictor (logistic regression): Bag-of-
words representation with a sigmoid output layer.
RNN predictor: The same sequence model used
for the predictor, but with no generator layer.
Mean human performance: The mean token-
wise performance of human annotators measured

2�1=0.0006 for variants without inverse term, �1=0.0015
for variant with inverse term, �2=2 (Tuned for maximum F1
on original model, then held constant for comparability)
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Model
Rationale Prediction

Tokenwise Phrasewise
F1 Pr. Rec. F1 Pr. Rec. MSE Acc. F1

Sigmoid predictor - - - - - - 0.029 0.94 0.74
RNN predictor - - - - - - 0.018 0.95 0.78

Mean human performance 0.55 0.62 0.57 0.72 0.78 0.69 - - -

Sigmoid predictor + feature importance 0.20 0.62 0.12 0.64 0.59 0.70 0.029 0.94 0.74
RNN predictor + sigmoid generator 0.29 0.22 0.45 0.31 0.19 0.92 0.038 0.91 0.70
RNN predictor + LIME 0.33 0.29 0.39 0.4 0.25 0.96 0.018 0.95 0.78

Lei2016 0.44 0.38 0.52 0.51 0.38 0.83 0.021 0.95 0.77
Lei2016 + bias 0.49 0.48 0.49 0.60 0.46 0.86 0.02 0.95 0.77
Lei2016 + bias + inverse (EAN) 0.53 0.48 0.58 0.61 0.47 0.87 0.021 0.95 0.77

Table 1: Rationale performance relative to human annotations. Prediction accuracy is based on a binary threshold
of 0.5. Performance of both Lei2016 model variants is significantly different from the baseline model (McNemar’s
test, p < 0.05)

against the majority vote for the comments they
annotated (with their vote left out).
Sigmoid predictor + feature importance: Bag-
of-words representation with sigmoid output layer,
with post-hoc feature importance based on model
coefficients. Cutoff threshold for features tuned to
maximize rationale F1 on development set.
RNN predictor + sigmoid generator: Rationale
mask generated by sigmoid layer applied indepen-
dently to each input token. Prediction layer is
same as predictor.
RNN predictor + LIME: Rationale mask gener-
ated by applying LIME (Ribeiro et al., 2016) post-
hoc to RNN layer predictions. Masking threshold
tuned to maximize rationale F1.

5.2 Rationale performance

In the main experiment, we evaluate model ratio-
nales relative to rationales created by human anno-
tators. In our validation dataset, human annotators
typically chose to annotate personal attacks at the
phrase level; hence in the sentence “Get a job, you
hippie s***bag”, the majority-vote rationale con-
sists of the entire sentence, where it could arguably
consist of the last two or even the last word. There-
fore, in addition to tokenwise precision, recall and
positive F1, we also report a relaxed “phrasewise”
version of these metrics where any time we cap-
ture part of a contiguous rationale chunk, that is
considered a true positive.

We report results for the original model (i.e.
terms 3.1-3.3 in the objective function), the origi-
nal model with its bias term set for a default value
of 0.05, and the bias-modified model with the ad-
ditional inverse term (term 3.4). For every model

variant, we optimized hyperparameters for token-
wise F1 on the development set. We also report
results for the baselines described above.

Table 1 displays the results. The difference in
performance between the three baselines that don’t
use a RNN generator and the three model variants
that do demonstrates the importance of context in
recognizing personal attacks within text. The rel-
ative performance of the three variants of the Lei
et al. model show that both modifications, setting
the bias term and the addition of the adversarial
predictor, lead to marginal improvements in token-
wise F1. The best-performing model approaches
average human performance on this metric.

The phrasewise metric is relaxed. It allows a
contiguous personal attack sequence to be con-
sidered captured if even a single token from the
sequence is captured. The results on this metric
show that in an absolute sense, 87% of personal
attacks are at least partially captured by the algo-
rithm. The simplest baseline, which produces ra-
tionales by thresholding the coefficients of a lo-
gistic regression model, does deceptively well on
this metric by only identifying attacking words
like ”jerk” and ”a**hole”, but its poor tokenwise
performance shows that it doesn’t mimic human
highlighting very well.

5.3 Original model tokenwise recall

A perplexing result of the rationale performance
comparison is how good the tokenwise recall of
the model is without the inverse term. Without it,
the model is encouraged to find the minimal ra-
tionale which offers good predictive performance.
Comments with more than one personal attack
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Figure 5: Evolution of model loss over time with and
without bias term manipulation

(e.g. Figure 1) constitute 29% of those with at
least one attack and 13% of all comments in our
validation set. For comments like these, the model
should in theory only identify one such attack.
However, it tends to find more information than
needed, leading to a higher-than-expected recall of
.52 in the best overall version of this variant.

To explain this behavior, we run a leave-one-
out experiment on the original+bias and origi-
nal+bias+inverse model variants. For each dis-
tinct contiguous rationale chunk predicted by each
model (when it generates multi-piece rationales),
we try removing this chunk from the predicted
rationale, running the prediction layer on the re-
duced rationale, and seeing whether the result low-
ers the value of the overall objective function.

For the original+bias model variant, we find that
performing this reduction improves the value of
the objective function 65% of the time. However,
the combined average impact of these reductions
on the objective function is to worsen it. What this
means is while 65% of distinct phrases discovered
by the generator are unnecessary for accurate pre-
diction, the 35% of them that are necessary lead to
a major decrease in predictive accuracy.

That is, the generator “hedges its bets” with re-
spect to predictive accuracy by including more in-
formation in the rationales than it has to, and ex-
periences a better global optimum as a result. This
behavior is less prominent with the inclusion of the
inverse term, where the percentage of unnecessary
rationale phrases falls to 47%.

5.4 Impact of bias term manipulation
In theory, the model should learn a good bias term
for the predictor layer, and therefore the idea of ex-
plicitly initializing or fixing the bias term to match

Figure 6: Evolution of development set rationale F1
score over time with and without bias term manipula-
tion

the semantics of the task should not impact model
performance or represent much of a contribution.

In practice however, as figures 5 and 6 demon-
strate, the initialization of the bias term has a big
impact on even the long-term learning behavior of
the model. Using the best hyperparameters for the
original no-bias, no-inverse-term model, figure 5
shows that either initializing or permanently fix-
ing the predictor bias for a default output value of
0.05 leads to improved model loss with respect to
its own objective function. Figure 6 shows a simi-
lar pattern for tokenwise F1 score.

6 Discussion and future work

One interpretation of the impact of the bias term
on model behavior is that an explanation of “why”
is really an explanation of “why not”–that is, an
explanation is information that distinguishes an
item from some alternative hypothesis, and explic-
itly choosing what this alternative is can improve
explanation performance (particularly precision).

Manually setting the model to produce some
reasonable default value for an empty rationale
makes sense in our setting, but not in domains
where there is no default value, such as the beer
review dataset of (Lei et al., 2016). A more gen-
eral approach would be to base explanations on
confidence rather than accuracy, where the default
value would simply be the mean and variance of
the training data, and explanations would consist
of tokens that tighten the bounds on the output.

A surprising finding is that the original algo-
rithm often ends up defying its own objective and
finds more complete rationales than needed. The
leave-one-out experiment described above sug-
gests that the reason for this behavior is that it
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Figure 7: Further examples of labeled and rationalized comments. Items E) and G) show that the algorithm
struggles with sarcasm.

is how the generator deals with predictive uncer-
tainty, and that it achieves a better global optimum
by producing locally suboptimal rationales.

While this “bug” proves useful in our case, it
may not generalize. In our setting the adversarial
predictor gives a modest improvement in recall;
it will produce a larger improvement in settings
where the unaltered algorithm is more successful
at producing the minimal explanations described
by its objective function. Li et al. (2016) finds that
a memory network predictor requires less occlu-
sion than an LSTM to flip its predictions, indicat-
ing that choice of model can effect completeness
of explanations.

In theory, interpretable models can aid human
moderaters by pointing them directly at the po-
tentially objectionable content in a comment and
giving them a starting point for making their own
holistic decision about the comment. However,
there are potential pitfalls. Adding explanations as
a model output gives the model another way to be
wrong–one which humans may be even less able
to troubleshoot than simple misclassification. Re-
latedly, explanations may inspire overconfidence
in model predictions. Extensive user testing would
clearly be needed before any deployment.

One final concern is the question of whether
human-like explanations are really optimal expla-
nations. Are high-recall explanations that mimic
human highlighting tendencies really optimal for
the types of moderating/self-moderating tasks in-
volved in the domain of personal attacks in on-

line social media? Again, this question can only
be answered with human subject experimentation,
which we plan to approach in future work.

7 Conclusion

The main contribution of this paper is to frame ex-
planation as an adversarial problem, thereby ad-
dressing explanation recall for the first time that
we are aware of. We do so by introducing an
adversarial framework (an “extractive adversarial
network”) for ensuring that redundant predictive
signal is not omitted from a model’s explanations.
We also show that choosing a null hypothesis for
the model by setting the model bias term improves
explanation precision.

Secondarily, we make a domain-specific con-
tribution by applying interpretable machine learn-
ing for the first time to the problem of identifying
personal attacks in social media comments, with
the hope of developing more transparent semi-
automated moderation systems. We show that we
approach human performance on a dataset we de-
velop for this purpose.
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Abstract

Website privacy policies represent the single
most important source of information for users
to gauge how their personal data are collected,
used and shared by companies. However, pri-
vacy policies are often vague and people strug-
gle to understand the content. Their opaque-
ness poses a significant challenge to both users
and policy regulators. In this paper, we seek to
identify vague content in privacy policies. We
construct the first corpus of human-annotated
vague words and sentences and present empir-
ical studies on automatic vagueness detection.
In particular, we investigate context-aware and
context-agnostic models for predicting vague
words, and explore auxiliary-classifier gener-
ative adversarial networks for characterizing
sentence vagueness. Our experimental results
demonstrate the effectiveness of proposed ap-
proaches. Finally, we provide suggestions for
resolving vagueness and improving the usabil-
ity of privacy policies.

1 Introduction

Website privacy policies are difficult to read and
people struggle to understand the content. Recent
studies (Sadeh et al., 2013) have raised concerns
over their opaqueness, which poses a considerable
challenge to both Internet users and policy reg-
ulators. Nowadays, consumers supply their per-
sonal information to online websites in exchange
for personalized services; they are surrounded by
smart gadgets such as voice assistants and surveil-
lance cameras, which constantly monitor their ac-
tivities in the home and work environments. With-
out clearly specifying how users’ information will
be collected, used and shared, there is a substantial
risk of information misuse, including undesired
advertisements and privacy breaches. Especially
with recent high-profile cases involving Facebook
and Cambridge Analytica, the public is becoming

S1 We may use the information automatically
collected from your computer or other devices
for the following uses... (Vagueness: 3.8)

S2 In addition, in some cases the Sites can deliver
content based on your current location if you
choose to enable that feature.
(Vagueness: 2.25)

S3 Our Sites and Services may, from time to
time, provide links to sites operated by third
parties. (Vagueness: 3.2)

S4 To customize and serve advertising and other
marketing communications that may be visi-
ble to you on our Sites and Services or else-
where on the internet. (Vagueness: 4)

S5 This includes your credit card number, in-
come level, or any other information that
would normally be considered confidential.
(Vagueness: 3)

Table 1: Example human-annotated vague words and sen-
tences. Vague words are italicized. Averaged sentence vague-
ness is given in the parentheses. Higher score is more vague.

more aware and concerned with how their infor-
mation is handled.

Privacy policies are binding agreements be-
tween companies and users that stipulate how
companies collect, use, and share users’ personal
information. They are lengthy and difficult to read.
Bhatia et al. (2016) suggested two possible causes
for this. First, privacy policies must be compre-
hensive in order to cover a variety of uses (e.g., in-
store and online purchases). Second, the policies
have to be accurate to all data practices and sys-
tems. Clearly, it would be difficult for a company’s
legal counsel to anticipate all future needs. They
need to resort to vague language to describe the
content, causing it to be difficult to read and com-
promising the effectiveness of privacy policies.

In this paper, we present the first study on au-
tomatic detection of vague content in website pri-
vacy policies. We construct a sizable corpus con-
taining word- and sentence-level human annota-
tions of vagueness for privacy policy documents.
The corpus contains a total of 133K words and
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4.5K sentences. Our methods for automatically
detecting vague words and sentences are based on
deep neural networks, which have demonstrated
impressive recent success. Specifically, we inves-
tigate context-aware and context-agnostic models
for predicting word vagueness, where feature rep-
resentations of words are built with and without
considering their surrounding words. By this, we
seek to verify the hypothesis that vagueness is an
intrinsic property of words and has little to do
with context. To understand sentence vagueness,
we explore auxiliary-classifier generative adver-
sarial networks (AC-GAN, Odena et al., 2018).
The model has performed strongly on vision tasks
(e.g., image synthesis), however, whether it can
be adapted to handle text data has not been thor-
oughly investigated. We train the AC-GAN model
to discriminate between real/fake privacy policy
sentences while simultaneously classifying sen-
tences exhibiting different levels of vagueness, in-
cluding “clear,” “somewhat clear,” “vague,” and
“extremely vague,” thus improving the model’s
generalization capabilities. The detected vague
words and sentences can assist users in browsing
privacy policy documents, and privacy regulators
in assessing the clarity of privacy policy practices.
Our research contributions include the following:
• we present the first study on automatic detection

of vague content in privacy policies. Vague con-
tent compromises the usability of privacy poli-
cies and there is an urgent need to identify and
resolve vagueness;

• we construct a sizable text corpus including hu-
man annotations for 133K words and 4.5K sen-
tences of privacy policy texts. The data1 is avail-
able publicly to advance research on language
vagueness; and

• we investigate both context-aware and context-
agnostic methods for predicting vague words.
We also explore the auxiliary-classifier genera-
tive adversarial networks for characterizing sen-
tence vagueness. This is the first study lever-
aging deep neural networks for detecting vague
content in privacy policies.

2 Related Work
Privacy policies are often verbose, difficult to read,
and perceived as ineffective (McDonald and Cra-
nor, 2008). In particular, vague language in these

1https://loganlebanoff.github.io/data/
vagueness_data.tar.gz

documents hurts understanding. “A term is re-
garded as vague if it admits borderline cases,
where speakers are reluctant to say either the
term definitely applies or definitely does not ap-
ply,” a definition of vagueness quoted from (van
Deemter, 2010). Legal scholars and language
philosophers strive to understand vagueness from
a theoretical perspective (Keefe, 2000; Shapiro,
2006). The “sorites paradox” describes the phe-
nomenon of vagueness (Keefe, 2000). It states that
small changes in the object do not affect the appli-
cability of a vague term. For example, a room can
remain “bright” even if the light is dimmed little
by little until it is entirely extinguished, thus cre-
ating a paradox. Hyde (2014) further suggests that
vagueness is a feature pertaining to multiple syn-
tactic categories. Nouns, adjectives and adverbs
(e.g., “child”, “tall”, “many”) are all susceptible
to reasoning. These studies often focus on linguis-
tic case studies but not on developing resources for
automatic detection of vagueness.

Recent years have seen a growing interest in
using natural language processing techniques to
improve the effectiveness of website privacy poli-
cies. Sadeh et al. (2013) describe a Usable Pri-
vacy Policy Project that seeks to semi-automate
the extraction of salient details from privacy poli-
cies. Other studies include crowdsourcing privacy
policy annotations and categorizing data prac-
tices (Ammar et al., 2012; Massey et al., 2013;
Wilson et al., 2016b,a), grouping text segments re-
lated to certain policy issues (Liu et al., 2014; Ra-
manath et al., 2014), summarizing terms of ser-
vices (Braun et al., 2017), identifying user opt-
out choices (Sathyendra et al., 2017), and many
others. These studies emphasize the “too long to
read” issue of privacy policies but leave behind the
“difficult to understand” aspect, such as identify-
ing and eliminating vague content.

The work of (Liu et al., 2016) is close to ours.
The authors attempt to learn vector representations
of words in privacy policies using deep neural net-
works, where the vectors encode not only seman-
tic/syntactic aspects but also vagueness of words.
The model is later fed to an interactive visualiza-
tion tool (Strobelt et al., 2016) to test its ability
to discover related vague terms. While promising,
their approach is not fully automatic, and the fea-
sibility of detecting vague words and sentences in
an automatic manner is still left untested.

In this work we conduct the first study to auto-
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matically detect vague content from privacy poli-
cies. We ask human annotators to label vague
words and sentences and train supervised classi-
fiers to do the same. Classifying vague words
is a challenging task, because vagueness is an
understudied property and it spans multiple syn-
tactic categories (e.g., “usually,” “personal data,”
“necessary”). Neural network classifiers such as
CNN and LSTM have demonstrated prior success
on text classification tasks (Zhang and Wallace,
2015), but whether they can be utilized to identify
vague terms is not well understood.

For sentence classification, we investigate aux-
iliary classifier generative adversarial networks
(AC-GAN, Odena et al., 2018). GANs have seen
growing popularity in recent years (Mirza and
Osindero, 2014; Yu et al., 2016; Li et al., 2017;
Gu et al., 2018; Cai and Wang, 2018). AC-GAN
is a variant of GAN that generates word sequences
using class-conditional probabilities. E.g., it gen-
erates “fake” privacy policy sentences exhibit-
ing different degrees of vagueness (e.g., “clear,”
“vague,” “extremely vague”). AC-GAN nicely
combines real (human-annotated) and fake (syn-
thetic) privacy policy sentences in a discrimina-
tive framework to improve the model’s generaliza-
tion capabilities. This can be equated to a semi-
supervised learning paradigm through augmenta-
tion of the dataset with generated sentences. Data
augmentation is particularly valuable for vague-
ness detection, which generally has small expen-
sive datasets. We perform a full analysis on AC-
GAN and compare it to state-of-the-art systems.

3 The Corpus

Annotating vague words and sentences is a non-
trivial task. We describe our effort to select pri-
vacy policy sentences for annotation, recruit qual-
ified workers, and design annotation guidelines.

We select 100 website privacy policies from the
collection gathered by Liu et al. (2014). The doc-
uments are quite lengthy, containing on average
2.3K words. More importantly, most content is not
vague. To obtain a more balanced corpus, a filter-
ing step is used to select only sentences that have a
moderate-to-high chance of containing vague con-
tent. Fortunately, Bhatia et al. (2016) provide a list
of 40 cue words for vagueness, manually compiled
by policy experts. We therefore retain only sen-
tences containing one of the cue words for further
annotation. A brief examination shows that most

Vague Term Freq. Vague Term Freq.
may 1,575 other information 30
personal info. 465 non-personal info. 30
information 302 sometimes 27
other 261 reasonably 26
some 214 appropriate 25
certain 205 necessary 24
third parties 183 certain info. 23
third party 134 typically 22
pers. iden. info. 88 affiliates 21
time to time 75 reasonable 20
most 54 non-personal 19
generally 52 personally iden. 18
personal data 52 such as 18
third-party 49 usually 17
others 41 personal 16
general 39 may be 15
many 37 content 14
various 36 otherwise 14
might 35 periodically 14
services 33 similar 14

Table 2: The most frequent vague terms identified by hu-
man annotators and their frequencies in our corpus. “pers.,”
“iden.” and “info.” are shorthand for “personally,” “identifi-
able” and “information.”

of the sentences removed from the corpus are in-
deed clear. Even with this bias, the resulting cor-
pus still contains a small portion of clear sentences
(See Figure 1). The reason is that a cue word can
be used in a way that is not vague. For example, in
the sentence “Users may post to our website,” the
word may indicates permission but not possibility,
and therefore the sentence is not vague.

Reidenberg et al. (2015) discuss attempts to use
crowdsourced workers as a cost-effective alterna-
tive to policy experts for annotating privacy poli-
cies. In this study, we hire crowd workers from
the Amazon Mechanical Turk platform. To recruit
quality workers, we require them to reside in the
U.S. and be proficient in English; they are skilled
workers maintaining a task success rate of 90% or
above. We provide example labelled vague terms
obtained from the case studies described in Bhatia
et al. (2016) to reduce discrepancies among work-
ers. The annotators are then asked to use their best
judgment to perform the task.

Given a privacy policy sentence, the annotators
are instructed to identify all vague terms2 and as-
sign a score of vagueness to the sentence. A vague
term is limited to be 5 words or less (e.g., “includ-
ing but not limited to”). We use this rule to prevent
annotators from tagging an entire sentence/clause
as vague. A slider is provided in the interface to al-

2We use “term” to denote either a single word or a phrase.
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Figure 1: (Left) Percentage of sentences containing different
numbers of vague words. (Right) Perc. of sentences with
different levels of vagueness. 1 is clear, 5 is extremely vague.

low annotators to select a vagueness score for the
sentence: 1 is extremely clear and 5 is extremely
vague. We design a human intelligence task (HIT)
to include 5 privacy policy sentences and a worker
is rewarded $0.05 for completing the task. Five
human workers are recruited to perform each task.

We obtain annotations for 133K words and 4.5K
sentences. The average sentence vagueness score
is 2.4±0.9. As of inter-annotator agreement3, we
find that 47.2% of the sentences have their vague-
ness scores agreed by 3 or more annotators; 12.5%
of the sentence vagueness scores are agreed by 4
or more annotators. Furthermore, the annotators
are not required to select vague words if they be-
lieve the sentences are clear. We remove vague
words selected by a single annotator. Among the
rest, 46.1% of the words are selected by 3 or more
annotators; 18.5% of the words are selected by 4
or more annotators. These results suggest that, al-
though annotating vague terms and sentences is
considered challenging, our annotators can reach
a reasonable degree of agreement. We present ex-
ample vague terms in Table 2. Note that we obtain
a total of 1,124 unique vague terms, which go well
beyond the 40 cue words used for sentence pres-
election. Figure 1 shows more statistics on sen-
tence vagueness, including (i) the percentages of
sentences containing different numbers of vague
words, and (ii) the percentages of sentences whose
vagueness scores fall in different ranges.

4 Word Vagueness

We seek to test an important hypothesis related to
word vagueness. We conjecture that vagueness is
an intrinsic property of words; whether a word is
vague or not has little to do with its context words.
To verify this hypothesis, we build context-aware
and context-agnostic models to classify each word

3We choose not to calculate a kappa statistic, as labelling
vague words/sentences is not a clear-cut classification task.

Sent: This includes your credit card number , income level , or any
other information that would normally be considered confidential .

Annotator 1: any, other, normally
Annotator 2: any other information
Annotator 3: normally, confidential, any other

Ground Truth Labels: [This]0 [includes]0 [your]0 [credit]0 [card]0
[number]0 , [income]0 [level]0 , [or]0 [any]1 [other]1 [information]0
[that]0 [would]0 [normally]1 [be]0 [considered]0 [confidential]0 .

Table 3: Ground truth labels are obtained by consolidating
human-annotated vague terms; “any,” “other,” “normally” are
labelled 1 because they are selected by 2 or more annotators.

in a privacy policy sentence as either vague or non-
vague. The ground-truth labels are obtained by
consolidating human annotations (see Table 3 for
an example). A word is labelled 1 if it is selected
by two or more annotators, otherwise 0. We de-
scribe details of the two classifiers below.
Context-aware classifier. It builds feature rep-
resentations of words based on the surrounding
context words. Given its strong performance, we
construct a bidirectional LSTM (Hochreiter and
Schmidhuber, 1997) for this purpose. A word
is replaced by its word2vec embedding (Mikolov
et al., 2013) before it is fed to the model. For
each time step, we concatenate the hidden states
obtained from the forward and backward passes
and use it as input to a feedforward layer with sig-
moid activation to predict if a word is vague or
non-vague. Because single words consist of the
majority of the human-annotated vague terms, we
choose to use binary word labels instead of a BIO
scheme (Chiu and Nichols, 2016) for sequence
tagging. Figure 2 shows the architecture.
Context-agnostic classifier. It uses intrinsic fea-
ture representations of words without considering
the context. Specifically, we represent a word us-
ing its word2vec embedding, then feed it to a feed-
forward layer with sigmoid activation to obtain the
prediction (Figure 2). We train the classifier us-
ing a list of unique words obtained from the train-
ing data; a word is considered positive if it has a
ground truth label of 1 in any sentence, otherwise
negative. Note that the ratio of positive/negative
unique words in our corpus is 1068/3176=0.34.
At test time, we apply the binary classifier to each
word of the test set. A word is assigned the same
label regardless of which sentence it appears in.
We adopt this setting to ensure the context-aware
and context-agnostic results are comparable.

5 Sentence Vagueness

We next investigate how vagueness is manifested
in privacy policy sentences. Our goal is to assign a
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or any other information…

N V V N

or

any

other

N

V

V

information

N

Figure 2: (Left) Context-aware word classifier implemented
as a bidirectional LSTM. (Right) Context-agnostic classifier.
“V” and “N” are shorthands for “vague” and “non-vague.”

label to each sentence indicating its level of vague-
ness. We derive ground truth sentence labels by
averaging over vagueness scores assigned by hu-
man annotators, and further discretizing the scores
into four buckets: [1,2), [2,3), [3,4), [4,5], respec-
tively corresponding to “clear,” “somewhat clear,”
“vague,” and “extremely vague” categories. The
sentences in the four buckets respectively consist
of 26.9%, 50.8%, 20.5%, and 1.8% of the total an-
notated sentences. We choose to predict discrete
labels instead of continuous scores because labels
are more informative to human readers. E.g., a la-
bel of “extremely vague” is more likely to trigger
user alerts than a score of 4.2.

5.1 Auxiliary-Classifer GAN
Predicting vague sentences is a nontrivial task
due to the complexity and richness of natural lan-
guage. We propose to tackle this problem by ex-
ploring the auxiliary classifier generative adversar-
ial networks (AC-GAN, Odena et al., 2018). We
choose GAN because of its ability to combine text
generation and classification in a unified frame-
work (Yu et al., 2016; Li et al., 2017; Gu et al.,
2018). Privacy policy sentences are particularly
suited for text generation because the policy lan-
guage is restricted and a text generator can effec-
tively learn the patterns. AC-GAN has a great po-
tential to make use of both human-annotated data
and “fake” augmented data for classification. The
system architecture is presented in Figure 3. The
generator learns to generate “fake” privacy pol-
icy sentences and sentences exhibiting different
levels of vagueness using class conditional proba-
bilities (hence the name auxiliary-classifer GAN).
The discriminator learns to discriminate among
real/fake sentences as well as sentences of differ-
ent levels of vagueness. They are jointly trained
using a heuristic, non-saturating game loss. In the
following we present the model details.

CNN
Discriminator

RNN
Generator

C (class) Z (noise)

X_real X_fake

fake C=4

real C=3
C=2
C=1

0.01
0.92
…
0.01

0.01
0.03
…
0.87

0.95
0.02
…
0.01

0.01
0.01
…
0.94

embeddings obtained by argmax

weighted embeddings generated by softmax

Figure 3: System architecture for AC-GAN. (Left) The Gen-
erator generates plausible privacy policy sentences (X fake).
The Discriminator must learn to differentiate between real
and fake sentences as well as predicting the vagueness cate-
gory (C) of the sentences. (Right) RNN-generator. A vocab-
ulary distribution is produced for each step. Gumbel-softmax
is applied to the distributions to calculate weighted embed-
dings to be used by the Discriminator (arrows pointing up).
Argmax is applied to the distributions to retrieve embeddings
to be passed to the next step (arrows pointing down).

5.2 Sentence Generator

The generator focuses on generating “fake” sam-
ples that resemble privacy policy sentences of a
given vagueness category. This is denoted by
P (X|C), where X = {xt}T

t=1 is a sequence of
words and C 2 {1, 2, 3, 4} is a vagueness cat-
egory. A vagueness category is randomly sam-
pled in the generation process, and the generator
attempts to generate a sentence of that vagueness
level. A typical RNN text generator unrolls the
sequence X one word at a time until an end-of-
sentence symbol (EOS) is reached. At time step
t, it samples a word xt from a vocabulary-sized
vector of probability estimates P (xt):

xt ⇠ P (xt) = softmax(at), (1)
at = Wht + b, (2)
ht = fRNN (ht�1, xt�1), (3)

where at is a vector of activation values and ht

is the t-th RNN hidden state. We train a neural
text generator, implemented as Long Short-Term
Memory networks (Hochreiter and Schmidhuber,
1997), on a large collection of privacy policy sen-
tences using cross-entropy loss. While generating
natural language sentences is successfully tackled
by recurrent neural networks, the generated sen-
tences are not necessarily vague. Training the gen-
erator only on vague sentences is impractical be-
cause there is a limited number of annotated sen-
tences. In this paper we introduce a new way of
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defining class conditional probabilities:

xt ⇠ P (xt|C) = softmax(at + �Cv), (4)

where v is a vocabulary-sized, trainable vector in-
dicating how likely a vocabulary word is vague.
�C is a coefficient for vagueness category C. The
underlying assumption is that a “clear” sentence is
less likely to contain vague words (�C is negative),
whereas an “extremely vague” sentence tends to
contain many vague words (�C is positive).

Finally, the generated “fake” sentences, to-
gether with “real” sentences labelled by human an-
notators, are fed to the discriminator for training
a classifier discriminating between real/fake sen-
tences and sentences of different vagueness lev-
els. Nevertheless, there remains a critical issue
with the current system: we cannot backpropagate
through discrete samples X . As a result, the gen-
erator parameters cannot be properly updated us-
ing backpropagation. To circumvent this issue, we
attempt the reparameterization trick with Gumbel-
Softmax relaxation (Gu et al., 2018).
Straight-Through Gumbel-Softmax. Two com-
peting issues exist in the RNN generator. First, the
discriminator requires a continuous form for each
generated word to keep the entire model differen-
tiable. Second, the generator requires a discrete
choice for each word to generate a sentence, rather
than propagating “partial words” through the se-
quence. To solve this problem, the softmax dis-
tribution over vocabulary words is sent to the dis-
criminator, while the argmax over the distribution
is sent to the next step of the generator. This sys-
tem is referred to as Straight-Through Gumbel.

We explain the process of calculating the soft-
max distribution to send to the discriminator. To
simulate the random-sampling process, the ap-
proach applies reparameterization to shift random-
ness from sampling a discrete variable xt (Eq. (4))
to sampling a continuous noise vector zt follow-
ing the Gumbel distribution (Eq. (5)). The noise
vector is added to the activation at + �Cv to com-
pute the argmax (Eq. (6)). To simulate the argmax
operation, a temperature parameter ⌧ is applied to
softmax (Eq. (7)), where small values of ⌧ greatly
skew the distribution, causing it to peak at the
largest value, while still remaining differentiable.
Similar reparameterization is also used for varia-
tional auto-encoders (Kingma and Welling, 2014).

zt ⇠ Gumbel(z) (5)

xt = argmax(at + zt + �Cv) (6)

P (xt|C) = softmax(
at + zt + �Cv

⌧
) (7)

The generator requires a discrete word to prop-
agate to the next time step of the RNN. The word
with the maximum activation value is chosen as
shown in (Eq. (6)). An illustration of ST Gumbel
is presented in Figure 3.

5.3 Sentence Discriminator
A sentence discriminator learns to perform two
tasks simultaneously. Given a privacy policy
sentence X , it predicts a probability distribution
over its sources, denoted by P (S|X), where S
= {real, fake}; and a probability distribution over
its level of vagueness, denoted by P (C|X), C =
{clear, somewhat clear, vague, extremely vague}.
The learning objective for the discriminator is to
maximize the log-likelihood of making correct
predictions on both tasks, denoted by LC + LS ,
where LC and LS are defined in Eq. (8) and (9).

LC = E[log P (C = c|Xreal+fake)] (8)
LS = E[log P (S = real|Xreal)]

+ E[log P (S = fake|Xfake)] (9)

The ground truth vagueness labels C for real
sentences are annotated by human annotators. For
fake sentences the labels are randomly sampled
in the generation process; and conditioned on the
sampled vagueness labels, fake sentences are gen-
erated using P (xt|C) (Eq. (7)).

L0
C = E[log P (C = c|Xfake)] (10)

L0
S = E[log P (S = real|Xfake)] (11)

The generator is trained to maximize L0
C + L0

S
as illustrated in Eq. (10-11). Intuitively, the gen-
erator is rewarded (or punished) only based on
the “fake” samples it produces. It is rewarded by
generating sentences correctly exhibiting different
levels of vagueness, denoted by (L0

C). It is also
rewarded by generating sentences that look “real”
and cannot be easily distinguished by the discrim-
inator (L0

S). Eq. (11) corresponds to a heuristic,
non-saturating game loss that mitigates gradient
saturation (Goodfellow, 2016).

We experiment with two variants of the discrim-
inator, implemented respectively using the convo-
lutional neural networks (CNN) (Zhang and Wal-
lace, 2015) and LSTM (Hochreiter and Schmid-
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Word-Level
System P (%) R (%) F (%)
Context-Agnostic 11.30 78.15 19.71
Context-Aware 68.39 53.57 60.08

Table 4: Results of detecting vague words in privacy policies
using context-aware and context-agnostic classifiers.

huber, 1997). In both cases, the discriminator as-
signs a source and a vagueness label to each sen-
tence. The CNN discriminator scans through each
sentence using using a sliding window and apply
a number of filters to each window. A max pool-
ing over the sequence is performed to create a fea-
ture map for the sentence. This feature map is
treated as the sentence representation. It is fed to
two separate dense layers with softmax activation
to predict P (C|X) and P (S|X) respectively. In
contrast, the LSTM discriminator runs a forward
pass through the sentence and uses the last hidden
state as the sentence representation. Similarly, this
representation is fed to two dense layers used to
predict P (C|X) and P (S|X). Both methods pro-
duce probability estimations using a shared sen-
tence representation. Given the scarcity of labelled
sentences, this multitask setting is expected to im-
prove the model’s generalization capabilities.

6 Experiments

We conduct experiments on the annotated corpus
using a 5-fold cross validation; 10% of the train-
ing data in each fold are reserved for validation.
In the following sections we present details of ex-
perimental settings and report results on detecting
vague words and sentences in privacy policy texts.

6.1 Parameter Settings

The Xavier scheme (Glorot and Bengio, 2010) is
used for parameter initialization. For the context-
aware word classifier, the bidirectional LSTM has
512 hidden units. For AC-GAN, the CNN discrim-
inator uses convolutional filters of size {3, 4, 5}
and 128 filters for each size. The LSTM gener-
ator and discriminator both have 512 hidden units.
The generator is further pretrained on 82K privacy
policy sentences using a 10K vocabulary. The co-
efficient �C is set to {�1, 0, 1, 2} respectively for
‘clear,’ ‘somewhat clear,’ ‘vague,’ and ‘extremely
vague’ categories. v is initialized as a binary vec-
tor, where an entry is set to 1 if it is one of the
40 cue words for vagueness (Bhatia et al., 2016).
Word embeddings are initialized to their word2vec

S1 ... while we use [reasonable]tp [efforts]fn to
protect your PII, we can not guarantee its ab-
solute security.

S2 We use [third-party]fn advertising compa-
nies to serve [some]tp of the ads when you
visit our web site.

S3 The [information]fn we obtain from [those
services]fn [often depends]fp on your set-
tings or their privacy policies, so be sure to
check what those are.

S4 In the event of an insolvency, bankruptcy or
receivership, [personal data may]tp also be
transferred as a business asset.

Table 5: Examples of detected vague words in privacy poli-
cies. [·]tp denotes true positive, [·]fp is false positive, [·]fn is
false negative. All unmarked words are true negatives.

False Alarms Misses
POS Tag Perc. (%) POS Tag Perc. (%)
Adjective 37.19 Noun 47.64
Noun 35.24 Adjective 25.07
Verb 20.53 Verb 13.31
Adverb 4.63 Adverb 5.62
Determiner 1.72 Determiner 2.79

Table 6: The most frequent part-of-speech (POS) tags ap-
peared in false alarms and misses of detected vague words.

embeddings and are made trainable during the en-
tire training process.

6.2 Predicting Vague Words

We compare context-aware with context-agnostic
classifiers on detecting vague words in privacy
policy text. The goal is to test an important hy-
pothesis: that vagueness is an intrinsic property
of words, thus a word being vague has little to do
with its context. Results are presented in Table 4.

Interestingly, context-agnostic classifier yields
a high recall score (78.15%) despite it ignoring
context. This result indicates word vagueness
can be encoded in distributed word embeddings.
However, the low precision (11.30%) suggests
that context is important for fine-grained analysis.
While it is possible for experts to create a com-
prehensive list of vague terms for assessing pri-
vacy policies, extra effort is required to verify the
tagged vague terms. Using a context-aware clas-
sifier produces more balanced results, improving
the F-score from 19.71% to 60.08%. Our findings
suggest that the context information is necessary
for detecting vague words.

In Table 5, we present examples of detected
vague words. The nouns have caught our atten-
tion. The classifier misses several of these, in-
cluding “efforts,” “information,” “services,” per-
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Sentence-Level
System P (%) R (%) F (%)
Baseline (Majority) 25.77 50.77 34.19
LSTM 47.79 50.06 47.88
CNN 49.66 52.51 50.18
AC-GAN (Full Model) 51.00 53.50 50.42
AC-GAN (Vagueness Only) 52.90 54.64 52.34

Table 7: Results on classifying vague sentences.

haps because there is no clear definition for these
terminologies. In Table 6, we found nouns consist
of 47.64% of all the miss-detected vague words,
while adjectives consist of 37.19% of the false
alarms. There is also an interesting phenomenon.
In S3, “Information” and “those services” are con-
sidered more vague by humans than “often de-
pends.” However, if those terms are removed from
the sentence, yielding “The [..] we obtain from
[..] often depends on your settings or their privacy
policies.” In this case, the vagueness of “often de-
pends” become more prominent and is captured by
our system. It suggests that the degree of vague-
ness may be relative, depending on if other terms
in the sentence are more vague.

6.3 Predicting Vague Sentences

In Table 7 we present results on classifying pri-
vacy policy sentences into four categories: clear,
somewhat clear, vague, and extremely vague. We
compare AC-GAN with three baselines: CNN and
LSTM trained on human-annotated sentences, and
a majority baseline that assigns the most frequent
label to all test sentences. We observe that the AC-
GAN models (using CNN discriminator) perform
strongly, surpassing all baseline approaches. CNN
shows strong performance, yielding an F-score of
50.92%. A similar effect has been demonstrated
on other sentence classification tasks, where CNN
outperforms LSTM and logistic regression classi-
fiers (Kim, 2014; Zhang and Wallace, 2015). We
report results of AC-GAN using the CNN discrim-
inator. Comparing “Full Model” with “Vagueness
Only,” we found that allowing the AC-GAN to
only discriminate sentences of different levels of
vagueness, but not real/fake sentences, yields bet-
ter results. We conjecture this is because training
GAN models, especially with a multitask learn-
ing objective, can be unstable and more effort is
required to balance the two objectives (LS and
LC). Example sentences generated by AC-GAN
are presented in Table 9.

% (Freq) Clear SomeC Vague ExtrV
Clear 39.4 (477) 59.8 (723) 0.7 (8) 0.2 (2)
SomeC 12.4 (284) 85.2 (1945) 2.4 (54) 0.0 (1)
Vague 3.4 (31) 89.6 (828) 7.0 (65) 0.0 (0)
ExtrV 1.2 (1) 88.9 (72) 9.9 (8) 0.0 (0)

Table 8: Confusion matrix for sentence classification. The
decimal values are the percentage of system-identified sen-
tences that were placed in the specified vagueness class. For
example: the item in (row 1, col 2) conveys that 59.8% of
sentences (absolute count is 723) identified by the system as
“clear” were actually “somewhat clear” according to humans.

Figure 4: ROC curves for classifying vague words (left) and
sentences (right).

Figure 4 shows the ROC curves of the four
vagueness classes. Because the dataset is im-
balanced, the ROC curves are more informative
than F-scores. The “clear” and “somewhat clear”
classes yield promising AUC scores of 0.71 and
0.78 respectively. The “vague” and “extremely
vague” classes are more challenging. They are
also the minority classes, consisting of 20.5% and
1.8% of the annotated data. Confusion matrix
in Table 8 reveals that the majority of the sen-
tences are tagged as “somewhat clear,” while 7.0%
of the vague sentences are tagged as vague. It
suggests more annotated data may be helpful to
enable the classifier to distinguish “vague” and
“extremely vague” sentences. Interestingly, we
found there is little correlation between the sen-
tence vagueness score and sentence length (Pear-
son correlation r=0.18, p <0.001) while there is
a relatively strong correlation (r=0.57, p <0.001)
between sentence vagueness and the number of
vague words in it. This finding verifies our hy-
pothesis that vague words seem to increase the
perceived sentence vagueness.

Lessons learned. We summarize some lessons
learned from annotating and detecting vague con-
tent in privacy policies, useful for policy regula-
tors, users and website operators. In general, pri-
vacy policies are suggested to:

• provide clear definitions for key concepts.
Lacking definition is a major source of confu-
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Clear Our commitment to travian games uses
paid services or send an order online.
To learn how important anonymization it,
we provide a separate medicare.

SomeC Slate use certain cookies and offers.
Visitors who apply us an credit card may
sign up.

Vague There may take certain incidents various of-
ferings found on various topics; some or all
individual has used.
You may modify certain edit or otherwise
delete certain features or a similar id will no
longer.

ExtrV Also, some apps may offer contests, sweep-
stakes, games or some community where
necessary.
If necessary, buying or clarify certain links,
certain features of our site may place or
some or some features may offer stack or
unauthorized access some some functional-
ity.

Table 9: Plausible sentences generated by AC-GAN. They
exhibit different levels of vagueness. “SomeC” and “ExtrV”
are shorthands for “somewhat clear” and “extremely vague.”

sion for the unfamiliar reader. Example con-
cepts include personally identifiable informa-
tion, personal (non-personal) information, third
parties, service providers, subsidiaries, etc.

• suppress the use of vague words. There are on
average 2.5 vague words per sentence in our
corpus. The more vague words, the more likely
the sentence is perceived as vague (r = 0.57);

• use sentences with simple syntactic structure to
ease understanding. A sophisticated sentence
with vague terms in it, e.g., “You may request
deletion of your personal data by us, but please
note that we may be required (by law or oth-
erwise) to keep this information and not delete
it...” appears especially confusing to readers.

7 Conclusion

In this paper we present the first empirical study
on automatic detection of vague content in pri-
vacy policies. We create a sizable text corpus in-
cluding human annotations of vague words and
sentences. We further investigate the feasibility
of predicting vague words and sentences using
deep neural networks. Specifically we investigate
context-agnostic and context-aware models for de-
tecting vague words, and AC-GAN for detecting
vague sentences. Our results suggest that a super-
vised paradigm for vagueness detection provides
a promising avenue for identifying vague content
and improving the usability of privacy policies.
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Abstract

A news article’s title, content and link struc-
ture often reveal its political ideology. How-
ever, most existing works on automatic polit-
ical ideology detection only leverage textual
cues. Drawing inspiration from recent ad-
vances in neural inference, we propose a novel
attention based multi-view model to leverage
cues from all of the above views to identify the
ideology evinced by a news article. Our model
draws on advances in representation learning
in natural language processing and network
science to capture cues from both textual con-
tent and the network structure of news articles.
We empirically evaluate our model against a
battery of baselines and show that our model
outperforms state of the art by 10 percentage
points F1 score.

1 Introduction

Many issues covered or discussed by the me-
dia and politicians today are so subtle that
even word-choice may require one to adopt
a particular ideological position (Iyyer et al.,
2014). For example, conservatives tend to use
the term tax reform, while liberals use tax
simplification. Though objectivity and un-
biased reporting remains a cornerstone of profes-
sional journalism, several scholars argue that the
media displays ideological bias (Gentzkow and
Shapiro, 2010; Groseclose and Milyo, 2005; Iyyer
et al., 2014). Even if one were to argue that such
bias may not be reflective of a lack of objectiv-
ity, prior research Dardis et al. (2008); Card et al.
(2015) note that framing of topics can significantly
influence policy.

Since manual detection of political ideology is
challenging at a large scale, there has been exten-
sive work on developing computational models
for automatically inferring the political ideology
of articles, blogs, statements, and congressional
speeches (Gentzkow and Shapiro, 2010; Iyyer et al.,

2014; Preoţiuc-Pietro et al., 2017; Sim et al., 2013).
In this paper, we consider the detection of ideo-
logical bias at the news article level, in contrast to
recent work by Iyyer et al. (2014) who focus on
the sentence level or the work of (Preoţiuc-Pietro
et al., 2017) who focus on inferring ideological
bias of social media users. Prior research exists
on detecting ideological biases of news articles or
documents (Gentzkow and Shapiro, 2010; Gerrish
and Blei, 2011; Iyyer et al., 2014). However, all
of these works generally only model the text of
the news article. However, in the online world,
news articles do not just contain text but have a
rich structure to them. Such an online setting in-
fluences the article in subtle ways: (a) choice of
the title since this is what is seen in snippet views
online (b) links to other news media and sources in
the article and (c) the actual textual content itself.
Except for the textual content, prior models ignore
the rest of these cues. Figure 1 shows an example
from The New York Times. Note the pres-
ence of hyperlinks in the text, which link to other
sources like The Intercept(Figure 1a). We
hypothesize that such a link structure is reflective
of homophily between news sources sharing sim-
ilar political ideology – homophily which can be
exploited to build improved predictive models (see
Figure 1b). Building on this insight, we propose a
new model MVDAM: Multi-view document atten-
tion model to detect the ideological bias of news
articles by leveraging cues from multiple views:
the title, the link structure, and the article content.
Specifically, our contributions are:

1. We propose a generic framework MVDAM to
incorporate multiple views of the news article
and show that our model outperforms state
of the art by 10 percentage points on the F1
score.

2. We propose a method to estimate the ideo-
logical proportions of sources and rank them
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by the degree to which they lean towards a
particular ideology.

3. Finally, differing from most works, which typ-
ically focus on congressional speeches, we
conduct ideology detection of news articles
by assembling a large-scale diverse dataset
spanning more than 50 sources.

2 Related Work

Several works study the detection of political ide-
ology through the lens of computational linguistics
and natural language processing (Laver et al., 2003;
Monroe and Maeda, 2004; Thomas et al., 2006;
Lin et al., 2008; Carroll et al., 2009; Ahmed and
Xing, 2010; Gentzkow and Shapiro, 2010; Gerrish
and Blei, 2011; Sim et al., 2013). Gentzkow and
Shapiro (2010) first attempt to rate the ideological
leaning of news sources by proposing a measure
called “slant index” which captures the degree to
which a particular newspaper uses partisan terms
or co-allocations. Gerrish and Blei (2011) predict
the voting patterns of Congress members based on
supervised topic models. Other works use topic
models to analyze bias in news articles, blogs, and
political speeches (Ahmed and Xing, 2010; Lin
et al., 2008). Sim et al. (2013) propose a novel
HMM-based model to infer the ideological propor-
tions of the rhetoric used by political candidates
in their campaign speeches which relies on a fixed
lexicon of bigrams associated with ideologies.

The work that is most closely related to our work
is that of Iyyer et al. (2014); Preoţiuc-Pietro et al.
(2017). Iyyer et al. (2014) use recurrent neural net-
works to predict political ideology of congressional
debates and articles in the ideological book corpus
(IBC) and demonstrate the importance of compo-
sitionality in predicting ideology where modifier
phrases and punctuality affect the political ideolog-
ical position. Preoţiuc-Pietro et al. (2017) propose
models to infer political ideology of Twitter users
based on their everyday language. Most crucially,
they also show how to effectively use the relation-
ship between user groups to improve prediction
accuracy. Our work draws inspiration from both of
these works but differentiates itself from these in
the following aspects: We leverage the structure of
a news article by noting that an article is just not
free-form text, but has a rich structure to it. In par-
ticular, we model cues from the title, the inferred
network, and the content in a joint generic neural
variational inference framework to yield improved

models for this task. Furthermore, differing from
Iyyer et al. (2014), we also incorporate attention
mechanisms in our model which enables us to in-
spect which sentences (or words) have the most
predictive power as captured by our model. Finally,
since we work with news articles (which also con-
tain hyperlinks), naturally our setting is different
from all other previous works in general (which
mostly focus on congressional debates) and in par-
ticular from Iyyer et al. (2014) where only textual
content is modeled or Preoţiuc-Pietro et al. (2017)
which focuses on social media users.

3 Dataset Construction

News Sources We rely on the data released by
ALLSIDES.COM1 to obtain a list of 59 US-based
news sources along with their political ideology
ratings: LEFT, CENTER or RIGHT which specify
our target label space. While we acknowledge that
there is no “perfect” measure of political ideology,
ALLSIDES.COM is an apt choice for two main rea-
sons. First, and most importantly the ratings are
based on a blind survey, where readers are asked
to rate news content without knowing the identity
of the news source or the author being rated. This
is also precisely the setting in which our proposed
computational models operate (where the models
have access to the content but are agnostic of the
source itself) thus seeking to mirror human judg-
ment closely. Second, these are normalized by
ALLSIDES to ensure they closely reflect popular
opinion and political diversity present in the United
States. These ratings also correlate with indepen-
dent measurements made by the PEW RESEARCH
CENTRE. All these observations suggest that these
ratings are fairly robust and generally “reflective of
the average judgment of the American People”2.

Content Extraction Given the set of news
sources selected above, we extract the article con-
tent for these news sources. We control for time by
obtaining article content over a fixed time-period
for all sources. Specifically, we spider several news
sources and perform data cleaning. In particular,
the spidering component collates the raw HTML
of news sources into a storage engine (MongoDB).
We track thousands of US based news outlets in-
cluding country wide popular news sources as well
as many local/state news based outlets like the

1https://www.allsides.com/media-bias/media-bias-ratings
2https://www.allsides.com/media-bias/about-bias
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(a) A sample news article. Note the presence of hyperlinks
to other sources like The Intercept.

(b) Homophily in link structure (viewed in color) of var-
ious news sources which can be observed by noting the
presence of clusters corresponding to political ideologies.
The blue, orange and green clusters correspond to left,
right and center leaning sources respectively.

Figure 1: Our proposed framework MVDAM models multiple views of the news article including the content and the link
structure. Figure 1a shows a sample article from the New York Times. The presence of such links can provide informative
signals for predictive tasks like ideology detection primarily due to homophily (Figure 1b).

Boston Herald3. However, in this paper, we con-
sider only the 59 US news sources for which we
can derive ground truth labels for political ideol-
ogy. For each of the news sources considered, we
extract the title, the cleaned pre-processed content,
and the hyperlinks within the article that reveal the
network structure. The label for each article is the
label assigned to its source as obtained from ALL-
SIDES. We choose a random sample of 120, 000
articles and create 3 independent splits for training
(100, 000), validation (10, 000) and test (10, 000)
with a roughly balanced label distribution. 4

Data Pre-processing and Cleaning Since the la-
bels were derived from the source, we are care-
ful to remove any systematic features in each ar-
ticle which are trivially reflective of the source,
since that would result in over-fitting. In particu-
lar we perform the following operations: (a) Re-
move source link mentions When modeling the
link structure of an article, we explicitly remove
any link to the source itself. Second, we also
explicitly remove any systematic link structures
in articles that are source specific. In particular,
some sources may always have links to other do-
mains (like their own franchisees or social me-
dia sites). These links are removed explicitly by
noting their high frequency. (b) Remove head-
ers, footers, advertisements News sources sys-
tematically introduce footers, and advertisements
which we remove explicitly. For example, every

3This is a part of an ongoing project called MediaRank.
More details can be found at http://media-rank.com

4Note that we do not restrict the articles to be strictly polit-
ical since even articles on other topics like health and sports
can be reflective of political ideology (Hoberman, 1977).

article of the The Daily Beast has the fol-
lowing footer You can subscribe to the
Daily Beast here which we filter out.

4 Models and Methods

Problem Formulation Given X =
{Xtitle, Xnet, Xcontent} which represents
a set of multi-modal features of news articles and
a label set Y = {LEFT, CENTER, RIGHT}, we
would like to model Pr(Y |X).

Overview of MVDAM We consider a Bayesian
approach with stochastic attention units to effec-
tively model textual cues. Bayesian approaches
with stochastic attention have been noted to be
quite effective at modeling ambiguity as well as
avoiding over-fitting scenarios especially in the
case of small training data sets (Miao et al., 2016).
In particular, we assume a latent representation h

learned from the multiple modalities in X which
is then mapped to the label space Y . In the most
general setting, instead of learning a deterministic
encoding h given X , we posit a latent distribu-
tion over the hidden representation h, Pr(h|X)
to model the overall document where Pr(h|X) is
parameterized by a diagonal Gaussian distribution
N (h|µ(X), �2(X)).

Specifically, consider the distribution Pr(Y |X)
which can be written as follows:

Pr(Y |X) =
X

h

Pr(Y |h) Pr(h|X) (1)

As noted by Miao et al. (2016), computing the exact
posterior is in general intractable. Therefore, we
posit a variational distribution q�(h) and maximize
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(a) Overview of our full model.

(b) Overview of the inference network.

Figure 2: A broad overview of our MVDAM model depicting the three major components:a discriminator, an inference network
and a prior and captures cues from multiple views of the news article. As noted by Miao et al. (2016) we use stochastic attention
units which are shown to model ambiguity better. We thus train the model end-to-end using neural variational inference.

the evidence lower bound L  Pr(y|X) namely,

L = Eq�(h)[p(Y |h)] � DKL(q�(h)||p(h|X)),
(2)

where p(Y |h) denotes a probability distribution
over Y given the latent representation h, and
p(h|X) denotes the probability distribution over
h conditioned on X .

Equation 2 can be interpreted as consisting of
three components, each of which can modeled sep-
arately: (a) Discriminator p(Y |h) can be viewed
as a discriminator given the hidden representation
h. Maximizing the first term is thus equivalent
to minimizing the cross-entropy loss between the
model’s prediction and true labels. (b) The second
term, the KL Divergence term consists of two com-
ponents: (1) Approximate Posterior The term
q�(h) also known as the approximate posterior pa-
rameterizes the latent distribution which encodes
the multi-modal features X of a document. (2)
Prior The term p(h|X) can be viewed as a prior
which can be uninformative (a standard Gaussian
prior in the most general case, or any other prior
model based on other features). We now discuss
how we model each of these components in detail.

4.1 Discriminator
We use a simple feed-forward network with a lin-
ear layer that accepts as input the latent hidden
representation of X , followed by a ReLU for non-

linearity followed by a linear layer and a final soft-
max layer to model this component.

4.2 Approximate Posterior
Here we model the approximate posterior q�(h)
by an inference network shown succinctly in Fig-
ure 2b. The inference network takes as input the
features X and learns a corresponding hidden rep-
resentation h. More specifically, it outputs two
components: (µ, &) corresponding to the mean
and log-variance of the gaussian parametrizing the
hidden representation h. We model this using a
“multi-view” network which incorporates hidden
representations learned from multiple modalities
into a joint representation. Specifically, given d-
dimensional hidden representations corresponding
to multiple modalities ztitle, znetwork, and zcontent

the model first concatenates these representations
into a single 3d-dimensional representation zconcat

which is then input through a 2-layer feed-forward
network to output a d-dimensional mean vector µ
and a d-dimensional log-variance vector & that pa-
rameterizes the latent distribution governing h. We
now discuss the models used for capturing each
view.

4.2.1 Modeling the Title
We learn a latent representation of the title of a
article by using a convolutional network. Convolu-
tional networks have been shown to be very effec-

3521



tive for modeling short sentences like titles of news
articles. In particular, we use the same architecture
proposed by (Kim, 2014). The input words of the
title are mapped to word embeddings and concate-
nated and passed through convolutional filters of
varying window sizes. This is then followed by
a max-over-time pooling (Collobert et al., 2011).
The outputs of this layer are input to a fully con-
nected layer of dimension d with drop-out which
outputs ztitle, the latent representation of the title.

4.2.2 Modeling the Network Structure of
articles

Capturing the network structure of article consists
of two steps: (a) Learning a network representation
of each source based on its social graph G. (b)
Using the learned representation of each source to
capture the link structure of a particular article.

We use a state-of-the-art network representa-
tion learning algorithm to learn representations
of nodes in a social network. In particular,
we use Node2Vec (Grover and Leskovec, 2016),
which learns a d-dimensional representation of
each source given the hyperlink structure graph
G. Node2Vec seeks to maximize the log likeli-
hood of observing the neighborhood of a node
N (u), given the node u. Let F be a matrix of
size (V, d) where F (u) represents the embedding
of node u. We then maximize the following like-
lihood function maxF

P
u log Pr(N (u)|u). We

model the above likelihood similar to the Skip-
gram architecture (Mikolov et al., 2013) by as-
suming that the likelihood of observing a node
v 2 N (u) is conditionally independent of any
other node in the neighborhood given u. That
is log Pr(N (u)|u) =

P
v2N (u) log Pr(v|u). We

then model Pr(v|u) = eF (u).F (v)
P

v eF (u).F (v) . Having fully
specified the log likelihood function, we can now
optimize it using stochastic gradient ascent.

Having learned the embedding matrix F for each
source node, we now model the link structure of
any given article A simply by the average of the net-
work embedding representations for each link l ref-
erenced in A. In particular, we compute znetwork

as: znetwork = 1
|A|

P
l2A F (l).

4.2.3 Modeling the Content of articles
To model the content of an article, we use a hier-
archical approach with attention. In particular, we
compute attention at both levels: (a) words and
(b) sentences. We closely follow the approach by

(Yang et al., 2016) which learns a latent representa-
tion of a document d using both word and sentence
attention models.

We model the article A hierarchically, by first
representing each sentence i with a hidden repre-
sentation si. We model the fact that not all words
contribute equally in the sentence through a word
level attention mechanism. We then learn the rep-
resentation of the article A by composing these
individual sentence level representations with a sen-
tence level attention mechanism.

Learning sentence representations We first
map each word to its embedding matrix through
a lookup embedding matrix W . We then learn a
hidden representation of the given sentence hit cen-
tered around word wi by embedding the sentence
through a bi-directional GRU as described by (Bah-
danau et al., 2014). Since not all words contribute
equally to the representation of the sentence, we
introduce a word level attention mechanism which
attempts to extract relevant words that contribute
to the meaning of the sentence. Specifically we
learn a word level attention matrix Ww as follows
↵i / exp(Wwhit + bw), si =

P
t ↵ihit where si

is the latent representation of the sentence i.

Composing sentence representations We fol-
low a similar method to learn a latent represen-
tation of an article. Given the embedding si

of each sentence in the article, we learn a hid-
den representation of the given sentence hi cen-
tered around si by embedding the list of sen-
tences through a bi-directional GRU as described
by (Bahdanau et al., 2014). Once again, since
not all sentences contribute equally to the rep-
resentation of the article, we introduce a sen-
tence level attention mechanism which attempts
to extract relevant sentences that contribute to the
meaning of the article. Specifically we learn the
weights of a sentence level attention matrix Ws

as ↵s / exp(Wshs + bs), zcontent =
P

s ↵shs,
where zcontent is the latent representation of the
article. In this case we let the hidden representa-
tion of the sentence be a stochastic representation
similar to the work by (Miao et al., 2016) and use
the Gaussian re-parameterization trick to enable
training via end-to-end gradient based methods 5.
Such techniques have been shown to be useful in

5Using deterministic sentence representations is a special
case.
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modeling ambiguity and also generalize well to
small training datasets (Miao et al., 2016).

4.3 Prior
The prior models p(h|X) in Equation 2. Note that
our proposed framework is general and can be used
to incorporate a variety of priors. Here, we assume
the prior is drawn from a Gaussian distribution with
diagonal co-variances. The KL Divergence term in
Equation 2 can thus be analytically computed. In
particular, the KL Divergence between two K di-
mensional Gaussian distributions A, B with means
µA, µB and diagonal co-variances A, B is:

DKL(A, B) = �1

2

j=KX

j=1

(1 + log
Aj

Bj

� Aj

Bj
� (µAj � µBj)

2/Bj) (3)

Parameter Estimation Having described pre-
cisely, the models for each of the components in
Equation 2, we can reformulate the maximization
of the variational lower bound to the following loss
function on the set of all learn-able model parame-
ters ✓: J (✓) as follows:

J (✓) = NLL(y|X) + �DKL(q(h)||p(h|X)),
(4)

where NLL is the negative log likelihood loss com-
puted between the predicted label and the true la-
bel, and � is a hyper-parameter that controls the
amount of regularization offered by the KL Diver-
gence term. We use ADADELTA to minimize this
loss function.

5 Experiments

We evaluate our model against several competitive
baselines which model only a single view to place
our model in context:

1. Chance Baseline We consider a simple base-
line that returns a draw from the label distri-
bution as the prediction.

2. Logistic Regression LR (Title) We consider
a bag of words classifier using Logistic Re-
gression that can capture linear relationships
in the feature space and use the words of the
title as the feature set.

3. CNN (Title) We consider a convolutional net
classifier based on exactly the same architec-
ture as (Kim, 2014) which uses the title of the
news article. Convolutional Nets have been

shown to be extremely effective at classify-
ing short pieces of text and can capture non-
linearities in the feature space(Kim, 2014).

4. FNN (Network) We also consider a simple
fully-connected feed forward neural network
using only the network features to characterize
the predictive power of the network alone.

5. HDAM Model (Content) We use the state of
the art hierarchical document attention model
proposed by (Yang et al., 2016) that models
the content of the article using both word and
sentence level attention mechanisms.

We consider three different flavors of our proposed
model which differ in the subset of modalities used
(a) Title and Network (b) Title and Content, and
(c) Full model: Title, Network, and Content. We
train all of our models and the baselines on the
training data set choosing all hyper-parameter using
the validation set. We report the performance of all
models on the held-out test set.

Experimental Settings We set the embedding
latent dimension captured by each view to be 128
including the final latent representation obtained by
fusing multiple modalities. In case of the CNN’s,
we consider three convolutional filters of window
sizes 3, 4, 5 each yielding a 100 dimensional fea-
ture map followed by max-over time pooling which
is then passed through a fully connected layer to
yield the output. In all the neural models, we used
AdaDelta with an initial learning rate of 1.0 to learn
the parameters of the model via back-propagation.

Model Views P R F1
CHANCE – 34.53 34.59 34.53
LR Title 59.53 59.42 59.12
CNN Title 59.26 59.40 59.24
FNN Network 68.28 56.54 55.10
HDAM Content 69.85 68.72 68.92
MVDAM Title, Net-

work
69.87 69.71 69.66

MVDAM Title, Content 70.84 70.19 69.54
MVDAM Title, Net-

work, Content
80.10 79.56 79.67

Table 1: Precision, Recall, and F1 scores of our model MV-
DAM on the test set compared with several baselines. All
flavors of our model significantly outperform baselines and
yield state of the art performance.

5.1 Results and Analysis
Quantitative Results Table 1 shows the results
of the evaluation. First note that the logistic regres-
sion classifier and the CNN model using the Title
outperforms the CHANCE classifier significantly
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(F1: 59.12,59.24 vs 34.53). Second, only mod-
eling the network structure yields a F1 of 55.10
but still significantly better than the chance base-
line. This confirms our intuition that modeling
the network structure can be useful in prediction
of ideology. Third, note that modeling the con-
tent (HDAM) significantly outperforms all previ-
ous baselines (F1:68.92). This suggests that con-
tent cues can be very strong indicators of ideology.
Finally, all flavors of our model outperform the
baselines. Specifically, observe that incorporating
the network cues outperforms all uni-modal mod-
els that only model either the title, the network, or
the content. It is also worth noting that without
the network, only the title and the content show
only a small improvement over the best perform-
ing baseline (69.54 vs 68.92) suggesting that the
network yields distinctive cues from both the title,
and the content. Finally, the best performing model
effectively uses all three modalities to yield a F1
score of 79.67 outperforming the state of the art
baseline by 10 percentage points. Altogether our
results suggest the superiority of our model over
competitive baselines. In order to obtain deeper in-
sights into our model, we also perform a qualitative
analysis of our model’s predictions.

Visualizing Attention Scores Figure 3 shows a
visualization of sentences based on their attention
scores. Note that for a left leaning article (see
Figure 3a), the model focuses on sentences in-
volving gun-control, feminists, and
transgender. In contrast, a visualization of
sentence attention scores for an article which
the model predicted as “right-leaning” ((see Fig-
ure 3b)) reveals a focus on words like god,
religion etc. These observations qualitatively
suggest that the model is able to effectively pick
up on content cues present in the article. By ex-
amining the distribution over the sentence indices
corresponding to the maximum attention scores,
we noted that only in about half the instances, the
model focuses its greatest attention on the begin-
ning of the article suggesting that the ability to
selectively focus on sentences in the news article
contributes to the superior performance.

Challenging Cases In Table 2, we highlight
some of the challenges of our model. In particular,
our model finds it quite challenging to identify the
political ideology of the source for articles that
are non-political and related to global events, or

entertainment. Examples include instances like
Tourist dies hiking in Australia
Outback heat or Juan Williams makes
the ’case for Oprah’. We also note that
articles with “click-baity” titles like We are
all Just Overclocked Chimpanzees
are not necessarily discriminative of the underlying
ideology. In summary, while our proposed
model significantly advances the state of art, it
also suggests scope for further improvement
especially in identifying political ideologies of
articles in topics like Entertainment or Sports. For
example, prior research suggests that engagement
in particular sports is correlated with the political
leanings (Hoberman, 1977) which suggest that
improved models might need to capture deeper
linguistic and contextual cues.

Ideological Proportions of News Sources Fi-
nally, we compute the expected proportion of an
ideology in a given source based on the probabil-
ity estimates output by our model for the various
articles. While one might expect that the expected
degree of “left-ness” (or “right-ness”) for a given
source can easily be computed by taking a simple
mean of the prediction probability for the given ide-
ology over all articles belonging to the source, such
an approach can be in-accurate because the proba-
bility estimates output by the model are not neces-
sarily calibrated and therefore cannot be interpreted
as a confidence value. We therefore use isotonic
regression to calibrate the probability scores output
by the model. Having calibrated the probability
scores, we now compute the degree to which a par-
ticular news source leans toward an ideology by
simply computing the mean output score over all
articles corresponding to the source. Table 3 shows
the top 10 sources ranked according to their pro-
portions for each ideology. We note that sources
like CNN, Buzz Feed, SF Chronicle are consid-
ered more left-leaning than the Washington Post.
Similarly, we note that NPR and Reuters are con-
sidered to be the most center-aligned while Breit-
bart, Infowars and Blaze are considered to be most
right-aligned by our model. These observations are
moderately aligned with survey results that place
news sources on the ideology spectrum based on
the political beliefs of their consumers 6.

6http://www.journalism.org/2014/10/21/political-
polarization-media-habits/pj 14-10-21 mediapolarization-
08/
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(a) Sample attention on sentences for a Left aligned article.

(b) Sample attention on sentences for a Right aligned article.

Figure 3: Visualization of attention on different sentences on two sample articles from the Left and Right aligned sources
respectively. Note the different focus based in the ideology reflected by the highlighted words.

Article Title Source Label Predicted Label

Juan Williams Makes the ’Case for Oprah’ Right Left
Tourist dies hiking in Australia Outback heat Right Left
Back From China, UCLA Basketball Players Plagued by Father Right Left
Democrat Ralph Northam Elected Governor of Virginia Right Left
South Africa blighted by racially charged farm murders Right Left
Lawsuit: Stripper punched man, knocked out his front tooth Left Right
Heres How to Keep Fake News Off Twitter Left Right
We Are All Just Overclocked Chimpanzee Left Right
Curious Arctic Fox Pups Destroy Hidden Camera In The Most Adorable Way Left Right
I am American, Jewish, and banned from Israel for my activism Left Right

Table 2: Few failure cases of our model illustrating what our model finds challenging. Articles with “click-baity” titles are
not necessarily very discriminative of the ideology. Similarly, articles that are non-political and related to global events or
entertainment are quite challenging.

Rank Source
1 CNN
2 BuzzFeed
3 SF Chronicle
4 CBS News
5 BoingBoing
6 Mother Jones
7 Think Progress
8 The Atlantic
9 The Washington Post
10 Rolling Stone

(a) Left aligned

Rank Source
1 NPR
2 Reuters
3 USA Today
4 BBC
5 CNBC
6 Chicago Tribune
7 Business Insider
8 Forbes
9 APR
10 The Wall Street Journal

(b) Centre aligned

Rank Source
1 Breitbart
2 Infowars
3 Blaze
4 Fox News
5 KSL
6 Townhall
7 CBN
8 ConservativeHQ
9 NewsMax
10 DailyWire

(c) Right aligned

Table 3: A Top 10 ranking of Ideological sources as obtained by our model which correlate moderately with external surveys.

6 Conclusion

We proposed a model to leverage cues from mul-
tiple views in the predictive task of detecting po-
litical ideology of news articles. We show that
incorporating cues from the title, the link struc-
ture and the content significantly beats state of the
art. Finally, using the predicted probabilities of our
model, we draw on methods for probability cali-

bration to rank news sources by their ideological
proportions which moderately correlates with exist-
ing surveys on the ideological placement of news
sources. To conclude, our proposed framework
effectively leverages cues from multiple views to
yield state of the art interpret-able performance and
sets the stage for future work which can easily in-
corporate other modalities like audio, video and
images.

3525



Acknowledgments

We thank the anonymous reviewers for their com-
ments. This research was supported in part by
DARPA Grant D18AP00044 funded under the
DARPA YFA program. This work was also par-
tially supported by NSF grants DBI-1355990 and
IIS-1546113. The authors are solely responsible
for the contents of the paper, and the opinions ex-
pressed in this publication do not reflect those of
the funding agencies.

References
Amr Ahmed and Eric P Xing. 2010. Staying informed:

supervised and semi-supervised multi-view topical
analysis of ideological perspective. In Proceed-
ings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 1140–1150.
Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Dallas Card, Amber E Boydstun, Justin H Gross, Philip
Resnik, and Noah A Smith. 2015. The media frames
corpus: Annotations of frames across issues. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), volume 2, pages
438–444.

Royce Carroll, Jeffrey B Lewis, James Lo, Keith T
Poole, and Howard Rosenthal. 2009. Measuring
bias and uncertainty in dw-nominate ideal point esti-
mates via the parametric bootstrap. Political Analy-
sis, 17(3):261–275.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

We present a study on predicting the factual-
ity of reporting and bias of news media. While
previous work has focused on studying the ve-
racity of claims or documents, here we are in-
terested in characterizing entire news media.
These are under-studied but arguably impor-
tant research problems, both in their own right
and as a prior for fact-checking systems. We
experiment with a large list of news websites
and with a rich set of features derived from
(i) a sample of articles from the target news
medium, (ii) its Wikipedia page, (iii) its Twit-
ter account, (iv) the structure of its URL, and
(v) information about the Web traffic it attracts.
The experimental results show sizable perfor-
mance gains over the baselines, and confirm
the importance of each feature type.

1 Introduction

The rise of social media has democratized con-
tent creation and has made it easy for everybody
to share and spread information online. On the
positive side, this has given rise to citizen journal-
ism, thus enabling much faster dissemination of
information compared to what was possible with
newspapers, radio, and TV. On the negative side,
stripping traditional media from their gate-keeping
role has left the public unprotected against the
spread of misinformation, which could now travel
at breaking-news speed over the same democratic
channel. This has given rise to the proliferation
of false information that is typically created ei-
ther (a) to attract network traffic and gain finan-
cially from showing online advertisements, e.g., as
is the case of clickbait, or (b) to affect individual
people’s beliefs, and ultimately to influence major
events such as political elections (Vosoughi et al.,
2018). There are strong indications that false in-
formation was weaponized at an unprecedented
scale during the 2016 U.S. presidential campaign.

“Fake news”, which can be defined as “fabri-
cated information that mimics news media con-
tent in form but not in organizational process or
intent” (Lazer et al., 2018), became the word of
the year in 2017, according to Collins Dictio-
nary. “Fake news” thrive on social media thanks
to the mechanism of sharing, which amplifies ef-
fect. Moreover, it has been shown that “fake news”
spread faster than real news (Vosoughi et al.,
2018). As they reach the same user several times,
the effect is that they are perceived as more cred-
ible, unlike old-fashioned spam that typically dies
the moment it reaches its recipients. Naturally,
limiting the sharing of “fake news” is a major fo-
cus for social media such as Facebook and Twitter.

Additional efforts to combat “fake news” have
been led by fact-checking organizations such as
Snopes, FactCheck and Politifact, which manu-
ally verify claims. Unfortunately, this is inefficient
for several reasons. First, manual fact-checking is
slow and debunking false information comes too
late to have any significant impact. At the same
time, automatic fact-checking lags behind in terms
of accuracy, and it is generally not trusted by hu-
man users. In fact, even when done by reputable
fact-checking organizations, debunking does little
to convince those who already believe in false in-
formation.

A third, and arguably more promising, way
to fight “fake news” is to focus on their source.
While “fake news” are spreading primarily on so-
cial media, they still need a “home”, i.e., a website
where they would be posted. Thus, if a website is
known to have published non-factual information
in the past, it is likely to do so in the future. Ver-
ifying the reliability of the source of information
is one of the basic tools that journalists in tradi-
tional media use to verify information. It is also
arguably an important prior for fact-checking sys-
tems (Popat et al., 2017; Nguyen et al., 2018).
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Fact-checking organizations have been producing
lists of unreliable online news sources, but these
are incomplete and get outdated quickly. There-
fore, there is a need to predict the factuality of re-
porting for a given online medium automatically,
which is the focus of the present work. We further
study the bias of the source (left vs. right), as the
two problems are inter-connected, e.g., extreme-
left and extreme-right websites tend to score low
in terms of factual reporting. Our contributions
can be summarized as follows:

• We focus on an under-explored but arguably
very important problem: predicting the factu-
ality of reporting of a news medium. We fur-
ther study bias, which is also under-explored.

• We create a new dataset of news media
sources, which has annotations for both tasks,
and is 1-2 orders of magnitude larger than
what was used in previous work. We release
the dataset and our code, which should facil-
itate future research.1

• We use a variety of sources such as (i) a
sample of articles from the target website,
(ii) its Wikipedia page, (iii) its Twitter ac-
count, (iv) the structure of its URL, and (v) in-
formation about the Web traffic it has at-
tracted. This combination, as well as some
of the sources, are novel for these problems.

• We further perform an ablation study of the
impact of the individual (groups of) features.

The remainder of this paper is organized as fol-
lows: Section 2 provides an overview of related
work. Section 3 describes our method and fea-
tures. Section 4 presents the data, the experiments,
and the evaluation results. Finally, Section 5 con-
cludes with some directions for future work.

2 Related Work

Journalists, online users, and researchers are well-
aware of the proliferation of false information, and
thus topics such as credibility and fact-checking
are becoming increasingly important. For exam-
ple, the ACM Transactions on Information Sys-
tems journal dedicated, in 2016, a special issue on
Trust and Veracity of Information in Social Media
(Papadopoulos et al., 2016).

1The data and the code are at http://github.mit.
edu/CSAIL-SLS/News-Media-Reliability/

There have also been some related shared tasks
such as the SemEval-2017 task 8 on Rumor De-
tection (Derczynski et al., 2017), the CLEF-2018
lab on Automatic Identification and Verification
of Claims in Political Debates (Atanasova et al.,
2018; Barrón-Cedeño et al., 2018; Nakov et al.,
2018), and the FEVER-2018 task on Fact Extrac-
tion and VERification (Thorne et al., 2018).

The interested reader can learn more about
“fake news” from the overview by Shu et al.
(2017), which adopted a data mining perspective
and focused on social media. Another recent sur-
vey was run by Thorne and Vlachos (2018), which
took a fact-checking perspective on “fake news”
and related problems. Yet another survey was per-
formed by Li et al. (2016), covering truth dis-
covery in general. Moreover, there were two re-
cent articles in Science: Lazer et al. (2018) of-
fered a general overview and discussion on the sci-
ence of “fake news”, while Vosoughi et al. (2018)
focused on the process of proliferation of true
and false news online. In particular, they ana-
lyzed 126K stories tweeted by 3M people more
than 4.5M times, and confirmed that “fake news”
spread much wider than true news.

Veracity of information has been studied at dif-
ferent levels: (i) claim-level (e.g., fact-checking),
(ii) article-level (e.g., “fake news” detection),
(iii) user-level (e.g., hunting for trolls), and
(iv) medium-level (e.g., source reliability estima-
tion). Our primary interest here is in the latter.

2.1 Fact-Checking

At the claim-level, fact-checking and rumor de-
tection have been primarily addressed using infor-
mation extracted from social media, i.e., based on
how users comment on the target claim (Canini
et al., 2011; Castillo et al., 2011; Ma et al., 2015,
2016; Zubiaga et al., 2016; Ma et al., 2017; Dungs
et al., 2018; Kochkina et al., 2018). The Web
has also been used as a source of information
(Mukherjee and Weikum, 2015; Popat et al., 2016,
2017; Karadzhov et al., 2017b; Mihaylova et al.,
2018; Baly et al., 2018).

In both cases, the most important information
sources are stance (does a tweet or a news article
agree or disagree with the claim?), and source re-
liability (do we trust the user who posted the tweet
or the medium that published the news article?).
Other important sources are linguistic expression,
meta information, and temporal dynamics.
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2.2 Stance Detection

Stance detection has been addressed as a task in
its own right, where models have been devel-
oped based on data from the Fake News Chal-
lenge (Riedel et al., 2017; Thorne et al., 2017;
Mohtarami et al., 2018; Hanselowski et al., 2018),
or from SemEval-2017 Task 8 (Derczynski et al.,
2017; Dungs et al., 2018; Zubiaga et al., 2018). It
has also been studied for other languages such as
Arabic (Darwish et al., 2017b; Baly et al., 2018).

2.3 Source Reliability Estimation

Unlike stance detection, the problem of source
reliability remains largely under-explored. In
the case of social media, it concerns modeling
the user2 who posted a particular message/tweet,
while in the case of the Web, it is about the trust-
worthiness of the source (the URL domain, the
medium). The latter is our focus in this paper.

In previous work, the source reliability of
news media has often been estimated automati-
cally based on the general stance of the target
medium with respect to known manually fact-
checked claims, without access to gold labels
about the overall medium-level factuality of re-
porting (Mukherjee and Weikum, 2015; Popat
et al., 2016, 2017, 2018). The assumption is that
reliable media agree with true claims and disagree
with false ones, while for unreliable media it is
mostly the other way around. The trustworthiness
of Web sources has also been studied from a Data
Analytics perspective. For instance, Dong et al.
(2015) proposed that a trustworthy source is one
that contains very few false facts. In this paper, we
follow a different approach by studying the source
reliability as a task in its own right, using manual
gold annotations specific for the task.

Note that estimating the reliability of a source
is important not only when fact-checking a claim
(Popat et al., 2017; Nguyen et al., 2018), but it also
gives an important prior when solving article-level
tasks such as “fake news” and click-bait detection
(Brill, 2001; Finberg et al., 2002; Hardalov et al.,
2016; Karadzhov et al., 2017a; De Sarkar et al.,
2018; Pan et al., 2018; Pérez-Rosas et al., 2018).

2User modeling in social media and news community fo-
rums has focused on finding malicious users such as opinion
manipulation trolls, paid (Mihaylov et al., 2015b) or just per-
ceived (Mihaylov et al., 2015a; Mihaylov and Nakov, 2016;
Mihaylov et al., 2018; Mihaylova et al., 2018), sockpuppets
(Maity et al., 2017), Internet water army (Chen et al., 2013),
and seminar users (Darwish et al., 2017a).

2.4 “Fake News” Detection
Most work on “fake news” detection has relied on
medium-level labels, which were then assumed to
hold for all articles from that source.

Horne and Adali (2017) analyzed three small
datasets ranging from a couple of hundred to a few
thousand articles from a couple of dozen sources,
comparing (i) real news vs. (ii) “fake news” vs.
(iii) satire, and found that the latter two have a lot
in common across a number of dimensions. They
designed a rich set of features that analyze the text
of a news article, modeling its complexity, style,
and psychological characteristics. They found that
“fake news” pack a lot of information in the title
(as the focus is on users who do not read beyond
the title), and use shorter, simpler, and repetitive
content in the body (as writing fake information
takes a lot of effort). Thus, they argued that the
title and the body should be analyzed separately.

In follow-up work, Horne et al. (2018b) created
a large-scale dataset covering 136K articles from
92 sources from opensources.co, which they
characterize based on 130 features from seven cat-
egories: structural, sentiment, engagement, topic-
dependent, complexity, bias, and morality. We use
this set of features when analyzing news articles.

In yet another follow-up work, Horne et al.
(2018a) trained a classifier to predict whether a
given news article is coming from a reliable or
from an unreliable (“fake news” or conspiracy)3

source. Note that they assumed that all news from
a given website would share the same reliability
class. Such an assumption is fine for training (dis-
tant supervision), but we find it problematic for
testing, where we believe manual documents-level
labels are needed.

Potthast et al. (2018) used 1,627 articles from
nine sources, whose factuality has been manu-
ally verified by professional journalists from Buz-
zFeed. They applied stylometric analysis, which
was originally designed for authorship verifica-
tion, to predict factuality (fake vs. real).

Rashkin et al. (2017) focused on the language
used by “fake news” and compared the prevalence
of several features in articles coming from trusted
sources vs. hoaxes vs. satire vs. propaganda.
However, their linguistic analysis and their auto-
matic classification were at the article level and
they only covered eight news media sources.

3We show in parentheses, the labels from
opensources.co that are used to define a category.
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Unlike the above work, (i) we perform classifi-
cation at the news medium level rather than fo-
cusing on an individual article. Thus, (ii) we use
reliable manually-annotated labels as opposed to
noisy labels resulting from projecting the cate-
gory of a news medium to all news articles pub-
lished by this medium (as most of the work above
did).4 Moreover, (iii) we use a much larger set
of news sources, namely 1,066, which is 1-2 or-
ders of magnitude larger than what was used in
previous work. Furthermore, (iv) we use a larger
number of features and a wider variety of feature
types compared to the above work, including fea-
tures extracted from knowledge sources that have
been largely neglected in the literature so far such
as information from Wikipedia and the structure
of the medium’s URL.

2.5 Media Bias Detection
As we mentioned above, bias was used as a
feature for “fake news” detection (Horne et al.,
2018b). It has also been the target of classifica-
tion, e.g., Horne et al. (2018a) predicted whether
an article is biased (political or bias) vs. unbiased.
Similarly, Potthast et al. (2018) classified the bias
in a target article as (i) left vs. right vs. main-
stream, or as (ii) hyper-partisan vs. mainstream.
Finally, Rashkin et al. (2017) studied propaganda,
which can be seen as extreme bias. See also a re-
cent position paper (Pitoura et al., 2018) and an
overview on bias the Web (Baeza-Yates, 2018).

Unlike the above work, we focus on bias at the
medium level rather than at the article level. More-
over, we work with fine-grained labels on an ordi-
nal scale rather then having a binary setup (some
work above had three degrees of bias, while we
have seven).

3 Method

In order to predict the factuality of reporting and
the bias for a given news medium, we collect in-
formation from multiple relevant sources, which
we use to train a classifier. In particular, we col-
lect a rich set of features derived from (i) a sample
of articles from the target news medium, (ii) its
Wikipedia page if it exists, (iii) its Twitter account
if it exists, (iv) the structure of its URL, and (v) in-
formation about the Web traffic it has attracted.
We describe each of these sources below.

4Two notable exceptions are (Potthast et al., 2018) and
(Pérez-Rosas et al., 2018), who use news articles whose fac-
tuality has been manually checked and annotated.

Articles We argue that analysis (textual, syntac-
tic and semantic) of the content of the news arti-
cles published by a given target medium should be
critical for assessing the factuality of its reporting,
as well as of its potential bias. Towards this goal,
we borrow a set of 141 features that were previ-
ously proposed for detecting “fake news” articles
(Horne et al., 2018b), as we have described above.
These features are used to analyze the following
article characteristics:

• Structure: POS tags, linguistic features
based on the use of specific words (function
words, pronouns, etc.), and features for click-
bait title classification from (Chakraborty
et al., 2016);

• Sentiment: sentiment scores using lexicons
(Recasens et al., 2013; Mitchell et al., 2013)
and full systems (Hutto and Gilbert, 2014);

• Engagement: number of shares, reactions,
and comments on Facebook;

• Topic: lexicon features to differentiate be-
tween science topics and personal concerns;

• Complexity: type-token ratio, readability,
number of cognitive process words (identify-
ing discrepancy, insight, certainty, etc.);

• Bias: features modeling bias using lexi-
cons (Recasens et al., 2013; Mukherjee and
Weikum, 2015) and subjectivity as calculated
using pre-trained classifiers (Horne et al.,
2017);

• Morality: features based on the Moral Foun-
dation Theory (Graham et al., 2009) and lex-
icons (Lin et al., 2017)

Further details are available in (Horne et al.,
2018b). For each target medium, we retrieve some
articles, then we calculate these features separately
for the title and for the body of each article, and
finally we average the values of the 141 features
over the set of retrieved articles.

Wikipedia We further leverage Wikipedia as an
additional source of information that can help pre-
dict the factuality of reporting and the bias of a
target medium. For example, the absence of a
Wikipedia page may indicate that a website is not
credible. Also, the content of the page might ex-
plicitly mention that a certain website is satirical,
left-wing, or has some property related to our task.
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Accordingly, we extract the following features:

• Has Page: indicates whether the target
medium has a Wikipedia page;

• Vector representation for each of the follow-
ing segments of the Wikipedia page, when-
ever applicable: Content, Infobox, Summary,
Categories, and Table of Contents. We gen-
erate these representations by averaging the
word embeddings (pretrained word2vec em-
beddings) of the corresponding words.

Twitter Given the proliferation of social media,
most news media have Twitter accounts, which
they use to reach out to more users online. The
information that can be extracted from a news
medium’s Twitter profile can be valuable for our
tasks. In particular, we use the following features:

• Has Account: Whether the medium has a
Twitter account. We check this based on the
top results for a search against Google, re-
stricting the domain to twitter.com. The
idea is that media that publish unreliable in-
formation might have no Twitter accounts.

• Verified: Whether the account is verified by
Twitter. The assumption is that “fake news”
media would be less likely to have their Twit-
ter account verified. They might be interested
in pushing their content to users via Twitter,
but they would also be cautious about reveal-
ing who they are (which is required by Twit-
ter to get them verified).

• Created: The year the account was created.
The idea is that accounts that have been active
over a longer period of time are more likely
to belong to established media.

• Has Location: Whether the account provides
information about its location. The idea is
that established media are likely to have this
public, while “fake news” media may want to
hide it.

• URL Match: Whether the account includes a
URL to the medium, and whether it matches
the URL we started the search with. Estab-
lished media are interested in attracting traf-
fic to their website, while fake media might
not. Moreover, some fake accounts mimic
genuine media, but have a slightly different
domain, e.g., .com.co instead of .com.

• Counts: Statistics about the number of
friends, statuses, and favorites. Established
media might have higher values for these.

• Description: A vector representation gener-
ated by averaging the Google News embed-
dings (Mikolov et al., 2013) of all words of
the profile description paragraph. These short
descriptions might contain an open declara-
tion of partisanship, i.e., left or right polit-
ical ideology (bias). This could also help
predict factuality as extreme partisanship of-
ten implies low factuality. In contrast, “fake
news” media might just leave this description
empty, while high-quality media would want
to give some information about who they are.

URL We also collect additional information
from the website’s URL using character-based
modeling and hand-crafted features. URL features
are commonly used in phishing website detection
systems to identify malicious URLs that aim to
mislead users (Ma et al., 2009). As we want to
predict a website’s factuality, using URL features
is justified by the fact that low-quality websites
sometimes try to mimic popular news media by us-
ing a URL that looks similar to the credible source.
We use the following URL-related features:

• Character-based: Used to model the URL by
representing it in the form of a one-hot vec-
tor of character n-grams, where n 2 [2, 5].
Note that these features are not used in the fi-
nal system as they could not outperform the
baseline (when used in isolation).

• Orthographic: These features are very ef-
fective for detecting phishing websites, as
malicious URLs tend to make excessive use
of special characters and sections, and ulti-
mately end up being longer. For this work,
we use the length of the URL, the number of
sections and the excessive use of special char-
acters such as digits, hyphens and dashes. In
particular, we identify whether the URL con-
tains digits, dashes or underscores as individ-
ual symbols, which were found to be useful
as features for detecting phishing URLs (Bas-
net et al., 2014). We also check whether the
URL contains short (less than three symbols)
or long sections (more than ten symbols), as
a high number of such sections could indicate
an irregular URL.
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Name URL Factuality Twitter Handle Wikipedia page

Associated Press http://apnews.com ?Very High @apnews ~/wiki/Associated_Press
NBC News http://www.nbcnews.com/ High @nbcnews ~/wiki/NBC_News
Russia Insider http://russia-insider.com Mixed @russiainsider ~/wiki/Russia_Insider
Patriots Voice http://patriotsvoice.info/ Low @pegidaukgroup N/A

Table 1: Examples of media with various factuality scores. (?In our experiments, we treat Very High as High.)

Name URL Bias Twitter Handle Wikipedia page

Loser.com http://loser.com Extreme Left @Loser_dot_com ~/Loser.com
Die Hard Democrat http://dieharddemocrat.com/ Left @democratdiehard N/A
Democracy 21 http://www.democracy21.org/ Center-Left @fredwertheimer ~/Democracy_21
Federal Times http://www.federaltimes.com/ Center @federaltimes ~/Federal_Times
Gulf News http://gulfnews.com/ Center-Right @gulf_news ~/Gulf_News
Fox News http://www.foxnews.com/ Right @foxnews ~/Fox_News
Freedom Outpost http://freedomoutpost.com/ Extreme Right @FreedomOutpost N/A

Table 2: Examples of media with various bias scores.

• Credibility: Model the website’s URL
credibility by analyzing whether it (i) uses
https://, (ii) resides on a blog-hosting
platform such as blogger.com, and
(iii) uses a special top-level domain,
e.g., .gov is for governmental websites,
which are generally credible and unbiased,
whereas .co is often used to mimic .com.

Web Traffic Analyzing the web traffic to the
website of the medium might be useful for de-
tecting phishy websites that come and disappear
in certain patterns. Here, we only use the recip-
rocal value of the website’s Alexa Rank,5 which is
a global ranking for over 30 million websites in
terms of the traffic they receive.

We evaluate the above features in Section 4,
both individually and as groups, in order to deter-
mine which ones are important to predict factual-
ity and bias, and also to identify the ones that are
worth further investigation in future work.

4 Experiments and Evaluation

4.1 Data
We use information about news media listed on the
Media Bias/Fact Check (MBFC) website,6 which
contains manual annotations and analysis of the
factuality of reporting and/or bias for over 2,000
news websites. Our dataset includes 1,066 web-
sites for which both bias and factuality labels were
explicitly provided, or could be easily inferred
(e.g., satire is of low factuality).

5http://www.alexa.com/
6https://mediabiasfactcheck.com

We model factuality on a 3-point scale (Low,
Mixed, and High),7 and bias on a 7-point scale
(Extreme-Left, Left, Center-Left, Center, Center-
Right, Right, and Extreme-Right).

Some examples from our dataset are presented
in Table 1 for factuality of reporting, and in Ta-
ble 2 for bias. In both tables, we show the names
of the media, as well as their corresponding Twit-
ter handles and Wikipedia pages, which we found
automatically. Overall, 64% of the websites in our
dataset have Wikipedia pages, and 94% have Twit-
ter accounts. In cases of “fake news” sites that
try to mimic real ones, e.g., ABCnews.com.co
is a fake version of ABCnews.com, it is possible
that our Twitter extractor returns the handle for the
real medium. This is where the URL Match feature
comes handy (see above).

Table 3 provides detailed statistics about the
dataset. Note that we have 1-2 orders of magni-
tude more media sources than what has been used
in previous studies, as we already mentioned in
Section 2 above.

Factuality Bias

Low 256 Extreme-Left 21
Mixed 268 Left 168
High 542 Center-Left 209

Center 263
Center-Right 92
Right 157
Extreme-Right 156

Table 3: Label distribution (counts) in our dataset.

7MBFC also uses Very High as a label, but due to its very
small size, we merged it with High.
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Source Feature Dim. Factuality Bias
Macro-F1 Acc. MAE MAEM Macro-F1 Acc. MAE MAEM

Majority Baseline 22.47 50.84 0.73 1.00 5.65 24.67 1.39 1.71

Traffic Alexa rank 1 22.46 50.75 0.73 1.00 7.76 25.70 1.38 1.71

URL URL structure 12 39.30 53.28 0.68 0.81 13.50 23.64 1.65 2.06

Twitter

created at. 1 30.72 52.91 0.69 0.92 5.65 24.67 1.39 1.71
has account 1 30.72 52.91 0.69 0.92 5.65 24.67 1.39 1.71
verified 1 30.72 52.91 0.69 0.92 5.65 24.67 1.39 1.71
has location 1 36.73 52.72 0.69 0.82 9.44 24.86 1.54 1.85
URL match 2 39.98 54.60 0.66 0.72 10.16 25.61 1.51 1.97
description 300 44.79 51.41 0.65 0.70 19.08 25.33 1.73 2.04
counts 5 46.88 57.22 0.57 0.66 18.34 24.86 1.62 2.01
Twitter – All 308 48.23 54.78 0.59 0.64 21.38 27.77 1.58 1.83

Wikipedia

has page 1 43.53 59.10 0.57 0.63 14.33 26.83 1.63 2.14
table of content 300 43.95 51.04 0.60 0.65 15.10 22.96 1.86 2.25
categories 300 46.36 53.70 0.65 0.61 25.64 32.16 1.70 2.10
information box 300 46.39 51.14 0.71 0.65 19.79 26.85 1.68 1.99
summary 300 51.88 58.91 0.54 0.52 30.02 37.43 1.47 1.98
content 300 55.29 62.10 0.51 0.50 30.92 38.61 1.51 2.01
Wikipedia – All 301 55.52 62.29 0.50 0.49 28.66 35.93 1.51 2.00

Articles
title 141 53.20 59.57 0.51 0.58 30.91 37.52 1.29 1.53
body 141 58.02 64.35 0.43 0.51 36.63 41.74 1.15 1.43

Table 4: Results for factuality and bias prediction. Bold values indicate the best-performing feature type
in its family of features, while underlined values indicate the best-performing feature type overall.

In order to compute the article-related features, we
did the following: (i) we crawled 10–100 articles
per website (a total of 94,814), (ii) we computed
a feature vector for each article, and (iii) we aver-
aged the feature vectors for the articles from the
same website to obtain the final vector of article-
related features.

4.2 Experimental Setup

We used the above features in a Support Vec-
tor Machine (SVM) classifier, training a separate
model for factuality and for bias. We report re-
sults for 5-fold cross-validation. We tuned the
SVM hyper-parameters, i.e., the cost C, the ker-
nel type, and the kernel width �, using an internal
cross-validation on the training set and optimiz-
ing macro-averaged F1. Generally, the RBF ker-
nel performed better than the linear kernel.

We report accuracy and macro-averaged F1

score. We also report Mean Average Error (MAE),
which is relevant given the ordinal nature of
both the factuality and the bias classes, and also
MAEM , which is a variant of MAE that is more
robust to class imbalance. See (Baccianella et al.,
2009; Rosenthal et al., 2017) for more details
about MAEM vs. MAE.

4.3 Results and Discussion

We present in Table 4 the results of using features
from the different sources proposed in Section 3.
We start by describing the contribution of each
feature type towards factuality and bias.

We can see that the textual features extracted
from the ARTICLES yielded the best performance
on factuality. They also perform well on bias, be-
ing the only type that beats the baseline on MAE.
These results indicate the importance of analyzing
the contents of the target website. They also show
that using the titles only is not enough, and that the
article bodies contain important information that
should not be ignored.

Overall, the WIKIPEDIA features are less use-
ful for factuality, and perform reasonably well for
bias. The best features from this family are those
about the page content, which includes a general
description of the medium, its history, ideology
and other information that can be potentially help-
ful. Interestingly, the has page feature alone yields
sizable improvement over the baseline, especially
for factuality. This makes sense given that trust-
worthy websites are more likely to have Wikipedia
pages; yet, this feature does not help much for pre-
dicting political bias.
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Features Macro-F1 Acc. MAE MAEM

MAJORITY BASELINE 22.47 50.84 0.73 1.00
FULL 59.91 65.48 0.41 0.44

FULL W/O TRAFFIC 59.90 65.39 0.41 0.43
FULL W/O TWITTER 59.52 65.10 0.41 0.47
FULL W/O URL 57.23 63.32 0.44 0.49
FULL W/O ARTICLES 56.15 63.13 0.46 0.51
FULL W/O WIKIPEDIA 55.93 63.23 0.44 0.52

Table 5: Ablation study for the contribution of each feature type for predicting the factuality of reporting.

Features 7-Way Bias 3-Way Bias
Macro-F1 Acc. MAE MAEM Macro-F1 Acc. MAE MAEM

MAJORITY BASELINE 5.65 24.67 1.39 1.71 22.61 51.33 0.49 0.67
FULL 37.50 39.87 1.25 1.55 61.31 68.86 0.39 0.53

FULL W/O TRAFFIC 37.49 39.84 1.25 1.55 61.30 68.86 0.38 0.53
FULL W/O TWITTER 36.88 39.49 1.20 1.38 63.27 69.89 0.38 0.50
FULL W/O URL 36.60 39.68 1.24 1.48 60.93 68.11 0.40 0.53
FULL W/O WIKIPEDIA 34.75 37.62 1.33 1.58 59.92 66.89 0.41 0.54
FULL W/O ARTICLES 29.95 36.96 1.40 1.85 53.67 62.48 0.47 0.62

Table 6: Ablation study for the contribution of each feature type for predicting media bias.

The TWITTER features perform moderately for
factuality and poorly for bias. This is not sur-
prising, as we normally may not be able to tell
much about the political ideology of a website just
by looking at its Twitter profile (not its tweets!)
unless something is mentioned in its description,
which turns out to perform better than the rest of
the features from this family. We can see that the
has twitter feature is less effective than has wiki
for factuality, which makes sense given that Twit-
ter is less regulated than Wikipedia. Note that the
counts features yield reasonable performance, in-
dicating that information about activity (e.g., num-
ber of statuses) and social connectivity (e.g., num-
ber of followers) is useful. Overall, the TWITTER
features seem to complement each other, as their
union yields the best performance on factuality.

The URL features are better used for factual-
ity rather than bias prediction. This is mainly due
to the nature of these features, which are aimed
at detecting phishing websites, as we mentioned
in Section 3. Overall, this feature family yields
slight improvements, suggesting that it can be use-
ful when used together with other features.

Finally, the Alexa rank does not improve over
the baseline, which suggests that more sophisti-
cated TRAFFIC-related features might be needed.

4.4 Ablation Study
Finally, we performed an ablation study in order
to evaluate the impact of removing one family of
features at a time, as compared to the FULL sys-
tem, which uses all the features. We can see in
Tables 5 and 6 that the FULL system achieved the
best results for factuality, and the best macro-F1

for bias, suggesting that the different types of fea-
tures are largely complementary and capture dif-
ferent aspects that are all important for making a
good classification decision.

For factuality, excluding the WIKIPEDIA fea-
tures yielded the biggest drop in performance.
This suggests that they provide information that
may not be available in other sources, includ-
ing the ARTICLES, which achieved better results
alone. On the other hand, excluding the TRAFFIC
feature had no effect on the model’s performance.

For bias, we experimented with classification
on both a 7-point and a 3-point scale.8 Sim-
ilarly to factuality, the results in Table 6 indi-
cate that WIKIPEDIA offers complementary infor-
mation that is critical for bias prediction, while
TRAFFIC makes virtually no difference.

8We performed the following mapping:
{Extreme-Right, Right}!Right, {Extreme-Left, Left}!Left,
and {Center, Right-Center, Left-Center}!Center
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5 Conclusion and Future Work

We have presented a study on predicting factual-
ity of reporting and bias of news media, focus-
ing on characterizing them as a whole. These
are under-studied, but arguably important research
problems, both in their own right and as a prior for
fact-checking systems.

We have created a new dataset of news media
sources that has annotations for both tasks and is
1-2 orders of magnitude larger than what was used
in previous work. We are releasing the dataset and
our code, which should facilitate future research.

We have experimented with a rich set of features
derived from the contents of (i) a sample of articles
from the target news medium, (ii) its Wikipedia
page, (iii) its Twitter account, (iv) the structure of
its URL, and (v) information about the Web traffic
it has attracted. This combination, as well as some
of the types of features, are novel for this problem.

Our evaluation results have shown that most of
these features have a notable impact on perfor-
mance, with the articles from the target website,
its Wikipedia page, and its Twitter account being
the most important (in this order). We further per-
formed an ablation study of the impact of the indi-
vidual types of features for both tasks, which could
give general directions for future research.

In future work, we plan to address the task as
ordinal regression, and further to model the inter-
dependencies between factuality and bias in a joint
model. We are also interested in characterizing
the factuality of reporting for media in other lan-
guages. Finally, we want to go beyond left vs.
right bias that is typical of the Western world and
to model other kinds of biases that are more rele-
vant for other regions, e.g., islamist vs. secular is
one such example for the Muslim World.
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Abstract

Legal Judgment Prediction (LJP) aims to pre-
dict the judgment result based on the facts of
a case and becomes a promising application
of artificial intelligence techniques in the le-
gal field. In real-world scenarios, legal judg-
ment usually consists of multiple subtasks,
such as the decisions of applicable law arti-
cles, charges, fines, and the term of penalty.
Moreover, there exist topological dependen-
cies among these subtasks. While most ex-
isting works only focus on a specific sub-
task of judgment prediction and ignore the de-
pendencies among subtasks, we formalize the
dependencies among subtasks as a Directed
Acyclic Graph (DAG) and propose a topo-
logical multi-task learning framework, TOP-
JUDGE, which incorporates multiple subtasks
and DAG dependencies into judgment predic-
tion. We conduct experiments on several real-
world large-scale datasets of criminal cases
in the civil law system. Experimental results
show that our model achieves consistent and
significant improvements over baselines on all
judgment prediction tasks. The source code
can be obtained from https://github.
com/thunlp/TopJudge.

1 Introduction

Legal Judgment Prediction (LJP) aims to predict
the judgment results of legal cases according to the
fact descriptions. It is a critical technique for the
legal assistant system. On the one hand, LJP can
provide low-cost but high-quality legal consulting
services to the masses who are unfamiliar with le-
gal terminology and the complex judgment pro-
cedures. On the other hand, it can serve as the
handy reference for professionals (e.g., lawyers
and judges) and improve their work efficiency.

⇤ Indicates equal contribution. The order is determined by
dice rolling.

† Corresponding author.

On the early morning of July 24, 2017, the defendant 
XX stole cash 8500 yuan and T-shirts, jackets, pants, 
shoes, hats (identified a total value of 574.2 yuan) in 
Beijing Lining store…

Law Article 264: [The crime of theft] Whoever steals 
a relatively large amount of public or private 
property or commits theft repeatedly fixed-term 
imprisonment of not more than three years, criminal 
detention or public surveillance.

The crime of theft

A fixed-term imprisonment of six months

Fact
Description

Law Articles

Charges

Terms of Penalty

Figure 1: An illustration of the judicial logic of hu-
man judges in civil law system.

LJP has been studied for decades (Kort, 1957;
Ulmer, 1963; Nagel, 1963; Keown, 1980; Segal,
1984; Lauderdale and Clark, 2012; Ye et al., 2018;
Hu et al., 2018), and most existing works for-
malize LJP as a text classification task. For ex-
ample, some works (Liu et al., 2004; Liu and
Hsieh, 2006) propose to extract shallow textual
features (e.g. characters, words, and phrases) for
charge prediction. Katz et al. (2017) predict the
US Supreme Court’s decisions based on efficient
features from case profiles. Luo et al. (2017) pro-
pose an attention-based neural model for charge
prediction by incorporating the relevant law arti-
cles.

Despite these efforts in designing efficient fea-
tures and employing advanced NLP techniques,
LJP is still confronted with two major challenges:

Multiple Subtasks in Legal Judgment: Prac-
tically, legal judgment usually consists of detailed
and complicated subclauses, such as charges, the
term of penalty, and fines. Specifically, for those
countries with the civil law system (e.g., China,
France, and Germany), the prediction of relevant
articles is also considered to be one of the funda-
mental subtasks, which will guide the prediction
for other subtasks. In other words, all these sub-
tasks compose the complete form of judgment pre-
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diction. Nevertheless, existing works on LJP usu-
ally focus on one specific subtask of judgments,
which does not conform to the real scenarios. Al-
though some methods (Luo et al., 2017) are devel-
oped to predict law articles and charges at the same
time, their models are designed for a specific set of
subtasks which are hard to scale to other subtasks.

Topological Dependencies between Subtasks:
For human judges, there exists a strict order
among the subtasks of legal judgment. As illus-
trated in Fig. 1, given the fact description of a spe-
cific case, a judge in the civil law system first de-
cides which law articles are relevant to the sce-
nario, and then determines the charges according
to the instructions of relevant law articles. Based
on these results, the judge further confirms the
term of penalty and fines. How to simulate the ju-
dicial logic of human judges and model the topo-
logical dependencies among legal subtasks will
deeply influence the creditability and interpretabil-
ity of judgment prediction.

As stated above, conventional works cannot
handle these two challenges due to both the lim-
itation of specific tasks and neglecting topological
dependencies. To address these issues, we propose
to model the multiple subtasks in judgment pre-
diction jointly under a novel multi-task learning
framework.

We model the topological dependencies among
these subtasks with a Directed Acyclic Graph
(DAG), which means all subtasks are arranged in
topological order. If the judgment of the j-th sub-
task tj depends on the output of the i-th subtask
ti, then ti appears earlier than tj in such order. It
is notable that such formulation provides an ex-
plicit explanation of dependency relations among
subtasks.

Accordingly, we introduce topological learning
for LJP and propose a unified framework, named
as TOPJUDGE. Specifically, given the encoded
representation of the fact description, TOPJUDGE
predicts the outputs of all the subtasks following
the topological order, and the output of a specific
subtask will be affected by all the subtasks it de-
pends on. In contrast with conventional multi-task
learning, our model takes the explicit topological
dependencies of LJP subtasks into consideration
and is flexible to handle other LJP subtasks. More-
over, the topological order of legal dependencies
renders our model interpretable and reliable.

To verify the effectiveness and flexibility of

TOPJUDGE, we conduct a series of experiments
on several real-world large-scale datasets. Exper-
imental results show that our model achieves sig-
nificant and consistent improvements over state-
of-the-art models on all tasks and datasets. To
summarize, we make several noteworthy contribu-
tions as follows:

(1) We are the first to explore and formalize the
multiple subtasks of legal judgment under a joint
learning framework. Moreover, we formulate the
dependencies among the subtasks of LJP as a form
of DAG and introduce this prior knowledge to en-
hance judgment prediction.

(2) We propose a novel judgment prediction
framework, TOPJUDGE, to unify multiple sub-
tasks and make judgment predictions through
topological learning. This model can handle any
form of DAG dependent subtasks, which has been
verified in the experiments.

(3) We carry out experiments on several large-
scale real-world datasets, and our model signifi-
cantly and consistently outperforms all the base-
lines on all subtasks.

2 Related Work

2.1 Judgment Prediction
Employing automatic analysis techniques for legal
judgment has drawn attention from researchers in
the legal field for decades. Early works usually
focus on analyzing existing legal cases in specific
scenarios with mathematical and statistical algo-
rithms (Kort, 1957; Ulmer, 1963; Nagel, 1963;
Keown, 1980; Segal, 1984; Lauderdale and Clark,
2012).

With the development of machine learning and
text mining techniques, more researchersformal-
ize this task under text classification frameworks.
Most of these studies attempt to extract efficient
features from text content (Liu and Hsieh, 2006;
Lin et al., 2012; Aletras et al., 2016; Sulea et al.,
2017) or case annotations (e.g., dates, terms, lo-
cations, and types) (Katz et al., 2017). However,
these conventional methods can only utilize shal-
low textual features and manually designed fac-
tors, both require massive human efforts and usu-
ally suffer from the generalization issue when ap-
plied to other scenarios.

Inspired by the success of neural networks on
NLP tasks (Kim, 2014; Baharudin et al., 2010;
Tang et al., 2015), researchers began to handle LJP
by incorporating neural models with legal knowl-
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edge. For example, Luo et al. (2017) present an
attention-based neural network that jointly mod-
els charge prediction and relevant article extrac-
tion. Hu et al. (2018) incorporate 10 discrimina-
tive legal attributes to predict few-shot and con-
fusing charges. Nevertheless, these models are de-
signed for specific subtasks and thus non-trivial to
be extended to more subtasks of LJP with complex
dependencies. Besides, Ye et al. (2018) utilize a
Seq2Seq model to generate court views with fact
descriptions and predicted charges in Chinese civil
law.

2.2 Multi-task Learning

Multi-task learning (MTL) aims to exploit the
commonalities and differences across relevant
tasks by solving them at the same time. It can
transfer useful information among various tasks
and has been applied to a wide range of ar-
eas, including NLP (Collobert and Weston, 2008),
speech recognition (Deng et al., 2013), and com-
puter vision (Girshick, 2015; Mao et al., 2017).

There have been numerous successful usages
of MTL in NLP tasks. Most works follow the
hard parameter sharing setting by sharing repre-
sentations or some encoding layers among rele-
vant tasks. For example, Collobert and Weston
(2008) use shared word embeddings in solving
part-of-speech tagging and semantic role labeling
tasks. Liu et al. (2015) share the encoding lay-
ers of input queries to address query classification
and information retrieval. Dong et al. (2015) and
Luong et al. (2016) propose to share encoders or
decoders to improve one (many) to many neural
machine translation. Firat et al. (2016) propose to
share attention mechanism in multi-way, multilin-
gual machine translation. Besides hard parameter
sharing, soft parameter sharing is another com-
mon approach in MTL. It assumes that each task
owns its specific parameters and the distance be-
tween parameters in different tasks should be close
to each other. For example, Duong et al. (2015)
employ L2 distance for regularization, while Yang
and Hospedales (2017) use the trace norm. Liu
et al. (2016) introduce gates among task-specific
RNN layers to control the information flow. Ruder
et al. (2017) introduce a model which can de-
cide the amount of sharing between different NLP
tasks. There are also some works focusing on in-
creasing tasks (Hashimoto et al., 2017) or handing
unlabeled data (Augenstein et al., 2018).
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Figure 2: The framework of TOPJUDGE.

In this work, we introduce a topological learn-
ing framework TOPJUDGE to handle multiple sub-
tasks in LJP. Different to conventional MTL mod-
els which focus on how to share parameters among
relevant tasks, TOPJUDGE models the explicit de-
pendencies among these subtasks with scalable
DAG forms.

3 Method

In the following parts, we will first give the essen-
tial definitions of LJP task. We then introduce the
DAG dependencies of the subtasks in LJP. And fi-
nally, we describe the neural encoder for fact rep-
resentation and the judgment predictor for the sub-
tasks with DAG dependencies. The overall frame-
work of TOPJUDGE has been shown in Fig 2.

3.1 Problem Formulation
We will focus on the LJP tasks in civil law. Sup-
pose the fact description of a case is a word se-
quence x = {x1, x2, . . . , xn}, where n is the
length of x and each word xi comes from a fixed
vocabulary W . Based on the fact description x,
the task of LJP T aims to predict judgment results
of applicable law articles, charges, term of penalty,
fines and so on. Formally, we assume T contains
|T | subtasks, i.e., T = {t1, t2, . . . , t|T |}, each of
which is a classification task. For the i-th subtask
ti 2 T , we aim to predict the corresponding result
yi ✓ Yi, where Yi is a subtask-specific label set.
Take the subtask of charge prediction for example,
the corresponding label set should contain Theft,
Traffic Violation, Intentional Homicide and so on.

3.2 DAG Dependencies of Subtasks
We assume that the dependencies among multiple
subtasks of LJP form a DAG. As a result, the task
list T should satisfy topological constraints. For-
mally, we use the notation ti � tj to denote that
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Figure 3: Three typical forms of DAG dependencies.

the j-th subtask depends on the i-th subtask, and
Dj = {ti | ti � tj} to denote the dependency set.
The task list T can be ordered to satisfy the fol-
lowing constraint

i < j, 8(i, j) 2 {(i, j) | ti 2 Dj}. (1)

We demonstrate the flexibility of our formula-
tion by describing two special cases: (1) As shown
in Fig. 3 (a), if no dependencies exist, i.e., Dj = ;,
it corresponds to the typical MTL setting where
we simultaneously make predictions for all sub-
tasks. (2) As shown in Fig. 3 (b), if each task only
depends on its previous task, i.e., Dj = {tj�1}, it
forms a sequential learning process.

3.3 Neural Encoder for Fact Descriptions
We employ a fact encoder to generate the fact de-
scription’s vector representation as the input of
TOPJUDGE. In the following part, we briefly in-
troduce an encoder based on Convolutional Neural
Networks (CNN) (Kim, 2014).

Taking a word sequence x as input, the CNN
encoder computes the text representation through
three layers, i.e., lookup layer, convolution layer
and pooling layer.

Lookup We first convert each word xi in x into
its word embedding xi 2 R

k, where k is the di-
mension of word embeddings. The word embed-
ding sequence is then represented as

x̂ = {x1,x2, . . . ,xn}. (2)

Convolution A convolution operation involves
a convolution matrix W 2 R

m⇥(h⇥k), which is
applied to a sliding window of length h with num-
ber of filters m to produce a feature map by

ci = W · xi:i+h�1 + b, (3)

where xi:i+h�1 is the concatenation of word em-
beddings within the i-th window and b 2 R

m is
the bias vector. By applying convolution over each
window, we obtain c = {c1, . . . , cn�h+1}.

Pooling We apply per-dimension max-pooling
over c and obtain the final fact representation d =
[d1, . . . , dm] by

dt = max(c1,t, . . . , cn�h+1,t), 8t 2 [1, m]. (4)

3.4 Judgment Predictor over DAG
Based on the DAG assumption, we obtain an or-
dered task list T ⇤ = [t1, t2, . . . , t|T |]. For each
task tj 2 T , we aim to predict its judgment result
yj based on the fact representation vector d and
the judgment results of its dependent tasks.

For prediction, we employ a specific LSTM cell
for each task and get the output of each task in
the topological order. More specifically, for each
task tj 2 T , we obtain its final judgment result
through three steps, i.e., cell initialization, task-
specific representation, and prediction.

Cell Initialization As stated above, the predic-
tion result of tj will be conditioned on the fact
representation d and the outputs of all dependent
tasks yk, 8tk 2 Dj . Hence, we have

h
h̄j

c̄j

i
=

X

ti2Dj

⇣
Wi,j

h
hi

ci

i⌘
+ bj (5)

Here, hi and ci are the hidden state and memory
cell of ti. h̄j and c̄j are the initial hidden state and
memory cell of tj . Wi,j and bj are transformation
matrices and bias vectors specific to ti and tj .

Task-Specific Representation Taking the fact
representation d, the initial hidden state h̄j , and
the initial memory cell c̄j as inputs, we process
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them with an LSTM cell (Hochreiter and Schmid-
huber, 1997).

We regard the final hidden state hj as the task-
specific representation of task tj . The last cell
state cj is used to compose the initial hidden state
for the downstream tasks by Eq. 5

Prediction With the representation hj , we ap-
ply an affine transformation followed by softmax
and obtain the final prediction as

ŷj = softmax
�
W

p
j hj + b

p
j

�
. (6)

Here, Wp
j and bp

j are parameters specific to task
tj .

With the prediction result ŷj , we minimize the
cross-entropy between ŷj and yj as follows:

Lj(ŷj ,yj) = �

|Yj |X

k=1

yj,k log(ŷj,k). (7)

3.5 Training
We use cross-entropy loss for each subtask and
sum up losses to train TOPJUDGE:

L =

|T |X

j=1

�jLj(ŷj ,yj), (8)

where �j is the weight factor for each subtask tj .
The DAG dependencies of subtasks ensure that
our model is differentiable and can be trained in an
end-to-end fashion. In practice, we set all weights
�j to 1, and employ Adam (Kingma and Ba, 2015)
for optimization. We also apply dropout (Srivas-
tava et al., 2014) on the fact representation to pre-
vent overfitting.

4 Experiments

To evaluate the proposed TOPJUDGE framework,
we conduct a series of experiments on LJP over
three large-scale datasets of criminal cases in
China. We select three representative judgment
prediction subtasks for comparison, including law
articles, charges, and the terms of penalty.

4.1 Dataset Construction
As there are no publicly available LJP datasets
in previous works, we collect and construct three
different LJP datasets, including CJO, PKU, and
CAIL. CJO consists of criminal cases published
by the Chinese government from China Judge-
ment Online1. PKU contains criminal cases pub-
lished by Peking University Law Online2. CAIL

1 http://wenshu.court.gov.cn/
2 http://www.pkulaw.com/

Datasets CJO PKU CAIL

Cases 1, 007, 744 175, 744 113, 536
Law Articles 98 68 105

Charges 99 64 122
Term of Penalty 11 11 11

Table 1: The statistics of different datasets.

(Chinese AI and Law Challenge) is another crim-
inal case dataset for competition released by the
Supreme People’s Court of China3. The details of
CAIL can be found in Xiao et al. (2018).

For all datasets we mentioned above, as the doc-
uments are well-structured and human-annotated,
we can easily extract fact descriptions, applica-
ble law articles, charges and the terms of penalty
from each document using regular expressions.
We have manually checked a randomly sampled
set of cases, and extraction errors are negligible.

In real-world scenarios, there are some cases
with multiple defendants and multiple charges,
which will increase the complexity of judgment
prediction. As our model aims to explore the ef-
fectiveness of considering topological dependen-
cies between various subtasks, we filter out these
cases and leave them as our future work.

Meanwhile, there are also some infrequent
charges and law articles, such as money launder-
ing, smuggling of nuclear materials and tax dodge.
We filter out these infrequent charges and law arti-
cles and only keep those with frequencies greater
than 100. For the term of penalty, we divide the
terms into non-overlapping intervals. We list de-
tailed statistics of these datasets in Table 1.

4.2 Baselines
For comparison, we employ the following text
classification models and judgment prediction
methods as baselines:

TFIDF+SVM: We employ term-frequency in-
verse document frequency (TFIDF) (Salton and
Buckley, 1988) to extract word features and uti-
lize SVM (Suykens and Vandewalle, 1999) for text
classification.

CNN: We employ CNN with multiple filter
widths (Kim, 2014) for fact encoding and classi-
fication.

Hierarchical LSTM (HLSTM): Tang et al.
(2015) employs hierarchical neural networks to
learn document representations in sentiment clas-

3 http://cail.cipsc.org.cn/index.html
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Tasks Law Articles Charges The Term of Penalty

Metrics Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

Single
TFIDF+SVM 82.4 45.5 26.7 30.2 82.2 47.4 27.9 31.3 48.5 36.0 16.7 16.5

CNN 92.5 46.9 38.4 40.0 92.3 41.2 32.3 33.7 57.4 35.6 22.2 22.7
HLSTM 91.4 38.6 37.3 36.9 91.8 37.8 36.0 35.2 56.1 22.5 25.0 23.3

Multi

Fact-Law Att. 93.5 50.9 45.6 45.9 93.4 47.2 41.4 41.5 56.3 31.3 26.4 26.7
PM 93.7 51.9 44.1 44.9 93.6 45.5 39.1 39.3 58.2 38.2 24.9 26.8

CNN-MTL 94.3 53.0 46.0 46.9 94.1 48.5 41.7 42.5 58.7 39.9 28.8 29.4
HLSTM-MTL 92.4 45.5 41.4 41.0 92.3 41.9 36.6 35.9 54.9 30.6 26.6 26.4

Ours TOPJUDGE 94.4 53.9 47.3 48.2 94.9 53.9 48.2 49.1 58.8 40.2 32.9 32.8

Table 2: Judgment prediction results on CJO.

Tasks Law Articles Charges The Term of Penalty

Metrics Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

Single
TFIDF+SVM 80.9 51.3 32.6 36.4 81.0 53.4 35.4 38.7 45.3 30.4 17.4 17.2

CNN 93.1 64.3 52.6 54.3 93.3 61.9 49.3 51.1 57.6 24.1 23.1 23.3
HLSTM 91.7 54.4 53.4 50.9 91.9 52.5 48.9 47.3 54.3 20.6 21.7 19.0

Multi

Fact-Law Att. 93.9 68.1 63.4 63.5 94.2 65.8 58.5 58.7 55.7 27.7 27.4 26.5
PM 94.4 69.6 61.0 62.2 94.3 65.1 56.2 57.2 58.2 36.2 26.4 27.1

CNN-MTL 95.0 73.8 64.9 66.0 95.0 70.7 60.6 61.7 58.4 36.0 28.7 28.9
HLSTM-MTL 93.9 71.2 64.6 65.1 93.8 67.8 60.0 60.7 55.4 31.3 26.2 25.7

Ours TOPJUDGE 95.4 76.4 67.6 68.4 95.6 75.9 69.6 70.9 57.8 38.9 32.1 31.8

Table 3: Judgment prediction results on PKU.

sification. Based on this work, we employ an
LSTM for sentence representations and another
one to obtain the representation of complete fact
descriptions.

Fact-Law Attention Model: Luo et al. (2017)
proposes a neural charge prediction model by cap-
turing the interaction between fact descriptions
and applicable laws with attention mechanism.

Pipeline Model (PM): To demonstrate the
advantage of TOPJUDGE on modeling subtasks
jointly, we also implement a pipelined method for
comparison. Here, we train 3 separate CNN classi-
fiers for law articles, charges, and term of penalty.
For each subtask, the input is the concatenation
of the fact representation and the embeddings for
predicted labels of previous subtasks.

Besides, we compare our model with conven-
tional MTL methods that do not consider the de-
pendencies among subtasks as in Fig. 3 (a). These
methods are denoted as CNN-MTL and HLSTM-
MTL, where we implement the fact encoder as in
Fig. 2 using CNN or HLSTM respectively.

4.3 Experimental Settings
As the case documents are written in Chinese
with no space between words, we employ THU-
LAC (Sun et al., 2016) for word segmentation. Af-
terward, we adopt the Skip-Gram model (Mikolov
et al., 2013) to pre-train word embeddings on these

case documents, with embedding size set to 200
and frequency threshold set to 25.

For all models, we set the fact representa-
tion and task-specific representation size to 256.
Meanwhile, we set the maximum sentence length
to 128 words and maximum document length to
32 sentences.

For training, the learning rate of Adam opti-
mizer is 10�3, and the dropout probability is 0.5.
We also set the batch size to 128 for all models.
We train every model for 16 epochs, and evaluate
the final model on the testing set.

We employ accuracy (Acc.), macro-precision
(MP), macro-recall (MR) and macro-F1 (F1)
as evaluation metrics. Here, the macro-
precision/recall/F1 are calculated by averaging the
precision/recall/F1 of each category.

4.4 Results and Analysis

We evaluate the performance on three LJP sub-
tasks, including law articles (denoted as t1),
charges (denoted as t2), and the terms of penalty
(denoted as t3). Experimental results are shown in
Tables 2, 3, and 4. Note that, we implement TOP-
JUDGE with the dependency relationship in Fig. 3
(c), i.e.,

D1 = �, D2 = {t1}, D3 = {t1, t2}. (9)
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Tasks Law Articles Charges The Term of Penalty

Metrics Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1

Single
TFIDF+SVM 60.1 54.9 45.3 46.3 59.2 53.9 45.0 45.7 28.4 22.9 20.0 18.1

CNN 81.4 74.4 64.1 65.7 80.7 77.3 65.5 67.2 28.8 34.7 27.8 28.6
HLSTM - - - - - - - - - - - -

Multi

Fact-Law Att. 70.9 64.8 63.6 59.1 68.7 66.1 65.3 60.1 36.5 29.9 27.6 27.1
PM 84.7 80.7 68.6 70.8 83.6 81.6 70.0 72.1 40.0 37.4 32.0 31.6

CNN-MTL 84.5 80.0 68.1 70.3 83.4 81.6 69.1 71.6 39.5 37.2 32.3 31.3
HLSTM-MTL - - - - - - - - - - - -

Ours TOPJUDGE 86.3 81.9 71.1 73.4 85.7 83.4 76.0 78.3 38.3 36.1 33.1 32.1

Table 4: Judgment prediction results on CAIL. Note that, “-” means the model does not converge within
128 epochs.

This means that the prediction of charges depends
on law articles, and the prediction of term of
penalty depends on both law articles and charges.
Such explicit dependencies conform to the judi-
cial logic of human judges, which will be verified
in later sections. These results show that:

(1) The proposed TOPJUDGE model outper-
forms other baselines significantly on most sub-
tasks and datasets. It demonstrates the effective-
ness and robustness of our proposed framework.

(2) Compared with conventional single-task
models, e.g., CNN and HLSTM, MTL methods
take advantage of the correlation among relevant
subtasks and thus achieve promising improve-
ments. It indicates the importance of modeling
LJP subtasks jointly.

(3) Moreover, TOPJUDGE significantly outper-
forms typical MTL models, especially on the pre-
diction of charges and the terms of penalty. It veri-
fies the rationality and importance of modeling de-
pendencies over LJP subtasks with DAG.

4.5 Ablation Analysis

Tasks t1 t2 t3

Metrics Acc. F1 Acc. F1 Acc. F1

TOPJUDGE 95.4 68.4 95.6 70.9 57.8 31.8
- t3 � t1 95.2 67.7 95.4 70.3 57.4 31.2
- t2 � t1 94.8 64.7 94.9 60.2 57.0 31.6

� 94.7 64.4 94.9 60.1 57.8 27.6

Table 5: Ablation analysis on PKU.

To further illustrate the significance of legal de-
pendencies and explore how the DAG dependen-
cies influence the performance, we evaluate the
performance of TOPJUDGE under various DAG
architectures. Using Eq. 9 as the full dependen-
cies, we remove the dependency of t3 � t1 (law
articles and term of penalty, corresponding to the
sequential form in Fig. 3), t2� t1 (law articles and

charges), and all dependencies respectively. Re-
sults are summarized in Table 5.

We observe that the performance of TOPJUDGE
decreases on all tasks after removing either depen-
dency. More specifically, when we dropped de-
pendencies t3 � t1 and t2 � t1 respectively, sig-
nificant decreases are observed for t3 and t2 corre-
spondingly. This demonstrates that incorporating
dependencies is beneficial for relevant subtasks,
verifying its guiding role in the civil law system.

Meanwhile, we note that there are two main
differences between TOPJUDGE and traditional
multi-task models, namely the Cell Initialization
and the Task-Specific Representation. We can
see that if we eliminate Cell Initialization from
TOPJUDGE, the dependencies will not be rep-
resented in the model and it will become sim-
ilar to CNN-MTL. If we eliminate the Task-
Specific Representation from TOPJUDGE, TOP-
JUDGE will become the same as the Pipeline
Model. In a word, the main improvement of our
models comes from the combination.

4.6 Case Study
We give some intuitive examples to demonstrate
the significance of TOPJUDGE on LJP subtasks.

As shown in Table 6, case 1 is about negligently
causing a fire. The fact description of this case
states “The defendant pulled up weeds in the fields
and piled them up in haphazard stacks. Afterward,
he lighted them up and triggered the forest fires...”
TOPJUDGE predicts all judgments correctly, while
CNN-MTL fails to predict the charge and term of
penalty. Moreover, CNN-MTL obtains conflicting
judgments, i.e., “crime of arson” and “1-2 years”,
due to its neglecting of dependencies of these sub-
tasks. According to the legal provisions of law ar-
ticle 115, the crime of arson should be sentenced
to more than 10 years.
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Methods Law Charge Term
(months)

CNN-MTL 115 Arson(⇥) 12-24(⇥)

TOPJUDGE 115 Negligently Caus-
ing a Fire

0-6

CNN-MTL 293 Intentional Dam-
age to Property(⇥)

12-24(⇥)

TOPJUDGE 293 Affray 0-6

Table 6: Example cases and their prediction results.

Case 2 in Table 6 is another evidence of the in-
sufficiency of conventional MTL on LJP. This case
is about picking quarrels and provoking troubles.
Both CNN-MTL and TOPJUDGE succeed to pre-
dict the relevant law articles (i.e., law article 293
of the crime of affray). However, CNN-MTL is
confused between “crime of affray” and “crime of
intentional destruction or damage of properties”,
two charges similar to each other. Conversely,
TOPJUDGE can utilize the prediction result of law
articles and consequently prevent this confusion.

To summarize, modeling the explicit dependen-
cies among various subtasks can remarkably help
the LJP model address the issue of predicting con-
flicting results.

4.7 Error Analysis

Prediction errors induced by our proposed model
can be traced down into the following causes.

Data Imbalance. For the subtasks of law
articles and charges, our model achieves more
than 90% on accuracy, while only about 60% for
macro-F1. This issue is much more severe on the
subtask of the term of penalty, which our model
yields a poor performance of only 30% macro-F1.
The bad performance is mainly due to the imbal-
ance of category labels, e.g., there are only a few
training instances where the term is “life imprison-
ment or death penalty”. Most judgment prediction
approaches perform poorly (especially for Recall)
on these labels as listed in Fig. 4. Instance weight-
ing schemes can be introduced to address this is-
sue in future works.

Incomplete Information. Following existing
LJP works, we predict the final judgment accord-
ing to the fact descriptions, which is incomplete as
compared to the whole materials relevant to this
case. In Chinese Law, there are certain circum-
stances under which the sentence can be short-
ened. For example, minors usually receive a light-

Figure 4: The confusion matrix in the subtask
of predicting the term of penalty on the PKU
dataset. The rows denote the ground truth while
the columns denote the prediction results.

ened penalty, and those guilty of misdemeanors
are allowed for a secured pending trial while pay-
ing a security deposit. However, such informa-
tion is not included in the fact descriptions. The
lack of such information also raises difficulties for
judgment prediction, especially for the prediction
of the term of penalty. In Fig. 4, we can see that
the highest error rate comes from the cases with a
short term of penalty. Our model fails to distin-
guish the cases with no penalty and those with 0-6
months term of imprisonment.

5 Conclusion

In this paper, we focus on the task of legal judg-
ment prediction (LJP) and address multiple sub-
tasks of judgment predication with a topological
learning framework. To be specific, we formalize
the explicit dependencies over these subtasks in a
DAG form, and propose a novel MTL framework,
TOPJUDGE, by integrating the DAG dependen-
cies. Experimental results on three LJP subtasks
and three different datasets show that our TOP-
JUDGE outperforms all single-task baselines and
conventional MTL models consistently and signif-
icantly.

In the future, we will seek to explore the follow-
ing directions: (1) We will explore more LJP sub-
tasks and more scenarios of cases such as multiple
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defendants and charges to investigate the effective-
ness of TOPJUDGE. (2) We will explore how to
incorporate into LJP the temporal factors, which
are not considered in this work.

6 Acknowledgements

This work is supported by the National Nat-
ural Science Foundation of China (NSFC No.
61572273, 61772302) and the research fund of
Powerlaw Inc. for AI+Law Technology. This
work is also funded by China Association for Sci-
ence and Technology (2016QNRC001). Tu is also
supported by China Postdoctoral Innovative Talent
Support Programme.

References
Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel

Preotiuc-Pietro, and Vasileios Lampos. 2016. Pre-
dicting judicial decisions of the european court of
human rights: A natural language processing per-
spective. PeerJ Computer Science, 2.

Isabelle Augenstein, Sebastian Ruder, and Anders
Søgaard. 2018. Multi-task learning of pairwise
sequence classification tasks over disparate label
spaces. In Proceedings of NAACL.

Baharum Baharudin, Lam Hong Lee, and Khairullah
Khan. 2010. A review of machine learning algo-
rithms for text-documents classification. Journal of
Advances in Information Technology, 1(1):4–20.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of ICML, pages 160–167.

Li Deng, Geoffrey Hinton, and Brian Kingsbury. 2013.
New types of deep neural network learning for
speech recognition and related applications: An
overview. In Proceedings of ICASSP, pages 8599–
8603.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of ACL,
volume 1, pages 1723–1732.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network
parser. In Proceedings of ACL, volume 2, pages
845–850.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
Proceedings of NAACL, pages 866–875.

Ross Girshick. 2015. Fast r-cnn. In Proceedings of
ICCV, pages 1440–1448.

Kazuma Hashimoto, Yoshimasa Tsuruoka, Richard
Socher, et al. 2017. A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In Pro-
ceedings of EMNLP, pages 1923–1933.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and
Maosong Sun. 2018. Few-shot charge prediction
with discriminative legal attributes. In Proceedings
of COLING.

Daniel Martin Katz, Michael J Bommarito II, and Josh
Blackman. 2017. A general approach for predict-
ing the behavior of the supreme court of the united
states. Plos one, 12(4).

R Keown. 1980. Mathematical models for legal pre-
diction. Computer/LJ, 2:829.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Fred Kort. 1957. Predicting supreme court decisions
mathematically: A quantitative analysis of the ”right
to counsel” cases. American Political Science Re-
view, 51(1):1–12.

Benjamin E Lauderdale and Tom S Clark. 2012. The
supreme court’s many median justices. American
Political Science Review, 106(4):847–866.

Wanchen Lin, Tsung Ting Kuo, and Tung Jia Chang.
2012. Exploiting machine learning models for chi-
nese legal documents labeling, case classification,
and sentencing prediction. In Processdings of RO-
CLING, page 140.

Chaolin Liu, Cheng Tsung Chang, and Jim How Ho.
2004. Case instance generation and refinement
for case-based criminal summary judgments in chi-
nese. Journal of Informationence & Engineering,
20(4):783–800.

Chaolin Liu and Chwen Dar Hsieh. 2006. Exploring
phrase-based classification of judicial documents for
criminal charges in chinese. In Proceedings of IS-
MIS, pages 681–690.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of IJCAI.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
Proceedings of NAACL, pages 912–921.

3548



Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang
Zhang, and Dongyan Zhao. 2017. Learning to pre-
dict charges for criminal cases with legal basis. In
Proceedings of EMNLP.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of
ICLR.

Jiayuan Mao, Tete Xiao, Yuning Jiang, and Zhimin
Cao. 2017. What can help pedestrian detection? In
Proceedings of CVPR, pages 3127–3136.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS, pages 3111–3119.

Stuart S Nagel. 1963. Applying correlation analysis to
case prediction. Texas Law Review, 42:1006.

Sebastian Ruder, Joachim Bingel, Isabelle Augen-
stein, and Anders Søgaard. 2017. Learning what to
share between loosely related tasks. arXiv preprint
arXiv:1705.08142.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Jeffrey A Segal. 1984. Predicting supreme court cases
probabilistically: The search and seizure cases,
1962-1981. American Political Science Review,
78(4):891–900.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR, 15(1):1929–1958.

Octavia Maria Sulea, Marcos Zampieri, Mihaela Vela,
and Josef Van Genabith. 2017. Exploring the use of
text classi cation in the legal domain. In Proceedings
of ASAIL workshop.

Maosong Sun, Xinxiong Chen, Kaixu Zhang, Zhipeng
Guo, and Zhiyuan Liu. 2016. Thulac: An efficient
lexical analyzer for chinese.

Johan AK Suykens and Joos Vandewalle. 1999. Least
squares support vector machine classifiers. Neural
processing letters, 9(3):293–300.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of EMNLP,
pages 1422–1432.

S Sidney Ulmer. 1963. Quantitative analysis of judi-
cial processes: Some practical and theoretical appli-
cations. Law and Contemporary Problems, 28:164.

Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao
Tu, Zhiyuan Liu, Maosong Sun, Yansong Feng,
Xianpei Han, Zhen Hu, Heng Wang, et al. 2018.
Cail2018: A large-scale legal dataset for judgment
prediction. arXiv preprint arXiv:1807.02478.

Yongxin Yang and Timothy Hospedales. 2017. Deep
multi-task representation learning: A tensor factori-
sation approach. In Proceedings of ICLR.

Hai Ye, Xin Jiang, Zhunchen Luo, and Wenhan Chao.
2018. Interpretable charge predictions for criminal
cases: Learning to generate court views from fact
descriptions. In Proceedings of NAACL.

3549



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3550–3559
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Hierarchical CVAE for Fine-Grained Hate Speech Classification

Jing Qian, Mai ElSherief, Elizabeth Belding, William Yang Wang
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106 USA

{jing qian,mayelsherif,ebelding,william}@cs.ucsb.edu

Abstract

Existing work on automated hate speech de-
tection typically focuses on binary classifica-
tion or on differentiating among a small set
of categories. In this paper, we propose a
novel method on a fine-grained hate speech
classification task, which focuses on differen-
tiating among 40 hate groups of 13 different
hate group categories. We first explore the
Conditional Variational Autoencoder (CVAE)
(Larsen et al., 2016; Sohn et al., 2015) as a
discriminative model and then extend it to a
hierarchical architecture to utilize the addi-
tional hate category information for more ac-
curate prediction. Experimentally, we show
that incorporating the hate category informa-
tion for training can significantly improve the
classification performance and our proposed
model outperforms commonly-used discrimi-
native models.

1 Introduction

The impact of the vast quantities of user-generated
web content can be both positive and negative.
While it improves information accessibility, it also
can facilitate the propagation of online harass-
ment, such as hate speech. Recently, the Pew
Research Center1 reported that “roughly four-in-
ten Americans have personally experienced online
harassment, and 63% consider it a major prob-
lem. Beyond the personal experience, two-thirds
of Americans reported having witnessed abusive
or harassing behavior towards others online.”

In response to the growth in online hate, there
has been a trend of developing automatic hate
speech detection models to alleviate online harass-
ment (Warner and Hirschberg, 2012; Waseem and
Hovy, 2016). However, a common problem with
these methods is that they focus on coarse-grained

1http://www.pewinternet.org/2017/07/11/online-
harassment-2017/

Figure 1: A portion of the hate group map published by
the Southern Poverty Law Center (SPLC). Each marker
represents a hate group. The markers with the same
pattern indicate the corresponding hate groups share
the same ideology. The white box shows an example
of a hate group in Auburn, Alabama under the category
of ”White Nationalist”. Due to the sensitivity of the
data, we mask the name of the group.

classifications with only a small set of categories.
To the best of our knowledge, the existing work
on hate speech detection formulates the task as
a classification problem with no more than seven
classes. Building a model for more fine-grained
multiclass classification is more challenging since
it requires the model to capture finer distinctions
between each class.

Moreover, fine-grained classification is neces-
sary for fine-grained hate speech analysis. Fig-
ure 1 is a portion of the hate group map published
by the Southern Poverty Law Center (SPLC)2,
where a hate group is defined as “an organization
that based on its official statements or principles,
the statements of its leaders, or its activities has
beliefs or practices that attack or malign an en-
tire class of people, typically for their immutable
characteristics.” The SPLC divides the 954 hate
groups in the United States into 17 categories ac-

2https://www.splcenter.org
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cording to their ideologies (e.g. Racist Skinhead,
Anti-Immigrant, and others). The SPLC monitors
hate groups throughout the United States by a va-
riety of methodologies to determine the activities
of groups and individuals: reviewing hate group
publications and reports by citizens, law enforce-
ment, field sources and the news media, and con-
ducting their own investigations. Therefore, build-
ing automatic classification models to differentiate
between the social media posts from different hate
groups is both challenging and of practical signif-
icance.

In this paper, we propose a fine-grained hate
speech classification task that separates tweets
posted by 40 hate groups of 13 different hate group
categories. Although CVAE is commonly used as
a generative model, we find it can achieve compet-
itive results and tends to be more robust when the
size of the training dataset decreases, compared to
the commonly used discriminative neural network
models. Based on this insight, we design a Hierar-
chical CVAE model (HCVAE) for this task, which
leverages the additional hate group category (ide-
ology) information for training. Our contributions
are three-fold:

• This is the first paper on fine-grained
hate speech classification that attributes hate
groups to individual tweets.

• We propose a novel Hierarchical CVAE
model for fine-grained tweet hate speech
classification.

• Our proposed model improves the Micro-F1
score of up to 10% over the baselines.

In the next section, we outline the related work on
hate speech detection, fine-grained text classifica-
tion, and Variational Autoencoder. In Section 3,
we explore the CVAE as a discriminative model,
and our proposed method is described in Section 4.
Experimental results are presented and discussed
in Section 5. Finally, we conclude in Section 6.

2 Related Work

2.1 Hate Speech Detection
An extensive body of work has been dedicated
to automatic hate speech detection. Most of the
work focuses on binary classification. Warner
and Hirschberg (2012) differentiate between anti-
semitic or not. Gao et al. (2017), Zhong et al.
(2016), and Nobata et al. (2016) differentiate be-
tween abusive or not. Waseem and Hovy (2016),

Burnap and Williams (2016), and Davidson et al.
(2017) focus on three-way classification. Waseem
and Hovy (2016) classify each input tweet as
racist hate speech, sexist hate speech, or neither.
Burnap and Williams (2016) build classifiers for
hate speech based on race, sexual orientation or
disability, while Davidson et al. (2017) train a
model to differentiate among three classes: con-
taining hate speech, only offensive language, or
neither. Badjatiya et al. (2017) use the dataset pro-
vided by Waseem and Hovy (2016) to do three-
way classification. Our work is most closely re-
lated to (Van Hee et al., 2015), which focuses
on fine-grained cyberbullying classification. How-
ever, this study only focuses on seven categories
of cyberbullying while our dataset consists of 40
classes. Therefore, our classification task is much
more fine-grained and challenging.

2.2 Fine-grained Text Classification
Our work is also related to text classification. Con-
volutional Neural Networks (CNN) have been suc-
cessfully applied to the text classification task.
Kim (2014) applies CNN at the word level while
Zhang et al. (2015) apply CNN at the character
level. Johnson and Zhang (2015) exploit the word
order of text data with CNN for accurate text cat-
egorization. Socher et al. (2013) introduces the
Recursive Neural Tensor Network for text classi-
fication. Recurrent Neural Networks (RNN) are
also commonly used for text classification (Tai
et al., 2015; Yogatama et al., 2017). Lai et al.
(2015) and Zhou et al. (2015) further combine
RNN with CNN. Tang et al. (2015) and Yang et al.
(2016) exploit the hierarchical structure for doc-
ument classification. Tang et al. (2015) generate
from the sentence representation to the document
representation while Yang et al. (2016) generate
from the word-level attention to the sentence-level
attention. However, the division of the hierarchies
in our HCVAE is according to semantic levels,
rather than according to document compositions.
We generate from the category-level representa-
tions to the group-level representations. Moreover,
the most commonly used datasets by these works
(Yelp reviews, Yahoo answers, AGNews, IMDB
reviews (Diao et al., 2014)) have no more than 10
classes.

2.3 Variational Autoencoder
Variational Autoencoder (VAE) (Kingma and
Welling, 2013) has achieved competitive results in
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Figure 2: The structure of the baseline CVAE model
during training. Bi-LSTM is a bidirectional LSTM
layer. MLP is a Multilayer Perceptron. x is the embed-
ded input text. yg is the ground truth hate group label.
ŷg is the output prediction of the hate group. p is the
posterior distribution of the latent variable z while p0

is the prior distribution of z. Note that this structure is
used for training. During testing, the posterior network
is replaced by the prior network to compute ŷg and thus
yg is not available during testing. Refer to Section 3 for
detailed explanation.

many complicated generation tasks, such as hand-
written digits (Kingma and Welling, 2013; Sali-
mans et al., 2015), faces (Kingma and Welling,
2013; Rezende et al., 2014), and machine transla-
tion (Zhang et al., 2016). CVAE (Larsen et al.,
2016; Sohn et al., 2015) is an extension of the
original VAE framework that incorporates condi-
tions during generation. In addition to image gen-
eration, CVAE has also been successfully applied
to several NLP tasks, such as dialog generation
(Zhao et al., 2017). Although so far CVAE has
always been used as a generative model, we ex-
plore the performance of the CVAE as a discrim-
inative model and further propose a hierarchical
CVAE model, which exploits the hate group cate-
gory (ideology) information for training.

3 CVAE Baseline

We formulate our classification task as the follow-
ing equation:

Obj =
X

(x,yg)2X

log p(yg|x) (1)

where x, yg are the tweet text and hate group label
respectively, X is the dataset. Instead of directly

parameterizing p(yg|x), it can be further written as
the following equation:

p(yg|x) =

Z

z
p(yg|z, x)p(z|x)dz (2)

where z is the latent variable. Since the integration
over z is intractable, we instead try to maximize
the corresponding evidence lower bound (ELBO):

ELBO =E[log p(yg|z, x)]�
DKL[q(z|x, yg)||p(z|x)]

(3)

where DKL is the KullbackLeibler (KL) diver-
gence. p(yg|z, x) is the likelihood distribution,
q(z|x, yg) is the posterior distribution, and p(z|x)
is the prior distribution. These three distributions
are parameterized by p'(yg|z, x), q↵(z|x, yg), and
p�(z|x). Therefore, the training loss function is:

L =LREC + LKL

=Ez⇠p↵(z|x,yg)[� log p'(yg|z, x)]+

DKL[q↵(z|x, yg)||p�(z|x)]

(4)

The above loss function consists of two parts. The
first part LREC is the reconstruction loss. Opti-
mizing LREC can push the predictions made by
the posterior network and the likelihood network
closer to the ground truth labels. The second part
LKL is the KL divergence loss. Optimizing it can
push the output distribution of the prior network
and that of the posterior network closer to each
other, such that during testing, when the ground
truth label yg is no longer available, the prior net-
work can still output a reasonable probability dis-
tribution over z.

Figure 2 illustrates the structure of the CVAE
model during training (the structure used for
testing is different). The likelihood network
p'(yg|z, x) is a Multilayer Perceptron (MLP). The
structure of both the posterior network q↵(z|x, yg)
and the prior network p�(z|x) is a bidirectional
Long Short-Term Memory (Bi-LSTM) (Hochre-
iter and Schmidhuber, 1997) layer followed by an
MLP. The Bi-LSTM is used to encode the tweet
text. The only difference between the posterior
and the prior network is that for the posterior net-
work the input for the MLP is the encoded text
concatenated with the group label while for the
prior network only the encoded text is fed forward.
During testing, the posterior network will be re-
placed by the prior network to generate the distri-
bution over the latent variable (i.e. p0 will replace
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p). Thus during testing, the ground truth labels
will not be used to make predictions.

We assume the latent variable z has a multi-
variate Gaussian distribution: p = N (µ, ⌃) for
the posterior network, and p0 = N (µ0, ⌃0) for the
prior network. The detailed computation process
is as follows:

e = f(x) (5)
µ, ⌃ = s(yg � e) (6)

µ0, ⌃0 = s0(f 0(x)) (7)

where f is the Bi-LSTM function and e is the out-
put of the Bi-LSTM layer at the last time step. s
is the function of the MLP in the posterior net-
work and s0 is that of the MLP in the prior net-
work. The notation � means concatenation. The
latent variables z and z0 are randomly sampled
from N (µ, ⌃) and N (µ0, ⌃0), respectively. Dur-
ing training, the input for the likelihood network
is z:

ŷg = w(z) (8)

where w is the function of the MLP in the likeli-
hood network. During testing, the prior network
will substitute for the posterior network. Thus for
testing, the input for the likelihood is z0 instead of
z:

ŷg = w(z0) (9)

4 Our Approach

One problem with the above CVAE method is that
it utilizes the group label for training, but ignores
the available hate group category (ideology) infor-
mation of the hate speech. As mentioned in Sec-
tion 1, hate groups can be divided into different
categories in terms of ideologies. Each hate group
belongs to a specific hate group category. Con-
sidering this hierarchical structure, the hate cate-
gory information can potentially help the model to
better capture the subtle differences between the
hate speech from different hate groups. Therefore,
we extend the baseline CVAE model to incorpo-
rate the category information. In this case, the ob-
jective function is as follows:

Obj =
X

(x,yc,yg)2X

log p(yc, yg|x)

=
X

(x,yc,yg)2X

log p(yc|x)+log p(yg|x, yc)
(10)

where yc is the hate group category label and

p(yc|x)=

Z

zc

p(yc|zc, x)p(zc|x)dzc (11)

p(yg|x, yc)=

Z

zg

p(yg|zg,x,yc)p(zg|x,yc)dzg (12)

where zc and zg are latent variables. Therefore,
the ELBO of our method is the sum of the ELBOs
of log p(yc|x) and log p(yg|x, yc):

ELBO=E[log p(yc|zc, x)]�
DKL[q(zc|x, yc)||p(zc|x)]+

E[log p(yg|zg, x, yc)]�
DKL[q(zg|x, yc, yg)||p(zg|x, yc)]

(13)

During testing, the prior networks will substi-
tute the posterior networks and the ground truth
labels yc and yg are not utilized. Hence the
prior p(zg|x, yc) in the above equation cannot be
parametrized as a network that directly takes the
ground truth label yc and x as inputs. Instead, we
parameterize it as shown in the right part of Fig-
ure 3. We assume that u0 is trained to be a latent
representation of yc, so we use u0 and x as inputs
for this prior network.

According to the ELBO above, the correspond-
ing loss function L is the combination of the loss
function for the category classification (Lc) and
that for the group classification (Lg).

L =Lc + Lg, where
Lc =Ezc⇠q↵(zc|x,yc)[� log p'(yc|zc, x)]+

DKL[q↵(zc|x, yc)||p�(zc|x)], and
Lg =Ezg⇠q⌘(zg |x,yc,yg)[� log p✓(yg|zg, x, yc)]+

DKL[q⌘(zg|x, yc, yg)||p�(zg|x, u)]

(14)

Figure 3 shows the structure of our model for
training. By assuming the latent variables zc and
zg have multivariate Gaussian distributions, the
actual outputs of the posterior and prior networks
are the mean and variance: pc = N (µc, ⌃c),
pg = N (µg, ⌃g) for the two posterior networks,
and p0

c = N (µ0
c, ⌃

0
c), p0

g = N (µ0
g, ⌃

0
g) for the two

prior networks. Note that in addition to these four
distributions, there is another distribution px =
N (µx, �x) as shown in Figure 3. This distribu-
tion is generated only with the input text x, so it
provides the basic distribution (in order to avoid
confusion, we call it the basic distribution instead
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Figure 3: The structure of the HCVAE during train-
ing. Bi-LSTM is a bidirectional LSTM layer. MLP is
a Multilayer Perceptron. x is the embedded input text.
yc and yg are the ground truth hate category label and
hate group label. ŷc and ŷg are the output predictions
of the hate category and hate group. zc, zg , and z0

c are
latent variables. In the left dotted box are two poste-
rior networks. In the right dotted box are two prior
networks. Note that this structure is used for training.
During testing, the posterior networks will be substi-
tuted by the posterior networks (i.e. the left dotted box
will be substituted with the right one) to compute ŷc

and ŷg . Thus yc and yg are not available during testing.
Refer to Section 4 for detailed explanation.

of the prior distribution) for both two posterior net-
works and two prior networks. With this basic dis-
tribution, the two posterior networks only need to
capture the additional signals learned from x and
labels. Similarly, the prior networks only need to
learn the additional signals learned by the poste-
rior networks. The detailed computation process
during training is shown as the following equa-
tions:

e = f(x) (15)
µx, ⌃x = sx(e) (16)
µc, ⌃c = sc(yc � e) (17)
µg, ⌃g = sg(yc � yg � e) (18)
µ0

c, ⌃
0
c = s0

c(f
0
c(x)) (19)

where f is the Bi-LSTM function and e is the out-
put of the Bi-LSTM layer at the last time step. sx,
sc, sg, and s0

c are the functions of four different
MLPs. f 0

c is the Bi-LSTM function in the prior
network p�(zc|x). The latent variables zx, zc, zg,
and z0

c are randomly sampled from the Gaussian
distributions N (µx, ⌃x), N (µc, ⌃c), N (µg, ⌃g),
and N (µ0

c, ⌃
0
c) respectively. As mentioned above,

Algorithm 1 Train & Test Algorithm
1: function TRAIN(X)
2: randomly initialize network parameters;
3: for epoch = 1, E do
4: for (text, category, group) in X do
5: get embeddings x and one-hot vectors yc, yg;
6: compute e with the Bi-LSTM;
7: compute µx, ⌃x, µc, ⌃c, µg , ⌃g;
8: sample zx = reparameterize(µx, ⌃x);
9: sample zc = reparameterize(µc, ⌃c);

10: sample zg = reparameterize(µg, ⌃g);
11: u = zx + zc;
12: v = u + zg;
13: compute ŷc and ŷg according to Eq. 24- 25;
14: LREC = BCE(ŷc, yc) + BCE(ŷg, yg);
15: compute µ0

c, ⌃0

c;
16: sample z0

c = reparameterize(µ0

c, ⌃
0

c);
17: u0 = zx + z0

c;
18: compute µ0

g , ⌃0

g;
19: LKL = DKL(pc||p

0

c) + DKL(pg||p0

g);
20: L = LKL + LREC ;
21: update network parameters on L;
22: end for
23: end for
24: end function
25:
26: function TEST(X)
27: for text in X do
28: get embeddings x;
29: compute e with the Bi-LSTM;
30: compute µx, ⌃x, µ0

c, ⌃0

c;
31: sample zx = reparameterize(µx, ⌃x);
32: sample z0

c = reparameterize(µ0

c, ⌃
0

c);
33: u0 = zx + z0

c;
34: compute µ0

g , ⌃0

g;
35: sample z0

g = reparameterize(µ0

g, ⌃0

g);
36: v0 = u0 + z0

g;
37: compute ŷc and ŷg according to Eq. 26- 28;
38: end for
39: end function

px is the basic distribution while pc, pg, p0
c, and

p0
g are trained to capture the additional signals.

Therefore, zx is added to zc and z0
c, then the re-

sults u and u0 are further added to zg and z0
g, re-

spectively, as shown in the following equations:

u0 = zx + z0
c (20)

µ0
g, ⌃

0
g = s0

g(u
0 � f 0

g(x)) (21)

u = zx + zc (22)
v = u + zg (23)

where f 0
g is the Bi-LSTM function and s0

g is
the function of the MLP in the prior network
p�(zg|x, u). + is element-wise addition. During
training, u and v are fed into the likelihood net-
works:

ŷc = wc(e � u) (24)
ŷg = wg(e � v) (25)
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Figure 4: The distribution of the data for 40 hate groups. The X-Axis is each hate group. The Y-Axis is the number
of tweets collected for each hate group.

where wc and wg are the functions of the MLPs in
two likelihood networks. During testing, the prior
networks will substitute the posterior networks, so
the latent variable z0

g is randomly sampled from
the Gaussian distributions N (µ0

g, ⌃
0
g), and the last

four equations above (Equation 22 - 25) will be
replaced by the following ones:

ŷc = wc(e � u0) (26)
v0 = u0 + z0

g (27)

ŷg = wg(e � v0) (28)

Algorithm 1 illustrates the complete training and
testing process. BCE refers to the Binary Cross
Entropy loss. Note that during training, the ground
truth category labels and group labels are fed to the
posterior network to generate latent variables. But
during testing, the latent variables are generated
by the prior network, which only utilizes the texts
as inputs.

5 Experiments

5.1 Dataset
We collect the data from 40 hate group Twit-
ter accounts of 13 different hate ideologies, e.g.,
white nationalist, anti-immigrant, racist skinhead,
among others. The detailed themes and core val-
ues behind each hate ideology are discussed in
the SPLC ideology section.3 For each hate ide-
ology, we collect a set of Twitter handles based on
hate groups identified by the SPLC center.4 For

3https://www.splcenter.org/fighting-hate/extremist-
files/ideology

4https://www.splcenter.org/fighting-hate/extremist-
files/groups

each hate ideology, we select the top three han-
dles in terms of the number of followers. Due
to ties, there are four different groups in several
categories of our dataset. The dataset consists
of all the content (tweets, retweets, and replies)
posted with each account from the group’s incep-
tion date, as early as 07-2009, until 10-2017. Each
instance in the dataset is a tuple of (tweet text,
hate category label, hate group label). The com-
plete dataset consists of approximately 3.5 million
tweets. Note that due to the sensitive nature of the
data, we anonymously reference the Twitter han-
dles for each hate group by using IDs throughout
this paper. The distribution of the data is illus-
trated in Figure 4.

5.2 Experimental Settings
In addition to the discriminative CVAE model de-
scribed in Section 3, we implement for other base-
line methods and an upper bound model as fol-
lows.
Support Vector Machine (SVM): We implement
an SVM model with linear kernels. We use L2 reg-
ularization and the coefficient is 1. The input fea-
tures are the Term Frequency Inverse Document
Frequency (TF-IDF) values of up to 2-grams.
Logistic Regression (LR): We implement the Lo-
gistic Regression model with L2 regularization.
The penalty parameter C is set to 1. Similar to
the SVM model, we use TF-IDF values of up to
2-grams as features.
Character-level Convolutional Neural Network
(Char-CNN): We implement the character-level
CNN model for text classification as described in
(Zhang et al., 2015). It is 9 layers deep with 6
convolutional layers and 3 fully-connected layers.
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Dataset Complete Subset
Metric Macro-F1 Micro-F1 Weighted-F1 Macro-F1 Micro-F1 Weighted-F1
upper bound .697 .904 .881 – – –
SVM + tf-idf .653 .834 .835 .521 .771 .772
LR + tf-idf .586 .787 .792 .494 .727 .736
Char-CNN .604 .840 .853 .457 .730 .744
Bi-LSTM .627 .767 .745 .353 .599 .570
CVAE .520 .799 .830 .453 .774 .784
HCVAE (our) .664 .844 .858 .469 .787 .799

Table 1: Experimental results. Complete: The performance achieved when 90% of the entire dataset is used for
training. Subset: The performance achieved when only 10% of the dataset is used for training. The best results are
in bold.

The configurations of the convolutional layers are
kept the same as those in (Zhang et al., 2015).
Bi-LSTM: The model consists of a bidirectional
LSTM layer followed by a linear layer. The em-
bedded tweet text x is fed into the LSTM layer and
the output at the last time step is then fed into the
linear layer to predict ŷg.
Upper Bound: The upper bound model also con-
sists of a bidirectional LSTM layer followed by
a linear layer. The difference between this model
and Bi-LSTM is that it takes the tweet text x along
with the ground truth category label yc as input
during both training and testing. The LSTM layer
is used to encode x. The encoding result is con-
catenated with the ground truth category label and
then fed into the linear layer to give the prediction
of the hate group ŷg. Since it utilizes yc for predic-
tion during testing, this model sets an upper bound
performance for our method.

For the baseline CVAE, Bi-LSTM, the upper
bound model, and the HCVAE, we use randomly
initialized word embeddings with size 200. All the
neural network models are optimized by the Adam
optimizer with learning rate 1e-4. The batch size
is 20. The hidden size of all the LSTM layers in
these models is 64 and all the MLPs are three-
layered with non-linear activation function Tanh.
For the CVAE and the HCVAE, the size of the la-
tent variables is set to 256.

All the baseline models and our model are eval-
uated on two datasets. We first use the complete
dataset for training and testing. 90% of the in-
stances are used for training and the rest for test-
ing. In order to evaluate the robustness of the base-
line models and our model, we also randomly se-
lected a subset (10%) of the original dataset for
training while the testing dataset is fixed. Since
the upper bound model is used to set an upper
bound on performance, we do not evaluate it on

the smaller training dataset. We use Macro-F1,
Micro-F1, and Weighted-F1 to evaluate the classi-
fication results. As shown in Figure 4, the dataset
is highly imbalanced, which causes problems for
training the above models. In order to alleviate
this problem, we use a weighted random sampler
to sample instances from the training data. How-
ever, the testing dataset is not sampled, so the dis-
tribution of the testing dataset remains the same as
that of the original dataset. This allows us to eval-
uate the models’ performance on the data with a
realistic distribution.

5.3 Experimental Results
The experimental results are shown in Table 1.
The testing dataset keeps the imbalanced distribu-
tion of the original data, so the Macro-F1 score of
each method is significantly lower than the Micro-
F1 score and the Weighted-F1 score. Comparing
the performance of the Bi-LSTM model and that
of the baseline CVAE model shows that although
CVAE is traditionally used as a generative model,
it can also achieve competitive performance as a
discriminative model. All the methods achieve
lower F1 scores when using the smaller training
dataset. Due to the imbalanced distribution of
our dataset, half of the 40 groups has less than
1k tweets in the smaller training dataset, which
leads to the sharp decline in the Macro-F1 scores
of all the methods. However, the performance of
both CVAE-based models degrades less than that
of the other two neural network models (the Bi-
LSTM model and the Char-CNN model) accord-
ing to the Micro-F1 Weighted-F1 scores. These
two CVAE-based models tend to be more robust
when the size of the training dataset is smaller.
The difference between the CVAE-based models
and the other two models is that both the Bi-
LSTM model and the Char-CNN model directly
compress the input text into a fixed-length latent
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Figure 5: This figure compares a subset (17 hate groups
of 6 categories) of the predictions made by the baseline
CVAE and the HCVAE. The X and Y axes are the in-
dex of each hate group. The hate groups of the same
category are grouped together as shown in the dashed
squares. The color of the grid (i, j) is mapped from
rhcvae(i, j)�rcvae(i, j), where r(i, j) is the fraction of
the group i’s instances among the instances predicted
as the group j. A higher difference value corresponds
to a lighter color. A grid darker than the background is
mapped from a negative value while a grid lighter than
the background is mapped from a positive one.

variable while the CVAE model explicitly mod-
els the posterior and likelihood distributions over
the latent variable. The result is that, during test-
ing, the inference strategy of the Bi-LSTM model
and the Char-CNN model is actually comparing
the compressed text to the compressed instances
in the training dataset while the strategy of the
CVAE-based models is to compare the prior dis-
tributions over the latent variable. Compared with
the compressed text, prior distributions may cap-
ture higher level semantic information and thus
enable better generalization.

By further utilizing the hate category label for
training, the HCVAE outperforms the baseline
CVAE on all three metrics. Figure 5 illustrates
the difference between the predictions made by
the HCVAE and the CVAE. As shown in the fig-
ure, most of the lighter girds are in the dashed
squares while most of the darker girds are out-
side. This indicates that the HCVAE model tends
to correct the prediction of the CVAE’s misclas-
sified instances to be closer to the ground truth.
In most cases, the misclassified instances can be
directly corrected to the ground truth (the diago-

Figure 6: The F1 score achieved by our method on each
hate group. The Y-axis is the F1 score. The X-axis is
the hate group sorted by the number of instances in the
dataset from larger to smaller. The dashed line shows
the F1 scores and the solid line is the corresponding
trendline.

nal). In other cases, they are not corrected to the
ground truth but are corrected to the hate groups of
the same categories as the ground truth (the dashed
squares). This shows that additional ideology in-
formation is useful for the model to better capture
the subtle differences among tweets posted by dif-
ferent hate groups.

Although our method outperforms the baseline
methods, there is still a gap between its perfor-
mance and the upper bound performance. We an-
alyze this in the following section.

5.4 Error Analysis

As mentioned above, in some cases our model
misclassified the tweet as a group under the same
category as the ground truth. Take, for instance,
the tweet from Group1: The only good #muslim
is a #dead #muslim. Our HCVAE model predicts
it as from Group2. But both Group1 and Group2
are under the category “neo nazi”. One possible
reason for this kind of error is that the imbalance
of the dataset adversely affects the performance
of our method. Figure 6 shows the F1 scores
achieved by the HCVAE on each group. The per-
formance of the model tends to be much lower
when the number of the group’s training instances
decreases. Although we use the weighted random
sampler to alleviate the problem of the imbalanced
dataset, repeating the very limited data instances
(less than 3k) of a group during training cannot re-
ally help the posterior and prior networks to give a
reasonable distribution that can generalize well on
unseen inputs. Therefore, when the model comes

3557



into the instances in the testing dataset, the perfor-
mance can be less satisfactory. This is a common
problem for all the methods, which is the cause of
the significantly lower Macro-F1 scores.

Another type of error is caused by the noisy
dataset. Take, for instance, the tweet from Group3
under the category “ku klux klan”: we must secure
the existence of our people and future for the White
Children !! Our model classifies it as from Group4
under the category “neo nazi”, which makes sense
but is an error.

6 Conclusion

In this paper, we explore the CVAE as a discrimi-
native model and find that it can achieve compet-
itive results. In addition, the performance of the
CVAE-based models tend to be more stable than
that of the others when the dataset gets smaller.
We further propose an extension of the basic dis-
criminative CVAE model to incorporate the hate
group category (ideology) information for train-
ing. Our proposed model has a hierarchical struc-
ture that mirrors the hierarchical structure of the
hate groups and the ideologies. We apply the HC-
VAE to the task of fine-grained hate speech clas-
sification, but this Hierarchical CVAE framework
can be easily applied to other tasks where the hier-
archical structure of the data can be utilized.
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Abstract
Predictive models over social media language
have shown promise in capturing community
outcomes, but approaches thus far largely ne-
glect the socio-demographic context (e.g. age,
education rates, race) of the community from
which the language originates. For example, it
may be inaccurate to assume people in Mobile,
Alabama, where the population is relatively
older, will use words the same way as those
from San Francisco, where the median age is
younger with a higher rate of college educa-
tion. In this paper, we present residualized fac-
tor adaptation, a novel approach to commu-
nity prediction tasks which both (a) effectively
integrates community attributes, as well as
(b) adapts linguistic features to community at-
tributes (factors). We use eleven demographic
and socioeconomic attributes, and evaluate our
approach over five different community-level
predictive tasks, spanning health (heart disease
mortality, percent fair/poor health), psychol-
ogy (life satisfaction), and economics (per-
cent housing price increase, foreclosure rate).
Our evaluation shows that residualized fac-
tor adaptation significantly improves 4 out of
5 community-level outcome predictions over
prior state-of-the-art for incorporating socio-
demographic contexts.

1 Introduction
Adapting to human factors has been shown to ben-
efit NLP tasks, especially in tasks that involve pre-
dictions over individual social media posts (e.g.,
sentiment (Hovy, 2015), sarcasm, and stance de-
tection (Lynn et al., 2017)). The main idea be-
hind these approaches is that knowing who wrote
a piece of text can help models better understand
how to process it. This paper develops methods
that apply this idea to community-level prediction
tasks, which require making decisions over posts
from a community of users. Many community-
level outcomes and community-wide language are

linked to socio-demographic factors (age, gender,
race, education, income levels) with many so-
cial scientific studies supporting their predictive
value (Cohen et al., 2003), and should therefore
affect how a model treats social media-based lan-
guage features. For example, a high prevalence of
the word “bike” in San Francisco, CA might be a
signal that exercise is common in the area, while
its high prevalence in Mobile, Alabama might in-
dicate greater interest in motor bikes. We present
a method for building language-based predictive
models which integrate in and adapt to attributes
of the communities generating the language.

This work aims to unify two different ap-
proaches developed for adapting to human fac-
tors and use them for incorporating community at-
tributes in community-level prediction tasks: (1)
residualized controls: whereby a model is trained
in two steps: first over the factors/controls and
then fitting the language to the residuals of the
control model (Zamani and Schwartz, 2017), and
(2) user-factor adaptation: whereby linguistic
features are adapted, or treated differently, based
on the continuous-valued factors of the authors of
the features (Lynn et al., 2017).

Combining factor adaptation (FA) and residu-
alized control (RC) into RFA is a non-trivial task.
The intent behind both methods are quite different:
whereas RC attempts to address the inherent het-
erogeneity between robust control variables and
noisy linguistic variables, FA enables a model to
treat linguistic features differently depending on
the factors. From a statistical learning perspec-
tive, RC separates inference over controls from in-
ference over language (model level integration),
while FA brings controls and language together
and makes the inference as one single step (data
level integration). Additionally, FA has stricter
bounds in the number of factors it can accommo-
date because each new factor has a multiplicative
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effect on the number of learned parameters. On
the other hand, each new factor for RC typically
only adds one new parameter. Here, we endeavour
to develop RFA such that it achieves the benefits of
both approaches with little lost to the limitations.
RFA inherits the challenges of the FA method with
feature explosion. We address this through a sys-
tematic exploration of both feature and factor se-
lection.

The main contributions of this work include: (1)
the introduction of residualized factor adaptation
which effectively combines extra-linguistic and
language features, (2) the first empirical evalua-
tion of applying factor adaptation for community-
level prediction tasks, (3) analysis of the impact of
the size of factors and factor selection in adapta-
tion, and (4) state-of-the-art accuracies for each of
the five tasks for which we evaluate RFA.

2 Background

Social media provides easy access to a vast
amount of language written by a diverse group
of users, making it an increasingly popular re-
source for measuring community health, psychol-
ogy, and economics (Coppersmith et al., 2015;
Eichstaedt et al., 2015; Weeg et al., 2015; Mowery
et al., 2016; Haimson and Hayes, 2017). Copper-
smith et al. (2015), for instance, examine trends
in language use among Twitter users who self-
reported one of ten mental health diagnoses. Eich-
staedt et al. (2015) and Weeg et al. (2015) use
Twitter to predict the prevalence rates of various
health outcomes, such as heart disease mortality
and depression, at the county level. Haimson and
Hayes (2017) tracked changes in the emotional
well-being of transgender communities on Tumblr
between 2015 and 2016.

Socio-demographics are often correlated with
health outcomes (such as age and heart disease),
which is why such variables are often used as con-
trols during analysis (Coppersmith et al., 2015;
Dos Reis and Culotta, 2015; Eichstaedt et al.,
2015; Weeg et al., 2015). Because of their predic-
tive power, socio-demographics and other extra-
linguistic information can additionally be lever-
aged when building the model itself.

However, a central challenge in integrating
community attributes is that they have very differ-
ent properties than linguistic features and can be
lost, in essence, like a needle in a haystack. For
example, linguistic features like n-grams are high

dimensional, with each dimension having high co-
variance with other dimensions and likely very lit-
tle relationship with the outcome. On the other
hand community features may be measured more
robustly and are relatively low dimensional, of-
ten obtained through well-defined measurements.
Not surprisingly, Zamani and Schwartz (2017)
showed a naive combination that simply concate-
nates these two sets of features risks losing the ef-
fective extra-linguistic features in a sea of weak
linguistic features. They go on to show a resid-
ualized control approach achieves significantly
greater accuracy at economic prediction by first
learning a model using extra-linguistic features
(i.e. controls or community factors) and then train
a language model on top of the residual error of
the previous model.

It is possible that even when extra-linguistic
features are not directly beneficial for prediction,
they can still affect people’s language. Other re-
lated works consider how the meaning of lan-
guage changes depending on who states it. For
instance, when an NLP PhD student says the word
‘paper’ he/she usually means something different
than when a 5th grade student uses the same word
(i.e. ‘research paper’ versus ‘piece of paper’).
Hu et al. (2017) noted the same words can have
different meanings if different people say them.
This idea of contextualizing language with extra-
linguistic information has been the basis for mul-
tiple models: Hovy (2015) learn age- and gender-
specific word embeddings, leading to significant
improvements for three text classification tasks.
Volkova et al. (2013) found that using gender-
specific features lead to improvements in senti-
ment analysis over a gender-agnostic model. Most
recently, Lynn et al. (2017) proposed a domain
adaptation-inspired method for composing user-
level, extra-linguistic information with message-
level features, leading to improvements for mul-
tiple text classification tasks; we build off of this
approach and that of Zamani and Schwartz (2017)
in this paper.

While Lynn et al. (2017) injected user-level
info into message-level tasks, we are investigat-
ing whether same-level adaptation techniques are
similarly useful.

We also try to find the circumstances under
which each of the adaptation and residualized con-
trol approaches are more powerful, and we take
on the non-trivial task of exploiting concepts from
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both the adaptation and the residualized control
techniques at the same time, finding that they add
even more power when combined with one an-
other.

3 Method

We describe residualized factor adaptation (RFA),
an approach to text-based prediction utilizing
extra-linguistic factors (also called controls – often
demographic or socioeconomic information). The
key challenge for RFA lies in effectively combin-
ing two different types of features. The language-
based features, extracted from the tweets, are nu-
merous but are only weak indicators of the out-
comes. The socioeconomic and demographic fea-
tures, on the other hand, are strong indicators but
fewer in number. Naively combining both sets of
features ignores this crucial difference in their pre-
dictive abilities, potentially resulting in important
features getting drowned out.

We first describe two methods that effectively
combine extra-linguistic factors at two different
levels: 1) Residualized control is a model-level
combination method which builds different mod-
els for each type of feature, then combines the re-
sults of these models to make the final outcome
prediction. 2) Factor adaptation is a feature-level
combination method that composes the two fea-
ture sets with one another to produce a trans-
formed feature space over which a single model
may be built. Finally, we present our combined
method of Residualized Factor Adaptation which
takes advantage of both concepts without explod-
ing model parameters.

3.1 Residualized Control Prediction

Language-based features and community-level at-
tributes are qualitatively different modalities. The
extra-linguistic variables, while few in number, are
mostly unbiased and follow a normal distribution,
which can be used to build a strong outcome pre-
dictor. However, without special treatment, the
signal in extra-linguistic variables can be over-
whelmed when combined with a large number of
language-based features.

The residualized control approach (Zamani and
Schwartz, 2017) avoids this issue by building two
models. The first is a prediction model built over
the extra-linguistic variables (or controls) alone.
The error, or residuals, produced by this first
model represents the information that was unable

to be predicted using the extra-linguistic variables
alone. The language-based features are there-
fore brought in to improve upon the initial predic-
tions by using the residuals as training labels for a
model based on the linguistic features. In this way,
the language-based features are able to account for
additional information not captured by the initial
extra-linguistic feature-only model. At test time,
each instance is fed to both prediction models, and
the final outcome is given as a sum of the predic-
tions from both models — the outcome predicted
by the extra-linguistic model adjusted for error by
the language-based model.

Formally, given extra-linguistic features XEL

and language features XL, the residualized control
models are built as follows:

Ŷ = ↵ ⇥ XEL + � (1)
✏ = Y � Ŷ (2)

✏ ' � ⇥ XL + � (3)

The extra-linguistic control model is parameter-
ized by ↵ weights and the � bias term. ✏ denotes
the residual, i.e., the error of the extra-linguistic
model. The language-based model aims to predict
the ✏ residuals, with � weights and the � bias term
as parameters.

The motivation for this approach is that extra-
linguistic features are more informative and less
noisy than the language ones. By exploiting this
two-stage learning procedure, the model is biased
toward favoring the role of extra-linguistics over
language features, which prevents the powerful
but rare extra-linguistic features from being lost
among thousands of noisy language features.

3.2 Factor Adaptation
Lynn et al. (2017) introduced user-factor adap-
tation, a technique for combining message-level
features with user-level information (or factors) at
the feature level. User-factor adaptation, which is
based on the feature augmentation approach for
domain adaptation (Daumé III, 2007), uses the
extra-linguistic features to transform the language-
based features. Each of the language-based fea-
tures has additional, corresponding features that
are a composite of itself and an extra-linguistic
factor. In this way, the model is able to capture
both factor-specific and factor-general properties
of each of the language-based features.

Following the work of Lynn et al. (2017), we
use a multiplicative composition function for com-
bining the linguistic and extra-linguistic features.
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Instead of using user-level factors, we use extra-
linguistic variables obtained at the community
level, as described below. More formally, let Vj

be a matrix such that:

8j 2 {0, d} : Vj = vj � 1l (4)

where d is the number of extra-linguistic fac-
tors. With n as the number of data instances, let
vj be a column vector of height n where element
vj,i is the score of extra-linguistic feature j for in-
stance i. Having l as the number of language vari-
ables, in Eq. 4 for each factor j we make a matrix
of size n ⇥ l, named Vj , in which every column
is equal to vj , and Vj has the same dimensions as
language feature matrix XL. Now for each factor j
we use the Hadamard product to multiply Vj with
XL. In this way each row of XL will be multi-
plied by the corresponding row in Vj , which is also
equal to the corresponding value in vj . We there-
fore can write the factor adaptation as follows:

XA = [V1 � XL, V2 � XL, · · · , Vd � XL] (5)

The adapted features together with the original
language-based features are used for building a
single prediction model:

Ŷ = ↵ ⇥ [XL, XA] + � (6)

3.3 Residualized Factor Adaptation
Even though both the residualized control and fac-
tor adaptation approaches exploit extra-linguistics,
they combine these in very different ways. The
former does it at the model level by learning dif-
ferent models for different types of features and
combining those models together. The latter does
it at the data level by first combining both sets of
features into a transformed feature set and then
learning a single model on the obtained features.
In addition, these approaches have different moti-
vations and aim to accomplish different objectives.

These modeling differences suggest that the
two approaches could have complementary ben-
efits. Residualized factor adaptation (RFA), our
proposed method, inherits the advantages of both
the residualized control and adaptation techniques,
and is depicted in Fig. 1. There are four main
steps:
Step 1: Extra-linguistic control model. We
build a regression model solely based on the extra-
linguistics, as shown in Equation 1, and then com-

Figure 1: Components of residualized factor adapta-
tion. XL is language data (topic and n-gram features)
and XA is adapted language data.

pute the residual error of that model as in Equa-
tion 2. This error is ultimately used as the outcome
label in the final step of RFA.
Step 2: Factor selection. Adaptation to many fac-
tors can increase the model parameters drastically.
We explore multiple options for selecting a subset
of factors from the available extra-linguistic vari-
ables. First, we consider manually selected extra-
linguistic factors that are known to influence lan-
guage use more than others. Second, we use the
correlation of the factors with the outcome. Last,
we use PCA, an unsupervised method to gener-
ate new, lower-dimensional factors from the orig-
inals. The purpose of factor selection is to reduce
the variance and chance of overfitting.
Step 3: Factor adaptation. We modify the orig-
inal factor adaptation approach to account for the
larger number of factors and features in this task.
First, we normalize selected factors by min-max
scaling and then multiply the language features
by these selected factors as shown in Eq. 5. As
we describe later on in Section 4.2, we use n-
grams and topics as separate feature sets of lan-
guage data, so adaptation gives us two correspond-
ing sets of features: adapted n-grams and adapted
topics. We then standardize the adapted features
using Z-scores and perform feature reduction on
each of the four sets of features separately. These
reduced features sets are concatenated into a single
large set and fed as input to a learning algorithm
in the next step.
Step 4: Residual Prediction. The final step, as
shown in Eq. 7, is to learn the residual errors of
the extra-linguistic control model, using language
and adapted language features. Here, we first ap-
ply feature selection and reduction on each lan-
guage feature set: topics, n-grams, adapted-topics
and adapted-n-grams. Then we put all of them
into a single feature space on which we learn a
model to predict the residual error from Step 1.
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To produce the final outcome predictions, the pre-
dicted error from this model is combined with the
predicted outcomes of the extra-linguistic control
model from Step 1.

The choice of feature selection is vital for
RFA, both due to the fact that it multiplies the
number of language features by the number of
extra-linguistic features, and because it uses extra-
linguistic features at two levels, one separately and
one in integration with language features, poten-
tially leading to overfitting. In Section 5.2, we in-
vestigate different methods for feature selection to
improve RFA’s performance.

As Fig. 1 shows, RFA is structured similarly to
residualized control. However, residualized con-
trol uses language data at its final step, whereas
RFA uses both language and adapted language,
which is obtained using the factor adaptation tech-
nique. This helps RFA to benefit from the ad-
vantages of both residualized control and factor
adaptation. In other words, RFA combines lin-
guistic and extra-linguistic features on both the
feature/data level and the model level. Eq. 7 for-
mulates the RFA method, in which ✏ comes from
Eq. 2 and XA is defined in Eq. 5.

✏ ' � ⇥ [XL, XA] + � (7)

4 Evaluation Setup

Our task is to predict various community-level
outcomes based on publicly available data, in-
cluding social media and other extra-linguistic
data such as socioeconomic and demographic in-
formation. We focus on two health-related out-
comes: heart disease mortality rate (Eichstaedt
et al., 2015) and percent fair/poor health life (Cu-
lotta, 2014); one psychology-related outcome: life
satisfaction (Schwartz et al., 2013a); and two
economy outcomes: Increased real estate price
rate and foreclosure rate (Zamani and Schwartz,
2017). Our high-level approach is to train sep-
arate regression models for each outcome. For
each county, the input is a set of tweets posted by
users from that county as well as aggregate val-
ues of socioeconomic and demographic variables
for the county, including median income, percent-
age with bachelors degrees and median age. The
full list of socioeconomic/demographic variables
are given in Section 4.1. The open-source Differ-
ential Language Analysis ToolKit was used for the
entire analysis pipeline (feature extraction through

modeling) (Schwartz et al., 2017)1.

4.1 Data Set

Our evaluation dataset includes information from
three sources: (1) language data from Twitter
messages, (2) extra-linguistic data consisting of
11 socioeconomic and demographic variables, and
(3) outcome data consisting of 5 county-wise out-
comes from 3 categories: Health, Psychology, and
Economy.

Our language data can be divided into two
groups, (1) for Health and Psychological out-
comes and (2) for Economical outcomes. The lan-
guage data we use for Health- and Psychology-
related outcomes was derived from Twitter’s 10%
random stream collected from July 2009 to Febru-
ary 2015 and includes 1.64 billion tweets (Giorgi
et al., 2018)2. For Economy outcomes, we used
the language data from Zamani and Schwartz
(2017). This data was derived from Twitter’s 1%
random stream collected from 2011 to 2013 and
includes 131 million tweets. In both cases, the
tweets were mapped to counties based on users’
self-reported location strings using the procedure
proposed by Schwartz et al. (2013a).

The extra-linguistic data consists of 11 variables
used in previous work: 4 socioeconomic vari-
ables including median income, unemployment
rate, percentage of bachelors degrees, and per-
centage of high school degree, as well as 7 de-
mographic variables including median age; per-
centage: female, black, Hispanic, foreign-born,
married; and population density (Census Bureau,
2010). All variables were obtained from the US
Census (Census Bureau, 2010), and we hence-
forth refer to them collectively as extra-linguistic
features. This dataset is only collected every 10
years, so the 2010 US Census is the most recent
dataset for all of the socioeconomic and demo-
graphic variables at the county level.

We consider 5 county-wise measurements as
outcomes, 2 health-related (heart disease mor-
tality rate, fair/poor health life), 1 psychologi-
cal (life satisfaction), and 2 economic (yearly in-
creased real estate price rate, yearly foreclosure
rate). Health and psychological data was gath-
ered from the Centers for Disease Control and Pre-
vention (2010b) and contains between 1,630 to
1,749 counties, depending on the outcome. The

1Available at https://github.com/dlatk
2Available at https://github.com/wwbp
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Domain Lang. 3 Socio-Demographic Factors All Factors

Controls Added- RC FA RFA Controls Added- RC FA RFAOnly Controls Only Controls

Health HD 0.585 0.423 0.590 0.620 0.628 0.638 0.515 0.597 0.630 0.636 0.657 *
FP 0.602 0.434 0.606 0.619 0.647 0.647 0.609 0.632 0.657 0.685 0.680

Psych. LS 0.214 0.148 0.219 0.292 0.308 0.338 0.326 0.352 0.376 0.353 0.396 *
Econ. IP 0.245 0.072 0.243 0.266 0.274 0.307 0.240 0.226 0.330 0.344 0.402 *

FC 0.153 0.128 0.156 0.197 0.218 0.238 0.160 0.161 0.209 0.240 0.276 *
Avg. 0.360 0.241 0.362 0.398 0.415 0.434 0.370 0.394 0.440 0.452 0.482 *

Table 1: R2 (variance explained) of residualized factor adaptation (RFA) versus baseline models. Results are
shown for 3 hand-picked factors (age, race, education) as well as all factors. RC is residualized control and FA
is factor adaptation. Each row is color-coded separately, from red (lowest value) to green (highest values). Bold
and * indicate a significant (p < .05) reduction in error over the next best model (bold) and FA (*), respectively,
according to paired t-tests.

Lang. Controls Added- RC FA RFAOnly Controls

Health HD 0.765 0.718 0.773 0.794 0.798 0.811 *
FP 0.776 0.781 0.795 0.811 0.828 0.825

Psych. LS 0.463 0.571 0.594 0.614 0.595 0.630 *
Econ. IP 0.496 0.490 0.476 0.575 0.587 0.634 *

FC 0.391 0.401 0.401 0.457 0.490 0.526 *
Avg. 0.578 0.592 0.608 0.650 0.659 0.685 *

Table 2: Pearson-r of residualized factor adaptation (RFA) versus baseline models (for comparison to other work
which uses Pearson-r as the accuracy metric). Results are only shown for all factors. RC is residualized control
and FA is factor adaptation. Each row is color-coded separately, from red (lowest value) to green (highest values).
Bold and * indicate a significant (p < .05) reduction in error over the next best model (bold) and over FA (*),
respectively, according to paired t-tests.

economic outcomes, which have been used previ-
ously in (Zamani and Schwartz, 2017), were gath-
ered for the year 2013 from Zillow3. They contain
427 counties’ foreclosure rate and 717 counties’
increased real estate price rate.

4.2 Baselines
Our baselines consist of a controls-only prediction
model and a language-only prediction model.
Controls-only. The controls-only model is a sim-
ple regression model trained over all the 11 extra-
linguistic features.
Language-only. Building this baseline consists
of three main steps: extracting linguistic features,
performing feature reduction, and running ridge-
regression (Goeman et al., 2016). Our linguis-
tic features are n-gram features (1-3 grams) and
topic features which include mentions of 2,000
LDA (Blei et al., 2003) derived topics previously
estimated from social media (Schwartz et al.,
2013b).

For language data, we first pruned the sparse
n-gram features to only include those that were

3http://www.zillow.com/research/data/

mentioned in at lease a percentage of the counties,
then due to the importance of word count in per-
formance of language predictive models(Zamani
et al., 2018) we exploit a word count thresh-
old and drop counties with fewer words. Then
we run a correlation threshold to only keep the
highest correlated features and finally we per-
form a randomized principal components analysis
(RPCA), an approximate PCA based on stochastic
re-sampling (Rokhlin et al., 2009). We apply the
correlation threshold and RPCA steps for n-grams
and topics independently.

For language data associated with health and
psychology outcomes, we pruned the sparse n-
gram features to only include those that were men-
tioned in at least 95% of the counties, and used
20,000 as the word count threshold, resulting in
27,250 n-grams total.

With only 1,749 training instances (one per
county), feature selection and dimensionality re-
duction become necessary for avoiding overfitting.
We first limit the features to the top 10,000 n-
grams with the highest linear relationships to each
outcome. As the topic features are more informa-
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tive than a single n-gram, we choose to retain all
2,000 topics at this step. Then after performing
RPCA we only keep 100 features for each group
of ngrams and topcs.

For the language data associated with economy
outcomes, we pruned the n-gram features to only
include those that were mentioned in at least 10%
of the counties, and used 10,000 as the word-count
threshold, resulting in 8,897 n-grams across 717
training instances. We use the top 8,000 n-grams
and the top 1,500 topic features with the highest
linear relationships to each outcome. at the end
by applying RPCA we limit the dimension of each
feature set to 100.

We compare performances of residualized con-
trol, factor adaptation and residualized factor
adaptation (RFA). For all these models, we use the
same settings as above to generate language fea-
tures.

5 Results

5.1 Comparison of RC, FA, and RFA
We first compare factor adaptation (FA), residual-
ized control (RC), and residualized factor adapta-
tion (RFA) using three manually selected factors:
age, race (percentage of black population), and ed-
ucation (percentage with bachelor’s degree) rates.
These three factors are often used as “controls” in
prior work (Schwartz et al., 2013a; Culotta, 2014;
Eichstaedt et al., 2015; Curtis et al., 2018)4 and
also represent examples of demographic and so-
cioeconomic measurements.

In order to ensure a fair comparison, we use
the same extra-linguistic features for all models.
As mentioned earlier, a naive method is to di-
rectly combine the extra-linguistic features with
language ones in a single feature set. Here, we
also compare this simple model, which we call
added-controls, with the other three models. In
addition, we consider a linear model solely us-
ing extra-linguistics, which we call controls only.
Evaluation is done using 10-fold cross-validation.
R2, or variance explained, is used to measure ac-
curacy.

Table 1 compares results in terms of variance
explained, when using the three hand-picked fac-
tors vs. using all 11 extra-linguistic factors (Since
past work has also used the Pearson-r metric, Ta-
ble 2 shows the same results for all factors in terms

4Income has also been used frequently but it has been
shown to correlate strongly with education rates.

No
FS

Separated
FS

Combined
FS

Early
FS

HD 0.656 0.657 0.65 0.639
FP 0.678 0.68 0.676 0.661
LS 0.364 0.396 0.391 0.401
IP 0.425 0.402 0.392 0.336
FC 0.187 0.276 0.268 0.241

AVG 0.462 0.482 0.475 0.456

Table 3: Comparing R2 using different methods of
feature selection. Outcomes are heart disease (HD),
fair/poor health (FP), life satisfaction (LS), increased
price (IP), and foreclosure rate (FC). FS stands for fea-
ture selection. Bold cells have the highest R2 for each
outcome.

of Pearson-r). As the table shows, FA outper-
forms controls only, added-controls, and residu-
alized control. RFA does even better and out-
performs FA on both the hand-picked factors and
when using the entire set of factors. These re-
sults demonstrate the complementary nature of
the residualized control and factor adaptation ap-
proaches and the benefits of combining them.

Even though adding controls directly, as in
the “added-controls” column, works better than
language-only and controls-only models, it is
worse than any other model that exploits both lan-
guage and extra-linguistic data. This motivates the
need for combining different types of features in
both an additive (residualized control) and multi-
plicative (factor adaptation) style.

Overall, these results show the power of RFA
over the other models. RFA’s improvement over
FA was statistically significant for 4 out of 5 out-
comes, and 3 out of 5 for residualized control.
Recall that added-controls, residualized control,
FA, and RFA all have access to the same set of
information. The gains of RFA over FA show
that RFA’s structure utilizing residualized control
is better suited for combining extra-linguistic and
language-only features.

5.2 Feature Selection

Here we investigate the impact of feature selec-
tion on the overall performance of RFA. We con-
sider three different combination of adaptation and
feature selection, as well as adaptation without
any feature selection: (1) SeparatedFS: apply fea-
ture selection separately on language features and
adapted language features; (2) CombinedFS: com-
bine language features and adapted language fea-
tures into one feature set and then apply feature
selection; (3) EarlyFS: apply feature selection on
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Figure 2: Effect of increasing the number of selected
features in univariate feature selection on both fac-
tor adaptation (FA) and residualized factor adaptation
(RFA) by looking at the average R2 among health and
psychological outcomes. All 11 factors are used in all
cases.

language features, then apply adaptation on the se-
lected features; and (4) NoFS: perform adaptation
without any feature selection. Table 3 shows the
performance of each method on all 5 outcomes,
as well as the the average. SeparatedFS performs
better than the others in 3 out of 5 cases, as well
as leading the average R2 across all 5 outcomes.
In addition, it produces the most stable results in
comparison to the other methods. We therefore
use this method for RFA.

We perform another experiment to find the best
parameter for the univariate feature selection, that
is, the value of k when selecting the k-best n-
gram features. Figure 2 shows the results of vary-
ing the number of features used for FA and RFA.
We report the average R2 across the 3 health- and
psychology-related outcomes. In general, select-
ing more features leads to better results, though
eventually performance does begin to suffer. Re-
call that our feature selection approach is to first
select the k-best n-gram features based on their
linear relationship with the outcome, then do a
PCA on these k features to obtain a reduced-
dimension vector. Even though the feature selec-
tion doesn’t directly increase the size of our mod-
els, it effectively increases the amount of informa-
tion available to the models, leading to the positive
trends we see in Figure 2.

5.3 Increasing Factors and Factor Selection
This experiment has two objectives: first to find
out how the number of factors affects perfor-
mance, and second to find an automated way to
select a good subset from the extra-linguistic fac-
tors. Here we vary the number of factors from 1
to 11 (i.e. all factors) and compare the effects on

Figure 3: Effect of increasing number of factors on R2

of residualized factor adaptation (RFA), factor adapta-
tion (FA) and residualized controls (RC) for heart dis-
ease outcome. Factors are obtained through Recursive
Feature Elimination (RFE) or PCA. Left plot is with
original factors, and right plot is with interaction fac-
tors (the product from pairing factors).

RFA, FA, and RC. Factor selection in this exper-
iment is done in two ways, supervised and unsu-
pervised. For the supervised selection we use Re-
cursive Feature Elimination, in which for each k,
the least significant factors are recursively dropped
until only k factors remain. For unsupervised se-
lection, we use PCA to build k new factors with
the highest variance.

The left of Figure 3 shows how the performance
of RFA, FA and RC change for heart disease out-
come as the number of factors increase, using both
PCA and RFE as factor selection methods.

RFA outperforms FA at every factor number,
and begins to outperform RC as the number of
factors increases. RFA’s performance, in general,
tends to increase as we add more factors. Using
PCA, RFA reaches close to its best performance
very quickly, requiring only 5 or 6 factors; adding
more factors results in longer runtimes for mini-
mal gain. However, in the case of RFE, using more
factors appears to be worthwhile. FA and RC both
quickly plateau, or even decline, as more features
are added.

Since performance generally improved as more
factors were added, we explored adding more fac-
tors beyond the 11 that are available to us. To this
end we create new factors by multiplying the exist-
ing factors with one another. To account for vari-
ance in the factor ranges, we first min-max nor-
malize each factor. Then we consider every pair
of factors and multiply their normalized values to-
gether and re-normalize these new values to create
a new factor. This gives a total of 55 new factors
in addition to the original 11. We rerun our exper-
iments with this new pool of 66 factors.
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The right of Figure 3 shows the results of using
this expanded pool of factors. Here, the perfor-
mance begins to taper off beyond 15 factors for
both FA and RFA. Overall, PCA obtains its best
performance with only a few factors, but then be-
gins to suffer as more factors are added. RFE,
on the other hand, tends to perform worse than
PCA initially but remains relatively stable as more
factors are added. These newly-created features
turned out to be less effective than the original
eleven, suggesting that the trade-off in increasing
factors via combination is not worthwhile.

Overall, even though reducing the number of
factors through PCA-based factor selection could
not beat the best accuracy, it is still very com-
petitive. Given the potentially huge number of
features obtained through factor adaptation, this
slight decrease in performance may be worth po-
tential increases in runtime. RFE-based factor se-
lection, however, helps with neither the runtime
nor the performance.

6 Conclusions

Language-based prediction tasks involving com-
munities can benefit from both socio-demographic
factors and linguistic features. Because this in-
formation comes from different sources and has
different distributions, effective mechanisms are
needed for combining them. In this paper, we
present residualized factor adaptation, a method
that unites two ways of approaching this prob-
lem, one where strong community attributes are
augmented (i.e. additive use of factors) with weak
but noisy language features, and the other where
the contextual differences in language use are me-
diated via community attributes (i.e. adaptation
to community factors). The proposed method ef-
fectively combines the complementary benefits of
both residualized control and factor adaptation ap-
proaches to yield substantial gains over differing
community-level prediction tasks across three do-
mains. We see this work as part of a growing need
for application-oriented approaches that not only
leverage large data effectively by themselves, but
do so in the context of other social scientific infor-
mation that is already available and valuable.

Acknowledgments

This work was supported, in part, by a grant from
the Templeton Religion Trust (ID TRT0048). The
funders had no role in study design, data collection

and analysis, decision to publish, or preparation of
the manuscript.

References
Centers for disease control and prevention. (2010).

underlying cause of death 1999-2010. cdc wonder
online database [data set]. retrieved from http:
//wonder.cdc.gov/ucd-icd10.html.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research, 3(Jan):993–1022.

United States Census Bureau. 2010. Profile of general
population and housing characteristics: 2010 demo-
graphic profile data. https://factfinder.
census.gov/faces/tableservices/
jsf/pages/productview.xhtml?pid=
DEC_10_DP_DPDP1&prodType=table.

Deborah A. Cohen, Thomas A. Farley, and Karen Ma-
son. 2003. Why is poverty unhealthy? social and
physical mediators. Social Science & Medicine,
57(9):1631–1641.

Glen Coppersmith, Mark Dredze, Craig Harman, and
Kristy Hollingshead. 2015. From ADHD to SAD:
Analyzing the language of mental health on Twitter
through self-reported diagnoses. In Proceedings of
the 2nd Workshop on Computational Linguistics and
Clinical Psychology, pages 1–10.

Aron Culotta. 2014. Estimating county health statis-
tics with twitter. In Proceedings of the 32nd an-
nual ACM conference on Human factors in comput-
ing systems, pages 1335–1344. ACM.

Brenda Curtis, Salvatore Giorgi, Anneke E. K. Buf-
fone, Lyle H. Ungar, Robert D. Ashford, Jessie
Hemmons, Dan Summers, Casey Hamilton, and
H. Andrew Schwartz. 2018. Can twitter be used to
predict county excessive alcohol consumption rates?
PLOS ONE, 13(4):1–16.
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Abstract

Amidst growing concern over media
manipulation, NLP attention has focused on
overt strategies like censorship and “fake
news”. Here, we draw on two concepts from the
political science literature to explore subtler
strategies for government media manipulation:
agenda-setting (selecting what topics to
cover) and framing (deciding how topics are
covered). We analyze 13 years (100K articles)
of the Russian newspaper Izvestia and identify
a strategy of distraction: articles mention the
U.S. more frequently in the month directly
following an economic downturn in Russia.
We introduce embedding-based methods for
cross-lingually projecting English frames
to Russian, and discover that these articles
emphasize U.S. moral failings and threats to
the U.S. Our work offers new ways to identify
subtle media manipulation strategies at the
intersection of agenda-setting and framing.

1 Introduction

Authoritarian countries such as Russia and China
have received a great deal of attention for trying
to control and distort the spread of information
through “fake news” and censorship. However,
authoritarian governments might also use subtle
tactics of media manipulation that are much harder
to detect, like flooding communication channels
with irrelevant information or highlighting
particular viewpoints of an event to distract public
attention (Rozenas and Stukal, Forthcoming;
Munger et al., 2018;King et al., 2017). “Fake news”
can be identified by fact checkers. Censorship
can be detected by checking what content is no
longer available. However, we have no systematic
way of identifying more subtle forms of media
manipulation. To date, research has been limited to
occasional leaks to reveal ground truth data (King
et al., 2017). This paper proposes techniques—

grounded in economics and political science—
to automatically identify subtle manipulation at
scale, and applies these techniques to studyRussian
media.
These subtle manipulation strategies can

be understood through agenda-setting—selecting
what topics to cover—and framing—how aspects
of those topics are highlighted to promote
particular interpretations (Entman, 2007; Ghanem
and McCombs, 2001). For example, abortion
can be framed in terms of the life of a child
or a woman’s freedom of choice (Tankard Jr,
2001). Agenda-setting and framing can have a
significant influence on public opinion by attending
to particular issues at the exclusion of others
(McCombs, 2002; Boydstun et al., 2013). Both
concepts have been well-studied in English-
speaking democratic countries, but understudied in
other settings. Here, we apply these concepts to the
study ofmediamanipulation in Russia, particularly
as strategies of an autocratic regime.
We focus on Russia, because of intense interest

in the way Russia is shaping the global information
environment (Van Herpen, 2015). Many Russian
media outlets are state-owned or heavily influenced
by the government. We focus on news coverage
from 2003–2016 in one of the most widely-read
newspapers in Russia: Izvestia. Despite a brief
period of autonomy, Izvestia has become strongly
influenced by the government (Jones, 2002).
Prior work has identified a relationship between

negative economic performance in Russia, such as
stock market declines, and “selection attribution”
in state-controlled media outlets, where negative
events are blamed on foreign officials while
positive events are credited to domestic officials
(Rozenas and Stukal, Forthcoming). We build
on these findings and investigate the relationship
between economic performance, including that of
the Russia Trading System Index (RTSI) and gross
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domestic product (GDP), and news coverage of
foreign events. We primarily investigate coverage
of the United States because Russia has seen the
U.S. as its main rival since the Cold War, and we
expect news coverage of foreign events to focus
disproportionally on the U.S.
We first establish a strong negative correlation

between Russia’s economic situation and the
proportion of news focused on the U.S.
(§2). We then show that the correlation is
directed: economic indicators precede (and thereby
Granger-cause) the increase in foreign news
coverage (§2.2). We consider this a clear case
of agenda-setting. We then investigate how these
news articles frame the U.S. We develop a distant
supervision method to project English framing
annotations onto ourRussian corpus (§3), and draw
on the projected frames to analyze manipulation
strategies in news about the U.S. (§5).
The contributions of this work are manifold: we

show how framing and agenda-setting (concepts
traditionally applied to policy debates) can be
used to understand media manipulation strategies;
we use economic metrics to automate the
identification of agenda-setting; we devise a novel
method for cross-lingual projection of framing
annotations; and we use these annotations to show
how agenda-setting is realized.

2 Agenda-Setting

All media outlets inevitably use a form of
agenda-setting: deciding what is “newsworthy”
by covering some topics at the exclusion of
others. Agenda-setting can powerfully sway the
focus of public opinion (McCombs, 2002). We
hypothesize that in countrieswithweak democratic
institutions and in particular, with state-controlled
media, the government may actively use agenda-
setting to shape public opinion. We observe this
phenomenon by comparing how much Russian
newspapers describe the U.S. and the state of the
Russian economy. We then use Granger-causality
to show that a decline the Russian stock market is
followed by an increase in U.S. news coverage.
Our results are based on a corpus of over 100,000

articles from the newspaper Izvestia published in
2003–2016 (see Appendix A for details).

2.1 Correlations

We compared the salience of news focused on
the U.S. with indicators that reflect the economic

state of Russia to test our hypothesis: that news
coverage of the U.S. is used to distract the public
from negative economic events.We first performed
an initial, simplistic study of this agenda-setting
strategy. We define U.S. coverage as the ratio of
Izvestia articles that mention the U.S. at least
twice to the total number of articles in any
given time slice (in our initial study, a year).
We show in Figure 1 the U.S. coverage plotted
against Russian GDP, in an annual resolution. We
find a strong negative Pearson’s correlation (r=-
0.83): mentions of the U.S. in Izvestia increase as
economic indicators deteriorate. The one exception
to this trend is 2008, during which there was
a high amount of U.S. news coverage and the
Russian GDP peaked. This year coincides with
both the U.S. financial crisis and the Obama-
McCain Presidential election, whichwould explain
a focus on U.S. events regardless of the Russian
economic situation.
U.S. coverage, measured by counting mentions

of the U.S. in Izvestia, is inversely related to the
level of the Russian GDP. This negative correlation
indicates the possibility of intentional agenda-
setting by the Russian government.

Figure 1: Proportion of articles that mention the U.S. at
least twice (blue) and Russian GDP (red), 2003–2016.

We now extend these preliminary results in
several ways. First, we refine the definition of U.S.
coverage by using two metrics: article level, the
number of articles that mention the U.S. at least
twice normalized by the total number of articles
in the time slice; and word level, the frequency
of the occurrences of the U.S., normalized by the
total number of words in the time slice. Second, we
compare these metrics to two economic indicators:
GDP (in USD) and the index of the Russian
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stock market (RTSI), in rubles.1 Third, we refine
the time-resolution and use yearly, quarterly, and
monthly time slices.
Table 1 reports the correlations between the two

metrics of U.S. coverage and (monthly, quarterly,
and yearly) RTSI and GDP values. At all levels,
there are strong negative correlations between
the proportion of news focused on the U.S. and
economic state.

Level: Article Word
RTSI (Monthly, rubles) -0.54 -0.52
GDP (Quarterly, USD) -0.69 -0.65
GDP (Yearly, USD) -0.83 -0.79

Table 1: Pearson’s correlation between news coverage
of the U.S. and economic indicators.

2.2 Granger Causality
Next, we hypothesize that these correlations are
in fact directed: a change in the economy is
followed by a change in U.S. news coverage. To
investigate this hypothesis we employ Granger
causality (Granger, 1988). The key concept behind
Granger causality is that cause precedes effect.
Thus, a time series X is said to Granger-cause a
times series Y if past values xt�i are significant
indicators in predicting yt. First, we computed
the article-level (at) and word-level (wt) metrics
at a monthly granularity from 2003 to 2016;
we also extracted the RTSI monthly close price
(in rubles) for the same time period (rt). We then
calculated the percentage change of these series
as: C(wt) = wt

wt�1
�1, and equivalently calculated

C(at) and C(rt). By taking the percent change of
both series, we control for long term trends (e.g.,
stock markets tend to trend upwards over time),
and instead focus on short-term relations: does a
change in the economy directly precede a change
in news coverage?
We computed Granger causality betweenC(wt)

and C(rt) by fitting a linear regression model:

C(wt) =
mX

i=1

↵i(C(wt�i)) +
nX

j=1

�j(C(rt�j))

wherem andn denote how far back in timewe look
(denoted as m-lag or n-lag). We can say that rt

Granger-causes wt if we find that � is significantly
different from zero.

1Stock market values were obtained from the Moscow
exchange website. GDP values were obtained from OECD.

Tables 2 and 3 report the results. A p-value
 0.05 indicates significance; thus we find 1-lag
RTSI values Granger-cause coverage of U.S. news
by both the word-level and article-level metrics.
Importantly, the rt�1 coefficient is negative, which
indicates that a decline in the stock market is
followed by an increase in U.S. news coverage.
In the 2-lag analysis, the rt�2 values are not
significant, which suggests that the changes in news
coverage follow changes in the stock market within
one month.2 For completeness, we also computed
Granger causality in the reverse direction: i.e., does
a change in U.S. news coverage Granger-cause a
change in the stock market? As expected, we found
no significant results.

1-Lag 2-Lag
↵; � p-Value ↵; � p-Value

wt�1 -0.233 0.003 -0.320 0.00005
wt�2 - - -0.301 0.0001
rt�1 -0.352 0.0334 -0.369 0.024
rt�2 - - -0.122 0.458

Table 2: Granger causality between % change in RTSI
and frequency of USA (word level).

1-Lag 2-Lag
↵; � p-Value ↵; � p-Value

at�1 -0.222 0.005 -0.290 0.000289
at�2 - - -0.270 0.000634
rt�1 -0.311 0.035 -0.329 0.0267
rt�2 - - -0.091 0.543

Table 3: Granger causality between % change in RTSI
and frequency of USA (article level).

3 Framing Analysis
We hypothesize that framing can further our
understanding of why Russian media focuses
on the U.S. during economic downturns. By
identifying common frames in news coverage of
theU.S., we see how the concepts of agenda-setting
and framing work together to manipulate public
attention. In this section, we first define the concept
of framing and demonstrate why existing methods
are insufficient for analysis of the Izvestia corpus.
We then present a new method for analyzing
frames and evaluate it quantitatively through hand-
annotations and qualitatively through a series

2We computed Granger causality at a quarterly and yearly
level and found no significant causal relationship. This result
is unsurprising; the monthly analysis suggests trends in news
coverage are largely driven by the previous month, so we
would not expect causality at a quarterly or yearly level.
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of examples. Finally, we use this method to
contextualize strategies of media manipulation in
the Izvestia corpus.

3.1 Background on Framing Analyses

While agenda-setting broadly refers to what topics
a text covers, framing refers to which attributes
of those topics are highlighted. Several aspects
of framing make the concept difficult to analyze.
First, just defining framing has been “notoriously
slippery” (Boydstun et al., 2013). Frames can occur
as stock phrases, i.e. “death tax” vs. “estate tax”,
but they can also occur as broader associations or
sub-topics (Tsur et al., 2015; McCombs, 2002).
Frames also need to be distinguished from similar
concepts, like sentiment and stance. For example,
the same frame can be used to take different
stances on an issue: one politician might argue
that immigrants boost the economy by starting new
companies that create jobs, while another might
argue that immigrants hurt the economy by taking
jobs away from U.S. citizens (Baumer et al., 2015;
Gamson and Modigliani, 1989). Finally, unlike
classification tasks where each article is assigned
to a single category, most articles employ a variety
of frames (Ghanem and McCombs, 2001).
Recent work has attempted to address these

conceptual challenges by defining broad framing
categories. The Policy Frames Codebook defines
a set of 15 frames (one of which is “Other”)
commonly used in media for a broad range of
issues (Boydstun et al., 2013). In a follow-up
work, the authors use these frames to build The
Media Frames Corpus (MFC), which consists of
articles related to 3 issues: immigration, tobacco,
and same-sex marriage (Card et al., 2015). About
11,900 articles are hand-annotated with frames:
annotators highlight spans of text related to each
frame in the codebook and assign a single “primary
frame” to each document. However, the MFC, like
other prior framing analyses, relies heavily on
labor-intensive manual annotations.
The primary automated methods have relied

on probabilistic topic models (Tsur et al., 2015;
Boydstun et al., 2013; Nguyen et al., 2013; Roberts
et al., 2013). Although topic models can show
researchers what themes are salient in a corpus,
they have two main drawbacks: they tend to
be corpus-specific and hard to interpret. Topics
discovered in one corpus are likely not relevant to
a different corpus, and it is difficult to compare the

outputs of topic models run on different corpora.
Other automated framing analyses have used the
annotations of the Media Frame Corpus to predict
the primary frame of articles (Card et al., 2016;
Ji and Smith, 2017), or used classifiers to identify
language specifically related to framing (Baumer
et al., 2015). Importantly, all of these methods
focus exclusively on English data sets. While
unsupervised methods like topic models can be
applied to other languages, any supervised method
requires annotated data, which does not exist in
other languages.

3.2 Framing Analysis Methodology
Our goal is to develop a method that is easy
to interpret and applicable across-languages. In
order to ensure our analysis is interpretable, we
ground our method using the annotations of the
Media Frames Corpus. However, because theMFC
is entirely in English and our test corpora is in
Russian, we cannot use a fully supervised method.
Instead, we use the MFC annotations to derive
lexicons for each frame, which we then translate
into Russian. We use query-expansion to reduce
the noisiness of machine translation and make
the lexicons specific to the Izvestia corpus, rather
than specific to the MFC. We evaluate the derived
lexicons in English and in Russian. Finally, we
use these lexicons to analyze frames in Izvestia
and identify strategies of media manipulation. Our
method allows for in-depth analysis by identifying
primary and secondary frames in a document and
specific words that signify frames.

Generating framing lexicons Although our
primary test corpus is in Russian, we also use
English test corpora for evaluation; thus, we
describe our method as applicable to either
language. First, we use the MFC annotations to
derive a lexicon of English words related to each
frame in the Policy Frames Codebook. For a given
frameF wemeasure pointwisemutual information
(Church and Hanks, 1990) for each word in the
corpus as:

I(F, w) = log
P (F, w)

P (F )P (w)
= log

P (w | F )

P (w)

We estimate P (w|F ) by taking all text
segments annotated with frame F , and computing

Count(w)
Count(allwords) . We similarly compute P (w) from
the entire corpus. We then use the 250 words with
the highest I(w, F ) as the base framing lexicon for
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frame F , denoted Fbase. We discard all words that
occur in fewer than 0.5% of documents or in more
than 98% of documents.

Translation and extension of framing lexicons
Next, we use query-expansion to alter Fbase, with
the goal of generalizing the lexicon. Without
this step, our lexicons are biased towards words
common in English news articles, particularly
words specific to the 3 policy issues in the MFC.
When our test corpus is in a different language

(i.e. Russian), we use Google Translate to translate
Fbase into the new language. We restrict our
vocabulary to the 50,000 most frequent words in
the test corpus.
Then, to perform the query-expansion, we train

200-dimensional word embeddings on a large
background corpus in the test language, using
CBOW with a 5-word context window (Mikolov
et al., 2013). We compute the center of each
lexicon, c, by summing the embeddings for all
words in the lexicon. We then identify up to the
K nearest neighbors to this center, determined by
the cosine distance from c, as long as the cosine
distance is not greater than a manually-chosen
threshold (t).3 We again filtered the final set by
removing all words that occur in fewer than 0.5%
of documents or in more than 98% of documents.
The final lexicons contain between 100 and 300

words per frame. Table 4 depicts a few examples of
lexicon words extracted from the MFC, and words
in our final lexicons. We can observe that words in
Frus are closely related to words in Fbase, but also
specific to Russian culture and politics.
We consider a document to employ a frame F

if the document contains at least 3 instances of
a word from F ’s lexicon. We assign the primary
frame of a document to be its most common frame,
determined by the number of words from each
framing lexicon in the document .4

3When the test corpus is in English, we set t to 0.4 and
K to 500 and we add the identified neighbors to Fbase.
When our test corpus is in Russian, we choose to discard
our base lexicon, to prevent the final lexicons from being too
U.S.-specific. Instead, we set t to 0.3 and K to 1000, which
increases the number of neighbors identified, and we keep
only these neighbors in the final lexicon.

4We do not generate a lexicon for the “Other” frame, and
instead assign a document’s primary frame as “Other” only if
it does not contain at least 3 words from any framing lexicon.
Throughout this process,we use small subsets of the “tobacco”
articles for parameter tuning.

Fbase Frus

Political
republican-controlled bills
filibuster conservative
gubernatorial parlimentary

Economic
cents deductions
holdings tax
profitable fines

Public Sentiment
gallup activism
demonstrators facsim
rallied vote

Table 4: Example lexicons extracted from the MFC and
transfered to the Izvestia corpus.

4 Evaluation of Framing Lexicons

We can evaluate the English lexicons using
annotated data from the MFC. For the Russian
lexicons, since we do not have annotated Russian
data, we instead conduct an annotation task. These
evaluation metrics determine howwell our method
captures which frames are present in a text. Finally,
we also qualitatively compare our method to
existing methods for framing analysis, specifically
topic models.

English Evaluations We first evaluate our
lexicons on two tasks using the MFC annotations:
primary frame identification and identification of
all frames in a document.
Primary frame identification is a 15-class

classification problem. Two prior studies evaluate
models on this task: Card et al. (2016) and Ji and
Smith (2017). Following these studies, we evaluate
our model using 10-fold cross-validation on only
the “Immigration” subset of the MFC. We use 9
folds to generate framing lexicons and the 10th fold
to evaluate. To train word embeddings, we use the
entire MFC corpus combined with over 1 million
New York Times articles from 1986 - 2016 (Fast
and Horvitz, 2017). Table 5 shows the accuracy
of our model. Our results outperform Card et al.
(2016) and are comparable to Ji and Smith (2017).
Furthermore, unlike prior methods, our method is
able to transfer to different domains and languages
without needing further annotated data.

Ji and Smith (2017) 58.4
Card et al. (2016) 56.8
Our model 57.3

Table 5: Accuracy of primary frame classification.

However, our main interest is in measuring the
salience of frames in general, not merely focusing
on the primary frame. Thus, we also use our
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lexicons to identify the presence of any frames in
a document. As the MFC has multiple annotators,
we define a frame to be present in a document if
any annotator identified the frame, and use this as
gold standard test data. In evaluating our lexicons,
we consider a frame to be present in a document
if the document contains at least 3 tokens from the
frame’s lexicon.
To the best of our knowledge, identifying

all frames in a document is a new task that
was not attempted in prior work. Thus, we use
a logistic regression model with bag-of-word
features as a standard baseline. As above, we
evaluate using 10-fold cross validation on the
“Immigration” subset of the MFC. Table 6 shows
that our method outperforms the baseline, with the
exception of 2 frames, even though the baseline is
fully supervised, whereas our method is distantly
supervised. We note that the poorest performing
frames, “External Regulation and Reputation” and
“Morality” are the frames which are least common
in this subset of the data – each frame occurs in
fewer than 500 articles. When we run the same 10-
fold cross validation evaluation on the “Samesex”
subsection of the MFC, where the “Morality”
frame occurs in over 1000 articles, we achieve a
higher F1 score (0.65).

Ours Baseline
Capacity & Resources 0.53 0.48
Crime & Punishment 0.78 0.76
Cultural Identity 0.57 0.62
Economic 0.69 0.67
External Regulation 0.25 0.47
Fairness & Equality 0.50 0.44
Health & Safety 0.58 0.53
Legality & Constitutionality 0.80 0.76
Morality 0.31 0.25
Policy Prescription 0.72 0.69
Political 0.80 0.77
Public Sentiment 0.54 0.47
Quality of Life 0.65 0.63
Security & Defense 0.63 0.63

Table 6: F1 Scores for identification of all frames in a
document.

Russian Evaluations Next, we evaluate the
quality of our method on the Russian data
set. Unlike in English, we do not have frame-
annotated data in Russian. We instead performed
the intruder detection task, an established method
for evaluating topic models (Chang et al., 2009).

For each frame F we randomly sampled 5 words
from the framing lexiconFrus and 1 word from the
lexicon of a different frame, which has no overlap
with Frus. We then presented two (native Russian
speaking) annotators with the frame heading and
the set of 6 words, and asked them to choose which
word did not belong in the set. We evaluated 15
sets or 75 words per frame.
Framing can be subjective, and we do not

necessarily expect annotators to interpret frames in
the same way. We calculate two forms of accuracy:
“soft”, whether any annotator correctly identified
the intruder; and “hard”, whether both did.We also
report average precision as defined in (Chang et al.,
2009), i.e. the average number of annotators that
correctly identified the intruder, averaged across
all sets.
We briefly summarize results here and report

them fully in Appendix B. All accuracies are
significantly better than random guessing, and
no soft accuracy falls below 60%. Only two
frames have an average accuracy 60%, “Fairness
and Equality” and “Morality”, both very abstract
concepts. In these frames, we also see a larger
difference between hard and soft accuracies,
which reflects the subjectivity of framing. The
MFC annotators sometimes disagreed on the
correct annotations, even after discussing their
disagreements (Boydstun et al., 2013). Thus, we
can attribute some of the differences between hard
and soft accuracies to this subjectivity.

Qualitative Comparison to Structured Topic
Models We also qualitatively compared the
information our framing lexicons provide with
information provided by a Structured Topic Model
(STM) (Roberts et al., 2013). We find that our
approach is better able to capture frames the way
a reader might conceptualize them, whereas topic
models are useful for finding fine-grained corpus-
specific topics.
Topic models are a common way to analyze

frames in a text (Nguyen et al., 2013); the STM
specifically allows correlation between topics and
covariates. We trained an STM with 10, 15, 20,
25, and 50 topics on U.S.-focused articles in the
Izvestia corpus, including publication date (month
and year) as a covariate. We selected the 20
topic model as having the most coherent topics.
Throughout this section, we refer to topics using
their most representative words as determined by
the “Lift” metric (Roberts et al., 2013).
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We randomly selected a sample document for
each primary frame to investigate. The framing
lexicons are able to connect corpus-specific
vocabulary to higher-level concepts. For example,
an article describing movies about the U.S. prison
facility at Guantanamo Bay has two main STM
topics: [laden, sentence, prison] and [author,
viewer, filming]. Similarly, the framing lexicons
identify ‘Cultural Identity” as the primary frame.
However, a secondary frame in the document
is “Morality”, captured by words: writer, form,
Christ, art. While both the STM and the framing
lexicons capture major details of the article, the
framing lexicons additionally tie the article to
morality, because words like “art” in this corpus
are often signs of a moral framework.
Nevertheless, when the STM identifies a topic

similar to a frame, we find correlations with the
related lexicon, i.e. there is a 0.75 correlation
between the frequency of words in the Legality,
Constitutionality, Jurisdiction lexicon and the
monthly average proportion of each document
assigned to the topic [yukos, bill, legislation].
Additionally, the framing lexicons tend to have

higher precision in identifying relevant articles
than the STM. Topics are commonly identified
by their most probably words, which may not
occur at all in documents associated with the
topic. For example, the STM assigns an article
about smoking policies in the U.S. to 3 main
topics: [laden, sentence, prison], [kosovo, falcons,
because], [author, viewer, filming], none of which
are closely related to the article. In contrast,
because assignments to the framing lexicons are
made directly from words in the lexicon, we can be
confident that articles assigned to each frame have
words from the actual lexicon, and are very likely
related to the frame. The framing lexicons assign
the primary frame as “Policy” for this article,
which is a good fit. Neither method captures that
the article is also related to health.
Finally, the STM is useful for finding

fine-grained topics, beyond the Policy Frames
Codebook. For example, we find a “sports” topic:
[match, nhl, team]. These topics tend to be corpus-
specific and more concrete than the framing
lexicons: no STM topic captures “Quality of Life”.

5 Identifying Media Manipulation

We first use the generated framing lexicons to
determine which frames are frequently associated

with the U.S. We then break the frames into finer-
categories and manually look at sample articles
to determine why associating these frames with
the U.S. constitutes a media manipulation strategy.
We find that as the stock market declines, not
only is news focused more on the U.S., but also
emphasizes threats to the U.S.

5.1 Salient frames
To estimate which frames are associated with the
U.S. we compute normalized pointwise-mutual
information (nPMI) between the U.S. and each
frameF 5 bymapping themutual information score
onto a [-1,1] scale.A value of 1 represents complete
co-occurrence; a value of 0 represents complete
independence. By using nPMI, we measure which
frames are overrepresented in U.S.-focused news,
as compared to other news.

Figure 2: nPMI between U.S. and each frame.

Figure 2 shows the nPMI score between the
U.S. and each frame for all articles in our
corpus. As any news article about the U.S. is by
definition externally focused, the frame with the
strongest association is unsurprisingly “External
Regulation and Reputation”. Other frames with
strong associations include “Morality”, “Political”,
“Public Sentiment”, and “Security and Defense”.
These frames demonstrate what type of news
events in the U.S are reported in Russia. As
an example, we look at an article that uses a
combination of these frames. The article describes
cooling relations between Russia and the U.S.
It explains that anti-Russian sentiment will be
prevalent in the U.S. during upcoming elections,
when politicians on both sideswill play the “Russia
card”. It ultimately attributes the cooling relations

5As above, we consider an article to be U.S.-focused if it
mentions the U.S. at least 2 times, and we consider an article
to employ frame F if it uses at least 3 words from F ’s lexicon.
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to a mismatch of values and ideology between the
two nations. The framing lexicons well-capture the
numerous themes in this article. Specifically, the
frames identified and the related framing lexicon
words are:
Political: electorate, election, former, pre-

election, political scientists, congress, president,
post, bush
Public Sentiment: elections, campaign, pre-

election, democrats, republicans
External Regulation and Reputation: west,

war, former, washington, politics, summit,
exacerbation, west, decision, bush, president
Morality: peace, sins, ideals, love, values
Fairness and Equality: politics, love, values
This article uses several strategies to promote

unity in Russia and actively separate Russia from
Western culture, including criticizing American
politics and emphasizing a difference of values.
Russian articles use a combination of frames
to describe the U.S., which demonstrates the
importance of looking at all frames in a document,
rather than just the primary frame. In the
following sections, we provide additional examples
demonstrating how combinations of frames can
generate anti-U.S. sentiment.

5.2 Salient words within frames
We expect different aspects of frames to be
foregrounded during economic upturns than in
downturns. To investigate these differences, we
define a set of months M+

t , as the 10% of months
where RTSI showed the greatest growth, and a
corresponding set M�

t where RTSI showed the
greatest decline. We then take M+

t+1 as the month
directly following every month in M+

t , and we
similarly define M�

t+1. From the analysis in §2.2,
we expect media manipulation strategies to decline
from M+

t to M+
t+1, and increase from M�

t to
M�

t+1. For each frame, we take the subset of
U.S.-focused articles that use the frame. Then,
we use log odds with a Dirichlet prior (Jurafsky
et al., 2014; Monroe et al., 2008) to identify words
that are overrepresented or underrepresented from
M+

t to M+
t+1 and from M�

t to M�
t+1.6 Thus,

for each frame, we identify words which become
more common after a stock market downturn and
become less common after a stock market upturn.
We refer to these words as AgendaLex.

6We take the 500wordswith the largest increase in salience
from M�

t to M�

t+1 intersected with the 500 words with the
largest decrease in salience from M+

t to M+
t+1.

We found the Security and Defense AgendaLex
and the Crime and Punishment AgendaLex to
be surprisingly coherent, both containing words
related to terrorism and countries enemy to the
U.S., including bombs, missiles, Guantanamo,
North Korea, Iraq, etc. We found a correlation of
-0.49 between the frequency of words from the
Security and Defense AgendaLexin U.S.-focused
articles and the RSTI (-0.49). A 1-lag Granger
causality test (to what extent does a change in
RTSI Granger-cause a change in the prevalence
of the Security and Defense AgendaLex?) has a
p-value of 0.0051. As the stock market declines,
not only does the news focus more on the U.S., the
news focuses specifically on terrorists and other
enemies to the U.S. In the next section, we refine
this conclusion by looking at sample articles.

5.3 Examples of framing during downturns

By reading sample articles from months just after
stock market downturns that used words from the
Security and Defense lexicon and AgendaLex, we
identified three common strategies for distracting
Russian citizens from negative economic events:
villainizing the U.S., describing threats to the U.S.,
and promoting the Russian military over the U.S.
military.
First, some articles focus on immoral actions

of the U.S. military, describing U.S. troops as
“Nazi”, or U.S. campaigns in Iraq as “barbaric” or
causing “horror and outrage throughout theworld".
Others discuss Guantanamo Bay, employing
the “Morality” or “Legality, Constitutionality,
Jurisdiction” frames. By portraying the U.S.
government negatively, actions of the Russian
government appear positively by comparison.
Promoting unity by presenting an external enemy
is a well-studied political strategy.
Second, many articles, often in passing,

described threats to the U.S. An article about
terror attacks in Paris mentions U.S. involvement
with words from the Crime and Punishment and
Security and Defense lexicons: terrorist, terrorists,
special services. An article about the conflict
between Israel and Palestine describes increased
security in the U.S. An article about a U.S.
military operation refers more directly to threats
to the U.S. by claiming the killed terrorist will
simply be replaced “and everything will start
afresh - explosions, chases, roundups...unlucky
businessmen, successful terrorists”. The articles
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portray the U.S. as an unsafe place to live, making
Russia seem like a preferable home.
A third type of article also presents Russia as

safe by downplaying U.S. military threat: “the
missile defense system of the USA does not pose
a real threat to Russia’s strategic nuclear forces.”
or describing the growth of Russian technology
compared to ‘impotent’ American counterparts.

6 Related Work

Most studies on Russian media manipulation
focus on state-owned television networks, such
as Channel 1 and RT. Strategies identified in
these outlets include spreading confusion (Paul
and Matthews, 2016) and “selection attribution”,
in which negative economic events are attributed
to foreign entities and positive events are
attributed to Russian officials (Rozenas and
Stukal, Forthcoming). Similar strategies have
been identified in social media in China and in
Venezuela: these regimes flood communication
channels with irrelevant information or general
“cheerleading”, presumably to distract the public
from current events (King et al., 2017; Munger
et al., 2018). We expand on these analyses
as we study manipulation strategies in a more
automated way, through Granger-causality and
framing lexicons. We further draw parallels
between these strategies and theories of agenda-
setting and framing.
Furthermore, our method for analyzing frames

contributes to the growing body of work on
automated-framing analysis (Nguyen et al., 2013;
Boydstun et al., 2013; Card et al., 2016; Baumer
et al., 2015).While past work uses fully-supervised
methods, which are not applicable to languages
lacking training data, or unsupervised topic
models, which can be difficult to interpret, we
take a semi-supervised approach: using statistical
metrics and word embeddings to generate corpus-
specific lexicons based on common frameworks.
We additionally integrate our framing and

agenda-setting analysis with economic indicators
through the concept of Granger causality. While
the concept of Granger causality is not new
in economics, it is less common in NLP and
social sciences. Moreover, modeling relationships
between news and economic indicators is a
relatively recent area. Most research has focused
on using text to predict economic indicators using
a variety of features, from frequencies of keywords

to sentiment of social media posts (Nardo et al.,
2016). Kang et al. (2017) combine text and
Granger causality for a different task: automatically
explaining causes of time series events. Our study
differs from past work in that we reverse the
direction: rather than using news articles to model
changes in economic data, we use economic data
to show changes in news articles.

7 Conclusions

We show that natural language technology, in
addition to its ability to address overt manipulation
strategies like “fake news” and censorship, has the
potential to shed light on more subtle political
manipulation strategies, specifically distraction.
We offer a way to define these strategies by
drawing on social science theories of agenda-
setting and framing, combining them with a
novel methodology for cross-lingual projection
of framing annotations. We investigate how the
resulting frames are used in the Russian newspaper
Izvestia, and show that it reports on negative events
in the U.S. as a way of distracting from economic
downturns in the Russian economy.
Our approach and our findings serve as a starting

point for further research on automating the
identification and analysis of media manipulation
strategies. These include identification of more
nuanced framing strategies, such as mitigation,
projections of power among entities mentioned in
news, identification of over- and under-represented
events, and in general, detection of biases in
news articles as a means for understanding
trustworthiness in media reports.
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Abstract 

Vlogs provide a rich public source of data 
in a novel setting. This paper examined the 
continuous sentiment styles employed in 
27,333 vlogs using a dynamic intra-textual 
approach to sentiment analysis. Using 
unsupervised clustering, we identified 
seven distinct continuous sentiment 
trajectories characterized by fluctuations of 
sentiment throughout a vlog’s narrative 
time. We provide a taxonomy of these 
seven continuous sentiment styles and 
found that vlogs whose sentiment builds up 
towards a positive ending are the most 
prevalent in our sample. Gender was 
associated with preferences for different 
continuous sentiment trajectories. This 
paper discusses the findings with respect to 
previous work and concludes with an 
outlook towards possible uses of the 
corpus, method and findings of this paper 
for related areas of research. 

1 Introduction 

Vlogging or video-blogging has become one of the 
most popular video formats on social media 
platforms like YouTube. Vlogs have been referred 
to as ‘conversational video-blogs’ (Biel and Gatica-
Perez, 2010) or ‘monologue-like’ videos (Aran et 
al., 2014), and are officially defined in the 
Cambridge dictionary of English as “a record of 
your thoughts, opinions or experiences that you 
film and publish on the internet”1. The vast amount 
of vlogs on YouTube comprises a rich body of 
visual and textual data, usually covering a 
vlogger’s daily life. The transcripts of vlogs 
provide researchers with ample opportunity to 
                                                             
1 https://dictionary.cambridge.org/ 
dictionary/english/vlog 

examine natural language in this young field of 
communication. Nevertheless, little attention has 
thus far been paid to investigating the language 
used in YouTube vlogs. 

Much of the literature concerning Youtube vlogs 
focuses on the visual modality (Aran et al., 2014) 
or meta-indicators such as views and subscriber 
counts (Borghol et al., 2012). With the current 
study, we aim to address this gap in the literature 
by automatically analyzing the linguistic styles 
used by YouTube’s vloggers. Building on a novel 
approach to examining the continuous sentiment 
structure, we seek to shed light on the different 
temporal trajectories used by vloggers, and, by 
doing so, we expect to gain a deeper understanding 
of language use in vlogs. 

1.1 Previous research on vlogs 

Research on YouTube vlogs has thus far mainly 
focused on metadata indicators and how they 
impact video popularity. For example, a 
pronounced "rich-get-richer" effect regarding 
video popularity is often found. When controlling 
for the content, previous views are the best 
predictor of later video popularity (Borghol et al., 
2012). In addition, video age also predicts 
popularity: when the content is similar, early 
uploaders have an advantage over later uploaders 
in terms of popularity (Borghol et al., 2012). 
Furthermore, related video recommendations 
shown during or after a playing video also serve as 
an important indicator of the view count for 
YouTube videos (Zhou et al., 2010).  

Another strand of research has examined the 
visual content of vlogs. Across 2,268 single-person 
YouTube videos, four clusters of user activity level 
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(e.g., stationary or in motion), editing choices, and 
video quality were identified (Aran et al., 2014). 
Videos from a cluster with highly edited, active 
vlogs received more views than simple 
conversational videos in which the vlogger is 
stationary in front of the camera. Concerning audio 
data, videos in which the vlogger is “talking more, 
faster, and using few pauses” receive more views 
on average (Biel and Gatica-Perez, 2010). 
Similarly, the distance of the vlogger to the camera, 
looking time, and ‘looking-while-speaking’ were 
also found to significantly correlate with view 
count. It has been suggested that these nonverbal 
characteristics might be related to specific 
personality traits that promote effective 
communication and video popularity (Biel and 
Gatica-Perez, 2010). Lastly, a smaller line of 
research examines the linguistic content of 
YouTube vlogs. For example, a manual inspection 
of a random sample of 100 vlogs suggests that 
female vloggers are more likely than male vloggers 
to vlog about personal matters (Molyneaux et al., 
2008). In contrast, male YouTubers focused more 
on entertainment and technology. Research on the 
linguistic content of vlogs is scarce, which is why 
the present paper presents a novel methodology 
and corpus for examining the text modality. In the 
next section, the proposed method is explained in 
conjunction with previous research utilizing intra-
textual sentiment analysis. 

1.2 Continuous sentiment trajectories 

With increasing amounts of textual data available 
online, diverse methods for examining natural 
language and its linguistic style and content are 
applied on a large scale. Applications range from 
the automated detection of fake reviews (Ott et al., 
2013), fake news (Thorne et al., 2018; Pérez-Rosas 
et al., 2018) and lies and truths (Mihalcea and 
Strapparava, 2009; Kleinberg et al., 2018) to 
detecting political sentiments (Cambria, 2016). 

One important strand of computational 
linguistics examines the sentiment of texts (i.e., 
how positive or negative the emotional valence of 
the content is). Typically, a sentiment score is 
reported for a piece or section of text (e.g., a 
sentence or a whole text). However, a recently 
emerged literature examines shifts in emotional 
valence throughout a text (hence intra-textual) to 
assess sentiment over time. This focus on the 
temporal dimension resembles work on storyline 
extraction, where the timeline of events is 

considered, including events that give rise to a 
‘climax’ of a story (Caselli and Vossen, 2016). With 
intra-textual sentiment analysis, it is also possible 
to visualize language use leading to a climax in 
(positive or negative) sentiment. This method has 
thus far been applied to extract the intra-textual 
sentiment dynamics in novels (Gao et al., 2016) 
and was used to identify key narrative moments. 
Within this same context, Jockers (2015a) analyzed 
the intra-textual sentiments of over 40.000 novels 
using hierarchical clustering and observed six 
shapes, each representing a common sentiment 
structure in novels (e.g., a ‘man-in-hole' structure 
showcasing a positive-negative-positive 
sentiment). 

A few studies have further examined emotional 
plot shapes in different bodies of text. Six common 
emotional arcs were found to underlie 1,327 
fictional stories, termed the ‘rags to riches’ (i.e., a 
rise in sentiment), ‘tragedy’ or ‘riches to rags’ (i.e., 
a fall in sentiment), ‘man in hole’ (i.e., fall-rise), 
‘Icarus’ (i.e., rise-fall), ‘Cinderella’ (i.e., rise-fall-
rise), and ‘Oedipus’ styles (i.e., fall-rise-fall; see 
Reagan et al., 2016). Comparing these emotional 
arcs to the number of downloads for each of the 
fiction titles, the authors suggest that ‘Icarus', 
‘Oedipus', and ‘Man in a hole' are the most 
successful plot shapes.  

In a different study IBM's Watson Tone 
Analyzer was used to examine the continuous 
trajectories (i.e., in terms of emotion: e.g., joy; 
language: e.g., analytical language, and 
personality: e.g., extraversion) in public speaking 
(Tanveer et al., 2018). The authors investigated the 
audience’s perception of linguistic structures of 
2,007 publicly available TED talks. After 
identifying clusters and comparing these to ratings 
on the TED website, they found that ‘flat’ (i.e., less 
diverse) plot shapes are more likely to be rated as 
‘long-winded', emphasizing the importance of 
narrative variety for speech success. Furthermore, 
the majority of speeches showed a positive ending. 
While specific linguistic (or visual) characteristics 
of a video may not be accessible prior to watching 
a video, its style and structure may play a role in 
capturing and holding on to the attention of a 
viewer. Since video streaming services tend to only 
consider “quality views” (i.e., longer than X 
amount of time, (YouTube.com, 2018), examining 
the continuous sentiment styles over narrative time 
may be a worthwhile endeavor.  
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1.3 The current study 

This investigation aims to use intra-textual 
sentiment analysis to examine the continuous 
sentiment styles used in YouTube vlogs. 
Specifically, we primarily aim to identify distinct 
trajectories of continuous sentiment. In addition, 
we explore the sentiment styles’ relationship to 
gender and their overall prevalence on YouTube. 
Besides these aims, we introduce a novel method 
of extracting sentiment that is sensitive to valence 
shifters but can be used on non-punctuated data 
(e.g., YouTube vlogs). We also present a publicly 
available corpus of YouTube vlog transcripts. 

2 Data 

The data and code used to produce the analysis and 
data in this paper are publicly available.2 3 

2.1 Vlog selection 

Vlogs were selected by choosing vlog channels 
(i.e., where YouTubers post their videos) from a list 
of the top 250 YouTube channels (ranked by 
subscriber count) in the ‘People & Blogs' category 
(retrieved from www.socialblade.com on 29 March 
2018). Channels were selected for inclusion if the 
videos on the channel were in English and the 
channel solely focused on vlogs – excluding 
channels with gaming, music and prank videos. 
The aim was to select a sample of 20 female and 20 
male vloggers from the list of 250 YouTube 
channels. However, the majority of channels in this 
list were male or family vloggers, resulting in a 
somewhat unbalanced sample. After inspecting all 
250 channels in the list, 37 channels that satisfied 
the aforementioned criteria remained. 

2.2 Scraping vlog transcripts 

To obtain vlog transcripts, we accessed all videos 
published on the selected YouTube channels and 
used www.downsub.com to access video 
transcripts. That website downloads and returns 
YouTube transcripts for a specified video URL 
directly in the browser. We developed a python 
script that takes video URLs as input and 
communicates indirectly with YouTube via 
downsub.com to request and retrieve video 
transcripts. We did not differentiate between 
manually-added and automatically-generated 
                                                             
2 Data and code for vlog scraping: 
https://github.com/ben-
aaron188/narrative_structures.  

transcripts but encountered several cases in which 
neither was available for a certain video. In this 
case, we ignored the affected video and proceeded 
without considering it further in the analysis. 

2.3 Preprocessing 

The retrieved transcripts were XML-encoded, and 
the preprocessing included the removal of all XML 
tags to provide human-readable sequences. 
Furthermore, each row of the XML transcripts 
contained the word sequence of the vlog with its 
corresponding start and end time. Since the 
YouTube transcripts do not include any 
punctuation information, we decoded each row by 
removing the XML tags and merged the resulting 
human-readable sequences to one continuous 
string for each vlog. 

2.4 Feature extraction 

The primary aim of this investigation was to 
examine the continuous sentiment structures of 
popular vlogs. Taking inspiration from previous 
work on the narrative arcs of novels (Gao et al., 
2016), we wanted to analyze how the sentiment of 
the spoken content of a vlog moves dynamically 
throughout the vlog’s narrative time. When 
conducting sentiment extraction, an important 
consideration is the treatment of valence shifters 
that influence the meaning of a sentiment. For 
example, an utterance such as “this was not a bad 
day” should be rated as a positive sentiment since 
the valence of “bad” is shifted through the negator 
“not”. Existing methods of extracting sentiment, 
however, either ignore valence shifters (Jockers, 
2015b) or are sentence-based (i.e., they provide 
weighted sentiments only per sentence, e.g., the R-
package sentimentr, Rinker, 2018b). Since the 
scraped transcripts are non-punctuated, but we also 
wanted to account for valence shifters, we built a 
“naïve context” sentiment extractor that is sensitive 
to negators (e.g., not, doesn’t), [de-]amplifiers 
(e.g., really, hardly), and adversative conjunctions 
(e.g., but, however). The rationale is inspired by the 
algorithm behind sentimentr (Rinker, 2018b) but 
extends that approach to data that are non-
punctuated or very brief.  

Specifically, our algorithm identifies each 
sentiment as matched with the ‘Jockers & Rinker 
Polarity Lookup Table’ from the lexicon R package 

3 Code for feature extraction algorithm: 
https://github.com/ben-
aaron188/naive_context_sentiment 
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(Rinker, 2018a) and then constructs a “naïve 
context” cluster (i.e., without relying on 
punctuation or other structure) around that 
sentiment (here: two words before and after the 
sentiment). For each context cluster, the raw 
sentiment is then weighted by the presence of 
valence shifters. For example, “this was not a bad 
day in the sun” would result in a cluster around the 
identified sentiment word “bad” of (not a bad day 
in). The weights assigned to the valence shifters in 
this study (Negator: -1.00, Amplifier: 1.50, De-
amplifier: 0.50, Adversative conjunction: 0.25) are 
motivated by those in the similar software package 
sentimentr. 4  Lastly, the sentiment word in the 
cluster is replaced by its sentiment value: (-1, 1, -
0.75, 1, 1). We can then calculate the product of all 
vector elements and retrieve the weighted 
sentiment of that cluster (e.g., 0.75 for “not a bad 
day in”).  

We performed the naïve sentiment extraction on 
each vlog transcript resulting in a vector consisting 
of zeros (for words that did not match the sentiment 
lookup table) and weighted sentiment values. That 
vector was transformed to a standardized narrative 
time from 0 to 100 using the discrete cosine 
transformation from the syuzhet R package 
(Jockers, 2015b). The sentiment values were scaled 
from -1 (lowest sentiment per vlog transcript) to +1 
(highest sentiment per vlog transcript). The 
transformation yielded a vector of 100 sentiment 
coordinates for each transcript. 

3 Results 

3.1 Corpus statistics 

The final corpus consisted of the transcripts of 
27,333 vlogs from 24 vloggers with a total corpus 
size of 40,318,924 words and vlogs accounting for 
more than 24 billion views. These are all vlogs of 
which we were able to retrieve a transcript of at 
least ten words. Table 1 shows that female vloggers 
were underrepresented in the sample. More than 
half of the vlogs stem from male vloggers and a 
third from families who vlog. Since view count is 
highly dependent on the number of days the vlog is 
online, we corrected the view count for each vlog 
by dividing it by the number of days it was online. 
We then excluded 462 vlogs (1.69%) that were 
considered view count outliers (i.e., more than 
                                                             
4 Consensus on values for valence shifter weights has yet to 
emerge in literature. The algorithm is available as an R-
implementation to modify these values. 

three standard deviations above the mean). All 
subsequent analyses were conducted on the final 
sample with these outliers excluded. 

3.2 Identifying continuous sentiment styles 

The primary aim of this paper was to examine 
whether the narrative structure of vlogs can be 
captured by a few overarching sentiment styles. We 
used the binned sentiments extracted for each vlog 
in an unsupervised non-hierarchical k-means 
cluster analysis. Using the within-cluster-sum-of-
squares in a scree plot for 1 to 30 clusters, we 
observed an inflection after seven clusters and 
therefore decided to build a k-means model with 
k=7 (Figure 1 and 2).  

The k-means model assigned one cluster to each 
vlog transcript, and we subsequently averaged the 
continuous sentiment structure of all vlogs 

 Overall Female Male 

# of vlog 
channels 

24 12.50% 
(n = 3) 

54.17% (n = 
13) 

# of 
videos 

27,333 7.64% (n 
= 2,087) 

49.02% (n = 
13,399) 

Videos/ch
annel 

1138.88 695.67 949.92 

Avg. 
length (# 
of words) 

1475.10 
(746.53) 

1480.06 
(610.72) 

1366.31 
(804.68) 

Avg. view 
count 

893,932 
(2,566,021) 

456,603 
(718,895) 

898,089 
(1,900,855) 

Avg. view 
count 
(after 
outlier 
removal) 

762,143 
(1,479,588) 

412,592 
(490,792) 

817,029 
(1,476,804) 

Stand. 
view 
count 

1553.69 
(2733.35) 

1457.40 
(2508.95) 

1620.12 
(2875.96) 

 
Table 1. Descriptive statistics (mean, SD). 
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belonging to each cluster. Figure 1 and 2 show the 
distinct average shapes of the continuous sentiment 
structures of each cluster. The dotted red lines 
indicate the upper and lower boundaries of the 
sentiment shape +/- one standard deviation; the 
blue lines show the 99% confidence intervals. The 
seven plot shapes represent the average sentiment 
of all vlogs in that shape cluster in each bin of 
standardized narrative time (1-100). For example, 
for the first shape (Figure 1, second plot), the 
sentiment starts highly positive in the first quantile 
of the narrative time and then quickly dips below 
zero to moderately negative sentiment. Halfway 
through the narrative time, the sentiment 
neutralizes and becomes negative again until the 
last quantile from which it gradually becomes less 
negative and ends in a nearly neutral sentiment.  

Table 2 proposes a taxonomy of these seven 
continuous sentiment styles of YouTube vlogs and 
provides descriptive statistics for each. We used a 
linear mixed effects model to test for an effect of 
the clusters on the view count and transcript length. 
To account for dependence in the data (i.e., that we 
have multiple transcripts per vlogger), we included 
the vlogger as a random effect in the model. The 

analysis indicated that there was no significant 
difference in the corrected view count between the 
clusters; non-standardized b-coefficient of cluster 
= 6.78, se = 7.40, t(451.25) = 0.92, p = .360. Nor 
was there a difference in transcript length; b = -
1.23, se = 2.07, t(114.10) = -0.60, p = .552. Thus, it 
is not statistically justified to argue that one 
particular narrative style attracted more views than 
others. Nor do these results provide support for a 
relationship between a vlog’s length (as measured 
by the number of words in its transcript) and a 
particular sentiment style (e.g., that lengthier vlogs 
contain more sentiment shifts). 

A one-sided Chi-square test revealed that the 
number of vlogs was not uniform per cluster, X2(6) 
= 720.61, p < .001. The observed frequencies of 
vlogs in each cluster deviated significantly from 
the frequency that is expected if the vlogs were 
distributed uniformly (n = 3832, 14.29%). 
Standardized residuals (z-scores) of the observed 
relative to the expected frequencies can be used to 
examine which observations deviated in which 
direction. There were significantly more vlogs than 
expected in the “downhill-from-here” cluster (z = 
8.30), the “rags-to-riches” cluster (z = 7.64), and 

Cluster Description Label % of 
vlogs 

Avg. length Stand. 
view 
count 

1 Highly positive start, followed by semi-negative 
section, mildly positive section, negative ending 

“Downhill 
from here” 

16.06 1477.41 
(741.71) 

1524.52 
(2738.15) 

2 Negative start, followed by positive section, 
mildly negative section, semi-positive ending 

“Mood 
swings” 

11.84 1503.70 
(759.19) 

1504.72 
(2702.29) 

3 Negative first half, positive second half “Rags to 
riches” 

15.92 1454.41 
(727.83) 

1557.04 
(2697.74) 

4 Positive first half, negative second half “Riches to 
rags” 

12.36 1485.32 
(769.01) 

1477.71 
(2615.45) 

5 Semi-positive start, followed by a highly negative 
section, semi-positive end 

“Bump in the 
road” 

13.46 1480.21 
(729.47) 

1507.75 
(2650.23) 

6 Majority of the narrative is semi-negative, with 
highly positive end 

"End on a 
high note" 

18.39 1507.69 
(701.18) 

1818.73 
(3030.10) 

7 Majority of the narrative is positive with two 
peaks 

“Twin peaks” 11.97 1402.86 
(788.97) 

1368.05 
(2511.51) 

 Table 2. Narrative styles taxonomy and descriptive statistics. 
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the “end-on-a-high-note” cluster (z = 19.21). The 
clusters “mood swings” (z = -11.45), “riches-to-
rags” (z = -9.02), “bump-in-the-road” (z = -3.86), 
and “twin peaks” (z = -10.82) were significantly 
underrepresented. Aside from the considerable 
overrepresentation of the “end-on-a-high-note” 
cluster and underrepresentation of the “mood 
swings” and “twin peaks” clusters, the distribution 
is rather harmonious.5 

3.3 Additional analysis: Sentiment styles 
and gender 

We also assess whether there is a relationship 
between gender and the continuous sentiment 
style. There was significant association as 
indicated with a 3 (male, female, family) by 7 
(clusters) Chi-square test, X2(12) = 134.82, p < 
.001. Table 3 shows that family vloggers used the 
“twin peaks” style significantly more often than 
expected and used the “end-on-a-high-note” style 
significantly less often than expected (* = 
significant at p < .01). For female vloggers, the 
most used continuous sentiment style was “riches 
to rags”, while they used “end-on-a-high-note” less 
often than expected. Male vloggers preferred the 

"end-on-a-high-note" style while they used the 
styles "downhill from here" and "twin peaks" less 
often. Since we did not ascertain a balanced gender 

                                                             
5 The appendix provides a list of URLs to vlogs and vlog 
channels typical of a particular style. 

distribution, these findings should be treated 
cautiously and subjected to replications on datasets 
more suitable for gender analysis. 
 

 

Cluster Family Female Male 

Downhill from here 2.23 1.26 -2.88* 

Mood swings -2.31 1.96 1.25 

Rags to riches 2.13 -1.95 -1.08 

Riches to rags -2.05 4.88* -0.56 

Bump in the road 1.69 -1.12 -1.08 

End on a high note -5.16* -6.03* 8.32* 

Twin peaks 3.83* 2.25 -4.99* 

 
Table 3. Standardized residuals for the cluster-by-

gender association. 

Figure 1. Scree plot and average sentiment style 
shapes for clusters 1-3. Note: Dotted red lines = +/- 1 

SD; blue lines = 99% CI. 

3586



 

 

4 Discussion 

In this paper, we examined the continuous 
sentiment structures of a new corpus of YouTube 
vlog transcripts using intra-textual sentiment 
analysis. We were able to identify seven distinct 
continuous sentiment styles. The “rags to riches”, 
“riches to rags” and the “end-on-a-high-note” 
styles displayed an alternating pattern with one 
shift between predominantly positive and negative 
content. By contrast, the “bump in the road” and 
“twin peaks” styles show a marked negative 
middle part of the vlog and an overall positive 
sentiment with a slightly negative beginning and 
end, respectively. The most volatile styles were the 
“downhill from here” and the “mood swings” 
styles with both showing three shifts in sentiment.  

While no continuous sentiment style was related 
to higher view counts, we observed that the “end-
on-a-high-note” style was the most common in our 
corpus. The pattern of this particular style suggests 
that vloggers build up their content towards a 
positive ending following the idea to ‘end strong’, 
possibly to engage their viewers to keep watching 
subsequent videos. A similar trajectory was found 
for TED speeches (Tanveer et al., 2018), 
suggesting that YouTube vloggers may employ 
strategies similar to those of prolific public 
speakers. However, since the “downhill from here” 
style is second most frequent in our dataset, these 
findings do not indicate any tendency to a general 
sentiment development over time. In fact, the 
“downhill from here” and “end on a high note” 
styles exhibit a somewhat opposing behavior since 
the first gradually decreases the sentiment over 
time whereas the second aims at developing a 
positive sentiment towards the end of the video. 
When projecting this observation to the gender-
specific findings, one can see that the differences 
between family, female and male vloggers might 
account for these contradictory findings. Both 
family and female vloggers (representing 45.83% 
of all vloggers) used the “downhill from here” 
more often than male vloggers, whereas male 
vloggers used the “end on a high note” style most 
often. 

 Gender differences might help further 
understand vlog style choice: family vloggers used 
the "twin peaks" style more often than female or 
male vloggers, with the latter significantly under-
using that style. Female vloggers resorted to the 
"riches to rags" style most often, while male 
vloggers preferred the "end-on-a-high-note" style. 

Figure 2. Average sentiment style shapes for clusters 
4-7. Note: Dotted red lines = +/- 1 SD; blue lines = 

99% CI. 
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Vlogs made by females started with a definite 
positive buildup followed by a marked dip towards 
clear negative sentiment and a gradual increase 
towards the positive near the end of the vlog. 
Family vloggers were the only ones who preferred 
a style that ended with a sentiment leading toward 
the negative. 

Contrary to the findings of Tanveer et al. (2018), 
we did not find support for the notion that diverse 
styles characterized by higher sentiment volatility 
are more popular: both YouTuber's themselves, as 
well as the audience, did not show a preference for 
the most volatile narrative styles. The intra-textual 
analysis approach helped us to uncover dynamics 
in the sentiment of vlogs that would otherwise have 
been blurred by an overall sentiment score. In 
many cases (e.g., for the “rags to riches” and 
“riches to rags” styles) the sentiment dynamics 
would have canceled each other out to a neutral 
sentiment.  

4.1 Limitations 

Despite the interesting initial findings using the 
new corpus of vlog transcripts and the linguistic-
temporal analysis, the current study is not without 
its limitations. First, we partially relied on 
automated transcription of the vlogs, so the 
retrieved transcripts consisted of texts generated 
with YouTube’s speech recognition software. 
Although recent advancements in machine 
learning research provide promising improvements 
to speech recognition (LeCun et al., 2015; Zhang et 
al., 2017b; Zhang et al., 2017a) and contributed to 
an accuracy increase of fifty percent for YouTube’s 
automatic captions in English (Official YouTube 
Blog, 2017), the automatic generation of YouTube 
video captions remains a challenging task (Liao et 
al., 2013). It could be that potential inaccuracies 
might have affected our findings and future studies 
could set out to replicate our results using user-
provided high-quality vlog transcripts.  

Second, the sample consisted of YouTubers that 
already are successful concerning subscriber count, 
and we might, therefore, have painted a skewed 
picture of the vlogging landscape. For future 
studies, it would be interesting to look at potential 
moderating variables such as the vloggers 
‘vlogging age’ or the vlog’s topic. Possibly, the use 
of sentiment (and other linguistic dimensions) 
might differ between starting YouTubers and those 
who are more prolific and regularly attract millions 
of views.  

Third, by using vlog transcripts, we resorted 
solely to the linguistic modality of vlogs and did 
not look at the use of visual aspects in the vlogs. 
Using a similar dynamic method, future studies 
could look at how the use of visual content behaves 
and interacts with language use over the narrative 
time. 

4.2 Future work 

Using the corpus, method, and findings presented 
here as a starting point, we hope that future 
research can extend this exploratory work.  

• For example, it would be interesting to 
perform unsupervised clustering analyses 
on the vlog level to find “vlog-twins” or 
even “vlogger-twins”. Using 
observations that are similar in a 
multidimensional feature space could be 
exploited for semi-experimental studies 
where the effects of individual variables 
(e.g., a change in vlogging style) can be 
isolated towards drawing conclusions of 
causal nature.  

• Moreover, the sentiment is only one 
dimension of the linguistic aspects of 
vlogs, and the current analysis might be 
extended to different constructs. For 
example, a significant challenge lies in 
detecting extremist content on social 
media platforms like YouTube (Burgess, 
2017) and the dynamic approach might 
help uncover extremist parts in videos 
and enable a more fine-grained inspection 
of vlogs.  

• The temporal aspect of narrative time 
could be broadened so that the evolution 
of the narrative style across videos of 
individual vloggers can be captured. This 
would be a useful method to identify 
changes in vlogging strategy.  

• Finally, the intra-textual method might 
help in detecting online misinformation 
or deception within texts. A major 
challenge, for example, for linguistic 
deception detection lies in identifying lies 
embedded within a mostly truthful 
statement (Bachenko et al., 2008). 
Similarly, it would be interesting to 
examine whether a dynamic linguistic-
temporal approach as used here can aid in 
the detection of misinformation online 
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(e.g., Pérez-Rosas et al., 2018). The 
method used here and in a few related 
studies (Jockers, 2015a; Gao et al., 2016) 
could, therefore, also be of interest to 
researchers across disciplines. 

5 Conclusion 

Vlogging is a unique and novel means of 
communication. We explored the transcripts of 
vlogs as a source for linguistic analysis, and, by 
looking at intra-textual sentiment dynamics of each 
vlog, we identified seven distinct continuous 
sentiment styles. Vlogs ending on a positive note 
were the most prevalent, and we observed that 
gender was associated with different vlogging style 
preferences. The current paper presented an initial 
glimpse at the rich data source of vlogs, and a 
dynamic sentiment analysis approach helped 
uncover continuous sentiment structures. As such 
we hope the corpus, method, and findings 
presented here function as an impetus towards 
more analyses on this emerging means of online 
communication. 
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Abstract
We address the task of native language iden-
tification in the context of social media con-
tent, where authors are highly-fluent, ad-
vanced nonnative speakers (of English). Using
both linguistically-motivated features and the
characteristics of the social media outlet, we
obtain high accuracy on this challenging task.
We provide a detailed analysis of the features
that sheds light on differences between native
and nonnative speakers, and among nonnative
speakers with different backgrounds.

1 Introduction
The task of native language identification (NLI)
aims at determining the native language (L1) of an
author given only text in a foreign language (L2).
NLI has gained much popularity recently, usually
with an eye to educational applications (Tetreault
et al., 2013): the errors that learners make when
they write English depend on their native language
(Swan and Smith, 2001), and understanding the
different types of errors is a prerequisite for cor-
recting them (Leacock et al., 2010). Consequently,
tutoring applications can use NLI to offer better
targeted advice to language learners.

However, the NLI task is not limited to the lan-
guage of learners; it is relevant also, perhaps even
more so, in the (much more challenging) con-
text of highly-fluent, advanced nonnative speak-
ers. While the English language dominates the
internet, native English speakers are far outnum-
bered by speakers of English as a foreign lan-
guage. Consequently, a vast amount of static and
dynamic web content is continuously generated by
nonnative writers. Developing methods for iden-
tifying the native language of nonnative English
authors on social media outlets is therefore an im-
portant and pertinent goal.

⇤*Work done while the second author was at the Univer-
sity of Haifa.

We address the task of native language identi-
fication in the context of user generated content
(UGC) in online communities. Specifically, we
use a large corpus of English Reddit posts in which
the L1 of authors had been accurately annotated
(Rabinovich et al., 2018). On this dataset, we de-
fine three closely-related tasks: (i) distinguishing
between native and nonnative authors; (ii) deter-
mining to which language family the native lan-
guage of nonnative authors belongs; (iii) identify-
ing the native language of nonnative authors. Im-
portantly, we employ features that take advantage
of both linguistic traits present in the texts and the
characteristics of the social media outlet. We ob-
tain excellent results: up to 92% accuracy for dis-
tinguishing between natives and nonnatives, and
up to 69% for the 23-way NLI classification task.1

The contribution of this paper is manifold. First,
this is one of the first works to address NLI with
highly-advanced nonnatives; it is also among the
first to address the task in the context of UGC. Fur-
thermore, we define a plethora of features, some
which have been used in earlier works but others
that are novel. In particular, we define a set of
features that rely on the characteristics of the so-
cial media outlet, thereby extending the task some-
what, from linguistic analysis to user profiling. Fi-
nally, we provide a detailed analysis of the results,
including the specific contribution of various fea-
tures and feature sets. This analysis will be instru-
mental for future extensions of our work.

2 Related work

The NLI task was introduced by Koppel et al.
(2005), who worked on the International Corpus
of Learner English (Granger, 2003), which in-
cludes texts written by students from Russia, the

1It is important to note that some of our features are spe-
cific to the Reddit corpus and will not easily generalize to
other datasets.
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Czech Republic, Bulgaria, France, and Spain. The
same experimental setup was adopted by several
other authors (Tsur and Rappoport, 2007; Wong
and Dras, 2009, 2011). The task gained popular-
ity with the release of nonnative TOEFL essays by
the Educational Testing Service (Blanchard et al.,
2013); this dataset has been used for the first NLI
Shared Task (Tetreault et al., 2013) and also for
the 2017 NLI Shared Task (Malmasi et al., 2017).

Our task is closely related to the task of dialect
identification, in which the goal is to discrimi-
nate among similar languages, language varieties
and dialects. Classic machine learning classifi-
cation methods are usually applied for this task,
often with SVM models. The best reported fea-
tures include word and character n-grams, part
of speech n-grams and function words (Zampieri
et al., 2017; Malmasi and Zampieri, 2017).

The current state of the art in NLI, according
to Malmasi and Dras (2017), utilizes some variant
of contemporary machine learning classifier with
the following types of features: (i) word, lemma
and character n-grams, (ii) function words (FW),
(iii) part-of-speech (POS) n-grams, (iv) adaptor
grammar collocations, (v) Stanford dependencies,
(vi) CFG rules, and (vii) Tree Substitution Gram-
mar fragments. The best result under cross-
validation on the TOEFL dataset, which includes
11 native languages (with a rather diverse distri-
bution of language families), was 85.2% accuracy.
Applying these methods to different datasets (the
ASK corpus of learners of Norwegian (Tenfjord
et al., 2006) and the Jinan Chinese Learner Cor-
pus (Wang et al., 2015), 10-11 native languages
in each) resulted in 76.5% accuracy for the Chi-
nese data and 81.8% for the Norwegian data, with
LDA-based classification yielding top results.

Notably, all these works identify the native lan-
guage of learners. Identifying the native language
of advanced, fluent speakers is a much harder task.
Furthermore, our dataset includes texts by native
speakers of 23 languages, more than double the
number of languages used in previous works; and
our L1s are all European, and often typologically
close, which makes the task much harder.

Two recent works address the task of NLI on
UGC in social media. Anand et al. (2017) sum-
marized the shared task on Indian NLI: given a
corpus of Facebook English comments, the task
was to identify which of six Indian languages is
the L1 of the author. The best reported result was

48.8%, obtained by an SVM with character and
word n-grams as features. These are content based
features that are highly domain-dependent and are
not likely to generalize across domains. Volkova
et al. (2018) explored the contribution of various
(lexical, syntactic, and stylistic) signals for pre-
dicting the foreign language of non-English speak-
ers based on their English posts on Twitter. This
effectively results in a 12-way classification task,
with 12 different L1s (data sizes are distributed
very unevenly), and the best results are unsurpris-
ingly obtained with word unigrams and bigrams.

In contrast to these two studies, we work with
many more L1s (23); we explore various types of
features, including features based on social net-
work structures and content-independent features;
and we evaluate our classifiers both in and outside
of the domain of training.

Several works address social aspects of social
networks, and in particular identify “influential”
users (Ghosh and Lerman, 2010; Trusov et al.,
2010; Afrasiabi Rad and Benyoucef, 2011). Net-
work structure has been shown to be useful in
other tasks of user profiling, such as geolocation
(Jurgens et al., 2015). Our design of the social
network features (Section 3.5.4) are motivated by
these works.

Works that aim to distinguish between native
and nonnative authors (Bergsma et al., 2012; Ra-
binovich et al., 2016; Tomokiyo and Jones, 2001)
typically rely on lexical and grammatical charac-
teristics that reflect influences of L1 on L2. We
used such features, but augmented them by fea-
tures that can be induced from the network struc-
ture of social media outlets (Jurgens et al., 2015).
To the best of our knowledge, ours is the first work
that extensively exploits social network properties
for the task of NLI. Our work is also inspired by
research on the (related but different) task of iden-
tifying translations (Baroni and Bernardini, 2006;
Rabinovich and Wintner, 2015; Volansky et al.,
2015) and their source language (Koppel and Or-
dan, 2011; Rabinovich et al., 2017).

3 Experimental setup

3.1 Dataset
Reddit is an online community consisting of thou-
sands of forums for news aggregation, content rat-
ing, and discussions. Content entries are organized
by areas of interest called subreddits, ranging from
main forums that receive much attention to smaller
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ones that foster discussion on niche areas. Subred-
dit topics include news, science, arts, and many
others. An increasing body of work has used Red-
dit data for social media analysis (Jurgens et al.,
2015; Newell et al., 2016, and many more).

We used the Reddit dataset released by Rabi-
novich et al. (2018). It includes Reddit posts (both
initial submissions and subsequent comments), fo-
cusing on subreddits (Europe, AskEurope, Euro-
peanCulture) whose content is generated by users
specifying their country as a flair (metadata at-
tribute). We refer to these subreddits as European.
Following Rabinovich et al. (2018), we view the
country information as an accurate, albeit not per-
fect, proxy for the native language of the author.

Rabinovich et al. (2018) justified their trust in
the accuracy of the L1 annotation; we conducted
an additional validation of the data.2 We used a
specific Reddit thread in which users were asked
to comment in their native language. We collected
the comments in this thread of all the users in
our dataset. Then, we used the Polyglot language
identification tool to determine the language of the
comments. We filtered out short comments, com-
ments for which the tool’s confidence was low, and
comments in English of users from non-English
speaking countries. Of the remaining 572 users,
479 (84%) contributed comments in the language
that we considered their native. We inspected the
remaining users, and for many (albeit not all) we
attribute the mismatch to errors in the tool (i.e.,
comments in Serbian written in the Latin alpha-
bet are wrongly predicted to be in closely-related
Slavic languages). We conclude that the accuracy
of the L1 annotation is high; finally, we note ad-
ditionally that any noise in this labeling can only
work against us in this work.

We filtered out data from multilingual countries
(Belgium, Canada, and Switzerland). Rabinovich
et al. (2018) showed that the English of reddit non-
native authors is highly advanced, almost at the
level of native speakers, making the NLI task par-
ticularly demanding.

All the posts in the dataset are associated with a
unique user ID. The dataset also contains submis-
sions and comments in other subreddits that were
written by the same authors, based on their user
ID. This provided us with an out-of-domain test
set for evaluating the robustness of our methods.
The collected data reflect about 50 (mostly Eu-

2We thank an anonymous reviewer for suggesting this.

ropean) countries, and consist of over 230M sen-
tences, or 3.5B tokens, annotated with authors’ L1.

3.2 Preprocessing
Each sentence in the dataset is tagged with the au-
thor’s user ID, the subreddit it appeared in and
the author’s country. We segmented the dataset
into chunks of 100 sentences, each chunk contain-
ing sentences authored by the same user.3 The
sentences were kept in their original order in the
posts; users with fewer than 100 sentences were
filtered out. We also left out native languages
with fewer than 100 users (after the initial fil-
tering). The resulting dataset includes 23 native
languages spanning 29 countries, and consists of
34,511 unique users, almost 200M sentences and
over 3B tokens. The countries and languages re-
flected in the dataset are listed in Table 10 (see
Supplementary Materials).

All chunks were annotated for part-of-speech
using Spacy. We used Aspell to spell-check the
texts; every misspelled word in the original chunk
was annotated with the first correction suggested
by the spell checker. We also extracted from reddit
additional social network properties such as users’
karma scores, number of comments and submis-
sions, number of comments per submission, as
well as the number of months each user was ac-
tive on Reddit and all the subreddits that each user
in our dataset posted in (see Section 3.5.4). The
processed dataset will be made publicly available.

3.3 Task
We define three classification tasks: binary clas-
sification, distinguishing between native and non-
native authors; language family classification de-
termining the language family (Germanic, Bal-
toSlavic, Romance, or native English) of the user;
and language identification whose goal is to iden-
tify the native language of the user.

Different countries which have the same official
language (e.g., Germany and Austria) were tagged
with the same language label. For example, USA,
UK, Ireland, New Zealand and Australia were all
tagged with the label ‘English’ for the NLI task.

We then randomly downsampled the data to en-
sure that each class had the same number of users.

3Similar classification tasks, e.g., the TOEFL task
(Tetreault et al., 2013; Malmasi et al., 2017), used single
essays as the unit for classification. Tasks aiming to iden-
tify translation and its source language typically use chunks
of 2000 tokens (Volansky et al., 2015). We plan to experiment
also with smaller chunks.
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See the precise details in Section A.1 of the Sup-
plementary Materials.

3.4 Methodology
We cast NLI as a supervised classification task
and used logistic regression (as implemented in
Scikit-learn) as a classification model. We defined
several features that had been proven useful for
similar tasks; some of them are general stylistic
features that are presumably content-independent:
these include function words, POS n-grams, sim-
plification measures such as sentence length, etc.
(Rabinovich and Wintner, 2015; Volansky et al.,
2015). Other features are content based; most ob-
viously, token n-grams, but also character n-grams
(Avner et al., 2016). We expect content-based fea-
tures to be highly accurate but also highly domain-
dependent, and in the case of our dataset, topic-
dependent. Content-independent features are ex-
pected to be weaker yet more robust.

In addition, we used features that reflect
spelling and grammar errors. We assume that na-
tive and nonnative speakers make different kinds
of errors in English, and that the errors of non-
natives may reveal traces of their L1 (Kochmar,
2011; Berzak et al., 2015).

Aiming to enhance the quality of classification
we exploited properties that can be induced from
conversational networks. We hypothesize that na-
tive speakers of the same language tend to inter-
act more with each other (than with speakers of
other languages). We hypothesize further that na-
tive speakers post more than nonnatives, and hence
we defined user centrality measures that reflect
that. We also hypothesize that native speakers’
posts tend to be more spontaneous, coherent and
clear, thereby drawing more attention. To reflect
that, we counted the number of comments, up-
votes and down-votes that were submitted to each
post. While these and similar properties have been
studied in the domain of social networking, to the
best of our knowledge this is the first attempt to
use an extensive set of features inferred from so-
cial networks for the NLI task.

3.5 Features
We designed several features to be used in all three
tasks. In this section we describe these features.

3.5.1 Content features
Authors are more likely to write about topics
that are related to their country and their culture,

hence features that reflect content may help dis-
tinguish among authors from different countries
(and, therefore, languages). For example, the word
‘Paris’ is more likely to occur in texts written by
French authors, while the word ‘canal’ is more
likely to occur in texts of Dutch authors. We de-
fined features that take text content into account.
We expect these features to yield high accuracy
when testing on the training domain, but much
lower accuracy when testing on different domains.

Character tri-grams The top 1000 most fre-
quent character 3-grams in the dataset were used
as features. For each chunk the value of a cer-
tain character 3-gram feature was the number of
its occurrences in the chunk normalized by the to-
tal number of character 3-grams in the chunk.

Token uni-grams The top 1000 most frequent
tokens in the dataset were used as features. For
each chunk the value of a certain token feature was
the number of its occurrences in the chunk normal-
ized by the total number of tokens in the chunk.

3.5.2 Spelling and grammar
We used a spell checker (Section 3.1) to dis-
cover the (first) closest correction for each word
marked as incorrect. Based on this correction, we
defined several edit-distance-based features using
Python’s Python-Levenshtein extension.

Edit distance Assuming that nonnative speak-
ers will make more spelling errors than natives,
we used the average Levenshtein distance between
the original word and the correction offered by the
spell checker, for all words in a chunk, as a feature.

Spelling errors Again, we assume that the
spelling errors that nonnatives make may reflect
properties of their L1; this has already been shown
for learners (Tsvetkov et al., 2013). Using the edit
distance between a mis-spelled word w in a text
chunk, marked by the spell checker, and its sug-
gested correction c, we extract insertions, dele-
tions and substitutions that yield c from w and use
them as features. For each chunk, the value of
this feature is the number of occurrences of each
substitution (a character pair), insertions, and dele-
tions in the chunk. We only used the top-400 most
frequent substitutions.

We initially classified spelling errors as content-
independent features, assuming that they would
reflect transfer of linguistic phenomena from L1.
However, having analyzed this feature type, we
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observed that many of the mis-spelled words
turned out to be non-English words, which appar-
ently are abundant in our dataset even after remov-
ing non-English sentences. We therefore view this
feature as content dependent.

Grammar errors We hypothesize that gram-
mar errors made by nonnatives may reflect gram-
matical structures revealing their L1. We there-
fore used LanguageTool, a rule-based grammar
checker, to identify grammatical errors in the
text.4 We defined an indicator binary feature for
each of the (over 2000) grammar rules detected by
the grammar checker.5

3.5.3 Content-independent features
Content-based features may overly depend on the
domain of the training data, and consequently be
less effective when testing on different domains.
Content-independent features are expected to be
more robust when they are used out-of-domain.

Function words Function words are highly fre-
quent and as such they are assumed to be se-
lected unconsciously; they are therefore consid-
ered to reflect style, rather than content. Func-
tion words have been used successfully in a variety
of style-based classification tasks (Mosteller and
Wallace, 1963; Koppel and Ordan, 2011; Volan-
sky et al., 2015; Rabinovich et al., 2016). We used
as features (the frequencies of) about 400 function
words, taken from Volansky et al. (2015).

POS tri-grams POS n-grams are assumed to re-
flect (shallow) grammar. The native language of
the author is likely to influence the structure of his
or her productions in English, and we assume that
this will be reflected in this feature set. We used as
features the normalized frequency of the top 300
most frequent POS tri-grams in the data set.6

Sentence length Texts of nonnative speakers are
assumed to be simpler than those of natives; in par-
ticular, we expect them to have shorter sentences.
The value of this feature is the average length of
the sentences in the chunk.

3.5.4 Social network features
We defined several features that are extracted from
the social network data, particularly its structure.

4We used the Python wrapper for LanguageTool.
5The list of English grammar rules is available online.
6We also experimented with POS 5-grams but they did not

yield better results.

First, we defined feature sets that express the cen-
trality of users, under the assumption that native
speakers would be more central on social net-
works. Consequently, this set of features is ex-
pected to be beneficial mainly for the binary na-
tive/nonnative classification.

User centrality in the social network of Reddit
can be reflected in various ways:

Karma Reddit assigns a karma score to each
user. This score “reflects how much good the user
has done for the reddit community. The best way
to gain karma is to submit links that other peo-
ple like and vote for”.7 The Karma score is an
undisclosed function of two separate scores: link
karma, which is calculated from the user’s posts
that contain links, and comment karma, which is
computed from the user’s comments. We extracted
both types of karma scores for all users in the
dataset and used each of them (specifically, the
user’s monthly average scores) as a feature.

Average score Reddit calculates a score for each
submission as the number of up-votes minus the
number of down-votes the submission received.
We used the user’s average score per month as a
feature.

Average number of submissions We counted
for each user the total number of submissions he or
she authored. For each chunk the value of this fea-
ture is the user’s average number of submissions
per month.

Average number of comments Same as the
above, but counting user’s comments (responses
to submissions) instead of submissions.

Most popular subreddits Finally, we assume
that native speakers of the same language tend to
interact more with each other than with others,
and we also assume that they are more likely to
be interested in similar topics, influenced by their
country and culture; specifically, we hypothesize
that the forums in which users post most will be
common for users from the same country. There-
fore, we extracted for each country in the dataset
the most popular subreddits among users from this
country. For each country, we sorted subreddits
according to the number of users from this coun-
try who posted at least once in this subreddit.
The 30 most popular subreddits of each country

7The Reddit Wiki.
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were taken as features. The unique list of popu-
lar subreddits contains 141 subreddits. For each
chunk the value of a certain subreddit feature was
a binary value indicating whether or not the author
of this chunk has posted in this subreddit.

3.6 Evaluation
It is well known that similar classification tasks are
highly domain-dependent; simply put, the proper-
ties of the domain overshadow the much more sub-
tle signal of the author’s L1. To test the robustness
of various feature sets in the face of domain noise,
we defined two evaluation scenarios: in-domain,
where training and testing is done only on chunks
from the European subreddits; and out-of-domain,
where we train on chunks from the European sub-
reddits and test on chunks from other subreddits,
making sure they were authored by different users.
Note that the out-of-domain corpus spans tens of
thousands of subreddits with a huge number of
topics. The precise evaluation scenario is some-
what involved and is detailed in Section A.2 of
the Supplementary Materials. We report accuracy,
defined as the percentage of chunks that were clas-
sified correctly out of the total number of chunks.

4 Results

We implemented the features discussed in Sec-
tion 3.5 and evaluated the accuracy of the three
classification tasks mentioned in Section 3.4 under
the configurations described in Section 3.6. The
trivial baseline for the binary classification task
is 50%, for language family classification 25%,
and for the language identification task 4.35%.

4.1 Individual feature sets
The accuracy results for each feature set described
in Section 3.5 for the in-domain evaluation sce-
nario are presented in Table 1.

Feature Set Binary Families NLI
Char. 3-grams 85.58 78.20 62.06
Token unigrams 86.26 69.36 31.26
Spelling 71.04 52.18 27.74
Grammar errors 66.79 37.96 8.36
FW 80.34 57.80 20.15
POS 3-grams 69.14 50.29 13.30
Sentence length 50.37 26.14 4.79
Social network 57.92 32.39 5.75
Subreddits 87.08 82.56 74.46

Table 1: In-domain accuracy, individual feature sets

Evidently, all feature sets outperform the base-
line, although some are far better than others. The
feature that yields the best accuracy is Subreddits,
with 87% accuracy on the binary task, 82% on the
language family task and 74% on the NLI task.
We elaborate on this feature in Section 4.2 be-
low. As expected, the content based features yield
relatively high results when the evaluation is in-
domain. POS 3-grams and function words yield
reasonable results, but not as good as in other clas-
sification setups (e.g., Rabinovich et al. (2016)),
where the evaluation was done by shuffling texts
of various users. As we evaluate on chunks of
single users, the personal style of the user may
dominate the subtler signal of his or her native lan-
guage. Sentence length performs poorly, even on
the binary task. Our assumption was that the so-
cial network feature set will work well only for the
binary classification; this seems to be borne out by
the results.

4.2 Feature combination
We now set out to investigate different feature
combinations in both evaluation scenarios, aim-
ing to define feature types that yield the best in-
domain accuracy, as well as those that are most
robust and generalize well out-of-domain.

Table 2 depicts the results obtained by combin-
ing character trigrams, tokens, and spelling fea-
tures (Sections 3.5.1, 3.5.2). As expected, these
content features yield excellent results in-domain,
but the accuracy deteriorates out-of-domain, espe-
cially in the most challenging task of NLI.

Binary Families NLI
In-domain 91.07 83.51 70.26
Out-of-domain 81.49 65.37 35.99

Table 2: Results: content features

The content-independent features (Sec-
tion 3.5.3), whose contribution is depicted in
Table 3, indeed fare worse, but are seemingly
more robust outside the domain of training.

Binary Families NLI
In-domain 81.89 62.40 22.38
Out-of-domain 74.56 52.35 14.86

Table 3: Results: content-independent features

Table 4 shows the results obtained by combin-
ing the spelling features with the grammar features
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(Section 3.5.2). Clearly, these two feature types
reflect somewhat different phenomena, as the re-
sults are better than using any of the two alone.

Binary Families NLI
In-domain 72.93 55.59 26.74
Out-of-domain 70.24 47.23 14.15

Table 4: Results: grammar and spelling features

Table 5 shows the accuracy obtained by all the
centrality features (Section 3.5.4), excluding the
most popular subreddits. As expected, the contri-
bution of these features is small, and is most ev-
ident on the binary task. The signal of the native
language reflected by these features is very subtle,
but is nonetheless present, as the results are con-
sistently higher than the baseline.

Binary Families NLI
In-domain 57.92 32.39 5.75
Out-of-domain 56.29 30.70 5.60

Table 5: Results: centrality features

Finally, the contribution of the most popular
subreddits feature is shown in Table 6. The results
for this single feature type are superb, both in- and
out-of-domain. However, as this feature is unique
to the dataset used for the present work, it is hard
to see it generalized to similar tasks that use other
datasets, even in the context of UGC.

Binary Families NLI
In-domain 87.08 82.56 74.46
Out-of-domain 85.49 82.17 73.63

Table 6: Results: most popular subreddits

Therefore, we report the results obtained with
all features, with (Table 7) and without (Table 8)
the reddit-specific most popular subreddit feature.

Binary Families NLI
In-domain 93.40 90.41 86.05
Out-of-domain 87.19 83.43 78.99

Table 7: Results: all features

Binary Families NLI
In-domain 92.21 82.51 68.97
Out-of-domain 79.34 66.21 36.16

Table 8: Results: all features except subreddits

Summing up, we have shown that the challeng-
ing task of native language identification in the
context of user generated content, where English
texts are authored by highly competent nonnative
speakers with as many as 23 native languages,
can be accomplished with very high accuracy, as
high as 86% when evaluated in-domain, and al-
most 79% out-of-domain (Table 7). While these
results deteriorate when the specific characteris-
tics of our dataset are not taken advantage of, we
still obtain very high accuracy on the binary task
of distinguishing native from nonnative speakers,
and on the four-way task of identifying the lan-
guage family of the authors’ L1 (Table 8).

4.3 Dialect robustness
To assess the robustness of our results, especially
in the context of dialect identification, we repeated
the experiments in a special scenario: we trained
classifiers on all the data, but removed from the
English training set users from Ireland. Then, we
tested the classifiers only on users from Ireland.
We used all the features listed above, except the
subreddit feature.

The results are 59.09% accuracy in-domain,
compared with 69.21% in the standard scenario,
where users from Ireland are also used for train-
ing; and 37.51% out-of-domain, compared with
47.85% in the standard scenario. In both cases,
accuracy drops by 10 percent points. We conclude
that our method is reasonably robust to dialectal
variation, at least in the case of English varieties.

5 Analysis

We now set out to analyze some of the more inter-
esting features, both in terms of their contribution
to the accuracy of the classification and in terms
of what they reveal about the English of advanced
nonnative speakers.

5.1 Social network features
Subreddits This feature set works so well be-
cause many of the most popular subreddits in
which users post are culturally revealing. Specif-
ically, there is a significant presence in this list to
(subreddits focusing on) specific countries. Very
likely, most of the active users in those subreddits
reside in these countries, thereby revealing their
native language. This corroborates our hypothesis
that native users of the same language tend to be
active in mutual subreddits.

3597



Network structure Table 9 lists the average val-
ues of the centrality features, comparing native vs.
nonnative authors. The average values are higher
for native users than for the nonnative ones in all
of the centrality features, as we hypothesized. Ev-
idently, native speakers are more central in social
networks than nonnative ones.

Native nonnative
Avg std Avg std

Score 1349 2383 906 1886
# comments 147 173 92 112
# submissions 5 21 4 13
Comment karma 787 1260 529 837
Link karma 202 1012 141 580

Table 9: Centrality features: average values and stan-
dard deviation

5.2 Spelling
Edit Distance As expected, the average word
edit distance of native users (0.048) was signifi-
cantly lower compared to nonnative ones (0.071).

Substitutions Most revealing was the analysis
of substitutions suggested by the spell checker, as
they shed light on phonetic and orthographic influ-
ences of the authors’ L1 on their English. We list
below some of the most common spelling errors.

Vowels Replacing ‘e’ with ‘a’ was twice as
common among nonnative users than native ones.
Examples include ‘existance’, ‘independance’,
‘privillages’, and ‘apparantly’. Similarly, replac-
ing ‘y’ with ‘i’ was three times more common for
nonnatives: ‘synonims’, ‘analized’, etc. Replac-
ing ‘o’ with ‘a’ was common among nonnatives,
especially in the context of diphthongs: ‘enaugh’
instead of ‘enough’, or ‘cauntry’ for ‘country’.

Voicing Replacing ‘f’ with ‘v’ was com-
mon mostly among German speakers: ‘devense’,
‘bevore’, ‘sacrivice’, etc. Another error that was
relatively common in texts written by German
speakers is the replacement of ‘d’ with ‘t’ : ‘un-
terstand’, ‘canditate’, ‘upgradet’, ‘hundret’, etc.
Confusing ‘z’ with ‘s’ was very common across
all L1s, even for natives. Among native users this
reflects spelling variations between US and UK
English. Thus, the spell-checker marks the follow-
ing forms, i.a., in New Zealand English: ‘Organ-
isation’, ‘Recognise’, ‘Realise’, ‘Criticise’, etc.
Replacing ‘s’ with ‘z’ was not as common in the
dataset, and was present mostly in texts of French

users: ‘advertize’, ‘tablez’, and, most frequently,
‘surprize’.

Other substitutions Replacing ‘c’ with ‘k’
was almost four times more common with non-
natives; it was significantly more common among
Germanic and Balto-Slavic speakers, and much
less common among Romance speakers. Exam-
ples include ‘inspektor’, ‘klassik’, etc. Replacing
‘t’ with ‘c’ was common in words in which the
‘t’ is pronounced [S]: ‘negociate’, ‘nacional’. This
error was prevalent in texts of Spanish authors.

Insertions and deletions Insertion of ‘o’ was
common for all nonnative speakers, often when
the word contains one ‘o’ but the pronunciation is
[u], e.g., ‘proove’ instead of ‘prove’. Spurious oc-
currences of ‘e’ were also very common among all
nonnative users, especially authors whose L1 was
French: ‘governement’, ‘unemployement’, ‘ex-
plicitely’. Deletions of ‘e’ were also very com-
mon, especially in the context of words that end
with ‘ely’ : ‘definitly’, ‘completly’, ‘extremly’,
‘absolutly’, etc. Spurious instances of ‘u’ were
mostly present in texts of authors with Germanic
and Romance L1s, e.g.: ‘languague’, ‘percentu-
age’.

Wrong insertions of ‘l’ were very common, es-
pecially at the end of words that end with ‘l’ : ‘un-
till’, ‘controll’, ‘usefull’. Deletion of ‘l’ was com-
mon for all nonnative users, especially with Balto-
Slavic L1s. The most common context for this
error is words ending with ‘ally’ : ‘literaly’, ‘ac-
tualy’, ‘basicaly’, ‘illegaly’, ‘totaly’, ‘personaly’,
etc.

The most common deletion among nonnatives
was omission of the first ‘r’ in ‘surprise’, followed
by omitting the first ‘n’ in ‘government’.

5.3 Grammar
We list below some of the grammar rules whose
violations distinguish well between native and
nonnative speakers, using the original grammar
checker rule names. Unsurprisingly, several gram-
mar rules were violated much more (twice as fre-
quently) by nonnative users:

adverb word order wrong position of adverb,
e.g., ‘people sometimes will respond’ instead of
‘people will sometimes respond’.

cd nn agreement error of a numeral followed
by a singular count noun, e.g., ‘I have 5 book’.

this nns using ‘this’ instead of ‘these’ or vice
versa, e.g., ‘you don’t know what these symbol
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represent’.
did baseform using a tensed verb after ‘did’

or ‘didn’t’ : ‘the court didn’t gave him a fair trial’.
a uncountable an indefinite article before non-

count nouns: ‘smaller places have an access to...’.
fewer less confusing ‘fewer’ with ‘less’ :

‘with less possibilities’.
much countable using ‘much’ instead of

‘many’ : ‘no matter how much people’. This
error was much more common among nonnative
users, although, among native speakers, it was
significantly more common in texts written by
users from New-Zealand and Ireland than in texts
of other English speaking users.

en a vs an confusing ‘a’ with ‘an’ : ‘it pro-
vides a organized way to discuss’. This error
was very common among speakers of Germanic
and Romance languages, but less common among
speakers of Balto-slavic languages (presumably
due to the lack of articles in their L1s).

In contrast, some grammar rules were violated
more by native speakers:

possessive apostrophe omitting the apostro-
phe in possessive ‘’s’ : ‘they had 20% of the
worlds remittance’. This error was more than
twice as common in texts of natives.

try and the verb ‘try’ followed by ‘and’ ; this
is common in colloquial speech, but is prescrip-
tively wrong: ‘a candidate should try and repre-
sent’. This rule was violated over three times more
frequently by native speakers (but rarely in texts of
New-Zealand users).

their is ‘there’ and ‘their’ are commonly con-
fused; this rule spots such cases by the presence of
‘be’ : ‘their are a lot of’.

about its nn confusing ‘its’ and ‘it’s’ is com-
mon; this rule identifies wrong usage after a prepo-
sition: ‘lash out regularly towards it’s neighbors’.
This error was most common in texts of English
speakers from Australia, Ireland and the UK, but
not the US.

Summing up, it seems that nonnative speakers
make more grammatical errors, while the mistakes
of native speakers either stem from sloppy writing
style and lack of attention, or reflect style varia-
tions and casual style rather than actual errors.

6 Conclusion

We described a system that can accurately iden-
tify the native language of highly-advanced, fluent
nonnative authors as reflected in the social media

Reddit corpus. This is among the first studies to
perform NLI in the highly challenging scenario of
user generated content, particularly at such a large
scale. We showed that while content-dependent
features yield more accurate results, features that
abstract away from content tend to be more ro-
bust when tested out of the domain of training.
The in-depth analysis of spelling and grammar er-
rors demonstrates that mistakes made by nonna-
tive speakers reflect traces of their native language.
We also illuminated some of the social characteris-
tics of native and nonnative authors on social me-
dia outlets.

Our future plans include adaptation of the
trained models to additional corpora, e.g., user
generated content collected from Facebook and
Twitter. Furthermore, we plan to devise unsu-
pervised approaches to the identification of native
language with the same dataset. We would also
like to test the classifiers defined here in the more
challenging scenario of smaller text chunks (e.g.,
10–20 sentences rather than the 100-sentence text
chunks we used here). Finally, we are currently
experimenting with adversarial learning models
for this task.
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Preslav Nakov, Ahmed Ali, Jörg Tiedemann, Yves
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Abstract
Neural machine translation usually adopts au-
toregressive models and suffers from exposure
bias as well as the consequent error propaga-
tion problem. Many previous works have dis-
cussed the relationship between error propa-
gation and the accuracy drop (i.e., the left part
of the translated sentence is often better than
its right part in left-to-right decoding model-
s) problem. In this paper, we conduct a se-
ries of analyses to deeply understand this prob-
lem and get several interesting findings. (1)
The role of error propagation on accuracy drop
is overstated in the literature, although it in-
deed contributes to the accuracy drop prob-
lem. (2) Characteristics of a language play
a more important role in causing the accura-
cy drop: the left part of the translation result
in a right-branching language (e.g., English) is
more likely to be more accurate than its right
part, while the right part is more accurate for a
left-branching language (e.g., Japanese). Our
discoveries are confirmed on different mod-
el structures including Transformer and RNN,
and in other sequence generation tasks such as
text summarization.

1 Introduction

Neural machine translation (NMT) has attracted
much research attention in recent years (Bahdanau
et al., 2014; Shen et al., 2018; Song et al., 2018; X-
ia et al., 2018; He et al., 2016; Wu et al., 2017,
2018). The major approach to the task typical-
ly leverages an encoder-decoder framework (Cho
et al., 2014; Sutskever et al., 2014) and the de-
coder usually generates the target tokens one by
one from left to right autoregressively, in which
the generation of a target token is conditioned on
previously generated target tokens.

It has been observed that for an NMT model
with left-to-right decoding, the right part words in

⇤Authors contribute equally to this work.

its translation results are usually worse than the
left part words in terms of accuracy (Zhang et al.,
2018; Bengio et al., 2015; Ranzato et al., 2015;
Hassan et al., 2018; Liu et al., 2016b,a). This phe-
nomenon is referred to as accuracy drop in this
paper. A straightforward explanation to accura-
cy drop is error propagation: If a word is mistak-
enly predicted during inference, the error will be
propagated and the future words conditioned on
this one will be impacted. Different methods have
been proposed to address the problem of accuracy
drop (Liu et al., 2016a,b; Hassan et al., 2018).

Instead of solving the problem, in this paper, we
aim to deeply understand the causes of the prob-
lem. In particular, we want to answer the follow-
ing two questions:

• Is error propagation the main cause of accu-
racy drop?

• Are there any other causes leading to accura-
cy drop?

To answer these two questions, we conduct a
series of experiments to analyze the problem.

First, we train NMT models separately using
left-to-right and right-to-left decoding (Sennrich
et al., 2016; Liu et al., 2016b; He et al., 2017;
Gao et al., 2018) on several language pairs (i.e.,
German to English, English to German, and En-
glish to Chinese). If error propagation is the main
cause of accuracy drop, then the right part word-
s in the translation results generated by right-to-
left NMT models should be more accurate than
the left part words. However, we observe the op-
posite phenomenon that the accuracy of the right
part words of the translated sentences in both left-
to-right and right-to-left models is lower than that
of the left part, which contradicts with error prop-
agation. This shows that error propagation alone
cannot well explain the accuracy drop and even
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suggests that error propagation may not exist or
matter.

Second, to further investigate the influence of
error propagation on accuracy drop, we conduct a
set of experiments with teacher forcing (Williams
and Zipser, 1989) during inference, in which we
feed the ground-truth preceding words to predict
the next target word. Teacher forcing eliminates
exposure bias as well as error propagation in in-
ference. The results verify the existence of error
propagation, since the later part (the right part in
left-to-right decoding and the left part in right-to-
left decoding) of the translation results get more
accuracy improvement with teacher forcing, re-
gardless of the decoding direction. Meanwhile,
the accuracy of the right part is still lower than that
of the left part with teacher forcing, which demon-
strates that there must be some other causes apart
from error propagation leading to accuracy drop.

Third, inspired by linguistics, we find that the
concept of branching (Berg et al., 2011; Payne,
2006) can help to explain the problem. We con-
duct the third set of experiments to study the cor-
relation between language branching and accura-
cy drop. We find that if a target language is right
branching such as English, the accuracy of the left
part words is usually higher than that of the right
part words, no matter for left-to-right or right-to-
left NMT models, while for a left-branching target
language such as Japanese, the accuracy of the left
part words is usually lower than that of the right
part, no matter for which models. The intuitive
explanation is that a right-branching language has
a clearer structure pattern (easier to predict) in the
left part of sentence than that in the right part, s-
ince the main subject of the sentence is usually
put in the left part. We calculate two statistics to
verify this assumption: n-gram statistics (includ-
ing n-gram frequency and conditional probabili-
ties) and dependency parsing statistics. For right-
branching languages, we found higher n-gram fre-
quency/conditional probabilities as well as more
dependencies in the left part compared with that in
the right part. The opposite results are also found
in left-branching languages.

We summarize our findings as follows.

• Through empirical analyses, we find that the
influence of error propagation is overstated
in the literature, which may misguide the fu-
ture research. Error propagation alone cannot
fully explain the accuracy drop in the left or

right part of sentence.

• We find the branching in linguistics well cor-
relates with accuracy drop in the left or right
part of sentence and the corresponding analy-
sis on n-gram and dependency parsing statis-
tics well explain this phenomenon.

Our studies show that linguistics can be very
helpful to understand existing machine learning
models and build better models for language re-
lated tasks. We hope that our work can bring some
insights to the research on neural machine trans-
lation. We believe that our findings can help us
to design better translation models. For example,
the finding on language branching suggests us to
use left-to-right NMT models for right-branching
languages such as English and right-to-right N-
MT models for left-branching languages such as
Japanese.

2 Related Work

2.1 Exposure Bias and Error Propagation
Exposure bias and error propagation are two d-
ifferent concepts but often mentioned together in
literature (Bengio et al., 2015; Shen et al., 2016;
Ranzato et al., 2015; Liu et al., 2016b,a; Zhang
et al., 2018; Hassan et al., 2018). Exposure bias
refers to the fact that the sequence generation mod-
el is usually trained with teacher-forcing while
generates the sequence autoaggressviely during
inference. This discrepancy between training and
inference can yield errors that accumulate quickly
along the generated sequence, which is known as
error propagation (Bengio et al., 2015; Shen et al.,
2016; Ranzato et al., 2015).

Bengio et al. (2015) propose the sched-
uled sampling method to eliminate the exposure
bias and the resulting error propagation, which
achieves promising performance on sequence gen-
eration tasks such as image captioning. Shen et al.
(2016); Ranzato et al. (2015) improve the basic
maximum likelihood estimation (MLE) with rein-
forcement learning or minimum risk training and
aim to address the limitation of MLE training and
exposure bias problem.

2.2 Tackling Accuracy Drop
(Liu et al., 2016b,a; Zhang et al., 2018; Hassan

et al., 2018) mainly ascribe accuracy drop (the ac-
curacy of right part words is worse than that in the
left part in most cases) to error propagation and
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propose different methods to solve this problem.
Liu et al. (2016b,a); Hassan et al. (2018) use a-
greement regularization between the left-to-right
and right-to-left models to achieve better perfor-
mance. Zhang et al. (2018) and (Hassan et al.,
2018) propose to use two-pass decoding to refine
the generated sequence to yield better quality.

All these works focus on error propagation and
accuracy drop. To our knowledge, there is no deep
study about other causes of accuracy drop. In this
paper, we aim to conduct such a study. Our study
shows that accuracy drop is not only caused by er-
ror propagation, but also the characteristics of lan-
guage itself.

3 Error Propagation and Accuracy Drop

3.1 Error Propagation is Not the Only Cause
A left-to-right NMT model feeds target tokens one
by one from left to right in training and generate
target tokens one by one from left to right during
inference, while a right-to-left NMT model trains
and generates token in the reverse direction. Intu-
itively, if error propagation is the root cause of ac-
curacy drop, then a right-to-left NMT model will
generate translations with better right half accura-
cy than the left half. In this section, we study the
results of both left-to-right and right-to-left NMT
models to analyze the relationship between error
propagation and accuracy drop.

We conduct experiments on three translation
tasks with different language pairs, which include:
IWSLT 2014 German-English (De-En), WMT
2014 English-German (En-De) and WMT 2017
English-Chinese (En-Zh). We choose the state-of-
the-art NMT model Transformer (Vaswani et al.,
2017) as the basic model structure and train t-
wo separate models with left-to-right and right-to-
left decoding on each language pair. More details
about the datasets and model descriptions can be
found in supplementary materials (section A.1 and
A.2). We evenly split each generated sentence into
the left half and the right half with same number of
words1. Then for both the left and right half, we
compute their accuracy with respect to the refer-
ence target sentence, in terms of BLEU score (Pa-

11) For most of the sentences, the last word of the sen-
tence is period which is easy to decode. To make a fair com-
parison, we simply remove the last period before dividing the
translation sentence. 2) For sentence with an odd number of
words, we simply remove the word in the middle position to
make the left half and right half have the same number of
words.

De-En En-De En-Zh

left-to-right 31.42 26.93 20.79
right-to-left 30.00 25.35 20.23

Table 1: BLEU scores on the test set of the three trans-
lation tasks with both left-to-right and right-to-left de-
coding.

left-to-right De-En En-De En-Zh

Left 10.17 7.90 7.41
Right 8.39 6.60 5.91

right-to-left De-En En-De En-Zh

Right 7.83 6.45 5.77
Left 9.41 7.11 7.01

Table 2: BLEU scores of the left and right half of left-
to-right and right-to-left NMT models. In (Liu et al.,
2016a), the authors report the partial BLEU score with-
out length penalty, our result is consistent with partial
BLEU if simply removing length penalty when calcu-
lating BLEU.

pineni et al., 2002) 2.
We first report the BLEU scores of the ful-

l translation results (without split) in Table 1. As
can be seen, the accuracy of the model is compara-
ble to state-of-the-art results (Vaswani et al., 2017;
Wang et al., 2017, 2018). Afterwards we report the
BLEU scores of the left half and the right half in
Table 2. We have several observations.

• When translating from left-to-right, the
BLEU score of the left half is higher than the
right half on all the three tasks, which is con-
sistent with previous observation and is able
to be explained via error propagation.

• When translating from right-to-left, the accu-
racy of the left half (in this way it’s the later
part of the generated sentence) is still high-
er than the right half. Such an observation
is contradictory to the previous analyses be-
tween error propagation and accuracy drop,
which regard that accumulated error brought
by exposure bias will deteriorate the quality
in later part of translation (i.e., the left half).

The inconsistent observation above suggests
that error propagation is not the only cause of ac-
curacy drop that there are other factors beyond er-

2We use the multi-bleu.perl script https:
//github.com/moses-smt/mosesdecoder/
scripts/generic/multi-bleu.perl. When com-
puting BLEU score of the left or right half, the reference is
the full reference sentence.
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De-En
left-to-right right-to-left

0 1 � 0 1 �

Left 10.17 10.71 0.54 9.41 10.41 1.00
Right 8.39 9.25 0.86 7.83 8.45 0.62

En-De
left-to-right right-to-left

0 1 � 0 1 �

Left 7.90 9.43 1.53 7.11 10.71 3.60
Right 6.60 8.36 1.76 6.45 8.37 1.92

En-Zh
left-to-right right-to-left

0 1 � 0 1 �

Left 7.41 9.11 1.70 7.01 9.83 2.82
Right 5.91 8.55 2.64 5.77 7.54 1.77

Table 3: BLEU scores. ”0” represents the translation
results without teacher forcing during inference, and
”1” represents the translation results with teacher forc-
ing during inference. � represents the BLEU score im-
provement of teacher forcing over normal translation.

ror propagation for accuracy drop. It even chal-
lenges the existence of error propagation: does er-
ror propagation really exist? In the next section we
try to answer this question through teacher forcing
experiments.

3.2 The Influence of Error Propagation
Teacher forcing (Williams and Zipser, 1989) in
sequence generation means that when training a
sequence generation model, we feed the previous
ground-truth tokens as inputs to predict the next
target word. Here we apply teacher forcing in the
inference phase of NMT: to generate the next word
ŷi, we input the preceding ground-truth words y<i

rather than the previously generated words ŷ<i,
which largely alleviates the effect of error prop-
agation, since there will be no error propagated
from the previously generated words.

Same as last section, we evaluate the quality
of the left and right half of the translation result-
s generated by both the left-to-right and right-to-
left models. The results are summarized in Table
3. For comparison, we also include the BLEU s-
cores of normal translation (without teacher forc-
ing). We have several findings from Table 3 as
follows:

• Exposure bias exists. The accuracy of both
left and right half tokens in the normal trans-
lation is lower than that in teacher forcing,
which feeds the ground-truth tokens as input-
s. This demonstrates that feeding the previ-
ously generated tokens (which might be in-

correct) in inference indeed hurts translation
accuracy.

• Error propagation does exist. We find the er-
ror is accumulated along the sequential gen-
eration of the sentence. Taking En-Zh and the
left-to-right NMT model as an example, the
BLEU score improvement of the right half
(the second half of the generation) of teach-
er forcing over normal translation is 2.64,
which is much larger than the accuracy im-
provement of the left half (the first half of the
generation): 1.70. Similarly, for En-Zh with
the right-to-left NMT model, the BLEU score
improvement of the left half (the second half
of the generation) of teacher forcing over nor-
mal translation is 2.82, which is much larger
than the accuracy improvement of the right
half (the first half of the generation): 1.77.

• Other causes exist. Taking En-De translation
with the left-to-right model as an example,
the accuracy of the left half (9.43) is higher
than that of the right half (8.36) when there
is no error propagation with teacher forcing.
Similar results can be found in other language
pairs and models. This suggests that there
must be some other causes leading to accu-
racy drop, which will be studied in the next
section.

4 Language Branching Matters

Section 3.1 and 3.2 together show that error propa-
gation has influence on but is not the only cause of
accuracy drop. We hypothesize that the language
itself, i.e., its characteristics, may explain the phe-
nomenon of accuracy drop.

Watanabe and Sumita (2002) finds that left-
to-right decoding performs better for Japanese-
English translation while right-to-left decoding
performs better for English-Japanese translation.
We conduct the same analysis settings as in Sec-
tion 3.1 and 3.2 on English-Japanese (En-Jp)
translation dataset. More details about this dataset
and model descriptions can be found in supple-
mentary materials (section A.1 and A.2).

Table 4 shows the BLEU score on the En-Jp test
set. It can be observed that regardless of decoding
direction (i.e., from left-to-right or from right-to-
left) and with or without teacher forcing, the ac-
curacy of the right half is always higher than that
in the left half. This observation on Japanese is
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left-to-right right-to-left
0 1 0 1

left 7.90 9.91 7.45 8.95
right 8.70 11.52 9.24 10.59

Table 4: BLEU scores on En-Jp test set. ”0” represents
the normal translation results, and ”1” represents the
teacher-forcing translation results.

opposite to English, German and Chinese in Sec-
tion 3.1 and 3.2, and motivates us to investigate the
differences between these languages.

We find that a linguistics concept, the branch-
ing, can differentiate Japanese from other lan-
guages such as English/German. Branching refer-
s to the shape of the parse trees that represen-
t the structure of sentences (Berg et al., 2011;
Payne, 2006). Usually, right-branching sentences
are head-initial, which means the main subject of
the sentence is described first, and is followed by
a sequence of modifiers that provide additional
information about the subject. On the contrary,
left-branching sentences are head-final that putting
such modifiers to the left of the sentence (Payne,
2006).

English is a typical right-branching lan-
guage, while Japanese is almost fully left-
branching (Wikipedia, 2018). The two languages
demonstrate the opposite phenomenon of accuracy
drop as shown in previous studies. When we say a
language is typical left/right-branching, we mean
most of the sentences in this language follows the
left/right-branching structure. While being pre-
dominantly right-branching, German is less con-
clusively so than English. Chinese features a mix-
ture of head-final and head-initial structures, with
the noun phrases are head-final while the stric-
t head/complement ordering sentences are head-
initial as right-branching (Wikipedia, 2018), but
less conclusively than German.

We believe the language branching is a main
cause of accuracy drop. Intuitively, the main sub-
ject of a right-branching sentence is described first
(in the left part) and is followed by additional
modifiers (in the right part) (Berg et al., 2011).
Therefore, the left half of a right-branching sen-
tence is more likely to possess a clearer structure
pattern and thus lead to higher generation accura-
cy than in the right part, since the main subject is
usually simpler and clearer than the modifiers that
providing additional information about the subjec-

t. In next section, we will verify this intuition this
assumption from a statistical perspective.

5 Correlation between Language
Branching and Accuracy Drop

As previous work (Arpit et al., 2017) shows, neu-
ral networks are easy to learn and memorize sim-
ple patterns but difficult to make a correct pre-
diction on noise examples. In this section, we s-
tudy different branching languages from two as-
pects, including the n-gram statistics of a target
language, which has been used as a kind of char-
acterization of hardness of learning (Bengio et al.,
2009), and the dependency statistics in parse trees.
We show that these statistics well correlate with
the accuracy drop between the left half and the
right half of translation results.

5.1 N-gram Statistics

Intuitively speaking, if a pattern occurs frequent-
ly and deterministically, it is easy to be learned by
neural networks. By comparing the general statis-
tics on the n-gram frequency and n-gram condi-
tional probability of the left and right half tokens,
we link the language branching to accuracy drop.

Denote a bilingual dataset D = {(xi, yi}, i =
1, · · · , M , where each yi is a sequence of words
yi = {y1

i , · · · , yTi
i }, Ti is the length of yi. F l

i,n

and P l
i,n denote the average n-gram frequency and

n-gram conditional probability of the left half of
yi

3, i.e.,

F l
i,n =

1
Ti/2 � n + 1

Ti/2�n+1X

j=1

F (yj
i , ..., y

j+n�1
i ),

P l
i,n =

1
Ti/2 � n + 1

Ti/2�n+1X

j=1

P (yj+n�1
i |yj

i , ..., y
j+n�2
i ),

(1)
where F (.) and P (.) are the n-gram frequen-
cy and n-gram conditional probability calculated
from the training dataset. Similarly, F r

i,n and P r
i,n

denote the n-gram frequency and n-gram condi-
tional probability of the right half.

We calculate the average n-gram frequencies F l
n

and F r
n of the left half and right half over all the

target sentences in the training set. We also calcu-
late the average n-gram conditional probabilities
P l

n and P r
n over all the training sentences to com-

pare the uncertainty of phrases in the left half and

3Again, we assume Ti is an even number. If not, we sim-
ply remove the middle word of yi, as done in Section 3.1.
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right half.

F l
n =

1
M

MX

i=1

F l
i,n, F r

n =
1
M

MX

i=1

F r
i,n,

P l
n =

1
M

MX

i=1

P l
i,n, P r

n =
1
M

MX

i=1

P r
i,n.

(2)

We also calculate the ratio of the sentences that
the frequency/conditional probability of left half is
bigger/smaller than that in the right half, denoted
as RF l>r

n /RF l<r
n and RP l>r

n /RP l<r
n :

RF l>r
n =

1
M

MX

i=1

{F l
i,n > F r

i,n},

RF l<r
n =

1
M

MX

i=1

{F l
i,n < F r

i,n},

RP l>r
n =

1
M

MX

i=1

{P l
i,n > P r

i,n},

RP l<r
n =

1
M

MX

i=1

{P l
i,n < P r

i,n}.

(3)

We choose n = 2 and 3 to calculate the met-
rics in Equation 2 and 3 on different translation
datasets. The numbers are listed in Table 5 and 6.

We can see the 2/3-gram frequency as well as
the conditional probability of the left half is high-
er than that of the right half for right-branching
languages including English, German and Chinese
in De-En, En-De and En-Zh translation dataset-
s. For left-branching language Japanese, the re-
sult is opposite. The n-gram frequency and con-
ditional probability statistics are consistent with
our observations on accuracy drop in left/right-
branching languages and verify our hypothesis:
right-branching languages have clearer patterns in
left part (with larger n-gram frequency as well
as the conditional probability) and consequently
leads to higher translation accuracy in the left part
than the right part; left-branching languages are
opposite.

We further visualize how the accuracy drop (be-
tween the left half and right half of the translation-
s) correlates with the gap of n-gram statistics in the
left and right part. The accuracy drop (e.g., BLEU
score) of left/right half is taken from the teacher-
forcing with left-to-right decoding in Table 3, and
the n-gram gap is taken from the � in the last row
of Table 5 and 6. Figure 1 shows strong correla-
tion between accuracy drop and the gap of n-gram
statistics: As the gap of n-gram statistics increases
from negative values to positive values, the accu-
racy drop also increases from negative to positive.

De-En En-De
2-gram 3-gram 2-gram 3-gram

F l
n 5713.8 3122.7 13811.8 687.1

F r
n 3026.5 1377.6 11692.2 419.9

RF l>r
n 59.6% 55.8% 53.8% 53.6%

RF l<r
n 38.8% 37.6% 46.0% 45.0%

� 20.8% 18.2% 7.8% 8.6%

En-Zh En-Jp
2-gram 3-gram 2-gram 3-gram

F l
n 17707.0 1954.1 18910.0 1350.0

F r
n 16256.4 1250.5 21076.7 1754.0

RF l>r
n 51.9% 50.2% 41.2% 38.0%

RF l<r
n 46.7% 43.9% 51.7% 52.3%

� 5.2% 6.3% -10.5% -14.3%

Table 5: The n-gram frequency statistics on differen-
t translation datasets. F l

n and F r
n represent the aver-

age of n-gram frequency of left and right half of tar-
get sentences. RF l>r

n and RF l<r
n represent the ra-

tio that the n-gram frequency of left half of sentences
are bigger/smaller than that of the right half. � =
RF l>r

n � RF l<r
n . Note that the sum of RF l>r

n and
RF l<r

n is less than 1 since sentence with less than 4
words does not contribute to the n-gram statistics.

De-En En-De
2-gram 3-gram 2-gram 3-gram

P l
n 0.137 0.181 0.082 0.155

P r
n 0.092 0.116 0.080 0.148

RP l>r
n 59.8% 56.6% 50.6% 51.7%

RP l<r
n 38.7% 36.4% 49.2% 47.0%

� 21.2% 20.2% 1.4% 4.7%

En-Zh En-Jp
2-gram 3-gram 2-gram 3-gram

P l
n 0.064 0.113 0.082 0.171

P r
n 0.055 0.108 0.086 0.191

RP l>r
n 52.1% 47.8% 43.9% 39.4%

RP l<r
n 46.6% 47.0% 49.2% 50.9%

� 5.5% 0.8% -5.3% -11.5%

Table 6: The n-gram conditional probability statistic-
s on different translation datasets. P l

n and P r
n rep-

resent the average n-gram conditional probability of
left and right half of target sentences. RP l>r

n and
RP l<r

n represent the ratio that the n-gram frequency
of left half are bigger/smaller than that of the right half.
� = RP l>r

n �RP l<r
n . Note that the sum of RP l>r

n and
RP l<r

n is less than 1 due to two reasons: (1) sentence
with less than 4 words does not contribute to the statis-
tics, and (2) we remove the n-gram condition probabil-
ity with the denominator less than 100 to make proba-
bility calculation robust.
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(a) Accuracy drop v.s 3-gram frequency gap (%). (b) Accuracy drop v.s 3-gram conditional probability gap (%).

Figure 1: Accuracy drop (the gap between the left/right BLEU score) with respect to the �RF3 and �RP3 from
Table 5 and 6 in the four translation tasks. The x-axis �RF3 and �RP3 represent the gap of between the left
and right ratio of the 3-gram frequency/conditional probability defined in Table 5 and 6. The y-axis represents the
accuracy drop in terms of BLEU score calculated by the teacher forcing decoding.

5.2 Dependency Statistics

In this subsection, we study language branch-
ing from the perspective of dependency struc-
ture. We hypothesize that if the left/right half of
sentence contains more dependencies between it-
s intra words, this half should be easier to pre-
dict, leading to higher accuracy. Here we ana-
lyze the English sentence in De-En translation and
Japanese sentence in En-Jp translation, since En-
glish is fully right-branching and Japanese is fully
left-branching as introduced before.

For English parsing, we utilize the well-
acknowledged Standford Parser4 to parse the sen-
tences. After obtaining the parsing results, we split
the sentence into left and right half, and separately
count the numbers of dependencies in each half5.
For Japanese, we leverage the open-source toolkit
J.DepP6 to parse the sentence, and then count the
number of dependencies of each half.

We provide the results in Table 7. As can be ob-
served, for English sentences, the left-half word-
s depend more on each other than the right-half
words, while for the Japanese sentences, the right-
half words have more dependencies. This obser-
vation is consistent with our observations on accu-

4https://nlp.stanford.edu/software/
lex-parser.shtml

5For simplicity, we just count the number of dependency,
without considering dependency types. The detailed parsing
formats can be found in the supplementary material (Section
A.3).

6http://www.tkl.iis.u-tokyo.ac.jp/
˜ynaga/jdepp/

English Japanese
Left 40242 921735

Right 31509 1570630

Table 7: Number of dependencies in left and right half
of English (De-En) and Japanese (En-Jp) training cor-
pus. The number varies a lot since the two training
corpus have different training sentences.

racy drop, and can well explain the high accuracy
of left part in English translation and right part in
Japanese translation.

6 Extended Analyses and Discussions

We have analyzed the accuracy drop problem from
the view of error propagation and language itself
in previous sections. In this section, we further
provide extended analyses and several discussions
to give a more clear understanding of the accuracy
drop problem.

6.1 More Languages on Left-Branching
The previous analyses are based on four lan-
guages, three right-branching (En, De, Zh) and
one left-branching language (Jp). To avoid the
experimental bias and randomness, we provide
one more translation task, English-Turkish (En-
Tr) translation7, as Turkish is a left-branching lan-
guage. We simply calculate the BLEU score of
the left/right half in left-to-right and right-to-left

7The detailed dataset and model description can be found
in supplementary material (section A.1 and section A.2).
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0 1

Left 5.83 7.44
Right 5.27 7.96

Table 8: BLEU scores on En-Tr test set with left-to-
right generation. Normal translation is denoted as “0”,
and teacher-forcing translation is denoted as “1”.

left-to-right right-to-left

Full 27.63 25.44

Left 9.17 8.37
Right 7.51 7.25

Table 9: BLEU scores on the left-to-right and right-
to-left translation sentences on the De-En test set, with
RNN-based model. “Full” means the BLEU score of
the whole translation sentence.

decodings, as in Section 3.1 and 3.2.
The result is provided in Table 8. For the left-

to-right decoding, the accuracy of the left half is
higher than that of the right half in the normal
translation. However, the accuracy of the right half
becomes higher with teacher forcing translation.
This demonstrates that English-Turkish translation
performs similar to English-Japanese translation
as the accuracy of right half is higher than that
of the left half. But different from what we ob-
served in Japanese, Turkish shows the opposite
phenomenon: the influence of language branching
is weaker than error propagation.

6.2 Other Model Structures
One may wonder whether the results in the pa-
per are biased towards a certain model structure
as we use Transformer on all the above analyses.
To address such concerns, we conduct an addition-
al experiment on De-En translation task with RN-
N (GRU)-based model8. The results are shown in
Table 9 and the observations are consistent with
what we observed on Transformer. The accuracy
of the left half of the De-En translation sentence is
always higher than the right half, in both the left-
to-right and right-to-left decodings.

6.3 Other Sequence Generation Tasks
We conduct experimental analysis on abstractive
summarization, which is also a sequence genera-
tion task. The goal of the task is to recap a long
news sentence into a short summary. We use Giga-
word dataset which contains 3.8M training pairs,

8The detailed setting for GRU based RNN model can be
found in supplementary material (section A.2).

left-to-right
ROUGE-1 ROUGE-2 ROUGE-L

Full 35.55 16.66 33.01

Left 24.44 9.87 23.34
Right 21.31 8.32 20.38

right-to-left
ROUGE-1 ROUGE-2 ROUGE-L

Full 35.22 16.55 32.59

Right 21.62 8.41 20.48
Left 23.60 9.54 22.52

Table 10: ROUGE F1 scores for left-to-right and right-
to-left generated translation sentences in abstractive
summarization task. ROUGE-N stands for N-gram
based ROUGE F1 score, ROUGE-L stands for longest
common subsequence based ROUGE F1 score. “Full”
means the entire translation sentence.

190k validation and 2k test pairs of English sen-
tence, and train an RNN-based model for sentence
summarization. The accuracy is measured by the
commonly used metric ROUGE F1 score and are
reported in Table 10.

We observe the same phenomenon as in transla-
tion tasks. The accuracy of the left half is always
better than the right half, no matter in left-to-right
or right-to-left decoding, since the target language
English is a right-branching language.

7 Conclusion

In this work, we studied the problem of accura-
cy drop between the left half and the right half of
the results generated by neural machine translation
models. We found the influence of error propa-
gation is overstated in literature and error prop-
agation alone cannot explain accuracy drop. We
showed that language branching well correlates to
the accuracy drop problem and the evidences on
n-gram statistics as well as the dependency statis-
tics well support this correlation. Our discover-
ies suggest that left-to-right NMT models fit bet-
ter for right-branching languages (e.g., English)
and right-to-left NMT models fit better for left-
branching languages (e.g., Japanese).

For future works, we will study more left/right-
branching languages as well as other languages
that have no obvious branching characteristics.
We will also investigate how language branching
influences other natural language tasks, especially
for neural networks based models.
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Abstract

Recent studies have shown that reinforcemen-
t learning (RL) is an effective approach for
improving the performance of neural machine
translation (NMT) system. However, due
to its instability, successfully RL training is
challenging, especially in real-world systems
where deep models and large datasets are lever-
aged. In this paper, taking several large-scale
translation tasks as testbeds, we conduct a sys-
tematic study on how to train better NMT mod-
els using reinforcement learning. We provide
a comprehensive comparison of several impor-
tant factors (e.g., baseline reward, reward shap-
ing) in RL training. Furthermore, to fill in the
gap that it remains unclear whether RL is still
beneficial when monolingual data is used, we
propose a new method to leverage RL to fur-
ther boost the performance of NMT system-
s trained with source/target monolingual da-
ta. By integrating all our findings, we obtain
competitive results on WMT14 English- Ger-
man, WMT17 English-Chinese, and WMT17
Chinese-English translation tasks, especial-
ly setting a state-of-the-art performance on
WMT17 Chinese-English translation task.

1 Introduction

Recently, neural machine translation (NMT) (Bah-
danau et al., 2015; Hassan et al., 2018; Wu et al.,
2016; He et al., 2017; Xia et al., 2016, 2017; Wu
et al., 2018b,a) has become more and more popular
given its superior performance without the demand
of heavily hand-crafted engineering efforts. It is
usually trained to maximize the likelihood of each
token in the target sentence, by taking the source
sentence and the preceding (ground-truth) target
tokens as inputs. Such training approach is referred
as maximum likelihood estimation (MLE) (Scholz,
1985). Although easy to implement, the token-level

⇤This work was conducted at Microsoft Research Asia.

objective function during training is inconsisten-
t with sequence-level evaluation metrics such as
BLEU (Papineni et al., 2002).

To address the inconsistency issue, reinforce-
ment learning (RL) methods have been adopted to
optimize sequence-level objectives. For example,
policy optimization methods such as REINFORCE
(Ranzato et al., 2016; Wu et al., 2017b) and actor-
critic (Bahdanau et al., 2017) are leveraged for
sequence generation tasks including NMT. In ma-
chine translation community, a similar method is
proposed with the name ‘minimum risk training’
(Shen et al., 2016). All these works demonstrate
the effectiveness of RL techniques for NMT mod-
els (Wu et al., 2016).

However, effectively applying RL to real-world
NMT systems has not been fulfilled by previous
works. First, most of, if not all, previous works
verified their methods based on shallow recurrent
neural network (RNN) models. However, to obtain
state-of-the-art (SOTA) performance, it is essential
to leverage recently derived deep models (Gehring
et al., 2017; Vaswani et al., 2017), which are much
more powerful.

Second, it is not easy to make RL practically ef-
fective given quite a few widely acknowledged lim-
itations of RL method (Henderson et al., 2018) such
as high variance of gradient estimation (Weaver and
Tao, 2001), and objective instability (Mnih et al.,
2013). Therefore, several tricks are proposed in
previous works. However, it remains unclear, and
no agreement is achieved on how to use these tricks
in machine translation. For example, baseline re-
ward method (Weaver and Tao, 2001) is suggested
in (Ranzato et al., 2016; Nguyen et al., 2017; Wu
et al., 2016) but not leveraged in (He and Deng,
2012; Shen et al., 2016).

Third, large-scale datasets, especially monolin-
gual datasets are shown to significantly improve
translation quality (Sennrich et al., 2015a; Xia et al.,
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2016) with MLE training, while it remains nearly
empty on how to combine RL with monolingual
data in NMT.

In this paper, we try to fulfill these gaps and s-
tudy how to practically apply RL to obtain strong
NMT systems with quite competitive, even state-
of-the-art performance. Several comprehensive s-
tudies are conducted on different aspects of RL
training to figure out how to: 1) set efficient re-
wards; 2) combine MLE and RL objectives with
different weights, which aims to stabilize the train-
ing procedure; 3) reduce the variance of gradient
estimation.

In addition, given the effectiveness of leveraging
monolingual data in improving translation quali-
ty, we further propose a new method to combine
the strength of both RL training and source/target
monolingual data. To the best of our knowledge,
this is the first work that tries to explore the power
of monolingual data when training NMT model
with RL method.

We obtain some useful findings through the ex-
periments on WMT17 Chinese-English (Zh-En),
WMT17 English-Chinese (En-Zh) and WMT14
English-German (En-De) translation tasks. For in-
stance, multinomial sampling is better than beam
search in reward computation, and the combination
of RL and monolingual data significantly enhances
the NMT model performance. Our main contribu-
tions are summarized as follows.

• We provide the first comprehensive study on
different aspects of RL training, such as how
to setup reward and baseline reward, on top of
quite competitive NMT models.

• We propose a new method that effectively
leverages large-scale monolingual data, from
both the source and target side, when training
NMT models with RL.

• Combined with several of our findings and
method, we obtain the SOTA translation quali-
ty on WMT17 Zh-En translation task, surpass-
ing strong baseline (Transformer big model +
back translation) by nearly 1.5 BLEU points.
Furthermore, on WMT14 En-De and WMT17
En-Zh translation tasks, we can also obtain
strong competitive results.

We hope that our studies and findings will ben-
efit the community to better understand and lever-
age reinforcement learning for developing strong

NMT models, especially in real-world scenarios
faced with deep models and large amount of train-
ing data (including both parallel and monolin-
gual data). Towards this end, we open source all
our codes/dataset at https://github.com/
apeterswu/RL4NMT to provide a clear recipe
for performance reproduction.

2 Background

In this section, we first introduce the attention-
based sequence-to-sequence learning framework
for neural machine translation (NMT), and then
introduce the basis of applying reinforcement learn-
ing to training NMT models.

2.1 Neural Machine Translation
Typical NMT models are based on the encoder-
decoder framework with attention mechanism.
The encoder first maps a source sentence x =
(x1, x2, ..., xn) to a set of continuous represen-
tations z = (z1, z2, ..., zn). Given z, the de-
coder then generates a target sentence y =
(y1, y2, ..., ym) of word tokens one by one. At each
decoding step t of model training, the probability
of generating a token yt is maximized conditioned
on x and y<t = (y1, ..., yt�1). Given N training
sentence pairs {xi, yi}N

i=1, maximum likelihood es-
timation (MLE) is usually adopted to optimize the
model, and the training objective is defined as:

Lmle =
NX

i=1

log p(yi|xi)

=
NX

i=1

mX

t=1

log p(yi
t|yi

1, ..., y
i
t�1, x

i),

(1)

where m is the length of sentence yi.
Among all the encoder-decoder models, the re-

cently proposed Transformer (Vaswani et al., 2017)
architecture achieves the best translation quality so
far. The main difference between Transformer and
previous RNNSearch (Bahdanau et al., 2015) or
ConvS2S (Gehring et al., 2017) is that Transformer
relies entirely on self-attention (Lin et al., 2017) to
compute representations of source and target side
sentences, without using recurrent or convolutional
operations.

2.2 Training NMT with Reinforcement
Learning

As aforementioned, reinforcement learning (RL) is
leveraged to bridge the gap between training and
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inference of NMT, by directly optimizing the e-
valuation measure (e.g., BLEU) at training time.
Specifically, NMT model can be viewed as an a-
gent, which interacts with the environment (the pre-
vious words y<t and the context vector z available
at each step t). The parameters of the agent define
a policy, i.e., a conditional probability p(yt|x, y<t).
The agent will pick an action , i.e., a candidate
word out from the vocabulary, according to the pol-
icy. A terminal reward is observed once the agent
generates a complete sequence ŷ. The reward for
machine translation is the BLEU (Papineni et al.,
2002) score, denoted as R(ŷ, y), which is defined
by comparing the generated ŷ with the ground-truth
sentence y. Note that here the reward R(ŷ, y) is
the sentence-level reward, i.e., a scalar for each
complete sentence ŷ. The goal of the RL training
is to maximize the expected reward:

Lrl =
NX

i=1

Eŷ⇠p(ŷ|xi)R(ŷ, yi)

=
NX

i=1

X

ŷ2Y

p(ŷ|xi)R(ŷ, yi),

(2)

where Y is the space of all candidate transla-
tion sentences, which is exponentially large due
to the large vocabulary size, making it impossi-
ble to exactly maximize Lrl. In practice, REIN-
FORCE (Williams, 1992) is usually leveraged to
approximate the above expectation via sampling ŷ
from the policy p(y|x), leading to the objective as
maximizing:

L̂rl =
NX

i=1

R(ŷi, yi), ŷi ⇠ p(y|xi), 8i 2 [N ]. (3)

Throughout the paper we will use REINFORCE
as our policy optimization method for RL training.

3 Strategies for RL Training

Although training NMT with RL can fill in the gap
between training objectives and evaluation metrics,
it is not easy to successfully put RL training into
practice. A key challenge is that RL methods are
highly unstable and inefficient, due to the noise in
gradient estimation and reward computation. To
our best knowledge, currently there is no consen-
sus, or even a systematic study on how to configure
different setups for RL training to avoid such prob-
lems, especially for training deep NMT models on
large scale datasets. We therefore aim to shed light

on practical applications of RL for NMT training.
For this purpose, we provide a comprehensive re-
view of several important methods to stabilize RL
training process in this section.

3.1 Reward Computation
It is critical to set up appropriate rewards for RL
training, i.e., the R(ŷ, y) in Eqn. (3). There are
two important aspects to consider in configuring the
reward R(ŷ, y): how to sample training instance ŷ
and whether to use reward shaping.

Generate ŷ There are two strategies to sample ŷ
for computing the BLEU reward R(ŷ, y). The first
one is beam search (Sutskever et al., 2014), it is a
breadth-first search method that maintains a “beam”
of the top-K scoring candidates (prefix hypothe-
sis sentences) at each generation step. Then, for
each candidate sentence in the beam, K most likely
words are appended, resulting in a pool of K ⇥ K
new candidates. Out from this pool, the top-K
translations with largest probabilities are selected,
and the beam search process continues. The second
strategy is multinomial sampling (Chatterjee and
Cancedda, 2010), which produces each word one
by one through multinomial sampling over the mod-
el’s output distribution. Both sampling strategies
terminate the expansion of a candidate sentence
when an ‘end of sentence’ (<EOS>) token is met.

The choice of different sampling strategies re-
flects the exploration-exploitation dilemma. Beam
search strategy generates more accurate ŷ by ex-
ploiting the probabilistic space output via curren-
t NMT model, while multinomial sampling pays
more attention to explore more diverse candidates.

Whether to Use Reward Shaping From Eqn.
(3) we can see that for the entire sequence ŷ, there
is only one terminal reward R(ŷ, y) available for
model training. Note that the agent needs to take
tens of actions (with the number depending on the
length of ŷ) to generate a complete sentence ŷ, but
only one reward is available for all those actions.
Consequently, RL training is inefficient due to the
sparsity of rewards, and the model updates each
token in the training sentence with the same reward
value without distinction. Reward shaping (Ng
et al., 1999) is a strategy to overcome this shortcom-
ing. In reward shaping, intermediate reward at each
decoding step t is imposed and denoted as rt(ŷt, y).
Bahdanau et al. (2017) sets up the intermediate re-
ward as rt(ŷt, y) = R(ŷ1...t, y) � R(ŷ1...t�1, y),
where R(ŷ1...t, y) is defined as the BLEU score
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of ŷ1...t with respect to y. Note that we have
R(ŷ, y) =

Pm
t=1 rt(ŷt, y), where m is the length

of ŷ. During RL training, the cumulative rewardPm
⌧=t r⌧ (ŷ⌧ , y) is used to update the policy at time

step t. It is verified that using the shaped reward rt

instead of awarding the whole score R(ŷ, y) does
not change the optimal policy (Ng et al., 1999).

3.2 Variance Reduction of Gradient
Estimation

As mentioned before, the REINFORCE algorithm
suffers from high variance in gradient estimation,
mainly caused by using single sample ŷ to estimate
the expectation. To reduce the variance, Ranzato
et al. (2016) subtracts an average reward from the
returned reward at each time step t, and the actual
reward used to update the policy is

R(ŷ, y) � r̂t, (4)

where r̂t is the estimated average reward at step t,
named as baseline reward (Weaver and Tao, 2001).
Together with reward shaping, the updated reward
becomes

Pm
⌧=t r⌧ (ŷ⌧ , y) � r̂t at step t.

Intuitively speaking, a baseline reward r̂t is es-
tablished, which either encourages a word choice
ŷt if the induced reward R satisfies R > r̂t, or
discourages it if R < r̂t. Here R is either the
terminal reward R(ŷ, y) or the cumulative rewardPm

⌧=t r⌧ (ŷ⌧ , y). Such estimated baseline reward
r̂t is designed to decrease the high variance of the
gradient estimator.

In practice, the baseline reward r̂t can be ob-
tained through different approaches. For exam-
ple, one may sample multiple sentences and use
the mean terminal reward for these sentences as
baseline reward. In our work, we adopt the func-
tion learning approach, using simple network (e.g.,
multi-layer perceptron) to build the learning func-
tion, which is the same as used in (Ranzato et al.,
2016; Bahdanau et al., 2017).

3.3 Combine MLE and RL Objectives
The last important strategy we would like to men-
tion is the combination of MLE training objective
with RL objective, which is assumed to further sta-
bilize RL training process (Wu et al., 2016; Li et al.,
2017; Wu et al., 2017a).

A simple way is to linearly combine the MLE
(Eqn. (1)) and RL (Eqn. (3)) objectives as follows:

Lcom = ↵ ⇤ Lmle + (1 � ↵) ⇤ L̂rl, (5)

where ↵ is the hyperparamter controlling the trade-
off between MLE and RL objectives. We will em-
pirically evaluate how different values of ↵ impact
the final translation accuracy.

4 RL Training with Monolingual Data

Previous works typically conduct RL training with
only bilingual data for NMT. Monolingual data has
been proved to be able to significantly improve
the performance of NMT systems (Sennrich et al.,
2015a; Xia et al., 2016; Cheng et al., 2016). It
remains an open problem whether it is possible to
combine the benefits of RL training and monolin-
gual data such that even more competitive results
can be obtained. In this section we provide several
solutions for combination and will study them in
next section. Note that all the settings discussed in
this section are semi-supervised learning, i.e., both
bilingual and monolingual data are available.

4.1 With Source-Side Monolingual Data
We first provide a solution to RL training with
source-side monolingual data. As shown in Eqn.
(3), in RL training we need to calculate the re-
ward signal R(ŷ, y) for each generated sentence
ŷ, and therefore the reference sentence y seems to
be a must-have, which unfortunately is missing for
source-side monolingual data.

We tackle this challenge via generating pseu-
do target reference y by bootstrapping with the
model itself. Apparently, for the source-side mono-
lingual data, the pseudo target reference y should
have good translation quality. Therefore, for each
source-side monolingual sentence, we use the N-
MT model trained from the bilingual data to beam
search a target sentence and treat it as the pseu-
do target reference y. Afterwards ŷ is obtained
via multinomial sampling to calculate the reward.
Although multinomial sampling is usually not as
good as sampling via beam search, the combination
of beam search (to get the pseudo target reference
sentence) and the multinomial sampling (to gener-
ate the action sequence of the agent) achieves good
exploration-exploitation trade-off, since the pseudo
target reference exploits the accuracy of current
NMT model while ŷ achieves better exploration.

4.2 With Target-Side Monolingual Data
For a target-side monolingual sentence, its source
sentence x is missing, and consequently ŷ is un-
available since it is sampled based on x. We tackle
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this challenge via back translation (Sennrich et al.,
2015a). We first train a reverse NMT model from
the target language to the source language with
bilingual data. For each target-side monolingual
sentence, using the reverse NMT model, we back
translate it to get its pseudo source sentence x. We
then pair the target monolingual data and its back-
translated sentence as a pseudo bilingual sentence
pair, which can be used for RL training in the same
way as the genuine bilingual sentence pairs.

4.3 With both Source-Side and Target-Side
Monolingual Data

A natural extension of previous discussions is to
combine both the source-side and target-side mono-
lingual data for RL training. We consider two com-
binations, the sequential method and the unified
method. The former one sequentially leverages the
source-side and target-side monolingual data for
RL training. Specifically, we first train an MLE
model using the bilingual data and source-side (or
target-side) monolingual data; based on this MLE
model, we then use REINFORCE for training with
target-side (or source-side) monolingual data. For
unified approach, we pack the paired data out from
three domains together: the genuine bilingual data,
the source monolingual data with its pseudo target
references (introduced in subsection 4.1), and the
target monolingual data with its back-translated
samples (introduced in subsection 4.2). Then we
treat the combined data as normal bilingual data on
which the NMT model is trained via MLE or RL
principles. Our goal is to investigate the model per-
formance with different training data and find the
best recipe of how to use these data in RL training.
More details are introduced in next section.

5 Experiments

In this section, we provide a systematic study on
aforementioned RL training strategies and the solu-
tions of leveraging monolingual data. The RL train-
ing strategies are evaluated on bilingual dataset-
s from three translation tasks, WMT14 English-
German (En-De), WMT17 English-Chinese (En-
Zh) and WMT17 Chinese-English (Zh-En), and we
further conduct the experiments to leverage mono-
lingual data in WMT17 Zh-En translation.

5.1 Experimental Settings

For the bilingual datasets, WMT17 (Bojar et al.,
2017) En-Zh 1 and WMT17 Zh-En use the same
dataset, which contains about 24M sentences pairs,
including CWMT Corpus 2017 and UN Parallel
Corpus V1.0. The Jieba2 segmenter is used to per-
form Chinese word segmentation. We use byte
pair encoding (BPE) (Sennrich et al., 2015b) to pre-
process the source and target sentences, forming
source-side and target-side dictionary with 40, 000
and 37, 000 types, respectively. We use the news-
dev2017 as the dev set and newstest2017 as the
test set. For the WMT14 En-De dataset, it con-
tains about 4.5M training pairs, newstest2012 and
newstest2013 are concatenated as the dev set and
newstest2014 acts as test set. Same as (Vaswani
et al., 2017), we also perform BPE to process the
En-De dataset, the shared source-target vocabulary
contains about 37, 000 tokens.

For the monolingual dataset on Zh-En translation
task, similar to (Sennrich et al., 2017), the Chinese
monolingual data comes from LDC Chinese Gi-
gaword (4th edition) and the English monolingual
data comes from News Crawl 2016 articles. After
preprocessing (e.g., language detection and filter-
ing sentences with more than 80 words), we keep
4M Chinese sentences and 7M English sentences.

We adopt the Transformer model with trans-
former big setting as defined in (Vaswani et al.,
2017) for Zh-En and En-Zh translations, which
achieves SOTA translation quality in several oth-
er datasets. For En-De translation, we utilize the
transformer base v1 setting. These settings are ex-
actly same as used in the original paper, except
we set the layer prepostprocess dropout for Zh-En
and En-Zh translation to be 0.05. The optimizer
used for MLE training is Adam (Kingma and Ba,
2015) with initial learning rate is 0.1, and we fol-
low the same learning rate schedule in (Vaswani
et al., 2017). During training, roughly 4, 096 source
tokens and 4, 096 target tokens are paired in one
mini batch. Each model is trained using 8 NVIDI-
A Tesla M40 GPUs. For RL training, the model
is initialized with parameters of the MLE model
(trained with only bilingual data), and we continue
training it with learning rate 0.0001. Same as (Bah-
danau et al., 2017), to calculate the BLEU reward,
we start all n-gram counts from 1 instead of 0 and

1http://www.statmt.org/wmt17/
translation-task.html

2https://github.com/fxsjy/jieba
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Training Strategy En-De En-Zh Zh-En
MLE 27.02 34.12 24.29

RL (beam + terminal) 27.06 34.25 24.42
RL (multinomial + terminal) 27.22 34.46 24.70

RL (beam + shaping) 27.04 34.28 24.47
RL (multinomial + shaping) 27.23 34.47 24.72

Table 1: Results of different strategies for reward com-
putation. ‘beam’ refers to ‘beam search and ‘multino-
mial’ to ‘multinomial sampling’. While generating ŷ
through beam search, we use width 4. ‘shaping’ refers
to using reward shaping and ‘terminal’ refers not.

multiply the resulting score by the length of the
target reference sentence. For inference, we use
beam search with width 6. We run each setting
for at least 5 times and report the averaged case
sensitive BLEU scores3 (Papineni et al., 2002) on
test set. The test set BLEU is chosen via the best
configuration based on the validation set.

5.2 Results of of RL Training Strategies

We first evaluate different strategies for RL training,
based only on bilingual datasets from previously
introduced three translation tasks.

Reward Computation As reviewed in subsec-
tion 3.1, for reward computation, we need to con-
sider how to sample ŷ and whether to use reward
shaping.

The results are shown in Table 1, where “RL”
stands for RL training with the REINFORCE algo-
rithm. We also report the performance of the pre-
trained NMT model with the MLE loss. From the
table, an interesting finding is that ŷ sampled via
beam search strategy is worse than that by multi-
nomial sampling, with a gap of roughly 0.2-0.3
BLEU points on the test set (with significant test
score ⇢ < 0.05). We therefore conjecture that ex-
ploration is more important than exploitation in
reward computing: multinomial sampling brings
more data diversity to the training of NMT mod-
el, while sentences generated by beam search are
usually very similar to each other. Furthermore,
we find that there is no big difference between the
leverage of reward shaping or terminal reward, with
only slightly better performance of reward shaping.
We therefore use multinomial sampling and reward
shaping in later experiments.

3Calculated by SacréBLEU toolkit, which produces exact-
ly the same evaluation result as that in WMT17 Zh-En cam-
paign. https://github.com/awslabs/sockeye/
tree/master/contrib/sacrebleu

Training Strategy En-De En-Zh Zh-En
RL 27.23 34.47 24.72

RL (baseline function) 27.25 34.43 24.73

Table 2: Results of variance reduction of gradient esti-
mation.

Figure 1: Results of different weights ↵ to combine
MLE and RL objectives.

Variance Reduction of Gradient Estimation
Next we evaluate the strategies for reducing vari-
ance of gradient estimation (see section3.2). We
want to know whether the baseline reward is nec-
essary. To compute the baseline reward, similar to
(Ranzato et al., 2016; Bahdanau et al., 2017), we
build a two-layer MLP regressor with Relu (Nair
and Hinton, 2010) activation units. The function
takes the hidden states from decoder as input, and
the parameters of the regressor are trained to mini-
mize the mean squared loss of Eqn. (4). We first
pre-train the baseline function for 20k steps/mini-
batches, and then jointly train NMT model (with
RL) and the baseline reward function.

Table 2 shows that the learning of baseline re-
ward does not help RL training. This contradicts
with previous observations (Ranzato et al., 2016),
and seems to suggest that the variance of gradient
estimation in NMT is not as large as we expected.
The reason might be that the probability mass on
the target-side language space induced by the NMT
model is highly concentrated, making the sampled
ŷ representative enough in terms of estimating the
expectation. Therefore, for the economic perspec-
tive, it is not necessary to add the additional steps
of using baseline reward on RL training for NMT.

Combine MLE and RL Objectives As shown
in Eqn. (5), the hyperparameter ↵ controls the
trade-off between MLE and RL objectives. For
comparison, we set ↵ to be [0, 0.1, 0.3, 0.5, 0.7,
0.9] in our experiments. The results are presented
in Figure 1.
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[Data] (Objective) Valid Test
[B] (MLE) 22.32 24.29

[B] (MLE) + [B] (RL) 22.87 25.04
[B] (MLE) + [Ms] (RL) 23.03 25.22

[B & Ms] (MLE) 24.31 25.31
[B & Ms] (MLE) + [B & Ms] (RL) 24.58 25.60

Table 3: Results with source monolingual data. “B” de-
notes bilingual data, “Ms” denotes source-side mono-
lingual data, “&” denotes data combination.

The results show that combining the MLE ob-
jective with the RL objective achieves better per-
formance (27.48 for En-De, 34.63 for En-Zh and
25.04 for Zh-En with ↵ = 0.3). This indicates that
MLE objective is helpful to stabilize the training
and improve the model performance, as we expect-
ed. However, further increasing ↵ does not bring
more gain. The best trade-off between MLE and
RL objectives in our experiment is ↵ = 0.3. There-
fore, we set ↵ = 0.3 in the following experiments.

5.3 Results of RL Training with Monolingual
Data

In this subsection, we report the results on both
valid and test set of RL training using bilingual
and monolingual data in Zh-En translation. From
Table 3 to Table 6, “RL” denotes the model trained
with RL using multinomial sampling, reward shap-
ing, no baseline reward, and combined objective,
based on the observations in the last subsection.
“B” denotes bilingual data, “Ms” denotes source-
side monolingual data and “Mt” denotes target-side
monolingual data, “&” denotes data combination.

With Source-Side Monolingual Data As dis-
cussed before, we use beam search with beam
width 4 to sample the pseudo target sentence y
for each monolingual sentence x. We consider sev-
eral settings for RL training: 1) only source-side
monolingual data; 2) the combination of bilingual
and source-side monolingual data. We first train
an MLE model using the augmented dataset com-
bining the genuine bilingual data with the pseudo
bilingual data generated from the monolingual da-
ta, and then perform RL training on this combined
dataset. The results are shown in Table 3.

With Target-Side Monolingual Data For
target-side monolingual data, we first pre-train a
translation model from English to Chinese 4, and
use it to back translate target-side monolingual

4The BLEU score of the En-Zh model is 34.12.

[Data] (Objective) Valid Test
[B] (MLE) 22.32 24.29

[B] (MLE) + [B] (RL) 22.87 25.04
[B] (MLE) + [Mt] (RL) 22.96 25.15

[B & Mt] (MLE) 24.14 25.24
[B & Mt] (MLE) + [B & Mt] (RL) 24.41 25.58

Table 4: Results with target monolingual data. “B” de-
notes bilingual data, “Mt” denotes target-side monolin-
gual data, “&” denotes data combination.

[Data] (Objective) Valid Test
[B & Ms] (MLE) 24.31 25.31

[B & Ms] (MLE) + [B & Ms] (RL) 24.58 25.60
[B & Ms] (MLE) + [Mt] (RL) 24.61 25.72

[B & Mt] (MLE) 24.14 25.24
[B & Mt] (MLE) + [B & Mt] (RL) 24.41 25.58

[B & Mt] (MLE) + [Ms] (RL) 24.75 25.92

Table 5: Results of sequential approach for monolin-
gual data. “B” denotes bilingual data, “Ms” denotes
source-side monolingual data and “Mt” denotes target-
side monolingual data, “&” denotes data combination.

[Data] (Objective) Valid Test
[B & Ms & Mt] (MLE) 25.58 26.13
+ [B & Ms & Mt] (RL) 25.90 26.73

Table 6: Results of unified approach for monolingual
data. “+” means to initialize the RL model using above
MLE model, which is trained on the combination of
bilingual data, source-side monolingual data and target-
side monolingual data.

sentence y to get pseudo source sentence x.
Similarly, we consider several settings for RL
training: 1) only target-side monolingual data; 2)
the combination of bilingual data and target-side
monolingual data. We train an MLE model
using both the genuine and the generated pseudo
bilingual data, and then perform RL training on
this data. The results are presented in Table 4.

From Table 3 and 4, we have several observa-
tions. First, monolingual data helps RL training,
improving BLEU score from 25.04 to 25.22 (⇢ <
0.05) in Table 3. Second, when we only add mono-
lingual data for RL training, the model achieves
similar performance compared to MLE training
with bilingual and monolingual data (e.g., 25.15 vs.
25.24 (⇢ < 0.05) in Table 4).

With both Source-Side and Target-Side Mono-
lingual Data We have two approaches to use
both source-side and target-side monolingual da-
ta, as described in subsection 4.3. The results are
reported in Table 5 and Table 6.

From Table 5, we can observe that the sequen-
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System Architecture BLEU
Existing end-to-end NMT systems

Vaswani et al. (2017) Transformer 24.29
Sennrich et al. (2015a) Transformer + Target Monolingual Data (i.e., back translation) 25.24
SougouKnowing Stacked LSTM model + Reranking 24.00
SougouKnowing-ensemble Stacked LSTM model + Reranking + Ensemble 26.40

Our end-to-end NMT
this work Transformer + RL 25.04

Transformer + Source Monolingual Data 25.31
Transformer + Source Monolingual Data + RL 25.60
Transformer + Target Monolingual Data 25.24
Transformer + Target Monolingual Data + RL 25.58
Transformer + Source & Target Monolingual Data 26.13
Transformer + Source & Target Monolingual Data + RL 26.73

Table 7: Comparisons of different competitive end-to-end NMT systems. SougouKnowing results come from
http://matrix.statmt.org/matrix/systems_list/1878.

tial training of monolingual data can benefit the
model performance. Taking the last three rows as
an example, the BLEU score of the MLE model
trained on the combination of bilingual data and
target-side monolingual data is 25.24; based on this
model, RL training using the source-side monolin-
gual data further improves the model performance
by 0.7 (⇢ < 0.01) BLEU points. From Table 6, we
can observe on top of a quite strong MLE baseline
(26.13), through the unified RL training, we can
still improve the test set by 0.6 points to 26.73 (⇢ <
0.01), which shows the effectiveness of combining
source/target monolingual data and reinforcement
learning.

5.4 Comparison with Other Models
At last, as a summary of our empirical result-
s, we compare several representataive end-to-end
NMT systems to our work in Table 7, which
includes the Transformer (Vaswani et al., 2017)
model, with/without back-translation (Sennrich
et al., 2015a) and the best NMT system in
WMT17 Chinese-English translation challenge5

(SougouKnowing-ensemble). The results clear-
ly show that after combing both source-side and
target-side monolingual data with RL training, we
obtain the state-of-the-art BLEU score 26.73, even
surpassing the best ensemble model in WMT17
Zh-En translation challenge.

6 Related Work

Our work is mainly related with the literature of us-
ing reinforcement learning to directly optimize the
evaluation measure for neural machine translation.
Several representative works are (Ranzato et al.,

5http://matrix.statmt.org/matrix/
systems_list/1878

2016; Shen et al., 2016; Bahdanau et al., 2017). In
(Ranzato et al., 2016), the authors propose to train
a neural translation model with the objective grad-
ually shifting from maximizing token-level likeli-
hood to optimizing the sentence-level BLEU score.
Shen et al. (2016) proposes to adopt minimum risk
training (Goel and Byrne, 2000) to minimize the
task specific expected loss (i.e., induced by BLEU
score) on NMT training data. Instead of the RE-
INFORCE (Williams, 1992) algorithm used in the
above two works, Bahdanau et al. (2017) further
optimizes the policy by actor-critic algorithm. Wu
et al. (2016) introduces a simple RL based method
to optimize the stacked LSTM model for NMT,
achieving better BLEU scores on English-French
translation but not on English-German. Edunov
et al. (2017) presents a comparative study of sev-
eral classical structural prediction losses for NMT
model, which also includes sequence-level loss but
not exactly the same as RL.

Our work is also related with the research works
that leverage monolingual data for improving N-
MT models (Zhang and Zong, 2016; Sennrich et al.,
2015a; Wang et al., 2018; Xia et al., 2016; Cheng
et al., 2016). Zhang and Zong (2016) exploits the
source-side monolingual data in NMT. Sennrich
et al. (2015a) proposes back-translation method
to leverage target-side monolingual data for NMT.
Xia et al. (2016) formulates the machine transla-
tion as a communication game, which leverages
the power of two directional translation models and
source/target monolingual data. Cheng et al. (2016)
proposes a similar semi-supervised approach. How-
ever, none of these works have explored the power
of monolingual data in the context of training NMT
model with reinforcement learning.
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7 Conclusion

In this work, we presented a study of how to ef-
fectively train NMT models using reinforcement
learning. Different RL strategies were evaluated
in German-English, English-Chinese and Chinese-
English translation tasks on large-scale bilingual
datasets. We found that (1) multinomial sampling
is better than beam search, (2) several previous
tricks such as reward shaping and baseline reward
does not make significant difference, and (3) the
combination of the MLE and RL objectives is im-
portant. In addition, we explored the source/target
monolingual data for RL training. By combing the
power of RL and monolingual data, we achieve the
state-of-the-art BLEU score on WMT17 Chinese-
English translation task. We hope that our study
and results can benefit the community and bring
some insights on how to train deep NMT models
with reinforcement learning and big data.
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Abstract
In this paper, we propose to extend the recently
introduced model-agnostic meta-learning al-
gorithm (MAML, Finn et al., 2017) for low-
resource neural machine translation (NMT).
We frame low-resource translation as a meta-
learning problem, and we learn to adapt to
low-resource languages based on multilingual
high-resource language tasks. We use the uni-
versal lexical representation (Gu et al., 2018b)
to overcome the input-output mismatch across
different languages. We evaluate the proposed
meta-learning strategy using eighteen Euro-
pean languages (Bg, Cs, Da, De, El, Es, Et,
Fr, Hu, It, Lt, Nl, Pl, Pt, Sk, Sl, Sv and Ru)
as source tasks and five diverse languages (Ro,
Lv, Fi, Tr and Ko) as target tasks. We show that
the proposed approach significantly outper-
forms the multilingual, transfer learning based
approach (Zoph et al., 2016) and enables us
to train a competitive NMT system with only
a fraction of training examples. For instance,
the proposed approach can achieve as high as
22.04 BLEU on Romanian-English WMT’16
by seeing only 16,000 translated words (⇠ 600
parallel sentences).

1 Introduction

Despite the massive success brought by neural ma-
chine translation (NMT, Sutskever et al., 2014;
Bahdanau et al., 2015; Vaswani et al., 2017), it
has been noticed that the vanilla NMT often lags
behind conventional machine translation systems,
such as statistical phrase-based translation sys-
tems (PBMT, Koehn et al., 2003), for low-resource
language pairs (see, e.g., Koehn and Knowles,
2017). In the past few years, various approaches
have been proposed to address this issue. The
first attempts at tackling this problem exploited
the availability of monolingual corpora (Gulcehre

* Equal contribution.

et al., 2015; Sennrich et al., 2015; Zhang and
Zong, 2016). It was later followed by approaches
based on multilingual translation, in which the
goal was to exploit knowledge from high-resource
language pairs by training a single NMT system
on a mix of high-resource and low-resource lan-
guage pairs (Firat et al., 2016a,b; Lee et al., 2016;
Johnson et al., 2016; Ha et al., 2016b). Its variant,
transfer learning, was also proposed by Zoph et al.
(2016), in which an NMT system is pretrained on
a high-resource language pair before being fine-
tuned on a target low-resource language pair.

In this paper, we follow up on these latest ap-
proaches based on multilingual NMT and propose
a meta-learning algorithm for low-resource neural
machine translation. We start by arguing that the
recently proposed model-agnostic meta-learning
algorithm (MAML, Finn et al., 2017) could be ap-
plied to low-resource machine translation by view-
ing language pairs as separate tasks. This view en-
ables us to use MAML to find the initialization of
model parameters that facilitate fast adaptation for
a new language pair with a minimal amount of
training examples (§3). Furthermore, the vanilla
MAML however cannot handle tasks with mis-
matched input and output. We overcome this limi-
tation by incorporating the universal lexical repre-
sentation (Gu et al., 2018b) and adapting it for the
meta-learning scenario (§3.3).

We extensively evaluate the effectiveness and
generalizing ability of the proposed meta-learning
algorithm on low-resource neural machine trans-
lation. We utilize 17 languages from Europarl and
Russian from WMT as the source tasks and test
the meta-learned parameter initialization against
five target languages (Ro, Lv, Fi, Tr and Ko), in
all cases translating to English. Our experiments
using only up to 160k tokens in each of the tar-
get task reveal that the proposed meta-learning
approach outperforms the multilingual translation
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approach across all the target language pairs, and
the gap grows as the number of training examples
decreases.

2 Background

Neural Machine Translation (NMT) Given a
source sentence X = {x1, ..., xT 0}, a neural ma-
chine translation model factors the distribution
over possible output sentences Y = {y1, ..., yT }
into a chain of conditional probabilities with a left-
to-right causal structure:

p(Y |X; ✓) =
T+1Y

t=1

p(yt|y0:t�1, x1:T 0 ; ✓), (1)

where special tokens y0 (hbosi) and yT+1 (heosi)
are used to represent the beginning and the end of
a target sentence. These conditional probabilities
are parameterized using a neural network. Typi-
cally, an encoder-decoder architecture (Sutskever
et al., 2014; Cho et al., 2014; Bahdanau et al.,
2015) with a RNN-based decoder is used. More
recently, architectures without any recurrent struc-
tures (Gehring et al., 2017; Vaswani et al., 2017)
have been proposed and shown to speed up train-
ing while achieving state-of-the-art performance.

Low Resource Translation NMT is known to
easily over-fit and result in an inferior performance
when the training data is limited (Koehn and
Knowles, 2017). In general, there are two ways for
handling the problem of low resource translation:
(1) utilizing the resource of unlabeled monolin-
gual data, and (2) sharing the knowledge between
low- and high-resource language pairs. Many re-
search efforts have been spent on incorporating
the monolingual corpora into machine translation,
such as multi-task learning (Gulcehre et al., 2015;
Zhang and Zong, 2016), back-translation (Sen-
nrich et al., 2015), dual learning (He et al., 2016)
and unsupervised machine translation with mono-
lingual corpora only for both sides (Artetxe et al.,
2017b; Lample et al., 2017; Yang et al., 2018).

For the second approach, prior researches have
worked on methods to exploit the knowledge of
auxiliary translations, or even auxiliary tasks. For
instance, Cheng et al. (2016); Chen et al. (2017);
Lee et al. (2017); Chen et al. (2018) investigate
the use of a pivot to build a translation path be-
tween two languages even without any directed re-
source. The pivot can be a third language or even
an image in multimodal domains. When pivots are

not easy to obtain, Firat et al. (2016a); Lee et al.
(2016); Johnson et al. (2016) have shown that the
structure of NMT is suitable for multilingual ma-
chine translation. Gu et al. (2018b) also showed
that such a multilingual NMT system could im-
prove the performance of low resource translation
by using a universal lexical representation to share
embedding information across languages.

All the previous work for multilingual NMT as-
sume the joint training of multiple high-resource
languages naturally results in a universal space
(for both the input representation and the model)
which, however, is not necessarily true, especially
for very low resource cases.

Meta Learning In the machine learning com-
munity, meta-learning, or learning-to-learn, has
recently received interests. Meta-learning tries to
solve the problem of “fast adaptation on new train-
ing data.” One of the most successful applications
of meta-learning has been on few-shot (or one-
shot) learning (Lake et al., 2015), where a neural
network is trained to readily learn to classify in-
puts based on only one or a few training examples.
There are two categories of meta-learning:

1. learning a meta-policy for updating model
parameters (see, e.g., Andrychowicz et al.,
2016; Ha et al., 2016a; Mishra et al., 2017)

2. learning a good parameter initialization for
fast adaptation (see, e.g., Finn et al., 2017;
Vinyals et al., 2016; Snell et al., 2017).

In this paper, we propose to use a meta-learning
algorithm for low-resource neural machine trans-
lation based on the second category. More specifi-
cally, we extend the idea of model-agnostic meta-
learning (MAML, Finn et al., 2017) in the multi-
lingual scenario.

3 Meta Learning for Low-Resource
Neural Machine Translation

The underlying idea of MAML is to use a set of
source tasks

�
T 1, . . . , T K

 
to find the initializa-

tion of parameters ✓0 from which learning a tar-
get task T 0 would require only a small number of
training examples. In the context of machine trans-
lation, this amounts to using many high-resource
language pairs to find good initial parameters and
training a new translation model on a low-resource
language starting from the found initial parame-

3623



query

X_test Emb NMT

Y_test Loss

Meta-Test

Fast Adaptation

Forward Pass

X_trainEmbMetaNMT

Y_trainLoss

Translation Task 
Generator

Meta-Train

Meta Gradient Pass

Gradient Pass Parameter Tying

Tk

Meta Learning

Universal Lexical Representation

initialize

Figure 1: The graphical illustration of the training process of the proposed MetaNMT. For each episode,
one task (language pair) is sampled for meta-learning. The boxes and arrows in blue are mainly involved
in language-specific learning (§3.1), and those in purple in meta-learning (§3.2).

ters. This process can be understood as

✓⇤ = Learn(T 0; MetaLearn(T 1, . . . , T K)).

That is, we meta-learn the initialization from aux-
iliary tasks and continue to learn the target task.
We refer the proposed meta-learning method for
NMT to MetaNMT. See Fig. 1 for the overall il-
lustration.

3.1 Learn: language-specific learning
Given any initial parameters ✓0 (which can be ei-
ther random or meta-learned),

the prior distribution of the parameters of a de-
sired NMT model can be defined as an isotropic
Guassian:

✓i ⇠ N (✓0
i , 1/�),

where 1/� is a variance. With this prior distri-
bution, we formulate the language-specific learn-
ing process Learn(DT ; ✓0) as maximizing the log-
posterior of the model parameters given data DT :

Learn(DT ; ✓0) = arg max
✓

LDT (✓)

= arg max
✓

X

(X,Y )2DT

log p(Y |X, ✓)� �k✓ � ✓0k2,

where we assume p(X|✓) to be uniform. The first
term above corresponds to the maximum likeli-
hood criterion often used for training a usual NMT
system. The second term discourages the newly
learned model from deviating too much from the
initial parameters, alleviating the issue of over-
fitting when there is not enough training data. In
practice, we solve the problem above by maximiz-
ing the first term with gradient-based optimization
and early-stopping after only a few update steps.

Thus, in the low-resource scenario, finding a good
initialization ✓0 strongly correlates the final per-
formance of the resulting model.

3.2 MetaLearn
We find the initialization ✓0 by repeatedly simulat-
ing low-resource translation scenarios using auxil-
iary, high-resource language pairs. Following Finn
et al. (2017), we achieve this goal by defining the
meta-objective function as

L(✓) =EkED
T k ,D0

T k
(2)

2

64
X

(X,Y )2D0

T k

log p(Y |X; Learn(DT k ; ✓))

3

75 ,

where k ⇠ U({1, . . . , K}) refers to one meta-
learning episode, and DT , D0

T follow the uniform
distribution over T ’s data.

We maximize the meta-objective function using
stochastic approximation (Robbins and Monro,
1951) with gradient descent. For each episode,
we uniformly sample one source task at random,
T k. We then sample two subsets of training ex-
amples independently from the chosen task, DT k

and D0
T k . We use the former to simulate language-

specific learning and the latter to evaluate its out-
come. Assuming a single gradient step is taken
only the with learning rate ⌘, the simulation is:

✓0
k = Learn(DT k ; ✓) = ✓ � ⌘r✓LD

T k (✓).

Once the simulation of learning is done, we evalu-
ate the updated parameters ✓0

k on D0
T k , The gra-

dient computed from this evaluation, which we
refer to as meta-gradient, is used to update the
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Figure 2: An intuitive il-
lustration in which we
use solid lines to repre-
sent the learning of ini-
tialization, and dashed
lines to show the path of
fine-tuning.

meta model ✓. It is possible to aggregate multiple
episodes of source tasks before updating ✓:

✓  ✓ � ⌘0
X

k

r✓LD0

T k (✓0
k),

where ⌘0 is the meta learning rate.
Unlike a usual learning scenario, the resulting

model ✓0 from this meta-learning procedure is not
necessarily a good model on its own. It is however
a good starting point for training a good model us-
ing only a few steps of learning. In the context of
machine translation, this procedure can be under-
stood as finding the initialization of a neural ma-
chine translation system that could quickly adapt
to a new language pair by simulating such a fast
adaptation scenario using many high-resource lan-
guage pairs.

Meta-Gradient We use the following approxi-
mation property

H(x)v ⇡ r(x + ⌫v)�r(x)

⌫

to approximate the meta-gradient:1

r✓LD0

(✓0) = r✓0LD0

(✓0)r✓(✓ � ⌘r✓LD(✓))

= r✓0LD0

(✓0)� ⌘r✓0LD0

(✓0)H✓(LD(✓))

⇡ r✓0LD0

(✓0)� ⌘

⌫


r✓LD(✓)

����
✓̂

�r✓LD(✓)

����
✓

�
,

where ⌫ is a small constant and

✓̂ = ✓ + ⌫r✓0LD0

(✓0).

In practice, we find that it is also possible to ignore
the second-order term, ending up with the follow-
ing simplified update rule:

r✓LD0

(✓0) ⇡ r✓0LD0

(✓0). (3)
1We omit the subscript k for simplicity.

Related Work: Multilingual Transfer Learning
The proposed MetaNMT differs from the existing
framework of multilingual translation (Lee et al.,
2016; Johnson et al., 2016; Gu et al., 2018b) or
transfer learning (Zoph et al., 2016). The latter can
be thought of as solving the following problem:

max
✓

Lmulti(✓) = Ek

2

4
X

(X,Y )2Dk

log p(Y |X; ✓)

3

5 ,

where Dk is the training set of the k-th task, or lan-
guage pair. The target low-resource language pair
could either be a part of joint training or be trained
separately starting from the solution ✓0 found from
solving the above problem.

The major difference between the proposed
MetaNMT and these multilingual transfer ap-
proaches is that the latter do not consider how
learning happens with the target, low-resource lan-
guage pair. The former explicitly incorporates the
learning process within the framework by simulat-
ing it repeatedly in Eq. (2). As we will see later in
the experiments, this results in a substantial gap in
the final performance on the low-resource task.

Illustration In Fig. 2, we contrast transfer learn-
ing, multilingual learning and meta-learning us-
ing three source language pairs (Fr-En, Es-En and
Pt-En) and two target pairs (Ro-En and Lv-En).
Transfer learning trains an NMT system specifi-
cally for a source language pair (Es-En) and fine-
tunes the system for each target language pair (Ro-
En, Lv-En). Multilingual learning often trains a
single NMT system that can handle many different
language pairs (Fr-En, Pt-En, Es-En), which may
or may not include the target pairs (Ro-En, Lv-
En). If not, it finetunes the system for each target
pair, similarly to transfer learning. Both of these
however aim at directly solving the source tasks.
On the other hand, meta-learning trains the NMT
system to be useful for fine-tuning on various tasks
including the source and target tasks. This is done
by repeatedly simulating the learning process on
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low-resource languages using many high-resource
language pairs (Fr-En, Pt-En, Es-En).

3.3 Unified Lexical Representation
I/O mismatch across language pairs One ma-
jor challenge that limits applying meta-learning
for low resource machine translation is that the ap-
proach outlined above assumes the input and out-
put spaces are shared across all the source and tar-
get tasks. This, however, does not apply to ma-
chine translation in general due to the vocabulary
mismatch across different languages. In multilin-
gual translation, this issue has been tackled by us-
ing a vocabulary of sub-words (Sennrich et al.,
2015) or characters (Lee et al., 2016) shared across
multiple languages. This surface-level sharing is
however limited, as it cannot be applied to lan-
guages exhibiting distinct orthography (e.g., Indo-
Euroepan languages vs. Korean.)

Universal Lexical Representation (ULR) We
tackle this issue by dynamically building a vo-
cabulary specific to each language using a key-
value memory network (Miller et al., 2016; Gul-
cehre et al., 2018), as was done successfully for
low-resource machine translation recently by Gu
et al. (2018b). We start with multilingual word em-
bedding matrices ✏k

query 2 R
|Vk|⇥d pretrained on

large monolingual corpora, where Vk is the vo-
cabulary of the k-th language. These embedding
vectors can be obtained with small dictionaries of
seed word pairs (Artetxe et al., 2017a; Smith et al.,
2017) or in a fully unsupervised manner (Zhang
et al., 2017; Conneau et al., 2018). We take one of
these languages k0 to build universal lexical repre-
sentation consisting of a universal embedding ma-
trix ✏u 2 R

M⇥d and a corresponding key matrix
✏key 2 R

M⇥d, where M < |V 0
k|. Both ✏k

query and
✏key are fixed during meta-learning. We then com-
pute the language-specific embedding of token x
from the language k as the convex sum of the uni-
versal embedding vectors by

✏0[x] =
MX

i=1

↵i✏u[i],

where ↵i / exp
�
� 1

⌧ ✏key[i]>A✏k
query[x]

 
and ⌧ is

set to 0.05. This approach allows us to handle lan-
guages with different vocabularies using a fixed
number of shared parameters (✏u, ✏key and A.)

Learning of ULR It is not desirable to update
the universal embedding matrix ✏u when fine-

# of sents. # of En tokens Dev Test

Ro-En 0.61 M 16.66 M � 31.76
Lv-En 4.46 M 67.24 M 20.24 15.15
Fi-En 2.63 M 64.50 M 17.38 20.20
Tr-En 0.21 M 5.58 M 15.45 13.74

Ko-En 0.09 M 2.33 M 6.88 5.97

Table 1: Statistics of full datasets of the target lan-
guage pairs. BLEU scores on the dev and test sets
are reported from a supervised Transformer model
with the same architecture.

tuning on a small corpus which contains a lim-
ited set of unique tokens in the target language,
as it could adversely influence the other tokens’
embedding vectors. We thus estimate the change
to each embedding vector induced by language-
specific learning by a separate parameter �✏k[x]:

✏k[x] = ✏0[x] + �✏k[x].

During language-specific learning, the ULR ✏0[x]
is held constant, while only �✏k[x] is updated,
starting from an all-zero vector. On the other hand,
we hold �✏k[x]’s constant while updating ✏u and
A during the meta-learning stage.

4 Experimental Settings

4.1 Dataset
Target Tasks We show the effectiveness of the
proposed meta-learning method for low resource
NMT with extremely limited training examples
on five diverse target languages: Romanian (Ro)
from WMT’16,2 Latvian (Lv), Finnish (Fi), Turk-
ish (Tr) from WMT’17,3 and Korean (Ko) from
Korean Parallel Dataset.4 We use the officially
provided train, dev and test splits for all these lan-
guages. The statistics of these languages are pre-
sented in Table 1. We simulate the low-resource
translation scenarios by randomly sub-sampling
the training set with different sizes.

Source Tasks We use the following languages
from Europarl5: Bulgarian (Bg), Czech (Cs), Dan-
ish (Da), German (De), Greek (El), Spanish (Es),
Estonian (Et), French (Fr), Hungarian (Hu), Ital-
ian (It), Lithuanian (Lt), Dutch (Nl), Polish (Pl),
Portuguese (Pt), Slovak (Sk), Slovene (Sl) and

2 http://www.statmt.org/wmt16/translation-task.html
3 http://www.statmt.org/wmt17/translation-task.html
4 https://sites.google.com/site/koreanparalleldata/
5 http://www.statmt.org/europarl/
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(a) Ro-En (b) Lv-En

(c) Fi-En (d) Tr-En

Figure 3: BLEU scores reported on test sets for {Ro, Lv, Fi, Tr} to En, where each model is first learned
from 6 source tasks (Es, Fr, It, Pt, De, Ru) and then fine-tuned on randomly sampled training sets with
around 16,000 English tokens per run. The error bars show the standard deviation calculated from 5 runs.

Swedish (Sv), in addition to Russian (Ru)6 to
learn the intilization for fine-tuning. In our exper-
iments, different combinations of source tasks are
explored to see the effects from the source tasks.

Validation We pick either Ro-En or Lv-En as a
validation set for meta-learning and test the gener-
alization capability on the remaining target tasks.
This allows us to study the strict form of meta-
learning, in which target tasks are unknown during
both training and model selection.

Preprocessing and ULR Initialization As de-
scribed in §3.3, we initialize the query embed-
ding vectors ✏k

query of all the languages. For each
language, we use the monolingual corpora built
from Wikipedia7 and the parallel corpus. The con-
catenated corpus is first tokenized and segmented
using byte-pair encoding (BPE, Sennrich et al.,
2016), resulting in 40, 000 subwords for each lan-
guage. We then estimate word vectors using fast-
Text (Bojanowski et al., 2016) and align them
across all the languages in an unsupervised way

6 A subsample of approximately 2M pairs from WMT’17.
7 We use the most recent Wikipedia dump (2018.5) from

https://dumps.wikimedia.org/backup-index.html.

using MUSE (Conneau et al., 2018) to get mul-
tilingual word vectors. We use the multilingual
word vectors of the 20,000 most frequent words
in English to form the universal embedding matrix
✏u.

4.2 Model and Learning

Model We utilize the recently proposed Trans-
former (Vaswani et al., 2017) as an underlying
NMT system. We implement Transformer in this
paper based on (Gu et al., 2018a)8 and mod-
ify it to use the universal lexical representation
from §3.3. We use the default set of hyperpa-
rameters (dmodel = dhidden = 512, nlayer = 6,
nhead = 8, nbatch = 4000, twarmup = 16000) for
all the language pairs and across all the experi-
mental settings. We refer the readers to (Vaswani
et al., 2017; Gu et al., 2018a) for the details of
the model. However, since the proposed meta-
learning method is model-agnostic, it can be eas-
ily extended to any other NMT architectures, e.g.
RNN-based sequence-to-sequence models with at-
tention (Bahdanau et al., 2015).

8 https://github.com/salesforce/nonauto-nmt
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Meta-Train Ro-En Lv-En Fi-En Tr-En Ko-En
zero finetune zero finetune zero finetune zero finetune zero finetune

� 00.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00 0.00 ± .00
Es 9.20 15.71 ± .22 2.23 4.65 ± .12 2.73 5.55 ± .08 1.56 4.14 ± .03 0.63 1.40 ± .09
Es Fr 12.35 17.46 ± .41 2.86 5.05 ± .04 3.71 6.08 ± .01 2.17 4.56 ± .20 0.61 1.70 ± .14
Es Fr It Pt 13.88 18.54 ± .19 3.88 5.63 ± .11 4.93 6.80 ± .04 2.49 4.82 ± .10 0.82 1.90 ± .07

De Ru 10.60 16.05 ± .31 5.15 7.19 ± .17 6.62 7.98 ± .22 3.20 6.02 ± .11 1.19 2.16 ± .09
Es Fr It Pt De Ru 15.93 20.00 ± .27 6.33 7.88 ± .14 7.89 9.14 ± .05 3.72 6.02 ± .13 1.28 2.44 ± .11
All 18.12 22.04 ± .23 9.58 10.44 ± .17 11.39 12.63 ± .22 5.34 8.97 ± .08 1.96 3.97 ± .10

Full Supervised 31.76 15.15 20.20 13.74 5.97

Table 2: BLEU Scores w.r.t. the source task set for all five target tasks.

Figure 4: BLEU Scores w.r.t. the size of the target
task’s training set.

Learning We meta-learn using various sets of
source languages to investigate the effect of source
task choice. For each episode, by default, we use a
single gradient step of language-specific learning
with Adam (Kingma and Ba, 2014) per comput-
ing the meta-gradient, which is computed by the
first-order approximation in Eq. (3).

For each target task, we sample training exam-
ples to form a low-resource task. We build tasks of
4k, 16k, 40k and 160k English tokens for each lan-
guage. We randomly sample the training set five
times for each experiment and report the average
score and its standard deviation. Each fine-tuning
is done on a training set, early-stopped on a val-
idation set and evaluated on a test set. In default
without notation, datasets of 16k tokens are used.

Fine-tuning Strategies The transformer con-
sists of three modules; embedding, encoder and
decoder. We update all three modules during meta-
learning, but during fine-tuning, we can selectively
tune only a subset of these modules. Following
(Zoph et al., 2016), we consider three fine-tuning

strategies; (1) fine-tuning all the modules (all), (2)
fine-tuning the embedding and encoder, but freez-
ing the parameters of the decoder (emb+enc) and
(3) fine-tuning the embedding only (emb).

5 Results
vs. Multilingual Transfer Learning We meta-
learn the initial models on all the source tasks us-
ing either Ro-En or Lv-En as a validation task.
We also train the initial models to be multilin-
gual translation systems. We fine-tune them us-
ing the four target tasks (Ro-En, Lv-En, Fi-En
and Tr-En; 16k tokens each) and compare the pro-
posed meta-learning strategy and the multilingual,
transfer learning strategy. As presented in Fig. 3,
the proposed learning approach significantly out-
performs the multilingual, transfer learning strat-
egy across all the target tasks regardless of which
target task was used for early stopping. We also
notice that the emb+enc strategy is most effec-
tive for both meta-learning and transfer learn-
ing approaches. With the proposed meta-learning
and emb+enc fine-tuning, the final NMT systems
trained using only a fraction of all available train-
ing examples achieve 2/3 (Ro-En) and 1/2 (Lv-En,
Fi-En and Tr-En) of the BLEU score achieved by
the models trained with full training sets.

vs. Statistical Machine Translation We also
test the same Ro-En datasets with 16, 000 target
tokens using the default setting of Phrase-based
MT (Moses) with the dev set for adjusting the
parameters and the test set for calculating the fi-
nal performance. We obtain 4.79(±0.234) BLEU
point, which is higher than the standard NMT per-
formance (0 BLEU). It is however still lower than
both the multi-NMT and meta-NMT.

Impact of Validation Tasks Similarly to train-
ing any other neural network, meta-learning still
requires early-stopping to avoid overfitting to a
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specific set of source tasks. In doing so, we ob-
serve that the choice of a validation task has non-
negligible impact on the final performance. For in-
stance, as shown in Fig. 3, Fi-En benefits more
when Ro-En is used for validation, while the oppo-
site happens with Tr-En. The relationship between
the task similarity and the impact of a validation
task must be investigated further in the future.

Training Set Size We vary the size of the tar-
get task’s training set and compare the proposed
meta-learning strategy and multilingual, transfer
learning strategy. We use the emb+enc fine-tuning
on Ro-En and Fi-En. Fig. 4 demonstrates that the
meta-learning approach is more robust to the drop
in the size of the target task’s training set. The gap
between the meta-learning and transfer learning
grows as the size shrinks, confirming the effective-
ness of the proposed approach on extremely low-
resource language pairs.

Figure 5: The learning curves of BLEU scores on
the validation task (Ro-En).

Impact of Source Tasks In Table 2, we present
the results on all five target tasks obtained while
varying the source task set. We first see that it is
always beneficial to use more source tasks. Al-
though the impact of adding more source tasks
varies from one language to another, there is up
to 2⇥ improvement going from one source task to
18 source tasks (Lv-En, Fi-En, Tr-En and Ko-En).
The same trend can be observed even without any
fine-tuning (i.e., unsupervised translation, (Lam-
ple et al., 2017; Artetxe et al., 2017b)). In addi-
tion, the choice of source languages has different
implications for different target languages. For in-
stance, Ro-En benefits more from {Es, Fr, It, Pt}
than from {De, Ru}, while the opposite effect is
observed with all the other target tasks.

Training Curves The benefit of meta-learning
over multilingual translation is clearly demon-
strated when we look at the training curves in
Fig. 5. With the multilingual, transfer learning ap-

proach, we observe that training rapidly saturates
and eventually degrades, as the model overfits to
the source tasks. MetaNMT on the other hand con-
tinues to improve and never degrades, as the meta-
objective ensures that the model is adequate for
fine-tuning on target tasks rather than for solving
the source tasks.

Sample Translations We present some sample
translations from the tested models in Table 3.
Inspecting these examples provides the insight
into the proposed meta-learning algorithm. For in-
stance, we observe that the meta-learned model
without any fine-tuning produces a word-by-word
translation in the first example (Tr-En), which is
due to the successful use of the universal lexcial
representation and the meta-learned initialization.
The system however cannot reorder tokens from
Turkish to English, as it has not seen any train-
ing example of Tr-En. After seeing around 600
sentence pairs (16K English tokens), the model
rapidly learns to correctly reorder tokens to form
a better translation. A similar phenomenon is ob-
served in the Ko-En example. These cases could
be found across different language pairs.

6 Conclusion

In this paper, we proposed a meta-learning algo-
rithm for low-resource neural machine translation
that exploits the availability of high-resource lan-
guages pairs. We based the proposed algorithm
on the recently proposed model-agnostic meta-
learning and adapted it to work with multiple lan-
guages that do not share a common vocabulary us-
ing the technique of universal lexcal representa-
tion, resulting in MetaNMT. Our extensive evalu-
ation, using 18 high-resource source tasks and 5
low-resource target tasks, has shown that the pro-
posed MetaNMT significantly outperforms the ex-
isting approach of multilingual, transfer learning
in low-resource neural machine translation across
all the language pairs considered.

The proposed approach opens new opportuni-
ties for neural machine translation. First, it is a
principled framework for incorporating various
extra sources of data, such as source- and target-
side monolingual corpora. Second, it is a generic
framework that can easily accommodate existing
and future neural machine translation systems.
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Source (Tr) google mülteciler için 11 milyon dolar toplamak üzere bağış eşleştirme kampanyasını başlattı .
Target google launches donation-matching campaign to raise $ 11 million for refugees .
Meta-0 google refugee fund for usd 11 million has launched a campaign for donation .
Meta-16k google has launched a campaign to collect $ 11 million for refugees .

Source (Ko) ������������������������ ,��� ,��� ,��������‰
Target among the suspects are retired military officials , journalists , politicians , businessmen and others .
Meta-0 last year , convicted people , among other people , of a high-ranking army of journalists in economic

and economic policies , were included .
Meta-16k the arrested persons were included in the charge , including the military officials , journalists , politicians

and economists .

Table 3: Sample translations for Tr-En and Ko-En highlight the impact of fine-tuning which results in
syntactically better formed translations. We highlight tokens of interest in terms of reordering.
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Abstract

While modern machine translation has relied
on large parallel corpora, a recent line of work
has managed to train Neural Machine Trans-
lation (NMT) systems from monolingual cor-
pora only (Artetxe et al., 2018c; Lample et al.,
2018). Despite the potential of this approach
for low-resource settings, existing systems are
far behind their supervised counterparts, lim-
iting their practical interest. In this paper,
we propose an alternative approach based on
phrase-based Statistical Machine Translation
(SMT) that significantly closes the gap with
supervised systems. Our method profits from
the modular architecture of SMT: we first in-
duce a phrase table from monolingual cor-
pora through cross-lingual embedding map-
pings, combine it with an n-gram language
model, and fine-tune hyperparameters through
an unsupervised MERT variant. In addition,
iterative backtranslation improves results fur-
ther, yielding, for instance, 14.08 and 26.22
BLEU points in WMT 2014 English-German
and English-French, respectively, an improve-
ment of more than 7-10 BLEU points over pre-
vious unsupervised systems, and closing the
gap with supervised SMT (Moses trained on
Europarl) down to 2-5 BLEU points. Our
implementation is available at https://
github.com/artetxem/monoses.

1 Introduction

Neural Machine Translation (NMT) has recently
become the dominant paradigm in machine trans-
lation (Vaswani et al., 2017). In contrast to more
rigid Statistical Machine Translation (SMT) archi-
tectures (Koehn et al., 2003), NMT models are
trained end-to-end, exploit continuous representa-
tions that mitigate the sparsity problem, and over-
come the locality problem by making use of un-
constrained contexts. Thanks to this additional
flexibility, NMT can more effectively exploit large

parallel corpora, although SMT is still superior
when the training corpus is not big enough (Koehn
and Knowles, 2017).

Somewhat paradoxically, while most machine
translation research has focused on resource-rich
settings where NMT has indeed superseded SMT,
a recent line of work has managed to train an NMT
system without any supervision, relying on mono-
lingual corpora alone (Artetxe et al., 2018c; Lam-
ple et al., 2018). Given the scarcity of parallel
corpora for most language pairs, including less-
resourced languages but also many combinations
of major languages, this research line opens excit-
ing opportunities to bring effective machine trans-
lation to many more scenarios. Nevertheless, ex-
isting solutions are still far behind their supervised
counterparts, greatly limiting their practical us-
ability. For instance, existing unsupervised NMT
systems obtain between 15-16 BLEU points in
WMT 2014 English-French translation, whereas
a state-of-the-art NMT system obtains around 41
(Artetxe et al., 2018c; Lample et al., 2018; Yang
et al., 2018).

In this paper, we explore whether the rigid and
modular nature of SMT is more suitable for these
unsupervised settings, and propose a novel un-
supervised SMT system that can be trained on
monolingual corpora alone. For that purpose,
we present a natural extension of the skip-gram
model (Mikolov et al., 2013b) that simultaneously
learns word and phrase embeddings, which are
then mapped to a cross-lingual space through self-
learning (Artetxe et al., 2018b). We use the re-
sulting cross-lingual phrase embeddings to induce
a phrase table, and combine it with a language
model and a distance-based distortion model to
build a standard phrase-based SMT system. The
weights of this model are tuned in an unsupervised
manner through an iterative Minimum Error Rate
Training (MERT) variant, and the entire system
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Figure 1: Architecture of our system, with references to sections.

is further improved through iterative backtransla-
tion. The architecture of the system is sketched
in Figure 1. Our experiments on WMT German-
English and French-English datasets show the ef-
fectiveness of our proposal, where we obtain im-
provements above 7-10 BLEU points over previ-
ous unsupervised NMT-based approaches, closing
the gap with supervised SMT (Moses trained on
Europarl) down to 2-5 points.

The remaining of this paper is structured as fol-
lows. Section 2 introduces phrase-based SMT.
Section 3 presents our unsupervised approach to
learn cross-lingual n-gram embeddings, which are
the basis of our proposal. Section 4 describes the
proposed unsupervised SMT system itself, while
Section 5 discusses its iterative refinement through
backtranslation. Section 6 describes the experi-
ments run and the results obtained. Section 7 dis-
cusses the related work on the topic, and Section 8
concludes the paper.

2 Background: phrase-based SMT
While originally motivated as a noisy channel
model (Brown et al., 1990), phrase-based SMT
is now formulated as a log-linear combination
of several statistical models that score translation
candidates (Koehn et al., 2003). The parame-
ters of these scoring functions are estimated in-
dependently based on frequency counts, and their
weights are then tuned in a separate validation set.
At inference time, a decoder tries to find the trans-
lation candidate with the highest score according
to the resulting combined model. The specific
scoring models found in a standard SMT system
are as follows:

• Phrase table. The phrase table is a collec-
tion of source language n-grams and a list of
their possible translations in the target lan-
guage along with different scores for each of

them. So as to translate longer sequences, the
decoder combines these partial n-gram trans-
lations, and ranks the resulting candidates ac-
cording to their corresponding scores and the
rest of scoring functions. In order to build
the phrase table, SMT computes word align-
ments in both directions from a parallel cor-
pus, symmetrizes these alignments using dif-
ferent heuristics (Och and Ney, 2003), ex-
tracts the set of consistent phrase pairs, and
scores them based on frequency counts. For
that purpose, standard SMT uses 4 scores for
each phrase table entry: the direct and inverse
lexical weightings, which are derived from
word level alignments, and the direct and in-
verse phrase translation probabilities, which
are computed at the phrase level.

• Language model. The language model as-
signs a probability to a word sequence in the
target language. Traditional SMT uses n-
gram language models for that, which use
simple frequency counts over a large mono-
lingual corpus with back-off and smoothing.

• Reordering model. The reordering model
accounts for different word orders across lan-
guages, scoring translation candidates ac-
cording to the position of each translated
phrase in the target language. Standard
SMT combines two such models: a distance
based distortion model that penalizes devia-
tion from a monotonic order, and a lexical re-
ordering model that incorporates phrase ori-
entation frequencies from a parallel corpus.

• Word and phrase penalties. The word and
phrase penalties assign a fixed score to every
generated word and phrase, and are useful to
control the length of the output text and the
preference for shorter or longer phrases.

3633



Having trained all these different models, a tuning
process is applied to optimize their weights in the
resulting log-linear model, which typically max-
imizes some evaluation metric in a separate val-
idation parallel corpus. A common choice is to
optimize the BLEU score through Minimum Error
Rate Training (MERT) (Och, 2003).

3 Cross-lingual n-gram embeddings
Section 3.1 presents our proposed extension of
skip-gram to learn n-gram embeddings, while Sec-
tion 3.2 describes how we map them to a shared
space to obtain cross-lingual n-gram embeddings.

3.1 Learning n-gram embeddings
Negative sampling skip-gram takes word-context
pairs (w, c), and uses logistic regression to predict
whether the pair comes from the true distribution
as sampled from the training corpus, or it is one
of the k draws from a noise distribution (Mikolov
et al., 2013b):

log � (w · c) +
kX

i=1

EcN⇠PD [log � (�w · cN )]

In its basic formulation, both w and c corre-
spond to words that co-occur within a certain win-
dow in the training corpus. So as to learn em-
beddings for non-compositional phrases like New
York Times or Toronto Maple Leafs, Mikolov et al.
(2013b) propose to merge them into a single token
in a pre-processing step. For that purpose, they use
a scoring function based on their co-occurence fre-
quency in the training corpus, with a discounting
coefficient � that penalizes rare words, and itera-
tively merge those above a threshold:

score(wi, wj) =
count (wi, wj)� �

count (wi)⇥ count (wj)

However, we also need to learn representations
for compositional n-grams in our scenario, as there
is not always a 1:1 correspondence for n-grams
across languages even for compositional phrases.
For instance, the phrase he will come would typi-
cally be translated as vendrá into Spanish, so one
would need to represent the entire phrase as a sin-
gle unit to properly model this relation.

One option would be to merge all n-grams re-
gardless of their score, but this is not straightfor-
ward given their overlapping nature, which is fur-
ther accentuated when considering n-grams of dif-
ferent lengths. While we tried to randomly gen-
erate multiple consistent segmentations for each

sentence and train the embeddings over the result-
ing corpus, this worked poorly in our preliminary
experiments. We attribute this to the complex in-
teractions arising from the stochastic segmentation
(e.g. the co-occurrence distribution changes rad-
ically, even for unigrams), severely accentuating
the sparsity problem, among other issues.

As an alternative approach, we propose a gen-
eralization of skip-gram that learns n-gram em-
beddings on-the-fly, and has the desirable property
of unigram invariance: our proposed model learns
the exact same embeddings as the original skip-
gram for unigrams, while simultaneously learning
additional embeddings for longer n-grams. This
way, for each word-context pair (w, c) at distance
d within the given window, we update their corre-
sponding embeddings w and c with the usual neg-
ative sampling loss. In addition to that, we look
at all n-grams p of different lengths that are at the
same distance d, and for each pair (p, c), we up-
date the embedding p through negative sampling.
In order to enforce unigram invariance, the context
c and negative samples cN , which always corre-
spond to unigrams, are not updated for (p, c). This
allows to naturally learn n-gram embeddings ac-
cording to their co-occurrence patterns as modeled
by skip-gram, without introducing subtle interac-
tions that affect its fundamental behavior.

We implemented the above procedure as an ex-
tension of word2vec, and use it to train monolin-
gual n-gram embeddings with a window size of 5,
300 dimensions, 10 negative samples, 5 iterations
and subsampling disabled. So as to keep the model
size within a reasonable limit, we restrict the vo-
cabulary to the most frequent 200,000 unigrams,
400,000 bigrams and 400,000 trigrams.

3.2 Cross-lingual mapping

Cross-lingual mapping methods take indepen-
dently trained word embeddings in two languages,
and learn a linear transformation to map them
to a shared cross-lingual space (Mikolov et al.,
2013a; Artetxe et al., 2018a). Most mapping meth-
ods are supervised, and rely on a bilingual dic-
tionary, typically in the range of a few thousand
entries, although a recent line of work has man-
aged to achieve comparable results in a fully un-
supervised manner based on either self-learning
(Artetxe et al., 2017, 2018b) or adversarial train-
ing (Zhang et al., 2017a,b; Conneau et al., 2018).

In our case, we use the method of Artetxe et al.
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(2018b) to map the n-gram embeddings to a shared
cross-lingual space using their open source im-
plementation VecMap1. Originally designed for
word embeddings, this method builds an initial
mapping by connecting the intra-lingual similarity
distribution of embeddings in different languages,
and iteratively improves this solution through self-
learning. The method applies a frequency-based
vocabulary cut-off, learning the mapping over the
20,000 most frequent words in each language. We
kept this cut-off to learn the mapping over the most
frequent 20,000 unigrams, and then apply the re-
sulting mapping to the entire embedding space, in-
cluding longer n-grams.

4 Unsupervised SMT

As discussed in Section 2, phrase-based SMT
follows a modular architecture that combines
several scoring functions through a log-linear
model. Among the scoring functions found in
standard SMT systems, the distortion model and
word/phrase penalties are parameterless, while the
language model is trained on monolingual cor-
pora, so they can all be directly integrated into our
unsupervised system. From the remaining mod-
els, typically trained on parallel corpora, we de-
cide to leave the lexical reordering out, as the dis-
tortion model already accounts for word reorder-
ing. As for the phrase table, we learn cross-lingual
n-gram embeddings as discussed in Section 3, and
use them to induce and score phrase translation
pairs as described next (Section 4.1). Finally, we
tune the weights of the resulting log-linear model
using an unsupervised procedure based on back-
translation (Section 4.2).

Unless otherwise specified, we use Moses2 with
default hyperparameters to implement these differ-
ent components of our system. We use KenML
(Heafield et al., 2013), bundled in Moses by de-
fault, to estimate our 5-gram language model with
modified Kneser-Ney smoothing, pruning n-grams
longer than 3 with a single occurrence.

4.1 Phrase table induction
Given the lack of a parallel corpus from which to
extract phrase translation pairs, every n-gram
in the target language could be taken as a poten-
tial translation candidate for each n-gram in the
source language. So as to keep the size of the

1https://github.com/artetxem/vecmap
2http://www.statmt.org/moses/

phrase table within a reasonable limit, we train
cross-lingual phrase embeddings as described in
Section 3, and limit the translation candidates for
each source phrase to its 100 nearest neighbors in
the target language.

In order to estimate their corresponding phrase
translation probabilities, we apply the softmax
function over the cosine similarities of their re-
spective embeddings. More concretely, given the
source language phrase ē and the translation can-
didate f̄ , their direct phrase translation probability
is computed as follows3:

�(f̄ |ē) =
cos(ē, f̄)/⌧P
f̄ 0 cos(ē, f̄ 0)/⌧

Note that, in the above formula, f̄ 0 iterates across
all target language embeddings, and ⌧ is a con-
stant temperature parameter that controls the con-
fidence of the predictions. In order to tune it, we
induce a dictionary over the cross-lingual embed-
dings themselves with nearest neighbor retrieval,
and use maximum likelihood estimation over it.
However, inducing the dictionary in the same di-
rection as the probability predictions leads to a de-
generated solution (softmax approximates the hard
maximum underlying nearest neighbor as ⌧ ap-
proaches 0), so we induce the dictionary in the
opposite direction and apply maximum likelihood
estimation over it:

min
⌧

X

f̄

log �(f̄ | NNē(f̄))+
X

ē

log �(ē| NNf̄ (ē))

So as to optimize ⌧ , we use Adam with a learn-
ing rate of 0.0003 and a batch size of 200, imple-
mented in PyTorch.

In order to compute the lexical weightings, we
align each word in the target phrase with the one
in the source phrase most likely generating it,
and take the product of their respective translation
probabilities:

lex(f̄ |ē) =
Y

i

max

✓
✏, max

j
w(f̄i|ēj)

◆

The constant ✏ guarantees that each target lan-
guage word will get a minimum probability mass,
which is useful to model NULL alignments. In our
experiments, we set ✏ = 0.001, which we find to

3The inverse phrase translation probability �(ē|f̄) is de-
fined analogously.
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Algorithm 1 Unsupervised tuning
Input: ms!t (source-to-target models)
Input: mt!s (target-to-source models)
Input: cs (source validation corpus)
Input: ct (target validation corpus)
Output: ws!t (source-to-target weights)
Output: wt!s (target-to-source weights)

1: wt!s  DEFAULT_WEIGHTS
2: repeat
3: bts  TRANSLATE(mt!s, wt!s, ct)
4: ws!t  MERT(ms!t, bts, ct)
5: btt  TRANSLATE(ms!t, ws!t, cs)
6: wt!s  MERT(mt!s, btt, cs)
7: until convergence

work well in practice. Finally, the word transla-
tion probabilities w(f̄i|ēj) are computed using the
same formula defined for phrase translation prob-
abilities (see above), with the difference that the
partition function goes over unigrams only.

4.2 Unsupervised tuning
As discussed in Section 2, standard SMT uses
MERT over a small parallel corpus to tune the
weights of the different scoring functions com-
bined through its log-linear model. Given that we
only have access to monolingual corpora in our
scenario, we propose to generate a synthetic paral-
lel corpus through backtranslation (Sennrich et al.,
2016) and apply MERT tuning over it, iteratively
repeating the process in both directions (see Al-
gorithm 1). For that purpose, we reserve a random
subset of 10,000 sentences from each monolingual
corpora, and run the proposed algorithm over them
for 10 iterations, which we find to be enough for
convergence.

5 Iterative refinement

The procedure described in Section 4 suffices to
train an SMT system from monolingual corpora
which, as shown by our experiments in Section
6, already outperforms previous unsupervised sys-
tems. Nevertheless, our proposed method still
makes important simplifications that could com-
promise its potential performance: it does not use
any lexical reordering model, its phrase table is
limited by the underlying embedding vocabulary
(e.g. it does not include phrases longer than tri-
grams, see Section 3.1), and the phrase translation
probabilities and lexical weightings are estimated
based on cross-lingual embeddings.

Algorithm 2 Iterative refinement
Input: cs (source language corpus)
Input: ct (target language corpus)
Input/Output: mt!s (target-to-source models)
Input/Output: wt!s (target-to-source weights)
Output: ms!t (source-to-target models)
Output: ws!t (source-to-target weights)

1: trains, vals  SPLIT(cs)
2: traint, valt  SPLIT(ct)
3: repeat
4: btts  TRANSLATE(mt!s, wt!s, traint)
5: btvs  TRANSLATE(mt!s, wt!s, valt)
6: ms!t  TRAIN(btts, traint)
7: ws!t  MERT(ms!t, btvs, valt)
8: bttt  TRANSLATE(ms!t, ws!t, trains)
9: btvt  TRANSLATE(ms!t, ws!t, vals)

10: mt!s  TRAIN(bttt, trains)
11: wt!s  MERT(mt!s, btvt, vals)
12: until convergence

In order to overcome these limitations, we pro-
pose an iterative refinement procedure based on
backtranslation (Sennrich et al., 2016). More con-
cretely, we generate a synthetic parallel corpus by
translating the monolingual corpus in one of the
languages with the initial system, and train and
tune a standard SMT system over it in the oppo-
site direction. Note that this new system does not
have any of the initial restrictions: the phrase table
is built and scored using standard word alignment
with an unconstrained vocabulary, and a lexical re-
ordering model is also learned. Having done that,
we use the resulting system to translate the mono-
lingual corpus in the other language, and train an-
other SMT system over it in the other direction. As
detailed in Algorithm 2, this process is repeated it-
eratively until some convergence criterion is met.

While this procedure would be expected to pro-
duce a more accurate model at each iteration, it
also happens to be very expensive computation-
ally. In order to accelerate our experiments, we
use a random subset of 2 million sentences from
each monolingual corpus for training4, in addition
to the 10,000 separate sentences that are held out
as a validation set for MERT tuning, and perform
a fixed number of 3 iterations of the above algo-
rithm. Moreover, we use FastAlign (Dyer et al.,
2013) instead of GIZA++ to make word alignment
faster. Other than that, training over the synthetic

4Note that we reuse the original language model, which is
trained in the full corpus.
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WMT-14 WMT-16

FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE

Artetxe et al. (2018c) 15.56 15.13 10.21 6.55 - -
Lample et al. (2018) 14.31 15.05 - - 13.33 9.64
Yang et al. (2018) 15.58 16.97 - - 14.62 10.86

Proposed system 25.87 26.22 17.43 14.08 23.05 18.23

Table 1: Results of the proposed method in comparison to existing unsupervised NMT systems (BLEU).

parallel corpus is done through standard Moses
tools with default settings.

6 Experiments and results

In order to make our experiments comparable to
previous work, we use the French-English and
German-English datasets from the WMT 2014
shared task. As discussed throughout the pa-
per, our system is trained on monolingual cor-
pora alone, so we take the concatenation of
all News Crawl monolingual corpora from 2007
to 2013 as our training data, which we tok-
enize and truecase using standard Moses tools.
The resulting corpus has 749 million tokens in
French, 1,606 million tokens in German, and
2,109 million tokens in English. Following com-
mon practice, the systems are evaluated in new-
stest2014 using tokenized BLEU scores as com-
puted by the multi-bleu.perl script in-
cluded in Moses. In addition to that, we also
report results in German-English newstest2016
(from WMT 2016), as this was used by some pre-
vious work in unsupervised NMT (Lample et al.,
2018; Yang et al., 2018)5. So as to be faithful to
our target scenario, we did not use any parallel
data in these language pairs, not even for devel-
opment purposes. Instead, we ran all our prelimi-
nary experiments on WMT Spanish-English data,
where we made all development decisions.

We present the results of our final system in
comparison to other previous work in Section 6.1.
Section 6.2 then presents an ablation study of our
proposed method, where we analyze the contribu-
tion of its different components. Section 6.3 com-
pares the obtained results to those of different su-
pervised systems, analyzing the effect of some of
the inherent limitations of our method in a stan-

5Note that we use the same model trained in WMT 2014
for these experiments, so it is likely that our results could
be further improved by using the more extensive data from
WMT 2016.

dard phrase-based SMT system. Finally, Section
6.4 presents some translation examples from our
system.

6.1 Main results
We report the results obtained by our proposed
system in Table 1. As it can be seen, our system
obtains the best published results by a large mar-
gin, surpassing previous unsupervised NMT sys-
tems by around 10 BLEU points in French-English
(both directions), and more than 7 BLEU points in
German-English (both directions and datasets).

This way, while previous progress in the task
has been rather incremental (Yang et al., 2018),
our work represents an important step towards
high-quality unsupervised machine translation,
with improvements over 50% in all cases. This
suggests that, in contrast to previous NMT-based
approaches, phrase-based SMT may provide a
more suitable framework for unsupervised ma-
chine translation, which is in line with previ-
ous results in low-resource settings (Koehn and
Knowles, 2017).

6.2 Ablation analysis
We present ablation results of our proposed system
in Table 2. The first row corresponds to the initial
system with our induced phrase table (Section 4.1)
and default weights as used by Moses, whereas
the second row uses our unsupervised MERT pro-
cedure to tune these weights (Section 4.2). The
remaining rows represent different iterations of
our refinement procedure (Section 5), which uses
backtranslation to iteratively train a standard SMT
system from a synthetic parallel corpus.

The results show that the initial system with de-
fault weights (first row) is already better than pre-
vious unsupervised NMT systems (Table 1) by a
substantial margin (2-6 BLEU points). Our un-
supervised tuning procedure further improves re-
sults, bringing an improvement of over 1 BLEU
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WMT-14 WMT-16

FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE

Unsupervised SMT 21.16 20.13 13.86 10.59 18.01 13.22
+ unsupervised tuning 22.17 22.22 14.73 10.64 18.21 13.12
+ iterative refinement (it1) 24.81 26.53 16.01 13.45 20.76 16.94
+ iterative refinement (it2) 26.13 26.57 17.30 13.95 22.80 18.18
+ iterative refinement (it3) 25.87 26.22 17.43 14.08 23.05 18.23

Table 2: Ablation results (BLEU). The last row corresponds to our full system. Refer to the text for more details.

WMT-14 WMT-16

FR-EN EN-FR DE-EN EN-DE DE-EN EN-DE

Supervised

NMT (transformer) - 41.8 - 28.4 - -

WMT best 35.0 35.8 29.0 20.6 40.2 34.2

SMT (europarl) 30.61 30.82 20.83 16.60 26.38 22.12
+ w/o lexical reord. 30.54 30.33 20.37 16.34 25.99 22.20
+ constrained vocab. 30.04 30.10 19.91 16.32 25.66 21.53
+ unsup. tuning 29.32 29.46 17.75 15.45 23.35 19.86

Unsup. Proposed system 25.87 26.22 17.43 14.08 23.05 18.23

Table 3: Results of the proposed method in comparison to supervised systems (BLEU). Transformer results re-
ported by Vaswani et al. (2017). SMT variants are incremental (e.g. 2nd includes 1st). Refer to the text for more
details.

point in both French-English directions, although
its contribution is somewhat weaker for German-
to-English (almost 1 BLEU point in WMT 2014
but only 0.2 in WMT 2016), and does not make
any difference for English-to-German.

The proposed iterative refinement method has a
much stronger positive effect, with improvements
over 2.5 BLEU points in all cases, and up to 5
BLEU points in some. Most gains come in the
first iteration, while the second iteration brings
weaker improvements and the algorithm seems to
converge in the third iteration, with marginal im-
provements for German-English and a small drop
in performance for French-English.

6.3 Comparison with supervised systems

So as to put our results into perspective, Table 3
comprises the results of different supervised meth-
ods in the same test sets. More concretely, we re-
port the results of the Transformer (Vaswani et al.,
2017), an NMT system based on self-attention that
is the current state-of-the-art in machine transla-
tion, along with the scores obtained by the best
performing system in each WMT shared task at

the time, and those of a standard phrase-based
SMT system trained on Europarl and tuned on
newstest2013 using Moses. We also report the ef-
fect of removing lexical reordering from the latter
as we do in our initial system (Section 4), restrict-
ing the vocabulary to the most frequent unigram,
bigram and trigrams as we do when training our
embeddings (Section 3), and using our unsuper-
vised tuning procedure over a subset of the mono-
lingual corpus (Section 4.2) instead of using stan-
dard MERT tuning over newstest2013.

Quite surprisingly, our proposed system, trained
exclusively on monolingual corpora, is relatively
close to a comparable phrase-based SMT sys-
tem trained on Europarl, with differences below
5 BLEU points in all cases and as little as 2.5 in
some. Note that both systems use the exact same
language model trained on News Crawl, making
them fully comparable in terms of the monolin-
gual corpora they have access to. While more
of a baseline than the state-of-the-art, note that
Moses+Europarl is widely used as a reference sys-
tem in machine translation. As such, we think
that our results are very encouraging, as they show
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Source Reference Proposed system

D’autres révélations ont fait état de
documents divulgués par Snowden
selon lesquels la NSA avait intercepté
des données et des communications
émanant du téléphone portable de la
chancelière allemande Angela Merkel
et de ceux de 34 autres chefs d’État.

Other revelations cited documents
leaked by Snowden that the NSA
monitored German Chancellor An-
gela Merkel’s cellphone and those of
up to 34 other world leaders.

Other disclosures have reported doc-
uments disclosed by Snowden sug-
gested the NSA had intercepted com-
munications and data from the mobile
phone of German Chancellor Angela
Merkel and those of 32 other heads of
state.

La NHTSA n’a pas pu examiner la let-
tre d’information aux propriétaires en
raison de l’arrêt de 16 jours des activ-
ités gouvernementales, ce qui a ralenti
la croissance des ventes de véhicules
en octobre.

NHTSA could not review the owner
notification letter due to the 16-day
government shutdown, which tem-
pered auto sales growth in October.

The NHTSA could not consider the
letter of information to owners be-
cause of halting 16-day government
activities, which slowed the growth in
vehicle sales in October.

Le M23 est né d’une mutinerie, en
avril 2012, d’anciens rebelles, essen-
tiellement tutsi, intégrés dans l’armée
en 2009 après un accord de paix.

The M23 was born of an April 2012
mutiny by former rebels, principally
Tutsis who were integrated into the
army in 2009 following a peace agree-
ment.

M23 began as a mutiny in April 2012,
former rebels, mainly Tutsi integrated
into the national army in 2009 after a
peace deal.

Tunks a déclaré au Sunday Telegraph
de Sydney que toute la famille était
«extrêmement préoccupée» du bien-
être de sa fille et voulait qu’elle rentre
en Australie.

Tunks told Sydney’s Sunday Tele-
graph the whole family was “ex-
tremely concerned” about his daugh-
ter’s welfare and wanted her back in
Australia.

Tunks told The Times of London from
Sydney that the whole family was “ex-
tremely concerned” of the welfare of
her daughter and wanted it to go in
Australia.

Table 4: Randomly chosen translation examples from French!English newstest2014.

that our fully unsupervised system is already quite
close to this competitive baseline.

In addition to that, the results for the constrained
variants of this SMT system justify some of the
simplifications required by our approach. In par-
ticular, removing lexical reordering and constrain-
ing the phrase table to the most frequent n-grams,
as we do for our initial system, has a relatively
small effect, with a drop of less than 1 BLEU point
in all cases, and as little as 0.28 in some. Replac-
ing standard MERT tuning with our unsupervised
variant does cause a considerable drop in perfor-
mance, although it is below 2.5 BLEU points even
in the worst case, and our unsupervised tuning
method is still better than using default weights as
reported in Table 2. This shows the importance of
tuning in SMT, suggesting that these results could
be further improved if one had access to a small
parallel corpus for tuning.

6.4 Qualitative results

Table 4 shows some of the translations produced
by the proposed system for French!English.
Note that these examples where randomly taken
from the test set, so they should be representative
of the general behavior of our approach.

While the examples reveal certain adequacy is-
sues (e.g. The Times of London from Sidney in-

stead of Sydney’s Sunday Telegraph), and the pro-
duced output is not perfectly grammatical (e.g.
go in Australia), our translations are overall quite
accurate and fluent, and one could get a reason-
able understanding of the original text from them.
This suggests that unsupervised machine transla-
tion can indeed be a usable alternative in low re-
source settings.

7 Related work

Similar to our approach, statistical decipherment
also attempts to build machine translation sys-
tems from monolingual corpora. For that pur-
pose, existing methods treat the source language
as ciphertext, and model its generation through
a noisy channel model involving two steps: the
generation of the original English sentence and
the probabilistic replacement of the words in it
(Ravi and Knight, 2011; Dou and Knight, 2012).
The English generative process is modeled us-
ing an n-gram language model, and the chan-
nel model parameters are estimated using either
expectation maximization or Bayesian inference.
Subsequent work has attempted to enrich these
models with additional information like syntactic
knowledge (Dou and Knight, 2013) and word em-
beddings (Dou et al., 2015). Nevertheless, these
systems work in a word-by-word basis and have
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only been shown to work in limited settings, being
often evaluated in word-level translation. In con-
trast, our method builds a fully featured phrase-
based SMT system, and achieves competitive per-
formance in a standard machine translation task.

More recently, Artetxe et al. (2018c) and Lam-
ple et al. (2018) have managed to train a standard
attentional encoder-decoder NMT system from
monolingual corpora alone. For that purpose, they
use a shared encoder for both languages with pre-
trained cross-lingual embeddings, and train the
entire system using a combination of denoising,
backtranslation and, in the case of Lample et al.
(2018), adversarial training. This method was fur-
ther improved by Yang et al. (2018), who use a
separate encoder for each language, sharing only
a subset of their parameters, and incorporate two
generative adversarial networks. However, our re-
sults in Section 6.1 show that our SMT-based ap-
proach obtains substantially better results.

Our method is also connected to some previous
approaches to improve machine translation using
monolingual corpora. In particular, the generation
of a synthetic parallel corpus through backtransla-
tion (Sennrich et al., 2016), which is a key compo-
nent of our unsupervised tuning and iterative re-
finement procedures, has been previously used to
improve NMT. In addition, there have been sev-
eral proposals to extend the phrase table of SMT
systems by inducing translation candidates and/or
scores from monolingual corpora, using either sta-
tistical decipherment methods (Dou and Knight,
2012, 2013) or cross-lingual embeddings (Zhao
et al., 2015; Wang et al., 2016). While all these
methods exploit monolingual corpora to enhance
an existing machine translation system previously
trained on parallel corpora, our approach learns
a fully featured phrase-based SMT system from
monolingual corpora alone.

8 Conclusions and future work

In this paper, we propose a novel unsupervised
SMT system that can be trained on monolingual
corpora alone. For that purpose, we extend the
skip-gram model (Mikolov et al., 2013b) to si-
multaneously learn word and phrase embeddings,
and map them to a cross-lingual space adapting
previous unsupervised techniques (Artetxe et al.,
2018b). The resulting cross-lingual phrase embed-
dings are used to induce a phrase table, which cou-
pled with an n-gram language model and distance-

based distortion yields an unsupervised phrase-
based SMT system. We further improve results
tuning the weights with our unsupervised MERT
variant, and obtain additional improvements re-
training the entire system through iterative back-
translation. Our implementation is available as
an open source project at https://github.
com/artetxem/monoses.

Our experiments on standard WMT French-
English and German-English datasets confirm the
effectiveness of our proposal, where we obtain im-
provements above 10 and 7 BLEU points over pre-
vious NMT-based approaches, respectively, clos-
ing the gap with supervised SMT (Moses trained
on Europarl) down to 2-5 points.

In the future, we would like to extend our ap-
proach to semi-supervised scenarios with small
parallel corpora, which we expect to be particu-
larly helpful for tuning purposes. Moreover, we
would like to try a hybrid approach with NMT,
using our unsupervised SMT system to generate
a synthetic parallel corpus and training an NMT
system over it through iterative backtranslation.
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Abstract

We introduce a novel multimodal machine
translation model that utilizes parallel visual
and textual information. Our model jointly
optimizes the learning of a shared visual-
language embedding and a translator. The
model leverages a visual attention ground-
ing mechanism that links the visual semantics
with the corresponding textual semantics. Our
approach achieves competitive state-of-the-art
results on the Multi30K and the Ambiguous
COCO datasets. We also collected a new
multilingual multimodal product description
dataset to simulate a real-world international
online shopping scenario. On this dataset, our
visual attention grounding model outperforms
other methods by a large margin.

1 Introduction

Multimodal machine translation is the problem of
translating sentences paired with images into a dif-
ferent target language (Elliott et al., 2016). In this
setting, translation is expected to be more accu-
rate compared to purely text-based translation, as
the visual context could help resolve ambiguous
multi-sense words. Examples of real-world appli-
cations of multimodal (vision plus text) translation
include translating multimedia news, web product
information, and movie subtitles.

Several previous endeavours (Huang et al.,
2016; Calixto et al., 2017a; Elliott and Kádár,
2017) have demonstrated improved translation
quality when utilizing images. However, how to
effectively integrate the visual information still re-
mains a challenging problem. For instance, in the
WMT 2017 multimodal machine translation chal-
lenge (Elliott et al., 2017), methods that incorpo-
rated visual information did not outperform pure
text-based approaches with a big margin.

In this paper, we propose a new model
called Visual Attention Grounding Neural Ma-

chine Translation (VAG-NMT) to leverage visual
information more effectively. We train VAG-NMT
with a multitask learning mechanism that simul-
taneously optimizes two objectives: (1) learn-
ing a translation model, and (2) constructing a
vision-language joint semantic embedding. In this
model, we develop a visual attention mechanism
to learn an attention vector that values the words
that have closer semantic relatedness with the vi-
sual context. The attention vector is then pro-
jected to the shared embedding space to initial-
ize the translation decoder such that the source
sentence words that are more related to the vi-
sual semantics have more influence during the de-
coding stage. When evaluated on the benchmark
Multi30K and the Ambiguous COCO datasets,
our VAG-NMT model demonstrates competitive
performance compared to existing state-of-the-art
multimodal machine translation systems.

Another important challenge for multimodal
machine translation is the lack of a large-scale,
realistic dataset. To our knowledge, the only
existing benchmark is Multi30K (Elliott et al.,
2016), which is based on an image captioning
dataset, Flickr30K (Young et al., 2014) with man-
ual German and French translations. There are
roughly 30K parallel sentences, which is rela-
tively small compared to text-only machine trans-
lation datasets that have millions of sentences such
as WMT14 EN!DE. Therefore, we propose a
new multimodal machine translation dataset called
IKEA to simulate the real-world problem of trans-
lating product descriptions from one language to
another. Our IKEA dataset is a collection of paral-
lel English, French, and German product descrip-
tions and images from IKEA’s and UNIQLO’s
websites. We have included a total of 3,600 prod-
ucts so far and will include more in the future.
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2 Related Work

In the machine translation literature, there are two
major streams for integrating visual information:
approaches that (1) employ separate attention for
different (text and vision) modalities, and (2) fuse
visual information into the NMT model as part of
the input. The first line of work learns independent
context vectors from a sequence of text encoder
hidden states and a set of location-preserving vi-
sual features extracted from a pre-trained convnet,
and both sets of attentions affect the decoder’s
translation (Calixto et al., 2017a; Helcl and Li-
bovický, 2017). The second line of work instead
extracts a global semantic feature and initializes
either the NMT encoder or decoder to fuse the
visual context (Calixto et al., 2017b; Ma et al.,
2017). While both approaches demonstrate sig-
nificant improvement over their Text-Only NMT
baselines, they still perform worse than the best
monomodal machine translation system from the
WMT 2017 shared task (Zhang et al., 2017).

The model that performs best in the multimodal
machine translation task employed image context
in a different way. (Huang et al., 2016) combine
region features extracted from a region-proposal
network (Ren et al., 2015) with the word sequence
feature as the input to the encoder, which leads to
significant improvement over their NMT baseline.
The best multimodal machine translation system
in WMT 2017 (Caglayan et al., 2017) performs
element-wise multiplication of the target language
embedding with an affine transformation of the
convnet image feature vector as the mixed input
to the decoder. While this method outperforms all
other methods in WMT 2017 shared task work-
shop, the advantage over the monomodal transla-
tion system is still minor.

The proposed visual context grounding process
in our model is closely related to the literature on
multimodal shared space learning. (Kiros et al.,
2014) propose a neural language model to learn
a visual-semantic embedding space by optimizing
a ranking objective, where the distributed repre-
sentation helps generate image captions. (Karpa-
thy and Li, 2014) densely align different objects in
the image with their corresponding text captions in
the shared space, which further improves the qual-
ity of the generated caption. In later work, multi-
modal shared space learning was extended to mul-
timodal multilingual shared space learning. (Cal-
ixto et al., 2017c) learn a multi-modal multilin-

gual shared space through optimization of a mod-
ified pairwise contrastive function, where the ex-
tra multilingual signal in the shared space leads to
improvements in image-sentence ranking and se-
mantic textual similarity task. (Gella et al., 2017)
extend the work from (Calixto et al., 2017c) by
using the image as the pivot point to learn the
multilingual multimodal shared space, which does
not require large parallel corpora during train-
ing. Finally, (Elliott and Kádár, 2017) is the first
to integrate the idea of multimodal shared space
learning to help multimodal machine translation.
Their multi-task architecture called “imagination”
shares an encoder between a primary task of the
classical encoder-decoder NMT and an auxiliary
task of visual feature reconstruction.

Our VAG-NMT mechanism is inspired by (El-
liott and Kádár, 2017), but has important differ-
ences. First, we modify the auxiliary task as a
visual-text shared space learning objective instead
of the simple image reconstruction objective. Sec-
ond, we create a visual-text attention mechanism
that captures the words that share a strong seman-
tic meaning with the image, where the grounded
visual-context has more impact on the transla-
tion. We show that these enhancements lead to im-
provement in multimodal translation quality over
(Elliott and Kádár, 2017).

Figure 1: An overview of the VAG-NMT structure

3 Visual Attention Grounding NMT

Given a set of parallel sentences in language X
and Y , and a set of corresponding images V paired
with each sentence pair, the model aims to trans-
late sentences {xi}N

i=1 2 X in language X to sen-
tences {yi}N

i=1 2 Y in language Y with the assis-
tance of images {vi}N

i=1 2 V .
We treat the problem of multimodal machine
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translation as a joint optimization of two tasks: (1)
learning a robust translation model and (2) con-
structing a visual-language shared embedding that
grounds the visual semantics with text. Figure 1
shows an overview of our VAG-NMT model. We
adopt a state-of-the-art attention-based sequence-
to-sequence structure (Bahdanau et al., 2014) for
translation. For the joint embedding, we obtain
the text representation using a weighted sum of
hidden states from the encoder of the sequence-
to-sequence model and we obtain the image rep-
resentation from a pre-trained convnet. We learn
the weights using a visual attention mechanism,
which represents the semantic relatedness between
the image and each word in the encoded text. We
learn the shared space with a ranking loss and the
translation model with a cross entropy loss.

The joint objective function is defined as:

J(✓T , �V ) = ↵JT (✓T ) + (1� ↵)JV (�V ),
(1)

where JT is the objective function for the
sequence-to-sequence model, JV is the objective
function for joint embedding learning, ✓T are the
parameters in the translation model, and �V are
the parameters for the shared vision-language em-
bedding learning, and ↵ determines the contribu-
tion of the machine translation loss versus the vi-
sual grounding loss. Both JT and JV share the pa-
rameters of the encoder from the neural machine
translation model. We describe details of the two
objective functions in Section 3.2.

3.1 Encoder

We first encode an n-length source sentence {x},
as a sequence of tokens x = {x1, x2, . . . , xn},
with a bidirectional GRU (Schuster and Paliwal,
1997; Cho et al., 2014). Each token is repre-
sented by a one-hot vector, which is then mapped
into an embedding ei through a pre-trained em-
bedding matrix. The bidirectional GRU processes
the embedding tokens in two directions: left-to-
right (forward) and right-to-left (backward). At
every time step, the encoder’s GRU cell gener-
ates two corresponding hidden state vectors:

�!
hi =����������!

GRU(hi�1, ei) and
 �
hi =

 ����������
GRU(hi�1, ei). The

two hidden state vectors are then concatenated to-
gether to serve as the encoder hidden state vector
of the source token at step i: hi = [

 �
hi ,
�!
hi ].

3.2 Shared embedding objective
After encoding the source sentence, we project
both the image and text into the shared space to
find a good distributed representation that can cap-
ture the semantic meaning across the two modali-
ties. Previous work has shown that learning a mul-
timodal representation is effective for grounding
knowledge between two modalities (Kiros et al.,
2014; Chrupala et al., 2015). Therefore, we expect
the shared encoder between the two objectives to
facilitate the integration of the two modalities and
positively influence translation during decoding.

To project the image and the source sentence
to a shared space, we obtain the visual embed-
ding (v) from the pool5 layer of ResNet50 (He
et al., 2015a) pre-trained on ImageNet classifica-
tion (Russakovsky et al., 2015), and the source
sentence embedding using the weighted sum of
encoder hidden state vectors ({hi}) to represent
the entire source sentence (t). We project each
{hi} to the shared space through an embedding
layer. As different words in the source sen-
tence will have different importance, we employ
a visual-language attention mechanism—inspired
by the attention mechanism applied in sequence-
to-sequence models (Bahdanau et al., 2014)—to
emphasize words that have the stronger semantic
connection with the image. For example, the high-
lighted word “cat" in the source sentence in Fig. 1
has the more semantic connection with the image.

Specifically, we produce a set of weights � =
{�1, �2, . . . , �n} with our visual-attention mech-
anism, where the attention weight �i for the i’th
word is computed as:

�i =
exp(zi)PN
l=1 exp(zl)

, (2)

and zi = tanh(Wvv) · tanh(Whhi) is computed
by taking the dot product between the transformed
encoder hidden state vector hi and the transformed
image feature vector v, and Wv and Wh are the
association transformation parameters.

Then, we can get a weighted sum of the en-
coder hidden state vectors t =

Pn
i=1 �ihi to repre-

sent the semantic meaning of the entire source sen-
tence. The next step is to project the source sen-
tence feature vector t and the image feature vec-
tor v into the same shared space. The projected
vector for text is: temb = tanh(Wtembt + btemb)
and the projected vector for image is: vemb =
tanh(Wvembv + bvemb).
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We follow previous work on visual semantic
embedding (Kiros et al., 2014) to minimize a pair-
wise ranking loss to learn the shared space:

JV (�V ) =
X

p

X

k

max{0, � � s(vp, tp) + s(vp, tk 6=p)}

+
X

k

X

p

max{0, � � s(tk, vk) + s(tk, vp 6=k)},

(3)
where � is a margin, and s is the cosine distance
between two vectors in the shared space. k and p
are the indexes of the images and text sentences,
respectively. tk 6=p and vp 6=k are the contrastive ex-
amples with respect to the selected image and the
selected source text, respectively. When the loss
decreases, the distance between a paired image
and sentence will drop while the distance between
an unpaired image and sentence will increase.

In addition to grounding the visual context into
the shared encoder through the multimodal shared
space learning, we also initialize the decoder with
the learned attention vector t such that the words
that have more relatedness with the visual seman-
tics will have more impact during the decoding
(translation) stage. However, we may not want to
solely rely on only a few most important words.
Thus, to produce the initial hidden state of the de-
coder, we take a weighted average of the attention
vector t and the mean of encoder hidden states:

s0 = tanh(Winit(�t + (1� �)
1

N

NX

i

hi)), (4)

where � determines the contribution from each
vector. Through our experiments, we find the best
value for � is 0.5.

3.3 Translation objective
During the decoding stage, at each time step j, the
decoder generates a decoder hidden state sj from
a conditional GRU cell (Sennrich et al., 2017)
whose input is the previously generated transla-
tion token yj�1, the previous decoder hidden state
sj�1, and the context vector cj at the current time
step:

sj = cGRU(sj�1, yj�1, cj) (5)

The context vector cj is a weighted sum of the en-
coder hidden state vectors, and captures the rele-
vant source words that the decoder should focus
on when generating the current translated token
yj . The weight associated with each encoder hid-
den state is determined by a feed-forward network.

From the hidden state sj we can predict the condi-
tional distribution of the next token yj with a fully-
connected layer Wo given the previous token’s lan-
guage embedding ej�1, the current hidden state dj

and the context vector for current step cj :

p(yj |yj�1, x) = softmax(Woot), (6)

where ot = tanh(Weej�1 + Wddj + Wccj). The
three inputs are transformed with We, Wd, and
Wc, respectively and then summed before being
fed into the output layer.

We train the translation objective by optimizing
a cross entropy loss function:

JT (✓T ) = �
X

j

log p(yj |yj�1, x) (7)

By optimizing the objective of the translation and
the multimodal shared space learning tasks jointly
along with the visual-language attention mecha-
nism, we can simultaneously learn a general map-
ping between the linguistic signals in two lan-
guages and grounding of relevant visual content
in the text to improve the translation.

4 IKEA Dataset

Previous available multimodal machine transla-
tion models are only tested on image caption
datasets, we, therefore, propose a new dataset,
IKEA, that has the real-world application of inter-
national online shopping. We create the dataset by
crawling commercial products’ descriptions and
images from IKEA and UNIQLO websites. There
are 3,600 products and we plan to expand the data
in the future. Each sample is composed of the
web-crawled English description of a product, an
image of the product, and the web-crawled Ger-
man or French description of the product.

Different than the image caption datasets, the
German or French sentences in the IKEA dataset
is not an exact parallel translation of its English
sentence. Commercial descriptions in different
languages can be vastly different in surface form
but still keep the core semantic meaning. We think
IKEA is a good data set to simulate real-world
multimodal translation problems. The sentence
in the IKEA dataset contains 60-70 words on av-
erage, which is five times longer than the aver-
age text length in Multi30K (Elliott et al., 2016).
These sentences not only describe the visual ap-
pearance of the product, but also the product us-
age. Therefore, capturing the connection between
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English! German English! French
Method BLEU METEOR BLEU METEOR
Imagination (Elliott and Kádár, 2017) 30.2 51.2 N/A N/A
LIUMCVC (Caglayan et al., 2017) 31.1 ± 0.7 52.2 ± 0.4 52.7 ± 0.9 69.5 ± 0.7
Text-Only NMT 31.6 ± 0.5 52.2 ± 0.3 53.5 ± 0.7 70.0 ± 0.7
VAG-NMT 31.6 ± 0.3 52.2 ± 0.3 53.8 ± 0.3 70.3 ± 0.5

Table 1: Translation results on the Multi30K dataset

English! German English! French
Method BLEU METEOR BLEU METEOR
Imagination (Elliott and Kádár, 2017) 28.0 48.1 N/A N/A
LIUMCVC (Caglayan et al., 2017) 27.1 ± 0.9 47.2 ± 0.6 43.5 ± 1.2 63.2 ± 0.9
Text-Only NMT 27.9 ± 0.6 47.8 ± 0.6 44.6 ± 0.6 64.2 ± 0.5
VAG-NMT 28.3 ± 0.6 48.0 ± 0.5 45.0 ± 0.4 64.7 ± 0.4

Table 2: Translation results on the Ambiguous COCO dataset

visual semantics and the text is more challenging
on this dataset. The dataset statistics and an exam-
ple of the IKEA dataset is in Appendix A.

5 Experiments and Results

5.1 Datasets
We evaluate our proposed model on three datasets:
Multi30K (Elliott et al., 2016), Ambiguous COCO
(Elliott et al., 2017), and our newly-collected
IKEA dataset. The Multi30K dataset is the largest
existing human-labeled dataset for multimodal
machine translation. It consists of 31,014 images,
where each image is annotated with an English
caption and manual translations of image captions
in German and French. There are 29,000 instances
for training, 1,014 instances for validation, and
1,000 for testing. Additionally, we also evalu-
ate our model on the Ambiguous COCO Dataset
collected in the WMT2017 multimodal machine
translation challenge (Elliott et al., 2017). It con-
tains 461 images from the MSCOCO dataset (Lin
et al., 2014), whose captions contain verbs with
ambiguous meanings.

5.2 Setting
We pre-process all English, French, and German
sentences by normalizing the punctuation, lower
casing, and tokenizing with the Moses toolkit. A
Byte-Pair-Encoding (BPE) (Sennrich et al., 2015)
operation with 10K merge operations is learned
from the pre-processed data and then applied to
segment words. We restore the original words by
concatenating the subwords segmented by BPE in

post-processing. During training, we apply early
stopping if there is no improvement in BLEU
score on validation data for 10 validation steps.
We apply beam search decoding to generate trans-
lation with beam size equal to 12. We evaluate the
performance of all models using BLEU (Papineni
et al., 2002) and METEOR (Denkowski and Lavie,
2014). The setting used in IKEA dataset is the
same as Multi30K, except that we lower the de-
fault batch size from 32 to 12; since IKEA dataset
has long sentences and large variance in sentence
length, we use smaller batches to make the train-
ing more stable. Full details of our hyperparame-
ter choices can be found in Appendix B. We run
all models five times with different random seeds
and report the mean and standard deviation.

5.3 Results
We compare the performance of our model against
the state-of-the-art multimodal machine transla-
tion approaches and the text-only baseline. The
idea of our model is inspired by the "Imagination"
model (Elliott and Kádár, 2017), which unlike
our models, simply averages the encoder hidden
states for visual grounding learning. As "Imagina-
tion" does not report its performance on Multi30K
2017 and Ambiguous COCO in its original paper,
we directly use their result reported in the WMT
2017 shared task as a comparison. LIUMCVC is
the best multimodal machine translation model in
WMT 2017 multimodal machine translation chal-
lenge and exploits visual information with several
different methods. We always compare our VAG-
NMT with the method that has been reported to
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English! German English! French
Method BLEU METEOR BLEU METEOR
LIUMCVC-Multi 59.9 ± 1.9 63.8 ± 0.4 58.4 ± 1.6 64.6 ± 1.8
Text-Only NMT 61.9 ± 0.9 65.6 ± 0.9 65.2 ± 0.7 69.0 ± 0.2
VAG-NMT 63.5 ± 1.2 65.7 ± 0.1 65.8 ± 1.2 68.9 ± 1.4

Table 3: Translation results on the IKEA dataset

have the best performance on each dataset.
Our VAG-NMT surpasses the results of the

“Imagination" model and the LIUMCVC’s model
by a noticeable margin in terms of BLEU score on
both the Multi30K dataset (Table 1) and the Am-
biguous COCO dataset (Table 2). The METEOR
score of our VAG-NMT is slightly worse than that
of "Imagination" for English -> German on Am-
biguous COCO Dataset. This is likely because the
“Imagination" result was produced by ensembling
the result of multiple runs, which typically leads to
1-2 higher BLEU and METEOR points compared
to a single run. Thus, we expect our VAG-NMT to
outperform the “Imagination" baseline if we also
use an ensemble.

We observe that our multimodal VAG-NMT
model has equal or slightly better result com-
pared to the text-only neural machine translation
model on the Multi30K dataset. On the Ambigu-
ous COCO dataset, our VAG-NMT demonstrates
clearer improvement over this text-only baseline.
We suspect this is because Multi30K does not have
many cases where images can help improve trans-
lation quality, as most of the image captions are
short and simple. In contrast, Ambiguous COCO
was purposely curated such that the verbs in the
captions can have ambiguous meaning. Thus, vi-
sual context will play a more important role in
Ambiguous COCO; namely, to help clarify the
sense of the source text and guide the translation
to select the correct word in the target language.

We then evaluate all models on the IKEA
dataset. Table 3 shows the results. Our VAG-
NMT has a higher value in BLEU and a compara-
ble value in METEOR compared to the Text-only
NMT baseline. Our VAG-NMT outperforms LI-
UMCVC’s multimodal system by a large margin,
which shows that the LIUMCVC’s multimodal’s
good performance on Multi30K does not general-
ize to this real-world product dataset. The good
performance may come from the visual attention
mechanism that learns to focus on text segments
that are related to the images. Such attention there-

fore teaches the decoder to apply the visual context
to translate those words. This learned attention is
especially useful for datasets with long sentences
that have irrelevant text information with respect
to the image.

(a) a cyclist is wearing a helmet

(b) a black dog and his favorite toys.

Figure 2: Top five images retrieved using the given
caption. The original corresponding image of the
caption is highlighted with a red bounding box.

5.4 Multimodal embedding results
To assess the learned joint embedding, we per-
form an image retrieval task evaluated using the
Recall@K metric (Kiros et al., 2014) on the
Multi30K dataset.

We project the image feature vectors V =
{v1, v2, . . . , vn} and their corresponding captions
S = {s1, s2, . . . , sn} into a shared space. We
follow the experiments conducted by the previ-
ous visual semantic embedding work (Kiros et al.,
2014), where for each embedded text vector, we
find the closest image vectors around it based
on the cosine similarity. Then we can compute
the recall rate of the paired image in the top K
nearest neighbors, which is also known as R@K
score. The shared space learned with VAG-NMT
achieves 64% R@1, 88.6% R@5, and 93.8%
R@10 on Multi30K, which demonstrates the good
quality of the learned shared semantics. We also
achieved 58.13% R@1, 87.38% R@5 and 93.74%
R@10 on IKEA dataset; 41.35% R@1, 85.48%
R@5 and 92.56% R@10 on COCO dataset. Be-
sides the quantitative results, we also show sev-
eral qualitative results in Figure 2. We show the
top five images retrieved by the example captions.

3648



a person is skiing or snowboarding
down a mountainside .

a mountain climber trekking through
the snow with a pick and a blue hat .

the snowboarder is jumping in the snow
.

two women are water rafting . three people in a blue raft on a river of
brown water .

people in rafts watch as two men fall out
of their own rafts .

Figure 3: Visual-text attention score on sample data from Multi30K. The first and second rows show the
three closest images to the caption a person is skiing or snowboarding down a mountainside and two
woman are water rafting, respectively. The original caption is listed under each image. We highlight the
three words with highest attention in red.

The images share "cyclist", "helmet", and "dog"
mentioned in the caption.

5.5 Human evaluation
We use Facebook to hire raters that speak both
German and English to evaluate German transla-
tion quality. As Text-Only NMT has the highest
BLEU results among all baseline models, we com-
pare the translation quality between the Text-Only
and the VAG-NMT on all three datasets. We ran-
domly selected 100 examples for evaluation for
each dataset. The raters are informed to focus
more on semantic meaning than grammatical cor-
rectness when indicating the preference of the two
translations. They are also given the option to
choose a tie if they cannot decide. We hired two
raters and the inter-annotator agreement is 0.82 in
Cohen’s Kappa.

We summarize the results in Table 4, where
we list the number of times that raters prefer
one translation over another or think they are the
same quality. Our VAG-NMT performs better
than Text-Only NMT on MSCOCO and IKEA
dataset, which correlates with the automatic eval-
uation metrics. However, the result of VAG-NMT
is slightly worse than the Text-Only NMT on the
Multi30K test dataset. This also correlates with
the result of automatic evaluation metrics.

Finally, we also compare the translation qual-
ity between LIUMCVC multimodal and VAG-
NMT on 100 randomly selected examples from
the IKEA dataset. VAG-NMT performs better

than LIUMCVC multimodal. The raters prefer our
VAG-NMT in 91 cases, LIUMCVC multimodal in
68 cases, and cannot tell in 47 cases.

MSCOCO Multi30K IKEA
Text-Only NMT 76 72 75
VAG-NMT 94 71 82
Tie 30 57 43

Table 4: Human evaluation results

6 Discussion
To demonstrate the effectiveness of our visual at-
tention mechanism, we show some qualitative ex-
amples in Figure 3. Each row contains three im-
ages that share similar semantic meaning, which
are retrieved by querying the image caption using
our learned shared space. The original caption of
each image is shown below each image. We high-
light the three words in each caption that have the
highest weights assigned by the visual attention
mechanism.

In the first row of Figure 3, the attention mech-
anism assigns high weights to the words “skiing",
“snowboarding", and “snow". In the second row,
it assigns high attention to “rafting" or “raft" for
every caption of the three images. These exam-
ples demonstrate evidence that our attention mech-
anism learns to assign high weights to words that
have corresponding visual semantics in the image.

We also find that our visual grounding attention
captures the dependency between the words that
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Source Caption: a tennis player is moving to the side and is gripping his racquet with
both hands .

Text-Only NMT: ein tennisspieler bewegt sich um die seite und greift mit beiden händen
an den boden .

VAG-NMT: ein tennisspieler bewegt sich zur seite und greift mit beiden händen den
schläger .

Source Caption: three skiers skiing on a hill with two going down the hill and one moving
up the hill .

Text-Only NMT: drei skifahrer fahren auf skiern einen hügel hinunter und eine person
fährt den hügel hinunter .

VAG-NMT: drei skifahrer auf einem hügel fahren einen hügel hinunter und ein be-
wegt sich den hügel hinauf .

Source Caption: a blue , yellow and green surfboard sticking out of a sandy beach .

Text-Only NMT: ein blau , gelb und grünes surfbrett streckt aus einem sandstrand .

VAG-NMT: ein blau , gelb und grüner surfbrett springt aus einem sandstrand .

Figure 4: Translations generated by VAG-NMT and Text-Only NMT. VAG-NMT performs better in the
first two examples, while Text-Only NMT performs better in the third example. We highlight the words
that distinguish the two systems’ results in red and blue. Red words are marked for better translation
from VAG-NMT and blue words are marked for better translation from Text-Only NMT.

have strong visual semantic relatedness. For ex-
ample, in Figure 3, words, such as “raft",“river",
and “water", with high attention appear in the im-
age together. This shows that the visual depen-
dence information is encoded into the weighted
sum of attention vectors which is applied to ini-
tialize the translation decoder. When we apply the
sequence-to-sequence model to translate a long
sentence, the encoded visual dependence informa-
tion strengthens the connection between the words
with visual semantic relatedness. Such connec-
tions mitigate the problem of standard sequence-
to-sequence models tending to forget distant his-
tory. This hypothesis is supported by the fact that
our VAG-NMT outperforms all the other methods
on the IKEA dataset which has long sentences.

Lastly, in Figure 4 we provide some qualita-
tive comparisons between the translations from
VAG-NMT and Text-Only NMT. In the first exam-
ple, our VAG-NMT properly translates the word
"racquet" to “den schläger", while the Text-Only
NMT mistranslated it to “den boden" which means
“ground" in English. We suspect the attention
mechanism and visual shared space capture the vi-
sual dependence between the word “tennis" and
“racquet". In the second example, our VAG-
NMT model correctly translates the preposition
“up" to “hinauf" but Text-Only NMT mistranslates
it to “hinunter" which means “down" in English.
We consistently observe that VAG-NMT translates
prepositions better than Text-Only NMT. We think

it is because the pre-trained convnet features cap-
tured the relative object position that leads to a
better preposition choice. Finally, in the third ex-
ample, we show a failure case where Text-Only
NMT generates a better translation. Our VAG-
NMT mistranslates the verb phrase “sticking out"
to “springt aus" which means “jump out" in Ger-
man, while Text-Only NMT translates to “streckt
aus", which is correct. We find that VAG-NMT
often makes mistakes when translating verbs. We
think it is because the image vectors are pre-
trained on an object classification task, which does
not have any human action information.

7 Conclusion and Future Work

We proposed a visual grounding attention struc-
ture to take advantage of the visual information
to perform machine translation. The visual at-
tention mechanism and visual context grounding
module help to integrate the visual content into
the sequence-to-sequence model, which leads to
better translation quality compared to the model
with only text information. We achieved state-
of-the-art results on the Multi30K and Ambigu-
ous COCO dataset. We also proposed a new prod-
uct dataset, IKEA, to simulate a real-world online
product description translation challenge.

In the future, we will continue exploring dif-
ferent methods to ground the visual context into
the translation model, such as learning a multi-
modal shared space across image, source language
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text, as well as target language text. We also want
to change the visual pre-training model from an
image classification dataset to other datasets that
have both objects and actions, to further improve
translation performance.
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A IKEA Dataset Stats and Examples

We summarize the statistics of our IKEA dataset
in Figure 5, where we demonstrate the informa-
tion about the number of tokens, the length of the
product description and the vocabulary size. We
provide one example of the IKEA dataset in Fig-
ure 6.

Figure 5: Statistic of the IKEA dataset

(a) Product image

(b) Source description

(c) Target description in German

Figure 6: An example of product description and
the corresponding translation in German from the
IKEA dataset. Both descriptions provide an ac-
curate caption for the commercial characteristics
of the product in the image, but the details in the
descriptions are different.

B Hyperparameter Settings

In this Appendix, we share details on the hyper-
parameter settings for our model and the training
process. The word embedding size for both en-
coder and decoder are 256. The Encoder is a one-
layer bidirectional recurrent neural network with
Gated Recurrent Unit (GRU), which has a hidden
size of 512. The decoder is a recurrent neural
network with conditional GRU of the same hid-
den size. The visual representation is a 2048-
dim vector extracted from the pool5 layer of a
pre-trained ResNet-50 network. The dimension of
the shared visual-text semantic embedding space
is 512. We set the decoder initialization weight
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value � to 0.5.
During training, we use Adam (Kingma and

Ba, 2014) to optimize our model with a learn-
ing rate of 4e � 4 for German Dataset and 1e �
3 for French dataset. The batch size is 32.
The total gradient norm is clipped to 1 (Pascanu
et al., 2012). Dropout is applied at the embed-
ding layer in the encoder, context vectors ex-
tracted from the encoder and the output layer of
the decoder. For Multi30K German dataset the
dropout probabilities are (0.3, 0.5, 0.5) and for
Multi30K French dataset the dropout probabili-
ties are (0.2, 0.4, 0.4). For the Multimodal shared
space learning objective function, the margin size
� is set to 0.1. The objective split weight ↵ is set
to 0.99. We initialize the weights of all the pa-
rameters with the method introduced in (He et al.,
2015b).

C Ablation Analysis on Visual-Text
Attention

We conducted an ablation test to further evaluate
the effectiveness of our visual-text attention mech-
anism. We created two comparison experiments
where we reduced the impact of visual-text atten-
tion with different design options. In the first ex-
periment, we remove the visual-attention mech-
anism in our pipeline and simply use the mean
of the encoder hidden states to learn the shared
embedding space. In the second experiment, we
initialize the decoder with just the mean of en-
coder hidden states without the weighted sum of
encoder states using the learned visual-text atten-
tion scores.

We run both experiments on Multi30K German
Dataset five times and demonstrate the results in
table 5. As can be seen, the performance of the
changed translation model is obviously worse than
the full VAG-NMT in both experiments. This ob-
servation suggests that the visual-attention mech-
anism is critical in improving the translation per-
formance. The model improvement comes from
the attention mechanism influencing the model’s
objective function and decoder’s initialization.

English ! German
Method BLEU METEOR
-attention in shared embedding 30.5 ± 0.6 51.7 ± 0.4
-attention in initialization 30.8 ± 0.8 51.9 ± 0.5
VAG-NMT 31.6 ± 0.6 52.2 ± 0.3

Table 5: Ablation analysis on visual-text attention
mechanism in the Multi30K German dataset.
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Abstract
In an e-commerce environment, user-oriented
question-answering (QA) text pair could carry
rich sentiment information. In this study, we
propose a novel task/method to address QA
sentiment analysis. In particular, we create a
high-quality annotated corpus with specially-
designed annotation guidelines for QA-style
sentiment classification. On the basis, we pro-
pose a three-stage hierarchical matching net-
work to explore deep sentiment information
in a QA text pair. First, we segment both
the question and answer text into sentences
and construct a number of [Q-sentence, A-
sentence] units in each QA text pair. Then, by
leveraging a QA bidirectional matching layer,
the proposed approach can learn the match-
ing vectors of each [Q-sentence, A-sentence]
unit. Finally, we characterize the importance
of the generated matching vectors via a self-
matching attention layer. Experimental re-
sults, comparing with a number of state-of-
the-art baselines, demonstrate the impressive
effectiveness of the proposed approach for
QA-style sentiment classification.

1 Introduction

Sentiment analysis, a.k.a. opinion mining, is a task
which aims to identify the user sentiment orienta-
tion of a product/brand/service by monitoring the
online textual data, e.g., reviews and social me-
dia messages. It has attracted huge attention in
both academic and industrial communities due to
its widespread applications, such like recommen-
dation (Zhang et al., 2014) and social media min-
ing (Chambers et al., 2015). As the fundamental
component in sentiment analysis, sentiment clas-
sification mainly classifies the sentiment polarity
as positive or negative, and has been well-studied
from both sentence-level (Kim and Hovy, 2004)
and document-level (Xu et al., 2016).

⇤ Corresponding author

Question 1: Is the screen clear? How is the
battery?
Answer 1: It’s a nice phone with high-quality
screen. But the battery is not durable.

Question 2: Summer is coming, I’m afraid of
getting darker. Is the sun cream really effective?
Answer 2: No, just depending on my own expe-
rience.

Figure 1: Two examples of QA text pairs from “cus-
tomer questions & answers” section in Amazon.

Recently, a new QA-style reviewing form,
namely “customer questions & answers”, has be-
come increasingly popular on the giant e-
commerce platforms, e.g., Amazon and Taobao.
In this new form, a potential customer asks ques-
tion(s) about the target product/service while other
experienced user(s) can provide answer(s). With
the widespread of such QA-style reviews, users
find a different channel to efficiently explore rich
and useful information, and service providers and
scholars are paying more attention to its specific
characteristics comparing with traditional reviews
(Wachsmuth et al., 2014; Zhou et al., 2015a).
Comparing to the traditional reviews, the QA style
reviews can be more informative and convincing.
More importantly, because answer providers are
randomly picked from the users who already pur-
chased the target item, this new form of review can
be more reliable and trustful.

Regarding QA-style sentiment analysis, one
straightforward method is to directly employ an
existing sentiment classification approach that
works well on traditional reviews, such as RNN
(Nguyen and Shirai, 2015) and LSTM (Chen et al.,
2016). However, because of the significant differ-
ences between QA-style and classical reviews, ex-
isting review mining algorithms, e.g., text-based
sentiment analysis/classification, should not be di-

3654



rectly applied to this new kind of QA-style data.
More detailed reasons can be found as the follow-
ings.

First, in QA-style text, the question and answer
text are more likely to be two parallel units rather
than a sequence form. On the one hand, for in-
stance, in Figure 1, sentence “It’s a nice phone
with high-quality screen.” in Answer 1 actually
does not follow sentence “How is the battery?”
in Question 1 , but corresponds to sentence “Is
the screen clear?” in Question 1. Therefore,
when the question text and answer text are pre-
sented as two units in a sequence, it is rather diffi-
cult to capture the relationship between the ques-
tion and its corresponding answer due to the pos-
sible long distance between them. On the other
hand, there often exists both positive and nega-
tive sentiments in answer text according to differ-
ent parts of question, and this specific case should
be categorized as another category named conflict.
For instance, in Figure 1, Answer 1 “It’s a nice
phone with high-quality screen. But the battery
is not durable.” is a conflict answer to Ques-
tion 1. However, when this answer text is con-
sidered as a sequence, it is highly possible to be
predicted as the category of positive or negative
rather than conflict. In order to address these prob-
lems, a more appropriate approach is to segment
both the question and answer text into some paral-
lel sentences, and then construct the [Q-sentence,
A-sentence] units in each QA text pair to detect
in-depth sentiment information.

Second, although the main sentiment polarity is
usually expressed from the answer text, the ques-
tion text could also carry important sentiment tips
to predict the sentiment polarity of a QA text pair.
For instance, in Figure 1, we could hardly estimate
the sentiment polarity solely based on Answer 2.
However, when we take Question 2, “Is the sun
cream really effective?”, into consideration, it can
be easier to label this QA text pair with a nega-
tive tag. In this study, we propose an approach
to match the sentences inside the question and an-
swer text bidirectionally.

Third, in each QA text pair, the importance de-
grees of different [Q-sentence, A-sentence] units
can be different. For instance, in Figure 1, the [Q-
sentence, A-sentence] unit, i.e., sentence “Summer
is coming, I’m afraid of getting darker.” in An-
swer 2 and sentence “No, just depending on my
own experience.” in Question 2, makes tiny con-
tribution to imply the sentiment polarity for the

QA text pair. Therefore, a well-behaved network
approach should consider the importance degrees
of different [Q-sentence, A-sentence] units for pre-
dicting the sentiment polarity of a QA text pair.

The contribution of this paper is twofold. First,
we propose a novel problem, QA-style sentiment
analysis, and build a large-scale annotated corpus
tailed for this task. The dataset is released to moti-
vate future investigations for this track of research.
Second, we propose a hierarchical matching net-
work model to address the challenges of QA-style
sentiment classification. Specifically, we first seg-
ment both the question and answer text into sen-
tences and construct the [Q-sentence, A-sentence]
units for each QA text pair. Then, by using a
QA bidirectional matching layer, we encode each
[Q-sentence, A-sentence] unit for exploring senti-
ment information. Finally, the self-matching at-
tention layer in the model can capture the impor-
tance of these [Q-sentence, A-sentence] matching
vectors obtained from QA bidirectional matching
layer, which could effectively refine the evidence
for inferring the sentiment polarity of a QA text
pair. Experimental results show that the proposed
approach significantly outperforms several strong
baselines for QA-style sentiment classification.

2 Related Work

Sentiment classification has become a hot research
field in NLP since the pioneering work by Pang
et al. (2002). In general, the research on traditional
sentiment classification has been carried out in dif-
ferent text levels, such like word-level, document-
level and aspect-level.

Word-level sentiment classification has been
studied in a long period in the research community
of sentiment analysis. Some early studies have de-
voted their efforts to predicting the sentiment po-
larity of a word with different learning models and
resources. Turney (2002) proposed an approach to
predicting the sentiment polarity of words by cal-
culating Pointwise Mutual Information (PMI) val-
ues between the seed words and the search hits.
Hassan and Radev (2010) and Hassan et al. (2011)
applied a Markov random walk model to deter-
mine the word polarities with a large word relat-
edness graph, and the synonyms and hypernyms
in WordNet (Miller, 1995). More recently, some
studies aim to learn better word embedding of a
word rather than its polarity. Tang et al. (2014)
developed three neural networks to learn word em-
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Positive Negative Conflict Neutral Total
Beauty 3,676 981 318 5,025 10,000
Shoe 4,025 819 412 4,744 10,000
Electronic 3,807 1,017 528 4,648 10,000

Table 1: Category distribution of the annotated data in three domains.

bedding by incorporating sentiment polarities of
text in loss functions. Zhou et al. (2015b) em-
ployed both unsupervised and supervised neural
networks to learn bilingual sentiment word em-
bedding.

Document-level sentiment classification has
also been studied in a long period in the research
community of sentiment analysis. On one hand,
many early studies have been devoted their efforts
to various of aspects on learning approaches, such
as supervised learning (Pang et al., 2002; Riloff
et al., 2006), semi-supervised learning (Li et al.,
2010; Xia et al., 2015; Li et al., 2015), and do-
main adaptation (Blitzer et al., 2007; He et al.,
2011). On the other hand, many recent studies em-
ploy deep learning approaches to enhance the per-
formances in sentiment classification. Tang et al.
(2015) proposed a user-product neural network to
incorporate both user and product information for
sentiment classification. Xu et al. (2016) proposed
a Cached Long Short-Term Memory neural net-
works (CLSTM) to capture the overall semantic
information in long texts. More recently, Long
et al. (2017) proposed a novel attention model,
namely cognition-based attention, for sentiment
classification.

Aspect-level sentiment classification is a rela-
tively new research area in the research commu-
nity of sentiment analysis and it is a fine-grained
classification task. Recently, Wang et al. (2016)
proposed an attention-based LSTM neural net-
work to aspect-level sentiment classification by
exploring the connection between an aspect and
the content of a sentence. Tang et al. (2016)
proposed a deep memory network with multiple
attention-based computational layers to improve
the performance. Wang et al. (2018) proposed
a hierarchical attention network to explore both
word-level and clause-level sentiment information
towards a target aspect.

Unlike all the prior studies, this paper focuses
on a very different kind of text representation, i.e.,
QA-style text level, for sentiment classification.
To the best of our knowledge, this is the first at-
tempt to perform sentiment classification on this
text level.

3 Data Collection and Annotation

We collect QA text pairs from “Asking All” in
Taobao (Alibaba)1, which is the world’s biggest e-
commerce company. The QA text pairs are mainly
from Beauty, Shoe and Electronic domains and
each domain contains 10,000 QA text pairs.

We define four sentiment-related categories,
i.e., positive, negative, conflict (both positive and
negative sentiment) and neutral (neither positive
nor negative sentiment). To guarantee a high an-
notation agreement, we propose some annotation
guidelines after several times of annotation pro-
cesses on a small size of data. Then, we ask more
coders to annotate the whole data set according to
these annotation guidelines.

The annotation guidelines contain two main
groups. One contains the guidelines which aim
to distinguish the categories of neutral and non-
neutral, i.e.,
(a) A QA text pair in which the question and the
answer do not match is annotated as a neutral sam-
ple. In this type of samples, the answer does not
reply to the question correctly. E1 is an example of
this type where the question talks about the screen
while the answer talks about the battery.

E1: Q: Is the screen clear?
A: The battery life is decent.

(b) A QA text pair with an unknown or uncertain
answer is annotated as a neutral sample. E2 is an
example of this type.

E2: Q: What about these sneakers?
A: I don’t know, I bought it for my dad.

(c) A QA text pair with only objective description
is annotated as a neutral sample. E3 is an example
of this type.

E3: Q: What’s the operation system of the phone?
A: Android.

(d) A QA text pair which compares two different
products is annotated as a neutral sample. In this
type of samples, two products are involved and it

1https://www.taobao.com/
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Figure 2: The overview of our approach to QA-style sentiment classification where SQi
denotes the i-th sentence

in question text, SAj
denotes the j-th sentence in answer text, HQi

and HAj
denote the contextual representations

for SQi
and SAj

respectively, V[i,j] denotes the bidirectional matching vector for [SQi
, SAj

] unit through QA
bidirectional matching layer, and R is the QA text pair representation refined by self-matching attention layer.

is sometimes difficult to tell the sentiment orienta-
tion of one product. E4 is an example of this type.

E4: Q: How about this phone when compared to
iPhone 6s?
A: It’s up to you, and they’re not comparable.

The other group contains the guidelines which
aim to distinguish the categories of positive and
negative, i.e.,
(e) If the answer text contains sentimental expres-
sions to question like “disappointed”, “terrible”,
and so on, we annotate it as negative. E5 is an
example of this type.

E5: Q: How is the rock climbing shoe?
A: I am so disappointed, my feet felt hurt
when I wore them.

(f) If the answer text contains sentimental expres-
sions to question like “perfect”, “satisfied”, and so
on, we annotate it as positive. E6 is an example of
this type.

E6: Q: How about the fragrance?
A: I am so satisfied, it smells distinctive.

(g) If we cannot confirm the polarity of a QA text
pair only depending on answer text, we annotate
the polarity according to both the question and an-
swer text. For instance, E7 is an example with
positive polarity, while E8 is an example with neg-
ative polarity.

E7: Q: Will the phone get hot when gaming?
A: No.

E8: Q: Is the sun cream really economic?
A: No.

We assign two annotators to annotate each QA
text pair, and the Kappa consistency check value
of the annotation is 0.84. When annotators can-
not reach an agreement, an expert will make the
final decision, ensuring the quality of data anno-
tation. Table 1 shows the category distribution of
the corpus. To motivate other scholars to inves-
tigate this novel but important task, we share the
data via Github2.

4 Methodology

In this section, we introduce the proposed hi-
erarchical matching network approach for QA-
style sentiment classification. Figure 2 depicts the
overview of the proposed approach.

4.1 QA Bidirectional Matching Mechanism
Word Encoding Layer: After sentence segmen-
tation, the question text in a QA text pair contains
N sentences, SQi represents the i-th sentence in
the question text. Similarly, the answer text in
this QA text pair contains M sentences, SAj rep-
resents the j-th sentence in the answer text. We
then construct [Q-sentence, A-sentence] units by
pairing one sentence in the question text and one
sentence in the answer text, and we obtain N*M
[Q-sentence, A-sentence] units at last.

Given a [SQi , SAj ] unit in this QA text pair, i.e.,
Q-sentence SQi with words wi,n, i 2 [1, N ], n 2

2https://github.com/clshenNLP/QASC/
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Figure 3: The detail architecture of QA bidirectional
matching mechanism.

[1, Ni] and A-sentence SAj with words wj,m, j 2
[1, M ], m 2 [1, Mj ], we first convert the words to
their respective word embeddings (xi,n 2 R

d, i 2
[1, N ], n 2 [1, Ni] and xj,m, j 2 [1, M ], m 2
[1, Mj ]). We then use Bi-directional LSTM
(namely Bi-LSTM), which can efficiently make
use of past features (via forward states) and fu-
ture features (via backward states) for a specific
time step, to get contextual representations of SQi

and SAj individually. The representation of each
word is formed by concatenating the forward and
backward hidden states. For simplicity, we note
contextual representation of SQi as HQi , and con-
textual representation of SAj as HAj respectively:

HQi = [hi,1, hi,2, ..., hi,n, ..., hi,Ni ] (1)

HAj = [hj,1, hj,2, ..., hj,m, ..., hj,Mj ] (2)

where hi,n 2 R
d0 denotes the word representation

in SQi at time step n, hj,m 2 R
d0 denotes the word

representation in SAj at time step m, and d0 is the
dimensionality of word representation.
QA Bidirectional Matching Layer: General
neural network could not capture sentiment
matching information in a [SQi , SAj ] unit well.
For the sake of solving this problem, we intro-
duce the QA bidirectional matching layer to en-
capsulate the clues and interactions between SQi

and SAj synchronously (Tay et al., 2017; Mc-
Cann et al., 2017). Figure 3 depicts the detail
architecture of QA bidirectional matching mech-
anism. Specifically, we first calculate the bidirec-
tional pair-wise matching matrix by using the fol-

lowing formula:

D[i,j] = (HQi)
> · (HAj ) (3)

where D[i,j] 2 R
Ni⇥Mj denotes the bidirectional

matching matrix for the [SQi , SAj ] unit. Each ele-
ment in D[i,j] is the score that measures how well
the word in SQi semantically matches the word in
SAj and vice versa.

Given the bidirectional matching matrix D[i,j],
we use attention mechanism (Yang et al., 2016;
Cui et al., 2017) to mine the sentiment matching
information between question and answer from
two directions, which could be seen as an Answer-
to-Question attention and a Question-to-Answer
attention as follows.
• Answer-to-Question Attention: We employ
row-wise operations to compute the attention
weight vector ↵r

[i,j] as follows:

U r
[i,j] = tanh(Wr · D>

[i,j]) (4)

↵r
[i,j] = softmax(w>

r · U r
[i,j]) (5)

where ↵r
[i,j] 2 R

Ni is the Answer-to-Question
attention weight vector regarding the importance
degrees of all words in Q-sentence SQi , Wr 2
R

d0⇥Mj and wr 2 R
d0 are weight matrices. Af-

ter computing the Answer-to-Question attention
weight vector, we can get the Answer-to-Question
matching vector V r

[i,j] 2 R
d0 as follows:

V r
[i,j] = (HQi) · ↵r

[i,j] (6)

• Question-to-Answer Attention: Simultane-
ously, we employ column-wise operations to cal-
culate the attention weight vector ↵c

[i,j] as follows:

U c
[i,j] = tanh(Wc · D[i,j]) (7)

↵c
[i,j] = softmax(w>

c · U c
[i,j]) (8)

where ↵c
[i,j] 2 R

Mj is the Question-to-Answer
attention weight vector regarding the importance
degrees of all words in A-sentence SAj , Wc 2
R

d0⇥Ni and wc 2 R
d0 are weight matrices. Af-

ter calculating the Question-to-Answer attention
weight vector, we can get the Question-to-Answer
matching vector V c

[i,j] 2 R
d0 as follows:

V c
[i,j] = (HAj ) · ↵c

[i,j] (9)

Then, we combine Answer-to-Question and
Question-to-Answer matching vectors to represent
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the final bidirectional matching vector of the [SQi ,
SAj ] unit:

V[i,j] = V r
[i,j] � V c

[i,j] (10)

where � denotes the concatenate operator, and
V[i,j] denotes the bidirectional matching vector
which integrates SQi and SAj with each other.

4.2 Self-Matching Attention Mechanism
Through the QA bidirectional matching layer, in-
formative bidirectional matching vectors are gen-
erated to pinpoint the sentiment matching infor-
mation in each [Q-sentence, A-sentence] unit. In-
tuitively, each matching vector for [Q-sentence, A-
sentence] unit holds different importance to a QA
text pair. To better aggregate the evidence from
these vectors for inferring the sentiment polarity
of the QA text pair, we propose a self-matching
attention layer, matching these informative vectors
against themselves.
Self-Matching Attention Layer: As aforemen-
tioned, we have obtained N*M bidirectional
matching vectors through QA bidirectional match-
ing layer, then we calculate the attention weight
vector ↵ with these matching vectors by following
formulas:

V = [V[1,1], V[1,2], ..., V[i,j], ..., V[N,M ]] (11)

U = tanh(Wh · V ) (12)

↵ = softmax(w>
h · U) (13)

where ↵ is the attention weight vector which mea-
sures the importance of these matching vectors,
Wh and wh are the weight matrices.

Finally, we can get the QA text pair representa-
tion R as follows:

R = V · ↵ (14)

4.3 Classification Model
QA text pair representation R is a high level repre-
sentation which can be used for classification. In
our approach, we feed R to a softmax classifier:

p = softmax(Wl · R + bl) (15)

where p is a set of predicted distribution of the sen-
timent categories, i.e., positive, negative, neutral,
and conflict. Wl is the weight matrix and bl is the
bias.

To learn the whole model, we train an end-to-
end model given the training data, and the goal of

training is to minimize the cross-entropy loss, i.e.,

L(✓) = �
SX

s=1

KX

k=1

yk
s · logŷk

s + �k✓k2
2 (16)

where S is the number of training data. ys is the
true sentiment label of the s-th sample. ŷs is the
predicted sentiment label of the s-th sample. K
is number of all sentiment categories. � is a L2-
regularization term, ✓ is the parameter set. In the
above equation, the model parameters are opti-
mized by using Adam (Kingma and Ba, 2014).

5 Experimentation

In this section, we evaluate the performances of
the proposed approach for QA-style sentiment
classification.

5.1 Experimental Settings

• Data Sets: As introduced in Section 3, the an-
notated QA text pairs cover three different do-
mains. In each domain, we randomly split the data
into a training set (80% in each category) and a
test set (20% in each category). In addition, we set
aside 10% from the training set as the development
data for parameters tuning.
• Word Segmentation and Embeddings: Fu-
danNLP3 (Qiu et al., 2013) is employed to seg-
ment text into Chinese words and word2vec4

(Mikolov et al., 2013) is employed to pre-train
word embeddings. The vector dimensionality is
set to be 100.
• Sentence Segmentation: CoreNLP5 (Manning
et al., 2014) is employed to segment both the ques-
tion and answer text into sentences.
• Hyper-parameters: In the experiment, all out-
of-vocabulary words are initialized by sampling
from the uniform distribution U(�0.01, 0.01).
All weight matrices are given their initial
values by sampling from uniform distribution
U(�0.01, 0.01). The LSTM hidden states are set
to be 128 and all models are trained by mini-batch
of 32 instances. The dropout rate is set to 0.2. The
other hyper-parameters are tuned according to the
development data.
• Evaluation Metric: The performance is evalu-
ated using standard Accuracy and Macro-F1.

3https://github.com/FudanNLP/fnlp/
4https://code.google.com/archive/p/word2vec/
5http://stanfordnlp.github.io/CoreNLP/
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Beauty Shoe Electronic
Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

SVM 0.362 0.684 0.381 0.718 0.435 0.691
LSTM 0.499 0.712 0.520 0.754 0.562 0.715
Bi-LSTM 0.527 0.719 0.531 0.759 0.574 0.723
Bidirectional-Match 0.526 0.747 0.557 0.796 0.582 0.741
AtoQ-Match 0.543 0.745 0.602 0.792 0.567 0.754
QtoA-Match 0.573 0.751 0.647 0.807 0.608 0.752
Bidirectional-Match QA 0.583 0.760 0.666 0.815 0.617 0.764
HMN 0.598 0.776 0.683 0.827 0.640 0.779

Table 2: Performance of our approaches to QA-style sentiment classification in all domains.

5.2 Experimental Results

The following baseline approaches are employed
for comparison. Note that all the approaches share
the same word embeddings for fair comparison.
• SVM: This baseline employs support vector
machine along with word embedding features.
The question and answer text in a QA text pair are
chained as a sequence.
• LSTM: A standard LSTM model utilizes word
embeddings and concatenates the question and an-
swer text as a sequence.
• Bi-LSTM: A bidirectional LSTM model which
concatenates the question and answer text as a se-
quence.
• Bidirectional-Match: This approach employs
QA bidirectional matching mechanism, without
taking the sentence segmentation strategy and self-
matching attention mechanism.
• AtoQ-Match: This approach takes the sen-
tence segmentation strategy, and employs QA uni-
directional matching mechanism (i.e., only using
Answer-to-Question attention), but does not em-
ploy self-matching attention mechanism. We av-
erage the Answer-to-Question matching vectors to
represent the QA text pair.
• QtoA-Match: This approach takes the sen-
tence segmentation strategy, and employs QA uni-
directional matching mechanism (i.e., only using
Question-to-Answer attention), but does not em-
ploy self-matching attention mechanism.
• Bidirectional-Match QA: This approach takes
the sentence segmentation strategy, and employs
QA bidirectional matching mechanism, but does
not employ self-matching attention mechanism.
• HMN: This is our hierarchical matching net-
work model which takes the sentence segmenta-
tion strategy and employs both QA bidirectional
matching mechanism and self-matching attention
mechanism.

Table 2 summarizes the experimental results of
all the approaches above, and we can find that:

(1) All LSTM-based approaches are superior to
SVM, indicating the effectiveness of neural
network for this task.

(2) The proposed approaches, with novel QA
contextual representation, outperform the
other baseline approaches.

(3) When only employing QA bidirectional
matching mechanism, Bidirectional-Match
QA, which takes the sentence segmen-
tation strategy, consistently outperforms
Bidirectional-Match (without sentence seg-
mentation) in all domains. It confirms our
hypothesis that sentence segmentation helps
to extract the sentiment matching information
between the question and answer.

(4) When comparing to QA unidirectional
matching mechanism, Bidirectional-Match
QA, which employs QA bidirectional match-
ing mechanism, performs better than AtoQ-
Match and QtoA-Match. It confirms our hy-
pothesis that both the question and answer in-
formation contribute to sentiment polarity of
the QA text pair.

(5) Impressively, the proposed approach HMN
significantly outperforms all the other ap-
proaches in all domains (p-value<0.05 via t-
test). It verifies the advantages of both QA
bidirectional matching mechanism and self-
matching attention mechanism for this task.

Besides, we also implement some more recent
state-of-the-art approaches for sentiment classifi-
cation, which are illustrated in Table 3. This result
also supports the earlier findings.

• CNN-Tensor (Lei et al., 2015): This is a state-
of-the-art approach to sentence-level sentiment
classification, which models n-gram interactions
based on tensor product and evaluates all non-
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Beauty Shoe Electronic
Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy

CNN-Tensor 0.500 0.731 0.535 0.765 0.576 0.734
Attention-LSTM 0.509 0.725 0.571 0.755 0.576 0.721
BiMPM 0.553 0.745 0.587 0.766 0.584 0.746
HMN 0.598 0.776 0.683 0.827 0.640 0.779

Table 3: The proposed approach vs. several strong baseline approaches in all domains.

E9: Domain: Beauty True Label: neutral
Q:˜Ó⌅M↵ÀÏ�·ëHú�H7�""�

(Hey, friends, how about the spot-fading of this product? Thanks a lot!)
A:≤�Ê�›�ÿ�⇡�

(To tell you the truth, it can moisturize effectively!)
CNN-Tensor Attention-LSTM BiMPM HMN
7 (positive) 7 (positive) 3 (neutral) 3 (neutral)

E10: Domain: Electronic True Label: conflict
Q:Ÿ>∞,�H7b�5`⇣(⌫�©'ã8✏a�a�

(How about this notebook? Is the battery durable? Does the OS run fast when playing games?)
A:5`�/à⇣(⇥©'ã8✏ πa⇥v÷Ñ˝ÿ}⇥

(Battery isn’t much durable. The OS doesn’t run fast when playing games. The other aspects are good.)
CNN-Tensor Attention-LSTM BiMPM HMN
7 (positive) 7 (negative) 7 (negative) 3 (conflict)

Table 4: Some examples in the test data with their predicted categories by some approaches where 7 (or 3) means
that the predicted category is wrong (or correct).

consecutive n-gram vectors as a feature mapping
operator for CNNs.
• Attention-LSTM (Wang et al., 2016): This is a
state-of-the-art approach to aspect-level sentiment
classification. In our implementation, we ignore
the aspect embedding and directly use the outputs
of LSTM to yield the attention.
• BiMPM (Wang et al., 2017): This is a state-of-
the-art approach to QA matching, which matches
the question and answer from multiple perspec-
tives. In our implementation, we use the match-
ing representation to perform QA-style sentiment
classification with a softmax classifier.
• HMN: The proposed hierarchical matching
network which employs both QA bidirectional
matching mechanism and self-matching attention
mechanism, and takes the sentence segmentation
strategy.

Table 3 shows the comparison results of these
strong baseline approaches and the proposed ap-
proach (HMN) in all domains. From this table,
we can find that: (1) the approaches that take
matching strategy, i.e., BiMPM and our approach
(HMN), outperform other approaches. (2) The
proposed approach (HMN) significantly outper-
forms all the other baseline approaches in terms of
both Macro-F1 and Accuracy (p-value<0.05 via t-
test), which confirms the initial hypotheses of this
study.

E11:                                 True Label: negative
Q: 这个手机的系统顺畅不？电池耐用吗？

   (Does the OS run fast? Is the battery durable?)
A: 电池一点也不耐用。相机也一般。

   (The battery is not durable at all. The camera is also not good.)

Does the OS run fast ? The battery is not durable at      
Does the OS run fast ?      The camrea is also not good .

Is the battery durable ? The battery is not durable at all .      
      The camrea is also not good .Is the battery durable ?

all .

Figure 4: The attention visualizations for a QA text
pair.

5.3 Case Study
Table 4 shows some examples, along with the pre-
dicted categories via different approaches. We can
find that: (1) the approaches based on matching
strategy (BiMPM and HMN) are well-performed,
as shown in E9, when question and answer car-
rying different kinds of information. This is a
unique challenge for QA-style sentiment mining,
and traditional sentiment classification approaches
can hardly address this problem. (2) The proposed
approach (HMN) performs better than other ap-
proaches when dealing with conflict instances, as
shown in E10.

5.4 Visualization of Attention
To get a better understanding of our proposed hier-
archical matching network for QA-style sentiment
classification, we picture the attention weights ob-
tained from Equations (5), (8) and (13). For
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simplicity, we directly use the English translation
of E11 for illustration and adopt the visualiza-
tion approach presented by Yang et al. (2016), as
shown in Figure 2. Specifically, each line is a [Q-
sentence, A-sentence] unit, where the red denotes
the [Q-sentence, A-sentence] unit weight, the blue
denotes the word weight in each [Q-sentence, A-
sentence], and the color depth indicates the impor-
tance of attention weights (the darker the more im-
portant).

From Figure 4, we can see that the QA bidirec-
tional matching layer always assigns reasonable
attention weights to words in each [Q-sentence, A-
sentence] unit which makes sentence from ques-
tion and sentence from answer match correctly. In
addition, the self-matching attention layer is able
to select informative [Q-sentence, A-sentence] unit
for predicting true sentiment polarity of this exam-
ple.

6 Conclusion

In this paper, we propose a novel but impor-
tant sentiment analysis task, i.e., QA-style sen-
timent mining, and we build a large-scale high-
quality human annotated corpus for experiment.
The dataset is shared to encourage other schol-
ars to investigate this interesting problem. More-
over, we propose a hierarchical matching neural
network model to enable QA bidirectional match-
ing mechanism and self-matching attention mech-
anism for this task. Empirical studies show that
the proposed approach significantly outperforms
other strong baseline approaches in all the test do-
mains for QA-style sentiment classification.

In the future, we would like to investigate some
other network structures to explore deeper in-
formation in each QA text pair. Besides, we
would like to test the effectiveness of the proposed
approach to QA-style sentiment classification in
some other languages.

Acknowledgments

We would like to thank the anonymous reviewers
for their valuable comments. This work is partially
supported by the National Key R&D Program of
China under Grant No.2017YFB1002101 and two
NSFC grants No.61331011, No.61672366. This
work is also supported by the joint research project
of Alibaba Group and Soochow University.

References
John Blitzer, Mark Dredze, and Fernando Pereira.

2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proceedings of ACL-2007, pages 440–
447.

Nathanael Chambers, Victor Bowen, Ethan Genco,
Xisen Tian, Eric Young, Ganesh Harihara, and Eu-
gene Yang. 2015. Identifying political sentiment be-
tween nation states with social media. In Proceed-
ings of EMNLP-2015, pages 65–75.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Enhancing and combining sequen-
tial and tree LSTM for natural language inference.
arXiv preprint arXiv:1609.06038.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. In Proceedings of ACL-2017, pages 593–602.

Ahmed Hassan, Amjad Abu-Jbara, Rahul Jha, and
Dragomir Radev. 2011. Identifying the semantic
orientation of foreign words. In Proceedings of
ACL-2011, pages 592–597.

Ahmed Hassan and Dragomir Radev. 2010. Identifying
text polarity using random walks. In Proceedings of
ACL-2010, pages 395–403.

Yulan He, Chenghua Lin, and Harith Alani. 2011.
Automatically extracting polarity-bearing topics for
cross-domain sentiment classification. In Proceed-
ings of ACL-2011, pages 123–131.

Soo-Min Kim and Eduard Hovy. 2004. Determin-
ing the sentiment of opinions. In Proceedings of
COLING-2004, pages 1367–1374.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding CNNs for text: non-linear, non-consecutive
convolutions. In Proceedings of EMNLP-2015,
pages 1565–1575.

Shoushan Li, Chu-Ren Huang, Guodong Zhou, and
Sophia Yat Mei Lee. 2010. Employing per-
sonal/impersonal views in supervised and semi-
supervised sentiment classification. In Proceedings
of ACL-2010, pages 414–423.

Shoushan Li, Lei Huang, Jingjing Wang, and Guodong
Zhou. 2015. Semi-stacking for semi-supervised
sentiment classification. In Proceedings of ACL-
IJCNLP-2015, pages 27–31.

Yunfei Long, Lu Qin, Rong Xiang, Minglei Li, and
Chu-Ren Huang. 2017. A cognition based atten-
tion model for sentiment analysis. In Proceedings
of EMNLP-2017, pages 462–471.

3662



Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of ACL-2014, pages
55–60.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Proceedings of NIPS-
2017, pages 6294–6305.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Proceedings of NIPS-2013, pages 3111–
3119.

George A Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM, 38(11):39–
41.

Thien Hai Nguyen and Kiyoaki Shirai. 2015.
Phrasernn: Phrase recursive neural network for
aspect-based sentiment analysis. In Proceedings of
EMNLP-2015, pages 2509–2514.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification us-
ing machine learning techniques. In Proceedings of
ACL-2002, pages 79–86.

Xipeng Qiu, Qi Zhang, and Xuanjing Huang. 2013.
FudanNLP: A toolkit for Chinese natural language
processing. In Proceedings of ACL-2013, pages 49–
54.

Ellen Riloff, Siddharth Patwardhan, and Janyce Wiebe.
2006. Feature subsumption for opinion analysis. In
Proceedings of EMNLP-2006, pages 440–448.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Learning
semantic representations of users and products for
document level sentiment classification. In Proceed-
ings of ACL-IJCNLP-2015, pages 1014–1023.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. In Proceedings of EMNLP-2016, pages 214–
224.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of ACL-2014, pages
1555–1565.

Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2017.
A compare-propagate architecture with alignment
factorization for natural language inference. arXiv
preprint arXiv:1801.00102.

Peter D Turney. 2002. Thumbs up or thumbs down?:
semantic orientation applied to unsupervised classi-
fication of reviews. In Proceedings of ACL-2002,
pages 417–424.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
and Gregor Engels. 2014. Modeling review argu-
mentation for robust sentiment analysis. In Proceed-
ings of COLING-2014, pages 553–564.

Jingjing Wang, Jie Li, Shoushan Li, Yangyang Kang,
Min Zhang, Luo Si, and Guodong Zhou. 2018. As-
pect sentiment classification with both word-level
and clause-level attention networks. In Proceedings
of IJCAI-2018, pages 4439–4445.

Yequan Wang, Minlie Huang, Li Zhao, and Zhu Xi-
aoyan. 2016. Attention-based LSTM for aspect-
level sentiment classification. In Proceedings of
EMNLP-2016, pages 606–615.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. In Proceedings of IJCAI-2017,
pages 4144–4150.

Rui Xia, Cheng Wang, Xin-Yu Dai, and Tao Li. 2015.
Co-training for semi-supervised sentiment classifi-
cation based on dual-view bags-of-words represen-
tation. In Proceedings of ACL-IJCNLP-2015, pages
1054–1063.

Jiacheng Xu, Danlu Chen, Xipeng Qiu, and Xuan-
jing Huang. 2016. Cached long short-term memory
neural networks for document-level sentiment clas-
sification. In Proceedings of EMNLP-2016, pages
1660–1669.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of NAACL-HLT-2016, pages 1480–
1489.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang,
Yiqun Liu, and Shaoping Ma. 2014. Explicit fac-
tor models for explainable recommendation based
on phrase-level sentiment analysis. In Proceedings
of SIGIR-2014, pages 83–92.

Guangyou Zhou, Tingting He, Jun Zhao, and Wen-
sheng Wu. 2015a. A subspace learning framework
for cross-lingual sentiment classification with partial
parallel data. In Proceedings of IJCAI-2015, pages
1426–1433.

Huiwei Zhou, Long Chen, Fulin Shi, and Degen
Huang. 2015b. Learning bilingual sentiment word
embeddings for cross-language sentiment classifica-
tion. In Proceedings of ACL-IJCNLP-2015, pages
430–440.

3663



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3664–3674
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Cross-topic Argument Mining from Heterogeneous Sources

Christian Stab* and Tristan Miller*† and Benjamin Schiller* and
Pranav Rai* and Iryna Gurevych*†

*Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

https://www.ukp.tu-darmstadt.de/

†Research Training Group AIPHES
Department of Computer Science, Technische Universität Darmstadt

https://www.aiphes.tu-darmstadt.de/

Abstract

Argument mining is a core technology for au-
tomating argument search in large document
collections. Despite its usefulness for this task,
most current approaches are designed for use
only with specific text types and fall short when
applied to heterogeneous texts. In this pa-
per, we propose a new sentential annotation
scheme that is reliably applicable by crowd
workers to arbitrary Web texts. We source an-
notations for over 25,000 instances covering
eight controversial topics. We show that in-
tegrating topic information into bidirectional
long short-term memory networks outperforms
vanilla BiLSTMs by more than 3 percentage
points in F1 in two- and three-label cross-topic
settings. We also show that these results can be
further improved by leveraging additional data
for topic relevance using multi-task learning.

1 Introduction

Information retrieval and question answering are
by now mature technologies that excel at answering
factual queries on noncontroversial topics. How-
ever, they provide no specialized support for queries
where there is no single canonical answer, as with
topics that are controversial or opinion-based. For
such queries, the user may need to carefully assess
the stance, source, and supportability for each of
the answers. These processes can be supported by
argument mining (AM), a nascent area of natural
language processing concerned with the automatic
recognition and interpretation of arguments.

In this paper, we apply AM to the task of argu-
ment search—that is, searching a large document
collection for arguments relevant to a given topic.
Searching for and classifying relevant arguments
plays an important role in decision making (Sven-
son, 1979), legal reasoning (Wyner et al., 2010), and

the critical reading, writing, and summarization of
persuasive texts (Kobayashi, 2009; Wingate, 2012).
Automating the argument search process could ease
much of the manual e�ort involved in these tasks,
particularly if it can be made to robustly handle
arguments from di�erent text types and topics.

But despite its obvious usefulness, this sort of
argument search has attracted little attention in the
research community. This may be due in part to the
limitations of the underlying models and training
resources, particularly as they relate to heteroge-
neous sources. That is, most current approaches
to AM are designed for use with particular text
types, faring poorly when applied to new data (Dax-
enberger et al., 2017). Indeed, as Habernal et al.
(2014) observe, while there is a great diversity of
perspectives on how arguments can be best charac-
terized and modelled, there is no “one-size-fits-all”
argumentation theory that applies to the variety of
text sources found on the Web.

To approach these challenges, we propose the
novel task of topic-based sentential argument min-
ing. Our contributions are as follows: (1) We
propose a new argument annotation scheme ap-
plicable to the information-seeking perspective of
argument search. We show it to be general enough
for use on heterogeneous data sources, and simple
enough to be applied manually by untrained annota-
tors at a reasonable cost. (2) We introduce a novel
corpus of heterogeneous text types annotated with
topic-based arguments.1 The corpus includes over
25,000 instances covering eight controversial topics.
This is the first known resource that can be used
to evaluate the performance of argument mining
methods across topics in heterogeneous sources.
(3) We investigate di�erent approaches for incorpo-
rating topic information into neural networks and

1https://www.ukp.tu-darmstadt.de/sent_am
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show that including the topic vector into the iii- and
ccc-gates of the LSTM cell outperforms common
attention-based approaches in two- and three-label
cross-topic experiments. (4) We further improve
the performance of the modified LSTM cell by
leveraging additional data for topic relevance in a
multi-task learning setup. (5) In the more challeng-
ing setup of cross-topic experiments, we show that
our models yield considerably better performance
than common BiLSTM models when little data of
the target topic is available.

2 Related work

Most existing approaches treat argument mining
at the discourse level, focusing on tasks such as
segmenting argumentative discourse units (Ajjour
et al., 2017; Goudas et al., 2014), classifying the
function of argumentative discourse units (for ex-
ample, as claims or premises) (Mochales-Palau and
Moens, 2009; Stab and Gurevych, 2014), and rec-
ognizing argumentative discourse relations (Eger
et al., 2017; Stab and Gurevych, 2017; Nguyen and
Litman, 2016). These discourse-level approaches
address the identification of argumentative struc-
tures within a single document but do not consider
relevance to externally defined topics.

To date, there has been little research on the iden-
tification of topic-relevant arguments for argument
search. Wachsmuth et al. (2017) present a generic
argument search framework. However, it relies
on already-structured arguments from debate por-
tals and is not yet able to retrieve arguments from
arbitrary texts. Levy et al. (2014) investigate the
identification of topic-relevant claims, an approach
that was later extended with evidence extraction
to mine supporting statements for claims (Rinott
et al., 2015). However, both approaches are de-
signed to mine arguments from Wikipedia articles;
it is unclear whether their annotation scheme is
applicable to other text types. It is also uncertain
that it can be easily and accurately applied by un-
trained annotators, since it requires unitizing (i.e.,
finding the boundaries of argument components at
the token level). Hua and Wang (2017) identify
sentences in cited documents that have been used
by an editor to formulate an argument. By contrast,
we do not limit our approach to the identification
of sentences related to a given argument, but rather
focus on the retrieval of any argument relevant to a
given topic. The fact that we are concerned with
retrieval of arguments also sets our work apart from

the discourse-agnostic stance detection task of Mo-
hammad et al. (2016), which is concerned with the
identification of sentences expressing support or
opposition to a given topic, irrespective of whether
those sentences contain supporting evidence (as
opposed to mere statements of opinion).

Cross-domain AM experiments have so far been
conducted only for discourse-level tasks such as
claim identification (Daxenberger et al., 2017), argu-
mentative segment identification (Al-Khatib et al.,
2016), and argumentative unit segmentation (Ajjour
et al., 2017). However, the discourse-level argu-
mentation models these studies employ seem to be
highly dependent on the text types for which they
were designed; they do not work well when applied
to other text types (Daxenberger et al., 2017). The
crucial di�erence between our own work and prior
cross-domain experiments is that we investigate
AM from heterogeneous texts across di�erent top-
ics instead of studying specific discourse-level AM
tasks across restricted text types of existing corpora.

3 Corpus creation

There exists a great diversity in models of argumen-
tation, which di�er in their perspective, complexity,
terminology, and intended applications (Bentahar
et al., 2010). For the present study, we propose
a model which, though simplistic, is nonetheless
well-suited to the argument search scenario. We
define an argument as a span of text expressing
evidence or reasoning that can be used to either
support or oppose a given topic. An argument
need not be “direct” or self-contained—it may pre-
suppose some common or domain knowledge, or
the application of commonsense reasoning—but it
must be unambiguous in its orientation to the topic.
A topic, in turn, is some matter of controversy for
which there is an obvious polarity to the possible
outcomes—that is, a question of being either for
or against the use or adoption of something, the
commitment to some course of action, etc. In some
graph-based models of argumentation (Stab, 2017,
Ch. 2), what we refer to as a topic would be part
of a (major) claim expressing a positive or nega-
tive stance, and our arguments would be premises
with supporting/attacking consequence relations to
the claim. However, unlike these models, which
are typically used to represent (potentially deep or
complex) argument structures at the discourse level,
ours is a flat model that considers arguments in
isolation from their surrounding context. A great
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topic sentence label

nuclear energy Nuclear fission is the process that is used in nuclear reactors to produce high
amount of energy using element called uranium.

non-argument

nuclear energy It has been determined that the amount of greenhouse gases have decreased by
almost half because of the prevalence in the utilization of nuclear power.

supporting argument

minimum wage A 2014 study [. . . ] found that minimum wage workers are more likely to report
poor health, su�er from chronic diseases, and be unable to a�ord balanced meals.

opposing argument

minimum wage We should abolish all Federal wage standards and allow states and localities to
set their own minimums.

non-argument

Table 1: Example annotations illustrating our annotation scheme.

advantage of this approach is that it allows annota-
tors to classify text spans without having to read
large amounts of context and without having to
consider relations to other topics or arguments.

In this work, we consider only those topics that
can be concisely and implicitly expressed through
keywords, and those arguments that consist of indi-
vidual sentences. Some examples, drawn from our
dataset, are shown in Table 1. Note that while the
fourth example expresses opposition to the topic,
under our definition it is properly classified as a
non-argument because it is a mere statement of
stance that provides no evidence or reasoning.

Data. For our experiments we gathered a large
collection of manually annotated arguments that
cover a variety of topics and that come from a
variety of text types. We started by randomly se-
lecting eight topics (see Table 2) from online lists
of controversial topics.2 For each topic, we made
a Google query for the topic name, removed re-
sults not archived by the Wayback Machine,3 and
truncated the list to the top 50 results. This re-
sulted in a set of persistent, topic-relevant, largely
polemical Web documents representing a range
of genres and text types, including news reports,
editorials, blogs, debate forums, and encyclopedia
articles. We preprocessed each document with
Apache Tika (Mattmann and Zitting, 2011) to re-
move boilerplate text. We then used the Stanford
CoreNLP tools (Manning et al., 2014) to perform
tokenization, sentence segmentation, and part-of-
speech tagging on the remaining text, and removed
all sentences without verbs or with less than three
tokens. This left us with a raw dataset of 27,520
sentences (about 2,700 to 4,400 per topic).

Annotators classified the sentences using a
browser-based interface that presents a set of in-

2https://www.questia.com/library/

controversial-topics, https://www.procon.org/
3https://web.archive.org/

structions, a topic, a list of sentences, and a multiple-
choice form for specifying whether each sentence
is a supporting argument, an opposing argument, or
not an argument with respect to the topic. (In pre-
liminary experiments, we presented annotators with
a fourth option for sentences that are ambiguous or
incomprehensible. However, we found that these
constituted less than 1% of the distribution and
so mapped all such answers to the “no argument”
class.)

Annotation experiments. We tested the applica-
bility of our annotation scheme by untrained anno-
tators by performing an experiment where we had
a group of “expert” annotators and a group of un-
trained annotators classify the same set of sentences,
and then compared the two groups’ classifications.
The data for this experiment consisted of 200 sen-
tences randomly selected from each of our eight
topics. Our expert annotators were two graduate-
level language technology researchers who were
fully briefed on the nature and purpose of the ar-
gument model. Our untrained annotators were
anonymous American workers from the Amazon
Mechanical Turk (AMT) crowdsourcing platform.
Each sentence was independently annotated by the
two expert annotators and ten crowd workers.

Inter-annotator agreement for our two experts, as
measured by Cohen’s , was 0.721; this exceeds the
commonly used threshold of 0.7 for assuming the
results are reliable (Carletta, 1996). We proceeded
by having the two experts resolve their disagree-
ments, resulting in a set of “expert” gold-standard
annotations. Similar gold standards were produced
for the crowd annotations by applying the MACE
denoising tool (Hovy et al., 2013); we tested various
thresholds (1.0, 0.9, and 0.8) to discard instances
that could be confidently assigned a gold label. We
then calculated  between the remaining instances
in the expert and crowd gold standards. In order to
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topic docs sentences no argument support argument oppose argument

abortion 50 3,929 2,427 680 822
cloning 50 3,039 1,494 706 839
death penalty 50 3,651 2,083 457 1,111
gun control 50 3,341 1,889 787 665
marijuana legalization 50 2,475 1,262 587 626
minimum wage 50 2,473 1,346 576 551
nuclear energy 50 3,576 2,118 606 852
school uniforms 50 3,008 1,734 545 729

total 400 25,492 14,353 4,944 6,195

Table 2: Corpus size and class distribution.

Figure 1: Influence of the number of crowd annotators
and di�erent MACE thresholds on .

determine the relationship between inter-annotator
agreement and the number of crowd workers, we
performed this procedure with successively lower
numbers of crowd workers, going from the original
ten annotators per instance down to two. The re-
sults are visualized in Fig. 1. We found that using
seven annotators and a MACE threshold of 0.9
results in  = 0.723; this gives us similar reliability
as with the expert annotators without sacrificing
much coverage. Table 3 shows the  and percentage
agreement for this setup, as well as the agreement
between our expert annotators, broken down by
topic.

We proceeded with annotating the remaining
instances in our dataset using seven crowd work-
ers each, paying a rate corresponding to the US
federal minimum wage of $7.25/hour. Our total
expenditure, including AMT processing fees, was
$2,774.02. After MACE denoising, we were left
with 25,492 gold-standard annotations. Table 2 pro-
vides statistics on the size and class distribution of
the final corpus. We are releasing the gold-standard
annotations for this dataset, and code for retrieving

expert–expert crowd–expert

%  % 

abortion .884 .651 .834 .660
cloning .845 .712 .821 .704
death penalty .851 .657 .770 .576
gun control .907 .783 .796 .638
marijuana legalizat. .850 .729 .854 .749
minimum wage .885 .779 .858 .745
nuclear energy .809 .686 .889 .825
school uniforms .864 .767 .931 .889

average .862 .721 .844 .723

Table 3: Agreement between experts, and between the
expert and crowd gold standards.

the original sentences from the Wayback Machine,
under a Creative Commons licence.

4 Approaches for identifying arguments

We model the identification of arguments as a
sentence-level classification task. In particular,
given a sentence &&& with words u1, . . . ,un& and a
topic ⌧⌧⌧ of words v1, . . . , vn⌧ (e.g., “gun control”
or “school uniforms”), we aim to classify &&& as a
“supporting argument” or “opposing argument” if
it includes a relevant reason for supporting or op-
posing the ⌧⌧⌧, or as a “non-argument” if it does
not include a reason or is not relevant to ⌧⌧⌧. We
also investigate a two-label classification where we
combine supporting and opposing arguments into a
single category; this allows us to evaluate argument
classification independent of stance. We focus on
the challenging task of cross-topic experiments,
where one topic is withheld from the training data
and used for testing. Here, we denote scalars by
italic lowercase letters (e.g., t), vector representa-
tions by italic bold lowercase letters (e.g., ccc), and
matrices as italic bold uppercase letters (e.g., WWW).
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4.1 Integrating topic information
Since arguments need to be relevant to the given
topic, we posit that providing topic information
to the learner results in a more robust prediction
capability in cross-topic setups. Below, we present
two models that integrate the topic, one that uses
an attention mechanism and another that includes
the topic vector directly in the LSTM cell.

Outer-attention BiLSTM (outer-att). To let the
model learn which parts of the sentence are relevant
(or irrelevant) to the given topic, we use an attention-
based neural network (Bahdanau et al., 2014) that
learns an importance weighting of the input words
depending on the given topic. In particular, we
adopt an outer-attention mechanism similar to the
one proposed by Hermann et al. (2015), which
has achieved state-of-the-art results in related tasks
such as natural language inference and recognizing
textual entailment (Rocktäschel et al., 2015; Wang
and Jiang, 2016). We combine the attention mech-
anism with a common BiLSTM model and, at time
step t, determine the importance weighting for each
hidden state hhh(t) as

mmm(t) = tanh(WWWhhhh(t) +WWW pppp) (1)

fattention(hhh(t),ppp) =
exp(wwwT

mmmm(t))Õ
t exp(wwwT

mmmm(t))
(2)

where WWWh, WWW p, and wwwm are trainable parameters of
the attention mechanism and ppp is the average of all
word embeddings of topic words v1, . . . , vn⌧ . Using
the importance weighting, we determine the final,
weighted hidden output state sss as

↵t / fattention(hhh(t),ppp) (3)

sss =
n’
t=1

hhh(t)↵t . (4)

Finally, we feed sss into a dense layer with a softmax
activation function to get predictions for our two-
or three-label setups.

Contextual BiLSTM (biclstm). A more direct
approach to integrating an argument’s topic is the
contextual LSTM (CLSTM) architecture (Ghosh
et al., 2016), where topic information is added as
another term to all four gates of an LSTM cell. We,
however, hypothesize that topic information is more
relevant at the iii- and ccc-gates, the former because
it has the biggest impact on how a new token is
processed and the latter because it is closely linked
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Figure 2: Architecture of a CLSTM cell.

to how the sequence seen so far is to be interpreted
and stored. To this end, we experimented with
several modifications to the original CLSTM such as
removing peepholes—i.e., removing gates’ access
to the cell state ccc (Gers and Schmidhuber, 2000)—
and removing topic information from one or more
gates. Empirical results on the validation set show
that topic integration at the iii- and ccc-gates only, and
removal of all peephole connections, does indeed
outperform the original CLSTM on our task by 1
percentage point. Our modified CLSTM (Fig. 2) is
defined as

iiit = �(WWW xi xxxt +WWWhihhht�1 + bbbi + Wpi pWpi pWpi p ) (5)

fff t = �(WWW x f xxxt +WWWh f hhht�1 + bbbf ) (6)
ccct = fff tccct�1 + iiit�c(WWW xc xxxt +WWWhchhht�1

+bbbc + Wpc pWpc pWpc p ) (7)

ooot = �(WWW xoxxxt +WWWhohhht�1 + bbbo) (8)
hhht = ooot�c(ccct ). (9)

Here iii, fff , and ooo represent the input, forget, and
output gates; ccc the cell memory; xxxt the embedded
token of a sentence at timestep t; hhht�1 the previ-
ous hidden state; and bbb the bias. � and �c are
the activation and recurrent activation functions,
respectively. The novel terms for topic integration
are outlined. We use this model bidirectionally, as
we did with our BiLSTM network, and hence refer
to it as biclstm.

4.2 Leveraging additional data
As we want to classify arguments related to spe-
cific topics, leveraging information that supports
the classifier in the decision of topic-relation is
crucial. The multi-task learning (mtl) and transfer
learning (trl) models are able to make use of aux-
iliary data that can potentially improve the results
on the main task. Thus, we extend our previously
described models by integrating them into mtl and
trl setups. We also choose to integrate two corpora
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Figure 3: Multi-task learning architecture. The } sym-
bol denotes the concatenation operator.

from which we expect to learn (a) topic-relevance
and (b) the capability to distinguish between sup-
porting and attacking arguments. The first corpus,
DIP2016 (Habernal et al., 2016), consists of 49
queries from the educational domain and 100 doc-
uments for each query. Each document has its
sentences annotated for relevance (true/false) to the
query.4 The second corpus, from SemEval-2016
Task 6 (Mohammad et al., 2016), consists of around
5000 multi-sentence tweets, a corresponding topic
(e.g., “atheism”), and the author’s stance on the
topic (for/against/neither).

For our mtl and trl approaches, we consider every
possible pairing of a model (biclstm, outer-att, and
the bilstm baseline we introduce in §5) with an aux-
iliary corpus (DIP2016, SemEval). We formalize
our datasets as Sk = {(xxxki ,pppki , yki )|i = 0, . . . , |Sk |},
where k can be either our main dataset or an aux-
iliary dataset, xxxki denotes a single sentence as a
sequence of word embeddings and yki its corre-
sponding label in k, and pppki represents the corre-
sponding averaged topic vector.

Transfer learning (trl). For trl, we use the ap-
proach of parameter transfer (Pan and Yang, 2010)—
i.e., we do not modify the model used. Instead,
we train the model twice: the first time, we train
the model on the chosen auxiliary corpus, and the
second time, we keep the trained model’s weights
and train it with our own corpus. For the three-
label setting, we have to modify the transfer model
slightly for the DIP2016 corpus, since it provides
only two labels for each training sample. In this
case, we simply add a layer with two neurons on
top of the layer with three neurons for training with
the DIP2016 corpus and remove it afterwards for
training with our corpus.

4We only use 300K of the corpus’s 600K samples to ease
hyperparameter tuning for our computation-heavy models.

Multi-task learning (mtl). For mtl, we use a
shared–private model (Liu et al., 2017), which
showed promising results for text classification and
word segmentation (Chen et al., 2017). (We also
experimented with their adversarial approach to
learn topic-invariant features, but abandoned this
due to low scores.) The mtl base model consists
of a private recurrent neural network (RNN) for
both the auxiliary dataset and our dataset, plus a
shared RNN that both datasets use (Fig. 3). The
last hidden states of the RNNs are concatenated and
fed through a dense layer and a softmax activation
function. The model is trained in an alternating
fashion—i.e., after each epoch the loss for the other
dataset is minimized until each dataset has run for
the set number of epochs, where the last epoch is
always executed on our dataset. At prediction time,
only the private RNN trained on our dataset and
the shared RNN are used. The core idea is that the
shared RNN learns what is relevant for both tasks,
while the private ones learn only the task-specific
knowledge.

For the cases of mtl+bilstm+corpus, mtl+biclstm+
corpus, and mtl+outer-att+corpus, we simply switch
the RNN with our bilstm, biclstm, and outer-att,
respectively. For mtl+outer-att+corpus, we add the
outer attention mechanism (see §4.1), modified for
use with the mtl model, after each of the private
RNNs, while additionally feeding it a second topic
vector—the last hidden state of the shared RNN:

mmm(t) = tanh(WWWrhhhr (t) +WWW shhhs +WWW pppp) (10)

fattention(hhhr (t),hhhs,ppp) =
exp(wwwT

mmmm(t))Õ
t exp(wwwT

mmmm(t))
(11)

↵t / fattention(hhhr (t),hhhs,ppp) (12)

sss =
n’
t=1

hhhr (t)↵t (13)

where WWWr , WWW s, and WWW p are trainable weight matri-
ces, hhhr (t) is the hidden state of the private bilstm at
timestep t, hhhs is the last hidden state of the shared
model, and ppp is the average of all word embeddings
of topic words v1, . . . , vn⌧ .

5 Evaluation

To evaluate the robustness of the models, we con-
duct cross-topic experiments to evaluate how well
the models generalize to an unknown topic. To
this end, we combine training (70%) and validation
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two labels three labels

model F1 Parg Rarg F1 Parg+ Parg� Rarg+ Rarg�

bilstm (baseline) .6069 ± .0074 .7339 ± .0110 .3844 ± .0122 .3796 ± .0079 .3484 ± .0479 .4710 ± .0210 .0963 ± .0148 .2181 ± .0181
lr-uni (baseline) .5854 ± .0131 .6519 ± .0093 .3587 ± .0264 .3821 ± .0056 .2782 ± .0293 .4217 ± .0171 .1176 ± .0165 .2119 ± .0203
outer-att .6213 ± .0106 .7309 ± .0108 .4138 ± .0237 .3873 ± .0081 .3651 ± .0244 .4696 ± .0169 .1042 ± .0173 .2381 ± .0117
biclstm .6414 ± .0129 .6244 ± .0132 .7035 ± .0261 .4242 ± .0122 .2675 ± .0148 .3887 ± .0141 .2817 ± .0369 .4028 ± .0496
tr+bilstm+semeval .6297 ± .0073 .7500 ± .0047 .4233 ± .0125 .3698 ± .0142 .3128 ± .0422 .4075 ± .0640 .0897 ± .0256 .2089 ± .0133
tr+outer-att+semeval .6293 ± .0057 .7297 ± .0122 .4336 ± .0156 .3871 ± .0089 .3160 ± .0397 .4469 ± .0369 .1245 ± .0160 .2264 ± .0147
tr+biclstm+semeval .6433 ± .0182 .6625 ± .0128 .6181 ± .0259 .3953 ± .0122 .2606 ± .0356 .4226 ± .0203 .1743 ± .0385 .3643 ± .0574
tr+bilstm+dip2016 .6254 ± .0133 .7073 ± .0114 .4200 ± .0253 .3628 ± .0136 .2396 ± .0605 .4470 ± .0319 .0517 ± .0284 .2298 ± .0245
tr+outer-att+dip2016 .6074 ± .0115 .7112 ± .0245 .4031 ± .0238 .3438 ± .0233 .2060 ± .1012 .4171 ± .0521 .1105 ± .0821 .2096 ± .0793
tr+biclstm+dip2016 .6110 ± .0206 .6954 ± .0491 .4904 ± .0502 .3595 ± .0226 .2272 ± .0516 .3474 ± .0539 .1191 ± .0856 .2886 ± .0714
mtl+bilstm+semeval .6126 ± .0093 .7270 ± .0087 .3906 ± .0177 .3765 ± .0081 .3248 ± .0304 .4812 ± .0340 .0888 ± .0137 .2153 ± .0162
mtl+outer-att+semeval .6221 ± .0100 .7186 ± .0123 .4219 ± .0187 .3764 ± .0071 .3185 ± .0393 .4763 ± .0213 .0878 ± .0173 .2149 ± .0295
mtl+biclstm+semeval .6519 ± .0079 .6495 ± .0143 .6690 ± .0333 .4147 ± .0105 .2769 ± .0332 .3819 ± .0141 .2465 ± .0497 .4069 ± .0501
mtl+bilstm+dip2016 .6145 ± .0097 .7312 ± .0100 .3979 ± .0208 .3757 ± .0057 .3255 ± .0382 .4647 ± .0255 .0841 ± .0144 .2261 ± .0192
mtl+outer-att+dip2016 .6263 ± .0079 .7176 ± .0100 .4327 ± .0178 .3842 ± .0070 .3427 ± .0365 .4502 ± .0240 .1007 ± .0147 .2327 ± .0146
mtl+biclstm+dip2016 .6662 ± .0148 .6463 ± .0105 .6719 ± .0489 .4285 ± .0139 .2947 ± .0383 .3815 ± .0221 .2722 ± .0582 .3483 ± .0528

Table 4: Results for each model on the test sets. Bold numbers indicate the highest score in the column.

data (10%) of seven topics for training and parame-
ter tuning, and use the test data (20%) of the eighth
topic for testing. For encoding the words of sen-
tence &&& and topic ⌧⌧⌧, we use 300-dimensional word
embeddings trained on the Google News dataset by
Mikolov et al. (2013). To handle out-of-vocabulary
words, we create separate random word vectors for
each.5

Since reporting single performance scores is
insu�cient to compare non-deterministic learn-
ing approaches like neural networks (Reimers and
Gurevych, 2017), we report all results as averages
over ten runs with di�erent random seeds. As eval-
uation measures, we report the average macro F1, as
well as the precision and the recall for the argument
class (Parg, Rarg). For the three-label approach, we
split the precision and recall for predicting support-
ing (Parg+, Rarg+) and attacking arguments (Parg�,
Rarg�). As baselines, we use a simple bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), as
well as a logistic regression model with lowercased
unigram features, which has been shown to be a
strong baseline for various other AM tasks (Dax-
enberger et al., 2017; Stab and Gurevych, 2017).
We refer to these models as bilstm and lr-uni, re-
spectively. All neural networks are trained using
the Adam optimizer (Kingma and Ba, 2015) and
cross-entropy loss function. For finding the best
model, we run each for ten epochs and take the
best model based on the lowest validation loss. In
addition to that, we tune the hyperparameters of all

5Each dimension is set to a random number between ≠0.01
and 0.01. Digits are mapped to the same random word vector.

neural networks (see Appendix A). To accelerate
training, we truncate sentences at 60 words.6

5.1 Results

Two-label setup. The results in Table 4 show
that all our models outperform the baselines for
two-label prediction.7 F1 for biclstm improves
by 3.5 percentage points over the bilstm baseline
and by 5.6 over lr-uni. A main reason for this
proves to be the substantial increase in recall for our
topic-integrating models—outer-att and especially
biclstm—in comparison to our baselines. These
results show that knowledge of the argument’s topic
has a strong impact on argument prediction capa-
bility. Further, we observe that integrating biclstm
in a multi-task learning setup in order to draw
knowledge about topic relevance from the DIP2016
corpus (mtl+biclstm+dip2016) improves F1 by an
additional 2.5 percentage points. It achieves an F1
of 0.6662, which is 19.48 percentage points less
than the human upper bound of 0.861. When using
the SemEval corpus, which holds less task-relevant
knowledge for our two-label approach, we are able
to gain only 1 percentage point when integrating it
into mtl+biclstm+corpus.

For the transfer learning models that integrate the
topic (tr+biclstm+corpus and tr+outer-att+corpus),
the parameter transfer is mostly ine�ective. If no
topic is provided (tr+bilstm+corpus), the transfer
learning models are able to improve over the base-
line bilstm. This shows that the parameter transfer

6Only 244 of our sentences (<1%) exceed this length.
7Detailed results per topic are given in Appendix B.
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itself can be of use, but confuses the model when
combined with topic integration.

In general, we observe an overall lower score for
trl models that use the DIP2016 corpus compared
to those using the SemEval corpus. In contrast
to the mtl model, for trl models all parameters are
transferred to the main task, not just parameters
that represent shared knowledge. Thus, we suspect
the lower scores of the trl models with DIP2016 are
due to overfitting on the vast number of samples
which shape the parameters much more than the
comparatively small SemEval corpus could.

Three-label setup. For the three-label approach,
we observe overall lower scores due to the addi-
tional di�culty in distinguishing supporting from
opposing arguments. As already observed in the
two-label setup, biclstm outperforms both the bilstm
and lr-uni baselines; here, the former by 4.5 and the
latter by 4.2 percentage points in F1. Again, this is
caused by a substantial increase in recall and shows
the impact that the available topic information has
on the classifier’s predictive power.

For transfer learning, we see similar results as
for the two-label approach; both the DIP2016 and
SemEval corpora have a generally negative impact
when compared to the respective base models. The
SemEval corpus does not provide the knowledge
required to distinguish supporting from attacking
arguments. We conclude that the original purpose
of the SemEval task, stance recognition, is too
di�erent from our own. But in multi-task learning,
where only the shared parameters are taken, we
observe slight improvements when using biclstm
with DIP2016; this correlates with the same model
in the two-label setup.

5.2 Error analysis
To understand the errors of our best model, mtl-
biclstm-dip, and the nature of this task, we manually
analyzed 100 sentences randomly sampled from the
false positive and false negative arguments of the
three-label experiments (combining supporting and
attacking arguments). Among the false positives,
we found 48 o�-topic sentences that were wrongly
classified as arguments. The 52 on-topic false
positives consist of non-argumentative background
information or mere opinions without evidence
(as with the first and fourth examples of Table 1)
and questions about the topic. Among the false
negatives, we found 65 arguments that did not
explicitly refer to the topic but to related aspects that

depend on background knowledge. For instance,
the model fails to establish an argumentative link
between the topic “gun control” and the Second
Amendment to the US Constitution. Lastly, we
inspected arguments that are incorrectly classified
as supporting and/or opposing a topic. We found
several samples in which the term “against” is not
correctly interpreted and the argument is classified
as supporting a topic. Similarly, for arguments
incorrectly classified as attacking, we find various
samples where the word “oppose” is used not to
oppose the topic but to strengthen a supporting
argument, as in “There is reason even for people
who oppose the use of marijuana to support its
legalization. . . ”

5.3 Adapting to new topics
To evaluate the performance of the models in data-
scarce scenarios, we gradually add target topic
data to the training data and analyze the model
performance on the target test set. Figure 4 shows
model performance (F1, Parg, and Rarg) on the
“marijuana legalization” topic when adding di�erent
amounts of randomly sampled topic-specific data
to the training data (x-axes).8 As the results show,
the models that integrate the topic achieve higher
recall when adding target topic data to the training
data. For bilstm, we observe a drastic di�erence
when compared to the other models; the recall for
arguments stays at around 30% and rises only when
integrating more than 60% target topic data. In
strong contrast, topic-integrating models retrieve a
much higher number of actual arguments at target
topic augmentation levels as low as 20%. Further,
and equally important, this does not come at the
cost of precision; on the contrary, the precision is
mostly steady and slowly rising after around 20%
of target topic integration, leading to an overall
higher F1 for these models. Finally, in comparing
F1 between topic-integrating models and bilstm, we
conclude that the former need much less target topic
data to substantially improve their score, making
them more robust in situations of data scarcity.

6 Conclusion

We have presented a new approach for searching
a document collection for arguments relevant to
a given topic. First, we introduced an annotation
scheme suited to the information-seeking perspec-

8Each data point in the plot is the average score of ten runs
with di�erent random samples of target topic data.
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Figure 4: Model performance (y-axes) according to the amount of target topic data in the train sets (x-axes) for the
“marijuana legalization” topic in the three-label setup.

tive of argument search and showed that it is cheaply
but reliably applicable by untrained annotators to
arbitrary Web texts. Second, we presented a new
corpus, including over 25,000 instances over eight
topics, that allows for cross-topic experiments us-
ing heterogeneous text types. Third, we conducted
cross-topic experiments and showed that integrating
topic information of arguments with our contextual
BiLSTM leads to better generalization to unknown
topics. Fourth, by leveraging knowledge from simi-
lar datasets and integrating our contextual BiLSTM
into a multi-task learning setup, we were able to
gain an improvement over our strongest baseline of
5.9 percentage points in F1 in the two-label setup
and 4.6 in the three-label setup. Finally, by gradu-
ally adding target topic data to our training set, we
showed that, when available, even small amounts
of target topic data (20%) have a strong positive
influence on the recall of arguments.

In a separate, simultaneously written paper (Stab
et al., 2018) we evaluate our models in real-world
application scenarios by applying them to a large
document collection and comparing the results
to a manually produced gold standard. An on-
line argument search engine implementing our ap-
proach is now available for noncommercial use
at https://www.argumentsearch.com/. Fur-
thermore, we are experimenting with language
adaptation and plan to extend the tool to the Ger-
man language. Preliminary results are presented
in Stahlhut (2018). We also intend to investigate
methods for grouping similar arguments.
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Abstract
We present a neural framework for opinion
summarization from online product reviews
which is knowledge-lean and only requires
light supervision (e.g., in the form of product
domain labels and user-provided ratings). Our
method combines two weakly supervised com-
ponents to identify salient opinions and form
extractive summaries from multiple reviews:
an aspect extractor trained under a multi-task
objective, and a sentiment predictor based on
multiple instance learning. We introduce an
opinion summarization dataset that includes a
training set of product reviews from six di-
verse domains and human-annotated develop-
ment and test sets with gold standard aspect
annotations, salience labels, and opinion sum-
maries. Automatic evaluation shows signifi-
cant improvements over baselines, and a large-
scale study indicates that our opinion sum-
maries are preferred by human judges accord-
ing to multiple criteria.1

1 Introduction
Opinion summarization, i.e., the aggregation of
user opinions as expressed in online reviews,
blogs, internet forums, or social media, has drawn
much attention in recent years due to its potential
for various information access applications. For
example, consumers have to wade through many
product reviews in order to make an informed de-
cision. The ability to summarize these reviews
succinctly would allow customers to efficiently
absorb large amounts of opinionated text and man-
ufacturers to keep track of what customers think
about their products (Liu, 2012).

The majority of work on opinion summarization
is entity-centric, aiming to create summaries from
text collections that are relevant to a particular en-
tity of interest, e.g., product, person, company,
and so on. A popular decomposition of the prob-
lem involves three subtasks (Hu and Liu, 2004,

1Our code and dataset are publicly available at https:
//github.com/stangelid/oposum.

2006): (1) aspect extraction which aims to find
specific features pertaining to the entity of interest
(e.g., battery life, sound quality, ease of use) and
identify expressions that discuss them; (2) senti-
ment prediction which determines the sentiment
orientation (positive or negative) on the aspects
found in the first step, and (3) summary genera-
tion which presents the identified opinions to the
user (see Figure 1 for an illustration of the task).

A number of techniques have been proposed for
aspect discovery using part of speech tagging (Hu
and Liu, 2004), syntactic parsing (Lu et al., 2009),
clustering (Mei et al., 2007; Titov and McDon-
ald, 2008b), data mining (Ku et al., 2006), and in-
formation extraction (Popescu and Etzioni, 2005).
Various lexicon and rule-based methods (Hu and
Liu, 2004; Ku et al., 2006; Blair-Goldensohn et al.,
2008) have been adopted for sentiment prediction
together with a few learning approaches (Lu et al.,
2009; Pappas and Popescu-Belis, 2017; Angelidis
and Lapata, 2018). As for the summaries, a com-
mon format involves a list of aspects and the num-
ber of positive and negative opinions for each (Hu
and Liu, 2004). While this format gives an over-
all idea of people’s opinion, reading the actual
text might be necessary to gain a better under-
standing of specific details. Textual summaries
are created following mostly extractive methods
(but see Ganesan et al. 2010 for an abstractive ap-
proach), and various formats ranging from lists of
words (Popescu and Etzioni, 2005), to phrases (Lu
et al., 2009), and sentences (Mei et al., 2007; Blair-
Goldensohn et al., 2008; Lerman et al., 2009;
Wang and Ling, 2016).

In this paper, we present a neural framework
for opinion extraction from product reviews. We
follow the standard architecture for aspect-based
summarization, while taking advantage of the suc-
cess of neural network models in learning con-
tinuous features without recourse to preprocess-
ing tools or linguistic annotations. Central to our
system is the ability to accurately identify aspect-
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Figure 1: Aspect-based opinion summarization. Opinions on image quality, sound quality, connectivity,
and price of an LCD television are extracted from a set of reviews. Their polarities are then used to sort
them into positive and negative, while neutral or redundant comments are discarded.

specific opinions by using different sources of in-
formation freely available with product reviews
(product domain labels, user ratings) and mini-
mal domain knowledge (essentially a few aspect-
denoting keywords). We incorporate these ideas
into a recently proposed aspect discovery model
(He et al., 2017) which we combine with a weakly
supervised sentiment predictor (Angelidis and La-
pata, 2018) to identify highly salient opinions.
Our system outputs extractive summaries using a
greedy algorithm to minimize redundancy. Our
approach takes advantage of weak supervision sig-
nals only, requires minimal human intervention
and no gold-standard salience labels or summaries
for training.

Our contributions in this work are three-fold:
a novel neural framework for the identification
and extraction of salient customer opinions that
combines aspect and sentiment information and
does not require unrealistic amounts of supervi-
sion; the introduction of an opinion summariza-
tion dataset which consists of Amazon reviews
from six product domains, and includes develop-
ment and test sets with gold standard aspect an-
notations, salience labels, and multi-document ex-
tractive summaries; a large-scale user study on the
quality of the final summaries paired with auto-
matic evaluations for each stage in the summa-
rization pipeline (aspects, extraction accuracy, fi-
nal summaries). Experimental results demonstrate
that our approach outperforms strong baselines in
terms of opinion extraction accuracy and similar-
ity to gold standard summaries. Human evaluation
further shows that our summaries are preferred
over comparison systems across multiple criteria.

2 Related Work

It is outside the scope of this paper to provide a
detailed treatment of the vast literature on opinion
summarization and related tasks. For a compre-

hensive overview of non-neural methods we refer
the interested reader to Kim et al. (2011) and Liu
and Zhang (2012). We are not aware of previous
studies which propose a neural-based system for
end-to-end opinion summarization without direct
supervision, although as we discuss below, recent
efforts tackle various subtasks independently.

Aspect Extraction Several neural network
models have been developed for the identification
of aspects (e.g., words or phrases) expressed in
opinions. This is commonly viewed as a super-
vised sequence labeling task; Liu et al. (2015)
employ recurrent neural networks, whereas Yin
et al. (2016) use dependency-based embeddings
as features in a Conditional Random Field (CRF).
Wang et al. (2016) combine a recursive neural
network with CRFs to jointly model aspect and
sentiment terms. He et al. (2017) propose an
aspect-based autoencoder to discover fine-grained
aspects without supervision, in a process similar
to topic modeling. Their model outperforms
LDA-style approaches and forms the basis of our
aspect extractor.

Sentiment Prediction Fully-supervised ap-
proaches based on neural networks have achieved
impressive results on fine-grained sentiment
classification (Kim, 2014; Socher et al., 2013).
More recently, Multiple Instance Learning (MIL)
models have been proposed that use freely
available review ratings to train segment-level
predictors. Kotzias et al. (2015) and Pappas
and Popescu-Belis (2017) train sentence-level
predictors under a MIL objective, while our
previous work (Angelidis and Lapata, 2018)
introduced MILNET, a hierarchical model that
is trained end-to-end on document labels and
produces polarity-based opinion summaries of
single reviews. Here, we use MILNET to predict
the sentiment polarity of individual opinions.
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Multi-document Summarization A few ex-
tractive neural models have been recently applied
to generic multi-document summarization. Cao
et al. (2015) train a recursive neural network using
a ranking objective to identify salient sentences,
while follow-up work (Cao et al., 2017) employs
a multi-task objective to improve sentence extrac-
tion, an idea we adapted to our task. Yasunaga
et al. (2017) propose a graph convolution network
to represent sentence relations and estimate sen-
tence salience. Our summarization method is tai-
lored to the opinion extraction task, it identifies
aspect-specific and salient units, while minimizing
the redundancy of the final summary with a greedy
selection algorithm (Cao et al., 2015; Yasunaga
et al., 2017). Redundancy is also addressed in
Ganesan et al. (2010) who propose a graph-based
framework for abstractive summarization. Wang
and Ling (2016) introduce an encoder-decoder
neural method for extractive opinion summariza-
tion. Their approach requires direct supervision
via gold-standard extractive summaries for train-
ing, in contrast to our weakly supervised formula-
tion.

3 Problem Formulation

Let C denote a corpus of reviews on a set of prod-
ucts EC = {ei}|EC|

i=1 from a domain dC, e.g., tele-
visions or keyboards. For every product e, the
corpus contains a set of reviews Re = {ri}|Re|

i=1
expressing customers’ opinions. Each review ri

is accompanied by the author’s overall rating yi

and is split into segments (s1, . . . , sm), where
each segment sj is in turn viewed as a sequence
of words (wj1, . . . , wjn). A segment can be a
sentence, a phrase, or in our case an Elemen-
tary Discourse Unit (EDU; Mann and Thompson
1988) obtained from a Rhetorical Structure The-
ory (RST) parser (Feng and Hirst, 2012). EDUs
roughly correspond to clauses and have been
shown to facilitate performance in summarization
(Li et al., 2016), document-level sentiment anal-
ysis (Bhatia et al., 2015), and single-document
opinion extraction (Angelidis and Lapata, 2018).

A segment may discuss zero or more as-
pects, i.e., different product attributes. We use
AC = {ai}K

i=1 to refer to the aspects pertaining to
domain dC. For example, picture quality, sound
quality, and connectivity are all aspects of televi-
sions. By convention, a general aspect is assigned
to segments that do not discuss any specific as-
pects. Let As ✓ AC denote the set of aspects

mentioned in segment s; pols 2 [�1, +1] marks
the polarity a segment conveys, where �1 indi-
cates maximally negative and +1 maximally posi-
tive sentiment. An opinion is represented by tuple
os = (s, As, pols), and Oe = {os}s2Re represents
the set of all opinions expressed in Re.

For each product e, our goal is to produce a
summary of the most salient opinions expressed in
reviews Re, by selecting a small subset Se ⇢ Oe.
We expect segments that discuss specific product
aspects to be better candidates for useful sum-
maries. We hypothesize that general comments
mostly describe customers’ overall experience,
which can also be inferred by their rating, whereas
aspect-related comments provide specific reasons
for their overall opinion. We also assume that seg-
ments conveying highly positive or negative senti-
ment are more likely to present informative opin-
ions compared to neutral ones, a claim supported
by previous work (Angelidis and Lapata, 2018).

We describe our novel approach to aspect ex-
traction in Section 4 and detail how we combine
aspect, sentiment, and redundancy information to
produce opinion summaries in Section 5.

4 Aspect Extraction

Our work builds on the aspect discovery model de-
veloped by He et al. (2017), which we extend to
facilitate the accurate extraction of aspect-specific
review segments in a more realistic setting. In
this section, we first describe their approach, point
out its shortcomings, and then present the exten-
sions and modifications introduced in our Multi-
Seed Aspect Extractor (MATE) model.

4.1 Aspect-Based Autoencoder
The Aspect-Based Autoencoder (ABAE; He et al.
2017) is an adaptation of the Relationship Mod-
eling Network (Iyyer et al., 2016), originally
designed to identify attributes of fictional book
characters and their relationships. The model
learns a segment-level aspect predictor without
supervision by attempting to reconstruct the in-
put segment’s encoding as a linear combination
of aspect embeddings. ABAE starts by pairing
each word w with a pre-trained word embedding
vw 2 R

d, thus constructing a word embedding
dictionary L 2 R

V ⇥d, where V is the size of the
vocabulary. The model also keeps an aspect em-
bedding dictionary A 2 R

K⇥d, where K is the
number of aspects to be identified and i-th row
ai 2 R

d is a point in the word embedding space.
Matrix A is initialized using the centroids from a
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k-means clustering on the vocabulary’s word em-
beddings.

The autoencoder, first produces a vector vs for
review segment s = (w1, . . . , wn) using an atten-
tion encoder that learns to attend on aspect words.
A segment encoding is computed as the weighted
average of word vectors:

vs =
nX

i=1

civwi (1)

ci =
exp(ui)Pn

j=1 exp(uj)
(2)

ui = vT
wi

· M · v0
s , (3)

where ci is the i-th word’s attention weight, v0
s is a

simple average of the segment’s word embeddings
and attention matrix M 2 R

d⇥d is learned during
training.

Vector vs is fed into a softmax classifier to pre-
dict a probability distribution over K aspects:

pasp
s = softmax(Wvs + b) , (4)

where W 2 R
K⇥d and b 2 R

K are the classi-
fier’s weight and bias parameters. The segment’s
vector is then reconstructed as the weighted sum
of aspect embeddings:

rs = ATpasp
s . (5)

The model is trained by minimizing a recon-
struction loss Jr(✓) that uses randomly sampled
segments n1, n2, . . . , nkn as negative examples:2

Jr(✓) =
X

s2C

knX

i=1

max(0, 1 � rsvs + rsvni) (6)

ABAE is essentially a neural topic model; it
discovers topics which will hopefully map to as-
pects, without any preconceptions about the as-
pects themselves, a feature shared with most previ-
ous LDA-style aspect extraction approaches (Titov
and McDonald, 2008a; He et al., 2017; Mukherjee
and Liu, 2012). These models will set the num-
ber of topics to be discovered to a much larger
number (⇠ 15) than the actual aspects found in
the data (⇠ 5). This requires a many-to-one map-
ping between discovered topics and genuine as-
pects which is performed manually.

2ABAE also uses a uniqueness regularization term that
is not shown here and is not used in our Multi-Seed Aspect
Extractor model.

Figure 2: Multi-Seed Aspect Extractor (MATE).

4.2 Multi-Seed Aspect Extractor

Dynamic aspect extraction is advantageous since
it assumes nothing more than a set of relevant re-
views for a product and may discover unusual and
interesting aspects (e.g., whether a plasma televi-
sion has protective packaging). However, it suffers
from the fact that the identified aspects are fine-
grained, they have to be interpreted post-hoc, and
manually mapped to coarse-grained ones.

We propose a new weakly-supervised set-up for
aspect extraction which requires little human in-
volvement. For every aspect ai 2 AC, we assume
there exists a small set of seed words {sw j}l

j=1
which are good descriptors of ai. We can think
of these seeds as query terms that someone would
use to search for segments discussing ai. They can
be set manually by a domain expert or selected us-
ing a small number of aspect-annotated reviews.
Figure 2 (top) depicts four television aspects (im-
age, sound, connectivity and price) and three of
their seeds in word embedding space. MATE
replaces ABAE’s aspect dictionary with multiple
seed matrices {A1,A2, . . . ,AK}. Every matrix
Ai 2 R

l⇥d, contains one row per seed word and
holds the seeds’ word embeddings, as illustrated
by the set of [3 ⇥ 2] matrices in Figure 2.

MATE still needs to produce an aspect matrix
A 2 R

K⇥d, in order to reconstruct the input seg-
ment’s embedding. We accomplish this by reduc-
ing each seed matrix to a single aspect embed-
ding with the help of seed weight vectors zi 2 R

l

(
P

j zij = 1), and concatenating the results, illus-
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trated by the [4 ⇥ 2] aspect matrix in Figure 2:

ai = AT
i zi (7)

A = [aT
1 ; . . . ;aT

K ] . (8)

The segment is reconstructed as in Equation (5).
Weight vectors zi can be uniform (for manually
selected seeds), fixed, learned during training, or
set dynamically for each input segment, based on
the cosine distance of its encoding to each seed
embedding. Our experiments showed that fixed
weights, selected through a technique described
below, result in most stable performance across
domains. We only focus on this variant due to
space restrictions (but provide more details in the
supplementary material).

When a small number of aspect-annotated re-
views are available, seeds and their fixed seed
weights can be selected automatically. To obtain a
ranked list of terms that are most characteristic for
each aspect, we use a variant of the clarity scoring
function which was first introduced in information
retrieval (Cronen-Townsend et al., 2002). Clarity
measures how much more likely it is to observe
word w in the subset of segments that discuss as-
pect a, compared to the corpus as a whole:

scorea(w) = ta(w) log2
ta(w)

t(w)
, (9)

where ta(w) and t(w) are the l1-normalized tf-idf
scores of w in the segments annotated with as-
pect a and in all annotated segments, respectively.
Higher scores indicate higher term importance and
truncating the ranked list of terms gives a fixed set
of seed words, as well as their seed weights by
normalizing the scores to add up to one. Table 1
shows the highest ranked terms obtained for every
aspect in the televisions domain of our corpus (see
Section 6 for a detailed description of our data).

4.3 Multi-Task Objective
MATE (and ABAE) relies on the attention encoder
to identify and attend to each segment’s aspect-
signalling words. The reconstruction objective
only provides a weak training signal, so we devise
a multi-task extension to enhance the encoder’s ef-
fectiveness without additional annotations.

We assume that aspect-relevant words not only
provide a better basis for the model’s aspect-based
reconstruction, but are also good indicators of the
product’s domain. For example, the words colors
and crisp, in the segment “The colors are perfectly
crisp” should be sufficient to infer that the seg-

Aspect Top Terms
Image picture color quality black bright
Sound sound speaker quality bass loud
Connectivity hdmi port computer input component
Price price value money worth paid
Apps & Interface netflix user file hulu apps
Ease of Use easy remote setup user menu
Customer Service paid support service week replace
Size & Look size big bigger difference screen
General tv bought hdtv happy problem

Table 1: Highest ranked words for the television
corpus according to Equation (9).

ment comes from a television review, whereas the
words keys and type in the segment “The keys feel
great to type on” are more representative of the
keyboard domain. Additionally, all four words are
characteristic of specific aspects.

Let Call = C1 [ C2 [ . . . denote the union
of multiple review corpora, where C1 is consid-
ered in-domain and the rest are considered out-of-
domain. We use ds 2 {dC1 , dC2 , . . . } to denote
the true domain of segment s and define a classi-
fier that uses the vectors from our segment encoder
as inputs:

pdom
s = softmax(WCvs + bC) , (10)

where pdom
s = hp(dC1 ), p(dC2 ), . . . i is a proba-

bility distribution over product domains for seg-
ment s and WC and bC are the classifier’s weight
and bias parameters. We use the negative log like-
lihood of the domain prediction as the objective
function, combined with the reconstruction loss of
Equation (5) to obtain a multi-task objective:

JMT(✓) = Jr(✓) � �
X

s2Call

log p(ds) , (11)

where � controls the influence of the classifica-
tion loss. Note that the negative log-likelihood
is summed over all segments in Call , whereas
Jr(✓) is only summed over the in-domain seg-
ments s 2 C1. It is important not to use the
out-of-domain segments for segment reconstruc-
tion, as they will confuse the aspect extractor due
to the aspect mismatch between different domains.

5 Opinion Summarization

We now move on to describe our opinion summa-
rization framework which is based on the aspect
extraction component discussed so far, a polarity
prediction model, and a segment selection policy
which identifies and discards redundant opinions.
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Segment Salience
1. The color and definition are perfect. [+]0.89
2. Set up was extremely easy, [+]0.79
3. Not worth $ 300. [-]0.75
4. The sound on this is horrendous. [-]0.52
5. The sound is TERRIBLE. [-]0.45
6. Nice and bright with good colors. [+]0.44

Table 2: Most salient opinions according to
scores from Equation (12) for an LCD TV.

Domain Products Reviews EDUs Vocab
Laptop Cases 2,040 (10) 42,727 (100) 602K (1,262) 30,443
B/T Headsets 1,471 (10) 80,239 (100) 1.46M (1,344) 51,263
Boots 4,723 (10) 77,593 (100) 987K (1,198) 30,364
Keyboards 983 (10) 33,713 (100) 625K (1,396) 34,095
Televisions 1,894 (10) 56,510 (100) 1.47M (1,483) 59,051
Vacuums 1,184 (10) 68,266 (100) 1.50M (1,492) 46,259

Table 3: The OPOSUM corpus. Numbers in parentheses
correspond to the human-annotated subset.

Opinion Polarity Aside from describing a prod-
uct’s aspects, segments also express polarity
(i.e., positive or negative sentiment). We identify
segment polarity with the recently proposed Mul-
tiple Instance Learning Network model (MILNET;
Angelidis and Lapata 2018). Whilst trained on
freely available document-level sentiment labels,
i.e., customer ratings on a scale from 1 (negative)
to 5 (positive), MILNET learns a segment-level
sentiment predictor using a hierarchical, attention-
based neural architecture.

Given review r consisting of segments
(s1, . . . , sm), MILNET uses a CNN segment
encoder to obtain segment vectors (u1, . . . ,um),
each used as input to a segment-level sen-
timent classifier. For every vector ui, the
classifier produces a sentiment prediction
pstm

i = hp(1)
i , . . . , p(M)

i i, where p(1)
i and p(M)

i are
probabilities assigned to the most negative and
most positive sentiment class respectively. Re-
sulting segment predictions (pstm

1 , . . . ,pstm
m ) are

combined via a GRU-based attention mechanism
to produce a document-level prediction pstm

r and
the model is trained end-to-end on the reviews’
user ratings using negative log-likelihood.

The essential by-product of MILNET are
segment-level sentiment predictions pstm

i , which
are transformed into polarities polsi

, by projecting
them onto the [�1, +1] range using a uniformly
spaced sentiment class weight vector.

Opinion Ranking Aspect predictions pasp
s =

hp(a1)
s , . . . , p(aK)

s i and polarities pols, form the
opinion set Oe = {(s, As, pols)}s2Re for every
product e 2 EC. For simplicity, we set the pre-
dicted aspect-set As to only include the aspect
with the highest probability, although it is straight-
forward to allow for multiple aspects. We rank ev-
ery opinion os 2 Oe according to its salience:

sal(os) = |pols| · (max
i

p(ai)
s � p(GEN)

s ) , (12)

where the quantity in parentheses is the probability
difference between the most probable aspect and

the general aspect. The salience score will be high
for opinions that are very positive or very negative
and are also likely to discuss a non-general aspect.

Opinion Selection The final step towards pro-
ducing summaries is to discard potentially redun-
dant opinions, something that is not taken into ac-
count by our salience scoring method. Table 2
shows a partial ranking of the most salient opin-
ions found in the reviews for an LCD television.
All segments provide useful information, but it is
evident that segments 1 and 6 as well as 4 and 5
are paraphrases of the same opinions.

We follow previous work on multi-document
summarization (Cao et al., 2015; Yasunaga et al.,
2017) and use a greedy algorithm to eliminate re-
dundancy. We start with the highest ranked opin-
ion, and keep adding opinions to the final sum-
mary one by one, unless the cosine similarity be-
tween the candidate segment and any segment al-
ready included in the summary is lower than 0.5.

6 The OPOSUM Dataset

We created OPOSUM, a new dataset for the train-
ing and evaluation of Opinion Summarization
models which contains Amazon reviews from six
product domains: Laptop Bags, Bluetooth Head-
sets, Boots, Keyboards, Televisions, and Vacuums.
The six training collections were created by down-
sampling from the Amazon Product Dataset3 in-
troduced in McAuley et al. (2015) and contain re-
views and their respective ratings. The reviews
were segmented into EDUs using a publicly avail-
able RST parser (Feng and Hirst, 2012).

To evaluate our methods and facilitate research,
we produced a human-annotated subset of the
dataset. For each domain, we uniformly sampled
(across ratings) 10 different products with 10 re-
views each, amounting to a total of 600 reviews,
to be used only for development (300) and test-
ing (300). We obtained EDU-level aspect anno-
tations, salience labels and gold standard opinion

3http://jmcauley.ucsd.edu/data/amazon/

3680



Aspect Extraction (F1) L. Bags B/T H/S Boots Keyb/s TVs Vac/s AVG
Majority 37.9 39.8 37.1 43.2 41.7 41.6 40.2
ABAE 38.1 37.6 35.2 38.6 39.5 38.1 37.9
ABAEinit 41.6 48.5 41.2 41.3 45.7 40.6 43.2
MATE 46.2 52.2 45.6 43.5 48.8 42.3 46.4
MATE+MT 48.6 54.5 46.4 45.3 51.8 47.7 49.1

Salience (MAP/P@5) L. Bags B/T H/S Boots Keyb/s TVs Vac/s AVG
MILNET 21.8 / 40.0 19.8 / 36.7 17.0 / 39.3 14.1 / 28.0 14.3 / 36.0 14.6 / 31.3 16.9 / 35.2
ABAEinit 19.9 / 48.5 27.5 / 49.7 13.8 / 28.1 19.0 / 44.9 16.8 / 42.4 16.1 / 34.0 18.8 / 41.3
MATE 23.0 / 57.1 30.9 / 50.7 15.4 / 31.9 21.0 / 43.1 18.7 / 44.7 19.9 / 44.0 21.5 / 45.2
MATE+MT 26.3 / 60.8 37.5 / 66.7 17.3 / 33.6 20.9 / 44.9 23.6 / 48.0 22.4 / 43.9 24.7 / 49.6
MILNET+ABAEinit 27.1 / 56.0 33.5 / 66.5 19.3 / 34.8 22.4 / 51.7 19.0 / 43.7 20.8 / 43.5 23.7 / 49.4
MILNET+MATE 28.2 / 54.7 36.0 / 66.5 21.7 / 39.3 24.0 / 52.0 20.8 / 46.1 23.5 / 49.3 25.7 / 51.3
MILNET+MATE+MT 32.1 / 69.2 40.0 / 74.7 23.3 / 40.4 24.8 / 56.4 23.8 / 52.8 26.0 / 53.1 28.3 / 57.8

Table 4: Experimental results for the identification of aspect segments (top) and the retrieval of salient
segments (bottom) on OPOSUM’s six product domains and overall (AVG).

summaries, as described below. Statistics are pro-
vided in Table 3 and in supplementary material.

Aspects For every domain, we pre-selected nine
representative aspects, including the general as-
pect. We presented the EDU-segmented reviews
to three annotators and asked them to select the
aspects discussed in each segment (multiple as-
pects were allowed). Final labels were obtained
using a majority vote among annotators. Inter-
annotator agreement across domains and anno-
tated segments using Cohen’s Kappa coefficient
was K = 0.61 (N = 8,175, k = 3).

Opinion Summaries We produced opinion
summaries for the 60 products in our bench-
mark using a two-stage procedure. First, all re-
views for a product were shown to three annota-
tors. Each annotator read the reviews one-by-one
and selected the subset of segments they thought
best captured the most important and useful com-
ments, without taking redundancy into account.
This phase produced binary salience labels against
which we can judge the ability of a system to
identify important opinions. Again, using the
Kappa coefficient, agreement among annotators
was K = 0.51 (N = 8,175, k = 3).4 In the sec-
ond stage, annotators were shown the salient seg-
ments they identified (for every product) and asked
to create a final extractive summary by choosing
opinions based on their popularity, fluency and
clarity, while avoiding redundancy and staying un-
der a budget of 100 words. We used ROUGE
(Lin and Hovy, 2003) as a proxy to inter-annotator
agreement. For every product, we treated one ref-

4While this may seem moderate, Radev et al. (2003) show
that inter-annotator agreement for extractive summarization
is usually lower (K < 0.30).

erence summary as system output and computed
how it agrees with the rest. ROUGE scores are
reported in Table 5 (last row).

7 Experiments

In this section, we discuss implementation de-
tails and present our experimental setup and re-
sults. We evaluate model performance on three
subtasks: aspect identification, salient opinion ex-
traction, and summary generation.

Implementation Details Reviews were lemma-
tized and stop words were removed. We initial-
ized MATE using 200-dimensional word embed-
dings trained on each product domain using skip-
gram (Mikolov et al., 2013) with default parame-
ters. We used 30 seed words per aspect, obtained
via Equation (9). Word embeddings L, seed ma-
trices {Ai}K

i=1 and seed weight vectors {zi}K
i=1

were fixed throughout training. We used the Adam
optimizer (Kingma and Ba, 2014) with learning
rate 10�4 and mini-batch size 50, and trained for
10 epochs. We used 20 negative examples per in-
put for the reconstruction loss and, when used, the
multi-tasking coefficient � was set to 10. Seed
words and hyperparameters were selected on the
development set and we report results on the test
set, averaged over 5 runs.

Aspect Extraction We trained aspect models on
the collections of Table 3 and evaluated their pre-
dictions against the human-annotated portion of
each corpus. Our MATE model and its multi-
task counterpart (MATE+MT) were compared
against a majority baseline and two ABAE vari-
ants: vanilla ABAE, where aspect matrix A is
initialized using k-means centroids and fine-tuned
during training; and ABAEinit, where rows of A
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are fixed to the centroids of respective seed em-
beddings. This allows us to examine the benefits
of our multi-seed aspect representation. Table 4
(top) reports the results using micro-averaged F1.
Our models outperform both variants of ABAE
across domains. ABAEinit improves upon the
vanilla model, affirming that informed aspect ini-
tialization can facilitate the task. The richer multi-
seed representation of MATE, however, helps our
model achieve a 3.2% increase in F1. Further im-
provements are gained by the multi-task model,
which boosts performance by 2.7%.

Opinion Salience We are also interested in our
system’s ability to identify salient opinions in re-
views. The first phase of our opinion extraction
annotation provides us with binary salience labels,
which we use as gold standard to evaluate sys-
tem opinion rankings. For every product e, we
score each segment s 2 Re using Equation (12)
and evaluate the obtained rankings via Mean Av-
erage Precision (MAP) and Precision at the 5th
retrieved segment (P@5).5 Polarity scores were
produced via MILNET; we obtained aspect proba-
bilities from ABAEinit, MATE, and MATE+MT.
We also experimented with a variant that only
uses MILNET’s polarities and, additionally, with
variants that ignore polarities and only use aspect
probabilities.

Results are shown in Table 4 (bottom). The
combined use of polarity and aspect informa-
tion improves the retrieval of salient opinions
across domains, as all model variants that use
our salience formula of Equation (12) outper-
form the MILNET- and aspect-only baselines.
When comparing between aspect-based alterna-
tives, we observe that the extraction accuracy
correlates with the quality of aspect prediction.
In particular, ranking using MILNET+MATE+MT
gives best results, with a 2.6% increase in MAP
against MILNET+MATE and 4.6% against MIL-
NET+ABAEinit. The trend persists even when
MILNET polarities are ignored, although the qual-
ity of rankings is worse in this case.

Opinion Summaries We now turn to the sum-
marization task itself, where we compare our best
performing model (MILNET+MATE+MT), with
and without a redundancy filter (RD), against the
following methods: a baseline that selects seg-
ments randomly; a Lead baseline that only selects
the leading segments from each review; SumBasic,

5A system’s salience ranking is individually compared
against labels from each annotator and we report the average.

Summarization ROUGE-1 ROUGE-2 ROUGE-L

Random 35.1 11.3 34.3
Lead 35.5 15.2 34.8
SumBasic 34.0 11.2 32.6
LexRank 37.7 14.1 36.6
Opinosis 36.8 14.3 35.7
Opinosis+MATE+MT 38.7 15.8 37.4
MILNET+MATE+MT 43.5 21.7 42.8
MILNET+MATE+MT+RD 44.1 21.8 43.3
Inter-annotator Agreement 54.7 36.6 53.9

Table 5: Summarization results on OPOSUM.

Inform. Polarity Coherence Redund.
Gold 2.04 8.70 10.93 6.11
This work 9.26 3.15 1.11 2.96
Opinosis -12.78 -10.00 -9.08 -9.45
Lead 1.48 -1.85 -2.96 0.37

Table 6: Best-Worst Scaling human evaluation.

a generic frequency-based extractive summarizer
(Nenkova and Vanderwende, 2005); LexRank, a
generic graph-based extractive summarizer (Erkan
and Radev, 2004); Opinosis, a graph-based ab-
stractive summarizer that is designed for opinion
summarization (Ganesan et al., 2010). All ex-
tractive methods operate on the EDU level with
a 100-word budget. For Opinosis, we tested an
aspect-agnostic variant that takes every review
segment for a product as input, and a variant that
uses MATE’s groupings of segments to produce
and concatenate aspect-specific summaries.

Table 5 presents ROUGE-1, ROUGE-2 and
ROUGE-L F1 scores, averaged across domains.
Our model (MILNET+MATE+MT) significantly
outperforms all comparison systems (p < 0.05;
paired bootstrap resampling; Koehn 2004), whilst
using a redundancy filter slightly improves perfor-
mance. Assisting Opinosis with aspect predictions
is beneficial, however, it remains significantly in-
ferior to our model (see the supplementary mate-
rial for additional results).

We also performed a large-scale user study. For
every product in the OPOSUM test set, participants
were asked to compare summaries produced by:
a (randomly selected) human annotator, our best
performing model (MILNET+MATE+MT+RD),
Opinosis, and the Lead baseline. The study was
conducted on the Crowdflower platform using
Best-Worst Scaling (BWS; Louviere and Wood-
worth 1991; Louviere et al. 2015), a less labour-
intensive alternative to paired comparisons that
has been shown to produce more reliable results
than rating scales (Kiritchenko and Mohammad,
2017). We arranged every 4-tuple of competing
summaries into four triplets. Every triplet was
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Product domain: Televisions
Product name: Sony BRAVIA 46-Inch HDTV

H
um

an
Plenty of ports and settings. Easy hookups to audio and satellite sources. The sound is good and strong. This TV
looks very good. and the price is even better. The on-screen menu/options is quite nice. and the internet apps work as
expected. The picture is clear and sharp. which is TOO SLOW to stream HD video... The software and apps built into
this TV. are difficult to use and setup. Their service is handled off shore making. communication a bit difficult. :(

Le
xR

an
k Get a Roku or Netflix box. I watch cable, Netflix, Hulu Plus, YouTube videos and computer movie files on it. Sound is

good much better. DO NOT BUY! this SONY Bravia ‘ Smart ’ TV... and avoid the Sony apps at all costs. Because of
these two issues, I returned the Sony TV. Also you can change the display and sound settings on each port. However,
the streaming speed for netflix is just down right terrible. Most of the time I just quit. Since I do not own the cable
box, So, I have the cable.

O
pi

no
sis

The picture and not bright at all even compared to my 6-year old sony lcd tv. It will not work with an hdmi. Connection
because of a conflict with comcast’s dhcp. Being generous because I usuallly like the design and attention to detail of
sony products). I am very disappointed with this tv for two reasons: picture brightness and channel menu. Numbers
of options available in the on-line area of the tv are numerous and extremely useful. Wow look at the color, look at the
sharpness of the picture, amazing and the amazing.

Th
is

w
or

k Plenty of ports and settings and have been extremely happy with it. The sound is good and strong. The picture is
beautiful. And the internet apps work as expected. And the price is even better. Unbelieveable picture and the setup is
so easy. Wow look at the color, look at the sharpness of the picture. The Yahoo! widgets do not work. And avoid the
Sony apps at all costs. Communication a bit difficult. :(

Figure 3: Human and system summaries for a product in the Televisions domain.

shown to three crowdworkers, who were asked
to decide which summary was best and which
one was worst according to four criteria: Infor-
mativeness (How much useful information about
the product does the summary provide?), Polar-
ity (How well does the summary highlight posi-
tive and negative opinions?), Coherence (How co-
herent and easy to read is the summary?) Redun-
dancy (How successfully does the summary avoid
redundant opinions?).

For every criterion, a system’s score is com-
puted as the percentage of times it was selected
as best minus the percentage of times it was se-
lected as worst (Orme, 2009). The scores range
from -100 (unanimously worst) to +100 (unani-
mously best) and are shown in Table 6. Partici-
pants favored our model over comparison systems
across all criteria (all differences are statistically
significant at p < 0.05 using post-hoc HD Tukey
tests). Human summaries are generally preferred
over our model, however the difference is signifi-
cant only in terms of coherence (p < 0.05).

Finally, Figure 3 shows example summaries
for a product from our televisions domain, pro-
duced by one of our annotators and by 3 compar-
ison systems (LexRank, Opinosis and our MIL-
NET+MATE+MT+RD). The human summary is
primarily focused on aspect-relevant opinions, a
characteristic that is also captured to a large ex-
tent by our method. There is substantial overlap
between extracted segments, although our redun-
dancy filter fails to identify a few highly similar
opinions (e.g., those relating to the picture qual-
ity). The LexRank summary is inferior as it only

identifies a few useful opinions, and instead se-
lects many general or non-opinionated comments.
Lastly, the abstractive summary of Opinosis does
a good job of capturing opinions about specific as-
pects but lacks in fluency, as it produces grammat-
ical errors. For additional system outputs, see sup-
plementary material.

8 Conclusions
We presented a weakly supervised neural frame-
work for aspect-based opinion summarization.
Our method combined a seeded aspect extractor
that is trained under a multi-task objective without
direct supervision, and a multiple instance learn-
ing sentiment predictor, to identify and extract
useful comments in product reviews. We eval-
uated our weakly supervised models on a new
opinion summarization corpus across three sub-
tasks, namely aspect identification, salient opin-
ion extraction, and summary generation. Our ap-
proach delivered significant improvements over
strong baselines in each of the subtasks, while a
large-scale judgment elicitation study showed that
crowdworkers favor our summarizer over compet-
itive extractive and abstractive systems.

In the future, we plan to develop a more inte-
grated approach where aspects and sentiment ori-
entation are jointly identified, and work with addi-
tional languages and domains. We would also like
to develop methods for abstractive opinion sum-
marization using weak supervision signals.
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Abstract

Emotions are expressed in nuanced ways,
which varies by collective or individual expe-
riences, knowledge, and beliefs. Therefore,
to understand emotion, as conveyed through
text, a robust mechanism capable of captur-
ing and modeling different linguistic nuances
and phenomena is needed. We propose a semi-
supervised, graph-based algorithm to produce
rich structural descriptors which serve as the
building blocks for constructing contextual-
ized affect representations from text. The
pattern-based representations are further en-
riched with word embeddings and evaluated
through several emotion recognition tasks.
Our experimental results demonstrate that the
proposed method outperforms state-of-the-art
techniques on emotion recognition tasks.

1 Introduction

Emotions reflect different users’ perspectives to-
wards actions and events, therefore they are in-
nately expressed in dynamic linguistic forms.
Capturing these linguistic variations is challeng-
ing because it involves knowledge of linguistic
phenomena such as slang and coded words. Pre-
vious methods model these linguistic behaviours
through rule-based (Volkova and Bachrach, 2016)
and statistics-based approaches (Becker et al.,
2017). These methods construct features that
rely on hand-crafted resources; thus, they cannot
properly capture the evolving linguistic variability
found in large-scale opinionated content.

Consider the social posts “Thanks God for
everything” and “Tnx mom for waaaaking me
two hours early. Cant get asleep now”, a
lexicon-based model may not properly represent
the emotion-relevant phrases: “waaaaking me”,
“Thanks God”, and “Tnx mom”. First, the word

⇤* Corresponding author

“waaaaking” doesn’t exist in the English vocab-
ulary, hence its referent may vary from its stan-
dard form, “waking”. Secondly, knowledge of the
semantic similarity between the words “Thanks”
and “Tnx” is needed to establish any relationship
between the last two phrases. Even if such rela-
tionship can be established through knowledge-
based techniques, it’s difficult to reliably deter-
mine the association of these phrases to a group of
emotions. This is because traditional methods an-
alyze data at the sentence level, which may be less
effective as compared to methods that model the
corpus as a complex network (Santos et al., 2017).

We represent an emotion corpus as a graph,
which may suffer less from the problems men-
tioned above. This method efficiently captures the
global mutual use of linguistic variations found in
textual information. This is particularly important
for linguistic behaviour that is socially and cultur-
ally influenced, as is common in opinionated con-
tent. Other advantages of the graph approach are
that minimum domain knowledge and manual ef-
fort are required to capture important contextual
and latent information, which are useful to disam-
biguate meaning in emotional expressions.

As an overview, we first collect an emotion
dataset through noisy labels, annotated via distant
supervision as in (Go et al., 2009). The graph-
based mechanism helps to construct contextual-
ized, pattern-based emotion features, which are
further enriched with word embeddings in order to
preserve semantic relationship between patterns.
To evaluate the quality of patterns, emotion detec-
tion models are trained using various online clas-
sifiers and deep learning models. Our main contri-
butions are as follows: 1) A graph-based algorithm
for automatic emotion-relevant feature extraction,
2) a set of emotion-rich feature representations en-
hanced through word embeddings, 3) and a com-
prehensive performance analysis of various con-
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ventional learning models and deep learning mod-
els used for text-based emotion recognition.

The rest of the paper is organized as follows:
Section 2 discusses the relevant literature and dif-
ferent aspects of emotion recognition research ad-
dressed in this work; then, Section 3 provides
details of the proposed methodology for extract-
ing contextualized emotion-relevant representa-
tions; next, Section 4 lists the constructed emo-
tion recognition models and comparison models;
later, Section 5 discusses the data collection and
experimental results; and finally, Section 6 further
explains key insights observed from the results.

2 Related Work

Emotion Lexica: Several works use hand-crafted
features and statistics-based approaches to train
emotion recognition models (Blitzer et al., 2007;
Wang et al., 2012; Roberts et al., 2012; Qadir and
Riloff, 2013; Volkova et al., 2013; Becker et al.,
2017; Saravia et al., 2016a). Some of these studies
rely on affect lexicons, such as LIWC (Pennebaker
et al., 2007) and WordNet Affect (Strapparava
et al., 2004), to extract emotion features from a
text-based corpus. A recent study trained emotion
detection systems built on emoticons and hashtag
features (Volkova and Bachrach, 2016). Hand-
crafted features are useful for emotion recognition
but are usually constrained by manually created
resources. Our graph-based features are obtained
in an semi-supervised manner, requiring minimum
domain expertise and no dependency of linguistic
resources that quickly become outdated.
Emotion Corpora: There are several affective
datasets such as SemEval-2017 Task 4 (Rosenthal
et al., 2017) and Olympic games dataset (Sintsova
et al., 2013). However, these datasets are lim-
ited by quantity. We bootstrap a set of noisy
labels to obtain large-scale emotion tweets, and
then perform annotation via distant supervision as
in (Go et al., 2009; González-Ibánez et al., 2011;
Wang et al., 2012; Mohammad and Kiritchenko,
2015; Abdul-Mageed and Ungar, 2017). In emo-
tion recognition studies, Plutchik’s wheel of emo-
tions (Plutchik, 2001) or Ekman’s six basic emo-
tions (Ekman, 1992), are commonly adopted to de-
fine emotion categories (Mohammad, 2012; Sut-
tles and Ide, 2013). Similar to previous works, we
rely on hashtags to define our emotion categories.
Feature Representations: Recent emotion recog-
nition systems employ representation learning for

automatic feature extraction (Poria et al., 2016;
Savigny and Purwarianti, 2017; Abdul-Mageed
and Ungar, 2017). In general, a combination
of word embeddings (Mikolov et al., 2013) and
a convolutional neural network (CNN) performs
well for sentence classification tasks (Kim, 2014;
Zhang et al., 2015). These models learn features
which tend to have high coverage, high adapt-
ability, require minimum supervision, and cap-
ture contextual information to some extent. We
aim to leverage them and combine them with the
proposed affect representations. Our graph-based
feature extraction algorithm focuses on the un-
derlying interactions between important linguistic
components. Graph analysis measurements then
help to output the building blocks for construct-
ing pattern-based features. Hence, the patterns can
be constructed to capture important contextual and
latent emotion-relevant information.

3 Contextualized Affect Representations

In this section, we introduce a graph-based algo-
rithm which helps to output the building blocks
used to bootstrap a set of emotion-rich represen-
tations. The structural descriptions offered by the
graph are particularly efficient at automatically
surfacing important information (i.e., contextual
and latent information) from a large-scale emotion
corpus. Two different measurements are used to
surface two families of words, which are in turn
used to construct contextualized, pattern-based af-
fect representations. The patterns are further en-
riched using word embeddings so as to preserve
semantic relationship between patterns. After the
patterns are constructed, the goal is to assign a
weight to each pattern, referred to as a pattern
score, which denotes how important a pattern p is
to an emotion e. In the context of emotion classi-
fication, patterns and their weights play the role of
features. The graph-based feature extraction algo-
rithm is summarized in the following steps:
Step 1 (Normalization): First, we collected two
separate datasets using the Twitter API: subjective
tweets S (obtained through hashtags as weak la-
bels) and objective tweets O (obtained from Twit-
ter feeds of news accounts).1 Both datasets are
tokenized by white-spaces and then preprocessed
by applying lower case and replacing user men-
tions and URLs with a <usermention> and <url>

1Each dataset contains 2+ million tweets. S was collected
using 339 hashtags, similar to the process in Section 5.1.
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Figure 1: An overview of the important steps used to generate graph-based pattern representations.

placeholder, respectively. Hashtags are used as
ground-truth in this work, so to avoid any bias we
replace them with a <hashtag> placeholder.
Step 2 (Graph Construction): Given the nor-
malized objective tweets O and subjective tweets
S, two graphs are constructed: objective graph
Go(Vo; Ao) and subjective graph Gs(Vs; As), re-
spectively. Vertices V is a set of nodes which
represent the tokens extracted from the corpus.
Edges, denoted as A, represent the relationship of
words extracted using a window approach. These
steps help to preserve the syntactic structure of the
data. Given a post “<usermention> last night’s
concert was just awesome !!!!! <hashtag>”,
the resulting arcs are: “<usermention> ! last”,
“last ! night”, ... , “!!!!! ! <hashtag>”.
Step 3 (Graph Aggregation): In this step we ob-
tain a set of arcs that represent syntactic structures
more common in subjective content. By adjusting
graph Gs with Go, we obtain a graph Ge, referred
to as the emotion graph, which preserves emotion-
relevant tokens and is obtained in two steps:

(1). For an arc ai 2 A, its normalized weight
can be computed as shown in Equation 1.

w(ai) =
freq(ai)

maxj2A freq(aj)
(1)

where freq(ai) is the frequency of arc ai.
(2). Subsequently, new weights for arcs ai 2

Ge are assigned based on a pairwise adjustment as

shown in Equation 2.

w(ai) =

(
w(asi) � w(aoj ), if aoj = asi 2 Go

w(asi), otherwise
(2)

The resulting weights belonging to graph Ge

were adjusted so that the most frequently occur-
ring arcs in objective set Go are weakened in Ge.
As a result, arcs in Ge that have higher weights
represent tokens that are more common in subjec-
tive content. Furthermore, arcs ai 2 Ae are pruned
based on a threshold �w

2.
Step 4 (Token Categorization): Two different
graph measurements are used to extract two fam-
ily of words from Ge. These will function as the
building blocks to build contextualized patterns.
We formalize this step as follows: Given an ad-
jacency matrix M, an entry Mi,j is computed as:

Mi,j =

(
1 if node i and j are linked in Ge

0 otherwise
(3)

Then, the eigenvector centrality and clustering
coefficient of all vertices in Ve are computed and
used to categorize tokens into two types:

(1) Connector Words: To measure the influ-
ence of all nodes in graph Ge, we utilize eigenvec-

2�w is an experimentally determined threshold.
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tor centrality, which is calculated as:

ci =
1

�

X

j2Ve

Mi,jcj (4)

where � denotes a proportionality factor and ci

is the centrality score of node i.
Given � as the corresponding eigenvalue, Equa-

tion 4 can be reformulated in vector notation form
as Mc = �c, where c is an eigenvector of M.
Given a selected eigenvector c and the eigenvec-
tor centrality score of node i, denoted as ci, the
final list of connector words, hereinafter referred
to as CW , is obtained by retaining all tokens with
ci > �eig

3. CW correspond to the set of nodes
that are very frequent and have high connectivity
to high-rank nodes (e.g., “or”, “and”, and “my”).

(2) Subject Words: In contrast, subject words
or topical words are usually clustered together,
i.e., many subject words are interconnected by the
same connector words. Therefore, a coefficient is
assigned to all nodes in Ge and is computed as:

cli =

P
j 6=i;k 6=j;k 6=i Mi,j ⇥ Mi,k ⇥ Mj,kP

j 6=i;k 6=j;k 6=i Mi,j ⇥ Mi,k
⇥ 1

|Ve|
(5)

where cli denotes the average clustering coeffi-
cient of node i which captures the amount of inter-
connectivity among neighbours of node i. Similar
to the connector words, the subject words, here-
inafter referred to as SW , are obtained by retain-
ing all the tokens with cli > �cl

4. Examples of
subjects words obtained are: “never” and “life”.

The subject words represent psychological ori-
ented words similar to the LIWC affect lexi-
con (Pennebaker et al., 2007), while connector
words reflect the set of most common words in
the subjective tweets (e.g., pronouns, auxiliary
verbs, and conjunctions). As presented by Chung
and Pennebaker (2007), both connector words and
subject words are important for conveying emo-
tion. Influenced by their work, we aim to cap-
ture intricate relationships – through the graph –
between these two families of words. The graph
structure helps to preserve syntax and can auto-
matically be used to surface emotion-relevant in-
formation.

One of the advantages of using graphs to repre-
sent syntactic relationships is that rare and impor-
tant words are also surfaced. As shown in Table 1,

3�eig is an experimentally determined threshold.
4�cl is an experimentally defined threshold.

Subject Words (SW) Connector Words (CW)
baobei, juju myy, ??!, urs, congrats

plzzzzzzz, aaaaaaah bcoz, jus, tsk
happnd, yayyyyy sh*t, smh, smhh, pfft

definetley, everytin 4ever, stfu, eff

Table 1: Examples of subject words and connector words
automatically extracted from the emotion graph Ge.

informal words and misspellings, such as “de-
finetley”, “happnd”, were surfaced. Words con-
taining character repetitions help to express emo-
tion intensity (e.g., “plzzzzzzz”, “aaaaaaah”, and
“yayyyyy”). Interestingly, emotion-related coded
words are also captured (e.g., “juju”, “sh*t”,
“4ever”, and “baobei”5). All these examples
show the benefit of using graph methods to cap-
ture emotion-relevant linguistic information.
Step 5 (Pattern Candidates): Given SW and
CW , we bootstrap candidate patterns, which are
more prevalent in opinionated content, while pre-
serving syntactic structure. We provide the tem-
plates used to define the candidate patterns in Ta-
ble 2. (sw and cw represent arbitrary tokens ob-
tained from the sets SW and CW , respectively).
It is important to clarify that sequences of size two
and three were used in this work since this setting
experimentally produced the best results.
Step 6 (Basic Pattern Extraction): A naive pat-
tern extraction process consists of applying the
syntactic templates to a dataset Sp

6 in an exhaus-
tive manner. In addition, the sw component in
each pattern is replaced with a “*” placeholder.
This operation allows for unknown subject words,
not present in our training corpus, to be considered
when constructing features. This can enable many
useful applications, such as applying the patterns
to other domains. We are interested in patterns
that are highly associated with subjectivity, so pat-
terns frequently occurring above a threshold are
kept and the rest are filtered out. In Table 2, we
provide examples of the type of basic patterns ex-
tracted along with their corresponding templates.

3.1 Enriched Patterns
As they stand, the patterns constructed in the pre-
vious step contain limited information relevant to
emotion classification. Therefore, the patterns are
enriched using continuous word representations so
as to preserve semantic relationship between pat-

5baobei is a Chinese word used to show strong affection.
6 Dataset Sp (size=2+ mil.) is separately collected using

similar steps as the subjective dataset S, mainly to avoid bias.
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Templates Pattern Examples
< cw, sw > stupid * , like *, am *

< cw, cw, sw > love you *, shut up *
< sw, cw, sw > * for *
< sw, cw, cw > * on the

< sw, cw > * <hashtag>

Table 2: Examples of patterns and templates extracted
through the basic pattern extraction mechanism.

terns. The motivation behind this step is to focus
on patterns that may be more useful for an emo-
tion classification task. Alternatively, the whole
universe of patterns can also be used, but we show
in the experiments that the former method signifi-
cantly improves emotion recognition results.
Pre-trained Word Embeddings: First, we ob-
tain Twitter-based, pre-trained word embeddings
from (Deriu et al., 2017) and reweight them
via a sentiment corpus through distant supervi-
sion (Read, 2005; Go et al., 2009).7 We trained
a fully connected neural network (1 hidden layer)
with 10 epochs via backpropagation as in (Deriu
et al., 2017). The embeddings size is d = 52. Note
that term frequency-inverse document frequency
(tf-idf ) was used to reduce the vocabulary of words
(from 140K to 20K words).
Word Clusters: We then apply agglomerative
clustering to generate clusters of semantically re-
lated words through their word embedding in-
formation. To determine the quality of the
clusters, they are compared with WordNet-Affect
synsets (Strapparava et al., 2004) and tested for
both homogeneity and completeness. We use
Ward’s method (Ward Jr, 1963) as the linkage cri-
terion and cosine distance as the distance metric.
The scikit-learn package (Pedregosa et al., 2011)
was used to compute a total of k = 1500 clusters.
Enriched-Pattern Construction: The purpose of
the word clusters is to enrich the patterns by pre-
serving the semantic relationship between them,
which is useful for classification purposes. We
achieve this by revising the universe of patterns
obtained from the basic pattern extraction step,
and check to see if the words represented by the
sw component exist in any of the word embedding
clusters. This is done in an exhaustive manner, en-
suring that all possible patterns in the dataset Sp

are processed to meet the criteria. Furthermore,
patterns that appear < 10 times in dataset Sp are
filtered out, producing a total of 476,174 patterns.

7We collected approximately 10 million tweets via senti-
ment emoticons (5+ mil. negative and 5+ mil. positive).

The resulting enriched patterns8 now contain both
the semantic information provided by the word
embeddings and the contextual information pro-
vided through the graph components, hence the
term contextualized affect representations.

3.2 Emotion Pattern Weighting
Before using the patterns for classification, they
need to be weighted using a weighting mechanism
such as tf-idf (Leskovec et al., 2014). The weights
determine the importance of patterns to each emo-
tion category. The proposed pattern weighting
scheme used in this work is a customized version
of tf-idf, coined as pattern frequency-inverse emo-
tion frequency (pf-ief ), and is defined in two steps.
Firstly, we compute for pf as:

pfp,e = log

✓ P
pi2Pe

freq(pi, e)

◆
+ 1

freq(p, e) + 1
(6)

where freq(p, e) represents the frequency of p
in e, and pfp,e denotes the logarithmically scaled
frequency of a pattern p in a collection of texts
related to emotion e.

Then we compute for ief as:

iefp = log
freq(p, e) + 1✓ P

ej2E
freq(p, ej)

◆
+ 1

(7)

where the inverse emotion frequency iefp is a
measure of the relevance of pattern p across all
emotion categories.

Finally, we obtain a pattern score calculated as:

psp,e = pfp,e ⇥ iefp (8)

where psp,e is the final score that reflects how im-
portant a pattern p is to an emotion class e.

4 Models

In this section, we present the emotion recogni-
tion models and comparison models used to evalu-
ate the contextualized affect representations. More
details are provided in Appendix A.
CARER: The proposed framework combines a
multi-layer CNN architecture with a matrix form
of the enriched patterns. The input X 2 R

n⇥m

denotes an embedding matrix where entry Xi,j

8Refer to Table 6 for enriched patterns examples.
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represents the pattern score of enriched pattern i
in emotion j. 9 X is fed into two 1-D convolu-
tional layers with filters of sizes 3 and 16. The
output of this process is passed through a ReLU
activation function (Nair and Hinton, 2010) that
produces a feature map matrix. A 1-max pool-
ing layer (Boureau et al., 2010) of size 3 is then
applied to each feature map. The results of the
pooling are fed into two hidden layers of dimen-
sions 512 and 128 in that order, each applied a
dropout (Hinton et al., 2012) of 0.5 for regulariza-
tion. We chose a batch size of 128 and trained for
4 epochs using Adam optimizer (Kingma and Ba,
2014). A softmax function is used to generate the
final classifications. We use Keras (Chollet et al.,
2015) to implement the CNN architecture.

Baseline Model: As baseline, we present a first-
generation model (CARER�) that employs prim-
itive enriched patterns‡10. We adopt the CNN ar-
chitecture used for CARER, however, this model
differs in that the set of patterns used is signifi-
cantly smaller as compared to the original size of
the enriched patterns. The reason is because a dif-
ferent set of primitive pattern templates was used,
which captured fewer patterns (187,648). This
shows that the proposed method offers flexibility
in terms of what templates to use and what size
of patterns to generate. This could be useful in
cases where there are limited computing and data
resources, and for incorporating domain expertise.

Traditional Models: We also compare with var-
ious traditional methods (bag of words (BoW),
character-level (char), n-grams, and TF-IDF)
which are commonly used in sentence classifi-
cation. To train the models we use the default
stochastic gradient descent (SGD) classifier pro-
vided by scikit-learn (Pedregosa et al., 2011).
Deep Learning Models: Among the works that
employ deep learning models for emotion recog-
nition, they vary by the choice of input: pre-
trained word/character embeddings and end-to-
end learned word/character representations. Our
work differs in that we utilize enriched graph-
based representations as input. We compare with
convolutional neural networks (CNNs), recurrent
neural networks (RNNs), bidirectional gated re-
current neural networks (BiGRNNs), and word
embeddings (word2vec) (Mikolov et al., 2013).

9We use a zero-padding strategy as in (Kim, 2014).
10

‡ hereinafter refers to the primitive enriched patterns.

Emotions Amount Hashtags
sadness 214,454 #depressed, #grief

joy 167,027 #fun, #joy
fear 102,460 #fear, #worried

anger 102,289 #mad, #pissed
surprise 46,101 #strange, #surprise

trust 19,222 #hope, #secure
disgust 8,934 #awful, #eww

anticipation 3,975 #pumped, #ready

Table 3: Data statistics.

5 Experiments

5.1 Data

We construct a set of hashtags to collect a sep-
arate dataset of English tweets from the Twitter
API. Specifically, we use the eight basic emotions:
anger, anticipation, disgust, fear, joy, sadness,
surprise, and trust. The hashtags (339 total) serve
as noisy labels, which allow annotation via distant
supervision as in (Go et al., 2009). To ensure data
quality, we follow the pre-processing steps pro-
posed by (Abdul-Mageed and Ungar, 2017), and
considered the hashtag appearing in the last po-
sition of a tweet as the ground truth. We split
the data into training (90%) and testing (10%)
datasets. The final distribution of the data and
a list of hashtag examples for each emotion are
provided in Table 3. In the following section we
evaluate the effectiveness of the enriched patterns
on several emotion recognition tasks. We use F1-
score as the evaluation metric, which is commonly
used in emotion recognition studies due to the im-
balanced nature of the emotion datasets.

5.2 Experimental Results

Traditional Features: As shown in Table 4,
TF-IDF models produce better results than basic
count-based features for both character-level and
word-level feature extractors. These findings are
consistent with the work of Zhang et al., (2015),
where traditional methods, such as n-gram, were
found to perform comparable to deep neural net-
works on various sentence classification tasks.
Pattern-based Approaches: The results of
CNNBASIC

11, which employs the basic graph-
based patterns proposed in Step 6, perform worse
than most of the conventional approaches. Both
CARER� and CARER, which use the enriched
patterns, acquire better results than CNNBASIC

11CNNBASIC adopts CNN architecture of CARER.
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and all the other conventional approaches. In fact,
our method obtains the best F1-score on all eight
emotions. We observed that there are significant
gains in performance ("27% and "12%) when us-
ing the enriched patterns as compared to the ba-
sic patterns and primitive patterns‡, respectively.
This highlights the importance of the pattern en-
richment procedure and the benefit of refining the
pattern templates. Note that the baseline model,
CARER� , also performs better than all other the
comparison models including the state-of-the-art
methods (DeepMoji and EmoNet).
Comparison to state-of-the-art: Felbo et
al., (2017) proposed a state-of-the-art emotion
prediction model, DeepMoji, trained on billions
of emoji-labeled tweets. We obtained their pre-
trained model12 and applied it to our dataset.
As shown in Table 4, their model performs as
well as other traditional methods. However, our
model (CARER) significantly outperforms theirs
("20%). Moreover, we re-implemented the GRNN
model proposed in (Abdul-Mageed and Ungar,
2017). We also outperform their model (EmoNet)
which manually trains word embeddings, similar
to DeepMoji. The CNNw2v model uses word
embeddings trained on billions of tweets (Deriu
et al., 2017), thus it performs better than all the
other approaches, and closer to ours.
Results with Deep Learning: We offer more
comparison with other various deep learning mod-
els as evaluated on Ekman’s six basic emotions
(i.e., sadness, disgust, anger, joy, surprise, and
fear). For the RNNw2v and CNNchar models, dif-
ferent inputs are used, as shown in Table 5. We
feed the enriched patterns as embeddings to a bidi-
rectional GRNN, which along with CAREREK
and CARER� outperform all the other methods.
Contextualized Approaches: DeepMoji is built
on a stack of Bi-LSTM layers and performs much
better with six emotion classes. However, using
the enriched patterns as input, CAREREK

13 per-
forms the best (81%). Note that the number of
epochs used to train our models is much lower
as compared to the other methods, which pro-
vides a strong case of the benefit of contextualiz-
ing features prior to training the models. More-
over, the important distinction between connec-
tor words and subject words helps to refine and
surface relevant contextual information. We also

12Model obtained from github.com/bfelbo/deepmoji
13The proposed model trained on six emotions dataset.
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Figure 2: Comparison against Chinese word vectors.

show that the enriched patterns can be applied to
other deep learning models besides CNN, such as
BiGRNN, which leaves an opportunity to explore
more complex architectures and fusion models in
the future. More importantly, for problems that re-
quire deeper understanding of contextualized in-
formation, there is a need to go beyond traditional
features and distributed representations.
Multilingual Capabilities: We also tested the
effectiveness of the proposed feature extraction
algorithm for the Chinese language. We col-
lected Traditional Chinese datasets14 from several
of Facebook’s fan pages and applied the same pro-
cedures as were done for the English datasets.
User comments are considered as documents and
the associated user reaction to the root post repre-
sents the emotion labels. For comparison, we ob-
tained Chinese pre-trained word vectors computed
through (Bojanowski et al., 2017), and trained a
model (fastTextch) using the proposed CNN ar-
chitecture. For our approach (CARERch), we ap-
plied the same CNN architecture on the Chinese-
based enriched patterns. As shown in Figure 2,
our model performs significantly better on all four
emotions (average F1 score of 70%). Overall, we
show that the approach is not restricted to any spe-
cific language and that the enriched features are
applicable to other languages and data sources. In
the future, we seek to expand our methods to sup-
port other complex languages, such as Japanese,
French, and Spanish, where there tends to exist
fewer linguistic resources.

6 Analysis of Enriched Patterns

6.1 Pattern Coverage and Consistency
One of the advantages of the contextualized en-
riched patterns is that they possess high coverage

14Details of the dataset are provided in Appendix B.
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Models Features anger anticipation disgust fear joy sadness surprise trust F1 Avg.
BoW word frequency 0.53 0.08 0.17 0.53 0.71 0.60 0.36 0.33 0.57
BoWTF-IDF TF-IDF 0.55 0.09 0.18 0.57 0.73 0.62 0.39 0.35 0.60
n-gram word frequency 0.56 0.09 0.17 0.57 0.73 0.64 0.42 0.39 0.61
n-gramTF-IDF TF-IDF 0.58 0.12 0.17 0.60 0.75 0.67 0.47 0.45 0.63
char ngram character frequency 0.49 0.06 0.12 0.46 0.67 0.55 0.30 0.28 0.52
char ngramTF-IDF TF-IDF 0.53 0.07 0.15 0.53 0.71 0.59 0.35 0.31 0.57
LIWC affective words 0.35 0.03 0.11 0.30 0.49 0.35 0.18 0.19 0.35
CNNw2v word embeddings 0.57 0.10 0.15 0.63 0.75 0.64 0.61 0.70 0.65
EmoNet word embeddings 0.36 0.00 0.00 0.46 0.69 0.61 0.13 0.25 0.52
DeepMoji word embeddings 0.60 0.00 0.03 0.49 0.75 0.67 0.20 0.27 0.59
CNNBASIC basic patterns 0.65 0.10 0.22 0.64 0.73 0.56 0.15 0.08 0.52
CARER� enriched patterns‡ 0.61 0.31 0.34 0.67 0.75 0.68 0.60 0.55 0.67
CARER enriched patterns 0.74 0.41 0.43 0.79 0.83 0.82 0.76 0.75 0.79

Table 4: Comparison of our model against various emotion recognition systems: LIWC uses a bag of words approach; CNNw2v
is the proposed CNN model and word vectors obtained from (Deriu et al., 2017); char refers to character-level features; n-
gram employ unigrams, bigrams, and trigrams as features; CNNBASIC uses the proposed CNN architecture with basic patterns;
EmoNet (Abdul-Mageed and Ungar, 2017) and DeepMoji (Felbo et al., 2017) are state-of-the-art emotion recognition models.

1876481501191313549382556296
18766

9384

13971117977698
41913969

3000000240000021000001500000
900000

300000150000

185918414873471301428929592
557755

18591892959

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
cc

ur
ac

y 
(%

)

Feature Percentage
Patterns LIWC word2vec tweet2vec

Figure 3: Consistency check for various affect resources.

Model Input Epochs Accuracy
RNNw2v word2vec (Mikolov et al., 2013) 24 0.53
CNNchar character embeddings (end-to-end) 50 0.63
CNNw2v word vectors (Deriu et al., 2017) 33 0.69
EmoNet word embeddings (end-to-end) 23 0.58

DeepMoji word embeddings (end-to-end) 100 0.63
BiGRNN our enriched patterns‡ 12 0.68
CARER� our enriched patterns‡ 12 0.72
CAREREK our enriched patterns 12 0.81

Table 5: Comparison of our method against deep learning
models, using Ekman’s 6 emotions and the accuracy metric.

due to the way they were constructed. High cov-
erage also means that the enriched patterns should
demonstrate stability, in terms of how useful they
are in an emotion classification task, even when re-
duced to smaller sizes. There are two cases where
this could be useful: limited data and limited com-
puting resources. Therefore, to test for pattern
consistency, we randomly selected several pattern
sizes15 and trained a random forest classifier us-
ing the eight emotions dataset. This model per-
forms comparable to CARER� (average F1-score
of 65%), and it has the benefit of faster training

15We employed the primitive patterns‡ used in CARER� .

time, making it suitable for the aforementioned ex-
periment. We compared with the results obtained
from the LIWC lexicon (affect dimension) (Pen-
nebaker et al., 2007), word2vec (Mikolov et al.,
2013), and tweet2vec (Deriu et al., 2017).16

As shown in Figure 3, due to the limited cover-
age of the LIWC lexicon, such resources may not
be feasible on evolving, large-scale datasets. In
contrast, word2vec contains over 3 million unique
word embeddings and has been proven effective
for text classification. However, if we keep reduc-
ing the available word vectors of word2vec, which
is common when there are limited computing re-
sources, the accuracy keeps dropping at significant
rates. tweet2vec has a similar effect. In the case of
our patterns, the classification results remain rela-
tively stable, even when reducing the patterns to
30% and 10% of the original size. These results
show that the proposed features are feasible to ad-
dress the text-based emotion recognition problem.
Moreover, the patterns are highly beneficial where

16Models were trained using the random forest implemen-
tation (depth=15 and estimators=50) provided by scikit-learn.
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Document GT DeepMoji EmoNet CAREREK Enriched Patterns
Short text damn what a night joy surprise sadness joy what a { day, rush, pass }

want it to snow joy sadness fear joy { need, hoping } it
Rare words whaaaaaat. i did not ex-

pect that at all
surprise sadness fear surprise { wondering, what } i

Mixed
emotions

got thee worst sleep ever anger sadness sadness anger got { madd, thatt, bacc }

what the fuck is going on !? fear anger sadness fear is { ends, finishes }

Table 6: Classified documents in the testing data. Words in bold blue correspond to the sw component of one of the enriched
patterns extracted from the document. Words in italic green represent other relevant word examples found in the cluster sw
belongs to. Words in bold pink denote the connector word/s cw in the pattern; E.g., “it” is cw of patterns “need it” and
“hoping it”. GT stands for ground truth. DeepMoji, EmoNet, and CAREREK correspond to the models reported in Table 5.

there is shortage of computing and linguistic re-
sources.

6.2 What’s captured by CARER?
In Table 6, we provide samples extracted from the
testing data. The examples show different cases
where the comparison models struggled to cap-
ture important contextual information that helps to
determine the emotion conveyed in the text. For
instance, in the short text, “damn what a night”,
only our model was able to interpret the statement
as joy because it uses the “what a” pattern and its
corresponding subject words to determine that this
statement has a stronger association with joy. Our
model also works well for capturing rare words
and for disambiguating emotional meaning using
the enriched and refined contextual information of
the patterns. Rare words like “whaaaaaat” and
“thee” help to implicitly convey intense emotional
expressions, which are also captured and consid-
ered important by our enriched patterns. Emotion-
relevant verbs, such as “want” and “going” are
also considered important context that help to con-
vey and interpret emotion. Overall, the enriched
patterns efficiently capture important emotional
information that other models seem to ignore.

7 Conclusion

We proposed a graph-based feature extraction
mechanism to extract emotion-relevant represen-
tations in an unsupervised manner. The con-
textualized affect representations are further en-
riched with word embeddings and are used to train
several deep learning-based emotion recognition
models. The patterns capture implicit and ex-
plicit linguistic emotional information which sig-
nificantly improves emotion recognition results.

We offered a detailed analysis demonstrating
special cases where the patterns are helpful to fur-
ther extract and understand emotional information
from textual information. For instance, short text

is a challenging problem in emotion recognition
and various natural language tasks; the proposed
contextualized patterns show promising results in
addressing this issue by helping the models to cap-
ture nuanced information which is useful to de-
termine the overall emotion expressed in a piece
of text. The proposed method paves the way for
building more interpretable emotion recognition
systems which have various implications when in-
vestigating human behavioural data (Saravia et al.,
2015, 2016b; Chang et al., 2016) and building
empathy-aware conversational agents.

In the future work, we aim to investigate the
graph-based patterns more in-depth and provide a
more comprehensive and advanced theoretical dis-
cussion of how they are constructed. We also hope
to keep improving the pattern weighting mecha-
nism so as to improve the overall performance on
emotion recognition tasks and minimize trade-off
between pattern coverage and performance. We
plan to employ transfer learning methods with
the proposed enriched patterns and test on other
emotion-related problems such as sentiment clas-
sification and sarcasm detection. The proposed
methodology is also being expanded to support
Spanish and Japanese emotion recognition tasks.
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Abstract

Noise Contrastive Estimation (NCE) is a pow-
erful parameter estimation method for log-
linear models, which avoids calculation of the
partition function or its derivatives at each
training step, a computationally demanding
step in many cases. It is closely related to
negative sampling methods, now widely used
in NLP. This paper considers NCE-based es-
timation of conditional models. Conditional
models are frequently encountered in practice;
however there has not been a rigorous theo-
retical analysis of NCE in this setting, and we
will argue there are subtle but important ques-
tions when generalizing NCE to the condi-
tional case. In particular, we analyze two vari-
ants of NCE for conditional models: one based
on a classification objective, the other based on
a ranking objective. We show that the ranking-
based variant of NCE gives consistent param-
eter estimates under weaker assumptions than
the classification-based method; we analyze
the statistical efficiency of the ranking-based
and classification-based variants of NCE; fi-
nally we describe experiments on synthetic
data and language modeling showing the ef-
fectiveness and trade-offs of both methods.

1 Introduction

This paper considers parameter estimation in con-
ditional models of the form

p(y|x; ✓) =
exp (s(x, y; ✓))

Z(x; ✓)
(1)

where s(x, y; ✓) is the unnormalized score of label
y in conjunction with input x under parameters ✓,
Y is a finite set of possible labels, and Z(x; ✓) =P

y2Y exp (s(x, y; ✓)) is the partition function for
input x under parameters ✓.

It is hard to overstate the importance of models
of this form in NLP. In log-linear models, includ-
ing both the original work on maximum-entropy
models (Berger et al., 1996), and later work on
conditional random fields (Lafferty et al., 2001),

⇤Part of this work done at Google.
†Work done at Google.

the scoring function s(x, y; ✓) = ✓ · f(x, y) where
f(x, y) 2 R

d is a feature vector, and ✓ 2 R
d are

the parameters of the model. In more recent work
on neural networks the function s(x, y; ✓) is a non-
linear function. In Word2Vec the scoring function
is s(x, y; ✓) = ✓x · ✓0

y where y is a word in the
context of word x, and ✓x 2 R

d and ✓0
y 2 R

d are
“inside” and “outside” word embeddings x and y.

In many NLP applications the set Y is large.
Maximum likelihood estimation (MLE) of the pa-
rameters ✓ requires calculation of Z(x; ✓) or its
derivatives at each training step, thereby requiring
a summation over all members of Y , which can be
computationally expensive. This has led to many
authors considering alternative methods, often re-
ferred to as “negative sampling methods”, where
a modified training objective is used that does not
require summation over Y on each example. In-
stead negative examples are drawn from some dis-
tribution, and a objective function is derived based
on binary classification or ranking. Prominent ex-
amples are the binary objective used in word2vec
((Mikolov et al., 2013), see also (Levy and Gold-
berg, 2014)), and the Noise Contrastive Estima-
tion methods of (Mnih and Teh, 2012; Jozefowicz
et al., 2016) for estimation of language models.

In spite of the centrality of negative sampling
methods, they are arguably not well understood
from a theoretical standpoint. There are clear
connections to noise contrastive estimation (NCE)
(Gutmann and Hyvärinen, 2012), a negative sam-
pling method for parameter estimation in joint
models of the form

p(y) =
exp (s(y; ✓))

Z(✓)
; Z(✓) =

X

y2Y
exp (s(y; ✓))

(2)
However there has not been a rigorous theoretical
analysis of NCE in the estimation of conditional
models of the form in Eq. 1, and we will argue
there are subtle but important questions when gen-
eralizing NCE to the conditional case. In partic-
ular, the joint model in Eq 2 has a single parti-
tion function Z(✓) which is estimated as a param-
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eter of the model (Gutmann and Hyvärinen, 2012)
whereas the conditional model in Eq 1 has a sepa-
rate partition function Z(x; ✓) for each value of x.
This difference is critical.

We show the following (throughout we define
K � 1 to be the number of negative examples
sampled per training example):

• For any K � 1, a binary classification variant
of NCE, as used by (Mnih and Teh, 2012; Mikolov
et al., 2013), gives consistent parameter estimates
under the assumption that Z(x; ✓) is constant with
respect to x (i.e., Z(x; ✓) = H(✓) for some func-
tion H). Equivalently, the method is consistent
under the assumption that the function s(x, y; ✓)
is powerful enough to incorporate log Z(x; ✓).

• For any K � 1, a ranking-based variant of
NCE, as used by (Jozefowicz et al., 2016), gives
consistent parameter estimates under the much
weaker assumption that Z(x; ✓) can vary with x.
Equivalently, there is no need for s(x, y; ✓) to be
powerful enough to incorporate log Z(x; ✓).

• We analyze the statistical efficiency of the
ranking-based and classification-based NCE vari-
ants. Under respective assumptions, both vari-
ants achieve Fisher efficiency (the same asymp-
totic mean square error as the MLE) as K ! 1.

• We discuss application of our results to ap-
proaches of (Mnih and Teh, 2012; Mikolov et al.,
2013; Levy and Goldberg, 2014; Jozefowicz et al.,
2016) giving a unified account of these methods.

• We describe experiments on synthetic data
and language modeling evaluating the effective-
ness of the two NCE variants.
2 Basic Assumptions

We assume the following setup throughout:
• We have sets X and Y , where X , Y are finite.
• There is some unknown joint distribution

pX,Y (x, y) where x 2 X and y 2 Y . We assume
that the marginal distributions satisfy pX(x) > 0
for all x 2 X and pY (y) > 0 for all y 2 Y .

• We have training examples {x(i), y(i)}n
i=1

drawn I.I.D. from pX,Y (x, y).
• We have a scoring function s(x, y; ✓) where

✓ are the parameters of the model. For example,
s(x, y; ✓) may be defined by a neural network.

• We use ⇥ to refer to the parameter space. We
assume that ⇥ ✓ R

d for some integer d.
• We use pN (y) to refer to a distribution from

which negative examples are drawn in the NCE
approach. We assume that pN satisfies pN (y) > 0
for all y 2 Y .

We will consider estimation under the following
two assumptions:

Assumption 2.1 There exists some parameter
value ✓⇤ 2 ⇥ such that for all (x, y) 2 X ⇥ Y ,

pY |X(y|x) =
exp(s(x, y; ✓⇤))

Z(x; ✓⇤)
(3)

where Z(x; ✓⇤) =
P

y2Y exp(s(x, y; ✓⇤)).

Assumption 2.2 There exists some parameter
value ✓⇤ 2 ⇥, and a constant �⇤ 2 R, such that
for all (x, y) 2 X ⇥ Y ,

pY |X(y|x) = exp (s(x, y; ✓⇤) � �⇤) . (4)

Assumption 2.2 is stronger than Assump-
tion 2.1. It requires log Z(x; ✓⇤) ⌘ �⇤ for all
x 2 X , that is, the conditional distribution is per-
fectly self-normalized. Under Assumption 2.2, it
must be the case that 8x 2 X
X

y

pY |X(y|x) =
X

y

exp{s(x, y; ✓⇤) � �⇤} = 1

There are |X | constraints but only d + 1 free pa-
rameters. Therefore self-normalization is a non-
trivial assumption when |X | � d. In the case of
language modeling, |X | = |V |k � d + 1, where
|V | is the vocabulary size and k is the length of
the context. The number of constraints grows ex-
ponentially fast.

Given a scoring function s(x, y; ✓) that satisfies
assumption 2.1, we can derive a scoring function
s0 that satisfies assumption 2.2 by defining

s0(x, y; ✓, {cx : x 2 X}) = s(x, y; ✓) � cx

where cx 2 R is a parameter for history x. Thus
we introduce a new parameter cx for each possible
history x. This is the most straightforward exten-
sion of NCE to the conditional case; it is used by
(Mnih and Teh, 2012). It has the clear drawback
however of introducing a large number of addi-
tional parameters to the model.

3 Two Estimation Algorithms

Figure 1 shows two NCE-based parameter esti-
mation algorithms, based respectively on binary
objective and ranking objective. The input to
either algorithm is a set of training examples
{x(i), y(i)}n

i=1, a parameter K specifying the num-
ber of negative examples per training example, and
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a distribution pN (·) from which negative exam-
ples are sampled. The algorithms differ only in the
choice of objective function being optimized: Ln

B
for binary objective, and Ln

R for ranking objective.
Binary objective essentially corresponds to a prob-
lem where the scoring function s(x, y; ✓) is used
to construct a binary classifier that discriminates
between positive and negative examples. Rank-
ing objective corresponds to a problem where the
scoring function s(x, y; ✓) is used to rank the true
label y(i) above negative examples y(i,1) . . . y(i,K)

for the input x(i).
Our main result is as follows:

Theorem 3.1 (Informal: see section 4 for a for-
mal statement.) For any K � 1, the binary
classification-based algorithm in figure 1 is con-
sistent under Assumption 2.2, but is not always
consistent under the weaker Assumption 2.1. For
any K � 1, the ranking-based algorithm in fig-
ure 1 is consistent under either Assumption 2.1 or
Assumption 2.2. Both algorithms achieve the same
statistical efficiency as the maximum-likelihood
estimate as K ! 1.

The remainder of this section gives a sketch
of the argument underlying consistency, and dis-
cusses use of the two algorithms in previous work.

3.1 A Sketch of the Consistency Argument
for the Ranking-Based Algorithm

In this section, in order to develop intuition under-
lying the ranking algorithm, we give a proof sketch
of the following theorem:

Theorem 3.2 (First part of theorem 4.1 below.)
Define L1

R (✓) = E[Ln
R(✓)]. Under Assump-

tion 2.1, ✓̄ 2 arg max✓ L1
R (✓) if and only if, for

all (x, y) 2 X ⇥ Y ,

pY |X(y|x) = exp(s(x, y; ✓̄))/Z(x, ✓̄).

This theorem is key to the consistency argument.
Intuitively as n increases Ln

R(✓) converges to
L1

R (✓), and the output to the algorithm converges
to ✓0 such that p(y|x; ✓0) = pY |X(y|x) for all x, y.
Section 4 gives a formal argument.

We now give a proof sketch for theo-
rem 3.2. Consider the algorithm in figure 1.
For convenience define ȳ(i) to be the vector
(y(i,0), y(i,1), . . . , y(i,K)). Define ↵(x, ȳ) =

Inputs: Training examples {x(i), y(i)
}

n
i=1, sampling dis-

tribution pN (·) for generating negative examples, an in-
teger K specifying the number of negative examples per
training example, a scoring function s(x, y; ✓). Flags
{BINARY = true, RANKING = false} if binary classifica-
tion objective is used, {BINARY = false, RANKING = true}
if ranking objective is used.

Definitions: Define s̄(x, y; ✓) = s(x, y; ✓) � log pN (y)
Algorithm:

• For i = 1 . . . n, k = 1 . . . K, draw y(i,k) I.I.D.
from the distribution pN (y). For convenience define
y(i,0) = y(i).

• If RANKING, define the ranking objective function

L
n
R(✓) =

1
n

nX

i=1

log
exp(s̄(x(i), y(i,0); ✓))

PK
k=0 exp(s̄(x(i), y(i,k); ✓))

,

and the estimator b✓R = argmax
✓2�

L
n
R(✓).

• If BINARY, define the binary objective function

L
n
B(✓, �) =

1
n

nX

i=1

�
log g(x(i), y(i,0); ✓, �)

+
KX

k=1

log
⇣
1 � g(x(i), y(i,k); ✓, �)

⌘�
,

and estimator (b✓B , b�B) = argmax
✓2�,�2�

L
n
B(✓, �), where

g(x, y; ✓, �) =
exp (s̄(x, y; ✓) � �)

exp (s̄(x, y; ✓) � �) + K
.

• Define b✓ = b✓R if RANKING and b✓ = b✓B otherwise.
Return b✓ and

bpY |X(y|x) =
exp(s(x, y; b✓))

P
y2Y

exp(s(x, y; b✓))

Figure 1: Two NCE-based estimation algorithms, using
ranking objective and binary objective respectively.

PK
k=0 pX,Y (x, ȳk)

Q
j 6=k pN (ȳj), and

q(k|x, ȳ; ✓) =
exp(s̄(x, ȳk; ✓))PK

k=0 exp(s̄(x, ȳk; ✓))
,

�(k|x, ȳ) =
pX,Y (x, ȳk)

Q
j 6=k pN (ȳj)

↵(x, ȳ)

=
pY |X(ȳk|x)/pN (ȳk)

PN
k=0 pY |X(ȳk|x)/pN (ȳk)

C(x, ȳ; ✓) = �
KX

k=0

�(k|x, ȳ) log q(k|x, ȳ; ✓)

Intuitively, q(·|x, ȳ; ✓) and �(·|x, ȳ) are posterior
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distributions over the true label k 2 {0 . . . K}
given an input x, ȳ, under the parameters ✓
and the true distributions pX,Ȳ (x, ȳ) respectively;
C(x, ȳ; ✓) is the negative cross-entropy between
these two distributions.

The proof of theorem 3.2 rests on two iden-
tities. The first identity states that the objective
function is the expectation of the negative cross-
entropy w.r.t. the density function 1

K+1↵(x, ȳ)
(see Section B.1.1 of the supplementary material
for derivation):

L1
R (✓) =

X

x

X

ȳ

1

K + 1
↵(x, ȳ)C(x, ȳ; ✓). (5)

The second identity concerns the relationship be-
tween q(·|x, ȳ; ✓) and �(·|x, ȳ). Under assump-
tion 2.1, for all x, ȳ, k 2 {0 . . . K},

q(k|x, ȳ; ✓⇤)

=
pY |X(ȳk|x)Z(x; ✓⇤)/pN (yk)

PK
k=0 pY |X(ȳk|x)Z(x; ✓⇤)/pN (yk)

= �(k|x, ȳ) (6)

It follows immediately through the properties of
negative cross entropy that

8x, ȳ, ✓⇤ 2 argmax
✓

C(x, ȳ; ✓) (7)

The remainder of the argument is as follows:
• Eqs. 7 and 5 imply that ✓⇤ 2 argmax✓ L1

R (✓).
• Assumption 2.1 implies that ↵(x, ȳ) > 0 for

all x, ȳ. It follows that any ✓0 2 arg max✓ L1
R (✓)

satisfies

for all x, ȳ, k, (8)
q(k|x, ȳ; ✓0) = q(k|x, ȳ; ✓⇤) = �(k|x, ȳ)

Otherwise there would be some x, ȳ such that
C(x, ȳ; ✓0) < C(x, ȳ; ✓⇤).

• Eq. 8 implies that 8x, y, p(y|x; ✓0) =
p(y|x; ✓⇤). See the proof of lemma B.3 in the sup-
plementary material.

In summary, the identity in Eq. 5 is key: the ob-
jective function in the limit, L1

R (✓), is related to
a negative cross-entropy between the underlying
distribution �(·|x, ȳ) and a distribution under the
parameters, q(·|x, ȳ; ✓). The parameters ✓⇤ maxi-
mize this negative cross entropy over the space of
all distributions {q(·|x, ȳ; ✓), ✓ 2 ⇥}.

3.2 The Algorithms in Previous Work
To motivate the importance of the two algorithms,
we now discuss their application in previous work.

Mnih and Teh (2012) consider language mod-
eling, where x = w1w2 . . . wn�1 is a history con-
sisting of the previous n�1 words, and y is a word.
The scoring function is defined as

s(x, y; ✓) = (
n�1X

i=1

Cirwi) · qy + by � cx

where rwi is an embedding (vector of parameters)
for history word wi, qy is an embedding (vector of
parameters) for word y, each Ci for i = 1 . . . n�1
is a matrix of parameters specifying the contribu-
tion of rwi to the history representation, by is a
bias term for word y, and cx is a parameter corre-
sponding to the log normalization term for history
x. Thus each history x has its own parameter cx.
The binary objective function is used in the NCE
algorithm. The noise distribution pN (y) is set to
be the unigram distribution over words in the vo-
cabulary.

This method is a direct application of the
original NCE method to conditional estimation,
through introduction of the parameters cx corre-
sponding to normalization terms for each history.
Interestingly, Mnih and Teh (2012) acknowledge
the difficulties in maintaining a separate parame-
ter cx for each history, and set cx = 0 for all x,
noting that empirically this works well, but with-
out giving justification.

Mikolov et al. (2013) consider an NCE-based
method using the binary objective function for
estimation of word embeddings. The skip-gram
method described in the paper corresponds to a
model where x is a word, and y is a word in the
context. The vector vx is the embedding for word
x, and the vector v0

y is an embedding for word y
(separate embeddings are used for x and y). The
method they describe uses

s̄(x, y; ✓) = v0
y · vx

or equivalently

s(x, y; ✓) = v0
y · vx + log pN (y)

The negative-sampling distribution pN (y) was
chosen as the unigram distribution pY (y) raised to
the power 3/4. The end goal of the method was to
learn useful embeddings vw and v0

w for each word
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in the vocabulary; however the method gives a
consistent estimate for a model of the form

p(y|x) =
exp

�
v0
y · vx + log pN (y)

�
P

y exp
�
v0
y · vx + log pN (y)

�

=
pN (y) exp

�
v0
y · vx

�

Z(x; ✓)

assuming that Assumption 2.2 holds, i.e.
Z(x; ✓) =

P
y pN (y) exp

�
v0
y · vx

�
⌘ H(✓)

which does not vary with x.
Levy and Goldberg (2014) make a connec-

tion between the NCE-based method of (Mikolov
et al., 2013), and factorization of a matrix of point-
wise mutual information (PMI) values of (x, y)
pairs. Consistency of the NCE-based method un-
der assumption 2.2 implies a similar result, specif-
ically: if we define pN (y) = pY (y), and de-
fine s(x, y; ✓) = v0

y · vx + log pN (y) implying
s̄(x, y; ✓) = v0

y · vx, then parameters v0
y and vx

converge to values such that

p(y|x) =
pY (y) exp

�
v0
y · vx

�

H(✓)

or equivalently

PMI(x, y) = log
p(y|x)

p(y)
= v0

y · vx � log H(✓)

That is, following (Levy and Goldberg, 2014), the
inner product v0

y · vx is an estimate of the PMI up
to a constant offset H(✓).

Finally, Jozefowicz et al. (2016) introduce the
ranking-based variant of NCE for the language
modeling problem. This is the same as the
ranking-based algorithm in figure 1. They do not,
however, make the connection to assumptions 2.2
and 2.1, or derive the consistency or efficiency
results in the current paper. Jozefowicz et al.
(2016) partially motivate the ranking-based vari-
ant throught the importance sampling viewpoint
of Bengio and Senécal (2008). However there are
two critical differences: 1) the algorithm of Ben-
gio and Senécal (2008) does not lead to the same
objective Ln

R in the ranking-based variant of NCE;
instead it uses importance sampling to derive an
objective that is similar but not identical; 2) the
importance sampling method leads to a biased es-
timate of the gradients of the log-likelihood func-
tion, with the bias going to zero only as K ! 1.
In contrast the theorems in the current paper show
that the NCE-based methods are consistent for any

value of K. In summary, while it is tempting
to view the ranking variant of NCE as an impor-
tance sampling method, the NCE-based view gives
stronger guarantees for finite values of K.

4 Theory

This section states the main theorems. The supple-
mentary material contains proofs. Throughout the
paper, we use EX [ · ], EY [ · ], EX,Y [ · ], EY |X=x[ · ]
to represent the expectation w.r.t. pX(·), pY (·),
pX,Y (·, ·), pY |X(·|x). We use k · k to denote ei-
ther the l2 norm when the operand is a vector or
the spectral norm when the operand is a matrix.
Finally, we use ) to represent converge in distri-
bution. Recall that we have defined

s̄(x, y; ✓) = s(x, y; ✓) � log pN (y).

4.1 Ranking
In this section, we study noise contrastive estima-
tion with ranking objective under Assumption 2.1.
First consider the following function:

L1
R (✓) =

X

x,y0,··· ,yK

pX,Y (x, y0)
KY

i=1

pN (yi)

⇥ log

 
exp(s̄(x, y0; ✓))PK

k=0 exp(s̄(x, yk; ✓))

!
.

By straightforward calculation, one can find that

L1
R (✓) = E [Ln

R(✓)] .

Under mild conditions, Ln
R(✓) converges to

L1
R (✓) as n ! 1. Denote the set of maximiz-

ers of L1
R (✓) by ⇥⇤

R, that is

⇥⇤
R = arg max

✓2⇥
L1

R (✓) .

The following theorem shows that any parameter
vector ✓̄ 2 ⇥⇤

R if and only if it gives the correct
conditional distribution pY |X(y|x).

Assumption 4.1 (Identifiability). For any ✓ 2 ⇥,
if there exists a function c(x) such that s(x, y; ✓)�
s(x, y; ✓⇤) ⌘ c(x) for all (x, y) 2 X ⇥ Y , then
✓ = ✓⇤ and thus c(x) = 0 for all x.

Theorem 4.1 Under Assumption 2.1, ✓̄ 2 ⇥⇤
R if

and only if, for all (x, y) 2 X ⇥ Y ,

pY |X(y|x) = exp(s(x, y; ✓̄))/Z(x, ✓̄).

In addition, ⇥⇤
R is a singleton if and only if As-

sumption 4.1 holds.
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Next we consider consistency of the estimation
algorithm based on the ranking objective under the
following regularity assumptions:
Assumption 4.2 (Continuity). s(x, y; ✓) is con-
tinuous w.r.t. ✓ for all (x, y) 2 X ⇥ Y .

Assumption 4.3 ⇥⇤
R is contained in the interior

of a compact set ⇥ ⇢ R
d.

For a given estimate bpY |X of the conditional dis-
tribution pY |X , define the error metric d(·, ·) by

d
�
bpY |X , pY |X

�
=

X

x2X ,y2Y
pX,Y (x, y)

⇥
�
bpY |X(y|x) � pY |X(y|x)

�2
.

For a sequence of IID observations (x(1), y(1)),
(x(2), y(2)), . . . , define the sequences of esti-
mates (b✓1

R, bp1
Y |X), (b✓2

R, bp2
Y |X), . . . where the

nth estimate (b✓n
R, bpn

Y |X) is obtained by op-
timizing the ranking objective of figure 1 on
(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)).
Theorem 4.2 (Consistency) Under Assump-
tions 2.1, 4.2, 4.3, the estimates based on the
ranking objective are strongly consistent in the
sense that for any fixed K � 1,

P

n
lim

n!1
min

✓⇤2⇥⇤

R

kb✓n
R � ✓⇤k = 0

o

= P

n
lim

n!1
d
⇣
bpn
Y |X , pY |X

⌘
= 0
o

= 1

Further, if Assumption 4.1 holds,

P

n
lim

n!1
b✓n
R = ✓⇤

o
= 1.

Remark 4.1 Thoughout the paper, all NCE esti-
mators are defined for some fixed K. We suppress
the dependence on K to simplify notation (e.g. b✓n

R

should be interpreted as b✓n,K
R ).

4.2 Classification
Now we turn to the analysis of NCE with binary
objective under Assumption 2.2. First consider the
following function,

L1
B (✓, �) =

X

x,y

n
pX,Y (x, y) log (g(x, y; ✓, �))

+ KpX(x)pN (y) log (1 � g(x, y; ✓, �))
o

One can find that

L1
B (✓, �) = E [Ln

B(✓, �)] .

Denote the set of maximizers of L1
B (✓, �) by ⌦⇤

B :

⌦⇤
B = arg max

✓2⇥,�2�
L1

B (✓, �) .

Parallel results of Theorem 4.1, 4.2 are established
as follows.
Assumption 4.4 (Identifiability). For any ✓ 2
⇥, if there exists some constant c such that
s(x, y; ✓)�s(x, y; ✓⇤) ⌘ c for all (x, y) 2 X ⇥Y ,
then ✓ = ✓⇤ and thus c = 0.

Assumption 4.5 ⌦⇤
B is in the interior of ⇥ ⇥ �

where ⇥ ⇢ R
d, � ⇢ R are compact sets.

Theorem 4.3 Under Assumption 2.2, (✓̄, �̄) 2
⌦⇤

B if and only if, for all (x, y) 2 X ⇥ Y ,

pY |X(y|x) = exp(s(x, y; ✓̄) � �̄)

for all (x, y). ⌦⇤
B is a singleton if and only if As-

sumption 4.4 holds.

Similarly we can define the sequence of es-
timates (b✓1

B, b�1
B, bp1

Y |X), (b✓2
B, b�2

B, bp2
Y |X), . . .

based on the binary objective.

Theorem 4.4 (Consistency) Under Assump-
tion 2.2, 4.2, 4.5, the estimates defined by the
binary objective are strongly consistent in the
sense that for any K � 1,

P

n
lim

n!1
min

(✓⇤,�⇤)2⌦⇤

B

k(b✓n
B, b�n

B) � (✓⇤, �⇤)k = 0
o

= P

n
lim

n!1
d
⇣
bpn
Y |X , pY |X

⌘
= 0
o

= 1

If further Assumption 4.4 holds,

P

n
lim

n!1
(b✓n

B, b�n
B) = (✓⇤, �⇤)

o
= 1.

4.3 Counterexample
In this section, we give a simple example to
demonstrate that the binary classification approach
fails to be consistent when assumption 2.1 holds
but assumption 2.2 fails (i.e. the partition function
depends on the input).

Consider X 2 X = {x1, x2} with marginal
distribution

pX(x1) = pX(x2) = 1/2,

and Y 2 Y = {y1, y2} generated by the condi-
tional model specified in assumption 2.1 with the
score function parametrized by ✓ = (✓1, ✓2) and

s(x1, y1; ✓) = log ✓1,
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s(x1, y2; ✓) = s(x2, y1; ✓) = s(x2, y2; ✓) = log ✓2.

Assume the true parameter is ✓⇤ = (✓⇤
1, ✓

⇤
2) =

(1, 3). By simple calculation,

Z(✓⇤; x1) = 4, Z(✓⇤; x2) = 6,

pX,Y (x1, y1) = 1/8, pX,Y (x1, y2) = 3/8,
pX,Y (x2, y1) = pX,Y (x2, y2) = 1/4.

Suppose we choose the negative sampling distri-
bution pN (y1) = pN (y2) = 1/2. For any K � 1,
by the Law of Large Numbers, as n goes to infin-
ity, Ln

B(✓, �) will converge to L1
B (✓, �). Substi-

tute in the parameters above. One can show that

L1
B (✓, �) =

1

8
log

2✓1

2✓1 + K exp(�)

+
K

4
log

K exp(�)

2✓1 + K exp(�)

+
7

8
log

2✓2

2✓2 + K exp(�)

+
3K

4
log

K exp(�)

2✓2 + K exp(�)
.

Setting the derivatives w.r.t. ✓1, ✓2 to zero, one will
obtain

✓1 =
1

4
exp(�), ✓2 =

7

12
exp(�).

So for any (e✓1, e✓2, e�) 2 argmax✓,� L1
B (✓, �),

(e✓1, e✓2, e�) will satisfy the equalities above. Then
the estimated distribution epY |X will satisfy

epY |X(y1|x1)

epY |X(y2|x1)
=
e✓1

e✓2

=
1/4

7/12
=

3

7
,

which contradicts the fact that

pY |X(y1|x1)

pY |X(y2|x1)
=

pX,Y (x1, y1)

pX,Y (x1, y2)
=

1

3
.

So the binary objective does not give consistent
estimation of the conditional distribution.

4.4 Asymptotic Normality and Statistical
Efficiency

Noise Contrastive Estimation significantly reduces
the computational complexity, especially when the
label space |Y| is large. It is natural to ask: does
such scalability come at a cost? Classical likeli-
hood theory tells us, under mild conditions, the
maximum likelihood estimator (MLE) has nice
properties like asymptotic normality and Fisher ef-
ficiency. More specifically, as the sample size goes

to infinity, the distribution of the MLE will con-
verge to a multivariate normal distribution, and the
mean square error of the MLE will achieve the
Cramer-Rao lower bound (Ferguson, 1996).

We have shown the consistency of the NCE es-
timators in Theorem 4.2 and Theorem 4.4. In this
part of the paper, we derive their asymptotic distri-
bution and quantify their statistical efficiency. To
this end, we restrict ourselves to the case where ✓⇤

is identifiable (i.e. Assumptions 4.1 or 4.4 hold)
and the scoring function s(x, y; ✓) satisfies the fol-
lowing smoothness condition:

Assumption 4.6 (Smoothness). The scoring func-
tion s(x, y; ✓) is twice continuous differentiable
w.r.t. ✓ for all (x, y) 2 X ⇥ Y .

We first introduce the following maximum-
likelihood estimator.

b✓ MLE = arg min
✓

Ln
MLE(✓)

:= arg min
✓

nX

i=1

log

 
exp(s(x(i), y(i); ✓))P
y2Y exp(s(x(i), y; ✓))

!
.

Define the matrix

I✓⇤ = EX
⇥
VarY |X=x [r✓s(x, y; ✓⇤)]

⇤
.

As shown below, I✓⇤ is essentially the Fisher in-
formation matrix under the conditional model.

Theorem 4.5 Under Assumption 2.1, 4.1, 4.3,
and 4.6, if I✓⇤ is non-singular, as n ! 1

p
n(b✓ MLE � ✓⇤) ) N (0, I�1

✓⇤ ).

For any given estimator b✓, define the scaled
asymptotic mean square error by

MSE1(b✓) = lim
n!1

E

"����

�
n

d

⇣
b✓ � ✓⇤

⌘����
2
#

,

where d is the dimension of the parameter ✓⇤. The-
orem 4.5 implies that,

MSE1(b✓ MLE) = Tr(I�1
✓⇤ )/d.

where Tr(·) denotes the trace of a matrix. Accord-
ing to classical MLE theory (Ferguson, 1996), un-
der certain regularity conditions, this is the best
achievable mean square error. So the next question
to answer is: can these NCE estimators approach
this limit?
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Assumption 4.7 There exist positive constants
c, C such that �min(I✓⇤) � c and

max
(x,y)2X⇥Y

n
|s(x, y; ✓⇤)|, kr✓s(x, y; ✓⇤)k ,

��r2
✓s(x, y; ✓⇤)

��
o

 C.

where �min(·) denotes the smallest singular value.

Theorem 4.6 (Ranking) Under Assumption 2.1,
4.1, 4.3, 4.6, 4.7, there exists an integer K0 such
that for all K � K0, as n ! 1

p
n
⇣
b✓R � ✓⇤

⌘
) N (0, I�1

R,K), (9)

for some matrix IR,K . There exists a constant C
such that for all K � K0,

| MSE1(b✓R) � MSE1(b✓ MLE)|  C/
p

K

kI�1
R,K � I�1

✓⇤ k  C/
p

K

Theorem 4.7 (Binary) Under Assumption 2.2,
4.4, 4.5, 4.6, 4.7, there exists an integer K0 such
that, for any K � K0, as n ! 1

p
n
⇣
b✓B � ✓⇤

⌘
) N (0, I�1

B,K), (10)

for some matrix IB,K . There exists a constant C
such that for all K � K0,

| MSE1(b✓B) � MSE1(b✓ MLE)|  C/K

kI�1
B,K � I�1

✓⇤ k  C/K.

Remark 4.2 Theorem 4.6 and 4.7 reveal that un-
der respective model assumptions, for any given
K � K0 both NCE estimators are asymptotically
normal and

p
n-consistent. Moreover, both NCE

estimators approach Fisher efficiency (statistical
optimality) as K grows.

5 Experiments

5.1 Simulations
Suppose we have a feature space X ⇢ R

d with
|X | = mx, label space Y = {1, · · · , my}, and pa-
rameter ✓ = (✓1, · · · , ✓my) 2 R

my⇥d. Then for
any given sample size n, we can generate observa-
tions (x(i), y(i)) by first sampling x(i) uniformly
from X and then sampling y(i) 2 Y by the con-
dional model

p(y|x; ✓) = exp(x0✓y)/

myX

y=1

exp(x0✓y).

We first consider the estimation of ✓ by MLE and
NCE-ranking. We fix d = 4, mx = 200, my =
100 and generate X and the parameter ✓ from sep-
arate mixtures of Gaussians. We try different con-
figurations of (n, K) and report the KL divergence
between the estimated distribution and true distri-
bution, as summarized in the left panel of figure 2.
The observations are:

• The NCE estimators are consistent for any
fixed K. For a fixed sample size, the NCE estima-
tors become comparable to MLE as K increases.

• The larger the sample size, the less sensitive
are the NCE estimators to K. A very small value
of K seems to suffice for large sample size.

Apparently, under the parametrization above,
the model is not self-normalized. To use NCE-
binary, we add an extra x-dependent bias parame-
ter bx to the score function (i.e. s(x, y; ✓) = x0✓y+
bx) to make the model self-normalized or else the
algorithm will not be consistent. Similar patterns
to figure 2 are observed when varying sample size
and K (see Section A.1 of the supplementary ma-
terial). However this makes NCE-binary not di-
rectly comparable to NCE-ranking/MLE since its
performance will be compromised by estimating
extra parameters and the number of extra param-
eters depends on the richness of the feature space
X . To make this clear, we fix n = 16000, d =
4, my = 100, K = 32 and experiment with mx =
100, 200, 300, 400. The results are summarized on
the right panel of figure 2. As |X | increases, the
KL divergence will grow while the performance of
NCE-ranking/MLE is independent of |X |. With-
out the x-dependent bias term for NCE-binary, the
KL divergence will be much higher due to lack of
consistency (0.19, 0.21, 0.24, 0.26 respectively).

5.2 Language Modeling

We evaluate the performance of the two NCE al-
gorithms on a language modeling problem, using
the Penn Treebank (PTB) dataset (Marcus et al.,
1993). We choose (Zaremba et al., 2014) as the
benchmark where the conditional distribution is
modeled by two-layer LSTMs and the parame-
ters are estimated by MLE (note that the current
state-of-the-art is (Yang et al., 2018)). Zaremba
et al. (2014) implemented 3 model configurations:
“Small” , “Medium” and “Large”, which have
200, 650 and 1500 units per layer respectively.
We follow their setup (model size, unrolled steps,
dropout ratio, etc) but train the model by maximiz-
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Small Medium Large
MLE 111.5 82.7 78.4
NCE Ranking Binary Ranking Binary Ranking Binary

K = 200 113.8 106.8 83.2 82.1 79.3 76.0
K = 400 112.9 105.6 82.3 81.5 77.9 75.6
K = 800 111.9 105.3 81.4 81.6 77.8 75.7
K = 1600 110.6 104.8 81.7 81.5 77.5 75.9
reg-MLE 105.4 79.9 77.0

reg-Ranking (K = 1600) 105.4 79.8 75.0
reg-Binary (K = 1600) 104.8 82.5 75.7

Table 1: Perplexity on the test set of Penn Treebank. We show performance for the ranking v.s. binary loss
algorithms, with different values for K, and with/without regularization.

Figure 2: KL divergence between the true distribution and the estimated distribution.

ing the two NCE objectives. We use the unigram
distribution as the negative sampling distribution
and consider K = 200, 400, 800, 1600.

The results on the test set are summarized in ta-
ble 1. Similar patterns are observed on the vali-
dation set (see Section A.2 of the supplementary
material). As shown in the table, the performance
of NCE-ranking and NCE-binary improves as the
number of negative examples increases, and fi-
nally outperforms the MLE.

An interesting observation is, without regular-
ization, the binary classification approach outper-
forms both ranking and MLE. This suggests the
model space (two-layer LSTMs) is rich enough as
to approximately incorporate the x-dependent par-
tition function Z(✓; x), thus making the model ap-
proximately self-normalized. This motivates us to
modify the ranking and MLE objectives by adding
the following regularization term:

↵

n

nX

i=1

0

@log

0

@ 1

m

mX

j=1

exp
⇣
s̄(x(i), ey(i,j); ✓)

⌘
1

A

1

A
2

⇡ ↵ EX

h
(log Z(x; ✓))2

i
,

where ey(i,j), 1  j  m are sampled from
the noise distribution pN (·). This regularization

term promotes a constant partition function, that is
Z(x; ✓) ⇡ 1 for all x 2 X . In our experiments, we
fix m to be 1/10 of the vocabulary size, K = 1600
and tune the regularization parameter ↵. As shown
in the last three rows of the table, regularization
significantly improves the performance of both the
ranking approach and the MLE.

6 Conclusions

In this paper we have analyzed binary and rank-
ing variants of NCE for estimation of conditional
models p(y|x; ✓). The ranking-based variant is
consistent for a broader class of models than the
binary-based algorithm. Both algorithms achieve
Fisher efficiency as the number of negative exam-
ples increases. Experiments show that both algo-
rithms outperform MLE on a language modeling
task. The ranking-based variant of NCE outper-
forms the binary-based variant once a regularizer
is introduced that encourages self-normalization.
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Abstract

Maximum-likelihood estimation (MLE) is one
of the most widely used approaches for train-
ing structured prediction models for text-
generation based natural language process-
ing applications. However, besides expo-
sure bias, models trained with MLE suffer
from wrong objective problem where they
are trained to maximize the word-level cor-
rect next step prediction, but are evaluated
with respect to sequence-level discrete met-
rics such as ROUGE and BLEU. Several
variants of policy-gradient methods address
some of these problems by optimizing for fi-
nal discrete evaluation metrics and showing
improvements over MLE training for down-
stream tasks like text summarization and ma-
chine translation. However, policy-gradient
methods suffers from high sample variance,
making the training process very difficult and
unstable. In this paper, we present an alterna-
tive direction towards mitigating this problem
by introducing a new objective (CALCS) based
on a differentiable surrogate of longest com-
mon subsequence (LCS) measure that captures
sequence-level structure similarity. Experi-
mental results on abstractive summarization
and machine translation validate the effective-
ness of the proposed approach.

1 Introduction

Recently, deep neural networks have achieved
state-of-the-art results in various tasks including
computer vision, natural language processing, and
speech processing. Specifically, neural text gen-
eration models, central focus of this work, have
led to great progress in central downstream NLP
tasks like text summarization, machine transla-
tion, and image captioning. For example, the
abstractive summarization task, which has previ-
ously not been the popular choice for text sum-

⇤Work done while interning at Google Brain.

marization due to lack of appropriate text gener-
ation methods, has gained revived attention with
the success of neural sequence-to-sequence mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015).
There has been several recent work with an im-
pressive progress on this task including (Rush
et al., 2015; Chopra et al., 2016; Nallapati et al.,
2016; Miao and Blunsom, 2016; See et al., 2017;
Tan et al., 2017; Zhou et al., 2017). Machine trans-
lation is another central field in NLP where the
emergence of neural sequence-to-sequence mod-
els has enabled viable alternative approaches (Lu-
ong et al., 2015; Bahdanau et al., 2015; Cho et al.,
2014; Sutskever et al., 2014) to challenge tradi-
tional phrase-based methods (Koehn et al., 2003).

Most of the recent existing works on neural text
generation are based on variants of sequence-to-
sequence models with attention (Bahdanau et al.,
2015) trained with Maximum-likelihood estima-
tion (MLE) with teacher forcing. As Ranzato et al.
(2016) points out in a previous work, these models
have two major drawbacks. First, they are trained
to maximize the probability of correct next word
given the entire sequence of previous ground truth
words. While, at test time, the models need to
generate the entire sequence by feeding its own
predictions at previous time steps. This discrep-
ancy is called exposure bias and hurts the perfor-
mance as the model is never exposed to its own
predictions during training. The second drawback,
called wrong objective, is due yet another discrep-
ancy between training and testing. It refers to the
critique (Ranzato et al., 2016) that MLE-trained
models tend to have suboptimal performance as
they are trained to maximize a convenient objec-
tive (i.e., maximum likelihood of word-level cor-
rect next step prediction) rather than a desirable
sequence-level objective that correlates better with
the common discrete evaluation metrics such as
ROUGE (Lin and Och, 2004) for summarization,
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BLEU (Papineni et al., 2002) for translation, and
word error rate for speech recognition, not log-
likelihood. On the other hand, training models
that directly optimize for such discrete metrics as
objective is hard due to non-differentiable nature
of the corresponding loss functions (Rosti et al.,
2011). To address these issues, Ranzato et al.
(2016) introduces an incremental learning recipe
that uses a hybrid loss function combining REIN-
FORCE (Williams, 1992) and cross-entropy. Re-
cently, Paulus et al. (2018) also explored com-
bining maximum-likelihood and policy gradient
training for text summarization.

Towards sequence level optimization, previous
works (Ranzato et al., 2016; Wu et al., 2016;
Paulus et al., 2018) employ reinforcement learn-
ing (RL) with a policy-gradient approach which
works around the difficulty of differentiating the
reward function by using it as a weight. How-
ever, REINFORCE is known to suffer from high
sample variance and credit assignment problems
which makes the training process difficult and un-
stable besides resulting in models that are hard to
reproduce (Henderson et al., 2018).

In this paper, we propose an alternative ap-
proach for sequence-level training with longest
common subsequence (LCS) metric that measures
the sequence-level structure similarity between
two sequences. We essentially introduce a con-
tinuous approximation to the discrete LCS met-
ric which can be directly optimized against using
standard gradient-based methods. Our proposed
approach has the advantage of being able to di-
rectly optimize for a surrogate reward as opposed
to using the exact reward only as a weight as in
RL-inspired works. Hence, it provides a viable
alternative perspective to policy-gradient methods
for side stepping the non-differentiability with re-
spect to the exact reward. In addition, it simultenu-
ously combats the exposure bias problem through
exposing the model to its own predictions while
computing our approximation to LCS metric.

To this end, we introduce a new learning recipe
that incorporates the aformentioned continuous
approximation to LCS metric (CALCS) as an ad-
ditional objective on top of maximum-likelihood
loss in existing neural text generation models.
We evaluate the proposed approach on abstrac-
tive text summarization and machine translation
tasks. To this end, we use recently introduced
pointer-generator network (See et al., 2017) and

transformer (Vaswani et al., 2017) as underlying
baselines for summarization and machine transla-
tion, respectively. More precisely, we start from
a pre-trained baseline model with cross-entropy
loss, and continue training the model to optimize
for the proposed differentiable objective based on
CALCS. Using this recipe, we conduct various
experiments on CNN/Daily Mail (Hermann et al.,
2015; Nallapati et al., 2016) summarization and
WMT 2014 English-to-German machine transla-
tion tasks. Experimental results validate the effec-
tiveness of the proposed approach on both tasks.

2 Continuously Approximating Longest
Common Subsequence Metric

In this work, we explore the potential use of
longest common subsequence (LCS) metric from
an algorithmic point of view to address the afore-
mentioned wrong objective and exposure bias
problems. LCS metric measures a sequence-level
structure similarity between discrete sequences by
identifying longest co-occurring in sequence n-
grams and it has been shown to correlate well with
human judgments for downstream text generation
tasks (Lin and Och, 2004). To this end, we pro-
pose a way to continuously approximate LCS met-
ric and use this differentiable approximation as
the objective to train text generation models rather
than the exact LCS measure, which is hard to op-
timize for due to non-differentiability of the cor-
responding loss function. Although such differ-
entiable approximation provides a unique advan-
tage from modeling and optimization perspective,
the difficulty of controlling its tightness might be a
potential drawback in terms of its applicability. In
this section, we will first introduce our proposed
approximation to LCS metric, and then provide a
natural way to control its tightness.

Consider a sequence generation problem condi-
tioned on an input sequence x = (x1, x2, . . . , xn)
and let y = (y1, y2, . . . , ym) denote its corre-
sponding ground-truth output sequence. Let

f(x,⇥) = z = (z1, z2, . . . , zk)

denote hypothesis sequence obtained by greedy
decoding from a generic encoder-decoder archi-
tecture for input sequence x, where ⇥ represents
model parameters. Also, let p1, p2, . . . , pk be the
probability distributions over vocabulary V at de-
coding time steps from which z1, z2, . . . , zk are
generated via argmax operator, respectively.
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2.1 CALCS

In this section, we define our approach to con-
tinuously approximate the longest common sub-
sequence measure (LCS), which is an unnormal-
ized version of ROUGE-L metric (Lin and Och,
2004) (See Appendix B) that is commonly used
for performance evaluation of text summarization
models. The main intuition behind our approach is
to relax the common necessity for hard inferences
while computing discrete metrics by instead com-
paring discrete tokens in a soft way. Towards this
end, we start by defining LCS metric.

Definition 1. Given two sequences y and z of to-
kens, longest common subsequence LCS(y, z) is
defined as the longest sequence of tokens that ap-
pear left-to-right (but not necessarily in a contigu-
ous block) in both sequences.

The most common and intuitive solution for
computing longest common subsequence is via
dynamic programming. We will briefly revisit this
here as it will be useful in terms of both recall and
notational convenience while describing our sur-
rogate LCS measure. Let ri,j denote the longest
common subsequence between prefix sequences
y[:i] = (y1, y2, . . . , yi) and z[:j] = (z1, z2, . . . , zj)
of y and z, respectively. A dynamic programming
solution is given by

ri,j =

8
><

>:

0 if i = 0 or j = 0

ri�1,j�1 + 1 if yi = zj

max(ri�1,j , ri,j�1) o/w.

(1)

ri,j for all i = 1, 2, . . . , m and j = 1, 2, . . . , k.
It can be computed in mk iterations using the for-
mula in Eqn 1. After computing 2D dynamic pro-
gramming matrix r, we obtain LCS(y, z) = rm,k.

Towards removing the dependence on hard in-
ference for computing LCS, we now define our
approximation to longest common subsequence,
which we call CALCS. At high-level, the idea
is to continuously relax the original LCS mea-
sure. To this end, we leverage output probabil-
ity distributions p1, p2, . . . , pk as soft predictions
to refine the dynamic programming formulation
for original LCS. More precisely, we recursively
define soft longest common subsequence si,j be-
tween prefixes y[:i] and z[:j] in analogous to ri,j as

follows:

si,j = p(yi)
j (si�1,j�1 + 1) + (2)

(1 � p(yi)
j ) max(si�1,j , si,j�1) (3)

for i, j > 0 and si,0 = s0,j = 0, where p(yi)
j de-

note the probability of generating yi at j-th decod-
ing step. Intuitively, CALCS replaces the hard to-
ken comparison [yi = zj ] in Eq. 1 with the prob-
ability p(yi)

j as in Eq. 2. Interpreting the proba-

bility p(yi)
j as a continuous relaxation of discrete

comparison operator [yi = zj ], si,j establishes a
natural continuous approximation to ri,j . Similar
to LCS, after iteratively filling up si,j matrix, we
define

CALCS(y, z) = sm,k (4)

Although the proposed approximation is a natu-
ral way of relaxing/extending the hard binary com-
parison of discrete tokens, it is not clear how tight
the approximation is, which is established in the
next section.

2.2 On the Tightness of Approximation
In this section, we first discuss the tightness of the
proposed approximation, and then provide a natu-
ral way of controlling it.

2.2.1 Bounding the Approximation Error
We now present a bound on the approximation
error of the proposed CALCS compared to the
original LCS measure. Characterization of this
bound will enable us to theoretically argue about
the feasibilty of using the proposed surrogate re-
ward function for our objective as well as control-
ling its tightness.

LCS measure is intrinsically monotonic by defi-
nition. We start by a lemma that establishes a sim-
ilar monotonicity property for CALCS.
Lemma 1. [Monotonicity] The following two in-
equalities

si,j  si,j+1  si,j + 1

si,j  si+1,j  si,j + 1

hold for all 0  i < m and 0  j < k.

Proof. See Appendix A for the proof.

Having established a certain monotonicity prop-
erty for CALCS, we will discuss its approximation
error to the original LCS measure. Let

�i,j = si,j � ri,j (5)
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denote the approximation error of CALCS to LCS
measure between generated prefix sequence y[:i]

and the ground-truth prefix z[:j].

Lemma 2. Let Pi,j =
{(0, 0), (i1, j1), . . . , (iq�1, jq�1), (iq, jq)} de-
note the path of dynamic programming algorithm
for LCS ending at (i, j) = (iq, jq) cell of m ⇥ k
grid. Then,

|�i,j | <
���iq�1,jq�1

�� + (1 � max(pj)) (6)

where max(pj) = max{p(1)
j , p(2)

j , . . . , p(|V |)
j }.

Proof. We will establish the proof by investigating
two cases and combining them.

CASE 1: zj = yi.
In this case, we have

ri,j = 1 + ri�1,j�1 (7)

and

(iq�1, jq�1) = (i � 1, j � 1) (8)

by 1. Using Eq. 7, we get

�i,j = si,j � ri,j

=
⇣
1 � p(yi)

j

⌘
max (si�1,j , si,j�1)

+ p(yi)
j (si�1,j�1 + 1) � (1 + ri�1,j�1)

= (si�1,j�1 � ri�1,j�1)

+
⇣
1 � p(yi)

j

⌘ h
max(si�1,j , si,j�1)

� (1 + si�1,j�1)
i

Using the definition of � and triangle inequality,
we get

|�i,j |  |�i�1,j�1| +
⇣
1 � p(yi)

j

⌘ ��� (1 + si�1,j�1)

� max (si�1,j , si,j�1)
���

 |�i�1,j�1| +
⇣
1 � p(yi)

j

⌘
(9)

where inequality 9 follows from the monotonicity
established by Lemma 1.

Moreover, zj = yi implies p(yi)
j = max(pj) be-

cause z is generated by greedy decoding. Plugging
this in Eq. 9 and using Eq. 8, we can immediately
conclude that

|�i,j | <
���iq�1,jq�1

�� + (1 � max(pj)) (10)

CASE 2: zj 6= yi.
By definition 1, we have

ri,j = max (ri�1,j , ri,j�1) .

Using this identity, we obtain

�i,j = si,j � ri,j

=
⇣
1 � p(yi)

j

⌘
max (si�1,j , si,j�1)

+ p(yi)
j (si�1,j�1 + 1) � max (ri�1,j , ri,j�1)

= p(yi)
j [(1 + si�1,j�1) � max (si�1,j , si,j�1)]

+ [max (si�1,j , si,j�1) � max (ri�1,j , ri,j�1)]

Applying triangle inequality on the last equation
above, we get

|�i,j | 

p(yi)
j |(1 + si�1,j�1) � max (si�1,j , si,j�1)|

+ |max (si�1,j , si,j�1) � max (ri�1,j , ri,j�1)|


p(yi)
j |(1 + si�1,j�1) � max (si�1,j , si,j�1)|

+ max (|si�1,j � ri�1,j | , |si,j�1 � ri,j�1|) (11)
=

p(yi)
j |(1 + si�1,j�1) � max (si�1,j , si,j�1)|

+ max (|�i�1,j | , |�i,j�1|)

 p(yi)
j + max (|�i�1,j | , |�i,j�1|) (12)

where inequality 12 follows from again the mono-
tonicity of s[·, ·], and inequality 11 follows from
the following identity that holds true for all real
numbers a, b, c, d � 0

|max(a, b) � max(c, d)|  max(|a � c| , |b � d|)

Moreover, since zj 6= yi, we know that p(yi)
j 6=

max(pj), which implies

p(yi)
j  1 � max(pi). (13)

Combining 11 and 13 completes the proof for this
case. Finally, two cases investigated above to-
gether establish the proof of Lemma 2.

Lemma 2 leads to the following important
corollary.
Corollary 1. Let Pi,j =
{(0, 0), (i1, j1), . . . , (iq, jq)} be the path of
dynamic programming algorithm for LCS ending
at (i, j) = (iq, jq) cell of m ⇥ k grid. Then,

|�i,j | 
qX

w=1

(1 � max(pjw)) (14)
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Proof. Applying Lemma 2 iteratively and using
�0,0 = 0, we get

|�i,j | 
���iq�1,jq�1

�� + (1 � max(pjq))���iq�1,jq�1

�� 
���iq�2,jq�2

�� + (1 � max(pjq�1))���iq�2,jq�2

�� 
���iq�3,jq�3

�� + (1 � max(pjq�2))

...
|�i1,j1 |  |�0,0| + (1 � max(pj1))

|�0,0|  0

Summing (q +1)-many inequalities above side by
side and cancelling out the same terms appearing
on both sides of the resulting inequality establishes
the proof of corollary.

2.2.2 Controlling the Tightness of
Approximation

Corollary 1 hints for a natural way of control-
ling the tightness of approximation CALCS by ex-
ploiting the peakedness of model’s softmax output
probability distributions. More precisely, upper
bound on the approximation error is represented
as a sum of 1�max(pj)’s, hence the more peaked
the model’s output probability distributions on av-
erage, the smaller the approximation error we are
guaranteed by the established bounds.

We exploit this property to control the tight-
ness of approximation by making a modification
to computation of the proposed CALCS measure.
Formally, let l1, l2, . . . , lk denote the unnormal-
ized logits of the model output before applying
softmax to obtain probabilities p1, p2, . . . , pk at
decoding time steps, respectively. Hence,

p(i)
j =

exp(l(i)j )
P

i exp(l(i)j )
(15)

Recall that CALCS is computed using pj’s. Using
peaked softmax, we can obtain more peaked prob-
ability distributions without causing any change in
the actual generated sequence z via greedy decod-
ing. This is simply because the order of probabil-
ities for corresponding vocabulary words will not
change, only the probability disribution pj will get
more peaked. So, we define peaked softmax oper-
ator with hyperparameter ↵ as

p(i)
j (↵) =

exp(l(i)j /↵)
P

i exp(l(i)j /↵)
(16)

By Corollary 1, |�i,j | ! 0 as ↵ ! 0 for CALCS
measure computed with pj(↵). One can further

attempt to use Corollary 1 as a guide to pinpoint a
range of ↵ values to force the approximation error
within certain desired limits. We will use ↵ as a
hyperparameter in this work.

Corollary 1 is also useful for alternative ways
of controlling the tightness of approximation such
as incurring penalty for high-entropy output prob-
ability distributions or simply penalizing the max-
imum output probability values less than a desired
threshold (that explicitly controls the tightness of
the approximation). We leave such options of con-
trolling the approximation error for future work.

With the guidance of Corollary 1 and peaked
softmax in Eq. 16, we conclude that CALCS es-
tablishes a promising approximation for LCS mea-
sure. In the next section, we introduce a new ob-
jective function using CALCS as a continuously
differentiable reward to be directly maximized.

2.3 Sequence Level Optimization via CALCS

In this section, we describe how to leverage
CALCS to define a loss function for sequence level
optimization. For notational consistency, we will
use f(x,⇥) to denote an encoder-decoder archi-
tecture that takes an input sequence x and out-
puts a sequence of tokens z = (z1, z2, . . . , zm)
via greedy decoding from corresponding probabil-
ity distributions p1, p2, . . . , pm at each step.

For a pair of input sequence x and its corre-
sponding ground-truth output sequence y, we de-
fine

JCALCS(x,y;⇥) = � log

✓
CALCS(y, f(x,⇥))

|y|

◆

(17)

as the loss function for a sample (x,y) based on
the CALCS, where |y| denote the length of se-
quence y. It is important to note here that while
computing probability distribution pt at decoding
step t, we feed model’s own prediction zt�1 at the
previous time step to fight exposure bias.

It is important to observe here that
JCALCS(x,y;⇥) is differentiable in p1, p2, . . . , pk

by definition and each pi is differentiable in model
parameters ⇥. Hence, JCALCS(x,y;⇥) is differ-
entiable in model parameters ⇥, which allows us
to directly optimize the network parameters with
respect to LCS metric. The bound we established
on the approximation error and our proposed
strategy to control it theoretically ensures the
feasibility of using the introduced loss function
JCALCS to optimize for LCS metric.
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3 Model

In this section, we first briefly revisit the pointer-
generator (See et al., 2017) and transformer
(Vaswani et al., 2017) networks that are used as
the underlying baselines in our experiments. Sub-
sequently, we describe how the proposed objective
function and its variants are used to train new sum-
marization and machine translation models.

3.1 Baseline Models
Pointer-Generator Network. We use pointer-
generator network (See et al., 2017) as our base-
line sequence-to-sequence model for text sum-
marization. It is essentially a hybrid between
sequence-to-sequence model with attention (Bah-
danau et al., 2015) and a pointer network (Vinyals
et al., 2015) that supports two decoding modes,
copying and generating, via a soft switch mecha-
nism. This enables the model to copy a word from
the input sequence based on the attention distribu-
tion. On each decoding time step t, the decoder
LSTM is fed the word embedding of the previous
word, and computes a decoder state st, an atten-
tion distribution at over the words of input article,
and a probability Pvocab(w) of generating word w
for summary from output vocabulary V , which is
then softly combined with the copy mode’s proba-
bility distribution Pcopy(w) via soft switch proba-
bility pgen 2 [0, 1] by

p(w)
t = pgenPvocab(w) + (1 � pgen)Pcopy(w)

and

Pcopy(w) =
X

{i:wi=w}
at

i

where at
i indicates the attention probability on i-

th word of the input article. The whole network
is then trained end-to-end with the negative log-
likelihood loss function of

JPG(x,y;⇥) = � 1

|y|

|y|X

t=1

log(p(yt)
t )

for a sample article-summary pair (x,y) where ⇥
denote the learnable model parameters. It is im-
portant to note here that we do not use the cov-
erage mechanism introduced by the original work
(See et al., 2017) to prevent the potential repetition
problem in the summaries generated by the model.

Transformer Network. For machine translation,
we use the transformer network (Vaswani et al.,
2017), which is a recently published model that
achieved state-of-the-art results on WMT 2014
English-to-German MT task with less computa-
tional time owing to its highly parallelizable ar-
chitecture. The core idea behind this model is to
use stacked self-attention mechanisms along with
point-wise, fully connected layers for both en-
coder and decoder to represent its input and out-
put. For the sake of brevity, we refer the reader
to (Vaswani et al., 2017) for further details regard-
ing the architecture. Similar to previously defined
loss functions, let JTF(x,y;⇥) denote the per-
example loss function of transformer networks for
an input-output translation pair (x,y) where ⇥ is
again indicating the learnable model parameters.

3.2 Model Variants and Training
Let {(x(l),y(l))}N

l=1 denote the set of training ex-
amples, where x(l)’s are input sequences, and
y(l)’s are their corresponding ground-truth output
sequences. Before optimizing for the introduced
objective JCALCS, we first train the corresponding
baseline network by minimizing

J{PG,TF}(⇥) =
1

N

NX

l=1

J{PG,TF}(x,y;⇥).

Unlike JCALCS, loss functions J{PG,TF} for base-
line models are computed by teacher forcing, feed-
ing the previous ground-truth word at each de-
coding step. We will denote the baseline models
by POINTGEN for pointer-generator network and
TRANSFORMER for transformer network.

To optimize for the proposed objective JCALCS,
we initialize the model parameters ⇥ from the pre-
trained baseline network and continue training the
model by minimizing the joint loss

J(⇥) = �JCALCS(⇥) + (1 � �)J{PG,TF}(⇥)

(18)

JCALCS(⇥) =
1

N

NX

l=1

JCALCS(x,y;⇥) (19)

where � is a hyperparameter controlling the bal-
ance between the two losses. During the training
with the joint loss, we compute JCALCS(x,y;⇥),
defined in Eq. 17, by performing |y|-many
decoding steps as a simple strategy to pre-
vent the model from gaming the training objec-
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Model ROUGE-1 ROUGE-L
(Nallapati et al., 2016) 35.46 32.65
w/o coverage (See et al., 2017) 36.44 33.42
w/ coverage (See et al., 2017) 39.53 36.38
LEAD-3 baseline (See et al., 2017) 40.34 36.57
RL (Paulus et al., 2018) 41.16 39.08
ML + RL (Paulus et al., 2018) 39.87 36.90
Our Models
POINTGEN* 39.11 26.97**
POINTGEN*+SS 39.33 26.94**
POINTGEN*+SS+CALCS 40.37 29.18**

Table 1: ROUGE F1 results on CNN/Daily Mail summa-
rization dataset. Our reimplementation of POINTGEN* cor-
responds to w/o coverage (See et al., 2017). ** sign near
ROUGE-L results reported for our models indicates a differ-
ence in our ROUGE-L evaluation as explained below.

tive by generating longer and longer hypothe-
ses instead of incurring an additional length
penalty. We will refer to the resulting model
trained with the loss function in Eq. 18 as
{POINTGEN, TRANSFORMER}+CALCS depend-
ing on the baseline model.

4 Experiments

We numerically evaluate the proposed method on
two sequence generation benchmarks: abstrac-
tive document-summarization and machine trans-
lation. We compare the results of the proposed
method against the recently proposed strong base-
line models (See et al., 2017) for summarization
and and (Vaswani et al., 2017) for machine trans-
lation tasks.

4.1 Abstractive Summarization
We use a modified version of the CNN/Daily Mail
dataset (Hermann et al., 2015) that is first used for
summarization by (Nallapati et al., 2016). How-
ever, we follow the processing script provided by
(See et al., 2017) to obtain non-anonymized ver-
sion of the data that contains 287,226 training
pairs, 13,368 validation pairs, and 11,490 test pairs
of news articles (781 tokens on average) and their
corresponding ground-truth summaries (56 tokens
on average). We refer the reader to (See et al.,
2017) for further details of the difference of their
version from (Nallapati et al., 2016).

For training our baseline model, we use single
layer LSTM encoder (bi-directional) and decoder
with hidden dimensions of 512 and 1024, respec-
tively. We use a vocabulary of 50k words for both
source and target. Following the original paper, we
also do not pre-train word embeddings, which are
learned with the rest of model parameters during

training. We use the Adam (Kingma and Ba, 2015)
optimizer with a learning rate of 0.00001 for train-
ing. We pre-train the baseline model for 20k steps
by applying greedy scheduled sampling (Bengio
et al., 2015) with fixed ground-truth feeding prob-
ability of 75%. Once the baseline model training
is complete, we start optimizing for CALCS objec-
tive as described in the previous section. Also, we
set � = 1.0 and ↵ = 1.0, which are tuned on the
development set.

In Table 1, we report our main results on the
summarization task. POINTGEN+SS refers to the
baseline model trained with scheduled sampling.
POINTGEN+SS+CALCS corresponds our model
trained with CALCS starting from POINTGEN+SS
model. Experimental results demonstrate that
training with our proposed objective provides an
improvement of 2.2 points in ROUGE-L score.
This also provides empirical evidence to justify
that our approximate CALCS effectively captures
what the original LCS metric is supposed to mea-
sure, recalling ROUGE-L is a normalized LCS.
The reason why ROUGE-L scores of our models
are lower than previously reported is that we eval-
uate ROUGE-L score by taking the entire sum-
mary as a single sequence instead of splitting it
into sentences, which is also the way we compute
CALCS objective during the model training pro-
cess. The main motivation behind this approach
is to encourage the model to preserve the sentence
order within a summary, and evaluate its perfor-
mance in the same way. We consider the capability
of preserving the order across produced sentences
as an important attribute a multi-sentence sum-
marization model should have in terms of read-
ability and fluency of its generated summaries as
a whole. When POINTGEN*+SS and POINT-
GEN*+SS+CALCS are evaluated by splitting the
generated summaries into sentences, their cor-
responding ROUGE-L scores become 35.38 and
35.12, respectively. We also observe a nice side-
improvement of 1.0 point in ROUGE-1 score over
the baseline, which achieves a comparable per-
formance with the long-overdue LEAD-3 base-
line score. It might also be comparable to the
recently reported state-of-the-art ROUGE-1 re-
sult on CNN/DailyMail dataset by Paulus et al.
(2018) as they used a different dataset processing
pipeline, which makes it difficult to directly com-
pare with ours.
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Model BLEU
GNMT (Wu et al., 2016) 24.61
GNMT+RL (Wu et al., 2016) 24.60
TRANSFORMER (Vaswani et al., 2017) 27.3
WEIGHTED TRANSFORMER (Ahmed et al., 2018) 28.4
TRANSFORMER* 27.6
TRANSFORMER*+CALCS 27.8

Table 2: Machine translation results on WMT 2014 English-
to-German task. TRANSFORMER* corresponds to our train-
ing of the original model in (Vaswani et al., 2017).

4.2 Machine Translation

We also evaluate our sequence-level training ap-
proach on the WMT 2014 English-to-German ma-
chine translation task, which contains 4.5M pairs
of sentences.

To train our baseline transformer model, we
closely follow the small model in the original
transformer paper (Vaswani et al., 2017). We use a
vocabulary of size 32k. Our encoder and decoder
consist of N = 6 identical layers each. Following
the notation in the original paper, we set the other
parameters as dmodel = 512, dff = 2048, h = 8,
Pdrop = 0.1. We set � = 0.3 and ↵ = 1.0, which
are tuned on the development set.

In Table 2, we show our empirical results on
machine translation task. Our first observation
is that our trained baseline transformer network
achieves a better performance than the one re-
ported in the original paper (Vaswani et al., 2017)
by 0.3 BLEU score, which might be solely due
to hyperparameter tuning. More importantly, we
observe that training with our proposed CALCS
objective leads to noticeable 0.2 BLEU point im-
provements over the baseline, which further rein-
forces our confidence in effectiveness of our pro-
posed sequence-level training approach and its ap-
plicability to other sequence prediction tasks. It
is also interesting to note that optimizing for LCS
metric via its continuous approximation leads to
improvements in evaluation with another discrete
metric BLEU. On the other had, optimizing for
the exact discrete metric BLEU via reinforcement
learning strategy may not improve the evaluation
performance in BLEU as reported by (Wu et al.,
2016). As a final remark, we would like to note
that our proposed approach is orthogonal to ad-
vancements in more expressive and powerful ar-
chitecture designs. Hence it has the potential to
provide further improvements over the recently
proposed models such as WEIGHTED TRANS-
FORMER (Ahmed et al., 2018).

5 Related Work

Text Summarization. Before the successful ap-
plication of neural generative models, most of the
existing works on text summarization (Dorr et al.,
2003; Durrett et al., 2016) have focused on ex-
tractive methods. While some of the early ap-
proaches have used a rich set of heuristic rules or
sparse features to select textual units to include in
the summary, more recent works (Cheng and La-
pata, 2016; Nallapati et al., 2017) leverage neu-
ral models to select words and sentences from the
original text. With the emergence of sequence-
to-sequence models (Sutskever et al., 2014) and
large-scale datasets like CNN/Daily Mail (Her-
mann et al., 2015; Nallapati et al., 2016) and
NYT (Paulus et al., 2018), abstractive summariza-
tion of longer text have become a more feasi-
ble and popular task. Several recent approaches
have been proposed to tackle abstractive summa-
rization problem, where Nallapati et al. (2016)
exploits hierarchical encoders, See et al. (2017)
proposes pointer-generator network and cover-
age mechanism to overcome OOV and repetition
problems, Tan et al. (2017) introduces a graph-
based attention mechanism and hierarchical beam
search strategy, and (Paulus et al., 2018) pro-
poses to optimize for ROUGE metric via rein-
forcement learning. Although impressive progress
has been achieved for sentence-level summariza-
tion, attempts on abstractive document summa-
rization task are still in early stages where the sim-
ple LEAD-3 baseline performance is only very re-
cently matched (Paulus et al., 2018).
Neural Machine Translation. With the re-
cent success of encoder-decoder architectures
(Sutskever et al., 2014; Bahdanau et al., 2015),
neural machine translation systems has gained a
a lot of attention both from academia (Cho et al.,
2014; Luong et al., 2015; Luong and Manning,
2016) and industry (Wu et al., 2016; Vaswani
et al., 2017; Ahmed et al., 2018) over statistical
machine translation, which has been the domi-
nating translation paradigm for years. Most of
these works has focused more on enhancing the
architecture design aspect to tackle with various
challenges such as different attention mechanisms
(Bahdanau et al., 2015; Luong et al., 2015), a
character-level decoder (Chung et al., 2016), a
translation coverage mechanism (Tu et al., 2016),
and so on. However, only very recently, a few
works (Wu et al., 2016; Ranzato et al., 2016;
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Norouzi et al., 2016; Shen et al., 2016; Bahdanau
et al., 2017; Zhukov and Kretov, 2017; Casas
et al., 2018) have investigated sequence-level op-
timization by training to maximize BLEU score.
Neural Sequence Generation with RL. Most
neural sequence generation models are trained
with the objective of maximizing the probability
of the next correct word. However, this results
in a major discrepancy between training and test
settings of these models because they are trained
with cross-entropy loss at word-level, but evalu-
ated based on sequence-level discrete metrics such
as ROUGE (Lin and Och, 2004) or BLEU (Pap-
ineni et al., 2002). On the other hand, directly op-
timizing for such evaluation metrics is hard due
to non-differentiable nature of the exact objec-
tive (Rosti et al., 2011). Recent works (Ranzato
et al., 2016; Wu et al., 2016; Bahdanau et al.,
2017; Paulus et al., 2018) address the difficulty
of differentiating with respect to rewards based on
such discrete metrics using variants of reinforce-
ment learning. These methods essentially pro-
pose to mitigate the problem by optimizing the
reward weighted log-likelihood of the hypothesis
sequences generated by the model distribution. In
this paper, we propose an alternative solution to
tackle this problem by introducing a differentiable
approximation to exact LCS metric that can be di-
rectly optimized by standard gradient-based meth-
ods without RL, while still addressing the expo-
sure bias problem.

6 Conclusion and Future Work

In this work we explored an alternative approach
for training text generation models with sequence-
level optimization to combat wrong objective and
exposure bias problems. We introduced a new ob-
jective function based on a continuous approxima-
tion of LCS metric that measures sequence-level
structure similarity between sentences. We ap-
plied our proposed approach to CNN/Daily Mail
dataset for long document summarization and
WMT 2014 English-to-German machine transla-
tion task. By extending the objectives of strong
neural baseline models with our proposed objec-
tive, we empirically demonstrated its effective-
ness on these two tasks. Our proposed approach
suggests a promising alternative to policy-gradient
methods to side step the difficulty of differentiat-
ing w.r.t reward function while directly optimizing
for sequence-level discrete metrics.
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A Proof of Lemma 1

[Monotonicity] The following two inequalities

si,j  si,j+1  si,j + 1

si,j  si+1,j  si,j + 1

hold for all 0  i < m and 0  j < k.

Proof. We will prove this lemma by induction on
i + j.

Base Case: i + j = 0. In this case, we have
i = j = 0. Since s0,0 = s1,0 = s0,1 = 0
by definition, both s0,0  s0,1  s0,0 + 1 and
s0,0  s1,0  s0,0 + 1 hold.

Inductive Step: Assume for i + j = l that

si,j  si,j+1  si,j + 1 (20)
si,j  si+1,j  si,j + 1 (21)

hold.
We will now prove that the inequalities of in-

ductive hypothesis hold for i + j = l + 1.
We will start by showing si,j+1 � si,j . By defi-

nition, we have

si,j+1 = p(yi)
j+1(si�1,j + 1)+ (22)

(1 � p(yi)
j+1) max(si�1,j+1, si,j) (23)

� p(yi)
j+1(si�1,j + 1) + (1 � p(yi)

j+1)si,j

(24)

� p(yi)
j+1si,j + (1 � pj+1,yi)si,j (25)

� si,j (26)

where inequality 24 follows from the definition of
max operator, and inequality 25 follows from in-
duction assumption 20 because (i � 1) + j = l.
Hence, final inequality 26 establishes the proof of
si,j+1 � si,j .

Now, we will show that si,j+1  si,j + 1 holds.

Again by definition, we have

si,j+1 = p(yi)
j+1(si�1,j + 1)+ (27)

(1 � p(yi)
j+1) max(si�1,j+1, si,j) (28)

 p(yi)
j+1(si�1,j + 1)+ (29)

(1 � p(yi)
j+1)(si�1,j + 1) (30)

 si�1,j + 1 (31)
 si,j + 1 (32)

where inequalities 30 and 32 follow from inequal-
ities 20 and 21 of inductive step as (i�1)+ j = l.

Note that 26 and 32 completes the proof of
si,j  si,j+1  si,j + 1 for i + j = l + 1. Fol-
lowing similar arguments, one can easily establish
the correctness of si,j  si+1,j  si,j + 1 for
i+j = l+1, which completes the proof of Lemma
by induction.

B Definition of Rouge-L

Definition 2. ROUGE-L is a discrete similarity
metric that takes into account sentence level struc-
ture similarity by identifying longest co-occurring
in-sequence n-grams automatically via longest
common subsequence measure. Formally, given
two sequences y and z of tokens, we define
ROUGE-L(y, z) as the harmonic mean of preci-
sion LCS(y,z)

k and recall LCS(y,z)
m based on LCS

measure, where k = |z| and m = |y|.
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Abstract

One way to interpret neural model predic-
tions is to highlight the most important in-
put features—for example, a heatmap visu-
alization over the words in an input sen-
tence. In existing interpretation methods for
NLP, a word’s importance is determined by
either input perturbation—measuring the de-
crease in model confidence when that word is
removed—or by the gradient with respect to
that word. To understand the limitations of
these methods, we use input reduction, which
iteratively removes the least important word
from the input. This exposes pathological be-
haviors of neural models: the remaining words
appear nonsensical to humans and are not the
ones determined as important by interpreta-
tion methods. As we confirm with human ex-
periments, the reduced examples lack infor-
mation to support the prediction of any la-
bel, but models still make the same predic-
tions with high confidence. To explain these
counterintuitive results, we draw connections
to adversarial examples and confidence cali-
bration: pathological behaviors reveal difficul-
ties in interpreting neural models trained with
maximum likelihood. To mitigate their defi-
ciencies, we fine-tune the models by encourag-
ing high entropy outputs on reduced examples.
Fine-tuned models become more interpretable
under input reduction without accuracy loss on
regular examples.

1 Introduction

Many interpretation methods for neural networks
explain the model’s prediction as a counterfactual:
how does the prediction change when the input is
modified? Adversarial examples (Szegedy et al.,
2014; Goodfellow et al., 2015) highlight the in-
stability of neural network predictions by showing
how small perturbations to the input dramatically
change the output.

SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Reduced did
Confidence 0.78 ! 0.91

Figure 1: SQUAD example from the validation set.
Given the original Context, the model makes the same
correct prediction (“Colorado Springs experiments”)
on the Reduced question as the Original, with even
higher confidence. For humans, the reduced question,
“did”, is nonsensical.

A common, non-adversarial form of model in-
terpretation is feature attribution: features that
are crucial for predictions are highlighted in a
heatmap. One can measure a feature’s importance
by input perturbation. Given an input for text clas-
sification, a word’s importance can be measured
by the difference in model confidence before and
after that word is removed from the input—the
word is important if confidence decreases signifi-
cantly. This is the leave-one-out method (Li et al.,
2016b). Gradients can also measure feature im-
portance; for example, a feature is influential to the
prediction if its gradient is a large positive value.
Both perturbation and gradient-based methods can
generate heatmaps, implying that the model’s pre-
diction is highly influenced by the highlighted, im-
portant words.

Instead, we study how the model’s prediction is
influenced by the unimportant words. We use in-
put reduction, a process that iteratively removes
the unimportant words from the input while main-
taining the model’s prediction. Intuitively, the
words remaining after input reduction should be
important for prediction. Moreover, the words
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should match the leave-one-out method’s selec-
tions, which closely align with human percep-
tion (Li et al., 2016b; Murdoch et al., 2018). How-
ever, rather than providing explanations of the
original prediction, our reduced examples more
closely resemble adversarial examples. In Fig-
ure 1, the reduced input is meaningless to a hu-
man but retains the same model prediction with
high confidence. Gradient-based input reduction
exposes pathological model behaviors that contra-
dict what one expects based on existing interpreta-
tion methods.

In Section 2, we construct more of these coun-
terintuitive examples by augmenting input reduc-
tion with beam search and experiment with three
tasks: SQUAD (Rajpurkar et al., 2016) for read-
ing comprehension, SNLI (Bowman et al., 2015)
for textual entailment, and VQA (Antol et al.,
2015) for visual question answering. Input re-
duction with beam search consistently reduces the
input sentence to very short lengths—often only
one or two words—without lowering model confi-
dence on its original prediction. The reduced ex-
amples appear nonsensical to humans, which we
verify with crowdsourced experiments. In Sec-
tion 3, we draw connections to adversarial exam-
ples and confidence calibration; we explain why
the observed pathologies are a consequence of the
overconfidence of neural models. This elucidates
limitations of interpretation methods that rely on
model confidence. In Section 4, we encourage
high model uncertainty on reduced examples with
entropy regularization. The pathological model
behavior under input reduction is mitigated, lead-
ing to more reasonable reduced examples.

2 Input Reduction

To explain model predictions using a set of impor-
tant words, we must first define importance. Af-
ter defining input perturbation and gradient-based
approximation, we describe input reduction with
these importance metrics. Input reduction dras-
tically shortens inputs without causing the model
to change its prediction or significantly decrease
its confidence. Crowdsourced experiments con-
firm that reduced examples appear nonsensical to
humans: input reduction uncovers pathological
model behaviors.

2.1 Importance from Input Gradient
Ribeiro et al. (2016) and Li et al. (2016b) de-
fine importance by seeing how confidence changes
when a feature is removed; a natural approxima-
tion is to use the gradient (Baehrens et al., 2010;
Simonyan et al., 2014). We formally define these
importance metrics in natural language contexts
and introduce the efficient gradient-based approx-
imation. For each word in an input sentence, we
measure its importance by the change in the con-
fidence of the original prediction when we remove
that word from the sentence. We switch the sign
so that when the confidence decreases, the impor-
tance value is positive.

Formally, let x = hx1, x2, . . . xni denote the in-
put sentence, f(y |x) the predicted probability of
label y, and y = argmaxy0 f(y0 |x) the original
predicted label. The importance is then

g(xi | x) = f(y |x) � f(y |x�i). (1)

To calculate the importance of each word in a sen-
tence with n words, we need n forward passes of
the model, each time with one of the words left
out. This is highly inefficient, especially for longer
sentences. Instead, we approximate the impor-
tance value with the input gradient. For each word
in the sentence, we calculate the dot product of
its word embedding and the gradient of the output
with respect to the embedding. The importance
of n words can thus be computed with a single
forward-backward pass. This gradient approxima-
tion has been used for various interpretation meth-
ods for natural language classification models (Li
et al., 2016a; Arras et al., 2016); see Ebrahimi
et al. (2017) for further details on the derivation.
We use this approximation in all our experiments
as it selects the same words for removal as an ex-
haustive search (no approximation).

2.2 Removing Unimportant Words
Instead of looking at the words with high impor-
tance values—what interpretation methods com-
monly do—we take a complementary approach
and study how the model behaves when the sup-
posedly unimportant words are removed. Intu-
itively, the important words should remain after
the unimportant ones are removed.

Our input reduction process iteratively removes
the unimportant words. At each step, we remove
the word with the lowest importance value un-
til the model changes its prediction. We experi-
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ment with three popular datasets: SQUAD (Ra-
jpurkar et al., 2016) for reading comprehension,
SNLI (Bowman et al., 2015) for textual entail-
ment, and VQA (Antol et al., 2015) for visual
question answering. We describe each of these
tasks and the model we use below, providing full
details in the Supplement.

In SQUAD, each example is a context para-
graph and a question. The task is to predict a span
in the paragraph as the answer. We reduce only
the question while keeping the context paragraph
unchanged. The model we use is the DRQA Doc-
ument Reader (Chen et al., 2017).

In SNLI, each example consists of two sen-
tences: a premise and a hypothesis. The task is
to predict one of three relationships: entailment,
neutral, or contradiction. We reduce only the hy-
pothesis while keeping the premise unchanged.
The model we use is Bilateral Multi-Perspective
Matching (BIMPM) (Wang et al., 2017).

In VQA, each example consists of an image
and a natural language question. We reduce only
the question while keeping the image unchanged.
The model we use is Show, Ask, Attend, and An-
swer (Kazemi and Elqursh, 2017).

During the iterative reduction process, we en-
sure that the prediction does not change (exact
same span for SQUAD); consequently, the model
accuracy on the reduced examples is identical to
the original. The predicted label is used for input
reduction and the ground-truth is never revealed.
We use the validation set for all three tasks.

Most reduced inputs are nonsensical to humans
(Figure 2) as they lack information for any reason-
able human prediction. However, models make
confident predictions, at times even more confi-
dent than the original.

To find the shortest possible reduced inputs
(potentially the most meaningless), we relax the
requirement of removing only the least impor-
tant word and augment input reduction with beam
search. We limit the removal to the k least impor-
tant words, where k is the beam size, and decrease
the beam size as the remaining input is shortened.1

We empirically select beam size five as it pro-
duces comparable results to larger beam sizes with
reasonable computation cost. The requirement of
maintaining model prediction is unchanged.

1We set beam size to max(1, min(k, L � 3)) where k is
maximum beam size and L is the current length of the input
sentence.

SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Reduced dancing
Answer Contradiction
Confidence 0.977 ! 0.706
VQA

Original What color is the flower ?
Reduced flower ?
Answer yellow
Confidence 0.827 ! 0.819

Figure 2: Examples of original and reduced inputs
where the models predict the same Answer. Reduced
shows the input after reduction. We remove words from
the hypothesis for SNLI, questions for SQUAD and
VQA. Given the nonsensical reduced inputs, humans
would not be able to provide the answer with high con-
fidence, yet, the neural models do.

With beam search, input reduction finds ex-
tremely short reduced examples with little to no
decrease in the model’s confidence on its orig-
inal predictions. Figure 3 compares the length
of input sentences before and after the reduction.
For all three tasks, we can often reduce the sen-
tence to only one word. Figure 4 compares the
model’s confidence on original and reduced in-
puts. On SQUAD and SNLI the confidence de-
creases slightly, and on VQA the confidence even
increases.

2.3 Humans Confused by Reduced Inputs

On the reduced examples, the models retain their
original predictions despite short input lengths.
The following experiments examine whether these
predictions are justified or pathological, based on
how humans react to the reduced inputs.

For each task, we sample 200 examples that are
correctly classified by the model and generate their
reduced examples. In the first setting, we com-
pare the human accuracy on original and reduced
examples. We recruit two groups of crowd work-
ers and task them with textual entailment, reading
comprehension, or visual question answering. We
show one group the original inputs and the other
the reduced. Humans are no longer able to give
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Figure 3: Distribution of input sentence length before and after reduction. For all three tasks, the input is often
reduced to one or two words without changing the model’s prediction.

Figure 4: Density distribution of model confidence on
reduced inputs is similar to the original confidence. In
SQUAD, we predict the beginning and the end of the
answer span, so we show the confidence for both.

the correct answer, showing a significant accuracy
loss on all three tasks (compare Original and Re-
duced in Table 1).

The second setting examines how random the
reduced examples appear to humans. For each
of the original examples, we generate a version
where words are randomly removed until the
length matches the one generated by input reduc-
tion. We present the original example along with
the two reduced examples and ask crowd work-
ers their preference between the two reduced ones.
The workers’ choice is almost fifty-fifty (the vs.
Random in Table 1): the reduced examples appear
almost random to humans.

These results leave us with two puzzles: why
are the models highly confident on the nonsensical
reduced examples? And why, when the leave-one-
out method selects important words that appear
reasonable to humans, the input reduction process
selects ones that are nonsensical?

Dataset Original Reduced vs. Random

SQUAD 80.58 31.72 53.70
SNLI-E 76.40 27.66 42.31
SNLI-N 55.40 52.66 50.64
SNLI-C 76.20 60.60 49.87
VQA 76.11 40.60 61.60

Table 1: Human accuracy on Reduced examples drops
significantly compared to the Original examples, how-
ever, model predictions are identical. The reduced ex-
amples also appear random to humans—they do not
prefer them over random inputs (vs. Random). For
SQUAD, accuracy is reported using F1 scores, other
numbers are percentages. For SNLI, we report results
on the three classes separately: entailment (-E), neutral
(-N), and contradiction (-C).

3 Making Sense of Reduced Inputs

Having established the incongruity of our defini-
tion of importance vis-à-vis human judgements,
we now investigate possible explanations for these
results. We explain why model confidence can
empower methods such as leave-one-out to gen-
erate reasonable interpretations but also lead to
pathologies under input reduction. We attribute
these results to two issues of neural models.

3.1 Model Overconfidence
Neural models are overconfident in their predic-
tions (Guo et al., 2017). One explanation for
overconfidence is overfitting: the model overfits
the negative log-likelihood loss during training by
learning to output low-entropy distributions over
classes. Neural models are also overconfident on
examples outside the training data distribution. As
Goodfellow et al. (2015) observe for image classi-
fication, samples from pure noise can sometimes
trigger highly confident predictions. These so-
called rubbish examples are degenerate inputs that
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a human would trivially classify as not belonging
to any class but for which the model predicts with
high confidence. Goodfellow et al. (2015) argue
that the rubbish examples exist for the same rea-
son that adversarial examples do: the surprising
linear nature of neural models. In short, the confi-
dence of a neural model is not a robust estimate of
its prediction uncertainty.

Our reduced inputs satisfy the definition of rub-
bish examples: humans have a hard time making
predictions based on the reduced inputs (Table 1),
but models make predictions with high confidence
(Figure 4). Starting from a valid example, input
reduction transforms it into a rubbish example.

The nonsensical, almost random results are best
explained by looking at a complete reduction path
(Figure 5). In this example, the transition from
valid to rubbish happens immediately after the first
step: following the removal of “Broncos”, humans
can no longer determine which team the ques-
tion is asking about, but model confidence remains
high. Not being able to lower its confidence on
rubbish examples—as it is not trained to do so—
the model neglects “Broncos” and eventually the
process generates nonsensical results.

In this example, the leave-one-out method will
not highlight “Broncos”. However, this is not
a failure of the interpretation method but of the
model itself. The model assigns a low impor-
tance to “Broncos” in the first step, causing it to be
removed—leave-one-out would be able to expose
this particular issue by not highlighting “Bron-
cos”. However, in cases where a similar issue only
appear after a few unimportant words are removed,
the leave-one-out method would fail to expose the
unreasonable model behavior.

Input reduction can expose deeper issues of
model overconfidence and stress test a model’s un-
certainty estimation and interpretability.

3.2 Second-order Sensitivity

So far, we have seen that the output of a neural
model is sensitive to small changes in its input. We
call this first-order sensitivity, because interpreta-
tion based on input gradient is a first-order Taylor
expansion of the model near the input (Simonyan
et al., 2014). However, the interpretation also
shifts drastically with small input changes (Fig-
ure 6). We call this second-order sensitivity.

The shifting heatmap suggests a mismatch be-
tween the model’s first- and second-order sensi-

SQUAD
Context: The Panthers used the San Jose State practice facility and stayed
at the San Jose Marriott. The Broncos practiced at Stanford University and
stayed at the Santa Clara Marriott.

Question:
(0.90, 0.89) Where did the Broncos practice for the Super Bowl ?
(0.92, 0.88) Where did the practice for the Super Bowl ?
(0.91, 0.88) Where did practice for the Super Bowl ?
(0.92, 0.89) Where did practice the Super Bowl ?
(0.94, 0.90) Where did practice the Super ?
(0.93, 0.90) Where did practice Super ?
(0.40, 0.50) did practice Super ?

Figure 5: A reduction path for a SQUAD validation ex-
ample. The model prediction is always correct and its
confidence stays high (shown on the left in parenthe-
ses) throughout the reduction. Each line shows the in-
put at that step with an underline indicating the word to
remove next. The question becomes unanswerable im-
mediately after “Broncos” is removed in the first step.
However, in the context of the original question, “Bron-
cos” is the least important word according to the input
gradient.

tivities. The heatmap shifts when, with respect to
the removed word, the model has low first-order
sensitivity but high second-order sensitivity.

Similar issues complicate comparable interpre-
tation methods for image classification models.
For example, Ghorbani et al. (2017) modify im-
age inputs so the highlighted features in the in-
terpretation change while maintaining the same
prediction. To achieve this, they iteratively mod-
ify the input to maximize changes in the distribu-
tion of feature importance. In contrast, the shift-
ing heatmap we observe occurs by only remov-
ing the least impactful features without a targeted
optimization. They also speculate that the steep-
est gradient direction for the first- and second-
order sensitivity values are generally orthogonal.
Loosely speaking, the shifting heatmap suggests
that the direction of the smallest gradient value
can sometimes align with very steep changes in
second-order sensitivity.

When explaining individual model predictions,
the heatmap suggests that the prediction is made
based on a weighted combination of words, as
in a linear model, which is not true unless the
model is indeed taking a weighted sum such as
in a DAN (Iyyer et al., 2015). When the model
composes representations by a non-linear combi-
nation of words, a linear interpretation oblivious
to second-order sensitivity can be misleading.
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SQUAD
Context: QuickBooks sponsored a “Small Business Big Game” contest,
in which Death Wish Coffee had a 30-second commercial aired free of
charge courtesy of QuickBooks. Death Wish Coffee beat out nine other
contenders from across the United States for the free advertisement.

Question:
What company won free advertisement due to QuickBooks contest ?
What company won free advertisement due to QuickBooks ?
What company won free advertisement due to ?
What company won free due to ?
What won free due to ?
What won due to ?
What won due to
What won due
What won
What

Figure 6: Heatmap generated with leave-one-out shifts
drastically despite only removing the least important
word (underlined) at each step. For instance, “adver-
tisement”, is the most important word in step two but
becomes the least important in step three.

4 Mitigating Model Pathologies

The previous section explains the observed
pathologies from the perspective of overconfi-
dence: models are too certain on rubbish exam-
ples when they should not make any prediction.
Human experiments in Section 2.3 confirm that
the reduced examples fit the definition of rubbish
examples. Hence, a natural way to mitigate the
pathologies is to maximize model uncertainty on
the reduced examples.

4.1 Regularization on Reduced Inputs
To maximize model uncertainty on reduced ex-
amples, we use the entropy of the output distri-
bution as an objective. Given a model f trained
on a dataset (X , Y), we generate reduced exam-
ples using input reduction for all training examples
X . Beam search often yields multiple reduced ver-
sions with the same minimum length for each in-
put x, and we collect all of these versions together
to form X̃ as the “negative” example set.

Let H (·) denote the entropy and f(y |x) denote
the probability of the model predicting y given x.
We fine-tune the existing model to simultaneously
maximize the log-likelihood on regular examples
and the entropy on reduced examples:

X

(x,y)2(X ,Y)

log(f(y |x)) + �
X

x̃2X̃

H (f(y | x̃)) ,

(2)
where hyperparameter � controls the trade-off be-
tween the two terms. Similar entropy regulariza-
tion is used by Pereyra et al. (2017), but not in

Accuracy Reduced length

Before After Before After

SQUAD 77.41 78.03 2.27 4.97
SNLI 85.71 85.72 1.50 2.20
VQA 61.61 61.54 2.30 2.87

Table 2: Model Accuracy on regular validation ex-
amples remains largely unchanged after fine-tuning.
However, the length of the reduced examples (Reduced
length) increases on all three tasks, making them less
likely to appear nonsensical to humans.

combination with input reduction; their entropy
term is calculated on regular examples rather than
reduced examples.

4.2 Regularization Mitigates Pathologies

On regular examples, entropy regularization does
no harm to model accuracy, with a slight increase
for SQUAD (Accuracy in Table 2).

After entropy regularization, input reduction
produces more reasonable reduced inputs (Fig-
ure 7). In the SQUAD example from Figure 1, the
reduced question changed from “did” to “spend
Astor money on ?” after fine-tuning. The average
length of reduced examples also increases across
all tasks (Reduced length in Table 2). To verify
that model overconfidence is indeed mitigated—
that the reduced examples are less “rubbish” com-
pared to before fine-tuning—we repeat the human
experiments from Section 2.3.

Human accuracy increases across all three tasks
(Table 3). We also repeat the vs. Random exper-
iment: we re-generate the random examples to
match the lengths of the new reduced examples
from input reduction, and find humans now pre-
fer the reduced examples to random ones. The in-
crease in both human performance and preference
suggests that the reduced examples are more rea-
sonable; model pathologies have been mitigated.

While these results are promising, it is not clear
whether our input reduction method is necessary
to achieve them. To provide a baseline, we fine-
tune models using inputs randomly reduced to the
same lengths as the ones generated by input reduc-
tion. This baseline improves neither the model ac-
curacy on regular examples nor interpretability un-
der input reduction (judged by lengths of reduced
examples). Input reduction is effective in generat-
ing negative examples to counter model overcon-
fidence.
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SQUAD
Context In 1899, John Jacob Astor IV invested

$100,000 for Tesla to further develop
and produce a new lighting system. In-
stead, Tesla used the money to fund his
Colorado Springs experiments.

Original What did Tesla spend Astor’s money on ?
Answer Colorado Springs experiments
Before did
After spend Astor money on ?
Confidence 0.78 ! 0.91 ! 0.52
SNLI
Premise Well dressed man and woman dancing in

the street
Original Two man is dancing on the street
Answer Contradiction
Before dancing
After two man dancing
Confidence 0.977 ! 0.706 ! 0.717
VQA
Original What color is the flower ?
Answer yellow
Before flower ?
After What color is flower ?
Confidence 0.847 ! 0.918 ! 0.745

Figure 7: SQUAD example from Figure 1, SNLI and
VQA (image omitted) examples from Figure 2. We ap-
ply input reduction to models both Before and After en-
tropy regularization. The models still predict the same
Answer, but the reduced examples after fine-tuning ap-
pear more reasonable to humans.

5 Discussion

Rubbish examples have been studied in the image
domain (Goodfellow et al., 2015; Nguyen et al.,
2015), but to our knowledge not for NLP. Our in-
put reduction process gradually transforms a valid
input into a rubbish example. We can often deter-
mine which word’s removal causes the transition
to occur—for example, removing “Broncos” in
Figure 5. These rubbish examples are particularly
interesting, as they are also adversarial: the dif-
ference from a valid example is small, unlike im-
age rubbish examples generated from pure noise
which are far outside the training data distribution.

The robustness of NLP models has been studied
extensively (Papernot et al., 2016; Jia and Liang,
2017; Iyyer et al., 2018; Ribeiro et al., 2018), and
most studies define adversarial examples similar
to the image domain: small perturbations to the
input lead to large changes in the output. Hot-
Flip (Ebrahimi et al., 2017) uses a gradient-based
approach, similar to image adversarial examples,
to flip the model prediction by perturbing a few
characters or words. Our work and Belinkov
and Bisk (2018) both identify cases where noisy

Accuracy vs. Random

Before After Before After

SQUAD 31.72 51.61 53.70 62.75
SNLI-E 27.66 32.37 42.31 50.62
SNLI-N 52.66 50.50 50.64 58.94
SNLI-C 60.60 63.90 49.87 56.92
VQA 40.60 51.85 61.60 61.88

Table 3: Human Accuracy increases after fine-tuning
the models. Humans also prefer gradient-based re-
duced examples over randomly reduced ones, indicat-
ing that the reduced examples are more meaningful to
humans after regularization.

user inputs become adversarial by accident: com-
mon misspellings break neural machine transla-
tion models; we show that incomplete user input
can lead to unreasonably high model confidence.

Other failures of interpretation methods have
been explored in the image domain. The sensi-
tivity issue of gradient-based interpretation meth-
ods, similar to our shifting heatmaps, are observed
by Ghorbani et al. (2017) and Kindermans et al.
(2017). They show that various forms of input
perturbation—from adversarial changes to simple
constant shifts in the image input—cause signifi-
cant changes in the interpretation. Ghorbani et al.
(2017) make a similar observation about second-
order sensitivity, that “the fragility of interpreta-
tion is orthogonal to fragility of the prediction”.

Previous work studies biases in the annotation
process that lead to datasets easier than desired
or expected which eventually induce pathological
models. We attribute our observed pathologies
primarily to the lack of accurate uncertainty es-
timates in neural models trained with maximum
likelihood. SNLI hypotheses contain artifacts that
allow training a model without the premises (Gu-
rurangan et al., 2018); we apply input reduction
at test time to the hypothesis. Similarly, VQA
images are surprisingly unimportant for training
a model; we reduce the question. The recent
SQUAD 2.0 (Rajpurkar et al., 2018) augments the
original reading comprehension task with an un-
certainty modeling requirement, the goal being to
make the task more realistic and challenging.

Section 3.1 explains the pathologies from the
overconfidence perspective. One explanation for
overconfidence is overfitting: Guo et al. (2017)
show that, late in maximum likelihood training,
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the model learns to minimize loss by outputting
low-entropy distributions without improving vali-
dation accuracy. To examine if overfitting can ex-
plain the input reduction results, we run input re-
duction using DRQA model checkpoints from ev-
ery training epoch. Input reduction still achieves
similar results on earlier checkpoints, suggesting
that better convergence in maximum likelihood
training cannot fix the issues by itself—we need
new training objectives with uncertainty estima-
tion in mind.

5.1 Methods for Mitigating Pathologies

We use the reduced examples generated by input
reduction to regularize the model and improve its
interpretability. This resembles adversarial train-
ing (Goodfellow et al., 2015), where adversar-
ial examples are added to the training set to im-
prove model robustness. The objectives are dif-
ferent: entropy regularization encourages high un-
certainty on rubbish examples, while adversarial
training makes the model less sensitive to adver-
sarial perturbations.

Pereyra et al. (2017) apply entropy regulariza-
tion on regular examples from the start of train-
ing to improve model generalization. A similar
method is label smoothing (Szegedy et al., 2016).
In comparison, we fine-tune a model with entropy
regularization on the reduced examples for better
uncertainty estimates and interpretations.

To mitigate overconfidence, Guo et al. (2017)
propose post-hoc fine-tuning a model’s confidence
with Platt scaling. This method adjusts the soft-
max function’s temperature parameter using a
small held-out dataset to align confidence with ac-
curacy. However, because the output is calibrated
using the entire confidence distribution, not indi-
vidual values, this does not reduce overconfidence
on specific inputs, such as the reduced examples.

5.2 Generalizability of Findings

To highlight the erratic model predictions on short
examples and provide a more intuitive demonstra-
tion, we present paired-input tasks. On these tasks,
the short lengths of reduced questions and hy-
potheses obviously contradict the necessary num-
ber of words for a human prediction (further sup-
ported by our human studies). We also apply input
reduction to single-input tasks including sentiment
analysis (Maas et al., 2011) and Quizbowl (Boyd-
Graber et al., 2012), achieving similar results.

Interestingly, the reduced examples transfer
to other architectures. In particular, when
we feed fifty reduced SNLI inputs from each
class—generated with the BIMPM model (Wang
et al., 2017)—through the Decomposable Atten-
tion Model (Parikh et al., 2016),2 the same predic-
tion is triggered 81.3% of the time.

6 Conclusion

We introduce input reduction, a process that it-
eratively removes unimportant words from an in-
put while maintaining a model’s prediction. Com-
bined with gradient-based importance estimates
often used for interpretations, we expose patholog-
ical behaviors of neural models. Without lowering
model confidence on its original prediction, an in-
put sentence can be reduced to the point where
it appears nonsensical, often consisting of one
or two words. Human accuracy degrades when
shown the reduced examples instead of the orig-
inal, in contrast to neural models which maintain
their original predictions.

We explain these pathologies with known is-
sues of neural models: overconfidence and sen-
sitivity to small input changes. The nonsensical
reduced examples are caused by inaccurate uncer-
tainty estimates—the model is not able to lower
its confidence on inputs that do not belong to
any label. The second-order sensitivity is another
issue why gradient-based interpretation methods
may fail to align with human perception: a small
change in the input can cause, at the same time, a
minor change in the prediction but a large change
in the interpretation. Input reduction perturbs the
input multiple times and can expose deeper issues
of model overconfidence and oversensitivity that
other methods cannot. Therefore, it can be used to
stress test the interpretability of a model.

Finally, we fine-tune the models by maximizing
entropy on reduced examples to mitigate the de-
ficiencies. This improves interpretability without
sacrificing model accuracy on regular examples.

To properly interpret neural models, it is impor-
tant to understand their fundamental characteris-
tics: the nature of their decision surfaces, robust-
ness against adversaries, and limitations of their
training objectives. We explain fundamental diffi-
culties of interpretation due to pathologies in neu-
ral models trained with maximum likelihood. Our

2http://demo.allennlp.org/
textual-entailment

3726



work suggests several future directions to improve
interpretability: more thorough evaluation of in-
terpretation methods, better uncertainty and con-
fidence estimates, and interpretation beyond bag-
of-word heatmap.
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Abstract

Universal sentence encoding is a hot topic in
recent NLP research. Attention mechanism
has been an integral part in many sentence en-
coding models, allowing the models to capture
context dependencies regardless of the dis-
tance between elements in the sequence. Fully
attention-based models have recently attracted
enormous interest due to their highly paral-
lelizable computation and significantly less
training time. However, the memory con-
sumption of their models grows quadratically
with sentence length, and the syntactic infor-
mation is neglected. To this end, we propose
Phrase-level Self-Attention Networks (PSAN)
that perform self-attention across words inside
a phrase to capture context dependencies at the
phrase level, and use the gated memory updat-
ing mechanism to refine each word’s represen-
tation hierarchically with longer-term context
dependencies captured in a larger phrase. As
a result, the memory consumption can be re-
duced because the self-attention is performed
at the phrase level instead of the sentence level.
At the same time, syntactic information can be
easily integrated in the model. Experiment re-
sults show that PSAN can achieve the state-of-
the-art transfer performance across a plethora
of NLP tasks including sentence classification,
natural language inference and sentence tex-
tual similarity.

1 Introduction

Following the success of word embeddings (Ben-
gio et al., 2003; Mikolov et al., 2013), one of
NLP’s next challenges has become the hunt for
universal sentence encoders. The goal is to learn
a general-purpose sentence encoding model on a
large corpus, which can be readily transferred to
other tasks. The learned sentence representations
are able to generalize to unseen combination of
words, which makes them highly desirable for

downstream NLP tasks, especially for those with
relatively small datasets.

Previous models for sentence encoding typi-
cally rely on Recurrent Neural Networks (RNNs)
(Hochreiter and Schmidhuber, 1997; Chung et al.,
2014) or Convolutional Neural Networks (CNNs)
(Kalchbrenner et al., 2014; dos Santos and Gatti,
2014; Kim, 2014; Mou et al., 2016) to pro-
duce context-aware representation. RNNs encode
a sentence by reading words in sequential or-
der, they are capable of learning long-term de-
pendencies but are hard to parallelize and not
time-efficient. CNNs focus on local or position-
invariant dependencies but do not perform well on
many tasks (Shen et al., 2017).

Fully attention-based neural networks have at-
tracted wide interest recently, because they can
model both dependencies while being more par-
allelizable and requiring significantly less time to
train. Vaswani et al. (2017) proposed the multi-
head attention to project a sentence to multiple
semantic subspaces, then apply self-attention in
each subspace and concatenate the attention re-
sults. Shen et al. (2017) proposed the directional
self-attention, they apply forward and backward
masks to the alignment score matrix to encode
temporal order information, and computed atten-
tion at feature level to select the features that can
best describe the word’s meaning in given context.
Effective as their models are, the memory required
to store the alignment scores of all the token pairs
grows quadratically with the sentence length. Fur-
thermore, the syntactic property that is intrinsic to
natural language is not considered at all.

Language is inherently tree structured, and the
meaning of a sentence comes largely from com-
posing the meanings of subtrees (Chomsky, 1957).
Previous syntactic tree-based sentence encoders
(Socher et al., 2013; Tai et al., 2015) mainly rely
on recursive networks. Although the composition-
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ality can be explicitly modeled, their models need
expensive recursion computation and are hard to
be trained by batched gradient descent methods.

In this paper, we propose the Phrase-level Self-
Attention Networks (PSAN), for RNN/CNN-free
sentence encoding, it inherits all the advantages of
fully attention-based models while requires much
less memory consumption. In addition, syntac-
tic information can be incorporated into the model
more easily. In our model, every sentence is split
into multiple phrases based on parse tree, self-
attention is performed at the phrase level instead
of the sentence level, thus the memory consump-
tion reduces rapidly as the number of phrases in-
creases. Furthermore, a gated memory component
is employed to refine word representations hierar-
chically by incorporating longer-term context de-
pendencies. As a result, syntactic information can
be integrated into the model without expensive re-
cursion computation. At last, multi-dimensional
attention is applied on the refined word represen-
tations to obtain the final sentence representation.

Following Conneau et al. (2017), we trained our
sentence encoder on the SNLI (Bowman et al.,
2015) dataset, and evaluate the quality of the
obtained universal sentence representations on a
wide range of transfer tasks. The SNLI dataset is
extremely suitable for training sentence encoders
because it is the largest high-quality human-
annotated dataset that involves reasoning about the
semantic relationships within sentences.

The main contributions of our work can be sum-
marized as follows:

• We propose the Phrase-level Self-Attention
mechanism (PSA) for contextualization. The
memory consumption can be reduced be-
cause self-attention is performed at the
phrase level instead of the sentence level.

• A gated memory updating mechanism is pro-
posed to refine each word representation hier-
archically by incorporating different levels of
contextual information along the parse tree.

• Our proposed PSAN model outperforms the
state-of-the-art supervised sentence encoders
on a wide range of transfer tasks with signif-
icantly less memory consumption.

2 Proposed Model
In this section, we introduce the Phrase-level Self-
Attention Networks (PSAN) for sentence encod-

ing. A phrase is a group of words that carry a
specific idiomatic meaning and function as a con-
stituent in the syntax of a sentence. Words in a
phrase are syntactically and semantically related
to each other. Therefore, it can be advantageous
to learn a context-aware representation inside a
phrase while filtering out information from outside
the phrase using self-attention mechanism. In an
attempt to better utilize the tree structure which is
intrinsic to language, we propose the gated mem-
ory updating mechanism to combine different lev-
els of context information. At last, an attention
mechanism is utilized to summarize all the token
representations into a fixed-length sentence vector.

2.1 Phrase Division

The phrase structure organizes words into nested
constituents which can be successively divided
into their parts as we move down the constituency-
based parse trees. One phrase division shows only
one aspect of context dependency. In order to
capture different levels of context dependencies,
we can split a sentence at different granularities.
The number of levels T is a hyper-parameter to be
tuned.

We can break down the nodes at T different lay-
ers in the parse tree to capture T levels of context
dependencies1, as illustrated in Figure 1.

2.2 Phrase-level Self-Attention

This is the core component of our model. It aims
to learn a context-aware representation for each to-
ken inside a phrase. In order to filter out informa-
tion that is semantically or syntactically distant,
self-attention is performed at the phrase level in-
stead of the sentence level.

Similar to directional self-attention network
(DiSAN) (Shen et al., 2017), Phrase-level Self-
Attention uses multi-dimensional attention to
compute the alignment score for each dimension
of token embedding. Therefore, it can select the
features that can best describe a word’s specific
meaning in any given context.

Given a phrase P 2 R
l⇥d represented as a se-

quence of word embeddings [p1, . . . , pl], where l
is the length of the phrase and d is the dimension
of word embedding representation, we first com-
pute the alignment score for each token pair in the

1To avoid the situation that the produced phrases are too
small, a phrase will not be further divided if its length is
smaller than 4.

3730



ROOT

S

NP VP

NP VP VBZ NP PP

DT JJ NN VBG NP PP

DT JJ NN IN NP

JJ NNS

DT NN IN NP
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first layer:

second layer:

third layer:

A little girl

Figure 1: An example of phrase division, the sentence and its parse tree are from the SNLI training data.
The division is started from the root of a parse tree. In this example, a phrase will not be further divided
if it contains 3 or less words.

phrase:
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where � (·) is an activation function, W a1, W a2 2
R

d⇥d and b
a 2 R

d are parameters to be learned,
and M is a diagonal-diabled mask (Hu et al.,
2017) that aims to prevent a word from being
aligned with itself.

The output of the attention mechanism is a
weighted sum of embeddings from all tokens for
each token in the phrase:

p̃i =
lX

j=1

"
exp (aij)Pl

k=1 exp (aik)
� pj

#
(2)

where � means point-wise product. Note that the
alignment score for each token pair is a vector
rather than a scalar in the multi-dimensional atten-
tion.

The final output of Phrase-level Self-Attention
is obtained by comparing each input representa-
tion with its attention-weighted counterpart. We
use a comparison function based on absolute dif-
ference and element-wise multiplication which
was similar to Wang and Jiang (2016). This com-
parison function has the advantage of measuring
the semantic similarity or relatedness of two se-
quences.

ci = � (W c [|pi � p̃i| ; pi � p̃i] + b
c) (3)

where W c 2 R
d⇥2d and b

a 2 R
d are parameters

to be learned. ci is the representation for the i-th
word in the phrase that captures local dependen-
cies within the phrase.

At last, we put together the Phrase-level Self-
Attention results for non-overlapping phrases
from the same phrase division of a sentence.
For the t-th phrase division we can get C(t) =
[c1, . . . , cls ], the phrase-level self-attention results
for the sentence from the t-th layer split, where ls
is the sentence length.

2.3 Gated Memory Updating
Above describes the Phrase-level Self-Attention
(PSA) for one split of the parse tree. The parse
tree can be split at different granularities. We pro-
pose a novel gated memory updating mechanism
to refine each word representation hierarchically
with longer-term dependencies captured in a larger
granularity. Inspired by the idea of adaptive gate
in highway networks (Srivastava et al., 2015), our
memory mechanism add a gate to original memory
networks (Weston et al., 2014; Sukhbaatar et al.,
2015). This gate has the ability to determine the
importance of the new input and the original mem-
ory in the memory updating.

C(t) = PSA
⇣
M (t�1)

⌘

G(t) = sigmoid
⇣
W g

h
M (t�1); C(t)

i
+ b

g
⌘

M (t) = G(t) � �
⇣
Wm

h
M (t�1); C(t)

i
+ b

m
⌘

(4)
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where W g, Wm 2 R
d⇥2d and b

g, bm 2 R
d are pa-

rameters to be learned. Note that in order to share
representation power and to reduce the number of
parameters, the parameters of gated memory up-
dating are shared among different layers.

2.4 Sentence Summarization
In this layer, self-attention mechanism is em-
ployed to summarize the refined representation of
a sentence into a fixed-length vector. The self-
attention mechanism can explore the dependencies
among tokens within the whole sentence. As a re-
sult, global dependencies can also be incorporated
in the model.

ei = W e2�
⇣
W e1

m
(T )
i + b

e1
⌘

+ b
e2

v =
lX

i=1

"
exp (ei)Pl

j=1 exp (ej)
� m

(T )
i

# (5)

where W g, Wm 2 R
d⇥d and b

g, bm 2 R
d are

parameters to be learned. After this step, the
refined context-aware sentence representation is
compressed into a fixed-length vector.

3 Experiments
In this section, we conduct a plethora of exper-
iments to study the effectiveness of the PSAN
model. Following Conneau et al. (2017), we train
our sentence encoder using the SNLI dataset, and
evaluate it across a variety of NLP tasks including
sentence classification, natural language inference
and sentence textual similarity.

3.1 Model Configuration
300-dimensional GloVe (Pennington et al., 2014)
word embeddings (Common Crawl, uncased) are
used to represent words. Following Parikh et al.
(2016), out-of-vocabulary words are hashed to one
of 128 random embeddings initialized by uniform
distribution between (-0.05, 0.05). All the word
embeddings remain fixed during training. Hidden
dimension d is set to 300. All other parameters are
initialized with Glorot normal initialization (Glo-
rot and Bengio, 2010). Activation function � (·) is
ELU (Clevert et al., 2015) if not specified. Mini-
batch size is set to 16. The number of levels T is
fixed to 3 in all of our experiments. The syntactic
parse trees of SNLI are provided within the cor-
pus. parse trees for all test corpus are produced by
the Stanford PCFG Parser 3.5.2 (Klein and Man-
ning, 2003), the same parser that produced parse
trees for the SNLI dataset.

To train the model, Adadelta optimizer (Zeiler,
2012) with a learning rate of 0.75 is used on
the SNLI dataset. The dropout (Srivastava et al.,
2014) rate and L2 regularization weight decay fac-
tor � are set to 0.5 and 5e-5. To test the model,
the SentEval toolkit (Conneau and Kiela, 2018) is
used as the evaluation pipeline for fairer compari-
son.

3.2 Training Setting
Natural language inference (NLI) is a fundamental
task in the field of natural language processing that
involves reasoning about the semantic relationship
between two sentences, which makes it a suitable
task to train sentence encoding models.

We conduct experiments on the Stanford Nat-
ural Language Inference (SNLI) dataset (Bow-
man et al., 2015). The dataset has 570k
human-annotated sentence pairs, each labeled
with one of the following pre-defined relation-
ships: Entailment (the premise entails the hy-
pothesis), Contradiction (they contradict each
other) and Neutral (they are irrelevant). Fol-
lowing previous work (Bowman et al., 2015; Mou
et al., 2016), we remove the instances which an-
notators can not reach consensus on. In this
way we get 549367/9842/9824 sentence pairs for
train/validation/test set.

Following the siamese architecture (Bromley
et al., 1993), we apply PSAN to both the premise
and the hypothesis with their parameters tied. v

p

and v
h are fixed-length vector representations for

the premise and the hypothesis respectively. The
final sentence-pair representation is formed by
concatenating the original vectors with the ab-
solute difference and element-wise multiplication
between them:

v
inp =

h
v

p; vh;
���vp � v

h
��� ; vp � v

h
i

(6)

At last, we feed the sentence-pair representation
v

inp into a two layer feed-forward network and
use a softmax layer to make the classification.
This is the de facto scheme for sentence encoders
trained on SNLI. (Mou et al., 2016; Liu et al.,
2016; Shen et al., 2017)

3.3 Evaluation Setting
To show the modeling capacity and robustness of
our proposed model, we evaluate our model across
a wide range of tasks that can be solved purely
based on the encoded semantics. The set of tasks
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dataset size task output # phrases / sent. # words / phrase
1st 2nd 3rd 1st 2nd 3rd

MR 10662 sentiment 2 2.00 2.89 6.03 10.79 7.47 3.58
CR 3775 product reviews 2 1.99 3.22 6.02 10.11 6.25 3.34

MPQA 10606 opinion polarity 2 1.13 1.52 1.63 2.73 2.03 1.89
SUBJ 10000 subjectivity 2 1.98 3.29 4.51 5.61 3.40 2.48
SST2 70042 sentiment 2 1.95 3.35 5.03 5.53 3.22 2.15
SST5 11855 sentiment 5 2.00 3.53 6.10 10.08 5.71 3.31
TREC 5952 question type 6 2.00 3.73 5.59 5.03 2.98 1.99

SICK-E 9930 inference 3 1.93 3.40 4.92 5.01 2.85 1.97
SICK-R 9930 inference [0, 5] 1.93 3.40 4.92 5.01 2.85 1.97
STS14 4500 semantic similarity [0, 5] 1.96 3.58 5.12 5.34 2.92 2.04
MRPC 5803 paraphrase 2 1.99 3.31 4.55 5.59 3.37 2.65

Table 1: Statistics of the evaluation datasets. If the output is an integer, it represents the number of classes
of the classification task. If the output is an interval, it represents the output range of the regression task.
# phrases / sent. represents the average number of phrases per sentence for each layer of phrase division.
# words / phrase represents the average number of words per phrase for each layer of phrase division.

was selected based on what appears to be the com-
munity consensus regarding the appropriate eval-
uations for universal sentence representations. To
facilitate comparison, we use the same sentence
evaluation tool as Conneau et al. (2017) to auto-
mate evaluation on all the tasks mentioned in this
paper.

The transfer tasks used in evaluation can be
concluded in the following classes: sentence
classification (MR, CR, MPQA, SUBJ, SST2,
SST5, TREC), natural language inference (SICK-
E, SICK-R), semantic relatedness (STS14) and
paraphrase detection (MRPC). Table 1 presents
some statistics about the datasets 2.

3.4 Baselines
We compare our model with the following super-
vised sentence encoders:

• BiLSTM-Max (Conneau et al., 2017) is a
simple but effective baseline that performs
max-pooling over a bi-directional LSTM.

• AdaSent (Zhao et al., 2015) forms a hierar-
chy of representations from words to phrases
and then to sentences through recursive gated
local composition of adjacent segments.

• TBCNN (Mou et al., 2015) is a tree-based
CNN model where convolution is applied
over the parse tree.

2For further information on the datasets, please refer to
Conneau et al. (2017).

Model dim |✓| SNLI Micro Macro
BiLSTM-Max 4096 40M 84.5 85.2 83.7
AdaSent 4096 36M 83 .4 82.0 80.9
TBCNN 300 3.5M 82.1 81.1 79.3
DiSAN 600 2.4M 85.6 84.7 83.4
PSAN 300 2.0M 86.1 85.7 84.5

Table 2: Performance on SNLI and transfer tasks of
various sentence encoders. dim: the size of sen-
tence representation. |✓|: the number of param-
eters. Test accuracies on SNLI, micro and macro
averages of accuracies of dev set on transfer tasks
are chosen as evaluation metrics.

• DiSAN (Shen et al., 2017) is composed of a
directional self-attention block with temporal
order encoded, and a multi-dimensional at-
tention that compresses the sequence into a
vector representation.

4 Results and Analysis

4.1 Overall Performance
Experiment results of our model and four base-
lines are shown in Table 2. Micro and macro accu-
racies are two composite indicators for evaluating
transfer performance of tasks whose metric is clas-
sification accuracy. Macro accuracy is the propor-
tion of true results in the population of instances
from all tasks. Micro accuracy is the arithmetic
mean of dev accuracies for each task.

PSAN achieves the state-of-the-art performance
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14
BiLSTM-max 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65
AdaSent 77.0 82.0 89.9 87.2 82.3 85.6 72.6/80.0 0.855 83.1 .66/.62
TBCNN 75.4 81.6 89.1 85.9 79.4 83.7 72.0/78.6 0.839 82.1 .64/.61
DiSAN 79.7 84.1 92.2 89.5 82.9 88.3 75.1/81.8 0.860 85.1 .66/.64
PSAN 80.0 84.2 91.9 89.9 83.8 89.1 74.9/82.1 0.891 86.9 .69/.67

Table 3: Transfer test results for our model and various baselines. Classification accuracy is chosen as
evaluation metric for datasets including MR, CR, SUBJ, MPQA, SST, TREC and SICK-E; Classification
accuracy and F1-score are chosen for MRPC; Pearson correlation is chosen for SICK-R; Pearson and
Spearman correlations are chosen for STS-14.

Model Acc(%)
(1) PSA on the first layer only 84.9
(2) PSA on the second layer only 85.3
(3) PSA on the third layer only 84.6
(4) w/o PSA 85.3
(5) w/o syntactic division 85.5
(6) w/o gated memory updating 85.2
(7) w/o both 84.7
(8) Full Model 86.1

Table 4: Ablation studies on the SNLI dataset.

with considerably fewer parameters, outperform-
ing a RNN-based model, a CNN-based model,
a fully attention-based model and a model that
utilize syntactic information. Especially when
compared with previous best model BiLSTM-Max,
PSAN can outperform their model with only 5%
of their parameter numbers, demonstrating the ef-
fectiveness of our model at extracting semantically
important information from a sentence.

In Table 3, we compare our model with baseline
sentence encoders in each transfer task. PSAN can
consistently outperform the baselines in almost ev-
ery task considered. On the SICK dataset, which
can be seen as an out-domain version of SNLI,
our model can outperform the baselines by a large
margin, demonstrating the semantic relationship
learned on the SNLI can be well transfered to other
domains. On the STS14 dataset, where sentence
vectors can be more directly measured by the co-
sine distance, our model can also achieve the state-
of-the-art performance, indicating that our learned
sentence representations are of high quality.

4.2 Ablation Study
For thorough comparison, we implement seven ex-
tra baselines to analyze the improvements con-

tributed by each part of our PSAN model:

• PSA on the first/second/third layer only
only uses the Phrase-level Self-Attention at
the first/second/third layer of phrase division.

• w/o PSA applies self-attention at the sen-
tence level and uses the gated memory updat-
ing mechanism to refine each token represen-
tation hierarchically.

• w/o syntactic division divides each sentence
equally into small blocks, and applies PSA
within each block. The number of blocks
equals the number of phrases in that layer.

• w/o gated memory updating concatenates
the outputs of Phrase-level Self-Attention
from three layers of phrase division and feeds
the result to a feed-forward layer.

• w/o both applies self-attention at the sen-
tence level, and uses sentence summarization
to summarize the attention results into a fixed
length vector.

The results are listed in Table 4. We can see that
(2) performs best among (1), (2) and (3), demon-
strating that the second layer split is more expres-
sive, because the number of words per phrase in
the second layer is the most suitable. It is neither
too small to capture context dependencies, nor too
large to filter out irrelevant noise. (8) outperforms
(1), (2) and (3), showing that combining phrase-
level information from different granularities can
further improve performance.

We also experiment on models where the align-
ment matrix is calculated at the sentence level or
at the syntactic-irrelevant block level. (5) per-
forms quite well, showing that hierarchical refine-
ment on smaller units can bring about reasonable
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Figure 2: Fine-grained classification accuracies for
PSAN and Sentence-level Self-Attention on the
SNLI dataset are compared on the left, how data
are distributed along sentence length is shown on
the right.

performance gain. (8) outperforms (4) and (5),
demonstrating syntactic information helps in sen-
tence representation.

When comparing (6) with (8), we can tell that
gated memory updating is a better method when
used to refine token representation along the parse
tree. We assume that memory updating resembles
the tree structure of language in that larger phrase
is composed in the knowledge of how smaller
phrases are composed inside it.

Comparing (7) with (1), (2) and (3), we can find
that performing self-attention at the phrase level
is generally better than at the sentence level, indi-
cating that reducing attention context into phrase
level can effectively filter out words that are syn-
tactically and semantically distant, thus focusing
on the interaction with important words. Compar-
ing (7) with (4), we can draw the conclusion that
memory updating is effective even when the inputs
to each layer are the same.

4.3 Analysis of Sentence Length

Long-term dependencies are typically hard to cap-
ture for sequential models like RNNs (Bengio
et al., 1994; Hochreiter and Schmidhuber, 1997).
We conduct experiments to see how performance
changes as the sentence length increases. In Fig-
ure 2, we show the relationship between classifi-
cation accuracy and the average length of sentence
pair on the SNLI dataset. Sentence-level Self-
Attention (w/o PSA model described in subsec-
tion 4.2) is used as a baseline for our model. PSAN

Model Memory(MB) Acc(%)
(1) Multi-head 1508 87.1
(2) DiSAN 2943 87.7
(3) PSAN 1192 89.1

Table 5: Memory consumption and test accuracy
of three fully attention-based models on the TREC
dataset.

outperforms Sentence-level Self-Attention model
consistently for longer sentences of length 14 to
20. This demonstrates that incorporating syntac-
tic information by performing self-attention at the
phrase level and refining each word’s representa-
tion hierarchically can help to capture long-term
dependencies across words in a sentence.

4.4 Analysis of Memory Consumption

We conduct experiments to analyze the memory
consumption reduction resulted from Phrase-level
Self-Attention. To this end, we re-implement two
fully attention-based models (Vaswani et al., 2017;
Shen et al., 2017) on the TREC dataset. To make
fair comparison, the dimensions of sentence vec-
tors are set to 300, the same number as our model.
Table 5 lists the results. Our PSAN model can out-
perform the other two fully attention-based mod-
els, while being more memory efficient. reducing
more than 20% of memory consumption.

4.5 Visualization and Case Study

In order to analyze the attention changing pro-
cess and the importance of each word in the sen-
tence vector, we visualize the attention scores
in the alignment matrix of each layer in Phrase-
level Self-Attention and sentence summarization
layer. To facilitate the visualization of the multi-
dimension attention vector, we use the l2 norm of
the attention vector for representation.

In Figure 3, we can see that, the difference in
attention weights between semantically important
and unimportant words gets larger as the context
becomes larger. This implies that token represen-
tation can be gradually refined by the gated mem-
ory updating mechanism. Furthermore, the align-
ment matrix of a phrase can be refined even if
the phrase division does not change between lay-
ers. For instance, the word “girl” gets larger at-
tention weight in the second layer division than in
the first layer. This demonstrates that the memory
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(a) (b) (c) (d)

Figure 3: (a) / (b) / (c): attention weights of Phrase-level Self-Attention mechanism in the third / second
/ first layer phrase division; (d): attention weights of the sentence summarization layer.

updating mechanism can gradually pick out im-
portant words for sentence representation. Finally,
nouns and verbs dominate the attention weights,
while stop words like “a” and “its”, contribute lit-
tle to the final sentence representation, this indi-
cates that PSAN can effectively pick out semanti-
cally important words that are most representative
for the meaning of the whole sentence.

5 Related Work

Recently, self-attention mechanism has been suc-
cessfully applied to the field of sentence encod-
ing, it utilizes the attention mechanism to relate
elements at different positions from a single sen-
tence. Due to its direct access to each token repre-
sentation, both long-term and local dependencies
can be modeled flexibly. Liu et al. (2016) lever-
aged the average-pooled word representation to at-
tend words appear in the sentence itself. Cheng
et al. (2016) proposed the LSTMN model for ma-
chine reading, an attention vector is produced for
each of its hidden states during the recurrent itera-
tion, thus empowering the recurrent network with
stronger memorization capability and the ability to
discover relations among tokens. Lin et al. (2017)
obtained a fixed-size sentence embedding matrix
by introducing self-attention. Different from the
feature-level attention used in our model, their at-
tention mechanism extracted different aspects of
the sentence into multiple vector representations,
and utilized a penalization term to encourage the
diversity of different attention results.

Syntactic information can be useful for under-
standing a natural language sentence. Many pre-
vious researches utilized syntactic information to
build sentence encoder from composing the mean-

ings of subtrees. Tree-LSTM (Tai et al., 2015;
Zhu et al., 2015) composed its hidden state from
an input vector and the hidden states of arbitrar-
ily many child units. In Tree-based CNN (Mou
et al., 2015, 2016), a set of subtree feature detec-
tors slide over the parse tree of a sentence, and a
max-pooling layer is utilized to aggregate infor-
mation along different parts of the tree.

Apart from the models that use parse infor-
mation, there have been several researches that
aimed to learn the hierarchical latent structure of
text by recursively composing words into sen-
tence representation. Among them, neural tree in-
dexer (Munkhdalai and Yu, 2017b) utilized LSTM
or attentive node composition function to con-
struct full n-ary tree for input text. Gumbel Tree-
LSTM (Choi et al., 2018) used Straight-Through
Gumbel-Softmax estimator to decide the parent
node among candidates dynamically. A major
drawback of these models is that the recursion
computation can be expensive and hard to be pro-
cessed in batches.

6 Conclusion

We propose the Phrase-level Self-Attention Net-
works (PSAN), a fully attention-based model that
can utilize syntactic information for universal sen-
tence encoding. By applying self-attention at the
phrase level, we can filter out distant and unrelated
words and focus on modeling interaction between
semantically and syntactically important words, a
gated memory updating mechanism is utilized to
incorporate different levels of contextual informa-
tion along the parse tree. Empirical results on a
wide range of transfer tasks demonstrate the effec-
tiveness of our model.
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yi-kang.shen
@umontreal.ca

Eric Crawford
Mila/McGill University
eric.crawford
@mail.mcgill.ca

Herke van Hoof
University of Amsterdam

h.c.vanhoof
@uva.nl

Jackie C.K. Cheung
Mila/McGill University

jcheung
@cs.mcgill.ca

Abstract

In this work, we propose a novel method for
training neural networks to perform single-
document extractive summarization without
heuristically-generated extractive labels. We
call our approach BANDITSUM as it treats ex-
tractive summarization as a contextual ban-
dit (CB) problem, where the model receives
a document to summarize (the context), and
chooses a sequence of sentences to include
in the summary (the action). A policy gradi-
ent reinforcement learning algorithm is used
to train the model to select sequences of sen-
tences that maximize ROUGE score. We per-
form a series of experiments demonstrating
that BANDITSUM is able to achieve ROUGE
scores that are better than or comparable to
the state-of-the-art for extractive summariza-
tion, and converges using significantly fewer
update steps than competing approaches. In
addition, we show empirically that BANDIT-
SUM performs significantly better than com-
peting approaches when good summary sen-
tences appear late in the source document.

1 Introduction

Single-document summarization methods can be
divided into two categories: extractive and ab-
stractive. Extractive summarization systems form
summaries by selecting and copying text snippets
from the document, while abstractive methods aim
to generate concise summaries with paraphrasing.
This work is primarily concerned with extractive

⇤ Equal contribution.

summarization. Though abstractive summariza-
tion methods have made strides in recent years, ex-
tractive techniques are still very attractive as they
are simpler, faster, and more reliably yield seman-
tically and grammatically correct sentences.

Many extractive summarizers work by selecting
sentences from the input document (Luhn, 1958;
Mihalcea and Tarau, 2004; Wong et al., 2008;
Kågebäck et al., 2014; Yin and Pei, 2015; Cao
et al., 2015; Yasunaga et al., 2017). Furthermore,
a growing trend is to frame this sentence selection
process as a sequential binary labeling problem,
where binary inclusion/exclusion labels are cho-
sen for sentences one at a time, starting from the
beginning of the document, and decisions about
later sentences may be conditioned on decisions
about earlier sentences. Recurrent neural networks
may be trained with stochastic gradient ascent to
maximize the likelihood of a set of ground-truth
binary label sequences (Cheng and Lapata, 2016;
Nallapati et al., 2017). However, this approach has
two well-recognized disadvantages. First, it suf-
fers from exposure bias, a form of mismatch be-
tween training and testing data distributions which
can hurt performance (Ranzato et al., 2015; Bah-
danau et al., 2017; Paulus et al., 2018). Second,
extractive labels must be generated by a heuris-
tic, as summarization datasets do not generally in-
clude ground-truth extractive labels; the ultimate
performance of models trained on such labels is
thus fundamentally limited by the quality of the
heuristic.

An alternative to maximum likelihood training
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is to use reinforcement learning to train the model
to directly maximize a measure of summary qual-
ity, such as the ROUGE score between the gener-
ated summary and a ground-truth abstractive sum-
mary (Wu and Hu, 2018). This approach has be-
come popular because it avoids exposure bias, and
directly optimizes a measure of summary quality.
However, it also has a number of downsides. For
one, the search space is quite large: for a docu-
ment of length T , there are 2T possible extrac-
tive summaries. This makes the exploration prob-
lem faced by the reinforcement learning algorithm
during training very difficult. Another issue is
that due to the sequential nature of selection, the
model is inherently biased in favor of selecting
earlier sentences over later ones, a phenomenon
which we demonstrate empirically in Section 7.
The first issue can be resolved to a degree using
either a cumbersome maximum likelihood-based
pre-training step (using heuristically-generated la-
bels) (Wu and Hu, 2018), or placing a hard upper
limit on the number of sentences selected. The
second issue is more problematic, as it is inherent
to the sequential binary labeling setting.

In the current work, we introduce BANDITSUM,
a novel method for training neural network-based
extractive summarizers with reinforcement learn-
ing. This method does away with the sequential
binary labeling setting, instead formulating extrac-
tive summarization as a contextual bandit. This
move greatly reduces the size of the space that
must be explored, removes the need to perform su-
pervised pre-training, and prevents systematically
privileging earlier sentences over later ones. Al-
though the strong performance of Lead-3 indicates
that good sentences often occur early in the source
article, we show in Sections 6 and 7 that the con-
textual bandit setting greatly improves model per-
formance when good sentences occur late without
sacrificing performance when good sentences oc-
cur early.

Under this reformulation, BANDITSUM takes
the document as input and outputs an affinity for
each of the sentences therein. An affinity is a
real number in [0, 1] which quantifies the model’s
propensity for including a sentence in the sum-
mary. These affinities are then used in a process
of repeated sampling-without-replacement which
does not privilege earlier sentences over later ones.
BANDITSUM is free to process the document as
a whole before yielding affinities, which permits

affinities for different sentences in the document
to depend on one another in arbitrary ways. In our
technical section, we show how to apply policy
gradient reinforcement learning methods to this
setting.

The contributions of our work are as follows:

• We propose a theoretically grounded method,
based on the contextual bandit formalism,
for training neural network-based extrac-
tive summarizers with reinforcement learn-
ing. Based on this training method, we pro-
pose the BANDITSUM system for extractive
summarization.

• We perform experiments demonstrating that
BANDITSUM obtains state-of-the-art perfor-
mance on a number of datasets and requires
significantly fewer update steps than compet-
ing approaches.

• We perform human evaluations showing that
in the eyes of human judges, summaries cre-
ated by BANDITSUM are less redundant and
of higher overall quality than summaries cre-
ated by competing approaches.

• We provide evidence, in the form of experi-
ments in which models are trained on subsets
of the data, that the improved performance
of BANDITSUM over competitors stems in
part from better handling of summary-worthy
sentences that come near the end of the doc-
ument (see Section 7).

2 Related Work

Extractive summarization has been widely studied
in the past. Recently, neural network-based meth-
ods have been gaining popularity over classical
methods (Luhn, 1958; Gong and Liu, 2001; Con-
roy and O’leary, 2001; Mihalcea and Tarau, 2004;
Wong et al., 2008), as they have demonstrated
stronger performance on large corpora. Central to
the neural network-based models is the encoder-
decoder structure. These models typically use ei-
ther a convolution neural network (Kalchbrenner
et al., 2014; Kim, 2014; Yin and Pei, 2015; Cao
et al., 2015), a recurrent neural network (Chung
et al., 2014; Cheng and Lapata, 2016; Nallapati
et al., 2017), or a combination of the two (Narayan
et al., 2018; Wu and Hu, 2018) to create sentence
and document representations, using word embed-
dings (Mikolov et al., 2013; Pennington et al.,
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2014) to represent words at the input level. These
vectors are then fed into a decoder network to gen-
erate the output summary.

The use of reinforcement learning (RL) in
extractive summarization was first explored by
Ryang and Abekawa (2012), who proposed to
use the TD(�) algorithm to learn a value function
for sentence selection. Rioux et al. (2014) im-
proved this framework by replacing the learning
agent with another TD(�) algorithm. However,
the performance of their methods was limited by
the use of shallow function approximators, which
required performing a fresh round of reinforce-
ment learning for every new document to be sum-
marized. The more recent work of Paulus et al.
(2018) and Wu and Hu (2018) use reinforcement
learning in a sequential labeling setting to train ab-
stractive and extractive summarizers, respectively,
while Chen and Bansal (2018) combines both ap-
proaches, applying abstractive summarization to a
set of sentences extracted by a pointer network
(Vinyals et al., 2015) trained via REINFORCE.
However, pre-training with a maximum likelihood
objective is required in all of these models.

The two works most similar to ours are Yao
et al. (2018) and Narayan et al. (2018). Yao
et al. (2018) recently proposed an extractive sum-
marization approach based on deep Q learning, a
type of reinforcement learning. However, their
approach is extremely computationally intensive
(a minimum of 10 days before convergence),
and was unable to achieve ROUGE scores bet-
ter than the best maximum likelihood-based ap-
proach. Narayan et al. (2018) uses a cascade of
filters in order to arrive at a set of candidate extrac-
tive summaries, which we can regard as an approx-
imation of the true action space. They then use an
approximation of a policy gradient method to train
their neural network to select summaries from this
approximated action space. In contrast, BANDIT-
SUM samples directly from the true action space,
and uses exact policy gradient parameter updates.

3 Extractive Summarization as a
Contextual Bandit

Our approach formulates extractive summariza-
tion as a contextual bandit which we then train an
agent to solve using policy gradient reinforcement
learning. A bandit is a decision-making formal-
ization in which an agent repeatedly chooses one
of several actions, and receives a reward based on

this choice. The agent’s goal is to quickly learn
which action yields the most favorable distribu-
tion over rewards, and choose that action as often
as possible. In a contextual bandit, at each trial,
a context is sampled and shown to the agent, af-
ter which the agent selects an action and receives
a reward; importantly, the rewards yielded by the
actions may depend on the sampled context. The
agent must quickly learn which actions are favor-
able in which contexts. Contextual bandits are a
subset of Markov Decision Processes in which ev-
ery episode has length one.

Extractive summarization may be regarded as a
contextual bandit as follows. Each document is a
context, and each ordered subset of a document’s
sentences is a different action. Formally, assume
that each context is a document d consisting of
sentences s = (s1, . . . , sNd), and that each action
is a length-M sequence of unique sentence indices
i = (i1, . . . , iM ) where it 2 {1, . . . , Nd}, it 6= it0
for t 6= t0, and M is an integer hyper-parameter.
For each i, the extractive summary induced by i
is given by (si1 , . . . , siM ). An action i taken in
context d is given a reward R(i, a), where a is the
gold-standard abstractive summary that is paired
with document d, and R is a scalar reward function
quantifying the degree of match between a and the
summary induced by i.

A policy for extractive summarization is a neu-
ral network p✓(·|d), parameterized by a vector ✓,
which, for each input document d, yields a proba-
bility distribution over index sequences. Our goal
is to find parameters ✓ which cause p✓(·|d) to as-
sign high probability to index sequences that in-
duce extractive summaries that a human reader
would judge to be of high-quality. We achieve
this by maximizing the following objective func-
tion with respect to parameters ✓:

J(✓) = E [R(i, a)] (1)

where the expectation is taken over documents d
paired with gold-standard abstractive summaries
a, as well as over index sequences i generated ac-
cording to p✓(·|d).

3.1 Policy Gradient Reinforcement Learning
Ideally, we would like to maximize (1) using gra-
dient ascent. However, the required gradient can-
not be obtained using usual techniques (e.g. sim-
ple backpropagation) because i must be discretely
sampled in order to compute R(i, a).
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Fortunately, we can use the likelihood ratio gra-
dient estimator from reinforcement learning and
stochastic optimization (Williams, 1992; Sutton
et al., 2000), which tells us that the gradient of this
function can be computed as:

r✓J(✓) = E [r✓ log p✓(i|d)R(i, a)] (2)

where the expectation is taken over the same vari-
ables as (1).

Since we typically do not know the exact docu-
ment distribution and thus cannot evaluate the ex-
pected value in (2), we instead estimate it by sam-
pling. We found that we obtained the best perfor-
mance when, for each update, we first sample one
document/summary pair (d, a), then sample B in-
dex sequences i1, . . . , iB from p✓(·|d), and finally
take the empirical average:

r✓J(✓) ⇡ 1

B

BX

b=1

r✓ log p✓(i
b|d)R(ib, a) (3)

This overall learning algorithm can be regarded as
an instance of the REINFORCE policy gradient al-
gorithm (Williams, 1992).

3.2 Structure of p✓(·|d)

There are many possible choices for the structure
of p✓(·|d); we opt for one that avoids privileging
early sentences over later ones. We first decom-
pose p✓(·|d) into two parts: ⇡✓, a deterministic
function which contains all the network’s param-
eters, and µ, a probability distribution parameter-
ized by the output of ⇡✓. Concretely:

p✓(·|d) = µ(·|⇡✓(d)) (4)

Given an input document d, ⇡✓ outputs a real-
valued vector of sentence affinities whose length
is equal to the number of sentences in the docu-
ment (i.e. ⇡✓(d) 2 R

Nd) and whose elements fall
in the range [0, 1]. The t-th entry ⇡(d)t may be
roughly interpreted as the network’s propensity to
include sentence st in the summary of d.

Given sentence affinities ⇡✓(d), µ imple-
ments a process of repeated sampling-without-
replacement. This proceeds by repeatedly nor-
malizing the set of affinities corresponding to sen-
tences that have not yet been selected, thereby ob-
taining a probability distribution over unselected
sentences, and sampling from that distribution to
obtain a new sentence to include. This normalize-
and-sample step is repeated M times, yielding M
unique sentences to include in the summary.

At each step of sampling-without-replacement,
we also include a small probability ✏ of sampling
uniformly from all remaining sentences. This is
used to achieve adequate exploration during train-
ing, and is similar to the ✏-greedy technique from
reinforcement learning.

Under this sampling scheme, we have the fol-
lowing expression for p✓(i|d):

MY

j=1

 
✏

Nd � j + 1
+

(1 � ✏)⇡(d)ij

z(d) �
Pj�1

k=1 ⇡(d)ik

!
(5)

where z(d) =
P

t ⇡(d)t. For index sequences
that have length different from M , or that con-
tain duplicate indices, we have p✓(i|d) = 0.
Using this expression, it is straightforward to
use automatic differentiation software to compute
r✓ log p✓(i|d), which is required for the gradient
estimate in (3).

3.3 Baseline for Variance Reduction
Our sample-based gradient estimate can have high
variance, which can slow the learning. One po-
tential cause of this high variance can be seen by
inspecting (3), and noting that it basically acts
to change the probability of a sampled index se-
quence to an extent determined by the reward
R(i, a). However, since ROUGE scores are al-
ways positive, the probability of every sampled
index sequence is increased, whereas intuitively,
we would prefer to decrease the probability of se-
quences that receive a comparatively low reward,
even if it is positive. This can be remedied by the
introduction of a so-called baseline which is sub-
tracted from all rewards.

Using a baseline r, our sample-based estimate
of r✓J(✓) becomes:

1

B

BX

i=1

r✓ log p✓(i
b|d)(R(ib, a) � r) (6)

It can be shown that the introduction of r does not
bias the gradient estimator and can significantly
reduce its variance if chosen appropriately (Sutton
et al., 2000).

There are several possibilities for the baseline,
including the long-term average reward and the
average reward across different samples for one
document-summary pair. We choose an approach
known as self-critical reinforcement learning, in
which the test-time performance of the current
model is used as the baseline (Ranzato et al., 2015;
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Rennie et al., 2017; Paulus et al., 2018). More
concretely, after sampling the document-summary
pair (d, a), we greedily generate an index se-
quence using the current parameters ✓:

igreedy = arg max
i

p✓(i|d) (7)

and calculate the baseline for the current update
as r = R(igreedy, a). This baseline has the intu-
itively satisfying property of only increasing the
probability of a sampled label sequence when the
summary it induces is better than what would be
obtained by greedy decoding.

3.4 Reward Function
A final consideration is a concrete choice for the
reward function R(i, a). Throughout this work we
use:

R(i, a) =
1

3
(ROUGE-1f (i, a) +

ROUGE-2f (i, a) + ROUGE-Lf (i, a)). (8)

The above reward function optimizes the average
of all the ROUGE variants (Lin, 2004) while bal-
ancing precision and recall.

4 Model

In this section, we discuss the concrete instan-
tiations of the neural network ⇡✓ that we use
in our experiments. We break ⇡✓ up into two
components: a document encoder f✓1, which
outputs a sequence of sentence feature vectors
(h1, . . . , hNd) and a decoder g✓2 which yields sen-
tence affinities:

h1, . . . , hNd = f✓1(d) (9)
⇡✓(d) = g✓2(h1, . . . , hNd) (10)

Encoder. Features for each sentence in isolation
are first obtained by applying a word-level Bidi-
rectional Recurrent Neural Network (BiRNN) to
the embeddings for the words in the sentence, and
averaging the hidden states over words. A sepa-
rate sentence-level BiRNN is then used to obtain a
representations hi for each sentence in the context
of the document.
Decoder. A multi-layer perceptron is used to
map from the representation ht of each sentence
through a final sigmoid unit to yield sentence
affinities ⇡✓(d).

The use of a bidirectional recurrent network in
the encoder is crucial, as it allows the network to

process the document as a whole, yielding repre-
sentations for each sentence that take all other sen-
tences into account. This procedure is necessary to
deal with some aspects of summary quality such
as redundancy (avoiding the inclusion of multiple
sentences with similar meaning), which requires
the affinities for different sentences to depend on
one another. For example, to avoid redundancy,
if the affinity for some sentence is high, then sen-
tences which express similar meaning should have
low affinities.

5 Experiments

In this section, we discuss the setup of our exper-
iments. We first discuss the corpora that we used
and our evaluation methodology. We then discuss
the baseline methods against which we compared,
and conclude with a detailed overview of the set-
tings of the model parameters.

5.1 Corpora
Three datasets are used for our experiments: the
CNN, the Daily Mail, and combined CNN/Daily
Mail (Hermann et al., 2015; Nallapati et al., 2016).
We use the standard split of Hermann et al. (2015)
for training, validating, and testing and the same
setting without anonymization on the three cor-
pus as See et al. (2017). The Daily Mail corpus
has 196,557 training documents, 12,147 validation
documents and 10,397 test documents; while the
CNN corpus has 90,266/1,220/1,093 documents,
respectively.

5.2 Evaluation
The models are evaluated based on ROUGE (Lin,
2004). We obtain our ROUGE scores using the
standard pyrouge package1 for the test set eval-
uation and a faster python implementation of the
ROUGE metric2 for training and evaluating on the
validation set. We report the F1 scores of ROUGE-
1, ROUGE-2, and ROUGE-L, which compute
the uniform, bigram, and longest common subse-
quence overlapping with the reference summaries.

5.3 Baselines
We compare BANDITSUM with other extractive
methods including: the Lead-3 model, Sum-
maRuNNer (Nallapati et al., 2017), Refresh

1https://pypi.python.org/pypi/pyrouge/
0.1.3

2We use the modified version based on https://
github.com/pltrdy/rouge
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(Narayan et al., 2018), RNES (Wu and Hu, 2018),
DQN (Yao et al., 2018), and NN-SE (Cheng and
Lapata, 2016). The Lead-3 model simply pro-
duces the leading three sentences of the document
as the summary.

5.4 Model Settings
We use 100-dimensional Glove embeddings (Pen-
nington et al., 2014) as our embedding initializa-
tion. We do not limit the sentence length, nor the
maximum number of sentences per document. We
use one-layer BiLSTM for word-level RNN, and
two-layers BiLSTM for sentence-level RNN. The
hidden state dimension is 200 for each direction
on all LSTMs. For the decoder, we use a feed-
forward network with one hidden layer of dimen-
sion 100.

During training, we use Adam (Kingma and Ba,
2015) as the optimizer with the learning rate of
5e�5, beta parameters (0, 0.999), and a weight de-
cay of 1e�6, to maximize the objective function
defined in equation (1). We employ gradient clip-
ping of 1 to regularize our model. At each iter-
ation, we sample B = 20 times to estimate the
gradient defined in equation 3. For our system,
the reported performance is obtained within two
epochs of training 3.

At the test time, we pick sentences sorted by
the predicted probabilities until the length limit is
reached. The full-length ROUGE F1 score is used
as the evaluation metric. For M , the number of
sentences selected per summary, we use a value of
3, based on our validation results as well as on the
settings described in Nallapati et al. (2017).

6 Experiment Results

In this section, we present quantitative results
from the ROUGE evaluation and qualitative re-
sults based on human evaluation. In addition, we
demonstrate the stability of our RL model by com-
paring the validation curve of BANDITSUM with
SummaRuNNer (Nallapati et al., 2017) trained
with a maximum likelihood objective.

6.1 Rouge Evaluation
We present the results of comparing BANDITSUM
to several baseline algorithms4 on the CNN/Daily

3Our code can be found at https://github.com/
yuedongP/summarization_RL

4 Due to different pre-processing methods and different
numbers of selected sentences, several papers report different
Lead scores (Narayan et al., 2018; See et al., 2017). We use

Model ROUGE
1 2 L

Lead(Narayan et al., 2018) 39.6 17.7 36.2
Lead-3(ours) 40.0 17.5 36.2
SummaRuNNer 39.6 16.2 35.3
DQN 39.4 16.1 35.6
Refresh 40.0 18.2 36.6
RNES w/o coherence 41.3 18.9 37.6
BANDITSUM 41.5 18.7 37.6

Table 1: Performance comparison of different ex-
tractive summarization models on the combined
CNN/Daily Mail test set using full-length F1.

Model CNN Daily Mail
1 2 L 1 2 L

Lead-3 28.8 11.0 25.5 41.2 18.2 37.3
NN-SE 28.4 10.0 25.0 36.2 15.2 32.9
Refresh 30.4 11.7 26.9 41.0 18.8 37.7
BANDITSUM 30.7 11.6 27.4 42.1 18.9 38.3

Table 2: The full-length ROUGE F1 scores of various
extractive models on the CNN and the Daily Mail test
set separately.

Mail corpus in Tables 1 and 2. Compared to other
extractive summarization systems, BANDITSUM
achieves performance that is significantly better
than two RL-based approaches, Refresh (Narayan
et al., 2018) and DQN (Yao et al., 2018), as well
as SummaRuNNer, the state-of-the-art maximum
liklihood-based extractive summarizer (Nallapati
et al., 2017). BANDITSUM performs a little bet-
ter than RNES (Wu and Hu, 2018) in terms of
ROUGE-1 and slightly worse in terms of ROUGE-
2. However, RNES requires pre-training with the
maximum likelihood objective on heuristically-
generated extractive labels; in contrast, BANDIT-
SUM is very light-weight and converges signifi-
cantly faster. We discuss the advantage of fram-
ing the extractive summarization based on the con-
textual bandit (BANDITSUM) over the sequential
binary labeling setting (RNES) in the discussion
Section 7.

We also noticed that different choices for the
policy gradient baseline (see Section 3.3) in BAN-
DITSUM affect learning speed, but do not signif-
icantly affect asymptotic performance. Models
trained with an average reward baseline learned
most quickly, while models trained with three
different baselines (greedy, average reward in a

the test set provided by Narayan et al. (2018). Since their
Lead score is a combination of Lead-3 for CNN and Lead-
4 for Daily Mail, we recompute the Lead-3 scores for both
CNN and Daily Mail with the preprocessing steps used in
See et al. (2017). Additionally, our results are not directly
comparable to results based on the anonymized dataset used
by Nallapati et al. (2017).
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batch, average global reward) all perform roughly
the same after training for one epoch. Models
trained without a baseline were found to under-
perform other baseline choices by about 2 points
of ROUGE score on average.

6.2 Human Evaluation
We also conduct a qualitative evaluation to un-
derstand the effects of the improvements intro-
duced in BANDITSUM on human judgments of
the generated summaries. To assess the effect
of training with RL rather than maximum like-
lihood, in the first set of human evaluations we
compare BANDITSUM with the state-of-the-art
maximum likelihood-based model SummaRuN-
Ner. To evaluate the importance of using an exact,
rather than approximate, policy gradient to opti-
mize ROUGE scores, we perform another human
evaluation comparing BANDITSUM and Refresh,
an RL-based method that uses the an approxima-
tion of the policy gradient.

We follow a human evaluation protocol similar
to the one used in Wu and Hu (2018). Given a set
of N documents, we ask K volunteers to evalu-
ate the summaries extracted by both systems. For
each document, a reference summary, and a pair of
randomly ordered extractive summaries (one gen-
erated by each of the two models) is presented to
the volunteers. They are asked to compare and
rank the extracted summaries along three dimen-
sions: overall, coverage, and non-redundancy.

Model Overall Coverage Non-
Redundancy

SummaRuNNer 1.67 1.46 1.70
BANDITSUM 1.33 1.54 1.30

Table 3: Average rank of human evaluation based on
5 participants who expressed 57 pairwise preferences
between the summaries generated by SummaRuNNer
and BANDITSUM. The model with the lower score is
better.

Model Overall Coverage Non-
Redundancy

Refresh 1.53 1.34 1.55
BANDITSUM 1.50 1.58 1.30

Table 4: Average rank of manual evaluation with 4
participants who expressed 20 pairwise preferences be-
tween the summaries generated by Refresh and our sys-
tem. The model with the lower score is better.

To compare with SummaRuNNer, we randomly
sample 57 documents from the test set of Daily-

Mail and ask 5 volunteers to evaluate the extracted
summaries. While comparing with Refresh, we
use the 20 documents (10 CNN and 10 Daily-
Mail) provided by Narayan et al. (2018) to 4 vol-
unteers. Tables 3 and 4 show the results of hu-
man evaluation in these two settings. BANDIT-
SUM is shown to be better than Refresh and Sum-
maRuNNer in terms of overall quality and non-
redundancy. These results indicate that the use of
the true policy gradient, rather than the approxi-
mation used by Refresh, improves overall quality.
It is interesting to observe that, even though BAN-
DITSUM does not have an explicit redundancy
avoidance mechanism, it actually outperforms the
other systems on non-redundancy.

6.3 Learning Curve

Reinforcement learning methods are known for
sometimes being unstable during training. How-
ever, this seems to be less of a problem for BAN-
DITSUM, perhaps because it is formulated as a
contextual bandit rather than a sequential label-
ing problem. We show this by comparing the val-
idation curves generated by BANDITSUM and the
state-of-the-art maximum likelihood-based model
– SummaRuNNer (Nallapati et al., 2017) (Fig-
ure 1).

Figure 1: Average of ROUGE-1,2,L F1 scores on the
Daily Mail validation set within one epoch of training
on the Daily Mail training set. The x-axis (multiply
by 2,000) indicates the number of data example the
algorithms have seen. The supervised labels in Sum-
maRuNNer are used to estimate the upper bound.

From Figure 1, we observe that BANDITSUM
converges significantly more quickly to good re-
sults than SummaRuNNer. Moreover, there is
less variance in the performance of BANDITSUM.
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One possible reason is that extractive summariza-
tion does not have well-defined supervised labels.
There exists a mismatch between the provided la-
bels and human-generated abstractive summaries.
Hence, the gradient, computed from the maximum
likelihood loss function, is not optimizing the eval-
uation metric of interest. Another important mes-
sage is that both models are still far from the es-
timated upper bound5, which shows that there is
still significant room for improvement.

6.4 Run Time

On CNN/Daily mail dataset, our model’s time-
per-epoch is about 25.5 hours on a TITAN Xp.
We trained the model for 3 epochs, which took
about 76 hours in total. For comparison, DQN
took about 10 days to train on a GTX 1080 (Yao
et al., 2018). Refresh took about 12 hours on a sin-
gle GPU to train (Narayan et al., 2018). Note that
this figure does not take into account the signifi-
cant time required by Refresh for pre-computing
ROUGE scores.

7 Discussion: Contextual Bandit Setting
Vs. Sequential Full RL Labeling

We conjecture that the contextual bandit (CB) set-
ting is a more suitable framework for modeling
extractive summarization than the sequential bi-
nary labeling setting, especially in the cases when
good summary sentences appear later in the doc-
ument. The intuition behind this is that models
based on the sequential labeling setting are af-
fected by the order of the decisions, which bi-
ases towards selecting sentences that appear ear-
lier in the document. By contrast, our CB-based
RL model has more flexibility and freedom to
explore the search space, as it samples the sen-
tences without replacement based on the affin-
ity scores. Note that although we do not explic-
itly make the selection decisions in a sequential
fashion, the sequential information about depen-
dencies between sentences is implicitly embedded
in the affinity scores, which are produced by bi-
directional RNNs.

We provide empirical evidence for this conjec-
ture by comparing BANDITSUM to the sequential
RL model proposed by Wu and Hu (2018) (Fig-
ure 2) on two subsets of the data: one with good

5The supervised labels for the upper bound estimation
are obtained using the heuristic described in Nallapati et al.
(2017).

summary sentences appearing early in the article,
while the other contains articles where good sum-
mary sentences appear late. Specifically, we con-
struct two evaluation datasets by selecting the first
50 documents (Dearly, i.e., best summary occurs
early) and the last 50 documents (Dlate, i.e., best
summary occurs late) from a sample of 1000 doc-
uments that is ordered by the average extractive
label index idx. Given an article with n sentences
indexed from 1, . . . , n and a greedy extractive la-
bels set with three sentences (i, j, k)6, the aver-
age index for the extractive label is computed by
idx= (i + j + k)/3n.

Figure 2: Model comparisons of the average value for
ROUGE-1,2,L F1 scores (f ) on Dearly and Dlate. For
each model, the results were obtained by averaging f
across ten trials with 100 epochs in each trail. Dearly
and Dlate consist of 50 articles each, such that the good
summary sentences appear early and late in the arti-
cle, respectively. We observe a significant advantage of
BANDITSUM compared to RNES and RNES3 (based
on the sequential binary labeling setting) on Dlate.

Given these two subsets of the data, three differ-
ent models (BANDITSUM, RNES and RNES3) are
trained and evaluated on each of the two datasets
without extractive labels. Since the original se-
quential RL model (RNES) is unstable without
supervised pre-training, we propose the RNES3
model that is limited to select no more then three
sentences. Starting with random initializations
without supervised pre-training, we train each
model ten times for 100 epochs and plot the learn-
ing curve of the average ROUGE-F1 score com-
puted based on the trained model in Figure 2. We
can clearly see that BANDITSUM finds a better so-

6For each document, a length-3 extractive summary with
near-optimal ROUGE score is selected following the heuris-
tic proposed by Nallapati et al. (2017).
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lution more quickly than RNES and RNES3 on
both datasets. Moreover, it displays a significantly
speed-up in the exploration and finds the best solu-
tion when good summary sentences appeared later
in the document (Dlate).

8 Conclusion

In this work, we presented a contextual ban-
dit learning framework, BANDITSUM , for ex-
tractive summarization, based on neural networks
and reinforcement learning algorithms. BANDIT-
SUM does not require sentence-level extractive la-
bels and optimizes ROUGE scores between sum-
maries generated by the model and abstractive ref-
erence summaries. Empirical results show that
our method performs better than or comparable
to state-of-the-art extractive summarization mod-
els which must be pre-trained on extractive la-
bels, and converges using significantly fewer up-
date steps than competing approaches. In future
work, we will explore the direction of adding an
extra coherence reward (Wu and Hu, 2018) to im-
prove the quality of extracted summaries in terms
of sentence discourse relation.
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Abstract
Current lexical simplification approaches rely
heavily on heuristics and corpus level fea-
tures that do not always align with human
judgment. We create a human-rated word-
complexity lexicon of 15,000 English words
and propose a novel neural readability rank-
ing model with a Gaussian-based feature vec-
torization layer that utilizes these human rat-
ings to measure the complexity of any given
word or phrase. Our model performs bet-
ter than the state-of-the-art systems for dif-
ferent lexical simplification tasks and evalua-
tion datasets. Additionally, we also produce
SimplePPDB++, a lexical resource of over 10
million simplifying paraphrase rules, by ap-
plying our model to the Paraphrase Database
(PPDB).1

1 Introduction
Lexical simplification is an important subfield that
is concerned with the complexity of words or
phrases, and particularly how to measure read-
ability and reduce the complexity using alterna-
tive paraphrases. There are three major lexi-
cal simplification tasks which effectively resem-
ble a pipeline: (i) Complex Word Identifica-
tion (Paetzold and Specia, 2016a; Yimam et al.,
2017; Shardlow, 2013b) which involves identify-
ing complex words in the sentence; (ii) Substitu-
tion Generation (Glavaš and Štajner, 2015; Coster
and Kauchak, 2011) which involves finding alter-
natives to complex words or phrases; and (iii) Sub-
stitution Ranking (Specia et al., 2012) which in-
volves ranking the paraphrases by simplicity. Lex-
ical simplification also has practical real-world
uses, such as displaying alternative expressions
of complex words as reading assistance for chil-
dren (Kajiwara et al., 2013), non-native speakers

1The code and data are publicly available on the au-
thors’ homepages and GitHub: https://github.com/
mounicam/lexical_simplification.

(Petersen and Ostendorf, 2007; Pellow and Es-
kenazi, 2014), lay readers (Elhadad and Sutaria,
2007; Siddharthan and Katsos, 2010), or people
with reading disabilities (Rello et al., 2013).

Most current approaches to lexical simplifica-
tion heavily rely on corpus statistics and surface
level features, such as word length and corpus-
based word frequencies (read more in §5). Two
of the most commonly used assumptions are that
simple words are associated with shorter lengths
and higher frequencies in a corpus. However,
these assumptions are not always accurate and are
often the major source of errors in the simplifi-
cation pipeline (Shardlow, 2014). For instance,
the word foolishness is simpler than its meaning-
preserving substitution folly even though foolish-
ness is longer and less frequent in the Google
1T Ngram corpus (Brants and Franz, 2006). In
fact, we found that 21% of the 2272 meaning-
equivalent word pairs randomly sampled from
PPDB2 (Ganitkevitch et al., 2013) had the simpler
word longer than the complex word, while 14%
had the simpler word less frequent.

To alleviate these inevitable shortcomings of
corpus and surface-based methods, we explore a
simple but surprisingly unexplored idea – creating
an English lexicon of 15,000 words with word-
complexity ratings by humans. We also propose
a new neural readability ranking model with a
Gaussian-based feature vectorization layer, which
can effectively exploit these human ratings as well
as other numerical features to measure the com-
plexity of any given word or phrase (including
those outside the lexicon and/or with sentential
context). Our model significantly outperforms the
state-of-the-art on the benchmark SemEval-2012
evaluation for Substitution Ranking (Specia et al.,

2PPDB is a large paraphrase database derived from
static bilingual translation data available at: http://
paraphrase.org
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2012; Paetzold and Specia, 2017), with or without
using the manually created word-complexity lexi-
con, achieving a Pearson correlation of 0.714 and
0.702 respectively. We also apply the new rank-
ing model to identify lexical simplifications (e.g.,
commemorate ! celebrate) among the large num-
ber of paraphrase rules in PPDB with improved
accuracy compared to previous work for Substi-
tution Generation. At last, by utilizing the word-
complexity lexicon, we establish a new state-of-
the-art on two common test sets for Complex
Word Identification (Paetzold and Specia, 2016a;
Yimam et al., 2017). We make our code, the word-
complexity lexicon, and a lexical resource of over
10 million paraphrase rules with improved read-
ability scores (namely SimplePPDB++) all pub-
licly available.

2 Constructing A Word-Complexity
Lexicon with Human Judgments

We first constructed a lexicon of 15,000 English
words with word-complexity scores assessed by
human annotators.3 Despite the actual larger En-
glish vocabulary size, we found that rating the
most frequent 15,000 English words in Google
1T Ngram Corpus4 was effective for simplifica-
tion purposes (see experiments in §4) as our neural
ranking model (§3) can estimate the complexity of
any word or phrase even out-of-vocabulary.

We asked 11 non-native but fluent English
speakers to rate words on a 6-point Likert scale.
We found that an even number 6-point scale
worked better than a 5-point scale in a pilot exper-
iment with two annotators, as the 6-point scheme
allowed annotators to take a natural two-step ap-
proach: first determine whether a word is simple
or complex; then decide whether it is ‘very sim-
ple’ (or ‘very complex’), ‘simple’ (or ‘complex’),
or ‘moderately simple’ (or ‘moderately complex’).
For words with multiple capitalized versions (e.g.,
nature, Nature, NATURE), we displayed the most
frequent form to the annotators. We also asked
the annotators to indicate the words for which they
had trouble assessing their complexity due to am-
biguity, lack of context or any other reason. All the
annotators reported little difficulty, and explained
possible reasons such as that word bug is simple

3Download at https://github.com/mounicam/
lexical_simplification

4https://catalog.ldc.upenn.edu/
ldc2006t13

Word Avg A1 A2 A3 A4 A5
watch 1.0 1 1 1 1 1
muscles 1.6 2 1 2 2 1
sweatshirts 1.8 2 1 2 3 1
giant 2.0 2 3 1 1 3
pattern 2.4 2 3 2 3 2
Christianity 2.8 3 2 2 3 4
educational 3.2 3 3 3 3 4
revenue 3.6 4 4 3 3 4
cortex 4.2 4 4 4 4 5
crescent 4.6 5 5 5 5 3
Memorabilia 5.4 5 6 6 5 5
assay 5.8 6 6 6 5 6

Table 1: Word-Complexity lexicon consists of English
words and their complexity scores obtained by averaging over
human ratings. A1, A2, A3, A4 and A5 are ratings by five dif-
ferent annotators on a 6-point Likert scale (1 is the simplest
and 6 is the most complex).

regardless of its meaning as an insect in biology
or an error in computer software.5

With our hired annotators, we were able to have
most annotators complete half or the full list of
15,000 words for better consistency, and collected
between 5 and 7 ratings for each word. It took
most annotators about 2 to 2.5 hours to rate 1,000
words. Table 1 shows few examples from the lex-
icon along with their human ratings.

In order to assess the annotation quality, we
computed the Pearson correlation between each
annotator’s annotations and the average of the rest
of the annotations (Agirre et al., 2014). For our
final word-complexity lexicon, we took an aver-
age of the human ratings for each word, discard-
ing those (about 3%) that had a difference � 2
from the mean of the rest of the ratings. The over-
all inter-annotator agreement improved from 0.55
to 0.64 after discarding the outlying ratings. For
the majority of the disagreements, the ratings of
one annotator and the mean of the rest were fairly
close: the difference is  0.5 for 47% of the an-
notations;  1.0 for 78% of the annotations; and
 1.5 for 93% of the annotations on the 6-point
scale. We hired annotators of different native lan-
guages intentionally, which may have contributed
to the variance in the judgments.6 We leave further
investigation and possible crowdsourcing annota-
tion to future work.

5The word-happiness lexicon (Dodds et al., 2011) of
10,222 words was also similarly created by human rating on
the most frequent words without context or word-sense dis-
ambiguation.

6One recent work similarly observed lower inter-
annotator agreement among non-native speakers than native
speakers when asked to identify complex words in given text
paragraphs (Yimam et al., 2017).

3750



3 Neural Readability Ranking Model for
Words and Phrases

In order to predict the complexity of any given
word or phrase, within or outside the lexicon, we
propose a Neural Readability Ranking model that
can leverage the created word-complexity lexi-
con and take context (if available) into account to
further improve performance. Our model uses a
Gaussian-based vectorization layer to exploit nu-
merical features more effectively and can outper-
form the state-of-the-art approaches on multiple
lexical simplification tasks with or without the
word-complexity lexicon. We describe the general
model framework in this section, and task-specific
configurations in the experiment section (§4).

3.1 Neural Readability Ranker (NRR)
Given a pair of words/phrases hwa, wbi as input,
our model aims to output a real number that indi-
cates the relative complexity P (y|hwa, wbi) of wa

and wb. If the output value is negative, then wa is
simpler than wb and vice versa. Figure 1 shows the
general architecture of our ranking model high-
lighting the three main components:

1. An input feature extraction layer (§3.2) that
creates lexical and corpus-based features for
each input f(wa) and f(wb), and pairwise
features f(hwa, wbi). We also inject the
word-complexity lexicon into the model as a
numerical feature plus a binary indicator.

2. A Gaussian-based feature vectorization
layer (§3.3) that converts each numerical fea-
ture, such as the lexicon scores and n-gram
probabilities, into a vector representation by
a series of Gaussian radial basis functions.

3. A feedforward neural network performing re-
gression with one task-specific output node
that adapts the model to different lexical sim-
plification tasks (§4).

Our model first processes each input word or
phrase in parallel, producing vectorized features.
All the features are then fed into a joint feedfor-
ward neural network.

3.2 Features
We use a combination of rating scores from the
word-complexity lexicon, lexical and corpus fea-
tures (Pavlick and Callison-Burch, 2016) and col-
locational features (Paetzold and Specia, 2017).

We inject the word-complexity lexicon into the
NRR model by adding two features for each in-
put word or phrase: a 0-1 binary feature represent-
ing the presence of a word (the longest word in
a multi-word phrase) in the lexicon, and the cor-
responding word complexity score. For out-of-
vocabulary words, both features have the value 0.
We back-off to the complexity score of the lemma-
tized word if applicable. We also extract the fol-
lowing features: phrase length in terms of words
and characters, number of syllables, frequency
with respect to Google Ngram corpus (Brants
and Franz, 2006), the relative frequency in Sim-
ple Wikipedia with respect to normal Wikipedia
(Pavlick and Nenkova, 2015) and ngram probabil-
ities from a 5-gram language model trained on the
SubIMDB corpus (Paetzold and Specia, 2016c),
which has been shown to work well for lexical
simplification. For a word w, we take language
model probabilities of all the possible n-grams
within the context window of 2 to the left and right
of w. When w is a multi-word phrase, we break w
into possible n-grams and average the probabilities
for a specific context window.

For an input pair of words/phrases hwa, wbi,
we include individual features f(w1), f(w2) and
the differences f(wa)�f(wb). We also use pair-
wise features f(hwa, wbi) including cosine simi-
larity cos(�!w a, �!w b) and the difference �!w a ��!w b

between the word2vec (Mikolov et al., 2013) em-
bedding of the input words. The embeddings for
a mutli-word phrase are obtained by averaging the
embeddings of all the words in the phrase. We use
the 300-dimensional embeddings pretrained on the
Google News corpus, which is released as part of
the word2vec package.7

3.3 Vectorizing Numerical Features via
Gaussian Binning

Our model relies primarily on numerical features
as many previous approaches for lexical simplifi-
cation. Although these continuous features can be
directly fed into the network, it is helpful to exploit
fully the nuanced relatedness between different in-
tervals of feature values.

We adopt a smooth binning approach and
project each numerical feature into a vector rep-
resentation by applying multiple Gaussian radial
basis functions. For each feature f , we divide its

7https://code.google.com/archive/p/
word2vec/
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Figure 1: The neural readability ranking (NRR) model.

value range [fmin, fmax] evenly into k bins and
place a Gaussian function for each bin with the
mean µj (j 2 {1, 2, . . . , k}) at the center of the
bin and standard deviation �. We specify � as a
fraction � of bin width:

� =
1

k
(fmax � fmin) · � (1)

where � is a tunable hyperparameter in the model.
For a given feature value f(·), we then compute
the distance to each bin as follows:

dj(f(·)) = e�
(f(·)�µj)2

2�2 (2)

and normalize to project into a k-dimensional vec-
tor

��!
f(·) = (d1, d2, . . . , dk).

We vectorize all the features except word2vec
vectors,

���!
f(wa),

���!
f(wb),

���������!
f(wa)�f(wb), and

�������!
f(hwa, wbi), then concatenate them as inputs. Fig-
ure 2 presents a motivating t-SNE visualization of
the word-complexity scores from the lexicon after
the vectorization in our NRR model, where differ-
ent feature value ranges are gathered together with
some distances in between.

3.4 Training and Implementation Details
We use PyTorch framework to implement the
NRR model, which consists of an input layer, three
hidden layers with eight nodes in each layer and
the tanh activation function, and a single node lin-
ear output layer. The training objective is to mini-
mize the Mean Squared Error (MSE):

L(✓) =
1

m

mX

i=1

(yi � ŷi)
2 (3)

where yi and ŷi are the true and predicted rela-
tive complexity scores of hwa, wbi which can be
configured accordingly for different lexical sim-
plification tasks and datasets, m is the number
of training examples, and ✓ is the set of parame-
ters of the NRR model. We use Adam algorithm
(Kingma and Ba, 2014) for optimization and also
apply a dropout of 0.2 to prevent overfitting. We
set the rate to 0.0005 and 0.001 for experiments
in (§4.1) and (§4.2) respectively. For Gaussian
binning layer, we set the number of bins k to 10
and � to 0.2 without extensive parameter tuning.
For each experiment,we report results with 100
epochs.

Figure 2: t-SNE visualization of the complexity scores,
ranging between 1.0 and 5.0, of 300 random words from the
word-complexity lexicon vectorized into 10-dimensional rep-
resentations by applying Gaussian radial basis functions.

3752



4 Lexical Simplification Applications
As the lexical simplification research field tradi-
tionally studies multiple sub-tasks and datasets,
we present a series of experiments to demonstrate
the effectiveness of our newly created lexicon and
neural readability ranking (NRR) model.

4.1 Substitution Ranking
Given an instance consisting of a target complex
word in a sentence and a set of candidate substi-
tutions, the goal of the Substitution Ranking task
is to rank the candidates in the order of their sim-
plicity. In this section, we show that our proposed
NRR model outperforms the state-of-the-art neu-
ral model on this task, with or without using the
word-complexity lexicon.

Data. We use the dataset from the English Lex-
ical Simplification shared-task at SemEval 2012
(Specia et al., 2012) for evaluation. The training
and test sets consist of 300 and 1,710 instances,
respectively, with a total of 201 target words (all
single word, mostly polysemous) and each in 10
different sentences. One example of such instance
contains a target complex word in context:

When you think about it, that’s pretty terrible.

and a set of candidate substitutions {bad, awful,
deplorable}. Each instance contains at least 2 and
an average of 5 candidates to be ranked. There are
a total of 10034 candidates in the dataset, 88.5%
of which are covered by our word-complexity
lexicon and 9.9% are multi-word phrases (3438
unique candidates with 81.8% in-vocabulary and
20.2% multi-word).

Task-specific setup of the NRR model. We
train the NRR model with every pair of candi-
dates hca, cbi in a candidate set as the input, and
the difference of their ranks ra�rb as the ground-
truth label. For each such pair, we also include
another training instance with hcb, cai as the in-
put and rb � ra as the label. Given a test in-
stance with candidate set C, we rank the can-
didates as follows: for every pair of candidates
hca, cbi, the model predicts the relative complex-
ity score S(ca, cb); we then compute a single score
R(ca) =

P
ca 6=cb2C S(ca, cb) for each candidate

by aggregating pairwise scores and rank the can-
didates in the increasing order of these scores.

Comparison to existing methods. We compare
with the state-of-the-art neural model (Paetzold

P@1 Pearson
Biran et al. (2011) 51.3 0.505
Jauhar & Specia (2012) 60.2 0.575
Kajiwara et al. (2013) 60.4 0.649
Horn et al. (2014) 63.9 0.673
Glavaš & Štajner (2015) 63.2 0.644
Boundary Ranker 65.3 0.677
Paetzold & Specia (2017) 65.6 0.679
NRRall 65.4 0.682
NRRall+binning 66.6 0.702*
NRRall+binning+WC 67.3* 0.714*

Table 2: Substitution Ranking evaluation on English Lexi-
cal Simplification shared-task of SemEval 2012. P@1 and
Pearson correlation of our neural readability ranking (NRR)
model compared to the state-of-the-art neural model (Paet-
zold and Specia, 2017) and other methods. ⇤ indicates statis-
tical significance (p < 0.05) compared to the best performing
baseline (Paetzold and Specia, 2017).

and Specia, 2017) for substitution ranking with the
best reported results on the SemEval 2012 dataset.
Our baselines also include several other existing
methods: Biran et al. (2011), Kajiwara et al.
(2013), and Glavaš & Štajner (2015), which use
carefully designed heuristic scoring functions to
combine various information such as corpus statis-
tics and semantic similarity measures from Word-
Net; Horn et al. (2014) and the Boundary Ranker
(Paetzold and Specia, 2015), which respectively
use a supervised SVM ranking model and pairwise
linear classification model with various features.
All of these methods have been implemented as
part of the LEXenstein toolkit (Paetzold and Spe-
cia, 2015), which we use for the experimental
comparisons here. In addition, we also compare to
the best system (Jauhar and Specia, 2012) among
participants at SemEval 2012, which used SVM-
based ranking.

Results. Table 2 compares the performances of
our NRR model to the state-of-the-art results re-
ported by Paetzold and Specia (2017). We use pre-
cision of the simplest candidate (P@1) and Pear-
son correlation to measure performance. P@1 is
equivalent to TRank (Specia et al., 2012), the of-
ficial metric for the SemEval 2012 English Lexi-
cal Simplification task. While P@1 captures the
practical utility of an approach, Pearson correla-
tion indicates how well the system’s rankings cor-
relate with human judgment. We train our NRR
model with all the features (NRRall) mentioned
in §3.2 except the word2vec embedding features
to avoid overfitting on the small training set. Our
full model (NRRall+binning+WC) exhibits a statis-
tically significant improvement over the state-of-
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paraphrases of ‘modification’ ranked by simplicity
SimplePPDB tweak, modify, process, variable, layout
SimplePPDB++ change, adjustment, amendment, shift,

difference

paraphrases of ‘aggregation’
SimplePPDB pod, swarm, node, clump, pool
SimplePPDB++ cluster, pool, collection, addition, grouping

paraphrases of ‘of transnational corporation’
SimplePPDB of corporation, by corporation, of enter-

prise, of tncs, of business
SimplePPDB++ of business, of firm, of corporation, of

company, of enterprise

paraphrases of ‘should reject’
SimplePPDB refuse, discard, repudiate, shun, dismiss
SimplePPDB++ vote against, set aside, throw out, say no

to, turn away

Table 3: SimplePPDB++ includes lexical and phrasal para-
phrases with improved readability ranking scores by our
NRRall+binning+WC model. Shown are the top 5 ranked
simplifications according to SimplePPDB++ for several input
words/phrases, in comparison to the previous work of Sim-
plePPDB (Pavlick and Callison-Burch, 2016).

the-art for both measures. We use paired bootstrap
test (Berg-Kirkpatrick et al., 2012; Efron and Tib-
shirani, 1993) as it can be applied to any perfor-
mance metric. We also conducted ablation experi-
ments to show the effectiveness of the Gaussian-
based feature vectorization layer (+binning) and
the word-complexity lexicon (+WC).

4.2 SimplePPDB++

We also can apply our NRR model to rank the
lexical and phrasal paraphrase rules in the Para-
phrase Database (PPDB) (Pavlick et al., 2015),
and identify good simplifications (see examples
in Table 3). The resulting lexical resource, Sim-
plePPDB++, contains all 13.1 million lexical and
phrasal paraphrase rules in the XL version of
PPDB 2.0 with readability scores in ‘simplifying’,
‘complicating’, or ‘nonsense/no-difference’ cate-
gories, allowing flexible trade-off between high-
quality and high-coverage paraphrases. In this
section, we show the effectiveness of the NRR
model we used to create SimplePPDB++ by com-
paring with the previous version of SimplePPDB
(Pavlick and Callison-Burch, 2016) which used a
three-way logistic regression classifier. In next
section, we demonstrate the utility of SimpleP-
PDB++ for the Substitution Generation task.

Task-specific setup of NRR model. We use the
same manually labeled data of 11,829 paraphrase
rules as SimplePPDB for training and testing,
of which 26.5% labeled as ‘simplifying’, 26.5%

Acc. P+1 P�1

Google Ngram Frequency 49.4 53.7 54.0
Number of Syllables 50.1 53.8 53.3
Character & Word Length 56.2 55.7 56.1
W2V 60.4 54.9 53.1
SimplePPDB 62.1 57.6 57.8
NRRall 59.4 61.8 57.7
NRRall+binning 64.1 62.1 59.8
NRRall+binning+WC 65.3* 65.0* 61.8*

Table 4: Cross-validation accuracy and precision of our neu-
ral readability ranking (NRR) model used to create SimpleP-
PDB++, in comparison to the SimplePPDB and other base-
lines. P+1 stands for the precision of ‘simplifying’ para-
phrase rules and P�1 for the precision of ‘complicating’ rules.
* indicates statistical significance (p < 0.05) compared to the
best performing baseline (Pavlick and Callison-Burch, 2016).

as ‘complicating’, and 47% as ‘nonsense/no-
difference’. We adapt our NRR model to perform
the three-way classification by treating it as a re-
gression problem. During training, we specify the
ground truth label as follows: y = -1 if the para-
phrase rule belongs to the ‘complicating’ class, y
= +1 if the rule belongs to the ‘simplifying’class,
and y = 0 otherwise. For predicting, the network
produces a single real-value output ŷ 2 [�1, 1]
which is then mapped to three-class labels based
on the value ranges for evaluation. The thresholds
for the value ranges are -0.4 and 0.4 chosen by
cross-validation.

Comparison to existing methods. We compare
our neural readability ranking (NRR) model used
to create the SimplePPDB++ against SimpleP-
PDB, which uses a multi-class logistic regression
model. We also use several other baselines, in-
cluding W2V which uses logistic regression with
only word2vec embedding features.

Results. Following the evaluation setup in pre-
vious work (Pavlick and Callison-Burch, 2016),
we compare accuracy and precision by 10-fold
cross-validation. Folds are constructed in such
a way that the training and test vocabularies are
disjoint. Table 4 shows the performance of our
model compared to SimplePPDB and other base-
lines. We use all the features (NRRall) in §3.2
except for the context features as we are classi-
fying paraphrase rules in PPDB that come with
no context. SimplePPDB used the same features
plus additional discrete features, such as POS tags,
character unigrams and bigrams. Our neural read-
ability ranking model alone with Gaussian bin-
ning (NRRall+binning) achieves better accuracy
and precision while using less features. Leverag-
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ing the lexicon (NRRall+binning+WC) shows sta-
tistically significant improvements over SimpleP-
PDB rankings based on the paired bootstrap test.
The accuracy increases by 3.2 points, the precision
for ‘simplifying’ class improves by 7.4 points and
the precision for ‘complicating’ class improves by
4.0 points.

4.3 Substitution Generation

Substitution Generation is arguably the most chal-
lenging research problem in lexical simplification,
which involves producing candidate substitutions
for each target complex word/phrase, followed by
the substitution ranking. The key focus is to not
only have better rankings, but more importantly,
to have a larger number of simplifying substitu-
tions generated. This is a more realistic evalua-
tion to demonstrate the utility of SimplePPDB++
and the effectiveness of the NRR ranking model
we used to create it, and how likely such lexical
resources can benefit developing end-to-end sen-
tence simplification system (Narayan and Gardent,
2016; Zhang and Lapata, 2017) in future work.

Data. We use the dataset from (Pavlick and
Callison-Burch, 2016), which contains 100 unique
target words/phrases sampled from the Newsela
Simplification Corpus (Xu et al., 2015) of news ar-
ticles, and follow the same evaluation procedure.
We ask two annotators to evaluate whether the
generated substitutions are good simplifications.

Comparison to existing methods. We evaluate
the correctness of the substitutions generated by
SimplePPDB++ in comparison to several exist-
ing methods: Glavaš (Glavaš and Štajner, 2015),
Kauchak (Coster and Kauchak, 2011), WordNet
Generator (Devlin and Tait, 1998; Carroll et al.,
1999), and SimplePPDB (Pavlick and Callison-
Burch, 2016). Glavaš obtains candidates with the
highest similarity scores in the GloVe (Penning-
ton et al., 2014) word vector space. Kauchak’s
generator is based on Simple Wikipedia and nor-
mal Wikipedia parallel corpus and automatic word
alignment. WordNet-based generator simply uses
the synonyms of word in WordNet (Miller, 1995).
For all the existing methods, we report the re-
sults based on the implementations in (Pavlick
and Callison-Burch, 2016), which used SVM-
based ranking. For both SimplePPDB and Sim-
plePPDB++, extracted candidates are high quality
paraphrase rules (quality score �3.5 for words and

#PPs MAP P@1
Glavaš(n=95) — 22.8 13.5
WordNet(n=82) 6.63 62.2 50.6
Kauchak(n=48) 4.39 76.4† 68.9
SimplePPDB(n=100) 8.77 67.8 78.0
SimplePPDB++(n=100) 9.52 69.1 80.2

Table 5: Substitution Generation evaluation with Mean Av-
erage Precision, Precision@1 and the average number of
paraphrases generated per target for each method. n is the
number of target complex words/phrases for which the model
generated > 0 candidates. Kauchak† has an advantage on
MAP because it generates the least number of candidates.
Glavaš is marked as ‘-’ because it can technically generate
as many words/phrases as are in the vocabulary.

�4.0 for phrases) belonging to the same syntac-
tic category as target word according to PPDB 2.0
(Pavlick et al., 2015).

Results. Table 5 shows the comparison of Sim-
plePPDB and SimplePPDB++ on the number of
substitutions generated for each target, the mean
average precision and precision@1 for the final
ranked list of candidate substitutions. This is a fair
and direct comparison between SimplePPDB++
and SimplePPDB, as both methods have access
to the same paraphrase rules in PPDB as poten-
tial candidates. The better NRR model we used in
creating SimplePPDB++ allows improved selec-
tions and rankings of simplifying paraphrase rules
than the previous version of SimplePPDB. As an
additional reference, we also include the mea-
surements for the other existing methods based
on (Pavlick and Callison-Burch, 2016), which, by
evaluation design, are focused on the comparison
of precision while PPDB has full coverage.

4.4 Complex Word Identification
Complex Word Identification (CWI) identifies the
difficult words in a sentence that need to be sim-
plified. According to Shardlow (2014), this step
can improve the simplification system by avoiding
mistakes such as overlooking challenging words
or oversimplifying simple words. In this section,
we demonstrate how our word-complexity lexicon
helps with the CWI task by injecting human rat-
ings into the state-of-the-art systems.

Data. The task is to predict whether a target
word/phrase in a sentence is ‘simple’ or ‘com-
plex’, and an example instance is as follows:

Nine people were killed in the bombardment.

We conduct experiments on two datasets: (i) Se-
meval 2016 CWI shared-task dataset (Paetzold
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CWI SemEval 2016 CWIG3G2 2018
G-score F-score Accuracy G-score F-score Accuracy

Length 47.8 10.7 33.2 70.8 65.9 67.7
Senses 57.9 12.5 43.6 67.7 62.3 54.1
SimpleWiki 69.7 16.2 58.3 73.1 66.3 61.6
NearestCentroid 66.1 14.8 53.6 75.1 66.6 76.7
SV000gg 77.3 24.3 77.6 74.9 73.8 78.7
WC-only 68.5 30.5 87.7 71.1 67.5 69.8
NearestCentroid+WC 70.2 16.6 61.8 77.3 68.8 78.1
SV000gg+WC 78.1 26.3 80.0 75.4 74.8 80.2

Table 6: Evaluation on two datasets for English complex word identification. Our approaches that utilize the word-complexity
lexicon (WC) improve upon the nearest centroid (Yimam et al., 2017) and SV000gg (Paetzold and Specia, 2016b) systems.
The best performance figure of each column is denoted in bold typeface and the second best is denoted by an underline.

CWI SemEval 2016 total (IV%) unique (IV%)
simple 85621 (94.7%) 14129 (77.6%)

complex 4837 (57.4%) 3836 (54.8%)
CWIG3G2 total (IV%) unique (IV%)

simple 20451 (89.8%) 5576 (82.1%)
complex 14428 (81.1%) 8376 (76.0%)

Table 7: Statistics of CWI datasets – total number of target
words/phrases, number of unique targets, and in-vocabulary
(IV) ratio with respect to our word-complexity lexicon.

and Specia, 2016a), which has been widely used
for evaluating CWI systems and contains 2,237
training and 88,221 test instances from Wikipedia;
and (ii) CWIG3G2 dataset (Yimam et al., 2017),
which is also known as English monolingual CWI
2018 shared-task dataset (Yimam et al., 2018) and
comprises of 27,299 training, 3,328 development
and 4,252 test instances from Wikipedia and news
articles. Table 7 shows the coverage of our word-
complexity lexicon over the two CWI datasets.

Comparison to existing methods. We consider
two state-of-the-art CWI systems: (i) the near-
est centroid classifier proposed in (Yimam et al.,
2017), which uses phrase length, number of
senses, POS tags, word2vec cosine similarities, n-
gram frequency in Simple Wikipedia corpus and
Google 1T corpus as features; and (ii) SV000gg
(Paetzold and Specia, 2016b) which is an ensem-
ble of binary classifiers trained with a combina-
tion of lexical, morphological, collocational, and
semantic features. The latter is the best perform-
ing system on the Semeval 2016 CWI dataset.
We also compare to threshold-based baselines that
use word length, number of word senses and fre-
quency in the Simple Wikipedia.

Utilizing the word-complexity lexicon. We en-
hance the SV000gg and the nearest centroid clas-
sifier by incorporating the word-complexity lex-
icon as additional features as described in §3.2.

We added our modifications to the implementa-
tion of SV000gg in the LEXenstein toolkit, and
used our own implementation for the nearest cen-
troid classifier. Additionally, to evaluate the word-
complexity lexicon in isolation, we train a deci-
sion tree classifier with only human ratings as in-
put (WC-only), which is equivalent to learning a
threshold over the human ratings.

Results. We compare our enhanced approaches
(SV000gg+WC and NC+WC) and lexicon only
approach (WC-only), with the state-of-the-art and
baseline threshold-based methods. For measuring
performance, we use F-score and accuracy as well
as G-score, the harmonic mean of accuracy and re-
call. G-score is the official metric of the CWI task
of Semeval 2016. Table 6 shows that the word-
complexity lexicon improves the performance of
SV000gg and the nearest centroid classifier in all
the three metrics. The improvements are statisti-
cally significant according to the paired bootstrap
test with p < 0.01. The word-complexity lexi-
con alone (WC-only) performs satisfactorily on
the CWIG3G2 dataset, which effectively is a sim-
ple table look-up approach with extreme time and
space efficiency. For CWI SemEval 2016 dataset,
WC-only approach gives the best accuracy and F-
score, though this can be attributed to the skewed
distribution of dataset (only 5% of the test in-
stances are ‘complex’).

5 Related Work

Lexical simplification: Prior work on lexical
simplification depends on lexical and corpus-
based features to assess word complexity. For
complex word identification, there are broadly
two lines of research: learning a frequency-based
threshold over a large corpus (Shardlow, 2013b)
or training an ensemble of classifiers over a com-
bination of lexical and language model features

3756



(Shardlow, 2013a; Paetzold and Specia, 2016a;
Yimam et al., 2017; Kriz et al., 2018). Substitu-
tion ranking also follows similar trend. Biran et al.
(2011) and Bott et al. (2012) employed simplicity
measures based on word length and word frequen-
cies from Wikipedia and Simple Wikipedia. Ka-
jiwara et al. (2013) combined WordNet similar-
ity measures with Simple Wikipedia frequencies.
Glavaš and Štajner (2015) averaged the rankings
produced by a collection of frequency, language
model and semantic similarity features. Horn et
al. (2014) trained an SVM classifier over corpus-
based features.

Only recently, researchers started to apply neu-
ral networks to simplification tasks. To the best
of our knowledge, the work by Paetzold and Spe-
cia (2017) is the first neural model for lexical sim-
plification which uses a feedforward network with
language model probability features. Our NRR
model is the first pairwise neural ranking model
to vectorize numeric features and to embed hu-
man judgments using a word-complexity lexicon
of 15,000 English words.

Besides lexical simplification, another line of
relevant research is sentence simplification that
uses statistical or neural machine translation (MT)
approaches (Xu et al., 2016; Nisioi et al., 2017;
Zhang and Lapata, 2017; Vu et al., 2018; Guo
et al., 2018). It has shown possible to integrate
paraphrase rules in PPDB into statistical MT for
sentence simplification (Xu et al., 2016) and bilin-
gual translation (Mehdizadeh Seraj et al., 2015),
while how to inject SimplePPDB++ into neural
MT remains an open research question.

Lexica for simplification: There have been pre-
vious attempts to use manually created lexica for
simplification. For example, Elhadad and Sutaria
(2007) used UMLS lexicon (Bodenreider, 2007),
a repository of technical medical terms; Ehara
et al. (2010) asked non-native speakers to an-
swer multiple-choice questions corresponding to
12,000 English words to study each user’s famil-
iarity of vocabulary; Kaji et al. (2012) and Ka-
jiwara et al. (2013) used a dictionary of 5,404
Japanese words based on the elementary school
textbooks; Xu et al. (2016) used a list of 3,000
most common English words; Lee and Yeung
(2018) used an ensemble of vocabulary lists of
different complexity levels. However, to the best
of our knowledge, there is no previous study on
manually building a large word-complexity lexi-

con with human judgments that has shown sub-
stantial improvements on automatic simplifica-
tion systems. We were encouraged by the suc-
cess of the word-emotion lexicon (Mohammad
and Turney, 2013) and the word-happiness lexicon
(Dodds et al., 2011, 2015).

Vectorizing features: Feature binning is a stan-
dard feature engineering and data processing
method to discretize continuous values, more
commonly used in non-neural machine learning
models. Our work is largely inspired by re-
cent works on entity linking that discussed feature
quantization for neural models (Sil et al., 2017;
Liu et al., 2016) and neural dependency parsing
with embeddings of POS tags as features (Chen
and Manning, 2014).

6 Conclusion

We proposed a new neural readability ranking
model and showed significant performance im-
provement over the state-of-the-art on various lex-
ical simplification tasks. We release a manually
constructed word-complexity lexicon of 15,000
English words and an automatically constructed
lexical resource, SimplePPDB++, of over 10 mil-
lion paraphrase rules with quality and simplicity
ratings. For future work, we would like to ex-
tend our lexicon to cover specific domains, differ-
ent target users and languages.
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Abstract
Previous work on grounded language learn-
ing did not fully capture the semantics under-
lying the correspondences between structured
world state representations and texts, espe-
cially those between numerical values and lex-
ical terms. In this paper, we attempt at learn-
ing explicit latent semantic annotations from
paired structured tables and texts, establishing
correspondences between various types of val-
ues and texts. We model the joint probabil-
ity of data fields, texts, phrasal spans, and la-
tent annotations with an adapted semi-hidden
Markov model, and impose a soft statistical
constraint to further improve the performance.
As a by-product, we leverage the induced an-
notations to extract templates for language
generation. Experimental results suggest the
feasibility of the setting in this study, as well as
the effectiveness of our proposed framework. 1

1 Introduction

The meaning of natural language should always
be accompanied by a context. Grounded lan-
guage acquisition aims at learning the meaning
of language in the context of an observed world
state. A solution framework typically addresses
the following subproblems: segmenting the text
into meaningful phrasal units, determining which
world state information is being referred to, and
finding proper alignments from these units to the
events of values in the world state.

The task has attracted much attention from the
NLP community with a special focus on align-
ing text descriptions onto processed, structured
event records (Snyder and Barzilay, 2007; Liang
et al., 2009; Hajishirzi et al., 2011). Various sta-
tistical models have been proposed, attempting at

⇤ Contribution during internship at Microsoft Research
Asia.

1Our implementation is available at https:
//github.com/hiaoxui/D2T-Grounding.

TEAM WIN LOSS PTS . . . PT-QT4
Raptors 33 15 120 . . . 31
Wizards 31 17 116 . . . 15

The Toronto Raptors ( 33 - 15 ) barely edged out 
the Washington Wizards ( 31 - 17 ) 120 - 116 in 
overtime Saturday at the Verizon Center. The 
Raptors took a great lead before the fourth quar-
ter, but the Wizards fought back by outscoring 
Toronto 31  -  15 ....

Figure 1: An example of the summary and the corre-
sponding table.

characterizing the interaction between text spans
and categorical values (e.g., direction=‘East’) or
strings (e.g., person names). The previously ad-
dressed term semantic correspondences narrowly
describes the process of aligning natural language
spans to different data fields.

However, there still exists a gap between align-
ment results and the underlying semantics. People
tend to use various phrases to describe information
that are inferred from different amounts of numer-
ical values in a data field, or values derived from
additional operations over fields. Consider the ex-
ample description for a basketball game shown in
Figure 1. The phrase edged out in the first sen-
tence implies the fact that the Toronto Raptors had
beaten their opponent by a relatively narrow mar-
gin. This could only be derived from an operation
of subtraction between two scores that correspond
to the field PTS for both teams in the event table,
which leads to a relatively small difference of only
four points. Previous efforts on learning seman-
tic correspondences relying on categorical distri-
butions (Liang et al., 2009) or string pattern fea-
tures (Hajishirzi et al., 2012; Koncel-Kedziorski
et al., 2014) do not have the capability to accu-
rately capture numerical information, especially
for the part that does not appear explicitly in the
table and needs to be inferred.
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Such kind of language grounding is important
both for natural language understanding and for
natural language generation. For language un-
derstanding, establishing explicit connections be-
tween symbols and values beyond ungrounded
symbolic meaning representations will be useful
for acquisition and inference of numerical com-
monsense (Narisawa et al., 2013). For language
generation, properly aligned information is the key
to acquiring patterns of various lexical choices un-
der different world states (Roy and Reiter, 2005).

In this work, we make a step towards more
explicit semantic correspondences between struc-
tured data and texts. Rather than only produc-
ing coarse alignments between data fields and text
spans, we try to detect the latent semantics under-
lying these alignments by prompting explicit se-
mantic annotations. We make the first attempt at
utilizing publicly available datasets originally pre-
pared for data-to-text language generation to pro-
duce such annotations for words and phrases in
natural language without additional supervision.

Specifically, we conduct our study on a recently
released dataset of descriptions for NBA basket-
ball games with structured tables of game records.
Different from a few popular datasets that have
been well conjectured to be produced from rules
(Reiter, 2017), the summaries are all written by
humans. The text contains some numbers and
proper nouns, which are easier to establish corre-
spondence with data. However, the majority of
texts contain many informative words, some of
which need to be inferred indirectly from various
types of values in the data cells. We want to estab-
lish explicit correspondences for them.

We derive a set of semantic labels from orig-
inal data fields (Sec 4.1). These labels could be
executed to establish direct correspondences to
one or more values in the structured table. No
annotation on the original dataset means unsu-
pervised learning from weak distant supervision
should be conducted. We design a semi-hidden
Markov model to address this problem (Sec 4.2),
which could align a semantic label to a word span.
In the model, we leverage continuous probabil-
ity distributions to model the correspondences be-
tween numerical values and lexical terms, which
has not been well captured in previous work. To
address the emerged issue of “garbage collection”
that commonly appears in statistical alignment
models (Sec 4.5), we add a soft statistical con-

straint via posterior regularization (Ganchev et al.,
2010). As a by-product, we also show how the
derived semantic annotations could be used to in-
duce descriptive templates for data-to-text genera-
tion (Sec 5). Experimental results (Sec 6) suggest
the feasibility of the setting in this study, and show
the effectiveness of our proposed framework.

2 Related work

Grounded language acquisition has aroused wide
interest in various disciplines (Siskind, 1996; Yu
and Ballard, 2004; Gorniak and Roy, 2007; Yu
and Siskind, 2013; Chrupała et al., 2015). Later
work in the community of natural language pro-
cessing also moved in this direction by relax-
ing the amount of supervision to enable a model
to learn from ambiguous alignments (Kate and
Mooney, 2007; Chen and Mooney, 2008). Some
research aimed at establishing coarse alignments
between simulated robot soccer game records and
commentary sentences (Chen and Mooney, 2008;
Chen et al., 2010; Bordes et al., 2010; Hajishirzi
et al., 2011). For weather forecast domain, Liang
et al. (2009) used a hierarchical hidden Markov
model in order to map utterances to world states,
which coped with segmentation and alignment to-
gether. More recently, Koncel-Kedziorski et al.
(2014) tried to obtain the correspondences be-
tween real commentaries and structured football
(soccer) events in multiple resolutions. We are
distinct from this line of work in the fact that
we aim at producing explicit semantic annotations
that could capture information from structured ta-
bles. To achieve this goal, we need additional scal-
ing or operations to enable data fields and values to
be faithfully mapped onto texts. This will address
the issue of the lack of consideration for the rela-
tionship between lexical terms and numerical val-
ues. Our approach makes a significant difference
in that our framework could generalize to numeri-
cal values or value combinations that are unseen in
training, and will not be simply reciting cooccur-
rence patterns of exact values in the training data.

Our work relates to learning executable se-
mantic parsers under weak supervision. Early
semantic parsing started from fully supervised
training with annotated meaning representations
available (Zettlemoyer and Collins, 2005; Ge and
Mooney, 2006; Snyder and Barzilay, 2007), but
more recent work focused on reducing the amount
of supervision required (Artzi and Zettlemoyer,
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2013). The intuition behind weakly supervised
executable semantic parsing is that once the la-
tent semantic representation has been executed,
one could test whether the execution results could
match the information with available weak super-
vision signals such as answers to natural language
queries (Clarke et al., 2010; Liang et al., 2011),
or task completion from instructional navigations
(Misra et al., 2017). Such formulations have been
adapted for question answering over structured
tables (Pasupat and Liang, 2015; Krishnamurthy
et al., 2017). However, the current research fo-
cus is to convert a natural language question into
executable table queries and to directly retrieve re-
sults. They do not have the need of inference in-
volving numerical commonsense implied by var-
ious lexical patterns. A few unsupervised ap-
proaches exist (Poon and Domingos, 2009; Poon,
2013) but only specific to translating language into
queries in the highly structured database and can-
not be applied to our domain.

Our approach is implemented as assigning tag
annotations over text spans, which is conceptu-
ally related to fine-grained named entity tagging
(Ling and Weld, 2012). Our setting only requires
a rather weak and distant form of supervision
from paired tables and texts without annotations
for fine-grained alignments between phrases and
data cells. Similar modeling and learning strate-
gies could potentially be useful for considerably
large tag space derived from structured knowledge
bases in the future (Choi et al., 2018).

The feasibility of this work is partly due to the
availability of data, mostly comes from the field of
data-to-text language generation. Related work in
data-to-text generation mainly focused on directly
generating summary descriptions for structured
data (Mei et al., 2016; Kiddon et al., 2016; Mu-
rakami et al., 2017; Wiseman et al., 2017), with-
out establishing underlying semantic correspon-
dences. Texts generated thereby can be fluent but
not conforming to the input data, unlike template-
based approaches where lexical choices could be
directly controlled. In our work, we find the
derived semantic correspondences between data
and texts to be useful for template induction, ei-
ther with simple heuristics to automatically ex-
tract description patterns (how to say) and corre-
sponding triggers (what & when to say), or with
more crafted discriminative learning approaches
(cf. Angeli et al. (2010)).

3 Technical overview

Task Let S be the set of all world states, W be
the set of all texts, O be the set of all executable
operators, and V be the output space of O. A
world state s 2 S is a table storing some infor-
mation, or more specifically in this work, a tabular
recording for a sports game. An operator o 2 O
can be executed on a world state to retrieve val-
ues, i.e., each o could be treated as a mapping of
S ! V . The result of an operation can be a string,
a continuous values or a discrete value. Mean-
while, each world state s is accompanied with a
piece of description w 2 W . Here w consists
of a sequence of word tokens {wi 2 w}. We fur-
ther define a segmentation variable ⇡, which could
convert w into a sequence of word spans c, con-
taining each span of tokens ct 2 c that could be
interpreted as a phrase. Note that we use super-
script t to denote indices of phrases, and subscript
i to denote indices of individual words. We further
define l as a sequence of latent labels, and value of
each lt is an operator oi 2 O. 2 For each world
state s and corresponding description w, we want
to jointly find a proper segmentation ⇡ to obtain c,
and assign labels to every word span ct.

We conduct this study on the ROTOWIRE sub-
set of the openly available dataset released by
Wiseman et al. (2017), containing text descrip-
tions for NBA basketball games with structured
tables of game statistics. Take Figure 1 as an ex-
ample. The proper nouns (e.g. Toronto Raptors)
appeared in the sentence can be assigned with a
tag Team Name in our tag set, which could then
be aligned to the Team Name field in the table.
Some numbers appearing in the text, such as 15
in the example, can be assigned with the label
Team Losses, with the executable annotation to
extract the number of previously lost matches of
the mentioned team. What we are more interested
in is where the phrase edge out comes from. We
are aiming at a model which is capable to capture
the semantics behind the phrase edge out, which
is used to describe an event that one team has
beaten the other with close scores. In our an-
notation scheme, this phrase should be assigned
with the tag Team Points Delta, and execut-
ing that will return the score difference between
two teams.

The task is challenging in that there does not
2We will interchangeably use labels, operators, tags to re-

fer to the latent executable semantic annotations in this paper.
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Output Type Example
String Team City
Categorical Player Start Position
Numerical Team Points Delta

Table 1: Examples from the derived tag set, where each
tag could correspond to one of three types of values.

exist any other additional supervision signal. The
learning process will mostly rely on statistical
cooccurrences of information between the struc-
tured data and its text descriptions. Note that we
assume a consistent structure (schema) throughout
the whole dataset upon which the learning process
will be performed.
Model To jointly learn word segmentations c
and latent semantic annotations l between world
state s and text w in a unified framework, we pro-
pose a generative model to characterize the joint
distribution Ps(l, ⇡,w; ✓), parameterized by ✓.
Learning The data contain paired texts and ta-
bles only, thus our model must learn segmenta-
tions and latent semantic annotations in an unsu-
pervised fashion. The target is to maximize the
complete data likelihood

L(✓) =
Y

(s,w)2 D

X

l,⇡

Ps(l, ⇡,w; ✓),

where D represents the whole training data. To
reduce the search space in inference and to cap-
ture some patterns of content planning in the
text descriptions, we adopt a Markov assump-
tion over phrase segments, which leads to a hid-
den semi-Markov model (semi-HMM) (Murphy,
2002; Sarawagi and Cohen, 2005). The key part is
to characterize different types of correspondences
(Sec 4.2). We derive an expectation-maximization
(EM) algorithm to perform maximum likelihood
estimation, and introduce a soft statistical regular-
ization to guide the model towards a better solu-
tion (Sec 4.5).
Inference Once the model has been trained, we
use a Viterbi-like dynamic programming process
to perform MAP inference to segment the texts
and to assign the most likely tags for each span.

4 Framework

4.1 The set of annotations
We describe the process of how we derived our
set of semantic annotations here. There are two
kinds of specific tables for each NBA game in the
dataset: Box-Scores and Line-Scores, respectively

showing the performance statistics for individual
players and the whole teams. The types of pos-
sible values for data fields are strings, categorical
values and numerical values. Box-Score consists
of 24 fields, of which four are string-values, one
is categorical, the other 19 being numerical. Line-
Score consists of 16 fields, containing two string-
valued, one categorical, and 13 numerical fields.
A semantic tag works on a specified kind of field
type, from either team statistics or player statis-
tics. For a tag that could align to one single field
in the table, we let it return the exact value in the
cell that could maximize the likelihood. For ex-
ample, the tag Team City is used to extract the
name of the team in the table that corresponds to
the current word span. For fields taking numeri-
cal values, we additionally allow tags to be able
to perform mathematical operations, such as sub-
traction, between two values in the same field. 3

For example, the tag Team Points Delta can
be executed to return the score difference between
two teams. We list the different types of tags with
examples shown in Table 1 and leave the entire tag
set to Appendix A. Along with all these tags de-
rived from the original data fields, we also include
a special NULL tag which are supposed to be as-
signed to non-informative words or words contain-
ing information not contained in the given table.

Note that we impose little prior knowledge in
this step. We simply over-generate all possible la-
bels, and let the model figure out which part of
them should be eventually used. Although the
only compositional operation we used in this work
is numeric subtraction, common operations that
could produce string, categorical values or num-
bers could be easily introduced for other domains.

4.2 Semi-HMMs with continuous values
As previously mentioned, we will be modeling the
joint distribution of word segmentation c and the
latent semantic annotations l between paired world
state s and text w, which could be factorized as:

Ps(l, ⇡,w) = Ps(w, ⇡|l) · Ps(l),

and we write Ps(w, ⇡|l) as Ps(c|l). In this sec-
tion, we focus on the probability of the alignments
between word spans and labels, namely, Ps(c|l).

Following Liang et al. (2009), we consider two
aspects. One is salience that captures the intuition

3We limit the number of arguments within two in this
work and leave more complex operators for future study.
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that some fields should be more frequently men-
tioned than others (henceforth some latent tags
should be more frequently triggered). The other
is (local) coherence, which refers to the order in
which the writer mentioning certain information
tends to follow some patterns. To capture these
two phenomena, we define a Markov model:

Ps(c, l) =
Y

t

P (lt|lt�1) · Ps(c
t|lt),

where lt is the annotated label at time stamp t, and
we assume that the transition probabilities are in-
dependent of world state s. It resembles a standard
form of HMMs, despite the subscript s in Ps(c|l).
For different types of correspondences between lt

and ct, we define different probability distributions
to model Ps(ct|lt):

(1) Numerics-to-numerics: The numbers
in texts could sometimes be inaccurate
due to some rounding customs, thus
we use a Gaussian model for this type:
SoftIndicator(x, y|�) = N (x � y|0, �),
where N is the Gaussian density. When
the output type of tag lt is numeric and
the word span ct is a number, we set
Ps(c|l) = SoftIndicator(c, vl|�l), where
�l is different for different tags, and vl is the
corresponded value in the table for tag l. Note
that when � ! 0, SoftIndicator reduces to
an indicator function that only allows exact
matching.

(2) String-to-string: Similarly for strings, since
simple matching could fail if the text con-
tains Bob to refer to Bob Smith. We simply
use string matching to model the probability:
Ps(c|l) / Match(vl, c), where the Match
function returns the number of shared words
between cell value vl and word c.

(3) Category-to-string: For labels correspond to
discrete categorical values, such as Sunday,
PG (point guard, a basketball position), we
adopt the same method used by Liang et al.
(2009): using a multinomial distribution over
all word spans for each possible category:

Ps(c|l) = ⌫c,vl ,
X

c

⌫c,v = 1, (1)

where vl is again the output value of tag l.

     the        Clippers         took           down           the

Team_Name -
 

Points_Delta -
 

null -
 

null -
 

Figure 2: A Semi-HMM that can yield an entire phrase
from one tag.

(4) Numerics-to-string: When the tag corre-
spond to a numeric value vl while the word
span c is not a number, the problem resembles
speech modeling (Huang et al., 1990). Apply-
ing the Bayes rule, we get: 4

Ps(c|l) = P (c|l, vl) / P (vl|c, l) · P (c|l),

where we collapse the relevant part from
world state s into vl. The intuition be-
hind P (vl|c, l) is that when an informa-
tive word (e.g. routed) appears in the
text, the corresponding values should have
different chances to happen in the world,
e.g. P (30|routed,Points Delta) >
P (3|routed,Points Delta).

Due to the lack of prior knowledge on the dis-
tribution, we also model this term as Gaussian.
5 The result resembles a Gaussian mixture:

Ps(c|l) / N (vl; µc,l, �c,l) · ⌘c,l,X

c

⌘c,l = 1,

where P (c|l) = ⌘c,l is also multinomial.

4.3 Modeling phrasal spans
Our model can enable phrase segmentation. Pre-
viously, Liang et al. (2009) treated the words in-
side a phrase individually and independently. This
could be problematic in our scenario. For exam-
ple, take down is used to describe a team defeating
another, while separately both take and down are
frequent words in general, making them difficult
to be jointly assigned with the correct label as a
whole. Instead, in our model we treat the phrasal

4We noticed that in parallel with our work, another study
(Zhang et al., 2018) on verb selection for data-to-text gen-
eration also use the same strategy of Bayes rule to estimate
parameters, and provide a noisy-channel interpretation.

5The double tails in Gaussian pdf have different interpre-
tations: unlikely to occur, or unlikely to occur conditionally.
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Team_Name - 

 ...     the        Clippers         took          down           the          Rockets   ...

Points_Delta - 
null - 

null - 

Team_Name - 

Figure 3: A slightly different Semi-HMM whose tran-
sition score is calculated by skipping NULL fields.

word span as a unit. The probability is assigned
to the whole span of phrase instead of individual
words, which will break the token-wise Markov
property (Fig. 2, henceforth Semi-HMM). For effi-
cient parameter estimation, We use a variant of the
standard forward-backward algorithm by adding
a parameter k, which is the maximum length of
word spans, onto the Markov chain. We leave de-
tailed descriptions to Appendix B.

4.4 Skipping null labels
Preliminary experiments suggest that the initial
model have too many words assigned to the NULL
tag. Informative alignments may not be adja-
cent, which breaks the simplest Markov assump-
tions. In our model, the transition score of two
non-NULL labels can be calculated by skipping
all the NULLs in between, as shown in Figure 3.
This is implemented without breaking the over-
all Markov property with the following trick used
in earlier work on statistical alignments (Brown
et al., 1993): Suppose we have m labels (i.e., m
latent states), we can design m different NULL la-
bels that share the same emission score, while pre-
serving their original outward-transition probabil-
ities. The types of NULL labels are inherited from
the previous label. This might seem to be waste-
ful at first sight as we use two-fold latent states,
but the Markov property is successfully preserved,
therefore simplifying our implementation.

4.5 Posterior regularization
The structured tables and text descriptions of the
dataset were originally crawled from different
sources. As a consequence, a non-negligible pro-
portion of texts is in fact describing information
outside the given table, such as historical records
(e.g., “win streak”). Ideally, words in these parts
of the text should remain unaligned, or in our set-
ting, be annotated with the NULL tag. However,
due to the notorious effect of garbage collection

from statistical alignment (Brown et al., 1993),
these words tend to be aligned to some irrelevant
fields in the table which are rarely mentioned.

We address this issue by adding a soft statisti-
cal constraint in the form of posterior regulariza-
tion (Ganchev et al., 2010; Graça et al., 2010).
With posterior regularization, we could add cer-
tain types of statistical constraints to the E-step
in the EM procedure, while keeping the inference
tractable. The constraints should be in the form of:

E[f(w, l)] =
X

i

E[f(w, li)]  bw, (2)

where the features f should be defined on local
cliques for tractable inference.

We use projected gradient descent to solve the
E-step sub-problem in this work. The statistical
constraint we add to the posterior is rather simple:
For each sentence, we “encourage” at least a pro-
portion of words to be aligned to NULL labels:

E[�f(w, l)]  �r0 · n, (3)

f(w, l) =
nX

i=1

1(li = NULL), (4)

where r0 is a adjustable ratio, n is the length of
w. We also tried other constraints but found this
simple soft regularization performing well.

5 By-product: template induction
Intuitively, the assigned semantic correspondences
could be useful to derive templates and trigger
rules for language generation. In this work, we
use the most straightforward heuristics to perform
template induction, utilizing the established cor-
respondences and inferred parameters. Specifi-
cally, we first blank out the correspondences of
numerics-to-numerics and string-to-string to be
empty slots and replace with the tag names. In
the example of Figure 1, we could replace Raptors
with Team Name, and 120 with Team Points,
if they have been correctly aligned.

We also need to know when to use each tem-
plate. We define a template trigger to be a quadru-
ple (c, l, µc,l, �c,l), where c is a phrase, l is a tag,
µc,l and �c,l are estimated Gaussian parameters.
6 We assign each template with a score to be the
minimum probability for all triggers inside:

score(s, t) = min
i

N (ti.l(s); ti.µ, ti.�), (5)

6To use a unified notation, for categorical-value triggers
we set µc,l = arg maxvl

⌫c,vl
(defined in (1)) and �c,l = ✏.
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where t = {ti} denotes all possible triggers in
the template, and the tag l can be executed over
the world state s to retrieve a value l(s). We only
consider sentences satisfying both of the following
conditions in order to extract templates with high
quality: (1) sentences aligned to  two teams or
one player, and (2) sentences with triggers derived
from continuous distributions.

Now that the templates and triggers are ready
for use, we will experiment with the following
straightforward rules to perform data-to-text gen-
eration: For every game, we first generate a sen-
tence describing the scoreline result, followed by
three sentences describing other information about
team performance. While keeping that no tem-
plate is repeatedly used, we will then choose the
template with the highest score for top ten players
sorted by their game points.

6 Experiments

6.1 Experimental setup

We conducted experiments on the ROTOWIRE sub-
set of the Wiseman et al. (2017) dataset. In our
experiment, we restricted the maximum length of
word span to two as a trade-off of speed and per-
formance. Empirically, most of the phrases in the
dataset are at a length of at most two. We empiri-
cally set the expected NULL ratio to be r0 = 0.5.

We did the following pre-processing steps for
all systems in comparison: we lemmatized all to-
kens in the sentences, and filtered out sentences
containing less than five words since they are
meaningless short sentences. To utilize the game
dates, we converted them from calendar date to the
day of week, e.g. 11/28/2016 is converted to Mon-
day as a categorical value. Due to the huge noise
in the ROTOWIRE dataset, containing many sen-
tences irrelevant with their corresponding tables,
we filtered out the sentences that contain no team
or player names, or those that mention more than
2 players, as most of them are irrelevant texts.

Following Liang et al. (2009), we also used the
parameters of a simpler model without Markov de-
pendency (which was uniformly initialized) to ini-
tialize our complete model with obtained param-
eters, and then trained it until convergence. We
adapted Liang et al. (2009)’s framework to the ta-
ble schema in the ROTOWIRE dataset, and ran ex-
periments accordingly as our baseline model.

6.2 Evaluation
6.2.1 Intrinsic evaluation
It is difficult to evaluate the accuracy of tag as-
signments for the entire dataset, since the tags are
not annotated in the original data. We recruited
three human annotators with familiarity in the do-
main of basketball games to label 300 sentences
(around 8,000 tokens in total, and 30% of them
are annotated with tags) from the test set. There
exists a fraction (18%) where agreements were
not made, we included all the proposed tags from
the annotators to be correct. Also, because of the
ambiguity of annotations, we use the base names
of derived tags (e.g. Rebounds Delta) for
numerics-to-string relationship evaluation. (e.g.
Rebounds Delta is reduced to Rebounds)
Finally, we calculated the precision and recall for
non-NULL tag assignments at word-level.

Precision Recall F1
Liang09 0.319 0.643 0.426
Liang09+PR 0.397 0.640 0.490
Semi-HMMs 0.254 0.765 0.381
Semi-HMMs+PR 0.504 0.786 0.614

Table 2: Word-level tag assignment results.

Correspondence type Proportion Accuracy
numerics-to-numerics 0.369 0.950
numerics-to-string 0.283 0.402
string-to-string 0.252 0.892
category-to-string 0.095 0.936

Table 3: The performance of Semi-HMMs+PR for dif-
ferent types of correspondences.

The results are shown in Table 2. The Liang
et al. (2009) framework could still achieve around
65% recall, because there exist a large proportion
of correspondences that could be easily captured
by exact matches and simple categorical distribu-
tions. Our model without PR achieves lower pre-
cision than the baseline, because the baseline did
not model numerics-to-string relationships and en-
countered less severe issues of garbage collection.
We can observe that our initial model indeed out-
performs the baseline system in recall, while PR
helps a lot to avoid distraction from irrelevant in-
formation that should be tagged as NULL.

We also include more fine-grained results for
different types of correspondences, shown in Ta-
ble 3. As expected, numerics-to-string correspon-
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Figure 4: Example of latent tag assignment. Words in blue dashed boxes are phrases recognized by our model.
The labels red with asterisks (*) are false assignments. (a), (b), (c) are example of Semi-HMMs-PR, while (d) is
produced from the initial Semi-HMMs.

dences are the most difficult part in this study.
Another notable thing is that although we found
that around 40% of numerics-to-numerics corre-
spondences were ambiguous due to the appear-
ance of identical values from different table cells,
our model could still achieve a high accuracy of
95.0%.

6.2.2 Extrinsic evaluation
We also tested how the derived templates could
perform in language generation, when compared
with the baseline using the same heuristics de-
scribed in Sec 5. We report automatic metrics in-
cluding BLEU scores and those based on relation
extraction as proposed by Wiseman et al. (2017):
precision & number of unique relations in genera-
tion (RG), precision & recall for content selection
(CS), and content ordering (CO) score. These au-
tomatic metrics were designed for various aspects
in NLG and may not all suit our main focus well,
so we also conducted human evaluation on infor-
mation correctness (1-5 scale ratings, the higher
the better). We asked four human raters who are
fluent in English and with familiarity in basketball
terms to rate over outputs for 30 random games.
Results are shown in Table 4. We can observe that
templates derived from our model indeed outper-

form those from the baseline.
We put some inducted templates and generated

text examples in the Appendix.

6.3 Analysis

Figure 4 shows some examples produced from our
methods. Some of the alignments are meaning-
ful, for example, the model assigned the word per-
fect with the annotation FT Percent, which rep-
resents the percentage of free throws. Without
PR, our model performed poorly by aligning many
common words to those rarely mentioned cells.
In this example, the FT Made and FT Attempt
fields in the input table both have the same value
8, making it difficult for a model without proper
local coherence modeling to distinguish between
them. Because our initial model without PR can-
not annotate NULL correctly, the Markov transi-
tion between these two numbers was intercepted
by three meaningless tokens. However, after in-
jecting the PR constraint, most of the unmentioned
words were successfully identified. The model
captured the pattern that FT Attempt almost al-
ways follows FT Made, making it correctly as-
signed these two labels.

We conducted ablation experiments for some
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Model RG(P%) RG(#) CS(P%) CS(R%) CO BLEU Correctness
Liang09+PR 85.83 33.29 14.33 31.09 6.25 8.34 2.60

Semi-HMMs+PR 90.47 41.79 21.63 50.17 9.63 9.45 3.58
Gold-standard 91.77 12.84 100 100 100 100 4.88

Table 4: Results for data-to-text generation (Kendall’s W=0.83 from correctness raters)

of the components (Table 5). When setting the
maximum phrase length to be k = 1, the model
degenerates to a normal HMM. The performance
measured by F1-score drops for only a little. One
possible reason is that Semi-HMMs tend to out-
put some meaningless combinations of words as
phrases, such as the phrase points on in Fig-
ure 4 (b), which could lead to many redundant
annotations that hampers precision albeit its help
to recall. We also tried to disable the transition
probabilities during both training and inference,
which led to lower precision and lower recall natu-
rally as there was no modeling for local coherence.
Finally, by canceling the NULL-skipping mecha-
nism, we found that the numerics-to-numerics an-
notation accuracy dropped from 95.0% to 88.8%.
Many of the spurious numerics-to-numerics anno-
tations, such as the 8 - of - 8 in Figure 4 (d), could
be corrected using transition probabilities under
the skipping-NULL mechanism (Figure 4 (c)).

Precision Recall F1
Semi-HMMs+PR 0.504 0.786 0.614

HMM+PR 0.545 0.694 0.610
No transition 0.468 0.633 0.538

No skip 0.454 0.737 0.562

Table 5: Ablation results.

One additional advantage of our model is that
we can easily verify what the model has captured.
For the latent annotation Team Points Delta,
we sort its corresponding phrases by weights P (c|l)

P (c)
and we list the top 12 weighted words in Fig-
ure 5. We can observe that most of the displayed
phrases have strong semantic relationship with
score differences. More interestingly, we found
the mean and variance values estimated by the
Gaussian distributions rather informative. When
l = Teams Points Delta, we observed that
µl,narrowly ⇡ 2 while µl,blow out ⇡ 26. We could
infer the conditions under which some phrases
should be used, providing useful insights for lexi-
cal choices in language generation.

Figure 5: Mean±std for the top 12 weighted phrases
assigned with Team Points Delta. (circle sizes
are proportional to weights)

7 Conclusion

In this paper, we attempt to learn executable la-
tent semantic annotations from paired structured
tables and texts. We model the joint probability of
data fields, texts, phrasal spans, and latent annota-
tions with an adapted semi-hidden Markov model
and impose a soft statistical constraint via poste-
rior regularization. Experimental results suggest
the feasibility of the setting in study and the effec-
tiveness of our framework.

This is a preliminary study for using weak su-
pervision from structured data and texts to address
the challenging problem of language grounding.
For future study, one could collect large-scale data
and texts in other domains where more complex
grounding on phrases such as “increasing trends”
should be done. To enhance modeling power, un-
supervised discriminative models that utilize rich
features (Berg-kirkpatrick et al., 2010) could also
be explored. We are also interested in collecting
more high-quality parallel data to induce grounded
compositional logic representations.
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Abstract

We introduce the syntactic sca↵old, an ap-
proach to incorporating syntactic informa-
tion into semantic tasks. Syntactic sca↵olds
avoid expensive syntactic processing at run-
time, only making use of a treebank during
training, through a multitask objective. We im-
prove over strong baselines on PropBank se-
mantics, frame semantics, and coreference res-
olution, achieving competitive performance on
all three tasks.

1 Introduction

As algorithms for the semantic analysis of natu-
ral language sentences have developed, the role
of syntax has been repeatedly revisited. Linguis-
tic theories have argued for a very tight integra-
tion of syntactic and semantic processing (Steed-
man, 2000; Copestake and Flickinger, 2000), and
many systems have used syntactic dependency
or phrase-based parsers as preprocessing for se-
mantic analysis (Gildea and Palmer, 2002; Pun-
yakanok et al., 2008; Das et al., 2014). Mean-
while, some recent methods forgo explicit syntac-
tic processing altogether (Zhou and Xu, 2015; He
et al., 2017; Lee et al., 2017; Peng et al., 2017).

Because annotated training datasets for se-
mantics will always be limited, we expect that
syntax—which o↵ers an incomplete but poten-
tially useful view of semantic structure—will con-
tinue to o↵er useful inductive bias, encouraging
semantic models toward better generalization. We
address the central question: is there a way for se-
mantic analyzers to benefit from syntax without
the computational cost of syntactic parsing?

We propose a multitask learning approach to
incorporating syntactic information into learned

representations of neural semantics models (§2).
Our approach, the syntactic sca↵old, minimizes
an auxiliary supervised loss function, derived from
a syntactic treebank. The goal is to steer the dis-
tributed, contextualized representations of words
and spans toward accurate semantic and syntactic
labeling. We avoid the cost of training or execut-
ing a full syntactic parser, and at test time (i.e.,
runtime in applications) the semantic analyzer has
no additional cost over a syntax-free baseline. Fur-
ther, the method does not assume that the syntactic
treebank overlaps the dataset for the primary task.

Many semantic tasks involve labeling spans, in-
cluding semantic role labeling (SRL; Gildea and
Jurafsky, 2002) and coreference resolution (Ng,
2010) (tasks we consider in this paper), as well
as named entity recognition and some reading
comprehension and question answering tasks (Ra-
jpurkar et al., 2016). These spans are usu-
ally syntactic constituents (cf. PropBank; Palmer
et al., 2005), making phrase-based syntax a natu-
ral choice for a sca↵old. See Figure 1 for an ex-
ample sentence with syntactic and semantic anno-
tations. Since the sca↵old task is not an end in
itself, we relax the syntactic parsing problem to
a collection of independent span-level predictions,
with no constraint that they form a valid parse tree.
This means we never need to run a syntactic pars-
ing algorithm.

Our experiments demonstrate that the syntactic
sca↵old o↵ers a substantial boost to state-of-the-
art baselines for two SRL tasks (§5) and corefer-
ence resolution (§6). Our models use the strongest
available neural network architectures for these
tasks, integrating deep representation learning (He
et al., 2017) and structured prediction at the level
of spans (Kong et al., 2016). For SRL, the base-
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Figure 1: An example sentence with syntactic, PropBank and coreference annotations from OntoNotes,
and author-annotated frame-semantic structures. PropBank SRL arguments and coreference mentions are
annotated on top of syntactic constituents. All but one frame-semantic argument (Event) is a syntactic
constituent. Targets evoke frames shown in the color-coded layers.

line itself is a novel globally normalized structured
conditional random field, which outperforms the
previous state of the art.1 Syntactic sca↵olds re-
sult in further improvements over prior work—
3.6 absolute F1 in FrameNet SRL, 1.1 absolute
F1 in PropBank SRL, and 0.6 F1 in coreference
resolution (averaged across three standard scores).
Our code is open source and available at https:
//github.com/swabhs/scaffolding.

2 Syntactic Sca↵olds

Multitask learning (Caruana, 1997) is a collec-
tion of techniques in which two or more tasks are
learned from data with at least some parameters
shared. We assume there is only one task about
whose performance we are concerned, denoted T1
(in this paper, T1 is either SRL or coreference res-
olution). We use the term “sca↵old” to refer to
a second task, T2, that can be combined with T1
during multitask learning. A sca↵old task is only
used during training; it holds no intrinsic interest
beyond biasing the learning of T1, and after learn-
ing is completed, the sca↵old is discarded.

A syntactic sca↵old is a task designed to steer
the (shared) model toward awareness of syntactic

1This excludes models initialized with deep, contextual-
ized embeddings (Peters et al., 2018), an approach orthogonal
to ours.

structure. It could be defined through a syntac-
tic parser that shares some parameters with T1’s
model. Since syntactic parsing is costly, we use
simpler syntactic prediction problems (discussed
below) that do not produce whole trees.

As with multitask learning in general, we do not
assume that the same data are annotated with out-
puts for T1 and T2. In this work, T2 is defined
using phrase-structure syntactic annotations from
OntoNotes 5.0 (Weischedel et al., 2013; Pradhan
et al., 2013). We experiment with three settings:
one where the corpus for T2 does not overlap with
the training datasets for T1 (frame-SRL) and two
where there is a complete overlap (PropBank SRL
and coreference). Compared to approaches which
require multiple output labels over the same data,
we o↵er the major advantage of not requiring any
assumptions about, or specification of, the rela-
tionship between T1 and T2 output.

3 Related Work

We briefly contrast the syntactic sca↵old with ex-
isting alternatives.

Pipelines. In a typical pipeline, T1 and T2 are
separately trained, with the output of T2 used to
define the inputs to T1 (Wolpert, 1992). Using
syntax as T2 in a pipeline is perhaps the most
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common approach for semantic structure predic-
tion (Toutanova et al., 2008; Yang and Mitchell,
2017; Wiseman et al., 2016).2 However, pipelines
introduce the problem of cascading errors (T2’s
mistakes a↵ect the performance, and perhaps the
training, of T1; He et al., 2013). To date, reme-
dies to cascading errors are so computationally ex-
pensive as to be impractical (e.g., Finkel et al.,
2006). A syntactic sca↵old is quite di↵erent from
a pipeline since the output of T2 is never explicitly
used.

Latent variables. Another solution is to treat
the output of T2 as a (perhaps structured) la-
tent variable. This approach obviates the need
of supervision for T2 and requires marginalization
(or some approximation to it) in order to reason
about the outputs of T1. Syntax as a latent vari-
able for semantics was explored by Zettlemoyer
and Collins (2005) and Naradowsky et al. (2012).
Apart from avoiding marginalization, the syntactic
sca↵old o↵ers a way to use auxiliary syntactically-
annotated data as direct supervision for T2, and it
need not overlap the T1 training data.

Joint learning of syntax and semantics. The
motivation behind joint learning of syntactic and
semantic representations is that any one task is
helpful in predicting the other (Lluı́s and Màrquez,
2008; Lluı́s et al., 2013; Henderson et al., 2013;
Swayamdipta et al., 2016). This typically re-
quires joint prediction of the outputs of T1 and
T2, which tends to be computationally expensive
at both training and test time.

Part of speech sca↵olds. Similar to our work,
there have been multitask models that use part-
of-speech tagging as T2, with transition-based de-
pendency parsing (Zhang and Weiss, 2016) and
CCG supertagging (Søgaard and Goldberg, 2016)
as T1. Both of the above approaches assumed par-
allel input data and used both tasks as supervision.
Notably, we simplify our T2, throwing away the
structured aspects of syntactic parsing, whereas
part-of-speech tagging has very little structure
to begin with. While their approach results in
improved token-level representations learned via
supervision from POS tags, these must still be
composed to obtain span representations. In-

2 There has been some recent work on SRL which com-
pletely forgoes syntactic processing (Zhou and Xu, 2015),
however it has been shown that incorporating syntactic in-
formation still remains useful (He et al., 2017).

stead, our approach learns span-level representa-
tions from phrase-type supervision directly, for se-
mantic tasks. Additionally, these methods explore
architectural variations in RNN layers for includ-
ing supervision, whereas we focus on incorporat-
ing supervision with minimal changes to the base-
line architecture. To the best of our knowledge,
such simplified syntactic sca↵olds have not been
tried before.

Word embeddings. Our definition of a sca↵old
task almost includes stand-alone methods for es-
timating word embeddings (Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018). Af-
ter training word embeddings, the tasks implied
by models like the skip-gram or ELMo’s language
model become irrelevant to the downstream use of
the embeddings. A noteworthy di↵erence is that,
rather than pre-training, a sca↵old is integrated di-
rectly into the training of T1 through a multitask
objective.

Multitask learning. Neural architectures have
often yielded performance gains when trained for
multiple tasks together (Collobert et al., 2011; Lu-
ong et al., 2015; Chen et al., 2017; Hashimoto
et al., 2017). In particular, performance of seman-
tic role labeling tasks improves when done jointly
with other semantic tasks (FitzGerald et al., 2015;
Peng et al., 2017, 2018). Contemporaneously with
this work, Hershcovich et al. (2018) proposed a
multitask learning setting for universal syntactic
dependencies and UCCA semantics (Abend and
Rappoport, 2013). Syntactic sca↵olds focus on a
primary semantic task, treating syntax as an auxil-
lary, eventually forgettable prediction task.

4 Syntactic Sca↵old Model

We assume two sources of supervision: a cor-
pusD1 with instances x annotated for the primary
task’s outputs y (semantic role labeling or corefer-
ence resolution), and a treebankD2 with sentences
x, each with a phrase-structure tree z.

4.1 Loss
Each task has an associated loss, and we seek to
minimize the combination of task losses,

X

(x,y)2D1

L1(x, y) + �
X

(x,z)2D2

L2(x, z) (1)

with respect to parameters, which are partially
shared, where � is a tunable hyperparameter. In
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the rest of this section, we describe the sca↵old
task. We define the primary tasks in Sections 5–6.

Each input is a sequence of tokens, x =

hx1, x2, . . . , xni, for some n. We refer to a span
of contiguous tokens in the sentence as xi: j =

hxi, xi+1, . . . , x ji, for any 1 6 i 6 j 6 n. In our
experiments we consider only spans up to a maxi-
mum length D, resulting in O(nD) spans.

Supervision comes from a phrase-syntactic tree
z for the sentence, comprising a syntactic category
zi: j 2 C for every span xi: j in x (many spans are
given a null label). We experiment with di↵erent
sets of labels C (§4.2).

In our model, every span xi: j is represented by
an embedding vector vi: j (see details in §5.3). A
distribution over the category assigned to zi: j is de-
rived from vi: j:

p(zi: j = c | xi: j) = softmax
c

wc · vi: j (2)

where wc is a parameter vector associated with
category c. We sum the log loss terms for all the
spans in a sentence to give its loss:

L2(x, z) = �
X

16i6 j6n
j�i6D

log p(zi: j | xi: j). (3)

4.2 Labels for the Syntactic Sca↵old Task
Di↵erent kinds of syntactic labels can be used for
learning syntactically-aware span representations:
• Constituent identity: C = {0, 1}; is a span a

constituent, or not?
• Non-terminal: c is the category of a span,

including a null for non-constituents.
• Non-terminal and parent: c is the category

of a span, concatenated with the category of
its immediate ancestor. null is used for non-
constituents, and for empty ancestors.
• Common non-terminals: Since a majority

of semantic arguments and entity mentions
are labeled with a small number of syntac-
tic categories,3 we experiment with a three-
way classification among (i) noun phrase (or
prepositional phrase, for frame SRL); (ii) any
other category; and (iii) null.

In Figure 1, for the span “encouraging them”,
the constituent identity sca↵old label is 1, the non-
terminal label is S|VP, the non-terminal and par-
ent label is S|VP+par=PP, and the common non-
terminals label is set to OTHER.

3In the OntoNotes corpus, which includes both syntac-
tic and semantic annotations, 44% of semantic arguments are
noun phrases and 13% are prepositional phrases.

5 Semantic Role Labeling

We contribute a new SRL model which contributes
a strong baseline for experiments with syntactic
sca↵olds. The performance of this baseline itself
is competitive with state-of-the-art methods (§7).

FrameNet. In the FrameNet lexicon (Baker
et al., 1998), a frame represents a type of event,
situation, or relationship, and is associated with a
set of semantic roles, called frame elements. A
frame can be evoked by a word or phrase in a sen-
tence, called a target. Each frame element of an
evoked frame can then be realized in the sentence
as a sentential span, called an argument (or it can
be unrealized). Arguments for a given frame do
not overlap.

PropBank. PropBank similarly disambiguates
predicates and identifies argument spans. Tar-
gets are disambiguated to lexically specific senses
rather than shared frames, and a set of generic
roles is used for all targets, reducing the argument
label space by a factor of 17. Most importantly,
the arguments were annotated on top of syntactic
constituents, directly coupling syntax and seman-
tics. A detailed example for both formalisms is
provided in Figure 1.

Semantic structure prediction is the task of iden-
tifying targets, labeling their frames or senses, and
labeling all their argument spans in a sentence.
Here we assume gold targets and frames, and con-
sider only the SRL task.

Formally, a single input instance for argument
identification consists of: an n-word sentence x =
hx1, x2, . . . , xni, a single target span t = htstart, tendi,
and its evoked frame, or sense, f . The argu-
ment labeling task is to produce a segmentation
of the sentence: s = hs1, s2, . . . , smi for each in-
put x. A segment s = hi, j, yi: ji corresponds to
a labeled span of the sentence, where the label
yi: j 2 Y f [ {null} is either a role that the span
fills, or null if the span does not fill any role. In
the case of PropBank, Y f consists of all possible
roles. The segmentation is constrained so that ar-
gument spans cover the sentence and do not over-
lap (ik+1 = 1+ jk for sk; i1 = 1; jm = n). Segments
of length 1 such that i = j are allowed. A separate
segmentation is predicted for each target annota-
tion in a sentence.
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5.1 Semi-Markov CRF
In order to model the non-overlapping arguments
of a given target, we use a semi-Markov condi-
tional random field (semi-CRF; Sarawagi et al.,
2004). Semi-CRFs define a conditional distribu-
tion over labeled segmentations of an input se-
quence, and are globally normalized. A single tar-
get’s arguments can be neatly encoded as a labeled
segmentation by giving the spans in between argu-
ments a reserved null label. Semi-Markov mod-
els are more powerful than BIO tagging schemes,
which have been used successfully for PropBank
SRL (Collobert et al., 2011; Zhou and Xu, 2015,
inter alia), because the semi-Markov assumption
allows scoring variable-length segments, rather
than fixed-length label n-grams as under an (n �
1)-order Markov assumption. Computing the
marginal likelihood with a semi-CRF can be done
using dynamic programming in O(n2) time (§5.2).
By filtering out segments longer than D tokens,
this is reduced to O(nD).

Given an input x, a semi-CRF defines a condi-
tional distribution p(s | x). Every segment s =
hi, j, yi: ji is given a real-valued score,  (hi, j, yi: j =

ri, xi: j) = wr · vi: j, where vi: j is an embedding
of the span (§5.3) and wr is a parameter vector
corresponding to its label. The score of the en-
tire segmentation s is the sum of the scores of
its segments:  (x, s) =

Pm
k=1  (sk, xik: jk ). These

scores are exponentiated and normalized to define
the probability distribution. The sum-product vari-
ant of the semi-Markov dynamic programming al-
gorithm is used to calculate the normalization term
(required during learning). At test time, the max-
product variant returns the most probable segmen-
tation, ŝ = arg max s (s, x).

The parameters of the semi-CRF are learned to
maximize a criterion related to the conditional log-
likelihood of the gold-standard segments in the
training corpus (§5.2). The learner evaluates and
adjusts segment scores  (sk, x) for every span in
the sentence, which in turn involves learning em-
bedded representations for all spans (§5.3).

5.2 Softmax-Margin Objective
Typically CRF and semi-CRF models are trained
to maximize a conditional log-likelihood objec-
tive. In early experiments, we found that incor-
porating a structured cost was beneficial; we do
so by using a softmax-margin training objective
(Gimpel and Smith, 2010), a “cost-aware” variant

of log-likelihood:

L1 = �
X

(x,s⇤)2D1

log
exp (s⇤, x)

Z(x, s⇤)
, (4)

Z(x, s⇤) =
X

s
exp { (s, x) + cost(s, s⇤)}. (5)

We design the cost function so that it factors by
predicted span, in the same way  does:

cost(s, s⇤) =
X

s2s
cost(s, s⇤) =

X

s2s
I(s < s⇤). (6)

The softmax-margin criterion, like log-likelihood,
is globally normalized over all of the exponentially
many possible labeled segmentations. The follow-
ing zeroth-order semi-Markov dynamic program
(Sarawagi et al., 2004) e�ciently computes the
new partition function:

↵ j =
X

s=hi, j,yi: ji
j�i6D

↵i�1 exp{ (s, x) + cost(s, s⇤)}, (7)

where Z = ↵n, under the base case ↵0 = 1.
The prediction under the model can be calcu-

lated using a similar dynamic program with the
following recurrence where �0 = 1:

� j = max
s=hi, j,yi: ji

j�i6D

�i�1 exp (s, x). (8)

Our model formulation enforces that arguments do
not overlap. We do not enforce any other SRL
constraints, such as non-repetition of core frame
elements (Das et al., 2012).

5.3 Input Span Representation
This section describes the neural architecture used
to obtain the span embedding, vi: j, correspond-
ing to a span xi: j and the target in consideration,
t = htstart, tendi. For the sca↵old task, since the
syntactic treebank does not contain annotations for
semantic targets, we use the last verb in the sen-
tence as a placeholder target, wherever target fea-
tures are used. If there are no verbs, we use the
first token in the sentence as a placeholder target.
The parameters used to learn v are shared between
the tasks.

We construct an embedding for the span using
• hi and h j: contextualized embeddings for the

words at the span boundary (§5.3.1),
• ui: j: a span summary that pools over the con-

tents of the span (§5.3.2), and
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• ai: j: and a hand-engineered feature vector for
the span (§5.3.3).

This embedding is then passed to a feedforward
layer to compute the span representation, vi: j.

5.3.1 Contextualized Token Embeddings
To obtain contextualized embeddings of each to-
ken in the input sequence, we run a bidirectional
LSTM (Graves, 2012) with ` layers over the full
input sequence. To indicate which token is a pred-
icate, a linearly transformed one-hot embedding v
is used, following Zhou and Xu (2015) and He
et al. (2017). The input vector representing the
token at position q in the sentence is the concate-
nation of a fixed pretrained embedding xq and vq.
When given as input to the bidirectional LSTM,
this yields a hidden state vector hq representing
the qth token in the context of the sentence.

5.3.2 Span Summary
Tokens within a span might convey di↵erent
amounts of information necessary to label the span
as a semantic argument. Following Lee et al.
(2017), we use an attention mechanism (Bahdanau
et al., 2014) to summarize each span. Each con-
textualized token in the span is passed through a
feed-forward network to obtain a weight, normal-
ized to give �k = softmax

i6k6 j
whead · hk, where whead

is a learned parameter. The weights � are then
used to obtain a vector that summarizes the span,
ui: j =

P
i6k6 j; j�i<D �k · hk.

5.3.3 Span Features
We use the following three features for each span:
• width of the span in tokens (Das et al., 2014)
• distance (in tokens) of the span from the tar-

get (Täckström et al., 2015)
• position of the span with respect to the tar-

get (before, after, overlap) (Täckström et al.,
2015)

Each of these features is encoded as a one-hot-
embedding and then linearly transformed to yield
a feature vector, ai: j.

6 Coreference Resolution

Coreference resolution is the task of determin-
ing clusters of mentions that refer to the same
entity. Formally, the input is a document x =
x1, x2, . . . , xn consisting of n words. The goal is
to predict a set of clusters c = {c1, c2, . . .}, where
each cluster c = {s1, s2, . . .} is a set of spans and

each span s = hi, ji is a pair of indices such that
1 6 i 6 j 6 n.

As a baseline, we use the model of Lee et al.
(2017), which we describe briefly in this section.
This model decomposes the prediction of coref-
erence clusters into a series of span classification
decisions. Every span s predicts an antecedent
ws 2 Y(s) = {null, s1, s2, . . . , sm}. Labels s1 to
sm indicate a coreference link between s and one
of the m spans that precede it, and null indicates
that s does not link to anything, either because it
is not a mention or it is in a singleton cluster. The
predicted clustering of the spans can be recovered
by aggregating the predicted links.

Analogous to the SRL model (§5), every span
s is represented by an embedding vs, which is
central to the model. For each span s and a po-
tential antecedent a 2 Y(s), pairwise coreference
scores  (vs, va, �(s, a)) are computed via feedfor-
ward networks with the span embeddings as input.
�(s, a) are pairwise discrete features encoding the
distance between span s and span a and metadata,
such as the genre and speaker information. We re-
fer the reader to Lee et al. (2017) for the details of
the scoring function.

The scores from  are normalized over the pos-
sible antecedents Y(s) of each span to induce a
probability distribution for every span:

p(ws = a) = softmax
a2Y(s)

 (vs, va, �(s, a)) (9)

In learning, we minimize the negative log-
likelihood marginalized over the possibly correct
antecedents:

L1 = �
X

s2D
log

X

a⇤2G(s)\Y(s)

p(ws = a⇤) (10)

whereD is the set of spans in the training dataset,
and G(s) indicates the gold cluster of s if it belongs
to one and {null} otherwise.

To operate under reasonable computational re-
quirements, inference under this model requires a
two-stage beam search, which reduces the number
of span pairs considered. We refer the reader to
Lee et al. (2017) for details.

Input span representation. The input span em-
bedding, vs for coreference resolution and its syn-
tactic sca↵old follow the definition used in §5.3,
with the key di↵erence of using no target features.
Since there is a complete overlap of input sen-
tences betweenDsc andDpr as the coreference an-
notations are also from OntoNotes (Pradhan et al.,
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2012), we reuse the v for the sca↵old task. Addi-
tionally, instead of the entire document, each sen-
tence in it is independently given as input to the
bidirectional LSTMs.

7 Results

We evaluate our models on the test set of
FrameNet 1.5 for frame SRL and on the test set
of OntoNotes for both PropBank SRL and coref-
erence. For the syntactic sca↵old in each case,
we use syntactic annotations from OntoNotes
5.0 (Weischedel et al., 2013; Pradhan et al.,
2013).4 Further details on experimental settings
and datasets have been elaborated in the supple-
mental material.

Frame SRL. Table 1 shows the performance of
all the sca↵old models on frame SRL with respect
to prior work and a semi-CRF baseline (§5.1)
without a syntactic sca↵old. We follow the o�-
cial evaluation from the SemEval shared task for
frame-semantic parsing (Baker et al., 2007).

Prior work for frame SRL has relied on pre-
dicted syntactic trees, in two di↵erent ways: by
using syntax-based rules to prune out spans of text
that are unlikely to contain any frame’s argument;
and by using syntactic features in their statistical
model (Das et al., 2014; Täckström et al., 2015;
FitzGerald et al., 2015; Kshirsagar et al., 2015).

The best published results on FrameNet 1.5 are
due to Yang and Mitchell (2017). In their sequen-
tial model (seq), they treat argument identification
as a sequence-labeling problem using a deep bidi-
rectional LSTM with a CRF layer. In their rela-
tional model (Rel), they treat the same problem as
a span classification problem. Finally, they intro-
duce an ensemble to integerate both models, and
use an integer linear program for inference satis-
fying SRL constraints. Though their model does
not do any syntactic pruning, it does use syntactic
features for argument identification and labeling.5

Notably, all prior systems for frame SRL listed
in Table 1 use a pipeline of syntax and seman-
tics. Our semi-CRF baseline outperforms all prior
work, without any syntax. This highlights the ben-

4http://cemantix.org/data/ontonotes.html
5Yang and Mitchell (2017) also evaluated on the full

frame-semantic parsing task, which includes frame-SRL as
well as identifying frames. Since our frame SRL performance
improves over theirs, we expect that incorporation into a full
system (e.g., using their frame identification module) would
lead to overall benefits as well; this experiment is left to fu-
ture work.

efits of modeling spans and of global normaliza-
tion.

Turning to sca↵olds, even the most coarse-
grained constituent identity sca↵old improves the
performance of our syntax-agnostic baseline. The
nonterminal and nonterminal and parent sca↵olds,
which use more detailed syntactic representations,
improve over this. The greatest improvements
come from the sca↵old model predicting com-
mon nonterminal labels (NP and PP, which are the
most common syntactic categories of semantic ar-
guments, vs. others): 3.6% absolute improvement
in F1 measure over prior work.

Contemporaneously with this work, Peng et al.
(2018) proposed a system for joint frame-semantic
and semantic dependency parsing. They report re-
sults for joint frame and argument identification,
and hence cannot be directly compared in Table 1.
We evaluated their output for argument identifica-
tion only; our semi-CRF baseline model exceeds
their performance by 1 F1, and our common non-
terminal sca↵old by 3.1 F1.6

Model Prec. Rec. F1

Kshirsagar et al. (2015) 66.0 60.4 63.1
Yang and Mitchell (2017) (Rel) 71.8 57.7 64.0
Yang and Mitchell (2017) (Seq) 63.4 66.4 64.9
†Yang and Mitchell (2017) (All) 70.2 60.2 65.5

Semi-CRF baseline 67.8 66.2 67.0

+ constituent identity 68.1 67.4 67.7
+ nonterminal and parent 68.8 68.2 68.5
+ nonterminal 69.4 68.0 68.7
+ common nonterminals 69.2 69.0 69.1

Table 1: Frame SRL results on the test set of
FrameNet 1.5., using gold frames. Ensembles are
denoted by †.

Model Prec. Rec. F1

Zhou and Xu (2015) - - 81.3
He et al. (2017) 81.7 81.6 81.7
He et al. (2018a) 83.9 73.7 82.1
Tan et al. (2018) 81.9 83.6 82.7

Semi-CRF baseline 84.8 81.2 83.0

+ common nonterminals 85.1 82.6 83.8

Table 2: PropBank sSRL results, using gold pred-
icates, on CoNLL 2012 test. For fair comparison,
we show only non-ensembled models.

6This result is not reported in Table 1 since Peng et al.
(2018) used a preprocessing which renders the test set slightly
larger — the di↵erence we report is calculated using their test
set.
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Model MUC B3 CEAF�4 Avg. F1

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016b) 79.9 69.3 74.2 71.0 56.5 63.0 63.8 54.3 58.7 65.3
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7

Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

+ common nonterminals 78.4 74.3 76.3 68.7 62.9 65.7 62.9 60.2 61.5 67.8

Table 3: Coreference resolution results on the test set on the English CoNLL-2012 shared task. The
average F1 of MUC, B3, and CEAF�4 is the main evaluation metric. For fair comparison, we show only
non-ensembled models.

PropBank SRL. We use the OntoNotes data
from the CoNLL shared task in 2012 (Pradhan
et al., 2013) for Propbank SRL. Table 2 reports
results using gold predicates.

Recent competitive systems for PropBank SRL
follow the approach of Zhou and Xu (2015), em-
ploying deep architectures, and forgoing the use of
any syntax. He et al. (2017) improve on those re-
sults, and in analysis experiments, show that con-
straints derived using syntax may further improve
performance. Tan et al. (2018) employ a similar
approach but use feed-forward networks with self-
attention. He et al. (2018a) use a span-based clas-
sification to jointly identify and label argument
spans.

Our syntax-agnostic semi-CRF baseline model
improves on prior work (excluding ELMo), show-
ing again the value of global normalization in se-
mantic structure prediction. We obtain further im-
provement of 0.8 absolute F1 with the best syn-
tactic sca↵old from the frame SRL task. This in-
dicates that a syntactic inductive bias is benefi-
cial even when using sophisticated neural archi-
tectures.

He et al. (2018a) also provide a setup where ini-
tialization was done with deep contextualized em-
beddings, ELMo (Peters et al., 2018), resulting in
85.5 F1 on the OntoNotes test set. The improve-
ments from ELMo are methodologically orthogonal
to syntactic sca↵olds.

Since the datasets for learning PropBank se-
mantics and syntactic sca↵olds completely over-
lap, the performance improvement cannot be at-
tributed to a larger training corpus (or, by exten-
sion, a larger vocabulary), though that might be a
factor for frame SRL.

A syntactic sca↵old can match the performance
of a pipeline containing carefully extracted syntac-
tic features for semantic prediction (Swayamdipta
et al., 2017). This, along with other recent ap-

proaches (He et al., 2017, 2018b) show that syntax
remains useful, even with strong neural models for
SRL.

Coreference. We report the results on four stan-
dard scores from the CoNLL evaluation: MUC, B3

and CEAF�4 , and their average F1 in Table 3. Prior
competitive coreference resolution systems (Wise-
man et al., 2016; Clark and Manning, 2016b,a) all
incorporate synctactic information in a pipeline,
using features and rules for mention proposals
from predicted syntax.

Our baseline is the model from Lee et al.
(2017), described in §6. Similar to the baseline
model for frame SRL, and in contrast with prior
work, this model does not use any syntax.

We experiment with the best syntactic sca↵old
from the frame SRL task. We used NP, OTHER, and
null as the labels for the common nonterminals
sca↵old here, since coreferring mentions are rarely
prepositional phrases. The syntactic sca↵old out-
performs the baseline by 0.6 absolute F1. Contem-
poraneously, Lee et al. (2018) proposed a model
which takes in account higher order inference and
more aggressive pruning, as well as initialization
with ELMo embeddings, resulting in 73.0 average
F1. All the above are orthogonal to our approach,
and could be incorporated to yield higher gains.

8 Discussion

To investigate the performance of the syntactic
sca↵old, we focus on the frame SRL results, where
we observed the greatest improvement with re-
spect to a non-syntactic baseline.

We consider a breakdown of the performance
by the syntactic phrase types of the arguments,
provided in FrameNet7 in Figure 2. Not surpris-

7We used FrameNet syntactic phrase annotations for anal-
ysis only, and not in our models, since they are annotated only
for the gold arguments.
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Figure 2: Performance breakdown by argu-
ment’s phrase category, sorted left to right by
frequency, for top ten phrase categories.

Figure 3: Performance breakdown by top ten
frame element types, sorted left to right by fre-
quency.

ingly, we observe large improvements in the com-
mon nonterminals used (NP and PP). However,
the phrase type annotations in FrameNet do not
correspond exactly to the OntoNotes phrase cat-
egories. For instance, FrameNet annotates non-
maximal (A) and standard adjective phrases (AJP),
while OntoNotes annotations for noun-phrases are
flat, ignore the underlying adjective phrases. This
explains why the syntax-agnostic baseline is able
to recover the former while the sca↵old is not.

Similarly, for frequent frame elements, sca↵old-
ing improves performance across the board, as
shown in Fig. 3. The largest improvements come
for Theme and Goal, which are predominantly re-
alized as noun phrases and prepositional phrases.

9 Conclusion
We introduced syntactic sca↵olds, a multitask
learning approach to incorporate syntactic bias
into semantic processing tasks. Unlike pipelines
and approaches which jointly model syntax and
semantics, no explicit syntactic processing is re-
quired at runtime. Our method improves the per-
formance of competitive baselines for semantic
role labeling on both FrameNet and PropBank,
and for coreference resolution. While our focus
was on span-based tasks, syntactic sca↵olds could
be applied in other settings (e.g., dependency and
graph representations). Moreover, sca↵olds need
not be syntactic; we can imagine, for example, se-
mantic sca↵olds being used to improve NLP appli-
cations with limited annotated data. It remains an
open empirical question to determine the relative
merits of di↵erent kinds of sca↵olds and multi-
task learners, and how they can be most produc-

tively combined. Our code is publicly available at
https://github.com/swabhs/scaffolding.
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Abstract

Scripts define knowledge about how everyday
scenarios (such as going to a restaurant) are
expected to unfold. One of the challenges to
learning scripts is the hierarchical nature of
the knowledge. For example, a suspect ar-
rested might plead innocent or guilty, and a
very different track of events is then expected
to happen. To capture this type of informa-
tion, we propose an autoencoder model with a
latent space defined by a hierarchy of categor-
ical variables. We utilize a recently proposed
vector quantization based approach, which al-
lows continuous embeddings to be associated
with each latent variable value. This permits
the decoder to softly decide what portions of
the latent hierarchy to condition on by attend-
ing over the value embeddings for a given set-
ting. Our model effectively encodes and gen-
erates scripts, outperforming a recent language
modeling-based method on several standard
tasks, and allowing the autoencoder model to
achieve substantially lower perplexity scores
compared to the previous language modeling-
based method.

1 Introduction

Scripts were originally proposed by Schank and
Abelson (1977) as “structures that describe the
appropriate sequence of events in a particular
context”. These event sequences define expec-
tations for how common scenarios (such as go-
ing to a restaurant) should unfold, thus enabling
better language understanding. Although scripts
represented many other factors (roles, entry con-
ditions, outcomes) recent work in script induc-
tion (Rudinger et al., 2015; Pichotta and Mooney,
2016; Peng and Roth, 2016) has focused on lan-
guage modeling (LM) approaches where the “ap-
propriate sequence of events” is the textual or-
der of events (tuples of event predicates and their
arguments). Modeling a distribution of text se-
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face

denied plead

convictedfiled

suspectpolice

dismissed sentenced
judge

jury

charges

guilty

complaint

suspect

suspect suspect

suspect

suspectjudge

suspect

charges

charges

Figure 1: An automatically learned multi-track
script. The left track is a dismissed case, and the
right is a convicted suspect. Our model generated
both tracks through a latent hierarchy.

quences gives the intuitive interpretation of appro-
priate event sequences being roughly equivalent
to probable textual sequences. We continue with
an LM approach, but we tackle two very impor-
tant LM problems that have not yet been addressed
with regards to event sequence modeling.

The first problem to address is that language
models tend towards local coherency. Count
based models are restricted by window size and
sparse counts, while neural language models are
known to rely on the local context for predictions.
Since scripts are meant to describe longer coherent
scenarios, this is a major issue. For example, con-
tradictory events like (he denied charges) and (he
pleads guilty) are given high probability in a typ-
ical language model. Our model instead captures
these variations with learned latent variables.

The second problem with recent work is that the
hierarchical nature of scripts is not explicitly cap-
tured. A high level script (like a suspect getting
arrested) can branch off into many possible varia-
tions. These variations are called the “tracks” of
a script. Figure 1 shows a script with two tracks
learned by our model. LM-based approaches of-
ten fail to explicitly capture this structure, instead
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throwing it all into one big distribution. This mud-
dies the water for language understanding, making
it difficult to tease apart differences like going to a
fancy restaurant or a casual restaurant.

To remedy these problems, we propose a model
that captures hierarchical structure via global la-
tent variables. The latent variables are categorical
(representing the various types of scripts and thier
possible tracks and variations) and form a tree (or
more generally, a DAG)1, thus capturing hierarchi-
cal structure with the top (or bottom) levels of the
tree representing high (or low) level features of the
script. The top might control for large differences
like restaurant vs crime, while the bottom selects
between fancy and casual dining.

The overall model, which we describe below,
takes the form of an autoencoder, with an encoder
network inferring values of the latents and a de-
coder conditioned on the latents generating scripts.
We show the usefulness of these latent representa-
tions against a prior RNN language model based
system (Pichotta and Mooney, 2016) on several
tasks. We additionally evaluate the perplexity of
the system against the RNN language model, a
task that autoencoder models have typically strug-
gled with (Bowman et al., 2016). We find that the
latent tree reduces model perplexity by a signifi-
cant amount, possibly indicating the usefulness of
the model in a more general sense.

2 Background

2.1 Variational Autoencoders
Variational Autoencoders (VAEs, Kingma and
Welling (2014)) are generative models which learn
latent codes z for the data x by maximizing a lower
bound on the data likelihood:

log(p(x)) � Eq(z|x)[p(x|z)] � KL[q(z|x)||p(z)]

VAEs consist of two components: an encoder
which parameterizes the latent posterior q(z|x)
and a decoder which parameterizes p(x|z). The
objective function can be made completely differ-
entiable via the reparameterization trick, with the
full model resembling an autoencoder and the KL
term acting as a regularizer.

While VAEs have been useful in continuous
domains, they have been less successful in gen-
erating discrete domains whose outputs have lo-

1In this work we only look at linear chains of categorical
variables, which is enough to encode trees (such as the one in
Figure 1)

cal syntactic regularities. Part of this is due to
the “posterior collapse” problem (Bowman et al.,
2016); when VAEs are equipped with powerful au-
toregressive decoders, they tend to ignore the la-
tent, collapsing the posterior q(z|x) to the (usually
zero-mean Gaussian) prior p(z). By doing this,
the model takes no penalty from the KL term, but
effectively ignores its encoder.

2.2 Vector Quantized Variational
Autoencoders

Vector Quantized VAEs (VQ-VAEs, van den Oord
et al. (2017)) are a recently proposed class of mod-
els which both alleviates the posterior collapse
problem and allows the model to use a latent space
of discrete values. In VQ-VAEs the latent z is rep-
resented as a categorical variable that can take on
K values. Each of these values k 2 {1, ..., K}
has associated with it a vector embedding ek. The
posterior of VQ-VAEs are discrete, deterministic,
and parameterized as follows:

q(z = k|x) =

(
1 k=argmini||f(x) � ei||2
0 elsewise

where f(x) is a function defined by an encoder
network. The decoding portion of the network is
similar to VAEs, where a decoder parameterizes a
distribution p(x|z = k) = g(ek), where g is the
decoder network, and ek is the corresponding em-
bedding, which is fed as input to the decoder. This
process can be seen as a ”quantization” operation
mapping the continuous encoder output to the la-
tent embedding it falls closest to, and then feeding
this latent embedding (in lieu of the encoder out-
put) to the decoder.

The quantization operator is not differentiable,
thus during training, the gradient of the loss with
respect to the decoder input is used as an estima-
tion to the gradient of the loss with respect to the
encoder output. If one assumes a uniform prior
over the latents (we do so here), then the KL term
in the VAE objective becomes constant and may
be ignored. In practice, multiple latent variables
z may by used, each with their own (or shared)
embeddings space.

3 Hierarchical Quantized Autoencoder

Our goal is to build a model that can generate glob-
ally coherent multi-track scripts which allow us to
account for the different ways in which a script
can unfold. The main idea behind our approach
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Figure 2: Hierarchical Quantized Autoencoder Ar-
chitecture

is to use a hierarchical latent space which condi-
tions the generation of the scripts. The VQ-VAE
models (described earlier) provide a way to model
discrete variables in an autoencoding framework
while avoiding the posterior collapse problem. We
build on this framework to propose a new Hierar-
chicAl Quantized Autoencoder (HAQAE) model.

HAQAEs are autoencoders with M latent vari-
ables, z0, ..., zM . Each latent variable is categor-
ical taking on K different values. Like in VQ-
VAEs, every categorical value k for variable z has
an associated embeddings ezk. The latent vari-
ables are given a tree structure and the full pos-
terior over all M latents z factorizes as:

q(z|x) = q0(z0|x)
M�1Y

i=1

qi(zi|pr(zi), x)

where pr(zi) denotes the parent of zi in the tree.
Since the latent variables are meant to capture the
hierarchical categorization of the script, we make
the assumption that when a higher level script cat-
egory (for example, z0) is observed with the ac-
tual sequence of events (x), determining the im-
mediate lower level category (z1) is a determinis-
tic operation. Thus, similar to VQ-VAEs, we pa-
rameterize the individual factors of the posterior,
qi(zi = k|pr(zi), x), as:

(
1 k=argminj ||fi(x, pr(zi)) � eij ||2
0 elsewise

where fi(x, pr(zi)) is an encoding function spe-
cific to latent zi and eij is the jth value em-

beddings for zi. The distribution p(x|z) is simi-
larly parameterized by an decoder function g(ze),
where ze is the set of corresponding value embed-
ding for each latent zi. We describe the forms of
the encoder and decoder in the next section.

3.1 HAQAE Encoder and Decoder

During the encoding process, certain parts of the
input may provide more evidence towards differ-
ent parts of the hierarchy. For example, the event
(he ate food) gives evidence to the high level cate-
gory of a restaurant script, while the more specific
event (he drank wine) gives more evidence to the
lower level category fancy restaurant. Thus dur-
ing encoding, it makes sense to allow each latent
to decide which parts of the input to take into con-
sideration, based on its parent latents. This is ac-
complished by parameterizing the encoding func-
tion for latent zi as an attention over the input x,
with the parent of zi (more specifically, the embed-
ding for the parent’s current value) acting as the
‘query’ vector. As is standard when using atten-
tion, the input sequence of events, x = (x1, ...xn),
is first encoded into a sequence of hidden states
hx = (h1, ..., hn) via a RNN encoder. The full
encoding function for latent zi can thus be written
as:

fi(x, pr(zi)) = attn(hx, pr(zi))

Though any attention formulation is possible, we
use the bi-linear attention proposed in Luong et al.
(2015) in our implementations. For the root of the
latent tree (z0), which has no parents, we use the
averaged value of the encoder vectors hx as the
query vector for its attention.

We can define the decoder in a similar fashion.
As is usually done, the distribution p(x|ze) can be
defined in an autoregressive manner using a RNN
decoder network. Like the encoding process, dif-
ferent parts of the hierarchy may affect the gen-
eration of different parts of the input. We thus
also allow the decoder network g(ze) to be a RNN
with a standard attention mechanism over the la-
tent value embeddings, ze. Since the latent root z0

is supposed to capture the highest level informa-
tion about the script, we use its embedding value,
(passed through an affine transformation and tanh
activation) to initialize the hidden state of the de-
coder. Both encoder and decoder can be trained
end to end using the same gradient estimation used
for VQ-VAE.
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3.2 Training Objective
The training objective for HAQAE is nearly
the same as the VQ-VAE objective proposed in
van den Oord et al. (2017). For a single training
example, xi the objective can be written as:

L = � log p(xi|z) +
1

M

MX

j

LR
j +

1

M

MX

j

LC
j

where LR
j and LC

j are the reconstruct and commit
loss for the jth latent variable. As in van den Oord
et al. (2017), we let sg(·) stand for a stop gradient
operator, such that any term passed to it is treated
as a constant. The reconstruction loss is defined
as:

LR
j = ||sg(fj(x, pr(zj))) � e⇤

j ||22
where e⇤

j is the argmin value embedding for zj (for
the given input). The reconstruct loss is how the
value embeddings for z are learned, and pushes the
value embeddings to be closer to the output of the
fi. The commit loss is defined as:

LC
j = �||fj(x, pr(zj)) � sg(e⇤

j )||22

which forces the encoder to push its output closer
to some embedding, preventing a situation in
which the encoder maps inputs far away from all
embeddings. � is a hyperparameter that weighs
the commit loss2. Note that the commitment loss
may be propogated all the way up through the hier-
archy of latent nodes. We allow the latent embed-
dings to receive updates only from the reconstruct
and commit loss (not from the NLL loss).

4 Training Details

4.1 Dataset and Preprocessing
Dataset We use the New York Times Gigaword
Corpus as our dataset. The corpus contains a to-
tal of around 1.8 million articles. We hold out
4000 articles from the corpus to construct our de-
velopment (dev) set for hyperparameter tuning and
6000 articles for the test set. The input and output
of the model is in the form of an event sequence.
Each event is defined as a 4-tuple, (v, s, o, p), con-
taining the verb, subject, object and preposition.
Events without prepositions are given a null token
in their preposition slot. The components of the
events (the verb, subject, etc.) are all taken to be
individual tokens, and can thus be treated more or

2In our implementations we set � = 0.25

less like normal text. For example, the events (he
played harp), (he touched moon), would be tok-
enized and given to the model as: played he harp
null tup touched he moon null, where null is the
null preposition token and tup is a special separa-
tion token between events.

We extract event tuples using Open Information
Extraction system Ollie (Mausam et al., 2012).
We then group together event tuples for 4 subse-
quent sentences to create a single event sequence.
We also ignore tuples with common (is, are, be,
...) and repeating predicates. Finally we have
7123097, 19425, and 28667 event sequences for
training, dev, and test dataset respectively. For all
the experiments we fix the minimum and maxi-
mum sequence lengths to be 8 and 50 respectively.

4.2 HAQAE Model Details
The HAQAE model we use across all evaluations
uses 5 discrete latent variables, structured in the
form of a linear chain (thus no variable has more
than one child or parent). Each variable can ini-
tially take on K = 512 values, with all latents
having an embeddings dimension of 256. The en-
coder RNN that performs the initial encoding of
the event sequence is a bidirectional, single layer
RNN with GRU cell (Cho et al., 2014) with a
hidden dimension of 512. The inputs to this en-
coder are word embeddings derived from the one-
hot encodings of the tokens in the event sequence.
The embeddings size is 300. We find initializ-
ing the embeddings with pretrained GloVe (Pen-
nington et al., 2014) vectors to be useful. The de-
coder RNN is also a single layer RNN with GRU
cells with a hidden dimension of 512 and 300
dimensional (initialized) word embeddings as in-
puts. For all experiments we use a vocabulary size
of 50k. We train the model using Adam (Kingma
and Ba, 2014) with a learning rate of 0.0005, and
gradient clipping at 5.0. We find that the training
converges around 1.5 epochs on our dataset. Fur-
ther details can be found in our implementation3

4.3 Baselines
We compare the performance of our proposed
model against three previous baselines and a mod-
ification of our HAQAE model that removes ex-
plicit dependencies between latents.

RNN Language Model For our first baseline
system we train a RNN sequence model. This

3github.com/StonyBrookNLP/HAQAE
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model is 2 layered GRU cells with hidden size 512
and embedding size 300. We use Adam with a
learning rate 0.001. To prevent the problem of ex-
ploding gradients, we clip the gradients at 10. We
use uniform distribution [-0.1, 0.1] for random ini-
tialization and biases initialized to zero. We also
use a dropout of 0.15 on the input and output em-
bedding layers but none on the recurrent layers.
We initialize the word embedding layer with pre-
trained Glove vectors as it improved the perfor-
mance and makes the system directly comparable
to HAQAE. We refer to this model as RNNLM in
the following sections.

RNNLM + Role Embeddings We also repro-
duced the model from Pichotta and Mooney
(2016) for comparison. This model is similar to
the one above except that at each time step the
model has an additional role marker input going
into it. The marker guides the language model
further by indicating what type of input is being
currently fed to it: a subject, object, or predicate.
These role embeddings are learned during training
itself. Hyperparameters are exactly the same as
the RNNLN except that the role embeddings have
a dimension of 300. We will refer to this model as
RNNLM+Role. We perform hyperparameter tun-
ing of both the models using the development set.
We use a vocabulary size of 50k. We trained both
the baseline models for 2 epochs on the training
set.

VAE We report results using a vanilla VAE
model similar to the one used in Bowman et al.
(2016). The encoder/decoder for the VAE baseline
has the same specs as the encoder/decoder for the
HAQAE model, with a latent dimension of 300.
We use linear KL annealing for the first 15000
steps and 0.5 as the word dropout rate.

Hierarchyless HAQAE (NOHIER) In order to
test the effect of explicitly having a hierarchy in
the latent variables, we additionally train another
HAQAE model with no explicit hierarchical latent
space. The model still has 5 discrete latent vari-
ables like our original model, however each of the
variables are independent of each other (given the
input). All five variables are have an attention over
the input and take the average of encoder vectors
hx as the query vector (as done with the latent root
z0 in the original model). We additionally desig-
nate one of the variables to be used to initialize the
hidden state of the decoder. We found the same

System validation test
NLL PPL NLL PPL

RNNLM 4.52 91.84 4.51 90.92
RNNLM+Role 4.53 92.76 4.53 92.76

VAE 4.56 95.58 4.55 94.63
NOHIER 3.77 43.38 3.78 43.82
HAQAE 3.73 41.68 3.74 42.10

Table 1: Negative log-likelihood (NLL) and per-
plexity (PPL) measures on the validation and test
set. Lower is better for both metrics.

training hyperparmaters used in the training of the
original model to work well here.

5 Evaluation

5.1 Language Modeling: Perplexity
As our proposed models are essentially language
models, it is natural to evaluate their perplexity
scores, which can be viewed as an indirect mea-
sure of how well the models can identify scripts.
We compute per-word perplexity and per-word
negative log likelihood on the validation and test
sets. We compute these values without consid-
ering the end-of-sentence (EOS) token. Table 1
gives these results. A good language model should
assign low perplexity (high probability) to the val-
idation and test sets. We observe that HAQAE
achieves the minimum negative log likelihood and
perplexity scores on both the validation and test
sets as compared to the previous RNN-based mod-
els. The result is particularly interesting as au-
toencoders usually perform worse or comparable
to other RNN language models in terms of per-
plexity (negative log likelihood) as is in the case
of the vanilla VAE here; similar observations have
also been made in Bowman et al. (2016).

5.2 Inverse Multiple Choice Narrative Cloze
Narrative cloze evaluations of event based lan-
guage models (LMs) start with a sequence of
events as input and test whether the LMs cor-
rectly predict a single held-out event. The standard
narrative cloze task has various issues (Cham-
bers, 2017). In our evaluations we opt instead for
the multiple choice variant proposed in Granroth-
Wilding and Clark (2016).

One of our goals is to test if our generative
model can produce globally coherent scripts by
evaluating their ability to generate coherent event
sequences. To evaluate this we create a new in-
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System validation test
RNNLM 25.30 26.30

RNNLM+Role 24.60 26.35
VAE 26.54 28.01

NOHIER 31.68 34.00
HAQAE 31.80 33.85

Table 2: Inverse narrative cloze accuracy(%) on
randomly selected 2k validation and test set. Mod-
els scored on whether they assign a higher proba-
bility to legitimate event sequence over detractor
event sequences. Higher is better.

verse narrative cloze task. Instead of being given
an event sequence and predicting a single event to
go with it, we instead are given only one event
and the model must identify the rest of the event
sequence. The model is identifying sequences of
events, not single events. We chose this setup be-
cause sequences is what we ultimately want, but
also because identifying single events resulted in
very high scores (around 98% accuracy). This task
proved to be more challenging as an evaluation.

We thus score a model based on the probabil-
ity it assigns to event sequences that begin with
a single input event. A legitimate event sequence
should have high probability compared to an event
sequence that is stitched together using two ran-
dom event sequences. We create legitimate event
sequences of a fixed length (six) by extracting ac-
tual event sequences observed in documents. For
every legitimate event sequence, we use the first
event in the sequence as a seed event. Then, we
construct detractor event sequences for this seed
by appending a different sequence of events (num-
ber of events being five) from a randomly cho-
sen document. We create five such detractor se-
quences for every legitimate sequence. We rank
the six sequences based on the probabilities as-
signed by the model and then evaluate the ac-
curacy of the top ranked sequence. A random
model will uniformly choose one among the six
sequences and thus will score 16 = 16.60% on the
task. We report results averaged over 2000 sets of
legitimate and detractor sequences.

Results in Table 2 show that the HAQAE is sub-
stantially better than both RNN LMs and vanilla
VAE and similar to the NOHIER model, which
shows the usefulness of the quantized embeddings
overall as a global representation. The comparable
results of the NOHIER model on this task might

Figure 3: Cross entropy error on dev set of NO-
HIER (red) and HAQAE (blue) models as training
progresses.

also indicate that explicitly modeling the hierar-
chical structure may not be completely necessary
if ones only aim is to capture global coherence.
The results on the perplexity task do indicate that
overall, modeling the hierarchical structure is use-
ful for better prediction.

5.3 Comparing HAQAE and NOHIER

Both HAQAE and NOHIER models achieve the
best results across all tasks. The HAQAE model
does better on the perplexity task, while results of
the two models on the cloze task are nearly the
same. One clear benefit of explicitly connecting
the latent variables together appears to be in the
efficiency of the learning. The HAQAE model
performs comparable or better than the NOHIER
model despite (in this case at least) having fewer
parameters4.

The HAQAE model also appears to learn much
faster than the NOHIER model. We show this
in Figure 3, which shows the per-word cross en-
tropy error on the validation set as training pro-
gresses. We observe that the cross entropy error
drops much faster in the latter model than the for-
mer one. Also, the error is always lower for the
HAQAE model.

One possibility is that the NOHIER model
learns similar information as the HAQAE model,
but due to its lack of explicit inductive bias, takes
a longer time to learn this. We leave it as future
work to confirm whether this is the case through
an in depth study into the properties of the learned
discrete latents.

4NOHIER has more parameters in our case due to each
latent taking a bidirectional encoder state as a query vector,
as opposed to taking the parent latent vector as the query
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5.4 Evaluating Event Schemas
So far, we’ve evaluated how well the models rec-
ognize real textual events (perplexity) and how
well the models predict events in scripts (narrative
cloze). This section evaluates the script genera-
tion ability of the model, and specifically its abil-
ity to capture hierarchical information with differ-
ent tracks in scripts (e.g., pleading guilty causes
different events to occur than does pleading inno-
cent). In many respects, this section illustrates best
the power of HAQAE even though the results are
partly subjective.

While we presented two automatic evaluations
above, we shift to human judgment to evaluate the
scripts themselves. We believe this complements
the empirical gains already presented. The scripts
generated by the models were shown to human
judges and scored on several metrics.

Most previous work on script induction starts
with a seed event and then grows the script based
on measures of event proximity or from sampling
the distribution with the seed as context. While ef-
fective in generating a bag of events, a major prob-
lem in all previous work is that conflicting events
are included (sentenced and acquitted). While the
events are related and part of the same high-level
script, they should never appear together in an ac-
tual instance of a script.

In order to evaluate our model for this type of
knowledge, we instead defined a seed as 2 events:
the first event sets the general topic, and the sec-
ond event starts a specific track in that topic. For
instance, below are two seeds that are intended to
generate two tracks for the same script:

“people reported fire”
“fire spread in neighborhood”

“people reported fire”
“fire spread to forest”

For each seed (2 events in one seed) we select
the first 3 events generated by a model conditioned
on the seed as context. The 2 events in a seed thus
initialize the latent variable values, which then
inform the decoder to generate more events (we
choose the first 3). The strength of our model is
that the second event helps select the more spe-
cific script track, and to ignore conflicting events
in other tracks.

While generating for both RNNLM+Role and
HAQAE models, we additionally enforce a con-
straint that restricts models from generating events

that have a predicate that has already been gener-
ated, as well as events whose subject and object
are the same.

We evaluated the RNNLM+Role model from
Pichotta and Mooney (2016) against our proposed
HAQAE. Each model was given 40 seeds (20 first
event each with 2 contrasting second seed) and
thus generated 40 scripts. The annotators were
also shown the seeds (2 events), and then asked to
rate each three-event sequence for various metrics
described below.
Non-Sensical (Sense): Binary, is each event itself
non-sensical or understandable?
Event Relevance (Rel): Binary, each event was
scored for being relevant or not to the script topic.
This ignored whether it was consistent with the
seed’s branch.
Coherency with Branch (Coh): 0-2, each event
was scored for being coherent with the seed’s spe-
cific branch (the second event). 0 means not at all,
1 means somewhat, and 2 means yes.
Branching Uniqueness (BranchU): 0-2, each
pair of scripts (both branches of the same topic)
were scored for overlap of events. 0 means similar
events generated for both, 1 means some similar
events, and 2 means distinct. This score is impor-
tant because some RNN decoders might ignore the
second event and focus on the general topic only.
Branching Quality (BranchQ): 0-2, each gen-
erated branch was scored for branch quality. 0
means the generated events are not specific to the
branch, 1 means some are specific, and 2 means
most/all events are specific. This is the most im-
portant score in measuring how well a model cap-
tures hierarchical structure and script tracks.

Two expert annotators evaluated the generated
event sequences. In case of disagreements in
scores, we also involved a third annotator to re-
solve these conflicts. Results for this task are
shown in Table 3.

Both RNNLM and HAQAE produce sensical
events, but the HAQAE model outperforms on all
other metrics. It produces more relevant and co-
herent events for the topic at hand (relevance and
coherency). But most important to the goals of this
paper, it doubles the RNNLM scores on branch-
ing uniqueness and quality. This is because an
RNNLM mostly generates from a bag of events
after encoding the seed, but the HAQAE utilizes
its latent space to produce branch-specific tracks
of event sequences. Tables 4 show a few such ex-
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System Sense(%) Rel(%) Coh(0-2) BranchU(0-2) BranchQ(0-2)
RNNLM+Role 93.13 84.73 1.35 0.65 0.51

HAQAE 93.13 95.37 1.59 1.35 1.00

Table 3: Human evaluation of schemas generated for the seed events. HAQAE consistently performs
better than the baseline model. Higher is better for all metrics.

RNN+Role bomb found in backpack, bomb failed to detonate bomb killed people, bomb detonated in blast
bomb found in backpack, bomb detonated explosion killed people, people injured in blast
people reported fire, fire spread to forest fire destroyed building
people reported fire, fire spread to neighborhood fire damaged building

HAQAE bomb found in backpack, bomb failed to detonate they found evidence, explosive hidden in luggage
bomb found in backpack, bomb detonated blast left crater, blast killed people
people reported fire, fire spread to forest fire burned acres
people reported fire, fire spread to neighborhood fire destroyed building

Table 4: Sample outputs from the baseline and our proposed system. The seeds (what is given to the
system) are shown in the left column while the outputs are on the right. HAQAE is able to distinguish
between the contrasting seeds. Red highlights the lack of branching quality in the baseline model and
Blue highlights the correct behavior as exhibited by HAQAE.

person denied charges, lawsuit filed by person, judge dismissed lawsuit
person denied charges, they accused person, person resigned in january
clinton carried promises, clinton began in 1988, clinton made changes
campaign carried promises, campaign began on september, campaign made effort
campaign carried promises, campaign began on september, campaign made effort
team carried for championship, team played in philadelphia, they won champoinship

Table 5: Results of changing a single latent variable while keeping others fixed. Lower level latents
typically change ending/beginnings or entity names (Rows 1 and 2). The top level latent changes the
topic and may occasionally preserve the form (Row 3)

amples.

5.5 Observations about the Latent Variables

We also look at how changing the values of var-
ious latent variables change the resulting output,
in order to get a small idea as to what properties
the variables capture. We find that the root level
variable z0 has the largest effect on the output, and
typically corresponds to the domain that the se-
quence of events belong to. The non root variables
generally change the output on a smaller scale,
however we find no correspondence between the
level of the variable and the amount of output that
is affected upon changing its value.

One reason for the difficulty of interpreting the
variables is that the model conditions on them
through attention, thus changing the value of one
does not necessarily need to have any effect.

We do find that changing the lower level latents
generally leads to the ending/beginning of the se-
quence changing or the entities of the sequence
changing (but still remaining in the same topi-
cal domain). We additionally find that changing

the top level latent may often preserve the overall
form of the event sequence, and only transform the
topic. We provide examples of these output by our
system in Table 5.

6 Related Work

Scripts were originally proposed by Schank and
Abelson (1975) and further expanded upon in
Schank and Abelson (1977). The notion of hier-
archies in scripts has been studied in the works
of Abbott et al. (1985) and Bower et al. (1979).
Mooney and DeJong (1985) present an early non
probabilistic system for extracting scripts from
text. A highly related work by Miikkulainen
(1990) provides an early example of a system
explicitly designed to take advantage of the hi-
erarchical nature of scripts, creating a model of
scripts based on self organizing maps (Kohonen,
1982). Interestingly, self organizing maps also uti-
lize vector quantization during learning (albeit in
a different way than done here).

Recent work starting from Chambers and Ju-
rafsky (2008) has focused on learning scripts as
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prototypical sequences of events using event co-
occurrence. Further work has framed this task
as a language modeling problem (Pichotta and
Mooney, 2016; Rudinger et al., 2015; Peng and
Roth, 2016). Other work has looked at learn-
ing more structured forms of script knowledge
called schemas (Chambers, 2013; Balasubrama-
nian et al., 2013; Nguyen et al., 2015) which fo-
cuses on additionally inducing script specific roles
to be filled by entities. In this work we treat event
components as separate tokens, though work has
also looked into methods for composing this com-
ponents into a single distributed event representa-
tion (Modi and Titov, 2014; Modi, 2016; Weber
et al., 2018). We leave this as possible future work.

The hierarchical structure of our proposed
model is similar to structure of the latent space in
other VAE variants (Sonderby et al., 2016; Zhao
et al., 2017), with the discrete variables and at-
tentions in our model being the major differences.
Hu et al. (2017) present a VAE based model for
controllable text generation, with different latents
controlling different aspects of the generated text,
but requiring labels for semi-supervision. Other
methods using discrete variables for VAEs have
also been proposed (Rolfe, 2017), as have varia-
tions in the VQ-VAE learning process (Sonderby
et al., 2017)

7 Conclusion

We proposed a new model, HAQAE, for script
learning and generation that is one of the first to
model the hierarchy that is inherent in this type
of real-world knowledge. Previous work has fo-
cused on modeling event sequences with language
models, while ignoring the problem of contradic-
tory events and different tracks being jumbled to-
gether. The hierarchical latent space of HAQAE
instead attends to the choice points in event se-
quences, and is able to provide some discrimina-
tion between tracks of events.

While HAQAE is motivated by the specific need
for hierarchies in scripts, it can also be seen as
a general event language model. As a language
model HAQAE has a substantially lower perplex-
ity on our test set than previous RNN models de-
spite HAQAE’s decoder having fewer parameters.

We also presented a new inverse narrative cloze
task that is a multiple-choice selection of event
sequences. It proved to be a very difficult task
with systems producing accuracies in the mid 20%

range. HAQAE and NOHEIR were the only sys-
tems to break 30 with a top accuracy of 34.0%.
This further illustrates that using a latent space to
capture script differences helps identify relevant
sequences.

To our knowledge, all previous work on script
induction has focused on learning single event se-
quences or bags of events. We view our proposed
model as a new step toward learning different de-
tails about scripts, such as tracks and hierarchies.
Though the proposed model works well empiri-
cally, understanding exactly what is learned in the
latent variables is non trivial, and is a possible di-
rection for future work.
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Abstract
This paper studies semantic parsing for in-
terlanguage (L21), taking semantic role label-
ing (SRL) as a case task and learner Chi-
nese as a case language. We first manu-
ally annotate the semantic roles for a set of
learner texts to derive a gold standard for
automatic SRL. Based on the new data, we
then evaluate three off-the-shelf SRL systems,
i.e., the PCFGLA-parser-based, neural-parser-
based and neural-syntax-agnostic systems, to
gauge how successful SRL for learner Chi-
nese can be. We find two non-obvious facts:
1) the L1-sentence-trained systems performs
rather badly on the L2 data; 2) the performance
drop from the L1 data to the L2 data of the
two parser-based systems is much smaller, in-
dicating the importance of syntactic parsing
in SRL for interlanguages. Finally, the pa-
per introduces a new agreement-based model
to explore the semantic coherency informa-
tion in the large-scale L2-L1 parallel data. We
then show such information is very effective
to enhance SRL for learner texts. Our model
achieves an F-score of 72.06, which is a 2.02
point improvement over the best baseline.

1 Introduction
A learner language (interlanguage) is an idiolect
developed by a learner of a second or foreign
language which may preserve some features of
his/her first language. Previously, encouraging re-
sults of automatically building the syntactic anal-
ysis of learner languages were reported (Nagata
and Sakaguchi, 2016), but it is still unknown how
semantic processing performs, while parsing a
learner language (L2) into semantic representa-
tions is the foundation of a variety of deeper anal-
ysis of learner languages, e.g., automatic essay

1In this paper, we call sentences written by non-native
speakers (henceforth, “L2 sentences”), aligned to their cor-
rections by native speakers (henceforth, “L1 sentences”) L2-
L1 parallel sentences.

scoring. In this paper, we study semantic pars-
ing for interlanguage, taking semantic role label-
ing (SRL) as a case task and learner Chinese as a
case language.

Before discussing a computation system, we
first consider the linguistic competence and per-
formance. Can human robustly understand learner
texts? Or to be more precise, to what extent, a na-
tive speaker can understand the meaning of a sen-
tence written by a language learner? Intuitively,
the answer is towards the positive side. To validate
this, we ask two senior students majoring in Ap-
plied Linguistics to carefully annotate some L2-L1
parallel sentences with predicate–argument struc-
tures according to the specification of Chinese
PropBank (CPB; Xue and Palmer, 2009), which
is developed for L1. A high inter-annotator agree-
ment is achieved, suggesting the robustness of lan-
guage comprehension for L2. During the course of
semantic annotation, we find a non-obvious fact
that we can re-use the semantic annotation spec-
ification, Chinese PropBank in our case, which is
developed for L1. Only modest rules are needed to
handle some tricky phenomena. This is quite dif-
ferent from syntactic treebanking for learner sen-
tences, where defining a rich set of new annotation
heuristics seems necessary (Ragheb and Dickin-
son, 2012; Nagata and Sakaguchi, 2016; Berzak
et al., 2016).

Our second concern is to mimic the human’s ro-
bust semantic processing ability by computer pro-
grams. The feasibility of reusing the annotation
specification for L1 implies that we can reuse stan-
dard CPB data to train an SRL system to pro-
cess learner texts. To test the robustness of the
state-of-the-art SRL algorithms, we evaluate two
types of SRL frameworks. The first one is a tradi-
tional SRL system that leverages a syntactic parser
and heavy feature engineering to obtain explicit
information of semantic roles (Feng et al., 2012).
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Furthermore, we employ two different parsers for
comparison: 1) the PCFGLA-based parser, viz.
Berkeley parser (Petrov et al., 2006), and 2) a min-
imal span-based neural parser (Stern et al., 2017).
The other SRL system uses a stacked BiLSTM to
implicitly capture local and non-local information
(He et al., 2017). and we call it the neural syntax-
agnostic system. All systems can achieve state-of-
the-art performance on L1 texts but show a signif-
icant degradation on L2 texts. This highlights the
weakness of applying an L1-sentence-trained sys-
tem to process learner texts.

While the neural syntax-agnostic system ob-
tains superior performance on the L1 data, the two
syntax-based systems both produce better analy-
ses on the L2 data. Furthermore, as illustrated in
the comparison between different parsers, the bet-
ter the parsing results we get, the better the perfor-
mance on L2 we achieve. This shows that syntac-
tic parsing is important in semantic construction
for learner Chinese. The main reason, according
to our analysis, is that the syntax-based system
may generate correct syntactic analyses for par-
tial grammatical fragments in L2 texts, which pro-
vides crucial information for SRL. Therefore, syn-
tactic parsing helps build more generalizable SRL
models that transfer better to new languages, and
enhancing syntactic parsing can improve SRL to
some extent.

Our last concern is to explore the potential of a
large-scale set of L2-L1 parallel sentences to en-
hance SRL systems. We find that semantic struc-
tures of the L2-L1 parallel sentences are highly
consistent. This inspires us to design a novel
agreement-based model to explore such seman-
tic coherency information. In particular, we de-
fine a metric for comparing predicate–argument
structures and searching for relatively good auto-
matic syntactic and semantic annotations to ex-
tend the training data for SRL systems. Experi-
ments demonstrate the value of the L2-L1 paral-
lel sentences as well as the effectiveness of our
method. We achieve an F-score of 72.06, which
is a 2.02 percentage point improvement over the
best neural-parser-based baseline.

To the best of our knowledge, this is the first
time that the L2-L1 parallel data is utilized to en-
hance NLP systems for learner texts.

For research purpose, we have released our SRL
annotations on 600 sentence pairs and the L2-L1

parallel dataset 2.

2 Semantic Analysis of An L2-L1
Parallel Corpus

2.1 An L2-L1 Parallel Corpus

An L2-L1 parallel corpus can greatly facilitate the
analysis of a learner language (Lee et al., 2017).
Following Mizumoto et al. (2011), we collected
a large dataset of L2-L1 parallel texts of Man-
darin Chinese by exploring “language exchange”
social networking services (SNS), i.e., Lang-8, a
language-learning website where native speakers
can freely correct the sentences written by foreign
learners. The proficiency levels of the learners are
diverse, but most of the learners, according to our
judgment, is of intermediate or lower level.

Our initial collection consists of 1,108,907 sen-
tence pairs from 135,754 essays. As there is lots of
noise in raw sentences, we clean up the data by (1)
ruling out redundant content, (2) excluding sen-
tences containing foreign words or Chinese pho-
netic alphabet by checking the Unicode values, (3)
dropping overly simple sentences which may not
be informative, and (4) utilizing a rule-based clas-
sifier to determine whether to include the sentence
into the corpus.

The final corpus consists of 717,241 learner
sentences from writers of 61 different native lan-
guages, in which English and Japanese constitute
the majority. As for completeness, 82.78% of the
Chinese Second Language sentences on Lang-8
are corrected by native human annotators. One
sentence gets corrected approximately 1.53 times
on average.

In this paper, we manually annotate the
predicate–argument structures for the 600 L2-L1
pairs as the basis for the semantic analysis of
learner Chinese. It is from the above corpus that
we carefully select 600 pairs of L2-L1 parallel
sentences. We would choose the most appropri-
ate one among multiple versions of corrections
and recorrect the L1s if necessary. Because word
structure is very fundamental for various NLP
tasks, our annotation also contains gold word seg-
mentation for both L2 and L1 sentences. Note that
there are no natural word boundaries in Chinese

2The data is collected from Lang-8 (www.lang-8.
com) and used as the training data in NLPCC 2018 Shared
Task: Grammatical Error Correction (Zhao et al., 2018),
which can be downloaded at https://github.com/
pkucoli/srl4il
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P R F

ENG L1 95.87 96.17 96.02
L2 94.78 93.06 93.91

JPN L1 97.95 98.69 98.32
L2 96.07 97.48 96.77

RUS L1 96.95 95.41 96.17
L2 97.04 94.08 95.53

ARA L1 96.95 97.76 97.35
L2 97.12 97.56 97.34

Table 1: Inter-annotator agreement.

text. We first employ a state-of-the-art word seg-
mentation system to produce initial segmentation
results and then manually fix segmentation errors.

The dataset includes four typologically differ-
ent mother tongues, i.e., English (ENG), Japanese
(JPN), Russian (RUS) and Arabic (ARA). Sub-
corpus of each language consists of 150 sentence
pairs. We take the mother languages of the learn-
ers into consideration, which have a great im-
pact on grammatical errors and hence automatic
semantic analysis. We hope that four selected
mother tongues guarantee a good coverage of ty-
pologies. The annotated corpus can be used both
for linguistic investigation and as test data for NLP
systems.

2.2 The Annotation Process
Semantic role labeling (SRL) is the process of as-
signing semantic roles to constituents or their head
words in a sentence according to their relation-
ship to the predicates expressed in the sentence.
Typical semantic roles can be divided into core
arguments and adjuncts. The core arguments in-
clude Agent, Patient, Source, Goal, etc, while the
adjuncts include Location, Time, Manner, Cause,
etc.

To create a standard semantic-role-labeled cor-
pus for learner Chinese, we first annotate a 50-
sentence trial set for each native language. Two
senior students majoring in Applied Linguistics
conducted the annotation. Based on a total of 400
sentences, we adjudicate an initial gold standard,
adapting and refining CPB specification as our an-
notation heuristics. Then the two annotators pro-
ceed to annotate a 100-sentence set for each lan-
guage independently. It is on these larger sets that
we report the inter-annotator agreement.

In the final stage, we also produce an adju-
dicated gold standard for all 600 annotated sen-
tences. This was achieved by comparing the anno-

tations selected by each annotator, discussing the
differences, and either selecting one as fully cor-
rect or creating a hybrid representing the consen-
sus decision for each choice point. When we felt
that the decisions were not already fully guided by
the existing annotation guidelines, we worked to
articulate an extension to the guidelines that would
support the decision.

During the annotation, the annotators apply
both position labels and semantic role labels. Po-
sition labels include S, B, I and E, which are used
to mark whether the word is an argument by itself,
or at the beginning or in the middle or at the end
of a argument. As for role labels, we mainly apply
representations defined by CPB (Xue and Palmer,
2009). The predicate in a sentence was labeled as
rel, the core semantic roles were labeled as AN and
the adjuncts were labeled as AM.

2.3 Inter-annotator Agreement
For inter-annotator agreement, we evaluate the
precision (P), recall (R), and F1-score (F) of the
semantic labels given by the two annotators. Ta-
ble 1 shows that our inter-annotator agreement is
promising. All L1 texts have F-score above 95,
and we take this as a reflection that our annota-
tors are qualified. F-scores on L2 sentences are all
above 90, just a little bit lower than those of L1,
indicating that L2 sentences can be greatly under-
stood by native speakers. Only modest rules are
needed to handle some tricky phenomena:

1. The labeled argument should be strictly lim-
ited to the core roles defined in the frameset
of CPB, though the number of arguments in
L2 sentences may be more or less than the
number defined.

2. For the roles in L2 that cannot be labeled
as arguments under the specification of CPB,
if they provide semantic information such as
time, location and reason, we would labeled
them as adjuncts though they may not be
well-formed adjuncts due to the absence of
function words.

3. For unnecessary roles in L2 caused by mis-
takes of verb subcategorization (see examples
in Figure 3b), we would leave those roles un-
labeled.

Table 2 further reports agreements on each argu-
ment (AN) and adjunct (AM) in detail, according
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to which the high scores are attributed to the high
agreement on arguments (AN). The labels of A3
and A4 have no disagreement since they are sparse
in CPB and are usually used to label specific se-
mantic roles that have little ambiguity.

We also conducted in-depth analysis on inter-
annotator disagreement. For further details, please
refer to Duan et al. (2018).

ENG JPN RUS ARA

L1

A0 97.23 99.10 97.66 98.22
A1 96.70 96.99 98.05 98.34
A2 88.89 100.00 100.00 92.59
A3 100.00 100.00 100.00 100.00
A4 100.00 - - 100.00
AM 94.94 98.35 93.07 96.02

L2

A0 94.09 95.77 97.92 97.88
A1 90.68 97.93 97.40 98.68
A2 88.46 100.00 95.24 93.33
A3 100.00 100.00 100.00 -
A4 100.00 - - -
AM 96.97 96.51 91.78 96.02

Table 2: Inter-annotator agreement (F-scores) rela-
tive to languages and role types.

3 Evaluating Robustness of SRL
3.1 Three SRL Systems
The work on SRL has included a broad spec-
trum of machine learning and deep learning ap-
proaches to the task. Early work showed that
syntactic information is crucial for learning long-
range dependencies, syntactic constituency struc-
ture and global constraints (Punyakanok et al.,
2008; Täckström et al., 2015), while initial stud-
ies on neural methods achieved state-of-the-art re-
sults with little to no syntactic input (Zhou and
Xu, 2015; Wang et al., 2015; Marcheggiani et al.,
2017; He et al., 2017). However, the question
whether fully labeled syntactic structures provide
an improvement for neural SRL is still unsettled
pending further investigation.

To evaluate the robustness of state-of-the-art
SRL algorithms, we evaluate two representative
SRL frameworks. One is a traditional syntax-
based SRL system that leverages a syntactic parser
and manually crafted features to obtain explicit in-
formation to find semantic roles (Gildea and Ju-
rafsky, 2000; Xue, 2008) In particular, we employ
the system introduced in Feng et al. (2012). This
system first collects all c-commanders of a pred-
icate in question from the output of a parser and
puts them in order. It then employs a first or-
der linear-chain global linear model to perform

semantic tagging. For constituent parsing, we
use two parsers for comparison, one is Berkeley
parser3 (Petrov et al., 2006), a well-known im-
plementation of the unlexicalized latent variable
PCFG model, the other is a minimal span-based
neural parser based on independent scoring of la-
bels and spans (Stern et al., 2017). As proposed
in Stern et al. (2017), the second parser is capa-
ble of achieving state-of-the-art single-model per-
formance on the Penn Treebank. On the Chinese
TreeBank (CTB; Xue et al., 2005), it also out-
performs the Berkeley parser for the in-domain
test. We call the corresponding SRL systems as
the PCFGLA-parser-based and neural-parser-
based systems.

The second SRL framework leverages an end-
to-end neural model to implicitly capture local and
non-local information (Zhou and Xu, 2015; He
et al., 2017). In particular, this framework treats
SRL as a BIO tagging problem and uses a stacked
BiLSTM to find informative embeddings. We ap-
ply the system introduced in He et al. (2017) for
experiments. Because all syntactic information
(including POS tags) is excluded, we call this sys-
tem the neural syntax-agnostic system.

To train the three SRL systems as well as the
supporting parsers, we use the CTB and CPB data
4. In particular, the sentences selected for the
CoNLL 2009 shared task are used here for pa-
rameter estimation. Note that, since the Berke-
ley parser is based on PCFGLA grammar, it may
fail to get the syntactic outputs for some sentences,
while the other parser does not have that problem.
In this case, we have made sure that both parsers
can parse all 1,200 sentences successfully.

3.2 Main Results
The overall performances of the three SRL sys-
tems on both L1 and L2 data (150 parallel sen-
tences for each mother tongue) are shown in Ta-
ble 3. For all systems, significant decreases on
different mother languages can be consistently ob-
served, highlighting the weakness of applying L1-
sentence-trained systems to process learner texts.
Comparing the two syntax-based systems with the
neural syntax-agnostic system, we find that the
overall �F, which denotes the F-score drop from
L1 to L2, is smaller in the syntax-based framework

3code.google.com/p/berkeleyparser/
4Here we only use the trees that has semantic role anno-

tations for parser training. This setup keeps us from overesti-
mating the contribution of a parser.
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PCFGLA-parser-based SRL Neural-parser-based SRL Neural syntax-agnostic SRL
Arg.-F Adj.-F F �F Arg.-F Adj.-F F �F Arg.-F Adj.-F F �F

ENG L1 73.42 74.60 73.81 -4.61 72.54 76.97 74.00 -4.90 74.62 73.44 74.22 -6.65L2 68.05 71.63 69.20 67.12 73.24 69.10 66.50 69.75 67.57

JPN L1 73.88 76.80 75.10 -3.37 75.18 77.25 76.05 -3.79 76.50 78.22 77.22 -7.60L2 67.92 77.29 71.73 69.59 76.14 72.26 66.75 73.78 69.62

RUS L1 71.56 73.41 72.20 -4.28 73.20 73.72 73.39 -3.01 72.01 73.72 72.61 -5.60L2 68.41 66.93 67.92 68.93 73.11 70.38 65.50 69.91 67.01

ARA L1 73.72 64.36 70.82 -2.18 75.38 67.10 72.74 -2.80 74.10 70.44 72.92 -2.40L2 69.43 67.02 68.64 71.16 67.25 69.94 72.13 67.19 70.52

ALL L1 73.18 72.28 72.87 -3.59 74.05 73.73 73.94 -3.64 74.22 73.92 74.12 -5.41L2 68.52 70.77 69.28 69.20 72.39 70.30 67.99 70.08 68.71

Table 3: Performances of the syntax-based and neural syntax-agnostic SRL systems on the L1 and L2
data. “ALL” denotes the overall performance.

than in the syntax-agnostic system. On English,
Japanese and Russian L2 sentences, the syntax-
based system has better performances though it
sometimes works worse on the corresponding L1
sentences, indicating the syntax-based systems are
more robust when handling learner texts.

Furthermore, the neural-parser-based system
achieves the best overall performance on the L2
data. Though performing slightly worse than the
neural syntax-agnostic one on the L1 data, it has
much smaller �F, showing that as the syntactic
analysis improves, the performances on both the
L1 and L2 data grow, while the gap can be main-
tained. This demonstrates again the importance
of syntax in semantic constructions, especially for
learner texts.

3.3 Analysis
To better understand the overall results, we further
look deep into the output by addressing the ques-
tions:

1. What types of error negatively impact both
systems over learner texts?

2. What types of error are more problematic for
the neural syntax-agnostic one over the L2
data but can be solved by the syntax-based
one to some extent?

We first carry out a suite of empirical investiga-
tions by breaking down error types for more de-
tailed evaluation. To compare two systems, we
analyze results on ENG-L2 and JPN-L2 given that
they reflect significant advantages of the syntax-
based systems over the neural syntax-agnostic sys-
tem. Note that the syntax-based system here refers
to the neural-parser-based one. Finally, a concrete

study on the instances in the output is conducted,
as to validate conclusions in the previous step.

Operation Description
Fix Labels
(Fix)

Correct the span label if its boundary
matches gold.

Move Arg.
(Move)

Move a unique core argument to its correct
position.

Merge Spans
(Merge)

Combine two predicated spans into a gold
span if they are separated by at most one
word.

Split Spans
(Split)

Split a predicated span into two gold spans
that are separated by at most one word.

Fix Boundary
(Boundary)

Correct the boundary of a span id its label
matches an overlapping gold span.

Drop Arg.
(Drop)

Drop a predicated argument that does not
overlap with any gold span.

Add Arg.
(Add)

Add a gold argument that does not overlap
with any predicated span.

Table 4: Oracle transformations paired with the rel-
ative error reduction after each operation. The op-
erations are permitted only if they do not cause any
overlapping arguments

3.3.1 Breaking down Error Types
We employ 6 oracle transformations designed by
He et al. (2017) to fix various prediction errors
sequentially (see details in Table 4), and observe
the relative improvements after each operation, as
to obtain fine-grained error types. Figure 1 com-
pares two systems in terms of different mistakes
on ENG-L2 and JPN-L2 respectively. After fix-
ing the boundaries of spans, the neural syntax-
agnostic system catches up with the other, illus-
trating that though both systems handle boundary
detection poorly on the L2 sentences, the neural
syntax-agnostic one suffers more from this type of
errors.

Excluding boundary errors (after moving, merg-
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(a) ENG-L2 (b) JPN-L2

Figure 1: Relative improvements of performance after doing each type of oracle transformation in se-
quence over ENG-L2 and JPN-L2

ing, splitting spans and fixing boundaries), we also
compare two systems on L2 in terms of detailed la-
bel identification, so as to observe which semantic
role is more likely to be incorrectly labeled. Fig-
ure 2 shows the confusion matrices. Comparing
(a) with (c) and (b) with (d), we can see that the
syntax-based and the neural system often overly
label A1 when processing learner texts. Besides,
the neural syntax-agnostic system predicts the ad-
junct AM more than necessary on L2 sentences by
54.24% compared with the syntax-based one.

(a) Syntax-based system, L1 (b) Neural system, L1

(c) Syntax-based system, L2 (d) Neural system, L2

Figure 2: Confusion matrix for each semantic role
(here we add up matrices of ENG-L2 and JPN-
L2). The predicted labels are only counted in
three cases: (1) The predicated boundaries match
the gold span boundaries. (2) The predicated ar-
gument does not overlap with any the gold span
(Gold labeled as “O”). (3) The gold argument does
not overlap with any predicted span (Prediction la-
beled as “O”).

3.3.2 Examples for Validation
On the basis of typical error types found in the pre-
vious stage, specifically, boundary detection and
incorrect labels, we further conduct an on-the-spot
investigation on the output sentences.

Boundary Detection Previous work has pro-
posed that the drop in performance of SRL
systems mainly occurs in identifying argument
boundaries (Màrquez et al., 2008). According to
our results, this problem will be exacerbated when
it comes to L2 sentences, while syntactic structure
sometimes helps to address this problem.

Figure 3a is an example of an output sentence.
The Chinese word “_” (also) usually serves as
an adjunct but is now used for linking the paral-
lel structure “(IÌ_Ù›Î” (using Chinese
also speaking quickly) in this sentence, which is
ill-formed to native speakers and negatively affects
the boundary detection of A0 for both systems.

On the other hand, the neural system incorrectly
takes the whole part before “àæ” (very hard) as
A0, regardless of the adjunct “˘ ⌘ eÙ” (for
me), while this can be figured out by exploiting
syntactic analysis, as illustrated in Figure 3c. The
constituent “˘⌘eÙ” (for me) has been recog-
nized as a prepositional phrase (PP) attached to the
VP, thus labeled as AM. This shows that by pro-
viding information of some well-formed sub-trees
associated with correct semantic roles, the syntac-
tic system can perform better than the neural one
on SRL for learner texts.

Mistaken Labels A second common source of
errors is wrong labels, especially for A1. Based on
our quantitative analysis, as reported in Table 5,
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用 汉语 也 说话 快 对我来说 很 难 啊。
Using Chinese   also speaking quickly         to    me           very      hard.

Gold
A0 rel

A0

Syntax-based system

Neural end-to-end system

AM AM

A0 AM AM AM rel

AM rel

(a) SRL output of both systems for a L2 sentence, “(
IÌ_Ù›Î˘⌘eÙàæ” (using Chinese and also
speaking quickly is very hard for me).

我 常常 练习 做饭 中国 菜。
I        often      practice  cook-meal   Chinese food.

Gold
A0 rel

A0 A1

A1A0 AM

Syntax-based system

Neural end-to-end system

rel

rel

(b) SRL of both systems for a L2 sentence, “⌘88Zm
-˝‹” (I often cook Chinese food).

CP

IP

IP

(IÌ
using

Chinese

VP

ADVP

_
also

VP

VP

Ù›Î
speaking
quickly

VP

PP

˘⌘eÙ
for me

ADVP

à
very

VP

æ
hard

SP

J
MOD

PU

⇥

(c) Syntactic analysis for the sentence in Figure 3a

IP

NP

PN

⌘
I

VP

ADVP

88
often

VP

VV

√`
practice

IP

VP

VV

Zm
cook-meal

NP

-˝‹
chinese food

PU

⇥

(d) Syntactic analysis for the sentence in Figure 3b

Figure 3: Two examples for SRL outputs of both systems and the corresponding syntactic analysis for the
L2 sentences

these phenomena are mainly caused by mistakes
of verb subcategorization, where the systems label
more arguments than allowed by the predicates.
Besides, the deep end-to-end system is also likely
to incorrectly attach adjuncts AM to the predicates.

Syntax
Cause of error YES NO
Verb subcategorization 62.50% 62.50%
Labeling A1 to punctuation 12.50% 6.25%
Word order error 6.25% 0.00%
Other types of error 18.75% 31.25%

Table 5: Causes of labeling unnecessary A1

Figure 3b is another example. The Chinese verb
“Zm” (cook-meal) is intransitive while this sen-
tence takes it as a transitive verb, which is very
common in L2. Lacking in proper verb subcatego-
rization, both two systems fail to recognize those
verbs allowing only one argument and label the A1
incorrectly.

As for AM, the neural system mistakenly adds
the adjunct to the predicate, which can be avoided
by syntactic information of the sentence shown in
Figure 3d. The constituent “88” (often) are ad-
juncts attached to VP structure governed by the

verb “√`”(practice), which will not be labeled
as AM in terms of the verb “Zm”(cook-meal).
In other words, the hierarchical structure can help
in argument identification and assignment by ex-
ploiting local information.

4 Enhancing SRL with L2-L1 Parallel
Data

We explore the valuable information about the se-
mantic coherency encoded in the L2-L1 parallel
data to improve SRL for learner Chinese. In par-
ticular, we introduce an agreement-based model to
search for high-quality automatic syntactic and se-
mantic role annotations, and then use these anno-
tations to retrain the two parser-based SRL sys-
tems.

4.1 The Method
For the purpose of harvesting the good auto-
matic syntactic and semantic analysis, we con-
sider the consistency between the automatically
produced analysis of a learner sentence and its
corresponding well-formed sentence. Determining
the measurement metric for comparing predicate–
argument structures, however, presents another
challenge, because the words of the L2 sentence
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and its L1 counterpart do not necessarily match.
To solve the problem, we use an automatic word
aligner. BerkeleyAligner5 (Liang et al., 2006),
a state-of-the-art tool for obtaining a word align-
ment, is utilized.

The metric for comparing SRL results of two
sentences is based on recall of hwp, wa, ri tuples,
where wp is a predicate, wa is a word that is in
the argument or adjunct of wp and r is the cor-
responding role. Based on a word alignment, we
define the shared tuple as a mutual tuple between
two SRL results of an L2-L1 sentence pair, mean-
ing that both the predicate and argument words are
aligned respectively, and their role relations are the
same. We then have two recall values:

• L2-recall is (# of shared tuples) / (# of tuples
of the result in L2)

• L1-recall is (# of shared tuples) / (# of tuples
of the result in L1)

In accordance with the above evaluation
method, we select the automatic analysis of high-
est scoring sentences and use them to expand the
training data. Sentences whose L1 and L2 recall
are both greater than a threshold p are taken as
good ones. A parser-based SRL system consists of
two essential modules: a syntactic parser and a se-
mantic classifier. To enhance the syntactic parser,
the automatically generated syntactic trees of the
sentence pairs that exhibit high semantic consis-
tency are directly used to extend training data. To
improve a semantic classifier, besides the consis-
tent semantic analysis, we also use the outputs of
the L1 but not L2 data which are generated by the
neural syntax-agnostic SRL system.

4.2 Experimental Setup
Our SRL corpus contains 1200 sentences in total
that can be used as an evaluation for SRL systems.
We separate them into three data sets. The first
data set is used as development data, which con-
tains 50 L2-L1 sentence pairs for each language
and 200 pairs in total. Hyperparameters are tuned
using the development set. The second data set
contains all other 400 L2 sentences, which is used
as test data for L2. Similarly, all other 400 L1 sen-
tences are used as test data for L1.

The sentence pool for extracting retraining
annotations includes all English- and Japanese-

5code.google.com/archive/p/
berkeleyaligner/

ENG JPN
#All sentence pairs 310,075 484,140
#Selected (p = 0.9) 36,979 41,281

Table 6: Statistics of unlabeled data.

native speakers’ data along with its corrections.
Table 6 presents the basic statistics. Around 8.5 –
11.9% of the sentence can be taken as high L1/L2
recall sentences, which serves as a reflection that
argument structure is vital for language acquisition
and difficult for learners to master, as proposed in
Vázquez (2004) and Shin (2010). The threshold
(p = 0.9) for selecting sentences is set upon the
development data. For example, we use additional
156,520 sentences to enhance the Berkeley parser.

4.3 Main Results
Table 7 summarizes the SRL results of the baseline
PCFGLA-parser-based model as well as its corre-
sponding retrained models. Since both the syntac-
tic parser and the SRL classifier can be retrained
and thus enhanced, we report the individual im-
pact as well as the combined one. We can clearly
see that when the PCFGLA parser is retrained with
the SRL-consistent sentence pairs, it is able to pro-
vide better SRL-oriented syntactic analysis for the
L2 sentences as well as their corrections, which
are essentially L1 sentences. The outputs of the L1
sentences that are generated by the deep SRL sys-
tem are also useful for improving the linear SRL
classifier. A non-obvious fact is that such a re-
trained model yields better analysis for not only
L1 but also L2 sentences. Fortunately, combining
both results in further improvement.

P R F

L2

Baseline 76.50 62.86 69.01
Parser-retrained 78.74 65.87 71.73
Classifier-retrained 77.11 64.17 70.05
Both retrained 78.72 66.43 72.06

L1

Baseline 80.70 66.36 72.83
Parser-retrained 82.20 68.26 74.59
Classifier-retrained 80.98 67.57 73.67
Both retrained 82.04 68.79 74.83

Table 7: Accuracies different PCFGLA-parser-
based models on the two test data sets.

Table 8 shows the results of the parallel ex-
periments based on the neural parser. Differ-
ent from the PCFGLA model, the SRL-consistent
trees only yield a slight improvement on the L2
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data. On the contrary, retraining the SRL classi-
fier is much more effective. This experiment high-
lights the different strengths of different frame-
works for parsing. Though for standard in-domain
test, the neural parser performs better and thus is
more and more popular, for some other scenarios,
the PCFGLA model is stronger.

P R F

L2

Baseline 78.26 63.38 70.04
Parser-retrained 78.19 63.78 70.25
Classifier-retrained 78.88 64.65 71.06
Both retrained 78.61 65.34 71.36

L1

Baseline 82.17 66.80 73.69
Parser-retrained 81.95 66.92 73.68
Classifier-retrained 82.08 67.69 74.20
Both retrained 82.20 67.85 74.34

Table 8: Accuracies of different neural-parser-
based models on the two test data sets.

Table 9 further shows F-scores for the baseline
and the both-retrained model relative to each role
type in detail. Given that the F-scores for both
models are equal to 0 on A3 and A4, we just omit
this part. From the figure we can observe that,
all the semantic roles achieve significant improve-
ments in performances.

A0 A1 A2 AM

L2 Baseline 67.95 71.21 51.43 70.20
Both retrained 70.62 74.75 64.29 72.22

L1 Baseline 69.49 79.78 61.84 71.74
Both retrained 73.15 80.90 63.35 73.02

Table 9: F-scores of the baseline and the both-
retrained models relative to role types on the two
data sets. We only list results of the PCFGLA-
parser-based system.

5 Conclusion

Statistical models of annotating learner texts are
making rapid progress. Although there have been
some initial studies on defining annotation speci-
fication as well as corpora for syntactic analysis,
there is almost no work on semantic parsing for
interlanguages. This paper discusses this topic,
taking Semantic Role Labeling as a case task and
learner Chinese as a case language. We reveal
three unknown facts that are important towards a
deeper analysis of learner languages: (1) the ro-
bustness of language comprehension for interlan-
guage, (2) the weakness of applying L1-sentence-

trained systems to process learner texts, and (3) the
significance of syntactic parsing and L2-L1 paral-
lel data in building more generalizable SRL mod-
els that transfer better to L2. We have successfully
provided a better SRL-oriented syntactic parser as
well as a semantic classifier for processing the L2
data by exploring L2-L1 parallel data, supported
by a significant numeric improvement over a num-
ber of state-of-the-art systems. To the best of our
knowledge, this is the first work that demonstrates
the effectiveness of large-scale L2-L1 parallel data
to enhance the NLP system for learner texts.
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Abstract

Reinforcement learning (RL) is an attractive
solution for task-oriented dialog systems.
However, extending RL-based systems to
handle new intents and slots requires a
system redesign. The high maintenance cost
makes it difficult to apply RL methods to
practical systems on a large scale. To address
this issue, we propose a practical teacher-
student framework to extend RL-based dialog
systems without retraining from scratch.
Specifically, the “student” is an extended
dialog manager based on a new ontology, and
the “teacher” is existing resources used for
guiding the learning process of the “student”.
By specifying constraints held in the new
dialog manager, we transfer knowledge
of the “teacher” to the “student” without
additional resources. Experiments show that
the performance of the extended system is
comparable to the system trained from scratch.
More importantly, the proposed framework
makes no assumption about the unsupported
intents and slots, which makes it possible to
improve RL-based systems incrementally.

1 Introduction

With the flourish development of virtual personal
assistants (e.g., Amazon Alexa and Google Assis-
tant), task-oriented dialog systems, which can help
users accomplish tasks naturally, have been a focal
point in both academic and industry research. In
the early work, the task-oriented dialog system is
merely a set of hand-crafted mapping rules defined
by experts. This is referred to as a rule-based
system. Although rule-based systems often have
acceptable performance, they are inconvenient and
difficult to be optimized. Recently, reinforcement
learning approaches have been applied to optimize
dialog systems through interaction with a user
simulator or employed real users online (Gašić
et al., 2011; Su et al., 2016a; Li et al., 2016,

U:  I'm looking for a Sichuan restaurant.

S:  "Spicy Little Girl" is a nice Sichuan restaurant.
U:  Oh!!!  Where is it?
S:  It is located in Zhongguancun. 

S:  Hello, what can  I do for you?

S:  "Spicy Little Girl" is a nice Sichuan restaurant.
U:  Is this restaurant located in Zhongguancun?

U:  Thanks.
S:  You are welcome.

Goal: Find a Sichuan restaurant in Zhongguancun.

S: System
U: User

Evaluation: The system completes the task but confuses the user.
User Feedback: I hope the system can deal with my confirmation.
Dialog Rule: If user Confirm, then system Inform.

Figure 1: An example of a task-oriented dialog after
the system comes online. The user is confused because
the “confirm” intent has not been considered in the
deployed system. Dialog rules should be embedded in
a new system to handle such situations.

2017b). It has been proven that RL-based dialog
systems can abandon hand-crafted dialog manager
and achieve more robust performance than rule-
based systems (Young et al., 2013).

Typically, the first step of building RL-based
dialog systems is defining a user model1 and
necessary system actions to complete a specific
task (e.g., seek restaurants information or book
hotels). Based on such ontology, developers can
extract dialog features and train the dialog man-
ager model in an interaction environment. Such
systems work well if real users are consistent with
the predefined user model. However, as shown in
Fig. 1, the unanticipated actions2 of real users will
lead to a poor user experience.

In this situation, the original system should be
extended to support new user actions based on
user feedback. However, adding new intents or
slots will change the predefined ontology. As a
consequence, developers need to extract additional

1The user model defines what users can do in a dialog
system, including domain specific intents and slots.

2User actions consist of intents and slots.
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dialog features based on new ontology. Besides,
new system actions may be added to deal with new
user actions. The network architecture of the new
system and the original one will be different. The
new system can not inherit the parameters from the
old one directly. It will make the original dialog
manager model invalid. Therefore, developers
have to retrain the new system by interacting
with users from scratch. Though there are many
methods to train a RL-based dialog manager ef-
ficiently (Su et al., 2016a, 2017; Lipton et al.,
2017; Chang et al., 2017; Chen et al., 2017), the
unmaintainable RL-based dialog systems will still
be put on the shelf in real-world applications (Paek
and Pieraccini, 2008; Paek, 2006).

To alleviate this problem, we propose a teacher-
student framework to maintain the RL-based dia-
log manager without training from scratch. The
idea is to transfer the knowledge of existing re-
sources to a new dialog manager.

Specifically, after the system is deployed, if
developers find some intents and slots missing
before, they can define a few simple dialog rules
to handle such situations. For example, under
the condition shown in Fig. 1, a reasonable s-
trategy is to inform the user of the location of
this restaurant. Then we encode information of
such hand-crafted logic rules into the new dialog
manager model. Meanwhile, user logs and dialog
policy of the original system can guide the new
system to complete tasks like the original one.
Under the guidance of the “teacher” (logic rules,
user logs, and original policy), we can reforge an
extended dialog manager (the “student”) without a
new interaction environment.

We conduct a series of experiments with simu-
lated and real users on restaurant domain. The ex-
tensive experiments demonstrate that our method
can overcome the problem brought by the unpre-
dictable user behavior after deployment. Owing to
reuse of existing resources, our framework saves
time in designing new interaction environments
and retraining RL-based systems from scratch.
More importantly, our method does not make any
assumptions about the unsupported intents and
slots. So the system can be incrementally extended
once developers find new intents and slots that are
not taken into account before. As far as we know,
we are the first to discuss the maintainability of
deep reinforcement learning based dialog systems
systematically.

2 Related Work

Dialog Manager The dialog manager of task-
oriented dialog systems, which consists of a s-
tate tracker and a dialog policy module, controls
the dialog flow. Recently, deep reinforcement
learning (Mnih et al., 2013, 2015) has been ap-
plied to optimize the dialog manager in an “end-
to-end” way, including deep Q-Network (Lipton
et al., 2017; Li et al., 2017b; Peng et al., 2017;
Zhao and Eskenazi, 2016) and policy gradient
methods (Williams et al., 2017; Su et al., 2016b;
Dhingra et al., 2017). RL methods have shown
great potential in building a robust dialog system
automatically. However, RL-based approaches are
rarely used in real-world applications because of
the maintainability problem (Paek and Pieracci-
ni, 2008; Paek, 2006). To extend the domain
of dialog systems, Gašic et al. (2014) explicitly
defined kernel functions between the belief states
that come from different domains. However,
defining an appropriate kernel function is non-
trivial when the ontology has changed drastically.
Shah et al. (2016) proposed to integrate turn-
level feedback with a task-level reward signal
to learn how to handle new user intents. This
approach alleviates the problem that arises from
the difference between training and deployment
phases. But it still fails when the developers have
not considered all user actions in advance. Lipton
et al. (2017) proposed to use BBQ-Networks to
extend the domain. However, similar to Shah
et al. (2016), the BBQ-Networks have reserved
a few bits in the feature vector for new intents
and slots. And system actions for handling new
user actions have been considered in the original
system design. This assumption is not practical
enough. Compared to the existing domain exten-
sion methods, our work addresses a more practical
problem: new intents and slots are unknown to
the original system. If we need to extend the
dialog system, we should design a new network
architecture to represent new user actions and take
new system actions into account.
Knowledge Distillation Our proposed framework
is inspired by recent work in knowledge distilla-
tion (Bucilu et al., 2006; Ba and Caruana, 2014;
Li et al., 2014). Knowledge distillation means
training a compact model to mimic a larger teach-
er model by approximating the function learned
by the teacher. Hinton et al. (2015) introduced
knowledge distillation to transfer knowledge from
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Figure 2: An overview of the RL-based dialog manager
used in our work3. In the last turn, the system inquires
“Where do you want to go?”. In current turn, the user
input is “Find a restaurant in Beihai.”.

a large highly regularized model into a smaller
model. The knowledge which can be transferred
has not been restricted to models. Stewart and
Ermon (2017) proposed to distill the physics and
domain knowledge to train neural networks with-
out labeled data. Hu et al. (2016) enabled a neural
network to learn simultaneously from labeled in-
stances as well as logic rules. Zhang et al. (2017)
integrated multiple prior knowledge sources into
neural machine translation using posterior regu-
larization. Our experiments are based on such
insights. Through defining appropriate regular-
ization terms, we can distill different knowledge
(e.g., trained model or prior knowledge) to a new
designed model, alleviating the need for new la-
beled data or expensive interaction environments.

3 RL-based Dialog Manager

Before going to the details of our method, we
provide some background on the RL-based dialog
manager in this section. Fig. 2 shows an overview
of such dialog manager. We describe each of the
parts briefly below.
Feature Extraction At the t-th turn of a dialog,
the user input ut is parsed into domain specific
intents and slots to form a semantic frame au

t

by a language understanding (LU) module. ou
t

and os
t�1 are the one-hot representations of such

semantic frames for the current user input and the
last system output respectively. Alternatively, ou

t

can be a simple n-grams representation of ut. But

3Similar dialog model architectures can be found in recent
work (Liu and Lane, 2017; Williams et al., 2017; Su et al.,
2016b). But designing a dialog model architecture is not
our main purpose. We focus on endowing RL-based dialog
systems with maintainability and scalability. The dialog
model used in our work can be replaced with the similar
architectures in the related work.

the vocabulary size is relatively large in real-world
applications. It will yield slow convergence in the
absence of a LU module. Based on the slot-value
pair output with the highest probability, a query
is sent to a database to retrieve user requested
information. odb

t is the one-hot representation of
the database result. As a result, the observable
information xt is the concatenation of ou

t , os
t�1 and

odb
t .

State Representation Based on the extracted fea-
ture vector xt and previous internal state st�1,
recurrent neural networks (RNNs) are used to infer
the latent representation of dialog state st at step t.
Current state st can be interpreted as the summary
of dialog history ht up to current step.
Dialog Policy Next, the dialog state representation
st is fed into a policy network. The output
⇡(a|ht; ✓) of the policy network is a probability
distribution over a predefined system action set
As. Lastly, the system samples an action as

t 2 As

based on ⇡(a|ht; ✓) and receives a new observa-
tion xt+1 with an assigned reward rt. The policy
parameters ✓ can be learned by maximizing the
expected discounted cumulative rewards:

J (✓) = E

 
T�tX

k=0

�krt+k

!
(1)

where T is the maximal step, and � is the discount
factor. Usually the parameters ✓ can be iteratively
updated by policy gradient (Williams, 1992) ap-
proach. The policy gradient can be empirically
estimated as:

r✓J (✓) ⇡
1
N

NX

i=1

TX

t=1

r✓ log ⇡(as
i,t|hi,t; ✓)(Gi,t�b) (2)

where N is the number of sampled episodes in
a batch, Gi,t =

PT�t
k=0 �kri,t+k is the sum of

discounted reward at step t in the episode i, and
b is a baseline to estimate the average reward of
current policy.

4 Notations and Problem Definition

Let Au and As denote the supported user and
system action sets in the original system design
respectively. ut denotes the user input in the t-th
turn. The LU module converts ut into a domain
specific intent and associated slots to form a user
action au

t 2 Au. The system will return an
action as

t 2 As according to the dialog manager
⇡(✓). Note that not all user actions are taken
into account at the beginning of system design.
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(a) Retraining a new system from scratch. (b) An overview of our proposed teacher-student framework.
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Figure 3: Two kinds of strategies to extend the original system. (a) means redesigning and retraining a new system
in an expensive interaction environment from scratch and (b) means transferring knowledge from existing resources
to a new system. The network in red indicates the old system based on the original ontology. The networks in gray
and purple represent the initialized and trained dialog manager models based on a new ontology respectively. On
account of the change in ontology, the extended system has a different network architecture. The dash lines in (a)
and (b) show the ability of a new model derives from various sources.

After deployment, the developers can find that
some user actions Au new cannot be handled by
the original system based on the human-machine
interaction logs D. Generally speaking, Au new

consists of new intents and slots. Our goal is to
extend the original system to support the new user
action set A0

u = Au[Au new. The extended dialog
manager and new system action set are denoted
as ⇡(✓0) and A0

s respectively. To handle new user
actions, more system actions may be added to the
new system. It means that As is a subset of A0

s.

5 Approach

Fig. 3 shows two kinds of strategies to extend
the original system. The first strategy requires a
new interaction environment. However, building a
user simulator or hiring real users once the system
needs to be extended is costly and impractical in
real-world applications. By contrast, our method
enhances the reuse of existing resources. The
basic idea is to use the existing user logs, original
dialog policy model and logic rules (“teacher”)
to guide the learning process of a new dialog
manager (“student”). Without an expensive in-
teraction environment, the developers can main-
tain RL-based dialog systems as efficiently and
straightforwardly as in rule-based systems.

5.1 Distill Knowledge from the Original
System

Although the ontology of the new system is dif-
ferent from the original one, the extended dialog
manager can still reuse dialog policy of the ill-
considered system circuitously. Given user logs D

and the original dialog manager ⇡(✓), we define
a loss L(✓0; D, ✓) to minimize the difference be-
tween new dialog manager ⇡(✓0) and the old one:

L(✓0; D, ✓) =
X

d2D

|d|X

t=1

KL( ⇡(a|ht; ✓) || ⇡(a|ht; ✓
0) ) (3)

where ⇡(a|ht; ✓) and ⇡(a|ht; ✓0) are the policy
distributions over As and A0

s given the same dialog
history ht. |d| means turns of a specific dialog
d 2 D. To deal with unsupported user actions,
As will be a subset of A0

s. As a result, the KL term
in equation (3) can be defined as follows:

KL( ⇡(a|ht; ✓) || ⇡(a|ht; ✓
0) )

=

|As|X

k=1

⇡(ak|ht; ✓)
�
log⇡(ak|ht; ✓) � log⇡(ak|ht; ✓

0)
�

(4)

As the original policy parameters ✓ are fixed, the
loss function in equation (3) can be rewritten as:

L(✓0; D, ✓) = �

X

d2D

|d|X

t=1

|As|X

k=1

⇡(ak|ht; ✓)log⇡(ak|ht; ✓
0)

(5)
This objective will transfer knowledge of the origi-
nal system to the “student” at the turn level. Under
the guidance of the original system, the extended
system will be equipped with the primary strategy
to complete a task.

5.2 Distill Knowledge from Logic Rules
It’s easy for the developers to give logic rules on
the system responses to handle new user actions.
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For example, if users ask to confirm a slot, the
system should inform the value of that slot im-
mediately. Note that these system actions which
handle new user actions may not exist in the old
model. It means the architecture of the new system
is different from the old one.

We define a set of logic constraints
R = {(hl, al)}L

l=1, where hl 2 HR indicates
the dialog context condition in the l-th rule, and
al 2 A0

s is the corresponding system action. The
number of logic rules L is equal to the number
of new user actions. These rules can be seen as
triggers: if dialog context ht in current turn t
meets the context condition hl defined in logic
rules, then the system should execute al. In
our work, we use the output of the LU module
to judge whether the current dialog context
meets the condition defined by logic rules. An
alternative method is simple rules matching. To
distill the knowledge of rules to a new system, we
define a loss function L(✓0; D, R) to embed such
constraints in the new system:

L(✓0; D, R) = �

X

d2D

|d|X

t=1

X

hl2HR

{ht = hl} ⇥

|A0
s
|X

k=1

{ak = al} log ⇡(ak|ht; ✓
0)

(6)

Where {·} is the indicate function. Equation (6)
suggests the new dialog manager ⇡(✓0) will be
penalized if it violates the instructions defined
by the dialog rules. Note that, for simplicity,
we assume these rules are absolutely correct and
mutually exclusive. Although this hypothesis may
lead to a non-optimal dialog system, these rules
define reasonable system actions to corresponding
dialog contexts. It implies that the new system can
be further refined by reinforcement learning once
a new interaction environment is available.

5.3 Extension of Dialog Manager
In the absence of a new training environment,
learning is made possible by exploiting structure
that holds in the new dialog manager. On one
hand, we expect the new system can complete
tasks like the original one. On the other hand,
it should satisfy the constraints defined by dialog
rules. So, the learning objective of new dialog
manager ⇡(✓0) can be defined as follows:

L(✓0; D, ✓, R) =

(
L(✓0; D, R) if ht 2 HR ;

L(✓0; D, ✓) else
(7)

When the dialog context ht in the t-th turn satis-
fies a condition defined in HR, we distill knowl-
edge of rules into the new system. Otherwise, we
distill knowledge of the original system into the
new one. Instead of retraining from scratch, de-
velopers can extend RL-based systems by reusing
existing resources.

6 Experiments

To evaluate our method, we conduct experiments
on a dialog system extension task of restaurant
domain.

6.1 Domain
The dialog system provides restaurant information
in Beijing. The database we use includes 2988
restaurants. This domain consists of 8 slots (name,
area, price range, cuisine, rating, number of
comments, address and phone number) in which
the first four slots (inform slots) can be used for
searching the desirable restaurant and all of these
slots (request slots) can be asked by users. In
each dialog, the user has a goal containing a set
of slots, indicating the constraints and requests
from users. For example, an inform slot, such as
“inform(cuisine=Sichuan cuisine)”, indicates the
user finding a Sichuan restaurant, and a request
slot, such as “request(area)”, indicates the user
asking for information from the system (Li et al.,
2016, 2017b; Peng et al., 2017).

6.2 Measurements
A main advantage of our approach is that the
unconsidered user actions can be handled in the
extended system. In addition to traditional mea-
surements (e.g., success rate, average turns and
average reward), we define an objective measure-
ment called “Satis.” (user satisfaction) to verify
this feature in the simulated evaluation. “Satis.”
indicates the rate at which the system takes rea-
sonable actions in unsupported dialog situations.
It can be calculated as follows:

Satis. =

P
d2D

P
|d|

t=1

PL
l=1 {ht = hl} {as

t = al}

P
d2D

P
|d|

t=1

PL
l=1 {ht = hl}

(8)
where ht and as

t are the dialog history and system
action in the t-th turn, hl and al are dialog
context condition and corresponding system ac-
tion defined in the l-th rules. Intuitively, an
unreasonable system reply will frustrate users and
low “Satis.” indicates a poor user experience.
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Sim1 Sim2
LU Error Rate Succ. Turn Reward Satis. Succ. Turn Reward Satis.

0.00 0.962 13.6 3.94 - 0.901 13.2 2.95 0.57
0.05 0.937 13.7 3.41 - 0.877 14.4 2.41 0.48
0.10 0.910 14.3 2.65 - 0.841 13.9 1.41 0.47
0.20 0.845 15.2 0.58 - 0.784 14.7 0.01 0.47

Table 1: Performance of the original system when interacting with different user simulators. LU error means
simulating slot errors and intent errors in different rates. Succ.: success rate, Turn: average turns, Reward: average
reward.

LU Error Rate 0.00 0.05 0.10 0.20

Total 25857 26166 27077 28385
New User Actions 1853 1859 1998 1912

Table 2: Statistics of turns when S1 interacts with Sim2.

Although “Satis.” is obtained based on our hand-
crafted dialog rules, it approximately measures the
subjective experience of real users after system
deployment.

6.3 User Simulator
Training RL-based dialog systems requires a large
number of interactions with users. It’s common
to use a user simulator to train RL-based dialog
systems in an online fashion (Pietquin and Dutoit,
2006; Scheffler and Young, 2002; Li et al., 2016).
As a consequence, we construct an agenda-based
user simulator, which we refer to as Sim1, to train
the original RL-based system. The user action set
of Sim1 is denoted as Au, which includes such in-
tents4: “hello”, “bye”, “inform”, “deny”, “negate”,
“affirm”, “request”, “reqalts” and “null”. The slots
of Sim1 are shown in section 6.1. In each turn,
the user action consists of a intent and slots and
we append the value of slots according to the user
goal.

6.4 Implementation of the Original System
For the original RL-based dialog system, a feature
vector xt of size 191 is extracted. This vector
is the concatenation of encodings of LU results,
the previous system reply, database results and the
current turn number. The LU module is imple-
mented with an SVM5 for intent detection and a
CRF6 for slot filling. The language generation
module is implemented by a rule-based method.
The hidden dialog state representation is inferred

4A detail explanation of these intents is in DSTC2 (Hen-
derson et al., 2013).

5We use the publicly available SVM tool at http://scikit-
learn.org.

6We use the publicly available CRF tool at
https://pypi.python.org/pypi/sklearn-crfsuite.

by a GRU (Chung et al., 2014). We set the hidden
states of the GRU to be 120. The policy network
is implemented as a Multilayer Perceptron (MLP)
with one hidden layer. The size of the hidden layer
is 80. The output dimension of policy network is
15, which corresponds to the number of system
actions. To encourage shorter interaction, we set
a small per-turn negative reward Rturn = �1.
The maximal turn is set to be 40. If the user
goal is satisfied, the policy will be encouraged by
a large positive reward Rsucc = 10; otherwise
the policy will be penalized by a negative reward
Rfail = �10. Discounted factor � = 0.9.
The baseline b of current policy is estimated on
sampled episodes in a batch. The batch size N is
set to be 32. Adadelta (Zeiler, 2012) method is
used to update model parameters. The original
system S1 is trained by interacting with Sim1.
After about 2400 interactions, the performance of
S1 starts to converge.

6.5 Simulated Evaluation
To evaluate our approach, we design another user
simulator, which we denote as Sim2, to simulate
the unpredictable real customers. The user action
set of Sim2 is denoted as A0

u. The difference
between Au and A0

u is reflected on the domain
specific intents7. Specifically, in addition to the
intents of Sim1, A0

u includes the “confirm” intent.
The difference in user action sets will result in
different interaction strategies between Sim1 and
Sim2. To verify whether a recommended restau-
rant meets his (her) constraints, Sim1 can only
request what the value of a specific slot is, but
Sim2 can request or confirm.

After obtaining the original system S1, we de-
ploy it to interact with Sim1 and Sim2 respectively,
under different LU error rates (Li et al., 2017a).
In each condition, we simulate 3200 episodes
to obtain the performance. Table 1 shows the

7A more complex situation is shown in the human
evaluation.
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(a) Dialog success rate of different systems. (b) Satis. of different systems.

Figure 4: Performance of different systems under simulation. The original, extended and contrast systems are
shown in red, blue and purple bars. We test these systems by interacting with Sim2.

details of the test performance. Table 2 shows the
statistics of turns when S1 interacts with Sim2.

As shown in Table 1, S1 achieves higher dialog
success rate and rewards when testing with Sim1.
When interacting with Sim2, nearly half of the
responses to unsupported user actions are not
reasonable. Notice even though Sim2 contains
new user actions, some of the new actions might
be appropriately handled by S1. It may be due
to the robustness of our RL-based system. But
it’s far from being desired. The unpredictable real
user behavior in the deployment stage will lead to
a poor user experience in real-world applications.
It proves the importance of a maintainable system.

To maintain the original system, we define a
few simple logic rules to handle unsupported user
actions: if users confirm the value of a slot in
current turn, the system should inform users of that
value. These rules8 are intuitive and reasonable to
handle queries such as “Is this restaurant located in
Zhongguancun?”. There are four slots9 that can be
used for confirmation, so we define four logic rules
in all. Due to the change in ontology, we add a new
status in dialog features to represent the “confirm”
intent of users. It leads to a change in the model
architecture of extended dialog manager. Then we
distill knowledge of the S1 and logic rules into the
extended system. No additional data is used to
obtain the extended system.

For comparison, we retrain another new sys-
tem (contrast system) from scratch by interacting

8In the practical dialog system, we can inject more
complex logic rules and take dialog history into account.
These rules are not limited to question/answer mapping.

9They are “name”, “area”, “price range” and “cuisine”.

with Sim2. After about 2600 interactions with
Sim2, the performance of contrast system starts to
converge. Note that in order to build the contrast
system, the developers need to redesign a new user
simulator or hire real users. It’s expensive and
impractical in industrial applications. Then we
simulate 3200 interactions with Sim2 to obtain its
performance. Fig. 4 illustrates the performance of
different systems.

As can be seen, the extended system performs
better than the original system in terms of dialog
success rate and “Satis.”. This is to a large degree
attributed to the consideration of new user actions.
Fig. 4(a) shows that the contrast system achieves
higher dialog success rate than the extended sys-
tem. But the gap is negligible. However, the
contrast system is trained from scratch under a
new interaction environment and the extended
system is trained by transferring knowledge of
the original system and logic rules. To train the
contrast system, about 2600 episodes are sampled
by interacting with a new interaction environment.
But no additional data is used to train the extended
system.

In Fig. 4(b), the “Satis.” of the extended
system is slightly higher than the contrast system.
This is due to the fact that the extended system
learns how to deal with new user actions from
logic rules but the contrast system obtains dialog
policy by exploring the environment. As a result,
the contrast system learns a more flexible dialog
policy than the extended system10. However,
the “Satis.” has a bias to the suboptimal rules,

10Table 6 in the Appendix shows sample dialogs from the
extended system and contrast system.

3809



Average Rating 2.35

Average Turns 12.1

Unseen Intents takeTaxi, bookTable

Unseen Inform Slots
withoutWaiting, carryoutService,
goodforDating, privateRoom,
hasInternet

Unseen Request Slots waitingLine, discount,
businessHours

Unseen Confirm Slots carryoutService, goodforDating,
privateRoom, hasInternet

Table 3: Details of the real user logs. Users are
encouraged to interact with the original system by
unsupported intents and slots. We find there are 14 user
actions unseen before.

Dialog Condition System Action

takeTaxi API call
bookTable API call
inform unseen slots recommend a restaurant
request unseen slots offer information of slots
confirm unseen slots offer information of slots

Table 4: Different types of rules for new user actions.
Left column shows the dialog context condition; Right
column shows the corresponding system action. We
define 14 rules in all to handle newfound intents and
slots shown in Table 3.

rather than the optimal policy gained from the
environment. It suggests the extended system can
be further refined by reinforcement learning once
a new interaction environment is available.

6.6 Human Evaluation
In any case, the developers can’t guarantee all user
actions are considered. Fortunately, our method
makes no assumptions about the new user actions
and new dialog model architecture. As a result, the
system can be extended over multiple iterations.

To evaluate this characteristic, we deploy the
extended system11 in section 6.5 to interact with
real human users. Users are given a goal sam-
pled from our corpus for reference. To elicit
more complex situations, they are encouraged to
interact with our system by new intents and slots
related to the restaurant domain. At the end of
each dialog, they are asked to give a subjective
rating on the scale from 1 to 5 based on the
naturalness of the system (1 is the worst, 5 is the
best.). After filtering dialog sessions unrelated to
our task, we collect 315 episodes in total. Table 3
shows the details of the user logs. As shown in
Table 3, after deployment, there are a few slots

11The extended system in the simulated evaluation will be
the original system in our human evaluation.

Figure 5: Distribution of user ratings.

and intents unseen before. For example, users may
ask for the discount information or take a taxi to
the restaurant. To represent the new intents and
slots, the dimension of extracted dialog features
is extended to 236. Meanwhile, the number of
system actions is extended to 29 to handle new
user actions. To deal with the newfound user
actions, we define 14 rules in total. Table 4 shows
the details of new defined logic rules. Then we
distill the knowledge of the original system and
logic rules into a new system. Fig. 5 shows the
comparison in user ratings. The extended system
significantly gets a higher subjective rating than
the original one. It proves that the extended system
can give reasonable responses in unseen dialog
situations.

Table 5 shows sample dialogs from the original
system and extended system with real users. We
can see that the extended system is much more
coherent since it takes new user actions into ac-
count. It inspires us that a complicated RL-based
dialog system can start from a simple one and be
improved incrementally based on our framework.
This design pattern will be much more efficient if
the interaction environment is hard to access.

7 Conclusion

In this paper, we present a practical solution to
maintain RL-based dialog systems without retrain-
ing from scratch. By reusing existing resources,
developers can extend the RL-based dialog man-
ager to deal with unpredictable user actions after
deployment. Furthermore, our method holds no
constraints on the architecture of the new system
and retains the key benefit of data-driven methods.
It means the new system can be maintained it-
eratively and further refined by RL once a new
interaction environment is available. The sim-
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Original System Extended System
User: I want to find a Sichuan restaurant. User: I want to find a Sichuan restaurant in
System: Where do you want to go? Zhongguancun area.
User: Zhongguancun area. System: “Hot Charge” is a nice Sichuan restaurant in
System: “Hot Charge” is a nice Sichuan restaurant in in Zhongguancun area.
Zhongguancun area. User: What’s the discount of this restaurant?
User: Can you tell me the discount? System: This restaurant is offering 10% off.
System: The average cost is 42 CNY. User: Is there a waiting line?
User: Tell me the discount! System: Currently there are 5 parties waiting in line.
System: “Hot Charge” is a nice Sichuan restaurant in User: Can you book a table for me?
Zhongguancun area. System: Ok.
User: Bye. User: Thanks.
System: Bye. System: You are welcome.

Subjective Rating = 2 Subjective Rating = 5

Table 5: Sample dialogs of the original and extended systems in the human evaluation. The 
original system will collapse when encountering unseen slots and intents. After extension, the 
new system can handle more user actions.

ulation and human experiments show our pro-
posed framework guarantees the maintainability
and scalability in RL-based systems, which are
necessary for any industrial application.
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Abstract

This paper presents a Discriminative Deep
Dyna-Q (D3Q) approach to improving the ef-
fectiveness and robustness of Deep Dyna-Q
(DDQ), a recently proposed framework that
extends the Dyna-Q algorithm to integrate
planning for task-completion dialogue policy
learning. To obviate DDQ’s high dependency
on the quality of simulated experiences, we in-
corporate an RNN-based discriminator in D3Q
to differentiate simulated experience from real
user experience in order to control the quality
of training data. Experiments show that D3Q
significantly outperforms DDQ by controlling
the quality of simulated experience used for
planning. The effectiveness and robustness of
D3Q is further demonstrated in a domain ex-
tension setting, where the agent’s capability of
adapting to a changing environment is tested.1

1 Introduction

There are many virtual assistants commercially
available today, such as Apple’s Siri, Google’s
Home, Microsoft’s Cortana, and Amazon’s Echo.
With a well-designed dialogue system as an intel-
ligent assistant, people can accomplish tasks via
natural language interactions. Recent advance in
deep learning has also inspired many studies in
neural dialogue systems (Wen et al., 2017; Bordes
et al., 2017; Dhingra et al., 2017; Li et al., 2017).

A key component in such task-completion di-
alogue systems is dialogue policy, which is of-
ten formulated as a reinforcement learning (RL)
problem (Levin et al., 1997; Young et al., 2013).
However, learning dialogue policy via RL from
the scratch in real-world systems is very challeng-
ing, due to the inevitable dependency on the envi-
ronment from which a learner acquires knowledge
and receives rewards. In a dialogue scenario, real

1The source code is available at https://github.
com/MiuLab/D3Q.

users act as the environment in the RL framework,
and the system communicates with real users con-
stantly to learn dialogue policy. Such process
is very time-consuming and expensive for online
learning.

One plausible strategy is to leverage user
simulators trained on human conversational
data (Schatzmann et al., 2007; Li et al., 2016),
which allows the agent to learn dialogue pol-
icy by interacting with the simulator instead of
real users. The user simulator can provide infi-
nite simulated experiences without additional cost,
and the trained system can be deployed and then
fine-tuned through interactions with real users (Su
et al., 2016; Lipton et al., 2016; Zhao and Eske-
nazi, 2016; Williams et al., 2017; Dhingra et al.,
2017; Li et al., 2017; Liu and Lane, 2017; Peng
et al., 2017b; Budzianowski et al., 2017; Peng
et al., 2017a; Tang et al., 2018).

However, due to the complexity of real con-
versations and biases in the design of user sim-
ulators, there always exists the discrepancy be-
tween real users and simulated users. Further-
more, to the best of our knowledge, there is no uni-
versally accepted metric for evaluating user sim-
ulators for dialogue purpose (Pietquin and Hastie,
2013). Therefore, it remains controversial whether
training task-completion dialogue agent via simu-
lated users is a valid and effective approach.

A previous study, called Deep Dyna-Q
(DDQ) (Peng et al., 2018), proposed a new strat-
egy to learn dialogue policies with real users by
combining the Dyna-Q framework (Sutton, 1990)
with deep learning models. This framework in-
corporates a learnable environment model (world
model) into the dialogue policy learning pipeline,
which simulates dynamics of the environment and
generates simulated user behaviors to supplement
the limited amount of real user experience. In
DDQ, real user experiences play two pivotal roles:
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Figure 1: Proposed D3Q for dialogue policy learning.

1) directly improve the dialogue policy via RL; 2)
improve the world model via supervised learning
to make it behave more human-like. The former
is referred to as direct reinforcement learning,
and the latter world model learning. Respectively,
the policy model is trained via real experiences
collected by interacting with real users (direct
reinforcement learning), and simulated experi-
ences collected by interacting with the learned
world model (planning or indirect reinforcement
learning).

However, the effectiveness of DDQ depends
upon the quality of simulated experiences used in
planning. As pointed out in (Peng et al., 2018),
although at the early stages of dialogue training it
is helpful to perform planning aggressively with
large amounts of simulated experiences regardless
their quality, in the late stages when the dialogue
agent has been significantly improved, low-quality
simulated experiences often hurt the performance
badly. Since there is no established method of
evaluating the world model which generates sim-
ulated experiences, Peng et al. (2018) resorts to
heuristics to mitigate the negative impact of low-
quality simulated experiments, e.g., reducing the
planning steps in the late stage of training. These
heuristics need to be tweaked empirically, thus
limit DDQ’s applicability in real-world tasks.

To improve the effectiveness of planning with-
out relying on heuristics, this paper proposes Dis-
criminative Deep Dyna-Q (D3Q), a new frame-
work inspired by generative adversarial network
(GAN) that incorporates a discriminator into the
planning process. The discriminator is trained to
differentiate simulated experiences from real user
experiences. As illustrated in Figure 1, all sim-

ulated experiences generated by the world model
need to be judged by the discriminator, only the
high-quality ones, which cannot be easily detected
by the discriminator as being simulated, are used
for planning. During the course of dialogue train-
ing, both the world model and discriminator are
refined using the real experiences. So, the quality
threshold held by the discriminator goes up with
the world model and dialogue agent, especially in
the late stage of training.

By employing the world model for planning and
a discriminator for controlling the quality of simu-
lated experiences, the proposed D3Q framework
can be viewed as a model-based RL approach,
which is generic and can be easily extended to
other RL problems. In contrast, most model-based
RL methods (Tamar et al., 2016; Silver et al.,
2016; Gu et al., 2016; Racanière et al., 2017) are
developed for simulation-based, synthetic prob-
lems (e.g., games), not for real-world problems.
In summary, our main contributions in this work
are two-fold:

• The proposed Discriminative Deep Dyna-Q
approach is capable of controlling the qual-
ity of simulated experiences generated by the
world model in the planning phase, which
enables effective and robust dialogue policy
learning.

• The proposed model is verified by experi-
ments including simulation, human evalua-
tion, and domain-extension settings, where
all results show better sample efficiency over
the DDQ baselines.

2 Discriminative Deep Dyna-Q (D3Q)

As illustrated in Figure 2, the D3Q frame-
work consists of six modules: (1) an LSTM-
based natural language understanding (NLU)
module (Hakkani-Tür et al., 2016) for identifying
user intents and extracting associated slots; (2) a
state tracker (Mrkšić et al., 2017) for tracking dia-
logue states; (3) a dialogue policy that selects next
action based on the current state; (4) a model-
based natural language generation (NLG) mod-
ule for generating natural language response (Wen
et al., 2015); (5) a world model for generating sim-
ulated user actions and simulated rewards; and (6)
an RNN-based discriminator for controlling the
quality of simulated experience. Note that the
controlled planning phase is realized through the
world model and the discriminator, which are not
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included in traditional framework of dialogue sys-
tems.

Figure 1 illustrates the whole process: start-
ing with an initial dialogue policy and an initial
world model (both are trained with pre-collected
human conversational data), D3Q training con-
sists of four stages: (1) direct reinforcement learn-
ing: the agent interacts with real users, collects
real experiences and improves dialogue policy;
(2) world model learning: the world model is
learned and refined using real experience; (3) dis-
criminator learning: the discriminator is learned
and refined to differentiate simulated experience
from real experience; and (4) controlled planning:
the agent improves the dialogue policy using the
high-quality simulated experience generated by
the world model and the discriminator.

2.1 Direct Reinforcement Learning

In this stage, we use the vanilla deep Q-network
(DQN) method (Mnih et al., 2015) to learn the di-
alogue policy based on real experience. We con-
sider task-completion dialogue as a Markov De-
cision Process (MDP), where the agent interacts
with a user through a sequence of actions to ac-
complish a specific user goal.

At each step, the agent observes the dialogue
state s, and chooses an action a to execute, us-
ing an ✏-greedy policy that selects a random action
with probability ✏ or otherwise follows the greedy
policy a = argmaxa0Q(s, a0; ✓Q). Q(s, a; ✓Q)
which is the approximated value function, imple-
mented as a Multi-Layer Perceptron (MLP) pa-
rameterized by ✓Q. The agent then receives re-
ward r, observes next user response, and updates

the state to s0. Finally, we store the experience tu-
ple (s, a, r, s0) in the replay buffer Bu. This cycle
continues until the dialogue terminates.

We improve the value function Q(s, a; ✓Q) by
adjusting ✓Q to minimize the mean-squared loss
function as follows:

L(✓Q) = E(s,a,r,s0)⇠Bu [(yi � Q(s, a; ✓Q))2],

yi = r + � max
a0

Q0(s0, a0; ✓Q0), (1)

where � 2 [0, 1] is a discount factor, and Q0(.)
is the target value function that is only periodi-
cally updated (i.e., fixed-target). The dialogue pol-
icy can be optimized through r✓QL(✓Q) by mini-
batch deep Q-learning.

2.2 World Model Learning
To enable planning, we use a world model to gen-
erate simulated experiences that can be used to
improve dialogue policy. In each turn of a dia-
logue, the world model takes the current dialogue
state s and the last system action a (represented
as an one-hot vector) as the input, and generates
the corresponding user response o, reward r, and
a binary variable t (indicating if the dialogue ter-
minates). The world model G(s, a; ✓G) is trained
using a multi-task deep neural network (Liu et al.,
2015) to generate the simulated experiences. The
model contains two classification tasks for sim-
ulating user responses o and generating terminal
signals t, and one regression task for generating
the reward r. The lower encoding layers are shared
across all three tasks, while the upper layers are
task-specific. G(s, a; ✓G) is optimized to mimic
human behaviors by leveraging real experiences
in the replay buffer Bu. The model architecture
is illustrated in the left part of Figure 3.

h = tanh(Wh(s, a) + bh),

r = Wrh + br,

o = softmax(Wah + ba),

t = sigmoid(Wth + bt),

where (s, a) is the concatenation of s and a, and
all W and b are weight matrices and bias vectors,
respectively.

2.3 Discriminator Learning
The discriminator, denoted by D, is used to differ-
entiate simulated experience from real experience.
D is a neural network model with its architecture
illustrated in the right part of Figure 3. D employs
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Figure 3: The model architectures of the world model and the discriminator for controlled planning.

an LSTM to encode a dialogue as a feature vec-
tor, and a Multi-Layer Perceptron (MLP) to map
the vector to a probability indicating whether the
dialogue looks like being generated by real users.

D is trained using the simulated experience gen-
erated by the world model G and the collected real
experience x. We use the objective function as

Ereal[log D(x)]+Esimu[log(1�D(G(.)))]. (2)

Practically, we use the mini-batch training and the
objective function can be rewritten as

1

m

mX

i=1

[log D(x(i)) + log(1 � D(G(.)(i)))], (3)

where m represents the batch size.

2.4 Controlled Planning
In this stage, we apply the world model G and
the discriminator D to generate high-quality sim-
ulated experience to improve dialogue policy. The
D3Q method uses three replay buffers, Bu for
storing real experience, Bs for simulated experi-
ence generated by G, and Bh for high-quality sim-
ulated experience generated by G and D. Learn-
ing and planning are implemented by the same
DQN algorithm, operating on real experience in
Bu for learning and on simulated experience in
Bh for planning. Here we only describe how the
high-quality simulated experience is generated.

At the beginning of each dialogue session, we
uniformly draw a user goal (C, R) (Schatzmann
et al., 2007), where C is a set of constraints
and R is a set of requests. For example, in
movie-ticket booking dialogue, constraints are the

slots with specified values, such as the name, the
date of the movie and the number of tickets to
buy. And requests can contain slots which the
user plans to acquire the values for, such as the
start time of the movie. The first user action
o1 can be either a request or an inform di-
alogue act. A request dialogue act consists of
a request slot, multiple constraint slots and the
corresponding values, uniformly sampled from
R and C. For example, request(theater;
moviename=avergers3). An inform dia-
logue act contains constraint-slots only. Semantic
frames can also be transformed into natural lan-
guage via NLG component, e.g., “which theater
will play the movie avergers3?”

For each dialogue episode with a sampled
user goal, the agent interacts with world model
G(s, a; ✓G) to generate a simulated dialogue ses-
sion, which is a sequence of simulated experi-
ence tuples (s, a, r, s0). We always store the G-
generated session in Bs, but only store it in Bh if
it is selected by discriminator D. We repeat the
process until K simulated dialogue sessions are
added in Bh, where K is a pre-defined planning
step size. This can be viewed as a sampling pro-
cess. In theory if the world model G is not well-
trained this process could take forever to gener-
ate K high-quality samples accepted by D. For-
tunately, this never happened in our experiments
because D is trained using the simulated experi-
ence generated by G and D is updated whenever
G is refined.

Now, we compare controlled planning in D3Q
with the planning process in the original DDQ
(Peng et al., 2018). In DDQ, after each step of di-
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Figure 4: The learning curves of DDQ(K) agents
where (K � 1) is the number of planning steps.

rect reinforcement learning, the agent improves its
policy via K steps of planning. A larger planning
step means that more simulated experiences gen-
erated by G are used for planning. Theoretically,
larger amounts of high-quality simulated experi-
ences can boost the performance of the dialogue
policy more quickly. However, the world model
by no means perfectly reflects real human behav-
ior, and the generated experiences, if of low qual-
ity, can have negative impact on dialogue policy
learning. Prior work resorts to heuristics to miti-
gate the impact. For example, Peng et al. (2018)
proposed to reduce planning steps at the late stage
of policy learning, thus forcing all DDQ agents
to converge to the same one trained with a small
number of planning steps.

Figure 4 shows the performance of DDQ agents
with different planning steps without heuristics. It
is observable that the performance is unstable, es-
pecially for larger planning steps, which indicates
that the quality of simulated experience is becom-
ing more pivotal as the number of planning steps
increases.

D3Q resolves this issue by introducing a dis-
criminator and allows only high-quality simulated
experience, judged by the discriminator, to be used
for planning. In the next section, we will show that
D3Q does not suffer from the problem of DDQ
and the D3Q training is quite stable even with
large sizes of planning steps.

3 Experiments

We evaluate D3Q on the movie-ticket booking task
with both simulated users and real users in two set-
tings: full domain and domain extension.

Full Domain & Domain Extension
request, inform, deny, confirm question,

Intent confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Full Domain

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip

Domain Extension

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip,
genre, other

Table 1: The data schema for full domain and domain
extension settings.

3.1 Dataset
Raw conversational data in a movie-ticket book-
ing scenario was collected via Amazon Mechani-
cal Turk. The dataset has been manually labeled
based on a schema defined by domain experts, as
shown in Table 1, consisting of 11 intents and 16
slots in the full domain setting, while there are
18 slots in the domain extension setting. Most
of these slots can be both “inform slots” and “re-
quest slots”, except for a few. For example, the
slot number of people is categorized as an in-
form slot but not a request slot, because arguably
the user always knows how many tickets she/he
wants. In total, the dataset contains 280 annotated
dialogues, the average length of which is approxi-
mately 11 turns.

3.2 Baselines
To verify the effectiveness of D3Q, we devel-
oped different versions of task-completion dia-
logue agents as baselines to compare with.

• A DQN agent is implemented with only di-
rect reinforcement learning in each episode.

• The DQN(K) has K times more real expe-
riences than the DQN agent. The perfor-
mance of DQN(K) can be viewed as the up-
per bound of DDQ(K) and D3Q(K) with the
same number of planning steps (K � 1), as
these models have the same training settings
and the same amount of training samples dur-
ing the entire learning process.

• The DDQ(K) agents are learned with an ini-
tial world model pre-trained on human con-
versational data, with (K � 1) as the number

3817



of planning steps. These agents store the sim-
ulated experience without being judged by
the discriminator.

Proposed D3Q
• The D3Q(K) agents are learned through the

process described in Section 2.4.

• The D3Q(K, fixed ✓D) agents are learned as
described in Section 2.4 without training dis-
criminator. The D3Q(K, fixed ✓D) agents are
only evaluated in the simulation setting.

3.3 Implementation
Settings and Hyper-parameters ✏-greedy is al-
ways applied for exploration. We set the discount
factor � = 0.9. The buffer size of Bu and Bh is
set to 2000 and 2000 ⇥K planning steps, respec-
tively. The batch size is 16, and the learning rate is
0.001. To prevent gradient explosion, we applied
gradient clipping on all the model parameters to
maximum norm = 1. All the NN models are ran-
domly initialized. The high-quality simulated ex-
perience buffer Bh and the simulated experience
buffer Bs are initialized as empty. The target net-
work is updated at the beginning of each training
episode. The optimizer for all the neural networks
is RMSProp (Hinton et al., 2012). The maximum
length of a simulated dialogue is 40. If exceed-
ing the maximum length, the dialogue fails. To
make dialogue training efficient, we also applied a
variant of imitation learning, called Reply Buffer
Spiking (RBS) (Lipton et al., 2016), by building a
simple and straightforward rule-based agent based
on human conversational dataset. We then pre-
filled the real experience replay buffer Bu with
experiences of 50 dialogues, before training for all
the variants of models. The batch size for collect-
ing experiences is 10, which means if the running
agent is DDQ/D3Q(K), 10 real experience tuples
and 10 ⇥ (K � 1) simulated experience tuples are
stored into the buffers at every episode.

Agents For all the models (DQN, DDQ, and
D3Q) and their variants, the value networks Q(.)
are MLPs with one hidden layer of size 80 and
ReLU activation.

World Model For all the models (DDQ and
D3Q) and their variants, the world models M(.)
are MLPs with one shared hidden layer of size
160, hyperbolic-tangent activation, and one en-
coding layer of hidden size 80 for each state and
action input.

Figure 5: The learning curves of agents (DQN, DDQ,
and D3Q) under the full domain setting.

Discriminator In the proposed D3Q frame-
work, the LSTM cell is utilized, the hidden size
is 128. The encoding layer for the current state
and output layer are MLPs with single hidden
layer of size 80. The threshold interval is set
to range between 0.45 and 0.55, i.e., only when
0.45  D(x)  0.55 that x would be stored into
the buffer Bh.

3.4 Simulation Evaluation

In this setting, the dialogue agents are optimized
by interacting with the user simulators instead of
with real users. In another word, the world model
is trained to mimic user simulators. In spite of
the discrepancy between simulators and real users,
this setting endows us with the flexibility to per-
form a detailed analysis of models without much
cost, and to reproduce experimental results easily.

User Simulator We used an open-sourced task-
oriented user simulator (Li et al., 2016) in our
simulated evaluation experiments (Appendix A for
more details). The simulator provides the agent
with a simulated user response in each dialogue
turn along with a reward signal at the end of the
dialogue. A dialogue is considered successful if
and only if a movie ticket is booked successfully,
and the information provided by the agent satisfies
all the constraints of the sampled user goal. At the
end of each dialogue, the agent receives a positive
reward 2 ⇤ L for success, or a negative reward �L
for failure, where L is the maximum number of
turns in each dialogue, and is set to 40 in our ex-
periments. Furthermore, in each turn, a reward �1
is provided to encourage shorter dialogues.

3818



Agent Epoch = 100 Epoch = 200 Epoch = 300
Success Reward Turns Success Reward Turns Success Reward Turns

DQN .4467 2.993 23.21 .7000 36.08 17.84 .7867 48.45 13.91
DDQ(5) .5467 16.57 20.07 .7133 39.23 14.73 .8067 50.73 14.13
DDQ(5, rand-init ✓G) .6067 23.55 20.49 .6267 26.30 19.80 .6667 32.92 16.16
DDQ(5, fixed ✓G) .5867 20.62 21.56 .1667 -33.71 29.41 .2267 -22.68 21.76
D3Q(5) .7467 43.59 14.03 .6800 34.64 15.92 .7200 40.85 13.11
D3Q(5, fixed ✓D) .6800 33.86 17.48 .7000 36.57 16.85 .6933 35.67 17.06
DQN(5) .7400 42.19 15.23 .8533 57.76 11.28 .7667 46.56 12.88
DDQ(10) .5733 24.00 11.60 .5533 19.89 15.01 .4800 10.04 17.12
DDQ(10, rand-init ✓G) .5000 12.79 16.41 .5333 17.71 14.57 .6000 24.98 16.04
DDQ(10, fixed ✓G) .3467 -10.25 25.69 .2400 -23.38 26.36 .0000 -55.53 33.07
D3Q(10) .6333 28.99 16.01 .7000 37.24 15.52 .6667 33.09 15.83
D3Q(10, fixed ✓D) .7133 36.36 20.48 .8400 54.87 20.48 .7400 42.89 13.81
DQN(10) .8333 55.5 11.00 .7733 47.99 11.61 .7733 47.68 12.24

Table 2: Results of different agents at training epoch = {100, 200, 300}. Each number is averaged over 3 runs,
each run tested on 50 dialogues. (Success: success rate, Reward: Average Reward, Turns: Average Turns)

Figure 6: The learning curves of D3Q(K) agents which
(K-1) is the number of planning steps (K = 2, 3, 5, 10,
15).

Full Domain The learning curves of the models
in the full domain setting are depicted in the fig-
ure 5. The results show that the proposed D3Q
agent (the pink curve) significantly outperforms
the baselines DQN and DDQ(5), and has simi-
lar training efficiency to DQN(5). Note that here
the planning steps of D3Q is 4, which means
D3Q (pink) and DDQ(5) (purple) use the same
amount of training samples (both real and sim-
ulated experiences) to update the agent through-
out the whole training process. The difference be-
tween these two agents is that D3Q employs a dis-
criminator as a quality judge. The experimental
result shows that our proposed framework could
boost the learning efficiency even without any pre-
training on the discriminator. Furthermore, D3Q
(pink) uses the same amount of training samples
as DQN(5) (green), while the proposed model uses
only 20% of real experience from human. The ef-

Figure 7: The learning curves of D3Q, DDQ(5),
DDQ(5) (Peng et al., 2018), and D3Q fixed ✓D agents.

ficacy and feasibility of D3Q is hereby justly veri-
fied.

As mentioned in the previous section, a large
number of planning steps means leveraging a large
amount of simulated experience to train the agents.
The experimental result (Figure 4) shows that the
DDQ agents are highly sensitive to the quality of
simulated experience. In contrast, the proposed
D3Q framework demonstrates robustness to the
number of planning steps (Figure 6). Figure 7
shows that D3Q also outperforms DDQ original
setting (Peng et al., 2018) and D3Q without train-
ing discriminator. The performance detail includ-
ing success rate, reward, an number of turns is
shown in Table 2. From the table, with fewer sim-
ulated experiences, the difference between DDQ
and D3Q may not be significant, where DDQ
agents achieve about 50%-60% success rate and
D3Q agents achieve higher than 68% success rate
after 100 epochs. However, when the number of
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Figure 8: The learning curves of agents (DQN, DDQ,
and D3Q) under the domain extension setting.

planning steps increases, more fake experiences
significantly degrade the performance for DDQ
agents, where DDQ(10, fixed ✓G) suffers from
bad simulated experiences after 300 epochs and
achieves 0% success rate.

Domain Extension In the domain extension
experiments, more complicated user goals are
adopted. Moreover, we narrow down the action
space into a small subspace instead of that used in
full-domain setting, and gradually introduce more
complex user goals and expand the action space as
the training proceeds. Specifically, we start from a
set of necessary slots and actions to accomplish
most of the user goals, and then extend the ac-
tion space and complexity of user goals once every
20 epoch (after epoch 50). Note that the domain
will keep extending and become full-domain after
epoch 130. Such experimental setting makes the
training environment more complicated and unsta-
ble than the previous full-domain one.

The results summarized in Figure 8 show that
D3Q significantly outperforms the baseline meth-
ods, demonstrating its robustness. Furthermore,
D3Q shows remarkable learning efficiency while
extending the domain, which even outperforms
DQN(5). A potential reason might be that the
world model could improve exploration in such
unstable and noisy environment.

3.5 Human Evaluation

In the human evaluation experiments, real users
interact with different models without knowing
which agent is behind the system. At the begin-
ning of each dialogue session, one of the agents
was randomly picked to converse with the user.

Figure 9: The human evaluation results of D3Q,
DDQ(5), and D3Q in the full domain setting, the num-
ber of test dialogues indicated on each bar, and the p-
values from a two-sided permutation test (difference in
mean is significant with p < 0.05).

Figure 10: The human evaluation results of DQN,
DDQ(5), and D3Q in the domain extension setting, the
number of test dialogues indicated on each bar. The
prefix ’b-’ implies that the trained models are picked
before the environment extends to full domain, while
the prefix ’a-’ indicates that the trained models are
picked after the environment becomes full domain (dif-
ference in mean is significant with p < 0.05).

The user was instructed to converse with the agent
to complete a task given a user goal sampled from
the corpus. The user can abandon the task and ter-
minate the dialogue at any time, if she or he be-
lieves that the dialogue was unlikely to succeed,
or simply because the dialogue drags on for too
many turns. In such cases, the dialogue session is
considered as failure.

Full Domain Three agents (DQN, DDQ(5), and
D3Q) trained in the full domain setting (Figure 5)
at epoch 100 are selected for testing. As illustrated
in Figure 9, the results of human evaluation are
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consistent with those in the simulation evaluation
(Section 3.4), and the proposed D3Q significantly
outperforms other agents.

Domain Extension To test the adaptation capa-
bility of the agents to the complicated, dynam-
ically changing environment, we selected three
trained agents (DQN, DDQ(5), and D3Q) at epoch
100 before the environment extends to full do-
main, and another three agents trained at epoch
200 after the environment becomes full domain.
Figure 10 shows that the results are consistent with
those in the simulation evaluation (Figure 8), and
the proposed D3Q significantly outperforms other
agents in both stages.

4 Conclusions
This paper proposes a new framework, Discrimi-
native Deep Dyna-Q (D3Q), for task-completion
dialogue policy learning. With a discriminator as
judge, the proposed approach is capable of con-
trolling the quality of simulated experience gener-
ated in the planning phase, which enables efficient
and robust dialogue policy learning. Furthermore,
D3Q can be viewed as a generic model-based RL
approach easily-extensible to other RL problems.

We validate the D3Q-trained dialogue agent on
a movie-ticket-booking task in the simulation, hu-
man evaluation, and domain-extension settings.
Our results show that the D3Q agent significantly
outperforms the agents trained using other state-
of-the-art methods including DQN and DDQ.
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A User Simulator

In the task-completion dialogue setting, the entire
conversation is around a user goal implicitly, but
the agent knows nothing about the user goal ex-
plicitly and its objective is to help the user to ac-
complish this goal. Generally, the definition of
user goal contains two parts:

• inform slots contain a number of slot-value
pairs which serve as constraints from the user.

• request slots contain a set of slots that user
has no information about the values, but
wants to get the values from the agent dur-
ing the conversation. ticket is a default slot
which always appears in the request slots
part of user goal.

To make the user goal more realistic, we add
some constraints in the user goal: slots are split
into two groups. Some of slots must appear in the
user goal, we called these elements as Required
slots. In the movie-booking scenario, it includes
moviename, theater, starttime, date, num-
berofpeople; the rest slots are Optional slots, for
example, theater chain, video format etc.

3822



We generated the user goals from the labeled
dataset using two mechanisms. One mechanism
is to extract all the slots (known and unknown)
from the first user turns (excluding the greeting
user turn) in the data, since usually the first turn
contains some or all the required information from
user. The other mechanism is to extract all the
slots (known and unknown) that first appear in all
the user turns, and then aggregate them into one
user goal. We dump these user goals into a file as
the user-goal database. Every time when running a
dialogue, we randomly sample one user goal from
this user goal database.
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Abstract

Spoken Language Understanding (SLU),
which typically involves intent determination
and slot filling, is a core component of spoken
dialogue systems. Joint learning has shown
to be effective in SLU given that slot tags
and intents are supposed to share knowledge
with each other. However, most existing
joint learning methods only consider joint
learning by sharing parameters on surface
level rather than semantic level. In this work,
we propose a novel self-attentive model with
gate mechanism to fully utilize the semantic
correlation between slot and intent. Our model
first obtains intent-augmented embeddings
based on neural network with self-attention
mechanism. And then the intent semantic rep-
resentation is utilized as the gate for labelling
slot tags. The objectives of both tasks are
optimized simultaneously via joint learning in
an end-to-end way. We conduct experiment
on popular benchmark ATIS. The results show
that our model achieves state-of-the-art and
outperforms other popular methods by a large
margin in terms of both intent detection error
rate and slot filling F1-score. This paper gives
a new perspective for research on SLU.

1 Introduction

One long-term goal in artificial intelligence field
is to build an intelligent human-machine dialogue
system, which is capable of understanding hu-
man’s language and giving smooth and correct re-
sponses. A typical dialogue system is designed to
execute the following components: (i) automatic
speech recognition converts a spoken query into
transcription, (ii) spoken language understanding
component analyzes the transcription to extract se-
mantic representations, (iii) dialogue manager in-
terprets the semantic information and decides the
best system action, according to which the system
response is further generated either as a natural

language output(Jurafsky, 2000).
In this paper, we focus on spoken language un-

derstanding which is a core component of a spo-
ken dialogue system. It typically involves two ma-
jor tasks, intent determination and slot filling. In-
tent determination aims to automatically identify
the intent of the user as expressed in natural lan-
guage. Slot filling aims to extract relevant seman-
tic constituents from the natural language sentence
towards achieving a goal.

Usually, intent detection and slot filling are car-
ried out separately. However, separate modeling
of these two tasks is constrained to take full ad-
vantage of all supervised signals. Joint learning of
intent detection and slot filling is worthwhile for
three reasons. Firstly, the two tasks usually appear
simultaneously in SLU systems. Secondly, the in-
formation of one task can be utilized in the other
task to promote each other and a joint prediction
can be made (Zhang and Wang, 2016). For exam-
ple, if the intent of a utterance is to find a flight, it
is likely to contain the departure and arrival cities,
and vice versa. Lastly, slot tags and intents, as
semantics representations of user behaviours, are
supposed to share knowledge with each other.

Recently, joint model for intent detection and
slot filling has achieved much progress. (Xu and
Sarikaya, 2013) proposed using CNN based trian-
gular CRF for joint intent detection and slot fill-
ing. (Guo et al., 2014) proposed using a recursive
neural network that learns hierarchical represen-
tations of the input text for the joint task. (Liu
and Lane, 2016b) describes a recurrent neural net-
work (RNN) model that jointly performs intent de-
tection, slot filling and language modeling. The
neural network models keep updating the intent
prediction as word in the transcribed utterance ar-
rives and uses it as contextual features in the joint
model.

In this work, we propose a novel model for
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joint intent determination and slot filling by intro-
ducing self-attention and gating mechanism. Our
model can fully utilize the semantic correlation be-
tween slot and intent. To the best of our knowl-
edge, this is the first attempt to utilize intent-
augmented embedding as a gate to guide the learn-
ing of slot filling task. To fully evaluate the ef-
ficiency of our model, we conduct experiment on
Airline Travel Information Systems (ATIS) dataset
(Hemphill et al., 1990), which is popularly used
as benchmark in related work. And empirical
results show that our independent model outper-
forms the previous best result by 0.54% in terms
of F1-score on slot filling task, and gives excel-
lent performance on intent detection task. Our
joint model further promotes the performance and
achieves state-of-the-art results on both tasks.

The rest of our paper is structured as follows:
Section 2 discusses related work, Section 3 gives
a detailed description of our model, Section 4
presents experiments results and analysis, and
Section 5 summarizes this work and the future di-
rection.

2 Related Work

There is a long research history for spoken dia-
logue understanding, which emerged in the 1990s
from some call classification systems (Gorin et al.,
1997) and the ATIS project. In this section, we de-
scribe some typical works on intent classification
and slot-filling, which are both core tasks of SLU
(De Mori, 2007).

For intent detection task, the early traditional
method is to employ n-grams as features with
generic entities, such as locations and dates
(Zhang and Wang, 2016). This type of method
is restricted to the dimensionality of the input
space. Another line of popular approaches is to
train machine learning models on labeled training
data (Young, 2002; Hahn et al., 2011). For ex-
ample, SVM (Haffner et al., 2003) and Adaboost
(Schapire and Singer, 2000) have been explored
to improve intent detection. Approaches based on
neural network architecture have shown good per-
formance on intent detection task. Deep belief net-
works (DBNs) have been first used in call routing
classification (Deoras and Sarikaya, 2013). More
recently, RNNs have shown excellent performance
on the intent classification task (Ravuri and Stol-
cke, 2015).

For slot-filling task, traditional approaches are

based on conditional random fields (CRF) archi-
tecture, which has strong ability on sequence la-
belling (Raymond and Riccardi, 2007). Recently,
models based on neural network and its extensions
have shown excellent performance on the slot fill-
ing task and outperform traditional CRF models.
For example, (Yao et al., 2013) proposed to take
words as input in a standard recurrent neural net-
work language model, and then to predict slot la-
bels rather than words on the output side. (Yao
et al., 2014b) improved RNNs by using transition
features and the sequence-level optimization cri-
terion of CRF to explicitly model dependencies
of output labels. (Mesnil et al., 2013) tried bi-
directional and hybrid RNN to investigate using
RNN for slot filling. (Yao et al., 2014a) introduced
LSTM architecture for this task and obtained a
marginal improvement over RNN. Besides, fol-
lowing the success of attention based models in
the NLP field, (Simonnet et al., 2015) applied the
attention-based encoder-decoder to the slot filling
task, but without LSTM cells.

Recently, there has been some work on learn-
ing intent detection and slot filling jointly ex-
ploited by neural networks. Slot labels and in-
tents, as semantics of user behaviors, are supposed
to share knowledge with each other. (Guo et al.,
2014) adapted recursive neural networks (RNNs)
for joint training of intent detection and slot fill-
ing. (Xu and Sarikaya, 2013) described a joint
model for intent detection and slot filling based
on convolutional neural networks (CNN). The pro-
posed architecture can be perceived as a neural
network version of the triangular CRF model (Tri-
CRF). (Hakkani-Tür et al., 2016) proposed a sin-
gle recurrent neural network architecture that in-
tegrates the three tasks (domain detection, intent
detection and slot filling for multiple domains)
in a model. (Liu and Lane, 2016a) proposed an
attention-based neural network model for joint in-
tent detection and slot filling. Their joint model
got the best performance of 95.98% slot filling
F1-score and 1.57% intent error rate in the ATIS
dataset.

Despite the great progress those methods have
achieved, it is still a challenging and open task for
intent detection and slot filling. Therefore, we are
motivated to design a powerful model, which can
improve the performance of SLU systems.
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Figure 1: Illustration of our proposed model for joint intent detection and slot filling. Red arrows represent the
intent classification task based on the weighted average of BiLSTM outputs. The embeddings coloured with
different intensity values denote word-level and char-level embeddings (three kinds of convolution kernels).

3 Model

In this section, we present our model for the joint
learning of intent detection and slot filling. Figure
1 gives an overview of our model.

The first layer maps input sequence into vec-
tors by concatenating its word-level embeddings
and character-level embeddings (obtained by con-
volution). And we use these vectors as merged
embeddings in downstream layers. In many situa-
tions, contextual information is useful in sequence
labelling. In this paper, we introduce an approach
that leverages context-aware features at each time
step. In particular, we make use of self-attention
to produce context-aware representations of the
embeddings. Then a bidirectional recurrent layer
takes as input the embeddings and context-aware
vectors to produce hidden states. In the last step,
we propose to exploit the intent-augmented gat-
ing mechanism to match the slot label. The gate
for a specific word is obtained by taking a linear
transformation of the intent embedding and an-
other contextual representation of this word com-
puted by self-attention. We apply element-wise
dot-product between the gate and each BiLSTM
output.

Finally, a softmax layer is added to classify the
slot labels on top of the gate layer. For simplic-
ity, we only take the weighted average of BiLSTM

outputs to predict the intent label.
The design of this structure is motivated by the

effectiveness of multiplicative interaction among
vectors and by self-attention mechanism which
has been used successfully in a variety of tasks
(Cheng et al., 2016; Vaswani et al., 2017; Lin et al.,
2017). It also typically corresponds to our finding
that the intent is highly correlated with slot label
in some cases, so the semantics of intent should
be useful for detecting the slot labels.

3.1 Embedding Layer
We first convert the indexed words w =
(w1, w2, ..., wT ) to word-level embeddings Ew =
[ew

1 , ew
2 , ..., ew

T ], and character-level embeddings
Ec = [ec

1, e
c
2, ..., e

c
T ]. Although word embed-

dings are sufficient for many NLP task, pro-
vided by a well-pretrained glove1 or word2vec2,
character-level information provides some more
prior knowledge (e.g. morphemes) to the embed-
ding learning procedure. Some morphemic corre-
lated words are more close in vector space, which
is useful for identifying the slot labels. Character
embeddings also alleviate the out-of-vocabulary
(OOV) problem in the testing phase. In this pa-
per we focus on a character-aware convolution
layer used in (Kim et al., 2016) for words. The

1http://nlp.stanford.edu/projects/glove/
2https://code.google.com/p/word2vec/
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character-level embeddings are generated by con-
volution over characters in the word with multiple
window size to extract n-gram features.

Let C be the vocabulary of characters, V be
the vocabulary of words. The dimensions of
character-level embedding and word-level embed-
ding are denoted as dc and dw, respectively. For
each word wt 2 V , characters in wt constitute
the matrix Ct 2 R

dc⇥l, where the columns cor-
responds to l character embeddings.

A narrow convolution is applied between Ct

and a filter (or kernel) H 2 R
dc⇥w. Here we sup-

pose the filter width is w. After that, we obtain a
feature map f t 2 R

l�w+1 by adding a nonlinearity
activation. The final n-gram features is generated
by taking the max-over-time:

f t[i] = relu(H · Ct[:, i : i + w � 1] + b) (1)
ct = max

i
f t[i] (2)

where Ct[:, i : i + w � 1] is the i-to-(i+w-1)-th
column of Ct, and the character-level embedding
ec
t is made up of multiple ct generated by different

convolution kernels.

3.2 Self-Attention

Attention mechanism is usually used to guide the
forming of sentence embedding, extra knowledge
is also used to weigh the CNN or LSTM hidden
states (i.e. document words sometimes attend to
question information). However in slot filling task,
the input to our model is just one sequence. So
the attention mechanism used here is called self-
attention, that is to say, the word at each time step
attends to the whole words in this sentence. And
it helps to determine which region is likely to be a
slot. Since the embedding at each time step con-
sists of multiple parts (i.e. word embedding and
character embeddings of different kernel width),
each part has its own semantic meaning. As shown
in Figure 2, we divide the embedding into mul-
tiple parts and the attention of each part is pro-
cessed within its corresponding dimension. In this
approach, we restrict the interaction among differ-
ent aspects of the embedding. We hypothesize that
different semantic parts are relatively independent
and play different roles in our network.

Suppose M 2 R
dm⇥T to be the matrix contain-

ing sentence hidden vectors [m1, ..., mT ], where
dm is the dimension of these T vectors. Consider-
ing the characteristics of slot filing task, our aim

from baltimore to

Wa Wb Wc Wa Wb WcWa Wb Wc

Figure 2: The structure of self-attention layer. Red
coloured rectangles stand for matrices which map the
input to different subspaces. These transformed vec-
tors are divided into multiple parts for computing self-
attention.

is to encode each hidden vector into a context-
aware representation. We achieve that by using
attention over all the sentence hidden vectors M .
Firstly, We linearly map all the vectors in M to
three feature spaces by different projection param-
eters Wa, Wb and Wc, so the resulting vectors
are expressed as Ma, Mb and Mc with the same
shape as M . These matrices are shared across all
time steps. Considering the structure of embed-
ding which consists of K different parts (we use
4 kinds of embeddings with the same dimension),
these transformed matrices are equally split into K
parts. Furthermore, the attention weight is com-
puted by dot product between Ma and Mb. Lastly,
the attention output is a weighted sum of Mc.

Specifically, we consider different K parts in
detail for k = 1, .., K:

2

4
Ma

Mb

Mc

3

5 =

2

4
WaM
WbM
WcM

3

5 (3)

↵k,t = softmax(mT
k,a,tMk,b) (4)

S-Att(mt, M) = [M1,c↵
T
1,t, ..., MK,c↵

T
K,t] (5)

where Mk,a 2 R
(dm/K)⇥T is the k-th part of Ma

which is transformed from M by Wa. Index t
is word position ranging over T time steps and
mk,a,t 2 R

dm/K is the t-th column of Mk,a. ↵k,t
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is the attention weights over Mk,c. The output of
self-attention module generated at time step t is
the concatenation of K parts by using Equation 5.

3.3 BiLSTM
Character embeddings and word embeddings are
both important features in our task. To further uti-
lize these features, we associate each embedding
with a context-aware representation which is typ-
ically implemented by self-attention mechanism.
For current word wt, the input of the recurrent
layer at time step t is represented as xt:

ea
t = S-Att([ec

t , e
w
t ], E) (6)

xt = [ec
t , e

w
t , ea

t ] (7)

ea
t is the context-aware vector of wt which is

obtained by applying self-attention mechanism
on the concatenated embeddings E = [ec

1 k
ew
1 , ..., ec

T k ew
T ] .

It was difficult to train RNNs to capture long-
term dependencies because the gradients tend to
either vanish or explode. Therefore, some more
sophisticated activation functions with gating units
were designed. We use LSTM (Hochreiter and
Schmidhuber, 1997) in this work:

it = �(Wixt + Uiht�1 + bi) (8)
ft = �(Wfxt + Ufht�1 + bf ) (9)
ot = �(Woxt + Uoht�1 + bo) (10)
ect = tanh(Wcxt + Ucht�1 + bc) (11)
ct = it � ect + ft � ct�1 (12)
ht = ot � tanh(ct) (13)

Where � denotes element-wise product of two
vectors. To consider both the previous history and
the future history, we use BiLSTM as encoder in
advance. The bi-directional LSTM (BiLSTM), a
modification of the LSTM, consists of a forward
and a backward LSTM. The encoder reads the in-
put vectors x = (x1, x2, ..., xT ) and generates T
hidden states by concatenating the forward and
backward hidden states of BiLSTM:

�!
h t =

����!
LSTM(xt,

�!
h t�1) (14)

 �
h t =

 ����
LSTM(xt,

 �
h t+1) (15)

ht = [
�!
h t,
 �
h t] (16)

where
 �
h t is the hidden state of backward pass in

BLSTM and
�!
h t is the hidden state of forward pass

in BLSTM at time t.

3.4 Intent-Augmented Gating Mechanism
As described above, intent information is useful
for slot filling task. To measure the probability
of words in target slots and attend to the ones
relevant to the intent, we add a gate to the out-
put of BiLSTM layer. Let H 2 R

2d⇥T be a
matrix consisting of hidden vectors [h1, ..., hT ]
produced by BiLSTM. For each word, we use
self-attention mechanism to form another context-
aware representation, the gate vector h⇤

t is calcu-
lated by linearly transforming the concatenation
of the context-aware representation and the intent
embedding vector vint with a multi-layer percep-
tron (MLP) network. The intent label is provided
by correct label during training phase, and by the
output from intent classification layer in the test
phase. Specifically, for t = 1, ...T :

st = Self-Attention(ht, H) (17)

h⇤
t = MLP([st, v

int]) (18)
ot = ht � h⇤

t (19)

We use element-wise multiplication to model the
interaction between BiLSTM outputs and the gate
vector.

3.5 Task Learning
The bidirectional recurrent layer converts a se-
quence of words w = (w1, w2, ..., wT ) into hid-
den states H = [h1, ..., hT ] which are shared by
two tasks. We use simple attention pooling func-
tion denoted as fatt over H to get an attention-sum
vector for intent label classification. The classified
label yint is transformed to an embedding vint by
matrix Eint for gate computing.

hint = fatt(H) (20)

yint = softmax(W inthint + bint) (21)

During the training phase, model parameters are
updated w.r.t. a cross-entropy loss between the
predicted probabilities and the true label. The la-
bel with maximum probability will be selected as
the predicted intent during the testing phase.

For another task, the hidden states processed by
our gating layer are used for predicting slot labels.

yslot
t = softmax(W slotot + bslot) (22)

Slot filling can be defined as a sequence labelling
problem which is to map a utterance sequence
w = (w1, ..., wT ) to its corresponding slot label
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sequence y = (y1, ..., yT ). The objective is to
maximize the likelihood of a sequence:

P (yslot|w) =
TY

t=1

P (yslot
t |w) (23)

It is equal to minimize Negative Log-likelihood
(NLL) of the correct labels for the predicted se-
quence yslot.

4 Experiments

4.1 Dataset
In order to evaluate the efficiency of our proposed
model, we conduct experiments on ATIS (Air-
line Travel Information Systems) dataset, which is
widely used as benchmark in SLU research (Price,
1990).

Figure 3 gives one example of sentence in ATIS
dataset. The words are labelled with their value ac-
cording to certain semantic frames. The slot labels
of the words are represented in an In-Out-Begin
(IOB) format and the intent is highlighted with a
box surrounding it.

Sentence   Show  flights    from      Boston        to       New         York      today

 Slots          O  O   O      B-FromCity    O    B-ToCity   I-ToCity   B-Date

Figure 3: Example of sentence annotated by slots sam-
pled from ATIS corpus, the black boxed word indicates
the intent.

In this paper, we use the ATIS corpus set-
ting following previous related works (Liu and
Lane, 2016a; Mesnil et al., 2015; Liu and Lane,
2015; Xu and Sarikaya, 2013; Tur et al., 2010).
The training set contains 4978 utterances from
ATIS-2 and ATIS-3 datasets, and test set contains
893 utterances from ATIS-3 NOV93 and DEC94
datasets. The number of slot labels is 127 and the
intent has 18 different types.

4.2 Metrics
The performance of slot filling task is measured by
the F1-score, while intent detection task is evalu-
ated with prediction error rate that is the ratio of
the incorrect intent of the test data.

4.3 Training Details
We preprocess the ATIS following (Yao et al.,
2013; Liu and Lane, 2016a). To deal with unseen
words in the test set, we mark those words that ap-
pear only once in the training set as hUNKi, and

use this label to represent those unseen words in
the test set. Besides, each number is converted to
the string DIGIT.

The model is implemented in the Tensorflow
framework (Abadi et al., 2016). At training stage,
we use LSTM cell as suggested in (Sutskever
et al., 2014) and the cell dimension d is set to be
128 for both the forward and backward LSTM.

We set the dimension of word embedding dw

to be 64 and the dimension of character embed-
ding dc to be 128. We generate three character-
level embeddings using multiple widths and filters
(the convolution kernel width w 2 {2, 3, 4} with
64 filters each) followed by a max pooling layer
over time. Then, the dimension of concatenated
embeddings is 256. We make the dimensions of
each parts equal for the convenience of dimension
splitting during the self-attention in later stage. All
the parameters in the network are randomly initial-
ized with uniform distribution (Sussillo and Ab-
bott, 2014) which are fine-tuned during training.
We use the stochastic gradient descent algorithm
(SGD) for updating parameters. And the learning
rate is controlled by Adam algorithm (Kingma and
Ba, 2014). The model is trained on all the train-
ing data with mini-batch size of 16. In order to
enhance our model to generalize well, the maxi-
mum norm for gradient clipping is set to 5. We
also apply layer normalization (Ba et al., 2016) on
the self-attention layer after we add a residul con-
nection between the output and input. Meanwhile,
dropout rate 0.5 is applied on recurrent cell pro-
jection layer (Zaremba et al., 2014) and on each
attention activation.

4.4 Independent Learning

The results of separate training for slot filling and
intent detection are reported in Table 1 and Table 2
respectively. On the independent slot filling task,
we fixed the intent information as the ground truth
labels in the dataset. But on the independent in-
tent detection task, there is no interaction with slot
labels.

Table 1 compares F1-score of slot filling be-
tween our proposed architecture and some previ-
ous works. Our model achieves state-of-the-art
results and outperforms previous best model by
0.56% in terms of F1-score. We attribute the im-
provement of our model to the following reasons:
1) The attention used in (Liu and Lane, 2016a) is
vanilla attention, which is used to compute the de-
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Methods F1-score
CRF (Mesnil et al., 2013) 92.94
simple RNN (Yao et al., 2013) 94.11
CNN-CRF (Xu and Sarikaya, 2013) 94.35
LSTM (Yao et al., 2013) 94.85
RNN-SOP (Liu and Lane, 2015) 94.89
Deep LSTM (Yao et al., 2013) 95.08
RNN-EM (Peng et al., 2015) 95.25
Bi-RNN with Ranking Loss (Vu
et al., 2016)

95.47

Encoder-labeler Deep LSTM (Ku-
rata et al., 2016)

95.66

Attention BiRNN (Liu and Lane,
2016a)

95.75

BLSTM-LSTM (focus) (Zhu and
Yu, 2017)

95.79

Our Model 96.35

Table 1: Results of independent training for slot filling
in terms of F1-score.

coding states. It is not suitable for our model since
the embeddings are composed of several parts.
Self-attention allows the model to attend to infor-
mation jointly from different representation parts,
so as to better understand the utterance. 2) intent-
augmented gating layer connects the semantics of
sequence slot labels, which captures complex in-
teractions between the two tasks.

Table 2 compares the performance of our pro-
posed model to previously reported results on in-
tent detection task. Our model gives good per-
formance in terms of classification error rate, but
not as good as Attention Encoder-Decoder (with
aligned inputs) method (Liu and Lane, 2016a).
As their published state-of-the-art result described
in (Liu and Lane, 2016a), their attention-based
model is based on word-level embeddings. While
in our model, we introduce character-level embed-
dings to improve the performance of joint learn-
ing. But independent learning for intent classifi-
cation aims at capturing the global information of
an utterance, not caring much about the details of
specific word. The character-level embeddings in-
troduced in our model bring very little hurt to inde-
pendent learning of intent detection, as a trade-off
in performance between both criterion.

4.5 Joint Learning

We compare our model against the following base-
line models based on joint learning:

Methods Error(%)
Recursive NN (Guo et al., 2014) 4.60
Boosting (Tur et al., 2010) 4.38
Boosting + Simplified sentences
(Tur et al., 2011)

3.02

Attention Enc-Dec (Liu and Lane,
2016a)

2.02

Our Model 2.69

Table 2: Results of independent training for intent de-
tection in terms of error rate.

Methods F1 Error(%)
Recursive NN (Guo et al.,
2014)

93.22 4.60

Recursive NN+Viterbi
(Guo et al., 2014)

93.96 4.60

Attention Enc-Dec (Liu
and Lane, 2016a)

95.87 1.57

Attention BiRNN (Liu
and Lane, 2016a)

95.98 1.79

Our Model 96.52 1.23

Table 3: Results of joint training for slot filling and
intent detection.

• Recursive NN: (Guo et al., 2014) employed
recursive neural networks for joint training of
two tasks.

• Recursive NN + Viterbi: (Guo et al., 2014)
applied the Viterbi algorithm on Recursive
NN to improve the result on slot filling.

• Attention Enc-Dec: (Liu and Lane, 2016a)
proposed Attention Encoder-Decoder (with
aligned inputs) which introduced context
vector as the explicit aligned inputs at each
decoding step.

• Attention BiRNN: (Liu and Lane, 2016a)
introduced attention to the alignment-based
RNN sequence labeling model. Such atten-
tion provides additional information to the in-
tent classification and slot label prediction.

Table 3 compares our joint model with reported
results from previous works. We can see that our
model achieves state-of-the-art results and outper-
forms previous best result by 0.54% in terms of
F1-score on slot filling, and by 0.34% in terms of
error rate on intent detection. This improvement is
statistically significant. Besides, the joint learning
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Methods F1-Score Error(%)
W/O char-embedding 96.30 1.23
W/O self-attention 96.26 1.34
W/O attention-gating 96.25 1.46
Full Model 96.52 1.23

Table 4: Feature ablation comparison of our proposed
model on ATIS. slot filling and intent detection result
are shown each row after after we exclude each feature
from the full architecture

achieves better results than separate learning. It
can be interpreted that the two tasks are highly cor-
related and boost the performance each other. The
slot filling task enables the model to learn more
meaningful representations which give more su-
pervisory signals for the learning of shared param-
eters. Similarly, intent is also useful to determine
the slot label.

4.6 Ablation Study
The ablation study is performed to evaluate
whether and how each part of our model con-
tributes to our full model. To further evaluate the
advances of our gating architecture for joint learn-
ing, we ablate some techniques used in our model.
We ablate three important components and con-
duct different approaches in this experiment. Note
that all the variants are based on joint learning with
intent-augmented gate:

• W/O char-embedding, where no character
embeddings are added to the embedding
layer. The embedding layer is composed of
word embeddings only.

• W/O self-attention, where no self-attention is
modelled after the embedding layer and in
the intent-augmented gating layer. The intent
gate is computed by the output of BiLSTM
and intent embedding.

• W/O attention-gating, where no self-
attention mechanism is performed in the
intent-augmented gating layer. The gate is
computed by the output of BiLSTM and
intent embedding. But we still use the
self-attention on top of embedding layer to
augment the context information.

Table 4 shows the joint learning performance of
our model on ATIS data set by removing one mod-
ule at a time. We find that all variants of our model

perform well based on our gate mechanism. As
listed in the table, all features contribute to both
slot filling and intent classification task.

If we remove the self-attention from the holistic
model or just in the intent-augmented gating layer,
the performance drops dramatically. The result
can be interpreted that self-attention mechanism
computes context representation separately and
enhances the interaction of features in the same as-
pect. We can see that self-attention does improve
performance a lot in a large scale, which is consis-
tent with findings of previous work (Vaswani et al.,
2017; Lin et al., 2017).

If we remove character-level embeddings and
only use word-level embeddings, we see 0.22%
drop in terms of F1-score. Though word-level em-
beddings represent the semantics of each word,
character-level embeddings can better handle the
out-of-vocabulary (OOV) problem which is essen-
tial to determine the slot labels.

5 Conclusion

In this paper, we propose a novel self-attentive
model gated with intent for spoken language un-
derstanding. We apply joint learning on both
intent detection and slot filling tasks. In our
model, self-attention mechanism is introduced to
better represent the semantic of utterance, and gate
mechanism is introduced to make full use of the
semantic correlation between slot and intent. Ex-
periment results on ATIS dataset have shown effi-
ciency of our model and outperforms the state-of-
the-art approach on both tasks. Besides, our model
also shows consistent performance gain over the
independent training models. In future works, we
plan to improve our model by introducing extra
knowledge.
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Abstract
In a dialog, there can be multiple valid next
utterances at any point. The present end-to-
end neural methods for dialog do not take this
into account. They learn with the assumption
that at any time there is only one correct next
utterance. In this work, we focus on this prob-
lem in the goal-oriented dialog setting where
there are different paths to reach a goal. We
propose a new method, that uses a combina-
tion of supervised learning and reinforcement
learning approaches to address this issue. We
also propose a new and more effective testbed,
permuted-bAbI dialog tasks 1 by introducing
multiple valid next utterances to the original-
bAbI dialog tasks, which allows evaluation of
goal-oriented dialog systems in a more real-
istic setting. We show that there is a signif-
icant drop in performance of existing end-to-
end neural methods from 81.5% per-dialog ac-
curacy on original-bAbI dialog tasks to 30.3%
on permuted-bAbI dialog tasks. We also show
that our proposed method improves the per-
formance and achieves 47.3% per-dialog ac-
curacy on permuted-bAbI dialog tasks.

1 Introduction
End-to-end, neural conversation models that learn
from chatlogs of human-to-human interaction hold
the promise of quickly bootstrapping dialog sys-
tems and keep evolving them based on new data.
Recent work ((Vinyals and Le, 2015; Bordes et al.,
2016; Serban et al., 2016)) has shown that dialog
models can be trained in an end-to-end manner
with satisfactory results.

However, human dialog has some unique prop-
erties that many other learning tasks do not. For

⇤ Equal Contribution
1permuted-bAbI-dialog-tasks - https://github.

com/IBM/permuted-bAbI-dialog-tasks

any given dialog state or input, multiple correct
next utterances or answers may be possible; i.e
given the dialog so far, there are several different
utterances which one can say next that would be
valid. However, this property of dialog is not taken
into account in the present way of training end-to-
end neural dialog systems.

There are two broad ways in which present day
neural dialog systems can be trained: Supervised
Learning (SL) and Reinforcement Learning (RL).
In the RL setting, the dialog system learns through
trial and error with reinforcement (rewards at the
end or at key dialog points) from a human or a
simulator. RL training for dialog is a hard problem
to solve. It is difficult to define and award appro-
priate rewards, and to learn language from scratch
through these rewards. RL training also demands
a large amount of training interaction. In order to
handle these challenges, RL methods are almost
always complimented with a SL phase.

In SL setting, a fixed set of dialog data is
collected from humans and the dialog system is
trained to imitate that data. When a new dialog
dataset is curated, the data is extracted from real-
world chat logs from human-human conversation,
where one human acts as the agent. It is not pos-
sible to know all of the valid next utterances for a
given dialog state at any single time. A particu-
lar dialog in the dataset has access to only one of
the valid next utterances given the dialog history
and the current utterance. Another valid next ut-
terance could be present in some other dialog in
the dataset.

Since for a given dialog only one correct answer
is available at any single time, the gradients are
calculated based on the assumption that there is
only one correct next utterance for the given dialog
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state. This results in reducing the probability of
other valid next utterances for that dialog. While
all this is true for dialog in general, in this work,
we focus on the goal-oriented dialog setting.

We propose a novel method which handles the
issue of learning multiple possibilities for com-
pleting a goal-oriented dialog task. Our pre-
sentation is organized as follows: In Sections 2
and 3, we define the multiple-utterance problem
and point out the limitations of current learning
methodologies.

Section 4 describes our proposed method,
which combines Supervised Learning and Rein-
forcement Learning approaches for handling mul-
tiple correct next utterances. In Section 5, we in-
troduce permuted-bAbI dialog tasks, which is our
proposed testbed for goal-oriented dialog. Sec-
tion 6 details our experimental results across all
datasets and all models.

2 Multiple-utterance problem in
goal-oriented dialog

Goal-oriented dialog tasks are those in which there
is an explicit goal that the system tries to achieve
through the dialog. These tasks typically involve
getting some information from the user, interact-
ing with an external Knowledge Base (KB) and
giving back information to the user. Simple exam-
ples (form filling) include restaurant reservation,
hotel booking etc., whereas complex tasks could
involve a combination of informative and form fill-
ing tasks (e.g. IT support, customer care etc.).

There could be multiple ways/strategies to
achieve a given task. When a dataset is col-
lected from different people performing the task,
these different ways of solving the task get re-
flected in it. These variations could be as sim-
ple as difference in the order in which the system
asks the information from the user, or as complex
as following a completely different line of ques-
tions/answers to achieve the task. For example, in
an IT support scenario, one may ask a sequence
of standard questions or start from common prob-
lems and once eliminated, follow the standard set
of questions. In the dataset, they turn into multiple
valid next utterances for a given dialog so far.

Our objective in this paper is not to mimic all
humans from whom the data was collected from
or all the possible strategies, but rather to use that
knowledge and learn to perform the task better and
faster.

3 Issues with the present methods

Consider a goal-oriented dialog dataset for restau-
rant reservation where the dialog system has to
acquire cuisine, location, number of people and
price range information from the user before re-
trieving restaurant options. Consider two dialogs
(A and B) in the dataset which have the same first
system utterance (S1a is same as S1b). Let their
dialog state vector after encoding the dialog until
S1 be s. This state vector s is what will be used
for next utterance generation or retrieval. Their
next utterance is different because of the variation
in the order in which the information is asked
from the user as shown below. i.e S2a is different
from S2b.

Dialog A
U: Hello !
S1a: Hello, what can I help you with

today?

U: Can you book a table for six people with French food?
S2a: Where should it be?

U: In Bombay
S3a: Which price range are you looking

for?

U: I am looking for a cheap restaurant.
S4a: Ok, let me look into some options

for you.

Dialog B
U: Hello !
S1b: Hello, what can I help you with

today?

U: Can you book a table for six people with French food?
S2b: Which price range are you looking

for?

U: I am looking for a cheap restaurant.
S3b: Where should it be?

U: In Bombay
S4b: Ok, let me look into some options

for you.

These two dialogs might be present in differ-
ent places in the dataset. When dialog A is part
of the batch for which loss is calculated and pa-
rameters are updated, the dialog system is asked to
produce S2a from s. Here, the loss could be neg-
ative log-likelihood, squared error or anything that
tries to push s towards producing S2a. In this pro-
cess, the probability of the dialog system produc-
ing S2b, an equally valid answer, is reduced. The
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Figure 1: Mask-memN2N - Left: A single layer version of memN2N. Right: Masking

reverse happens when the dialog system encoun-
ters a batch with dialog B. This is true whether a
softmax or a sigmoid non-linearity for each unit
is used in the output layer. In essence, the system
is expected to learn a one to many function, but
is forced to produce only one of the valid outputs
at one time (that is all we have at any one time),
while telling that all other outputs are wrong.

Note that this could be a problem even when the
dialogs are similar (semantically) in the beginning,
but not the same exact dialog. For simplicity, we
show an example where two dialogs have the same
beginning and only 2 valid next utterances occur.

4 Proposed Method

The proposed method has two phases. In one
phase, the dialog system tries to learn how to per-
form dialog from the dataset by trying to mimic
it and in the other it learns through trial and error.
The former uses supervised learning and the lat-
ter uses reinforcement learning. Consider a dialog
state vector s. This has all the information from
the dialog so far and is used for next utterance
generation or retrieval. Any neural method such
as memory network (Weston et al., 2014), HRED
(Sordoni et al., 2015) etc. can be used for encod-
ing and producing the dialog state vector s. As
discussed earlier for the state vector s, there could

be multiple valid next utterances.

During the SL phase, at each data point, the di-
alog system is trained to produce the one next ut-
terance provided in that data point and is penalized
even if it produces one of the other valid next utter-
ances. We avoid this by providing the dialog sys-
tem, the ability to use only parts of the state vector
to produce that particular next utterance. This al-
lows only parts of the network to be affected that
were responsible for the prediction of that partic-
ular answer. The dialog system can retain other
parts of the state vector and values in the network
that stored information about other valid next ut-
terances. This is achieved by generating a mask
vector m which decides which parts of the state
vector s should be used for producing that partic-
ular answer. This is achievable, as m is learned as
function of s and the actual answer a present in the
given dialog data point.

In the RL phase, however, the dialog system is
rewarded if it produces an answer that is among
any of the set of valid correct answers. While in
the SL phase the dialog system had access to the
actual answer a at given time to produce the mask,
in the RL phase the dialog system produces the
mask by only using the dialog state vector s.
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Supervised Learning phase (1)
m = �(Wss + Waa + bsl)

s0 = m ⇤ s

Reinforcement Learning phase (2)
m = �(Wss + Wrs + brl)

s0 = m ⇤ s

where W ’s and b’s are the parameters learned,
� is an element wise sigmoid non-linearity and
s0 is the masked dialog state vector that is used
by the dialog system to perform the downstream
task such as next utterance generation or retrieval.
The parameters of the network that produce s and
that follow s0 are shared between the two phases.
While there are different ways of combining the
two phases during training, the RL phase which
does not use the answer for its mask is what is used
during testing. The masking approach described
above is illustrated in Fig 1.

In this work, SL phase is performed first, fol-
lowed by RL phase. In the SL phase, the dia-
log system learns different dialog responses and
behaviours from the dataset. It has the ability
to learn multiple possible next utterances with-
out one contradicting/hindering the learning of the
other much. In the RL phase, the dialog system
might settle on a unique behaviour that it finds best
for it to perform the task and uses that during test
time as well.

5 Permuted bAbI dialog tasks

Bordes et al. (2016) proposed bAbI dialog tasks as
a testbed to break down the strengths and short-
comings of end-to-end dialog systems in goal-
oriented applications. There are five tasks, gener-
ated by a simulation set in the context of restaurant
reservation, with the final goal of booking a ta-
ble. The simulation is based on an underlying KB,
whose facts contain restaurants and their proper-
ties. Tasks 1 (Issuing API calls) and 2 (Updating
API calls) test the dialog system to implicitly track
dialog state, whereas Task 3 (Displaying options)
and 4 (Providing extra information) check if the
system can learn to use KB facts in a dialog set-
ting. Task 5 (Conducting full dialogs) combines
all tasks.

(Bordes et al., 2016) used natural language pat-
terns to create user and system utterances. There
are 43 patterns for the user and 20 for the system,

which were combined with the KB entities to form
thousands of different utterances. However, on a
closer analysis of the testbed, we observe that even
though there are thousands of different utterances,
these utterances always follow a fixed determin-
istic order (predefined by the simulation), which
makes the tasks easier and unsuitable to mimic
conversations in the real-world. For example, for
Task 1, the system follows a predefined order to
ask for missing fields required to complete the dia-
log state. In Task 3, all restaurants retrieved have a
unique and different rating. While this makes eval-
uation deterministic and easier, these hidden set-
tings in the simulation create conversations, which
are simpler compared to real-world conversations
for restaurant reservation.

We propose permuted-bAbI dialog tasks, an ex-
tension of original-bAbI dialog tasks, which make
our proposed testbed more appropriate for evalu-
ating dialog systems in goal-oriented setting. In
original-bAbI dialog tasks at a given time in the
conversation, there is only one correct system ut-
terance. Permuted-bAbI dialog tasks allow mul-
tiple correct system utterances at a given point in
the conversation.

We propose the following changes to original-
bAbI dialog tasks. In Task 1, a user request de-
fines a query that can contain from 0 to 4 of the
required fields to make a reservation. The system
asks questions to fill the missing fields and even-
tually generate the correct corresponding API call.
However, the system asks for information in a de-
terministic order -
Cuisine ! Location ! People ! Price
to complete the missing fields. In permuted-bAbI
dialog tasks, we don’t follow a deterministic order
and allow the system to ask for the missing fields
in any order.

In Task 3, for the API call matching the user re-
quest, the facts are retrieved from the KB and pro-
vided as part of dialog history. The system must
propose options to users by listing the restaurant
names sorted by their corresponding rating (from
higher to lower) until users accept. However, each
restaurant has a different rating. In permuted-
bAbI dialog tasks, multiple restaurants can have
the same rating but the system must still propose
the restaurant names following the decreasing or-
der of rating, which allows multiple valid next ut-
terances.

In Task 5, Tasks 1-4 are combined to generate
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Figure 2: Permuted-bAbI dialog tasks. A user (in green) chats with a dialog system (in blue) to book a table
at a restaurant. At a given point in the dialog, the dialog system has multiple correct next utterances (in orange).
The dialog system can choose either of the multiple correct utterances as the next utterance. The list of restaurants
are returned from the API call (in grey) also contain multiple restaurants with the same rating, giving the dialog
system more options to propose to the user.

full dialogs. In permuted-bAbI dialog tasks, we
incorporate the changes for both Task 1 and Task
3 mentioned above to the final Task 5 (Conducting
full dialogs).

Fig 2 shows a dialog sample from permuted-
bAbI dialog tasks. Our proposed testbed (We re-
lease and show experiments on permuted version
of Task 5, i.e. Conducting full dialogs set, as
tasks 1-4 are subsets of a full conversation and
don’t represent a complete meaningful conversa-
tion standalone) is more closer to a real-world
restaurant reservation conversation, in compari-
son to the original-bAbI dialog tasks. We re-
lease two versions of permuted-bAbI dialog tasks
- permuted-bAbI dialog task* (the full dataset with
all permutations. There are around 11,000 di-
alogs in each set and the exact number varies for
train, val, test and test-OOV sets), which contains
all permutations (the full dataset) and permuted-
bAbI dialog task, which contains 1000 dialogs
randomly sampled (we used random seed = 599

for sampling) from permuted-bAbI dialog task*.
We choose a random 1000 subset from each of
train, val, test and test-OOV sets to match the num-
ber of dialogs in original-bAbI dialog task. An-
other key point to choose a small subset and to
not include all permutations in the training set is
that it allows to mimic real-world data collection.
For a real-world use-case, as the number of re-
quired fields and user options increase, the cost for
gathering data covering all permutations will in-
crease exponentially, and one can’t guarantee that
enough training examples for all permutations will
be present in the collected dataset. Note that, since
there are multiple correct next utterances, we also
modify the evaluation criteria so that the system is
rewarded if it predicts any of the multiple correct
next utterances.

6 Experiments and Results

End-to-end memory networks (Sukhbaatar et al.,
2015) are an extension of Memory Networks pro-
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Dataset no match-type + match-type
Per-turn Per-dialog Per-turn Per-dialog

Original-bAbI dialog task 98.5 77.1 98.8 81.5
Permuted-bAbI dialog task* 96.4 58.2 96.9 63.9
Permuted-bAbI dialog task 91.8 22 93.3 30.3
OOV: Original-bAbI dialog task 65.6 0 78.3 0
OOV: Permuted-bAbI dialog task* 63.6 0 78.4 0
OOV: Permuted-bAbI dialog task 63.4 0.5 78.1 0.6

Table 1: Test results for our baseline end-to-end memory network model across the three datasets. Results
(accuracy %) are given in the standard setup and out-of-vocabulary (OOV) setup. Results are given for both with
and without match-type features.

posed by (Weston et al., 2014) which have been
successful on various natural language processing
tasks. End-to-end memory networks are trained
end-to-end and use a memory component to store
dialog history and short-term context to predict the
required response. They perform well on original-
bAbI dialog tasks and have been shown to outper-
form some other end-to-end architectures based
on Recurrent Neural Networks. Hence, we chose
them as end-to-end model baseline. We perform
experiments on the three datasets mentioned above
across all our models. We also perform experi-
ments with match-type features proposed by (Bor-
des and Weston, 2016b), which allow the model
to use type-information for entities like location,
cuisine, phone number etc. The results for our
baseline model, our proposed model and results
on our ablation study are described below. The
test results reported are calculated by choosing the
model with highest validation per-turn accuracy
across multiple runs.

6.1 Baseline model: memN2N

A single layer version of the memN2N model is
shown in Fig.1. A given sentence (i) from the
context (dialog history) is stored in the memory
by it’s input representation (ai). Each sentence
(i) also has a corresponding output representation
(ci). To identify the relevance of a memory for
the next-utterance prediction, attention of query
over memory is computed via dot product, where
(pi) represents the probability for each memory in
equation 3. An output vector (o) is computed by
a weighted sum of the memory embeddings (ci)
with their corresponding probabilities in equation
4. The output vector (o) represents the overall em-
bedding for the context. The output vector (o) and
query (u) added together represent the dialog state

vector (s) in equation 5.

pi = Softmax(uT (ai)) (3)

o =
X

i

pici (4)

s = (o + u) (5)

Our results for our baseline model across the
three datasets are given in Table 1. The hyperpa-
rameters used for training the baseline models are
provided in Appendix A.1.

The first 3 rows show the results for the three
datasets in the standard setup, and rows 4-6 show
results in the Out-Of-Vocabulary (OOV) setting.
Per-response accuracy counts the percentage of re-
sponses that are correct (i.e., the correct candidate
is chosen out of all possible candidates). Note
that, as mentioned above in Section 5, since there
are multiple correct next utterances, a response is
considered correct if it predicts any of the multi-
ple correct next utterances. Per-dialog accuracy
counts the percentage of dialogs where every re-
sponse is correct. Therefore, even if only one re-
sponse is incorrect, this might result in a failed
dialog, i.e. failure to achieve the goal of restau-
rant reservation. We report results both with and
without match type features, shown in the last two
columns.

From Table 1, we observe that the baseline
model performs poorly on permuted-bAbI dia-
log tasks (both full dataset and 1000 random
dialogs). For permuted-bAbI dialog task*, the
baseline model achieves 58.2% on per-dialog ac-
curacy, but the number decreases to only 22%
for permuted-bAbI dialog task (1000 random di-
alogs). This implies that only 1 out of every
4 dialogs might be successful in completing the
goal. The results improve slightly by using match-
type features, but 30% per-dialog accuracy is still
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Model no match-type + match-type
Per-turn Per-dialog Per-turn Per-dialog

memN2N 91.8 22 93.3 30.3
memN2N + all-answers† 88.5 14.9 92.5 26.4
Mask-memN2N 93.4 32 95.2 47.3
OOV: memN2N 63.4 0.5 78.1 0.6
OOV: memN2N + all-answers† 60.8 0.5 74.9 0.6
OOV: Mask-memN2N 63.0 0.5 80.1 1

Table 2: Test results for various models on permuted-bAbI dialog task. Results (accuracy %) are given in the
standard setup and OOV setup; and both with and without match-type features.

very low for real-world use. These results clearly
demonstrate that the end-to-end memory network
model does not perform well on our proposed
testbed, which is more realistic and mimics real-
world conversations more closely.

6.2 Mask End-to-End Memory Network:
Mask-memN2N

Our model, Mask-memN2N, shown in Fig 1, is
built on the baseline memN2N model described
above, except for an additional masking per-
formed to the dialog state vector. The SL phase
is performed for the first 150 epochs. The best
performing model chosen based on validation ac-
curacy is used as a starting point for the RL
phase. All parameters except for the network that
produces the masks are shared between the two
phases. During the SL phase, the mask parameters
of the RL phase are pre-trained to match the mask
produced in SL phase using an L2 loss. Through
this approach, when the model transitions in the
RL phase, it does not need to explore the valid
masks and hence, the answers from scratch. In-
stead, its exploration will now be more biased to-
wards relevant answers. For the RL phase, we
use REINFORCE (Williams, 1992) for training
the system. An additional loss term is added to
increase entropy. The hyperparameters used, in-
cluding the exact reward function are provided in
Appendix A.2.

6.3 Model comparison
Our results for our proposed model and compar-
ison with other models for permuted-bAbI dia-
log task are given in Table 2. Table 2 follows
the same format as Table 1, except we show re-
sults for different models on permuted-bAbI di-
alog task. We show results for three models -
memN2N, memN2N + all-answers and our pro-

posed model, Mask-memN2N.
In the memN2N + all-answers model, we ex-

tend the baseline memN2N model and though not
realistic, we provide information on all correct
next utterances during training, instead of provid-
ing only one correct next utterance. The memN2N
+ all-answers model has an element-wise sigmoid
at the output layer instead of a softmax, allow-
ing it to predict multiple correct answers. This
model serves as an important additional baseline,
and clearly demonstrates the benefit of our pro-
posed approach.

From Table 2, we observe that the memN2N +
all-answers model performs poorly, in comparison
to the memN2N baseline model both in standard
setup and OOV setting, as well as with and with-
out match-type features. This shows that the ex-
isting methods do not improve the accuracy of a
dialog system even if all correct next utterances
are known and used during training the model.
Our proposed model performs better than both the
baseline models. In the standard setup, the per-
dialog accuracy increases from 22% to 32%. Us-
ing match-type features, the per-dialog accuracy
increases considerably from 30.3% to 47.3%. In
the OOV setting, all models perform poorly and
achieve per-dialog accuracy of 0-1% both with and
without match-type features. These results are
similar to results for original-bAbI dialog Task 5
from Bordes and Weston (2016b) and our results
with the baseline model.

Overall, Mask-memN2N is able to handle mul-
tiple correct next utterances present in permuted-
bAbI dialog task better than the baseline models.
This indicates that permuted-bAbI dialog task is
a better and effective evaluation proxy compared
to original-bAbI dialog task for real-world data.
This also shows that we need better neural ap-
proaches, similar to our proposed model, Mask-
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Model Per-turn Per-dialog
Mask-memN2N 93.4 32
Mask-memN2N (w/o entropy) 92.1 24.6
Mask-memN2N (w/o L2 mask pre-training) 85.8 2.2
Mask-memN2N (Reinforcement learning phase only) 16.0 0

Table 3: Ablation study of our proposed model on permuted-bAbI dialog task. Results (accuracy %) are given
in the standard setup, without match-type features.

memN2N, for goal-oriented dialog in addition to
better testbeds for benchmarking goal-oriented di-
alogs systems.

6.4 Ablation study

Here, we study the different parts of our model
for better understanding of how the different parts
influence the overall model performance. Our re-
sults for ablation study are given in Table 3. We
show results for Mask-memN2N in various set-
tings - a) without entropy, b) without pre-training
mask c) reinforcement learning phase only.

Adding entropy for the RL phase seems to have
improved performance a bit by assisting better ex-
ploration in the RL phase. When we remove L2
mask pre-training, there is a huge drop in perfor-
mance. In the RL phase, the action space is large.
In the bAbI dialog task, which is a retrieval task,
it is all the candidate answers that can be retrieved
which forms the action set. L2 mask pre-training
would help the RL phase to try more relevant ac-
tions from the very start.

From Table 3 it is clear that the RL phase indi-
vidually does not perform well; it is the combina-
tion of both the phases that gives the best perfor-
mance. When we do only the RL phase, it might
be very tough for the system to learn everything by
trial and error, especially because the action space
is so large. Preceding it with the SL phase and
L2 mask pre-training would have put the system
and its parameters at a good spot from which the
RL phase can improve performance. Note that it
would not be valid to check performance of the
SL phase in the test set as the SL phase requires
the actual answers for it to create the mask.

7 Related Work

End-to-end dialog systems have been trained to
show satisfactory performance in goal-oriented
setting, as shown by (Bordes et al., 2016) and (Seo
et al., 2016)). The idea of allowing the system to
learn to attend to different parts of the state vec-

tor at different times depending on the input that
the proposed model uses has been used in differ-
ent settings before. To name a few, Bahdanau et al.
(2014) use it for Machine Translation (MT), where
the MT system can attend to different words in the
input language sentence while producing different
words in the output language sentence. Xu et al.
(2015) use it for image caption generation where
the system attends to different parts of the image
while generating different words in the caption.
Madotto and Attardi (2017) use it for Question
Answering (QA), where the QA system attends
and updates different parts of the Recurrent Neural
Network story state vector based on the sentence
the system is reading in the input story.

In the past, goal-oriented dialog systems would
model the conversation as partially observable
Markov decision processes (POMDP) (Young
et al. (2013)). However, such systems require
many hand-crafted features for the state and action
space representations, which limited their use only
to narrow domains. In recent years, several cor-
pora have been made available for building data-
driven dialog systems (Serban et al., 2015). How-
ever, there are no good resources to train and test
end-to-end models in goal-oriented scenarios.

Some datasets are proprietary (e.g., Chen et al.
(2016)) or require participation to a specific
challenge and signing a license agreement (e.g.,
DSTC4 (Kim et al., 2017)). Several datasets have
been designed to train or test dialog state tracker
components (Henderson et al. (2014), Asri et al.
(2017), which are unsuitable for training end-to-
end dialog systems, either due to limited number
of conversations or due to noise. Recently, some
datasets have been designed using crowdsourcing
(Hixon et al. (2015), Wen et al. (2015), Su et al.
(2015)) e.g., Amazon Mechanical Turk, Crowd-
Flower etc., but dialog systems built for them are
harder to test automatically and involve another set
of crowdsource workers for comparing them.

(Bordes et al., 2016) proposed goal-oriented
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bAbI dialog tasks, a testbed created from a sim-
ulation of restaurant reservation setting, which al-
lows easy evaluation and interpretation of end-to-
end dialog systems. However, the testbed doesn’t
mimic real world conversations and conversations
are generated around a deterministic set of pat-
terns. Recently, datasets designed using Wizard-
of-Oz seting (Eric and Manning (2017), Wen
et al. (2016)) show promise, but they are limited
in scale, and evaluation metrics are either based
around BLEU score and entity F1 scores or require
crowdsource workers for evaluation.

8 Conclusion

We propose a method that uses masking to han-
dle the issue of making wrong updates at differ-
ent times because of the presence of multiple valid
next utterances in a dataset, but having access to
only one of them at any time. The method has a
SL phase where the mask uses the answer as well,
and an RL phase, where the system learns to gen-
erate the mask solely from its dialog state vector.

We modify the synthetic original-bAbI dialog
task to create a more realistic and effective testbed,
permuted-bAbI dialog task (which we have made
publicly available), that has the issue of multi-
ple next utterances as would be the case with any
dataset created from human-human dialogs. Our
experiments show that there is a significant drop
in performance of the present neural methods in
the permuted-bAbI dialog task compared to the
original-bAbI dialog task. The experiments also
confirm that the proposed method is a step in the
right direction for bridging this gap.

A Appendix: Training Details

A.1 Baseline model: memN2N
The hyperparameters used for the baseline model
are as follows: hops = 3, embedding size = 20,
batch size = 32. The entire model is trained us-
ing stochastic gradient descent (SGD) (learning
rate = 0.01) with annealing (anneal ratio = 0.5,
anneal period = 25), minimizing a standard cross-
entropy loss between â and the true label a. We
add temporal features to encode information about
the speaker for the given utterance (Bordes and
Weston, 2016a) and use position encoding for
encoding the position of words in the sentence
(Sukhbaatar et al., 2015). We learn two embed-
ding matrices A and C for encoding story, sepa-
rate embedding matrix B for encoding query and

weight matrices TA and TC for encoding temporal
features. The same weight matrices are used for 3
hops2.

A.2 Mask End-to-End Memory Network:
Mask-memN2N

We use the same hyperparameters as the baseline
model mentioned above. The additional hyperpa-
rameters are as follows: L2 loss coefficient = 0.1
for pre-training the RL phase mask, entropy with
linear decay from 0.00001 to 0, positive reward =
5 for every correct action and negative reward =
0.5 for an incorrect action.

2We used 599 as the random seed for both
tf.set random seed and tf.random normal initializer for
our embedding matrices.
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Abstract
Recent progress in dialogue generation has in-
spired a number of studies on dialogue sys-
tems that are capable of accomplishing tasks
through natural language interactions. A
promising direction among these studies is the
use of reinforcement learning techniques, such
as self-play, for training dialogue agents. How-
ever, current datasets are limited in size, and
the environment for training agents and eval-
uating process is relatively unsophisticated.
We present AirDialogue, a large dataset that
contains 402,038 goal-oriented conversations.
To collect this dataset, we create a context-
generator which provides travel and flight re-
strictions. We then ask human annotators to
play the role of a customer or an agent and
interact with the goal of successfully booking
a trip given the restrictions. Key to our en-
vironment is the ease of evaluating the suc-
cess of the dialogue, which is achieved by us-
ing ground-truth states (e.g., the flight being
booked) generated by the restrictions. Any di-
alogue agent that does not generate the correct
states is considered to fail. Our experimental
results indicate that state-of-the-art dialogue
models on the test dataset can only achieve a
scaled score of 0.22 and an exact match score
of 0.1 while humans can reach a score of 0.94
and 0.93 respectively, which suggests signifi-
cant opportunities for future improvement.

1 Introduction

Designing machines to talk like a human is one of
the most important goals of research in machine
learning and natural language generation. (Tur-
ing, 1950; Levin et al., 1997, 2000; Banchs and
Li, 2012). Rooted in seq2seq models (Sutskever
et al., 2014; Cho et al., 2014), recent neural based
dialogue models (Shang et al., 2015; Sordoni et al.,
2015; Vinyals and Le, 2015; Li et al., 2016a; Wen
et al., 2016; Bordes et al., 2017; Lewis et al., 2017;
Pieraccini et al., 2009; Serban et al., 2017) have
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Figure 1: Goal-Oriented Dialogue Environment. (left)
Context pairs are mapped to unique states in the envi-
ronment. (right) Conversation models can only access
its own private context and utterance in the public do-
main. At the end of the conversation, dialogue states
are generated from one of the agents using information
from the utterance.

generated promising results. However, building a
robust and reliable agent that can hold a conversa-
tion with humans while achieving a specific goal
remains an open challenge. While a majority of pre-
vious work studied chitchat models (Ghazvininejad
et al., 2018; Sordoni et al., 2015), in this paper we
focus on goal-oriented models (Li et al., 2017; Liu
and Lane, 2017; Liu et al., 2017) for conversations.

We define a goal-driven dialogue to be a con-
versation that is conditioned on a pair of contexts
c = (u, v), with the goal of reaching the target state
s 2 S . For a dialogue environment E, there exists
a mapping fE that maps from the context pair to
the target state (i.e., s = fE(c)). While an environ-
ment can access to the full context pair, a dialogue
agent, say Au, can only access its own private con-
text u and the dialogue history ht = {x1, x2, ...xt}
with xt being an utterance generated by one of
the agents at time t (i.e., xt+1 ⇠ Av(x|v, ht)
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or xt+1 ⇠ Au(x|u, ht)). By forbidding access-
ing to the context of the other party, goal-driven
dialogues will have to be developed so that the
dialogue history ht contains all the information
that is necessary for a particular agent, say Av to
reach the target state s of the conversation defined
by the environment through a mapping gv (e.g.,
s = gv(ht, cv) = fE(c) ). When one of u or v is a
human, Au and Av will have to belong to a class
of generators that respond in natural language.

We present AirDialogue, a large-scale corpus
with 402,038 dialogues and an environment that
makes it easy to simulate and evaluate goal-
oriented dialogues. Our setting is centered around
the theme of a flight booking session between a cus-
tomer and a support agent. Since it’s easy to find
a rule based strategy to book a ticket given all the
constraints, a mapping can be easily found in order
to generate the ground-truth state (e.g., the ticket
that needs to be booked) for each dialogue context
so that we can evaluate the generated dialogue. In
our environment, a context pair c always comes
with a unique s. If the dialogue agent generates a
state s0 that is different from s, the agent has failed
to achieve the goal. We use this as a mechanism to
measure the performance of dialogue agents. We
consider an additional metric to measure the “natu-
ral languageness” of the conversations so that the
agents do not just exchange bits.

We have implemented some strong dialogue gen-
eration models and experimented with them on
our dataset. Experimental results demonstrate that
even the most advanced model can only achieve a
benchmark score of 0.33. Comparing that to the hu-
man score of 0.94, that leaves for significant future
improvement.

2 Existing Datasets

A comparison between the AirDialogue and several
publicly available ones is shown in Table 1. Exist-
ing datasets are usually too small to support deep
learning approaches to model dialogues generation.
As a comparison, the WMT’15 English-Czech
dataset (Luong and Manning, 2016), a benchmark
dataset for machine translation, contains 15.8 mil-
lion translation pairs whereas the current largest
goal-oriented dataset has only 20,300 conversa-
tions. Synthesized data can also be an option to ob-
tain a large dataset. However, these are often built
from templated responses which make it meaning-
less for dialogue models to learn. Another issue

with conversation datasets is the lack of a sophis-
ticated environment that can be used to evaluate a
generated dialogue. Some of the recent datasets
provide an environment but are generally not rep-
resentative enough to model real-world settings as
illustrated by a narrow context space. As a result,
the limited availability of datasets and complex en-
vironments have become a bottleneck for research
in goal-oriented dialogue.

Our dataset has more than 20 times as many sam-
ples as found in the biggest of the existing public
datasets. In addition to the number of samples, we
have also compared the context complexity and the
state complexity. Context complexity measures the
unique number of context that a conversaion can
be grounded into and state complexity measures
the number of states that a conversation can reach.
As we can see from the table, AirDialogue has the
largest complexity in both context and state, giv-
ing it the flexibility to form a diverse selection of
goal-oriented conversations. Our dataset also sup-
ports a wide range of tasks that can be found in
the dialogue community. These include dialogue
generation, state tracking and dialogue self-play.

3 Task Environment

We formulate the flight booking problem as a col-
laborative goal-driven dialogue problem that was
defined in the introduction. Two types of agents
are present: customers and agents. Dialogues are
conditioned on a context pair c = (cc, ca), with cc

being the context for the customer and ca for the
context of the agent. Here, the customer context
cc = (tr, o) consists of the goal of the dialogue o
(i.e., book, change or cancel) as well as the travel
constants tr. Agent context ca = (db, r) consists
of available flights in the database db and a field
r indicating whether the customer has an existing
reservation in the system. A final dialogue state
s is derived at the end of the conversation once
the agent has acquired all the information and the
customer has confirmed all the changes in their
reservation.

Task Logic. One of the main purposes of the
flight booking problem is to mix decision making
in the context of a dialogue. Figure 2 illustrates
the task logic in order to successfully solve our
problem. The goal of the conversation is provided
as part of the customer’s context, which has to be
one of the following:

• book: make a new reservation
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Dataset
Context

complexity
State

complexity Supported tasks
Num.

samples

Real Datasets

AirDialogue � 4.43 ⇥10178 a 750,000 b
Dialogue Generation
Dialogue Self-play

State Tracking
402,038

DSTC1-4
(Henderson et al., 2014) Unknown Unknown State Tracking 20,300

Stanford CoCoA
(He et al., 2017) 16 N/A Dialogue Generation 11,157

Talk and Walk
(de Vries et al., 2018) 80 2 Dialogue Generation 10,000

Negotiation Chatbot
(Lewis et al., 2017) 3 7 ⇥ 3 Dialogue Generation

Dialogue Self-play 5,808

Frames
(El Asri et al., 2017) Unknown 20 Dialogue Generation

State Tracking 1,369

Key-Value
Retrieval Networks
(Eric et al., 2017)

284 284 Dialogue Generation
State Tracking 3,031

Cambridge Restaurant
System

(Wen et al., 2016)
Unknown Unknown Dialogue Generation

State Tracking 680

Synthesized Datasets

AirDialogue Synthesized � 4.43 ⇥10178 750,000
Dialogue Generation

State Tracking
Dialogue Self-play

-

Facebook bAbI dialog tasks
(Bordes et al., 2017) Unknown Unknown Dialogue Generation

State Tracking -

Task-Completion Dialogue Systems
(Li et al., 2016b) Unknown 3 Dialogue Generation

State Tracking -

aCalculated based on all possible combinations of customer and agent context features in Table 2 and Table 3. Assume 365
days a year, 24 airport codes, 8 airlines and 30 flights in the database with each flight having the same departure and arrival date
as the intent and is always under the customer’s budget. This is a conservative estimate since the actual dataset have flights with
different dates and prices.

bCalculated based on 30 flights in the database, 5,000 names and 5 dialogue action states.

Table 1: Comparing AirDialogue to Existing Datasets

• change: change an existing reservation
• cancel: cancel an existing reservation.

The agent is then expected to follow the task
logic and guide the conversation all the way to one
of the five dialogue state actions. For example,
when the goal o is “book”, the agent will iterate
through each of the customer’s set of travel restric-
tions tr and search for available flights in db. If
there are available flights, the conversation will be
concluded with the status action “booked”. Oth-
erwise a status action of “no flight found” will be
returned. On the other hand, the task logic for cus-
tomers with a goal of “change” would be slightly
different. Agents are supposed to check for r to
determine whether a reservation exists. If it does,
the agent will interact with the customer to update

the travel constants tr. Otherwise, a status action
will be selected with “no reservation”. Similarly,
the conversation will conclude “no flight found” if
none of the flights in db satisfies the customers’
need and “changed” if the the new flight is found.
Finally, for customers who wish to cancel their
ticket, the agents will perform a simple check and
cancel if the reservation is found and “no reserva-
tion” otherwise.

Agent Context. There are two components in the
agent context ca = (db, r). db = (f1, f2, . . . , fm)
is a list of flights each with 12 features listed in Ta-
ble 3. Each feature has a prior distribution that we
use to generate those settings. For example, 90% of
the flights in the database would be economy class
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Figure 2: Task Logic of the flight booking problem

while 10% of the flights would be business class.
The flight database is unique to each conversation.
The price of the flights are drawn from a Gaussian
distribution with mean µ and standard deviation
� = µ ⇤ �. µ is 210 for economy class and 650
for business class. � is 0.2 for direct flights, 0.4 for
flights with one connection and 0.6 for those with 2
connections. To simplify our setting, we only con-
sider round trip flight tickets with both trips under
the same airlines. r is simply a binary variable indi-
cating whether the customer has previously made a
reservation.

Customer Context. Customer context cc =
(tr, o) also consists of two pieces. tr =
(tr1, tr2, . . . , trn) is a list of travel restrictions in-
dicated in Table 2. Here we constrain the form
of travel restrictions into the ones that are most
useful for the flight booking situation, which is il-
lustrated in Table 3. For example, customers may
request a flight with either economy class, business
class or accepts anything that is available. Some
of the restrictions requires certain level of common
sense knowledge to “translate” into an actual search
query. Take travel time for example, a morning
flight would corresponds the flight between 3am
to 11am and a standard fare airline would be one
of the big brand airline companies. The rest of the
airlines are considered low-cost airlines. The prob-
ability of each occurrence that will be appeared in
the customer context is also listed in the table.

Dialogue States. At the end of the conversa-
tion, agent will submit the dialogue states s =
(sa, sn, sf ), a state action sa which will be one of
the following 5 : “booked”, “changed”, “no flight
found”, “no reservation” and “cancel”, the name
of the customer sn and the flight being selected
for this dialogue sf . Flights will be identified by a
flight number that indicates one of the m flights in

the database.

Environment. As we discussed earlier in the in-
troduction, there exists a mapping f : c ! s so that
we can acquire the final dialogue state directly from
the context pair. This mapping corresponds to our
environment and the expected state s0 = f(c) gen-
erated from the context pair can be used to evaluate
the state s generated from our algorithm.

Sentence Level Annotation. In addition to dia-
logue context and states, some of the sentences
in the dialogues are also labeled during the data
collection process. The sentence level annotation
records the items agent clicked on the web UI when
we were collecting the dialogue data. Agents are
given the instructions to input all the travel con-
straints immediately after they receive them from
the customers via the chat window.

4 Datasets

In this paper we present the AirDialogue dataset
that contains a large collection of human generated
dialogues. In addition, we also present the synther-
ized dataset generated using a templated simulator,
along with an out-of-domain dataset that contains
context that drawn from a different prior distribu-
tion than the previous two. AirDialogue and the
synthesized datasets are divided into train, dev and
eval sets randomly by applying a ratio of 80%, 10%
and 10%. Details of the statistics are shown in
Table 5.

Figure 3: Customer’s Interface

AirDialogue Dataset. To collect human anno-
tated dialogue data, we first generate context pairs
based on the prior distributions defined in Table 3
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feature goal class max. price airline dep./ret. time

condition
(prob.)

book (80%)
change (10%)
cancel (10%)

economy (7%)
business (3%)

any (90%)

200 (25%)
500 (25%)
1000 (25%)

any (25%)

standard fare (5%)
UA, Delta

AA, Hawaiian
any (95%)

morning (3%)
3am-11am

afternoon (4%)
12pm-19pm
evening (3%)

20pm-2am
any (90%)
0am-23pm

feature dep./ret. month dep./ret. day max. conn. dep./ret. airport

condition
(prob.) uniform uniform

0 (7%)
1 (90%)
any (3%)

uniform

Table 2: List of Customer Travel Restrictions

feature dep./ret.city dep./ret. month dep./ret. day dep./ret. time
range categorical 1-12 1-31 00-23
prob. uniform uniform uniform uniform

feature class price connections airline
range business,economy 0-5000 0,1,2 categorical
prob. 10%, 90% See Section 3 7%, 90%, 3% uniform

Table 3: Flight Features

avg. duration 4.7mins vocab size 25,621
avg. dialogue len 115 avg. turns 14.10

avg. turn len 8.17 num. diag. 402,038
sent. annotation % 36.1 correct % 88.5

Table 4: Statistics of the AirDialogue Dataset

Train Dev Test Total

AirDialogue 321,460 40,363 40,215 402,038
Syntherized 320,000 40,000 40,000 400,000

OOD Context - 40,000 40,000 80,000

Table 5: Statistics of All the Datasets Used in the Paper

Figure 4: Agent’s Interface

and Table 2. 30 flights are generated for each dia-
logue. Annotators are then asked to role play the
dialogue using the web interface illustrated in Fig-
ure 3 and Figure 4. The customer is shown with
the goal and any requirements, as well as the chat
history. The agent has a similar interface with the
addition of a search feature that will search and
return the cheapest flights that satisfy the given
search constraints. The layouts and colors of the
UI were optimized to reduce human errors. Human
annotators are highly familiar with the settings of
the task as most of them stayed in the project full
time for more than 6 month. A human project
manager manually examines roughly 5%-6% of
the data each day and provide feedbacks to the hu-
man annotators to ensure the quality of the data
collection. Table 4 shows some of the statistics
of the AirDialogue dataset. On average, 88.5% of
the dialogues generated by human reaches a per-
fect state. In the next Section we will analyze the
types of human mistakes. In addition to dialogue
history, we have also recorded agent search events
(e.g. adding a new search constant through the web
UI) on each turn, which are sentence level dialogue
state annotations. Annotators are given the instruc-
tions to put search constraints immediately after
they have received them from the natural conver-
sation. 36.1% of the dataset dialogues have access
to such information. Tracking search events pro-
vides a structured representation of progress of the
dialogue.
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Synthesized Dataset. In addition to the AirDia-
logue dataset collected using human annotators,
we have also built a dialogue simulator to gener-
ate synthesized dialogues. The dialogue simulator
relies on the context generator with the same set
of priors. Synthesized dialogues are generated by
following a set of templates and alternate between
them randomly.

Out-of-domain Context Set. We have also gen-
erated an out-of-domain context set that does not
contain any dialogues. This context set is gener-
ated by setting the goal probability from the one
showing in Table 2 to a uniform distribution. The
reservation probability is also changed from 10%
to 70%. The sets of customer name and airport
codes have also gone up significantly in those two
datasets. This makes it difficult for models with
fixed vocabulary size to perform well on those
OOD datasets.

5 Data Analysis

5.1 Required Skills
This dataset presents many challenges for existing
methods. Table 6 lists some of the skills that are
required to accomplish the flight booking task.

Lexical and Syntactic Variations. Human lan-
guage is diverse and there are many forms of lexical
and syntactic variations. Taking the examples in
Table 6, the amount of variation that appears in
human dialogue poses great challenges for conver-
sational models.

Applying External Knowledge. Another chal-
lenge in our data set is the use of external (com-
monsense) knowledge. Vaguely defined concepts
such as morning and afternoon are used comfort-
ably by humans. However, a learning algorithm
needs to successfully adapt those concepts when
searching for flights. An alternative way to solve
this problem is to inject external knowledge into
the algorithm, which is ananother important issue
in dialogue systems.

Active Information Seeking Conversation. We
have observed that human annotators who have
high correct rates often have the habit of actively
requesting information. They take extra steps to
ensure all the flight search conditions are correctly
communicated. This is especially important since
customers are the only party in the dialogue who
have access to the travel restrictions.

Goal-driven Dialogue Development. Another
necessary skill to solve the flight booking prob-
lem is to develop dialogue that can be used to drive
the conversation towards its end goal. Having such
a goal in mind distinguishes goal-oriented models
from chitchat models and makes the conversation
more effective and efficient.

Reasoning over Large Structured Data. Se-
lecting flights relies on effective methods to reason
over a large scale structured database. This is a
challenge that has practical impact but has rarely
been addressed in previous research.

Learning from Multiple Solutions. A final
challenge in the problem is the fact that there exists
multiple equally optimal flights to the same set of
customer restrictions.

5.2 Analysis on Human Mistakes
As we have reported in Table 7, the human error
rate on this task is close to 10%. We have ana-
lyzed the human errors and grouped them into 6
categories. Here an invalid status indicates that
agents have chosen a status that they are not sup-
posed to reach according to Figure 2. For example,
a “book” goal should not reach “no reservation”
as an action status. “Wrong status”, on the other
hand, is a possible action status to reach but are
not expected given the context of the conversation.
Minor mistakes comprise of situations that include
when agents misspell the name of the customer but
get everything else correct. Those mistakes can be
fixed in the dialogue from the ground truth. The
majority (85%) of the errors happened when com-
municating flight search constraints, and entering
wrong conditions that lead the search tool to return
no results (6.8%).

6 Methods

6.1 Supervised Learning
Model Architecture. Our supervised dia-
logue model is built based on the seq2seq
model(Sutskever et al., 2014). We treat both
context from customer and agent as sequences and
encode them using RNN. For customer context cc

we encode it using a single RNN. To encode agent
context ca we apply a hierarchical RNN structure
by first encoding each flight using an RNN and
then encode the outputs of each encoded flights
along with the reservation information using an-
other RNN. Utterance of time t is generated using
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Skills Examples

Lexical and Syntactic Variations

Customer: My travelling dates are Aug 12-14.
Customer: I want to take off on Sept 18 and please
confirm my return ticket on Sept 20.
Customer: Travelling dates are 12/13 and 12/15.

Applying External Knowledge
Customer: I am traveling on Oct, 10 and I am returning on Oct, 12
in the evening.
Customer: I prefer normal-cost airlines.

Active Information Seeking

Customer: And please make sure that the departure time is
at afternoon.
Agent: Do you have any other specifications?
Agent: Can you mention Washington airport code for me?
Agent: Do you like to travel in a economy class or business class?

Goal-driven Dialogue Development
Agent: Sure, please provide me with your planned travel dates.
Agent: Hello, how can I help you?
Agent: Thank you for reaching out to us. Have a great time.

Table 6: Conversational Skills required to accomplish the AirDialogue task.

invalid status 4.4% minor mistakes 2.0%
reservation 1.0% flight constant 85%

wrong condition 6.8% wrong status 0.8%

Table 7: Human error statistics.

a sequence2sequence model by concatenating the
context embedding along with the embeddings of
conversation history ht�1. Agent and customer
will have their own model P (xt|ht�1, ca; ✓a) and
P (xt|ht�1, cc; ✓c). At the end of the conversation
the dialogue state will be generated in a sequence
using another sequence2sequence model by taking
the entire conversation history and the agent
context, P (si|si�1, hT , ca; ✓s).

Optimization. During supervised learning, we
optimize the model by considering the loss from
both the dialogues x and their states s. A token xt

can belong to a either customer utterance (xt 2 ⇡c)
or an agent utterance (t 2 ⇡a). The parameters
for supervised learning contains all the parameters
of the models: ⇥ = {✓a, ✓c, ✓s}. In supervised
learning we optimize the following loss function.

`(⇥) = �

X

(x,c,s)2D

TX

t=1

1⇡c
(xt) log P (xt|ht�1, cc; ✓c)+

1⇡a
(xt) log P (xt|ht�1, ca; ✓a)+

X

i

log P (si|s1:i�1, hT , ca; ✓s)

6.2 Reinforcement Learning Self-Play
Supervised learning for dialogue generation is
known for many issues such as generating tem-
plated responses regardless of the inputs (Li et al.,
2015). Here we design a reinforcement learning

self-play algorithm to enable the model to learn
from the environment by chatting with each other.
Our self-play model is initialized using a model
trained from the supervised learning. Since no
conversation data is involved in the self-play, we
generate context pairs directly from the context
generator during training. Here we consider termi-
nal rewards, which is generated by simulating the
dialogue all the way to the end and compare the
generated state s with the ground truth state s0. We
use the scaled score as rewards introduced in the
paragraph of Evaluation Metrics in Section 7.

Value Network. To reduce variance, we build a
value network to provide a baseline estimate for re-
turns. Both agent and customer gets their own
value network va(ht|ca; ✓v,a) and vc(ht|cc; ✓v,c).
The value functions are parameterized by a seq2seq
model and a linear transform applied on its output.
During the training of the value functions, the main
model parameters ⇥ are fixed and the only train-
able variables are ✓v = {✓v,a, ✓v,c}.

Policy Network. We use the same structure as in
supervised learning to be our policy network. We
adopt REINFORCE algorithm (Williams, 1992) to
optimize our algorithm using the following gradi-
ent.

r`RL(⇥) =

E
xt2⇡c

(Rt � vc(ht�1))r log P (xt|ht�1, cc; ✓c)+

E
xt2⇡a

(Rt � va(ht�1))r log P (xt|ht�1, ca; ✓a)+

E
si

(Rt � va(hT , si�1))r log P (si|si�1, hT , ca; ✓s)
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Experiments pplx BLEU Name Acc. Flight Acc. Action Acc.

Synthesized dev 1.08 68.72 100% 100% 100%
Synthesized test 1.08 68.73 100% 100% 100%

AirDialogue dev 2.21 23.26 100% 100% 100%
AirDialogue test 2.20 23.75 100% 100% 100%

Table 8: Dialogue Generation and State Prediction

Experiments Name Flight State Total BLEU

Supervised (Synthesized dev) 0.39(0%) 0.11(8%) 0.32(32%) 0.23(0.14) 68.72
Self-play (Synthesized dev) 0.47(0%) 0.36(35%) 0.39(39%) 0.39(0.29) 62.71

Supervised (Synthesized test) 0.39(0%) 0.08(4%) 0.33(33%) 0.22(0.12) 68.73
Self-play (Synthesized test) 0.47(1%) 0.35(16%) 0.47(47%) 0.41(0.22) 62.66

Supervised (AirDialogue dev) 0.4(0.9%) 0.07(1.2%) 0.12(12%) 0.15(0.04) 23.26
Self-play (AirDialogue dev) 0.41(1%) 0.13(4%) 0.29(29%) 0.23(0.11) 19.65

Supervised (AirDialogue test) 0.39(1%) 0.08(1.6%) 0.08(8%) 0.14(0.03) 23.15
Self-play (AirDialogue test) 0.43(1%) 0.11(3%) 0.28(28%) 0.22(0.10) 18.84

Human (AirDialogue test) 1 (98%) 0.92 (91.4%) 0.92 (91.8%) 0.94 (0.93) -

Table 9: Dialogue Self-play Displayed with Scaled Scores and Their Exact Match Scores in the Parentheses.

Exp Name Flight State Dialogue

OOD1 0.4(0%) 0.1(1%) 0.18(18%) 0.18(0.06)
OOD2 0.4(0%) 0.09(2%) 0.21(21%) 0.19(0.07)

Table 10: Performance of Trained Self-play Models on
Out-of-domain Context Pairs using AirDialogue Data

7 Experiments

Experiment Setup. We implemented our model
using Tensorflow using SGD as the optimizer with
a learning rate of 0.1 and a batch size of 64. The
seq2seq model was implemented using 4 layers of
GRU with a hidden unit 384. Greedy Decoder is
used for seq2seq decoding. Inputs are tokenized
using NLTK 1. For AirDialogue dataset, tokens oc-
curred less than 10 times are eliminated but no
tokens are removed for the synthesized dataset.
As a result, there are 5,547 tokens left the exper-
iments. There are 700 tokens for the synthesized
dataset and no tokens are eliminated during the
pre-processing. In training we only applied the
dialogues that have correct states.

Accelerate Training In the usual seq2seq dia-
gram for dialogue generation, one would treat a
single conversation with k turns as k different train-
ing samples by feeding conversation before the kth

turn into the encoder and use a decoder to gener-
ate the kth turn. Such a training strategy would
encode the dialogue history repeatedly. We apply
a technique to speed up training that is illustrated

1https://www.nltk.org

in Figure 5. Here the encoder is never needed to
encode a single dialogue multiple times since its
outputs are reused for multiple turn predictions.
The decoder generates the output sequence by al-
ternating its states between previous decoder state
and the encoder states. If the sentence is within
the boundary of the current turn, its hidden state
got passed from its previous state. Otherwise, its
hidden state will be “reset” into the corresponding
state in the encoder. One can easily implement this
training strategy and use a pre-processed Boolean
array to represent whether a token is within a turn
for a specific agent.

A B C D E F G

C D E F G

Figure 5: Techniques to speed up training. Here a con-
versation with 3 turns are annotated using colors. The
encoder only needs to pass through the dialogue once
for the entire dialouge sample to be trained.

Evaluation Metrics. We use perplexity and
BLEU score to evaluate the quality of the language
generated by the model. We also compare the dia-
logue state generated by the model s and the ground
truth state s0. Two categories of the metrics are
used: exact match scores and scaled scores. In an
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exact match metric, dialogue state is given a score
of 1 if it matches exactly to the ground truth and
0 otherwise. In a scaled metric, scores are scaled
between 0 and 1 to provide information that are of
finer granularity. There are three dialogue states:
name, flight and action. For name, scaled metric is
chosen to be the character-wise F1 score. For flight,
scaled metric is chosen to be 1 minus the scaled dis-
tance between the selected flight f and the ground
truth Fg. Note there might be multiple optimal
ground truth flights that have the same price and
satisfy the customers’ requirements. Therefore Fg

should be a set of flights. The distance function
d(f1, f2) is a measure of distance on each of the
flight features. The scaled score on flight is calcu-
lated as the following. Here F is a set of all flights
in the datasbase.

score(f) = 1 �
minf 02Fg d(f, f 0)

maxf12F,f22Fg d(f1, f2)

Dialogue action states can only have exact match
metrics. Finally, the total score of a dialogue is
taken to be a weighed sum scores of name, flight
and dialogue status by a factor of 0.2, 0.5 and 0.3
for both scaled and discrete metrics.

Dialogue Generation and State Prediction.
We train the models on the train sets and show their
performs on the dev and test sets in Table 8. The
BLEU score measured by comparing the generated
response and the ground truth is around 68.7 for
synthesized data and around 23 for AirDialogue.
Given the fact that templated dialogues are easier
to learn, it is expected that the synthesized dataset
gets a high BLEU score. In the state prediction
task, the model paper achieved a perfect accuracy
across all the dialogue states given the ground truth
dialogue and previous states. However, as we will
see shortly, the triumph on ground truth hisotry
might not be able to be transferred to self-play
experiments, which generates dialogues that have
different distributions from the ground truth data.

Dialogue Self-play. During the self-play experi-
ments we perform similar predictions on the dia-
logue states. However, instead of asking the models
to predict those states given ground truth history,
we now ask the models to predict given the gen-
erated dialogues. Table 9 shows the results using
both the supervised model and the self-play model.
Here we see significantly improvements across all
measures for self-play models compare to their su-
pervised learning models. However, the fact that

the exact match scores are so low indicates that our
models are far from mastering the goal-oriented
dialogue problem in the self-play setting as the re-
wards and accuracies are consistently low. As a
comparison, human agents achieved nearly 90% on
rewards across all categories, which sets a good tar-
get for future work in the field. One possible reason
for the low exact match score but relatively high
scaled score is because we use the scaled score
as rewards in out self-play training. As a result,
the metrics are highly tuned toward scaled scores
instead of exact match scores. One can apply tech-
niques such as pointer networks (Vinyals et al.,
2015) which is possible to optimize exact match
scores in a better way. To prevent language from
degenerating into binary bits, we mix three super-
vised training steps on the train data with one rein-
forcement learning update during self-play training.
By doing this, we are able to maintain a BLEU
score at similar level compares to the supervised
learning.

Out-Of-Domain Self-play. We have also con-
ducted experiments on the out-of-domain context
pairs. The results are shown in Table 10. The out-
of-domain context pairs contain dialogue contexts
with distribution far deviated from the training data.
It is not surprised to see here that our model does
not perform as good as in the testing data using the
data it is familiar with.

8 Conclusions
In this paper, we propose an environment for goal-
oriented dialogue research based on the problem
of flight bookings. We have collected a dataset
that is more than 400,000 conversations. Our en-
vironment allows easy generation of new dialogue
contexts and allows verification of the generated
dialogues, which can be used to support a wide
range of research such as dialogue self-play. Al-
though supervised learning seems to perform well
in our setting, self-play poses a challenge for goal-
oriented dialogue research. The gap between our
self-play approach and the human baseline suggests
possibilities for significant future improvements.
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Abstract

We propose the task of Quantifiable Sequence
Editing (QuaSE): editing an input sequence
to generate an output sequence that satisfies
a given numerical outcome value measuring
a certain property of the sequence, with the
requirement of keeping the main content of
the input sequence. For example, an input se-
quence could be a word sequence, such as re-
view sentence and advertisement text. For a
review sentence, the outcome could be the re-
view rating; for an advertisement, the outcome
could be the click-through rate. The major
challenge in performing QuaSE is how to per-
ceive the outcome-related wordings, and only
edit them to change the outcome. In this pa-
per, the proposed framework contains two la-
tent factors, namely, outcome factor and con-
tent factor, disentangled from the input sen-
tence to allow convenient editing to change the
outcome and keep the content. Our frame-
work explores the pseudo-parallel sentences
by modeling their content similarity and out-
come differences to enable a better disentan-
glement of the latent factors, which allows
generating an output to better satisfy the de-
sired outcome and keep the content. The dual
reconstruction structure further enhances the
capability of generating expected output by
exploiting the couplings of latent factors of
pseudo-parallel sentences. For evaluation, we
prepared a dataset of Yelp review sentences
with the ratings as outcome. Extensive exper-
imental results are reported and discussed to
elaborate the peculiarities of our framework. 1

⇤ The work described in this paper was done when Yi
Liao was an intern at Tencent AI Lab. The work is partially
supported by a grant from the Research Grant Council of the
Hong Kong Special Administrative Region, China (Project
Code: CUHK413510)

1Our code and data are available at https://
bitbucket.org/leoeaton/quase/src/master/

1 Introduction

Typical neural text generation is observed suffer-
ing from the problems of repetitions in word n-
grams, producing monotonous language, and gen-
erating short common sentences (Li et al., 2017).
To solve these problems, some researchers branch
out into the way of post-editing (could be under
some guidance, say sentiment polarity) a given
message to generate text of better quality. For
example, skeleton-based text generation first out-
lines a skeleton in the form of phrases/words,
and then starts from the skeleton to generate text
(Wang et al., 2017; Xiao et al., 2016). Another
line of works conduct editing on an existing sen-
tence and expect that the output will serve particu-
lar purposes better (Guu et al., 2018). Similarly in
conversation, some systems post-edit the retrieval
results to generate new sentences as the response
(Song et al., 2016). The third type is to perform
editing on the input under the guidance of specific
style. For example, Shen et al. (2017) take a sen-
tence with negative sentiment as input, and edit it
to transfer its sentiment polarity into positive.

In this paper, we generalize the third type of
post-editing into a more general scenario, named
Quantifiable Sequence Editing (QuaSE). Specif-
ically, in the training stage, each input sentence
is associated with a numeric outcome. For exam-
ple, the outcome of a review sentence is its rating,
ranging from 1 to 5; the outcome of each adver-
tisement is its click-through rate. In the test stage,
given an input sentence and a specified outcome
target, a model needs to edit the input to generate
a new sentence that will satisfy the outcome tar-
get with high probability. Meanwhile, the output
sentence should keep the content described by the
input. For example, given the input sentence “The
food is terrible”, a desired output sentence could
be “The food is OK” under the expected outcome
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“3.1” (a neutral sentiment), and “The food is de-
licious” under the expected outcome “4.0”. If no
outcome target is given, the model could generate
“The food is extremely delicious”, by defaulting
the best outcome, or “The food is extremely terri-
ble”, by defaulting the worst outcome.

Our problem setting is more general than pre-
vious works in two major aspects: (1) The out-
come here is numerical, and it can be regarded as a
generalization of the categorical outcome in (Shen
et al., 2017; Hu et al., 2017; Gao et al., 2018).
With such numerical outcome, it is impossible to
construct two corpora as counterpart of each other
as done in (Shen et al., 2017; Gao et al., 2018).
(2) The editing operation is under a quantifiable
guidance, i.e. the specified outcome or the de-
faulted extrema. For example, we can specify a
particular target rating, such as 3.1 or 4.0, as the
expected outcome. Although Mueller et al. (2017)
also take outcome-associated sentences for train-
ing, their model does not perform such outcome-
guided editing for sentence generation.

Considering that the goal of the task is to gen-
erate an output that satisfies a specified outcome
and keeps the content unchanged, QuaSE is chal-
lenging in a few aspects. Firstly, a model should
be able to perceive the association between an out-
come and its relevant wordings. For the previous
example “The food is terrible”, the model needs
to figure out that the low rating is indicated by
the word “terrible”, instead of “food”. Secondly,
when performing editing, the model should keep
the content, and only edits the outcome-related
wordings. Moreover, the model needs to take a
specified outcome into account and generate an
output that satisfies the specified outcome value
with high probability. Continuing the running ex-
ample, given the expected outcome 3.1, “The food
is OK” is an appropriate output, but “The food is
extremely delicious” and “The service is OK” are
not. Thirdly, we do not have readily available data,
such as data points like [input sentence: “The food
is terrible”, expected outcome: 4.0, output sen-
tence: “The food is delicious”] to show the model
what the revised output should look like, that meet
our need to train models.

We propose a framework to address this task.
The fundamental module of our framework is
a Variational Autoencoder (VAE) (Kingma and
Welling, 2013) to encode each input sentence into
a latent content factor and a latent outcome fac-

tor, capturing the content and the outcome related
wordings respectively. We propose to leverage
pseudo-parallel sentence pairs (i.e, the two sen-
tences in a pair have the same or very similar con-
tent, but different outcome values) to enhance our
model’s capability of disentangling the two fac-
tors, which allows attributing the wording differ-
ence of the sentences in a pair to the outcome
factor, and the wording similarity to the content
factor. For sentence reconstruction, we employ a
Recurrent Neural Network (RNN) based decoder
(Sutskever et al., 2014) that takes as input the com-
bination of a content factor and an outcome fac-
tor. To further enhance the capability of generat-
ing expected output, we introduce a dual recon-
struction structure which exploits the couplings of
latent factors of pseudo-parallel sentences. Specif-
ically, it attempts to reconstruct one sentence in
a pair from the combination of its outcome fac-
tor and the other sentence’s content factor, based
on the intuition that the wording difference in a
pair is outcome-related. In the test stage, taking
a sentence and a specified outcome target as in-
put, our model generates a revised sentence which
likely satisfies the specified target, and meanwhile
the content is preserved as much as possible.

To evaluate the efficacy of our framework, we
prepared a dataset of Yelp review sentences with
the ratings as outcome. Compared with state-
of-the-art methods handling similar tasks, exper-
imental results show that our framework can gen-
erate more accurate revisions to satisfy the target
outcome and transfer the sentiment polarity, mean-
while it keeps the original content better. Ablation
studies illustrate the effectiveness of the designed
components for enhancing the performance. We
have released the prepared dataset and the code of
our model to facilitate other researchers to do fur-
ther research along this line, refer to Footnote 1.

2 Model Description

2.1 Problem Setting and Model Overview
In the task of Quantifiable Sequence Editing
(QuaSE), the aim is to edit an input sentence X0

under the guidance of an expected outcome value
R⇤ to generate a new sentence X⇤ that will satisfy
R⇤ with high probability. For training a model, we
are given a set of sentence-outcome tuples (X , R).

Our proposed model for training is depicted in
Figure 1. The left hand side models individual
sentences. Specifically, it employs two encoders,
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Figure 1: Model Overview.

i.e. E1 and E2, to encode a single sentence X into
two latent factors Y and Z which capture the out-
come and content properties respectively. In con-
trast, Mueller et al. (2017) employ a single fac-
tor for capturing these two properties, which lim-
its the capability of distinguishing one property
from the other. As a consequence, when editing
a sentence towards a given outcome, the sentence
content is likely to be changed, which should be
suppressed as much as possible. An RNN-based
decoder D takes the concatenation of Y and Z to
reconstruct the input X . Moreover, a transforma-
tion function F predicts R with Y .

The right hand side models pseudo-parallel
sentence pairs (automatically generated from the
above tuples), so we first introduce the concept
of pseudo-parallel sentences as follows. Let (x,
x0) denote a pair of pseudo-parallel sentences, x
and x0 should describe the same or similar con-
tent, but their outcomes are different. Note that
we use lowercase letters to denote variables re-
lated to sentence pairs for better clarity. For two
sentences in a pair, the difference of their outcome
factors h(y, y0) is attributed to their wording dif-
ference f(x, x0), resulting in the loss Ldiff ; the
similar contents of two sentences should result in
similar content factors, i.e. minimizing the loss
Lsim; moreover, a dual reconstruction loss Ld�rec

is minimized to enhance the capability of generat-
ing expected output.

Overall, the model minimizes the losses from
modeling single sentences and sentence pairs. Af-
ter the model is trained, a separated component is
applied for editing an input sentence to output a
revision that satisfies a specified outcome target.

2.2 Modeling Single Sentences

In probabilistic theory, we need to maximize the
log-likelihood of observing the training sentence-

outcome tuples (X ,R), denoted as follows:

log

Z
p(X, R) = log

Z
p(X|Y, Z)p(Y, Z)dY dZ

+ log

Z
p(R|Y )p(Y )dY

(1)

However, the integration in the first term on the
right hand side is intractable. Inspired by the
idea of VAE (Kingma and Welling, 2013), we al-
ternatively maximize the Evidence Lower Bound
(ELBO) (Blei et al., 2016) incorporating varia-
tional distributions, i.e. q(Y |X) and q(Z|X).
Thus, this term is approximated as follows:

log

Z
p(X|Y, Z)p(Y, Z)dY dZ � �[Lrec + Lkl]

Lrec = �EY,Z⇠q(Y |X),q(Z|X)[log p(X|Y, Z)]

Lkl = KL[q(Y |X)|p(Y )] + KL[q(Z|X)|p(Z)]

(2)

where, the term Lrec denotes the error of re-
constructing X . As advocated by (Kingma
and Welling, 2013) and (Bowman et al., 2016),
the variational distributions q(Y |X) and q(Z|X)
are modelled as Gaussian distributions, i.e.
q(Y |X) = G(µY |X , �Y |X), and q(Z|X) =
G(µZ|X , �Z|X). The expectation E(·) can be effi-
ciently approximated using one Monte-Carlo sam-
ple, for example, Y ⇠ q(Y |X) and Z ⇠ q(Z|X).
In practise, we can alternatively employ Y =
µY |X and Z = µZ|X instead of sampling since
they are the means of the Gaussian distributions.
We employ two encoder networks E1 and E2 to
generate µY |X and µZ|X respectively from the
sentence X , i.e. µY |X = E1(X) and µZ|X =
E2(X). p(X|Y, Z) is the probability of observing
the sentence X given Y and Z, which is modelled
by a decoder network D. Thus, the reconstruction
loss can be rewritten as:

Lrec = H(X, D(E1(X), E2(X))) (3)

where H is the cross entropy loss for the decoder.
The term Lkl in Equation 2 denotes the KL-

divergence between the variational posterior dis-
tribution and the prior distribution. Following pre-
vious works (Mueller et al., 2017), the priors p(Y )
and p(Z) are defined as a zero-mean Gaussian dis-
tribution, i.e. p(Y ) = p(Z) = G(0, I). The loss
Lkl serves as a regularization term enforcing that
the variational posterior distribution resembles the
prior distribution, which also avoids overfitting.

3857



The second term in Equation 1 models the log-
likelihood of the outcomes. We adopt the usu-
ally used Taylor approximation for the calculation,
where this term is approximated by an affine trans-
formation from the outcome factor Y to the out-
come R, denoted as F (Y ). Then, we define the
loss as the square error between R and F (Y ):

Lmse = (R � F (Y ))2 (4)

Although Mueller et al. (2017) also model in-
dividual sentences and their outcomes, in their
model, each sentence is only encoded into one la-
tent factor to capture both outcome and content
properties. In contrast, we disentangle two la-
tent factors from a single sentence to model the
outcome and the content separately to provide
more flexibility. Moreover, such design allows
the incorporation of the pseudo-parallel sentences,
which will be described in the next subsection.

2.3 Exploiting Pseudo-Parallel Sentences
As mentioned above, pseudo-parallel sentences
are similar in terms of the content but different in
terms of the outcome. E.g., Table 1 shows a pair of
pseudo-parallel sentences, where both talk about
“the restaurant”, but with different sentiments (i.e.
ratings). For the pair (x, x0), let y and y0 denote
their outcome factors, z and z0 denote their content
factors. We design three components to leverage
pseudo-parallel sentences to enhance our model’s
capabilities of disentangling the two types of fac-
tors and generating the desired output sentences.

x I will never come back to the restaurant.
x0 I will definitely come back to the restaurant, recommend!

Table 1: A pair of pseudo-parallel sentences.

2.3.1 Modeling Outcome Difference
We exploit the wording difference f(x, x0) be-
tween x and x0. Note that the preparation (dis-
cussed in Section 4.1) determines that a pair of
pseudo-parallel sentences are very likely to dif-
fer in the outcome factors, denoted as h(y, y0).
Thus, by aligning the surface wording difference
of two sentences in a pair and the difference in
their outcome factors, we intend to improve the
performance of the encoder E1 for generating the
outcome factor. f(x, x0) and h(y, y0) are defined
as follows:

f(x, x0) =inc(x, x0) � dec(x, x0)

h(y, y0) =y � y0 = E1(x) � E1(x
0)

(5)

where inc(x, x0) and dec(x, x0) are embeddings
capturing the wording difference between x and
x0. inc(x, x0) denotes the “increment” from x
to x0, i.e. the terms that appear in x0 but not in
x. dec(x, x0) denotes the “decrement”. If there
are multiple terms in the difference, we sample
one term for inc or dec. For the example in Ta-
ble 1, dec(x, x0) is the embedding of “never”, and
inc(x, x0) could be the embedding of “definitely”
or “recommend”. The effect of outliers during
sampling anneals since the training data contain
sufficient pairs of sentences. The symbol � de-
notes concatenation. h(y, y0) is defined as the sub-
traction between the outcome factors.

We employ a regression network U to align
f(x, x0) and h(y, y0), and the loss Ldiff is:

Ldiff = ||h(y, y0) � U [f(x, x0)]||2 (6)

2.3.2 Modeling Content Similarity
Another property of two pseudo-parallel sentences
is that they share similar content. To capture it, we
design a loss function minimizing the square error
between the content factors.

Lsim = ||z � z0||2 = ||E2(x) � E2(x
0)||2 (7)

Minimizing Lsim helps the encoder E2 generate
the content factor more accurately.

2.3.3 Dual Reconstruction
The decoder D is not only used in Section 2.2 to
reconstruct a single training sentence, but also em-
ployed for generating output sentences in the test
stage (Section 3). To improve the robustness of
D, we propose a dual reconstruction component
based on the pseudo-parallel sentences. Different
from reconstructing an original sentence in Sec-
tion 2.2, in the dual reconstruction, given a sen-
tence x, we reconstruct its dual sentence x0.

Specifically, we first encode x and x0 into their
outcome factors y/y0 and content factors z/z0.
Since x shares similar content with x0, its content
factor z, when combined with the outcome factor
y0 of x0, should nearly reconstruct x0. For such
dual reconstruction, the loss is written as:

Ld�rec
x0;x =H(x0, D(E1(x

0), E2(x)))

=H(x0, D(y0, z))
(8)

The same dual reconstruction process applies to
the counterpart of x0, i.e. x. Thus, the whole dual
reconstruction loss is as follows:

Ld�rec = Ld�rec
x0;x + Ld�rec

x;x0 (9)
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Note that the encoders E1/E2 and the decoder D
here refer to exactly the same networks (i.e., the
parameters are shared) as used in Section 2.2.

The specific design of the networks are as fol-
lows. E1/E2: RNNs of GRUs with a fully con-
nected neural network appended to the last state
to add some noise, which is a reparameterization
alternative for sampling. Their outputs are the out-
come and content factors, respectively. D: An
RNN of GRU cells. The RNN takes the concate-
nation of an outcome factor and a content factor
as the initial state for decoding. F : A fully con-
nected network. It takes an outcome factor as in-
put and outputs an outcome value. U : A fully con-
nected network. It takes f(x, x0) as input to pre-
dict h(y, y0).

2.4 Joint Training
Considering all the aforementioned components,
we define a joint loss function as:

Ljoint =�recLrec + �klLkl + �mseLmse+

�diffLdiff + �simLsim + �d�recLd�rec

(10)

in which each component is associated with a
weight. Following the sigmoid annealing schedule
(Bowman et al., 2016), we design the following
strategy to tune the weights: (1) Tune the weights
�rec and �mse on the validation dataset under the
metric MAE (refer to Section 4.3), while fixing the
other weights to zeros. We set �rec+�mse = 1; (2)
Fixed the weights tuned in the first step. For each
remaining loss, gradually increase the weight from
0 to 1 during the training, until the reconstruction
loss Lrec or the outcome prediction loss Lmse be-
comes worse. The strategy prioritizes Lrec and
Lmse, since they are the core components for gen-
erating the revised sentences.

3 Editing under Quantifiable Guidance

In the test, the trained model edits an input sen-
tence X0 and outputs a revision X⇤ that is likely to
satisfy the specified outcome target R⇤, and mean-
while preserves the content as much as possible.

We first encode X0 with E1 and E2 to get Y0

and Z0 respectively. The next step is to modify
Y0 to get a new outcome factor Y ⇤ that is likely
to generate the target outcome R⇤. The process
to determine a suitable Y ⇤ is as follows. We first
assume Y follows the Gaussian distribution Y ⇠
G(Y0 = E1(X0), �), the mean of which is Y0.

Then we choose C = {Y : G(Y |E1(X0), �) > ⌧}
as the feasible range for Y ⇤, where ⌧ is a thresh-
old. C will expand if ⌧ is set smaller, and thus al-
lowing more revisions. Finally, Y ⇤ is determined
as follows:

Y ⇤ = arg min
Y 2C

(F (Y ) � R⇤)2 (11)

Note that in (Mueller et al., 2017), Y ⇤ is deter-
mined as arg maxY 2C F (Y ), which does not con-
sider an outcome target. The revised sentence X⇤

is generated from X0 and Y ⇤ via the decoder D:

X⇤ = D(Y ⇤, Z0) (12)

Thus, the content of X0 is preserved with Z0, and
the expected outcome is achieved with Y ⇤.

4 Experiments
4.1 Dataset Preparation
Our dataset contains sentences extracted from
Yelp reviews 2, where each review is associated
with a rating in {1, 2, 3, 4, 5}. Specifically, we
employ the sentences with sentiment polarity (i.e.
positive or negative) used in (Shen et al., 2017) as
the primary portion of our data. After some clean-
ing, we obtain about 520K sentences. To add neu-
tral sentences, we randomly select 80K sentences
from the original reviews with neutral sentiment
(i.e. rating 3). To make sure that the neural sen-
tences added by us are describing the same do-
main, we only pick neural sentences whose tokens
are all in the vocabulary of the primary data. The
vocabulary size of the dataset is 9,625. In total,
our dataset contains 599K sentences, and we ran-
domly hold 50K for test, 10K for validation, and
the remaining for training.

For training, we need each input sentence be-
ing associated with a rating value, and for test,
we need to measure the rating of a generated sen-
tence to check if the generated sentence satisfies
the specified outcome target. Therefore, an au-
tomatic method is needed for measuring the rat-
ing values of training sentences and generated sen-
tences. We employ the sentiment analyzer in Stan-
ford CoreNLP (Manning et al., 2014) to do so.
Specifically, we first invoke CoreNLP to output
the probability of each rating in {1, 2, 3, 4, 5} for a
sentence, then we take the sum of the probability-
multiplied ratings as the sentence rating. Some
statistics of the data is given in Table 2. Hereafter,
we use “rating” and “outcome” interchangeably.

2https://www.yelp.com/dataset/challenge
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Rating interval [1, 2) [2, 3) [3, 4) [4, 5]
Sentence# 34273 231740 165159 167803

Table 2: Numbers of sentences in each rating interval.

One may think that would it be possible to use
the original rating given by Yelp users as outcome
for training? We did not use it for two reasons:
(1) We want the ratings of training sentences and
generated sentences are measured with a consis-
tent method; (2) In fact, we find that the predicted
rating with CoreNLP has a Pearson correlation of
0.85 with the rating given by users. Note that the
original Yelp data only has ratings for entire re-
views. We derived the sentence ratings by users
like this: a sentence takes as its rating the average
of the ratings of those reviews where it appears in.
Human evaluation in (Shen et al., 2017) shows that
a similar method for deriving polarity is basically
reasonable as well.

For preparing the pseudo-parallel sentences, we
first follow the ideas in (Guu et al., 2018) to gen-
erate some initial pairs. Specifically, we first cal-
culate the Jaccard Index (JI) for each pair of sen-
tences, and keep those with JI values no less then
0.5 as the initial pairs. Note that such initial pairs
could contain many false positives (roughly 10%
as manually evaluated on the Yelp corpus in (Guu
et al., 2018)), because the JI calculation does not
distinguish content words and outcome words. To
solve this problem, we add another constraint: for
an initial pair to be regarded as a pseudo-parallel
sentence pair, the difference of the two sentences’
ratings should be no less than 2. Here, the idea
is that given the two sentences are similar enough
in wordings (JI � 0.5), if their rating scores are
dissimilar enough, it looks plausible to conjec-
ture that their wording difference is more likely
outcome-related and causes the rating difference.
In fact, such wording difference is exactly what
we want to capture with pseudo-parallel sentence
pairs. In total, we obtain about 604K sentence
pairs from the single training sentences. For con-
ducting the joint training with both single sen-
tences and pseudo-parallel pairs, we make each
data point composed of a single sentence and a
sentence pair. To do so, we couple each sen-
tence pair with a single sentence, thus we can use
all pairs for training. Note that because we have
more sentence pairs, some single sentences are
used twice randomly in composing the data points.

4.2 Comparative Methods
Our model is compared with two state-of-the-art
models handling similar tasks.

Sequence to Better Sequence (S2BS) (Mueller
et al., 2017): For training, S2BS also requires each
sentence is associated with an outcome. For test,
S2BS only revises a sentence such that the output
is associated with a higher outcome, which is not
a specified value. For comparison, we adapt our
revision method for S2BS, by which their trained
model is able to conduct quantifiable sentence re-
vision. We tune the parameters for S2BS by fol-
lowing the suggestions in their source code.

Text Style Transfer (TST) (Shen et al., 2017):
In TST, the sentiment of each sentence is labelled
as negative or positive. The model is able to revise
a negative sentence into positive, or vice versa.
Their task can be treated as a special case of our
QuaSE task: we set the outcome target to 1 for
the input sentences that are associated with out-
comes larger than the neutral rating 3, thus, our
task is equal to revising a positive sentence into
negative. We follow the suggested parameters re-
ported in (Shen et al., 2017).

4.3 Evaluation Metric and Parameter Setting
Considering that our model’s task is to revise a
sentence such that its outcome (predicted by Stan-
ford CoreNLP) satisfies a specified target, we de-
fine the metric as the mean absolute error (MAE)
between the specified target outcome and the out-
comes of revised sentences.

MAE =
1

|S|
X

Xi2S

|Ri � R⇤| (13)

where S is the set of revised sentences Xi, R⇤ is
the target outcome, and Ri is the outcome of Xi.

After tuning on the validation set, the deter-
mined parameters are: �rec = 0.75, �kl = 0.6,
�mse = 0.25, �diff = 0.2, �sim = 0.2, �d�rec =
0.1, and the dimensions of the two factors are
both 50. The parameter ⌧ for revision takes
exp(�100000) for both our model and S2BS.

4.4 Automatic Evaluation
We compare our model with S2BS by specify-
ing five target ratings, namely 1, 2, 3, 4, and 5.
Both our model and S2BS are fed the sentences
in the testing dataset. For each sentence, both
models are required to generate five revised sen-
tences, each satisfying one of the target ratings.
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MAE Edit Distance
T=1 T=2 T=3 T=4 T=5 T=1 T=2 T=3 T=4 T=5

Original 2.2182 1.2379 0.8259 0.9279 1.7818 N/A N/A N/A N/A N/A
S2BS 1.6839 0.9444 0.7567 0.7572 1.3024 6.6439 5.342 4.9390 5.005 6.2290

Our Model 1.4162 0.6298 0.7408 0.5377 0.9408 7.9191 4.7 3.4505 4.13 8.0094

Table 3: MAE and Edit Distance for our proposed model and S2BS. T refers to the target outcome.

We evaluate the MAE between the target outcome
and the outcome of the revised sentences. Each
model is trained for three times and the average
results are reported in Table 3. “Original” refers to
the MAE between the targets and the ratings of in-
put sentences. We can observe that the MAE val-
ues of both our model and S2BS are smaller than
Original. It demonstrates that both models are
able to revise the sentences towards the outcome
targets. Furthermore, compared with S2BS, our
model achieves smaller MAE values. One major
reason is that we disentangle a content factor and
an outcome factor, and design three components
to leverage pseudo-parallel sentences. By mod-
eling the wording difference, our model captures
the keywords that cause the difference in the out-
come. By enforcing the content factors of pseudo-
parallel sentences to be similar, the model is capa-
ble to generate the content factor more precisely.
Moreover, the dual reconstruction can guide the
editing procedure with the hints from the paral-
lel sentences. In contrast, S2BS only disentangles
one factor for capturing both content and outcome
properties, and thus it cannot perform the same op-
erations on sentence pairs. The MAE for T=5 is
smaller than that for T=1. This is partially due
to the fact that the outcomes of the test sentences
are closer to 5, refer to Table 2. We also report
the average Edit Distance between the input sen-
tences and the generated sentences to measure the
degree of revisions. For T=1 and T=5, our model
conducts more editing than S2BS, which brings in
better MAE, while for T={2, 3, 4}, our model gen-
erates more accurate sentences (i.e. better MAE)
with less editing. This observation coincides with
the fact that we need more editing to revise a sen-
tence towards an extreme target (i.e., 1 and 5),
such as including degree adverbs “very” and “ex-
tremely”.

We also compare our model with TST for senti-
ment polarity transfer. We employ the same eval-
uation metric as used in (Shen et al., 2017): the
sentiment accuracy of the transferred sentences.

Neg. to Pos. Pos. to Neg.
TST 0.7280 0.7097

Our Model 0.8836 0.7862

Table 4: Accuracy comparison with TST.

Content Preservation Fluency
(Range: [0, 2]) (Range: [1, 4])

TST 1.02 2.56
S2BS 0.70 2.53

Our Model 1.38 2.48

Table 5: Manual evaluation.

We define the revised sentences with ratings larger
than 3 as positive, smaller than 3 as negative. The
results are given in Table 4, where two accuracy
values are reported: negative to positive, and the
reverse. The results show that our model achieves
better accuracy than TST in both transfer direc-
tions. One reason is that our method models the
associations between each sentence and its out-
come, and thus captures the sentiment wordings
better. Our model is far better for transferring neg-
ative sentences into positive, moreover, both mod-
els achieve better performance for this transfer di-
rection. We can probably attribute the reason to
the imbalanced training data: 55% positive sen-
tences v.s. 45% negative sentences.

4.5 Manual Evaluation

We hire five workers to manually evaluate the
quality of 500 sentences generated by each of our
model and the compared models. The result is
shown in Table 5. “Content Preservation” mea-
sures whether the generated sentence preserves the
content of the input sentence. The score range is
{2: fully preserved, 1: partially preserved, 0: not
preserved}. “Content Preservation” is an impor-
tant metric in this task since it is required that the
output sentence and the original sentence should
describe the same content subject. “Fluency” mea-
sures the grammatical quality of a sentence, which
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Generated sentence
E.g. 1 this tire center is amazing .
T=1 this tire center is horrible .
T=3 this tire center is really good .
T=5 this tire center is amazing .

E.g. 2 horrible food !
T=1 horrendous
T=3 their food amazing !
T=5 amazing delicious food ! recommend !

E.g. 3 decent food and wine selection , but nothing i will rush back for .
T=1 decent food and wine selection , but nothing i will rush for no .
T=3 decent food and wine selection , but i will never look back for .
T=5 decent food and wine selection , but excellent service, will return !

E.g. 4 our first time and we had a great meal , wonderful service .
T=1 our first time and we had a terrible meal , stale service .
T=3 our first time and we had a great meal , we have service .
T=5 our first time and we had a great meal , wonderful service .

E.g. 5 food is very addiction tasty !
T=1 food is just horrible here ?
T=3 food is just addiction here !
T=5 food is very yummy addiction !

Table 6: Case study.

ranges from 1 (bad) to 4 (good), by following the
definition in TST (Shen et al., 2017).

The result shows that our model achieves the
best content preservation score. Our editing pro-
cedure explicitly fixes the content factor and only
modifies the outcome factor, which helps better
preserve the content. In contrast, S2BS and TST
include only one shared factor for both the content
and the outcome, thus fail to distinguish one from
the other. For the “Fluency” metric, S2BS and
TST are slightly better than our model. Generally
speaking, it is because our model introduces more
powerful components for modeling the outcome
differences between pseudo-parallel sentences, so
as to achieve our goal of editing an input sen-
tence to satisfy the expected outcome. However,
these components do not contribute to the lan-
guage quality of generated sentences.

4.6 Case Study

We show some examples produced by our model
in Table 6. For each input, we specify three tar-
gets: 1, 3, and 5. For the first and the forth exam-
ples, the original sentences are not revised when
the target rating is set to 5 (i.e., T=5) since the
original sentences are already quite positive. For
the first example, when T=3, “amazing” is revised

to a relatively less positive phrase “really good”.
This case demonstrates that our model is able to
capture the subtle difference in word sentiments,
so that it can revise sentences reasonably accord-
ing to the quantifiable rating guidance. Moreover,
for the second example, we notice that our model
revises the original sentence “horrible food !” to
“amazing delicious food ! recommend !” for T=5.
This case shows that our model not only changes
one word with another having different sentiment,
e.g. “horrible” to “amazing delicious”, but also
creatively introduces words from a new perspec-
tive, e.g. “recommend”.

4.7 Ablation and Tuning Behavior Discussions

Recall that our model is a combination of a re-
vised VAE, which disentangles two factors from
a sentence to enable the subsequent design, and
a coupling component modeling pseudo-parallel
sentence pairs. For the three losses of the coupling
component, we show their effects under the MAE
metric in Table 7. “None” refers to all three losses
are removed, and it is basically worse than S2BS,
which implies only using the revised VAE does not
work well. As more losses added, the performance
is gradually improved. Moreover, the dual recon-
struction is more effective than the others.
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T=1 T=3 T=5
S2BS 1.6839 0.7567 1.3024
None 1.6639 0.7684 1.5434
Lsim 1.6090 0.8258 1.5233
Ldiff 1.6793 0.8017 1.3140
Ld�rec 1.5191 0.7784 1.1218

Lsim, Ldiff 1.4991 0.8218 1.3705
Lsim, Ld�rec 1.4101 0.8027 1.1246
Ldiff , Ld�rec 1.3879 0.7786 1.1413

ALL 1.4162 0.7408 0.9408

Table 7: Ablation study.

In the weight tuning, the first step only tunes the
weights of Lrec and Lmse. We observe that solely
minimizing Lrec and Lmse also decreases Lsim,
because in this process, the encoder E2 becomes
more capable of disentangling the content factor,
and thus z and z0 become similar as they come
from two similar input sentences, i.e. pseudo-
parallel sentences. Another observation is that
solely minimizing Lrec and Lmse increases Ld�rec

after some training epochs. To analyze the reason,
let us assume there is a sentence x in the training
set. Thus, the loss of reconstructing x from y and z
is included in Lrec. Assume that x is also included
in a pseudo-parallel pair, and thus the loss of re-
constructing x from y and z0 is included in Ld�rec.
The only difference between the two losses lies in
the content factors z and z0. Given that z and z0 are
not enforced to resemble each other when Lsim is
excluded from this tuning step, Lrec and Ld�rec

cannot be minimized simultaneously. Moreover,
when we minimize Lsim in the second step with
the weights of Lrec and Lmse fixed, we observe
that Ld�rec also decreases, which complies with
the above analysis.

5 Related Works

Inspired by the task of image style transfer (Gatys
et al., 2016; Liu and Tuzel, 2016), researchers
proposed the task of text style transfer and ob-
tained some encouraging results (Fu et al., 2018;
Hu et al., 2017; Jhamtani et al., 2017; Melnyk
et al., 2017; Zhang et al., 2018; Li et al., 2018;
Prabhumoye et al., 2018; Niu and Bansal, 2018).
Existing studies on text style transfer mainly aim
at transferring text from an original style into a tar-
get style, e.g., from negative to positive, from male
to female, from rude/normal to polite; from mod-
ern text to Shakespeare style, etc. In contrast, our

proposed task QuaSE assumes each sentence is as-
sociated with an outcome pertaining to continues
values, and the editing is under the guidance of a
specific target.

To transfer the style of a sentence, the paradigm
of most works (Shen et al., 2017; Mueller et al.,
2017; Prabhumoye et al., 2018) first learns the
latent representation of the original sentence and
then applies a decoder to generate the transferred
sentence. A line of works (Shen et al., 2017;
Mueller et al., 2017), including the studied task
in this paper, assume that only non-parallel data
is available for training. In such settings, VAEs
(Kingma and Welling, 2013) are employed to learn
the latent representations of sentences. Shen et al.
(2017) assume a shared latent content distribution
across text corpora belonging to different styles,
and leverages the alignment of latent representa-
tions from different styles to perform style trans-
fer. Mueller et al. (2017) associate the latent rep-
resentations with a numerical outcome, which is
a measurement of the style. A transferred sen-
tence is generated from a modified latent represen-
tation. Different from the aforementioned works
based on latent representations, Li et al. (2018)
propose a simpler method that achieves attribute
transfer by changing a few attribute marker words
or phrases in the sentence that are indicative of a
particular attribute, while leaving the rest of the
sentence largely unchanged. The simple method
is able to generate better-quality sentences than the
aforementioned works. Besides style transfer, sen-
tence editing models can be developed for other
tasks. For example, Schmaltz et al. (2017) pro-
pose neural sequence-labelling models for correct-
ing the grammatical errors of sentences.

6 Conclusions

We proposed a new task namely Quantifiable Se-
quence Editing (QuaSE), where a model needs to
edit an input sentences towards the direction of a
numerical outcome target. To tackle this task, we
proposed a novel framework that simultaneously
exploits the single sentences and pseudo-parallel
sentence pairs. For evaluation, we prepared a
dataset with Yelp sentences and their ratings. Ex-
perimental results show that our framework out-
performs the compared methods under the mea-
sures of sentiment polarity accuracy and target
value errors. Case studies show that our frame-
work can generate some interesting sentences.
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Abstract

Automatic generation of paraphrases from a
given sentence is an important yet challeng-
ing task in natural language processing (NLP).
In this paper, we present a deep reinforce-
ment learning approach to paraphrase gener-
ation. Specifically, we propose a new frame-
work for the task, which consists of a genera-
tor and an evaluator, both of which are learned
from data. The generator, built as a sequence-
to-sequence learning model, can produce para-
phrases given a sentence. The evaluator, con-
structed as a deep matching model, can judge
whether two sentences are paraphrases of each
other. The generator is first trained by deep
learning and then further fine-tuned by re-
inforcement learning in which the reward is
given by the evaluator. For the learning of the
evaluator, we propose two methods based on
supervised learning and inverse reinforcement
learning respectively, depending on the type
of available training data. Experimental re-
sults on two datasets demonstrate the proposed
models (the generators) can produce more ac-
curate paraphrases and outperform the state-
of-the-art methods in paraphrase generation in
both automatic evaluation and human evalua-
tion.

1 Introduction

Paraphrases refer to texts that convey the same
meaning but with different expressions. For ex-
ample, “how far is Earth from Sun”, “what is the
distance between Sun and Earth” are paraphrases.
Paraphrase generation refers to a task in which
given a sentence the system creates paraphrases
of it. Paraphrase generation is an important task
in NLP, which can be a key technology in many
applications such as retrieval based question an-
swering, semantic parsing, query reformulation in
web search, data augmentation for dialogue sys-
tem. However, due to the complexity of natural

language, automatically generating accurate and
diverse paraphrases is still very challenging. Tra-
ditional symbolic approaches to paraphrase gen-
eration include rule-based methods (McKeown,
1983), thesaurus-based methods (Bolshakov and
Gelbukh, 2004; Kauchak and Barzilay, 2006),
grammar-based methods (Narayan et al., 2016),
and statistical machine translation (SMT) based
methods (Quirk et al., 2004; Zhao et al., 2008,
2009).

Recently, neural network based sequence-to-
sequence (Seq2Seq) learning has made remark-
able success in various NLP tasks, including
machine translation, short-text conversation, text
summarization, and question answering (e.g., Cho
et al. (2014); Wu et al. (2016); Shang et al. (2015);
Vinyals and Le (2015); Rush et al. (2015); Yin
et al. (2016)). Paraphrase generation can naturally
be formulated as a Seq2Seq problem (Cao et al.,
2017; Prakash et al., 2016; Gupta et al., 2018; Su
and Yan, 2017). The main challenge in paraphrase
generation lies in the definition of the evaluation
measure. Ideally the measure is able to calculate
the semantic similarity between a generated para-
phrase and the given sentence. In a straightfor-
ward application of Seq2Seq to paraphrase gen-
eration one would make use of cross entropy as
evaluation measure, which can only be a loose ap-
proximation of semantic similarity. To tackle this
problem, Ranzato et al. (2016) propose employing
reinforcement learning (RL) to guide the training
of Seq2Seq and using lexical-based measures such
as BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) as a reward function. However, these lexi-
cal measures may not perfectly represent semantic
similarity. It is likely that a correctly generated
sequence gets a low ROUGE score due to lexical
mismatch. For instance, an input sentence “how
far is Earth from Sun” can be paraphrased as “what
is the distance between Sun and Earth”, but it will
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get a very low ROUGE score given “how many
miles is it from Earth to Sun” as a reference.

In this work, we propose taking a data-driven
approach to train a model that can conduct evalu-
ation in learning for paraphrasing generation. The
framework contains two modules, a generator (for
paraphrase generation) and an evaluator (for para-
phrase evaluation). The generator is a Seq2Seq
learning model with attention and copy mecha-
nism (Bahdanau et al., 2015; See et al., 2017),
which is first trained with cross entropy loss and
then fine-tuned by using policy gradient with su-
pervisions from the evaluator as rewards. The
evaluator is a deep matching model, specifically
a decomposable attention model (Parikh et al.,
2016), which can be trained by supervised learn-
ing (SL) when both positive and negative exam-
ples are available as training data, or by inverse
reinforcement learning (IRL) with outputs from
the generator as supervisions when only positive
examples are available. In the latter setting, for
the training of evaluator using IRL, we develop a
novel algorithm based on max-margin IRL prin-
ciple (Ratliff et al., 2006). Moreover, the gener-
ator can be further trained with non-parallel data,
which is particularly effective when the amount of
parallel data is small.

We evaluate the effectiveness of our approach
using two real-world datasets (Quora question
pairs and Twitter URL paraphrase corpus) and we
conduct both automatic and human assessments.
We find that the evaluator trained by our methods
can provide accurate supervisions to the genera-
tor, and thus further improve the accuracies of the
generator. The experimental results indicate that
our models can achieve significantly better per-
formances than the existing neural network based
methods.

It should be noted that the proposed approach
is not limited to paraphrase generation and can
be readily applied into other sequence-to-sequence
tasks such as machine translation and generation
based single turn dialogue. Our technical contri-
bution in this work is of three-fold:

1. We introduce the generator-evaluator frame-
work for paraphrase generation, or in general,
sequence-to-sequence learning.

2. We propose two approaches to train the evalu-
ator, i.e., supervised learning and inverse rein-
forcement learning.

3. In the above framework, we develop several

Figure 1: Framework of RbM (Reinforced by
Matching).

techniques for learning of the generator and
evaluator.
Section 2 defines the models of generator and

evaluator. In section 3, we formalize the problem
of learning the models of generator and evaluator.
In section 4, we report our experimental results. In
section 5, we introduce related work.

2 Models

This section explains our framework for para-
phrase generation, containing two models, the
generator and evaluator.

2.1 Problem and Framework
Given an input sequence of words X =
[x1, . . . , xS ] with length S, we aim to generate
an output sequence of words Y = [y1, . . . , yT ]
with length T that has the same meaning as X .
We denote the pair of sentences in paraphrasing
as (X,Y ). We use Y1:t to denote the subsequence
of Y ranging from 1 to t and use Ŷ to denote the
sequence generated by a model.

We propose a framework, which contains a
generator and an evaluator, called RbM (Rein-
forced by Matching). Specifically, for the gener-
ator we adopt the Seq2Seq architecture with atten-
tion and copy mechanism (Bahdanau et al., 2015;
See et al., 2017), and for the evaluator we adopt
the decomposable attention-based deep matching
model (Parikh et al., 2016). We denote the gener-
ator as G✓ and the evaluator as M�, where ✓ and �
represent their parameters respectively. Figure 1
gives an overview of our framework. Basically
the generator can generate a paraphrase of a given
sentence and the evaluator can judge how seman-
tically similar the two sentences are.

2.2 Generator: Seq2Seq Model
In this work, paraphrase generation is defined as
a sequence-to-sequence (Seq2Seq) learning prob-
lem. Given input sentence X , the goal is to
learn a model G✓ that can generate a sentence
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Ŷ = G✓(X) as its paraphrase. We choose the
pointer-generator proposed by See et al. (2017)
as the generator. The model is built based on
the encoder-decoder framework (Cho et al., 2014;
Sutskever et al., 2014), both of which are imple-
mented as recurrent neural networks (RNN). The
encoder RNN transforms the input sequence X
into a sequence of hidden states H = [h1, . . . , hS ].
The decoder RNN generates an output sentence Y
on the basis of the hidden states. Specifically it
predicts the next word at each position by sam-
pling from ŷt ⇠ p(yt|Y1:t�1, X) = g(st, ct, yt�1),
where st is the decoder state, ct is the context
vector, yt�1 is the previous word, and g is a
feed-forward neural network. Attention mecha-
nism (Bahdanau et al., 2015) is introduced to com-
pute the context vector as the weighted sum of en-
coder states:

ct =
SX

i=1

↵tihi, ↵ti =
exp ⌘(st�1, hi)PS

j=1 exp ⌘(st�1, hj)
,

where ↵ti represents the attention weight and ⌘
is the attention function, which is a feed-forward
neural network.

Paraphrasing often needs copying words from
the input sentence, for instance, named entities.
The pointer-generator model allows either gener-
ating words from a vocabulary or copying words
from the input sequence. Specifically the proba-
bility of generating the next word is given by a
mixture model:

p✓(yt|Y1:t�1, X) = q(st, ct, yt�1)g(st, ct, yt�1)

+ (1 � q(st, ct, yt�1))
X

i:yt=xi
↵ti,

where q(st, ct, yt�1) is a binary neural classifier
deciding the probability of switching between the
generation mode and the copying mode.

2.3 Evaluator: Deep Matching Model
In this work, paraphrase evaluation (identifica-
tion) is casted as a problem of learning of sen-
tence matching. The goal is to learn a real-valued
function M�(X, Y ) that can represent the match-
ing degree between the two sentences as para-
phrases of each other. A variety of learning tech-
niques have been developed for matching sen-
tences, from linear models (e.g., Wu et al. (2013))
to neural network based models (e.g., Socher et al.
(2011); Hu et al. (2014)). We choose a simple
yet effective neural network architecture, called

the decomposable-attention model (Parikh et al.,
2016), as the evaluator. The evaluator can cal-
culate the semantic similarity between two sen-
tences:

M�(X, Y ) = H(
SX

i=1

G([e(xi), x̄i]),
TX

j=1

G([e(yj), ȳj ])),

where e(·) denotes a word embedding, x̄i and ȳj

denote inter-attended vectors, H and G are feed-
forward networks. We refer the reader to Parikh
et al. (2016) for details. In addition, we add po-
sitional encodings to the word embedding vectors
to incorporate the order information of the words,
following the idea in Vaswani et al. (2017).

3 Learning

This section explains how to learn the generator
and evaluator using deep reinforcement learning.

3.1 Learning of Generator
Given training data (X,Y ), the generator G✓ is
first trained to maximize the conditional log like-
lihood (negative cross entropy):

LSeq2Seq(✓) =
XT

t=1
log p✓(yt|Y1:t�1, X). (1)

When computing the conditional probability of the
next word as above, we choose the previous word
yt�1 in the ground-truth rather than the word ŷt�1

generated by the model. This technique is called
teacher forcing.

With teacher forcing, the discrepancy between
training and prediction (also referred to as expo-
sure bias) can quickly accumulate errors along the
generated sequence (Bengio et al., 2015; Ranzato
et al., 2016). Therefore, the generator G✓ is next
fine-tuned using RL, where the reward is given by
the evaluator.

In the RL formulation, generation of the next
word represents an action, the previous words rep-
resent a state, and the probability of generation
p✓(yt|Y1:t�1, X) induces a stochastic policy. Let
rt denote the reward at position t. The goal of RL
is to find a policy (i.e., a generator) that maximizes
the expected cumulative reward:

LRL(✓) = Ep✓(Ŷ |X)

TX

t=1

rt(X, Ŷ1:t). (2)

We define a positive reward at the end of se-
quence (rT = R) and a zero reward at the other
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positions. The reward R is given by the evalua-
tor M�. In particular, when a pair of input sen-
tence X and generated paraphrase Ŷ = G✓(X)
is given, the reward is calculated by the evaluator
R = M�(X, Ŷ ).

We can then learn the optimal policy by em-
ploying policy gradient. According to the policy
gradient theorem (Williams, 1992; Sutton et al.,
2000), the gradient of the expected cumulative re-
ward can be calculated by

r✓LRL(✓) =
TX

t=1

[r✓ log p✓(ŷt|Ŷ1:t�1, X)]rt.

(3)
The generator can thus be learned with stochastic
gradient descent methods such as Adam (Kingma
and Ba, 2015).

3.2 Learning of Evaluator
The evaluator works as the reward function in RL
of the generator and thus is essential for the task.
We propose two methods for learning the evalua-
tor in different settings. When there are both pos-
itive and negative examples of paraphrases, the
evaluator is trained by supervised learning (SL).
When only positive examples are available (usu-
ally the same data as the training data of the gener-
ator), the evaluator is trained by inverse reinforce-
ment learning (IRL).
Supervised Learning
Given a set of positive and negative examples
(paraphrase pairs), we conduct supervised learn-
ing of the evaluator with the pointwise cross en-
tropy loss:

JSL(�) = � log M�(X, Y )�log(1�M�(X, Y �)),
(4)

where Y � represents a sentence that is not a para-
phrase of X . The evaluator M� here is defined as a
classifier, trained to distinguish negative example
(X, Y �) from positive example (X, Y ).

We call this method RbM-SL (Reinforced by
Matching with Supervised Learning). The evalu-
ator M� trained by supervised learning can make
a judgement on whether two sentences are para-
phrases of each other. With a well-trained evalua-
tor M�, we further train the generator G✓ by rein-
forcement learning using M� as a reward function.
Figure 2a shows the learning process of RbM-SL.
The detailed training procedure is shown in Algo-
rithm 1 in Appendix A.

Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) is a sub-
problem of reinforcement learning (RL), about
learning of a reward function given expert demon-
strations, which are sequences of states and ac-
tions from an expert (optimal) policy. More
specifically, the goal is to find an optimal re-
ward function R⇤ with which the expert policy
p✓⇤(Y |X) really becomes optimal among all pos-
sible policies, i.e.,

Ep✓⇤ (Y |X)R
⇤(Y ) � Ep✓(Ŷ |X)R

⇤(Ŷ ), 8✓.

In the current problem setting, the problem
becomes learning of an optimal reward function
(evaluator) given a number of paraphrase pairs
given by human experts (expert demonstrations).

To learn an optimal reward (matching) func-
tion is challenging, because the expert demonstra-
tions might not be optimal and the reward function
might not be rigorously defined. To deal with the
problem, we employ the maximum margin formu-
lation of IRL inspired by Ratliff et al. (2006).

The maximum margin approach ensures the
learned reward function has the following two
desirable properties in the paraphrase generation
task: (a) given the same input sentence, a reference
from humans should have a higher reward than the
ones generated by the model; (b) the margins be-
tween the rewards should become smaller when
the paraphrases generated by the model get closer
to a reference given by humans. We thus specifi-
cally consider the following optimization problem
for learning of the evaluator:

JIRL(�) = max(0, 1�⇣+M�(X, Ŷ )�M�(X, Y )),
(5)

where ⇣ is a slack variable to measure the agree-
ment between Ŷ and Y . In practice we set ⇣ =
ROUGE-L(Ŷ , Y ). Different from RbM-SL, the
evaluator M� here is defined as a ranking model
that assigns higher rewards to more plausible para-
phrases.

Once the reward function (evaluator) is learned,
it is then used to improve the policy function (gen-
erator) through policy gradient. In fact, the gen-
erator G✓ and the evaluator M� are trained alter-
natively. We call this method RbM-IRL (Rein-
forced by Matching with Inverse Reinforcement
Learning). Figure 2b shows the learning process
of RbM-IRL. The detailed training procedure is
shown in Algorithm 2 in Appendix A.
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(a) RbM-SL (b) RbM-IRL

Figure 2: Learning Process of RbM models: (a) RbM-SL, (b) RbM-IRL.

We can formalize the whole learning procedure
as the following optimization problem:

min
�

max
✓

Ep✓(Ŷ |X)JIRL(�). (6)

RbM-IRL can make effective use of sequences
generated by the generator for training of the eval-
uator. As the generated sentences become closer to
the ground-truth, the evaluator also becomes more
discriminative in identifying paraphrases.

It should be also noted that for both RbM-SL
and RbM-IRL, once the evaluator is learned, the
reinforcement learning of the generator only needs
non-parallel sentences as input. This makes it pos-
sible to further train the generator and enhance the
generalization ability of the generator.

3.3 Training Techniques
Reward Shaping
In the original RL of the generator, only a positive
reward R is given at the end of sentence. This pro-
vides sparse supervision signals and can make the
model greatly degenerate. Inspired by the idea of
reward shaping (Ng et al., 1999; Bahdanau et al.,
2017), we estimate the intermediate cumulative re-
ward (value function) for each position, that is

Qt = Ep✓(Yt+1:T |Ŷ1:t,X)R(X, [Ŷ1:t, Yt+1:T ]),

by Monte-Carlo simulation, in the same way as
in Yu et al. (2017):

Qt =

(
1
N

Pn=N
n=1 M�(X, [Ŷ1:t, bY n

t+1:T ]), t < T

M�(X, Ŷ ), t = T,
(7)

where N is the sample size and bY n
t+1:T ⇠

p✓(Yt+1:T |Ŷ1:t, X) denotes simulated sub-
sequences randomly sampled starting from the
(t + 1)-th word. During training of the generator,
the reward rt in policy gradient (3) is replaced by
Qt estimated in (7).

Reward Rescaling
In practice, RL algorithms often suffer from insta-
bility in training. A common approach to reduce
the variance is to subtract a baseline reward from
the value function. For instance, a simple base-
line can be a moving average of historical rewards.
While in RbM-IRL, the evaluator keeps updating
during training. Thus, keeping track of a base-
line reward is unstable and inefficient. Inspired
by Guo et al. (2018), we propose an efficient re-
ward rescaling method based on ranking. For a
batch of D generated paraphrases {Ŷ d}D

d=1, each
associated with a reward Rd = M�(Xd, Ŷ d), we
rescale the rewards by

R̄d = �(�1 · (0.5 � rank(d)

D
)) � 0.5, (8)

where �(·) is the sigmoid function, rank(d) is the
rank of Rd in {R1, ..., RD}, and �1 is a scalar con-
trolling the variance of rewards. A similar strat-
egy is applied into estimation of in-sequence value
function for each word, and the final rescaled
value function is

Q̄d
t = �(�2 · (0.5 � rank(t)

T
)) � 0.5 + R̄d, (9)

where rank(t) is the rank of Qd
t in {Qd

1, ..., Q
d
T }.

Reward rescaling has two advantages. First, the
mean and variance of Q̄d

t are controlled and hence
they make the policy gradient more stable, even
with a varying reward function. Second, when the
evaluator M� is trained with the ranking loss as in
RbM-IRL, it is better to inform which paraphrase
is better, rather than to provide a scalar reward in a
range. In our experiment, we find that this method
can bring substantial gains for RbM-SL and RbM-
IRL, but not for RL with ROUGE as reward.

Curriculum Learning
RbM-IRL may not achieve its best performance if
all of the training instances are included in training
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at the beginning. We employ a curriculum learn-
ing strategy (Bengio et al., 2009) for it. During
the training of the evaluator M�, each example k
is associated with a weight wk, i.e.

J k
IRL-CL(�) = wk max(0,1 � ⇣k+

M�(Xk, Ŷ k) � M�(Xk, Y k)) (10)

In curriculum learning, wk is determined by the
difficulty of the example. At the beginning, the
training procedure concentrates on relatively sim-
ple examples, and gradually puts more weights
on difficult ones. In our case, we use the edit
distance E(X, Y ) between X and Y as the mea-
sure of difficulty for paraphrasing. Specifically,
wk is determined by wk ⇠ Binomial(pk, 1), and
pk = �(�3 · (0.5 � rank(E(Xk,Y k))

K )), where K de-
notes the batch size for training the evaluator. For
�3, we start with a relatively high value and grad-
ually decrease it. In the end each example will
be sampled with a probability around 0.5. In this
manner, the evaluator first learns to identify para-
phrases with small modifications on the input sen-
tences (e.g. “what ’s” and “what is”). Along with
training it gradually learns to handle more compli-
cated paraphrases (e.g. “how can I” and “what is
the best way to”).

4 Experiment

4.1 Baselines and Evaluation Measures
To compare our methods (RbM-SL and RbM-
IRL) with existing neural network based meth-
ods, we choose five baseline models: the at-
tentive Seq2Seq model (Bahdanau et al., 2015),
the stacked Residual LSTM networks (Prakash
et al., 2016), the variational auto-encoder (VAE-
SVG-eq) (Gupta et al., 2018) 1, the pointer-
generator (See et al., 2017), and the reinforced
pointer-generator with ROUGE-2 as reward (RL-
ROUGE) (Ranzato et al., 2016).

We conduct both automatic and manual eval-
uation on the models. For the automatic
evaluation, we adopt four evaluation measures:
ROUGE-1, ROUGE-2 (Lin, 2004), BLEU (Pap-
ineni et al., 2002) (up to at most bi-grams) and
METEOR (Lavie and Agarwal, 2007). As pointed
out, ideally it would be better not to merely use a
lexical measure like ROUGE or BLEU for evalu-
ation of paraphrasing. We choose to use them for
1 We directly present the results reported in Gupta et al.

(2018) on the same dateset and settings.

reproducibility of our experimental results by oth-
ers. For the manual evaluation, we conduct evalu-
ation on the generated paraphrases in terms of rel-
evance and fluency.

4.2 Datasets
We evaluate our methods with the Quora ques-
tion pair dataset 2 and Twitter URL paraphrasing
corpus (Lan et al., 2017). Both datasets contain
positive and negative examples of paraphrases so
that we can evaluate the RbM-SL and RbM-IRL
methods. We randomly split the Quora dataset
in two different ways obtaining two experimen-
tal settings: Quora-I and Quora-II. In Quora-I, we
partition the dataset by question pairs, while in
Quora-II, we partition by question ids such that
there is no shared question between the training
and test/validation datasets. In addition, we sam-
ple a smaller training set in Quora-II to make the
task more challenging. Twitter URL paraphras-
ing corpus contains two subsets, one is labeled by
human annotators while the other is labeled auto-
matically by algorithm. We sample the test and
validation set from the labeled subset, while us-
ing the remaining pairs as training set. For RbM-
SL, we use the labeled subset to train the evalua-
tor M�. Compared to Quora-I, it is more difficult
to achieve a high performance with Quora-II. The
Twitter corpus is even more challenging since the
data contains more noise. The basic statistics of
datasets are shown in Table 1.

Table 1: Statistics of datasets.

Generator Evaluator (RbM-SL)

Dataset #Train #Test #Validation #Positive #Negative

Quora-I 100K 30K 3K 100K 160K
Quora-II 50K 30K 3K 50K 160K
Twitter 110K 5K 1K 10K 40K

4.3 Implementation Details
Generator We maintain a fixed-size vocabulary of
5K shared by the words in input and output, and
truncate all the sentences longer than 20 words.
The model architecture, word embedding size and
LSTM cell size are as the same as reported in See
et al. (2017). We use Adadgrad optimizer (Duchi
et al., 2011) in the supervised pre-training and
Adam optimizer in the reinforcement learning,
with the batch size of 80. We also fine-tune the
2 https://www.kaggle.com/c/

quora-question-pairs
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Table 2: Performances on Quora datasets.
Quora-I Quora-II

Models ROUGE-1 ROUGE-2 BLEU METEOR ROUGE-1 ROUGE-2 BLEU METEOR

Seq2Seq 58.77 31.47 36.55 26.28 47.22 20.72 26.06 20.35
Residual LSTM 59.21 32.43 37.38 28.17 48.55 22.48 27.32 22.37
VAE-SVG-eq - - - 25.50 - - - 22.20
Pointer-generator 61.96 36.07 40.55 30.21 51.98 25.16 30.01 24.31
RL-ROUGE 63.35 37.33 41.83 30.96 54.50 27.50 32.54 25.67

RbM-SL (ours) 64.39 38.11 43.54 32.84 57.34 31.09 35.81 28.12
RbM-IRL (ours) 64.02 37.72 43.09 31.97 56.86 29.90 34.79 26.67

Table 3: Performances on Twitter corpus.
Twitter

Models ROUGE-1 ROUGE-2 BLEU METEOR

Seq2Seq 30.43 14.61 30.54 12.80
Residual LSTM 32.50 16.86 33.90 13.65
Pointer-generator 38.31 21.22 40.37 17.62
RL-ROUGE 40.16 22.99 42.73 18.89

RbM-SL (ours) 41.87 24.23 44.67 19.97
RbM-IRL (ours) 42.15 24.73 45.74 20.18

Table 4: Human evaluation on Quora datasets.
Quora-I Quora-II

Models Relevance Fluency Relevance Fluency

Pointer-generator 3.23 4.55 2.34 2.96
RL-ROUGE 3.56 4.61 2.58 3.14

RbM-SL (ours) 4.08 4.67 3.20 3.48
RbM-IRL (ours) 4.07 4.69 2.80 3.53

Reference 4.69 4.95 4.68 4.90

Seq2Seq baseline models with Adam optimizer
for a fair comparison. In supervised pre-training,
we set the learning rate as 0.1 and initial accumu-
lator as 0.1. The maximum norm of gradient is set
as 2. During the RL training, the learning rate de-
creases to 1e-5 and the size of Monte-Carlo sam-
ple is 4. To make the training more stable, we use
the ground-truth with reward of 0.1.
Evaluator We use the pretrained GoogleNews
300-dimension word vectors 3 in Quora dataset
and 200-dimension GloVe word vectors 4 in Twit-
ter corpus. Other model settings are the same as
in Parikh et al. (2016). For evaluator in RbM-
SL we set the learning rate as 0.05 and the batch
size as 32. For the evaluator of M� in RbM-IRL,
the learning rate decreases to 1e-2, and we use the
batch size of 80.

We use the technique of reward rescaling as
mentioned in section 3.3 in training RbM-SL and
RbM-IRL. In RbM-SL, we set �1 as 12 and �2 as 1.
In RbM-IRL, we keep �2 as 1 all the time and de-
crease �1 from 12 to 3 and �3 from 15 to 8 during
curriculum learning. In ROUGE-RL, we take the
exponential moving average of historical rewards
as baseline reward to stabilize the training:

bm = �Qm�1 + (1 � �)bm�1, b1 = 0

where bm is the baseline b at iteration m, Q is the
3 https://code.google.com/archive/p/

word2vec/
4 https://nlp.stanford.edu/projects/

glove/

mean value of reward, and we set � as 0.1 by grid
search.

4.4 Results and Analysis

Automatic evaluation Table 2 shows the per-
formances of the models on Quora datasets. In
both settings, we find that the proposed RbM-
SL and RbM-IRL models outperform the baseline
models in terms of all the evaluation measures.
Particularly in Quora-II, RbM-SL and RbM-IRL
make significant improvements over the baselines,
which demonstrates their higher ability in learn-
ing for paraphrase generation. On Quora dataset,
RbM-SL is constantly better than RbM-IRL for
all the automatic measures, which is reasonable
because RbM-SL makes use of additional labeled
data to train the evaluator. Quora datasets contains
a large number of high-quality non-paraphrases,
i.e., they are literally similar but semantically dif-
ferent, for instance “are analogue clocks better
than digital” and “is analogue better than digi-
tal”. Trained with the data, the evaluator tends to
become more capable in paraphrase identification.
With additional evaluation on Quora data, the eval-
uator used in RbM-SL can achieve an accuracy of
87% on identifying positive and negative pairs of
paraphrases.

Table 3 shows the performances on the Twitter
corpus. Our models again outperform the base-
lines in terms of all the evaluation measures. Note
that RbM-IRL performs better than RbM-SL in
this case. The reason might be that the evaluator
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of RbM-SL might not be effectively trained with
the relatively small dataset, while RbM-IRL can
leverage its advantage in learning of the evaluator
with less data.

In our experiments, we find that the training
techniques proposed in section 3.3 are all neces-
sary and effective. Reward shaping is by default
employed by all the RL based models. Reward
rescaling works particularly well for the RbM
models, where the reward functions are learned
from data. Without reward rescaling, RbM-SL
can still outperform the baselines but with smaller
margins. For RbM-IRL, curriculum learning is
necessary for its best performance. Without cur-
riculum learning, RbM-IRL only has comparable
performance with ROUGE-RL.
Human evaluation We randomly select 300 sen-
tences from the test data as input and generate
paraphrases using different models. The pairs of
paraphrases are then aggregated and partitioned
into seven random buckets for seven human asses-
sors to evaluate. The assessors are asked to rate
each sentence pair according to the following two
criteria: relevance (the paraphrase sentence is se-
mantically close to the original sentence) and flu-
ency (the paraphrase sentence is fluent as a natural
language sentence, and the grammar is correct).
Hence each assessor gives two scores to each para-
phrase, both ranging from 1 to 5. To reduce the
evaluation variance, there is a detailed evaluation
guideline for the assessors in Appendix B. Each
paraphrase is rated by two assessors, and then av-
eraged as the final judgement. The agreement be-
tween assessors is moderate (kappa=0.44).

Table 4 demonstrates the average ratings for
each model, including the ground-truth references.
Our models of RbM-SL and RbM-IRL get bet-
ter scores in terms of relevance and fluency than
the baseline models, and their differences are
statistically significant (paired t-test, p-value <
0.01). We note that in human evaluation, RbM-SL
achieves the best relevance score while RbM-IRL
achieves the best fluency score.
Case study Figure 3 gives some examples of gen-
erated paraphrases by the models on Quora-II for
illustration. The first and second examples show
the superior performances of RbM-SL and RbM-
IRL over the other models. In the third exam-
ple, both RbM-SL and RbM-IRL capture accu-
rate paraphrasing patterns, while the other models
wrongly segment and copy words from the input

sentence. Compared to RbM-SL with an error of
repeating the word scripting, RbM-IRL generates
a more fluent paraphrase. The reason is that the
evaluator in RbM-IRL is more capable of measur-
ing the fluency of a sentence. In the fourth ex-
ample, RL-ROUGE generates a totally non-sense
sentence, and pointer-generator and RbM-IRL just
cover half of the content of the original sentence,
while RbM-SL successfully rephrases and pre-
serves all the meaning. All of the models fail
in the last example, because the word ducking
is a rare word that never appears in the training
data. Pointer-generator and RL-ROUGE generate
totally irrelevant words such as UNK token or vic-
tory, while RbM-SL and RbM-IRL still generate
topic-relevant words.

5 Related Work

Neural paraphrase generation recently draws at-
tention in different application scenarios. The
task is often formalized as a sequence-to-sequence
(Seq2Seq) learning problem. Prakash et al. (2016)
employ a stacked residual LSTM network in the
Seq2Seq model to enlarge the model capacity.
Cao et al. (2017) utilize an additional vocabu-
lary to restrict word candidates during generation.
Gupta et al. (2018) use a variational auto-encoder
framework to generate more diverse paraphrases.
Ma et al. (2018) utilize an attention layer instead
of a linear mapping in the decoder to pick up word
candidates. Iyyer et al. (2018) harness syntac-
tic information for controllable paraphrase gen-
eration. Zhang and Lapata (2017) tackle a simi-
lar task of sentence simplification withe Seq2Seq
model coupled with deep reinforcement learning,
in which the reward function is manually defined
for the task. Similar to these works, we also pre-
train the paraphrase generator within the Seq2Seq
framework. The main difference lies in that we
use another trainable neural network, referred to
as evaluator, to guide the training of the generator
through reinforcement learning.

There is also work on paraphrasing generation
in different settings. For example, Mallinson et al.
(2017) leverage bilingual data to produce para-
phrases by pivoting over a shared translation in an-
other language. Wieting et al. (2017); Wieting and
Gimpel (2018) use neural machine translation to
generate paraphrases via back-translation of bilin-
gual sentence pairs. Buck et al. (2018) and Dong
et al. (2017) tackle the problem of QA-specific
paraphrasing with the guidance from an external
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Figure 3: Examples of the generated paraphrases by different models on Quora-II.

QA system and an associated evaluation metric.
Inverse reinforcement learning (IRL) aims to

learn a reward function from expert demonstra-
tions. Abbeel and Ng (2004) propose apprentice-
ship learning, which uses a feature based linear
reward function and learns to match feature ex-
pectations. Ratliff et al. (2006) cast the problem
as structured maximum margin prediction. Ziebart
et al. (2008) propose max entropy IRL in order to
solve the problem of expert suboptimality. Recent
work involving deep learning in IRL includes Finn
et al. (2016b) and Ho et al. (2016). There does not
seem to be much work on IRL for NLP. In Neu
and Szepesvári (2009), parsing is formalized as
a feature expectation matching problem. Wang
et al. (2018) apply adversarial inverse reinforce-
ment learning in visual story telling. To the best
of our knowledge, our work is the first that applies
deep IRL into a Seq2Seq task.

Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) is a family
of unsupervised generative models. GAN con-
tains a generator and a discriminator, respectively
for generating examples from random noises
and distinguishing generated examples from real
examples, and they are trained in an adversarial
way. There are applications of GAN on NLP,
such as text generation (Yu et al., 2017; Guo
et al., 2018) and dialogue generation (Li et al.,
2017). RankGAN (Lin et al., 2017) is the one
most similar to RbM-IRL that employs a ranking
model as the discriminator. However, RankGAN
works for text generation rather than sequence-
to-sequence learning, and training of generator
in RankGAN relies on parallel data while the
training of RbM-IRL can use non-parallel data.

There are connections between GAN and IRL

as pointed by Finn et al. (2016a); Ho and Ermon
(2016). However, there are significant differences
between GAN and our RbM-IRL model. GAN
employs the discriminator to distinguish gener-
ated examples from real examples, while RbM-
IRL employs the evaluator as a reward function
in RL. The generator in GAN is trained to maxi-
mize the loss of the discriminator in an adversarial
way, while the generator in RbM-IRL is trained
to maximize the expected cumulative reward from
the evaluator.

6 Conclusion
In this paper, we have proposed a novel deep re-
inforcement learning approach to paraphrase gen-
eration, with a new framework consisting of a
generator and an evaluator, modeled as sequence-
to-sequence learning model and deep matching
model respectively. The generator, which is
for paraphrase generation, is first trained via
sequence-to-sequence learning. The evaluator,
which is for paraphrase identification, is then
trained via supervised learning or inverse rein-
forcement learning in different settings. With
a well-trained evaluator, the generator is further
fine-tuned by reinforcement learning to produce
more accurate paraphrases. The experiment re-
sults demonstrate that the proposed method can
significantly improve the quality of paraphrase
generation upon the baseline methods. In the fu-
ture, we plan to apply the framework and training
techniques into other tasks, such as machine trans-
lation and dialogue.
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Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In EMNLP.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual lstm networks. In COLING.

Chris Quirk, Chris Brockett, and William Dolan.
2004. Monolingual machine translation for para-
phrase generation. In EMNLP.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR.

Nathan D Ratliff, J Andrew Bagnell, and Martin A
Zinkevich. 2006. Maximum margin planning. In
ICML.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In ACL.

Richard Socher, Eric H Huang, Jeffrey Pennin, Christo-
pher D Manning, and Andrew Y Ng. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In NIPS.

Yu Su and Xifeng Yan. 2017. Cross-domain semantic
parsing via paraphrasing. In EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradi-
ent methods for reinforcement learning with func-
tion approximation. In NIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model.

Xin Wang, Wenhu Chen, Yuan-Fang Wang, and
William Yang Wang. 2018. No metrics are perfect:
Adversarial reward learning for visual storytelling.
In ACL.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In ACL.

John Wieting, Jonathan Mallinson, and Kevin Gimpel.
2017. Learning paraphrastic sentence embeddings
from back-translated bitext. In EMNLP.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Wei Wu, Zhengdong Lu, and Hang Li. 2013. Learn-
ing bilinear model for matching queries and docu-
ments. The Journal of Machine Learning Research,
14(1):2519–2548.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang,
Hang Li, and Xiaoming Li. 2016. Neural generative
question answering. In IJCAI.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI.

Xingxing Zhang and Mirella Lapata. 2017. Sentence
simplification with deep reinforcement learning. In
EMNLP.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009.
Application-driven statistical paraphrase generation.
In ACL.

Shiqi Zhao, Cheng Niu, Ming Zhou, Ting Liu, and
Sheng Li. 2008. Combining multiple resources to
improve smt-based paraphrasing model. In ACL.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
and Anind K Dey. 2008. Maximum entropy inverse
reinforcement learning. In AAAI.

3875



A Algorithms of RbM-SL and RbM-IRL

Algorithm 1: Training Procedure of RbM-
SL
Input : A corpus of paraphrase pairs

{(X, Y )}, a corpus of
non-paraphrase pairs {(X, Y �)},
a corpus of (non-parallel)
sentences {X}.

Output: Generator G✓0

1 Train the evaluator M� with {(X, Y )} and
{(X,Y �)};

2 Pre-train the generator G✓ with {(X, Y )};
3 Init G✓0 := G✓;
4 while not converge do
5 Sample a sentence X = [x1, . . . , xS ]

from the paraphrase corpus or the
non-parallel corpus;

6 Generate a sentence Ŷ = [ŷ1, . . . , ŷT ]
according to G✓0 given input X;

7 Set the gradient g✓0 = 0;
8 for t = 1 to T do
9 Run N Monte Carlo simulations:

{bY 1
t+1:T , ...bY N

t+1:T } ⇠
p✓0(Yt+1:T |Ŷ1:t, X);

10 Compute the value function by

Qt =

(
1
N

PN
n=1 M�(X, [Ŷ1:t, bY n

t+1:T ]), t < T

M�(X, Ŷ ), t = T.

Rescale the reward to Q̄t by (8);
11 Accumulate ✓0-gradient: g✓0 :=

g✓0 + r✓ log p✓0(ŷt|Ŷ1:t�1, X)Q̄t

12 end
13 Update G✓0 using the gradient g✓0 with

learning rate �G: G✓0 := G✓0 + �Gg✓0

14 end
15 Return G✓0

Algorithm 2: Training Procedure of RbM-
IRL
Input : A corpus of paraphrase pairs

{(X, Y )}, a corpus of
(non-parallel) sentences {X}.

Output: Generator G✓0 , evaluator M�0

1 Pre-train the generator G✓ with {(X,Y )};
2 Init G✓0 := G✓ and M�0 ;
3 while not converge do
4 while not converge do
5 Sample a sentence

X = [x1, . . . , xS ] from the
paraphrase corpus;

6 Generate a sentence
Ŷ = [ŷ1, . . . , ŷT ] according to G✓0

given input X;
7 Calculate �0-gradient:

g�0 := r�JIRL-CL(�);
8 Update M�0 using the gradient g�0

with learning rate �M :
M�0 := M�0 � �Mg�0

9 end
10 Train G✓0 with M�0 as in Algorithm 1;
11 end
12 Return G✓0 , M�0
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B Human Evaluation Guideline

Please judge the paraphrases from the following
two criteria:
(1) Grammar and Fluency: the paraphrase is

acceptable as natural language text, and the
grammar is correct;

(2) Coherent and Consistent: please view from
the perspective of the original poster, to what
extent the answer of paraphrase is helpful
for you with respect to the original question.
Specifically, you can consider following as-
pects:

– Relatedness: it should be topically rele-
vant to the original question.

– Type of question: the type of the original
question remains the same in paraphrase.

– Informative: no information loss in para-
phrase.

For each paraphrase, give two separate score rank-
ing from 1 to 5. The meaning of specific score is
as following:

• Grammar and Fluency

– 5: Without any grammatical error;
– 4: Fluent and has one minor grammati-

cal error that does not affect understand-
ing, e.g. what is the best ways to learn
programming;

– 3: Basically fluent and has two or more
minor grammatical errors or one seri-
ous grammatical error that does not have
strong impact on understanding, e.g.
what some good book for read;

– 2: Can not understand what it means but
it is still in the form of human language,
e.g. what is the best movie of movie;

– 1: Non-sense composition of words and
not in the form of human language, e.g.
how world war iii world war.

• Coherent and Consistent

– 5: Accurate paraphrase with exact the
same meaning of the source sentence;

– 4: Basically the same meaning of the
source sentence but does not cover some
minor content, e.g. what are some good
places to visit in hong kong during sum-
mer ! can you suggest some places to
visit in hong kong;

– 3: Cover part of the content of source
sentence and has serious information
loss, e.g. what is the best love movie by
wong ka wai ! what is the best movie;

– 2: Topic relevant but fail to cover most
of the content of source sentence, e.g.
what is some tips to learn english !
when do you start to learn english;

– 1: Topic irrelevant or even can not un-
derstand what it means.

There is token [UNK] that stands for unknown
token in paraphrase. Ones that contains [UNK]
should have both grammar and coherent score
lower than 5. The grammar score should depend
on other tokens in the paraphrase. The specific co-
herent score depends on the impact of [UNK] on
that certain paraphrase. Here are some paraphrase
examples given original question how can robot
have human intelligence ?:

• paraphrase: how can [UNK] be intelligent ?
coherent score: 1
This token prevent us from understanding the
question and give proper answer. It causes
serious information loss here;

• paraphrase: how can robot [UNK] intelli-
gent ?
coherent score: 3
There is information loss, but the unknown
token does not influence our understanding
so much;

• paraphrase: how can robot be intelligent
[UNK] ?
coherent score: 4
[UNK] basically does not influence under-
standing.

NOTED:

• Please decouple grammar and coherent as
possible as you can. For instance, given a
sentence is it true that girls like shopping, the
paraphrase do girls like go go shopping can
get a coherent score of 5 but a grammar score
of only 3. But for the one you even can not
understand, e.g., how is the go shopping of
girls, you should give both of low grammar
score and low coherent score, even it contains
some topic-relevant words.
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• Do a Google search when you see any strange
entity name such that you can make more ap-
propriate judgement.
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Abstract
Recent neural models for data-to-text genera-
tion are mostly based on data-driven end-to-
end training over encoder-decoder networks.
Even though the generated texts are mostly
fluent and informative, they often generate
descriptions that are not consistent with the
input structured data. This is a critical is-
sue especially in domains that require in-
ference or calculations over raw data. In
this paper, we attempt to improve the fi-
delity of neural data-to-text generation by
utilizing pre-executed symbolic operations.
We propose a framework called Operation-
guided Attention-based sequence-to-sequence
network (OpAtt), with a specifically designed
gating mechanism as well as a quantization
module for operation results to utilize infor-
mation from pre-executed operations. Exper-
iments on two sports datasets show our pro-
posed method clearly improves the fidelity of
the generated texts to the input structured data.

1 Introduction
Data-to-text generation is a classic language gen-
eration task that takes structured data (e.g., a ta-
ble of statistics or a set of event records) as in-
put, aiming at automatically producing texts that
informatively, correctly and fluently describe the
data (Kukich, 1983; Reiter and Dale, 1997; An-
geli et al., 2010; Konstas and Lapata, 2012; Perez-
Beltrachini and Gardent, 2017). Traditionally,
a data-to-text generation system should pay at-
tention to the problem of content selection (i.e.,
what to say) and surface realization (i.e., how to
say) (Reiter and Dale, 1997; Gatt and Krahmer,
2018). Modern neural generation systems avoid
the distinction of these aspects by building over a
standard encoder-decoder architecture (Sutskever
et al., 2014) with the attention mechanism over in-
put content (Bahdanau et al., 2015) and train the

⇤Contribution during internship at Microsoft.

Input Data
Row Team Points Rebound City

1 Heat 94 44 Miami
2 Hawks 95 40 Atlanta

Generated Description
Hawks

:::::
edges the Heat with 95 - 94

Table 1: An example of generated texts from structured
data. In this example, the wining team is not indicated
explicitly, but can be inferred from the scores for hte
two teams. The words with underlining and

:::::
wave

::::
lines

are based on the facts from the input data and the results
of inferring, respectively.

whole system in an end-to-end fashion. As a re-
sult, end-to-end neural text generation has drawn
increasing attention from the natural language re-
search community (Mei et al., 2016; Lebret et al.,
2016; Wiseman et al., 2017; Kiddon et al., 2016).

However, a critical issue for neural text gen-
eration has been largely overlooked. In domains
such as sports, finance or medical care, language
generation should adhere to facts which are sup-
ported by or can be derived from the input data
through analysis or inference. For instance, the
sentence “Hawks edges the Heat with 95-94” de-
scribing the result of a basketball game should al-
ways conform to the original data in team names
and the scoreline. More importantly, the word
“edges” in the description is an inferred fact that
the scores between the two competing teams are
rather close, while “Hawks” is the winner that
scores the slightly higher point total of “95”. Since
current neural models do not have special treat-
ment for such data analytics, they are likely to
generate spurious and incorrect statements. This
problem has already been pointed out in recent
studies (Wiseman et al., 2017). Related studies
on neural program induction have shown that cur-
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rent neural models have difficulties in learning
arithmetic operations such as addition and com-
parisons (Joulin and Mikolov, 2015; Neelakantan
et al., 2016).

A straightforward way to improve the fidelity of
neural text generation is to separate symbolic op-
erations out from the neural models. More specifi-
cally, it is viable to pre-execute a few symbolic op-
erations before generation, and then use the results
of execution to guide the whole generation pro-
cess. However, there are two major challenges for
incorporating pre-defined operations: (1) if we ap-
ply operations exhaustively on all fields with com-
patible value types in the table, it would create a
huge search space in which mention worthy results
are rare events and (2) it is difficult to establish
the correspondences between specific spans of nu-
meric results and lexical choices. For example, the
word “edges” corresponds to the slight difference
in score, i.e. 1, in Table. 1.

Inspired by recent work that separates neural
representations and symbolic operations (Liang
et al., 2017), we propose a framework for neural
data-to-text generation that is able to utilize infor-
mation from pre-computed operations on raw data.
Based on a standard sequence-to-sequence model
with an attention and copying mechanism, we de-
sign a gating mechanism for the neural model to
decide which part of the execution results should
be used for generation. To address the second
challenge, we also design a quantization layer
to map numerical execution results into bins to
guide different lexical choices according to differ-
ent quantities of values.

To examine the effectiveness of our proposed
model, we collect a large dataset of sports headline
generation for NBA basketball games1. We also
evaluate the models on the ROTOWIRE dataset
released by Wiseman et al. (2017) which targets
at generating short paragraphs. Experiments show
that our model outperforms current state-of-the-
art neural methods in terms of both fluency and
fidelity. In summary, we make the following con-
tributions in this paper:

• We propose a neural data-to-text framework
that generate texts by additional processing
over input data. Based on a basic sequence-
to-sequence model with attention and copy-
ing, we design a gating mechanism to enable

1Available at https://github.com/janenie/
espn-nba-data

the model to decide which part of the exe-
cuted results should be utilized. We also pro-
pose a novel quantization layer to map spe-
cific numerical values onto different spans to
affect lexical choices under different condi-
tions.

• To focus our study on correct text generation,
we collect a challenging dataset for NBA
headline generation.

• We conduct experiments on the NBA head-
line dataset as well as the ROTOWIRE
dataset from previous work. Results show
improvements on both correctness and flu-
ency from our proposed framework over
baseline systems.

2 Background: Attention-Based Neural
Sequence-to-Sequence Model

In this section, we briefly introduce the architec-
ture of the attention-based sequence-to-sequence
(Seq2Seq) (Cho et al., 2014b; Bahdanau et al.,
2015) model with a copy mechanism (See et al.,
2017), which is the basis of our proposed model.

2.1 RNN Encoder-Decoder
The goal of data-to-text generation is to generate
a natural language description for a given set of
data records S = {rj}K

j=1. Usually, a Seq2Seq
model consists of an encoder and a decoder with
recurrent neural networks (RNN). First, each input
record rj is encoded into a hidden vector hj with
j 2 {1, ..., K} using a bidirectional RNN. The de-
coder generates the description word by word us-
ing another RNN.

In the training phase, given a record set and its
corresponding natural language description (S, y),
the Seq2Seq model maximizes the conditional
probability as follows:

P (y|S) =
TY

t=1

P (yt|y<t, S) (1)

where yt is the t-th word in the description and T
is the length of the description. The conditional
probability P (yt|y<t, S) is computed as:

P (yt|y<t, S) = softmax(f(dt, yt�1, ct)) (2)

where f(·) is a non-linear function and dt is the
hidden state of the decoder at step t:

dt = g(dt�1, yt�1, ct�1) (3)
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Name: Argmax

Column: Points

Row: NULL

Result: 2 (indexing)

Operation Name: Argmax

Column: Points

Row: NULL

Result 𝑜𝑝𝑖𝑖𝑑𝑥: 2 (indexing)

Name: Minus

Column: Points

Row: 1 and 2

Result: -1 (scalar)

Operation Name: Minus

Column: Points

Row: 1 and 2

Result 𝑜𝑝𝑖𝑠𝑐𝑙: -1 (scalar)
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Record (Row, Column, Value)

𝑟1 (1, Team, Heat)

𝑟2 (1, Points, 94)

𝑟3 (2, Team, Hawks)

𝑟4 (2, Points, 95)

𝐡2𝑟𝑒𝑠𝐡1𝑟𝑒𝑠 𝐡𝑖𝑟𝑒𝑠
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Figure 1: A diagram of the operation guided neural data-to-text generation. The input record table is converted
from the first 3 columns of Table1. First, a set of operations are applied to the input records. Then, the records,
operations and pre-excuted operation results are encoded. Finally, an attention-equipped GRU decoder with a
gating mechanism decides which part of the execution results and context should be used for generation.

where g(·) is a non-linear function. We adopt the
Gated Recurrent Unit (GRU) (Cho et al., 2014a)
as the recurrent unit for the encoder and decoder.
ct in Eq. 2 is the context vector at timestep t, com-
puted as a weighted hidden vectors hj :

ct =
KX

j=1

↵t,jhj (4)

where ↵t,j is computed by an attention scheme,
typically implemented as a softmax distribution
over scores calculated with a multi-layer percep-
tron (Bahdanau et al., 2015).

2.2 Copy Mechanism

Recent work augments Seq2Seq models to copy
words directly from the source information on
which they are conditioned (Gu et al., 2016; See
et al., 2017). These models usually introduce an
additional binary variable zt into per-timestep tar-
get word distribution, which indicates whether the
target word yt is copied from the source or is gen-
erated from the recurrent hidden states. We use the
pointer-generator network (See et al., 2017) for the
copy mechanism. Specifically, the binary variable
zt is calculated from the context vector ct, the de-
coder state dt and the decoder input yt�1:

pgen = �(w>
c ct + w>

d dt + w>
y yt�1 + bptr) (5)

where vectors wc, wd, wy and the scalar bptr are
learnable parameters, and � is the sigmoid func-

tion. The joint probability for generating yt is for-
mulated as follows:

Pcopy(yt|y<t, S) = pgenP (yt|y<t, S) (6)

+(1 � pgen)
X

i:ri=yt

↵t,i

3 The Proposed Model
In this paper, we propose to utilize information
from pre-executed operations on the input data
to guide the generation. As shown in Fig. 1,
our model consists of a record encoder, an oper-
ation encoder and an operation result encoder, and
an attention-equipped GRU decoder with a gat-
ing mechanism. First, a set of operations are ap-
plied to all valid records in the input data, yielding
their corresponding pre-executed results. The pre-
executed results act as facts inferred from input
data to guide the generation. Then, the records,
operation and pre-executed operation results are
encoded into corresponding representation. Fi-
nally, we design a gating mechanism for the GRU
decoder to decide which part of the inferred facts
should be used for generation. Moreover, to
address the challenge in establishing correspon-
dences between specific numeric results and lex-
ical choices, a quantization layer maps the re-
sults into several segmentations to guide the lex-
ical choices.

3.1 Notation
Given the input data and description pair (S, y),
where each target description y = y1, ..., yT con-
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sists of T words, and each input data is stored
in a table (e.g., Table 1), where each row is an
entity and each column is a field of this entity.
The input data can be transferred into K records
S = {ri}K

i=1, where each record r is a triple
(r.idx, r.f, r.v). For r4 in the table of Fig. 1,
r.idx r.f and r.v refer to the row index (e.g., row
2), the field name (e.g., column Points) and value
(e.g., cell value 95), respectively. We also define
a set of operations {opi}, and the operations are
applied to the input records S to produce corre-
sponding results at the preprocessing stage. The
results of operations can be categorized into two
types: opscl

i denotes results with a type of scalar
value and opidx

i denotes results with a type of in-
dexing value.

3.2 Encoding Records
We map each record r 2 S into a vector r by con-
catenating the embedding of r.idx (e.g., row 2),
r.f (e.g., column Points) and r.v (e.g., cell value
95), denoted as r = [eidx, ef , ev]

>, where eidx, ef ,
ev are trainable word embeddings of r.idx, r.f and
r.v respectively, similar to (Yang et al., 2017). We
feed a set of record vectors r1, ..., rK to a bidirec-
tional GRU and yield the final record representa-
tions hctx

1 , ..., hctx
K as introduced in Section 2. We

leave the exploring of different encoding methods
as future work, as it would affect the performance.

3.3 Encoding Operations
As shown in Fig. 1, each operation opi consists of:
a) the name of the operation opi.t (e.g., minus);
b) the column opi.c to which the operation applies
(e.g., Points); and c) the row to which the oper-
ation applies, denoted as opi.arg = {ri.idx}A

i=1,
where A is the count of arguments. We then en-
code each operation opi by concatenating the rep-
resentation of these three components and feed
them into a nonlinear layer to represent each op-
eration as follows:

hop
i = tanh(Wop[opt

i, opc
i , oparg

i ]>i + bop), (7)

where opt
i is the embedding of opi.t; opc

i is the
embedding of column opi.c which shares the same
parameters of embedding with record column r.f .
For opi.arg, it may contain multiple arguments,
so we apply a nonlinear layer to get a fixed length
representation as follows:

oparg
i = tanh(

X

k2argi

Warg
k eidx

k + barg), (8)

where eidx
k is the same embedding as used to en-

code the row index r.idx, and Warg
k and barg are

learnable parameters. For operations which are
applied in the entire column (e.g., argmax) with-
out specific rows, the representation of arguments
is a special vector which stands for ALL.

3.4 Encoding Operation Results

The operations produce two types of results, one is
scalar results (e.g., the minus operation returns -1),
the other is indexing results (e.g., the argmax oper-
ation returns the row number 2), and two encoders
are designed to encode these results respectively.

Scalar Results Representation In Table. 1, the
word “edges” is generated based on the fact that
the points gap of the two teams is -1. In fact, other
value likes -2 or -3 is close to -1, and the word
“edges” is also applicable to them. However, di-
rectly establishing the lexical choices on various
sparse numeric values is not easy (Reiter et al.,
2005; Smiley et al., 2016; Zarrieß and Schlangen,
2016). Reiter et al. (2005) use consistent data-to-
word rules for time-series weather forecast sum-
mary generation. In this paper, we aim to capture
the data-to-word mapping automatically by a sim-
ple quantization unit. A quantization layer is de-
signed to map the scalar values into several bins,
namely quantization units. Specifically, we feed
each scalar value opscl

i to a softmax layer, and its
representation hres

i is computed as the weighted
sum of all quantization embeddings:

qi = Wqop
scl
i + bq, (9)

µi,l =
exp(qi,l)PL

j=1 exp(qi,j)
, (10)

hres
i =

LX

l=1

µi,l escl
l (11)

where Wq and bq are trainable parameters, escl is
the quantization embedding and L is the size of
quantization units. Note that L is much smaller
than the unique number of scalar results. We set L
to 5 in this paper.

Indexing Results Representation Some opera-
tions produce the row number of records (denoted
as idxi) as a result. For instance, the argmax op-
eration in Fig. 1 returns row 2. We then look up
the row embedding of the selected record defined
in Section 3.2 to represent the result. Defined as
hres

i = eidx
i .
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3.5 Decoder
Comparing with the Seq2Seq model described in
Section 2 and our model, the main difference is in
the context vector ct. Different from Eq. 4, our
model has both records and operations as input.
We design two attention layers to summarize in-
formation from both parts respectively, the overall
context vector ct is balanced by a dynamic gate �t.

ct = (1 � �t)cop
t + �tcctx

t , (12)
�t = �(Wgdt + bg), (13)

where cop
t and cctx

t are the context vector of oper-
ation results and records, respectively.

As there are two types of operation results
which have quite different meanings, their con-
text vectors are calculated separately and then put
together by a nonlinear layer. The context vec-
tors cscl

t of operation results with scalar value at
timestep t are constructed as (Luong et al., 2015):

cscl
t =

NX

j=1

↵scl
t,j ⇤ hres

j (14)

�scl
t,j = MLP(dt�1, hop

j ), (15)

↵scl
t,j =

exp(�scl
t,j )

P
k exp(�scl

t,k )
(16)

where MLP stands for standard 1-layer perceptron
(with tanh nonlinearity), and ↵scl

t,j refers to the im-
portance of j-th operations at the current timestep
t. Eq. 14 is based on the attention mechanism
which can be treated as mapping a query and a
set of key-value pairs to an output. The output
cscl
t is computed as a weighted sum of the values

hres
j , where the weight assigned to each value is

computed by a compatibility function of the query
dt�1 with the corresponding key hop

j . In this way,
we also construct cidx

t . Then the context vector
of operation results at time step t is computed by
putting these two context vectors together:

cop
t = MLP([cscl

t , cidx
t ]>) (17)

The context vector representation cctx
t for

records is constructed by replacing hres
j with hctx

j

in Eq. 14 and replacing hop
j with hctx

j in Eq. 15.
After obtaining ct, the word distribution for

generation can be calculated by substituting the
ct in Eq. 2. For the copy probability defined in
Eq. 6, to copy words based on the information of
both operations and records at current time step t,

ESPN ROTOWIRE WIKIBIO
Vocab 3.3K 11.3K 400K

Tokens 114.3K 1.6M 19M
Examples 15.1K 4.9K 728K
Avg Len 9.5 337.1 26.1

Input facts 62.7% 61.2% 72.1%
Inferred facts 29.1% 11.7% 7.4%
Unsupported 8.2% 27.1% 20.5%

Table 2: Dataset statistics. For each dataset, we also
manually label the source for the facts mentioned in 20
descriptions, and report the percentage of facts based
on the input data, inferred facts and unsupported facts.

we need to update the attention weights for Eq. 6
based on the newly computed context vector ct

and decoding state dt:

�new
t,j = MLP(hctx

j , [dt�1, ct]
>) (18)

↵new
t,j =

exp(�new
t,j )

P
k exp(�new

t,k )
(19)

3.6 Training
As the results of operations are pre-computed in
an offline stage, our proposed model is fully dif-
ferentiable and can be optimized in an end-to-end
manner using back propagation. Given the batches
of records {S}N and the standard natural language
descriptions {Y }N , the objective function is to
minimize the negative log-likelihood:

L = � 1

N

NX

k=1

TkX

t=1

log p(yk
t |yk

<t, S
k) (20)

where the superscript k indicates the index of the
records-description pair, and Tk is the length of the
k-th description.

4 Experiments

4.1 Datasets
Several benchmark datasets have been used in
recent years for data-to-text generation (Liang
et al., 2009; Chen and Mooney, 2008; Lebret et al.,
2016). For instance, Lebret et al. (2016) have built
a biography generation dataset from Wikipedia.
However, a recent study by Perez-Beltrachini and
Gardent (2017) shows that existing datasets have
a few missing properties such as lacking syntactic
and semantic diversity. To check whether the facts
mentioned in the descriptions are based on input
data, we identify the text spans which contain facts
(e.g., in table 1, “Hawks” is a span contain fact)
from the descriptions and divide each span into
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three categories: a) input facts (facts that can be
directly found from the input), b) inferred facts
(facts that can not be directly found from the in-
put but can be derived), c) unsupported facts (facts
that can not be found or derived from input data).
Table 2 shows that WikiBio dataset requires infer-
ence on only 5.4% of its data. To better demon-
strate the effectiveness of our approach, we adopt
the following datasets which require substantially
more inference based on the input data:

ROTOWIRE We use the dataset and its stan-
dard splits released by Wiseman et al. (2017),
which consists of 4,853 human written NBA bas-
ketball game summaries aligned with their cor-
responding game statistics. Table 2 shows that
11.7% of facts in the game summaries can be in-
ferred based on the input data. However, this
dataset focuses on generating long text and 27.1%
of facts are unsupported2, which brings difficulties
to the analysis of fidelity for the generated text.

ESPN We collect 15,054 NBA game result
headlines during 2006-2017 from the ESPN web-
site, paired with their corresponding game statis-
tics. These headlines are professional and concise,
e.g., the description in Fig. 1. The percentage of
inferred facts is 29.1% while unsupportive facts is
only 8%, so we can focus on generation for the
inferred facts. We split the dataset into 12,043
(80%) for training, 1,505 (10%) for development
and 1,506 (10%) for testing respectively.

4.2 Instantiation
In the following experiments, we define two op-
erations, the minus operation which returns the
scalar result and the argmax operation which re-
turns a id of a row. These operations are applied
to all columns and rows whose record values are
numeric numbers. The number of pre-executed
results increases with the number of operations,
arguments and the size of input data, which will
impact the efficiency of our model. The unneces-
sary operation arguments can be pruned, e.g., only
apply operations to the arguments co-mentioned in
descriptions on the training set. We will leave this
part of research for our future work.

4.3 Experiment Setup
In the main experiments, we compare our model
with the following methods: (a) Template: a
problem-specific template-based generator which

2e.g., injuries, rankings in the league, team schedule, etc.

fills structured data into corresponding place-
holders to generate texts3, (b) Seq2Seq+copy:
Seq2Seq model with pointer network copy mech-
anism introduced in Section 2. It is one of
the state-of-the-art methods, (c) Seq2Seq+op:
Seq2Seq+copy plus the results of operations,
where results are directly treated as extra records
and fed to the record encoder introduced in Sec-
tion 3.2 with the original input together, (d)
Seq2Seq+op+quanti: We apply the quantization
layer Eq. 9-11 to the results of minus operation on
the basis of Seq2Seq+op. For completeness, we
also report the results of Wiseman et al. (2017) on
the ROTOWIRE dataset. The difference between
this baseline and Seq2Seq+copy is that the former
uses an LSTM rather than GRU for decoding and
an additional copying loss. All the experiments
use a beam size of 5 in decoding4.

For model training, we use the stochastic gra-
dient descent algorithm and the AdaDelta opti-
mizer (Zeiler, 2012). The dimension of trainable
word embeddings are set to 256 except for the di-
mension of input record row embedding, which is
set to 32; and the dimension of hidden units in
GRUs are all set to 512. All the parameters are ini-
tialized using a normal distribution with zero mean
and a variance of

p
6/(din + dout), where din is

the dimension of the input layer and dout is the di-
mension of the output layer (Glorot and Bengio,
2010). Training converges after 40 epochs.

4.4 Main Results

We adopt both automatic evaluation and hu-
man evaluation to evaluate the proposed model.
Automatic Evaluation We employ BLEU-4 as
the metric for automatic evaluation. Table 4
gives the automatic evaluation results for gen-
eration on two datasets. Our proposed model
OpAtt outperforms neural network baselines (See
et al., 2017; Wiseman et al., 2017). The
results show that our method which incorpo-
rates the operations enables generating texts that
are fidelity to facts and therefore yields the
best performance. Seq2Seq+op+quant outper-

3For the ROTOWIRE dataset, we adopt Wiseman et al.
(2017)’s templates. For the ESPN dataset, we use Dou
et al. (2018)’s system to extract templates. The template
is constructed by emitting teams and players information in
a sentence: <team1> beats <team2> with <point1>-
<point2>.

4The authors have updated the dataset to fix some mis-
takes recently, so we cannot use the result which is reported
in their paper and rerun this baseline with the authors’ code.
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ESPN ROTOWIRE
#Cont./#Supp. #Cont./#Supp. #Cont. #Cont./#Supp. #Cont./#Supp. #Cont.
(input facts) (inferred facts) (unsupported) (input facts) (inferred facts) (unsupported)

Ref 0.00 / 4.90 0.00 / 1.12 0.51 0.00 / 12.87 0.00 / 3.07 3.20
Seq2Seq+copy 0.44 / 4.61 0.16 / 1.25 0.25 3.75 / 14.44 0.89 / 2.20 2.82
Seq2Seq+op 0.24 / 3.97 0.07 / 1.08 0.76 5.55 / 18.13 0.42 / 2.53 1.93
Seq2Seq+op+quant 0.21 / 4.88 0.03 / 1.10 0.32 3.47 / 16.02 0.53 / 2.02 2.13
OpAtt 0.04 / 5.00 0.02 / 1.27 0.19 2.24 / 16.56 0.18 / 2.84 2.07

Table 3: Average annotators judgment for the count of facts contradicting (#Cont.) and supporting (#Supp.) on
facts based on input data, inferred facts and unsupported facts respectively.

ESPN ROTOWIRE
Dev Test Dev Test

Template 13.75 14.27 8.97 8.93
Wiseman’s - - 13.57 13.62
Seq2Seq+copy 15.63 15.30 13.72 13.47
Seq2Seq+op 14.07 13.74 13.52 13.44
Seq2Seq+op+quant 15.68 15.49 14.05 13.88
OpAtt 17.19* 18.00* 14.96* 14.74*

Table 4: BLEU scores (%) over two datasets. Statistical
significant is indicated with *(p < 0.05) with respect to
Seq2Seq+copy.

forms the baseline method Seq2Seq+copy, but
is not as good as our method. The result con-
firms that our proposed method with special-
ized operation encoder and gating mechanism
utilizes the information of operations more ef-
fectively. Moreover, Seq2Seq+op+quant outper-
forms Seq2Seq+op showing the effectiveness of
the quantization layer.
Human Evaluation Because of the approximate
nature of the automated metric BLEU, we also
conduct human evaluation to examine the fidelity
of the generated texts. We randomly select some
games from testing set, and entrust a professional
crowdsourcing company to annotate the generated
texts5. Specifically, three native English workers
who are familiar with NBA games are hired. They
are first required to identify the text spans which
contain facts from the generated texts, then cate-
gorize the text spans into one of three facts listed
in Table 2, and finally judge whether the span is
supported or contradicted by the input data.

Table 3 shows the annotation results. Our
method talks more about the inferred facts in the
generated texts while includes less contradictions.
In addition, all methods produce some unsup-

5The Fleiss’ kappa score of the annotation is 0.782 for
ESPN and 0.761 for ROTOWIRE respectively. For the ESPN
dataset, we select 50 games and each with one generated sen-
tence. For ROTOWIRE, by following (Wiseman et al., 2017),
we select 15 games and each with 3 randomly selected sen-
tences.

Dev Test
Seq2Seq + copy 15.63 15.30
OpAtt 17.19 18.00
OpAtt w/o argmax op 15.71 15.97
OpAtt w/o quantization 16.35 16.70
OpAtt w/o gate 16.35 16.15

Table 5: BLEU scores (%) of model ablation.

Reference
:::::
horford ’s . . . . . .dunk helps hawks

::::
edge nets

, 114 - 111
Seq2Seq
+copy

nets rally from . . .17 . . . . . .down to
:::
top nets

111 - 111
OpAtt w/o
argmax op

hawks rally from . . .17 . . . . . .down to
:::
beat nets

114 - 111
OpAtt

:::::
horford scores 24 as hawks

:::
beat nets

114 - 111

Table 6: The generated texts by introducing different
operations. The words with underline,

:::::
wavy

:::
line and

. . .dot. . . . .line are input facts, inferred facts and unsupported
fact, respectively. And the bold words are contradicted
facts.

ported facts which affect the fidelity of the gen-
erated texts. We leave this issue for future work.

4.5 Analysis
As discussed in Section 4.1, the ESPN dataset is
rich in inferred facts. Therefore, the model analy-
sis is based on this dataset, and all case studies are
made on the development set.

4.5.1 Effect of Operations
We examine the necessity and the benefit of intro-
ducing operations by removing the argmax oper-
ation (see “OpAtt w/o argmax op” in Table 5).
Comparing to Seq2Seq+copy, the results show
that our full model and “OpAtt w/o argmax op”
which incorporates results of operations both work
well in terms of BLEU, and the improvements in-
crease with the number of operations.

To better illustrate that our model can generate
factually correct text, we show the texts gener-
ated by different models in Table 6. The game
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results mentioned in the text generated by the
Seq2Seq+copy model are wrong, which shows the
inability for existing neural models on inferring
facts from the structured data. After adding the
minus operation, “OpAtt w/o argmax op” is able
to infer the game result by applying the minus op-
eration on the points of the two competing teams,
therefore its generated text conforms to the game
results. The results confirm the necessity of intro-
ducing operations to ensure factually correct gen-
eration. Furthermore, our full model generates
text with the correct point leader and game result
based on the results of operation argmax and op-
eration minus respectively.

4.5.2 Effect of Quantization

Figure 2: Weights of the quantization softmax layer
when mapping the points gap of two competing teams
to five bins. X-axis is points gap and Y-axis is quanti-
zation bin.

The quantization layer maps the numerical exe-
cution results into several bins to enable different
lexical choices according to different quantities of
values. Compared to our full model, “OpAtt w/o
quantization” in Table 5 which removes the quan-
tization layer decreases the BLEU performance,
which shows the effectiveness of the quantization
layer in the lexical choices during generation.

In Fig. 2, we visualize the weights of quantiza-
tion softmax layer µi,l produced by Eq. 10 when
mapping the points gap of two competing teams
to five bins. We can see that the points gaps with
close numerical values are mapped to the same
bin, so the decoder can choose similar words for
them in generation. When the absolute value of
the points gap is small, the weights distribution
over the points gap is dispersive. At this time,
the decoder tends to generate general words. This
distribution becomes more centralized with the in-
crease of the absolute value of the points gap, to
generate more unique words. Moreover, we show
the distribution of words that describes the win-
ning relationship of games over different intervals
of game points gap. As shown in Table 7, we
can clearly see that apart from three most common

Points Gap Words describes winning relationship
[0, 5) beat, past, win over, edge, hold off, survive
[5, 10) beat, past, win over, out last, hold off
[10, 20) beat, past, win over, blow out, top, pull away,

rout
>= 20 beat, past, win over, power, rout, easy win

over, roll past

Table 7: The words that describing the winning re-
lationship of games over different intervals of game
points gap.

word “beat”, “past”, “win over”, our proposed
quantization layer can choose specific words ac-
cording to the points gap. The word “edge” and
“hold off” will only be chosen when the points gap
is small, while the word “rout” and “blow out” will
appear when the points gap is larger than 10.

4.5.3 Effect of Gating Mechanism

Figure 3: The gating weights at different time steps.

We design a gating mechanism to decide when to
incorporate the results of operations to guide the
process of generation. From Table 5, “OpAtt w/o
gate” stands for the method which replaces the
balancing weight � in Eq. 12 to 0.5, which is a spe-
cial case of our proposed gating mechanism. The
performance of this ablation is worse than our full
model, which demonstrates that the gating mech-
anism is an essential component. Fig. 3 shows an
example of the gating weights at each time step in
generation, where a darker cell means the incorpo-
ration of more information from operation results
for decoding corresponding word. We can see that
the gate weights are reasonable, as the gate values
are large when deciding the team leader “horford”
and the winner of the game “hawks”.

5 Related Work

Data-to-text generation is a task of natural lan-
guage generation (NLG) (Gatt and Krahmer,
2018). Previous research has focused on indi-
vidual content selection (Kukich, 1983; Reiter
and Dale, 1997; Duboué and McKeown, 2003;
Barzilay and Lapata, 2005) and surface realization
(Goldberg et al., 1994; Soricut and Marcu, 2006;
Wong and Mooney, 2007).

3886



Recent work avoids the distinction of the con-
tent selection and sentence realization. Chen and
Mooney (2008) use an SMT based approach to
learn alignments between comments and their cor-
responding event records. Angeli et al. (2010)
transform the problem into a sequence of local de-
cisions using a log-linear model. Konstas and La-
pata (2012) employ a PCFG to simultaneously op-
timize the content selection and surface realization
problem.

In the field of neural text generation, Mei et al.
(2016) uses a neural encoder-decoder approach for
end-to-end training. Some have focused on condi-
tional language generation based on tables (Yang
et al., 2017), short biographies generation from
Wikipedia tables (Lebret et al., 2016; Chisholm
et al., 2017) and comments generation based on
stock prices (Murakami et al., 2017). However,
none of these methods consider incorporating the
facts that can be inferred from the input data to
guide the process of generation. Murakami et al.
(2017) post-process the price by extending the
copy mechanism and replacing numerical values
with defined arithmetic operations after genera-
tion. While our model, OpAtt utilizes informa-
tion from pre-computed operations on raw data to
guide the generation.

Our work is related to research areas on deep
learning models for program induction and ques-
tion answering from a knowledge base (Neelakan-
tan et al., 2016; Liang et al., 2017; Ling et al.,
2017). Neelakantan et al. (2016) solve the prob-
lem of semantic parsing from structured data and
generate programs using pre-defined arithmetic
operations. Liang et al. (2017) design a set of ex-
ecutable operators and obtain the answers by the
generated logic forms. Ling et al. (2017) design a
set of operators to generate the latent program for
math problem solving. However, data-to-text is a
different task. The operations for these methods
are designed to find the answers, while we use the
operations to guide the process of generation.

6 Conclusion and Future Work

In this work, we address the problem of generat-
ing consistent text from structured data in a neural
data-to-text generation framework, where we ex-
tract facts that can be inferred in the given data by
applying several executable symbolic operations
to guide the generation. Moreover, we design a
special quantization layer to operations whose re-

sult type is numeric value and establish the corre-
spondence between the numeric values and lexi-
cal choice in generation. Experiments show that
our method, OpAtt, outperforms existing state-of-
the-art neural methods, in both fluency and fidelity
evaluations.

As applying operations on a large number of
records greatly increases the search space for the
attention mechanism, we will extend our model to
automatically detect the relevant operations to re-
duce computing complexity. We will also extend
the set of operations to accommodate historical
data, graph data and detect the unsupported facts
in the generation within the single framework.
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Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1724–
1734.

Longxu Dou, Guanghui Qin, Jinpeng Wang, Jin-Ge
Yao, and Chin-Yew Lin. 2018. Data2text studio:
Automated text generation from structured data. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2018, Brussels, Belgium, October 11- November 4,
2018.
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Abstract

It is a challenging task to automatically com-
pose poems with not only fluent expressions
but also aesthetic wording. Although much at-
tention has been paid to this task and promis-
ing progress is made, there exist notable gaps
between automatically generated ones with
those created by humans, especially on the
aspects of term novelty and thematic consis-
tency. Towards filling the gap, in this paper,
we propose a conditional variational autoen-
coder with adversarial training for classical
Chinese poem generation, where the autoen-
coder part generates poems with novel terms
and a discriminator is applied to adversarially
learn their thematic consistency with their ti-
tles. Experimental results on a large poetry
corpus confirm the validity and effectiveness
of our model, where its automatic and human
evaluation scores outperform existing models.

1 Introduction

In mastering concise, elegant wordings with aes-
thetic rhythms in fixed patterns, classical Chinese
poem is a special cultural heritage to record per-
sonal emotions and political views, as well as doc-
ument daily or historical events. Being a fas-
cinating art, writing poems is an attractive task
that researchers of artificial intelligence are inter-
ested in (Tosa et al., 2008; Wu et al., 2009; Net-
zer et al., 2009; Oliveira, 2012; Yan et al., 2013,
2016a; Ghazvininejad et al., 2016, 2017; Singh
et al., 2017; Xu et al., 2018), partially for the rea-
son that poem generation and its related research
could benefit other constrained natural language
generation tasks. Conventionally, rule-based mod-
els (Zhou et al., 2010) and statistical machine
translation (SMT) models (He et al., 2012) are

*Corresponding author: Rui Yan (ruiyan@pku.edu.cn)
†Work was partially done at Tencent AI Lab.

proposed for this task. Recently, deep neural mod-
els are employed to generate fluent and natural po-
ems (Wang et al., 2016a; Yan, 2016; Zhang et al.,
2017a). Although these models look promising,
they are limited in many aspects, e.g., previous
studies generally fail to keep thematic consistency
(Wang et al., 2016c; Yang et al., 2017) and im-
prove term1 novelty (Zhang et al., 2017a), which
are important characteristics of poems.

In classical Chinese poem composing, thematic
consistency and term novelty are usually mutu-
ally exclusive conditions to each other, i.e., con-
sistent lines may bring duplicated terms while in-
triguing choices of characters could result in the-
matic diversities. On one hand, thematic consis-
tency is essential for poems; it is preferred that all
lines concentrate on the same theme throughout
a poem. Previous work mainly focused on using
keywords (Wang et al., 2016c; Hopkins and Kiela,
2017) to plan a poem so as to generate each line
with a specific keyword. Such strategy is risky
for the reason that the keywords are not guaran-
teed consistent in a topic, especially when they are
generated or extracted from an inventory (Wang
et al., 2016c). On the other hand, Chinese poems
are generally short in length, with every character
carefully chosen to be concise and elegant. Yet,
prior poem generation models with recurrent neu-
ral networks (RNN) are likely to generate high-
frequency characters (Zhang et al., 2017a), and the
resulted poems are trivial and boring. The rea-
son is that RNN tends to be entrapped within local
word co-occurrences, they normally fail to capture
global characteristic such as topic or hierarchical
semantic properties (Bowman et al., 2016).

To address the aforementioned shortcomings,
RNN is extended to autoencoder (Dai and Le,
2015) for improving sequence learning, which has

1We use term and character interchangeably in this paper.
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been proven to be appealing in explicitly model-
ing global properties such as syntactic, semantic,
and discourse coherence (Li et al., 2015). More-
over, boosting autoencoder with variational infer-
ence (Kingma and Welling, 2014), known as vari-
ational autoencoder (VAE), can generate not only
consistent but also novel and fluent term sequences
(Bowman et al., 2016). To generalize VAE for
versatile scenarios, conditional variational autoen-
coders (CVAE) are proposed to supervise a gen-
eration process with certain attributes while main-
taining the advantages of VAE. It is verified in su-
pervised dialogue generation (Serban et al., 2017;
Shen et al., 2017; Zhao et al., 2017) that CVAE
can generate better responses with given dialogue
contexts. Given the above background and to align
it with our expectations for poem generation, it
is worth trying to apply CVAE to create poems.
In the meantime, consider that modeling thematic
consistency with adversarial training is proven to
be promising in controlled text generation (Hu
et al., 2017), models for semantic matching can
be potentially improved with an explicit discrimi-
nator (Wu et al., 2017), so does poem generation.

In this paper, we propose a novel poem gen-
eration model (CVAE-D) using CVAE to gener-
ate novel terms and a discriminator (D) to explic-
itly control thematic consistency with adversarial
training. To the best of our knowledge, this is the
first work of generating poems with the combina-
tion of CVAE and adversarial training. Experi-
ments on a large classical Chinese poetry corpus
confirm that, through encoding inputs with latent
variables and explicit measurement of thematic in-
formation, the proposed model outperforms exist-
ing ones in various evaluations. Quantitative and
qualitative analysis indicate that our model can
generate poems with not only distinctive terms,
but also consistent themes to their titles.

2 Preliminaries

2.1 VAE and CVAE
In general, VAE consists of an encoder and a de-
coder, which correspond to the encoding process
where input x is mapped to a latent variable z, i.e.,
x 7! z, and the decoding process where the la-
tent variable z is reconstructed to the input x, i.e.,
z 7! x. In detail, the encoding process computes
a posterior distribution q✓(z | x) given the input x.
Similarly, the decoding process can be formulated
as p✓(x | z), representing the probability distribu-

Figure 1: The overall framework of our poem gener-
ation model. Solid arrows present the generation pro-
cess of each line Li on the condition of the previous
line Li�1 and title T . Black dotted arrows represent
the adversarial learning for thematic consistency. The
red dashed arrow refers to the back-propagation of the
discriminator to the CVAE.

tion of generating input x conditioned on z, where
z has a regularized prior distribution p✓(z), i.e. a
standard Gaussian distribution. Herein ✓ repre-
sents the parameters of both encoder and decoder.
Importantly, presented by Kingma and Welling
(2014), on the condition of large datasets and in-
tractable integral of the marginal likelihood p✓(x),
the true posterior q✓(z | x) is simulated by a varia-
tional approximation q�(z | x) in modeling the en-
coding process, where � is the parameters for q.

In learning a VAE, its objective is to maximize
the log-likelihood log p✓(x) over input x. To fa-
cilitate learning, one can target on pushing up the
variational lower bound of log p✓(x):

L(✓,�; x) =� KL(q�(z|x) k p✓(z))

+ Eq�(z|x)[log p✓(x|z)]
(1)

such that the original log p✓(x) is also optimized.
Herein the KL-divergence term KL(·) can be
viewed as the regularization for encouraging the
approximated posterior q�(z|x) to be close to the
prior p✓(z), e.g. standard Gaussian distribution.
E[·] is the reconstruction loss conditioned on the
approximation posterior q�(z|x), which reflects
how well the decoding process goes.

CVAE extends VAE with an extra condition c
to supervise the generation process by modifying
the. The objective of CVAE is thus to maximize
the reconstruction log-likelihood of the input x un-
der the condition of c. Following the operation for
VAE, we have the corresponding variational lower
bound of p✓(x|c) formulated as

L(✓,�; x, c) =� KL(q�(z|x, c) k p✓(z|c))
+ Eq�(z|x,c)[log p✓(x|z, c)]

(2)

which is similar to Eq.1 except that all items are
introduced with c, such as q�(z|x, c) and p✓(z|c),
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referring to the conditioned approximate posterior
and the conditioned prior, respectively.

2.2 Problem Formulation

Following the text-to-text generation paradigm
(Ranzato et al., 2015; Kiddon et al., 2016; Hu
et al., 2017; Ghosh et al., 2017), our task has a
similar problem setting with conventional studies
(Zhang and Lapata, 2014; Wang et al., 2016c),
where a poem is generated in a line-by-line man-
ner that each line serves as the input for the next
one, as illustrated in Figure 1. To formulate this
task, we separate its input and output with neces-
sary notations as follows.

The INPUT of the entire model is a title,
T =(e1,e2,. . . ,eN ), functionalized as the theme of
the target poem2, where ei refers to i-the charac-
ter’s embedding and N is the length of the title.
The first line L1 is generated only conditioned on
the title T , once this step is done, the model takes
the input of the previous generated line as well as
the title at each subsequent step, until the entire
poem is completed.

The overall OUTPUT is an n-line poem,
formulated as (L1, L2, . . . , Ln), where Li =
(ei,1, ei,2, . . . , ei,m) denotes each line in the poem,
with ei,j referring to the embedding of a charac-
ter at i-th line on j-th position, 8 1  i  n,
1  j  m. Particularly for classic Chinese po-
ems, there are strict patterns, which require m = 5
or m = 7, and n = 43 or n = 84. Once a tem-
plate is chosen, m and n are fixed. In this paper,
we mainly focus on n = 4.

3 The Model

As illustrated in Figure 1, our CVAE-D consists of
two parts, CVAE and a discriminator, where their
details are elaborated in the following subsections.

3.1 The CVAE

The CVAE includes an encoder and a decoder,
plays as the core part in our model that gener-
ates classic Chinese poems. The encoder encodes
both the title and lines with shared parameters by
a bidirectional RNN (Schuster and Paliwal, 1997)
with gated recurrent units (GRU) (Chung et al.,

2We directly treat the title as the theme for each poem in
this paper instead of transferring it to a few keywords as that
was done in Yang et al. (2017).

3The quatrain.
4The eight-line regulated verse.

Figure 2: The CVAE for poem generation. � denotes
the vector concatenation operation. Only the part with
solid lines and the red dotted arrow is applied in predic-
tion, while the entire CVAE is used in training process
except the red dotted arrow part.

2014). Through the encoder, at each step, the pre-
vious line Li�1, current line Li and title T are rep-
resented as concatenated forward and backward5

vectors hi�1 = [
�!
h i�1,

 �
h i�1], hi = [

�!
h i,
 �
h i]

and t = [
�!
t ,
 �
t ], respectively. Note that hi corre-

sponds to x, while the concatenation of hi�1 and t
functionalized as c in Eq. 2, i.e., c = [hi�1, t].
Following previous work (Kingma and Welling,
2014; Zhao et al., 2017; Yang et al., 2017), we as-
sume that the variational approximate posterior is
a multivariate Gaussian N with a diagonal covari-
ance structure q�(z|x, c) = N (µ, �2

I). Thus µ
and � are the key parameters6 to be learned, and
they are computed by


µ

log
�
�2

�
�

= Wq


x
c

�
+ bq (3)

where Wq and bq are trainable parameters. Sim-
ilarly, the prior p✓(z|c) can be formulated as an-
other multivariate Gaussian N (µ

0

, �
02

I); its pa-
rameters are then calculated by a single-layer
fully-connected neural network (denoted as MLP)
with the tanh(·) activation function,


µ0

log
�
�02�

�
= MLPp (c) (4)

The decoder uses a one-layer RNN with GRU
that takes [z, c] as the input to predict each line Li.
The hidden states of the GRU, (s1, s2, . . . , sm)7,

5
! and refer to forward and backward, respectively.

6µ and �2 represent the mean and variance of N (µ, �2I).
7Note that sm+1 is not passed to the discriminator.
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Figure 3: The Discriminator.

are not only used to generate the reconstructed
lines, but also passed to the discriminator for
learning thematic consistency.

The entire encoder and the decoder are used
throughout the training process, with only part of
the encoder (objects with solid lines in Figure 2)
and the decoder applied in prediction. It is worth
noting that, ✓ and � mentioned in §2.1 are not ex-
plicitly corresponded to any particular neural net-
works described in this section. Instead, the prob-
ability process denoted by ✓ corresponds to the de-
coding and part of the encoding process, so does
�, i.e., � = {Wq, bq}.

3.2 The Discriminator
The discriminator is introduced in our model to
evaluate thematic consistency between the input
title and the generated poem lines. The loss from
this discriminator is then back-propagated to the
decoder of the CVAE to enhance its training. In
this paper, we employ a procedure that consists of
two steps. First, we compute an interaction (or
matching) matrix according to a generated line Li

g

and the title T , where Li
g is the reconstructed re-

sult of Li. Then, we utilize a convolutional neu-
ral network (CNN) to learn the matching score be-
tween Li

g and T , where the score is interpreted as
the degree of thematic consistency. Specifically, in
the discriminator, we treat Li

g and Li as the nega-
tive and positive instance, referring to thematically
inconsistent and consistent case, respectively.

In detail, for the first step, we use the state
sequence8 of the decoder to represent Li

g, i.e.,

8Following previous work (Goyal et al., 2016; Hu et al.,
2017) using adversarial training, using state sequence instead
of the outputs is because the discrete nature of the outputs

Li
g = (s1, s2, . . . , sm). A dimension transforma-

tion is then conducted on Li
g, to align Li

g and T :

s
0

i = ReLU(Wdsi + bd) (5)

where ReLU is the rectified linear units activa-
tion function (Nair and Hinton, 2010), with train-
able parameters Wd and bd. In doing so, the
dimension of s

0

i is identical to character embed-
dings. The transformed line is then denoted as
Li

g0

= (s
0

1, s
0

2, . . . , s
0

m). Thus the interaction ma-
trix between Li

g0

and T is then formulated as

Mg = Li
g0 · T (6)

where Mg 2 R
N⇥m; “ · ” denotes the matrix mul-

tiplication.
In the second step, a CNN is used to extract

features from the interaction matrix. The resulted
feature matrix is calculated by F = CNN(Mg).
Then, we apply a max-overtime pooling (Col-
lobert et al., 2011) over F to capture the most
salient information. After this operation, an MLP
with one hidden layer is used to flatten the fea-
ture matrix and generate the final matching score
mg 2 (0, 1) via a sigmoid activation function.

In addition to mg, the matching score mt be-
tween the positive sample Li and T is computed
in a process similar to the above procedure, ex-
cept the dimension transformation because char-
acter embeddings in both title T and Li share the
same dimension.9

Finally, following the routine of generative
adversarial networks (GAN) (Goodfellow et al.,
2014), the discriminator is trained to measure
the thematic consistency of generated lines and
the ground truth lines according to the matching
scores mg and mt, with the objective function

LD = log(mg) + log(1�mt) (7)

minimized. Note that the discriminator is only ap-
plied during the training process, where the pa-
rameters of the encoder and decoder are enhanced
by the feedback of the discriminator.

hinders gradient calculation.
9Different from Li

g , Li is represented directly by its se-
quence of character embeddings, for the reason that the dis-
criminator is only connected with the decoder while Li does
not go through it. Otherwise, if the encoder states are passed
to the discriminator, the loss would be back-propagated to the
encoder and disturb CVAE training accordingly.
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Poem # Line # Vocab # Token #
PTD 56,549 371,754 7,685 2,093,740
PSD 253,237 1,497,348 9,959 9,008,418

Total 309,786 1,869,102 10,306 11,102,158

Table 1: Corpus statistics of PTD and PSD. Vocab #
and Token # refer to vocabulary size and total number
of tokens, respectively, in terms of character.

3.3 Training the Model
The overall objective of CVAE-D is to minimize

LCVAE-D = LCV AE � �LD (8)

with respect to parameters of the CVAE, where
LCV AE is the loss of CVAE, corresponding to
�L(✓,�; x, c). In doing so, LD is maximized with
regard to parameters of the discriminator, referring
to that the generated poems are thematic consistent
and able to confuse the discriminator. Herein � is
a balancing parameter. We train the CVAE and the
discriminator alternatively in a two-step adversar-
ial fashion similar to that was done in Zhang et al.
(2017c). This training strategy is repeated until the
LCVAE-D is converged.

4 Experiment Setup

4.1 Datasets
To learn our poem generation model, we collect
two corpora for experiments: a collection of clas-
sic Chinese poems from Tang dynasty (PTD), and
the other from Song dynasty (PSD). Statistics of
the two corpora are reported in Table 1. Note that
for classical Chinese poem, the dominant genres
are quatrain and eight-line regulated verse with ei-
ther 5 or 7 characters in each line. As a result, our
model is targeted to generate poems within these
two genres, especially the quatrain. All titles of
poems are treated as their themes. We randomly
choose 1,000 and 2,000 poems for validation and
test, respectively, with the rest poems for training.

4.2 Baselines
In addition to our CVAE-D, several highly related
and strong methods are conducted as baselines in
our experiments, including:

S2S, the conventional sequence-to-sequence
model (Sutskever et al., 2014), which has proven
to be successful in neural machine translation
(NMT) and other text generation tasks.

AS2S and its extension Key-AS2S and Mem-
AS2S, where AS2S is the S2S model integrated

Criterion Description

Consistency Whether a poem displays a consistent theme.

Fluency Whether a poem is grammatically satisfied.

Meaning How meaningful the content of a poem is.

Poeticness Whether a poem has the attributes of poetry.

Overall Average scores of the above four criteria.

Table 2: Human evaluation criteria.

with attention mechanism (Bahdanau et al., 2014).
Key-AS2S and Mem-AS2S are AS2S with key-
words planning (Wang et al., 2016c) and a mem-
ory module (Zhang et al., 2017a), respectively.
Particularly, they are dedicated models designed
for Chinese poem generation.

GAN, a basic implementation of generative ad-
versarial networks (Goodfellow et al., 2014) for
this task on top of S2S. This baseline is added to
investigate the performance of introducing a dis-
criminator to simple structures other than CVAE.

CVAE10 and its extension CVAE-Key, where
the former is the conventional CVAE model and
the latter refers to the combination of CVAE and
keywords planning (Yang et al., 2017). The CVAE
baseline is used for investigating how poem gener-
ation can be done with only CVAE, while CVAE-
Key aims to provide a comparison to our model
with a different technique for thematic control.

4.3 Model Settings

All baselines and the CVAE-D are trained with
the following hyper-parameters. The dimension
of character embedding is set to 300 for the most
frequent 10,000 characters in our vocabulary. The
hidden state sizes of the GRU encoder and decoder
are set to 500. All trainable parameters, e.g., Wq

and Wd, are initialized from a uniform distribution
[�0.08, 0.08]. We set the mini-batch size to 80 and
employ the Adam (Kingma and Ba, 2014) for opti-
mization. We utilize the gradient clipping strategy
(Pascanu et al., 2013) to avoid gradient explosion,
with the gradient clipping value set to 5.

In addition to the shared hyper-parameters, we
have particular settings for CVAE-D. The layer
size of MLPp is set to 400. The dimension of
latent variable z is set to 300. For the CNN used
in the discriminator, its kernel size is set to (5, 5),
with the stride size k to 2. We follow the con-
ventional setting (Hu et al., 2017; Creswell et al.,

10We do not include VAE as our baseline since VAE cannot
perform a supervised generation process.
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Automatic Evaluation Human Evaluation
Model BLEU-1 BLEU-2 Sim Dist-1 Dist-2 Dist-3 Dist-4 Con. Flu. Mea. Poe. Ovr.
S2S 13.8 2.48 14.7 2.50 16.2 34.9 50.0 1.79 1.84 1.71 1.60 1.74
AS2S 15.5 2.59 14.8 2.30 15.2 31.4 44.3 1.92 1.71 1.80 1.74 1.79
Key-AS2S 15.8 1.92 19.8 3.00 16.3 33.0 45.6 2.21 2.15 1.92 2.23 2.13
MeM-AS2S 16.0 1.48 22.0 3.40 51.4 87.9 96.8 1.70 2.23 2.09 2.89 2.23
GAN 17.7 2.54 22.5 2.50 16.8 35.3 49.6 2.36 2.08 2.01 2.08 2.13
CVAE 17.0 1.73 13.7 4.70 52.3 90.6 99.0 1.69 2.16 2.14 2.58 2.14
CVAE-Key 16.4 1.83 31.0 4.31 43.0 80.6 95.8 1.83 2.29 2.08 2.53 2.18
CVAE-D 18.1 2.85 36.3 5.20 59.2 94.2 99.8 2.58 2.35 2.34 2.96 2.56

Table 3: Results of automatic and human evaluations. BLEU-1 and BLEU-2 are BLEU scores on unigrams and
bigrams (p < 0.01); Sim refer to the similarity score; Dist-n corresponds to the distinctness of n-gram, with n = 1
to 4; Con., Flu., Mea., Poe., Ovr. represent consistency, fluency, meaning, poeticness, and overall, respectively.

2017) to set the balancing parameter � to 0.1.11

4.4 Evaluation Metrics

To comprehensively evaluate the generated po-
ems, we employ the following metrics:

BLEU: The BLEU score (Papineni et al., 2002)
is an effective metric, widely used in machine
translation, for measuring word overlapping be-
tween ground truth and generated sentences. In
poem generation, BLEU is also utilized as a met-
ric in previous studies (Zhang and Lapata, 2014;
Wang et al., 2016a; Yan, 2016; Wang et al.,
2016b). We follow their settings in this paper.

Similarity: For thematic consistency, it is chal-
lenging to automatically evaluate different mod-
els. We adopt the embedding average metric to
score sentence-level similarity as that was applied
in Wieting et al. (2015). In this paper, we accu-
mulate the embeddings of all characters from the
generated poems and that from the given title, and
use cosine to compute the similarity between the
two accumulated embeddings.

Distinctness: As an important characteristic,
poems use novel and unique characters to main-
tain their elegance and delicacy. Similar to that
proposed for dialogue systems (Li et al., 2016),
this evaluation is employed to measure character
diversity by calculating the proportion of distinc-
tive [1,4]-grams12 in the generated poems, where
final distinctness values are normalized to [0,100].

Human Evaluation: Since writing poems is a
complicated task, there always exist incoordina-
tions between automatic metrics and human expe-
riences. Hence, we conduct human evaluation to

11 We tried different values for �, varying from 0.001 to 1,
which result in similar performance of the CVAE-D.

12Defined as the number of distinctive n-grams divided by
the total number of n-grams, shown as Dist-1, Dist-2, Dist-3,
Dist-4 in Table 3.

assess the performance of different models. In do-
ing so, each poem is assessed by five annotators
who are well educated and have expertise in Chi-
nese poetry. The evaluation is conducted in a blind
review manner, where each annotator has no in-
formation about the generation method that each
poem belongs to. Following previous work (He
et al., 2012; Zhang and Lapata, 2014; Wang et al.,
2016c; Zhang et al., 2017a), we evaluate generated
poems by four criteria, namely, consistency, flu-
ency, meaning, and poeticness. Each criterion is
rated from 1 to 3, representing bad, normal, good,
respectively. The details are illustrated in Table 2.

5 Experimental Results

5.1 Quantitative Analysis
Table 3 reports the results of both automatic and
human evaluations. We analyze the results from
the following aspects.

5.1.1 The effect of CVAE
This study is to investigate whether using latent
variable and variational inference can improve the
diversity and novelty of terms in generated poems.
There are two main observations.

CVAE significantly improves term novelty. As
illustrated in Table 3, CVAE outperforms all base-
lines significantly in terms of distinctness. With
diversified terms, the aesthetics scores also con-
firm that CVAE can generate poems that cor-
respond to better user experiences. Although
Mem-AS2S can generate a rather high distinctness
score, it requires a more complicated structure in
learning and generating poems. The results con-
firm the effectiveness of CVAE in addressing the
issue of term duplications that occurred in RNN.

CVAE cannot control thematic consistency of
generated poems. Recall that thematic consis-
tency and term diversity are usually mutually ex-
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(a) KL divergence (b) Matching score

Figure 4: KL divergences of CVAE and CVAE-D
(a) and matching scores of the generated and original
lines from the discriminator (b). All curves are drawn
against training iterations.

clusive, CVAE produces the worst result in the-
matic consistency, which is confirmed in Table 3
by the similarity score in automatic evaluation and
the consistency score in human evaluation.

5.1.2 The Influence of the Discriminator
As previously stated, introducing a discriminator
with adversarial training is expected to bring posi-
tive effect on thematic consistency. We investigate
the influence of discriminator with two groups of
comparison, i.e., CVAE-D v.s. CVAE, GAN v.s.
S2S. Following observations are made in this in-
vestigation, which confirm that adversarial learn-
ing is an effective add-on to existing models for
thematics control, without affecting other aspects.

The discriminator effectively enhances poem
generation with thematic information. When the
discriminator is introduced, CVAE and S2S model
are capable of generating thematically consistent
poems, as illustrated by the similarity and mean-
ing scores in Table 3. The BLEU results also con-
firm that the discriminator can improve the over-
lapping between generated poems and the ground
truth, which serves as thematic consistent cases.

The extra discriminator does not affect base
models on irrelevant merits. For any base model,
e.g., S2S and CVAE, when adding a discriminator,
it is expected that it can bring help on thematic
consistency while limiting any inferior effects on
other evaluations. This is confirmed in the results,
e.g., for distinctness, CVAE-D and GAN are com-
parable to CVAE and S2S.

5.1.3 The Performance of CVAE-D
Overall, the CVAE-D model substantially out-
performs all other models in all metrics. Espe-
cially for term novelty and thematic consistency,
CVAE-D illustrates an extraordinary balance be-
tween them, with observable improvements on
both sides. This balance is mainly contributed

fóßC
Daydream in my garden
≠7ŒIƒ@��

The view in the garden brings up the fantasy,
⌦∫Õ«‹ãù⇥

As if my love dances in the scenery.
óM±��Âs�

Hence blossom can never arouse my curiosity,
/ =¢e⌘◊⇥

With only fading memory in the poetry.

Figure 5: An example poem generated by the CVAE-D
model. Note that the translation is performed in deliv-
ering the meaning instead of the verbatim manner.

from the proposed framework that seamlessly in-
tegrates CVAE and the discriminator. Except
for the automatic and human evaluation scores,
the fact is also supported by the training loss of
KL(q�(z|x, c) k p✓(z|c)) and LD as shown in Fig-
ure 4, where 1) the KL-divergence of CVAE-D has
an analogous trend with CVAE, referring to that
the CVAE part in CVAE-D is trained as good as an
independent CVAE; 2) the discriminator captures
the distinctness of thematic consistency between
the generated lines and the ground truth lines at
the very early stage of training.

5.2 Qualitative Analysis
In addition to evaluating CVAE-D with quantita-
tive results, we also conduct case studies to illus-
trate its superiority. Figure 5 gives an example of
the CVAE-D generated poems, which well demon-
strates the capability of our model. The entire
poem elegantly expresses a strong theme of “miss-
ing my love”.13 It is clearly shown that the choices
of the characters, such as ≠ (yard), ù (branch),
± (flower), ¢ (red), etc., match with the given
title to a certain extent with no one repetitively
used. To further investigate how different mod-
els perform on thematic consistency, we visualize
the correspondence between generated poems (the
first two lines) and the given title with heatmaps in
Figure 6, where Figure 6(a) and Figure 6(b) illus-
trate the results yielded by CVAE and CVAE-D,
respectively.14 Obviously, the overall color in Fig-
ure 6(a) is lighter than that in Figure 6(b), which

13“Seeing an object makes one miss someone” is a popular
theme in Classical Chinese poems.

14Grids in the heatmap represent the correlations between
the fine-tuned embeddings of the characters in the title and
the generated lines. Since the embeddings are updated in the
training process, a better model leads to higher correlations
among the embeddings of related characters.
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(a) CVAE (b) CVAE-D

Figure 6: Heatmaps derived from CVAE (a) and CVAE-D (b), in illustrating the correlation between the characters
in lines and the title. The horizontal axis refers to characters of the first two lines generated by different models;
the vertical axis corresponds to characters in the title. Darker color indicates higher thematic consistency.

may indicate that most of the characters generated
by CVAE are not addressed with thematic atten-
tions over the given title. On the opposite, CVAE-
D presents darker color in the grids on all related
characters, which further reveals the effectiveness
of CVAE-D in improving thematic consistency of
a poem with respect to its title.

It is observed that there are also inferior cases
generated by our model. A notable example pat-
tern is that some fine-grained attributes, e.g., sen-
timent, emotion, are not well aligned across lines,
where some lines may deliver different mood from
others. Since our model does not explicitly con-
trol such attributes, thus one potential solution to
address this issue is to introduce other features to
model such information, which requires a special
design to adjust the current model. We also notice
there exists a few extraordinary bad cases where
their basic characteristics, such as wording, flu-
ency, etc., are unacceptable. This phenomenon is
randomly observed with no patterns, which could
be explained by the complexity of the model and
the fragile natural of adversarial training (Good-
fellow et al., 2014; Li et al., 2017). Careful pa-
rameter setting and considerate module assemble
could mitigate this problem, thus lead to potential
future work of designing more robust frameworks.

6 Related Work
Deep Generative Models. This work can be seen
as an extension of research on deep generative
models (Salakhutdinov and Hinton, 2009; Bengio
et al., 2014), where most of the previous work, in-
cluding VAE and CVAE, focused on image gener-
ation (Sohn et al., 2015; Yan et al., 2016b). Since
GAN (Goodfellow et al., 2014) is also a success-
ful generative model, there are studies tried to inte-
grate VAE and GAN (Larsen et al., 2016). In natu-
ral language processing, many recent deep gener-
ative models are applied to dialogue systems Ser-
ban et al. (2017); Shen et al. (2017); Zhao et al.
(2017) and text generation with (Hu et al., 2017;

Yu et al., 2017; Lin et al., 2017; Zhang et al.,
2017b; Guo et al., 2018). To the best of our
knowledge, this work is the first one integrating
CVAE and adversarial training with a discrimina-
tor for text generation, especially in a particular
text genre, poetry.

Automatic Poem Generation. According to
methodology, previous approaches can be roughly
classified into three categories: 1) rule and tem-
plate based methods (Tosa et al., 2008; Wu et al.,
2009; Netzer et al., 2009; Zhou et al., 2010;
Oliveira, 2012; Yan et al., 2013); 2) SMT ap-
proaches (Jiang and Zhou, 2008; Greene et al.,
2010; He et al., 2012); 3) deep neural models
(Zhang and Lapata, 2014; Wang et al., 2016b; Yan,
2016). Compared to rule-based and SMT mod-
els, neural models are able to learn more compli-
cated representations and generate smooth poems.
Most recent studies followed this paradigm. For
example, Wang et al. (2016c) proposed a modified
encoder-decoder model with keyword planning;
Zhang et al. (2017a) adopted memory-augmented
RNNs to dynamically choose each term from
RNN output or a reserved inventory. To improve
thematic consistency, Yang et al. (2017) com-
bined CVAE and keywords planning. Compared
to them, our approach offers an alternative way
for poem generation that can produce novel terms
and consistent themes via an integrated frame-
work, without requiring special designed modules
or post-processing steps.

7 Conclusions

In this paper, we proposed an effective approach
that integrates CVAE and adversarial training for
classical Chinese poem generation. Specifically,
we used CVAE to generate each line of a poem
with novel and diverse terms. A discriminator
was then applied with adversarial training to ex-
plicitly control thematic consistency. Experiments
conducted on a large Chinese poem corpus illus-
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trated that through the proposed architecture with
CVAE and the discriminator, substantial improve-
ment was observed on the results from our gener-
ated poems over those from the existing models.
Further qualitative study on given examples and
some brief error analyses also confirmed the va-
lidity and effectiveness of our proposed approach.
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Abstract

Question generation, the task of automatically
creating questions that can be answered by a
certain span of text within a given passage,
is important for question-answering and con-
versational systems in digital assistants such
as Alexa, Cortana, Google Assistant and Siri.
Recent sequence to sequence neural models
have outperformed previous rule-based sys-
tems. Existing models mainly focused on us-
ing one or two sentences as the input. Long
text has posed challenges for sequence to se-
quence neural models in question generation
– worse performances were reported if us-
ing the whole paragraph (with multiple sen-
tences) as the input. In reality, however, it
often requires the whole paragraph as context
in order to generate high quality questions.
In this paper, we propose a maxout pointer
mechanism with gated self-attention encoder
to address the challenges of processing long
text inputs for question generation. With
sentence-level inputs, our model outperforms
previous approaches with either sentence-level
or paragraph-level inputs. Furthermore, our
model can effectively utilize paragraphs as in-
puts, pushing the state-of-the-art result from
13.9 to 16.3 (BLEU 4).

1 Introduction

Question generation (QG), aiming at creating
questions from natural language text, e.g. a sen-
tence or paragraph, is an important area in natural
language processing (NLP). It is receiving increas-
ing interests in recent years from both industrial
and academic communities, due to the booming
of Question-and-Answer (QnA) and conversation
systems, including Alexa, Cortana, Google Assis-
tant and Siri, the advancement of QnA or machine
comprehension technologies together with the re-
leases of datasets like SQuAD (Rajpurkar et al.,
2016) and MS MARCO (Nguyen et al., 2016),

and the success of language generation technolo-
gies for tasks like machine translation (Wu et al.,
2016) and text summarization (See et al., 2017)
in NLP. A conversational system can be proactive
by asking the user questions (Shum et al., 2018),
while a QnA system can benefit from a large scale
question-answering corpus which can be created
by an automated QG system (Duan et al., 2017).
Education is another key application where QG
can help with reading comprehension (Heilman
and Smith, 2010).

In NLP, QG has been mainly tackled by two ap-
proaches: 1) rule-based approach, e.g. (Heilman
and Smith, 2010; Mazidi and Nielsen, 2014; Lab-
utov et al., 2015) 2) neural QG approach: end-to-
end training a neural network using the sequence
to sequence (also called encoder-decoder) frame-
work, e.g. (Du et al., 2017; Yuan et al., 2017; Song
et al., 2017; Zhou et al., 2017). In this paper, we
adopt the second approach.

More specifically, we focus on an answer-aware
QG problem, which takes a passage and an answer
as inputs, and generates a question that targets the
given answer. It is also assumed the answer is
comprised of certain spans of the text from the
given passage. This is the exact setting of SQuAD,
and similar problems have been addressed in, e.g.
(Zhou et al., 2017; Yuan et al., 2017; Wang et al.,
2017a).

A paragraph often contains much richer con-
text than a sentence, as shown in Figure 1. (Du
et al., 2017) pointed out that about 20% questions
in SQuAD require paragraph-level information to
be asked and using the whole paragraph can im-
prove QG performance on those questions. How-
ever, a paragraph can contain irrelevant informa-
tion w.r.t. the answer for generating the question.
The challenge is thus how to effectively utilize rel-
evant information at paragraph-level for QG. Ex-
isting neural QG works conducted on SQuAD use
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1 Paragraph: carolina suffered a major setback when thomas davis , an 11-
year veteran who had already overcome three acl tears in his career , went
down with a broken arm in the nfc championship game . despite this , he
insisted he would still find a way to play in the super bowl . his prediction
turned out to be accurate
Human generated: what game did thomas davis say he would play in ,
despite breaking a bone earlier on ?
Sentence-level QG: what sports game did spielberg decide to play in ?
Paragraph-level QG: what competition did thomas davis think he would
play in ?

2 Paragraph: walt disney and his brother roy contacted goldenson at the
end of 1953 for abc to agree to finance part of the disneyland project in
exchange for producing a television program for the network . walt wanted
abc to invest $ 500,000 and accrued a guarantee of $ 4.5 million in addi-
tional loans , a third of the budget intended for the park . around 1954 ,
abc agreed to finance disneyland in exchange for the right to broadcast a
new sunday night program , disneyland , which debuted on the network on
october 27 , 1954 as the first of many anthology television programs that
disney would broadcast over the course of the next 50 years
Human generated: how much did walt disney want abc to invest in dis-
neyland ?
Sentence-level QG: how much money did walt wanted to invest ?
Paragraph-level QG: how much money did walt wanted to invest in 1953
?

3 Paragraph: following the peterloo massacre of 1819 , poet percy shelley
wrote the political poem the mask of anarchy later that year , that begins
with the images of what he thought to be the unjust forms of authority of
his timeand then imagines the stirrings of a new form of social action . it is
perhaps the first modern [ vague ] statement of the principle of nonviolent
protest . a version was taken up by the author henry david thoreau in his
essay civil disobedience , and later by gandhi in his doctrine of satyagraha
. gandhi ’s satyagraha was partially influenced and inspired by shelley ’s
nonviolence in protest and political action . in particular , it is known that
gandhi would often quote shelley ’s masque of anarchy to vast audiences
during the campaign for a free india
Human generated: his poem is considered the first kind of what type of
protest ?
Sentence-level QG: what is the principle of the protest ?
Paragraph-level QG: what type of protest did percy shelley write ?

4 Paragraph: the victoria and albert museum ( often abbreviated as the
v & a ) , london , is the world ’s largest museum of decorative arts
and design , housing a permanent collection of over 4.5 million objects
. it was founded in 1852 and named after queen victoria and prince albert.
the v & a is located in the brompton district of the royal borough of kens-
ington and chelsea , in an area that has become known as “ albertopolis ”
because of its association with prince albert , the albert memorial and the
major cultural institutions with which he was associated . these include the
natural history museum , the science museum and the royal albert hall . the
museum is a non-departmental public body sponsored by the department
for culture , media and sport . like other national british museums , en-
trance to the museum has been free since 2001
Human generated: when was the victoria and albert museum founded ?
Sentence-level QG: when was prince albert and prince albert founded ?
Paragraph-level QG: when was the victoria and albert museum founded ?

Figure 1: Examples where paragraph-level infor-
mation is required to ask right questions. Sen-
tences contain answers are in italic font, while
answers are underscored. QG results are gener-
ated by model s2s-a-ct-mp-gsa.

only a sentence as context, e.g. (Du et al., 2017;
Song et al., 2017; Zhou et al., 2017); when applied
to paragraph-level context (Yuan et al., 2017) we
observed large gaps compared to state-of-the-art
results achieved by using sentence-level context.

In this paper, we extend previous sequence to
sequence attention model with a maxout pointer
mechanism and a gated self-attention encoder
which outperforms existing neural QG approaches
with either sentence or paragraph as inputs. Fur-

thermore, with paragraph-level inputs, it outper-
forms the results of previous approaches with
sentence-level inputs, improving state-of-the-art
result from 13.9 to 16.3 (BLEU 4). This is the
first model that demonstrates large improvement
with paragraph as input over sentence as input.
In addition, our model is more concise compared
to most of existing ones, e.g. (Yuan et al., 2017;
Song et al., 2017). Techniques like incorporating
rich features (Zhou et al., 2017) and policy gradi-
ent (Song et al., 2017; Yuan et al., 2017) are or-
thogonal to ours and can be leveraged for further
performance improvement in the future.

2 Our Model

2.1 Problem Definition
We use P and A to represent input passage and an-
swer respectively, and use Q to represent the gen-
erated question. ”Passage” in this section can rep-
resent either a sentence or a paragraph. The task is
to find Q̄ that:

Q̄ = argmax
Q

Prob(Q|P, A)

where passage is comprised of sequence of
words:P = {xt}M

t=1, answer A must be sub spans
of the passage. Words generated in Q = {yt}K

t=1

are either from the input passage, {xt}M
t=1, or from

a vocabulary V .
Figure 2 illustrates the end-to-end structure of

our model proposed in this paper.

2.2 Passage and Answer Encoding
Different types of encoders are designed for vari-
ous domains (Chung et al., 2014; Hochreiter and
Schmidhuber, 1997). We are agnostic to the form
of the encoder and simply use recurrent neural net-
work (RNN) to present the encoding process:

ut = RNNE(ut�1, [et,mt]) (1)

Answer Tagging. In Eq. 1, ut represents the
RNN hidden state at time step t, et is the word
embedding representation of word xt in passage
P . mt is the meta-word representation of whether
word xt is in or outside the answer. [a,b] repre-
sents the concatenation of vector a and b. We call
this approach answer tagging which is similar to
the techniques in (Zhou et al., 2017; Yuan et al.,
2017). For applications, it is essential to be able to
generate question that is coherent to an answer.
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Figure 2: End-to-end diagram for the model with answer tagging, gated self-attention and maxout pointer
mechanism.

If RNNE is bi-directional, u is the concate-
nated representation of the forward and backward
passes: U = {[�!ut,

 �ut]}M
t=1.

Gated Self-attention. Our gated self-attention
mechanism is designed to aggregate information
from the whole passage and embed intra-passage
dependency to refine the encoded passage-answer
representation at every time step. It has two steps:
1) taking encoded passage-answer representation
u as input and conducting matching against itself
to compute self matching representation; (Wang
et al., 2017b) 2) combining the input with self
matching representation using a feature fusion
gate (Gong and Bowman, 2017).

as
t = softmax(UTWsut) (2)

st = U · as
t (3)

Step 1. In Eq. 2, Ws is a trainable weight ma-
trix. In Eq. 3, st is the weighted sum of all words’
encoded representation in passage based on their
corresponding matching strength to current word
at t. s = {st}M

t=1 is the final self matching repre-
sentation.

ft = tanh(Wf [ut, st]) (4)
gt = sigmoid(Wg[ut, st]) (5)
ût = gt � ft + (1� gt)� ut (6)

Step 2. The self matching representation st is
combined with original passage-answer represen-
tation ut as the new self matching enhanced rep-
resentation ft, Eq. 4. A learnable gate vector gt,
Eq. 5, chooses the information between the orig-
inal passage-answer representation and the new
self matching enhanced representation to form the
final encoded passage-answer representation ût,
Eq. 6, where� is the element-wise multiplication.

2.3 Decoding with Attention and Maxout
Pointer

In the decoding stage, the decoder is another RNN
that generates words sequentially conditioned on
the encoded input representation and the previ-
ously decoded words.

dt = RNND(dt�1,yt�1) (7)

p(yt|{y<t}) = softmax(WV dt) (8)
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In Eq. 7, dt represents the hidden state of the RNN
at time t where d0 is passed from the final hidden
state of the encoder. yt stands for the word gen-
erated at time t. The bold font yt is used to rep-
resent yt’s corresponding word embedding repre-
sentation. In Eq. 8, first an affine layer projects dt

to a space with vocabulary-size dimensions, then
a softmax layer computes a probability distribu-
tion over all words in a fixed vocabulary V . WV

is a trainable weight matrix.
Attention. Attention mechanism (Bahdanau

et al., 2014; Luong et al., 2015) has been used
to improve sequence to sequence models’ perfor-
mance and has became a default setting for many
applications.

We use Luong attention mechanism to compute
raw attention scores rt, Eq. 9. An attention layer,
Eq. 12 is applied above the concatenation of de-
coder state dt and the attention context vector ct

and its output is used as the new decoder state.

rt = ÛTWadt (9)

ad
t = softmax(rt) (10)

ct = Û · ad
t (11)

d̂t = tanh(Wb[dt, ct]) (12)

Copy/Pointer. Copy mechanism (Gu et al.,
2016) or pointer network (See et al., 2017; Vinyals
et al., 2015) was introduced to allow both copy-
ing words from input via pointing, and generating
words from a predefined vocabulary during decod-
ing.

Similar to (Gu et al., 2016), our pointer mecha-
nism directly leverages raw attention scores rt =
{rt,k}M

k=1 over the input sequence which has a vo-
cabulary of �. Words at every time step (a pointer)
are treated as unique copy targets and the final
score on one word is calculated as the sum of all
scores pointing to the same word, Eq. 13, where
xk and yt stand for word vocabulary indices of the
kth word in input and the tth word in decoded
sequence respectively. The scores of the nonoc-
curence words are set to negative infinity which
will be masked out by the downstream softmax
function.

sccopy(yt) =

8
><

>:

X

k,where xk=yt

rt,k, yt 2 �

� inf, otherwise
(13)

We then concatenate sccopy
t with the gener-

ative scores (from Eq. 8 before softmax),

[scgen
t , sccopy

t ], which has dimension: |V | + |�|.
Then we perform softmax on the concatenated
vectors and sum up the probabilities pointing to
same words. Taking softmax on the concate-
nated score vector enforces copy and generative
modes to compete with each other due to the
shared normalization denominator. Another pop-
ular solution is to do softmax independently to
the scores from each mode, and then combine their
output probabilities with a dynamic weight which
is generated by a trainable network (See et al.,
2017). We have tested both and didn’t find sig-
nificant difference in terms of accuracy on our QG
task. We choose the former copy approach mainly
because it doesn’t add extra trainable parameters.

Maxout Pointer. Despite the outstanding per-
formance of existing copy/pointer mechanisms,
we observed that repeated occurrence of words
in the input sequence tends to cause repetitions
in output sequence, especially when the input se-
quence is long, e.g. a paragraph. This issue exac-
erbates the repetition problem which has already
been commonly observed in sequence to sequence
models (Tu et al., 2016; See et al., 2017). In this
paper, we propose a new maxout pointer mecha-
nism to address this issue and improve the metrics
for QG task. Related works (Goodfellow et al.,
2013) have explored MLP maxout with dropout.

Instead of combining all the scores to calcu-
late the probability, We limit the magnitude of
scores of repeated words to their maximum value,
as shown in Eq. 14. The rest remains the same as
in the previous copy mechanism.

sccopy(yt) =

(
max

k,where xk=yt

rt,k, yt 2 �

� inf, otherwise
(14)

3 Experiments

In our experiments, we study the proposed model
on the QG task on SQuAD (Rajpurkar et al., 2016)
and MS MARCO (Nguyen et al., 2016) dataset,
demonstrate the performance of proposed compo-
nents on both sentence and paragraph inputs, and
compare the model with existing approaches.

3.1 Dataset
SQuAD
The SQuAD dataset contains 536 Wikipedia arti-
cles and more than 100K questions posed about
the articles by crowd-workers. Answers are also
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BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

Model Sen. Par. Sen. Par. Sen. Par. Sen. Par. Sen. Par. Sen. Par.

s2s 30.41 28.49 12.68 10.43 6.33 4.70 3.44 2.38 11.98 10.69 29.93 27.32
s2s-a 34.46 31.26 18.07 14.37 11.20 8.02 7.42 4.80 14.95 12.52 34.69 30.11
s2s-a-at 40.57 40.56 24.30 24.23 16.40 16.33 11.54 11.46 18.35 18.42 40.76 40.40
s2s-a-at-cp 42.15 41.66 26.28 25.52 18.35 17.48 13.37 12.43 18.02 17.76 41.97 41.30
s2s-a-at-mcp 43.65 44.22 28.23 28.56 20.33 20.57 15.23 15.43 19.19 19.55 43.60 43.65
s2s-a-at-mcp-gsa 43.47 45.07 28.23 29.58 20.40 21.60 15.32 16.38 19.29 20.25 43.91 44.48

Table 1: Performance of our models on Split1 with both sentence-level input and paragraph-level input.
Sen. means sentence, while Par. means paragraph.

provided to the questions, which are spans of to-
kens in the articles.

Following (Du et al., 2017; Zhou et al., 2017;
Song et al., 2017), our experiments are conducted
using the accessible part of SQuAD: train and de-
velopment (dev*) sets. To be able to directly com-
pare with their works, we adopt two types of data
split: 1) Split1: similar to (Du et al., 2017), we use
dev* set as test set, and split train set into train and
dev sets randomly with ratio 90%-10%. The split
is done at article level. However, we keep all sam-
ples instead of only keeping the sentence-question
pairs that have at least one non-stop-word in com-
mon (with 6.7% pairs dropped) as in (Du et al.,
2017). This makes our dataset harder for training
and evaluation. 2) Split2: similar to (Zhou et al.,
2017), we split dev* set into dev and test sets ran-
domly with ratio 50%-50%. The split is done at
sentence level.

MS MARCO
MS MARCO datasets contains 100,000 queries
with corresponding answers and passages. All
questions are sampled from real anonymized user
queries and context passages are extracted from
real web documents. We picked a subset of MS
MARCO data where answers are sub-spans within
the passages, and use dev set as test set (7k), and
split train set with ratio 90%-10% into train (51k)
and dev (6k) sets.

3.2 Implementation Details

We used 2 layers LSTM as the RNN cell for
both encoding and decoding. For encoding, bi-
directional LSTM was used. The cell hidden size
was 600. Dropout with probability 0.3 was applied
between vertical LSTM stacks. For word em-
bedding, we used pre-trained GloVe word vectors

with 300 dimensions (Pennington et al., 2014),
and froze them during training. Dimension of an-
swer tagging meta-word embedding was 3. Both
encoder and decoder shared the same vocabulary
of the most frequent 45k GloVe words. For op-
timization, we used SGD with momentum (Qian,
1999; Nesterov, 1983). Learning rate was initially
set to 0.1 and halved since epoch 8 at every 2
epochs afterwards. Models were totally trained
with 20 epochs. The mini-batch size for param-
eter update was 64. After training, we looked at
the 4 models with lowest perplexities and selected
the one which used the most number of epochs as
final model. During decoding for prediction, we
used beam search with the beam size of 10, and
stopped decoding when every beam in the stack
generates the EOS token.

3.3 Evaluation
We conduct automatic evaluation with metrics:
BLEU 1, BLEU 2, BLEU 3, BLEU 4 (Papineni
et al., 2002), METEOR (Denkowski and Lavie,
2014) and ROUGE-L (Lin, 2004), and use eval-
uation package released by (Sharma et al., 2017)
to compute them.

4 Results and Analysis
4.1 Comparison of Techniques
Table 1 shows evaluation results for different
models on SQuAD Split1. Results with both
sentence-level and paragraph-level inputs are in-
cluded. Similar results also have been observed
on SQuAD Split2. The definitions of the models
under comparison are:
s2s: basic sequence to sequence model
s2s-a: s2s + attention mechanism
s2s-a-at: s2s-a + answer tagging
s2s-a-at-cp: s2s-a-at + copy mechanism
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s2s-a-at-mp: s2s-a-at + maxout pointer mechanism
s2s-a-at-mp-gsa: s2s-a-at-mp + gated self-attention

Attention Mechanism
s2s-a vs. s2s: we can see attention brings in large
improvement on both sentence and paragraph in-
puts. The lower performance on paragraph indi-
cates the challenge of encoding paragraph-level
information.

Answer Tagging
s2s-a-at vs. s2s-a: answer tagging dramatically
boosts the performance, which confirms the im-
portance of answer-aware QG: to generate good
question, we need to control/learn which part of
the context the generated question is asking about.
More importantly, answer tagging clearly reduces
the gap between sentence and paragraph inputs,
which could be explained with: by providing guid-
ance on answer words, we can make the model
learn to neglect noise when processing a long con-
text.

Copy Mechanism
s2s-a-at-cp vs. s2s-a-at: as expected, copy mecha-
nism further improves the performance on the QG
task. (Du et al., 2017) pointed out most of the
sentence-question pairs in SQuAD have over 50%
overlaps in non-stop-words. Our results prove that
sequence to sequence models with copy mecha-
nism can very well learn when to generate a word
and when to copy one from input on such QG task.
More interestingly, the performance is lower when
paragraph is given as input than sentence as input.
The gap, again, reveals the challenge of leveraging
longer context. We found that, when paragraph is
given, the model tends to generate more repetitive
words, and those words (often entities/concepts)
usually appear multiple times in the context, Fig-
ure 3. The repetition issue can also be seen for
sentence input, but it is more severe for paragraph.

Maxout Pointer
s2s-a-at-mp vs. s2s-a-at-cp: Maxout pointer is de-
signed to resolve the repetition issue brought by
the basic copy mechanism, for example Figure 3.
The maxout pointer mechanism outperforms the
basic copy mechanism in all metrics. Moreover,
the effectiveness of maxout pointer is more signif-
icant when paragraph is given as the model input,
as it reverses the performance gap between models

Paragraph: a problem is regarded as inherently difficult if its solution requires
significant resources , whatever the algorithm used . the theory formalizes
this intuition , by introducing mathematical models of computation to study
these problems and quantifying the amount of resources needed to solve them
, such as time and storage . other complexity measures are also used , such
as the amount of communication ( used in communication complexity ) , the
number of gates in a circuit ( used in circuit complexity ) and the number of
processors ( used in parallel computing ) . one of the roles of computational
complexity theory is to determine the practical limits on what computers can
and can not do
Human generated: what unit is measured to determine circuit complexity ?
Basic copy QG: what is an example of a circuit complexity in complexity
complexity ?
Maxout Pointer QG: what is another name for circuit complexity ?

Figure 3: Example for maxout pointer vs. basic
copy/pointer.

s2s s2s-a s2s-a-at s2s-a-
at-cp

s2s-a-
at-mp

s2s-a-at-
mp-gsa

4
6
8

10
12 Paragraph(left)

Sentence(right)

Figure 4: Word duplication rates of QG on Split1,
duplication rate on human generated question is
3.53.

trained with sentence and paragraph inputs, Table
1.

To demonstrate that maxout pointer reduces
repetitions in generated questions, we present the
word duplication rates in generated questions for
various models in Figure 4. Word duplication rate
was computed by counting the number of words
which appear more than once, and then taking a
ratio of them over the total word counts. As shown
in Figure 4, both the attention mechanism and the
basic copy mechanism introduce more repetitions,
although they improve overall accuracy according
to Table 1. For models trained with paragraph in-
puts, where the duplication rates are much higher,
maxout pointer reduces the duplication rates to
half of their values in the basic copy and to the
same level as model trained with sentence inputs.

Such repetition issue was also observed in other
sequence to sequence applications, e.g. (See et al.,
2017) who proposed a coverage model and cov-
erage loss to resolve this issue. We implemented
and tested their approach on our QG task. Even
though the duplication ratio dropped as expected,
we observed a slight decline in the accuracy when
coverage loss was added.
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Figure 5: Self-attention alignments map: each row
represents an alignment vector of self-attention.

Gated Self-attention
s2s-a-at-mp-gsa vs. s2s-a-at-mp: the results
demonstrate the effectiveness of gated self-
attention, in particular, when working with para-
graph inputs. This is the first time, as we know,
taking paragraph as input is better than sentence
for neural QG tasks. The observation is consistent
across all metrics. Gated self-attention helps re-
fine encoded context by fusing important informa-
tion with the context’s self representation properly,
especially when the context is long.

To better understand how gated self-attention
works, we visualize the self alignment vectors at
each time step of the encoded sequence for one ex-
ample, in Figure 5. This example corresponds to
the example 1 in Figure 1. We can see the align-
ments distribution concentrates near the answer
sequence and the most relevant context: ”thomas
davis” in this example. Such alignments in turn
would help to promote the most valuable informa-
tion for decoding.

Beam Search
Beam search is commonly used for decoding for
predictions. Existing neural QG works, e.g. (Du
et al., 2017; Zhou et al., 2017), evaluated their
models with beam search decoding. However, so
far, none of them have reported the comparison be-
tween beam search decoding with greedy decod-
ing. In this paper, we give such comparison for our
best model: s2s-a-at-mp-gsa with both sentence

Beam Search Greedy

Metric Sen. Par. Sen. Par.

BLEU 1 43.47 45.07 42.25 43.48
BLEU 2 28.23 29.58 26.36 27.67
BLEU 3 20.40 21.60 18.35 19.64
BLEU 4 15.32 16.38 13.28 14.50
METEOR 19.29 20.25 18.25 19.17
ROUGE-L 43.91 44.48 42.58 43.62

Table 2: Comparison of beam search and greedy
decodings for model s2s-a-ct-mp-gsa on Split1.

and paragraph inputs in Table 2. We can clearly
see beam search decoding boosts all metrics for
both sentence and paragraph inputs. The effective-
ness of beam search has also been demonstrated
for other tasks, like neural machine translation in
(Wu et al., 2016).

4.2 Comparison with Existing Neural
Question Generation Works

On SQuAD dataset, we compare the BLEU, ME-
TEOR, ROUGE-L scores of our best model, s2s-
a-at-mp-gsa, with the numbers in the existing
works in Table 3. Comparison with (Du et al.,
2017) and (Song et al., 2017) is conducted on
SQuAD data Split1, while comparison with (Zhou
et al., 2017) and (Song et al., 2017) is conducted
on data SQuAD split2. Because (Song et al., 2017)
had results on both splits, we compare with both of
them.

On MS MARCO dataset, we compare the
BLEU 4 scores reported by (Duan et al., 2017) in
Table 4.

Our model with maxout pointer and gated self-
attention achieves the state-of-the-art results in
QG. Note that all those existing works in SQuAD
encoded only sentence-level information, the re-
sults from our model surpass them on the same
sentence input while achieving much higher num-
bers when working with paragraph.

4.3 Case Study
In Figure 1, we present some examples for
which paragraph-level information is needed to
ask good/correct questions. Generated questions
from model s2s-a-ct-mp-gsa are also presented for
both sentence and paragraph inputs. Those exam-
ples demonstrate that generated questions contain
richer information when paragraphs are provided
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Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGE-L

Split1

(Du et al., 2017) 43.09 25.96 17.50 12.28 16.62 39.75
(Song et al., 2017) x x x 13.98 18.77 42.72

ours, sentence 43.47 28.23 20.40 15.32 19.29 43.91
ours, paragraph 45.07 29.58 21.60 16.38 20.25 44.48

Split2

(Zhou et al., 2017) x x x 13.27 x x
(Song et al., 2017) x x x 13.91 x x

ours, sentence 44.51 29.07 21.06 15.82 19.67 44.24
ours, paragraph 45.69 30.25 22.16 16.85 20.62 44.99

Table 3: Comparison of results on SQuAD dataset.

Model BLEU 4

MSMARCO

(Du et al., 2017) 10.46
(Duan et al., 2017) 11.46

ours, sentence 16.02
ours, paragraph 17.24

Table 4: Comparison of results on MSMARCO
dataset.

instead of sentences.
In example 1 and 3, name ”thomas davis” and

”percy shelley” appear in the paragraphs not the
sentences contain the answers.

In example 2, paragraph-level QG can gener-
ate richer description ”in 1953” from the para-
graph, although human generated is ”disneyland”.
Both generated questions lack one relative impor-
tant piece of information ”want abc to invest”.

In example 4, paragraph-level QG correctly
identifies ”it” is referring to the museum which is
out of the sentence.

5 Related Work

QG has been mainly tackled with two types of ap-
proaches. One is built on top of heuristic rules that
creates questions with manually constructed tem-
plate and ranks the generated results, e.g. (Heil-
man and Smith, 2010; Mazidi and Nielsen, 2014;
Labutov et al., 2015). Those approaches heavily
depend on human effort, which makes them hard
to scale up to many domains. The other one, which
is becoming increasingly popular, is to train an
end-to-end neural network from scratch by using
sequence to sequence or encoder-decoder frame-
work, e.g. (Du et al., 2017; Yuan et al., 2017; Song
et al., 2017; Zhou et al., 2017). The second one is
more related to us, so we will focus on describing
those approaches.

(Du et al., 2017) pioneered the work of auto-
matic QG using an end-to-end trainable sequence
to sequence neural model. Automatic and human
evaluation results showed that their system outper-
formed the previous rule-based systems (Heilman
and Smith, 2010; Rus et al., 2010). However, in
their study, there was no control about which part
of the passage the generated question was asking
about.

Answer-aware sequence to sequence neural QG
systems (Zhou et al., 2017; Subramanian et al.,
2017; Yuan et al., 2017) encoded answer loca-
tion information using an annotation vector cor-
responding to the answer word positions. (Zhou
et al., 2017) utilized rich features of the passage
including answer positions. (Subramanian et al.,
2017) deployed a two-stage neural model that de-
tects key phrases and subsequently generates ques-
tions conditioned on them. (Yuan et al., 2017)
combined supervised and reinforcement learning
in the training of their model using policy gradi-
ent techniques to maximize several rewards that
measure question quality. Instead of using an an-
notation vector to tag the answer locations, (Song
et al., 2017) proposed a unified framework for
QG and question answering by encoding both the
answer and the passage with a multi-perspective
matching mechanism.

(Tang et al., 2017; Wang et al., 2017a) proposed
joint models to address QG and question answer-
ing together. (Duan et al., 2017) conducted QG for
improving question answering. Due to the mixed
objectives including question answering, their ap-
proaches’ performance on QG were lower than the
state-of-the-art results.

6 Conclusion and Future Work
In this paper, we proposed a new sequence to
sequence network which contains a gated self-

3908



attention encoder and a maxout pointer decoder
to address the answer-aware QG problem for long
text input. We demonstrated the model can ef-
fectively utilize paragraph-level context, and out-
performed the results with sentence-level con-
text. The new model exceeded state-of-the-art ap-
proaches with either paragraph or sentence inputs.

We would like to discuss some potential chal-
lenges when applying the QG model in practice.
1) Answer spans aren’t provided as input. One
straight-forward method is to extract entities or
noun phrases and use them as potential answer
spans. A neural entity selection model can also be
leveraged to extract good answer candidates to im-
prove the precision as proposed in (Subramanian
et al., 2017). 2) An input passage does not contain
any eligible answers. In such case, we do not ex-
pect the model to output valid questions. We could
remove questions with low generation probability,
while a better approach could be running entity se-
lection or quality detection model before question
generation step to eliminate ineligible passages. 3)
An answer could be shared by different questions.
We could output multiple questions using beam
search. However, beam search does not guaran-
tee to output diversified candidates. We would
need to explicitly model diversity among candi-
dates during generation, for example, leveraging
the approach described in (Li and Jurafsky, 2016).

Our future work lands in the following direc-
tions: incorporate rich features, such as POS
and entity, in input passages; directly optimize
sequence-level metrics with policy gradient; re-
lax the constraint on answer to accept abstractive
answers; jointly model question generation and
question answering; ask multiple questions simul-
taneously with diverse perspectives.
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Abstract

We present Spider, a large-scale complex and
cross-domain semantic parsing and text-to-
SQL dataset annotated by 11 college stu-
dents. It consists of 10,181 questions and
5,693 unique complex SQL queries on 200
databases with multiple tables covering 138
different domains. We define a new complex
and cross-domain semantic parsing and text-
to-SQL task so that different complicated SQL
queries and databases appear in train and test
sets. In this way, the task requires the model
to generalize well to both new SQL queries
and new database schemas. Therefore, Spi-
der is distinct from most of the previous se-
mantic parsing tasks because they all use a
single database and have the exact same pro-
gram in the train set and the test set. We ex-
periment with various state-of-the-art models
and the best model achieves only 9.7% ex-
act matching accuracy on a database split set-
ting. This shows that Spider presents a strong
challenge for future research. Our dataset and
task with the most recent updates are pub-
licly available at https://yale-lily.
github.io/seq2sql/spider.

1 Introduction

Semantic parsing (SP) is one of the most important
tasks in natural language processing (NLP). It re-
quires both understanding the meaning of natural
language sentences and mapping them to mean-
ingful executable queries such as logical forms,
SQL queries, and Python code.

Recently, some state-of-the-art methods with
Seq2Seq architectures are able to achieve over
80% exact matching accuracy even on some com-
plex benchmarks such as ATIS and GeoQuery.
These models seem to have already solved most
problems in this field.

However, previous tasks in this field have a sim-
ple but problematic task definition because most of
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Figure 1: Our corpus annotates complex questions and
SQLs. The example contains joining of multiple tables,
a GROUP BY component, and a nested query.

these results are predicted by semantic “matching”
rather than semantic parsing. Existing datasets for
SP have two shortcomings. First, those that have
complex programs (Zelle and Mooney, 1996; Li
and Jagadish, 2014; Yaghmazadeh et al., 2017a;
Iyer et al., 2017) are too small in terms of num-
ber of programs for training modern data-intensive
models and have only a single dataset, meaning
that the same database is used for both training
and testing the model. More importantly, the num-
ber of logic forms or SQL labels is small and
each program has about 4-10 paraphrases of nat-
ural language problem to expand the size of the
dataset. Therefore, the exact same target programs
appear in both the train and test sets. The mod-
els can achieve decent performances even on very
complex programs by memorizing the patterns of
question and program pairs during training and de-
coding the programs exactly the same way as it
saw in the training set during testing. Finegan-
Dollak et al. (2018) split the dataset by programs
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so that no two identical program would be in both
the train and test sets. They show that the models
built on this question-splitting data setting fail to
generalize to unseen programs. Second, existing
datasets that are large in terms of the number of
programs and databases such as WikiSQL (Zhong
et al., 2017) contain only simple SQL queries and
single tables. In order to test a model’s real se-
mantic parsing performance on unseen complex
programs and its ability to generalize to new do-
mains, an SP dataset that includes a large amount
of complex programs and databases with multiple
tables is a must.

However, compared to other large, realistic
datasets such as ImageNet for object recognition
(Deng et al., 2009) and SQuAD for reading com-
prehension (Rajpurkar et al., 2016), creating such
SP dataset is even more time-consuming and chal-
lenging in some aspects due to the following rea-
sons. First, it is hard to find many databases
with multiple tables online. Second, given a
database, annotators have to understand the com-
plex database schema to create a set of questions
such that their corresponding SQL queries cover
all SQL patterns. Moreover, it is even more chal-
lenging to write different complex SQL queries.
Additionally, reviewing and quality-checking of
question and SQL pairs takes a significant amount
of time. All of these processes require very spe-
cific knowledge in databases.

To address the need for a large and high-quality
dataset for a new complex and cross-domain se-
mantic parsing task, we introduce Spider, which
consists of 200 databases with multiple tables,
10,181 questions, and 5,693 corresponding com-
plex SQL queries, all written by 11 college stu-
dents spending a total of 1,000 man-hours. As
Figure 1 illustrates, given a database with multiple
tables including foreign keys, our corpus creates
and annotates complex questions and SQL queries
including different SQL clauses such as joining
and nested query. In order to generate the SQL
query given the input question, models need to un-
derstand both the natural language question and
relationships between tables and columns in the
database schema.

In addition, we also propose a new task for
text-to-SQL problem. Since Spider contains 200
databases with foreign keys, we can split the
dataset with complex SQL queries in a way that
no database overlaps in train and test, which over-

comes the two shortcomings of prior datasets, and
defines a new semantic parsing task in which the
model needs to generalize not only to new pro-
grams but also to new databases. Models have to
take questions and database schemas as inputs and
predict unseen queries on new databases.

To assess the task difficulty, we experiment with
several state-of-the-art semantic parsing models.
All of them struggle on this task. The best model
achieves only 9.7% exact matching accuracy in the
database split setting. This suggests that there is a
large room for improvement.

2 Related Work and Existing Datasets

Several semantic parsing datasets with different
queries have been created. The output can be in
many formats, e.g., logic forms. These datasets
include ATIS (Price, 1990; Dahl et al., 1994), Geo-
Query (Zelle and Mooney, 1996), and JOBS (Tang
and Mooney, 2001a). They have been studied ex-
tensively (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Wong and Mooney, 2007; Das
et al., 2010; Liang et al., 2011; Banarescu et al.,
2013; Artzi and Zettlemoyer, 2013; Reddy et al.,
2014; Berant and Liang, 2014; Dong and Lapata,
2016). However, they are domain specific and
there is no standard label guidance for multiple
SQL queries.

Recently, more semantic parsing datasets using
SQL as programs have been created. Iyer et al.
(2017) and Popescu et al. (2003a) labeled SQL
queries for ATIS and GeoQuery datasets. Other
existing text-to-SQL datasets also include Restau-
rants (Tang and Mooney, 2001b; Popescu et al.,
2003a), Scholar (Iyer et al., 2017), Academic
(Li and Jagadish, 2014), Yelp and IMDB (Yagh-
mazadeh et al., 2017b), Advising (Finegan-Dollak
et al., 2018), and WikiSQL (Zhong et al., 2017).
These datasets have been studied for decades in
both the NLP community (Warren and Pereira,
1982; Popescu et al., 2003b, 2004; Li et al., 2006;
Giordani and Moschitti, 2012; Wang et al., 2017;
Iyer et al., 2017; Zhong et al., 2017; Xu et al.,
2017; Yu et al., 2018; Huang et al., 2018; Wang
et al., 2018; Dong and Lapata, 2018; McCann
et al., 2018) and the Database community (Li and
Jagadish, 2014; Yaghmazadeh et al., 2017b). We
provide detailed statistics on these datasets in Ta-
ble 1.

Most of the previous work train their models
without schemas as inputs because they use a sin-
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gle database for both training and testing. Thus,
they do not need to generalize to new domains.
Most importantly, these datasets have a limited
number of labeled logic forms or SQL queries.
In order to expand the size of these datasets and
apply neural network approaches, each logic form
or SQL query has about 4-10 paraphrases for the
natural language input. Most previous studies fol-
low the standard question-based train and test split
(Zettlemoyer and Collins, 2005). This way, the ex-
act same target queries (with similar paraphrases)
in the test appear in training set as well. Utiliz-
ing this assumption, existing models can achieve
decent performances even on complex programs
by memorizing database-specific SQL templates.
However, this accuracy is artificially inflated be-
cause the model merely needs to decide which
template to use during testing. Finegan-Dollak
et al. (2018) show that template-based approaches
can get even higher results. To avoid getting this
inflated result, Finegan-Dollak et al. (2018) pro-
pose a new, program-based splitting evaluation,
where the exact same queries do not appear in
both training and testing. They show that un-
der this framework, the performance of all the
current state-of-the-art semantic parsing systems
drops dramatically even on the same database, in-
dicating that these models fail to generalize to un-
seen queries. This indicates that current studies in
semantic parsing have limitations.

We also want the model to generalize not only
to unseen queries but also to unseen databases.
Zhong et al. (2017) published the WikiSQL
dataset. In their problem definition, the databases
in the test set do not appear in the train or de-
velopment sets. Also, the task needs to take dif-
ferent table schemas as inputs. Therefore, the
model has to generalize to new databases. How-
ever, in order to generate about 90,000 questions
and SQL pairs for about 26,000 databases, Zhong
et al. (2017) made simplified assumptions about
the SQL queries and databases. Their SQL labels
only cover single SELECT column and aggrega-
tion, and WHERE conditions. Moreover, all the
databases only contain single tables. No JOIN,
GROUP BY, and ORDER BY, etc. are included.

Recently, researchers have constructed some
datasets for code generation including IFTTT
(Quirk et al., 2015), DJANGO (Oda et al., 2015),
HEARTHSTONE (Ling et al., 2016), NL2Bash
(Lin et al., 2018), and CoNaLa (Yin et al., 2018).
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Figure 2: The annotation process of our Spider corpus.

These tasks parse natural language descriptions
into a more general-purpose programming lan-
guage such as Python (Allamanis et al., 2015; Ling
et al., 2016; Rabinovich et al., 2017; Yin and Neu-
big, 2017).

3 Corpus Construction

All questions and SQL queries were written and
reviewed by 11 computer science students who
were native English speakers.As illustrated in Fig-
ure 2, we develop our dataset in five steps, spend-
ing around 1,000 hours of human labor in total:
§3.1 Database Collection and Creation, §3.2 Ques-
tion and SQL Annotation, §3.3 SQL Review, §3.4
Question Review and Paraphrase, §3.5 Final Ques-
tion and SQL Review.

3.1 Database Collection and Creation
Collecting databases with complex schemas is
hard. Although relational databases are widely
used in industry and academia, most of them are
not publicly available. Only a few databases with
multiple tables are easily accessible online.

Our 200 databases covering 138 different do-
mains are collected from three resources. First,
we collected about 70 complex databases from dif-
ferent college database courses, SQL tutorial web-
sites, online csv files, and textbook examples. Sec-
ond, we collected about 40 databases from the
DatabaseAnswers1 where contains over 1,000 data
models across different domains. These data mod-
els contain only database schemas. We converted
them into SQLite, populated them using an on-
line database population tool2, and then manu-
ally corrected some important fields so that the ta-
ble contents looked natural. Finally, we created
the remaining 90 databases based on WikiSQL.
To ensure the domain diversity, we select about
500 tables in about 90 different domains to cre-
ate these 90 databases. To create each database,

1http://www.databaseanswers.org/
2http://filldb.info/
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we chose several related tables from WikiSQL
dev or test splits, and then created a relational
database schema with foreign keys based on the
tables we selected. We had to create some inter-
section tables in order to link several tables to-
gether. For most other cases, we did not need to
populate these databases since tables in WikiSQL
are from Wikipedia, which already had real world
data stored.

We manually corrected some database schemas
if they had some column names that did not make
sense or missed some foreign keys. For table and
column names, it is common to use abbreviations
in databases. For example, ‘student id’ might be
represented by ‘stu id’. For our task definition, we
manually changed each column name back to reg-
ular words so that the system only handled seman-
tic parsing issues.

3.2 Question and SQL Annotation
For each database, we ask eight computer science
students proficient in SQL to create 20-50 natu-
ral questions and their SQL labels. To make our
questions diverse, natural, and reflective of how
humans actually use databases, we did not use any
template or script to generate question and SQL
queries. Our annotation procedure ensures the fol-
lowing three aspects.

A) SQL pattern coverage. We ensure that
our corpus contains enough examples for all
common SQL patterns. For each database, we
ask annotators to write SQL queries that cover
all the following SQL components: SELECT
with multiple columns and aggregations, WHERE,
GROUP BY, HAVING, ORDER BY, LIMIT,
JOIN, INTERSECT, EXCEPT, UNION, NOT
IN, OR, AND, EXISTS, LIKE as well as nested
queries. The annotators made sure that each table
in the database appears in at least one query.

B) SQL consistency. Some questions have mul-
tiple acceptable SQL queries with the same re-
sult. However, giving totally different SQL labels
to similar questions can hinder the training of se-
mantic parsing models. To avoid this issue, we
designed the annotation protocol so that all anno-
tators choose the same SQL query pattern if mul-
tiple equivalent queries are possible. More detail
is explained in our appendix.

C) Question clarity. We did not create ques-
tions that are (1) vague or too ambiguous, or (2)

require knowledge outside the database to answer.
First, ambiguous questions refer to the ques-

tions that do not have enough clues to infer which
columns to return and which conditions to con-
sider. For example, we would not ask “What is
the most popular class at University X?” because
the definition of “popular” is not clear: it could
mean the rating of the class or the number of stu-
dents taking the course. Instead, we choose to ask
“What is the name of the class which the largest
number of students are taking at University X?”.
Here, “popular” refers to the size of student en-
rollment. Thus, the “student enrollment” column
can be used in condition to answer this question.
We recognize that ambiguous questions appear in
real-world natural language database interfaces.

We agree that future work needs to address
this issue by having multi-turn interactions be-
tween the system and users for clarification. How-
ever, our main aim here is to develop a corpus to
tackle the problem of handling complex queries
and generalizing across databases, which no ex-
isting semantic parsing datasets could do. More-
over, the low performances of current state-of-the-
art models already show that our task is challeng-
ing enough, without ambiguous questions. In ad-
dition, questions are required to contain the spe-
cific information to return. Otherwise, we don’t
know if class id is also acceptable in the previous
case. Most of questions in the existing seman-
tic parsing datasets are ambiguous. This is not a
big problem if we use one single dataset because
we have enough data domain specific examples
to know which columns are default. However, it
would be a serious problem in cross domain tasks
since the default return values differ cross domain
and people.

Second, humans sometimes ask questions that
require common sense knowledge outside the
given database. For instance, when people ask
“Display the employee id for the employees who
report to John”, the correct SQL is

SELECT employee id
FROM employees
WHERE manager id = (
SELECT employee id
FROM employees
WHERE first name = ‘John’)

which requires the common knowledge that “X
reports to Y” corresponds to an “employee-
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manager” relation. we do not include such ques-
tions and leave them as a future research direction.

Annotation tools We open each database on a
web-based interface powered by the sqlite web3

tool. It allows the annotators to see the schema
and content of each table, execute SQL queries,
and check the returned results. This tool was ex-
tremely helpful for the annotators to write exe-
cutable SQL queries that reflect the true meaning
of the given questions and return correct answers.

3.3 SQL Review
Once the database is labeled with question-query
pairs, we ask a different annotator to check if the
questions are clear and contain enough informa-
tion to answer the query. For a question with
multiple possible SQL translations, the reviewers
double check whether the SQL label is correctly
chosen under our protocol. Finally, the reviewers
check if all the SQL labels in the current database
cover all the common SQL clauses.

3.4 Question Review and Paraphrase
After SQL labels are reviewed, native English
speakers review and correct each question. They
first check if the question is grammatically correct
and natural. Next, they make sure that the question
reflects the meaning of its corresponding SQL la-
bel. Finally, to improve the diversity in questions,
we ask annotators to add a paraphrased version to
some questions.

3.5 Final Review
Finally, we ask the most experienced annotator to
conduct the final question and SQL review. This
annotator makes the final decision if multiple re-
viewers are not sure about some annotation issues.
Also, we run a script to execute and parse all SQL
labels to make sure they are correct.

4 Dataset Statistics and Comparison

We summarize the statistics of Spider and other
text-to-SQL datasets in Table 1. Compared with
other datasets, Spider contains databases with
multiple tables and contains SQL queries in-
cluding many complex SQL components. For
example, Spider contains about twice more
nested queries and 10 times more ORDER BY

3https://github.com/coleifer/
sqlite-web

(LIMIT) and GROUP BY (HAVING) compo-
nents than the total of previous text-to-SQL
datasets. Spider has 200 distinct databases cov-
ering 138 different domains such as college, club,
TV show, government, etc. Most domains have
one database, thus containing 20-50 questions, and
a few domains such as flight information have
multiple databases with more than 100 questions
in total. On average, each database in Spider has
28 columns and 9 foreign keys. The average ques-
tion length and SQL length are about 13 and 21
respectively. Our task uses different databases for
training and testing, evaluating the cross-domain
performance. Therefore, Spider is the only one
text-to-SQL dataset that contains both databases
with multiple tables in different domains and com-
plex SQL queries It tests the ability of a system
to generalize to not only new SQL queries and
database schemas but also new domains.

5 Task Definition

On top of the proposed dataset, we define a text-
to-SQL task that is more realistic than prior work.
Unlike most of the previous semantic parsing or
text-to-SQL tasks, models will be tested on both
different complex SQL queries and different com-
plex databases in different domains in our task. It
aims to ensure that models can only make the cor-
rect prediction when they truly understand the se-
mantic meaning of the questions, rather than just
memorization. Also, because our databases con-
tain different domains, our corpus tests model’s
ability to generalize to new databases. In this way,
model performance on this task can reflect the real
semantic parsing ability.

In order to make the task feasible and to focus
on the more fundamental part of semantic parsing,
we make the following assumptions:

• In our current task, we do not evaluate model
performance on generating values. Predicting
correct SQL structures and columns is more re-
alistic and critical at this stage based on the
low performances of various current state-of-
the-art models on our task. In a real world situ-
ation, people need to double check what condi-
tion values are and finalize them after multiple
times. It is unrealistic to predict condition val-
ues without interacting with users. In reality,
most people know what values to ask but do not
know the SQL logic. A more reasonable way is
to ask users to use an interface searching the
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Dataset # Q # SQL # DB # Domain # Table / DB ORDER BY GROUP BY NESTED HAVING
ATIS 5,280 947 1 1 32 0 5 315 0

GeoQuery 877 247 1 1 6 20 46 167 9
Scholar 817 193 1 1 7 75 100 7 20

Academic 196 185 1 1 15 23 40 7 18
IMDB 131 89 1 1 16 10 6 1 0
Yelp 128 110 1 1 7 18 21 0 4

Advising 3,898 208 1 1 10 15 9 22 0
Restaurants 378 378 1 1 3 0 0 4 0
WikiSQL 80,654 77,840 26,521 - 1 0 0 0 0

Spider 10,181 5,693 200 138 5.1 1335 1491 844 388

Table 1: Comparisons of text-to-SQL datasets. Spider is the only one text-to-SQL dataset that contains both
databases with multiple tables in different domains and complex SQL queries. It was designed to test the ability of
a system to generalize to not only new SQL queries and database schemas but also new domains.

values, then ask more specific questions. Also,
other previous work with value prediction uses
one single database in both train and test which
makes it possible to overfit. However, in our
task, we have different databases of different
domains in train and test.

• As mentioned in the previous sections, we ex-
clude some queries that require outside knowl-
edge such as common sense inference and
math calculation. For example, imagine a ta-
ble with birth and death year columns. To
answer the questions like “How long is X’s
life length?”, we use SELECT death year
- birth year. Even though this example
is easy for humans, it requires some common
knowledge of the life length definition and the
use of a math operation, which is not the focus
of our dataset.

• We assume all table and column names in the
database are clear and self-contained. For ex-
ample, some databases use database specific
short-cut names for table and column names
such as “stu id”, which we manually converted
to “student id” in our corpus.

6 Evaluation Metrics

Our evaluation metrics include Component
Matching, Exact Matching, and Execution Ac-
curacy. In addition, we measure the system’s
accuracy as a function of the difficulty of a query.
Since our task definition does not predict value
string, our evaluation metrics do not take value
strings into account.

We will release the official evaluation script
along with our corpus so that the research com-
munity can share the same evaluation platform.

Component Matching To conduct a detailed
analysis of model performance, we measure the
average exact match between the prediction and
ground truth on different SQL components. For
each of the following components:

• SELECT • WHERE • GROUP BY

• ORDER BY • KEYWORDS (including all
SQL keywords without column names and
operators)

we decompose each component in the prediction
and the ground truth as bags of several sub-
components, and check whether or not these two
sets of components match exactly. To evaluate
each SELECT component, for example, con-
sider SELECT avg(col1), max(col2),
min(col1), we first parse and decompose into
a set (avg, min, col1), (max, col2),
and see if the gold and predicted sets are the same.
Previous work directly compared decoded SQL
with gold SQL. However, some SQL components
do not have order constraints. In our evaluation,
we treat each component as a set so that for ex-
ample, SELECT avg(col1), min(col1),
max(col2) and SELECT avg(col1),
max(col2), min(col1) would be treated
as the same query. To report a model’s overall
performance on each component, we compute F1
score on exact set matching.

Exact Matching We measure whether the pre-
dicted query as a whole is equivalent to the gold
query. We first evaluate on the SQL clauses as de-
scribed in the last section. The predicted query
is correct only if all of the components are cor-
rect. Because we conduct set comparison in each
clause, this exact matching metric can handle the
“ordering issue” (Xu et al., 2017).
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Execution Accuracy4 Since Exact Matching
can create false negative evaluation when the se-
mantic parser generates novel and correct syntax
structures, we also consider Execution Accuracy.
All our databases have executable SQLite files, so
we can measure execution accuracy as well. How-
ever, it is also important to note that Execution
Accuracy can create false positive evaluation as a
predicted SQL could return the same result (for
example, ‘NULL’) as the gold SQL when they are
semantically different. So we can use both to com-
plement each other.

Finally, our evaluation also considers multiple
acceptable keys if JOIN and GROUP are in the
query. For example, suppose “stu id” in one ta-
ble refers to “stu id” in another table, GROUP BY
either is acceptable.

SQL Hardness Criteria To better understand
the model performance on different queries, we
divide SQL queries into 4 levels: easy, medium,
hard, extra hard. We define the difficulty
based on the number of SQL components, selec-
tions, and conditions, so that queries that contain
more SQL keywords (GROUP BY, ORDER BY,
INTERSECT, nested subqueries, column selec-
tions and aggregators, etc) are considered to be
harder. For example, a query is considered as hard
if it includes more than two SELECT columns,
more than two WHERE conditions, and GROUP
BY two columns, or contains EXCEPT or nested
queries. A SQL with more additions on top of that
is considered as extra hard. Figure 3 shows exam-
ples of SQL queries in 4 hardness levels.

7 Methods

In order to analyze the difficulty and demonstrate
the purpose of our corpus, we experiment with
several state-of-the-art semantic parsing models.
As our dataset is fundamentally different from the
prior datasets such as Geoquery and WikiSQL,
we adapted these models to our task as follows.
We created a ‘big’ column list by concatenating
columns in all tables of the database together as
a input to all models. Also, for each model, we
limit the column selection space for each question
example to all column of the database which the
question is asking instead of all column names in

4We will provide the results in the later version. Please
check our website for the latest updates on the task
at https://yale-lily.github.io/seq2sql/
spider

What is the number of cars with more than 4 cylinders?

SELECT COUNT(*) 
FROM cars_data 
WHERE cylinders > 4 

For each stadium, how many concerts are there?

SELECT T2.name, COUNT(*) 
FROM concert AS T1 JOIN stadium AS T2
ON T1.stadium_id = T2.stadium_id 
GROUP BY T1.stadium_id

Which countries in Europe have at least 3 car
manufacturers? 

SELECT T1.country_name 
FROM countries AS T1 JOIN continents
AS T2 ON T1.continent = T2.cont_id
JOIN car_makers AS T3 ON
T1.country_id = T3.country 
WHERE T2.continent = 'Europe' 
GROUP BY T1.country_name 
HAVING COUNT(*) >= 3 

What is the average life expectancy in the countries
where English is not the official language? 

SELECT AVG(life_expectancy) 
FROM country 
WHERE name NOT IN  
   (SELECT T1.name 
    FROM country AS T1 JOIN 
    country_language AS T2 
    ON T1.code = T2.country_code 
    WHERE T2.language = "English" 
      AND T2.is_official = "T") 

Easy

Meidum

Hard

Extra Hard

Figure 3: SQL query examples in 4 hardness levels.

the whole corpus.

Seq2Seq Inspired by neural machine translation
(Sutskever et al., 2014), we first apply a basic
sequence-to-sequence model, Seq2Seq. Then, we
also explore Seq2Seq+Attention from (Dong and
Lapata, 2016) by adding an attention mechanism
(Bahdanau et al., 2015). In addition, we include
Seq2Seq+Copying by adding an attention-based
copying operation similar to (Jia and Liang, 2016).

The original model does not take the schema
into account because it has the same schema in
both train and test. We modify the model so that it
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Method Easy Medium Hard Extra Hard All
Example Split

Seq2Seq 24.3% 9.5% 6.3% 1.5% 11.2%
Seq2Seq+Attention (Dong and Lapata, 2016) 31.2% 13.9% 11.6% 3.3% 15.5%

Seq2Seq+Copying 30.0% 12.6% 10.0% 3.3% 14.8%
Iyer et al. (2017) 18.6% 12.0% 9.0% 1.8% 9.8%

SQLNet (Xu et al., 2017) 36.2% 15.6% 7.9% 4.9% 17.4%
TypeSQL (Yu et al., 2018) 48.6% 38.2% 18.1% 19.8% 34.3%

Database Split
Seq2Seq 17.9% 2.7% 1.3% 0.6% 5.4%

Seq2Seq+Attention (Dong and Lapata, 2016) 17.9% 2.9% 1.8% 1.3% 5.7%
Seq2Seq+Copying 15.1% 3.4% 1.0% 1.3% 5.2%
Iyer et al. (2017) 7.9% 2.1% 1.3% 1.1% 3.1%

SQLNet (Xu et al., 2017) 23.7% 5.9% 2.3% 0.3% 8.3%
TypeSQL (Yu et al., 2018) 29.6% 6.1% 2.3% 0.3% 9.7%

Table 2: Accuracy of Exact Matching on SQL queries with different hardness levels.

Method SELECT WHERE GROUP BY ORDER BY KEYWORDS
Example Split

Seq2Seq 25.8% 8.2% 18.9% 13.0% 21.8%
Seq2Seq+Attention 30.0% 11.4% 24.1% 19.3% 22.4%
Seq2Seq+Copying 28.7% 8.7% 24.2% 21.6% 19.7%
Iyer et al. (2017) 19.2% 8.1% 16.1% 9.6% 13.6%

SQLNet 46.1% 32.5% 30.6% 61.4% 77.6%
TypeSQL 68.7% 55.4% 40.5% 67.0% 73.6%

Database Split
Seq2Seq 13.7% 3.7% 3.2% 4.9% 8.9%

Seq2Seq+Attention 14.0% 5.0% 3.2% 6.1% 9.4%
Seq2Seq+Copying 12.0% 2.7% 5.2% 6.9% 6.7%
Iyer et al. (2017) 6.3% 1.9% 3.0% 3.6% 3.5%

SQLNet 24.0% 18.0% 11.8% 47.1% 61.9%
TypeSQL 36.2% 14.7% 6.4% 49.5% 59.4%

Table 3: F1 scores of Component Matching on all SQL queries.

considers the table schema information by passing
a vocabulary mask that limits the model to decode
the words from SQL key words, table and column
names in current database.

(Iyer et al., 2017) Iyer et al. (2017) apply an at-
tention based sequence-to-sequence model similar
to (Luong et al., 2015) to SQL datasets with auto-
matic dataset expansion through paraphrasing and
SQL templates. In addition, they show how user
interactions improve results consistently. In our
case, we did not consider the user interaction part.

SQLNet introduced by (Xu et al., 2017) uses
column attention and employs a sketch-based
method and generates SQL as a slot-filling
task. This fundamentally avoids the sequence-to-
sequence structure when ordering does not mat-
ter in SQL query conditions. Because it is orig-
inally designed for WikiSQL, we also extend its
SELECT and WHERE modules to other compo-

nents.

TypeSQL is the state-of-the-art model on the
WikiSQL task (Yu et al., 2018). It improves upon
SQLNet by proposing a different training pro-
cedure and utilizing types extracted from either
knowledge graph or table content to help model
better understand entities and numbers in the ques-
tion. In our experiment, we use the question type
info extracted from database content. Also, we ex-
tend their modules to other components.

8 Experimental Results and Discussion

We summarize the performance of all models on
our test set including accuracy of exact matching
in Table 2 and F1 scores of component matching
in Table 3. For the final training dataset, we also
select and include 752 queries and 1659 questions
that follow our annotation protocol from six ex-
isting datasets: Restaurants, GeoQuery, Scholar,
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Academic, IMDB, and Yelp. We report results on
two different settings for all models: (1) Exam-
ple split where examples are randomly split into
7862 train, 1831 dev, 2147 test. Questions for the
same database can appear in both train and test. (2)
Database split where 206 databases are randomly
split into 130 train, 36 dev, and 40 test. All ques-
tions for the same database are in the same split.

Overall Performance The performances of
the Seq2Seq-based models including Seq2Seq,
Seq2Seq+Attention, Seq2Seq+Copying, and Iyer
et al. (2017) are very low. However, they are able
to generate nested and complex queries. Thus,
they can get a few hard and extra hard examples
correct. But in the vast majority of cases, they pre-
dict invalid SQL queries with grammatical errors.
The attention and copying mechanisms do not help
much either. In contrast, SQLNet and TypeSQL
that utilize SQL structure information to guide the
SQL generation process significantly outperform
other Seq2Seq model. While they can produce
valid queries, however, they are unable to gener-
ate nested queries or queries with keywords such
as EXCEPT and INTERSECT.

In general, the overall performances of all mod-
els are low, indicating that our task is challenging
and there is still a large room for improvement.

Example Split vs Database Split As discussed
in Section 5, another challenge of the dataset is to
generalize to new databases. To study this, in Ta-
ble 2 and Table 3 we compare model performances
under the two settings. For all models, the perfor-
mance under database split is much lower than that
under example split. In addition, we observe that
all models perform poorly on column selection.
This shows that our dataset presents a challenge
for the model to generalize to new databases.

Complexity of Database Schema In order to
show how the complexity of the database schema
affects model performance, Figure 4 plots the ex-
act matching accuracy as a function of the number
of foreign keys in a database. The performance
decreases as the database has more foreign keys.
The first reason is because the model has to choose
column and table names from many candidates in
a complex database schema. Second, a complex
database schema presents a great challenge for the
model to capture the relationship between differ-
ent tables with foreign keys. It indicates that this
task requires more effective methods to encode the

Figure 4: Exact matching accuracy as a function of the
number of foreign keys.

relation of tables with foreign keys.

9 Conclusion

In this paper we introduce Spider, a large, com-
plex and cross-domain semantic parsing and text-
to-SQL dataset, which directly benefits both NLP
and DB communities. Based on Spider, we define
a new challenging and realistic semantic parsing
task. Experimental results on several state-of-the-
art models on this task suggests plenty space of
improvement.
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Abstract

Generating text from structured data is impor-
tant for various tasks such as question answer-
ing and dialog systems. We show that in at
least one domain, without any supervision and
only based on unlabeled text, we are able to
build a Natural Language Generation (NLG)
system with higher performance than super-
vised approaches. In our approach, we inter-
pret the structured data as a corrupt represen-
tation of the desired output and use a denois-
ing auto-encoder to reconstruct the sentence.
We show how to introduce noise into training
examples that do not contain structured data,
and that the resulting denoising auto-encoder
generalizes to generate correct sentences when
given structured data.

1 Introduction

Natural Language Generation (NLG) is the task
of generating text from structured data. Recent
success in Deep Learning motivated researchers
to use neural networks instead of human designed
rules and templates to generate meaningful sen-
tences from structured information. However,
these supervised models work well only when pro-
vided either massive amounts of labeled data or
when restricted to a limited domain. Unfortu-
nately, labeled examples are costly to obtain and
are non-existent for many domains. Conversely,
large amount of unlabeled data are often freely
available in many languages.

A labeled example is given in Table 1. One la-
beled example consists of a set of slot pairs and at
least one golden target sequence. Each slot pair
has a slot name (e.g. ”name”) and a slot value
(e.g. ”Loch Fyne”). In this work, we present
an unsupervised NLG approach that learns its pa-
rameters without the slot pairs on target sequences
only. We use the approach of a denoising auto-
encoder (DAE) (Vincent et al., 2008) to train our

name type food family friendly
Loch Fyne restaurant Indian yes

Table 1: Three possible correct target sequences for the
structured data above: (a) There is an Indian restaurant
that is kids friendly. It is Loch Fyne. (b) Loch Fyne is a
well-received restaurant with a wide range of delicious
Indian food. It also delivers a fantastic service to young
children. (c) Loch Fyne is a family friendly restaurant
providing Indian food.

model. During training, we use corrupt versions
of each target sequence as input and learn to re-
construct the correct sequence using a sequence-
to-sequence network (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Bahdanau et al.,
2015). We show how to introduce noise into the
training data in such a way that the resulting DAE
is capable of generating sentences out of a set of
slot pairs. Taking advantage of using unlabeled
data only, we also incorporate out-of-domain data
into the training process to improve the quality of
the generated text.

2 Network
In all our experiments, we use our in-house
attention-based sequence-to-sequence (seq2seq)
implementation which is similar to Bahdanau
et al. (2015). The approach is based on an encoder-
decoder network. The encoder employs a bi-
directional RNN to encode the input words x =
(x1, ..., xl) into a sequence of hidden states h =
(h1, ..., hl), where l is the length of the input se-
quence. Each hi is a concatenation of a left-to-
right

�!
hi and a right-to-left

 �
hi RNN:

hi =

" �
h i�!
h i

#
=

" �
f (xi,

 �
h i+1)�!

f (xi,
�!
h i�1)

#

where
 �
f and

�!
f are two gated recurrent units

(GRU) proposed by Cho et al. (2014).

3922



Given the encoded h, the decoder predicts the
target sentence by maximizing the conditional log-
probability of the correct output y⇤ = (y⇤

1, ...y
⇤
m),

where m is the length of the target. At each time
t, the probability of each word yt from a target
vocabulary Vy is:

p(yt|h, y⇤
t�1..y

⇤
1) = g(st, y

⇤
t�1, Ht), (1)

where g is a two layer feed-forward neural net-
work over the embedding of the previous target
word y⇤

t�1, the hidden state st, and the weighted
sum of h (Ht).

Before we compute st and Ht, we first covert
st�1 and the embedding of y⇤

t�1 into an intermedi-
ate state s0

t with a GRU u as:

s0
t = u(st�1, y

⇤
t�1). (2)

Then we have st as:

st = q(s0
t, Ht) (3)

where q is a GRU, and the Ht is computed as:

Ht =

"Pl
i=1 (↵t,i ·

 �
h i)Pl

i=1 (↵t,i ·
�!
h i)

#
, (4)

The attention weights, ↵ in Ht, are computed with
a two layer feed-forward neural network r:

↵t,i =
exp{r(s0

t, hi)}Pl
j=1 exp{r(s0

t, hj)}
(5)

3 Unsupervised Approach

Our unsupervised model is based on the same
training idea as a denoising auto-encoder (DAE)
similar to Vincent et al. (2008). The original DAEs
were feedforward nets applied to (image) data.
In our experiments, the model architecture is a
seq2seq model similar to Bahdanau et al. (2015).
The idea of a DAE is to train a model that is able
to reconstruct each training example from a par-
tially destroyed input. This is done by first cor-
rupting each training sequence xi to get a partially
destroyed version x̃i.

In our unsupervised experiments, we generate
the training data with the following corrupting
process, parameterized by the desired percentage
p of deletion: for each target sequence xi, a fixed
percentage p of words are removed at random,
while the others are left untouched. We sample
a new corrupt version x̃i in each training epoch.

Instead of always removing a fixed percentage of
words, we sample p for each sequence separately
from a Gaussian distribution with mean p = 0.6
and variance 0.1. We chose p = 0.6 based on the
average length ratio between the slot values and
the target sequences in our labeled training data.

This corruption approach is motivated by the
fact that many NLG problems are facing a simi-
lar task to the one the DAE is solving. Given some
structured information, the task is to generate a tar-
get sequence that includes all the information. If
we map the structured information to phrases that
should be in the desired output, then the structured
data problem resembles the DAE problem. For in-
stance, if we have the following structured exam-
ple: name: Aromi - family friendly: yes! Aromi
has a family friendly atmosphere. , we convert it
into the input Aromi family friendly that we can
feed to the DAE. To preprocess the structured data,
we convert the boolean feature family friendly into
a meaningful phrase (”family friendly”) by using
the slot name. For all non boolean slot pairs,
we just use the slot values as meaningful phrases.
Please keep in mind this transformation is only
needed during inference as the training data has
no slot pairs and only consists of pairs of corrupt
and correct target sequences.

Nevertheless, there are two major differences
between the training procedure of a DAE and an
inference instance in NLG: First, we do not need
to predict any content information in NLG as all
of the content information is already provided by
the structured data. On the other hand, a DAE
training instance can also remove content words
from the sentence. To align the two much closer,
we restrict the words which the DAE is allowed
to remove and apply the following heuristic to the
corruption process of the DAE: Given the absolute
counts N(vi) for each word vi in our vocabulary,
we only allow vi to be removed when its count
N(vi) is larger than a threshold. This heuristic
is motivated by the fact that the corpus frequency
of content words like a restaurant name is most
likely low and the corpus frequency of non-content
words like ”the” is most likely high. The corpus
frequencies can be either calculated on the train-
ing data itself or on a different corpora. The latter
one has the advantage that domain specific content
words that are frequent in the training data will
have a low frequency in an out-of-domain corpora.

The second difference is that in a DAE training
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original Loch Fyne is a family friendly restaurant providing Indian food .
(a) remove random 60% Fyne is restaurant food .

(b) remove only words wi Loch Fyne family friendly Indianwith N(wi) > 100
(c) shuffle words family friendly Indian Loch Fyne

Table 2: Training data generation heuristics. (a): random 60% of the words are removed. (b): 60% of the words
are removed, but only words that occur more than 100 times in the training data. Our assumption is that these are
the non-content words. (c): On top of (b), all words are shuffled while keeping all word pairs (e.g. Loch Fyne)
together that also occur in the original sentence.

instance, the words in a corrupt input occur in the
same order as in the desired target. For an NLG
inference instance, the order of the structured in-
put does not need to match the order of the words
in the output. To overcome this issue, we shuf-
fle the words within the corrupt sentence while not
splitting bigrams that also exist in the original sen-
tence. An example of all three heuristics is given
In Table 2.

4 Supervised Approach
For comparison, we train a supervised baseline
based on the vanilla seq2seq model as described
in Section 2. To make better use of the structured
data, we found that the input word embeddings
(wemb) of the seq2seq network should be repre-
sented together by the slot name and value. We
split the word embedding vector into two parts and
use the upper half for a word embedding of the slot
name and the lower half for the word embedding
of the slot value. If a slot value has multiple words,
we build separate word embeddings for each word,
but all having the same upper part (slot name). An
example for the slot pairs of Table 1 is given in
Figure 1.

Wemb
(name)

Wemb
(Loch)

Wemb
(name)

Wemb
(Fyne)

Wemb
(type)

Wemb
(rest.)

Wemb
(food)

Wemb
(Indian)

Wemb
(fam_
friend)

Wemb
(yes)

Figure 1: Example input word embeddings for our su-
pervised baseline (Section 4) from the training Exam-
ple of Table 1. The upper half of the word embedding
is used for the slot names; the lower half for the slot
values.

5 Data Sets
The E2E data set (Novikova et al., 2017) contains
reviews in the restaurant domain. Given up to 8

different pieces of information about a restaurant,
the task is to generate an English sentence that in-
cludes all of the provided structured information.
The dataset comes with 42061 training examples.
We split the provided dev set (547 examples) into
validation (tail 268 examples) and test (head 279
examples), each having between 3 and 42 (on av-
erage 8) reference sentences. An example of an
E2E training instance is given in Table 1.

The news-commentary data set is a paral-
lel corpus of news provided by the WMT con-
ference (Bojar et al., 2017) for training ma-
chine translation (MT) systems. For our unsu-
pervised experiments, we use the English news-
commentary part of the corpora only which con-
tains 256,715 sentences.

All corpora are tokenized and we remove sen-
tences that are longer than 60 tokens. In addition
to tokenization, we also apply byte-pair encoding
(Sennrich et al., 2016) when news-commentary
is included in the setup.

dataset task # examples
E2E NLG 42,061
news-commentary MT (De-En) 256,715

Table 3: Training data statistics. Each training instance
in NLG contains structured information and one refer-
ence sequence. Each training instance in MT contains
one sentence written in both German and English.

6 Experiments

6.1 Model Parameters
For all of our experiments we utilize the seq2seq
implementation as described in Section 2. We run
inference with a beam size of 5. We use a hid-
den layer size of 1024 and a word embedding size
of 620 and use SGD with an initial learning rate
of 0.5. We halve the learning rate every other
epoch starting from the 5th epoch. We evaluate the
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generated text with BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), and NIST (Doddington,
2002) and use the evaluation tool provided by the
E2E organizers to calculate the scores.

6.2 Automatic Scores

Our experimental results are summarized in Ta-
ble 4. We list two supervised baselines: The first
one is from the organizers of the E2E challenge,
the second one is from our supervised setup (Sec-
tion 4). Our baseline yields better performance on
BLEU and ROUGE-L while reaching similar per-
formance in NIST. Our third (unsupervised) base-
line copy input just runs the evaluation metrics
on the input (slot values of the structured data).
This system performs much worse, but serves as a
lower bound for our unsupervised experiments.

We report results on different unsupervised se-
tups as described in Section 3. The system ran-
domly drop just randomly drops 60% of the words,
but still yields 57.3 BLEU, 65.9 ROUGE-L and 7.3
NIST points. You can easily detect a lot of extra in-
formation in the output that can not be explained
by the structured input. Further, the output sounds
very machine generated as the output depends on
the order of the structured data. The heuristics +
only words w/ count >100 (on ind data) and +
only words w/ count >100 (on ood data) forbid
removing words in the corruption phase that ap-
pear less than 100 times in the in-domain data or
out-of-domain (ood) data, respectively. The lat-
ter setup uses the out-of-domain data for generat-
ing the word counts only and yields an improve-
ment of 5.2 BLEU, 1.3 ROUGE-L and 0.2 NIST
points compared to just randomly dropping words.
The output still sounds very machine generated,
but stops hallucinating additional information. We
further improve the performance by 3.5 BLEU, 3.9
ROUGE-L, and 0.2 NIST points when shuffling the
words in the corrupted input and using the out-of-
domain data also as training examples. We use
the English side of the 256,715 sentences from the
news-commentary dataset as out-of-domain data
only. We did not see any further improvements by
adding more out-of-domain training data.

Finally, we build a semi supervised system that
in addition to the unlabeled data includes the la-
beled information for some of the training exam-
ples. For these, we remove the slot names from
the structured data and use a concatenation of all
slot values as input to learn the correct output.

By jointly using both unlabeled and labeled data,
we yield an additional improvement of 1.0 BLEU
points compared to our best fully unsupervised
system. In our semi supervised setup, we only
use the slot values as input even for the labeled
examples. This explains the drop in performance
when comparing to the supervised setups. All su-
pervised setups also include the slot names in their
input representation.

6.3 Human Evaluation
In addition to automatic scores, we ran human as-
sessment of the generated text as none of the au-
tomatic metrics correlates well with human judg-
ment (Belz and Reiter, 2006).

To collect human rankings, we presented 3 out-
puts generated by 3 different systems side-by-side
to crowd-workers, who were asked to score each
sentence on a 6-point scale for:

• fluency: How do you judge the overall natural-
ness of the utterance in terms of its grammatical
correctness and fluency?

For the next questions, we presented in addi-
tion to the 3 different system outputs, the struc-
tured representations of each example. We asked
the crowd-worker to score the following two ques-
tions on a 5-point scale:

• all information: How much of the given infor-
mation is mentioned in the text?

• bad/ false information: How much false or ex-
tra information is mentioned in the text?

Each task has been given to three different
raters. Consequently, each output has a separate
score for each question that is the average of 3 dif-
ferent ratings. The human evaluation results are
summarized in Table 5. We included the two su-
pervised baselines and our best unsupervised setup
in the human evaluation. The unsupervised setup
outperforms the supervised setups in fluency. One
explanation is that our unsupervised system in-
cludes additional unlabeled data that can not be
included in a supervised setup. Due to our unsu-
pervised learning approach that all words in the
structured data need to be included in the final out-
put, the unsupervised system did not miss any in-
formation. Further, all three outputs included little
false or wrong information that was not included
in the structured data. All in all the output of the
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setup model BLEU ROUGE-L NIST

supervised baseline E2E challenge (Dušek and Jurcıcek, 2016) 70.2 72.4 8.3
baseline vanilla seq2seq (Section 4) 72.7 75.1 8.3

unsupervised

baseline copy input 27.7 56.4 3.2
randomly drop 57.3 65.9 7.3
+ only words w/ count >100 (on ind data) 59.5 66.4 7.3
+ only words w/ count >100 (on ood data) 62.5 67.2 7.5
+ shuffle pos 64.8 69.4 7.6

+ ood data 66.0 71.1 7.7
semi-supervised + labeled ind data 67.0 72.1 7.8

Table 4: Results on the E2E dataset. The terms ood and ind are abbreviations for out-of-domain and in-domain
respectively. The baseline systems as well as the unsupervised systems that are not labeled with + ood data are
trained on the E2E in-domain training data only.

system fluency all extra/ false
information information

baseline E2E challenge (Dušek and Jurcıcek, 2016) 4.01 4.89 0.05
baseline vanilla seq2seq (Section 4) 4.46 4.91 0.08
unsupervised (random drop + words w/ count >100 (ood data)

4.70† 5.00† 0.05+ shuffle pos + ood data)

Table 5: Human evaluation results: We generated 279 output sequences for each of the 3 listed systems. Each
sequence has been evaluated by 3 different raters and the score is the average of 837 ratings per system. For
each task and sequence, the raters where asked to give a score between 0 and 5. A score of 5 for fluency means
that the text is fluent and grammatical correct. A score of 5 for all information means that all information from
the structured data is mentioned. A score of 0 for extra/ false information means that no information besides the
structured data is mentioned in the sequence. Scores labeled with † are significant better than all other systems
(p < 0.0001).

unsupervised system is better than the two super-
vised systems.

We used approximate randomization (AR) as
our significance test, as recommended by (Rie-
zler and Maxwell, 2005). Pairwise tests between
results in Table 5 showed that our novel unsu-
pervised approach is significantly better than both
baselines regarding fluency and mentioning all in-
formation with the likelihood of incorrectly reject-
ing the null hypothesis of p < 0.0001.

7 Limitations

Our unsupervised approach has two limitations
and is therefore not easily applicable to all NLG
problems or datasets. First, we can only run our
approach for datasets where the input meaning
representation either overlaps with target texts or
we need to generate rules that map the structured
data to target words. Unfortunately, the needed
pattern can be very complicated and the effort of
writing rules can be similar to the one of building
a template based system.

Second, to be able to generate text from struc-
tured data during inference, the original structured
input is converted to an unstructured one by dis-
carding the slot names. This can be problematic
in scenarios where the slot name itself contributes
to the meaning representation, but the slot name
should not be in the target text. For instances
the structured data of a WEBNLG (Gardent et al.,
2017) training example consists of several subject-
predicate-object tuple features. Many of the fea-
tures for one example have the same subject, but
different predicates and objects. But yet in the fi-
nal output, we prefer to have the subject only once.

8 Related Work

8.1 Neural Language Generation
Due to the recent success in Deep Learning, re-
searchers started to use end-to-end systems to
jointly model the traditional separated tasks of
content selection, sentence planning and surface
realization in one system. Recently, RNNs (Wen
et al., 2015b), attention-based methods (Mei et al.,
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2016) or LSTMs (Wen et al., 2015a) were success-
fully applied for the task of NLG. Liu et al. (2018)
introduced a modified LSTM that adds a field gate
into the LSTM to incorporate the structured data.
Further, they used a dual attention mechanism that
combines attention of both the slot names and the
actual slot content. Sha et al. (2017) extended this
approach and integrated a linked matrix in their
model that learns the desired order of the slots in
the target text. Further, Dušek and Jurcıcek (2016)
reranked the n-best output from a seq2seq model
to penalize sentences that miss required informa-
tion or add irrelevant ones. Instead of RNNs, Le-
bret et al. (2016) introduced a neural feed-forward
language model conditioned on both the full struc-
tured data and the structured information of the
previous generated words. In addition, the au-
thors introduced a copy mechanism for boosting
the words given by the structured data.

In contrast to the above mentioned related work,
we train our model in a fully unsupervised fash-
ion. Although, all our experiments have been con-
ducted with the seq2seq model, our unsupervised
approach can be applied on top of all of the dif-
ferent network architectures that are introduced by
the above mentioned papers.

8.2 DAE and Unsupervised Learning

Denoising auto-encoders and unsupervised train-
ing have been applied to various other NLP tasks.
Vincent et al. (2008) introduced denoising one-
layer auto-encoders that are optimized to recon-
struct input data from random corruption. The
outputs of the intermediate layers of these de-
noisers are then used as input features for subse-
quent learning tasks such as supervised classifica-
tion (Lee et al., 2009; Glorot et al., 2011). They
showed that transforming data into DAE repre-
sentations (as a pre-training or initialization step)
gives more robust (supervised) classification per-
formance. Lample et al. (2018) used a denoising
auto-encoder to build an unsupervised Machine
Translation model. Hill et al. (2016) trained a de-
noising auto-encoder on a seq2seq network archi-
tecture for training sentence and paragraph repre-
sentations from the output of the intermediate lay-
ers. They showed that using noise in the encoder
step is helpful to learn a better sentence represen-
tation.

In contrast to the above mentioned related work,
we train a DAE directly on a task and do not

take the intermediate hidden states of a DAE as
sentence representation to help learning a differ-
ent task. Further, none of the related work ap-
plied DAEs on the task of generating sentences
out of structured data. In addition, we modify
the original DAE corruption process by introduc-
ing heuristics that remove non-content words only
to match the input representation of a supervised
NLG training instance.

9 Conclusion

We showed how to train a denoising auto-encoder
that is able to generate correct English sentences
from structured data. By applying several heuris-
tics to the corruption phase of the auto-encoder,
we reach better performance compared to two
fully supervised systems. As no labeled data
is needed in our approach, we further success-
fully improve the quality by incorporating out-of-
domain data into the training phase. We run a hu-
man evaluation for the two supervised baselines
and our best unsupervised setup. We see that the
output of our unsupervised setup not only includes
100% of the structured information, but also out-
performs both supervised baselines in terms of flu-
ency and grammatical correctness.

The unsupervised training scheme gives us the
option to incorporate any unlabeled data. One pos-
sible addition to our approach would be to incor-
porate text in different languages into our system,
so that we can generate the output in any language
from the same structured data.

Our approach is appropriate only for NLG prob-
lems where the goal is to include all the informa-
tion from the structured data in the output. In fu-
ture work, we will focus on the semi-supervised
approach to make the DAE also suitable for prob-
lems where instead of all, only a subset of the
structured information should be included in the
output.
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Abstract

In this paper, we focus on the problem of ques-
tion generation (QG). Recent neural network-
based approaches employ the sequence-to-
sequence model which takes an answer and its
context as input and generates a relevant ques-
tion as output. However, we observe two ma-
jor issues with these approaches: (1) The gen-
erated interrogative words (or question words)
do not match the answer type. (2) The model
copies the context words that are far from
and irrelevant to the answer, instead of the
words that are close and relevant to the an-
swer. To address these two issues, we propose
an answer-focused and position-aware neural
question generation model. (1) By answer-
focused, we mean that we explicitly model
question word generation by incorporating the
answer embedding, which can help generate
an interrogative word matching the answer
type. (2) By position-aware, we mean that we
model the relative distance between the con-
text words and the answer. Hence the model
can be aware of the position of the context
words when copying them to generate a ques-
tion. We conduct extensive experiments to ex-
amine the effectiveness of our model. The ex-
perimental results show that our model signif-
icantly improves the baseline and outperforms
the state-of-the-art system.

1 Introduction

The task of question generation (QG) aims to gen-
erate questions for a given text, and it can benefit
several real applications: (1) In the area of educa-
tion, QG can help generate questions for reading
comprehension materials (Du et al., 2017). (2) QG
can enable the machine to actively ask questions in
a dialogue system. (3) QG can also aid in the de-
velopment of question answering datasets (Duan
et al., 2017). Typically, QG includes two sub-
tasks: (1) what to say, i.e. determining the targets

(e.g. sentences, phrases or words) that should be
asked; (2) how to say, i.e. producing the surface-
form of the question. In this paper, we focus on
the sub-task of surface-form realization of ques-
tions by assuming the targets are given.

Previous work of QG can be classified into two
categories: rule-based and neural network-based.
Compared to the rule-based approach, the neural
network-based approach does not rely on hand-
crafted rules, and it is instead data-driven and
trainable in an end-to-end fashion. The recent re-
lease of large-scale machine reading comprehen-
sion datasets, e.g. SQuAD (Rajpurkar et al., 2016)
and MARCO (Nguyen et al., 2016), also drives the
development of neural question generation.

Recent neural question generation ap-
proaches (Du et al., 2017; Zhou et al., 2017)
employ sequence-to-sequence model that takes
an answer and its context as input and outputs
a relevant question. Zhou et al. (2017) further
enrich the sequence-to-sequence model with rich
features (e.g. answer position and lexical features)
to generate answer focused questions, and incor-
porate copy mechanism that allows to copy words
from the context when generating questions. To
the best of our knowledge, it achieve the best re-
sults on SQuAD dataset so far (Zhou et al., 2017).
In this paper, we implement this approach and
carefully study its generation results. Specifically,
we randomly sample 130 questions generated by
the approach, and manually judge their quality by
comparing them with the references. We find 54
out of 130 questions are ill generated, and we ob-
serve two major issues with the 54 questions: (1)
20 (37.04% errors) questions contain the question
words that do not match the answer type, though
the answer position feature has been incorporated.
Because the model does not pay much attention to
the answer that is a key to question word genera-
tion. Table 1 gives an example. A when-question
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Context: The tax collector who arrested him rose to higher political office , and Thoreau ’s essay
was not published until after the end of the Mexican War.
Answer: the end of the Mexican War
Question generated by the baseline: Why was Thoreau’s essay published ?
Reference: When was Thoreau’s essay published ?

Table 1: A bad case where the generated question word does not match the answer type. A when-question should
be triggered for answer “the end of the Mexican War”, while a why-question is generated by the baseline.

Context: This mechanism is still the leading theory today; however, a second theory suggests that
most cpdna is actually linear and replicates through homologous recombination.
Answer: homologous recombination
Question generated by the baseline: What is the leading theory today ?
Reference: How does the second theory say most cpdna replicates ?

Table 2: A bad case where the model copies the context words far away from and irrelevant to the answer. The
baseline copies “leading theory” that is far away from and unrelated to the answer “homologous recombination”,
but neglects the phrase “second theory” that is close and relevant to the answer.

should be triggered for answer “the end of the
Mexican War” while a why-question is generated
by the model. (2) 11 (20.37% errors) questions
copies the context words that are far from and
irrelevant to the answer, instead of the words that
are close and relevant to the answer. Because the
model is not aware of the positions of context
words. Table 2 gives an example. The baseline
model copies “leading theory” that is far away
from and unrelated to the answer “homologous
recombination”, but neglects the phrase “second
theory” that is close and relevant to the answer.

To address these two issues, we propose an
answer-focused and position-aware neural ques-
tion generation model. (1) By answer-focused,
we mean that we explicitly model question word
generation by incorporating the answer embed-
ding, which can help generate a question word
matching the answer type. (2) By position-aware,
we mean that we model the relative distance be-
tween the context words and the answer. The rela-
tive distance is encoded as position embedding, on
which a position-aware attention is generated. The
position-aware attention help the model copy the
context words that are relatively close and relevant
to the answer. We further conduct extensive exper-
iments on SQuAD and MARCO dataset to exam-
ine the effectiveness of the answer-focused model
and position-aware model, respectively. The ex-
perimental results show that the combination of

our proposed answer-focused model and position-
aware model significantly improves the baseline
and outperforms the state-of-the-art system.

The contributions of this paper can be summa-
rized as follows:
• We analyze the generation results by the state-

of-the-art neural model, and find two major is-
sues with the model: (a) the generated question
words do not match the answer type; (b) the
model copies the context words that are far from
and irrelevant to the answer.

• To deal with these two issues, we propose an
answer-focused and position-aware neural ques-
tion generation model.

• We conduct extensive experiments to examine
the effectiveness of our proposed model.

2 Related Work

Question Generation Previous work of QG can
be classified into two categories: rule-based and
neural network-based. Regardless of the approach
taken, QG usually includes two sub-tasks: (1)
what to say, i.e. selecting the targets that should be
asked. (2) how to say, i.e. formulating the struc-
ture of the question and producing the surface re-
alization. This is similar to other natural language
generation tasks. In this paper, we focus on the
second sub-task, i.e. surface-form realization of
questions by assuming the targets are given.

The rule-based approaches usually include the
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following steps: (1) Preprocess the given text by
applying natural language processing techniques,
including syntactic parsing, sentence simplifica-
tion and semantic role labeling. (2) Identify
the targets that should be asked by using rules
or semantic roles. (3) Generate questions using
transformation rules or templates. (4) Rank the
over generated questions by well-designed fea-
tures (Heilman and Smith, 2009, 2010; Chali and
Hasan, 2015). The major drawbacks of rule-based
approaches include: (1) they rely on rules or tem-
plates that are expensive to manually create; (2)
the rules or templates lack diversity; (3) the targets
that they can deal with are limited.

To tackle the issues of rule-based approaches,
the neural network-based approaches are applied
to the task of QG. The neural network-based ap-
proaches do not rely on hand-crafted rules, and
they are instead data driven and trainable in an
end-to-end fashion. Serban et al. (2016) firstly in-
troduce an encoder-decoder framework with atten-
tion mechanism to generate factoid questions for
the facts (i.e. each fact is a triple composed of a
subject, a predicate and an object) from FreeBase.
Du et al. (2017) introduce sequence-to-sequence
model with attention mechanism to generate ques-
tions for the text from SQuAD dataset, which con-
tains large-scale manually annotated triples com-
posed of question, answer and the context (i.e. the
passage). Zhou et al. (2017) enrich the sequence-
to-sequence model with rich features, e.g. answer
position and lexical features, and incorporate copy
mechanism that allows it to copy words from the
context when generating a question. Their ex-
periments show the effectiveness of the rich fea-
tures and the copy mechanism. Duan et al. (2017)
propose to combine templates and sequence-to-
sequence model. Specifically, they mine question
patterns from a question answering community
and apply sequence-to-sequence to generate ques-
tion patterns for a given text. Tang et al. (2017)
model question answering and question generation
as dual tasks. It helps generate better questions
when training these two tasks together.

In this paper, we observe two major issues with
the exiting neural models: (1) The generated ques-
tion words do not match the answer type, since the
models do not pay much attention to the answers
that are critical to generate question words. (2)
The model copies the context words that are far
from and irrelevant to the answer, instead of the

words that are close and relevant to the answer,
since the models are not aware the positions of
the context words. To address these two issues,
we propose an answer-focused and position-aware
neural question generation model. As to position-
aware models, Zeng et al. (2014); Zhang et al.
(2017) introduce position feature in the task of re-
lation extraction. They apply this feature to en-
code the relative distance to the target noun pairs.
In the task of QG, Zhou et al. (2017) apply BIO
scheme to label answer position, which is a weak
representation of relative distance between answer
and its context words.
Sequence-to-sequence In recent years, the
sequence-to-sequence model has been widely
used in the area of natural language generation,
including the tasks of abstractive text summa-
rization, response generation in dialogue, poetry
generation, etc. Sutskever et al. (2014) propose
a sequence-to-sequence model and apply it
to the task of machine translation. Bahdanau
et al. (2014) introduce attention mechanism to
the sequence-to-sequence model and it greatly
improves the model performance on the task
of machine translation. To deal with the out of
vocabulary issue, several variants of the sequence-
to-sequence model have been proposed to copy
words from source text (Gu et al., 2016; Gulcehre
et al., 2016; Cao et al., 2017; See et al., 2017).

3 Our Models

In this section, we describe the details of our
models. We first describe the baseline model, a
feature-enriched pointer-generator model. Then,
we elaborate the proposed answer-focused model
and position-aware model to deal with the two is-
sues discussed in previous section. Finally, a hy-
brid model is introduced to combine these two
models.

3.1 Baseline (Feature-enriched
Pointer-generator Model)

Our baseline model is an attention-based pointer-
generator model (See et al., 2017) enhanced with
various rich features proposed by (Zhou et al.,
2017). These features include: named entity (NE),
part-of-speech (POS) and answer position in the
embedding layer of the encoder.

The encoder in our baseline is a bidirec-
tional LSTM, which takes the joint embedding
of word, answer position and lexical features
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(NE, POS) as input (w1, w2, ..., wTx) with wi 2
R

dw+da+dn+dp , where Tx is the input length and
dw, da, dn, dp is the dimensionality of word em-
bedding, answer position embedding, NE embed-
ding and POS embedding respectively. It pro-
duces a sequence of hidden states (h1, h2, ..., hTx)
to represent its input, each of which is a concate-
nation of a forward and a backward LSTM repre-
sentation:

hi = [
 �
h i;
�!
h i],

 �
h i = LSTM(wi,

 �
h i+1),

�!
h i = LSTM(wi,

�!
h i�1)

(1)

where
 �
h i,
�!
h i are all dh-dimensional vectors.

The decoder is a unidirectional LSTM condi-
tioned on all encoded hidden states. At decoding
step t, the decoder reads an input word embedding
wt, previous attentional context vector ct�1 and
its previous hidden state st�1 to update its current
hidden state st 2 R

dh :

st = LSTM([wt; ct�1], st�1) (2)

The context vector ct together with an attention
distribution ↵t are generated via attention mecha-
nism (Bahdanau et al., 2014). Attention can be re-
garded as a semantic match between encoder hid-
den states and the decoder hidden state. It de-
scribes how the model spread out the amount it
cares about different encoder hidden states during
decoding. At step t, the context vector ct and the
attention distribution ↵t are calculated as follows:

ct =
TxX

i=1

↵tihi (3)

↵ti = softmax(eti) (4)

eti = vT tanh(W T
h hi + W T

s st + b) (5)

where Wh, Ws, b and v are all trainable parame-
ters.

Our baseline is based on a pointer-generator
framework, which includes two complementary
modes: a generation mode and a copy mode. The
former mode generates words from a given vocab-
ulary as the vanilla sequence-to-sequence model:

Pvocab = softmax (g(st, ct)) (6)

where g(·) is a two-layer feed-forward network
with a maxout internal activation. Pvocab 2 R

|V |

denotes the vocabulary distribution with a vocab-
ulary size of |V |.

The latter mode copies words directly from the
source sequence. As the attention weights already
measure the relevance of each input word to the
partial decoding state, we treat ↵t as the copy
probability i.e. Pcopy(w) = ↵t. Both modes are
switched via a generation probability pgen as fol-
lows:

P (w) = pgenPvocab(w)+(1�pgen)Pcopy(w) (7)

where pgen is computed from the context vector
ct, decoder hidden state st and the decoder input
wt:

pgen = �(f(ct, st, wt)) (8)

f(·) indicates a simple feed-forward neural net-
work that emits a single scalar value. The whole
network is thus trained end-to-end according to the
negative log likelihood loss of target word prob-
ability P (w⇤). In the baseline, we apply BIO
scheme to label answer position, where B,I,O de-
note the begin of an answer, the non-begin of
the answer and the non-answer context words re-
spectively. Besides, we introduce dropout (Sri-
vastava et al., 2014) with maxout (Goodfellow
et al., 2013) to tackle over-fitting problem and pre-
trained global vectors (Glove) for word represen-
tation (Pennington et al., 2014). All these tech-
niques have been verified in their effectiveness in
our model.

3.2 Answer-focused Model
The mismatch between generated question words
and answer type is a major issue in neural ques-
tion generation (NQG). Even though answer is a
key to question word generation, most NQG mod-
els do not focus on answer or weakly emphasis
on it when generating question words. As Ta-
ble 1 shows, a when-question should be triggered
for the answer “the end of the Mexican War”, but
an answer-irrelevant why-question is generated by
the baseline. According to our analysis in Section
1, we discover that nearly 37% bad cases from our
baseline fall into this category. To deal with this
issue, we develop an answer-focused model.

We observe that the generation of question
words is mainly related to the answer and its sur-
rounding words. For example in Table 1, the an-
swer and its context “until after the end of the
Mexican War” already involve the essential infor-
mation to generate a question word “when”. This
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Figure 1: The modules marked with A� and colored yellow describe the answer-focused model, while the ones
marked with P� and colored green describe the position-aware model. In answer-focused model, comparing to
pointer-generator model, we introduce a question word generation mode and generate question words in a restricted
vocabulary of question words. In position-aware model, we incorporate word position embeddings to gain a
position-aware attention for further generation. The hybrid model has two types of attention distribution: position-
aware and non-position-aware attention distribution and two types of context vector accordingly. Question word
distribution is generated from non-position-aware context vector while vocabulary distribution is calculated from
position-aware one.

suggests that the answer and its context can bene-
fit the generation of question words. We also ob-
serve that the number of question words is limited.
Therefore, we introduce a specific vocabulary of
question words to directly and explicitly model the
generation of question words.

As depicted in Figure 1, comparing to pointer-
generator model, we introduce an additional ques-
tion word generation mode to generate question
words based on a restricted vocabulary of ques-
tion words. This mode produces a question word
distribution based on an answer embedding vans,
the decoder state st and the context vector ct:

Pquestion word = softmax (g(vans, st, ct)) (9)

where Pquestion word is a |Vqw|-dimensional prob-
ability distribution, and |Vqw| is the size of vocab-
ulary of question words. We employ the encoded
hidden state at the answer start position as the an-
swer embedding, i.e. vans = hanswer start. We
argue that under bidirectional encoding, this an-
swer embedding has already memorized both the
left and the right contexts around the answer re-

gion, making it a desired choice. To control the
balance among different modes, we introduce a 3-
dimensional switch probability:

pgenv, pgenq, pcopy = softmax(f(ct,st,wt)) (10)

The final probability distribution is calculated via
a weighted sum of the three mode probability dis-
tributions:

P (w) = pgenvPvocab(w) + pcopyPcopy(w)

+ pgenqPquestion word(w)
(11)

3.3 Position-aware Model
Another main issue of NQG is that the generated
question copies the context words that are distant
from and irrelevant to the answer, instead of the
words that are close and relevant to the answer. In
other words, attention is distracted by irrelevant
words far away from the answer. As shown in
Table 2, the baseline model copies “leading the-
ory” that are far away from and unrelated to the
answer “homologous recombination”, but neglects
the words “second theory” and “linear and repli-
cates through” that are closer to the answer. In
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Section 1, we analyze the bad cases of our base-
line, and find that about 20% suffer from this phe-
nomenon. Further analysis on these cases indi-
cates that the closer a word is to the answer, the
more likely it should be copied.

Based on these evidences, we believe that an
important reason for the above phenomenon lies
in the lack of word position information inside the
NQG model. Following this direction, we propose
a position-aware model. The model aims at en-
forcing local attention, and adapting the attention
weights so as to put more emphasis on answer-
surrounded context words by incorporating word
position embeddings.

A straightforward solution to inject position
information is to directly incorporate relative
word position embeddings. This can inform the
model where the answer is and what context
words are close to it. As depicted in Figure 1,
we achieve this by feeding position embeddings
(dp1 , dp2 , ..., dpTx

) into the computation of atten-
tion distribution through a single layer network:

eti = vT tanh(Wddpi +Whhi +Wsst + b) (12)

↵ti = softmax(eti) (13)

where pi is the relative distance between the i-th
word and the answer, dpi is the embedding of pi,
which we call word position embedding. By opti-
mizing the attention parameters, our model is ex-
pected to discover the correlation between target
words and their relative distance from the answer.
As a result, distracted attention on irrelevant input
words can be avoided.

3.4 A Hybrid Model (Answer-focused and
Position-aware)

In Section 3.2 and 3.3, we describe the answer-
focused model and position-aware model respec-
tively. In this section, we combine these two
models to get a both answer-focused and position-
aware hybrid model. As depicted in Figure 1, the
hybrid model generates two types of attention dis-
tribution: position-aware and non-position-aware
distribution. Accordingly, the model has two
types of context vector: position-aware and non-
position-aware context vector. At time step t, we
calculate position-aware attention distribution ↵0

t

as equation (12), (13), and non-position-aware one

↵t as equation (4), (5). And we use ct, c0
t to repre-

sent non-position-aware and position-aware con-
text vector calculated as equation (3) respectively.

The hybrid model has three modes as in the
answer-focused model. The question word dis-
tribution is computed from non-position-aware at-
tention distribution as equation (9), while vocabu-
lary distribution is calculated from position-aware
one. The final distribution is weighted sum of the
three mode probability distributions:

Pvocab = softmax
�
g(st, c

0
t))

�
(14)

P (w) = pgenvPvocab(w) + pcopyPcopy(w)

+ pgenqPquestion word(w)
(15)

where Pcopy(w) is the position-aware attention
distribution ↵0

t.

4 Experiments

4.1 Experiment Settings
Dataset In this paper, we conduct the experiments
on SQuAD and MARCO. Since the test sets of
both data sets are not publicly available, we follow
Zhou et al. (2017) to randomly split the develop-
ment set into two parts and use them as the devel-
opment set and test set for the task of question gen-
eration. In SQuAD, there are 86, 635, 8, 965 and
8, 964 question-answer pairs in our training set,
development set and test set, respectively. We di-
rectly use the extracted features 1 shared by Zhou
et al. (2017). In MARCO, there are 74, 097, 4, 539
and 4, 539 question-answer pairs in our training
set, development set and test set, respectively. We
use Stanford CoreNLP 2 to extract lexical features.
We attach all the processed data sets in the supple-
mental materials.
Implementation Details In this paper, we set the
cutoff length of the input sequence as 100 words.
The vocabulary contains the most frequent 20, 000
words in each training set. The vocabulary of
question words contains 20 words. We use the
pre-trained Glove word vectors 3 with 300 dimen-
sions to initialize the word embeddings that will
be further fine-tuned in the training stage. The
representations of answer position feature and lex-
ical features at the embedding layer of the encoder

1https://res.qyzhou.me/redistribute.
zip

2https://nlp.stanford.edu/software/
3http://nlp.stanford.edu/data/glove.

6B.zip
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DataSet SQuAD MARCO
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4
NQG++ (Zhou et al., 2017) - - - 13.29 - - - -
Pointer-generator model See et al. (2017) 32.32 18.04 12.06 8.60 42.40 29.37 20.71 15.16
Feature-enriched pointer-generator model 40.49 26.11 18.94 14.34 44.45 31.85 23.32 17.90
Answer-focused model 42.10 27.52 20.14 15.36 46.59 33.46 24.57 18.73
Position-aware model 42.16 27.37 20.00 15.23 47.16 34.20 24.40 18.19
Hybrid model 43.02 28.14 20.51 15.64 48.24 35.95 25.79 19.45

Table 3: The main experimental results of baselines, answer-focused model, position-aware model and a hybrid
model on SQuAD and MARCO.

are randomly initialized as 32 dimensional vectors
that are trainable during training stage. The hid-
den size of both the encoder and decoder is 512.
We use dropout only in the encoder with a dropout
rate 0.5. The size of answer embedding in answer-
focused model is 512. The position, that indicates
the relative distance between the context words
and the answer, ranges from 0 to 80 and its embed-
ding size in position-aware model is 16. We use
the optimization algorithm Adagrad (Duchi et al.,
2011) with learning rate 0.15, an initial accumu-
lator value of 0.1 and batch size as 64. We use
gradient clipping with a maximum gradient norm
of 2. During training, we select the best model on
development set.
Evaluation Metrics We report BLEU (Papineni
et al., 2002) as the main evaluation metric of the
question generation systems.
Baselines In the experiments, we have three base-
lines for comparisons:
• NQG++ (Zhou et al., 2017) It is the state-

of-the-art neural question generation system
on SQuAD that incorporates rich features to
the embedding layer of a sequence-to-sequence
model and introduces copy mechanism pro-
posed by Gulcehre et al. (2016).

• Pointer-generator model (See et al., 2017) It is
a sequence-to-sequence model with copy mech-
anism that has different architecture from the
one proposed by Gulcehre et al. (2016). We
choose this model since its copy mechanism
shows better performance (See et al., 2017).
Note that we do not enable the coverage mech-
anism in this model to have a fair comparison.

• Feature-enriched pointer-generator model
We add the features to the embedding layer of
the pointer-generator model as described in Sec-
tion 3.1.

4.2 Main Results
Table 3 shows the main results, and we have the
following observations:

• The feature-enriched pointer-generator model
outperforms NQG++. Both of the two models
employ the sequence-to-sequence model with
copy mechanism and the same features. The
major difference between them is that their
copy mechanism has different architecture, and
pointer-generator shows better performance.

• The pointer-generator model without the fea-
tures does not perform well. This verifies the
effectiveness of the features extracted by Zhou
et al. (2017).

• Both answer-focused model and position-aware
model outperform the feature-enriched pointer-
generator model and NQG++. We will analyze
the effectiveness of these two models in the fol-
lowing two sections, respectively.

• The hybrid model shows the best perfor-
mance and it outperforms the two single mod-
els, answer-focused model and position-aware
model.

4.3 Answer-focused Model Analysis
As we discussed in Section 1, one major issue with
the neural question generation model is that the
generated question word does not match the an-
swer type. The design of answer-focused model is
explicitly modeling question word generation by
incorporating answer embedding. It is expected
that the answer-focused model can reduce such er-
rors. Recall the example shown in Table 1 (Section
1). The answer-focused model correctly predicts
the question word, though it copies wrong context
words that can be further corrected by the hybrid
model. The outputs of the answer-focused model
and the hybrid model for the case in Table 1 are as
follows:

• Answer-focused model: When did Thoreau’s
essay come to higher political office ?

• Answer-focused + Position-aware model:
When was Thoreau’s essay published ?

We further evaluate different systems in terms
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of the same question word ratio (SQWR). This
metric measures the ratio of the generated ques-
tions that have the same question words as the ref-
erence. Table 4 shows the SQWR of different sys-
tems on SQuAD. We can see that answer-focused
model outperforms the strong baseline, feature-
enriched pointer-generator model.

Model SQWR
Pointer-generator model (See et al., 2017) 53.17%
Feature-enriched pointer-generator model 71.58%
Answer-focused model 73.91%

Table 4: The answer-focused model has the highest
same question word ratio.

We re-analyze the 20 (37% of errors) questions
(discussed in Section 1) that have the answer type
mismatching problem. Our answer-focused model
can correct 7 out of the 20 bad cases. All the re-
solved cases have a commonality that we can eas-
ily figure out the answer type from the answer it-
self, as the case shown in Table 1. We also analyze
the remaining 13 of the 20 unresolved cases. (1)
4 cases show that the answer type is closely re-
lated to the context words other than the answer.
But these context words are far from the answer,
and the encoding of the answer by LSTM has lit-
tle memory of them. As shown in Table 5, the
answer “an attempt to avoid responsibility for her
actions” is useless to generate a question word
“why”, while the useful context word “because”
is far from the answer. (2) 3 cases show that the
answer itself has ambiguity to generate the right
question words. (3) 3 cases contain the answers
with the wrong named entity labels. (4) 2 cases
contain answers which are out of vocabulary. (5)
1 case is hard even for human.

4.4 Position-aware Model Analysis
As discussed in Section 1, another major issue
with the neural question generation model is that
the model copies the context words that are far
from and irrelevant to the answer. The design
of position-aware model is tackling this issue by
modeling the relative distance between context
words and the answer, so that the attention distri-
bution for copy mechanism will be biased towards
the context words that are close and relevant to
the answer. Recall the example in Table 2 (Sec-
tion 1). The question generated by the baseline
copies the wrong context words “leading theory”
instead of “second theory” and “linear and repli-

Context: This action was upheld because , ac-
cording to the U.S. court of appeals for the first
circuit , her statement suggested a lack of re-
morse , an attempt to avoid responsibility for
her actions , and even a likelihood of repeating
her illegal actions .
Answer: an attempt to avoid responsibility
for her actions
Reference: Why is giving a defiant speech
sometimes more harmful for the individual ?
Question generated by the answer-focused
model: What did the court of appeals reject
?

Table 5: A bad case of baseline remains unresolved by
applying answer-focused model because answer type
is closely related to the context word “because” instead
of the answer itself, but “because” is far from the an-
swer. Thus, the encoding of answer has little memory
of “because”.

cates through”. The outputs of our position-aware
and hybrid model for this case are as follows.

• Position-aware model: The second theory
suggests that most cpdna is actually linear and
replicates through what ?

• Position-aware + Answer-focused model:
Most cpdna is actually linear and replicates
through what ?

We can observe that the model can copy the
correct context words after introducing the posi-
tion embedding to the attention distribution. Fig-
ure 2 illustrates the attention distributions for
copy mechanism before and after introducing po-
sition embedding of context words. We can see
that “second” has much higher probability in the
position-aware attention distribution.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Baseline(Feature-enriched pointer-generator model)

Position-aware model

Answer

Figure 2: The two attention distributions for copy
mechanism when generating questions for the case in
Table 2. The position-aware model emphasizes more
on the “second” that is close to the answer.

The design of position-aware model aims to
help copy the context words close and relevant to
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the answer. We analyze the effects of position-
aware model on copying out of vocabulary (OOV)
words from the source sequence. We measure the
effects from two perspectives: average precision
and average recall. For one generated sequence,
the precision is defined as the ratio of the num-
ber of OOV words appearing in both the gener-
ated question and the reference, and the number of
OOV words in the generated question. The recall
is defined as the ratio of the number of OOV words
appearing in both the generated question and the
reference, and the number of OOV words in the
reference. The average precision (AP) is the mean
of precision of all generated questions, and the av-
erage recall (AR) is the mean of recall of all gen-
erated questions. As Table 6 shows, our position-
aware model can significantly improve the AP and
AR, which indicates our position-aware model can
help on copying OOV.

Model AP AR
Feature-enriched pointer-generator model 21.22% 18.87%
Position-aware model 22.79% 20.62%

Table 6: Our position-aware model can significantly
improve the average precision and recall of copied
OOV.

5 Conclusion

In this paper, we find two major issues with the ex-
isting neural question generation model. To tackle
the two issues, we propose an answer-focused and
position-aware model. We further conduct exten-
sive experiments on SQuAD and MARCO dataset.
The experimental results show that the combina-
tion of our proposed answer-focused model and
position-aware model significantly improves the
baseline and outperforms the state-of-the-art sys-
tem.
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Abstract

Existing text generation methods tend to pro-
duce repeated and “boring” expressions. To
tackle this problem, we propose a new text
generation model, called Diversity-Promoting
Generative Adversarial Network (DP-GAN).
The proposed model assigns low reward for
repeatedly generated text and high reward
for “novel” and fluent text, encouraging the
generator to produce diverse and informative
text. Moreover, we propose a novel language-
model based discriminator, which can better
distinguish novel text from repeated text with-
out the saturation problem compared with ex-
isting classifier-based discriminators. The ex-
perimental results on review generation and di-
alogue generation tasks demonstrate that our
model can generate substantially more diverse
and informative text than existing baselines.1

1 Introduction

Text generation is an important task in Natu-
ral Language Processing (NLP) as it lays the
foundation for many applications, such as dia-
logue generation, machine translation (Ma et al.,
2018b; Xu et al., 2018a), text summarization (Ma
et al., 2018a), and table summarization (Liu et al.,
2017). In these tasks, most of the systems are
built upon the sequence-to-sequence paradigm
(Sutskever et al., 2014), which is an end-to-end
model that encodes a source sentence to a dense
vector and then decodes the vector to a target sen-
tence. The standard training method is based on
Maximum Likelihood Estimation (MLE).

Although being widely applied, the conven-
tional MLE training causes systems to repeatedly
generate “boring” sentences, which usually are ex-
pressions with high frequency (e.g., “I am sorry”

1The code is available at https://github.com/
lancopku/DPGAN

in dialogue generation (Li et al., 2016)). The ma-
jor reason is that MLE encourages the model to
overproduce high-frequency words.2 The over-
estimation of high-frequency words discourages
the model from generating low-frequency but
meaningful words in real data, which makes gen-
erated text tend to be repeated and “boring”.

To tackle this problem, we propose a new model
for diversified text generation, called DP-GAN.
The key idea is to build a discriminator that is re-
sponsible for giving reward to the generator based
on the novelty of generated text. We consider the
text that is frequently generated by the generator
as the low-novelty text and the text that is uncom-
mon in the generated data as the high-novelty text.
Considering most of the real-world sentences are
novel and fluent, we treat the real-world text as
the positive example and the generated text as the
negative example to train the discriminator. Such
training mechanism encourages the discriminator
to give higher reward for the text that looks like
real-world data. The reward is fed back to the
generator, which promotes the generator to gen-
erate diverse and fluent text via policy gradient. In
this framework, a good discriminator that can as-
sign reasonable reward for the generator is a criti-
cal component.

However, directly applying a classifier as the
discriminator like most existing GAN models
(e.g., SeqGAN (Yu et al., 2017)) cannot achieve
satisfactory performance. The main problem is
that the reward given by the classifier cannot re-
flect the novelty of text accurately. First, most
existing classifier-based discriminators take the
probability of a sequence being true as the reward.
When a sentence fits the distribution of real-world

2 For example, the frequency ratios of “the”, “and”, “was”
are 4.2%, 3.2%, 1.5% in real data, and they go up to 7.1%,
4.6%, 5.3% in the MLE generated data on our review gener-
ation task.

3940



text and is far from the generated data, the reward
saturates and scarcely distinguishes the difference
between these novel sentences. For example, for
a sentence A with mildly high novelty and a sen-
tence B with extremely high novelty, the classifier
cannot tell the difference and gives them saturated
reward: 0.997 and 0.998. Second, in our tasks,
we find that a simple classifier can reach very high
accuracy (almost 99%), which makes most gener-
ated text receive reward around zero because the
discriminator can identify them with high confi-
dence. It shows that the classifier also cannot dis-
tinguish the difference between low-novelty text.
The reason for this problem is that the training ob-
jective of the classifier-based GAN is in fact mini-
mizing the Jensen-Shannon Divergence (JSD) be-
tween the distributions of the real data and the gen-
erated data (Nowozin et al., 2016). If the accuracy
of classifier is too high, JSD fails to measure the
distance between the two distributions, and cannot
give reasonable reward to the model for generating
real and diverse text (Arjovsky et al., 2017).

Instead of using a classifier, we propose a novel
language-model based discriminator and use the
output of the language model, cross-entropy, as the
reward. The main advantage of our model lies in
that the cross-entropy based reward for novel text
is high and does not saturate, while the reward for
text with low novelty is small but discriminative.
The analysis of the experimental results shows
that our discriminator can better distinguish novel
text compared with traditional classifier-based dis-
criminators.

Our contributions are listed as follows:

• We propose a new model, called DP-GAN,
for diversified text generation, which assigns
low reward for repeated text and high reward
for novel and fluent text.

• We propose a novel language-model based
discriminator that can better distinguish
novel text from repeated text without the sat-
uration problem.

• The experimental results on review genera-
tion and dialogue generation tasks show that
our method can generate substantially more
diverse and informative text than existing
methods.

2 Related Work

A great deal of attention has been paid to devel-
oping data-driven methods for natural language
dialogue generation. Conventional statistical ap-
proaches tend to rely extensively on hand-crafted
rules and templates, require interaction with hu-
mans or simulated users to optimize parameters, or
produce conversation responses in an information
retrieval fashion. Such properties prevent training
on the large corpora that are becoming increas-
ingly available, or fail to produce novel natural
language responses.

Currently, a popular model for text generation is
the sequence-to-sequence model (Sutskever et al.,
2014; Cho et al., 2014). However, the sequence-
to-sequence model tends to generate short, repet-
itive (Lin et al., 2018), and dull text (Luo et al.,
2018). Recent researches have focused on devel-
oping methods to generate informative (Xu et al.,
2018b) and diverse text (Li et al., 2017, 2016;
Guu et al., 2017; Shao et al., 2017). Reinforce-
ment learning is incorporated into the model of
conversation generation to generate more human-
like speeches (Li et al., 2017). Moreover, there are
also other methods to improve the diversity of the
generated text by using mutual-information, pro-
totype editing, and self attention (Li et al., 2016;
Guu et al., 2017; Shao et al., 2017).

In this paper, to handle this problem, we pro-
pose to use adversarial training (Goodfellow et al.,
2014; Denton et al., 2015; Li et al., 2017), which
has achieved success in image generation (Rad-
ford et al., 2015; Chen et al., 2016; Gulrajani et al.,
2017; Berthelot et al., 2017). However, training
GAN is a non-trivial task and there are some previ-
ous researches that investigate methods to improve
training performance, such as Wasserstein GAN
(WGAN) (Arjovsky et al., 2017) and Energy-
based GAN (EGAN) (Salimans et al., 2016; Gul-
rajani et al., 2017; Zhao et al., 2017; Berthelot
et al., 2017). GAN in text generation has not
shown significant improvement as it has in com-
puter vision. This is partially because text gen-
eration is a process of sampling in discrete space
where the normal gradient descent solution is not
available, which makes it difficult to train. There
are some researches that focus on tackling this
problem. SeqGAN (Yu et al., 2017) incorpo-
rates the policy gradient into the model by treating
the procedure of generation as a stochastic policy
in reinforcement learning. Ranzato et al. (2016)
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Figure 1: Illustration of DP-GAN. Lower: The gener-
ator is trained by policy gradient where the reward is
provided by the discriminator. Upper: The discrimina-
tor is based on the language model trained over the real
text and the generated text.

trains the sequence-to-sequence model with pol-
icy gradient for neural machine translation. Bah-
danau et al. (2017) applies the actor-critic model
on the same task.

3 Diversity-Promoting GAN

The basic structure of our DP-GAN contains a
generator that is responsible for generating text
and a discriminator that discriminates between the
generated text and the real text. The sketch of DP-
GAN is shown in Figure 1.

3.1 Overview

The generator G✓ is based on a sequence-to-
sequence structure. Given a sentence as input, the
generator is capable of generating long text, which
contains multiple sentences of various lengths. To
put it formally, given the input sentence x1:m =
(x1, x2, x3, ..., xm) of m words from �, the vo-
cabulary of words, the model generates the text of
T sentences Y1:T = (y1, ..., yt, ..., yT ), where yt

from ⇤, the set of candidate sentence. The term
yt = (yt,1, ..., yt,K) is the tth sentence, where yt,K

is the Kth word.
The discriminator D� is a language model. The

output of the language model, cross entropy, is de-
fined as the reward to train the generator. Our re-
ward consists of two parts, the reward at the sen-
tence level and that at the word level. With the
discriminator and the reward function, we train the
generator by reinforcement learning. A sketch of
training DP-GAN is shown in Algorithm 1. The
details are described as follows.

Algorithm 1 The adversarial reinforcement learn-
ing algorithm for training the generator G✓ and the
discriminator D�.
1: Initialize G✓ , D� with random weights ✓, �
2: Pre-train G✓ using MLE on a sequence dataset D =

(X, Y )
3: Generate samples using G✓ for training D�

4: Pre-train D� by Eq. (1)
5: N = number of training iterations
6: M = number of training generator
7: K = number of training discriminator
8: for each i = 1, 2, ..., N do
9: for each j = 1, 2, ..., M do

10: Generate a sequence Y1:T ⇠ G✓

11: Compute rewards by Eq. (2) and Eq. (3)
12: Update generator via policy gradient Eq. (5)
13: Sample a sequence Y1:T ⇠ D

14: Compute rewards by Eq. (2) and Eq. (3)
15: Update generator parameters via Eq. (5)
16: end for
17: for each j = 1, 2, ..., K do
18: Generate samples using G✓

19: Train discriminator D� by Eq. (1)
20: end for
21: end for

3.2 Generator
For the concern of real-world applications, this pa-
per assumes that the output of the model can be
long text made up of multiple sentences. In order
to generate multiple sentences, we build a standard
hierarchical LSTM decoder (Li et al., 2015). The
two layers of the LSTM are structured hierarchi-
cally. The bottom layer decodes the sentence rep-
resentation and the top layer decodes each word
based on the output of the bottom layer. The atten-
tion mechanism is used for word decoding (Bah-
danau et al., 2014; Luong et al., 2015).

3.3 Discriminator
Most existing GAN models use a binary classi-
fier as the discriminator. The probability of be-
ing true is regarded as the reward (Li et al., 2016;
Yu et al., 2017). Different from that, we pro-
pose a language-model based discriminator D�

that builds on a unidirectional LSTM. We use the
output of the language model, cross-entropy, as
the reward. Specifically, given a sentence yt, the
cross-entropy based reward for the kth word is cal-
culated as

R(yt,k) = � log D�(yt,k|yt,<k)

We maximize the reward of real-world text and
minimize the reward of generated text to train the
discriminator. The reason of minimizing the re-
ward of generated text is that, we expect the text
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that is repeatedly generated by the generator can
be identified by the discriminator and get lower
reward. The motivation of maximizing the reward
of real-world data lies in that, we expect not only
the uncommon text in the generated data can get
high reward, but also low-quality text can be pun-
ished to some extend. Considering the real-world
text is diverse and fluent, we maximize the reward
of real-world text to encourage the discriminator
to give high reward for the text that looks like the
real-world data. Therefore, such training mecha-
nism avoids the problem of novel but low-quality
text getting high reward. The loss function of the
discriminator is formulated as follows:

J(�) =

� (EY ⇠pdata [R(Y )] � EY ⇠G✓ [R(Y )])
(1)

where R(Y ) stands for the averaged reward of Y .

3.4 Reward
Our reward function consists of two parts, the
sentence-level reward and the word-level reward,
which are illustrated as follows.

3.4.1 Sentence-Level Reward
For a sentence yt of K words, the reward at
the sentence level is the averaged reward of each
word:

R(yt) = � 1

K

KX

k=1

log D�(yt,k|yt,<k) (2)

In contrast, the reward of the existing classifier-
based discriminators (Li et al., 2016; Yu et al.,
2017) is calculated as follows:

R(yt) = D�(true|yt)

where D� is a binary classifier judging how likely
yt is from the real-world data.

The major problem of the classifier-based
discriminator is that the reward cannot reflect
the novelty of text accurately. First, the re-
ward for high-novelty text is easy to saturate,
which scarcely distinguishes the difference be-
tween novel text. Second, we find that the discrim-
inator can easily achieve very high accuracy on
identifying the generated text, which makes most
of them get reward around zero. It shows that the
classifier still cannot tell the difference between
the text with low novelty.

On the contrary, the analysis of experimen-
tal result shows that our proposed discriminator

can better distinguish high-novelty text from low-
novelty text without the saturation problem. The
reward for high-novelty text is high and does not
saturate while the reward for low-novelty text is
small but discriminative.

3.4.2 Word-Level Reward
Considering that the reward for different words in
a sentence yt should be different, we further pro-
pose to use the reward at the word level as follows:

R(yt,k|yt,<k) = � log D�(yt,k|yt,<k) (3)

It can be found that the classifier-based discrim-
inator only provides reward for the finished se-
quence. Thus, for a sequence of length T , to eval-
uate the action-value for a word at the time step
t, Monte Carlo Search (MCS) with a roll-out pol-
icy G✓ is usually applied to sample the unknown
last T � t tokens (Yu et al., 2017). However, this
could be computationally expensive because the
time complexity is O(T 2). On the contrary, our
discriminator can calculate the reward of all words
with the time complexity of O(T ), which is more
computationally efficient.

3.5 Policy Gradient Training
The loss function of the generator (policy) is to
maximize the reward from the start state s0 to the
end state (Sutton et al., 1999):

J(✓) =
TX

t=1

E[Rt,K |st�1, ✓]

=
TX

t=1

X

yt,1

G✓(yt,1|st�1)Q
G✓
D�

(st�1, yt,1)

(4)

where Rt,K =
PK

k=1 �k�1R(yt)R(yt,k) is the
total reward for a complete sentence, including
both the sentence-level and the word-level re-
wards. The term QG✓

D�
(st�1, yt,1) is estimated by

Rt,1. The term � is the discount rate and st is the
initial state.

In this paper, we use the policy gradient
method (Williams, 1992). The gradient of Eq. (4)
is approximated as follows:

r✓J(✓) '
TX

t=1

KX

k=1

�k�1Rt,kr✓ log G✓(yt,k|yt,<k)
(5)
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where Rt,k =
PK

i=k �i�1R(yt)R(yt,i) is the total
reward starting from step k.

Following previous work (Li et al., 2017), we
also use teacher forcing (Bengio et al., 2015) to
train the generator. In teacher forcing, the decoder
receives the real-world text as input at each time
step. The loss function of teacher forcing is the
same with that of policy gradient training. The
only difference is that the text is generated from
G✓ in policy gradient training but from the real
data in teacher forcing.

4 Experiment

We evaluate DP-GAN on two real-world natu-
ral language generation tasks, review generation
and dialogue generation. We first introduce the
dataset, the training details, the baselines, and the
evaluation metrics. Then, we compare our model
with the state-of-the-art models. Finally, we show
the experimental results and provide the detailed
analysis.

4.1 Datasets

Yelp Review Generation Dataset (Yelp): This
dataset is provided by Yelp Dataset Challenge.3 In
our version of review generation, the model should
generate a paragraph based on a given sentence.
We build a new dataset for this task by splitting
the data into two parts. In each review, we take the
first sentence as the input text, and the following
sentences as the target text. The processed Yelp
dataset contains 1,400K, 400K, and 12K pairs for
training, validation, and testing, respectively.
Amazon Review Generation Dataset (Ama-
zon): This dataset is provided by McAuley and
Leskovec (2013). It consists of review information
of fine foods from Amazon. Like Yelp, we process
this dataset by extracting the first sentence as the
source text and the rest as the target text. The pro-
cessed Amazon dataset contains 400K, 100K, and
12K pairs for training, validation, and testing, re-
spectively.
OpenSubtitles Dialogue Dataset (Dialogue):
This dataset4 is used for dialogue generation. Fol-
lowing previous work, we treat each turn in the
dataset as the target text and the two previous sen-
tences as the source text. We remove the pairs

3https://www.yelp.com/dataset/
challenge

4http://opus.lingfil.uu.se/
OpenSubtitles.php

Yelp Token Dist-1 Dist-2 Dist-3 Dist-S
MLE 151.2K 1.2K 3.9K 6.6K 3.9K
PG-BLEU 131.1K 1.1K 3.3K 5.5K 3.1K
SeqGAN 140.5K 1.1K 3.5K 6.1K 3.6K
DP-GAN(S) 438.6K 1.7K 7.5K 15.7K 10.6K
DP-GAN(W) 271.9K 2.8K 14.8K 29.0K 12.6K
DP-GAN(SW) 406.8K 3.4K 22.3K 49.6K 17.3K
Amazon Token Dist-1 Dist-2 Dist-3 Dist-S
MLE 176.1K 0.6K 2.1K 3.5K 2.6K
PG-BLEU 124.5K 0.6K 1.9K 3.5K 2.3K
SeqGAN 217.3K 0.7K 2.6K 4.6K 3.2K
DP-GAN(S) 467.6K 0.8K 3.6K 7.6K 7.0K
DP-GAN(W) 279.4K 1.6K 8.9K 18.4K 9.6K
DP-GAN(SW) 383.6K 1.9K 11.7K 26.3K 13.6K
Dialogue Token Dist-1 Dist-2 Dist-3 Dist-S
MLE 81.1K 1.4K 4.4K 6.3K 4.1K
PG-BLEU 97.9K 1.2K 3.9K 5.5K 3.3K
SeqGAN 83.4K 1.4K 4.5K 6.5K 4.5K
DP-GAN(S) 112.2K 1.5K 5.2K 8.5K 5.6K
DP-GAN(W) 79.4K 1.9K 7.7K 11.4K 6.0K
DP-GAN(SW) 97.3K 2.1K 10.8K 19.1K 8.0K

Table 1: Performance of the DP-GAN and three base-
lines on review generation and dialogue generation
tasks. Higher is better. DP-GAN(S), DP-GAN(W), and
DP-GAN(SW) represent DP-GAN with only sentence-
level reward, only word-level reward, and combined
reward, respectively. Token represents the number of
generated words. Dist-1, Dist-2, Dist-3, and Dist-S are
respectively the number of distinct unigrams, bigrams,
trigrms, and sentences in the generated text. For exam-
ple, 1.2K in Dist-1 means 1200 distinct unigrams.

whose response is shorter than 5 words. We ran-
domly sample 1,800K, 500K, and 12K turns for
training, validation, and testing, respectively.

4.2 Baselines

We compare the proposed DP-GAN with the fol-
lowing baseline models:
MLE: The generator is a sequence-to-sequence
model. The generator is trained with traditional
MLE.
PG-BLEU: The generator is a sequence-to-
sequence model. It is trained by policy gradient
with the BLEU score of the generated text as the
reward (Bahdanau et al., 2017). The advantage
is that this model can directly optimize the task-
specific score: BLEU.
SeqGAN: Sequence GAN (Yu et al., 2017) uses
a binary classifier as the discriminator. Since it is
originally for unconditional generation, for a fair
comparison, we expand it to the version of condi-
tional generation. We re-implement the generator
by replacing a language model with a sequence-
to-sequence model.
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Yelp Relevance Diversity Fluency All
MLE 1.49 1.73 1.78 1.89
PG-BLEU 1.47 2.59 1.38 2.22
SeqGAN 1.48 2.40 1.54 2.12
DP-GAN 1.32 1.23 1.66 1.51
Amazon Relevance Diversity Fluency All
MLE 1.52 1.81 1.72 1.93
PG-BLEU 1.62 2.48 1.63 2.24
SeqGAN 1.56 2.37 1.40 1.97
DP-GAN 1.31 1.25 1.52 1.50
Dialogue Relevance Diversity Fluency All
MLE 1.19 1.84 1.37 1.87
PG-BLEU 1.13 1.85 1.21 1.75
SeqGAN 1.13 1.71 1.20 1.64
DP-GAN 1.13 1.50 1.30 1.55

Table 2: Results of human evaluation on the three
datasets. The score represents the averaged ranking of
each model and lower is better. All represents the rank-
ing given by annotators based on a comprehensive con-
sideration. It can be seen that DP-GAN results in the
largest improvement in terms of diversity and relevance
while slightly reducing fluency.

4.3 Training Details
For review generation, we set the number of gen-
erated sentences to 6 with the maximum length of
40 words for each generated sentence. Based on
the performance on the validation set, we set the
hidden size to 256, embedding size to 128, vocab-
ulary size to 50K, and batch size to 64 for the pro-
posed model and the baselines. We use the Ada-
grad (Duchi et al., 2011) optimizer with the ini-
tial learning rate 0.1. In adversarial training, the
step for training the generator is 1K, the step for
training the discriminator is 5K. Both the gener-
ator and the discriminator are pre-trained for 10
epochs before adversarial learning. In particular,
for PG-BLEU and SeqGAN, before reinforcement
learning or adversarial learning, we pre-train the
sequence-to-sequence model for 10 epochs like
DP-GAN. For dialogue generation, the settings are
the same with review generation, except that we
set the number of generated sentences to 1 with
the maximum length of 40 words because there is
only one sentence in the response.

4.4 Experimental Results
We conduct two kinds of evaluations in this work,
automatic evaluation and human evaluation. The
details of evaluation results are shown as follows.

4.4.1 Automatic Evaluation
We evaluate the proposed model in terms of sev-
eral metrics that can reflect the diversity. The
results are shown in Table 1. Token represents

the total number of generated words. Dist-
1, Dist-2, Dist-3, and Dist-S are respectively
the number of distinct unigrams, bigrams, tri-
grms, and sentences. DP-GAN(S), DP-GAN(W),
and DP-GAN(SW) represent DP-GAN with only
sentence-level reward, only word-level reward,
and combined reward, respectively. From the re-
sults, it is obvious that the proposed model sub-
stantially outperforms the existing models. PG-
BLEU achieves slightly weaker results compared
with MLE. The reason is that PG-BLEU uses
BLEU score as the reward for reinforcement learn-
ing. However, the BLEU score is low for most
of the generated text. The low reward makes it
hard to learn from the real data. SeqGAN does
not achieve better results, which suggests that the
classifier-based discriminator fails to encourage
the generator to produce diverse text.

In terms of the total number of generated words,
DP-GAN(S) achieves better results than DP-
GAN(W). Since the sentence-level reward reflects
the novelty of the whole sentence, it gives repeated
and short text low reward while novel and longer
text high reward. Thus, the generator is encour-
aged to generate novel text. In terms of the number
of distinct n-grams, DP-GAN(W) achieves better
results than DP-GAN(S). It is because the word-
level reward gives each word more precise score
and novel n-grams could be better encouraged. As
we can see, DP-GAN(SW), which combines the
advantages of sentence-level and word-level re-
wards, generates not only more diverse n-grams
than DP-GAN(S) but also longer text than DP-
GAN(W). Since combining the word-level and
sentence-level rewards achieves better results than
using just one of them, we focus more on the com-
bined reward in the following parts.

In review generation and dialogue generation
tasks, it is a widely debated question how well the
BLEU score against a single reference can reflect
the quality of the generated text (Liu et al., 2016).
Thus, although the proposed model achieves better
BLEU scores compared with baselines, we omit
the detailed comparisons in terms of BLEU for
space.

4.4.2 Human Evaluation
We conduct a human evaluation on the test set.
For all tasks, we randomly extract 200 samples
from the test sets. Each item contains the input
text and the text generated by the different sys-
tems. The items are distributed to three anno-
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Figure 2: Distribution of rewards between SeqGAN and DP-GAN. The upper two sentences are sampled from
the real-world data and the lower two sentences are sampled from the generated data. It is important to note that
the sentence-level reward of DP-GAN is averaged word-level reward and a long sentence does not indicate a high
score. As we can see, the reward distribution of SeqGAN saturates and cannot distinguish the novelty of the text
accurately. In contrast, DP-GAN has a strong ability of resisting reward saturation and can give more precise
reward for text in terms of novelty.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

[1,500] [501,1000] [1001,1500] [1501,2000]

Co
sin

e 
Si

m
ila

rit
y

Word Ranked by Frequency

MLE

DP-GAN

Figure 3: Cosine similarity between the real-world data
distribution and the generated data distributions of var-
ious models. For example, the first column represents
the cosine similarity on top 500 words with the high-
est frequencies in real-world data. As we can see, the
generated data distribution of DP-GAN is closer to the
real-world data distribution, especially considering the
words of low frequency.

tators who have no knowledge about which sys-
tem the text is from. Following the work of Li
et al. (2017), we require them to rank the gener-
ated text considering relevance, diversity, and flu-
ency. It is important to note that all the annotators
have linguistic background. Relevance means that
how likely the generated text is related to the input
text. Diversity means that how much the gener-
ated text provides specific information, rather than
“dull” and repeated information. Fluency means
that how likely the generated text is produced by
human. All represents the ranking given by anno-
tators based on a comprehensive consideration of
all human evaluation metrics. The results of hu-
man evaluation are shown in Table 2. It needs to
be mentioned that in the special case that several
pieces of generated text are exactly the same, they

are given the same ranking. The inter-annotator
agreement is satisfactory considering the difficulty
in the human evaluation. The Pearson’s correla-
tion coefficient is 0.76 on diversity, 0.59 on flu-
ency and 0.27 on relevance, with p < 0.0001.
The p-value is all below 0.001, indicating high
correlation and agreement. Table 2 shows that
DP-GAN brings the largest improvement in terms
of diversity and relevance while scarcely reducing
fluency. First, DP-GAN significantly outperforms
baselines in term of diversity. Second, DP-GAN
achieves the best performance in terms of rele-
vance. Diverse text generated by DP-GAN brings
more specific expressions, increasing the perfor-
mance of relevance. For example, given input
sentence“food is good”, the relevance of “love it,
beef is the best” is obviously better than that of
“love it”. Third, the fluency of DP-GAN is slightly
worse than that of baselines. It is mainly due to the
fact that the text generated by DP-GAN is much
longer. From Table 1, we can see that the number
of words generated by DP-GAN is almost three
times than that of baselines in the Yelp dataset.

4.4.3 Analysis: Why It Works
In this section, we provide detailed analysis to see
why our proposed method works better.

In Figure 2, we demonstrate the reward distri-
butions of our model and SeqGAN. It can be seen
that the reward of SeqGAN cannot reflect the nov-
elty of text accurately. First, when the novelty of
text is relatively high, the reward given by Seq-
GAN saturates and cannot tell the difference be-
tween high-novelty text. Even with different de-
grees of novelty, the two high-novelty sentences
sampled from the true data in the figure get nearly
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Input: One of my favorite places to eat.
MLE: Service is great.
PG-BLEU: Service is always good.
SeqGAN: Love the chicken and waffles. Service is always
great.
DP-GAN: Love the fact that they have a large selection of
food. Service is always great and the food is always fresh.
I’ve been to this place a few times and have never been
disappointed.
Input: Excellent service, clean, nice ambience.
MLE: Food is very good.
PG-BLEU: Food is very good.
SeqGAN: Food is very good.
DP-GAN: I had the chicken and beef and it was delicious.
Food is good and the service is great. I would recommend
this place to anyone who wants to eat here.
Input: I brought friends – seven of them – who’d never
been to a Bar Louie before.
MLE: Food was mediocre, but the service was great. I
will not be returning.
PG-BLEU: Food was terrible. Wouldn’t recommend this
place to anyone.
SeqGAN: Food was just okay. I wouldn’t recommend this
place.
DP-GAN: Ordered a chicken salad with a side of fries, and
it was just ok. Food was good, but the service was slow. I
had to ask for a refill on my drink, and the bartender was
rude. I wouldn’t recommend this place to anyone.
Input: I don’t think it’s too spicy, so i add a little hot curry
spice to the sauce.
MLE: It’s great for cooking. I have to say, I’m not sure if
it is the same.
PG-BLEU: Love it!
SeqGAN: Love it! Love this stuff. I have used it for years
and it is very good.
DP-GAN:I’ve tried many different brands of hot sauces
but this one is the best. I’ve also used it in soups and stews.
I also like that it is organic and has a great flavor.

Table 3: Examples generated by DP-GAN and the
state-of-the-art models on the Yelp dataset. It can
be found that the text generated by baselines is more
generic and repeated, while our model generates text
with more specific details and higher diversity.

the same reward in SeqGAN. Second, most gen-
erated text receives reward around zero because of
the high accuracy of classifier. It is hard for such
reward to distinguish the difference between low-
novelty text. For example, as shown in the fig-
ure, “Both had the brisket and it was delicious”
is much more informative than “Love it!”. The
discriminator of SeqGAN gives them practically
the same reward, while the proposed discriminator
can better distinguish the two sentences in terms of
novelty. In fact, the classifier in SeqGAN trained
for 10 epochs can reach very high accuracy, that
is, 98.35% and 99.63% for Yelp and Amazon, re-
spectively. If the accuracy of classifier is too high,
the classifier cannot give reasonable reward to the
generator for generating real and diverse text (Ar-
jovsky et al., 2017).

In contrast, the language-model based reward
given by DP-GAN better reflect the novelty of the
text. The novel text is given high reward that does
not saturate. The generated data, which can be
less novel, is given relatively low but nonzero re-
ward that can encourage the generator to generate
diverse expressions. The refined reward leads to
more efficient training, thus resulting in better per-
formance.

We also compare the cosine similarity between
the real-world data distribution and the generated
data distributions of various models. Figure 3
shows the results. We calculate the cosine distance
between two vectors, where each element is the
frequency of a word indexed by its rank in real-
world data. For example, the first element in the
vector means the frequency of the word that ranks
first in real-world data. The word frequency vec-
tor is divided into 4 vectors to show the similarity
of words of different frequencies. The distribution
of words are more similar when they occur more
frequently in real-world data. As DP-GAN pro-
motes diversity, words of low frequency in real-
world data are better learned and the similarity is
much better than that of MLE. In all, the generated
data distribution of DP-GAN is closer to the real-
world data distribution in all intervals, especially
considering the words of low frequency.

Table 3 presents the examples generated by dif-
ferent models on the Yelp dataset. It can be found
that the text generated by MLE is more generic
and repeated, while PG-BLEU and SeqGAN do
not perform obviously better than MLE. More-
over, it can be clearly seen that our model gen-
erates text with more specific details and higher
diversity.

5 Conclusions

In this paper, we propose a new model, called DP-
GAN, to promote the diversity of the generated
text. DP-GAN assigns low reward for repeated
text and high reward for novel and fluent text, en-
couraging the generator to produce novel and di-
verse text. We evaluate DP-GAN on two tasks
and the findings are concluded as follows: First,
the proposed method substantially outperforms the
baseline methods in automatic and human evalu-
ations. It shows that DP-GAN is capable of pro-
ducing more diverse and informative text. Second,
the proposed discriminator can better distinguish
novel text from repeated text with the saturation
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problem compared without traditional classifier-
based discriminators. Third, with the improve-
ment of diversity, the generated data distribution
of DP-GAN is closer to the real-world data distri-
bution compared with that of MLE.
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Abstract

There has always been criticism for using n-
gram based similarity metrics, such as BLEU,
NIST, etc, for evaluating the performance of
NLG systems. However, these metrics con-
tinue to remain popular and are recently be-
ing used for evaluating the performance of sys-
tems which automatically generate questions
from documents, knowledge graphs, images,
etc. Given the rising interest in such auto-
matic question generation (AQG) systems, it
is important to objectively examine whether
these metrics are suitable for this task. In
particular, it is important to verify whether
such metrics used for evaluating AQG sys-
tems focus on answerability of the generated
question by preferring questions which con-
tain all relevant information such as question
type (Wh-types), entities, relations, etc. In this
work, we show that current automatic evalua-
tion metrics based on n-gram similarity do not
always correlate well with human judgments
about answerability of a question. To alleviate
this problem and as a first step towards bet-
ter evaluation metrics for AQG, we introduce a
scoring function to capture answerability and
show that when this scoring function is inte-
grated with existing metrics, they correlate sig-
nificantly better with human judgments. The
scripts and data developed as a part of this
work are made publicly available.1

1 Introduction

The advent of large scale datasets for document
Question Answering (QA) (Rajpurkar et al., 2016;
Nguyen et al., 2016; Joshi et al., 2017; Saha et al.,
2018a) knowledge base driven QA (Bordes et al.,
2015; Saha et al., 2018b) and Visual QA (Antol
et al., 2015; Johnson et al., 2017) has enabled the
development of end-to-end supervised models for

1https://github.com/PrekshaNema25/
Answerability-Metric

Document: In 1648 before the term “geno-
cide” had been coined , the Peace of West-
phalia was established to protect ethnic, racial
and in some instances religious groups.
Possible Question: In which year was the
Peace of Westphalia established ?

Table 1: A sample question generated by a human.

QA. However, as is always the case, data-hungry
neural network based solutions could benefit from
even more training data, especially in specific do-
mains which existing datasets do not cater to. Cre-
ating newer datasets for specific domains or aug-
menting existing datasets with more data is a te-
dious, time-consuming and expensive process. To
alleviate this problem and create even more train-
ing data, there is growing interest in developing
techniques that can automatically generate ques-
tions from a given source, say a document (Du
et al., 2017; Du and Cardie, 2017), knowledge
base (Reddy et al., 2017; Serban et al., 2016), or
image (Li et al., 2017) . We refer to this task as
Automatic Question Generation (AQG). For ex-
ample, given the document in Table 1, the task is
to automatically generate a question whose answer
is also contained in the document.

Given the practical importance of AQG and its
potential to influence research in QA, it is not sur-
prising that there has been prolific work in this
field in the past one year itself (Jain et al., 2017;
Li et al., 2017; Zhang et al., 2017; Du et al.,
2017; Duan et al., 2017). Before this field grows
further, it is important that the community criti-
cally examines the current evaluation metrics be-
ing used for this task. In particular, there is a need
to closely examine the utility of existing n-gram
based similarity metrics such as BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,

3950



2009), NIST (Doddington, 2002), etc. which have
been adopted for this task. This work is a first step
in that direction where we propose that apart from
n-gram similarity, any metric for AQG should also
take into account the answerability of the gener-
ated questions. With the help of a few examples
below, we illustrate that answerability depends on
the presence of relevant information such as ques-
tion type (Wh-types), entities, relations, etc, and
it is possible that a generated question has a high
BLEU score but is still unanswerable and hence
not useful.

To begin with, consider the task of answering
questions from a Knowledge Base. Let us as-
sume that the intended (gold standard) question is
“Who was the director of Titanic?” and two differ-
ent AQG systems generate the following questions
“S1: director of Titanic?” and “S2: Who was the
director of?”. Any n-gram based evaluation met-
ric would obviously assign a higher score to S2
(BLEU3: 81.9) than S1 (BLEU3: 36.8). How-
ever, as should be obvious S1 contains all the rele-
vant information, and most humans would be eas-
ily able to understand and answer this question. A
good evaluation metric should capture this notion
of answerability and give more importance to rel-
evant words in the question which brings us to the
question “Which words are relevant?”

The above example might give the impression
that named entities are essential but other words
are not. However, this is misleading and may not
always be the case. For example, consider these
questions over an image: “Are the cats drinking
milk?” v/s “How many cats are drinking milk?”.
These two questions have very different meaning
indicating that even words like are and how are
also crucial. Similarly, consider the task of an-
swering questions from a passage titled “Matt Da-
mon”. In this case, most humans will be able to
answer the question “What is the birth date of”
even though the named entity is missing given that
the passage only talks about “Matt Damon”. Thus,
in some cases, depending on the source (docu-
ment, knowledge base, image) different portions
of the question may be important.

To concretize the intuitions developed with the
help of the above examples, we first collect hu-
man judgments. Specifically, we take questions
from existing datasets for document QA, knowl-
edge base QA and visual QA and add systematic
noise to these questions. We show these questions

to humans and ask them to assign scores to these
questions based on the answerability and hence
the usefulness of these questions (i.e., whether the
question contains enough information for them to
be able to answer it correctly). We also compute
various n-gram similarity metrics (BLEU, ME-
TEOR, NIST) comparing the noisy questions to
the original questions and show that these metrics
do not correlate well with human judgments. Sim-
ilar studies (Callison-Burch et al., 2006; Liu et al.,
2016) have already shown that these metrics do
not correlate well with fluency, adequacy, coher-
ence but in this work, we focus on answerability.

Based on the human evaluations, we propose
to modify existing metrics to focus on answer-
ability in addition to n-gram similarity. The idea
is to make these metrics flexible such that, if
needed, the weight assigned to answerability and
n-gram similarity can be adjusted depending on
the task (document QA, Knowledge-Base QA,
Visual QA). Further, for capturing answerability
we propose additional weights for different com-
ponents of the question (question type, content
words, function words, and named entities) These
weights can be learned from a small amount of hu-
man annotated data and may differ from task to
task.

2 Related Work

We have organized our literature survey into 2
parts: (i) question generation systems (ii) studies
which analyze evaluation metrics used for NLG.

Question Generation: Early work on question
generation used rule-based approaches to gener-
ate questions from declarative sentences (Heilman
and Smith, 2010; Mostow and Chen, 2009; Lind-
berg et al., 2013; Labutov et al., 2015). More
recent works use attention based neural models
for question generation (Du and Cardie, 2017; Du
et al., 2017). Some models (Yuan et al., 2017) feed
the generated questions to a QA system and use
the performance of the QA system as an indica-
tor of the quality of the questions. A few models
(Wang et al., 2017; Tang et al., 2017) treat question
answering (QA) and question generation (QG) as
complementary tasks and focus on jointly training
for these two tasks. Other models focus only on
the performance of the QA task (Yang et al., 2017;
Duan et al., 2017) and not explicitly on the quality
of the generated questions. Apart from generating
questions from text there is also research on gen-
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erating questions from images (Jain et al., 2017;
Li et al., 2017; Zhang et al., 2017) and knowledge
base (Serban et al., 2016; Reddy et al., 2017).

Evaluation metrics for NLG: Current pop-
ular metrics for NLG such as BLEU (Papineni
et al., 2002), METEOR(Lavie and Denkowski,
2009), ROUGE (Lin, 2004) and NIST (Dodding-
ton, 2002) essentially compute the n-gram similar-
ity between the reference sentence and the gener-
ated sentence. Though these metrics are very pop-
ular and are used for a wide range of NLG tasks in-
cluding AQG, there has always been criticism for
using these metrics (for example, see (Callison-
Burch et al., 2006; R et al., 2007; Callison-Burch,
2009)). More recently, there has been criticism
(Liu et al., 2016) for using such metrics for evalu-
ating dialog systems eventually resulting in a new
metric (Lowe et al., 2017). This new metric while
very important, came a bit late in the day and much
after several dialog systems were proposed, evalu-
ated and compared using the above n-gram based
metrics. It is very important to prevent a similar
situation in question generation where many sys-
tems get proposed without evaluating them using
the right metric. Our work is a first step in this di-
rection, and we hope it will lead to more research
in designing the right metrics for AQG.

3 Current Evaluation Metrics

We give a quick overview of the metrics which are
currently used for evaluating AQG systems.

BLEU: BLEU is a precision-based evaluation
metric which considers exact n-gram matches. For
a given value of n, the precision is computed as
the fraction of n-grams in the generated hypothe-
sis which match some n-gram in the reference hy-
pothesis. The final BLEU score is computed as the
geometric mean of the n-gram precisions obtained
by varying n from 1 to N where N is typically 3
or 4. It also contains a brevity penalty to penalize
hypothesis that are too short.

METEOR: As opposed to BLEU, METEOR
uses both precision and recall, i.e., it computes
the fraction of the hypothesis which matches the
reference (precision) as well as the fraction of the
reference which is contained in the hypothesis (re-
call). Further, unlike BLEU which only considers
exact matches, METEOR also considers matches
with stemmed words, synonyms, and paraphrases.
It also gives different weightage to matches cor-
responding to function words and matches corre-

sponding to content words. The final score is the
harmonic mean of the precision and recall calcu-
lated based on these four matches. Additionally,
it also includes a fragmentation penalty to account
for gaps and differences in word order. In effect,
METEOR is a parametric metric where the dif-
ferent parameters, viz., (i) fragmentation penalty,
(ii) weights of different matchers (exact, stemmed,
synonyms, paraphrases) and (iii) weights of func-
tion and content words, are tuned to maximize cor-
relation with human judgments.

NIST: NIST is a variant of the standard BLEU
metric that takes into account the relative impor-
tance of each n-grams in the sentence. In par-
ticular, the metric gives a high weightage to n-
grams which have a lower frequency in the corpus
and hence are more informative as compared to
very frequent n-grams which are less informative.
Further, unlike BLEU which takes the geometric
mean of n-gram precisions, NIST takes the arith-
metic mean of these precisions. Additionally, they
make a small change to the brevity penalty to min-
imize the impact of minor variations in the length
of the hypothesis.

ROUGE: ROUGE is a set of evaluation met-
rics which were proposed in the context of au-
tomatic summarization. Typically, most studies
use ROUGE-L, which is F-measure based on the
Longest Common Subsequence (LCS) between
a candidate and target sentence. Given two se-
quences, a common subsequence is the set of
words which appear in both the sequences in the
same order but unlike n-grams the common subse-
quence does not need to be contiguous. LCS is the
longest of such common subsequences. For exam-
ple, given the sentences candidate:“the boy went
home” and reference:“the boy will go home”, “the
boy home” is the longest common subsequence
even though it is not contiguous.

4 Human Judgments For Answerability

As mentioned earlier, for AQG, in addition to n-
gram similarity, we also need to focus on the an-
swerability of the generated questions. As illus-
trated in Section 1, answerability of a question de-
pends on whether it contains all relevant informa-
tion, such as question type (Wh-types), named en-
tities and content words (often relations). Further,
depending on the task (document QA, knowledge-
base QA or visual QA) the importance of these
words may vary. We perform human evaluations
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to ascertain the importance of each of these com-
ponents across different QA tasks. These evalua-
tions allow us to independently analyze the impor-
tance of each of these components for the 3 QA
tasks. In the remainder of this section, we describe
the (i) process of creating noisy questions (ii) in-
structions given to the evaluators and the (iii) in-
ferences drawn from human evaluations.

4.1 Creating Noisy Questions

We took 1000 questions each from 3 popular QA
datasets, viz., SQuAD, WikiMovies, and VQA.
SQuAD (Rajpurkar et al., 2016) is a reading
comprehension dataset consisting of around 100K
questions based on passages from around 500
Wikipedia articles. The WikiMovies dataset con-
tains around 100K questions which can be an-
swered from a movie knowledge graph containing
43K entities and 9 relations (director, writer, actor,
etc.). The VQA dataset is an image QA dataset
containing 265, 016 images with around 5.4 ques-
tions on average per image.

We then created noisy versions of these ques-
tions using one of the following four methods:

Dropping function words: We refer to the list
of English function words as defined in NLTK
(Loper and Bird, 2002) and drop all such words
from the question. Note that a noisy question with
all function words dropped will have a very low
BLEU score compared to the original question.

Dropping Named Entities: In our setup, iden-
tifying named entities in questions was easy be-
cause the questions were well formed and all
named entities were capitalized. Alternately, we
could have used the Stanford NER. However, on
manual inspection, we found that marking the cap-
italized words as named entities were sufficient.
We randomly dropped at most three named entities
per question. This allows us to study how humans
rate the output of an AQG system which does not
contain the correct named entities.

Dropping Content Words: Words other than
function words and named entities are also cru-
cial for answerability. For example, “Who killed
Jane?” and “Who married Jane?” lead to totally
different answers. The word “killed/married”
is very relevant to ascertain the correct answer.
These words typically capture the relation be-
tween the entities involved (for example, killed
(John, Jane)). We identify such important (con-
tent) words as ones which are neither question

types (7-Wh questions) nor named entities nor
stop-words. This perturbation allows us to study
how humans rate an AQG system which does not
produce the correct content (relation) words.

Changing the Question type: Changing the
question type can lead to a different answer alto-
gether or can make the question incoherent. For
example the answers to “Who killed Jane?” and
“What killed Jane?” are completely different. We
create a noisy question by randomly changing the
type of the question (for example. replace “who”
with “what”). These question types are well de-
fined (7-Wh questions including “how”) and hence
it is easy to identify and replace them. This allows
us to study the importance of correct question type
in the output of an AQG system.

Note that, an alternate way of collecting human
judgments would have been to take the output of
existing AQG systems and ask humans to assign
answerability scores to these questions based on
the presence/absence of the above mentioned rel-
evant information. However, when we asked hu-
man evaluators to analyze 200 questions generated
by an existing AQG system, they reported that the
quality was poor. In particular, after having dis-
cussions with annotators, we found that using this
output, it would be very difficult to conduct such
a systematic study to assess the importance of dif-
ferent words in the question. Hence, we chose to
use systematically simulated noisy questions.

4.2 Instructions

We asked the annotators to rate the answerability
of the above noisy questions on a scale of 1-5. The
annotators were clearly told whether the questions
belonged to documents or knowledge bases or im-
ages. In our initial evaluations, we also tried show-
ing the actual source (image or document) to the
annotators. However, we realized that this did not
allow us to do an unbiased evaluation of the qual-
ity of the questions. The annotators inferred miss-
ing information from the document or image and
marked the question as answerable (even though
the relevant entity cat is missing in the question).
For example, consider the image of a cat drinking
milk and the question “What is the drinking ?” If a
human is shown the image then she can easily in-
fer that the missing information is “cat” and hence
mark the question as answerable. This clearly bi-
ases the study, and therefore we did not show the
source to the evaluators.
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Rating Description Examples
1 All important information is missing and it is impossible to an-

swer the question
“What is against the sign ?”, “Why is using O2 instead of CO2
less efficient?”

2 Most of the important information is missing and I can’t infer the
answer to the question

“Which films did Lee H. Katzin direct ?”, “Low doses of
anti-inflammatories are sometimes used with what classes of
drugs?”

3 Some important information is missing leading to multiple an-
swers

“What Harvard Alumni was the Palestine Prime Minister?”,
“What country is the teaching subject discussing?”

4 Most of the important information is present and I can infer the
answer

“How far from the Yard is the Quad located?”,“what films did
Melvin Van Peebles star in?”

5 All important information is present and I can answer the question “What globally popular half marathon began in 1981?”, “What
kind of vehicle is parked the sidewalk?”

Table 2: Instructions along with the examples. The striked out words were removed as a part of systematic
noise from the original question.

Dataset  Pearson Spearman
SQuAD 0.63 0.823 0.795

WikiMovies 0.81 0.934 0.927
VQA 0.70 0.842 0.822

Table 3: Inter annotator agreement, Pearson and
Spearman coefficients between Human Scores.

A total of 25 in-house annotators participated in
our study, and we got each question evaluated by
two annotators. The annotators were Computer
Science graduates competent in English. We did
an initial pilot using the instructions mentioned in
Table 2, but due to the subjective nature of the task,
it was difficult for the annotators to agree on the
notion of important information. In particular, we
found that the annotators disagreed between most
important information and all important informa-
tion (i.e., they were confused between rating 1 v/s
2 and 4 v/s 5). We, therefore, did a small pilot with
a group of 10 annotators and asked them to evalu-
ate around 30 questions from each dataset and help
us refine the guidelines to define the notion of im-
portance clearly. Based on group discussions with
the annotators we arrived at additional example
based guidelines to help them distinguish between
cases where “all the”, “most of the” and “some of
the” important information is present. The orig-
inal instructions and various examples (some of
which are shown in Table 2) were then shared and
explained to all the annotators, and they used these
to provide their judgments.

4.3 Human-Human Correlation

In Table 3, we report the average inter-annotator
agreement between the ratings using Cohen’s
kappa () score (Cohen, 1968). Based on guide-
lines in (McHugh, 2012) we note that we have a

Metric SQuAD WikiMovies VQA
Pearson Spearman Pearson Spearman Pearson Spearman

BLEU1 0.167 0.165 0.179 0.144 -0.025* -0.048*
BLEU2 0.100* 0.103* 0.072* 0.087* -0.075* -0.091*
BLEU3 0.080* 0.086* 0.036* 0.001* -0.126 -0.114
BLEU4 0.065* 0.067* -0.020* -0.011* -0.086* -0.127

ROUGE-L 0.165 0.158 0.091* 0.043* -0.009* -0.053*
METEOR 0.107 0.124 0.198 0.214 -0.035* 0.009*

NIST 0.173 0.158 0.088* -0.033* 0.158 0.169

Table 4: Correlation between existing metrics and
human judgments. Note that the values with ⇤ are
not statistically significant (p-value > 0.01).

strong inter-annotator agreement for WikiMovies
and moderate agreement for SQuAD and VQA.
Figure 1 indicates that there is a linear correla-
tion between the two ratings for each question and
hence we measured the correlation using Pearson
coefficient. For completeness, we also measure
the monotonic correlation using Spearman coef-
ficient. The Spearman coefficient is slightly lower
than the Pearson coefficient because the inter-
annotator agreement is stronger at the tail of the
distribution i.e., when the question is either very
bad (Rating: 1) or very good (Rating: 5).

4.4 Correlation between human scores and
existing evaluation metrics

We first compute BLEU, METEOR, NIST and
ROUGE-L score for each noisy question by com-
paring it to the original question. We then com-
pute the correlation of each of these scores with
annotator ratings. Note that to compute corre-
lation, the annotator ratings are combined to ob-
tain a gold score. The ratings are normalized us-
ing the normalization method mentioned in (Blatz
et al., 2004) and then averaged to obtain the gold
score. For SQuAD and VQA, we observe that
NIST which gives more weightage to informative
n-grams correlates better than other metrics. For
WikiMovies, METEOR which even allows non-

3954



Figure 1: Human-Human Correlation for SQUAD, WikiMovies and VQA respectively.

exact word matches correlates better than other
metrics. For SQuAD and WikiMovies, the cor-
relation of human scores with the simple uni-
gram based BLEU1 score is higher than that with
other metrics. This is in line with the observation
we made earlier that humans can understand and
answer questions that are not well-formed, e.g.,
“What birth-date Damon?”.

5 Modifying existing metrics for AQG
The above study suggests that existing metrics do
not correlate well with human judgments about
answerability. We propose modifications to these
metrics so that in addition to n-gram similarity
they also account for answerability. Based on the
human evaluations, we found that answerability
mainly depends on the presence of 4 types of ele-
ments, viz., relevant content words, named entities
and question types and function words. As out-
lined in Section 4.1 it is easy to identify these ele-
ments in the question. Let c(Sr), c(Sn), c(Sq) and
c(Sf ) be the number of relevant words, named
entities, question words and function words re-
spectively in the noisy question which have cor-
responding matching words in the gold standard
reference question. We can then compute the
weighted average of the precision and recall of
each of these elements as

Pavg =
X

i

wi
c(Si)

|li|
Ravg =

X

i

wi
c(Si)

|ri|

where i 2 {r, n, q, f},
P

i wi = 1 and |li| , |ri| is
the number of the words belonging to ith type of
element in the noisy question and reference sen-
tences respectively. Just to be clear r, n, q, f stand
for relevant content words, named entities and
question types and function words respectively.
Note that wi’s are tunable weights and in Section
5.1, we explain how to tune these weights.

Datasets wner wimp wsw wqt �
SQuAD 0.41 0.36 0.03 0.20 0.66

WikiMovies 0.55 0.31 0.02 0.11 0.83
VQA 0.04 0.59 0.15 0.21 0.75

Table 5: Coefficients learnt for Q-BLEU1 from hu-
man judgments across different datasets.

Answerability = 2.
PavgRavg

Pavg + Ravg

We can combine this answerability score with
any existing metric (say, BLEU4) to derive a mod-
ified metric for AQG as shown below:

Q-BLEU4 = �Answerability + (1 � �)BLEU4
(1)

such that � 2 {0, 1} to make sure that Q-Metric
ranges between 0 to 1. Similarly, we can derive
Q-NIST, Q-METEOR and so on.

5.1 Tuning the weights wi’s and �

We tuned the weights (wi’s and �) using the hu-
man annotation data. For each source (document,
knowledge-base, and images), annotators evalu-
ated 1000 noisy questions. The annotator scores
were first scaled between 0 to 1 using the normal-
ization method in (Blatz et al., 2004), and the nor-
malized scores were averaged to obtain the final
gold score. For each source, we used 300 of these
annotations and used bagging to find the optimal
weights. In particular, we drew 200 samples ran-
domly from the given set of 300 samples and did
a grid search to find wi’s and � such that the Q-
METRIC computed using Equation 1 had maxi-
mum correlation with human scores. We repeated
this process for k = 20 times and computed the
optimal wi’s and � each time. We found that for
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Q-Metric SQuAD WikiMovies VQA
Pearson Spearman Pearson Spearman Pearson Spearman

Q-BLEU1 0.258 0.255 0.828 0.841 0.405 0.384
Q-BLEU2 0.244 0.243 0.825 0.835 0.390 0.360
Q-BLEU3 0.239 0.240 0.824 0.837 0.374 0.331
Q-BLEU4 0.233 0.232 0.826 0.837 0.373 0.311

Q-ROUGE-L 0.253 0.249 0.821 0.841 0.402 0.385
Q-METEOR 0.158 0.157 0.821 0.837 0.402 0.378

Q-NIST 0.246 0.248 0.824 0.845 0.384 0.346

Table 6: Correlation between proposed Q-Metric and human judgments. All the correlations have a
p-value < 0.01 and hence statistically significant.

any given weight (wi) the standard deviation was
very low across these k experiments. For each wi

and � we obtained the final value by taking an av-
erage of the values learned in each of the k exper-
iments. We also observed that the weights did not
change much even when we used more data for
tuning. Also note that we tuned these weights sep-
arately for each metric (i.e., Q-BLEU4, Q-NIST,
Q-METEOR and so on). For illustration, we re-
port these weights for Q-BLEU1 metric in Table
5. As expected, the weights depend on the source
from which the question was generated. Note that
for WikiMovies, named entities have the highest
weight. For VQA content words are most impor-
tant, as they provide information about the entity
being referred to in the question. Note that for
SQuAD and VQA, the original base metric also
gets weightage comparable to other components,
indicating that a fluent question makes it easier to
understand thus making it answerable. The over-
all trend for the values of wi’s was similar for other
Q-METRICs also (i.e., for Q-NIST, Q-METEOR
and so on).

5.2 Correlation between Human scores and
different Q-METRICs

Once the weights are tuned, we fix these weights
and compute the Q-METRIC for the remaining
600-700 examples and report the correlation with
human judgments for the same set of examples
(see Table 6). For a fair comparison, the corre-
lation scores reported in Table 4 are also on the
same 600-700 examples. The correlation scores
obtained for different Q-METRICs are indeed en-
couraging. In particular, we observe that while
the correlation of existing metrics with noisy ques-
tions generated was very low (Table 4), the cor-
relation of the modified metrics is much higher.

This suggests that adding the learnable component
for answerability and tuning its weights indeed
leads to a better-correlated metric. Note that for
VQA and SQuAD the correlations are not as high
as human-human correlations, but the correlations
are still statistically significant. We acknowledge
that there is clearly scope for further improvement
and the proposed metric is perhaps only a first step
towards designing an appropriate metric for AQG.
Hopefully, the human evaluation data released as
a part of this work will help to design even better
metrics for AQG.

5.3 Qualitative Analysis
We have listed some examples in Table 7, which
highlight some strengths and weakness of the pro-
posed Q-METRIC. We categorize examples as
positive/negative depending on the similarity be-
tween human scores for answerability and the Q-
BLEU score. For the examples marked as positive,
the Q-BLEU score is very close to the answerabil-
ity score given by humans.

6 Extrinsic evaluation

So far we have shown that existing metrics do not
always correlate well with human judgments and
it is possible to design metrics which correlate bet-
ter with human judgments by including a learnable
component to focus on answerability. We would
now like to propose an extrinsic way of evaluating
the usefulness of the proposed metric. The mo-
tivation for this extrinsic evaluation comes from
the fact that one of the intended purposes of the
modified metrics is to use them for training QA
systems. Suppose we use a particular metric for
evaluating the quality of an AQG system and sup-
pose this metric suggests that the questions gener-
ated by this system are poor. We would obviously
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Dataset Original Question Modified Question Human
Scores QBLEU

SQuAD
Positive What is another type of accountant other than a CPA? What is another type of accountant other than a ? 0.10 0.47

In addition to schools, where else is popularly based authority effective? In addition schools, where else popularly based authority effective? 0.85 0.83

Negative When did Tesla begin working for the Continental Edison Company? When did begin working for the Continental Edison Company? 0.10 0.84
What famous person congratulated him? What person congratulated him? 0.85 0.17

VQA
Positive What color is the monster truck? What color monster truck? 0.92 0.81

What is in the polythene ? What is in the ? 0.10 0.14

Negative Why there are no leaves on the tree? Why are leaves the tree? 0.35 0.73
How are the carrots prepared in the plate? How carrots prepared plate? 0.10 0.68

WikiMovies
Positive what films does Ralf Harolde appear in ? what films Ralf Harolde appear ? 0.97 0.91

what is a film directed by Eddie Murphy ? Which a film directed by Eddie Murphy ? 0.91 0.88

Negative what films does Gerard Butler appear in ? how does Gerard Butler appear in ? 0.15 0.89
John Conor Brooke appears in which movies ? appears in which movies ? 0.03 0.44

Table 7: Human (Gold) and Q-Metric scores for some of the examples from the collected human-
evaluation data.

Type of Noise BLEU QBLEU Hit 1
None 100 100 76.5
Stop Words 25.4 84.0 75.6
Question Type 74.0 79.3 73.5
Content Words 29.4 64.3 54.7
Named Entity 41.9 48.5 17.97

Table 8: Performance obtained by training on differ-
ent types of noisy questions (WikiMovies).

Noise BLEU QBLEU F1
None 100 100 76.5
Question Type 80.1 66.1 69.0
Stop Words 24.2 61.0 70.4
Content Words 60.7 57.1 64.1
Named Entity 77.0 56.0 73.8

Table 9: Performance obtained by training on differ-
ent types of noisy questions (SQuAD).

Noise BLEU QBLEU Acc(%)
None 100 100 64.4
Content Words 49.4 58.2 60.21
Question Type 63.7 50.9 59.81
Stop Words 10.8 37.7 57.37

Table 10: Performance obtained by training on dif-
ferent types of noisy questions (VQA).

discard this system and not use the questions gen-
erated by it to train a QA system. However, if the
metric itself is questionable, then it is possible that
the questions were good enough, but the metric
was not good to evaluate their quality. To study
this effect, we create a noisy version of the train-
ing data of SQuAD, WikiMovies, and VQA using
the same methods outlined in Section 4.1. We then
train a state of the art model for each of these tasks
on this noisy data and evaluate the trained model
on the original test set of each of these datasets.
The models that we considered were (Seo et al.,
2016) for SQuAD, (Miller et al., 2016) for Wiki-
Movies and (Ben-younes et al., 2017) for VQA.

The results of our experiments are summarized
in Table 8 - 10. The first column for each ta-
ble shows the manner in which the noisy training

data was created. The second column shows the
BLEU4 score of the noisy questions when com-
pared to the original reference questions (thus it
tells us the perceived quality of these questions
under the BLEU4 metric). We consider BLEU4
because of all the current metrics used for AQG it
is the most popular. Similarly, the third column
tells us the perceived quality of these questions
under the Q-BLEU4 metric. Ideally, we would
want that the performance of the model should
correlate better with the perceived quality of the
training questions as identified by a given met-
ric. We observe that the general trend is better
w.r.t. the Q-BLEU4 metric than the BLEU4 metric
(i.e., in general, higher Q-BLEU4 indicates better
performance and lower Q-BLEU4 indicates poor
performance). In particular, notice that BLEU4
gives much importance to stop words, but these
words hardly have any influence on the final per-
formance. We believe that such an extrinsic eval-
uation should also be used while designing better
metrics and it would help us get better insights.

7 Conclusion

The main aim of this work was to objectively
examine the utility of existing metrics for AQG.
Specifically, we wanted to see if existing met-
rics account for the answerability of the gener-
ated questions. To do so, we took noisy generated
questions from three different tasks, viz., docu-
ment QA, knowledge base QA and visual QA, and
showed that the answerability scores assigned by
humans did not correlate well with existing met-
rics. Based on these studies, we proposed a modi-
fication for existing metrics and showed that with
the proposed modification these metrics correlate
better with human judgments. The proposed mod-
ification involves learnable weights which can be
tuned (depending on the source) using the human
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judgments released as a part of this work. Finally,
we propose an extrinsic evaluation with the aim of
assessing the end utility of these metrics in select-
ing good AQG systems for creating training data
for QA systems. Though the proposed metric cor-
relates better with human judgments, there is still
scope for improvement especially for document
QA and visual QA. As future work, we would
like to design better metrics for answerability and
check if a non-linear combination of different el-
ements in the Q-Metric leads to better correlation
with human judgments.
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Abstract
The ability to write diverse poems in differ-
ent styles under the same poetic imagery is an
important characteristic of human poetry writ-
ing. Most previous works on automatic Chi-
nese poetry generation focused on improving
the coherency among lines. Some work ex-
plored style transfer but suffered from expen-
sive expert labeling of poem styles. In this pa-
per, we target on stylistic poetry generation in
a fully unsupervised manner for the first time.
We propose a novel model which requires no
supervised style labeling by incorporating mu-
tual information, a concept in information the-
ory, into modeling. Experimental results show
that our model is able to generate stylistic po-
ems without losing fluency and coherency.

1 Introduction

Classical Chinese poetries are great heritages of
the history of Chinese culture. One of the most
popular genres of classical Chinese poems, i.e.
quatrains, contains four lines with five or seven
characters each and additional rhythm and tune re-
strictions. During 1,000 years history of quatrains,
various styles, e.g. pastoral, descriptive and ro-
mantic, have been developed to express different
feelings of poets. In human poetry writing, poets
are able to write completely different poems in di-
verse styles even given the same keyword or first
sentence. For example, as shown in Fig. 1, when
a poet mentioned “ �” (the moon), she/he may
write about the Great Wall in the battlefield style
or the sleepless feeling in the romantic style. Such
ability to write stylistic poems under the same po-
etic imagery is an important characteristic of hu-
man poetries.

Automatic poetry generation is one of the first
attempts towards computer writing. Chinese qua-
train generation has also attracted much atten-
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Figure 1: An example of poems in diverse styles under
the same keyword.

tion in recent years. Early works inspired by
statistical machine translation explored rule-based
and template-based methods (He et al., 2012;
Yan et al., 2013), while recent works (Zhang
and Lapata, 2014; Wang et al., 2016; Yan, 2016;
Zhang et al., 2017; Yang et al., 2017; Yi et al.,
2017) employed neural network based sequence-
to-sequence approaches which have shown their
effectiveness in neural machine translation for
poem generation. Most works target on improving
the coherency among all lines and the conformity
between the theme and subsequent lines by plan-
ning (Wang et al., 2016), polishing schema (Yan,
2016), poem block (Yi et al., 2017) and condi-
tional variational autoencoder (Yang et al., 2017).
Different from these previous works, we aim to
learn the ability of diverse stylistic poetry genera-
tion which can generate multiple outputs (poems)
in various styles under the same input (keywords
or the first sentence). This ability enables a poetry
generation system to be closer to a real poet and
allows the model to generate more expressive and
creative poems.

However, there is no explicit label about what
style or category a poem or a sentence is for
thousands of poems in the database. Therefore,
traditional supervised sequence-to-sequence mod-
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els (Zhang et al., 2017) are not capable to gener-
ate stylistic poems without expert labeling. To the
best of our knowledge, we are the first effort at
stylistic poetry generation in a fully unsupervised
manner.

In this paper, we propose a novel poetry gen-
eration model which can disentangle the poems
in different styles and generate style-specific out-
puts conditioned on the manually selected style
input. We employ sequence-to-sequence model
with attention mechanism (Bahdanau et al., 2014)
as our basis and maximize the mutual information
which measures the dependency between two ran-
dom variables in information theory to strengthen
the relationship between manually selected style
inputs and generated style-specific outputs. Exper-
imental results show that our model is able to gen-
erate poems in various styles without losing flu-
ency and coherency.

To summarize, our effort provides the following
three contributions:

• To the best of our knowledge, we are the first
effort at stylistic poetry generation which is an im-
portant characteristic of human poetries in a fully
unsupervised manner.

• We innovatively incorporate mutual infor-
mation, a measurement in information theory,
for unsupervised style disentanglement and style-
specific generation.

• Experimental results show that our model is
able to generate diverse poems in various styles
without losing fluency and coherency.

2 Related Works and Motivations

Poetry generation is a classic task in computer
writing (Gervás, 2001; Levy, 2001; Netzer et al.,
2009; Oliveira, 2012). Chinese poetry generation
has also attracted much attention during the last
decade. Early works are mostly rule-based and
template-based (Wu et al., 2009). (He et al., 2012)
employed statistical machine translation and (Yan
et al., 2013) adopted automatic summarization
techniques for classical poem generation.

As neural network based approaches have been
successfully applied in various applications such
as machine translation (Bahdanau et al., 2014),
people came up with the idea to apply sequence-
to-sequence models for poem generation. (Zhang
and Lapata, 2014) employed the Recurrent Neural
Network (RNN) as their basis and further consid-
ered the global context using Convolutional Neu-

ral Network (CNN). They also incorporated other
hand-crafted features into the model to improve
the coherency. (Yan, 2016) proposed an itera-
tive polishing schema based on two RNNs, which
can refine the generated poems for several times.
(Wang et al., 2016) generated poetries in a two-
stage process: planning the keywords of each line
first and then generating each line sequentially.
(Yi et al., 2017) proposed poem blocks to learn
semantic meaning within a single line and seman-
tic relevance among lines in a poem. (Yang et al.,
2017) employed a conditional variational autoen-
coder with augmented word2vec architecture to
enhance the conformity between the theme and
generated poems. All previous works above tar-
get on improving the coherency and conformity
of poetry generation while a recent work (Zhang
et al., 2017) was proposed to improve the nov-
elty of generated poems using external memories.
Their model can also transfer the style of a poem
into three predefined topics. However, they need
to manually label many poems in these three pre-
defined topics to learn the patterns.

Formally, a traditional sequence-to-sequence
model actually learns a conditional probability
distribution Pr(soutput|sinput) where soutput is the
generated poems and sinput is the input keyword
or the first sentence. Different from machine
translation tasks where the output sentence soutput

is rather certain and compact given input sen-
tence sinput, the conditional probability distribu-
tion Pr(soutput|sinput) has strong uncertainty in
literary creation scenarios such as poem genera-
tion. To support this point, we further train a topic
model based on LDA (Blei et al., 2003) by treat-
ing each poem as a document. We train a 10-
topic and a 20-topic LDA model and then reana-
lyze the largest topic component of each sentence
in a poem. Surprisingly, we find that only 20%
and 10% consecutive sentences in a poem have
the same largest topic components respectively
though we assume that each poem is generated
by the same topic when training the LDA model.
The fact indicates that even given the former sen-
tence, the style of the latter one could still be di-
verse and flexible. Intuitively, poets will choose
a style or topic in their minds and then write the
next sentence based on the style they choose in
poetry creation. Therefore, we propose to learn a
stylistic poetry generation model which can disen-
tangle the poems in different styles and generate
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style-specific outputs as real human poets could
do. Note that no explicit style labels are given to
the training data and thus previous supervised al-
gorithms cannot be adapted for the purpose easily.

Recently, a few works have been proposed
for disentangled representation learning. Info-
GAN (Chen et al., 2016) was proposed for gen-
erating continuous image data conditioned on im-
age labels and disentangled text generation (Hu
et al., 2017) focused on controllable generation in
the semi-supervised setting. Though inspired by
them, the motivation and proposed models of our
work differ from these methods by a large mar-
gin. To the best of our knowledge, we are the first
effort at stylistic poetry generation in a fully unsu-
pervised manner.

3 Method

We hope our generation model can generate mul-
tiple outputs in various styles. Formally, our
model takes two arguments as input: input sen-
tence sinput and style id k 2 1, 2 . . . K where K
is the total number of different styles. Then we
can enumerate each style id k and generate style-
specific output sentence sk

output respectively.
In this section, we will start by introducing the

background knowledge about mutual information
and sequence-to-sequence model with attention
mechanism. Then we propose our framework of
decoder model for style disentanglement by tak-
ing the mutual information as an additional regu-
larization term. Finally, we will present the details
of our implementations of each component in the
framework.

3.1 Mutual Information

Inspired by previous works on image genera-
tion (Chen et al., 2016) and semi-supervised gen-
eration (Hu et al., 2017), we propose to incorpo-
rate the concept of mutual information in informa-
tion theory for style disentanglement. Given two
random variables X and Y , the mutual informa-
tion I(X, Y ) measures “the amount of informa-
tion” obtained about one random variable given
another one 1. Mutual information can also be
interpreted as a measurement about how similar
the joint probability distribution p(X, Y ) is to the
product of marginal distributions p(X)p(Y ). The

1https://en.wikipedia.org/wiki/Mutual_
information

definition of mutual information is

I(X, Y ) =

Z

Y

Z

X

p(X, Y ) log
p(X, Y )

p(X)p(Y )
dXdY. (1)

3.2 Sequence-to-Sequence Model with
Attention Mechanism

We employ a widely used Encoder-Decoder
framework (Sutskever et al., 2014) which was
firstly proposed in machine translation as our ba-
sis. Suppose sentence X = (x1x2 . . . xT ) and
Y = (y1y2 . . . yT ) are the input sentence (source
sentence) and output sentence (target sentence) re-
spectively where xi, yi for i = 1, 2 . . . T are char-
acters and T is the total number of characters in
the sentence. We denote the character vocabulary
as V .

Specifically, we use bidirectional LSTM (bi-
LSTM) (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) model as the encoder
to project the input sentence X into the vector
space. Formally, the hidden state of LSTM are
computed by

�!
hi = LSTMforward(

��!
hi�1, e(xi)), (2)

 �
hi = LSTMbackward(

 ��
hi�1, e(xT�i+1)), (3)

for i = 1, 2 . . . T where
�!
hi and

 �
hi are the i-th

hidden state of forward and backward LSTM re-
spectively, e(xi) 2 Rd is the character embedding
of character xi and d is the dimension of charac-
ter embeddings. Then we concatenate correspond-
ing hidden states of forward and backward LSTM
hi = [

�!
hi ,
 ����
hT�i+1] as the i-th hidden state of bi-

LSTM. In specific, we use the last hidden state hT

as the embedding vector and feed it to the decoder.
The decoder module contains an LSTM decoder

with attention mechanism (Bahdanau et al., 2014)
which computes a context vector as a weighted
sum of all encoder hidden states to represent the
most relevant information at each stage. The char-
acter probability distribution when decoding the i-
th character can be expressed as

p(yi|y1y2 . . . yi�1, X) = g(yi|si), (4)

where g(·) is a linear projection function with soft-
max regularization, si is the i-th hidden state in the
decoder LSTM:

si = LSTMdecoder(si�1, [e(yi�1), ai]), (5)

for i = 2, . . . T and s1 = hT , where [ ] indi-
cates concatenation operation, e(yi�1) is charac-
ter embedding of yi�1 and ai is the context vector
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Figure 2: An overview of style disentanglement by mutual information maximization.

learned by attention mechanism (Bahdanau et al.,
2014)

ai = attention(si�1, h1:T ). (6)

3.3 Decoder Model with Style
Disentanglement

To accept two arguments, i.e., input sentence X
and style id k, we can directly concatenate the
one-hot representation of style id one hot(k) and
the embedding vector hT obtained by bi-LSTM
encoder and then feed the concatenated vector
[one hot(k), hT ] instead of hT into the decoder
model without changing anything else.

However, there is no theoretical guarantee
that the output sentence generated by the de-
coder is strongly correlated to the style id input
one hot(k). In other words, when the input style
id is changed, the output sentence would probably
be the same because no supervised loss is given
to force the output sentences to follow the one-
hot style representation. Therefore, we naturally
come up with the idea to add a regularization term
to force a strong dependency relationship between
the input style id and generated sentence.

Without loss of generality, we assume that the
input style id is a uniformly distributed random
variable Sty and Pr(Sty = k) = 1

K for k =
1, 2 . . . K where K is the total number of styles.
Recall that mutual information quantifies the mu-
tual dependency between two random variables.
Hence we propose to maximize the mutual in-
formation between the style distribution Pr(Sty)
and the generated sentence distribution Pr(Y ; X)
given input sentence X to strengthen the depen-
dency between them as shown in Fig. 2. The mu-

tual information is computed as

I(Pr(Sty), Pr(Y ; X))

=
KX

k=1

Pr(Sty = k)

Z

Y |k;X

log
Pr(Y, Sty = k; X)

Pr(Sty = k) Pr(Y ; X)
dY

=
KX

k=1

Pr(Sty = k)

Z

Y |k;X

log
Pr(Y, Sty = k; X)

Pr(Y ; X)
dY

�

KX

k=1

Pr(Sty = k) log Pr(Sty = k)

=
KX

k=1

Pr(Sty = k)

Z

Y |k;X

logPr(Sty = k|Y )dY + logK

=

Z

Y ;X

KX

k=1

Pr(Sty = k|Y )log P (Sty = k|Y )dY + logK.

(7)
Note that the input sequence X and style Sty
are both input arguments and thus independent
with each other. Therefore, posterior distribution
Pr(Sty = k|Y ; X) = Pr(Sty = k|Y ).

But the posterior probability distribution
Pr(Sty = k|Y ) is actually unknown, we cannot
compute the integration directly. Fortunately,
with the help of variational inference maximiza-
tion (Barber and Agakov, 2003), we can train a
parameterized function Q(Sty = k|Y ) which
estimates the posterior distribution and maximize
a lower bound of mutual information in Eq. 7
instead:

I(Pr(Sty), Pr(Y ; X))� log K

=

Z

Y ;X

KX

k=1

Pr(Sty = k|Y ) log Pr(Sty = k|Y )dY

=

Z

Y ;X

KX

k=1

Pr(Sty = k|Y ) log Q(Sty = k|Y )dY

+

Z

Y ;X

KX

k=1

Pr(Sty = k|Y ) log
Pr(Sty = k|Y )
Q(Sty = k|Y )

dY
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=

Z

Y ;X

KX

k=1

Pr(Sty = k|Y ) log Q(Sty = k|Y )dY

+

Z

Y ;X

KL(Pr(Sty|Y ), Q(Sty|Y ))dY

�

Z

Y ;X

KX

k=1

Pr(Sty = k|Y ) log Q(Sty = k|Y )dY

=
KX

k=1

Pr(Sty = k)

Z

Y |k;X

log Q(Sty = k|Y )dY.

(8)

Here KL(Pr(·)||Q(·)) indicates the KL-
divergence distance between probability dis-
tribution Pr(·) and Q(·). The inequality comes
from the fact that the KL-divergence is always no
less than zero and is tight when Pr(·) = Q(·).

We use the lower bound parameterized by func-
tion Q in Eq. 8 as an additional maximization
term. Intuitively, the lower bound is maximized if
we can perfectly infer the style id from generated
style-specific outputs by inference function Q. It
also indicates that generated outputs will heavily
depend on the input style id and outputs generated
by different styles are distinguishable, which fol-
lows our motivation of stylistic poetry generation.
Now we will introduce how to design the poste-
rior distribution estimation function Q and com-
pute the integration in the lower bound.

3.4 Posterior Distribution Estimation
Given an output sequence Y , the function Q esti-
mates the probability distribution of the style of
sequence Y and therefore disentangles different
styles. In this paper, we employ neural network
to parametrize the posterior distribution estima-
tion function Q. Specifically, we first compute
the average character embeddings of sequence Y
and then use a linear projection with softmax nor-
malizer to get the style distribution. Formally,
Q(Sty|Y ) is computed as

Q(Sty|Y ) = softmax(W ·
1
T

TX

i=1

e(yi)), (9)

where W 2 RK⇥d is the linear projection matrix.
Then the last thing to do is to compute the in-

tegration over Y |k; X . However, the search space
of sequence Y is exponential to the size of vocab-
ulary. Hence it’s impossible to enumerate all pos-
sible sequence Y for computing the integration.
Also, it is not differentiable if we sample sequence
Y according to generation probability for approx-
imation. Therefore, we propose to use expected

character embedding to approximate the integra-
tion.

3.5 Expected Character Embedding
Inspired by previous works (Kočiský et al., 2016),
we use expected character embedding to approxi-
mate the probabilistic space of output sequences:
we only generate an expected embedding se-
quence and suppose Y |k; X has one hundred per-
cent probability generating this one. Formally,
Eq. 4 gives a probability distribution of generat-
ing the i-th character given previous ones. Then
the “expected” generated character embedding is

expect(i; k, X) =
X

c2V

g(c|si)e(c), (10)

where expect(i; k, X) 2 Rd represents the ex-
pected character embedding at i-th output given
style id k and input sequence X and c 2 V enu-
merates all characters in the vocabulary.

Then expect(i; k, X) is fed into the LSTM in
decoder to update the hidden state for generating
next expected character embedding:

si+1 = LSTMdecoder(si, [expect(i; k, X), ai+1]). (11)

Finally, we use the expected embeddings
expect(i; k, X) for i = 1, 2 . . . T as an approxi-
mation of the whole probability space of Y |k; X .
The lower bound in Eq. 8 can be rewritten as

Lreg =
1
K

KX

k=1

log{softmax(W ·
1
T

TX

i=1

expect(i; k, X))[k]},

(12)
where x[j] represents the j-th dimension of vector
x.

We add the lower bound Lreg to the overall
training objective as a regularization term. The
computing process is shown in Fig. 2. Then for
each training pair (X, Y ), we aim to maximize

Train(X, Y ) =
TX

i=1

log p(yi|y1y2 . . . yi�1, X) + �Lreg,

(13)
where p(yi|y1y2 . . . yi�1, X) is style irrelevant
generation likelihood and computed by setting
one-hot style representation to an all-zero vector,
and � is a harmonic hyperparameter to balance
the log-likelihood of generating sequence Y and
the lower bound of mutual information. The first
term ensures that the decoder can generate fluent
and coherent outputs and the second term guaran-
tees the style-specific output has a strong depen-
dency on the one-hot style representation input.
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Note that unlike machine translation task where
the trained model is desired to generate exactly the
same as the target, poetry generation encourages
novelty as an important requirement. In Eq. 13, we
can also enumerate the style id representation as a
one-hot vector instead of an all-zero one. How-
ever, this will force the generation of all styles to
be close to the training target and discourage the
diversity and novelty.

Moreover, our model is not task-specific: the
regularization term Lreg can be added to other
models conveniently for diverse or stylistic gen-
erations. A Chinese quatrain has at most 4*7=28
characters and clear rhyme requirements. As the
first attempt on unsupervised style disentangle-
ment, we find Chinese poetry generation is an
ideal choice for evaluation because we can bet-
ter focus on stylistic generation rather than deal-
ing with genre requirements. We will explore the
applicability of our model on other languages and
tasks for future work.

4 Experiments

Following the experimental settings in previous
works (Zhang et al., 2017), we conduct human
judgment to evaluate the performance of our
model and state-of-the-art baseline methods. We
will first introduce the dataset, our model details,
baseline methods and evaluation settings. Then we
will present the experimental results and give fur-
ther analysis about the evaluation. Finally, we will
present some example generations for case study.

4.1 Dataset and Model Details

We collect 168,000 poems (half wuyan: five char-
acters per line, half qiyan: seven characters per
line) over 1,000 years history of classical Chinese
poetries as our corpus. We randomly select 80%
of the corpus as training set, 10% as validation set
and leave the rest for test. We extract all consec-
utive sentences in a poem as training pairs (X, Y )
and feed them into our model.

For hyperparameter settings of our model, i.e.
stylistic poetry generation (SPG), we set the di-
mensions of character embeddings and encoder
hidden states as d = 512. The total number of
styles is set to K = 10. Hence the dimension of
decoder hidden states is 512 + 512 + 10 = 1034.
We pack the training pairs to mini-batches and the
size of mini-batches is set to 50. The harmonic hy-
perparameter is set to � = 0 for the first 50, 000

mini-batches as pretraining and � = 1.0 for subse-
quent batches. We use Adam optimizer (Kingma
and Ba, 2014) for stochastic gradient descent. We
also employ dropout (Srivastava et al., 2014) strat-
egy with dropout rate 0.2 to avoid overfitting prob-
lem. We terminate the training process when the
optimization loss on validation set is stable, i.e.
300, 000 mini-batches in total.

4.2 Baselines
We consider the following state-of-the-art poetry
generation models for comparison:

• Seq2seq (Bahdanau et al., 2014) is the
sequence-to-sequence model with attention mech-
anism. Note that seq2seq is the basis of our SPG
model. We can better analyze the improvement by
style disentanglement from the comparison with
seq2seq.

• Polish (Yan, 2016) proposed an iterative
schema to polish and refine the generated sen-
tences for several times instead of a one-pass gen-
eration.

• Memory (Zhang et al., 2017) incorporated
external memory into poem generation for better
novelty. The memory can be seen as a regulariza-
tion to constrain the behavior of the neural model.

Rule-based and template-based methods are not
considered as our baselines as they have been al-
ready thoroughly compared in (He et al., 2012;
Yan, 2016).

4.3 Evaluation Settings
Following the settings in (Zhang et al., 2017), we
employ human judgment for evaluation. To better
compare the ability to generate fluent and coherent
poems, we fix the first sentence as input and let all
models generate three subsequent sentences. The
first sentences are randomly chosen from the po-
ems in the test set. Therefore we also consider the
original poems written by real poets for compari-
son.

Note that our SPG model need a manually spec-
ified style id as input. For fully automatic poem
generation, we use the posterior style estimation
function Q(·) to infer the style of the first sen-
tence and then generate next three sentences se-
quentially using the same style.

As previous works (Manurung, 2004; Yi et al.,
2017) did, we design four criteria for human judg-
ment: Fluency (are the generated poems fluent
and well-formed?), Coherence (is the topic of
the whole quatrain consistent?), Meaningfulness
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Group Methods Fluency Coherence Meaningfulness Poeticness
wuyan qiyan wuyan qiyan wuyan qiyan wuyan qiyan

Group 1 seq2seq 2.75 2.48 2.60 2.33 2.38 2.15 2.40 2.35
SPG 3.43 3.23 3.13 3.05 2.83 3.10 3.10 3.10

Group 2

memory 2.50 2.60 2.30 2.38 2.18 2.25 2.05 2.40
polish 2.53 2.90 2.28 2.55 2.15 2.55 2.20 2.50
SPG 3.38 3.53 3.38 3.30 3.13 3.25 3.20 3.20

human poet 3.85 3.68 4.05 3.83 4.00 3.83 3.53 3.75

Table 1: Human judgment results. We bold the best performing model in each group.

(does the poem convey some certain messages?)
and Poeticness (does the poem have some poetic
features?). Each criterion needs to be scored on a
5-point scale ranging from 1 to 5.

For each model, we generate 20 wuyan and 20
qiyan quatrains given the first sentence. We invite
10 experts who major in Chinese literature or are
members of a poetry association to evaluate these
quatrains. We divide the baseline methods into
two groups: In the first group, we compare SPG
with seq2seq (Bahdanau et al., 2014) to present the
advantages of style disentanglement; In the sec-
ond group, we compare SPG with state-of-the-art
poetry generation methods, memory (Zhang et al.,
2017) and polish (Yan, 2016), and the original po-
ems written by poets to demonstrate the effective-
ness of our algorithm. Note that the scores of hu-
man judgment are relative, not absolute. Thus we
compare with seq2seq separately to avoid mutual
interference.

4.4 Experimental Results

We report the average scores of expert judgments
in Table 1. From the experimental results, we have
the following observations:

Firstly, the experimental results in group
1 demonstrate that SPG outperforms seq2seq,
the basis of our model, by learning a style-
disentangled generation model. The only differ-
ence between seq2seq and our model is that we
append a one-hot style id to the encoder state and
add mutual information regularization in Eq. 12 to
the loss function. Note that our model is fully un-
supervised: the one-hot style id conveys no mean-
ingful message unless the mutual information reg-
ularization is considered. In other words, the one-
hot style id and mutual information regularization
cannot be torn apart. Therefore, the improvements
over seq2seq all come from the part of style dis-
entanglement modeling because seq2seq and our

model share all the other components. The com-
parisons in group 1 of Table 1 are sufficient to
show the effectiveness of style modeling.

Secondly, the experimental results in group 2
show that SPG consistently outperforms two state-
of-the-art poem generation methods. SPG is able
to generate poetries in diverse styles without los-
ing fluency and coherency. Our advantages are
two-fold: On one hand, SPG better fits the diver-
sity characteristic of human poetry writing. In-
tuitively, seq2seq learns a generation model that
mixes poems in various styles and is more likely
to generate meaningless common sentences. By
disentangling poems in different styles, our model
can learn a more compact generation model for
each style and write more fluent and meaningful
poems. On the other hand, by fixing the style when
generating three lines in a quatrain, SPG is able to
generate more coherent poems.

One can also imagine that the generation prob-
ability distribution actually consists of several
peaks where each peak identifies a cluster of po-
ems in similar styles. A traditional model mixes
all the stuff together and learns a one-peak genera-
tion model which is more likely to generate mean-
ingless common sentences. In contrast, our model
disentangles different clusters (styles) and learns a
more accurate and compact generation model for
each cluster (style). Hence our model can generate
poems with higher quality and beat the baselines
in terms of human evaluation. This observation
demonstrates the effectiveness and robustness of
our model.

Finally, there is still a large margin between
SPG and human poets. In this paper, we focus on
poem generation in diverse styles. Other poetry
characteristics are also important for the quality of
generations. We will consider applying our style-
disentangle regularization on other poem models
for better performance in the future.
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Style id Keywords
1 loneliness, melancholy
2 the portrait of landscape
3 sorrow during roaming
4 hermit, rural scenes
5 grand scenery, regrets about old events
6 sorrow during drinking
7 emotions towards life experience
8 the portrait of hazy sceneries
9 reminiscence, homesickness

10 sadness about seasons

Table 2: Representative keywords for poems generated
by each learned style.

Figure 3: Experimental results on style recognition.
Each row represents the human annotation of corre-
sponding style generations. The diagonal blocks are
correct classifications. Darker block indicates higher
probability.

4.5 Interpretability of Learned Styles

In this subsection, we conduct experiments to un-
derstand the semantic meanings of each learned
style. To this end, we first generate 50 poems in
each style and then manually select two or three
keywords to sketch the overall feelings of every
style. The keywords of all 10 styles are listed
in Table 2. Note that the learned styles may not
strictly align the traditional writing styles recog-
nized by human such as romantic or pastoral be-
cause our model is fully unsupervised.

Then we generate another 50 poems (5 poems
per style) and ask the experts to classify these po-
ems into the 10 styles according to the relationship
between generated poems and style keywords in
Table 2. The human annotation results are shown
in Fig. 3.

We can see that many learned styles can be suc-
cessfully recognized by human with a higher prob-
ability, e.g. the first style can be correctly clas-
sified by 80% probability. This observation indi-
cates that the learned styles of SPG are meaningful
and recognizable through only two or three key-
words. Also, the generated poems are diverse oth-
erwise they cannot be differentiated and correctly
classified.

4.6 Case Study

We present three poems generated by SPG with
the same first sentence for case study. We only
list the results of three most representative styles
in Fig. 4 and put other generation examples in sup-
plementary materials (in Chinese). We can see that
the poems generated by different style inputs dif-
fer a lot from each other and follow the style key-
words. To conclude, SPG can generate fluent and
coherent poetries in diverse styles.

5 Conclusion

In this paper, we propose a stylistic poetry gen-
eration (SPG) model to learn the ability to write
poems in different styles under the same poetic
imagery. To the best of our knowledge, we are
the first effort at stylistic poetry generation in a
fully unsupervised manner. Therefore, our model
requires no expensive expert style annotation for
thousands of poems in the database. We innova-
tively employ mutual information, a concept in in-
formation theory, to develop our model. Exper-
imental results show that SPG is able to gener-
ate fluent and coherent poetries in diverse styles
without losing fluency and coherency. The learned
styles are meaningful and recognizable given only
two or three keywords. Our algorithm has been in-
corporated into Jiuge2 poetry generation system.

For future works, we will consider adopting the
mutual information regularization for other text
generation tasks which encourage stylistic gener-
ation or diversity to improve their performances.
Another intriguing direction is to refine our model
for more task-specific scenarios. Besides, our
model simplifies the prior of style distribution as
a uniform distribution. This assumption could be
further improved by an iteratively updating ap-
proach.

2https://jiuge.thunlp.cn
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(a) Style 1: “loneliness, melancholy” (b) Style 4: “hermit, rural scenes” (c) Style 8: “the portrait of hazy scener-
ies”

Figure 4: Examples generated by style 1,4 and 8 given the same first sentence. The keywords of the three styles
are listed for convenience.
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Abstract
Neural conversation models tend to gener-
ate safe, generic responses for most inputs.
This is due to the limitations of likelihood-
based decoding objectives in generation tasks
with diverse outputs, such as conversation.
To address this challenge, we propose a sim-
ple yet effective approach for incorporat-
ing side information in the form of distri-
butional constraints over the generated re-
sponses. We propose two constraints that
help generate more content rich responses that
are based on a model of syntax and topics
(Griffiths et al., 2005) and semantic similar-
ity (Arora et al., 2016). We evaluate our ap-
proach against a variety of competitive base-
lines, using both automatic metrics and hu-
man judgments, showing that our proposed
approach generates responses that are much
less generic without sacrificing plausibility.
A working demo of our code can be found
at https://github.com/abaheti95/
DC-NeuralConversation.

1 Introduction
Recent years have seen growing interest in neural
generation methods for data-driven conversation.
This approach has the potential to leverage mas-
sive conversational datasets on the web to learn
open-domain dialogue agents, without relying on
hand-written rules or manual annotation. Such re-
sponse generation models could be combined with
traditional dialogue systems to enable more natu-
ral and adaptive conversation, in addition to new
applications such as predictive response sugges-
tion (Kannan et al., 2016), however many chal-
lenges remain.

A major drawback of neural conversation gener-
ation is that it tends to produce too many “safe” or
generic responses, for example: “I don’t know” or
“What are you talking about ?”. This is a perva-
sive problem that has been independently reported

who killed him ? 

he ’s 

Stop word Likelihood score
a -4.62
the -5.69
in -5.95

<unk> -6.26
on -6.97
an -7.00
my -7.31
not -7.57

Topic word Likelihood score
shot -6.58
dead -6.95
head -11.67
died -12.24

murder -12.43
president -12.56

evil -12.66
father -12.66

… … … … … … …

he ’s EOS 

Figure 1: Illustration of the dull response problem
in maximum likelihood neural conversation genera-
tion using an example from the OpenSubtitles corpus.
Function (stop) words tend to receive higher log prob-
abilities than content (topic) words. The highest like-
lihood stop words and topic words in this context are
listed.

by multiple research groups (Li et al., 2016a; Ser-
ban et al., 2016; Li et al., 2016c).1 The effect is
due to the use of conditional likelihood as a de-
coding objective – maximizing conditional like-
lihood is a suitable choice for text-to-text gen-
eration tasks such as machine translation, where
the source and target are semantically equivalent,
however, in conversation there are many accept-
able ways to respond. Simply choosing most pre-
dictable reply often leads to very dull conversa-
tion.

Figure 1 illustrates the problem with conditional
likelihood using an example. After encoding the
source message using a bidirectional LSTM with
attention, and fixing the first two words of the re-
sponse, we show the highest ranked words (ac-
cording to log-likelihood scores) taken from a list

1https://research.googleblog.com/2015/
11/computer-respond-to-this-email.html
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of stop words2 in contrast to those selected from a
list of topic words.3 As illustrated in the figure, re-
sponse generation that is based on maximum like-
lihood is biased towards stop-words and therefore
results in responses that are safe (likely to be plau-
sible in the context of the input), but also bland
(don’t contribute any new information to the con-
versation). This motivates the need for augment-
ing the decoding objective to encourage the use of
more content words.

To address the dull-response problem in neu-
ral conversation, in this paper, we propose a new
decoding objective that flexibly incorporates side-
information in the form of distributional con-
straints. We explore two constraints, one which
encourages the distribution over topics and syntax
in the response to match that found in the user’s
input. To estimate these distributions, we leverage
the unsupervised model of topics and syntax pro-
posed by Griffiths and Steyvers (2005). The sec-
ond constraint encourages generated responses to
be semantically similar to the user’s input; seman-
tic similarity is measured using fixed-dimensional
sentence embeddings (Arora et al., 2016).

After introducing distributional constraints into
the decoding objective, we empirically demon-
strate, in an evaluation that is based on hu-
man judgments, that our approach generates more
content-rich responses when compared with two
competitive baselines: Maximum Mutual Infor-
mation (MMI) (Li et al., 2016a), in addition to an
approach that conditions on topic models as addi-
tional context in neural conversation (Xing et al.,
2017). While encouraging the model to generate
less bland responses can be risky, we find that our
approach achieves comparable plausibility while
introducing significantly more content.

2 Neural Conversation Generation
As a starting point for our approach we leverage
the Seq2Seq model (Sutskever et al., 2014; Bah-
danau et al., 2014) which has been used as a basis
for a broad range of recent work on neural con-
versation (Kannan et al., 2016; Li et al., 2016a;
Serban et al., 2016; Shao et al., 2017). This model
consists of two parts, an encoder and a decoder
both of which are typically stacked LSTM layers.
The encoder reads the input sequence and creates

2https://www.ranks.nl/stopwords
3The top 10 topic words were taken from each of the 50

topics inferred by an HMM-LDA model (after removing stop
words).

a hidden representation. The decoder conditions
on this representation, using attention, and gener-
ates the response using a neural network language
model (Bengio et al., 2003; Sutskever et al., 2011).

3 Distributional Topic and Semantic
Similarity Constraints

Neural generation models select a response, Ŷ by
maximizing over a decoding objective, typically
using greedy beam search from left to right over
partially completed responses, which are scored
using the decoder RNN language model. A com-
monly used decoding objective is the conditional
likelihood of the target given the source, P (Y |X):

Ŷ = arg max
Y

{log P (Y |X)} (1)

= arg max
w1,...,wn

{
nX

i=1

log P (wi|w1, . . . wi�1, X)}

As discussed in Section 1, models trained to max-
imize conditional likelihood tend to assign low
probability to content words as compared to (more
frequent) function words, leading to bland, generic
responses most of the time. To ameliorate this,
we introduce distributional constraints in the form
of additional terms in the decoding objective that
favor hypotheses containing more content words
that are similar to the source in the Topical and
Semantic sense.

For the constraint in the topic domain, we are
interested in the topic probability distributions
of the source, X , and target Y , P (T |X) and
P (T |Y ), where T is a random variable defined
over k topics. Then we can modify the decoding
objective from Eq 1:

Ŷ T = arg max
Y

{ log P (Y |X)+

↵ ⇥ �(P (T |X), P (T |Y ))}

(2)

Here, � is a similarity function between the two
probability distributions and ↵ is a tunable hyper-
parameter to adjust impact of this constraint.

Much recent work has investigated how to en-
code the semantic meaning of a sentence into a
fixed high dimensional embedding space (Kiros
et al., 2015; Wieting and Gimpel, 2017). Given
such an embedding representation of X and Y ,
one can find the semantic similarity between the
two and similar to Eq 2 we can add a semantic
similarity constraint to the likelihood objective as
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follows:

Ŷ Emb = arg max
Y

{ log(P (Y |X))+

� ⇥ r(Emb(X), Emb(Y ))}

(3)

where, Emb() is a function that maps an utterance
to a semantic vector representation, r is a func-
tion that computes similarity of the two embed-
dings and � is a tunable parameter.

Both of the constraint terms from Eq 2 and
Eq 3 are additive in nature and thus can be com-
bined in a straightforward fashion. This formula-
tion allows us to systematically combine informa-
tion from three different models to produce bet-
ter responses in terms of topic and semantic rele-
vance. Conceptually, the likelihood term governs
the grammatical structure of the response while
the topic and semantic constraints drive content
selection (Nenkova and Passonneau, 2004; Barzi-
lay and Lapata, 2005).

4 Decoding with Distributional
Constraints

In Section 3, we defined two constraints (one topic
constraint and one semantic) for use in the decod-
ing objective. Incorporating these constraints dur-
ing decoding requires that they factorize in a way
that is compatible with left-to-right beam search
over words in the response. The standard approach
to computing posterior distributions in topic mod-
els requires a probabilistic inference procedure
over the entire source and target. Furthermore,
computing semantic representations can involve
the use of complex neural architectures. Both of
these proceedures are difficult to integrate into de-
coding, because they are computationally expen-
sive and would need to be called repeatedly within
the inner loop of the decoder. Furthermore, when
performing left-to-right beam search, as is com-
mon practice in neural generation, the complete
response is generally not available. To address
these challenges, we propose using simple addi-
tive variants of these methods that factorize over
words and which we found to enable efficient de-
coding without sacrificing performance.

4.1 Topic Similarity
Estimating the topic distribution of the source,
P (T |X), and response, P (T |Y ), is a key step
in implementing the topic-similarity constraint.
HMM-LDA is a generative model that is able to
separate topic and syntax words, by inferring topic

distributions in a corpus while flexibly modeling
function words. We briefly summarize this model
before describing our implementation.

4.1.1 Syntax-Topics model
Griffiths et. al. (2005) suggested an unsupervised
generative model that simultaneously labels each
word in a document with a syntax (c) and topic (z)
state. They modify the Latent Dirichlet Alloca-
tion model to include a syntactic component akin
to a Hidden Markov Model (HMM). In LDA, each
topic (z) is associated with a probability distribu-
tion over the vocabulary �(z). HMM-LDA adds
additional distributions over words for each syn-
tactic class (c) as �(c). A special class, c = 0,
is reserved for topics. The transition model be-
tween classes ci�1 to ci follows a multinomial dis-
tribution distribution ⇡(ci�1). Each document has
an associated distribution over topics ✓(d); each
word, wj , in the document has an associated la-
tent topic variable, zj , that is drawn from ✓(d) and
cj is drawn from ⇡(cj�1). If cj = 0, then wj is
drawn from �(zj), otherwise it is drawn from �(cj).
Markov Chain Monte Carlo inference (MCMC) is
used to infer values for the hidden topic and syntax
variables associated with a given document collec-
tion. To estimate topic and syntax distributions,
we performed collapsed Gibbs sampling over our
training corpus of conversations, where each con-
versation is treated as a document. One sample of
the hidden variables was used to estimate model
parameters after 2,500 iterations of burn in. Our
code for training the HMM-LDA model is avail-
able online4.

4.1.2 Estimating Topic Distributions with
HMM-LDA

To compute distributional topic constraints in neu-
ral response generation, we first need an efficient
method for estimating topic distributions that fac-
torizes over words, given a point estimate of an
HMM-LDA model’s parameters. We would like
to estimate topic distributions based on content
words contained in a sentence and ignore func-
tion words. HMM-LDA provides us with topic,
�(z), and syntax, �(c), distributions over the vo-
cabulary of words, w 2 V . Treating a sentence
as a bag-of-words we can estimate its distribution
over topics as a sum of topic distributions over all
words normalized by sentence length. However,
we found this approach does not to work well in

4https://github.com/abaheti95/HMM-LDA
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practice because it gives equal weight to topic and
syntax words. To address this issue, we weighted
each word’s topic distribution P (T |w) by its prob-
ability of being generated by the topic component
of the HMM-LDA model (i.e. P (C = 0|w)). The
topic distribution of a sentence, S, is estimated as:

P (T |S) =
1

Z
⌃w2SP (T |w)P (C = 0|w) (4)

where Z = ⌃w2SP (C = 0|w) is a normalizing
constant that corresponds to the expected number
of content words in the sentence. As mentioned
earlier, a more accurate estimate of the topic distri-
bution could be obtained using MCMC inference
or by applying the forward-backward algorithm.
However, these methods are computationally ex-
pensive and not well-suited to the decoding frame-
work used in neural generation.

The method described above allows us to ef-
ficiently compute the topic distribution of a sen-
tence for use in the topic constraint in Eq 2. For
a similarity function, �, we simply use the vec-
tor dot product, which is closely related to cosine
similarity. This formulation has the advantage that
it enables memoization during decoding. Another
advantage is that it captures the ratio of topic to
syntax words due to the weights P (C = 0|w).5

Therefore, the overall constraint has the effect of
keeping the syntax-topics ratio in generated hy-
pothesis similar to the source.

4.2 Semantic Similarity
To define the semantic similarity constraint we
first encode a semantic representation of the
source and target into a fixed dimensional embed-
ding space. There are many sentence embedding
methods that could be used, however we want this
encoding to be relatively efficient as it will be used
many times during beam search.

Arora et. al. (2016) recently proposed a simple
sentence embedding method, which was shown to
have competitive performance across a variety of
tasks. Their approach uses a weighted average of
word embeddings where each word is weighted
by a

a+P (w) ; here, P (w) is the unigram probabil-
ity and a is a hyperparameter. Such a weighting
scheme reduces the impact of frequent words (typ-

5Assuming topic distribution of syntax words to be uni-
form, a sentence with more syntax words will dampen modes
in the distribution. Alternately, with less syntax words the
overall distribution will be more peaked.

ically function words) in the overall sentence em-
bedding. Next the first principal component of all
the sentence embeddings in the corpus is removed.
(Arora et al., 2016) points that the first principal
component has high cosine similarity with com-
mon function words. Removing this component
gives sentence embeddings that encapsulate the
semantic meaning of the sentence. We use this
technique in our implementation of Emb() in Eq
3. For the similarity function, �, we use the
dot product. Analogous to the topic constraint
described above, this approach to measuring se-
mantic similarity also decomposes over words and
works well in the decoding framework.

Parameter Value
RNN Type Bi-LSTM

Layers 4
Hidden layer dim. 1000

Learning rate 0.1
max. grad. norm. 1

Optimization Adadelta
Parameter Init (-0.08, 0.08) (uniform)

Table 1: Hyperparameter setting for training

Bucket #dialogues #test
b1 (3-6 words) 10994 334
b2 (7-15 words) 15794 333

b3 (16-25 words) 5167 333
total 31955 1000

Table 2: Test set from Cornell Movie Dialogue Corpus.
Column 2 shows the total number of dialogues that we
got after all pre-processing and Column 3 shows the
number of sampled dialogues in the test set.

5 Datasets
For training purposes we use OpenSubtitles
(Tiedemann, 2009), a large corpus of movie subti-
tles (roughly 60M-70M lines) that is freely avail-
able and has been used in a broad range of recent
work on data-driven conversation. OpenSubtitles
does not contain speaker annotations on the di-
alogue turns, so as previously noted when used
for learning data-driven conversation models the
data is somewhat noisy. Nonetheless, it is possi-
ble to create a useful corpus of conversations from
this data by assuming each line corresponds to a
full speaker turn. Although this assumption is of-
ten violated, prior work has successfully trained
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and evaluated neural conversation models using
this corpus. In our experiments we used a prepro-
cessed version of this dataset distributed by Li et.
al. (2016a).6 The dataset contains large number of
two turn dialogues out of which we sampled 23M
to use as our training set and 10k as a validation
set.

Due to the noisy nature of the OpenSubtitles
conversations we do not use them for evalua-
tion. Instead, we leverage the Cornell Movie Dia-
logue Corpus (Danescu-Niculescu-Mizil and Lee,
2011) which is much smaller but contains accu-
rate speaker annotations. We extracted all two turn
conversations (source target pair) from this cor-
pus and removed those with less than three and
more than 25 words. After this, we divided the
remaining conversations into three buckets based
on source length. The numbers can be found in
Table 2. From each bucket we randomly sampled
⇡333 dialogues for a total of 1000 dialogues in
our test set. We evaluate all models on this test
set. Since automatic metrics do not correlate with
human judgment, we manually tuned the hyperpa-
rameters (↵ and �) on a small development set (4
dialogues from each bucket to create a small 12
sentence development set; disjoint from test set).
We manually inspected the responses generated by
the model on the development set for different val-
ues of ↵ and � and choose those that performed
best.

6 Experimental Conditions and Baselines
During learning we use the same hyperparame-
ters for all models; these are displayed in Table
1, and are based on those reported by Li et. al.
(2016a).7 We compare our approach with the fol-
lowing baselines:
MMI: We re-implemented the MMI-bidi method
proposed by Li et. al. (2016a). MMI is a par-
ticularly appropriate baseline for comparison, as
it encourages responses that have higher relevance
to the input in contrast to conditional likelihood,
which tends to favor responses with higher uncon-
ditional probability. MMI-bidi generates B can-
didates using Beam search on a Seq2Seq model
trained to maximize conditional likelihood of the
target given the source, P (Y |X), then re-ranks
them using a separately trained source given tar-

6http://nlp.stanford.edu/data/OpenSubData.tar
7OpenNMT is used for training our models (Klein et al.,

2017).

get model, P (X|Y ). Combining both directions
in this way has the effect of maximizing mutual
information (Li et al., 2016a).
TA-Seq2Seq: Another relevant baseline is the TA-
Seq2Seq model of Xing et. al. (2017) that inte-
grates information from a pre-trained topic model
into neural response generation using an attention
mechanism to condition on relevant topic words.
They evaluate their model on a dataset of Chi-
nese forum posts. Unfortunately we could not
use the code provided by the authors due to data-
mismatch (their model makes use of user iden-
tities which are not available in the OpenSubti-
tles corpus). We therefore compare with a re-
implementation of their approach in which we
modify each source sentence to include a list of
the 20 most relevant topic words from HMM-LDA
and then train using the same Seq2Seq framework
with attention. This enables the model to condi-
tion on the relevant topic words. In addition to in-
corporating attention over topics, Xing et. al. also
introduced an approach to biased generation - to
replicate this we add a constant factor to all topic
words during the prediction.

7 Results and Analysis
Our proposed decoding objective constraints
(topic and semantic) are complementary to the
MMI objective, which encourages diversity and
relevance to the source input. Therefore, in addi-
tion to comparing against the baselines described
above, we evaluated three variants of our model:
(1) maximum conditional likelihood combined
with semantic and topic distributional constraints
with a beam size of 10 (DC-10) (2) The same
configuration with MMI-bidi re-ranking using a
beam size of 10 DC-MMI10 and (3) MMI-bidi re-
ranking with a beam size of 200 (DC-MMI200).
We test all configurations on the 1000 conversa-
tions test set described in Section 5 and compare
them on automatic metrics and also in a crowd-
sourced human evaluation. We do not consider
TA-200 (TA-Seq2Seq, Beam=200), DC-200 and
MMI-10 for human evaluation as they appear to
perform worse than other model variants in auto-
matic metrics and also on our set of development
sentences. Sample responses for all the remaining
models are presented in Table 3.

7.1 Automatic Metrics
Following Li et. al. (2016a), we report distinct-1
and distinct-2, which measure the diversity of re-
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Source Target (ground
truth)

MMI Approximate
TA-Seq2Seq

Distributional
Constraints

where does he work
?

in there , sir . does he know
where he is ?

what kind of
place is this ?

he has work to
do at the
university

here ’s your jacket ! uh , thanks ... i don ’t want it ! what kind of suit
is this ?

you can stick
your shirt in it !

what ’s so damn
funny ?

been to any good
<unk>lately ?

what are you
laughing at ?

what ’s the
matter with you ?

it ’s sort of a
funny thing you
know ?

well , what exactly
does our platoon do
? serve <unk>?
process paperwork
?

our platoon has
the best
assignment of all
. we ’re the first
into battle !

well as a matter
of fact

the best thing to
do ?

well the war is
over but we don
’t have time for
this shit

left us here to rot .
that ’s what they ’ve
done . heroes of the
newspapers !

all right , all right
. keep quiet .

they ’r e all dead
!

it ’s time to fight
!

we are brothers
and kings of war
!

that ’s it . you ’re
not setting foot off
this ship until we
return home .

but i haven ’t
even shown you
my biology
project ...

we ’r e not going
anywhere

i hope you don ’t
mind

we have orders
that the ship will
return to earth
immediately

i ’m han solo , cap-
tain of this vessel
. who ’s in charge
then ?

i ’m ben kenobi.
luke starkiller
here is leading
our expedition .

i don ’t know sir
sir

you ’r e a coward
!

i am captain kirk
commander of
the ship

her grandmother
said she ’d been
threatening to run
away . and i found
the car at the miami
bus terminal .

you don ’t think
sam could ’ve
put it there ?

but she didn ’t
tell me

that ’s one hell of
a job

it was parked in a
car crash near the
road

Table 3: Sample responses of all the models on the dev set

sponses. These are the ratios of types to tokens
for unigrams and bigrams, respectively. We also
report BLEU-1 scores following previous work,
however it should be noted that BLEU-1 is not
generally accepted to correlate with human judg-
ments in conversation generation tasks (Liu et al.,
2016) as there are many acceptable ways to re-
ply to an input which may not match a reference
response. Lastly, we compare the percentage of
stop-words8 of the responses generated by each
model (smaller values, that are closer to the distri-
bution of human conversations are preferred). The
automatic evaluation is presented in Table 4.

8Long Stopword List from https://www.ranks.
nl/stopwords. We appended punctuations to this list.

For brevity we define aliases for each system
in the 2nd column of Table 4 which are used
in subsequent discussion. The human responses
are diverse and also generally longer than au-
tomatically generated responses. MMI200 has
higher diversity than TA-Seq2Seq in terms of
distinct-1 and distinct-2. This illustrates the im-
portance of re-ranking using MMI. Our approach
produces almost twice as many distinct unigrams
and bigrams. We also observe MMI200 and TA-
Seq2Seq achieve higher BLEU scores than our
models, however this is not surprising since our
models are designed to generate more interest-
ing responses containing rarer content words that
are less likely to appear in reference responses.
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Model Alias distinct-1 distinct-2 BLEU
-1

Avg.
length

Stop-
word%

Human responses human 2381/0.176 7532/0.602 - 13.5 70.66
MMI (Beam=200) MMI200 351/0.058 990/0.197 12.8 6.0 84.91
TA-Seq2Seq(Beam=10) TA-10 237/0.036 524/0.095 12.9 6.5 79.40
Dist. Const. (Beam=10) DC-10 710/0.097 2014/0.320 11.0 7.3 72.04
Dist. Const. + MMI (Beam=10) DC-MMI10 732/0.099 2098/0.327 11.4 7.4 73.87
Dist. Const. + MMI (Beam=200) DC-MMI200 850/0.116 2946/0.465 11.6 7.3 72.25

Table 4: Automatic metrics evaluation. The 3rd and 4th columns show the ratio of types to tokens for unigrams
and bigrams respectively. 7th Column shows the % of stop-words generated by the models in their responses.

Model Alias No(%) Unsure(%) Yes(%)
Plausible?

human 19.807 23.448 56.745
MMI200 27.623 26.445 45.931
TA-10 26.981 26.874 46.146
DC-MMI200 30.835 24.41 44.754

Content Richness?
human 16.488 19.914 63.597
MMI200 23.662 32.976 43.362
TA-10 31.799 30.086 38.116
DC-MMI200 20.021 26.660 53.319

Table 5: Human judgments for Plausibility of the dif-
ferent models. Each numerical cell contains a percent-
age value corresponding to its row truncated to 2 deci-
mal precision.

As expected we observe that MMI200 and TA-10
have a higher percentage of stop-words than hu-
man responses. According to the human evalua-
tion discussed in Section 7.2, these models were
also found to have lower content richness.

7.2 Human Evaluation

We conducted a survey on the crowd-sourcing
platform, Amazon Mechanical Turk. Every model
response is scored on 2 categories: 1) Plausibility
- is the response plausible for the given source?
and 2) Content Richness - does the response add
new information to the conversation? We asked
the evaluators to respond on a 5-point scale to the
questions above (Strongly Agree, Agree, Unsure,
Disagree, Strongly Disagree). These were later
collapsed to 3 categories (Agree, Unsure, Dis-
agree). The results for plausibility and content
richness of our model in addition to the MMI and
TA-Seq2Seq baselines and human responses are
presented in Table 5.

We observe that MMI200 and TA-10 models

Model Alias No (%) Unsure (%) Yes (%)
Plausible?

DC-10 36.617 27.944 35.439
DC-MMI10 33.619 28.694 37.687
DC-MMI200 30.835 24.41 44.754

Content Richness?
DC-10 19.272 26.017 54.711
DC-MMI10 18.844 26.231 54.925
DC-MMI200 20.021 26.660 53.319

Table 6: Comparing the model variation by reducing
beam size to 10 and also comparing decoder constraints
without MMI reranking

achieve slightly better plausibility scores since
they tend to generate safe, dull responses. How-
ever, we find that when using a beam size of 200
and MMI re-ranking, our approach which incor-
porates distributional constraints, DC-MMI200,
achieves competitive plausibility, while achieving
significantly higher content richness.

7.2.1 Statistical Significance of Results

To verify the statistical significance of our find-
ings, we conducted a pairwise bootstrap test
(Efron and Tibshirani, 1994; Berg-Kirkpatrick
et al., 2012) comparing the difference between
percentage of Agree annotations (Yes column in
the Table 5). We computed p-values for each pair
of models: MMI200 vs DC-MMI200 and TA vs
DC-MMI200. For plausibility, we did not find
a significant difference in either comparison (p-
value ⇡ 0.25) while for content richness, both
differences were found to be significant (p-value
<10�4). To summarize: our model significantly
beats both baselines in terms of content richness
while the difference in plausibility was not found
to be statistically significant.
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7.2.2 Pairwise Evaluation of Interestingness
To further validate our claims we also did a side by
side comparison study between MMI200 and DC-
MMI200. For every test case, we showed Mechan-
ical Turk workers the source sentence along with
responses generated by both systems and asked
them select which is more interesting. We observe
that in 56% out of 1000 cases, DC-MMI200 was
rated as the more interesting response. The result
is statistically significant with p-value <4 ⇥ 10�4

(using an exact binomial test).

7.3 Model Variations

To see the effectiveness of our decoding con-
straints separately, we compare the best perform-
ing DC-MMI200 model with DC-10 and DC-
MMI10, both of which use a beam size of 10
– DC-10 does not include MMI reranking. The
results of Mechanical Turk evaluation, following
the approach described in Section 7.2, are pre-
sented in Table 6. We observe that with a beam
size of 10 our model is able to generate content
rich responses, but suffers in terms of plausibil-
ity. The values in the table suggests the decoding
constraints defined in this work successfully inject
content words into candidate hypotheses and that
MMI is able to effectively choose plausible candi-
dates. In the case of DC-10 and DC-MMI10, both
models generate the same candidates, but MMI is
able to re-rank the results and thus improves plau-
sibility.

8 Related Work
Conversational agents primarily fall into two cate-
gories: task oriented dialogue systems (Williams
et al., 2013; Wen et al., 2015) and chatbots
(Weizenbaum, 1966), although there have been
some efforts to integrate the two (Dodge et al.,
2015; Yu et al., 2017). Some of the earliest
work on data-driven chatbots (Ritter et al., 2011)
explored the use of phrase-based Statistical Ma-
chine Translation (SMT) on large numbers of con-
versations gathered from Twitter (Ritter et al.,
2010). Subsequent progress on the use of neu-
ral networks in machine translation inspired the
use of Sequence-to-Sequence (Seq2Seq) models
for data-driven response generation (Shang et al.,
2015; Sordoni et al., 2015; Li et al., 2016a).

Our approach, which incorporates distributional
constraints into the decoding objective, is related
to prior work on posterior regularization (Mann

and McCallum, 2008; Ganchev et al., 2010; Zhu
et al., 2014). Posterior regularization introduces
similar distributional constraints on expectations
computed over unlabeled data using a model’s pa-
rameters. These are typically added to the learn-
ing objective for semi-supervised scenarios where
available labeled data is limited. In contrast, our
approach introduces distributional constraints into
the decoding objective as a way to combine neural
conversation models trained on large quantities of
conversational data with separately trained mod-
els of topics and semantic similarity that can drive
content selection.

There are numerous examples of related work
on improving neural conversation models. Shao
et. al. (2017) introduced a stochastic approach
to beam search that does segment-by-segment
reranking to promote diversity. Zhang et. al.
(2018) develop models which converse while as-
suming a persona defined by a short description
of attributes. Wang et. al. (2017) suggested de-
coding methods that influence the style and topic
of the generated response. Bosselutet al. (2018)
develop discourse-aware rewards with reinforce-
ment learning (RL) to generate long and coherent
texts. Li et. al. (2016c) applied deep reinforce-
ment learning to dialogue generation to maximize
long-term reward of the conversation, as opposed
to directly maximizing likelihood of the response.
This line of work was further extended with adver-
sarial learning (Li et al., 2017) that rewards gener-
ated conversations that are indistinguishable from
real conversations in the data. Lewis et. al. (2017)
applied reinforcement learning with dialogue roll-
outs to generate replies that maximize expected re-
ward, while learning to generate responses from
a crowdsourced dataset of negotiation dialogues.
Choi et. al. (2018) used crowd-workers to gather
a corpus of 100K information-seeking QA dia-
logues that are answerable using text spans from
Wikipedia. Niu and Bansal (2018) designed a
number of weakly-supervised models that gener-
ate polite, neutral or rude responses. Their fusion
model combines a language model trained on po-
lite utterances with the decoder. In the second
method they prepend the utterance with a polite-
ness label and scale its embedding to vary polite-
ness. The third model is Polite-RL which assigns a
reward based on a politeness classifier. Gimpel et.
al. (2013) explored methods for increasing the di-
versity of N-best lists in machine translation by in-
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troducing a pairwise dissimilarity function. Simi-
lar ideas have been explored in the context of neu-
ral generation models. (Vijayakumar et al., 2016;
Li and Jurafsky, 2016; Li et al., 2016b)

Following previous work we evaluated our ap-
proach using a combination of automatic metrics
and human judgments. Some recent work has ex-
plored the possibility of adversarial evaluation of
neural conversation models (Lowe et al., 2017; Li
et al., 2017).

9 Conclusions
We presented an approach to generate more in-
teresting responses in neural conversation models
by incorporating side information in the form of
distributional constraints. When using maximum
likelihood decoding objectives, neural conversa-
tion models tend to generate safe responses, such
as “I don’t know” for most inputs. Our proposed
approach provides a flexible method of incorporat-
ing a broad range of distributional constraints into
the decoding objective. We proposed and empiri-
cally evaluated two constraints that factorize over
words, and therefore naturally fit into the com-
monly used left-to-right beam search decoding
framework. The first encourages the use of more
relevant topic words in the response the second en-
courages semantic similarity between the source
and target. We empirically demonstrated, through
human evaluation, that when taken together these
constraints lead to responses that contribute sig-
nificantly more information to the conversation,
while maintaining plausibility in the context of the
input.
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Abstract

We present three enhancements to exist-
ing encoder-decoder models for open-domain
conversational agents, aimed at effectively
modeling coherence and promoting output di-
versity: (1) We introduce a measure of co-
herence as the GloVe embedding similarity
between the dialogue context and the gener-
ated response, (2) we filter our training cor-
pora based on the measure of coherence to
obtain topically coherent and lexically diverse
context-response pairs, (3) we then train a re-
sponse generator using a conditional varia-
tional autoencoder model that incorporates the
measure of coherence as a latent variable and
uses a context gate to guarantee topical con-
sistency with the context and promote lexical
diversity. Experiments on the OpenSubtitles
corpus show a substantial improvement over
competitive neural models in terms of BLEU
score as well as metrics of coherence and di-
versity.

1 Introduction

End-to-end neural response generation methods
are promising for developing open domain dia-
logue systems as they allow to learn from very
large unlabeled datasets (Shang et al., 2015; Sor-
doni et al., 2015; Vinyals and Le, 2015). How-
ever, these models have also been shown to gen-
erate generic, uninformative, and non-coherent
replies (e.g., “I don’t know.” in Figure 1), mainly
due to the fact that neural systems tend to set-
tle for the most frequent options, thus penaliz-
ing length and favoring high-frequency word se-
quences (Sountsov and Sarawagi, 2016; Wei et al.,
2017).

To address these problems, Li et al. (2016a) and
Li et al. (2017a) attempt to promote diversity by
improving the objective function, but do not model
diversity explicitly. Serban et al. (2017) focus on

Conversational history Response
A: You stay out of this. B-Coh: Well, I got water.
B: So you want water, huh? B-Incoh: I don’t know.
A: That’s right.
A: Where do we start? B-Coh: Specifically the stove.
B: Kitchen. B-Incoh: Let’s go for a walk.
A: Definitely the kitchen.

Figure 1: Examples of conversational history (left)
with two alternative responses to follow it (right): (B-
Coh) a more coherent, topical utterance, and (B-Incoh)
a generic, inconsistent response.

model structure without any upgrades to the ob-
jective function. Other works control the style of
the output by leveraging external resources (Hu
et al. (2017): sentiment classifier, time annotation;
Zhao et al. (2017): dialogue acts) or focus on well-
structured input such as paragraphs (Li and Juraf-
sky, 2017).

This paper extends previous attempts to model
diversity and coherence by enhancing all three as-
pects of the learning process: the data, the model,
and the objective function. While previous re-
search has addressed these aspects individually,
this paper is the first to address all three in a uni-
fied framework. Instead of using existing linguis-
tic knowledge or labeled datasets, we aim to con-
trol for coherence by learning directly from data,
using a fully unsupervised approach. This is also
the first work encoding and evaluating coherence
explicitly in the dialogue generation task, as op-
posed to using diversity, style, or other properties
of responses as a proxy.

In this work, given a dialogue history, we regard
as a coherent response an utterance that is themat-
ically correlated and naturally continuing from the
previous turns, as well as lexically diverse. For
example, in Figure 1 the response “Specifically
the stove.” is a very natural and coherent response,
elaborating on the topic of kitchen introduced in
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the previous two utterances and containing rich
thematic words, whereas the response “Let’s go
for a walk.” is unrelated and uninteresting.

In order to obtain coherent responses, we
present three generic enhancements to existing
encoder-decoder (E-D) models:

1. We define a measure of coherence simply as the
averaged word embedding similarity between
the words of the context and the response com-
puted using GloVe vectors (Pennington et al.,
2014).

2. We filter a corpus of conversations based on
our measure of coherence, which leaves us with
context-response pairs that are both topically
coherent and lexically diverse.

3. We train an E-D generator recast as a con-
ditional Variational Autoencoder (cVAE; Zhao
et al., 2017) model that incorporates two latent
variables, one for encoding the context and an-
other for conditioning on the measure of co-
herence, trained jointly as in Hu et al. (2017).
We then decode using a context gate (Tu et al.,
2017) to control the generation of words that
directly relate to the most topical words of the
context and promote coherence.

Experiments on the OpenSubtitles (Lison and
Meena, 2016) corpus demonstrate the effective-
ness of the overall approach. Our models achieve
a substantial improvement over competitive neural
models. We provide an ablation analysis, quanti-
fying the contributions that come from effective
modeling of coherence into our models. All our
experimental code is freely available on GitHub.1

2 Coherence-based Dialogue Generation

Our model aims to generate responses given a
dialogue context, incorporating measures of co-
herence estimated purely from the training data.
We propose the following enhancements to the
attention-based E-D architecture (Bahdanau et al.,
2015; Luong et al., 2015):

• We introduce a stochastic latent variable z con-
ditioned on previous dialogue context to store
the global information about the conversation
(Bowman et al., 2016; Chung et al., 2015; Li
and Jurafsky, 2017; Hu et al., 2017).

1https://github.com/XinnuoXu/CVAE_Dial

• We force the model to condition on the mea-
sure of coherence explicitly by encoding a la-
tent variable (code) c learned from data.

• We incorporate a context gate (Tu et al., 2017)
that dynamically controls the ratio at which
the generated words in the response derive di-
rectly from the coherence-enhanced dialogue
context or the previously generated parts of the
response.

In the rest of this section, we introduce the mea-
sure of coherence (Section 2.1), we present an
overview of our model (Section 2.2), and finally
describe the model in detail (Sections 2.3–2.4).

2.1 Measure of Dialogue Coherence
Semantic vector space models of language repre-
sent each word with a real-valued word embed-
ding vector (Pennington et al., 2014). By simply
taking a weighted average of all its word embed-
dings, a whole sentence can be mapped into the
semantic vector space. We define the coherence
of a dialogue as the average distance between se-
mantic vectors of preceding dialogue context and
its response.

Let x = {x1, . . . xj , . . . xJ} represent a dia-
logue context and y = {y1, . . . yi, . . . yI} a re-
sponse. J and I are the numbers of words in
the dialogue context and its response, respectively.
Semantic vector space models map each word xj

into embeddings xemb
j , and yi into yemb

i . The se-
mantic representation of a dialogue context x is
then xemb =

PJ
j=1 wjxemb

j ; for a response y, it
is yemb =

PI
i=1 viyemb

i . Here, wj and vi are im-
portance weights for each word in the sentence.2

The measure of coherence is then defined as the
cosine distance of the two semantic vectors of the
dialogue context and its response:

C (x,y) = cos
⇣
xemb,yemb

⌘
(1)

2.2 Model Overview
End-to-end response generation for dialogue can
be formalized as follows: Given a dialogue con-
text x, a dialogue generator generates the next ut-
terance y. During the training process, the aim for
a dialogue generator is to maximize the probabil-
ity p (y|x) over the training dataset. To encode

2We set the importance weights to 0 for a list of stop
words (high-frequency words such as articles and preposi-
tions, names, punctuation marks), 1 otherwise.
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dialogue contexts that adequately incorporate co-
herence information, we build our generator based
on the cVAE model of Hu et al. (2017), which has
been used to control text generation with respect
to linguistic properties, such as tense or sentiment.

In our model, the response y is generated condi-
tioned on the previous conversation x, a diversity-
promoting latent variable z, and a latent variable
c indicating dialogue coherence; z and c are in-
dependent. The generation probability p (y|x) is
defined as:

p (y|x) =

Z

z,c
p (y|x, z, c) p (z, c|x) dz dc

=

Z

z,c
p (y|x, z, c) p (z|x) p (c|x) dz dc

(2)

Unfortunately, optimizing Eq (2) during train-
ing is intractable; therefore, we apply variational
inference and optimize instead the variational
lower bound:

log p (y|x) = log

Z

z,c
p (y|x, z, c) p (z, c|x) dz dc

� Eq(z|x,y)p(c|x,y) [log p (y|x, z, c)]

� DKL (q (z|x,y) k p (z|x))

(3)

where p (y|x, z, c) is the probability of gener-
ating utterance y given x, z and c; q (z|x,y)
stands for the approximate posterior distribution
of the latent variable z conditioned on dialogue
context x and the gold response y; p (c|x,y)
is the measure of coherence between context x
and response y; p (z|x) is the true prior distribu-
tion of z conditioned only on dialogue context x;
DKL (·|·) denotes the KL-divergence. We assume
that both q (z|x,y) and p (z|x) are Gaussian with
mean vectors µappr, µtrue and covariance matrices
⌃appr, ⌃true.

2.2.1 Model Details
Optimizing Eq (3) consists of two parts: (1) min-
imizing the KL-divergence between the approxi-
mate posterior distribution and the true prior dis-
tribution of z, (2) maximizing the probability of
generating the gold response y conditioned on di-
alogue context x and coherence factors z and c.
Figure 2 shows the pipeline of the training proce-
dure.

Encoder: First, we encode a dialogue context x
into a hidden state h using the context encoder,
which is based on Recurrent Neural Networks
(RNNs). Then the posterior network encodes both
dialogue context x and gold response y into a hid-
den state happr followed by two linear transfor-
mations fappr (·) and gappr (·) to map happr into
mean vector µappr and covariance matrix ⌃appr.
The latent variable z can be sampled from the dis-
tribution N (µappr, ⌃appr):

µappr = fappr (happr)

⌃appr = gappr (happr)

q (z|x,y) = N (µappr, ⌃appr)

(4)

The prior network in Figure 2 takes a form similar
to the posterior network:

µtrue = ftrue (htrue)

⌃true = gtrue (htrue)

p (z|x) = N (µtrue, ⌃true)

(5)

where htrue is the final hidden state of an RNN en-
coding only the dialogue context x, and ftrue (·),
gtrue (·) are linear transformations. Code c is
given by the coherence measure from Eq (1).

Decoder: We build an attention-based decoder
(Bahdanau et al., 2015; Luong et al., 2015) using
RNNs to generate responses conditioned on en-
coded dialogue context h, diversity signal z, and
coherence signal c. We concatenate the latent vari-
ables z and c to the context encoder hidden state h
and feed them into the decoder as the initial hidden
state s0, similar to Hu et al. (2017).

During the decoding process, tokens are gener-
ated sequentially under the following probability
distribution:

p (y|x, z, c) =
IY

i=1

p
�
yi|y<i,x, z, c

�

=
IY

i=1

g (yi�1, si,ai)

(6)

where I is the length of the produced response;
g (·) is an RNN; si is the hidden state of the de-
coder at time step i which is conditioned on the
previously generated token yi�1, the previous hid-
den state si�1, and the weighted attention vector
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Figure 2: The training process of the generative model. First, the dialogue context is encoded: h is the final hidden
state of the context encoder. Then we derive the diversity-promoting latent variable z. Next, we compute the latent
variable c that corresponds to the measure of coherence between the dialogue context x and the generated response
y. We concatenate all three vectors into s to feed the decoder. a is the attention matrix calculated for every time
step of the decoding process.

ai:

si = f (yi�1, si�1,ai) (7)

ai =
JX

j=1

wijhi (8)

where J is the number of tokens of the dialogue
context; hi is the ith hidden state of the encoder;
the attention weight wij of each context hidden
state hi is computed following Luong et al. (2015).

Context Gate: To increase the influence of code
c, we introduce the context gate k. Unlike Tu et al.
(2017), whose context gate assigns an element-
wise weight to the input signal deriving from the
encoder RNN, we build the context gate condi-
tioned only on the coherence signal:

ki = ��
�
c � c0

i

�
(9)

where � is the sigmoid function; � is a bias term;3

c is the target value of the measure of coherence,
calculated by C (x,y) (see Section 2.1); c0

i is the
measure of coherence between the dialogue con-
text and the generated prefix sentence at time step
i, calculated by C

�
x,y<i

�
. Now Eq (7) with the

context gate applied to si can be rewritten as:

si = f
�
yi�1, (1 � ki) � si�1, ki � ai

�
(10)

where � denotes element-wise multiplication.
The coherence-informed context gate aims to

dynamically control the ratio at which preceding
dialogue context and previously generated tokens
of the current response contribute to the generation
of the next token in the response.

3We set � empirically against the development set.

2.3 Training
Our generator is trained similarly to Hu et al.
(2017). The objective function is a weighted com-
bination of three losses (generation, coherence,
and diversity):

L = LG + �cLc + �zLz (11)

To teach the generator to produce responses close
to the training data, we maximize the generation
probability of the training response log p (y|x)
given the dialogue context according to Eq (2).
During training, we set LG = � log p (y|x) and
minimize the following:

LG =DKL (q (z|x,y) k p (z|x))

� Eq(z|x,y)p(c|x,y) [log p (y|x, z, c)]
(12)

Apart from the generation loss, the coherence
measure provides an extra learning signal Lc

which pushes the generator to produce responses
that match the coherence signal given by the latent
variable c.

Lc = �Ep(z|x)p(c)

h
log p

⇣
c|x, eG (x, z, c)

⌘i

(13)

In Eq (13), p (c) = N (0, 1) is the prior distribu-
tion of the coherence variable c. To ensure that
the loss is differentiable, we cannot sample words
from the response vocabulary. Instead we define
eG (x, z, c) = ys = {ys

1, . . .y
s
i , . . .y

s
I} as the se-

quence of output word probability distributions.
p

⇣
c|x, eG (x, z, c)

⌘
is predicted by the coherence

measure defined in Eq (1) with yemb set as:

yemb =
IX

i=1

ys
j
>Mglv (14)
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where Mglv is the word embedding matrix trained
using GloVe (Section 2.1).

The last component in Eq (11) is the indepen-
dent constraint Lz that forces the soft distribution
over the generated response eG to be diverse, so
that it is able to faithfully reproduce the latent vari-
able z:

Lz = �Ep(z|x)p(c)

h
log q

⇣
z|x, eG (x, z, c)

⌘i

(15)
where q

⇣
z|x, eG (x, z, c)

⌘
is predicted by the pos-

terior network with ys
j as the soft input to the RNN

encoder at each time step j.

2.4 Inference

Figure 3 shows the inference process of the gen-
erative model. Given a dialogue context x and an
expected coherence value c, the context encoder
first encodes the dialogue context into a hidden
state h. The prior network then generates a sam-
ple z0 conditioned on the dialogue context. The
decoder is initialized with s, i.e., the concatena-
tion of h, z and c. During decoding, the next
word is generated via the context gate modulating
between the attention-reweighted context and the
previously generated words of the response.

3 Dataset and Filtering

Dataset for Generator

We train and evaluate our models on the OpenSub-
titles corpus (Lison and Tiedemann, 2016) with
automatic dialogue turn segmentation (Lison and
Meena, 2016).4 A training pair consists of a dia-
logue context and a corresponding response. We
consider three consecutive turns as the dialogue
context and the following turn as the response.
From a total of 65M instances, we select those
that have context and response lengths of less than
120 and 30 words, respectively. We create two
datasets:

1. OST (plain OpenSubtitles) consists
of 2M/4K/4K instances as our train-
ing/development/test sets, selected randomly
from the whole corpus;

2. fOST (filtered OpenSubtitles) contains the
same amount of instances, but randomly se-
lected only among those that have a measure of

4http://www.opensubtitles.org

Dataset Coh D-1% D-2% D-Sent%
OST 0.390 14.3 57.9 83.8
fOST 0.801 15.5 62.9 89.3

Table 1: Coherence and diversity metrics7 for the OST
and fOST datasets (see Section 3 for the datasets and
Section 4.2 for metrics definition).

coherence score C (x,y) � 0.68.5

Filtering of the OpenSubtitles corpus is moti-
vated by the fact that by removing the video and
audio modalities which the subtitles originally ac-
companied, we are very often left with incomplete
and incoherent dialogues. Therefore, by keep-
ing dialogues with high coherence scores, we aim
at building a high quality corpus with (1) more
semantically coherent and topically related con-
texts and responses, and (2) fewer general and
dull responses. Table 3 shows the coherence and
diversity metrics (cf. Section 4.2) between OST
and fOST. Unsurprisingly, coherence for fOST is
much higher than OST, with a slightly higher di-
versity. We list dialogue examples for different co-
herence scores in Supplemental Material B.

Dataset for Coherence Measure
In order to accurately measure coherence on our
domain using the semantic distance as defined in
Section 2.1, we train GloVe embeddings on the
full OpenSubtitles corpus (i.e. 100K movies).

4 Experiments

Our generator model, ablative variants, and base-
lines are implemented using the publicly avail-
able OpenNMT-py framework (Klein et al., 2017)
based on Bahdanau et al. (2015) and Luong et al.
(2015). We used the publicly available glove-
python package8 to implement our coherence
measure.

We experiment on two versions of our model:
(1) cVAE with the coherence context gate as de-
scribed in Section 2.3 (cVAE-XGate), (2) cVAE
with the original context gate implementation of

5The coherence score is calculated as shown in Eq (1).
We observed that the scores on the training set follow a nor-
mal distribution with a slight tail on the negatively correlated
side, so we fit a normal distribution to the data with parame-
ters N(0.25, 0.22) and set the cut-off to +2�. A histogram
of coherence scores is shown in Figure 5 in Supplemental
Material A.

7Note that Distinct-1 and Distinct-2 are computed on a
randomly selected subsets of 4k responses.

8https://github.com/maciejkula/
glove-python
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Figure 3: The inference process of the generative model, where the latent variable c is given as an input.

(Tu et al., 2017) (cVAE-CGate). For each of these,
we consider the main variant where the input co-
herence measure c is preset to a fixed ideal value as
estimated on development data (1.0 for OST and
0.95 for fOST), as well as an oracle variant where
we use the true coherence measure between the
context and the gold-standard response in the test
set (indicated with “(C)” in Tables 2 and 3).

We compare against two baseline models: (1)
a vanilla E-D with attention (Attention) (Luong
et al., 2015); (2) an enhancement where output
beams are rescored using the maximum mutual in-
formation anti-language model (MMI-antiLM) of
Li et al. (2016a) (MMI).

4.1 Parameter Settings
We set our model parameters based on preliminary
experiments on the development data.

We use 2-layer RNNs with LSTM cells
(Hochreiter and Schmidhuber, 1997) with in-
put/hidden dimension of 128 for both the context
encoder and the decoder. The dropout rate is set
to 0.2 and the Adam optimizer (Kingma and Ba,
2015) is used to update the parameters. A vocab-
ulary of 25,000 words is shared between the en-
coder and the decoder.

Both the posterior network and prior network
for the latent variable learning are built with 2-
layer LSTM RNNs with input/hidden dimension
of 64. The dimension of the latent variable z is set
to 20. Same as for the encoder and decoder, the
dropout rate is 0.2 and the Adam optimizer is used
to update the parameters.

The window size for GloVe computation in our
coherence measure is set to 10.

4.2 Evaluation metrics
We use a number of metrics to evaluate the outputs
of our models:
• BLEU, B1, B2, B3 – the word-overlap

score against gold-standard responses (Papineni
et al., 2002) used by the vast majority of recent

dialogue generation works (Zhao et al., 2017;
Yao et al., 2017; Li et al., 2017a, 2016c; Sor-
doni et al., 2015; Li et al., 2016a; Ghazvinine-
jad et al., 2017). BLEU in this paper refers to
the default BLEU-4, but we also report on lower
n-gram scores (B1, B2, B3).9

• Coh – our novel GloVe-based coherence score
calculated using Eq (1) showing the semantic
distance of dialogue contexts and generated re-
sponses.

• D-1, D-2, D-Sent – common metrics used to
evaluate the diversity of generated responses
(e.g. Li et al., 2016a; Xu et al., 2017; Xing et al.,
2017; Dhingra et al., 2017): the proportion of
distinct unigrams, bigrams, and sentences in the
outputs.

5 Results

All model variants described in Section 4 are
trained on both OST and fOST datasets. Tables 2
and 3 present the scores of all models tested on
the OST and fOST test sets, respectively. Note
that in addition to testing the models on the respec-
tive test sections of their training datasets, we also
test them on the other dataset (OST-trained mod-
els on fOST and vice-versa). This way, we can ob-
serve the performance of the fOST-trained models
in more noisy contexts and see how good the OST-
trained models are when evaluated against coher-
ent responses only.

Given all the evaluated model variants, we can
observe the effects and contributions of the indi-
vidual components of our setup:

• Data filtering: The models trained on fOST
consistently outperform the same models
trained on OST – for all evaluation metrics and
on both test sets. This shows that coherence-
based training data filtering is generally benefi-
cial.
9We use the Multi-BLEU script from OpenNMT to mea-

sure BLEU scores.
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Training data Model BLEU% B1% B2% B3% Coh D-1% D-2% D-Sent%

OST

Attention 1.32 10.92 3.85 2.10 0.293 3.4 14.2 25.6
MMI 1.31 11.06 3.88 2.09 0.284 3.3 14.6 28.2
cVAE-CGate (C) 1.58 11.86 4.45 2.48 0.311 4.1 15.0 28.2
cVAE-XGate (C) 1.51 13.38 4.97 2.58 0.324 3.9 14.5 29.8
cVAE-CGate (1.0) 1.60 17.08 5.78 2.86 0.404 5.0 27.1 79.7
cVAE-XGate (1.0) 1.44 15.83 5.34 2.62 0.413 4.5 22.6 80.2

fOST

Attention 1.79 15.43 5.65 2.94 0.758 11.9 41.8 92.7
MMI 1.99 16.24 6.06 3.22 0.764 11.9 44.5 95.8
cVAE-CGate (C) 2.10 15.98 6.05 3.35 0.728 11.9 37.6 88.4
cVAE-XGate (C) 1.85 16.44 5.94 3.07 0.706 10.3 31.2 80.4
cVAE-CGate (0.95) 2.02 15.52 5.78 3.16 0.767 10.6 44.8 98.7
cVAE-XGate (0.95) 1.64 14.43 5.20 2.70 0.745 9.0 36.9 98.7

Table 2: Evaluation results on the OST test set (see Section 4 for model description and Section 4.2 for metrics
definition). Note that the cVAE-CGate(C) / cVAE-XGate(C) models use the true c value between the context and
the gold response as input. Other cVAE-CGate / cVAE-XGate models use fixed values for c selected on dev sets
shown in brackets. BLEU score reported here is BLEU-4; B1, B2 and B3 denote lower n-gram BLEU scores.

Training data Model BLEU% B1% B2% B3% Coh D-1% D-2% D-Sent%

OST

Attention 0.86 8.34 2.79 1.45 0.284 3.6 14.6 29.4
MMI 0.89 8.47 2.89 1.48 0.278 3.7 15.3 31.5
cVAE-CGate (C) 1.64 10.20 4.17 2.40 0.329 5.1 19.4 35.8
cVAE-XGate (C) 1.80 11.70 4.90 2.83 0.359 5.2 19.2 39.7
cVAE-CGate (1.0) 2.25 16.82 6.81 3.70 0.422 5.4 28.2 81.0
cVAE-XGate (1.0) 2.41 18.62 7.56 4.09 0.434 4.8 23.4 84.0

fOST

Attention 3.84 16.65 8.72 5.54 0.803 12.8 43.4 88.7
MMI 3.84 16.81 8.78 5.57 0.803 12.6 42.5 88.8
cVAE-CGate (C) 4.58 17.64 9.53 6.30 0.796 12.4 41.6 85.5
cVAE-XGate (C) 4.33 18.43 9.59 6.11 0.783 10.7 33.1 78.8
cVAE-CGate (0.95) 4.98 20.95 10.93 7.02 0.814 12.1 51.4 98.2
cVAE-XGate (0.95) 4.47 20.98 10.43 6.50 0.797 10.4 42.5 97.6

Table 3: Evaluation results on the fOST test set (see Section 4 and Table 2 for model description; see Section 4.2
for metrics definition). BLEU score reported here is BLEU-4; B1, B2 and B3 denote lower n-gram BLEU scores.

• cVAE-Context Gate models: Nearly all cVAE-
based models perform markedly better than the
baselines w.r.t. BLEU, coherence, and diver-
sity.10

If we look at models trained on OST and
tested on fOST (the top half of Table 3), we
can see that all cVAE-based models, espe-
cially cVAE-XGate, are able to learn to pro-
duce coherent and diverse response even when
trained on a noisy, incoherent corpus. Ex-
amples of responses generated by the baseline
MMI model and by cVAE-XGate in Figure 4
show that cVAE-XGate mostly produces more
diverse and coherent responses than MMI.

• Preset c vs. oracle models with gold-standard
c: Table 2 shows that on the noisy OST test set,
cVAE-based models using the gold-standard

10 We performed paired bootstrap re-sampling for the best
cVAE model and the best baseline model in each experiments
set (Table 2 and Table 3) as is done for MT (Koehn, 2004),
which confirmed statistical significance at 99% confidence
level for all cases except for models trained on fOST and
tested on OST (bottom half of Table 2).

value of c achieve higher BLEU scores than
models using preset c. This is expected since
many gold-standard responses in the unfiltered
set have a low coherence score; – the model
can generate a more generic response if the
gold-standard c is low. The models with pre-
set c always attempt to generate coherent re-
sponses, which is apparent from the other met-
rics: Coh and D-Sent are consistently higher
than for models using gold-standard c.

On the fOST test set where only high-coherence
responses are expected, models using fixed c
consistently reach higher scores in all metrics
including BLEU (see Table 3). This shows that
in general, using a preset constant value of c
works well, even better than using the gold-
standard c.

In sum, using our coherence measure both for
data filtering and inside the models leads to output
performance improvements.
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Dialogue context Response
A: i have an audition at 4:00. B-GT: you volunteered.

1 B: apparently now i’m cooking dinner. B-MMI: i don ’t know.
A: how did this all happen? B-XGT: well , i’m going to have a dinner.
A: it’s not that easy. B-GT: the waiting list would take too long.

2 B: we can’t contact potential donors. B-MMI: i don’t know.
A: if we want to save frank, his brother is his only hope B-XGT: we can’t save him.
A: that fish ate my fish! B-GT: you’ll wait till next year to win one of these.

3 B: you cost me £30,000 B-MMI: i’m sorry.
A: sorry, folks. B-XGT: you owe me a little fish.
A: was it what you wanted? B-GT: you like model planes?

4 B: no. B-MMI: i wanted to know.
A: i wanted an airplane. B-XGT: i wanted a helicopter.
A: great. B-GT: yeah, a vanilla decaf latte.

5 B: thanks so much. B-MMI: no.
A: vanilla decaf latte? B-XGT: yeah , that ’s a good coffee
A: to make everybody happy. B-GT: and stick it in your mouth.

6 B: which means that sometimes B-MMI: and you got to take a shower.
A: you got to take a pile of poop B-XGT: and you got to take a walk.
A: now you’ll knock again and say you forgot to ask B-GT: should i knock and make her come here for that?

7 B: if she has a friend for your friend. B-MMI: you’re crazy!
A: are you crazy? B-XGT: i’m crazy, i’m crazy.
A: i knew you would say that. B-GT: you are all way too pretty to be arguing.

8 B: mr. kerem is a charming and decent guy. B-MMI: he’s a very good man.
A: and he’s really into you. B-XGT: i didn’t say that.

Figure 4: Generation output examples comparing two models trained on the OST dataset and tested on the
fOST test set: the MMI baseline (B-MMI) and our cVAE-XGate (1.0) model (B-XGT). B-GT is the ground-truth
response from the test set. The three sequential dialog turns on the left are the preceding dialogue context used to
generate the responses. Corresponding topical phrases are underlined. We can see that cVAE-XGate (1.0) mostly
produces markedly more coherent and specific outputs than MMI (1-5). In some cases, it is comparable with MMI
(6-7) and occasionally, it is less coherent (8).

6 Related Work

Our work fits into the context of the very active
area of end-to-end generative conversation mod-
els, where neural E-D approaches have been first
applied by Vinyals and Le (2015) and extended by
many others since.

Many works address the lack of diversity
and coherence in E-D outputs (Sountsov and
Sarawagi, 2016; Wei et al., 2017) but do not at-
tempt to model coherence directly, unlike our
work: Li et al. (2016a) use anti-LM reranking; Li
et al. (2016c) modify the beam search decoding al-
gorithm, similar to Shao et al. (2017) in addition
to using a self-attention model. Mou et al. (2016)
predict keywords for the output in a preprocessing
step while Wu et al. (2018) preselect a vocabulary
subset to be used for decoding. Li et al. (2016b)
focus specifically on personality generation (using
personality embeddings) and Wang et al. (2017)
promote topic-specific outputs by language-model
rescoring and sampling.

A lot of recent works explore the use of addi-
tional training signals and VAE setups in dialogue

generation. In contrast to this paper, they do not
focus explicitly on coherence: Asghar et al. (2017)
use reinforcement learning with human-provided
feedback, Li et al. (2017a) use a RL scenario with
length as reward signal. Li et al. (2017b) add an
adversarial discriminator to provide RL rewards
(discriminating between human and machine out-
puts), Xu et al. (2017) use a full adversarial train-
ing setup. The most recent works explore the us-
age of VAEs: Cao and Clark (2017) explore a
vanilla VAE setup conditioned on dual encoder
(for contexts and responses) during training, the
model of Serban et al. (2017) uses a VAE in a hier-
archical E-D model. Shen et al. (2017) use a cVAE
conditioned on sentiment and response genericity
(based on a handwritten list of phrases). Shen et al.
(2018) combine a cVAE with a plain VAE in an
adversarial fashion.

We also draw on ideas from other areas than di-
alogue generation to build our models: Tu et al.
(2017)’s context gates originate from machine
translation and Hu et al. (2017)’s cVAE training
stems from free-text generation.
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7 Conclusions and Future Work

We showed that explicitly modeling coherence
and optimizing towards coherence and diversity
leads to better-quality outputs in dialogue response
generation. We introduced three extensions to cur-
rent encoder-decoder response generation models:
(1) we defined a measure of coherence based on
GloVe embeddings (Pennington et al., 2014), (2)
we filtered the OpenSubtitles training corpus (Li-
son and Meena, 2016) based on this measure to
obtain coherent and diverse training instances, (3)
we trained a cVAE model based on (Hu et al.,
2017) and (Tu et al., 2017) that uses our coherence
measure as one of the training signals. Our ex-
perimental results showed a considerable improve-
ment in the output quality over competitive mod-
els, which demonstrates the effectiveness of our
approach.

In future work, we plan to replace the GloVe-
based measure of coherence with a trained dis-
criminator that distinguishes between coherent
and incoherent responses (Li and Jurafsky, 2017).
This will allow us to use extend the notion of co-
herence to account for phenomena such as topic
shifts. We also plan to verify the results with a
human evaluation study.

Acknowledgements

This research received funding from the EPSRC
project MaDrIgAL (EP/N017536/1). The Titan
Xp used for this research was donated by the
NVIDIA Corporation.

References
Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang

Li. 2017. Deep Active Learning for Dialogue Gen-
eration. In 6th Joint Conference on Lexical and
Computational Semantics (*SEM) 2017. ArXiv:
1612.03929.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural Machine Translation by
Jointly Learning to Align and Translate. In 3rd
International Conference on Learning Representa-
tions (ICLR2015), San Diego, CA, USA. ArXiv:
1409.0473.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio.
2016. Generating Sentences from a Continuous
Space. In Proceedings of The 20th SIGNLL Con-
ference on Computational Natural Language Learn-
ing, pages 10–21, Berlin, Germany. Association for
Computational Linguistics.

Kris Cao and Stephen Clark. 2017. Latent Variable
Dialogue Models and their Diversity. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 182–187, Valencia,
Spain. Association for Computational Linguistics.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Advances in neural information processing sys-
tems, pages 2980–2988.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 484–495.

Marjan Ghazvininejad, Chris Brockett, Ming-Wei
Chang, Bill Dolan, Jianfeng Gao, Wen tau
Yih, and Michel Galley. 2017. A knowledge-
grounded neural conversation model. arXiv preprint
arXiv:1702.01932.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In International Confer-
ence on Machine Learning, pages 1587–1596.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations, San Diego, CA, USA. ArXiv:
1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, Van-
couver, Canada.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 conference on empirical methods in natural
language processing.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119. Association for Computational Lin-
guistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016b. A Persona-Based Neural

3989



Conversation Model. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, Berlin, Germany. ArXiv: 1603.06155.

Jiwei Li and Dan Jurafsky. 2017. Neural Net Mod-
els for Open-Domain Discourse Coherence. In Em-
pirical Methods in Natural Language Processing,
Copenhagen, Denmark. ArXiv: 1606.01545.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016c. A
simple, fast diverse decoding algorithm for neural
generation. arXiv preprint arXiv:1611.08562.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017a.
Learning to decode for future success. arXiv
preprint arXiv:1701.06549.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and
Dan Jurafsky. 2017b. Adversarial Learning for Neu-
ral Dialogue Generation. arXiv:1701.06547 [cs].
ArXiv: 1701.06547.

Pierre Lison and Raveesh Meena. 2016. Automatic
Turn Segmentation for Movie & TV Subtitles. In
2016 IEEE Workshop on Spoken Language Technol-
ogy. IEEE conference proceedings.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting Large Parallel Corpora from
Movie and TV Subtitles. In Proceedings of the 10th
International Conference on Language Resources
and Evaluation (LREC 2016), Portorož, Slovenia.
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Abstract

Most previous efforts toward video caption-
ing focus on generating generic descriptions,
such as, “A man is talking.” We collect a
news video dataset to generate enriched de-
scriptions that include important background
knowledge, such as named entities and related
events, which allows the user to fully under-
stand the video content. We develop an ap-
proach that uses video meta-data to retrieve
topically related news documents for a video
and extracts the events and named entities
from these documents. Then, given the video
as well as the extracted events and entities,
we generate a description using a Knowledge-
aware Video Description network. The model
learns to incorporate entities found in the top-
ically related documents into the description
via an entity pointer network and the genera-
tion procedure is guided by the event and en-
tity types from the topically related documents
through a knowledge gate, which is a gating
mechanism added to the model’s decoder that
takes a one-hot vector of these types. We eval-
uate our approach on the new dataset of news
videos we have collected, establishing the first
benchmark for this dataset as well as propos-
ing a new metric to evaluate these descriptions.

1 Introduction

Video captioning is a challenging task that seeks to
automatically generate a natural language descrip-
tion of the content of a video. Many video cap-
tioning efforts focus on learning video representa-
tions that model the spatial and temporal dynam-
ics of the videos (Yao et al., 2015; Venugopalan
et al., 2016; Yu et al., 2017). Although the lan-
guage generation component within this task is of
great importance, less work has been done to en-
hance the contextual knowledge conveyed by the
descriptions. The descriptions generated by pre-
vious methods tend to be “generic”, describing

only what is evidently visible and lacking specific
knowledge, like named entities and event partic-
ipants, as shown in Figure 1a. In many situa-
tions, however, generic descriptions are uninfor-
mative as they do not provide contextual knowl-
edge. For example, in Figure 1b, details such as
who is speaking or why they are speaking are im-
perative to truly understanding the video, since
contextual knowledge gives the surrounding cir-
cumstances or cause of the depicted events.

a) Description (Chen and Dolan,
2011): 
A man is talking.

b) Human Description: 

Senior army officer and Zimbabwe
Defence Forces' spokesperson,
Major General S. B. Moyo, assures
the public that President Robert
Mugabe and his family are safe and
denies that the military is staging a
coup. 

Figure 1: Comparison of machine (a) and human
(b) generated descriptions.1

To address this problem, we collect a news
video dataset, where each video is accompanied
by meta-data (e.g., tags and date) and a natural lan-
guage description of the content in, and/or context
around, the video. We create an approach to this
task that is motivated by two observations.

First, the video content alone is insufficient to
generate the description. Named entities or spe-
cific events are necessary to identify the partici-
pants, location, and/or cause of the video content.
Although knowledge could potentially be mined
from visual evidence (e.g., recognizing the loca-
tion), training such a system is exceedingly diffi-

1(a) https://goo.gl/2StcD8, (b) https://goo.gl/VFR5nw
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cult (Tran et al., 2016). Further, not all the knowl-
edge necessary for the description may appear in
the video. In Figure 2a, the video depicts much
of the description content, but knowledge of the
speaker (“Carles Puigdemont”) is unavailable if
limited to the visual evidence because the speaker
never appears in the video, making it intractable to
incorporate this knowledge into the description.

Second, one may use a video’s meta-data to re-
trieve topically related news documents that con-
tain the named entities or events that appear in the
video’s description, but these may not be specific
to the video content. For example, in Figure 2b,
the video discusses the “heightened security” and
does not depict the arrest directly. Topically re-
lated news documents capture background knowl-
edge about the attack that led to the “heightened
security” as well as the arrest, but they may not
describe the actual video content, which displays
some of the increased security measures.

Thus, we propose to retrieve topically related
news documents from which we seek to extract
named entities (Pan et al., 2017) and events (Li
et al., 2013) likely relevant to the video. We then
propose to use this knowledge in the generation
process through an entity pointer network, which
learns to dynamically incorporate extracted enti-
ties into the description, and through a new knowl-
edge gate, which conditions the generator on the
extracted event and entity types. We include the
video content in the generation by learning video
representations using a spatio-temporal hierarchi-
cal attention that spatially attends to regions of
each frame and temporally attends to different
frames. We call the combination of these genera-
tion components the Knowledge-aware Video De-
scription (KaVD) network. The contributions of
this paper are as follows:

• We create a knowledge-rich video captioning
dataset, which can serve as a new benchmark
for future work.

• We propose a new Knowledge-aware Video
Description network that can generate de-
scriptions using the video and background
knowledge mined from topically related doc-
uments.

• We present a knowledge reconstruction based
metric, using entity and event F1 scores, to
evaluate the correctness of the knowledge
conveyed in the generated descriptions.

Tags: Independence Catalonia

Demonstration Spain

Date: 10/10/2017

Description: Pro-independence

supporters gather near the Arc de

Triomf in Barcelona to follow the

speech of Carles Puigdemont on a

big screen.

a) b)

Tags: Britain London

Attack

Date: 9/16/2017

Description: There is heightened

security on the London

Underground Saturday as British

police raid a home near London

just hours after making their first

arrest in the investigation into the

bombing of an underground train a

day earlier.

Tube

Divisions in Spain over Catalonia

crisis

Referendum: Thousands rally for

Spanish Unity

Amid Catalan Crisis, Thousands

Hold Rallies in Madrid and

Barcelona

‘I Am Spanish’: Thousands in

Barcelona Protest a Push for

Independence

Catalan independence supporters

see brighter future alone

Topically related Documents:

Topically related Documents:
London train explosion is the

latest of 5 terror incidents in 2017

in the UK

London terror attack latest:

Second man arrested in tube

bombing

London Tube attack latest: Arrest

made as terror threat raised to

'critical'

Figure 2: Examples from the news video dataset
(video, meta-data, and description) with some re-
trieved topically related documents.2

2 Approach

Figure 3 shows our overall approach. We first re-
trieve topically related news documents using tags
from the video meta-data. Next, we apply entity
discovery and linking as well as event extraction
methods to the documents, which yields a set of
entities and events relevant to the video. We rep-
resent this background knowledge in two ways: 1)
we encode the entities through entity embeddings
and 2) we encode the event and entity typing in-
formation into a knowledge gate vector, which is
a one-hot vector where each entry represents an
entity or event type. Finally, with the video and
these representations of the background knowl-
edge, we employ our KaVD network, an encoder-
decoder (Cho et al., 2014) style model, to generate
the description.

2.1 Document Retrieval and Knowledge
Extraction

We gather topically related news documents as a
source of background knowledge using the video
meta-data. For each video, we use the correspond-
ing tags to perform a keyword search on docu-
ments from a number of popular news outlet web-

2(a) https://goo.gl/3cF1oU, (b) https://goo.gl/NkwHvJ
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Event Extraction

Entity Extraction
and Linking

Document
Retrieval

Entities Types

coup

detained

Attack

Arrest-Jail

Events Types

KaVD

Senior army officer and
Zimbabwe Defence Forces'

spokesperson, Major
General S. B. Moyo,

assures the public that
President Robert Mugabe
and his family are safe and
denies that the military is

staging a coup.

Input Output

Entity
Embeddings

Knowledge Gate
Vector

Zimbabwe Politics Army Crisis AfricaTags:

Date: 11/15/2017

S. B. 

  Moyo 

Zimbabwe 

Military 

  Officer 

GPE

Mugabe President

Figure 3: Overall pipeline of our approach.

sites.3 We filter these documents by the date as-
sociated with video, only keeping documents that
are written within d days before and after the video
upload date.4 The keyword search gathers doc-
uments that are at least somewhat topically rele-
vant and filtering by date increases the likelihood
that the documents reference the specific events
and entities of the video, since the occurrences of
entity and event mentions across news documents
tend to be temporally correlated. We retrieve an
average of 3.1 articles per video and find that on
average 68.8% of the event types and 70.6% of the
entities in the ground truth description also appear
in corresponding news articles. In Figure 3, the
retrieved background documents include the en-
tity “Mugabe” and the event “detained”, which are
relevant to the video description.

We apply a high-performing, publicly avail-
able entity discovery and linking system (Pan
et al., 2017) to extract named entities and their
types. This system is able to discover en-
tities and link them to rich knowledge bases
that provide fine-grained types that we can ex-
ploit to better discern between entities in the
news documents (e.g., “President” versus
“Military Officer”).5 Additionally, we use
a high-performing event extraction system (Li
et al., 2013) to extract events and their arguments.
For example, in Figure 3, we get entities “S. B.
Moyo”, “Zimbabwe”, and “Mugabe” with their re-
spective types, “Military Officer”, “GPE”,

3BBC, CNN, and New York Times.
4d = 3 in our experiments.
5We only use types that appear in the training data and are

within 4 steps from the top of the 7,309 type hierarchy here.

and “President”. Likewise, we obtain events
“coup” and “detained” with their respective types,
“Attack” and “Arrest-Jail”. The entities
and events along with their types provide valuable
insight into the context of the video and can bias
the decoder to generate the correct event mentions
and incorporate the proper entities.

We encode the entities and events into represen-
tations that can be fed to the model. First, we ob-
tain an entity embedding, em, for each entity by
averaging the embeddings of the words in the en-
tity mention. Second, we encode the entity and
event types into a one-hot knowledge gate vector,
k0. Each element of k0 corresponds to an event
or entity type (e.g., “Arrest-Jail” event type
or “President” entity type), so the jth element,
k(j), is 1 if the entity or event type is found in the
related documents and 0 otherwise. k0 serves as
the initial knowledge gate vector of the decoder
(Section 2.2). The entity embeddings give the
model access to semantic representations of the
entities, while the knowledge gate vector aids the
generation process by providing the model with
the event and entity types.

2.2 KaVD Network
Our model learns video representations using hi-
erarchical, or multi-level, attention (Yang et al.,
2016; Qin et al., 2017). The encoder is com-
prised of a spatial attention (Xu et al., 2015) and
bidirectional Long Short-Term Memory network
(LSTM) (Hochreiter and Schmidhuber, 1997)
temporal encoder. The spatial attention allows
the model to attend to different locations of each
frame (Figure 4), yielding frame representations
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Figure 4: KaVD Network. At each decoder time step, the model computes pgen to determine whether to
emit a vocabulary word or a named entity from the topically related documents.

that emphasize the most important regions of each
frame. The temporal encoder incorporates mo-
tion into the frame representations by encoding
information from the preceding and subsequent
frames (Yao et al., 2015). We use a LSTM de-
coder, which applies a temporal attention (Bah-
danau et al., 2015) to the frame representations
at each step. To generate each word, the de-
coder computes its hidden state, adjusts this hid-
den state with the knowledge gate output at the
current time step, and determines the most proba-
ble word by utilizing the entity pointer network to
decide whether to generate a named entity or vo-
cabulary word. Pointer networks are effective at
incorporating out-of-vocabulary (OOV) words in
output sequences (Miao and Blunsom, 2016; See
et al., 2017). In previous research, OOV words
may appear in the input sequence, in which case
they are copied into the output. Analogously, in
our approach, named entities can be considered as
OOV words that are from a separate set instead
of the input sequence. In the following equations,
where appropriate, we omit bias terms for brevity.

Encoder. The input to the encoder is a se-
quence of video frames, {F1, ..., FN}. First, we
extract frame-level features by applying a Con-
volutional Neural Network (CNN) (Krizhevsky
et al., 2012; Simonyan and Zisserman, 2014; Ioffe
and Szegedy, 2015; Szegedy et al., 2015, 2017) to
each frame, Fi, and obtaining the response of a

convolutional layer, {ai,1, ...,ai,L}, where ai,l is
a D-dimensional representation of the lth location
of the ith frame (e.g., the top left box of the first
frame in Figure 4). We apply a spatial attention to
these location representations, given by

↵i,l = aspace (ai,l) (1)
⇠i,l = softmax (↵i,l) (2)

zi =
LX

l=1

⇠i,lai,l (3)

where aspace is a scoring function (Bahdanau et al.,
2015). Frame representations {z1, ..., zN} are in-
put to a bi-directional LSTM, producing tempo-
rally encoded frame representations {h1, ...,hN}.

Decoder. The decoder is an attentive LSTM cell
with the addition of a knowledge gate and entity
pointer network. At each decoder step t, we apply
a temporal attention to the frame representations,

�t,i = atime (hi, st�1) (4)
⌘t,i = softmax (�t,i) (5)

vt =
NX

i=1

⌘t,ihi (6)

where st�1 is the previous decoder hidden state
and atime is another scoring function. This yields
a single, spatio-temporally attentive video repre-
sentation, vt. We then compute an intermediate
hidden state, ŝt, by applying the decoder LSTM
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to st�1, vt, and previous word embedding, xt�1.
The final decoder hidden state is determined after
the knowledge gate computation.

The motivation for the knowledge gate is that it
biases the model to generate sentences that con-
tain specific knowledge relevant to the video and
topically related documents, acting as a kind of
coverage mechanism (Tu et al., 2016). For exam-
ple, given the retrieved event types in Figure 3, the
knowledge gate encourages the decoder to gener-
ate the event trigger “coup” due to the presence
of the “Attack” event type. Inspired by the
gating mechanisms from natural language gener-
ation (Wen et al., 2015; Tran and Nguyen, 2017),
the knowledge gate, gt, is given by

gt = � (Wg,v[xt�1,vt] + Wg,sŝt) (7)
kt = gt � kt�1 (8)

where all W are learned parameters and [xt�1,vt]
is the concatenation of these two vectors. This gat-
ing step determines the amount of the entity and
event type features contained in kt�1 to carry to
the next step. With the updated kt, we compute
the decoder hidden state, st, as

st = ŝt + (ot � tanh (Ws,kkt)) (9)

where ot is the output gate of the LSTM and Ws,k

is a learned parameter.
Our next step is to generate the next word. The

model needs to produce named entities (e.g., “S.
B. Moyo” and “Robert Mugabe”) throughout the
generation process. These named entities tend to
occur rarely if at all in many datasets, including
ours. We overcome this issue by using the entity
embeddings from the topically related documents
as potential entities to incorporate in the descrip-
tion. We adopt a soft switch pointer network (See
et al., 2017), as our entity pointer network, to per-
form the selection of generating words or entities.

For our entity pointer network to predict the
next word, we first predict a vocabulary distribu-
tion, Pv =  (st,vt), where  (·) is a softmax out-
put layer. Pv(w) is the probability of generating
word w from the decoder vocabulary. Next, we
compute an entity context vector, ct, using a soft
attention mechanism:

�t,m = aentity (em, st,vt) (10)
✏t,m = softmax (�t,m) (11)

ct =
MX

m=1

✏t,mem (12)

Here, aentity is yet another scoring function. We
use the scalars ✏t,m as our entity probability distri-
bution, Pe, where Pe (Em) = ✏t,m is the probabil-
ity of generating entity mention Em. We compute
the probability of generating a word from the vo-
cabulary, pgen, as

pgen = �(w>
c ct + w>

s st + w>
x xt�1 + w>

v vt)
(13)

where all w are learned parameters. Finally, we
predict the probability of word w by

P (w) = pgenPv(w) + (1 � pgen)Pe(w) (14)

and select the word of maximum probability. In
Equation 14, Pe(w) is 0 when w is not a named
entity. Likewise, Pv is 0 when w is an OOV word.
For the example in Figure 4, the vocabulary distri-
bution, Pv, has the word “from” as the most prob-
able word and the entity distribution, Pe, has the
entity “S. B. Moyo” as the most probable entity.
However, by combining these two distribution us-
ing pgen, the model switches to the entity distribu-
tion and correctly generates “S. B. Moyo”.

3 News Video Dataset

Current datasets for video description generation
focus on specific (Rohrbach et al., 2014) and gen-
eral (Chen and Dolan, 2011; Xu et al., 2016) do-
mains, but do not contain a large proportion of
descriptions with specific knowledge like named
entities as shown in Table 1. In our news video
dataset, the descriptions are replete with important
knowledge that is both necessary and challenging
to incorporate into the generated descriptions.

Our news video dataset contains AFP interna-
tional news videos from YouTube.6 These videos
are from October, 2015 to November, 2017 and
cover a variety of topics, such as protests, at-
tacks, natural disasters, trials, and political move-
ments. The videos are “on-the-scene” and con-
tain some depiction of the content in the descrip-
tion. For each video, we take the YouTube de-
scriptions given by AFP News as the ground-truth
descriptions we wish to generate. We collect the
tags and meta-data (e.g., upload date). We filter
videos by length, with a cutoff of 2 minutes, and
remove videos which are videographics or anima-
tions. For preprocessing, we tokenize each sen-
tence, remove punctuation characters other than

6https://www.youtube.com/user/AFP
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Dataset Domain #Videos #Sentences Vocab Size Named Entities/Sentence

TACos M-L (Rohrbach et al., 2014) Cooking 14,105 52,593 2,864 0.1⇥10�4

MSVD (Chen and Dolan, 2011) Multi-category 1,970 70,028† 13,010 0.4 ⇥ 10�2

MSR-VTT-10K (Xu et al., 2016) 20 categories 10,000 200,000† 29,316 1.4 ⇥ 10�1

News Video (Ours) News 2,883 3,302 9,179 2.1

Table 1: Comparison of our news video dataset to other datasets. † indicates that the dataset has multiple,
single-sentence reference descriptions for each video.

periods, commas, and apostrophes, and replace
numerical quantities and dates/times with special
tokens. We sample frames at a rate of 1fps.
We randomly select 400 videos for testing, 80 for
validation, and 2,403 for training. We make the
dataset publicly available: https://goo.gl/2jScKk.

4 Experiments

4.1 Model Comparisons
We test our method against the following base-
lines: Article-only. We use the summariza-
tion model of See et al. (2017) to generate
the description by summarizing the topically re-
lated documents. Video-only (VD). We train
a model that does not receive any background
knowledge and generates the description directly
from the video. VD with knowledge gate only
(VD+Knowledge Gate), VD with entity pointer
network only (VD+Entity Pointer), and no-
video (Entity Pointer+Knowledge Gate). These
test the effects of the knowledge gate, entity
pointer network, and video encoder in isolation.

Each model uses a cross entropy loss. Video-
based models are trained using the Adam op-
timizer (Kingma and Ba, 2015) with a learn-
ing rate of 0.0002 and have a hidden state size
of 512 as well as an embedding size of 300.
We use Google News pre-trained word embed-
dings (Mikolov et al., 2013) to initialize our
word embeddings and compute entity embed-
dings. For visual features, we use the Conv3-512
layer response of VGGNet (Simonyan and Zisser-
man, 2014) pre-trained on ImageNet (Deng et al.,
2009).

4.2 Evaluations
METEOR (Denkowski and Lavie, 2014) and
ROUGE-L (Lin, 2004) are adopted as metrics for
evaluating the generated descriptions. We choose
METEOR because we only have one reference
description per video and this metric accounts
for stemming and synonym matching. We also

use ROUGE-L for comparison to summarization
work. These capture the coherence and relevance
of the generated descriptions to the ground truth.

Generating these descriptions is concerned with
not only generating fluent text, but also the amount
of knowledge conveyed and the accuracy of the
knowledge elements (e.g., named entities or event
structures). Previous work in natural language
generation and summarization (Nenkova and Pas-
sonneau, 2004; Novikova et al., 2017; Wiseman
et al., 2017; Pasunuru and Bansal, 2018) scores
and/or assigns weights to overlapping text, salient
phrases, or information units (e.g., entity rela-
tions (Wiseman et al., 2017)). However, knowl-
edge elements cannot be simply represented as a
set of isolated information units since they are in-
herently interconnected through some structure.

Therefore, for this knowledge-centric genera-
tion task, we compute F1 scores on event and en-
tity extraction results from the generated descrip-
tions against the extraction results on the ground
truth. For entities, we measure the F1 score of the
named entities in the generated description com-
pared to the ground truth. For events, given a
generated description, ws, and the ground truth
description, wc, we extract a set of event struc-
tures, Ys and Yc, for both descriptions such that
Y = {(tk, rk,1, ak,1, ..., rk,m, ak,m)}K

k=1 where
there are K events extracted from the description,
tk is the kth event type, rk,m is the mth argument
role of tk, and ak,m is the mth argument of tk. For
the description in Figure 2a, one may obtain:

Y = {(Demonstrate,

Entity, “Pro-independence supporters”,
Place, “Barcelona”)}

Next, we form event type, argument role, and ar-
gument triples (tsk, r

s
k,m, as

k,m) and (tcj , r
c
j,m, ac

j,m)
for each event structure in Ys and Yc, respectively.
We compute the F1 score of the triples, consid-
ering a triple correct if and only if it appears in
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the ground truth triples.7 This metric enables us
to evaluate how well a generated description cap-
tures the overall events, while still giving credit
to partially correct event structures. We compute
these F1 scores on 50 descriptions based on man-
ually annotated event structures. We also perform
automatic F1 score evaluation on the entire test
set using the entity and event extraction systems
of Pan et al. (2017) and Li et al. (2013), respec-
tively. The manual evaluations offer accurate com-
parisons and control for correctness, while the au-
tomated evaluations explore the viability of us-
ing automated IE tools to measure performance,
which is desirable for scaling to larger datasets for
which manual evaluations are too expensive.

5 Results and Analysis

The KaVD network outperforms almost all of the
baselines, as shown in Table 2, achieving statisti-
cally significant improvements in METEOR and
ROUGE-L w.r.t. all other models besides the no-
video model (p < 0.05).8 The additions of the
entity pointer network and knowledge gate are
complementary and greatly improve the entity in-
corporation performance, increasing the entity F1
scores by at least 6% in both the manual and auto-
matic evaluations. In Figure 5a, the entity pointer
network is able to incorporate the entity “Abdiaziz
Abu Musab”, who is a leader of the group respon-
sible for the attack. We find that the entity and
event type features from the knowledge gate help
generate more precise entities. However, noise in
the article retrieval process and entity extraction
system limits our entity incorporation capabilities,
since on average only 70.6% of the entities in the
ground truth description are retrieved from the ar-
ticles. Lastly, the video encoder helps generate the
correct events and offers qualitative benefits, such
as allowing the model to generate more concise
and diverse descriptions, though it negatively af-
fects the entity incorporation performance.

The video alone is insufficient to generate the
correct entities (Table 2). In Figure 5a, the VD
baseline generates the correct event, but generates
the incorrect location “Kabul”. We observe that
when the visual evidence is ambiguous, this model
may fail to generate the correct events and entities.
For example, if a video depicts the destruction of
buildings after a hurricane, then the VD baseline

7This criterion is used for computing precision and recall.
8Found via paired bootstrap resampling (Koehn, 2004).

may mistakenly describe the video as an explosion
since the visual evidence is similar.

The article-only baseline tends to mention the
correct entities as shown in Figure 5a, where the
description is generally on topic but provides some
irrelevant information. Indeed, this model can
generate descriptions unrelated to the video itself.
In Figure 5b, the article-only baseline’s descrip-
tion contains some correct entities (e.g., “Colom-
bia”), but is not focused on the announcement
depicted in the video. As See et al. (2017) dis-
cuss, this model can be more extractive than ab-
stractive, copying many sequences from the docu-
ments. This can lead to irrelevant descriptions as
the articles may not be specific to the video.

Our entity and event F1 score based metrics cor-
relate well with the correctness of the knowledge
conveyed in the generated description. The con-
sistency in model rankings between the manual
and automatic entity metrics shows the potential
of using automated entity extraction approaches
to evaluate with this metric. We observe discrep-
ancies between the manual and automatic event
metrics, in part, due to errors in the automated
extraction and the addition of more test points.
For example, in the generated sentence, “Hun-
dreds of people are to take to the streets of...”,
the event extraction system mistakenly assigns a
“Transport” event type instead of the correct
“Demonstrate” event type. In contrast, such
mistakes do not appear in the manual evaluations.

6 Related Work

Most previous video captioning efforts focus
on learning video representations through dif-
ferent encoding techniques (Venugopalan et al.,
2015a,b), using spatial or temporal attentions (Yao
et al., 2015; Pan et al., 2016; Yu et al., 2016; Zanfir
et al., 2016), using 3D CNN features (Tran et al.,
2015; Yao et al., 2015; Pan et al., 2016), or eas-
ing the learning process via multi-task learning
or reinforcement rewards (Pasunuru and Bansal,
2017a,b). Compared to other hierarchical mod-
els (Pan et al., 2016; Yu et al., 2016), each level
of our hierarchy encodes a different dimension of
the video, leveraging global temporal features and
local spatial features, which are shown to be ef-
fective for different tasks (Ballas et al., 2015; Xu
et al., 2015; Yu et al., 2017).

We move towards using datasets with captions
that have specific knowledge rather than generic
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Model METEOR ROUGE-L Entity F1 Auto-Entity F1 Event F1 Auto-Event F1

Article-only 8.6 13.2 8.7 8.5 1.9 3.6
VD 9.1 17.9 2.5 1.5 1.0 7.3
VD+Entity Pointer 9.7 18.1 15.3 13.6 5.7 7.0
VD+Knowledge Gate 9.8 18.5 10.2 10.7 6.7 8.3
Entity Pointer+Knowledge Gate 10.1 18.7 23.7 20.9 2.2 9.9
KaVD 10.2 18.9 22.1 19.7 9.6 8.9

Table 2: METEOR, ROUGE-L, and manual/automated entity (Entity F1/Auto-Entity F1) and event
(Event F1/Auto-Event F1) F1 score results of the baselines and KaVD network on our news video dataset.

b)

Title: Santos: 'Green light' for referendum on Colombia peace deal

a)

Title: Deadly Shabaab attack rocks Somali capital

Model Description
Article-only somali capital mogadishu on saturday. at least

276 people have died and the government news
agency sonna says only 111 of them have been
identified. a turkish military but instead wit-
nessed her burial. no group has yet said it
was behind on instead he attended her burial.
“anfa’a said she had spoken to her sister 20
minutes before on

VD a suicide bomber killed # people in a bus car-
rying # people killed in a bus in central kabul.

VD+Entity
Pointer

A suicide bomber killed # people were killed
in a bus near the northern city of Mogadishu,
police said.

VD
+Knowledge
Gate

At least # people were killed and # wounded
when a busy bus station in Kabul, killing at
least # people dead and others who died in the
rubble of the deadliest attack in the country.

EntityPointer
+Knowledge
Gate

At least # people were killed in a suicide car
bomb attack on a suicide car bomb attack on a
police vehicle in Mogadishu, police said.

KaVD A suicide bombing claimed by the Abdiaziz
Abu Musab group time killed # people in So-
malia’s capital Mogadishu, killing # people, of-
ficials said.

Model Description
Article-only colombia’s marxist rebels against her family.

and last year, when given the leg of helena
gonzlez’s nephew years ago is still fresh the as
pope francis arrived in colombia on wednesday
for a six-day the

VD president donald trump says that he will be
talks to be to be talks to be talks in the country’s
country to be talks, saying he says he would be
no evidence’s state and kerry says.

VD+Entity
Pointer

President Maduro says the FARC president
warns that the ceasefire to Prime Minister says
that he will be ready to help President Maduro
says that he is no evidence of President Bashar
talks in Bogota.

VD
+Knowledge
Gate

US Secretary of State John Kerry, who will not
any maintain in Syria, after a ceasefire in Syria,
saying that the United Nations says, it will not
to be into a speech in its interview.

EntityPointer
+Knowledge
Gate

Venezuela’s President FARC envoy to Colom-
bia is a definitive ceasefire in the FARC con-
flict, with FARC rebels, the FARC rebels.

KaVD Colombia’s government, signed the peace
agreement with the FARC peace accord in the
FARC rebels.

Figure 5: Comparison of generated descriptions. The KaVD network generates the correct entities and
correct events, while other models may contain some wrong entities or wrong events.

captions as in previous work (Chen and Dolan,
2011; Rohrbach et al., 2014; Xu et al., 2016).
There are efforts in image captioning to personal-
ize captions (Park et al., 2017), incorporate novel
objects into captions (Venugopalan et al., 2016),
and perform open domain captioning (Tran et al.,
2016). To the best of our knowledge, our dataset is
the first of its kind and offers challenges in entity
and activity recognition as well as the generation
low probability words. Datasets with captions rich
in knowledge elements, like those in our dataset,
take a necessary step towards increasing the utility
of video captioning systems.

We employ similar approaches to those in
automatic summarization, where pointer net-
works (Vinyals et al., 2015) and copy mecha-
nisms (Gu et al., 2016) are used (Gulcehre et al.,
2016; Nallapati et al., 2016; Miao and Blunsom,
2016; See et al., 2017), and natural language gen-
eration for dialogue systems (Wen et al., 2015;
Tran and Nguyen, 2017). The KaVD network
combines the copying capabilities of pointer net-
works (See et al., 2017) and semantic control of
gating mechanisms (Wen et al., 2015; Tran and
Nguyen, 2017) in a complementary fashion to ad-
dress a new, multi-modal task.
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7 Conclusions and Future Work

We collect a news video dataset with knowledge-
rich descriptions and present a multi-modal ap-
proach to this task that uses a novel Knowledge-
aware Video Description network, which can uti-
lize background knowledge mined from topically
related documents. We offer a new metric to mea-
sure a model’s ability to incorporate named enti-
ties and specific events into the descriptions. We
show the effectiveness of our approach and set a
new benchmark for this dataset. In future work,
we are increasing the size of dataset and exploring
other knowledge-centric metrics for this task.
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cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In CVPR.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In WMT.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In ICML.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In NIPS.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In ACL.

Chin-Yew Lin. 2004. Rouge: a package for automatic
evaluation of summaries. In Text summarization
branches out: ACL workshop.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In EMNLP.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Workshops at ICLR.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. In CoNLL.

Ani Nenkova and Rebecca Passonneau. 2004. Evalu-
ating content selection in summarization: The pyra-
mid method. In NAACL.

Jekaterina Novikova, Ondřej Dušek, Amanda Cercas
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Abstract

Generating natural questions from an image is
a semantic task that requires using visual and
language modality to learn multimodal rep-
resentations. Images can have multiple vi-
sual and language contexts that are relevant for
generating questions namely places, captions,
and tags. In this paper, we propose the use of
exemplars for obtaining the relevant context.
We obtain this by using a Multimodal Differ-
ential Network to produce natural and engag-
ing questions. The generated questions show a
remarkable similarity to the natural questions
as validated by a human study. Further, we ob-
serve that the proposed approach substantially
improves over state-of-the-art benchmarks on
the quantitative metrics (BLEU, METEOR,
ROUGE, and CIDEr).

1 Introduction

To understand the progress towards multimedia vi-
sion and language understanding, a visual Turing
test was proposed by (Geman et al., 2015) that was
aimed at visual question answering (Antol et al.,
2015). Visual Dialog (Das et al., 2017) is a nat-
ural extension for VQA. Current dialog systems
as evaluated in (Chattopadhyay et al., 2017) show
that when trained between bots, AI-AI dialog sys-
tems show improvement, but that does not trans-
late to actual improvement for Human-AI dialog.
We believe that this is because, the questions gen-
erated by bots are not natural (human-like) and
therefore does not translate to improved human di-
alog. Therefore an improvement in the quality of
questions could enable dialog agents to perform
well in human interactions. Further, (Ganju et al.,
2017) show that unanswered questions can be used
for improving VQA, Image captioning and Object
Classification.
An interesting line of work in this respect is the
work of (Mostafazadeh et al., 2016). Here the au-

thors have proposed the challenging task of gener-
ating natural questions for an image. One aspect
that is central to a question is the context that is rel-
evant to generate it. However, this context changes
for every image. As can be seen in Figure 1, an im-
age with a person on a skateboard would result in
questions related to the event. Whereas for a little
girl, the questions could be related to age rather
than the action. How can one have widely vary-
ing context provided for generating questions? To
solve this problem, we use the context obtained
by considering exemplars, specifically we use the
difference between relevant and irrelevant exem-
plars. We consider different contexts in the form
of Location, Caption, and Part of Speech tags.

Figure 1: Can you guess which among the given ques-
tions is human annotated and which is machine gener-
ated? 0

Our method implicitly uses a differential context
obtained through supporting and contrasting ex-
emplars to obtain a differential embedding. This
embedding is used by a question decoder to de-
code the appropriate question. As discussed fur-
ther, we observe this implicit differential con-
text to perform better than an explicit keyword

0The human annotated questions are (b) for the first im-
age and (a) for the second image.

4002



based context. The difference between the two ap-
proaches is illustrated in Figure 2. This also al-
lows for better optimization as we can backprop-
agate through the whole network. We provide de-
tailed empirical evidence to support our hypoth-
esis. As seen in Figure 1 our method generates
natural questions and improves over the state-of-
the-art techniques for this problem.

Figure 2: Here we provide intuition for using implicit
embeddings instead of explicit ones. As explained in
section 1, the question obtained by the implicit embed-
dings are natural and holistic than the explicit ones.

To summarize, we propose a multimodal differ-
ential network to solve the task of visual question
generation. Our contributions are: (1) A method to
incorporate exemplars to learn differential embed-
dings that captures the subtle differences between
supporting and contrasting examples and aid in
generating natural questions. (2) We provide Mul-
timodal differential embeddings, as image or text
alone does not capture the whole context and we
show that these embeddings outperform the ab-
lations which incorporate cues such as only im-
age, or tags or place information. (3) We provide
a thorough comparison of the proposed network
against state-of-the-art benchmarks along with a
user study and statistical significance test.

2 Related Work

Generating a natural and engaging question is an
interesting and challenging task for a smart robot
(like chat-bot). It is a step towards having a natu-
ral visual dialog instead of the widely prevalent vi-
sual question answering bots. Further, having the
ability to ask natural questions based on different
contexts is also useful for artificial agents that can
interact with visually impaired people. While the
task of generating question automatically is well

studied in NLP community, it has been relatively
less studied for image-related natural questions.
This is still a difficult task (Mostafazadeh et al.,
2016) that has gained recent interest in the com-
munity.

Recently there have been many deep learning
based approaches as well for solving the text-
based question generation task such as (Du et al.,
2017). Further, (Serban et al., 2016) have pro-
posed a method to generate a factoid based ques-
tion based on triplet set {subject, relation and ob-
ject} to capture the structural representation of text
and the corresponding generated question.

These methods, however, were limited to text-
based question generation. There has been exten-
sive work done in the Vision and Language do-
main for solving image captioning, paragraph gen-
eration, Visual Question Answering (VQA) and
Visual Dialog. (Barnard et al., 2003; Farhadi et al.,
2010; Kulkarni et al., 2011) proposed conven-
tional machine learning methods for image de-
scription. (Socher et al., 2014; Vinyals et al., 2015;
Karpathy and Fei-Fei, 2015; Xu et al., 2015; Fang
et al., 2015; Chen and Lawrence Zitnick, 2015;
Johnson et al., 2016; Yan et al., 2016) have gen-
erated descriptive sentences from images with the
help of Deep Networks. There have been many
works for solving Visual Dialog (Chappell et al.,
2004; Das et al., 2016, 2017; De Vries et al.,
2017; Strub et al., 2017). A variety of meth-
ods have been proposed by (Malinowski and Fritz,
2014; Lin et al., 2014; Antol et al., 2015; Ren
et al., 2015; Ma et al., 2016; Noh et al., 2016)
for solving VQA task including attention-based
methods (Zhu et al., 2016; Fukui et al., 2016; Gao
et al., 2015; Xu and Saenko, 2016; Lu et al., 2016;
Shih et al., 2016; Patro and Namboodiri, 2018).
However, Visual Question Generation (VQG) is a
separate task which is of interest in its own right
and has not been so well explored (Mostafazadeh
et al., 2016). This is a vision based novel task
aimed at generating natural and engaging ques-
tion for an image. (Yang et al., 2015) proposed
a method for continuously generating questions
from an image and subsequently answering those
questions. The works closely related to ours are
that of (Mostafazadeh et al., 2016) and (Jain et al.,
2017). In the former work, the authors used an
encoder-decoder based framework whereas in the
latter work, the authors extend it by using a varia-
tional autoencoder based sequential routine to ob-
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tain natural questions by performing sampling of
the latent variable.

3 Approach

Figure 3: An illustrative example shows the validity of
our obtained exemplars with the help of an object clas-
sification network, RESNET-101. We see that the prob-
ability scores of target and supporting exemplar image
are similar. That is not the case with the contrasting ex-
emplar. The corresponding generated questions when
considering the individual images are also shown.

In this section, we clarify the basis for our ap-
proach of using exemplars for question generation.
To use exemplars for our method, we need to en-
sure that our exemplars can provide context and
that our method generates valid exemplars.

We first analyze whether the exemplars are valid
or not. We illustrate this in figure 3. We used
a pre-trained RESNET-101 (He et al., 2016) ob-
ject classification network on the target, support-
ing and contrasting images. We observed that the
supporting image and target image have quite sim-
ilar probability scores. The contrasting exemplar
image, on the other hand, has completely different
probability scores.

Exemplars aim to provide appropriate context.
To better understand the context, we experimented
by analysing the questions generated through an
exemplar. We observed that indeed a support-
ing exemplar could identify relevant tags (cows in
Figure 3) for generating questions. We improve
use of exemplars by using a triplet network. This
network ensures that the joint image-caption em-
bedding for the supporting exemplar are closer to
that of the target image-caption and vice-versa.
We empirically evaluated whether an explicit ap-
proach that uses the differential set of tags as a
one-hot encoding improves the question genera-
tion, or the implicit embedding obtained based
on the triplet network. We observed that the im-
plicit multimodal differential network empirically
provided better context for generating questions.
Our understanding of this phenomenon is that both

target and supporting exemplars generate similar
questions whereas contrasting exemplars generate
very different questions from the target question.
The triplet network that enhances the joint embed-
ding thus aids to improve the generation of target
question. These are observed to be better than the
explicitly obtained context tags as can be seen in
Figure 2. We now explain our method in detail.

4 Method

The task in visual question generation (VQG) is to
generate a natural language question Q̂, for an im-
age I . We consider a set of pre-generated context
C from image I . We maximize the conditional
probability of generated question given image and
context as follows:

✓̂ = arg max
✓

X

(I,C,Q)

log P (Q| I, C, ✓) (1)

where ✓ is a vector for all possible parameters of
our model. Q is the ground truth question. The
log probability for the question is calculated by
using joint probability over {q0, q1, ....., qN} with
the help of chain rule. For a particular question,
the above term is obtained as:

log P (Q̂|I, C) =
NX

t=0

log P (qt|I, C, q0, .., qt�1)

where N is length of the sequence, and qt is the
tth word of the question. We have removed ✓ for
simplicity.

Our method is based on a sequence to sequence
network (Sutskever et al., 2014; Vinyals et al.,
2015; Bahdanau et al., 2014). The sequence to se-
quence network has a text sequence as input and
output. In our method, we take an image as input
and generate a natural question as output. The ar-
chitecture for our model is shown in Figure 4. Our
model contains three main modules, (a) Represen-
tation Module that extracts multimodal features
(b) Mixture Module that fuses the multimodal rep-
resentation and (c) Decoder that generates ques-
tion using an LSTM-based language model.

During inference, we sample a question word qi

from the softmax distribution and continue sam-
pling until the end token or maximum length for
the question is reached. We experimented with
both sampling and argmax and found out that
argmax works better. This result is provided in
the supplementary material.
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Figure 4: This is an overview of our Multimodal Differential Network for Visual Question Generation. It consists
of a Representation Module which extracts multimodal features, a Mixture Module that fuses the multimodal
representation and a Decoder that generates question using an LSTM based language model. In this figure, we
have shown the Joint Mixture Module. We train our network with a Cross-Entropy and Triplet Loss.

4.1 Multimodal Differential Network
The proposed Multimodal Differential Network
(MDN) consists of a representation module and a
joint mixture module.

4.1.1 Finding Exemplars
We used an efficient KNN-based approach (k-d
tree) with Euclidean metric to obtain the exem-
plars. This is obtained through a coarse quantiza-
tion of nearest neighbors of the training examples
into 50 clusters, and selecting the nearest as sup-
porting and farthest as the contrasting exemplars.
We experimented with ITML based metric learn-
ing (Davis et al., 2007) for image features. Sur-
prisingly, the KNN-based approach outperforms
the latter one. We also tried random exemplars
and different number of exemplars and found that
k = 5 works best. We provide these results in the
supplementary material.

4.1.2 Representation Module
We use a triplet network (Frome et al., 2007; Hof-
fer and Ailon, 2015) in our representation mod-
ule. We refereed a similar kind of work done
in (Patro and Namboodiri, 2018) for building our
triplet network. The triplet network consists of
three subparts: target, supporting, and contrast-
ing networks. All three networks share the same
parameters. Given an image xi we obtain an em-
bedding gi using a CNN parameterized by a func-
tion G(xi, Wc) where Wc are the weights for the
CNN. The caption Ci results in a caption em-
bedding fi through an LSTM parameterized by a
function F (Ci, Wl) where Wl are the weights for
the LSTM. This is shown in part 1 of Figure 4.

Similarly we obtain image embeddings gs & gc

and caption embeddings fs & fc.

gi = G(xi, Wc) = CNN(xi)

fi = F (Ci, Wl) = LSTM(Ci)
(2)

4.1.3 Mixture Module
The Mixture module brings the image and caption
embeddings to a joint feature embedding space.
The input to the module is the embeddings ob-
tained from the representation module. We have
evaluated four different approaches for fusion viz.,
joint, element-wise addition, Hadamard and atten-
tion method. Each of these variants receives im-
age features gi & the caption embedding fi, and
outputs a fixed dimensional feature vector si. The
Joint method concatenates gi & fi and maps them
to a fixed length feature vector si as follows:

si = W T
j ⇤ tanh(Wijgi

_ (Wcjfi + bj)) (3)

where gi is the 4096-dimensional convolu-
tional feature from the FC7 layer of pretrained
VGG-19 Net (Simonyan and Zisserman, 2014).
Wij , Wcj , Wj are the weights and bj is the bias for
different layers. _ is the concatenation operator.

Similarly, we obtain context vectors s+
i & s�

i
for the supporting and contrasting exemplars. De-
tails for other fusion methods are present in sup-
plementary.The aim of the triplet network (Schroff
et al., 2015) is to obtain context vectors that bring
the supporting exemplar embeddings closer to the
target embedding and vice-versa. This is obtained
as follows:

D(t(si), t(s
+
i )) + ↵ < D(t(si), t(s

�
i ))

8(t(si), t(s
+
i ), t(s�

i )) 2 M,
(4)
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where D(t(si), t(sj)) = ||t(si) � t(sj)||22 is the
Euclidean distance between two embeddings t(si)
and t(sj). M is the training dataset that contains
all set of possible triplets. T (si, s

+
i , s�

i ) is the
triplet loss function. This is decomposed into two
terms, one that brings the supporting sample closer
and one that pushes the contrasting sample further.
This is given by

T (si, s
+
i , s�

i ) = max(0, D+ + ↵ � D�) (5)

Here D+, D� represent the Euclidean distance be-
tween the target and supporting sample, and target
and opposing sample respectively. The parameter
↵(= 0.2) controls the separation margin between
these and is obtained through validation data.

4.2 Decoder: Question Generator
The role of decoder is to predict the probability
for a question, given si. RNN provides a nice way
to perform conditioning on previous state value
using a fixed length hidden vector. The condi-
tional probability of a question token at particular
time step qt is modeled using an LSTM as used
in machine translation (Sutskever et al., 2014). At
time step t, the conditional probability is denoted
by P (qt|I, C, q0, ...qt�1) = P (qt|I, C, ht), where
ht is the hidden state of the LSTM cell at time
step t, which is conditioned on all the previously
generated words {q0, q1, ...qN�1}. The word with
maximum probability in the probability distribu-
tion of the LSTM cell at step k is provided as an
input to the LSTM cell at step k + 1 as shown
in part 3 of Figure 4. At t = �1, we are feed-
ing the output of the mixture module to LSTM.
Q̂ = {q̂0, q̂1, ... ˆqN�1} are the predicted question
tokens for the input image I . Here, we are us-
ing q̂0 and ˆqN�1 as the special token START and
STOP respectively. The softmax probability for
the predicted question token at different time steps
is given by the following equations where LSTM
refers to the standard LSTM cell equations:

x�1 = Si = Mixture Module(gi, fi)

h0 = LSTM(x�1)

xt = We ⇤ qt, 8t 2 {0, 1, 2, ...N � 1}
ht+1 = LSTM(xt, ht), 8t 2 {0, 1, 2, ...N � 1}
ot+1 = Wo ⇤ ht+1

ŷt+1 = P (qt+1|I, C, ht) = Softmax(ot+1)

Losst+1 = loss(ŷt+1, yt+1)

Where ŷt+1 is the probability distribution over all
question tokens. loss is cross entropy loss.

4.3 Cost function
Our objective is to minimize the total loss, that is
the sum of cross entropy loss and triplet loss over
all training examples. The total loss is:

L =
1

M

MX

i=1

(Lcross + �Ltriplet) (6)

where M is the total number of samples,� is a con-
stant, which controls both the loss. Ltriplet is the
triplet loss function 5. Lcross is the cross entropy
loss between the predicted and ground truth ques-
tions and is given by:

Lcross =
�1

N

NX

t=1

ytlogP (q̂t|Ii, Ci, q̂0, .. ˆqt�1)

where, N is the total number of question tokens, yt

is the ground truth label. The code for MDN-VQG
model is provided 1.

4.4 Variations of Proposed Method
While, we advocate the use of multimodal differ-
ential network for generating embeddings that can
be used by the decoder for generating questions,
we also evaluate several variants of this architec-
ture. These are as follows:

Tag Net: In this variant, we consider extract-
ing the part-of-speech (POS) tags for the words
present in the caption and obtaining a Tag embed-
ding by considering different methods of combin-
ing the one-hot vectors. Further details and ex-
perimental results are present in the supplemen-
tary. This Tag embedding is then combined with
the image embedding and provided to the decoder
network.

Place Net: In this variant we explore obtain-
ing embeddings based on the visual scene under-
standing. This is obtained using a pre-trained
PlaceCNN (Zhou et al., 2017) that is trained to
classify 365 different types of scene categories.
We then combine the activation map for the input
image and the VGG-19 based place embedding to
obtain the joint embedding used by the decoder.

Differential Image Network: Instead of us-
ing multimodal differential network for generating
embeddings, we also evaluate differential image
network for the same. In this case, the embedding
does not include the caption but is based only on

1The project page for MDN-VQG Model is https://
badripatro.github.io/MDN-VQG/
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Figure 5: These are some examples from the VQG-COCO dataset which provide a comparison between our
generated questions and human annotated questions. (a) is the human annotated question for all the images. More
qualitative results are present in the supplementary material.

the image feature. We also exeperimented with us-
ing multiple exemplars and random exemplars.
Further details, pseudocode and results regarding
these are present in the supplementary material.

4.5 Dataset
We conduct our experiments on Visual Question
Generation (VQG) dataset (Mostafazadeh et al.,
2016), which contains human annotated questions
based on images of MS-COCO dataset. This
dataset was developed for generating natural and
engaging questions based on common sense rea-
soning. We use VQG-COCO dataset for our ex-
periments which contains a total of 2500 training
images, 1250 validation images, and 1250 testing
images. Each image in the dataset contains five
natural questions and five ground truth captions. It
is worth noting that the work of (Jain et al., 2017)
also used the questions from VQA dataset (An-
tol et al., 2015) for training purpose, whereas the
work by (Mostafazadeh et al., 2016) uses only
the VQG-COCO dataset. VQA-1.0 dataset is also
built on images from MS-COCO dataset. It con-
tains a total of 82783 images for training, 40504
for validation and 81434 for testing. Each im-
age is associated with 3 questions. We used pre-
trained caption generation model (Karpathy and
Fei-Fei, 2015) to extract captions for VQA dataset
as the human annotated captions are not there in
the dataset. We also get good results on the VQA
dataset (as shown in Table 2) which shows that our

method doesn’t necessitate the presence of ground
truth captions. We train our model separately for
VQG-COCO and VQA dataset.

4.6 Inference
We made use of the 1250 validation images to tune
the hyperparameters and are providing the results
on test set of VQG-COCO dataset. During infer-
ence, We use the Representation module to find
the embeddings for the image and ground truth
caption without using the supporting and contrast-
ing exemplars. The mixture module provides the
joint representation of the target image and ground
truth caption. Finally, the decoder takes in the
joint features and generates the question. We also
experimented with the captions generated by an
Image-Captioning network (Karpathy and Fei-Fei,
2015) for VQG-COCO dataset and the result for
that and training details are present in the supple-
mentary material.

5 Experiments

We evaluate our proposed MDN method in the fol-
lowing ways: First, we evaluate it against other
variants described in section 4.4 and 4.1.3. Sec-
ond, we further compare our network with state-
of-the-art methods for VQA 1.0 and VQG-COCO
dataset. We perform a user study to gauge hu-
man opinion on naturalness of the generated ques-
tion and analyze the word statistics in Figure 6.
This is an important test as humans are the best
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Figure 6: Sunburst plot for VQG-COCO: The ith ring
captures the frequency distribution over words for the
ith word of the generated question. The angle sub-
tended at the center is proportional to the frequency of
the word. While some words have high frequency, the
outer rings illustrate a fine blend of words. We have
restricted the plot to 5 rings for easy readability. Best
viewed in color.

deciders of naturalness. We further consider the
statistical significance for the various ablations as
well as the state-of-the-art models. The quan-
titative evaluation is conducted using standard
metrics like BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE (Lin,
2004), CIDEr (Vedantam et al., 2015). Although
these metrics have not been shown to correlate
with ‘naturalness’ of the question these still pro-
vide a reasonable quantitative measure for com-
parison. Here we only provide the BLEU1 scores,
but the remaining BLEU-n metric scores are
present in the supplementary. We observe that the
proposed MDN provides improved embeddings to
the decoder. We believe that these embeddings
capture instance specific differential information
that helps in guiding the question generation. De-
tails regarding the metrics are given in the supple-
mentary material.

5.1 Ablation Analysis

We considered different variations of our method
mentioned in section 4.4 and the various ways
to obtain the joint multimodal embedding as de-
scribed in section 4.1.3. The results for the VQG-
COCO test set are given in table 1. In this ta-
ble, every block provides the results for one of the
variations of obtaining the embeddings and differ-
ent ways of combining them. We observe that the

Joint Method (JM) of combining the embeddings
works the best in all cases except the Tag Embed-
dings. Among the ablations, the proposed MDN
method works way better than the other variants
in terms of BLEU, METEOR and ROUGE met-
rics by achieving an improvement of 6%, 12% and
18% in the scores respectively over the best other
variant.

Emb. Method B1 METEOR ROUGE CIDEr
Tag AtM 22.4 8.6 22.5 20.8
Tag HM 24.4 10.8 24.3 55.0
Tag AM 24.4 10.6 23.9 49.4
Tag JM 22.2 10.5 22.8 50.1
PlaceCNN AtM 24.4 10.3 24.0 51.8
PlaceCNN HM 24.0 10.4 24.3 49.8
PlaceCNN AM 24.1 10.6 24.3 51.5
PlaceCNN JM 25.7 10.8 24.5 56.1
Diff. Img AtM 20.5 8.5 24.4 19.2
Diff. Img HM 23.6 8.6 22.3 22.0
Diff. Img AM 20.6 8.5 24.4 19.2
Diff. Img JM 30.4 11.7 22.3 22.8
MDN AtM 22.4 8.8 24.6 22.4
MDN HM 26.6 12.8 30.1 31.4
MDN AM 29.6 15.4 32.8 41.6
MDN(Ours) JM 36.0 23.4 41.8 50.7

Table 1: Analysis of variants of our proposed method
on VQG-COCO Dataset as mentioned in section 4.4
and different ways of getting a joint embedding (Atten-
tion (AtM), Hadamard (HM), Addition (AM) and Joint
(JM) method as given in section 4.1.3) for each method.
Refer section 5.1 for more details. B1 is BLEU1.

5.2 Baseline and State-of-the-Art
The comparison of our method with various base-
lines and state-of-the-art methods is provided in
table 2 for VQA 1.0 and table 3 for VQG-COCO
dataset. The comparable baselines for our method
are the image based and caption based models in
which we use either only the image or the caption
embedding and generate the question. In both the
tables, the first block consists of the current state-
of-the-art methods on that dataset and the second
contains the baselines. We observe that for the
VQA dataset we achieve an improvement of 8% in
BLEU and 7% in METEOR metric scores over the
baselines, whereas for VQG-COCO dataset this
is 15% for both the metrics. We improve over
the previous state-of-the-art (Yang et al., 2015)
for VQA dataset by around 6% in BLEU score
and 10% in METEOR score. In the VQG-COCO
dataset, we improve over (Mostafazadeh et al.,
2016) by 3.7% and (Jain et al., 2017) by 3.5% in
terms of METEOR scores.

5.3 Statistical Significance Analysis
We have analysed Statistical Signifi-
cance (Demšar, 2006) of our MDN model
for VQG for different variations of the mixture
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Methods BLEU1 METEOR ROUGE CIDEr
Sample(Yang,2015) 38.8 12.7 34.2 13.3
Max(Yang,2015) 59.4 17.8 49.3 33.1
Image Only 56.6 15.1 40.0 31.0
Caption Only 57.1 15.5 36.6 30.5
MDN-Attention 60.7 16.7 49.8 33.6
MDN-Hadamard 61.7 16.7 50.1 29.3
MDN-Addition 61.7 18.3 50.4 42.6
MDN-Joint (Ours) 65.1 22.7 52.0 33.1

Table 2: State-of-the-Art comparison on VQA-1.0
Dataset. The first block consists of the state-of-the-art
results, second block refers to the baselines mentioned
in section 5.2, third block provides the results for the
variants of mixture module present in section 4.1.3.

Context BLEU1 METEOR ROUGE CIDEr
Natural 2016 19.2 19.7 - -
Creative 2017 35.6 19.9 - -
Image Only 20.8 8.6 22.6 18.8
Caption Only 21.1 8.5 25.9 22.3
Tag-Hadamard 24.4 10.8 24.3 55.0
Place CNN-Joint 25.7 10.8 24.5 56.1
Diff.Image-Joint 30.4 11.7 26.3 38.8
MDN-Joint (Ours) 36.0 23.4 41.8 50.7
Humans 2016 86.0 60.8 - -

Table 3: State-of-the-Art (SOTA) comparison on VQG-
COCO Dataset. The first block consists of the SOTA
results, second block refers to the baselines mentioned
in section 5.2, third block shows the results for the best
method for different ablations mentioned in table 1.

module mentioned in section 4.1.3 and also
against the state-of-the-art methods. The Critical
Difference (CD) for Nemenyi (Fišer et al., 2016)
test depends upon the given ↵ (confidence level,
which is 0.05 in our case) for average ranks and
N (number of tested datasets). If the difference in
the rank of the two methods lies within CD, then
they are not significantly different and vice-versa.
Figure 7 visualizes the post hoc analysis using
the CD diagram. From the figure, it is clear
that MDN-Joint works best and is statistically
significantly different from the state-of-the-art
methods.

Figure 7: The mean rank of all the models on the ba-
sis of METEOR score are plotted on the x-axis. Here
Joint refers to our MDN-Joint model and others are the
different variations described in section 4.1.3 and Nat-
ural (Mostafazadeh et al., 2016), Creative (Jain et al.,
2017). The colored lines between the two models rep-
resents that these models are not significantly different
from each other.

Figure 8: Perceptual Realism Plot for human survey.
Here every question has different number of responses
and hence the threshold which is the half of total re-
sponses for each question is varying. This plot is only
for 50 of the 100 questions involved in the survey. See
section 5.4 for more details.

5.4 Perceptual Realism
A human is the best judge of naturalness of
any question, We evaluated our proposed MDN
method using a ‘Naturalness’ Turing test (Zhang
et al., 2016) on 175 people. People were shown an
image with 2 questions just as in figure 1 and were
asked to rate the naturalness of both the questions
on a scale of 1 to 5 where 1 means ‘Least Nat-
ural’ and 5 is the ‘Most Natural’. We provided
175 people with 100 such images from the VQG-
COCO validation dataset which has 1250 images.
Figure 8 indicates the number of people who were
fooled (rated the generated question more or equal
to the ground truth question). For the 100 images,
on an average 59.7% people were fooled in this
experiment and this shows that our model is able
to generate natural questions.

6 Conclusion

In this paper we have proposed a novel method
for generating natural questions for an image. The
approach relies on obtaining multimodal differen-
tial embeddings from image and its caption. We
also provide ablation analysis and a detailed com-
parison with state-of-the-art methods, perform a
user study to evaluate the naturalness of our gen-
erated questions and also ensure that the results
are statistically significant. In future, we would
like to analyse means of obtaining composite em-
beddings. We also aim to consider the generalisa-
tion of this approach to other vision and language
tasks.
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Abstract
Current image captioning approaches gener-
ate descriptions which lack specific informa-
tion, such as named entities that are involved
in the images. In this paper we propose a new
task which aims to generate informative im-
age captions, given images and hashtags as in-
put. We propose a simple but effective ap-
proach to tackle this problem. We first train
a convolutional neural networks - long short
term memory networks (CNN-LSTM) model
to generate a template caption based on the in-
put image. Then we use a knowledge graph
based collective inference algorithm to fill in
the template with specific named entities re-
trieved via the hashtags. Experiments on a new
benchmark dataset collected from Flickr show
that our model generates news-style image de-
scriptions with much richer information. Our
model outperforms unimodal baselines signif-
icantly with various evaluation metrics. 1

1 Introduction

As information regarding emergent situations dis-
seminates through social media, the information is
presented in a variety of data modalities (e.g. text,
images, and videos), with each modality providing
a slightly different perspective. Images have the
capability to vividly represent events and entities,
but without proper contextual information they
become less meaningful and lose utility. While
images may be accompanied by associated tags
or other meta-data, which are inadequate to con-
vey detailed events, many lack the descriptive text
to provide such context. For example, there are
17,285 images on Flickr from the Women’s March
on January 21, 2017,2 most of which contain only

1Datasets and programs: https://github.com/
dylandilu/Entity-aware-Image-Captioning

2https://en.wikipedia.org/wiki/2017 Women%27s March

a few tags and lack any detailed text descriptions.
The absence of context leaves individuals with no
knowledge of details such as the purpose or loca-
tion of the march.

Image captioning offers a viable method to di-
rectly provide images with the necessary contex-
tual information through textual descriptions. Ad-
vances in image captioning (Xu et al., 2015; Fang
et al., 2015; Karpathy and Fei-Fei, 2015; Vinyals
et al., 2015) are effective in generating sentence-
level descriptions. However, sentences generated
by these approaches are usually generic descrip-
tions of the visual content and ignore background
information. Such generic descriptions do not suf-
fice in emergent situations as they, essentially, mir-
ror the information present in the images and do
not provide detailed descriptions regarding events
and entities present in, or related to, the images,
which is imperative to understanding emergent sit-
uations. For example, given the image in Fig-
ure 1, the state-of-the-art automatically generated
caption is ‘Several women hold signs in front of a
building.’, which is lacking information regarding
relevant entities (e.g. ‘ Junior doctors’, ‘Tories’).

In our work, we propose an ambitious task:
entity-aware image caption generation: auto-
matically generate an image description that in-
corporates specific information such as named en-
tities, relevant to the image, given limited text in-
formation, such as associated tags and meta-data
(e.g. time of photo and geo-location). Our ap-
proach to this task generally follows three steps.
First, instead of directly generating a sentence for
an image, we generate a template sentence with
fillable slots by training an image captioning ar-
chitecture on image-caption pairs, where we re-
place the entities from the captions with slot types
indicating the type of entity that should be used
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Figure 1: The overall framework.

to fill the slot. A template for the example in Fig-
ure 1 is: <Person> holding signs protest against
<Organization> outside <Building> in
<Location>.

Second, given the associated tags of an im-
age, we apply entity discovery and linking (EDL)
methods to extract specific entities from pre-
vious posts that embed the same tags. Fi-
nally, we select appropriate candidates for each
slot based upon the entity type and frequency.
For example, we select the person name ‘Ju-
nior doctors’ to fill in the slot <Person> be-
cause it co-occurs frequently with other entities
such as ‘Tories’ in the text related to the tags
#NHS, #JuniorDoctorsStrike. This frame-
work offers a distinct advantage in that it is very
flexible, so more advanced captioning or EDL
methods as well as other data can be used almost
interchangeably within the framework.

To the best of our knowledge, we are the first
to incorporate contextual information into image
captioning without large-scale training data or top-
ically related news articles and the generated im-
age captions are closer to news captions.

2 Approach Overview

Figure 1 shows the overall framework of our pro-
posed model. Given an image with associated
tags and other meta-data, such as geographical
tags and EXIF data,3 we first feed the image into
a template caption generator to generate a sen-
tence composed of context words, such as “stand”,
and slots, such as <person>, to represent miss-
ing specific information like named entities (Sec-
tion 3). The template caption generator, which fol-
lows the encoder-decoder model (Cho et al., 2014)
with a CNN encoder and LSTM decoder (Vinyals
et al., 2015), is trained using news image-template
caption pairs.

We then retrieve topically-related images from
the Flickr database, which have the same tags as
the input image. Next, we apply EDL algorithms
to the image titles to extract entities and link them
to external knowledge bases to retrieve their fine-
grained entity types. Finally, for each slot gener-
ated by the template generator, we choose to fill
the slot with the appropriate candidate based on
entity type and frequency (Section 4).

3EXIF data contains meta-data tags of photos such as
date, time, and camera settings.
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3 Template Caption Generation

Language models (LM) are widely used to gener-
ate text (Wen et al., 2015; Tran and Nguyen, 2017)
and play a crucial role in most of the existing im-
age captioning approaches (Vinyals et al., 2015;
Xu et al., 2015). These models, learned from
large-scale corpora, are able to predict a probabil-
ity distribution over a vocabulary. However, LM
struggle to generate specific entities, which occur
sparsely, if at all, within training corpora. More-
over, the desired entity-aware captions may con-
tain information not directly present in the image
alone. Unless the LM is trained or conditioned
on data specific to the emergent situation of inter-
est, the LM alone cannot generate a caption that
incorporates the specific background information.
We address this issue by only relying on the LM to
generate abstract slot tokens and connecting words
or phrases, while slot filling is used to incorpo-
rate specific information. This approach allows
the LM to focus on generating words or phrases
with higher probability, since each slot token ef-
fectively has a probability equal to the sum of all
the specific entities that it represents, thereby cir-
cumventing the issue of generating lower proba-
bility or out-of-vocabulary (OOV) words.

In this section, we describe a novel method
to train a model to automatically generate tem-
plate captions with slots as ‘placeholders’ for spe-
cific background information. We first present the
schemas which define the slot types (Section 3.1)
and the procedure to acquire training data for tem-
plate generation (Section 3.2). Finally, we intro-
duce the model for template caption generation
(Section 3.3).

3.1 Template Caption Definition
Named entities are the most specific informa-
tion which cannot be easily learned by LM.
Thus, in this work, we define slots as place-
holders for entities with the same types. We
use the fine grained entity types defined in DB-
pedia 4 (Auer et al., 2007) to name the slots
because these types are specific enough to dif-
ferentiate between a wide range of entities and
still general enough so that the slots have higher
probabilities in the language model. For exam-
ple, Person is further divided into Athlete,
Singer, Politician, and so on. Therefore,

4We use the sixth level entity types in Yago ontology
(Wordnet types only).

a template caption like ‘Athlete celebrates after
scoring.’ can be generated by the language model
through leveraging image features, where the slot
Athlete means a sports player (e.g., Cristiano
Ronaldo, Lionel Messi).

3.2 Acquisition of Image-Template Caption
Pairs

High quality training data is crucial to train
a template caption generator. However, the
image-caption datasets used in previous work,
such as Microsoft Common Objects in Con-
text (MS COCO) (Lin et al., 2014) and
Flickr30K (Rashtchian et al., 2010), are not suit-
able for this task because they are designed for
non-specific caption generation and do not contain
detailed, specific information such as named enti-
ties. Further, manual creation of captions is expen-
sive. In this work, we utilize news image-caption
pairs, which are well written and can be easily col-
lected. We use the example in Figure 2 to describe
our procedure to convert image-caption to image-
template caption pairs: preprocessing, compres-
sion, generalization.

Figure 2: Procedure of Converting News Captions
into Templates.

Preprocessing: We first apply the following
pre-processing steps: (1) remove words in paren-
theses, such as ‘(C)’ and ‘(R)’ in Figure 2, because
they usually represent auxiliary information and
are not aligned with visual concepts in images; (2)
if a caption includes more than one sentence, we
choose the longer one. Based on our observation,
shorter sentences usually play the role of back-
ground introduction, which are not aligned with
the key content in images; (3) remove captions
with less than 10 tokens because they tend to be
not informative enough. The average length of the
news image captions is 37 tokens.

Compression: The goal of compression is to
make news captions short and aligned with im-
ages as much as possible by keeping informa-
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tion related to objects and concepts in the im-
ages, which are usually subjects, verbs and ob-
jects in sentences. In this paper, we propose a
simple but efficient compression method based on
dependency parsing. We do not use other com-
plicated compressions (Kuznetsova et al., 2014)
because our simple method achieves comparative
results on image caption dataset. We first ap-
ply the Stanford dependency parser (De Marn-
effe and Manning, 2008) on preprocessed cap-
tions. Then, we traverse the parse tree
from the root (e.g.‘pours’) via <governor,
grammatical relations, dependent>
triples using breadth-first search. We decide to
keep a dependent or not based on its grammati-
cal relation with the governor. Based on our ob-
servations, among the 50 grammatical relations in
the Stanford dependency parser, we keep the de-
pendents that have the following grammatical re-
lations with their governors: nsubj, obj, iobj, dobj,
acomp, det, neg, nsubjpass, pobj, predet, prep, prt,
vmod, nmod, cc.

Generalization: The last step for preparing
training data is to extract entities from captions
and replace them with the slot types we defined
in Section 3.1. We apply Stanford CoreNLP
name tagger (Manning et al., 2014) to the cap-
tions to extract entity mentions of the following
types: Person, Location, Organization,
and Miscellaneous. Next, we use an English
Entity Linking algorithm (Pan et al., 2015) to link
the entity mentions to DBpedia and retrieve their
fine-grained types.5 We choose the higher level
type if there are multiple fine-grained types for a
name. For example, the entity types of Manchester
United, Eric Bailly, and Jesse Lingard are Soc-
cerTeam, Athlete, and Athlete, respectively. For
entity mentions that cannot be linked to DBpedia,
we use their coarse-grained entity types, which are
the outputs of name tagger.

Finally, we replace the entities in the com-
pressed captions with their corresponding slots:

Generalized Template: <Athlete> pours
champagne over <Athlete>.

3.3 Generation Model

Using the template caption and image pairs (S,
I) as training data, we regard the template cap-
tion generation as a regular image captioning

5This yields a total of 95 types after manually cleaning.

task. Thus, we adapt the encoder-decoder archi-
tecture which is successful in the image captioning
task (Vinyals et al., 2015; Xu et al., 2015). Our
model (Figure 3) is most similar to the one pro-
posed in (Vinyals et al., 2015). Note, other cap-
tioning methods may easily be used instead.

Encoder: Similar to previous work (Vinyals
et al., 2015; Xu et al., 2015; Karpathy and Fei-
Fei, 2015; Venugopalan et al., 2017), we encode
images into representations using a ResNet (He
et al., 2016) model pre-trained on the ImageNet
dataset (Deng et al., 2009) and use the outputs be-
fore the last fully-connected layer.

Decoder: We employ a Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
based language model to decode image represen-
tations into template captions. We provide the
LSTM the image representation, I , as the initial
hidden state. At the tth step, the model predicts
the probabilities of words/slots, yt, based on the
word/slot generated at last time step, yt�1, as well
as the hidden state, st.

Figure 3: LSTM language generator.

4 Template Caption Entity Population

With the generated template captions, our next
step is to fill in the slots with the appropriate spe-
cific entities to make the caption complete and
entity-aware. In this section, we expand our
method to extract candidate entities from contex-
tual information (i.e., images in Flickr with the
same tags). Once we extract candidate entities, we
apply the Quantified Collective Validation (QCV)
algorithm (Wang et al., 2015), which constructs a
number of candidate graphs and performs collec-
tive validation on those candidate graphs to choose
the appropriate entities for the slots in the template
caption.
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4.1 Candidate Entity Retrieval

Users on social media typically post images with
tags that are event-related (e.g. #occupywall-
street), entity-related (e.g. #lakers), or topic-
related (e.g. #basketball). On our Flickr test-
ing dataset, the average number of tags associated
with an image is 11.5 and posts with the same tags
likely share common entities. Therefore, given an
image and its tags, we retrieve images from Flickr
with the same tags by a window size of seven-
day based on taken date of the photo, and then
utilize the textual information accompanying the
retrieved images as context. We filter out the high
frequency hashtags(> 200 in testing dataset). Be-
cause some common tags, such as ‘#concert’, ap-
pear in lots of posts related to different concerts.

Given the related text, we apply EDL algo-
rithms (Pan et al., 2015) to extract named entities
and link them to DBpedia to obtain their entity
types. For each entity type, we rank the candi-
dates based on their frequency in the context and
only keep the top 5 candidate entities.

4.2 Quantified Collective Validation

Each slot in the template must be filled with an en-
tity from its corresponding candidate entities. We
can regard this step as an entity linking problem,
whose goal is to choose an entity from several can-
didates given an entity mention. We utilize the
QCV algorithm to construct a number of candidate
graphs for a given set of slots (Wang et al., 2015),
where each combination of candidate entities sub-

stituted into the slots yields a different graph (Fig-
ure 4). For each candidate combination graph, Gi

c,
we compute the edge weights between each pair
of candidates in the graph as

Hr =
fchct

max(fch , fct)
(1)

where r 2 E(Gi
c) is an edge in Gi

c, ch and ct are
the head candidate and tail candidate of the edge,
fchct is the co-occurrence frequency of the pair
of candidates, and fch and fct are the individual
frequencies of head candidate and tail candidate,
respectively. For example, in Figure 4, Colney
(Location) and Junior doctors (Person) co-
occur frequently, therefore the edge between them
has a larger weight.

We compute the summed edge weight, !(Gi
c),

for each Gi
c by

!(Gi
c) =

X

r2E(Gi
c)

Hr (2)

and select the combination of candidates with the
largest !(Gi

c) to fill in the set of slots.
As a result of this process, given the tem-

plate: ‘<Person> holding signs protest against
<Organization> outside <Building> in
<Location>.’, we obtain an entity-aware cap-
tion: ‘Junior doctors holding signs protest against
Tories outside Norfolk and Norwich University
Hospital in Colney’.
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4.3 Post-processing

Some images in Flickr have EXIF data which
gives the date that an image is taken. We convert
this information into the format such as ‘April 26
2016’ and add it to the generated captions as post-
processing, by which we obtain the complete cap-
tion: ‘Junior doctors holding signs protest against
Tories outside Norfolk and Norwich University
Hospital in Colney on April 26 2016.’. We leave
the generated caption without adding date infor-
mation if it is not available. For those slots that
cannot be filled by names, we use general words
to replace them, such as using the word ‘Athlete’
to replace the slot Athlete.

5 Experiments

5.1 Data

We require images with well-aligned, news-style
captions for training. However, we want to test our
model on real social media data and it is difficult
to collect these informative captions for social me-
dia data. Therefore, we acquire training data from
news outlets and testing data from social media.
We select two different topics, social events and
sports events, as our case studies.

Train Dev Test

Number of Images 29,390 4,306 3,688
Number of Tokens 1,086,350 161,281 136,784
Social Event 6,998 976 872
Sports Event 22,392 3,330 2,816

Person 32,878 4,539 4,156
Location 42,786 5,657 5,432
Organization 17,290 2,370 2,124
Miscellaneous 8,398 1,103 1,020

Table 1: Statistics of datasets for template genera-
tion.

Template Generator Training and Testing.
To train the template caption generator, we col-
lect 43,586 image-caption pairs from Reuters6, us-
ing topically-related keywords7 as queries. We do
not use existing image caption datasets, such as
MSCOCO (Lin et al., 2014), because they do not
contain many named entities. After the compres-
sion and generalization procedures (Section 3.2)
we keep 37,384 images and split them into train,

6https://www.reuters.com/
7Social Events: concert, festival, parade, protest, cere-

mony; Sports Events: Soccer, Basketball, Soccer, Baseball,
Ice Hockey

development, and test sets. Table 1 shows the
statistics of the datasets.

Entity-aware Caption Testing. Since news
images do not have associated tags, for the pur-
pose of testing our model in a real social media
setting, we use images from Flickr for our cap-
tion evaluation8, which is an image-centric, repre-
sentative social media platform. We use the same
keywords as for template generator training to re-
trieve multi-modal data with Creative Commons
license9, for social and sports events. We choose
the images that already have news-style descrip-
tions from users and manually confirm they are
well-aligned. In total, we collect 2,594 images for
evaluation. For each image, we also obtain the tags
(30,148 totally) and meta-data, such as EXIF and
geotag data, when they are available.

5.2 Models for Comparison
We compare our entity-aware model with the fol-
lowing baselines:
CNN-RNN-raw. We use the model proposed
by Vinyals et al. (2015) to train an image caption-
ing model on the raw news image-caption pairs,
and apply to Flickr testing data directly.
CNN-RNN-compressed. We use the model pro-
posed by Vinyals et al. (2015) to train a model on
the compressed news image-caption pairs.
Text-summarization. We apply SumBasic sum-
marization algorithms (Vanderwende et al., 2007),
that is a summarization for multiple documents
based on frequency of word and semantic content
units, to text documents retrieved by hashtag.
Entity-aware. We apply trained template genera-
tor on Flickr testing data, and then fill in the slots
with extracted background information.

5.3 Evaluation Metrics
We use three standard image captioning evalua-
tion metrics, BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2014), RE-
OUGE (Lin, 2004) and CIDEr (Vedantam et al.,
2015), to evaluate the quality of both the gener-
ated templates and generated captions. BLEU is a
metric based on correlations at the sentence level.
METEOR is a metric with recall weighted higher
than precision and it takes into account stemming
as well as synonym matching. ROUGE is pro-
posed for evaluation of summarization and relies

8https://www.flickr.com/
9https://creativecommons.org/licenses/
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highly on recall. CIDEr metric downweights the
n-grams common in all image captions, which are
similar to tf-idf. Since the goal of this task is to
generate entity-aware descriptions, we also mea-
sure the entity F1 scores for the final captions,
where we do fuzzy matching to manually count
the overlapped entities between the system out-
put and reference captions. Besides, we do human
evaluation with a score in range of 0 to 3 using the
criteria as follows: Score 0: generated caption is
not related to the ground-truth; Score 1: generated
caption is topically-related to the ground-truth, but
has obvious errors; Score 2: generated caption is
topically-related to the ground-truth, and has over-
lapped named entities; Score 3: generated caption
well describes the image.

5.4 Template Evaluation

Raw: new york giants kicker josh brown kicks a field
goal during the first quarter against the san francisco
49ers at metlife stadium.

Generated Coarse Template: <Person> runs with
ball against <Location> <Location> in the first
half of their <Miscellaneous> football game in
<Location>

Generated Fine Template: <Footballteam>
kicker <Player> kicks a field goal out of
the game against the <Footballteam> at
<Organization> stadium

Figure 5: Example of generated template.

Table 2 shows the performances of tem-
plate generator based on coarse-grained and fine-
grained type respectively, and Figure 5 shows an
example of the template generated. Coarse tem-
plates are the ones after we replace names with
these coarse-grained types. Entity Linking classi-
fies names into more fine-grained types, so the cor-
responding templates are fine templates. The gen-
eralization method of replacing the named entities
with entity types can reduce the vocabulary size
significantly, which reduces the impact of sparse
named entities in training data. The template
generation achieves close performance with state-
of-the-art generic image captioning on MSCOCO
dataset (Xu et al., 2015). The template generator

based on coarse-grained entity type outperforms
the one based on fine-grained entity type for two
reasons: (1) fine template relies on EDL, and in-
correct linkings import noise; (2) named entities
usually has multiple types, but we only choose one
during generalization. Thus the caption, ‘Bob Dy-
lan performs at the Wiltern Theatre in Los Ange-
les’, is generalized into ‘<Writer> performs at
the <Theater> in <Loaction>’, but the cor-
rect type for Bob Dylan in this context should be
Artist.

5.5 Flickr Caption Results

Table 4 shows the comparison between our model
and the baselines. The scores are much lower
than traditional caption generation tasks such as
COCO, because we use the real captions as
ground-truth. Our model outperforms all the
baselines on all metrics except BLEU-4, where
Text-summarization model achieves better score.
Generally, the model based on textual features
(Text-summarization) has better performance than
vision-based models (CNN-RNN-raw and CNN-
RNN-compressed). It indicates textual sum-
marization algorithm is more effective when it
involves specific knowledge generation. Text-
summarization model generates results from doc-
uments retrieved by hashtags, so it tends to in-
clude some long phrases common in those docu-
ments. However the templates generated by our
model is based on the language model trained
from the news captions, which has different style
with Flickr captions. It results in that Text-
summarization model achieves better BLEU-4
score. Our model improves CIDEr score more sig-
nificantly compared with other metrics, because
CIDEr downweights the n-grams common in all
captions, where more specific information such as
named entities contribute more to the scores. The
experimental results demonstrate that our model is
effective to generate image captions with specific
knowledge.

5.6 Analysis

Figure 6 shows some examples of the captions
generated by the entity-aware model.

Good Examples: (A) in Figure 6 describes the
events in the images well (‘performs’) and
include correct, well-placed entities, such as
‘Little Dragon’ and ‘House of Blues’.
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Approach Vocabulary BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

Raw-caption 10,979 15.1 11.7 9.9 8.8 8.8 24.2 34.7
Coarse Template 3,533 46.7 36.1 29.8 25.7 22.4 43.5 161.6
Fine Template 3,642 43.0 33.4 27.8 24.3 20.3 39.8 165.3

Table 2: Comparison of Template Generator with coarse/fine-grained entity type. Coarse Template is
generalized by coarse-grained entity type (name tagger) and fine template is generalized by fine-grained
entity type (EDL).

#mlb#baseball 
#orioleparkatcamdenyards 
#joekelly#bostonredsox
EXIF: 2016-06-01 19:25:01

#littledragon#houseofblues 
#cleveland#ohio#concert

EXIF: 2017-08-02 20:42:53

#toronto#tiff#tiff17 
#tiff2017#raptors#patrick 
#patterson#patrickpatterson
EXIF: 2017-09-09 15:38:21

(A) (B) (C)

Model Caption

A
CNN-RNN-compressed jack white from rock band the dead weather performs during the 44th montreux jazz

festival in montreux
Text-summarization Little Dragon performing at the House of Blues in Cleveland, OH
Entity-aware(ours) singer little dragon performs at the house of blues in cleveland August 2 2017

Human little dragon performing at the house of blues in cleveland, oh

B
CNN-RNN-compressed houston astros starting pitcher brett delivers in the second inning against the cleveland

indians at progressive field
Text-summarization Red Sox at Orioles 6/2/16

Entity-aware(ours) baltimore orioles starting pitcher joe kelly pitches in the first inning against the balti-
more orioles at baltimore June 1 2016

Human joe kelly of the boston red sox pitches in a game against the baltimore orioles at oriole
park at camden yards on june 1, 2016 in baltimore, maryland

C
CNN-RNN-compressed protestors gesture and hold signs during a protest against what demonstrators call police

brutality in mckinney , texas .
Text-summarization Toronto, Canada September 9, 2017.

Entity-aware(ours) supporters of an ban protest outside the toronto international film festival in toronto
September 9 2017

Human patrick patterson at the premiere of the carter effect, 2017 toronto film festival

Figure 6: Examples of generated entity-aware caption.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr F1 Human⇤

CNN-RNN-raw 7.5 2.7 0.9 0.3 2.6 7.5 1.1 1.2 0.49
CNN-RNN-compress 8.3 3.3 1.1 0.5 3.0 9.2 1.5 2.1 0.50
Text-summarization 9.5 8.0 7.1 6.5 9.9 11.9 17.2 35.4 0.59
Entity-aware(ours) 25.5 14.9 8.0 4.7 11.0 21.1 29.9 39.7 0.87

Table 4: Comparison between our entity-aware model and baseline models on various topics. (⇤ We make
human evaluation on 259 images randomly selected.)

Relation Error of Filled Entities: Some of our
errors result from ignoring of relations be-
tween entities. In Example (B) of Figure 6
our model generate a good template, but con-
nects ‘Joe Kelly’, who is actually a pitcher
of ‘Res Sox’, with ‘Baltimore Orioles’ incor-
rectly. One possible solution is to incorporate

relation information when the model fills in
the slots with entities.

Template Error: Another category of errors re-
sults from wrong templates generated by our
model. Examples (C) in Figure 6 is about a
film festival, but the model generates a tem-
plate about protest, which is not related to
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the image. One potential improvement is
to incorporate the information from associ-
ated tags, such as the number of tags and
the named entity types related to the tags,
as features during template caption genera-
tion to make generated templates dynami-
cally change according to the context.

6 Related Work

The goal of image captioning is to automatically
generate a natural language sentence given an im-
age. (Kulkarni et al., 2013; Yang et al., 2011;
Mitchell et al., 2012) perform object recognition in
images and fill hand-made templates with the rec-
ognized objects. (Kuznetsova et al., 2012, 2014)
retrieve similar images, parse associated captions
into phrases, and compose them into new sen-
tences. Due to the use of static, handmade tem-
plates, these approaches are unable to generate a
variety of sentence realizations, which can result
in poorly generated sentences and requires one to
manually create more templates to extend the gen-
eration. Our approach overcomes this by dynami-
cally generating the output.

More recent work utilizes neural networks and
applies an encoder-decoder model (Cho et al.,
2014). Vinyals et al. (2015) use a CNN to encode
images into a fixed size vector representation and
a LSTM to decode the image representations into
a sentence. Xu et al. (2015) incorporate an atten-
tion mechanism (Bahdanau et al., 2015) and at-
tend to the output from a convolutional layer of a
CNN to produce the image representations for the
decoder. Instead of encoding a whole image as a
vector, (Johnson et al., 2016) apply R-CNN object
detection (Girshick et al., 2014), match text snip-
pets to the regions of the image detected by the R-
CNN, and use a recurrent neural network (RNN)
language model, similar to (Vinyals et al., 2015),
to generate a description of each region.

The surface realization for state-of-the-art neu-
ral approaches is impressive, but, in the context of
generating entity-aware captions, these methods
fall short as they heavily rely on training data for
language modeling. (Tran et al., 2016) leverage
face and landmark recognition to generate cap-
tions containing named persons, but such large-
scale training is difficult. Consequently, OOV
words like named entities, which are a quintessen-
tial aspect of entity-aware captions because OOV
words typically represent entities or events, are

difficult to generate due to low training probabil-
ities. Some work has been done to incorporate
novel objects into captions (Venugopalan et al.,
2017), but this does not address the need to gen-
erate entity-aware captions and incorporate con-
textual information; rather, it gives the ability to
generate more fine-grained entities within cap-
tions that still lack the necessary context. (Feng
and Lapata, 2013) also generates a caption with
named entities, but from associated news articles,
in which there is much more textual context than
our setting. Our approach uses neural networks
to generate dynamic templates and then fills in
the templates with specific entities. Thus, we are
able to combine the sentence variation and sur-
face realization quality of neural language model-
ing and the capability to incorporate novel words
of template-based approaches.

7 Conclusions and Future Work

In this paper we propose a new task which aims
to automatically generate entity-aware image de-
scriptions with limited textual information. Exper-
iments on a new benchmark dataset collected from
Flickr show that our approach generates more in-
formative captions compared to traditional image
captioning methods. Moreover, our two-step ap-
proach can easily be applied to other language
generation tasks involving specific information.

In the future, we will expand the entity-aware
model to incorporate the relations between can-
didates when the model fills in the slots, which
can avoid the cases such as ‘Cristiano Ronaldo of
Barcelona’. We will also make further research on
context-aware fine-grained entity typing to train a
better template generator. Another research direc-
tion based on this work is to develop an end-to-end
neural architecture to make the model more flexi-
ble without generating a template in the middle.

Acknowledgments

This work was supported by the U.S. DARPA
AIDA Program No. FA8750-18-2-0014 and U.S.
ARL NS-CTA No. W911NF-09-2-0053. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as representing the official policies, either
expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

4021



References
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Abstract

In this paper, we introduce the task of auto-
matically generating text to describe the dif-
ferences between two similar images. We col-
lect a new dataset by crowd-sourcing differ-
ence descriptions for pairs of image frames ex-
tracted from video-surveillance footage. An-
notators were asked to succinctly describe all
the differences in a short paragraph. As a re-
sult, our novel dataset provides an opportunity
to explore models that align language and vi-
sion, and capture visual salience. The dataset
may also be a useful benchmark for coherent
multi-sentence generation. We perform a first-
pass visual analysis that exposes clusters of
differing pixels as a proxy for object-level dif-
ferences. We propose a model that captures vi-
sual salience by using a latent variable to align
clusters of differing pixels with output sen-
tences. We find that, for both single-sentence
generation and as well as multi-sentence gen-
eration, the proposed model outperforms the
models that use attention alone.

1 Introduction

The interface between human users and collec-
tions of data is an important application area
for artificial intelligence (AI) technologies. Can
we build systems that effectively interpret data
and present their results concisely in natural lan-
guage? One recent goal in artificial intelligence
has been to build models that are able to inter-
pret and describe visual data to assist humans in
various tasks. For example, image captioning
systems (Vinyals et al., 2015b; Xu et al., 2015;
Rennie et al., 2017; Zhang et al., 2017) and vi-
sual question answering systems (Antol et al.,
2015; Lu et al., 2016; Xu and Saenko, 2016) can
help visually impaired people in interacting with
the world. Another way in which machines can
assist humans is by identifying meaningful pat-

Figure 1: Examples from Spot-the-diff dataset: We collect
text descriptions of all the differences between a pair of im-
ages. Note that the annotations in our dataset are exhaustive
wrt differences in the two images i.e. annotators were asked
to describe all the visible differences. Thus, the annotations
contain multi-sentence descriptions.

terns in data, selecting and combining salient pat-
terns, and generating concise and fluent ‘human-
consumable’ descriptions. For instance, text sum-
marization (Mani and Maybury, 1999; Gupta and
Lehal, 2010; Rush et al., 2015) has been a long
standing problem in natural language processing
aimed at providing a concise text summary of a
collection of documents.

In this paper, we propose a new task and accom-
panying dataset that combines elements of image
captioning and summarization: the goal of ‘spot-
the-diff’ is to generate a succinct text description
of all the salient differences between a pair of sim-
ilar images. Apart from being a fun puzzle, so-
lutions to this task may have applications in as-
sisted surveillance, as well as computer assisted
tracking of changes in media assets. We collect
and release a novel dataset for this task, which
will be potentially useful for both natural language
and computer vision research communities. We
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used crowd-sourcing to collect text descriptions of
differences between pairs of image frames from
video-surveillance footage (Oh et al., 2011), ask-
ing annotators to succinctly describe all salient
differences. In total, our datasets consist of de-
scriptions for 13,192 image pairs. Figure 1 shows
a sample data point - a pair of images along with a
text description of the differences between the two
images as per a human annotator.

There are multiple interesting modeling chal-
lenges associated with the task of generating nat-
ural language summaries of differences between
images. First, not all low-level visual differences
are sufficiently salient to warrant description. The
dataset presents an interesting source of super-
vision for methods that attempt to learn mod-
els of visual salience (we additionally conduct
exploratory experiments with a baseline salience
model, as described later). Second, humans use
different levels of abstraction when describing vi-
sual differences. For example, when multiple
nearby objects have all moved in coordination be-
tween images in a pair, an annotator may refer to
the group as a single concept (e.g. ‘the row of
cars’). Third, given a set of salient differences,
planning the order of description and generating
a fluent sequence of multiple sentences is itself a
challenging problem. Together, these aspects of
the proposed task make it a useful benchmark for
several directions of research.

Finally, we experiment with neural image cap-
tioning based methods. Since salient differences
are usually described at an object-level rather than
at a pixel-level, we condition these systems on a
first-pass visual analysis that exposes clusters of
differing pixels as a proxy for object-level differ-
ences. We propose a model which uses latent dis-
crete variables in order to directly align difference
clusters to output sentences. Additionally we in-
corporate a learned prior that models the visual
salience of these difference clusters. We observe
that the proposed model which uses alignment as a
discrete latent variable outperforms those that use
attention alone.

2 ‘Spot-the-diff’ Task and Dataset

We introduce ‘spot-the-diff’ dataset consisting of
13,192 image pairs along with corresponding hu-
man provided text annotations stating the differ-
ences between the two images. Our goal was
to create a dataset wherein there are meaning-

Total number of annotations 13, 192
Mean (std dev.) number

of sentences per annotation 1.86(1.01)

Vocabulary size 2404
Frequent word types
(>=5 occurrences) 1000

Word tokens that are
frequent word types 97%

Mean (std dev.) number
of words in sentence: 10.96(4.97)

% Long sentences
(> 20 words) 5%

Table 1: Summary statistics for spot-the-diff dataset

ful differences between two similar images. To
achieve this, we work with image frames extracted
from VIRAT surveillance video dataset (Oh et al.,
2011), which consists of 329 videos across 11
frames of reference totalling to about 8.5 hours of
videos.

2.1 Extracting Pairs of Image Frames

To construct our dataset, we first need to identify
image pairs such that some objects have changed
positions or have entered or left in the second
image compared to the first image. To achieve
this, we first extract a certain number of randomly
selected image frame pairs from a given video.
Thereafter, we compute the L2 distance between
the two images in each pair (under RGB repre-
sentation). Finally, we set a lower and a upper
threshold on the L2 distance values so calculated
to filter out the image pairs with potentially too
less or too many changes. These thresholds are se-
lected based on manual inspection. The resulting
image pairs are used for collecting the difference
descriptions.

2.2 Human Annotation

We crowd-sourced natural language differences
between images using Amazon Mechanical Turk.
We restrict to annotators from primarily Anglo-
phone countries: USA, Australia, United King-
dom, and Canada, as we are working with English
language annotations. We limit to those partici-
pants which have lifetime HIT > 80%. We award
5 cents per HIT (Human Intelligence Task) to par-
ticipants. We provide the annotators with an ex-
ample on how to work on the task. We request the
annotators to write complete English sentences,
with each sentence on a separate line. We collect
a total of 13192 annotations.
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Figure 2: AMT (Ama-
zon Mechanical Turk) HIT
(Human Intelligence Task)
setup for data collection.
We provide the annotators
with detailed instructions,
along with an example
showing how to perform
the task. We request the
annotators to write com-
plete English sentences,
with each sentence on a
separate line. We collect
a total of 13,192 annota-
tions.

Dataset BLEU-1/2/3/4 ROUGE-L
Spot-the-diff

(A = 3) 0.41/0.25/0.15/0.08 0.31

MS-COCO
(A = 3) 0.38/0.22/0.13/0.08 0.34

MS-COCO
(A = 5) 0.66/0.47/0.32/0.22 0.48

Table 2: Human agreement for our dataset: We report mea-
sures such as BLEU and ROUGE when ‘evaluating’ one
set of human generated captions against the remaining sets.
A = k represents k captions per data point, out of which 1
is chosen as hypothesis, while remaining k � 1 act as refer-
ences.

2.3 Dataset statistics
Table 1 shows some summary statistics about the
collected dataset. Since we deal with a focused
domain, we observe a small vocabulary size. On
an average there are 1.86 reported differences /
sentences per image pair. We also report inter-
annotator agreement as measured using text over-
lap of multiple annotations for the same image
pair. We collect three sets of annotations for a
small subset of the data (467 data points) for the
purpose of reporting inter-annotator agreements.
We thereby calculate BLEU and ROUGE-L scores
by treating one set of annotations as ‘hypothesis’
while remaining two sets act as ‘references’(Table
2). We repeat the same analysis for MS-COCO
dataset and report these measures for reference.
The BLEU and METEOR values for our dataset
seem reasonable and are comparable to the values
observed for MS-COCO dataset.

3 Modeling Difference Description
Generation

We propose a neural model for describing vi-
sual difference based on the input pair of images

that uses latent alignment variable to capture vi-
sual salience. Since most descriptions talk about
higher-level differences rather than individual pix-
els, we first perform a visual analysis that pre-
computes a set of difference clusters in order to
approximate object-level differences, as described
next. The output of this analysis is treated as input
to a neural encoder-decoder text generation model
that incorporates a latent alignment variable and is
trained on our new dataset.

3.1 Exposing Object-level Differences

We first analyze the input image pair for the pixel-
level differences by computing a pixel-difference
mask, followed by a local spatial analysis which
segments the difference mask into clusters that
approximate the set of object-level differences.
Thereafter, we extract image features using
convolutional neural models and use these as
input to a neural text generation model, described
later.

Pixel-level analysis: The lowest level of visual
difference is individual differences between cor-
responding pixels in the input pair. Instead of
requiring our description model to learn to com-
pute pixel-level differences as a first step, we pre-
compute and directly expose these to the model.
Let X = (I1, I2) represent the image pair in a
datum. For each such image pair in our dataset,
we obtain a corresponding pixel-difference mask
M . M is a binary-valued matrix of the same di-
mensions (length and width) as each of the images
in the corresponding image pair, wherein each el-
ement in the matrix is 1 (active) if the correspond-
ing pixel is different between the input pair, and
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Figure 3: Exposing Object-level Differences: Before train-
ing a model to describe visual difference, we first compute
pixel-level differences, as well as a segmentation of these
differences into clusters, as a proxy for exposing object-level
differences. The first row shows the original image pair. Bot-
tom left depicts the pixel-difference mask, which represents
extracted pixel-level differences. The segmentation of the
pixel-difference mask into clusters is shown in the bottom
right.

0 otherwise. To decide whether a pair of corre-
sponding pixels in the input image pair are suffi-
ciently different, we calculate the L2-distance be-
tween the vectors corresponding to each pixel’s
color value (three channels) and check whether
this difference is greater than a threshold � (set
based on manual inspections).

While the images are extracted from sup-
posedly still cameras, we do find some minor
shifts in the camera alignment, which is probably
due to occasional wind but may also be due to
manual human interventions. These shifts are
rare and small, and we align the images in the
pair by iterating over a small range of vertical and
horizontal shifts to find the shift with minimum
corresponding L2-distance between the two
images.

Object-level analysis: Most visual descriptions
refer to object-level differences rather than pixel-
level differences. Again, rather than requiring the
model to learn to group pixel differences into ob-
jects, we attempt to expose this to the model via
pre-processing. As a proxy for object-level differ-
ence, we segment the pixel-level differences in the
pixel-difference mask into clusters, and pass these
clusters as additional inputs to the model. Based
on manual inspection, we find that with the right
clustering technique, this process results in group-

Figure 4: The figure shows the pixel-difference mask for the
running example, along with the two original images, with
bounding boxes around clusters. Typically one or more dif-
ference clusters are used to frame one reported difference /
sentence, and it is rare for a difference cluster to participate
in more than one reported difference.

ings that roughly correspond to objects that have
moved, appeared, and disappeared between the in-
put pair. Here, we find that density based clus-
tering algorithms like DBScan (Ester et al., 1996)
work well in practice for this purpose. In our sce-
nario, the DBScan algorithm predicts clusters of
nearby active pixels, and marks outliers consist-
ing of small groups of isolated active pixels, based
on a calculation of local density. This also serves
as a method for pruning any noisy pixel differ-
ences which may have passed through the pixel-
level analysis.

As the output of DBScan, we obtain segmen-
tation of the pixel difference matrix M into dif-
ference clusters. Let the number of difference
clusters be represented by K (DBScan is a non-
parametric clustering method, and as such the
number of clusters K is different for each data
point.). Now, let’s define Ck as another binary-
valued mask matrix such that the elements in ma-
trix corresponding to the kth difference cluster are
1 (active) while rest of the elements are 0.

3.2 Text Generation Model
We observe from annotated data that each individ-
ual sentence in a full description typically refers
only to visual differences within a single cluster
(see Figure 4). Further, on average, there are more
clusters than there are sentences. While many
uninteresting and noisy pixel-level differences get
screened out in preprocessing, some uninteresting
clusters are still identified. These are unlikely to
be described by annotators because, even though
they correspond to legitimate visual differences,
they are not visually salient. Thus, we can roughly
model description generation as a cluster selection
process.

In our model, which is depicted in Figure 5, we
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X=(I1,I2) : Image pair in the datum
M : Pixel-difference mask is a binary-valued

matrix depicting pixel-level changes
F1, F2 : Image feature tensors for I1 and I2

respectively
K : Number of segments
Ck : Cluster mask corresponding to kth

difference cluster
T : Number of reported differences /

sentences
zi : Discrete alignment variable for the ith

sentence. zi 2 {1, 2, ..., K}

S1, .., ST : List of T Sentences

Table 3: Summary of notation used in description
of the method.

assume that each output description, which con-
sists of sentences S1, . . . , ST , is generated sen-
tence by sentence conditioned on the input image
pair X = (I1, I2). Further, we let each sentence
Si be associated with a latent alignment variable,
zi 2 {1, . . . , K}, that chooses a cluster to focus
on (Vinyals et al., 2015a). The choice of zi is itself
conditioned on the input image pair, and parame-
terized in a way that lets the model learn which
types of clusters are visually salient and therefore
likely to be described as sentences. Together, the
probability of a description given an image pair is
given by:

P (S1, .., ST |X)

=
X

z1,..,zT

TY

i=1

P (Si|zi, X; ✓))| {z }
decoder

P (zi|X; w)| {z }
alignment prior

(1)

The various components of this equation are de-
scribed in detail in the next few sections. Here,
we briefly summarize each. The term P (zi|X; w)
represents the prior over the latent variable zi and
is parameterized in a way that lets the model learn
which types of clusters are visually salient. The
term P (Si|zi, X; ✓) represents the likelihood of
sentence Si given the input image pair and align-
ment zi. We employ masking and attention mech-
anisms to encourage this decoder to focus on the
cluster chosen by zi. Each of these components
conditions on visual features produced by a pre-
trained image encoder.

The alignment variable zi for each sentence
is chosen independently, and thus our model is
similar to IBM Model 1 (Brown et al., 1993) in
terms of its factorization structure. This will allow
tractable learning and inference as described in

Section 3.3. We refer to our approach as DDLA
(Difference Description with Latent Alignment).

Alignment prior: We define a learnable prior
over alignment variable zi. In particular, we let
the multinomial distribution on zi be parameter-
ized in a log-linear fashion using feature function
g(zi). Specifically, we consider the following
four features: the length, width, and area of the
smallest rectangular region enclosing cluster zi,
and the number of active elements in mask Czi .
Specifically, we let P (zi|X; w) / exp(wT g(zi)).

Visual encoder: We extract images features
using ResNet (He et al., 2016) pre-trained on
Imagenet data. Similar to prior work (Xu et al.,
2015), we extract features using a lower level
convolutional layer instead of fully connected
layer. In this way, we obtain image features of
dimensionality 14 ⇤ 14 ⇤ 2096, where the first
two dimensions correspond to a grid of coarse,
spatially localized, feature vectors. Let F1 and F2

represent the extracted feature tensors for I1 and
I2 respectively.

Sentence decoder: We use an LSTM decoder
(Hochreiter and Schmidhuber, 1997) to generate
the sequence of words in each output sentence,
conditioned on the image pair and latent align-
ments. We use a matrix transformation of the
extracted image features to initialize the hidden
state of the LSTM decoder for each sentence, in-
dependent of the setting of zi. Additionally, we
use an attention mechanism over the image fea-
tures at every decoding step, similar to the pre-
vious work (Xu et al., 2015). However, instead
of considering attention over the entire image, we
restrict attention over image features to the clus-
ter mask determined by the alignment variable,
Czi . Specifically, we project binary mask Czi

from the input image dimensionality (224*224) to
the dimensionality of the visual features (14*14).
To achieve this, we use pyramid reduce down-
sampling on a smoothed version of cluster mask
Czi . The resulting projection roughly corresponds
to the subset of visual features with the cluster
region in their receptive field. This projection is
multiplied to attention weights.
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Figure 5: Model architecture for generating difference descriptions. We incorporate a discrete latent variable z which selects
one of the clusters as a proxy for object-level focus. Conditioned on the cluster and visual features in the corresponding region,
the model generates a sentence using an LSTM decoder. During training, each sentence in the full description receives its own
latent alignment variable, z.

3.3 Learning and Decoding

Learning in our model is accomplished by
stochastic gradient ascent on the marginal likeli-
hood of each description with alignment variables
marginalized out. Since alignment variables are
independent of one another, we can marginalize
over each zi separately. This means running back-
propagation through the decoder K times for each
sentence, where K is the number of clusters. In
practice K is relatively small and this direct ap-
proach to training is feasible. Following equation
1, we train both the generation and prior in an end-
to-end fashion.

For decoding, we consider the following
two problem settings. In the first setting, we
consider the task of producing a single sentence
in isolation. We evaluate in this setting by treating
the sentences in the ground truth description as
multiple reference captions. This setting is similar
to the typical image captioning setting. In the sec-
ond setting, we consider the full multi-sentence
generation task where the system is required to
produce a full description consisting of multiple
sentences describing all differences in the input.
Here, the generated multi-sentence text is directly
evaluated against the multi-sentence annotation in
the crowd-soured data.

Single-sentence decoding: For single sentence
generation, we first select the value of zi which
maximizes the prior P (zi|X; w). Thereafter,
we simply use greedy decoding to generate a
sentence conditioned on the chosen zi and the
input image pair.

Multi-sentence decoding: Here, we first select a
set of clusters to include in the output description,
and then generate a single sentence for each clus-
ter using greedy decoding. Since typically there
are more clusters than sentences, we condition on
the ground truth number of sentences and choose
the corresponding number of clusters. We rank
clusters by decreasing likelihood under the align-
ment prior and then choose the top T .

4 Experiments

We split videos used to create the dataset into
train, test, and validation in the ratio 80:10:10.
This is done to ensure that all data points using
images from the same video are entirely in one
split. We report quantitative metrics like CIDEr
(Vedantam et al., 2015), BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014),
and ROUGE-L, as is often reported by works in
image captioning. We report these measures for
both sentence level setting and multi-sentence
generation settings. Thereafter, we also discuss
some qualitative examples. We implement our
models in PyTorch (Paszke et al., 2017). We use
mini-batches of size 8 and use Adam optimizer1.
We use CIDEr scores on validation set as a criteria
for early stopping.

Baseline models: We consider following base-
line models: CAPT model considers soft atten-
tion over the input pair of images (This atten-

1Our data set can be obtained through https://
github.com/harsh19/spot-the-diff
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Model Bleu 1/2/3/4 Meteor Cider Rouge-L Perplexity
NN 0.226 0.111 0.057 0.026 0.102 0.120 0.201 -

CAPT 0.304 0.194 0.126 0.073 0.105 0.263 0.256 16.78
CAPT-MASKED 0.301 0.200 0.131 0.078 0.108 0.285 0.271 15.12

DDLA-UNIFORM 0.285 0.175 0.108 0.064 0.106 0.250 0.247 9.96
DDLA 0.343 0.221 0.140 0.085 0.120 0.328 0.286 9.73

Table 4: Single sentence decoding: We report automatic evaluation scores for various models under single sentence genera-
tion setting. DDLA model fares better scores than various baseline methods for all the considered measures. Both the DDLA
models get much better perplexities than baseline methods.

Model Bleu 1/2/3/4 Meteor Cider Rouge-L LenRatio
NN-MULTI 0.223 0.109 0.056 0.026 0.087 0.105 0.181 1.035

CAPT-MULTI 0.262 0.146 0.081 0.045 0.094 0.235 0.174 1.042
DDLA-UNIFORM 0.243 0.143 0.085 0.051 0.094 0.217 0.213 0.778

DDLA 0.289 0.173 0.103 0.062 0.108 0.297 0.260 0.811

Table 5: Multi-sentence decoding We report automatic evaluation scores for various models under multi-sentence generation
setting. DDLA model achieves better scores compared to the baseline methods. Note that these scores are not directly
comparable with single sentence generation setting. LenRatio is the ratio of the average number of tokens in the prediction to
the average number of tokens in the ground truth for the test set.

tion mechanism is similar to that used in prior
image captioning works (Xu et al., 2015), except
that we have two images instead of a single im-
age input). We do not perform any masking in
case of CAPT model, and simply ignore the clus-
ter information. The model is trained to gener-
ate a single sentence. Thus, this model is simi-
lar to a typical captioning model but with soft at-
tention over two images. CAPT-MASK model is
similar to CAPT model except that it incorporates
the masking mechanism defined earlier using the
union of all the cluster masks in the corresponding
image. We also consider a version of the CAPT
model wherein the target prediction is the whole
multi-sentence description – CAPT-MULTI – for
this setting, we simply concatenate the sentences
in any arbitrary order 2. Additionally, we consider
a nearest neighbor baseline (NN-MULTI), wherein
we simply use the annotation of the closest match-
ing training data point. We compute the close-
ness based on the extracted features of the im-
age pair, and leverage sklearns (Pedregosa et al.,
2011) Nearest-Neighbor module. For single sen-
tence setting (NN), we randomly pick one of the
sentences in the annotation.

We also consider a version of DDLA model
with fixed uniform prior, and refer to this model
as DDLA-UNIFORM . For single sentence
generation, we sample zj randomly from the
uniform distribution and then perform decoding.
For the multi-sentence generation setting, we

2Note that we do not provide CAPT-MULTI with ground
truth number of sentences

employ simple heuristics to order the clusters
at test time. One such heuristic we consider is
to order the clusters as per the decreasing area
of the bounding box (smallest rectangular area
enclosing the cluster).

Results: We report various automated metrics for
the different methods under single sentence gen-
eration and multi-sentence generation in Tables 4
and 5 respectively. For the single sentence gen-
eration setting, we observe that the DDLA model
outperforms various baselines as per most of the
scores on the test data split. DDLA-UNIFORM
method performs similar to the CAPT baseline
methods. For the multi-sentence generation, the
DDLA model again outperforms other methods.
This means that having a learned prior is useful in
our proposed method. Figure 6 shows an exam-
ple data point with predicted outputs by different
methods.

5 Discussion and Analysis
Qualitative Analysis of Outputs We perform a
qualitative analysis on the outputs to understand
the drawbacks in the current methods. One
apparent limitation of the current methods is
the failure to explicitly model the movement of
same object in the two images (Figure 7) – prior
works on object tracking can be useful here.
Sometimes the models get certain attributes of
the objects wrong. e.g. ‘blue car’ instead of ‘red
car’. Some output predictions state an object to
have ‘appeared’ instead of ‘disappeared’ and vice
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Figure 6: Predictions from various methods for two input image pairs.

Figure 7: Some drawbacks with the current models: One
apparent drawback with the single cluster selection is that
it misses opportunity to identify an object which has moved
significantly- considering it as appeared or disappeared as the
case may be. In this example, the blue truck moved, but the
DDLA model predicts that the truck is no longer there.

versa.

Do models learn alignment between sentence
and difference clusters? We performed a
study on 50 image pairs by having two humans
manually annotate gold alignments between
sentences and difference clusters. We then
computed alignment precision for the model’s
predicted alignments. To obtain model’s predicted
alignment for a given sentence Si, we compute
argmaxkP (zi = k|X)P (Si|zi = k, X). Our
proposed model achieved a precision of 54.6%,
an improvement over random chance at 27.4%.

Clustering for pre-processing Our generation
algorithm assumed one sentence uses only one
cluster and as such we tune the hyper-parameters
of clustering method to get large clusters so that
typically a cluster will entirely contain a reported
difference. On inspecting randomly selected data
points, we observe that in some cases too large
clusters are marked by the clustering procedure.
One way to mitigate this is to tune clustering
parameters to get smaller clusters and update the
generation part to use a subset of clusters. As
mentioned earlier, we consider clustering as a
means to achieve object level pre-processing. One

possible future direction is to leverage pre-trained
object detection models to detect cars, trucks,
people, etc. and make these predictions readily
available to the generation model.

Multi-sentence Training and Decoding As men-
tioned previously, we query the models for a de-
sired number of ’sentences’. In future works we
would like to relax this assumption and design
models which can predict the number of sentences
as well. Additionally, our proposed model doesn’t
not explicitly ensure consistency in the latent vari-
ables for different sentences of a given data point
i.e the model does not make explicit use of the fact
that sentences report non-overlapping visual dif-
ferences. Enforcing this knowledge while retain-
ing the feasibility of training is a potential future
direction of work.

6 Related Work

Modeling pragmatics: The dataset presents an
opportunity to test methods which can model
pragmatics and reason about semantic, spatial and
visual similarity to generate a textual description
of what has changed from one image to another.
Some prior work in this direction (Andreas and
Klein, 2016; Vedantam et al., 2017) contrastively
describe a target scene in presence of a distractor.
In another related task – referring expression
comprehension (Kazemzadeh et al., 2014; Mao
et al., 2016; Hu et al., 2017) – the model has
to identify which object in the image is being
referred to by the given sentence. However,
our proposed task comes with a pragmatic goal
related to summarization: the goal is to identify
and describe all the differences. Since the goal is
well defined, it may be used to constrain models
that attempt to learn how humans describe visual
difference.
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Natural language generation: Natural language
generation (NLG) has a rich history of previous
work, including, for example, recent works
on biography generation (Lebret et al., 2016),
weather report generation (Mei et al., 2016), and
recipe generation (Kiddon et al., 2016). Our task
can viewed as a potential benchmark for coherent
multi-sentence text generation since it involves
assembling multiple sentences to succinctly cover
a set of differences.

Visual grounding: Our dataset may also provide
a useful benchmark for training unsupervised and
semi-supervised models that learn to align vision
and language. Plummer et al. (2015) collected
annotation for phrase-region alignment in an
image captioning dataset, and follow up work
has attempted to predict these alignments (Wang
et al., 2016; Plummer et al., 2017; Rohrbach
et al., 2016). Our proposed dataset poses a related
alignment problem: attempting to align sentences
or phrases to visual differences. However, since
differences are contextual and depend on visual
comparison, our new task may represent a more
challenging scenario as modeling techniques
advance.

Image change detection: There are some works
on land use pattern change detection ((Radke
et al., 2005)). These works are related since
they try to screen out noise and mark the regions
of change between two images of same area
at different time stamps. Bruzzone and Prieto
(2000) propose an unsupervised change detection
algorithms aim to discriminate between changed
and unchanged pixels for multi-temporal remote
sensing images. Zanetti and Bruzzone (2016)
propose a method that allows unchanged class
to be more complex rather than having a single
unchanged class. Though image diff detection is
part of our pipeline, our end task is to generate
natural language descriptors. Moreover, we
observe that simple clustering seems to work well
for our dataset.

Other relevant works: Maji (2012) aim to con-
struct a lexicon of parts and attributes by for-
mulating an annotation task where annotators are
asked to describe differences between two im-
ages. Some other related works model phrases

describing change in color (Winn and Muresan,
2018), move-by-move game commentary for de-
scribing change in game state (Jhamtani et al.,
2018), and code commit message summarizing
changes in code-base from one commit to another
(Jiang et al., 2017). There exist some prior works
on fine grained image classification and caption-
ing (Wah et al., 2014; Nilsback and Zisserman,
2006; Khosla et al., 2011). The premise of such
works is that it is difficult for machine to find dis-
criminative features between similar objects e.g.
birds of different species. Such works are relevant
for us as the type of data we deal with are usually
of same object or scene taken at a different time or
conditions.

7 Conclusion

In this paper, we proposed the new task of describ-
ing differences between pairs of similar images
and introduced a corresponding dataset. Com-
pared to many prior image captioning datasets,
text descriptions in the ‘Spot-the-diff’ dataset are
often multi-sentence, consisting of all the differ-
ences in two similar images in most of the cases.
We performed exploratory analysis of the dataset
and highlighted potential research challenges. We
discuss how our ’Spot-the-diff’ dataset is use-
ful for tasks such as language vision alignment,
referring expression comprehension, and multi-
sentence generation. We performed pixel and ob-
ject level preprocessing on the images to identify
clusters of differing pixels. We observe that the
proposed model which aligns clusters of differing
pixels to output sentences performs better than the
models which use attention alone. We also discuss
some limitations of current methods and scope for
future directions.
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Abstract

Despite continuously improving performance,
contemporary image captioning models are
prone to “hallucinating” objects that are not
actually in a scene. One problem is that stan-
dard metrics only measure similarity to ground
truth captions and may not fully capture im-
age relevance. In this work, we propose a
new image relevance metric to evaluate current
models with veridical visual labels and assess
their rate of object hallucination. We analyze
how captioning model architectures and learn-
ing objectives contribute to object hallucina-
tion, explore when hallucination is likely due
to image misclassification or language priors,
and assess how well current sentence metrics
capture object hallucination. We investigate
these questions on the standard image caption-
ing benchmark, MSCOCO, using a diverse set
of models. Our analysis yields several inter-
esting findings, including that models which
score best on standard sentence metrics do not
always have lower hallucination and that mod-
els which hallucinate more tend to make errors
driven by language priors.

1 Introduction

Image captioning performance has dramatically
improved over the past decade. Despite such
impressive results, it is unclear to what extent
captioning models actually rely on image con-
tent: as we show, existing metrics fall short of
fully capturing the captions’ relevance to the im-
age. In Figure 1 we show an example where a
competitive captioning model, Neural Baby Talk
(NBT) (Lu et al., 2018), incorrectly generates the
object “bench.” We refer to this issue as object
hallucination.

While missing salient objects is also a failure
mode, captions are summaries and thus generally

* Denotes equal contribution.

NBT: A woman talking on a cell phone while sitting on a bench.
CIDEr: 0.87, METEOR: 0.23, SPICE: 0.22, CHs: 1.00, CHi: 0.33

TopDown: A woman is talking on a cell phone.
CIDEr: 0.54, METEOR: 0.26, SPICE: 0.13, CHs: 0.00, CHi: 0.00

Figure 1: Image captioning models often “hallucinate”
objects that may appear in a given context, like e.g. a
bench here. Moreover, the sentence metrics do not al-
ways appropriately penalize such hallucination. Our
proposed metrics (CHAIRs and CHAIRi) reflect hallu-
cination. For CHAIR lower is better.

not expected to describe all objects in the scene.
On the other hand, describing objects that are not
present in the image has been shown to be less
preferable to humans. For example, the LSMDC
challenge (Rohrbach et al., 2017a) documents that
correctness is more important to human judges
than specificity. In another study, (MacLeod et al.,
2017) analyzed how visually impaired people re-
act to automatic image captions. They found that
people vary in their preference of either coverage
or correctness. For many visually impaired who
value correctness over coverage, hallucination is
an obvious concern.

Besides being poorly received by humans, ob-
ject hallucination reveals an internal issue of a cap-
tioning model, such as not learning a very good
representation of the visual scene or overfitting to
its loss function.

In this paper we assess the phenomenon of
object hallucination in contemporary captioning
models, and consider several key questions. The
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first question we aim to answer is: Which mod-
els are more prone to hallucination? We analyze
this question on a diverse set of captioning models,
spanning different architectures and learning ob-
jectives. To measure object hallucination, we pro-
pose a new metric, CHAIR (Caption Hallucination
Assessment with Image Relevance), which cap-
tures image relevance of the generated captions.
Specifically, we consider both ground truth object
annotations (MSCOCO Object segmentation (Lin
et al., 2014)) and ground truth sentence annota-
tions (MSCOCO Captions (Chen et al., 2015)). In-
terestingly, we find that models which score best
on standard sentence metrics do not always hallu-
cinate less.

The second question we raise is: What are the
likely causes of hallucination? While hallucina-
tion may occur due to a number of reasons, we
believe the top factors include visual misclassifi-
cation and over-reliance on language priors. The
latter may result in memorizing which words “go
together” regardless of image content, which may
lead to poor generalization, once the test distri-
bution is changed. We propose image and lan-
guage model consistency scores to investigate this
issue, and find that models which hallucinate more
tend to make mistakes consistent with a language
model.

Finally, we ask: How well do the standard
metrics capture hallucination? It is a common
practice to rely on automatic sentence metrics,
e.g. CIDEr (Vedantam et al., 2015), to evaluate
captioning performance during development, and
few employ human evaluation to measure the fi-
nal performance of their models. As we largely
rely on these metrics, it is important to under-
stand how well they capture the hallucination phe-
nomenon. In Figure 1 we show how two sen-
tences, from NBT with hallucination and from
TopDown model (Anderson et al., 2018) – with-
out, are scored by the standard metrics. As we
see, hallucination is not always appropriately pe-
nalized. We find that by using additional ground
truth data about the image in the form of object la-
bels, our metric CHAIR allows us to catch discrep-
ancies that the standard captioning metrics cannot
fully capture. We then investigate ways to assess
object hallucination risk with the standard metrics.
Finally, we show that CHAIR is complementary to
the standard metrics in terms of capturing human
preference.

2 Caption Hallucination Assessment

We first introduce our image relevance metric,
CHAIR, which assesses captions w.r.t. objects that
are actually in an image. It is used as a main tool
in our evaluation. Next we discuss the notions of
image and language model consistency, which we
use to reason about the causes of hallucination.

2.1 The CHAIR Metric
To measure object hallucination, we propose the
CHAIR (Caption Hallucination Assessment with
Image Relevance) metric, which calculates what
proportion of words generated are actually in the
image according to the ground truth sentences and
object segmentations. This metric has two vari-
ants: per-instance, or what fraction of object in-
stances are hallucinated (denoted as CHAIRi), and
per-sentence, or what fraction of sentences include
a hallucinated object (denoted as CHAIRs):

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

CHAIRs =
|{sentences with hallucinated object}|

|{ all sentences}|

For easier analysis, we restrict our study to
the 80 MSCOCO objects which appear in the
MSCOCO segmentation challenge. To determine
whether a generated sentence contains halluci-
nated objects, we first tokenize each sentence
and then singularize each word. We then use
a list of synonyms for MSCOCO objects (based
on the list from Lu et al. (2018)) to map words
(e.g., “player”) to MSCOCO objects (e.g., “per-
son”). Additionally, for sentences which in-
clude two word compounds (e.g., “hot dog”) we
take care that other MSCOCO objects (in this
case “dog”) are not incorrectly assigned to the
list of MSCOCO objects in the sentence. For
each ground truth sentence, we determine a list
of MSCOCO objects in the same way. The
MSCOCO segmentation annotations are used by
simply relying on the provided object labels.

We find that considering both sources of an-
notation is important. For example, MSCOCO
contains an object “dining table” annotated with
segmentation maps. However, humans refer to
many different kinds of objects as “table” (e.g.,
“coffee table” or “side table”), though these ob-
jects are not annotated as they are not specifically
“dining table”. By using sentence annotations to
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scrape ground truth objects, we account for vari-
ation in how human annotators refer to different
objects. Inversely, we find that frequently humans
will not mention all objects in a scene. Qualita-
tively, we observe that both annotations are impor-
tant to capture hallucination. Empirically, we ver-
ify that using only segmentation labels or only ref-
erence captions leads to higher hallucination (and
practically incorrect) rates.

2.2 Image Consistency

We define a notion of image consistency, or how
consistent errors from the captioning model are
with a model which predicts objects based on an
image alone. To measure image consistency for
a particular generated word, we train an image
model and record P (w|I) or the probability of pre-
dicting the word given only the image. To score
the image consistency of a caption we use the av-
erage of P (w|I) for all MSCOCO objects, where
higher values mean that errors are more consis-
tent with the image model. Our image model is a
multi-label classification model with labels corre-
sponding to MSCOCO objects (labels determined
the same way as is done for CHAIR) which shares
the visual features with the caption models.

2.3 Language Consistency

We also introduce a notion of language consis-
tency, i.e. how consistent errors from the cap-
tioning model are with a model which predicts
words based only on previously generated words.
We train an LSTM (Hochreiter and Schmidhu-
ber, 1997) based language model which pre-
dicts a word wt given previous words w0:t�1

on MSCOCO data. We report language consis-
tency as 1/R(wt) where R(wt) is the rank of the
predicted word in the language model. Again,
for a caption we report average rank across all
MSCOCO objects in the sentence and higher lan-
guage consistency implies that errors are more
consistent with the language model.

We illustrate image and language consistency in
Figure 2, i.e. the hallucination error (“fork”) is
more consistent with the Language Model predic-
tions than with the Image Model predictions. We
use these consistency measures in Section 3.3 to
help us investigate the causes of hallucination.

Generated caption: A plate of food with broccoli and a fork.

Image Model predictions: 
bowl, broccoli, carrot, dining table

Language Model predictions for 
the last word: 
fork, spoon, bowl

Figure 2: Example of image and language consistency.
The hallucination error (“fork”) is more consistent with
the Language Model.

3 Evaluation

In this section we present the findings of our study,
where we aim to answer the questions posed in
Section 1: Which models are more prone to hal-
lucination? What are the likely causes of halluci-
nation? How well do the standard metrics capture
hallucination?

3.1 Baseline Captioning Models

We compare object hallucination across a wide
range of models. We define two axes for compari-
son: model architecture and learning objective.

Model architecture. Regarding model architec-
ture, we consider models both with and without
attention mechanisms. In this work, we use “at-
tention” to refer to any mechanism which learns
to focus on different image regions, whether im-
age regions be determined by a high level feature
map, or by object proposals from a trained de-
tector. All models are end-to-end trainable and
use a recurrent neural network (LSTM (Hochre-
iter and Schmidhuber, 1997) in our case) to output
text. For non-attention based methods we consider
the FC model from Rennie et al. (2017) which
incorporates visual information by initializing the
LSTM hidden state with high level image features.
We also consider LRCN (Donahue et al., 2015)
which considers visual information at each time
step, as opposed to just initializing the LSTM hid-
den state with extracted features.

For attention based models, we consider
Att2In (Rennie et al., 2017), which is similar
to the original attention based model proposed
by (Xu et al., 2015), except the image feature is
only input into the cell gate as this was shown
to lead to better performance. We then consider
the attention model proposed by (Anderson et al.,
2018) which proposes a specific “top-down at-
tention” LSTM as well as a “language” LSTM.
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Generally attention mechanisms operate over high
level convolutional layers. The attention mecha-
nism from (Anderson et al., 2018) can be used on
such feature maps, but Anderson et al. also con-
sider feature maps corresponding to object pro-
posals from a detection model. We consider both
models, denoted as TopDown (feature map ex-
tracted from high level convolutional layer) and
TopDown-BB (feature map extracted from object
proposals from a detection model). Finally, we
consider the recently proposed Neural Baby Talk
(NBT) model (Lu et al., 2018) which explicitly
uses object detections (as opposed to just bound-
ing boxes) for sentence generation.

Learning objective. All of the above models
are trained with the standard cross entropy (CE)
loss as well as the self-critical (SC) loss pro-
posed by Rennie et al. (2017) (with an exception
of NBT, where only the CE version is included).
The SC loss directly optimizes the CIDEr metric
with a reinforcement learning technique. We ad-
ditionally consider a model trained with a GAN
loss (Shetty et al., 2017) (denoted GAN), which
applies adversarial training to obtain more diverse
and “human-like” captions, and their respective
non-GAN baseline with the CE loss.

TopDown deconstruction. To better evaluate
how each component of a model might influ-
ence hallucination, we “deconstruct” the Top-
Down model by gradually removing components
until it is equivalent to the FC model. The interme-
diate networks are NoAttention, in which the atten-
tion mechanism is replaced by mean pooling, No-
Conv in which spatial feature maps are not input
into the network (the model is provided with fully
connected feature maps), SingleLayer in which
only one LSTM is included in the model, and fi-
nally, instead of inputting visual features at each
time step, visual features are used to initialize the
LSTM embedding as is done in the FC model. By
deconstructing the TopDown model in this way,
we ensure that model design choices and hyperpa-
rameters do not confound results.

Implementation details. All the baseline mod-
els employ features extracted from the fourth layer
of ResNet-101 (He et al., 2016), except for the
GAN model which employs ResNet-152. Mod-
els without attention traditionally use fully con-
nected layers as opposed to convolutional layers.
However, as ResNet-101 does not have intermedi-
ate fully connected layers, it is standard to average

pool convolutional activations and input these fea-
tures into non-attention based description models.
Note that this means the difference between the
NoAttention and NoConv model is that the NoAt-
tention model learns a visual embedding of spatial
feature maps as opposed to relying on pre-pooled
feature maps. All models except for TopDown-
BB, NBT, and GAN are implemented in the same
open source framework from Luo et al. (2018).1

Training/Test splits. We evaluate the captioning
models on two MSCOCO splits. First, we con-
sider the split from Karpathy et al. (Karpathy and
Fei-Fei, 2015), specifically in that case the mod-
els are trained on the respective Karpathy Training
set, tuned on Karpathy Validation set and the re-
ported numbers are on the Karpathy Test set. We
also consider the Robust split, introduced in (Lu
et al., 2018), which provides a compositional split
for MSCOCO. Specifically, it is ensured that the
object pairs present in the training, validation and
test captions do not overlap. In this case the cap-
tioning models are trained on the Robust Training
set, tuned on the Robust Validation set and the re-
ported numbers are on the Robust Test set.

3.2 Which Models Are More Prone To
Hallucination?

We first present how well competitive models
perform on our proposed CHAIR metric (Ta-
ble 1). We report CHAIR at sentence-level and
at instance-level (CHs and CHi in the table). In
general, we see that models which perform bet-
ter on standard evaluation metrics, perform bet-
ter on CHAIR, though this is not always true. In
particular, models which optimize for CIDEr fre-
quently hallucinate more. Out of all generated
captions on the Karpathy Test set, anywhere be-
tween 7.4% and 17.7% include a hallucinated ob-
ject. When shifting to more difficult training sce-
narios in which new combinations of objects are
seen at test time, hallucination consistently in-
creases (Table 2).

Karpathy Test set. Table 1 presents object hal-
lucination on the Karpathy Test set. All sentences
are generated using beam search and a beam size
of 5. We note a few important trends. First, mod-
els with attention tend to perform better on the
CHAIR metric than models without attention. As
we explore later, this is likely because they have

1https://github.com/ruotianluo/
self-critical.pytorch
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Cross Entropy Self Critical
Model Att. S M C CHs CHi S M C CHs CHi
LRCN* 17.0 23.9 90.8 17.7 12.6 16.9 23.5 93.0 17.7 12.9
FC* 17.9 24.9 95.8 15.4 10.9 18.4 25.0 103.9 14.4 10.1
Att2In* X 18.9 25.8 102.0 10.8 7.8 19.0 25.7 106.7 12.2 8.4
TopDown* X 19.9 26.7 107.6 8.4 6.0 20.4 27.0 117.2 13.6 8.8

TopDown-BB †
X 20.4 27.1 113.7 8.3 5.9 21.4 27.7 120.6 10.4 6.9

NBT †
X 19.4 26.2 105.1 7.4 5.4 - - - -

Cross Entropy GAN
GAN ‡ 18.7 25.7 100.4 10.6 7.6 16.6 22.7 79.3 8.2 6.5

Table 1: Hallucination analysis on the Karpathy Test set: Spice (S), CIDEr (C) and METEOR (M) scores across different image
captioning models as well as CHAIRs (sentence level, CHs) and CHAIRi (instance level, CHi). All models are generated with
beam search (beam size=5). * are trained/evaluated within the same implementation (Luo et al., 2018), † are trained/evaluated
with implementation publicly released with corresponding papers, and ‡ sentences obtained directly from the author. For
discussion see Section 3.2.

a better understanding of the image. In particular,
methods that incorporate bounding box attention
(as opposed to relying on coarse feature maps),
consistently have lower hallucination as measured
by our CHAIR metric. Note that the NBT model
does not perform as well on standard captioning
metrics as the TopDown-BB model but has lower
hallucination. This is perhaps because bounding
box proposals come from the MSCOCO detec-
tion task and are thus “in-domain” as opposed to
the TopDown-BB model which relies on proposals
learned from the Visual Genome (Krishna et al.,
2017) dataset. Second, frequently training mod-
els with the self-critical loss actually increases the
amount of hallucination. One hypothesis is that
CIDEr does not penalize object hallucination suf-
ficiently, leading to both increased CIDEr and in-
creased hallucination. Finally, the LRCN model
has a higher hallucination rate than the FC model,
indicating that inputting the visual features only at
the first step, instead of at every step, leads to more
image relevant captions.

We also consider a GAN based model (Shetty
et al., 2017) in our analysis. We include a base-
line model (trained with CE) as well as a model
trained with the GAN loss.2 Unlike other mod-
els, the GAN model uses a stronger visual network
(ResNet-152) which could explain the lower hal-
lucination rate for both the baseline and the GAN
model. Interestingly, when comparing the baseline
and the GAN model (both trained with ResNet-
152), standard metrics decrease substantially, even
though human evaluations from (Shetty et al.,
2017) demonstrate that sentences are of compa-
rable quality. On the other hand, hallucination

2Sentences were procured directly from the authors.

Att S M C CHs CHi

FC* 15.5 22.7 76.2 21.3 15.3
Att2In* X 16.9 24.0 85.8 14.1 10.1
TopDown* X 17.7 24.7 89.8 11.3 7.9
NBT †

X 18.1 24.8 94.5 6.8 4.6

Table 2: Hallucination Analysis on the Robust Test set:
Spice (S), CIDEr (C) and METEOR (M) scores across dif-
ferent image captioning models as well as CHAIRs (sen-
tence level, CHs) and CHAIRi (instance level, CHi). * are
trained/evaluated within the same implementation (Luo et al.,
2018), † are trained/evaluated with implementation publicly
released with corresponding papers. All models trained with
cross-entropy loss. See Section 3.2.

decreases, implying that the GAN loss actually
helps decrease hallucination. Unlike the self crit-
ical loss, the GAN loss encourages sentences to
be human-like as opposed to optimizing a metric.
Human-like sentences are not likely to hallucinate
objects, and a hallucinated object is likely a strong
signal to the discriminator that a sentence is gen-
erated, and is not from a human.

We also assess the effect of beam size on
CHAIR. We find that generally beam search de-
creases hallucination. We use beam size of 5, and
for all models trained with cross entropy, it out-
performs lower beam sizes on CHAIR. However,
when training models with the self-critical loss,
beam size sometimes leads to worse performance
on CHAIR. For example, on the Att2In model
trained with SC loss, a beam size of 5 leads to 12.8
on CHAIRs and 8.7 on CHAIRi, while a beam size
of 1 leads to 10.8 on CHAIRs and 8.1 on CHAIRi.

Robust Test set. Next we review the hallucina-
tion behavior on the Robust Test set (Table 2). For
almost all models the hallucination increases on
the Robust split (e.g. for TopDown from 8.4% to
11.4% of sentences), indicating that the issue of
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TopDown: A pile of luggage sitting on top of a table.
NBT: Several pieces of luggage sitting on a table.

TopDown: A group of people sitting around a 
table with laptops.
NBT: A group of people sitting around a table 
with laptop.

TopDown:  A couple of cats laying on top of a bed.
NBT: A couple of cats laying on top of a bed.

TopDown: A kitchen with a stove and a sink.
NBT: A kitchen with a stove and a sink.

TopDown: Aa man and a woman are playing 
with a frisbee.
NBT: A man riding a skateboard down a street.

TopDown:  A cat sitting on top of a laptop 
computer.
NBT: A cat sitting on a table next to a computer.

TopDown: A brown dog sitting on top of a chair.
NBT: A brown and white dog sitting under an 
umbrella.

TopDown: A man standing on a beach holding a 
surfboard.
NBT: A man standing on top of a sandy beach.

Figure 3: Examples of object hallucination from two state-of-the-art captioning models, TopDown and NBT, see Section 3.2.

hallucination is more critical in scenarios where
test examples can not be assumed to have the same
distribution as train examples. We again note that
attention is helpful for decreasing hallucination.
We note that the NBT model actually has lower
hallucination scores on the robust split. This is
in part because when generating sentences we use
the detector outputs provided by Lu et al. (2018).
Separate detectors on the Karpathy test and robust
split are not available and the detector has access
to images in the robust split during training. Con-
sequently, the comparison between NBT and other
models is not completely fair, but we include the
number for completeness.

In addition to the Robust Test set, we also con-
sider a set of MSCOCO in which certain ob-
jects are held out, which we call the Novel Ob-
ject split (Hendricks et al., 2016). We train on the
training set outlined in (Hendricks et al., 2016) and
test on the Karpathy test split, which includes ob-
jects unseen during training. Similarly to the Ro-
bust Test set, we see hallucination increase sub-
stantially on this split. For example, for the Top-
Down model hallucination increases from 8.4% to
12.1% for CHAIRs and 6.0% to 9.1% for CHAIRi.

We find no obvious correlation between the av-
erage length of the generated captions and the hal-
lucination rate. Moreover, vocabulary size does
not correlate with hallucination either, i.e. mod-
els with more diverse descriptions may actually
hallucinate less. We notice that hallucinated ob-
jects tend to be mentioned towards the end of the
sentence (on average at position 6, with average

sentence length 9), suggesting that some of the
preceding words may have triggered hallucination.
We investigate this below.

Which objects are hallucinated and in what
context? Here we analyze which MSCOCO ob-
jects tend to be hallucinated more often and what
are the common preceding words and image con-
text. Across all models the super-category Fur-
niture is hallucinated most often, accounting for
20 � 50% of all hallucinated objects. Other com-
mon super-categories are Outdoor objects, Sports
and Kitchenware. On the Robust Test set, Ani-
mals are often hallucinated. The dining table is
the most frequently hallucinated object across all
models (with an exception of GAN, where person
is the most hallucinated object). We find that often
words like “sitting” and “top” precede the “din-
ing table” hallucination, implying the two com-
mon scenarios: a person “sitting at the table” and
an object “sitting on top of the table” (Figure 3,
row 1, examples 1, 2). Similar observations can
be made for other objects, e.g. word “kitchen” of-
ten precedes “sink” hallucination (Figure 3, row
1, example 3) and “laying” precedes “bed” (Fig-
ure 3, row 1, example 4). At the same time, if we
look at which objects are actually present in the
image (based on MSCOCO object annotations),
we can similarly identify that presence of a “cat”
co-occurs with hallucinating a “laptop” (Figure 3,
row 2, example 1), a “dog” – with a “chair” (Fig-
ure 3, row 2, example 2) etc. In most cases we
observe that the hallucinated objects appear in the
relevant scenes (e.g. “surfboard” on a beach), but
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Figure 4: Image and Language model consistency (IM, LM) and CHAIRi (instance-level, CHi) on deconstructed TopDown
models. Images with less hallucination tend to make errors consistent with the image model, whereas models with more
hallucination tend to make errors consistent with the language model, see Section 3.3.

there are cases where objects are hallucinated out
of context (e.g. “bed” in the bathroom, Figure 3,
row 1, example 4).

3.3 What Are The Likely Causes Of
Hallucination?

In this section we investigate the likely causes of
object hallucination. We have earlier described
how we deconstruct the TopDown model to en-
able a controlled experimental setup. We rely on
the deconstructed TopDown models to analyze the
impact of model components on hallucination.

First, we summarize the hallucination analysis
on the deconstructed TopDown models (Table 3).
Interestingly, the NoAttention model does not do
substantially worse than the full model (w.r.t. sen-
tence metrics and CHAIR). However, removing
Conv input (NoConv model) and relying only on
FC features, decreases the performance dramati-
cally. This suggests that much of the gain in at-
tention based models is primarily due to access to
feature maps with spatial locality, not the actual
attention mechanism. Also, similar to LRCN vs.
FC in Table 1, initializing the LSTM hidden state
with image features, as opposed to inputting image
features at each time step, leads to lower halluci-
nation (Single Layer vs. FC). This is somewhat
surprising, as a model which has access to image
information at each time step should be less likely
to “forget” image content and hallucinate objects.
However, it is possible that models which include
image inputs at each time step with no access to
spatial features overfit to the visual features.

Now we investigate what causes hallucination
using the deconstructed TopDown models and
the image consistency and language consistency
scores, introduced in Sections 2.2 and 2.3 which
capture how consistent the hallucinations errors
are with image- / language-only models.

Karpathy Split METEOR CIDEr SPICE CHs CHi

TD 26.10 103.40 19.50 10.80 7.40
No Attention 25.60 99.70 18.80 14.20 9.40
No Conv 22.90 81.30 15.70 25.70 17.70
Single Layer 22.70 80.20 15.50 25.60 18.00
FC 23.30 85.10 16.40 23.60 15.70

Table 3: Hallucination analysis on deconstructed TopDown
models with sentence metrics, CHAIRs (sentence level, CHs)
and CHAIRi (instance level, CHi). See Section 3.3.

Figure 4 shows the CHAIR metric, image con-
sistency and language consistency for the decon-
structed TopDown models on the Karpathy Test
set (left) and the Robust Test set (right). We note
that models with less hallucination tend to make
errors consistent with the image model, whereas
models with more hallucination tend to make er-
rors consistent with the language model. This im-
plies that models with less hallucination are bet-
ter at integrating knowledge from an image into
the sentence generation process. When looking
at the Robust Test set, Figure 4 (right), which is
more challenging, as we have shown earlier, we
see that image consistency decreases when com-
paring to the same models on the Karpathy split,
whereas language consistency is similar across all
models trained on the Robust split. This is perhaps
because the Robust split contains novel composi-
tions of objects at test time, and all of the models
are heavily biased by language.

Finally, we measure image and language con-
sistency during training for the FC model and note
that at the beginning of training errors are more
consistent with the language model, whereas to-
wards the end of training, errors are more con-
sistent with the image model. This suggests that
models first learn to produce fluent language be-
fore learning to incorporate visual information.
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TD: A cat is sitting on a 
bed in a room.
S: 12.1  M: 23.8   C: 69.7
TD Restrict: A bed with a 
blanket and a pillow on it. 
S: 23.5  M: 25.4   C: 52.5

TD: A cat laying on the ground 
with a frisbee.
S: 8.0   M: 13.1   C: 37.0
 TD Restrict: A black and white 
animal laying on the ground. 
S: 7.7   M: 15.9   C: 17.4

Figure 5: Examples of how TopDown (TD) sentences
change when we enforce that objects cannot be hallucinated:
SPICE (S), Meteor (M), CIDEr (C), see Section 3.4.

3.4 How Well Do The Standard Metrics
Capture Hallucination?

In this section we analyze how well SPICE (An-
derson et al., 2016), METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015)
capture hallucination. All three metrics do penal-
ize sentences for mentioning incorrect words, ei-
ther via an F score (METEOR and SPICE) or co-
sine distance (CIDEr). However, if a caption men-
tions enough words correctly, it can have a high
METEOR, SPICE, or CIDEr score while still hal-
lucinating specific objects.

Our first analysis tool is the TD-Restrict model.
This is a modification of the TopDown model,
where we enforce that MSCOCO objects which
are not present in an image are not generated in
the caption. We determine which words refer to
objects absent in an image following our approach
in Section 2.1. We then set the log probability for
such words to a very low value. We generate sen-
tences with the TopDown and TD-Restrict model
with beam search of size 1, meaning all words pro-
duced by both models are the same, until the Top-
Down model produces a hallucinated word.

We compare which scores are assigned to such
captions in Figure 5. TD-Restrict generates cap-
tions that do not contain hallucinated objects,
while TD hallucinates a “cat” in both cases. In
Figure 5 (left) we see that CIDEr scores the more
correct caption much lower. In Figure 5 (right),
the TopDown model incorrectly calls the animal
a “cat.” Interestingly, it then correctly identifies
the “frisbee,” which the TD-Restrict model fails to
mention, leading to lower SPICE and CIDEr.

In Table 4 we compute Pearson correlation co-
efficient between individual sentence scores and

CIDEr METEOR SPICE

FC 0.197 0.198 0.266
Att2In 0.177 0.178 0.246
TopDown 0.135 0.140 0.172

Table 4: Pearson correlation coefficients between 1-CHs and
CIDEr, METEOR, and SPICE scores, see Section 3.4.

Figure 6: Difference in percentage of sentences with no hal-
lucination for TopDown and FC models when SPICE scores
fall into specific ranges. For sentences with low SPICE
scores, the hallucination is generally larger for the FC model,
even though the SPICE scores are similar, see Section 3.4.

the absence of hallucination, i.e. 1�CHAIRs; we
find that SPICE consistently correlates higher with
1�CHAIRs. E.g., for the FC model the correlation
for SPICE is 0.27, while for METEOR and CIDEr
– around 0.2.

We further analyze the metrics in terms of their
predictiveness of hallucination risk. Predictive-
ness means that a certain score should imply a cer-
tain percentage of hallucination. Here we show
the results for SPICE and the captioning models
FC and TopDown. For each model and a score in-
terval (e.g. 10�20) we compute the percentage of
captions without hallucination (1�CHAIRs). We
plot the difference between the percentages from
both models (TopDown - FC) in Figure 6. Com-
paring the models, we note that even when scores
are similar (e.g., all sentences with SPICE score
in the range of 10 � 20), the TopDown model has
fewer sentences with hallucinated objects. We see
similar trends across other metrics. Consequently,
object hallucination can not be always predicted
based on the traditional sentence metrics.

Is CHAIR complementary to standard met-
rics? In order to measure usefulness of our pro-
posed metrics, we have conducted the following
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Metric Metric Metric
+(1-CHs) +(1-CHi)

METEOR 0.269 0.299 0.304
CIDEr 0.282 0.321 0.322
SPICE 0.248 0.277 0.281

Table 5: Pearson correlation coefficients between individ-
ual/combined metrics and human scores. See Section 3.4.

human evaluation (via the Amazon Mechanical
Turk). We have randomly selected 500 test images
and respective captions from 5 models: non-GAN
baseline, GAN, NBT, TopDown and TopDown -
Self Critical. The AMT workers were asked to
score the presented captions w.r.t. the given image
based on their preference. They could score each
caption from 5 (very good) to 1 (very bad). We did
not use ranking, i.e. different captions could get
the same score; each image was scored by three
annotators, and the average score is used as the fi-
nal human score. For each image we consider the
5 captions from all models and their correspond-
ing sentence scores (METEOR, CIDEr, SPICE).
We then compute Pearson correlation between the
human scores and sentence scores; we also con-
sider a simple combination of sentence metrics
and 1-CHAIRs or 1-CHAIRi by summation. The
final correlation is computed by averaging across
all 500 images. The results are presented in Ta-
ble 5. Our findings indicate that a simple combi-
nation of CHAIRs or CHAIRi with the sentence
metrics leads to an increased correlation with the
human scores, showing the usefulness and com-
plementarity of our proposed metrics.

Does hallucination impact generation of other
words? Hallucinating objects impacts sentence
quality not only because an object is predicted in-
correctly, but also because the hallucinated word
impacts generation of other words in the sen-
tence. Comparing the sentences generated by Top-
Down and TD-Restrict allows us to analyze this
phenomenon. We find that after the hallucinated
word is generated, the following words in the sen-
tence are different 47.3% of the time. This im-
plies that hallucination impacts sentence quality
beyond simply naming an incorrect object. We ob-
serve that one hallucination may lead to another,
e.g. hallucinating a “cat” leading to hallucinating
a “chair”, hallucinating a “dog” – to a “frisbee”.

4 Discussion

In this work we closely analyze hallucination in
object captioning models. Our work is similar to
other works which attempt to characterize flaws
of different evaluation metrics (Kilickaya et al.,
2016), though we focus specifically on halluci-
nation. Likewise, our work is related to other
work which aims to build better evaluation tools
((Vedantam et al., 2015), (Anderson et al., 2016),
(Cui et al., 2018)). However, we focus on carefully
quantifying and characterizing one important type
of error: object hallucination.

A significant number of objects are hallucinated
in current captioning models (between 5.5% and
13.1% of MSCOCO objects). Furthermore, hal-
lucination does not always agree with the output
of standard captioning metrics. For instance, the
popular self critical loss increases CIDEr score,
but also the amount of hallucination. Addition-
ally, we find that given two sentences with similar
CIDEr, SPICE, or METEOR scores from two dif-
ferent models, the number of hallucinated objects
might be quite different. This is especially appar-
ent when standard metrics assign a low score to
a generated sentence. Thus, for challenging cap-
tion tasks on which standard metrics are currently
poor (e.g., the LSMDC dataset (Rohrbach et al.,
2017b)), the CHAIR metric might be helpful to
tease apart the most favorable model. Our results
indicate that CHAIR complements the standard
sentence metrics in capturing human preference.

Additionally, attention lowers hallucination, but
it appears that much of the gain from attention
models is due to access to the underlying convo-
lutional features as opposed the attention mecha-
nism itself. Furthermore, we see that models with
stronger image consistency frequently hallucinate
fewer objects, suggesting that strong visual pro-
cessing is important for avoiding hallucination.

Based on our results, we argue that the de-
sign and training of captioning models should be
guided not only by cross-entropy loss or standard
sentence metrics, but also by image relevance. Our
CHAIR metric gives a way to evaluate the phe-
nomenon of hallucination, but other image rele-
vance metrics e.g. those that incorporate missed
salient objects, should also be investigated. We
believe that incorporating visual information in the
form of ground truth objects in a scene (as opposed
to only reference captions) helps us better under-
stand the performance of captioning models.
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Abstract 

Rapid growth of multi-modal documents 
on the Internet makes multi-modal 
summarization research necessary. Most 
previous research summarizes texts or 
images separately. Recent neural 
summarization research shows the 
strength of the Encoder-Decoder model in 
text summarization. This paper proposes 
an abstractive text-image summarization 
model using the attentional hierarchical 
Encoder-Decoder model to summarize a 
text document and its accompanying 
images simultaneously, and then to align 
the sentences and images in summaries. A 
multi-modal attentional mechanism is 
proposed to attend original sentences, 
images, and captions when decoding. The 
DailyMail dataset is extended by 
collecting images and captions from the 
Web.  Experiments show our model 
outperforms the neural abstractive and 
extractive text summarization methods 
that do not consider images. In addition, 
our model can generate informative 
summaries of images. 

1 Introduction 

Summarizing multi-modal documents to get 
multi-modal summaries is becoming an urgent 
need with rapid growth of multi-modal 
documents on the Internet. Text-Image 
summarization is to summarize a document with 
text and images to generate a summary with text 
and images. The summarization approach is 
different from pure text summarization. It is also 
different from image summarization which 
summarizes an image set to get a subset of 
images. 

An image worths thousands of words 
(Rossiter, et al., 2012). Image plays an important 
role in information transmission. Incorporating 
images into text to generate text-image 
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Figure 1: An example of multi-modal news taken 
from the DailyMail corpora. 

 

Figure 2: The manually generated text-image summary. 
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summaries can help people better understand, 
memorize, and express information. Most of 
recent research focuses on pure text 
summarization, or image summarization. Little 
has been done on text-image summarization. 

Figure 1 and Figure 2 show an example of text-
image summarization. Figure 1 is the original 
multi-modal news with text and images. The 
news has 17 sentences (with 322 words) and 4 
images each of which has a caption. Figure 2 is 
the manually generated multi-modal summary. In 
the summary, the news is distilled to 3 sentences 
(with 36 words) and 2 images, and each summary 
sentence is aligned with an image. 

To generate such a text-image summary, the 
following problems should be considered: How to 
generate the text part? How to measure the 
importance of images, and extract important 
images to form the image summary? How to align 
sentences with images? 

In this paper, we propose a neural text-image 
summarization model based on the attentional 
hierarchical Encoder-Decoder model to solve the 
above problems. The attentional Encoder-
Decoder model has been successfully used in 
sequence-to-sequence applications such as 
machine translation (Luong et al., 2015), text 
summarization (Cheng and Lapata, 2016; Tan et 
al., 2017), image captioning (Liu et al., 2017a), 
and machine reading comprehension (Cui et al., 
2016). 

At the encoding stage, we use the hierarchical 
bi-directional RNN to encode the sentences and 
the text document, use the RNN and the CNN to 
encode the image set. In the decoding stage, we 
combine text encoding and image encoding as the 
initial state, and use the attentional hierarchical 
decoder which attends original sentences, images 
and captions to generate the text summary. Each 
generated sentence is aligned with a sentence, an 
image, or a caption in the original document. 
Based on the alignment scores, images are 
selected and aligned with the generated sentences. 
In the inference stage, we adopt the multi-modal 
beam search algorithm which scores beams based 
on bigram overlaps of the generated sentences 
and the attended captions. 

The main contributions are as follows: 
1) We propose the text-image summarization 

task, and extend the standard DailyMail 
corpora by collecting images and captions 
of each news from the Web for the task. 

2) We propose an RNN model to encode the 
ordered image set of the multi-model 
document as one of the initial states (the 
other is the text encoding) of the decoder. 

3) We propose three multi-modal attentional 
mechanisms which attend the text and the 
images simultaneously when decoding. 

4) Experiments show that attending images 
when decoding can improve text 
summarization, and that our model can 
generate informative image summaries. 

2 Related Work  

Recent research on text summarization focuses on 
neural methods. Attentional Encoder-Decoder 
model is first proposed in (Bahdanau et al., 2014) 
and (Luond et al., 2015) to align the original text 
and the translated text in machine translation. The 
attention model is applied to sentence 
summarization by considering the neural 
language model and the attention model when 
generating next words (Rush et al., 2015). A 
selective Encoder-Decoder model that uses a 
selective gate network to control information 
from the encoder to the decoder for sentence 
summarization is proposed (Zhou et al., 2017).  

A neural document summarization model by 
extracting sentences and words is proposed 
(Cheng and Lapata, 2016). They use a CNN 
model to encode sentences, and then use a RNN 
model to encode documents. The model extracts 
sentences by computing the probability of 
sentences belonging to the summary based on an 
RNN model. The model extracts words from the 
original document based on an attentional 
decoder. An RNN-based extractive 
summarization named SummaRuNNer, treating 
summarization as a sentence classification 
problem is proposed (Nallapati et al., 2016).  A 
logistic classifier is then applied using features 
computed based on the RNN model. A 
hierarchical Encoder-Decoder model, conserving 
the hierarchical structure of documents is 
proposed (Li et al., 2015). A graph-based 
attentional Encoder-Decoder model using a 
PageRank algorithm to compute the attention is 
proposed (Tan et al., 2017). 

Image captioning generates a caption for an 
image. Text-image summarization is similar to 
image captioning in that both utilize image 
information to generate text. Images are encoded 
with CNN models such as VGGNet (Simonyan 

4047



 
 

and Zisserman, 2014), AlexNet (Krizhevsky et al., 
2012) and GoogleNet (Szegedy et al., 2014) by 
extracting the last full-connected layers. An 
attentional model is used in image captioning by 
splitting an image into multiple parts which is 
attended in the decoding process (Xu et al., 2015). 
Image tags was used as additional information, 
and semantic attention model which attends 
image tags when decoding was proposed (You et 
al., 2016). The attention-based alignment of 
image parts and text is studied (Liu et al., 2017a), 
and the results show that the alignments is in high 
accordance with manual alignments. An image 
to an ordered recognized object set is encoded, 
and the attentional decoder is applied to generate 
captions (Liu et al., 2017b). 

 Multi-modal summarization summarizes text, 
images, videos, and etc. It is an important branch 
of automatic summarization. Traditional multi-
modal summarization inputs multi-modal 
documents or pure text documents, and outputs 
multi-modal documents (Wu, 2011; Greenbacker, 
2011; Yan, 2012; Agrawal, 2011; Zhu, 2007; 
UzZaman, 2011). For example, Yan et al., (2012) 
generate multi-modal timeline summaries for 
news sets by constructing a bi-graph between text 
and images, and apply a heterogeneous 
reinforcement ranking algorithm. Strategies to 
summarizing texts with images and the notion of 
summarization of things are proposed in (Zhuge, 
2016). The deep learning related work (Wang et 
al. 2016) treats text summarization as a sentence 
recommendation task and applies matrix 
factorization algorithm. They first retrieve images 
from Yahoo!, use the CNN to extract image 
features as the additional information of 
sentences, use Rouge maximization as the 
training object function which are trained with 
SGD. In test time, sentences are extracted based 
on the model and images are retrieved from the 
Search Engine. 

3 Method  

Figure 3 shows the framework, a multi-modal 
attentional hierarchical encoder-decoder model. 
The hierarchical encoder-decoder is proposed in 
(Li et al., 2015) and extended by (Tan et al. , 
2017) for document summarization through 
bringing in the graph-based attentional model. 

Our model consists of three parts: a 
hierarchical RNN to encode the original sentences 

and the captions, a CNN+RNN encoder to encode 
the image set, and a multi-modal attentional 
hierarchical RNN decoder. 

The input of our model is a multi-modal 
document MD = {D, PicSet}, where D is the main 
text of the multi-modal document and PicSet is 
the image-caption set ordered by the occurring 
order of images in the document. 

3.1 Main Text Encoder 
The main text D consists of sentences, each of 
which consists of words. Let D=[s1, s2, …, s|d|], 
and ,1 ,2 ,[ ,  ,  ,  ]

ii i i i ss x x x   where xi,j is the word 

embedding of the jth word in the si. We use 
word2vec (Mikolov et al., 2013) to create word 
embeddings. GRU is used as the RNN cell (Cho 
et al., 2014). 

We use a hierarchical RNN encoder to encode 
the main text D to vector representation. The 
sentence encoder is adopted to encode sentences 
to vector representations. An <eos> token is 
appended to the end of each sentence. A bi-
directional RNN is used as the sentence encoder: 

, , 1 ,( , )s
i j i j i jh GRU h x

 
 (1) 

, , , 1( , )s
i j i j i jh GRU h x 

 
 (2) 

,1 , 1[ , ]sent
i iienc h h 
 

 (3) 

where encsent
i denotes the vector representation of 

si. It is the concatenation of ,1ih


 and , 1ih 


. 

We use encsent
i as inputs to the document 

encoder to encode the main text to vector 
representations. A bi-directional RNN is adopted 
as the document encoder: 

1( , )d sent
i i ih GRU h enc

 
 (4) 

1( , )d sent
i i ih GRU h enc

 
 (5) 

[ , ]i iih h h
 

 (6) 

1 1[ , ]doc
denc h h

 
 (7) 

where encdoc denotes the vector representation of 
the D, and hi is the concatenated hidden state of si. 

3.2 CaptionSet and ImageSet Encoder 

The ordered image-caption set PicSet consists of 
an ordered image set and an ordered caption set 
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which are ordered by the occurring order in the 
multi-modal document. The image occurring 
order makes sense because images are often put 
near the most related sentences, and the sentences 
have strict order in the document. 

We treat the ordered caption set as a document, 
and apply the sentence encoder and the document 
encoder to the caption document. Then, we get 
the hidden state hcap

i and the vector representation 
enccap of the caption document. 

We use the CNN model to extract the vector 
representation of each image, and then use the 
RNN model to encode the ordered image set to 
vector representation. The CNN model we 
adopted is 19-layer VGGNet (Simonyan and 
Zisserman, 2014). We drop the last dropout layer 
and keep the last full-connected layer as the 
image’s vector representation, the dimension of 
which is 4096.  

We then use a bi-directional RNN model to 
encode the ordered image set and the image 
features are used as inputs of the RNN model. 

1( , )
img imgimg fea

i i ih GRU h img
 

 (8) 

1( , )
img imgimg fea

i i ih GRU h img
 

 (9) 

[ , ]
img imgimg

i iih h h
 

 (10) 

1 1[ , ]
img imgimgenc h h 
 

 (11) 

where imgfea
i is the vector representation of imgi, 

encimg is the vector representation of the image 
set, and himg

i is the hidden state of imgi when 
encoding the image set. 

To our best knowledge, we are the first to adopt 
the RNN model to encode the image set. 

3.3 Decoder 
In the decoding state, we adopt the hierarchical 
RNN decoder to generate text summaries. 

_
0

_

_

tanh(

)

dec doc doc

dec img img

dec cap cap

h W enc
V enc
V enc

 

 

 

 (12) 

 _ 1
1 1, 1( , )dec sent

i i ih GRU h h    (13) 

_ 2 ( , )dec sent
i i ih GRU h c  (14) 

_
, , 1 , 1( , )dec word

i j i j i jh GRU h y   (15) 

max
,, max( )soft

i ji jy soft W h b  (16) 

 

Figure 3: The framework of our neural text-image summarization model.  
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Equation (12) to (16) are the equations of the 
hierarchical decoder which consists of a sentence 
decoder and a word decoder.  

Equation (12) computes the initial state 0h  for 
the sentence decoder by combining the decoding of 
the main text information and the decoding of the 
image information of the multi-modal document. 
To represent image information, we can use both of 
the image set decoding and the caption set 
decoding, or only use one of them, depending on 
the multi-modal attention mechanism introduced in 
the next subsection. 

The sentence decoder uses a two-level hidden 
output model (Luong et al., 2015) to generate the 
representation of the next sentence through 
equation (13) and equation (14). The two-level 
hidden output model consistently improves the 
summarization performance on different datasets 
(Chen et al., 2016). In equation (14), the two-level 
model computes ih  by capturing a direct 
interaction between  ih and ic .  ih  is computed by 
equation (13) using the preceding sentence decoder 
hidden state 1ih  and the word decoder hidden state 

1, 1ih    which is the last hidden state of the 
preceding word decoder. And ic  is the context of 
the sentence decoder computed based on the multi-
modal attention model. 

The word decoder uses the sentence 
representation generated by the sentence decoder as 
the initial state, and use the <sos> (start of sentence) 
token as the initial input. Equation (15) and 
equation (16) generate the next hidden state and the 
next word. The output of the word decoder in the 
first step is a switch sign which is either <neod> 
token or <eod> token. The token <neod> means 
“not end of document”, and the token <eod> means 
“end of document”. If the first output is <eod>, the 
whole decoding process is finished. If the first 
output is <neod>, the token is used as the next input 
of the word decoder. The word decoding process is 
finished when it generates the <eos> token. The last 
hidden state of the word decoder is treated as the 
vector representation of the generated sentence and 
is used as next input of the sentence decoder. 

3.4 Multi-Modal Attention 
We propose three multi-modal attention 
mechanisms to compute the sentence decoding 
context ic . 

Traditional attention mechanisms for text 
summarization computes the importance score of 
the sentence sj in the original document based on 
the relationship between the decoding hidden 
state  ih   and the original sentence encoding 
hidden state jh . We call the traditional attention 
model as Text Attention (attT for short), which is 
computed by equation (17), (18) and (19): 

 ( , ) tanh( )T T T T
i ij jatt h h v W h U h   (17) 





| |

1

exp( ( , ))
( , )

exp( ( , ))

T
i jT

i j D
T

i j
j

att h h
h h

att h h








 (18) 

 
| |

1
( ) ( , )

D
T T

i i j j
j

c h h h h


  (19) 

 where ( , )T
i jatt h h  is the attention (Banahama et 

al., 2014), ( , )T
i jh h  is the normalized attention, 

and ( )T
ic h  is the context. 

The problem is that the multi-modal document 
has images and captions besides the main text. 
Therefore, we propose three multi-modal attention 
mechanisms which take images and captions into 
consideration. 

Text-Caption Attention (attTC for short). This 
attention model uses captions to represent the image 
information. attTC computes the attention score of 
the caption capj based on the relationship between 
the caption encoding hidden state hcap

i  and the 
decoding hidden state  jh . 




 
| | | |

1 1

exp( ( , ))
( , )

exp( ( , )) exp( ( , ))
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i jTC
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TC TC cap

i ij j
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h h
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| | | |

1 1
( ) ( , ) ( , )

D PicSet
TC TC TC cap cap

i i ij j j j
j j

c h h h h h h h 
 

    (22) 

Text-Image Attention (attTI for short). This 
attention model only uses images to represent the 
image information neglecting the captions. attTI 
computes the importance score of the image imgj 
based on the relationship between the image 
encoding hidden state himg

i and the decoding 
hidden state  jh . 
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1 1
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   (24) 

Text-Image-Caption Attention (attTIC for 
short). This attention model uses both captions and 
images to represent the image information. attTIC 
computes the importance score of the caption capj 
and the importance score of the image imgj 
simultaneously, and then compute the context of the 
decoding hidden state  ih using equation (25). 

 

 

| |

1

| |

1

( ) ( , )
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D
TIC TIC

i i j j
j

PicSet
TIC cap cap TIC img img
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 (25) 

In the attention mechanisms, ( , )i jh h  is the 

normalized attention score of jh , ( , )cap
i jh h  is 

the normalized attention score of cap
jh  , 

( , )img
i jh h  is the normalized attention score of 

img
jh , and ( )ic h  is the context. 

The initial state of the decoder is computed by 
Equation (12) which can be adjusted according to 
different attention models. 

3.5 Model Training 

Since there are no existing manual text-image 
summaries, and most of the existing training and 
testing data have pure text summaries, we decide 
to use pure text summaries as training data to train 
our models. The sentence-image alignment 
relationships can be discovered through 
training the multi-modal attention models. 

The loss function L of our summarization 
model is the negative log likelihood of generating 
text summaries over the training multi-modal 
document set MDS. 

( , , )
log ( | , )

D PicSet Y MDS
L P Y D PicSet



   (26) 

where Y=[y1, y2, …, y|Y|] is the word sequences of 
the summary corresponding to the main text D and 
the ordered image set PicSet, including the tokens 
<eos>, <neod> and <eod>.  

| |

1 1
1

log ( | , ) log ( |{ ,..., }, ; )
Y

t t
t

P Y D PicSet P y y y c 


 (27) 

where 1 1log ( |{ ,..., }, ; )t tP y y y c  is modeled by 
the multi-modal encoder-decoder model.  

We use the Adam (Kingma and Ba, 2014) 
gradient-based optimization method to optimize the 
model parameters. 

3.6 Multi-Modal Beam Search Algorithm 
There are two major problems of the generation 
of summaries: one is the out-of-vocabulary 
problem, and the other is the low quality of the 
generated texts including information 
incorrectness and repetitions.  

For the OOV problem, we use the words in the 
attended sentences or captions in the original 
document to replace OOV tokens in the generated 
summary. Previous research uses the attended 
words to replace OOV tokens in the flatten 
encoder-decoder model which attends the words of 
the original word sequence (Jean, et al., 2015). Our 
model is hierarchical and multi-modal, and attends 
sentences, images, and captions when decoding. We 
use the following algorithm to find the replacement 
for the jth OOV in a generated sentence: 

Step 1: Order the original sentences and captions 
by the attending scores in descending order. 

Step 2: Return the jth OOV word in the ordered 
sentences and captions as the replacement. 

For the attTI mechanism that attends images 
neglecting captions, we use captions instead of the 
attended images in the algorithm. 

For the low-quality generated text problem, we 
adopt the hierarchical beam search algorithm (Tan 
el al., 2017). We extend the algorithm by adding 
caption-level and image-level beam search. The 
multi-modal hierarchical beam search algorithm 
comprises K-best word-level beam search and N-
best sentence-caption-level beam search. In 
particular, we use the corresponding captions 
instead of images in beam search algorithm for the 
attTI mechanism which attends images. 

1 * 1 *( ) ( ) ( ( , ) ( , ))t t t t tscore y p y ref Y y s ref Y s      (28) 
At the word-level search algorithm, we compute 

the score of generating word yt using equation (28) 
where ref is a function calculating the ratio of 
bigram overlap between two texts, s* is the attended 
sentence or caption, and γ is the weighting factor. 
The added term aims to increase the overlap of the 
generated summary and the original text. 

At the sentence level and the caption level, we 
set the sentence beam width as N, and keep N-best 
previously un-referred sentences or captions which 
have highest attending scores. For each sentence 
beam, we try M sentences or captions and keep the 
one achieving best word-level scores. 
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3.7 Image Selection and Alignment 

We rank the images, select several most important 
images as the image summary, and align each 
sentence with an image in the image summary. 
The score of images is computed by equation (29). 

| |

,
1

( )
TextSum

j i j
i

score img 


  (29) 

where αi,j is the attention score of the jth image when 
generating the ith sentence of the text summary, and 
|TextSum| is the number of summary sentences. 

The images are ranked by the scores in 
descending order, and the top K images are selected 
to form the image summary ImgSum. We align each 
sentence i in TextSum to the image j in ImgSum 
such that αi,j is the biggest. 

4 Experiments 

4.1 Data preparation 

We extend the standard DailyMail corpora 
through extracting the images and the captions 
from the html-formatted documents. We call the 
corpora as E-DailyMail. The standard DailyMail 
and CNN datasets are two widely used datasets 
for neural document summarization, which are 
originally built in (Hermann et al., 2015) by 
collecting human generated highlights and news 
stories from the news websites. We only extend 
the DailyMail dataset because it has more images 
and is easier to collect than the CNN dataset does. 
We find that the text documents provided by the 
original DailyMail corpora contain captions. This 
is due to that all related texts are extracted from 
the html-formatted news when the corpora are 
created. We keep the original text documents 
unchanged in E-DailyMail. The split and statistics 
of E-DailyMail are shown in Table 1. 

4.2 Implementation 
We preprocess the text of the E-DailyMail 
corpora by tokenizing the text and replacing the 
digits with the <NUM> token. The 40k most 
frequent words in the corpora are kept and other 
words are replaced with OOV. 

Our model is implemented by using Google’s 
open-source seq2seq-master project written with 
Tensorflow. We use one layer of the GRU cell. The 
dimension of the hidden state of the RNN decoder 
is 512. The dimension of the word embedding 
vector is 128. The dimension of the hidden state of 
the bi-directional RNN encoder is 256. We initialize 

the word embeddings with Google’s word2vec 
tools (Mikolov et al., 2013) trained in the whole 
text of DailyMail/CNN corpora. We extract the 
4096-dimension full-connected layer of 19-layer 
VGGNet (Simonyan and Zisserman, 2014) as the 
vector representation of images. We set the 
parameters of Adam to those provided in (Kingma 
and Ba, 2014). The batch size is set to 5. 
Convergence is reached within 800k training steps. 
It takes about one day for training 40k ~ 50k steps 
depending on the models on a GTX-1080 TI GPU 
card. The sentence beam width and the word beam 
width are set as 2 and 5 respectively. M is set as 3. 
The parameter γ is set as 3 or 300 tuned on the 
validation set. 

To train the multi-modal attention mechanism 
such as attTIC, we concatenate the matrix of text 
representations, image representations, and caption 
representations to one matrix M = [h1, h2, ... h|D|, 
hcap

1, hcap
2, …, hcap

|PicSet|, himg
1, himg

2, …, himg
|PicSet|]. 

The parameters of the attention mechanisms are 
trained simultaneously. This way the model training 
can converge faster. 

4.3 Evaluation of Text Summarization  
The widely used ROUGE (Lin, 2004) is adopted 
to evaluate text summaries.  

We compare four attention models. HNNattTC-
3, HNNattTIC-3, HNNattTI-3, and HNNattT-3 are 
our hierarchical RNN summarization models with 
the attTC, attIC, attTI, and attT attention 
mechanisms respectively, and 3 is the γ value. 
HNNattT is similar to the model introduced in (Tan 
et al., 2017) without the graph-based attention. We 
compare our models with HNNattT to show the 
influence of multi-modal attentions. The first 4 lines 
in Table 2 are the results with summary length of 75 
bytes. The results show that HNNattTI has 
considerable improvement over HNNattT. An 
interesting observation is that HNNattTC and 
HNNattTIC are not better than HNNattT. One of the 

Train Dev Test   
196557 12147 10396   

D.L. S.L. I.N Sent.L Cap.L 
26.0 3.84 5.42 26.86 24.75 

Table 1:  The split and statistics of the E-DailyMail 
corpora. D.L and S.L indicate the average number of 
sentences in the document and summary. I.N 
indicates the average number of images in the story. 
Sent.L and Cap.L indicates the average number of 
word in the sentence and the caption respectively. 
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reasons is that the text documents provided by the 
DailyMail corpora contain captions. Captions are 
already parts of the text documents. The other 
reason is that captions distract attentions and cannot 
attract sufficient attentions from the original 
sentences, which will be discussed in the next 
subsection. 

  We compare our methods with state-of-the-art 
neural summarization methods reported in recent 
papers on the DailyMail corpora. Extractive models 
include Lead which is a strong baseline using the 
leading 3 sentences as the summary, NN-SE 
(Cheng and Lapata, 2016), and SummaRuNNer-abs 
(Nallapati et al., 2017) which is trained on the 
abstractive summaries. Abstractive models include 
NN-ABS, NN-WE, LREG, though they are tested on 
500 samples of the test set. LREG is a feature-based 
method using linear regression. NN-ABS is a simple 
hierarchical extension of (Rush et al., 2015). NN-
WE is the abstractive model restricting the 
generation of words from the original document. 
The results are shown in the last 6 rows in Table 2. 
Our method HNNattTI outperforms the three 
extractive models and the three abstractive models.  

We compare our models under the full-length F1 
metric by setting the γ value as 300. According to 
(Tan et al., 2017), a large γ makes the generated 
summary has more overlaps with the attended 
texts, and thus partly overcome the repeated 
sentences problem in the generated summary. We 

do not incorporate the attention distraction 
mechanism (Chen et al., 2016) into our model, 
because we want to focus on our own model to see 
whether considering images improves text 
summarization. Results in Table 3 also show that 
HNNattTI performs better than HNNattT, 
HNNattTC, and HNNattTIC. 

To show the influence of our OOV replacement 
mechanism, we eliminate the mechanism from our 
models, and show the evaluation results in Table 4 
and Table 5. We can see from the two tables that the 
scores are lower than the corresponding scores in 
Table 2 and Table 3. Our OOV replacement 
mechanism improves the summarization models, 
though the mechanism is relatively simple. 

In short, combining and attending images in the 
neural summarization model improves document 
summarization. 

4.4 Evaluation of Image Summarization 
To evaluation the image summarization, the gold 
standard image summary is generated based on a 
greedy algorithm on the captions as follows: at 
each time i, choose imgk to maximize 
Rouge({cap1,…capi-1,capk}, Abs_Sum) ˗ 
Rouge({cap1,…capi-1},  Abs_Sum)) where 
Abs_Sum is the ground truth text summary and 

num HNNattTI HNNattTC HNNattTIC Random 
1 0.4978 0. 4137 0. 4362 0. 4721 
2 0.4783 0. 3998 0. 4230 0. 4517 

Table 6:  Image summarization using the recall metric 
for the 1-image or 2-images summary. γ is set as 300. 

Method Rouge-1 Rouge-2 Rouge-L 
HNNattTI-3-OOV 24.03 8.2 16.52 
HNNattTC-3-OOV 18.18 6.53 12.87 

HNNTattTIC-3-OOV 20.50 7.67 14.36 
HNNattT-3-OOV 21.60 7.82 15.05 

Table 4:  Comparison results using Rouge recall at 75 
bytes without OOV replacement. HNNattTI-3-OOV 
is the version of HNNattTI-3 without the OOV 
replacement mechanism. 

Method Rouge-1 Rouge-2 Rouge-L 
HNNattTI-300-OOV 32.03 11.52 22.67 
HNNattTC-300-OOV 26.13 9.87 19.03 
HNNattTIC-300-OOV 30.11 10.87 21.12 
HNNattT-300-OOV 30.74 11.21 22.28 

Table 5:  Comparison results using full-length F1 
metric without OOV replacement. HNNattTI-300-
OOV is the version of HNNattTI-300 without the 
OOV replacement mechanism. 

Method Rouge-1 Rouge-2 Rouge-L 
HNNattTI-300 32.64 12.02 23.88 
HNNattTC-300 26.75 10.12 19.42 
HNNattTIC-300 30.52 11.04 21.81 
HNNattT-300 31.34 11.81 22.93 

Table 3:  Comparison results on the DailyMail test 
set using full-length F1metric. 

Method Rouge-1 Rouge-2 Rouge-L 
HNNattTI-3 24.84 8.7 16.99 
HNNattTC-3 18.61 6.7 13.44 

HNNTattTIC-3 21.17 8.1 15.24 
HNNattT-3 22.09 7.9 15.97 

Lead 21.9 7.2 11.6 
NN-SE 22.7 8.5 12.5 

SummaRuNNer-
abs 23.8 9.6 13.3 

LREG(500) 18.5 6.9 10.2 
NN-ABS(500) 7.8 1.7 7.1 
NN-WE(500) 15.7 6.4 9.8 

Table 2:  Comparison results on the DailyMail test 
set using Rouge recall at 75 bytes. 
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capk is the caption of imgk. The average number 
of images in summaries is 2.15. The average 
Rouge-1, Rouge-2, and Rouge-L scores of the 
caption summaries with respect to the ground 
truth summaries are 43.85, 19.70, and 36.30 
respectively. 

 We use the 1-image and 2-image random 
selected image summaries as the baselines which 
we compare our models with. The top 1 or 2 
images ranked by our model are selected out to 
form the summaries. Results in Table 4 show that 
HNNattTI outperforms the random baseline, 
while HNNattTC and HNNattTIC perform worse. 
This implies that attending images can generate 
better sentence-image alignment in the multi-
modal summaries than the model attending 
captions does. And this can also partly explain 
why our summarization model attending images 
when decoding can generate better text 
summaries than the one attending captions does.  

4.5  Instance  
Figure 4 shows the text-image summary of the 
example demonstrated in Figure 1 generated by 
the HNNattTI model. In the summary, there are 2 
images and 3 generated sentences, and each 
sentence is aligned with an image. The image 
summary has one common image with Figure 2. 

The sentences are named by S1, S2, and S3 
respectively. 

Table 7 shows the sentence-image alignment 
scores. The four images in the original document 
are numbered from top to bottom and left to right 
by IMG1, IMG2, IMG3, and IMG4. The 
summation of alignment scores for a summary 
sentence is less than 1, because the sentence is also 
aligned with the sentences in the original document. 

5 Conclusions 

This paper proposes the text-image 
summarization task to summarize and align texts 
and images simultaneously. Most previous 
research summarizes texts and images separately, 
and few has been done on text-image 
summarization. We propose the multi-modal 
attentional mechanism which attends original 
sentences, images, captions simultaneously in the 
hierarchical encoder-decoder model, use the RNN 
model to encode the ordered image set as the 
initial state of the decoder, and propose the multi-
modal beam search algorithm which scores beams 
using the bigram overlaps of the generated 
sentences and the captions. The model is trained 
by using abstractive text summaries as the targets, 
and the attention scores of images are used to 
score images. The original DailyMail dataset is 
extended by collecting images and captions from 
the Web. Experiments show that our model 
attending images outperforms the models not 
attending images, three existing neural abstractive 
models and three existing extractive models. 
Experiments also show our model can generate 
informative summaries of images. 
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Figure 4: The generated text-image summary of the 
example in Figure 1. 

 IMG1 IMG2 IMG3 IMG4 
S1 0.0947 0.1089 0.1157 0.1194 
S2 0.0893 0.1020 0.1070 0.1052 
S3 0.0853 0.0769 0.0946 0.0969 

Table 7:  The sentence-image alignment scores of 
the generated summary for the news in Figure 1. 
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Abstract

In this paper, we study automatic keyphrase
generation. Although conventional ap-
proaches to this task show promising results,
they neglect correlation among keyphrases,
resulting in duplication and coverage is-
sues. To solve these problems, we pro-
pose a new sequence-to-sequence architecture
for keyphrase generation named CorrRNN,
which captures correlation among multiple
keyphrases in two ways. First, we employ a
coverage vector to indicate whether the word
in the source document has been summarized
by previous phrases to improve the coverage
for keyphrases. Second, preceding phrases
are taken into account to eliminate duplicate
phrases and improve result coherence. Ex-
periment results show that our model signifi-
cantly outperforms the state-of-the-art method
on benchmark datasets in terms of both accu-
racy and diversity.

1 Introduction

A keyphrase is a piece of text that is able to sum-
marize a long document, organize contents and
highlight important concepts, like ”virtual orga-
nizations” in Table 1. It provides readers with a
rough understanding of a document without going
through its content, and has many potential appli-
cations, such as information retrieval, text summa-
rization and document classification.

Keyphrase can be categorized into present
keyphrase which appears in a source document,
and absent keyphrase that does not appear in the
document. Conventional approaches extract im-
portant text spans as candidate phrases and rank
them as keyphrases (Hulth, 2003; Medelyan et al.,
2008; Liu et al., 2011; Wu et al., 2015; Wang et al.,
2016), that show promising results on the present
keyphrases but cannot handle absent keyphrases.

⇤ Corresponding Author

Title: Resolving conflict and inconsistency in norm regulated virtual orga-
nizations.
Abstract: Norm governed virtual organizations define, govern and fa-
cilitate coordinated resource sharing and problem solving in societies of
agents. With an explicit account of norms, openness in virtual organiza-
tions can be achieved new components, designed by various parties, can
be seamlessly accommodated. We focus on virtual organizations realised
as multi agent systems ...
Ground truth: virtual organizations; multi agent systems; agent; norm
conflict; conflict prohibition; norm inconsistency; ...
Predicted keyphrases: virtual organizations; multi agent systems; arti-
ficial intelligence; inter agent; multi agent; action delegation; software
agents; resource sharing; grid services; agent systems;

Table 1: The example shows the duplication and coverage
issues of state-of-the-art model. The phrases in red are dupli-
cate, and the underlined parts in the source document are not
covered by the predicted results, while they are summarized
by ”norm conflict” and ”norm inconsistency” in the golden
list.

To predict absent keyphrases, generative meth-
ods have been proposed by Meng et al. (2017).
The approach employs a sequence-to-sequence
(Seq2Seq) framework (Sutskever et al., 2014) with
a copy mechanism (Gu et al., 2016) to encourage
rare word generation, in which the encoder com-
presses the text into a dense vector and the de-
coder generates a phrase with a Recurrent Neural
Network (RNN) language model, achieving state-
of-the-art performance. Since a document corre-
sponds to multiple keyphrases, the approach di-
vides it into multiple document-keyphrase pairs
as training instances. This approach, however,
neglects the correlation among target keyphrases
since it does not model the one-to-many rela-
tionship between the document and keyphrases.
Therefore, keyphrase prediction only depends on
the source document, and ignores the keyphrases
which have been generated. As a consequence, the
generated keyphrases suffer from duplication is-
sue and coverage issue. A duplication issue is de-
fined as at least two phrases expressing the same
meaning, hindering readers from obtaining more
information from keyphrases. For example, three
keyphrases have an identical meaning in Table 1,
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including ”multi agent systems”, ”multi agent”
and ”agent systems”. A coverage issue means
some key points in the document are not covered
by the keyphrases, such as ”norm conflict” and
”norm inconsistency” in Table 1.

To mitigate such issues, we mimic human be-
havior in terms of how to assign keyphrases for
an arbitrary document. Given a document in
Table 1, an annotator will read it and generate
keyphrases according to his understanding of the
content, like ”virtual organizations”, ”multi agent
systems”. After that, instead of generating du-
plicate phrases like ”agent systems” and ”multi
agent”, the annotator will review the document
and preceding keyphrases, then generate a phrase
like ”norm conflict” to cover topics that have not
been summarized by previous phrases. The itera-
tion does not stop until all of a document’s topics
are covered by keyphrases.

We propose a new sequence-to-sequence archi-
tecture CorrRNN, capable of capturing correla-
tion among keyphrases. Notably, correlation con-
straints in this paper are defined as keyphrases
that should cover all topics in the source docu-
ment and differ from each other. Specifically, we
employ a coverage mechanism (Tu et al., 2016)
to memorize which parts in the source document
have been covered by previous phrases. In this
way, the document coverage is modeled explicitly,
enabling the generated keyphrases to cover more
topics. Furthermore, we propose a review mech-
anism that considers the previous keyphrases in
the generation process, in order to avoid the rep-
etition in the final results. Concretely, the review
mechanism explicitly models the correlation be-
tween the keyphrases that have been generated and
the keyphrase that is going to be generated with a
novel architecture. It extends the existing Seq2Seq
model and captures the one-to-many relationship
in keyphrase generation. Augmented with the cov-
erage mechanism and the review mechanism, Cor-
rRNN does not only inherit the advantages of the
Seq2Seq model, but also improves the coverage
and diversity in the generation process.

We test our model on three benchmark datasets.
The results show that our model outperforms state-
of-the art methods by a large margin, demonstrat-
ing the effectiveness of the correlation constraints.
In addition, our model is better than heuristic rules
on improving diversity, since it instills the correla-
tion knowledge to the model in an end-to-end fash-

ion.
Our contributions in this paper are three-fold:

(1) the proposal of modeling the one-to-many cor-
relation for keyphrase generation, (2) the proposal
of a new architecture CorrRNN for keyphrase gen-
eration, and (3) empirical verification of the effec-
tiveness of CorrRNN on public datasets.

In the remainder of this paper, we will first re-
view the related work in Section 2, then we elab-
orate on the proposed model in Section 3. After
that, we list the experiment settings in Section 4,
results and discussion follow in Section 5. Finally,
the conclusion and future work in Section 6.

2 Related Work

How to assign keyphrases to a long document
is a fundamental task, that has been studied inten-
sively in previous works. Existing methods can be
categorized into two groups: extraction based and
generation based methods.

The former group extracts important keyphrases
in a document which consists of two phases. The
first phase is to construct a set of phrase candidates
with heuristic methods, such as extracting impor-
tant n-grams (Hulth, 2003; Medelyan et al., 2008;
Hulth, 2003; Shang et al., 2017) and selecting
text chunks with certain postags (Liu et al., 2011;
Wang et al., 2016; Le et al., 2016; Liu et al., 2015).
The second phase is to rank the candidates with
machine learning methods. Specifically, some re-
searchers (Frank et al., 1999; Witten et al., 1999;
Hulth, 2003; Medelyan et al., 2009; Gollapalli and
Caragea, 2014) formulate the keyphrase extraction
as a supervised classification problem, while oth-
ers apply unsupervised approaches (Mihalcea and
Tarau, 2004; Grineva et al., 2009; Liu et al., 2009,
2010; Zhang et al., 2013; Bougouin et al., 2013,
2016) on this task. Besides, Tomokiyo and Hurst
(2003) employ two statistical language models to
measure the informativeness for phrases. Liu et
al. (2011) use a word alignment model to learn
translation probabilities between the words in doc-
uments and the words in keyphrases, which allevi-
ates the problem of vocabulary gaps.

The latter group, generative methods, assigns
keyphrases to a document with natural language
generation techniques, and is capable of generat-
ing absent keyphrases. Owing to the development
of neural networks (Bahdanau et al., 2014), Meng
et al. (2017) apply an encoder-decoder framework
(Sutskever et al., 2014) with a copy mechanism
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(Gu et al., 2016) to this task, achieving state-of-
the-art performance.

Our work is a generation based approach. The
main difference of our model is that we consider
the correlation among keyphrases. Our model
proposes a new review mechanism to enhance
keyphrase diversity, while employs a coverage
mechanism that has proven effective for summa-
rization (See et al., 2017) and machine translation
(Tu et al., 2016) to guarantee keyphrase coverage.
Some previous works on keyword extraction have
already exploited the correlation problem with a
re-rank strategy (Habibi and Popescu-Belis, 2013;
Ni et al., 2012). In contrast, we model the correla-
tion in an end-to-end fashion.

3 KeyphraseGenerationwithCorrelation

3.1 Problem Formalization

Suppose that we have a data set D =
{xi,pi}N

i=1, where xi is a source text, pi =
{pi,j}Mi

j=1 is the keyphrase set of xi, and N
is the number of documents. Both the source
text and target keyphrase are word sequences,
donated as xi = (xi

1, x
i
2, ..., x

i
T ) and pi,j =

(yi,j
1 , yi,j

2 , ..., yi,j
Li ) respectively. T and Li are

the length of word sequences of xi and pi,j .
Prior work aims to maximize the probability ofQN

i=1

QMi
j=1 P (pi,j |xi), while our model considers

keyphrase correlation to address coverage and du-
plication issues by maximizing the probability ofQN

i=1

QMi
j=1 P (pi,j |xi, pi,l<j).

3.2 Seq2Seq Model with Copy Mechanism

A Seq2Seq model (Sutskever et al., 2014) is
employed as backbone in this paper. The en-
coder converts the variable-length input sequence
x = (x1, x2, ..., xT ) into a set of hidden represen-
tation h = (h1, h2, ..., hT ) by iterating along time
t with the following equation:

ht = f(xt, ht�1) (1)

where f is a non-linear function.
Then the context vector c is computed as a

weighted sum of hidden representation set h
through an attention mechanism (Bahdanau et al.,
2014), which next acts as the representation of the
whole input x at time step t.

ct =
TX

j=1

↵tjhj (2)

where ↵tj is a coefficient which measures the
match degree between the inputs around position
j and the output at position t.

With the context vector ct, decoder generates
variable-length word sequence step by step, the
generative process which is known as a language
model:

st = f(yt�1, st�1, ct) (3)

pg(yt|y<t, x) = g(yt�1, st, ct) (4)

where st denotes the hidden state of the decoder
at time t. yt is the predicted word from vocabulary
based on the largest probability after g(.).

Unfortunately, pure generative mode cannot
generate any keyphrase (e.g. noun, entity) which
contains out-of-vocabulary words. Thus we in-
corporate a copy mechanism (Gu et al., 2016)
into the encoder-decoder model to predict out-of-
vocabulary words by selecting appropriate words
from source text. After incorporation, the prob-
ability of predicting a new word consists of two
parts:

p(yt|y<t, x) = pg(yt|y<t, x) + pc(yt|y<t, x) (5)

pc(yt|y<t, x) =
1
Z

X

j:xj=yt

e�(hT

j
Wc)[yt�1;st;ct], yt 2 X

(6)
where pg and pc denote the probability of gen-

erating and coping. X is the set of unique words
in source sequence x, � is a non-linear function.
Wc 2 R is a learned parameter matrix. Z is the
sum for normalization. For more details, please
see (Gu et al., 2016).

3.3 Model Correlation

Keyphrases should cover more topics and dif-
fer from each other, while previous work (Meng
et al., 2017) ignored this correlation among mul-
tiple keyphrases, resulting in duplication and cov-
erage issues. In this part, we focus on capturing
the one-to-many correlation to alleviate above is-
sues. On the one hand, we employ a coverage
mechanism (Tu et al., 2016) that diversifies atten-
tion distributions to improve the topic coverage of
keyphrases. On the other hand, we propose a re-
view mechanism which makes use of contextual
information of previous phrases (already gener-
ated) to avoid duplicate generation. For better dis-
play of the proposed model, the overall framework
is illustrated in Figure 1 and the detailed process is
described in Algorithm 1.
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Figure 1: The overall framework structure. Note that pi indicates a keyphrase (e.g. p0 =”neural network”), si indicates the
hidden state set of phrase pi, coverage vector C and target-side review context S update and transmit along the process of
decoding multiple keyphrases.

3.3.1 Coverage Mechanism
As is well known, multiple keyphrases usually

correspond to multiple different positions of the
source text (see Figure 1), the positions of words
that have already been summarized should not be
focused again since the attention mechanism au-
tomatically focuses on important areas of source
text. To overcome the coverage issue, we incorpo-
rate a coverage mechanism (Tu et al., 2016) into
our model, which diversifies the attention distri-
butions of multiple keyphrases to make sure more
important areas in the source document are at-
tended and summarized into keyphrases.

Concretely, we maintain a coverage vector ct

which is the sum of attention distributions over all
previous decoder time steps. Intuitively, ct repre-
sents the degree of coverage that those words in
the source text have received from the attention
mechanism so far.

ct =
t�1X

i=0

ai (7)

Note that c0 is a zero vector since no word in
source text has be covered.

Later, the coverage vector ct is an extra input for
the attention mechanism, then the source context
set h is read and weight averaged into a contextual
representation cE

t by the attention mechanism with
a coverage vector, with Eqn.(2) transforming into
Eqn.(8) as follows:

cE
t =

TX

j=1

↵tjhj ; ↵tj =
exp(eE

tj)PT
k=1 exp(eE

tk)
;

eE
tj = vT tanh(Whhj + Wsst�1 + wcc

t
j + battn) (8)

where E is the encoder and wc is a learned pa-
rameter with the same length as v.

With the coverage vector, the attention mecha-
nism’s decision for choosing where in source text
to focus next is informed by a reminder of its
previous decisions, which ensures that the atten-
tion mechanism avoids repeatedly attending to the
same locations in the source text more easily, thus
generated phrases cover more topics in the source
document.

Algorithm 1 Training procedure of the proposed
model.
Require: The train corpus set D; The encoder 'E ; The de-

coder 'D; The attention function attention;
1: for each (X, (P1, ..., PM )) 2 D do
2: compute source hidden states H = 'E(X);
3: init target review context S = �;
4: init coverage vector C = ~0;
5: for each Pi = (yi

1, y
i
2, ..., y

i
T i) 2 (P1, ..., PM ) do

6: init si
0;

7: for t = 1; t <= T i; t + + do
8: ciE

t , ai
t = attention(H, si

t�1, C) ;
9: ciD

t = attention(S, si
t�1) ;

10: si
t = 'D(yi

t�1, s
i
t�1, c

iE
t , ciD

t ) ;
11: S = S [

�
si

t�1

 
;

12: C = C + ai
t ;

13: end for
14: compute loss for Pi;
15: end for
16: compute gradient and update;
17: end for

3.3.2 Review Mechanism
Considering human behavior on assigning

keyphrases that review previous phrases to avoid
duplicate assignment, we construct a target side
review context set which contains contextual in-
formation of generated phases. The target context
with an attention mechanism can make use of con-
textual information of generated phrases to help
predict the next phrase, which we call the review
mechanism.
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Like source context cE
t described above, on the

target side, the target context is defined as st =
{s1, s2, ..., st�1}, which is the collection of hidden
states before time step t. When decoding the word
at t-th step, st is used to inform an extra contextual
representation, thus target side attentive contexts
are integrated into cD

t :

cD
t =

t�1X

j=1

�tjsj ; �tj =
exp(eD

tj)Pt�1
k=1 exp(eD

tk)
;

eD
tj = vT tanh(Whsj + Wsst�1) (9)

Afterwards, cD
t is provided as an extra input to

derive the hidden state st and later the probability
distribution for choosing t-th word . The target
context gets updated consequently as st+1 = st [
{st} in the decoding progress.

st = f(yt�1, st�1, c
E
t , cD

t ) (10)

pg(yt|y<t, x) = g(yt�1, st, c
E
t , cD

t ) (11)

pc(yt|y<t, x) =
1
Z

X

j:xj=yt

e�(hT

j
Wc)[yt�1;st;c

E

t
;cDt ], yt 2 X

(12)

Eqn.(10), Eqn.(11) and Eqn.(12) are trans-
formed from Eqn.(3), Eqn.(4) and Eqn.(6) respec-
tively. More mathematical details are displayed
below to make Eqn.(10) more clear:

rt = �(Wryt�1 + Urst�1 + CE
r cE

t + C
D
r c

D
t );

zt = �(Wzyt�1 + Uzst�1 + CE
z cE

t + C
D
z c

D
t );

est = tanh(Wyt�1 + U [rt � st�1] + CEcE
t + C

D
c
D
t );

st = (1 � zt) � st�1 + zt � est

(13)
where E, D indicate the encoder and decoder, W ,
U , C are learned parameters of the model, � is
a sigmoid function, � indicates an element-wise
product.

With the contextual information of previous
phrases, review mechanism ensures next predicted
phrase less duplication and topic coherence. So
far, we transmit and update the coverage vector
and review context along the multi-target phrase
decoding process to improve the coverage and di-
versity of keyphrases. We denote our model with
coverage only and review only as CorrRNNC and
CorrRNNR, and empirically compare them in ex-
periments. The objectives are to minimize the neg-
ative log-likelihood of the target words, given a
data sample with source text x and corresponding

phrases set p = {pi}M
i=0, loss is calculated as fol-

lows:

loss = �
1
M

MX

i=0

TiX

t=0

log(p(yi
t|y

i
<t, x, pj,j<i)) (14)

4 Experiment Settings

4.1 Implementation Details
In the preprocessing phase, we follow (Meng

et al., 2017) to preprocess the text with tokeniza-
tion, lowercasing, and digit replacement to ensure
fairness. Each article consists of one source text
and corresponding multiple keyphrases, and the
source text is the concatenation of its title and ab-
stract. We set the max number of target phrases
to 10 for an article in consideration of the de-
vice memory, thus those with more than 10 tar-
get phrases are cut into multiple articles. Finally,
we have 558830 articles (text-keyphrases pair) for
training.

In the training phase, we choose a bidirectional
GRU for the encoder and another forward GRU
for the decoder. The top 50000 frequent words are
chosen as the vocabulary, the dimension of word
embeddings is set to 150, the value of embedding
is randomly initialized with uniform distribution
in [-0.1, 0.1], and the dimension of the hidden lay-
ers is set to 300. Adam is adopted to optimize
the model with initial learning rate=10�4, gradient
clipping=0.1 and dropout rate=0.5. The training is
stopped once the loss on the validation set stops
dropping for several iterations.

In the generation phase, we use beam search to
generate multiple phrases. The beam depth is set
to 6 and the beam size is set to 200. Source code
will be released at https://github.com/
nanfeng1101/s2s-kg.

4.2 Datasets
Following Meng et al. (2017), we train our

model on the KP20k dataset (Meng et al., 2017),
which contains articles collected from various on-
line digital libraries. The dataset has 527,830 arti-
cles for training and 20000 articles for validation.

We evaluate our model on three benchmark
datasets which are widely adopted in previous
works, with the details described below:

- NUS (Vijayakumar et al., 2016): It contains
211 papers with author-assigned keyphrases,
all of which we use as test data.
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- Semeval-2010 (Kim et al., 2010): 288 arti-
cles are collected from the ACM Digital Li-
brary. 100 of them are used for test data and
the rest are added to the training set.

- Krapivin (Krapivin et al., 2008): This
dataset contains 2304 papers. The first 400
papers in alphabetical order are used for eval-
uation and the rest are added to the training
set.

4.3 Baseline Models
We compare our model with extractive and

generative approaches. The extractive baselines
include Tf-idf, TextRank (Mihalcea and Tarau,
2004), SingleRank (Wan and Xiao, 2008), Ex-
pandRank (Wan and Xiao, 2008), TopicRank1

(Bougouin et al., 2013), KEA (Witten et al., 1999)
and Maui (Medelyan et al., 2009). The genera-
tive baselines include RNN and CopyRNN (Meng
et al., 2017). In these baselines, the first five are
unsupervised and the later four are supervised. We
set up all the baselines following optimal settings
in (Hasan and Ng, 2010), (Bougouin et al., 2013)
and (Meng et al., 2017).

To demonstrate the effectiveness of end-to-end
learning, we compare CorrRNN to CopyRNN
with post-processing. In post-precessing, we only
keep the first appearence of keyphrase in duplicate
predictions, duplication means that a phrase is a
substring of another. The baseline can be seen as
heuristic rules for improving the diversity, denoted
as CopyRNNF .

4.4 Evaluation Metrics
For a fair comparison, we evaluate the exper-

iment results on present keyphrases and absent
keyphrases separately, because extractive meth-
ods cannot generate absent keyphrases. Follow-
ing Meng et al. (2017), we employ F1-measure
for present keyphrases and recall for absent
keyphrases. Here, we use F1@K and R@K
to denote the F1 and recall score in the top K
keyphrases. Note that we use Porter Stemmer
for preprocessing to determine whether the two
keyphrases are identical.

Furthermore, ↵-NDCG, which is widely used
to measure the diversity of keyphrase generation
(Habibi and Popescu-Belis, 2013) and information
retrieval (Clarke et al., 2008), is adopted to eval-
uate the diversity of the generative methods, de-
noted as N@K. ↵ is a trade-off between relevance

1https://github.com/adrien-bougouin/KeyBench

and diversity in ↵-NDCG, which is set to equal
weights of 0.5 according to Habibi and Popescu-
Belis (2013). The higher ↵-NDCG is, the more
diverse the results are. We re-implement Copy-
RNN with the source code2 provided by the au-
thors in order to evaluate it on the ↵-NDCG met-
ric.

↵-NDCG[k] =
DCG[k]

DCG0[k]
;

DCG[k] =
kX

j=1

G[j]/log2(j + 1);

G[k] =
mX

i=1

J(dk, i)(1 � ↵)ri,k�1

where ↵ is a parameter, m denotes the number
of target phrases, k denotes the number of pre-
dicted phrases. J(dk, i) = 0 or 1, which indi-
cates whether the k-th predicted phrase is relevant
to the i-th target phrase, and ri,k�1 indicates how
many predicted phrases are relevant to the i-th tar-
get phrase before the k-th predicted phrase. Note
that relevance here is defined as whether the word
set of a keyphrase is a subset of another keyphrase
(e.g. ”multi agent” vs ”multi agent system”).

5 Results and Analysis
5.1 Present Phrase Prediction

Present phrase prediction is also known as
keyphrase extraction in prior studies. We evalu-
ate how well our model performs on this common
task. The results are shown in Tables 2 and 3,
which list the performance of the top 5 and top
10 results.

In terms of F1-measure, CorrRNN and Copy-
RNN outperform other baselines by a large mar-
gin, indicating the effectiveness of RNN with a
copy mechanism. As we consider the correla-
tion among multiple phrases, the overall results
of CorrRNN are better than CopyRNN signifi-
cantly (t�test with p < 0.01). This is mainly be-
cause CorrRNN alleviates the duplication and cov-
erage issues in existing methods, with more cor-
rect phrases boosted in the top 10 results. Heuritic
baseline CopyRNNF is even worse than Copy-
RNN, indicating that the heuristic rules may hurt
the performance of generative approaches. It also
proven that it is a better way to model the correla-
tion among keyphrases in an end-to-end fashion.

Regarding ↵-NDCG, CorrRNN and its variants
surpass other methods, demonstrating that incor-
porating correlation constraints can improve both

2https://github.com/memray/seq2seq-keyphrase
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relevance and diversity. As the heuristic rules in-
fluence the relevance of CopyRNN, CopyRNNF

performs a little better than CopyRNN on the
↵-NDCG.

Model NUS
F1@5 F1@10

SemEval
F1@5 F1@10

Krapivin
F1@5 F1@10

Tf-idf 0.136 0.184 0.128 0.194 0.129 0.160
TextRank 0.195 0.196 0.176 0.187 0.189 0.162
SingleRank 0.140 0.173 0.135 0.176 0.189 0.162
ExpandRank 0.132 0.164 0.139 0.170 0.081 0.126
TopicRank 0.115 0.123 0.083 0.099 0.117 0.112
Maui 0.249 0.268 0.044 0.039 0.249 0.216
KEA 0.069 0.084 0.025 0.026 0.110 0.152
RNN 0.169 0.127 0.157 0.124 0.135 0.088
CopyRNN 0.334 0.326 0.291 0.304 0.311 0.266
CopyRNNF 0.323 0.289 0.270 0.270 0.293 0.222
CorrRNNC 0.361 0.335 0.296 0.319 0.311 0.273
CorrRNNR 0.354 0.328 0.306 0.312 0.314 0.270
CorrRNN 0.358 0.330 0.320 0.320 0.318 0.278

Table 2: The F1 performance on present phrase prediction.
From top to bottom, baselines are listed as unsupervised and
supervised.

Model NUS
N@5 N@10

SemEval
N@5 N@10

Krapivin
N@5 N@10

CopyRNN 0.740 0.713 0.682 0.667 0.622 0.625
CopyRNNF 0.743 0.720 0.692 0.681 0.635 0.657
CorrRNNC 0.781 0.747 0.728 0.694 0.649 0.642
CorrRNNR 0.770 0.742 0.718 0.692 0.669 0.657
CorrRNN 0.771 0.752 0.752 0.720 0.659 0.647

Table 3: The ↵-NDCG performance on present phrase pre-
diction.

5.2 Absent Phrase Prediction

We evaluate the performance of generative
methods within the recall of the top 10 results,
which is shown in Table 4. We can see that
both CopyRNN and CorrRNN outperform RNN
although the improvement is not as much as in
present phrase prediction. It indicates that the
copy mechanism is very helpful for predicting ab-
sent phrases. We can also see that CopyRNN and
CorrRNN are comparable in terms of recall, but
CorrRNN is better on diversity, proving that our
model can address the duplicate issue in keyphrase
generation.

Model NUS
R@10 N@10

SemEval
R@10 N@10

Krapivin
R@10 N@10

RNN 0.050 N/A 0.041 N/A 0.095 N/A
CopyRNN 0.058 0.213 0.043 0.228 0.113 0.162
CopyRNNF 0.057 0.216 0.043 0.233 0.112 0.164
CorrRNNC 0.064 0.215 0.041 0.231 0.121 0.168
CorrRNNR 0.054 0.223 0.041 0.250 0.103 0.163
CorrRNN 0.059 0.229 0.041 0.243 0.108 0.166

Table 4: The recall and ↵-NDCG performance on absent
phrase prediction.

5.3 Generalization Ability
As described above, CorrRNN performed well

on scientific publications. In this part, we con-
struct our experiments on news domain to see
if the proposed model works when transferring
to a different domain with unfamiliar texts. We
adopted the popular news article dataset: DUC-
2001 (Wan and Xiao, 2008) for our experiments.
The dataset contains 308 news articles with 2488
manually assigned keyphrases, and each article
consists of 740 words on average, which is com-
pletely different from the datasets we used above
(see Table 5).

Dataset Length Dataset Length
NUS 219 SemEval 235
Krapivin 184 DUC-2001 740

Table 5: The average text length of test datasets.

We directly applied CorrRNN, which is trained
on scientific publications, on predicting phrases
for news articles without any adaptive adjustment.
Experiment results from (Hasan and Ng, 2010),
(Meng et al., 2017) and our experiments are shown
in Table 6, from which we can see that the pro-
posed model CorrRNN can extract a consider-
able portion of keyphrases correctly from unfa-
miliar texts. It outperforms TextRank (Mihalcea
and Tarau, 2004), KeyCluster (Liu et al., 2009),
TopicRank (Bougouin et al., 2013) and CopyRNN
(Meng et al., 2017), but it falls behind the other
three baselines because the test domain changes.
The model should perform better if it is trained on
news dataset.

When transferring to news domain, the vocab-
ulary changes a lot, more unknown words oc-
cur, and the correlation also may not applicable,
the model can still capture positional and syntac-
tic features within the text to predict phrases de-
spite the different text type and length. The ex-
periment verifies the generalization ability of our
model, thus we have good reasons to believe that
our model has a great potential to be generalized
to more domains after sufficient training.

Model F1@10 Model F1@10
Tf-idf 0.270 TopicRank 0.154
TextRank 0.097 KeyCluster 0.140
SingleRank 0.256 CopyRNN 0.164
ExpandRank 0.269 CorrRNN 0.173

Table 6: Performance on DUC-2001. CopyRNN and Cor-
rRNN are supervised, and they are trained on scientific pub-
lications but evaluated on news.
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Figure 2: Visualization, deeper shading denotes higher value. Note that yellow shading and green shading indicate coverage
vector and review attention respectively.

5.4 Discussion

5.4.1 Model Ablation

We investigate the effect of coverage mecha-
nism and review mechanism in our model with
CorrRNNC and CorrRNNR respectively, shown in
Tables 2, 3 and 4. It is clear that both the cover-
age mechanism and review mechanism are helpful
for improving the coverage and diversity of pre-
dicted phrases. We note the inconsistency of ab-
late models in our experiments. First, no ablate
model achieves the best performance on all of the
test datasets, the full model CorrRNN gets better
perfermance on present phrase prediction, while
CorrRNNC seems better than the others in ab-
sent phrase prediction. As the present phrases are
the majority, the full model CorrRNN can achieve
best overall performance in actual use. Second,
proposed models perform better on dataset NUS
and SemEval than Kravipin. This may be due to
the difference of assignment quality among test
datasets, keyphrase assignments with higher cov-
erage and higher diversity benefiting more from
our models.

5.4.2 Visualization

In Figure 2, we visualize the coverage vector
and review attention with an example to further
clarify how our model works. Due to space limita-
tion, we only visualize top5 phrases in the exam-
ple, they are already enough to support our anal-
ysis. For coverage vector, we can see that source
attention transfers along the changes of coverage
vector. At the first, only relevant words of ”ma-
chine learning” are attended. After that, the cov-
erage vector informs attention mechanism to at-
tend other positions instead of repetitive atten-
tion, that promotes the generation of later phrases
like ”average precision”. After the last one be-
ing generated, it is clear that coverage vector ba-
sically covers all topics of the source document,
including ”machine learning”, ”mean average pre-

cision”, ”svm” and ”ranked retrieval systems”. As
for the review attention, it’s clear that contextual
information of all previous phrases are attended
for generating the last phrase ”ranked retrieval sys-
tems”, which verifies that the review mechanism
helps to alleviate duplication and ensure coherence
of results.

5.4.3 Comparison with Heuristic Rules
We design the baseline CopyRNNF with post-

processing to explore whether heuristic rules can
alleviate duplication and coverage issues. It is
clear from Tables 2, 3 and 4 that the experi-
ment results are negative. Compared to our model
CorrRNN, heuristic rules can’t address duplica-
tion and coverage issues fundamentally. We offer
two explanations for these observations. Firstly,
heuristic rules can only handle those phrases
which have already been generated in results, that
shows no help for enabling phrases to cover more
topics in source text. Secondly, although duplica-
tion can be reduced by heuristic rules forcibly, the
remaining phrases are not guaranteed to be cor-
rect, thus it hurts the accuracy badly.

5.4.4 Complexity Analysis
According to our observations during experi-

ment phase, the CopyRNN (Meng et al., 2017)
model has 78835750 network parameters, while
CorrRNN owns 94886750 parameters because
of the incorporation of coverage mechanism
(few) and review mechanism (most). How-
ever, benefiting from the consideration of one-
to-many relationship, and correlation constraints
among keyphrases, our model CorrRNN not only
achieves better performance but also converges
faster than CopyRNN.

5.4.5 Case Study
As shown in Table 7, we compare the phrases

generated by CorrRNN and CopyRNN on an ex-
ample article. Compared to CopyRNN, CorrRNN
generates one more correct present phrase ”voip”
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Title: Deployment issues of a voip conferencing system in a virtual conferencing environment.
Abstract: Real time services have been supported by and large on circuitswitched networks. Recent trends favour services ported on packet switched networks.
For audio conferencing, we need to consider many issues scalability, quality of the conference application, floor control and load on the clients servers to
name a few. In this paper, we describe an audio service framework designed to provide a virtual conferencing environment (vce). The system is designed to
accommodate a large number of end users speaking at the same time and spread across the internet. The framework is based on conference servers hDIGIT i,
which facilitate the audio handling, while we exploit the sip capabilities for signaling purposes. Client selection is based on a recent quantifier called loudness
number that helps mimic a physical face to face conference. We deal with deployment issues of the proposed solution both in terms of scalability and
interactivity, while explaining the techniques we use to reduce the traffic. We have implemented a conference server (cs) application on a campus wide network
at our institute.
Present Phrase:
CopyRNN: deployment; virtual conferencing; real time; distributed systems; virtual conferencing environment; client server; conference server; distributed
applications; audio conferencing; floor control;
CorrRNN: voip; virtual conferencing; voip conferencing; audio conferencing; audio service; real time services; real time; distributed systems; conference
server; virtual conferencing environment;
Absent Phrase:
CopyRNN: quality of service; distributed conferencing; virtual environments; internet conferencing; conference conferencing; load balancing;
packet conferencing; real time systems; distributed computing; virtual server;
CorrRNN: real time systems; real time voip; voip service; real time audio; wireless networks; conference conferencing; real time communications; packet
conferencing; audio communication; quality of service;

Table 7: Top10 phrases generated by CopyRNN and CorrRNN. Phrases in bold are correct, and phrases underlined are dupli-
cate.

and one more correct absent phrase ”real time au-
dio” respectively, which covers two important top-
ics, while CopyRNN loses these key points. More-
over, four ”conferencing (noun)” phrases are gen-
erated by CopyRNN, including ”distributed con-
ferencing”, ”internet conferencing”, ”conference
conferencing” and ”packet conferencing”, which
hinders readers from obtaining more information,
while CorrRNN only has two.

6 Conclusion and Future Work

In this paper, we propose a new Seq2Seq ar-
chitecture that models correlation among multiple
keyphrases in an end-to-end fashion by incorpo-
rating a coverage mechanism and a review mech-
anism. Comprehensive empirical studies demon-
strate that our model can alleviate duplication and
coverage issues effectively and improve diversity
and coverage for keyphrase generation. To the best
of our knowledge, this is the first use of encoder-
decoder model for keyphrase generation in an one-
to-many way. Our future work will focus on two
areas: investigation on multi-document keyphrase
generation, and incorporation of structure or syn-
tax information in keyphrase generation.
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Abstract
A good neural sequence-to-sequence summa-
rization model should have a strong encoder
that can distill and memorize the important in-
formation from long input texts so that the de-
coder can generate salient summaries based
on the encoder’s memory. In this paper,
we aim to improve the memorization capa-
bilities of the encoder of a pointer-generator
model by adding an additional ‘closed-book’
decoder without attention and pointer mech-
anisms. Such a decoder forces the encoder
to be more selective in the information en-
coded in its memory state because the decoder
can’t rely on the extra information provided
by the attention and possibly copy modules,
and hence improves the entire model. On
the CNN/Daily Mail dataset, our 2-decoder
model outperforms the baseline significantly
in terms of ROUGE and METEOR metrics, for
both cross-entropy and reinforced setups (and
on human evaluation). Moreover, our model
also achieves higher scores in a test-only
DUC-2002 generalizability setup. We further
present a memory ability test, two saliency
metrics, as well as several sanity-check ab-
lations (based on fixed-encoder, gradient-flow
cut, and model capacity) to prove that the en-
coder of our 2-decoder model does in fact
learn stronger memory representations than
the baseline encoder.

1 Introduction

Text summarization is the task of condensing a
long passage to a shorter version that only covers
the most salient information from the original text.
Extractive summarization models (Jing and McK-
eown, 2000; Knight and Marcu, 2002; Clarke and
Lapata, 2008; Filippova et al., 2015) directly pick
words, phrases, and sentences from the source text
to form a summary, while an abstractive model
generates (samples) words from a fixed-size vo-
cabulary instead of copying from text directly.

Original Text (truncated):  a  family  have  claimed  the  body  of  an  infant  
who  was  discovered  deceased  and  buried  on  a  sydney  beach  last  year  ,  
in  order  to  give  her  a  proper  funeral  .  on  november  30  ,  2014  ,  two  
young  boys  were  playing  on  maroubra  beach  when  they  uncovered  the  
body  of  a  baby  girl  buried  under  30  centimetres  of  sand  .  now  locals  
filomena  d'alessandro  and  bill  green  have  claimed  the  infant  's  body  in  
order  to  provide  her  with  a  fitting  farewell  .  'we’re  local  and  my  husband  
is  a  police  officer  and  he’s  worked  with  many  of  the  officers  investigating  
it  ,  '  ms  d'alessandro  told  daily  mail  australia  .  scroll  down  for  video  .  
a  sydney  family  have  claimed  the  body  of  a  baby  girl  who  was  found  
buried  on  maroubra  beach  (  pictured  )  on  november  30  ,  2014  .  filomena  
d'alessandro  and  bill  green  have  claimed  the  infant  's  remains  ,  who  they  
have  named  lily  grace  ,  in  order  to  provide  her  with  a  fitting  farewell  .  
'  above  all  as  a  mother  i  wanted  to  do  something  for  that  little  girl  ,  '  
she  added  .  since  january  the  couple  ,  who  were  married  last  year  and  
have  three  children  between  them  ,  have  been  trying  to  claim  the  baby  
after  they  heard  police  were  going  to  give  her  a  '  destitute  burial  '  ... 

Pointer-Generator baseline: 
a sydney family have claimed the body of a baby girl was found buried on 
maroubra beach on november 30 , 2014 .
locals filomena d'alessandro and bill green have claimed the infant 's body in 
order to provide her with a fitting farewell . 
now locals have claimed the infant 's body in order to provide her with a fitting 
farewell .

Pointer-Generator + closed-book decoder:  
two young boys were playing on maroubra beach when they uncovered the body 
of a baby girl buried under 30 centimetres of sand .
now locals filomena d'alessandro and bill green have claimed the infant 's body 
in order to provide her with a fitting farewell .
` above all as a mother i wanted to do something for that little girl , ' she added .

Reference summary: 
sydney family claimed the remains of a baby found on maroubra beach .
filomena d'alessandro and bill green have vowed to give her a funeral .
the baby 's body was found by two boys , buried in sand on november 30 .
the infant was found about 20-30 metres from the water 's edge .
police were unable to identify the baby girl or her parents .

Figure 1: Baseline model repeats itself twice (italic),
and fails to find all salient information (highlighted in
red in the original text) from the source text that is cov-
ered by our 2-decoder model. The summary generated
by our 2-decoder model also recovers most of the in-
formation mentioned in the reference summary (high-
lighted in blue in the reference summary).

The last few years have seen significant
progress on both extractive and abstractive ap-
proaches, of which a large number of studies
are fueled by neural sequence-to-sequence mod-
els (Sutskever et al., 2014). One popular formu-
lation of such models is an RNN/LSTM encoder
that encodes the source passage to a fixed-size
memory-state vector, and another RNN/LSTM de-
coder that generates the summary from this mem-
ory state. This paradigm is enhanced by attention
mechanism (Bahdanau et al., 2015) and pointer
network (Vinyals et al., 2015), such that the de-
coder can refer to (and weigh) all the encod-
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ing steps’ hidden states or directly copy words
from the source text, instead of relying solely on
encoder’s final memory state for all information
about the source passage. Recent studies (Rush
et al., 2015; Nallapati et al., 2016; Chopra et al.,
2016; Zeng et al., 2016; Gu et al., 2016b; Gulcehre
et al., 2016; See et al., 2017) have demonstrated
success with such seq-attention-seq and pointer
models in summarization tasks.

While the advantage of attention and pointer
models compared to vanilla sequence-to-sequence
models in summarization is well supported by
previous studies, these models still struggle to
find the most salient information in the source
text when generating summaries. This is because
summarization, being different from other text-
to-text generation tasks (where there is an almost
one-to-one correspondence between input and out-
put words, e.g., machine translation), requires the
sequence-attention-sequence model to addition-
ally decide where to attend and where to ignore,
thus demanding a strong encoder that can deter-
mine the importance of different words, phrases,
and sentences and flexibly encode salient informa-
tion in its memory state. To this end, we propose
a novel 2-decoder architecture by adding another
‘closed book’ decoder without attention layer to
a popular pointer-generator baseline, such that the
‘closed book’ decoder and pointer decoder share
an encoder. We argue that this additional ‘closed
book’ decoder encourages the encoder to be better
at memorizing salient information from the source
passage, and hence strengthen the entire model.
We provide both intuition and evidence for this ar-
gument in the following paragraphs.

Consider the following case. Two students are
learning to do summarization from scratch. Dur-
ing training, both students can first scan through
the passage once (encoder’s pass). Then student
A is allowed to constantly look back (attention)
at the passage when writing the summary (sim-
ilar to a pointer-generator model), while student
B has to occasionally write the summary without
looking back (similar to our 2-decoder model with
a non-attention/copy decoder). During the final
test, both students can look at the passage while
writing summaries. We argue that student B will
write more salient summaries in the test because
s/he learns to better distill and memorize impor-
tant information in the first scan/pass by not look-
ing back at the passage in training.

In terms of back-propagation intuition, during
the training of a seq-attention-seq model (e.g., See
et al. (2017)), most gradients are back-propagated
from the decoder to the encoder’s hidden states
through the attention layer. This encourages the
encoder to correctly encode salient words at the
corresponding encoding steps, but does make sure
that this information is not forgotten (overwritten
in the memory state) by the encoder afterward.
However, for a plain LSTM (closed-book) decoder
without attention, its generated gradient flow is
back-propagated to the encoder through the mem-
ory state, which is the only connection between
itself and the encoder, and this, therefore, encour-
ages the encoder to encode only the salient, im-
portant information in its memory state. Hence,
to achieve this desired effect, we jointly train the
two decoders, which share one encoder, by op-
timizing the weighted sum of their losses. This
approximates the training routine of student B be-
cause the sole encoder has to perform well for both
decoders. During inference, we only employ the
pointer decoder due to its copying advantage over
the closed-book decoder, similar to the situation of
student B being able to refer back to the passage
during the test for best performance (but is still
trained hard to do well in both situations). Fig. 1
shows an example of our 2-decoder summarizer
generating a summary that covers the original pas-
sage with more saliency than the baseline model.

Empirically, we test our 2-decoder architecture
on the CNN/Daily Mail dataset (Hermann et al.,
2015; Nallapati et al., 2016), and our model sur-
passes the strong pointer-generator baseline sig-
nificantly on both ROUGE (Lin, 2004) and ME-
TEOR (Denkowski and Lavie, 2014) metrics, as
well as based on human evaluation. This holds
true both for a cross-entropy baseline as well as
a stronger, policy-gradient based reinforcement
learning setup (Williams, 1992). Moreover, our
2-decoder models (both cross-entropy and rein-
forced) also achieve reasonable improvements on
a test-only generalizability/transfer setup on the
DUC-2002 dataset.

We further present a series of numeric and
qualitative analysis to understand whether the im-
provements in these automatic metric scores are
in fact due to the enhanced memory and saliency
strengths of our encoder. First, by evaluating
the representation power of the encoder’s final
memory state after reading long passages (w.r.t.
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the memory state after reading ground-truth sum-
maries) via a cosine-similarity test, we prove that
our 2-decoder model indeed has a stronger en-
coder with better memory ability. Next, we con-
duct three sets of ablation studies based on fixed-
encoder, gradient-flow cut, and model capacity to
show that the stronger encoder is the reason behind
the significant improvements in ROUGE and ME-
TEOR scores. Finally, we show that summaries
generated by our 2-decoder model are qualita-
tively better than baseline summaries as the former
achieved higher scores on two saliency metrics
(based on cloze-Q&A blanks and a keyword clas-
sifier) than the baseline summaries, while main-
taining similar length and better avoiding repeti-
tions. This directly demonstrates our 2-decoder
model’s enhanced ability to memorize and recover
important information from the input document,
which is our main contribution in this paper.

2 Related Work

Extractive and Abstractive Summarization:
Early models for automatic text summarization
were usually extractive (Jing and McKeown,
2000; Knight and Marcu, 2002; Clarke and La-
pata, 2008; Filippova et al., 2015). For abstrac-
tive summarization, different early non-neural ap-
proaches were applied, based on graphs (Gian-
nakopoulos, 2009; Ganesan et al., 2010), dis-
course trees (Gerani et al., 2014), syntactic parse
trees (Cheung and Penn, 2014; Wang et al., 2013),
and a combination of linguistic compression and
topic detection (Zajic et al., 2004). Recent neural-
network models have tackled abstractive sum-
marization using methods such as hierarchical
encoders and attention, coverage, and distrac-
tion (Rush et al., 2015; Chopra et al., 2016; Nal-
lapati et al., 2016; Chen et al., 2016; Takase et al.,
2016) as well as various initial large-scale, short-
length summarization datasets like DUC-2004 and
Gigaword. Nallapati et al. (2016) adapted the
CNN/Daily Mail (Hermann et al., 2015) dataset
for long-text summarization, and provided an ab-
stractive baseline using attentional sequence-to-
sequence model.
Pointer Network for Summarization: Pointer
networks (Vinyals et al., 2015) are useful for sum-
marization models because summaries often need
to copy/contain a large number of words that have
appeared in the source text. This provides the
advantages of both extractive and abstractive ap-

proaches, and usually includes a gating function to
model the distribution for the extended vocabulary
including the pre-set vocabulary and words from
the source text (Zeng et al., 2016; Nallapati et al.,
2016; Gu et al., 2016b; Gulcehre et al., 2016; Miao
and Blunsom, 2016). See et al. (2017) used a soft
gate to control model’s behavior of copying versus
generating. They further applied coverage mech-
anism and achieved the state-of-the-art results on
CNN/Daily Mail dataset.
Memory Enhancement: Some recent works
(Wang et al., 2016; Xiong et al., 2018; Gu et al.,
2016a) have studied enhancing the memory capac-
ity of sequence-to-sequence models. They stud-
ied this problem in Neural Machine Translation
by keeping an external memory state analogous
to data in the Von Neumann architecture, while
the instructions are represented by the sequence-
to-sequence model. Our work is novel in that we
aim to improve the internal long-term memory of
the encoder LSTM by adding a closed-book de-
coder that has no attention layer, yielding a more
efficient internal memory that encodes only impor-
tant information from the source text, which is cru-
cial for the task of long-document summarization.
Reinforcement Learning: Teacher forcing style
maximum likelihood training suffers from expo-
sure bias (Bengio et al., 2015), so recent works
instead apply reinforcement learning style pol-
icy gradient algorithms (REINFORCE (Williams,
1992)) to directly optimize on metric scores (Henß
et al., 2015; Paulus et al., 2018). Reinforced mod-
els that employ this method have achieved good
results in a number of tasks including image cap-
tioning (Liu et al., 2017; Ranzato et al., 2016), ma-
chine translation (Bahdanau et al., 2016; Norouzi
et al., 2016), and text summarization (Ranzato
et al., 2016; Paulus et al., 2018).

3 Models

3.1 Pointer-Generator Baseline
The pointer-generator network proposed in See
et al. (2017) can be seen as a hybrid of extractive
and abstractive summarization models. At each
decoding step, the model can either sample a word
from its vocabulary, or copy a word directly from
the source passage. This is enabled by the atten-
tion mechanism (Bahdanau et al., 2015), which
includes a distribution ai over all encoding steps,
and a context vector ct that is the weighted sum of
encoder’s hidden states. The attention mechanism
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Figure 2: Our 2-decoder summarization model with a pointer decoder and a closed-book decoder, both sharing a
single encoder (this is during training; next, at inference time, we only employ the memory-enhanced encoder and
the pointer decoder).

is modeled as:

et
i = vT tanh(Whhi + Wsst + battn)

at
i = softmax(et

i); ct =
X

i

at
ihi

(1)

where v, Wh, Ws, and battn are learnable param-
eters. hi is encoder’s hidden state at ith encoding
step, and st is decoder’s hidden state at tth decod-
ing step. The distribution at

i can be seen as the
amount of attention at decode step t towards the
ith encoder state. Therefore, the context vector ct

is the sum of the encoder’s hidden states weighted
by attention distribution at.

At each decoding step, the previous context vec-
tor ct�1 is concatenated with current input xt, and
fed through a non-linear recurrent function along
with the previous hidden state st�1 to produce the
new hidden state st. The context vector ct is then
calculated according to Eqn. 1 and concatenated
with the decoder state st to produce the logits for
the vocabulary distribution Pvocab at decode step t:
P t

vocab = softmax(V2(V1[st, ct]+b1)+b2), where
V1, V2, b1, b2 are learnable parameters. To en-
able copying out-of-vocabulary words from source
text, a pointer similar to Vinyals et al. (2015) is
built upon the attention distribution and controlled
by the generation probability pgen:

pt
gen = �(Ucct + Usst + Uxxt + bptr)

P t
attn(w) = pt

genP t
vocab(w) + (1 � pt

gen)
X

i:wi=w

at
i

where Uc, Us, Ux, and bptr are learnable parame-
ters. xt and st are the input token and decoder’s
state at tth decoding step. � is the sigmoid func-
tion. We can see pgen as a soft gate that controls

the model’s behavior of copying from text with at-
tention distribution at

i versus sampling from vo-
cabulary with generation distribution P t

vocab.

3.2 Closed-Book Decoder
As shown in Eqn. 1, the attention distribution ai

depends on decoder’s hidden state st, which is de-
rived from decoder’s memory state ct. If ct does
not encode salient information from the source
text or encodes too much unimportant informa-
tion, the decoder will have a hard time to locate
relevant encoder states with attention. However,
as explained in the introduction, most gradients
are back-propagated through attention layer to the
encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
add a closed-book decoder, which is a unidi-
rectional LSTM decoder without attention/pointer
layer. The two decoders share a single encoder and
word-embedding matrix, while out-of-vocabulary
(OOV) words are simply represented as [UNK]
for the closed-book decoder. The entire 2-decoder
model is represented in Fig. 2. During training, we
optimize the weighted sum of negative log likeli-
hoods from the two decoders:

LXE =
1

T

TX

t=1

� ((1 � �) log P t
attn(w|x1:t)

+ � log P t
cbdec(w|x1:t))

(2)

where Pcbdec is the generation probability from the
closed-book decoder. The mix ratio � is tuned on
the validation set.
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ROUGE MTR
1 2 L Full

PREVIOUS WORKS
?(Nallapati16) 35.46 13.30 32.65

pg (See17) 36.44 15.66 33.42 16.65
OUR MODELS

pg (baseline) 36.70 15.71 33.74 16.94
pg + cbdec 38.21 16.45 34.70 18.37

RL + pg 37.02 15.79 34.00 17.55
RL + pg + cbdec 38.58 16.57 35.03 18.86

Table 1: ROUGE F1 and METEOR scores (non-
coverage) on CNN/Daily Mail test set of previous
works and our models. ‘pg’ is the pointer-generator
baseline, and ‘pg + cbdec’ is our 2-decoder model with
closed-book decoder(cbdec). The model marked with
? is trained and evaluated on the anonymized version
of the data.

3.3 Reinforcement Learning
In the reinforcement learning setting, our summa-
rization model is the policy network that gener-
ates words to form a summary. Following Paulus
et al. (2018), we use a self-critical policy gradient
training algorithm (Rennie et al., 2016; Williams,
1992) for both our baseline and 2-decoder model.
For each passage, we sample a summary ys =
ws

1:T+1, and greedily generate a summary ŷ =
ŵ1:T+1 by selecting the word with the highest
probability at each step. Then these two sum-
maries are fed to a reward function r, which is the
ROUGE-L scores in our case. The RL loss func-
tion is:

LRL =
1

T

TX

t=1

(r(ŷ)�r(ys)) log P t
attn(ws

t+1|ws
1:t)

(3)
where the reward for the greedily-generated sum-
mary (r(ŷ)) acts as a baseline to reduce variance.
We train our reinforced model using the mixture
of Eqn. 3 and Eqn. 2, since Paulus et al. (2018)
showed that a pure RL objective would lead to
summaries that receive high rewards but are not
fluent. The final mixed loss function for RL is:
LXE+RL = �LRL+(1��)LXE , where the value
of � is tuned on the validation set.

4 Experimental Setup

We evaluate our models mainly on CNN/Daily
Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which is a large-scale, long-
paragraph summarization dataset. It has online
news articles (781 tokens or ~40 sentences on av-
erage) with paired human-generated summaries
(56 tokens or 3.75 sentences on average). The

ROUGE MTR
1 2 L Full

PREVIOUS WORKS
pg (See17) 39.53 17.28 36.38 18.72

RL? (Paulus17) 39.87 15.82 36.90
OUR MODELS

pg (baseline) 39.22 17.02 35.95 18.70
pg + cbdec 40.05 17.66 36.73 19.48

RL + pg 39.59 17.18 36.16 19.70
RL + pg + cbdec 40.66 17.87 37.06 20.51

Table 2: ROUGE F1 and METEOR scores (with-
coverage) on the CNN/Daily Mail test set. Cover-
age mechanism (See et al., 2017) is used in all mod-
els except the RL model (Paulus et al., 2018). The
model marked with ? is trained and evaluated on the
anonymized version of the data.

ROUGE MTR
1 2 L Full

pg (See17) 37.22 15.78 33.90 13.69
pg (baseline) 37.15 15.68 33.92 13.65
pg + cbdec 37.59 16.84 34.43 13.82

RL + pg 39.92 16.71 36.13 15.12
RL + pg + cbdec 41.48 18.69 37.71 15.88

Table 3: ROUGE F1 and METEOR scores on DUC-
2002 (test-only transfer setup).

entire dataset has 287,226 training pairs, 13,368
validation pairs and 11,490 test pairs. We use the
same version of data as See et al. (2017), which is
the original text with no preprocessing to replace
named entities. We also use DUC-2002, which
is also a long-paragraph summarization dataset of
news articles. This dataset has 567 articles and
1~2 summaries per article.

All the training details (e.g., vocabulary size,
RNN dimension, optimizer, batch size, learning
rate, etc.) are provided in the supplementary ma-
terials.

5 Results

We first report our evaluation results on
CNN/Daily Mail dataset. As shown in Ta-
ble 1, our 2-decoder model achieves statistically
significant improvements1 upon the pointer-
generator baseline (pg), with +1.51, +0.74, and
+0.96 points advantage in ROUGE-1, ROUGE-2
and ROUGE-L (Lin, 2004), and +1.43 points
advantage in METEOR (Denkowski and Lavie,
2014). In the reinforced setting, our 2-decoder
model still maintains significant (p < 0.001)

1Our improvements in Table 1 are statistically significant
with p < 0.001 (using bootstrapped randomization test with
100k samples (Efron and Tibshirani, 1994)) and have a 95%
ROUGE-significance interval of at most ±0.25.
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Reference summary: 
mitchell moffit and greg brown from asapscience present theories. 
different personality traits can vary according to expectations of parents. 
beyoncé, hillary clinton and j. k. rowling are all oldest children.

Pointer-Gen baseline: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube, the pair discuss how being the first, middle, 
youngest, or an only child affects us.

Pointer-Gen + closed-book decoder: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube , the pair discuss how being the first, middle, 
youngest, or an only child affects us.
the personality traits are also supposedly affected by whether parents 
have high expectations and how strict they were.

Figure 3: The summary generated by our 2-decoder
model covers salient information (highlighted in red)
mentioned in the reference summary, which is not pre-
sented in the baseline summary.

Model Score
2-Decoder Wins 49
Pointer-Generator Wins 31
Non-distinguishable 20

Table 4: Human evaluation for our 2-decoder model
versus the pointer-generator baseline.

advantage in all metrics over the pointer-generator
baseline.

We further add the coverage mechanism as in
See et al. (2017) to both baseline and 2-decoder
model, and our 2-decoder model (pg + cbdec)
again receives significantly higher2 scores than
the original pointer-generator (pg) from See et al.
(2017) and our own pg baseline, in all ROUGE
and METEOR metrics (see Table 2). In the rein-
forced setting, our 2-decoder model (RL + pg +
cbdec) outperforms our strong RL baseline (RL +
pg) by a considerable margin (stat. significance of
p < 0.001). Fig. 1 and Fig. 3 show two examples
of our 2-decoder model generating summaries that
cover more salient information than those gener-
ated by the pointer-generator baseline (see supple-
mentary materials for more example summaries).

We also evaluate our 2-decoder model with cov-
erage on the DUC-2002 test-only generalizabil-
ity/transfer setup by decoding the entire dataset
with our models pre-trained on CNN/Daily Mail,
again achieving decent improvements (shown in
Table 3) over the single-decoder baseline as well
as See et al. (2017), in both a cross-entropy and a
reinforcement learning setup.

2All our improvements in Table 2 are statistically signif-
icant with p < 0.001, and have a 95% ROUGE-significance
interval of at most ±0.25.

similarity
pg (baseline) 0.817

pg + cbdec (� = 1
2 ) 0.869

pg + cbdec (� = 2
3 ) 0.889

pg + cbdec (� = 5
6 ) 0.872

pg + cbdec (� = 10
11 ) 0.860

Table 5: Cosine-similarity between memory states after
two forward passes.

5.1 Human Evaluation

We also conducted a small-scale human evalu-
ation study by randomly selecting 100 samples
from the CNN/DM test set and then asking human
annotators to rank the baseline summaries versus
the 2-decoder’s summaries (randomly shuffled to
anonymize model identity) according to an over-
all score based on readability (grammar, fluency,
coherence) and relevance (saliency, redundancy,
correctness). As shown in Table 4, our 2-decoder
model outperforms the pointer-generator baseline
(stat. significance of p < 0.03).

6 Analysis

In this section, we present a series of analysis and
tests in order to understand the improvements of
the 2-decoder models reported in the previous sec-
tion, and to prove that it fulfills our intuition that
the closed-book decoder improves the encoder’s
ability to encode salient information in the mem-
ory state.

6.1 Memory Similarity Test

To verify our argument that the closed-book de-
coder improves the encoder’s memory ability, we
design a test to numerically evaluate the represen-
tation power of encoder’s final memory state. We
perform two forward passes for each encoder (2-
decoder versus pointer-generator baseline). For
the first pass, we feed the entire article to the
encoder and collect the final memory state; for
the second pass we feed the ground-truth sum-
mary to the encoder and collect the final mem-
ory state. Then we calculate the cosine similarity
between these two memory-state vectors. For an
optimal summarization model, its encoder’s mem-
ory state after reading the entire article should be
highly similar to its memory state after reading
the ground truth summary (which contains all the
important information), because this shows that
when reading a long passage, the model is only
encoding important information in its memory and
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forgets the unimportant information. The results
in Table 5 show that the encoder of our 2-decoder
model achieves significantly (p < 0.001) higher
article-summary similarity score than the encoder
of a pointer-generator baseline. This observation
verifies our hypothesis that the closed-book de-
coder can improve the memory ability of the en-
coder.

6.2 Ablation Studies and Sanity Check

Fixed-Encoder Ablation: Next, we conduct an
ablation study in order to prove the qualitative su-
periority of our 2-decoder model’s encoder to the
baseline encoder. To do this, we train two pointer-
generators with randomly initialized decoders and
word embeddings. For the first model, we restore
the pre-trained encoder from our pointer-generator
baseline; for the second model, we restore the pre-
trained encoder from our 2-decoder model. We
then fix the encoder’s parameters for both models
during the training, only updating the embeddings
and decoders with gradient descent. As shown in
the upper half of Table 6, the pointer-generator
with our 2-decoder model’s encoder receives sig-
nificantly higher (p < 0.001) scores in ROUGE
than the pointer-generator with baseline’s encoder.
Since these two models have the exact same struc-
ture with only the encoders initialized according
to different pre-trained models, the significant im-
provements in metric scores suggest that our 2-
decoder model does have a stronger encoder than
the pointer-generator baseline.
Gradient-Flow-Cut Ablation: We further design
another ablation test to identify how the gradients
from the closed-book decoder influence the entire
model during training. Fig. 4 demonstrates the for-
ward pass (solid line) and gradient flow (dashed
line) between encoder, decoders, and embeddings
in our 2-decoder model. As we can see, the closed-
book decoder only depends on the word embed-
dings and encoder. Therefore it can affect the en-
tire model during training by influencing either the
encoder or the word-embedding matrix. When we
stop the gradient flow between the encoder and
closed-book decoder ( 1� in Fig. 4), and keep the
flow between closed-book decoder and embedding
matrix ( 2� in Fig. 4), we observe non-significant
improvements in ROUGE compared to the base-
line. On the other hand, when we stop the gradient
flow at 2� and keep 1�, the improvements are sta-
tistically significant (p < 0.01) (see the lower half

ROUGE
1 2 L

FIXED-ENCODER ABLATION
pg baseline’s encoder 37.59 16.27 34.33
2-decoder’s encoder 38.44 16.85 35.17

GRADIENT-FLOW-CUT ABLATION
pg baseline 37.73 16.52 34.49

stop 1� 37.72 16.58 34.54
stop 2� 38.35 16.79 35.13

Table 6: ROUGE F1 scores of ablation studies, evalu-
ated on CNN/Daily Mail validation set.

Encoder

Pointer/attention 
decoder

Closed-book decoder

Word embeddings

1
2

Figure 4: Solid lines represent the forward pass,
and dashed lines represent the gradient flow in back-
propagation. For the two ablation tests, we stop the
gradient at 1� and 2� respectively.

of Table 6). This proves that the gradients back-
propagated from closed-book decoder to the en-
coder can strengthen the entire model, and hence
verifies the gradient-flow intuition discussed in in-
troduction (Sec. 1).
Model Capacity: To validate and sanity-check
that the improvements are the result of the in-
clusion of our closed-book decoder and not due
to some trivial effects of having two decoders or
larger model capacity (more parameters), we train
a variant of our model with two duplicated (ini-
tialized to be different) attention-pointer decoders.
We also evaluate a pointer-generator baseline with
2-layer encoder and decoder (pg-2layer) and in-
crease the LSTM hidden dimension and word em-
bedding dimension of the pointer-generator base-
line (pg-big) to exceed the total number of pa-
rameters of our 2-decoder model (34.5M versus
34.4M parameters). Table 7 shows that neither of
these variants can match our 2-decoder model in
terms of ROUGE and METEOR scores, and hence
proves that the improvements of our model are in-
deed because of the closed-book decoder rather
than due to simply having more parameters.3

Mixed-loss Ratio Ablation: We also present eval-

3It is also important to point out that our model is not a 2-
decoder ensemble, because we use only the pointer decoder
during inference. Therefore, the number of parameters used
for inference is the same as the pointer-generator baseline.
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ROUGE
1 2 L

pg baseline 37.73 16.52 34.49
pg + ptrdec 37.66 16.50 34.47
pg-2layer 37.92 16.48 34.62

pg-big 38.03 16.71 34.84
pg + cbdec 38.87 16.93 35.38

Table 7: ROUGE F1 and METEOR scores of sanity
check ablations, evaluated on CNN/DM validation set.

ROUGE
1 2 L

� = 0 37.73 16.52 34.49
� = 1/2 38.09 16.71 34.89
� = 2/3 38.87 16.93 35.38
� = 5/6 38.21 16.69 34.81

� = 10/11 37.99 16.39 34.7

Table 8: ROUGE F1 scores on CNN/DM validation
set, of 2-decoder models with different values of the
closed-book-decoder:pointer-decoder mixed loss ratio.

uation results (on the CNN/Daily Mail validation
set) of our 2-decoder models with different closed-
book-decoder:pointer-decoder mixed-loss ratio (�
in Eqn. 2) in Table 8. The model achieves the best
ROUGE and METEOR scores at � = 2

3 . Com-
paring Table 8 with Table 5, we observe a similar
trend between the increasing ROUGE/METEOR
scores and increasing memory cosine-similarities,
which suggests that the performance of a pointer-
generator is strongly correlated with the represen-
tation power of the encoder’s final memory state.

6.3 Saliency and Repetition
Finally, we show that our 2-decoder model can
make use of this better encoder memory state
to summarize more salient information from the
source text, as well as to avoid generating unnec-
essarily lengthy and repeated sentences besides
achieving significant improvements on ROUGE
and METEOR metrics.
Saliency: To evaluate saliency, we design a
keyword-matching test based on the original
CNN/Daily Mail cloze blank-filling task (Her-
mann et al., 2015). Each news article in the dataset
is marked with a few cloze-blank keywords that
represent salient entities, including names, loca-
tions, etc. We count the number of keywords
that appear in our generated summaries, and found
that the output of our best teacher-forcing model
(pg+cbdec with coverage) contains 62.1% of those
keywords, while the output provided by See et al.
(2017) has only 60.4% covered. Our reinforced
2-decoder model (RL + pg + cbdec) further in-
creases this percentage to 66.2%. The full com-

saliency 1 saliency 2
pg (See17) 60.4% 27.95%

our pg baseline 59.6% 28.95%
pg + cbdec 62.1% 29.97%

RL + pg 62.5% 30.17%
RL + pg + cbdec 66.2% 31.40%

Table 9: Saliency scores based on CNN/Daily Mail
cloze blank-filling task and a keyword-detection ap-
proach (Pasunuru and Bansal, 2018). All models in this
table are trained with coverage loss.

3-gram 4-gram 5-gram sent
pg (baseline) 13.20% 12.32% 11.60% 8.39%
pg + cbdec 9.66% 9.02% 8.55% 6.72%

Table 10: Percentage of repeated 3, 4, 5-grams and sen-
tences in generated summaries.

parison is shown in the first column of Table 9.
We also use the saliency metric in Pasunuru and
Bansal (2018), which finds important words de-
tected via a keyword classifier (trained on the
SQuAD dataset (Rajpurkar et al., 2016)). The
results are shown in the second column of Ta-
ble 9. Both saliency tests again demonstrate our
2-decoder model’s ability to memorize important
information and address them properly in the gen-
erated summary. Fig. 1 and Fig. 3 show two ex-
amples of summaries generated by our 2-decoder
model compared to baseline summaries.
Summary Length: On average, summaries gen-
erated by our 2-decoder model have 66.42 words
per summary, while the pointer-generator-baseline
summaries have 65.88 words per summary (and
the same effect holds true for RL models, where
there is less than 1-word difference in average
length). This shows that our 2-decoder model is
able to achieve higher saliency with similar-length
summaries (i.e., it is not capturing more salient
content simply by generating longer summaries).
Repetition: We observe that out 2-decoder
model can generate summaries that are less re-
dundant compared to the baseline, when both
models are not trained with coverage mecha-
nism. Table 10 shows the percentage of re-
peated n-grams/sentences in summaries gener-
ated by the pointer-generator baseline and our 2-
decoder model.
Abstractiveness: Abstractiveness is another ma-
jor challenge for current abstractive summariza-
tion models other than saliency. Since our base-
line is an abstractive model, we measure the per-
centage of novel n-grams (n=2, 3, 4) in our gener-
ated summaries, and find that our 2-decoder model
generates 1.8%, 4.8%, 7.6% novel n-grams while
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our baseline summaries have 1.6%, 4.4%, 7.1%
on the same test set. Even though generating more
abstractive summaries is not our focus in this pa-
per, we still show that our improvements in metric
and saliency scores are not obtained at the cost of
making the model more extractive.

6.4 Discussion: Connection to Multi-Task
Learning

Our 2-decoder model somewhat resembles a
Multi-Task Learning (MTL) model, in that both
try to improve the model with extra knowledge
that is not available to the original single-task
baseline. While our model uses MTL-style param-
eter sharing to introduce extra knowledge from the
same dataset, traditional Multi-Task Learning usu-
ally employs additional/out-of-domain auxiliary
tasks/datasets as related knowledge (e.g., transla-
tion with 2 language-pairs). Our 2-decoder model
is more about how to learn to do a single task from
two different points of view, as the pointer decoder
is a hybrid of extractive and abstractive summa-
rization models (primary view), and the closed-
book decoder is trained for abstractive summariza-
tion only (auxiliary view). The two decoders share
their encoder and embeddings, which helps enrich
the encoder’s final memory state representation.

Moreover, as shown in Sec. 6.2, our 2-decoder
model (pg + cbdec) significantly outperforms
the 2-duplicate-decoder model (pg + ptrdec) as
well as single-decoder models with more lay-
ers/parameters, hence proving that our design of
the auxiliary view (closed-book decoder doing
abstractive summarization) is the reason behind
the improved performance, rather than some sim-
plistic effects of having a 2-decoder ensemble or
higher #parameters.

7 Conclusion

We presented a 2-decoder sequence-to-sequence
architecture for summarization with a closed-book
decoder that helps the encoder to better memo-
rize salient information from the source text. On
CNN/Daily Mail dataset, our proposed model sig-
nificantly outperforms the pointer-generator base-
lines in terms of ROUGE and METEOR scores
(in both a cross-entropy (XE) setup and a rein-
forcement learning (RL) setup). It also achieves
improvements in a test-only transfer setup on the
DUC-2002 dataset in both XE and RL cases. We
further showed that our 2-decoder model indeed

has a stronger encoder with better memory capa-
bilities, and can generate summaries with more
salient information from the source text. To the
best of our knowledge, this is the first work that
studies the “representation power” of the encoders
final state in an encoder-decoder model. Further-
more, our simple, insightful 2-decoder architec-
ture can also be useful for other tasks that re-
quire long-term memory from the encoder, e.g.,
long-context QA/dialogue and captioning for long
videos.
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Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. In Computational Natural Language Learn-
ing.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly,
Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. 2016. Reward augmented maximum likeli-
hood for neural structured prediction. In Advances
In Neural Information Processing Systems, pages
1723–1731.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proceedings of the 16th Annual Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representation.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In International
Conference on Learning Representations.

4076



Steven J Rennie, Etienne Marcheret, Youssef Mroueh,
Jarret Ross, and Vaibhava Goel. 2016. Self-critical
sequence training for image captioning. In Com-
puter Vision and Pattern Recognition (CVPR).

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Empirical Methods in Nat-
ural Language Processing.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu
Hirao, and Masaaki Nagata. 2016. Neural head-
line generation on abstract meaning representation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1054–1059.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems, pages 2692–2700.

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu Flo-
rian, and Claire Cardie. 2013. A sentence com-
pression based framework to query-focused multi-
document summarization. In ACL.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun
Liu. 2016. Memory-enhanced decoder for neural
machine translation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Hao Xiong, Zhongjun He, Xiaoguang Hu, and Hua Wu.
2018. Multi-channel encoder for neural machine
translation. In AAAI.

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004.
Bbn/umd at duc-2004: Topiary. In Proceedings
of the HLT-NAACL 2004 Document Understanding
Workshop, Boston, pages 112–119.

Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel
Urtasun. 2016. Efficient summarization with
read-again and copy mechanism. arXiv preprint
arXiv:1611.03382.

4077



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4078–4087
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Improving Neural Abstractive Document Summarization
with Structural Regularization⇤

Wei Li1,2,3 Xinyan Xiao2 Yajuan Lyu2 Yuanzhuo Wang1

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2Baidu Inc., Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
weili.ucas.ict@gmail.com, {xiaoxinyan,lvyajan}@baidu.com,

wangyuanzhuo@ict.ac.cn

Abstract

Recent neural sequence-to-sequence models
have shown significant progress on short text
summarization. However, for document sum-
marization, they fail to capture the long-
term structure of both documents and multi-
sentence summaries, resulting in information
loss and repetitions. In this paper, we pro-
pose to leverage the structural information
of both documents and multi-sentence sum-
maries to improve the document summariza-
tion performance. Specifically, we import
both structural-compression and structural-
coverage regularization into the summariza-
tion process in order to capture the infor-
mation compression and information cover-
age properties, which are the two most im-
portant structural properties of document sum-
marization. Experimental results demonstrate
that the structural regularization improves the
document summarization performance signif-
icantly, which enables our model to generate
more informative and concise summaries, and
thus significantly outperforms state-of-the-art
neural abstractive methods.

1 Introduction

Document summarization is the task of generat-
ing a fluent and condensed summary for a docu-
ment while retaining the gist information. Recent
success of neural sequence-to-sequence (seq2seq)
architecture on text generation tasks like ma-
chine translation (Bahdanau et al., 2014) and im-
age caption (Vinyals et al., 2015), has attracted
growing attention to abstractive summarization
research. Huge success has been witnessed in
abstractive sentence summarization (Rush et al.,
2015; Takase et al., 2016; Chopra et al., 2016; Cao
et al., 2017; Zhou et al., 2017), which builds one-
sentence summaries from one or two-sentence in-

⇤This work was done while the first author was doing in-
ternship at Baidu Inc.
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Figure 1: Comparison of sentence-level attention distribu-
tions for the summaries in Table 1 on a news article. (a) is
the heatmap for the gold reference summary, (b) is for the
Seq2seq-baseline system, (c) is for the Point-gen-cov (See
et al., 2017) system, (d) is for the Hierarchical-baseline sys-
tem and (e) is for our system. Ii and Oi indicate the i-th
sentence of the input and output, respectively. Obviously, the
seq2seq models, including the Seq2seq-baseline model and
the Point-gen-cov model, lose much salient information of
the input document and focus on the same set of sentences
repeatedly. The Hierarchical-baseline model fails to detect
several specific sentences that are salient and relevant for each
summary sentence and focuses on the same set of sentences
repeatedly. On the contrary, our method with structural regu-
larizations focuses on different sets of source sentences when
generating different summary sentences and discovers more
salient information from the document.

put. However, the extension of sentence abstrac-
tive methods to document summarization task is
not straightforward.

As long-distance dependencies are difficult to
be captured in the recurrent framework (Bengio
et al., 1994), the seq2seq models are not yet able
to achieve convincing performance in encoding
and decoding for a long sequence of multiple sen-
tences (Chen et al., 2017; Koehn and Knowles,
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Original Text (truncated): the family of conjoined twin sisters who died 19 days after they were born have been left mortified(2) after they arrived at their gravesite to find cemetery
staff had cleared the baby section of all mementos and tossed them in the rubbish(3) . faith and hope howie were dubbed the miracle twins when they were born on may 8 last year
with one body and two faces due to an extremely rare condition known as disrosopus (1) . they died in hospital less than a month after they were born and their parents , simon howie
and renee young , laid them to rest at pinegrove memorial park in sydney ’s west(2) . scroll down for video . faith and hope howie were dubbed the miracle twins when they were born
on may 8 last year with one body and two faces due to an extremely rare condition known as disrosopus(1) . family members have visited the grave every week to leave mementos
and flowers for faith and hope , but when mr howie and ms young arrived on thursday they found the site completely bare(3) . ’ we took renee’s aunts to see the girls for the first time
and we found everything had been stripped away , ’ mr howie told daily mail australia . ’ we were devastated and mortified . we ’ve had a little shrine set up and we ’ve been adding
to it since the funeral . ’ it ’s heartbreaking to know we ’ve set this up and it has been treated like rubbish . ’ faith and hope were buried in a pink coffin and their family and friends
released doves and pink and white balloons at their funeral . their family and friends had built up a small memorial with pink and white statues , flowers , pebbles and toys over the past
11 months . when they arrived on thursday , everything had been removed apart from a bunch of flowers . the twins were buried at pinegrove memorial park in western sydney after they
died after just 19 days(2) . their family and friends had built a small shrine at their gravesite , which they have added to since the funeral . family members have visited the grave every
week to leave mementos and flowers for faith and hope , but when parents simon howie and renee young arrived on thursday they found the site completely bare(3) .
Gold Reference: faith and hope howie were born with one body and two faces on may 8. they tragically died in hospital just 19 days after they were born . parents simon howie and
renee young visit their grave at pinegrove in western sydney fortnightly . they arrived on thursday to find the grave bare of all the girls ’ mementos . staff had cleared entire baby section
and thrown belongings in rubbish .
Seq2seq-baseline: faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare condition known
as disrosopus . faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare condition known as
disrosopus . faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare condition known as
disrosopus .
Point-cov (See et al., 2017): faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare
condition known as disrosopus . they died in hospital less than a month after they were born and their parents , simon howie and renee young , laid them to rest at pinegrove memorial
park in sydney ’s west.
Hierarchical-baseline: faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare condition
. they died in hospital less than a month after they died in hospital less than a month after they were born and laid them to rest at pinegrove memorial park in sydney ’s west . family
members have visited the grave every week to leave mementos and flowers for faith and hope , but when they were born on thursday they found the site completely bare . family
members have visited the grave every week to leave mementos and flowers for faith and hope , but when they found the site completely bare .
Our Method: faith and hope howie were dubbed the miracle twins when they were born on may 8 last year with one body and two faces due to an extremely rare condition(1) . they
died in hospital less than a month after they were born and their parents laid them to rest at pinegrove memorial park in sydney ’s west(2) . family members have visited the grave every
week to leave mementos and flowers for faith and hope , but when mr howie and ms young arrived on thursday they found the site completely bare(3) .

Table 1: Comparison of the generated summaries of four abstractive summarization models and the gold reference summary
on a news article. The summaries generated by the seq2seq models, both the Seq2seq-baseline model and the Point-cov model,
lose some salient information. The Seq2seq-baseline model even contains serious information repetitions. The Hierarchical-
baseline model not only contains serious repetitions, but also makes non-grammatical or non-coherent sentences. On the
contrary, the summary generated by our model contains more salient information and is more concise. Our model also shows
the ability to generate a summary sentence by compressing several source sentences, such as shortening a long sentence.

2017). In document summarization, it is also diffi-
cult for the seq2seq models to discover important
information from too much input content of a doc-
ument (Tan et al., 2017a,b). The summary gener-
ated by the seq2seq models usually loses salient
information of the original document or even con-
tains repetitions (see Table 1).

In fact, both document and summary naturally
have document-sentence hierarchical structure, in-
stead of being a flat sequence of words. It is
widely aware that the hierarchical structure is nec-
essary and useful for neural document modeling.
Hierarchical neural models have already been suc-
cessfully used in document-level language mod-
eling (Lin et al., 2015) and document classifi-
cation (Yang et al., 2016). However, few work
makes use of the hierarchical structure of docu-
ment and multi-sentence summary in document
summarization. The basic hierarchical encoder-
decoder model (Li et al., 2015) is also not yet able
to capture the structural properties of both docu-
ment and summary (see Figure 11), resulting in

1To simulate the sentence-level attention mechanism on
the gold reference summary, we compute the words-matching
similarities (based on TF-IDF cosine similarity) between a
reference-summary sentence and the corresponding source
document sentences and normalize them into attention dis-
tributions. The sentence-level attention distributions of the
Seq2seq-baseline model and the Point-gen-cov model are
computed by summing the attention weights of all words in
each sentence and then normalized across sentences.

more serious repetitions and even nonsensical sen-
tences (see Table 1).

In document summarization, information com-
pression and information coverage are the two
most important structural properties. Based on
the hierarchical structure of document and sum-
mary, they can be realized at the sentence-
level as: (1) Structural-compression: each sum-
mary sentence is generated by compressing sev-
eral specific source sentences; (2) Structural-
coverage: different summary sentences usually
focus on different sets of source sentences to
cover more salient information of the original doc-
ument. Figure 1(a) intuitively shows the two
properties in human-written gold reference sum-
maries. We import both structural-compression
and structural-coverage regularizations into the
document summarization process based on a hi-
erarchical encoder-decoder with hybrid sentence-
word attention model. Typically, we design
an effective learning and inference algorithm to
explicitly model the structural-compression and
structural-coverage properties of document sum-
marization process, so as to generate more infor-
mative and concise summaries (see Table 1).

We conduct our experiments on benchmark
datasets and the results demonstrate that prop-
erly modeling the structural-compression and
structural-coverage properties based on the hier-
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Figure 2: Our hierarchical encoder-decoder model with
structural regularization for abstractive document summa-
rization.

archical structure of document and summary, im-
proves document summarization performance sig-
nificantly. Our model is able to generate more
informative and concise summaries by enhancing
sentences compression and coverage, and signifi-
cantly outperforms state-of-the-art seq2seq-based
abstractive methods, especially on summarizing
long documents with long summaries.

2 Hierarchical Encoder-Decoder Model

In this section, we introduce our baseline hierar-
chical encoder-decoder model which consists of
two parts: a hierarchical encoder and a hierarchi-
cal decoder, as shown in Figure 2. Similar to (Li
et al., 2015), both the encoder and decoder consists
of two levels: a sentence level and a word level.
The main distinction is that we design a hybrid
sentence-word attention mechanism on the hierar-
chical decoder to help organize summary content
and realize summary sentences.

2.1 Hierarchical Encoder

The goal of the encoder is to map the input doc-
ument to a hidden vector representation. We con-
sider a source document X as a sequence of sen-
tences: X = {si}, and each sentence si as a
sequence of words: si = {wij}. The word-
level encoder encodes the words of a sentence
into a sentence representation, and the sentence-
level encoder encodes the sentences of a docu-
ment into the document representation. In this
work, both the word-level encoder and sentence-
level encoder use the bidirectional Gated Recur-
rent Unit (BiGRU) (Chung et al., 2014). The
word-level encoder sequentially updates its hid-
den state upon each received word, as hi,j =
BiGRU(hi,j�1, ei,j) where hi,j and ei,j denote
the hidden state and the embedding of word wi,j ,
respectively. The concatenation of the forward and

backward final hidden states in the word-level en-
coder is indicated as the vector representation ri of
sentence si, which is used as input to the sentence-
level encoder. The sentence-level encoder updates
its hidden state after receiving each sentence rep-
resentation, as hi = BiGRU(hi�1, ri) where hi

denotes the hidden state of sentence si. The con-
catenation of the forward and backward final states
in the sentence-level encoder is used as the vector
representation of document d.

In the hierarchical encoder architecture, long
dependency problem will be largely reduced at
both the sentence level and the word level, so it
can better capture the structural information of the
input document.

2.2 Hierarchical Decoder with Hybrid
Sentence-Word Attention

The goal of the decoder is to generate output sum-
mary according to the representation of the in-
put document. Let Y = {s0

i} indicates a candi-
date summary of document X , and each sentence
s0
i consists of a sequence of words s0

i = {w0
ij}.

The hierarchical decoder organizes summary Y
sentence by sentence, and realizes each sentence
word by word. In this work, both the sentence-
level decoder and word-level decoder use a single
layer of unidirectional GRU. The sentence-level
decoder receives the document representation d
as initial state h0

0 and predicts sentence represen-
tations sequentially by h0

t = GRU(h0
t�1, r

0
t�1),

where h0
t denotes the hidden state of the tth sum-

mary sentence s0
t and r0

t�1 denotes the encoded
representation of the previously generated sen-
tence s0

t�1. The word-level decoder receives a sen-
tence representation h0

t as initial state h0
t,0 and pre-

dicts word representations sequentially by h0
t,k =

GRU(h0
t,k�1, et,k�1) where h0

t,k denotes the hid-
den state of word w0

t,k in sentence s0
t and et,k�1 de-

notes the embedding of previously generated word
w0

t,k�1 in sentence s0
t.

In this work, we design a hybrid sentence-
word attention mechanism based on the hierarchi-
cal encoder-decoder architecture, which contains
both sentence-level attention and word-level at-
tention, to better exploit both the sentence-level
information and word-level information from the
input document and the output summary.

2.2.1 Sentence-level Attention
The sentence-level attention mechanism is de-
signed on the sentence-level encoder and decoder,
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which is used to help our model to detect impor-
tant and relevant source sentences in each sen-
tence generation step. ↵i

t indicates how much
the t-th summary sentence attends to the i-th
source sentence, which is computed by ↵i

t =
ef(hi,h0

t)/
P

l e
f(hl,h0

t) where f is the function
modeling the relation between hi and h0

t. We use
the function f(a,b) = vT tanh(Waa + Wbb),
where v, Wa, Wb are all learnable parameters.
Then the sentence level context vector cs

t when
generating the tth sentence s0

t can be computed
as: cs

t =
P

i ↵
i
thi, which is incorporated into the

sentence-level decoding process.

2.2.2 Word-level Attention with
Sentence-level Normalization

The word-level attention is designed on the word-
level encoder and decoder, which is used to help
our model to realize the summary sentence by lo-
cating relevant words in the selected source sen-
tences in each word generation step. Let �i,j

t,k
denotes how much the j-th word in source sen-
tence si contributes to generating the k-th word
in summary sentence s0

t, which is computed by
�i,j

t,k = ef(hi,j ,h0

t,k)/
P

l e
f(hi,l,h0

t,k).
Since the word-level attention above is within

each source sentence, we normalize it by sentence-
level attentions to get word attention over all
source words, as �i

t,k = �i
t,k↵

i
t. Then the word-

level context vector when generating word w0
t,k

can be computed as: cw
t,k =

P
i

P
j �i,j

t,khi,j ,
which is also incorporated into the word-level de-
coding process.

At each word generation step, the vocabulary
distribution is calculated from the context vector
cw

t,k and the decoder state h
0

t,k by:

Pvocab(w
0

t,k) = softmax(Wv(Wc[h
0
t,k, cw

t,k] + bc) + bv)
(1)

where Wv, Wc, bc and bv are learned parame-
ters. We also incorporate the copy mechanism
(See et al., 2017) based on the normalized word-
level attention to help generate out-of-vocabulary
(OOV) words during the sentence realization pro-
cess.

3 Structural Regularization

Although the above hierarchical encoder-decoder
model is designed based on the document-
sentence hierarchical structure, it can’t capture
the basic structural properties of document sum-
marization (see Figure 1(d) and Table 1). How-

ever, the hierarchical architecture makes it possi-
ble for importing structural regularization to cap-
ture the sentence-level characteristics of docu-
ment summarization process. In this work, we
propose to model the structural-compression and
structural-coverage properties based on the hier-
archical encoder-decoder model by adding struc-
tural regularization during both the model learning
phase and inference phase.

3.1 Structural Compression
Compression is a basic property of document sum-
marization, which has been widely explored in tra-
ditional document summarization research, such
as sentence compression-based methods which
shorten sentences by removing non-salient parts
(Li et al., 2013; Durrett et al., 2016) and sentence
fusion-based methods which merge information
from several different source sentences (Barzilay
and McKeown, 2005; Cheung and Penn, 2014).
As shown in Figure 1, each summary sentence in
the human-written reference summary is also cre-
ated by compressing several specific source sen-
tences.

In this paper, we propose to model the
structural-compression property of document
summarization based on sentence-level attention
distributions by:

strCom(↵t) = 1 � 1

logN

NX

i=1

↵i
tlog↵i

t (2)

where ↵t denotes the sentence-level attention dis-
tribution when generating the tth summary sen-
tence and N denotes the length of distribution
↵t. The right part in the above formula is actu-
ally the entropy of the distribution ↵t. As the at-
tention distribution becomes sparser, the entropy
of the distribution becomes lower, so the value
of strCom(↵t) defined above will become larger.
Sparse sentence-level attentions help the model
compress and generalize several specific source
sentences which are salient and relevant in the
sentence generation process. Note that, 0 
strCom(↵t)  1.

3.2 Structural Coverage
A good summary should have the ability to cover
most of the important information of an input
document. As shown in Figure 1, the human-
written reference summary covers the information
of many source sentences. Coverage has been
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used as a measure in many traditional document
summarization research, such as the submodular-
based methods which optimize the information
coverage of the summary with similarity-based
coverage metrics (Lin and Bilmes, 2011; Chali
et al., 2017).

In this work, we simply model the structural-
coverage property of summary based on the hi-
erarchical architecture by encouraging different
summary sentences to focus on different sets of
source sentences so that the summary can cover
more salient sentences of the input document.
We measure the structural-coverage of summary
based on the sentence-level attention distributions:

strCov(↵t) = 1 �
X

i

min(↵i
t,

t�1X

t0=0

↵i
t0) (3)

which is used to encourage different summary sen-
tences to focus on different sets of source sen-
tences during the summary generation process. As
the sentence-level attention distributions of dif-
ferent summary sentences become more diversi-
fied, the summary will cover more source sen-
tences, which is effective to improve the informa-
tiveness and conciseness of summaries. Note that,
0strCov(↵t)  1.

3.3 Model Learning
Experimental results reveal that the properties of
structural-compression and structural-coverage
are hard to be captured by both the seq2seq mod-
els and the hierarchical encoder-decoder baseline
model, which largely restricts their performance
(Section 4). In this work, we model them ex-
plicitly by regulating the sentence-level attention
distributions based on the hierarchical encoder-
decoder framework. The loss function L of
the model is the mix of negative log-likelihood
of generating summaries over training set T ,
the structural-compression loss and the structural-
coverage loss:

L =
X

(X,Y )2T

{�logP (Y |X; ✓) + �1

X

t

strCom(↵t)

| {z }
structural�compression loss

+ �2

X

t

strCov(↵t)

| {z }
structural�coverage loss

}

(4)

where �1 and �2 are hyper-parameters tuned on
the validation set. We use Adagrad (Duchi et al.,

2011) with learning rate 0.1 and an initial accumu-
lator value 0.1 to optimize the model parameters ✓.

3.4 Hierarchical Decoding Algorithm
The traditional beam search algorithm that widely
used for text generation can only help generate
fluent sentence, and is not easy to extend to the
sentence level. The reason is that the K-best sen-
tences generated by a word decoder will mostly
be similar to each other (Li et al., 2016; Tan
et al., 2017a). We propose a hierarchical beam
search algorithm with structural-compression and
structural-coverage regularization.

The hierarchical decoding algorithm has two
levels: K-best word-level beam search and N -best
sentence-level beam search. At the word-level,
the vanilla beam search algorithm is used to max-
imize the accumulated score P̂ (s0

t) of generating
current summary sentence s0

t. At the sentence-
level, N -best beam search is realized by maxi-
mizing the accumulated score scoret of all the
sentences generated, including the sentences gen-
eration score, structural-compression score and
structural-coverage score, which are defined as:

scoret =
tX

t0=0

{P̂ (s0

t0)+�1strCom(↵t0)+�2strCov(↵t0)}

(5)
where ⇣1 and ⇣2 are factors introduced to con-
trol the influence of structural regularization dur-
ing the decoding process.

4 Experiments

4.1 Experimental Settings
We conduct our experiments on the CNN/Daily
Mail dataset (Hermann et al., 2015), which has
been widely used for exploration on summarizing
documents with multi-sentence summaries (Nal-
lapati et al., 2016; See et al., 2017; Tan et al.,
2017a; Paulus et al., 2017). The CNN/DailyMail
dataset contains input sequences of about 800 to-
kens in average and multi-sentence summaries of
up to 200 tokens. The average number of sen-
tences in documents and summaries are 42.1 and
3.8, respectively. We use the same version of
non-anonymized data (the original text without
pre-processing) as See et al. (2017), which has
287,226 training pairs, 13,368 validation pairs and
11,490 test pairs.

For all experiments, the word-level encoder and
decoder both use 256-dimensional hidden states,
and the sentence-level encoder and decoder both
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Method Rouge-1 Rouge-2 Rouge-L
SummaRuNNer-abs 37.5 14.5 33.4
SummaRuNNer 39.6 16.2 35.3
Seq2seq-baseline 36.64 15.66 33.42
ABS-temp-attn 35.46 13.30 32.65
Graph-attention 38.1 13.9 34.0
Point-cov 39.53 17.28 36.38
Hierachical-baseline 34.95 14.79 32.68
Our Model 40.30 18.02 37.36

Table 2: Rouge F1 scores on the test set. All our ROUGE
scores have a 95% confidence interval of at most ±0.25

as reported by the official ROUGE script.

use 512-dimensional hidden states. The dimen-
sion of word embeddings is 128, which is learned
from scratch during training. We use a vocabulary
of 50k words for both the encoder and decoder.

We trained our model on a single Tesla K40m
GPU with a batch size of 16 and an epoch is set
containing 10,000 randomly sampled documents.
Convergence is reached within 300 epochs. After
tuning on the validation set, parameters �1, �2, ⇣1

and ⇣2, are set as -0.5, -1.0, 1.2 and 1.4, respec-
tively. At the test time, we use the hierarchical
decoding algorithm with sentence-level beam size
4 and word-level beam size 8.

4.2 Evaluation
ROUGE Evaluation. We evaluate our models
with the widely used ROUGE (Lin, 2004) toolkit.
We compare our system’s results with the re-
sults of state-of-the-art neural summarization ap-
proaches reported in recent papers, including both
abstractive models and extractive models. The ex-
tractive models include SummaRuNNer (Nallap-
ati et al., 2017) and SummaRuNNer-abs which is
similar to SummaRuNNer but is trained directly
on the abstractive summaries. The abstractive
models include:

1) Seq2seq-baseline, which uses the basic
seq2seq encoder-decoder architecture with
attention mechanism, and incorporates with
copy mechanism (See et al., 2017) to allevi-
ate the OOV problem.

2) ABS-temp-attn (Nallapati et al., 2016),
which uses Temporal Attention on the
seq2seq architecture to overcome the repeti-
tion problem.

3) Point-cov (See et al., 2017), which is an ex-
tension of the Seq2seq-baseline model by im-
porting word-coverage mechanism to reduce
repetitions in summary.

4) Graph-attention (Tan et al., 2017a), which

length Method Rouge-1 Rouge-2 R.-L
< 100 Our M. 39.66 17.28 36.69
(94.47%) Point-cov 39.44 17.20 36.30
[100, 125) Our M. 43.07 19.96 39.47
(4.00%) Point-cov 41.78 19.00 38.41
[125, 150) Our M. 43.25 19.21 40.08
(1.07%) Point-cov 41.31 18.02 37.75
> 150 Our M. 40.64 18.30 38.00
(0.46%) Point-cov 35.64 17.76 33.12

Table 3: Comparison results w.r.t different length of refer-
ence summary. < 100 indicates the reference summary has
less than 100 words (occupy 94.47% of test set).

uses a graph-ranking based attention mecha-
nism based on a hierarchical architecture to
identify important sentences.

5) Hierachical-baseline, which just uses the
basic hierarchical encoder-decoder with hy-
brid attention model proposed in this paper.

Results in Table 2 show that our model sig-
nificantly outperforms all the neural abstractive
baselines and extractive baselines. An inter-
esting observation is that the performance of
the Hierarchical-baseline model are lower than
the Seq2seq-baseline model, which demonstrates
the difficulty for a traditional model to iden-
tify the structural properties of document sum-
marization process. Our model outperforms the
Hierarchical-baseline model by more than 4
ROUGE points, which demonstrates that the struc-
tural regularization improves the document sum-
marization performance significantly.

To verify the superiority of our model on gen-
erating long summaries, we also compare our
method with the best seq2seq model Point-cov
(See et al., 2017) by evaluating them on a test set
w.r.t. different length of reference summaries. The
results are shown in Table 3, which demonstrate
that our model is better at generating long sum-
mary than the seq2seq model. As the summary
becomes longer, our system will obtain larger ad-
vantages over the baseline (from +0.22 Rouge-1,
+0.08 Rouge-2 and +0.39 Rouge-L for summary
less than 100 words, rising to +5.00 Rouge-1,
+0.54 Rouge-2 and +4.88 Rouge-L for summaries
more than 150 words).

Human Evaluation. In addition to the ROUGE
evaluation, we also conducted human evaluation
on 50 random samples from CNN/DailyMail test
set and compared the summaries generated by our
method with the outputs of Seq2seq-baseline and
Point-cov (See et al., 2017). Three data annotators
were asked to compare the generated summaries
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Method Informat. Concise Coherent Fluent
Seq2seq-b. 2.79⇤ 2.52⇤ 2.68⇤ 3.57
Point-cov 3.17⇤ 2.92⇤ 3.00⇤ 3.54
Our Model 3.67 3.39 3.51 3.70

Table 4: Human evaluation results. ⇤ indicates the difference
between Our Model and other models are statistic significant
(p < 0.05) by two-tailed t-test.

Method R-1 R-2 R-L strCom strCov
Hierarchical-b. 34.95 14.79 32.68 0.22 0.31
+strCom 37.03 16.21 34.44 0.64 0.71
+strCov 39.52 17.12 36.44 0.65 0.87
+hierD 40.30 18.02 37.36 0.68 0.93

Table 5: Results of adding different components of our
method in terms of ROUGE-1, ROUGE-2, ROUGE-L, str-
Com (Equation 1) and strCov (Equation 2) scores.

with the human summaries, and assess each sum-
mary from four independent perspectives: (1) In-
formative: How informative the summary is? (2)
Concise: How concise the summary is? (3) Co-
herent: How coherent (between sentences) the
summary is? (4) Fluent: How fluent, grammatical
the sentences of a summary are? Each property
is assessed with a score from 1(worst) to 5(best).
The average results are presented in Table 4.

The results show that our model consistently
outperforms the Seq2seq-baseline model and the
previous state-of-the-art method Point-cov. As
shown in Table 1, the summary generated by
Seq2Seq-Baseline usually contains repetition of
sentences or phrases, which seriously affects its
informativeness, conciseness as well as coherence.
The Point-cov model effectively alleviates the in-
formation repetition problem, however, it usually
loses some salient information and mainly copies
original sentences directly from the input docu-
ment. The summaries generated by our method
obviously contains more salient information and
are more concise through sentences compression,
which shows the effectiveness of the structural
regularization in our model. The results also show
that the sentence-level modeling of document and
summary in our model makes the generated sum-
maries achieve better inter-sentence coherence.

5 Discussion

5.1 Model Validation
To verify the effectiveness of each component
in our model, we conduct several ablation ex-
periments. Based on the Hierarchical-baseline
model, several different structural regulariza-
tions are added one by one: +strCom indi-

sparsity

diversity

sparsity

diversity

(a) gold reference summary (b) Seq2seq-baseline

sparsity

diversity

(c) Hierarchical-baseline

sparsity

diversity

(d) Our model with structural regularizations

Figure 3: Comparisons of structural-compression and
structural-coverage analysis results on random samples from
CNN/Daily Mail datasets, which demonstrate that both the
Seq2seq-baseline model and the Hierarchical-baseline model
are not yet able to capture them properly, but our model with
structural regularizations achieves similar behavior with the
gold reference summary.

cates adding structural-compression regulariza-
tion during model learning, +strCov indicates
adding structural-coverage regularization during
model learning, +hierD indicates using the hier-
archical decoding algorithm with both structural-
compression and structural-coverage regulariza-
tions during inference.

Results on the test set are shown in Table 5.
Our method much outperforms all the compared
systems, which verifies the effectiveness of each
component of our model. Note that, both the
structural-compression and structural-coverage
regularization significantly affect the summa-
rization performance. The higher structural-
compression and structural-coverage scores will
lead to higher ROUGE scores. Therefore, we
can conclude that the structural-compression and
structural-coverage regularization based on our hi-
erarchical model have significant contributions to
the increase of ROUGE scores.

5.2 Structural Properties Analysis

We further compare the ability of different
models in capturing the structural-compression
and structural-coverage properties of document
summarization. Figure 3 shows the compar-
ison results of 4000 document-summary pairs
with 14771 reference-summary sentences sampled
from CNN/Daily Mail dataset. Figure 3(a) shows
that most samples (over 95%) fall into the right-
top area in human-made summaries, which indi-
cates high structural-compression and structural-
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Figure 4: The structural regularization reduces undesirable
repetitions while summaries from the Seq2seq-baseline and
the Hierarchical-baseline contains many n-gram repetitions.

coverage scores. However, Figure 3 (b) and (c)
show that in both the Seq2seq-baseline model
and the Hierarchical-baseline model, most sam-
ples fall into the left-bottom area (low structural-
compression and structural-coverage), and only
about 13% and 7% samples fall into the right-
top area, respectively. Figure 3 (d) shows that
our system with structural regularization achieves
similar behaviors to human-made summaries (over
80% samples fall into the right-top area). The re-
sults demonstrate that the structural-compression
and structural-coverage properties are common in
document summarization, but both the seq2seq
models and the basic hierarchical encoder-decoder
models are not yet able to capture them properly.

5.3 Effects of Structural Regularization
The structural regularization based on our hi-
erarchical encoder-decoder with hybrid attention
model improves the quality of summaries from
two aspects: (1) The summary covers more salient
information and contains very few repetitions,
which can be seen both qualitatively (Table 1 and
Figure 1) and quantitatively (Table 5 and Figure
4). (2) The model has the ability to shorten a
long sentence to generate a more concise one or
compress several different sentences to generate
a more informative one by merging the informa-
tion from them. Table 6 shows several examples of
abstractive summaries produced by sentence com-
pression in our model.

6 Related Work

Recently some work explored the seq2seq mod-
els on document summarization, which exhibit
some undesirable behaviors, such as inaccurately
reproducing factual details, OOVs and repetitions.
To alleviate these issues, copying mechanism (Gu
et al., 2016; Gulcehre et al., 2016; Nallapati et al.,
2016) has been incorporated into the encoder-
decoder architecture to help generate informa-
tion correctly. Distraction-based attention model

Original Text: luke lazarus , a 23-year-old former private school boy , was jailed
for at least three years on march 27 for raping an 18-year-old virgin in an alleyway
outside his father ’s soho nightclub in kings cross , inner sydney in may 2013 .(...)
Summary: luke lazarus was jailed for at least three years on march 27 for raping an
18-year-old virgin in an alleyway outside his father ’s soho nightclub in may 2013 .
Original Text: (...) amy wilkinson , 28 , claimed housing benefit and council tax
benefit even though she was living in a home owned by her mother and her partner ,
who was also working .wilkinson , who was a british airways cabin crew attendant
, was ordered to pay back a total of 17,604 that she claimed over two years when
she appeared at south and east cheshire magistrates court last week . (...)
Summary: amy wilkinson , 28 , claimed housing benefit and council tax benefit
even though she was living in a home owned by her mother and her partner . she
was ordered to pay back a total of 17,604 that she claimed over two years when she
appeared at south and east cheshire magistrates court last week .
Original Text: (...) a grand jury charged durst with possession of a firearm by a
felon , and possession of both a firearm and an illegal drug : 5 ounces of marijuana
, said assistant district attorney chris bowman , spokesman for the district attorney .
millionaire real estate heir robert durst was indicted wednesday on the two weapons
charges that have kept him in new orleans even though his lawyers say he wants
to go to los angeles as soon as possible to face a murder charge there . his arrest
related to those charges has kept durst from being extradited to los angeles , where
he ’s charged in the december 2000 death of longtime friend susan berman .(...)
Summary: durst entered his plea during an arraignment in a new orleans court on
weapons charges that accused him of possessing both a firearm and an illegal drug
, marijuana . the weapons arrest has kept durst in new orleans even though he is
charged in the december 2000 death of a longtime friend .

Table 6: Examples of sentences compression or fusion by
our model. The link-through denotes deleting the non-salient
part of the original text. The italic denotes novel words or
sentences generated by sentences fusion or compression.

(Chen et al., 2016) and word-level coverage mech-
anism (See et al., 2017) have also been investi-
gated to alleviate the repetition problem. Rein-
forcement learning has also been studied to im-
prove the document summarization performance
from global sequence level (Paulus et al., 2017).

Hierarchical Encoder-Decoder architecture is
first proposed by Li et al. (2015) to train an
auto-encoder to reconstruct multi-sentence para-
graphs. In summarization field, hierarchical en-
coder has first been used to alleviate the long de-
pendency problem for long inputs (Cheng and La-
pata, 2016; Nallapati et al., 2016). Tan et al.
(2017b) also propose to use a hierarchical encoder
to encode multiple summaries produced by several
extractive summarization methods, and then de-
code them into a headline. However, these models
don’t model the decoding process hierarchically.

Tan et al. (2017a) first use the hierarchical
encoder-decoder architecture on generating multi-
sentences summaries. They mainly focus on incor-
porating sentence ranking into abstractive docu-
ment summarization to help detect important sen-
tences. Different from that, our work mainly tends
to verify the necessity of leveraging document
structure in document summarization and studies
how to properly capture the structural properties
of document summarization based on the hierar-
chical architecture to improve the performance of
document summarization.
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7 Conclusions

In this paper we analyze and verify the neces-
sity of leveraging document structure in docu-
ment summarization, and explore the effective-
ness of capturing structural properties of docu-
ment summarization by importing both structural-
compression and structural-coverage regulariza-
tion based on the proposed hierarchical encoder-
decoder with hybrid attention model. Experimen-
tal results demonstrate that the structural regular-
ization enables our model to generate more in-
formative and concise summaries by enhancing
sentences compression and coverage. Our model
achieves considerable improvement over state-of-
the-art seq2seq-based abstractive methods, espe-
cially on long document with long summary.
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Abstract

In this paper, we introduce Iterative Text Sum-
marization (ITS), an iteration-based model for
supervised extractive text summarization, in-
spired by the observation that it is often nec-
essary for a human to read an article multiple
times in order to fully understand and summa-
rize its contents. Current summarization ap-
proaches read through a document only once
to generate a document representation, result-
ing in a sub-optimal representation. To ad-
dress this issue we introduce a model which
iteratively polishes the document representa-
tion on many passes through the document. As
part of our model, we also introduce a selec-
tive reading mechanism that decides more ac-
curately the extent to which each sentence in
the model should be updated. Experimental
results on the CNN/DailyMail and DUC2002
datasets demonstrate that our model signifi-
cantly outperforms state-of-the-art extractive
systems when evaluated by machines and by
humans.

1 Introduction

A summary is a shortened version of a text doc-
ument which maintains the most important ideas
from the original article. Automatic text summa-
rization is a process by which a machine gleans the
most important concepts from an article, removing
secondary or redundant concepts. Nowadays as
there is a growing need for storing and digesting
large amounts of textual data, automatic summa-
rization systems have significant usage potential
in society.

Extractive summarization is a technique for
generating summaries by directly choosing a sub-
set of salient sentences from the original docu-
ment to constitute the summary. Most efforts
made towards extractive summarization either rely

⇤Corresponding author: Rui Yan (ruiyan@pku.edu.cn)

on human-engineered features such as sentence
length, word position, and frequency (Cohen,
2002; Radev et al., 2004; Woodsend and Lapata,
2010; Yan et al., 2011a,b, 2012) or use neural
networks to automatically learn features for sen-
tence selection (Cheng and Lapata, 2016; Nallap-
ati et al., 2016a).

Although existing extractive summarization
methods have achieved great success, one limita-
tion they share is that they generate the summary
after only one pass through the document. How-
ever, in real-world human cognitive processes,
people read a document multiple times in order
to capture the main ideas. Browsing through the
document only once often means the model cannot
fully get at the document’s main ideas, leading to
a subpar summarization. We share two examples
of this. (1) Consider the situation where we almost
finish reading a long article and forget some main
points in the beginning. We are likely to go back
and review the part that we forget. (2) To write
a good summary, we usually first browse through
the document to obtain a general understanding of
the article, then perform a more intensive reading
to select salient points to include in the summary.
In terms of model design, we believe that letting
a model read through a document multiple times,
polishing and updating its internal representation
of the document can lead to better understanding
and better summarization.

To achieve this, we design a model that we call
Iterative Text Summarization (ITS) consisting of a
novel “iteration mechanism” and “selective read-
ing module”. ITS is an iterative process, read-
ing through the document many times. There is
one encoder, one decoder, and one iterative unit in
each iteration. They work together to polish doc-
ument representation. The final labeling part uses
outputs from all iterations to generate summaries.
The selective reading module we design is a modi-
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fied version of a Gated Recurrent Unit (GRU) net-
work, which can decide how much of the hidden
state of each sentence should be retained or up-
dated based on its relationship with the document.

Overall, our contribution includes:

1. We propose Iterative Text Summarization
(ITS), an iteration based summary generator
which uses a sequence classifier to extract
salient sentences from documents.

2. We introduce a novel iterative neural net-
work model which repeatedly polishes the
distributed representation of document in-
stead of generating that once for all. Besides,
we propose a selective reading mechanism,
which decides how much information should
be updated of each sentence based on its re-
lationship with the polished document rep-
resentation. Our entire architecture can be
trained in an end-to-end fashion.

3. We evaluate our summarization model on
representative CNN/DailyMail corpora and
benchmark DUC2002 dataset. Experimen-
tal results demonstrate that our model out-
performs state-of-the-art extractive systems
when evaluated automatically and by human.

2 Related Work

Our research builds on previous works in two
fields: summarization and iterative modeling.

Text summarization can be classified into ex-
tractive summarization and abstractive summa-
rization. Extractive summarization aims to gener-
ate a summary by integrating the most salient sen-
tences in the document. Abstractive summariza-
tion aims to generate new content that concisely
paraphrases the document from scratch.

With the emergence of powerful neural net-
work models for text processing, a vast majority of
the literature on document summarization is ded-
icated to abstractive summarization. These mod-
els typically take the form of convolutional neu-
ral networks (CNN) or recurrent neural networks
(RNN). For example, Rush et al. (2015) propose
an encoder-decoder model which uses a local at-
tention mechanism to generate summaries. Nal-
lapati et al. (2016b) further develop this work by
addressing problems that had not been adequately
solved by the basic architecture, such as keyword
modeling and capturing the hierarchy of sentence-
to-word structures. In a follow-up work, Nallapati

et al. (2017) propose a new summarization model
which generates summaries by sampling a topic
one sentence at a time, then producing words us-
ing an RNN decoder conditioned on the sentence
topic. Another related work is by See et al. (2017),
where the authors use “pointing” and “coverage”
techniques to generate more accurate summaries.

Despite the focus on abstractive summarization,
extractive summarization remains an attractive
method as it is capable of generating more gram-
matically and semantically correct summaries.
This is the method we follow in this work. In ex-
tractive summarization, Cheng and Lapata (2016)
propose a general framework for single-document
text summarization using a hierarchical article en-
coder composed with an attention-based extractor.
Following this, Nallapati et al. (2016a) propose
a simple RNN-based sequence classifier which
outperforms or matches the state-of-art models at
the time. In another approach, Narayan et al.
(2018) use a reinforcement learning method to op-
timize the Rouge evaluation metric for text sum-
marization. The most recent work on this topic
is (Wu and Hu, 2018), where the authors train a
reinforced neural extractive summarization model
called RNES that captures cross-sentence coher-
ence patterns. Due to the fact that they use a dif-
ferent dataset and have not released their code, we
are unable to compare our models with theirs.

The idea of iteration has not been well explored
for summarization. One related study is Xiong
et al. (2016)’s work on dynamic memory net-
works, which designs neural networks with mem-
ory and attention mechanisms that exhibit certain
reasoning capabilities required for question an-
swering. Another related work is (Yan, 2016),
where they generate poetry with iterative polish-
ing sn chema. Similiar method can also be applied
on couplet generation as in (Yan et al., 2016). We
take some inspiration from their work but focus on
document summarization. Another related work is
(Singh et al., 2017), where the authors present a
deep network called Hybrid MemNet for the sin-
gle document summarization task, using a mem-
ory network as the document encoder. Compared
to them, we do not borrow the memory network
structure but propose a new iterative architecture.
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3 Methodology

3.1 Problem Formulation
In this work, we propose Iterative Text Sum-
marization (ITS), an iteration-based supervised
model for extractive text summarization. We treat
the extractive summarization task as a sequence
labeling problem, in which each sentence is vis-
ited sequentially and a binary label that determines
whether or not it will be included in the final sum-
mary is generated.

ITS takes as input a list of sentences s =
{s1, . . . , sns}, where ns is the number of sen-
tences in the document. Each sentence si is a
list of words: si = {wi

1, . . . , w
i
nw

}, where nw is
the word length of the sentence. The goal of ITS
is to generate a score vector y = {y1, . . . , yns}
for each sentence, where each score yi 2 [0, 1]
denotes the sentence’s extracting probability, that
is, the probability that the corresponding sentence
si will be extracted to be included in the sum-
mary. We train our model in a supervised man-
ner, using a corresponding gold summary written
by human experts for each document in training
set. We use an unsupervised method to convert
the human-written summaries to gold label vec-
tor y

0 = {y0
1, ..., y

0
ns

}, where y0
i 2 {0, 1} denotes

whether the i-th sentence is selected (1) or not (0).
Next, during training process, the cross entropy
loss is calculated between y and y

0, which is min-
imized to optimize y. Finally, we select three sen-
tences with the highest score according to y to be
the extracted summary. We detail our model be-
low.

3.2 Model Architecture
ITS is depicted in Fig.1. It consists of multiple it-
erations with one encoder, one decoder, and one
iteration unit in each iteration. We combine the
outputs of decoders in all iterations to generate the
extracting probabilities in the final labeling mod-
ule.

Our encoder is illustrated in the shaded region in
the left half of Fig.1. It takes as input all sentences
as well as the document representation from the
previous unit Dk�1, processes them through sev-
eral neural networks, and outputs the final state to
the iterative unit module which updates the docu-
ment representation.

Our decoder takes the form of a bidirectional
RNN. It takes the representation of sentence gen-
erated by the encoder as input, and its initial state

is the polished document representation Dk. Our
last module, the sentence labeling module, con-
catenates the hidden states of all decoders together
to generate an integrated score for each sentence.

As we apply supervised training, the objective
is to maximize the likelihood of all sentence labels
y0 = {y0

1, ..., y
0
ns

} given the input document s and
model parameters ✓:

log p(y0|s; ✓) =
nsX

i=1

log p(y0
i|s; ✓) (1)

4 Our Model

4.1 Encoder
In this subsection, we describe the encoding pro-
cess of our model. For brevity, we drop the super-
script k when focusing on a particular layer. All
the W ’s and b’s in this section with different su-
perscripts or subscripts are the parameters to be
learned.

Sentence Encoder: Given a discrete set of sen-
tences s = {s1, . . . , sns}, we use a word embed-
ding matrix M 2 R

V ⇥D to embed each word wi

in sentence si into continuous space ŵ
i, where V

is the vocabulary size, D is the dimension of word
embedding.

The sentence encoder can be based on a variety
of encoding schemes. Simply taking the average
of embeddings of words in a sentence will cause
too much information loss, while using GRUs or
Long Short-Term Memory (LSTM) requires more
computational resources and is prone to overfit-
ting. Considering above, we select positional en-
coding described in (Sukhbaatar et al., 2015) as
our sentence encoding method. Each sentence rep-
resentation ŝi is calculated by ŝi =

Pnw
j=1 lj �ŵi

j ,
where � is element-wise multiplication, lj is a col-
umn vector computed as lj,d = (1� j

nw
)�( d

D )(1�
2j
nw

), lj,d denotes the d-th dimension of lj .
Note that throughout this study, we use GRUs

as our RNN cells since they can alleviate the over-
fitting problem as confirmed by our experiments.
As our selective reading mechanism (which will
be explained later) is a modified version of orig-
inal GRU cell, we give the details of the GRU
here. GRU is a gating mechanism in recurrent
neural networks, introduced in (Cho et al., 2014).
Their performance was found to be similar to that
of LSTM cell but using fewer parameters as de-
scribed in (Hochreiter and Schmidhuber, 1997).
The GRU cell consists of an update gate vector
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Figure 1: Model Structure: There is one encoder, one decoder and one iterative unit (which is used to polish
document representation) in each iteration. The final labeling part is used to generating the extracting probabilities
for all sentences combining hidden states of decoders in all iterations. We take a document consists of three
sentences for example here.

ui, a reset gate vector ri, and an output vector
hi. For each time step i with input xi and pre-
vious hidden state hi�1, the updated hidden state
hi = GRU(xi, hi�1) is computed by:

ui = �(W (u)
xi + U

(u)
hi�1 + b

(u)) (2)

ri = �(W (r)
xi + U

(r)
hi�1 + b

(r)) (3)

h̃i = tanh(W (h)
xi + ri �Uhi�1 + b

(h)) (4)

hi = ui � h̃i + (1� ui) � hi�1 (5)

where � is the sigmoid activation
function, W

(u), W (r), W (h) 2
R

nH⇥nI , U (u), U (r), U 2 R
nH⇥nH , nH is

the hidden size, nI is the size of input xi.
To further study the interactions and informa-

tion exchanges between sentences, we establish a
Bi-directional GRU (Bi-GRU) network taking the
sentence representation as input:

�!
si = GRUfwd(ŝi,

��!
si�1) (6)

 �
si = GRUbwd(ŝi,

 ��
si�1) (7)

 !
si = �!si + �si (8)

where ŝi is the sentence representation input at
time step i, �!si is the hidden state of the forward
GRU at time step i, and  �si is the hidden state of
the backward GRU. This architecture allows in-
formation to flow back and forth to generate new
sentence representation !si .

Document Encoder: We must initialize a doc-
ument representation before polishing it. Gener-
ating the document representation from sentence
representations is a process similar to generat-
ing the sentence representation from word embed-
dings. This time we need to compress the whole
document, not just a sentence, into a vector. Be-
cause the information a vector can contain is lim-
ited, rather than to use another neural network, we
simply use a non-linear transformation of the av-
erage pooling of the concatenated hidden states of
the above Bi-GRU to generate the document rep-
resentation, as written below:

D0 = tanh(W
1

ns

nsX

i=1

[�!si ; �si ] + b) (9)

where ‘[·;·]’ is the concatenation operation.
Selective Reading module: Now we can for-

mally introduce the selective reading module in
Fig.1. This module is a bidirectional RNN con-
sisting of modified GRU cells whose input is the
sentence representation !s = { !s1 , ..., !sns}. In
the original version of GRU, the update gate ui

in Equation 2 is used to decide how much of hid-
den state should be retained and how much should
be updated. However, due to the way ui is calcu-
lated, it is sensitive to the position and ordering of
sentences, but loses information captured by the
polished document representation.

Herein, we propose a modified GRU cell that
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replace the ui with the newly computed update
gate gi. The new cell takes in two inputs, the sen-
tence representation and the document representa-
tion from the last iteration, rather than merely the
sentence representation. For each sentence, the se-
lective network generates an update gate vector gi

in the following way:

fi = [ !si �Dk�1; !si ; Dk�1] (10)

Fi = W
(2)tanh(W (1)

fi + b
(1)) + b

(2) (11)

gi =
exp(Fi)Pns

j=1 exp(Fj)
(12)

where  !si is the i-th sentence representation,
Dk�1 is the document representation from last it-
eration. Equation 5 now becomes:

hi = gi � h̃i + (1� gi) � hi�1 (13)

We use this “selective reading module” to auto-
matically decide to which extent the information
of each sentence should be updated based on its
relationship with the polished document. In this
way, the modified GRU network can grasp more
accurate information from the document.

4.2 Iterative Unit
After each sentence passes through the selective
reading module, we wish to update the document
representation Dk�1 with the newly constructed
sentence representations. The iterative unit (also
depicted above in Fig.1) is designed for this pur-
pose. We use a GRUiter cell to generate the pol-
ished document representation, whose input is the
final state of the selective reading network from
the previous iteration, hns and whose initial state
is set to the document representation of the previ-
ous iteration, Dk�1. The updated document rep-
resentation is computed by:

Dk = GRUiter(hns , Dk�1) (14)

4.3 Decoder
Next, we describe our decoders, which are de-
picted shaded in the right part of Fig.1. Follow-
ing most sequence labeling task (Xue and Palmer,
2004; Carreras and Màrquez, 2005) where they
learn a feature vector for each sentence, we use a
bidirectional GRUdec network in each iteration to
output features so as to calculate extracting proba-
bilities. For k-th iteration, given the sentence rep-
resentation !s as input and the document repre-
sentation Dk as the initial state, our decoder en-
codes the features of all sentences in the hidden

state h
k = {h

k
0
, ..., hk

ns
}:

h
k
i = GRUdec(

 !
s , hk

i�1
) (15)

h
k
0 = Dk (16)

4.4 Sentence Labeling Module
Next, we use the feature of each sentence to gener-
ate corresponding extracting probability. Since we
have one decoder in each iteration, if we directly
transform the hidden states in each iteration to ex-
tracting probabilities, we will end up with several
scores for each sentence. Either taking the aver-
age or summing them together by specific weights
is inappropriate and inelegant. Hence, we concate-
nate hidden states of all decoders together and ap-
ply a multi-layer perceptron to them to generate
the extracting probabilities:

y = W
(4)tanh(W (3)[h1; ...; hk] + b

(3)) + b
(4)

(17)
where y = {y1, ..., yns}, yi is the extracting prob-
ability for each setence. In this way, we let the
model learn by itself how to utilize the outputs of
all iterations and assign to each hidden state a re-
liable weight. In section 6, we will show that this
labeling method outperforms other methods.

5 Experiment Setup
In this section, we present our experimental setup
for training and estimating our summarization
model. We first introduce the datasets used for
training and evaluation, and then introduce our ex-
perimental details and evaluation protocol.

5.1 Datasets
In order to make a fair comparison with our base-
lines, we used the CNN/Dailymail corpus which
was constructed by Hermann et al. (2015). We
used the standard splits for training, validation and
testing in each corpus (90,266/1,220/1,093 doc-
uments for CNN and 196,557/12,147/10,396 for
DailyMail). We followed previous studies in us-
ing the human-written story highlight in each arti-
cle as a gold-standard abstractive summary. These
highlights were used to generate gold labels when
training and testing our model using the greedy
search method similar to (Nallapati et al., 2016a).

We also tested ITS on an out-of-domain cor-
pus, DUC2002, which consists of 567 documents.
Documents in this corpus belong to 59 various
clusters and each cluster has a unique topic. Each
document has two gold summaries written by hu-
man experts of length around 100 words.
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5.2 Implementation Details
We implemented our model in Tensorflow (Abadi
et al., 2016). The code for our models is avail-
able online1. We mostly followed the settings in
(Nallapati et al., 2016a) and trained the model us-
ing the Adam optimizer (Kingma and Ba, 2014)
with initial learning rate 0.001 and anneals of 0.5
every 6 epochs until reaching 30 epochs. We se-
lected three sentences with highest scores as sum-
mary. After preliminary exploration, we found
that arranging them according to their scores con-
sistently achieved the best performance. Ex-
periments were performed with a batch size of
64 documents. We used 100-dimension GloVe
(Pennington et al., 2014) embeddings trained on
Wikipedia 2014 as our embedding initialization
with a vocabulary size limited to 100k for speed
purposes. We initialized out-of-vocabulary word
embeddings over a uniform distribution within [-
0.2,0,2]. We also padded or cut sentences to con-
tain exactly 70 words. Each GRU module had 1
layer with 200-dimensional hidden states and with
either an initial state set up as described above or
a random initial state. To prevent overfitting, we
used dropout after each GRU network and embed-
ding layer, and also applied L2 loss to all unbi-
ased variables. The iteration number was set to 5
if not specified. A detailed discussion about itera-
tion number can be found in section 7.

5.3 Baselines
On all datasets we used the Lead-3 method as a
baseline, which simply chooses the first three sen-
tences in a document as the gold summary. On
DailyMail datasets, we report the performance of
SummaRuNNer in (Nallapati et al., 2016a) and
the model in (Cheng and Lapata, 2016), as well
as a logistic regression classifier (LReg) that they
used as a baseline. We reimplemented the Hy-
brid MemNet model in (Singh et al., 2017) as one
of our baselines since they only reported the per-
formance of 500 samples in their paper. Also,
Narayan et al. (2018) released their code2 for the
REFRESH model, we used their code to produce
Rouge recall scores on the DailyMail dataset as
they only reported results on CNN/DailyMail joint
dataset. Baselines on CNN dataset are similar.

1https://github.com/yingtaomj/Iterati
ve-Document-Representation-Learning-Tow
ards-Summarization-with-Polishing

2https://github.com/EdinburghNLP/Refr
esh

On DUC2002 corpus, we compare our model with
several baselines such as Integer Linear Program-
ming (ILR) and LReg. We also report the perfor-
mance of the newest neural networks model in-
cluding (Nallapati et al., 2016a; Cheng and Lap-
ata, 2016; Singh et al., 2017).

5.4 Evaluation
In the evaluation procedure, we used the Rouge
scores, i.e. Rouge-1, Rouge-2, and Rouge-L, cor-
responding to the matches of unigram, bigrams,
and Longest Common Subsequence (LCS) respec-
tively, to estimate our model. We obtained our
Rouge scores using the standard pyrouge pack-
age3. To compare with other related works, we
used full-length F1 score on the CNN corpus, lim-
ited length of 75 bytes and 275 bytes recall score
on DailyMail corpus. As for the DUC2002 corpus,
following the official guidelines, we examined the
Rouge recall score at the length of 75 words. All
results in our experiment are statistically signifi-
cant using 95% confidence interval as estimated
by Rouge script.

Schluter (2017) noted that only using the Rouge
metric to evaluate summarization quality can be
misleading. Therefore, we also evaluated our
model using human evaluation. Five highly ed-
ucated participants were asked to rank 40 sum-
maries produced by four models: the Lead-3 base-
line, Hybrid MemNet, ITS, and human-authored
highlights. We chose Hybrid MemNet as one of
the human evaluation baselines since its perfor-
mance is relatively high compared to other base-
lines. Judging criteria included informativeness
and coherence. Test cases were randomly sampled
from DailyMail test set.

6 Experiment analysis

Table 1 shows the performance comparison of
our model with other baselines on the DailyMail
dataset with respect to Rouge score at 75 bytes
and 275 bytes of summary length. Our model
performs consistently and significantly better than
other models on 75 bytes, while on 275 bytes, the
improvement margin is smaller. One possible in-
terpretation is that our model has high precision
on top rank outputs, but the accuracy is lower for
lower rank sentences. In addition, (Cheng and
Lapata, 2016) used additional supervised training

3https://pypi.python.org/pypi/pyrouge
/0.1.0
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DailyMail b75 b275
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Lead-3 21.9 7.2 11.6 40.5 14.9 32.6
LReg(500) 18.5 6.9 10.2 - - -
Cheng et.al’16 22.7 8.5 12.5 42.2 17.3 34.8
SummaRuNNer 26.2 10.8 14.4 42 16.9 34.1
REFRESH 24.1 11.5 12.5 40.3 15.1 32.9
Hybrid MemNet 26.3 11.2 15.5 41.4 16.7 33.2
ITS 27.4 11.9 16.1 42.4 17.4 34.1

Table 1: Comparison with other baselines on DailyMail test dataset using Rouge recall score with respect to the
abstractive ground truth at 75 bytes and at 275 bytes.

CNN Rouge-1 Rouge-2 Rouge-L
Lead-3 29.1 11.1 25.9
Cheng et.al’16 28.4 10.0 25.0
Hybrid MemNet 29.9 11.3 26.4
REFRESH 30.4 11.7 26.9
ITS 30.8 12.6 27.6

Table 2: Comparison with other baselines on CNN test
dataset using full-length F1 variants of Rouge.

to create sentence-level extractive labels to train
their model, while our model uses an unsupervised
greedy approximation instead.

We also examined the performance of our
model on CNN dataset as listed in Table 2. To
compare with other models, we used full-length
Rouge F1 metric as reported by Narayan et al.
(2018). Results demonstrate that our model
has a consistently best performance on different
datasets.

In Table 3, we present the performance of ITS
on the out of domain DUC dataset. Our model out-
performs or matches other basic models including
LReg and ILR as well as neural network baselines
such as SummaRuNNer with respect to the ground
truth at 75 bytes, which shows that our model can
be adapted to different copora maintaining high
accuracy.

In order to explore the impact of internal struc-
ture of ITS, we also conducted an ablation study
in Table 4. The first variation is the same model
without the selective reading module. The sec-
ond one sets the iteration number to one, that is, a
model without iteration process. The last variation
is to apply MLP on the output from the last itera-
tion instead of concatenating the hidden states of
all decoders. All other settings and parameters are
the same. Performances of these models are worse
than that of ITS in all metrics, which demonstrates

DUC2002 Rouge-1 Rouge-2 Rouge-L
Lead-3 43.6 21.0 40.2
LReg 43.8 20.7 40.3
ILP 45.4 21.3 42.8
Cheng et.al’16 47.4 23.0 43.5
SummaRuNNer 46.6 23.1 43.0
Hybrid MemNet 46.9 23.0 43.1
ITS 47.6 23.4 43.5

Table 3: Comparison with other baselines on
DUC2002 dataset using Rouge recall score with re-
spect to the abstractive ground truth at 75 bytes.

Variations Rouge-1Rouge-2Rouge-L
ITS 27.4 11.9 16.1
w/o selective reading 27.1 11.6 15.4
w/o iteration 26.9 11.6 15.8
w/o concatenation 27.2 11.7 15.9

Table 4: Ablation study on DailyMail test dataset with
respect to the abstractive ground truth at 75 bytes.

the preeminence of ITS. More importantly, by this
controlled experiment, we can verify the contribu-
tion of different module in ITS.

7 Further discussion

Analysis of iteration number: We did a broad
sweep of experiments to further investigate the in-
fluence of iteration process on the generated sum-
mary quality. First, we studied the influence of
iteration number. In order to make a fair compar-
ison between models with different iteration num-
ber, we trained all models for same epochs without
tuning. Fig.2 illustrates the relationship between
iteration number and the Rouge score at 75 bytes
of summary length on DailyMail test dataset. The
result shows that the Rouge score increases with
the number of iteration to begin with. After reach-
ing the upper limit it begins to drop. Note that
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Figure 2: Relationship between number of iteration
and Rouge score on DailyMail test dataset with respect
to the ground truth at 75 bytes.

(a)

(b)

Figure 3: The predicted extracting probabilities for
each sentence calculated by the output of each iteration.

the result of training the model for only one epoch
outperforms the state-of-the-art in (Singh et al.,
2017), which demonstrates that our selective read-
ing module is effective. The fact that continu-
ing this process increase the performance confirms
that the iteration idea behind our model is useful in
practice. Based on above observation, we set the
default iteration number to be 5.

Analysis of polishing process: Next, to fully
investigate how the iterative process influences the
extracting results, we draw heatmaps of the ex-
tracting probabilities for each decoder at each it-
eration. We pick two representative cases in Fig.3,
where the x-axis represents the sentence index and
y-axis is the iteration number, x-axis labels are
omitted. The darker the color is, the higher the
extracting probability is. In Fig.3(a), it can be
seen that when the iteration begins, most sentences
have similar probabilities. As we increase the
number of iteration, some probabilities begin to
fall and others saturate. This means that the model
already has preferred sentences to select. Another
interesting feature we found is that there is a tran-

Models 1st 2nd 3rd 4th
Lead-3 0.12 0.11 0.25 0.52
Hybrid MemNet 0.24 0.25 0.28 0.23
ITS 0.31 0.34 0.23 0.12
Gold 0.33 0.30 0.24 0.13

Table 5: System ranking comparison with other base-
lines on DailyMail corpus. Rank 1 is the best and Rank
4 is the worst. Each score represents the percentage of
the summary under this rank.

sitivity between iterations as shown in Fig.3(b). To
be specific, the sentences which are not preferred
by iteration 3 remain low probabilities in the next
two iterations, while sentences with relatively high
scores are still preferred by iteration 4 and 5.

Human Evaluation: We gave human evalua-
tors three system-generated summaries, generated
by Lead-3, Hybrid MemNet, ITS, as well as the
human-written gold standard summary, and asked
them to rank these summaries based on summary
informativeness and coherence. Table 5 shows the
percentages of summaries of different models un-
der each rank scored by human experts. It is not
surprising that gold standard has the most sum-
maries of the highest quality. Our model has the
most summaries under 2nd rank, thus can be con-
sidered 2nd best, following are Hybrid MemNet
and Lead-3, as they are ranked mostly 3rd and 4th.
By case study, we found that a number of sum-
maries generated by Hybrid MemNet have two
sentences the same as ITS out of three, however,
the third distinct sentence from our model always
leads to a better evaluation result considering over-
all informativeness and coherence. Readers can
refer to the appendix to see our case study.

8 Conclusion

In this work, we introduce ITS, an iteration based
extractive summarization model, inspired by the
observation that it is often necessary for a hu-
man to read the article multiple times to fully un-
derstand and summarize it. Experimental results
on CNN/DailyMail and DUC corpora demonstrate
the effectiveness of our model.
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Abstract

Neural network-based methods for abstractive
summarization produce outputs that are more
fluent than other techniques, but which can be
poor at content selection. This work proposes
a simple technique for addressing this issue:
use a data-efficient content selector to over-
determine phrases in a source document that
should be part of the summary. We use this
selector as a bottom-up attention step to con-
strain the model to likely phrases. We show
that this approach improves the ability to com-
press text, while still generating fluent sum-
maries. This two-step process is both simpler
and higher performing than other end-to-end
content selection models, leading to significant
improvements on ROUGE for both the CNN-
DM and NYT corpus. Furthermore, the con-
tent selector can be trained with as little as
1,000 sentences, making it easy to transfer a
trained summarizer to a new domain.

1 Introduction

Text summarization systems aim to generate nat-
ural language summaries that compress the infor-
mation in a longer text. Approaches using neu-
ral networks have shown promising results on this
task with end-to-end models that encode a source
document and then decode it into an abstrac-
tive summary. Current state-of-the-art neural ab-
stractive summarization models combine extrac-
tive and abstractive techniques by using pointer-
generator style models which can copy words
from the source document (Gu et al., 2016; See
et al., 2017). These end-to-end models produce
fluent abstractive summaries but have had mixed
success in content selection, i.e. deciding what to
summarize, compared to fully extractive models.

There is an appeal to end-to-end models from a
modeling perspective; however, there is evidence
that when summarizing people follow a two-step

Source Document
german chancellor angela merkel [did] not [look] too
pleased about the weather during her [annual] easter
holiday [in italy.] as britain [basks] in [sunshine] and
temperatures of up to 21c, mrs merkel and her husband[,
chemistry professor joachim sauer,] had to settle for a
measly 12 degrees. the chancellor and her [spouse] have
been spending easter on the small island of ischia, near
naples in the mediterranean for over a [decade.]
[not so sunny:] angela merkel [and] her husband[,
chemistry professor joachim sauer,] are spotted on their
[annual] easter trip to the island of ischia[,] near naples[.
the] couple [traditionally] spend their holiday at the five-
star miramare spa hotel on the south of the island [,
which comes] with its own private beach [, and bal-
conies overlooking the] ocean [.]...
Reference
• angela merkel and husband spotted while on italian

island holiday.
. . .

Baseline Approach
• angela merkel and her husband, chemistry professor

joachim sauer, are spotted on their annual easter trip
to the island of ischia, near naples.
. . .

Bottom-Up Summarization
• angela merkel and her husband are spotted on their

easter trip to the island of ischia, near naples.
. . .

Figure 1: Example of two sentence summaries with and
without bottom-up attention. The model does not al-
low copying of words in [gray], although it can gen-
erate words. With bottom-up attention, we see more
explicit sentence compression, while without it whole
sentences are copied verbatim.

approach of first selecting important phrases and
then paraphrasing them (Anderson and Hidi, 1988;
Jing and McKeown, 1999). A similar argument
has been made for image captioning. Ander-
son et al. (2017) develop a state-of-the-art model
with a two-step approach that first pre-computes
bounding boxes of segmented objects and then ap-
plies attention to these regions. This so-called
bottom-up attention is inspired by neuroscience re-
search describing attention based on properties in-
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herent to a stimulus (Buschman and Miller, 2007).

Motivated by this approach, we consider
bottom-up attention for neural abstractive sum-
marization. Our approach first selects a selection
mask for the source document and then constrains
a standard neural model by this mask. This
approach can better decide which phrases a model
should include in a summary, without sacrificing
the fluency advantages of neural abstractive sum-
marizers. Furthermore, it requires much fewer
data to train, which makes it more adaptable to
new domains.

Our full model incorporates a separate content
selection system to decide on relevant aspects of
the source document. We frame this selection task
as a sequence-tagging problem, with the objec-
tive of identifying tokens from a document that
are part of its summary. We show that a con-
tent selection model that builds on contextual word
embeddings (Peters et al., 2018) can identify cor-
rect tokens with a recall of over 60%, and a pre-
cision of over 50%. To incorporate bottom-up
attention into abstractive summarization models,
we employ masking to constrain copying words
to the selected parts of the text, which produces
grammatical outputs. We additionally experiment
with multiple methods to incorporate similar con-
straints into the training process of more com-
plex end-to-end abstractive summarization mod-
els, either through multi-task learning or through
directly incorporating a fully differentiable mask.

Our experiments compare bottom-up attention
with several other state-of-the-art abstractive sys-
tems. Compared to our baseline models of See
et al. (2017) bottom-up attention leads to an im-
provement in ROUGE-L score on the CNN-Daily
Mail (CNN-DM) corpus from 36.4 to 38.3 while
being simpler to train. We also see comparable or
better results than recent reinforcement-learning
based methods with our MLE trained system. Fur-
thermore, we find that the content selection model
is very data-efficient and can be trained with less
than 1% of the original training data. This pro-
vides opportunities for domain-transfer and low-
resource summarization. We show that a summa-
rization model trained on CNN-DM and evalu-
ated on the NYT corpus can be improved by over 5
points in ROUGE-L with a content selector trained
on only 1,000 in-domain sentences.

2 Related Work

There is a tension in document summarization be-
tween staying close to the source document and
allowing compressive or abstractive modification.
Many non-neural systems take a select and com-
press approach. For example, Dorr et al. (2003)
introduced a system that first extracts noun and
verb phrases from the first sentence of a news ar-
ticle and uses an iterative shortening algorithm to
compress it. Recent systems such as Durrett et al.
(2016) also learn a model to select sentences and
then compress them.

In contrast, recent work in neural network based
data-driven extractive summarization has focused
on extracting and ordering full sentences (Cheng
and Lapata, 2016; Dlikman and Last, 2016). Nal-
lapati et al. (2016b) use a classifier to determine
whether to include a sentence and a selector that
ranks the positively classified ones. These meth-
ods often over-extract, but extraction at a word
level requires maintaining grammatically correct
output (Cheng and Lapata, 2016), which is diffi-
cult. Interestingly, key phrase extraction while un-
grammatical often matches closely in content with
human-generated summaries (Bui et al., 2016).

A third approach is neural abstractive sum-
marization with sequence-to-sequence models
(Sutskever et al., 2014; Bahdanau et al., 2014).
These methods have been applied to tasks such as
headline generation (Rush et al., 2015) and article
summarization (Nallapati et al., 2016a). Chopra
et al. (2016) show that attention approaches that
are more specific to summarization can further im-
prove the performance of models. Gu et al. (2016)
were the first to show that a copy mechanism, in-
troduced by Vinyals et al. (2015), can combine
the advantages of both extractive and abstractive
summarization by copying words from the source.
See et al. (2017) refine this pointer-generator ap-
proach and use an additional coverage mechanism
(Tu et al., 2016) that makes a model aware of its
attention history to prevent repeated attention.

Most recently, reinforcement learning (RL) ap-
proaches that optimize objectives for summariza-
tion other than maximum likelihood have been
shown to further improve performance on these
tasks (Paulus et al., 2017; Li et al., 2018b; Celiky-
ilmaz et al., 2018). Paulus et al. (2017) approach
the coverage problem with an intra-attention in
which a decoder has an attention over previously
generated words. However RL-based training can
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be difficult to tune and slow to train. Our method
does not utilize RL training, although in theory
this approach can be adapted to RL methods.

Several papers also explore multi-pass
extractive-abstractive summarization. Nalla-
pati et al. (2017) create a new source document
comprised of the important sentences from the
source and then train an abstractive system. Liu
et al. (2018) describe an extractive phase that
extracts full paragraphs and an abstractive one
that determines their order. Finally Zeng et al.
(2016) introduce a mechanism that reads a source
document in two passes and uses the information
from the first pass to bias the second. Our method
differs in that we utilize a completely abstractive
model, biased with a powerful content selector.

Other recent work explores alternative ap-
proaches to content selection. For example, Cohan
et al. (2018) use a hierarchical attention to detect
relevant sections in a document, Li et al. (2018a)
generate a set of keywords that is used to guide the
summarization process, and Pasunuru and Bansal
(2018) develop a loss-function based on whether
salient keywords are included in a summary. Other
approaches investigate the content-selection at the
sentence-level. Tan et al. (2017) describe a graph-
based attention to attend to one sentence at a time,
Chen and Bansal (2018) first extract full sentences
from a document and then compress them, and
Hsu et al. (2018) modulate the attention based on
how likely a sentence is included in a summary.

3 Background: Neural Summarization

Throughout this paper, we consider a set of pairs
of texts (X , Y) where x 2 X corresponds to
source tokens x1, . . . , xn and y 2 Y to a summary
y1, . . . , ym with m ⌧ n.

Abstractive summaries are generated one word
at a time. At every time-step, a model is aware of
the previously generated words. The problem is to
learn a function f(x) parametrized by ✓ that max-
imizes the probability of generating the correct
sequences. Following previous work, we model
the abstractive summarization with an attentional
sequence-to-sequence model. The attention distri-
bution p(aj |x, y1:j�1) for a decoding step j, cal-
culated within the neural network, represents an
embedded soft distribution over all of the source
tokens and can be interpreted as the current focus
of the model.

The model additionally has a copy mecha-

Source Masked Source Summary

Content Selection Bottom-Up Attention

Figure 2: Overview of the selection and generation pro-
cesses described throughout Section 4.

nism (Vinyals et al., 2015) to copy words from
the source. Copy models extend the decoder by
predicting a binary soft switch zj that determines
whether the model copies or generates. The copy
distribution is a probability distribution over the
source text, and the joint distribution is computed
as a convex combination of the two parts of the
model,

p(yj | y1:j-1, x) =

p(zj = 1 | y1:j-1, x) ⇥ p(yj | zj = 1, y1:j-1, x)+

p(zj = 0 | y1:j-1, x) ⇥ p(yj | zj = 0, y1:j-1, x)

(1)

where the two parts represent copy and generation
distribution respectively. Following the pointer-
generator model of See et al. (2017), we reuse the
attention p(aj |x, y1:j�1) distribution as copy dis-
tribution, i.e. the copy probability of a token in the
source w through the copy attention is computed
as the sum of attention towards all occurrences of
w. During training, we maximize marginal likeli-
hood with the latent switch variable.

4 Bottom-Up Attention

We next consider techniques for incorporating a
content selection into abstractive summarization,
illustrated in Figure 2.

4.1 Content Selection
We define the content selection problem as a word-
level extractive summarization task. While there
has been significant work on custom extractive
summarization (see related work), we make a sim-
plifying assumption and treat it as a sequence tag-
ging problem. Let t1, . . . , tn denote binary tags
for each of the source tokens, i.e. 1 if a word is
copied in the target sequence and 0 otherwise.

While there is no supervised data for this task,
we can generate training data by aligning the sum-
maries to the document. We define a word xi as
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copied if (1) it is part of the longest possible sub-
sequence of tokens s = xi�j:i:i+k, for integers
j  i; k  (n � i), if s 2 x and s 2 y, and
(2) there exists no earlier sequence u with s = u.

We use a standard bidirectional LSTM model
trained with maximum likelihood for the sequence
labeling problem. Recent results have shown that
better word representations can lead to signifi-
cantly improved performance in sequence tagging
tasks (Peters et al., 2017). Therefore, we first
map each token wi into two embedding channels
e(w)
i and e(c)

i . The e(w) embedding represents a
static channel of pre-trained word embeddings,
e.g. GLoVE (Pennington et al., 2014). The e(c) are
contextual embeddings from a pretrained language
model, e.g. ELMo (Peters et al., 2018) which uses
a character-aware token embedding (Kim et al.,
2016) followed by two bidirectional LSTM lay-
ers h(1)

i and h(2)
i . The contextual embeddings are

fine-tuned to learn a task-specific embedding e(c)
i

as a linear combination of the states of each LSTM
layer and the token embedding,

e(c)
i = � ⇥

2X

`=0

sj ⇥ h(`)
i ,

with � and s0,1,2 as trainable parameters. Since
these embeddings only add four additional param-
eters to the tagger, it remains very data-efficient
despite the high-dimensional embedding space.

Both embeddings are concatenated into a sin-
gle vector that is used as input to a bidirectional
LSTM, which computes a representation hi for a
word wi. We can then calculate the probability
qi that the word is selected as �(Wshi + bs) with
trainable parameters Ws and bs.

4.2 Bottom-Up Copy Attention
Inspired by work in bottom-up attention for im-
ages (Anderson et al., 2017) which restricts atten-
tion to predetermined bounding boxes within an
image, we use these attention masks to limit the
available selection of the pointer-generator model.

As shown in Figure 1, a common mistake made
by neural copy models is copying very long se-
quences or even whole sentences. In the base-
line model, over 50% of copied tokens are part
of copy sequences that are longer than 10 tokens,
whereas this number is only 10% for reference
summaries. While bottom-up attention could also
be used to modify the source encoder representa-
tions, we found that a standard encoder over the

full text was effective at aggregation and therefore
limit the bottom-up step to attention masking.

Concretely, we first train a pointer-generator
model on the full dataset as well as the content
selector defined above. At inference time, to gen-
erate the mask, the content selector computes se-
lection probabilities q1:n for each token in a source
document. The selection probabilities are used to
modify the copy attention distribution to only in-
clude tokens identified by the selector. Let ai

j de-
note the attention at decoding step j to encoder
word i. Given a threshold ✏, the selection is ap-
plied as a hard mask, such that

p(ãi
j |x, y1:j�1) =

(
p(ai

j |x, y1:j�1) qi > ✏

0 ow.

To ensure that Eq. 1 still yields a correct probabil-
ity distribution, we first multiply p(ãj |x, y1:j�1)
by a normalization parameter � and then renor-
malize the distribution. The resulting normalized
distribution can be used to directly replace a as the
new copy probabilities.

4.3 End-to-End Alternatives
Two-step BOTTOM-UP attention has the advan-
tage of training simplicity. In theory, though, stan-
dard copy attention should be able to learn how to
perform content selection as part of the end-to-end
training. We consider several other end-to-end ap-
proaches for incorporating content selection into
neural training.

Method 1: (MASK ONLY): We first consider
whether the alignment used in the bottom-up ap-
proach could help a standard summarization sys-
tem. Inspired by Nallapati et al. (2017), we in-
vestigate whether aligning the summary and the
source during training and fixing the gold copy at-
tention to pick the ”correct” source word is benefi-
cial. We can think of this approach as limiting the
set of possible copies to a fixed source word. Here
the training is changed, but no mask is used at test
time.

Method 2 (MULTI-TASK): Next, we investigate
whether the content selector can be trained along-
side the abstractive system. We first test this hy-
pothesis by posing summarization as a multi-task
problem and training the tagger and summariza-
tion model with the same features. For this setup,
we use a shared encoder for both abstractive sum-
marization and content selection. At test time, we
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apply the same masking method as bottom-up at-
tention.

Method 3 (DIFFMASK): Finally we con-
sider training the full system end-to-end with
the mask during training. Here we jointly op-
timize both objectives, but use predicted selec-
tion probabilities to softly mask the copy attention
p(ãi

j |x, y1:j�1) = p(ai
j |x, y1:j�1)⇥qi, which leads

to a fully differentiable model. This model is used
with the same soft mask at test time.

5 Inference

Several authors have noted that longer-form neural
generation still has significant issues with incor-
rect length and repeated words than in short-form
problems like translation. Proposed solutions in-
clude modifying models with extensions such as a
coverage mechanism (Tu et al., 2016; See et al.,
2017) or intra-sentence attention (Cheng et al.,
2016; Paulus et al., 2017). We instead stick to
the theme of modifying inference, and modify
the scoring function to include a length penalty
lp and a coverage penalty cp, and is defined as
s(x, y) = log p(y|x)/lp(x) + cp(x; y).

Length: To encourage the generation of longer
sequences, we apply length normalizations during
beam search. We use the length penalty by Wu
et al. (2016), which is formulated as

lp(y) =
(5 + |y|)↵

(5 + 1)↵
,

with a tunable parameter ↵, where increasing ↵
leads to longer summaries. We additionally set a
minimum length based on the training data.

Repeats: Copy models often repeatedly attend
to the same source tokens, generating the same
phrase multiple times. We introduce a new sum-
mary specific coverage penalty,

cp(x; y) = �

0

@�n +
nX

i=1

max

0

@1.0,
mX

j=1

aj
i

1

A

1

A .

Intuitively, this penalty increases whenever the
decoder directs more than 1.0 of total attention
within a sequence towards a single encoded to-
ken. By selecting a sufficiently high �, this penalty
blocks summaries whenever they would lead to
repetitions. Additionally, we follow (Paulus et al.,
2017) and restrict the beam search to never repeat
trigrams.

6 Data and Experiments

We evaluate our approach on the CNN-DM cor-
pus (Hermann et al., 2015; Nallapati et al., 2016a),
and the NYT corpus (Sandhaus, 2008), which are
both standard corpora for news summarization.
The summaries for the CNN-DM corpus are bul-
let points for the articles shown on their respective
websites, whereas the NYT corpus contains sum-
maries written by library scientists. CNN-DM
summaries are full sentences, with on average 66
tokens (� = 26) and 4.9 bullet points. NYT sum-
maries are not always complete sentences and are
shorter, with on average 40 tokens (� = 27) and
1.9 bullet points. Recent work has used both the
anonymized and the non-anonymized versions of
on CNN-DM, so direct comparison can be dif-
ficult. Following See et al. (2017), we use the
non-anonymized version of this corpus and trun-
cate source documents to 400 tokens and the target
summaries to 100 tokens in training and validation
sets. For experiments with the NYT corpus, we
use the preprocessing described by Paulus et al.
(2017), and additionally remove author informa-
tion and truncate source documents to 400 tokens
instead of 800. These changes lead to an average
of 326 tokens per article, a decrease from the 549
tokens with 800 token truncated articles. The tar-
get (non-copy) vocabulary is limited to 50,000 to-
kens for all models.

The content selection model uses pre-trained
GloVe embeddings of size 100, and ELMo with
size 1024. The bi-LSTM has two layers and a hid-
den size of 256. Dropout is set to 0.5, and the
model is trained with Adagrad, an initial learning
rate of 0.15, and an initial accumulator value of
0.1. We limit the number of training examples to
100,000 on either corpus, which only has a small
impact on performance. For the jointly trained
content selection models, we use the same config-
uration as the abstractive model.

For the base model, we re-implemented the
Pointer-Generator model as described by See et al.
(2017). To have a comparable number of param-
eters to previous work, we use an encoder with
256 hidden states for both directions in the one-
layer LSTM, and 512 for the one-layer decoder.
The embedding size is set to 128. We found that
increasing model size or changing the model to
the Transformer (Vaswani et al., 2017) can lead
to slightly improved performance, but at the cost
of increased training time and parameters. The
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Method R-1 R-2 R-L

Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
ML + Intra-Attention (Paulus et al., 2017) 38.30 14.81 35.49

ML + RL (Paulus et al., 2017) 39.87 15.82 36.90
Saliency + Entailment reward (Pasunuru and Bansal, 2018) 40.43 18.00 37.10
Key information guide network (Li et al., 2018a) 38.95 17.12 35.68
Inconsistency loss (Hsu et al., 2018) 40.68 17.97 37.13
Sentence Rewriting (Chen and Bansal, 2018) 40.88 17.80 38.54

Pointer-Generator (our implementation) 36.25 16.17 33.41
Pointer-Generator + Coverage Penalty 39.12 17.35 36.12
Pointer-Generator + Mask Only 37.70 15.63 35.49
Pointer-Generator + Multi-Task 37.67 15.59 35.47
Pointer-Generator + DiffMask 38.45 16.88 35.81
Bottom-Up Summarization 41.22 18.68 38.34

Table 1: Results of abstractive summarizers on the CNN-DM dataset.2 The first section shows encoder-decoder
abstractive baselines trained with cross-entropy. The second section describes reinforcement-learning based ap-
proaches. The third section presents our baselines and the attention masking methods described in this work.

model is trained with the same Adagrad config-
uration as the content selector. Additionally, the
learning rate halves after each epoch once the vali-
dation perplexity does not decrease after an epoch.
We do not use dropout and use gradient-clipping
with a maximum norm of 2.

All inference parameters are tuned on a 200 sen-
tence subset of the validation set. Length penalty
parameter ↵ and copy mask ✏ differ across models
and baselines, with ↵ ranging from 0.6 to 1.4, and
✏ ranging from 0.1 to 0.2. The minimum length
of the generated summary is set to 35 for CNN-
DM and 6 for NYT. While the Pointer-Generator
uses a beam size of 5 and does not improve with
a larger beam, we found that bottom-up attention
requires a larger beam size and set it to 10. The
coverage penalty parameter � is set to 10, and the
copy attention normalization parameter � to 2 for
both approaches.

We use AllenNLP (Gardner et al., 2018) for
the content selector, and the abstractive models
are implemented in OpenNMT-py (Klein et al.,
2017).3.

3Code and reproduction instructions can be found at
https://github.com/sebastianGehrmann/
bottom-up-summary

3These results compare on the non-anonymized version of
this corpus used by (See et al., 2017). The best results on the
anonymized version are R1:41.69 R2:19.47 RL:37.92 from
(Celikyilmaz et al., 2018). We compare to their DCA model
on the NYT corpus.

7 Results

Table 1 shows our main results on the CNN-DM
corpus, with abstractive models shown in the top,
and bottom-up attention methods at the bottom.
We first observe that using a coverage inference
penalty scores the same as a full coverage mecha-
nism, without requiring any additional model pa-
rameters. We found that none of our end-to-end
models lead to improvements, indicating that it is
difficult to apply the masking during training with-
out hurting the training process. The Mask Only
model with increased supervision on the copy
mechanism performs very similar to the Multi-
Task model. On the other hand, bottom-up atten-
tion leads to a major improvement across all three
scores. While we would expect better content se-
lection to primarily improve ROUGE-1, the fact
all three increase hints that the fluency is not be-
ing hurt specifically. Our cross-entropy trained ap-
proach even outperforms all of the reinforcement-
learning based approaches in ROUGE-1 and 2,
while the highest reported ROUGE-L score by
Chen and Bansal (2018) falls within the 95% con-
fidence interval of our results.

Table 2 shows experiments with the same sys-
tems on the NYT corpus. We see that the 2 point
improvement compared to the baseline Pointer-
Generator maximum-likelihood approach carries
over to this dataset. Here, the model outperforms
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Method R-1 R-2 R-L

ML* 44.26 27.43 40.41
ML+RL* 47.03 30.72 43.10
DCA† 48.08 31.19 42.33
Point.Gen. + Coverage Pen. 45.13 30.13 39.67
Bottom-Up Summarization 47.38 31.23 41.81

Table 2: Results on the NYT corpus, where we com-
pare to RL trained models. * marks models and results
by Paulus et al. (2017), and † results by Celikyilmaz
et al. (2018).

the RL based model by Paulus et al. (2017) in
ROUGE-1 and 2, but not L, and is comparable
to the results of (Celikyilmaz et al., 2018) except
for ROUGE-L. The same can be observed when
comparing ML and our Pointer-Generator. We
suspect that a difference in summary lengths due
to our inference parameter choices leads to this
difference, but did not have access to their mod-
els or summaries to investigate this claim. This
shows that a bottom-up approach achieves com-
petitive results even to models that are trained on
summary-specific objectives.

The main benefit of bottom-up summarization
seems to be from the reduction of mistakenly
copied words. With the best Pointer-Generator
models, the precision of copied words is 50.0%
compared to the reference. This precision in-
creases to 52.8%, which mostly drives the increase
in R1. An independent-samples t-test shows that
this improvement is statistically significant with
t=14.7 (p < 10�5). We also observe a decrease
in average sentence length of summaries from 13
to 12 words when adding content selection com-
pared to the Pointer-Generator while holding all
other inference parameters constant.

Domain Transfer While end-to-end training
has become common, there are benefits to a two-
step method. Since the content selector only needs
to solve a binary tagging problem with pretrained
vectors, it performs well even with very limited
training data. As shown in Figure 3, with only
1,000 sentences, the model achieves an AUC of
over 74. Beyond that size, the AUC of the model
increases only slightly with increasing training
data.

To further evaluate the content selection, we
consider an application to domain transfer. In
this experiment, we apply the Pointer-Generator

Figure 3: The AUC of the content selector trained
on CNN-DM with different training set sizes ranging
from 1,000 to 100,000 data points.

AUC R-1 R-2 R-L

CNNDM 25.63 11.40 20.55
+1k 80.7 30.62 16.10 25.32
+10k 83.6 32.07 17.60 26.75
+100k 86.6 33.11 18.57 27.69

Table 3: Results of the domain transfer experi-
ment. AUC numbers are shown for content selectors.
ROUGE scores represent an abstractive model trained
on CNN-DM and evaluated on NYT, with additional
copy constraints trained on 1/10/100k training exam-
ples of the NYT corpus.

trained on CNN-DM to the NYT corpus. In ad-
dition, we train three content selectors on 1, 10,
and 100 thousand sentences of the NYT set, and
use these in the bottom-up summarization. The
results, shown in Table 3, demonstrates that even
a model trained on the smallest subset leads to an
improvement of almost 5 points over the model
without bottom-up attention. This improvement
increases with the larger subsets to up to 7 points.
While this approach does not reach a compara-
ble performance to models trained directly on the
NYT dataset, it still represents a significant in-
crease over the not-augmented CNN-DM model
and produces summaries that are quite readable.
We show two example summaries in Appendix A.
This technique could be used for low-resource do-
mains and for problems with limited data avail-
ability.

8 Analysis and Discussion

Extractive Summary by Content Selection?
Given that the content selector is effective in con-
junction with the abstractive model, it is interest-
ing to know whether it has learned an effective
extractive summarization system on its own. Ta-
ble 4 shows experiments comparing content selec-
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Method R-1 R-2 R-L

LEAD-3 40.1 17.5 36.3
NEUSUM (Zhou et al., 2018) 41.6 19.0 38.0
Top-3 sents (Cont. Select.) 40.7 18.0 37.0

Oracle Phrase-Selector 67.2 37.8 58.2
Content Selector 42.0 15.9 37.3

Table 4: Results of extractive approaches on the
CNN-DM dataset. The first section shows sentence-
extractive scores. The second section first shows an
oracle score if the content selector selected all the cor-
rect words according to our matching heuristic. Finally,
we show results when the Content Selector extracts all
phrases above a selection probability threshold.

tion to extractive baselines. The LEAD-3 baseline
is a commonly used baseline in news summariza-
tion that extracts the first three sentences from an
article. Top-3 shows the performance when we
extract the top three sentences by average copy
probability from the selector. Interestingly, with
this method, only 7.1% of the top three sentences
are not within the first three, further reinforcing
the strength of the LEAD-3 baseline. Our naive
sentence-extractor performs slightly worse than
the highest reported extractive score by Zhou et al.
(2018) that is specifically trained to score combi-
nations of sentences. The final entry shows the
performance when all the words above a threshold
are extracted such that the resulting summaries are
approximately the length of reference summaries.
The oracle score represents the results if our model
had a perfect accuracy, and shows that the con-
tent selector, while yielding competitive results,
has room for further improvements in future work.

This result shows that the model is quite effec-
tive at finding important words (ROUGE-1) but
less effective at chaining them together (ROUGE-
2). Similar to Paulus et al. (2017), we find that the
decrease in ROUGE-2 indicates a lack of fluency
and grammaticality of the generated summaries. A
typical example looks like this:

a man food his first hamburger wrong-
fully for 36 years. michael hanline, 69,
was convicted of murder for the shoot-
ing of truck driver jt mcgarry in 1980 on
judge charges.

This particular ungrammatical example has a
ROUGE-1 of 29.3. This further highlights the
benefit of the combined approach where bottom-

Data %Novel Verb Noun Adj

Reference 14.8 30.9 35.5 12.3
Vanilla S2S 6.6 14.5 19.7 5.1
Pointer-Generator 2.2 25.7 39.3 13.9
Bottom-Up Attention 0.5 53.3 24.8 6.5

Table 5: %Novel shows the percentage of words in a
summary that are not in the source document. The last
three columns show the part-of-speech tag distribution
of the novel words in generated summaries.

up predictions are chained together fluently by
the abstractive system. However, we also note
that the abstractive system requires access to the
full source document. Distillation experiments in
which we tried to use the output of the content-
selection as training-input to abstractive models
showed a drastic decrease in model performance.

Analysis of Copying While Pointer-Generator
models have the ability to abstract in summary, the
use of a copy mechanism causes the summaries
to be mostly extractive. Table 5 shows that with
copying the percentage of generated words that are
not in the source document decreases from 6.6% to
2.2%, while reference summaries are much more
abstractive with 14.8% novel words. Bottom-up
attention leads to a further reduction to only a half
percent. However, since generated summaries are
typically not longer than 40-50 words, the dif-
ference between an abstractive system with and
without bottom-up attention is less than one novel
word per summary. This shows that the benefit
of abstractive models has been less in their abil-
ity to produce better paraphrasing but more in the
ability to create fluent summaries from a mostly
extractive process.

Table 5 also shows the part-of-speech-tags of
the novel generated words, and we can observe an
interesting effect. Application of bottom-up atten-
tion leads to a sharp decrease in novel adjectives
and nouns, whereas the fraction of novel words
that are verbs sharply increases. When looking
at the novel verbs that are being generated, we
notice a very high percentage of tense or number
changes, indicated by variation of the word “say”,
for example “said” or “says”, while novel nouns
are mostly morphological variants of words in the
source.

Figure 4 shows the length of the phrases that are
being copied. While most copied phrases in the
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Figure 4: For all copied words, we show the distribu-
tion over the length of copied phrases they are part of.
The black lines indicate the reference summaries, and
the bars the summaries with and without bottom-up at-
tention.

reference summaries are in groups of 1 to 5 words,
the Pointer-Generator copies many very long se-
quences and full sentences of over 11 words. Since
the content selection mask interrupts most long
copy sequences, the model has to either gener-
ate the unselected words using only the genera-
tion probability or use a different word instead.
While we observed both cases quite frequently
in generated summaries, the fraction of very long
copied phrases decreases. However, either with
or without bottom-up attention, the distribution of
the length of copied phrases is still quite different
from the reference.

Inference Penalty Analysis We next analyze
the effect of the inference-time loss functions. Ta-
ble 6 presents the marginal improvements over
the simple Pointer-Generator when adding one
penalty at a time. We observe that all three penal-
ties improve all three scores, even when added on
top of the other two. This further indicates that the
unmodified Pointer-Generator model has already
learned an appropriate representation of the ab-
stractive summarization problem, but is limited by
ineffective content selection and inference meth-
ods.

9 Conclusion

This work presents a simple but accurate con-
tent selection model for summarization that iden-
tifies phrases within a document that are likely in-
cluded in its summary. We showed that this con-
tent selector can be used for a bottom-up atten-
tion that restricts the ability of abstractive sum-
marizers to copy words from the source. The
combined bottom-up summarization system leads
to improvements in ROUGE scores of over two
points on both the CNN-DM and NYT corpora. A

Data R-1 R-2 R-L

Pointer Generator 36.3 16.2 33.4
+ Length Penalty 38.0 16.8 35.0
+ Coverage Penalty 38.9 17.2 35.9
+ Trigram Repeat 39.1 17.4 36.1

Table 6: Results on CNN-DM when adding one infer-
ence penalty at a time.

comparison to end-to-end trained methods showed
that this particular problem cannot be easily solved
with a single model, but instead requires fine-
tuned inference restrictions. Finally, we showed
that this technique, due to its data-efficiency, can
be used to adjust a trained model with few data
points, making it easy to transfer to a new do-
main. Preliminary work that investigates similar
bottom-up approaches in other domains that re-
quire a content selection, such as grammar correc-
tion, or data-to-text generation, have shown some
promise and will be investigated in future work.
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Examples Generated summary

Reference green bay packers successful season is largely due to quarterback brett
favre

S2S ahman green rushed for 000 yards in 00-00 victory over the giants . true
, dorsey levens , good enough to start for most teams but now green ’s
backup , contributed kickoff returns of 00 , 00 and 00 yards .

Content Selection playoff-bound green bay packers beat the giants in the 00-00 victory . the
packers won three games and six of each other .

Reference paul byers , pioneer of visual anthropology , dies at age 00
S2S paul byers , an early practitioner of mead , died on dec. 00 at his home in

manhattan . he enlisted in the navy , which trained him as a cryptanalyst
and stationed him in australia .

Content Selection paul byers , an early practitioner of anthropology , pioneered with mar-
garet mead .

Table 7: Domain-transfer examples.

A Domain Transfer Examples

We present two generated summaries for the
CNN-DM to NYT domain transfer experiment
in Table 7. S2S refers to a Pointer-Generator
with Coverage Penalty trained on CNN-DM that
scores 20.6 ROUGE-L on the NYT dataset. The
content-selection improves this to 27.7 ROUGE-L
without any fine-tuning of the S2S model.
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Abstract

Convolutional neural networks (CNNs) have
met great success in abstractive summariza-
tion, but they cannot effectively generate sum-
maries of desired lengths. Because generated
summaries are used in difference scenarios
which may have space or length constraints,
the ability to control the summary length in ab-
stractive summarization is an important prob-
lem. In this paper, we propose an approach
to constrain the summary length by extending
a convolutional sequence to sequence model.
The results show that this approach gener-
ates high-quality summaries with user defined
length, and outperforms the baselines consis-
tently in terms of ROUGE score, length varia-
tions and semantic similarity.

1 Introduction

Great progress (Rush et al., 2015; Chopra et al.,
2016; Nallapati et al., 2016; See et al., 2017;
Paulus et al., 2017) has been made recently on
abstractive summarization. Many use sequence-
to-sequence model based on RNN and attention
mechanism (Rush et al., 2015), which was orig-
inally used for machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014). Recently,
Gehring et al. (2017) proposed a convolutional se-
quence to sequence model equipped with Gated
Linear Units (Dauphin et al., 2017), residual con-
nections (He et al., 2016) and attention mecha-
nism. Such a convolutional model achieves state-
of-the-art accuracies in abstractive summarization
on single sentence summarization, and it is much
faster than the previous recurrent models as it can
be easily parallelized. Furthermore, unlike recur-
rent models, the convoluational model has more
stable gradients because of its backpropagation
path.

Constraining summary length, while largely ne-
glected in the past, is actually an important aspect

of abstractive summarization. For example, given
the same input document, if the summary is to
be displayed on mobile devices, or within a fixed
area of advertisement slot on a website, we may
want to produce a much shorter summary. Unfor-
tunately, most existing abstractive summarization
models are not trained to react to summary length
constraints. When the constraint is given at test
time, the current practice is i) to truncate the gener-
ated summary after N tokens are generated when
you want the summaries of length no more than
N , and ii) ignore EOS (end of summary) token
until the first M tokens are generated when you
want the summaries of length at least M . Such a
crude way of controlling summary length makes
the output summary incomplete or incoherent.

Previous research on controlling length of ab-
stractive summary has been scarce. Fan et al.
(2017), who applies convolutional sequence to se-
quence model on multi-sentence summarization,
converts length range as some special markers
which are predefined and fixed. These markers
are included in the training vocabulary. At train-
ing time, the model prepends the input of the sum-
marizer with marker indicating the length of input
sequence. At test time, it controls the length of
the generated summary also by prepending length
marker indicating the desired length. Unfortu-
nately, this approach can not generate summaries
of arbitrary lengths. It only generates summaries
in predefined ranges of length, thus only meets the
length constraints approximately. This is shown in
Table 1. The above truncation practice can be used
in conjunction with any of the length control meth-
ods but the excessive parts (red) will be truncated
leaving incomplete sentences.

In our work, we extend the convolutional se-
quence to sequence model (Gehring et al., 2017)
by controlling the length of summarization. Our
approach seeks to generate summaries of any de-
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Table 1: Example summaries generated by different
models with a desired length of 10 (red parts exceed
the 10 token limit).

Reference summary (53 tokens)
david de gea and victor valdes enjoyed an afternoon
off at a theme park . spanish duo donned shades as
they made the most of the rare sunshine . it has
certainly been a rollercoaster season for manchester
united . united are third in the premier league after
an impressive recent run .
Basic CNN summary (35 tokens)
david de gea and victor valdes made the most of
the rare english sun with a trip to a theme park .
david de gea and victor valdes enjoyed some fun in
the sun .
(Fan et al., 2017) summary (30 tokens)
david de gea and victor valdes enjoyed a trip to a
theme park . the pair enjoyed a relaxing time just
days after united ’s win against manchester city .
Our Length Control summary (LC) (10 tokens)
david de gea and victor valdes enjoy some fun .

sired number of tokens (also shown in Table 1). To
do this, a length constraint is added to each con-
volutional block of the initial layer of the model.
This information is propagated layer by layer dur-
ing training. Our contributions are as follows:

1. We propose a simple but effective method
to generate summaries with arbitrary desired
length (Section 2.2).

2. Our approach outperforms the state-of-art
baseline methods substantially by all evalua-
tion metrics, i.e., ROUGE scores, length vari-
ation and semantic similarity (Section 3).

3. The generated summaries from our model are
natural and complete, especially when the de-
sired length is short (Section 3).

Next, we present the basic convolutional se-
quence to sequence model and our extension, fol-
lowed by the evaluation of our approach and a dis-
cussion of related work.

2 Methodology

In this section, we will describe the model archi-
tecture used for our experiments and propose our
length control method which is implemented by
extending the basic model.

For summarization problems based on seq2seq
model, given a sequence of tokens x =
(x1, x2, ..., xm) in the source document and a se-
quence of tokens y = (y1, y2, ..., yn) in the target
summary (i.e. m > n), the goal is to estimate the

conditional probability p(y|x):

p(y|x)=
TY

t

p(yt|y1, y2, ..., yt�1, x) (1)

We aim at getting the above conditional prob-
abaility which can generate summaries with arbi-
trary desired length.

2.1 Basic CNN seq2seq Model
Our basic model consists of a multi-layer con-
volutional sequence to sequence model (CNN
seq2seq)1 (Gehring et al., 2017; LeCun et al.,
1989) and an attention mechanism. Figure 1 il-
lustrates the model.
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Figure 1: CNN seq2seq model

In the CNN seq2seq model, we obtain the input
sequence X = (X1, ..., Xm) and output sequence
Y = (Y1, ..., Yn) after combining word vectors
with their absolute positions in the document. We
use z = (zl

1, z
l
2, ..., z

l
m) and h = (hl

1, h
l
2, ..., h

l
n) to

denote the convolutional output of the encoder and
decoder in l-th layer. Each element of the output
sequence generated by the decoder network is fed
back into the next layer of decoder network. Next,
we add GLU (Dauphin et al., 2017) and residual
connections (He et al., 2016) in each layer:

hl
i =GLU(W l[hl�1

s , ..., hl�1
t ]+bl)+hl�1

i (2)

where [hl�1
s , ..., hl�1

t ] corresponds to the hl
i in the

convolutional layers. The choice of s and t is
based on kernel width and the padding method
used to match the output of convolutional layers
to the input length. We compute the probability
distribution of generating the next elements yi+1

based on the current state and transform the top
decoder output hL

i via softmax:

p(yi+1|y1, ..., yi, x)=softmax(Woh
L
i +bo) (3)

1https://github.com/facebookresearch/
fairseq-py.
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In addition, a multi-step attention mechanism
that connects the encoder and decoder is used in
each decoder layer. We define the decoder state dl

i
for attention as following:

dl
i =W l

dh
l
i+bl

d + Yi (4)

The attention cl
i is a weighted sum of the en-

coder outputs. The weights al
ij are based on the

decoder states.

al
ij =

exp(dl
i · zu

j )
Pm

t=1 exp(dl
i · zu

t )
(5)

cl
i =

mX

j=1

al
ij(z

u
j + Xj) (6)

At last, we add cl
i to the current decoder ele-

ments hl
i, which forms the final output or the input

of the next layer in the decoder.

2.2 Modified Model with Length Control
(LC)

We propose an approach which can control the
summary length in CNN seq2seq model. The
model can generate different summaries by setting
desired length. It has the ability to generate the
EOS tag at the appropriate time point in a natural
manner.

To produce a summary of a given desired
length, we modify the basic model by feeding the
desired length as a parameter into the decoder of
the CNN seq2seq model. At training time, we use
the true length of the gold summary as the de-
sired length. At test time, we can give any desired
length len to the model and obtain a summary with
length approximate to len. The modified decoder
is shown in Figure 2.
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Figure 2: Modified Decoder

The CNN seq2seq model creates hierarchical
structure over the input sequence. It is capable of
capturing the correlation between elements over

short distances at lower layers and between ele-
ments over long distances at higher layers. The
useful information among the elements is aggre-
gated after GLU. Therefore, we set the desired
length as an input to the initial state of the decoder:

h1
i =v(W 1[h0

s, ..., h
0
t ]+b1)+h0

i ⇤ len (7)

where W is a trainable parameter, len is the de-
sired length, v is GLU funciton and h0

i is the i-th
element in the initial layer.

In the above function, we add length informa-
tion at first layer in CNN model. GLU is like a
gate. It can filter some information from a particu-
lar unit in each layer. The information attenuation
occurs in GLU layer by layer. Different desired
lengths have different degrees of information at-
tenuation. Therefore the model is able to learn the
probability of generating EOS with its own length
information attenuation. This operation enables
the model to produce a natural and complete sum-
mary for a given length constraint naturally.

3 Evaluation

In this section, our benchmark is the CNN/Daily
Mail DMQA dataset (Hermann et al., 2015; Nal-
lapati et al., 2016; See et al., 2017) 2, consisting
of pairs of a single source document and a multi-
sentence summary. The dataset includes 286,817
training pairs, 13,368 validation pairs and 11,487
test pairs. We follow the same pre-processing step
used by See et al. (2017), and fill in the blanks
with answer named entities. We show an example
of such pairs in Table 4(a).

We compare our length constrained summariza-
tion model with the basic CNN seq2seq model and
the state-of-the-art length controllable summariza-
tion model (Fan et al., 2017) 3. Following Fan et
al., we distribute the dataset into a set of disjoint
buckets that correspond to summaries of different
lengths. Each bucket contains roughly equal num-
ber of documents. The distribution is shown in
Figure 3.

All competing methods have three flavors: free,
truncated and exact. In the free version(Free),
given the desired length N , each method gener-
ates summaries naturally until an EOS is gener-
ated. In the truncated version(Trunc), each method

2https://cs.nyu.edu/kcho/DMQA/
3All datasets, source code and generated summaries

can be downloaded from http://202.120.38.146/
sumlen.
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Figure 3: The buckets distribution of the dataset

artificially inserts an EOS if EOS has not been
generated in the first N tokens. In the exact ver-
sion(Exact), each method generates N non-EOS
tokens by assigning a score of -1 to the EOS and
inserts an EOS after the N -th token. The pur-
pose of Free version is to evaluate the method’s
ability to generate summaries with desired length;
the purpose of the other two versions is to en-
able fair comparison of the summaries in terms of
their content given that the summaries are of equal
length.

3.1 Experimental Setup
In the following experiments, all the competing
models have 8 convolutional layers in both en-
coder and decoder parts with kernel width as 3.
For each convolutional layer, we set the hidden
vector size as 512 and the embedding size as 256.
To alleviate the overfitting problem, we add the
dropout (p = 0.2) layer for all convolutional lay-
ers and fully connected layers.

To optimize the proposed model, we use Nes-
terov’s accelerated gradient method (Sutskever
et al., 2013) with gradient clipping 0.1 (Pascanu
et al., 2013), momentum 0.99, and learning rate
0.2. We terminate the training process when the
learning rate drops below 10e-5. We set beam size
as 5 for the beam search algorithm in the testing
step. Next, we introduce the evaluation metrics in
the following experiments:

1. ROUGE scores (F1 score) of the pro-
duced summaries, including ROUGE-1(R-1),
ROUGE-2(R-2) and ROUGE-L(R-L) (Lin,
2004). ROUGE-2 is the most popular metric
for summarization.

2. Variance(Var) of the summary lengths

against the desired length len:

var = 0.001 ⇤ 1

n

nX

i=0

|li � len|2, (8)

where n is the number of pairs in the dataset,
and li is the length of the generated summary
i. We introduce the variance to evaluate the
ability of exact control of the output length.

3. Similarity(Sim) between generated sum-
maries and their corresponding reference
summaries:

sim =
1

n

nX

i=0

yi · y0
i

||yi||||y0
i||

(9)

where n is the number of pairs. yi is the vec-
tor representation of the reference summary i
and y0

i is vector of the corresponding gener-
ated summary i. Both yi and y0

i are the sum
of GloVe 4 word vectors of the words in these
summaries.

We introduce the similarity metric here to com-
plement the ROUGE scores because Yao et al.
(2017a) showed that the standard ROUGE scores
cannot capture semantic similarity beyond n-
grams. Given the same source document, abstrac-
tive summarization may create summaries that
don’t share many words but mean the same. To
show the effectiveness of this Sim metric, we de-
sign a dataset from the summarization tasks of
TAC 2010⇠20115. The TAC dataset consists of 90
topics in total, each with 2 subset. Each subset has
4 reference summaries by different humans. We
assume reference summaries about the same topic
to be semantically similar to each other, while
summaries across topics are unrelated. Thus we
created 2,160 pairs of similar summaries as pos-
tive data and 2,160 pairs of unrelated summaries as
negative data. We then compute the Pearson corre-
lation between the ROUGE score and the ground
truth as well as between Sim and the ground truth
and show the results in Table 2. Sim metric cer-
tainly resembles semantic similarity better than
ROUGE by this experiment.

In this paper, we don’t use manual evaluation as
the major metric. The reason is that Lin (2004)
showed that the manual evaluation is unstable and

4https://nlp.stanford.edu/projects/glove/.
5https://tac.nist.gov/
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Table 2: Pearson correlation with the true semantic re-
latedness

TAC 2010 TAC 2011
R-2 0.6107 0.6034
Sim 0.6653 0.7165

the inter-human agreement is low due to the vari-
ety in abstractive summaries. The ROUGE scores
and Similarity scores can respectively measure the
syntactic similarity and semantic similarity. They
are complementary to each other and give bet-
ter quantitative assessment of the summarization
quality.

3.2 Experiment 1: Gold Summary Lengths
In the first experiment, for each test document-
summary pair, we set the desired length as the
length of the gold summary and ask the competing
methods to generate a summary with the desired
length. As shown in Table 3, the proposed model
(LC) outperforms the other models on all of the
evaluation metrics. The ROUGE score shows the
accuracy of these models. Lower variance reflects
better length control of the model. Higher similar-
ity reflects better quality of generated summaries
from the semantic point of view.

Table 3: Desired Length: Gold Summary Lengths
R-1 R-2 R-L Var Sim

Free
CNN 34.49 14.38 25.78 0.3465 0.9220
Fan 34.53 14.40 25.78 0.3446 0.9216
LC 35.45 14.50 26.02 0.0005 0.9272

Trunc
CNN 34.76 14.53 26.00 0.3045 0.9201
Fan 34.74 14.52 25.97 0.3031 0.9197
LC 35.44 14.48 26.02 0.0002 0.9268

Exact
CNN 35.39 14.43 26.07 0.0 0.9249
Fan 35.37 14.42 26.03 0.0 0.9246
LC 35.44 14.50 26.02 0.0 0.9268

The LC model achieves the highest ROUGE
and similarity scores as well as the lowest vari-
ance in both Free and Exact version, which shows
the effectiveness of LC for generating high quality
summaries under length constraint. In the Trunc
version, the LC model outperforms the other com-
parable models on all evaluation metrics except for
the ROUGE score. Note that, the ROUGE scores
of LC model are very stable, indicating its effec-
tive length control. As for the other two mod-
els, they have better ROUGE score on Trunc ver-
sion. However, as the example shown in Table
46, higher ROUGE scores do not necessarily mean

6The entities in different color indicate two important
roles in the text. The words in bold type mean correct content.

high quality abstractive summaries.
The ROUGE score consists of Recall(R), Preci-

sion(P) and F1-measure(F). The summary tends to
achieve a better ROUGE score when the length of
generated summary is slightly shorter than the de-
sired length. In Table 4(b), the CNN model has
the same R score as LC model and a higher P
score than LC model because of its slightly shorter
length. We can see that the CNN model achieve a
higher F score even its generated summary is not
good. Moreover, for the basic model, the gener-
ated summary always repeats the sentences when
the length of generated summary is longer than the
desired length. In Table 4(c), the P score of its
Trunc version would be improved by a large mar-
gin. Thus, the ROUGE score for the Trunc version
biases toward the models with weak length con-
trol. The generated summaries of the LC model in
Table 4(d), which capture the semantic of the ref-
erence summary and satisfy the constraint length
very well, are better than the other two models
even with a slightly lower ROUGE score. The
topic of this example is that Louis Jordan, who is
the son of Frank Jordan, got lost during sailing and
was finally rescued from his boat. Our model gen-
erates the summary with correct information, but
other two models get the Louis Jordan and Frank
Jordan mixed up. This is correctly measured by
the similarity scores.

3.3 Experiment 2: Arbitrary Lengths

In the second experiment, we ask the methods to
generate summaries with arbitrary lengths. We re-
port the results of all three methods with five arbi-
trary lengths: 10, 30, 50, 70 and 90. We show the
performance of each model with different length
constraints in Table 5, Table 6, Figure 4 and Figure
5. The basic CNN model has the same ROUGE
scores in the Free version since it cannot control
the length of generated summaries on its own. For
Fan et al. (2017), the desired length is mapped to
the model’s predefined fixed length range(s) that
contains the desired length before it produces its
summaries. For example, the desired length 10 is
mapped to the first bucket (0, 33].

To demonstrate the effectiveness of LC model
and further illustrate the results, we show an ex-
ample of generated summaries by LC(Free) model
with different lengths. As shown in Table 7, when
the desired length (e.g., 10) is very different from
the length of the reference summary, the ROUGE
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Table 4: Example summaries generated in Experiment 1.
(a) Source document and reference summary (36 tokens)

Source document
the last time frank jordan spoke with his son, louis jordan was fishing on a sailboat a few miles off the south
carolina coast. the next time ... more than two months had passed and the younger jordan was on a contrainer
ship 200 miles from north carolina, just rescued from his disabled boat . “i thought i lost you,”the relieved
father said. louis jordan, 37, took his sailboat out in late january and hadn’t been heard from in 66 days ... the
younger jordan said he took his sailboat out to the gulf stream to find some better fishing ... the boat capsized
two more times before he was rescued, according to jordan.
Reference summary
louis jordan says his sailboat capsized three times . he survived by collecting rainwater and eating raw fish .
frank jordan told cnn his son is n’t an experienced sailor but has a strong will .

(b) Free summary(29 tokens), Trunc summary(29 tokens) and Exact summary of CNN
Summary R P F Var Sim

CNN

Free frank jordan took his sailboat out to the gulf stream to find some
better fishing , jordan says . “ it took so long , ” jordan says . 6.06 9.09 7.27 0.049 0.9217

Trunc frank jordan took his sailboat out to the gulf stream to find some
better fishing , jordan says . “ it took so long , ” jordan says . 6.06 9.09 7.27 0.049 0.9217

Exact
frank jordan took his sailboat out to the gulf stream to find some
better fishing , jordan says . jordan says he took his sailboat out
to the gulf stream to find some better fishing .

6.06 6.25 6.15 - 0.9254

(c) Free summary(50 tokens), Trunc summary(36 tokens) and Exact summary of Fan
Summary R P F Var Sim

Fan

Free

frank jordan took his sailboat out to the gulf stream to find some
better fishing . jordan says he took his sailboat out to the gulf
stream to find some better fishing . jordan says he took his sailboat
out to the gulf stream to find some better fishing .

6.06 4.35 5.06 0.196 0.9215

Trunc
frank jordan took his sailboat out to the gulf stream to find some
better fishing . his son , louis jordan took his sailboat out to the
gulf stream to find some better fishing .

12.12 12.90 12.50 0.0 0.9194

Exact
frank jordan took his sailboat out to the gulf stream to find some
better fishing . his son , louis jordan took his sailboat out to the
gulf stream to find some better fishing .

12.12 12.90 12.50 - 0.9194

(d) Free summary(36 tokens), Trunc summary(36 tokens) and Exact summary of LC(ours)
Summary R P F Var Sim

LC

Free
louis jordan was on a sailboat a few miles off the south carolina
coast . he had n’t been heard from in 66 days when he was
rescued . he was rescued from his boat .

6.06 6.06 6.06 0.0 0.9293

Trunc
louis jordan was on a sailboat a few miles off the south carolina
coast . he had n’t been heard from in 66 days when he was
rescued . he was rescued from his boat .

6.06 6.06 6.06 0.0 0.9293

Exact
louis jordan was on a sailboat a few miles off the south carolina
coast . he had n’t been heard from in 66 days when he was
rescued . he was rescued from his boat .

6.06 6.06 6.06 - 0.9293

score may not be good even though the gener-
ated summary matches the reference quite well
semantically. The generated summaries from LC
model are natural and complete. The summaries
with short desired length on Trunc and Exact ver-
sion would be more vulnerable to the incomplete
problem. We randomly sample 100 summaries
generated by each model under Trunc and Ex-
act with desired length of 10 and 30, and manu-
ally inspect their readibility. This is a simplified
human-evaluation of summarization, which just
determines whether the sentences in summaries

under length control are complete or not. If com-
plete, the score is 1; if not, it is 0. It is easier to
accomplish and more reliable than other sophis-
ticated human-evaluation. Table 8 shows that the
LC model has a clear advantage over the other two
models in terms of summary fluency.

In this experiment, the desired length is fixed
for all the documents which is independent from
the corresponding lengths of reference summaries
such that the generated summaries may include
more versatile words and phrases different from
the reference summaries. Thus, the similar-
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Table 5: Desired Length: 10, 30, 50, 70, 90
(a) Free version

Free 10 30 50 70 90

CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC
R-1 34.49 34.28 19.03 34.49 34.28 32.26 34.49 34.60 34.71 34.49 34.65 33.83 34.49 30.56 32.17
R-2 14.38 14.18 8.45 14.38 14.18 13.60 14.38 14.41 14.24 14.38 14.50 13.67 14.38 12.20 13.00
R-L 25.78 25.60 16.47 25.78 25.60 24.64 25.78 25.79 25.62 25.78 25.82 24.67 25.78 22.08 23.28

(b) Trunc version

Trunc 10 30 50 70 90

CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC
R-1 20.14 20.12 18.77 32.96 32.99 32.25 35.14 35.07 35.60 34.49 34.67 33.83 31.27 34.70 32.16
R-2 9.27 9.22 8.31 14.06 14.04 13.60 14.46 14.40 14.30 14.38 14.50 13.67 12.40 14.55 13.00
R-L 17.35 17.34 16.28 25.11 25.06 24.62 26.09 26.05 25.90 25.78 25.82 24.67 22.69 25.86 23.29

(c) Exact version

Exact 10 30 50 70 90

CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC CNN Fan LC
R-1 20.14 20.14 20.06 33.05 32.83 32.94 34.71 34.72 34.81 32.24 33.35 33.82 31.27 31.37 32.04
R-2 9.27 9.23 9.23 14.08 13.79 14.00 14.78 14.17 14.23 13.33 13.39 13.59 12.41 12.47 12.86
R-L 17.36 17.36 17.30 25.15 24.87 25.02 25.65 25.63 25.60 24.31 24.35 24.56 22.69 22.76 23.14

Table 6: Similarity of different length
(a) Free version
CNN Fan LC

10 0.9220 0.9205 0.8124
30 0.9220 0.9214 0.9092
50 0.9220 0.9216 0.9263
70 0.9220 0.9222 0.9323
90 0.9220 0.9234 0.9256

(b) Trunc version
CNN Fan LC

10 0.7966 0.7968 0.8003
30 0.9079 0.9080 0.9085
50 0.9236 0.9231 0.9286
70 0.9219 0.9222 0.9323
90 0.9325 0.9329 0.9353

(c) Exact version
CNN Fan LC

10 0.7968 0.7961 0.7975
30 0.9083 0.9073 0.9090
50 0.9248 0.9245 0.9251
70 0.9299 0.9230 0.9320
90 0.9325 0.9327 0.9347

Table 7: Generated summaries of LC (Free) model
10 the younger jordan was rescued from his

disabled boat .

30

louis jordan was rescued from his disabled .
he boat had n’t been heard from in 66 days
in late january . he was rescued from his
disabled boat .

50

“ i thought i lost you , ” jordan says . the
younger jordan was on a sailboat a few miles
off the south carolina coast . “ i thought i lost
you , ” jordan tells his son . jordan says he was
grateful to the people .

ity score is more reasonable for evaluation than
ROUGE score. As shown in Table 6 and Figure
4, the LC model achieves the highest similarity
score except for the length of 10 and 30 in the Free
version. The reason is that there is only 5% of
testing data with the length of reference summary
shorter than 30. Due to the effective length con-
trol of LC model, the lengths of generated sum-
maries from LC model are usually much shorter
than those from the other models and the length
of corresponding reference summaries when we

Table 8: The proportion of summaries that are natural
and complete with desired length 10 and 30

Trunc Exact

10 30 10 30
CNN 0.41 0.37 0.48 0.47
Fan 0.50 0.42 0.53 0.57
LC 0.62 0.59 0.88 0.86

set the desired length as 10 or 30. This leads to
a relative lower similarity score shown in Figure
4(b) and Figure 4(c). As shown in Figure 5, the
LC model achieves the lowest variance. In Figure
5(a), as the length of most summaries is around 50
and the number of summaries with a length of 10
or 90 is small, the CNN model and Fan model has
lowest variance at 50 and highest variance at 90.
In Figure 5(b), the length of generated summaries
in Trunc version is no more than desired length.
So the variances of CNN model and Fan model
are incremental. Besides, we can find that the LC
model is stable under all conditions because of its
effective length control model.
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3.4 Significance Test on Similarity Result

We use significance test to prove that similarity
metric is reliable even though the numerical dif-
ference of similarity scores in experiment is little.
Because the similarity scores of generated sum-
maries do not follow normal distribution, we take
Kruskal-Wallis test (Loukina et al., 2014; Albert,
2017) as our significance test to measure that the
difference of similarity results of three methods
is significant or not. As shown in Table 9, all p-
values are less than 0.05. The smaller p-value, the
higher significant. Thus, the difference of the sim-
ilarity results is significant.

Table 9: p-value of significance test
Free Trunc Exact

Exp.1 3.4e-32 2.12e-45 0.01
Exp.2 0.0 4.6e-39 1.0e-4

4 Related Work

In this section, we discuss some previous work
on length control in abstractive summarization and
explain why we choose CNN as our basic summa-
rization model.

4.1 Length Control for Abstractive
Summarization

When summarizing a document, it is desirable to
be able to control the length of summary so as
to cater to different users and scenarios. Most
abstractive summarization systems are based on
encoder-decoder models and generate summaries
whose length depends on the training summaries.
Due to the variability of the sequence genera-
tion models, such as the different structures and
functions, it is hard to design a length constraint
method on all summarization models.

Previous methods control summary length by
generating EOS token at a particular time. Rush
et al. (2015) used an ad-hoc method, in which the
system is inhibited from generating the EOS tag
by assigning a score of -1 to the tag and gener-
ats a fixed number of words. Kikuchi et al. (2016)
proposed two different methods for RNN seq2seq
model which can control the summary length by
taking length embedding as an additional input for
the LSTM and adding desired length into initial
memory cell for the LSTM. In this model, they use
the Gigawords as dataset and focus on the abstrac-
tive summarization in sentence level which gen-
erates one sentence as the summary. For CNN
seq2seq model, Fan et al. (2017) put some spe-
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cial markers into the vocabulary which denote dif-
ferent length ranges. It prepends the input of the
summarizer with the marker during training and
testing. These special markers are predefined and
fixed. In this paper, we aim at generating complete
summaries with arbitrary desired length naturally
for CNN seq2seq model. We use multi-layers
CNN seq2seq model on both encoder and decoder.
We set the length constraint at the first layer of de-
coder to implement the length control of the sum-
marization. Compared with other methods, our
approach can effectively control the length of gen-
erated summary in a natural manner. Meanwhile,
it can generate summaries with length approxi-
mate to the desired length without semantic losing
in less time.

4.2 Encoder-Decoder for Abstractive
Summarization

Automatic document summarization generates
short summaries for original documents. A sum-
mary should cover the key topics of the origi-
nal document(s). A good summary should be
coherent, non-redundant and readable(Yao et al.,
2017b). The research in abstractive summariza-
tion with encoder-decoder model (Sutskever et al.,
2014; Rush et al., 2015; Chopra et al., 2016; Nal-
lapati et al., 2016; See et al., 2017; Paulus et al.,
2017; Fan et al., 2017) has made some progress.

Most of them use RNN with different atten-
tion mechanisms (Nallapati et al., 2016; See et al.,
2017; Paulus et al., 2017). Rush et al. (2015)
used RNN with soft-attention, while Paulus et al.
(2017) used the RNN with intra-attention. Re-
cently, research on CNN based summarization has
gained momentum. Gehring et al. (2017) pro-
posed the CNN seq2seq model with multi-step at-
tention, which was extended in (Fan et al., 2017).
Bai et al. (2018) showed that CNN is more pow-
erful than RNN for sequence modeling. What’s
more, CNN enables much faster training and more
stable gradients than RNN. Therefore we select
CNN seq2seq model as our basic model and do
not compare our model with RNN seq2seq model.

5 Conclusion

We presented a simple approach to modify exist-
ing CNN seq2seq model with a summary length
input and were able to train a model that pro-
duces summaries of desired length that are flu-
ent and coherent. This is a better solution than

the current practice of summary truncation. Com-
pared with the existing summarization methods,
we show that our model has the ability to control
the output length on its own using its internal state
without losing semantic information or sacrificing
the ROUGE score.
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Abstract

We propose a method to perform automatic
document summarisation without using refer-
ence summaries. Instead, our method inter-
actively learns from users’ preferences. The
merit of preference-based interactive sum-
marisation is that preferences are easier for
users to provide than reference summaries.
Existing preference-based interactive learning
methods suffer from high sample complex-
ity, i.e. they need to interact with the ora-
cle for many rounds in order to converge.
In this work, we propose a new objective
function, which enables us to leverage ac-
tive learning, preference learning and rein-
forcement learning techniques in order to re-
duce the sample complexity. Both simula-
tion and real-user experiments suggest that
our method significantly advances the state
of the art. Our source code is freely avail-
able at https://github.com/UKPLab/
emnlp2018-april.

1 Introduction

With the rapid growth of text-based information
on the Internet, automatic document summarisa-
tion attracts increasing research attention from the
Natural Language Processing (NLP) community
(Nenkova and McKeown, 2012). Most existing
document summarisation techniques require ac-
cess to reference summaries to train their systems.
However, obtaining reference summaries is very
expensive: Lin (2004) reported that 3,000 hours
of human effort were required for a simple evalu-
ation of the summaries for the Document Under-
standing Conferences (DUC). Although previous
work has proposed heuristics-based methods to
summarise without reference summaries (Ryang
and Abekawa, 2012; Rioux et al., 2014), the gap
between their performance and the upper bound is
still large: the ROUGE-2 upper bound of .212 on

DUC’04 (P.V.S. and Meyer, 2017) is, for example,
twice as high as Rioux et al.’s (2014) .114.

The Structured Prediction from Partial Infor-
mation (SPPI) framework has been proposed to
learn to make structured predictions without ac-
cess to gold standard data (Sokolov et al., 2016b).
SPPI is an interactive NLP paradigm: It inter-
acts with a user for multiple rounds and learns
from the user’s feedback. SPPI can learn from
two forms of feedback: point-based feedback, i.e.
a numeric score for the presented prediction, or
preference-based feedback, i.e. a preference over
a pair of predictions. Providing preference-based
feedback yields a lower cognitive burden for hu-
mans than providing ratings or categorical labels
(Thurstone, 1927; Kendall, 1948; Kingsley and
Brown, 2010; Zopf, 2018). Preference-based SPPI
has been applied to multiple NLP applications, in-
cluding text classification, chunking and machine
translation (Sokolov et al., 2016a; Kreutzer et al.,
2017). However, SPPI has prohibitively high sam-
ple complexities in the aforementioned NLP tasks,
as it needs at least hundreds of thousands rounds of
interaction to make near-optimal predictions, even
with simulated “perfect” users. Figure 1a illus-
trates the workflow of the preference-based SPPI.

To reduce the sample complexity, in this work,
we propose a novel preference-based interactive
learning framework, called APRIL (Active Prefer-
ence ReInforcement Learning). APRIL goes be-
yond SPPI by proposing a new objective func-
tion, which divides the preference-based interac-
tive learning problem into two phases (illustrated
in Figure 1b): an Active Preference Learning
(APL) phase (the right cycle in Figure 1b), and
a Reinforcement Learning (RL) phase (the left cy-
cle). We show that this separation enables us to
query preferences more effectively and to use the
collected preferences more efficiently, so as to re-
duce the sample complexity.
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Figure 1: A comparison of workflows of SPPI (a)
and APRIL (b) in the EMDS use case. Notation
details, e.g., �x and r(yn), are discussed in §3.

We apply APRIL to Extractive Multi-Document
Summarisation (EMDS). The task of EMDS is to
extract sentences from the original documents to
build a summary under a length constraint. We
accommodate multiple APL and RL techniques
in APRIL and compare their performance under
different simulation settings. We also compare
APRIL to a state-of-the-art SPPI implementation
using both automatic metrics and human evalua-
tion. Our results suggest that APRIL significantly
outperforms SPPI.

2 Related Work

RL has been previously used to perform EMDS
without using reference summaries. Ryang and
Abekawa (2012) formulated EMDS as a Markov
Decision Process (MDP), designed a heuristics-
based reward function considering both informa-
tion coverage rate and redundancy level, and used
the Temporal Difference (TD) algorithm (Sutton,
1984) to solve the MDP. In a follow-up work, Ri-
oux et al. (2014) proposed a different reward func-
tion, which also did not require reference sum-
maries; their experiments suggested that using
their new reward function improved the summary
quality. Henß et al. (2015) proposed a different
RL formulation of EMDS and jointly used super-
vised learning and RL to perform the task. How-
ever, their method requires the access to reference
summaries. More recent works applied encoder-
decoder-based RL to document summarisation
(Ranzato et al., 2015; Narayan et al., 2018; Paulus
et al., 2017; Pasunuru and Bansal, 2018). These
works outperformed standard encoder-decoder as

RL can directly optimise the ROUGE scores and
can tackle the exposure bias problems. However,
these neural RL methods all used ROUGE scores
as their rewards, which in turn relied on reference
summaries. APRIL can accommodate these neu-
ral RL techniques in its RL phase by using a rank-
ing of summaries instead of the ROUGE scores as
rewards. We leave neural APRIL for future study.

P.V.S. and Meyer (2017) proposed a bigram-
based interactive EMDS framework. They asked
users to label important bigrams in candidate sum-
maries and used integer linear programming (ILP)
to extract sentences covering as many important
bigrams as possible. Their method requires no ac-
cess to reference summaries, but it requires con-
siderable human effort during the interaction: in
simulation experiments, their system needed to
collect up to 350 bigram annotations from a (simu-
lated) user. In addition, they did not consider noise
in users’ annotations but simulated perfect oracles.

Preference learning aims at obtaining the rank-
ing (i.e. total ordering) of objects from pairwise
preferences (Fürnkranz and Hüllermeier, 2010).
Simpson and Gurevych (2018) proposed to use an
improved Gaussian process preference learning
(Chu and Ghahramani, 2005) for learning to rank
arguments in terms of convincingness from crowd-
sourced annotations. However, such Bayesian
methods can hardly scale and suffer from high
computation time. Zopf (2018) recently proposed
to learn a sentence ranker from preferences. The
resulting ranker can be used to identify the impor-
tant sentences and thus to evaluate the quality of
the summaries. His study also suggests that pro-
viding sentence preferences takes less time than
writing reference summaries. APRIL not only
learns a ranking over summaries from pairwise
preferences, but also uses the ranking to “guide”
our RL agent to generate good summaries.

There is a recent trend in machine learning to
combine active learning, preference learning and
RL, for learning to perform complex tasks from
preferences (Wirth et al., 2017). The resulting al-
gorithm is termed Preference-based RL (PbRL),
and has been used in multiple applications, includ-
ing training robots (Wirth et al., 2016) and Atari-
playing agents (Christiano et al., 2017). SPPI and
APRIL can both be viewed as PbRL algorithms.
But unlike most PbRL methods that learn a utility
function of the predictions (in EMDS, predictions
are summaries) to guide the RL agent, APRIL
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is able to directly use a ranking of predictions
to guide the RL agent without making assump-
tions about the underlying structure of the utility
functions. This also enables APRIL to use non-
utility-based preference learning techniques (e.g.,
Maystre and Grossglauser, 2017).

3 Background

In this section, we recap necessary details of SPPI,
RL and preference learning, and adapt them to the
EMDS use case, laying the foundation for APRIL.

3.1 The SPPI Framework
Let X be the input space and let Y(x) be the set
of possible outputs for input x 2 X . In EMDS,
x 2 X is a cluster of documents and Y(x) is the
set of all possible summaries for cluster x. The
function �x : Y(x)⇥Y(x) ! {0, 1} is the prefer-
ence function such that �x(yi, yj) = 1 if the user
believes yj is better than yi (denoted by yj � yi or
equivalently yi � yj), and 0 otherwise. Through-
out this paper we assume that users do not equally
prefer two different items. For a given x, the ex-
pected loss is:

LSPPI(w|x) = Epw(yi,yj |x)[�x(yi, yj)]

=
X

yi,yj2Y(x)

�x(yi, yj) pw(yi, yj |x), (1)

where pw(yi, yj |x) is the probability of querying
the pair (yi, yj). Formally,

pw(yi, yj |x)

=
exp[w|(�(yi|x) � �(yj |x))]P

yp,yq2Y(x)
exp[w|(�(yp|x) � �(yq|x))]

, (2)

where �(y|x) is the vector representation of y
given x, and w is the weight vector to be learnt.
Eq. (2) is a Gibbs sampling strategy: w|(�(yi|x)�
�(yj |x)) can be viewed as the “utility gap” be-
tween yi and yj . The sampling strategy pw en-
courages querying pairs with large utility gaps.

To minimise LSPPI, SPPI uses gradient descent
to update w incrementally. Alg. 1 presents the
pseudo code of our adaptation of SPPI to EMDS.
In the supplementary material, we provide a de-
tailed derivation of rwLSPPI(w|x).

3.2 Reinforcement Learning
RL amounts to efficient algorithms for searching
optimal solutions in MDPs. MDPs are widely

Input : sequence of learning rates �t; query
budget T ; document cluster x

initialise w0;
while t = 0 . . . T do

sample (yi, yj) according to Eq. (2);
obtain feedback �x(yi, yj);
wt+1 := wt � �trwLSPPI(w|x)

end
Output: y⇤ = arg maxy2Y (x) w|

T+1�(y, x)

Algorithm 1: SPPI for preference-based in-
teractive document summarisation (adjusted
from Alg. 2 in (Sokolov et al., 2016a)).

used to formulate sequential decision making
problems, which EMDS falls into: in EMDS, the
summariser has to sequentially select sentences
from the original documents and add them to the
draft summary. An (episodic) MDP is a tuple
(S, A, P, R, T ). S is the set of states, A is the set
of actions, P : S ⇥ A ⇥ S ! R is the transition
function with P (s0|s, a) yielding the probability of
performing action a in state s and being transited
to a new state s0. R : S ⇥ A ! R is the reward
function with R(s, a) giving the immediate reward
for performing action a in state s. T ✓ S is the set
of terminal states; visiting a terminal state termi-
nates the current episode.

In EMDS, we follow the same MDP formu-
lation as Ryang and Abekawa (2012) and Rioux
et al. (2014). Given a document cluster, a state s
is a draft summary, A includes two types of ac-
tions, concatenate a new sentence to the current
draft summary, or terminate the draft summary
construction. The transition function P in EMDS
is trivial because given the current draft summary
and an action, the next state can be easily inferred.
The reward function R returns an evaluation score
of the summary once the action terminate is per-
formed; otherwise it returns 0 because the sum-
mary is still under construction and thus not ready
to be evaluated. Providing non-zero rewards be-
fore the action terminate can lead to even worse
result, as reported by Rioux et al. (2014).

A policy ⇡ : S ⇥ A ! R in an MDP defines
how actions are selected: ⇡(s, a) is the probability
of selecting action a in state s. In EMDS, a policy
corresponds to a strategy to build summaries for a
given document cluster. We let Y⇡(x) be the set of
all possible summaries the policy ⇡ can construct
in the document cluster x, and we slightly abuse
the notation by letting ⇡(y|x) denote the probabil-

4122



ity of policy ⇡ generating a summary y in cluster
x. Then the expected reward of a policy is:

RRL(⇡|x) = Ey2Y⇡(x)R(y|x)

=
X

y2Y⇡(x)

⇡(y|x)R(y|x), (3)

where R(y|x) is the reward for summary y in doc-
ument cluster x. The goal of an MDP is to find the
optimal policy ⇡⇤ that has the highest expected re-
ward: ⇡⇤ = arg max⇡ RRL(⇡).

Note that the loss function in SPPI (Eq. (1)) and
the expected reward function in RL (Eq. (3)) are in
similar forms: if we view the pair selection proba-
bility pw in Eq. (2) as a policy, and view the pref-
erence function �x in Eq. (1) as a negative reward
function, we can view SPPI as an RL problem.
The major difference between SPPI and RL is that
SPPI selects and evaluates pairs of outputs, while
RL selects and evaluates single outputs. We will
exploit their connection to propose our new objec-
tive function and the APRIL framework.

3.3 Preference Learning
The linear Bradley-Terry (BT) model (Bradley
and Terry, 1952) is one of the most widely used
methods in preference learning. Given a set of
items Y , suppose we have observed T preferences:
Q = {q1(y1,1, y1,2), · · · , qT (yT,1, yT,2)}, where
yi,1, yi,2 2 Y , and qi 2 {�, �} is the oracle’s
preference in the ith round. The BT model min-
imises the following cross-entropy loss:

LBT(w) = �
X

qi(yi,1,yi,2)2Q

[ µi,1 log Pw(yi,1 � yi,2)

+ µi,2 log Pw(yi,2 � yi,1) ], (4)

where Pw(yi � yj) = (1 + exp[w|(�(yj) �
�(yi))])�1, and µi,1 and µi,2 indicate the direc-
tion of preferences: if yi,1 � yi,2 then µi,1 = 1
and µi,2 = 0. Let w⇤ = arg minw LBT(w),
then w⇤ can be used to rank all items in Y: for
any yi, yj 2 Y , the ranker prefers yi over yj if
w⇤|�(yi) > w⇤|�(yj).

4 APRIL: Decomposing SPPI into Active
Preference Learning and RL

A major problem of SPPI is its high sample com-
plexity. We believe this is due to two reasons.
First, SPPI’s sampling strategy is inefficient: From
Eq. (2) we can see that SPPI tends to select pairs
with large quality gaps for querying the user. This

strategy can quickly identify the relatively good
and relatively bad summaries, but needs many
rounds of interaction to find the top summaries.
Second, SPPI uses the collected preferences inef-
fectively: In Alg. 1, each preference is used only
once for performing the gradient descent update
and is forgotten afterwards. SPPI does not gener-
alise or re-use collected preferences, wasting the
useful and expensive information.

These two weaknesses of SPPI motivate us to
propose a new learning paradigm that can query
and generalise preferences more efficiently. Re-
call that in EMDS, the goal is to find the optimal
summary for a given document cluster x, namely
the summary that is preferred over all other pos-
sible summaries in Y(x). Based on this under-
standing, we define a new expected reward func-
tion RAPRIL for policy ⇡ as follows:

RAPRIL(⇡|x)=Eyj⇠⇡[
1

|Y(x)|
X

yi2Y(x)

�x(yi, yj)]

=
1

|Y(x)|
X

yj2Y⇡(x)

⇡(yj |x)
X

yi2Y(x)

�x(yi, yj)

=
X

y2Y⇡(x)

⇡(y|x) r(y|x), (5)

where r(y|x) =
P

yi2Y(x) �x(yi, yj)/|Y(x)|.
Note that �x(yi, yj) equals 1 if yj is preferred
over yi and equals 0 otherwise (see §3.1). Thus,
r(y|x) is the relative position of y in the (ascend-
ing) sorted Y(x), and it can be approximated by
preference learning. The use of preference learn-
ing enables us to generalise the observed prefer-
ences to a ranker (see §3.3), allowing more ef-
fective use of the collected preferences. Also, we
can use active learning to select summary pairs for
querying more effectively. In addition, the resem-
blance of RAPRIL and RL’s reward function RRL

(in Eq. (3)) enables us to use a wide range of RL
algorithms to maximise RAPRIL (see §2).

Based on the new objective function, we split
the preference-based interactive learning into two
phases: an Active Preference Learning (APL)
phase (the right cycle in Fig. 1b), responsible for
querying preferences from the oracle and approxi-
mating the ranking of summaries, and an RL phase
(the left cycle in Fig. 1b), responsible for learning
to summarise based on the learned ranking. The
resulting framework APRIL allows for integrating
any active preference learning and RL techniques.
Note that only the APL phase is online (i.e. in-
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Input : query budget T ; document cluster x;
RL episode budget N

/* Phase 1: active preference learning */
while t = 0 . . . T do

sample a summary pair (yi, yj) using any
APL strategy;

obtain feedback �x(yi, yj);
update ranker according to Eq. (4) ;

end
/* Phase 2: RL-based summarisation */
initialise an arbitrary policy ⇡0;
while n = 0 . . . N do

evaluate policy ⇡n according to Eq. (5);
update policy ⇡n using any RL algorithm;

end
Output: y⇤ = arg maxy2Y⇡N (x) ⇡N (y|x)

Algorithm 2: Pseudo code of APRIL

Dataset Lang # Topic # Doc # Token/Doc

DUC ’01 EN 30 308 781
DUC ’02 EN 59 567 561
DUC ’04 EN 50 500 587

Table 1: Statistics of the datasets. The target sum-
mary length is 100 tokens in all three datasets.

volving humans in the loop) while the RL phase
can be performed offline, helping to improve the
real-time responsiveness. Also, the learned ranker
can provide an unlimited number of rewards (i.e.
r(y|x) in Eq. (5)) to the RL agent, enabling us to
perform many episodes of RL training with a small
number of collected preferences – unlike in SPPI
where each collected preference is used to train the
system for one round and is forgotten afterwards.
Alg. 2 shows APRIL in pseudo code.

5 Experimental Setup

Datasets. We perform experiments on DUC ’04
to find the best performing APL and RL tech-
niques. Then we combine the best-performing
APL and RL to complete APRIL and compare
it against SPPI on the DUC ’01, DUC ’02 and
DUC ’04 datasets.1 Some statistics of these
datasets are summarised in Table 1.

Simulated Users. Existing preference-based in-
teractive learning techniques assume that the or-
acle has an intrinsic evaluation function U⇤ and
provides preferences consistent with U⇤ by prefer-
ring higher valued candidates. We term this a Per-

1http://duc.nist.gov/

fect Oracle (PO). We believe that assuming a PO
is unrealistic for real-world applications, because
sometimes real users tend to misjudge the prefer-
ence direction, especially when the presented can-
didates have similar quality. In this work, besides
PO, we additionally consider two types of noisy
oracles based on the user-response models pro-
posed by Viappiani and Boutilier (2010):

• Constant noisy oracle (CNO): with prob-
ability c 2 [0, 1], this oracle randomly se-
lects which summary is preferred; otherwise
it provides preferences consistent with U⇤.
We consider CNOs with c = 0.1 and c = 0.3.

• Logistic noisy oracle (LNO): for two sum-
maries yi and yj in cluster x, the or-
acle prefers yi over yj with probability
pU⇤(yi � yj |x; m) = (1 + exp[(U⇤(yj |x) �
U⇤(yi|x))/m])�1. This oracle reflects the in-
tuition that users are more likely to misjudge
the preference direction when two summaries
have similar quality. Note that the parame-
ter m 2 R

+ controls the “noisiness” of the
user’s responses: higher values of m result
in a less steep sigmoid curve, and the result-
ing oracle is more likely to misjudge. We use
LNOs with m = 0.3 and m = 1.

As for the intrinsic evaluation function U⇤, re-
cent work has suggested that human preferences
over summaries have high correlations to ROUGE
scores (Zopf, 2018). Therefore, we define:

U⇤(y|x)=
R1(y|x)

0.47
+

R2(y|x)

0.22
+

RS(y|x)

0.18
(6)

where R1, R2 and RS stand for ROUGE-1,
ROUGE-2 and ROUGE-SU4, respectively. The
real values (0.47, 0.22 and 0.18) are used to bal-
ance the weights of the three ROUGE scores. We
choose them to be around the EMDS upper-bound
ROUGE scores reported by P.V.S. and Meyer
(2017). As such, an optimal summary’s U⇤ value
should be around 3.

Implementation. All code is written in Python
and runs on a desktop PC with 8 GB RAM and an
i7-2600 CPU. We use NLTK (Bird et al., 2009) to
perform sentence tokenisation. Our source code
is freely available at https://github.com/
UKPLab/emnlp2018-april.

6 Simulation Results
We first study the APL phase (§6.1) and the RL
phase (§6.2)) separately by comparing the perfor-
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mance of multiple APL and RL algorithms in each
phase. Then, in §6.3, we combine the best per-
forming APL and RL algorithm to complete Alg.
2 and compare APRIL against SPPI.

6.1 APL Phase Performance
Recall that the task of APL is to output a ranking
of all summaries in a cluster. In this subsection,
we test multiple APL techniques and compare the
quality of their resulting rankings. Two metrics are
used: Kendall’s ⌧ (Kendall, 1948) and Spearman’s
⇢ (Spearman, 1904). Both metrics are valued be-
tween �1 and 1, with higher values suggesting
higher rank correlation. Because the number of
possible summaries in a cluster is huge, instead of
evaluating the ranking quality on all possible sum-
maries, we evaluate rankings on 10,000 randomly
sampled summaries, denoted Ŷ(x). During query-
ing, all candidate summaries presented to the ora-
cle are also selected from Ŷ(x). Sampling Ŷ(x) a
priori helps us to reduce the response time to un-
der 500 ms for all APL techniques we test. We
compare four active learning strategies under two
query budgets, T = 10 and T = 100:

• Random Sampling (RND): Randomly se-
lect two summaries from Ŷ(x) to query.

• SPPI Sampling (SBT): Select summary
pairs from Ŷ(x) according to the SPPI strat-
egy in Eq. (2). After each round, the weight
vector w is updated according to Eq. (4).

• Uncertainty Sampling (Unc): Query the
most uncertain summary pairs. In line with
P.V.S. and Meyer (2017), the uncertainty of
a summary is evaluated as follows: first,
we estimate the probability of a summary
y being the optimal summary in cluster x
as popt(y|x) = (1 + exp(�w⇤|

t �(x, y)))�1,
where w⇤

t is the weights learned by the BT
model (see §3.3) in round t. Given popt(y|x),
we let the uncertainty score unc(y|x) = 1 �
popt(y|x) if popt(y|x) � 0.5 and unc(y|x) =
popt(y|x) otherwise.

• J&N is the robust query selection algorithm
proposed by Jamieson and Nowak (2011). It
assumes that the items’ preferences are de-
pendent on their distances to an unknown ref-
erence point in the embedding space: the far-
ther an item to the reference point, the more
preferred the item is. After each round of
interaction, the algorithm uses all collected

preferences to locate the area where the ref-
erence point may fall into, and identify the
query pairs which can reduce the size of this
area, termed ambiguous query pairs. To com-
bat noise in preferences, the algorithm se-
lects the most-likely-correct ambiguous pair
to query the oracle in each round.

After all preferences are collected, we obtain
the ranker as follows: for any yi, yj 2 Y(x), the
ranker prefers yi over yj if

↵w⇤|�(yi|x) + (1 � ↵)HU(yi|x) >

↵w⇤|�(yj |x) + (1 � ↵)HU(yj |x), (7)

where w⇤ is the weights vector learned by the BT
model (see Eq. (4)), HU is the heuristics-based
summary evaluation function proposed by Ryang
and Abekawa (2012), and ↵ 2 [0, 1] is a param-
eter. The aim of using HU and ↵ is to trade off
between the prior knowledge (i.e. heuristics-based
HU ) and the posterior observation (i.e. the BT-
learnt w⇤), so as to combat the cold-start problem.
Based on some preliminary experiments, we set
↵ = 0.3 when the query budget is 10, and ↵ = 0.7
when the query budget is 100. The intuition is to
put more weight to the posterior with increasing
rounds of interaction. More systematic research
of ↵ can yield better results; we leave it for future
work. For the vector �(y|x), we use the same bag-
of-bigram embeddings as Rioux et al. (2014), and
we let its length be 200.

In Table 2, we compare the performance of the
four APL methods on the DUC’04 dataset. The
baseline we compared against is the prior rank-
ing. We find that Unc significantly2 outperforms
all other APL methods, except when the oracle
is LNO-1, where the advantage of Unc to SBT
is not significant. Also, both Unc and SBT are
able to significantly outperform the baseline un-
der all settings. The competitive performance of
SBT, especially with LNO-1, is due to its unique
sampling strategy: LNO-1 is more likely to mis-
judge the preference direction when the presented
summaries have similar quality, but SBT has high
probability to present summaries with large qual-
ity gaps (see Eq. (2)), effectively reducing the
chance that LNOs misjudge preference directions.
However, SBT is more “conservative” compared
to Unc because it tends to exploit the existing

2In this paper we use double-tailed student t-test to com-
pute p-values, and we let significance level be p < 0.01.
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RND SBT Unc J&N
Oracle ⌧ ⇢ ⌧ ⇢ ⌧ ⇢ ⌧ ⇢

Query budget T = 10, ↵ = 0.3:
PO .211 .310 .241 .353 .253⇤ .370⇤ .217 .319
CNO-0.1 .208 .307 .231 .339 .240⇤ .351⇤ .211 .311
CNO-0.3 .210 .309 .218 .320 .229⇤ .337⇤ .205 .302
LNO-0.3 .210 .309 .216 .318 .231⇤ .339⇤ .209 .307
LNO-1 .206 .303 .210 .308 .211 .310 .207 .305

Query budget T = 100, ↵ = 0.7:
PO .258 .377 .340 .490 .418⇤ .587⇤ .255 .372
CNO-0.1 .248 .363 .317 .459 .386⇤ .549⇤ .247 .362
CNO-0.3 .212 .312 .271 .396 .330⇤ .476⇤ .232 .340
LNO-0.3 .231 .339 .277 .404 .324⇤ .467⇤ .229 .336
LNO-1 .210 .309 .225 .330 .225 .331 .213 .313

Baseline, ↵ = 0, T = 0: ⌧ = .206, ⇢ = .304

Table 2: Performance of multiple APL algorithms
(columns) using different oracles and query bud-
gets (rows). The baseline is the purely prior rank-
ing. All results except the baseline are averaged
over 50 document clusters in DUC’04. Aster-
isk: significant advantage over other active learn-
ing strategies given the same oracle and budget T .

ranking to select one good and one bad summary
to query, while Unc performs more exploration by
querying the summaries that are least confident ac-
cording to the current ranking. We believe this ex-
plains the strong overall performance of Unc.

Additional experiments suggest that when we
only use the posterior ranking (i.e. letting ↵ = 1),
no APL we test can surpass the baseline when
T = 10. Detailed results are presented in the sup-
plementary material. This observation reflects the
severity of the cold-start problem, confirms the ef-
fectiveness of our prior-posterior trade-off mecha-
nism in combating cold-start, and indicates the im-
portance of tuning the ↵ value (see Eq. (7)). This
opens up exciting avenues for future work.

6.2 RL Phase Performance
We compare two RL algorithms: TD(�) (Sut-
ton, 1984) and LSTD(�) (Boyan, 1999). TD(�)
has been used in previous RL-based EMDS work
(Ryang and Abekawa, 2012; Rioux et al., 2014).
LSTD(�) is chosen, because it is an improved TD
algorithm and has been used in the state-of-the-art
PbRL algorithm by Wirth et al. (2016). We let the
learning round (see Alg. 2) N = 5, 000, which we
found to yield good results in reasonable time (less
than 1 minute to generate a summary for one doc-
ument cluster). Letting N = 3, 000 will result in a
significant performance drop, while increasing N
to 10,000 will only bring marginal improvement
at the cost of doubling the runtime. The learn-

Method R1 R2 RL RSU4

TD(�) .484 .184 .388 .199
LSTD(�) .458 .159 .366 .185
ILP .470 .212 N/A .185

Table 3: Upper-bound performance comparison.
Results are averaged over all clusters in DUC’04.

ing parameters we use for TD(�) are the same as
those by Rioux et al. (2014). For LSTD(�), we let
� = 1 and initialise its square matrix as a diag-
onal matrix with random numbers between 0 and
1, as suggested by Lagoudakis and Parr (2003).
The rewards we use are the U⇤ function introduced
in §5. Note that this serves as the upper-bound
performance, because U⇤ relies on the reference
summaries (see Eq. (6)), which are not available
in the interactive setting. As a baseline, we also
present the upper-bound performance of integer
linear programming (ILP) reported by P.V.S. and
Meyer (2017), optimised for bigram coverage.

Table 3 shows the performance of RL and ILP
on the DUC’04 dataset. TD(�) significantly out-
performs LSTD(�) in terms of all ROUGE scores
we consider. Although the least-square RL algo-
rithms (which LSTD belongs to) have been proved
to achieve better performance than standard TD
methods in large-scale problems (see Lagoudakis
and Parr, 2003), their performance is sensitive to
many factors, e.g., initialisation values in the di-
agonal matrix, regularisation parameters, etc. We
note that a similar observation about the inferior
performance of least-square RL in EMDS is re-
ported by Rioux et al. (2014).

TD(�) also significantly outperforms ILP in
terms of all metrics except ROUGE-2. This is not
surprising, because the bigram-based ILP is opti-
mised for ROUGE-2, whereas our reward function
U⇤ considers other metrics as well (see Eq. (6)).
Since ILP is widely used as a strong baseline for
EMDS, these results confirm the advantage of us-
ing RL for EMDS problems.

6.3 Complete Pipeline Performance

Finally, we combine the best techniques of the
APL and RL phase (namely Unc and TD(�), re-
spectively) to complete APRIL, and compare it
against SPPI. As a baseline, we use the heuristic-
based rewards HU to train both TD(�) (ranking-
based training, i.e. using HU to produce r(y|x) in
Eq. (5) to train) and SPPI (preference-based train-
ing, i.e. using HU for generating pairs to train
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DUC ’01 DUC ’02 DUC ’04
Oracle Method T R1 R2 RL RSU4 R1 R2 RL RSU4 R1 R2 RL RSU4

PO

SPPI 10 .332 .075 .264 .104 .357 .083 .280† .116 .378 .098 .299 .129
APRIL 10 .357 .087 .283 .119 .390 .108 .306 .133 .410 .116 .325 .149
SPPI 100 .353 .091 .284 .119 .391 .104 .306 .136 .392 .106 .312 .140
APRIL 100 .363 .091 .283 .118 .393 .107 .310 .137 .415 .118 .325 .151

CNO-0.1

SPPI 10 .331 .081 .265 .103 .358 .081 .279† .114† .372† .093† .295† .125†

APRIL 10 .351 .081 .276 .112 .376 .102 .296 .126 .403 .111 .320 .145
SPPI 100 .350 .089 .279 .117 .377 .100 .294 .129 .390 .107 .309 .138
APRIL 100 .353 .084 .280 .115 .385 .103 .302 .134 .411 .117 .325 .151

CNO-0.3

SPPI 10 .320† .063† .253† .096† .354† .080 .278† .113† .370† .093† .295† 125†

APRIL 10 .339 .076 .266 .108 .370 .091 .290 .124 .394 .104 .312 .138
SPPI 100 .345 .079 .270 .111 .373 .094 .295 .125 .386 .104 .307 .136
APRIL 100 .349 .081 .275 .109 .376 .097 .296 .127 .404 .114 .320 .146

LNO-0.3

SPPI 10 .319† .067† .253† .096† .354† .083 .280† .113† .375† .095† .294† .127†

APRIL 10 .347 .084 .275 .109 .370 .095 .289 .125 .398 .108 .311 .141
SPPI 100 .321† .068† .252† .097† .352† .080 .278† .112† .387 .104 .309 .136
APRIL 100 .350 .086 .277 .123 .380 .079 .296 .129 .407 .112 .321 .147

LNO-1

SPPI 10 .314† .058† .250† .092† .348† .076† .273† .110† .373† .096† .297† .126†

APRIL 10 .337 .072 .266 .104 .362 .085 .286 .119 .388 .102 .307 .134
SPPI 100 .320† .064† .255† .097† .351† .078† .273† .113† .381 .099 .301 .132
APRIL 100 .347 .080 .274 .109 .369 .089 .286 .123 .391 .101 .308 .136

Baselines SPPI 0 .323 .068 .259 .098 .350 .077 .278 .112 .372 .093 .293 .125
TD(�) 0 .324 .069 .256 .099 .350 .081 .276 .113 .372 .086 .292 .122

Table 4: Comparison of APRIL and SPPI. All results are averaged over all clusters in each dataset.
Baselines: HU -trained SPPI and TD(�), without any interaction (i.e. T = 0). Boldface: Comparable
(i.e. no significant gaps exist) or significantly better than SPPI with 100 rounds of interaction, under the
same oracle. Superscript †: Comparable or significantly worse than the corresponding baseline.

DUC’01 DUC’02 DUC’04 Overall

APRIL 3.57±.30 4.14±.14 3.86±.40 3.86±.17
SPPI 2.29±.29 2.14±.14 3.14±.34 2.52±.18

Table 5: Human ratings for the summaries gener-
ated by APRIL and SPPI (mean±standard error).

SPPI) for up to 5,000 episodes. The baseline re-
sults are presented in the bottom rows of Table 4.

We make the following observations from Ta-
ble 4. (i) Given the same oracle, the performance
of APRIL with 10 rounds of interaction is com-
parable or even superior than that of SPPI after
100 rounds of interaction (see boldface in Table
4), suggesting the strong advantage of APRIL to
reduce sample complexity. (ii) APRIL can sig-
nificantly improve the baseline with either 10 or
100 rounds of interaction, but SPPI’s performance
can be even worse than the baseline (marked by †

in Table 4), especially under the high-noise low-
budget settings (i.e., CNO-0.3, LNO-0.3, and
LNO-1 with T = 10). This is because SPPI lacks
a mechanism to balance between prior and poste-
rior ranking, while APRIL can adjust this trade-off

by tuning ↵ (Eq. (7)). This endows APRIL with
better noise robustness and lower sample com-
plexity in high-noise low-budget settings. Note
that the above observations also hold for the other
two datasets, indicating the consistently strong
performance of APRIL across different datasets.

As for the overall runtime, when budget T =
100, APRIL on average takes 2 minutes to interact
with an oracle and output a summary, while SPPI
takes around 15 minutes due to its expensive gra-
dient descent computation (see §3.1).

7 Human Evaluation

Finally, we invited real users to compare and eval-
uate the quality of the summaries generated by
SPPI and APRIL. We randomly selected three top-
ics (d19 from DUC’01, d117i from DUC’02 and
d30042 from DUC’04), and let both SPPI and our
best-performing APRIL interact with PO for 10
rounds on these topics. The resulting 100-word
summaries, shown in Figure 2, were presented to
seven users, who had already read two background
texts to familiarize with the topic. The users were
asked to provide their preference on the presented
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Topic d30042 (DUC’04), SPPI: After meeting Libyan leader Moammar Gad-
hafi in a desert tent, U.N. Secretary-General Kofi Annan said he thinks an ar-
rangement for bringing two suspects to trial in the bombing of a Pan Am air-
liner could be secured in the “not too distant future.” TRIPOLI, Libya (AP)
U.N. Secretary-General Kofi Annan arrived in Libya Saturday for talks aimed
at bringing to trial two Libyan suspects in the 1988 Pan Am bombing over
Lockerbie, Scotland. Secretary General Kofi Annan said Wednesday he was
extending his North African tour to include talks with Libyan authorities. An-
nan’s one-day, 2nd graf pvs During his Algerian stay,

Topic d30042 (DUC’04), APRIL: TRIPOLI, Libya (AP) U.N. Secretary-
General Kofi Annan arrived in Libya Saturday for talks aimed at bringing to
trial two Libyan suspects in the 1988 Pan Am bombing over Lockerbie, Scot-
land. Annan’s one-day visit to meet with Libyan leader Col. Moammar Gadhafi
followed reports in the Libyan media that Gadhafi had no authority to hand over
the suspects. The 60-year-old Annan is trying to get Libya to go along with a
U.S.-British plan to try the two suspects before a panel of Scottish judges in the
Netherlands for the Dec. 21, 1988, bombing over Lockerbie, Scotland. Sirte
is 400 kilometers (250 miles) east of the Libyan capital Tripoli. During his
Algerian stay,

Topic d117i (DUC’02), SPPI: The Booker Prize is sponsored by Booker, an
international food and agriculture business. The novel, a story of Scottish low-
life narrated largely in Glaswegian dialect, is unlikely to prove a popular choice
with booksellers, who have damned all six books shortlisted for the prize as
boring, elitist and- worst of all- unsaleable. The shortlist of six for the Pounds
20,000 Booker Prize for fiction, announced yesterday, immediately prompted
the question ’Who ? ’ Japanese writer Kazuo Ishiguro won the 1989 Booker
Prize, Britain’s top literary award, for his novel “The Remains of the Day,”
judges announced Thursday. He didn’t win.

Topic d117i (DUC’02), APRIL: Australian novelist Peter Carey was awarded
the coveted Booker Prize for fiction Tuesday night for his love story, “Oscar
and Lucinda.” The Booker Prize is sponsored by Booker, an international food
and agriculture business, and administered by The Book Trust. British publish-
ers can submit three new novels by British and Commonwealth writers. Six
novels have been nominated for the Booker Prize, Britain’s most prestigious
fiction award, and bookmakers say the favorite is “The Remains of the Day” by
Japanese author Kazuo Ishiguro. On the day of the Big Event, Ladbroke, the
large British betting agency, posted the final odds.

Topic d19 (DUC’01), SPPI: The issue cuts across partisan lines in the Senate,
with Minority Leader Bob Dole (R-Kan.) arguing against the White House po-
sition on grounds that including illegal aliens in the census is unfair to Amer-
ican citizens.. Loss of Seats Cited. Shelby’s amendment says only that the
secretary is to “make such adjustments in total population figures as may be
necessary, using such methods and procedures as the secretary determines fea-
sible and appropriate” to keep illegal aliens from being counted in congres-
sional reapportionment. “Some states will lose congressional seats because of
illegal aliens,” Dole argued. But there’s nothing simple about it.

Topic d19 (DUC’01), APRIL: In a blow to California and other states with
large immigrant populations, the Senate voted Friday to bar the Census Bu-
reau from counting illegal aliens in the 1990 population count. But the Senate
already has voted to force the Census Bureau to exclude illegal immigrants in
preparing tallies for congressional reapportionment. said that Georgia and Indi-
ana both lost House seats after the 1980 Census, and California and New York-
centers of illegal immigration- each gained seats. A majority of the members
of the House of Representatives has signaled support. The national head count
will be taken April 1, 1990.

Figure 2: Summaries generated by SPPI and APRIL used in the human evaluation experiments.

summary pairs and rate the summaries on a 5-
point Likert scale with higher scores for better
summaries. All users are fluent in English.

In all three topics, all users prefer the APRIL-
generated summaries over the SPPI-generated
summaries. Table 5 shows the users’ ratings. The
APRIL-generated summaries consistently receive
higher ratings. These results are consistent with
our simulation experiments and confirm the sig-
nificant advantage of APRIL over SPPI.

8 Conclusion
We propose a novel preference-based interactive
learning formulation named APRIL (Active Pref-
erence ReInforcement Learning), which is able to
make structured predictions without referring to
the gold standard data. Instead, APRIL learns
from preference-based feedback. We designed a
novel objective function for APRIL, which natu-
rally splits APRIL into an active preference learn-
ing (APL) phase and a reinforcement learning
(RL) phase, enabling us to leverage a wide spec-
trum of active learning, preference learning and
RL algorithms to maximise the output quality with
a limited number of interaction rounds. We ap-
plied APRIL to the Extractive Multi-Document
Summarisation (EMDS) problem, simulated the
users’ preference-giving behaviour using multiple
user-response models, and compared the perfor-
mance of multiple APL and RL techniques. Sim-
ulation experiments indicated that APRIL signif-

icantly improved the summary quality with just
10 rounds of interaction (even with high-noise
oracles), and significantly outperformed SPPI in
terms of both sample complexity and noise robust-
ness. Human evaluation results suggested that real
users preferred the APRIL-generated summaries
over the SPPI-generated ones.

We identify two major lines of future work. On
the technical side, we plan to employ more ad-
vanced APL and RL algorithms in APRIL, such as
sample-efficient Bayesian-based APL algorithms
(e.g., Simpson and Gurevych, 2018) and neural
RL algorithms (e.g. Mnih et al., 2015) to further
reduce the sample complexity of APRIL. On the
experimental side, a logical next step is to imple-
ment an interactive user interface for APRIL and
conduct a larger evaluation study comparing the
summary quality before and after the interaction.
We also plan to apply APRIL to more NLP appli-
cations, including machine translation, informa-
tion exploration and semantic parsing.
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erence learning: An introduction. In Preference
Learning, pages 1–17. Berlin/Heidelberg: Springer.

Stefan Henß, Margot Mieskes, and Iryna Gurevych.
2015. A reinforcement learning approach for adap-
tive single- and multi-document summarization. In
Proceedings of the International Conference of the
German Society for Computational Linguistics and
Language Technology (GSCL 2015), September 30–
October 2, 2015, University of Duisburg-Essen,
Germany, pages 3–12.

Kevin G. Jamieson and Robert D. Nowak. 2011. Ac-
tive ranking using pairwise comparisons. In Ad-
vances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Informa-
tion Processing Systems, December 12–14, 2011,
Granada, Spain, pages 2240–2248.

M.G. Kendall. 1948. Rank correlation methods. C.
Griffin.

David C Kingsley and Thomas C Brown. 2010. Prefer-
ence uncertainty, preference refinement and paired
comparison choice experiments. Land Economics,
86(3):530–544.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler.
2017. Bandit structured prediction for neural
sequence-to-sequence learning. In Proceedings of
the 55th Annual Meeting of the Association for
Computational Linguistics (ACL 2017), Volume 1:
Long Papers, July 30–August 4, 2017, Vancouver,
Canada, pages 1503–1513.

Michail G Lagoudakis and Ronald Parr. 2003. Least-
squares policy iteration. Journal of Machine Learn-
ing Research, 4:1107–1149.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Workshop on
Text Summarization Branches Out, Post-Conference
Workshop of ACL, July 21–26, 2004, Barcelona,
Spain, pages 74–81.

Lucas Maystre and Matthias Grossglauser. 2017. Just
sort it! A simple and effective approach to ac-
tive preference learning. In Proceedings of the
34th International Conference on Machine Learning
(ICML 2017), August 6–11, 2017, Sydney, Australia,
pages 2344–2353.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. 2015. Human-level
control through deep reinforcement learning. Na-
ture, 518(7540):529–533.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT
2018),Volume 1 (Long Papers), June 1-6, 2018, New
Orleans, LA, USA, pages 1747–1759.

Ani Nenkova and Kathleen McKeown. 2012. A survey
of text summarization techniques. In Charu C. Ag-
garwal and ChengXiang Zhai, editors, Mining Text
Data, pages 43–76. Boston: Springer.

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2018), Volume 2 (Short
Papers), June 1-6, 2018, New Orleans, LA, USA,
pages 646–653.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. CoRR, abs/1705.04304.

Avinesh P.V.S. and Christian M. Meyer. 2017. Joint
optimization of user-desired content in multi-
document summaries by learning from user feed-
back. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL
2017): Volume 1: Long Paper, July 30–August 4,
2017, Vancouver, Canada, pages 1353–1363.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR,
abs/1511.06732.

4129



Cody Rioux, Sadid A. Hasan, and Yllias Chali. 2014.
Fear the REAPER: A system for automatic multi-
document summarization with reinforcement learn-
ing. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2014), October 25–29, 2014, Doha, Qatar,
pages 681–690.

Seonggi Ryang and Takeshi Abekawa. 2012. Frame-
work of automatic text summarization using rein-
forcement learning. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL 2012), July
12–14, 2012, Jeju Island, Korea, pages 256–265.

Edwin D. Simpson and Iryna Gurevych. 2018. Finding
convincing arguments using scalable bayesian pref-
erence learning. Transactions of the Association for
Computational Linguistics, 6:357–371.

Artem Sokolov, Julia Kreutzer, Christopher Lo, and
Stefan Riezler. 2016a. Learning structured predic-
tors from bandit feedback for interactive NLP. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016):
Volume 1: Long Papers, August 7–12, 2016, Berlin,
Germany, pages 1610–1620.

Artem Sokolov, Julia Kreutzer, Stefan Riezler, and
Christopher Lo. 2016b. Stochastic structured pre-
diction under bandit feedback. In Advances in Neu-
ral Information Processing Systems 29: 30th An-
nual Conference on Neural Information Processing
Systems, December 5–10, 2016, Barcelona, Spain,
pages 1489–1497.

Charles Spearman. 1904. The proof and measurement
of association between two things. The American
Journal of Psychology, 15(1):72–101.

R. S. Sutton. 1984. Temporal Credit Assignment in Re-
inforcement Learning. Ph.D. thesis, University of
Massachusetts, Amherst.

Louis Leon Thurstone. 1927. A Law of Comparative
Judgement. Psychological Review, 34:278–286.

Paolo Viappiani and Craig Boutilier. 2010. Optimal
Bayesian recommendation sets and myopically op-
timal choice query sets. In Advances in Neural
Information Processing Systems 23: 24th Annual
Conference on Neural Information Processing Sys-
tems, December 6-9 , Vancouver, British Columbia,
Canada, pages 2352–2360.

Christian Wirth, Riad Akrour, Gerhard Neumann, and
Johannes Fürnkranz. 2017. A survey of preference-
based reinforcement learning methods. Journal of
Machine Learning Research, 18:4945–4990.

Christian Wirth, Johannes Fürnkranz, and Gerhard
Neumann. 2016. Model-free preference-based rein-
forcement learning. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Febru-
ary 12–17, 2016, Phoenix, AZ, USA, pages 2222–
2228.

Markus Zopf. 2018. Estimating summary quality with
pairwise preferences. In Proceedings of the 16th An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT 2018),
Volume 1 (Long Papers), June 1–8, 2018, New Or-
leans, LA, USA, pages 1687–1696.

4130



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4131–4141
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Adapting the Neural Encoder-Decoder Framework from Single to
Multi-Document Summarization

Logan Lebanoff, Kaiqiang Song and Fei Liu
Department of Computer Science

University of Central Florida, Orlando, FL 32816, USA
{loganlebanoff, kqsong}@knights.ucf.edu feiliu@cs.ucf.edu

Abstract

Generating a text abstract from a set of docu-
ments remains a challenging task. The neural
encoder-decoder framework has recently been
exploited to summarize single documents, but
its success can in part be attributed to the avail-
ability of large parallel data automatically ac-
quired from the Web. In contrast, parallel data
for multi-document summarization are scarce
and costly to obtain. There is a pressing need
to adapt an encoder-decoder model trained on
single-document summarization data to work
with multiple-document input. In this paper,
we present an initial investigation into a novel
adaptation method. It exploits the maximal
marginal relevance method to select represen-
tative sentences from multi-document input,
and leverages an abstractive encoder-decoder
model to fuse disparate sentences to an ab-
stractive summary. The adaptation method is
robust and itself requires no training data. Our
system compares favorably to state-of-the-art
extractive and abstractive approaches judged
by automatic metrics and human assessors.

1 Introduction

Neural abstractive summarization has primarily
focused on summarizing short texts written by sin-
gle authors. For example, sentence summarization
seeks to reduce the first sentence of a news article
to a title-like summary (Rush et al., 2015; Nalla-
pati et al., 2016; Takase et al., 2016; Song et al.,
2018); single-document summarization (SDS) fo-
cuses on condensing a news article to a handful
of bullet points (Paulus et al., 2017; See et al.,
2017). These summarization studies are empow-
ered by large parallel datasets automatically har-
vested from online news outlets, including Giga-
word (Rush et al., 2015), CNN/Daily Mail (Her-
mann et al., 2015), NYT (Sandhaus, 2008), and
Newsroom (Grusky et al., 2018).

To date, multi-document summarization (MDS)
has not yet fully benefited from the development

DATASET SOURCE SUMMARY #PAIRS

Gigaword the first sentence 8.3 words 4 Million
(Rush et al., 2015) of a news article title-like
CNN/Daily Mail a news article 56 words 312 K
(Hermann et al., 2015) multi-sent
TAC (08-11) 10 news articles 100 words 728
(Dang et al., 2008) related to a topic multi-sent
DUC (03-04) 10 news articles 100 words 320
(Over and Yen, 2004) related to a topic multi-sent

Table 1: A comparison of datasets available for sent. sum-
marization (Gigaword), single-doc (CNN/DM) and multi-doc
summarization (DUC/TAC). The labelled data for multi-doc
summarization are much less.

of neural encoder-decoder models. MDS seeks to
condense a set of documents likely written by mul-
tiple authors to a short and informative summary.
It has practical applications, such as summarizing
product reviews (Gerani et al., 2014), student re-
sponses to post-class questionnaires (Luo and Lit-
man, 2015; Luo et al., 2016), and sets of news arti-
cles discussing certain topics (Hong et al., 2014).
State-of-the-art MDS systems are mostly extrac-
tive (Nenkova and McKeown, 2011). Despite their
promising results, such systems cannot perform
text abstraction, e.g., paraphrasing, generalization,
and sentence fusion (Jing and McKeown, 1999).
Further, annotated MDS datasets are often scarce,
containing only hundreds of training pairs (see Ta-
ble 1). The cost to create ground-truth summaries
from multiple-document inputs can be prohibitive.
The MDS datasets are thus too small to be used to
train neural encoder-decoder models with millions
of parameters without overfitting.

A promising route to generating an abstractive
summary from a multi-document input is to apply
a neural encoder-decoder model trained for single-
document summarization to a “mega-document”
created by concatenating all documents in the set
at test time. Nonetheless, such a model may not
scale well for two reasons. First, identifying im-
portant text pieces from a mega-document can be
challenging for the encoder-decoder model, which
is trained on single-document summarization data
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where the summary-worthy content is often con-
tained in the first few sentences of an article. This
is not the case for a mega-document. Second, re-
dundant text pieces in a mega-document can be re-
peatedly used for summary generation under the
current framework. The attention mechanism of
an encoder-decoder model (Bahdanau et al., 2014)
is position-based and lacks an awareness of se-
mantics. If a text piece has been attended to dur-
ing summary generation, it is unlikely to be used
again. However, the attention value assigned to a
similar text piece in a different position is not af-
fected. The same content can thus be repeatedly
used for summary generation. These issues may
be alleviated by improving the encoder-decoder
architecture and its attention mechanism (Cheng
and Lapata, 2016; Tan et al., 2017). However,
in these cases the model has to be re-trained on
large-scale MDS datasets that are not available at
the current stage. There is thus an increasing need
for a lightweight adaptation of an encoder-decoder
model trained on SDS datasets to work with multi-
document inputs at test time.

In this paper, we present a novel adaptation
method, named PG-MMR, to generate abstracts
from multi-document inputs. The method is ro-
bust and requires no MDS training data. It com-
bines a recent neural encoder-decoder model (PG
for Pointer-Generator networks; See et al., 2017)
that generates abstractive summaries from single-
document inputs with a strong extractive summa-
rization algorithm (MMR for Maximal Marginal
Relevance; Carbonell and Goldstein, 1998) that
identifies important source sentences from multi-
document inputs. The PG-MMR algorithm itera-
tively performs the following. It identifies a hand-
ful of the most important sentences from the mega-
document. The attention weights of the PG model
are directly modified to focus on these important
sentences when generating a summary sentence.
Next, the system re-identifies a number of impor-
tant sentences, but the likelihood of choosing cer-
tain sentences is reduced based on their similar-
ity to the partially-generated summary, thereby re-
ducing redundancy. Our research contributions in-
clude the following:

• we present an investigation into a novel adapta-
tion method of the encoder-decoder framework
from single- to multi-document summarization.
To the best of our knowledge, this is the first at-
tempt to couple the maximal marginal relevance
algorithm with pointer-generator networks for
multi-document summarization;

• we demonstrate the effectiveness of the pro-
posed method through extensive experiments on
standard MDS datasets. Our system compares
favorably to state-of-the-art extractive and ab-
stractive summarization systems measured by
both automatic metrics and human judgments.

2 Related Work

Popular methods for multi-document summariza-
tion have been extractive. Important sentences are
extracted from a set of source documents and op-
tionally compressed to form a summary (Daume
III and Marcu, 2002; Zajic et al., 2007; Gillick
and Favre, 2009; Galanis and Androutsopoulos,
2010; Berg-Kirkpatrick et al., 2011; Li et al., 2013;
Thadani and McKeown, 2013; Wang et al., 2013;
Yogatama et al., 2015; Filippova et al., 2015; Dur-
rett et al., 2016). In recent years neural networks
have been exploited to learn word/sentence rep-
resentations for single- and multi-document sum-
marization (Cheng and Lapata, 2016; Cao et al.,
2017; Isonuma et al., 2017; Yasunaga et al., 2017;
Narayan et al., 2018). These approaches remain
extractive; and despite encouraging results, sum-
marizing a large quantity of texts still requires so-
phisticated abstraction capabilities such as gener-
alization, paraphrasing and sentence fusion.

Prior to deep learning, abstractive summariza-
tion has been investigated (Barzilay et al., 1999;
Carenini and Cheung, 2008; Ganesan et al., 2010;
Gerani et al., 2014; Fabbrizio et al., 2014; Pighin
et al., 2014; Bing et al., 2015; Liu et al., 2015; Liao
et al., 2018). These approaches construct domain
templates using a text planner or an open-IE sys-
tem and employ a natural language generator for
surface realization. Limited by the availability of
labelled data, experiments are often performed on
small domain-specific datasets.

Neural abstractive summarization utilizing the
encoder-decoder architecture has shown promis-
ing results but studies focus primarily on single-
document summarization (Nallapati et al., 2016;
Kikuchi et al., 2016; Chen et al., 2016; Miao
and Blunsom, 2016; Tan et al., 2017; Zeng et al.,
2017; Zhou et al., 2017; Paulus et al., 2017; See
et al., 2017; Gehrmann et al., 2018). The point-
ing mechanism (Gulcehre et al., 2016; Gu et al.,
2016) allows a summarization system to both
copy words from the source text and generate
new words from the vocabulary. Reinforcement
learning is exploited to directly optimize evalua-
tion metrics (Paulus et al., 2017; Kryściński et al.,
2018; Chen and Bansal, 2018). These studies fo-
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cus on summarizing single documents in part be-
cause the training data are abundant.

The work of Baumel et al. (2018) and Zhang et
al. (2018) are related to ours. In particular, Baumel
et al. (2018) propose to extend an abstractive sum-
marization system to generate query-focused sum-
maries; Zhang et al. (2018) add a document set en-
coder to their hierarchical summarization frame-
work. With these few exceptions, little research
has been dedicated to investigate the feasibility of
extending the encoder-decoder framework to gen-
erate abstractive summaries from multi-document
inputs, where available training data are scarce.

This paper presents some first steps towards the
goal of extending the encoder-decoder model to
a multi-document setting. We introduce an adap-
tation method combining the pointer-generator
(PG) networks (See et al., 2017) and the maximal
marginal relevance (MMR) algorithm (Carbonell
and Goldstein, 1998). The PG model, trained on
SDS data and detailed in Section §3, is capable
of generating document abstracts by performing
text abstraction and sentence fusion. However,
if the model is applied at test time to summa-
rize multi-document inputs, there will be limita-
tions. Our PG-MMR algorithm, presented in Sec-
tion §4, teaches the PG model to effectively recog-
nize important content from the input documents,
hence improving the quality of abstractive sum-
maries, all without requiring any training on multi-
document inputs.

3 Limits of the Encoder-Decoder Model
The encoder-decoder architecture has become the
de facto standard for neural abstractive summa-
rization (Rush et al., 2015). The encoder is often
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) converting the input text to a set of hid-
den states {he

i}, one for each input word, indexed
by i. The decoder is a unidirectional LSTM that
generates a summary by predicting one word at a
time. The decoder hidden states are represented
by {hd

t }, indexed by t. For sentence and single-
document summarization (Nallapati et al., 2016;
Paulus et al., 2017; See et al., 2017), the input text
is treated as a sequence of words, and the model is
expected to capture the source syntax inherently.

et,i = v> tanh(We[hd
t ||he

i ||e↵t,i] + be) (1)
↵t,i = softmax(et,i) (2)

e↵t,i =
Pt�1

t0=0 ↵t0,i (3)

The attention weight ↵t,i measures how impor-

tant the i-th input word is to generating the t-th
output word (Eq. (1-2)). Following (See et al.,
2017), ↵t,i is calculated by measuring the strength
of interaction between the decoder hidden state
hd

t , the encoder hidden state he
i , and the cumula-

tive attention e↵t,i (Eq. (3)). e↵t,i denotes the cumu-
lative attention that the i-th input word receives up
to time step t-1. A large value of e↵t,i indicates the
i-th input word has been used prior to time t and it
is unlikely to be used again for generating the t-th
output word.

A context vector (ct) is constructed (Eq. (4)) to
summarize the semantic meaning of the input; it
is a weighted sum of the encoder hidden states.
The context vector and the decoder hidden state
([hd

t ||ct]) are then used to compute the vocabulary
probability Pvcb(w) measuring the likelihood of a
vocabulary word w being selected as the t-th out-
put word (Eq. (5)).1

ct =
P

i ↵t,ihe
i (4)

Pvcb(w) = softmax(Wy[hd
t ||ct] + by) (5)

In many encoder-decoder models, a “switch” is
estimated (pgen 2 [0,1]) to indicate whether the
system has chosen to select a word from the vo-
cabulary or to copy a word from the input text
(Eq. (6)). The switch is computed using a feedfor-
ward layer with � activation over [hd

t ||ct||yt�1],
where yt�1 is the embedding of the output word
at time t-1. The attention weights (↵t,i) are used
to compute the copy probability (Eq. (7)). If a
word w appears once or more in the input text,
its copy probability (

P
i:wi=w ↵t,i) is the sum of

the attention weights over all its occurrences. The
final probability P (w) is a weighted combination
of the vocabulary probability and the copy proba-
bility. A cross-entropy loss function can often be
used to train the model end-to-end.

pgen=�(wz[hd
t ||ct||yt�1])+bz) (6)

P (w)=pgenPvcb(w)+(1�pgen)
X

i:wi=w

↵t,i (7)

To thoroughly understand the aforementioned
encoder-decoder model, we divide its model pa-
rameters into four groups. They include
• parameters of the encoder and the decoder;
• {wz, bz} for calculating the “switch” (Eq. (6));

1Here [·||·] represents the concatenation of two vectors.
The pointer-generator networks (See et al., 2017) use two
linear layers to produce the vocabulary distribution Pvcb(w).
We use W

y and b
y to denote parameters of both layers.
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Figure 1: System framework. The PG-MMR system uses K highest-scored source sentences (in this case, K=2) to guide the
PG model to generate a summary sentence. All other source sentences are “muted” in this process. Best viewed in color.

• {Wy,by} for calculating Pvcb(w) (Eq. (5));
• {v,We,be} for attention weights (Eq. (1)).
By training the encoder-decoder model on single-
document summarization (SDS) data containing a
large collection of news articles paired with sum-
maries (Hermann et al., 2015), these model param-
eters can be effectively learned.

However, at test time, we wish for the model
to generate abstractive summaries from multi-
document inputs. This brings up two issues. First,
the parameters are ineffective at identifying salient
content from multi-document inputs. Humans are
very good at identifying representative sentences
from a set of documents and fusing them into an
abstract. However, this capability is not supported
by the encoder-decoder model. Second, the atten-
tion mechanism is based on input word positions
but not their semantics. It can lead to redundant
content in the multi-document input being repeat-
edly used for summary generation. We conjec-
ture that both aspects can be addressed by intro-
ducing an “external” model that selects represen-
tative sentences from multi-document inputs and
dynamically adjusts the sentence importance to re-
duce summary redundancy. This external model is
integrated with the encoder-decoder model to gen-
erate abstractive summaries using selected repre-
sentative sentences. In the following section we
present our adaptation method for multi-document
summarization.

4 Our Method

Maximal marginal relevance. Our adaptation
method incorporates the maximal marginal rele-
vance algorithm (MMR; Carbonell and Goldstein,
1998) into pointer-generator networks (PG; See et
al., 2017) by adjusting the network’s attention val-
ues. MMR is one of the most successful extractive

approaches and, despite its straightforwardness,
performs on-par with state-of-the-art systems (Luo
and Litman, 2015; Yogatama et al., 2015). At each
iteration, MMR selects one sentence from the doc-
ument (D) and includes it in the summary (S) until
a length threshold is reached. The selected sen-
tence (si) is the most important one amongst the
remaining sentences and it has the least content
overlap with the current summary. In the equation
below, Sim1(si, D) measures the similarity of the
sentence si to the document. It serves as a proxy
of sentence importance, since important sentences
usually show similarity to the centroid of the doc-
ument. maxsj2S Sim2(si, sj) measures the max-
imum similarity of the sentence si to each of the
summary sentences, acting as a proxy of redun-
dancy. � is a balancing factor.

argmax
si2D\S

⇥
�Sim1(si,D)

| {z }
importance

�(1��)max
sj2S

Sim2(si,sj)

| {z }
redundancy

⇤

Our PG-MMR describes an iterative framework
for summarizing a multi-document input to a sum-
mary consisting of multiple sentences. At each it-
eration, PG-MMR follows the MMR principle to
select the K highest-scored source sentences; they
serve as the basis for PG to generate a summary
sentence. After that, the scores of all source sen-
tences are updated based on their importance and
redundancy. Sentences that are highly similar to
the partial summary receive lower scores. Select-
ing K sentences via the MMR algorithm helps the
PG system to effectively identify salient source
content that has not been included in the summary.
Muting. To allow the PG system to effectively
utilize the K source sentences without retraining
the neural model, we dynamically adjust the PG
attention weights (↵t,i) at test time. Let Sk rep-
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resent a selected sentence. The attention weights
of the words belonging to {Sk}K

k=1 are calculated
as before (Eq. (2)). However, words in other sen-
tences are forced to receive zero attention weights
(↵t,i=0), and all ↵t,i are renormalized (Eq. (8)).

↵new
t,i =

(
↵t,i i2{Sk}K

k=1

0 otherwise
(8)

It means that the remaining sentences are “muted”
in this process. In this variant, the sentence impor-
tance does not affect the original attention weights,
other than muting.

In an alternative setting, the sentence salience
is multiplied with the word salience and renormal-
ized (Eq. (9)). PG uses the reweighted alpha val-
ues to predict the next summary word.

↵new
t,i =

(
↵t,iMMR(Sk) i2{Sk}K

k=1

0 otherwise
(9)

Sentence Importance. To estimate sentence im-
portance Sim1(si, D), we introduce a supervised
regression model in this work. Importantly, the
model is trained on single-document summariza-
tion datasets where training data are abundant. At
test time, the model can be applied to identify im-
portant sentences from multi-document input. Our
model determines sentence importance based on
four indicators, inspired by how humans identify
important sentences from a document set. They in-
clude (a) sentence length, (b) its absolute and rela-
tive position in the document, (c) sentence quality,
and (d) how close the sentence is to the main topic
of the document set. These features are considered
to be important indicators in previous extractive
summarization framework (Galanis and Androut-
sopoulos, 2010; Hong et al., 2014).

Regarding the sentence quality (c), we lever-
age the PG model to build the sentence represen-
tation. We use the bidirectional LSTM encoder
to encode any source sentence to a vector repre-
sentation. [

�!
he

N ||
 �
he

1] is the concatenation of the
last hidden states of the forward and backward
passes. A document vector is the average of all
sentence vectors. We use the document vector and
the cosine similarity between the document and
sentence vectors as indicator (d). A support vec-
tor regression model is trained on (sentence, score)
pairs where the training data are obtained from the
CNN/Daily Mail dataset. The target importance
score is the ROUGE-L recall of the sentence com-
pared to the ground-truth summary. Our model ar-
chitecture leverages neural representations of sen-

Algorithm 1 The PG-MMR algorithm for summa-
rizing multi-document inputs.
Input: SDS data; MDS source sentences {Si}

1: Train the PG model on SDS data
2: I I(Si) and R(Si) are the importance and re-

dundancy scores of the source sentence Si

3: I(Si) SVR(Si) for all source sentences
4: MMR(Si) �I(Si) for all source sentences
5: Summary {}
6: t index of summary words
7: while t < Lmax do
8: Find {Sk}K

k=1 with highest MMR scores
9: Compute ↵new

t,i based on {Sk}K
k=1 (Eq. (8))

10: Run PG decoder for one step to get {wt}
11: Summary Summary + {wt}
12: if wt is the period symbol then
13: R(Si) Sim(Si, Summary), 8i
14: MMR(Si) �I(Si) �(1� �)R(Si), 8i
15: end if
16: end while

tences and documents, they are data-driven and
not restricted to a particular domain.
Sentence Redundancy. To calculate the redun-
dancy of the sentence (maxsj2S Sim2(si, sj)), we
compute the ROUGE-L precision, which mea-
sures the longest common subsequence between a
source sentence and the partial summary (consist-
ing of all sentences generated thus far by the PG
model), divided by the length of the source sen-
tence. A source sentence yielding a high ROUGE-
L precision is deemed to have significant content
overlap with the partial summary. It will receive a
low MMR score and hence is less likely to serve
as basis for generating future summary sentences.

Alg. 1 provides an overview the PG-MMR al-
gorithm and Fig. 1 is a graphical illustration. The
MMR scores of source sentences are updated af-
ter each summary sentence is generated by the PG
model. Next, a different set of highest-scored sen-
tences are used to guide the PG model to generate
the next summary sentence. “Muting” the remain-
ing source sentences is important because it helps
the PG model to focus its attention on the most sig-
nificant source content. The code for our model is
publicly available to further MDS research.2

5 Experimental Setup

Datasets. We investigate the effectiveness of the
PG-MMR method by testing it on standard multi-
document summarization datasets (Over and Yen,

2https://github.com/ucfnlp/multidoc summarization
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2004; Dang and Owczarzak, 2008). These include
DUC-03, DUC-04, TAC-08, TAC-10, and TAC-
11, containing 30/50/48/46/44 topics respectively.
The summarization system is tasked with gener-
ating a concise, fluent summary of 100 words or
less from a set of 10 documents discussing a topic.
All documents in a set are chronologically ordered
and concatenated to form a mega-document serv-
ing as input to the PG-MMR system. Sentences
that start with a quotation mark or do not end with
a period are excluded (Wong et al., 2008). Each
system summary is compared against 4 human ab-
stracts created by NIST assessors. Following con-
vention, we report results on DUC-04 and TAC-11
datasets, which are standard test sets; DUC-03 and
TAC-08/10 are used as a validation set for hyper-
parameter tuning.3

The PG model is trained for single-document
summarization using the CNN/Daily Mail (Her-
mann et al., 2015) dataset, containing single news
articles paired with summaries (human-written ar-
ticle highlights). The training set contains 287,226
articles. An article contains 781 tokens on aver-
age; and a summary contains 56 tokens (3.75 sen-
tences). During training we use the hyperparam-
eters provided by See et al. (2017). At test time,
the maximum/minimum decoding steps are set to
120/100 words respectively, corresponding to the
max/min lengths of the PG-MMR summaries. Be-
cause the focus of this work is on multi-document
summarization (MDS), we do not report results for
the CNN/Daily Mail dataset.
Baselines. We compare PG-MMR against a broad
spectrum of baselines, including state-of-the-art
extractive (‘ext-’) and abstractive (‘abs-’) systems.
They are described below.4

• ext-SumBasic (Vanderwende et al., 2007) is an extractive
approach assuming words occurring frequently in a docu-
ment set are more likely to be included in the summary;

• ext-KL-Sum (Haghighi and Vanderwende, 2009) greedily
adds source sentences to the summary if it leads to a de-
crease in KL divergence;

• ext-LexRank (Erkan and Radev, 2004) uses a graph-based
approach to compute sentence importance based on eigen-
vector centrality in a graph representation;

• ext-Centroid (Hong et al., 2014) computes the importance
of each source sentence based on its cosine similarity with
the document centroid;

• ext-ICSISumm (Gillick et al., 2009) leverages the ILP
framework to identify a globally-optimal set of sentences
covering the most important concepts in the document set;

3The hyperparameters for all PG-MMR variants are K=7
and �=0.6; except for “w/ BestSummRec” where K=2.

4We are grateful to Hong et al. (2014) for providing the
summaries generated by Centroid, ICSISumm, DPP systems.
These are only available for the DUC-04 dataset.

DUC-04
System R-1 R-2 R-SU4
SumBasic (Vanderwende et al., 2007) 29.48 4.25 8.64
KLSumm (Haghighi et al., 2009) 31.04 6.03 10.23
LexRank (Erkan and Radev, 2004) 34.44 7.11 11.19
Centroid (Hong et al., 2014) 35.49 7.80 12.02
ICSISumm (Gillick and Favre, 2009) 37.31 9.36 13.12
DPP (Taskar, 2012) 38.78 9.47 13.36
Extract+Rewrite (Song et al., 2018) 28.90 5.33 8.76
Opinosis (Ganesan et al., 2010) 27.07 5.03 8.63
PG-Original (See et al., 2017) 31.43 6.03 10.01
PG-MMR w/ SummRec 34.57 7.46 11.36
PG-MMR w/ SentAttn 36.52 8.52 12.57
PG-MMR w/ Cosine (default) 36.88 8.73 12.64
PG-MMR w/ BestSummRec 36.42 9.36 13.23

Table 2: ROUGE results on the DUC-04 dataset.

TAC-11
System R-1 R-2 R-SU4
SumBasic (Vanderwende et al., 2007) 31.58 6.06 10.06
KLSumm (Haghighi et al., 2009) 31.23 7.07 10.56
LexRank (Erkan and Radev, 2004) 33.10 7.50 11.13
Extract+Rewrite (Song et al., 2018) 29.07 6.11 9.20
Opinosis (Ganesan et al., 2010) 25.15 5.12 8.12
PG-Original (See et al., 2017) 31.44 6.40 10.20
PG-MMR w/ SummRec 35.06 8.72 12.39
PG-MMR w/ SentAttn 37.01 10.43 13.85
PG-MMR w/ Cosine (default) 37.17 10.92 14.04
PG-MMR w/ BestSummRec 40.44 14.93 17.61

Table 3: ROUGE results on the TAC-11 dataset.

• ext-DPP (Taskar, 2012) selects an optimal set of sentences
per the determinantal point processes that balance the cov-
erage of important information and the sentence diversity;

• abs-Opinosis (Ganesan et al., 2010) generates abstractive
summaries by searching for salient paths on a word co-
occurrence graph created from source documents;

• abs-Extract+Rewrite (Song et al., 2018) is a recent ap-
proach that scores sentences using LexRank and generates
a title-like summary for each sentence using an encoder-
decoder model trained on Gigaword data.

• abs-PG-Original (See et al., 2017) introduces an encoder-
decoder model that encourages the system to copy words
from the source text via pointing, while retaining the abil-
ity to produce novel words through the generator.

6 Results

Having described the experimental setup, we next
compare the PG-MMR method against the base-
lines on standard MDS datasets, evaluated by both
automatic metrics and human assessors.
ROUGE (Lin, 2004). This automatic metric mea-
sures the overlap of unigrams (R-1), bigrams (R-
2) and skip bigrams with a maximum distance of 4
words (R-SU4) between the system summary and
a set of reference summaries. ROUGE scores of
various systems are presented in Table 2 and 3 re-
spectively for the DUC-04 and TAC-11 datasets.

We explore variants of the PG-MMR method.
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They differ in how the importances of source sen-
tences are estimated and how the sentence impor-
tance affects word attention weights. “w/ Cosine”
computes the sentence importance as the cosine
similarity score between the sentence and docu-
ment vectors, both represented as sparse TF-IDF
vectors under the vector space model. “w/ Summ-
Rec” estimates the sentence importance as the
predicted R-L recall score between the sentence
and the summary. A support vector regression
model is trained on sentences from the CNN/Daily
Mail datasets (⇡33K) and applied to DUC/TAC
sentences at test time (see §4). “w/ BestSumm-
Rec” obtains the best estimate of sentence impor-
tance by calculating the R-L recall score between
the sentence and reference summaries. It serves
as an upper bound for the performance of “w/
SummRec.” For all variants, the sentence impor-
tance scores are normalized to the range of [0,1].
“w/ SentAttn” adjusts the attention weights using
Eq. (9), so that words in important sentences are
more likely to be used to generate the summary.
The weights are otherwise computed using Eq. (8).

As seen in Table 2 and 3, our PG-MMR method
surpasses all unsupervised extractive baselines, in-
cluding SumBasic, KLSumm, and LexRank. On
the DUC-04 dataset, ICSISumm and DPP show
good performance, but these systems are trained
directly on MDS datasets, which are not utilized
by the PG-MMR method. PG-MMR exhibits su-
perior performance compared to existing abstrac-
tive systems. It outperforms Opinosis and PG-
Original by a large margin in terms of R-2 F-scores
(5.03/6.03/8.73 for DUC-04 and 5.12/6.40/10.92
for TAC-11). In particular, PG-Original is the
original pointer-generator networks with multi-
document inputs at test time. Compared to it, PG-
MMR is more effective at identifying summary-
worthy content from the input. “w/ Cosine” is
used as the default PG-MMR and it shows bet-
ter results than “w/ SummRec.” It suggests that
the sentence and document representations ob-
tained from the encoder-decoder model (trained
on CNN/DM) are suboptimal, possibly due to a
vocabulary mismatch, where certain words in the
DUC/TAC datasets do not appear in CNN/DM and
their embeddings are thus not learned during train-
ing. Finally, we observe that “w/ BestSummRec”
yields the highest performance on both datasets.
This finding suggests that there is a great potential
for improvements of the PG-MMR method as its
“extractive” and “abstractive” components can be
separately optimized.

Figure 2: The median location of summary n-grams in the
multi-document input (and the lower/higher quartiles). The
n-grams come from the 1st/2nd/3rd/4th/5th summary sen-
tence and the location is the source sentence index. (TAC-11)

System 1-grams 2-grams 3-grams Sent
Extr+Rewrite 89.37 54.34 25.10 6.65
PG-Original 99.64 96.28 88.83 47.67
PG-MMR 99.74 97.64 91.57 59.13
Human Abst. 84.32 45.22 18.70 0.23

Table 4: Percentages of summary n-grams (or the entire sen-
tences) appear in the multi-document input. (TAC-11)

Location of summary content. We are inter-
ested in understanding why PG-MMR outper-
forms PG-Original at identifying summary content
from the multi-document input. We ask the ques-
tion: where, in the source documents, does each
system tend to look when generating their sum-
maries? Our findings indicate that PG-Original
gravitates towards early source sentences, while
PG-MMR searches beyond the first few sentences.

In Figure 2 we show the median location of the
first occurrences of summary n-grams, where the
n-grams can come from the 1st to 5th summary
sentence. For PG-Original summaries, n-grams of
the 1st summary sentence frequently come from
the 1st and 2nd source sentences, corresponding
to the lower/higher quartiles of source sentence in-
dices. Similarly, n-grams of the 2nd summary sen-
tence come from the 2nd to 7th source sentences.
For PG-MMR summaries, the patterns are differ-
ent. The n-grams of the 1st and 2nd summary sen-
tences come from source sentences of the range
(2, 44) and (6, 53), respectively. Our findings sug-
gest that PG-Original tends to treat the input as
a single-document and identifies summary-worthy
content from the beginning of the input, whereas
PG-MMR can successfuly search a broader range
of the input for summary content. This capability
is crucial for multi-document input where impor-
tant content can come from any article in the set.

Degree of extractiveness. Table 4 shows the
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Linguistic Quality Rankings (%)
System Fluency Inform. NonRed. 1st 2nd 3rd 4th
Extract+Rewrite 2.03 2.19 1.88 5.6 11.6 11.6 71.2
LexRank 3.29 3.36 3.30 30.0 28.8 32.0 9.2
PG-Original 3.20 3.30 3.19 29.6 26.8 32.8 10.8
PG-MMR 3.24 3.52 3.42 34.8 32.8 23.6 8.8

Table 5: Linguistic quality and rankings of system summaries. (DUC-04)
Human Abstract

• Boeing 737-400 plane with 102 people on board crashed into a moun-
tain in the West Sulawesi province of Indonesia, on Monday, January
01, 2007, killing at least 90 passengers, with 12 possible survivors.

• The plane was Adam Air flight KI-574, departing at 12:59 pm from
Surabaya on Java bound for Manado in northeast Sulawesi.

• The plane crashed in a mountainous region in Polewali, west Su-
lawesi province.

• There were three Americans on board, it is not know if they
survived.

• The cause of the crash is not known at this time but it is possible bad
weather was a factor.

Extract+Rewrite Summary
• Plane with 102 people on board crashes.
• Three Americans among 102 on board plane in Indonesia.
• Rescue team arrives in Indonesia after plane crash.
• Plane with 102 crashes in West Sulawesi, killing at least 90.
• No word on the fate of Boeing 737-400.
• Plane carrying 96 passengers loses contact with Makassar.
• Plane crashes in Indonesia , killing at least 90.
• Indonesian navy sends two planes to carry bodies of five.
• Indonesian plane carrying 102 missing.
• Indonesian lawmaker criticises slow deployment of plane.
• Hundreds of kilometers plane crash.

PG-Original Summary

• Adam Air Boeing 737-400 crashed Monday after vanishing off air
traffic control radar screens between the Indonesian islands of Java and
Sulawesi.

• Up to 12 people were thought to have survived, with rescue teams
racing to the crash site near Polewali in West Sulawesi , some 180 kilo-
metres north of the South Sulawesi provincial capital Makassar.

• It was the worst air disaster since Sept. 5, 2005, when a Mandala Air-
line’s Boeing 737-200 crashed shortly after taking off from the North
Sumatra’s airport, killing 103 people.

• Earlier on Friday, a ferry carrying 628 people sank off the Java coast.

PG-MMR Summary

• The Adam Air Boeing 737-400 crashed Monday afternoon, but
search and rescue teams only discovered the wreckage early Tuesday.

• The Indonesian rescue team arrived at the mountainous area in West
Sulawesi province where a passenger plane with 102 people onboard
crashed into a mountain in Polewali, West Sulawesi province.

• Air force rear commander Eddy Suyanto told-Shinta radio station
that the plane – operated by local carrier Adam Air – had crashed in a
mountainous region in Polewali province on Monday.

• There was no word on the fate of the remaining 12 people on board
the boeing 737-400.

Table 6: Example system summaries and human-written abstract. The sentences are manually de-tokenized for readability.

percentages of summary n-grams (or entire sen-
tences) appearing in the multi-document input.
PG-Original and PG-MMR summaries both show
a high degree of extractiveness, and similar find-
ings have been revealed by See et al. (2017).
Because PG-MMR relies on a handful of rep-
resentative source sentences and mutes the rest,
it appears to be marginally more extractive than
PG-Original. Both systems encourage generating
summary sentences by stitching together source
sentences, as about 52% and 41% of the sum-
mary sentences do not appear in the source, but
about 90% the n-grams do. The Extract+Rewrite
summaries (§5), generated by rewriting selected
source sentences to title-like summary sentences,
exhibits a high degree of abstraction, close to that
of human abstracts.

Linguistic quality. To assess the linguistic quality
of various system summaries, we employ Amazon
Mechanical Turk human evaluators to judge the
summary quality, including PG-MMR, LexRank,
PG-Original, and Extract+Rewrite. A turker is
asked to rate each system summary on a scale of 1
(worst) to 5 (best) based on three evaluation crite-
ria: informativeness (to what extent is the mean-
ing expressed in the ground-truth text preserved

in the summary?), fluency (is the summary gram-
matical and well-formed?), and non-redundancy
(does the summary successfully avoid repeating
information?). Human summaries are used as the
ground-truth. The turkers are also asked to provide
an overall ranking for the four system summaries.
Results are presented in Table 5. We observe that
the LexRank summaries are highest-rated on flu-
ency. This is because LexRank is an extractive
approach, where summary sentences are directly
taken from the input. PG-MMR is rated as the best
on both informativeness and non-redundancy. Re-
garding overall system rankings, PG-MMR sum-
maries are frequently ranked as the 1st- and 2nd-
best summaries, outperforming the others.

Example summaries. In Table 6 we present
example summaries generated by various sys-
tems. PG-Original cannot effectively identify im-
portant content from the multi-document input.
Extract+Rewrite tends to generate short, title-like
sentences that are less informative and carry sub-
stantial redundancy. This is because the system is
trained on the Gigaword dataset (Rush et al., 2015)
where the target summary length is 7 words. PG-
MMR generates summaries that effectively con-
dense the important source content.
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7 Conclusion

We describe a novel adaptation method to gen-
erate abstractive summaries from multi-document
inputs. Our method combines an extractive sum-
marization algorithm (MMR) for sentence extrac-
tion and a recent abstractive model (PG) for fusing
source sentences. The PG-MMR system demon-
strates competitive results, outperforming strong
extractive and abstractive baselines.
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Abstract
We study the problem of generating
keyphrases that summarize the key points for a
given document. While sequence-to-sequence
(seq2seq) models have achieved remarkable
performance on this task (Meng et al., 2017),
model training often relies on large amounts
of labeled data, which is only applicable to
resource-rich domains. In this paper, we pro-
pose semi-supervised keyphrase generation
methods by leveraging both labeled data and
large-scale unlabeled samples for learning.
Two strategies are proposed. First, unlabeled
documents are first tagged with synthetic
keyphrases obtained from unsupervised
keyphrase extraction methods or a self-
learning algorithm, and then combined with
labeled samples for training. Furthermore, we
investigate a multi-task learning framework to
jointly learn to generate keyphrases as well as
the titles of the articles. Experimental results
show that our semi-supervised learning-based
methods outperform a state-of-the-art model
trained with labeled data only.

1 Introduction
Keyphrase extraction concerns the task of se-
lecting a set of phrases from a document that
can indicate the main ideas expressed in the in-
put (Turney, 2000; Hasan and Ng, 2014). It is
an essential task for document understanding be-
cause accurate identification of keyphrases can
be beneficial for a wide range of downstream-
ing natural language processing and information
retrieval applications. For instance, keyphrases
can be leveraged to improve text summarization
systems (Zhang et al., 2004; Liu et al., 2009a;
Wang and Cardie, 2013), facilitate sentiment anal-
ysis and opinion mining (Wilson et al., 2005;
Berend, 2011), and help with document cluster-
ing (Hammouda et al., 2005). Though relatively

⇤Work was done while visiting Northeastern University.

Document:  
      In this paper, we consider an enthalpy formulation for a two-phase
Stefan problem arising from the solidification of aluminum during               
process. We solve this free boundary problem in a time varying three-
dimensional domain and consider convective heat transfer in the liquid
phase. The resulting equations are discretized using a characteristics
method in time and a                         method in space, and we propose a
numerical algorithm to solve the obtained nonlinear discretized problem.
Finally, numerical results are given which are compared with industrial
experimental measurements.
Keyphrase: 
                    ; thermal; conduction; convection; 

in document not in document

casting

casting

finite element

finite element

Figure 1: Sample document with labeled keyphrases.

easy to implement, extract-based approaches fail
to generate keyphrases that do not appear in
the source document, which are frequently pro-
duced by human annotators as shown in Figure
1. Recently, Meng et al. (2017) propose to use
a sequence-to-sequence model (Sutskever et al.,
2014) with copying mechanism for keyphrase gen-
eration, which is able to produce phrases that are
not in the input documents.

While seq2seq model demonstrates good per-
formance on keyphrase generation (Meng et al.,
2017), it heavily relies on massive amounts of
labeled data for model training, which is of-
ten unavailable for new domains. To overcome
this drawback, in this work, we investigate semi-
supervised learning for keyphrase generation, by
leveraging abundant unlabeled documents along
with limited labeled data. Intuitively, additional
documents, though unlabeled, can provide use-
ful knowledge on universal linguistic features
and discourse structure, such as context infor-
mation for keyphrases and that keyphrases are
likely to be noun phrases or main verbs. Fur-
thermore, learning with unlabeled data can also
mitigate the overfitting problem, which is often
caused by small size of labeled training data, and
thus improve model generalizability and enhance
keyphrase generation performance on unseen data.

Concretely, two major approaches are proposed
for leveraging unlabeled data. For the first method,
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unlabeled documents are first tagged with syn-
thetic keyphrases, then mixed with labeled data
for model pre-training. Synthetic keyphrases are
acquired through existing unsupervised keyphrase
extraction methods (e.g., TF-IDF or TextRank
(Mihalcea and Tarau, 2004)) or a self-learning al-
gorithm. The pre-trained model will further be
fine-tuned on the labeled data only. For the second
approach, we propose a multi-task learning (MTL)
framework1 by jointly learning the main task of
keyphrase generation based on labeled samples,
and an auxiliary task of title generation (Rush
et al., 2015) on unlabeled documents. Here one
encoder is shared among the two tasks. Impor-
tantly, we test our proposed methods on a seq2seq
framework, however, we believe they can be easily
adapted to other encoder-decoder-based systems.

Extensive experiments are conducted in sci-
entific paper domain. Results on five differ-
ent datasets show that all of our semi-supervised
learning-based models can uniformly significantly
outperform a state-of-the-art model (Meng et al.,
2017) as well as several competitive unsupervised
and supervised keyphrase extraction algorithms
based on F1 and recall scores. We further carry out
a cross-domain study on generating keyphrases for
news articles, where our models yield better F1

than a model trained on labeled data only. Finally,
we also show that training with unlabeled samples
can further produce performance gain even when
a large amount of labeled data is available.

2 Related Work

Keyphrase Extraction and Generation. Early
work mostly focuses on the keyphrase extrac-
tion task, and a two-step strategy is typically
designed. Specifically, a large pool of candi-
date phrases are first extracted according to pre-
defined syntactic templates (Mihalcea and Tarau,
2004; Wan and Xiao, 2008; Liu et al., 2009b,
2011) or their estimated importance scores (Hulth,
2003). In the second step, re-ranking is applied
to yield the final keyphrases, based on supervised
learning (Frank et al., 1999; Witten et al., 1999;
Hulth, 2003; Lopez and Romary, 2010; Kim and
Kan, 2009), unsupervised graph algorithms (Mi-
halcea and Tarau, 2004; Wan and Xiao, 2008;
Bougouin et al., 2013), or topic modelings (Liu
et al., 2009c, 2010). Keyphrase generation is stud-

1We use “semi-supervised learning” as a broad term to
refer to the two methods proposed in this paper.

ied in more recent work. For instance, Liu et al.
(2011) propose to use statistic machine translation
model to learn word-alignments between docu-
ments and keyphrases, enabling the model to gen-
erate keyphrases which do not appear in the input.
Meng et al. (2017) train seq2seq-based generation
models (Sutskever et al., 2014) on large-scale la-
beled corpora, which may not be applicable to a
new domain with minimal human labels.

Neural Semi-supervised Learning. As men-
tioned above, though significant success has
been achieved by seq2seq model in many NLP
tasks (Luong et al., 2015; See et al., 2017; Dong
and Lapata, 2016; Wang and Ling, 2016; Ye et al.,
2018), they often rely on large amounts of labeled
data, which are expensive to get. In order to mit-
igate the problem, semi-supervised learning has
been investigated to incorporate unlabeled data for
modeling training (Dai and Le, 2015; Ramachan-
dran et al., 2017). For example, neural machine
translation community has studied the usage of
source-side or target-side monolingual data to im-
prove translation quality (Gülçehre et al., 2015),
where generating synthetic data (Sennrich et al.,
2016; Zhang and Zong, 2016), multi-task learn-
ing (Zhang and Zong, 2016), and autoencoder-
based methods (Cheng et al., 2016) are shown
to be effective. Multi-task learning is also ex-
amined for sequence labeling tasks (Rei, 2017;
Liu et al., 2018). In our paper, we study
semi-supervised learning for keyphrase generation
based on seq2seq models, which has not been ex-
plored before. Besides, we focus on leveraging
source-side unlabeled articles to enhance perfor-
mance with synthetic keyphrase construction or
multi-task learning.

3 Neural Keyphrase Generation Model

In this section, we describe the neural keyphrase
generation model built on a sequence-to-sequence
model (Sutskever et al., 2014) as illustrated in Fig-
ure 2. We denote the input source document as
a sequence x = x1 · · · x|x| and its correspond-
ing keyphrase set as a = {ai}|a|

i=1, with ai as one
keyphrase.

Keyphrase Sequence Formulation. Different
from the setup by Meng et al. (2017), where in-
put article is paired with each keyphrase ai to
consist a training sample, we concatenate the
keyphrases in a into a keyphrase sequence y =
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... 

X
key2

Figure 2: Neural keyphrase generation model built on
sequence-to-sequence framework. Input is the docu-
ment, and output is the keyphrase sequence consisting
of phrases present (keyi) or absent (keyn

i ) in the input.

a1 ⌃ a2 ⌃ · · · ⌃ a|a|, where ⌃ is a segmenter
to separate the keyphrases2. With this setup, the
seq2seq model is capable to generate all possible
keyphrases in one sequence as well as capture the
contextual information between the keyphrases
from the same sequence.

Seq2Seq Attentional Model. With source doc-
ument x and its keyphrase sequence y, an encoder
encodes x into context vectors, from which a de-
coder then generates y. We set the encoder as one-
layer bi-directional LSTM model and the decoder
as another one-layer LSTM model (Hochreiter and
Schmidhuber, 1997). The probability of generat-
ing target sequence p(y|x) is formulated as:

p(y|x) =

|y|Y

t=1

p(yt|y<t,x) (1)

where y<t = y1 · · · yt�1.
Let ht = [

�!
h t;
 �
h t] denote the hidden state vec-

tor in the encoder at time step t, which is the
concatenation of forward hidden vector

�!
h t and

backward hidden vector
 �
h t. Specifically,

�!
h t =

fLSTMe(xt,
�!
h t�1) and

 �
h t = fLSTMe(xt,

 �
h t+1),

where fLSTMe is an LSTM unit in encoder.
Decoder hidden state is calculated as st =

fLSTMd(yt�1, st�1), where fLSTMd is an LSTM unit
in decoder. We apply global attention mechanism
(Luong et al., 2015) to calculate the context vec-
tor:

ct =

|x|X

i=1

↵t,ihi

↵t,i =
exp(Watt[st;hi])

P|x|
k=1 exp(Watt[sthk])

(2)

2We concatenate keyphrases following the original
keyphrase order in the corpora, and we set ⌃ as “;” in our
implementation. The effect of keyphrase ordering will be
studied in the future work.

Algorithm 1 Keyphrase Ranking
Input: Generated top R keyphrase sequences S =

[y1, · · · ,yR] ranked with generation possibility from high
to low with beam search

Output: Ranked keyphrase set A with importance from
high to low
function KEY-RANK(S)

A list() . set A as a empty list.
Q dict() . to skip keyword that is already in A.
for yi 2 S do

yi  yi.split(“⌃”); . split yi by “⌃”
for a 2 yi do

. if a has not been merged in A, then keep it.
if not Q.has key(a) then

A.append(a)
Q.update(dict({a : “”}))

where ↵t,i is the attention weight; Watt contains
learnable parameters. In this paper, we omit the
bias variables to save space.

The probability to predict yt in the decoder at
time step t is factorized as:

pvocab(yt|y<t, ct) = fsoftmax(Wd1 ·
tanh(Wd2 [st; ct]))

(3)

where fsoftmax is the softmax function and Wd1

and Wd2 are learnable parameters.

Pointer-generator Network. Similar to Meng
et al. (2017), we utilize copying mechanism via
pointer-generator network (See et al., 2017) to al-
low the decoder to directly copy words from in-
put document, thus mitigating out-of-vocabulary
(OOV) problem. At time step t, the generation
probability pgen is calculated as:

pgen = fsigmoid(Wcct + Wsst + Wyyt) (4)

where fsigmoid is a sigmoid function; Wc, Ws and
Wy are learnable parameters. pgen plays a role of
switcher to choose to generate a word from a fixed
vocabulary with probability pvocab or directly copy
a word from the source document with the atten-
tion distribution ↵t. With a combination of a fixed
vocabulary and the extended source document vo-
cabulary, the probability to predict yt is:

p(yt) = pgenpvocab(yt|y<t, ct)+(1�pgen)
X

i:yi=yt

↵t,i

(5)
where if yt does not appear in the fixed vocabulary,
then the first term will be zero; and if yt is outside
source document, the second term will be zero.
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Encoder

Figure 3: Our two semi-supervised learning methods which are based on (a) synthetic keyphrase construction, and
(b) multi-task learning. (X, Y) represents labeled sample. X(1) and X(2) denotes unlabeled documents. Y(1) refers
to synthetic keyphrases of X(1) and Y(2) means the title of X(2). For method of synthetic keyphrase construction,
model will be pre-trained on the mixture of gold-standards and synthetic data, then fine-tuned on labeled data. For
multi-task learning, model parameters of main task and auxiliary task will be jointly updated. Encoder parameters
of the two tasks are shared.

Supervised Learning. With a labeled dataset
Dp = {x(i),y(i)}N

i=1, the loss function of seq2seq
model is as follows:

L(✓) = �
NX

i=1

log p(y(i)|x(i); ✓) (6)

where ✓ contains all model parameters.

Keyphrase Inference and Ranking Strategy.
Beam search is utilized for decoding, and the top
R keyphrase sequences are leveraged for produc-
ing the final keyphrases. Here we use a beam size
of 50, and R as 50. We propose a ranking strat-
egy to collect the final set of keyphrases. Con-
cretely, in sequence we collect unique keyphrases
from the top ranked beams to lower ranked beams,
and keyphrases in the same sequence are ordered
as in the generation process. Intuitively, higher
ranked sequences are likely of better quality. As
for keyphrases in the same sequence, we find
that more salient keyphrases are usually generated
first. The ranking method is presented in Algo-
rithm 1.

4 Semi-Supervised Learning for
Keyphrase Generation

As illustrated in Figure 3, two methods are pro-
posed to leverage abundant unlabeled data. The
first is to provide synthetic keyphrases using un-
supervised keyphrase extraction methods or self-
learning algorithm, then mixed with labeled data

for model training, which is described in Sec-
tion 4.1. Furthermore, we introduce multi-task
learning that jointly generates keyphrases and
the title of the document (Section 4.2). We
denote the large-scale unlabeled documents as
Du = {x0

(i)}M
i=1 and labeled data as Dp =

{x(i),y(i)}N
i=1, where M � N .

4.1 Synthetic Keyphrase Construction
The first proposed technique is to construct syn-
thetic labeled data by assigning keyphrases for
unlabeled documents, and then mix the synthetic
data with human labeled data for modeling train-
ing. Intuitively, adding training samples with syn-
thetic keyphrases has two potentially benefits: (1)
the encoder is exposed to more documents in train-
ing, and (2) the decoder also benefit from addi-
tional information from identifying contextual in-
formation for keyphrases. We propose and com-
pare two methods to extract synthetic keyphrases.

Unsupervised Learning Methods. Unsuper-
vised learning methods on keyphrase extraction
have been long studied in previous work (Mihal-
cea and Tarau, 2004; Wan and Xiao, 2008). Here
we select two effective and widely used meth-
ods to select keyphrases on unlabeled dataset Du,
which are TF-IDF and TextRank (Mihalcea and
Tarau, 2004). We combine the two methods into
a hybrid approach, in which we first adopt the
two methods to separately select top K keyphrases
from the document, we then take the union with
duplicate removal. To construct the keyphrase se-
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Algorithm 2 Training Procedures for Synthetic
Keyphrase Construction
Input: Dp, Ds, ✓
Output: ✓

function PRE-TRAIN(Dp, Ds, ✓)
Dp+s  Dp [Ds

Shuffle Dp+s randomly
Update ✓ on Dp+s until converge

function FINE-TUNE(Dp, ✓)
Set ✓ as the best parameters from PRE-TRAIN
Update ✓ on Dp until converge

quence, we concatenate the terms from TF-IDF
and then from TextRank, following the corre-
sponding ranking order. We set K as 5 in our ex-
periments.

Self-learning Algorithm. Inspired by prior
work (Zhang and Zong, 2016; Sennrich et al.,
2016), we adopt self-learning algorithm to boost
training data. Concretely, we first build a base-
line model by training the seq2seq model on the
labeled corpus Dp. Then the trained baseline
model is utilized to generate synthetic keyphrase
sequence y0 given a unlabeled document x0.
We adopt beam search to generate the synthetic
keyphrase sequences and beam size is set as 10.
The top one beam is selected.

Training Procedure. After the synthetic data
Ds = {x0

(i),y
0
(i)}

M
i=1 is obtained by either of the

aforementioned methods, we mix labeled data Dp

with Ds to train the seq2seq model. As described
in Algorithm 2, we combine Dp with Ds into Dp+s

and shuffle Dp+s randomly, then we pre-train the
model on Dp+s, in which no network parameters
are frozen during the training process. The best
performing model is selected based on validation
set, then fine-tuned on Dp until converge.

4.2 Multi-task Learning with Auxiliary Task
The second approach to leverage unlabeled doc-
uments is to employ a multi-task learning frame-
work which combines the main task of keyphrase
generation with an auxiliary task through parame-
ter sharing strategy. Similar to the model structure
in Zhang and Zong (2016), our main task and the
auxiliary task share an encoder network but have
different decoders. Multi-task learning will bene-
fit from the source-side information to improve the
model generality of encoder.

In most domains such as scientific papers or
news articles, a document usually contains a title
that summarizes the core topics or ideas, with a

Dataset TRAIN VALID
Small-scale
Document-Keyphrase 40, 000 5, 000
Document-SyntheticKeyphrase 400, 000 N/A
Document-Title 400, 000 15, 000
Large-scale
Document-Keyphrase 130, 000 5, 000

Avg. #Tokens in Train LABELED SYN. MTL
Small-scale
Document 176.3 175.9 165.5
Keyphrase Sequence 23.3 23.5 N/A
Title N/A N/A 10.4

Table 1: Statistics of datasets used in our experiments.

similar spirit as keyphrases. We thus choose ti-
tle generation as auxiliary task, which has been
studied as a summarization problem (Rush et al.,
2015; Colmenares et al., 2015). Let D0

u =
{x0

(i),q(i)}M
i=1 denote the dataset which is as-

signed with titles for unlabeled data Du, the loss
function of multi-task learning is factorized as:

L(✓e, ✓d
1 , ✓

d
2) = �

NX

i=1

log p(y(i)|x(i); ✓
e, ✓d

1)

�
MX

i=1

log p(q(i)|x0
(i); ✓

e, ✓d
2) (7)

where ✓e indicates encoder parameters; ✓d
1 and ✓d

2

are the decoder parameters.

Training Procedure. We adopt a simple alter-
nating training strategy to switch training between
the main task and the auxiliary task. Specifically,
we first estimate parameters on auxiliary task with
D0

u for one epoch, then train model on the main
task with Dp (labeled dataset) for T epochs. We
follow this training procedure for several times un-
til the model of our main task converges. We set
T as 3.

5 Experiments

5.1 Datasets
Our major experiments are conducted on scientific
articles which have been studied in previous work
(Hulth, 2003; Nguyen and Kan, 2007; Meng et al.,
2017). We use the dataset from Meng et al. (2017)
which is collected from various online digital li-
braries, e.g. ScienceDirect, ACM Digital Library,
Wiley, and other portals.

As indicated in Table 1, we construct a rel-
atively small-scale labeled dataset with 40K
document-keyphrase3 pairs, and a large-scale

3Here keyphrase refers to the keyphrase sequence.

4146



Model INSPEC KRAPIVIN NUS SEMEVAL KP20K
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

Comparisons
TF-IDF 0.223 0.304† 0.113 0.143 0.139 0.181 0.120 0.184† 0.105 0.130
TEXTRANK 0.229 0.275 0.173 0.147 0.195 0.190 0.172 0.181 0.181 0.150
SINGLERANK 0.214 0.297 0.096 0.137 0.145 0.169 0.132 0.169 0.099 0.124
EXPANDRANK 0.211 0.295 0.096 0.136 0.137 0.162 0.135 0.163 N/A N/A
MAUI 0.041 0.033 0.243 0.208† 0.249 0.261† 0.045 0.039 0.265 0.227†

KEA 0.109 0.129 0.120 0.131 0.068 0.081 0.027 0.027 0.180 0.163

SEQ2SEQ-COPY 0.269 0.234 0.274 0.207 0.345 0.282 0.278 0.226 0.291 0.215
Semi-supervised
SYN.UNSUPER. 0.326⇤ 0.334⇤ 0.283 0.239⇤ 0.356 0.317⇤ 0.306 0.294⇤ 0.300⇤ 0.245⇤
SYN.SELF-LEARN. 0.310⇤ 0.301⇤ 0.289 0.236⇤ 0.339 0.305 0.295 0.282⇤ 0.301⇤ 0.240⇤
MULTI-TASK 0.326⇤ 0.309⇤ 0.296 0.240⇤ 0.354 0.320⇤ 0.322 0.289⇤ 0.308⇤ 0.243⇤

Table 2: Results of present keyphrase generation with metrics F1@5 and F1@10. ⇤ marks numbers that are
significantly better than SEQ2SEQ-COPY (p < 0.01, F -test). Due to the high time perplexity, no result is reported
by ExpandRank on KP20K, as done in Meng et al. (2017).

dataset of 400K unlabeled documents. Each doc-
ument contains an abstract and a title of the pa-
per. In multi-task learning setting, the auxiliary
task is to generate the title from the abstract.
For the validation set, we collect 5K document-
keyphrase pairs for the process of pre-training and
fine-tuning for methods based on synthetic data
construction. For multi-task learning, we use the
same 5K document-keyphrase pairs for the main
task training, another 15K document-title pairs for
the auxiliary task. We further conduct experiments
on a 130K large-scale labeled dataset, which in-
cludes the small-scale labeled data.

Similar to Meng et al. (2017), we test our
model on five widely used public datasets from the
scientific domain: INSPEC (Hulth, 2003), NUS
(Nguyen and Kan, 2007), KRAPIVIN (Krapivin
et al., 2009), SEMEVAL-2010 (Kim et al., 2010)
and KP20K (Meng et al., 2017).

5.2 Experimental Settings

Data preprocessing is implemented as in (Meng
et al., 2017). The texts are first tokenized by NLTK
(Bird and Loper, 2004) and lowercased, then the
numbers are replaced with <digit>. We set maxi-
mal length of source text as 200, 40 for target text.
Encoder and decoder both have a vocabulary size
of 50K. The word embedding size is set to 128.
Embeddings are randomly initialized and learned
during training. The size of hidden vector is 512.
Dropout rate is set as 0.3. Maximal gradient nor-
malization is 2. Adagrad (Duchi et al., 2011) is
adopted to train the model with learning rate of
0.15 and the initial accumulator rate is 0.1.

For synthetic data construction, we first use
batch size of 64 for model pre-training and then re-

duce to 32 for model fine-tuning. For both training
stages, after 8 epochs, learning rate be decreased
with a rate of 0.5. For multi-task learning, batch
size is set to 32 and learning rate is reduced to half
after 20 training epochs. To build baseline seq2seq
model, we set batch size as 32 and decrease learn-
ing rate after 8 epochs. For self-learning algo-
rithm, beam size is set to 10 to generate target se-
quences for unlabeled data and the top one is re-
tained.

5.3 Comparisons with Baselines

Evaluation Metrics. Following (Liu et al.,
2011; Meng et al., 2017), we adopt top-N macro-
averaged precision, recall and F-measure (F1) for
model evaluation. Precision means how many top-
N extracted keywords are correct and recall means
how many target keyphrases are extracted in top-
N candidates. Porter Stemmer is applied before
comparisons.

Baselines. We train a baseline seq2seq model on
the small-scale labeled dataset. We further com-
pare with four unsupervised learning methods:
TF-IDF, TextRank (Mihalcea and Tarau, 2004),
SingleRank (Wan and Xiao, 2008), ExpandRank
(Wan and Xiao, 2008), and two supervised learn-
ing methods of Maui (Medelyan et al., 2009) and
KEA (Witten et al., 1999). We follow Meng et al.
(2017) for baselines setups.

Results. Here we show results for present and
absent keyphrase generation separately4. From
the results of present keyphrase generation as
shown in Table 2, although trained on small-scale

4Recall that present means the keyphrase appears in the
document, otherwise, it is absent.
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Semi-supervised
Dataset SEQ. SYN.UN. SYN.SELF. MULTI.
INSPEC 0.012 0.018 0.013 0.022
KRAPIVIN 0.01 0.008 0.018 0.021
NUS 0.002 0.011 0.003 0.013
SEMEVAL 0.001 0.008 0.003 0.006
KP20K 0.01 0.016 0.013 0.021

Table 3: Results of absent kephrase generation based
on Recall@10.

labeled corpora, our baseline seq2seq model with
copying mechanism still achieves better F1@5
scores, compared to other baselines. This demon-
strates that a baseline seq2seq model has learned
the mapping patterns from source text to target
keyphrases to some degree. However, small-scale
labeled data still hinders the potential of seq2seq
model according to the poor performance of
F1@10. By leveraging large-scale unlabeled data,
our semi-supervised learning methods achieve sig-
inifcant improvement over seq2seq baseline, as
well as exhibit the best performance in both F1@5
and F1@10 on almost all datasets.

We further compare seq2seq based models on
the task of generating keyphrases beyond input
article vocabulary. Illustrated by Table 3, semi-
supervised learning significantly improves the ab-
sent generation performance, compared to the
baseline seq2seq. Among our models, the multi-
task learning method is more effective at gen-
erating absent keyphrases than the two methods
by leveraging synthetic data. The main reason
may lie in that synthetic keyphrases potentially
introduce noisy annotations, while the decoder
in multi-task learning setting focuses on learn-
ing from gold-standard keyphrases. We can also
see that the overall performances by all models
are low, due to the intrinsic difficulty of absent
keyphrase generation (Meng et al., 2017). More-
over, we only employ 40K labeled data for train-
ing, which is rather limited for training. Besides,
we believe better evaluation methods should be
used instead of exact match, e.g., by considering
paraphrases. This will be studied in the future
work.

5.4 Effect of Synthetic Keyphrase Quality
In this section, we conduct experiments to further
study the effect of synthetic keyphrase quality on
model performance. Two sets of experiments are
undertaken, one for evaluating unsupervised learn-
ing and one for self-learning algorithm.

For self-learning algorithm, we further generate

Figure 4: Pre-training curves with perplexity on vali-
dation set with various options for synthetic keyphrases
construction. Left is for options for self-learning algo-
rithm and right is for unsupervised learning methods.

synthetic keyphrases using following options:

• Beam-size-3: Based on our baseline model
trained with labeled data, we use beam search
with a smaller beam size of 3 to generate syn-
thetic data5.

• Trained-model: We adopt the model which
has been trained with self-learning algorithm
on 40K labeled data and 400K unlabeled
data, to generate the top one keyphrase se-
quence with beam size of 10.

For unsupervised learning method, we origi-
nally merge top-K (K = 5) keyphrases from TF-
IDF and TextRank, here we use options where K
is set as 1 or 10 to extract keyphrases:

• Top@1: Using TF-IDF or TextRank, we only
keep top 1 extraction from each, then take the
union of the two.

• Top@10: Similarly, we keep top 10 extracted
terms from TF-IDF or TextRank, then take
the union.

As illustrated in Figure 4, when models are pre-
trained with synthetic keyphrases of better quality,
results by “Trained-model” consistently produce
better performance (i.e., lower perplexity). Sim-
ilar phenomenon can be observed when “top@5”
and “top@10” are applied for extraction in un-
supervised learning setting. Furthermore, after
models are pre-trained and then fine-tuned, the re-
sults in Figure 5 show that the difference among
baselines becomes insignificant—the quality of
synthetic keyphrases have limited effect on final
scores. The reason might be that though synthetic

5We also experiment with greedy search (i.e. beam size
of 1), however, unknown words are frequently generated.
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Figure 5: Effect of synthetic data quality on present
keyphrase generation (models are pre-trained and fine-
tuned) based on F1@5 (left three columns) and F1@10
(right three columns), on five datasets. The upper is for
self-learning algorithm and the bottom is for unsuper-
vised learning method.
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Figure 6: Effect of various amounts of unlabeled
data for training on present keyphrase generation with
F1@10. Upper is for synthetic data construction
method with unsupervised learning. Bottom is for
multi-task learning algorithm.

keyphrases potentially introduce noisy informa-
tion for decoder training, the encoder is still well
trained. In addition, after fine-tuning on labeled
data, the decoder acquires additional knowledge,
thus leading to better performance and minimal
difference among the options.

5.5 Effect of Amount of Unlabeled Data

In this section, we further evaluate whether vary-
ing the amount of unlabeled data will affect model
performance. We conduct experiments based on
methods of synthetic data construction with un-
supervised learning and multi-task learning. We
further carry out experiments with randomly se-
lected 50K(1/8), 100K(1/4), 200K(1/2) and
300K(3/4) unlabeled documents from the pool of
400K unlabeled data. After models being trained,
we adopt beam search to generate keyphrase se-
quences with beam size of 50. We keep top N
keyphrase sequences to yield the final keyphrases
using Algorithm 1. F1@10 is adopted to illustrate

Figure 7: Perplexity on validation set with varying
amounts of unlabeled data for training. Left is for
fine-tuning procedure based on models trained with
synthetic data constructed with unsupervised learning.
Right is for multi-task learning procedure with perfor-
mance on the main task.

Model F1 Model F1

Our Models Unsupervised
SEQ2SEQ 0.056 TF-IDF 0.270
SYN.UNSUPER. 0.083 TEXTRANK 0.097
SYN.SELF-LEARN. 0.065 SINGLERANK 0.256
MULTI-TASK 0.109 EXPANDRANK 0.269

Table 4: Results of keyphrase generation for news from
DUC dataset with F1. Results of unsupervised learning
methods are adopted from Hasan and Ng (2010).

the model performances. N is set as 10 or 50.
The present keyphrase generation results are

shown in Figure 6, from which we can see that
when increasing the amount of unlabeled data,
model performance is further improved. This
is because additional unlabeled data can provide
with more evidence on linguistic or context fea-
tures and thus make the model, especially the en-
coder, have better generalizability. This finding
echoes with the training procedure illustrated in
Figure 7, where more unlabeled data uniformly
leads to better performance. Therefore, we believe
that leveraging more unlabeled data for model
training can boost model performance.

5.6 A Pilot Study for Cross-Domain Test
Up to now, we have demonstrated the effectiveness
of leveraging unlabeled data for in-domain exper-
iments, but is it still effective when being tested
on a different domain? We thus carry out a pi-
lot cross-domain test on news articles. The widely
used DUC dataset (Wan and Xiao, 2008) is uti-
lized, consisting of 308 articles with 2, 048 labeled
keyphrases.

The experimental results are shown in Table 4
which indicate that: 1) though trained on scientific
papers, our models still have the ability to gener-
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Model INSPEC KRAPIVIN NUS SEMEVAL KP20K
F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

SEQ2SEQ-COPY 0.34 0.329 0.308 0.251 0.36 0.327 0.301 0.285 0.318 0.251
Semi-supervised
SYN.UNSUPER. 0.338 0.34 0.316 0.255 0.365 0.335 0.337 0.308 0.322 0.261⇤
SYN.SELF-LEARN. 0.33 0.326 0.304 0.255 0.359 0.336 0.304 0.304 0.321 0.263⇤
MULTI-TASK 0.328 0.318 0.323 0.254 0.365 0.326 0.319 0.312 0.328⇤ 0.264⇤

Table 5: Results of present keyphrase generation on large-scale labeled data with F1@5 and F1@10. ⇤ indicates
significant better performance than SEQ2SEQ-COPY with p < 0.01 (F -test).

ate keyphrases for news articles, illustrating that
our models have learned some universal features
between the two domains; and 2) semi-supervised
learning by leveraging unlabeled data improves
the generation performances more, indicating that
our proposed method is reasonably effective when
being tested on cross-domain data. Though un-
supervised methods are still superior, for future
work, we can leverage unlabeled out-of-domain
corpora to improve cross-domain keyphrase gen-
eration performance, which could be a promising
direction for domain adaption or transfer learning.

Semi-supervised
Dataset SEQ. SYN.UN. SYN.SELF. MULTI.
INSPEC 0.021 0.024 0.032 0.033
KRAPIVIN 0.02 0.031 0.043 0.047
NUS 0.009 0.026 0.024 0.036
SEMEVAL 0.011 0.014 0.015 0.02
KP20K 0.021 0.034 0.039 0.046

Table 6: Performance on absent keyphrase generation
by Recall@10 with large-scale labeled training data.

5.7 Training on Large-scale Labeled Data

Finally, it would be interesting to study whether
unlabeled data can still improve performance
when the model is trained on a larger scaled la-
beled data. We conduct experiments on a larger
labeled dataset with 130K pairs, along with the
400K unlabeled data. Here the baseline seq2seq
model is built on the 130K dataset.

From the present keyphrase generation results
in Table 5, it can be seen that unlabeled data is
still helpful for model training on a large-scale la-
beled dataset. This implies that we can also lever-
age unlabeled data to enhance generation perfor-
mance even in a resource-rich setting. Referring
to the absent keyphrase generation results shown
in Table 6, semi-supervised learning also boosts
the scores. From Table 6, training on large-scale
labeled data, absent generation is significantly im-
proved, compared to being trained on a small-scale
labeled data (see Table 3).

6 Conclusion and Future Work

In this paper, we presented a semi-supervised
learning framework that leverages unlabeled data
for keyphrase generation built upon seq2seq mod-
els. We introduced synthetic keyphrases con-
struction algorithm and multi-task learning to ef-
fectively leverage abundant unlabeled documents.
Extensive experiments demonstrated the effective-
ness of our methods, even in scenario where large-
scale labeled data is available.

For future work, we will 1) leverage unlabeled
data to study domain adaptation or transfer learn-
ing for keyphrase generation; and 2) investigate
novel models to improve absent keyphrase gener-
ation when limited labeled data is available based
on semi-supervised learning.
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Abstract
Multimodal summarization has drawn much
attention due to the rapid growth of multime-
dia data. The output of the current multimodal
summarization systems is usually represented
in texts. However, we have found through ex-
periments that multimodal output can signifi-
cantly improve user satisfaction for informa-
tiveness of summaries. In this paper, we pro-
pose a novel task, multimodal summarization
with multimodal output (MSMO). To handle
this task, we first collect a large-scale dataset
for MSMO research. We then propose a multi-
modal attention model to jointly generate text
and select the most relevant image from the
multimodal input. Finally, to evaluate mul-
timodal outputs, we construct a novel multi-
modal automatic evaluation (MMAE) method
which considers both intramodality salience
and intermodality relevance. The experimen-
tal results show the effectiveness of MMAE.

1 Introduction
Text summarization is to extract the important in-
formation from source documents. With the in-
crease of multimedia data on the internet, some
researchers (Li et al., 2016b; Shah et al., 2016;
Li et al., 2017) focus on multimodal summariza-
tion in recent years. Existing experiments (Li
et al., 2017, 2018a) have proven that, compared
to text summarization, multimodal summarization
can improve the quality of generated summary by
using information in visual modality.

However, the output of existing multimodal
summarization systems is usually represented in
a single modality, such as textual or visual (Li
et al., 2017; Evangelopoulos et al., 2013; Madem-
lis et al., 2016). In this paper, we argue that
multimodal output1 is necessary for the follow-
ing three reasons: 1) It is much easier and faster

1Note that in this work, the multimodal output refers to a
pictorial summary which contains one image (for the sake of

Researchers have discovered the fossilized 
remains of a small, lizard- like creature that 
is the missing ancestral link …

summarize
Tiny was one of the first
four-legged creatures to
move …

Figure 1: The illustration of our proposed task –
Multimodal Summarization with Multimodal Output
(MSMO). The image can help better understand the
text in the red font.

for users to get critical information from the im-
ages (Li et al., 2017). 2) According to our ex-
periments, the multimodal output (text+image) in-
creases users’ satisfaction by 12.4% compared to
the single-modality output (text) (more details can
be found in Sec. 4.2). 3) Images help users to
grasp events while texts provide more details re-
lated to the events. Thus the images and text
can complement each other, assisting users to gain
a more visualized understanding of events (Bian
et al., 2013). We give an example in Fig. 1 to il-
lustrate this phenomenon. For the output with only
the text summary, user will be confused about the
description of “four-legged creatures”; while with
a relevant image, user will have a clearer under-
standing of the text.

In recent years, some researchers(Bian et al.,
2013, 2015; Wang et al., 2016) focus on incorpo-
rating multimedia contents into the output of sum-
marization which all treat the image-text pair as
a basic summarization unit. But in our work, our
input comes from a document and a collection of
images where there is no alignment between texts
and images. So our biggest challenge is how to
bridge the semantic gaps between texts and im-
ages. Based on the above discussion, in this work,
we propose a novel task which we refer to as Mul-
timodal Summarization with Multimodal Output
(MSMO). To explore this task, we focus on the

simplicity, we first consider only one image) and a piece of
text. We leave the other multimodal content (like videos) as
future work.
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following three questions: 1) how to acquire the
relevant data; 2) how to generate the multimodal
output; 3) how to automatically evaluate the qual-
ity of the multimodal output in MSMO.

For the first question, similar to Hermann
et al. (2015), we collect a large-scale multimodal
dataset2 from Daily Mail website and annotate
some pictorial summaries. For the second ques-
tion, we propose a multimodal attention model
to jointly generate text and the most relevant im-
age, in which the importance of images is deter-
mined by the visual coverage vector. For the last
question, we construct a novel multimodal auto-
matic evaluation (MMAE) which jointly considers
salience of text, salience of image, and image-text
relevance.

Our main contributions are as follows:

• We present a novel multimodal summariza-
tion task, which takes the news with images
as input, and finally outputs a pictorial sum-
mary. We construct a large-scale corpus for
MSMO studying.

• We propose an abstractive multimodal sum-
marization model to jointly generate sum-
mary and the most relevant image.

• We propose a multimodal automatic evalua-
tion (MMAE) method which mainly consid-
ers three aspects: salience of text, salience of
image, and relevance between text and im-
age.

2 Our Models

2.1 Overview
We begin by defining the MSMO task. The in-
put of the task is a document and a collection
of images and the output is a pictorial summary.
As shown in Fig. 2, our proposed model con-
sists of four modules: text encoder, image en-
coder, multimodal attention layer, and summary
decoder. The text encoder is a BiLSTM used to
encode text. Our image encoder is VGG193 pre-
trained on ImageNet (Simonyan and Zisserman,
2015) used to extract global or local features. The
multimodal attention layer aims to fuse textual and
visual information during decoding. Our summary

2Our dataset has been released to the public, which
can be found in http://www.nlpr.ia.ac.cn/cip/
jjzhang.htm.

3http://www.robots.ox.ac.uk/˜vgg/
research/very_deep

decoder, which is a unidirectional LSTM, makes
use of information from two modalities to gener-
ate the text summary and select the most relevant
image according to visual coverage vector. Our
text encoder and summary decoder are based on
pointer-generator network which we will describe
in Sec. 2.2. We then describe image encoder and
multimodal attention layer in our multimodal at-
tention model (Sec. 2.3).

2.2 Pointer-Generator Network

See et al. (2017) propose a pointer-generator net-
work which allows both copying words from the
source text and generating words from a fixed
vocabulary, achieving the best performance on
CNN/Daily mail dataset. Their model consists
of an encoder (a single-layer bidirectional LSTM)
and an attentive decoder (a unidirectional LSTM).
The encoder maps the article to a sequence of
encoder hidden states hi. During decoding, the
decoder receives the embedding of the previous
word and reaches a new decoder state st. Then
the context vector ct is computed by the attention
mechanism (Bahdanau et al., 2015; Luong et al.,
2015) as calculated in Eq. 1 and 2. To alleviate
the problem of repetition, See et al. (2017) main-
tain a coverage vector covt, which is the sum of
attention distributions over all previous decoding
timesteps (initialized to zero vector at timestep 0):
covt =

Pt�1
t̃=0

↵t̃. The coverage vector is used as
an extra input to the attention vector (Eq. 1) and
is also used to calculate the coverage loss (Eq. 6).
Next, the attention distribution is used to calculate
the context vector as follows.

et
i = vT tanh(Whhi + Wsst + Wccov

t) (1)
↵t = softmax(et) (2)

ct =
X

i

↵t
ihi (3)

The important part in this model is the calcula-
tion of the generation probability pg. It represents
the probability of generating a word from the vo-
cabulary distribution pv, and (1 � pg) represents
the probability of copying a word from the source
by sampling from the attention distribution ↵t. pg

is determined by ct, st, and the decoder input xt in
Eq. 4. The final probability distribution over the
extended vocabulary, which denotes the union of
the vocabulary and all words in the source, is cal-
culated in Eq. 5. Finally, the loss for timestep t is
the sum of the negative log likelihood of the target
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Figure 2: The framework of our model.

word w⇤
t and the coverage loss (Eq. 6):

pg = �(W⇤
hct + W⇤

sst + Wxxt) (4)

pw = pgpv(w) + (1 � pg)
X

wi=w

↵t
i (5)

Lt = �logpw⇤

t
+

X

i

min(↵t
i, cov

t
i) (6)

2.3 Multimodal Attention Model
We incorporate visual information into the
pointer-generator network and propose a novel
multimodal attention model. As shown in Fig. 2,
there are three main differences between our
model and pointer-generator network: 1) We have
an extra image encoder and a corresponding visual
attention layer; 2) To achieve the fusion of textual
and visual information, we introduce a multimodal
attention mechanism; 3) We add a visual cover-
age (Li et al., 2018a) to both alleviate visual rep-
etition and measure the salience of image. More
details are as follows.

Image Encoder. We apply the VGG19 to ex-
tract global and local image feature vectors for
all images. The global features g are 4096-
dimensional activations of the pre-softmax fully-
connected layer fc7. The local features l are the
7 ⇥ 7 ⇥ 512 feature maps of the last pooling layer
(pool5). We flatten the local feature into a ma-
trix A = (a1, · · · , aL)(L = 49) where al 2 R

512

corresponds to a patch of an image.
Visual Attention. The attention mechanism is

learned to focus on different parts of input text
while decoding. Attention mechanisms have also
shown to work with other modalities, like images,
where they can learn to attend the salient parts of
an image (Xu et al., 2015). We then explore to use
images with a visual attention to learn text-image
alignment. Concretely, we extend attention mech-
anism (Bahdanau et al., 2015; Luong et al., 2015)
to visual attention mechanisms, which attend vi-

sual signals. There are three variants of our visual
attention mechanisms: 1) attention on global fea-
tures (ATG), 2) attention on local features (ATL),
and 3) hierarchical visual attention on local fea-
tures (HAN). We take the calculation of ATG as an
example. To attend to the salient parts of a collec-
tion of images with size M , we flatten the global
feature set g into a matrix g0 = (g1, · · · , gM ). In
addition to calculating the text context vector in
Sec. 2.2, we also obtain a visual context vector.
We first project the image feature into the same
dimension as the text context vector. The visual
attention is calculated as follows:

g⇤ = W2
I(W1

Ig + b1
I) + b2

I (7)

et
a = vT

a tanh(Wag
⇤
i + Uast + covt

a) (8)
↵t

a = softmax(et
a) (9)

where W1
I 2 R

4096⇥4096 and W2
I 2 R

4096⇥dh

are the image transformation matrices, b1
I 2 R

4096

and b2
I 2 R

dh are bias vectors, and covt
a denotes

the visual coverage vector and is initialized to zero
vector in the beginning. Then the visual attention
distribution ↵t

a is used to obtain the visual context
vector ct

img through ct
img =

P
i ↵

t
a,ig

⇤
i . Similar

is the ATL, we flatten the local feature set A into
a matrix A0 = (a1, · · · , aM⇥49). The calculation
of attention in ATL is the same as in ATG. There
is a bit difference in the HAN model, which first
attend to the 49 image patches and get an interme-
diate visual context vector to represent the image,
and then attend to the intermediate visual context
vectors to get the visual context vector.

Multimodal Attention. To fuse the text and vi-
sual context information, we add a multimodal at-
tention layer (Li et al., 2018a), as shown in Fig. 2.
And the attention distribution is calculated as fol-
lows:

et
txt = vT

txt(Wtxtc
t
txt + Utxtst) (10)

et
img = vT

img(Wimgc
t
img + Uimgst) (11)

↵t
txt = softmax(et

txt) (12)
↵t

img = softmax(et
img) (13)

ct
mm = ↵t

txtc
t
txt + ↵t

imgc
t
img (14)

where ↵t
txt is the attention weight for text context

vector and ↵t
img is the attention weight for visual

context vector.
Visual Coverage. In addition to the calculation

of the text coverage vector as in Sec. 2.2, we also
obtain a visual coverage vector covt

img, which is
the sum of visual attention distributions. To help
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reduce repeated attention to multimodal informa-
tion, we incorporate a text coverage loss and a vi-
sual coverage loss into the loss function. The final
loss function is as follows:

Lt = �logpw⇤

t
+

X

i

min(↵t
i, cov

t
i)

+
X

j

min(↵t
j , cov

t
img,j) (15)

The attention mechanism can attend the salient
parts of texts or images. Meanwhile, the coverage
mechanism sums up all the historical attention dis-
tributions. Therefore, we regard the coverage vec-
tor as a global salience measure of the source be-
ing attended. We then use the visual coverage vec-
tor in the last decoding timestep to select the most
relevant image. Concretely, we choose the image
whose coverage score is the largest. The process
is a bit different for the local features. An image
corresponds to 49 patches, the coverage scores of
these patches are summed up to get the salience
score of the image as follows:

Sj =
X

patch

covt⇤
patch,j (16)

where Sj denotes the salience of the j-th image
and covt⇤

patch,j denotes the coverage score of each
corresponding image patch in the last decoding
timestep t⇤. For the HAN, we introduce an ex-
tra coverage vector for the image patches attention
and calculate coverage loss for it as follows:

Lt = �logpw⇤

t
+

X

k

min(↵t
k, cov

t
patch,k)

+
X

i

min(↵t
i, cov

t
i) +

X

j

min(↵t
j , cov

t
img,j)

(17)

3 Multimodal Automatic Evaluation

To evaluate the quality of a pictorial summary,
we propose the MMAE method which is defined
as y = f(m1, m2, m3). In this definition, m1,
m2, and m3 denote scores measured by three met-
rics which consider salience of text (Sec. 3.1),
salience of image (Sec. 3.2), and image-text rele-
vance (Sec. 3.3) respectively, f(·) denotes a map-
ping function, and y denotes the score of the pic-
torial summary.

In our experiments, the reference pictorial sum-
mary consists of a text summary and a reference

image set4 ref img. In MMAE, m1 is obtained by
comparing the text summary in reference with that
in model output, m2 is obtained by comparing the
image set in reference with the image in model
output, and m3 considers the image-text similar-
ity in model output. To learn MMAE, we choose
three simple methods to fit y with human judg-
ment scores. These methods include Linear Re-
gression (LR), and two nonlinear methods: Logis-
tic Regression (Logis), and Multilayer Perceptron
(MLP).

3.1 Salience of Text

ROUGE (Lin, 2004b) is widely used to automat-
ically assess the quality of text summarization
systems. It has been shown that ROUGE cor-
relates well with human judgments (Lin, 2004a;
Owczarzak et al., 2012; Over and Yen, 2004).
Therefore, we directly apply ROUGE to assess the
salience of the text units.

3.2 Salience of Image

We propose a metric, namely, image precision
(IP), to measure the salience of image. The im-
age precision is defined as follows:

IP =
|{ref img} \ {recimg}|

|{recimg}| (18)

where refimg, recimg denote reference images and
recommended images by MSMO systems respec-
tively. The reasons for this metric are as follows.

A good summary should have good coverage
of the events for both texts and images. The im-
age in the output should be closely related to the
events. So we formulate the image selection pro-
cess as an image recommendation —instead of
recommending items to users as in a recommen-
dation system, we recommend the most salient
image to an event. It can also be viewed as an
image retrieval task, which retrieves the image
most relevant to an event. Precision and recall
are commonly used to evaluate recommendation
systems (Karypis, 2001) and information retrieval
task (Zuva and Zuva, 2012). However, we only
care about whether the image appears in the ref-
erence image set. Thus in our case, we are only
interested in calculating precision metric. There-
fore, we adapt the precision here as IP to measure
image salience.

4More details can be found in Sec. 4.1
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3.3 Image-Text Relevance
A prerequisite for a pictorial summary to help
users accurately acquire information is that the im-
age must be related to the text. Therefore, we re-
gard the image-text relevance as one of metrics to
measure the quality of the pictorial summary. We
consider using visual-semantic embedding (Faghri
et al., 2018; Wang et al., 2018) to calculate the
cosine similarity between visual feature and tex-
tual feature, which we use as image-text relevance.
Visual-semantic embedding has been widely used
in cross-modal retrieval (Kiros et al., 2014) and
image captioning (Karpathy and Fei-Fei, 2015).

We apply VSE0 model of Faghri et al. (2018),
which achieves state-of-the-art performance for
image-caption retrieval task on the Flickr30K
dataset (Young et al., 2014). The difference is
that instead of training a CNN model to encode
the image, we use the pretrained VGG19 to ex-
tract global features. The text is encoded by a uni-
directional Gated Recurrent Unit (GRU) to a se-
quence of vector representations. Then we apply
the max-over-time pooling (Collobert et al., 2011)
to get a single vector representation. Next, the vi-
sual features and text features are projected to a
joint semantic space by two feed-forward neural
networks. The whole network is trained using a
max-margin loss:

L =
X

ĉ

max(� � s(i, c) + s(i, ĉ), 0)

+
X

î

max(� � s(i, c) + s(̂i, c), 0) (19)

The loss comprises two symmetric terms, with i
and c being images and captions repectively. The
first term is taken over negative captions ĉ image
i in a batch. The second is over negative images î
given caption c. If i and c are closer to each other
in the joint embedding space than to any other neg-
ative pairs, by a margin �, the loss is zero. We
choose to use image-caption pairs in our dataset to
train the VSE0 model.

4 Experiments

We conduct the following five sets of experiments:
1) To verify our motivation of the multimodal out-
put (pictorial summary), we design an experiment
for user satisfaction test (Sec. 4.2); 2) We compare
our multimodal summarization with text summa-
rization from both ROUGE score and manual eval-
uation (Sec. 4.3); 3) To verify the effectiveness of

our evaluation metrics, we calculate the correla-
tion between these metrics and human judgments
(Sec. 4.4); 4) We conduct two experiments to show
the effectiveness of our proposed MMAE and the
generalization of MMAE respectively (Sec. 4.5);
5) Finally, we evaluate our multimodal attention
model with MMAE (Sec. 4.6).

The hyperparameters in our model are similar to
See et al. (2017), except that we set the maximum
number of images to 10, 7, and 7 for ATG, ATL,
and HAN respectively, because different articles
have the image collection of different sizes. The
images are sorted in the order of the position in
the article.

4.1 Dataset
There is no large-scale benchmark dataset for
MSMO. We follow Hermann et al. (2015) to con-
struct a corpus from Daily Mail website5. Similar
to Hermann et al. (2015), we use the manually-
written highlights offered by Daily Mail as a ref-
erence text summary. From Daily Mail, we ran-
domly select articles within a week and find that
2,917 out of 2,930 articles contain images. More
details are illustrated in Table 1.

train valid test

#Documents 293,965 10,355 10,261
#ImgCaps 1,928,356 68,520 71,509
#AvgTokens(S) 720.87 766.08 730.80
#AvgTokens(R) 70.12 70.02 72.16
#AvgCapTokens 22.07 22.64 22.34
#AvgImgCaps 6.56 6.62 6.97

Table 1: Corpus statistics. Each image on the website
is paired with a caption. #ImgCaps denotes the number
of image-caption pairs. #AvgTokens(S), #AvgTokens(R)
and #AvgCapTokens denote the average number of to-
kens in articles, highlights, and captions respectively.

To get the pictorial reference, we employ 10
graduate students to select the relevant images
from the article for each reference text summary.
We allow annotators to select up to three images
to reduce the difference between different annota-
tors. If the annotators find that there is no relevant
image, they will select none of them. Each arti-
cle is annotated by at least two students6. Since
we use the text reference to guide the generation
of the pictorial summary, we do not use the ref-
erence image during training. Therefore, we only
conduct the annotation on the test set.

5http://www.dailymail.co.uk
6A third annotator will be asked to decide the final anno-

tation for the case of divergence for the first two annotators.
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4.2 User Satisfaction Test
We conduct an experiment to investigate whether
a pictorial summary can improve the user satis-
faction for the informativeness of the summary.
For a fair comparison, we propose a novel strat-
egy to compare text summaries and pictorial sum-
maries. We take an example to illustrate our strat-
egy. Given 100 source news pages, we have their
corresponding reference text summaries and picto-
rial summaries. We divide them into two parts of
the same size, part 1 and part 2. In part 1, human
annotator A evaluates the text summaries accord-
ing to the input news, and human annotator B eval-
uates the pictorial summaries. In part 2, annotator
A evaluates the pictorial summaries and annota-
tor B evaluates the text summaries. All annotators
will give a score of 1 to 5. The input news is the
same for annotator A and annotator B.

Format AnnotatorA AnnotatorB Overall

Text 3.67 3.75 3.71
Pictorial 4.14 4.20 4.17

Table 2: User satisfaction test results. In total, we use
the strategy mentioned in Section 4.2 to evaluate 400
randomly selected source news pages. Overall denotes
the average score on these 400 samples.

Table 2 shows our results for user satisfac-
tion test. User ratings of pictorial summaries are
12.4% higher than text summaries. It shows that
users prefer this way of presenting information. It
also confirms our motivation for MSMO.

4.3 Comparison with Text Summarization
Our user satisfaction test in Sec. 4.2 is done in
an ideal situation, comparing the text reference
with the pictorial reference. To show the effec-
tiveness of our model, we also compare our model
with text summarization from ROUGE and human
judgment scores. We compare several abstrac-
tive summarization methods with our multimodal
summarization methods. PGC7 (See et al., 2017)
refers to the pointer-generator network (Sec. 2.2).
AED (Nallapati et al., 2016) uses an attentional
encoder-decoder framework and adds some lin-
guistic features such as POS, named-entities, and
TF-IDF into the encoder. We also implement
a seq2seq model with attention (S2S+attn). To
compare the multimodal output with our multi-
modal model, we propose an extractive method

7https://github.com/abisee/
pointer-generator

based on GuideRank (GR) (Li et al., 2016a,
2018b). GuideRank applies LexRank (Erkan and
Radev, 2004) with guidance strategy. In this strat-
egy, captions recommend the sentences related to
them. The rankings of sentences and captions are
obtained through GR; we extract sentences that
satisfy the length limit as a text summary accord-
ing to the ranking of text. We select an image
whose caption ranks the first in the captions. And
finally, the pictorial summary is obtained. We
evaluate different summarization models with the
standard ROUGE metric, reporting the F1 scores
for ROUGE-1, ROUGE-2, and ROUGE-L. Our
ROUGE results are given in Table 3, and human
judgment scores are given in Table 4.

Model ROUGE-1 ROUGE-2 ROUGE-L

S2S+attn 32.32 12.44 29.65
Base AED 34.78 13.10 32.24

PGC 41.11 18.31 37.74

ATG 40.63 18.12 37.53

MM ATL 40.86 18.27 37.75
HAN 40.82 18.30 37.70
GR 37.13 15.03 30.21

Table 3: ROUGE F1 scores on our test set. All our
ROUGE scores are reported by official ROUGE script.

Model PGC ATG ATL HAN

HS 3.07 3.30 3.22 3.20

Table 4: Human judgment scores for our multimodal
model and PGC. We randomly select 400 articles and
use the same strategy as Sec. 4.2. HS denotes the aver-
age human judgment scores.

From Table 3, all multimodal models lead to
a decrease in ROUGE scores which can attribute
to the following reasons. There are 6.56 images
on average in each article and not every image is
closely related to the event of the article. In other
words, some images are noise. On the other hand,
our text input is long text, and it contains enough
information for text generation. In Table 4, multi-
modal models are better than text model in human
judgments. It further illustrates our motivation,
and also proves the effectiveness of our models.

4.4 Correlation Test

To illustrate the effectiveness of our evaluation
metrics, we conduct an experiment on correla-
tions between these metrics and human judgment
scores. Human annotators give a score which
ranges from 1 to 5 to a pictorial summary accord-
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ing to the reference8. The reference consists of a
text summary and up to three relevant images se-
lected by humans. We randomly extract the pic-
torial summaries from the output of different sys-
tems. In response to the three aspects we proposed
in Section 3, we propose some related metrics re-
spectively. For text salience, we apply ROUGE-1,
ROUGE-2, ROUGE-L, and BLEU. For image-
text relevance of candidate pictorial summaries,
we propose two ways. One is to calculate the
similarity (Img-Sum) between the image and the
whole text summary. The other is to calculate
the similarities between the image and each sen-
tence in the text summary. Then we take the maxi-
mum and average values as two metrics: MAXsim
and AVGsim. For image salience, in addition to
the IP metric mentioned in Section 3.2, we try to
calculate the similarity between the candidate im-
age and each reference image in three ways: 1)
I-I: similarities between the global fc7 features,
2) Hist: Bhattacharyya distance9 for histogram
comparison (Bhattacharyya, 1943), and 3) Temp:
Fourier Analysis template matching (Briechle and
Hanebeck, 2001).

We employ annotators to evaluate 600 samples
(randomly selected from the outputs of each model
on the validation set). Each sample is scored by
two persons and we take the average score as the
final score. We use 450 of them as training set to
train the MMAE model in Sec. 4.5, the rest is used
as test set. The scores calculated by each evalua-
tion metric are then tested on the training set to see
how well they correlate with human judgments.
The correlation is evaluated with three metrics, in-
cluding 1) Pearson correlation coefficient (r), 2)
Spearman rank coefficient (⇢), and 3) Kendall rank
coefficient (⌧ ). Our results of correlation test are
given in Table 5.

As shown in Table 5, IP (Image Precision) cor-
relates best with human assessments according to
the three correlation coefficients. It illustrates that
people pay more attention to images when assess-
ing pictorial summaries. If we choose the right
image for the summary, people are more likely to
assign a high score. We also note that the corre-
lation score of IP is significantly higher than four

8Some articles are annotated with no relevant images
(about 3.9%), we directly skipped these articles without man-
ual scoring

9In statistics, the Bhattacharyya distance measures the
similarity of two discrete or continuous probability distribu-
tions. For a distance d, we take (1 � d) as the similarity.

Metric r ⇢ ⌧

BLEU .1949 .1542 .1198

Text ROUGE-1 .3006 .2941 .2152
ROUGE-2 .2735 .2742 .2002
ROUGE-L .3144 .3087 .2272

AVGsim .2662 .2388 .1774
Image-Text MAXsim .2849 .2749 .2033

Img-Sum .2380 .2075 .1556

I-I (max) .0169 .0258 .0196
I-I (avg) -.0262 -.0140 -.0113
Histavg .4688 .5077 .3725

Image Histmax .5974 .6388 .5149
Tempavg .4913 .4944 .3631
Tempmax .5967 .6435 .5080
IP .6407 .6482 .5789

Table 5: Correlation with human judgment scores
(training set), measured with Pearson r, Spearman ⇢,
and Kendall ⌧ coefficients. The max and avg denote
the maximum and average value of the scores.

text metrics. Because it is easy for a person to
judge the importance of images based on refer-
ence, such as to see whether the image appears in
reference. However, measuring the semantic sim-
ilarity of two texts is difficult. The four metrics all
measure the degree of n-gram overlap which can-
not accurately measure semantic similarity.

For the image-text relevance, MAXsim performs
best and is comparable to the several ROUGE met-
rics. It shows that in a good pictorial summary,
the image and text should be relevant. In some
cases, even though the generated text is not so im-
portant, the image is closely related to the text.
At this time, people can also be satisfied. On the
other hand, our VSE0 (Sec. 3.3) model can cap-
ture some fluency of sentences by adopting GRU.
Compare MAXsim, AVGsim, and Img-Sum, this
is very intuitive. Once people find a sentence (or
a part) relevant to the image, they will think the
image is related to the text. Besides, the worst
performance of Img-Sum metric is probably be-
cause the average length of captions used to train
VSE0 model is about 22, far less than the length
of the summary. We find the I-I (max) and I-I
(avg) nearly do not correlate with human assess-
ments. It shows that the visual features extracted
from VGG19 are not suitable for calculating the
similarity between news images. The analysis of
Hist (Temp)avg and Hist (Temp)max is similar to
the analysis of MAXsim and AVGsim above.

4.5 Effectiveness and Generalization of
MMAE

We then select the best-performing metrics sep-
arately from the three sets of metrics, namely
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ROUGE-L, MAXsim, and IP. We apply LR, MLP,
and Logis to learn our MMAE model that com-
bines the three metrics. We calculate the three co-
efficients for the three metrics on the test set as a
comparison. The correlation results are given in
Table 6.

Metric r ⇢ ⌧

ROUGE-L .3488 .3554 .2669
MAXsim .2541 .2339 .1773
IP .5982 .5966 .5485

MMAELR .6646 .6644 .5265
MMAEMLP .6632 .6646 .5265
MMAELogis .6630 .6653 .5277

Table 6: Correlation with human judgment scores (test
set).

As shown in Table 6, the MMAE learned by
three methods correlates better with human judg-
ments. Although MMAELogis gets a slightly
higher correlation score according to Spear-
man and Kendall coefficients, we choose the
MMAELR

10 as our final MMAE model due to Oc-
cam’s Razor11.

It is crucial that MMAE can generalize for a
previously unseen system. To test the generaliza-
tion of MMAE, we use MMAE to evaluate a new
system and calculate the correlation with human
judgment scores. The new system is a naive model
which applies LexRank to extract sentences and
randomly select an image from source. We can ob-
serve that MMAE still correlates well with human
judgment scores, as shown in Table 7. It illustrates
that MMAE generalize well for a new model. We
give some examples of MMAE in supplementary
material.

Metric r ⇢ ⌧

ROUGE-L .3223 .3514 .2615
MMAE .6352 .6318 .4728

Table 7: Correlation results for the new model on the
same 150 test samples as in Sec. 4.4.

4.6 Model Performances

According to our analyses above, we have proved
MMAE can evaluate multimodal output. In this
section, we report the MMAE scores for our pro-
posed multimodal attention model, as shown in
Table 8.

10The weight for ROUGE-L, MAXsim, and IP is 1.641,
0.854, 0.806 respectively and the intercept is 1.978.

11https://en.wikipedia.org/wiki/Occam%
27s_razor

Model ROUGE-L MAXsim IP MMAE

ATG 40.76 25.82 59.28 3.35
ATL 40.80 13.26 62.44 3.26
HAN 40.82 12.22 61.83 3.25
GR 30.20 26.60 61.70 3.20

Table 8: Results evaluated by our MMAE method. We
skipped the articles that are labeled as no relevant im-
ages. Finally, only 9,851 of the 10,261 articles are left.

Surprisingly, the model ATG achieves the high-
est MMAE score despite the mediocre perfor-
mance in three individual metrics. The MAXsim
score of ATG is much higher than ATL and HAN.
It shows the global features can help to learn bet-
ter image-text alignments. Since GR itself makes
use of the image-caption pairs, it is natural to
get a high image-text relevance score. Our pro-
posed multimodal attention models all achieves
higher performance than the extractive baseline
GR, which further indicate the effectiveness of our
models.

5 Related Work

Different from text summarization (Wan and
Yang, 2006; Rush et al., 2015; Zhu et al., 2017;
See et al., 2017; Celikyilmaz et al., 2018; Paulus
et al., 2018), Multimodal Summarization is a task
to generate a condensed text summary or a few
keyframes to help acquire the gist of multimedia
data. One of the most significant advantages of the
task is that it does not rely solely on text informa-
tion, but it can also utilize the rich visual content
from the images.

In recent years, much work has focused on mul-
timodal summarization. Evangelopoulos et al.
(2013) detect salient events in a movie based on
the saliency of individual features for aural, visual,
and linguistic representations. Li et al. (2017)
generate the text summary from an asynchronous
collection of text, image, audio, and video. There
has also been some work (Bian et al., 2013, 2015;
Wang et al., 2016; Qian et al., 2016) focused on
producing multimodal output for summarization.
Bian et al. (2013, 2015) aim to produce a visual-
ized summary for microblogs. Wang et al. (2016)
generate a pictorial storyline for summarization.
Qian et al. (2016) generate the multimedia topics
for social events. But these researches all treat
image-text pairs, in which texts and images are
aligned, as a basic summarization unit. For exam-
ple, the images are aligned with the text in a mi-
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croblog post; Wang et al. (2016) obtain the image-
text pairs by using image search engine. None of
the above works focuses on generating multimodal
output from a collection of texts and images that
are not explicitly aligned. This is one of the goals
in this paper. Another difference is that they sep-
arately evaluate texts and images when evaluating
the final results. In our work, we propose a new
automatic evaluation which jointly considers two
aspects of textual and visual modalities.

6 Conclusion

In this paper, we focus on a novel task which aims
to automatically generate a multimodal summary
from multimodal news, where the images and the
texts are not explicitly aligned. We provide a mul-
timodal summarization method to jointly gener-
ate text and the most relevant image, which can
be referred as the baseline for further study. Our
proposed metrics have been proved to be effective
in evaluating the multimodal output. Moreover,
the idea of constructing our MMAE can be eas-
ily extended to other modalities. That is, we both
consider the intramodality salience and the inter-
modality relevance.
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Abstract

Ensemble methods, which combine multiple
models at decoding time, are now widely
known to be effective for text-generation tasks.
However, they generally increase computa-
tional costs, and thus, there have been many
studies on compressing or distilling ensemble
models. In this paper, we propose an alter-
native, simple but effective unsupervised en-
semble method, post-ensemble, that combines
multiple models by selecting a majority-like
output in post-processing. We theoretically
prove that our method is closely related to ker-
nel density estimation based on the von Mises-
Fisher kernel. Experimental results on a news-
headline-generation task show that the pro-
posed method performs better than the current
ensemble methods.

1 Introduction

Recent success in deep learning, especially
encoder-decoder models (Sutskever et al., 2014;
Bahdanau et al., 2015), has dramatically improved
the performance of various text-generation tasks,
such as translation (Johnson et al., 2017), summa-
rization (Ayana et al., 2017), question-answering
(Choi et al., 2017), and dialogue response genera-
tion (Dhingra et al., 2017). In these studies on neu-
ral text generation, it has been known that a model-
ensemble method, which predicts output text by
averaging multiple text-generation models at de-
coding time, is effective even for text-generation
tasks, and many state-of-the-art results have been
obtained with ensemble models. However, an en-
semble method has a clear drawback in that it in-
creases computational costs, i.e., the increase in
time as the number of models increases, since it
averages the word-prediction probabilities of all
models in each decoding step. Therefore, there
have been many studies on model compression or
distillation for ensemble methods, each of which

(a) Runtime-ensemble (b) Post-ensemble

Figure 1: Flow charts of current runtime-ensemble (a)
and our proposed post-ensemble (b).

has successfully shrunk an ensemble model (Hin-
ton et al., 2015; Chebotar and Waters, 2016; Kun-
coro et al., 2016; Kim and Rush, 2016; Stahlberg
and Byrne, 2017; Freitag et al., 2017).

In this paper, we propose an alternative method
for model ensemble inspired by the majority vote
in classification tasks (Littlestone and Warmuth,
1994). Majority vote is a method that selects
the most frequent label from the predicted labels
of multiple classifiers in post-processing. Simi-
larly, our method involves selecting a majority-
like output from the generated outputs of multi-
ple text-generation models in post-processing as
in Fig. 1(b), instead of averaging models at decod-
ing time as in Fig. 1(a). The difference between a
classification task and text-generation task is that
we need to consider a sequence of labels for each
model output in a text-generation task, although
we consider only one label in a classification task.
This means a majority output may not exist since
each output will be basically different from other
outputs, which are generated from different mod-
els. To overcome this problem, we propose an
unsupervised method for selecting a majority-like
output close to the other outputs by using cosine
similarity. The idea is quite simple, but experi-
ments showed that our method is more effective
than the current ensemble methods.
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Our work can open up a new direction for two
research communities: model ensemble and hy-
potheses reranking (see Sec. 6 for detailed descrip-
tions of the related studies). For the first, we sug-
gest a new category of ensemble algorithms that
corresponds to the output selection in classifica-
tion tasks. In classification tasks, there are roughly
three approaches for model ensemble: model se-
lection in preprocessing, model average at run-
time, and output selection in post-processing. In
text generation studies, model selection by cross-
validation and model average with an ensemble
decoder have been frequently used, but output se-
lection as typified by majority vote has received
less attention because of the fact that a majority
output may not exist, as described above. There-
fore, there is enough room to study this direction
in the future. Since our algorithm in this paper
is quite simple, we expect that more sophisticated
methods can improve the results even over our ap-
proach.

For the hypotheses reranking research commu-
nity, we suggest a new category of reranking tasks,
where we need to select the best output from the
generated outputs of multiple models, instead of
the N-best hypotheses of a single model. Hy-
potheses reranking for a text-generation model is
related to our task, but in this case, a reranking
method based on a language model is frequently
used and is basically enough to correct the scoring
of a beam search with a single model (Chen et al.,
2006; Vaswani et al., 2013; Luong and Popescu-
Belis, 2016) since the purpose is to obtain a flu-
ent output and remove erroneous outputs, assum-
ing the model can generate good outputs. A clear
difference between our task and the reranking task
is that we should consider all outputs to decide the
goodness of an output because a fluent output is
not always appropriate in this task. This is simi-
lar to extractive summarization (Erkan and Radev,
2004) but is significantly different from our task
in that our output candidates have almost the same
meaning.

Our contributions in this paper are as follows.

• We propose a simple, fast, and effective method
for unsupervised ensembles of text generation
models, where (i) the implementation is “frus-
tratingly easy” without any modification of
model code (Alg. 1), (ii) the computational time
is enough for practical use (Sec. 5.3), i.e., an
ensemble time of 3.7 ms per sentence against

a decoding time of 44 ms, and (iii) the perfor-
mance is competitive with the state-of-the-art
results (Sec. 5.2), i.e., our method (ensemble
of 32 models) for 37.52 ROUGE-1 against the
state-of-the-art method (single model) for 37.27
ROUGE-1 on a news-headline-generation task.

• We prove that our method is an approximation
of finding the maximum density point by ker-
nel density estimation based on the von Mises-
Fisher kernel (Sec. 4). In addition, we derive a
formula of the error bound of this approxima-
tion.

• We will release the 128 prepared models used in
this paper (Sec. 5.1), each of which was trained
for more than two days, as a new dataset to im-
prove ensemble methods.

2 Preliminaries

In Sec. 2.1, we briefly explain an encoder-decoder
model for text generation, and in Sec. 2.2, we dis-
cuss the current ensemble methods for combining
multiple text generation models at decoding time.

2.1 Encoder-Decoder Model
An encoder-decoder model is a conditional lan-
guage generation model, which can learn rules for
generating an appropriate output sequence corre-
sponding to an input sequence by using the statis-
tics of many correct pairs of input and output se-
quences, e.g., news articles and their headlines.
When training this model, we calculate a condi-
tional likelihood,

p(y | x) =
QT�1

t=1 p(yt+1 | yt, x), (1)
with respect to each pair (x, y) of input sequence
x = x1 · · · xS and output sequence y = y1 · · · yT ,
where yt = y1 · · · yt, and maximize its mean.
The model p(y | x) in Eq. (1) is achieved by com-
bining two recurrent neural networks, called an
encoder and decoder. The former reads an input
sequence x to recognize its content, and the latter
predicts an output sequence y corresponding to the
content.

After training, we can obtain an output y from
an input x by using a learned model p(y |
x). Since the calculation of an optimal output
is clearly intractable, most studies used a beam
search, which is a greedy search algorithm that
keeps a limited number of best partial solutions,
whose size is called the beam size. Formally, a set
of best partial solutions of beam size b at step t
is represented as Y b

t, which is recursively defined
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as the top b elements with respect to p(yt | x),
where yt 2 Y b

t�1 ⇥ Y . The Y is a set of avail-
able elements for yi, or a target dictionary. Let
start and goal meta symbols be <s> and </s>, re-
spectively. A beam search procedure starts from
Y0 = {<s>} and finishes when the last symbols
of all elements in Y b

t are the goal element </s> or
when its length t becomes larger than some thresh-
old.

2.2 Runtime-Ensemble

In a text-generation task, model ensemble is a
method of predicting a next word by averaging
the word-prediction probabilities of multiple text-
generation models at decoding time. Fig. 1(a)
shows a flow chart of the current ensemble meth-
ods, which we call runtime-ensemble to distin-
guish them from our method. There are mainly
two variants of runtime-ensemble using arithmetic
mean pa and geometric mean pg, which are defined
as

pa(yt | x) = 1
|M |

P
p2M p(yt | x), (2)

pg(yt | x) =
⇣Q

p2M p(yt | x)
⌘ 1

|M|

, (3)

where M is a set of learned models. We call the
former EnsSum and the latter EnsMul. Although
there have been no comparative experiments,
EnsMul is usually used since most decoding pro-
grams keep log p and calculating

P
p2M log p is

enough to obtain the top b words with respect to
pg for a beam search procedure.

3 Post-Ensemble

Our alternative ensemble method combines mul-
tiple text-generation models by selecting a
majority-like output close to the other outputs,
which is calculated with a similarity function such
as cosine similarity. We call this method post-
ensemble since it is executed in post-processing,
i.e., after a decoding process. Fig. 1(b) shows a
flow chart of post-ensemble, and Alg. 1 shows its
algorithm. When our method receives an input x,
a normal decoder calculates the output s of each
model p from the input in parallel (lines 2–4), and
the output selector selects the majority-like output
y from all outputs (lines 6–9). In line 7, we cal-
culate the score c of each output s by using a sim-
ilarity function K, where K(s, s0) represents the
similarity between s and s0. A higher score means
that the output s is in a denser part in the output

Input: Input text x, set M of learned models, and
similarity function K, such as cos.

Output: Output prediction y.
1 S  ;;
2 foreach p 2M do
3 s output of model p for input x;
4 S  S [ {s};
5 C  {}; // as a hash map
6 foreach s 2 S do
7 c 1

|S|

P
s02S K(s, s0);

8 C[s] c;
9 y = argmaxs2S C[s];

10 return y

Algorithm 1: Post-ensemble procedure.

space since the score c means the average similar-
ity in other outputs.

The post-ensemble procedure has two main
advantages compared with the current runtime-
ensemble procedure. One is that we do not need
to develop an ensemble decoder by modifying a
decoding program on a deep learning framework.
The concept of runtime-ensemble is simple, but
its implementation is not that simple in recent so-
phisticated open source software. For example, we
need to modify about 100 lines to add an ensemble
feature to the decoding program of an open source
neural machine translator, OpenNMT1, which re-
quires understanding the overall mechanism of the
software. The other advantage is that we can eas-
ily parallelize decoding processes in our method
since each output can be calculated by using a sin-
gle model. If we have a server program for text
generation, we can improve its performance with
all our machine resources (ideally) by assigning a
server to each model and allowing the output se-
lector to communicate with it.

One drawback of our method is that its expres-
sive power is basically the same as that of each
single model. However, this alternatively means
that the lower bound of the quality of each output
is guaranteed with the worst case of the outputs of
single models, while the current runtime-ensemble
method can perform worse than each single model
for the worst case input. Furthermore, experiments
showed our post-ensemble method is more effec-
tive than the current runtime-ensemble methods.

4 Theoretical Analysis

In this section, we prove that when K(s, s0) =
cos(s, s0), Alg. 1 is an approximation of find-

1https://github.com/OpenNMT/OpenNMT-py
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ing the maximum density point by kernel den-
sity estimation based on the von Mises-Fisher ker-
nel. First, we briefly explain kernel density es-
timation and how to apply it to our method in
Sec. 4.1. Then, we introduce the von Mises-Fisher
kernel used in this analysis and later experiments
in Sec. 4.2. Finally, we prove a theorem that guar-
antees the approximation error in Sec. 4.3.

4.1 Kernel Density Estimation

Kernel density estimation is a non-parametric
method for estimating the probability density
function of a random variable. Let (X1, · · · , Xn)
be an independent and identically distributed
(i.i.d.) sample that was drawn from a distribution
with an unknown density function f . The kernel
density estimator based on the sample is defined
as

f̃(X) = 1
n

Pn
i=1 K(X, Xi). (4)

Using an appropriate kernel such as the Gaussian
kernel, this estimator f̃ converges to the true den-
sity f , and it can be proved that there is no non-
parametric estimator that converges faster than this
kernel density estimator (Wahba, 1975).

Here, let us consider our outputs (s1, · · · , sn),
which correspond to S in Alg. 1. They are gen-
erated from text generation models (p1, · · · , pn),
which correspond to M in Alg. 1. We assume that
these models are trained with randomly initialized
parameters (✓1, · · · , ✓n), each of which includes a
random seed for the optimizer, and the other set-
tings are deterministic. In this case, we can con-
struct a function F : P ! O that maps the param-
eter space P onto the output space O. In other
words, if each parameter ✓i is an i.i.d. random
variable, the corresponding output si = F (✓i) is
also an i.i.d. random variable. Therefore, Eq. (4)
can be directly used for line 7 in Alg. 1.

Our method can be regarded as a heuristic ap-
proach based on the characteristics of our encoder-
decoder model, where there are many local solu-
tions for optimization. We expect that our method
can be applied to other models on the basis of a
theoretical study (Kawaguchi, 2016), that showed
that deep neural networks can have many local op-
tima, but there are no poor local optima (formally,
every local minimum of deep neural networks is
a global minimum under a certain condition). We
do not consider this direction since theoretical jus-
tification is beyond our scope.

4.2 von Mises-Fisher Kernel
The von Mises-Fisher kernel (Hall et al., 1987) is
a natural extension of the Gaussian kernel to a unit
hypersphere. This kernel is especially useful for
directional or angular statistics, so it is expected
to be compatible with the cosine similarity fre-
quently used in natural language processing. The
definition is

Kvmf(s, s
0) = Cq() exp( cos(s, s0)), (5)

where  is a smoothing factor called the concen-
tration parameter, and cos is a cosine similarity,
i.e., cos(s, s0) = s·s0

||s||2||s0||2 . Cq() is the normal-
ization constant, which is defined as

Cq() =
⇣


q�1
2

⌘.⇣
(2⇡)

q+1
2 I q�1

2
()

⌘
, (6)

where Iv is the modified Bessel function of the
first kind at order v, and q is the dimension of di-
rectional data (angular expression of data).

In the experiments described later, we im-
plemented Alg. 1 with this kernel by us-
ing the log-sum-exp trick (Nielsen and Sun,
2016) to avoid overflow/underflow problems since
argmax

P
exp(x) = argmax log

P
exp(x).

In addition, we used Garcia-Portugues’s rule
(Garcia-Portugues, 2013) to adjust the concentra-
tion parameter  = ĥ�2, defined as

ĥ =

0

@
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2
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2
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(7)

where ̃ is an approximation of  derived from the
maximum likelihood estimation (Sra, 2012), de-
fined as ̃ = µ̃(q�µ̃)

1�µ̃2 , where µ̃ is the sample mean
of the directional data in a unit hypersphere.

4.3 Approximation Error Analysis
We prove an approximation error bound of Alg. 1
when K(s, s0) = cos(s, s0), as shown in the fol-
lowing theorem.

Theorem 1. The output y of Alg. 1 with
K(s, s0) = cos(s, s0) is equivalent to the maxi-
mization of the first order Taylor series approxi-
mation p̃ of the kernel density estimator p based
on the von Mises-Fisher kernel, i.e.,

p̃(y) = maxs2S p̃(s), (8)
where the approximation error R⇤ of the output y
with respect to the true density estimator p, i.e,.
R⇤ = maxs2S p(s) � p(y), is bounded by

R⇤  Cq()2 exp()(�2 + µ2), (9)
where µ = maxs2S Es0 [cos(s, s0)], and �2 =
maxs2S Vs0 [cos(s, s0)].
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Proof sketch. Eq. (8) can be obtained by using
the first order Taylor series approximation at 0
of exp(x), i.e., exp(x) ⇡ 1 + x, and the nature
of argmax, i,e., argmax(1 + x) = argmax x.
Eq. (9) can be derived by the Lagrange error bound
R̃(x) for exp(x) ⇡ 1 + x, where x =  cos(s, s0),
and �  x  , as

R̃(x) =
maxx0 exp(x0)

2!
x2  exp()

2
x2. (10)

See Appendix A for the complete proof.

This theorem implies that the approximation er-
ror becomes smaller as  becomes smaller. Since
 is the concentration parameter, the shape of the
density estimation will be smooth when  is small,
while it will be a peak when  is large. This means
that, when  is large, the density estimation is al-
most the same as the majority vote. Therefore, we
can naturally choose a small value for  for our
purpose. In fact, the concentration parameter was
set as  = 0.69 by using Garcia-Portugues’s rule
in our experiments. The normalization constant
using  was calculated as Cq() = 0.14, and the
average values of µ and � with respect to the set
S of output candidates were ES [�] = 0.30 and
ES [µ] = 0.78, respectively. In this case, the theo-
retical average approximation error was calculated
as ES [R⇤]  0.093 = 0.14⇥0.692 ⇥exp(0.69)⇥
(0.782 + 0.302). This is quite small in view of
the approximation error for a probability. In addi-
tion, the actual average approximation error can be
much smaller, and it was about 1.95⇥ 10�7 in our
experiments. The accuracy defined by the rate at
which the approximate maximum is the true maxi-
mum, i.e., p(y) = maxs2S p(s), was 96.36%. De-
tail on the settings of our experiments will be given
in the next section.

5 Experiments

We first explain the basic settings of our ex-
periments in Sec. 5.1 and report a comparative
experiment and analysis on the news-headline-
generation task in Sec. 5.2. Then, we discuss the
change in some of the settings to conduct an ex-
periment by changing the number of models and
the settings of model preparation in Sec. 5.3 and
Sec. 5.4, respectively.

5.1 Basic Settings
Dataset: We used a well-known dataset
Gigaword of a news-headline-generation task,
which was prepared by Rush et al. (2015). This

dataset has been extensively used in recent studies
on abstractive summarization (Takase et al., 2016;
Chopra et al., 2016; Kiyono et al., 2017; Zhou
et al., 2017; Suzuki and Nagata, 2017; Cao et al.,
2018). The Gigaword dataset was created from
the English Gigaword corpus2, in which the input
is the first sentence in a news article, and the
output is the headline of the article. The training,
validation, and test sets included 3.8M, 189K, and
2K sentences, respectively. The preprocessed data
are publicly available3. The dataset is also used to
train official pretrained models of OpenNMT4.
Model and Training: We basically used the de-
fault PyTorch implementation of OpenNMT5 on
June 11, 2017 throughout our experiments, but the
unidirectional long short-term memory (LSTM)
for the encoder was replaced with a bidirectional
one to obtain nearly state-of-the-art results. The
basic settings are as follows. Our model con-
sisted of a bidirectional LSTM for the encoder and
a stacked LSTM with input feeding for the de-
coder. These LSTMs had two layers with 500-
dimensional hidden layers whose dropout rates
were 0.3, and their input vectors were created by a
500-dimensional word-embedding layer.

The model was trained with a stochastic gra-
dient descent method with a learning rate of 1.0,
where the mini-batch size was set to 64. The
learning process ended in 13 epochs, decaying the
learning rate with a decay factor of 0.5 in each
epoch after 8 epochs. These training settings are
the same as the training of the official pretrained
models of OpenNMT, and we confirmed that these
settings performed better than training with Adam
(Kingma and Ba, 2014) in our preliminary experi-
ments. We prepared 10 learned models by random
initialization for the ensemble methods in our ex-
periments.
Decoding and Evaluation: When decoding input
sequences, we used a beam-search algorithm with
a beam width of 5. The maximum size of decoded
sequences was 100. The generated unknown token
<unk> was replaced by the source word with the
highest attention weight.

To evaluate decoded sequences, we calcu-
lated ROUGE-1, ROUGE-2, and ROUGE-L (Lin,
2004), mainly used in the headline-generation-
task (Rush et al., 2015). ROUGE-1 and ROUGE-

2https://catalog.ldc.upenn.edu/LDC2012T21
3https://github.com/harvardnlp/sent-summary
4http://opennmt.net/Models/
5SHA: c13a558767cbc19b612968eb4d01a1f26d5df688
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2 are the co-occurrence rates of unigrams and bi-
grams, respectively, between a generated headline
and its reference. ROUGE-L is the rate of the
longest common subsequence between them to the
reference length. We used a Python wrapper of
the ROUGE-1.5.5.pl script6 and took the average
value of 10 times, each of which used 10 models.
Compared Methods: We compared the follow-
ing methods. Single is a baseline with a single
model. EnsSum and EnsMul are strong baselines
with runtime-ensemble. MaxLik and MajVote

are weak baselines with naive post-processing.
LexRank and LMRank are simple unsupervised
methods from two other related tasks, extrac-
tive summarization and hypotheses reranking, re-
spectively. PostCosE and PostCosB are vari-
ants of the proposed method with post-ensemble.
PostVmfE and PostVmfB are true density estima-
tors corresponding to PostCosE and PostCosB,
respectively. Their descriptions are listed below in
detail.
• Single decodes an output by using the best sin-

gle model with respect to the word level accu-
racy on a validation set.

• EnsSum and EnsMul decode an output averag-
ing multiple models with Eq. (2) and Eq. (3),
respectively.

• MaxLik selects an output with the maximum
likelihood, which is calculated by the corre-
sponding model p in Alg. 1, from candidate out-
puts generated by multiple models.

• MajVote selects an output by major-
ity vote based on exact matching, i.e.,
y = argmaxs2S |{s0 2 S | s = s0}|.

• LexRank selects an output with the LexRank al-
gorithm (Erkan and Radev, 2004). We used a
Python implementation7, where a graph is con-
structed on the basis of cosine similarities be-
tween the tf-idf vectors (without stop-words) of
candidate outputs. The idf weights are calcu-
lated from the training set.

• LMRank selects an output that maximizes
the likelihood of a (non-conditional) language
model pLM, i.e., y = argmaxs2S pLM(s), as in
(Vaswani et al., 2013). We used the decoder
part of the encoder-decoder model described in
Sec. 5.1, which was trained with both source
and target sentences in the training set. This
allows this model to learn the fluency in both

6https://github.com/pltrdy/files2rouge
7https://github.com/wikibusiness/lexrank

normal and headline-like sentences.
• PostCosE and PostVmfE select an output on

the basis of Alg. 1 with the cosine similarity
i.e., K(s, s0) = cos(s, s0), and the von Mises-
Fisher kernel, i.e., K(s, s0) = Kvmf(s, s0) in
Eq. (5), respectively. The feature of each out-
put is the average of pretrained 300-dimensional
word embeddings8.

• PostCosB and PostVmfB are variants of
PostCosE and PostVmfE with simple bag-of-
words features (sparse vectors), respectively.
In addition, we used the following measure-

ments for analysis. MaxRef represents the upper
bound for the performance of our method. Mean,
Max, and Min represent the performance statistics
of the single models.
• MaxRef selects the best output with respect to

ROUGE-1, which is calculated by using the ref-
erences in the test set.

• Mean, Max, and Min are the mean, maximum,
and minimum of the (non-ensemble) ROUGE-
1 values for the 10 models, respectively. The
difference between Single and Max is that the
former uses the validation set, while the latter
uses the test set.

5.2 Main Results
We conducted a comparative experiment on the
news-headline-generation task to verify the effec-
tiveness of our post-ensemble method compared
with the current runtime-ensemble methods.

Tab. 1 shows the experimental results for the
Gigaword dataset, including the results of our
method with 32 models and other previous results.
First of all, we can see that the variant of our
post-ensemble method, PostCosB, clearly out-
performed the runtime-ensemble methods (strong
baselines), EnsSum and EnsMul, and the other
baselines. The differences between our best
method PostCosB and the best baseline EnsSum

were all statistically significant on the basis of a
one-tailed, paired t-test (p < 0.05). Comparing
with the recent results of Cao et al. (2018) ob-
tained with open information extraction and de-
pendency parse technologies and the other pre-
vious results9, our method with 32 models also
performed better, although the algorithm of our

8https://github.com/mmihaltz/word2vec-GoogleNews-
vectors

9We did not present the results of Raffel et al. (2017) since
Kiyono et al. (2017) pointed out that their settings are differ-
ent from the previous studies.
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0: interpol asks members to devise rules for policing ...
1: interpol asks members to devise rules for policing
2: interpol asks members to devise rules for policing at ...
3: interpol asks members to devise rules on policing
4: interpol asks members to devise rules and procedures ...
5: interpol seeks rules for policing of global level
6: interpol seeks rules for policing at global level
7: interpol asks members to act against wanted fugitives
8: interpol asks members to help fight fugitives
9: interpol asks for legal status for red corner notices

Figure 2: Left scatter-plot shows two-dimensional visualization of outputs generated from 10 models on basis of
multi-dimensional scaling (Cox and Cox, 2008), and right list shows their contents. Each point in plot represents
sentence embedding of corresponding output, and label indicates model ID and ROUGE-1, i.e., “ID (ROUGE).”
Color intensity means score of kernel density estimation of PostCosE (see right color bar), and outputs are sorted
by scores. Reference and input are as follows. Each bold word in above list means co-occurrence with reference
below.
Reference: interpol asks world govts to make rules for global policing
Input: top interpol officers on wednesday asked its members to devise rules and procedures for policing at the
global level and providing legal status to red corner notices against wanted fugitives .

R-1 R-2 R-L
Single 35.57 17.47 33.19
EnsSum 36.55 18.48 34.24
EnsMul 36.47 18.35 34.16
MaxLik 35.04 17.37 32.80
MajVote 35.97 18.09 33.67
LexRank 36.03 17.64 33.60
LMRank 35.07 17.12 32.61
PostCosE 37.02 18.46 34.54
PostVmfE 37.06 18.53 34.60
PostCosB 37.05 18.59 34.61
PostVmfB 37.02 18.58 34.59
MaxRef⇤ 45.40 24.61 42.09
Mean⇤ 35.57 17.48 33.19
Max⇤ 36.03 17.83 33.63
Min⇤ 35.00 17.08 32.67
PostCosE (32 models) 37.52 18.55 34.86
PostCosB (32 models) 37.48 18.76 34.99
(Rush et al., 2015)] 31.00 12.65 28.34
(Takase et al., 2016)] 31.64 12.94 28.54
(Chopra et al., 2016)] 33.78 15.96 31.15
(Kiyono et al., 2017)] 35.79 17.84 33.34
(Zhou et al., 2017)] 36.15 17.54 33.63
(Suzuki and Nagata, 2017)] 36.30 17.31 33.88
(Cao et al., 2018)] 37.27 17.65 34.24

Table 1: F-measure ROUGE-1, ROUGE-2, and
ROUGE-L scores (%) for news-headline-generation
task. Bold and underlined scores represent best scores
for ensembles of 10 models and all methods excluding
measurements with “⇤,” respectively. Results with “]”
are taken from corresponding papers.

method is quite simple. Note that our method
can be easily applied to their models to improve
their results. Looking at the row for MaxRef, the
results imply that our post-ensemble method still

has room for improvement without any changes
to model structure. Although we also conducted
an experiment by changing the settings of model
preparation, the results had a similar tendency to
those of the main results (see Sec. 5.4).

Fig. 2 illustrates how our method worked with
kernel density estimation (see the figure caption
for detailed descriptions). The left scatter-plot
shows a two-dimensional visualization of 10 out-
puts generated from the 10 models and the esti-
mated densities (represented by color intensity in
the right bar). Looking at the center part of the
plot, we can see that there are many good outputs
with high ROUGE-1 results (noted in brackets in
the plot) in the dense part. The right list shows the
corresponding outputs of the points in the left plot,
where these outputs are sorted by the estimated
density. The list shows that our method success-
fully obtained the majority-like output (model ID
of 0) in the dense part of the output space, although
there are no exact match outputs. Looking at the
bottom part of the list, we can see that our method
clearly eliminated unpromising outputs (model ID
of 7, 8, and 9) with less information, since they are
scattered.

5.3 Effect of Number of Models
We compared the effect of changing the number
of models on the performance of our best method
PostCosB and the best baseline EnsSum. We pre-
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Figure 3: F-measure ROUGE-1 performance (%) vs.
number of models for news-headline-generation task.
X-axis is log scale (21–27).

pared 128 models, in which each training took
more than two days. The ROUGE-1 performance
was measured by varying the number of models,
i.e., 2, 4, · · · , 128.

Fig. 3 shows the performance of our best
method PostCosB, the corresponding true esti-
mator PostVmfB, the best baseline EnsMul, and
the most widely-used baseline LexRank versus the
number of models. Note that we could not calcu-
late the results of EnsMul for more than 16 models
due to out of memory errors. The figure shows that
PostCosB performed better than EnsMul even for
these 16 models. We obtained a 37.48 ROUGE-
1 score with 32 models, which was better than
the state-of-the-art results in Tab. 1, but the per-
formance seems to be saturated with more than
32 models. Looking at PostCosB and PostVmfB,
we can see that the performances are almost the
same, which also supports our theoretical analysis
in Sec. 4. LexRank did not work well even though
the number of models was large.

The complexity of the post-ensemble procedure
in Alg. 1 is O(�⌫+�⌫2), where ⌫ is the number of
models, � is the dimension of the output space, and
� is the number of operations of the beam-search.
We can reduce it to O(�+�⌫) by simply paralleliz-
ing lines 2–4 and 6–8 in Alg. 1 without any change
to the model code on the deep learning framework.
Since the operations of � includes all matrix cal-
culations in the model, we can basically assume
� � �⌫. In fact, the actual calculation times of
PostCosE and PostCosB with a naive implemen-
tation in Python were 0.0097 and 0.0037 seconds
per sentence when ⌫ = 32, respectively. They are
enough for practical use in comparison with the
decoding speeds of 0.044 (GPU) and 0.49 (CPU)
seconds per sentence. In addition, the complex-
ity of the runtime-ensemble is O(�⌫), which can-
not be parallelized without modifying more than a

Random Self Hetero Bagging
Single 35.57 35.34 35.67 34.87
EnsSum 36.55 35.46 36.42 36.25
EnsMul 36.47 35.22 36.49 35.80
MaxLik 35.04 34.21 34.86 34.95
MajVote 35.97 35.49 35.89 35.22
LexRank 36.03 33.57 35.91 35.72
LMRank 35.07 33.47 34.71 34.39
PostCosE 37.02 35.91 36.57 36.89
PostVmfE 37.06 35.72 36.69 36.84
PostCosB 37.05 35.74 36.76 36.78
PostVmfB 37.02 35.75 36.75 36.81
MaxRef⇤ 45.40 43.37 45.32 46.44
Mean⇤ 35.57 34.43 35.28 34.85
Max⇤ 36.03 35.34 35.96 35.31
Min⇤ 35.00 33.43 34.49 34.36

Table 2: F-measure ROUGE-1 scores (%) of random-
ensemble (Random), self-ensemble (Self), hetero-
ensemble (Hetero), and bagging-ensemble (Bagging)
for news-headline-generation task. Bold scores rep-
resent best scores for all methods excluding measure-
ments with “⇤.”

hundred lines of code after understanding a whole
system.

5.4 Effect of Model Preparation
We conducted experiments to verify the effect of
changing the model preparation on post-ensemble
performance. In addition to random initializa-
tion (random-ensemble), we address three varia-
tions of model preparation: self-ensemble, hetero-
ensemble, and bagging-ensemble. The first one,
self-ensemble, is a method of extracting models
from “checkpoints” saved in each epoch in a train-
ing. We prepared the models of self-ensemble by
using 10 checkpoints from 4–13 epochs. The sec-
ond one, hetero-ensemble, is a method of train-
ing models varying in model structure. We pre-
pared 10 models for hetero-ensemble, consisting
of 8 models prepared by changing the number of
layers in the LSTM encoder/decoder in {2, 3},
the size of LSTM hidden states in {250, 500},
and the size of word embedding in {250, 500},
and two models prepared by replacing the bidi-
rectional encoder with a unidirectional encoder
and a bidirectional encoder with a different merge
action, i.e., summation instead of concatenation.
The third one, bagging-ensemble, is a method
of training models by bagging of training data.
We randomly extracted 80% of the training data
10 times and prepared 10 models for bagging-
ensemble. We used the same dictionary of the
original data for these models, since the runtime-
ensemble methods, EnsSum and EnsMul, failed
to average the models with different dictionaries.
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Note that the outputs for self-ensemble and hetero-
ensemble cannot be regarded as i.i.d samples, but
we believe the basic idea can be practically ap-
plied.

Tab. 2 shows the F-measure ROUGE-1 scores
for the Gigaword dataset of the above three vari-
ations, self-, hetero-, and bagging-ensembles, as
well as random-ensemble. The table indicates
that all variants of our post-ensemble method per-
formed better than the current runtime-ensemble
methods, EnsSum and EnsMul, for all variations
of model preparation. Looking at the row for
PostCosE, random-ensemble was the most effec-
tive, while self-ensemble was the worst, as ex-
pected. Bagging-ensemble was relatively effective
for post-ensemble according to the relative im-
provement from Single, despite the fact that we
trained the models with 80% of the training data.
Hetero-ensemble performed worse than random-
ensemble for these settings, but we expect that
if the model structure can be randomly chosen,
hetero-ensemble will perform better.

6 Related Work

Distillation techniques for an ensemble of mul-
tiple models have been widely studied (Kuncoro
et al., 2016; Chebotar and Waters, 2016; Kim and
Rush, 2016; Freitag et al., 2017; Stahlberg and
Byrne, 2017), especially after a study by Hinton
et al. (2015). Kuncoro et al. (2016) and Chebotar
and Waters (2016) studied distillation techniques
for ensembles of multiple dependency parsers and
speech recognition models, respectively. There are
several ensemble methods for ensembles of ma-
chine translation models (Kim and Rush, 2016;
Freitag et al., 2017; Stahlberg and Byrne, 2017).
For example, Stahlberg and Byrne (2017) pro-
posed a method of unfolding an ensemble of mul-
tiple translation models into a single large model
once and shrinking it down to a small one. How-
ever, all methods require extra implementation on
a deep-learning framework, and it is not easy to
apply them to other models. Our post-ensemble
method does not require such coding skills. In
addition, since the predictions of post-ensemble
can be regarded as a teacher model, these distilla-
tion techniques should be combined with a teacher
model based on post-ensemble.

Hypotheses reranking of language generation
has been extensively studied, but most studies fo-
cused on discriminative training using costly an-

notated data (Shen et al., 2004; White and Rajku-
mar, 2009; Duh et al., 2010; Kim and Mooney,
2013; Mizumoto and Matsumoto, 2016). The
main stream of our focused unsupervised ap-
proach was a reranking method based on a lan-
guage model (Chen et al., 2006; Vaswani et al.,
2013; Luong and Popescu-Belis, 2016), and other
approaches include reranking methods based on
key phrase extraction (Boudin and Morin, 2013),
dependency analysis (Hasan et al., 2010), and
search results (Peng et al., 2013). All of the
above described studies were not used for model
ensemble. Tomeh et al. (2013) used an ensem-
ble learning, but the purpose was to improve the
performance of the reranking model for hypothe-
ses reranking of a single model. Li et al. (2009),
which work is the most related one, proposed a
reranking algorithm for model ensemble. How-
ever, their method was constructed to perform at
decoding time, so it can be regarded as runtime-
ensemble.

The term “frustratingly easy” in this paper
is borrowed from “frustratingly easy” papers
(Daumé III, 2007; Daumé III et al., 2010; Tom-
masi and Caputo, 2013; Sun et al., 2016; Kim
et al., 2016).

7 Conclusion

We proposed a simple but effective model-
ensemble method, called post-ensemble, for
abstractive-summarization models, i.e., encoder-
decoder models. We verified the effectiveness of
our method on the news-headline-generation task.

We will release the 128 prepared models used in
this paper10, each of which was trained for more
than two days, as a new dataset for improving en-
semble methods. For example, future research in-
cludes applying learning-to-rank regarding all out-
puts as features, conducting active learning to se-
lect a new model setting online, and developing
boosting-like-ensemble based on the bagging of
training data.
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Abstract
This paper tackles automation of the pyramid
method, a reliable manual evaluation frame-
work. To construct a pyramid, we transform
human-made reference summaries into extrac-
tive reference summaries that consist of El-
ementary Discourse Units (EDUs) obtained
from source documents and then weight ev-
ery EDU by counting the number of extractive
reference summaries that contain the EDU. A
summary is scored by the correspondences be-
tween EDUs in the summary and those in the
pyramid. Experiments on DUC and TAC data
sets show that our methods strongly correlate
with various manual evaluations.

1 Introduction

To develop high quality summarization systems,
we need accurate automatic content evaluation.
Although, various evaluation measures have been
proposed, ROUGE-N (Lin, 2004), Basic Elements
(BE) (Hovy et al., 2006) remain the de facto stan-
dard measures since they strongly correlate with
various manual evaluations and are easy to use.
However, the evaluation scores computed by these
automatic measures are not so useful for improv-
ing system performance because they merely con-
firm if the summary contains small textual frag-
ments and so they do not address semantic cor-
rectness.

The pyramid method was proposed as a man-
ual evaluation that well supports the improvement
of summarization systems (Nenkova and Passon-
neau, 2004; Nenkova et al., 2007). First, the
method identifies conceptual contents, Summary
Content Units (SCUs), in reference summaries
and then constructs a pyramid by collecting se-
mantically equivalent SCUs. The weight of an
SCU in the pyramid is defined as the number of
reference summaries that contain the SCU. Thus,
an SCU shared by many reference summaries is

given higher weight. Second, a system summary
is scored by the correspondences between SCUs
in the summary and the pyramid. Its results are
very useful for system improvement, i.e., we can
know which important SCUs the system could or
could not include in the summary. Although the
pyramid method is reliable, it requires consider-
able cost and effort.

To address the weaknesses, automatic pyra-
mid evaluation, Pyramid Evaluation via Auto-
mated Knowledge Extraction (PEAK) was pro-
posed (Yang et al., 2016). Since SCU is the
conceptual content of the text, it is difficult to
automatically extract them from reference sum-
maries by systems. Thus, PEAK regards subject-
predicate-object triples as alternatives to SCUs
and constructs a pyramid by clustering semanti-
cally equivalent triples. However, the performance
of subject-predicate-object triples extraction is not
satisfying for the practical demands and seman-
tic similarity utilized for clustering the triples does
not correlate well with human judgment (see Sec-
tion 2). As a result, the resultant pyramid is un-
reliable. Actually, PEAK is significantly inferior
to ROUGE and BE (see Section 4.3) in terms of
correlation.

To cope with the above problems, this paper
proposes yet another automatic pyramid evalua-
tion method. Its key feature is constructing a
pyramid that consists of Elementary Discourse
Units (EDUs), clause-like text units introduced
in Rhetorical Structure Theory (Mann, William
Charles and Thompson, Sandra Annear, 1988),
in the source documents. In other words, we
regard EDUs as alternatives to SCUs. To con-
struct the pyramid, we transform human-made ref-
erence summaries into EDU-based extractive ref-
erence summaries and then weight every EDU
by counting the number of the extractive refer-
ence summaries that contain the EDU. The rea-
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son why we derive extractive reference summaries
whose SCUs are EDUs is as follows. First, Li
et al. (2016) reported that EDUs are very simi-
lar to SCUs. Second, the performance of EDU
segmenter is sufficient to satisfy practical require-
ments (see Section 2). Third, we do not need
measure any semantic similarity to identify EDUs
common to the extractive reference summaries.
We also examine two types of extractive refer-
ence summary. One is based on the alignment
between EDUs in reference summary and source
documents. The other is based on the extractive
oracle summary (Hirao et al., 2017). We con-
ducted experiments on the Document Understand-
ing Conference (DUC) 2003 to 2007 data sets and
Text Analysis Conference (TAC) 2008 to 2011
data sets. The results showed that our methods ex-
hibit strong correlation with manual evaluations.

2 Background and Related Work

The pyramid method (Nenkova and Passonneau,
2004; Nenkova et al., 2007), a manual evaluation
framework, was developed to measure the con-
tent coverage of summaries. The pyramid method
consists of two steps: (1) pyramid construction,
and (2) summary scoring based on the pyramid.
First, human annotators identify Summary Con-
tent Units (SCUs), conceptual content units in
the reference summaries. They then construct a
pyramid by clustering and weighting SCUs. The
weight of an SCU is defined as the number of ref-
erence summaries that contain the SCU. As a re-
sult, if there are K reference summaries, the up-
per bound weight of an SCU in the pyramid is K
and the lower bound is 1. Second, the score for
a summary is determined by the correspondences
between SCUs in the summary and those in the
pyramid. Thus, the score is defined as the sum
of weights of SCUs that correspond to those in
the pyramid in the summary divided by the sum
of SCU weight possible for an average-length ref-
erence summary. The pyramid method has two
advantages over conventional manual evaluations:
(1) the score is not intuitive but is systematically
computed, i.e., the score can be explained as the
sum of weights of SCUs in the pyramid, (2) the
correspondences between the SCUs in a summary
and the pyramid tell us whether the summary con-
tains important SCUs or not. Thus, the results ex-
plicitly tell us why a summary was given a good
or bad score.

During the past few years, studies have focused
on the automatic scoring of summaries based on
manually generated pyramids. Harnly et al. (2005)
proposed a scoring method that matches SCUs
in the pyramid with possible textual fragments in
the summary. They enumerate all possible textual
fragments within a sentence in the summary and
compute similarity scores between the fragments
and the SCUs in the pyramid based on unigram
overlap. Then, they find the optimal correspon-
dences between SCUs and the fragments that max-
imize the sum of similarity scores. Passonneau
et al. (2013) extended the method by introducing
distributional semantics to compute the similarity
scores between SCUs and the fragments.

Recently, Yang et al. (2016) proposed the first
automatic pyramid method, Pyramid Evaluation
via Automated Knowledge Extraction (PEAK).
PEAK employs subject-predicate-object triples
extracted by ClausIE (Del Corro and Gemulla,
2013) as SCUs, and constructs pyramids by cut-
ting a graph whose vertices represent the triples
and whose edges represent semantic similarity
scores between the triples computed by Align,
Disambiguate and Walk (ADW) (Pilehvar et al.,
2013). When evaluating a summary, PEAK con-
structs a weighted bipartite graph whose vertices
represent subject-predicate-object triples extracted
from the pyramid and the summary, respectively;
the edges represent the similarity scores between
the triples as computed by ADW. It scores the
summary by solving the Linear Assignment Prob-
lem which involves maximizing the sum of the
similarity scores on the bipartite graph.

The major difference between PEAK and our
method is that the former regards the refer-
ence summary as a set of subject-predicate-object
triples while the latter regards a reference sum-
mary as a set of EDUs obtained from the source
documents. Thus, to construct high quality pyra-
mids, PEAK is required to not only accurately
extract the triples but also measure the seman-
tic similarity between them accurately. However,
in general, both extracting the triples and mea-
suring the semantic similarity are still challeng-
ing NLP tasks. The performances are not always
achieved in practical use. Actually, the F-measure
of ClausIE is around 0.6 (Del Corro and Gemulla,
2013) and the correlation coefficients between the
semantic similarity obtained from ADW and hu-
man judgment lie in the range of 0.55 to 0.88
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Figure 1: Overview of our pyramid construction.

(Pilehvar et al., 2013). As a result, the resultant
pyramids have insufficient quality to be practical.
Clearly, further improvement is necessary.

While our method is required to decompose
a document into EDUs accurately, the EDU
segmenter offers accurate decomposition perfor-
mance; existing EDU boundary detection meth-
ods have F-measures over 0.9 (Fisher and Roark,
2007; Feng and Hirst, 2014). Moreover, since ex-
tractive reference summaries are set of EDUs from
the source documents, we do not need semantic
similarity to identify EDUs that have the same
meaning. Thus, we can easily construct a pyra-
mid by simply counting the number of extractive
reference summaries that contains each EDU.

3 Automatic Pyramid Evaluation

First, we transform human-made reference sum-
maries into extractive reference summaries; the
EDUs in the source documents are used as the
atomic units. Second, we construct a pyramid by
weighting EDUs in the extractive reference sum-
maries. EDU weights are defined as the number of
reference summaries that contain each EDU (see
Figure 1). In addition, we propose two techniques
for deriving the extractive reference summaries.

3.1 Extractive Reference Summaries based
on Alignment between EDUs

When similarity scores between EDUs in a refer-
ence summary and those in the source documents
are available, we can regard extractive reference
summary derivation as an optimal alignment prob-
lem with a length constraint, an extension of Lin-
ear Assignment Problem. We assume that a bi-
partite graph in which the vertices represent EDUs
in the reference summary and source documents,
and the edges represent similarity scores between
the EDUs. The optimal alignment is obtained by
solving following ILP problem:

maximize
|E|X

j=1

|M|X

k=1

�(ej , mk)aj,k (1)

s.t.
|E|X

j=1

|M|X

k=1

`(ej)aj,k  Lmax (2)

|E|X

j=1

aj,k  1 8k (3)

|M|X

k=1

aj,k  1 8j (4)

aj,k 2 {0, 1} 8j, k. (5)

E is the set of all EDUs in the source documents
and M is the set of all EDUs in the reference sum-
mary. `() returns the length (the number of words)
of a textual unit. �(ej , mk) returns the similarity
score between the j-th EDU in the source docu-
ments and the k-th EDU in the reference summary
as follows:

�(ej , mk) =
`(LCS(ej , mk))

`(mk)
. (6)

LCS(·, ·) returns the Longest Common Subse-
quence between ej and mk. aj,k is a binary in-
dicator, and aj,k = 1 denotes that the j-th EDU
ej in the source documents is aligned to the k-
th EDU in the reference summary, i.e., ej is in-
cluded in the extractive reference summary. Equa-
tion (2) ensures the the length of the extractive ref-
erence summary is less than Lmax, the length of
the human-made reference summary. After solv-
ing the ILP problem, we can obtain the extractive
reference summaries by collecting EDUs accord-
ing to aj,k = 1.
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3.2 Extractive Reference Summaries based
on Extractive Oracle Summaries

As another extractive reference summary, we can
utilize extractive oracle summary (Hirao et al.,
2017). The extractive oracle summary is de-
fined as the set of consequential textual fragments
within a sentence obtained from the source docu-
ments that has the maximum automatic evaluation
score. Since we regard EDUs as SCUs and employ
ROUGE/BE as an automatic evaluation measure,
an extractive reference summary is a summary that
consists of EDUs in the source documents and has
maximum ROUGE/BE score.

For a given reference summary R , the extrac-
tive oracle summary is defined as follows:

O = arg max
E✓E

f(R, S)

s.t. `(S)  Lmax.
(7)

f() denotes an automatic evaluation measure
(ROUGE/BE) and is defined as follows:

f(R, S) =
P|U |

i=1 min{N(ui, R), N(ui, S)}
P|U |

i=1 N(ui, R)
.

(8)

S is a system summary and U is the set of
all atomic units in the reference summary. N-
grams are utilized as the units used in comput-
ing ROUGE and head-modifier-relation triples are
utilized in computing BE. N(ui, R); N(ui, S) re-
turns the number of occurrences of the units in the
reference and system summary, respectively.

Since the extractive oracle summaries in Hirao
et al. (2017) are based on sentences, we extend
the method to obtain EDU-based extractive oracle
summaries. The ILP formulation that returns an
extractive oracle summary is defined as follows:

maximize
|U |X

i=1

zi �
|S|X

m=1

sm (9)

s.t.
|E|X

j=1

`(ej)xj  Lmax (10)

N(ui, R) � zi 8i (11)
X

n2Vi

dn � zi 8i (12)

xleft(n) � dn 8n (13)
xright(n) � dn 8n (14)

sc(j) � xj 8j (15)

dn 2 {0, 1} 8n (16)
xj 2 {0, 1} 8j (17)
zi 2 Z+ 8i. (18)

zi is the count of the i-th unit in the oracle sum-
mary. xj is a binary indicator, xj = 1 denotes
that the j-th EDU, ej , is included in the oracle
summary. sm is a binary indicator, sm = 1 de-
notes that EDU(s) in m-th sentence is included in
the oracle summary. The value of

P|S|
m=1 sm is

equal to the number of sentence whose EDU(s) is
used in oracle summary. Thus, an oracle summary
that consist of fewer sentences tends to obtain a
higher objective value. Therefore, we can avoid
generating fragmented oracle summaries with low
readability. This objective function is inspired by
the work of compressive summarization method
(Morita et al., 2013). Vi is the set of indices in-
dicating the position of the i-th unit, and dn is a
binary indicator indicating whether the n-th unit
is contained in the oracle summary or not. Func-
tion left(·) and right(·) return the index of EDU
that contains a word on the left in the unit, and
the index of EDU that contains a word on the right
in the unit, respectively. Function c(·) returns the
index of sentence that contains j-th EDU.

Figure 2 shows examples. Suppose that the 10-
th triple in U is “<has,computer,rcmod>”. From
the figure, the indices of the triple corresponding
to “<has,computer,rcmod>” are 6 and 21. Thus,
V10 = {6, 21}. The word on the left in the triples
is “computer” and the word on the right is “has”.
For the first triple, the index of the EDU that con-
tains “computer” is 1 and the index of the EDU
that contains “has” is 2. For the second triple, the
index of the EDU that corresponds to “computer”
is 4, while that of “has” is 5. Thus, left(6) = 1 and
right(6) = 2, left(21) = 4, and right(21) = 5.

After solving the ILP problem, we construct the
extractive oracle summary by collecting EDUs ac-
cording to xj = 1.

3.3 Pyramid Construction: EDU Weighting

By deriving extractive references, we can easily
construct a pyramid. The weight of an EDU is
defined as the number of extractive references that
contain the EDU. Here, P is a complete set of all
EDUs in K extractive reference summaries, i.e.,
P=

SK
i=1 Ei. Ei is the set of EDUs obtained from

the i-th extractive reference summary. The weight
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ROOT�
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det�
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dobj�

4�

4�
4�
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15�
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aux�
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4�
4�

Index of 
word/triple�

word Index of
dependant Relation Index of

EDU
Index of 
word/triple�

word Index of
dependant Relation Index of

EDU

u10=<has, computer, rcmod>�
V10={6, 21}�

left(6)=1�
right(6)=2�

left(21)=4�
right(21)=5�

u15=<We, need, nsubj>�
V20={11}�

left(1)=1�
right(1)=1�

left(14)=4�
right(14)=4�

u20=<implement, CPU, vmod>�

left(11)=2�
right(11)=3�

V15={1, 14}�

Figure 2: Examples of head-modifier-relation triples.

of the j-th EDU in P is defined as follows:

wj = C(pj). (19)

C() returns the number of extractive reference
summaries that contain pj , i.e., the maximum
score of C(pj) is K and its minimum score is 1.
Since all EDUs in the source documents are as-
signed an integer score in the range of 01 to K, the
scoring can be regard as a variant of relative utility
score (Radev and Tam, 2003).

3.4 Automatic Scoring of Summaries
Based on the pyramid, we compute a score for a
summary by aligning EDUs in the pyramid and
EDUs in the system summary. By following
PEAK, we find the optimal alignment by solv-
ing the Linear Assignment Problem. That is, we
compute all similarity scores between EDUs in the
summary and pyramid and then find the maximal
score so that each EDU in the system summary is
matched to at most one EDU in the pyramid. The
ILP formulation of the problem is as follows:

maximize
|C|X

i=1

|P|X

j=1

g(ci, pj)wj↵i,j (20)

s.t.
|C|X

i=1

↵i,j  1 8i (21)

1The EDUs that are not included in pyramid have scores
of zero.

|P|X

j=1

↵i,j  1 8j (22)

↵i,j 2 {0, 1} 8i, j.(23)

C is the set of EDUs in the system summary. Func-
tion g() indicates a binary function based on the
similarity score between EDUs as follows:

g(c, p) =

⇢
1 �(c, p) � t
0 otherwise. (24)

We set t = 0.55 in our experiments (Section 4).
↵i,j is a binary indicator, ↵i,j = 1 denotes that

the i-th EDU in the system summary is aligned to
j-th EDU in the pyramid.

The optimal solution of the objective function
in the ILP problem (19)-(22) is not normalized.
Since the unnormalized score is not suitable for
comparing systems, we propose a normalization
method. To normalize the score to satisfy the
range of 0 to 1, we divide the score by the max-
imum score of sum of the EDU weights. Since ev-
ery EDU in the pyramid has both length (the num-
ber of the word) and weight, the maximum score
is derived by solving the knapsack problem:

maximize
|P|X

j=1

wjxj (25)

s.t.
|P|X

j=1

`(pj)  Lmax (26)
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2003 2004 2005 2006 2007
Manual evaluation Cov. Cov. Resp. Resp. Pyr. Resp. Pyr.
# of Topics 30 50 50 50 20 45 23
# of Systems 16 17 32 35 22 32 13
# of References 4 4 4,9 4 4
Summary length 100 100 250 250 250
Summary type Generic Generic Query-focused Query-focused Query-focused

Table 1: Statistics of the data sets (DUC-2003 to 2007).

2008 2009 2010 2011

Manual evaluation Resp. Resp. Resp. Resp
Pyr. Pyr. Pyr. Pyr.

# of Topics 48 44 46 44
# of Systems 58 55 43 50
# of References 4 4 4 4
Summary length 100 100 100 100

Update Update Guided Guided
Summary type Initial Initial Initial Initial

Update Update Update Update

Table 2: Statistics of the data sets (TAC-2008 to 2011).

xj 2 {0, 1} 8j (27)

xj is a binary indicator, and xj = 1 denotes that
the j-th EDU is included in the knapsack.

Finally, the score is defined as
Pyramid(P, S) = OTPLAP/OPTKP. OPTLAP
and OPTLAP denote maximum score of Equation
(20) and maximum score of Equation (25),
respectively.

4 Experiments

To investigate the effectiveness of our automatic
evaluation method, we compare the correlation co-
efficients yielded by our methods with those ob-
tained from strong baselines, ROUGE-2, ROUGE-
SU4 and BE. We employ ROUGE toolkit version
1.5.5 to compute ROUGE/BE scores and Stanford
Parser (de Marneffe et al., 2006) to obtain head-
modifier-relation triples. In addition, we exam-
ine two types of oracle summaries for our method.
One is ROUGE-2-based, the other is BE-based.

We evaluate automatic evaluation measures by
Pearson’s correlation r, Spearman’s rank correla-
tion ⇢ and Kendall’s rank correlation ⌧ . Corre-
lation coefficients are computed by average auto-
matic score and average manual evaluation score
for all topics.

4.1 Data Sets
We conducted experiments on the data sets devel-
oped for multi document summarization tasks in
DUC-2003 to 2007 and TAC-2008 to 2011. Table
1 and Table 2 show the statistics of the data sets.

DUC-2003 and 2004 were used for a generic
summarization task with 100 word limit; mean
coverage was used in a manual evaluation. DUC-
2005 to 2007 were used for a query-focused sum-
marization task with 250 word limit; responsive-
ness was used in a manual evaluation. The number
of topics varied from 30 to 50 and the participat-
ing systems from 16 to 35. Note that the pyra-
mid method was applied to small sets of topics in
DUC-2006 and 2007.

TAC-2008 and 2009 were used for an update
summarization task while TAC-2010 and 2011
were employed for a guided summarization task.
For both tasks, the participating systems required
two types of summaries, initial summary and up-
date summary with 100 word limit. Both pyramid
method and responsiveness were used in manual
evaluations. In particular, TAC-2008 to 2011 have
large numbers of participating systems, from 44 to
48.

4.2 EDU Segmenter

We regard decomposing a sentence into EDUs as a
sequential tagging problem and implement a neu-
ral EDU segmenter that classifies each word in a
sentence as the boundary of EDU or not based on
3-layer bi-LSTM (Wang et al., 2015). The size of
word embeddings and hidden layers of the LSTM
were set to 100 and 256, respectively. To handle
low-frequency words, all words are encoded to 40
dimension hidden state by using character-based
bi-LSTM (Lample et al., 2016). To utilize entire
words in a corpus, we integrated word dropout
(Iyyer et al., 2015) into our models with smooth-
ing rate, 1.0. Moreover, to avoid overfitting the
training data, dropout layer was adopted to the in-
put of the LSTMs with the ratio 0.3.

The segmenter was trained by utilizing the
training data of RST Discourse Treebank corpus
(Carlson et al., 2001). The macro-averaged F-
measure of boundary detection on the test data of
the corpus is 0.917. The source documents, sys-
tem summaries and reference summaries utilized
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2003 2004 2005 2006 2007
Cov. Cov. Resp. Resp. Pyr. Resp. Pyr.

ROUGE-2 .906/.821/.617 .909/.838/.691 .932/.931/.792 .836/.767/.584 .905/.884/.740 .880/.873/.715 .979/.989/.949
ROUGE-SU4 .782/.774/.600 .854/.772/.559 .925/.893/.731 .849/.790/.601 .885/.850/.706 .835/.832/.650 .961/.973/.897
BE .927/.862/.617 .936/.868/.721 .897/.867/.714 .834/.757/.584 .883/.837/.680 .891/.890/.732 .982/.973/.897
PEAK � � � .617/.640/� .508/.538/� � �

Prop(BE) .936/.909/.750 .929/.892/.750 .845/.819/.657 .786/.716/.516 .877/.833/.687 .885/.881/.715 .936/.967/.897
Prop(ROUGE) .908/.874/.750 .938/.814/.676 .864/.809/.629 .740/.670/.465 .871/.818/.662 .853/.845/.679 .943/.951/.872
Prop(AL) .831/.841/.633 .904/.855/.735 .821/.757/.567 .762/.667/.465 .801/.772/.584 .814/.793/.610 .958/.962/.872

Table 3: Evaluation results from DUC-2003 to 2007.

Inital Update
Pyr. Resp. Pyr. Resp.

20
08

ROUGE-2 .908/.909/.757 .830/.868/.677 .943/.942/.800 .910/.888/.728
ROUGE-SU4 .888/.885/.733 .803/.834/.636 .926/.933/.783 .902/.895/.725
BE .913/.903/.732 .817/.818/.627 .944/.939/.799 .913/.880/.712
Prop(BE) .926/.905/.734 .867/.852/.663 .940/.918/.779 .922/.899/.736
Prop(ROUGE) .895/.891/.708 .851/.840/.648 .912/.871/.702 .901/.872/.699
Prop(AL) .833/.792/.598 .779/.794/.602 .929/.895/.746 .909/.905/.750

Pyr. Resp. Pyr. Resp.

20
09

ROUGE-2 .911/.950/.823 .757/.844/.674 .939/.896/.742 .717/.755/.600
ROUGE-SU4 .920/.925/.786 .767/.805/.631 .939/.857/.701 .729/.719/.568
BE .856/.931/.784 .692/.838/.670 .924/.929/.798 .695/.816/.670
Prop(BE) .867/.932/.782 .854/.848/.670 .855/.917/.782 .866/.810/.656
Prop(ROUGE) .886/.917/.770 .858/.819/.639 .864/.890/.741 .822/.735/.586
Prop(AL) .901/.872/.689 .881/.821/.666 .886/.857/.704 .830/.743/.594

Pyr. Resp. Pyr. Resp.

20
10

ROUGE-2 .978/.917/.787 .967/.924/.801 .963/.911/.758 .953/.890/.742
ROUGE-SU4 .968/.947/.830 .954/.952/.837 .910/.885/.727 .900/.878/.727
BE .965/.942/.817 .943/.907/.749 .953/.911/.775 .928/.872/.713
Prop(BE) .949/.872/.713 .953/.867/.720 .954/.912/.764 .957/.913/.774
Prop(ROUGE) .952/.854/.673 .959/.859/.702 .938/.873/.713 .936/.860/.711
Prop(AL) .928/.882/.697 .929/.891/.720 .898/.853/.676 .900/.845/.691

Pyr. Resp. Pyr. Resp.

20
11

ROUGE-2 .955/.888/.734 .930/.776/.592 .862/.789/.616 .879/.831/.665
ROUGE-SU4 .976/.888/.726 .943/.778/.585 .857/.824/.642 .892/.865/.689
BE .934/.900/.736 .903/.757/.554 .880/.828/.670 .842/.783/.610
Prop(BE) .905/.857/.690 .917/.832/.640 .891/.880/.693 .889/.868/.694
Prop(ROUGE) .925/.883/.708 .924/.847/.673 .864/.864/.689 .870/.862/.683
Prop(AL) .934/.891/.713 .920/.792/.618 .843/.787/.601 .865/.799/.607

Table 4: Evaluation results from TAC-2008 to 2011.

in our experiments were decomposed into EDUs
by the segmenter.

4.3 Results and Discussion

Table 3 and 4 list the correlation coefficients be-
tween manual evaluation and automatic evalua-
tion for DUC-2003 to 2007 and TAC-2008 to
2011, respectively. In the tables, the coeffi-
cients are written in the order “Pearson’s r/ Spear-
man’s ⇢/ Kendall’s ⌧”. The rows of Prop(BE),
Prop(ROUGE) and Prop(AL) denote our method
with BE-based oracle summaries as extractive ref-
erence summaries, with ROUGE-2-based oracle
summaries, and with extractive reference sum-
maries based on alignment, respectively. “Cov.”,

“Resp.” and “Pyr.” denote mean coverage, respon-
siveness and manual pyramid, respectively.

With regard to mean coverage on DUC-2003
to 2004, Prop(BE) achieved the best correlation
coefficients. The correlation coefficients indicate
very strong correlation with the manual evalua-
tion. Prop(ROUGE) and Prop(AL) attained com-
parable correlation coefficients with the baseline
methods. The correlation coefficients still indicate
strong correlation.

With regard to responsiveness, our methods
achieved lower correlation coefficients on DUC-
2005 to 2007 than on DUC-2003 to 2004. Al-
though our methods are outperformed by the base-
line methods, both r and ⇢ of Prop(BE) still ex-
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ceed 0.8 except for responsiveness on DUC-2006.
Since our methods mimic manual pyramid evalua-
tion, correlation coefficients against manual pyra-
mid on DUC-2006 to 2007 are better than those
against responsiveness and the scores are compa-
rable to those of the baselines.

Moreover, we compare our methods with PEAK
on the DUC-2006 data set. For manual pyramid,
r and ⇢ are 0.508 and 0.538, respectively, while
for responsiveness they are 0.617 and 0.640, re-
spectively. These scores are significantly lower
than those attained by our methods and baselines.
Note that these results are obtained by running the
code from the author’s web page http://www.
larayang.com/peak/. The results demon-
strated that our methods are superior to PEAK.

For manual pyramid on TAC-2008 to 2011, all
methods attained quite strong correlation. The
scores achieved were around 0.9 and better than
those on DUC-2003 to 2007. In particular,
Prop(BE) achieved the best scores in some cases.
Although, responsiveness yielded lower correla-
tion coefficients than manual pyramid, Prop(BE)
still retains strong correlation , e.g., ⇢ are in the
range of 0.857 to 0.932 against manual pyramid,
0.810 to 0.913 against responsiveness. The aver-
age correlation coefficients across all data sets on
TAC are shown in Table 5. The average correlation
coefficients of Prop(BE) slightly lower than those
of ROUGE-2 and BE against manual pyramid. On
the ohter hand, Prop(BE) achieved the best cor-
relation coefficients against responsiveness. The
results imply that Prop(BE) achieves comparable
performance to baseline methods.

In a comparison of our methods, Prop(BE)
attained the best results while Prop(ROUGE)
showed better results than Prop(AL) in many
cases. These results imply that extractive oracle
summaries are helpful as extractive reference sum-
maries and BE is better objective function to gen-
erate them.

In addition, we show SCUs and correspond-
ing EDUs obtained from a human-made pyramid
and Prop(BE) in Figure 3. They are obtained
from topic “Earthquake Sichuan (ID:D1110B)”
from TAC-2011 Guided Summarization Task, the
topic type is categorized as “Accidents and Nat-
ural Disasters”. Summarizers are required to
generate a summary that includes following as-
pects: (1) WHAT: what happend, (2) WHEN:
date, time, other temporal placement makers,

Pyr. Resp.
ROUGE-2 .932/.900/.752 .868/.847/.685
ROUGE-SU4 .923/.893/.741 .861/.841/.675
BE .921/.910/.764 .842/.834/.663
Prop(BE) .911/.899/.742 .903/.861/.694
Prop(ROUGE) .905/.880/.713 .890/.837/.668
Prop(AL) .894/.856/.678 .877/.824/.656

Table 5: Average correlation coefficients across data
sets (TAC-2008 to TAC-2011)

(3) WHERE: physical location, (4) WHY: rea-
sons for accident/disaster, (5) WHO AFFECTED:
casualties (death, injury), or individuals other-
wise negatively affected by the accident/disaster,
(6) DAMAGES: damages caused by the acci-
dent/disaster, (7) COUNTERMEASURES: coun-
termeasures, rescue efforts, prevention efforts,
other reactions to the accident/disaster. From the
figure, we can see that the EDUs are not always
identical to human-generated SCUs at word-level
but are identical at concept-level.

In short, these results imply that our methods
have at least comparable performance to the base-
lines. Although our methods are outperformed by
the baselines in some cases, the correlation coeffi-
cients are high enough against manual evaluation.
Moreover, our methods have a significant advan-
tage over the baselines methods because our meth-
ods clearly indicate whether the output of the text
summarization system failed to include important
SCUs. Thus, our automatic pyramid method en-
hanced with extractive oracle summaries is help-
ful for further improvement of summarization sys-
tems.

5 Conclusion

This paper proposed an automatic pyramid evalu-
ation method that allows us to scrutinize the fail-
ure analysis of systems. To construct a pyramid,
we transform human-made reference summaries
into extractive reference summaries whose atomic
units are EDUs obtained from the source docu-
ments. Then, we weight every EDU by counting
the number of extractive reference summaries that
contain the EDU. When evaluating a summary, we
determine the correspondences between EDUs in
the pyramid to those in the summary by solving
Linear Assignment Problem and give a score to the
summary based on the correspondences. We also
proposed two types of extractive reference sum-
maries. The first is the alignment-based extractive
reference summary. The second is the extractive
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SCUs obtained from human-made pyramid

w = 4 The 7.8-magnitude earthquake struck
w = 4 Sichuan Province of China
w = 4 No warning signs detected
w = 4 Over 8,500 killed
w = 4 China allocated 200 million yuan ($29 Million)

disaster relief
w = 1 Rain is forecast, could hamper relief efforts
w = 1 Quake also affected Gansu, Shaanxi provinces, and

Chongqing municipality

EDUs obtained from pyramid of Prop(BE)

w = 1 The 7.8-magnitude earthquake struck Sichuan
province shortly before 2:30 pm

w = 2 in aid for earthquake victims in Sichuan Province of
China

w = 4 Chinese authorities did not detect any warning signs
ahead of Monday’s earthquake

w = 1 leaving at least 12,000 people died
w = 2 China has allocated 200 million yuan
w = 1 Rain in the coming days in Sichuan is expected to

hamper earthquake relief efforts, as well as increase
risks of landslides

w = 1 50 in the municipality of Chongqing, 61 in Shaanxi
province, and one in southwestern Yunnan

Figure 3: Examples of SCUs obtained from pyramids.

oracle summary.
To demonstrate the effectiveness of our meth-

ods, we conducted experiments on DUC-2003 to
2007 and TAC-2008 to 2011 data sets. The re-
sults demonstrated that our method yielded results
that well correlated with various manual evalua-
tions. The correlation coefficients are at least com-
parable to those obtained from strong baselines,
ROUGE-2, ROUGE-SU and BE and significantly
higher than those obtained from previous auto-
matic pyramid evaluation, PEAK.
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Abstract

Auto-encoders compress input data into a
latent-space representation and reconstruct the
original data from the representation. This la-
tent representation is not easily interpreted by
humans. In this paper, we propose training
an auto-encoder that encodes input text into
human-readable sentences, and unpaired ab-
stractive summarization is thereby achieved.
The auto-encoder is composed of a generator
and a reconstructor. The generator encodes the
input text into a shorter word sequence, and
the reconstructor recovers the generator input
from the generator output. To make the gen-
erator output human-readable, a discriminator
restricts the output of the generator to resem-
ble human-written sentences. By taking the
generator output as the summary of the in-
put text, abstractive summarization is achieved
without document-summary pairs as training
data. Promising results are shown on both En-
glish and Chinese corpora.

1 Introduction
When it comes to learning data representations,
a popular approach involves the auto-encoder ar-
chitecture, which compresses the data into a la-
tent representation without supervision. In this
paper we focus on learning text representations.
Because text is a sequence of words, to encode a
sequence, a sequence-to-sequence (seq2seq) auto-
encoder (Li et al., 2015; Kiros et al., 2015) is usu-
ally used, in which a RNN is used to encode the
input sequence into a fixed-length representation,
after which another RNN is used to decode the
original input sequence given this representation.

Although the latent representation learned by
the seq2seq auto-encoder can be used in down-
stream applications, it is usually not human-
readable. A human-readable representation should
comply the rule of human grammar and can be
comprehended by human. Therefore, in this work,

we use comprehensible natural language as a la-
tent representation of the input source text in an
auto-encoder architecture. This human-readable
latent representation is shorter than the source text;
in order to reconstruct the source text, it must re-
flect the core idea of the source text. Intuitively,
the latent representation can be considered a sum-
mary of the text, so unpaired abstractive summa-
rization is thereby achieved.

The idea that using human comprehensible lan-
guage as a latent representation has been ex-
plored on text summarization, but only in a semi-
supervised scenario. Previous work (Miao and
Blunsom, 2016) uses a prior distribution from a
pre-trained language model to constrain the gen-
erated sequence to natural language. However,
to teach the compressor network to generate text
summaries, the model is trained using labeled
data. In contrast, in this work we need no labeled
data to learn the representation.

As shown in Fig. 1, the proposed model is com-
posed of three components: a generator, a discrim-
inator, and a reconstructor. Together, the generator
and reconstructor form a text auto-encoder. The
generator acts as an encoder in generating the la-
tent representation from the input text. Instead of
using a vector as latent representation, however,
the generator generates a word sequence much
shorter than the input text. From the shorter text,
the reconstructor reconstructs the original input
of the generator. By minimizing the reconstruc-
tion loss, the generator learns to generate short
text segments that contain the main information in
the original input. We use the seq2seq model in
modeling the generator and reconstructor because
both have input and output sequences with differ-
ent lengths.

However, it is very possible that the gener-
ator’s output word sequence can only be pro-
cessed and recognized by the reconstructor but is
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not readable by humans. Here, instead of reg-
ularizing the generator output with a pre-trained
language model (Miao and Blunsom, 2016), we
borrow from adversarial auto-encoders (Makhzani
et al., 2015) and cycle GAN (Zhu et al., 2017)
and introduce a third component – the discrimina-
tor – to regularize the generator’s output word se-
quence. The discriminator and the generator form
a generative adversarial network (GAN) (Good-
fellow et al., 2014). The discriminator discrim-
inates between the generator output and human-
written sentences, and the generator produces out-
put as similar as possible to human-written sen-
tences to confuse the discriminator. With the GAN
framework, the discriminator teaches the genera-
tor how to create human-like summary sentences
as a latent representation. However, due to the
non-differential property of discrete distributions,
generating discrete distributions by GAN is chal-
lenging. To tackle this problem, in this work, we
proposed a new kind of method on language gen-
eration by GAN.

By achieving unpaired abstractive text summa-
rization, machine is able to unsupervisedly extract
the core idea of the documents. This approach
has many potential applications. For example, the
output of the generator can be used for the down-
stream tasks like document classification and sen-
timent classification. In this study, we evaluate the
results on an abstractive text summarization task.
The output word sequence of the generator is re-
garded as the summaries of the input text. The
model is learned from a set of documents with-
out summaries. As most documents are not paired
with summaries, for example the movie reviews or
lecture recordings, this technique makes it possi-
ble to learn summarizer to generate summaries for
these documents. The results show that the gener-
ator generates summaries with reasonable quality
on both English and Chinese corpora.

2 Related Work
Abstractive Text Summarization
Recent model architectures for abstractive text
summarization basically use the sequence-to-
sequence (Sutskever et al., 2014) framework in
combination with various novel mechanisms. One
popular mechanism is attention (Bahdanau et al.,
2015), which has been shown helpful for summa-
rization (Nallapati et al., 2016; Rush et al., 2015;
Chopra et al., 2016). It is also possible to directly
optimize evaluation metrics such as ROUGE (Lin,

Figure 1: Proposed model. Given long text, the
generator produces a shorter text as a summary.
The generator is learned by minimizing the recon-
struction loss together with the reconstructor and
making discriminator regard its output as human-
written text.
2004) with reinforcement learning (Ranzato et al.,
2016; Paulus et al., 2017; Bahdanau et al., 2016).
The hybrid pointer-generator network (See et al.,
2017) selects words from the original text with a
pointer (Vinyals et al., 2015) or from the whole
vocabulary with a trained weight. In order to elim-
inate repetition, a coverage vector (Tu et al., 2016)
can be used to keep track of attended words, and
coverage loss (See et al., 2017) can be used to
encourage model focus on diverse words. While
most papers focus on supervised learning with
novel mechanisms, in this paper, we explore un-
supervised training models.

GAN for Language Generation
In this paper, we borrow the idea of GAN to make
the generator output human-readable. The major
challenge in applying GAN to sentence genera-
tion is the discrete nature of natural language. To
generate a word sequence, the generator usually
has non-differential parts such as argmax or other
sample functions which cause the original GAN to
fail.

In (Gulrajani et al., 2017), instead of feeding a
discrete word sequence, the authors directly feed
the generator output layer to the discriminator.
This method works because they use the earth
mover’s distance on GAN as proposed in (Ar-
jovsky et al., 2017), which is able to evaluate the
distance between a discrete and a continuous dis-
tribution. SeqGAN (Yu et al., 2017) tackles the
sequence generation problem with reinforcement
learning. Here, we refer to this approach as ad-
versarial REINFORCE. However, the discrimina-
tor only measures the quality of whole sequence,
and thus the rewards are extremely sparse and the
rewards assigned to all the generation steps are all
the same. MC search (Yu et al., 2017) is proposed
to evaluate the approximate reward at each time

4188



step, but this method suffers from high time com-
plexity. Following this idea, (Li et al., 2017) pro-
poses partial evaluation approach to evaluate the
expected reward at each time step. In this pa-
per, we propose the self-critical adversarial RE-
INFORCE algorithm as another way to evaluate
the expected reward at each time step. The per-
formance between original WGAN and proposed
adversarial REINFORCE is compared in experi-
ment.

3 Proposed Method
The overview of the proposed model is shown in
Fig. 2. The model is composed of three com-
ponents: generator G, discriminator D, and re-
constructor R. Both G and R are seq2seq hy-
brid pointer-generator networks (See et al., 2017)
which can decide to copy words from encoder in-
put text via pointing or generate from vocabulary.
They both take a word sequence as input and out-
put a sequence of word distributions. Discrimina-
tor D, on the other hand, takes a sequence as input
and outputs a scalar. The model is learned from a
set of documents x and human-written sentences
yreal.

To train the model, a training document
x = {x1, x2, ..., xt, ..., xT }, where xt rep-
resents a word, is fed to G, which outputs
a sequence of word distributions G(x) =
{y1, y2, ..., yn, ..., yN}, where yn is a distribution
over all words in the lexicon. Then we randomly
sample a word ys

n from each distribution yn, and
a word sequence ys = {ys

1, y
s
2, ..., y

s
N} is obtained

according to G(x). We feed the sampled word se-
quence ys to reconstructor R, which outputs an-
other sequence of word distributions x̂. The re-
constructor R reconstructs the original text x from
ys. That is, we seek an output of reconstructor
x̂ that is as close to the original text x as possible;
hence the loss for training the reconstructor, Rloss,
is defined as

Rloss =
KX

k=1

ls(x, x̂), (1)

where the reconstruction loss ls(x, x̂) is the cross-
entropy loss computed between the reconstructor
output sequence x̂ and the source text x, or the
negative conditional log-likelihood of source text
x given word sequence ys sampled from G(x).
The reconstructor output sequence x̂ is teacher-
forced by source text x. The subscript s in ls(x, x̂)

indicates that x̂ is reconstructed from ys. K is the
number of training documents, and (1) is the sum-
mation of the cross-entropy loss over all the train-
ing documents x.

In the proposed model, the generator G and re-
constructor R form an auto-encoder. However, the
reconstructor R does not directly take the genera-
tor output distribution G(x) as input 1. Instead, the
reconstructor takes a sampled discrete sequence ys

as input. Due to the non-differentiable property of
discrete sequences, we apply the REINFORCE al-
gorithm, which is described in Section 4.

In addition to reconstruction, we need the dis-
criminator D to discriminate between the real se-
quence yreal and the generated sequence ys to reg-
ularize the generated sequence satisfying the sum-
mary distribution. D learns to give yreal higher
scores while giving ys lower scores. The loss for
training the discriminator D is denoted as Dloss;
this is further described in Section 5.

G learns to minimize the reconstruction loss
Rloss, while maximizing the loss of the discrimi-
nator D by generating a summary sequence ys that
cannot be differentiated by D from the real thing.
The loss for the generator Gloss is

Gloss = ↵Rloss � D0
loss (2)

where D0
loss is highly related to Dloss – but not

necessary the same2 – and ↵ is a hyper-parameter.
After obtaining the optimal generator by minimiz-
ing (2), we use it to generate summaries.

Generator G and discriminator D together form
a GAN. We use two different adversarial training
methods to train D and G; as shown in Fig. 2,
these two methods have their own discriminators
1 and 2. Discriminator 1 takes the generator out-
put layer G(x) as input, whereas discriminator 2
takes the sampled discrete word sequence ys as
input. The two methods are described respectively
in Sections 5.1 and 5.2.

4 Minimizing Reconstruction Loss
Because discrete sequences are non-differentiable,
we use the REINFORCE algorithm. The gener-
ator is seen as an agent whose reward given the
source text x is �ls(x, x̂). Maximizing the re-
ward is equivalent to minimizing the reconstruc-
tion loss Rloss in (1). However, the reconstruction

1We found that if the reconstructor R directly takes G(x)
as input, the generator G learns to put the information about
the input text in the distribution of G(x), making it difficult
to sample meaningful sentences from G(x).

2D0

loss has different formulations in different approaches.
This will be clear in Sections 5.1 and 5.2.
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Figure 2: Architecture of proposed model. The generator network and reconstructor network are a
seq2seq hybrid pointer-generator network, but for simplicity, we omit the pointer and the attention parts.
loss varies widely from sample to sample, and thus
the rewards to the generator are not stable either.
Hence we add a baseline to reduce their difference.
We apply self-critical sequence training (Rennie
et al., 2017); the modified reward rR(x, x̂) from
reconstructor R with the baseline for the genera-
tor is

rR(x, x̂) = �ls(x, x̂) � (�la(x, x̂) � b) (3)

where �la(x, x̂) � b is the baseline. la(x, x̂)
is also the same cross-entropy reconstruction
loss as ls(x, x̂), except that x̂ is obtained from
ya instead of ys. ya is a word sequence
{ya

1 , ya
2 , ..., ya

n, ..., ya
N}, where ya

n is selected using
the argmax function from the output distribution
of generator yn. As in the early training stage,
the sequence ys barely yields higher reward than
sequence ya, to encourage exploration we intro-
duce the second baseline score b, which gradu-
ally decreases to zero. Then, the generator is up-
dated using the REINFORCE algorithm with re-
ward rR(x, x̂) to minimize Rloss.

5 GAN Training
With adversarial training, the generator learns to
produce sentences as similar to the human-written
sentences as possible. Here, we conduct experi-
ments on two kinds of methods of language gen-
eration with GAN. In Section 5.1 we directly
feed the generator output probability distributions
to the discriminator and use a Wasserstein GAN
(WGAN) with a gradient penalty. In Section 5.2,
we explore adversarial REINFORCE, which feeds
sampled discrete word sequences to the discrim-
inator and evaluates the quality of the sequence

from the discriminator for use as a reward signal
to the generator.

5.1 Method 1: Wasserstein GAN
In the lower left of Fig. 2, the discriminator model
of this method is shown as discriminator1 D1.
D1 is a deep CNN with residual blocks, which
takes a sequence of word distributions as input and
outputs a score. The discriminator loss Dloss is

Dloss =
1

K

KX

k=1

D1(G(x(k))) � 1

K

KX

k=1

D1(y
real(k))

+�1
1

K

KX

k=1

(�yi(k)D1(y
i(k)) � 1)2,

where K denotes the number of training exam-
ples in a batch, and k denotes the k-th exam-
ple. The last term is the gradient penalty (Gul-
rajani et al., 2017). We interpolate the genera-
tor output layer G(x) and the real sample yreal,
and apply the gradient penalty to the interpolated
sequence yi. �1 determines the gradient penalty
scale. In Equation (2), for WGAN, the generator
maximizes D0

loss:

D0
loss =

1

K

KX

k=1

D1(G(x(k))). (4)

5.2 Method 2: Self-Critic Adversarial
REINFORCE

In this section, we describe in detail the pro-
posed adversarial REINFORCE method. The core
idea is we use the LSTM discriminator to evalu-
ate the current quality of the generated sequence
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{ys
1, y

s
2, ..., y

s
i } at each time step i. The generator

knows that compared to the last time step, as the
generated sentence either improves or worsens, it
can easily find the problematic generation step in
a long sequence, and thus fix the problem easily.

5.2.1 Discriminator 2
As shown in Fig. 2, the discriminator2 D2 is a
unidirectional LSTM network which takes a dis-
crete word sequence as input. At time step i,
given input word ys

i it predicts the current score si

based on the sequence {y1, y2, ..., yi}. The score is
viewed as the quality of the current sequence. An
example of discriminator regularized by weight
clipping(Arjovsky et al., 2017) is shown in Fig. 3.

Figure 3: When the second arrested appears, as the
sentence becomes ungrammatical, the discrimina-
tor determines that this example comes from the
generator. Hence, after this time-step, it outputs
low scores.

In order to compute the discriminator loss
Dloss, we sum the scores {s1, s2, ..., sN} of the
whole sequence ys to yield

D2(y
s) =

1

N

NX

n=1

sn.

where N denotes the generated sequence length.
Then, the loss of discriminator is

Dloss =
1

K

KX

k=1

D2(y
s(k)) � 1

K

KX

k=1

D2(y
real(k))

+�2
1

K

KX

k=1

(�yi(k)D2(y
i(k)) � 1)2,

Similar to previous section, the last term is gra-
dient penalty term. With the loss mentioned
above, the discriminator attempts to quickly deter-
mine whether the current sequence is real or fake.
The earlier the timestep discriminator determines
whether the current sequence is real or fake, the
lower its loss.

5.2.2 Self-Critical Generator
Since we feed a discrete sequence ys to the dis-
criminator, the gradient from the discriminator
cannot directly back-propagate to the generator.
Here, we use the policy gradient method. At

timestep i, we use the i � 1 timestep score si�1

from the discriminator as its self-critical baseline.
The reward rD

i evaluates whether the quality of se-
quence in timestep i is better or worse than that in
timestep i � 1. The generator reward rD

i from D2

is

rD
i =

(
si if i = 1
si � si�1 otherwise.

However, some sentences may be judged as bad
sentences at the previous timestep, but at later
timesteps judged as good sentences, and vice
versa. Hence we use the discounted expected re-
ward d with discount factor � to calculate the dis-
counted reward di at time step i as

di =
NX

j=i

�j�irD
j .

To maximize the expected discounted reward di,
the loss of generator is:

G0
loss = �Eys

i ⇠pG(ys
i |ys

1,...,ys
i�1,x)[di]. (5)

We use the likelihood ratio trick to approximate
the gradient to minimize (5).

6 Experiment
Our model was evaluated on the English/Chinese
Gigaword datasets and CNN/Daily Mail dataset.
In Section 6.1,6.2 and 6.4, the experiments were
conducted on English Gigaword, while the experi-
ments were conducted on CNN/Daily Mail dataset
and Chinese Gigaword dataset respectively in Sec-
tions 6.3 and 6.6. We used ROUGE(Lin, 2004) as
our evaluation metric.3 During testing, when us-
ing the generator to generate summaries, we used
beam search with beam size=5, and we eliminated
repetition. We provide the details of the imple-
mentation and corpus re-processing respectively
in Appendix A and B.

Before jointly training the whole model, we
pre-trained the three major components – gener-
ator, discriminator, and reconstructor – separately.
First, we pre-trained the generator in an unsuper-
vised manner so that the generator would be able
to somewhat grasp the semantic meaning of the
source text. The details of the pre-training are
in Appendix C. We pre-trained the discriminator
and reconstructor respectively with the pre-trained
generator’s output to ensure that these two critic
networks provide good feedback to the generator.

3We used pyrouge package with option -m -n 2 -w 1.2 to
compute ROUGE score for all experiments.
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Task Labeled Methods R-1 R-2 R-L

(A)Supervised 3.8M

(A-1)Supervised training on generator 33.19 14.21 30.50
(A-2) (Rush et al., 2015)� 29.76 11.88 26.96

(A-3) (Chopra et al., 2016)� 33.78 15.97 31.15
(A-4) (Zhou et al., 2017)� 36.15 17.54 33.63

(B) Trivial baseline 0 (B-1) Lead-8 21.86 7.66 20.45

(C) Unpaired 0
(C-1) Pre-trained generator 21.26 5.60 18.89

(C-2) WGAN 28.09 9.88 25.06
(C-3) Adversarial REINFORCE 28.11 9.97 25.41

(D) Semi-supervised

10K (D-1) WGAN 29.17 10.54 26.72
(D-2) Adversarial REINFORCE 30.01 11.57 27.61

500K
(D-3)(Miao and Blunsom, 2016)� 30.14 12.05 27.99

(D-4) WGAN 32.50 13.65 29.67
(D-5) Adversarial REINFORCE 33.33 14.18 30.48

1M
(D-6)(Miao and Blunsom, 2016)� 31.09 12.79 28.97

(D-7) WGAN 33.18 14.19 30.69
(D-8) Adversarial REINFORCE 34.21 15.16 31.64

0
(E-1) Pre-trained generator 21.49 6.28 19.34

(E) Transfer learning (E-2) WGAN 25.11 7.94 23.05
(E-3) Adversarial REINFORCE 27.15 9.09 24.11

Table 1: Average F1 ROUGE scores on English Gigaword. R-1, R-2 and R-L refers to ROUGE 1,
ROUGE 2 and ROUGE L respectively. Results marked with � are obtained from corresponding papers.
In part (A), the model was trained supervisedly. In row (B-1), we select the article’s first eight words
as its summary. Part (C) are the results obtained without paired data. In part (D), we trained our model
with few labeled data. In part (E), we pre-trained generator on CNN/Diary and used the summaries from
CNN/Diary as real data for the discriminator.

6.1 English Gigaword
The English Gigaword is a sentence summariza-
tion dataset which contains the first sentence of
each article and its corresponding headlines. The
preprocessed corpus contains 3.8M training pairs
and 400K validation pairs. We trained our model
on part of or fully unparalleled data on 3.8M train-
ing set. To have fair comparison with previous
works, the following experiments were evaluated
on the 2K testing set same as (Rush et al., 2015;
Miao and Blunsom, 2016). We used the sentences
in article headlines as real data for discriminator4.
As shown in the following experiments, the head-
lines can even come from another set of docu-
ments not related to the training documents.

The results on English Gigaword are shown in
Table 1. WGAN and adversarial REINFORCE
refer to the adversarial training methods men-
tioned in Sections 5.1 and 5.2 respectively. Re-
sults trained by full labeled data are in part (A).
In row (A-1), We trained our generator by su-

4Instead of using general sentences as real data for dis-
criminator, we chose sentences from headlines because they
have their own unique distribution.

pervised training. Compared with the previous
work (Zhou et al., 2017), we used simpler model
and smaller vocabulary size. We did not try to
achieve the state-of-the-art results because the fo-
cus of this work is unsupervised learning, and the
proposed approach is independent to the summa-
rization models used. In row (B-1), we simply
took the first eight words in a document as its sum-
mary.

The results for the pre-trained generator with
method mentioned in Appendix.C is shown in row
(C-1). In part (C), we directly took the sentences
in the summaries of Gigaword as the training data
of discriminator. Compared with the pre-trained
generator and the trivial baseline , the proposed
approach (rows (C-2) and (C-3)) showed good im-
provement. In Fig. 4, we provide a real example.
More examples can be found in the Appendix.D.

6.2 Semi-Supervised Learning
In semi-supervised training, generator was pre-
trained with few available labeled data. During
training, we conducted teacher-forcing with la-
beled data on generator after several updates with-
out labeled data. With 10K, 500K and 1M la-
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beled data, the teacher-forcing was conducted ev-
ery 25, 5 and 3 updates without paired data, re-
spectively. In teacher-forcing, given source text
as input, the generator was teacher-forced to pre-
dict the human-written summary of source text.
Teacher-forcing can be regarded as regularization
of unpaired training that prevents generator from
producing unreasonable summaries of source text.
We found that if we teacher-forced generator too
frequently, generator would overfit on training
data since we only used very few labeled data on
semi-supervised training.

The performance of semi-supervised model in
English Gigaword regarding available labeled data
is shown in Table 1 part (D). We compared our
results with (Miao and Blunsom, 2016) which
was the previous state-of-the-art method on semi-
supervised summarization task under the same
amount of labeled data. With both 500K and 1M
labeled data, our method performed better. Fur-
thermore, with only 1M labeled data, using ad-
versarial REINFORCE even outperformed super-
vised training in Table 1 (A-1) with the whole
3.8M labeled data.

Figure 4: Real examples with methods referred in
Table 1. The proposed methods generated sum-
maries that grasped the core idea of the articles.

6.3 CNN/Daily Mail dataset
The CNN/Daily Mail dataset is a long text sum-
marization dataset which is composed of news ar-
ticles paired with summaries. We evaluated our
model on this dataset because it’s a popular bench-
mark dataset, and we want to know whether the
proposed model works on long input and long
output sequences. The details of corpus pre-
processing can be found in Appendix.B . In un-
paired training, to prevent the model from directly

matching the input articles to its corresponding
summaries, we split the training pairs into two
equal sets, one set only supplied articles and the
other set only supplied summaries.

The results are shown in Table 2. For super-
vised approaches in part (A), although our seq2seq
model was similar to (See et al., 2017), due to
the smaller vocabulary size (we didn’t tackle out-
of-vocabulary words), simpler model architecture,
shorter output length of generated summaries,
there was a performance gap between our model
and the scores reported in (See et al., 2017). Com-
pared to the lead-3 baseline in part (B) which took
the first three sentences of articles as summaries,
the seq2seq models fell behind. That was be-
cause news writers often put the most important
information in the first few sentences, and thus
even the best abstractive summarization model
only slightly beat the lead-3 baseline on ROUGE
scores. However, during pre-training or training
we didn’t make assumption that the most impor-
tant sentences are in first few sentences.

We observed that our unpaired model yielded
decent ROUGE-1 score, but it yielded lower
ROUGE-2 and ROUGE-L score. That was proba-
bly because the length of our generated sequence
was shorter than ground truth, and our vocabu-
lary size was small. Another reason was that the
generator was good at selecting the most impor-
tant words from the articles, but sometimes failed
to combine them into reasonable sentences be-
cause it’s still difficult for GAN to generate long
sequence. In addition, since the reconstructor
only evaluated the reconstruction loss of whole se-
quence, as the generated sequence became long,
the reconstruction reward for generator became
extremely sparse. However, compared to pre-
trained generator (rows (C-2), (C-3) v.s. (C-1)),
our model still enhanced the ROUGE score. An
real example of generated summary can be found
at Appendix.D Fig.11 .

6.4 Transfer Learning
The experiments conducted up to this point re-
quired headlines unpaired to the documents but
in the same domain to train discriminator. In
this subsection, we generated the summaries from
English Gigaword (target domain), but the sum-
maries for discriminator were from CNN/Daily
Mail dataset (source domain).

The results of transfer learning are shown in Ta-
ble. 1 part (E). Table 1 (E-1) is the result of pre-
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Methods R-1 R-2 R-L

(A)Supervised (A-1)Supervised training on our generator 38.89 13.74 29.42
(A-2) (See et al., 2017)� 39.53 17.28 36.38

(B)Lead-3 baseline (See et al., 2017)� 40.34 17.70 36.57

(C) Unpaired
(C-1) Pre-trained generator 29.86 5.14 14.66
(C-2) WGAN 35.14 9.43 21.04
(C-3) Adversarial REINFORCE 35.51 9.38 20.98

Table 2: F1 ROUGE scores on CNN/Diary Mail dataset. In row (B), the first three sentences were taken as
summaries. Part (C) are the results obtained without paired data. The results with symbol � are directly
obtained from corresponding papers.

Methods R-1 R-2 R-L
(A) Training with paired data (supervised) 49.62 34.10 46.42
(B)Lead-15 baseline 30.08 18.24 27.74

(C) Unpaired
(C-1) Pre-trained generator 28.36 16.73 26.48
(C-2) WGAN 38.15 24.60 35.27
(C-3) Adversarial REINFORCE 41.25 26.54 37.76

Table 3: F1 ROUGE scores on Chinese Gigaword. In row (B), we selected the article’s first fifteen words
as its summary. Part (C) are the results obtained without paired data.

trained generator and the poor pre-training result
indicates that the data distributions of two datasets
are quite different. We find that using sentences
from another dataset yields lower ROUGE scores
on the target testing set (parts (E) v.s. (C)) due to
the mismatch word distributions between the sum-
maries of the source and target domains. How-
ever, the discriminator still regularizes the gener-
ated word sequence. After unpaired training, the
model enhanced the ROUGE scores of the pre-
trained model (rows (E-2), (E-3) v.s. (E-1)) and
it also surpassed the trivial baselines in part (B).

6.5 GAN Training
In this section, we discuss the performance of
two GAN training methods. As shown in the
Table 1, in English Gigaword, our proposed ad-
versarial REINFORCE method performed better
than WGAN. However, in Table 2, our proposed
method slightly outperformed by WGAN. In addi-
tion, we find that when training with WGAN, con-
vergence is faster. Because WGAN directly eval-
uates the distance between the continuous distri-
bution from generator and the discrete distribution
from real data, the distribution was sharpened at
an early stage in training. This caused generator to
converge to a relatively poor place. On the other
hand, when training with REINFORCE, genera-
tor keeps seeking the network parameters that can
better fool discriminator. We believe that training
GAN on language generation with this method is

worth exploring.
6.6 Chinese Gigaword
The Chinese Gigaword is a long text summariza-
tion dataset composed of paired headlines and
news. Unlike the input news in English Gigaword,
the news in Chinese Gigaword consists of sev-
eral sentences. The results are shown in Table 3.
Row (A) lists the results using 1.1M document-
summary pairs to directly train the generator with-
out the reconstructor and discriminator: this is the
upper bound of the proposed approach. In row (B),
we simply took the first fifteen words in a docu-
ment as its summary. The number of words was
chosen to optimize the evaluation metrics. Part
(C) are the results obtained in the scenario with-
out paired data. The discriminator took the sum-
maries in the training set as real data. We show
the results of the pre-trained generator in row (C-
1); rows (C-2) and (C-3) are the results for the
two GAN training methods respectively. We find
that despite the performance gap between the un-
paired and supervised methods (rows (C-2), (C-
3) v.s. (A)), the proposed method yielded much
better performance than the trivial baselines (rows
(C-2), (C-3) v.s. (B)).
7 Conclusion and Future Work
Using GAN, we propose a model that encodes
text as a human-readable summary, learned with-
out document-summary pairs. In future work, we
hope to use extra discriminators to control the style
and sentiment of the generated summaries.
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Abstract
We address jointly two important tasks for
Question Answering in community forums:
given a new question, (i) find related exist-
ing questions, and (ii) find relevant answers
to this new question. We further use an aux-
iliary task to complement the previous two,
i.e., (iii) find good answers with respect to the
thread question in a question-comment thread.
We use deep neural networks (DNNs) to learn
meaningful task-specific embeddings, which
we then incorporate into a conditional ran-
dom field (CRF) model for the multitask set-
ting, performing joint learning over a complex
graph structure. While DNNs alone achieve
competitive results when trained to produce
the embeddings, the CRF, which makes use
of the embeddings and the dependencies be-
tween the tasks, improves the results signifi-
cantly and consistently across a variety of eval-
uation metrics, thus showing the complemen-
tarity of DNNs and structured learning.

1 Introduction and Motivation

Question answering web forums such as Stack-
Overflow, Quora, and Yahoo! Answers usually
organize their content in topically-defined forums
containing multiple question–comment threads,
where a question posed by a user is often followed
by a possibly very long list of comments by other
users, supposedly intended to answer the question.
Many forums are not moderated, which often re-
sults in noisy and redundant content.

Within community Question Answering (cQA)
forums, two subtasks are of special relevance
when a user poses a new question to the website
(Hoogeveen et al., 2018; Lai et al., 2018): (i) find-
ing similar questions (question-question related-
ness), and (ii) finding relevant answers to the new
question, if they already exist (answer selection).

⇤Work conducted while this author was at QCRI, HBKU.

Both subtasks have been the focus of recent re-
search as they result in end-user applications. The
former is interesting for a user who wants to ex-
plore the space of similar questions in the forum
and to decide whether to post a new question.
It can also be relevant for the forum owners as
it can help detect redundancy, eliminate question
duplicates, and improve the overall forum struc-
ture. Subtask (ii) on the other hand is useful for
a user who just wants a quick answer to a spe-
cific question, without the need of digging through
the long answer threads and winnowing good from
bad comments or without having to post a question
and then wait for an answer.

Obviously, the two subtasks are interrelated as
the information needed to answer a new ques-
tion is usually found in the threads of highly re-
lated questions. Here, we focus on jointly solv-
ing the two subtasks with the help of yet another
related subtask, i.e., determining whether a com-
ment within a question-comment thread is a good
answer to the question heading that thread.

An example is shown in Figure 1. A new ques-
tion q is posed for which several potentially related
questions are identified in the forum (e.g., by us-
ing an information retrieval system); qi in the ex-
ample is one of these existing questions. Each re-
trieved question comes with an associated thread
of comments; ci

m represents one comment from
the thread of question qi. Here, ci

m is a good an-
swer for qi, qi is indeed a question related to q, and
consequently ci

m is a relevant answer for the new
question q. This is the setting of SemEval-2016
Task 3, and we use its benchmark datasets.

Our approach has two steps. First, a deep neu-
ral network (DNN) in the form of a feed-forward
neural network is trained to solve each of the three
subtasks separately, and the subtask-specific hid-
den layer activations are taken as embedded fea-
ture representations to be used in the second step.
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q: “How can I extend a family visit visa?”

qi: “Dear All; I wonder if anyone knows the procedure
how I can extend the family visit visa for my wife be-
yond 6 months. I already extended it for 5 months and
is 6 months running. I would like to get it extended for
couple of months more.Any suggestion is highly appre-
ciable.Thanks”

ci
m: “You can get just another month’s extension before she

completes 6 months by presenting to immigration of-
fice a confirmed booking of her return ticket which
must not exceed 7 months.”

Figure 1: Example of the three pieces of informa-
tion in the cQA problems addressed in this paper.

Then, a conditional random field (CRF) model
uses these embeddings and performs joint learning
with global inference to exploit the dependencies
between the subtasks.

A key strength of DNNs is their ability to
learn nonlinear interactions between underlying
features through specifically-designed hidden lay-
ers, and also to learn the features (e.g., vectors for
words and documents) automatically. This capa-
bility has led to gains in many unstructured output
problems. DNNs are also powerful for structured
output problems. Previous work has mostly relied
on recurrent or recursive architectures to propa-
gate information through hidden layers, but has
been disregarding the modeling strength of struc-
tured conditional models, which use global infer-
ence to model consistency in the output structure
(i.e., the class labels of all nodes in a graph). In
this work, we explore the idea that combining sim-
ple DNNs with structured conditional models can
be an effective and efficient approach for cQA sub-
tasks that offers the best of both worlds.

Our experimental results show that: (i) DNNs
already perform very well on the question-
question similarity and answer selection subtasks;
(ii) strong dependencies exist between the sub-
tasks under study, especially answer-goodness and
question-question-relatedness influence answer-
selection significantly; (iii) the CRFs exploit the
dependencies between subtasks, providing size-
ably better results that are on par or above the state
of the art. In summary, we demonstrate the ef-
fectiveness of this marriage of DNNs and struc-
tured conditional models for cQA subtasks, where
a feed-forward DNN is first used to build vectors
for each individual subtask, which are then “rec-
onciled” in a multitask CRF.

2 Related Work

Various neural models have been applied to cQA
tasks such as question-question similarity (dos
Santos et al., 2015; Lei et al., 2016; Wang et al.,
2018) and answer selection (Wang and Nyberg,
2015; Qiu and Huang, 2015; Tan et al., 2015; Chen
and Bunescu, 2017; Wu et al., 2018). Most of this
work used advanced neural network architectures
based on convolutional neural networks (CNN),
long short-term memory (LSTM) units, attention
mechanism, etc. For instance, dos Santos et al.
(2015) combined CNN and bag of words for com-
paring questions. Tan et al. (2015) adopted an at-
tention mechanism over bidirectional LSTMs to
generate better answer representations, and Lei
et al. (2016) combined recurrent and CNN models
for question representation. In contrast, here we
use a simple DNN model, i.e., a feed-forward neu-
ral network, which we only use to generate task-
specific embeddings, and we defer the joint learn-
ing with global inference to the structured model.

From the perspective of modeling cQA sub-
tasks as structured learning problems, there is a
lot of research trying to exploit the correlations
between the comments in a question–comment
thread. This has been done from a feature engi-
neering perspective, by modeling a comment in
the context of the entire thread (Barrón-Cedeño
et al., 2015), but more interestingly by considering
a thread as a structured object, where comments
are to be classified as good or bad answers col-
lectively. For example, Zhou et al. (2015) treated
the answer selection task as a sequence labeling
problem and used recurrent convolutional neural
networks and LSTMs. Joty et al. (2015) modeled
the relations between pairs of comments at any
distance in the thread, and combined the predic-
tions of local classifiers using graph-cut and In-
teger Linear Programming. In a follow up work,
Joty et al. (2016) also modeled the relations be-
tween all pairs of comments in a thread, but using
a fully-connected pairwise CRF model, which is
a joint model that integrates inference within the
learning process using global normalization. Un-
like these models, we use DNNs to induce task-
specific embeddings, and, more importantly, we
perform multitask learning of three different cQA
subtasks, thus enriching the relational structure of
the graphical model.
We solve the three cQA subtasks jointly, in a mul-
titask learning framework. We do this using the
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datasets from the SemEval-2016 Task 3 on Com-
munity Question Answering (Nakov et al., 2016b),
which are annotated for the three subtasks, and we
compare against the systems that participated in
that competition. In fact, most of these systems
did not try to exploit the interaction between the
subtasks or did so only as a pipeline. For example,
the top two systems, SUPER TEAM (Mihaylova
et al., 2016) and KELP (Filice et al., 2016), stacked
the predicted labels from two subtasks in order
to solve the main answer selection subtask using
SVMs. In contrast, our approach is neural, it is
based on joint learning and task-specific embed-
dings, and it is also lighter in terms of features.

In work following the competition, Nakov et al.
(2016a) used a triangulation approach to answer
ranking in cQA, modeling the three types of sim-
ilarities occurring in the triangle formed by the
original question, the related question, and an an-
swer to the related comment. However, theirs is
a pairwise ranking model, while we have a joint
model. Moreover, they focus on one task only,
while we use multitask learning. Bonadiman et al.
(2017) proposed a multitask neural architecture
where the three tasks are trained together with
the same representation. However, they do not
model comment-comment interactions in the same
question-comment thread nor do they train task-
specific embeddings, as we do.

The general idea of combining DNNs and struc-
tured models has been explored recently for other
NLP tasks. Collobert et al. (2011) used Viterbi
inference to train their DNN models to capture de-
pendencies between word-level tags for a number
of sequence labeling tasks: part-of-speech tag-
ging, chunking, named entity recognition, and se-
mantic role labeling. Huang et al. (2015) pro-
posed an LSTM-CRF framework for such tasks.
Ma and Hovy (2016) included a CNN in the
framework to compute word representations from
character-level embeddings. While these studies
consider tasks related to constituents in a sentence,
e.g., words and phrases, we focus on methods to
represent comments and to model dependencies
between comment-level tags. We also experiment
with arbitrary graph structures in our CRF model
to model dependencies at different levels.

3 Learning Approach

Let q be a newly-posed question, and ci
m denote

the m-th comment (m 2 {1, 2, . . . , M}) in the

answer thread for the i-th potentially related ques-
tion qi (i 2 {1, 2, . . . , I}) retrieved from the fo-
rum. We can define three cQA subtasks: (A) clas-
sify each comment ci

m in the thread for question qi

as Good vs. Bad with respect to qi; (B) determine,
for each retrieved question qi, whether it is Related
to the new question q in the sense that a good an-
swer to qi might also be a good answer to q; and
finally, (C) classify each comment ci

m in each an-
swer thread as either Relevant or Irrelevant with
respect to the new question q.

Let ya
i,m 2 {Good, Bad}, yb

i 2 {Related, Not-
related}, and yc

i,m 2 {Relevant, Irrelevant}
denote the corresponding output labels for sub-
tasks A, B, and C, respectively. As argued before,
subtask C depends on the other two subtasks. In-
tuitively, if ci

m is a good comment with respect to
the existing question qi, and qi is related to the
new question q (subtask A), then ci

m is likely to
be a relevant answer to q. Similarly, subtask B can
benefit from subtask C: if comment ci

m in the an-
swer thread of qi is relevant with respect to q, then
qi is likely to be related to q.

We propose to exploit these inherent correla-
tions between the cQA subtasks as follows: (i) by
modeling their interactions in the input represen-
tations, i.e., in the feature space of (q, qi, ci

m), and
more importantly, (ii) by capturing the dependen-
cies between the output variables (ya

i,m, yb
i , y

c
i,m).

Moreover, we cast each cQA subtask as a struc-
tured prediction problem in order to model the de-
pendencies between output variables of the same
type. Our intuition is that if two comments ci

m

and ci
n in the same thread are similar, then they are

likely to have the same labels for both subtask A
and subtask C, i.e., ya

i,m ⇡ ya
i,n, and yc

i,m ⇡ yc
i,n.

Similarly, if two pre-existing questions qi and qj

are similar, they are also likely to have the same
labels, i.e., yb

i ⇡ yb
j .

Our framework works in two steps. First, we
use a DNN, specifically, a feed-forward NN, to
learn task-specific embeddings for the three sub-
tasks, i.e., output embeddings xa

i,m, xb
i and xc

i,m
for subtasks A, B and C (Figure 2a). The DNN
uses syntactic and semantic embeddings of the in-
put elements, their interactions, and other similar-
ity features between them and, as a by-product,
learns the output embeddings for each subtask.
In the second step, a structured conditional model
operates on subtask-specific embeddings from the
DNNs and captures the dependencies between the
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Figure 2: Graphical representation of our cQA framework. On the left (a), we have three feed-forward
neural networks to learn task-specific embeddings for the three cQA subtasks. On the right (b), a global
conditional random field (CRF) models intra- and inter-subtask dependencies.

subtasks, between existing questions, and between
comments for an existing question (Figure 2b).
Below, we describe the two steps in detail.

3.1 Neural Models for cQA Subtasks
Figure 2a depicts our complete neural framework
for the three subtasks. The input is a tuple
(q, qi, ci

m) consisting of a new question q, a re-
trieved question qi, and a comment ci

m from qi’s
answer thread. We first map the input elements
to fixed-length vectors (zq, zqi , zci

m
) using their

syntactic and semantic embeddings. Depending
on the requirements of the subtasks, the network
then models the interactions between the inputs
by passing their embeddings through non-linear
hidden layers ⌫(·). Additionally, the network
also considers pairwise similarity features �(·) be-
tween two input elements that go directly to the
output layer, and also through the last hidden layer.
The pairwise features together with the activations
at the final hidden layer constitute the task-specific
embeddings for each subtask t: xt

i = [⌫t(·),�t(·)].
The final layer defines a Bernoulli distribution for
each subtask t 2 {a, b, c}:

p(yt
i |q, qi, c

i
m, ✓) = Ber(yt

i | sig(wT
t xt

i)) (1)

where xt
i, wt, and yt

i are the task-specific em-
bedding, the output layer weights, and the predic-
tion variable for subtask t, respectively, and sig(·)
refers to the sigmoid function.
We train the models by minimizing the cross-
entropy between the predicted distribution and the

gold labels. The main difference between the
models is how they compute the task-specific em-
beddings xt

i for subtask t.

Neural Model for Subtask A. The feed-
forward network for subtask A is shown in the
lower part of Figure 2a. To determine whether a
comment ci

m is good with respect to the thread
question qi, we model the interactions between ci

m

and qi by merging their embeddings zci
m

and zqi ,
and passing them through a hidden layer:

ha
1 = f(Ua[zqi , zci

m
]) (2)

where Ua is the weight matrix from the inputs
to the first hidden units, f is a non-linear activa-
tion function. The activations are then fed to a fi-
nal subtask-specific hidden layer, which combines
these signals with the pairwise similarity features
�a(qi, ci

m). Formally,

ha
2 = f(V a[ha

1,�
a(qi, c

i
m)]) (3)

where V a is the weight matrix. The task-specific
output embedding is formed by merging ha

2 and
�a(qi, ci

m); xa
i,m = [ha

2,�
a(qi, ci

m)].

Neural Model for Subtask B. To determine
whether an existing question qi is related to the
new question q, we model the interactions between
q and qi using their embeddings and pairwise sim-
ilarity features similarly to subtask A.
The upper part of Figure 2a shows the network.
The transformation is defined as follows:

hb
1 = f(U b[zq, zqi ]);h

b
2 = f(V b[hb

1,�
b(q, qi)])
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where U b and V b are the weight matrices in the
first and second hidden layer. The task-specific
embedding is formed by xb

i = [hb
2,�

b(q, qi)].

Neural Model for Subtask C. The network for
subtask C is shown in the middle of Figure 2a.
To decide if a comment ci

m in the thread of qi is
relevant to q, we consider how related qi is to q,
and how useful ci

m is to answer qi. Again, we
model the direct interactions between q and ci

m us-
ing pairwise features �c(q, ci

m) and a hidden layer
transformation hc

1 = f(U c[zq, zci
m

]), where U c is
a weight matrix. We then include a second hidden
layer to combine the activations from different in-
puts and pairwise similarity features. Formally,

h
c
2 = f(V c[ha

1 ,hb
1,h

c
1,�

a(qi, c
i
m),�b(q, qi),�

c(q, ci
m)])

The final task-specific embedding for subtask C
is formed as x

c
i = [hc

2,�
a(qi, c

i
m),�b(q, qi),�

c(q, ci
m)].

3.2 Joint Learning with Global Inference
One simple way to exploit the interdependencies
between the subtask-specific embeddings (xa

i,m,
xb

i , xc
i,m) is to precompute the predictions for

some subtasks (A and B), and then to use the pre-
dictions as features for the other subtask (C). How-
ever, as shown later in Section 6, such a pipeline
approach propagates errors from one subtask to
the subsequent ones. A more robust way is to build
a joint model for all subtasks.

We could use the full DNN network in Figure 2a
to learn the classification functions for the three
subtasks jointly as follows:

p(ya
i,m, yb

i , y
c
i,m|✓) = p(ya

i,m|✓a)p(yb
i |✓b)p(yc

i,m|✓c) (4)

where ✓ = [✓a, ✓b, ✓c] are the model parameters.
However, this has two key limitations: (i) it as-

sumes conditional independence between the sub-
tasks given the parameters; (ii) the scores are nor-
malized locally, which leads to the so-called label
bias problem (Lafferty et al., 2001), i.e., the fea-
tures for one subtask would have no influence on
the other subtasks.

Thus, we model the dependencies between
the output variables by learning (globally nor-
malized) node and edge factor functions that
jointly optimize a global performance criterion.
In particular, we represent the cQA setting as
a large undirected graph G=(V, E)=(Va[Vb[Vc,
Eaa[Ebb[Ecc[Eac[Ebc[Eab). As shown in
Figure 2b, the graph contains six subgraphs:

Ga=(Va, Eaa), Gb=(Vb, Ebb) and Gc=(Vc, Ecc)
are associated with the three subtasks, while
the bipartite subgraphs Gac=(Va [ Vc, Eac),
Gbc=(Vb [ Vc, Ebc) and Gab=(Va [ Vb, Eab) con-
nect nodes across tasks.

We associate each node u 2 Vt with an input
vector xu, representing the embedding for sub-
task t, and an output variable yu, representing the
class label for subtask t. Similarly, each edge
(u, v) 2 Est is associated with an input feature
vector µ(xu,xv), derived from the node-level fea-
tures, and an output variable yuv 2 {1, 2, · · · , L},
representing the state transitions for the pair of
nodes.1 For notational simplicity, here we do not
distinguish between comment and question nodes,
rather we use u and v as general indices. We de-
fine the following joint conditional distribution:

p(y|✓,x) =
1

Z(✓,x)

Y

t2⌧

h Y

u2Vt

 n(yu|x,wt
n)

i

Y

(s,t)2⌧⇥⌧

h Y

(u,v)2Est

 e(yuv|x,wst
e )

i
(5)

where ⌧ = {a, b, c},  n(·) and  e(·) are node and
edge factors, respectively, and Z(·) is a global nor-
malization constant. We use log-linear factors:

 n(yu|x,wt
n) = exp(�(yu,x)T

w
t
n) (6)

 e(yuv|x,wst
e ) = exp(�(yuv,x)T

w
st
e ) (7)

where �(·) is a feature vector derived from the in-
puts and the labels.

This model is essentially a pairwise conditional
random field (Murphy, 2012). The global normal-
ization allows CRFs to surmount the label bias
problem, allowing them to take long-range inter-
actions into account. The objective in Equation 5
is a convex function, and thus we can use gradient-
based methods to find the global optimum. The
gradients have the following form:

f 0(wt
n) =

X

u2Vt

�(yu,x) � E[�(yu,x)] (8)

f 0(wst
e ) =

X

(u,v)2Est

�(yuv,x) � E[�(yuv,x)] (9)

where E[�(·)] is the expected feature vector.

Training and Inference. Traditionally, CRFs
have been trained using offline methods like
LBFGS (Murphy, 2012). Online training using

1To avoid visual clutter, the input features and the output
variables for the edges are not shown in Figure 2b.
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first-order methods such as stochastic gradient de-
scent was proposed by Vishwanathan et al. (2006).
Since our DNNs are trained with the RMSprop
online adaptive algorithm (Tieleman and Hinton,
2012), in order to compare our two models, we
use RMSprop to train our CRFs as well.

For our CRF models, we use Belief Propaga-
tion, or BP, (Pearl, 1988) for inference. BP con-
verges to an exact solution for trees. However, ex-
act inference is intractable for graphs with loops.
Despite this, Pearl (1988) advocated for the use
of BP in loopy graphs as an approximation. Even
though BP only gives approximate solutions, it of-
ten works well in practice for loopy graphs (Mur-
phy et al., 1999), outperforming other methods
such as mean field (Weiss, 2001).

Variations of Graph Structures. A crucial ad-
vantage of our CRFs is that we can use arbitrary
graph structures, which allows us to capture de-
pendencies between different types of variables:
(i) intra-subtask, for variables of the same sub-
task, e.g., yb

i and yb
j in Figure 2b, and (ii) across-

subtask, for variables of different subtasks.
For intra-subtask, we explore null (i.e., no con-

nection between nodes) and fully-connected rela-
tions. For subtasks A and C, the intra-subtask con-
nections are restricted to the nodes inside a thread,
e.g., we do not connect yc

i,m and yc
j,m in Figure 2b.

For across-subtask, we explored three types
of connections depending on the subtasks in-
volved: (i) null or no connection between sub-
tasks, (ii) 1:1 connection for A-C, where the cor-
responding nodes of the two subtasks in a thread
are connected, e.g., ya

i,m and yc
i,m in Figure 2b,

and (iii) M:1 connection to B, where we con-
nect all the nodes of C or A to the thread-level
B node. Each configuration of intra- and across-
connections yields a different CRF model. Fig-
ure 2b shows one such model for two threads each
containing two comments, where all subtasks have
fully-connected intra-subtask links, 1:1 connec-
tion for A-C, and M:1 for C-B and A-B.

4 Features for the DNN Models

We have two types of features: (i) input embed-
dings, for q, qi and ci

m, and (ii) pairwise features,
for (q, qi), (q, ci

m), and (qi, ci
m) — see Figure 2a.

4.1 Input Embeddings
We use three types of pre-trained vectors to repre-
sent a question (q or qi) or a comment (ci

m):

GOOGLE VECTORS. 300-dimensional em-
bedding vectors, trained on 100 billion words from
Google News (Mikolov et al., 2013). The embed-
ding for a question (or comment) is the average of
the word embeddings it is composed of.

SYNTAX. We parse the question (or comment)
using the Stanford neural parser (Socher et al.,
2013), and we use the final 25-dimensional vec-
tor produced internally as a by-product of parsing.

QL VECTORS. We use fine-tuned word em-
beddings pretrained on all the available in-domain
Qatar Living data (Mihaylov and Nakov, 2016).

4.2 Pairwise Features
We extract pairwise features for each of (q, qi),
(q, ci

m), and (qi, ci
m) pairs. These include:

COSINES. We compute cosines using the above
vectors: cos(q, qi), cos(q, ci

m) and cos(qi, ci
m).

MT FEATURES. We use the following ma-
chine translation evaluation metrics: (1) BLEU
(Papineni et al., 2002); (2) NIST (Doddington,
2002); (3) TER v0.7.25 (Snover et al., 2006);
(4) METEOR v1.4 (Lavie and Denkowski, 2009);
(5) Unigram PRECISION; (6) Unigram RECALL.

BLEU COMPONENTS. We further use var-
ious components involved in the computation of
BLEU:2 n-gram precisions, n-gram matches, total
number of n-grams (n=1,2,3,4), lengths of the hy-
potheses and of the reference, length ratio between
them, and BLEU’s brevity penalty.

QUESTION-COMMENT RATIO. (1) question-
to-comment count ratio in terms of senten-
ces/tokens/nouns/verbs/adjectives/adverbs/pronouns;
(2) question-to-comment count ratio of words that
are not in WORD2VEC’s Google News vocabulary.

4.3 Node Features
COMMENT FEATURES. These include number
of (1) nouns/verbs/adjectives/adverbs/pronouns,
(2) URLs/images/emails/phone numbers, (3) to-
kens/sentences, (4) positive/negative smileys,
(5) single/double/triple exclamation/interrogation
symbols, (6) interrogative sentences, (7) ‘thank’
mentions, (8) words that are not in WORD2VEC’s
Google News vocabulary. Also, (9) average num-
ber of tokens, and (10) word type-to-token ratio.

META FEATURES. (1) is the person answering
the question the one who asked it; (2) reciprocal
rank of comment ci

m in the thread of qi, i.e., 1/m;
2BLEU FEATURES and BLEU COMPONENTS (Guzmán

et al., 2016a,b) are ported from an MT evaluation framework
(Guzmán et al., 2015; Guzmán et al., 2017) to cQA.
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batch dropout reg. str inter. layer task-spec. layer

A 16 0.3 0.001 10 125
B 25 0.2 0.05 5 75
C 32 0.3 0.0001 15 50

Table 1: Best setting for DNNs, as found on DEV.

(3) reciprocal rank of ci
m in the list of comments

for q, i.e., 1/[m+10⇥(i � 1)]; and (4) reciprocal
rank of question qi in the list for q, i.e., 1/i.

5 Data and Settings

We experiment with the data from SemEval-2016
Task 3 (Nakov et al., 2016b). Consistently with
our notation from Section 3, it features three sub-
tasks: subtask A (i.e., whether a comment ci

m is
a good answer to the question qi in the thread),
subtask B (i.e., whether the retrieved question qi

is related to the new question q), and subtask C
(i.e., whether the comment ci

m is a relevant answer
for the new question q). Note that the two main
subtasks we are interested in are B and C.
DNN Setting. We preprocess the data using
min-max scaling. We use RMSprop3 for learn-
ing, with parameters set to the values suggested
by Tieleman and Hinton (2012). We use up to 100
epochs with patience of 25, rectified linear units
(ReLU) as activation functions, l2 regularization
on weights, and dropout (Srivastava et al., 2014)
of hidden units. See Table 1 for more detail.
CRF Setting. For the CRF model, we initial-
ize the node-level weights from the output layer
weights of the DNNs, and we set the edge-level
weights to 0. Then, we train using RMSprop with
loopy BP. We regularize the node parameters ac-
cording to the best settings of the DNN: 0.001,
0.05, and 0.0001 for A, B, and C, respectively.

6 Results and Discussion

Below, we first present the evaluation results using
DNN models (Section 6.1). Then, we discuss the
performance of the joint models (Section 6.2).

6.1 Results for the DNN Models
Table 2 shows the results for our individual DNN
models (rows in boldface) for subtasks A, B and C
on the TEST set.
We report three ranking-based measures that are
commonly accepted in the IR community: mean
average precision (MAP), which was the official

3Other adaptive algorithms such as ADAM (Kingma and
Ba, 2014) or ADADELTA (Zeiler, 2012) were slightly worse.

Subtask A

System MAP AvgRec MRR

Random order 52.80 66.52 58.71
Chronological order 59.53 72.60 67.83

ConvKN (second at SE-2016) 77.66 88.05 84.93
Kelp (best at SE-2016) 79.19 88.82 86.42
DNNA (subtask A network) 76.20 86.52 84.95

Subtask B

System MAP AvgRec MRR

Random order 46.98 67.92 50.96
IR order 74.75 88.30 83.79

ConvKN (second at SE-2016) 76.02 90.70 84.64
UH-PRHLT (best at SE-2016) 76.70 90.31 83.02
DNNB (subtask B network) 76.27 90.27 83.57
DNNB + A gold labels 76.10 89.96 83.62
DNNB + C gold labels 77.19 90.78 83.73
DNNB + A and C gold labels 77.12 90.71 83.73

Subtask C

System MAP AvgRec MRR
Random order 15.01 11.44 15.19
IR+Chron. order 40.36 45.97 45.83

Kelp (second at SE-2016) 52.95 59.27 59.23
SUper team (best at SE-2016) 55.41 60.66 61.48
DNNC (subtask C network) 54.24 58.30 61.47
DNNC + A gold labels 61.14 66.67 66.86
DNNC + B gold labels 56.29 61.11 62.67
DNNC + A and B gold labels 63.49 71.16 68.19

Table 2: Results for our DNN models on all cQA
subtasks, compared to the top-2 systems from
SemEval-2016 Task 3. Inter-subtask dependencies
are explored using gold output labels.

evaluation measure of SemEval-2016, average re-
call (AvgRec), and mean reciprocal rank (MRR).

For each subtask, we show two baselines and
the results of the top-2 systems at SemEval. The
first baseline is a random ordering of the ques-
tions/comments, assuming no knowledge about
the subtask. The second baseline keeps the
chronological order of the comments for subtask
A, of the question ranking from the IR engine for
subtask B, and both for subtask C.

We can see that the individual DNN models for
subtasks B and C are very competitive, falling be-
tween the first and the second best at SemEval-
2016. For subtask A, our model is weaker, but, as
we will see below, it can help improve the results
for subtasks B and C, which are our focus here.

Looking at the results for subtask C, we can
see that sizeable gains are possible when using
gold labels for subtasks A and B as features to
DNNC , e.g., adding gold A labels yields +6.90
MAP points.
Similarly, using gold labels for subtask B adds
+2.05 MAP points absolute. Moreover, the gain
is cumulative: using the two gold labels together
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yields +9.25 MAP points. The same behavior is
observed for the other evaluation measures. Of
course, as we use gold labels, this is an upper
bound on performance, but it justifies our efforts
towards a joint multitask learning model.

6.2 Results for the Joint Model
Below we discuss the evaluation results for the
joint model. We focus on subtasks B and C, which
are the main target of our study.

Results for Subtask C. Table 3 compares sev-
eral variants of the CRF model for joint learning,
which we described in Section 3.2 above.

Row 1 shows the results for our individual
DNNC model. The following rows 2–4 present
a pipeline approach, where we first predict labels
for subtasks A and B and then we add these predic-
tions as features to DNNC . This is prone to error
propagation, and improvements are moderate and
inconsistent across the evaluation measures.

The remaining rows correspond to variants of
our CRF model with different graph structures.
Overall, the improvements over DNNC are more
sizeable than for the pipeline approach (with one
single exception out of 24 cases); they are also
more consistent across the evaluation measures,
and the improvements in MAP over the baseline
range from +0.96 to +1.76 points absolute.

Rows 5–8 show the impact of adding connec-
tions to subtasks A and B when solving subtask
C (see Figure 2b). Interestingly, we observe the
same pattern as with the gold labels: the A-C and
B-C connections help individually and in combi-
nation, with A-C being more helpful. Yet, further
adding A-B does not improve the results (row 8).

Note that the locally normalized joint model in
Eq. 4 yields much lower results than the glob-
ally normalized CRFall (row 8): 54.32, 59.87, and
61.76 in MAP, AvgRec and MRR (figures not in-
cluded in the table for brevity). This evinces the
problems with the conditional independence as-
sumption and the local normalization in the model.

Finally, rows 9–12 explore variants of the best
system from the previous set (row 7), which has
connections between subtasks only. Rows 9–12
show the results when using subgraphs for A, B
and C that are fully connected (i.e., for all pairs).
We can see that none of these variants yields im-
provements over the model from row 7, i.e., the
fine-grained relations between comments in the
threads and between the different related questions

do not seem to help solve subtask C in the joint
model. Note that our scores from row 7 are bet-
ter than the best results achieved by a system at
SemEval-2016 Task 3 subtask C: 56.00 vs. 55.41
on MAP, and 63.25 vs. 61.48 on MRR.

Results for Subtask B. Next, we present in Ta-
ble 4 similar experiments, but this time with sub-
task B as the target, and we show some more mea-
sures (accuracy, precision, recall, and F1).

Given the insights from Table 2 (where we used
gold labels), we did not expect to see much im-
provements for subtask B. Indeed, as rows 2–4
show, using the pipeline approach, the IR mea-
sures are basically unaltered. However, classifi-
cation accuracy improves by almost one point ab-
solute, recall is also higher (trading for lower pre-
cision), and F1 is better by a sizeable margin.

Coming to the joint models (rows 6–9), we
can see that the IR measures improve consistently
over the pipeline approach, even though not by
much. The effect on accuracy-P-R-F1 is the same
as observed with the pipeline approach but with
larger differences.4 In particular, accuracy im-
proves by more than two points absolute, and re-
call increases, which boosts F1 to almost 60.

Row 5 is a special case where we only consider
subtask B, but we do the learning and the infer-
ence over the set of ten related questions, exploit-
ing their relations. This yields a slight increase
in all measures; more importantly, it is crucial for
obtaining better results with the joint models.

Rows 6–9 show results for various variants of
the A-C and B-C architecture with fully connected
B nodes, playing with the fine-grained connec-
tion of the A and C nodes. The best results
are in this block, with increases over DNNB in
MAP (+0.61), AvgRec (+0.69) and MRR (+1.05),
and especially in accuracy (+2.18) and F1 (+11.25
points). This is remarkable given the low expecta-
tion we had about improving subtask B.

Note that the best architecture for subtask C
from Table 3 (A-C and B-C with no fully con-
nected B layer) does not yield good results for sub-
task B.
We speculate that subtask B is overlooked by the
architecture, which has many more connections
and parameters on the nodes for subtasks A and C
(ten comments are to be classified for both subtask

4Note that we have a classification approach, which favors
accuracy-P-R-F1; if we want to improve the ranking mea-
sures, we should optimize for them directly.

4203



# System Comments MAP (�) AvgRec (�) MRR (�)

1 DNNC Subtask C network 54.24 58.30 61.47

2 DNNC+PA DNNC with A predicted labels 55.21 (+0.97) 58.36 (+0.06) 62.69 (+1.22)
3 DNNC+PB DNNC with B predicted labels 54.17 (-0.04) 58.17 (-0.13) 62.55 (+1.08)
4 DNNC+PA+PB DNNC with A and B predicted labels 55.11 (+0.90) 58.69 (+0.39) 60.10 (-1.37)

5 CRFAC CRF with A-C connections 55.42 (+1.18) 58.69 (+0.39) 63.25 (+1.78)
6 CRFBC CRF with B-C connections 55.20 (+0.96) 58.87 (+0.57) 62.30 (+0.83)
7 CRFACBC CRF with A-C and B-C connections 56.00 (+1.76) 60.20 (+1.90) 63.25 (+1.78)
8 CRFall CRF with all pairwise connections 55.81 (+1.57) 60.15 (+1.85) 62.68 (+1.21)

9 CRFACBC,Cf CRFACBC with fully connected C 55.73 (+1.49) 59.77 (+1.47) 62.80 (+1.33)
10 CRFACBC,Af Cf CRFACBC with fully connected A and C 55.54 (+1.30) 59.86 (+1.56) 62.54 (+1.07)
11 CRFACBC,Bf Cf CRFACBC with fully connected B and C 55.67 (+1.43) 60.22 (+1.92) 62.80 (+1.33)
12 CRFACBC,f CRFACBC with all layers fully connected 55.81 (+1.57) 60.15 (+1.85) 63.25 (+1.78)

Table 3: Performance of the pipeline and of the joint learning models on subtask C. The best results for
each measure are in bold, and the gains over the single neural network (DNNC) are shown in parentheses.

# System Comments MAP AvgRec MRR Acc P R F1

1 DNNB Subtask B network 76.27 90.27 83.57 76.39 89.53 33.05 48.28
2 DNNB+PA DNNB with A predicted labels 76.08 89.99 83.38 77.40 86.41 38.20 52.98
3 DNNB+PC DNNB with C predicted labels 76.33 90.38 83.62 77.40 83.19 40.34 54.34
4 DNNB+PA+PC DNNB with A and C predicted labels 76.43 90.34 83.62 77.11 78.74 42.92 55.56

5 CRFBf CRF with fully connected B 76.41 90.34 83.81 77.00 84.62 37.76 52.23
6 CRFACBC,Bf CRFACBC with fully connected B 76.89 90.87 84.19 77.86 76.00 48.93 59.53
7 CRFACBC,Af Bf CRFACBC with fully connected A and B 76.51 90.64 84.19 78.29 83.47 43.35 57.06
8 CRFACBC,Bf Cf CRFACBC with fully connected B and C 76.87 90.96 84.44 77.86 78.68 45.92 58.00
9 CRFACBC,f CRFACBC with all layers fully connected 76.25 90.38 84.62 78.57 81.20 46.35 59.02

Table 4: Performance of the pipeline and of the joint models on subtask B (best results in boldface).

A and C, while only one decision is to be made for
the related question B).

Finally, note that our best results for subtask B
are also slightly better than those for the best sys-
tem at SemEval-2016 Task 3, especially on MRR.

7 Conclusion

We have presented a framework for multitask
learning of two community Question Answering
problems: question-question relatedness and an-
swer selection. We further used a third, auxil-
iary one, i.e., finding the good comments in a
question-comment thread. We proposed a two-
step framework based on deep neural networks
and structured conditional models, with a feed-
forward neural network to learn task-specific em-
beddings, which are then used in a pairwise CRF
as part of a multitask model for all three subtasks.

The DNN model has its strength in generating
compact embedded representations for the sub-
tasks by modeling interactions between different
input elements.
On the other hand, the CRF is able to perform
global inference over arbitrary graph structures ac-
counting for the dependencies between subtasks
to provide globally good solutions. The experi-

mental results have proven the suitability of com-
bining the two approaches. The DNNs alone al-
ready yielded competitive results, but the CRF was
able to exploit the task-specific embeddings and
the dependencies between subtasks to improve the
results consistently across a variety of evaluation
metrics, yielding state-of-the-art results.

In future work, we plan to model text com-
plexity (Mihaylova et al., 2016), veracity (Mi-
haylova et al., 2018), speech act (Joty and Hoque,
2016), user profile (Mihaylov et al., 2015), troll-
ness (Mihaylov et al., 2018), and goodness polar-
ity (Balchev et al., 2016; Mihaylov et al., 2017).
From a modeling perspective, we want to strongly
couple CRF and DNN, so that the global errors are
backpropagated from the CRF down to the DNN
layers. It would be also interesting to extend the
framework to a cross-domain (Shah et al., 2018)
or a cross-language setting (Da San Martino et al.,
2017; Joty et al., 2017). Trying an ensemble of
neural networks with different initial seeds is an-
other possible research direction.
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Abstract

A challenge in creating a dataset for machine
reading comprehension (MRC) is to collect
questions that require a sophisticated under-
standing of language to answer beyond us-
ing superficial cues. In this work, we investi-
gate what makes questions easier across recent
12 MRC datasets with three question styles
(answer extraction, description, and multi-
ple choice). We propose to employ simple
heuristics to split each dataset into easy and
hard subsets and examine the performance
of two baseline models for each of the sub-
sets. We then manually annotate questions
sampled from each subset with both valid-
ity and requisite reasoning skills to investi-
gate which skills explain the difference be-
tween easy and hard questions. From this
study, we observed that (i) the baseline per-
formances for the hard subsets remarkably de-
grade compared to those of entire datasets,
(ii) hard questions require knowledge infer-
ence and multiple-sentence reasoning in com-
parison with easy questions, and (iii) multiple-
choice questions tend to require a broader
range of reasoning skills than answer extrac-
tion and description questions. These results
suggest that one might overestimate recent ad-
vances in MRC.

1 Introduction

Evaluating natural language understanding (NLU)
systems is a long-established problem in AI
(Levesque, 2014). One approach to doing so is
the machine reading comprehension (MRC) task,
in which a system answers questions about given
texts (Hirschman et al., 1999). Although recent
studies have made advances (Yu et al., 2018), it
is still unclear to what precise extent questions re-
quire understanding of texts (Jia and Liang, 2017).

In this study, we examine MRC datasets and
discuss what is needed to create datasets suit-

Article: Spectre (2015 film) on Wikipedia
Context: (s1) In November 2014, Sony Pictures En-
tertainment was targeted by hackers who released de-
tails of confidential e-mails between Sony executives
regarding [...]. (s2) Included within these were several
memos relating to the production [...]. (s3) Eon Pro-
ductions later issued a statement [...].
Question: When (k=1) did hackers get into the Sony
Pictures e-mail system?
Prediction for the full question: November 2014
Prediction for the k = 1 question: November 2014
Uni-gram overlaps between si and the question:
s1: 5, s2: 0, s3: 0

Figure 1: Example from the SQuAD dataset (Ra-
jpurkar et al., 2016). The baseline system can answer
the token-limited question and, even if there are other
candidate answers, it can easily attend to the answer-
contained sentence (s1) by watching word overlaps.

able for the detailed testing of NLU. Our moti-
vation originates from studies that demonstrated
unintended biases in the sourcing of other NLU
tasks, in which questions contain simple patterns
and systems can recognize these patterns to an-
swer them (Gururangan et al., 2018; Mostafazadeh
et al., 2017).

We conjecture that a situation similar to this
occurs in MRC datasets. Consider the question
shown in Figure 1, for example. Although the
question, starting with when, requires an answer
that is expressed as a moment in time, there is
only one such expression (i.e., November 2014)
in the given text (we refer to the text as the con-
text). In other words, the question has only a sin-
gle candidate answer. The system can solve it
merely by recognizing the entity type required by
when. In addition to this, even if another expres-
sion of time appears in other sentences, only one
sentence (i.e., s1) appears to be related to the ques-
tion; thus, the system can easily determine the cor-
rect answer by attention, that is, by matching the
words appearing both in the context and the ques-
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tion. Therefore, this kind of question does not re-
quire a complex understanding of language—e.g.,
multiple-sentence reasoning, which is known as a
more challenging task (Richardson et al., 2013).

In Section 3, we define two heuristics, namely
entity-type recognition and attention. We specif-
ically analyze the differences in the performance
of baseline systems for the following two configu-
rations: (i) questions answerable or unanswerable
with the first k tokens; and (ii) questions whose
correct answer appears or does not appear in the
context sentence that is most similar to the ques-
tion (henceforth referred to as the most similar
sentence). Although similar heuristics are pro-
posed by Weissenborn et al. (2017), ours are uti-
lized for question filtering, rather than system de-
velopment; Using these simple heuristics, we split
each dataset into easy and hard subsets for further
investigation of the baseline performance.

After conducting the experiments, we analyze
the following two points in Section 4. First, we
consider which questions are valid for testing, i.e.,
reasonably solvable. Second, we consider what
reasoning skills are required and whether this ex-
poses any differences among the subsets. To in-
vestigate these two concerns, we manually anno-
tate sample questions from each subset in terms
of validity and required reasoning skills, such as
word matching, knowledge inference, and multi-
ple sentence reasoning.

We examine 12 recently proposed MRC
datasets (Table 1), which include answer extrac-
tion, description, and multiple-choice styles. We
also observe differences based on these styles.
For our baselines, we use two neural-based sys-
tems, namely, the Bidirectional Attention Flow
(Seo et al., 2017) and the Gated-Attention Reader
(Dhingra et al., 2017).

In Section 5, we describe the advantages and
disadvantages of different question styles with re-
gard to evaluating NLU systems. We also inter-
pret our heuristics for constructing realistic MRC
datasets.

Our contributions are as follows:

• This study is the first large-scale investigation
across recent 12 MRC datasets with three ques-
tion styles.

• We propose to employ simple heuristics to split
each dataset into easy and hard subsets and ex-
amine the performance of two baseline models
for each of the subsets.

Answer extraction (select a context span)
1. SQuAD (v1.1) (Rajpurkar et al., 2016)
2. AddSent (Jia and Liang, 2017)
3. NewsQA (Trischler et al., 2017)
4. TriviaQA (Wikipedia set) (Joshi et al., 2017)
5. QAngaroo (WikiHop) (Welbl et al., 2018)

Description (generate a free-form answer)
6. MS MARCO (v2) (Nguyen et al., 2016)
7. NarrativeQA (summary) (Kočiský et al., 2018)

Multiple choice (choose from multiple options)
8. MCTest (160 + 500) (Richardson et al., 2013)
9. RACE (middle + high) (Lai et al., 2017)

10. MCScript (Ostermann et al., 2018)
11. ARC Easy (ARC-E) (Clark et al., 2018)
12. ARC Challenge (ARC-C) (Clark et al., 2018)

Table 1: Examined datasets.

• We manually annotate questions sampled from
each subset with both validity and requisite rea-
soning skills to investigate which skills explain
the difference between easy and hard questions.

We observed the following:

• The baseline performances for the hard subsets
remarkably degrade compared to those of entire
datasets.

• Our annotation study shows that hard ques-
tions require knowledge inference and multiple-
sentence reasoning in comparison with easy
questions.

• Compared to questions with answer extraction
and description styles, multiple-choice ques-
tions tend to require a broader range of reason-
ing skills while exhibiting answerability, multi-
ple answer candidates, and unambiguity.

These findings suggest that one might overes-
timate recent advances in MRC systems. They
also emphasize the importance of considering sim-
ple answer-seeking heuristics when sourcing ques-
tions, in that a dataset could be easily biased unless
such heuristics are employed.1

2 Examined Datasets and Baselines

2.1 Datasets
We analyzed 12 MRC datasets with three ques-
tion styles: answer extraction, description, and

1All scripts used in this study, along with the sub-
sets of the datasets and the annotation results, are
available at https://github.com/Alab-NII/
mrc-heuristics.
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multiple choice (Table 1). Our aim was to select
datasets varying in terms of corpus genre, context
length, and question sourcing methods.2 Other
datasets that are not covered in our study, but
can be analyzed using the same method, include:
QA4MRE (Sutcliffe et al., 2013), CNN/Daily
Mail (Hermann et al., 2015), Children’s Book Test
(Hill et al., 2016), bAbI (Weston et al., 2015),
WikiReading (Hewlett et al., 2016), LAMBADA
(Paperno et al., 2016), Who-did-What (Onishi
et al., 2016), ProPara (Dalvi et al., 2018), MultiRC
(Khashabi et al., 2018), CliCR (Suster and Daele-
mans, 2018), SQuAD (v2.0) (Rajpurkar et al.,
2018), and DuoRC (Saha et al., 2018).

2.2 Baseline Systems
We employed the following two widely used base-
lines.

Bidirectional Attention Flow (BiDAF) (Seo
et al., 2017) was used for the answer extrac-
tion and description datasets. BiDAF models
bi-directional attention between the context and
question. It achieved state-of-the-art performance
on the SQuAD dataset.

Gated-Attentive Reader (GA) (Dhingra et al.,
2017) was used for the multiple-choice datasets.
GA has a multi-hop architecture with an atten-
tion mechanism. It achieved state-of-the-art-
performance on the CNN/Daily Mail and Who-
did-What datasets.

Why we used different baseline systems: The
multiple-choice style can be transformed to an-
swer extraction, as mentioned in Clark et al.
(2018). However, in some datasets, many ques-
tions have no textual overlap to determine the cor-
rect answer span in the context. Therefore, in or-
der to avoid underestimating the baseline perfor-
mance of those datasets, we used the GA system
which is applicable to multiple choice questions.

We scored the performance using exact match
(EM)/F1 (Rajpurkar et al., 2016), Rouge-L (Lin,
2004), and accuracy for the answer extraction,
description, and multiple-choice datasets, respec-
tively (henceforth, we refer to these collectively
as the score, for simplicity). For the descrip-
tion datasets, we determined in advance the an-
swer span of the context that gives the highest
Rouge-L score to the human-generated gold an-
swer. We computed the Rouge-L score between

2The ARC Easy and Challenge were collected using dif-
ferent methods; hence, we treated them as different datasets
(see Clark et al. (2018) for further details).

the predicted span and the gold answer.3

Reproduction of the baseline performance:
We used the same architecture as the official base-
line systems unless specified otherwise. All sys-
tems were trained on the training set and tested on
the development/test set of each dataset. We also
used different hyperparameters for each dataset
according to characteristics such as context length
(see Appendix A for details). We show the base-
line performance of both the official results and
those from our implementations in Tables 2 and
3. Our implementations outperformed or showed
comparable performance to the official baseline on
most datasets. However, in TriviaQA, MCTest,
RACE, and ARC-E, our baseline performance did
not reach that of the official baseline, due to dif-
ferences in architecture or the absence of reported
hyperparameters in the literature.

3 Two Filtering Heuristics

The first goal of this paper is to determine whether
there are unintended biases of the kind exposed in
Figure 1 in MRC datasets. We examined the influ-
ence of the two filtering heuristics: (i) entity type
recognition (Section 3.1) and (ii) attention (Sec-
tion 3.2). We then investigated the performance of
the baseline systems on the questions filtered by
the defined heuristics (Section 3.3).

3.1 Entity Type-based Heuristic

The aim of this heuristic was to detect questions
that can be solved based on (i) the existence of
a single candidate answer that is restricted by ex-
pressions such as “wh-” and “how many,” and (ii)
lexical patterns that appear around the correct an-
swer. Because the query styles are not uniform
across datasets (e.g., MARCO uses search engine
queries), we could not directly use interrogatives.
Instead, we simply provided the first k tokens
of questions to the baseline systems. We chose
smaller values for k than the (macro) average of
the question length across the datasets (= 12.2 to-
kens). For example, for k = 4 of the question
will I qualify for OSAP if I’m new in Canada (ex-
cerpted from MARCO), we use will I qualify for.
Even if the tokens do not have an interrogative,
the system may recognize lexical patterns around
the correct answer. Questions that can be solved

3We used the official evaluation scripts of SQuAD and
MS MARCO to compute the EM/F1 and Rouge-L, respec-
tively.
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Dataset SQuAD AddSent NewsQA TriviaQA QAngaroo MARCO NarraQA
St

at
is

tic
s

Question style (metrics) answer extraction (exact match / F1) description (Rouge-L)

Question sourcing reading
context

reading
context

reading
headline

trivia
/ quiz

chaining
knowledge1

search
query1

reading
summary

Context genre Wikipedia Wikipedia news Wikipedia Wikipedia web moviescript

Split examined dev dev test dev2 dev dev test
# questions 10570 3560 5126 430 5129 555783 10557
Avg. # context tokens 150.1 163.3 698.8 783.4 1545.5 625.7 664.5
Avg. # question tokens 11.8 12.3 8.0 19.0 3.6 6.1 9.9
Avg. # sents in context 5.2 5.8 30.3 28.5 57.2 31.5 27.6

B
as

el
in

e
pe

rf
or

m
an

ce

Official baseline 67.7/77.3 28.2/34.3 34.1/48.2 47.5/53.7 42.9/- 17.74 36.30
Our BiDAF baseline 67.9/77.2 42.6/50.4 40.2/56.4 44.0/49.3 43.8/49.3 36.423 43.66

Q first tokens (k=4) 30.7/44.6 19.2/29.7 30.4/44.4 20.5/25.0 43.6/49.1 32.61 25.23
(k=2) 14.0/25.0 9.4/17.8 19.4/30.3 14.4/18.5 42.6/48.0 25.13 13.00
(k=1) 7.0/14.9 4.2/10.6 13.5/23.8 8.6/12.5 42.0/47.5 21.67 8.45

% of # Q (�0.5 for k=2) 22.4 15.8 29.7 20.0 49.8 17.9 10.3

Ans in sim sent 71.4/80.6 50.2/58.2 42.9/59.7 58.0/65.1 41.7/49.2 38.96 45.17
only with sim sent 73.3/82.8 71.4/81.1 52.8/70.9 64.8/72.7 66.7/74.2 45.30 58.56

Ans not in sim sent 56.6/66.4 28.1/35.5 37.8/53.5 40.4/45.2 43.9/49.3 35.84 41.99
% of # Q (ans in sim) 76.3 65.7 46.3 20.5 4.2 18.6 52.6

Hard subset 38.7/45.2 18.2/23.4 27.9/40.9 30.0/32.5 2.3/2.6 15.42 39.61
% of hard 15.7 25.4 30.0 59.8 36.9 12.5 28.2

Table 2: Statistics from the answer extraction and description datasets and their baselines. Dev represents a devel-
opment set. Ans in sim sent refers to questions whose answer appears in the sentence that is most similar to the
question. 1The questions are not complete sentences and may start with more specific words than interrogatives.
2Verified set. 3No answer questions were removed. 4The Passage Ranking model (Nguyen et al., 2016).

by examining these patterns were also of interest
when filtering.

Results: Tables 2 and 3 present the results for
k = 1, 2, 4. In addition, to know the exact ratio of
the questions that are solved rather than the scores
for the answer extraction and description styles,
we counted questions with k = 2 that achieved
the score � 0.5.4 As k decreased, so too did the
baseline performance on all datasets in Table 2 ex-
cept QAngaroo. By contrast, in QAngaroo and the
multiple-choice datasets, the performance did not
degrade so strongly. In particular, the difference
between the scores on the full and k = 1 questions
in QAngaroo was 1.8. Because the questions in
QAngaroo are not complete sentences, but rather
knowledge-base entries that have a blank, such as
country of citizenship Henry VI of England, this
result implies that the baseline system can infer
the answer merely by the first token of questions,
i.e., the type of knowledge-base entry.

In most multiple-choice datasets, the k = 1
scores were significantly higher than random-
choice scores. Given that multiple-choice ques-

4We considered that this threshold is sufficient to judge
that the system attends to the correct span because of the po-
tential ambiguity of these styles (see Section 4).

tions offer multiple options that are of valid en-
tity/event types, this gap was not necessarily
caused by the limited number of candidate an-
swers, as in the case with the answer extraction
datasets. Therefore, we inferred that in the solved
questions, incorrect options appeared less than the
correct option did or did not appear at all in the
context (such questions were regarded as solvable
exclusively using the word match skill, which we
analyzed in Section 4). Remarkably, although we
failed to achieve a higher baseline performance,
the score for the complete questions in MCTest
was lower than that of the k = 1 questions. This
result showed that the MCTest questions were suf-
ficiently difficult such that it was not especially
useful for the baseline system to consider the en-
tire question statement.

3.2 Attention-based Heuristic

Next, we examined in each dataset (i) how many
questions have their correct answers in the most
similar sentence and (ii) whether a performance
gap exists for such questions (i.e., whether such
questions are easier than the others).

We used uni-gram overlap as a similarity mea-
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Dataset MCTest RACE MCScript ARC-E ARC-C
St

at
is

tic
s

Style (metrics) multiple choice (accuracy)
Q sourcing reading

context
English
exam

script
scenario science exam

Genre narrative various narrative textbook

Split examined test test dev dev dev
# questions 840 4934 1411 2376 1171
Avg. # C tokens 249.9 339.3 195.2 142.0 138.3
Avg. # Q tokens 9.4 11.5 7.8 21.8 25.4
Avg. # sents 18.4 17.9 11.5 8.1 8.2

B
as

el
in

e
pe

rf
or

m
an

ce

Random 25.0 25.0 50.0 25.0 25.0
Official baseline 43.21 44.1 72.0 62.62 20.32

Our GA baseline 34.3 42.7 75.5 43.9 30.1

Q tokens (k=4) 36.1 38.4 73.7 38.8 30.6
(k=2) 33.9 37.7 71.1 37.0 29.0
(k=1) 34.9 36.4 70.9 35.3 28.6

Ans in sim sent 33.1 40.8 74.0 47.5 31.6
only w/ sim 32.4 40.4 74.4 48.5 28.9

Ans not in sim 34.9 43.3 75.8 40.4 29.4
% of # Q (in sim) 33.5 23.2 17.7 48.7 34.8

Hard subset 4.3 23.5 28.7 20.6 15.6
% of hard 62.4 58.8 27.1 53.9 66.4

Table 3: Statistics from the multiple-choice datasets
and their baselines. 1The Attentive Reader (Hermann
et al., 2015) from Yin et al. (2016). 2An information
retrieval system from Clark et al. (2018).

sure.5 We counted how many times question
words appeared in each sentence, where ques-
tion words were stemmed and stopwords were
dropped. We then checked whether the correct an-
swer appeared in the most similar sentence. For
the multiple-choice datasets, we selected the text
span that provided the highest Rouge-L score with
the correct option as the correct answer.

Results: Tables 2 and 3 show the results. Con-
sidering the average number of context sentences,
most datasets contained a significantly high pro-
portion of questions whose answers were in the
most similar sentence.

In the answer extraction and description
datasets, except QAngaroo, the baseline perfor-
mance improved when the correct answer ap-
peared in the most similar sentence, and gaps were
found between the performances on these ques-
tions and the others. These gaps indicated that
the dataset may lack balance for testing NLU. If
these questions tend to require the word match-
ing skill exclusively, attending the other por-
tion is useful in studying a more realistic NLU,
e.g., common-sense reasoning and discourse un-
derstanding. Therefore, we investigated whether

5Although there are other similarity measures, we used
this basic measure to obtain an intuitive result.

these questions merely require word matching (see
Section 4).

Meanwhile, in the first three multiple-choice
datasets, the performance differences were
marginal or inversed, implying that although the
baseline performance was not especially high,
the difficulty of these questions for the baseline
system was not affected by whether their correct
answers appeared in the most similar sentence.

We further analyzed the baseline performance
after removing the context and leaving only the
most similar sentence. In AddSent and QAnga-
roo, the scores remarkably improved (>20 F1).
From this result, we can infer that on these datasets
the baseline systems were distracted by other sen-
tences in the context. This observation was sup-
ported by the results from the AddSent dataset
(Jia and Liang, 2017), which contains manually
injected distracting sentences (i.e., adversarial ex-
amples).

3.3 Performance on Hard Subsets

In the previous two sections, we observed that
in the examined datasets (i) some questions were
solved by the baseline systems merely with the
first k tokens and/or (ii) the baseline performances
increased for questions whose answers were in
the most similar sentence. We were concerned
that these two will become dominant factors in
measuring the baseline performance using the
datasets; Hence, we split each development/test
set into easy and hard subsets for further inves-
tigation.

Hard subsets: A hard subset comprised ques-
tions (i) whose score is not positive when k = 2
and (ii) whose correct answer does not appear in
the most similar sentence. The easy subsets com-
prised the remaining questions. We aimed to in-
vestigate the gap of the performance values be-
tween the easy and hard subsets. If the gap is
large, the dataset may be strongly biased toward
questions that are solved by recognizing entity
types or lexical patterns and may not be suitable
for measuring the system’s ability for complex
reasoning.

Results and clarification: The bottom row of
Tables 2 and 3 shows that the baseline perfor-
mances on the hard subset remarkably decreased
in almost all examined datasets. These results
revealed that we may overestimate the ability of
the baseline systems previously perceived. How-
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ever, we clarify that our intention is not to remove
the questions solved or mitigated by our defined
heuristics to create a new hard subset because this
may generate new biases as indicated in Gururan-
gan et al. (2018). Rather, we would like to empha-
size the importance of the defined heuristics when
sourcing questions. Indeed, ill attention to these
heuristics can lead to unintended biases.

4 Annotating Question Validity and
Required Skills

4.1 Annotation Specifications
Objectives: To complement the observations in
the previous sections, we annotated sampled ques-
tions from each subset of the datasets. Our mo-
tivation can be summarized as follows: (i) How
many questions are valid in each dataset? That
is, the hard questions may not in fact be hard,
but just unsolvable, as indicated in Chen et al.
(2016). (ii) What kinds of reasoning skills explain
the easy/hard questions? (iii) Are there any differ-
ences among the datasets and the question styles?

We annotated the minimum skills required to
choose the correct answer among other candidates.
We assumed that the solver knows what type of
entity or event is entailed by the question.

Annotation labels: Our annotation labels (Ta-
ble 4) were inspired by previous works such as
Chen et al. (2016), Trischler et al. (2017), and
Lai et al. (2017). The major modifications were
twofold: (i) detailed question validity, including a
number of reasonable candidate answers and an-
swer ambiguity, and (ii) posing multiple-sentence
reasoning as a skill compatible with other skills.

Reasoning types indeed have other classifica-
tions. For instance, Lai et al. (2017) defined five
reasoning types, including attitude analysis and
whole-picture reasoning. We incorporated them
into the knowledge and meta/whole classes. Clark
et al. (2018) proposed detailed knowledge and rea-
soning types, but these were specific to science ex-
ams and, thus, omitted from our study.

Independent of the abovementioned reasoning
types, we checked whether the question required
multiple-sentence reasoning to answer the ques-
tions. As another modification, we extended the
notion of “sentence” in our annotation and con-
sidered a subordinate clause as a sentence. This
modification was intended to deal with the inter-
nal complexity of a sentence with multiple clauses,
which can also render a question difficult.

Validity
1. Unsolvable – the context coupled with the ques-

tion does not reasonably give the answer.
2. Single candidate – the question does not have

multiple candidate answers.
3. Ambiguous – the question does not have a unique,

decidable answer, or, multiple possible answers
are not covered by the gold answers.

Reasoning skill
4. Word matching – matching the context and ques-

tion words.
5. Paraphrasing – using lexical and grammatical

knowledge.
6. Knowledge – inference using commonsense

and/or world knowledge.
7. Meta/Whole – understanding meta terms, such

as “author” and “writer,” and comprehending the
general context.

8. Math/Logic – using mathematical and logical
knowledge, includeing multiple-choice questions
that ask “which option is not true.”

Multiple-sentence reasoning
9. (i) coreference (ii) causal relation (iii) spatial–

temporal relations (iv) none – gathering cues from
multiple sentences/clauses.

Table 4: Annotation labels. One of the reasoning skills
is annotated with the questions that are “no” in all va-
lidity labels. Multiple sentence reasoning is indepen-
dent of reasoning skills and annotated with all valid
questions.

Settings: For each subset of the datasets, 30
questions were annotated. Therefore we obtained
annotations for 30 ⇥ 2 ⇥ 12 = 720 questions. The
annotation was performed by the authors. The an-
notator was given the context, question, and candi-
date answers for multiple-choice questions along
with the correct answer. To reduce bias, the anno-
tator did not know which easy or hard subset the
questions were in, and was not told the predictions
and scores of the respective baseline systems.

4.2 Annotation Results
Tables 5 and 6 show the annotation results.

Validity: TriviaQA, QAngaroo, and ARCs
revealed a relatively high unsolvability, which
seemed to be caused by the unrelatedness between
the questions and their context. For example,
QAngaroo’s context was gathered from Wikipedia
articles that were not necessarily related to the
questions.6 The context passages in ARCs were

6Nonetheless, it is remarkable that even though the dataset
was automatically constructed, the remaining valid hard
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Dataset SQuAD AddSent NewsQA TriviaQA QAngaroo MARCO NarraQA
Subset easy hard easy hard easy hard easy hard easy hard easy hard easy hard
F1/Rouge-L 80.9 37.6 61.5 29.5 52.7 30.3 70.6 33.4 71.1 3.5 49.4 21.5 54.9 51.2

Va
lid

ity
Unsolvable 0.0 0.0 0.0 0.0 0.0 6.7 16.7 16.7 33.3 43.3 0.0 0.0 0.0 0.0
Single cand. 23.3 10.0 6.7 3.3 10.0 3.3 3.3 6.7 6.7 3.3 0.0 0.0 6.7 0.0
Ambiguous 3.3 13.3 3.3 13.3 43.3 30.0 13.3 13.3 13.3 20.0 6.7 3.3 0.0 0.0
Valid 73.3 76.7 90.0 83.3 46.7 60.0 66.7 63.3 46.7 33.3 93.3 96.7 93.3 100.0

Sk
ill

Word match 59.1 21.7 55.6 24.0 42.9 66.7 45.0 26.3 35.7 20.0 89.3 44.8 46.4 43.3
Paraphrasing 18.2 26.1 11.1 36.0 21.4 11.1 5.0 10.5 7.1 20.0 0.0 10.3 25.0 20.0
Knowledge 22.7 47.8 33.3 40.0 35.7 22.2 50.0 63.2 57.1 60.0 10.7 44.8 28.6 33.3
Meta/Whole 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3
Math/Logic 0.0 4.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

R
el

at
io

n Multi sent. 22.7 17.4 25.9 36.0 35.7 16.7 35.0 36.8 57.1 80.0 7.1 13.8 28.6 46.7
Coreference 18.2 17.4 14.8 32.0 21.4 16.7 35.0 31.6 50.0 50.0 7.1 13.8 14.3 33.3
Causal 0.0 0.0 3.7 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.3 6.7
Space/Temp. 4.5 0.0 7.4 0.0 14.3 0.0 0.0 5.3 7.1 30.0 0.0 0.0 0.0 6.7

Table 5: Annotation results for the answer extraction and description datasets.

Dataset MCTest RACE MCScript ARC-E ARC-C
Subset easy hard easy hard easy hard easy hard easy hard
Accuracy 83.3 13.3 76.7 30.0 93.3 26.7 60.0 16.7 43.3 10.0

Va
lid

ity

Unsolvable 0.0 0.0 0.0 0.0 0.0 0.0 3.3 30.0 46.7 33.3
Single cand. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ambiguous 0.0 0.0 3.3 0.0 0.0 0.0 3.3 0.0 3.3 3.3
Valid 100.0 100.0 96.7 100.0 100.0 100.0 93.3 70.0 50.0 63.3

Sk
ill

Word match 56.7 46.7 17.2 6.7 36.7 46.7 71.4 52.4 33.3 15.8
Paraphrasing 6.7 10.0 13.8 6.7 20.0 6.7 14.3 19.0 20.0 31.6
Knowledge 30.0 26.7 34.5 43.3 20.0 36.7 14.3 23.8 40.0 42.1
Meta/Whole 3.3 3.3 31.0 33.3 20.0 10.0 0.0 0.0 0.0 0.0
Math/Logic 3.3 13.3 3.4 10.0 3.3 0.0 0.0 4.8 6.7 10.5

R
el

at
io

n Multi sent. 46.7 73.3 58.6 76.7 0.0 30.0 7.1 14.3 0.0 10.5
Coreference 33.3 56.7 44.8 60.0 0.0 16.7 7.1 9.5 0.0 0.0
Causal 6.7 6.7 3.4 13.3 0.0 3.3 0.0 0.0 0.0 0.0
Space/Temp. 6.7 10.0 10.3 3.3 0.0 10.0 0.0 4.8 0.0 10.5

Table 6: Annotation results for the multiple-choice datasets.

Label r p

Single cand (BiDAF) 0.150 0.002
Ambiguous (BiDAF) 0.098 0.044
Word matching (BiDAF) 0.266 0.000
Knowledge (BiDAF) -0.288 0.000
Multi sent (BiDAF) -0.120 0.035
Unsolvable (GA) -0.119 0.039

Table 7: Pearson’s correlation coefficients (r) between
the annotation labels and the baseline scores with p <
0.05.

curated from textbooks that may not provide suf-
ficient information to answer the questions.7 Note

questions were difficult for the baseline system.
7Our analysis was not intended to undermine the quality

that it is possible for unsolvable questions to be
permitted, and that the system must indicate them
in some datasets, such as QA4MRE, NewsQA,
MARCO, and SQuAD (v2.0).

However, for single candidate, we found that
few questions had only single-candidate an-
swers. Furthermore, there were even fewer single-
candidate answers in AddSent than in SQuAD.
This result supported the claim that the adversar-
ial examples augmented the number of possible
candidate answers, thereby degrading the baseline
performance.

In our annotation, ambiguous questions were

of these questions. We refer readers to Clark et al. (2018).
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ID: ./cnn/stories/4ca29639845a40551a62d10212a46aec7caf3369.story-2

Context: [...] This plot of land is scheduled to house
the permanent United Airlines Flight 93 memorial. [...]
Question: What was the name of the flight?
Answer: 93
Possible answers: United Airlines Flight 93, Flight 93

Figure 2: Example of an ambiguous question from
NewsQA (Trischler et al., 2017).

found to be those with multiple correct spans. Fig-
ure 2 shows an example. In this case, several an-
swers aside from “93” were correct. Ambiguity is
an important feature insofar because it can lead to
unstable scoring in EM/F1.

The multiple-choice datasets mostly comprised
valid questions, with the exception of the unsolv-
able questions in the ARC datasets.

Reasoning skills: We can see that word match-
ing was more important in the easy subsets, and
knowledge was more pertinent to the hard sub-
sets in 10 of the 12 datasets. These results con-
firmed that the manner by which we split the sub-
sets was successful at filtering questions that were
relatively easy in terms of reasoning skills. How-
ever, we did not observe this trend with paraphras-
ing, which seemed difficult to distinguish from
word matching and knowledge. With regard to
meta/whole and math/logic, we can see that these
skills were needed less in the answer extraction
and description datasets. They were more perti-
nent to the multiple-choice datasets.

Multiple-sentence reasoning: Multiple-
sentence reasoning was more correlated with the
hard subsets in 10 of the 12 datasets. Although
NewsQA showed the inverse tendency for word
matching, knowledge, and multiple-sentence
reasoning, we suspect that this was caused by
annotation variance and filtering a large portion of
ambiguous questions. For relational types, we did
not see a significant trend in any particular type.

Correlation of labels and baseline scores:
Across all examined datasets, we analyzed the cor-
relations between the annotation labels and the
scores of each baseline system in Table 7. In spite
of the small size of the annotated samples, we de-
rived statistically significant correlations for six
labels. These results confirmed that BiDAF per-
formed well for the word matching questions and
relatively poorly with the knowledge questions.
By contrast, we did not observe this trend in GA.

5 Discussion

In this section, we discuss the advantages and dis-
advantages of the question styles. We also inter-
pret the defined heuristics in terms of constructing
more realistic MRC datasets.

Differences among the question styles: The
biggest advantage to the answer extraction style
is its ease in generating questions, which enables
us to produce large-scale datasets. In contrast, a
disadvantage to this style is that it rarely demands
meta/whole and math/logic skills, which can re-
quire answers not contained in the context. More-
over, as observed in Section 4, it seems difficult to
guarantee that all possible answer spans are given
as the correct answers. By contrast, the descrip-
tion and multiple-choice styles have the advantage
of having no such restrictions on the appearance of
candidate answers (Kočiský et al., 2018; Khashabi
et al., 2018). Nonetheless, the description style
is difficult to evaluate because the Rouge-L and
BLEU scores are insufficient for testing NLU.
Whereas it is easy to evaluate the performance
on multiple-choice questions, generating multiple
reasonable options requires considerable effort.

Interpretation of our heuristics: When we re-
gard the MRC task as recognizing textual entail-
ment (RTE) (Dagan et al., 2006), the task requires
the reader to construct one or more premises from
the context and form the most reasonable hy-
pothesis from the question and candidate answer
(Sachan et al., 2015). Thus, easier questions are
those (i) where the reader needs to generate only
one hypothesis, and (ii) where the premises di-
rectly describe the correct hypothesis. Our two
heuristics can also be seen as the formalizations
of these criteria. Therefore, to make questions
more realistic, we need to create multiple hypothe-
ses that require complex reasoning to be distin-
guished. Moreover, the integration of premises
should be complemented by external knowledge
to provide sufficient information to verify the cor-
rect hypothesis.

6 Related Work

Our heuristics and annotation were motivated by
unintended biases (Levesque, 2014) and evalua-
tion overfitting (Whiteson et al., 2011), respec-
tively.

Unintended biases: The MRC task tests a read-
ing process that involves retrieving stored infor-
mation and performing inferences (Sutcliffe et al.,
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2013). However, constructing datasets that com-
prehensively require those skills is difficult. As
Levesque (2014) discussed as a desideratum for
testing AI, we should avoid creating questions that
can be solved by matching patterns, using unin-
tended biases, and selectional restrictions. For the
unintended biases, one suggestive example is the
Story Cloze Test (Mostafazadeh et al., 2016), in
which a system chooses a sentence among candi-
dates to conclude a given paragraph of the story. A
recent attempt at this task showed that recognizing
superficial features in the correct candidate is crit-
ical to achieve the state of the art (Schwartz et al.,
2017).

Similarly, in MRC, Weissenborn et al. (2017)
proposed context/type matching heuristic to de-
velop a simple neural system. Min et al. (2018)
observed that, in SQuAD, 92% of answerable
questions can be answered only using a single
context sentence. In visual question answering,
Agrawal et al. (2016) analyzed the behavior of
models with the variable length of the first ques-
tion words. Khashabi et al. (2018) more re-
cently proposed a dataset with questions for multi-
sentence reasoning.

Evaluation overfitting: The theory be-
hind evaluating AI distinguishes between task-
and skill-oriented approaches (Hernández-Orallo,
2017). In the task-oriented approach, we usually
develop a system and test it on a specific dataset.
The developed system sometimes lacks general-
ity but achieves the state of the art for that spe-
cific dataset. Further, it becomes difficult to verify
and explain the solution to tasks. The situation in
which we are biased to the specific tasks is called
evaluation overfitting (Whiteson et al., 2011). By
contrast, with the skill-oriented approach, we aim
to interpret the relationships between tasks and
skills. This orientation can encourage the devel-
opment of more realistic NLU systems.

As One of our goals was to investigate whether
easy questions are dominant in recent datasets, it
did not necessarily require a detailed classifica-
tion of reasoning types. Nonetheless, we recog-
nize there are more fine-grained classifications of
the required skills for NLU. For example, Weston
et al. (2015) defined 20 skills as a set of toy tasks.
Sugawara et al. (2017) also organized 10 prerequi-
site skills for MRC. LoBue and Yates (2011) and
Sammons et al. (2010) analyzed entailment phe-
nomena using detailed classifications in RTE. For

the ARC dataset, Boratko et al. (2018) proposed
knowledge and reasoning types.

7 Conclusion

This study examined MRC questions from 12
datasets to determine what makes such questions
easier to answer. We defined two heuristics that
limit candidate answers and thereby mitigate the
difficulty of questions. Using these heuristics, the
datasets were split into easy and hard subsets. We
further annotated the questions with their validity
and the reasoning skills needed to answer them.
Our experiments revealed that the baseline perfor-
mance degraded with the hard questions, which re-
quired knowledge inference and multiple-sentence
reasoning compared to easy questions. These re-
sults suggest that one might overestimate the abil-
ity of the baseline systems. They also empha-
size the importance of analyzing and reporting the
properties of new datasets when released. One
limitation of this work was the heavy cost of the
annotation. In future research, we plan to explore
a method for automatically classifying reasoning
types. This will enable us to evaluate systems
through a detailed organization of the datasets.
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A Hyperparameters of the Baseline
Systems

We used different hyperparameters for each
dataset because of the different characteristics of
the datasets, e.g., the context length. Tables 8 and
9 show the hyperparameters.

Dataset b h q d

SQuAD 60 100 400 20
AddSent 60 100 400 20
NewsQA 32 100 1000 20
TriviaQA 32 100 400 20
QAngaroo 16 50 4096 20
MARCO 20 40 1600 30
NarrativeQA 60 50 1000 20

Table 8: Hyperparameters (batch size b, hidden layer
size h, document size threshold d, question size thresh-
old q) of the Bidirectional Attention Flow (Seo et al.,
2017) for each dataset. The other settings basically fol-
lowed the original implementation. In TriviaQA, we
followed a method for the dataset preparation used in
Joshi et al. (2017).

Dataset b h n dr lr

MCTest 10 32 1 0.5 0.01
RACE 32 128 1 0.2 0.1
MCScript 25 64 1 0.5 0.2
ARC-E 32 256 1 0.5 0.3
ARC-C 32 256 1 0.5 0.3

Table 9: Hyperparameters (batch size b, hidden layer
size h, number of attention layers n, dropout rate dr,
learning rate lr) of the Gated-Attentive Reader (Dhin-
gra et al., 2017) for each dataset. The other settings ba-
sically followed the implementation in Lai et al. (2017).
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Abstract
Reading comprehension QA tasks have seen
a recent surge in popularity, yet most works
have focused on fact-finding extractive QA.
We instead focus on a more challenging multi-
hop generative task (NarrativeQA), which re-
quires the model to reason, gather, and synthe-
size disjoint pieces of information within the
context to generate an answer. This type of
multi-step reasoning also often requires under-
standing implicit relations, which humans re-
solve via external, background commonsense
knowledge. We first present a strong genera-
tive baseline that uses a multi-attention mech-
anism to perform multiple hops of reasoning
and a pointer-generator decoder to synthesize
the answer. This model performs substantially
better than previous generative models, and is
competitive with current state-of-the-art span
prediction models. We next introduce a novel
system for selecting grounded multi-hop re-
lational commonsense information from Con-
ceptNet via a pointwise mutual information
and term-frequency based scoring function.
Finally, we effectively use this extracted com-
monsense information to fill in gaps of reason-
ing between context hops, using a selectively-
gated attention mechanism. This boosts the
model’s performance significantly (also veri-
fied via human evaluation), establishing a new
state-of-the-art for the task. We also show
that our background knowledge enhancements
are generalizable and improve performance on
QAngaroo-WikiHop, another multi-hop rea-
soning dataset.

1 Introduction
In this paper, we explore the task of machine
reading comprehension (MRC) based QA. This
task tests a model’s natural language understand-
ing capabilities by asking it to answer a question

⇤ Equal contribution (published at EMNLP 2018).
We publicly release all our code, models, and data at:

https://github.com/yicheng-w/CommonSenseMultiHopQA

based on a passage of relevant content. Much
progress has been made in reasoning-based MRC-
QA on the bAbI dataset (Weston et al., 2016),
which contains questions that require the combi-
nation of multiple disjoint pieces of evidence in
the context. However, due to its synthetic nature,
bAbI evidences have smaller lexicons and sim-
pler passage structures when compared to human-
generated text.

There also have been several attempts at the
MRC-QA task on human-generated text. Large
scale datasets such as CNN/DM (Hermann et al.,
2015) and SQuAD (Rajpurkar et al., 2016) have
made the training of end-to-end neural models
possible. However, these datasets are fact-based
and do not place heavy emphasis on multi-hop rea-
soning capabilities. More recent datasets such as
QAngaroo (Welbl et al., 2018) have prompted a
strong focus on multi-hop reasoning in very long
texts. However, QAngaroo is an extractive dataset
where answers are guaranteed to be spans within
the context; hence, this is more focused on fact
finding and linking, and does not require models
to synthesize and generate new information.

We focus on the recently published Narra-
tiveQA generative dataset (Kočiskỳ et al., 2018)
that contains questions requiring multi-hop rea-
soning for long, complex stories and other nar-
ratives, which requires the model to go beyond
fact linking and to synthesize non-span answers.
Hence, models that perform well on previous rea-
soning tasks (Dhingra et al., 2018) have had lim-
ited success on this dataset. In this paper, we first
propose the Multi-Hop Pointer-Generator Model
(MHPGM), a strong baseline model that uses mul-
tiple hops of bidirectional attention, self-attention,
and a pointer-generator decoder to effectively read
and reason within a long passage and synthesize
a coherent response. Our model achieves 41.49
Rouge-L and 17.33 METEOR on the summary
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subtask of NarrativeQA, substantially better than
the performance of previous generative models.

Next, to address the issue that understand-
ing human-generated text and performing long-
distance reasoning on it often involves intermittent
access to missing hops of external commonsense
(background) knowledge, we present an algorithm
for selecting useful, grounded multi-hop relational
knowledge paths from ConceptNet (Speer and
Havasi, 2012) via a pointwise mutual information
(PMI) and term-frequency-based scoring func-
tion. We then present a novel method of insert-
ing these selected commonsense paths between
the hops of document-context reasoning within
our model, via the Necessary and Optional Infor-
mation Cell (NOIC), which employs a selectively-
gated attention mechanism that utilizes common-
sense information to effectively fill in gaps of in-
ference. With these additions, we further improve
performance on the NarrativeQA dataset, achiev-
ing 44.16 Rouge-L and 19.03 METEOR (also ver-
ified via human evaluation). We also provide man-
ual analysis on the effectiveness of our common-
sense selection algorithm.

Finally, to show the effectiveness and gener-
alizability of our multi-hop reasoning and com-
monsense methods, we also tested our MH-
PGM and MHPGM+NOIC models on QAngaroo-
WikiHop (Welbl et al., 2018), which is an extrac-
tive dataset for multi-hop reasoning on human-
generated documents. We found that our back-
ground commonsense knowledge enhanced model
achieved 1.5% higher accuracy than our strong
baseline.

2 Related Work

Machine Reading Comprehension: MRC has
long been a task used to assess a model’s ability
to understand and reason about language. Large
scale datasets such as CNN/Daily Mail (Her-
mann et al., 2015) and SQuAD (Rajpurkar et al.,
2016) have encouraged the development of many
advanced, high performing attention-based neural
models (Seo et al., 2017; Dhingra et al., 2017).
Concurrently, datasets such as bAbI (Weston et al.,
2016) have focused specifically on multi-step rea-
soning by requiring the model to reason with
disjoint pieces of information. On this task,
it has been shown that iteratively updating the
query representation with information from the
context can effectively emulate multi-step reason-

ing (Sukhbaatar et al., 2015).

More recently, there has been an increase in
multi-paragraph, multi-hop inference QA datasets
such as QAngaroo (Welbl et al., 2018) and Narra-
tiveQA (Kočiskỳ et al., 2018). These datasets have
much longer contexts than previous datasets, and
answering a question often requires the synthesis
of multiple discontiguous pieces of evidence. It
has been shown that models designed for previ-
ous tasks (Seo et al., 2017; Kadlec et al., 2016)
have limited success on these new datasets. In
our work, we expand upon Gated Attention Net-
work (Dhingra et al., 2017) to create a baseline
model better suited for complex MRC datasets
such as NarrativeQA by improving its attention
and gating mechanisms, expanding its generation
capabilities, and allowing access to external com-
monsense for connecting implicit relations.

Commonsense/Background Knowledge: Com-
monsense or background knowledge has been
used for several tasks including opinion min-
ing (Cambria et al., 2010), sentiment analy-
sis (Poria et al., 2015, 2016), handwritten text
recognition (Wang et al., 2013), and more re-
cently, dialogue (Young et al., 2018; Ghazvinine-
jad et al., 2018). These approaches add com-
monsense knowledge as relation triples or fea-
tures from external databases. Recently, large-
scale graphical commonsense databases such as
ConceptNet (Speer and Havasi, 2012) use graph-
ical structure to express intricate relations be-
tween concepts, but effective goal-oriented graph
traversal has not been extensively used in previous
commonsense incorporation efforts. Knowledge-
base QA is a task in which systems are asked to
find answers to questions by traversing knowledge
graphs (Bollacker et al., 2008). Knowledge path
extraction has been shown to be effective at the
task (Bordes et al., 2014; Bao et al., 2016). We ap-
ply these techniques to MRC-QA by using them to
extract useful commonsense knowledge paths that
fully utilize the graphical nature of databases such
as ConceptNet (Speer and Havasi, 2012).

Incorporation of External Knowledge: There
have been several attempts at using external
knowledge to boost model performance on a vari-
ety of tasks: Chen et al. (2018) showed that adding
lexical information from semantic databases such
as WordNet improves performance on NLI; Xu
et al. (2017) used a gated recall-LSTM mechanism
to incorporate commonsense information into to-
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ken representations in dialogue.
In MRC, Weissenborn et al. (2017) integrated

external background knowledge into an NLU
model by using contextually-refined word em-
beddings which integrated information from Con-
ceptNet (single-hop relations mapped to unstruc-
tured text) via a single layer bidirectional LSTM.
Concurrently to our work, Mihaylov and Frank
(2018) showed improvements on a cloze-style task
by incorporating commonsense knowledge via a
context-to-commonsense attention, where com-
monsense relations were extracted as triples. This
work represented commonsense relations as key-
value pairs and combined context representation
and commonsense via a static gate.

Differing from previous works, we employ
multi-hop commonsense paths (multiple con-
nected edges within ConceptNet graph that give
us information beyond a single relationship triple)
to help with our MRC model. Moreover, we use
this in tandem with our multi-hop reasoning archi-
tecture to incorporate different aspects of the com-
monsense relationship path at each hop, in order
to bridge different inference gaps in the multi-hop
QA task. Additionally, our model performs syn-
thesis with its external, background knowledge as
it generates, rather than extracts, its answer.

3 Methods

3.1 Multi-Hop Pointer-Generator Baseline
We first rigorously state the problem of genera-
tive QA as follows: given two sequences of input
tokens: the context, XC = {wC

1 , wC
2 , . . . , wC

n }
and the query, XQ = {wQ

1 , wQ
2 , . . . , wQ

m}, the
system should generate a series of answer tokens
Xa = {wa

1 , wa
2 , . . . , wa

p}. As outlined in previous
sections, an effective generative QA model needs
to be able to perform several hops of reasoning
over long and complex passages. It would also
need to be able to generate coherent statements to
answer complex questions while having the abil-
ity to copy rare words such as specific entities
from the reading context. With these in mind, we
propose the Multi-Hop Pointer-Generator Model
(MHPGM) baseline, a novel combination of previ-
ous works with the following major components:

• Embedding Layer: The tokens are embedded
into both learned word embeddings and pre-
trained context-aware embeddings (ELMo (Pe-
ters et al., 2018)).

• Reasoning Layer: The embedded context is
then passed through k reasoning cells, each
of which iteratively updates the context repre-
sentation with information from the query via
BiDAF attention (Seo et al., 2017), emulating a
single reasoning step within the multi-step rea-
soning process.

• Self-Attention Layer: The context representa-
tion is passed through a layer of self-attention
(Cheng et al., 2016) to resolve long-term depen-
dencies and co-reference within the context.

• Pointer-Generator Decoding Layer: A
attention-pointer-generator decoder (See et al.,
2017) that attends on and potentially copies
from the context is used to create the answer.

The overall model is illustrated in Fig. 1, and
the layers are described in further detail below.
Embedding layer: We embed each word from the
context and question with a learned embedding
space of dimension d. We also obtain context-
aware embeddings for each word via the pre-
trained embedding from language models (ELMo)
(1024 dimensions). The embedded representation
for each word in the context or question, eC

i or
eQ

i 2 R
d+1024, is the concatenation of its learned

word embedding and ELMo embedding.
Reasoning layer: Our reasoning layer is com-
posed of k reasoning cells (see Fig. 1), where each
incrementally updates the context representation.
The tth reasoning cell’s inputs are the previous
step’s output ({ct�1

i }n
i=1) and the embedded ques-

tion ({eQ
i }m

i=1). It first creates step-specific con-
text and query encodings via cell-specific bidirec-
tional LSTMs:
ut = BiLSTM(ct�1); vt = BiLSTM(eQ)

Then, we use bidirectional attention (Seo et al.,
2017) to emulate a hop of reasoning by focusing
on relevant aspects of the context. Specifically, we
first compute context-to-query attention:

St
ij = W t

1u
t
i + W t

2v
t
j + W t

3(u
t
i � vt

j)

pt
ij =

exp(St
ij)Pm

k=1 exp(St
ik)

(cq)t
i =

mX

j=1

pt
ijv

t
j

where W t
1 , W t

2 , W t
3 are trainable parameters, and

� is elementwise multiplication. We then com-
pute a query-to-context attention vector:

mt
i = max

1jm
St

ij
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Figure 1: Architecture for our Multi-Hop Pointer-Generator Model, and the NOIC commonsense reasoning cell.

pt
i =

exp(mt
i)Pn

j=1 exp(mt
j)

qc
t =

nX

i=1

pt
iu

t
i

We then obtain the updated context representation:

ct
i = [ut

i; (cq)t
i;u

t
i � (cq)t

i;qc
t � (cq)t

i]

where ; is concatenation, ct is the cell’s output.
The initial input of the reasoning layer is the

embedded context representation, i.e., c0 = eC ,
and the final output of the reasoning layer is the
output of the last cell, ck.
Self-Attention Layer: As the final layer before
answer generation, we utilize a residual static self-
attention mechanism (Clark and Gardner, 2018) to
help the model process long contexts with long-
term dependencies. The input of this layer is the
output of the last reasoning cell, ck. We first pass
this representation through a fully-connected layer
and then a bi-directional LSTM to obtain another
representation of the context cSA. We obtain the
self attention representation c0:

SSA
ij = W4c

SA
i + W5c

SA
j + W6(c

SA
i � cSA

j )

pSA
ij =

exp(SSA
ij )

Pn
k=1 exp(SSA

ik )

c0
i =

nX

j=1

pSA
ij cSA

j

where W4, W5, and W6 are trainable parameters.
The output of the self-attention layer is gener-

ated by another layer of bidirectional LSTM.

c00 = BiLSTM([c0; cSA; c0 � cSA]

Finally, we add this residually to ck to obtain the
encoded context c = ck + c00.
Pointer-Generator Decoding Layer: Similar to
the work of See et al. (2017), we use a pointer-
generator model attending on (and potentially
copying from) the context.

At decoding step t, the decoder receives the in-
put xt (embedded representation of last timestep’s
output), the last time step’s hidden state st�1 and
context vector at�1. The decoder computes the
current hidden state st as:

st = LSTM([xt;at�1], st�1)

This hidden state is then used to compute a proba-
bility distribution over the generative vocabulary:

Pgen = softmax(Wgenst + bgen)

We employ Bahdanau attention mecha-
nism (Bahdanau et al., 2015) to attend over the
context (c being the output of self-attention layer):

↵i = v| tanh(Wcci + Wsst + battn)
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"What is the connection
between Esther and Lady
Dedlock?"

"Mother and daughter."

"Sir Leicester Dedlock and his 
wife Lady Honoria live on his 
estate at Chesney Wold.."

"..Unknown to Sir Leicester, 
Lady Dedlock had a lover .. 
before she married and had a
daughter with him.."

"..Lady Dedlock believes her 
daughter is dead. The 
daughter, Esther, is in fact 
alive.."

"..Esther sees Lady Dedlock at
church and talks with her later
at Chesney Wod though neither
woman recognizes their 
connection.."

2c

lady

1c 3c 4c 5c1r 2r 3r 4r

Context

AnswersQuestion

ConceptNet

wife marry

mother daughter child

church house child     their

person lover

"Mother and illegitimate
child."

Figure 2: Commonsense selection approach.

↵̂i =
exp(↵i)Pn

j=1 exp(↵j)

at =
nX

i=1

↵̂ici

We utilize a pointer mechanism that allows the
decoder to directly copy tokens from the context
based on ↵̂i. We calculate a selection distribution
psel 2 R

2, where psel
1 is the probability of gener-

ating a token from Pgen and psel
2 is the probability

of copying a word from the context:

o = �(Waat + Wxxt + Wsst + bptr)

psel = softmax(o)

Our final output distribution at timestep t is a
weighted sum of the generative distribution and
the copy distribution:

Pt(w) = psel
1 Pgen(w) + psel

2

X

i:wC
i =w

↵̂i

3.2 Commonsense Selection and
Representation

In QA tasks that require multiple hops of reason-
ing, the model often needs knowledge of relations
not directly stated in the context to reach the cor-
rect conclusion. In the datasets we consider, man-
ual analysis shows that external knowledge is fre-
quently needed for inference (see Table 1).

Even with a large amount of training data, it
is very unlikely that a model is able to learn ev-
ery nuanced relation between concepts and ap-
ply the correct ones (as in Fig. 2) when reasoning

Dataset Outside Knowledge Required

WikiHop 11%
NarrativeQA 42%

Table 1: Qualitative analysis of commonsense require-
ments. WikiHop results are from Welbl et al. (2018);
NarrativeQA results are from our manual analysis (on
the validation set).

about a question. We remedy this issue by intro-
ducing grounded commonsense (background) in-
formation using relations between concepts from
ConceptNet (Speer and Havasi, 2012)1 that help
inference by introducing useful connections be-
tween concepts in the context and question.

Due to the size of the semantic network and
the large amount of unnecessary information, we
need an effective way of selecting relations which
provides novel information while being grounded
by the context-query pair. Our commonsense se-
lection strategy is twofold: (1) collect potentially
relevant concepts via a tree construction method
aimed at selecting with high recall candidate rea-
soning paths, and (2) rank and filter these paths to
ensure both the quality and variety of added infor-
mation via a 3-step scoring strategy (initial node
scoring, cumulative node scoring, and path selec-
tion). We will refer to Fig. 2 as a running example
throughout this section.2

3.2.1 Tree Construction
Given context C and question Q, we want to con-
struct paths grounded in the pair that emulate rea-
soning steps required to answer the question. In
this section, we build ‘prototype’ paths by con-
structing trees rooted in concepts in the query with
the following branching steps3 to emulate multi-
hop reasoning process. For each concept c1 in the
question, we do:
Direct Interaction: In the first level, we select re-
lations r1 from ConceptNet that directly link c1

to a concept within the context, c2 2 C, e.g., in
Fig. 2, we have lady ! church, lady ! mother,
lady ! person.
Multi-Hop: We then select relations in Concept-
Net r2 that link c2 to another concept in the con-
text, c3 2 C. This emulates a potential reason-

1A semantic network where the nodes are individual con-
cepts (words or phrases) and the edges describe directed re-
lations between them (e.g., hisland, UsedFor, vacationi).

2We release all our commonsense extraction code and
the extracted commonsense data at: https://github.com/
yicheng-w/CommonSenseMultiHopQA

3If we are unable to find a relation that satisfies the condi-
tion, we keep the steps up to and including the node.
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ing hop within the context of the MRC task, e.g.,
church ! house, mother ! daughter, person !
lover.
Outside Knowledge: We then allow an uncon-
strained hop into c3’s neighbors in ConceptNet,
getting to c4 2 nbh(c3) via r3 (nbh(v) is the set
of nodes that can be reached from v in one hop).
This emulates the gathering of useful external in-
formation to complete paths within the context,
e.g., house ! child, daughter ! child.
Context-Grounding: To ensure that the exter-
nal knowledge is indeed helpful to the task, and
also to explicitly link 2nd degree neighbor con-
cepts within the context, we finish the process by
grounding it again into context by connecting c4

to c5 2 C via r4, e.g., child ! their.

3.2.2 Rank and Filter
This tree building process collects a large number
of potentially relevant and useful paths. However,
this step also introduces a large amount of noise.
For example, given the question and full context
(not depicted in the figure) in Fig. 2, we obtain
the path “between ! hard ! being ! cottage !
country” using our tree building method, which is
not relevant to our question. Therefore, to improve
the precision of useful concepts, we rank these
knowledge paths by their relevance and filter out
noise using the following 3-step scoring method:
Initial Node Scoring: We want to select paths
with nodes that are important to the context,
in order to provide the most useful common-
sense relations. We approximate importance and
saliency for concepts in the context by their term-
frequency, under the heuristic that important con-
cepts occur more frequently. Thus we score c 2
{c2, c3, c5} by: score(c) = count(c)/|C|, where
|C| is the context length and count() is the num-
ber of times a concept appears in the context. In
Fig. 2, this ensures that concepts like daughter are
scored highly due to their frequency in the context.

For c4, we use a special scoring function as it is
an unconstrained hop into ConceptNet. We want
c4 to be a logically consistent next step in reason-
ing following the path of c1 to c3, e.g., in Fig. 2, we
see that child is a logically consistent next step af-
ter the partial path of mother ! daughter. We ap-
proximate this based on the heuristic that logically
consistent paths occur more frequently. Therefore,
we score this node via Pointwise Mutual Informa-
tion (PMI) between the partial path c1�3 and c4:
PMI(c4, c1�3) = log(P(c4, c1�3)/P(c4)P(c1�3)),

where

P(c4, c1�3) =
# of paths connecting c1, c2, c3, c4

# of distinct paths of length 4

P(c4) =
# of nodes that can reach c4

|ConceptNet|

P(c1�3) =
# of paths connecting c1, c2, c3

# of paths of length 3

Further, it is well known that PMI has high
sensitivity to low-frequency values, thus we
use normalized PMI (NPMI) (Bouma, 2009):
score(c4) = PMI(c4, c1�3)/(� log P(c4, c1�3)).

Since the branching at each juncture represents
a hop in the multi-hop reasoning process, and hops
at different levels or with different parent nodes do
not ‘compete’ with each other, we normalize each
node’s score against its siblings:

n-score(c) = softmaxsiblings(c)(score(c)).

Cumulative Node Scoring: We want to add com-
monsense paths consisting of multiple hops of
relevant information, thus we re-score each node
based not only on its relevance and saliency but
also that of its tree descendants.

We do this by computing a cumulative node
score from the bottom up, where at the leaf nodes,
we have c-score = n-score, and for cl not a leaf
node, we have c-score(cl) = n-score(cl) + f(cl)
where f of a node is the average of the c-scores of
its top 2 highest scoring children.

For example, given the paths lady ! mother !
daughter, lady ! mother ! married, and lady !
mother ! book, we start the cumulative scoring
at the leaf nodes, which in this case are daugh-
ter, married, and book, where daughter and mar-
ried are scored much higher than book due to their
more frequent occurrences. Then, to cumulatively
score mother , we would take the average score of
its two highest scoring children (in this case mar-
ried and daughter) and compound that with the
score of mother itself. Note that the poor scoring
of the irrelevant concept book does not affect the
scoring of mother, which is quite high due to the
concept’s frequent occurrence and the relevance of
its top scoring children.
Path Selection: We select paths in a top-down
breath-first fashion in order to add information rel-
evant to different parts of the context. Starting at
the root, we recursively take two of its children
with the highest cumulative scores until we reach
a leaf, selecting up to 24 = 16 paths. For example,

4225



if we were at node mother, this allows us to se-
lect the child node daughter and married over the
child node book. These selected paths, as well as
their partial sub-paths, are what we add as exter-
nal information to the QA model, i.e., we add the
complete path hlady, AtLocation, church, Relat-
edTo, house, RelatedTo, child, RelatedTo, theiri,
but also truncated versions of the path, including
hlady, AtLocation, church, RelatedTo, house, Re-
latedTo, childi. We directly give these paths to the
model as sequences of tokens.4

Overall, our sampling strategy provides the
knowledge that a lady can be a mother and that
mother is connected to daughter. This creates
a logical connection between lady and daughter
which helps highlight the importance of our sec-
ond piece of evidence (see Fig. 2). Likewise,
the commonsense information we extracted cre-
ate a similar connection in our third piece of ev-
idence, which states the explicit connection be-
tween daughter and Esther. We also successfully
extract a more story context-centric connection, in
which commonsense provides the knowledge that
a lady is at the location church, which directs to
another piece of evidence in the context. Addition-
ally, this path also encodes a relation between lady
and child, by way of church, which is how lady
and Esther are explicitly connected in the story.

3.3 Commonsense Model Incorporation
Given the list of commonsense logic paths as se-
quences of words: XCS = {wCS

1 , wCS
2 , . . . ,

wCS
l } where wCS

i represents the list of tokens
that make up a single path, we first embed these
commonsense tokens into the learned embedding
space used by the model, giving us the embedded
commonsense tokens, eCS

ij 2 R
d. We want to

use these commonsense paths to fill in the gaps
of reasoning between hops of inference. Thus,
we propose Necessary and Optional Information
Cell (NOIC), a variation of our base reasoning
cell used in the reasoning layer that is capable of
incorporating optional helpful information.

NOIC This cell is an extension to the base rea-
soning cell that allows the model to use common-
sense information to fill in gaps of reasoning. An
example of this is on the bottom left of Fig. 1,
where we see that the cell first performs the op-
erations done in the base reasoning cell and then

4In cases where more than one relation can be used to
make a hop, we pick one at random.

adds optional, commonsense information.
At reasoning step t, after obtaining the out-

put of the base reasoning cell, ct, we create a
cell-specific representation for commonsense in-
formation by concatenating the embedded com-
monsense paths so that each path has a single vec-
tor representation, uCS

i . We then project it to the
same dimension as ct

i: vCS
i = ReLU(WuCS

i + b)
where W and b are trainable parameters.

We use an attention layer to model the interac-
tion between commonsense and the context:

SCS
ij = WCS

1 ct
i + WCS

2 vCS
j + WCS

3 (ct
i � vCS

j )

pCS
ij =

exp(SCS
ij )

Pl
k=1 exp(SCS

ij )

cCS
i =

lX

j=1

pCS
ij vCS

j

Finally, we combine this commonsense-aware
context representation with the original ct

i via a
sigmoid gate, since commonsense information is
often not necessary at every step of inference:

zi = �(Wz[c
CS
i ; ct

i] + bz)

(co)t
i = zi � ct

i + (1 � zi) � cCS
i

We use co
t as the output of the current reasoning

step instead of ct. As we replace each base rea-
soning cell with NOIC, we selectively incorporate
commonsense at every step of inference.

4 Experimental Setup
Datasets: We report results on two multi-hop rea-
soning datasets: generative NarrativeQA (Kočiskỳ
et al., 2018) (summary subtask) and extractive
QAngaroo WikiHop (Welbl et al., 2018). For
multiple-choice WikiHop, we rank candidate re-
sponses by their generation probability. Similar to
previous works (Dhingra et al., 2018), we use the
non-oracle, unmasked and not-validated dataset.
Evaluation Metrics: We evaluate NarrativeQA
on the metrics proposed by its original authors:
Bleu-1, Bleu-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005) and Rouge-
L (Lin, 2004). We also evaluate on CIDEr (Vedan-
tam et al., 2015) which emphasizes annotator con-
sensus. For WikiHop, we evaluate on accuracy.5

More dataset, metric, and all other training de-
tails are in the supplementary.

5Due to the 2-week evaluation wait-time on the non-
public test set, we instead train our model on a sub-section
of the training set, pick hyperparameters based on a small
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Model BLEU-1 BLEU-4 METEOR Rouge-L CIDEr

Seq2Seq (Kočiskỳ et al., 2018) 15.89 1.26 4.08 13.15 -
ASR (Kočiskỳ et al., 2018) 23.20 6.39 7.77 22.26 -
BiDAF† (Kočiskỳ et al., 2018) 33.72 15.53 15.38 36.30 -
BiAttn + MRU-LSTM† (Tay et al., 2018) 36.55 19.79 17.87 41.44 -

MHPGM 40.24 17.40 17.33 41.49 139.23
MHPGM+ NOIC 43.63 21.07 19.03 44.16 152.98

Table 2: Results across different metrics on the test set of NarrativeQA-summaries task. † indicates span prediction
models trained on the Rouge-L retrieval oracle.

Model Acc (%)

BiDAF (Welbl et al., 2018) 42.09
Coref-GRU (Dhingra et al., 2018) 56.00

MHPGM 56.74
MHPGM+ NOIC 58.22

Table 3: Results of our models on WikiHop dataset.

5 Results

5.1 Main Experiment
The results of our model on both NarrativeQA and
WikiHop with and without commonsense incorpo-
ration are shown in Table 2 and Table 3. We see
empirically that our model outperforms all gener-
ative models on NarrativeQA, and is competitive
with the top span prediction models. Furthermore,
with the NOIC commonsense integration, we were
able to further improve performance (p < 0.001
on all metrics6), establishing a new state-of-the-art
for the task. We also see that our model performs
well on WikiHop,7 and is further improved via the
addition of commonsense (p < 0.001), demon-
strating the generalizability of both our model and
commonsense addition techniques.8

5.2 Model Ablations
We also tested the effectiveness of each compo-
nent of our architecture as well as the effective-
ness of adding commonsense information on the
NarrativeQA validation set, with results shown in
Table 4. Experiment 1 and 5 are our models pre-

(500 examples) held-out part of the training set, and test on
the original validation set (by treating it as an unseen test
set). We will promptly include the non-public test set results
in the next version and at: https://github.com/yicheng-w/
CommonSenseMultiHopQA

6Stat. significance computed using bootstrap test with
100K iterations (Noreen, 1989; Efron and Tibshirani, 1994).

7Note that we compare our model’s performance to other
models’ tuned performance on the development set and ours
is still equal or better.

8All results here are for the standard (non-oracle) un-
masked and not-validated dataset. Welbl et al. (2018) has
reported higher numbers on different data settings which are
not comparable to our results.

sented in Table 2. Experiment 2 demonstrates the
importance of multi-hop attention by showing that
if we only allow one hop of attention (even with all
other components of the model, including ELMo
embeddings) the model’s performance decreases
by over 12 Rouge-L points. Experiment 3 and 4
demonstrate the effectiveness of other parts of our
model. We see that ELMo embeddings (Peters
et al., 2018) were also important for the model’s
performance and that self-attention is able to con-
tribute significantly to performance on top of other
components of the model. Finally, we see that ef-
fectively introducing external knowledge via our
commonsense selection algorithm and NOIC can
improve performance even further on top of our
strong baseline.

5.3 Commonsense Ablations
We also conducted experiments testing the effec-
tiveness of our commonsense selection and incor-
poration techniques. We first tried to naively add
ConceptNet information by initializing the word
embeddings with the ConceptNet-trained embed-
dings, NumberBatch (Speer and Havasi, 2012)
(we also change embedding size from 256 to
300). Then, to verify the effectiveness of our com-
monsense selection and grounding algorithm, we
test our best model on in-domain noise by giv-
ing each context-query pair a set of random rela-
tions grounded in other context-query pairs. This
should teach the model about general common-
sense relations present in the domain of Narra-
tiveQA but does not provide grounding that fills
in specific hops of inference. We also experi-
mented with a simpler commonsense extraction
method of using a single hop from the query to
the context. The results of these are shown in
Table 5, where we see that neither NumberBatch
nor random-relationships nor single-hop common-
sense offer statistically significant improvements9,

9The improvement in Rouge-L and METEOR for all three
ablation approaches have p � 0.15 with the bootstrap test.
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# Ablation B-1 B-4 M R C

1 - 42.3 18.9 18.3 44.9 151.6
2 k = 1 32.5 11.7 12.9 32.4 95.7
3 - ELMo 32.8 12.7 13.6 33.7 103.1
4 - Self-Attn 37.0 16.4 15.6 38.6 125.6
5 + NOIC 46.0 21.9 20.7 48.0 166.6

Table 4: Model ablations on NarrativeQA val-set.

Commonsense B-1 B-4 M R C

None 42.3 18.9 18.3 44.9 151.6
NumberBatch 42.6 19.6 18.6 44.4 148.1
Random Rel. 43.3 19.3 18.6 45.2 151.2
Single Hop 42.1 19.9 18.2 44.0 148.6
Grounded Rel. 45.9 21.9 20.7 48.0 166.6

Table 5: Commonsense ablations on NarrativeQA val-
set.

whereas our commonsense selection and incorpo-
ration mechanism improves performance signifi-
cantly across all metrics. We also present several
examples of extracted commonsense and its model
attention visualization in the supplementary.

6 Human Evaluation Analysis

We also conduct human evaluation analysis on
both the quality of the selected commonsense re-
lations, as well as the performance of our final
model.
Commonsense Selection: We conducted manual
analysis on a 50 sample subset of the NarrativeQA
test set to check the effectiveness of our common-
sense selection algorithm. Specifically, given a
context-query pair, as well as the commonsense
selected by our algorithm, we conduct two inde-
pendent evaluations: (1) was any external com-
monsense knowledge necessary for answering the
question?; (2) were the commonsense relations
provided by our algorithm relevant to the ques-
tion? The result for these two evaluations as well
as how they overlap with each other are shown in
Table 6, where we see that 50% of the cases re-
quired external commonsense knowledge, and on
a majority (34%) of those cases our algorithm was
able to select the correct/relevant commonsense
information to fill in gaps of inference. We also
see that in general, our algorithm was able to pro-
vide useful commonsense 48% of the time.
Model Performance: We also conduct human
evaluation to verify that our commonsense incor-
porated model was indeed better than MHPGM.
We randomly selected 100 examples from the Nar-
rativeQA test set, along with both models’ pre-
dicted answers, and for each datapoint, we asked

Commonsense Required
Yes No

Relevant CS Extracted 34% 14%
Irrelevant CS Extracted 16% 36%

Table 6: NarrativeQA’s commonsense requirements
and effectiveness of commonsense selection algorithm.

MHPGM+NOIC better 23%
MHPGM better 15%
Indistinguishable (Both-good) 41%
Indistinguishable (Both-bad) 21%

Table 7: Human evaluation on the output quality of the
MHPGM+NOIC vs. MHPGM in terms of correctness.

3 external human evaluators (fluent English speak-
ers) to decide (without knowing which model pro-
duced each response) if one is strictly better than
the other, or that they were similar in quality (both-
good or both-bad). As shown in Table 7, we see
that the human evaluation results are in agreement
with that of the automatic evaluation metrics: our
commonsense incorporation has a reasonable im-
pact on the overall correctness of the model. The
inter-annotator agreement had a Fleiss  = 0.831,
indicating ‘almost-perfect’ agreement between the
annotators (Landis and Koch, 1977).

7 Conclusion

We present an effective reasoning-generative QA
architecture that is a novel combination of previ-
ous work, which uses multiple hops of bidirec-
tional attention and a pointer-generator decoder to
effectively perform multi-hop reasoning and syn-
thesize a coherent and correct answer. Further, we
introduce an algorithm to select grounded, use-
ful paths of commonsense knowledge to fill in
the gaps of inference required for QA, as well a
Necessary and Optional Information Cell (NOIC)
which successfully incorporates this information
during multi-hop reasoning to achieve the new
state-of-the-art on NarrativeQA.
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Abstract
Open Domain Question Answering (QA) is
evolving from complex pipelined systems to
end-to-end deep neural networks. Specialized
neural models have been developed for ex-
tracting answers from either text alone or
Knowledge Bases (KBs) alone. In this paper
we look at a more practical setting, namely
QA over the combination of a KB and entity-
linked text, which is appropriate when an in-
complete KB is available with a large text
corpus. Building on recent advances in graph
representation learning we propose a novel
model, GRAFT-Net, for extracting answers
from a question-specific subgraph containing
text and KB entities and relations. We con-
struct a suite of benchmark tasks for this prob-
lem, varying the difficulty of questions, the
amount of training data, and KB complete-
ness. We show that GRAFT-Net is competitive
with the state-of-the-art when tested using ei-
ther KBs or text alone, and vastly outperforms
existing methods in the combined setting.

1 Introduction

Open domain Question Answering (QA) is the
task of finding answers to questions posed in nat-
ural language. Historically, this required a spe-
cialized pipeline consisting of multiple machine-
learned and hand-crafted modules (Ferrucci et al.,
2010). Recently, the paradigm has shifted towards
training end-to-end deep neural network models
for the task (Chen et al., 2017; Liang et al., 2017;
Raison et al., 2018; Talmor and Berant, 2018;
Iyyer et al., 2017). Most existing models, how-
ever, answer questions using a single information
source, usually either text from an encyclopedia,
or a single knowledge base (KB).

Intuitively, the suitability of an information
source for QA depends on both its coverage and

⇤Haitian Sun and Bhuwan Dhingra contributed equally
to this work.

Q. Who voiced Meg in Family Guy?

Family Guy

Meg Griffin

CVT1

CVT2 Lacey Chabert

Mila Kunis

Megatron "Meg" Griffin is a 
character from the 

animated television series 
Family Guy.

Originally voiced by
Lacey Chabert during the 
first season, she has been 

voiced by
Mila Kunis since season 2actor

actor

character

character-played-by

KB Entity Text Document KB Relation Entity Mention

Question Subgraph

from

to

Figure 1: To answer a question posed in natural
language, GRAFT-Net considers a heterogeneous
graph constructed from text and KB facts, and thus
can leverage the rich relational structure between
the two information sources.

the difficulty of extracting answers from it. A large
text corpus has high coverage, but the information
is expressed using many different text patterns. As
a result, models which operate on these patterns
(e.g. BiDAF (Seo et al., 2017)) do not generalize
beyond their training domains (Wiese et al., 2017;
Dhingra et al., 2018) or to novel types of reason-
ing (Welbl et al., 2018; Talmor and Berant, 2018).
KBs, on the other hand, suffer from low cover-
age due to their inevitable incompleteness and re-
stricted schema (Min et al., 2013), but are easier
to extract answers from, since they are constructed
precisely for the purpose of being queried.

In practice, some questions are best answered
using text, while others are best answered using
KBs. A natural question, then, is how to effec-
tively combine both types of information. Surpris-
ingly little prior work has looked at this problem.
In this paper we focus on a scenario in which a
large-scale KB (Bollacker et al., 2008; Auer et al.,
2007) and a text corpus are available, but neither
is sufficient alone for answering all questions.
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A naı̈ve option, in such a setting, is to take state-
of-the-art QA systems developed for each source,
and aggregate their predictions using some heuris-
tic (Ferrucci et al., 2010; Baudiš, 2015). We call
this approach late fusion, and show that it can
be sub-optimal, as models have limited ability to
aggregate evidence across the different sources
(§ 5.4). Instead, we focus on an early fusion strat-
egy, where a single model is trained to extract an-
swers from a question subgraph (Fig 1) containing
relevant KB facts as well as text sentences. Early
fusion allows more flexibility in combining infor-
mation from multiple sources.

To enable early fusion, in this paper we propose
a novel graph convolution based neural network,
called GRAFT-Net (Graphs of Relations Among
Facts and Text Networks), specifically designed
to operate over heterogeneous graphs of KB facts
and text sentences. We build upon recent work on
graph representation learning (Kipf and Welling,
2016; Schlichtkrull et al., 2017), but propose two
key modifications to adopt them for the task of
QA. First, we propose heterogeneous update rules
that handle KB nodes differently from the text
nodes: for instance, LSTM-based updates are used
to propagate information into and out of text nodes
(§ 3.2). Second, we introduce a directed propaga-
tion method, inspired by personalized Pagerank in
IR (Haveliwala, 2002), which constrains the prop-
agation of embeddings in the graph to follow paths
starting from seed nodes linked to the question
(§ 3.3). Empirically, we show that both these ex-
tensions are crucial for the task of QA.

We evaluate these methods on a new suite of
benchmark tasks for testing QA models when
both KB and text are present. Using WikiMovies
(Miller et al., 2016) and WebQuestionsSP (Yih
et al., 2016), we construct datasets with a varying
amount of training supervision and KB complete-
ness, and with a varying degree of question com-
plexity. We report baselines for future comparison,
including Key Value Memory Networks (Miller
et al., 2016; Das et al., 2017c), and show that our
proposed GRAFT-Nets have superior performance
across a wide range of conditions (§ 5). We also
show that GRAFT-Nets are competitive with the
state-of-the-art methods developed specifically for
text-only QA, and state-of-the art methods devel-
oped for KB-only QA (§ 5.4)1.

1Source code and data are available at https://
github.com/OceanskySun/GraftNet

2 Task Setup

2.1 Description
A knowledge base is denoted as K = (V, E , R),
where V is the set of entities in the KB, and the
edges E are triplets (s, r, o) which denote that re-
lation r 2 R holds between the subject s 2 V
and object o 2 V . A text corpus D is a set of doc-
uments {d1, . . . , d|D|} where each document is a
sequence of words di = (w1, . . . , w|di|). We fur-
ther assume that an (imperfect) entity linking sys-
tem has been run on the collection of documents
whose output is a set L of links (v, dp) connect-
ing an entity v 2 V with a word at position p
in document d, and we denote with Ld the set of
all entity links in document d. For entity mentions
spanning multiple words in d, we include links to
all the words in the mention in L.

The task is, given a natural language question
q = (w1, . . . , w|q|), extract its answers {a}q from
G = (K, D, L). There may be multiple correct an-
swers for a question. In this paper, we assume that
the answers are entities from either the documents
or the KB. We are interested in a wide range of set-
tings, where the KB K varies from highly incom-
plete to complete for answering the questions, and
we will introduce datasets for testing our models
under these settings.

To solve this task we proceed in two steps. First,
we extract a subgraph Gq ⇢ G which contains the
answer to the question with high probability. The
goal for this step is to ensure high recall for an-
swers while producing a graph small enough to
fit into GPU memory for gradient-based learning.
Next, we use our proposed model GRAFT-Net to
learn node representations in Gq, conditioned on q,
which are used to classify each node as being an
answer or not. Training data for the second step
is generated using distant supervision. The entire
process mimics the search-and-read paradigm for
text-based QA (Dhingra et al., 2017).

2.2 Question Subgraph Retrieval
We retrieve the subgraph Gq using two parallel
pipelines – one over the KB K which returns a set
of entities, and the other over the corpus D which
returns a set of documents. The retrieved entities
and documents are then combined with entity links
to produce a fully-connected graph.

KB Retrieval. To retrieve relevant entities from
the KB we first perform entity linking on the ques-
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tion q, producing a set of seed entities, denoted
Sq. Next we run the Personalized PageRank (PPR)
method (Haveliwala, 2002) around these seeds to
identify other entities which might be an answer
to the question. The edge-weights around Sq are
distributed equally among all edges of the same
type, and they are weighted such that edges rel-
evant to the question receive a higher weight than
those which are not. Specifically, we average word
vectors to compute a relation vector v(r) from the
surface form of the relation, and a question vector
v(q) from the words in the question, and use co-
sine similarity between these as the edge weights.
After running PPR we retain the top E entities
v1, . . . , vE by PPR score, along with any edges be-
tween them, and add them to Gq.

Text Retrieval. We use Wikipedia as the corpus
and retrieve text at the sentence level, i.e. docu-
ments in D are defined along sentences bound-
aries2. We perform text retrieval in two steps: first
we retrieve the top 5 most relevant Wikipedia
articles, using the weighted bag-of-words model
from DrQA (Chen et al., 2017); then we populate
a Lucene3 index with sentences from these arti-
cles, and retrieve the top ranking ones d1, . . . , dD,
based on the words in the question. For the
sentence-retrieval step, we found it beneficial to
include the title of the article as an additional field
in the Lucene index. As most sentences in an arti-
cle talk about the title entity, this helps in retriev-
ing relevant sentences that do not explicitly men-
tion the entity in the question. We add the retrieved
documents, along with any entities linked to them,
to the subgraph Gq.

The final question subgraph is Gq =
(Vq, Eq, R+), where the vertices Vq consist
of all the retrieved entities and documents, i.e.
Vq = {v1, . . . , vE} [{d1, . . . , dD}. The edges are
all relations from K among these entities, plus the
entity-links between documents and entities, i.e.

Eq ={(s, o, r) 2 E : s, o 2 Vq, r 2 R}
[ {(v, dp, rL) : (v, dp) 2 Ld, d 2 Vq},

where rL denotes a special “linking” relation.
R+ = R [ {rL} is the set of all edge types in
the subgraph.

2The term document will always refer to a sentence in the
rest of this paper.

3https://lucene.apache.org/

3 GRAFT-Nets

The question q and its answers {a}q induce a
labeling of the nodes in Vq: we let yv = 1 if
v 2 {a}q and yv = 0 otherwise for all v 2
Vq . The task of QA then reduces to perform-
ing binary classification over the nodes of the
graph Gq. Several graph-propagation based mod-
els have been proposed in the literature which
learn node representations and then perform clas-
sification of the nodes (Kipf and Welling, 2016;
Schlichtkrull et al., 2017). Such models follow the
standard gather-apply-scatter paradigm to learn
the node representation with homogeneous up-
dates, i.e. treating all neighbors equally.

The basic recipe for these models is as follows:

1. Initialize node representations h(0)
v .

2. For l = 1, . . . , L update node representations

h(l)
v = �

0

@h(l�1)
v ,

X

v02Nr(v)

h(l�1)
v0

1

A ,

where Nr(v) denotes the neighbours of v
along incoming edges of type r, and � is a
neural network layer.

Here L is the number of layers in the model and
corresponds to the maximum length of the paths
along which information should be propagated in
the graph. Once the propagation is complete the
final layer representations h(L)

v are used to per-
form the desired task, for example link prediction
in knowledge bases (Schlichtkrull et al., 2017).

However, there are two differences in our set-
ting from previously studied graph-based clas-
sification tasks. The first difference is that, in
our case, the graph Gq consists of heterogeneous
nodes. Some nodes in the graph correspond to KB
entities which represent symbolic objects, whereas
other nodes represent textual documents which are
variable length sequences of words. The second
difference is that we want to condition the repre-
sentation of nodes in the graph on the natural lan-
guage question q. In §3.2 we introduce heteroge-
neous updates to address the first difference, and
in §3.3 we introduce mechanisms for conditioning
on the question (and its entities) for the second.

3.1 Node Initialization
Nodes corresponding to entities are initialized us-
ing fixed-size vectors h(0)

v = xv 2 R
n, where
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xv can be pre-trained KB embeddings or random,
and n is the embedding size. Document nodes in
the graph describe a variable length sequence of
text. Since multiple entities might link to differ-
ent positions in the document, we maintain a vari-
able length representation of the document in each
layer. This is denoted by H(l)

d 2 R
|d|⇥n. Given the

words in the document (w1, . . . , w|d|), we initial-
ize its hidden representation as:

H(0)
d = LSTM(w1, w2, . . . ),

where LSTM refers to a long short-term memory
unit. We denote the p-th row of H(l)

d , correspond-
ing to the embedding of p-th word in the document
d at layer l, as H(l)

d,p.

3.2 Heterogeneous Updates
Figure 2 shows the update rules for entities and
documents, which we describe in detail here.

Entities. Let M(v) = {(d, p)} be the set of po-
sitions p in documents d which correspond to a
mention of entity v. The update for entity nodes in-
volves a single-layer feed-forward network (FFN)
over the concatenation of four states:

h(l)
v = FFN

0

BBBB@

2

66664

h(l�1)
v

h(l�1)
qP

r

P
v02Nr(v) ↵

v0

r  r(h
(l�1)
v0 )

P
(d,p)2M(v) H(l�1)

d,p

3

77775

1

CCCCA
.

(1)
The first two terms correspond to the entity repre-
sentation and question representation (details be-
low), respectively, from the previous layer.

The third term aggregates the states from the
entity neighbours of the current node, Nr(v), af-
ter scaling with an attention weight ↵v0

r (described
in the next section), and applying relation specific
transformations  r. Previous work on Relational-
Graph Convolution Networks (Schlichtkrull et al.,
2017) used a linear projection for  r. For a
batched implementation, this results in matrices of
size O(B|Rq||Eq|n), where B is the batch size,
which can be prohibitively large for large sub-
graphs4. Hence in this work we use relation vec-
tors xr for r 2 Rq instead of matrices, and com-
pute the update along an edge as:

 r(h
(l�1)
v0 ) = pr(l�1)

v0 FFN
⇣
xr, h

(l�1)
v0

⌘
. (2)

4This is because we have to use adjacency matrices of size
|Rq|⇥ |Eq|⇥ |Eq| to aggregate embeddings from neighbours
of all nodes simultaneously.

Here pr(l�1)
v0 is a PageRank score used to control

the propagation of embeddings along paths start-
ing from the seed nodes, which we describe in de-
tail in the next section. The memory complexity of
the above is O(B(|Fq|+ |Eq|)n), where |Fq| is the
number of facts in the subgraph Gq.

The last term aggregates the states of all tokens
that correspond to mentions of the entity v among
the documents in the subgraph. Note that the up-
date depends on the positions of entities in their
containing document.

Documents. Let L(d, p) be the set of all entities
linked to the word at position p in document d.
The document update proceeds in two steps. First
we aggregate over the entity states coming in at
each position separately:

H̃(l)
d,p = FFN

0

@H(l�1)
d,p ,

X

v2L(d,p)

h(l�1)
v

1

A . (3a)

Here h(l�1)
v are normalized by the number of out-

going edges at v. Next we aggregate states within
the document using an LSTM:

H(l)
d = LSTM(H̃(l)

d ). (3b)

3.3 Conditioning on the Question
For the parts described thus far, the graph learner
is largely agnostic of the question. We introduce
dependence on question in two ways: by attention
over relations, and by personalized propagation.

To represent q, let wq
1, . . . , w

q
|q| be the words

in the question. The initial representation is com-
puted as:

h(0)
q = LSTM(wq

1, . . . , w
q
|q|)|q| 2 R

n, (4)

where we extract the final state from the out-
put of the LSTM. In subsequent layers the
question representation is updated as h(l)

q =

FFN
⇣P

v2Sq
h(l)

v

⌘
, where Sq denotes the seed en-

tities mentioned in the question.

Attention over Relations. The attention weight
in the third term of Eq. (1) is computed using the
question and relation embeddings:

↵v0

r = softmax(xT
r h(l�1)

q ),

where the softmax normalization is over all outgo-
ing edges from v0, and xr is the relation vector for
relation r. This ensures that embeddings are prop-
agated more along edges relevant to the question.
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Q. Who voiced Meg in Family Guy?

voiced... by Lacey during ...

LSTM

CVT1

Entity Update Text Update 

Figure 2: Illustration of the heterogeneous update rules for entities (left) and text documents (right)

Directed Propagation. Many questions require
multi-hop reasoning, which follows a path from
a seed node mentioned in the question to the tar-
get answer node. To encourage such a behaviour
when propagating embeddings, we develop a tech-
nique inspired from personalized PageRank in IR
(Haveliwala, 2002). The propagation starts at the
seed entities Sq mentioned in the question. In ad-
dition to the vector embeddings h(l)

v at the nodes,
we also maintain scalar “PageRank” scores pr(l)

v

which measure the total weight of paths from a
seed entity to the current node, as follows:

pr(0)
v =

(
1

|Sq | if v 2 Sq

0 o.w.
,

pr(l)
v = (1 � �)pr(l�1)

v + �
X

r

X

v02Nr(v)

↵v0

r pr(l�1)
v0 .

Notice that we reuse the attention weights ↵v0

r

when propagating PageRank, to ensure that nodes
along paths relevant to the question receive a high
weight. The PageRank score is used as a scal-
ing factor when propagating embeddings along the
edges in Eq. (2). For l = 1, the PageRank score
will be 0 for all entities except the seed entities,
and hence propagation will only happen outward
from these nodes. For l = 2, it will be non-zero
for the seed entities and their 1-hop neighbors, and
propagation will only happen along these edges.
Figure 3 illustrates this process.

3.4 Answer Selection
The final representations h(L)

v 2 R
n, are used for

binary classification to select the answers:

Pr (v 2 {a}q|Gq, q) = �(wT h(L)
v + b), (5)

Figure 3: Directed propagation of embeddings in
GRAFT-Net. A scalar PageRank score pr(l)

v is
maintained for each node v across layers, which
spreads out from the seed node. Embeddings are
only propagated from nodes with pr(l)

v > 0.

where � is the sigmoid function. Training uses bi-
nary cross-entropy loss over these probabilities.

3.5 Regularization via Fact Dropout
To encourage the model to learn a robust classi-
fier, which exploits all available sources of infor-
mation, we randomly drop edges from the graph
during training with probability p0. We call this
fact-dropout. It is usually easier to extract an-
swers from the KB than from the documents, so
the model tends to rely on the former, especially
when the KB is complete. This method is similar
to DropConnect (Wan et al., 2013).

4 Related Work

The work of Das et al. (2017c) attempts an early
fusion strategy for QA over KB facts and text.
Their approach is based on Key-Value Memory
Networks (KV-MemNNs) (Miller et al., 2016)
coupled with a universal schema (Riedel et al.,
2013) to populate a memory module with repre-
sentations of KB triples and text snippets indepen-
dently. The key limitation for this model is that
it ignores the rich relational structure between the
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facts and text snippets. Our graph-based method,
on the other hand, explicitly uses this structure for
the propagation of embeddings. We compare the
two approaches in our experiments (§5), and show
that GRAFT-Nets outperform KV-MemNNs over
all tasks.

Non-deep learning approaches have been also
attempted for QA over both text assertions and
KB facts. Gardner and Krishnamurthy (2017) use
traditional feature extraction methods of open-
vocabulary semantic parsing for the task. Ryu
et al. (2014) use a pipelined system aggregat-
ing evidence from both unstructured and semi-
structured sources for open-domain QA.

Another line of work has looked at learning
combined representations of KBs and text for re-
lation extraction and Knowledge Base Comple-
tion (KBC) (Lao et al., 2012; Riedel et al., 2013;
Toutanova et al., 2015; Verga et al., 2016; Das
et al., 2017b; Han et al., 2016). The key differ-
ence in QA compared to KBC is that in QA the
inference process on the knowledge source has to
be conditioned on the question, so different ques-
tions induce different representations of the KB
and warrant a different inference process. Further-
more, KBC operates under the fixed schema de-
fined by the KB before-hand, whereas natural lan-
guage questions might not adhere to this schema.

The GRAFT-Net model itself is motivated from
the large body of work on graph representation
learning (Scarselli et al., 2009; Li et al., 2016;
Kipf and Welling, 2016; Atwood and Towsley,
2016; Schlichtkrull et al., 2017). Like most other
graph-based models, GRAFT-Nets can also be
viewed as an instantiation of the Message Passing
Neural Network (MPNN) framework of Gilmer
et al. (2017). GRAFT-Nets are also inductive rep-
resentation learners like GraphSAGE (Hamilton
et al., 2017), but operate on a heterogeneous mix-
ture of nodes and use retrieval for getting a sub-
graph instead of random sampling. The recently
proposed Walk-Steered Convolution model uses
random walks for learning graph representations
(Jiang et al., 2018). Our personalization technique
also borrows from such random walk literature,
but uses it to localize propagation of embeddings.

Tremendous progress on QA over KB has been
made with deep learning based approaches like
memory networks (Bordes et al., 2015; Jain, 2016)
and reinforcement learning (Liang et al., 2017;
Das et al., 2017a). But extending them with text,

which is our main focus, is non-trivial. In another
direction, there is also work on producing parsi-
monious graphical representations of textual data
(Krause et al., 2016; Lu et al., 2017); however in
this paper we use a simple sequential representa-
tion augmented with entity links to the KB which
works well.

For QA over text only, a major focus has been
on the task of reading comprehension (Seo et al.,
2017; Gong and Bowman, 2017; Hu et al., 2017;
Shen et al., 2017; Yu et al., 2018) since the intro-
duction of SQuAD (Rajpurkar et al., 2016). These
systems assume that the answer-containing pas-
sage is known apriori, but there has been progress
when this assumption is relaxed (Chen et al., 2017;
Raison et al., 2018; Dhingra et al., 2017; Wang
et al., 2018, 2017; Watanabe et al., 2017). We work
in the latter setting, where relevant information
must be retrieved from large information sources,
but we also incorporate KBs into this process.

5 Experiments & Results

5.1 Datasets

WikiMovies-10K consists of 10K randomly sam-
pled training questions from the WikiMovies
dataset (Miller et al., 2016), along with the origi-
nal test and validation sets. We sample the training
questions to create a more difficult setting, since
the original dataset has 100K questions over only
8 different relation types, which is unrealistic in
our opinion. In § 5.4 we also compare to the exist-
ing state-of-the-art using the full training set.

We use the KB and text corpus constructed from
Wikipedia released by Miller et al. (2016). For en-
tity linking we use simple surface level matches,
and retrieve the top 50 entities around the seeds
to create the question subgraph. We further add
the top 50 sentences (along with their article ti-
tles) to the subgraph using Lucene search over the
text corpus. The overall answer recall in our con-
structed subgraphs is 99.6%.
WebQuestionsSP (Yih et al., 2016) consists of
4737 natural language questions posed over Free-
base entities, split up into 3098 training and 1639
test questions. We reserve 250 training questions
for model development and early stopping. We use
the entity linking outputs from S-MART5 and re-
trieve 500 entities from the neighbourhood around
the question seeds in Freebase to populate the

5https://github.com/scottyih/STAGG
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question subgraphs6. We further retrieve the top 50
sentences from Wikipedia with the two-stage pro-
cess described in §2. The overall recall of answers
among the subgraphs is 94.0%.

Table 1 shows the combined statistics of all
the retreived subgraphs for the questions in each
dataset. These two datasets present varying levels
of difficulty. While all questions in WikiMovies
correspond to a single KB relation, for WebQues-
tionsSP the model needs to aggregate over two KB
facts for ⇠30% of the questions, and also requires
reasoning over constraints for ⇠7% of the ques-
tions (Liang et al., 2017). For maximum portabil-
ity, QA systems need to be robust across several
degrees of KB availability since different domains
might contain different amounts of structured data;
and KB completeness may also vary over time.
Hence, we construct an additional 3 datasets each
from the above two, with the number of KB facts
downsampled to 10%, 30% and 50% of the orig-
inal to simulate settings where the KB is incom-
plete. We repeat the retrieval process for each sam-
pled KB.

5.2 Compared Models
KV-KB is the Key Value Memory Networks
model from Miller et al. (2016); Das et al. (2017c)
but using only KB and ignoring the text. KV-EF
(early fusion) is the same model with access to
both KB and text as memories. For text we use
a BiLSTM over the entire sentence as keys, and
entity mentions as values. This re-implementation
shows better performance on the text-only and
KB-only WikiMovies tasks than the results re-
ported previously7 (see Table 4). GN-KB is the
GRAFT-Net model ignoring the text. GN-LF is a
late fusion version of the GRAFT-Net model: we
train two separate models, one using text only and
the other using KB only, and then ensemble the
two8. GN-EF is our main GRAFT-Net model with
early fusion. GN-EF+LF is an ensemble over the
GN-EF and GN-LF models, with the same ensem-
bling method as GN-LF. We report Hits@1, which

6A total of 13 questions had no detected entities. These
were ignored during training and considered as incorrect dur-
ing evaluation.

7For all KV models we tuned the number of layers
{1, 2, 3}, batch size {10, 30, 50}, model dimension {50, 80}.
We also use fact dropout regularization in the KB+Text set-
ting tuned between {0, 0.2, 0.4}.

8For ensembles we take a weighted combination of the an-
swer probabilities produced by the models, with the weights
tuned on the dev set. For answers only in text or only in KB,
we use the probability as is.

is the accuracy of the top-predicted answer from
the model, and the F1 score. To compute the F1
score we tune a threshold on the development set
to select answers based on binary probabilities for
each node in the subgraph.

5.3 Main Results
Table 2 presents a comparison of the above models
across all datasets. GRAFT-Nets (GN) shows con-
sistent improvement over KV-MemNNs on both
datasets in all settings, including KB only (-KB),
text only (-EF, Text Only column), and early fu-
sion (-EF). Interestingly, we observe a larger rel-
ative gap between the Hits and F1 scores for the
KV models than we do for our GN models. We
believe this is because the attention for KV is nor-
malized over the memories, which are KB facts
(or text sentences): hence the model is unable to
assign high probabilities to multiple facts at the
same time. On the other hand, in GN, we normal-
ize the attention over types of relations outgoing
from a node, and hence can assign high weights to
all the correct answers.

We also see a consistent improvement of early
fusion over late fusion (-LF), and by ensembling
them together we see the best performance across
all the models. In Table 2 (right), we further show
the improvement for KV-EF over KV-KB, and
GN-LF and GN-EF over GN-KB, as the amount
of KB is increased. This measures how effective
these approaches are in utilizing text plus a KB.
For KV-EF we see improvements when the KB
is highly incomplete, but in the full KB setting,
the performance of the fused approach is worse. A
similar trend holds for GN-LF. On the other hand,
GN-EF with text improves over the KB-only ap-
proach in all settings. As we would expect, though,
the benefit of adding text decreases as the KB be-
comes more and more complete.

5.4 Comparison to Specialized Methods
In Table 4 we compare GRAFT-Nets to state-of-
the-art models that are specifically designed and
tuned for QA using either only KB or only text.
For this experiment we use the full WikiMovies
dataset to enable direct comparison to previously
reported numbers. For DrQA (Chen et al., 2017),
following the original paper, we restrict answer
spans for WebQuestionsSP to match an entity in
Freebase. In each case we also train GRAFT-Nets
using only KB facts or only text sentences. In three
out of the four cases, we find that GRAFT-Nets ei-
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Dataset # train / dev / test # entity nodes # edge types # document nodes # question vocab

WikiMovies-10K 10K / 10K / 10K 43,233 9 79,728 1759
WebQuestionsSP 2848 / 250 / 1639 528,617 513 235,567 3781

Table 1: Statistics of all the retrieved subgraphs [qGq for WikiMovies-10K and WebQuestionsSP.

Model Text Only KB + Text

10 % 30% 50% 100%

WikiMovies-10K

KV-KB – 15.8 / 9.8 44.7 / 30.4 63.8 / 46.4 94.3 / 76.1
KV-EF 50.4 / 40.9 53.6 / 44.0 60.6 / 48.1 75.3 / 59.1 93.8 / 81.4
GN-KB – 19.7 / 17.3 48.4 / 37.1 67.7 / 58.1 97.0 / 97.6
GN-LF

8
<

:73.2 / 64.0

9
=

;

74.5 / 65.4 78.7 / 68.5 83.3 / 74.2 96.5 / 92.0
GN-EF 75.4 / 66.3 82.6 / 71.3 87.6 / 76.2 96.9 / 94.1
GN-EF+LF 79.0 / 66.7 84.6 / 74.2 88.4 / 78.6 96.8 / 97.3

WebQuestionsSP

KV-KB – 12.5 / 4.3 25.8 / 13.8 33.3 / 21.3 46.7 / 38.6
KV-EF 23.2 / 13.0 24.6 / 14.4 27.0 / 17.7 32.5 / 23.6 40.5 / 30.9
GN-KB – 15.5 / 6.5 34.9 / 20.4 47.7 / 34.3 66.7 / 62.4
GN-LF

8
<

:25.3 / 15.3

9
=

;

29.8 / 17.0 39.1 / 25.9 46.2 / 35.6 65.4 / 56.8
GN-EF 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4
GN-EF+LF 33.3 / 19.3 42.5 / 26.7 52.3 / 37.4 68.7 / 62.3

Table 2: Left: Hits@1 / F1 scores of GRAFT-Nets (GN) compared to KV-MemNN (KV) in KB only
(-KB), early fusion (-EF), and late fusion (-LF) settings. Right: Improvement of early fusion (-EF) and
late fusion (-LF) over KB only (-KB) settings as KB completeness increases.

ther match or outperform the existing state-of-the-
art models. We emphasize that the latter have no
mechanism for dealing with the fused setting.

The one exception is the KB-only case for
WebQuestionsSP where GRAFT-Net does 6.2%
F1 points worse than Neural Symbolic Machines
(Liang et al., 2017). Analysis suggested three ex-
planations: (1) In the KB-only setting, the recall
of subgraph retrieval is only 90.2%, which lim-
its overall performance. In an oracle setting where
we ensure the answers are part of the subgraph,
the F1 score increases by 4.8%. (2) We use the
same probability threshold for all questions, even
though the number of answers may vary signifi-
cantly. Models which parse the query into a sym-
bolic form do not suffer from this problem since
answers are retrieved in a deterministic fashion. If
we tune separate thresholds for each question the
F1 score improves by 7.6%. (3) GRAFT-Nets per-
form poorly in the few cases where there is a con-
straint involved in picking out the answer (for ex-
ample, “who first voiced Meg in Family Guy”). If
we ignore such constraints, and consider all enti-
ties with the same sequence of relations to the seed
as correct, the performance improves by 3.8% F1.
Heuristics such as those used by Yu et al. (2017)
can be used to improve these cases. Figure 3 shows

examples where GRAFT-Net fails to predict the
correct answer set exactly.

5.5 Effect of Model Components
Heterogeneous Updates. We tested a non-
heterogeneous version of our model, where in-
stead of using fine-grained entity linking informa-
tion for updating the node representations (M(v)
and L(d, p) in Eqs. 1, 3a), we aggregate the docu-
ment states across all its positions as

P
p H(l)

d,p and
use this combined state for all updates. Without the
heterogeneous update, all entities v 2 L(d, ·) will
receive the same update from document d. There-
fore, the model cannot disambiguate different en-
tities mentioned in the same document. The result
in Table 5 shows that this version is consistently
worse than the heterogeneous model.

Conditioning on the Question. We performed
an ablation test on the directed propagation
method and attention over relations. We observe
that both components lead to better performance.
Such effects are observed in both complete and in-
complete KB scenarios, e.g. on WebQuestionsSP
dataset, as shown in Figure 4 (left).

Fact Dropout. Figure 4 (right) compares the
performance of the early fusion model as we vary
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Question Correct Answers Predicted Answers

what language do most people speak in afghanistan Pashto language,
Farsi (Eastern Language) Pashto language

what college did john stockton go to Gonzaga University Gonzaga University,
Gonzaga Preparatory School

Table 3: Examples from WebQuestionsSP dataset. Top: The model misses a correct answer. Bottom: The
model predicts an extra incorrect answer.

Method WikiMovies (full) WebQuestionsSP
kb doc kb doc

MINERVA 97.0 / – – – –
R2-AsV – 85.8 / – – –
NSM – – – / 69.0 –
DrQA* – – – 21.5 / –
R-GCN# 96.5 / 97.4 – 37.2 / 30.5 –
KV 93.9 / – 76.2 / – – / – – / –
KV# 95.6 / 88.0 80.3 / 72.1 46.7 / 38.6 23.2 / 13.0
GN 96.8 / 97.2 86.6 / 80.8 67.8 / 62.8 25.3 / 15.3

Table 4: Hits@1 / F1 scores compared to SOTA
models using only KB or text: MINERVA
(Das et al., 2017a), R2-AsV (Watanabe et al.,
2017), Neural Symbolic Machines (NSM) (Liang
et al., 2017), DrQA (Chen et al., 2017), R-
GCN (Schlichtkrull et al., 2017) and KV-MemNN
(Miller et al., 2016). *DrQA is pretrained on
SQuAD. #Re-implemented.

0 KB 0.1 KB 0.3 KB 0.5 KB 1.0 KB
NH 22.7 / 13.6 28.7 / 15.8 35.6 / 23.2 47.2 / 33.3 66.5 / 59.8
H 25.3 / 15.3 31.5 / 17.7 40.7 / 25.2 49.9 / 34.7 67.8 / 60.4

Table 5: Non-Heterogeneous (NH) vs. Heteroge-
neous (H) updates on WebQuestionsSP

the rate of fact dropout. Moderate levels of fact
dropout improve performance on both datasets.
The performance increases as the fact dropout rate
increases until the model is unable to learn the in-
ference chain from KB.

6 Conclusion

In this paper we investigate QA using text com-
bined with an incomplete KB, a task which has
received limited attention in the past. We intro-
duce several benchmark problems for this task by
modifying existing question-answering datasets,
and discuss two broad approaches to solving this
problem—“late fusion” and “early fusion”. We
show that early fusion approaches perform better.

We also introduce a novel early-fusion model,
called GRAFT-Net, for classifying nodes in sub-
graph consisting of both KB entities and text doc-

Figure 4: Left: Effect of directed propagation and
query-based attention over relations for the We-
bQuestionsSP dataset with 30% KB and 100%
KB. Right: Hits@1 with different rates of fact-
dropout on and WikiMovies and WebQuestionsSP.

uments. GRAFT-Net builds on recent advances
in graph representation learning but includes sev-
eral innovations which improve performance on
this task. GRAFT-Nets are a single model which
achieve performance competitive to state-of-the-
art methods in both text-only and KB-only set-
tings, and outperform baseline models when us-
ing text combined with an incomplete KB. Cur-
rent directions for future work include – (1) ex-
tending GRAFT-Nets to pick spans of text as an-
swers, rather than only entities and (2) improving
the subgraph retrieval process.
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Abstract
Recently, there has been a surge of interest
in reading comprehension-based (RC) ques-
tion answering (QA). However, current ap-
proaches suffer from an impractical assump-
tion that every question has a valid answer in
the associated passage. A practical QA system
must possess the ability to determine whether
a valid answer exists in a given text passage.
In this paper, we focus on developing QA sys-
tems that can extract an answer for a question
if and only if the associated passage contains
an answer. If the associated passage does not
contain any valid answer, the QA system will
correctly return Nil. We propose a nil-aware
answer span extraction framework that is ca-
pable of returning Nil or a text span from the
associated passage as an answer in a single
step. We show that our proposed framework
can be easily integrated with several recently
proposed QA models developed for reading
comprehension and can be trained in an end-
to-end fashion. Our proposed nil-aware an-
swer extraction neural network decomposes
pieces of evidence into relevant and irrelevant
parts and then combines them to infer the ex-
istence of any answer. Experiments on the
NewsQA dataset show that the integration of
our proposed framework significantly outper-
forms several strong baseline systems that use
pipeline or threshold-based approaches.

1 Introduction

Machine comprehension (MC) systems mimic the
process of reading comprehension (RC) by an-
swering questions after understanding natural lan-
guage text. Several datasets and resources have
been developed recently. Richardson et al. (2013)
developed a small-scale multiple-choice question
answering (QA) dataset. Hermann et al. (2015)
created a large cloze-style MC dataset based on
CNN and Daily Mail news article summaries.
However, Chen et al. (2016) reported that the

task is not challenging enough and hence, ad-
vanced models had to be evaluated on more real-
istic datasets. Subsequently, SQuAD (Rajpurkar
et al., 2016) was released, where, unlike previ-
ous datasets, the answers to different questions can
vary in length.

In previous datasets, questions and answers are
formulated given text passages. Hence, a valid an-
swer can always be found in the associated pas-
sage for every question created. Trischler et al.
(2017) proposed a more challenging and realis-
tic dataset, NewsQA, where the questions were
formed using CNN article summaries without ac-
cessing the original full texts. As such, some ques-
tions have no valid answers in the associated pas-
sages (referred to as nil questions).

Recently, several neural models for answer span
extraction have been proposed (Wang and Jiang,
2017; Seo et al., 2017; Yang et al., 2017; Xiong
et al., 2017; Weissenborn et al., 2017; Wang et al.,
2017; Shen et al., 2017b; Chen et al., 2017; Kundu
and Ng, 2018). However, none of the models
considered nil questions, although it is crucial for
a practical QA system to be able to determine
whether a text passage contains a valid answer for
a question. In this paper, we focus on develop-
ing QA systems that extract an answer for a ques-
tion if and only if the associated passage contains
a valid answer. Otherwise, they are expected to re-
turn Nil as answer. We propose a nil-aware answer
extraction framework which returns Nil or a span
of text as answer, when integrated with end-to-
end neural MC models. Our proposed framework
is based on evidence decomposition-aggregation,
where the evidence vectors derived by a higher
level encoding layer are first decomposed into rel-
evant and irrelevant components and later aggre-
gated to infer the existence of a valid answer. In
addition, we develop several baseline models with
pipeline and threshold-based approaches. In a
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pipeline model, detection of nil questions is car-
ried out separately before answer span extraction.
In a threshold-based model, the answer span ex-
traction model is entirely trained on questions that
have valid answers, and Nil is returned based on a
confidence threshold.

The contributions of this paper are as follows:
(1) We propose a nil-aware answer span extraction
framework to return Nil or an exact answer span to
a question, in a single step, depending on the exis-
tence of a valid answer. (2) Our proposed frame-
work can be readily integrated with many recently
proposed neural machine comprehension models.
In this paper, we extend four machine comprehen-
sion models, namely BiDAF (Seo et al., 2017), R-
Net (Wang et al., 2017), DrQA (Chen et al., 2017),
and AMANDA (Kundu and Ng, 2018), with our
proposed framework, and show that they achieve
significantly better results compared to the corre-
sponding pipeline and threshold-based models on
the NewsQA dataset.

2 Task Definition

Given a passage and a question, we propose mod-
els that can extract an answer if and only if the
passage contains an answer. When the passage
does not contain any answer, the models return
Nil as the answer. A valid answer is denoted as
two pointers in the passage, representing the start
and end tokens of the answer span. Let P be a
passage with tokens (P1, P2, . . . , PT ) and Q be a
question with tokens (Q1, Q2, . . . , QU ), where T
and U are the length of the passage and question
respectively. A system needs to determine whether
the answer is Nil or comprises two pointers, b and
e, such that 1  b  e  T .

3 Proposed Framework

In this section, we first describe our proposed ev-
idence decomposition-aggregation framework for
nil-aware answer extraction. Then, we provide a
detailed description of how we extend a state-of-
the-art model AMANDA (Kundu and Ng, 2018)
to NAMANDA1 (nil-aware AMANDA). We also
provide brief descriptions of how we integrate our
proposed framework with the other three models.

1Our source code is available at https://github.
com/nusnlp/namanda

3.1 Nil-Aware Answer Extraction

Decomposition of lexical semantics over sen-
tences has been successfully used in the past for
sentence similarity learning (Wang et al., 2016).
Most of the recently proposed machine reading
comprehension models can be generalized based
on a common pattern observed in their network ar-
chitecture. They have a question-passage joint en-
coding layer (also known as question-aware pas-
sage encoding layer) followed by an evidence en-
coding layer. In this work, we decompose the
evidence vectors for each passage word obtained
from the evidence encoding layer with respect to
question-passage joint encoding vectors to derive
semantically relevant and irrelevant components.
We decompose the evidence vectors for each pas-
sage word, because passage vectors can be par-
tially supported by the corresponding question-
passage joint encoding vectors, and based on the
level of support, it either increases or decreases the
chance of finding a valid answer. When we aggre-
gate the orthogonally decomposed evidence vec-
tors, it combines both the supportive and unsup-
portive pieces of evidence for a particular passage
word. To obtain the most impactful portions, we
perform a max-pooling operation over all the ag-
gregated vectors. The resulting vector is denoted
as the Nil vector. As the training set contains both
nil questions (with no valid answers) and non-nil
questions (with valid answers), the model auto-
matically learns when to pool unsupportive (for nil
questions) and supportive (for non-nil questions)
portions to construct the Nil vector. In this way,
the model is able to induce a strong bias towards
the nil pointer when there is no answer present due
to the dominance of unsupportive components in
the nil vector.

The proposed method in Wang et al. (2016) was
developed for sentence similarity learning tasks,
such as answer sentence selection. They decom-
pose an answer sentence with respect to a ques-
tion and vice versa. The decomposed vectors are
then aggregated to obtain a single vector which is
used to derive the similarity score. Although our
proposed method (developed for the more com-
plex task of answer span extraction) is inspired
from the idea of lexical decomposition and com-
position, one major difference is that we decom-
pose the evidence vectors with respect to question-
passage joint encoding vectors. Another important
advance is how it is adopted to return nil or a span
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Figure 1: Overview of the architecture of Nil-aware AMANDA (NAMANDA).

of text from the passage in a single step.

3.2 Nil-Aware AMANDA
The architecture of Nil-aware AMANDA (NA-
MANDA) is given in Figure 1.

3.2.1 Embeddings
To obtain the embeddings, we concatenate word
and character-level embedding vectors. We use
pre-trained vectors from GloVe (Pennington et al.,
2014) for word-level embeddings. For character
embeddings, a trainable character-based lookup
table is used followed by a convolutional neural
network (CNN) and max-pooling (Kim, 2014).

3.2.2 Sequence Encoding
We use bi-directional LSTM (BiLSTM) (Hochre-
iter and Schmidhuber, 1997) on the embedding
vectors to incorporate contextual information. We
represent the outputs as D 2 R

T⇥H and Q 2
R

U⇥H for passage and question respectively. H
is the number of hidden units of the BiLSTMs.

3.2.3 Similarity Matrix
The similarity matrix is obtained by computing
the dot product of passage and question sequence-
level encoding vectors. The similarity matrix A 2
R

T⇥U can be expressed as A = D Q>, where
Ai,j is the similarity between the ith passage word
and the jth question word.

3.2.4 Question Formulation

To aggregate the most relevant parts of the ques-
tion, column-wise maximum values of A are nor-
malized using a softmax function to obtain k 2
R

U . Then, the question vectors in Q are aggre-
gated by qma = k Q. The question type informa-
tion is incorporated via qf 2 R

2H , by concatenat-
ing the sequence-level question encoding vectors
of the first wh-word qtwh and its following word
qtwh+1. It can be given as qf = qtwh || qtwh+1,
where || denotes the concatenation operation. The
set of wh-words we used is {what, who, how,
when, which, where, why}. The final question rep-
resentation, q̃ 2 R

H , is formulated by applying a
feed-forward neural network on the concatenated
representation of qma and qf .

3.2.5 Question-Passage Joint Encoding

In this step, we jointly encode the passage and
question. We apply a row-wise softmax func-
tion on A to obtain R 2 R

T⇥U . Now, for all
the passage words, the aggregated question rep-
resentation G 2 R

T⇥H is computed by G =
R Q. The aggregated question vectors corre-
sponding to the passage words are then concate-
nated with the sequence-level passage vectors to
obtain S 2 R

T⇥2H . We apply another BiLSTM to
obtain a combined representation V 2 R

T⇥H .

4245



3.2.6 Evidence Decomposition-Aggregation
First, multi-factor self-attentive encoding is ap-
plied to accumulate evidence from the entire pas-
sage. The use of multiple factors while calculating
self attention helps to obtain meaningful informa-
tion from a long context with fine-grained infer-
ence. If m represents the number of factors, multi-
factor attention F[1:m] 2 R

T⇥m⇥T is formulated
as:

F[1:m] = V W[1:m]
f V> , (1)

where W[1:m]
f 2 R

H⇥m⇥H is a 3-way tensor.
Now, to refine the evidence, a max-pooling oper-
ation is performed on F[1:m] over the number of
factors, resulting in the self-attention matrix F 2
R

T⇥T . We normalize F by applying a row-wise
softmax function, resulting in F̃ 2 R

T⇥T . Now
the self-attentive encoding M 2 R

T⇥H can be
given as M = F̃ V. The self-attentive encoding
vectors are then concatenated with the question-
dependent passage word encoding vectors (V),
and a feed-forward neural network-based gating is
applied to control the overall impact, resulting in
Y 2 R

T⇥2H .
Then we decompose the evidence vector for ev-

ery passage word with orthogonal decomposition.
Each row of Y, yt 2 R

2H , is decomposed into
its parallel and perpendicular components with re-
spect to the corresponding question-passage joint
encoding (S) vector, st 2 R

2H . The parallel com-
ponents represent the relevant parts of the accu-
mulated evidence and the orthogonal components
represent the irrelevant counterparts. If the paral-
lel component of yt is represented as y=

t 2 R
2H

and the perpendicular component is represented as
y?

t 2 R
2H , then

y=
t =

yt s>
t

st s>
t

st (2)

y?
t = yt � y=

t (3)

Similarly, we derive the parallel and orthogonal
vectors for all the passage words. We denote par-
allel components with Y= 2 R

T⇥2H and perpen-
dicular components with Y? 2 R

T⇥2H .
In the aggregation step, the parallel and orthog-

onal components are fed to a feed-forward linear
layer. Ya 2 R

T⇥H denotes the output of the lin-
ear layer and ya

t 2 R
H is its tth row:

ya
t = tanh(y=

t Wa + y?
t Wa + ba) , (4)

where Wa 2 R
2H⇥H and ba 2 R

H are the weight
matrix and bias vector respectively. Then we ap-
ply a max-pooling operation over all the words
to obtain the Nil vector representation denoted as
n̂. Now we derive the score for the Nil pointer
which will be shared for normalizing the begin-
ning and ending pointers later. The Nil pointer
score is given as:

ns = n̂w>
n , (5)

where wn 2 R
H is a learnable weight vector.

3.2.7 Nil-Aware Pointing
Two stacked BiLSTMs are used on top of Y to de-
termine the beginning and ending pointers. Let the
hidden unit representations of these two BiLSTMs
be B 2 R

T⇥H and E 2 R
T⇥H . We measure the

similarity scores between the previously derived
question vector q̃ and the contextual encoding vec-
tors in B and E. If sb 2 R

T and se 2 R
T are the

scores for the beginning and ending pointers, then

sb = q̃ B> , se = q̃ E> (6)

We prepend the nil score ns to sb and se for shared
normalization. The updated scores ŝb 2 R

T+1 and
ŝe 2 R

T+1 can be represented as:

ŝb = [ns, sb] , ŝe = [ns, se] (7)

The beginning and ending pointer probability
distributions for a given passage P and a question
Q is given as:

Pr(b | P, Q) = softmax(ŝb)

Pr(e | P, Q) = softmax(ŝe) (8)

The joint probability distribution for answer a is
given as:

Pr(a | P, Q) = Pr(b | P, Q) Pr(e | P, Q) (9)

For training, we minimize the cross entropy loss
summing over all training instances. During pre-
diction, we select the locations in the passage for
which the product of Pr(b) and Pr(e) is maxi-
mized, where 1  b  e  T + 1. If the value of
b is 1, we assign the answer as Nil.

3.3 Nil-Aware DrQA
We extend DrQA (Chen et al., 2017) to NDrQA
by integrating our proposed nil-aware answer ex-
traction framework. In DrQA, the embeddings
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of passage tokens consist of pretrained word vec-
tors from Glove, several syntactic features, and
passage-question joint embedding (aligned ques-
tion embedding). The syntactic features include
exact match of passage words with question in sur-
face, lowercase, and lemma form. They also used
part-of-speech tags, named entity tags, and term
frequency values for each passage word. Sub-
sequently, a stack of BiLSTMs is used for en-
coding. The outputs of the stacked BilSTMs are
used as evidence vectors to help extract the an-
swer span. We decompose those stacked BiL-
STM output vectors with respect to the passage
embedding and generate the nil pointer score as
given in Eqs (2–5). The question vector formula-
tion in DrQA is performed by applying a stack of
BilSTMs on question embedding. The nil-aware
pointing mechanism is the same as that given in
Section 3.2.7 except an additional bi-linear term is
used for each sb and se in Eq (6).

3.4 Nil-Aware R-Net
In R-Net (Wang et al., 2017), after embedding
and encoding of the passage and question words,
a gated recurrent network is used to obtain the
question-passage joint representation. Subse-
quently, a self-matching attentive encoding is used
to accumulate evidence from the entire passage.
In the output layer, an answer recurrent pointer
network is used to predict the boundary of an an-
swer span. To extend R-Net to nil-aware R-Net
(NR-Net), we decompose the output vectors of the
self-matching layer with respect to the question-
passage joint encoding vectors, and then aggregate
them to obtain the nil pointer score as illustrated in
Eqs (2–5). In the output layer, we combine the nil
pointer score to the beginning and ending pointer
unnormalized scores, and jointly normalize them
using softmax function as given in Eqs (7–8).

3.5 Nil-Aware BiDAF
In BiDAF (Seo et al., 2017), an attention flow
layer is used to jointly encode the passage and
question. Then, a modeling layer is used to cap-
ture the interaction among the question-aware pas-
sage vectors. The output of the modeling layer
serves as evidence to help extract the answer span
in the output layer. To extend the BiDAF model to
nil-aware BiDAF (NBiDAF), we decompose the
output of the modeling layer with respect to the
question-passage joint encoding vectors, and then
aggregate them to derive the nil pointer score (sim-

ilar to Eqs (2–5). Similar to the other nil-aware
models, we concatenate the nil pointer score to
the start and end pointer unnormalized scores de-
rived in the output layer, and then jointly normal-
ize them.

4 Baseline Models

For comparison, we propose two types of baseline
approaches for nil-aware answer extraction.

4.1 Pipeline Approach

Here, two models are used in a pipeline:
Nil detector: Given a pair of passage and ques-

tion, a nil detector model determines whether a
valid answer is present in the passage.

Answer span extractor: If the nil detector
model predicts the presence of a valid answer, the
answer span extractor then extracts the answer.

For nil detection, we developed a logistic re-
gression (LR) model with manually defined fea-
tures and four neural models. For the LR model,
we extract four different features which capture
the similarity between a passage and a question.
Let P be the passage and Q be the question (con-
sisting of U 0 tokens excluding stop words). If
f(P, Qi) is the frequency of the ith question word
in passage P , then the first feature ⌘ is defined as:

⌘ =
U 0X

i=1

log(1 + f(P, Qi)) (10)

The second feature is the same as ⌘, except that
the lemma form is considered for both passage and
question tokens instead of the surface form. Addi-
tionally, we include word overlap count features in
both surface and lemma forms.

We also develop several advanced neural net-
work architectures for nil detection. After em-
bedding (the same as Section 3.2.1), we apply
sequence-level encoding with either BiLSTM or
CNN. For CNN, we use equal numbers of un-
igram, bigram, and trigram filters and the out-
puts are concatenated to obtain the final encoding.
Next, we apply either global max-pooling (MP)
or attentive pooling (AP) over all the sequence
vectors to obtain an aggregated vector represen-
tation. Let the sequence encoding of a passage be
Pnd 2 R

T⇥H , and pnd
t be the tth row of Pnd.

The aggregated vector p̃nd 2 R
H for AP can be
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obtained as:

and
t / exp(pnd

t w>) (11)
p̃nd = andPnd , (12)

where w 2 R
H is a learnable vector. Similarly, we

derive the aggregated question vector q̃nd. For nil
detection, we compute the similarity score (snd)
between the aggregated vectors:

snd = sigmoid(p̃nd q̃>
nd) (13)

We experimented with four state-of-the-art an-
swer span extractor models, namely BiDAF (Seo
et al., 2017), R-Net (Wang et al., 2017), DrQA
(Chen et al., 2017), and AMANDA (Kundu and
Ng, 2018). Note that the answer extraction mod-
els are trained entirely on passage-question pairs
which always have valid answers.

4.2 Threshold-Based Approach
Here, we do not use any nil questions to train the
neural answer span extraction model. This ap-
proach assumes that when there is a valid answer,
the probability distributions of the beginning and
ending pointers will have lower entropy. This re-
sults in a higher maximum joint probability of the
beginning and ending pointers. In contrast, when
an answer is not present in the associated passage,
the output probability distributions have higher en-
tropy, resulting in a lower value of maximum joint
probability. We set the maximum joint probabil-
ity threshold based on the best Nil F1 score on the
nil questions in the development set. Now, for a
given test passage and question, we first compute
the maximum of all the joint probabilities associ-
ated with all the answer spans. Let aspan be the
answer span with highest joint probability pmax.
We assign the final answer as follows:

answer =

(
Nil, if pmax  threshold

aspan, otherwise
(14)

5 Experiments

5.1 Experimental Settings
We use the NewsQA dataset with nil questions
(Trischler et al., 2017) in our experiments. Its
training, development, and test sets consist of
10,938, 638, and 632 passages respectively and
every passage is associated with some questions.
In each subset, there are some questions which

Dataset #Passages #Questions

Train NewsQA 10,938 92,549
+Nil Qs 107,673

Dev NewsQA 638 5,166
+Nil Qs 5,988

Test NewsQA 632 5,126
+Nil Qs 5,971

Table 1: Statistics of the NewsQA dataset.

have no answers in the corresponding associated
passages (i.e., the nil questions). The detailed
statistics of the dataset are given in Table 1.

We compute exact match (EM) and F1 score for
questions with valid answers. For questions with-
out any valid answers, we compute Nil precision,
recall, and F1 scores as follows:

Nil precision = #Correctly predicted Nil
#predicted Nil (15)

Nil recall = #Correctly predicted Nil
#Nil questions (16)

Nil F1 = 2 ⇥ Nil precision ⇥Nil recall
Nil precision+Nil recall (17)

To compute the overall EM and F1 scores, we con-
sider Nil as correct for the questions which do not
have any valid answers. All evaluation scores re-
ported in this paper are in %.

All the neural network models are implemented
in PyTorch2. We use the default hyper-parameters
for all the answer span extractor models. We use
the open source implementation of DrQA3. We
use a third party implementation of R-Net4 whose
performance is very similar to the original scores.
We reimplemented BiDAF5 and AMANDA6 to
easily integrate our proposed nil-aware answer ex-
traction framework and make the training faster.
We integrate the nil-aware answer span extraction
framework with each model keeping all the hyper-
parameters unchanged. For nil-detection models,
we use the same settings as (N)AMANDA. We
use 300 hidden units for BiLSTMs and a total of
300 filters for the CNN-based models. We use
dropout (Srivastava et al., 2014) with probability
0.3 for every trainable layer. We use binary cross-
entropy loss and the Adam optimizer (Kingma and
Ba, 2015) for training the nil-detection models.

2http://pytorch.org
3https://github.com/facebookresearch/DrQA
4https://github.com/HKUST-KnowComp/

MnemonicReader/blob/master/r_net.py
5Our implementation gives 3% lower F1 score compared

to the reported results in Seo et al. (2017) on the SQuAD
development set.

6Our implementation gives 0.5% higher F1 score com-
pared to the reported scores in Kundu and Ng (2018) on the
NewsQA test set.
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Answer
Extractor

Nil
Detector

Test Set
(w/o Nil Questions)

Test Set
(with Nil Questions)

EM F1 Nil
Precision

Nil
Recall

Nil
F1

Overall
EM

Overall
F1

BiDAF

- 42.5 57.5 - - - 36.5 49.4
LR 39.6 53.2 33.1 28.9 30.9 38.1 49.7
MP-BiLSTM 40.1 54.2 52.5 48.3 50.3 41.3 53.4
MP-CNN 42.3 57.2 73.8 15.0 24.9 38.4 51.2
AP-BiLSTM 40.5 54.7 55.3 47.5 51.1 41.5 53.7
AP-CNN 40.1 54.3 50.8 39.9 44.7 40.1 52.3

NBiDAF 40.8 54.7 48.0 59.6 53.2 43.5 55.4

R-Net

- 49.9 64.0 - - - 42.8 54.8
LR 46.4 58.8 33.1 28.9 30.9 43.9 54.6
MP-BiLSTM 47.3 60.3 52.5 48.3 50.3 47.5 58.6
MP-CNN 49.7 63.6 73.8 15.0 24.9 44.8 56.7
AP-BiLSTM 47.6 60.7 55.3 47.5 51.1 47.6 58.8
AP-CNN 47.2 60.4 50.8 39.9 44.7 46.2 57.5

NR-Net 47.0 60.8 53.6 57.6 55.5 48.5 60.3

DrQA

- 50.0 64.0 - - - 42.9 54.8
LR 46.3 58.8 33.1 28.9 30.9 43.8 54.6
MP-BiLSTM 47.1 60.2 52.5 48.3 50.3 47.3 58.5
MP-CNN 49.6 63.5 73.8 15.0 24.9 44.7 56.7
AP-BiLSTM 47.4 60.6 55.3 47.5 51.1 47.4 58.8
AP-CNN 47.0 60.2 50.8 39.9 44.7 46.0 57.3

NDrQA 48.5 61.8 53.5 57.2 55.3 49.8 61.1

AMANDA

- 49.2 64.2 - - - 42.2 55.1
LR 45.4 58.8 33.1 28.9 30.9 43.1 54.5
MP-BiLSTM 46.2 60.2 52.5 48.3 50.3 46.5 58.5
MP-CNN 48.3 63.3 73.8 15.0 24.9 43.6 56.5
AP-BiLSTM 46.3 60.6 55.3 47.5 51.1 46.5 58.7
AP-CNN 45.9 60.0 50.8 39.9 44.7 45.1 57.1

NAMANDA 48.6 62.2 57.1 56.7 56.9 49.7 61.5

Table 2: Performance Comparison with pipeline approaches on the NewsQA test set.

5.2 Results

Tables 2 and 3 compare results of the nil-aware an-
swer span extractor models with several pipeline
and threshold-based models, respectively. We also
include the results of four standalone answer span
extraction models on the test set without nil ques-
tions. Table 2 shows that the end-to-end nil-aware
models achieve the highest overall EM and F1
scores compared to all the corresponding pipeline
systems. Note that the MP-BiLSTM nil detection
model achieves higher Nil F1 scores compared
to LR and MP-CNN. This is because BiLSTM
is able to capture long-range contextual informa-
tion to infer the existence of valid answers. Fur-
thermore, AP-based models perform better com-
pared to MP-based models as the attention mech-
anism used in AP-based models inherently iden-
tifies important contextual information. Due to
this, the performance gap between AP-CNN and
AP-BiLSTM is lower than the performance gap
between MP-CNN and MP-BiLSTM. In addition
to achieving higher Nil F1 score than the strong
nil detection baseline systems, nil-aware models

manage to achieve competitive scores compared to
the corresponding standalone answer span extrac-
tors on the test set where there are no nil questions.

Table 3 shows that the nil-aware models outper-
form the corresponding threshold-based models.
Note that all four answer span extraction models,
when used in a threshold-based approach for nil
detection, produce low Nil precision and relatively
higher Nil recall. The low precision significantly
degrades performance on the test set without nil
questions. These models often return Nil since it
is critical to find suitable values for the required
threshold. This is because NewsQA passages are
often very long and as a result, probability distri-
butions with higher entropy for answer pointer se-
lection lead to irregular maximum joint probabil-
ity threshold values.

We perform statistical significance tests using
paired t-test and bootstrap resampling. Perfor-
mances of all the nil-aware models (in terms of
overall EM and F1) are significantly better (p <
0.01) than the corresponding best pipeline models
and threshold-based approaches.
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Answer
Extractor

Nil Answer
Handling

Test Set
(w/o Nil Questions)

Test Set
(with Nil Questions)

EM F1 Nil
Precision

Nil
Recall

Nil
F1

Overall
EM

Overall
F1

BiDAF No 42.5 57.5 - - - 36.5 49.4
Yes 37.9 48.3 25.8 60.2 36.1 41.0 50.0

NBiDAF 40.8 54.7 48.0 59.6 53.2 43.5 55.4

R-Net No 49.9 64.0 - - - 42.8 54.8
Yes 45.3 54.7 25.5 53.6 34.6 46.5 54.5

NR-Net 47.0 60.8 53.6 57.6 55.5 48.5 60.3

DrQA No 50.0 64.0 - - - 42.9 54.8
Yes 40.8 48.1 23.1 68.0 34.5 44.6 51.0

NDrQA 48.5 61.8 53.5 57.2 55.3 49.8 61.1

AMANDA No 49.2 64.2 - - - 42.2 55.1
Yes 42.2 51.3 24.0 59.5 34.2 44.6 52.5

NAMANDA 48.6 62.2 57.1 56.7 56.9 49.7 61.5

Table 3: Performance comparison with threshold-based approaches on the NewsQA test set.

5.3 Analysis
For better understanding, we present further ex-
periments and analysis of one of the proposed
models, NAMANDA.

In addition to linear aggregation, we experiment
with BiLSTM-based and CNN-based aggregation
models. When we use BiLSTM aggregation, Eq.
(4) is modified to ya

t = h=
t + h?

t , where

h=
t = BiLSTM(y=

t ,h=
t�1,h

=
t+1) (18)

h?
t = BiLSTM(y?

t ,h?
t�1,h

?
t+1)

We use equal numbers of unigram, bigram, and tri-
gram filters for CNN-based aggregation. Similar
to BiLSTM-based aggregation, we add the CNN
outputs for Y= and Y?. Table 4 shows that linear
aggregation achieves the highest overall F1 score
despite using the least number of parameters.

Table 5 shows the results of NAMANDA on the
NewsQA development set when different compo-
nents are removed such as character embeddings,
question-passage joint encoding, and the second
LSTM for the answer-ending pointer. When
question-passage joint encoding is removed, self-
attentive encoding is formed as well as decom-
posed with respect to sequence-level passage en-
coding. When we remove the second LSTM for
the answer-ending pointer, a feed-forward net-
work is used instead. It is clear from Table 5
that question-passage joint encoding has the high-
est impact.

Figure 2(a) and Figure 2(b) show the results of
NAMANDA on different question (excluding the
stop words) and passage lengths respectively on
the NewsQA development set. With increasing
question length, the Nil F1 score also improves.

Aggregation
Model

w/o Nil with Nil
EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

BiLSTM 47.6
(60.9)

56.5/53.5
(55.0)

48.4
(59.9)

CNN 46.2
(60.0)

52.7/54.5
(53.6)

47.3
(59.2)

Linear
(NAMANDA)

47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 4: Effect of different aggregation models on
the NewsQA dev set.

Model w/o Nil with Nil
EM
(F1)

Nil Prec/
Rec (F1)

Overall
EM (F1)

– character
embeddings

46.3
(59.2)

51.9/54.1
(53.0)

47.4
(58.5)

– q-passage
joint encoding

32.5
(43.9)

41.4/58.8
(48.6)

36.1
(45.9)

– second
LSTM

47.6
(60.3)

56.7/51.0
(53.7)

48.0
(59.0)

NAMANDA 47.8
(60.5)

51.2/57.2
(54.0)

49.1
(60.0)

Table 5: Ablation studies on the NewsQA dev set.

This is because with more information in a ques-
tion, it becomes easier to detect whether the asso-
ciated passage contains a valid answer. Increasing
Nil F1 scores also help to improve the overall F1
scores. However, the overall F1 score degrades
with increasing length of the associated passage.
When the associated passage is long, it is difficult
for the answer span extractor to extract an answer
for a question which has a valid answer, due to the
increasing amount of potentially distracting infor-
mation. The Nil F1 scores remain similar for pas-
sages consisting of not more than 1,200 tokens.
Beyond that, the Nil F1 score degrades a little
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(a) (b)

Figure 2: Results for different (a) question and (b)
passage lengths on NewsQA dev set.

as it becomes very challenging to infer the exis-
tence of a valid answer accurately with increas-
ing amount of potentially distracting information
present in the passage.

Nil detection is itself a very challenging task.
Performances of the nil-aware models are worse
than the corresponding answer extractor models
on the test set without nil questions as Nil pre-
cision is lower than 100%. We carried out an
experiment to evaluate the performance of NA-
MANDA on development sets with varying num-
ber of nil questions. As the proportion of nil ques-
tions in a set increases, NAMANDA outperforms
AMANDA by a larger margin on overall scores.

6 Related Work

In some years of the question answering track
at the Text Retrieval Conference (TREC)7, some
questions were considered as nil questions for
which no valid answers could be found in the en-
tire corpus. Participating teams were required to
return Nil as answer for those questions. Many
teams used threshold-based methods to determine
whether any of the retrieved answers for a given
question was valid or not. If none of the answers
had high confidence, Nil was returned as answer.
To evaluate the performance on the nil questions,
TREC used Nil precision, recall and F1 scores.

In recent years, research on question answering
has witnessed substantial progress with rapid ad-
vances in neural network architectures. For exam-
ple, on the answer sentence selection task, where a
system has to choose the correct answer sentence
from a pool of candidate sentences for a given
question, the introduction of attention-based neu-
ral models has rapidly advanced the state of the
art (Tan et al., 2015; Yang et al., 2016; dos Santos
et al., 2016; Wang et al., 2016; Bian et al., 2017;

7https://trec.nist.gov/data/qa.html

Shen et al., 2017a).
However, in the answer sentence selection task,

the answer is always a full sentence. Rajpurkar
et al. (2016) released a reading comprehension-
based QA dataset SQuAD, where given a pas-
sage and a question, a system needs to find the
exact answer span rather than a sentence. Al-
though SQuAD became very popular and served
as a good test set to develop advanced end-to-
end neural network architectures, it does not in-
clude any nil questions. In practical QA, it is crit-
ical to decide whether or not a passage contains a
valid answer for a given question. Subsequently,
the NewsQA (Trischler et al., 2017) dataset has
been released which attempts to overcome this de-
ficiency. However, all the proposed models for
NewsQA so far have excluded nil questions dur-
ing evaluation. Contrary to prior work, we focus
on developing models for nil-aware answer span
extraction. Very recently, Rajpurkar et al. (2018)
released the SQUADRUN dataset by augmenting
the SQuAD dataset with unanswerable questions.
The unanswerable questions are written adversar-
ially by crowdworkers to look similar to the an-
swerable ones.

7 Conclusion
In this paper, we have focused on nil-aware answer
span extraction for RC-based QA. A nil-aware QA
system only extracts a span of text from the as-
sociated passage as an answer to a given ques-
tion if and only if the passage contains a valid an-
swer. We have proposed a nil-aware answer span
extraction framework based on evidence decom-
position and aggregation that can be easily inte-
grated with several recently proposed neural an-
swer span extraction models. We have also de-
veloped several pipeline and threshold-based mod-
els using advanced neural architectures for com-
parison. Experiments on the NewsQA dataset
show that our proposed framework, when inte-
grated with the answer span extraction models,
achieves better performance compared to all the
corresponding pipeline and threshold-based mod-
els. Employing such a nil-aware answer span ex-
tractor in practical IR-style QA tasks will be inter-
esting future work.
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Abstract

Advanced neural machine translation (NMT)
models generally implement encoder and de-
coder as multiple layers, which allows sys-
tems to model complex functions and capture
complicated linguistic structures. However,
only the top layers of encoder and decoder
are leveraged in the subsequent process, which
misses the opportunity to exploit the useful in-
formation embedded in other layers. In this
work, we propose to simultaneously expose
all of these signals with layer aggregation and
multi-layer attention mechanisms. In addi-
tion, we introduce an auxiliary regularization
term to encourage different layers to capture
diverse information. Experimental results on
widely-used WMT14 English)German and
WMT17 Chinese)English translation data
demonstrate the effectiveness and universality
of the proposed approach.

1 Introduction

Neural machine translation (NMT) models have
advanced the machine translation community in
recent years (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014). NMT
models generally consist of two components: an
encoder network to summarize the input sentence
into sequential representations, based on which a
decoder network generates target sentence word
by word with an attention model (Bahdanau et al.,
2015; Luong et al., 2015).

Nowadays, advanced NMT models generally
implement encoder and decoder as multiple lay-
ers, regardless of the specific model architectures
such as RNN (Zhou et al., 2016; Wu et al., 2016),
CNN (Gehring et al., 2017), or Self-Attention Net-
work (Vaswani et al., 2017; Chen et al., 2018).

⇤ Zhaopeng Tu is the corresponding author of the paper.
This work was conducted when Zi-Yi Dou was interning at
Tencent AI Lab.

Several researchers have revealed that different
layers are able to capture different types of syntax
and semantic information (Shi et al., 2016; Peters
et al., 2018; Anastasopoulos and Chiang, 2018).
For example, Shi et al. (2016) find that both local
and global source syntax are learned by the NMT
encoder and different types of syntax are captured
at different layers.

However, current NMT models only leverage
the top layers of encoder and decoder in the sub-
sequent process, which misses the opportunity to
exploit useful information embedded in other lay-
ers. Recently, aggregating layers to better fuse se-
mantic and spatial information has proven to be of
profound value in computer vision tasks (Huang
et al., 2017; Yu et al., 2018). In natural language
processing community, Peters et al. (2018) have
proven that simultaneously exposing all layer rep-
resentations outperforms methods that utilize just
the top layer for transfer learning tasks.

Inspired by these findings, we propose to
exploit deep representations for NMT models.
Specifically, we investigate two types of strate-
gies to better fuse information across layers, rang-
ing from layer aggregation to multi-layer atten-
tion. While layer aggregation strategies combine
hidden states at the same position across different
layers, multi-layer attention allows the model to
combine information in different positions. In ad-
dition, we introduce an auxiliary objective to en-
courage different layers to capture diverse infor-
mation, which we believe would make the deep
representations more meaningful.

We evaluated our approach on two widely-
used WMT14 English)German and WMT17
Chinese)English translation tasks. We employed
TRANSFORMER (Vaswani et al., 2017) as the
baseline system since it has proven to outper-
form other architectures on the two tasks (Vaswani
et al., 2017; Hassan et al., 2018). Experimen-
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tal results show that exploiting deep represen-
tations consistently improves translation perfor-
mance over the vanilla TRANSFORMER model
across language pairs. It is worth mention-
ing that TRANSFORMER-BASE with deep rep-
resentations exploitation outperforms the vanilla
TRANSFORMER-BIG model with only less than
half of the parameters.

2 Background: Deep NMT

Deep representations have proven to be of pro-
found value in machine translation (Meng et al.,
2016; Zhou et al., 2016). Multiple-layer encoder
and decoder are employed to perform the transla-
tion task through a series of nonlinear transforma-
tions from the representation of input sequences
to final output sequences. The layer can be imple-
mented as RNN (Wu et al., 2016), CNN (Gehring
et al., 2017), or Self-Attention Network (Vaswani
et al., 2017). In this work, we take the advanced
Transformer as an example, which will be used
in experiments later. However, we note that the
proposed approach is generally applicable to any
other type of NMT architectures.

Specifically, the encoder is composed of a stack
of L identical layers, each of which has two sub-
layers. The first sub-layer is a self-attention net-
work, and the second one is a position-wise fully
connected feed-forward network. A residual con-
nection (He et al., 2016) is employed around each
of the two sub-layers, followed by layer normal-
ization (Ba et al., 2016). Formally, the output of
the first sub-layer Cl

e and the second sub-layer Hl
e

are calculated as

Cl
e = LN

�
ATT(Ql

e,K
l�1
e ,Vl�1

e ) + Hl�1
e

�
,

Hl
e = LN

�
FFN(Cl

e) + Cl
e

�
, (1)

where ATT(·), LN(·), and FFN(·) are self-
attention mechanism, layer normalization, and
feed-forward networks with ReLU activation in
between, respectively. {Ql

e,K
l�1
e ,Vl�1

e } are
query, key and value vectors that are transformed
from the (l-1)-th encoder layer Hl�1

e .
The decoder is also composed of a stack of L

identical layers. In addition to two sub-layers in
each decoder layer, the decoder inserts a third sub-
layer Dl

d to perform attention over the output of

the encoder stack HL
e :

Cl
d = LN

�
ATT(Ql

d,K
l�1
d ,Vl�1

d ) + Hl�1
d

�
,

Dl
d = LN

�
ATT(Cl

d,K
L
e ,VL

e ) + Cl
d

�
,

Hl
d = LN

�
FFN(Dl

d) + Dl
d

�
, (2)

where {Ql
d,K

l�1
d ,Vl�1

d } are transformed from
the (l-1)-th decoder layer Hl�1

d , and {KL
e ,VL

e }
are transformed from the top layer of the encoder.
The top layer of the decoder HL

d is used to gener-
ate the final output sequence.

Multi-layer network can be considered as a
strong feature extractor with extended receptive
fields capable of linking salient features from the
entire sequence (Chen et al., 2018). However, one
potential problem about the vanilla Transformer,
as shown in Figure 1a, is that both the encoder
and decoder stack layers in sequence and only uti-
lize the information in the top layer. While stud-
ies have shown deeper layers extract more seman-
tic and more global features (Zeiler and Fergus,
2014; Peters et al., 2018), these do not prove that
the last layer is the ultimate representation for any
task. Although residual connections have been in-
corporated to combine layers, these connections
have been “shallow” themselves, and only fuse
by simple, one-step operations (Yu et al., 2018).
We investigate here how to better fuse information
across layers for NMT models.

In the following sections, we simplify the equa-
tions to Hl = LAYER(Hl�1) for brevity.

3 Proposed Approaches

In this section, we first introduce how to exploit
deep representations by simultaneously exposing
all of the signals from all layers (Sec 3.1). Then,
to explicitly encourage different layers to incor-
porate various information, we propose one way
to measure the diversity between layers and add
a regularization term to our objective function to
maximize the diversity across layers (Sec 3.2).

3.1 Deep Representations

To exploit deep representations, we investigate
two types of strategies to fuse information across
layers, from layer aggregation to multi-layer atten-
tion. While layer aggregation strategies combine
hidden states at the same position across different
layers, multi-layer attention allows the model to
combine information in different positions.
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(a) Vanilla (b) Dense

(c) Linear (d) Iterative

Figure 1: Illustration of (a) vanilla model with-
out any aggregation and (b,c,d) layer aggregation
strategies. Aggregation nodes are represented by
green circles.

3.1.1 Layer Aggregation
While the aggregation strategies are inspired by
previous work, there are several differences since
we have simplified and generalized from the orig-
inal model, as described below.
Dense Connection. The first strategy is to allow
all layers to directly access previous layers:

Hl = f(H1, . . . ,Hl�1). (3)

In this work, we mainly investigate whether
densely connected networks work for NMT,
which have proven successful in computer vision
tasks (Huang et al., 2017). The basic strategy
of densely connected networks is to connect each
layer to every previous layer with a residual con-
nection:

Hl = Layer(Hl�1) +
l�1X

i=1

Hi. (4)

Figure 1b illustrates the idea of this approach. Our
implementation differs from (Huang et al., 2017)
in that we use an addition instead of a concatena-
tion operation in order to keep the state size con-
stant. Another reason is that concatenation oper-
ation is computationally expensive, while residual
connections are more efficient.

While dense connection directly feeds previ-
ous layers to the subsequent layers, the following
mechanisms maintain additional layers to aggre-
gate standard layers, from shallow linear combi-
nation, to deep non-linear aggregation.

Linear Combination. As shown in Figure 1c,
an intuitive strategy is to linearly combine the out-
puts of all layers:

bH =
LX

l=1

WlH
l, (5)

where {W1, . . . ,WL} are trainable matrices.
While the strategy is similar in spirit to (Peters
et al., 2018), there are two main differences: (1)
they use normalized weights while we directly use
parameters that could be either positive or negative
numbers, which may benefit from more modeling
flexibility. (2) they use a scalar that is shared by all
elements in the layer states, while we use learnable
matrices. The latter offers a more precise control
of the combination by allowing the model to be
more expressive than scalars (Tu et al., 2017).

We also investigate strategies that iteratively
and hierarchically merge layers by incorporating
more depth and sharing, which have proven effec-
tive for computer vision tasks (Yu et al., 2018).

Iterative Aggregation. As illustrated in Figure
1d, iterative aggregation follows the iterated stack-
ing of the backbone architecture. Aggregation be-
gins at the shallowest, smallest scale and then it-
eratively merges deeper, larger scales. The itera-
tive deep aggregation function I for a series of lay-
ers Hl

1 = {H1, · · · ,Hl} with increasingly deeper
and semantic information is formulated as

bHl = I(Hl
1) = AGG(Hl, bHl�1), (6)

where we set bH1 = H1 and AGG(·, ·) is the ag-
gregation function:

AGG(x, y) = LN(FF([x; y]) + x + y). (7)

As seen, in this work, we first concatenate x and
y into z = [x; y], which is subsequently fed to
a feed-forward network with a sigmoid activation
in between. Residual connection and layer nor-
malization are also employed. Specifically, both x
and y have residual connections to the output. The
choice of the aggregation function will be further
studied in the experiment section.
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(a) CNN-like tree (b) Hierarchical

Figure 2: Hierarchical aggregation (b) that aggre-
gates layers through a tree structure (a).

Hierarchical Aggregation. While iterative ag-
gregation deeply combines states, it may still be
insufficient to fuse the layers for its sequential ar-
chitecture. Hierarchical aggregation, on the other
hand, merges layers through a tree structure to
preserve and combine feature channels, as shown
in Figure 2. The original model proposed by Yu
et al. (2018) requires the number of layers to be
the power of two, which limits the applicability of
these methods to a broader range of NMT archi-
tectures (e.g. six layers in (Vaswani et al., 2017)).
To solve this problem, we introduce a CNN-like
tree with the filter size being two, as shown in Fig-
ure 2a. Following (Yu et al., 2018), we first merge
aggregation nodes of the same depth for efficiency
so that there would be at most one aggregation
node for each depth. Then, we further feed the
output of an aggregation node back into the back-
bone as the input to the next sub-tree, instead of
only routing intermediate aggregations further up
the tree, as shown in Figure 2b. The interaction
between aggregation and backbone nodes allows
the model to better preserve features.

Formally, each aggregation node bHi is calcu-
lated as

bHi =

(
AGG(H2i�1,H2i), i = 1

AGG(H2i�1,H2i, bHi�1), i = 2, 3

where AGG(H2i�1,H2i) is computed via Eqn. 7,
and AGG(H2i�1,H2i, bHi�1) is computed as

AGG(x, y, z) = LN(FF([x; y; z]) + x + y + z).

The aggregation node at the top layer bHL/2 serves
as the final output of the network.

3.1.2 Multi-Layer Attention
Partially inspired by Meng et al. (2016), we also
propose to introduce a multi-layer attention mech-
anism into deep NMT models, for more power of

layer l-1

layer l-2

layer l

Figure 3: Multi-layer attention allows the model
to attend multiple layers to construct each hid-
den state. We use two-layer attention for illustra-
tion, while the approach is applicable to any layers
lower than l.

transforming information across layers. In other
words, for constructing each hidden state in any
layer-l, we allow the self-attention model to attend
any layers lower than l, instead of just layer l-1:

Cl
�1 = ATT(Ql,Kl�1,Vl�1),

Cl
�2 = ATT(Ql,Kl�2,Vl�2),

. . .

Cl
�k = ATT(Ql,Kl�k,Vl�k),

Cl = AGG(Cl
�1, . . . ,C

l
�k), (8)

where Cl
�i is sequential vectors queried from

layer l-i using a separate attention model, and
AGG(·) is similar to the pre-defined aggregation
function to transform k vectors {Cl

�1, . . . ,C
l
�k}

to a d-dimension vector, which is subsequently
used to construct the encoder and decoder layers
via Eqn. 1 and 2 respectively. Note that multi-
layer attention only modifies the self-attention
blocks in both encoder and decoder, while does
not revises the encoder-decoder attention blocks.

3.2 Layer Diversity

Intuitively, combining layers would be more
meaningful if different layers are able to capture
diverse information. Therefore, we explicitly add
a regularization term to encourage the diversities
between layers:

L = Llikelihood + �Ldiversity, (9)

where � is a hyper-parameter and is set to 1.0 in
this paper. Specifically, the regularization term
measures the average of the distance between ev-
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ery two adjacent layers:

Ldiversity =
1

L � 1

L�1X

l=1

D(Hl,Hl+1). (10)

Here D(Hl,Hl+1) is the averaged cosine-squared
distance between the states in layers Hl =
{hl

1, . . . ,h
l
N} and Hl+1 = {hl+1

1 , . . . ,hl+1
N }:

D(Hl,Hl+1) =
1

N

NX

n=1

(1 � cos2(hl
n,hl+1

n )).

The cosine-squared distance between two vectors
is maximized when two vectors are linearly inde-
pendent and minimized when two vectors are lin-
early dependent, which satisfies our goal.1

4 Experiments

4.1 Setup
Dataset. To compare with the results reported
by previous work (Gehring et al., 2017; Vaswani
et al., 2017; Hassan et al., 2018), we conducted
experiments on both Chinese)English (Zh)En)
and English)German (En)De) translation tasks.
For the Zh)En task, we used all of the avail-
able parallel data with maximum length limited
to 50, consisting of about 20.62 million sentence
pairs. We used newsdev2017 as the develop-
ment set and newstest2017 as the test set. For
the En)De task, we trained on the widely-used
WMT14 dataset consisting of about 4.56 million
sentence pairs. We used newstest2013 as the de-
velopment set and newstest2014 as the test set.
Byte-pair encoding (BPE) was employed to al-
leviate the Out-of-Vocabulary problem (Sennrich
et al., 2016) with 32K merge operations for both
language pairs. We used 4-gram NIST BLEU
score (Papineni et al., 2002) as the evaluation met-
ric, and sign-test (Collins et al., 2005) to test for
statistical significance.

Models. We evaluated the proposed approaches
on advanced Transformer model (Vaswani et al.,
2017), and implemented on top of an open-source
toolkit – THUMT (Zhang et al., 2017). We fol-
lowed Vaswani et al. (2017) to set the configura-
tions and train the models, and have reproduced

1We use cosine-squared distance instead of cosine dis-
tance, since the latter is maximized when two vectors are in
opposite directions. In such case, the two vectors are in fact
linearly dependent, while we aim at encouraging the vectors
independent from each other.

their reported results on the En)De task. The pa-
rameters of the proposed models were initialized
by the pre-trained model. We tried k = 2 and
k = 3 for the multi-layer attention model, which
allows to attend to the lower two or three layers.

We have tested both Base and Big models,
which differ at hidden size (512 vs. 1024), filter
size (2048 vs. 4096) and the number of attention
heads (8 vs. 16).2 All the models were trained
on eight NVIDIA P40 GPUs where each was al-
located with a batch size of 4096 tokens. In con-
sideration of computation cost, we studied model
variations with Base model on En)De task, and
evaluated overall performance with Big model on
both Zh)En and En)De tasks.

4.2 Results
Table 1 shows the results on WMT14 En)De
translation task. As seen, the proposed approaches
improve the translation quality in all cases, al-
though there are still considerable differences
among different variations.

Model Complexity Except for dense connec-
tion, all other deep representation strategies in-
troduce new parameters, ranging from 14.7M to
33.6M. Accordingly, the training speed decreases
due to more efforts to train the new parameters.
Layer aggregation mechanisms only marginally
decrease decoding speed, while multi-layer atten-
tion decreases decoding speed by 21% due to an
additional attention process for each layer.

Layer Aggregation (Rows 2-5): Although
dense connection and linear combination only
marginally improve translation performance, it-
erative and hierarchical aggregation strategies
achieve more significant improvements, which are
up to +0.99 BLEU points better than the baseline
model. This indicates that deep aggregations out-
perform their shallow counterparts by incorporat-
ing more depth and sharing, which is consistent
with the results in computer vision tasks (Yu et al.,
2018).

Multi-Layer Attention (Rows 6-7): Benefiting
from the power of attention models, multi-layer
attention model can also significantly outperform
baseline, although it only attends to one or two
additional layers. However, increasing the num-
ber of lower layers to be attended from k = 2 to

2Here “filter size” refers to the hidden size of the feed-
forward network in the Transformer model.
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# Model # Para. Train Decode BLEU 4
1 TRANSFORMER-BASE 88.0M 1.82 1.33 27.64 –
2 + Dense Connection +0.0M 1.69 1.28 27.94 +0.30

3 + Linear Combination +14.7M 1.59 1.26 28.09 +0.45

4 + Iterative Aggregation +31.5M 1.32 1.22 28.61 +0.97

5 + Hierarchical Aggregation +23.1M 1.46 1.25 28.63 +0.99

6 + Multi-Layer Attention (k=2) +33.6M 1.19 1.05 28.58 +0.94

7 + Multi-Layer Attention (k=3) +37.8M 1.12 1.00 28.62 +0.98

8 + Iterative Aggregation + Ldiversity +31.5M 1.28 1.22 28.76 +1.12

9 + Hierarchical Aggregation + Ldiversity +23.1M 1.41 1.25 28.78 +1.14

10 + Multi-Layer Attention (k=2)+ Ldiversity +33.6M 1.12 1.05 28.75 +1.11

Table 1: Evaluation of translation performance on WMT14 English)German (“En)De”) translation
task. “# Para.” denotes the number of parameters, and “Train” and “Decode” respectively denote the
training speed (steps/second) and decoding speed (sentences/second) on Tesla P40.

System Architecture En)De Zh)En
# Para. BLEU # Para. BLEU

Existing NMT systems
(Wu et al., 2016) RNN with 8 layers N/A 26.30 N/A N/A
(Gehring et al., 2017) CNN with 15 layers N/A 26.36 N/A N/A

(Vaswani et al., 2017) TRANSFORMER-BASE 65M 27.3 N/A N/A
TRANSFORMER-BIG 213M 28.4 N/A N/A

(Hassan et al., 2018) TRANSFORMER-BIG N/A N/A N/A 24.2

Our NMT systems

this work

TRANSFORMER-BASE 88M 27.64 108M 24.13
+ Deep Representations 111M 28.78† 131M 24.76†

TRANSFORMER-BIG 264M 28.58 304M 24.56
+ Deep Representations 356M 29.21† 396M 25.10†

Table 2: Comparing with existing NMT systems on WMT14 English)German and WMT17
Chinese)English tasks. “+ Deep Representations” denotes “+ Hierarchical Aggregation + Ldiversity”.
“†” indicates statistically significant difference (p < 0.01) from the TRANSFORMER baseline.

k = 3 only gains marginal improvement, at the
cost of slower training and decoding speeds. In
the following experiments, we set set k = 2 for
the multi-layer attention model.

Layer Diversity (Rows 8-10): The introduced
diversity regularization consistently improves per-
formance in all cases by encouraging different
layers to capture diverse information. Our best
model outperforms the vanilla Transformer by
+1.14 BLEU points. In the following experiments,
we used hierarchical aggregation with diversity
regularization (Row 8) as the default strategy.

Main Results Table 2 lists the results on both
WMT17 Zh)En and WMT14 En)De transla-
tion tasks. As seen, exploiting deep represen-

tations consistently improves translation perfor-
mance across model variations and language pairs,
demonstrating the effectiveness and universality
of the proposed approach. It is worth mention-
ing that TRANSFORMER-BASE with deep rep-
resentations exploitation outperforms the vanilla
TRANSFORMER-BIG model, with only less than
half of the parameters.

4.3 Analysis

We conducted extensive analysis from different
perspectives to better understand our model. All
results are reported on the En)De task with
TRANSFORMER-BASE.
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Figure 4: BLEU scores on the En)De test set with
respect to various input sentence lengths. “Hier.”
denotes hierarchical aggregation and “Div.” de-
notes diversity regularization.

4.3.1 Length Analysis
Following Bahdanau et al. (2015) and Tu et al.
(2016), we grouped sentences of similar lengths
together and computed the BLEU score for each
group, as shown in Figure 4. Generally, the per-
formance of TRANSFORMER-BASE goes up with
the increase of input sentence lengths, which is
superior to the performance of RNN-based NMT
models on long sentences reported by (Bentivogli
et al., 2016). We attribute this to the strength of
self-attention mechanism to model global depen-
dencies without regard to their distance.

Clearly, the proposed approaches outperform
the baseline model in all length segments, while
there are still considerable differences between the
two variations. Hierarchical aggregation consis-
tently outperforms the baseline model, and the im-
provement goes up on long sentences. One pos-
sible reason is that long sentences indeed require
deep aggregation mechanisms. Introducing diver-
sity regularization further improves performance
on most sentences (e.g.  45), while the improve-
ment degrades on long sentences (e.g. > 45). We
conjecture that complex long sentences may need
to store duplicate information across layers, which
conflicts with the diversity objective.

4.3.2 Effect on Encoder and Decoder
Both encoder and decoder are composed of a stack
of L layers, which may benefit from the proposed
approach. In this experiment, we investigated how
our models affect the two components, as shown

Model Applied to BLEUEncoder Decoder
BASE N/A N/A 26.13

OURS
X × 26.32
× X 26.41
X X 26.69

Table 3: Experimental results of applying hier-
archical aggregation to different components on
En)De validation set.

in Table 3. Exploiting deep representations of
encoder or decoder individually consistently out-
performs the vanilla baseline model, and exploit-
ing both components further improves the perfor-
mance. These results provide support for the claim
that exploiting deep representations is useful for
both understanding input sequence and generating
output sequence.

4.3.3 Impact of Aggregation Choices

Model RESIDUAL AGGREGATE BLEU
BASE N/A N/A 26.13

OURS

None
SIGMOID

25.48
Top 26.59

All
26.69

RELU 26.56
ATTENTION 26.54

Table 4: Impact of residual connections and aggre-
gation functions for hierarchical layer aggregation.

As described in Section 3.1.1, the function of
hierarchical layer aggregation is defined as

AGG(x, y, z) = LN(FF([x; y; z]) + x + y + z),

where FF(·) is a feed-forward network with a sig-
moid activation in between. In addition, all the
input layers {x, y, z} have residual connections to
the output. In this experiment, we evaluated the
impact of residual connection options, as well as
different choices for the aggregation function, as
shown in Table 4.

Concerning residual connections, if none of the
input layers are connected to the output layer
(“None”), the performance would decrease. The
translation performance is improved when the out-
put is connected to only the top level of the input
layers (“Top”), while connecting to all input layers
(“All”) achieves the best performance. This indi-
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cates that cross-layer connections are necessary to
avoid the gradient vanishing problem.

Besides the feed-forward network with sigmoid
activation, we also tried two other aggregation
functions for FF(·): (1) A feed-forward network
with a RELU activation in between; and (2) multi-
head self-attention layer that constitutes the en-
coder and decoder layers in the TRANSFORMER
model. As seen, all the three functions consis-
tently improve the translation performance, prov-
ing the robustness of the proposed approaches.

4.4 Visualization of Aggregation

!"# !"$ !"%

!"&'#
!$&'#
!$& 0.40 0.20 0.27

0.60 0.35 0.33

0.45 0.40

(a) No regularization.

!"# !"$ !"%

!"&'#
!$&'#
!$& 0.49 0.30 0.32

0.51 0.33 0.32

0.37 0.36

(b) With regularization.

Figure 5: Visualization of the exploitation of input
representations for hierarchical aggregation. x-
axis is the aggregation node and y-axis is the in-
put representation. bH i denotes the i-th aggrega-
tion layer, and H i denotes the i-th encoder layer.
The rightmost and topmost position in x-axis and
y-axis respectively represent the highest layer.

To investigate the impact of diversity regular-
ization, we visualized the exploitation of the in-
put representations for hierarchical aggregation in
encoder side, as shown in Figure 5. Let Hi =
{H2i, H2i�1, bH i�1} be the input representations,
we calculated the exploitation of the j-th input as

sj =

P
w2Wj

|w|
P

Hj02H
{
P

w02Wj0
|w0|} , (11)

where Wj is the parameter matrix associated with
the input Hj . The score sj is a rough estimation
of the contribution of Hj to the aggregation bH i.

We have two observations. First, the model
tends to utilize the bottom layer more than the top
one, indicating the necessity of fusing information
across layers. Second, using the diversity regu-
larization in Figure 5(b) can encourage each layer
to contribute more equally to the aggregation. We
hypothesize this is because of the diversity regu-
larization term encouraging the different layers to
contain diverse and equally important information.

5 Related Work

Representation learning is at the core of deep
learning. Our work is inspired by technological
advances in representation learning, specifically in
the field of deep representation learning and rep-
resentation interpretation.

Deep Representation Learning Deep neural
networks have advanced the state of the art in var-
ious communities, such as computer vision and
natural language processing. One key challenge
of training deep networks lies in how to transform
information across layers, especially when the net-
work consists of hundreds of layers.

In response to this problem, ResNet (He et al.,
2016) uses skip connections to combine layers by
simple, one-step operations. Densely connected
network (Huang et al., 2017) is designed to better
propagate features and losses through skip con-
nections that concatenate all the layers in stages.
Yu et al. (2018) design structures iteratively and
hierarchically merge the feature hierarchy to bet-
ter fuse information in a deep fusion.

Concerning machine translation, Meng et al.
(2016) and Zhou et al. (2016) have shown that
deep networks with advanced connecting strate-
gies outperform their shallow counterparts. Due
to its simplicity and effectiveness, skip connection
becomes a standard component of state-of-the-art
NMT models (Wu et al., 2016; Gehring et al.,
2017; Vaswani et al., 2017). In this work, we prove
that deep representation exploitation can further
improve performance over simply using skip con-
nections.

Representation Interpretation Several re-
searchers have tried to visualize the representation
of each layer to help better understand what
information each layer captures (Zeiler and
Fergus, 2014; Li et al., 2016; Ding et al., 2017).
Concerning natural language processing tasks,
Shi et al. (2016) find that both local and global
source syntax are learned by the NMT encoder
and different types of syntax are captured at
different layers. Anastasopoulos and Chiang
(2018) show that higher level layers are more
representative than lower level layers. Peters et al.
(2018) demonstrate that higher-level layers cap-
ture context-dependent aspects of word meaning
while lower-level layers model aspects of syntax.
Inspired by these observations, we propose to
expose all of these representations to better
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fuse information across layers. In addition, we
introduce a regularization to encourage different
layers to capture diverse information.

6 Conclusion

In this work, we propose to better exploit deep
representations that are learned by multiple lay-
ers for neural machine translation. Specif-
ically, the hierarchical aggregation with di-
versity regularization achieves the best perfor-
mance by incorporating more depth and shar-
ing across layers and by encouraging layers to
capture different information. Experimental re-
sults on WMT14 English)German and WMT17
Chinese)English show that the proposed ap-
proach consistently outperforms the state-of-the-
art TRANSFORMER baseline by +0.54 and +0.63
BLEU points, respectively. By visualizing the ag-
gregation process, we find that our model indeed
utilizes lower layers to effectively fuse the infor-
mation across layers.

Future directions include validating our ap-
proach on other architectures such as RNN (Bah-
danau et al., 2015) or CNN (Gehring et al., 2017)
based NMT models, as well as combining with
other advanced techniques (Shaw et al., 2018;
Shen et al., 2018; Yang et al., 2018; Li et al., 2018)
to further improve the performance of TRANS-
FORMER.
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Abstract

Recently, non-recurrent architectures (convo-
lutional, self-attentional) have outperformed
RNNs in neural machine translation. CNNs
and self-attentional networks can connect dis-
tant words via shorter network paths than
RNNs, and it has been speculated that this im-
proves their ability to model long-range de-
pendencies. However, this theoretical argu-
ment has not been tested empirically, nor have
alternative explanations for their strong perfor-
mance been explored in-depth. We hypoth-
esize that the strong performance of CNNs
and self-attentional networks could also be
due to their ability to extract semantic fea-
tures from the source text, and we evaluate
RNNs, CNNs and self-attention networks on
two tasks: subject-verb agreement (where cap-
turing long-range dependencies is required)
and word sense disambiguation (where seman-
tic feature extraction is required). Our exper-
imental results show that: 1) self-attentional
networks and CNNs do not outperform RNNs
in modeling subject-verb agreement over long
distances; 2) self-attentional networks perform
distinctly better than RNNs and CNNs on
word sense disambiguation.

1 Introduction

Different architectures have been shown to be
effective for neural machine translation (NMT),
ranging from recurrent architectures (Kalchbren-
ner and Blunsom, 2013; Bahdanau et al., 2015;
Sutskever et al., 2014; Luong et al., 2015) to
convolutional (Kalchbrenner and Blunsom, 2013;
Gehring et al., 2017) and, most recently, fully self-
attentional (Transformer) models (Vaswani et al.,
2017). Since comparisons (Gehring et al., 2017;
Vaswani et al., 2017; Hieber et al., 2017) are
mainly carried out via BLEU (Papineni et al.,

⇤ Work carried out during a visit to the machine transla-
tion group at the University of Edinburgh.

2002), it is inherently difficult to attribute gains in
BLEU to architectural properties.

Recurrent neural networks (RNNs) (Elman,
1990) can easily deal with variable-length input
sentences and thus are a natural choice for the
encoder and decoder of NMT systems. Mod-
ern variants of RNNs, such as GRUs (Cho et al.,
2014) and LSTMs (Hochreiter and Schmidhuber,
1997), address the difficulty of training recurrent
networks with long-range dependencies. Gehring
et al. (2017) introduce a neural architecture where
both the encoder and decoder are based on CNNs,
and report better BLEU scores than RNN-based
NMT models. Moreover, the computation over
all tokens can be fully parallelized during training,
which increases efficiency. Vaswani et al. (2017)
propose Transformer models, which are built en-
tirely with attention layers, without convolution or
recurrence. They report new state-of-art BLEU
scores for EN!DE and EN!FR. Yet, the BLEU
metric is quite coarse-grained, and offers no in-
sight as to which aspects of translation are im-
proved by different architectures.

To explain the observed improvements in
BLEU, previous work has drawn on theoretical ar-
guments. Both Gehring et al. (2017) and Vaswani
et al. (2017) argue that the length of the paths in
neural networks between co-dependent elements
affects the ability to learn these dependencies: the
shorter the path, the easier the model learns such
dependencies. The papers argue that Transformers
and CNNs are better suited than RNNs to capture
long-range dependencies.

However, this claim is based on a theoreti-
cal argument and has not been empirically tested.
We argue other abilities of non-recurrent networks
could be responsible for their strong performance.
Specifically, we hypothesize that the improve-
ments in BLEU are due to CNNs and Transform-
ers being strong semantic feature extractors.
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In this paper, we evaluate all three popular
NMT architectures: models based on RNNs (re-
ferred to as RNNS2S in the remainder of the pa-
per), based on CNNs (referred to as ConvS2S) and
self-attentional models (referred to as Transform-
ers). Motivated by the aforementioned theoreti-
cal claims regarding path length and semantic fea-
ture extraction, we evaluate their performance on
a subject-verb agreement task (that requires mod-
eling long-range dependencies) and a word sense
disambiguation (WSD) task (that requires extract-
ing semantic features). Both tasks build on test
sets of contrastive translation pairs, Lingeval97
(Sennrich, 2017) and ContraWSD (Rios et al.,
2017).

The main contributions of this paper can be
summarized as follows:

• We test the theoretical claims that architec-
tures with shorter paths through networks
are better at capturing long-range dependen-
cies. Our experimental results on modeling
subject-verb agreement over long distances
do not show any evidence that Transformers
or CNNs are superior to RNNs in this regard.

• We empirically show that the number of at-
tention heads in Transformers impacts their
ability to capture long-distance dependen-
cies. Specifically, many-headed multi-head
attention is essential for modeling long-
distance phenomena with only self-attention.

• We empirically show that Transformers excel
at WSD, indicating that they are strong se-
mantic feature extractors.

2 Related work

Yin et al. (2017) are the first to compare CNNs,
LSTMs and GRUs on several NLP tasks. They
find that CNNs are better at tasks related to se-
mantics, while RNNs are better at syntax-related
tasks, especially for longer sentences.

Based on the work of Linzen et al. (2016),
Bernardy and Lappin (2017) find that RNNs per-
form better than CNNs on a subject-verb agree-
ment task, which is a good proxy for how well
long-range dependencies are captured. Tran et al.
(2018) find that a Transformer language model
performs worse than an RNN language model on
a subject-verb agreement task. They, too, note that
this is especially true as the distance between sub-
ject and verb grows, even if RNNs resulted in a

higher perplexity on the validation set. This result
of Tran et al. (2018) is clearly in contrast to the
general finding that Transformers are better than
RNNs for NMT tasks.

Bai et al. (2018) evaluate CNNs and LSTMs
on several sequence modeling tasks. They con-
clude that CNNs are better than RNNs for se-
quence modeling. However, their CNN models
perform much worse than the state-of-art LSTM
models on some sequence modeling tasks, as they
themselves state in the appendix.

Tang et al. (2018) evaluate different RNN ar-
chitectures and Transformer models on the task of
historical spelling normalization which translates
a historical spelling into its modern form. They
find that Transformer models surpass RNN mod-
els only in high-resource conditions.

In contrast to previous studies, we focus on the
machine translation task, where architecture com-
parisons so far are mostly based on BLEU.

3 Background

3.1 NMT Architectures
We evaluate three different NMT architectures:
RNN-based models, CNN-based models, and
Transformer-based models. All of them have a bi-
partite structure in the sense that they consist of
an encoder and a decoder. The encoder and the
decoder interact via a soft-attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015), with
one or multiple attention layers.

In the following sections, hl
i is the hidden state

at step i of layer l, hl
i�1 represents the hidden state

at the previous step of layer l, hl�1
i means the hid-

den state at i of l � 1 layer, Exi represents the
embedding of xi, and epos,i denotes the positional
embedding at position i.

3.1.1 RNN-based NMT
RNNs are stateful networks that change as new in-
puts are fed to them, and each state has a direct
connection only to the previous state. Thus, the
path length of any two tokens with a distance of
n in RNNs is exactly n. Figure 1 (a) shows an
illustration of RNNs.

hl
i = hl�1

i + frnn(hl�1
i , hl

i�1) (1)

In deep architectures, two adjacent layers are com-
monly connected with residual connections. In the
lth encoder layer, hl

i is generated by Equation 1,
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x1 x2 x3 x4 x5
(a) RNN

x1 x2 x3 x4 x5padding padding
(b) CNN

x1 x2 x3 x4 x5
(c) Self-attention

Figure 1: Architectures of different neural networks in NMT.

where frnn is the RNN (GRU or LSTM) function.
In the first layer, h0

i = frnn(Exi , h
0
i�1).

In addition to the connection between the en-
coder and decoder via attention, the initial state of
the decoder is usually initialized with the average
of the hidden states or the last hidden state of the
encoder.

3.1.2 CNN-based NMT
CNNs are hierarchical networks, in that convolu-
tion layers capture local correlations. The local
context size depends on the size of the kernel and
the number of layers. In order to keep the out-
put the same length as the input, CNN models add
padding symbols to input sequences. Given an L-
layer CNN with a kernel size k, the largest context
size is L(k�1). For any two tokens in a local con-
text with a distance of n, the path between them is
only dn/(k � 1)e.

As Figure 1 (b) shows, a 2-layer CNN with ker-
nel size 3 “sees” an effective local context of 5 to-
kens. The path between the first token and the fifth
token is only 2 convolutions.1 Since CNNs do not
have a means to infer the position of elements in a
sequence, positional embeddings are introduced.

hl
i = hl�1

i + fcnn(W l[hl�1
i�bk/2c; ...; h

l�1
i+bk/2c]

+ bl) (2)

The hidden state hl
i shown in Equation 2 is related

to the hidden states in the same convolution and
the hidden state hl�1

i from the previous layer. k
denotes the kernel size of CNNs and fcnn is a non-
linearity. ConvS2S chooses Gated Linear Units
(GLU) which can be viewed as a gated variation
of ReLUs. W l are called convolutional filters. In
the input layer, h0

i = Exi + epos,i.

1Note that the decoder employs masking to avoid condi-
tioning the model on future information, which reduces the
effective context size to L k�1

2 .

3.1.3 Transformer-based NMT
Transformers rely heavily on self-attention net-
works. Each token is connected to any other
token in the same sentence directly via self-
attention. Moreover, Transformers feature at-
tention networks with multiple attention heads.
Multi-head attention is more fine-grained, com-
pared to conventional 1-head attention mecha-
nisms. Figure 1 (c) illustrates that any two to-
kens are connected directly: the path length be-
tween the first and the fifth tokens is 1. Similar to
CNNs, positional information is also preserved in
positional embeddings.

The hidden state in the Transformer encoder is
calculated from all hidden states of the previous
layer. The hidden state hl

i in a self-attention net-
work is computed as in Equation 3.

hl
i = hl�1

i + f(self-attention(hl�1
i )) (3)

where f represents a feedforward network with
ReLU as the activation function and layer normal-
ization. In the input layer, h0

i = Exi + epos,i.
The decoder additionally has a multi-head atten-
tion over the encoder hidden states.

3.2 Contrastive Evaluation of Machine
Translation

Since we evaluate different NMT architectures
explicitly on subject-verb agreement and WSD
(both happen implicitly during machine transla-
tion), BLEU as a measure of overall translation
quality is not helpful. In order to conduct these
targeted evaluations, we use contrastive test sets.

Sets of contrastive translations can be used to
analyze specific types of errors. Human refer-
ence translations are paired with one or more con-
trastive variants, where a specific type of error is
introduced automatically.

The evaluation procedure then exploits the fact
that NMT models are conditional language mod-
els. By virtue of this, given any source sentence S
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and target sentence T , any NMT model can assign
to them a probability P (T |S). If a model assigns
a higher score to the correct target sentence than
to a contrastive variant that contains an error, we
consider it a correct decision. The accuracy of a
model on such a test set is simply the percentage
of cases where the correct target sentence is scored
higher than all contrastive variants.

Contrastive evaluation tests the sensitivity of
NMT models to specific translation errors. The
contrastive examples are designed to capture spe-
cific translation errors rather than evaluating the
global quality of NMT models. Although they do
not replace metrics such as BLEU, they give fur-
ther insights into the performance of models, on
specific linguistic phenomena.

3.2.1 Lingeval97
Lingeval97 has over 97,000 English!German
contrastive translation pairs featuring different lin-
guistic phenomena, including subject-verb agree-
ment, noun phrase agreement, separable verb-
particle constructions, transliterations and polar-
ity. In this paper, we are interested in evaluat-
ing the performance on long-range dependencies.
Thus, we focus on the subject-verb agreement cat-
egory which consists of 35,105 instances.

In German, verbs must agree with their subjects
in both grammatical number and person. There-
fore, in a contrastive translation, the grammatical
number of a verb is swapped. Table 1 gives an
example.

English: [...] plan will be approved
German: [...] Plan verabschiedet wird
Contrast: [...] Plan verabschiedet werden

Table 1: An example of a contrastive pair in the
subject-verb agreement category.

3.2.2 ContraWSD
In ContraWSD, given an ambiguous word in the
source sentence, the correct translation is replaced
by another meaning of the ambiguous word which
is incorrect. For example, in a case where the En-
glish word line is the correct translation of the Ger-
man source word Schlange, ContraWSD replaces
line with the other translations of Schlange, such
as snake, serpent, to generate contrastive transla-
tions.

For German!English, ContraWSD contains 84
different German word senses. It has 7,200

German!English lexical ambiguities, each lexi-
cal ambiguity instance has 3.5 contrastive transla-
tions on average. For German!French, it consists
of 71 different German word senses. There are
6,700 German!French lexical ambiguities, with
an average of 2.2 contrastive translations each lex-
ical ambiguity instance. All the ambiguous words
are nouns so that the disambiguation is not possi-
ble simply based on syntactic context.

4 Subject-verb Agreement

The subject-verb agreement task is the most pop-
ular choice for evaluating the ability to capture
long-range dependencies and has been used in
many studies (Linzen et al., 2016; Bernardy and
Lappin, 2017; Sennrich, 2017; Tran et al., 2018).
Thus, we also use this task to evaluate different
NMT architectures on long-range dependencies.

4.1 Experimental Settings

Different architectures are hard to compare fairly
because many factors affect performance. We aim
to create a level playing field for the comparison
by training with the same toolkit, Sockeye (Hieber
et al., 2017) which is based on MXNet (Chen et al.,
2015). In addition, different hyperparameters and
training techniques (such as label smoothing or
layer normalization) have been found to affect the
performance (Chen et al., 2018). We apply the
same hyperparameters and techniques for all ar-
chitectures except the parameters of each specific
architecture. Since the best hyperparameters for
different architectures may be diverse, we verify
our hyperparameter choice by comparing our re-
sults to those published previously. Our models
achieve similar performance to that reported by
Hieber et al. (2017) with the best available set-
tings. In addition, we extend Sockeye with an
interface that enables scoring of existing transla-
tions, which is required for contrastive evaluation.

All the models are trained with 2 GPUs. Dur-
ing training, each mini-batch contains 4096 to-
kens. A model checkpoint is saved every 4,000
updates. We use Adam (Kingma and Ba, 2015)
as the optimizer. The initial learning rate is set
to 0.0002. If the performance on the validation
set has not improved for 8 checkpoints, the learn-
ing rate is multiplied by 0.7. We set the early
stopping patience to 32 checkpoints. All the neu-
ral networks have 8 layers. For RNNS2S, the en-
coder has 1 bi-directional LSTM and 6 stacked
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uni-directional LSTMs, and the decoder is a stack
of 8 uni-directional LSTMs. The size of embed-
dings and hidden states is 512. We apply layer nor-
malization and label smoothing (0.1) in all mod-
els. We tie the source and target embeddings.
The dropout rate of embeddings and Transformer
blocks is set to 0.1. The dropout rate of RNNs and
CNNs is 0.2. The kernel size of CNNs is 3. Trans-
formers have an 8-head attention mechanism.

To test the robustness of our findings, we also
test a different style of RNN architecture, from
a different toolkit. We evaluate bi-deep transi-
tional RNNs (Miceli Barone et al., 2017) which
are state-of-art RNNs in machine translation. We
use the bi-deep RNN-based model (RNN-bideep)
implemented in Marian (Junczys-Dowmunt et al.,
2018). Different from the previous settings, we
use the Adam optimizer with �1 = 0.9, �2 =
0.98, ✏ = 10�9. The initial learning rate is
0.0003. We tie target embeddings and output em-
beddings. Both the encoder and decoder have 4
layers of LSTM units, only the encoder layers are
bi-directional. LSTM units consist of several cells
(deep transition): 4 in the first layer of the decoder,
2 cells everywhere else.

We use training data from the WMT17 shared
task.2 We use newstest2013 as the validation set,
and use newstest2014 and newstest2017 as the test
sets. All BLEU scores are computed with Sacre-
BLEU (Post, 2018). There are about 5.9 million
sentence pairs in the training set after preprocess-
ing with Moses scripts. We learn a joint BPE
model with 32,000 subword units (Sennrich et al.,
2016). We employ the model that has the best per-
plexity on the validation set for the evaluation.

4.2 Overall Results
Table 2 reports the BLEU scores on newstest2014
and newstest2017, the perplexity on the valida-
tion set, and the accuracy on long-range depen-
dencies.3 Transformer achieves the highest accu-
racy on this task and the highest BLEU scores on
both newstest2014 and newstest2017. Compared
to RNNS2S, ConvS2S has slightly better results re-
garding BLEU scores, but a much lower accuracy
on long-range dependencies. The RNN-bideep
model achieves distinctly better BLEU scores and
a higher accuracy on long-range dependencies.

2http://www.statmt.org/wmt17/
translation-task.html

3We report average accuracy on instances where the dis-
tance between subject and verb is longer than 10 words.

However, it still cannot outperform Transformers
on any of the tasks.

Model 2014 2017 PPL Acc(%)
RNNS2S 23.3 25.1 6.1 95.1
ConvS2S 23.9 25.2 7.0 84.9
Transformer 26.7 27.5 4.5 97.1
RNN-bideep 24.7 26.1 5.7 96.3

Table 2: The results of different NMT models, in-
cluding the BLEU scores on newstest2014 and new-
stest2017, the perplexity on the validation set, and the
accuracy of long-range dependencies.

Figure 2 shows the performance of different ar-
chitectures on the subject-verb agreement task. It
is evident that Transformer, RNNS2S, and RNN-
bideep perform much better than ConvS2S on
long-range dependencies. However, Transformer,
RNNS2S, and RNN-bideep are all robust over long
distances. Transformer outperforms RNN-bideep
for distances 11-12, but RNN-bideep performs
equally or better for distance 13 or higher. Thus,
we cannot conclude that Transformer models are
particularly stronger than RNN models for long
distances, despite achieving higher average accu-
racy on distances above 10.
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Figure 2: Accuracy of different NMT models on the
subject-verb agreement task.

4.2.1 CNNs
Theoretically, the performance of CNNs will drop
when the distance between the subject and the verb
exceeds the local context size. However, ConvS2S
is also clearly worse than RNNS2S for subject-verb
agreement within the local context size.

In order to explore how the ability of ConvS2S
to capture long-range dependencies depends on
the local context size, we train additional systems,
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varying the number of layers and kernel size. Ta-
ble 3 shows the performance of different ConvS2S
models. Figure 3 displays the performance of two
8-layer CNNs with kernel size 3 and 7, a 6-layer
CNN with kernel size 3, and RNNS2S. The results
indicate that the accuracy increases when the local
context size becomes larger, but the BLEU score
does not. Moreover, ConvS2S is still not as good
as RNNS2S for subject-verb agreement.

Layer K Ctx 2014 2017 Acc(%)
4 3 4 22.9 24.2 81.1
6 3 6 23.6 25.0 82.5
8 3 8 23.9 25.2 84.9
8 5 16 23.5 24.7 89.7
8 7 24 23.3 24.6 91.3

Table 3: The performance of ConvS2S with different
settings. K means the kernel size. The ctx column is
the theoretical largest local context size in the masked
decoder.
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Figure 3: Results of ConvS2S models and the RNNS2S
model at different distances.

Regarding the explanation for the poor perfor-
mance of ConvS2S, we identify the limited context
size as a major problem. One assumption to ex-
plain the remaining difference is that, scale invari-
ance of CNNs is relatively poor (Xu et al., 2014).
Scale-invariance is important in NLP, where the
distance between arguments is flexible, and cur-
rent recurrent or attentional architectures are better
suited to handle this variance.

Our empirical results do not confirm the theoret-
ical arguments in Gehring et al. (2017) that CNNs
can capture long-range dependencies better with
a shorter path. The BLEU score does not corre-
late well with the targeted evaluation of long-range
distance interactions. This is due to the locality

of BLEU, which only measures on the level of n-
grams, but it may also indicate that there are other
trade-offs between the modeling of different phe-
nomena depending on hyperparameters. If we aim
to get better performance on long-range dependen-
cies, we can take this into account when optimiz-
ing hyperparameters.

4.2.2 RNNs vs. Transformer
Even though Transformer achieves much better
BLEU scores than RNNS2S and RNN-bideep, the
accuracies of these architectures on long-range de-
pendencies are close to each other in Figure 2.

Our experimental result contrasts with the result
from Tran et al. (2018). They find that Transform-
ers perform worse than LSTMs on the subject-
verb agreement task, especially when the distance
between the subject and the verb becomes longer.
We perform several experiments to analyze this
discrepancy with Tran et al. (2018).

A first hypothesis is that this is caused by the
amount of training data, since we used much larger
datasets than Tran et al. (2018). We retrain all the
models with a small amount of training data simi-
lar to the amount used by Tran et al. (2018), about
135K sentence pairs. The other training settings
are the same as in Section 4.1. We do not see the
expected degradation of Transformer-s, compared
to RNNS2S-s (see Figure 4). In Table 4, the perfor-
mance of RNNS2S-s and Transformer-s is similar,
including the BLEU scores on newstest2014, new-
stest2017, the perplexity on the validation set, and
the accuracy on the long-range dependencies.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

Ac
cu
ra
cy

Distance

RNNS2S-s

Tranformer-s

Figure 4: Results of a Transformer and RNNS2S model
trained on a small dataset.

A second hypothesis is that the experimental set-
tings lead to the different results. In order to inves-
tigate this, we do not only use a small training set,
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but also replicate the experimental settings of Tran
et al. (2018). The main changes are neural network
layers (8!4); embedding size (512!128); multi-
head size (8!2); dropout rate (0.1!0.2); check-
point save frequency (4,000!1,000), and initial
learning rate (0.0002!0.001).

Model 2014 2017 PPL Acc(%)
RNNS2S-s 7.3 7.8 47.8 77.3
Trans-s 7.2 8.0 44.6 74.6
RNNS2S-re 9.2 10.5 39.2 77.7
Trans-re-h2 9.6 10.7 36.9 71.9
Trans-re-h4 9.5 11.9 35.8 73.8
Trans-re-h8 9.4 10.4 36.0 75.3

Table 4: The results of different models with small
training data and replicate settings. Trans is short for
Transformer. Models with the suffix “-s” are models
trained with small data set. Models with the suffix “-re”
are models trained with replicate settings. “h2, h4, h8”
indicates the number of attention heads for Transformer
models.
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Figure 5: Results of the models with replicate settings,
varying the number of attention heads for the Trans-
former models.

In the end, we get a result that is similar to Tran
et al. (2018). In Figure 5, Transformer-re-h2
performs clearly worse than RNNS2S-re on long-
range dependencies. By increasing the number
of heads in multi-head attention, subject-verb ac-
curacy over long distances can be improved sub-
stantially, even though it remains below that of
RNNS2S-re. Also, the effect on BLEU is small.

Our results suggest that the importance of multi-
head attention with a large number of heads is
larger than BLEU would suggest, especially for
the modeling of long-distance phenomena, since
multi-head attention provides a way for the model

to attend to both local and distant context, whereas
distant context may be overshadowed by local
context in an attention mechanism with a single
or few heads.

Although our study is not a replication of Tran
et al. (2018), who work on a different task and
a different test set, our results do suggest an al-
ternative interpretation of their findings, namely
that the poor performance of the Transformer in
their experiments is due to hyperparameter choice.
Rather than concluding that RNNs are superior to
Transformers for the modeling of long-range de-
pendency phenomena, we find that the number of
heads in multi-head attention affects the ability of
Transformers to model long-range dependencies
in subject-verb agreement.

5 WSD

Our experimental results on the subject-verb
agreement task demonstrate that CNNs and Trans-
former are not better at capturing long-range de-
pendencies compared to RNNs, even though the
paths in CNNs and Transformers are shorter. This
finding is not in accord with the theoretical argu-
ment in both Gehring et al. (2017) and Vaswani
et al. (2017). However, these architectures per-
form well empirically according to BLEU. Thus,
we further evaluate these architectures on WSD,
to test our hypothesis that non-recurrent architec-
tures are better at extracting semantic features.

5.1 Experimental settings

We evaluate all architectures on ContraWSD on
both DE!EN and DE!FR. We reuse the param-
eter settings in Section 4.1, except that: the initial
learning rate of ConvS2S is reduced from 0.0003
to 0.0002 in DE!EN; the checkpoint saving fre-
quency is changed from 4,000 to 1,000 in DE!FR
because of the training data size.

For DE!EN, the training set, validation set,
and test set are the same as the other direction
EN!DE. For DE!FR, we use around 2.1 million
sentence pairs from Europarl (v7) (Tiedemann,
2012)4 and News Commentary (v11) cleaned by
Rios et al. (2017)5 as our training set. We use
newstest2013 as the evaluation set, and use new-
stest2012 as the test set. All the data is prepro-
cessed with Moses scripts.

4http://opus.nlpl.eu/Europarl.php
5http://data.statmt.org/ContraWSD/
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Model DE!EN DE!FR
PPL 2014 2017 Acc(%) PPL 2012 Acc(%)

RNNS2S 5.7 29.1 30.1 84.0 7.06 16.4 72.2
ConvS2S 6.3 29.1 30.4 82.3 7.93 16.8 72.7
Transformer 4.3 32.7 33.7 90.3 4.9 18.7 76.7
uedin-wmt17 – – 35.1 87.9 – – –
TransRNN 5.2 30.5 31.9 86.1 6.3 17.6 74.2

Table 5: The results of different architectures on newstest sets and ContraWSD. PPL is the perplexity on the
validation set. Acc means accuracy on the test set.

In addition, we also compare to the best result
reported for DE!EN, achieved by uedin-wmt17
(Sennrich et al., 2017), which is an ensemble of
4 different models and reranked with right-to-left
models.6 uedin-wmt17 is based on the bi-deep
RNNs (Miceli Barone et al., 2017) that we men-
tioned before. To the original 5.9 million sentence
pairs in the training set, they add 10 million syn-
thetic pairs with back-translation.

5.2 Overall Results

Table 5 gives the performance of all the architec-
tures, including the perplexity on validation sets,
the BLEU scores on newstest, and the accuracy
on ContraWSD. Transformers distinctly outper-
form RNNS2S and ConvS2S models on DE!EN
and DE!FR. Moreover, the Transformer model
on DE!EN also achieves higher accuracy than
uedin-wmt17, although the BLEU score on new-
stest2017 is 1.4 lower than uedin-wmt17. We at-
tribute this discrepancy between BLEU and WSD
performance to the use of synthetic news training
data in uedin-wmt17, which causes a large boost in
BLEU due to better domain adaptation to newstest,
but which is less helpful for ContraWSD, whose
test set is drawn from a variety of domains.

For DE!EN, RNNS2S and ConvS2S have the
same BLEU score on newstest2014, ConvS2S has
a higher score on newstest2017. However, the
WSD accuracy of ConvS2S is 1.7% lower than
RNNS2S. For DE!FR, ConvS2S achieves slightly
better results on both BLEU scores and accuracy
than RNNS2S.

The Transformer model strongly outperforms
the other architectures on this WSD task, with a
gap of 4–8 percentage points. This affirms our
hypothesis that Transformers are strong semantic
features extractors.

6https://github.com/a-rios/ContraWSD/
tree/master/baselines

5.3 Hybrid Encoder-Decoder Model
In recent work, Chen et al. (2018) find that hybrid
architectures with a Transformer encoder and an
RNN decoder can outperform a pure Transformer
model. They speculate that the Transformer en-
coder is better at encoding or extracting features
than the RNN encoder, whereas the RNN is better
at conditional language modeling.

For WSD, it is unclear whether the most im-
portant component is the encoder, the decoder, or
both. Following the hypothesis that Transformer
encoders excel as semantic feature extractors, we
train a hybrid encoder-decoder model (TransRNN)
with a Transformer encoder and an RNN decoder.

The results (in Table 5) show that TransRNN
performs better than RNNS2S, but worse than the
pure Transformer, both in terms of BLEU and
WSD accuracy. This indicates that WSD is not
only done in the encoder, but that the decoder also
affects WSD performance. We note that Chen
et al. (2018); Domhan (2018) introduce the tech-
niques in Transformers into RNN-based models,
with reportedly higher BLEU. Thus, it would be
interesting to see if the same result holds true with
their architectures.

6 Conclusion

In this paper, we evaluate three popular NMT ar-
chitectures, RNNS2S, ConvS2S, and Transformers,
on subject-verb agreement and WSD by scoring
contrastive translation pairs.

We test the theoretical claims that shorter path
lengths make models better capture long-range de-
pendencies. Our experimental results show that:

• There is no evidence that CNNs and Trans-
formers, which have shorter paths through
networks, are empirically superior to RNNs
in modeling subject-verb agreement over
long distances.
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• The number of heads in multi-head attention
affects the ability of a Transformer to model
long-range dependencies in the subject-verb
agreement task.

• Transformer models excel at another task,
WSD, compared to the CNN and RNN archi-
tectures we tested.

Lastly, our findings suggest that assessing the per-
formance of NMT architectures means finding
their inherent trade-offs, rather than simply com-
puting their overall BLEU score. A clear under-
standing of those strengths and weaknesses is im-
portant to guide further work. Specifically, given
the idiosyncratic limitations of recurrent and self-
attentional models, combining them is an exciting
line of research. The apparent weakness of CNN
architectures on long-distance phenomena is also
a problem worth tackling, and we can find inspi-
ration from related work in computer vision (Xu
et al., 2014).
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Gongbo Tang, Fabienne Cap, Eva Pettersson, and
Joakim Nivre. 2018. An evaluation of neural ma-
chine translation models on historical spelling nor-
malization. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1320–1331. Association for Computational Linguis-
tics.

Jörg Tiedemann. 2012. Parallel Data, Tools and Inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC-2012), pages 2214–2218, Istan-
bul, Turkey. European Language Resources Associ-
ation (ELRA).

Ke Tran, Arianna Bisazza, and Christof Monz.
2018. The Importance of Being Recurrent for
Modeling Hierarchical Structure. arXiv preprint
arXiv:1803.03585.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems 30, pages 6000–6010. Curran Asso-
ciates, Inc.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan
Yang, and Zheng Zhang. 2014. Scale-invariant
convolutional neural networks. arXiv preprint
arXiv:1411.6369.

Wenpeng Yin, Katharina Kann, Mo Yu, and Hinrich
Schütze. 2017. Comparative study of cnn and rnn
for natural language processing. arXiv preprint
arXiv:1702.01923.

4272



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4273–4283
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Simplifying Neural Machine Translation with Addition-Subtraction
Twin-Gated Recurrent Networks

Biao Zhang1, Deyi Xiong2, Jinsong Su1⇤, Qian Lin1 and Huiji Zhang3

Xiamen University, Xiamen, China1

Soochow University, Suzhou, China2

Xiamen Meiya Pico information Co.,Ltd. Xiamen, China3

{zb,qianl}@stu.xmu.edu.cn, dyxiong@suda.edu.cn, jssu@xmu.edu.cn
zhanghj@300188.cn

Abstract

In this paper, we propose an addition-
subtraction twin-gated recurrent network
(ATR) to simplify neural machine translation.
The recurrent units of ATR are heavily
simplified to have the smallest number of
weight matrices among units of all existing
gated RNNs. With the simple addition
and subtraction operation, we introduce a
twin-gated mechanism to build input and
forget gates which are highly correlated.
Despite this simplification, the essential
non-linearities and capability of modeling
long-distance dependencies are preserved.
Additionally, the proposed ATR is more
transparent than LSTM/GRU due to the
simplification. Forward self-attention can be
easily established in ATR, which makes the
proposed network interpretable. Experiments
on WMT14 translation tasks demonstrate
that ATR-based neural machine transla-
tion can yield competitive performance on
English-German and English-French language
pairs in terms of both translation quality
and speed. Further experiments on NIST
Chinese-English translation, natural language
inference and Chinese word segmentation
verify the generality and applicability of ATR
on different natural language processing tasks.

1 Introduction

Neural machine translation (NMT), typically
with an attention-based encoder-decoder frame-
work (Bahdanau et al., 2015), has recently be-
come the dominant approach to machine transla-
tion and already been deployed for online trans-
lation services (Wu et al., 2016). Recurrent neu-
ral networks (RNN), e.g., LSTMs (Hochreiter
and Schmidhuber, 1997) or GRUs (Chung et al.,
2014), are widely used as the encoder and de-
coder for NMT. In order to alleviate the gradient

⇤Corresponding author.

vanishing issue found in simple recurrent neural
networks (SRNN) (Elman, 1990), recurrent units
in LSTMs or GRUs normally introduce different
gates to create shotcuts for gradient information to
pass through.

Notwithstanding the capability of these gated
recurrent networks in learning long-distance de-
pendencies, they use remarkably more ma-
trix transformations (i.e., more parameters) than
SRNN. And with many non-linear functions mod-
eling inputs, hidden states and outputs, they are
also less transparent than SRNN. These make
NMT which is based on these gated RNNs suffer
from not only inefficiency in training and infer-
ence due to recurrency and heavy computation in
recurrent units (Vaswani et al., 2017) but also diffi-
culty in producing interpretable models (Lee et al.,
2017). These also hinder the deployment of NMT
models particularly on memory- and computation-
limited devices.

In this paper, our key interest is to simplify re-
current units in RNN-based NMT. In doing so,
we want to investigate how further we can ad-
vance RNN-based NMT in terms of the number
of parameters (i.e., memory consumption), run-
ning speed and interpretability. This simplification
shall preserve the capability of modeling long-
distance dependencies in LSTMs/GRUs and the
expressive power of recurrent non-linearities in
SRNN. The simplification shall also reduce com-
putation load and physical memory consumption
in recurrent units on the one hand and allow us to
take a good look into the inner workings of RNNs
on the other hand.

In order to achieve this goal, we propose an
addition-subtraction twin-gated recurrent network
(ATR) for NMT. In the recurrent units of ATR,
we only keep the very essential weight matrices:
one over the input and the other over the his-
tory (similar to SRNN). Comparing with previous
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RNN variants (e.g., LSTM or GRU), we have the
smallest number of weight matrices. This will re-
duce the computation load of matrix multiplica-
tion. ATR also uses gates to bypass the vanishing
gradient problem so as to capture long-range de-
pendencies. Specifically, we use the addition and
subtraction operations between the weighted his-
tory and input to estimate an input and forget gate
respectively. These add-sub operations not only
distinguish the two gates so that we do not need to
have different weight matrices for them, but also
make the two gates dynamically correlate to each
other. Finally, we remove some non-linearities in
recurrent units.

Due to these simplifications, we can easily show
that each new state in ATR is an unnormalized
weighted sum of previous inputs, similar to re-
current additive networks (Lee et al., 2017). This
property not only allows us to trace each state back
to those inputs which contribute more but also es-
tablishes unnormalized forward self-attention be-
tween the current state and all its previous inputs.
The self-attention mechanism has already proved
very useful in non-recurrent NMT (Vaswani et al.,
2017).

We build our NMT systems on the proposed
ATR with a single-layer encoder and decoder.
Experiments on WMT14 English-German and
English-French translation tasks show that our
model yields competitive results compared with
GRU/LSTM-based NMT. When we integrate an
orthogonal context-aware encoder (still single
layer) into ATR-based NMT, our model (yield-
ing 24.97 and 39.06 BLEU on English-German
and English-French translation respectively) is
even comparable to deep RNN and non-RNN
NMT models which are all with multiple en-
coder/decoder layers. In-depth analyses demon-
strate that ATR is more efficient than LSTM/GRU
in terms of NMT training and decoding speed.

We adapt our model to other language transla-
tion and natural language processing tasks, includ-
ing NIST Chinese-English translation, natural lan-
guage inference and Chinese word segmentation.
Our conclusions still hold on all these tasks.

2 Related Work

The most widely used RNN models are
LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Chung et al., 2014), both of which are
good at handling gradient vanishing problem, a

notorious bottleneck of the simple RNN (Elman,
1990). The design of gates in our model follows
the gate philosophy in LSTM/GRU.

Our work is closely related to the recurrent
additive network (RAN) proposed by Lee et al.
(2017). They empirically demonstrate that many
non-linearities commonly used in RNN transition
dynamics can be removed, and that recurrent hid-
den states computed as purely the weighted sum
of input vectors can be quite efficient in lan-
guage modeling. Our work follows the same spirit
of simplifying recurrent units as they do. But
our proposed ATR is significantly different from
RAN in three aspects. First, ATR is simpler than
RAN with even fewer parameters. There are only
two weight matrices in ATR while four different
weight matrices in the simplest version of RAN
(two for each gate in RAN). Second, since the only
difference between the input and forget gate in
ATR is the addition/subtraction operation between
the history and input, the two gates can be learned
to be highly correlated as shown in our analysis.
Finally, although RAN is verified effective in lan-
guage modeling, our experiments show that ATR
is better than RAN in machine translation in terms
of both speed and translation quality.

To speed up RNN models, a line of work has
attempted to remove recurrent connections. For
example, Bradbury et al. (2016) propose the quasi-
recurrent neural network (QRNN) which uses con-
volutional layers and a minimalist recurrent pool-
ing function to improve parallelism. Very recently,
Lei and Zhang (2017) propose a simple recurrent
unit (SRU). With the cuDNN optimization, their
RNN model can be trained as fast as CNNs. How-
ever, to obtain promising results, QRNN and SRU
have to use deep architectures. In practice, 4-layer
QRNN encoder and decoder are used to gain trans-
lation quality that is comparable to that of single-
layer LSTM/GRU NMT. In particular, our one-
layer model achieves significantly higher perfor-
mance than a 10-layer SRU system.

Finally, our work is also related to the efforts
in developing alternative architectures for NMT
models. Zhou et al. (2016) introduce fast-forward
connections between adjacent stacked RNN layers
to ease gradient propagation. Wang et al. (2017a)
propose a linear associate unit to reduce the gradi-
ent propagation length along layers in deep NMT.
Gehring et al. (2017b) and Vaswani et al. (2017)
explore purely convolutional and attentional archi-
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Figure 1: Architecture for LSTM, GRU and ATR. c⇤ indicates the memory cell specific to the LSTM
network. x⇤ and h⇤ denote the input and output hidden states respectively.

tectures as alternatives to RNNs for neural transla-
tion. With careful configurations, their deep mod-
els achieve state-of-the-art performance on various
datasets.

3 Addition-Subtraction Twin-Gated
Recurrent Network

Given a sequence x = {x1,x2,. . . ,xT }, RNN up-
dates the hidden state ht recurrently as follows:

ht = �(ht�1,xt) (1)

where ht�1 is the previous hidden state, which is
considered to store information from all previous
inputs, and xt is the current input. The function
�(·) is a non-linear recurrent function, abstracting
away from details in recurrent units.

GRU can be considered as a simplified version
of LSTM. In this paper, theoretically, we use GRU
as our benchmark and propose a new recurrent unit
to further simplify it. The GRU function is defined
as follows (see Figure 1b):

zt = �(Wzxt + Uzht�1) (2)
rt = �(Wrxt + Urht�1) (3)

h̃t = tanh(Whxt + Uh(rt � ht�1)) (4)

ht = zt � ht�1 + (1 � zt) � h̃t (5)

where � denotes an element-wise multiplication.
The reset gate rt and update gate zt enable man-
ageable information flow from the history and the
current input to the new state respectively. Despite
the success of these two gates in handling gradient
flow, they consume extensive matrix transforma-
tions and weight parameters.

We argue that many of these matrix transfor-
mations are not essential. We therefore propose
an addition-subtraction twin-gated recurrent unit

(ATR), formulated as follows (see Figure 1c):

pt = Whht�1, qt = Wxxt (6)
it = �(pt + qt) (7)
ft = �(pt � qt) (8)

ht = it � qt + ft � ht�1 (9)

The hidden state ht in ATR is a weighted mixture
of both the current input qt and the history ht�1

controlled by an input gate it and a forget gate ft
respectively. Notice that we use the transformed
representation qt for the current input rather than
the raw vector xt due to the potential mismatch in
dimensions between ht and xt.

Similar to GRU, we use gates, especially the
forget gate, to control the back-propagated gradi-
ent flow to make sure gradients will neither vanish
nor explode. We also preserve the non-linearities
of SRNN in ATR but only in the two gates.

There are three significant differences of ATR
from GRU. Some of these differences are due to
the simplifications introduced in ATR. First, we
squeeze the number of weight matrices in gate cal-
culation from four to two (see Equation (2&3) and
(7&8)). In all existing gated RNNs, the inputs
to gates are weighted sum of the previous hid-
den state and input. In order to distinguish these
gates, the weight matrices over the previous hid-
den state and the current input should be different
for different gates. The number of different weight
matrices in gates is therefore 2|#gates| in previ-
ous gated RNNs. Different from them, ATR intro-
duces different operations (i.e., addition and sub-
traction) between the weighted history and input
to distinguish the input and forget gate. Therefore,
the weight matrices over the previous state/input
in the two gates can be the same in ATR. Second,
we keep the very essential non-linearities, only in
the two gates. In ATR, the role of qt is similar
to that of h̃t in GRU (see Equation (4)). However,
we completely wipe out the recurrent non-linearity
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Figure 2: Visualization of the difference between
�(x + y) (the input gate) and �(x � y) (the forget
gate). Here, we set x, y 2 [�5, 5].

of h̃t in qt (i.e., qt = Wxxt). Lee et al. (2017)
show that this non-linearity is not necessary in lan-
guage modeling. We further empirically demon-
strate that it is neither essential in machine trans-
lation. Third, in GRU the gates for h̃t and ht�1

are coupled and normalized to 1 while we do not
explicitly associate the two gates in ATR. Instead,
they can be learned to be correlated in an implicit
way, as shown in the next subsection and our em-
pirical analyis in Section 5.1.

3.1 Twin-Gated Mechanism

Unlike GRU, we use an addition and subtraction
operation over the transformed current input qt

and history pt to differentiate the two gates in
ATR. As the two gates have the same weights for
their input components with only a single differ-
ence in the operation between the input compo-
nents, they act like twins. We term the two gates
in ATR as twin gates and the procedure, shown
in Equation (7&8), as the twin-gated mechanism.
This mechanism endows our model with the fol-
lowing two advantages: 1) Both addition and sub-
traction operations are completely linear so that
fast computation can be expected; and 2) No other
weight parameters are introduced for gates so that
our model is more memory-compact.

A practical question for the twin-gated mech-
anism is whether twin gates are really capable of
dynamically weighting the input and history infor-
mation. To this end, we plot the surface of one-
dimensional �(x + y) � �(x � y) in Figure 2. It
is clear that both gates are highly non-linearly cor-
related, and that there are regions where �(x + y)
is equal to, greater or smaller than �(x � y). In
other words, by adapting the distribution of input

Model # WM # MT
LSTM 8 8
GRU 6 6
RAN 4 4
ATR 2 2

Table 1: Comparison of LSTM, GRU, RAN and
ATR in terms of the number of weight matrices
(WM) and matrix transformations (MT).

and forget gates, the twin-gated mechanism has
the potential to automatically seek suitable regions
in Figure 2 to control its preference between the
new and past information. We argue that the in-
put and forget gates are negatively correlated after
training, and empirically show their actual corre-
lation in Section 5.1.

3.2 Computation Analysis

Here we provide a systematical comparison of
computations in LSTM, GRU, RAN and our ATR
with respect to the number of weight matrices and
matrix transformations. Notice that all these units
are building blocks of RNNs so that the total com-
putational complexity and the minimum number
of sequential operations required are unchanged,
i.e. O(n · d2) and O(n) respectively where n is
the sequence length and d is the dimensionality of
hidden states. However, the actual number of ma-
trix transformations in the unit indeed significantly
affects the running speed of RNN in practice.

We summarize the results in Table 1. LSTM
contains three different gates and a cell state, in-
cluding 4 different neural layers with 8 weight ma-
trices and transformations. GRU simplifies LSTM
by removing a gate, but still involves two gates
and a candidate hidden state. It includes 3 differ-
ent neural layers with 6 weight matrices and trans-
formations. RAN further simplifies GRU by re-
moving the non-linearity in the state transition and
therefore contains 4 weight matrices in its sim-
plest version. Although our ATR also has two
gates, however, there are only 2 weight matrices
and transformations, accounting for only a third
and a quarter of those in GRU and LSTM respec-
tively. To the best of our knowledge, ATR has the
smallest number of weight transformations in ex-
isting gated RNN units. We provide a detailed and
empirical analysis on the speed in Section 5.2.
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3.3 Interpretability Analysis of Hidden States
An appealing property of the proposed ATR is
its interpretability. This can be demonstrated by
rolling out Equation (9) as follows:

ht = it � qt + ft � ht�1

= it � Wtxt +
t�1X

k=1

ik �
 

t�kY

l=1

fk+l

!
� Wxxk

⇡
tX

k=1

gk � Wxxk

(10)

where gk can be considered as an approximate
weight assigned to the k-th input. Similar to the
RAN model (Lee et al., 2017), the hidden state
in ATR is a component-wise weighted sum of the
inputs. This not only enables ATR to build up
essential dependencies between preceding inputs
and the current hidden state, but also allows us
to easily detect which previous words have the
promising impacts on the current state. This de-
sirable property obviously makes ATR highly in-
terpretable.

Additionally, this form of weighted sum is also
related to self-attention (Vaswani et al., 2017). It
can be considered as a forward unnormalized self-
attention where each hidden state attends to all its
previous positions. As the self-attention mech-
anism has proved very useful in NMT (Vaswani
et al., 2017), we conjecture that such property of
ATR partially contributes to its success in machine
translation as shown in our experiments. We visu-
alize the dependencies captured by Equation (10)
in Section 5.3.

4 Experiments

4.1 Setup
We conducted our main experiments on WMT14
English-German and English-French translation
tasks. Translation quality is measured by case-
sensitive BLEU-4 metric (Papineni et al., 2002).
Details about each dataset are as follows:

English-German To compare with previous re-
ported results (Luong et al., 2015b; Jean
et al., 2015; Zhou et al., 2016; Wang et al.,
2017a), we used the same training data of
WMT 2014, which consist of 4.5M sentence
pairs. We used the newstest2013 as our dev
set, and the newstest2014 as our test set.

English-French We used the WMT 2014 train-
ing data. This corpora contain 12M selected
sentence pairs. We used the concatenation
of newstest2012 and newstest2013 as our dev
set, and the newstest2014 as our test set.

The used NMT system is an attention-based
encoder-decoder system, which employs a bidi-
rectional recurrent network as its encoder and
a two-layer hierarchical unidirectional recurrent
network as its decoder, companied with an addi-
tive attention mechanism (Bahdanau et al., 2015).
We replaced the recurrent unit with our proposed
ATR model. More details are given in Ap-
pendix A.1.

We also conducted experiments on Chinese-
English translation, natural language inference
and Chinese word segmentation. Details and ex-
periment results are provided in Appendix A.2.

4.2 Training
We set the maximum length of training instances
to 80 words for both English-German and English-
French task. We used the byte pair encoding com-
pression algorithm (Sennrich et al., 2016) to re-
duce the vocabulary size as well as to deal with the
issue of rich morphology. We set the vocabulary
size of both source and target languages to 40K for
all translation tasks. All out-of-vocabulary words
were replaced with a token “unk”.

We used 1000 hidden units for both encoder and
decoder. All word embeddings had dimensional-
ity 620. We initialized all model parameters ran-
domly according to a uniform distribution ranging
from -0.08 to 0.08. These tunable parameters were
then optimized using Adam algorithm (Kingma
and Ba, 2015) with the two momentum parame-
ters set to 0.9 and 0.999 respectively. Gradient
clipping 5.0 was applied to avoid the gradient ex-
plosion problem. We trained all models with a
learning rate 5e�4 and batch size 80. We decayed
the learning rate with a factor of 0.5 between each
training epoch. Translations were generated by
a beam search algorithm that was based on log-
likelihood scores normalized by sentence length.
We used a beam size of 10 in all the experiments.
We also applied dropout for English-German and
English-French tasks on the output layer to avoid
over-fitting, and the dropout rate was set to 0.2.

To train deep NMT models, we adopted the
GNMT architecture (Wu et al., 2016). We kept
all the above settings, except the dimensionality
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System Architecture Vocab tok BLEU detok BLEU
Buck et al. (2014) WMT14 winner system phrase-based + large LM - - 20.70

Existing deep NMT systems (perhaps different tokenization)
Zhou et al. (2016) LSTM with 16 layers + F-F connections 160K 20.60 -
Lei and Zhang (2017) SRU with 10 layers 50K 20.70 -
Antonino and Federico (2018) SR-NMT with 4 layers 32K 23.32 -
Wang et al. (2017a) GRU with 4 layers + LAU + PosUnk 80K 23.80 -
Wang et al. (2017a) GRU with 4 layers + LAU + PosUnk + ensemble 80K 26.10 -
Wu et al. (2016) LSTM with 8 layers + RL-refined WPM 32K 24.61 -
Wu et al. (2016) LSTM with 8 layers + RL-refined ensemble 80K 26.30 -
Vaswani et al. (2017) Transformer with 6 layers + base model 37K 27.30 -

Comparable NMT systems (the same tokenization)
Luong et al. (2015a) LSTM with 4 layers + local att. + unk replace 50K 20.90 -
Zhang et al. (2017a) GRU with gated attention + BPE 40K 23.84 -
Gehring et al. (2017b) CNN with 15 layers + BPE 40K 25.16 -
Gehring et al. (2017b) CNN with 15 layers + BPE + ensemble 40K 26.43 -
Zhang et al. (2018a) Transformer with 6 layers + aan + base model 32K 26.31 -

Our end-to-end NMT systems

this work

RNNSearch + GRU + BPE 40K 22.54 22.06
RNNSearch + LSTM + BPE 40K 22.96 22.39
RNNSearch + RAN + BPE 40K 22.14 21.40
RNNSearch + ATR + BPE 40K 22.48 21.99
RNNSearch + ATR + CA + BPE 40K 23.31 22.70
GNMT + ATR + BPE 40K 24.16 23.59
RNNSearch + ATR + CA + BPE + ensemble 40K 24.97 24.33

Table 2: Tokenized (tok) and detokenized (detok) case-sensitive BLEU scores on the WMT14 English-
German translation task. “unk replace” and “PosUnk” denotes the approach of handling rare words
in Jean et al. (2015) and Luong et al. (2015a) respectively. “RL” and “WPM” is the reinforcement
learning optimization and word piece model used in Wu et al. (2016). “CA” is the context-aware recurrent
encoder (Zhang et al., 2017b). “LAU” and “F-F” denote the linear associative unit and the fast-forward
architecture proposed by Wang et al. (2017a) and Zhou et al. (2016) respectively. “aan” denotes the
average attention network proposed by Zhang et al. (2018a).

of word embedding and hidden state which we set
to be 512.

4.3 Results on English-German Translation

The translation results are shown in Table 2.
We also provide results of several existing sys-
tems that are trained with comparable experimen-
tal settings to ours. In particular, our single
model yields a detokenized BLEU score of 21.99.
In order to show that the proposed model can
be orthogonal to previous methods that improve
LSTM/GRU-based NMT, we integrate a single-
layer context-aware (CA) encoder (Zhang et al.,
2017b) into our system. The ATR+CA system fur-
ther reaches 22.7 BLEU, outperforming the win-
ner system (Buck et al., 2014) by a substantial im-
provement of 2 BLEU points. Enhanced with the
deep GNMT architecture, the GNMT+ATR sys-
tem yields a gain of 0.89 BLEU points over the
RNNSearch+ATR+CA and 1.6 BLEU points over
the RNNSearch + ATR. Notice that different from
our system which was trained on the parallel cor-
pus alone, the winner system used a huge mono-

lingual text to enhance its language model.
Compared with the existing LSTM-based (Lu-

ong et al., 2015a) deep NMT system, our shal-
low/deep model achieves a gain of 2.41/3.26 to-
kenized BLEU points respectively. Under the
same training condition, our ATR outperforms
RAN by a margin of 0.34 tokenized BLEU
points, and achieves competitive results against
its GRU/LSTM counterpart. This suggests that
although our ATR is much simpler than GRU,
LSTM and RAN, it still possesses strong model-
ing capacity.

In comparison to several advanced deep NMT
models, such as the Google NMT (8 layers,
24.61 tokenized BLEU) (Wu et al., 2016) and the
LAU-connected NMT (4 layers, 23.80 tokenized
BLEU) (Wang et al., 2017a), the performance of
our shallow model (23.31) is competitive. Par-
ticularly, when replacing LSTM in the Google
NMT with our ATR model, the GNMT+ATR sys-
tem achieves a BLEU score of 24.16, merely 0.45
BLEU points lower. Notice that although all sys-
tems use the same training data of WMT14, the
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System Architecture Vocab tok BLEU detok BLEU
Existing end-to-end NMT systems

Jean et al. (2015) RNNSearch (GRU) + unk replace + large vocab 500K 34.11 -
Luong et al. (2015b) LSTM with 6 layers + PosUnk 40K 32.70 -
Sutskever et al. (2014) LSTM with 4 layers 80K 30.59 -
Shen et al. (2016) RNNSearch (GRU) + MRT + PosUnk 30K 34.23 -
Zhou et al. (2016) LSTM with 16 layers + F-F connections + 36M data 80K 37.70 -
Wu et al. (2016) LSTM with 8 layers + RL-refined WPM + 36M data 32K 38.95 -
Wang et al. (2017a) RNNSearch (GRU) with 4 layers + LAU 30K 35.10 -
Gehring et al. (2017a) Deep Convolutional Encoder 20 layers with kernel width 5 30K 35.70 -
Vaswani et al. (2017) Transformer with 6 layers + 36M data + base model 32K 38.10 -
Gehring et al. (2017b) ConvS2S with 15 layers + 36M data 40K 40.46 -
Vaswani et al. (2017) Transformer with 6 layers + 36M data + big model 32K 41.80 -
Wu et al. (2016) LSTM with 8 layers + RL WPM + 36M data + ensemble 32K 41.16 -

Our end-to-end NMT systems

this work

RNNSearch + GRU + BPE 40K 35.89 33.41
RNNSearch + LSTM + BPE 40K 36.95 34.15
RNNSearch + ATR + BPE 40K 36.89 34.00
RNNSearch + ATR + CA + BPE 40K 37.88 34.96
GNMT + ATR + BPE 40K 38.59 35.67
RNNSearch + ATR + CA + BPE + ensemble 40K 39.06 36.06

Table 3: Tokenized (tok) and detokenized (detok) case-sensitive BLEU scores on the WMT14 English-
French translation task. “12M data” indicates the same training data as ours, while “36M data” is a
significant larger dataset that contains the 12M data.

tokenization of these work might be different from
ours. However, the overall results can indicate the
competitive strength of our model. In addition,
SRU (Lei and Zhang, 2017), a recent proposed
efficient recurrent unit, obtains a BLEU score of
20.70 with 10 layers, far more behind ATR’s.

We further ensemble eight likelihood-trained
models with different random initializations for
the ATR+CA system. The variance in the tok-
enized BLEU scores of these models is 0.07. As
can be seen from Table 2, the ensemble system
achieves a tokenized and detokenized BLEU score
of 24.97 and 24.33 respectively, obtaining a gain
of 1.66 and 1.63 BLEU points over the single
model. The final result of the ensemble system, to
the best of our knowledge, is a very promising re-
sult that can be reached by single-layer NMT sys-
tems on WMT14 English-German translation.

4.4 Results on English-French Translation

Unlike the above translation task, the WMT14
English-French translation task provides a signifi-
cant larger dataset. The full training data have ap-
proximately 36M sentence pairs, from which we
only used 12M instances for experiments follow-
ing previous work (Jean et al., 2015; Gehring et al.,
2017a; Luong et al., 2015b; Wang et al., 2017a).
We show the results in Table 3.

Our shallow model achieves a tokenized BLEU
score of 36.89 and 37.88 when it is equipped

with the CA encoder, outperforming almost all
the listed systems, except the Google NMT (Wu
et al., 2016), the ConvS2S (Gehring et al., 2017b)
and the Transformer (Vaswani et al., 2017). En-
hanced with the deep GNMT architecture, the
GNMT+ATR system reaches a BLEU score of
38.59, which beats the base model version of the
Transformer by a margin of 0.49 BLEU points.
When we use four ensemble models (the variance
in the tokenized BLEU scores of these ensemble
models is 0.16), the ATR+CA system obtains an-
other gain of 0.47 BLEU points, reaching a tok-
enized BLEU score of 39.06, which is comparable
with several state-of-the-art systems.

5 Analysis

5.1 Analysis on Twin-Gated Mechanism

We provide an illustration of the actual relation be-
tween the learned input and forget gate in Figure
3. Clearly, these two gates show strong negative
correlation. When the input gate opens with high
values, the forget gate prefer to be close. Quantita-
tively, on the whole test set, the Pearson’s r of the
input and forget gate is -0.9819, indicating a high
correlation.

5.2 Analysis on Speed and Model Parameters

As mentioned in Section 3.2, ATR has much fewer
model parameters and matrix transformations. We
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Figure 3: Visualization of correlation between
the input and forget gate learned in Equation
(13). For each gate, we record its mean value
( 1
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P
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1
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P
i ft,i) with its position on new-

stest2014, and then average all gate values for each
position over all test sentences. This figure illus-
trates the position-wise input and forget gate val-
ues.

provide more details in this section by comparing
against the following two NMT systems:

• DeepRNNSearch (GRU): a deep GRU-
equipped RNNSearch model (Wu et al.,
2016) with 5 layers. We set the dimension
of word embedding and hidden state to 620
and 1000 respectively.

• Transformer: a purely attentional transla-
tor (Vaswani et al., 2017). We set the di-
mension of word embedding and filter size to
512 and 2048 respectively. The model was
trained with a minibatch size of 256.

We also compare with the GRU and LSTM-based
RNNSearch. Without specific mention, all other
experimental settings for all these models are the
same as for our model. We implement all these
models using the Theano library, and test the speed
on one GeForce GTX TITAN X GPU card. We
show the results on Table 4.

We observe that the Transformer achieves the
best training speed, processing 4961 words per
second. This is reasonable since the Transformer
can be trained in full parallelization. On the con-
trary, DeepRNNSearch is the slowest system. As
RNN performs sequentially, stacking more lay-
ers of RNNs inevitably reduces the training effi-
ciency. However, this situation becomes the re-
verse when it comes to the decoding procedure.
The Transformer merely generates 44 words per
second while DeepRNNSearch reaches 70. This
is because during decoding, all these beam search-

Model #PMs Train Test
RNNSearch+GRU 83.5M 1996 168 (0.133)
RNNSearch+LSTM 93.3M 1919 167 (0.139)
RNNSearch+RAN 79.5M 2192 170 (0.129)
DeepRNNSearch 143.0M 894 70 (0.318)
Transformer 70.2M 4961 44 (0.485)
RNNSearch+ATR 67.8M 2518 177 (0.123)
RNNSearch+ATR+CA 63.1M 3993 186 (0.118)

Table 4: Comparison on the training and decoding
speed and the number of model parameters of dif-
ferent NMT models on WMT14 English-German
translation task with beam size 1. #PMs: the num-
ber of model parameters. Train/Test: the number
of words in one second processed during train-
ing/testing. The number in bracket indicates the
average decoding time per source sentence (in sec-
onds).

based systems must generate translation one word
after another. Therefore the parallelization advan-
tage of the Transformer disappears. In comparison
to DeepRNNSearch, the Transformer spends extra
time on performing self-attention over all previous
hidden states.

Our model with the CA structure, using only
63.1M parameters, processes 3993 words per sec-
ond during training and generates 186 words per
second during decoding, which yields substantial
speed improvements over the GRU- and LSTM-
equipped RNNSearch. This is due to the light ma-
trix computation in recurrent units of ATR. No-
tice that the speed increase of ATR over GRU
and LSTM does not reach 3x. This is be-
cause at each decoding step, there are mainly two
types of computation: recurrent unit and softmax
layer. The latter consumes the most calculation,
which, however, is the same for different models
(LSTM/GRU/ATR).

5.3 Analysis on Dependency Modeling
As shown in Section 3.3, a hidden state in our ATR
can be formulated as a weighted sum of the previ-
ous inputs. In this section, we quantitatively ana-
lyze the weights gk in Equation (10) induced from
Equation (13). Inspired by Lee et al. (2017), we
visualize the captured dependencies of an exam-
ple in Figure 4 where we connect each word to
the corresponding previous word with the highest
weight gk.

Obviously, our model can discover strong
local dependencies. For example, the to-
ken “unglück@@” and “lichen” should be a
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Beide unglück@@ lichen Parteien wurden in die nahe gelegenen Krankenhäuser gebracht .
(Both) (unfortunate) (parties) (were) (to) (the) (nearby) (located) (hospitals) (brought) .

Figure 4: Visualization of dependencies on a target (German) sentence (selected from newstest2014).
“@@” indicates a separator that splits one token into two pieces of sub-words.

single word. Our model successfully asso-
ciates “unglück@@” closely to the generation
of “lichen” during decoding. In addition, our
model can also detect non-consecutive long-
distance dependencies. Particularly, the predic-
tion of “Parteien” relies heavily on the token
“unglücklichen”, which actually entails an amod
linguistic dependency relationship. These cap-
tured dependencies make our model more inter-
pretable than LSTM/GRU.

6 Conclusion and Future Work

This paper has presented a twin-gated recurrent
network (ATR) to simplify neural machine trans-
lation. There are only two weight matrices and
matrix transformations in recurrent units of ATR,
making it efficient in physical memory usage and
running speed. To avoid the gradient vanishing
problem, ATR introduces a twin-gated mechanism
to generate an input gate and forget gate through
linear addition and subtraction operation respec-
tively, without introducing any additional param-
eters. The simplifications allow ATR to produce
interpretable results.

Experiments on English-German and English-
French translation tasks demonstrate the effective-
ness of our model. They also show that ATR
can be orthogonal to and applied with methods
that improve LSTM/GRU-based NMT, indicated
by the promising performance of the ATR+CA
system. Further analyses reveal that ATR can be
trained more efficiently than GRU. It is also able to
transparently model long-distance dependencies.

We also adapt our ATR to other natural lan-
guage processing tasks. Experiments show en-
couraging performance of our model on Chinese-
English translation, natural language inference
and Chinese word segmentation, demonstrating its
generality and applicability on various NLP tasks.

In the future, we will continue to examine the
effectiveness of ATR on different neural models
for NMT, such as the hierarchical NMT model (Su
et al., 2018b) as well as the generative NMT

model (Su et al., 2018a). We are also interested
in adapting our ATR to summarization, semantic
parsing etc.
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Abstract
Although neural machine translation has
achieved promising results, it suffers from
slow translation speed. The direct conse-
quence is that a trade-off has to be made be-
tween translation quality and speed, thus its
performance can not come into full play. We
apply cube pruning, a popular technique to
speed up dynamic programming, into neural
machine translation to speed up the transla-
tion. To construct the equivalence class, simi-
lar target hidden states are combined, leading
to less RNN expansion operations on the target
side and less softmax operations over the large
target vocabulary. The experiments show that,
at the same or even better translation quality,
our method can translate faster compared with
naive beam search by 3.3⇥ on GPUs and 3.5⇥
on CPUs.

1 Introduction
Neural machine translation (NMT) has shown
promising results and drawn more attention re-
cently (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014b; Bahdanau et al., 2015; Gehring et al.,
2017a,b; Vaswani et al., 2017). A widely used ar-
chitecture is the attention-based encoder-decoder
framework (Cho et al., 2014b; Bahdanau et al.,
2015) which assumes there is a common seman-
tic space between the source and target language
pairs. The encoder encodes the source sentence
to a representation in the common space with the
recurrent neural network (RNN) (Hochreiter and
Schmidhuber, 1997) and the decoder decodes this
representation to generate the target sentence word
by word. To generate a target word, a probabil-
ity distribution over the target vocabulary is drawn
based on the attention over the entire source se-
quence and the target information rolled by an-
other RNN. At the training time, the decoder is

forced to generate the ground truth sentence, while
at inference, it needs to employ the beam search
algorithm to search through a constrained space
due to the huge search space.

Even with beam search, NMT still suffers from
slow translation speed, especially when it works
not on GPUs, but on CPUs, which are more com-
mon practice. The first reason for the inefficiency
is that the generation of each target word requires
extensive computation to go through all the source
words to calculate the attention. Worse still, due
to the recurrence of RNNs, target words can only
be generated sequentially rather than in parallel.
The second reason is that large vocabulary on tar-
get side is employed to avoid unknown words
(UNKs), which leads to a large number of nor-
malization factors for the softmax operation when
drawing the probability distribution. To accelerate
the translation, the widely used method is to trade
off between the translation quality and the decod-
ing speed by reducing the size of vocabulary (Mi
et al., 2016a) or/and the number of parameters,
which can not realize the full potential of NMT.

In this paper, we borrow ideas from phrase-
based and syntax-based machine translation where
cube pruning has been successfully applied to
speed up the decoding (Chiang, 2007; Huang
and Chiang, 2007). Informally, cube pruning
“coarsens” the search space by clustering similar
states according to some equivalence relations. To
apply this idea to NMT, however, is much more
involved. Specifically, in the process of beam
search, we cluster similar target hidden states to
construct equivalence classes, the three dimen-
sions of which are target words in the target vocab-
ulary, part translations retained in the beam search
and different combinations of similar target hid-
den states, respectively. The clustering operation
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can directly decrease the number of target hidden
states in the following calculations, together with
cube pruning, resulting in less RNN expansion op-
erations to generate the next hidden state (related
to the first reason) and less softmax operations
over the target vocabulary (related to the second
reason). The experiment results show that, when
receiving the same or even better translation qual-
ity, our method can speed up the decoding speed
by 3.3⇥ on GPUs and 3.5⇥ on CPUs.

2 Background

The proposed strategy can be adapted to optimize
the beam search algorithm in the decoder of vari-
ous NMT models. Without loss of generality, we
take the attention-based NMT (Bahdanau et al.,
2015) as an example to introduce our method. In
this section, we first introduce the attention-based
NMT model and then the cube pruning algorithm.

2.1 The Attention-based NMT Model

The attention-based NMT model follows the
encoder-decoder framework with an extra atten-
tion module. In the following parts, we will intro-
duce each of the three components. Assume the
source sequence and the observed translation are
x = {x1, · · · , x|x|} and y = {y⇤

1, · · · , y⇤
|y|}.

Encoder The encoder uses a bidirectional GRU
to obtain two sequences of hidden states. The fi-
nal hidden state of each source word is got by con-
catenating the corresponding pair of hidden states
in those sequences. Note that exi is employed to
represent the embedding vector of the word xi.

�!
h i =

���!
GRU

⇣
exi ,
�!
h i�1

⌘
(1)

 �
h i =

 ���
GRU

⇣
exi ,
 �
h i+1

⌘
(2)

hi =
h�!

h i;
 �
h i

i
(3)

Attention The attention module is designed to
extract source information (called context vector)
which is highly related to the generation of the
next target word. At the j-th step, to get the con-
text vector, the relevance between the target word
y⇤

j and the i-th source word is firstly evaluated as

rij = vT
a tanh (Wasj�1 + Uahi) (4)

Then, the relevance is normalized over the source
sequence, and all source hidden states are added

weightedly to produce the context vector.

↵ij =
exp (rij)

P|x|
i0=1 exp

�
ri0j

� ; cj =
X|x|

i=1
↵ijhi (5)

Decoder The decoder also employs a GRU to
unroll the target information. The details are de-
scribed in Bahdanau et al. (2015). At the j-th de-
coding step, the target hidden state sj is given by

sj = f
⇣
ey⇤

j�1
, sj�1, cj

⌘
(6)

The probability distribution Dj over all the words
in the target vocabulary is predicted conditioned
on the previous ground truth words, the context
vector cj and the unrolled target information sj .

tj = g
⇣
ey⇤

j�1
, cj , sj

⌘
(7)

oj = Wotj (8)
Dj = softmax (oj) (9)

where g stands for a linear transformation, Wo is
used to map tj to oj so that each target word has
one corresponding dimension in oj .

2.2 Cube Pruning
The cube pruning algorithm, proposed by Chiang
(2007) based on the k-best parsing algorithm of
Huang and Chiang (2005), is actually an accel-
erated extension based on the naive beam search
algorithm. Beam search, a heuristic dynamic pro-
gramming searching algorithm, explores a graph
by expanding the most promising nodes in a lim-
ited set and searches approximate optimal results
from candidates. For the sequence-to-sequence
learning task, given a pre-trained model, the
beam search algorithm finds a sequence that ap-
proximately maximizes the conditional probabil-
ity (Graves, 2012; Boulanger-Lewandowski et al.,
2013). Both Sutskever et al. (2014) and Bahdanau
et al. (2015) employed the beam search algorithm
into the NMT decoding to produce translations
with relatively larger conditional probability with
respect to the optimized model parameters. Re-
markably, Huang and Chiang (2007) successfully
applied the cube pruning algorithm to the decod-
ing of SMT. They found that the beam search al-
gorithm in SMT can be extended, and they uti-
lized the cube pruning and some variants to op-
timize the search process in the decoding phase
of phrase-based (Och and Ney, 2004) and syntax-
based (Chiang, 2005; Galley et al., 2006) systems,
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Figure 1: Cube pruning in SMT decoding. (a): the values in the grid denote the negative log-likelihood
cost of the terminal combinations on both dimensions, and each dimension denotes a translation candi-
date in this example; (b)-(d): the process of popping the best candidate of top three items.

GPU CPU
Calculation Units Time(s) Percentage Time(s) Percentage

Eq. (6): sj = f(ey⇤

j�1
, sj�1, cj) 551.07 75.73% 1370.92 19.42%

Eq. (7): tj = g(ey⇤

j�1
, cj , sj) 88.25 12.13% 277.76 3.93%

Eq. (8): oj = Wotj 25.33 3.48% 2342.53 33.18%
Eq. (9): Dj = softmax(oj) 63.00 8.66% 3069.25 43.47%

Table 1: Time cost statistics for decoding the whole MT03 testset on GPUs and CPUs with beam size 10.

which decreased a mass of translation candidates
and achieved a significant speed improvement by
reducing the size of complicated search space,
thereby making it possible to actualize the thought
of improving the translation performance through
increasing the beam size.

In the traditional SMT decoding, the cube prun-
ing algorithm aims to prune a great number of
partial translation hypotheses without computing
and storing them. For each decoding step, those
hypotheses with the same translation rule are
grouped together, then the cube pruning algorithm
is conducted over the hypotheses. We illustrate the
detailed process in Figure 1.

3 NMT Decoder with Cube Pruning

3.1 Definitions

We define the related storage unit tuple of the
i-th candidate word in the j-th beam as ni

j =

(ci
j , s

i
j , y

i
j , bp

i
j), where ci

j is the negative log-
likelihood (NLL) accumulation in the j-th beam,
si
j is the decoder hidden state in the j-th beam, yi

j
is the index of the j-th target word in large vocab-
ulary and bpi

j is the backtracking pointer for the
j-th decoding step. Note that, for each source sen-
tence, we begin with calculating its encoded rep-
resentation and the first hidden state s0

0 in decoder,

then searching from the initial tuple (0.0, s0
0, 0, 0)

existing in the first beam1.
It is a fact that Equation (9) produces the prob-

ability distribution of the predicted target words
over the target vocabulary V . Cho et al. (2014b)
indicated that whenever a target word is generated,
the softmax function over V computes probabil-
ities for all words in V , so the calculation is ex-
pensive when the target vocabulary is large. As
such, Bahdanau et al. (2015) (and many others)
only used the top-30k frequent words as target
vocabulary, and replaced others with UNK. How-
ever, the final normalization operation still brought
high computation complexity for forward calcula-
tions.

3.2 Time Cost in Decoding

We conducted an experiment to explore how long
each calculation unit in the decoder would take.
We decoded the MT03 test dataset by using naive
beam search with beam size of 10 and recorded
the time consumed in the computation of Equation
(6), (7), (8) and (9), respectively. The statistical
results in Table 1 show that the recurrent calcula-
tion unit consumed the most time on GPUs, while

1The initial target word index y0
0 equals to 0, which actu-

ally corresponds to the Beginning Of Sentence (BOS) token
in target vocabulary.
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the softmax computation also took lots of time.
On CPUs, the most expensive computational time
cost was caused by the softmax operation over the
entire target vocabulary2. In order to avoid the
time-consuming normalization operation in test-
ing, we introduced self-normalization (denoted as
SN) into the training.

3.3 Self-normalization

Self-normalization (Devlin et al., 2014) was de-
signed to make the model scores which are pro-
duced by the output layer be approximated by
the probability distribution over the target vocab-
ulary without normalization operation. According
to Equation (9), for an observed target sentence
y = {y⇤

1, · · · , y⇤
|y|}, the Cross-Entropy (CE) loss

could be written as

L✓ = �
|y|X

j=1

log Dj [y
⇤
j ]

= �
|y|X

j=1

log
exp

⇣
oj [y⇤

j ]
⌘

P
y02V exp (oj [y0])

=

|y|X

j=1

log
X

y02V

exp
�
oj [y

0]
�
� oj [y

⇤
j ]

(10)

where oj is the model score generated by Equa-
tion (8) at the j-th step, we marked the softmax
normalizer

P
y02V exp (oj [y0]) as Z.

Following the work of Devlin et al. (2014), we
modified the CE loss function into

L✓ = �
|y|X

j=1

�
log Dj [y

⇤
j ]� ↵(log Z � 0)2

�

= �
|y|X

j=1

�
log Dj [y

⇤
j ]� ↵ log2 Z

�
(11)

The objective function, shown in Equation (11),
is optimized to make sure log Z is approximated
to 0, equally, make Z close to 1 once it converges.
We chose the value of ↵ empirically. Because the
softmax normalizer Z is converged to 1 in infer-
ence, we just need to ignore Z and predict the tar-
get word distribution at the j-th step only with oj :

Dj = oj (12)

3.4 Cube Pruning

Table 1 clearly shows that the equations in the
NMT forward calculation take lots of time. Here,
according to the idea behind the cube pruning
algorithm, we tried to reduce the time of time-
consuming calculations, e.g., Equation (6), and
further decrease the search space by introducing
the cube pruning algorithm.

3.4.1 Integrating into NMT Decoder
Extended from the naive beam search in the NMT
decoder, cube pruning, treated as a pruning al-
gorithm, attempts to reduce the search space and
computation complexity by merging some simi-
lar items in a beam to accelerate the naive beam
search, keeping the 1-best searching result almost
unchanged or even better by increasing the beam
size. Thus, it is a fast and effective algorithm to
generate candidates.

Assume that T restores the set of the finished
translations. For each step in naive beam search
process, beamsize�|T| times forward calcula-
tions are required to acquire beamsize�|T| prob-
ability distributions corresponding to each item in
the previous beam (Bahdanau et al., 2015). while
for each step in cube pruning, in terms of some
constraints, we merge all similar items in the pre-
vious beam into one equivalence class (called a
sub-cube). The constraint we used here is that
items being merged in the previous beam should
have the same target words. Then, for the sub-
cube, only one forward calculation is required to
obtain the approximate predictions by using the
loose hidden state. Elements in the sub-cube are
sorted by previous accumulated NLL along the
columns (the first dimension of beam size) and
by the approximate predictions along the rows
(the second dimension of vocabulary size). Af-
ter merging, one beam may contain several sub-
cubes (the third dimension), we start to search
from item in the upper left corner of each sub-
cube, which is the best one in the sub-cube, and
continue to spread out until enough candidates are
found. Once a item is selected, the exact hidden
state will be used to calculate its exact NLL.

Through all above steps, the frequency of for-
ward computations decreases. We give an exam-
ple to dive into the details in Figure 2.

Assume that the beam size is 4. Given the 10th

2Note that, identical to Bahdanau et al. (2015), we only
used 30k as the vocabulary size.

4287



0.8

8.1

7.3
7.8

10.6 ···7.3 8.5

···

···
···

10.3
9.8
3.31.2

7.7
8.27.0

6.5
C2

0.1
6.2

···
···10.6

4.52.5
8.66.1

C1
V_674 (korean)

V_8357 (koreans)

V_574 (korea)

V_29 (from)
V_880 (living)

V_8 (in)

0.8
7.3
7.8

···7.3

···

···
···

3.31.2
7.7

7.0
6.5
C2

0.1
6.2

···
···

4.52.5
8.66.1

C1
V_674 (korean)

V_8357 (koreans)

V_574 (korea)

V_29 (from)
V_880 (living)

V_8 (in)

0.8
7.3
7.8

···7.3

···

···
···9.8

3.31.3
7.7
8.27.0

6.5
C2

0.1
6.2

···
···

4.52.5
8.66.1

C1
V_674 (korean)

V_8357 (koreans)

V_574 (korea)

V_29 (from)
V_880 (living)

V_8 (in)

0.8

8.1

7.3
7.8

···7.3

···

···
···9.8

3.31.3
7.7
8.27.0

6.5
C2

0.1
6.2

···
···

4.52.5
8.66.1

C1
V_674 (korean)

V_8357 (koreans)

V_574 (korea)

V_29 (from)
V_880 (living)

V_8 (in)

0.8
7.3

···7.3

···

···
···

3.31.2

7.0
6.5
C2

0.1
6.2

···
···

4.52.5
8.66.1

C1
V_674 (korean)

V_8357 (koreans)

V_574 (korea)

V_29 (from)
V_880 (living)

V_8 (in)

(a) (b)

(c)

(d)(e)

beam

beam

(6.1, 433)

(6.5, 35)

(7.0, 35)
(7.3, 35)

(6.2, 674)

(7.3, 8)

(7.7, 880)

(7.8, 8)

Figure 2: Cube pruning diagram in beam search process during NMT decoding. We only depict the
accumulated NLL and the word-level candidate for each item in the beam (in the bracket). Assume the
beam size is 4, we initialize a heap for the current step, elements in the 10th beam are merged into two
sub-cubes C1 and C2 according to the previous target words; (a) the two elements located in the upper-
left corner of the two sub-cubes are pushed into the heap; (b) minimal element (6.2, 674) is popped out,
meanwhile, its neighbor (8.6, 8357) is pushed into the heap; (c) minimal element (7.3, 8) is popped out,
its right-neighbor (7.7, 880) and lower-neighbor (7.8, 8) are pushed into the heap; (d) minimal element
(7.7, 880) is popped out, its right-neighbor (9.8, 29) and down-neighbor (8.2, 880) are pushed into the
heap; (e) minimal element (7.8, 8) is popped out, then its down-neighbor (8.1, 8) is pushed into the heap.
4 elements have been popped out, we use them to construct the 11th beam. Yellow boxes indicate the
4-best word-level candidates to be pushed into the 11th beam.

beam, we generate the 11th beam. Different from
the naive beam search, we first group items in the
previous beam into two sub-cubes C1 and C2 in
term of the target word yj�1. As shown in part
(a) of Figure 2, (6.1, 433) constructs the sub-cube
C1; (6.5, 35), (7.0, 35) and (7.3, 35) are put to-
gether to compose another sub-cube C2. Items in
part (a) are ranked in ascending order along both
row and column dimension according to the ac-
cumulated NLL. For each sub-cube, we use the
first state vector in each sub-cube as the approx-
imate one to produce the next probability distribu-
tion and the next state. At beginning, each upper-
left corner element in each sub-cube is pushed into
a minimum heap, after popping minimum element
from the heap, we calculate and restore the exact
NLL of the element, then push the right and lower
ones alongside the minimum element into heap.
At this rate, the searching continues just like the
“diffusion” in the sub-cube until 4 elements are
popped, which are ranked in terms of their exact
NLLs to construct the 11th beam. Note that once
an element is popped, we calculate its exact NLL.
From the step (e) in Figure 2, we can see that 4

elements have been popped from C1 and C2, and
then ranked in terms of their exact NLLs to build
the 11th beam.

We refer above algorithm as the naive cube
pruning algorithm (called NCP)

3.4.2 Accelerated Cube Pruning
In each step of the cube pruning algorithm, after
merging the items in the previous beam, some sim-
ilar candidates are grouped together into one or
more sub-cube(s). We also try to predict the ap-
proximate distribution for each sub-cube only ac-
cording to the top-1 state vector (the first row in
the sub-cube in Figure 2), and select next candi-
dates after ranking. The predicted probability dis-
tribution will be very similar to that of the naive
beam search. Besides, Each sub-cube only re-
quires one forward calculation. Thus, it could save
more search space and further reduce the computa-
tion complexity for the decoder. Unlike the naive
cube pruning algorithm, accelerated cube pruning
pops each item, then still use the approximate NLL
instead of the exact one. We denote this kind of
accelerated cube pruning algorithm as ACP.
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4 Experiments

We verified the effectiveness of proposed cube
pruning algorithm on the Chinese-to-English (Zh-
En) translation task.

4.1 Data Preparation
The Chinese-English training dataset consists of
1.25M sentence pairs3. We used the NIST 2002
(MT02) dataset as the validation set with 878 sen-
tences, and the NIST 2003 (MT03) dataset as the
test dataset, which contains 919 sentences.

The lengths of the sentences on both sides were
limited up to 50 tokens, then actually 1.11M sen-
tence pairs were left with 25.0M Chinese words
and 27.0M English words. We extracted 30k most
frequent words as the source and target vocabular-
ies for both sides.

In all the experiments, case-insensitive 4-gram
BLEU (Papineni et al., 2002) was employed
for the automatic evaluation, we used the script
mteval-v11b.pl4 to calculate the BLEU score.

4.2 System
The system is an improved version of attention-
based NMT system named RNNsearch (Bahdanau
et al., 2015) where the decoder employs a con-
ditional GRU layer with attention, consisting of
two GRUs and an attention module for each step5.
Specifically, Equation (6) is replaced with the fol-
lowing two equations:

s̃j = GRU1(ey⇤

j�1
, sj�1) (13)

sj = GRU2(cj , s̃j) (14)

Besides, for the calculation of relevance in Equa-
tion (4), sj�1 is replaced with s̃j�1. The other
components of the system keep the same as
RNNsearch. Also, we re-implemented the beam
search algorithm as the naive decoding method,
and naive searching on the GPU and CPU server
were conducted as two baselines.

4.3 Training Details
Specially, we employed a little different settings
from Bahdanau et al. (2015): Word embedding
sizes on both sides were set to 512, all hidden sizes

3These sentence pairs are mainly extracted from
LDC2002E18, LDC2003E07, LDC2003E14, Hansards por-
tion of LDC2004T07, LDC2004T08 and LDC2005T06

4https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/mteval-v11b.pl

5https://github.com/nyu-dl/dl4mt-tutorial/blob/
master/docs/cgru.pdf

in the GRUs of both encoder and decoder were
also set to 512. All parameter matrices, including
bias matrices, were initialized with the uniform
distribution over [�0.1, 0.1]. Parameters were up-
dated by using mini-batch Stochastic Gradient De-
scent (SGD) with batch size of 80 and the learning
rate was adjusted by AdaDelta (Zeiler, 2012) with
decay constant ⇢=0.95 and denominator constant
✏=1e-6. The gradients of all variables whose L2-
norm are larger than a pre-defined threshold 1.0
were normalized to the threshold to avoid gradi-
ent explosion (Pascanu et al., 2013). Dropout was
applied to the output layer with dropout rate of
0.5. We exploited length normalization (Cho et al.,
2014a) strategy on candidate translations in beam
search decoding.

The model whose BLEU score was the high-
est on the validation set was used to do testing.
Maximal epoch number was set to 20. Training
was conducted on a single Tesla K80 GPU, it took
about 2 days to train a single NMT model on the
Zh-En training data. For self-normalization, we
empirically set ↵ as 0.5 in Equation (11)6.

4.4 Search Strategies
We conducted experiments to decode the MT03
test dataset on the GPU and CPU server respec-
tively, then compared search quality and efficiency
among following six search strategies under differ-
ent beam sizes.

NBS-SN: Naive Beam Search without SN
NBS+SN: Naive Beam Search with SN
NCP-SN: Cube Pruning without SN
NCP+SN: Cube Pruning with SN
ACP-SN: Accelerated Cube Pruning without

SN
ACP+SN: Accelerated Cube Pruning with SN

4.5 Comparison of Average Merging Rate
We first give the definition of the Average Merging
Rate (denoted as AMR). Given a test dataset, we
counted the total word-level candidates (noted as
Nw) and the total sub-cubes (noted as Nc) during
the whole decoding process, then the AMR can be
simply computed as

m = Nw/Nc (15)

The MT03 test dataset was utilized to com-
pare the trends of the AMR values under all

6Following Devlin et al. (2014), we had tried 0.01, 0.1,
0.5 1.0 and 10.0 for the value of ↵, we found that 0.5 pro-
duced the best result.
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Figure 3: AMR comparison on the MT03 test
dataset. Decoding the MT03 test dataset on a sin-
gle GeForce GTX TITAN X GPU server under the
different searching settings. y-axis represents the
AMR on the test dataset in the whole searching
process and x-axis indicates beam size. Unsurpris-
ingly, we got exactly the same results on the CPU
server, not shown here.

six methods. We used the pre-trained model
to translate the test dataset on a single GeForce
GTX TITAN X GPU server. Beam size varies
from 1 to 40, values are included in the set
{1, 2, 3, 4, 8, 10, 15, 18, 20, 30, 40}. For each
beam size, six different searching settings were ap-
plied to translate the test dataset respectively. The
curves of the AMRs during the decoding on the
MT03 test dataset under the proposed methods are
shown in Figure 3. Note that the AMR values of
NBS are always 1 whether there is SN or not.

Comparing the curves in the Figure 3, we could
observe that the naive beam search does not con-
duct any merging operation in the whole searching
process, while the average merging rate in the cube
pruning almost grows as the beam size increases.
Comparing the red curves to the blue ones, we can
conclude that, in any case of beam size, the AMR
of the accelerated cube pruning surpasses the ba-
sic cube pruning by a large margin. Besides, self-
normalization could produces the higher average
merging rate comparing to the counterpart without
self-normalization.

4.6 Comparison on the GPU Server
Intuitively, as the value of the AMR increases, the
search space will be reduced and computation ef-
ficiency improves. We compare the two proposed
searching strategies and the naive beam search in
two conditions (with self-normalization and with-
out self-normalization). Figure 4 demonstrates
the results of comparison between the proposed

searching methods and the naive beam search
baseline in terms of search quality and search effi-
ciency under different beam sizes.

By fixing the beam size and the dataset, we
compared the changing trend of BLEU scores for
the three distinct searching strategies under two
conditions. Without self-normalization, Figure 4a
shows the significant improvement of the search
speed, however the BLEU score drops about 0.5
points. We then equipped the search algorithm
with self-normalization. Figure 4b shows that the
accelerated cube pruning search algorithm only
spend about one-third of the time of the naive
beam search to achieve the best BLEU score with
beam size 30. Concretely, when the beam size is
set to be 30, ACP+SN is 3.3 times faster than the
baseline on the MT03 test dataset, and both per-
formances are almost the same.

4.7 Comparison on the CPU Server
Similar to the experiments conducted on GPUs,
we also translated the whole MT03 test dataset
on the CPU server by using all six search strate-
gies under different beam sizes. The trends of the
BLEU scores over those strategies are shown in
Figure 5.

The proposed search methods gain the similar
superiority on CPUs to that on GPUs, and the
decoding speed is obviously slower than that on
GPUs. From the Figure 5a, we can also clearly
see that, compared with the NBS-SN, NCP-SN
only speeds up the decoder a little, ACP-SN pro-
duces much more acceleration. However, when
we did not introduce self-normalization, the pro-
posed search methods will also result in a loss of
about 0.5 BLEU score. The self-normalization
made the ACP strategy faster than the baseline
by about 3.5⇥, in which condition the NBS+SN
got the best BLEU score 38.05 with beam size
30 while the ACP+SN achieved the highest score
38.12 with beam size 30. The results could be ob-
served in Figure 5b. Because our method is on the
algorithmic level and platform-independent, it is
reasonable that the proposed method can not only
perform well on GPUs, but also accelerate the de-
coding significantly on CPUs. Thus, the acceler-
ated cube pruning with self-normalization could
improve the search quality and efficiency stably.

4.8 Decoding Time
In this section, we only focus on the consuming
time of translating the entire MT03 test dataset.
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(a) BLEU vs. decoding speed, without self-normalization (b) BLEU vs. decoding speed, with self-normalization

Figure 4: Comparison among the decoding results of the MT03 test dataset on the single GeForce GTX
TITAN X GPU server under the three different searching settings. y-axis represents the BLEU score of
translations, x-axis indicates that how long it will take for translating one word on average.

(a) BLEU vs. decoding speed, without self-normalization (b) BLEU vs. decoding speed, with self-normalization

Figure 5: Comparison among the decoding results of the MT03 test dataset on the single AMD
Opteron(tm) Processor under the three different searching settings. y-axis represents the BLEU score
of translations, x-axis indicates that how long it will take for translating one word on average.

Under the two conditions, we calculated the times
spent on translating the entire test dataset for dif-
ferent beam sizes, then draw the curves in Figure
6 and 7. From the Figure 6a and 6b, we could
observe that accelerated cube pruning algorithm
speeds up the decoding by about 3.8⇥ on GPUs
when the beam size is set to 40. Figure 7a and
7b show that the accelerated cube pruning algo-
rithm speeds up the decoding by about 4.2⇥ on
CPU server with the beam size 40.

5 Related Work

Recently, lots of works devoted to improve the ef-
ficiency of the NMT decoder. Some researchers
employed the way of decreasing the target vocabu-
lary size. Jean et al. (2015) improved the decoding
efficiency even with the model using a very large
target vocabulary but selecting only a small sub-
set of the whole target vocabulary. Based on the
work of Jean et al. (2015), Mi et al. (2016b) intro-

duced sentence-level and batch-level vocabularies
as a very small subset of the full output vocabu-
lary, then predicted target words only on this small
vocabulary, in this way, they only lost 0.1 BLEU
points, but reduced target vocabulary substantially.

Some other researchers tried to raise the effi-
ciency of decoding from other perspectives. Wu
et al. (2016) introduced a coverage penalty ↵ and
length normalization � into beam search decoder
to prune hypotheses and sped up the search pro-
cess by 30%⇠40% when running on CPUs. Hu
et al. (2015) used a priority queue to choose the
best hypothesis for the next search step, which
drastically reduced search space.

Inspired by the works of Mi et al. (2016b)
and Huang and Chiang (2007), we consider prun-
ing hypothesis in NMT decoding by using cube
pruning algorithm, but unlike traditional SMT de-
coding where dynamic programming was used to
merge equivalent states (e.g., if we use phrase-
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(a) Time spent on translating MT03 test dataset for different
beam sizes without self-normalization

(b) Time spent on translating MT03 test dataset for different
beam sizes with self-normalization

Figure 6: Comparison among the decoding results of the MT03 test dataset on the single GeForce GTX
TITAN X GPU server under the three different searching settings. y-axis represents the BLEU score of
translations, x-axis indicates that how long it will take for translating one word on average.

(a) Time spent on translating MT03 test dataset for different
beam sizes without self-normalization

(b) Time spent on translating MT03 test dataset for different
beam sizes with self-normalization

Figure 7: Comparison among the decoding results of the MT03 test dataset on the single AMD
Opteron(tm) Processor under the three different searching settings. y-axis represents the BLEU score
of translations, x-axis indicates that how long it will take for translating one word on average.

based decoding with trigram language model, we
can merge states with same source-side coverage
vector and same previous two target words). How-
ever, this is not appropriate for current NMT de-
coding, since the embedding of the previous target
word is used as one input of the calculation unit of
each step in the decoding process, we could group
equivalence classes containing the same previous
target word together.

6 Conclusions

We extended cube pruning algorithm into the de-
coder of the attention-based NMT. For each step
in beam search, we grouped similar candidates
in previous beam into one or more equivalence
class(es), and bad hypotheses were pruned out.
We started searching from the upper-left corner in
each equivalence class and spread out until enough

candidates were generated. Evaluations show that,
compared with naive beam search, our method
could improve the search quality and efficiency to
a large extent, accelerating the NMT decoder by
3.3⇥ and 3.5⇥ on GPUs and CPUs, respectively.
Also, the translation precision could be the same
or even better in both situations. Besides, self-
normalization is verified to be helpful to accelerate
cube pruning even further.
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Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1–10, Beijing, China. Association for Computa-
tional Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse compo-
sitionality. In Proceedings of the Workshop on Con-
tinuous Vector Space Models and their Composition-
ality, pages 119–126, Sofia, Bulgaria. Association
for Computational Linguistics.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016a. Coverage embedding models
for neural machine translation. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 955–960, Austin,
Texas. Association for Computational Linguistics.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016b.
Vocabulary manipulation for neural machine transla-
tion. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 124–129, Berlin, Ger-
many. Association for Computational Linguistics.

4293



Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages
1310–1318, Atlanta, Georgia, USA. PMLR.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran As-
sociates, Inc.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

4294



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4295–4305
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Revisiting Character-Based Neural Machine Translation
with Capacity and Compression

Colin Cherry⇤, George Foster⇤, Ankur Bapna, Orhan Firat, Wolfgang Macherey
Google AI

colincherry,fosterg,ankurbpn,orhanf,wmach@google.com

Abstract

Translating characters instead of words or
word-fragments has the potential to simplify
the processing pipeline for neural machine
translation (NMT), and improve results by
eliminating hyper-parameters and manual fea-
ture engineering. However, it results in longer
sequences in which each symbol contains less
information, creating both modeling and com-
putational challenges. In this paper, we show
that the modeling problem can be solved by
standard sequence-to-sequence architectures
of sufficient depth, and that deep models op-
erating at the character level outperform iden-
tical models operating over word fragments.
This result implies that alternative architec-
tures for handling character input are bet-
ter viewed as methods for reducing compu-
tation time than as improved ways of model-
ing longer sequences. From this perspective,
we evaluate several techniques for character-
level NMT, verify that they do not match the
performance of our deep character baseline
model, and evaluate the performance versus
computation time tradeoffs they offer. Within
this framework, we also perform the first eval-
uation for NMT of conditional computation
over time, in which the model learns which
timesteps can be skipped, rather than having
them be dictated by a fixed schedule specified
before training begins.

1 Introduction

Neural Machine Translation (NMT) has largely re-
placed the complex pipeline of Phrase-Based MT
with a single model that is trained end-to-end.
However, NMT systems still typically rely on pre-
and post-processing operations such as tokeniza-
tion and word fragmentation through byte-pair en-
coding (BPE; Sennrich et al., 2016). Although
these are effective, they involve hyperparameters

⇤*Equal contributions

that should ideally be tuned for each language pair
and corpus, an expensive step that is frequently
omitted. Even when properly tuned, the repre-
sentation of the corpus generated by pipelined
external processing is likely to be sub-optimal.
For instance, it is easy to find examples of word
fragmentations, such as fling ! fl + ing, that
are linguistically implausible. NMT systems are
generally robust to such infelicities—and can be
made more robust through subword regularization
(Kudo, 2018)—but their effect on performance has
not been carefully studied. The problem of find-
ing optimal segmentations becomes more complex
when an NMT system must handle multiple source
and target languages, as in multilingual translation
or zero-shot approaches (Johnson et al., 2017).

Translating characters instead of word frag-
ments avoids these problems, and gives the system
access to all available information about source
and target sequences. However, it presents sig-
nificant modeling and computational challenges.
Longer sequences incur linear per-layer cost and
quadratic attention cost, and require information
to be retained over longer temporal spans. Finer
temporal granularity also creates the potential for
attention jitter (Gulcehre et al., 2017). Perhaps
most significantly, since the meaning of a word
is not a compositional function of its characters,
the system must learn to memorize many character
sequences, a different task from the (mostly) com-
positional operations it performs at higher levels
of linguistic abstraction.

In this paper, we show that a standard LSTM
sequence-to-sequence model works very well for
characters, and given sufficient depth, consistently
outperforms identical models operating over word
fragments. This result suggests that a produc-
tive line of research on character-level models is
to seek architectures that approximate standard
sequence-to-sequence models while being compu-
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tationally cheaper. One approach to this problem
is temporal compression: reducing the number of
state vectors required to represent input or output
sequences. We evaluate various approaches for
performing temporal compression, both accord-
ing to a fixed schedule; and, more ambitiously,
learning compression decisions with a Hierarchi-
cal Multiscale architecture (Chung et al., 2017).
Following recent work by Lee et al. (2017), we fo-
cus on compressing the encoder.

Our contributions are as follows:

• The first large-scale empirical investigation
of the translation quality of standard LSTM
sequence-to-sequence architectures operat-
ing at the character level, demonstrating im-
provements in translation quality over word
fragments, and quantifying the effect of cor-
pus size and model capacity.

• A comparison of techniques to compress
character sequences, assessing their ability to
trade translation quality for increased speed.

• A first attempt to learn how to compress the
source sequence during NMT training by us-
ing the Hierarchical Multiscale LSTM to dy-
namically shorten the source sequence as it
passes through the encoder.

2 Related Work

Early work on modeling characters in NMT fo-
cused on solving the out-of-vocabulary and soft-
max bottleneck problems associated with word-
level models (Ling et al., 2015; Costa-jussà and
Fonollosa, 2016; Luong and Manning, 2016).
These took the form of word-boundary-aware hi-
erarchical models, with word-level models dele-
gating to character-level models to generate repre-
sentations in the encoder and words in the decoder.
Our work will not assume fixed word boundaries
are given in advance.

With the advent of word-fragment approaches,
interest in character-level processing fell off, but
has recently been reignited with the work of
Lee et al. (2017). They propose a specialized
character-level encoder, connected to an unmod-
ified character-level RNN decoder. They address
the modeling and efficiency challenges of long
character sequences using a convolutional layer,
max-pooling over time, and highway layers. We
agree with their conclusion that character-level
translation is effective, but revisit the question

of whether their specific encoder produces a de-
sirable speed-quality tradeoff in the context of a
much stronger baseline translation system. We
draw inspiration from their pooling solution for re-
ducing sequence length, along with similar ideas
from the speech community (Chan et al., 2016),
when devising fixed-schedule reduction strategies
in Section 3.3.

One of our primary contributions is an ex-
tensive invesigation of the efficacy of a typical
LSTM-based NMT system when operating at the
character-level. The vast majority of existing stud-
ies compare a specialized character-level architec-
ture to a distinct word-level one. To the best of
our knowledge, only a small number of papers
have explored running NMT unmodified on char-
acter sequences; these include: Luong and Man-
ning (2016) on WMT’15 English-Czech, Wu et al.
(2016) on WMT’14 English-German, and Brad-
bury et al. (2016) on IWSLT German-English. All
report scores that either trail behind or reach par-
ity with word-level models. Only Wu et al. (2016)
compare to word fragment models, which they
show to outperform characters by a sizeable mar-
gin. We revisit the question of character- versus
fragment-level NMT here, and reach quite differ-
ent conclusions.

3 Methods

3.1 Baseline Sequence-to-Sequence Model
We adopt a simplified version of the LSTM archi-
tecture of Chen et al. (2018) that achieves state-of-
the-art performance on the competitive WMT14
English-French and English-German benchmarks.
This incorporates bidirectional LSTM (BiLSTM)
layers in the encoder, concatenating the output
from forward and backward directions before
feeding the next layer. Output from the top en-
coder layer is projected down to the decoder di-
mension and used in an additive attention mech-
anism computed over the bottom decoder layer.
The decoder consists of unidirectional layers, all
of which use the encoder context vectors com-
puted from attention weights over the bottom
layer. For both encoder and decoder we use layer
normalization (Ba et al., 2016) and residual con-
nections beginning at the third layer. We do not
apply a non-linearity to LSTM output. We regu-
larize with dropout applied to embeddings and to
the output of each LSTM layer.

In the interests of simplicity and reproducibil-
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ity, we depart from Chen et al. (2018) in several
ways: we do not use multi-headed attention, feed
encoder context vectors to the softmax, regularize
with label smoothing or weight decay, nor apply
dropout to the attention mechanism.

Our baseline character models and BPE mod-
els both use this architecture, differing only in
whether the source and target languages are tok-
enized into sequences of characters or BPE word
fragments. We describe BPE briefly below.

3.2 Byte-Pair Encoding

Byte-Pair Encoding (BPE) offers a simple inter-
polation between word- and character-level rep-
resentations (Sennrich et al., 2016). It creates a
vocabulary of frequent words and word fragments
in an iterative greedy merging process that begins
with characters and ends when a desired vocab-
ulary size is reached. The source and target lan-
guage are typically processed together in order
to exploit lexical similarities. Given a vocabu-
lary, BPE re-tokenizes the corpus into word frag-
ments in a greedy left-to-right fashion, selecting
the longest possible vocabulary match, and back-
ing off to characters when necessary.

Since each BPE token consists of one or
more characters, BPE-tokenized sequences will be
shorter than character sequences. Viewed as a
mechanism to reduce sequence length, BPE differs
from the solutions we will discuss subsequently
in that it increases the vocabulary size, delegat-
ing the task of creating representations for word
fragments to the embedding table. Also, despite
being data-driven, its segmentation decisions are
fixed before NMT training begins.

3.3 Fixed stride Temporal Pooling

We explore using fixed stride temporal pooling
within the encoder to compress the source char-
acter sequence. These solutions are characterized
by pooling the contents of two or more contigu-
ous timesteps to create a single vector that sum-
marizes them, and will replace them to shorten
the sequence in the next layer. These approaches
can learn to interpret the raw character sequence in
service to their translation objective, but any such
interepretation must fit into the pooling schedule
that was specified during network construction.
We evaluate two methods in this family: a re-
implementation of Lee et al. (2017), and a version
of our baseline with interspersed pooling layers.

As mentioned earlier, Lee et al. (2017) pro-
pose a specialized character encoder that com-
bines convolutional layers to accumulate local
context, max-pooling layers to reduce sequence
lengths, highway layers to increase network ca-
pacity, followed by bidirectional GRU layers to
generate globally aware contextual source repre-
sentations. This strategy is particularly efficient
because all reductions happen before the first re-
current layer. We re-implement their approach
faithfully, with the exceptions of using LSTMs in
place of GRUs,1 and modifying the batch sizes to
accomodate our multi-GPU training scheme.

While pooling based approaches are typically
employed in association with convolutional lay-
ers, we can also intersperse pooling layers into our
high capacity baseline encoder. This means that
after each BiLSTM layer, we have the option to in-
clude a fixed-stride pooling layer to compress the
sequence before it is processed by the next BiL-
STM layer. This is similar to the pyramidal LSTM
encoders used for neural speech recognition (Chan
et al., 2016). This general strategy affords consid-
erable flexibility to the network designer, leaving
the type of pooling (concatenation, max, mean),
and the strides with which to pool as design deci-
sions that can be tuned to fit the task.

3.4 Learned Temporal Compression
It is unsatisfying to compress a sequence on a fixed
schedule; after all, the characters in a sentence do
not each carry an identical amount of information.
The goal of this section is to explore data-driven
reduction methods that are optimized to the NMT
system’s objective, and which learn to compress
as a part of training.

Any strategy for performing temporal com-
pression will necessarily make discrete decisions,
since sentence length is discrete. Examples of
such strategies include sparse attention (Raffel
et al., 2017) and discrete auto-encoders (Kaiser
et al., 2018). For our initial exploration, we chose
the hierarchical multiscale (HM) architecture of
Chung et al. (2017), which we briefly describe.

3.4.1 Hierarchical Multiscale LSTM
The HM is a bottom-up temporal subsampling ap-
proach, with each layer selecting the timesteps that
will survive to the layer above. At a given timestep
t and layer `, the network makes a binary decision,

1 Development experiments indicated that using LSTMs
over GRUs resulted in a slight improvement.

4297



z`
t , to determine whether or not it should send its

output up to layer ` + 1. The preactivation for this
decision, z̃`

t , is a function of the current node’s
inputs from below and from the previous hidden
state, similar to an LSTM gate. However, z`

t ’s ac-
tivation is a binary step function in the forward
pass, to enable discrete decisions, and a hard sig-
moid in the backward pass, to allow gradients to
flow through the decision point.2 The z`

t decision
affects both the layer above, and the next timestep
of the current layer:

• z`
t = 1, flow up: the node above (t, `+1) per-

forms a normal LSTM update; the node to
the right (t+1, `) performs a modified update
called a flush, which ignores the LSTM inter-
nal cell at (t, `), and redirects the incoming
LSTM hidden state from (t, `) to (t, ` + 1).

• z`
t = 0, flow right: the node above (t, `+1)

simply copies the cell and hidden state values
from (t�1, `+1); the node to the right (t+1, `)
performs a normal LSTM update.

Conceptually, when z`
t = 0, the node above it be-

comes a placeholder and is effectively removed
from the sequence for that layer. Shorter upper
layers save computation and facilitate the left-to-
right flow of information for the surviving nodes.

Typically, one uses the top hidden state hL
t from

a stack of L RNNs to provide the representation
for a timestep t. But for the HM, the top layer
may be updated much less frequently than the lay-
ers below it. To enable tasks that need a distinct
representation for each timestep, such as language
modeling, the HM employs a gated output module
to mix hidden states across layers. This learned
module combines the states h1

t , h2
t , . . ., hL

t using
scaling and projection operators to produce a sin-
gle output ht.

3.4.2 Modifying the HM for NMT
We would like sequences to become progressively
shorter as we move upward through the layers. As
originally specified, the HM calculates z`

t indepen-
dently for every t and `, including copied nodes,
meaning that a “removed” timestep could reappear
in a higher layer when a copied node (t, `) sets
z`
t = 1. This is easily addressed by locking z`

t = 0
for copied nodes, creating a hierarchical structure

2This disconnect between forward and backward activa-
tions is known as a straight-through estimator (Bengio et al.,
2013).

in which upper layers never increase the amount
of computation.

We also found that the flush component of the
original architecture, which modifies the LSTM
update at (t+1, `) to discard the LSTM’s inter-
nal cell, provided too much incentive to leave z`

t

at 0, resulting in degenerate configurations which
collapsed to having very few tokens in their up-
per layers. We addressed this by removing the no-
tion of a flush from our architecture. The node to
the right (t+1, `) always performs a normal LSTM
update, regardless of z`

t . This modification is sim-
ilar to one proposed independently by Kádár et al.
(2018), who simplified the flush operation by re-
moving the connection to (t, ` + 1).

We found it useful to change the initial value of
the bias term used in the calculation of z̃`

t , which
we refer to as the z-bias. Setting z-bias to 1, which
is the saturation point for the hard sigmoid with
slope 1, improves training stability by encourag-
ing the encoder to explore configurations where
most timesteps survive through all layers, before
starting to discard them.

Even with these modifications, we observed de-
generate behavior in some settings. To discour-
age this, we added a compression loss component
similar to that of Ke et al. (2018) to penalize z
activation rates outside a specified range ↵1, ↵2:
Lc =

P
l max(0, Z l � ↵1T, ↵2T � Z l), where

T is source sequence length and Z l =
PT

t=1 zl
t.

To incorporate the HM into our NMT encoder,
we replace the lowest BiLSTM layer with unidi-
rectional HM layers.3 We adapt any remaining
BiLSTM layers to copy or update according to the
z-values calculated by the top HM layer.

4 Experimental Design

4.1 Corpora
We adopt the corpora used by Lee et al (2017),
with the exception of WMT15 Russian-English.4

To measure performance on an “easy” language
pair, and to calibrate our results against recent
benchmarks, we also included WMT14 English-
French. Table 1 gives details of the corpora used.
All corpora are preprocessed using Moses tools.5

3The flush operation makes the original HM inherently
left-to-right. Since we have dropped flushes from our current
version, it should be straightforward to devise a bidirectional
variant, which we leave to future work.

4Due to licence restrictions.
5 Scripts and arguments:

remove-non-printing-char.perl

4298



corpus train dev test
WMT15 Finnish-En 2.1M 1500 1370
WMT15 German-En 4.5M 3003 2169
WMT15 Czech-En 14.8M 3003 2056
WMT14 En-French 39.9M 3000 3003

Table 1: Corpora, with linecounts. Test sets are
WMT14-15 newstest. Dev sets are newsdev 2015 (Fi)
and newstest 2013 (De, Fr), and 2014 (Cs).

Dev and test corpora are tokenized, but not filtered
or cleaned. Our character models use only the
most frequent 496 characters across both source
and target languages; similarly, BPE is run across
both languages, with a vocabulary size of 32k.

4.2 Model sizes, training, and inference

Except where noted below, we used 6 bidirectional
layers in the encoder, and 8 unidirectional layers in
the decoder. All vector dimensions were 512.

Models were trained using sentence-level cross-
entropy loss. Batch sizes are capped at 16,384 to-
kens, and each batch is divided among 16 NVIDIA
P100s running synchronously.

Parameters were initialized with a uniform
(0.04) distribution. We use the Adam optimizer,
with �1 = 0.9, �2 = 0.999, and ✏ = 10�6 (Kingma
and Ba, 2014). Gradient norm is clipped to 5.0.
The initial learning rate is 0.0004, and we halve
it whenever dev set perplexity has not decreased
for 2k batches, with at least 2k batches between
successive halvings. Training stops when dev set
perplexity has not decreased for 8k batches.

Inference uses beam search with 8 hypothe-
ses, coverage penalty of 0.2 (Tu et al., 2016), and
length normalization of 0.2 (Wu et al., 2016).

4.3 Tuning and Evalution

When comparing character-level and BPE models,
we tuned dropout independently for each setting,
greedily exploring increments of 0.1 in the range
0.1–0.5, and selecting based on dev-set BLEU.
This expensive strategy is crucial to obtaining
valid conclusions, since optimal dropout values
tend to be lower for character models.

Our main evaluation metric is Moses-tokenized
case-sensitive BLEU score. We report test-set
scores on the checkpoints having highest dev-set
BLEU. To facilitate comparison with future work

tokenize.perl
clean-corpus-n.perl -ratio 9 1 100

Tokenized BLEU SacreBLEU
Language BPE Char Delta Char
EnFr 38.8 39.2 0.4 38.1
CsEn 24.8 25.9 1.1 25.6
DeEn 29.7 31.6 1.9 31.6
FiEn 17.5 19.3 1.8 19.5

Table 2: Character versus BPE translation.

Comparison Point Ref Ours
Chen et al. (2018) BPE EnFr 41.0 38.8Wu et al. (2016) BPE EnFr 39.0
Lee et al. (2017) Char CsEn 22.5 25.9

DeEn 25.8 31.6
FiEn 13.1 19.3

Table 3: Comparisons with some recent points in the
literature. Scores are tokenized BLEU.

we also report SacreBLEU scores (Post, 2018) for
key results, using the Moses detokenizer.

5 Results

5.1 Character-level translation
We begin with experiments to compare the stan-
dard RNN architecture from Section 3.1 at the
character and BPE levels, using our full-scale
model with 6 bidirectional encoder layers and 8
decoder layers. The primary results of our experi-
ments are presented in Table 2, while Table 3 posi-
tions the same results with respect to recent points
from the literature.

There are a number of observations we can draw
from this data. First, from the EnFr results in Ta-
ble 3, we are in line with GNMT (Wu et al., 2016),
and within 2 BLEU points of the RNN and Trans-
former models investigated by Chen et al. (2018).
So, while we are not working at the exact state-of-
the-art, we are definitely in a range that should be
relevant to most practitioners.

Also from Table 3, we compare quite favorably
with Lee et al. (2017), exceeding their reported
scores by 3-6 points, which we attribute to hav-
ing employed much higher model capacity, as they
use a single bidirectional layer in the encoder and
a two-layer decoder. We investigate the impact of
model capacity in Section 5.1.1.

Finally, Table 2 clearly shows the character-
level systems outperforming BPE for all language
pairs. The dominance of character-level methods
in Table 2 indicates that RNN-based NMT archi-
tectures are not only capable of translating charac-
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ter sequences, but actually benefit from them. This
is in direct contradiction to the few previously re-
ported results on this matter, which can in most
cases be explained by our increased model capac-
ity. The exception is GNMT (Wu et al., 2016),
which had similar depth. In this case, possible
explanations for the discrepancy include our use
of a fully bidirectional encoder, our translating
into English instead of German, and our model-
specific tuning of dropout.

5.1.1 Effect of model capacity
Character-level NMT systems have a more diffi-
cult sequence-modeling task, as they need to infer
the meaning of words from their constituent char-
acters, where models with larger tokens instead
delegate this task to the embedding table. There-
fore, we hypothesize that increasing the model’s
capacity by adding layers will have a greater im-
pact on character-level models. Figure 1 tests
this hypothesis by measuring the impact of three
model sizes on test BLEU score. For each of
our four language pairs, the word-fragment model
starts out ahead, and quickly loses ground as
architecture size increases. For the languages
with greater morphological complexity—German,
Czech and Finnish—the slope of the character
model’s curve is notably steeper than that of the
BPE system, indicating that these systems could
benefit from yet more modeling capacity.

5.1.2 Effect of corpus size
One of the most compelling arguments for work-
ing with characters (and to a lesser extent, word-
fragments) is improved generalization. Through
morphological generalizations, the system can
better handle low-frequency and previously un-
seen words. It stands to reason that as the train-
ing corpus increases in size, the importance of
these generalization capabilities will decrease. We
test this hypothesis by holding the language pair
constant, and varying the training corpus size by
downsampling the full training corpus. We choose
EnFr because it has by far the most available data.
We compare four sizes: 2M, 4M, 14M and 40M.

The results are shown in Figure 2. As expected,
the gap between character and word-fragment
modeling decreases as corpus size increases. From
the slopes of the curves, we can infer that the ad-
vantage of character-level modeling will disappear
completely as we reach 60-70M sentence pairs.
However, there is reason to expect this break-even

point to be much higher for more morphologically
complex languages. It is also important to re-
call that relatively few language-pairs can assem-
ble parallel corpora of this size.

5.1.3 Speed
The performance advantage of working with char-
acters comes at a significant computational cost.
With our full-sized architecture, character models
trained roughly 8x more slowly than BPE mod-
els.6 Figure 3 shows that training time grows lin-
early with number of layers in the model, and that
character models have a much higher per-layer
cost: roughly 0.38 msec/sentence versus 0.04 for
BPE. We did not directly measure the difference
in attention cost, but it cannot be greater than the
difference in total cost for the smallest number
of layers. Therefore, we can infer from Figure 3
that processing 5 layers in a character model in-
curs roughly the same time cost as attention. This
is surprising given the quadratic cost of attention,
and indicates that efforts to speed up character
models cannot focus exclusively on attention.

5.1.4 Qualitative comparison
To make a qualitative comparison between word
fragments (BPE) and characters for NMT, we ex-
amined 100 randomly selected sentence pairs from
the DeEn test set. One author examined the sen-
tences, using a display that showed the source7 and
the reference, along with the output of BPE and
character models. Any differences between the
two outputs were highlighted. They then assigned
tags to both system outputs indicating broad er-
ror categories, such as lexical choice, word order
and German compound handling.8 Tags were re-
stricted to cases where one system made a mistake
that the other did not.

Of the 100 sentences, 47 were annotated as be-
ing identical or of roughly the same quality. The
remaining 53 exhibited a large variety of differ-
ences. Table 4 summarizes the errors that were
most easily characterized. BPE and character sys-

6Recall that we use batches containing 16,384 tokens—
corresponding to a fixed memory budget—for both character
and BPE models. Thus character models are slowed not only
by having longer sentences, but also by parallelizing across
fewer sentences in each batch.

7The annotating author does not speak German.
8Our annotator also looked specifically for agreement and

negation errors, as studied by Sennrich (2017) for English-to-
German character-level NMT. However, neither system ex-
hibited these error types with sufficient frequency to draw
meaningful conclusions.
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Figure 1: Test BLEU for character and BPE translation as architectures scale from 1 BiLSTM encoder layer and 2
LSTM decoder layers (1⇥2+2) to our standard 6⇥2+8. The y-axis spans 6 BLEU points for each language pair.

Figure 2: BLEU versus training corpus size in millions
of sentence pairs, for the EnFr language-pair.

Figure 3: Training time per sentence versus total num-
ber of layers (encoder plus decoder) in the model.

tems differ most in the number of lexical choice
errors, and in the extent to which they drop con-
tent. The latter is surprising, and appears to be a
side-effect of a general tendency of the character
models to be more faithful to the source, verging
on being overly literal. An example of dropped
content is shown in Table 5 (top).

Regarding lexical choice, the two systems dif-
fer not only in the number of errors, but in the
nature of those errors. In particular, the BPE
model had more trouble handling German com-
pound nouns. Table 5 (bottom) shows an exam-
ple which exhibits two compound errors, includ-

Error Type BPE Char
Lexical Choice 19 8

Compounds 13 1
Proper Names 2 1
Morphological 2 2
Other lexical 2 4

Dropped Content 7 0

Table 4: Error counts out of 100 randomly sampled ex-
amples from the DeEn test set.

ing one where the character system is a strict im-
provement, translating Bunsenbrenner into bunsen
burner instead of bullets. The second error follows
another common pattern, where both systems mis-
handle the German compound (Chemiestunden /
chemistry lessons), but the character system fails
in a more useful way.

We also found that both systems occasionally
mistranslate proper names. Both fail by attempt-
ing to translate when they should copy over, but
the BPE system’s errors are harder to understand
as they involve semantic translation, rendering
Britta Hermann as Sir Leon, and Esme Nussbaum
as smiling walnut.9 The character system’s one
observed error in this category was phonetic rather
than semantic, rendering Schotten as Scottland.

Interestingly, we also observed several in-
stances where the model correctly translates the
German 24-hour clock into the English 12-hour
clock; for example, 19.30 becomes 7:30 p.m..
This deterministic transformation is potentially in
reach for both models, but we observed it only for
the character system in this sample.

9 The BPE segmentations for these names were: _Britt
a _Herr mann and _Es me _N uss baum
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Src Für diejenigen, die in ländlichen und abgelegenen Regionen des Staates lebten, . . .
Ref Those living in regional and remote areas of the state . . .
BPE For those who lived in rural and remote regions, . . .
Char For those who lived in rural and remote regions of the state, . . .
Src Überall im Land, in Tausenden von Chemiestunden, haben Schüler ihre Bunsenbrenner

auf Asbestmatten abgestellt.
Ref Up and down the country, in myriad chemistry lessons, pupils have perched their Bunsen

burners on asbestos mats.
BPE Across the country, thousands of chemists have turned their bullets on asbestos mats.
Char Everywhere in the country, in thousands of chemical hours, students have parked their

bunsen burners on asbestos mats.

Table 5: Examples of BPE and character outputs for two sentences from the DeEn test set, demonstrating dropped
content (top) and errors with German compounds (bottom).

5.2 Compressing the Source Sequence

At this point we have established that character-
level NMT benefits translation quality, but incurs a
large computational cost. In this section, we eval-
uate the speed-quality tradeoffs of various tech-
niques for reducing the number of state vectors re-
quired to represent the source sentence. All exper-
iments are conducted on our DeEn language pair,
chosen for having a good balance of morphologi-
cal complexity and training corpus size.

5.2.1 Optimizing the BPE vocabulary

Recall that BPE interpolates between word- and
character-level processing by tokenizing consecu-
tive characters into word fragments; larger BPE
vocabulary sizes result in larger fragments and
shorter sequences. If character-level models out-
perform BPE with a vocabulary size of 32k, then is
there a smaller BPE vocabulary size that reaps the
benefits of character-level processing, while still
substantially reducing the sequence length?

To answer this question, we test a number of
BPE vocabularies, as shown in Table 6. For
each vocabulary, we measure BLEU and sequence
compression rate, defined as the average size of
the source sequence in characters divided by its
size in word fragments (the ratio for the target se-
quence was similar). Unfortunately, even at just 1k
vocabulary items, BPE has already lost a BLEU
point with respect to the character model. When
comparing these results to the other methods in
this section, it is important to recall that BPE is
compressing both the source and target sequence
(by approximately the same amount), doubling its
effective compression rate.

Encoder BPE Size BLEU Comp.
BiLSTM Char 31.6 1.00
BiLSTM 1k 30.5 0.44
BiLSTM 2k 30.4 0.35
BiLSTM 4k 30.0 0.29
BiLSTM 8k 29.6 0.25
BiLSTM 16k 30.0 0.22
BiLSTM 32k 29.7 0.20
Lee et. al. reimpl Char 28.0 0.20
BiLSTM + pooling Char 30.0 0.47
HM, 3-layer Char 31.2 0.77
HM, 2-layer Char 30.9 0.89

Table 6: Compression results on WMT15 DeEn. The
Comp. column shows the ratio of total computations
carried out in the encoder.

5.2.2 Fixed Stride Compression
The goal of these experiments is to determine
whether using fixed schedule compression is a
feasible alternative to BPE. We evaluate our re-
implementation of the pooling model of Lee et al.
(2017) and our pooled BiLSTM encoder, both de-
scribed in Section 3.3. For the pooled BiLSTM
encoder, development experiments led us to intro-
duce two mean-pooling layers, a stride 3 layer af-
ter the second BiLSTM, and a stride 2 layer after
the third. Therefore, the final output of the encoder
is compressed by a factor of 6.

The results are also shown in Table 6. Note that
for the pooled BiLSTM, different encoder layers
have different lengths: 2 full length layers, fol-
lowed by 1 at 1

3 length and 3 at 1
6 length. There-

fore, we report the average compression across
layers here and for the HM in Section 5.2.3.

Our implementation of Lee et al. (2017) outper-
forms the original results by more than 2 BLEU
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Model BLEU Comp.
LSTM 28.9 1.00
HM, no-fl 27.3 0.63
HM, no-fl, hier 28.5 0.65
HM, no-fl, hier, zb1, anneal 28.8 0.65

Table 7: HM small-scale results on WMT15 DeEn.
The Comp. column is the proportion of layer-wise
computation relative to the full LSTM.

points. We suspect most of these gains result from
better optimization of the model with large batch
training. However, our attempts to scale this en-
coder to larger depths, and therfore to the level of
performance exhibited by our other systems, did
not result in any significant improvements. This
is possibly due to difficulties with optimizing a
deeper stack of diverse layers.

Comparing the performance of our Pooled BiL-
STM model against BPE, we notice that for a com-
parable level of compression (BPE size of 1k),
BPE out-performs the pooled model by around 0.5
BLEU points. At a similar level of performance
(BPE size of 4k), BPE has significantly shorter se-
quences. Although fixed-stride pooling does not
yet match the performance of BPE, we remain op-
timistic about its potential. The appeal of these
models derives from their simplicity; they are easy
to optimize, perform reasonably well, and remove
the complication of BPE preprocessing.

5.2.3 Hierarchical Multiscale Compression

We experimented with using the Hierarchical Mul-
tiscale (HM; Section 3.4.1) architecture to learn
compression decisions for the encoder.

For initial exploration, we used a scaled-down
architecture consisting of 3 unidirectional HM en-
coder layers and 2 LSTM decoder layers, attend-
ing over the HM’s gated output module. Com-
parisons to an equivalent LSTM are shown in ta-
ble 7. The first two HM lines justify the no-flush
and hierarchical modifications described in Sec-
tion 3.4.1, yielding incremental gains of 27.3 (the
flush variant failed to converge), and 1.2 respec-
tively. Initializing z-bias to 1 and annealing the
slope of the hard binarizer from 1.0 to 5.0 over 80k
minibatches gave further small gains, bringing the
HM to parity with the LSTM while saving approx-
imately 35% of layer-wise computations. Interest-
ingly, we found that, over a wide range of training
conditions, each layer tended to reduce computa-

tion by roughly 60% relative to the layer below.10

For full-scale experiments, we stacked 5 BiL-
STM layers on top of 2 or 3 HM layers, as de-
scribed in section 3.4.1, using only the top HM
layer (rather than the gated output module) as in-
put to the lowest BiLSTM layer. To stabilize the 3-
HM configuration we used a compression penalty
with a weight of 2, and ↵1 and ↵2 of 0.1 and 0.9.
Given the tendency of HM layers to reduce com-
putation by a roughly constant proportion, we ex-
pect fewer z-gates to be open in the 3-HM con-
figuration, but this is achieved at the cost of one
extra layer relative to our standard 12-layer en-
coder. As shown in table 6, the 3-HM configura-
tion achieves much better compression even when
this is accounted for, and also gives slightly better
performance than 2-HM. In general, HM gating
results in less compression but better performance
than the fixed-stride techniques.

Although these preliminary results are promis-
ing, it should be emphasized that the speed gains
they demonstrate are conceptual, and that realizing
them in practice comes with significant engineer-
ing challenges.

6 Conclusion

We have demonstrated the translation quality
of standard NMT architectures operating at the
character-level. Our experiments show the sur-
prising result that character NMT can substan-
tially out-perform BPE tokenization for all but the
largest training corpora sizes, and the less surpris-
ing result that doing so incurs a large computa-
tional cost. To address this cost, we have ex-
plored a number of methods for source-sequence
compression, including the first application of the
Hierarchical Multiscale LSTM to NMT, which
allows us to learn to dynamically compress the
source sequence.

We intend this paper as a call to action.
Character-level translation is well worth doing, but
we do not yet have the necessary techniques to
benefit from this quality boost without suffering a
disproportionate reduction in speed. We hope that
these results will spur others to revisit the question
of character-level translation as an interesting test-
bed for methods that can learn to process, summa-
rize or compress long sequences.

10For instance, the 2nd and 3rd layer of the best configu-
ration shown had on average 60% and 36% of z gates open,
yielding the computation ratio of (1+0.6+0.36)/3 = 0.65.
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Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany. Associa-
tion for Computational Linguistics.

Caglar Gulcehre, Francis Dutil, Adam Trischler, and
Yoshua Bengio. 2017. Plan, attend, generate:
Character-level neural machine translation with
planning. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, pages 228–234,
Vancouver, Canada. Association for Computational
Linguistics.

Melvin Johnson, Mike Schuster, Quoc Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernand a Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2017.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. Transac-
tions of the Association for Computational Linguis-
tics, 5:339–351.

Łukasz Kaiser, Aurko Roy, Ashish Vaswani, Niki Par-
mar, Samy Bengio, Jakob Uszkoreit, and Noam
Shazeer. 2018. Fast decoding in sequence mod-
els using discrete latent variables. arXiv preprint
arXiv:1803.03382.

Nan Rosemary Ke, Konrad Zolna, Alessandro Sor-
doni, Zhouhan Lin, Adam Trischler, Yoshua Ben-
gio, Joelle Pineau, Laurent Charlin, and Chris
Pal. 2018. Focused hierarchical RNNs for con-
ditional sequence processing. arXiv preprint
arXiv:1806.04342.

Diederik P Kingma and Jimmy Lei Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (To Appear).
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Abstract
Narrative story generation is a challenging
problem because it demands the generated
sentences with tight semantic connections,
which has not been well studied by most exist-
ing generative models. To address this prob-
lem, we propose a skeleton-based model to
promote the coherence of generated stories.
Different from traditional models that generate
a complete sentence at a stroke, the proposed
model first generates the most critical phrases,
called skeleton, and then expands the skeleton
to a complete and fluent sentence. The skele-
ton is not manually defined, but learned by a
reinforcement learning method. Compared to
the state-of-the-art models, our skeleton-based
model can generate significantly more coher-
ent text according to human evaluation and au-
tomatic evaluation. The G-score is improved
by 20.1% in human evaluation.1

1 Introduction
We focus on the problem of narrative story gen-
eration, a special kind of story generation (Li
et al., 2013). It requires systems to generate a
narrative story based on a short description of a
scene or an event, as shown in Table 1. In gen-
eral, a narrative story is described with several
inter-related scenes. Different from traditional
text generation tasks, this task is more challeng-
ing because it demands the generated sentences
with tight semantic connections. Currently, most
state-of-the-art approaches (Jain et al., 2017; Liu
et al., 2017; Fan et al., 2018; Ma et al., 2018a;
Xu et al., 2018b) are largely based on Sequence-
to-Sequence (Seq2Seq) models (Sutskever et al.,
2014), which generate a sentence at a stroke in a
left-to-right manner.

However, we find it hard for these approaches to
model the semantic dependency among sentences,

1The code is available at https://github.com/
lancopku/Skeleton-Based-Generation-Model

Task Description
Input: A short description of a scene or an event.
Output: A relevant narrative story following the input.

Examples
Input: Fans came together to celebrate the opening of
a new studio for an artist.
Output: The artist provided champagne in flutes for
everyone. Friends toasted and cheered the artist as she
opened her new studio.
Input: Last week I attended a wedding for the first
time.
Output: There were a lot of families there. They were
all taking pictures together. Everyone was very happy.
The bride and groom got to ride in a limo that they
rented.

Table 1: An illustration of narrative story generation.

which causes low-quality generated stories where
the scenes are irrelevant. In fact, as shown in
Figure 1, we observe that the connection among
sentences is mainly reflected through key phrases,
such as predicates, subjects, objects and so on. In
this work, we regard the phrases that express the
key meanings of a sentence as a skeleton. The
other words (e.g., modifiers) not only are redun-
dant for understanding semantic dependency, but
also make the dependency sparse. Therefore, gen-
erating all information at a stroke makes it difficult
to learn the dependency of sentences. In contrast,
the sentences written by humans are closely tied
and the whole story is more coherent and fluent. It
is mainly attributed to the way of human writing
where we often first come up with a skeleton and
then reorganize them into a fluent sentence.

Therefore, motivated by the way of human writ-
ing, we propose a skeleton-based model to im-
prove the coherence of generated text. The key
idea is to first generate a skeleton and then expand
the skeleton to a complete sentence. As a sim-
plified sentence representation, the skeleton can
help machines learn the dependency of sentences
by avoiding the interference of irrelevant informa-
tion. Our model contains two parts: a skeleton-
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The    artist    provided    champagne    in    flutes    for    everyone 

Friends    toasted    and    cheered    the    artist    as    she    opened    her    new    studio  

Fans    came    together    to    celebrate    the    opening    of    a    new    studio    for    an    artist

Figure 1: The semantic dependency among sentences in a narrative story. It can be seen that the connection among
sentences is mainly reflected through key phrases (shown in red). In this work, we regard such key phrases as a
skeleton.

based generative module and a skeleton extraction
module.

The generative module consists of an input-
to-skeleton component and a skeleton-to-sentence
component. The input-to-skeleton component
learns to associate inputs and skeletons, and the
skeleton-to-sentence component learns to expand
a skeleton to a sentence. In our model, a good
skeleton that can capture key semantic informa-
tion is a critical supervisory signal.

The skeleton extraction module is used to gen-
erate sentence skeletons. In real-world datasets,
the human-annotated skeleton is usually unavail-
able. In addition, it is difficult to define the uni-
fied rules of extracting skeletons, because different
sentences have different focuses. To address this
problem, we build a skeleton extraction module to
automatically explore sentence skeletons. Consid-
ering the discrete choice of skeleton words causes
the loss function to be non-differentiable, we use a
reinforcement learning method to build the con-
nection between the skeleton extraction module
and the generative module.

Our contributions are listed as follows:

• A skeleton-based model is proposed to pro-
mote the coherence of generated stories.

• The proposed model contains a skeleton-
based generative module and a skeleton ex-
traction module. Two modules are connected
by a reinforcement learning method to auto-
matically explore sentence skeletons.

• The experimental results on automatic eval-
uation and human evaluation show that our
model can generate significantly more coher-
ent text compared to the state-of-the-art mod-
els.

2 Related Work

Strictly speaking, the story generation task re-
quires systems to generate a story from scratch

without any external materials. However, for sim-
plification, many existing story generation models
rely on their given materials, such as short text de-
scriptions (Harrison et al., 2017; Jain et al., 2017),
visual images (Charles et al., 2001; Huang et al.,
2016), and so on. Different from these studies,
we get rid of external materials and consider the
complete story generation task (McIntyre and La-
pata, 2009). For this task, the widely used mod-
els are based on Seq2Seq models. However, al-
though they can generate a fluent sentence (Xu
et al., 2018a), these models still perform badly on
generating inter-related sentences, which are nec-
essary for a coherent story.

To address this problem, there are several mod-
els that build the mid-level sentence semantic
representation to simplify the dependency among
sentences. Clark et al. (2018) extract the entities
in sentences, and combine the entity context and
text context together when generating a target sen-
tence. Cao et al. (2018) encode the words with
specific pre-defined dependency labels to a mid-
level sentence representation. Martin et al. (2018)
use additional knowledge bases to get a general-
ized sentence representation. Ma et al. (2018b) use
the bag-of-words which occur in all references as
a representation of the correct translation. Luo
et al. (2018) propose to use two auto-encoders to
learn the semantic representation of utterance in
dialogue. However, although these models reduce
the dependency sparsity to some extent, the unified
rules are non-flexible and tend to generate over-
simplified representations, resulting in the loss of
key information.

Different from these models, we use a rein-
forcement learning method to automatically ex-
tract sentence skeletons for simplifying the de-
pendency of sentences, rather than manual rules.
Therefore, our proposed skeleton-based model is
more flexible and can adaptively determine the ap-
propriate granularity of sentence representations
for a balance between keeping key semantics and
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Skeleton Reward Skeleton Reward

GoldInput

OutputInput

Test

Train

Figure 2: An illustration of the proposed model. Top:
Testing. Bottom: Training. The “input” means the
existing text, including the source input and the al-
ready generated text. The “skeleton” means the skele-
ton of the output. The skeleton extraction module
first extracts skeletons from gold outputs. The pairs
of input-skeleton and skeleton-gold are used to train
the input-to-skeleton component and the skeleton-to-
sentence component. In return, the generative module
can be used to evaluate the quality of extracted skele-
tons. Therefore, we use the feedback of the generative
module to reward extracted skeletons. By cooperation,
the two modules can promote each other until conver-
gence.

simplifying sentence representations.

3 Skeleton-Based Model

An overview of our proposed skeleton-based
model is presented in Section 3.1. The details
of the skeleton-based generative module and the
skeleton extraction module are shown in Sec-
tion 3.2 and Section 3.3. The reinforcement learn-
ing method is explained in Section 3.4.

3.1 Overview

As shown in Figure 2, our model consists of two
parts, a skeleton-based generative module G� and
a skeleton extraction module E� . The generative
module consists of an input-to-skeleton compo-
nent and a skeleton-to-sentence component.

The generative module generates a story sen-
tence by sentence. When decoding a sentence,
the input-to-skeleton component first generates a
skeleton based on the existing text, including the
source input and the already generated text, and
then the skeleton-to-sentence component expands
and reorganizes the skeleton into a complete sen-
tence. We keep running this process until the gen-

erative module generates an ending symbol.
In the training process, we first use a weakly

supervised method to assign the skeleton extrac-
tion module with initial extraction ability. Then,
we use extracted skeletons to train the input-to-
skeleton component and the skeleton-to-sentence
component. In return, the generative module can
be used to evaluate the quality of extracted skele-
tons. Therefore, we use the feedback of the gen-
erative module to reward extracted skeletons. The
reward refines the skeleton extraction module. The
improved skeleton extraction module further en-
hances the generative module. By cooperation, the
two modules can promote each other until conver-
gence.

3.2 Skeleton-Based Generative Module
The skeleton-based generative module G� con-
sists of two parts: an input-to-skeleton component
Q↵ and a skeleton-to-sentence component D✓.

3.2.1 Input-to-Skeleton Component
The input-to-skeleton component Q↵ builds on a
Seq2Seq structure with a hierarchical encoder (Li
et al., 2015) and an attention-based decoder (Bah-
danau et al., 2014). It is responsible for learn-
ing the dependency between inputs and skele-
tons. In the encoding process, we first obtain sen-
tence representations via a word-level Long Short
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), and then generate a com-
pressed vector h via a sentence-level LSTM net-
work. Finally, given the compressed vector h, the
attention-based decoder is responsible for imagin-
ing a skeleton.

Given the training pair of input c and skeleton
s = {s1, · · · , si, · · · , sT }, the cross-entropy loss
is computed as

L↵ = �
TX

i=1

PQ(si|c, ↵) (1)

where ↵ refers to the parameters of the input-to-
skeleton component. The skeleton s is extracted
by the skeleton extraction module. The extracting
details will be introduced in Section 3.3.

3.2.2 Skeleton-to-Sentence Component
The skeleton-to-sentence component D✓ builds on
a Seq2Seq structure. Both the encoder and the de-
coder are one-layer LSTM networks with the at-
tention mechanism. Given a skeleton s, the en-
coder first generates a compressed representation,
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which is then used to generate a detailed and pol-
ished sentence via the decoder.

Given the training pair of skeleton s and target
sentence y = {y1, · · · , yi, · · · , yM}, the cross-
entropy loss is computed as

L✓ = �
MX

i=1

PD(yi|s, ✓) (2)

where ✓ refers to the parameters of the skeleton-
to-sentence component.

3.3 Skeleton Extraction Module
Given a sentence x, the skeleton extraction mod-
ule E� is responsible for extracting its skeleton
that only preserves the key information. Spe-
cially, we use the Seq2Seq model with the atten-
tion mechanism as the implementation. Both the
encoder and the decoder are based on LSTM struc-
tures.

Since the extracted skeletons are treated as su-
pervisory signals for the generative module, the
extraction ability needs to be initialized. To pre-
train the skeleton extraction module, we propose a
weakly supervised method. We reformulate skele-
ton extraction as a sentence compression problem
and use a sentence compression dataset to train
this module. In sentence compression, the com-
pressed sentence is required to be grammatical and
convey the most important information. From the
aspect of keeping important information, the sen-
tence compression dataset can be used to help the
training of the skeleton extraction module. How-
ever, since the style of the sentence compression
dataset is very different from that of the narrative
story dataset, it is difficult for the pre-trained mod-
ule to give narrative text accurate compression re-
sults. Therefore, the supervisory signals are noisy
and need to be further improved.

Given the training pair of the origi-
nal text x and the compressed version
s = {s1, · · · , si, · · · , sT }, we use the following
cross-entropy loss to pre-train E� :

L� = �
TX

i=1

PE(si|x, �) (3)

where � is the parameters of the skeleton extrac-
tion module.

3.4 Reinforcement Learning Method
We propose a reinforcement learning method to
build the connection between the skeleton ex-

Algorithm 1 The reinforcement learning method
for training the generative module G� and the
skeleton extraction module E� .
1: Initialize the generative module G� and the skeleton ex-

traction module E� with random weights �, �
2: Pre-train E� using MLE based on Eq. 3
3: for each iteration j = 1, 2, ..., J do
4: Generate a skeleton sj based on E�

5: Given sj , train G� based on Eq. 1 and Eq. 2.
6: Compute the reward Rc based on Eq. 5
7: Compute the gradient of E� based on Eq. 4
8: Update the model parameter �
9: end for

traction module and the skeleton-based generative
module for exploring better skeletons. The de-
tailed training process is shown in Algorithm 1.

Due to the discrete choice of words in skeletons,
the loss is no longer differentiable over the skele-
ton extraction module. Therefore, we use policy
gradient (Sutton et al., 1999) to train the skeleton
extraction module.

First, we calculate a reward Rc based on the
feedback of the generative module. The details
of calculation process will be introduced in Sec-
tion 3.4.1. Then, we optimize the parameters
through policy gradient by maximizing the ex-
pected reward to train the skeleton extraction mod-
ule. According to the policy gradient theorem, the
gradient for the skeleton extraction module is

rJ(�) = E[Rc · r log(PE(s|x), �)] (4)

where x is the original sentence, s is the skeleton
generated by a sampling mechanism.

3.4.1 Reward
To design an appropriate rewarding function, there
is a critical question that needs to be considered:
what will good/bad skeletons bring to the genera-
tive module.

We first define what is a good (or bad) skele-
ton. A good skeleton is expected to contain all key
information and ignore other information. In con-
trast, the skeletons that contain too much detailed
information or lack necessary information are con-
sidered as bad skeletons and should be punished.
For ease of analysis, we classify possible scenarios
into three categories: good skeletons, incomplete
skeletons, and redundant skeletons.

If a skeleton contains too little information, it
will get harder for the skeleton-to-sentence com-
ponent to reconstruct the original sentence based
on the skeleton. Therefore, the cross-entropy loss
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of this example will be higher compared with other
skeleton-sentence pairs.

If a skeleton contains too much redundant infor-
mation, the input-skeleton relation will be sparse.
Therefore, the cross-entropy loss of this example
will be higher compared with other input-skeleton
pairs.

For a good skeleton that contains an appropri-
ate amount of information, it will benefit the two
components and will get balanced losses from the
two components.

Therefore, to encourage good skeletons and
punish bad skeletons, we use the multiplication
of the cross-entropy loss in the input-to-skeleton
component and that in the skeleton-to-sentence
component as the reward:

Rc = [K � (R1 ⇥ R2)
1
2 ] (5)

where K is the upper bound of the reward, R1

and R2 are cross-entropy losses in the input-to-
skeleton component and the skeleton-to-sentence
component, respectively. Only if two components
both output lower cross-entropy losses, the ex-
tracted skeleton can be rewarded.

4 Experiment

In this section, we evaluate our model on a narra-
tive story generation dataset. We first introduce the
dataset, the training details, the baselines, and the
evaluation metrics. Then, we compare our model
with the state-of-the-art models. Finally, we show
the experimental results and provide the detailed
analysis.

4.1 Dataset
We use the recently introduced visual storytelling
dataset (Huang et al., 2016) in our experiments.
This dataset contains the pairs of photo sequences
and the associated coherent narrative of events
through time written by humans. We only use the
text data for our experiments. In our version of
narrative story generation, the model should gen-
erate a coherent story based on a given sentence.
We build a new dataset for this task by splitting
the data into two parts. In each story, we take the
first sentence as the input text, and the following
sentences as the target text. The processed dataset
contains 40153, 4990, and 5054 stories for train-
ing, validation, and testing, respectively. The max-
imum number of sentences in each story is 6. In

total, the number of training sentences is over 20K
and the number of training words is over 2M.

To pre-train the skeleton extraction module, we
use a sentence compression dataset (Filippova and
Altun, 2013). In this dataset, every compression
is a subsequence of tokens from the input. The
dataset contains 16999, 1000, and 1998 pairs for
training, validation, and testing, respectively.

4.2 Baselines
We compare our proposed model with the follow-
ing the state-of-the-art models.

Entity-Enhanced Seq2Seq Model (EE-
Seq2Seq) (Clark et al., 2018). It regards entities
as important context needed for coherent stories.
When decoding a sentence, it combines entity
context and text context together to reduce
dependency sparsity.

Dependency-Tree Enhanced Seq2Seq Model
(DE-Seq2Seq) (Cao et al., 2018). It defines some
manual rules based on dependency parsing labels
to find a simplified sentence representation. Fol-
lowing this work, we treat the extracted words
based on the predefined rules as the skeleton.

Generalized-Template Enhanced Seq2Seq
Model (GE-Seq2Seq) (Martin et al., 2018). It
takes advantages of existing knowledge bases to
get a generalized sentence representation. Follow-
ing this work, we treat the generalized sentence
representation as the skeleton.

4.3 Training Details
For narrative story generation, we set the num-
ber of generated sentences to 6 with the maximum
length of 40 words for each generated sentence.
Based on the performance on the validation set,
we set the hidden size to 128, embedding size to
50, vocabulary size to 20K, and batch size to 10 for
the proposed model and the state-of-the-art mod-
els. We use the Adagrad (Duchi et al., 2011) opti-
mizer with the initial learning rate 0.6. All of the
gradients are clipped when the norm exceeds 2.
Both the generative module and skeleton extrac-
tive module are pre-trained for 30 and 40 epochs
before reinforcement learning. The K in Equa-
tion 5 is set to 1. Due to the lack of annotated enti-
ties and dependency parsing labels, we use a pop-
ular natural language processing toolkit, Spacy2,
to extract entities and dependency parsing labels
in the EE-Seq2Seq and DE-Seq2Seq models.

2https://spacy.io/
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Models BLEU
EE-Seq2Seq 0.0029
DE-Seq2Seq 0.0027
GE-Seq2Seq 0.0022
Proposed Model 0.0042 (+44.8%)

Table 2: Automatic evaluations of the proposed model
and the state-of-the-art models.

4.4 Evaluation Metrics
We conduct two kinds of evaluations in this work,
automatic evaluation and human evaluation. The
details of evaluation metrics are shown as follows.

4.4.1 Automatic Evaluation
Following the previous work (Li et al., 2016; Mar-
tin et al., 2018), we use the BLEU score to mea-
sure the quality of generated text. BLEU (Papineni
et al., 2002) is originally designed to automati-
cally judge the machine translation quality. The
key point is to compare the similarity between the
results created by the machine and the references
provided by the human. Currently, it is widely
used in many generation tasks, such as dialogue
generation, story generation, summarization, and
so on. For precise results, we remove all stop
words, like “the”, “a”, before computing BLEU
scores.

4.4.2 Human Evaluation
Although the quantitative evaluation generally in-
dicates the quality of generated stories, it can not
accurately evaluate the generated text. Therefore,
we also perform a human evaluation on the test set.
We randomly choose 100 items for human evalu-
ation. Each item contains the stories generated by
different models given the same source sentence.
The items are distributed to the annotators who
have no knowledge about which model the story
is from. It is important to note that all the anno-
tators have linguistic background. They are asked
to score the generated stories in terms of fluency
and coherence. Fluency represents whether each
sentence in the generated story is correct in gram-
mar. Coherence evaluates whether the generated
story is coherent. The score ranges from 1 to 10 (1
is very bad and 10 is very good). To evaluate the
overall performance, we use the geometric mean
of fluency and coherence as an evaluation metric.

4.5 Experimental Results
Table 2 shows the results of automatic evalua-
tion. The proposed model performs the best ac-

Models Fluency Coherence G-Score
EE-Seq2Seq 6.28 5.14 5.68
DE-Seq2Seq 8.48 3.54 5.48
GE-Seq2Seq 9.48 3.58 5.82
Proposed Model 8.69 5.62 6.99 (+20.1%)

Table 3: Human evaluations of the proposed model and
the state-of-the-art models.

cording to BLEU. In particular, the differences
between the existing state-of-the-art models are
within 0.07, while the proposed model supersedes
the best of them by 0.13.

As we previously explained, the best evalua-
tion for narrative story generation is human eval-
uation. The human evaluation results are listed in
Table 3.3

As for fluency, the proposed model receives the
score of 8.69, second to the GE-Seq2Seq model.
It is expected that the generalized templates can
constrain the search space in generation and the
model achieves higher fluency by loss of expres-
sive power. In particular, we find that only 0.48%,
1.01%, and 1.20% of the unigrams, bigrams, and
trigrams are unique in the stories generated by
the GE-Seq2Seq model, while the percentages are
3.16%, 15.33%, and 29.67% in the stories gen-
erated by our proposed model. Nonetheless, the
proposed model outperforms the other two exist-
ing models by a substantial margin. In terms of
coherence, the proposed model is better than all
the existing models. We need to point out that the
GE-Seq2Seq model is scored the lowest in coher-
ence, while highest in fluency. It indicates that the
GE-Seq2Seq model does not learn the dependency
among sentences effectively, which results from
the constraint of the templates. It also needs to
be noted that the models are all scored below 6 in
coherence, meaning that there is still a long way to
go before the generated stories satisfy the require-
ment of humans. Overall, the proposed model is
arguably better than the existing models in that it
achieves a balance between coherence and fluency,
with a G-score improvement of 20.1%.

Table 4 presents the examples generated by
different models. Compared with the existing
models, the sentences generated by our proposed
model are connected more logically. For the EE-
Seq2Seq model, while it connects park with plants

3The inter-annotator agreement is satisfactory considering
the difficulty in the human evaluation. The Pearson’s corre-
lation coefficient is 0.37 on coherence and 0.26 on fluency,
with p < 0.0001.
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and rocks successfully (4th ex.), it insists on telling
getting married when it sees [male] or [female]
(1st and 2nd ex.). Such examples suggest that
some entities (e.g. park) embody semantics more
independently, while for others (e.g. male), we
have to associate them in the specific context.
The rest of the models try to generalize the tar-
get sentences. The DE-Seq2Seq model uses the
core dependency arguments as the skeleton. How-
ever, the results demonstrate the generated sen-
tences are quite irrelevant. The sentence may have
links such as walked through to came out (1st
ex.), but the objects in the generated stories are
hardly related. The GE-Seq2Seq model replaces
the specific words with more general concepts and
generates some good examples, e.g. the second
one in the table. However, there can be over-
generalizations. For example, as for the third ex-
ample, the GE-Seq2Seq model associates driving
with car show, causing the incoherent description.
In the last example, the generated story completely
diverges from the input. These results prove the
drawbacks of static rule-based skeletons. The pro-
posed model uses a skeleton extraction module
to adaptively determine the appropriate granular-
ity of skeletons. The skeleton keeps the main se-
mantic of a sentence, which can be a whole sen-
tence, phrases, or even segments. It makes the
model learn the dependency of sentences more ef-
fectively so that the generated stories are much
more coherent.

4.6 Incremental Analysis

In this section, we conduct a series of experiments
to evaluate the contributions of our key compo-
nents. The results are listed in Table 5. The
Seq2Seq model is scored the lowest according
to BLEU. With the skeleton extraction module,
the BLEU score is slightly improved, which sug-
gests that the model starts to learn the connection
of longer segments. Finally, with reinforcement
learning, the BLEU score significantly overpasses
the Seq2Seq model by 40%.

Table 6 shows the human evaluation results.
The slight improvement with the skeleton extrac-
tion module in BLEU reflects as the decreases in
both fluency and coherence. It suggests the ne-
cessity of human evaluation. The decreased re-
sults can be explained by the fact that the style of
the dataset for pre-training the skeleton extraction
module is very different from the narrative story

Input 1: [Female] and her friend had a night out on the
town.
EE-Seq2Seq: They were very happy to see us. [Male] and
[female] were getting married today.
DE-Seq2Seq: We walked through the streets of the city
and found a place to sit. The whole family came out to
support their families.
GE-Seq2Seq: My friends and I went to a bar last night.
[Female] was so happy to be there.
Proposed Model: They went to the bar. They had a great
time.
Input 2: [Male] and [male] are talented artists.
EE-Seq2Seq: They were very happy to see us. [Male] and
[female] were getting married today.
DE-Seq2Seq:The kids get to play with the kids. We had a
great time.
GE-Seq2Seq:The art was very subjective. The artist had
a keen eye.
Proposed Model: They are discussing the importance of
the lecture.
Input 3: The bride was driving to the wedding.
EE-Seq2Seq: The family was so happy to be there. They
were very happy to see us.
DE-Seq2Seq: The view from the top was amazing. There
were a lot of people there.
GE-Seq2Seq: I went to the car show last weekend. People
are getting ready to go.
Proposed Model: The groom and groomsmen watched
the bride. They kissed and shared their pictures.
Input 4: The park was filled with beauty.
EE-Seq2Seq: The plants were so beautiful. The rocks
were very pretty.
DE-Seq2Seq: The family was so happy to be there.
GE-Seq2Seq: There were a lot of people there. We had a
great time.
Proposed Model: The trees were very sparse. There were
also some flowers.

Table 4: Examples generated by the proposed model
and the state-of-the-art models.

Models BLEU
Seq2Seq 0.0028
+Skeleton Extraction Module 0.0029
+Reinforcement Learning 0.0042

Table 5: Automatic evaluations of key components.

dataset. While it may help extract some useful
skeletons, it is likely that many of them are not
suitable for learning the dependency of sentences.
Finally, when the skeleton extraction module is
trained on the target domain using reinforcement
learning, the human evaluation is improved signif-
icantly by 14% on G-score.

Table 7 further shows the results of the skele-
ton extraction module. As we can see, the mod-
ule keeps only the essential parts of the sen-
tence. Most of the adjectival phrases and adverbial
phrases are removed. Furthermore, we can find
that for longer sentences that contain too detailed
information, it only extracts the key information.
For shorter sentences where all information is nec-

4312



Models Fluency Coherence G-Score
Seq2Seq 7.54 4.98 6.13
+Skeleton Extraction Module 7.26 4.32 5.60
+Reinforcement Learning 8.69 5.62 6.99

Table 6: Human evaluations of the key components.

1) There was a small power station on the side of the
building.
2) The lady wearing the pink shirt decided to stop play-
ing the video and chatted with other guests.
3) At the end of the night, guests taking pictures before
saying goodbye to each other.
4) Afterwards, we celebrated with some drinks and
watched the rest of the parade.
5) A few miles away was a lake that we really enjoyed
watching.
6) Some of the guests partied harder than others.
7) The bride was driving to the wedding.

Table 7: Analysis of the skeleton extraction module.
Given a whole sentence as input, the words in red are
the extracted skeleton.

essary, it choose to keep all words. It proves that
the skeleton extraction module is effective and is
expert in only removing detailed information that
is not needed.

Furthermore, it is not quite surprising to see
that on our dataset, the Seq2Seq model beats the
existing state-of-the-art models (DE-Seq2Seq and
GE-Seq2Seq) in human evaluation and automatic
evaluation. It is mainly attributed to the over-
simplification of sentences. For narrative sen-
tences, the key information is usually expressed in
a complicated way. It can be a segment, a phrase,
or a whole sentence. The simple rules lead to the
excessive loss of key information while our pro-
posed model can adaptively determine the appro-
priate granularity.

4.7 Error Analysis
Although the proposed model outperforms the
state-of-the-art models, it needs to be noted that
the highest coherence score, 5.62, is a moderate
result in human evaluation, indicating that there is
still a long way to go before the generated stories
reach the human level. Therefore, in this subsec-
tion, we give a detailed error analysis to explore
what factors affect the performance.

First, we classify the generated stories with
scores below 6 that are considered less coherent.
We conclude 4 types of errors from these outputs
and the distribution of error types are shown in
Figure 3. It is expected that the irrelevant scenes
make up most of the errors. In addition, there are
several examples that are hard to be understood

62.8 %

Irrelevant Scenes

25.8 %

Chaotic Syntax

5.7 %

Chaotic timeline

5.7 %
Repeated Scenes

Figure 3: The distribution of error types.

Figure 4: An illustration of how the performance is af-
fected by the length of input (left) and the unseen ratio
of input (right).

due to chaotic syntax. For the type of chaotic time-
line, the model neglects the time order of scenes
and the generated stories goes backward in time.
The repeated scenes mean that the generated sto-
ries just describe the input again. The above errors
show that there are many dimensions in coherence,
including scene-specific relevance, temporal con-
nection, and non-recurrence. Modeling such di-
mensions is still a hard problem.

Furthermore, we explore how the performance
is affected by the length of input and the unseen
ratio of input. The results are shown in Figure 4.
“Unseen ratio” is the percentage of the phrases
that are not seen in the training data. We use the
gap between 1 and the BLEU score with the train-
ing data as the reference to compute it. When the
input is short and the model often sees the input,
the generated story tends to have high coherence.
However, when the length of input increases and
the model is not familiar with the input, the co-
herence goes down. Since our model extracts the
key semantics better, the dependency of sentences
can be easier to learned, which brings the smaller
decrease in coherence.

5 Conclusion and Future Work

In this work, we propose a new skeleton-based
model for generating coherent narrative stories.
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Different from traditional models, the proposed
model first generates a skeleton that contains the
key information of a sentence, and then expands
the skeleton to a complete sentence. Experimental
results show that our model significantly improves
the quality of generated stories, especially in co-
herence. However, even with the best human eval-
uation results, the error analysis shows that there
are still many challenges in narrative story genera-
tion, which we would like to explore in the future.
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Abstract

Sequence-to-Sequence (seq2seq) models have
become overwhelmingly popular in build-
ing end-to-end trainable dialogue systems.
Though highly efficient in learning the back-
bone of human-computer communications,
they suffer from the problem of strongly fa-
voring short generic responses. In this pa-
per, we argue that a good response should
smoothly connect both the preceding dialogue
history and the following conversations. We
strengthen this connection through mutual in-
formation maximization. To sidestep the non-
differentiability of discrete natural language
tokens, we introduce an auxiliary continuous
code space and map such code space to a learn-
able prior distribution for generation purpose.
Experiments on two dialogue datasets validate
the effectiveness of our model, where the gen-
erated responses are closely related to the dia-
logue context and lead to more interactive con-
versations.

1 Introduction

With the availability of massive online conver-
sational data, there has been a surge of in-
terest in building open-domain chatbots with
data-driven approaches. Recently, the neural
network based sequence-to-sequence (seq2seq)
framework (Sutskever et al., 2014; Cho et al.,
2014) has been widely adopted. In such a model,
the encoder, which is typically a recurrent neu-
ral network (RNN), maps the source tokens into a
fixed-sized continuous vector, based on which the
decoder estimates the probabilities on the target
side word by word. The whole model can be effi-
ciently trained by maximum likelihood (MLE) and
has demonstrated state-of-the-art performance in
various domains. However, this architecture is not

⇤Indicates equal contribution. X. Shen focuses on algo-
rithm and H. Su is responsible for experiments.

A1: Do you know the movie Star Wars?
B1: Only a bit. You can tell me about it!
A2: Of course! This is about ...

Figure 1: A conversation in real life

suitable for modeling dialogues. Recent research
has found that while the seq2seq model gener-
ates syntactically well-formed responses, they are
prone to being off-context, short, and generic.
(e.g., “I dont know” or “I am not sure”) (Li et al.,
2016a; Serban et al., 2016). The reason lies in the
one-to-many alignments in human conversations,
where one dialogue context is open to multiple po-
tential responses. When optimizing with the MLE
objective, the model tends to have a strong bias to-
wards safe responses as they can be literally paired
with arbitrary dialogue context without semanti-
cal or grammatical contradictions. These safe re-
sponses break the dialogue flow without bringing
any useful information and people will easily lose
interest in continuing the conversation.

In this paper, we propose NEXUS Network
which aims at producing more on-topic responses
to maintain an interactive conversation flow. Our
assumption is that a good response should serve
as a “nexus”: connecting and being informative
to both the preceding dialogue context and the
follow-up conversations. For example, in Figure
1, the response from B1 is a smooth connection,
where the first half indicates the preceding context
is a “Do you know” question and the second half
informs that the follow-up would be an introduc-
tion about Star Wars. We establish this connection
by maximizing the mutual information (MMI) of
the current utterance with both the past and fu-
ture contexts. In this way, generic responses can
be largely discouraged as they contain no valuable
information and thus have only weak correlations
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with the surrounding context. To enable efficient
training, two challenges exist.

The first challenge comes from the discrete na-
ture of language tokens, hindering efficient gradi-
ent descent. One strategy is to estimate the gradi-
ent by methods like Gumbel-Softmax (Maddison
et al., 2017; Jang et al., 2017) or REINFORCE
algorithm (Williams, 1992), which has been ap-
plied in many NLP tasks (He et al., 2016; Shetty
et al., 2017; Gu et al., 2018; Paulus et al., 2018),
but the trade-off between bias and variance of the
estimated gradient is hard to reconcile. The re-
sulting model usually strongly relies on sensitive
hyper-parameter tuning, careful pre-train and task-
specific tricks. Li et al. (2016a); Wang et al. (2017)
avoid this non-differentiability problem by learn-
ing a separate backward model to rerank candidate
responses in the testing phase while still adhering
to the MLE objective for training. However, the
candidate set normally suffers from low diversity
and a huge sample size is needed for good perfor-
mance (Li et al., 2016b).

The second challenge relates to the unknown fu-
ture context in the testing phase. In our frame-
work, both the history and future context need to
be explicitly observed in order to compute the mu-
tual information. When applying it to generating
tasks where only the history context is given, there
is no way to explicitly take into account the future
information. Therefore, reranking-based models
do not apply here. (Li et al., 2016c) addresses fu-
ture information by policy learning, but the model
suffers from high variance due to the enormous
sequential search space. Serban et al. (2017);
Zhao et al. (2017); Shen et al. (2017) adopt the
variational inference strategy to reduce the train-
ing variance by optimizing over latent continuous
variables. However, they all stick to the original
MLE objective and no connection with the sur-
rounding context is considered.

In this work, we address both challenges by
introducing an auxiliary continuous code space
which is learned from the whole dialogue flow. At
each time step, instead of directly optimizing dis-
crete utterances, the current, past and future utter-
ances are all trained to maximize the mutual in-
formation with this code space. Furthermore, a
learnable prior distribution is simultaneously opti-
mized to predict the corresponding code space, en-
abling efficient sampling in the testing phase with-
out getting access to the ground-truth future con-

versation. Extensive experiments have been con-
ducted to validate the superiority of our frame-
work. The generated responses clearly demon-
strate better performance with respect to both co-
herence and diversity.

2 Model Structure

2.1 Motivation
Let ui be the ith utterance within a dialogue flow.
The dialogue history Hi�1 contains all the preced-
ing context u1, u2, . . . , ui�1 and Fi+1 denotes the
future conversations ui+1, . . . , uT . The objective
of our model is to find the decoding probability
p✓(ui|Hi�1, Fi+1) that maximizes the mutual in-
formation I(Hi�1, ui) and I(ui, Fi+1). Formally,
the objective is:

max
✓

�1I(Hi�1, ui) + �2I(ui, Fi+1)

ui ⇠ p✓(ui|Hi�1, Fi+1)
(1)

�1 and �2 adjusts the relative weight. Mutual in-
formation is defined over p✓(ui|Hi�1, Fi+1) and
the empirical distribution p(Hi�1, Fi+1). Now we
assume the future context Fi+1 is known to us
when training the decoding probability, we will
address the unknown future problem later.

Directly optimizing with this objective is unfor-
tunately infeasible because the exact computation
of mutual information is intractable, and back-
propagating through sampled discrete sequences
is notoriously difficult to train. The discontinuity
prevents the direct application of the reparameter-
ization trick (Kingma and Welling, 2014). Low-
variance relaxations like Gumbel-Softmax (Jang
et al., 2017), semantic hashing (Kaiser et al., 2018)
or vector quantization (van den Oord et al., 2017)
lead to biased gradient estimations, which are ac-
cumulated as the sequence becomes longer. The
Monte-Carlo-Simulation is unbiased but suffers
from high variances. Designing a reasonable con-
trol variate for variance reduction is an extremely
tricky task (Mnih and Gregor, 2014; Tucker et al.,
2017). For this sake, we propose replacing ui with
a continuous code space c learned from the whole
dialogue flow.

2.2 Continuous Code Space
We define the continuous code space c to follow
the Gaussian probability distribution with a diag-
onal covariance matrix conditioning on the whole
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Figure 2: Framework of NEXUS Networks. Full line indicates the generative model to generate the continuous
code and corresponding responses. Dashed line indicates the inference model where the posterior code is trained
to infer the history, current and future utterances. Both parts are simultaneously trained by gradient descent.

dialogue:

c ⇠ p�(c|Hi�1, Fi) = N (µc, �
2
c I|Hi�1, Fi) (2)

The dialogue history Hi�1 is encoded into vector
˜Hi�1 by a forward hierarchical GRU model Ef as

in (Serban et al., 2016). The future conversation,
including the current utterance, is encoded into F̃i

by a backward hierarchical GRU Eb. ˜Hi�1 and
F̃i are concatenated and a multi-layer perceptron
is built on top of them to estimate the Gaussian
mean and covariance parameters. The code space
is trained to infer the encoded history ˜Hi�1 and
future ˜Fi+1. The full optimizing objective is:

L(c) = max
�

Ep�(Hi�1,Fi,c)[�1 log p�( ˜Hi�1|c)

+�2 log p�( ˜Fi+1|c)]
p�(Hi�1, Fi, c) = p(Hi�1, Fi)p�(c|Hi�1, Fi)

p�( ˜Hi�1|c) = N (µHi , �
2
Hi

I|c)
p�( ˜Fi+1|c) = N (µFi+1 , �

2
Fi+1

I|c)
(3)

where ˜Hi�1 and ˜Fi+1 are also assumed to be
Gaussian distributed given c with mean and co-
variance estimated from multi-layer perceptrons.
We infer the encoded vectors instead of the orig-
inal sequences for three reasons. Firstly, infer-
ring dense vectors is parallelizable and computa-
tionally much cheaper than autoregressive decod-
ing, especially when the context sequences could

be unlimitedly long. Secondly, sequence vectors
can capture more holistic semantic-level similar-
ity than individual tokens. Lastly, It can also
help alleviate the posterior collapsing issue (Bow-
man et al., 2016) when training variational in-
ference models on text (Chen et al., 2017; Shen
et al., 2018), which we will use later. It can
be shown that the above objective maximizes
a lower bound of �1I(Hi�1, c) + �2I(c, Fi+1),
given the conditional probability p�(c|Hi�1, Fi).
The proof is a direct extension of the derivation
in (Chen et al., 2016), followed by the Data Pro-
cessing Inequality (Beaudry and Renner, 2012)
that the encoding function can only reduce the
mutual information. As the sampling process
contains only Gaussian continuous variables, the
above objective can be trained through the repa-
rameterization trick (Kingma and Welling, 2014),
which is a low-variance, unbiased gradient estima-
tor (Burda et al., 2015). After training, samples
from p�(c|Hi�1, Fi) hold high mutual information
with both the history and future context. The next
step is then transferring the continuous code space
to reasonable discrete natural language utterances.

2.3 Decoding from Continuous Space

Our decoder transfers the code space c into the
ground-truth utterance ui by defining the proba-
bility distribution p(ui|Hi�1, c), which is imple-
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mented as a GRU decoder going through ui word
by word to estimate the output probability. The
encoded history ˜Hi�1 and code space c are con-
catenated as an extra input at each time step. The
loss function for the decoder is then:

L(d) = max
�

Ep�(Hi�1,Fi,c) log p�(ui|Hi�1, c)

p�(Hi�1, Fi, c) = p(Hi�1, Fi)p�(c|Hi�1, Fi)
(4)

which can be proved to be the lower bound of
the conditional mutual information I(ui, c|Hi�1).
By maximizing the conditional mutual informa-
tion, ci is trained to maintain as much information
about the target sequence ui as possible.

Combining Eq. 3 and 4, our model until now
can be viewed as optimizing a lower bound of the
following objective:

max
�

�1I(Hi�1, c) + �2I(c, Fi+1) + I(ui, c|Hi�1)

c ⇠ p�(c|Hi�1, Fi)
(5)

Compared with the original motivation in Eq. 1,
we sidestep the non-differentiability problem by
replacing ui with a continuous code space c, then
forcing ui to contain the same information as
maintained in c by additionally maximizing the
mutual information between them.

Nonetheless, Eq. 5 and Eq. 1 might lead to dif-
ferent optimums as mutual information does not
satisfy the transitive law. In the extreme case, dif-
ferent dimensions of c could individually maintain
information about history, current and future con-
versations and the conversations themselves do not
share any dependency relation. To avoid this issue,
we restrict the dimension of c to be smaller than
that of the encoded vectors. In this case, optimiz-
ing Eq. 5 will favor utterances having stronger cor-
relations with the surrounding context to achieve a
higher total mutual information.

2.4 Learnable Prior Distribution for
Unknown Future

The last problem is the sampling mechanism of c
in Eq. 2, which conditions on the ground-truth fu-
ture conversation. In the testing phase, when we
have no access to it, we cannot perform the de-
coding process as in Eq. 4. To allow for decoding
with only the history context, we need to learn an
appropriate prior distribution p✓(c|Hi�1) for c. In

the ideal case, we would like

p✓(c|Hi�1) =
X

Fi

p�(c|Hi�1, Fi) = p�(c|Hi�1)

(6)
However, p�(c|Hi�1) is intractable as it integrates
over all possible future conversations. We apply
variational inference on c to maximize the varia-
tional lower bound (Jordan et al., 1999):

L(p) = max
✓,�

Ep�(c|Hi�1,Fi) log p✓(F̃i|Hi�1, c)

�KL(p�(c|Hi�1, Fi)||p✓(c|Hi�1))

p✓(F̃i|Hi�1, c) ⇠ N (µFi , �
2
Fi

I|Hi�1, c)

p✓(c|Hi�1) ⇠ N (µprior, �
2
priorI|Hi�1))

(7)
It can be reformulated as maximizing:

Ep�(c|Hi�1)KL(p�(F̃i|Hi�1, c)||p✓(F̃i|Hi�1, c))

�KL(p�(c|Hi�1)||p✓(c|Hi�1))
(8)

We can see it implicitly matches p�(c|Hi�1) to
a tractable Gaussian distribution p✓(c|Hi�1) by
minimizing the KL divergence between them. It
also functions as a regularizer to prevent overfit-
ting when learning p�(c|Hi�1, Fi). In the test-
ing phase, we can sample c from the learned prior
distribution p✓(c|Hi�1), then generate a response
based on it.

2.5 Summary
To sum up, the total objective function of our
model is:

L = L(c) + L(d) + L(p) (9)

Weighting can be added to individual loss func-
tions for better performance, but we find it enough
to maintain equal weights and avoid extra hyper-
parameters. All the parameters are simultaneously
updated by gradient descent except for the en-
coders Ef and Eb, which only accept gradients
from L(d) since otherwise the model can easily
learn to encode no information for a lower recon-
struction loss in L(c) and L(p). An overview of
our training procedure is depicted in Fig. 2.

3 Relationship to Existing Methods

MMI decoding MMI decoder was proposed by
(Li et al., 2016a) and further extended in (Wang
et al., 2017). The basic idea is the same as our
model by maximizing the mutual information with
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the dialogue context. However, the MMI principle
is applied only at the testing phase rather than the
training phase. As a result, it can only be used to
evaluate the quality of a generation by estimating
its mutual information with the context. To apply
it in a generative task, we have to first sample some
candidate responses with the seq2seq model, then
rerank them by accounting for the MMI score. Our
model differs from it in that we directly estimate
the decoding probability thus no post-sampling
rerank is needed. Moreover, we further include the
future context to strengthen the connection role of
the current utterances.

Conditional Variational Autoencoder The
idea of learning an appropriate prior distribution
in Eq. 7 is essentially a conditional variational
autoencoder (Sohn et al., 2015) where the accu-
mulated posterior distribution is trained to stay
close to a prior distribution. It has also been ap-
plied in dialogue generation (Serban et al., 2017;
Zhao et al., 2017). However, all the above meth-
ods stick to the MLE objective function and do not
optimize with respect to the mutual information.
As we will show in the experiment, they fail to
learn the correlation between the utterance and
its surrounding context. The generation diversity
of these models comes more from the sampling
randomness of the prior distribution rather than
from the correct understanding of context corre-
lation. Moreover, they suffer from the posterior
collapsing problem (Bowman et al., 2016) and
require special tricks like KL-annealing, BOW
loss or word drop-out (Shen et al., 2018). Our
model does not have such problems.

Deep Reinforcement Learning Dialogue Gener-
ation (Li et al., 2016c) first considered future
success in dialogue generation and applied deep
reinforcement learning to encourage more interac-
tive conversations. However, the reward functions
are intuitively hand-crafted. The relative weight
for each reward needs to be carefully tuned and the
training stage is unstable due to the huge search
space. In contrast, our model maximizes the mu-
tual information in the continuous space and trains
the prior distribution through the reparamateriza-
tion trick. As a result, our model can be more eas-
ily trained with a lower variance. Throughout our
experiment, the training process of NEXUS net-
work is rather stable and much less data-hungry.
The MMI objective of our model is theoretically

more sound and no manually-defined rules need
to be specified.

4 Experiments

4.1 Dataset and Training Details
We run experiments on the DailyDialog (Li et al.,
2017b) and Twitter corpus (Ritter et al., 2011).
DailyDialog contains 13118 daily conversations
under ten different topics. This dataset is crawled
from various websites for English learner to prac-
tice English in daily life, which is high-quality,
less noisy but relatively smaller. In contrast, the
Twitter corpus is significantly larger but contains
more noise. We obtain the dataset as used in Ser-
ban et al. (2017) and filter out tweets that have
already been deleted, resulting in about 750,000
multi-turn dialogues. The contents have more in-
formal, colloquial expressions which makes the
generation task harder. These two datasets are ran-
domly separated into training/validation/test sets
with the ratio of 10:1:1.

In order to keep our model comparable with the
state-of-the-art, we keep most parameter values
the same as in (Serban et al., 2017). We build our
vocabulary dictionary based on the most frequent
20,000 words for both corpus and map other words
to a UNK token. The dimensionality of the code
space c is 100. We use a learning rate of 0.001 for
DailyDialog and 0.0002 for Twitter corpus. The
batch size is fixed to 128. The word vector di-
mension is 300 and is initialized with the pub-
lic Word2Vec (Mikolov et al., 2013) embeddings
trained on the Google News Corpus. The prob-
ability estimators for the Gaussian distributions
are implemented as 3-layer perceptrons with the
hyperbolic tangent activation function. As men-
tioned above, when training NEXUS models, we
block the gradient from L(c) and L(p) with re-
spect to Ef and Eb to encourage more meaningful
encodings. The UNK token is prevented from be-
ing generated in the test phase. We implemented
all the models with the open-sourced Python li-
brary Pytorch (Paszke et al., 2017) and optimized
using the Adam optimizer (Kingma and Ba, 2015).

4.2 Compared Models
We conduct extensive experiments to compare our
model against several representative baselines.

Seq2Seq: Following the same implementation
as in (Vinyals and Le, 2015), the seq2seq model
serves as a baseline. We try both greedy decoding
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Model DailyDialog Twitter

Average Greedy Extreme Average Greedy Extreme

Greedy 0.443 0.376 0.328 0.510 0.341 0.356
Beam 0.437 0.350 0.369 0.505 0.345 0.352
MMI 0.457 0.371 0.371 0.518 0.353 0.365
RL 0.405 0.329 0.305 0.460 0.349 0.323
VHRED 0.491 0.375 0.313 0.525 0.389 0.372
NEXUS-H 0.479 0.381* 0.385* 0.558* 0.392 0.373
NEXUS-F 0.476 0.383* 0.373 0.549* 0.393 0.386*
NEXUS 0.488 0.392* 0.384* 0.556* 0.397* 0.391*

Table 1: Results of embedding-based metrics. * indicates statistically significant difference (p < 0.05) from the
best baselines. The same mark is used in Table 2

and beam search (Graves, 2012) with beam size
set to 5 when testing.

MMI: We implemented the bidirectional-MMI
decoder as in Li et al. (2016a), which showed bet-
ter performance over the anti-LM model. The hy-
perparameter � is set to 0.5 as suggested. 200 can-
didates per context are sampled for re-ranking.

VHRED: The VHRED model is essentially a
conditional variational autoencoder with hierar-
chical encoders (Serban et al., 2017; Zhao et al.,
2017). To alleviate the posterior collapsing prob-
lem, we apply the KL-annealing trick and early
stop with the step set as 12,000 for the DailyDia-
log and 75,000 for the Twitter corpus.

RL: Deep reinforcement learning chatbot as in
(Li et al., 2016c). We use all the three reward func-
tions mentioned in the paper and keep the relative
weights the same as in the original paper. Policy
network is initialized with the above-mentioned
MMI model.

NEXUS-H: NEXUS network maximizing mu-
tual information only with the history (�2 = 0).

NEXUS-F: NEXUS network maximizing mu-
tual information only with the future (�1 = 0).

NEXUS: NEXUS network maximizing mutual
information with both the history and future.

NEXUS-H and NEXUS-F are implemented to
help us better analyze the effects of different com-
ponents in our model. The hyperparameters �1

and �2 in NEXUS are set to be 0.5 and 1 respec-
tively as we find history vector is consistently eas-
ier to be reconstructed than the future vector (A.6).

4.3 Metric-based Performance

Embedding Score We conducted three
embedding-based evaluations (average, greedy

and extrema) (Liu et al., 2016), which map
responses into vector space and compute the
cosine similarity (Rus and Lintean, 2012). The
embedding-based metrics can to a large extent
capture the semantic-level similarity between
generated responses and ground truth. We repre-
sent words using Word2Vec embeddings trained
on the Google News Corpus. We also measure
the uncertainty of the score by assuming each
data point is independently Gaussian distributed.
The standard deviation yields the 95% confidence
interval (Barany et al., 2007). Table 1 reports
the embedding scores on both datasets. NEXUS
network significantly outperforms the best base-
line model in most cases. Notably, NEXUS can
absorb the advantages from both NEXUS-H and
NEXUS-F. The history and future information
seem to help the model from different perspec-
tives. Taking into account both of them does
not create a conflict and the combination leads
to an overall improvement. RL performs rather
poorly on this metric, which is understandable
as it does not target the ground-truth responses
during training (Li et al., 2016c).

BLEU Score BLEU is a popular metric that
measures the geometric mean of the modified n-
gram precision with a length penalty (Papineni
et al., 2002). Table 2 reports the BLEU 1-3
scores. Compared with embedding-based metrics,
the BLEU score quantifies the word-overlap be-
tween generated responses and the ground-truth.
One challenge of evaluating dialogue generation
by BLEU score is the difficulty of accessing mul-
tiple references for the one-to-many alignment re-
lation. Following Sordoni et al. (2015); Zhao et al.
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Model DailyDialog Twitter

BLEU-1 BLEU-2 BLEU-3 BLEU-1 BLEU-2 BLEU-3

Greedy 0.394 0.245 0.157 0.340 0.203 0.116
Beam 0.386 0.251 0.163 0.338 0.205 0.112
MMI 0.407 0.269 0.172 0.347 0.208 0.118
RL 0.298 0.186 0.075 0.314 0.199 0.103
VHRED 0.395 0.281 0.190 0.355 0.211 0.124
NEXUS-H 0.418 0.279 0.199* 0.366* 0.212 0.126
NEXUS-F 0.399 0.260 0.167 0.359 0.213 0.123
NEXUS 0.424* 0.276 0.198* 0.363* 0.220* 0.131*

Table 2: Results of BLEU score. It is computed based on the smooth BLEU algorithm (Lin and Och, 2004).
p-value interval is computed base on the altered bootstrap resampling algorithm (Riezler and Maxwell, 2005)

(2017); Shen et al. (2018), for each context, 10
more candidate references are acquired by using
information retrieval methods (see Appendix A.4
for more details). All candidates are then passed to
human annotators to filter unsuitable ones, result-
ing in 6.74 and 5.13 references for DailyDialog
and Twitter dataset respectively. The human an-
notation is costly, so we evaluate it on 1000 sam-
pled test cases for each dataset. As the BLEU
score is not the simple mean of individual sen-
tence scores, we compute the 95% significance in-
terval by bootstrap resampling (Koehn, 2004; Rie-
zler and Maxwell, 2005). As can be seen, NEXUS
network achieves best or near-best performances
with only greedy decoders. NEXUS-H gener-
ally outperforms NEXUS-F as the connection with
future context is not explicitly addressed by the
BLEU score metric. MMI and VHRED bring mi-
nor improvements over the seq2seq model. Even
when evaluated on multiple references, RL still
performs worse than most models.

Connecting the preceding We define two met-
rics to evaluate the model’s capability of “connect-
ing the preceding context”: AdverSuc and Neg-
PMI. AdverSuc measures the coherence of gener-
ated responses with the provided context by learn-
ing an adversarial discriminator (Li et al., 2017a)
on the same corpus to distinguish coherent re-
sponses from randomly sampled ones. We encode
the context and response separately with two dif-
ferent LSTM neural networks and output a binary
signal indicating coherent or not1. The Adver-

1We apply the same architecture as in Lu et al. (2017). In
our experiment, the discriminator performs reasonably well
in the 4 scenarios outlined in Li et al. (2017a) and thus can be
used as a fair evaluation metric.

Suc value is reported as the success rate that the
model fools the classifier into believing its false
generations (p(generated = coherent) > 0.5).
Neg-PMI measures the negative pointwise mutual
information value � log p(c|r)/p(c) between the
generated response r and the dialogue context c.
p(c|r) is estimated by training a separate back-
ward seq2seq model. As p(c) is a constant, we
ignore it and only report the value of � log p(c|r).
A good model should achieve a higher Adver-
Suc and a lower Neg-PMI. The results are listed
in Table 3. We can see there is still a big gap
between ground-truth and synthesized responses.
As expected, NEXUS-H leads to the most signifi-
cant improvement. MMI model also performs re-
markably well, but it requires post-reranking thus
the sampling process is much slower. VHRED
and NEXUS-F do not help much here, sometimes
even slightly degrade the performance. We also
tried removing the history context when comput-
ing the posterior distribution in VHRED, the re-
sulting model has similar performance among all
metrics, which suggests VHRED itself cannot ac-
tually learn the correlation pattern with the preced-
ing context. Surprisingly, though RL explicitly set
the coherence score as a reward function, its per-
formance is far from satisfying. We assume RL
requires much more data to learn the appropriate
policy than other models and the training process
suffers from a higher variance. The result is thus
hard to be guaranteed.

Connecting the following We measure the
model’s capability of “connecting the following
context” from two perspectives: number of the
simulated turns and diversity of generated re-
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Model AdverSuc Neg-PMI #Turns Distinct-1 Distinct-2 Pri Post Flu
Greedy 0.21|0.13 47.4|45.8 0.2|0.6 .019|.017 .096|.072 0.45 0.04 0.92
Beam 0.16|0.12 47.2|45.3 0.2|0.7 .026|.019 .103|.086 0.52 0.06 0.90
MMI 0.30|0.19 45.6|43.2 1.1|1.6 .042|.025 .247|.117 0.56 0.13 0.89
RL 0.13|0.11 45.0|42.6 2.3|2.3 .048|.033 .324|.287 0.46 0.15 0.69
VHRED 0.19|0.16 46.8|44.7 1.7|1.1 .255|.106 .431|.311 0.42 0.22 0.92
NEXUS-H 0.36|0.21 44.1|41.8 2.0|1.8 .263|.108 .454|.306 0.66 0.20 0.92
NEXUS-F 0.22|0.12 47.1|45.9 2.6|2.2 .288|.117 .466|.325 0.51 0.31 0.94
NEXUS 0.35|0.18 44.6|41.4 2.8|2.5 .282|.119 .470|.329 0.70 0.33 0.93
GROUND 0.87|0.73 40.5|38.1 4.8|4.0 .390|.215 .522|.495 0.92 0.67 0.97

Table 3: Coherence, diversity and human evaluations. Left: DailyDialog results, right: Twitter results

sponses. We apply all models to generate multi-
ple turns until a generic response is reached. The
set of generic responses is manually examined to
include all utterances providing only passive dull
replies2. The number of generated turns can re-
flect the time that a model can maintain an inter-
active conversation. The results are reflected in the
#Turns column in Table 3. As in (Li et al., 2016a),
we measure the diversity by the percentage of dis-
tinct unigrams (Distinct-1) and bigrams (Distinct-
2) in all generated responses. Intuitively a higher
score on these three metrics implies a more inter-
active generation system that can better connect
the future context. Again, NEXUS network dom-
inates most fields. NEXUS-F brings more impact
than NEXUS-H as it explicitly encourages more
interactive turns. Most seq2seq models fail to pro-
vide an informative response in the first turn. The
MMI-decoder does not change much, possibly be-
cause the sampling space is not large enough, a
more diverse sampling mechanism (Vijayakumar
et al., 2018) might help. NEXUS network can ef-
fectively continue the conversation for 2.8 turns
for DailyDialog and 2.5 turns for Twitter, which
is closest to the ground truth (4.8 and 4.0 turns
respectively). It also achieves the best diversity
score in both datasets. It is worth mentioning that
NEXUS-H also improves over baselines, though
not as significantly as NEXUS-F, so NEXUS is not
a trade-off but more like an enhanced version from
NEXUS-H and NEXUS-F.

In summary, NEXUS network clearly generates
higher-quality responses in both coherence and di-
versity, even in a rather small dataset like Daily-
Dialog. NEXUS-H contributes more to the coher-

2We use a simple rule matching method (see Appendix
A.5). We manually inspect it on a validation subset and find
the accuracy is more than 90%. Similar methods are adopted
in (Li et al., 2016c).

ence and NEXUS-F more to the diversity.

4.4 Human Evaluation

We also employed crowdsourced judges to pro-
vide evaluations for a random sample of 500 items
in the DailyDialog test dataset. Participants are
asked to assign a binary score to each context-
response pair from three perspectives: whether
the response coincides with its preceding context
(Pri), whether the response is interesting enough
for people to continue (Post) and whether the re-
sponse itself is a fluent natural sentence (Flu).
Each sample gets one point if judged as yes and
zero otherwise. Each pair is judged by three par-
ticipants and the score supported by most people
is adopted. We also evaluated the inter-annotator
consistency by Fleiss’k score(Fleiss, 1971) and
obtained k scores of 0.452 for Pri, 0.459 for Post
(moderate agreement) and 0.621 for Flu (sub-
stantial agreement), which implies most context-
response pairs reach a consensus on the evaluation
task. We compute the average human score for
each model. Unlike metric-based scores, the hu-
man evaluation is conducted only on the DailyDia-
log corpus as it contains less noise and can be more
fairly evaluated by human judges. Table 3 shows
the result in the last three columns. As can be seen,
the pri and post human scores are highly correlated
with the automatic evaluation metric “coherence”
and “#turns”, verifying the validity of these two
metrics. As for fluency, there is no significant dif-
ference among most models. As we also manu-
ally examined, fluency is not a major problem and
all models produce mostly well-formed sentences.
Overall, NEXUS network does produce responses
that are more acceptable to human judges.

Table 4 presents some randomly sampled
context-response pairs provided by MMI,
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Context Response
Hi , Alice , what are you
going to do this sunday ?

eou

MMI: Oh , that’ s great !
VHRED : Well , it seems that i’m going to be late .
RL : How long he it be ?
NEXUS: Nothing really , what ’ s up ?

Did you watch the Oscars
on Sunday night ? eou

MMI: I have no idea .
VHRED: That’s not too bad .
RL : It’s my mum’s birthday on Sunday .
NEXUS: No , nothing much. Could you help me ?

Let’s go for a drink !
eou

MMI: Thanks .
VHRED: all right . let me see you then .
RL : Thank you inviting me .
NEXUS: Sounds good . Where are we going ?

You won’t want to miss our
webinar tomorrow ! eou

MMI: lol !
VHRED: That ’ s terrific !
RL : Sure, where where ?
NEXUS: Thanks for your invitation! I’m free !

How I read the article ?
eou

MMI: there!!!
VHRED: What ’ s good with it ?
RL : : I dont know what to do with it !
NEXUS: Maybe the force is yourself !

Table 4: Examples of context-response pairs. eou denotes end-of-utterance. First three rows are from DailyDi-
alog and the last two rows are from Twitter

VHRED, RL and NEXUS model. We see
NEXUS network does generate more interactive
outputs than the other three. Though reranked by
the bidirectional language model, the MMI de-
coder still produces quite a few generic responses.
VHRED’s utterances are more diverse, but it only
cares about answering to the immediate query and
makes no efforts to bring about further topics.
Moreover, it also generates more inappropriate
responses than the others. RL provides diverse
responses but sometimes not fluent or coherent
enough. We do observe that NEXUS sometimes
generate over-complex questions which are not
very natural, as in the second example. But in
most cases, it outperforms the others.

5 Conclusion

In this paper, we propose “NEXUS Network”
to enable more interactive human-computer con-
versations. The main goal of our model is to
strengthen the “nexus” role of the current utter-
ance, connecting both the preceding and the fol-
lowing dialogue context. We compare our model
with MMI, reinforcement learning and CVAE-
based models. Experiments show that NEXUS
network consistently produces higher-quality re-

sponses. The model is easier to train, requires no
special tricks and demonstrates remarkable gener-
alization capability even in a very small dataset.

Our model can be considered as combining the
objective of MMI and CVAE and is compatible
with current improving techniques. For exam-
ple, mutual information can be maximized un-
der a tighter bound using Donsker-Varadhan or
f-divergence representation (Donsker and Varad-
han, 1983; Nowozin et al., 2016; Belghazi et al.,
2018). Extending the code space distribution to
more than Gaussian by importance weighted au-
toencoder (Burda et al., 2015), inverse autoregres-
sive flow (Kingma et al., 2016) or VamPrior (Tom-
czak and Welling, 2018) should also help with the
performance.
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Abstract

We propose a local coherence model that cap-
tures the flow of what semantically connects
adjacent sentences in a text. We represent
the semantics of a sentence by a vector and
capture its state at each word of the sen-
tence. We model what relates two adjacent
sentences based on the two most similar se-
mantic states, each of which is in one of the
sentences. We encode the perceived coherence
of a text by a vector, which represents patterns
of changes in salient information that relates
adjacent sentences. Our experiments demon-
strate that our approach is beneficial for two
downstream tasks: Readability assessment, in
which our model achieves new state-of-the-art
results; and essay scoring, in which the combi-
nation of our coherence vectors and other task-
dependent features significantly improves the
performance of a strong essay scorer.

1 Introduction

Coherence is a key factor that distinguishes
well-written texts from random collections of sen-
tences. A potential application of coherence mod-
els is text quality assessment. Examples include
readability assessment (Pitler and Nenkova, 2008;
Li and Hovy, 2014) and essay scoring (Miltsakaki
and Kukich, 2004; Burstein et al., 2010). Here,
we address the problem of local coherence model-
ing, which captures text relatedness at the level of
sentence-to-sentence transitions.

Several approaches to local coherence model-
ing have been proposed. Entity-based methods
principally relate adjacent sentences by means of
entities, which are mentioned as noun phrases,
NPs, in sentences (Barzilay and Lapata, 2008; El-
sner and Charniak, 2011; Guinaudeau and Strube,

⇤This author is currently employed by the Ubiquitous
Knowledge Processing (UKP) Lab, Technische Universität
Darmstadt, https://www.ukp.tu-darmstadt.de.

2013; Tien Nguyen and Joty, 2017). Lexical mod-
els connect sentences based on semantic relations
between words in sentences (Beigman Klebanov
and Shamir, 2006; Heilman et al., 2007; Mesgar
and Strube, 2016). Both of these approaches suf-
fer from different weaknesses. The entity-based
models require an entity detection system, a coref-
erence model, and a syntactic parser. These
subsystems need to be perfect to gain the best
performance of entity-based coherence models.
The weakness of the lexical models is that they
consider words independently, i.e. regardless of
context in that words appear. More concretely,
such lexical models take sentences as a bag of
words. Recent deep learning coherence work (Li
and Hovy, 2014; Li and Jurafsky, 2017) adopts
recursive and recurrent neural networks for com-
puting semantic vectors for sentences. Coherence
models that use recursive neural networks suffer
from a severe dependence on external resources,
e.g. a syntactic parser to construct their recursion
structure. Coherence models that purely rely on
the recurrent neural networks process words se-
quentially within a text. However, in such models,
long-distance dependencies between words can-
not be captured effectively due to the limits of the
memorization capability of recurrent networks.

Our motivation is to overcome these limitations.
We use the advantages of distributional represen-
tations in order to, first, identify and represent
salient semantic information that connects sen-
tences, and second, extract patterns of changes in
such information as a text progresses. By repre-
senting words of sentences with their pre-trained
embeddings, we take lexical semantic relations be-
tween words into account. We employ a Recur-
rent Neural Network (RNN) layer to combine in-
formation in word embeddings and actual context
information of words in sentences. Our model
encodes salient information that relates two adja-
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cent sentences based on the two most similar RNN
states in sentences. We accumulate two identified
RNN states to represent semantic information that
connects two adjacent sentences. We encode pat-
tern of semantic information changes across sen-
tences in a text by a convolutional neural network
to represent coherence. Our end-to-end coherence
model is superior to previous work because it re-
lates sentences based on two semantic information
states in sentences that are highly similar. So it
does not need extra tools such as coreference res-
olution systems. Furthermore, our model incorpo-
rates words in their sentence context and models
(roughly) distant relations between words.

We evaluate our model on two tasks: readabil-
ity assessment and essay scoring. Both have been
frequently used for coherence evaluation (Barzilay
and Lapata, 2008; Miltsakaki and Kukich, 2004).
Readability assessment is a ranking task where we
compare the rankings given by the model against
human judgments. Essay scoring is a regression
task, in which we investigate if the combination
of coherence vectors produced by our model and
other essay scoring features proposed by Phandi
et al. (2015) improves the performance of the es-
say scorer. The experimental results show that
our model achieves the state-of-the-art result for
readability assessment on the examined dataset
(De Clercq and Hoste, 2016); and the combination
of our coherence features with other essay scoring
features significantly improves the performance of
the examined essay scorer (Phandi et al., 2015).

2 Related Work

Early work on coherence captures different
types of relations: entity-based (Grosz et al.,
1995; Barzilay and Lapata, 2008), lexical-based
(Beigman Klebanov and Flor, 2013; Somasun-
daran et al., 2014; Zhang et al., 2015), etc. Among
these models, the entity-grid model (Barzilay and
Lapata, 2005, 2008) has received a lot of attention.
In this model, entities are defined, heuristically, by
applying a string match over head nouns of all NPs
in a text. The model, then, defines all possible
changes over syntactic roles of entities in adjacent
sentences as coherence patterns. The entity-grid
model has been extended both by expanding its en-
tity extraction phase (Elsner and Charniak, 2011;
Feng and Hirst, 2012) and by defining other types
of patterns (Lin et al., 2011; Louis and Nenkova,
2012; Ji and Eisenstein, 2014; Guinaudeau and

Strube, 2013). Recently, Tien Nguyen and Joty
(2017) fed entity grid representations of texts to
a convolutional neural network (CNN) in order
to overcome the limitation of predefined coher-
ence patterns and extract patterns automatically.
However, all of these models limit relations be-
tween sentences to entities that are shared by sen-
tences. This makes the performance of these mod-
els dependent on the performance of other tools
like coreference resolution systems and syntac-
tic parsers. Our coherence model, in contrast, is
based on relations between any embedded seman-
tic information in sentences, and does not require
entity annotations. A similar approach to ours is
proposed by Mesgar and Strube (2016). Their
approach encodes lexical relations between sen-
tences in a text via a graph. Sentences are en-
coded by nodes, and lexical semantic relations be-
tween sentences are represented by edges. Coher-
ence patterns are obtained by applying a subgraph
mining method to graph representations of all texts
in a corpus. This model involves words individ-
ually and independent of their sentence context.
Our model uses a RNN layer over words in sen-
tences to incorporate context information. Our ap-
proach for extracting coherence patterns also dif-
fers from this model as we employ CNNs rather
than graph mining. Li and Hovy (2014) model
sentences as vectors derived from RNNs and train
a feed-forward neural network that takes an input
window of sentence vectors and assigns a proba-
bility which represents the coherence of the sen-
tences in the window. Text coherence is evalu-
ated by sliding the window over sentences and ag-
gregating their coherence probabilities. Similarly,
Li and Jurafsky (2017) study the same model at
a larger scale and use a sequence-to-sequence ap-
proach in which the model is trained to generate
the next sentence given the current sentence and
vice versa. Our approach differs from these meth-
ods; we represent coherence by a vector of co-
herence patterns. Moreover, our model takes dis-
tant relations between words in a text into account
by relating two semantic states of sentences that
are highly similar. Lai and Tetreault (2018) com-
pare the performance of the aforementioned co-
herence models on texts from different domains.
They conclude that the neural coherence models,
which are explained above, surpass examined non-
neural coherence models such as the entity-based
models and the lexical-based model. Unlike their
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evaluation method, which predicts the coherence
level of a text, we rank two texts with respect to
their coherence levels for the readability assess-
ment task. We also show that integrating our co-
herence model into an essay scorer improves its
performance.

An important task for evaluating a coherence
model is readability assessment (Li and Hovy,
2014; Petersen et al., 2015; Todirascu et al., 2016).
The more coherent a text, the faster to read and
easier to understand it is. Early readability formu-
las were based on superficial text features such as
average word lengths (Kincaid et al., 1975). These
formulas systematically ignore many important
factors that affect readability such as discourse co-
herence (Barzilay and Lapata, 2008). Schwarm
and Ostendorf (2005) and Feng et al. (2010) re-
cast readability assessment as a ranking task, and
employ different semantic (e.g. language model
perplexity scores) and syntactic (e.g. the average
number of NPs) features to solve this task. Pitler
and Nenkova (2008) show that discourse coher-
ence features are more informative than other fea-
tures for ranking texts with respect to their read-
ability. Following the related work on coherence
modeling (Barzilay and Lapata, 2008; Mesgar and
Strube, 2015), we evaluate our coherence model
on this task.

Another popular task for evaluating coherence
models is essay scoring (Beigman Klebanov and
Flor, 2013; Somasundaran et al., 2014). Milt-
sakaki and Kukich (2004) employ an essay scoring
system to examine whether local coherence fea-
tures, as defined by a measure of Centering The-
ory’s Rough-Shift transitions (Grosz et al., 1995),
might be a significant contributor to the evaluation
of essays. They show that adding such features
to their essay scorer improves its performance sig-
nificantly. Burstein et al. (2010) specifically fo-
cus on the impact of entity transition features, as
proposed by the entity-grid model for coherence
modeling, on the essay scoring task. They demon-
strate that by combining these features with other
features related to grammar errors and word usage,
the performance of their automated essay scoring
system improves. Likewise, we combine our co-
herence vectors with other features that are used
by a strong essay scorer (Phandi et al., 2015) and
show that our coherence vectors improve the per-
formance of this system significantly.
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Figure 1: An illustration of our model. ek is word em-
beddings associated with the kth word in an input text.
hj

i depicts the jth hidden state in LSTM states of sen-
tence si. Two states in LSTM states of sentence si and
sentence si�1 that have the highest similarity are se-
lected to connect sentences. Vector ~fi captures infor-
mation about the salient topic that relates sentence si

to sentence si�1. d23 represents the similarity between
~f2 and ~f3 or the degree of continuity of the topic over
adjacent sentences. Different shades of gray show dif-
ferent degrees of similarity. The CNN encodes patterns
of changes as coherence vector ~p.

3 Coherence Model

In this section, we describe details of our model.
First, we explain how we encode words in their
context (Section 3.1). Then we show how we re-
late sentences (Section 3.2), and finally we explain
how we represent coherence based on sentence re-
lations (Section 3.3). A general formulation of our
model is a parametric function, ~p = L✓ (d), where
d is an input document, ✓ indicates parameters of
neural modules, and ~p is a vector representation
for the coherence of d. Figure 1 illustrates our
model.

3.1 Word and Context Representations

We use a lookup table to associate all words in the
vocabulary with word embeddings. The lookup ta-
ble is initialized by existing pre-trained word em-
beddings because they capture lexical semantic re-
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lations between words. For sentence si, the lookup
table returns matrix Ei whose rows are embed-
dings of words in si. A weakness of former lexi-
cal coherence models (Somasundaran et al., 2014;
Mesgar and Strube, 2016) is that they only rely
on semantic relations between words in sentences,
regardless of the current context of words. In or-
der to overcome this limitation, we use a standard
unidirectional1 RNN with Long Short-Term Mem-
ory (LSTM) cells to encode the current context of
words in sentences. For embedding matrix Ei:

Hi = LSTM
�
Ei, h

n�1
i�1

�
,

where Hi is a list of LSTM states, and hn�1
i�1 is

the last LSTM state of sentence si�1. Parameter n
is the number of words in a sentence. We take
state vector hj

i 2 Hi as a representation of its in-
put word embedding, ej , that is combined with its
preceding word vectors in sentence si. For sake
of brevity, the details of LSTM formulations are ex-
plained in Appendix A.

3.2 Sentence Relation Representations
The relation between sentences is encoded by the
most similar semantic states of sentences. Given
two adjacent sentences, two of their LSTM states
that have the highest similarity are selected to con-
nect them. Those LSTM states refer to the salient
semantic information that is shared between sen-
tences. To model this, we follow attention compo-
nents in neural language models (Bahdanau et al.,
2014; Vaswani et al., 2017) where the similarity
between the last LSTM state and each of its pre-
ceding states is computed to measure the amount
of attention that the model should give to its pre-
ceding context for generating the next word. More
formally, for two adjacent sentences si and si�1,
one LSTM state in Hi and one LSTM state in
Hi�1 that have the maximum similarity are se-
lected to represent the relation between the sen-
tences:

(~u,~v) = argmax
(~hm2Hi)

(~hn2Hi�1)

(sim(~hm,~hn)),

where Hi and Hi�1 are LSTM states correspond-
ing to sentences si and si�1. The similarity func-
tion, sim, returns the absolute value of the dot

1We use unidirectional RNN to model the way that an En-
glish text is read.

product between input vectors,

sim(~hm,~hn) = |~hm · ~hn|, (1)

where the function |.| computes the absolute value
of its input2. We use the dot product function be-
cause in practice it enables our model to calculate
the above equations efficiently in parallel and in
matrix-space, i.e., directly on Hi and Hi�1. Since
this is the details of implementation, we explain
matrix-based equations in Appendix B. The abso-
lute value in the similarity function is used to en-
code semantic relatedness between associated in-
formation with vectors, which is independent of
the sign of the similarity function (Manning and
Schütze, 1999).

We represent semantic information that relates
two adjacent sentences by accumulating its se-
lected LSTM states in the corresponding sen-
tences. Since averaging in the vector space is
an effective way to accumulate information rep-
resented in some vectors (Iyyer et al., 2015; Wiet-
ing et al., 2016), we compute the average of two
identified vectors among the LSTM states of two
adjacent sentences to represent semantic informa-
tion shared by the sentences. More concretely, the
vector representation of what relates sentence si to
its immediately preceding sentence is obtained by
averaging a vector of Hi and a vector of Hi�1 that
are identified as highly similar:

~fi = avg(~u,~v) =
~u + ~v

2
,

where ~u and ~v are selected vectors. ~fi is the vector
representation of what connects si to its immedi-
ately preceding sentence.

3.3 Coherence Representations
Since sentences in a coherent text are about sim-
ilar topics and share some semantic information,
we compute semantic similarity between adjacent
information states, i.e. ~fis, to capture how they are
changing through a text. We propose to encode
changes by a continuous value between 0 and 1,
where 1 shows that there is no change and 0 in-
dicates that there is a big semantic drift in a text.
Any value in between depicts how far a text is se-
mantically changing. Given two adjacent vectors
~fi and ~fi+1, the degree of continuity between them
is:

2In practice, the absolute function is implemented as
g(z) = max(0, z) � min(0, z) to be differentiable.
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d =
sim(~fi, ~fi+1)

l
,

where l is the length of input vectors, which is
used to prevent large numbers (Vaswani et al.,
2017), and sim is the similarity function (Sec-
tion 3.2). The task of this layer is to check if the
salient information that is shared by two adjacent
sentences is salient in the subsequent sentence or
not.

The last layer of our model is a convolutional
layer to automatically extract and represent pat-
terns of semantic changes in a text. CNNs have
proven useful for various NLP tasks (Collobert
et al., 2011; Kim, 2014; Kalchbrenner et al., 2014;
Cheng and Lapata, 2016) because of their effec-
tiveness in identifying patterns in their input (Xu
et al., 2015). In the case of coherence, the con-
volution layer can identify coherence patterns that
correlate with final tasks (Tien Nguyen and Joty,
2017). We use a temporal narrow convolution by
applying a kernel filter k of width h to a window
of h adjacent transitions over sentences to pro-
duce a new coherence feature. This filter is ap-
plied to each possible window of transitions in a
text to produce a feature map ~p, which is a coher-
ence vector. Since we use a standard convolution
layer, we explain details of the CNN formulations
in Appendix C.

3.4 Variants of Our Model
In our experiments, we consider two variants of
our model: CohLSTM that is the full version of
our model as described above; and CohEmb that
is an ablation. CohEmb has no RNN layer, so the
model is built directly on word embeddings. In
this model, relations between sentences are made
over only content words by eliminating all stop
words.

4 Implementation Details

Model configurations. Our model is imple-
mented in PyTorch3 with CUDA 8.0 support. In
preprocessing we apply zero-padding to all sen-
tences and documents to make their length equal.
The vocabulary is limited to the 4000 most fre-
quent words in the training data and all other
words are replaced with the unknown token. We
use the pre-trained word embeddings released
by Zou et al. (2013), which are employed by

3https://pytorch.org

state-of-the-art essay scoring systems. The dimen-
sions of word embeddings and LSTM cells are 50
and 300, respectively. The convolution layer uses
one filter with size 4. However, optimizing hyper-
parameters for each task may lead to better perfor-
mance. For selecting two vectors with the highest
similarity from the LSTM states of two adjacent
sentences, we capture the similarity between any
pair of LSTM states of the sentences as an element
in a vector, and then apply a max-pooling layer to
this vector of similarities to identify the pair with
maximally similar LSTM states. Selected LSTM
states are used for representing salient information
shared by the sentences. In CohEmb, stop words
are removed by the SMART English stop word list
(Salton, 1971).

Training setup. We set the mini-batch size to
32 and train the network for 100 epochs. At each
epoch we evaluate the model on the validation set
and select the one with the best performance for
test evaluations. We optimize with Adam, with an
initial learning rate of 0.01. Word vectors are up-
dated during training. The dropout method with
rate 0.5 is employed for regularization. Loss func-
tions are specifically defined for each task.

5 Experiments

We evaluate our model on two downstream tasks:
readability assessment (Section 5.1), in which co-
herence representations of documents are mapped
to coherence scores, and then documents are
ranked based on these scores; and essay scoring
(Section 5.2), in which the coherence representa-
tion of an essay is combined with other features for
essay scoring to quantify the quality of the essay.

5.1 Readability Assessment

Readability assessment – How difficult is a text to
read and understand? – depends on many factors
one of which is coherence. Texts that are more co-
herent are supposed to be faster to read and easier
to understand. Following earlier research on local
coherence (Barzilay and Lapata, 2008; Pitler and
Nenkova, 2008; Guinaudeau and Strube, 2013),
we evaluate our coherence model on this task by
ranking texts with respect to readability, instead of
predicting readability scores. More formally, we
approach readability assessment as follows: Given
a text-pair, which text is easier to read?
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Compared models. We compare the two vari-
ants of our model as described in Section 3.4 with
two following state-of-the-art systems:

Mesgar and Strube (2016). This is a
graph-based coherence model, in which nodes of
a graph indicate sentences of a text, and an edge
between two sentence nodes represents the exis-
tence of a lexico-semantic relation between two
words in the sentences. Semantic relations be-
tween words are measured by the absolute value
of the cosine function over their corresponding
pre-trained word embeddings. If the similarity
value for two word vectors is below a certain
threshold4 then the connection between these two
words is omitted. Given the graph representa-
tion of a text, its coherence is encoded as a vec-
tor whose elements are frequencies of different
subgraphs in the graph. The size of subgraphs
is defined by the number of their nodes and is
set to five. Subgraphs are extracted by a ran-
dom sampling approach. We choose this model
for comparison because its intuition is similar to
our model. However, this model suffers from the
following limitations: word embeddings are con-
sidered independently, not in their current context;
and a manual threshold is used for connection fil-
tering. We overcome these two weaknesses using
the RNN and CNN layers in our model, respec-
tively.

De Clercq and Hoste (2016). This is the
state-of-the-art readability system on the exam-
ined dataset. It uses a rich set of readability fea-
tures ranging from surface to semantic text fea-
tures. The ranking is performed by LibSVM in
their model. We report their best performance that
is achieved by extensive feature engineering and
SVM’s parameter optimization.

Experimental setup. In Section 3, we formu-
lated our model as ~p = L✓ (d) where ✓ repre-
sents parameters of the neural modules (i.e. the
CNN and RNN layers) in our model. For this task,
we use an output layer to map coherence vector ~p
to score s which quantifies the degree of the per-
ceived coherence of document d. Formally, the
output layer is sd = ~u · ~p + b where ~u and b are
the weight vector and bias, respectively. Let doc-
ument d be more readable than document d0, then
the model should ideally produce sd > s0

d. We
train the parameters of the model by a pairwise

4Like Mesgar and Strube (2016), we set this threshold to
0.9.

ranking approach and define the loss function as:

loss = max {0, 1 � sd + sd0} .

The parameters of the model are shared to obtain
the scores for texts in pair (d, d0).

Data. We use the readability dataset proposed
by De Clercq et al. (2014). It consists of 105
texts collected from the British National Corpus
and Wikipedia in four different genres: adminis-
trative (e.g. reports and surveys), informative (e.g.
articles of newspapers and Wikipedia entries), in-
structive (e.g. user manuals and guidelines), and
miscellaneous (e.g., very technical texts and chil-
dren’s literature). The average number of sen-
tences is about 12 per text. 10, 907 pairs of
texts are labeled with five fine-grained categories:
{�100, �50, 0, 50, 100} indicating that the first
text in a pair is respectively much easier, some-
what easier, equally difficult, somewhat difficult,
more difficult to read than the second text in the
pair. Labels of text-pairs are assigned by human
judges. Similar to De Clercq and Hoste (2016),
we evaluate on the positive and negative labels as
two sets of classes resulting in 6, 290 text-pairs in
total. The original readability dataset does not pro-
vide any standard training/validation/test sets. We
apply 5-fold cross-validation over this dataset.

Evaluation metric. The quality of a model is
measured in terms of accuracy, which is the frac-
tion of pairs that are correctly ranked by a model
divided by the total number of document-pairs.
We report the average accuracy over all runs of
cross-validation as the final result. We perform a
paired t-test to determine if improvements are sta-
tistically significant (p < .05).

Results. Table 1 summarizes the results of dif-
ferent systems for the readability assessment task.

Model Accuracy (%)
Mesgar and Strube (2016) 85.70⇤

CohEmb 92.17⇤

CohLSTM 97.77⇤

De Clercq and Hoste (2016) 96.88⇤

Table 1: Results on readability assessment. The first
system is the state-of-the-art coherence model on this
dataset. The last one is a full readability system. “⇤” in-
dicates statistically significant difference with the bold
result.

CohEmb significantly outperforms the
graph-based coherence model proposed by
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Mesgar and Strube (2016) by a large margin
(6%), showing that our model captures coherence
better than their model. In our model, the CNN
layer automatically learns which connections are
important to be considered for coherence patterns,
whereas this is performed in Mesgar and Strube
(2016) by defining a threshold for eliminating
connections.

CohLSTM significantly outperforms both the
coherence model proposed by Mesgar and Strube
(2016) and the CohEmb model by 11% and 5%,
respectively, and defines a new state-of-the-art on
this dataset. CohLSTM, unlike Mesgar and Strube
(2016)’s model and CohEmb, considers words of
sentences in their sentence context. This sup-
ports our intuition that actual context information
of words contributes to the perceived coherence of
texts.

CohLSTM, which captures exclusively local
coherence, even outperforms the readability sys-
tem proposed by De Clercq and Hoste (2016),
which relies on a wide range of lexical, syntactic
and semantic features.

5.2 Essay Scoring
One part of the student assessment process is es-
say writing where students are asked to write an
essay about a given topic known as a prompt. An
essay scoring system assigns an essay a score re-
flecting the quality of the essay. The quality of
an essay depends on various factors including co-
herence. Following previous studies (Miltsakaki
and Kukich, 2004; Lei et al., 2014; Somasundaran
et al., 2014; Zesch et al., 2015), we approach this
task by combining the coherence vector produced
by our model and the feature vector developed by
an open-source essay scorer to represent an essay
by a vector. The final vector representation of an
essay, ~x, is mapped to a score by a simple neural
regression method as follows:

s = sigmoid(~u · ~x + b),

where ~u and b are the weight vector and the bias,
respectively. We exactly define vector ~x for dif-
ferent examined systems, where we explain com-
pared models for essay scoring.

Compared models. We compare variations of
our model (Section 3.4) with the following mod-
els:

EASE (BLRR). As a baseline we use an
open-source essay scoring system, Enhanced AI

Scoring Engine5 (EASE) (Phandi et al., 2015).
This system was ranked third among all 154 par-
ticipating teams in the Automated Student As-
sessment Prize (ASAP) competition and is the
best among all open-source participating systems.
It employs Bayesian Linear Ridge Regression
(BLRR) as its regression method applied to a set
of linguistic features grouped in four categories:
(i) Frequency-based features: such as the number
of characters, the number of words, the number of
commas, etc; (ii) POS-based features: the number
of POS n-grams; (iii) Word overlap with prompt;
(iv) Bag of n-grams: the number of uni-grams and
bi-grams.

EASE. The difference between this system
and EASE (BLRR) is in the employed regression
method. This system uses a neural regression
method as described above. In order to have a
similar experimental settings for this task, here,
we use feature vectors generated by Phandi et al.
(2015) to train our neural regression system. The
input of the neural regression function is a nonlin-
ear transformation of the feature vector produced
by EASE, ~f . Therefore ~x = tanh(~w · ~f + b).

EASE & CohEmb. This model combines the
feature vector computed by EASE, ~f , and the co-
herence vector produced by CohEmb, ~p, to have
a more reliable representation of an essay. More
concretely, the input to our regression function, ~x,
is obtained as follows:

~h1 = tanh(~w1 · ~f + b1),

~h2 = ~h1 � ~p,

~x = tanh(~w2 · ~h2 + b2),

where � indicates the concatenation operatation.
EASE & CohLSTM. The structure of this

model is the same as the EASE & CohEmb struc-
ture. But the input coherence vector, ~p, is pro-
duced by CohLSTM.

Dong et al. (2017). It is a sentence-document
model, which is especially designed for this task.
It first encodes each sentence by a vector, which
represents whole sentence meanings, and then use
an RNN to embed vectors of sentences into a doc-
ument vector.

Experimental setup. The size of the input vec-
tor for the regression method, ~x, is fixed to 100 and
its output size is fixed to 1. Dimensions of other
parameters, ~w1 and ~w2, are set accordingly. The

5https://github.com/edx/ease

4334



loss function is the Mean Squared Error (MSE)
between human scores, ~H , and scores predicted
by our system, ~S:

MSE( ~H, ~S) =
1

N

X
( ~H � ~S)2.

The models are compared for each prompt by run-
ning 5-fold cross-validation (Dong et al., 2017).

Data. We apply our model to a dataset used in
the Automated Student Assessment Prize (ASAP)
competition run by Kaggle6. The essays are as-
sociated with scores given by humans and catego-
rized in eight prompts. Each prompt can be inter-
preted as a different essay topic along with differ-
ent genres. Table 2 summarizes some properties
of this dataset.

Prompt # Essays Genre Avg. Len.
1 1783 argumentative 350
2 1800 argumentative 350
3 1726 response 150
4 1772 response 150
5 1805 response 150
6 1800 response 150
7 1569 narrative 250
8 723 narrative 650

Table 2: Some properties of the dataset used for the
essay scoring experiment.

Evaluation metric. ASAP adopted Quadratic
Weighted Kappa (QWK) as the official evaluation
metric. This metric measures the agreement be-
tween scores predicted by a system and scores as-
signed by humans. QWK considers chance agree-
ments and penalizes large disagreements more
than small agreements. We use an implementation
of QWK that is described in Taghipour and Ng
(2016). The formulation of QWK are explained
in Appendix D. The final reported QWK is the av-
erage over QWKs of all prompts. We perform a
paired t-test to determine if improvements are sta-
tistically significant (p < .05).

Results. Table 3 shows the results of different
systems for the essay scoring task.

Both EASE & CohEmb, and
EASE & CohLSTM significantly improve EASE,
confirming that our proposed representation for
coherence is beneficial for essay scoring and

6https://www.kaggle.com/c/asap-aes/
data

improves the performance of the examined essay
scoring system. Our model does not beat the
state-of-the-art essay scoring system (Dong et al.,
2017), which is especially designed for this task
and is tuned on this dataset. This model learns a
vector representation for an input essay so that the
vector performs the best for this regression task.
In contrast, the core of our best performing essay
scoring system, i.e. EASE & CohLSTM, is the
feature vector generated by EASE, which has less
modeling capacity than a deep learning model
like the model proposed by Dong et al. (2017).
The reason that we combine our coherence model
with EASE, rather than the model proposed by
Dong et al. (2017), is that EASE has no notion of
coherence. By combining our coherence model
with it, we examine if our coherence vector
improves its performance or not.

Surprisingly, EASE & CohLSTM works on par
with EASE & CohEmb. To gain a better in-
sight, we ablate EASE feature vectors and com-
pare the performance of the coherence models,
i.e., CohLSTM, and CohEmb. Of course, coher-
ence vectors on their own are not sufficient for
predicting essay scores but this setup shows how
much each variant of our model contributes to this
task. The two last rows in Table 3 show the results.

CohLSTM outperforms CohEmb on all
prompts, which matches the results for readability
assessment. This confirms our intuition that
integrating the information of the current context
of words contributes to coherence measurement.

In terms of average QWK, CohLSTM works
similar to EASE; however they behave differently
on different prompts. The largest improvement for
CohLSTM, with respect to EASE, is obtained on
prompt 7 and 8. These two prompts ask for stories
about laughter and patience, so corresponding es-
says can be categorized in the narrative genre (see
Table 2). The guidelines of these two prompts,
which are publicly available in the Kaggle data,
ask human annotators to assign the highest score
to essays that are coherent and hold the attention of
readers through an essay. This is what our model
captures: the sequence of semantic changes in a
text, or coherence.

On prompt 5, in contrast, we see the largest de-
terioration in performance of CohLSTM in com-
parison to EASE. This prompt asks students to de-
scribe the mood created by the author of a mem-
oir. Essays are expected to contain specific infor-

4335



Model Prompts Avg QWK1 2 3 4 5 6 7 8
EASE (BLRR) 0.761 0.606 0.621 0.742 0.784 0.775 0.730 0.617 0.705⇤
Dong et al. (2017) 0.822 0.682 0.672 0.814 0.803 0.811 0.801 0.705 0.764⇤
EASE 0.702 0.572 0.620 0.731 0.752 0.758 0.648 0.530 0.664⇤
EASE & CohEmb 0.783 0.646 0.664 0.776 0.777 0.776 0.744 0.632 0.725⇤
EASE & CohLSTM 0.784 0.654 0.663 0.788 0.793 0.794 0.756 0.646 0.728⇤
CohEmb 0.625 0.523 0.501 0.570 0.581 0.578 0.661 0.472 0.564⇤
CohLSTM 0.669 0.634 0.591 0.710 0.639 0.716 0.729 0.641 0.666⇤

Table 3: Results on essay scoring. “⇤” shows significant improvements with respect to the underlined score
(p < .05). Bold numbers show the best results among different variants of our model.

mation from the memoir so that an essay with the
highest score has the highest coverage of all rel-
evant and specific information from the memoir.
Therefore, mentioning the details of the memoir
in essays of prompt 5 is more important than co-
herence for this prompt. This also shows that our
model exclusively captures the coherence of a text,
which is the goal of this paper.

6 Conclusions

We developed a local coherence model that en-
codes patterns of changes in what semantically
relates adjacent sentences. The main novelty of
our approach is that it defines sentence connec-
tions based on any semantic concept in sentences.
In this sense, our model goes beyond entity-based
coherence models, which need extra dependencies
such as coreference resolution systems. Moreover,
in contrast to lexical cohesion models, which take
words individually, our model encodes words in
their sentence context. Our model relates sen-
tences by means of distant relations between word
representations. The most similar LSTM states in
two adjacent sentences are selected to encode the
salient semantic concept that relates the sentences.
The model finally employs a convolutional layer
to extract and represent patterns of topic changes
across sentences in a text as a coherence vector.

We evaluate coherence vectors generated by our
model on the readability assessment and essay
scoring tasks. On the former, our model achieves
new state-of-the-art results. On the latter, it signif-
icantly improves the performance of a strong es-
say scorer. We believe the reason that our system
works is that it learns which semantic concepts of
sentences should be used to relate sentences, and
which information about concepts is required to
model sentence-to-sentence transitions. In future

work we intend to run qualitative experiments on
patterns that are extracted by our model to see if
they are also linguistically interpretable.
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Abstract
In this paper, we propose a novel deep at-
tentive sentence ordering network (referred as
ATTOrderNet) which integrates self-attention
mechanism with LSTMs in the encoding of in-
put sentences. It enables us to capture global
dependencies among sentences regardless of
their input order and obtains a reliable rep-
resentation of the sentence set. With this
representation, a pointer network is exploited
to generate an ordered sequence. The pro-
posed model is evaluated on Sentence Order-
ing and Order Discrimination tasks. The ex-
tensive experimental results demonstrate its
effectiveness and superiority to the state-of-
the-art methods.

1 Introduction

Modeling a coherent text is one of the key prob-
lems in natural language processing. A well-
organized text with a logical structure is much
easier for people to read and understand. Sen-
tence ordering task (Barzilay and Lapata, 2008)
has been proposed to cope with this problem. It
aims to organize a set of sentences into a coherent
text with a logically consistent order and has wide
applications in natural language generation such
as concept-to-text generation (Konstas and Lap-
ata, 2012a,b, 2013), retrieval-based question an-
swering (Yu et al., 2018; Verberne, 2011), and ex-
tractive multi-document summarization (Barzilay
and Elhadad, 2002; Galanis et al., 2012; Nallap-
ati et al., 2017), where the improper ordering of
sentences would introduce ambiguity and degrade
readability. An example of this task is shown in
Table 1.

Traditional methods developed for this task em-
ploy handcrafted linguistic features to model the
document structure such as Entity Grid (Barzi-
lay and Lapata, 2008), Content Model (Barzilay

⇤Corresponding author

A set of sentences An ordered text

4 Finally, the parser is evaluated. 1 We develop a useful parser.

1 We develop a useful parser. 2 We first describe the older one.

3 Then we present our parser. 3 Then we present our parser.

2 We first describe the older one. 4 Finally, the parser is evaluated.

Table 1: An example to illustrate the sentence ordering
task. The set of sentences is confusing in its current
order. We aim to reorganize them with a more coherent
order.

and Lee, 2004), and Probabilistic Model (Lap-
ata, 2003). However, manual feature engineer-
ing heavily relies on linguistic knowledge and
also limits these systems to be domain specific.
Inspired by the success of deep learning, data-
driven approaches based on neural networks have
been proposed including Pairwise Ranking Model
(Chen et al., 2016) which learns the relative order
of sentence pairs to predict the pairwise ordering
of sentences, and Window network (Li and Hovy,
2014) sliding a window over the text to evaluate
the coherence.

Recently, hierarchical RNN-based approaches
(Gong et al., 2016; Logeswaran et al., 2018) have
been proposed to deal with this task. Such meth-
ods exploit LSTMs based paragraph encoder to
compute a context representation for the whole se-
quential sentences and then adopt a pointer net-
work (Vinyals et al., 2015) as the decoder to pre-
dict their order. However, since LSTM works
sequentially, paragraph encoder only based on
LSTMs suffers from the incorrect input sentence
order and has difficulty in capturing a logically re-
liable representation through the recurrent connec-
tions, which makes trouble for the decoder to find
the correct order.

To overcome the above limitation, in this work,
we develop a novel deep attentive sentence order-
ing network (referred as ATTOrderNet) by inte-

4340



Figure 1: Architecture of deep attentive Sentence Or-
dering Network.

grating self-attention mechanism (Vaswani et al.,
2017) with LSTMs to learn a relatively reliable
paragraph representation for subsequent sentence
ordering. In particular, the bidirectional LSTM is
first adopted as a sentence encoder to map the in-
put sentences to the corresponding distributed vec-
tors, and then a self-attention based paragraph en-
coder is introduced to capture structural relation-
ships across sentences and to obtain a hierarchi-
cal context representation of the entire set of sen-
tences. Consequently, based on the learned para-
graph vector, a pointer network is applied to per-
form sentence ordering by decoding an ordered se-
quence. Figure 1 shows the architecture of AT-
TOrderNet, where self-attention mechanism is in-
troduced to capture the dependencies among sen-
tences.

In contrast to the previous paragraph encoders
with LSTMs, self-attention mechanism is less sen-
sitive to the input order of sentence sequence and
is effective in modeling the accurate relationships
across sentences, which reduces the influence of
the original order of the input sentences and per-
fectly meets the requirement of our task. Further,
unlike Transformer (Vaswani et al., 2017), we do
not add any positional encodings in our model to
minimize the influence of the unclear order infor-
mation.

Extensive evaluations are conducted on the sen-
tence ordering task and order discrimination task
to investigate the performances of ATTOrderNet.
The experimental results on seven public sentence
ordering datasets show the superior performances
of the framework to the competing models. Mean-
while, the visualization of the attention layer in

paragraph encoder is provided for better under-
standing of the effectivity of self-attention mecha-
nism. Besides, in the Order Discrimination task,
our model also achieves the state-of-the-art per-
formance with remarkable improvements on two
benchmark datasets.

2 Deep Attentive Sentence Ordering
Network

In this section, we first formulate the sentence
ordering problem and then describe the pro-
posed model ATTOrderNet, which is based on
the encoder-decoder architecture applying self-
attention mechanism as paragraph encoder and a
pointer network as the decoder. This combination
effectively captures the intrinsic relations across a
set of sentences with the desirable property of be-
ing invariant to the sentence order, which directly
helps address the difficulty of this task.

2.1 Problem formulation
The sentence ordering task aims to order a set of
sentences as a coherent text. Specifically, a set
of n sentences with the order o = [o1, o2, · · · , on]
can be described as s = [so1, so2, · · · , son ]. The
goal is to find the correct order o⇤ for them, o⇤ =
[o⇤1, o⇤2, · · · , o⇤n], with which the whole sentences
have the highest coherence probability:

P(o⇤ |s) > P(o|s), 8o 2  (1)

where o indicates any order of these sentences and
 denotes the set of all possible orders. For in-
stance, in Table 1, the current order o is [4, 1, 3, 2]
and o⇤ = [1, 2, 3, 4] is the correct order for these
sentences.

2.2 Intuition and Model architecture
Given a set of sentences, the existing hierarchical
RNN-based models first transform each sentence
into a distributed vector with a sentence encoder
and then these sentence embeddings are fed to a
LSTMs-based paragraph encoder. Consequently,
based on the learned paragraph vector, a pointer
network is exploited to decode the order of the in-
put sentences. However, since LSTM works se-
quentially while the order of these sentences is un-
known and quite possibly wrong in this problem,
LSTMs-based paragraph encoder has difficulty in
capturing a convincing representation through the
recurrent connections, which influences the per-
formance of sentence ordering.
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In this paper, we use self-attention mechanism
for paragraph encoder instead. In particular, we
employ this mechanism without encoding any po-
sitional information of the sentences. Ignoring
the current order of the sentences, self-attention
based paragraph encoder perfectly meets the re-
quirement of the sentence ordering task and learns
a logically reliable representation of the whole
paragraph by globally capturing the relationships
across sentences. With this learned representation
vector, a decoder is then designed to generate a
coherent order assignment for the input sentences.

In the following, we elaborate on the main
building blocks of our ATTOrderNet in details:
a sentence encoder, a self-attention mechanism
based paragraph encoder, and a decoder.

2.3 Sentence Encoder
For a sentence, we first apply word embedding
matrix to translate the raw words in the sentence
into distributional representations, and then adopt
bidirectional LSTMs to learn a sentence-level rep-
resentation for summarizing its high level seman-
tic concepts.

Specifically, assume that a sentence soi contain-
ing nw raw words as soi = [w1, · · · ,wnw ], these
words are transformed to dense vectors through
a word embedding matrix We: xt = Wewt , t 2
[1, nw]. The sequence of vectors [x1, · · · , xnw ] is
then fed into bidirectional LSTMs sequentially to
compute a semantic representation of the sentence.

Long Short-term Memory networks (LSTMs)
(Hochreiter and Schmidhuber, 1997) is capable
of learning long-term dependencies and alleviat-
ing the problems of gradient vanishment and ex-
ploding. Here, we adopt bidirectional LSTMs
(Bi-LSTMs) to take full advantages of additional
backward information and enhance the memory
capability. In particular, the Bi-LSTMs contain
the forward LSTMs which process the sentence
soi from w1 to wnw and backward LSTMs which
read soi in the reversed direction:

�!h t,
�!c t = LSTM(�!h t�1,

�!c t�1, xt)
 �h t,
 �c t = LSTM( �h t+1,

 �c t+1, xt)

ht = [�!h t,
 �h t ]

(2)

where ht denotes the representation of position
t by concatenating the forward hidden state

�!h t

and backward hidden state
 �h t together. The out-

put of the last hidden state of the Bi-LSTMs is

taken to be the sentence representation vector as
soi = hnw , which incorporates the contextual in-
formation from both directions in the sentence.

So far, we have obtained a syntactic and seman-
tic representation for a single sentence. In the fol-
lowing, a self-attention based paragraph encoder is
proposed to obtain a high level representation for
all given sentences by capturing sequential struc-
tures and logical relationships among them.

2.4 Paragraph Encoder

2.4.1 Self-attention mechanism

We start by introducing the scaled dot-product at-
tention, which is the foundation of self-attention
mechanism used in ATTOrderNet. Given a matrix
of n query vectors Q 2 Rn⇥d, keys K 2 Rn⇥d, and
values V 2 Rn⇥d, the scaled dot-product attention
computes the output matrix as:

Attention(Q,K,V) = softmax(QKT
p

d
)V (3)

The multi-head attention with h parallel heads
is employed, where each head is an independent
scaled dot-product attention. The mathematical
formulation is shown below:

Mi = Attention(QWQ
i ,KWK

i ,VWV
i ) (4)

MH(Q,K,V) = Concat(M1, · · · ,Mh)W (5)

where WQ
i ,W

K
i ,W

V
i 2 Rd⇥da with da = d/h are

the projection matrices for the i-th head and W 2
Rhda⇥d.

Self-attention (Vaswani et al., 2017; Tan et al.,
2017; Shen et al., 2017) is a special case of
attention mechanism that only requires a sin-
gle sequence to compute its representation where
queries, keys, and values are all from the same
place.

2.4.2 Self-attention based Paragraph
Encoder

The paragraph encoder is composed of multiple
self-attention layers followed by an average pool-
ing layer.

Sentence vectors encoded by the sentence en-
coder are first packed together into a paragraph
matrix S = [so1, so2, · · · , son ] as E0. This para-
graph matrix S 2 Rn⇥d is then fed forward to
L self-attention layers, where each layer learns a
representation El+1 = U(El) by taking the output
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from the previous layer l:

U(El) = �(FN(D(El)),D(El)) (6)
D(El) = �(MH(El,El,El),El) (7)
�(v,w) = LayerNorm(v + w) (8)

FN(x) = ReLU(xWl
1 + bl

1)Wl
2 + bl

2 (9)

where�(·) performs layer normalization (Ba et al.,
2016) on the residual output to preserve the auto-
regressive property, and FN(·) represents the fully
connected feed-forward networks which consists
of two linear layers with ReLU nonlinearity in the
middle. Wl

1 2 Rd⇥d f , bl
1 2 Rd f ,Wl

2 2 Rd f ⇥d, and
bl

2 2 Rd are trainable parameters. We set df =

1024 in all our experiments.
Self-attention mechanism adopted in the para-

graph encoder directly relate sentences at different
positions from the text by computing the attention
score (relevance) between each pair of sentences.
This allows each sentence to build links with all
other sentences in the text, which enables the en-
coder to exploit latent dependency relationships
among sentences without regarding to their input
order. Then, attention mechanism uses weighted
sum operation to establish a higher level repre-
sentation for the entire sentence set. As we see,
there is no order information used in the encoding
process which prevents the model from being af-
fected by the incorrect sentence order. Therefore,
self-attention based paragraph encoder is efficient
in modeling of dependencies while being invariant
to the sentence order.

The final paragraph representation v is obtained
in the average pooling layer by averaging the out-
put matrix EL 2 Rn⇥d from the last self-attention
layer: v = 1

n

Õn
i=1 eLi , where n is the number of

sentences and eLi denotes the i-th row in EL . This
learned representation vector can be viewed as a
hierarchical encoding of the entire set of sentences
which will then be used as the input of the decoder
to perform sentence ordering.

2.5 Decoder
The aim of decoder is to predict a consistent order
for the input set of sentences.

Following the previous approaches (Gong et al.,
2016; Logeswaran et al., 2018), the coherence
probability of given sentences s with the order o
is formalized as:

P(o|s) =
n÷
i=1

P(oi |oi�1, · · · , o1, s) (10)

The higher the probability, the more coherent sen-
tences assignment is.

To calculate P(o|s), we employ the pointer net-
work architecture (Vinyals et al., 2015) as our de-
coder which consists of LSTMs cells (Equation
11-13). The LSTM takes the embedding of the
previous sentence as the input to decoder step.
During training, the correct order of sentences o⇤
is known, so the input sequence [x1, x2, · · · , xn] =
[so⇤1, so⇤2, · · · , so⇤n ]. For step i, the input to the de-
coder is xi�1 = so⇤i�1

. At test time, the predicted
sentence assignment sôi�1 is used instead.

The initial state of the decoder LSTM is initial-
ized with the final paragraph vector from the en-
coder: h0 = vT . And the input at the first step in
decoder x0 2 Rd is a vector of zeros. The mathe-
matical formulation for the i-th step in decoder is
as follows:

hi, ci = LSTM(hi�1, ci�1, xi�1) (11)
ui
j = gT tanh(W1so j +W2hi) (12)

P(oi |oi�1, · · · , o1, s) = softmax(ui) (13)

where g 2 Rd, W1 2 Rd⇥d, and W2 2 Rd⇥d
are learnable parameters and j 2 (1, · · · , n). The
softmax function normalizes the vector ui 2 Rn
to produce an output distribution over all input
sentences. And P(oi |oi�1, · · · , o1, s) can be inter-
preted as the coherence probability for the cur-
rent output sequence when soi being the sentence
choice at position i conditioned on the previous
sentences assignment.
Order Prediction: The predicted order ô =

[ô1, ô2, · · · , ôn] is the one with the highest coher-
ence probability:

ô = argmax
o

P(o|s) (14)

In this work, we use beam search strategy to find
a sub optimal result.

2.6 Training

For each ordered document, we use one random
permutation of sentences as the input sample at
each epoch during the training and testing process.
Assume that there are K documents in the training
set. We define (qj, yj)Kj=1, where yj is in the cor-
rect order o⇤ of original document j and qj denotes
the set of sentences with a specific permutation of
yj . P(yj |qj) = P(o⇤ |s = qj) can be interpreted as
the probability that sentences are assigned in the
correct order when given sentences qj .
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Dataset Length statistics Data split Vocabulary
min mean max train valid test

Accident 6 11.5 19 100 - 100 4501
Earthquake 3 10.4 32 100 - 99 3022
NIPS abstract 2 6 15 2248 409 402 16721
AAN abstract 1 5 20 8569 962 2626 34485
NSF abstract 2 8.9 40 96070 10185 21580 334090
arXiv abstract 2 5.38 35 884912 110614 110615 64557
SIND caption 5 5 5 40155 4990 5055 30861

Table 2: Statistics of seven datasets used in our experiments.

We aim to train the overall model to maximize
this probability by minimizing the loss function:

L = � 1
K

K’
j=1

log P(yj |qj ; ✓) +
�

2
| |✓ | |22 (15)

where ✓ represents all trainable parameters in the
networks and � is a regularization parameter.

3 Experiments

3.1 Datasets
Accident, Earthquake: two datasets obtained
from (Barzilay and Lapata, 2008). The first one
is a collection of aviation accident reports from
the National Transportation Safety Board and the
second one comprises Associated Press articles re-
lated to earthquake. Since the original datasets
do not provide validation samples, we follow the
setup in (Louis and Nenkova, 2012; Li and Hovy,
2014) and use 10-fold cross validation on the train-
ing data.
NIPS abstract, AAN abstract, NSF abstract:
these three datasets are from (Logeswaran et al.,
2018) containing abstracts from NIPS papers,
ACL papers, and the NSF Research Award Ab-
stracts dataset respectively.
arXiv abstract, SIND caption: we further con-
sider two datasets used in (Gong et al., 2016). The
former consists of abstracts from papers on arXiv
website (Chen et al., 2016) and the other contains
captions from SIND dataset (Huang et al., 2016).

Further statistics about seven datasets are illus-
trated in Table 2.

3.2 Training setup
We use pre-trained 100 dimensional GloVe word
embeddings (Pennington et al., 2014). And all
the out-of-vocabulary words are replaced with
<UNK>, whose embeddings are updated during
training process. The nltk sentence tokenizer is

used for word tokenization.1 Parameter optimiza-
tion is performed using stochastic gradient de-
scent. We adopt Adadelta (Zeiler, 2012) as the op-
timizer with ✏ = 106 and ⇢ = 0.95. The learning
rate is initialized to 1.0, the batch size is 16, and
the beam size is set to 64. The hidden layer size
of LSTMs in sentence encoder is 256, and is 512
in the decoder. The number of attention layers in
the paragraph encoder is 6 for AAN abstract, 4 for
NSF abstract and arXiv abstract, and 2 for the rest
of datasets. We employ 8 parallel heads through-
out all self-attention layers and use L2 weight de-
cay on the trainable variables with regularization
parameter � = 10�5. The model is implemented
with TensorFlow2. Hyperparameters are chosen
using the validation set.

3.3 Sentence Ordering
We first evaluate our model on the sentence or-
dering task, as proposed by Barzilay and Lapata
(2008). Given a set of permuted sentences, our
goal is to return the original order for them which
is considered to be the most coherent.

3.3.1 Baselines
We compare ATTOrderNet against a random base-
line and all the competing models. These baseline
methods can be categorized into three classes and
results are reported in (Soricut and Marcu, 2006;
Gong et al., 2016; Logeswaran et al., 2018).
(1) Traditional approaches: Probabilistic Model
(Lapata, 2003); Content Model (Barzilay and Lee,
2004); Utility-Trained model (Soricut and Marcu,
2006); Entity Grid (Barzilay and Lapata, 2008).
These four methods employ handcrafted features
in modeling the document structure.
(2) Data-driven methods: Window network (Li
and Hovy, 2014); Seq2seq (Li and Jurafsky,

1NLTK implementation: http://www.nltk.org/
2https://www.tensorflow.org/
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Models Accident Earthquake NIPS abstract AAN abstract NSF abstract arXiv abstract SIND caption
⌧ ⌧ Acc ⌧ Acc ⌧ Acc ⌧ PMR ⌧ PMR ⌧

Random 0 0 15.59 0 19.36 0 9.46 0 8.07 0 6.05 0
Probabilistic Model 0.07 0.48 - - - - - - - - - -
Content Model 0.44 0.81 - - - - - - - - - -
Utility-Train Model 0.50 0.47 - - - - - - - - - -
Entity Grid 0.12 0.19 20.10 0.09 21.82 0.10 - - - - - -
Seq2seq - - 27.18 0.27 36.62 0.40 13.68 0.10 - - - -
Window network - - 41.76 0.59 50.87 0.65 18.67 0.28 - - - -
Pairwise Ranking Model - - - - - - - - 33.43 0.66 - -
RNN Decoder - - 48.22 0.67 52.06 0.66 25.79 0.48 - - - -
Varient-LSTM+PtrNet - - 51.55 0.72 58.06 0.73 28.33 0.51 - - - -
CNN+PtrNet 0.58 0.84 48.64 0.66 58.21 0.69 33.22 0.52 39.28 0.71 12.32 0.48
LSTM+PtrNet 0.58 0.85 50.87 0.67 58.20 0.69 32.45 0.52 40.44 0.72 12.34 0.48
ATTOrderNet (ATT) 0.59 0.87 52.17 0.71 60.95 0.70 37.07 0.52 41.03 0.72 12.77 0.48
ATTOrderNet (CNN) 0.61 0.89 54.69 0.72 62.97 0.72 37.59 0.54 42.09 0.73 13.95 0.49
ATTOrderNet 0.64 0.92 56.09 0.72 63.24 0.73 37.72 0.55 42.19 0.73 14.01 0.49

Table 3: Experimental results for different methods on the Sentence Ordering task.

2017); Pairwise Ranking Model (Chen et al.,
2016). These three approaches capture the local
coherence of text based on the neural networks.
(3) Hierarchical RNN-based models: Varient-
LSTM+PtrNet, RNN Decoder (Logeswaran et al.,
2018); CNN+PtrNet, LSTM+PtrNet (Gong et al.,
2016). These architectures adopt RNN based ap-
proaches to obtain the representation for the input
set of sentences and employ the pointer network
as the decoder to predict order. The main differ-
ence between ATTOrderNet and these models lies
in the design of paragraph encoder.

For thorough comparison, besides the models
proposed in the existing literature, we further im-
plement two variants of ATTOrderNet.
ATTOrderNet (ATT): The sentence encoder in
this model is also entirely based on self-attention
mechanism with 4 self-attention layers and 5
heads. Different from the paragraph encoder, the
positional encoding method proposed by Vaswani
et al. (2017) is applied here to encode temporal in-
formation of each input word.
ATTOrderNet (CNN): This model employs con-
volutional neural networks to model sentences. In
experiment, the number of feature maps is set to
512 and the width of convolution filter is 4.

3.3.2 Evaluation Metrics
To provide assessments on the quality of the order-
ings we predict in this task, we use the following
three metrics:
Kendall’s tau (⌧): Kendall’s tau is one of the most

frequently used metrics for the automatic evalu-
ation of document coherence (Lapata, 2003; Lo-
geswaran et al., 2018; Li and Jurafsky, 2017). It
could be formalized as: ⌧ = 1 � 2⇥ (number of
inversions) /

�n
2
�
, where n is the length of the se-

quence and the number of inversions denotes the
number of pairs in the predicted sequence with in-
correct relative order. This metric ranges from -1
(the worst) to 1 (the best).
Accuracy (Acc): We follow (Logeswaran et al.,
2018) in employing Accuracy to measure how of-
ten the absolute position of a sentence was cor-
rectly predicted. Compared to ⌧, it penalizes cor-
rectly predicted subsequences that are shifted.
Perfect Match Ratio (PMR): Perfect match ra-
tio (Gong et al., 2016) is the most stringent mea-
surement in this task. It calculates the radio of ex-
actly matching orders: PMR= 1

K

ÕK
i=1 1(boi = oi⇤),

where boi and oi⇤ are predicted and correct orders
of the i-th text respectively.

3.3.3 Results
The experimental results on all datasets are re-
ported in Table 3. Results show that ATTOrderNet
gives the best performance across most datasets
and under most evaluation measurements.

The improvement is regardless of data sizes.
In particular, for smaller datasets such as Acci-
dent and Earthquake datasets, ATTOrderNet out-
performs the previous best baseline methods by
6% and 7% tau score respectively. As for medium
size datasets including NIPS abstract and AAN
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abstract, ATTOrderNet shows absolute improve-
ments of 4.54% and 5.03% accuracy score over
the previous state-of-the-art. Such finding is con-
sistent across larger datasets. ATTOrderNet out-
performs the previous state-of-the-art systems by
4.50% accuracy score with 3% tau score on NSF
abstract, 1.75% PMR score with 1% tau score on
arXiv abstract, and 1.67% PMR score with 1% tau
score on SIND caption. Interestingly, ATTOrder-
Net reaches 42.19% PMR score on arXiv abstract,
which means that more than 2/5 texts in the test
set can be ordered exactly right. This performance
clearly demonstrates the adaptability and flexibil-
ity of the proposed model.

As shown in Table 3, ATTOrderNet performs
much better than data-driven methods by a sig-
nificant margin on all corresponding datasets. It
proves the importance of exploiting the context by
self-attention mechanism as these competing mod-
els only consider the local coherence in the text.
Among the traditional ordering approaches, Con-
tent Model (Barzilay and Lee, 2004) representing
topics as states and capturing possible orderings
for global coherence performs better than other
methods with the tau score of 0.81 on Earthquake
dataset, which also demonstrates that global con-
text is important to sentence ordering. However,
Content Model requires manual feature engineer-
ing that costs great human efforts. In contrast,
the self-attention mechanism used in ATTOrder-
Net directly captures the global dependences for
the whole text while requiring no linguistic knowl-
edge anymore and enables ATTOrderNet to fur-
ther improve tau score to 0.92 on the same dataset.

In addition, hierarchical RNN-based models
capture the global coherence among sentences
with LSTMs and outperform the traditional meth-
ods and data-driven approaches in most cases.
However, these models still suffer from the per-
mutation of sentences within the document since
LSTM works sequentially. ATTOrderNet achieves
superior performances to them by adopting the
self-attention mechanism to reduce the influence
of the permutation of sentences.

Further, ATTOrderNet (CNN) has better per-
formances than ATTOrderNet (ATT) on most of
the datasets. We conjecture that this is due to
the limitation of data size. Since ATTOrderNet
(ATT) applies self-attention mechanism in both
sentence and paragraph encoders requiring more
data to train the model, however the size of the

Models arXiv abstract SIND caption

head tail head tail

Random 23.06 23.16 22.78 22.56

Pairwise Ranking Model 84.85 62.37 - -

CNN+PtrNet 89.43 65.36 73.53 53.26

LSTM+PtrNet 90.47 66.49 74.66 53.30

ATTOrderNet (ATT) 89.68 65.75 75.88 54.30

ATTOrderNet (CNN) 90.86 67.85 75.95 54.37

ATTOrderNet 91.00 68.08 76.00 54.42

Table 4: The performance of correctly predicting the
first and the last sentences on arXiv abstract and SIND
caption datasets.

datasets used in this task is smaller than those in
other tasks such as document classification (Yang
et al., 2016). Given larger datasets in the future,
we believe ATTOrderNet (ATT) would perform
much better. Among three sentence encoders, AT-
TOrderNet presents a superior performance across
the board. This indicates that LSTM is more effi-
cient in learning semantic representation for sen-
tence level in this task. ATTOrderNet becomes
more competitive through combining both advan-
tages of LSTMs and self-attention mechanism.

Since the first and the last sentences of the text
are more special to discern (Chen et al., 2016;
Gong et al., 2016), we also evaluate the ratio of
correctly predicting the first and the last sentences.
Table 4 summarizes our performances on arXiv
abstract and SIND caption. As we see, all models
show fair well in predicting the first sentence, and
the prediction accuracy declines for the last one.
It is observed that ATTOrderNet still achieves a
boost in predicting two positions compared to the
previous state-of-the-art system on both datasets.

3.3.4 Visualization of attention
The aim of this section is to visualize the relation-
ship between sentences captured by self-attention
mechanism and understand how it helps perform
the sentence ordering task. A technique for vi-
sualizing attention mechanism in neural networks
is proposed by Vaswani et al. (2017) 3. Inspired
by this work, we select a text from AAN abstract
dataset to visualize the hierarchical attention layer
from the paragraph encoder of ATTOrderNet in
Figure 2. Different from visualizing the depen-
dencies of one word with the other words in the
sentence (Vaswani et al., 2017), our visualization

3https://github.com/tensorflow/tensor2tensor
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Figure 2: An example of the attention mechanism describing sentence dependencies in the encoder self-attention
in layer 5 of 6 for the text from AAN abstract. Four attention heads attend to a dependency of the selected sentence
“Temporal variations of text are ...”, providing important clues for the correct order prediction. Attention here
shown is only for this sentence. Different color indicate different heads. Best viewed in color.

shows the dependencies between each sentence
and all other sentences in the text.

For the example in Figure 2, the left text is the
input sample to our model which contains a set
of permuted sentences with the correct order be-
sides it. The right side is a copy of the input text,
which is presented for showing the relevance be-
tween each pair of sentences more clearly. The
line with grey color on the right text is an example
sentence chosen to visualize the attention weights
with other sentences. On the top of the text are
8 colored squares representing 8 different atten-
tion heads used in the paragraph encoder. Colored
columns on the left text show the performance of
their corresponding heads. The darkness of the
color in column denotes the normalized distribu-
tion of the attention weight for the example sen-
tence in the head. Sentences in darker shades show
more attention weight which reflects stronger links
they have with the example sentence.

In particular, Figure 2 shows the attention dis-
tribution for the first sentence in the original doc-
ument. We present the weight distribution in
four heads as an instance. It is interesting to see
that all of them showing significant higher atten-
tion weights on the true second sentence “How-
ever, text use changes ...” than other sentences in
the text. This indicates that these heads are able
to learn the latent dependency relationships from
sentences and can successfully distinguish which
one is the true next following among all sentence
candidates. These heads build much stronger links
between this sentence with the chosen one in order
to keep structural information for higher level rep-
resentation, such as paragraph representation.

3.4 Order Discrimination
In this section, we assess ATTOrderNet on an-
other common evaluation task which is usually

adopted in the existing literature: order discrim-
ination task.

Order discrimination (Barzilay and Lapata,
2008; Elsner and Charniak, 2011, 2008) aims to
compare a document to a randomly permuted ver-
sion of it. Models are evaluated with Pairwise Ac-
curacy: the ratio of correctly identifying the orig-
inal document with higher coherence probability
(defined in Equation 10) than the probability of its
permutation.

Among seven datasets mentioned above, we
use two of them to assess the performance of
ATTOrderNet on the order discrimination task:
Accident and Earthquake datasets. These two
have been widely used for this task in the pre-
vious literature (Li and Hovy, 2014; Logeswaran
et al., 2018). This gives us the convenience of di-
rectly comparing the result of the proposed model
against the reported results. Following the setup
in (Barzilay and Lapata, 2008), a maximum of
20 random permutations were generated for each
training and testing article to create the pairwise
data. There are 1986 and 1956 test pairs in Acci-
dent and Earthquake datasets respectively.

3.4.1 Baselines
To demonstrate that ATTOrderNet truly improves
the order discrimination performance, we com-
pare ATTOrderNet with the following representa-
tive models: Graph from (Guinaudeau and Strube,
2013), HMM and HMM+Entity from (Louis and
Nenkova, 2012), Entity Grid from (Barzilay and
Lapata, 2008), Recurrent and Recursive from
(Li and Hovy, 2014), Discriminative model from
(Li and Jurafsky, 2017), Varient-LSTM+PtrNet
from (Logeswaran et al., 2018), CNN+PtrNet and
LSTM+PtrNet from (Gong et al., 2016). The re-
sults of the last two methods were obtained by
training their models on two datasets.
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Models Accident Earthquake
Random 50.0 50.0
Graph 84.6 63.5
HMM+Entity 84.2 91.1
HMM 82.2 93.8
Entity Grid 90.4 87.2
Recurrent 84.0 95.1
Recursive 86.4 97.6
Discriminative Model 93.0 99.2
Varient-LSTM+PtrNet 94.4 99.7
CNN+PtrNet 93.5 99.4
LSTM+PtrNet 93.7 99.5
ATTOrderNet (ATT) 95.4 99.6
ATTOrderNet (CNN) 95.8 99.7
ATTOrderNet 96.2 99.8

Table 5: Experimental results of Pairwise Accuracy for
different approaches on two datasets in the Order Dis-
crimination task.

3.4.2 Results
Table 5 reports the results of ATTOrderNet and
currently competing architectures in this evalua-
tion task. ATTOrderNet also achieves the state-
of-the-art performance, showing a remarkable ad-
vancement of about 1.8% gain on Accident dataset
and further improving the pairwise accuracy to
99.8 on Earthquake dataset.

LSTM+PtrNet and CNN+ PtrNet (Gong et al.,
2016) fall short of Varient-LSTM+PtrNet (Lo-
geswaran et al., 2018) in performance. This could
also be blamed for their paragraph encoder. Docu-
ments in both datasets are much longer than those
in others, which brings more trouble for LSTMs in
paragraph encoder to build logical representations.
Compared to the result in the sentence order-
ing task, Entity Grid (Barzilay and Lapata, 2008)
achieves a good performance in this task and even
outperforms Recurrent neural networks and Re-
cursive neural networks (Li and Hovy, 2014) on
Accident dataset. However, Entity Grid requires
hand-engineered features and heavily relies on lin-
guistic knowledge which restrain the model to be
adapted to other tasks.

4 Conclusion

In this paper, we develop a novel deep attentive
sentence ordering model (referred as ATTOrder-
Net) integrating self-attention mechanism with
LSTMs. It enables us to directly capture logical
relationships among sentences regardless of their

input order and obtain a reliable representation
of the sentence set. With this representation, a
pointer network is applied to generate an ordered
sequence. ATTOrderNet is evaluated on Sentence
Ordering and Order Discrimination tasks. The
experimental results demonstrate its effectiveness
and show promising improvements over existing
models across most datasets.
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Abstract
When a reader is first introduced to an en-
tity, its referring expression must describe the
entity. For entities that are widely known,
a single word or phrase often suffices. This
paper presents the first study of how expres-
sions that refer to the same entity develop over
time. We track thousands of person and or-
ganization entities over 20 years of New York
Times (NYT). As entities move from hearer-
new (first introduction to the NYT audience)
to hearer-old (common knowledge) status, we
show empirically that the referring expressions
along this trajectory depend on the type of the
entity, and exhibit linguistic properties related
to becoming common knowledge (e.g., shorter
length, less use of appositives, more definite-
ness). These properties can also be used to
build a model to predict how long it will take
for an entity to reach hearer-old status. Our
results reach 10-30% absolute improvement
over a majority-class baseline.

1 Introduction

While today the company Google is so well known
that its name can even be used as a verb, in 2002,
it was referred to in The New York Times1 as
“Google, the company behind the popular Web
search engine”. The appositive told the readers
what the company does, whereas now such elab-
oration is needed rarely, if at all. This paper
presents a first computational study that relates the
form of an entity’s referring expressions (RE) in
articles written at different times to the entity’s
changing information status.2

Previous work has focused on predicting how
REs for an entity vary within a single text. This
type of information status can improve coref-
erence resolution (Recasens et al., 2013) and

1article 1386221 from Sandhaus (2008)
2Corpus available at http://groups.inf.ed.ac.

uk/cup/ref/

help generate references in automatic summaries
(Nenkova and McKeown, 2003). But there has
been little exploration of the change in REs to an
entity over time and across articles, as the entity
is accepted into common knowledge. The current
work is driven by linguistic interest in character-
izing REs over time. In addition, knowing the
current acceptance of an entity can help in gen-
erating time-appropriate expressions. From a so-
cial science perspective, there is also great inter-
est in capturing the birth, acceptance into common
parlance, but also possible death, and subsequent
reintroductions of entities.

In this paper, we disambiguate and track thou-
sands of person (PER) and organization (ORG)
entities in the New York Times Annotated Corpus
(Sandhaus, 2008) across 20 years of news. We ex-
tract and analyze hundreds of thousands of REs for
these entities, and provide the first empirical evi-
dence that the expressions used to refer to an entity
grow shorter over time, and that properties such as
definiteness increase. The properties of RE form
are also not uniform over entities, and we identify
systematic differences between PER and ORG.

We also present a model that predicts the fu-
ture information status of an entity. The model
takes the REs in a small snapshot (a month’s span)
from anywhere in an entity’s timeline, and predicts
how long it will take the entity to reach hearer-old
(common knowledge) status. Features related to
mention frequency, and content, syntax, and topic
of the REs are highly predictive, giving accuracies
in the 60-80% range. We also make our corpus
available for future work on REs over time.

2 Background

The choice of an RE depends on the availability
and novelty of an entity (Prince, 1992). A mention
may be first or later within a text (discourse-new
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and discourse-old respectively), or either newly in-
troduce the entity to an audience (hearer-new) or
be part of common knowledge (hearer-old). Ac-
cording to Prince (1992), hearer-old entities are
more often mentioned with definite expressions,
since the hearer can pick out the unique referent
based on background knowledge. Corpus studies
(Nenkova and McKeown, 2003; Yoshida, 2011)
have corroborated similar trends that subsequent
mentions to established entities within a discourse
tend to be reduced or definite noun phrases.

In computational work, many studies (Nissim,
2006; Rahman and Ng, 2011; Markert et al., 2012)
classify entities in a text as discourse-new/old.
Here, hearer-old entities are a separate mediated
class (not introduced in the text but which read-
ers infer based on common knowledge), and pre-
dicted using features such as definiteness and the
entity name itself. In the context of text summa-
rization, the system of Siddharthan et al. (2011)
classifies entities in source documents as hearer-
old or not, based on frequency, syntax, and coref-
erence (within the documents). The predicted sta-
tus is then used in a rule-based algorithm to gen-
erate references in summaries of the source. Ear-
lier work (Radev, 1998) modeled the choice of the
best expression (from a lexicon) to fit the specific
semantic context during text generation. Supple-
menting these efforts, we model the progression
of entities’ status from hearer-new to hearer-old as
it changes across, rather than within, documents.

In the social sciences, Graus et al. (2017) ana-
lyzed distributions of entity mentions, and inter-
vals between mentions, to identify patterns of en-
tities becoming common knowledge, but without
looking at the content of the REs. The coinage
and subsequent acceptance/extinction of lexical
innovations is another domain that models expres-
sions over time, often by mapping properties of the
speakers who use them within a community (see
Tredici and Fernandez, 2018 and work reviewed
therein). Our focus here is on REs specifically.

In what follows, we explain our RE extrac-
tion (Section 3) and linguistic features (Section 4).
Analysis of the REs and the model for information
status prediction are in Sections 5 and 6.

3 Extracting REs over time

We use the New York Times Annotated Corpus
(NYTAC) (Sandhaus, 2008), containing the 1.8M
articles published in the New York Times over the

period 1987–2007 (20 years).
Given the complexity in identifying potentially

interesting entities and disambiguating references
to them over time, we limited our scope to person
(PER) and organization (ORG) entities, which we
could disambiguate with high accuracy. We also
set aside years 2003–2007 for future validation,
and used 1990–2002 for all our training, valida-
tion, and testing. Across these 13 years3, we col-
lected 52,338 unique entities (74% PER and 26%
ORG) that were mentioned 284,064 times (65%
PER mentions and 35% ORG).

3.1 RE span detection
We used the Stanford CoreNLP toolkit (Manning
et al., 2014) (version 2018-01-31) to obtain con-
stituency parse trees, and perform coreference res-
olution on the articles.4

We then extract all noun phrases (NP), includ-
ing NPs that are nested in other NPs. For each NP,
we identify if it is a proper name RE by match-
ing the structure of its children to a set of six pat-
terns (Table 1) of syntactic structures that can be
used in describing an entity: pre-modifier, rela-
tive clause, appositive, participle clause, adjec-
tive/adverb clause and prepositional phrase.

Pattern 1 (pre-modifier) is used to identify NPs
which are headed (rightmost leaf, except for pos-
sessives) by a proper noun (NNP). If an NP
matches pattern 1, we have found a proper noun
RE. Otherwise, if the NP matches one of the other
patterns, we recursively match the patterns for the
head NP phrase (bolded in Table 1) until one of
them matches pattern 1. For appositives, there is
no consensus about which NP should be the head
of the phrase, as the entity name can be syntacti-
cally realized as the first or the second NP. Here
we process both NPs. If there is no match for pat-
tern 1 in this process, we discard the RE because
the entity name is not a proper noun phrase. If we
find multiple overlapping RE spans headed by the
same noun, we only keep the largest NP.

After identifying a proper noun NP, the se-
quence of NNP children in the component NP
span that matched pattern 1 is treated as the
base expression (the entity name). The rest of
the RE is the descriptor (description of the en-
tity). For example, the phrase ‘the pilot, First
Lieut. Kelly Flinn’ matches the appositive pattern.

3Our corpus contains trajectories for 20 years.
4The shift-reduce parser (Zhu et al., 2013) has an F1 score

of 90% on the Wall Street Journal corpus (results from 2014).
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Type Pattern for the children of
an NP

Example NP Base expression

1. Pre-modifier DT? (JJ JJR JJS VBG CD
QP NP NN NNS NNP

NNPS PRP , CC HYPH
SYM)* POS? NNP+ POS?

The tedious, complicated ABC ABC

2. Relative clause NP ,? SBAR ,? The International Business Machines
Corporation, which is the second-
biggest advertiser on the Internet

International Business
Machines

3. Appositive NP (, :)? NP (, :)? International Business Machines Cor-
poration, the worlds largest computer
company

International Business
Machines Corporation

4. Participle clause NP ,? VP ,? International Business Machines Cor-
poration, based in Armonk, N.Y.

International Business
Machines Corporation

5. Adjective or ad-
verb clause

NP ,? (ADJP ADVP) ,? Western Resources Inc., worth $1.7 bil-
lion

Western Resources Inc.

6. Prepositional
phrase

NP ,? PP ,? The National Basketball Association in
New York

National Basketball As-
sociation

Table 1: Regular expressions (regex) for finding RE spans within an NP. The regex use Penn Treebank
(Marcus et al., 1993) tags.

The full phrase is the RE, the string of NNPs ‘First
Lieut. Kelly Flinn’ that comprise the embedded
NP is the base expression, and the remaining NP
‘the pilot’ is the descriptor.

Certain adjustments had to be made. For exam-
ple, NPs of the form ‘NNP of NNP’ (e.g. “Univer-
sity of Virginia”) are treated as base expressions.
In addition, some connectives and symbols were
included in the base to accommodate names such
as “Food and Drug Administration”. These ad-
justments lead to their own errors. For instance,
for “Dan Zegart of Titusville”, our exception rule
will mark the full expression as the base, while we
would prefer just the name. As expected, our RE
spans are also subject to parsing errors.

But we found that the REs mined are largely ro-
bust. We manually annotated 100 randomly se-
lected REs for correctness of the full RE span
and base expression. 92 were correctly identified.
Most errors involve prepositional phrase (PP) at-
tachment, so PP modifiers are ignored in further
analysis (except PPs within base expressions).

3.2 Finding cross-document entity chains

We next identify ORG and PER entities, and link
the REs for the same entities over the entire span
of the NYTAC. While cross-document coreference
is usually a hard problem, we took advantage of
NYTAC metadata to identify and link mentions to
the same ORG and PER entity with high precision.

STEP 1: Our analysis focuses on salient and re-
peatedly appearing entities in the news. Therefore
using position in the lead paragraph as a proxy

for salience, we only include entities mentioned at
least once in the first three sentences of each arti-
cle. We also filter out entities that appear in fewer
than two documents in our corpus.

Then within an article, we extract coreference
chains to identify unique entities and their REs.
For each entity, we then identify a single RE
in the article which is indicative of its hearer-
old/new status. One would expect the first men-
tion to be performing this task as later mentions
are discourse-old, which itself affects the form of
the REs. But we found that entities are not nec-
essarily introduced in the first mention, hence for
each entity we take the longest descriptor among
the first three mentions in an article.

STEP 2: Next we link mentions across articles.
Each NYTAC article has metadata tags which in-
ter alia name salient people and organizations ap-
pearing in the article. These tags uniquely identify
an entity every time it appears in the corpus.

We match these tags to the article REs. The
tags contain normalized entity names which may
not match the article’s REs (from STEP 1) exactly.
So we perform matches at the level of coreference
chains. A chain is matched to a tagged name if
the words from the base expressions in that chain
overlap highly with the tag. In the case of people,
the last name of the tagged person had to match
the last proper noun in one of the base expressions.
For ORG, at most one word in the base expression
could be missing in the tag, unless an acronym
of the tagged name was used as the base expres-
sion. We manually annotated the correctness of
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tag matches for a random sample of 25 each of
PER and ORG entities. 88% of PER and 96% of
ORG matches were accurate indicating high pre-
cision. All the PER match mistakes involved two
people with the same last name mentioned in same
article, e.g. Bill Clinton and Hillary Clinton.5 As
an estimate of recall, we find that 61.1% of all
PER metadata tags, and 59.5% of ORG tags were
matched to an entity, which is reasonable. Note
also that we only match when an entity is men-
tioned within the first three sentences of an article.

Once tags are matched to article REs, the link-
ing of REs across the corpus is also complete since
the tags are already linked. The extracted REs for
each entity are ordered by the publication date of
the article, creating a chain of time-ordered REs
for that entity across the entire corpus.

For an example of the result of our complete
timeline extraction method, consider the entity
Boris Yeltsin. Mr. Yeltsin became leader of
the Russian parliament in May 1990, and subse-
quently the President in June 1991. Both events
are within the timeframe of our corpus. Below we
list some expressions taken from different time-
points in Mr. Yeltsin’s path to presidency and later.

Spring 1990 Mr. Yeltsin, the popular chairman of the
Russian Parliament who has emerged as
the champion of radical reform and de-
centralization and as the prime political
rival to the Soviet President, Mikhail S.
Gorbachev

Fall 1990 Boris Yeltsin, champion of the slender
insurgent minority at the Communist
Party congress

Spring 1991 Boris Yeltsin, the president of the Rus-
sian federated republic and chief oppo-
sition critic of Mr. Gorbachev

Fall 1991 Boris Yeltsin, the president of the Rus-
sian republic

Spring 1992 President Boris Yeltsin
Spring 1993 Mr. Yeltsin
Spring 2000 Former Russian President Boris Yeltsin

Figure 1 shows the average length of descriptors
for Mr. Yeltsin: 5 or 6 words up until Spring 1991,
after which the average length is 1 word or below,
indicating a significant shift in information status.

3.3 Defining hearer-old status
Next we designate an entity’s mentions as hearer-
new, mentions which are hearer-old, and those

5Coreference chains are also noisy in these cases.

Figure 1: Descriptor lengths for Mr. Boris Yeltsin
starting Spring 1990

whose information status lies in between.
Hearer-new mention. The NYTAC spans the

years 1987–2007. To identify entities which are
new, we treat the years 1987 to 1989 as a prior
background corpus. When an entity is mentioned
in the news from 1990 onwards but which never
appeared in the prior corpus, the entity is consid-
ered as ‘hearer-new’ at the first mention.6

Mr. Yeltsin (our previous example) in fact re-
signed from the Politburo in 1987 before emerg-
ing again as leader of Parliament in 1990. Inter-
estingly, our method (possibly) correctly identifies
Mr. Yeltsin as hearer-new in 1990 based on com-
parison with the prior corpus of 1987-89.

Entity mention trajectories. From the previ-
ous section, we have the trajectories of REs for
any identified hearer-new entity up to the end of
our data (2002). We exclude entities that have a
gap of more than 6 months between consecutive
mentions, because such long gaps require the au-
thor to reintroduce an entity in case readers had
forgotten it. Figure 2 shows how the length of de-
scriptors tends to increase with greater time gaps.

Also, different entities are introduced at differ-
ent times in the span from 1990 to 2002. To nor-
malize their introduction time, we define the idea
of age for an entity at a certain time point, so

6We noticed that sometimes multiple unique metadata
tags exist for the same entity, mostly reflecting major changes
in what the entity is known for, for example an entity before
and after becoming a President. This pattern is not consistent
in the editorial conventions however, so we leave improve-
ments to cross-document coreference for future work.
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Figure 2: Mean descriptor length vs. time since
previous mention

Figure 3: Mean descriptor length vs ‘age’ of entity

that all entities start out at time zero. For every
later mention of the entity, we record the age as
the number of days since first mention. Figure
3 shows a clear decrease in length of descriptors
with increasing age of the entity.

Hearer-old mentions. We hypothesize that
hearer-old entities are referred to by bare names
only, and only occasionally by longer REs. Thus,
we define acceptance of a hearer-old entity as
the time after which its descriptors (the additional
words besides the base expression) do not exceed
a length of n words on average. Also rather than
define this time point based on a single mention
(which would be fragile), we bin the age values
into month spans. The information status of an
entity will undergo little change within a month.

First, we calculate the average length of all de-

scriptors (entire timeline) for a given entity. If it
is less than n words, then we designate the entity
as hearer-old within the first month. Otherwise,
we find the first month in the timeline after which
the average length of descriptors of all remaining
mentions is below n, and use it as time of accep-
tance. If the entity never reaches the threshold, we
conclude that it is not accepted in the time span of
the corpus. We tested values for n of 0.5 words, 1
word, and 2 words, and chose the 1-word thresh-
old which performed best (in our linear model and
classification experiments which follow).

Table 2 shows the distribution of the acceptance
age for entities in our corpus. While PERs are
accepted faster, more of the PER entities are also
never accepted within the corpus timespan.

Below we list some examples, and qualitative
observations of PER entities from each bin. The
frequency of mentions is indicated within [].
1 month bin involves prominent public figures:

Bill Clinton [6005]; Michael Jordan [8]; Michael
Bloomberg [546]; Nelson Mandela [3]

within 1 year are authors, journalists, local politi-
cians (senators, mayors):

Judith Kaye (a centrist on the New York State Court of
Appeals) [6]; (Senator-elect) Hillary Rodham Clinton [86];
Jurate Kazickas (a freelance writer) [2]

1-13 years involve politicians and their families,
people linked to famous criminal cases:

Lisa Olson (a reporter for the Boston Herald) [14]; Laura
Bush (the wife of president-elect George W. Bush) [47];
Boris Yeltsin (President of the powerful Russian Republic,
whom Mr. Gorbachev portrayed as a destructive opportunist)
[1229]; Joseph Gambino (a convicted heroin trafficker) [9];
Abner Louima (the Haitian immigrant who the prosecutors
say was tortured by New York City police officers in a Brook-
lyn station house) [276]

longer than timespan involves those mentioned
along a longer period but not famous (lawyers,
economists, doctors), or people mentioned a lot
within a short period (wedding announcements,
serial killers, accident victims) and people reintro-
duced from the past:

Mildred Natwick (a versatile actress who created an en-
gaging gallery of eccentric, whimsical and spunky charac-
ters in plays, films and television for more than 60 years) [2],
Irene Neal (a 53 year old sculptor and painter) [2]

4 Features to characterize REs

We group the mentions of an entity within each
month, and treat the group as one example. In this
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Accepted after less than 1 month 1 to 12 months 1 to 13 years longer than timespan of corpus
People (entity level) 48.39% 6.42% 0.24% 44.95%

Organizations (entity level) 57.61% 8.66% 0.86% 32.89%
People (RE level) 46.92% 7.59% 2.47% 43.02%

Organizations (RE level) 49.71% 10.77% 6.67% 32.85%

Table 2: Distribution of acceptance ages. The ‘entity level’ rows record one age for each entity since its
first mention. ‘RE level’ is the distribution when the remaining age is calculated from each RE mention.
The timelines are truncated at year 2002. The later years are kept as a test set.

ORGANIZATION PERSON
Positive Positive
indefinite article, length 0, length 0-3, length 3-10,
length 10-20, average length, gap between mentions,
topic:transport

definite article, pre-modifier, age, length 0-3, length 3-
10, length 10-20, average length, section:cars and lifestyle,
topic:sports, topic: entertainment

Negative Negative
relative clause, definite article, named entity,
topic:international relations, topic:military and politics

relative clause, appositive, possessive, named entity, length
0, topic:transport, topic:religion, topic:awards

Table 3: Significant main effects in linear model

way, the example contains RE choices for the en-
tity at a certain snapshot in time. A set of 61 fea-
tures are computed for each example to character-
ize the REs (descriptor part only) it contains. None
of the features involve the identity of the entity.

Descriptor contents: include the number of
PER and ORG named entities if any in the descrip-
tor text, type/token ratio, the counts of date and
money, adjectives, superlative adjectives, verbs,
and honorifics (based on a list with words such as
Judge, President, Dr. etc). All counts are normal-
ized by the number of REs in the example.

Syntactic form: They include average num-
ber per RE of definite articles, indefinite articles
and possessive constructions, appositives, partici-
ple clauses, relative clauses, adjective or adverb
clauses, and pre-modification. We also record the
length of the descriptors using 5 bins (0 words, 1-
3, 3-10, 10-20 and >20 words). The feature value
is the proportion of REs in a bin. A binary fea-
ture also indicates whether the average length of
descriptors is below 0.5 words.

Frequency of mentions: We include the num-
ber of mentions within the one month bin, and the
average time gap between consecutive mentions
(multiplied by the log of number of mentions to
compensate for frequency). We also include the
entity’s current age (time since introduction).

Context: We employ the topic metadata from
NYTAC to capture a notion of world context of
an entity’s mentions. Every article has topic tags
(sports, finance, technology, politics, etc.) and
also a section label (travel, economics, culture,

etc.). We clustered the thousands of topic tags into
20 broad topics by using the Glove word embed-
dings (Pennington et al., 2014), and K-means clus-
tering. A small set of 17 clusters were also created
for the newspaper sections. The count of mentions
belonging to articles in each cluster is a feature.

5 Features versus acceptance time

We built a linear model (LM) to test which features
are significantly predictive of time to acceptance.

An example is the set of REs for an entity from a
one month bin. The dependent variable is the time
left until acceptance, i.e. the value (in months)
from the current age of the entity (month were the
mentions were taken from) until the acceptance
age. For our corpus, the possible values are 0
to 156. Entities that do not become well known
within the span of our dataset are given a label of
160 months. Entities which fall out of use (never
mentioned in the corpus after a certain time point
but also have not reached acceptance threshold at
their found last mentions) have a label of 161.7

We also performed a variance analysis over the
LM with ANOVA to account for possible correla-
tion between variables. We scale the feature val-
ues into z-scores which show how many standard
deviations each example is away from the mean.

We used lm and Anova (Fox and Weisberg,
2011) functions within R (R Core Team, 2013).
The adjusted R2 value is 43% for PER and 37%

7One could also perform survival analysis for this prob-
lem, we have not explored it yet.
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(a) Definite articles in ORG descriptors (b) Definite articles in PER descriptors

(c) Appositives in PER descriptors (d) Proportion of PER mentions with appositive descriptors, at
different ‘ages’ of an entity (within the first 5 years)

Figure 4: Main effects for definite articles and appositives

for ORG entities. The significant features (p <
0.05) from the ANOVA are in Table 3. The fea-
tures are divided into positive and negative ones,
reflecting whether a higher value of the feature
was predictive of a higher (positive) or lower (neg-
ative) value of the time until acceptance. More
features are significant for PER (18) compared
to ORG (13) expressions. Also for persons, the
significant features are more varied compared to
ORG, indicating that people may have more varied
roles and characterizations presented in the media.
Note also that we have more data for PER entities.

Below we describe some of the most interesting
findings from the model.

5.1 Main effects
Definite articles are a significant feature for both
PER and ORG entities. In Figures 4a and 4b, we
plot the variation in time until acceptance versus
number of definite articles, holding other variables
at their means. The bands show the 0.95 level con-
fidence interval. We used the effects package (Fox,
2003) in R, and the graphs show scaled values.

Assuming that the use of definite articles indi-
cates definite expressions roughly, for ORG enti-
ties, the results confirm the hypothesis that REs

become more definite the longer the entity is in
use. REs such as “Ebay, an online auction site”
become “Ebay, the largest of the auction sites” and
“Ebay, the auction site” before settling to “Ebay”.

The pattern for people is opposite, with more
definite articles used with early mentions. Upon
closer observation, we found that in fact, the ex-
pressions are more often definite when they are
closer to acceptance, but with definiteness not ex-
pressed by the article. The definite article is ex-
cluded, and the possessive is used to produce a
concise phrase e.g. “Russia’s acting president” in-
stead of “the acting president of Russia”. The pos-
sessive phrase is short and also has fewer func-
tion words, which is consistent with psycholin-
guistic findings that people tend to reduce highly
predictable phrases by dropping function words
(Jaeger and Levy, 2007). Moreover, we observed
that for ORG, an article may still describe the en-
tity after acceptance e.g. “The FDA”, and under-
standably this pattern does not exist for persons.

Appositives are not significant predictors for
ORG; for PER, more appositives is associated
with closeness to acceptance (Figure 4c). Yet early
mentions involve more appositives than later ones
(Figure 4d). One interpretation of these contrast-
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Figure 5: Interaction between the effect of sports
topic and honorifics (both scaled). Sub-figures
represent proportions of mentions in sports topics.

ing tendencies could be that there are two types of
entities. The first are those important enough to
be introduced with lots of appositives at the begin-
ning of their ‘lifespan’. These entities could be ac-
cepted quickly, and this behavior may manifest as
having more appositives close to acceptance. The
other set is that of non-salient entities which are
probably not introduced with appositives anyway,
and show slow acceptance. This analysis is sup-
ported by our observations that entities which are
not as important as the context they appear in, such
as a lesser known football player who scores a goal
or an architect of a famous building, are often in-
troduced without an appositive.

5.2 Interactions

We also found significant interactions in the model
highlighting differences between various types of
entities. For example, there is no main effect for
honorifics but there is a significant positive effect
when sports entities are involved (Figure 5). It is
possible that REs such as “the number one player”
indicate closeness to acceptance more than “the
president of the National Hockey League”, as hon-
orifics (e.g. ‘president’) are not used with most
known people in the sports domain.

The presence of verbs (in the descriptor) also
does not have a main effect, but becomes mean-
ingful when the type/token ratio of descriptors of

Figure 6: Interaction between the effect of
type/token ratio and verb use (both scaled). Sub-
figures represent values of the type/token ratio.

a person is low (see Figure 6). We consider the
type/token ratio as reflecting the different guises
that a person is mentioned with, and verbs in
the descriptor as associating the person with an
event rather than their role in society. When the
type/token ratio is low, it suggests the person is
known for one or a few aspects. Here acceptance
time and verbs are positively related, implying that
when the few aspects are events (more verbs), the
entities have a slower path to hearer-old. Whereas,
if the aspects were titles such as CEO (less verbs),
the entity is closer to acceptance.

6 Predicting future information-status

Given the significant correlations between our fea-
tures and the time to acceptance, we now build a
predictive model to identify acceptance time given
a snapshot of REs for an entity. Every example
contains a certain entity’s mentions over a month’s
span, similar to the linear model. The target class
indicates whether or not the entity was accepted
within a period, x years from the sample time.

The classification models were built separately
for PER and ORG expressions. We divide
the data into 70% training, 10% validation and
20% test. For number of data points for train-
ing/validation/test, ORG has 8,768/1,252/2,506
data points; PER has 26,190/3,742/7,483. Note
that examples are month-sized bins of each en-
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ENTITY
Baseline (%) SVM MLP

(majority-class) C Gamma Accuracy (%) Layers Units Alpha Accuracy (%)
4-CLASS

Org 35.17 10 0.01 62.69 2 400 100 68.36
People 42.01 100 0.01 70.77 3 300 100 74.18

BINARY
Org 69.80 10 0.01 78.41 3 100 100 79.41
People 59.16 10 0.01 79.14 3 300 100 80.66

Table 4: Results of the SVM and MLP classifiers. C and Alpha are regularization parameters, Gamma
parameterizes the RBF kernel. Hidden layers and hidden units in the MLP are also shown.

tity’s REs, rather than unique entities. We explore
both an SVM classifier with an RBF kernel, and
a Multi Layer Perceptron (MLP) classifier. The
MLP uses a BFGS solver with ReLU activation
function. We used implementations from scikit-
learn (Pedregosa et al., 2011), and the parameters
of both classifiers were tuned on the development
set using grid search.

We build two types of classifiers (results in Ta-
ble 4). The baseline is majority-class assignment.

4-CLASS is a four-label classifier for predicting
when an entity will become hearer-old. The four
classes reflect the distribution of acceptance ages
(see Table 2—RE level): already accepted (at the
sample month), will be accepted within the year,
between 1 and 13 years from the sample, and will
not be accepted within the time frame we have.

BINARY is a classifier performing a simpler bi-
nary division of whether an entity is hearer-old or
hearer-new after 2 years from the sampling time.
About half of both entities in our data are accepted
within 2 years after introduction.

The 4-CLASS MLP model is better than SVM
reaching 68% accuracy for ORG and 74% for peo-
ple. The improvement is over 30% absolute value,
indicating the significant effect of the model and
features. Still there is scope for improvement,
given that the performance is less than 75%.

Both SVM and MLP perform similarly for the
binary tasks. The overall binary classification ac-
curacy is 80% for both PER and ORG entities, a
10% increase for ORG and 20% for PER.

We also performed an ablation study to iden-
tity the most useful individual classes of features.
Syntax features (Section 4) had the biggest im-
pact when removed, lowering performing by 5-8%
for all models. But since both our classifiers are
non-linear, they can capture useful interactions be-
tween all our feature classes.8

8The context class uses corpus-specific metadata, but un-
supervised topic modeling could likely approximate it.

7 Conclusion

In this work, we have shown empirically that
the path to hearer-old status displays detectable
and interesting linguistic features, and that enti-
ties of a certain type exhibit distinctive properties.
These significant differences have allowed for a
first model which predicts how long it will take for
an entity to be accepted as common knowledge.

There are a number of directions which we plan
to explore. While we have focused on predict-
ing whether an entity will be accepted after a cer-
tain period of time has passed, we have not mod-
eled the RE tokens themselves, or their generation.
During our analysis, it was clear that the REs of a
(named) entity may also change semantically over
time, reflecting current interest in it, rather than
the same RE content just growing shorter over
time. We have also not explored the RE time-
lines of common noun entities such as organic
food or cryptocurrency. It is possible that they
follow a different trend than named entities, and
require a different set of feature indicators. We
also plan to improve upon our current models and
assumptions. Currently, we have ignored entities
with long time gaps and requiring reintroduction
to an audience. Learning to predict when an entity
will go out of use, and indicators for reintroduc-
tion will add strength to our analyses. The defi-
nition of acceptance and fine-grained models for
prediction will also be developed. We are also re-
leasing a corpus of chained REs from the NYTAC
(represented as byte-span sets) to enable other re-
searchers to study these aspects of REs.
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Abstract

In an online community, new words come and
go: today’s haha may be replaced by tomor-
row’s lol. Changes in online writing are usu-
ally studied as a social process, with innova-
tions diffusing through a network of individ-
uals in a speech community. But unlike other
types of innovation, language change is shaped
and constrained by the grammatical system in
which it takes part. To investigate the role
of social and structural factors in language
change, we undertake a large-scale analysis of
the frequencies of nonstandard words in Red-
dit. Dissemination across many linguistic con-
texts is a predictor of success: words that ap-
pear in more linguistic contexts grow faster
and survive longer. Furthermore, social dis-
semination plays a less important role in ex-
plaining word growth and decline than previ-
ously hypothesized.

1 Introduction

Stop trying to make “fetch” happen! It’s not going
to happen! – Regina George (Mean Girls, 2005)

With the fast-paced and ephemeral nature of on-
line discourse, language change in online writing
is both prevalent (Androutsopoulos, 2011) and no-
ticeable (Squires, 2010). In social media, new
words emerge constantly to replace even basic ex-
pressions such as laughter: today’s haha is tomor-
row’s lol (Tagliamonte and Denis, 2008). Why
do some nonstandard words, like lol, succeed and
spread to new contexts, while others, like fetch,
fail to catch on? Can a word’s growth be predicted
from patterns of usage during its early days?

Language change can be treated like other so-
cial innovations, such as the spread of hyper-
links (Bakshy et al., 2011) or hashtags (Romero
et al., 2011; Tsur and Rappoport, 2015). A key

aspect of the adoption of a new practice is its dis-
semination: is it used by many people, and in
many social contexts? High dissemination enables
words to achieve greater exposure among social
groups (Altmann et al., 2011), and may signal that
the innovation is positively evaluated.

In addition to social constraints, language
change is also shaped by grammatical con-
straints (D’Arcy and Tagliamonte, 2015). New
words and phrases rarely change the rules of the
game but must instead find their place in a compet-
itive ecosystem with finely-differentiated linguis-
tic roles, or “niches” (MacWhinney, 1989). Some
words become valid in a broad range of linguis-
tic contexts, while others remain bound to a small
number of fixed expressions. We therefore posit a
structural analogue to social dissemination, which
we call linguistic dissemination.

We compare the fates of such words to deter-
mine how linguistic and social dissemination each
relate to word growth, focusing on the adoption of
nonstandard words in the popular online commu-
nity Reddit. The following hypotheses are evalu-
ated:

• H1: Nonstandard words with higher ini-
tial social dissemination are more likely to
grow. Following the intuition that words re-
quire a large social base to succeed, we hy-
pothesize a positive correlation between so-
cial dissemination and word growth.

• H2-weak: Nonstandard words with higher
linguistic dissemination in the early phase
of their history are more likely to grow.
This follows from work in corpus linguis-
tics showing that words and grammatical pat-
terns with a higher diversity of collocations
are more likely to be adopted (Ito and Taglia-
monte, 2003; Partington, 1993).
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• H2-strong: Nonstandard words with
higher linguistic dissemination are more
likely to grow, even after controlling for so-
cial dissemination. This follows from the in-
tuition that linguistic context and social con-
text contribute differently to word growth.

To address H2, we develop a novel metric for
characterizing linguistic dissemination, by com-
paring the observed number of n-gram contexts
to the number of contexts that would be predicted
based on frequency alone. Our analysis of word
growth and decline includes: (1) prediction of fre-
quency change in growth words (as in prior work);
(2) causal inference of the influence of dissemi-
nation on probability of word growth; (3) binary
prediction of future growth versus decline; and
(4) survival analysis, to determine the factors that
predict when a word’s popularity begins to de-
cline. All tests indicate that linguistic dissemi-
nation plays an important role in explaining the
growth and decline of nonstandard words.

2 Related Work

Lexical change online Language changes con-
stantly, and one of the most notable forms of
change is the adoption of new words (Metcalf,
2004), sometimes referred to as lexical entrench-
ment (Chesley and Baayen, 2010). New nonstan-
dard words may arise through the mutation of ex-
isting forms by processes such as truncation (e.g,
favorite to fave; Grieve et al., 2016) and blend-
ing (e.g., web+log to weblog to blog; Cook and
Stevenson, 2010). The fast pace and intercon-
nected nature of online communication is partic-
ularly conducive to innovation, and social me-
dia provides a “birds-eye view” on the process
of change (Danescu-Niculescu-Mizil et al., 2013;
Kershaw et al., 2016; Tsur and Rappoport, 2015).

The most closely related work is a contempo-
raneous study that explored the role of weak so-
cial ties in the dissemination of linguistic innova-
tions on Reddit, which also proposed the task of
quantitatively predicting the success or failure of
lexical innovations (Tredici and Fernández, 2018).
One distinguishing feature of our work is the em-
phasis on linguistic (rather than social) context in
explaining these successes and failures. In addi-
tion to predicting the binary distinction between
success and failure, we also take on the more fine-
grained task of predicting the length of time that
each nonstandard word will survive.

Social dissemination Language changes as a re-
sult of transmission across generations (Labov,
2007) as well as diffusion across individuals and
social groups (Bucholtz, 1999). Such diffusion
can be quantified with social dissemination, which
Altmann et al. (2011) define as the count of social
units (e.g., users) who have adopted a word, nor-
malized by the expected count under a null model
in which the word is used with equal frequency
across the entire population. Altmann et al. (2011)
use dissemination of words across forum users and
threads to predict the words’ change in frequency
in Usenet, finding a positive correlation between
frequency change and both kinds of social dis-
semination. In contrast, Garley and Hockenmaier
(2012) use the same metric to predict the growth
of English loanwords on German hip-hop forums,
and find that social dissemination has less predic-
tive power than expected. We seek to replicate
these prior findings, and to extend them to the
broader context of Reddit.

Linguistic dissemination In historical linguis-
tics, the distribution of a new word or con-
struction across lexical contexts can signal future
growth (Partington, 1993). Furthermore, gram-
matical and lexical factors can explain a speaker’s
choice of linguistic variant (Ito and Tagliamonte,
2003; Cacoullos and Walker, 2009) and can pro-
vide more insight than social factors alone. Our
study proposes a generalizable method of measur-
ing the dissemination of a word across lexical con-
texts with linguistic dissemination and compares
social and linguistic dissemination as predictors of
language change.

3 Data

Our study examines the adoption of words on so-
cial media, and we focus on Reddit as a source of
language change. Reddit is a social content shar-
ing site separated into distinct sub-communities
or “subreddits” that center around particular top-
ics (Gilbert, 2013). Reddit is a socially diverse and
dynamic online platform, making it an ideal en-
vironment for research on language change (Ker-
shaw et al., 2016). Furthermore, because Reddit
data is publicly available we expect that this study
can be more readily replicated than a similar study
on other platforms such as Facebook or Twitter,
whose data is less easily obtained.
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Total Monthly mean

Comments 1,625,271,269 45,146,424
Tokens 56,674,728,199 1,574,298,006
Subreddits 333,874 48,786
Users 14,556,010 2,302,812
Threads 102,908,726 3,079,780

Table 1: Data summary statistics.

We analyze a set of public monthly Reddit com-
ments1 posted between 1 June 2013 and 31 May
2016, totalling T = 36 months of data. This
dataset has been analyzed in prior work (Hessel
et al., 2016; Tan and Lee, 2015) and has been
noted to have some missing data (Gaffney and
Matias, 2018), although this issue should not af-
fect our analysis. To reduce noise in the data,
we filter all comments generated by known bots
and spam users2 and filter all comments created
in well-known non-English subreddits.3 The final
data collected is summarized in Table 1.

We replace all references to subreddits and
users (marked by the convention r/subreddit and
u/user) with r/SUB and u/USER tokens, and all hy-
perlinks with a URL token. We also reduce all re-
peated character sequences to a maximum length
of three (e.g., loooool to loool). The final vo-
cabulary includes the top 100,000 words by fre-
quency.4 We replace all OOV words with UNK
tokens, which comprise 3.95% of the total tokens.

3.1 Finding growth words

Our work seeks to study the growth of nonstan-
dard words, which we identify manually instead
of relying on pre-determined lists (Tredici and
Fernández, 2018).To detect such words, we first
compute the Spearman correlation coefficient be-
tween the time steps {1...T} and each word w’s
frequency time series f (w)

(1:T ) (frequency normal-
ized and log-transformed). The Spearman cor-
relation coefficient captures monotonic, gradual
growth that characterizes the adoption of nonstan-

1From http://files.pushshift.io/reddit/
comments/ (Accessed 1 October 2016).

2The same list used in Tan and Lee (2015): https:
//chenhaot.com/data/multi-community/
README.txt (Accessed 1 October 2016).

3We randomly sampled 100 posts from the top 500 sub-
reddits and labelled a subreddit as non-English if fewer than
90% of its posts were identified by langid.py (Lui and
Baldwin, 2012) as English.

4We restricted the vocabulary because of the qualitative
analysis required to identify nonstandard words.

dard words (Grieve et al., 2016; Kershaw et al.,
2016).

The first set of words is filtered by a Spear-
man correlation coefficient above the 85th per-
centile (N = 15, 017). From this set of words,
one of the authors manually identified 1,120 words
in set G (“growth”) that are neither proper nouns
(berniebot, killary, drumpf ) nor standard words
(election, voting).5 These words were removed
because their growth may be due to exogenous in-
fluence. A “standard” word is one that can plau-
sibly be found in a newspaper article, which fol-
lows from the common understanding of news-
paper text as a more formal and standard regis-
ter. Therefore, a “nonstandard” word is one that
cannot plausibly be found in a newspaper arti-
cle, a judgment often used by linguists to deter-
mine what counts as slang (Dumas and Lighter,
1978). In ambiguous cases, one of the authors in-
spected a sample of comments that included the
word. We validate this process by having both au-
thors annotate the top 200 growth candidates for
standard/proper versus nonstandard (binary), ob-
taining inter-annotator agreement of =0.79.

3.2 Finding decline words
To determine what makes the growth words suc-
cessful, we need a control group of “decline”
words, which are briefly adopted and later aban-
doned. Although these words may have been suc-
cessful before the time period investigated, their
decline phase makes them a useful comparison for
the growth words. We find such words by fitting
two parametric models to the frequency series.

Piecewise linear fit We fit a two-phase piece-
wise linear regression on each word’s frequency
time series f(1:T ), which splits the time series into
f(1:t̂) and f(t̂+1:T ). The goal is to select a split
point t̂ to minimize the sum of the squared error
between observed frequency f and predicted fre-
quency f̂ :

f̂(m1, m2, b, t) =

(
b + m1t t  t̂

b + m1t̂ + m2(t � t̂) t > t̂,
(1)

where b is the intercept, m1 is the slope of the first
phase, and m2 is the slope of the second phase.
Decline words Dp (“piecewise decline”) display

5Code and word lists available at:
https://github.com/ianbstewart/
nonstandard_word_dissemination.
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Word set Examples

G idk, lmao, shitpost, tbh, tho
Dl atty, eyebleach, iifym, obeasts, trashy
Dp brojob, nparent, rekd, terpers, wot

Table 2: Examples of nonstandard words in all
word sets: growth (G), logistic decline (Dl) and
piecewise decline (Dp).

growth in the first phase (m1 > 0), decline in
the second phase (m2 < 0), and a strong fit be-
tween observed and predicted data, indicated by
R2(f, f̂) above the 85th percentile (36.1%); this
filtering yields 14,995 candidates.

Logistic fit To account for smoother growth-
decline trajectories, we also fit the growth curve
to a logistic distribution, which is a continuous
unimodal distribution with support over the non-
negative reals. We identify the set of candidates
Dl (“logistic decline”) as words with a strong fit to
this distribution, as indicated by R2 above the 99th

percentile (82.4%), yielding 998 candidates. The
logistic word set partially overlaps with the piece-
wise set, because some words’ frequency time se-
ries show a strong fit to both the piecewise func-
tion and the logistic distribution.

Combined set We combine the sets Dp and Dl

to produce a set of decline word candidates (N =
15, 665). Next, we filter this combined set to ex-
clude standard words and proper nouns, yielding
a total of 530 decline words in set D. Each word
is assigned a split point t̂ based on the estimated
time of switch between the growth phase and the
decline phase, which is the split point t̂ for piece-
wise decline words and the center of the logistic
distribution µ̂ for the logistic decline words.

Examples of both growth and decline words
are shown in Table 2. The growth words in-
clude several acronyms (tbh, “to be honest”; lmao,
“laughing my ass off”), while the decline words
include clippings (atty, “atomizer”), respellings
(rekd, “wrecked”; wot, “what”) and compounds
(nparent, “narcissistic parent”).

We also provide a distribution of the words
across word generation categories in Table 3, in-
cluding compounds and clippings in similar pro-
portions to prior work (Kulkarni and Wang, 2018).
Because the growth and decline words exhibit sim-
ilar proportions of category counts, we do not ex-

Clipping Compound Respelling Other Total

G 198
(17.7%)

334
(29.8%)

83
(7.4%)

505
(45.1%)

1,120

D 53
(10.0%)

100
(18.9%)

108
(20.4%)

269
(50.8%)

530

Table 3: Word formation category counts in growth
(G) and decline (D) word sets.

pect that this will be a significant confound in dif-
ferentiating growth from decline.

4 Predictors

We now outline the predictors used to measure the
degree of social and linguistic dissemination in
the growth and decline words.

4.1 Social dissemination
We rely on the dissemination metric proposed
by Altmann et al. (2011) to measure the degree to
which a word occupies a specific social niche (e.g.,
low dissemination implies limited niche). To com-
pute user dissemination DU for word w at time t,
we first compute the number of individual users
who used word w at time t, written U (w)

t . We then
compare this with the expectation Ũ (w)

t under a
model in which word frequency is identical across
all users. The user dissemination is the log ratio,

log
U (w)

t

Ũ (w)
t

= log U (w)
t � log Ũ (w)

t . (2)

Following Altmann et al. (2011), the expected
count Ũ (w)

t is computed as,

Ũ (w)
t =

X

u2Ut

(1 � e�f
(w)
t m

(u)
t ), (3)

where m(u)
t equals the total number of words con-

tributed by user u in month t, and Ut is the set
of all users active in month t. This corresponds
to a model in which each token from a user has
identical likelihood f (w)

t of being word w. In this
way, we compute dissemination for all users (DU ),
subreddits (DS) and threads (DT ) for each month
t 2 {1...T}.

4.2 Linguistic dissemination
Linguistic dissemination captures the diversity of
linguistic contexts in which a word appears, as
measured by unique n-gram counts. We compute
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Figure 1: Distribution of mean linguistic dissemi-
nation (DL) across part of speech groups.

the log count of unique trigram6 contexts for all
words (C3) using all possible trigram positions: in
the sentence “that’s cool af haha”, the term af ap-
pears in three unique trigrams, that’s cool af, cool
af haha, af haha <END>.

The unique log number of trigram contexts
is strongly correlated with log word frequency
(⇢(C3, f) = 0.904), as implied by Heaps’
law (Egghe, 2007). We therefore adjust this statis-
tic by comparing with its expected value C̃3. At
each timestep t, we fit a linear regression between
log-frequency and log-unique n-gram counts, and
then compute the residual between the observed
log count of unique trigrams and its expectation,
DL = C3

t � C̃3
t . The residual DL, or linguis-

tic dissemination, identifies words with a higher
or lower number of lexical contexts than expected.

Linguistic dissemination can separate words by
grammatical category, as shown in Figure 1 where
the mean DL values are computed for words
across common part-of-speech categories. Part-
of-speech tags were computed over the entire cor-
pus using a Twitter-based tagger (Gimpel et al.,
2011), and each word type was assigned the most
likely POS tag to provide an approximate distribu-
tion of tags over the vocabulary. Interjections have
a lower median DL than other word categories due
to the tendency of interjections to occur in limited
lexical contexts. Conversely, verbs have a higher
median DL due to the flexibility of verbs’ argu-
ments (e.g., subject and object may both be open-
class nouns).

5 Results

The hypotheses about social and linguistic dissem-
ination are tested under four analyses: correlation
against frequency change in growth words; causal
inference on probability of word growth; binary

6Pilot analysis with bigram contexts gave similar results.

Variance
explained Lower, upper 95%

ft�12 10.8% [10.2%, 11.5%]
DL

t�12 0.584% [0.461%, 0.777%]
DU

t�12 0.307% [0.251%, 0.398%]
DS

t�12 0.120% [0.0852%, 0.191%]
DT

t�12 0.246% [0.171%, 0.379%]

ft�24 21.4% [20.4%, 22.4%]
DL

t�24 1.29% [1.05%, 1.64%]
DU

t�24 0.400% [0.346%, 0.493%]
DS

t�24 0.287% [0.201%, 0.392%]
DT

t�24 0.272% [0.226%, 0.380%]

Table 4: Percent of variance explained in frequency
change, computed over all growth words G. N =
26, 880 for k = 12, N = 13, 440 for k = 24.

prediction of word growth; and survival analysis
of decline words.

5.1 Correlational analysis
To test the relative importance of the linguistic
and social context on word growth, we corre-
late these metrics with frequency change (�ft =
ft � ft�k) across all growth words. This repli-
cates the methodology in prior work by Altmann
et al. (2011) and Garley and Hockenmaier (2012),
who analyzed different internet forums. Focus-
ing on long-term change with k = 12 (one year)
and k = 24 (two years), we compute the propor-
tion of variance in frequency change explained by
the covariates using a relative importance regres-
sion (Kruskal, 1987).7

The results of the regression are shown in
Table 4. All predictors have relative impor-
tance greater than zero, according to a bootstrap
method to produce confidence intervals (Tonidan-
del et al., 2009). Frequency is the strongest predic-
tor (ft�12, ft�24), because words with low initial
frequency often show the most frequency change.
In both short- and long-term prediction, linguis-
tic dissemination (DL

t�12, D
L
t�24) has a higher rel-

ative importance than each of the social dissem-
ination metrics. The social dissemination met-
rics have less explanatory power, in comparison
with the other predictors and in comparison to the
prior results of Garley and Hockenmaier (2012),
who found 1.5% of variance explained by DU and
1.9% for DT at k = 24. Our results were robust
to the exclusion of the predictor DL, meaning that

7Relative importance regression implemented in the re-
laimpo package in R: https://cran.r-project.
org/package=relaimpo
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a model with only the social dissemination met-
rics as predictors resulted in a similar proportion
of variance explained. The weakness of social dis-
semination could be due to the fragmented nature
of Reddit, compared to more intra-connected fo-
rums. Since users and threads are spread across
many different subreddits, and users may not visit
multiple subreddits, a higher social dissemination
for a particular word may not lead to immediate
growth.

5.2 Causal analysis

While correlation can help explain the relationship
between dissemination and frequency change, it
only addresses the weak version of H2: it does not
distinguish the causal impact of linguistic and so-
cial dissemination. To test the strong version of
H2, we turn to a causal analysis, in which the out-
come is whether a nonstandard word grows or de-
clines, the treatment is a single dissemination met-
ric such as linguistic dissemination, and the co-
variates are the remaining dissemination metrics.
The goal of this analysis is to test the impact of
each dissemination metric, while holding the oth-
ers constant.

Causal inference typically uses a binary treat-
ment/control distinction (Angrist et al., 1996), but
in this case the treatment is continuous. We there-
fore turn to an adapted model known as the aver-
age dose response function to measure the causal
impact of dissemination (Imbens, 2000). To ex-
plain the procedure for estimating the average
dose response, we adopt the following terminol-
ogy: Z for treatment variable, X for covariates, Y
for outcome.8

1. A linear model is fit to estimate the treatment
from the covariates,

Zi | Xi ⇠ N (�>Xi, �
2). (4)

The output of this estimation procedure is a
vector of weights �̂ and a variance �̂2.

2. The generalized propensity score (GPS) R
is the likelihood of observing the treatment
given the covariates, P (Zi | Xi). It is com-
puted from the parameters estimated in the

8Average dose response function implemented in the
causaldrf package in R: https://cran.r-project.
org/package=causaldrf

previous step:

R̂i =
1p

2⇡�̂2
exp

 
�(Zi � �̂>Xi)2

2�̂2

!
.

(5)

3. A logistic model is fit to predict the outcome
Yi using the treatment Zi and the GPS R̂i:

Ŷi = Logistic(↵̂0 + ↵̂1Zi + ↵̂2R̂i). (6)

This involves estimating the parameters
{↵̂0, ↵̂1, ↵̂2.} By incorporating the general-
ized propensity score R̂i into this predictive
model over the outcome, it is possible to iso-
late the causal effect of the treatment from the
other covariates (Hirano and Imbens, 2004).

4. The range of treatments is divided into levels
(quantiles). The average dose response for
a given treatment level sz is the mean esti-
mated outcome for all instances at that treat-
ment level,

µ̂(sz) =
1

|sz|
X

zi2sz

Ŷi. (7)

The average dose response function is then
plotted for all treatment levels.

Each dissemination metric is considered sepa-
rately as a treatment. We consider all other dis-
semination metrics and frequency as covariates:
e.g., for treatment variable DL, the covariates are
set to [f, DU , DS , DT ]. We bootstrap the above
process 100 times with different samples to pro-
duce confidence intervals. To balance the outcome
classes, we sample an equal number of growth and
decline words for each bootstrap iteration.

The average dose response function curves in
Figure 2 show that linguistic dissemination (DL)
produces the most dramatic increase in word
growth probability. For linguistic dissemination,
the lowest treatment quantile (0%-10%) yields a
growth probability below 40% (significantly less
than chance), as compared to the highest treatment
quantile (90-100%), which yields a growth prob-
ability nearly at 70% (significantly greater than
chance). This supports the strong form of H2,
which states that linguistic dissemination is pre-
dictive of growth, even after controlling for the fre-
quency and the other dissemination metrics. Sub-
reddit dissemination also shows a mild causal ef-
fect on word growth, up to 60% in the highest
treatment quantile. The other social dissemination
metrics prove to have less effect on word growth.
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Figure 2: Average dose response function for all treatment variables, where outcome is probability of
word growth. 95% confidence intervals plotted in red, chance rate of 50% marked with dotted black line.

Figure 3: Prediction accuracy for different feature
sets using k = 1...12 months of training data. f
indicates frequency-only, f+L frequency plus lin-
guistic dissemination, f +S frequency plus social
dissemination, f + L + S all features.

5.3 Predictive analysis

We now turn to prediction to determine the utility
of linguistic and social dissemination: using the
first k months of data, can we predict whether a
word will grow or decline in popularity? This is
similar to previous work in predicting the success
of lexical innovations (Kooti et al., 2012), but our
goal is to compare the relative predictive power of
various dissemination metrics, rather than to max-
imize accuracy.

We use logistic regression with 10-fold
cross-validation over four different feature sets:
frequency-only (f), frequency plus linguistic
dissemination (f+L), frequency plus social
dissemination (f+S) and all features (f+L+S).
Each fold is balanced for classes so that the
baseline accuracy is 50%. Figure 3 shows that
linguistic dissemination provides more predictive
power than social dissemination: the accuracy is
consistently higher for the models with linguistic
dissemination than for the frequency-only and
social dissemination models. The accuracies

growth
decline

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Figure 4: Distribution of DL values across growth
and decline words, grouped by part of speech tag.
* indicates p < 0.05 in one-tailed t-test between
growth and decline DL values.

converge as the training data size increases, which
suggests that frequency is a useful predictor if
provided sufficient historical trajectory.

Part-of-speech robustness check Considering
the uneven distribution of linguistic dissemination
across part-of-speech groups (Figure 1), the pre-
diction results may be explained by an imbalance
of word categories between the growth and decline
words. This issue is addressed through two robust-
ness checks: within-group comparison and predic-
tion.

First, we compare the distribution of linguistic
dissemination values between growth and decline
words, grouped by the most common POS tags
(computed in § 4.2). Each decline word is matched
with a growth word based on similar mean fre-
quency in the first k = 12 months, and their
mean linguistic dissemination values during that
time period are compared, grouped within POS
tag groups. The differences in Figure 4 show that
across all POS tags, the growth words show a ten-
dency toward higher linguistic dissemination with
significant (p < 0.05) differences in the interjec-
tions, adjectives and verbs.
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Next, we add POS tags as additional features
to the frequency-only model in the binary predic-
tion task. The accuracy of a predictive model with
access to frequency and POS features at k = 1 is
54.8%, which is substantially lower than the ac-
curacy of the model with frequency and linguistic
dissemination (cf. Figure 3).9 Thus, linguistic dis-
semination thus contributes predictive power be-
yond what is contributed by part-of-speech alone.

5.4 Survival analysis
Having investigated what separates growth from
decline, we now focus on the factors that precede
a decline word’s “death” phase (Drouin and Dury,
2009).

Predicting the time until a word’s decline
can be framed as survival analysis (Klein and
Moeschberger, 2005), in which a word is said to
“survive” until the beginning of its decline phase
at split point t̂. In the Cox proportional hazards
model (Cox, 1972), the hazard of death � at each
time t is modeled as a linear function of a vector
of predictors,

�i(t) = �0(t) exp(� · xi), (8)

where xi is the vector of predictors for word i, and
� is the vector of coefficients. Each cell xi,j is set
to the mean value of predictor j for word i over
the training period t = {1...k} where k = 3.

For words which begin to decline in popular-
ity in our dataset, we treat the point of decline
as the “death” date. The remaining words are
viewed as censored instances: they may begin to
decline in popularity at some point in the future,
but this time is outside our frame of observation.
We use frequency, social dissemination and lin-
guistic dissemination as predictors in a Cox re-
gression model.10

The estimated coefficients from the regres-
sion are shown in Table 5. We find a nega-
tive coefficient for linguistic dissemination (� =
�0.330, p < 0.001), which mirrors the results
from § 5.2: higher DL indicates a lower haz-
ard of word death, and therefore a higher likeli-
hood of survival. We also find that higher sub-
reddit dissemination has a weak but insignificant
correlation with a lower likelihood of word death
(� = �0.156, p > 0.05). Both of these results

9Higher k values yield similar results.
10Cox regression implemented in the lifelines package

in Python: https://lifelines.readthedocs.io/
en/latest/.

Predictor � std. error Z p

f -0.207 0.0492 -4.21 ***
DL -0.330 0.0385 -8.56 ***
DU 0.0053 0.0518 0.102
DS -0.156 0.0807 -1.928
DT 0.0825 0.0662 1.25

Table 5: Cox regression results for predicting word
death with all predictors (f+L+S) averaged over
first k = 3 months. *** indicates p < 0.001,
otherwise p > 0.05.
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Figure 5: Distribution of concordance scores (10-
fold cross-validation) of the Cox regression mod-
els across feature sets.

lend additional support to the strong form of the
hypothesis H2.

The predictive accuracy of survival analysis can
be quantified by a concordance score. A score of
1.0 on heldout data indicates that the model per-
fectly predicts the order of death times; a score
of 0.5 indicates that the predictions are no bet-
ter than a chance ordering. We perform 10-fold
cross-validation of the survival analysis model,
and plot the results in Figure 5. The model with
access to linguistic dissemination (f+L) consis-
tently achieves higher concordance than the base-
line frequency-only model (f), (t = 4.29, p <
0.001), and the model with all predictors f+L+S
significantly outperforms the model with access
only to frequency and social dissemination f+S
(t = 4.64, p < 0.001). The result is reinforced
by testing the goodness-of-fit for each model with
model deviance, or difference from the null model.
The f+L model has lower deviance, i.e. better fit,
than the null model (�2 = 93.3, p < 0.01), and
the f+L+S does not have a significantly lower de-
viance than the f+L model (�2 = 4.6, p = 0.80),
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suggesting that adding social dissemination does
not significantly improve model fit.

6 Discussion

All four analyses support H2: linguistic dissemi-
nation was the strongest predictor of monthly fre-
quency changes in growth words, the best differ-
entiator of growth and decline words in causal and
predictive tasks, and the most effective warning
sign that a word is about to decline. Linguistic
dissemination can be related to theories such as
the FUDGE factors (Chesley and Baayen, 2010;
Cook, 2010; Metcalf, 2004), in which a word’s
growth depends on frequency (F), unobtrusiveness
(U), diversity of users and situations (D), gener-
ation of other forms and meanings (G), and en-
durance (E). Linguistic dissemination provides an
example of “diversity of situation.”

The effectiveness of linguistic dissemination
is exemplified in pairs of semantically similar
growth and decline words. In the first k = 3
months of growth, the growth word kinda has
a relatively high ratio of linguistic to frequency
(DL

f = 0.270) as compared with the semanti-
cally similar decline word sorta (0.055). This pat-
tern holds for other pairs of semantically similar
growth/decline words: fuckwit and fuckboy; lolno
and lmao; yup and yas. While not exhaustive, such
a trend suggests that the growth words were able to
reach a wider range of lexical contexts and there-
fore succeed where the decline words failed.

Regarding H1, we generally found a positive
role for social dissemination as well, although
these results were not consistent across all metrics
and tests, particularly in the survival analysis. This
matches the conclusion from Garley and Hocken-
maier (2012), who argued that social dissemina-
tion is less predictive of word adoption than Alt-
mann et al. (2011) originally suggested. One pos-
sible explanation is the inclusion of word cate-
gories such as proper nouns in the analysis of Alt-
mann et al. (2011); the adoption of such terms may
rely on social dynamics more than the adoption
of nonstandard terms. The lower predictive power
of thread and user dissemination is also interest-
ing and suggests that subreddits are more socially
salient in terms of exposing nonstandard words to
potential adopters.

Limitations One limitation in the study was the
exclusion of orthographic and morphological fea-
tures such as affixation, which has been noted

as a predictor of word growth (Kershaw et al.,
2016). Future work should incorporate these fea-
tures as additional predictors. Our study also omit-
ted borrowings, unlike prior work in word adop-
tion that has focused on borrowings (Chesley and
Baayen, 2010; Garley and Hockenmaier, 2012).
Our early language-filtering steps eliminated most
non-English words from the vocabulary, although
it would have been interesting to examine loan-
word use in English-language posts. Finally, our
study was limited by the focus on nonstandard
words rather than memetic phrases (e.g., like a
boss) which may show a similar correlation be-
tween dissemination, growth and decline (Bybee,
2006).

Future work We approximate linguistic dis-
semination using trigram counts, because they
are easy to compute and they generalize across
word categories. In future work, a more sophis-
ticated approach might estimate linguistic dissem-
ination with syntactic features such as appearance
across different phrase heads (Kroch, 1989; Ito
and Tagliamonte, 2003) or across nouns of dif-
ferent semantic classes (D’Arcy and Tagliamonte,
2015). Future work should also investigate more
semantically-aware definitions of linguistic dis-
semination. The existence of semantic “neigh-
bors” occurring in similar contexts (e.g., the in-
fluence of standard intensifier very on nonstan-
dard intensifier af ) may prevent a new word from
reaching widespread popularity (Grieve, 2018).
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Abstract

Statistical phylogenetic models have allowed
the quantitative analysis of the evolution of a
single categorical feature and a pair of binary
features, but correlated evolution involving
multiple discrete features is yet to be explored.
Here we propose latent representation-based
analysis in which (1) a sequence of discrete
surface features is projected to a sequence of
independent binary variables and (2) phylo-
genetic inference is performed on the latent
space. In the experiments, we analyze the fea-
tures of linguistic typology, with a special fo-
cus on the order of subject, object and verb.
Our analysis suggests that languages sharing
the same word order are not necessarily a co-
herent group but exhibit varying degrees of di-
achronic stability depending on other features.

1 Introduction

Research on structural properties (typological fea-
tures) of language, such as the order of subject, ob-
ject and verb (examples are SOV and SVO) and the
presence or absence of tone, is largely synchronic
in nature. Since languages of the world exhibit
an astonishing diversity, the sample of languages
used in a typical typological study is selected from
a diverse set of language families and from vari-
ous geographical regions. Not surprisingly, most
of them lack historical documentation that allows
us to directly trace their evolutionary history.

At the same time, however, typologists have
long struggled to dynamicize synchronic typol-
ogy, or to infer diachronic universals of change
from current cross-linguistic variation (Green-
berg, 1978; Nichols, 1992; Maslova, 2000; Bickel,
2013). They have also tried to uncover deep histor-
ical relations between languages (Nichols, 1992).

One of the main developments in diachronic ty-
pology in the last decade has been the applica-
tion of powerful statistical tools borrowed from the

?

?

?
?

?

(a) (b)

Figure 1: Phylogenetic comparative methods. Each
node denotes a language with its state, or the value
of its feature, indicated by color. (a) The task set-
tings. A tree and the states of the leaf nodes are ob-
served. The states of the internal nodes are latent
variables to be inferred. (b) A result of inference.
The cross sign on the branch indicates a change of
the state.

field of evolutionary biology (Dediu, 2010; Green-
hill et al., 2010; Dunn et al., 2011; Maurits and
Griffiths, 2014; Greenhill et al., 2017). As illus-
trated in Figure 1, the key idea is that if a phy-
logenetic tree is given, we can infer the ances-
tral states with varying degrees of confidence, and
by extension, can induce diachronic universals of
change. To perform statistical inference, we as-
sume that each feature evolves along the branches
of the tree according to a continuous-time Markov
chain (CTMC) model, which is controlled by a
transition rate matrix (TRM). Once TRMs are es-
timated, we can gain insights from them, for ex-
ample, by simulating language evolution (Maurits
and Griffiths, 2014).

One problem in previous studies is that they do
not adequately model a characteristic of typolog-
ical features that has been central to linguistic ty-
pology, that is, the fact that these features are not
independent but depend on each other (Greenberg,
1963; Daumé III and Campbell, 2007). For ex-
ample, if a language takes a verb before an ob-
ject (VO), then it takes postnominal relative clauses
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Figure 2: Overview of our framework. Observed
and latent variables are marked in gray and white,
respectively.

(NRel) (VO ! NRel, in shorthand), and a re-
lated universal, RelN ! OV, also holds (Dryer,
2011). Despite the long-standing interest in inter-
feature dependencies, most statistical models as-
sume independence between features (Daumé III,
2009; Dediu, 2010; Greenhill et al., 2010, 2017;
Murawaki, 2016; Murawaki and Yamauchi, 2018).
A rare exception is Dunn et al. (2011), who ex-
tended Greenberg’s idea by applying a phyloge-
netic model of correlated evolution (Pagel and
Meade, 2006). However, the model adopted by
Dunn et al. (2011) can only handle the dependency
between a pair of binary features. Typological fea-
tures have two or more possible values in general,
and more importantly, the dependencies between
features are not limited to a pair (Itoh and Ueda,
2004). For example, the order of relative clauses
has connections to the order of adjective and noun
(AdjN or NAdj), in addition to the order of object
and verb, as two universals, RelN ! AdjN and
NAdj ! NRel, are known to hold well (Dryer,
2011).

In this paper, we propose latent representation-
based analysis of diachronic typology. Figure 2
shows an overview of our framework. Follow-

ing Murawaki (2017), we assume that a sequence
of discrete surface features that represents a lan-
guage is generated from a sequence of binary la-
tent variables called parameters (Step 1). Pa-
rameters are, by assumption, independent of each
other and switching one parameter entails multi-
ple changes of surface features in general. Thus,
by performing phylogenetic inference on the la-
tent space, we can handle the dependencies of all
available features in an implicit manner (Step 2).
The latent parameter representation can be pro-
jected back to the surface feature representation
when needed for analysis. Like Maurits and Grif-
fiths (2014), we run simulation experiments to in-
terpret the estimated model parameters (Step 3).

What we propose is a general framework with
which we can analyze any discrete feature, but as a
proof-of-concept demonstration, we follow Mau-
rits and Griffiths (2014) in focusing on the order of
subject, object and verb (hereafter simply referred
to as basic word order or BWO).1 In the dataset
we use, the BWO feature has 7 possible values,
6 logically possible orders plus the special value
No dominant order (Dryer, 2013b), mean-
ing that it cannot be analyzed directly with Dunn
et al.’s model. We show that languages sharing
the same word order are not a coherent group but
exhibit varying degrees of diachronic stability de-
pending on other features.

2 Related Work

2.1 Statistical Diachronic Typology

The building block of statistical phylogenetic
models2 is a time-tree, which places nodes on an
axis of time. In their standard applications to
language (Gray and Atkinson, 2003; Bouckaert
et al., 2012), time-trees are inferred from cognate

1 We chose the BWO feature because it is appealing to a
wider audience. We are aware that Matthew S. Dryer, who
provided language data for the BWO feature, favors binary
classifications (OV vs. VO and SV vs. VS) over the six-way
classification (Dryer, 1997, 2013a). He argues that the binary
classifications are more fundamental than the six-way clas-
sification, but our latent representation-based analysis does
not require feature values to be primitive in nature because it
reorganizes feature values into various latent parameters.

2 Statistical phylogenetic models can be either distance-
based and character-based. Character-based models are clas-
sified into parsimony-based and likelihood-based. In this pa-
per, we focus on likelihood-based Bayesian models for their
ability to date internal nodes. However, it is worth noting that
attempts to overcome the limitations of the tree model mostly
rely on non-likelihood-based models (Nakhleh et al., 2005;
Nelson-Sathi et al., 2010).
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Dep. # of language families Tree sources Dating Abs.
Dediu (2010) single 1 experts yes no
Greenhill et al. (2010) single 1 cognates no yes
Maurits and Griffiths (2014) single 1 or 7 combined other no yes
Dunn et al. (2011) bin. pair 1 cognates no yes
Ours all 309 incl. 154 isolates experts yes yes

Table 1: A comparison of time-tree-based approaches to diachronic typology. (1) Feature dependencies
modeled: independent (single), a pair of binary features (bin. pair) or all dependencies considered (all).
(2) The number of language families (i.e., trees) used for each run of phylogenetic inference. (3) The
sources of the trees used in inference: tree topologies established by historical linguists (experts), time-
trees reconstructed by phylogenetic models using cognate data (cognates), or time-trees obtained by
distance-based clustering based on geographical coordinates or others (other). (4) Whether the dates of
internal nodes are inferred (yes) or given a priori (no). (5) Whether absolute dates are obtained. If no,
only dates relative to the root node are inferred.

data (Dyen et al., 1992; Greenhill et al., 2008).3

However, if a tree is given a priori, phylogenetic
models can also be used to estimate the parameters
of a TRM, which controls how languages change
their feature values over time. This is how typo-
logical features are analyzed in previous studies.

Dediu (2010) aggregated TRMs taken from var-
ious families to measure the stability of features.
Greenhill et al. (2010) compared typological data
with cognate data in terms of stability. Maurits
and Griffiths (2014) focused on the BWO feature
and analyzed how it had changed in the past and
was likely to change in the future. Dunn et al.
(2011) estimated TRMs for pairs of binary fea-
tures and found that perceived correlated evolution
was mostly lineage-specific rather than universal.

Taking a closer look at these studies, we can see
that they vary as to how to prepare trees, as sum-
marized in Table 1. Leaf nodes are assumed to
be at the present date t = 0, but how can we as-
sign backward dates t to internal nodes? A pop-
ular approach (Greenhill et al., 2010; Dunn et al.,
2011) is to construct a time-tree with absolute (cal-
endar) dates, using binary-coded lexical cognate
data, and then to fit each trait of interest indepen-
dently on the time-tree.4

However, cognate data are available only for
a handful of language families such as Indo-
European, Austronesian and Niger-Congo (or its
mammoth Bantu branch). Moreover, phylogenetic

3 See Pereltsvaig and Lewis (2015) for a criticism of
computational approaches to historical linguistics and Chang
et al. (2015) for an elegant solution to a set of problems com-
monly found in inferred time-trees.

4To be precise, a set of tree samples given by MCMC sam-
pling is usually employed to account for uncertainty.

inference was performed separately one after the
other. This marks a sharp contrast with the long
tradition of testing against a worldwide sample. In
fact, it is suggested that sample diversity and ag-
gregate time depth are not large enough to draw
meaningful conclusions (Croft et al., 2011; Levy
and Daumé III, 2011).

For this reason, we take another approach,
which was employed by Dediu (2010). He used
language families established by historical lin-
guists. Because such tree topologies are not as-
sociated with dates, he inferred the dates of in-
ternal nodes together with the states of internal
nodes and TRMs. This was possible because he
jointly fitted a sequence of traits, instead of fitting
each trait independently. If multiple traits are com-
bined, they provide considerable information on a
branch length, or the time elapsing from a parent
to a child, because the elapsed time is roughly in-
versely proportional to the similarity between the
two nodes.5

Our approach differs from Dediu’s mainly in
two points. First, whereas Dediu (2010) per-
formed posterior inference separately for each lan-
guage family, we tie a single set of TRMs to all
available language families. Second, Dediu (2010)
only inferred relative dates because he did not
perform calibration (Drummond and Bouckaert,
2015). In order to assign calendar dates to nodes,
we use multiple calibration points (the clock in
Figure 2 indicates a calibration point). As is com-

5 Although some previous studies adopted relaxed clock
models, in which different branches have different rates of
evolution (Drummond and Bouckaert, 2015), we use the sim-
ple strict clock model because our calibration points are not
large enough in number to harness the very flexible models.
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monly done in the cognate-based reconstruction
of a time-tree (Bouckaert et al., 2012), we set the
Gaussian, Gaussian mixture, log-normal and uni-
form distributions as priors on the dates of the cor-
responding internal nodes.

2.2 Latent Representations of Languages
While previous studies analyzed the evolution of a
single categorical feature (Dediu, 2010; Greenhill
et al., 2010; Maurits and Griffiths, 2014) or a pair
of binary features (Dunn et al., 2011), we capture
the dependencies of all available features by map-
ping each language to a sequence of independent
latent variables. To our knowledge, Murawaki
(2015) was the first to introduce latent representa-
tions to typological features. Pointing out several
critical problems, however, Murawaki (2017) su-
perseded the earlier model. The present study is
built on top of a slightly modified version of the
Bayesian model presented by Murawaki (2017).

Like the present study, Murawaki (2015) per-
formed phylogenetic inference on the latent space.
However, since this model lacks the notion of
time, it does not have descriptive power beyond
clustering. Borrowing statistical models from the
field of evolutionary biology, we perform time-
aware inference.

3 Proposed Method
3.1 Latent Representations of Languages
Central to our framework of diachronic analysis
are the latent representations of languages (Mu-
rawaki, 2017). Each language l is represented
as a sequence of N discrete features xl,⇤ =
(xl,1, · · · , xl,N ) 2 N

N
0 . xl,n can take a binary

value (xl,n 2 {0, 1}) or categorical value (xl,n 2
{1, 2, · · · , Fn}, where Fn is the number of dis-
tinct values). We assume that xl,⇤ is stochastically
generated from its latent representation, zl,⇤ =
(zl,1, · · · , zl,K) 2 {0, 1}K , where K is the num-
ber of binary parameters, which is given a priori.

Dependencies between surface features are cap-
tured by weight matrix W 2 R

K⇥M . M will be
described below. In the generative story, we first
calculate feature score vector ✓̃l,⇤ = (zT

l,⇤W )T 2
R

M . We then obtain model parameter vector
✓l,⇤ 2 (0, 1)M by normalizing ✓̃l,⇤ for each feature
type n. We use the sigmoid function for binary
features,

✓l,f(n,1) =
1

1 + exp(�✓̃l,f(n,1))
, (1)

and the softmax function for categorical features,

✓l,f(n,i) =
exp(✓̃l,f(n,i))PFn

i0=1 exp(✓̃l,f(n,i0))
. (2)

Note that while a binary feature corresponds to
one model parameter, categorical feature n is
tied to Fn model parameters. We use func-
tion f(n, i) 2 {1, · · · , m, · · · , M} to map fea-
ture n to the corresponding model parameter in-
dex. Finally, we draw a binary feature from
Bernoulli(✓l,f(n,1)), and a categorical feature
from Categorical(✓l,f(n,1), · · · , ✓l,f(n,Fn)).

To gain an insight into how W captures inter-
feature dependencies, suppose that for parameter
k, a certain group of languages take zl,k = 1. If
two categorical feature values (n1, i1) and (n2, i2)
have large positive weights (i.e., wk,f(n1,i1) > 0
and wk,f(n2,i2) > 0), then the pair must often co-
occur in these languages because W raises both
✓l,f(n1,i1) and ✓l,f(n2,i2). Likewise, the fact that
two feature values do not co-occur can be encoded
as a positive weight for one value and a negative
weight for the other.

The remaining question is how zl,k is generated.
We draw z⇤,k = (z1,k, · · · , zL,k) from an autolo-
gistic model (Besag, 1974) that incorporates the
observation that phylogenetically or areally close
languages tend to take the same value.

To complete the generative story, let X and Z be
the matrices of languages in the surface and latent
representations, respectively, and let A be a set of
latent variables controlling K autologistic models.
The joint distribution is defined as

P (A, Z, W, X)=P (A)P (Z|A)P (W )P (X|Z, W ),

where hyperparameters are omitted for brevity.
For prior probabilities P (A) and P (W ), please re-
fer to Murawaki (2017).

Even if less than 30% of the items of X are
present, this model has been demonstrated to re-
cover missing values reasonably well. Also, when
plotted on a world map, some parameters appear to
retain phylogenetic and areal signals observed for
surface features, indicating that they are not mere
statistical artifacts (Murawaki, 2017).

3.2 Transition Rate Matrices (TRMs)
We assume that each parameter k independently
evolves along the branches of trees according
to a continuous-time Markov chain (CTMC)
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model (Drummond and Bouckaert, 2015). The
CTMC is a continuous extension to the more fa-
miliar discrete-time Markov chain. It is is con-
trolled by a TRM Qk. If the number of states (pos-
sible values) is 2, then Qk is a 2 ⇥ 2 matrix:

Qk =

✓
�↵k ↵k

�k ��k

◆
.

We set Gamma priors on ↵k, �k > 0.
Qk can be used to calculate the transition prob-

ability, or the probability of language l taking
value b for parameter k conditioned on l’s parent
⇡(l) and t, the time span between the two:

P (zl,k = b|z⇡(l),k = a, t) = exp(tQk)a,b. (3)

The matrix exponential exp(tQk) can be solved
analytically if Qk is a 2 ⇥ 2 matrix:

exp(tQk)=

 
�k+↵ke�(↵k+�k)t

↵k+�k

↵k�↵ke�(↵k+�k)t

↵k+�k
�k��ke�(↵k+�k)t

↵k+�k

↵k+�ke�(↵k+�k)t

↵k+�k

!
.

As t approaches to infinity, we obtain the station-
ary probability ( �k

↵k+�k
, ↵k

↵k+�k
)T. We can see that

↵k and �k control both the speed of change (the
larger the higher) and the stationary distribution.

A root node has no parent by definition. We
draw the state of a root node from the stationary
distribution. Thus, language isolates do have im-
pact on posterior inference of TRMs.

3.3 Posterior Inference of Time-trees
To estimate TRMs, we need to specify the gen-
erative model of time-trees and an inference al-
gorithm. In the generative story, each tree topol-
ogy is drawn from some uniform distribution. The
dates of its nodes are determined next. If the node
in question is not a calibration point, its date is
drawn from some uniform distribution, subject to
the ancestral ordering constraint: a node must be
older than its descendants. If the node is a calibra-
tion point, its date is drawn from the correspond-
ing prior distribution.6 TRM parameters, ↵k and
�k, are generated from Gamma priors. For the root
node, the value of parameter k is drawn from the
corresponding stationary distribution. The states
of the non-root nodes are generated using Eq. (3).

Given tree topologies, the states of the leaf
nodes and calibration points, we need to infer

6This model is slightly leaky because some priors (e.g.,
Gaussian) assign non-zero probabilities to illogical time-trees
that violate the ancestral ordering constraint.

(1) the dates of the internal nodes, (2) the states
of the internal nodes, and (3) TRM parameters, ↵k

and �k, for each latent parameter k. Gibbs sam-
pling updates of these variables are as follows:

Update dates We update the dates of the inter-
nal nodes one by one. The time span in which
the target node can move is bound by its parent (if
there is) and its eldest child. We use slice sam-
pling (Neal, 2003) to update the date. In addition,
we use a Metropolis-Hastings operator that multi-
plies the dates of all the internal nodes of a tree by
a rate drawn from a log-normal distribution.

Update states For each parameter k, we block-
sample a whole given tree. Specifically, we
implement a Bayesian version of Felsenstein’s
tree-pruning algorithm, which is akin to the for-
ward filtering-backward sampling algorithm for
Bayesian hidden Markov models.

Update ↵k and �k We jointly sample ↵k and �k

for each k. Since both the transition and station-
ary probabilities can be obtained analytically for
binary traits, we use Hamiltonian Monte Carlo to
exploit gradient information (Neal, 2011).

3.4 Three-Step Analysis

Now we are ready to elaborate on the proposed
framework of diachronic analysis (Figure 2).

Step 1 We map each language, represented as a
sequence of N discrete surface features, to a se-
quence of K binary latent parameters. Let feature
matrix X be decomposed into observed and miss-
ing portions, Xobs and Xmis, respectively. Given
Xobs, we use Gibbs sampling to infer A, param-
eter matrix Z, weight matrix W , and Xmis (Mu-
rawaki, 2017).7

In the present study, we set K = 100. We run
5 independent MCMC chains. For each chain, we
start with 1,000 burn-in iterations. We then ob-
tain 10 samples with an interval of 10 iterations.
Note that after burn-in iterations, we fix W and
only sample A, Z, and Xmis to avoid the identifi-
ability problems (e.g., label-switching). For each
item of Z and Xmis, we output the most frequent
value among the 10 samples. We do this to reduce
uncertainty.

7 We employ a slightly modified Metropolis-Hastings op-
erator to improve the mobility of Z.
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Step 2 We fit a set of K TRMs on family trees
around the world. Formally, what are observed are
tree topologies, the states of the leaf nodes (i.e.,
sequences of latent parameters), and multiple cali-
bration points. Given these, we infer TRM param-
eters, ↵k and �k, for each latent parameter k, as
well as the dates and states of the internal nodes.
We, again, use Gibbs sampling as explained in
Section 3.3.

We collect 10 samples with an interval of 10 it-
erations after 1,000 burn-in iterations. We do this
for each of the 5 samples obtained in Step 1. As a
result, we obtain 50 samples in total.

Step 3 We analyze the TRMs by simulating lan-
guage evolution. Given the latent representation of
language l, we stochastically generate its descen-
dant l0 after some time span t. Specifically, we
draw zl0,k according to the transition probability of
Eq. (3) for each parameter k. Using weight matrix
W , we then project the latent representation zl0,⇤
back to the surface representation xl0,⇤. To be pre-
cise, we use model parameter vector ✓l0,⇤, instead
of xl0,⇤, for further analysis. For each of the 50
samples obtained in Step 2, we simulate the evolu-
tion of a given language 100 times (5,000 samples
in total).

4 Experiments

4.1 Data and Preprocessing
The database of typological features we used is
the online edition8 of the World Atlas of Language
Structures (WALS) (Haspelmath et al., 2005). We
preprocessed the database as was done in Mu-
rawaki (2017), with different thresholds. As a re-
sult, we obtained a language–feature matrix con-
sisting of L = 2,607 languages and N = 152
features. Only 19.98% of items in the matrix were
present. We manually classified features into bi-
nary and categorical ones. The number of model
parameters, M , was 760.

We used Glottolog 3.2 (Hammarström et al.,
2018) as the source of family trees. Glottolog has
three advantages over Ethnologue (Lewis et al.,
2014), another commonly-used catalog of the
world’s languages. (1) Glottolog makes explicit
that it adopts a genealogical classification, rather
than hierarchical clusterings of modern languages.
(2) It reflects more recent research. (3) Map-
ping between Glottolog and WALS is easy be-

8http://wals.info/

cause WALS provides Glottolog’s language codes
(glottocodes) when available.

After Step 1 of Section 3.4, we dropped lan-
guages from WALS that could not be mapped to
Glottolog. As a result, 2,557 languages remained.
We subdivided a Glottolog node if multiple lan-
guages from WALS shared the same glottocode.
We removed leaf nodes that were not present in
WALS and repeatedly dropped internal nodes that
had only one child. We obtained 309 language
families among which 154 had only one node (i.e.,
language isolates).

We collected 50 calibration points from sec-
ondary literature (Holman et al., 2011; Bouckaert
et al., 2012; Gray et al., 2009; Maurits and Grif-
fiths, 2014; Grollemund et al., 2015). For exam-
ple, we set a Gaussian prior with mean 2,500 BP
(before present) and standard deviation 500 on the
date of (Proto-)Hmong-Mien. See Table S.1 of the
supplementary materials for details. Our calibra-
tion points are by no means definitive or exhaus-
tive but should be seen as a first step toward world-
scale dating.

4.2 Case Study: Basic Word Order (BWO)

As a proof-of-concept demonstration of the pro-
posed framework, we investigate the BWO fea-
ture, or WALS’s Feature 81A (Dryer, 2013b). The
cross-linguistic variation of BWO attracts atten-
tion not only from typologists but from psycholin-
guists (see Maurits and Griffiths (2014) for a brief
review). Some claim that the fact that SOV is the
most frequent order indicates its optimality, pre-
sumably in terms of functionality. Some others
point to an apparent historical trend of SOV chang-
ing to SVO, but not vice versa (Gell-Mann and
Ruhlen, 2011), which might imply (1) the func-
tional superiority of SVO over SOV and (2) an even
higher prevalence of SOV in the past. SOV prefer-
ences in emerging sign languages (Sandler et al.,
2005) and in elicited pantomime (Goldin-Meadow
et al., 2008) are also reported.

Maurits and Griffiths (2014) fitted a 6⇥6 TRM9

on large language families. However, we sus-
pect that singling out BWO is oversimplification.
Given its profound effect on the whole grammati-
cal system, a BWO change can hardly occur inde-
pendently of other features. In fact, Mithun (1995)
lists a variety of morphological factors that have

9The special value No dominant order was re-
moved in their experiments.
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Figure 3: Transition probability of BWO. An item
of the matrix (a, b) indicates how probable a lan-
guage with word order a will take word order b
after 2,000 years. Note that this covers the sce-
nario in which the language switches to another
word order c before changing to b.

diachronically reduced the rigidity of SOV order
in Native American languages. Her analysis sug-
gests that languages sharing the same word order
might not be a monolithic group.

Here, we use latent representation-based anal-
ysis to answer questions: how variable language
sharing the same BWO are with respect to di-
achronic stability, and what kind of features are
correlated with BWO stability?

4.3 Variability of Diachronic Stability

Among the 2,557 modern languages, we chose
1,357 languages for which the BWO feature was
present. We simulated evolution with t = 2,000,
as described in Section 3.4. Let n be the index
of the BWO feature. For the 5,000 samples of
each simulated language l0, we averaged the BWO
probability vectors, ✓l0,f(n,1), · · · , ✓l0,f(n,Fn).

Before going into inter-language variability, let
us take a look at the overall trend. We took the
average of the BWO probability vectors for each
word order. The result is shown in Figure 3. Our
findings largely agree with those of Maurits and
Griffiths (2014): (1) SOV is the most diachroni-
cally stable word order, which is followed by SVO,
(2) SOV prefers changing to SVO over VSO (al-
though hardly visually recognizable), and (3) VSO
is more likely to change to SVO than to SOV, just
to name a few.

Next, the variability is visualized in Figure 4.
We can see that languages sharing the same word
order differ considerably in terms of diachronic

62V

6V2

V62

V26

2V6

26V

0.0 0.2 0.4 0.6 0.8 1.0

1o dominant order

Figure 4: Variability in the probability of keep-
ing the same word order. For word order i, the
x-axis indicates the average of ✓l0,f(n,i), the proba-
bility of taking word order i after 2,000 years. The
y-axis indicates the relative frequency of the cor-
responding probability among the languages with
word order i. Kernel density estimation is used for
smoothing. The pulse in each box shows the corre-
sponding probability estimated by directly fitting
the 7 ⇥ 7 TRM of the surface feature.

stability. For comparison, we fitted the 7⇥7 TRM
of the BWO feature on the samples of time-trees
obtained in Step 2 of Section 3.4. For SOV and
SVO, the probabilities based on the surface fea-
ture pointed to the modal probabilities based on
the latent representations. This is somewhat sur-
prising because we anticipated that the combina-
tion of the stochastic surface-to-latent and latent-
to-surface mappings would amplify uncertainty of
estimation.

The two least common word orders, OVS
(0.8%) and OSV (0.3%) exhibited huge gaps be-
tween the two types of probabilities. The proba-
bilities based on the surface feature were consis-
tently larger (i.e., more stable). Surface feature-
based estimation had no other way to explain the
presence of these uncommon word orders than
slowing down the convergence to the stationary
distribution (otherwise they go extinct). Maurits
and Griffiths (2014) also reported some counter-
intuitive results regarding OVS and OSV. By con-
trast, latent parameter-based estimation appears to
have explained the low frequencies partly with
the stochasticity of observation associated with the
latent-to-surface mapping.

Now we attempt to explain the variability of di-
achronic stability. Although we have all model pa-
rameters in hand, it is not easy to manually ana-
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Weight Explanatory variable (feature: value)
0.01527 59A Possessive Classification: More than

five classes
0.01297 90A Order of Relative Clause and Noun:

Relative clause-Noun
0.01138 85A Order of Adposition and Noun Phrase:

Postpositions
0.00998 94A Order of Adverbial Subordinator and

Clause: Final subordinator word
0.00889 51A Position of Case Affixes: Case suffixes

�0.02507 93A Position of Interrogative Phrases in
Content Questions: Initial interrogative
phrase

�0.02576 26A Prefixing vs. Suffixing in Inflectional
Morphology: Weakly prefixing

�0.02738 143E Preverbal Negative Morphemes:
NegV

�0.03169 85A Order of Adposition and Noun Phrase:
Inpositions

�0.08360 85A Order of Adposition and Noun Phrase:
No dominant order

Table 2: Regression analysis of variability for SOV.
10 among 94 variables are shown.

lyze their complex dependencies. The approach
we adopt in the present study is to let a sim-
pler model explain the model’s complex behav-
ior. Specifically, we used linear regression with
L1 regularization (i.e., lasso). The hyperparameter
was tuned using 3-fold cross-validation. For each
word order i, the target variable was the average
of ✓l0,f(n,i) while explanatory variables were the
current surface features, xl,1, · · · , xl,N . For bet-
ter interpretability, we excluded from explanatory
variables surface features that trivially depended
on the BWO feature (Takamura et al., 2016). Note
that missing values were imputed in Step 1 of Sec-
tion 3.4.

Tables 2 and 3 show the results of regres-
sion analysis for SOV and SVO languages, respec-
tively. As expected, feature values typically asso-
ciated with the specified word order had positive
weights while negative weights indicate inconsis-
tency. A stable SOV language may use prenomi-
nal relative clauses, postpositions and/or case suf-
fixes. The trend was less clear for SVO languages,
but those characterized by heavy use of prefixes
were stable too. Interestingly, Feature 85A (Or-
der of Adposition and Noun Phrase) had two posi-
tively weighted values: Prepositions and No
adpositions. We speculate that SVO order
is suitable for analytic languages that rely heav-
ily on word ordering to encode syntactic structure
(e.g., English and languages of Mainland South-
east Asia) but is not necessarily so for languages
with rich morphological devices for marking syn-

Weight Explanatory variable (feature: value)
0.01797 4A Voicing in Plosives and Fricatives: In

both plosives and fricatives
0.01403 33A Coding of Nominal Plurality: Plural

prefix
0.01095 85A Order of Adposition and Noun Phrase:

Prepositions
0.00995 92A Position of Polar Question Particles:

Final
0.00856 85A Order of Adposition and Noun Phrase:

No adpositions
0.00670 26A Prefixing vs. Suffixing in Inflectional

Morphology: Strong prefixing
�0.01401 87A Order of Adjective and Noun: No dom-

inant order
�0.01440 87A Order of Adjective and Noun:

Adjective-Noun
�0.01974 57A Position of Pronominal Possessive Af-

fixes: Possessive suffixes
�0.03226 51A Position of Case Affixes: Case suffixes

Table 3: Regression analysis of variability for SVO.
10 among 52 variables are shown.

Prob. Language Family Aff.
0.854 Fyam Atlantic-Congo WS
0.828 Younuo Bunu Hmong-Mien LA
0.825 Czech Indo-European WS
0.825 Tetum Austronesian LA
0.824 Stieng Austroasiatic LA
0.824 Alune Austronesian EQ
0.822 Berom Atlantic-Congo SP
0.822 Paulohi Austronesian EQ
0.821 South-Central Kikongo Atlantic-Congo SP
0.820 Abun (isolate) LA

Table 4: Some of the most stable SVO languages
with the values of the affixation feature (Dryer,
2013c). The first column indicates the probabil-
ities of keeping the SVO order after 2,000 years.
Names of languages and language families are
taken from Glottolog. The values of the affixation
feature are EQ (Equal prefixing and suffixing), LA
(Little affixation), SP (Strong prefixing), and WS
(Weakly suffixing).

tactic structure so that word ordering can relatively
freely convey information structure.

4.4 Language-Specific Analysis
In Section 4.3, we suggested that stable SVO lan-
guages do not form a coherent group but can be
grouped into at least two clusters. This can be con-
firmed in Table 4, where most of the most stable
SVO languages exhibit either (1) little affixation
or (2) strong prefixation. To analyze these lan-
guages in detail, we performed language-specific
simulations. We chose Tetum and South-Central
Kikongo as the examples of analytic and strongly
prefixing languages, respectively.

Figure 5 shows the word order probabilities of
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Figure 5: Simulated evolution of Tetum BWO.
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Figure 6: Simulated evolution of South-Central
Kikongo BWO.

Tetum as a function of time. For each time t,
we performed simulation 500 times for each of
the 50 samples and took the average of the BWO
probability vectors, ✓l0,f(n,1), · · · , ✓l0,f(n,Fn). Ac-
cording to our analysis, Tetum will remain SVO
with a probability of 81.1% at t = 2,000. SVO
was followed by SOV (8.4%) and No dominant
order (5.3%).

What will the Austronesian language of East
Timor look like in the future, if it switches to SOV?
To answer this question, we performed regression
analysis again with t = 2,000. For each word or-
der i, the target variable was ✓l0,f(n,i) of each sam-
ple of simulated language l0 whereas explanatory
variables were the items of the probability vec-
tor ✓l0,⇤. In other words, we aimed at finding out
features that were characteristic of the specified
word order. As before, we removed surface fea-
tures with trivial dependencies on the BWO fea-
ture (Takamura et al., 2016) as well as the BWO
feature itself.

Table 5 shows the result of regression analy-
sis. If the relatively analytic language switches
to SOV, Tetum will be characterized by a holis-
tic reconfiguration. It is likely to develop suf-
fixes and to replace prepositions with postposi-

Weight Explanatory variable (feature: value)
0.1256 85A Order of Adposition and Noun Phrase:

Postpositions
0.1086 16A Weight Factors in Weight-Sensitive Stress

Systems: Coda consonant
0.0687 69A Position of Tense-Aspect Affixes: Tense-

aspect suffixes
0.0552 35A Plurality in Independent Personal Pro-

nouns: Number-indifferent pronouns
0.0518 2A Vowel Quality Inventories: Large (7-14)
0.0506 122A Relativization on Subjects: Non-

reduction

Table 5: Regression analysis of the Tetum chang-
ing to SOV order. Top 6 out of 262 variables.

Weight Explanatory variable (feature: value)
0.1048 15A Weight-Sensitive Stress: Left-oriented:

One of the first three
0.0940 85A Order of Adposition and Noun Phrase:

Postpositions
0.0821 16A Weight Factors in Weight-Sensitive Stress

Systems: Coda consonant
0.0715 7A Glottalized Consonants: Ejectives, implo-

sives, and glottalized resonants
0.0661 100A Alignment of Verbal Person Marking:

Accusative
0.0636 64A Nominal and Verbal Conjunction: Both

expressed by juxtaposition

Table 6: Regression analysis of the South-Central
Kikongo changing to SOV order. Top 6 out of 408
variables.

tions. South-Central Kikongo is analyzed in the
same manner, as shown in Figure 6 and Table 6.
The Bantu language of Africa is markedly differ-
ent from Tetum as it is characterized by a higher
tendency to switch to No dominant order.

5 Conclusion

In this paper, we presented a new framework of
latent representation-based analysis of diachronic
typology, which enables us to investigate corre-
lated evolution of multiple surface features in an
exploratory manner. We focused on the order
of subject, object and verb as a proof-of-concept
demonstration, but investigating other features
would be fruitful too. We analyzed the estimated
model parameters with simulation experiments. In
the future, we would like to investigate the inferred
trees in detail.10 The source code is publicly avail-
able at https://github.com/murawaki/
lattyp.
Acknowledgments
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10 A preliminary analysis is presented in Section S.2 of the
supplementary materials.
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Abstract

Dialects are one of the main drivers of lan-
guage variation, a major challenge for natural
language processing tools. In most languages,
dialects exist along a continuum, and are com-
monly discretized by combining the extent of
several preselected linguistic variables. How-
ever, the selection of these variables is theory-
driven and itself insensitive to change. We use
Doc2Vec on a corpus of 16.8M anonymous
online posts in the German-speaking area to
learn continuous document representations of
cities. These representations capture contin-
uous regional linguistic distinctions, and can
serve as input to downstream NLP tasks sen-
sitive to regional variation. By incorporating
geographic information via retrofitting and ag-
glomerative clustering with structure, we re-
cover dialect areas at various levels of gran-
ularity. Evaluating these clusters against an
existing dialect map, we achieve a match of
up to 0.77 V-score (harmonic mean of clus-
ter completeness and homogeneity). Our re-
sults show that representation learning with
retrofitting offers a robust general method to
automatically expose dialectal differences and
regional variation at a finer granularity than
was previously possible.

1 Introduction
People actively use dialects to mark their re-
gional origin (Shoemark et al., 2017a,b), making
them one of the main drivers of language varia-
tion. Accounting for this variation is a challenge
for NLP systems (see for example the failed at-
tempts of people with accents trying to use dia-
logue systems. Accounting for variation can sig-
nificantly improve performance in machine trans-
lation (Mirkin and Meunier, 2015; Östling and
Tiedemann, 2017), geolocation (Rahimi et al.,

2017a,b) and help personalize applications and
search.

However, regional variation involves a com-
plex set of grammatical, lexical, and phonologi-
cal features, all of them continuously changing.
Consequently, dialects are not static discrete en-
tities, but exist along a continuum in most lan-
guages. Variational linguistics and dialectology
typically discretize this continuum by using a set
of preselected features (Trudgill, 2000), often in-
cluding outdated vocabulary. The resulting di-
alect areas are highly accurate, but extremely time-
consuming to construct and inflexible (the largest
and to date most comprehensive evaluation of Ger-
man dialects, the Wenker-Atlas (Rabanus et al.,
2010) is almost 150 years old and took decades to
complete). Work in dialectometry has shown that
computational methods, such as clustering (Ner-
bonne and Heeringa, 1997; Prokić and Nerbonne,
2008; Szmrecsanyi, 2008, inter alia) and dimen-
sionality reduction (Nerbonne et al., 1999; Shack-
leton Jr, 2005) can instead be used to identify di-
mensions of variation in manually constructed dis-
crete feature vectors. However, the success of such
approaches depends on precise prior knowledge of
variation features (Lameli, 2013).

Distributed representations, as unsupervised
methods, can complement these methods by cap-
turing similarities between words and documents
(here: cities) along various latent dimensions, in-
cluding syntactic, semantic, and pragmatic as-
pects. These representations are therefore more
compact, less susceptible to data sparsity than la-
tent variable models, and allow us to represent
a large number of possible clusters than feature-
based representations (cf. Luong et al. (2013)).
These properties also allow us to measure similar-
ities on a continuous scale, which makes represen-
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tation learning especially useful for the study of
regional language variation along several linguis-
tic dimensions.

We use a corpus of 16.8 million anonymous
German online posts, cast cities as document la-
bels, and induce document embeddings for these
cities via Doc2Vec (Le and Mikolov, 2014). We
first show that the resulting city embeddings cap-
ture regional linguistic variation at a more fine-
grained, continuous regional distinction than pre-
vious approaches (Bamman et al., 2014; Östling
and Tiedemann, 2017), which operated at a state
or language level.1 We also show that the embed-
dings can serve as input to a geolocation task, out-
performing a bag-of-words model, and producing
competitive results.

However, such representations are susceptible
to linguistic data bias, ignore geographic factors,
and are hard to evaluate with respect to their fit
with existing linguistic distinctions. We address
these problems by including geographic informa-
tion via retrofitting (Faruqui et al., 2015; Hovy
and Fornaciari, 2018): we use administrative re-
gion boundaries to modify the city embeddings,
and evaluate the resulting vectors in a clustering
approach to discover larger dialect regions.

In contrast to most dialectometric approaches
(Nerbonne et al., 1999; Prokić and Nerbonne,
2008), and in line with common NLP practice
(Doyle, 2014; Grieve, 2016; Huang et al., 2016;
Rahimi et al., 2017a), we also evaluate the clus-
tered dialect areas quantitatively. Rather than
testing the geographic extent of individual words
against known dialect areas (Doyle, 2014), we
compare the match of entire geographic regions to
a recent German dialect map (Lameli, 2013). We
use cluster evaluation metrics to measure how well
our clusters match the known dialect regions.

The results show that our method automatically
captures existing (manually determined) dialect
distinctions well, and even goes beyond them in
that it also allows for a more fine-grained qual-
itative analysis. Our research shows that repre-
sentation learning is well suited to the study of
language variation, and demonstrates the poten-
tial of incorporating non-linguistic information via
retrofitting. For an application of our methodol-
ogy to a larger Twitter data set over multiple lan-
guages, see (Hovy et al., In Preparation).

1Han et al. (2014) has used city-level representations, but
have not applied them to the identification of dialect areas.

Contributions In this paper, we make the fol-
lowing contributions to linguistic insights, perfor-
mance improvements, and algorithmic contribu-
tions. We show:

1. how Doc2Vec can be used to learn distributed
representations of cities that capture contin-
uous regional linguistic variation. The ap-
proach is general and can be applied to other
languages and data sets;

2. that the city representations capture enough
distinction to produce competitive results in
geolocation, even this was not the main fo-
cus;

3. that retrofitting can be used to incorporate
geographic information into the embeddings,
extending the original algorithm’s applica-
tions;

4. that the clusterings match with a sociolin-
guistic dialect map (Lameli, 2013), measur-
ing their homogeneity, completeness, and
their harmonic mean (V-measure), and reach
a V-measure of 0.77, beating an informed
baseline;

We publicly release the data, code, and map files
for future research at https://github.com/Bocconi-
NLPLab.

2 Data
2.1 Source
We use data from the social media app Jodel,2

a mobile chat application that lets people anony-
mously talk to other users within a 10km-radius
around them. The app was first published in 2014,
and has seen substantial growth since its begin-
ning. It has several million users in the German-
speaking area (GSA), and is expanding to France,
Italy, Scandinavia, Spain, and lately the United
States. Users can post and answer to posts within
the radius around their own current location. All
users are anonymous. Answers to an initial post
are organized in threads. The vast majority of
posts in Jodel are written in standard German, but
since it is conceptually spoken langauge (Koch
and Oesterreicher, 1985; Eisenstein, 2013), re-
gional and dialectal forms are common, especially
in Switzerland, Austria, and rural areas in South-
ern Germany. The data therefore reflects current

2https://jodel.com/

4384



developments in language dynamics to mark re-
gionality (Purschke, 2018).

We used a publicly available API to collect
data between April and June 2017 from 123 ini-
tial locations: 79 German cities with a popula-
tion over 100k people, all 17 major cities in Aus-
tria (“Mittel- und Oberzentren”), and 27 cities in
Switzerland (the 26 cantonal capitals plus Lugano
in the very south of the Italian-speaking area). Due
to the 10km radius, posts from other nearby cities
get collected as well. We include these additional
cities if they have more than 200 threads, thereby
growing the total number of locations.3 Ulti-
mately, this results in 408 cities (333 in Germany,
27 in Austria, 48 in Switzerland). The resulting lo-
cations are spread relatively evenly across the en-
tire GSA, albeit with some gaps in parts of Ger-
many with low population density. In total, we
collect 2.3 million threads, or 16.8 million posts.

We treat each thread as a document in our rep-
resentation learning setup, labeled with the name
of the city in which the thread took place.

2.2 Preprocessing

We preprocess the data to minimize vocabulary
size, while maintaining regional discriminative
power. We lowercase the input and restrict our-
selves to content words, based on the part-of-
speech (nouns, verbs, adjectives, adverbs, and
proper names), using the spacy4 tagger.

Prior studies showed that many regionally-
distributed content words are topically driven
(Eisenstein et al., 2010; Salehi et al., 2017). Peo-
ple talk more about their own region than about
others, so the most indicative words include place
names (the own city, or specific places within that
city), and other local culture terms, such as sports
teams. We try to minimize the effect of such re-
gional topics, by excluding all named entities, as
well as the names of all cities in our list, to instead
focus on dialectal lexical variation.

We use NLTK5 to remove German stop words,
and to lemmatize the words. While this step re-
moves the inflectional patterns found in German,
which could have regional differences, we fo-
cus here on lexical differences, and lemmatization
greatly reduces vocabulary size, leading to bet-

3The number of threads differs widely even between
cities, ranging from dozens to over 40k in cities like Munich,
Vienna, or Berlin.

4https://spacy.io/
5http://www.nltk.org/

ter representations. While both POS-tagging and
NER can introduce noise, they are more flexible
and exhaustive than pre-defined word lists.6 Fi-
nally, we concatenate collocations based on the
PMI of the adjacent words in the cleaned corpus.
The average instance length is about 40 words af-
ter cleaning.

2.3 Data Statement

The corpus was selected to represent informal, ev-
eryday online speech across the German-speaking
area in Europe, and to capture regional distinc-
tions. The data was acquired via the publicly avail-
able API. The language is mainly standard Ger-
man, but with a substantial amount of dialectal en-
tries, mainly from southern German varieties, as
well as some French and Italian, which could not
be removed without losing dialect. The platform is
anonymous, but mainly used by young people, as
indicated by a prevalence of college-related topics.
It contains spontaneous, written, asynchronous in-
teractions in a chat platform organized by threads.
Anonymous reference to prior interlocutors is pos-
sible. The app is mainly used to discuss everyday
topics, entertainment, flirting, venting, and infor-
mal surveys.

3 Methodology
3.1 Representation Learning

Figure 1: Doc2vec model example for window size 4.

To learn both word and city representations,
we use the Doc2Vec implementation of para-

6Note that stopwords and place names are more reliably
detected in their standard form than in regional variants of
abbreviations, meaning the standard forms are more reliably
excluded if posts are written in High German, than if posts
are written in dialect. This may lead to higher coherence for
regions with a higher amount of non-standard tokens (as in
Switzerland), thereby actually supporting our goal of detect-
ing regional variation.
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graph2vec (Le and Mikolov, 2014) in gensim.7

The model is conceptually similar to word2vec
(Mikolov et al., 2013), but also learns document
label representations (in our case city names), em-
bedded in the same space as the words. We use
distributed bag-of-words (DBOW) training. The
model parameters are fitted by predicting ran-
domly sampled context words from a city vector.
The objective is to maximize the log probability of
the prediction,

y = arg max
W

log
NX

i=1

log(p(wi|k))

where k is a city, and W = wi...N a sequence of
N randomly sampled words from the thread (see
Figure 1 for a schematic representation).

During training, semantically similar words end
up closer together in vector space, as do words
“similar” to a particular city, and cities that are lin-
guistically similar to each other.

Due to the nature of our task, we unfortunately
do not have gold data (i.e., verified cluster labels)
to tune parameters.We therefore follow the set-
tings described in (Lau and Baldwin, 2016) for the
parameters, and set the vector dimensions to 300,
window size to 15, minimum frequency to 10, neg-
ative samples to 5, downsampling to 0.00001, and
run for 10 iterations.

3.2 Visualization
In order to examine whether the city embeddings
capture the continuous nature of dialects, we visu-
alize them. If our assumption holds, we expect to
see gradual continuous change between cities and
regions.

We use non-negative matrix factorization
(NMF) on the 300-dimensional city representation
matrix to find the first three principal components,
normalize them each to values 0.0–1.0 and inter-
pret those as RGB values.8 I.e., we assume the
first principal component signals the amount of
red, the second component the amount of green,
and the third component the amount of blue. This
triple can be translated into a single color value.
E.g., 0.5 red, 0.5 green, and 0.5 blue translates

7https://radimrehurek.com/gensim/
models/doc2vec.html

8Note that instead learning 3-dimensional embeddings
would not amount to the same, as those are likely not equiv-
alent of the three first principal components, and thus not as
useful. 300 dimensions capture other degrees of variation, in-
creasing the chance to capture meaningful latent dimensions.

Figure 2: Gradient color map of first three components
of city embeddings, interpreted as RGB, for all cities
above 200 threads. Color reflects linguistic similarity.

into medium gray. This transformation translates
city representations into color values that preserve
linguistic similarities. Similar hues correspond to
similar representations, and therefore, by exten-
sion, linguistic similarity.

NMF tries to find a decomposition of a given
i-by-k matrix W into d components by a i-by-d
row-representation V and a d-by-k column repre-
sentation H . In our case, d = 3. Since we are only
interested in a reduced representation of the cities,
V , we discard H .

The result is indeed a continuous color gradi-
ent over the cities over 200 threads, see Figure 2.
The circle size for every city indicates the relative
number of threads per location.

In order to get reliable statistics, we restrict our-
selves to cities with more than 200 observed con-
versations (about 2.1M conversations: 1.82M in
Germany, 173k in Austria, and 146k in Switzer-
land). Including cities with fewer conversations
adds more data points, but induces noise, as many
of those representations are based on too little
data, resulting in inaccurate vectors.

Even without in-depth linguistic analysis, we
can already see differences between Switzerland
(green color tones) and the rest of the GSA. Within
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Figure 3: Clustering solutions of retrofit city embeddings for entire GSA with 3, 5, and 8 clusters. Colors denote
clusters, assigned randomly.

Switzerland, we see a distinction between the Ger-
man (lighter green) and the French-speaking area
around Lausanne and Geneva (darker tones). On
the other hand, we find a continuous transition
from red over purple to bluish colors in Ger-
many and Austria. These gradients largely cor-
respond to the dimensions North!South(East):
red!blue and West!East: intense tones !pale
tones. These dimensions mirror the well-known
strong linguistic connection between the southeast
of Germany and Austria, and between most cities
in the north of Germany.

3.3 Clustering

The visualization in the last section already sug-
gests that we capture the German dialect contin-
uum, and the existence of larger dialect areas.
However, in order to evaluate against existing di-
alect maps, we need to discretize the continuous
representation. We use hierarchical agglomerative
clustering (Ward Jr, 1963) with Ward linkage, Eu-
clidean affinity, and structure to discover dialect
areas. We compare the agglomerative clustering
results to a k-means approach.

Agglomerative clustering starts with each city
in its own cluster, and recursively merges pairs
into larger clusters, until we have reached the re-
quired number. Pairs are chosen to minimize the
increase in linkage distance (for Ward linkage, this
measure is the new cluster’s variance). We use
cities with 50–199 threads (66 cities) to tune the
clustering parameters (linkage function and affin-
ity), and report results obtained on cities with more
than 200 threads.

Since the city representations are indirectly
based on the words used in the respective cities,
the clustering essentially captures regional simi-
larity in vocabulary. If the clusters we find in our
data match existing dialect distinctions, this pro-
vides a compelling argument for the applicability
of our methodology.

3.4 Including geographic knowledge
While we capture regional variation by means of
linguistic similarities here, it does include a geo-
graphic component as well. The embeddings we
learn do not include this component, though. This
can produce undesirable clustering results. Large
cities, due to their “melting-pot” function, often
use similar language, so their representations are
close in embedding space. This is an example
of Galton’s problem (Naroll, 1961): Munich and
Berlin are not linguistically similar because they
belong to the same dialect, but due to some out-
side factor (in this case, shared vocabulary through
migration).

To address geography, we experiment with
two measures: clustering with structure, and
retrofitting (Faruqui et al., 2015; Hovy and For-
naciari, 2018).

Structure To introduce geographic structure
into clustering, we use a connectivity matrix over
the inverse distance between cities (i.e., geograph-
ically close cities have a higher number), which is
used as weight during the merging. This weight
makes close geographic neighbors more likely to
be merged before distant cities are.

Note, though, that this geographic component
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does not predetermine the clustering outcome: ge-
ographically close cities that are linguistically dif-
ferent still end up in separate clusters, as we will
see. The Spearman ⇢ correlation between the geo-
graphic distance and the cosine-similarity of cities
is positive, but does not fully explain the simi-
larities (Austria 0.40, Germany 0.42, Switzerland
0.72). The stronger correlation for Switzerland
suggests a localized effect of regional varieties.
Geographic structure in clustering does, however,
provide speedups, regional stability, and more sta-
ble clustering solutions than unstructured cluster-
ing. We will see this in comparison to k-means.

Retrofitting Faruqui et al. (2015) introduced
retrofitting of vectors based on external knowl-
edge. We take the idea proposed for word vec-
tors and semantic resources and extend it follow-
ing Hovy and Fornaciari (2018) to apply it to city
representations and membership in geographic re-
gions. We construct a set ⌦ with tuples of cities
(ci, cj) such that there exists a region R where
ci 2 R and cj 2 R. We use the NUTS2 regions
(Nomenclature of Territorial Units for Statistics, a
EuroStats geocoding standard) to determine R. In
Germany, NUTS2 has 39 regions, corresponding
to government regions.

To include the geographic knowledge, we
retrofit the existing city embeddings C. The goal
is to make the representations of cities that are in
the same region more similar to each other than
to cities in other regions, resulting in a retrofit em-
beddings matrix Ĉ. For a retrofit city vector ĉi, the
update equation is

ĉi = ↵ci + �

P
j:(i,j)2⌦ ĉj

N

where ĉi is the original city vector, and ↵ and �
are tradeoff parameters to control the influence
of the geographic vs. the linguistic information.
See Faruqui et al. (2015) and Hovy and Fornaciari
(2018) for more details.

4 Evaluation
In order to evaluate our methodology, we measure
both its ability to match German dialect distinc-
tions, and the performance of the learned embed-
dings in a downstream geolocation task.

Figure 3 provides examples of different cluster-
ing solutions after retrofitting. Note that colors
are assigned randomly and do not correspond to
the linguistic similarity from Figure 2. Switzer-
land immediately forms a separate cluster (the

Figure 4: German dialect Regions after Lameli (2013).
Shaded areas denote dialect overlap.

2-cluster solution separates Switzerland vs. ev-
erything else), and further clusters first separate
out more southern German varieties before dis-
tinguishing the northern varieties. This is in line
with sociolinguistic findings (Plewnia and Rothe,
2012) about ubiquity of dialect use (more common
in the south, therefore more varied regions, re-
flected in our clustering). Due to space constraints,
we have to omit further clustering stages, but find
linguistically plausible solutions beyond the ones
shown here. For an in-depth qualitative analysis
of the different clustering solutions and the socio-
demographic and linguistic factors, see Purschke
and Hovy (In Preparation).

Dialect match We use the map of German di-
alects and their regions by Lameli (2013) (see Fig-
ure 4) and its 14 large-scale areas9 as gold stan-
dard to measure how well the various clustering-
solutions correspond to the dialect boundaries.
This map is based on empirical quantitative analy-
sis of German dialects, albeit based on data from
the 19th century, and therefore naturally on differ-
ent domains and media than our study.

Note that we can only assess the cities within
modern-day Germany (clusters formed in Austria
or Switzerland are not covered). We therefore re-
run the clusterings on the subset of German cities,
so results differ slightly from the clusters induced

9Some areas partially overlap with each other.
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ORIGINAL RETROFIT
K-MEANS AGGLOMERATIVE K-MEANS AGGLOMERATIVE

# V-score H C V-score H C V-score H C V-score H C

2 0.41 0.27 0.89 0.41 0.27 0.83 0.43 0.28 0.94 0.44 0.28 0.95
3 0.53 0.39 0.84 0.46 0.33 0.73 0.57 0.42 0.87 0.54 0.40 0.85
4 0.61 0.49 0.80 0.59 0.48 0.76 0.66 0.53 0.86 0.68 0.56 0.88
5 0.61 0.50 0.79 0.63 0.54 0.74 0.69 0.59 0.83 0.71 0.62 0.84
6 0.65 0.56 0.76 0.64 0.58 0.72 0.72 0.64 0.82 0.72 0.64 0.82
7 0.64 0.57 0.74 0.66 0.61 0.72 0.72 0.65 0.80 0.69 0.64 0.76
8 0.62 0.56 0.70 0.66 0.61 0.71 0.70 0.67 0.74 0.73 0.70 0.76
9 0.70 0.65 0.76 0.70 0.68 0.72 0.70 0.67 0.73 0.73 0.70 0.75

10 0.68 0.66 0.70 0.70 0.68 0.72 0.71 0.70 0.72 0.74 0.72 0.75
11 0.69 0.67 0.71 0.72 0.71 0.72 0.74 0.75 0.74 0.74 0.74 0.74
12 0.66 0.65 0.67 0.70 0.72 0.68 0.71 0.72 0.69 0.75 0.78 0.72
13 0.67 0.68 0.66 0.70 0.73 0.67 0.73 0.75 0.71 0.74 0.78 0.70
14 0.67 0.68 0.66 0.69 0.73 0.65 0.71 0.76 0.66 0.74 0.79 0.70
15 0.66 0.68 0.64 0.71 0.77 0.66 0.74 0.80 0.70 0.76 0.82 0.70
16 0.67 0.71 0.64 0.71 0.78 0.66 0.73 0.80 0.67 0.77 0.85 0.71
17 0.67 0.70 0.63 0.70 0.78 0.64 0.73 0.81 0.67 0.76 0.85 0.68
18 0.65 0.68 0.62 0.70 0.78 0.64 0.74 0.83 0.66 0.75 0.85 0.66
19 0.64 0.68 0.59 0.70 0.79 0.63 0.72 0.82 0.64 0.75 0.87 0.67
20 0.65 0.71 0.59 0.69 0.80 0.61 0.74 0.85 0.66 0.75 0.87 0.66

Table 1: Evaluation of the fit of various cluster solutions against the reference dialect map Lameli (2013). k-means
results averaged over 5 runs. Agglomerative clustering with structure. Retrofitting on NUTS2 regions. Baseline:
0.74 V-score, 0.93 homogeneity, 0.62 completeness.

on the entire GSA.
We report homogeneity (whether a cluster con-

tains only data points from a single region) and
completeness (how many data points of a NUTS
region are in the same cluster), as well as their har-
monic mean, the V-score. This corresponds to pre-
cision/recall/F1 scores used in classification. Note
that we will not be able to faithfully reconstruct
Lameli’s distinctions, since Lameli’s map contains
overlapping regions, whose data points therefore
already violate perfect homogeneity.

The outline of dialect regions in Lameli’s map
is based on the NUTS2 regions, so we compare all
clustering solutions to an informed baseline that
assigns each city the NUTS2 region it is located in.
Except for regions in dialect overlaps, each NUTS
region is completely contained in one dialect re-
gion, so the baseline can achieve almost perfect
homogeneity.

Downstream task geolocation For the geoloca-
tion task, we randomly select 100 cities with at
least 200 threads from each country (7 in Aus-
tria, 82 in Germany, 11 in Switzerland). We

then collect threads with at least 100 words from
these cities for each country (11,240 threads from
Austria, 137,081 from Germany, and 18,590 from
Switzerland). Each thread is a training instance,
i.e., we have 166,911 instances. We use the
Doc2Vec model from before to induce a document
representation for each instance and use the vector
as input to a logistic regression model that predicts
the city name.

For testing, we sample 5,000 threads from the
same cities (maintaining the same proportional
distribution and word count constraint), but from
a separate data set, collected two months after the
original sample. We again use the Doc2Vec model
to induce representations, and evaluate the classi-
fier on this data.

We measure accuracy, accuracy at 161km (100
miles), and the median distance between pre-
diction and target. We compare the model
with Doc2Vec representations to a bag-of-words
(BOW) model with the same parameters. Since
the representation here is based on words, we can
not apply retrofitting. As baseline, we report the
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most-frequent city prediction.

5 Results
Dialect match Table 1 shows the results of clus-
tering solutions up to 20 clusters for both retrofit
and original embeddings. Irrespective of the clus-
tering approach, retrofit representations perform
markedly better.

Homogeneity increases substantially the more
clusters we induce (in the limit, each data point be-
comes a single cluster, resulting in perfect homo-
geneity), whereas completeness decreases slightly
with more clusters (they increase the likelihood
that a region is split up into several clusters). We
achieve the best V-score, 0.77, with 16 clusters.

Averaged k-means (over 5 runs) is much less
consistent, due to random initialization, but pre-
sumably also because it cannot incorporate the ge-
ographic information. For few clusters, its perfor-
mance is better than agglomerative clustering, but
as the number of clusters increases (and the ge-
ographic distribution of the cities becomes more
intricate), k-means stops improving.

The baseline achieves almost perfect homo-
geneity, as expected (the only outliers are NUTS
regions in overlap areas). Completeness is lower
than almost all clustering solutions, though. The
V-score, 0.74, is therefore lower than the best clus-
tering solution.

Both the cluster evaluation metrics and the vi-
sual correspondence suggest that our method cap-
tures regional variation at a lexical level well.

MODEL "ACC "ACC@161 #MED. DIST.

baseline 0.03 0.31 269.33

BOW 0.21 0.50 156.17
D2V 0.26 0.52 145.16

Table 2: Geolocation performance for city embed-
dings and bag-of-word vectors on held-out data set.
Baseline predicts most frequent city from training data.

Downstream Evaluation: Geolocation Table
2 shows the results of the geolocation down-
stream task. Despite the fact that the representa-
tion learning setup was not designed for this task
and excluded all the most informative words for
it (Salehi et al., 2017), the induced embeddings
capture enough pertinent regional differences to
achieve reasonable performance (albeit slightly
below state of the art, which typically has a median

distance around 100km, and an accuracy@161 of
0.54, see cf. Rahimi et al. (2017b)) and decidedly
outperform the BOW model and most-frequent-
city baseline on all measures.

6 Analysis

Figure 5: Visualization of city representation for Wien
(Vienna) and its 10 nearest word neighbors in two di-
mensions. The closest seven words are all Austrian di-
alect words

Because both words and cities are represented
in the same embeddings space (at least before
retrofitting), we can compare the vectors of cities
to each other (asking: which cities are linguisti-
cally most similar to each other, which is what
we have done above) and words to cities (asking:
which words are most similar to/indicative of a
city). The latter allows us to get a qualitative sense
of how descriptive the words are for each city.

Figure 5 shows an example of word and city
similarity for the city representation of Vienna.

We can also use the cluster centroid of several
city vectors to represent entire regions. The new
vector no longer represents a real location, but is
akin to the theoretic linguistic center of a dialect
region. We can then find the most similar words
to this centroid. For the solution with 3 clusters
(cf. Figure 3), we get the solutions in Table 3. As
expected, the regional prototypes do not overlap,
but feature dialectal expressions in the south, and
general standard German expressions in the north.

Again, for an in-depth qualitative analysis and
discussion of the socio-linguistic correlations, see
Purschke and Hovy (In Preparation).

7 Related Work
Dialectometric studies, exploring quantitative sta-
tistical models for regional variation, range from
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CLUSTER PROTOTYPES TRANSLATION

Switzerland esch, ond, vell, gaht, wüki, nöd,
besch, emmer, nor, au nöd

is, and, many, goes, really, not,
(you) are, always, just, also not

Northern Germany ja gut, erstmal, sieht, drauf,
vielleicht, mehr, gut, sehen,
schonmal, Ahnung

well yes, first, sees, onto, maybe,
more, good, see, already, idea

Southern Germany & Austria afoch, voi, nd, i a, oda, möppes,
nimma, is a, mei, gscheid

easy, full, and, me too, or, girl
(SLANG), no more, is also, well,
smart

Table 3: Prototypical words (10 nearest neighbors) for each of 3 clusters.

work on dialect data in Dutch (Nerbonne and
Heeringa, 1997; Prokić and Nerbonne, 2008;
Wieling et al., 2011, inter alia) and British English
(Szmrecsanyi, 2008), to Twitter-based approaches
for American dialect distinctions (Grieve et al.,
2011; Huang et al., 2016) and the regional differ-
entiation of African American Vernacular English
(Jones, 2015). While these papers rely on existing
dialect maps for comparison, they rarely quantita-
tively evaluate against them, as we do.

Recently, NLP has seen increased interest in
computational sociolinguistics (Nguyen et al.,
2016). These works examine the correlation
of socio-economic attributes with linguistic fea-
tures, including regional distribution of lexical and
phonological differences (Eisenstein et al., 2010;
Doyle, 2014; Bamman et al., 2014), syntactic vari-
ation (Johannsen et al., 2015), diachronic variation
(Danescu-Niculescu-Mizil et al., 2013; Kulkarni
et al., 2015; Hamilton et al., 2016), and correla-
tion with socio-demographic attributes (Eisenstein
et al., 2011; Eisenstein, 2015). Other have further
explored regional variation on social media, and
showed the prevalence of regional lexical variants
(Hovy et al., 2015; Hovy and Johannsen, 2016;
Donoso and Sánchez, 2017). Several works in-
clude quantitative comparisons to measure the em-
pirical fit of their findings (Peirsman et al., 2010;
Han et al., 2014; Huang et al., 2016; Grieve, 2016;
Kulkarni et al., 2016), albeit not on entire existing
dialect maps.

The use of representation learning is new and
relatively limited, especially given its prevalence
in other areas of NLP. Bamman et al. (2014) have
shown how regional meaning differences can be
learned from Twitter via distributed word repre-
sentations between US states, but not for individ-
ual cities. More recently, Kulkarni et al. (2016);

Rahimi et al. (2017a) and Rahimi et al. (2017b)
have shown how neural models can exploit re-
gional lexical variation for geolocation, while
also enabling dialectological insights, whereas our
goals are exactly reversed. Östling and Tiedemann
(2017) have shown how distributed representa-
tions of entire national languages capture typolog-
ical similarities that improve translation quality.
Most of these papers focus on downstream perfor-
mance that accounts for regional variation, rather
than on explicitly modeling variation. We include
a downstream performance, but also evaluate the
cluster composition quantitatively.

8 Conclusion
We use representation learning, structured clus-
tering, and geographic retrofitting on city embed-
dings to study regional linguistic variation in Ger-
man. Our approach captures gradual linguistic dif-
ferences, and matches an existing German dialect
map, achieving a V-score of 0.77. The learned
city embeddings also capture enough regional dis-
tinction serve as input to a downstream geoloca-
tion task, outperforming a BOW baseline and pro-
ducing competitive results. Our findings indicate
that city embeddings capture regional linguistic
variation, which can be further enriched with ge-
ographic information via retrofitting. They also
suggest that traditional ideas of regionality persist
online. Our methodology is general enough to be
applied to other languages that lack dialect maps
(e.g., Switzerland), and to other tasks studying re-
gional variation. We publicly release our data and
code.
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Abstract

This paper presents a set of dimensions to
characterize the association between two peo-
ple. We distinguish between interactions
(when somebody refers to somebody in a con-
versation) and relationships (a sequence of in-
teractions). We work with dialogue scripts
from the TV show Friends, and do not im-
pose any restrictions on the interactions and
relationships. We introduce and analyze a new
corpus, and present experimental results show-
ing that the task can be automated.

1 Introduction

People interact with each other and as a result
form relationships. These relationships range
from weak (e.g., John talking to a waiter to
order a drink) to strong (e.g., John and his
best friend discussing career options). Tradi-
tionally, information extraction systems target,
among others, relationships between people, e.g.,
PARENT, SIBLING, OTHER-PERSONAL, OTHER-
PROFESSIONAL (Doddington et al., 2004).

Extracting a label describing the general rela-
tionship between two entities—often called rela-
tion type—is useful for tasks such as summariza-
tion (Jijkoun et al., 2004) and question answer-
ing (White et al., 2001). Only assigning a rela-
tion type, however, does not account for nuances
in the relationship between two individuals. First,
a relationship can be characterized beyond a re-
lation type. For example, people having a PRO-
FESSIONAL relationship may be spatially near or
distant (working at the same or different offices),
and have an equal or hierarchical relationship
(two software developers or a developer and the
CEO). Second, relationships are defined by mul-
tiple interactions, and the fine-grained character-
istics of interactions do not necessarily mirror the
characteristics of the corresponding relationship.

For example, software developers having a coop-
erative PROFESSIONAL relationship may have a
heated interaction in a meeting that does not affect
the long-term PROFESSIONAL relationship. Simi-
larly, the same software developers having a task-
oriented PROFESSIONAL relationship may have
occasionally pleasure oriented interactions (e.g.,
when they go out for drinks on Fridays).

This kind of fine-grained characteristics of in-
teractions and relationships are called dimensions
in social science (Wish et al., 1976). Social sci-
entists have also studied language usage and how
people interact with each other depending on their
relationship. For example, Gibbs (2000) studies
irony (sarcasm, hyperbole, understatement, etc.)
in communications among friends, and Snyder and
Stukas Jr (1999) analyze the expectations in social
interactions (e.g., interactions between strangers
tend to be more formal) as well as the conse-
quences of breaking expectations. In the social
sciences, however, researchers mostly focus on
how people act (e.g., how they talk to each other
and about each other) and how people perceive in-
teractions and relationships. In general, they do
not attempt to automatically characterize interac-
tions or relationships from language usage.

In this paper, we characterize the interactions
between people and the resulting relationships.
The main contributions of this paper are: (a) a set
of dimensions to characterize interactions and re-
lationships, including dimensions previously de-
fined in the social sciences and two novel dimen-
sions; (b) annotations of these dimensions for all
interactions and relationships in 24 episodes of the
TV show Friends (Season 1); (c) corpus analy-
sis including agreements, label distributions and
correlations; and (d) experimental results showing
that classifiers grounded on language usage (and
discarding the names of people being considered)
are successful at automating the task.
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2 Previous Work

Within natural language processing, there have
been several recent efforts working with relation-
ships between people. Voskarides et al. (2015) ex-
tract human-readable descriptions of relations in
a knowledge graph. Unlike the work presented
here, they experiment with a proprietary knowl-
edge graph and rely heavily on features extracted
from the graph. Iyyer et al. (2016) propose an
unsupervised algorithm to extract relationship tra-
jectories of fictional characters. Bracewell et al.
(2012) introduce social acts (e.g., agreement, un-
dermining) designed to characterize relationships
exhibiting adversarial and collegial behavior (sim-
ilar to our cooperative vs. competitive dimension).
None of these works distinguish between interac-
tions and relationships, characterize interactions
and relationships with dimensions, or consider all
interactions between two people.

In our previous work, we characterize interper-
sonal relationships with dimensions (Rashid and
Blanco, 2017). In this paper, we improve upon
our previous effort as follows. First, we distin-
guish between interpersonal interactions and rela-
tions. Second, we work with dialogues thus the
same people interact with each other many times.

There have been a few studies on analyzing
language usage when people communicate. For
example, Danescu-Niculescu-Mizil et al. (2012)
study how power differences affect language style
in online communities, and Prabhakaran and Ram-
bow (2014) present a classifier to detect power
relationships in email threads. Similarly, Gilbert
(2012) explores how people in hierarchical rela-
tionships communicate through email, and Bram-
sen et al. (2011) focus on identifying power rela-
tionships in social networks. Politeness in online
forums has also been studied (Danescu-Niculescu-
Mizil et al., 2013). While power (similar to our
equal vs. hierarchical dimension, Section 3) and
politeness could be considered dimensions, these
works exploit structural and linguistic features
derived from communications between two indi-
viduals. Unlike all of them, we distinguish be-
tween and characterize interactions and relation-
ships, and automate the task using only informa-
tion derived from language usage.

Information extraction systems target, among
others, relationships between people. There have
been many evaluations (Grishman and Sundheim,
1996; Doddington et al., 2004; Kulick et al., 2014;

Surdeanu and Heng, 2014), and there are two
main approaches. Traditionally, relationships are
defined before training takes place (e.g., PAR-
ENT, FRIENDS), and systems are trained using su-
pervised machine learning (Yu and Lam, 2010;
Nguyen et al., 2016; West et al., 2014). On the
other hand, open information extraction (Wu and
Weld, 2010; Angeli et al., 2015) has emerged as
an unsupervised domain-independent approach to
extract relations. Regardless of details, these pre-
vious works extract explicit relationships and do
not attempt to characterize instances of relation-
ships with dimensions. Additionally, they do not
distinguish between interactions and relationships.

3 Interpersonal Interactions and
Relationships

In this paper, we work with transcripts of conver-
sations and define interaction and relationship as
follows. An interaction between two people x and
y exists for each conversation turn by either x or
y referring to the other person. A relationship be-
tween two people x and y exists if there is at least
one interaction between them. One could under-
stand a relationship between x and y as the asso-
ciation defined by a sequence of interactions be-
tween x and y. Beyond these definitions, we do
not impose any restriction on what constitutes an
interaction or relationship: interactions occur each
time two people refer to each other in their speech
(even if they are not talking to each other), and one
or more interactions constitute a relationship.

Interactions and relationships between people
have been extensively studied in psychology and
social sciences in general. The right set of di-
mensions is not agreed upon (Wish et al., 1976;
Deutsch, 2011; Adamopoulos, 2012), and we ar-
gue that it depends on the domain of interest (e.g.,
personal diaries vs. news articles covering pol-
itics). We note that dimensions apply to inter-
actions and relationships between specific people
(i.e., instances of interactions and relationships),
not relation types. For example, a KINSHIP rela-
tionship between x and y could be intense or super-
ficial (depending on x and y) and a particular inter-
action of that relationship may be spatially near or
distant (even for the same x and y).

The dimensions we work with are briefly sum-
marized in Table 1 and described below. All but
two dimensions are defined in previous work in
the social sciences (see references in Table 1).
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Other descriptors Ref.
In

te
ra

ct
io

n Cooperative vs. Competitive friendly vs. hostile, promotive vs. contrient [1]
Active vs. Passive direct vs. indirect, unequivocal vs. equivocal [2]

Concurrent vs. Nonconcurrent convergent vs. divergent, synchronous vs. asynchronous New
Spatially Near vs. Distant nearby vs. faraway, attached vs. detached New

R
el

at
io

ns
hi

p Equal vs. Hierarchical autonomy vs. control, submission, dominance [1]
Intense vs. Superficial important vs. insignificant, influential vs. trivial [1]

Pleasure vs. Task Oriented emotionally involved vs. detached [1]
Intimate vs. Unintimate close vs. distant, indifference, randomness [3]

Temporary vs. Enduring momentary vs. lasting, provisional vs. permanent [4]

Table 1: Dimensions of interpersonal interactions and relationships. [1] stands for (Wish et al., 1976), [2] for
(Kelley, 2013), [3] for (Adamopoulos, 2012), and [4] for (Deutsch, 2011). New indicates a dimension defined after
analyzing several examples and doing pilot annotations.

Dimensions of Interactions. We consider four di-
mension of interactions between people, i.e., when
a speaker refers to a person in a conversation:

• Cooperative vs. Competitive. A interaction is
cooperative if both people (a) have a common
interest or goal, (b) like each other, (c) ben-
efit from the interaction, or (d) think alike or
share similar views. Otherwise, the interac-
tion is competitive.

• Active vs. Passive. An interaction is active
if both people communicate directly. Other-
wise, the interaction is passive. For example,
when John talks to Bill about Mary, John and
Bill have an active interaction, and John and
Mary have a passive interaction.

• Concurrent vs. Nonconcurrent. An interac-
tion is concurrent if both people are involved
in an event or action at the same time (the
event does not need to be a communicating
event). Otherwise, the interaction is noncon-
current. For example, when John talks to Bill
about a trip with Mary, John and Mary have
a concurrent interaction, but when John talks
to Bill about Paul’s house, John and Paul have
a nonconcurrent interaction.

• Spatially Near vs. Distant. An interaction
is spatially near (or near for short) if the in-
teraction is concurrent and both people are at
the same location during the event in which
they are involved. Otherwise, the interaction
is spatially distant (or distant for short).

Dimensions of Relationships. We consider five
dimensions of relationships between people:

• Equal vs. Hierarchical. A relationship is
equal if both people (a) have the same social
status, (b) are at the same level in the power

structure, (c) share similar responsibilities, or
(d) have the same role. Otherwise, the rela-
tionship is hierarchical.

• Intense vs. Superficial. A relationship is in-
tense if both people interact with each other
frequently, i.e., they are involved repeatedly.
Otherwise, the relationship is superficial.

• Pleasure vs. Task Oriented. A relationship is
pleasure oriented if both people interact so-
cially and their relationship is not bound by
professional rules or regulations. Otherwise,
the relationship is task oriented.

• Intimate vs. Unintimate. A relationship is in-
timate if both people are emotionally close
and warm to each other. Otherwise, the rela-
tionship in unintimate.

• Temporary vs. Enduring. A relationship is
temporary if it lasts less than a day. A rela-
tionship is enduring if it last over a month.
Otherwise (if it lasts more than a day and less
than a month), this dimension is undefined.

4 Annotating Dimensions of Interactions
and Relationships

Annotating dimensions of interactions and rela-
tionships requires a corpus in which the same peo-
ple interact several times. We augment an existing
corpus of scripts from the TV show Friends (Chen
and Choi, 2016). More specifically, we work with
the 24 episodes from Season 1 because they:

• contain a large number of conversation turns
(9,168, see counts per episode in Table 2);

• involve many characters (42 characters speak
at least 100 conservation turns, see the char-
acters that interact the most in Table 2, and
the full list in the supplementary materials);
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• include speaker information (i.e., we have ac-
cess to who says what); and

• include annotations linking each mention of
people in each conversation turn to the actual
person (the name of the person).

Beyond size, the main motivation to use this
corpus is the last item above: starting from scratch
with another corpus of dialogues would require a
substantially larger annotation effort. We refer the
reader to the afore-cited paper for details, but the
original corpus clusters mentions to people such as
guy, my brother and he together with other men-
tions of the same person. The original corpus is
publicly available,1 and we release our annotations
as stand-alone annotations.2

4.1 Selecting Pairs of People
The corpus we start with makes it straightforward
to select pairs of people whose interactions and
corresponding relationships will be annotated. We
consider as interactions all instances of somebody
mentioning (or referring to) somebody else in a
conversation turn. We consider as relationships in-
dividuals who interact at least once. Note that we
do not (a) distinguish between x mentioning y and
y mentioning x, and (b) consider as an interaction
x talking to y unless the conversation turn contains
a mention to y (the mention need not be the ac-
tual name, it could be a pronoun or any nominal
mention). Our rationale is as follows. First, all
dimensions of interactions are symmetric; and all
dimensions of relationships are symmetric except
equal vs. hierarchical. Second, the characters of
Friends refer to each other explicitly at least once
in most conversations and scenes, either using first
names or the pronoun you. Thus we are consider-
ing as an interaction most verbal exchanges.

Table 2 shows basic counts per episode. We
show the number of interactions, unique relation-
ships (i.e., interactions between unique pairs of
people), and the pair of people who interact the
most. The supplementary materials include an ex-
tended table listing the number of times each pair
of people interact per episode.

4.2 Annotation Process
The annotations were done one episode at a time.
Annotators were presented with the full tran-
script of the episode including speaker informa-

1https://github.com/emorynlp/
character-mining

2http://www.cse.unt.edu/˜blanco/

Ep
is

od
e

#T
ur

ns

#I
nt

er
s

#R
el

s

People with most inters.
1 544 143 21 Monica-Rachel (23)
2 358 105 19 Rachel-Barry (14)
3 475 98 20 Joey-Chandler (12)
4 359 64 17 Monica-Rachel (15)
5 290 76 18 Chandler-Janice (14)
6 353 82 16 Chandler-Aurora (32)
7 291 76 15 Ross-Rachel (13)
8 371 64 19 Monica- Mrs. Geller (14)
9 375 75 18 Monica-Rachel (13)

10 273 69 19 Phoebe-David (22)
11 447 159 24 Chandler-Ross (22)
12 351 109 23 Phoebe-Paolo (14)
13 328 120 24 Joey-Mr.Tribbianni (21)
14 294 239 21 Chandler-Janice (28)
15 430 78 17 Joey-Ross (15)
16 470 95 31 Chandler-Nina (14)
17 526 109 17 Monica-Rachel(28)
18 306 42 14 Ross-Rachel (9)
19 183 29 10 Ross-Rachel (9)
20 467 111 20 Rachel-Mindy (30)
21 403 85 24 Monica-Fake Monica (23)
22 468 92 22 Phoebe-Chandler (32)
23 457 104 26 Ross-Susan (19)
24 325 107 18 Ross-Rachel (30)

Table 2: Basic corpus counts. We show the number of
conversation turns, interactions (i.e., one person refer-
ring to another one), unique relationships (i.e., unique
pairs of people who interact with each other), and the
pairs of people with most interactions.

tion (who speaks what?) and the names of the
individuals mentioned in each conversation turn
(who do speakers talk about?). Annotators read
each episode from the beginning, and annotate
dimensions of interactions and relationships af-
ter each interaction. Regarding interactions, they
were instructed to annotate dimensions taking into
account the language of the current conversa-
tion turn. Regarding relationships, they were in-
structed to annotate dimensions taking into ac-
count all previous conversation turns within the
same episode. For example, if previous turns state
that Rachel and Monica are best friends, the rela-
tionship will continue to be annotated intense even
if an interaction does not indicate so (until a turn
indicates that they are not friends, if applicable).
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Speaker 2nd party Cooperative (I)
1: Wait, does he eat chalk? Phoebe Paul -1
2: Hey, hey, hey, that’s not the rule and you know it. Ross Woman -1
3: She is so peaceful. Monica Phoebe 1

Speaker 2nd party Concurrent (I)
4: Well, then can we meet him? Rachel Alan -1
5: Hey, buddy, what’s up! Chandler Alan 1
6: Ma, I’m sorry. Joey Mrs. Tribbiani 1

Speaker 2nd party Equal (R)
7: Oh, ah-the kid has it. Joey the kid -1
8: Happy birthday, pal! Chandler Ross 1
9: Hey dad, what’s up? Monica Mr. Geller -1

Speaker 2nd party Intense (R)
10: Um, has uh Dr. Franzblau been by? Rachel Dr. Franzblau -1
11: There’s a beautiful woman at eight, nine, ten o’clock! Chandler Aurora -1
12: Uh, Rach, it’s the Visa card people. Monica Rachel 1

Table 3: Annotation examples. We show examples of contrasting values for selected dimensions. The first party is
always the speaker, and the second party is underlined. I stands for interactions, and R for relationship.

raw 

In
te

ra
ct

io
n Cooperative 93.4% 0.82

Active 95.4% 0.89
Concurrent 93.7% 0.84
Spat. Near 95.7% 0.87

R
el

at
io

ns
hi

p Equal 94.6% 0.85
Intense 88.8% 0.80
Pleasure Or. 97.4% 0.77
Intimate 92.3% 0.85
Temporary 94.8% 0.78

Table 4: Inter-annotator agreement (raw agreement and
Cohen’s ).  values between 0.6 and 0.8 indicate sub-
stantial agreement,  values over 0.8 indicate perfect
agreement (Artstein and Poesio, 2008).

We discovered during pilot annotations that the
value for a dimension sometimes cannot be deter-
mined. For example, if the first interaction be-
tween Rachel and Monica is Rachel: How are
[you]Monica doing?, we cannot tell if the relation-
ship is temporary or enduring. We note, however,
that all interaction after we find out that they are
best friends (as long as they remain best friends)
will be annotated enduring. Hereafter, we refer to
dimensions by the first descriptor in Table 1, and
use 1 if the first descriptor of a dimension is true,
-1 if the second descriptor is true, and 0 if neither
the first nor the second descriptor can be chosen.
Annotation Quality. The annotations were done
by two graduate students in computational linguis-

tics. First, they did pilot annotations to better de-
fine the dimensions (Section 3). After several iter-
ations, both of them annotated 3 episodes (15%
of all interactions). Table 4 presents the inter-
annotator agreements. Cohen’s  range between
0.77 and 0.89, and most (7 out of 9) are above
0.80, which is considered perfect agreement. Val-
ues between 0.60 and 0.80 are considered substan-
tial (Artstein and Poesio, 2008). The remaining
episodes were annotated once.

4.3 Annotation Examples

We present annotation examples in Table 3. The
interactions in conversation turns 1 and 2 are com-
petitive: Phoebe is ridiculing Paul by asking Mon-
ica if he eats chalk, and Ross is confronting an
unnamed woman. In turn (3), Monica refers to
Phoebe with affection (as the latter sleeps), thus
the interaction is cooperative. Turns (4–6) exem-
plify concurrent vs. nonconcurrent. In (4), Rachel
is inquiring whether she can meet Alan (Monica’s
boyfriend), and Rachel and Alan are not involved
in the same event (at this point, the meeting may
or may not happen). In (5–6), however the speaker
and second party are involved directly in a com-
munication event. In examples (4–6), the values
for active are the same as for concurrent.

Turns 7–12 present examples for dimensions of
relationships. Examples 7 and 9 are fairly straight-
forward: previous interactions reveal that Joey is
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Figure 1: Label percentages per dimension. The missing portion of pie charts correspond to label 0 (unknown).

an adult and Monica’s father is indeed Mr. Geller.
Example 8 is annotated equal, as Chandler and
Ross are friends based on previous interactions
(the use of pal also helps). Examples 10–12 re-
quire more explanation, as additional information
beyond the current conversation turn is required
(recall that dimensions of relationships are anno-
tated taking into account the previous turns within
the same episode, Section 4.2). Dr. Franzblau is
the doctor of a friend’s ex-wife, so Monica and
him have a superficial relationship (Turn 10). At
the point Turn (11) is spoken by Chandler, she and
Aurora are strangers, so they have a superficial re-
lationship. In (12), previous conversations reveal
that Monica and Rachel are close friends, and they
interact often (intense).

5 Corpus Analysis
The pie charts in Figure 1 present the label dis-
tributions per dimension. Regarding interactions,
we note that (a) values for all dimensions can be
determined almost always (the percentages of 0
(unknown) are almost zero), and (b) the first de-
scriptor is much more common in all dimensions.
These percentages do not represent the distribu-
tion of interactions between people in general: the
scripts of the TV show Friends mostly contain
conversation between friends. Regarding relation-
ships, we observe a larger percentage of 0 (un-
known) although values of all dimension can be
determined most of the time (labels 1 and -1, in-
dicating that the first or second descriptor apply).
Most dimensions are biased towards 1 (the only
exception is temporary, as most relationships are
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Active .06 –
Conc. .02 .81 –
Near .01 .71 .89 –
Equal -.01 .08 .06 .05 –
Intense .08 .28 .24 .22 .28 –
Pleasure -.05 .01 .08 .08 .50 .13 –
Intimate .12 .28 .26 .22 .32 .75 .28 –
Temp. -.02 -.33 -.31 -.28 -.24 -.52 -.27 -.54

Table 5: Pearson correlations between pairs of dimen-
sions of interactions and dimensions.

enduring), especially pleasure oriented and equal
(91.2% and 84.8%). Again, these distributions
would be different if we worked with other sources
of dialogue than the TV show Friends.

Many of the dimensions we consider in this
work are intuitively correlated. For example, con-
current interactions must be active, and pleasure
oriented interactions are probably also equal. We
note, however, that interactions can be passive
and concurrent, e.g., in (Monica talking to Joey)
[He]Paul is just [a guy]Paul I am dating!, Monica
and Paul have a passive and concurrent interac-
tion (they are dating, but they are not talking to
each other). Table 5 shows Pearson correlations
between all dimensions of interactions and rela-
tionships. Most correlations are under 0.3 (29 out
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Spatially Near vs. Spatially Distant (Interaction)

Intense vs. Superficial (Relationship)

Figure 2: Most salient words (calculated with tf-idf) for dimensions spatially near and intense.

of 36), although some pairs do have high correla-
tions. In particular, active interactions tend to be
both concurrent (0.81) and spatially near (0.71),
and spatially near interactions tend to be concur-
rent (0.89). Regarding relationships, intimate cor-
relates with intense (0.75), pleasure oriented with
equal (0.50), and temporary with both superficial
(0.52) and intimate (0.54).

Finally, Figure 2 shows the most salient words
of dimensions spatially near and intense. We
calculated salience using tf-idf (Schütze et al.,
2008). Interactions containing derogatory words
(e.g., pig, bugs, pretending, cheating) tend to be
distant, and near interactions contain mostly neu-
tral and nicer words such as friends, sweatheart
and please. We also note that cognitive verbs
and nouns (e.g., thinking, figured (out), looking
(into), cause), as well as important events (birth-
day, thanksgiving) and slang usage (e.g., whad-
dya) signal intense relationships.

6 Experiments and Results

We experimented with SVM classifiers with RBF
kernel to predict dimensions of interactions and
relationships. We divided the 24 episodes into
train (episodes 1–20) and test (21–24), and trained
one classifier per dimension using scikit-learn (Pe-

P R F
Majority Baseline 0.54 0.73 0.62

SVM

first word 0.62 0.71 0.65
BOW current 0.66 0.73 0.67
+ sentiment 0.65 0.72 0.66
+ other 0.71 0.75 0.70
+ BOW previous 0.73 0.76 0.72

Table 6: Results obtained with the test set with several
systems (average of all dimensions). Previous refers
to the previous conversation in which the same pair of
people interacted not the immediately previous turn).

dregosa et al., 2011). Each classifier is trained
with three labels: 1 (1st descriptor), -1 (2nd de-
scriptor) and 0 (unknown). The SVM parame-
ters (C and �) were tuned using 10-fold cross-
validation with the train split, and results are re-
ported using the test split.

Note that different pairs of people interact more
or less in each episode (Table 2). Thus, the classi-
fiers are grounded on general language usage and
not modeling who talks and who is talked about.
We also experimented with LSTMs taking as input
the current conversation turn and previous turns,
but do not report results because SVM classifiers
yielded better results.
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1 (1st descriptor) 0 (unknown) -1 (2nd descriptor) All
P R F P R F P R F P R F

In
te

ra
ct

io
n Cooperative 0.83 0.96 0.89 0.00 0.00 0.00 0.31 0.08 0.13 0.73 0.80 0.75

Active 0.92 0.90 0.92 n/a n/a n/a 0.75 0.76 0.75 0.87 0.87 0.87
Concurrent 0.92 0.92 0.92 n/a n/a n/a 0.70 0.69 0.70 0.87 0.87 0.87
Spat. Near 0.89 0.94 0.91 n/a n/a n/a 0.69 0.53 0.60 0.85 0.86 0.85

R
el

at
io

ns
hi

p Equal 0.86 0.95 0.90 0.00 0.00 0.00 0.15 0.07 0.10 0.76 0.83 0.79
Intense 0.70 0.81 0.75 0.28 0.11 0.16 0.38 0.46 0.41 0.56 0.60 0.57
Pleasure Or. 0.82 1.00 0.90 0.00 0.00 0.00 1.00 0.02 0.04 0.82 0.83 0.75
Intimate 0.61 0.85 0.71 0.26 0.05 0.09 0.42 0.36 0.39 0.48 0.56 0.49
Temporary 0.53 0.42 0.47 0.67 0.17 0.27 0.62 0.85 0.72 0.60 0.60 0.57

Table 7: Results obtained per dimension with the best system (all features, Table 6). The results under All the
weighted averages for all labels, recall that the label distribution is biased (Figure 1).

Feature Set. We use a combination of features
extracted directly from the conversation turn, sen-
timent lexica and context. Specifically, we ex-
tract (a) the first word in the conversation turn,
(b) bag-of-words features (binary flags and tf-idf
scores), and (c) the root verb, and flags indicat-
ing the presence of exclamation, question marks
and negation cues from (Morante and Daelemans,
2012) (other). Regarding sentiment, we extract
flags indicating whether the turn has a positive,
negative or neutral word in the list by Hamilton
et al. (2016), the sentiment score of the turn (sum-
mation of sentiment scores per token over number
of tokens in the turn), and a flag indicating whether
the turn contains a negative word from the list by
Hu and Liu (2004). Regarding context, we extract
bag-of-words features from the previous conver-
sation turn in which the same people interact (not
necessarily the preceding turn).

6.1 Results

Table 6 shows the overall results (average of all di-
mensions) obtained with the majority baseline and
several feature combinations. All feature combi-
nations outperform the baseline. Sentiment fea-
tures are not beneficial, leading to the conclusion
that sentiment does not correlate with dimensions
of interactions and relationships between people.
This may look surprising at first sight, but recall
that our dimensions capture much more than if
two people get along (Table 1). Finally the bag-
of-words features from the previous turn in which
the same people interacted bring a small improve-
ment (F: 0.70 vs. 0.72).

We show results per dimension for the best fea-
ture combination (all) in Table 7. Despite the label

distributions are biased (Figure 1), the system pre-
dicts most labels for most dimensions except the
very biased ones (cooperative, equal and pleasure
oriented). Note that 0 (unknown) does not allow
us to determine the value of a dimension, and the
low results with this label are not a concern.

7 Conclusions

This paper presents the task of characterizing in-
teractions and relationships between people. We
work with dialogue transcripts, and define an in-
teraction as a speaker referring to somebody else,
and a relationship as a sequence of one or more in-
teractions. Unlike previous work (Section 2), we
target all interactions and relationships, and use
dimensions that are applicable to any interaction
or relationship regardless of the underlying type
(e.g., SIBLINGS, FRIENDS, DOCTOR-PATIENT).

We have presented an annotation effort on 24
episodes of the popular TV show Friends (Sea-
son 1). The total number of conversation turns
is 9,168, and the total number of interactions is
2,331. The label distribution per dimension shows
that the labels are unbalanced, but a relatively
straightforward SVM is able to outperform the
majority baseline (F: 0.62 vs. 0.72, Table 6). Fea-
tures extracted using well-known sentiment lexica
yield no improvements, leading to the conclusion
that the dimensions we work with capture infor-
mation beyond whether two people get along.

Crucially, values for the dimensions we work
with can be determined most of the time (Figure
1, labels 1 and -1). Since we do not impose
any restriction on the interactions or relationships
we work with, we conclude that these dimensions
may be universally applicable.
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Abstract

Vulgar words are employed in language use
for several different functions, ranging from
expressing aggression to signaling group iden-
tity or the informality of the communication.
This versatility of usage of a restricted set
of words is challenging for downstream ap-
plications and has yet to be studied quanti-
tatively or using natural language processing
techniques. We introduce a novel data set
of 7,800 tweets from users with known de-
mographic traits where all instances of vulgar
words are annotated with one of the six cat-
egories of vulgar word use. Using this data
set, we present the first analysis of the prag-
matic aspects of vulgarity and how they relate
to social factors. We build a model able to
predict the category of a vulgar word based
on the immediate context it appears in with
67.4 macro F1 across six classes. Finally, we
demonstrate the utility of modeling the type of
vulgar word use in context by using this infor-
mation to achieve state-of-the-art performance
in hate speech detection on a benchmark data
set.

1 Introduction

Vulgarity is a common element of conversa-
tion (Jay, 2009; Mehl et al., 2007) and is used even
more frequently in social networks such as Twit-
ter (Wang et al., 2014). Understanding the moti-
vation behind the choice to be vulgar and the way
in which vulgarity is manifested in naturally oc-
curring environments is of interdisciplinary inter-
est. Pragmatic functions that dictate patterns of
vulgarity usages may interact with speaker cul-
tural background and demographics. This makes
them appealing—and challenging—to model in
NLP applications

Yet, to date, there has been no empirical study
on the type of vulgar word usage. Research in
linguistics and psychology has identified several

Function Tweet
Express aggression <USER> You are an ass Your industry is full of

assholes and you do nothing to improve (...)
Express emotion There are so many things I want to do, But in-

vesting in equipment is a pain in the ass
Emphasise today is a good ass day <URL>
Auxiliary Wish <USER> could save my ass on these ex-

ams like he used to
Signal Group Identity Now this is a group of ass kickers!
Non-vulgar Kick Ass 2 - Red Band Trailer <URL>

Table 1: Examples of tweets containing the vulgar
word ass with six different functions.

types of usage for vulgar words (Andersson and
Trudgill, 1990; Pinker, 2007; Wang, 2013). These
range from use as an intensifier for an opinion or
emotion, to offend others, or simply as a way of
speaking or to signal the level of (in)formality in a
conversation (Pinker, 2007). Table 1 shows exam-
ple tweets with the six general functions of vulgar
word usage.

We notice that in one of the examples, the vul-
gar word ass is used to verbally abuse another user,
while the same word can also be employed to em-
phasize a feeling (‘good ass day’) or to express an
emotion (‘pain in the ass’). Hence, explicitly mod-
eling vulgar words use is expected to positively
impact the performance of practical tasks such as
hate speech detection or the way in which profan-
ity filtering is performed.

The goal of our study is to present a comprehen-
sive and multi-faceted analysis of the types of vul-
gar word usage. To this end, this paper presents:
1. The first data set of written utterances that con-

tain vulgar words, where each vulgar word is
labeled for one of six functions of use1

2. A quantitative analysis of vulgar word usage
across different user demographic traits

3. A machine learning approach to predicting one
of six types of vulgar word usage from context

4. Experiments demonstrating that modeling the
type of vulgar word usage in context can im-
1https://github.com/ericholgate/

VulgarFunctionsTwitter
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prove predictive performance of the hate speech
prediction task on a benchmark data set

Our novel data set contains 7,800 tweets with
8,524 vulgar word labels annotated for one of six
functions by seven annotators. We find that the
way in which vulgarity is used interacts with user
demographic variables such as age or political ide-
ology. We then build a model for predicting the
usage type of each vulgar word in the tweet using
the tweet context. Finally, we explicitly model the
vulgar word usage type in the task of hate speech
detection to discriminate between hate speech and
tweets including profanity, demonstrating an im-
provement in predictive accuracy of 3.7 F1. This
demonstrates that using insights into vulgar word
usage developed in linguistics and psychology, we
can achieve quantitative improvements on down-
stream NLP applications and inform the way mod-
els are built and tailored to the task.

2 Related Work

Vulgar language and its uses and pragmatic func-
tions have been studied in several linguistic and
psychological studies and the phenomenon has
many names. In this paper, we will use vulgarity,
profanity, and swear/curse words interchangeably.

Vulgar words were found to be very versatile,
with a vulgar word being able to perform dif-
ferent interpersonal functions according to differ-
ent contexts. Four types of usage are identified
in Andersson and Trudgill (1990), including abu-
sive (intended to harm the hearer), expletive (used
to express emotions; not directed towards oth-
ers), humorous (looks like abusive swearing, but
has the opposite function) and auxiliary (swear-
ing as a way of speaking, often or always non-
emphatic). The five functions of swear words sug-
gested in Pinker (2007) are: dysphemistic (con-
veying negative sentiment), idiomatic (signaling
informality or simply used as a manner of speak-
ing), abusive (intending to offend or harm), em-
phatic (intending to stress a claim or intensify
emotive content) and cathartic (communicating
pain). Finally, Wang (2013) identifies four prag-
matic roles for profanity with a considerable de-
gree of overlap with Pinker: emoting, emphasiz-
ing, aggressing, and group identity signaling.

For the scope of this study, we aim to cover all
the functions identified by past research that can
be identified from text with restricted content and
context such as tweets. Thus, we dropped the

cathartic function from Pinker (2007), which is an
instantaneous reaction more specific to speech to
relieve the effect of physical pain (Stephens et al.,
2009). This would thus be very rarely – if ever
– expressed through social media and would be
very hard to annotate with textual content alone
while lacking the broader context of its utterance.
We also considered the abuse and aggression func-
tions as equivalent across categorizations, as they
imply a face-threatening act (Brown and Levinson,
1987). We considered the auxiliary and idiomatic
categories as equivalent across classes, but main-
tained signaling group identity as in Wang (2013).
We also created a non-vulgar classification in case
the vulgar word is used in a non-vulgar context
(e.g., a name that doubles as a vulgar term).

Due to their affective impact, vulgar words are
often used as strange synonyms by substituting
each other in context or idioms, even when they
have no affinity in syntax or meaning (Quang,
1971; Pinker, 2007) (e.g., for God’s sake – for
fuck’s sake; ‘I don’t give a damn/fuck/shit). This
heavily contributes to vulgar word volatility across
different functions and higher ambiguity in con-
text. However, this type of usage can allow com-
putational approaches that model the immediate
context around a word to generalize across words
to functions. To date, there has been no research
on quantitatively modeling the function of vulgar
words in context.

The overall frequency of usage of vulgar words
has been quantitatively studied in social media and
online communities. For example, Wang et al.
(2014) estimates that vulgar posts constitute up-
wards of 1.15% of tweets and examines vulgar to-
ken frequency and how it varies with time, geo-
location, and gender. An analysis of profanity
across gender and age also appears in Gauthier
et al. (2015).

In fact, gender is the most studied sociode-
mographic factor in relation to the use of pro-
fanity. Many studies have shown that male-
identifying users employ vulgar terms more fre-
quently than female-identifying users (e.g. Sel-
now, 1985; Wang et al., 2014).

Jay and Janschewitz (2008) demonstrate that
profanity is moderated by pragmatic or contextual
factors that go beyond gender, including occupa-
tion, social status, and even the nature of the re-
lationship between interlocutors – though this last
point, proves difficult to explore via Twitter where
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the identity of the audience is at least partially ob-
fuscated. Other social factors such as age, religios-
ity or social status have also been shown to vary
with vulgar frequency (McEnery, 2004), as has
political ideology (Sylwester and Purver, 2015;
Preoţiuc-Pietro et al., 2017). It is thus likely that
sociodemographic factors also influence the func-
tions with which vulgar words are used.

This study expands the scope of this type of re-
search, by going beyond simple frequency of us-
age to pragmatic functions of vulgar words and
how they are used differently by different sociode-
mographic groups.

3 Data

We use social media as our data source as this con-
tains a high level of expression of thoughts, opin-
ions and emotions (Java et al., 2007; Kouloumpis
et al., 2011) and represents a platform for observ-
ing written interactions and conversations between
users (Ritter et al., 2010).

Social media and Twitter in particular provide
vast volumes of text which are more informal and
less curated compared to other domains such as
newswire. An additional advantage of Twitter data
is that it allows us to study the sociodemographic
context.

3.1 Identifying Vulgar Tweets
We use the corpus of tweets utilized to construct
the Vulgar Twitter corpus introduced in prior work
(Cachola et al., 2018). Every tweet in this corpus
contains at least one vulgar term. We then annotate
each instance of a vulgar token for type of use.
Note that we use the full dataset of 7,800 tweets
which contains 1K more tweets2 than the released
version of the Vulgar Twitter corpus.

The Vulgar Twitter corpus was constructed by
identifying tweets containing vulgarity through
use of the vulgarity lexicon available at www.
noswearing.com. A total of 82 tokens were
removed from this list as they were deemed not
to be unambiguously vulgar after manual inspec-
tion.3 Regular expressions were utilized to iden-
tify common intentional spelling variations (e.g.,

2These tweets are excluded due to low sentiment agree-
ment in Cachola et al. (2018).

3These terms were largely anatomical words or general
verbs like penis, vagina, and blow, but some identity descrip-
tors like gay, queer, and lesbian were also excluded after
manual review of a large sampling of uses revealed they were
not overwhelmingly employed as slurs.

vowel reduplication such as fuuuuuck or self-
censorship such as a$$ ).

For the complete description of the composition
and construction of the Vulgar Twitter corpus, we
refer the interested reader to the original paper
(Cachola et al., 2018).

3.2 Data Sampling
The Vulgar Twitter corpus overlaps with Preoţiuc-
Pietro et al. (2017) which allows us to consider
the relationship between sociodemographic fea-
tures and vulgar functionality. The tweets are
compiled from up to 3,200 most recent tweets
(per Twitter Developer API) of 4,132 twitter users
who provided sociodemographic information via
self-report in an online survey (Preoţiuc-Pietro
et al., 2017). This sociodemographic data has been
utilized in our previous research Cachola et al.
(2018); for a full description of its collection, we
refer the reader to Preoţiuc-Pietro et al. (2017).

3.3 Demographic Variables and Coding
Demographic information (including gender, age,
level of education, level of annual income, faith,
an political ideology) was was self-reported via
online survey. To control for cultural variation,
data was only solicited from residents of the
United States. All demographic variables are ordi-
nal with the exception of gender, which is binary.

• Gender: a binary4 variable (Female as 1;
Male as 0).

• Age: an ordinal, integer-valued variable [13-
90].

• Income: An ordinal variable [1-8]; the low-
est level (1) stands for ‘< $20,000’ and the
highest (8) stands for ‘> $200,000’.

• Education: An ordinal variable [1-6]; the
lowest level (1) stands for ‘no high school
degree’ and the highest (6) stands for ‘Ad-
vanced Degree (e.g., Ph.D.)’.

• Political ideology: an ordinal variable on
the liberal-conservative spectrum (a common
form of representation of US political ide-
ology (Ellis and Stimson, 2012)). Report-
ing options ranged from ‘Very Conservative’

4Users were asked to identify their gender as Male, Fe-
male, or via an open field. Users who did not respond as
either Female or Male were excluded from data collection as
there was not a sufficient population to be confident that data
would be representative.
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Function Definition Freq.
Express aggression (Agr) The word is used in order to harm the person or group the tweet is about. 15.2%
Express emotion (Emo) The word is used to express emotions (positive or negative) related to the users internal states,

exclamations, feelings or attitudes towards an object. If removing the vulgar term, the expressed
emotion is lacking.

24.8%

Emphasise (Emp) The word is used to emphasize a statement or feeling. 29.8%
Auxiliary (Aux) The use of this word is simply a manner of speaking and does not fit any of the above descriptions.

Descriptions of external emotions (those of someone else) fall into this category.
17.0%

Signal Group Identity (Sig) This word is used as a marker of identity in a specific social group. 4.7%
Non-vulgar Use (Non) The use of this word is not vulgar (e.g., named entities that involve vulgar words). 8.2%

Table 2: Functions of vulgar words, their definition presented to the annotators and their frequency in the
final data set.

Agr Emo Emp Aux Sig Non
Agr 0.63 0.11 0.09 0.07 0.10 0.01
Emo 0.07 0.59 0.20 0.13 0.01 0.01
Emp 0.04 0.18 0.68 0.07 0.01 0.02
Aux 0.07 0.16 0.15 0.56 0.03 0.03
Sig 0.17 0.06 0.07 0.11 0.57 0.02
Non 0.02 0.04 0.04 0.10 0.02 0.77

Table 3: Confusion matrix between aggregated
function (row) and individual annotations (col-
umn), normalized by row.

(1) to ‘Moderate’ (4) to ’Very Liberal’ (7).
Two additional responses, ‘Other’ (8) and
‘Apathetic’(9) were included to cover the full
breadth of the ideological spectrum, but users
selecting these options were excluded from
our dataset (1,290 in total) in order to main-
tain an ordinal scale.

• Faith: an ordinal variable [1-6]; users were
asked to report the average number of reli-
gious services attended. Available responses
ranged from ‘Never’ (1) to ‘Multiple times
per week’ (6).

3.4 Data Processing
We follow the same preprocessing procedure as
in Cachola et al. (2018). URL’s and usernames
are replaced by <URL> and <USER> tokens re-
spectively to protect user privacy. Punctuation is
then removed and all words are lowercased.

3.5 Annotation
We have collected annotations via Amazon Me-
chanical Turk (MTurk) for vulgar word usage type
for 8,524 instances of vulgar words across the
7,800 tweets present in the Vulgar Twitter corpus
(Cachola et al., 2018).

The task guidelines follow previous research
from linguistics and psychology described in Sec-
tion 2. For generality, we use a union of the differ-
ent classes proposed and grouped classes where it
was possible. The final guidelines include six dif-

ferent functions of vulgar words described in Ta-
ble 2.

For quality control, we asserted the following
qualifications on MTurk: locale=US, approval rate
>90%, number of HITs approved >100. Fur-
ther, we removed all ratings from users that have
a Cohen’s Kappa of lower than 0.2 when com-
pared to the majority rating of the other six an-
notations resulting in the removal of 8,430 ratings
(14% of the total number) from 150 out of 663
users. These users were banned and annotations
were recollected until 7 ratings were obtained for
all instances.

We measured inter-annotator agreement using
Krippendorf’s Alpha as this can handle cases
where each item was labeled by different groups
of users. The overall Krippendorfs Alpha is 0.506
despite there being a large number of classes (6).
This alpha value (0.506) is regarded as a moderate
level of agreement (Artstein and Poesio, 2008). To
reduce uncertainty, we aggregate our labels across
seven different annotators. In cases where no ma-
jority class emerged from the seven annotations
(10.6% of the instances), the tie was broken by one
of the authors of the paper, who have significant
training and experience in linguistic annotation.

The distribution of the final vulgar word type is
presented in the last column from Table 2. Ta-
ble 3 shows the confusion matrix between ag-
gregated function (row) and individual annota-
tions (column); each cell is normalized by the row
sum. Some patterns in disagreements include: (1)
Vulgar words used to signal group identity are
sometimes confused with aggression as annotat-
ing these may require additional social context
about the user (e.g. if they are female, African-
American, etc.) or about social relationships (e.g.
“lmao yeah cause a bitch can’t sing”). (2) Emo-
tion confused with auxiliary usage in idioms or
where there is a lack on context about what is

4408



Word Rank Entropy Agr Emo Emp Aux Sig Non
bitchy 35 1.547 3 5 2 3 2 0
dicks 33 1.442 7 2 0 6 2 2

bastard 26 1.307 18 3 1 7 1 3
fuck 4 1.272 246 345 190 75 0 0

pussy 21 1.256 17 3 2 33 1 7
ass 5 1.250 116 45 222 352 7 5
hell 2 1.220 16 242 602 71 0 238
dick 9 1.208 36 4 5 87 0 67
bitch 7 1.194 296 23 20 60 110 3
shit 1 1.170 59 555 200 488 1 1

Table 4: Top vulgar words sorted by entropy.
Higher entropy indicates a more evenly distributed
usage is across functions (maximum entropy over
six values = 1.791, minimum entropy over all
functions = 0). Rank represents the rank of the
word by frequency in the data set.

the author’s intent or target (e.g. “Stop cryin..
Damn you got the foul”). (3) Auxiliary use of vul-
gar words in an emotional tweet (e.g, “ok knicks.
we’re winning. dont fuck it up.”). (4) Short tweets
lacking context drive confusion about the target of
vulgarity or if an emotion is expressed (e.g. “Fuck
yeah”).

4 Analysis

We start with a quantitative analysis of our data.
First, we examine the extent to which the same
vulgar word is used for different functions. Then,
we identify if sociodemographic factors impact
the functions with which vulgar words are used.

4.1 Vulgar Word Analysis
To quantitatively measure which vulgar words are
most used with different functions, we first com-
pute its distribution over the six functions in our
entire data set. Then, we compute the entropy as
a measure of how evenly distributed the distribu-
tion over functions of each word is. To avoid un-
certainly associated computing statistics over dis-
tributions with low counts, we keep only words
that appear more than 10 times in our data set (43
words) after collapsing variants of the same word
(e.g. fuck – f*ck – fuuuck).

The average entropy of all vulgar words is µ =
0.835 (� = 0.36), with 0 being the minimum en-
tropy (i.e., all words are used with one function)
and 1.791 being the maximum entropy (i.e., all
words are used with the same frequency with all
six functions). The words with the highest entropy
are presented in Table 4.

The table shows that four of the most frequent
five words are in the top ten words by entropy,
with all of them having significant numbers of oc-

currences in at least three vulgar functions. Actu-
ally, the average entropy of words used at least 100
times in our data set (15 words) is 0.930 compared
to 0.835 for words used at least 10 times.

We see that all words in the table are used signif-
icantly with three or more functions. On average,
in the entire data set, each word is used at least
once with µ = 4.00 functions (� = 1.34).

This highlights both the challenges in modeling
vulgar word functions and the opportunity of using
the function to improve practical applications.

In contrast, Table 5 shows the vulgar words
which are most likely to be used with each of the
six functions.

4.2 Demographic Analysis
Sociodemographic factors may impact the distri-
bution with which each function of vulgar words
is used. To measure this, we compute for each
user a normalized distribution over the functions
of vulgar words used in our data set. Then, we
compute Pearson correlation where the dependent
variable is the fraction of each vulgar word func-
tion and the independent variables are the user so-
ciodemographic trait values. Following previous
work (Schwartz and et al., 2013; Preoţiuc-Pietro
et al., 2017), for all analyses we consider gender
and age basic traits and control for potential data
skew by introducing both variables as controls in
partial correlation. When studying age and gen-
der, we use the other trait as the control. Since we
are running 36 tests at once without pre-stated hy-
potheses, we correct the correlations for multiple
comparisons using Bonferroni correction. Results
of these analyses are presented in Table 6.

The results show several vulgar word functions
are specific of age. Younger users of Twitter are
more likely to use vulgar words to signal group
identity and to express emotion. Older age is more
likely to be related to use of words that are vul-
gar with non-vulgar functions. These correlations
show that there are differences in how younger
generations are using vulgar words, even if tweets
were posted in the same time interval, signaling a
diachronic change in usage.

The analysis shows that the only significant cor-
relation with the other five demographic variables
is between both political ideology and faith and us-
ing vulgar words for emphasis and in non-vulgar
functions. Liberals are more likely to use vul-
gar words for emphasis and less likely to use
them with non-vulgar functions. Previous research
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Aggression Express Emotion Emphasis Auxiliary Signal Group Identity Non-Vulgar
Word Freq Word Freq Word Freq Word Freq Word Freq Word Freq
cunt 86.9% pissed 84.4% fucking 84.7% asses 73.9% bitches 88.9% mick 100%

asshole 86.3% bullshit 64.2% fuckin 84.0% shitting 69.2% nigga 85.7% cracker 97.5%
asshit 83.0% fucked 61.3% goddamn 70.0% arse 69.2% slut 26.0% dyke 92.8%
faggot 81.8% shitty 52.6% damn 62.3% cock 62.9% whore 25.0% coon 92.8%

fag 73.3% shit 42.5% hell 51.4% pussy 52.3% hoe 23.8% ho 88.3%
Table 5: Vulgar words most used with each of the six functions.

Trait Agr Emo Emp Aux Sig Non
Gender .011 -.005 .004 -.044 .051 .011

Age -.013 -.085* -.046 -.036 -.100** .227**
Education -.030 .009 -.006 -.007 -.032 .027

Income .037 .002 .027 -.035 -.045 .032
Faith -.031 -.047 -.112** -.066 .014 .224**

Political
Ideology .009 .050 .092** -.022 .003 -.124**

Table 6: Pearson correlation between user demo-
graphic traits and usage of the different functions
of vulgar words. All correlations are significant
at (*) p < .05, (**) p < .01, two-tailed t-test,
Bonferroni corrected for multiple comparisons.
Results for education, income and religiosity are
controlled for age and gender.

showed that liberals are more likely to use more
vulgarity overall in social media (Sylwester and
Purver, 2015; Preoţiuc-Pietro et al., 2017) and are
perceived by others to use more frequently than
they do vulgar words (Carpenter et al., 2016), but
this analysis shows this is especially due to vulgar
word use to emphasise. The results are reversed
for faith, which is known to be strongly correlated
to conservative political ideology. Controlling for
faith and political ideology with partial correlation
does not alter the significance of this result.

Intriguingly, all other traits (gender, education
and income) are not significantly correlated with
an increased usage in any of the functions.

The vulgar word functions of aggression and
auxiliary usage, which are more standard and tra-
ditional usages of vulgar words, do not show any
significant differences with any sociodemographic
trait.

5 Modeling Vulgar Word Use

The previous section showed that the same vul-
gar words can be used with several different func-
tions. In this section, we use machine learning ap-
proaches to explicitly predict the function of a vul-
gar word given the tweet it appears in as context.

5.1 Method
We use logistic regression5 to build six one vs. all
binary classifiers for each of the six functions us-
ing information from the immediate lexical and
syntactic context surrounding the word and gen-
eral usage of the word in training data.

5.2 Features
We use the following feature types in our experi-
ments:
Intention Distribution –We include six features
encoding the distribution over intentional classes
of the target word in training data, as some words
use only several functions and some more predom-
inantly than others.
Tweet Content –We derive a tweet-level repre-
sentation of the entire content of the tweet by av-
eraging vector representations of its constituent
words. We utilize 200-dimensional GloVe embed-
dings pre-trained on 2B tweets (Pennington et al.,
2014).
Sentiment Content –We include two features
which represent the number of positive and neg-
ative valence words in the tweet, normalized by
tweet length. For this feature group, we utilize the
opinion lexicon introduced in Hu and Liu (2004).
Part of Speech Context –We encode the part of
speech of the target word, the previous word and
the next word as one-hot vectors as we expect syn-
tactic information to be an indicator of different
functions in context. We extract parts of speech
using the Twitter version of the Stanford POS tag-
ger which demonstrated good results on tagging
tweets and uses the finer grained Penn Treebank
tagset (Derczynski et al., 2013).
Brown Clusters –Finally, we include two one-hot
feature groups which indicate the Brown Cluster
(Brown et al., 1992) membership of word immedi-
ately before and immediately after the vulgar term.

5In preliminary experiments, we attempted to utilize a
BiLSTM to encode tweet context, but it did significantly
worse than the logistic regression model, possibly due to
many parameters and classes compared to the size of the
training data.
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Method Precision Recall F1
Most Frequent Class 5.05 16.6 7.76
All Features 68.8 66.4 67.4

– Intention Distribution 58.3 53.8 55.3
– Tweet Content 67.9 64.0 65.6
– Sentiment Content 68.6 66.3 67.3
– Part of Speech Context 67.8 64.6 65.9
– Brown Clusters 68.6 64.9 66.3

Table 7: Performance statistics for our baseline,
predictive model with all features and with ablat-
ing each feature group. Precision, Recall and F1
score are macro-averaged across the six classes.

Brown Clusters are obtained by hierarchical clus-
tering tokens based on contexts in which they im-
mediately co-occur. We use the precomputed clus-
ter representations as seen in Turian et al. (2010).
We also experimented with Twitter-specific clus-
ters (Owoputi et al., 2012), but found they did not
perform as well on our development set.

Additionally, we experimented with a personal
pronoun indicator feature in a three word window
around the target, a one-hot lexical feature en-
coding the target vulgar item, and NRC emotion
scores (Mohammad and Turney, 2013), but found
there to be no improvement in performance as a re-
sult. We did not experiment with using the demo-
graphic variables as features as these are generally
unavailable for use in predictive systems.

5.3 Experimental Results

We split our data into a training set of 6,883 tweets
and a testing set of 1,087 tweets, and held out a set
of 554 tweets as a validation set on which to test
different hyperparameter settings.

Performance statistics for our predictive model
are presented in Table 7, as well as ablation exper-
iments for each feature group.

Our predictive model vastly outperforms the
most frequent baseline, which uniformly selects
the most frequent class overall (emphasis) and
scores very low due to the very even distribution
over functions. Our best model achieves a macro-
averaged F1 score of 67.4 across the six classes.

In the ablation experiments, we see by remov-
ing one feature group at a time, which feature type
adds most predictive value over others. Withhold-
ing the intention distribution feature group from
the model shows the greatest loss in performance
(12.1 macro F1). This is somewhat expected, as
this feature gives a prior distribution over func-
tions for the target word based on training data
and, as most words are rarely used with some

functions, allows the model to downweigh them.
However, even with no word function prior, the
predictive performance is still relatively high (55.3
macro F1 across six classes), showing that only the
content and context is substantially predictive for
the function of a vulgar word

Removing tweet content features or part-of-
speech context introduce a similar drop in predic-
tive performance, showing that the overall tweet
content and the local syntactic context of the men-
tion play complimentary roles in inference. The
sentiment feature groups are the least informative,
yielding an negligible increase in performance of
only 0.1 macro F1.

The predictive model’s F1 scores by class is as
follows: Aggression – 65.6, Emotion – 62.4, Em-
phasis – 76.4, Signal Group Identity – 56.5, Auxil-
iary – 62.2, Not Vulgar – 81.4.

The highest predictive performance is obtained
for vulgar words used in a non vulgar context,
which is due to the different tweet content of these
tweets and the restricted sets of words which are
usually used as non-vulgar. The emphasis func-
tions is the second most accurately predictable us-
ing our model, due to the very distinctive syntactic
patterns of usage of this function (usually as an ad-
jective). The least predictable function is signaling
group identity. We observed that this function is
usually used as part of larger conversational con-
text and often relies on a shared social context.

6 Hate Speech Prediction

Finally, we aim to show that modeling the func-
tion of vulgar words explicitly has practical impli-
cations by using this in a downstream application.

6.1 Task
Automatic hate-speech detection on social media
is the task defined as generally identifying abu-
sive speech targeting specific group characteris-
tics, such as ethnic origin, religion, gender, or
sexual orientation (Warner and Hirschberg, 2012)
with a clear intention to incite harm, or to promote
hatred (Zhang and Luo, 2018). Several data sets
and approaches to automatic hate speech detection
have been recently proposed (Djuric et al., 2015;
Burnap and Williams, 2015; Waseem and Hovy,
2016; Nobata et al., 2016; Davidson et al., 2017).

The task of predicting hate-speech is challeng-
ing for natural language processing using lexical
information as it aims to predict the intention of
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the message and several words used in conveying
hate speech can have other common uses (David-
son et al., 2017; Malmasi and Zampieri, 2018).

Hate speech is very often confused with offen-
sive language, as highlighted in the error analy-
ses of past hate speech detection papers (Davidson
et al., 2017). Quantitative analysis of the machine
learning models suggest that obscene words are
very informative for both the hate speech and of-
fensive classes of tweets (Malmasi and Zampieri,
2018), hinting that the functions of vulgar words
usage are a major source of ambiguity.

Our hypothesis is that explicitly modeling the
function a vulgar word has in context will benefit
the hate speech prediction task, by differentiating
between aggression and other usages.

6.2 Experiments

Data. We use the dataset introduced in Davidson
et al. (2017) as this is publicly available, contains
tweets collected using vulgar words and explicitly
differentiates between offensive tweets and tweets
containing hate speech. The three classes in this
data set are hate speech, offensive, and neither.

Another public dataset on tweets, introduced in
Waseem and Hovy (2016), focuses on specific
forms of hate speech (sexist and racist), but is col-
lected with a restricted set of keywords, has low
coverage of vulgar words and does not explicitly
distinguish between hate speech and other offen-
sive language. Other datasets for this task are not
publicly available e.g., Nobata et al. (2016).
Setup. In order to directly measure the im-
pact on predicting performance introduced by ex-
plicitly modeling the function of the vulgar word
in the tweet, we follow the same methodology
to identify hate speech as described in David-
son et al. (2017), as implemented through the
openly available code provided by the authors.6

We thus train three one-vs-all logistic regression
classifiers with L2 regularization as implemented
in scikit-learn (Pedregosa et al., 2011). Features
used in the model include unigram to trigram TF-
IDF weighted word features, Part-of-Speech uni-
gram to trigrams, reading level, sentiment words,
Twitter specific features (e.g., hashtags, mentions,
retweets, and URLs) as well as generic tweet-level
features (e.g., number of characters, words, and
syllables in each tweet).

6https://github.com/t-davidson/
hate-speech-and-offensive-language

Method
Class Davidson et al. + vulgar features
Hate Speech 33.6 39.7
Offensive 92.1 93.5
Neither 82.2 85.7
Average 69.3 73.0

Table 8: F1 score per class and the macro average.

Vulgar Function Features. We directly and ex-
plicitly include the function of the vulgar word
present in the tweet by introducing six new fea-
tures to the hate speech detection model which
represent the scores with which the vulgar word
is associated with the six functions. If multiple
vulgar words exist in a tweet, we use the average
predictions over the six functions.
Metrics. We run the model from Davidson et al.
(2017) using the provided code on 10-fold cross
validation and report the average F1 score for
each class as well as the macro-averaged F1 score
across all ten folds. Using the available code, we
could not reproduce exactly results presented in
the Davidson et al. (2017) paper. For predicting
the function of the vulgar words from context, we
use our best predictive model described in Sec-
tion 5. We also re-scale our six function features
by multiplying them with a large exponent in order
to make them significant in model training.
Results. As presented in Table 8, the addition of
the six vulgar function features improves the F1
score for each of three classes to up to 6.1 F1 for
the hate speech class, which had the lowest per-
formance. This results in an improvement of the
macro-F1 score for the entire classification task of
3.7 in F1. This demonstrates the importance of the
proposed vulgar function modeling task in detect-
ing hate speech.

7 Conclusion

This paper presents the first empirical study on the
pragmatic functions of vulgar words. We created
a novel, freely available data set of 7,800 vulgar
tweets having 8,524 instances of vulgar words la-
beled for one of six functions by seven annota-
tors and expert adjudication. We quantitatively
showed, leveraging research in linguistics and psy-
chology, that vulgar words are frequently used
with different functions and, in the first quanti-
tative analysis on this topic, uncovered that vul-
gar words are used with different functions by
younger users to signal group identity and for ex-
pressing emotions.

We have built the first machine learning model
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for predicting vulgar word function from con-
text, achieving a performance of 67.4 macro F1,
demonstrating the practical feasibility of this task.
We showed the usefulness of this task, by integrat-
ing predicted vulgar word function in the down-
stream task of hate speech detection, achieving an
improvement of 3.7 in F1 on a benchmark data set.

This study showed that modeling pragmatic
function is of practical importance. Future work
will use this linguistic information to inform more
complex machine learning models, e.g., deep neu-
ral networks, in an attempt to increase predictive
gains. As two of the most used functions of vulgar
words relate to expressing sentiment or emotions,
we will also explore collecting sentiment annota-
tions for joint sentiment and vulgar word function
inference and use this to improve the task of senti-
ment analysis using multi-task methods.

References
Lars-Gunnar Andersson and Peter Trudgill. 1990. Bad

language. Penguin.

Ron Artstein and Massimo Poesio. 2008. Inter-coder
agreement for computational linguistics. Computa-
tional Linguistics, 34(4):555–596.

Penelope Brown and Stephen C Levinson. 1987. Po-
liteness: Some Universals in Language Usage, vol-
ume 4. Cambridge University Press.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18(4):467–479.

Pete Burnap and Matthew L Williams. 2015. Cyber
Hate Speech on Twitter: An Application of Machine
Classification and Statistical Modeling for Policy and
Decision Making. Policy & Internet, 7(2):223–242.

Isabel Cachola, Eric Holgate, Daniel Preoţiuc-Pietro,
and Junyi Jessy Li. 2018. Expressively Vulgar: The
Socio-Dynamics of Vulgarity and its Effects on Sen-
timent Analysis in Social Media. In Proceedings of
the 27th International Conference on Computational
Linguistics, COLING, pages 2927–2938.

Jordan Carpenter, Daniel Preoţiuc-Pietro, Lucie
Flekova, Salvatore Giorgi, Courtney Hagan, Mar-
garet Kern, Anneke Buffone, Lyle Ungar, and Martin
Seligman. 2016. Real Men don’t say ’cute’: Using
Automatic Language Analysis to Isolate Inaccurate
Aspects of Stereotypes. Social Psychological and
Personality Science, 8.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated Hate Speech
Detection and the Problem of Offensive Language.

In Proceedings of the 11th International AAAI Con-
ference on Web and Social Media, ICWSM, pages
512–515.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina
Bontcheva. 2013. Twitter Part-of-Speech Tagging
for all: Overcoming Sparse and Noisy Data. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing, RANLP,
pages 198–206.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate Speech Detection with Comment
Embeddings. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, WWW, pages
29–30.

Christopher Ellis and James A Stimson. 2012. Ideol-
ogy in America. Cambridge University Press.

Michael Gauthier, Adrien Guille, A Deseille, and Fa-
bien Rico. 2015. Text Mining and Twitter to Ana-
lyze British Swearing Habits. Handbook of Twitter
for Research.

Minqing Hu and Bing Liu. 2004. Mining and Sum-
marizing Customer Reviews. In Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD, pages
168–177.

Akshay Java, Xiaodan Song, Tim Finin, and Belle
Tseng. 2007. Why we twitter: understanding mi-
croblogging usage and communities. In Proceedings
of the 9th WebKDD and 1st SNA-KDD 2007 work-
shop on Web mining and social network analysis,
pages 56–65.

Timothy Jay. 2009. The Utility and Ubiquity of
Taboo Words. Perspectives on Psychological Sci-
ence, 4(2):153–161.

Timothy Jay and Kristin Janschewitz. 2008. The Prag-
matics of Swearing. Journal of Politeness Research.
Language, Behaviour, Culture, 4(2):267–288.

Efthymios Kouloumpis, Theresa Wilson, and Jo-
hanna D Moore. 2011. Twitter Sentiment Analysis:
The Good the Bad and the OMG! In Proceedings of
the 5th International AAAI Conference on Web and
Social Media, ICWSM, pages 538–541.

Shervin Malmasi and Marcos Zampieri. 2018. Chal-
lenges in discriminating profanity from hate speech.
Journal of Experimental & Theoretical Artificial In-
telligence, 30(2):187–202.

Tony McEnery. 2004. Swearing in English: Bad Lan-
guage, Purity and Power from 1586 to the Present.
Routledge.

Matthias R Mehl, Simine Vazire, Nairán Ramı́rez-
Esparza, Richard B Slatcher, and James W Pen-
nebaker. 2007. Are Women Really more Talkative
than Men? Science, 317(5834):82–82.

4413



Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lexi-
con. Computational Intelligence, 29(3):436–465.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW, pages 145–153.

Olutobi Owoputi, Brendan OConnor, Chris Dyer,
Kevin Gimpel, and Nathan Schneider. 2012. Part-
of-Speech Tagging for Twitter: Word Clusters and
Other Advances.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), EMNLP, pages
1532–1543.

Steven Pinker. 2007. The stuff of thought: Language
as a window into human nature. Penguin.

Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins, and
Lyle Ungar. 2017. Beyond Binary Labels: Political
Ideology Prediction of Twitter Users. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL, pages 729–740.

Phuc Dong Quang. 1971. English Sentences without
Overt Grammatical Subject. pages 3–10.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Unsu-
pervised Modeling of Twitter Conversations. In Hu-
man Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics, NAACL, pages
172–180.

H Andrew Schwartz and et al. 2013. Personality, Gen-
der, and Age in the Language of Social Media: The
Open-vocabulary Approach. PloS ONE, 8(9).

Gary W Selnow. 1985. Sex differences in uses and per-
ceptions of profanity. Sex Roles, 12(3-4):303–312.

Richard Stephens, John Atkins, and Andrew Kingston.
2009. Swearing as a Response to Pain. Neuroreport,
20(12):1056–1060.

Karolina Sylwester and Matthew Purver. 2015. Twit-
ter Language Use Reflects Psychological Differences
between Democrats and Republicans. PLoS ONE,
10(9).

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL, pages 384–394.

Na Wang. 2013. An Analysis of the Pragmatic Func-
tions of ‘swearing’ in Interpersonal Talk. Grif-
fith Working Papers in Pragmatics and Intercultural
Communication, 6:71–79.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2014. Cursing in English on
Twitter. In Proceedings of the 17th ACM conference
on Computer Supported Cooperative Work & Social
Computing, CSCW, pages 415–425.

William Warner and Julia Hirschberg. 2012. Detecting
Hate Speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of the
NAACL student research workshop, NAACL, pages
88–93.

Ziqi Zhang and Lei Luo. 2018. Hate Speech Detection:
A Solved Problem? The Challenging Case of Long
Tail on Twitter. Semantic Web.

4414



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4415–4424
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

Is it Time to Swish?
Comparing Deep Learning Activation Functions Across NLP tasks

Steffen Eger, Paul Youssef, Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science
Technische Universität Darmstadt
www.ukp.tu-darmstadt.de

Abstract

Activation functions play a crucial role in
neural networks because they are the non-
linearities which have been attributed to the
success story of deep learning. One of the
currently most popular activation functions
is ReLU, but several competitors have re-
cently been proposed or ‘discovered’, includ-
ing LReLU functions and swish. While
most works compare newly proposed activa-
tion functions on few tasks (usually from im-
age classification) and against few competitors
(usually ReLU), we perform the first large-
scale comparison of 21 activation functions
across eight different NLP tasks. We find that a
largely unknown activation function performs
most stably across all tasks, the so-called pe-
nalized tanh function. We also show that it
can successfully replace the sigmoid and tanh
gates in LSTM cells, leading to a 2 percent-
age point (pp) improvement over the standard
choices on a challenging NLP task.

1 Introduction

Activation functions are a crucial component of
neural networks because they turn an otherwise
linear classifier into a non-linear one, which has
proven key to the high performances witnessed
across a wide range of tasks in recent years. While
different activation functions such as sigmoid or
tanh are often equivalent on a theoretical level, in
the sense that they can all approximate arbitrary
continuous functions (Hornik, 1991), different ac-
tivation functions often show very diverse behav-
ior in practice.

For example, sigmoid, one of the activation
functions dominating in neural network practice
for several decades eventually turned out less suit-
able for learning because (according to accepted
wisdom) of its small derivative which may lead to
vanishing gradients. In this respect, the so-called

ReLU function (Glorot et al., 2011) has proven
much more suitable. It has an identity deriva-
tive in the positive region and is thus claimed to
be less susceptible to vanishing gradients. It has
therefore (arguably) become the most popular ac-
tivation function. The recognition of ReLU’s suc-
cess has led to various extensions proposed (Maas
et al., 2013; He et al., 2015; Klambauer et al.,
2017), but none has reached the same popular-
ity, most likely because of ReLU’s simplicity and
because the gains reported tended to be inconsis-
tent or marginal across datasets and models (Ra-
machandran et al., 2017).

Activation functions have been characterized by
a variety of properties deemed important for suc-
cessful learning, such as ones relating to their
derivatives, monotonicity, and whether their range
is finite or not. However, in recent work, Ra-
machandran et al. (2017) employed automatic
search to find high-performing novel activation
functions, where their search space contained
compositions of elementary unary and binary
functions such as max, min, sin, tanh, or exp.
They found many functions violating properties
deemed as useful, such as non-monotonic activa-
tion functions or functions violating the gradient-
preserving property of ReLU. Indeed, their most
successful function, which they call swish, vio-
lates both of these conditions. However, as with
previous works, they also only evaluated their
newly discovered as well as their (rectifier) base-
line activation functions on few different datasets,
usually taken from the image classification com-
munity such as CIFAR (Krizhevsky, 2009) and
ImageNet (Russakovsky et al., 2015), and using
few types of different networks, such as the deep
convolutional networks abounding in the image
classification community (Szegedy et al., 2016).

To our best knowledge, there exists no large-
scale empirical comparison of different activations
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across a variety of tasks and network architec-
tures, and even less so within natural language
processing (NLP).1 Thus, the question which acti-
vation function really performs best and most sta-
bly across different NLP tasks and popular NLP
models remains unanswered to this date.

In this work, we fill this gap. We compare (i)
21 different activation functions, including the 6
top performers found from automatic search in Ra-
machandran et al. (2017), across (ii) three popu-
lar NLP task types (sentence classification, docu-
ment classification, sequence tagging) comprising
8 individual tasks, (iii) using three different popu-
lar NLP architectures, namely, MLPs, CNNs, and
RNNs. We also (iv) compare all functions across
two different dimensions, namely: top vs. average
performance.

We find that a largely unknown activation func-
tion, penalized tanh (Xu et al., 2016), performs
most stably across our different tasks. We also find
that it can successfully replace tanh and sigmoid
activations in LSTM cells. We further find that
the majority of top performing functions found in
Ramachandran et al. (2017) do not perform well
for our tasks. An exception is swish, which per-
formed well across several tasks, but less stably
than penalized tanh and other functions.2

2 Theory

Activation functions We consider 21 activation
functions, 6 of which are “novel” and proposed in
Ramachandran et al. (2017). The functional form
of these 6 is given in Table 1, together with the
sigmoid function.

The remaining 14 are: tanh, sin, relu, lrelu-
0.01, lrelu-0.30, maxout-2, maxout-3, maxout-
4, prelu, linear, elu, cube, penalized tanh, selu.
We briefly describe them: lrelu-0.01 and lrelu-
0.30 are the so-called leaky relu (LReLU) func-
tions (Maas et al., 2013); the idea behind them is
to avoid zero activations/derivatives in the nega-
tive region of relu. Their functional form is given
in Table 1. prelu (He et al., 2015) generalizes the
LReLU functions by allowing the slope in the neg-
ative region to be a learnable parameter. The max-
out functions (Goodfellow et al., 2013) are dif-

1An exception may be considered Xu et al. (2015), who,
however, only contrast the rectifier functions on image clas-
sification datasets.

2Accompanying code to reproduce our experiments
is available from https://github.com/UKPLab/
emnlp2018-activation-functions.

sigmoid f(x) = �(x) = 1/(1 + exp(�x))
swish f(x) = x · �(x)
maxsig f(x) = max{x, �(x)}
cosid f(x) = cos(x) � x
minsin f(x) = min{x, sin(x)}
arctid f(x) = arctan(x)2 � x
maxtanh f(x) = max{x, tanh(x)}

lrelu-0.01 f(x) = max{x, 0.01x}
lrelu-0.30 f(x) = max{x, 0.3x}

penalized tanh f(x) =

(
tanh(x) x > 0,

0.25 tanh(x) x  0

Table 1: Top: sigmoid activation function as well as
6 top performing activation functions from Ramachan-
dran et al. (2017). Bottom: the LReLU functions with
different parametrizations as well as penalized tanh.

ferent in that they introduce additional parameters
and do not operate on a single scalar input. For
example, maxout-2 is the operation that takes the
maximum of two inputs: max{xW+b,xV+c},
so the number of learnable parameters is doubled.
maxout-3 is the analogous function that takes the
maximum of three inputs. As shown in Goodfel-
low et al. (2013), maxout can approximate any
convex function. sin is the standard sine func-
tion, proposed in neural network learning, e.g., in
Parascandolo et al. (2016), where it was shown to
enable faster learning on certain tasks than more
established functions. penalized tanh (Xu et al.,
2016) has been defined in analogy to the LReLU
functions, which can be thought of as “penalizing”
the identity function in the negative region. The
reported good performance of penalized tanh on
CIFAR-100 (Krizhevsky, 2009) lets the authors
speculate that the slope of activation functions
near the origin may be crucial for learning. lin-
ear is the identity function, f(x) = x. cube is
the function f(x) = x3, proposed in Chen and
Manning (2014) for an MLP used in dependency
parsing. elu (Clevert et al., 2015) has been pro-
posed as (yet another) variant of relu that assumes
negative values, making the mean activations more
zero-centered. selu is a scaled variant of elu used
in Klambauer et al. (2017) in the context of so-
called self-normalizing neural nets.

Properties of activation functions Many prop-
erties of activation functions have been speculated
to be crucial for successful learning. Some of
these are listed in Table 2, together with brief de-
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Property Description Problems Examples

derivative f 0 > 1 exploding gradient (e) sigmoid (v), tanh (v), cube (e)
< 1 vanishing (v)

zero-centered range centered around zero? if not, slower learning tanh (+), relu (�)
saturating finite limits vanishing gradient in the limit tanh, penalized tanh, sigmoid
monotonicity x > y =) f(x) � f(y) unclear exceptions: sin, swish, minsin

Table 2: Frequently cited properties of activation functions
.

scriptions and illustrations.
Graphs of all activation functions can be found

in the appendix.

3 Experiments

We conduct experiments using three neural net-
work types and three types of NLP tasks, de-
scribed in §3.1, §3.2, and §3.3 below.

3.1 MLP & Sentence Classification
Model We experiment with a multi-layer per-
ceptron (MLP) applied to sentence-level classifi-
cation tasks. That is, input to the MLP is a sen-
tence or short text, represented as a fixed-size vec-
tor embedding. The output of the MLP is a label
which classifies the sentence or short text. We use
two sentence representation techniques, namely,
Sent2Vec (Pagliardini et al., 2018), of dimension-
ality 600, and InferSent (Conneau et al., 2017), of
dimensionality 4096. Our MLP has the form:

xi = f(xi�1 · Wi + bi)

y = softmax(xNWN+1 + bN+1)

where x0 is the input representation, x1, . . . ,xN

are hidden layer representations, and y is the out-
put, a probability distribution over the classes in
the classification task. Vectors b and matrices W
are the learnable parameters of our network. The
activation function is given by f and ranges over
the choices described in §2.

Data We use four sentence classification tasks,
namely: movie review classification (MR), sub-
jectivitiy classification (SUBJ), question type clas-
sification (TREC), and classifying whether a sen-
tence contains an argumentation structure of a cer-
tain type (claim, premise, major claim) or else is
non-argumentative (AM). The first three datasets
are standard sentence classification datasets and
contained in the SentEval framework.3 We choose

3https://github.com/facebookresearch/
SentEval

the AM dataset for task diversity, and derive it by
projecting token-level annotations in the dataset
from Stab and Gurevych (2017) to the sentence
level. In the rare case (<5% of the cases) when
a sentence contains multiple argument types, we
choose one based on the ordering Major Claim
(MC) > Claim (C) > Premise (P). Datasets and
examples are listed in Table 3.

Approach We consider 7 “mini-experiments”:

• (1): MR dataset with Sent2Vec-unigram em-
beddings as input and 1% of the full data as
training data; (2): the same mini-experiment
with 50% of the full data as training data. In
both cases, the dev set comprises 10% of the
full data and the rest is for testing.

• (3,4): SUBJ with InferSent embeddings and
likewise 1% and 50% of the full data as train
data, respectively.

• (5): The TREC dataset with original split in
train and test; 50% of the train split is used as
dev data.

• (6): The AM dataset with original split in
train, dev, and test (Eger et al., 2017), and with
InferSent input embeddings. (7): the same
mini-experiment with Sent2Vec-unigram em-
beddings.

We report accuracy for mini-experiments (1-5)
and macro-F1 for (6-7). We report macro-F1 for
(6-7) because the AM dataset is imbalanced.

The motivation behind choosing different input
embeddings for different tasks was to investigate
a wider variety of conditions. Choosing subsets of
the full data had the same intention.

For all 7 mini-experiments, we draw the same
200 randomly chosen hyperparameters from the
ranges indicated in Table 4. All experiments are
conducted in keras.4

For each of the 21 different activation functions
detailed in §2, we conduct each mini-experiment
with the 200 randomly chosen hyperparameters.

4https://keras.io/
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Task Type Size C Example

AM Argumentation 7k 4 Not cooking fresh food will lead to lack of nutrition. (claim)
MR Sentiment 11k 2 Too slow for a younger crowd , too shallow for an older one. (neg)
SUBJ Subjectivity 10k 2 A movie that doesnt aim too high , but doesnt need to. (subj)
TREC Question-types 6k 6 What’s the Olympic Motto? (description)

NG Doc classification 18k 20 [...] You can add ”dark matter” and quarks [...] (sci.space)
R8 Doc classification 7k 8 bowater industries profit exceed [...] (earn)

POS POS tagging 204k 17 What/PRON to/PART feed/VERB my/PRON dog/NOUN [...]
TL-AM Token-level AM 148k 7 [...] I/O firmly/O believe/O that/O we/B-MC should/I-MC [...]

Table 3: Evaluation tasks used in our experiments, grouped by task type (sentence classification, document classi-
fication, sequence tagging), with statistics and examples. C is the number of classes to predict.

All activation functions use the same hyperparam-
eters and the same train, dev, and test splits.

We store two results for each mini-experiment,
namely: (i) the test result corresponding to the
best (best) dev performance; (ii) the average
(mean) test result across all hyperparameters. The
best result scenario mirrors standard optimiza-
tion in machine learning: it indicates the score one
can obtain with an activation function when the
MLP is well-optimized. The mean result scenario
is an indicator for what one can expect when hy-
perparameter optimization is ‘shallow’ (e.g., be-
cause computing times are prohibitive): it gives
the average performance for randomly chosen hy-
perparameters. We note that we run each hyper-
parameter combination with 5 different random
weight initializations and all the reported scores
(best dev score, best best, best mean) are aver-
ages over these 5 random initializations.

Finally, we set the following hyperparameters
for all MLP experiments: patience of 10 for early
stopping, batch size 16, 100 epochs for training.

Results Figure 1 shows best and mean results,
averaged over all 7 mini-experiments, for each ac-
tivation function. To make individual scores com-
parable across mini-experiments, we perform max
normalization and divide each score by the maxi-
mum score achieved in any given mini-experiment
(for best and mean, respectively) before averag-
ing.5

For best, the top performers are the rectifier
functions (relu, lrelu-0.01, prelu) as well as max-
out and penalized tanh. The newly discovered

5We chose max normalization so that certain tasks/mini-
experiments would not unduly dominate our averaged scores.
Overall, our averaged scores are not (much) affected by this
decision, however: the Spearman correlation of rankings of
activation functions under max normalization and under no
max normalization are above 0.98 in all our three classifica-
tion scenarios considered in §3.1,§3.2,§3.3.

activation functions lag behind, with the best of
them being minsin and swish. linear is worst,
together with elu and cube. Overall, the differ-
ence between the best activation function, relu,
and the worst, linear, is only roughly 2pp, how-
ever. This means that if hyperparameter search
is done carefully, the choice of activation func-
tion is less important for these sentence classifica-
tion tasks. Particularly the (binary) tasks MR and
SUBJ appear robust against the choice of activa-
tion function, with the difference between the best
and worst function being always less than 1pp, in
all settings. For TREC and AM, the situation is
slightly different: for TREC, the difference is 2pp
(swish vs. maxsig) and for AM, it is 3pp using
InferSent embeddings (swish vs. cube) and 12pp
using Sent2Vec embeddings (relu vs. linear). It
is noteworthy that swish wins 2 out of 3 cases in
which the choice of activation function really mat-
ters.
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Figure 1: Sentence Classification. Left y-axis: best.
Right y-axis: mean. Score on y-axes is the average
over all mini-experiments.

mean results are very different from best re-
sults. Here, somewhat surprisingly, the oscillating
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Model Hyperparameter Range
(a) MLP (1) optimizer {Adam,RMSprop,Adagrad,Adadelta,Adamax,Nadam,sgd}

(2) #hidden layers N {1, 2, 3, 4}

(3) dropout value [0.1, 0.75]
(4) hidden units [30, 500]
(5) learning rate N (m, m/5)
(6) weight initializer {random-n, random-u, varscaling, orthogonal,

lecun-u, glorot-n, glorot-u, he-n, he-u}

(b) CNN (a) (1,3,5,6) same as MLP
embedding dimension [40, 200]
number of filters nk [30, 500]
#hidden layers N {1, 2, 3}

filter size h {1, 2, 2, 3, 3, 3, 4}

(c) RNN/LSTM (a) (1-5) same as MLP
recurrent initializer same as (a) (6) plus identity matrix

Table 4: Hyperparameter ranges for each network type. Hyperparameters are drawn using a discrete or continuous
uniform distribution from the indicated ranges. Repeated values indicate multi-sets. N (µ, s) is the normal distri-
bution with mean µ and std s; µ = m is the default value from keras for the specific optimizer (if drawn learning
rate is < 0, we choose it to be m).

sin function wins, followed by penalized tanh,
maxout and swish. The difference between the
best mean function, sin, and the worst, cube, is
more than 30pp. This means that using cube is
much riskier and requires more careful hyperpa-
rameter search compared to sin and the other top
performers.

3.2 CNN & Document Classification
Model Our second paradigm is document clas-
sification using a CNN. This approach has been
popularized in NLP by the ground-breaking work
of Kim (2014). Even though shallow CNNs do
not reach state-of-the-art results on large datasets
anymore (Johnson and Zhang, 2017), simple ap-
proaches like (shallow) CNNs are still very com-
petitive for smaller datasets (Joulin et al., 2016).

Our model operates on token-level and first
embeds a sequence of tokens x1, . . . , xn, repre-
sented as 1-hot vectors, into learnable embed-
dings x1, . . . ,xn. The model then applies 1D-
convolution on top of these embeddings. That is,
a filter w of size h takes h successive embeddings
xi:i+h�1, performs a scalar product and obtains a
feature ci:

ci = f(w · xi:i+h�1 + b).

Here, f is the activation function and b is a bias
term. We take the number nk of different filters as
a hyperparameter. When our network has multiple
layers, we stack another convolutional layer on top
of the first (in total we have nk outputs at each time
step), and so on. Our penultimate layer is a global

max pooling layers that selects the maximum from
each feature map. A final softmax layer terminates
the network.

Data We use two document classification tasks,
namely: 20 Newsgroup (NG) and Reuters-21578
R8 (R8). Both datasets are standard document
classification datasets. In NG, the goal is to
classify each document into one of 20 newsgroup
classes (alt.atheism, sci.med, sci.space, etc.). In
R8, the goal is to classify Reuters news text into
one of eight classes (crude, earn, grain, inter-
est, etc.). We used the preprocessed files from
https://www.cs.umb.edu/˜smimarog/
textmining/datasets/ (in particular,
stopwords are removed and the text is stemmed).

Approach We consider 4 mini-experiments:

• (1,2) NG dataset with 5% and 50%, respec-
tively of the full data as train data. In both
cases, 10% of the full data is used as dev data,
and the rest as test data.

• (3,4) Same as (1,2) for R8.

We report accuracy for all experiments. We use a
batch size of 64, 50 epochs for training, and a pa-
tience of 10. For all mini-experiments, we again
draw 200 randomly chosen hyperparameters from
the ranges indicated in Table 4. The hyperparam-
eters and train/dev/test splits are the same for all
activation functions.

Results Figure 2 shows best and mean results,
averaged over all mini-experiments. This time,
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the winners for best are elu, selu (again two
members from the rectifier family), and maxout-
3, but the difference between maxout-3 and sev-
eral lower ranked functions is minimal. The
cube function is again worst and sigmoid and
cosid have similarly bad performance. Except for
minsin, the newly proposed activation functions
from Ramachandran et al. (2017) again consider-
ably lag behind. The most stable activation func-
tions are the maxout functions as well as penal-
ized tanh, tanh and sin.
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Figure 2: Doc classification.

3.3 RNN & Sequence Tagging

Model Our third paradigm is sequence tagging,
a ubiquitous model type in NLP. In sequence tag-
ging, a sequence of input tokens w1, . . . , wK is
mapped to a sequence of labels y1, . . . , yK . Clas-
sical sequence tagging tasks include POS tagging,
chunking, NER, discourse parsing (Braud et al.,
2017), and argumentation mining (Eger et al.,
2017; Schulz et al., 2018). We use a standard re-
current net for sequence tagging, whose form is:

hi = f(hi�1W + wi · U + b)

yi = softmax(hiV + c)

Here, wi are (pre-trained) word embeddings of
words wi. Vectors b, c and matrices U,V,W
are parameters to be learned during training. The
above describes an RNN with only one hidden
layer, hi, at each time step, but we consider the
generalized form with N � 1 hidden layers; we
also choose a bidirectional RNN in which the hid-
den outputs of a forward RNN and a backward
RNN are combined. RNNs are particularly deep

networks—indeed, the depth of the network corre-
sponds to the length of the input sequence—which
makes them particularly susceptible to the vanish-
ing gradient problem (Pascanu et al., 2012).

Initially, we do not consider the more popular
LSTMs here for reasons indicated below. How-
ever, we include a comparison after discussing the
RNN performance.

Data We use two sequence tagging tasks,
namely: English POS tagging (POS), and token-
level argumentation mining (TL-AM) using the
same dataset (consisting of student essays) as for
the sentence level experiments. In token-level
AM, we tag each token with a BIO-label plus
the component type, i.e., the label space is Y =
{B, I} ⇥ {MC, C, P} [ {O}, where ‘O” is a la-
bel for non-argumentative tokens. The motivation
for using TL-AM is that, putatively, AM has more
long-range dependencies than POS or similar se-
quence tagging tasks such as NER, because argu-
ment components are much longer than named en-
tities and component labels also depend less on the
current token.

Approach We consider 6 mini-experiments:

• (1): TL-AM with Glove-100d word embed-
dings and 5% of the original training data as
train data; (2) the same with 30% of the origi-
nal training data as train data. In both cases,
dev and test follow the original train splits
(Eger et al., 2017).

• (3,4) Same as (1) and (2) but with 300d Levy
word embeddings (Levy and Goldberg, 2014).

• (5,6): POS with Glove-100d word embed-
dings and 5% and 30%, respectively, of the
train data of a pre-determined train/dev/test
split (13k/13k/178k tokens). Dev and test are
fixed in both cases.

We report macro-F1 for mini-experiments (1-4)
and accuracy for (5-6). For our RNN implemen-
tations, we use the accompanying code of (the
state-of-the-art model of) Reimers and Gurevych
(2017), which is implemented in keras. The net-
work uses a CRF layer as an output layer. We use
a batch size of 32, train for 50 epochs and use a
patience of 5 for early stopping.

Results Figure 3 shows best and mean results,
averaged over all 6 mini-experiments, for each ac-
tivation function. We exclude prelu and the max-
out functions because the keras implementation
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does not natively support these activation func-
tions for RNNs. We also exclude the cube func-
tion because it performed very badly.
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Figure 3: Sequence tagging.

Unlike for sentence classification, there are
much larger differences between the activation
functions. For example, there is almost 20pp dif-
ference between the best best activation func-
tions: relu, lrelu-0.01, swish, penalized tanh,
and the worst ones: linear, cosid, and sig-
moid (the differences were larger had we included
cube). Interestingly, this difference is mostly due
to the TL-AM task: for POS, there is only 3pp dif-
ference between the best function (sigmoid (sic!),
though with almost zero margin to the next best
ones) and the worst one (linear), while this differ-
ence is almost 40pp for TL-AM. This appears to
confirm our concerns regarding the POS tagging
task as not being challenging enough due to lack
of, e.g., long-range dependencies.

The four best best activation functions in Fig-
ure 3 are also the functions with the best mean
results, i.e., they are most stable over different hy-
perparameters. The clear winner in this category
is penalized tanh with 100% mean score, fol-
lowed by swish with 91%. Worst is cosid with
30%. It is remarkable how large the difference be-
tween tanh and penalized tanh is both for best
and mean—7pp and 20pp, respectively, which is
much larger than the differences between the anal-
ogous pair of LReLU and relu. This appears to
make a strong case for the importance of the slope
around the origin, as suggested in Xu et al. (2016).

LSTM vs. RNN Besides an RNN, we also im-
plemented a more popular RNN model with (bidi-
rectional) LSTM blocks in place of standard hid-

den layers. Standard LSTM units follow the equa-
tions (simplified):

ft = �([ht�1;xt] · Wf ),

it = �([ht�1;xt] · Wi),

ot = �([ht�1;xt] · Wo)

ct = ft � ct�1 + it � ⌧([ht�1;xt] · Wc)

ht = ot � ⌧(ct),

where ft and it are perceived of as gates that con-
trol information flow, xt is the input at time t and
ht is the hidden layer activation. In keras (and
most standard references), � is the (hard) sigmoid
function, and ⌧ is the tanh function.

We ran an LSTM on the TL-AM dataset with
Levy word embeddings and 5% and 30% data size
setup. We varied � and ⌧ independently, keeping
the respective other function at its default.

We find that the top two choices for ⌧ are penal-
ized tanh and tanh (margin of 10pp), given that �
is sigmoid. For ⌧ = tanh, the best choices are � =
penalized tanh, sigmoid, and tanh. All other
functions perform considerably worse. Thus, the
top-performers are all saturating functions, indi-
cating the different roles activation functions play
in LSTMs—those of gates—compared to standard
layers. It is worth mentioning that choosing � or
⌧ as penalized tanh is on average better than the
standard choices for � and ⌧ . Indeed, choosing
⌧ = � = penalized tanh is on average 2pp better
than the default choices of ⌧, �.

It is further worth mentioning that the best
best results for the LSTM are roughly 5pp better
(absolute) than the best corresponding choices for
the simple RNN.

4 Analysis & Discussion
Winner statistics Each of the three meta-tasks
sentence classification, document classification,
and sequence tagging was won, on average, by
a member from the rectifier family, namely, relu
(2) and elu, for best. Also, in each case, cube
and cosid were among the worst performing ac-
tivation functions. The majority of newly pro-
posed functions from Ramachandran et al. (2017)
ranked somewhere in the mid-field, with swish
and minsin performing best in the best cate-
gory. For the mean category, we particulary had
the maxout functions as well as penalized tanh
and sin regularly as top performers.

To get further insights, we computed a winner
statistic across all 17 mini-experiments, counting
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how often each activation function was among the
top 3. Table 5 shows the results, excluding prelu
and the maxout functions because they were not
considered in all mini-experiments.

best penalized tanh (6), swish (6),
elu (4), relu (4), lrelu-0.01 (4)

mean penalized tanh (16), tanh (13)
sin (10)

Table 5: Top-3 winner statistics. In brackets: number
of times within top-3, keeping only functions with four
or more top-3 rankings.

We see that penalized tanh and swish win here
for best, followed by further rectifier functions.
The mean category is clearly won by saturating
activation functions with finite range. If this com-
parison were restricted to sentence and document
classification, where we also included the maxout
functions, then penalized tanh would have been
outperformed by maxout for mean.

This appears to yield the conclusion that
functions with limited range behave more sta-
bly across hyperparameter settings while non-
saturating functions tend to yield better top-
performances. The noteworthy exception to this
rule is penalized tanh which excels in both cat-
egories (the more expensive maxout functions
would be further exceptions). If the slope around
the origin of penalized tanh is responsible for
its good performance, then this could also explain
why cube is so bad, since it is very flat close to
the origin.

Influence of hyperparameters To get some in-
tuition about how hyperparameters affect our dif-
ferent activation functions, we regressed the score
of the functions on the test set on all the employed
hyperparameters. For example, we estimated:

y = ↵l · log(nl) + ↵d · d + · · · (1)

where y is the score on the test set, nl is the num-
ber of layers in the network, d is the dropout value,
etc. The coefficients ↵k for each regressor k is
what we want to estimate (in particular, their size
and their sign). We logarithmized certain variables
whose scale was substantially larger than those
of others (e.g., number of units, number of fil-
ters). For discrete regressors such as the optimizer
we used binary dummy variables. We estimated
Eq. (1) independently for each activation function

and for each mini-experiment. Overall, there was
a very diverse pattern of outcomes, preventing us
from making too strong conclusions. Still, we ob-
served that while all models performed on average
better with fewer hidden layers, particularly swish
was robust to more hidden layers (small negative
coefficient ↵l), but also, to a lesser degree, penal-
ized tanh. In the sentence classification tasks, sin
and the maxout functions were particulary robust
to an increase of hidden layers. Since penalized
tanh is a saturating function and sin even an oscil-
lating one, we therefore conclude that preserving
the gradient (derivative close to one) is not a nec-
essary prerequisite to successful learning in deeper
neural networks.

5 Concluding remarks

We have conducted the first large scale compar-
ison of activation functions across several differ-
ent NLP tasks (and task types) and using differ-
ent popular neural network types. Our main focus
was on so-called scalar activation functions, but
we also partly included the more costly ‘many-to-
one’ maxout functions.

Our findings suggest that the rectifier functions
(and the similarly shaped swish) can be top per-
formers for each task, but their performance is un-
stable and cannot be predicted a priori. One of
our major findings is that, in contrast, the saturat-
ing penalized tanh function performs much more
stably in this respect and can with high probabil-
ity be expected to perform well across tasks as
well as different choices of hyperparameters. This
appears to make it the method of choice particu-
larly when hyperparameter optimization is costly.
When hyperparameter optimization is cheap, we
recommend to consider the activation function as
another hyperparameter and choose it, e.g., from
the range of functions listed in Table 5 along with
maxout.

Another major advantage of the penalized
tanh function is that it may also take the role of
a gate (because of its finite range) and thus be
employed in more sophisticated neural network
units such as LSTMs, where the rectifiers fail com-
pletely. In this context, we noticed that replacing
sigmoid and tanh in an LSTM cell with penal-
ized tanh leads to a 2pp increase on a challenging
NLP sequence tagging task. Exploring whether
this holds across more NLP tasks should be scope
for future work. Additionally, our research sug-
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gests it is worthwhile to further explore penal-
ized tanh, an arguably marginally known activa-
tion function. For instance, other scaling factors
than 0.25 (default value from Xu et al. (2016))
should be explored. Similarly as for prelu, the
scaling factor can also be made part of the opti-
mization problem.

Finally, we found that except for swish none of
the newly discovered activation functions found in
Ramachandran et al. (2017) made it in our top cat-
egories, suggesting that automatic search of acti-
vation functions should be made across multiple
tasks in the future.
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Abstract

Character-level string-to-string transduction is
an important component of various NLP tasks.
The goal is to map an input string to an out-
put string, where the strings may be of dif-
ferent lengths and have characters taken from
different alphabets. Recent approaches have
used sequence-to-sequence models with an at-
tention mechanism to learn which parts of the
input string the model should focus on during
the generation of the output string. Both soft
attention and hard monotonic attention have
been used, but hard non-monotonic attention
has only been used in other sequence model-
ing tasks such as image captioning (Xu et al.,
2015) and has required a stochastic approxima-
tion to compute the gradient. In this work, we
introduce an exact, polynomial-time algorithm
for marginalizing over the exponential num-
ber of non-monotonic alignments between two
strings, showing that hard attention models can
be viewed as neural reparameterizations of the
classical IBM Model 1. We compare soft and
hard non-monotonic attention experimentally
and find that the exact algorithm significantly
improves performance over the stochastic ap-
proximation and outperforms soft attention.

1 Introduction

Many natural language tasks are expressible as
string-to-string transductions operating at the char-
acter level. Probability models with recurrent neu-
ral parameterizations currently hold the state of the
art on many such tasks. On those string-to-string
transduction tasks that involve a mapping between
two strings of different lengths, it is often neces-
sary to resolve which input symbols are related to
which output symbols. As an example, consider
the task of transliterating a Russian word into the
Latin alphabet. In many cases, there exists a one-to-
two mapping between Cyrillic and Latin letters: in
Хурщёв (Khrushchev), the Russian Х can be con-
sidered to generate the Latin letters Kh. Supervision
is rarely, if ever, provided at the level of character-

to-character alignments—this is the problem that
attention seeks to solve in neural models.

With the rise of recurrent neural networks, this
problem has been handled with “soft” attention
rather than traditional hard alignment. Attention
(Bahdanau et al., 2015) is often described as “soft,”
as it does not clearly associate a single input sym-
bol with each output symbol, but rather offers a
fuzzy notion of what input symbols may be re-
sponsible for which symbols in the output. In con-
trast, an alignment directly associates a given in-
put symbol with a given output symbol. To ex-
press uncertainty, practitioners often place a distri-
bution over the exponential number of hard non-
monotonic alignments, just as a probabilistic parser
places a distribution over an exponential number of
trees. The goal, then, is to learn the parameters of
this distribution over all non-monotonic alignments
through backpropagation. Incorporating hard align-
ment into probabilistic transduction models dates
back much farther in the NLP literature; arguably,
originating with the seminal paper by Brown et al.
(1993). Some neural approaches have moved back
towards this approach of a more rigid alignment,
referring to it as “hard attention.” We will refer
to this as “hard attention” and to more classical
approaches as “alignment.”

This paper offers two insights into the usage of
hard alignment. First, we derive a dynamic pro-
gram for the exact computation of the likelihood in
a neural model with latent hard alignment: Previous
work has used a stochastic algorithm to approxi-
mately sum over the exponential number of align-
ments between strings. In so doing, we go on to
relate neural hard alignment models to the classical
IBM Model 1 for alignment in machine translation.
Second, we provide an experimental comparison
that indicates hard attention models outperform soft
attention models on three character-level string-to-
string transduction tasks: grapheme-to-phoneme
conversion, named-entity transliteration and mor-
phological inflection.
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m e j r

m e j rm e j
Figure 1: Example of a non-monotonic character-level trans-
duction from the Micronesian language of Pingelapese. The
infinitive mejr is mapped through a reduplicative process to its
gerund mejmejr (Rehg and Sohl, 1981). Each input character
is drawn in green and each output character is drawn in purple,
connected with a line to the corresponding input character.

2 Non-Monotonic Transduction

This paper presents a novel, neural, probabilistic
latent-variable model for non-monotonic transduc-
tion. As a concrete example of a non-monotonic
transduction, consider the mapping of a Pinge-
lapese infinitive to its gerund, as shown in Fig. 1.
The mapping requires us to generate the output
string left-to-right, bouncing around the input string
out-of-order to determine the characters to trans-
duce from. As the non-monotonic alignment is the
latent variable, we will face a combinatorial prob-
lem: summing over all non-monotonic alignments.
The algorithmic contribution of this paper is the
derivation of a simple dynamic program for com-
puting this sum in polynomial time that still allows
for very rich recurrent neural featurization of the
model. With respect to the literature, our paper rep-
resents the first instance of exact marginalization
for a neural transducer with hard non-monotonic
alignment; previous methods, such as Rastogi et al.
(2016) and Aharoni and Goldberg (2017), are ex-
clusively monotonic.

Non-monotonic methods dominate character-
level transduction. Indeed, the state of art in clas-
sic character-level NLP tasks such as grapheme-
to-phoneme conversion (Yao and Zweig, 2015),
transliteration (Rosca and Breuel, 2016) and
morphological inflection generation (Kann and
Schütze, 2016) is held by the soft non-monotonic
method of Bahdanau et al. (2015). Even though
non-monotonicity is more common in word-level
tasks, it also exists in character-level transduction
tasks, as evidenced by our example in Fig. 1 and
the superior performance of non-monotonic meth-
ods. Our error analysis in §8.4 sheds some light on
why non-monotonic methods are the state of the
art in a seemingly monotonic task.

A Note on the Character-level Focus. A natu-
ral question at this point is why we are not experi-

menting with word-level transduction tasks, such
as machine translation. As we show in the §3.2
our method is often an order of magnitude slower,
since it will involve a mixture of softmaxes. Thus,
the exact marginalization scheme is practically un-
workable for machine translation; we discuss future
extensions for machine translation in §6. However,
the slow-down is no problem for character-level
tasks and we show empirical gains in §8.

3 Hard Non-Monotonic Alignment
3.1 The Latent-Variable Model
An alphabet is a finite, non-empty set. Given
two alphabets ⌃x = {x1, . . . , x|⌃x|} and ⌃y =
{y1, . . . , y|⌃y|}, probabilistic approaches to the
problem attempt to estimate a probability distribu-
tion p(y | x) where y 2 ⌃⇤

y and x 2 ⌃⇤
x. Foreshad-

owing, we will define the parameters of p to be, in
part, the parameters of a recurrent neural network,
in line with the state-of-the-art models. We define
the set A = {1, . . . , |x|}|y|, which has an interpre-
tation as the set of all (potentially non-monotonic)
alignments from x to y with the restriction that
each output symbol yi aligns to exactly one symbol
in x 2 ⌃⇤

x. In other words, A is the set of all many-
to-one alignments between x and y where many
may be as few as zero. We remark that |A| = |x||y|,
which is exponentially large in the length of the tar-
get string y. For an a 2 A, ai = j refers to the
event that yi, the ith component of y, is aligned to
xj , the jth component of x.

We define a probability distribution over output
strings y conditioned on an input string x where
we marginalize out unobserved alignments a:

p(y | x) =
X

a2A(x,y)

p(y,a | x) (1)

=
X

a2A

|y|Y

i=1

p(yi | ai,y<i,x) p(ai | y<i,x)

| {z }
exponential number of terms

(2)

=

|y|Y

i=1

|x|X

ai=1

p(yi | ai,y<i,x) p(ai | y<i,x)

| {z }
polynomial number of terms

(3)

=

|y|Y

i=1

|x|X

j=1

ai,j↵j(i) p(yi | ai,y<i,x) (4)

where we define ↵j(i) = p(ai | y<i,x) in order
to better notationally compare our model to that
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of Bahdanau et al. (2015) in §5. Each distribution
p(yi | ai,y<i,x) in the definition of the model
has a clean interpretation as a distribution over
the output vocabulary ⌃y, given an input string
x 2 ⌃⇤

x, where yi is aligned to xj . Thus, one way
of thinking about this hard alignment model is as
a product of mixture models, one mixture at each
step, with mixing coefficients ↵j(i).

Why Does Dynamic Programming Work?
Our dynamic program to compute the likelihood,
fully specified in eq. (3), is quite simple: The non-
monotonic alignments are independent of each
other, i.e., ↵j(i) is independent of ↵j(i�1), condi-
tioned on the observed sequence y. This means that
we can cleverly rearrange the terms in eq. (2) using
the distributive property. Were this not the case,
we could not do better than having an exponential
number of summands. This is immediately clear
when we view our model as a graphical model, as in
Fig. 2: There is no active trail from ai to ak where
k > i, ignoring the dashed lines. Note that this is
no different than the tricks used to achieve exact
inference in nth-order Markov models—one makes
an independence assumption between the current
bit of structure and the previous bits of structure to
allow an efficient algorithm. For a proof of eq. (2)–
eq. (3), one may look in Brown et al. (1993). Fore-
shadowing, we note that certain parameterizations
make use of input feeding, which breaks this inde-
pendence; see §5.1.

Relation to IBM Model 1. The derivation above
is similar to that of the IBM alignment model 1. We
remark, however, two key generalizations that will
serve our recurrent neural parameterization well in
§4. First, traditionally, derivations of IBM Model 1
omit a prior over alignments p(ai | x), taking it to
be uniform. Due to this omission, an additional mul-
tiplicative constant "/|x||y| is introduced to ensure
the distribution remains normalized (Koehn, 2009).
Second, IBM Model 1 does not condition on previ-
ously generated words on the output side. In other
words, in their original model, Brown et al. (1993)
assume that p(yi | ai,y<i,x) = p(yi | ai,x),
forsaking dependence on y<i. We note that there
is no reason why we need to make this indepen-
dence assumption—we will likely want a target-
side language model in transduction. Indeed, subse-
quent statistical machine translation systems, e.g.,
MOSES (Koehn et al., 2007), integrate a language
model into the decoder. It is of note that many

models in NLP have made similar independence
assumptions, e.g., the emission distribution hid-
den Markov models (HMMs) are typically taken
to be independent of all previous emissions (Ra-
biner, 1989). These assumptions are generally not
necessary.

3.2 Algorithmic Analysis: Time Complexity

Let us assume that the requisite probability distribu-
tions are computable in O(1) time and the softmax
takes O(⌃y). Then, by inspection, the computation
of the distribution in eq. (4) is O (|x| · |y| · |⌃y|),
as the sum in eq. (3) contains this many terms
thanks to the dynamic program that allowed us
to rearrange the sum and the product. While this
“trick” is well known in the NLP literature—it dates
from the seminal work in statistical machine trans-
lation by Brown et al. (1993)—it has been forgotten
in recent formulations of hard alignment (Xu et al.,
2015), which use stochastic approximation to han-
dle the exponential summands. As we will see in
§5, we can compute the soft-attention model of
Bahdanau et al. (2015) in O (|x| · |y| + |y| · |⌃y|)
time. When ⌃y is large, for example in case of
machine translation with tens of thousands of ⌃y

at least, we can ignore |x| · |y| in soft-attention
model, and the exact marginalization has an ex-
tra |x|-factor compared to soft-attention model. In
practice, Shi and Knight (2017) show the bottle-
neck of a NMT system is the softmax layer, making
the extra |x|-factor practically cumbersome.

4 Recurrent Neural Parameterization

How do we parameterize p(yi | ai,y<i,x) and
↵j(i) in our hard, non-monotonic transduction
model? We will use a neural network identical to
the one proposed in the attention-based sequence-
to-sequence model of Luong et al. (2015) without
input feeding (a variant of Bahdanau et al. (2015)).

4.1 Encoding the Input

All models discussed in this exposition will make
use of the same mechanism for mapping a source
string x 2 ⌃⇤

x into a fixed-length representation
in R

dh . This mapping will take the form of a bidi-
rectional recurrent neural network encoder, which
works as follows: each element of ⌃x is mapped to
an embedding vector of length de through a map-
ping: e : ⌃x ! R

de . Now, the RNN folds the
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x

a1 a2 a3 a4

h(dec)
1 h(dec)

2 h(dec)
3 h(dec)

4

y1 y2 y3 y4

Figure 2: Our hard-attention model without input feeding viewed as a graphical model. Note that the circular nodes are random
variables and the diamond nodes deterministic variables (h(dec)

i is first discussed in §4.3). The independence assumption between
the alignments ai when the yi are observed becomes clear. Note that we have omitted arcs from x to y1, y2, y3 and y4 for clarity
(to avoid crossing arcs). We alert the reader that the dashed edges show the additional dependencies added in the input feeding
version, as discussed in §5.1. Once we add these in, the ai are no longer independent and break exact marginalization. Note
the hard-attention model does not enforce an exactly one-to-one constraint. Each source-side word is free to align to many of
the target-side words, independent of context. In the latent variable model, the x variable is a vector of source words, and the
alignment may be over more than one element of x.

following recursion over the string x left-to-right:

�!
h (enc)

j = tanh
⇣�!
U(enc) e(enc)(xj)+ (5)
�!
V (enc)�!h (enc)

j�1 +
�!
b (enc)

⌘

where we fix the 0th hidden state h(enc)
0 to the

zero vector and the matrices
�!
U(enc) 2 R

dh⇥de ,�!
V (enc) 2 R

dh⇥dh and the bias term
�!
b (enc) 2 R

dh

are parameters to be learned. Performing the same
procedure on the reversed string and using an
RNN with different parameters, we arrive at hid-
den state vectors

 �
h (enc)

j . The final hidden states
from the encoder are the concatenation of the two,
i.e., h(enc)

j =
�!
h (enc)

j �
 �
h (enc)

j , where � is vector
concatenation.

As has become standard, we will use an exten-
sion to this recursion: we apply the long short-term
memory (LSTM; (Hochreiter and Schmidhuber,
1997)) recursions, rather than those of a vanilla
RNN (Elman network; Elman (1990)).

4.2 Parameterization.
Now we define the alignment distribution ↵j(i).

↵j(i) =
exp(eij)

P|x|
j0=1 exp(eij0)

(6)

eij = h(dec)
i

>
Th(enc)

j (7)

where T 2 R
dh⇥2dh and h(dec)

i , the decoder RNN’s
hidden state, is defined in §4.3. Importantly, the
alignment distribution ↵j(i) at time step i will only
depend on the prefix of the output string y<i gen-
erated so far. This is clear since the output-side
decoder is a unidirectional RNN.

We also define p(yi | ai,y<i,x).

p(yi | ai,y<i,x) = softmax
⇣
Wf(h(dec)

i ,h(enc)
ai

)
⌘

(8)
The function f is a non-linear and vector-valued;
one popular choice of f is a multilayer perceptron
with parameters to be learned. We define:

f(h(dec)
i ,h(enc)

ai
) = tanh

⇣
S (h(dec)

i � h(enc)
ai

)
⌘

(9)
where S 2 R

ds⇥3dh .

4.3 Updating the hidden state h(dec)
i

The hidden state h(dec)
i is also updated through the

LSTM recurrences (Hochreiter and Schmidhuber,
1997). The RNN version of the recurrence mirrors
that of the encoder,

h(dec)
i = tanh

⇣
U(dec) e(dec)(yi�1) + (10)

V(dec) h(dec)
i�1 + b(dec)

⌘

where e(dec) : ⌃y ! R
de produces an embedding

of each of the symbols in the output alphabet. What
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is crucial about this RNN, like the ↵j(i), is that
it only summarizes the characters decoded so far
independently of the previous attention weights. In
other words, the attention weights at time step i
will have no influence from the attention weights at
previous time steps, shown in Fig. 2. This is what
allows for dynamic programming.

5 Transduction with Soft Attention

In order to contrast it with the hard alignment mech-
anism we develop, we here introduce Luong atten-
tion (Luong et al., 2015) for recurrent neural se-
quence to sequence models (Sutskever et al., 2014).
Note that this model will also serve as an experi-
mental baseline in §8.

The soft-attention transduction model defines a
distribution over the output ⌃⇤

y, much like the hard-
attention model, with the following expression:

p(y | x) =

|y|Y

i=1

p(yi | y<i,x) (11)

where we define each conditional distribution as

p(yi | y<i,x) (12)

= softmax
⇣
Wf(h(dec)

i , ci)
⌘

We reuse the function f in eq. (9). The hidden state
h(dec)

i , as before, is the ith state of a target-side
language model that summarizes the prefix of the
string decoded so far; this is explained in §4.3. And,
finally, we define the context vector

ci =

|x|X

j=1

↵j(i)h
(enc)
j (13)

using the same alignment distribution as in §4.2. In
the context of the soft-attention model, this distri-
bution is referred to as the attention weights.

Inspection shows that there is only a small dif-
ference between the soft-attention model presented
here and and our hard non-monotonic attention
model. The difference is where we place the proba-
bilities ↵j(i). In the soft-attention version, we place
them inside the softmax (and the function f ), as in
eq. (12), and we have a mixture of the encoder’s
hidden states, the context vector, that we feed into
the model. On the other hand, if we place them out-
side the softmax, we have a mixture of softmaxes,
as shown in eq. (3). Both models have identical set
of parameters.

5.1 Input Feeding: What’s That?
The equations in eq. (10), however, are not the
only approach. Input-feeding is another popular
approach that is, perhaps, standard at this point
(Luong et al., 2015). Input feeding refers to the
setting where the architecture designer additionally
feeds the attention weights into the update for the
decoder’s hidden state. This yields the recursion

h(dec)
i = tanh

⇣
U(dec) (e(dec)(yi�1)� c̄i�1) +

V(dec) h(dec)
i�1 + b(dec)

⌘
(14)

where c̄i�1 = f(h(dec)
i�1 , ci�1). Note that this re-

quires that U(dec) 2 R
dh⇥(de+ds). This is the archi-

tecture discussed in Bahdanau et al. (2015, §3.1). In
contrast to the architecture above, this architecture
has attention weights that do depend on previous
attention weights due to the feeding in of the con-
text vector ci. See Cohn et al. (2016) for an attempt
to incorporate structural biases into the manner in
which the attention distribution is influenced by
previous attention distributions.

5.2 Combining Hard Non-Monotonic
Attention with Input Feeding

To combine hard attention with input feeding, Xu
et al. (2015) derive a variational lower bound on
the log-likelihood though Jensen’s inequality:

log p(y | x) = log
X

a2A(x,y)

p(y,a | x)

= log
X

a2A(x,y)

p(a | x) · p(y | x, )

�
X

a2A(x,y)

p(a | x) log p(y | x,a)

Note that we have omitted the dependence of p(a |
x) on the appropriate prefix of y; this was done for
notational simplicity. Using this bound, Xu et al.
(2015) derive an efficient approximation to the gra-
dient using the REINFORCE trick of Williams
(1992). This sampling-based gradient estimator is
then used for learning, but suffers from high vari-
ance. We compare to this model in §8.

6 Future Work

Just as Brown et al. (1993) started with IBM
Model 1 and build up to richer models, we can
do the same. Extensions, resembling those of IBM
Model 2 and the HMM aligner (Vogel et al., 1996)
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source target

Grapheme-to-phoneme conversion a c t i o n AE K SH AH N

Named-entity transliteration A A C H E N DË
Morphological inflection N AT+ALL SG l i p u k e l i p u k k e e l l e

Table 1: Example of source and target string for each task as processed by the model

that generalize IBM Model 1, are easily bolted on
to our proposed model as well. If we are willing
to perform approximate inference, we may also
consider fertility as found in IBM Model 4.

In order to extend our method to machine trans-
lation (MT) in any practical manner, we require an
approximation to the softmax. Given that the soft-
max is already the bottleneck of neural MT models
(Shi and Knight, 2017), we can not afford ourselves
a O(|x|) slowdown during training. Many methods
have been proposed for approximating the softmax
(Goodman, 2001; Bengio et al., 2003; Gutmann and
Hyvärinen, 2010). More recently, Chen et al. (2016)
compared methods on neural language modeling
and Grave et al. (2017) proposed a GPU-friendly
method.

7 The Tasks
The empirical portion of the paper focuses on
character-level string-to-string transduction prob-
lems. We consider three tasks: G : grapheme-to-
phoneme conversion, T : named-entity translitera-
tion, and I : morphological inflection. We describe
each briefly in turn and we give an example of a
source and target string for each task in Tab. 1.

Grapheme-to-Phoneme Conversion. We use
the standard grapheme-to-phoneme conversion
(G2P) dataset: the Sphinx-compatible version of
CMUDict (Weide, 1998) and NetTalk (Sejnowski
and Rosenberg, 1987). G2P transduces a word, a
string of graphemes, to its pronunciation, a string
of phonemes. We evaluate with word error rate
(WER) and phoneme error rate (PER) (Yao and
Zweig, 2015). PER is equal to the edit distance
divided by the length of the string of phonemes.

Named-Entity Transliteration. We use the
NEWS 2015 shared task on machine transliteration
(Zhang et al., 2015) as our named-entity translitera-
tion dataset. It contains 14 language pairs. Translit-
eration transduces a named entity from its source
language to a target language—in other words,
from a string in the source orthography to a string
in the target orthography. We evaluate with word
accuracy in percentage (ACC) and mean F-score

soft attention hard alignment

in
pu

t-f
ed yes 1 Bahdanau et al. (2015); Luong et al. (2015) 2 Xu et al. (2015)

no 3 Luong et al. (2015) without input feeding 4 This work

Table 2: The 4 architectures considered in the paper.

(MFS) (Zhang et al., 2015). For completeness, we
include the definition of MFS in App. A.

Morphological Inflection. We consider the
high-resource setting of task 1 in the CoNLL–
SIGMORPHON 2017 shared task (Cotterell et al.,
2017) as our morphological inflection dataset. It
contains 51 languages in the high resource setting.
Morphological inflection transduces a lemma (a
string of characters) and a morphological tag (a se-
quence of subtags) to an inflected form of the word
(a string of characters). We evaluate with word ac-
curacy (ACC) and average edit distance (MLD)
(Cotterell et al., 2017).

8 Experiments

The goal of the empirical portion of our paper is
to perform a controlled study of the different archi-
tectures and approximations discussed up to this
point in the paper. §8.1 exhibits the neural archi-
tectures we compare and the main experimental
results1 are in Tab. 3. In §8.2, we present the exper-
imental minutiae, e.g. hyperparameters. In §8.3, we
analyze our experimental findings. Finally, in §8.4,
we perform error analysis and visualize the soft
attention weight and hard alignment distribution.

8.1 The Architectures
The four architectures we consider in controlled
comparison are: 1 : soft attention with input feed-
ing, 2 : hard attention with input feeding, 3 : soft
attention without input feeding and 4 : hard atten-
tion without input feeding (our system). They are
also shown in Tab. 2. As a fifth system, we com-
pare to the monotonic system M : Aharoni and
Goldberg (2017). Additionally, we present U , a
variant of 1 where the number of parameters is not

1Because we do not have access to the test set of T , we
only report development performance.
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Grapheme-to-Phoneme Conversion ( G ) Named-Entity Transliteration ( T ) Morphological Inflection ( I )

Small Large Small Large Small Large

WER PER WER PER ACC MFS ACC MFS ACC MLD ACC MLD

1 33.7 0.080 30.8 0.074 38.9 0.890 39.9 0.893 91.4 0.183 91.1 0.201
U 30.6 0.074 30.4 0.073 39.8 0.891 40.3 0.894 91.0 0.185 91.0 0.212
2 32.3 0.079 33.1 0.081 36.3 0.881 30.8 0.837 91.0 0.193 89.3 0.322
3 30.3 0.074 28.6 0.070 40.1 0.891 40.5 0.894 92.0 0.163 92.2 0.166
4 29.6 0.072 28.2 0.068 39.8 0.891 41.1 0.894 92.6 0.151 93.6 0.128
R 30.7 0.076 29.7 0.074 37.1 0.882 36.9 0.863 91.2 0.190 92.8 0.151
M 33.9 0.082 29.9 0.072 38.8 0.959 40.1 0.960 91.7 0.160 92.8 0.141

Table 3: Average test performance on G , T and I averaged across datasets and languages. See App. B fCor full breakdown.

Small Large Search range

Emb. dim. 100 200 {50,100,200,300}
Enc. dim. 200 400 {100,200,400,600}
Enc. layer 1 2 {1,2,3}
Dec. dim. 200 400 {100,200,400,600}
Dec. layer 1 1 {1,2,3}
Dropout 0.2 0.4 {0,0.1,0.2,0.4}
# param. 1.199M 8.621M N/A

Table 4: Model hyperparameters and search range

controlled for, and R , a variant of 4 trained using
REINFORCE instead of exact marginalization.

8.2 Experimental Details
We implement the experiments with PyTorch
(Paszke et al., 2017) and we port the code of Aha-
roni and Goldberg (2017) to admit batched training.
Because we did not observe any improvements in
preliminary experiments when decoding with beam
search 2, all models are decoded greedily.

Data Preparation. For G , we sample 5% and
10% of the data as development set and test set,
respectively. For T , we only run experiments with
11 out of 14 language pairs3 because we do not
have access to all the data.

Model Hyperparameters. The hyperparameters
of all models are in Tab. 4. The hyperparameters
of the large model are tuned using the baseline 3
on selected languages in I , and the search range is
shown in Tab. 4. All three tasks have the same two
sets of hyperparameters. To ensure that 1 has the
same number of parameters as the other models,
we decrease ds in eq. (9) while for the rest of the

2Compared to greedy decoding with an average error rate
of 20.1% and an average edit distance of 0.385, beam search
with beam size 5 gets a slightly better edit distance of 0.381
while hurting the error rate with 20.2%.

3Ar–En, En–Ba, En–Hi, En–Ja, En–Ka, En–Ko, En–Pe,
En–Ta, En–Th, Jn–Jk and Th–En.

models ds = 3dh. Additionally, we use a linear
mapping to merge e(dec)(yi�1) and c̄i�1 in eq. (14)
instead of concatenation. The output of the linear
mapping has the same dimension as e(dec)(yi�1),
ensuring that the RNN has the same size.

M has quite a different architecture: The input
of the decoder RNN is the concatenation of the pre-
viously predicted word embedding, the encoder’s
hidden state at a specific step, and in the case of I ,
the encoding of the morphological tag. Differing
from Aharoni and Goldberg (2017), we concate-
nate all attributes’ embeddings (0 for attributes that
are not applicable) and merge them with a linear
mapping. The dimension of the merged vector and
attributes vector are de. To ensure that it has the
same number of parameters as the rest of the model,
we increase the hidden size of the decoder RNN.

Optimization. We train the model with Adam
(Kingma and Ba, 2014) with an initial learning
rate of 0.001. We halve the learning rate whenever
the development log-likelihood doesn’t improve.
We stop after the learning rate dips to 1 ⇥ 10�5.
We save all models after each epoch and select
the model with best development performance. We
train the model for at most 50 epochs, though all
the experiments stop early. We train on G , T , and
I with batch sizes of 20, 50 and 20, respectively.
We notice in the experiments that the training of
1 and U is quite unstable with the large model,

probably because of the longer chain of gradient
information flow. We apply gradient clipping to the
large model with maximum gradient norm 5.

REINFORCE. In the REINFORCE training of
R and 2 , we sample 2 and 4 positions at each time

step for the small and large model, respectively.
The latter is tuned on selected languages in I with
search range {2,3,4,5}. To stabilize the training, we
apply a baseline with a moving average reward and
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Figure 3: Attention-weight ( 3 ; left) and alignment distribution ( 4 ; right) of Finnish in I . Both models predict correctly.

discount factor of 0.9, similar to Xu et al. (2015).

8.3 Experimental Findings
Finding #1: Effect of Input Feeding. By com-
paring 3 and 4 against 1 and 2 in Tab. 3, we
find input feeding hurts performance in all settings
and all tasks. This runs in contrast to the reported
results of Luong et al. (2015), but they experiment
on machine translation, rather than character-level
transduction. This validates our independence as-
sumption about the alignment distribution.

Finding #2: Soft Attention vs. Hard Attention.
Training with REINFORCE hurts the performance
of the hard attention model; compare 1 and 2
(trained with REINFORCE), in Tab. 3. On the other
hand, training with exact marginalization causes
the hard attention model to outperform soft atten-
tion model in nearly all settings; compare 3 and
4 in Tab. 3. This comparison shows that hard

attention outperforms soft attention in character-
level string transduction when trained with exact
marginalization.

Finding #3: Non-monotonicity vs. Monotonic-
ity. The monotonic model M underperforms
compared to non-monotonic models 3 in Tab. 3
except for one setting. It performs slightly worse
on T and G due to the many-to-one alignments
in the data and the fact that Aharoni and Goldberg
(2017) can only use the hidden vector of the final
element of the span in a many-to-one alignment to
directly predict the one target element. The current
state-of-the-art systems for character-level string
transduction are non-monotonic models, despite
the tasks’ seeming monotonicity; see §8.4.

Finding #4: Approximate Hard Attention.
Given our development of an exact marginalization
method for neural models with hard attention, a
natural question to ask is how much exact marginal-
ization helps during learning. By comparing 4 and
R in Tab. 3, we observe that training with exact

NETtalk CMUDict

3 4 3 4

3 7 3 7 3 7 3 7

Monotonic 18742 1230 18823 1172 95824 17294 96176 17159
Non-monotonic 31 5 12 1 158 162 37 66

Table 5: Breakdown of correct and incorrect predictions of
monotonic and non-monotonic alignments of 3 and 4 in G ,
derived from the soft attention weights and the hard alignment
distribution

marginalization clearly outperforms training under
stochastic approximation in every setting and on
every dataset. We also observe that exact marginal-
ization allows faster convergence, since training
with REINFORCE is quite unstable where some
runs seemingly to get stuck.

Finding #5: Controlling for Parameters. Input
feeding yields a more expressive model, but also
leads to an increase in the number of parameters.
Here, we explore what effect this has on the perfor-
mance of the models. In their ablation, Luong et al.
(2015) did not control the number of parameters
when adding input feeding. The total number of pa-
rameters of U is 1.679M for the small setting and
10.541M for the large setting, which has 40% and
22.3% more parameters than the controlled setting.
By comparing 1 and U in Tab. 3, we find that the
increase in parameters, rather than the increase in
expressivity explains the success of input feeding.

8.4 Visualization and Error Analysis
We hypothesize that even though the model is
non-monotonic, it can learn monotonic alignment
with flexibility if necessary, giving state-of-the-art
results on many seemingly monotonic character-
level string transduction task. To show more in-
sights, we compare the best soft attention model
( 3 ) against the best hard alignment model ( 4 )
on G by showing the confusion matrix of each
model in Tab. 5. An alignment is non-monotonic
when alignment edges predicted by the model cross.
There is an edge connecting xj and yi if the atten-
tion weight or hard alignment distribution ↵j(i) is
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larger than 0.1. We find that the better-performing
transducers are more monotonic, and most learned
alignments are monotonic. The results indicate that
there are a few transductions that are indeed non-
monotonic in the dataset. However, the number
is so few that this does not entirely explain why
non-monotonic models outperform the monotonic
models. We speculate this lies in the architecture
of Aharoni and Goldberg (2017), which does not
permit many-to-one alignments, while monotonic
alignment learned by the non-monotonic model is
more flexible. Future work will investigate this.

In Fig. 3, we visualize the soft attention weights
( 3 ) and the hard alignment distribution ( 4 ) side
by side. We observe that the hard alignment distri-
bution is more interpretable, with a clear boundary
when predicting the prefixes.

9 Conclusion

We exhibit an efficient dynamic program for the
exact marginalization of all non-monotonic align-
ments in a neural sequence-to-sequence model. We
show empirically that exact marginalization helps
over approximate inference by REINFORCE and
that models with hard, non-monotonic alignment
outperform those with soft attention.
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A MFS

LCS(c, r) =
1

2
(|c| + |r|� ED(c, r))

Ri =
LCS(ci, ri)

|ri|

Pi =
LCS(ci, ri)

|ci|

FSi = 2
Ri ⇥ Pi

Ri + Pi

where ri and ci is the i-th reference and prediction,

B Full breakdown of experiments

A full breakdown of G and T can be found in
Tab. 6 and Tab. 7, respectively. A full breakdown
of I can be found in Tab. 8 and Tab. 9.
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Small

1 U 2 3 4 R M

WER PER WER PER WER PER WER PER WER PER WER PER WER PER

CMUDict 36.2 0.086 31.0 0.074 35.1 0.083 30.8 0.073 30.5 0.072 31.2 0.074 32.0 0.075
NETtalk 31.2 0.075 30.2 0.075 29.6 0.074 29.8 0.074 28.8 0.073 30.3 0.078 35.7 0.088

Large

1 U 2 3 4 R M

WER PER WER PER WER PER WER PER WER PER WER PER WER PER

CMUDict 32.3 0.076 31.4 0.073 36.7 0.087 30.5 0.073 29.8 0.071 31.8 0.077 30.5 0.072
NETtalk 29.3 0.071 29.4 0.072 29.5 0.075 26.8 0.068 26.6 0.066 27.7 0.071 29.3 0.072

Table 6: Full breakdown of G2P

Small

1 U 2 3 4 R M

ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS

ArEn 54.9 0.954 54.8 0.953 53.9 0.954 53.5 0.951 56.6 0.954 53.9 0.950 60.1 0.980
EnBa 38.4 0.916 38.9 0.915 38.5 0.914 37.6 0.918 39.7 0.918 38.0 0.909 37.4 0.961
EnHi 42.4 0.922 44.0 0.925 40.8 0.921 46.1 0.927 43.8 0.926 43.6 0.924 43.0 0.967
EnJa 40.5 0.871 40.6 0.868 35.4 0.853 41.2 0.872 41.3 0.872 35.2 0.852 39.4 0.952
EnKa 34.8 0.910 35.5 0.912 33.1 0.909 37.8 0.913 36.0 0.909 34.9 0.907 35.6 0.960
EnKo 52.4 0.861 51.8 0.857 49.1 0.850 54.4 0.861 54.9 0.867 48.9 0.849 47.5 0.958
EnPe 28.3 0.899 32.6 0.908 30.8 0.903 34.8 0.911 30.5 0.901 29.6 0.898 34.7 0.964
EnTa 36.8 0.921 38.7 0.925 36.7 0.918 38.5 0.923 36.2 0.923 37.5 0.921 37.5 0.963
EnTh 42.4 0.909 42.6 0.907 37.0 0.892 42.8 0.907 42.1 0.906 37.1 0.890 40.1 0.954
JnJk 18.1 0.717 18.1 0.717 13.4 0.693 15.3 0.706 18.1 0.716 15.5 0.705 12.7 0.933
ThEn 39.2 0.912 40.2 0.913 31.1 0.882 38.9 0.911 38.6 0.912 33.6 0.897 38.3 0.960

Large

1 U 2 3 4 R M

ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS ACC MFS

ArEn 52.2 0.954 54.3 0.954 0.7 0.682 55.4 0.954 55.6 0.953 57.1 0.955 59.7 0.979
EnBa 39.0 0.914 39.2 0.918 40.4 0.917 38.5 0.916 38.2 0.917 37.8 0.912 37.7 0.962
EnHi 42.0 0.923 43.0 0.926 38.9 0.914 45.7 0.929 46.1 0.928 40.7 0.916 45.0 0.968
EnJa 40.8 0.873 40.9 0.872 37.8 0.860 41.6 0.875 40.6 0.872 39.1 0.864 41.1 0.953
EnKa 36.2 0.913 37.9 0.914 35.0 0.909 37.5 0.913 38.6 0.915 38.2 0.913 39.2 0.961
EnKo 53.3 0.868 53.1 0.865 50.7 0.858 53.9 0.866 55.3 0.868 49.7 0.850 50.1 0.961
EnPe 34.0 0.911 34.6 0.913 32.5 0.906 34.2 0.912 35.3 0.911 33.4 0.911 34.3 0.964
EnTa 39.1 0.925 37.6 0.922 32.5 0.901 38.5 0.925 40.2 0.927 37.1 0.919 40.3 0.965
EnTh 43.6 0.910 43.7 0.909 32.5 0.869 43.7 0.909 43.9 0.910 40.0 0.897 41.3 0.955
JnJk 18.1 0.721 18.4 0.721 0.1 0.483 17.2 0.721 17.6 0.720 0.2 0.458 12.6 0.934
ThEn 40.2 0.915 40.3 0.915 37.7 0.909 39.2 0.915 40.3 0.916 32.9 0.897 39.8 0.962

Table 7: Full breakdown of NEWS2015
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Small

1 U 2 3 4 R M

ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD

albanian-high 97.2 0.048 98.5 0.023 97.9 0.043 98.1 0.031 98.1 0.045 98.5 0.029 94.5 0.150
arabic-high 89.2 0.396 79.1 0.792 91.0 0.419 90.4 0.360 91.7 0.377 90.2 0.438 89.1 0.340
armenian-high 94.6 0.106 95.3 0.086 90.1 0.214 95.2 0.080 95.5 0.080 93.7 0.126 94.4 0.108
basque-high 100.0 0.000 100.0 0.000 100.0 0.000 99.0 0.010 97.0 0.060 100.0 0.000 95.0 0.140
bengali-high 98.0 0.060 98.0 0.060 99.0 0.030 99.0 0.050 97.0 0.090 98.0 0.080 98.0 0.040
bulgarian-high 88.9 0.165 88.3 0.188 96.1 0.067 94.1 0.101 93.9 0.115 95.4 0.077 96.5 0.058
catalan-high 96.8 0.083 96.9 0.083 96.8 0.075 97.5 0.063 97.2 0.073 97.3 0.068 96.3 0.076
czech-high 90.3 0.170 92.3 0.145 90.6 0.167 91.9 0.157 92.2 0.139 78.2 0.468 91.4 0.152
danish-high 88.9 0.166 88.9 0.174 90.1 0.151 89.1 0.170 90.2 0.148 91.4 0.132 92.6 0.118
dutch-high 93.7 0.112 94.8 0.100 95.2 0.090 95.2 0.090 94.9 0.086 94.2 0.097 94.8 0.093
english-high 96.1 0.077 96.1 0.071 90.4 0.203 96.5 0.074 95.7 0.078 95.3 0.087 96.3 0.062
estonian-high 95.2 0.109 96.0 0.078 96.4 0.070 96.3 0.090 96.8 0.079 96.2 0.091 93.0 0.145
faroese-high 79.9 0.420 79.2 0.390 78.4 0.449 79.5 0.413 82.9 0.365 81.6 0.392 82.5 0.333
finnish-high 86.6 0.318 81.9 0.278 86.5 0.216 88.2 0.202 90.2 0.271 84.1 0.311 86.1 0.227
french-high 84.5 0.291 85.3 0.270 85.2 0.292 83.8 0.317 85.7 0.262 82.3 0.332 86.5 0.253
georgian-high 97.6 0.039 95.4 0.083 97.8 0.037 97.9 0.113 97.5 0.046 98.2 0.039 97.3 0.038
german-high 89.6 0.244 88.4 0.272 88.1 0.282 89.6 0.257 89.3 0.179 83.7 0.381 88.9 0.276
haida-high 97.0 0.040 98.0 0.030 98.0 0.030 99.0 0.020 97.0 0.040 98.0 0.030 92.0 0.150
hebrew-high 99.0 0.010 98.8 0.013 99.1 0.010 97.5 0.027 97.8 0.027 97.8 0.026 98.7 0.016
hindi-high 95.1 0.482 99.9 0.002 100.0 0.000 100.0 0.000 100.0 0.000 100.0 0.000 99.4 0.014
hungarian-high 83.4 0.338 83.9 0.336 85.2 0.333 82.5 0.372 82.3 0.381 83.2 0.444 83.0 0.367
icelandic-high 82.2 0.333 82.0 0.350 84.1 0.305 84.5 0.304 86.3 0.286 84.4 0.296 84.5 0.300
irish-high 87.4 0.387 84.4 0.454 89.0 0.333 87.9 0.351 90.6 0.289 88.3 0.332 88.5 0.335
italian-high 96.1 0.101 87.2 0.251 96.0 0.099 95.5 0.111 95.7 0.106 95.5 0.105 94.6 0.120
khaling-high 99.2 0.008 98.9 0.018 98.7 0.016 98.0 0.030 98.7 0.018 98.7 0.024 98.1 0.028
kurmanji-high 94.2 0.123 93.7 0.101 92.3 0.184 93.2 0.126 93.8 0.098 93.1 0.143 94.0 0.074
latin-high 65.4 0.578 65.9 0.591 69.6 0.516 70.1 0.476 72.1 0.458 68.6 0.503 70.7 0.450
latvian-high 94.7 0.084 95.3 0.071 93.7 0.104 95.1 0.090 95.5 0.081 94.2 0.101 93.6 0.100
lithuanian-high 87.0 0.178 87.8 0.247 84.9 0.233 86.9 0.196 89.1 0.162 87.4 0.201 80.9 0.258
lower-sorbian-high 94.6 0.111 93.7 0.112 94.8 0.100 93.4 0.138 95.2 0.096 94.8 0.103 94.2 0.108
macedonian-high 94.1 0.088 94.2 0.089 95.3 0.073 90.7 0.164 93.6 0.102 94.7 0.087 94.9 0.094
navajo-high 84.9 0.446 84.6 0.461 81.2 0.468 86.2 0.332 88.5 0.268 85.1 0.356 79.8 0.450
northern-sami-high 93.9 0.112 94.2 0.099 94.8 0.125 93.6 0.145 95.4 0.089 93.2 0.143 91.8 0.154
norwegian-bokmal-high 86.4 0.220 87.6 0.293 88.4 0.193 89.7 0.172 90.0 0.158 88.2 0.198 90.9 0.156
norwegian-nynorsk-high 71.8 0.454 78.1 0.363 76.5 0.392 77.9 0.378 77.4 0.379 81.0 0.324 88.4 0.197
persian-high 99.4 0.013 99.4 0.013 99.4 0.012 99.1 0.016 98.9 0.017 99.2 0.017 96.8 0.064
polish-high 89.8 0.245 86.5 0.306 82.2 0.424 90.7 0.237 89.9 0.258 88.9 0.297 90.8 0.198
portuguese-high 98.0 0.032 96.3 0.060 96.4 0.056 98.5 0.034 98.9 0.024 97.9 0.036 98.0 0.034
quechua-high 99.4 0.013 97.9 0.045 98.7 0.040 98.2 0.053 99.6 0.020 98.2 0.058 96.4 0.087
romanian-high 83.3 0.649 83.6 0.454 75.6 0.711 81.6 0.482 84.8 0.432 83.8 0.473 84.8 0.404
russian-high 89.4 0.263 86.8 0.303 71.2 0.960 90.1 0.271 90.1 0.242 87.7 0.312 89.8 0.233
serbo-croatian-high 89.6 0.209 86.8 0.241 89.0 0.244 87.2 0.256 89.5 0.236 89.9 0.225 91.8 0.159
slovak-high 90.5 0.155 89.8 0.168 87.2 0.212 91.3 0.145 89.6 0.163 90.2 0.158 92.6 0.128
slovene-high 94.7 0.101 94.1 0.110 95.3 0.094 96.3 0.070 96.2 0.080 94.9 0.114 95.9 0.068
sorani-high 89.3 0.131 90.0 0.124 89.2 0.127 87.7 0.148 88.4 0.149 88.9 0.143 84.0 0.222
spanish-high 95.9 0.080 94.3 0.104 96.0 0.083 95.1 0.105 95.5 0.099 94.6 0.118 94.2 0.099
swedish-high 87.1 0.212 87.2 0.214 87.8 0.208 88.9 0.167 88.7 0.185 69.6 0.880 90.2 0.165
turkish-high 97.1 0.069 96.9 0.078 95.6 0.104 96.8 0.073 95.4 0.099 95.5 0.127 93.3 0.146
ukrainian-high 90.4 0.171 91.1 0.157 89.0 0.188 90.3 0.168 91.8 0.141 91.6 0.139 92.9 0.111
urdu-high 99.4 0.009 99.6 0.007 99.2 0.012 99.5 0.009 99.4 0.009 99.7 0.005 98.2 0.027
welsh-high 96.0 0.070 96.0 0.080 98.0 0.040 96.0 0.070 99.0 0.030 98.0 0.040 98.0 0.040

Table 8: Full breakdown of SIGMORPHON2017 with small model
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Large

1 U 2 3 4 R M

ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD ACC MLD

albanian-high 97.9 0.037 96.3 0.066 98.5 0.024 98.0 0.030 98.5 0.028 98.8 0.021 96.1 0.123
arabic-high 90.4 0.496 89.8 0.397 88.4 0.456 89.8 0.358 92.3 0.352 91.9 0.437 90.8 0.267
armenian-high 94.3 0.112 95.6 0.166 94.3 0.106 94.9 0.078 95.8 0.075 94.6 0.095 93.6 0.110
basque-high 100.0 0.000 100.0 0.000 99.0 0.030 100.0 0.000 100.0 0.000 100.0 0.000 99.0 0.020
bengali-high 99.0 0.020 99.0 0.050 99.0 0.050 99.0 0.050 99.0 0.050 95.0 0.150 98.0 0.050
bulgarian-high 95.0 0.079 91.9 0.129 93.6 0.095 96.5 0.059 96.8 0.052 96.5 0.061 96.8 0.057
catalan-high 95.8 0.102 96.9 0.074 97.1 0.068 96.9 0.064 97.9 0.056 97.4 0.064 96.3 0.074
czech-high 89.2 0.184 87.4 0.209 87.8 0.241 90.7 0.176 92.7 0.133 89.7 0.188 92.0 0.140
danish-high 88.3 0.167 87.0 0.282 89.3 0.166 88.6 0.159 91.9 0.121 91.7 0.127 92.2 0.121
dutch-high 93.9 0.109 93.3 0.120 94.2 0.107 94.6 0.099 95.7 0.082 95.8 0.075 95.6 0.078
english-high 95.9 0.082 95.7 0.239 93.1 0.151 95.5 0.081 96.3 0.069 96.0 0.078 96.4 0.055
estonian-high 95.5 0.235 96.9 0.069 96.7 0.069 96.3 0.082 97.6 0.064 96.1 0.086 92.7 0.140
faroese-high 80.8 0.388 80.7 0.468 80.1 0.374 83.0 0.365 84.3 0.327 82.3 0.371 84.5 0.314
finnish-high 89.7 0.323 86.5 0.196 26.2 4.562 88.5 0.212 92.2 0.137 90.4 0.169 88.0 0.197
french-high 82.2 0.329 83.3 0.316 84.0 0.305 82.9 0.335 85.5 0.274 84.7 0.296 85.6 0.273
georgian-high 97.5 0.043 96.8 0.060 96.9 0.056 96.8 0.064 98.2 0.027 98.4 0.022 98.6 0.018
german-high 87.7 0.459 82.4 0.505 76.5 0.751 87.4 0.309 91.3 0.141 88.7 0.233 89.4 0.244
haida-high 98.0 0.030 98.0 0.030 98.0 0.030 97.0 0.040 98.0 0.030 98.0 0.030 95.0 0.100
hebrew-high 98.5 0.019 99.1 0.011 98.5 0.017 98.6 0.015 98.4 0.018 98.7 0.016 98.5 0.018
hindi-high 100.0 0.000 99.7 0.099 99.9 0.001 99.8 0.002 99.9 0.003 100.0 0.000 99.8 0.006
hungarian-high 82.7 0.361 82.0 0.362 81.7 0.400 79.0 0.437 84.1 0.347 82.0 0.386 84.7 0.329
icelandic-high 82.6 0.341 84.4 0.309 82.9 0.338 84.7 0.301 88.0 0.244 87.6 0.248 87.6 0.245
irish-high 85.8 0.377 86.4 0.391 81.8 0.512 88.7 0.423 90.5 0.254 88.3 0.344 89.6 0.304
italian-high 95.8 0.101 96.1 0.089 95.6 0.113 96.6 0.081 96.5 0.084 96.2 0.091 96.0 0.104
khaling-high 99.4 0.006 99.2 0.009 99.4 0.006 99.3 0.009 99.5 0.005 99.4 0.009 97.8 0.031
kurmanji-high 93.0 0.162 93.2 0.268 91.3 0.183 93.1 0.128 93.0 0.089 92.7 0.146 94.0 0.076
latin-high 71.6 0.518 69.6 0.513 70.4 0.485 78.0 0.371 78.4 0.361 76.2 0.392 74.7 0.378
latvian-high 80.8 0.524 91.5 0.133 94.6 0.095 94.3 0.097 96.3 0.056 95.7 0.078 95.2 0.068
lithuanian-high 86.4 0.368 85.4 0.394 87.9 0.173 89.7 0.150 90.6 0.126 90.7 0.139 89.4 0.149
lower-sorbian-high 93.9 0.118 93.7 0.208 95.2 0.094 95.2 0.094 95.1 0.100 96.3 0.073 95.6 0.083
macedonian-high 90.8 0.126 92.7 0.111 94.4 0.085 93.7 0.097 95.9 0.067 94.6 0.085 93.8 0.110
navajo-high 88.1 0.268 86.9 0.312 90.8 0.198 88.3 0.435 91.3 0.201 88.6 0.279 84.5 0.359
northern-sami-high 94.9 0.129 95.8 0.082 95.3 0.121 95.9 0.087 97.5 0.075 96.4 0.103 95.0 0.090
norwegian-bokmal-high 84.4 0.331 85.1 0.403 88.4 0.272 88.1 0.199 88.7 0.190 89.6 0.178 91.0 0.152
norwegian-nynorsk-high 73.3 0.440 76.2 0.408 78.2 0.376 79.4 0.354 80.4 0.345 82.6 0.314 89.3 0.182
persian-high 99.6 0.006 99.2 0.011 99.3 0.108 99.5 0.014 99.3 0.014 99.6 0.011 96.7 0.066
polish-high 85.3 0.406 85.7 0.369 88.5 0.282 88.4 0.366 89.7 0.248 89.2 0.251 90.2 0.193
portuguese-high 97.4 0.041 97.4 0.042 98.2 0.034 97.9 0.037 98.3 0.032 98.9 0.023 98.8 0.028
quechua-high 98.9 0.019 97.9 0.059 97.8 0.048 98.6 0.037 98.9 0.032 98.8 0.037 97.7 0.057
romanian-high 84.9 0.594 83.4 0.568 47.1 2.794 85.1 0.457 86.7 0.400 86.8 0.422 86.4 0.450
russian-high 88.0 0.353 85.8 0.458 86.9 0.324 89.8 0.432 90.5 0.244 90.3 0.244 91.2 0.220
serbo-croatian-high 84.9 0.307 85.0 0.277 88.8 0.323 88.8 0.236 90.9 0.187 82.0 0.426 91.4 0.185
slovak-high 87.7 0.214 89.4 0.270 89.2 0.264 89.6 0.186 92.1 0.126 90.4 0.163 92.6 0.129
slovene-high 94.6 0.096 93.2 0.222 94.6 0.102 95.2 0.078 96.1 0.073 94.9 0.097 96.4 0.063
sorani-high 88.8 0.138 88.4 0.144 88.9 0.133 89.4 0.123 90.3 0.121 90.1 0.120 85.9 0.180
spanish-high 94.3 0.092 95.8 0.163 96.1 0.072 96.1 0.075 96.7 0.056 96.2 0.072 95.4 0.079
swedish-high 85.7 0.237 85.0 0.329 79.4 0.529 85.9 0.235 90.9 0.157 89.6 0.170 92.2 0.132
turkish-high 95.9 0.103 94.9 0.226 94.8 0.118 92.4 0.172 97.0 0.063 94.8 0.121 94.3 0.128
ukrainian-high 90.4 0.170 90.3 0.161 90.8 0.148 92.5 0.126 92.9 0.116 93.1 0.114 91.4 0.144
urdu-high 99.3 0.012 99.4 0.010 99.0 0.015 99.6 0.007 99.3 0.014 99.6 0.006 99.1 0.013
welsh-high 96.0 0.060 98.0 0.050 98.0 0.040 97.0 0.050 97.0 0.070 97.0 0.060 97.0 0.060

Table 9: Full breakdown of SIGMORPHON2017 with large model
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Abstract

We present LSTM-Shuttle, which applies hu-
man speed reading techniques to natural lan-
guage processing tasks for accurate and effi-
cient comprehension. In contrast to previous
work, LSTM-Shuttle not only reads shuttling
forward but also goes back. Shuttling for-
ward enables high efficiency, and going back-
ward gives the model a chance to recover lost
information, ensuring better prediction. We
evaluate LSTM-Shuttle on sentiment analysis,
news classification, and cloze on IMDB, Rot-
ten Tomatoes, AG, and Children’s Book Test
datasets. We show that LSTM-Shuttle predicts
both better and more quickly. To demonstrate
how LSTM-Shuttle actually behaves, we also
analyze the shuttling operation and present a
case study.

1 Introduction

Recently, recurrent neural networks (RNNs) and
long short-term memory (LSTM) cells and gate re-
current unit (GRU) cells have achieved great suc-
cess and are increasingly being applied in nature
language processing tasks, e.g., part-of-speech
(POS) tagging (Wang et al., 2015), named-entity
recognition (Chiu and Nichols, 2015), sentiment
analysis (Zhang et al., 2018), document classi-
fication (Kim, 2014; Le and Mikolov, 2014a),
cloze (Srinivasan et al., 2018), machine trans-
lation (Bahdanau et al., 2015), dialogue mod-
eling (Mei et al., 2017), document summariza-
tion (Allahyari et al., 2017), automatic knowledge
extraction (Durme and Schubert, 2008), and ques-
tion answering (Chen et al., 2017).

Those tasks all call for text comprehension tech-
niques. To solve these tasks, the proposed models
read all the text available. That is, models read
every token or word of the text from beginning
to end. However, for some classification tasks,
it is not necessary to treat each individual word

equally. Take, for example, sentiment analysis:
sentences such as “this movie is amazing” or “too
boring” are sufficient to judge a sentiment without
reading the entire comment. In addition, the fact
that texts are often written redundantly also mo-
tivates reading selectively, especially for certain
NLP tasks.

In terms of human reading habits, although peo-
ple tend to skim text when reading a newspaper
or a novel, this does not significantly impair com-
prehension. Speed reading, a reading technique,
is used to improve one’s ability to read quickly.
Work has been done on modeling skimming be-
havior along with the original sequence modeling
RNN. LSTM-Jump (Yu et al., 2017) predicts how
many words to skim based on the RNN hidden
state. They show that neglecting some words in
a document does not greatly harm prediction ac-
curacy but does significantly accelerate the pro-
cess. They also show that for certain tasks such
as cloze, skimming even outperforms traditional
methods. In addition, (Yu et al., 2018) use RNN
hidden states to decide when to stop. If the RNN
judges it has achieved sufficient comprehension of
the context, it stops early and produce the answer
directly.

However, strictly speakly, simply skimming and
stopping early is not speed reading. For example,
imagine that during a reading test, we first read the
question and then the long article. We read quickly
and skip some information. What do we do if we
encounter text that we don’t understand? We go
back, read the previous text, and try to fill in the
gaps in our understanding. For speed reading, go-
ing back – or “reading backward” – is likewise im-
portant as it helps us to recover lost information or
correct misunderstandings, leading to better com-
prehension of long documents. In fact, reading
backward increases rather than decreases reading
speed: given the opportunity to go back to correct
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misunderstandings, we skim more words and thus
read faster without reducing our comprehension.

In this paper, we propose LSTM-Shuttle, which
teaches the RNN model to speed read by mod-
eling both forward and backward reading behav-
ior. We evaluate the proposed method on senti-
ment analysis, document classification, and cloze
tasks. We use IMDB (L. et al., 2011) and Rot-
ten Tomatoes (Pang and Lee, 2005) as sentiment
analysis datasets, AG New (Shang et al., 2015)
as a document classification dataset, and Face-
book Children’s Book Test (Hill et al., 2015) as a
cloze dataset. The experiments show that the pro-
posed method achieves better prediction perfor-
mance and reads faster at the same time, in com-
parison with the LSTM baseline (Hochreiter and
Schmidhuber, 1997) and LSTM-Jump. We also
analyze the shuttling behavior under different set-
tings, proving that reading forward and backward
does help in reading.

2 Related Work

The proposed method is inspired mainly by
LSTM-Jump (Yu et al., 2017), which predicts how
many words should be neglected, accelerating the
reading process using RNN. Both their work and
ours is related to the idea of learning visual at-
tention per (Mnih et al., 2015), where a recurrent
model is used to decide which image part to watch
seriatim. They train the model end-to-end using
the REINFORCE algorithm (Williams, 1992) and
sample from a continuous Gaussian distribution.
The difference between their and our methods is
that we sample from a discrete distribution to re-
flect the properties of text and image.

Many recent natural language processing appli-
cations have explored the idea of filtering irrele-
vant content. As in our work, instead of skimming
some words, (Seo et al., 2018) consider all words
but use a small RNN for irrelevant words and the
original large RNN for relevant ones. (Campos
et al., 2018) also attempt to dynamically control
the RNN’s computational costs, but they instead
control the number of units to update at each time
step. In our method, in contrast, we skim words,
directly setting the amount of computation to be
zero, which streamlines the reading process.

From another perspective, (Yu et al., 2018) at-
tempt to model early stopping behavior, deciding
whether the model can answer confidently based
on the hidden states. This is very effective for

tasks such as question answering. To ensure accu-
racy, (Shen et al., 2016) focuses on early stopping
after multiple passes, and (Shen et al., 2016) also
using reinforcement learning to attempt to learn to
reason. Both early stopping and our method ad-
equately take into account research on sufficient
comprehension. While, early stopping is not fast
enough for classification, we can do better with
text shuttling.

3 Main Idea

In this section, we describe the proposed LSTM-
Shuttle, first presenting its architecture. Then,
we show that due to the nondifferentiability of
the shuttle mechanism, we apply a policy gradi-
ent (Sutton et al., 1999) to train it end-to-end. Fi-
nally, we present the implementation details and
the inference approach.

3.1 Overview
As Fig. 1 illustrates, LSTM-Shuttle is based on an
LSTM recurrent neural network to which is added
an additional fully connected layer to predict for-
ward or backward steps after a softmax distribu-
tion.

Given a text which denoted as x1, x2, . . . , xL

or x1:L, LSTM-Shuttle first reads a fixed num-
ber of words sequentially and outputs the hidden
state. Then, based on the hidden state, LSTM-
Shuttle computes the shuttle softmax distribution
over the forward or backward steps on [�K, K].
Given a negative step value, LSTM-Shuttle goes
back to correct misunderstandings, and with a pos-
itive step value, LSTM-Shuttle speed reads, skim-
ming unimportant words. After shuttling, LSTM-
Shuttle reads words sequentially and then pro-
ceeds to shuttle again, iteratively. This process
continues until one of the following occurs:

• The shuttle softmax samples a 0
• The number of shuttles exceeds the prede-

fined upper limit
• The model has arrived at the last word

After stopping, the last hidden state is used to pre-
dict the desired task. The post-processing depends
on the task. For instance, for classification, the
hidden state generates a softmax distribution over
the target class, and for cloze, it is used to find the
correlation between the question article and each
candidate answer. The detailed settings of each
task are described in Section 4.
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Figure 1: An overview of LSTM-Shuttle. In this example, we set the number of words read sequentially
before shuttling R = 2, and the maximum shuttle size K = 10. The shuttle action is sampled from
[�K, K]. After reading the entire text, the last hidden state is used to answer prediction. Note that when
going backward, the shuttle step is counted before reading sequentially.

As with LSTM-Jump (Yu et al., 2017), we use
the following notation:

• N : total number of allowed shuttles
• R: number of words to read before shuttling
• K: maximum shuttle size

Whereas K is a fixed hyperparameter during train-
ing, N and R can vary between training and test-
ing. Note that as LSTM-Shuttle proceeds not only
forwards but also backwards, the output shuttle
size is 2K + 1: K forward, K backward, and
1 for stopping. In contrast to LSTM-Jump (Yu
et al., 2017), when going back, our shuttle step is
counted before reading sequentially. In the exam-
ple in Fig. 1, we set R = 2 and K = 10.

3.2 Training via Policy Gradient
In LSTM-Shuttle, there are two main parameter
sets to compute: ✓R and ✓U . ✓R includes the RNN
along with the output prediction parameters, and
✓U represents the parameters of the shuttle mech-
anism.

We compute ✓R via backpropagation directly by
minimizing J1(✓R), the cross entropy loss, which
is differentiable over ✓R and is the target objective
function of the classification task.

However, this does not work for ✓U . Since cross
entropy isn’t differentiable over ✓U , we cannot use
backpropagation to compute ✓U . Therefore, we re-
cast it as a reinforcement learning problem and ap-
ply a policy gradient to train it: we seek to maxi-
mize the reward function over ✓U via the following
formulation.

We first denote s1:T as the shuttle action se-
quence when training with text x1:L. Assuming
that hi is the hidden state of LSTM before the
i-th shuttle si, it is a function of si:i�1 and thus
can be denoted as hi(s1:i�1). Also, the shuttle
action can be sampled from the distribution of
p(st|hi(s1:t�1); ✓U ), which is determined by the

shuttle softmax. We have the final prediction after
LSTM-Shuttle processes text x1:L under the cur-
rent ✓U shuttle strategy. As with (Yu et al., 2017),
we set the reward to 1 if the prediction is correct,
and -1 otherwise.

R =

(
1 if predicted correctly
�1 otherwise

The objective function of ✓U we seek to maxi-
mize is the expected reward under the distribution
over ✓U shuttle strategy, i.e.,

J2(✓U ) = Ep(s1:T ;✓U )[R], (1)

where p(s1:T ;✓U ) =
Q

i p(s1:i|hi(s1:i�1; ✓U ).
To maximize the objective function, we must

compute the gradient of Eq. (1). We compute
an approximate gradient by running M exam-
ples with the REINFORCE algorithm (Williams,
1992):

r✓U J2(✓U ) =
TX

i=1

Ep(s1:T ;✓U
)[r✓U log p(s1:i|hi; ✓U )R]

⇡ 1

M

MX

m=1

TX

i=1

[r✓U log p(sm
1:i|hm

i ; ✓U )Rm],

where the superscript m denotes that it belongs
to the m-th example. Eventually, the term
r✓U log p(s1:i|hi; ✓U ) is computed by backprop-
agation as usual.

Though the approximation of r✓U J2(✓U ) is un-
biased, it may have very high variance (Williams,
1992). One common way to reduce this variance
is to subtract a baseline value b from the reward
function R, transforming the approximated gradi-
ent into

r✓U J2(✓U ) ⇡

1

M

MX

m=1

TX

i=1

[r✓U log p(sm
1:i|hm

i ; ✓U )Rm � bm
i ].
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Here we apply same bias strategy as (Lewis et al.,
2017), treating the bias value b as the average re-
ward from then until now.

The final objective function for LSTM-Shuttle
to minimize is

J(✓R, ✓U ) = J1(✓R) � J2(✓U ),

which is entirely differentiable and can be com-
puted by standard backpropagation.

3.3 Implementation detail and Inference
To simulate negative step selection, which corre-
sponds to reading backward in the shuttle action,
we set the shuttle output dimension to [0, 2K],
where 0 maps to �K, 1 maps to �(K � 1), . . . ,
K maps to 0, . . . , 2K � 1 maps to +(K � 1), and
2K maps to +K.

We used the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 10�3 for all exper-
iments. For a fair comparison with (Yu et al.,
2017), the dropout rate between LSTM layers
was set to 0.2 and the embedding dropout rate
to 0.1. We implemented LSTM-Shuttle in Py-
Torch (Adam et al., 2017) on a GTX 1080Ti gpu.

During inference, we apply greedy sampling:
we select the most probable shuttle step from the
shuttle softmax distribution.

4 Experiments

In this section, we evaluate the proposed LSTM-
Shuttle on three different tasks: sentiment analy-
sis, news classification, and cloze on four different
datasets. We use IMDB (L. et al., 2011) and Rot-
ten Tomatoes (Pang and Lee, 2005) for sentiment
analysis, AG (Shang et al., 2015) for news arti-
cle classification, and Children’s Book Test (Hill
et al., 2015) for cloze. Table 1 contains statistics
for the tasks and datasets in our experiments.

To show the improvement in not only accuracy
but also efficiency, we compared LSTM-Shuttle
with three baselines: vanilla LSTM (Hochreiter
and Schmidhuber, 1997), LSTM-Jump (Yu et al.,
2017), and bi-directional LSTM-Jump, as shown
in Fig. 2. For a fair comparison, we trained
LSTM-Shuttle with the same LSTM settings as
LSTM-Jump. For example, for sentiment analysis
on IMDB, LSTM-Jump was trained with R=20,
K=40, and N=80; we trained LSTM-Shuttle with
the same parameters. Vanilla LSTM is the tradi-
tional recurrent neural network using LSTM cells
which reads the entire text and then outputs the

prediction. LSTM-Jump has a skim mechanism
which neglects some text. Bi-directional LSTM-
Jump applies LSTM-Jump twice but starting from
different directions, and concatenates the last hid-
den state for answer prediction. To shorten the pre-
sentation, for LSTM-Jump we selected only two
results from the original paper directly on each
dataset: one with the best accuracy and the other
with the highest efficiency. This is to show the
difference between reading in two directions and
shuttling. The quantitative result of each dataset is
shown in the following sections.

In addition to the quantitative results, we sought
to investigate how the shuttle mechanism pro-
gresses in reality. We present the shuttle statistics
for different K settings, and show that because of
the backward mechanism which affords a chance
to recover lost information, LSTM-Shuffle shut-
tles with larger steps, increasing the shuttle step
size as it grows more and more confident in its pre-
diction.

4.1 Sentiment Analysis on IMDB and Rotten
Tomatoes

Sentiment analysis is a classic natural language
processing task, in which we read an article and
predict its latent sentiment as positive or negative.
It is widely implied in many forms or question-
naires such as satisfaction surveys. Here we use
IMDB (L. et al., 2011) and Rotten Tomatoes (Pang
and Lee, 2005) as our sentiment analysis datasets.

4.1.1 IMDB Results
IMDB (L. et al., 2011), a well-known movie infor-
mation website, also includes audience comments
and their sentiments. It contains 25,000 training
data and 25,000 testing data, where the average
length is 241 words. Both baselines and LSTM-
Shuttle used a single layer and 128 hidden units as
LSTM cells. We used pre-trained word2vec em-
beddings (Le and Mikolov, 2014b) as initial word
embeddings and trained it along with LSTM. For
a comparison with the baselines, all models were
trained under R = 20, K = 40, and N = 5.
We also show the result of a larger shuttle step
(K = 75) version of LSTM-Shuttle.

Table 2 shows the experimental results for
IMDB, where the speedup ratio is compared with
vanilla LSTM, conducted on a machine with a sin-
gle GTX 1080Ti GPU. For bi-directional LSTM-
Jump we used our own implementation, and the
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Figure 2: Baseline architectures. Left: Vanilla LSTM: reads entire text sequentially. Middle: LSTM-
Jump: skims to neglect some words. Right: Bi-direction LSTM-Jump: skims in two directions, con-
catenates two latest hidden states.

Task Dataset Level AvgLen #train #test #class
Sentiment analysis IMDB word 241 words 21,143 25,000 2
Sentiment analysis Rotten Tomatoes word 22 words 8,835 1,030 2
News classification AG character 200 characters 101,851 7,600 4

Cloze CBT-NE sentence 20 sentences 120,769 2,500 10

Table 1: Tasks and datasets

Method (R, K, N) Accuracy Speedup Backward
LSTM - 89.1% 1x -

LSTM-Jump (80, 40, 8) 89.4%⇤ 1.64x -
LSTM-Jump (100, 40, 1) 88.0% 2.54x⇤ -

Bi-LSTM-Jump (80, 40, 8) 89.6%⇤ 1.12x -
Bi-LSTM-Jump (100, 40, 1) 88.4% 2.33x⇤ -
LSTM-Shuttle (20, 40, 5) 88.9% 2.43x 0.23
LSTM-Shuttle (60, 40, 6) 89.9%⇤ 2.08x 0.26
LSTM-Shuttle (80, 40, 8) 89.7% 1.49x 0.27
LSTM-Shuttle (100, 40, 1) 88.6% 2.46x⇤ 0.12
LSTM-Shuttle (50, 75, 4) 89.7%⇤ 2.27x 0.29
LSTM-Shuttle (50, 75, 2) 89.1% 2.45x⇤ 0.21

Table 2: Sentiment analysis results on IMDB. ⇤

means the best accuracy or highest speedup for
each method given the same setting of K.

“Backward” column in the table shows the fre-
quency ratio of backward shuttles.

Under the same (R, K, N) setting, LSTM-
Shuttle is a little slower than LSTM-Jump since
the softmax size of K is larger, but the for-
mer yields better prediction. For bi-directional
LSTM-Jump, since it applies LSTM-Jump twice,
it predicts better than the original. How-
ever, we doubt whether it is worth sacrificing
so much efficiency for such a small increase
in prediction accuracy (+0.2%). Under the
same (R, K, N), LSTM-Shuttle is more accurate
and faster than bi-directional LSTM-Jump, even
though (80, 40, 8) is not in fact the best setting for
LSTM-Shuttle. LSTM-Shuttle achieves the high-
est accuracy (89.9%) with 2.08⇥ acceleration un-
der (60, 40, 6). Due to the shuttle mechanism that
can go back, LSTM-Shuttle does not need to read
many words before each shuttle, thus accelerating
the overall reading process.

In general, the combination of (R, N) repre-
sents a trade-off between accuracy and efficiency.

If we use a larger (R, N), the model reads more
words and predicts better but more slowly. Oth-
erwise, for a smaller (R, N), the model reads
faster but yields predictions that are not as accu-
rate. A similar tendency is found when it comes
to the backward ratio. A smaller N means LSTM-
Shuttle shuttles less often, so the model tends to
read through as much as possible, making for a
lower backward ratio. On the other hand, LSTM-
Shuttle can shuttle many times so it is willing to
go back to correct misunderstandings.

We also show the result for K = 75. With
the larger shuttle step, fewer words are read be-
fore shuttling, which accelerates reading but has
little impact on accuracy. LSTM-Shuttle achieves
89.7% with 2.27⇥ speedup under (50, 75, 4)
and 89.1% with 2.45⇥ times speedup under
(50, 75, 2): both settings yield both high accuracy
and efficiency.

4.1.2 Rotten Tomatoes Results
The Rotten Tomatoes dataset (Pang and Lee,
2005) is to IMDB. We chose to use a two-layer
LSTM and 256 hidden units, and again used
the pre-trained word2vec embeddings (Le and
Mikolov, 2014b). We trained all models under
R = 8, K = 10, and N = 3.

The experimental results are shown in Table 3.
LSTM-Shuttle achieves an accuracy of 79.5%
with 1.55⇥ speedup; a higher efficiency version
accelerates to 1.89⇥. These results demonstrate
a similar trade-off tendency with different (R, N)
combinations as those for IMDB. Since the aver-
age comment length in Rotten Tomatoes is short,
we used lower shuttle times (N = 2) for better
speed but also maintained high accuracy. Because
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Method (R, K, N) Accuracy Speedup Backward
LSTM - 79.1% 1x -

LSTM-Jump (7, 10, 4) 79.3%⇤ 1.56x -
LSTM-Jump (9, 10, 2) 78.3% 1.94x⇤ -

Bi-LSTM-Jump (7, 10, 4) 79.4%⇤ 1.32x -
Bi-LSTM-Jump (9, 10, 2) 78.9% 1.54x⇤ -
LSTM-Shuttle (7, 10, 4) 79.5% 1.52x 0.41
LSTM-Shuttle (8, 10, 3) 79.5%⇤ 1.55x 0.41
LSTM-Shuttle (9, 10, 2) 79.3% 1.89x⇤ 0.45
LSTM-Shuttle (6, 20, 3) 79.8%⇤ 1.74x 0.39
LSTM-Shuttle (6, 20, 2) 79.2% 1.97x⇤ 0.48

Table 3: Sentiment analysis results for Rotten
Tomatoes. ⇤ means the best accuracy or highest
speedup for each method given the same setting of
K.

of the shorter comments and lower shuttle times,
LSTM-Shuttle prefers to shuttle over almost the
entire text from the beginning, trying to see the last
part of a comment, and then goes back to the mid-
dle part; thus the backward ratio is much higher.

We also show the results under a larger K (K =
20). On Rotten Tomatoes, a larger shuttle step
seems more suitable. LSTM-Shuttle achieves the
best accuracy (79.8%) with 1.74⇥ high efficiency.
A setting with fewer shuttles further accelerates
up to 1.97⇥ while maintaining a high accuracy of
79.2%.

4.2 News Article Classification on AG dataset
News classification is a common application of
document comprehension. Given a news article,
the model must recognize which field it belongs
to. Modern topic classification is applied on dif-
ferent target sources such as blog posts. We used
AG (Shang et al., 2015) as news article classifica-
tion dataset in our experiments.

4.2.1 Result on AG dataset
We used the subset constructed by (Shang et al.,
2015) for classification at the character level.
AG contains news covering four topics (World,
Sports, Business, Sci/Tech), each of which in-
cludes 30,000 training and 1,900 testing docu-
ments. We used a single-layer LSTM with 64 hid-
den units. We trained the character embedding
with 16 dimensions for 70 characters in total, per
LSTM-Jump (Yu et al., 2017). We trained all mod-
els using R = 30, K = 40, and N = 5.

As shown in Table 4, LSTM-Shuttle still yields
improvement at the character level. For both
LSTM-Jump and bidirectional LSTM-Jump, the
speedup effect is not obvious because of the com-
putational overhead of skim being larger than

Method (R, K, N) Accuracy Speedup Backward
LSTM - 88.1% 1x -

LSTM-Jump (30, 40, 5) 88.5%⇤ 1.24x⇤ -
LSTM-Jump (40, 40, 6) 87.4% 0.83x -

Bi-LSTM-Jump (30, 40, 5) 89.5%⇤ 1.08x⇤ -
Bi-LSTM-Jump (40, 40, 6) 88.4% 0.81x -
LSTM-Shuttle (20, 40, 5) 90.1%⇤ 1.34x⇤ 0.27
LSTM-Shuttle (30, 40, 5) 88.9% 1.16x 0.30
LSTM-Shuttle (40, 40, 6) 88.4% 0.82x 0.34
LSTM-Shuttle (20, 80, 4) 89.8% 1.63x⇤ 0.26
LSTM-Shuttle (30, 80, 4) 90.1%⇤ 1.29x 0.28

Table 4: News classification result on AG. ⇤ means
the best accuracy or highest speedup for each
method given the same setting of K.

when processing the entire text directly. On the
other hand, LSTM-Shuttle yields accurate pre-
dictions even when reading fewer characters be-
fore shuttling, and it clearly yields accelerated
performance. We reach an accuracy of 90.1%
with 1.34⇥ speedup, both far from LSTM-Jump.
Interestingly, (20, 40, 5) reads fewer words than
(30, 40, 5), but the former predicts better. This
may be due to the character-level nature of the task
and because many characters actually mislead the
model. This can be seen with LSTM-Jump as well.
The backward ratio on the AG dataset is nearly
to that of IMDB: almost three times forward with
once backward.

We also show that a larger setting of K (K =
80) yields further acceleration, even at the charac-
ter level, achieving the highest (1.63⇥) speedup.

4.3 Cloze on Children’s Book Test Name
Entity dataset

For the cloze task, we must supply the missing
words in an article. In the Children’s Book Test
(CBT) (Hill et al., 2015), the question includes a
complete article and a query from which a specific
word is deleted. The model must determine which
of the ten candidate words is most suitable. In con-
trast to previous tasks, which have a fixed class
type, CBT provides different candidate words for
each question. Thus we cannot train it as with a
normal classification problem. Inspired by (Chen
et al., 2016), we formulate the task as

softmax(CWho) 2 R
10, (2)

where C 2 R
10⇥d is the word embedding matrix,

ho is the latest LSTM hidden state, and W is a
trainable weight variable. The output of the above
equation is taken as the index of the answer word.
We train LSTM-Shuttle to maximize the distribu-
tion over a one-hot answer index. Therefore for
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Method (R, K, N) Accuracy Speedup Backward
LSTM - 45.3% 1x -

LSTM-Jump (1, 5, 5) 46.8%⇤ 3.05x -
LSTM-Jump (1, 5, 1) 45.2% 6.28x⇤ -

Bi-LSTM-Jump (1, 5, 5) 47.0%⇤ 2.64x -
Bi-LSTM-Jump (1, 5, 1) 45.3% 6.19x⇤ -
LSTM-Shuttle (1, 5, 5) 47.2%⇤ 2.98x 0.31
LSTM-Shuttle (1, 5, 1) 46.0% 6.16x⇤ 0.18
LSTM-Shuttle (1, 10, 5) 47.1%⇤ 2.91x 0.36
LSTM-Shuttle (1, 10, 1) 46.6% 6.13x⇤ 0.27

Table 5: Cloze result on CBT-NE. ⇤ means the
best accuracy or highest speedup for each method
given the same setting of K.

different candidate words, we concatenate them
as an embedding matrix, feed this into the above
equation, and generate the prediction distribution.
We used the named-entity (NE) part of CBT as the
cloze dataset when evaluating LSTM-Shuttle.

4.3.1 Result on CBT-NE

CBT-NE includes 120,769 questions for training
and 2,500 for testing. We trained all models
using Eq. (2) with a two-layer LSTM and 256
hidden units. Pre-trained word2vec embeddings
were again applied directly. We trained them un-
der R = 1, K = 5, and N = 5 at the sen-
tence level, which means that LSTM-Shuttle read
one sentence and shuttled several sentences five
times. Vanilla LSTM, LSTM-Jump, Bi-LSTM-
Jump, and LSTM-Shuttle all read the query, but
only vanilla LSTM read the entire question article.
Others decided how to skim or shuttle.

The result is reported in Table 5. LSTM-
Shuttle’s best accuracy is 47.2% with 2.98⇥
speedup, and the highest efficiency version
achieved 46.0% accuracy with 6.16⇥ speedup.
Despite the modest acceleration effect, LSTM-
Shuttle yields consistently better prediction accu-
racy with minimal drops in efficiency. Accelera-
tion is only modest because the average number of
article sentences was only 20, and it thus did not
need to read many sentences (R = 1) before shut-
tling or shuttling so many times (N = 5). That is
also why the backward ratio here is low in CBT-
NE.

LSTM-Shuttle maintains accurate prediction
and high efficiency under a larger K: 46.6% ac-
curacy with 6.13⇥ speedup. To demonstrate the
proposed method, we offer a case study in Sec-
tion 4.5.

Figure 3: Average total shuttle steps

Figure 4: Backward ratio

4.4 Analysis of Shuttle Mechanism

Here we analyze how LSTM-Shuttle actually op-
erates. We compute the total average shuttle steps
and the average shuttle steps for each shuttle ac-
tion under same R = 20 and N = 6 but different
K on the IMDB datasets.

Fig. 3 shows the average total shuttle steps for
different K, taking into consideration both for-
ward and backward steps. For backward shuttling,
we use the absolute value as its shuttle steps. For
instance, shuttling -5 means it goes back 5 words,
and the shuttle step is 5 indeed. We can see that
a larger K, and thus a larger shuttle space, tends
to shuttle larger steps, but also converges for large
enough values of K. We see the same thing in the
backward ratio. Fig. 4 shows the backward ratio

Figure 5: Average steps per shuttle
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Figure 6: Example 1 for R = 1, K = 15, and
N = 4, where read sentences are shown in bold

under different K. Since a larger K shuttles more
both forward and backward, it has more chances
to go back. Also, it converges when K is large
enough.

In addition to the total average, we seek to un-
derstand how LSTM-Shuttle shuttles for each. As
above, both forward and backward are taken into
consideration and the absolute value is used for
the backward steps. We show each shuttle record
for a total of 6 shuttles under K between [40, 50].
As shown in Fig. 5, all settings of LSTM-Shuttle
shuttle more steps after shuttling more times, but
LSTM-Jump skims at an almost fixed frequency.
Thus the model reads more words after more shut-
tles since it tends to read sequential words before
each shuttle, in turn yielding better comprehension
for the model. For LSTM-Shuttle, with its back-
ward mechanism to recover lost information, it
shuttles with larger and larger steps. However, for
LSTM-Jump, as it cannot go back, it reads more
carefully and maintains a constant skim step.

4.5 Case Study
Below, we show two examples of LSTM-Shuttle
shuttling on the CBT-NE dataset. Example 1 in
Fig. 6 illustrates a simple case. Based only on
the query, “King should promise him his daugh-
ter”, the deleted word clearly should be “King”.

Figure 7: Example 2 for R = 1, K = 15, and
N = 4, where read sentences are shown in bold

LSTM-Shuttle shows more confidence providing
the answer given only this query, so it shuttles with
large steps to read the last part of the article, from
sentence 1 to 12. Also, it goes back to confirm its
prediction: from sentence 15 to 10. Example 2 in
Fig. 7 is a more difficult task because the answer
word “Nora” appears only once in the entire arti-
cle. Thus LSTM-Shuttle must read more carefully.
The shuttle steps are all smaller than 8 before dis-
covering the answer in sentence 18, after which
it goes back to see if it missed something. From
these examples, we see that the shuttle mechanism
is used in diverse manners for queries with differ-
ent difficulties. For simple queries, LSTM-Shuttle
shuttles in large steps, while for difficult queries,
it shuttles more conservatively. In both cases we
witness the ability to go back if necessary to make
sure it understands correctly.

5 Conclusion

We present LSTM-Shuttle to use human speed
reading techniques for text comprehension. In ad-
dition to reading forward and skimming over text
to accelerate, LSTM-Shuttle goes back to recover
lost information or double-check its grasp of the
text’s meaning. We evaluate LSTM-Shuttle on
sentiment analysis, news classification, and cloze
on IMDB, Rotten Tomatoes, AG, and Children’s
Book Test datasets. We show that LSTM-Shuttle
predicts better on all datasets with higher effi-
ciency. We also analyze LSTM-Shuttle’s behavior
under different shuttle step restrictions, and pro-
vide case studies that reveal the specific shuttle op-
erations; these show how the model comprehends
the context to achieve specific goals.
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Abstract

Self-attention networks have proven to be of
profound value for its strength of capturing
global dependencies. In this work, we propose
to model localness for self-attention networks,
which enhances the ability of capturing use-
ful local context. We cast localness modeling
as a learnable Gaussian bias, which indicates
the central and scope of the local region to be
paid more attention. The bias is then incorpo-
rated into the original attention distribution to
form a revised distribution. To maintain the
strength of capturing long distance dependen-
cies and enhance the ability of capturing short-
range dependencies, we only apply localness
modeling to lower layers of self-attention net-
works. Quantitative and qualitative analyses
on Chinese)English and English)German
translation tasks demonstrate the effectiveness
and universality of the proposed approach.

1 Introduction

Recently, a new simple architecture, the TRANS-
FORMER (Vaswani et al., 2017), that based solely
on attention mechanisms has attracted increas-
ing attention in machine translation community.
Instead of using complex recurrent or convolu-
tional neural networks, TRANSFORMER imple-
ments encoder and decoder as self-attention net-
works to draw global dependencies between input
and output. By further parallel performing (multi-
head) and stacking (multi-layer) attentive func-
tions, TRANSFORMER has achieved state-of-the-
art performance on various translation tasks (Shaw
et al., 2018; Hassan et al., 2018).

One strong point of self-attention networks is
the strength of capturing long-range dependencies
by explicitly attending to all the signals. In this

⇤ Zhaopeng Tu and Derek F. Wong are the co-
corresponding authors of the paper. This work was conducted
when Baosong Yang was interning at Tencent AI Lab.

way, a representation is allowed to build a direct
relation with another long-distance representation.
Accordingly, it can serve as the role of RNN and
CNN to capture both the short- and long-range re-
lations among the representations.

Self-attention networks fully take into account
all the signals with a weighted averaging opera-
tion. We argue that such operation disperses the
distribution of attention, which results in over-
looking the relation of neighboring signals. Re-
cent works have shown that self-attention net-
works benefit from locality modeling. For ex-
ample, Shaw et al. (2018) introduced relative
position encoding to consider the relative dis-
tances between sequence elements, which pro-
duces substantial improvements on the translation
task. Sperber et al. (2018) modeled the local in-
formation by restricting self-attention model to
neighboring representations, which boosts perfor-
mance on long-sequence acoustic modeling. Al-
though not for self-attention, Luong et al. (2015)
proposed a local attention model for translation
task, which looks at only a subset of source words
at a time. Inspired by these studies, we propose
more flexible strategies for modeling localness for
self-attention networks in this work.

Specifically, we cast the localness modeling as
a learnable Gaussian bias, in which a central po-
sition (i.e. mean of the position) and a dynamic
window (i.e. deviation of the distribution) are pre-
dicted with the intermediate representations in the
self-attention network. Intuitively, the central po-
sition and the window respectively denote the cen-
ter and the scope of the locality to be paid more
attention. The learned Gaussian bias is then in-
corporated into the original attention distribution
to form a revised distribution, which considers the
expected local context.

Some researchers may doubt that self-attention
networks augmented localness modeling focuses

4449



leanings toward local context, which weakens its
strength of capturing long-range dependencies.
Our extensive analyses can dispel such doubt by
showing that the potential problem is compen-
sated by multi-layer multi-head self-attention net-
works. First, multi-head attention attends to lo-
cal regions centered at different positions, which
can constitute the complete information of an in-
put sequence. Second, we found that self-attention
models tend to capture short-range dependencies
among neighboring words in lower layers, while
capture long-range dependencies beyond phrase
boundaries in higher layers. Accordingly, we only
apply localness modeling to lower layers.

We conducted experiments on two widely-
used WMT14 English)German and WMT17
Chinese)English translation tasks. The proposed
approach consistently improves translation perfor-
mance over the strong TRANSFORMER baseline,
demonstrating its effectiveness and universality.
In addition, our approach is complementary to the
relative position encoding (Shaw et al., 2018), and
combining them can further improve translation
performance.

2 Background

Attention model has recently been a basic module
of most deep learning models. The mechanism al-
lows to dynamically select related representations
as needed. In particular, it is very useful for gen-
eration models such as machine translation (Bah-
danau et al., 2015; Luong et al., 2015; Yang et al.,
2017) and image captioning (Xu et al., 2015).

2.1 Self-Attention Model
Recently, self-attention networks (Vaswani et al.,
2017; Shaw et al., 2018; Shen et al., 2018a) have
attracted increasing attention due to their flexibil-
ity in parallel computation and dependency mod-
eling. Self-attention networks calculate attention
weights between each pair of tokens in a single
sequence, thus can capture long-range dependency
more directly than their RNN counterpart.

Formally, given an input sequence x =
{x1, . . . , xI}, each hidden state in the l-th layer
is constructed by attending to the states in the
(l � 1)-th layer.1 Specifically, the (l � 1)-th layer
H l�1 2 R

I⇥d is first transformed into the queries
Q 2 R

I⇥d, the keys K 2 R
I⇥d, and the values

V 2 R
I⇥d with three separate weight matrices.

1The first layer is the word embedding layer.

The l-th layer is calculated as:

H l = ATT(Q, K) V , (1)

where ATT(·) is a dot-product attention model, de-
fined as:

ATT(Q, K) = softmax(energy) (2)

energy =
QKT

p
d

, (3)

where
p

d is the scaling factor with d being the
dimensionality of layer states.

2.2 Motivation
The self-attention network models the global de-
pendencies without regard to their distances, by
directly attending to all the positions in an input
sequence (i.e. Equation 3). We argue that self-
attention can be further improved by taking into
account the local context. However, since the con-
ventional self-attention models consider all of the
words in a sequence, the weighted averaging in-
hibits the relation among the neighboring words.

From a linguistic intuition, when a word xi is
aligned to another word xj , we also expect xi to
align mainly to the neighboring words of xj , so
as to capture the phrasal patterns that contain use-
ful local context information. Take Figure 1 as an
example, if “Bush” is aligned to “held” with high
probability, we expect the self-attention model to
pay more attention to the neighboring words “a
talk”. Consequently, the model is guided to cap-
ture the phrase “held a talk”.

3 Localness Modeling

Figure 1 shows an example. We first learn a Gaus-
sian bias, which is centered around the word “talk”
(it is not necessary to be consistent with the orig-
inal attention distribution), with a window size
being 2 (in practice, it is a float number in our
model). The distribution of attention is then regu-
larized with the learned Gaussian bias to produce
the final distribution, which pays more attention to
the local context around the word “talk”.

3.1 Localness Modeling as a Gaussian Bias
Specifically, a Gaussian bias G is placed to mask
the logit similarity energy in Equation 2, namely:

ATT(Q, K) = softmax(energy + G). (4)

The first term is the original dot product self-
attention model. G 2 R

I⇥I is a favor alignment
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Bush held a talk with Sharon

Bush held a talk with SharonBush held a talk with Sharon

× =

Bush held a talk with Sharon

Original Distribution Gaussian Distribution Revised Distribution

D

Figure 1: Illustration of the proposed approach. In this example, window size of 2 is used (D = 2).

position matrix (I denotes the sequence length).
The element Gi,j 2 [0, �1) measures the tight-
ness between the word xj and the predicted central
position Pi:

Gi,j = �(j � Pi)2

2�i
2

, (5)

where �i denotes the standard deviation which is
empirically set as �i = Di

2 , and Di is a window
size. Note that, due to the exponential operation
in softmax function, adding the logit similarity
energy with a bias 2 [0, �1) approximates to
multiplying the attention distribution by a weight
2 [1, 0). The position and window size can be
calculated as:


Pi

Di

�
= I · sigmoid(


pi

zi

�
). (6)

The scalar factor I is used to regulate Pi and Di

to real value numbers between 0 and the length of
input sequence. The predictions are conditioned
on two scalar pi and zi respectively.

3.2 Central Position Prediction
Since the prediction of each central position de-
pends on its corresponding query vector,2 we sim-
ply apply a feed-forward network to transform
Qi into a positional hidden state, which is then
mapped into the scalar pi by a linear projection
Up 2 R

d, namely:

pi = Up
T tanh(WpQi), (7)

where Wp 2 R
d⇥d is the model parameter.

3.3 Window Size Prediction
Several alternative strategies are proposed to se-
lect the window size. Except a non-parametric ap-
proach, the other two define parametric windows.

2For the input of feed-forward network, we also tried an
additive term to consider the weighted context Oi (Equa-
tion 1), namely: tanh(WpQi + WoOi). Our experimental
results showed that there is no progressive improvement.

Among the parametric methods, the first strategy
assigns a unified window size to all the hidden
states in a layer, so as to consider the context of
the sequence, while the second one calculates a
distinct window size for each hidden state.

Fixed-Window A simple choice is to use a pre-
defined window size D, which is a constant num-
ber throughout the whole training and testing pro-
cess. In this study, following the common practice
(Luong et al., 2015), D is set to 10.

Layer-Specific Window Furthermore, an inter-
pretable way to select the window size is to ac-
count for the context of the sequence by summa-
rizing the information from all the representations
in a layer. In this study, we assign the mean of
keys K to represent the semantic context. Thus,
the unified scalar z of a layer is defined as:

z = UT
d tanh(WdK), (8)

where Wd 2 R
d⇥d and Ud 2 R

d are learnable
parameters.

Query-Specific Window The last strategy pro-
vides a more flexible manner to differentiate the
scope by conditioning on each query. Similar to
the prediction of the central position (Equation 7),
the query-specific window can be formally ex-
pressed as:

zi = Ud
T tanh(WpQi). (9)

Here, Ud 2 R
d is a trainable linear projection.

Note that, Equations 7 and 9 share same param-
eter Wp but use different Up and Ud. The intu-
ition behind this design is that the central position
and window size interdependently locate the local
scope, hence condition on the same hidden state.
The distinct linear projections Up and Ud are suffi-
cient in distinguishing the two scalars, resulting in
a smaller parameter size and faster computational
speed than that of the layer-specific model.

4451



3.4 Incorporating into TRANSFORMER

We evaluate our model on the advanced TRANS-
FORMER model (Vaswani et al., 2017), which
builds an encoder-decoder framework merely us-
ing attention networks. Both the encoder and de-
coder are composed of a stack of L = 6 layers,
each of which has two sub-layers. The first is a
multi-head self-attention layer, and the second is a
position-wise fully connected feed-forward layer.
In this section, we describe how to apply our ap-
proach to TRANSFORMER by adapting to multi-
head and multi-layer self-attention networks.

Adapting to Multi-Head Self-Attention In-
stead of performing a single attention function, the
multi-head mechanism employs M separate atten-
tion models with distinct parameters to jointly at-
tend to the information from different representa-
tion subspaces at different positions. Accordingly,
we assign a distinct Gaussian bias to each attention
head, and rewrite Equation 6 as:


Pm

i
Dm

i

�
= I · sigmoid(


pm

i
zm
i

�
), (10)

where pm
i and zm

i are trained with distinct parame-
ters to predict the central position and window size
for the m-th attention head.

We argue that multi-head self-attention may
benefit more from localness modeling. Multi-head
attention captures different features by attending
to different positions, which complements the lo-
calness modeling that may potentially ignore the
global information. Experimental results in Ta-
ble 5 confirm our hypothesis by showing that lo-
calness modeling achieves more significant im-
provement when working with multi-head atten-
tion than its single-head counterpart.

Adapting to Multi-Layer Self-Attention Re-
cent work shows that different layers capture dif-
ferent types of features. Anastasopoulos and
Chiang (2018) indicated that higher-level layers
are more representative than lower-level layers,
while Peters et al. (2018) showed that higher-level
layers capture context-dependent aspects of word
meaning while lower-level layers model aspects of
syntax. One question naturally arises: is it neces-
sary to model localness for all layers?

In this work, we investigate which levels of lay-
ers benefit most from the localness modeling. In
addition, we visualize the Gaussian biases across
layers, to better understand the behaviors of differ-
ent attentive layers.

4 Experiments

4.1 Setup
To compare with the results reported by previ-
ous work (Gehring et al., 2017; Vaswani et al.,
2017; Hassan et al., 2018), we conducted exper-
iments on both Chinese)English (Zh)En) and
English)German (En)De) translation tasks. For
the Zh)En task, the models were trained using
all of the available parallel corpus from WMT17
dataset with maximum length limited to 50, con-
sisting of about 20.62 million sentence pairs. We
used newsdev2017 as the development set and
newstest2017 as the test set. For the En)De task,
we trained on the widely-used WMT14 dataset
consisting of about 4.56 million sentence pairs.
The models were validated on newstest2013 and
examined on newstest2014. The Chinese sen-
tences were segmented by the word segmentation
toolkit Jieba,3 and the English and German sen-
tences were tokenized using the scripts provided
in Moses. Then, all tokenized sentences were pro-
cessed by byte-pair encoding (BPE) to alleviate
the Out-of-Vocabulary problem (Sennrich et al.,
2016) with 32K merge operations for both lan-
guage pairs. The 4-gram NIST BLEU score (Pap-
ineni et al., 2002) is used as the evaluation metric.

We evaluated the proposed approaches on ad-
vanced TRANSFORMER model (Vaswani et al.,
2017), and implemented on top of an open-source
toolkit – THUMT4 (Zhang et al., 2017). We fol-
lowed Vaswani et al. (2017) to set the configu-
rations and reproduced their reported results on
the En)De task. We tested both the Base and
Big models, which differ at the layer size (512
vs. 1024) and the number of attention heads (8 vs.
16). All the models were trained on eight NVIDIA
P40 GPUs, each of which is allocated a batch of
4096 tokens. In consideration of the computation
cost, we studied the variations of the Base model
on Zh)En task, and evaluated the overall perfor-
mance with the Big model on both Zh)En and
En)De translation tasks.

4.2 Ablation Study
In the first series of experiments, we evaluated the
impact of different components on the Zh)En
validation set using the TRANSFORMER-BASE.
First, we investigated the effect of different strate-
gies to predict the localness window. Then, we

3https://github.com/fxshy/jieba
4https://github.com/thumt/THUMT
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Model Speed Dev 4

Baseline 1.20 22.59 -
Fixed 1.14 23.07 + 0.48
Layer-Spec. 1.07 23.13 + 0.54
Query-Spec. 1.11 23.13 + 0.54

Table 1: Evaluation of various window predic-
tion strategies for localness modeling, which is
only applied to encoder-side self-attention net-
work. “Speed” denotes training speed measured
in steps per second.

examined whether it is necessary to apply local-
ness modeling to all the layers. Finally, given that
TRANSFORMER consists of encoder and decoder
side self-attention as well as encoder-decoder at-
tention networks, we checked which types of at-
tention networks benefit most from the localness
modeling. To eliminate the influence of control
variables, we conducted the first two ablation stud-
ies on encoder-side self-attention networks only.

Window Prediction Strategies As shown in
Table 1, all the proposed window prediction
strategies consistently improve the model perfor-
mance over the baseline, validating the impor-
tance of localness modeling in self-attention net-
works. Among them, layer-specific and query-
specific window outperform5 their fixed counter-
part, showing the benefit that flexible mechanism
is able to capture varying local context accord-
ing to layer and query information. Moreover,
the flexible strategy does not reply on the hand-
crafted parameters (e.g. the pre-defined window
size), which makes model robustly applicable to
other language pairs and NLP tasks. Considering
the training speed, we use the query-specific pre-
diction mechanism as the default setting in subse-
quent experiments.

Layers to be Applied In this experiment, we
investigated the question of which layers should
be applied with the localness modeling. Recent
works show that different layers tend to capture
different features, thus there may have different
needs for the local context. We applied localness

5Although the differences are not always significant, the
flexible strategy consistently outperforms its fixed counter-
part across language pairs. For example, the query-specific
strategy improves performance over the fixed-window model
by +0.07 and +0.23 BLEU points on Zh-En and En-De vali-
dation sets, respectively.

# Layers Speed Dev 4
1 [1-6] 1.11 23.13 -
2 [1-1] 1.18 23.20 + 0.07
3 [1-2] 1.17 23.23 + 0.10
4 [1-3] 1.15 23.29 + 0.16
5 [1-4] 1.14 23.26 + 0.13
6 [4-6] 1.15 23.22 + 0.09

Table 2: Evaluation of different layers in the en-
coder, which are implemented as self-attention
with query-specific localness modeling.

Enc Dec Enc-Dec Speed Dev
X ⇥ ⇥ 1.15 23.29
X X ⇥ 1.10 23.27
X ⇥ X 1.08 23.33
X X X 1.02 23.19

Table 3: Effect of localness modeling on dif-
ferent types of attention networks. “Enc” and
“Dec” denote the encoder and decoder side self-
attention networks respectively, while “Enc-Dec”
represents the encoder-decoder attention network.

modeling to different combinations of layers, as
shown in Table 2. Clearly, modeling the localness
for part of the layers consistently outperforms all
layers in terms of the training speed and transla-
tion quality, which again validates our claim.

Interestingly, the performance generally goes
up with the increase of layers from bottom to top
(Rows 2-4), while the trend does not hold when
reaching the 4th-layer (Row 5). In addition, the
lower three layers benefit more from the local-
ness modeling than that of the higher three layers
(Rows 4 and 6). These results reveal that lower-
level layers benefit more from the local context.
Accordingly, we only model the localness in the
lower three layers in the following experiments.

Attention Networks to be Applied Table 3
lists the results of localness modeling on dif-
ferent types of attention networks. As ob-
served, modeling localness for decoder-side self-
attention and encoder-decoder attention networks
only marginally improves or even harms the trans-
lation quality. We attribute the marginal improve-
ment of the encoder-decoder attention network
to the fact that it exploits the top-layer of en-
coder representations, which already embeds use-
ful local context. Concerning decoder-side self-
attention network, Zhang et al. (2018) pointed out
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System Architecture Zh)En En)De
# Para. BLEU # Para. BLEU

Existing NMT systems
(Wu et al., 2016) GNMT n/a n/a n/a 26.30
(Gehring et al., 2017) CONVS2S n/a n/a n/a 26.36

(Vaswani et al., 2017) TRANSFORMER-BASE n/a n/a 65M 27.3
TRANSFORMER-BIG n/a n/a 213M 28.4

(Hassan et al., 2018) TRANSFORMER-BIG n/a 24.2 n/a n/a
Our NMT systems

this work

TRANSFORMER-BASE 107.9M 24.13 88.0M 27.64
+ Rel Pos (Shaw et al., 2018) 108.0M 24.53 88.1M 27.94
+ Localness 108.7M 24.77* 88.8M 28.11"

+ Localness + Rel Pos 108.8M 24.96* 88.9M 28.54*

TRANSFORMER-BIG 303.9M 24.56 264.1M 28.58
+ Localness 307.2M 25.03" 267.4M 28.89
+ Localness + Rel Pos 307.3M 25.28* 267.5M 29.18*

Table 4: Comparing with the existing NMT systems on WMT17 Zh)En and WMT14 En)De test sets.
“# Para.” denotes the trainable parameter size of each model (M = million). “" / *”: significant over the
conventional self-attention counterpart (p < 0.05/0.01), tested by bootstrap resampling (Koehn, 2004).

that it tends to only focus on its nearby repre-
sentation, which poses difficulties to modeling lo-
calness on the decoder side. In the main experi-
ments, we only applied localness modeling to the
lower three layers of the encoder, which employs
a query-specific window prediction strategy.

4.3 Main Results
In this section, we evaluated the proposed ap-
proach on both WMT17 Zh)En and WMT14
En)De translation tasks, as listed in Table 4. Our
baseline models, both TRANSFORMER-BASE and
TRANSFORMER-BIG, outperform the reported re-
sults on the same data, which we believe make the
evaluation convincing. As seen, modeling local-
ness (“Localness”) consistently achieves improve-
ment across language pairs and model variations,
demonstrating the efficiency and universality of
the proposed approach.

We also re-implemented the relative posi-
tion encoding (“Rel Pos”) that recently proposed
by Shaw et al. (2018), which considers the rela-
tive distances between sequence elements. Both
Shaw et al. (2018) and our work have shown that
explicitly modeling locality for self-attention net-
works can improve the model performance. This
indicates that it is necessary to enhance the locality
modeling for Transformer. Besides, our approach
is complementary to theirs, and combining them
is able to further improve the translation perfor-

mance. We attribute this to the fact that the two
models modeling localness from two different as-
pects: First, the position embeddings are the same
across different positions (if the absolute positions
or relative positions are the same) and training ex-
amples, our model assigns a distinct localness bias
to each position from layer to layer. Second, con-
trast to position encoding which learns the locality
through the positional information in embeddings,
our model directly revises the attention distribu-
tion to focus on a local space.

5 Analysis

We conducted extensive analyses to better under-
stand our model in terms of its compatibility with
multi-head and multi-layer attention networks, as
well as building the ability of capturing phrasal
patterns. All the results are reported on Zh)En
development set with TRANSFORMER-BASE, un-
less otherwise stated.

5.1 Compatibility with Multi-Head Attention

In this section, we investigated whether multi-head
attention and localness modeling are compatible
from two perspectives: (1) whether multi-head at-
tention benefits more from the localness modeling
than its single-head counterpart; and (2) how does
multi-head attention work together with localness
modeling?
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Model 1-Head 8-Head
Dev 4 Dev 4

BASE 22.05 - 22.59 -
OURS 22.18 + 0.13 23.29 + 0.70

Table 5: Evaluation of localness modeling on top
of single and multiple attention heads.

Multi-Head vs. Single-Head The single-head
attention and multi-head attention differ at: the
former uses a single 512-dimension attention head
while the latter uses eight 64-dimension heads.
The results in Table 5 confirm our claim by
showing that multi-head attention indeed benefits
more from our model than the single-head model
(+0.70 vs. +0.13). It should be noted that our
model marginally improves the performance un-
der single-head setting. One possible reason is that
our model focuses more on local context thus may
ignore global information, which cannot be com-
plemented by the single-head attention.

Figure 2: Instructions of the learned window size
by head-specific parametric model, where colors
distinguish the heads.

Can Multi-Head Separate Locality? To sim-
plistically visualize how heads cooperate in mod-
eling localness, we propose an additional paramet-
ric model which is assigned a learnable but unified
window size for each head, namely head-specific.
As a result, the window size Dm of the m-th head
is calculated as:

Dm = N · sigmoid(zm), (11)

where the scalar zm is a trainable parameter, N =
50 denotes a pre-defined constant number.

Figure 2 visualizes the distribution of the
learned window size of each head, verifying that
multi-head attention is able to capture diverse in-
formation by selecting suitable window sizes for
different heads. For example, in the middle-level

layers, heads are assigned to consider both the
global and local information by regulating the dif-
ferent window sizes. One interesting finding is
that the distributions of window size are not ex-
actly same in different layers, which is explored in
more details in the next section.

5.2 Analysis on Multi-Layer Attention

In this section, we try to answer how does each
layer learn the localness. We first investigated how
the window size varies across layers. Then we
checked the specific behavior of the first word em-
bedding layer, which is inconsistent with the trend
of other layers.

The Higher Layer, The Larger Scope Shi et al.
(2016) and Vaswani et al. (2017) have shown that
different layers have the abilities to distinguish and
capture diverse syntactic context (e.g. the depen-
dents between words). Figure 3 shows the dis-
tribution of local scopes predicted by each layer.
Except the first layer, the higher layers are more
likely to pay attention to larger scopes, indicating
that self-attention models tend to capture short-
term dependencies among neighboring words in
lower layers, while capture long-range dependen-
cies beyond phrase boundaries in higher layers.

The Special First Layer Inconsistent with the
intuition which the lower layers may focus on lo-
cal information, in common, the first layer is as-
signed with large scopes of local context. The
same phenomenon has also occurred for head-
specific model (Figure 2). Since the first layer
represents word embeddings that are deficient in
context, we argue that the self-attention model at
first layer has to encode the representations with
global context. In addition, experimental results
in Table 2 (Row 2) show that despite its large lo-
cal size, modeling localness at the first layer is still
valid.

5.3 Analysis on Phrasal Pattern

As aforementioned, one intuition of our approach
is to capture useful phrase patterns. To evalu-
ate the accuracy of phrase translations, we calcu-
late the improvement of the proposed approaches
over multiple N-grams, as shown in Figure 4.
Although our models underperform the baseline
on unigram translations, they consistently outper-
form the baseline on larger granularities, indicat-
ing that modeling locality can raise the ability of
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Figure 3: Distribution of the local scopes learned by each attentive layer. The upper figures illustrate the
distribution of the predicted pairs of central position (Y-axis) and its correspond window size (X-axis)
in each layer, the samples are randomly selected from the development set. The lower figures show
the distribution of the window size in each layer. Blue color represents the layer-specific parametric
approach, while the query-specific parametric method is indicated in red.

Figure 4: Performance improvement according to
N-gram. Y-axis denotes the gap of BLEU score
between our model and baseline.

self-attention model on capturing the phrasal in-
formation. Concerning the two variations, query-
specific localness modeling surpasses its layer-
specific counterpart on large phrases (i.g. 4-grams
to 8-grams). We attribute this to the more model-
ing flexibility of query-specific strategy to differ-
entiate the scope by conditioning on each query.

6 Related Work

A successful extension of neural language model
is attention mechanism, which can directly capture
long-distance dependencies by attending to previ-
ously generated words. Daniluk et al. (2017) pro-
posed a key-value-predict attention to separate the
key addressing, value reading, and word predict-

ing functions explicitly. Im and Cho (2017) and
Sperber et al. (2018) adopted self-attention net-
works for acoustic modeling and natural language
inference tasks, respectively.

Vaswani et al. (2017) applied the idea of self-
attention to neural machine translation. Shen et al.
(2018a) and Shen et al. (2018b) proposed to im-
prove the self-attention model with directional
masks and multi-dimensional features. Although
the standard self-attention model can give more
bias toward localness,6 several studies show that
explicitly modeling localness for self-attention
model can further improve performance. For
example, Sperber et al. (2018) showed that re-
stricting the self-attention model on the neigh-
boring representations performs better for longer
sequences in acoustic modeling and natural lan-
guage inference tasks. Closely related to this
work, Shaw et al. (2018) introduced relative po-
sition encoding to consider the relative distances
between sequence elements. While they modeled
localness from static position embedding, we im-
prove locality modeling from dynamically revising
attention distribution. Experimental results show

6As pointed out by one reviewer, in the original self-
attention model, there are some considerations about given
more bias toward the localness. For example, base on the
definition of the positional embeddings, the adjacent words
will have more similar positional embeddings compared with
more further words. After summing word embeddings and
corresponding positional embeddings together, the model
would prefer the local words.
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that the two models are complementary to each
other, and combining them can further improve
performance.

Several researches have shown that explicitly
modeling phrases is useful for neural machine
translation (Wang et al., 2017; Huang et al., 2018).
Our results confirm these findings. Concerning
attention models, Luong et al. (2015) proposed
a modification to look at only a subset of input
words at a time. This can be regarded as a “hard”
variation of our fixed-window strategy. In this
study, we propose more flexible strategies for plac-
ing and zooming the local scope, which yield bet-
ter results than the fixed scope.

7 Conclusion

In this work, we enhanced the ability of captur-
ing local context for self-attention networks with
a learnable Gaussian bias. We proposed several
strategies to learn the scope of the local con-
text, and found that a query-specific mechanism
yielded the best result due to its more modeling
flexibility. Experimental results on widely-used
English)German and Chinese)English transla-
tion tasks demonstrate the effectiveness and uni-
versality of the proposed approach. By visualiz-
ing the scopes of the learned Gaussian biases, we
found that the higher the layer, the larger scope the
bias, which is consistent with the findings in pre-
vious work (Shi et al., 2016; Peters et al., 2018).

As our approach is not limited to specific tasks,
it is interesting to validate our model in other tasks,
such as reading comprehension, language infer-
ence, and stance classification (Xu et al., 2018).
Another promising direction is to design more
powerful localness modeling techniques, such as
incorporating linguistic knowledge (e.g. phrases
and syntactic categories). It is also interesting
to combine with other techniques (Shaw et al.,
2018; Shen et al., 2018a; Dou et al., 2018; Li
et al., 2018) to further improve the performance
of Transformer.
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Abstract

We introduce a novel type of text represen-
tation that preserves the 2D layout of a doc-
ument. This is achieved by encoding each
document page as a two-dimensional grid
of characters. Based on this representation,
we present a generic document understand-
ing pipeline for structured documents. This
pipeline makes use of a fully convolutional
encoder-decoder network that predicts a seg-
mentation mask and bounding boxes. We
demonstrate its capabilities on an information
extraction task from invoices and show that it
significantly outperforms approaches based on
sequential text or document images.

1 Introduction

Textual information is often represented through
structured documents which have an inherent 2D
structure. This is even more so the case with the
advent of new types of media and communica-
tions such as presentations, websites, blogs and
formatted notebooks. In such documents, the lay-
out, positioning, and sizing might be crucial to un-
derstand its semantic content and provide a strong
guidance to the human perception.

NLP addresses the task of processing and un-
derstanding natural language texts through sub-
tasks like language modeling, classification, in-
formation extraction, summarization, translation,
and question answering among others. NLP meth-
ods typically operate on serialized text, which is
a 1D sequence of characters. Such methods have
been proven very successful for various tasks on
unformatted text (e.g. books, reviews, news arti-
cles, short text snippets). However, when process-
ing structured and formatted documents in which
the relation between words is impacted not only
by the sequential order, but also by the document
layout, NLP can result in significant shortcomings.

⇤Equal contribution

Computer vision algorithms, on the other hand,
are designed to exploit 2D information in the vi-
sual domain. Images are commonly processed
with convolutional neural networks (LeCun et al.,
1998; Krizhevsky et al., 2012; Ren et al., 2015b;
Pinheiro et al., 2016) (or likes) that preserve and
exploit the 2D correlation between neighboring
pixels. While it is feasible to convert structured
documents into images and then apply computer
vision algorithms, this approach is not optimal
for understanding their semantics as it is driven
mostly by the visual content and not by the textual
content. As a result, a machine learning model
would first need to extract the text from the image
followed by learning the semantics. This purely
visual approach requires a more complex model
and significantly larger training data compared to
text-based approaches.

We propose a novel paradigm for processing
and understanding structured documents. Instead
of serializing a document into a 1D text, the pro-
posed method, named chargrid, preserves the spa-
tial structure of the document by representing it as
a sparse 2D grid of characters. We then formu-
late the document understanding task as instance-
level semantic segmentation on chargrid. More
precisely, the model predicts a segmentation mask
with pixel-level labels and object bounding boxes
to group multiple instances of the same class. We
apply the chargrid paradigm on an information ex-
traction task from invoices and demonstrate that
this method is superior to both, state-of-the-art
NLP algorithms as well as computer vision algo-
rithms.

The rest of the document is organized in three
parts: we first introduce the chargrid paradigm;
we then describe a specific application of infor-
mation extraction from documents; finally, we
present experimental results and conclusion.
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2 Related Work

NLP focuses on understanding natural language
text through tasks like classification (Kim, 2014),
translation (Bahdanau et al., 2014), summarization
(Rush et al., 2015), and named entity recognition
(Lample et al., 2016). Such methods expect unfor-
matted text as input and, therefore, do not assume
any intrinsic 2D structure.

Document Analysis, on the other hand, deals
largely with problems such as recognizing
printed/hand-written characters from a variety of
documents (Graves and Schmidhuber, 2009), pro-
cessing document images for document localiza-
tion (Javed and Shafait, 2018), binarization (Tens-
meyer and Martinez, 2017), and layout segmenta-
tion (Chen et al., 2015). As a result, it does not fo-
cus on understanding the character- and/or word-
level semantics of the document the same way as
NLP.

Within computer vision, problems such as scene
text detection and recognition (Goodfellow et al.,
2013), semantic segmentation (Badrinarayanan
et al., 2017) as well as object detection (Gupta
et al., 2014; Lin et al., 2017) can be considered as
related problems to ours, but applied on a different
domain, i.e., processing natural images instead of
documents as input.

The closest to our work is Yang et al. (2017)
that performs pixel-wise layout segmentation on a
structured document, using sentence embeddings
as additional input to an encoder-decoder network
architecture. For each pixel inside the area of a
sentence, the sentence embedding is appended to
the visual feature embedding at the last layer of
the decoder. The authors show that the layout seg-
mentation accuracy can be significantly improved
when using the textual features. Another related
work is Palm et al. (2017) which extracts key-
value information from structured documents (in-
voices) using a recurrent neural network (RNN).
Their work addresses the problem of document
understanding, however, the RNN operates on se-
rialized 1D text.

Combining approaches from computer vision,
NLP, and document analysis, our work is the first
to systematically address the task of understanding
2D documents the same way as NLP while still
retaining the 2D structure in structured documents.

3 Document Understanding with
Chargrid

A human observer comprehends a document by
understanding the semantic content of characters,
words, paragraphs, and layout components. We
encapsulate all such tasks under the common um-
brella of document understanding. Therefore, we
can formulate this problem as an instance segmen-
tation task of characters on the page. In the fol-
lowing sections, we describe a new approach for
solving that task.

3.1 Chargrid

Chargrid is a novel representation of a document
that preserves its 2D layout. A chargrid can be
constructed from character boxes, i.e., bounding
boxes that each surround a single character some-
where on a given document page. This positional
information can come from an optical character
recognition (OCR) engine, or can be directly ex-
tracted from the layout information in the docu-
ment as provided by, e.g., PDF or HTML. The
coordinate space of a character box is defined by
page height H and width W , and is usually mea-
sured in units of pixels.

The complete text of a document page can
thus be represented as a set of tuples D =
{(ck,bk) | k = 0, ..., n}, where ck denotes the
k-th character in the page and bk the associated
character box of the k-th character, which is for-
malized by the top-left pixel position, width and
height, thus bk = (xk, yk, wk, hk).

We can now construct the chargrid g 2 N
H⇥W

of the original document page, and its character-
pixel gij from the set D with

gij =

(
E(ck) if (i, j) � bk

0
(1)

where � means ’overlaps with’, and where each
point (i, j) corresponds to some pixel in the origi-
nal document page pixel coordinate space defined
by (H, W ). E(ck) is some encoding of the char-
acter in the k-th character box, i.e. the value of
character ck may be mapped to a specific integer
index. For instance, we may map the alphabet
(or any character of interest) to non-zero indices
{a, b, c, ...} ! {1, 2, 3, ...}. Note that we assume
that character boxes cannot overlap, i.e. each char-
acter on a document page occupies a unique region
on the page. In practice, it may happen that the
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Raw document Chargrid

Figure 1: Example for a document page (left) and
corresponding chargrid representation g (right).

corners and edges of a character box may overlap
with other closeby characters. We solve such cor-
ner cases by assigning the character-pixel to the
box that has the closest box center.

In other words, the chargrid representation is
constructed as follows: for each character ck at
location bk, the area covered by that character
is filled with some constant index value E(ck).
All remaining character-pixels corresponding to
empty regions on the original document page are
initialized with 0. Figure 1 visualizes the chargrid
representation of an example input document.

The advantage of the new chargrid representa-
tion is twofold: (i) we directly encode a character
by a single scalar value rather than by a granular
collection of grayscale pixels as is the case for im-
ages, thus making it easy for the subsequent doc-
ument analysis algorithms to understand the doc-
ument, and (ii), because the group of pixels that
belonged to a given character are now all mapped
to the same constant value, we can significantly
downsample the chargrid representation without
loss of any information. For instance, if the small-
est character occupied a 10⇥10 pixel region in the
original document, we can downsample the char-
grid representation by a factor of 10⇥10. This sig-
nificantly reduces the computational time of sub-
sequent processing steps, such as training a ma-
chine learning model on this data representation.

We point out that a character can occupy a re-
gion spanning several character pixels. This is in
contrast to traditional NLP where each character is
represented by exactly one token. In our represen-
tation, therefore, the larger a given character, the
more character-pixels represent that single charac-

ter. We do not find this to be a problem, instead,
it even helps since it implicitly encodes additional
information, for example, the font size, that would
otherwise not be available.

Before the chargrid representation is used as in-
put to, e.g., a neural network (see Sec. 3.2), we
apply 1-hot encoding to the chargrid g. Thus, the
original chargrid representation g 2 N

H⇥W be-
comes a vector representation g̃ 2 R

H⇥W⇥NC ,
where NC denotes the number of characters in
the vocabulary including a padding/background
character (in our case this is mapped to 0) and
an unknown character (all characters that are not
mapped by our encoding E will be mapped to this
character).

We note that similar to using characters for con-
structing the chargrid, one can also use words to
construct a wordgrid in the same way. In that case,
rather than using 1-hot encoding, one may use a
word embedding like word2vec or GloVe. While
the construction of a wordgrid seems straight-
forward, we have not experimented with it in the
present work as our dataset contains too many
unusual words and spans multiple languages (see
Sec. 4).

3.2 Network Architecture

We use the 1-hot encoded chargrid representation
g̃ as input to a fully convolutional neural network
to perform semantic segmentation on the chargrid
and predict a class label for each character-pixel
on the document. As there can be multiple and an
unknown number of instances of the same class,
we further perform instance segmentation. This
means, in addition to predicting a segmentation
mask, we may also predict bounding boxes using
the techniques from object detection. This allows
the model to assign characters from the same seg-
mentation class to distinct instances.

Our model is described in Figure 2. It is com-
prised of two main parts: The encoder network
and the decoder network. The decoder network
is further made up of two branches: The seg-
mentation branch and the bounding box regression
branch. The encoder boils down to a VGG-type
network (Simonyan and Zisserman, 2014) with di-
lated convolutions (Yu and Koltun, 2016), batch
normalization (Ioffe and Szegedy, 2015), and spa-
tial dropout (Tompson et al., 2015). Essentially,
the encoder consists of five blocks where each
block consists of three 3 ⇥ 3 convolutions (which
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Figure 2: Network architecture for document understanding, the chargrid-net. Each convolutional block
in the network is represented as a box. The height of a box is a proxy for feature map resolution while
the width is a proxy for the number of output channels. C corresponds to the number of ’base’ channels,
which in turns corresponds to the number of output channels in the first encoder block. d denotes dilation
rate.

themselves are made of convolution, batch nor-
malization, ReLU activation) followed by spatial
dropout at the end of a block. The first convolution
in a block is a stride-2 convolution to downsample
the input to that block. Whenever we downsam-
ple, we increase the number of output channels C
of each convolution by a factor of two. We have
found stride-2 convolutions to yield slightly bet-
ter results compared to max pooling. In block four
and five of the encoder, we do not apply any down-
sampling, and we leave the number of channels at
512 (the first block has C = 64 channels). We use
dilated convolutions in block three, four, five with
rates d = 2, 4, 8, respectively.

The decoder for semantic segmentation and for
bounding box regression are both made of con-
volutional blocks which essentially reverse the
downsampling of the encoder via stride-2 trans-
posed convolutions. Each block first concatenates
features from the encoder via lateral connections
followed by 1⇥1 convolutions (Ronneberger et al.,
2015; Pinheiro et al., 2016). Subsequently, we up-
sample via a 3⇥3 stride-2 transposed convolution.
This is followed by two 3 ⇥ 3 convolutions. Note
that whenever we upsample, we decrease the num-
ber of channels by a factor of two.

The two decoder branches are identical in archi-
tecture up to the last convolutional block. The de-
coder for semantic segmentation has an additional
convolutional layer without batch normalization,
but with bias and with softmax activation. The

number of output channels of the last convolution
corresponds to the number of classes. Together
with the encoder, the decoder for the bounding box
regression task forms a one-stage detector which
makes use of focal loss (Lin et al., 2017). We
also make use of the anchor box representation and
corresponding bounding box regression targets as
discussed in Ren et al. (2015a). The anchor-box
representation allows us to handle bounding boxes
that vary widely with respect to size and aspect ra-
tios. Moreover, the anchor-box representation al-
lows us to detect boxes of different classes. The
number of output channels are 2Na for the box
mask (foreground versus background) and 4Na for
the four box coordinates, where Na is the num-
ber of anchors per pixel. The weights of all layers
are initialized following He et al. (2015), except
for the last ones, which are initialized with a small
constant value 1e � 3 for stabilization purposes.

In total, we have three equally contributing loss
terms:

Ltotal = Lseg + Lboxmask + Lboxcoord, (2)

where Lseg is the cross entropy loss for segmen-
tation, e.g. (Ronneberger et al., 2015), Lboxmask

is the binary cross entropy loss for box masks,
and Lboxcoord is the Huber loss for box coordi-
nate regression (Ren et al., 2015a). Both cross en-
tropy loss terms are augmented following the fo-
cal loss idea (Lin et al., 2017). We also make use
of aggressive static class weighting in both cross
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entropy loss terms mainly to counter the strong
class imbalance between irrelevant and ”easy”
pixels (the ”background” class) versus relevant
and ”hard” pixels (all other classes; see Sec. 4.2
for further details).

We refer to the network depicted in Figure 2 as
the chargrid-net.

4 Information Extraction from Invoices

As a concrete example for understanding struc-
tured 2D documents, we extract key-value infor-
mation from invoices. We make no assumption
on the format of the invoice, the country of origin
(and consequently taxes, date formats, amount for-
mats, currency etc.) or the language. In addition to
that, real-world invoices often contain incomplete
sentences, nouns, and abbreviations.

We want our model to parse an invoice and to
extract 5 header fields (i.e., Invoice Number, In-
voice Date, Invoice Amount, Vendor Name and
Vendor Address) as well as the list of product
items purchased, referred to as the line-items.
Line-items include details for each item such as
Line-item Description, Line-item Quantity and
Line-item Amount. Together with the background
class, this yields 9 classes and each character on
the invoice is associated to exactly one class. We
note that while header fields may only appear once
on an invoice (are unique), line-items may occur in
multiple instances.

To extract the values for each field, we collect
all characters that are classified as belonging to
the corresponding class. For line-items, we further
group the characters by the predicted item bound-
ing boxes.

4.1 Data

Our invoice dataset consists of 12k scanned sam-
ple invoices from a large variety of different ven-
dors and languages. We assign 10k samples for
training, 1k for validation and 1k for test on which
we report our results (see Sec. 5). We ensure that
vendors that appear in one set do not appear in
any other set. This is more restrictive than nec-
essary but gives a good estimate on how well the
model generalizes to unseen invoice layouts. Fig-
ure 3 shows the distribution over vendors and lan-
guages. From the vendor distribution, it can be
seen that most vendors contribute only one invoice
to the dataset with at most 6 invoices coming from
a single vendor. From the language distribution,

Figure 3: The left image shows a histogram of
number of vendors over the number of contribut-
ing invoices in the dataset. Most vendors appear
only once in the dataset. The right image shows a
distribution over languages, illustrating the diver-
sity of the invoice data.

it can be seen that while English is the predomi-
nant language, there are large representations from
French, Spanish, Norwegian, and German.

For all invoices, we collected manual annota-
tions with bounding boxes around the fields of in-
terest. Considerable efforts were spent to ensure
that the labels are correct. In particular, each in-
voice was analyzed by three annotators plus a re-
viewer. Over 35k invoices were investigated and
finally only clean set of 12k invoices were se-
lected. Furthermore, detailed instructions were
given to the annotators for each field. Figure 4
visualizes the locations of annotated boxes on in-
voices for Invoice Amount and Line-item Quan-
tity. It can be seen that while some regions are
denser, the occurrences are spread widely over the
whole invoice thereby illustrating the diversity in
the invoice format.

4.2 Implementation Details

The invoices were processed with an open-source
engine for OCR, Tesseract (v4), to extract the text
from the documents.

We limit the number of distinct characters in our
encoding E (in Eq. 1) to the most frequent ones,
which in our present case means NC = 54 differ-
ent characters including the background/padding
and unknown character. Thus, the 1-hot encoded
chargrid g̃ has 54 channels. Each page of an in-
voice is processed independently.

Once we created the chargrid representation of a
document page, we downsample to a fixed resolu-
tion using nearest neighbor interpolation to ensure
that all chargrid representations have the same res-
olution for training (and inference). Note that this
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downsampling operation is still performed in the
token space (i.e., before 1-hot encoding). To fur-
ther ensure that no tokens in the chargrid repre-
sentation are lost due to nearest neighbor interpo-
lation, we downsample to twice the target resolu-
tion. This resolution is determined by the smallest
characters in the training set. A second downsam-
pling step, now in the 1-hot encoding to the final
target resolution of 336x256 in our case, is per-
formed using bilinear interpolation and fed into
the network. Note that we could have also first
performed 1-hot encoding on the document and
applied bilinear interpolation directly to the target
resolution. Computationally, however, this two-
stage downsampling is more efficient.

We handle landscape documents by simply
squeezing all input pages into our target resolution
using interpolation (similar to image re-sizing).
We have found that this approach is not harmful
and for simplicity stick to it.

Line-items can occur in an unknown number of
distinct instances. Therefore, we require instance
segmentation of characters on the document. To
accomplish this, the model is trained to predict
bounding boxes that span across the entire row
of one instance of a line-item, while the segmen-
tation mask classifies those characters belonging
to given column classes (such as, e.g., Line-item
Quantity, or Line-item Description) of that line-
item instance.

We implemented our model in TensorFlow 1.4.
We use SGD with momentum � = 0.9 and learn-
ing rate ↵ = 0.05. We used weight decay of
� = 10�4, and spatial dropout with probability
P = 0.1. We perform random cropping of the
chargrid for data augmentation (that is we pad by
16 character pixels in each direction after down-
sampling and then crop with a random offset in
range (16, 16)).

We use aggressive class weighting in the cross-
entropy loss for semantic segmentation and for
the bounding box mask. We have found this
to be more effective than the focal loss (which
can bee seen as a form of dynamic class weight-
ing). We implement class weighting following
(Paszke et al., 2016) with a constant of c = 1.04.
In early stages of our experiments not yet using
class weights, we noted poor performance on the
bounding box regression task as well as the seg-
mentation task.

The distribution of line-items on invoices in

Figure 4: Spatial distribution of Invoice Amount
(left) and Line-item Quantity (right) over the in-
voice. This depicts the variation in the invoice lay-
outs contained in our dataset.

our dataset reveals that around 50% of all in-
voices only contain less than three line-items. We
found that repeating those invoices with more than
three line-items during training more often than
those with only few line-items significantly boosts
bounding box regression accuracy. With a mini
batch size of 7, each model took around 360k it-
erations and 3 days to fully converge on a single
Nvidia Tesla V100.

4.3 Evaluation Measure
For evaluating our model, we would like to mea-
sure how much work would be saved by using
the extraction system, compared to performing the
field extraction manually. To capture this, we use
a measure similar to the word error rate (Prab-
havalkar et al., 2017) used in speech recognition
or translation tasks.

For a given field, we count the number of in-
sertions, deletions, and modifications of the pre-
dicted instances (pooled across the entire test set)
to match the ground truth instances. Evaluations
are made on the string level. We compute this
measure as follows:

1 � #[insertions] + #[deletions] + #[modifications]

N

where N is the total number of instances occurring
in the ground truth of the entire test set. This mea-
sure can be negative, meaning that it would be less
work to perform the extraction manually. In our
present case, the error caused by the OCR engine
does not affect this measure, because the same er-
rors are present in the prediction and in the ground
truth and are not considered a mismatch.
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Figure 5: Sample invoices and their corresponding network predictions: the top row shows the chargrid
input, the bottom row shows the predicted segmentation mask with overlaid bounding box predictions.
Our model is able to handle a large diversity of layouts. The encoding of the characters on the chargrid
has been scrambled to preserve privacy.

5 Experiments and Results

Figure 5 shows some sample predictions. It can
be seen that the model can successfully extract
key-value information on sample invoices despite
significant diversity and complexity in the invoice
layouts.

We show the quantitative results in Table 1.
We compare the proposed model, chargrid-net
(Sec. 3.2), against four other models. The first one
is a sequential model based purely on text. It is
a stack of bi-directional GRUs (Cho et al., 2014)
taking a sequence of characters as input, and pro-
ducing a sequence of labels as output. This model
is our implementation of Palm et al. (2017) and
serves as a baseline comparison against a more tra-
ditional NLP approach which is based on sequen-
tial input. We note that we have also experimented
with a extension of this model that along with the
characters also takes as input the position of each
character on the document, however, with negli-
gible returns. Therefore, we stick to this simpler
model.

The second image-only model is identical to
chargrid-net (Figure 2), except that we directly
take the original image of the document page as
network input rather than the chargrid g̃. This
model serves as a baseline comparison to a purely
image-based approach using directly the raw pixel
information as input. We note that we downsam-
ple the image to the same input resolution as the
chargrid representation, that is 336x256.

The third and fourth models are both a hy-

brid between the chargrid-net, and the image-only
model. In both models, we replicate the encoder:
one encoder for the chargrid input g̃, and one en-
coder for the image of the document page. Infor-
mation from the two encoders is concatenated in
the decoder: whenever a lateral connection from
the encoder of the original chargrid-net is concate-
nated in a decoder block, we now concatenate lat-
eral connections from the two encoders in a de-
coder block.

We distinguish two configurations of the hybrid
model: model chargrid-hybrid-C64 where char-
grid and image encoders both have C = 64 base
channels, and model chargrid-hybrid-C32 where
chargrid and image encoders have C = 32 base
channels while the decoder still retains C = 64
base channels. The latter model is used to assess
the influence on the number of encoder parame-
ters since the hybrid model effectively has more
parameters due to the two encoders.

It can be seen that compared to the purely text-
based approach, the chargrid-net performs equiva-
lently on single-instance single-word fields where
the 2D structure is not as important. Examples
of single-instance, single-word fields are ’Invoice
Number’, ’Invoice Amount’, and ’Invoice Date’.
The extraction of these fields could essentially also
be easily tackled with named entity recognition
approaches based on serialized text (Gillick et al.,
2015; Lample et al., 2016).

The chargrid-net, however, significantly outper-
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Model/Field Invoice
Number

Invoice
Amount

Invoice
Date

Vendor
Name

Vendor
Address

Line-item
Description

Line-item
Quantity

Line-item
Amount

sequential 80.98% 79.13% 83.98% 28.97% 16.94% -0.01% -0.18% 0.22%
image-only 47.79% 68.91% 45.67% 19.68% 13.99% 49.50% 46.79% 63.49%
chargrid-net 80.48% 80.74% 83.78% 36.00% 39.13% 52.80% 65.20% 65.57%
chargrid-hybrid-C32 74.85% 77.93% 80.40% 32.00% 31.48% 46.27% 64.04% 63.25%
chargrid-hybrid-C64 82.49% 80.14% 84.28% 34.27% 36.83% 48.81% 64.59% 64.53%

Table 1: Accuracy measure (c.f. Sec. 4.3) for an 8-class information extraction problem on invoices. The
proposed chargrid models perform consistently well on all extracted fields compared to sequential and
image models.
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example 1 example 2 example 3

Figure 6: In example 1, chargrid-net attributes
unrelated rows of text to the line-item’s descrip-
tion. Moreover, some character-pixels are mis-
classified such that the predicted header field
above the line-item is incorrect. Thus, we ob-
serve errors in both, the segmentation mask and
the bounding box predictions. In example 2, the
model predicts the segmentation mask mostly cor-
rect, but it fails to predict boxes for two of the
four line-items. In example 3, the model fails to
separate adjacent multi-row line-items from each
other correctly. Please note that the ground truth
is debatable in some cases; for example, it may
be hard to decide which information belongs to a
line-item’s description and which does not.

forms the sequential model on multi-instance or
multi-word fields where 2D relationships between
text entities are important. Examples of such fields
are Line-item Description, Line-item Quantity and
Line-item Amount, which are all grouped as sub-
fields to a specific line-item. Each of those fields
may span a varying number of rows per line-item,
see Figure 5. The sequential model fails to cor-
rectly identify those line-item fields which is man-
ifested in a negative accuracy measure (Sec. 4.3).
This implies that it is better to perform manual
extraction over using automatic extraction. This
is understandable since the line-item fields have a
strong 2D structure that the sequential approach is
not designed to capture.

In comparison with the image-only model,
chargrid-net still performs much better. This is es-
pecially true for smaller fields which need to be
read to be accurately localized. On the other hand,
for larger fields like Line-item Description, which
can be localized by only vision, the gap is much
smaller.

The values for the hybrid models are a bit more
interesting. One could expect that combining two
complementary inputs such as the chargrid repre-
sentation and image - one capturing the content
and the other capturing, e.g. table delineations -
would boost the accuracy. It turns out, however,
that at least in the case of our invoice dataset, the
additional image encoder does not bring additional
benefits. Model chargrid-hybrid-C64, where the
chargrid encoder branch has the same number of
base channels C = 64 as the original chargrid-net,
is essentially as accurate as chargrid-net. Model
chargrid-hybrid-C32, where the image and char-
grid encoder combined have the same number of
channels (that is the chargrid encoder branch only
has C = 32 base channels), the accuracy is signif-
icantly reduced.

We conclude that at least in our present extrac-
tion problem, most of the discriminative informa-
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tion comes from the chargrid encoder branch and
thus from the chargrid representation.

Error examples of the chargrid-net model are
depicted in Figure 6. One frequent error-type is
that the model may fail to disentangle line-items,
if they have a peculiar structure. While this is also
challenging for human experts, other erroneous
predictions are observed in samples for which the
ground truth annotations are debatable.

6 Discussion

We introduce a new way of modeling documents
by using a character grid as document representa-
tion. The chargrid allows models to capture 2D re-
lationships between characters, words, and larger
units of text. The idea of the chargrid paradigm is
inspired by the human perception which is heav-
ily guided by 2D shapes and structures for under-
standing this type of documents. Therefore, the
chargrid allows to encode the positioning, size and
alignment for textual components in a meaningful
manner. While the chargrid paradigm could be ap-
plied to various kinds of NLP tasks, we demon-
strate its potential on an information extraction
task from invoices. We train a deep neural net-
work with an encoder-decoder architecture and we
show that the network computes accurate segmen-
tation masks and bounding boxes, which pinpoint
the relevant information on the invoice.

We evaluate the accuracy of the model and com-
pare it to state-of-the-art NLP and computer vi-
sion approaches. While those baseline models
achieve accurate predictions for individual fields,
only the chargrid performs well on all informa-
tion extraction tasks. Some fields such as Invoice
Number are relatively easy to detect for a model
that operates on serialized text, as discriminative
keywords are commonly preceding the words to
be extracted. However, more complex extraction
tasks (e.g. Vendor Address or Line-item Quantity)
cannot be performed accurately as they require to
exploit both, textual components and 2D layout
structures. The traditional image-only computer
vision model yields accurate predictions only for
large visual columns (such as Line-item Amount)
and it fails to locate extractions that require to un-
derstand the text.

However, compared to traditional sequential
neural NLP models, the benefits in accuracy come
at a larger computational cost compared. Even
though the proposed model is fully convolutional

and parallelizes very well on a single (or even mul-
tiple) GPU(s), the added complexity introduced by
using a 2D data representation can significantly in-
crease the total data dimensionality. In our cur-
rent use case, a chargrid-net training requires up
to three days until full convergence, whereas our
sequential model converges after only a few hours.

Comparing chargrid to semantic segmentation
on natural images, one should note that character-
pixels, unlike pixels of a gray-scale image, are cat-
egorical. This requires the character-pixels to be
encoded as 1-hot. This yields a highly sparse data
representation. While such representation is very
common for NLP problems, it is new for segmen-
tation networks that have previously only been ap-
plied to image segmentation.

7 Conclusion

Chargrid is a generic representation for 2D text.
Using this as a base, one could solve any task on a
2D text such as document classification, named-
entity recognition, information extraction, parts-
of-speech tagging etc. Furthermore,chargrid is
highly beneficial for scenarios where text and nat-
ural images are blended. One could imagine per-
forming all the above NLP tasks also on such in-
puts. This work demonstrates the advantages of
chargrid for an information extraction task but we
believe that it is only the first step towards in-
corporating the 2D document structure into doc-
ument understanding tasks. Some follow-up di-
rection could be solving other NLP tasks on struc-
tured documents using chargrid or experimenting
with other computer vision algorithms on char-
grid. Furthermore, it may be interesting to use
word embeddings rather than 1-hot encoded char-
acters, i.e. a wordgrid, as 2D text input representa-
tion.

Acknowledgments

In acknowledgement of the partnership between
Nvidia and SAP this publication has been prepared
using Nvidia DGX-1. We thank Zbigniew Jerzak
and Markus Noga for their support and fruitful dis-
cussions.

References
Vijay Badrinarayanan, Alex Kendall, and Roberto

Cipolla. 2017. Segnet: A deep convolutional
encoder-decoder architecture for image segmenta-

4467



tion. IEEE transactions on pattern analysis and ma-
chine intelligence 39(12):2481–2495.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

K. Chen, M. Seuret, M. Liwicki, J. Hennebert,
and R. Ingold. 2015. Page segmentation
of historical document images with convo-
lutional autoencoders. In 2015 13th Inter-
national Conference on Document Analysis
and Recognition (ICDAR). pages 1011–1015.
https://doi.org/10.1109/ICDAR.2015.7333914.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gülcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statis-
tical machine translation. CoRR abs/1406.1078.
http://arxiv.org/abs/1406.1078.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2015. Multilingual language process-
ing from bytes. arXiv preprint arXiv:1512.00103 .

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz,
Sacha Arnoud, and Vinay D. Shet. 2013. Multi-
digit number recognition from street view imagery
using deep convolutional neural networks. CoRR
abs/1312.6082. http://arxiv.org/abs/1312.6082.

Alex Graves and Jürgen Schmidhuber. 2009. Of-
fline handwriting recognition with multidimen-
sional recurrent neural networks. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, edi-
tors, Advances in Neural Information Processing
Systems 21, Curran Associates, Inc., pages
545–552. http://papers.nips.cc/paper/3449-offline-
handwriting-recognition-with-multidimensional-
recurrent-neural-networks.pdf.

Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and
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Abstract
Common recurrent neural architectures scale
poorly due to the intrinsic difficulty in par-
allelizing their state computations. In this
work, we propose the Simple Recurrent Unit
(SRU), a light recurrent unit that balances
model capacity and scalability. SRU is de-
signed to provide expressive recurrence, en-
able highly parallelized implementation, and
comes with careful initialization to facili-
tate training of deep models. We demon-
strate the effectiveness of SRU on multiple
NLP tasks. SRU achieves 5–9x speed-up
over cuDNN-optimized LSTM on classifica-
tion and question answering datasets, and de-
livers stronger results than LSTM and convo-
lutional models. We also obtain an average of
0.7 BLEU improvement over the Transformer
model (Vaswani et al., 2017) on translation by
incorporating SRU into the architecture.1

1 Introduction
Recurrent neural networks (RNN) are at the core
of state-of-the-art approaches for a large num-
ber of natural language tasks, including machine
translation (Cho et al., 2014; Bahdanau et al.,
2015; Jean et al., 2015; Luong et al., 2015), lan-
guage modeling (Zaremba et al., 2014; Gal and
Ghahramani, 2016; Zoph and Le, 2016), opin-
ion mining (Irsoy and Cardie, 2014), and situated
language understanding (Mei et al., 2016; Misra
et al., 2017; Suhr et al., 2018; Suhr and Artzi,
2018). Key to many of these advancements are
architectures of increased capacity and computa-
tion. For instance, the top-performing models for
semantic role labeling and translation use eight re-
current layers, requiring days to train (He et al.,
2017; Wu et al., 2016b). The scalability of these
models has become an important problem that im-
pedes NLP research.

1Our code is available at https://github.com/
taolei87/sru.

The difficulty of scaling recurrent networks
arises from the time dependence of state com-
putation. In common architectures, such as
Long Short-term Memory (LSTM; Hochreiter
and Schmidhuber, 1997) and Gated Recurrent
Units (GRU; Cho et al., 2014), the computation
of each step is suspended until the complete ex-
ecution of the previous step. This sequential de-
pendency makes recurrent networks significantly
slower than other operations, and limits their ap-
plicability. For example, recent translation mod-
els consist of non-recurrent components only, such
as attention and convolution, to scale model train-
ing (Gehring et al., 2017; Vaswani et al., 2017).

In this work, we introduce the Simple Recurrent
Unit (SRU), a unit with light recurrence that offers
both high parallelization and sequence modeling
capacity. The design of SRU is inspired by pre-
vious efforts, such as Quasi-RNN (QRNN; Brad-
bury et al., 2017) and Kernel NN (KNN; Lei et al.,
2017), but enjoys additional benefits:

• SRU exhibits the same level of parallelism as
convolution and feed-forward nets. This is
achieved by balancing sequential dependence
and independence: while the state compu-
tation of SRU is time-dependent, each state
dimension is independent. This simplifica-
tion enables CUDA-level optimizations that
parallelize the computation across hidden di-
mensions and time steps, effectively using the
full capacity of modern GPUs. Figure 1 com-
pares our architecture’s runtimes to common
architectures.

• SRU replaces the use of convolutions (i.e., n-
gram filters), as in QRNN and KNN, with
more recurrent connections. This retains
modeling capacity, while using less compu-
tation (and hyper-parameters).
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Figure 1: Average processing time in milliseconds of a batch of 32 samples using cuDNN LSTM, word-
level convolution conv2d (with filter width k = 2 and k = 3), and the proposed SRU. We vary the
number of tokens per sequence (l) and feature dimension (d).

• SRU improves the training of deep recur-
rent models by employing highway connec-
tions (Srivastava et al., 2015) and a parame-
ter initialization scheme tailored for gradient
propagation in deep architectures.

We evaluate SRU on a broad set of problems,
including text classification, question answering,
translation and character-level language model-
ing. Our experiments demonstrate that light re-
currence is sufficient for various natural language
tasks, offering a good trade-off between scala-
bility and representational power. On classifica-
tion and question answering datasets, SRU out-
performs common recurrent and non-recurrent ar-
chitectures, while achieving 5–9x speed-up com-
pared to cuDNN LSTM. Stacking additional lay-
ers further improves performance, while incurring
relatively small costs owing to the cheap compu-
tation of a single layer. We also obtain an average
improvement of 0.7 BLEU score on the English
to German translation task by incorporating SRU
into Transformer (Vaswani et al., 2017).

2 Related Work

Improving on common architectures for sequence
processing has recently received significant atten-
tion (Greff et al., 2017; Balduzzi and Ghifary,
2016; Miao et al., 2016; Zoph and Le, 2016; Lee
et al., 2017). One area of research involves incor-
porating word-level convolutions (i.e. n-gram fil-
ters) into recurrent computation (Lei et al., 2015;
Bradbury et al., 2017; Lei et al., 2017). For ex-
ample, Quasi-RNN (Bradbury et al., 2017) pro-
poses to alternate convolutions and a minimal-
ist recurrent pooling function and achieves sig-
nificant speed-up over LSTM. While Bradbury
et al. (2017) focus on the speed advantages of
the network, Lei et al. (2017) study the theoret-

ical characteristics of such computation and pos-
sible extensions. Their results suggest that sim-
plified recurrence retains strong modeling capac-
ity through layer stacking. This finding motivates
the design of SRU for both high parallelization
and representational power. SRU also relates to
IRNN (Le et al., 2015), which uses an identity di-
agonal matrix to initialize hidden-to-hidden con-
nections. SRU uses point-wise multiplication for
hidden connections, which is equivalent to using
a diagonal weight matrix. This can be seen as a
constrained version of diagonal initialization.

Various strategies have been proposed to scale
network training (Goyal et al., 2017) and to
speed up recurrent networks (Diamos et al., 2016;
Shazeer et al., 2017; Kuchaiev and Ginsburg,
2017). For instance, Diamos et al. (2016) utilize
hardware infrastructures by stashing RNN param-
eters on cache (or fast memory). Shazeer et al.
(2017) and Kuchaiev and Ginsburg (2017) im-
prove the computation via conditional computing
and matrix factorization respectively. Our imple-
mentation for SRU is inspired by the cuDNN-
optimized LSTM (Appleyard et al., 2016), but en-
ables more parallelism – while cuDNN LSTM re-
quires six optimization steps, SRU achieves more
significant speed-up via two optimizations.

The design of recurrent networks, such as SRU
and related architectures, raises questions about
representational power and interpretability (Chen
et al., 2018; Peng et al., 2018). Balduzzi and Ghi-
fary (2016) applies type-preserving transforma-
tions to discuss the capacity of various simplified
RNN architectures. Recent work (Anselmi et al.,
2015; Daniely et al., 2016; Zhang et al., 2016; Lei
et al., 2017) relates the capacity of neural networks
to deep kernels. We empirically demonstrate SRU
can achieve compelling results by stacking multi-
ple layers.
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3 Simple Recurrent Unit

We present and explain the design of Simple Re-
current Unit (SRU) in this section. A single layer
of SRU involves the following computation:

ft = � (Wfxt + vf � ct�1 + bf ) (1)
ct = ft � ct�1 + (1 � ft) � (Wxt) (2)

rt = � (Wrxt + vr � ct�1 + br) (3)
ht = rt � ct + (1 � rt) � xt (4)

where W, Wf and Wr are parameter matrices
and vf , vr, bf and bv are parameter vectors to
be learnt during training. The complete architec-
ture decomposes to two sub-components: a light
recurrence (Equation 1 and 2) and a highway net-
work (Equation 3 and 4).

The light recurrence component successively
reads the input vectors xt and computes the se-
quence of states ct capturing sequential informa-
tion. The computation resembles other recurrent
networks such as LSTM, GRU and RAN (Lee
et al., 2017). Specifically, a forget gate ft controls
the information flow (Equation 1) and the state
vector ct is determined by adaptively averaging
the previous state ct�1 and the current observation
Wxt according to ft (Equation 2).

One key design decision that differs from previ-
ous gated recurrent architectures is the way ct�1

is used in the sigmoid gate. Typically, ct�1 is
multiplied with a parameter matrix to compute ft,
e.g., ft = �(Wfxt + Vfct�1 + bf ). However,
the inclusion of Vfct�1 makes it difficult to par-
allelize the state computation: each dimension of
ct and ft depends on all entries of ct�1, and the
computation has to wait until ct�1 is fully com-
puted. To facilitate parallelization, our light recur-
rence component uses a point-wise multiplication
vf � ct�1 instead. With this simplification, each
dimension of the state vectors becomes indepen-
dent and hence parallelizable.

The highway network component (Srivastava
et al., 2015) facilitates gradient-based training of
deep networks. It uses the reset gate rt (Equation
3) to adaptively combine the input xt and the state
ct produced from the light recurrence (Equation
4), where (1 � rt) � xt is a skip connection that
allows the gradient to directly propagate to the pre-
vious layer. Such connections have been shown to
improve scalability (Wu et al., 2016a; Kim et al.,
2016; He et al., 2016; Zilly et al., 2017).

The combination of the two components makes
the overall architecture simple yet expressive, and
easy to scale due to enhanced parallelization and
gradient propagation.

3.1 Parallelized Implementation
Despite the parallelization friendly design of SRU,
a naive implementation which computes equations
(1)–(4) for each step t sequentially would not
achieve SRU’s full potential. We employ two op-
timizations to enhance parallelism. The optimiza-
tions are performed in the context of GPU / CUDA
programming, but the general idea can be applied
to other parallel programming models.

We re-organize the computation of equations
(1)–(4) into two major steps. First, given the input
sequence {x1 · · ·xL}, we batch the matrix multi-
plications across all time steps. This significantly
improves the computation intensity (e.g. GPU uti-
lization). The batched multiplication is:

U> =

0

@
W
Wf

Wr

1

A [x1,x2, · · · ,xL] ,

where L is the sequence length, U 2 R
L⇥3d is

the computed matrix and d is the hidden state size.
When the input is a mini-batch of B sequences, U
would be a tensor of size (L, B, 3d).

The second step computes the remaining point-
wise operations. Specifically, we compile all
point-wise operations into a single fused CUDA
kernel and parallelize the computation across each
dimension of the hidden state. Algorithm 1 shows
the pseudo code of the forward function. The com-
plexity of this step is O(L · B · d) per layer, where
L is the sequence length and B is the batch size. In
contrast, the complexity of LSTM is O(L · B · d2)
because of the hidden-to-hidden multiplications
(e.g. Vht�1), and each dimension can not be in-
dependently parallelized. The fused kernel also
reduces overhead. Without it, operations such as
sigmoid activation would each invoke a separate
function call, adding kernel launching latency and
more data moving costs.

The implementation of a bidirectional SRU is
similar: the matrix multiplications of both direc-
tions are batched, and the fused kernel handles and
parallelizes both directions at the same time.

3.2 Initialization
Proper parameter initialization can reduce gradient
propagation difficulties and hence have a positive
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Algorithm 1 Mini-batch version of the forward pass defined in Equations (1)–(4).

Indices: Sequence length L, mini-batch size B, hidden state dimension d.
Input: Input sequences batch x[l, i, j]; grouped matrix multiplication U[l, i, j0];

initial state c0[i, j]; parameters vf [j], vr[j], bf [j] and br[j].
Output: Output h[·, ·, ·] and internal c[·, ·, ·] states.

Initialize h[·, ·, ·] and c[·, ·, ·] as two L ⇥ B ⇥ d tensors.
for i = 1, · · · , B; j = 1, · · · , d do // Parallelize each example i and dimension j

c = c0[i, j]
for l = 1, · · · , L do

f = � (U[l, i, j + d] + vf [j] ⇥ c + bf [j] )
c = f ⇥ c + (1 � f) ⇥ U[l, i, j]
r = � (U[l, i, j + d ⇥ 2] + vr[j] ⇥ c + br[j] )
h = r ⇥ c + (1 � r) ⇥ x[l, i, j]
c[l, i, j] = c
h[l, i, j] = h

return h[·, ·, ·] and c[·, ·, ·]

impact on the final performance. We now describe
an initialization strategy tailored for SRU.

We start by adopting common initializations de-
rived for feed-forward networks (Glorot and Ben-
gio, 2010; He et al., 2015). The weights of param-
eter matrices are drawn with zero mean and 1/d
variance, for instance, via the uniform distribution
[�

p
3/d, +

p
3/d]. This ensures the output vari-

ance remains approximately the same as the input
variance after the matrix multiplication.

However, the light recurrence and highway
computation would still reduce the variance of
hidden representations by a factor of 1/3 to 1/2:

1

3
 Var[ht]

Var[xt]
 1

2
,

and the factor converges to 1/2 in deeper layers
(see Appendix A). This implies the output ht and
the gradient would vanish in deep models. To off-
set the problem, we introduce a scaling correction
constant ↵ in the highway connection

ht = rt � ct + (1 � rt) � xt · ↵ ,

where ↵ is set to
p

3 such that Var[ht] ⇡ Var[xt]
at initialization. When the highway network is ini-
tialized with a non-zero bias br = b, the scaling
constant ↵ can be accordingly set as:

↵ =
p

1 + exp(b) ⇥ 2 .

Figure 2 compares the training progress with and
without the scaling correction. See Appendix A
for the derivation and more discussion.
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Figure 2: Training curves of SRU on classification.
The x-axis is the number of training steps and the
y-axis is the training loss. Scaling correction im-
proves the training progress, especially for deeper
models with many stacked layers.

4 Experiments

We evaluate SRU on several natural language pro-
cessing tasks and perform additional analyses of
the model. The set of tasks includes text classifica-
tion, question answering, machine translation, and
character-level language modeling. Training time
on these benchmarks ranges from minutes (classi-
fication) to days (translation), providing a variety
of computation challenges.

The main question we study is the performance-
speed trade-off SRU provides in comparison to
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Model Size CR SUBJ MR TREC MPQA SST Time

Best reported results:
Wang and Manning (2013) 82.1 93.6 79.1 - 86.3 - -
Kalchbrenner et al. (2014) - - - 93.0 - 86.8 -
Kim (2014) 85.0 93.4 81.5 93.6 89.6 88.1 -
Zhang and Wallace (2017) 84.7 93.7 81.7 91.6 89.6 85.5 -
Zhao et al. (2015) 86.3 95.5 83.1 92.4 93.3 - -

Our setup (default Adam, fixed word embeddings):
CNN 360k 83.1±1.6 92.7±0.9 78.9±1.3 93.2±0.8 89.2±0.8 85.1±0.6 417
LSTM 352k 82.7±1.9 92.6±0.8 79.8±1.3 93.4±0.9 89.4±0.7 88.1±0.8 2409
QRNN (k=1) 165k 83.5±1.9 93.4±0.6 82.0±1.0 92.5±0.5 90.2±0.7 88.2±0.4 345
QRNN (k=1) + highway 204k 84.0±1.9 93.4±0.8 82.1±1.2 93.2±0.6 89.6±1.2 88.9±0.2 371

SRU (2 layers) 204k 84.9±1.6 93.5±0.6 82.3±1.2 94.0±0.5 90.1±0.7 89.2±0.3 320
SRU (4 layers) 303k 85.9±1.5 93.8±0.6 82.9±1.0 94.8±0.5 90.1±0.6 89.6±0.5 510
SRU (8 layers) 502k 86.4±1.7 93.7±0.6 83.1±1.0 94.7±0.5 90.2±0.8 88.9±0.6 879

Table 1: Test accuracies on classification benchmarks (Section 4.1). The first block presents best reported
results of various methods. The second block compares SRU and other baselines given the same setup.
For the SST dataset, we report average results of 5 runs. For other datasets, we perform 3 independent
trials of 10-fold cross validation (3⇥10 runs). The last column compares the wall clock time (in seconds)
to finish 100 epochs on the SST dataset.

other architectures. We stack multiple layers of
SRU to directly substitute other recurrent, convo-
lutional or feed-forward modules. We minimize
hyper-parameter tuning and architecture engineer-
ing for a fair comparison. Such efforts have a non-
trivial impact on the results, which are beyond the
scope of our experiments. Unless noted otherwise,
the hyperparameters are set identical to prior work.

4.1 Text Classification
Dataset We use six sentence classification
benchmarks: movie review sentiment (MR; Pang
and Lee, 2005), sentence subjectivity (SUBJ;
Pang and Lee, 2004), customer reviews polar-
ity (CR; Hu and Liu, 2004), question type (TREC;
Li and Roth, 2002), opinion polarity (MPQA;
Wiebe et al., 2005), and the Stanford sentiment
treebank (SST; Socher et al., 2013).2

Following Kim (2014), we use word2vec em-
beddings trained on 100 billion Google News to-
kens. For simplicity, all word vectors are normal-
ized to unit vectors and are fixed during training.

Setup We stack multiple SRU layers and use
the last output state to predict the class label for
a given sentence. We train for 100 epochs and
use the validation (i.e., development) set to se-
lect the best training epoch. We perform 10-fold

2We use the binary version of SST dataset.

cross validation for datasets that do not have a
standard train-evaluation split. The result on SST
is averaged over five independent trials. We use
Adam (Kingma and Ba, 2014) with the default
learning rate 0.001, a weight decay 0 and a hid-
den dimension of 128.

We compare SRU with a wide range of meth-
ods on these datasets, including various convo-
lutional models (Kalchbrenner et al., 2014; Kim,
2014; Zhang and Wallace, 2017) and a hierarchical
sentence model (Zhao et al., 2015) reported as the
state of the art on these datasets (Conneau et al.,
2017). Their setups are not exactly the same as
ours, and may involve more tuning on word em-
beddings and other regularizations. We use the
setup of Kim (2014) but do not fine-tune word
embeddings and the learning method for simplic-
ity. In addition, we directly compare against
three baselines trained using our code base: a re-
implementation of the CNN model of Kim (2014),
a two-layer LSTM model and Quasi-RNN (Brad-
bury et al., 2017). We use the official implemen-
tation of Quasi-RNN and also implement a ver-
sion with highway connection for a fair compar-
ison. These baselines are trained using the same
hyper-parameter configuration as SRU.

Results Table 1 compares the test results on the
six benchmarks. We select the best number re-
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Figure 3: Mean validation accuracies (y-axis) and standard deviations of the CNN, 2-layer LSTM and
2-layer SRU models. We plot the curves of the first 100 epochs. X-axis is the training time used (in
seconds). Timings are performed on NVIDIA GeForce GTX 1070 GPU, Intel Core i7-7700K Processor
and cuDNN 7003.

ported in previous methods when multiple model
variants were explored in their experiments. De-
spite our simple setup, SRU outperforms most pre-
vious methods and achieves comparable results
compared to the state-of-the-art but more sophisti-
cated model of Zhao et al. (2015). Figure 3 shows
validation performance relative to training time for
SRU, cuDNN LSTM and the CNN model. Our
SRU implementation runs 5–9 times faster than
cuDNN LSTM, and 6–40% faster than the CNN
model of Kim (2014). On the movie review (MR)
dataset for instance, SRU completes 100 training
epochs within 40 seconds, while LSTM takes over
320 seconds.

4.2 Question Answering

Dataset We use the Stanford Question Answer-
ing Dataset (SQuAD; Rajpurkar et al., 2016).
SQuAD is a large machine comprehension dataset
that includes over 100K question-answer pairs ex-
tracted from Wikipedia articles. We use the stan-
dard train and development sets.

Setup We use the Document Reader model of
Chen et al. (2017) as our base architecture for
this task. The model is a combination of word-
level bidirectional RNNs and attentions, providing
a good testbed to compare our bidirectional SRU

implementation with other RNN components.3

We use the open source implementation of Doc-
ument Reader in our experiments.4 We train mod-
els for up to 100 epochs, with a batch size of
32 and a hidden dimension of 128. Following
the author suggestions, we use the Adamax op-
timizer (Kingma and Ba, 2014) and variational
dropout (Gal and Ghahramani, 2016) during train-
ing. We compare with two alternative recurrent
components: the bidirectional LSTM adopted in
the original implementation of Chen et al. (2017)
and Quasi-RNN with highway connections for im-
proved performance.

Results Table 2 summarizes the results on
SQuAD. SRU achieves 71.4% exact match and
80.2% F1 score, outperforming the bidirectional
LSTM model by 1.9% (EM) and 1.4% (F1) re-
spectively. SRU also exhibits over 5x speed-up
over LSTM and 53–63% reduction in total train-
ing time. In comparison with QRNN, SRU ob-
tains 0.8% improvement on exact match and 0.6%
on F1 score, and runs 60% faster. This speed im-
provement highlights the impact of the fused ker-

3The current state-of-the-art models (Seo et al., 2016;
Wang et al., 2017) make use of additional components such
as character-level embeddings, which are not directly com-
parable to the setup of Chen et al. (2017). However, these
models can potentially benefit from SRU since RNNs are in-
corporated in the model architecture.

4https://github.com/hitvoice/DrQA
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Model # layers Size Dev Dev Time per epoch
EM F1 RNN Total

LSTM 3 4.1m 69.5 78.8 316s 431s(Chen et al., 2017)

QRNN (k=1) + highway 4 2.4m 70.1 ± 0.1 79.4 ± 0.1 113s 214s
6 3.2m 70.6 ± 0.1 79.6 ± 0.2 161s 262s

SRU 3 2.0m 70.2 ± 0.3 79.3 ± 0.1 58s 159s
SRU 4 2.4m 70.7 ± 0.1 79.7 ± 0.1 72s 173s
SRU 6 3.2m 71.4 ± 0.1 80.2 ± 0.1 100s 201s

Table 2: Exact match (EM) and F1 scores of various models on SQuAD (Section 4.2). We also report
the total processing time per epoch and the time spent in RNN computations. SRU outperforms other
models, and is more than five times faster than cuDNN LSTM.

nel (Algorithm 1). While the QRNN baseline in-
volves a similar amount of computation, assem-
bling all element-wise operations of both direc-
tions in SRU achieves better GPU utilization.

4.3 Machine Translation
Dataset We train translation models on the
WMT English!German dataset, a standard
benchmark for translation systems (Peitz et al.,
2014; Li et al., 2014; Jean et al., 2015). The
dataset consists of 4.5 million sentence pairs. We
obtain the pre-tokenized dataset from the Open-
NMT project (Klein et al., 2017). The sentences
were tokenized using the word-piece model (Wu
et al., 2016b), which generates a shared vocabu-
lary of about 32,000 tokens. Newstest-2014 and
newstest-2017 are provided and used as the vali-
dation and test sets.5

Setup We use the state-of-the-art Transformer
model of Vaswani et al. (2017) as our base archi-
tecture. In the base model, a single Transformer
consists of a multi-head attention layer and a bot-
tleneck feed-forward layer. We substitute the feed-
forward network using our SRU implementation:

base: W · ReLU_layer(x) + b

ours: W · SRU_layer(x) + b .

The intuition is that SRU can better capture se-
quential information as a recurrent network, and
potentially achieve better performance while re-
quiring fewer layers.

We keep the model configuration the same as
Vaswani et al. (2017): the model dimension is

5https://github.com/OpenNMT/
OpenNMT-tf/tree/master/scripts/wmt

dmodel = 512, the feed-forward and SRU layer has
inner dimensionality dff = dsru = 2048, and posi-
tional encoding (Gehring et al., 2017) is applied on
the input word embeddings. The base model with-
out SRU has 6 layers, while we set the number of
layers to 4 and 5 when SRU is added. Following
the original setup, we use a dropout probability 0.1
for all components, except the SRU in the 5-layer
model, for which we use a dropout of 0.2 as we
observe stronger over-fitting in training.

We use a single NVIDIA Tesla V100 GPU for
each model. The published results were obtained
using 8 GPUs in parallel, which provide a large ef-
fective batch size during training. To approximate
the setup, we update the model parameters ev-
ery 5⇥5120 tokens and use 16,000 warm-up steps
following OpenNMT suggestions. We train each
model for 40 epochs (250,000 steps), and perform
3 independent trials for each model configuration.
A single run takes about 3.5 days with a Tesla
V100 GPU.

Results Table 3 shows the translation results.
When SRU is incorporated into the architecture,
both the 4-layer and 5-layer model outperform the
Transformer base model. For instance, our 5-
layer model obtains an average improvement of
0.7 test BLEU score and an improvement of 0.5
BLEU score by comparing the best results of each
model achieved across three runs. SRU also ex-
hibits more stable performance, with smaller vari-
ance over 3 runs. Figure 4 further compares the
validation accuracy of different models. These re-
sults confirm that SRU is better at sequence mod-
eling compared to the original feed-forward net-
work (FFN), requiring fewer layers to achieve sim-
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Model # layers Size BLEU score Speed Hours
Valid Test (toks/sec) per epoch

Transformer (base) 6 76m 26.6±0.2 (26.9) 27.6±0.2 (27.9) 20k 2.0
Transformer (+SRU) 4 79m 26.7±0.1 (26.8) 27.8±0.1 (28.3) 22k 1.8
Transformer (+SRU) 5 90m 27.1±0.0 (27.2) 28.3±0.1 (28.4) 19k 2.1

Table 3: English!German translation results (Section 4.3). We perform 3 independent runs for each
configuration. We select the best epoch based on the valid BLEU score for each run, and report the
average results and the standard deviation over 3 runs. In addition, we experiment with averaging model
checkpoints and use the averaged version for evaluation, following (Vaswani et al., 2017). We show the
best BLEU results achieved in brackets.
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Figure 4: Mean validation accuracy (y-axis) of dif-
ferent translation models after each training epoch
(x-axis).

ilar accuracy. Finally, adding SRU does not affect
the parallelization or speed of Transformer – the
4-layer model exhibits 10% speed improvement,
while the 5-layer model is only 5% slower com-
pared to the base model. We present more results
and discussion in Appendix B.3.

4.4 Character-level Language Modeling

Dataset We use Enwik8, a large dataset for
character-level language modeling. Following
standard practice, we use the first 90M characters
for training and the remaining 10M split evenly for
validation and test.

Setup Similar to previous work, we use a batch
size of 128 and an unroll size of 100 for trun-
cated backpropagation during training. We also
experiment with an unroll size of 256 and a batch
size of 64 such that each training instance has
longer context. We use a non-zero highway bias
br = �3 that is shown useful for training lan-
guage model (Zilly et al., 2017). Previous meth-
ods employ different optimizers and learning rate
schedulers for training. For simplicity and consis-
tency, we use the Adam optimizer and the same

learning rate scheduling (i.e., Noam scheduling)
as the translation experiments. We train a maxi-
mum of 100 epochs (about 700,000 steps).

We compare various recurrent models and use
a parameter budget similar to previous methods.
In addition, we experiment with the factorization
trick (Kuchaiev and Ginsburg, 2017) to reduce the
total number of parameters without decreasing the
performance. See details in Appendix B.

Results Table 4 presents the results of SRU
and other recurrent models. The 8-layer SRU
model achieves validation and test bits per char-
acter (BPC) of 1.21, outperforming previous best
reported results of LSTM, QRNN and recurrent
highway networks (RHN). Increasing the layer of
SRU to 12 and using a longer context of 256 char-
acters in training further improves the BPC to 1.19

4.5 Ablation Analysis

We perform ablation analyses on SRU by succes-
sively disabling different components:

(1) Remove the point-wise multiplication term
v � ct�1 in the forget and reset gates. The
resulting variant involves less recurrence and
has less representational capacity.

(2) Disable the scaling correction by setting the
constant ↵ = 1.

(3) Remove the skip connections.

We train model variants on the classification and
question answering datasets. Table 5 and Figure 5
confirm the impact of our design decisions – re-
moving these components result in worse classifi-
cation accuracies and exact match scores.
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Model Size # layers Unroll size Valid Test Time

MI-LSTM (Wu et al., 2016c) 17m 1 100 - 1.44 -
HM-LSTM (Chung et al., 2016) 35m 3 100 - 1.32 -
LSTM (Melis et al., 2017) 46m 4 50 1.28 1.30 -
RHN (Zilly et al., 2017) 46m 10 50 - 1.27 -
FS-LSTM (Mujika et al., 2017) 47m 4 100 - 1.25 -
QRNN (Merity et al., 2018) 26m 4 200 - 1.33 -
LSTM (Merity et al., 2018) 47m 3 200 - 1.23 -

SRU 37m 6 100 1.29 1.30 28min
SRU 37m 10 100 1.26 1.27 29min
SRU (with projection) 37m 6 100 1.25 1.26 29min
SRU (with projection) 47m 8 100 1.21 1.21 39min
SRU (with projection) 49m 12 256 1.19 1.19 41min

Table 4: Validation and test BPCs of different recurrent models on Enwik8 dataset. The last column
presents the training time per epoch. For SRU with projection, we set the projection dimension to 512.

Model 4 layers 6 layers

SRU (full) 70.7 71.4
� remove v � ct�1 70.6 71.1
� remove ↵-scaling 70.3 71.0
� remove highway 69.4 69.1

Table 5: Ablation analysis on SQuAD. Compo-
nents are successively removed and the EM scores
are averaged over 4 runs.

Table 1

CR CR SUBJ SUBJ MR MR Trec Trec MPQA MPQA

Full (v2) 85.284 84.874 95.389 93.533 83.257 82.301 92.823 94.033 90.14659 90.05592667

- scaling , - c[t-1] 86.78 84.106 94.763 93.473 82.240 82.061 92.284 93.807 91.501 89.732

- highway 85.863 84.115 94.756 93.497 82.771 82.314 91.165 93.093 91.354 90.087

- c[t-1] 0.8490.8360.9530.9350.8310.8180.9220.939
84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

CR CR SUBJ SUBJ MR MR Trec Trec

Full (v2) 85.3 84.9 95.4 93.5 83.3 82.3 92.8 94.0

- c[t-1] 84.9 83.6 95.3 93.5 83.1 81.8 92.2 93.9

- scaling 86.8 84.1 94.8 93.5 82.2 82.1 92.3 93.8

- highway 85.9 84.1 94.8 93.5 82.8 82.3 91.2 93.1

CR SUBJ MR Trec

Full (v2) 85.3 95.4 83.3 92.8

- c[t-1] 84.9 95.3 83.1 92.2

- scaling 86.8 94.8 82.2 92.3

- highway 85.9 94.8 82.8 91.2
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Figure 5: Ablation analysis on the classification
datasets. Average validation results are presented.
We compare the full SRU implementation (left
blue), the variant without v � ct�1 multiplication
(middle green) and the variant without highway
connection (right yellow).

5 Discussion

This work presents Simple Recurrent Unit (SRU),
a scalable recurrent architecture that operates as
fast as feed-forward and convolutional units. We
confirm the effectiveness of SRU on multiple nat-
ural language tasks ranging from classification to

translation. We open source our implementation to
facilitate future NLP and deep learning research.

Trading capacity with layers SRU achieves
high parallelization by simplifying the hidden-to-
hidden dependency. This simplification is likely to
reduce the representational power of a single layer
and hence should be balanced to avoid perfor-
mance loss. However, unlike previous work that
suggests additional computation (e.g., n-gram fil-
ters) within the layer (Balduzzi and Ghifary, 2016;
Bradbury et al., 2017), we argue that increasing
the depth of the model suffices to retain modeling
capacity. Our empirical results on various tasks
confirm this hypothesis.
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Abstract
Pseudo relevance feedback (PRF) is com-
monly used to boost the performance of tra-
ditional information retrieval (IR) models by
using top-ranked documents to identify and
weight new query terms, thereby reducing
the effect of query-document vocabulary mis-
matches. While neural retrieval models have
recently demonstrated strong results for ad-
hoc retrieval, combining them with PRF is not
straightforward due to incompatibilities be-
tween existing PRF approaches and neural ar-
chitectures. To bridge this gap, we propose
an end-to-end neural PRF framework that can
be used with existing neural IR models by
embedding different neural models as build-
ing blocks. Extensive experiments on two
standard test collections confirm the effective-
ness of the proposed NPRF framework in im-
proving the performance of two state-of-the-
art neural IR models.

1 Introduction

Recent progress in neural information retrieval
models (NIRMs) has highlighted promising per-
formance on the ad-hoc search task. State-of-the-
art NIRMs, such as DRMM (Guo et al., 2016),
HiNT (Fan et al., 2018), (Conv)-KNRM (Xiong
et al., 2017; Dai et al., 2018), and (Co)-
PACRR (Hui et al., 2017, 2018), have successfully
implemented insights from traditional IR models
using neural building blocks. Meanwhile, existing
IR research has already demonstrated the effec-
tiveness of incorporating relevance signals from
top-ranked documents through pseudo relevance
feedback (PRF) models (Buckley and Robertson,
2008; Diaz et al., 2016). PRF models expand the
query with terms selected from top-ranked docu-
ments, thereby boosting ranking performance by
reducing the problem of vocabulary mismatch be-
tween the original query and documents (Roc-

chio, 1971). Existing neural IR models do not
have a mechanism for treating expansion terms
differently from the original query terms, however,
making it non-trivial to combine them with exist-
ing PRF approaches. In addition, neural IR models
differ in their architectures, making the develop-
ment of a widely-applicable PRF approach a chal-
lenging task.

To bridge this gap, we propose a generic neu-
ral pseudo relevance feedback framework, coined
NPRF, that enables the use of PRF with existing
neural IR models. Given a query and a target doc-
ument, the top-ranked documents from the initial
ranking are consumed by NPRF, which expands
the query by interpreting it from different perspec-
tives. Given a target document to evaluate, NPRF
produces a final relevance score by considering the
target document’s relevance to these top-ranked
documents and to the original query.

The proposed NPRF framework can directly in-
corporate different established neural IR models,
which serve as the concrete scorers in evaluat-
ing the relevance of a document relative to the
top-ranked documents and to the query, without
changing their architectures. We instantiate the
NPRF framework using two state-of-the-art neu-
ral IR models, and we evaluate their performance
on two widely-used TREC benchmark datasets
for ad-hoc retrieval. Our results confirm that the
NPRF framework can substantially improve the
performance of both models. Moreover, both
neural models perform similarly inside the NPRF
framework despite the fact that without NPRF
one model performed substantially worse than the
other model. The contributions of this work are
threefold: 1) the novel NPRF framework; 2) two
instantiations of the NPRF framework using two
state-of-the-art neural IR models; and 3) the exper-
iments that confirm the effectiveness of the NPRF
framework.
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The rest of this paper is organized as follows.
Section 2 presents the proposed NPRF framework
in details. Following that, Section 3 describes the
setup of the evaluation, and reports the results. Fi-
nally, Section 4 recaps existing literature, before
drawing conclusions in Section 5.

2 Method

In this section, we introduce the proposed neu-
ral framework for pseudo relevance feedback
(NPRF). Recall that existing unsupervised PRF
models (Rocchio, 1971; Lavrenko and Croft,
2001; Ye et al., 2009) issue a query to obtain an
initial ranking, identify promising terms from the
top-m documents returned, and expand the origi-
nal query with these terms. Rather than selecting
the expanded terms within the top-m documents,
NPRF uses these documents directly as expansion
queries by considering the interactions between
them and a target document. Thus, each docu-
ment’s ultimate relevance score depends on both
its interactions with the original query and its in-
teractions with these feedback documents.

2.1 Overview
Given a query q, NPRF estimates the relevance of
a target document d relative to q as described in the
following steps. The architecture is summarized in
Figure 1. Akin to the established neural IR models
like DRMM (Guo et al., 2016), the description is
based on a query-document pair, and a ranking can
be produced by sorting the documents according
to their scores.

- Create initial ranking. Given a document cor-
pus, a ranking method relq(q, d) is applied to
individual documents to obtain the top-m doc-
uments, denoted as Dq for q.

- Extract document interactions. To evaluate
the relevance of d, each dq in Dq is used to ex-
pand q, where d is compared against each dq,
using a ranking method reld (dq, d).

- Combine document interactions. The rele-
vance scores reld(dq, d) for individual dq 2
Dq are further weighted by relq(q, dq), which
serves as an estimator for the confidence of the
contribution of dq relative to q. The weighted
combination of these relevance scores is used
to produce a relevance score for d, denoted as
relD(q, Dq, d).

While the same ranking model can be used for
both relq(., .) and reld (., .), we denote them sep-
arately in the architecture. In our experiments,
the widely-used unsupervised ranking method
BM25 (Robertson et al., 1995) serves as relq(., .);
meanwhile two state-of-the-art neural IR rele-
vance matching models, namely, DRMM (Guo
et al., 2016) and K-NRM (Xiong et al., 2017),
serve as the ranking method reld (., .). However,
it is worth noting that in principle relq and reld
can be replaced with any ranking method, and the
above choices mainly aim to demonstrate the ef-
fectiveness of the NPRF framework.

2.2 Model Architecture

The NPRF framework begins with an initial rank-
ing for the input query q determined by relq(., .),
which forms Dq, the set of the top-m documents
Dq. The ultimate query-document relevance score
relD(q, Dq, d) is computed as follows.

Extracting document interactions. Given the
target document d and each feedback document
dq 2 Dq, reld (., .) is used to evaluate the rele-
vance between d and dq, resulting in m real-valued
relevance scores, where each score corresponds to
the estimated relevance of d according to one feed-
back document dq.

As mentioned, two NIRMs are separately used
to compute reld(dq, d) in our experiments. Both
models take as input the cosine similarities be-
tween each pair of terms in dq and d, which are
computed using pre-trained word embeddings as
explained in Section 3.1. Given that both models
consider only unigram matches and do not con-
sider term dependencies, we first summarize dq by
retaining only the top-k terms according to their
tf -idf scores, which speeds up training by reduc-
ing the document size and removing noisy terms.
In our pilot experiments, the use of top-k tf -idf
document summarization did not influence perfor-
mance. For different dq 2 Dq, the same model is
used as reld(., .) for different pairs of (dq, d) by
sharing model weights.

Combining document interactions. When de-
termining the relevance of a target document d,
there exist two sources of relevance signals to
consider: the target document’s relevance rela-
tive to the feedback documents Dq and its rel-
evance relative to the query q itself. In this
step, we combine reld(dq, d) for each dq 2 Dq

into an overall feedback document relevance score
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Figure 1: Architecture of the proposed neural pseudo relevance feedback (NPRF) framework.

relD(q, Dq, d). When combining the relevance
scores, the agreement between q and each dq is
also important, since dq may differ from q in terms
of information needs. The relevance of dq from
the initial ranking relq(q, dq) is employed to quan-
tify this agreement and weight each reld(dq, d) ac-
cordingly.

When computing such agreements, it is neces-
sary to remove the influence of the absolute ranges
of the scores from the initial ranker. For exam-
ple, ranking scores from a language model (Ponte
and Croft, 1998) and from BM25 (Robertson et al.,
1995) can differ substantially in their absolute
ranges. To mitigate this, we use a smoothed
min-max normalization to rescale relq(q, dq) into
the range [0.5, 1]. The min-max normalization
is applied by considering min(relq(q, dq)|dq 2
Dq) and max (relq(q, dq)|dq 2 Dq). Hereafter,
relq(q, dq) is used to denote this relevance score
after min-max normalization for brevity. The
(normalized) relevance score is smoothed and
then weighted by the relevance evaluation of dq,
producing a weighted document relevance score
reld

0(dq, d) for each dq 2 Dq that reflects the rel-
evance of dq relative to q. This computation is de-
scribed in the following equation.

reld
0(dq, d) = reld (dq, d)(0.5 + 0.5 ⇥ relq(q, dq))

(1)
As the last step, we propose two variants for

combining the reld
0(dq, d) for different dq into a

single score relD(q, Dq, d): (i) performing a direct
summation and (ii) using a feed forward network

with a hyperbolic tangent (tanh) non-linear acti-
vation. Namely, the first variant simply sums up
the scores, whereas the second takes the ranking
positions of individual feedback documents into
account.

2.3 Optimization and Training
Each training sample consists of a query q, a set
of m feedback documents Dq, a relevant target
document d+ and a non-relevant target document
d� according to the ground truth. The Adam opti-
mizer (Kingma and Ba, 2014) is used with a learn-
ing rate 0.001 and a batch size of 20. Training nor-
mally converges within 30 epochs, with weights
uniformly initialized. A hinge loss is employed
for training as shown below.

loss(q, Dq, d
+, d�) =

max(0, 1 � rel(q, Dq, d
+) + rel(q,Dq, d

�))

3 Evaluation

3.1 Evaluation Setup
Dataset. We evaluate our proposed NPRF
framework on two standard test collections,
namely, TREC1-3 (Harman, 1993) and Ro-
bust04 (Voorhees, 2004). TREC1-3 consists of
741,856 documents with 150 queries used in the
TREC 1-3 ad-hoc search tasks (Harman, 1993,
1994, 1995). Robust04 contains 528,155 docu-
ments and 249 queries used in the TREC 2004
Robust track (Voorhees, 2004). We use those
two collections to balance between the number of
queries and the TREC pooling depth, i.e., 100 on
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both collections, allowing for sufficient training
data. Manual relevance judgments are available on
both collections, where both the relevant and non-
relevant documents are labeled for each query.

Two versions of queries are included in our ex-
periments: a short keyword query (title query),
and a longer description query that restates the cor-
responding keyword query’s information need in
terms of natural language (description query). We
evaluate each type of query separately using the
metrics Mean Average Precision at 1,000 (MAP),
Precision at 20 (P@20) (Manning et al., 2008),
and NDCG@20 (Järvelin and Kekäläinen, 2002).
Preprocessing. Stopword removal and Porter’s
stemmer are applied (Manning et al., 2008). The
word embeddings are pre-trained based on a
pool of the top 2,000 documents returned by
BM25 for individual queries as suggested by (Diaz
et al., 2016). The implementation of Word2Vec1

from (Mikolov et al., 2013) is employed. In par-
ticular, we employ CBOW with the dimension set
to 300, window size to 10, minimum count to 5,
and a subsampling threshold of 10�3. The CBOW
model is trained for 10 iterations on the target cor-
pus.
Unsupervised ranking models serve as baselines
for comparisons. We use the open source Terrier
platform’s (Macdonald et al., 2012) implementa-
tion of these ranking models:

- BM25 (Robertson et al., 1995), a classical prob-
abilistic model, is employed as an unsupervised
baseline. The hyper-parameters b and k1 are
tuned by grid search. As mentioned in Sec. 2.1,
BM25 also generates the initial rankings Dq,
serving as relq(., .) in the NPRF framework.

- On top of BM25, we use an adapted version of
Rocchio’s query expansion (Ye et al., 2009), de-
noted as BM25+QE. Note that, as demonstrated
in the results, BM25+QE’s performance is com-
parable with the base neural IR models, includ-
ing DRMM, K-NRM and PACRR. This illus-
trates the difficulty in making improvements on
the TREC benchmarks through the uses of deep
learning methods. The hyper-parameters, in-
cluding the number of feedback documents and
the number of expansion terms, are optimized
using grid search on training queries.

- In addition, QL+RM3, the query likelihood
language model with the popular RM3 PRF
1https://code.google.com/p/word2vec/

(Lavrenko and Croft, 2001), is used as another
unsupervised baseline.

Neural IR models are used for reld(., .). As men-
tioned in Section 2.1, two unigram neural IR mod-
els are employed in our experiments:

- DRMM. We employ the variant with the best
effectiveness on Robust04 according to (Guo
et al., 2016), namely, DRMMLCH⇥IDF with
the original configuration.

- K-NRM. Due to the lack of training data com-
pared with the commercial data used by (Xiong
et al., 2017), we employ a K-NRM variant with
a frozen word embedding layer. To compensate
for this substantial reduction in the number of
learnable weights, we add an additional fully
connected layer to the model. These changes
lead to a small but competitive K-NRM variant,
as demonstrated in (Hui et al., 2018).

- We additionally implement PACRR (Hui et al.,
2017) for the purpose of performing compar-
isons, but do not use PACRR to compute
reld(., .) due to the computational costs. In
particular, PACRR-firstk is employed where the
first 1, 000 terms are used to compute the sim-
ilarity matrices, and the original configuration
from (Hui et al., 2017) is used.

- NIRM(QE) uses the modified query generated
by the query expansion of BM25+QE (Ye et al.,
2009) as input to the neural IR model. Both
DRMM and K-NRM are used to instantiate
NIRM(QE).

- Variants of the proposed NPRF approach. As
indicated in Section 2.2, NPRF includes two
variants that differ in the combination of the
relevance scores from different dq 2 Dq: the
variant NPRF↵ uses a feed forward network
with a hidden layer with five neurons to com-
pute rel(d, Dq), and the other variant NPRFds

performs a direct summation of the different rel-
evance scores. For the purposes of compari-
son, we additionally introduce another variant
coined NPRF↵

0 , where the relevance of dq to
q is not considered in the combination by di-
rectly setting rel0d(d, dq) = reld(d, dq) in place
of Equation 1, thereafter combining the scores
with a fully connected layer as in NPRF↵ . We
combine each of the three NPRF variants with
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the DRMM and K-NRM models, and report re-
sults for all six variants. Our implementation of
the NPRF framework is available to enable fu-
ture comparisons2.

Akin to (Guo et al., 2016; Xiong et al., 2017;
Hui et al., 2017), the NIRM baselines and the pro-
posed NPRF are employed to re-rank the search
results from BM25. In particular, the top-10 doc-
uments from the unsupervised baseline are used
as the pseudo relevance feedback documents Dq

as input for NPRF, where each dq 2 Dq is rep-
resented by its top-20 terms with the highest tf -
idf weights. As illustrated later in Section 3.3,
NPRF’s performance is stable over a wide range
of settings for both parameters.
Cross-validation. Akin to (Hui et al., 2018), ow-
ing to the limited number of labeled data, five-fold
cross-validation is used to report the results by ran-
domly splitting all queries into five equal parti-
tions. In each fold, three partitions are used for
training, one for validation, and one for testing.
The model with the best MAP on the validation
set is selected. We report the average performance
on all test partitions. A two-tailed paired t-test is
used to report the statistical significance at 95%
confidence interval.

3.2 Results

Comparison to BM25. We first compare the pro-
posed NPRF models with the unsupervised BM25.
The results are summarized in Tables 1 and 2,
where the best result in each column is highlighted
in bold. From Tables 1 and 2, it can be seen that
the proposed NPRF variants obtain significant im-
provement relative to BM25 on both test collec-
tions with both kinds of test queries. Moreover, the
results imply that the use of different query types
does not affect the effectiveness of NPRF, which
consistently outperforms BM25.
Comparison to neural IR models. NPRF is fur-
ther compared with different neural IR models,
as summarized in Tables 3 & 4. It can be seen
that NPRF regularly improves on top of the NIRM
baselines. For both types of queries, NPRF-
DRMM outperforms DRMM and NPRF-KNRM
outperforms K-NRM when re-ranking BM25. Re-
markably, the proposed NPRF is able to improve
the weaker NIRM baseline. For instance, on
Robust04, when using the description queries,

2https://github.com/ucasir/NPRF

DRMM and K-NRM obtain highly different re-
sults, with MAPs of 0.2630 and 0.1687 after re-
ranking the initial results from BM25, respec-
tively. When NPRF is used in conjunction with
the NIRM models, however, the gap between the
two models is closed; that is, MAP=0.2801 for
NRFFds-DRMM and MAP=0.2800 for NRFFds-
KNRM (see Table 4). This finding highlights that
our proposed NPRF is robust with respect to the
use of the two embedded NIRM models. A pos-
sible explanation for the poor performance of K-
NRM on two TREC collections is the lack of train-
ing data, as suggested in (Dai et al., 2018). While
K-NRM could be improved by introducing weak
supervision (Dai et al., 2018), we achieve the same
goal by incorporating pseudo relevance feedback
information without extra training data.

While the six NPRF variants exhibit similar
results across both kinds of queries, NPRFds-
DRMM in general achieves the best performance
on Robust04, and NPRFds-KNRM appears to be
the best variant on TREC1-3. In the meantime,
NPRFds outperforms NPRF↵ variants. One dif-
ference between the two methods is that NPRF↵

considers the position of each dq in the Dq ranked
documents, whereas NPRFds simply sums up the
scores regardless of the positions. The fact that
NPRFds performs better suggests that the ranking
position within the Dq documents may not be a
useful signal. In the remainder of this paper, we
mainly report on the results obtained by NPRFds.

Comparison to query expansion baselines. In
Table 5, the proposed NPRF model is compared
with three kinds of query expansion baselines,
namely, the unsupervised BM25+QE (Ye et al.,
2009), QL+RM3 (Lavrenko and Croft, 2001), and
DRMM/K-NRM(QE), the neural IR models using
expanded queries as input. According to Table 5,
the unsupervised BM25+QE baseline appears to
achieve better performance in terms of MAP@1k,
owing to its use of query expansion to match rel-
evant documents containing the expansion terms
from the whole collection. On the other hand,
NPRFds, which reranks the top-1000 documents
returned by BM25, outperforms the query expan-
sion baselines in terms of early precision, as mea-
sured by either NDCG@20 or P@20. These mea-
sures on shallow rankings are particularly impor-
tant for general IR applications where the qual-
ity of the top-ranked results is crucial to the user
satisfaction. Moreover, our NPRF outperforms
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Title Description
Model MAP P@20 NDCG@20 MAP P@20 NDCG@20
BM25 0.2408 - 0.4803 - 0.4947 - 0.2094 - 0.4613 - 0.4838 -
NPRF↵ -DRMM 0.2669† 10.85% 0.5010 4.31% 0.5119 3.47% 0.2509† 19.80% 0.5257† 13.95% 0.5393† 11.46%
NPRF↵ 0-DRMM 0.2671† 10.93% 0.5023† 4.59% 0.5116 3.42% 0.2504† 19.58% 0.5163† 11.93% 0.5291† 9.37%
NPRFds-DRMM 0.2698† 12.03% 0.5187† 7.99% 0.5282† 6.77% 0.2527† 20.67% 0.5283† 14.53% 0.5444† 12.52%
NPRF↵ -KNRM 0.2633† 9.34% 0.5033 4.80% 0.5171 4.52% 0.2486† 18.71% 0.5240† 13.59% 0.5398† 11.58%
NPRF↵ 0-KNRM 0.2654† 10.22% 0.5077† 5.70% 0.5216† 5.44% 0.2462† 17.60% 0.5197† 12.65% 0.5363† 10.84%
NPRFds-KNRM 0.2707† 12.41% 0.5303† 10.42% 0.5406† 9.29% 0.2505† 19.61% 0.5270† 14.24% 0.5460† 12.87%

Table 1: Comparisons between NPRF and BM25 on TREC1-3 dataset. Relative performances compared with BM25 are in
percentages. Significant improvements relative to the baselines are marked with †.

Title Description
Model MAP P@20 NDCG@20 MAP P@20 NDCG@20
BM25 0.2533 - 0.3612 - 0.4158 - 0.2479 - 0.3514 - 0.4110 -
NPRF↵ -DRMM 0.2823† 11.46% 0.3941† 9.11% 0.4350† 4.62% 0.2766† 11.58% 0.3908† 11.21% 0.4421† 7.56%
NPRF↵ 0-DRMM 0.2837† 12.00% 0.3928† 8.74% 0.4377† 5.27% 0.2774† 11.90% 0.3984† 13.38% 0.4493† 9.32%
NPRFds-DRMM 0.2904† 14.66% 0.4064† 12.52% 0.4502† 8.28% 0.2801† 12.95% 0.4026† 14.57% 0.4559† 10.92%
NPRF↵ -KNRM 0.2809† 10.90% 0.3851† 6.62% 0.4287 3.11% 0.2720† 9.71% 0.3867† 10.06% 0.4356† 5.99%
NPRF↵ 0-KNRM 0.2815† 11.13% 0.3882† 7.48% 0.4264 2.55% 0.2737† 10.39% 0.3892† 10.74% 0.4382† 6.61%
NPRFds-KNRM 0.2846† 12.36% 0.3926† 8.69% 0.4327 4.06% 0.2800† 12.95% 0.3972† 13.03% 0.4477† 8.94%

Table 2: Comparisons between NPRF and BM25 on the Robust04 dataset. Relative performances compared with BM25 are in
percentages. Significant improvements relative to the baselines are marked with †.

NIRM(QE) in most cases, indicating the benefit
brought by wrapping up the feedback informa-
tion in a document-to-document matching frame-
work as in NPRF, as opposed to directly adding
unweighted expansion terms to the query. Recall
that, it is not straightforward to incorporate these
expanded terms within the existing NIRMs’ archi-
tectures because the NIRMs do not distinguish be-
tween them and the original query terms.

3.3 Analysis
Parameter sensitivity. Moreover, we analyze
factors that may influence NPRF’s performance.
We report results on NPRFds using title queries on
Robust04 for the sake of brevity, but similar obser-
vations also hold for the other NPRF variants, as
well as on TREC1-3. Figure 2 illustrates the sen-
sitivity of NPRF relative to two parameters: the
number of feedback documents m within Dq and
the number of terms k that are used to summarize
each dq 2 Dq. Specifically, Figure 2 shows the
performance of NPRFds as the number of feed-
back documents m varies (top), and as the number
of top terms k varies (bottom). The effectiveness
of NPRF appears to be stable over a wide range of
the parameter configurations, where the proposed
model consistently outperforms the BM25 base-
line.
Case study. A major advantage of the proposed
NPRF over existing neural IR models is that it al-
lows for soft-matching query-related terms that are

missing from both the query and the target doc-
ument. Table 6 presents an illustrative example
of soft matching in NPRF. From Table 6, it can
be seen that there exist query-related terms in the
top-10 documents returned by BM25 in the initial
ranking. However, since those query-related terms
are missing in both the query and the target doc-
ument, they are not considered in the document-
to-query matching and, consequently, the target
document is ranked 122nd by BM25 despite the
facts that it was judged relevant by a human asses-
sor. In contrast, the NPRF framework allows for
the soft-matching of terms that are missing in both
the query and target document. As a result, the
matching signals for the query terms and query-
related terms in the target document are enhanced.
This leads to enhanced effectiveness with the tar-
get document now ranked in the 5th position.

In summary, the evaluation on two standard
TREC test collections shows promising results ob-
tained by our proposed NPRF approach, which
outperforms state-of-the-art neural IR models in
most cases. Overall, NPRF provides effective re-
trieval performance that is robust with respect to
the two embedded neural models used for encod-
ing the document-to-document interactions, the
two kinds of queries with varied length, and wide
range of parameter configurations.
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Title Description
Model MAP P@20 NDCG@20 MAP P@20 NDCG@20
DRMM 0.2469 - 0.4833 - 0.4919 - 0.2111 - 0.4423 - 0.4546 -
K-NRM 0.2284 - 0.4410 - 0.4530 - 0.1763 - 0.3753 - 0.3854 -
PACRR-firstk 0.2393 - 0.4620 - 0.4782 - 0.1702 - 0.3577 - 0.3666 -
NPRF↵ -DRMM 0.2669† 8.12% 0.5010 3.66% 0.5119 4.06% 0.2509† 18.83% 0.5257† 18.84% 0.5393† 18.63%
NPRF↵ 0-DRMM 0.2671† 8.19% 0.5023 3.94% 0.5116 4.01% 0.2504† 18.61% 0.5163† 16.73% 0.5291† 16.40%
NPRFds-DRMM 0.2698† 9.26% 0.5187† 7.32% 0.5282† 7.38% 0.2527† 19.69% 0.5283† 19.44% 0.5444† 19.76%
NPRF↵ -KNRM 0.2633† 15.28% 0.5033† 14.13% 0.5171† 14.14% 0.2486† 40.97% 0.5240† 39.61% 0.5398† 40.06%
NPRF↵ 0-KNRM 0.2654† 16.20% 0.5077† 15.12% 0.5216† 15.15% 0.2462† 39.65% 0.5197† 38.45% 0.5363† 39.13%
NPRFds-KNRM 0.2707† 18.51% 0.5303† 20.26% 0.5406† 19.35% 0.2505† 42.04% 0.5270† 40.41% 0.5460† 41.67%

Table 3: Comparisons between NPRF and neural IR models on TREC1-3. Relative performances of NPRF-DRMM(KNRM)
compared with DRMM (K-NRM) are in percentages, and statistically significant improvements are marked with †.

Title Description
Model MAP P@20 NDCG@20 MAP P@20 NDCG@20
DRMM 0.2688 - 0.3713 - 0.4297 - 0.2630 - 0.3558 - 0.4135 -
K-NRM 0.2464 - 0.3510 - 0.3989 - 0.1687 - 0.2301 - 0.2641 -
PACRR-firstk 0.2540 - 0.3631 - 0.4082 - 0.2087 - 0.2962 - 0.3362 -
NPRF↵ -DRMM 0.2823 5.03% 0.3941† 6.14% 0.4350 1.24% 0.2766† 5.17% 0.3908† 9.84% 0.4421† 6.92%
NPRF↵ 0-DRMM 0.2837† 5.55% 0.3928 5.78% 0.4377 1.87% 0.2774† 5.48% 0.3984† 11.97% 0.4493† 8.67%
NPRFds-DRMM 0.2904† 8.05% 0.4064† 9.46% 0.4502 4.78% 0.2801† 6.46% 0.4026† 13.15% 0.4559† 10.26%
NPRF↵ -KNRM 0.2809† 14.00% 0.3851† 9.72% 0.4287† 7.48% 0.2720† 61.22% 0.3867† 68.08% 0.4356† 64.96%
NPRF↵ 0-KNRM 0.2815† 14.25% 0.3882† 10.60% 0.4264† 6.90% 0.2737† 62.21% 0.3892† 69.12% 0.4382† 65.93%
NPRFds-KNRM 0.2846† 15.50% 0.3926† 11.85% 0.4327† 8.47% 0.2800† 65.98% 0.3972† 72.62% 0.4477† 69.55%

Table 4: Comparisons between NPRF and neural IR models on Robust04. Relative performances of NPRF-DRMM(KNRM)
compared with DRMM (K-NRM) are in percentages, and statistically significant improvements are marked with †.

4 Related Work

Recently, several neural IR models (NIRMs)
have been proposed to apply deep learning tech-
niques in ad-hoc information retrieval. One of
the essential ideas from prior work is to model
the document-to-query interaction via neural net-
works, based on a matrix of document-to-query
embedding term similarities, incorporating both
the “exact matching” of terms appearing in both
the document and query and the “soft matching”
of different query and document term pairs that are
semantically related.

DSSM, one of the earliest NIRMs proposed
in (Huang et al., 2013), employs a multi-layer
neural network to project queries and document
into a common semantic space. The cosine sim-
ilarity between a query and a document (docu-
ment title) is used to produce a final relevance
score for the query-document pair. CDSSM is a
convolutional version of DSSM, which uses the
convolutional neural network (CNN) and max-
pooling strategy to extract semantic matching fea-
tures at the sentence level (Shen et al., 2014).
(Pang et al., 2016) also employ a CNN to con-
struct the MatchPyramid model, which learns hi-
erarchical matching patterns between local inter-
actions of document-query pair. (Guo et al.,

2016) argue that both DSSM and CDSSM are
representation-focused models, and thus are bet-
ter suited to capturing semantic matching than
relevance matching (i.e., lexical matching), and
propose the interaction-focused relevance model
named DRMM. DRMM maps the local interac-
tions between a query-document pair into a fixed-
length histogram, from which the exact matching
signals are distinguished from the other matching
signals. These signals are fed into a feed for-
ward network and a term gating network to pro-
duce global relevance scores. Similar to DRMM,
K-NRM (Xiong et al., 2017) builds its model on
top of a matrix of local interaction signals, and
utilizes multiple Gaussian kernels to obtain multi-
level exact/soft matching features that are input
into a ranking layer to produce the final ranking
score. K-NRM is later improved by Conv-KNRM,
which employs CNN filters to capture n-gram rep-
resentations of queries and documents (Dai et al.,
2018). DeepRank (Pang et al., 2017) models the
relevance generation process by identifying query-
centric contexts, processing them with a CNN or
LSTM, and aggregating them to produce a final
relevance score. Building upon DeepRank, (Fan
et al., 2018) propose to model diverse relevance
patterns by a data-driven method to allow rele-
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TREC1-3 Robust04
Title Description Title Description

Model MAP P@20 NDCG@20 MAP P@20 NDCG@20 MAP P@20 NDCG@20 MAP P@20 NDCG@20
BM25+QE 0.2873 0.5200 0.5330 0.2601 0.4973 0.5093 0.2966 0.3839 0.4353 0.2926 0.3817 0.4340
QL+RM3 0.2734 0.5093 0.5198 0.2421 0.4627 0.4801 0.2842 0.3878 0.4398 0.2686 0.3506 0.4150
DRMM (QE) 0.2741 0.5183 0.5345 0.2380 0.5077 0.5229 0.2876 0.4002 0.4549 0.2711 0.3822 0.4392
K-NRM (QE) 0.2633 0.5127 0.5235 0.2307 0.4877 0.5039 0.2521 0.3644 0.4062 0.2380 0.3304 0.3785
NPRFds-DRMM 0.2698 0.5187 0.5282 0.2527 0.5283 0.5444† 0.2904 0.4064 0.4502 0.2801 0.4026† 0.4559†

NPRFds-KNRM 0.2707 0.5303 0.5406 0.2505 0.5270 0.5460† 0.2846 0.3926 0.4327 0.2800 0.3972† 0.4477

Table 5: Comparisons between NPRF and query expansion baselines on TREC1-3 and Robust04. Significant improvements
over the best baseline is marked with †.

TREC Query 341: airport security
Terms in doc at rank i Terms in target document FBIS3-23332
1. terrorist detect passenger check police scan; 2. heathrow
terrorist armed aviation police; 3. detect airline passenger
police scan flight weapon; 4. aviation; 5. detect baggage
passenger; 6. passenger bomb baggage terrorist explosive
aviation scan flight weapon; 7. baggage airline detect pas-
senger scan flight weapon; 8. baggage airline passenger
flight; 9. passenger police aviation; 10. airline baggage
aviation flight

transec semtex airline ditma security baggage heathrow test
device lockerbie klm bomb virgin airport loaded blobby
transport detect inspector terrorist identify atlantic depress-
ing passenger fail aircraft dummy check inert patchy stein
norwich doll regard rupert lapse busiest loophole employee
campaign blew procedure traveler passport reconcile glas-
gow investigate boeing bags bag harry successive smuggle
conscious reconciliation tragedy board wire hidden...

Table 6: An illustrative example of soft matching in NPRF. The target document FBIS3-23332, judged relevant, is ranked
122nd by BM25 for query 341 on Robust04, and is promoted to the 5th by NPRFds-DRMM. The NPRF mechanism increases
the chances of soft-matching query-related terms that appear in the top-ranked documents (terms in blue), but are missing in
both the query and the target document. Subsequently, the matching signals with the query terms (in bold) and the query-related
terms (in red) in the target document are enhanced.

vance signals at different granularities to compete
with each other for the final relevance assessment.

Duet (Mitra et al., 2017) employs two sepa-
rate deep neural networks to build a relevance
ranking model, in which a local model estimates
the relevance score according to exact matches
between query and document terms, and a dis-
tributed model estimates relevance by learning
dense lower-dimensional representations of query
and document text. (Zamani et al., 2018) extends
the Duet model by considering different fields
within a document.

(Hui et al., 2017) propose the PACRR model
based on the idea that an appropriate combina-
tion of convolutional kernels and pooling opera-
tions can be used to successfully identify both un-
igram and n-gram query matches. PACRR is later
improved upon by Co-PACRR, a context-aware
variant that takes the local and global context of
matching signals into account through the use of
three new components (Hui et al., 2018).

(Ran et al., 2017) propose a document-based
neural relevance model that utilizes complemented
medical records to address the mismatch prob-
lem in clinical decision support. (Nogueira and
Cho, 2017) propose a reinforcement learning ap-
proach to reformulating a task-specific query. (Li
et al., 2018) propose DAZER, a CNN-based neu-

ral model upon interactions between seed words
and words in a document for zero-shot document
filtering with adversarial learning. (Ai et al., 2018)
propose to refine document ranking by learning a
deep listwise context model.

In summary, most existing neural IR models
are based on query-document interaction signals
and do not provide a mechanism for incorporat-
ing relevance feedback information. This work
proposes an approach for incorporating relevance
feedback information by embedding neural IR
models within a neural pseudo relevance feed-
back framework, where the models consume feed-
back information via document-to-document in-
teractions.

5 Conclusions

In this work we proposed a neural pseudo rele-
vance feedback framework (NPRF) for incorpo-
rating relevance feedback information into exist-
ing neural IR models (NIRM). The NPRF frame-
work uses feedback documents to better estimate
relevance scores by considering individual feed-
back documents as different interpretations of the
user’s information need. On two standard TREC
datasets, NPRF significantly improves the perfor-
mance of two state-of-the-art NIRMs. Further-
more, NPRF was able to improve their perfor-
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Figure 2: Performance of NPRFds with different numbers
of PRF documents (top) and different umber of terms which
are used to summarize the feedback documents (bottom). The
�, ⇤, 4 correspond to results measured by MAP, P@20 and
NDCG@20 respectively, and the empty or solid symbols cor-
respond to those for NPRFds-DRMM and NPRFds-KNRM.
The three dotted lines, from bottom to top, are the BM25
baseline evaluated by MAP, P@20 and NDCG@20, respec-
tively.

mance across two kinds of query tested (namely,
short queries and the verbal queries in natural lan-
guage). Finally, our analysis demonstrated the ro-
bustness of the NPRF framework over different
parameter configurations.
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Abstract

Learning a matching function between two
text sequences is a long standing problem in
NLP research. This task enables many po-
tential applications such as question answering
and paraphrase identification. This paper pro-
poses Co-Stack Residual Affinity Networks
(CSRAN), a new and universal neural archi-
tecture for this problem. CSRAN is a deep
architecture, involving stacked (multi-layered)
recurrent encoders. Stacked/Deep architec-
tures are traditionally difficult to train, due
to the inherent weaknesses such as difficulty
with feature propagation and vanishing gradi-
ents. CSRAN incorporates two novel compo-
nents to take advantage of the stacked archi-
tecture. Firstly, it introduces a new bidirec-
tional alignment mechanism that learns affin-
ity weights by fusing sequence pairs across
stacked hierarchies. Secondly, it leverages
a multi-level attention refinement component
between stacked recurrent layers. The key
intuition is that, by leveraging information
across all network hierarchies, we can not only
improve gradient flow but also improve over-
all performance. We conduct extensive ex-
periments on six well-studied text sequence
matching datasets, achieving state-of-the-art
performance on all.

1 Introduction

Determining the semantic affinity between two
text sequences is a long standing research prob-
lem in natural language processing research. This
is understandable, given that technical innovations
in this domain would naturally bring benefits to a
diverse plethora of applications ranging from para-
phrase detection to standard document retrieval.
This work focuses on short textual sequences, fo-
cusing on a myriad of applications such as natu-
ral language inference, question answering, reply

⇤Denotes equal contribution.

prediction and paraphrase detection. This paper
presents a new deep matching model for universal
text matching.

Neural networks are dominant state-of-the-art
approaches for many of these matching problems
(Gong et al., 2017; Shen et al., 2017; Wang et al.,
2017; Chen et al., 2017). Fundamentally, neu-
ral networks operate via a concept of feature hi-
erarchy, in which hierarchical representations are
constructed as sequences propagate across the net-
work. In the context of matching, representations
are often (1) encoded, (2) matched, and then (3)
aggregated for prediction. Each key step often
comprises several layers, which consequently adds
to the overall depth of the network.

Unfortunately, it is a well established fact that
deep networks are difficult to train. This is at-
tributed to not only vanishing/exploding gradi-
ents but also an instrinsic difficulty pertaining
to feature propagation. To this end, commonly
adopted solutions include Residual connections
(He et al., 2016) and/or Highway layers (Srivas-
tava et al., 2015). The key idea in these approaches
is to introduce additional (skip/residual) connec-
tions, propagating shallower layers to deeper lay-
ers via shortcuts. To the best of our knowledge,
these techniques are generally applied to single se-
quences and therefore the notion of pairwise resid-
ual connections have not been explored.

This paper presents Co-Stack Residual Affin-
ity Networks (CSRAN), a stacked multi-layered
recurrent architecture for general purpose text
matching. Our model proposes a new co-stacking
mechanism that computes bidirectional affinity
scores by leveraging all feature hierarchies be-
tween text sequence pairs. More concretely, word-
by-word affinity scores are not computed just from
the final encoded representations but across all the
entire feature hierarchy.

There are several benefits to our co-stacking

4492



mechanism. Firstly, co-stacking acts as a form
of residual connector, alleviating the instrinsic is-
sues with network depth. Secondly, there are
more extensive matching interfaces between text
sequences as the affinity matrix is not computed
by just one representation but multiple represen-
tations instead. Naturally, increasing the oppor-
tunities for interactions between sequences is an
intuitive method for improving performance.

Additionally, our model incorporates a Multi-
level Attention Refinement (MAR) architecture in
order to fully leverage the stacked recurrent archi-
tecture. The MAR architecture is a multi-layered
adaptation and extension of the CAFE model (Tay
et al., 2017c), in which attention is computed,
compressed and then re-fed into the input se-
quence. In our approach, we use CAFE blocks to
repeatedly refine representations at each level of
the stacked recurrent encoder.

The overall outcome of the above-mentioned ar-
chitectural synergies is a highly competitive model
that establishes state-of-the-art performance on six
well-known text matching datasets such as SNLI
and TrecQA. The overall contributions of this
work are summarized as follows:

• We propose a new deep stacked recurrent ar-
chitecture for matching text sequences. Our
model is based on a new co-stacking mech-
anism which learns to align by exploiting
matching across feature hierarchies. This
can be interpreted as a new way to incorpo-
rate shortcut connections within neural mod-
els for sequence matching. Additionally, we
also propose a multi-level attention refine-
ment scheme to leverage our stacked recur-
rent model.

• While stacked architectures can potentially
lead to considerable improvements in per-
formance, our experiments show that in the
absence of our proposed CSRA (Co-stack
Residual Affinity) mechanism, stacking may
conversely lead to performance degradation.
As such, this demonstrates that our proposed
techniques are essential for harnessing the
potential of deep architectures.

• We conduct extensive experiments on four
text matching tasks across six well-studied
datasets, i.e., Natural Language Inference
(SNLI (Bowman et al., 2015), SciTail (Khot
et al., 2018)), Paraphrase Identification

(Quora, TwitterURL (Lan et al., 2017)), An-
swer Sentence Selection (Wang et al., 2007)
and Utterance-Response Matching (Ubuntu
(Lowe et al., 2015)). Our model achieves
state-of-the-art performance on all datasets.

2 Co-Stack Residual Affinity Networks

In this section, we introduce our proposed model
architecture for general/universal text matching.
The key idea of this architecture is to leverage
deep stacked layers, while mitigating the inherent
weaknesses of going deep. As such, our network is
in similar spirit to highway networks, residual net-
works and DenseNets, albeit tailored specifically
for pairwise architectures. Figure 1 illustrates a
high-level overview of our proposed model archi-
tecture.

2.1 Input Encoder

The inputs to our model are standard sequences of
words A and B which represent sequence a and
sequence b respectively. In the context of different
applications, a and b take different roles such as
premise/hypothesis or question/answer. Both se-
quences are converted into word representations
(via pretrained word embeddings) and character-
based representations. Character embeddings are
trainable parameters and a final character-based
word representation of d dimensions is learned by
passing all characters into a Bidirectional LSTM
encoder. This is standard, following many works
such as (Wang et al., 2017). Word embeddings
and character-based word representations are then
concatenated to form the final word representa-
tion. Next, the word representation is passed
through a (optional and tuned as a hyperparame-
ter) 2-layered highway network of d dimensions.

2.2 Stacked Recurrent Encoders

Next, word representations are passed into a
stacked recurrent encoder layer. Specifically, we
use Bidirectional LSTM encoders at this layer. Let
k be the number of layers of the stacked recurrent
encoder layer.

hi
t = BiLSTMi(ht�1) 8t 2 [1, 2 · · · `] (1)

where BiLSTMi represents the i-th BiLSTM layer
and hi

t represents the t-th hidden state of the i-th
BiLSTM layer. ` is the sequence length. Note that
the parameters are shared for both a and b.
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Figure 1: Illustration of the proposed Co-Stack Residual Affinity Network (CSRAN) architecture. Each color
coded matrix represents the interactions between two layers of sequence A and sequence B. (Best viewed in color)

2.3 Multi-level Attention Refinement (MAR)

Inspired by CAFE (Tay et al., 2017c) (Compare-
Align-Factorized Encoders), a top performing
model on the SNLI benchmark, we utilize CAFE
blocks between the BiLSTM layers. Each CAFE
block returns six features, which are generated by
a factorization operation using factorization ma-
chines (FM). While the authors in (Tay et al.,
2017c) simply use this operation in a single layer,
we utilize this in a multi-layered fashion which we
found to have worked well. This constitutes our
multi-level attention refinement mechanism. More
concretely, we apply the CAFE operation to the
outputs of each BiLSTM layer, allowing the next
BiLSTM layer to process the ‘augmented’ repre-
sentations. The next layer retains its dimension-
ality by projecting the augmented representation
back to its original size using the BiLSTM en-
coder. This can be interpreted as repeatedly refin-
ing representations via attention. As such, adding
CAFE blocks is a very natural fit to the stacked
recurrent architecture.

CAFE Blocks This section describes the oper-
ation of each CAFE block. The key idea behind

CAFE blocks is to align a and b, and compress
alignment vectors such as b0 � a (subtraction),
b0 � a (element-wise multiplication) and [b0; a]
(concatenation) into scalar features. These scalar
features are concatenated to the original input em-
bedding, which can be pased into another BiL-
STM layer for refining representations. Firstly,
a, b are modeled aligned via Eij = F (a)>F (b)
and then aligned via:

A0 = E>B and B0 = AE> (2)

Given aligned pairs (A0, B) and (B0, A), we gen-
erate three matching vectors for the concatenation
([a0

i; bi]), element-wise multiplication (a0
i �bi) and

subtraction vectors (a0
i � bi) of each pair. After

which, we apply a factorization machine (Rendle,
2010) M(x) on each matching vector.

M(x) = w0 +
nX

i=1

wi xi +
nX

i=1

nX

j=i+1

hvi, vji xi xj

(3)

where v 2 R
d⇥k, w0 2 R and wi 2 R

d. The
output M(x) is a scalar. Intuitively, this layer tries
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to learn pairwise interactions between every xi and
xj using factorized (vector) parameters v.

Factorization machines model low-rank struc-
ture within the matching vector, producing a scalar
feature. This enables efficient propagation of these
matching features to the next layer. The output of
each CAFE block is the original input to the CAFE
module, augmented with the output of the factor-
ization machines. As such, if the input sequence
is of d dimensions, then the output is d + 3 di-
mensions. Additionally, intra-attention is applied
in similar fashion as above to generate three more
features for each sequence. As a result, the output
dimensions for each word becomes d + 6.

2.4 Co-Stack Residual Affinity (CSRA)
This layer is the cornerstone of our proposed ap-
proach and is represented as the middle segment
of Figure 1 (the colorful matrices).

Co-Stacking Co-stacking refers to the fusion of
a and b across multiple hierarchies. Recall that the
affinity score between two words is typically com-
puted by sij = a>b. We extend this to a residual
formulation. More concretely, the affinity score
between both words is now computed as the max-
imum influence it has over all layers.

sij = max
X

p

X

q

a>
pi bqj (4)

where api is the i-th word for the p-th stacked layer
for a and bqj is the j-th word for the q-th stacked
layer for b. The choice of the maximum oper-
ator is intuitive and is strongly motivated by the
fact that we would like to give a high affinity for
each word pair that shows a strong match at any
of different hierarchical stages of learning repre-
sentations. Note that this layer can be interpreted
as constructing a matching tensor based on multi-
hierarchical information and selecting the most in-
formative match across all representation hierar-
chies.

Bidirectional Alignment In order to learn (bidi-
rectionally) attentive representations, we first con-
catenate all stacked outputs to form a ` ⇥ kd vec-
tor. Next, we apply the following operations to
A 2 R

`a⇥kd and B 2 R
`b⇥kd.

Ā = S>B and B̄ = AS> (5)

where Ā 2 R
`b⇥kd, B̄ 2 R

`a⇥kd are the attentive
(aligned) representations.

2.4.1 Matching and Aggregation Layer
Next, we match the attentive (aligned) represen-
tations using the subtraction, element-wise multi-
plication and concatenation of each aligned word.
Subsequently, we pass this matching vector into a
k layered BiLSTM layer.

a0
i = BiLSTMk([b̄i � ai, b̄i � ai, b̄i, ai]) (6)

b0
i = BiLSTMk([āi � bi, āi � bi, āi, bi]) (7)

The final feature representation is learned via the
summation across the temporal dimension as fol-
lows:

z = [
`aX

i=1

a0
i ;

`bX

i=1

b0
i] (8)

where [.; .] is the concatenation operator.

2.5 Output and Prediction Layer
Our model predicts using the feature vector z for
every given sequence pair. At this layer, we utilize
standard fully connected layers. The number of
output layers is typically 2-3 and is a tuned hy-
perparameter. Softmax is applied onto the final
layer. The final layer is application specific, e.g.,
k classes for classification tasks and a two-class
softmax for pointwise ranking. For all datasets,
we optimize the cross entropy loss.

3 Experimental Evaluation

In this section, we introduce our experimental
setup, baselines and results.

3.1 Datasets and Competitor Baselines
We use six public benchmark datasets for evaluat-
ing our proposed approach. This section briefly in-
troduces each dataset, along with several state-of-
the-art approaches that we compare against. Table
1 provides a summary of the datasets used in our
experiments.

Stanford Natural Language Inference (SNLI)
(Bowman et al., 2015) is a well-known dataset for
entailment classification (or natural language in-
ference). The task is to determine if two sequences
entail/contradict or are neutral to each other. This
task is a three-way classification problem. On this
dataset, we compare with several state-of-the-art
models such as BiMPM (Wang et al., 2017), ESIM
(Chen et al., 2017), DIIN (Gong et al., 2017), DR-
BiLSTM (Ghaeini et al., 2018) and CAFE (Tay
et al., 2017c).
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Dataset Task |C| Pairs
SNLI Premise-Hypothesis 3 570K
Scitail Premise-Hypothesis 2 27K
Quora Question-Question 2 400K
Twitter Tweet-Tweet 2 51K
TrecQA Question-Answer R 56K
Ubuntu Utterance-Response R 1M

Table 1: Statistics of datasets used in our experiment.
|C| denotes the number of classes and R denotes a rank-
ing formulation. Twitter stands for the TwitterURL
dataset.

Science Entailment (SciTail) (Khot et al.,
2018) is a new entailment classification dataset
that was constructed from science questions and
answers. This dataset involves two-way classifi-
cation (entail or non-entail). We compare with
DecompAtt (Parikh et al., 2016), ESIM, DGEM
(Khot et al., 2018) and CAFE.

Quora Duplicate Detection is a well-studied
paraphrase identification dataset1. We use the
splits provided by (Wang et al., 2017). The task
is to determine if two questions are paraphrases
of each other. This task is formulated as a binary
classication problem. We compare with L.D.C
(Wang et al., 2016b), BiMPM, the DecompAtt im-
plementation by (Tomar et al., 2017) (word and
char level) and DIIN.

TwitterURL (Lan et al., 2017) is another dataset
for paraphrase identification. It was constructed
using Tweets referring to news articles. This task
is also a binary classification problem. We com-
pare with (1) MultiP (Xu et al., 2014), a strong
baseline, (2) the implementation of (He and Lin,
2016) by (Lan et al., 2017) and (3) the Subword +
LM model from (Lan and Xu, 2018).

TrecQA (Wang et al., 2007) is a well-studied
dataset for answer sentence selection task (or
question-answer matching). The goal is to rank
answers given a question. This task is formu-
lated as a pointwise learning-to-rank problem.
Baselines include HyperQA (Tay et al., 2017a),
Ranking-based Multi-Perspective CNN (He et al.,
2015) implementation by (Rao et al., 2016),
BiMPM, the compare-aggregate (Wang and
Jiang, 2016a) model extension by (Bian et al.,
2017) (we denote this model as CA), IWAN

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

(Shen et al., 2017) and the recent MCAN model,
i.e., Multi-Cast Attention Networks (Tay et al.,
2018c). A leaderboard is maintained at https:
//aclweb.org/aclwiki/Question_
Answering_(State_of_the_art).

Ubuntu (Lowe et al., 2015) is a dataset for
Utterance-Response Matching and comprises 1-
million utterance-response pairs. This dataset is
based on the Ubuntu dialogue corpus. The goal
is to predict the response to a message. We use
the same setup as (Wu et al., 2016). Baselines in-
clude CNTN (Qiu and Huang, 2015), APLSTM
(dos Santos et al., 2016), MV-LSTM (Wan et al.,
2016a) and KEHNN (Wu et al., 2016). Results are
reported from (Wu et al., 2016).

Metrics For all datasets, we follow the evalua-
tion procedure from all the original papers. The
metric for SNLI, SciTail and Quora is the accuracy
metric. The metric for the TwitterURL dataset is
the F1 score. The metric for TrecQA is the Mean
Average Precision (MAP) and Mean Reciprocal
Rank (MRR) metric. The metric for Ubuntu is the
Recall@K for k = 1, 2, 5 (given 9 negative sam-
ples) and the binary classification accuracy score.

3.2 Experimental Setup
All baselines are reported from the respective pa-
pers. All models are trained with the Adam opti-
mizer (Kingma and Ba, 2014) with learning rates
tuned amongst {0.001, 0.0003, 0.0004}. Batch
size is tuned amongst {32, 64, 128, 256}. The
dimensions of the BiLSTM encoders are tuned
amongst {64, 100, 200, 300} and the number of
hidden dimensions of the prediction layers are
tuned amongst {100, 200, 300, 600}. The num-
ber of stacked recurrent layers is tuned from [2, 5]
and the number of aggregation BiLSTM layers
is tuned amongst {1, 2}. The number of predic-
tion layers is tuned from [1,3]. Parameters are
initialized using glorot uniform (Glorot and Ben-
gio, 2010). All unspecified activation functions
are ReLU activations. Word embeddings are ini-
tialized with GloVe (Pennington et al., 2014) and
fixed during training. We implement our model
in Tensorflow (Abadi et al., 2015) and use the
CUDNN implementation for all BiLSTM layers.

3.3 Experimental Results
Overall, our proposed CSRAN architecture
achieves state-of-the-art performance on all six
well-established datasets.
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On SNLI (Table 2), CSRAN achieves the best2

single model performance to date on the well-
established dataset. This demonstrates the effec-
tiveness of CSRAN, taking into consideration of
the inherent competitiveness of this well-known
benchmark. On SciTail (Table 3), CSRAN simi-
larly achieves the best performance to date on this
dataset, outperforming the existing CAFE model
by +3.4% absolute accuracy.

On Quora (Table 4), CSRAN also achieves
the best single model score, outperforming strong
baselines such as BiMPM (+1.1%) and DIIN
(+0.2%). Moreover, there is also considerable
performance improvement on the TwitterURL
dataset (Table 5) as CSRAN outperforms the exist-
ing state-of-the-art Subword + LM model (+8%)
and Deep Pairwise Word (+9.1%).

On TrecQA (Table 6), CSRAN achieves the
best performance on this dataset. CSRAN outper-
forms the existing state-of-the-art model, IWAN
(+3.2%/ + 4.6%). CSRAN also outperforms
strong competitive baselines such as BiMPM
(+5.2%/+3.6%) and MPCNN (+5.3%/+5.8%).
Finally, on Ubuntu (Table 7), CSRAN also outper-
forms many competitive models such as CNTN,
APLSTM and KEHNN. Performance improve-
ment over all metrics are ⇡ 9% � 10% compared
to the existing state-of-the-art.

Overall, CSRAN achieves state-of-the-art per-
formance on six well-studied datasets. On sev-
eral datasets, our achieved performance is not only
the highest reported score but also outperforms the
existing state-of-the-art models by a considerable
margin.

Model Acc
BiMPM (Wang et al., 2017) 87.5
ESIM (Chen et al., 2017) 88.0
DIIN (Gong et al., 2017) 88.0
DR-BiLSTM (Ghaeini et al., 2018) 88.5
CAFE (Tay et al., 2017c) 88.5
CSRAN 88.7

Table 2: Experimental results on single model SNLI
dataset.

2For fair comparison, we do not compare with (1) mod-
els that use external contextualized word embeddings, e.g.,
CoVe (McCann et al., 2017) / ELMo (Peters et al., 2018) /
generative pretraining (Radford et al.) and (2) ensemble sys-
tems. As either (1) and/or (2) would also intuitively boost the
performance of the base CSRAN model.

Model Acc
DecompAtt (Parikh et al., 2016) 72.3
ESIM (Chen et al., 2017) 70.6
DGEM (Khot et al., 2018) 77.3
CAFE (Tay et al., 2017c) 83.3
CSRAN 86.7

Table 3: Experimental results on SciTail dataset.

Model Acc
L.D.C (Wang et al., 2016b) 87.5
Word DecompAtt (Tomar et al., 2017) 87.5
BiMPM (Wang et al., 2017) 88.1
Char DecompAtt (Tomar et al., 2017) 88.4
DIIN (Gong et al., 2017) 89.0
CSRAN 89.2

Table 4: Experimental results on Quora Duplicate De-
tection dataset.

Model F1
MultiP (Xu et al., 2014) 0.536
DeepPairwiseWord (He and Lin, 2016) 0.749
Subword + LM (Lan and Xu, 2018) 0.760
CSRAN 0.840

Table 5: Experimental results on TwitterURL para-
phrase dataset.

Model MAP/MRR
HyperQA (Tay et al., 2017a) 0.784/0.865
MPCNN (Rao et al., 2016) 0.801/0.877
BiMPM (Wang et al., 2017) 0.802/0.899
CA (Bian et al., 2017) 0.821/0.899
IWAN (Shen et al., 2017) 0.822/0.889
MCAN (Tay et al., 2018c) 0.838/0.904
CSRAN 0.854/0.935

Table 6: Experimental results on TrecQA dataset.

Model Acc R@1 R@2 R@5
CNTN 0.743 0.349 0.512 0.797
LSTM 0.725 0.361 0.494 0.801
APLSTM 0.758 0.381 0.545 0.801
MV-LSTM 0.767 0.410 0.565 0.800
KEHNN 0.786 0.460 0.591 0.819
MCAN 0.834 0.551 0.684 0.875
CSRAN 0.839 0.556 0.692 0.880

Table 7: Experimental results on the Ubuntu dataset
for utterance-response matching. Baseline results are
reported from (Wu et al., 2016).
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3.3.1 Training Efficency
With many BiLSTM layers, it is natural to be
skeptical about the training efficiency of our
model. However, since we use the CUDNN im-
plementation of the BiLSTM model, the runtime
is actually very manageable. On SNLI, with a
batch size of 128, our model with 3 stacked re-
current layers and 2 aggregation BiLSTM layers
runs at ⇡17 minutes per epoch and converges in
less than 20 epochs. On SciTail, our model runs
at ⇡ 2 minutes per epoch with a batch size of 32.
This is benchmarked on a TitanXP GPU. While
our model is targetted at performance and not effi-
ciency, this section serves as a reassurance that our
model is not computationally prohibitive.

3.4 Ablation Study

In order to study the effectiveness of the key com-
ponents in our proposed architecture, we conduct
an extensive ablation study. Table 8 reports the
results on several ablation baselines. There are
three key ablation baselines as follows: (1) we re-
moved MAR from the stacked recurrent network,
(2) we removed CSRA from the network and fi-
nally (3) we removed both MAR and CSRA from
the network. All ablation baselines reported are
stacked with 3 layers. Firstly, we observe that both

Ablation SNLI SciTail TrecQA
Original 88.6 88.0 0.86/0.90
w/o MAR 88.4 82.5 0.79/0.85
w/o CSRA 88.1 86.2 0.84/0.89
w/o MAR/CSRA 88.0 83.0 0.79/0.84

Table 8: Ablation study (development score) of our key
model components on three datasets.

MAR and CSRA are critical components in our
model, i.e., removing any of them would result
in a drop in performance. Secondly, we observe
that the relative utility of CSRA and MAR de-
pends on the dataset. Removing MAR sigificantly
reduces performance on SciTail and TrecQA. On
the other hand, removing CSRA degrades the per-
formance more than MAR on SNLI. Finally, it
is good to note that, while performance degrada-
tion on SNLI development set may not seem sig-
nificant, the w/o MAR and CSRA ablation perfor-
mance baseline achieved only 87.7% accuracy on
the test set, compared to 88.7% of the original
model. This is equivalent to dropping from state-
of-the-art to the 5th ranked model. Overall, we are

able to conclude that the CSRA and MAR make
meaningful improvements to our model architec-
ture.

3.5 Effect of Stack Depth

In this section, our goals are twofold - (1) study-
ing the effect of stack depth on model performance
and (2) determining if the proposed CSRAN
model indeed helps with enabling deeper stack
depths. In order to do so, we compute the devel-
opment set performance of two models. The first
is the full CSRAN architecture and the second is
a baseline stacked model architecture. Note that
the bidirectional alignment layer and remainder of
the model architecture (highway layers, etc.) re-
main completely identical to CSRAN to make this
study as fair as possible.
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Figure 2: Relative effect of stack depth on CSRAN and
the baseline Stacked Model on SciTail dataset.

Figure 2 illustrates the model performance with
varying stack depth. As expected, the performance
of the stacked model declines when increasing the
stack depth. On the other hand, the performance
of CSRAN improves by adding additional layers.
The largest gain is when jumping from 2 layers to
3 layers. The subsequent performance improve-
ment from 3-5 layers is marginal. From this study,
the takeaway is that standard stacked architectures
are insufficient. As such, our proposed CSRA
mechanism can aid in enabling deeper models
which can result in stronger model performance3.

Next, we study the general effect of stack depth
(number of layers) on model performance. Fig-
ure 3 reports the model performance (dev accu-
racy) of our CSRAN architecture on Quora and

3The best result on Scitail was obtained with 5 layers.
Moreover, the difference in test performance between stacked
and single-layered model was considerably high (+2.5%)
even though dev performance increased by +1%.
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SNLI datasets. We observe that a stacked archi-
tecture with 3 layers is significantly better than
a single-layered architecture. The optimal devel-
opment score is 3-4 layers for SNLI and 3 layers
for Quora. However, we observe the performance
of Quora declines after 3 layers (notably it is still
higher than an unstacked model). However, the
performance on SNLI remains relatively stable.
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Figure 3: Effect of stack depth on CSRAN perfor-
mance on Quora and SNLI datasets.

4 Related Work

Learning to matching text sequences is a core and
fundamental research problem in NLP and Infor-
mation Retrieval. A wide range of NLP appli-
cations fall under this paradigm such as natural
language inference (Bowman et al., 2015; Khot
et al., 2018), paraphrase identification (Lan and
Xu, 2018), question answering (Severyn and Mos-
chitti, 2015), document search (Shen et al., 2014;
Hui et al., 2017), social media search (Rao et al.,
2018) and entity linking (Phan et al., 2017). As
such, universal text matching algorithms are gen-
erally very attractive, in lieu of the prospects of
potentially benefitting an entire suite of NLP ap-
plications.

Neural networks have been the prominent
choice for text matching. Earlier works are mainly
concerned with learning a matching function be-
tween RNN/CNN encoded representations (Sev-
eryn and Moschitti, 2015; Yu et al., 2014; Qiu
and Huang, 2015; Tay et al., 2017b, 2018b).
Models such as Recursive Neural Networks have
also been explored (Wan et al., 2016b). Sub-
sequently, attention-based models were adopted
(Rocktäschel et al., 2015; Wang et al., 2016a;
Parikh et al., 2016), demonstrating superior per-
formance relative to their non-attentive counter-
parts.

Today, the dominant state-of-the-art approaches
for text matching are mostly based on neural mod-

els configured with bidirectional attention layers
(Shen et al., 2017; Tay et al., 2017c). Bidirec-
tional attention comes in various flavours which
can be known as soft alignment (Shen et al., 2017;
Chen et al., 2017), decomposable attention (Parikh
et al., 2016), attentive pooling (dos Santos et al.,
2016) and even complex-valued attention (Tay
et al., 2018a). The key idea is to jointly soft align
text sequences such that they can be compared at
the index level. To this end, various comparison
functions have been utilized, ranging from feed-
forward neural networks (Parikh et al., 2016) to
factorization machines (Tay et al., 2017c). No-
tably, these attention (and bi-attention) mecha-
nisms are also widely adopted (or originated) from
many related sub-fields of NLP such as machine
translation (Bahdanau et al., 2014) and reading
comprehension (Xiong et al., 2016; Seo et al.,
2016; Wang and Jiang, 2016b).

Many text matching neural models are heav-
ily grounded in the compare-aggregate architec-
ture (Wang and Jiang, 2016a). In these models,
matching and comparisons occur between text se-
quences, aggregating features for making the final
prediction. Recent state-of-the-art models such
as BiMPM (Wang et al., 2017) and DIIN (Gong
et al., 2017) are representative of such architec-
tural paradigm, utilizing an attention-based match-
ing scheme and then a CNN or LSTM-based fea-
ture aggregator. Earlier works (Wan et al., 2016a;
He et al., 2015; He and Lin, 2016) exploit a similar
paradigm, albeit without the usage of attention.

Across many NLP and machine learning appli-
cations, utilizing stacked architectures is a com-
mon way to enhance representation capability of
the encoder (Sutskever et al., 2014; Graves et al.,
2013; Zhang et al., 2016; Nie and Bansal, 2017),
leading to performance improvement. Deep net-
works suffer from inherent difficulty in feature
propagation and/or vanishing/exploding gradients.
As a result, residual strategies have often been em-
ployed (He et al., 2016; Srivastava et al., 2015;
Huang et al., 2017). However, to the best of our
knowledge, this work presents a new way of resid-
ual connections, leveraging on the fact that pair-
wise formulation of the text matching task.

5 Conclusion

We proposed a deep stacked recurrent architec-
ture for general-purpose text sequence match-
ing. We proposed a new co-stack residual affin-
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ity mechanism for matching sequence pairs, lever-
aging multi-hierarchical information for learn-
ing bidirectional alignments. Our proposed
CSRAN model achieves state-of-the-art perfor-
mance across six well-studied benchmark datasets
and four different problem domains.
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Abstract

A hallmark of variational autoencoders
(VAEs) for text processing is their combi-
nation of powerful encoder-decoder models,
such as LSTMs, with simple latent distribu-
tions, typically multivariate Gaussians. These
models pose a difficult optimization problem:
there is an especially bad local optimum
where the variational posterior always equals
the prior and the model does not use the latent
variable at all, a kind of “collapse” which is
encouraged by the KL divergence term of the
objective. In this work, we experiment with
another choice of latent distribution, namely
the von Mises-Fisher (vMF) distribution,
which places mass on the surface of the unit
hypersphere. With this choice of prior and
posterior, the KL divergence term now only
depends on the variance of the vMF distribu-
tion, giving us the ability to treat it as a fixed
hyperparameter. We show that doing so not
only averts the KL collapse, but consistently
gives better likelihoods than Gaussians across
a range of modeling conditions, including
recurrent language modeling and bag-of-
words document modeling. An analysis of
the properties of our vMF representations
shows that they learn richer and more nuanced
structures in their latent representations than
their Gaussian counterparts.1

1 Introduction

Recent work has established the effectiveness of
deep generative models for a range of tasks in
NLP, including text generation (Hu et al., 2017;
Yu et al., 2017), machine translation (Zhang et al.,
2016), and style transfer (Shen et al., 2017; Zhao
et al., 2017a). Variational autoencoders, which
have been explored in past work for text mod-
eling (Miao et al., 2016; Bowman et al., 2016),

1The code and dataset are available at: https://
github.com/jiacheng-xu/vmf_vae_nlp

posit a continuous latent variable which is used
to capture latent structure in the data. Typical
VAE implementations assume the prior of this la-
tent space is a multivariate Gaussian; during train-
ing, a Kullback-Leibler (KL) divergence term in
loss function encourages the variational posterior
to approximate the prior. One major limitation of
this approach observed by past work is that the KL
term may encourage the posterior distribution of
the latent variable to “collapse” to the prior, effec-
tively rendering the latent structure unused (Bow-
man et al., 2016; Chen et al., 2016).

In this paper, we propose to use the von Mises-
Fisher (vMF) distribution rather than Gaussian for
our latent variable. vMF places a distribution over
the unit hypersphere governed by a mean parame-
ter µ and a concentration parameter . Our prior
is a uniform distribution over the unit hypersphere
( = 0) and our family of posterior distributions
treats  as a fixed model hyperparameter. Since
the KL divergence only depends on , we can
structurally prevent the KL collapse and make our
model’s optimization problem easier. We show
that this approach is actually more robust than try-
ing to flexibly learn , and a wide range of settings
for fixed  lead to good performance. Our model
systematically achieves better log likelihoods than
analogous Gaussian models while having higher
KL divergence values, showing that it more suc-
cessfully makes use of the latent variables at the
end of training.

Past work has suggested several other tech-
niques for dealing with the KL collapse in the
Gaussian case. Annealing the weight of KL term
(Bowman et al., 2016) still leaves us with brit-
tleness in the optimization process, as we show
in Section 2. Other prior work (Yang et al.,
2017; Semeniuta et al., 2017) focuses on using
CNNs rather than RNNs as the decoder in order
to weaken the model and encourage the use of the
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vMF

Figure 1: The Neural Variational RNN (NVRNN) language model based on a Gaussian prior (left) and a vMF
prior (right). The encoder model first computes the parameters for the variational approximation q�(z|x) (see
dotted box); we then sample z and generate the word sequence x given z. We show samples from N (0, I) and
vMF(·, = 100); the latter samples lie on the surface of the unit sphere. While  can be predicted from the encoder
network, we find experimentally that fixing it leads to more stable optimization and better performance.

latent code, but the gains are limited and chang-
ing the decoder in this way requires ad hoc model
engineering and careful tuning of various decoder
capacity parameters. Our method is orthogonal to
the choice of the decoder and can be combined
with any of these approaches. Using vMF distribu-
tions in VAEs also leaves us the flexibility to mod-
ify the prior in other ways, such as using a product
distribution with a uniform (Guu et al., 2018) or
piecewise constant term (Serban et al., 2017a).

We evaluate our approach in two generative
modeling paradigms. For both RNN language
modeling and bag-of-words document modeling,
we find that vMF is more robust than a Gaussian
prior, and our model learns to rely more on the la-
tent variable while achieving better held-out data
likelihoods. To better understand the contrast be-
tween these models, we design and conduct a se-
ries of experiments to understand the properties of
the Gaussian and vMF latent code spaces, which
make different structural assumptions. Unsurpris-
ingly, these latent code distributions capture much
of the same information as in a bag of words, but
we show that vMF can more readily go beyond
this, capturing ordering information more effec-
tively than a Gaussian code.

2 Variational Autoencoders for Text

Bowman et al. (2016) propose a variational au-

toencoder model for generative text modeling in-
spired by Kingma and Welling (2013). Instead
of modeling p(x) directly as in vanilla language
models, VAEs introduce a continuous latent vari-
able z and take the form p(z)p(x|z). To train a
VAE, we optimize the marginal likelihood p(x) =R

p✓(z)p(x|z)dz. The marginal log likelihood can
be written as:

log p✓(x) = KL(q�(z|x)||p✓(z|x)) + L(✓, �; x)

L(✓,�; x) = �KL(q�(z|x)||p✓(z))

+ Eq�(z|x) log p✓(x|z) (1)

q�(z|x), a variational approximation to the pos-
terior p(z|x), can be variously interpreted as a
recognition model or encoder, parameterized by
a neural network to encode the sentence x into a
dense code z. L(✓,�; x) is often called the ev-
idence lower bound (ELBO). The first term of
ELBO is the KL divergence of the approximate
posterior from prior and the second term is an ex-
pected reconstruction error.

Since KL divergence is always non-negative,
we can use L(✓, �; x) as a lower bound of
marginal likelihood log p✓(x). We optimize
L(✓,�; x), jointly learning the recognition model
parameters � and generative model parameters ✓.

As the choice of prior p(z), most previous work
uses a centered multivariate Gaussian p✓(z) =
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N (z; 0, I). Since Gaussians are a location-scale
family of distributions, using them for both the
prior and posterior allows us to apply the reparam-
eterization trick and differentiate through the sam-
pling stage z ⇠ Eq�(z|x) when optimizing ELBO
in practice (Kingma and Welling, 2013).

2.1 Case Study: NVRNN

A Neural Variational RNN (NVRNN) for lan-
guage modeling is described in Bowman et al.
(2016) and depicted in Figure 1. The goal of the
NVRNN model is to extract a high level represen-
tation of a sentence into z and reconstruct the sen-
tence with a neural language model.

We denote a sequence of words as x =
{x1, x2, · · · , xn}. Unlike in vanilla language mod-
eling, an NVRNN conditions on the latent vari-
able z at each step of the generation p✓(x|z) =
p✓(x1|z)

Qn
i=1 p(xi|x1, . . . , xi�1, z). This proba-

bility distribution is modeled using a recurrent
model like an LSTM (Hochreiter and Schmidhu-
ber, 1997) as illustrated in Figure 1. There is
nothing unique about this choice; other recurrent
sequence models like a CNN or a Transformer
(Vaswani et al., 2017) could be used.

2.2 Posterior Collapse

When training a VAE, we update ✓ and � si-
multaneously. Optimizing Eq. 1 gives two gradi-
ent terms: an update from the reconstruction loss
(likelihood of the correct labels) and an update
from the KL divergence. While the reconstruction
loss term encourages the z to convey useful in-
formation to this model, the KL term consistently
tries to regularize q(z|x) towards the prior on ev-
ery gradient update. This may trap the model in a
bad local optimum where q�(z|x) = p✓(z) for all
x: in this case, z is simply a noise source, which is
useless to the model, so the model has learned to
ignore it and will not make large enough gradient
updates to break q(z|x) out of this optimum.

Bowman et al. (2016) termed this issue KL col-
lapse and proposed an annealing schedule to han-
dle it, where the weight of the KL term is in-
creased over the course of training.2 In this way,
the model initially learns to use the latent code but
is then regularized towards the prior as training
progresses. However, this trick is not sufficient
to avert KL collapse in all scenarios, particularly

2Reweighting the KL term is also used in methods like �-
VAE (Higgins et al., 2017) and InfoVAE (Zhao et al., 2017b).

No annealing Sigmoid annealing
3-layer 1-layer 3-layer 1-layer

KL 0.00 3.37 1.05 6.52
NLL 135 129 132 125

Table 1: Development set KL and NLL values for two
NVRNN models trained on the Penn Treebank with
and without the annealing technique of Bowman et al.
(2016). The higher-capacity 3-layer model collapses
when no annealing is used, and while annealing works
to improve performance, it still does not perform as
well as the 1-layer variant. By contrast, a variant of the
1-layer model with vMF gives an NLL value of 117 and
a KL of 18.6, a stronger result relying more heavily on
the latent variable.

when strong decoders are used and z has a minor
impact on p✓(x|z).

Table 1 shows experiments in a similar setup to
that of Bowman et al. (2016). We train an NVRNN
model on the Penn Treebank with four different
hyperparameter settings. We either use a 3-layer
LSTM encoder or a 1-layer LSTM and use or do
not use a sigmoid annealing schedule (increase the
KL weight from 0 to 1 over the first 20 epochs).
We observe the best performance using the 1-layer
model with annealing. One might conclude from
this table that the annealing trick has worked since
both models achieve better performance when an-
nealing is used. But in fact, a vMF-based model
can do better than either (NLL of 117), and more-
over, we have no way of knowing that a better an-
nealing scheme might not achieve even higher per-
formance after training. Furthermore, the higher-
capacity 3-layer model can theoretically do any-
thing the 1-layer model can, so its lower perfor-
mance indicates that our training is derailed either
by overfitting or getting stuck in a local optimum
where the latent variable is unused.3

Getting the best performance out of a VAE
is, therefore, a challenging problem that requires
careful tuning of the objective function and opti-
mization procedure (Bowman et al., 2016; Zhao
et al., 2017b; Higgins et al., 2017). Beyond the
well-documented problem of KL collapse, an op-
timizer may simply get stuck in a local optimum
during training and as a result, fail to find a model
that most effectively exploits the latent variable.

The solution we advocate for in this paper is

3In our experiments, we found significant variance in
collapse frequency due to other hyperparameters includ-
ing whether the encoder is a unidirectional or bidirectional
LSTM.
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to change the distribution for the latent space and
simplify the optimization problem. In the next sec-
tion, we describe the von Mises-Fisher distribution
and its use in VAE, where it forces the model to
put the latent representations on the surface of the
unit hypersphere rather than squeezing everything
to the origin. Critically, this distribution lets us
fix the value of the KL term by fixing the distri-
bution’s concentration parameter ; this averts the
KL collapse and leads to good model performance
across two generative modeling paradigms.

3 von Mises-Fisher VAE

The von Mises-Fisher distribution is a distribution
on the (d � 1)-dimensional sphere in R

d. The
vMF distribution is defined by a direction vector
µ with ||µ||= 1 and a concentration parameter
 � 0. The PDF of the vMF distribution for the
d-dimensional unit vector x is defined as:

fd(x; µ, ) = Cd() exp(µT x) (2)

Cd() =
d/2�1

(2⇡)d/2Id/2�1()
(3)

where Iv stands for the modified Bessel function
of the first kind at order v.

Figure 1 shows samples from vMF distributions
with various µ vectors (arrows), d = 3, and  =
100. This is a high  value, leading to samples that
are tightly clustered around µ, which is the mean
and mode of the distribution. When  = 0, the
distribution degenerates to a uniform distribution
over the hypersphere independent of µ.

Past work has used vMF as an emission distri-
bution in unsupervised clustering models (Baner-
jee et al., 2005), VAE for other domains (Davidson
et al., 2018; Hasnat et al., 2017), and a generative
editing model for text (Guu et al., 2018). We focus
specifically on the empirical properties of vMF for
text modeling and conduct a systematic examina-
tion of how this prior affects VAE models com-
pared to using a Gaussian.

VAE with vMF We will use vMF as both our
prior and variational posterior in our VAE mod-
els. Otherwise, the setup for our VAE remains
the same as in the Gaussian case established in
Section 2. Our prior is the uniform distribution
vMF(·,  = 0). Since true posterior p✓(z|x) is in-
tractable, we will approximate it with a variational
posterior q�(z|x) = vMF(z; µ, ) where the mean

(a) Gaussian                 (b) vMF
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N (µ, �)
<latexit sha1_base64="Vb/PRRJ9hLRmz1nKZl/X7PrPees=">AAACAHicbVA9SwNBEJ2LXzF+nVpY2CwGIYKEOxstAzZWEsF8QO4Ie5u9ZMnu3bG7J8QjjX/FxkIRWyt/g4Xgv3EvSaGJDwYe780wMy9IOFPacb6twtLyyupacb20sbm1vWPv7jVVnEpCGyTmsWwHWFHOItrQTHPaTiTFIuC0FQwvc791R6VicXSrRwn1Be5HLGQEayN17QNPYD0gmGfX44on0lNPsb7AJ1277FSdCdAicWekXCvef30AQL1rf3q9mKSCRppwrFTHdRLtZ1hqRjgdl7xU0QSTIe7TjqERFlT52eSBMTo2Sg+FsTQVaTRRf09kWCg1EoHpzM9V814u/ud1Uh1e+BmLklTTiEwXhSlHOkZ5GqjHJCWajwzBRDJzKyIDLDHRJrOSCcGdf3mRNM+qrlN1b9xyrQJTFOEQjqACLpxDDa6gDg0gMIZHeIYX68F6sl6tt2lrwZrN7MMfWO8/cuCYcA==</latexit><latexit sha1_base64="mn7FVZ/eOdhmayzk+38W7f7q+kw=">AAACAHicbVBNS8NAEN34WetX1IMHL8EiVJCSeNFjwYsnqWA/oAllst20S3c3YXcjlJCLf8WLB0W8+jO8+W/ctDlo64OBx3szzMwLE0aVdt1va2V1bX1js7JV3d7Z3du3Dw47Kk4lJm0cs1j2QlCEUUHammpGeokkwENGuuHkpvC7j0QqGosHPU1IwGEkaEQxaCMN7GOfgx5jYNldXvd5euErOuJwPrBrbsOdwVkmXklqqERrYH/5wxinnAiNGSjV99xEBxlITTEjedVPFUkAT2BE+oYK4EQF2eyB3DkzytCJYmlKaGem/p7IgCs15aHpLM5Vi14h/uf1Ux1dBxkVSaqJwPNFUcocHTtFGs6QSoI1mxoCWFJzq4PHIAFrk1nVhOAtvrxMOpcNz214916tWS/jqKATdIrqyENXqIluUQu1EUY5ekav6M16sl6sd+tj3rpilTNH6A+szx9JkZYY</latexit>

N (µ0, �0)
<latexit sha1_base64="V07EaOwL2hngjh+ao4Lg9H0ZA4I="></latexit><latexit sha1_base64="IUiEzLIxATEk6ubzOe1mFd1bcIM="></latexit>

N (µ0, �0)
<latexit sha1_base64="V07EaOwL2hngjh+ao4Lg9H0ZA4I="></latexit><latexit sha1_base64="IUiEzLIxATEk6ubzOe1mFd1bcIM="></latexit>

x
<latexit sha1_base64="ArQDmPuZhEWjzhLfwzv7Yl0y4Nk=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKujXYGbCwTMBdIljA7OZuMmZ1dZmbFuOQJbCwUsfUZfBI7S9/EyaXQxB8GPv7/HOacEySCa+O6X05uZXVtfSO/Wdja3tndK+4fNHScKoZ1FotYtQKqUXCJdcONwFaikEaBwGYwvJrkzTtUmsfyxowS9CPalzzkjBpr1e67xZJbdqciy+DNoXT58fBdAYBqt/jZ6cUsjVAaJqjWbc9NjJ9RZTgTOC50Uo0JZUPax7ZFSSPUfjYddExOrNMjYazsk4ZM3d8dGY20HkWBrYyoGejFbGL+l7VTE174GZdJalCy2UdhKoiJyWRr0uMKmREjC5QpbmclbEAVZcbepmCP4C2uvAyNs7Lnlr2aV6q4MFMejuAYTsGDc6jANVShDgwQHuEZXpxb58l5dd5mpTln3nMIf+S8/wBT2I91</latexit><latexit sha1_base64="LhVct7gVOonX0WkdvspbXq5uSSU=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9EjixSMkFkigIdtlCivbbbO7NZKGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczv3OIyrNE3lvpikGMR1JHnFGjZVaT4Nqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQT5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXstr9ZwizjKcAbncAkeXEMD7qAJPjBAeIZXeHMenBfn3flYtpacYuYU/sD5/AHf34zn</latexit>

x
<latexit sha1_base64="ArQDmPuZhEWjzhLfwzv7Yl0y4Nk=">AAAB6HicbZC7SgNBFIbPxluMt6ilzWAQrMKujXYGbCwTMBdIljA7OZuMmZ1dZmbFuOQJbCwUsfUZfBI7S9/EyaXQxB8GPv7/HOacEySCa+O6X05uZXVtfSO/Wdja3tndK+4fNHScKoZ1FotYtQKqUXCJdcONwFaikEaBwGYwvJrkzTtUmsfyxowS9CPalzzkjBpr1e67xZJbdqciy+DNoXT58fBdAYBqt/jZ6cUsjVAaJqjWbc9NjJ9RZTgTOC50Uo0JZUPax7ZFSSPUfjYddExOrNMjYazsk4ZM3d8dGY20HkWBrYyoGejFbGL+l7VTE174GZdJalCy2UdhKoiJyWRr0uMKmREjC5QpbmclbEAVZcbepmCP4C2uvAyNs7Lnlr2aV6q4MFMejuAYTsGDc6jANVShDgwQHuEZXpxb58l5dd5mpTln3nMIf+S8/wBT2I91</latexit><latexit sha1_base64="LhVct7gVOonX0WkdvspbXq5uSSU=">AAAB6HicbVBNT8JAEJ3iF+IX6tHLRmLiibRe9EjixSMkFkigIdtlCivbbbO7NZKGX+DFg8Z49Sd589+4QA8KvmSSl/dmMjMvTAXXxnW/ndLG5tb2Tnm3srd/cHhUPT5p6yRTDH2WiER1Q6pRcIm+4UZgN1VI41BgJ5zczv3OIyrNE3lvpikGMR1JHnFGjZVaT4Nqza27C5B14hWkBgWag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFoTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQT5FymmUHJlouiTBCTkPnXZMgVMiOmllCmuL2VsDFVlBmbTcWG4K2+vE7aV3XPrXstr9ZwizjKcAbncAkeXEMD7qAJPjBAeIZXeHMenBfn3flYtpacYuYU/sD5/AHf34zn</latexit>

y
<latexit sha1_base64="5oEBU6/J0uEMhIwbKY5U1r5C6l0=">AAAB6HicbZC7SwNBEMbn4iuJr6ilzWIQrMKdjZYBG8sEzAOSEPb25pI1e3vH7p5wHKktbCwUsRP/JDv/GzePQhM/WPjxfTPszPiJ4Nq47rdT2Njc2t4plsq7e/sHh5Wj47aOU8WwxWIRq65PNQousWW4EdhNFNLIF9jxJzezvPOASvNY3pkswUFER5KHnFFjrWY2rFTdmjsXWQdvCdV66TH4AIDGsPLVD2KWRigNE1TrnucmZpBTZTgTOC33U40JZRM6wp5FSSPUg3w+6JScWycgYazsk4bM3d8dOY20ziLfVkbUjPVqNjP/y3qpCa8HOZdJalCyxUdhKoiJyWxrEnCFzIjMAmWK21kJG1NFmbG3KdsjeKsrr0P7sua5Na/pVesuLFSEUziDC/DgCupwCw1oAQOEJ3iBV+feeXbenPdFacFZ9pzAHzmfP1j9jrw=</latexit><latexit sha1_base64="3XZZcnMrWfXVmS75j/o68eB3ZSk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GPBi8cW7Ae0oWy2k3btZhN2N0II/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsbuH3nlBpHssHkyXoR3QiecgZNVZqZ6Nqza27S5BN4hWkBgVao+rXcByzNEJpmKBaDzw3MX5OleFM4LwyTDUmlM3oBAeWShqh9vPloXNyZZUxCWNlSxqyVH9P5DTSOosC2xlRM9Xr3kL8zxukJmz4OZdJalCy1aIwFcTEZPE1GXOFzIjMEsoUt7cSNqWKMmOzqdgQvPWXN0n3pu65da/t1ZpuEUcZLuASrsGDW2jCPbSgAwwQnuEV3pxH58V5dz5WrSWnmDmHP3A+fwDhY4zo</latexit>

y
<latexit sha1_base64="5oEBU6/J0uEMhIwbKY5U1r5C6l0=">AAAB6HicbZC7SwNBEMbn4iuJr6ilzWIQrMKdjZYBG8sEzAOSEPb25pI1e3vH7p5wHKktbCwUsRP/JDv/GzePQhM/WPjxfTPszPiJ4Nq47rdT2Njc2t4plsq7e/sHh5Wj47aOU8WwxWIRq65PNQousWW4EdhNFNLIF9jxJzezvPOASvNY3pkswUFER5KHnFFjrWY2rFTdmjsXWQdvCdV66TH4AIDGsPLVD2KWRigNE1TrnucmZpBTZTgTOC33U40JZRM6wp5FSSPUg3w+6JScWycgYazsk4bM3d8dOY20ziLfVkbUjPVqNjP/y3qpCa8HOZdJalCyxUdhKoiJyWxrEnCFzIjMAmWK21kJG1NFmbG3KdsjeKsrr0P7sua5Na/pVesuLFSEUziDC/DgCupwCw1oAQOEJ3iBV+feeXbenPdFacFZ9pzAHzmfP1j9jrw=</latexit><latexit sha1_base64="3XZZcnMrWfXVmS75j/o68eB3ZSk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m82GPBi8cW7Ae0oWy2k3btZhN2N0II/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O6Wt7Z3dvfJ+5eDw6PikenrW1XGqGHZYLGLVD6hGwSV2DDcC+4lCGgUCe8HsbuH3nlBpHssHkyXoR3QiecgZNVZqZ6Nqza27S5BN4hWkBgVao+rXcByzNEJpmKBaDzw3MX5OleFM4LwyTDUmlM3oBAeWShqh9vPloXNyZZUxCWNlSxqyVH9P5DTSOosC2xlRM9Xr3kL8zxukJmz4OZdJalCy1aIwFcTEZPE1GXOFzIjMEsoUt7cSNqWKMmOzqdgQvPWXN0n3pu65da/t1ZpuEUcZLuASrsGDW2jCPbSgAwwQnuEV3pxH58V5dz5WrSWnmDmHP3A+fwDhY4zo</latexit>

µ
<latexit sha1_base64="Ow/7BpI0blvX54diWwtluAnM+UY=">AAAB6nicbZC7SwNBEMbnfCbxFbW0WQyCVbiz0TJgYxnRPCAJYW9vL1myu3fszgnhSG1lY6GIjYV/kZ3/jZtHoYkfLPz4vhl2ZsJUCou+/+2trW9sbm0XiqWd3b39g/LhUdMmmWG8wRKZmHZILZdC8wYKlLydGk5VKHkrHF1P89YDN1Yk+h7HKe8pOtAiFoyis+66KuuXK37Vn4msQrCASq34GH0AQL1f/upGCcsU18gktbYT+Cn2cmpQMMknpW5meUrZiA54x6GmittePht1Qs6cE5E4Me5pJDP3d0dOlbVjFbpKRXFol7Op+V/WyTC+6uVCpxlyzeYfxZkkmJDp3iQShjOUYweUGeFmJWxIDWXorlNyRwiWV16F5kU18KvBbVCp+TBXAU7gFM4hgEuowQ3UoQEMBvAEL/DqSe/Ze/Pe56Vr3qLnGP7I+/wBzo+PlQ==</latexit><latexit sha1_base64="M7MPKdaZCbLFnKrqB8vswjpiNlk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stAzYWEY0H5AcYW8zlyzZ3Tt294Rw5CfYWChi6y+y89+4Sa7QxAcDj/dmmJkXpYIb6/vfXmljc2t7p7xb2ds/ODyqHp+0TZJphi2WiER3I2pQcIUty63AbqqRykhgJ5rczv3OE2rDE/VopymGko4Ujzmj1kkPfZkNqjW/7i9A1klQkBoUaA6qX/1hwjKJyjJBjekFfmrDnGrLmcBZpZ8ZTCmb0BH2HFVUognzxakzcuGUIYkT7UpZslB/T+RUGjOVkeuU1I7NqjcX//N6mY1vwpyrNLOo2HJRnAliEzL/mwy5RmbF1BHKNHe3EjammjLr0qm4EILVl9dJ+6oe+PXgPqg1/CKOMpzBOVxCANfQgDtoQgsYjOAZXuHNE96L9+59LFtLXjFzCn/gff4AVwSNwQ==</latexit>

µ
<latexit sha1_base64="Ow/7BpI0blvX54diWwtluAnM+UY=">AAAB6nicbZC7SwNBEMbnfCbxFbW0WQyCVbiz0TJgYxnRPCAJYW9vL1myu3fszgnhSG1lY6GIjYV/kZ3/jZtHoYkfLPz4vhl2ZsJUCou+/+2trW9sbm0XiqWd3b39g/LhUdMmmWG8wRKZmHZILZdC8wYKlLydGk5VKHkrHF1P89YDN1Yk+h7HKe8pOtAiFoyis+66KuuXK37Vn4msQrCASq34GH0AQL1f/upGCcsU18gktbYT+Cn2cmpQMMknpW5meUrZiA54x6GmittePht1Qs6cE5E4Me5pJDP3d0dOlbVjFbpKRXFol7Op+V/WyTC+6uVCpxlyzeYfxZkkmJDp3iQShjOUYweUGeFmJWxIDWXorlNyRwiWV16F5kU18KvBbVCp+TBXAU7gFM4hgEuowQ3UoQEMBvAEL/DqSe/Ze/Pe56Vr3qLnGP7I+/wBzo+PlQ==</latexit><latexit sha1_base64="M7MPKdaZCbLFnKrqB8vswjpiNlk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5stAzYWEY0H5AcYW8zlyzZ3Tt294Rw5CfYWChi6y+y89+4Sa7QxAcDj/dmmJkXpYIb6/vfXmljc2t7p7xb2ds/ODyqHp+0TZJphi2WiER3I2pQcIUty63AbqqRykhgJ5rczv3OE2rDE/VopymGko4Ujzmj1kkPfZkNqjW/7i9A1klQkBoUaA6qX/1hwjKJyjJBjekFfmrDnGrLmcBZpZ8ZTCmb0BH2HFVUognzxakzcuGUIYkT7UpZslB/T+RUGjOVkeuU1I7NqjcX//N6mY1vwpyrNLOo2HJRnAliEzL/mwy5RmbF1BHKNHe3EjammjLr0qm4EILVl9dJ+6oe+PXgPqg1/CKOMpzBOVxCANfQgDtoQgsYjOAZXuHNE96L9+59LFtLXjFzCn/gff4AVwSNwQ==</latexit>

µ0
<latexit sha1_base64="KmVvxc+m8hEXOeZD/iuYF2PG400=">AAACAnicbVA9SwNBEJ2LX0n8OrUSm8MgWIU7Gy0DNpYRzAfkYtjbTJIlu3vH7p4QjmAj+DdsbCwUsfVX2Plv3HwUmvhg4PHeDDPzooQzbXz/28mtrK6tb+QLxc2t7Z1dd2+/ruNUUazRmMeqGRGNnEmsGWY4NhOFREQcG9HwcuI37lBpFssbM0qwLUhfsh6jxFip4x6GIr3NQpQ6VSiIGWRhopjA8bjjlvyyP4W3TII5KVUKj90nAKh23K+wG9NUoDSUE61bgZ+YdkaUYZTjuBimGhNCh6SPLUslEajb2fSFsXdila7Xi5Utabyp+nsiI0LrkYhs5+RKvehNxP+8Vmp6F+2MySQ1KOlsUS/lnom9SR5elymkho8sIVQxe6tHB0QRamxqRRtCsPjyMqmflQO/HFwHpYoPM+ThCI7hFAI4hwpcQRVqQOEenuEV3pwH58V5dz5mrTlnPnMAf+B8/gAmepoB</latexit><latexit sha1_base64="u4g1fRgAJxmx7e9K22B6Dd0aZ9E=">AAACAnicbVDLSsNAFJ34rPUVdSVugkVwVRI3uiy4cVnBPqCpZTK9aYfOTMI8hBKCG3/FjQtF3PoV7vwbJ20W2nrgwuGce7n3nihlVGnf/3ZWVtfWNzYrW9Xtnd29fffgsK0SIwm0SMIS2Y2wAkYFtDTVDLqpBMwjBp1ocl34nQeQiibiTk9T6HM8EjSmBGsrDdzjkJv7LAShjASO9TgLU0k55PnArfl1fwZvmQQlqaESzYH7FQ4TYjgITRhWqhf4qe5nWGpKGOTV0ChIMZngEfQsFZiD6mezF3LvzCpDL06kLaG9mfp7IsNcqSmPbGdxpVr0CvE/r2d0fNXPqEiNBkHmi2LDPJ14RR7ekEogmk0twURSe6tHxlhiom1qVRtCsPjyMmlf1AO/HtwGtYZfxlFBJ+gUnaMAXaIGukFN1EIEPaJn9IrenCfnxXl3PuatK045c4T+wPn8Aa7gmC0=</latexit>

µ0
<latexit sha1_base64="KmVvxc+m8hEXOeZD/iuYF2PG400=">AAACAnicbVA9SwNBEJ2LX0n8OrUSm8MgWIU7Gy0DNpYRzAfkYtjbTJIlu3vH7p4QjmAj+DdsbCwUsfVX2Plv3HwUmvhg4PHeDDPzooQzbXz/28mtrK6tb+QLxc2t7Z1dd2+/ruNUUazRmMeqGRGNnEmsGWY4NhOFREQcG9HwcuI37lBpFssbM0qwLUhfsh6jxFip4x6GIr3NQpQ6VSiIGWRhopjA8bjjlvyyP4W3TII5KVUKj90nAKh23K+wG9NUoDSUE61bgZ+YdkaUYZTjuBimGhNCh6SPLUslEajb2fSFsXdila7Xi5Utabyp+nsiI0LrkYhs5+RKvehNxP+8Vmp6F+2MySQ1KOlsUS/lnom9SR5elymkho8sIVQxe6tHB0QRamxqRRtCsPjyMqmflQO/HFwHpYoPM+ThCI7hFAI4hwpcQRVqQOEenuEV3pwH58V5dz5mrTlnPnMAf+B8/gAmepoB</latexit><latexit sha1_base64="u4g1fRgAJxmx7e9K22B6Dd0aZ9E=">AAACAnicbVDLSsNAFJ34rPUVdSVugkVwVRI3uiy4cVnBPqCpZTK9aYfOTMI8hBKCG3/FjQtF3PoV7vwbJ20W2nrgwuGce7n3nihlVGnf/3ZWVtfWNzYrW9Xtnd29fffgsK0SIwm0SMIS2Y2wAkYFtDTVDLqpBMwjBp1ocl34nQeQiibiTk9T6HM8EjSmBGsrDdzjkJv7LAShjASO9TgLU0k55PnArfl1fwZvmQQlqaESzYH7FQ4TYjgITRhWqhf4qe5nWGpKGOTV0ChIMZngEfQsFZiD6mezF3LvzCpDL06kLaG9mfp7IsNcqSmPbGdxpVr0CvE/r2d0fNXPqEiNBkHmi2LDPJ14RR7ekEogmk0twURSe6tHxlhiom1qVRtCsPjyMmlf1AO/HtwGtYZfxlFBJ+gUnaMAXaIGukFN1EIEPaJn9IrenCfnxXl3PuatK045c4T+wPn8Aa7gmC0=</latexit>

Figure 2: Visualization of optimization of how q varies
over time for a single example during learning. In the
Gaussian case, the KL term tends to pull the model to-
wards the prior (moving from µ, � to µ0, �0), whereas
in the vMF case there is no such pressure towards a
single distribution.

direction µ is the output of encoding neural net-
works (Figure 1, right side) and  is treated as a
constant.

Before we can implement a VAE, we need to
derive an expression for KL divergence in order to
optimize ELBO (Equation 1) and give a sampling
algorithm that admits the reparameterization trick
(Kingma and Welling, 2013).

KL divergence With vMF(·, 0) as our prior, the
KL divergence is:4

KL(vMF(µ, )||vMF(·, 0)) = 
Id/2()

Id/2�1()

+

✓
d

2
� 1

◆
log  � d

2
log(2⇡) � log Id/2�1()

+
d

2
log ⇡ + log 2 � log �

✓
d

2

◆

Critically, this only depends on , not on µ.  will
be treated as a fixed hyperparameter, so this term
will be constant for our model; KL collapse will
therefore be rendered impossible.

Figure 2 shows a visualization of the learning
trajectories of Gaussian and vMF VAE. For the
Gaussian VAE, the KL divergence in the objec-
tive function tends to pull the posterior towards the
prior centered at the origin and, therefore, make
the optimization difficult as mentioned before. For
the vMF VAE, given fixed , there is no such vac-
uous state and µ can vary freely.

4Our KL divergence agrees with that of Davidson et al.
(2018) (see their appendix for a derivation), and we have ver-
ified it empirically. The equation in Guu et al. (2018) gives
slightly different KL values, though differences are small
(<5%) for most  and dimension values we encounter.
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Figure 3: Visualization of the interaction between
, KL, and dimensionality in vMF. Cos represents
the cosine similarity between µ and samples from
vMFd(µ, ) which reflects how disperse the distribu-
tion is. KL is defined as KL with a uniform vMF prior,
KL(vMFd(µ, )||vMF(·, 0)). Higher  values yield
higher cosine similarities, but also higher KL costs.

Figure 3 shows the KL value and concentra-
tion of vMF(µ, ) for two different dimensional-
ities. KL increases monotonically with , as does
concentration measured by cosine similarity. To
get a fixed cosine dispersion as dimensionality in-
creases, higher  values are needed, resulting in
higher KL values.

Sampling from vMF Following the implemen-
tation of Guu et al. (2018), we use the rejection
sampling scheme of Wood (1994) to sample a
“change magnitude” w. Our sample is then given
by z = wµ + v

p
1 � w2, where v is a randomly

sampled unit vector tangent to the hypersphere at
µ. Neither v nor w depends on µ, so we can now
take gradients of z with respect to µ as required.

4 Experiments on Language Modeling

We first evaluate our vMF approach in the
NVRNN setting. We will return to this model and
analyze its properties further in Sections 6 and 7
after showing experiments on document modeling.

Dataset For NVRNN, we use the Penn Treebank
(Marcus et al., 1993), also used in Bowman et al.
(2016), and Yelp 2013 (Xu et al., 2016). Examples
in the Yelp dataset are much longer and more di-
verse than those from PTB, requiring more under-
standing of high-level semantics to generate a co-
herent sequence. Yelp has a long tail of very long
reviews, so we truncate the examples to a maxi-
mum length of 50 words; this still gives an aver-
age length over twice as long as in the PTB setting.

Name Train Dev Test Len Vocab

PTB 42068 3370 3761 21.1 10K
Yelp 62522 7773 8671 49.5 15K

20NG 11268 - 7505 96.1 2K
RC 794414 - 10000 116.8 10K

Table 2: Statistics of the datasets used in our experi-
ments. Len stands for the average length of an example.
Vocab is the vocabulary size; these follow prior work.

Statistics about all datasets used in this paper are
shown in Table 2.

Settings We evaluate our NVRNN as in Bow-
man et al. (2016) and explore two different set-
tings. In the Standard setting, the input to the
RNN at each time step is the concatenation of the
latent code z and the ground truth word from the
last time step, while the Inputless setting does not
use the prior word. The more powerful decoder
of the Standard setting makes the latent represen-
tations inherently less useful. In the Inputless set-
ting, the decoder needs to predict the whole se-
quence with only the help of given latent code. In
this case, a high-quality representation of the sen-
tence is badly needed and the model is driven to
learn it.

Our implementation of VAE uses a one layer
unidirectional LSTM as both encoder and decoder.
We use an embedding size of 100 and hidden units
of size 400 in the LSTM. The dimension of the la-
tent code is chosen from {25, 50, 100} by tuning
on the development set. We use SGD to optimize
all models with decayed learning rate and gradient
clipping. For Yelp, the sentiment bit, which ranges
from 1 to 5, is also embedded into a 50 dimension
vector and input for every time step of the decod-
ing phase.

Results Experimental results of the NVRNN are
shown in Table 3. We report negative log likeli-
hood (NLL)5 and perplexity (PPL) on the test set.
We follow the implementation reported in Bow-
man et al. (2016) where the KL term weight is
annealed for the Gaussian VAE; vMF VAE works
well without weight annealing. The vMF distri-
bution gives a performance boost in all datasets
in both the Standard and Inputless settings. Even
in the Standard setting, our model is able to suc-
cessfully use nonzero KL values to achieve better

5Reported values are actually a lower bound on the true
NLL, computed from ELBO by sampling z.
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Model
PTB Yelp

Standard Inputless Standard Inputless
NLL PPL NLL PPL NLL PPL NLL PPL

RNNLM (2016) 100 ( – ) 116 135 ( – ) >600 – – – –
G-VAE (2016) 101 (2) 119 125 (15) 380 – – – –

RNNLM (Ours) 100 ( – ) 114 134 ( – ) 596 199 ( – ) 55 300 ( – ) 432
G-VAE (Ours) 99 (4.4) 109 125 (6.3) 379 199 (0.5) 55 274 (13.4) 256

vMF-VAE (Ours) 96 (5.7) 98 117 (18.6) 262 198 (6.4) 54 242 (48.5) 134

Table 3: Experimental results of NVRNN on the test sets of PTB and Yelp. The upper RNNLM and G-VAE shows
the result from Bowman et al. (2016). KL divergence is shown in the parenthesis, along with total NLL. Best
results are in bold. vMF consistently uses higher KL term weights but achieves comparable or better NLL and
perplexity values across all four settings.

Figure 4: Comparison of Gaussian- and vMF-NVRNN
with different hyper-parameters. All models are trained
on PTB in the Inputless setting where the latent dimen-
sion is 50. G-↵ indicates Gaussian VAE with KL an-
nealed by the given constant ↵, and V- indicates VAE
with  set to the given value. The green bar reflects the
amount of KL loss while the total height reflects the
whole objective. Numbers above bars are perplexity.
vMF is more highly tunable and also achieves stronger
results across a wide range of  values.

perplexities, and even when KL collapse does not
appear to be the case (e.g., G-VAE on the PTB-
Standard setting), a Gaussian family of distribu-
tions results in lower KLs and worse log likeli-
hoods, possibly due to optimization challenges.
In the Inputless setting, we see large gains: vMF
VAE reduces PPL from 379 to 262 in PTB, and
from 256 to 134 in Yelp compared to Gaussian
VAE.

Trade-off Comparison Besides the overall per-
plexity, we are also interested in the trade-off be-

tween reconstruction loss and KL, and the con-
tribution of KL to the whole objective. Figure 4
shows the ability of our model to explicitly control
the balance between the KL and the reconstruction
term. First, we “permanently” anneal the Gaussian
VAE by setting the weight of the KL term to a con-
stant smaller than 1 (0.2 and 0.5 in our case). We
find that this trick does mitigate the KL collapse,
but the overall performance is worse. Therefore,
this is not only a numerical game about the KL
vs. NLL trade-off but a deeper challenge of how
to structure models to learn effective latent repre-
sentations.

For vMF VAE, when we gradually increase the
value of , the concentration of the distribution
around the mean direction µ is higher and samples
from vMF are closer to µ. The model achieves
the best perplexity when  = 80. The reconstruc-
tion error is bounded around 4.5 due to the dif-
ficulty of the task and limited capacity of LSTM
decoder. While  is a hyperparameter that needs
to be tuned, the model is overall not very sensitive
to it, and we show in Section 7 that reasonable 
values transfer across similar tasks.

5 Experiments on Document Modeling

We also investigate how vMF VAE performs in a
different setting, one less plagued by the KL col-
lapse issue. Specifically, the Neural Variational
Document Model (NVDM), proposed by Miao
et al. (2016), is a VAE-based unsupervised doc-
ument model. This model follows the VAE frame-
work introduced in Section 2. Our document rep-
resentation is an indicator vector x of word pres-
ence or absence in the document. Since this is
a fixed-size representation, we use 2-layer MLPs
with 400 hidden units for both the encoder q(z|x)
and decoder p(x|z); the decoder places a simple
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Model Dim 20NG RCV1

fDARN (2014) 50 917 724
200 - 598

G-NVDM (2016) 50 836 563
200 852 550

v-NVDM (Ours)
25 793 558
50 830 529

200 851 609

Table 4: Test set perplexities for the document mod-
eling task. Feedforward Deep Auto Regressive Neu-
ral Network (fDARN) is implemented by Mnih and
Gregor (2014). Gaussian-based NVDM (G-NVDM) is
proposed in Miao et al. (2016). Dim indicates the di-
mension of the latent code. Our v-NVDM model out-
performs past models by a substantial margin.

multinomial distribution over words in the vocabu-
lary, and the probability of a document is the prod-
uct of the probabilities of its words.

Dataset For NVDM, we use two standard news
corpus, 20 News Groups (20NG) and the Reuters
RCV1-v2, which were used in Miao et al. (2016).6

Results Experimental results7 are shown in Ta-
ble 4. In contrast with NVRNN, the NVDM fully
relies on the power of latent code to predict the
word distribution, so we never observe a KL col-
lapse, yet vMF still achieves better performance
than Gaussian. As shown in Figure 3, in order
to keep the same amount of dispersion in samples
from the variational posterior, larger latent dimen-
sions need larger  values and correspondingly
larger KL term values. For 20NG, which is much
smaller than RCV1, smaller dimensions therefore
give better performance. For both datasets, the set-
tings of  = 100, dim = 25 and  = 150, dim 2
{50, 200} work well.

6 What do our VAEs encode?

We design more probing tasks to demonstrate
what is encoded in latent representations induced
by vMF VAE. One additional model variant we ex-
plore here is the NVRNN-BoW model. This is a
variant of NVRNN where the decoder additionally

6The preprocessed version can be downloaded from
https://github.com/ysmiao/nvdm

7We do not compare to results from Serban et al. (2017a).
Compared to our current results, that work reports very strong
performance on 20NG and very weak performance on RCV1;
we believe they either used different preprocessing or made
a mistake in reporting the results, but could not confirm this
with the authors.

P (x|z, BoW)
Standard Inputless

NLL PPL NLL PPL

RNNLM 79 (–) 43 106 (–) 152
G-VAE 79 (0.0) 43 106 (0.4) 153
v-VAE 73 (0.2) 33 93 (11.4) 82

Table 5: Experimental results of NVRNN-BoW on
PTB; i.e., the decoder also conditions on a bag of words
representation of the sentence to generate. In this case,
the Gaussian models exhibit KL collapse but vMF can
still learn effectively.

conditions on the vector BoW = 1
n

Pn
i=1 e(xi),

the average word embedding value of the sen-
tence x. While an artificial setting, this lets us
see how effectively the latent code can capture in-
formation other than simple word choice by mak-
ing a form of this information independently avail-
able. Table 5 shows results in this setting, where
once again we see the KL collapse problem for
the Gaussian models and better performance from
vMF on perplexity in both the Standard and Input-
less settings.

Is the latent code more than a bag of words?
For all of these models, one hypothesis is that
the encoder may be learning to memorize the bag
of words and then preferentially generate words
in that bag from the decoder. To verify this, we
investigate whether the BoW representation and
the learned latent code can be reconstructed from
each other. Specifically, given a sentence x we
can compute BoW as defined above and µ =
enc(x), the latent encoding of x as represented
by the mean vector output by the encoder. We
can use a simple multilayer perceptron to to try
to map from the bag of words to the latent code:
µ̂ = MLP (BoW ), then learn the parameters of
the MLP by minimizing kµ̂ � µk2 on a sample.
The same process can be used to learn a mapping
from µ back to the bag of words.

Table 6 shows averaged cosine similarities of
our reconstructions under both Gaussian and vMF
models. For vMF, µ can reconstruct the bag-of-
words more accurately than the bag-of-words can
reconstruct µ, indicating that the latent code in
vMF captures more information beyond the bag
of words.

We repeat this experiment in a separate
NVRNN model where the decoder can explicitly
condition on the BoW vector described above.
The results are shown in the right column of Ta-
ble 6. Our model, v-VAE, achieves a lower cosine
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Model NVRNN NVRNN-BoW
Setting µ ! BoW BoW ! µ µ ! BoW

G-VAE 0.74 0.74 0.32
v-VAE 0.77 0.57 0.23

Table 6: Average cosine similarity when trying to re-
construct the latent code µ from the bag of words and
vice versa. In vMF, the latent code contains more infor-
mation beyond the bag of words, as shown by the lower
cosine similarity when predicting BoW ! µ (0.57).
When the latent code is learned in a model conditioned
on the bag of words (right column), it predicts the bag
of words much less well, indicating that the model suc-
cessfully learns orthogonal information.

similarity than G-VAE (0.23 vs. 0.32), indicating
that it capturing less redundant information and
using the latent space to more efficiently model
other properties of the data.

Sensitivity to word order Table 6 shows that
NVRNN with vMF encodes information beyond
the bag of words; a natural hypothesis is that it
is encoding word order. We can more directly in-
vestigate this in the context of both NVRNN and
NVRNN-BoW settings. Inspired by Zhao et al.
(2017a), we propose an experiment probing the
sensitivity to randomly swapping adjacent pairs of
words for the encoding in the Inputless setting on
PTB. We vary the probability of swapping each
word pair and see how the latent code changes as
the number of swaps increases. Ideally, our mod-
els should capture ordering information and there-
fore be sensitive to this change.

Figure 5 shows the results. v-VAE’s representa-
tions are more sensitive than those of the G-VAE:
they change faster as swaps become more likely.8

In the NVRNN-BoW setting, we see that the mod-
els are even more sensitive. vMF enables us to
more easily learn this kind of desirable informa-
tion in our sentence encodings.

7 Controlling Variance with 

A core aspect of our approach so far has been treat-
ing  as a fixed hyperparameter. Fixing  is ben-
eficial from an optimization standpoint: it makes
it more difficult for the model to get stuck in local
optima. But it also reduces the model’s flexibility,
since we can no longer predict per-example  val-
ues, and it introduces another parameter that the

8The Gaussian VAE here makes very little use of the latent
variable, hence why the representations change very little.

Figure 5: Sensitivity of latent codes to swapping ad-
jacent words of encoding sequence. Cosine similar-
ity is measured between the latent code (encoded mean
vector) of the original sentence and the sentence after
swaps are applied. We see that vMF is more highly sen-
sitive to swaps in both the NVRNN and NVRNN-BoW
settings, indicating that its latent space likely encodes
more ordering information.

system designer must tune.
Fortunately, a wide range of  values appear

to work well for the tasks we consider. Figure 6
shows how the concentration parameter  changes
the results on PTB when the latent dimension and
other hyperparameters are held fixed. We have
ordered the tasks left-to-right from “hardest” to
“easiest” in terms of necessity of latent represen-
tation: the Inputless setting needs heavy informa-
tion from the latent code to reconstruct the sen-
tence, whereas the Standard-BoW setting has an
extremely strong decoder to predict the next word.
We see that in each of these cases, a wide range of
 values works, and moreover reasonable  values
transfer between the two Standard and between the
two Inputless settings, indicating that the overall
approach is not highly sensitive to these hyperpa-
rameter values.

Brittleness of Learning  Throughout this
work, we have treated  as a fixed parameter.
However, we can treat  in the same way as � in
the Gaussian case and learn it on a per-instance
basis. The KL divergence of vMF is differentiable
with respect to  given gradients of the modified
Bessel function of the first kind,9 allowing us to
change the concentration on a per-instance basis.
However, this reintroduces the issue of KL col-
lapse: the KL term will encourage  to be as low

9
rId() = 1

2 (Id�1() + Id+1())
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Figure 6: Perplexity of v-VAE in different settings with
different  values when the latent dimension is 50.
Darker colors correspond to perplexity values closer to
the best observed for that setting. For each task, we
see that there is a range of  values that work well, and
these transfer between comparable tasks.

as possible, potentially making the latent variable
vacuous.

In practice, we observe that it is necessary to
clip  values to a certain range for numerical rea-
sons. Within this range, the model gravitates to-
wards the smallest  values and performs substan-
tially worse than models trained with our fixed 
approach. This indicates that even with the vMF
model, the optimization problem posed by ELBO
is simply a hard one and the approach of fixing
KL divergence is a surprisingly good optimization
technique.

8 Related Work

Applications of VAE in NLP Deep generative
models have achieved impressive successes in do-
mains adjacent to NLP such as image genera-
tion (Gregor et al., 2015; Oord et al., 2016a) and
speech generation (Chung et al., 2015; Oord et al.,
2016b). VAEs specifically (Kingma and Welling,
2013; Rezende et al., 2014) have been a popular
model variant in NLP. They have been applied to
tasks including document modeling (Miao et al.,
2016), language modeling (Bowman et al., 2016),
and dialogue generation (Serban et al., 2017b).
VAEs can be also be applied for semi-supervised
classification (Xu et al., 2017). Recent twists on
the standard VAE approach including combining
VAE and holistic attribute discriminators for con-
ditional generation (Hu et al., 2017) and using a
more flexible latent space regularized by an adver-
sarial method (Zhao et al., 2017a).

VAE Objective Several pieces of recent work
have highlighted the issues with optimizing the
VAE objective. Alemi et al. (2018) shed light on
the problem from the perspective of information
theory. Zhao et al. (2017b) and Higgins et al.
(2017) both propose various reweightings of the
objective along with theoretical and empirical jus-
tification.

Choices of Priors for VAE Some past work has
explored various priors for VAE. Serban et al.
(2017a) proposed a piecewise constant distribu-
tion which deals with multiple modes, but which
sacrifices the property of continuous interpolation.
Guu et al. (2018) also applied vMF in a VAE
model, but used theirs specifically in the sentence-
editing case. Davidson et al. (2018) explored vMF
in a VAE model for MNIST and a link prediction
task. Hasnat et al. (2017) applied the vMF distri-
bution for facial recognition. Other past work has
used different decoders, including CNNs (Yang
et al., 2017) and CNN-RNN hybrids (Semeniuta
et al., 2017). Changing the decoder is a change
largely orthogonal to changing the prior: it can
alleviate the KL vanishing issue, but it does not
necessarily scale to new settings and does not give
explicit control over utilization of the latent code.

9 Conclusion
In this paper, we propose the use of a von Mises-
Fisher VAE to resolve optimization issues in vari-
ational autoencoders for text. This choice of dis-
tribution allows us to explicitly control the bal-
ance between the capacity of the decoder and the
utilization of the latent representation in a princi-
pled way. Experimental results demonstrate that
the proposed model has better performance than a
Gaussian VAE across a range of settings. Further
analysis shows that vMF VAE is more sensitive to
word order information and makes more effective
use of the latent code space.
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Abstract

In order to learn universal sentence repre-
sentations, previous methods focus on com-
plex recurrent neural networks or supervised
learning. In this paper, we propose a mean-
max attention autoencoder (mean-max AAE)
within the encoder-decoder framework. Our
autoencoder rely entirely on the MultiHead
self-attention mechanism to reconstruct the in-
put sequence. In the encoding we propose a
mean-max strategy that applies both mean and
max pooling operations over the hidden vec-
tors to capture diverse information of the in-
put. To enable the information to steer the re-
construction process dynamically, the decoder
performs attention over the mean-max repre-
sentation. By training our model on a large
collection of unlabelled data, we obtain high-
quality representations of sentences. Experi-
mental results on a broad range of 10 trans-
fer tasks demonstrate that our model outper-
forms the state-of-the-art unsupervised single
methods, including the classical skip-thoughts
(Kiros et al., 2015) and the advanced skip-
thoughts+LN model (Ba et al., 2016). Further-
more, compared with the traditional recurren-
t neural network, our mean-max AAE greatly
reduce the training time. 1

1 Introduction

To automatically get the distributed representa-
tions of texts (words, phrases and sentences) is
a fundamental task for natural language process-
ing (NLP). There have been efficient learning al-
gorithms to acquire the representations of word-
s (Mikolov et al., 2013a), which have shown to
provide useful features for various tasks. Inter-
estingly, the acquired word representations reflect
some observed aspects of human conceptual orga-

⇤Corresponding author.
1Our code is publicly available at https://github.

com/Zminghua/SentEncoding.

nization (Hill et al., 2015). In recent years, learn-
ing sentence representations has attracted much at-
tention, which is to encode sentences into fixed-
length vectors that could capture the semantic and
syntactic properties of sentences and can then be
transferred to a variety of other NLP tasks.

The most widely used method is to employ an
encoder-decoder architecture with recurrent neu-
ral networks (RNN) to predict the original input
sentence or surrounding sentences given an in-
put sentence (Kiros et al., 2015; Ba et al., 2016;
Hill et al., 2016; Gan et al., 2017). However,
the RNN becomes time consuming when the se-
quence is long. The problem becomes more se-
rious when learning general sentence representa-
tions that needs training on a large amount of data.
For example, it took two weeks to train the skip-
thought (Kiros et al., 2015). Moreover, the tra-
ditional RNN autoencoder generates words in se-
quence conditioning on the previous ground-truth
words, i.e., teacher forcing training (Williams and
Zipser, 1989). This teacher forcing strategy has
been proven important because it forces the output
of the RNN to stay close to the ground-truth se-
quence. However, at each time step, allowing the
decoder solely to access the previous ground-truth
words weakens the encoder’s ability to learn the
global information of the input sequence.

Some other approaches (Conneau et al., 2017;
Cer et al., 2018; Subramanian et al., 2018) attempt
to use the labelled data to build a generic sentence
encoder, such as the Stanford Natural Language
Inference (SNLI) dataset (Bowman et al., 2015),
but such large-scale high-quality labelled data ap-
propriate for training sentence representations is
generally not available in other languages.

In this paper, we are interested in learning u-
niversal sentence representations based on a large
amount of naturally occurring corpus, without us-
ing any labelled data. We propose a mean-max
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attention autoencoder (mean-max AAE) to model
sentence representations. Specifically, an encoder
performs the MultiHead self-attention on an input
sentence, and then the combined mean-max pool-
ing operation is employed to produce the laten-
t representation of the sentence. The representa-
tion is then fed into a decoder to reconstruct the
input sequence, which also depends entirely on
the MultiHead self-attention. At each time step,
the decoder performs attention operations over the
mean-max encoding, which on the one hand, en-
ables the decoder to utilize the global information
of the input sequence rather than generating word-
s solely conditioning on the previous ground-truth
words, and on the other hand, allows the decoder
to attend to different representation subspaces dy-
namically.

We train our autoencoder on a large collection
of unlabelled data, and evaluate the sentence em-
beddings across a diverse set of 10 transfer tasks.
The experimental results show that our model out-
performs the state-of-the-art unsupervised single
models, and obtains comparable results with the
combined models. Our mean-max representation-
s yield consistent performance gain over the indi-
vidual mean and max representations. At the same
time, our model can be efficiently parallelized and
so achieves significant improvement in computa-
tional efficiency.

In summary, our contributions are as follows:

• We apply the MultiHead self-attention mech-
anism to train autoencoder for learning uni-
versal sentence representations, which allows
our model to do processing parallelization
and thus greatly reduce the training time in
large unlabelled data.

• we adopt a mean-max representation strate-
gy in the encoding and then the decoder con-
ducts attention over the latent representation-
s, which can well capture the global informa-
tion of the input from different views.

• After training only on naturally occurring un-
ordered sentences, we obtain a simple and
fast sentence encoder, which is an unsuper-
vised single model and achieves state-of-the-
art performance on various transfer tasks.

2 Related Work

With the flourishing of deep learning in NLP re-
search, a variety of approaches have been de-

veloped for mapping word embeddings to fixed-
length sentence representations. The methods
generally fall into the following categories.

Unsupervised training with unordered sen-
tences. This kind of methods depends only
on naturally occurring individual sentences. Le
and Mikolov (2014) propose the paragraph vec-
tor model, which incorporates a global contex-
t vector into the log-linear neural language mod-
el (Mikolov et al., 2013b), but at test time, infer-
ence needs to be performed to compute a new vec-
tor. Arora et al. (2017) propose a simple but ef-
fective Smooth Inverse Frequency (SIF) method,
which represents sentence by a weighted average
of word embeddings. Hill et al. (2016) intro-
duce sequential denoising autoencoders (SDAE),
which employ the denoising objective to predict
the original source sentence given a corrupted ver-
sion. They also implement bag-of-words model-
s such as word2vec-SkipGram, word2vec-CBOW.
Our model belongs to this group, which has no re-
striction on the required training data and can be
trained on sets of sentences in arbitrary order.

Unsupervised training with ordered sen-
tences. This kind of method is trained to predic-
t the surrounding sentences of an input sentence,
based on the naturally occurring coherent texts.
Kiros et al. (2015) propose the skip-thoughts mod-
el, which uses an encoder RNN to encode a sen-
tence and two decoder RNN to predict the sur-
rounding sentences. The skip-thought vectors per-
form well on several tasks, but training this mod-
el is very slow, requiring several days to produce
meaningful results. Ba et al. (2016) further obtain
better results by adding layer-norm regularization
on the skip-thoughts model. Gan et al. (2017) ex-
plore a hierarchical model to predict multiple fu-
ture sentences, using a convolutional neural net-
work (CNN) encoder and a long-short term mem-
ory (LSTM) decoder. Logeswaran and Lee (2018)
reformulate the problem of predicting the contex-
t in which a sentence appears as a classification
task. Given a sentence and its context, a classifi-
er distinguishes context sentences from other con-
trastive sentences based on their vector represen-
tations.

Supervised learning of sentence representa-
tions. Hill et al. (2016) implement models trained
on supervised data, including dictionary defini-
tions, image captions from the COCO dataset
(Lin et al., 2014) and sentence-aligned translat-
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ed texts. Conneau et al. (2017) attempt to ex-
ploit the SNLI dataset for building generic sen-
tence encoders. Through examining 7 different
model schemes, they show that a bi-directional L-
STM network with the max pooling yields excel-
lent performance. Cer et al. (2018) apply multi-
task learning to train sentence encoders, including
a skip-thought like task, a conversational input-
response task and classification tasks from the
SNLI dataset. They also explore combining the
sentence and word level transfer models. Sub-
ramanian et al. (2018) also present a multi-task
learning framework for sentence representation-
s, and train their model on several data resources
with multiple training objectives on over 100 mil-
lion sentences.

3 Model Description

Our model follows the encoder-decoder architec-
ture, as shown in Figure 1. The input sequence
is compressed into a latent mean-max representa-
tion via an encoder network, which is then used to
reconstruct the input via a decoder network.

3.1 Notation
In our model, we treat the input sentence as
one sequence of tokens. Let S denote the in-
put, which is comprised of a sequence of token-
s {w1, w2, . . . , wN}, where N denotes the length
of the sequence. An additional “</S>” token
is appended to each sequence. Each word wt

in S is embedded into a k-dimensional vector
et = We[wt], where We 2 R

dw⇥V is a word em-
bedding matrix, wt indexes one element in a V -
dimensional set (vocabulary), and We[v] denotes
the v-th column of matrix We.

In order for the model to take account of the se-
quence order, we also add “positional encodings”
(Vaswani et al., 2017) to the input embeddings:

pt[2i] = sin(
t

100002i/dw
) (1)

pt[2i + 1] = cos(
t

100002i/dw
) (2)

where t is the position and i is the dimension.
Each dimension of the positional encoding corre-
sponds to a sinusoid. Therefore, the input of our
model can be represented as xt = et + pt.

In the following description, we use he
t and hd

t

to denote the hidden vectors of the encoder and
decoder respectively, the subscripts of which indi-
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Figure 1: Illustration of the mean-max attention au-
toencoder.

cate timestep t, and the superscripts indicate oper-
ations at the encoding or decoding stage.

3.2 MultiHead Self-Attention
In this subsection, we give a quick overview of
MultiHead Self-Attention mechanism (Vaswani
et al., 2017). The attention is to map a query q
and a set of key-value pairs (K, V ) to an output.
The output is computed as a weighted sum of the
values, where the weight assigned to each value is
computed based on the query and the correspond-
ing key. The MultiHead mechanism applies mul-
tiple attention operations in parallel. Given q and
(K, V ), we can obtain the attention vector a by:

a = MultiHead(q, K, V ) (3)
= concat(head1, . . . , headl) (4)

headi = attention(q, K, V ) (5)

= softmax(
qK

T

p
dk

)V (6)

where

q, K, V = qW q
i , KWK

i , V W V
i (7)

W q
i , WK

i and W V
i are parameter matrices; q 2

R
dk , K 2 R

nk⇥dk and V 2 R
nk⇥dv ; dk and dv

are the dimensions of K and V respectively; nk is
the number of key-value pairs.

The MultiHead self-attention allows the mod-
el to jointly attend to information from different
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positions. Due to the reduced dimension of each
head and parallel operations, the total computa-
tional cost is similar to that of a single-head at-
tention.

3.3 Attention Encoder
The encoder has two sub-layers. The first is a Mul-
tiHead self-attention mechanism, and the second
is a position-wise fully connected feed-forward
network which consists of two linear transforma-
tions with a ReLU activation in between. Different
from Vaswani et al. (2017), we remove the residual
connections in the MultiHead self-attention layer
and only employ a residual connection in the fully
connected layer, allowing the model to expand the
dimension of hidden vectors to incorporate more
information.

Given the input x = (x1, . . . , xN ), the hidden
vector he

t at time-step t is computed by:

ae
t = MultiHead(xt,x,x) (8)

ae
t = LN(ae

t ) (9)

h
e
t = max(0, ae

tW
e
1 + be

1)W
e
2 + be

2 (10)

he
t = LN(h

e
t + ae

t ) (11)

where W e
1 2 R

dm⇥df and W e
2 2 R

df ⇥dm are pa-
rameter matrices; be

1 2 R
df and be

2 2 R
dm are bias

vectors; dm and df are the dimensions of hidden
vector and fully connected inner layer respective-
ly; LN denotes layer normalization.

Our model can be efficiently parallelized over
the whole input. We can obtain all hidden vec-
tors (he

1, . . . , h
e
N ) simultaneously for an input se-

quence, thus greatly reducing the computational
complexity compared with the sequential process-
ing of LSTM.

3.4 Mean-Max Representation
Given the varying number of hidden vectors
{he

t}t=[1,...,N ], we need to transform these local
hidden vectors into a global sentence representa-
tion. We would like to apply the pooling strategy,
which makes the extracted representation indepen-
dent of the length of the input sequence and ob-
tains a fixed-length vector. Conneau et al. (2017)
examine BiLSTM with mean and max pooling for
fixed-size sentence representation, and they con-
clude that the max pooling operation performs bet-
ter on transfer tasks.

In this work, we propose to apply mean and max
pooling simultaneously. The max pooling takes

the maximum value over the sequence, which tries
to capture the most salient property while filter-
ing out less informative local values. On the oth-
er hand, the mean pooling does not make sharp
choices on which part of the sequence is more im-
portant than others, and so it captures general in-
formation while not focusing too much on specific
features. Obviously, the two pooling strategies can
complement each other. The mean-max represen-
tation is obtained by:

zmax[i] = max
t

he
ti (12)

zmean =
1

N

X

t

he
t (13)

z = [zmax, zmean] (14)

Through combining two different pooling s-
trategies, our model enjoys the following advan-
tages. First, in the encoder, we can summarize
the hidden vectors from different perspectives and
so capture more diverse features of the input se-
quence, which will bring robustness on differen-
t transfer tasks. Second, in the decoder (as de-
scribed in the next subsection), we can perform
attention over the mean-max representation rather
than over the local hidden vectors step by step,
which would potentially make the autoencoder ob-
jective trivial.

3.5 Attention Decoder
As with the encoder, the decoder also applies
the MultiHead self-attention to reconstruct the in-
put sequence. As shown in Figure 1, the en-
coder and decoder are connected through a mean-
max attention layer, which performs attention over
the mean-max representation generated by the en-
coder.

To facilitate expansion of the hidden size, we
employ residual connections in the mean-max at-
tention layer and the fully connected layer, but
not in the MultiHead self-attention layer. Given
y = (x1, . . . , xt�1) and z as the decoder input,
the hidden vector hd

t at time step t is obtained by:

ad
t = MultiHead(yt,y,y) (15)

ad
t = LN(ad

t ) (16)

az
t = MultiHead(ad

t , z, z) (17)

az
t = LN(az

t + ad
t ) (18)

h
d
t = max(0, az

t W
d
1 + bd

1)W
d
2 + bd

2 (19)

hd
t = LN(h

d
t + az

t ) (20)
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where W d
1 2 R

dm⇥df and W d
2 2 R

df ⇥dm are pa-
rameter matrices; bd

1 2 R
df and bd

2 2 R
dm are

bias vectors. z in Equation (17) is the mean-max
representation generated by Equation (14).

Given the hidden vectors (hd
1, . . . , h

d
N ), the

probability of generating a sequence S with
length-N is defined as:

P (wt|w<t, z) / exp(W d
3 hd

t + bd
3) (21)

J(✓) =
X

t

logP (wt|w<t, z) (22)

The model learns to reconstruct the input sequence
by optimizing the objective in Equation (22).

4 Evaluating Sentence Representations

In the previous work, researchers evaluated the
distributed representations of sentences by adding
them as features in transfer tasks (Kiros et al.,
2015; Gan et al., 2017; Conneau et al., 2017). We
use the same benchmarks and follow the same pro-
cedure to evaluate the capability of sentence em-
beddings produced by our generic encoder.

4.1 Transfer Tasks
We conduct extensive experiments on 10 trans-
fer tasks. We first study the classification task
on 6 benchmarks: movie review sentiment (M-
R, SST) (Pang and Lee, 2005; Socher et al.,
2013), customer product reviews (CR) (Hu and
Liu, 2004), subjectivity/objectivity classification
(SUBJ) (Pang and Lee, 2004), opinion polarity
(MPQA) (Wiebe et al., 2005) and question type
classification (TREC) (Li and Roth, 2002).

We also consider paraphrase detection on the
Microsoft Research Paraphrase Corpus (MRPC)
(Dolan et al., 2004), where the evaluation metrics
are accuracy and F1 score.

We then evaluate on the SICK dataset (Marelli
et al., 2014) for both textual entailment (SICK-E)
and semantic relatedness (SICK-R). The evalua-
tion metric is Pearson correlation for SICK-R. We
also evaluate on the SemEval task of STS14 (A-
girre et al., 2014), where the evaluation metrics are
Pearson and Spearman correlations.

The processing on each task is as follows: 1)
Employ the pre-trained attention autoencoder to
encode all sentences into the latent mean-max rep-
resentations. 2) Using the representations as fea-
tures, apply the open SentEval with a logistic re-
gression classifier (Conneau et al., 2017) to au-
tomatically evaluate on all the tasks. For a fair

comparison of the plain sentence embeddings, we
adopt all the default settings.

4.2 Experiment Setup
We train our model on the open Toronto Books
Corpus (Zhu et al., 2015), which was also used
to train the skip-thoughts (Kiros et al., 2015) and
skip-thoughts+LN (Ba et al., 2016). The Toron-
to Book Corpus consists of 70 million sentences
from over 7, 000 books, which is not biased to-
wards any particular domain or application.

The dimensions of hidden vectors and fully con-
nected inner layer are set to 2, 048 and 4, 096 re-
spectively. Hence, our mean-max AAE represents
sentences with 4, 096 dimensional vectors. We set
l = 8 parallel attention heads according to the de-
velopment data.

We use the Adam algorithm (Kingma and Ba,
2014) with learning rate 2⇥10�4 for optimization.
Gradient clipping is adopted by scaling gradients
when the norm of the parameter vector exceeds a
threshold of 5. We perform dropout (Srivastava
et al., 2014) and set the dropout rate to 0.5. Mini-
batches of size 64 are used. Our model learns un-
til the reconstruction accuracy in the development
data stops improving.

Our aim is to learn a generic sentence encoder
that could encode a large number of words. There
always are some words that haven’t been seen dur-
ing training, and so we use the publicly available
GloVe vectors 2 to expand our encoder’s vocab-
ulary. We set the word vectors in our models as
the corresponding word vectors in GloVe, and do
not update the word embeddings during training.
Thus, any word vectors from GloVe can be nat-
urally used to encode sentences. Our models are
trained with a vocabulary of 21, 583 top frequent
words in the Toronto Book corpus. After vocab-
ulary expansion, we can now successfully cover
2, 196, 017 words.

All experiments are implemented in Tensorflow
(Abadi et al., 2016), using a NVIDIA GeForce
GTX 1080 GPU with 8GB memory.

4.3 Evaluation Results
A summary of our experimental results on 10 tasks
is given in Table 1, in which the evaluation metric
of the first 8 tasks is accuracy. To make a clear
comparison of the overall performance, we com-
pute the “macro” and “micro” average of accuracy

2https://nlp.stanford.edu/projects/
glove/
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Method MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R STS14

Unsupervised training of single model

ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43
SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38
SIF (GloVe + WR) - - - - 82.2 - - 84.6 - .69/ -
word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 78.7 0.803 .65/.64
GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 78.6 0.800 .54/.56
FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64
FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62
uni-skip 75.5 79.3 92.1 86.9 - 91.4 73.0/81.9 - - -
bi-skip 73.9 77.9 92.5 83.3 - 89.4 71.2/81.2 - - -
hierarchical-CNN 75.3 79.3 91.9 88.4 - 90.4 74.2/82.7 - - -
composite-CNN 77.1 80.6 92.1 88.6 - 91.2 74.8/82.2 - - -
skip-thoughts+LN† 79.4 83.1 93.7 89.3 82.9 88.4 - 79.5 0.858 .44/.45

mean-max AAE 78.7 82.3 93.4 88.8 83.8 91.4 75.5/82.6 83.5 0.854 .58/.56

Unsupervised training of combined model

combine-skip† 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 82.3 0.858 .29/.35
combine-CNN 77.7 82.0 93.6 89.3 - 92.6 76.4/83.7 - - -

Trained on supervised data

BiLSTM-Max (on SST) * 83.7 90.2 89.5 * 86.0 72.7/80.9 83.1 0.863 .55/.54
BiLSTM-Max (on SNLI) 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 86.3 0.885 .68/.65
BiLSTM-Max (on AllNLI) 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 86.3 0.884 .70/.67

Table 1: Performance of sentence representation models on 10 transfer tasks. Top 2 results of unsupervised single
models are shown in bold. The results with † are extracted from Conneau et al. (2017).

Method Macro/Micro
8 tasks 7 tasks 6 tasks

uni-skip - - 83.0/83.7
bi-skip - - 81.4/82.1
hierarchical-CNN - - 83.3/84.0
composite-CNN - - 84.1/84.8
skip-thoughts+LN - 85.2/85.9 -

mean-max AAE 84.7/85.6 86.0/86.0 85.0/85.9

combine-skip 83.4/84.2 - -
combine-CNN - - 85.3/85.8

BiLSTM-Max(SST) - - -
BiLSTM-Max(SNLI) 85.0/86.2 - -
BiLSTM-Max(AllNLI) 85.7/86.9 - -

Table 2: The macro and micro average accuracy across
different tasks. The bold is the highest score among all
unsupervised models.

in Table 2, where the micro average is weighted
by the number of test samples in each task. In the
previous work, different approaches conduct ex-
periments on different benchmarks. Therefore we
report the average scores on 6 tasks, 7 tasks and 8
tasks, respectively.

We divide related models into three groups. The
first group contains unsupervised single model-
s, including the Paragraph Vector model (Le and
Mikolov, 2014), the SDAE method (Hill et al.,
2016), the SIF model (Arora et al., 2017), the Fast-

Sent (Hill et al., 2016), the skip-thoughts (uni-
skip and bi-skip) (Kiros et al., 2015), the CNN
encoder (hierarchical-CNN and composite-CNN)
(Gan et al., 2017) and skip-thoughts+LN (Ba et al.,
2016). Our mean-max attention autoencoder sits
in this group. The second group consists of un-
supervised combined models, including combine-
skip (Kiros et al., 2015) and combine-CNN (Gan
et al., 2017). In the third group, we list the results
from the work of Conneau et al. (2017) only for
reference, since it is trained on labelled data.

Comparison with skip-thoughts+LN. The
skip-thoughts+LN is the best model among the
existing single models. Compared with the skip-
thoughts+LN, our method obtains better results
on 4 datasets (SST, TREC, SICK-E, STS14) and
comparable results on 3 datastes (SUBJ, MPQA,
SICK-R). Looking at the STS14 results, we ob-
serve that the cosine metrics in our representation
space is much more semantically informative than
in skip-thoughts+LN representation space (pear-
son score of 0.58 compared to 0.44). Consid-
ering the overall performance shown in Table 2,
our model obtains better results both in the macro
and micro average accuracy across 7 considered
tasks. In view of the required training data, the
skip-thoughts+LN needs coherent texts while our

4519



model needs only individual sentences. Moreover,
we train our model in less than 5 hours on a sin-
gle GPU compared to the best skip-thoughts+LN
network trained for a month.

Unsupervised combined models. The result-
s of the individual models (Kiros et al., 2015;
Gan et al., 2017) are not promising. To get bet-
ter performance, they train two separate models
on the same corpus and then combine the laten-
t representations together. As shown in Table 2,
our mean-max attention autoencoder outperform-
s the classical combine-skip model by 1.3 points
in the average performance across 8 considered
tasks. Specially, the pearson correlation of our
model is 2 times over the combine-skip model on
the STS14 task. Looking at the overall perfor-
mance of 6 tasks, our model gets comparable re-
sults with the combine-CNN, which combines the
hierarchical and composite approaches to exploit
the intra-sentence and inter-sentence information.
Obviously, our model is simple and fast to imple-
ment compared with the combined methods.

Supervised representation training. It is un-
fair to directly compare our totally unsupervised
model with the supervised representation learning
method. Conneau et al. (2017) train the BiLSTM-
Max (on ALLNLI) on the high-quality natural lan-
guage inference data. Our model even perform-
s better than the BiLSTM-Max (on ALLNLI) on
the SUBJ and TREC tasks. More importantly, our
model can be easily adapted to other low-resource
languages.

4.4 Model Analysis

Our model contains three main modules: the
mean-max attention layer, the combined pooling
strategy and the encoder-decoder network. We
make a further study on these components. The
experimental results are shown in Table 3.

In our model, the mean-max attention layer al-
lows the decoder to pay attention to the encod-
ing representation of the full sentence at each time
step dynamically. To summarize the contribu-
tion of the mean-max attention layer, we compare
with traditional baselines, including the sequential
denoising autoencoder (SDAE) with LSTM net-
works (Hill et al., 2016) and the CNN-LSTM au-
toencoder (Gan et al., 2017), both of which only
use the encoding representation to set the initial s-
tate of the decoder and follow the teacher forcing
strategy.

We employ both the mean and max pooling op-
erations over the local hidden vectors to obtain
sentence embeddings. To validate the effective-
ness of our mean-max representations, we train
two additional models: (i) an attention autoen-
coder only with max pooling (max AAE) and (ii)
an attention autoencoder only with mean pooling
(mean AAE). The dimension of hidden vectors is
also set to 2, 048.

Our encoder-decoder network depends on the
MultiHead self-attention mechanism to recon-
struct the input sequence. To test the effect of the
MultiHead self-attention mechanism, we replace
it with RNN and implement a mean-max RNN au-
toencoder (mean-max RAE) training on the same
Toronto Books Corpus. A bidirectional LSTM
computes a set of hidden vectors on an input sen-
tence, and then the mean and max pooling oper-
ations are employed to generate the latent mean-
max representation. The representation is then
fed to a LSTM decoder to reconstruct the input
sequence through attention operation over the la-
tent representation. The parameter configurations
are consistent with our other models. Moreover,
we also train two additional models with different
pooling strategies: mean RAE and max RAE.

Analysis on the mean-max attention layer.
Our mean-max attention layer brings significan-
t performance gain over the previous autoen-
coders. Compared the mean RAE with LSTM-
SDAE, both of which use the RNN-RNN encoder-
decoder network to reconstruct the input sequence,
our mean RAE consistently obtains better perfor-
mance than LSTM-SDAE across all considered
tasks. In particular, it yields a performance gain
of 10.4 on the TREC dataset and 29 on the STS14
dataset. Compared with another CNN-LSTM au-
toencoder, our mean RAE also gets better perfor-
mance for all but one task. It demonstrates that
the mean-max attention layer enables the decoder
to attend to the global information of the input se-
quence, thus go beyond the “teacher forcing train-
ing”.

Analysis on the pooling strategy. Considering
the overall performance, our mean-max represen-
tations outperform the individual mean and max
representations both in the attention and RNN net-
works. In our attention autoencoder, the macro av-
erage score of the mean-max AAE is more than
0.6 over the individual pooling strategy. In the
RNN autoencoder, the combined pooling strategy
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Method Macro MR CR SUBJ MPQA SST TREC MRPC SICK-E SICK-R STS14

mean AAE 84.1 78.6 81.6 93.3 88.6 83.5 90.2 74.8/82.3 82.2 0.851 .57/.55
max AAE 84.1 78.6 81.4 93.1 88.7 82.8 90.6 75.1/82.5 82.2 0.851 .57/.55

mean-max AAE 84.7 78.7 82.3 93.4 88.8 83.8 91.4 75.5/82.6 83.5 0.854 .58/.56

mean RAE 83.1 77.1 80.2 92.4 88.4 81.9 88.8 74.3/82.2 81.9 0.836 .66/.64
max RAE 83.0 77.2 80.1 92.0 88.4 81.0 88.6 74.3/82.0 82.0 0.851 .68/.66

mean-max RAE 83.6 77.4 80.1 92.2 88.5 82.3 90.6 74.6/82.0 83.2 0.853 .68/.65

LSTM SDAE - 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38
CNN-LSTM AE - 75.5 79.0 92.0 88.0 - 89.8 73.6/82.1 - - -

Table 3: Performance of different pooling strategies and different encoder-decoder networks on 10 transfer tasks.
Macro is the macro average over the first 8 tasks whose metric is accuracy.

yields a performance gain of 0.5 over the mean
pooling and 0.6 over the max pooling. The re-
sults indicate that our mean-max pooling captures
more diverse information of the input sequence,
which is robust and effective in dealing with vari-
ous transfer tasks.

Comparison with RNN-based autoencoder.
As shown in Table 3, our MultiHead self-attention
network obtains obvious improvement over the
RNN network in different sets of pooling strate-
gies, and it yields a performance gain of 1.1 when
applying the best combined mean-max pooling
operation. The results demonstrate that the Mul-
tiHead self-attention mechanism enables the sen-
tence representations to capture more useful infor-
mation about the input sequence.

Analysis on computational complexity. A
self-attention layer connects all positions with a
constant number of sequentially executed opera-
tions, whereas a recurrent layer requires O(n) se-
quential operations. Therefore, our model greatly
reduces the computational complexity. Excluding
the number of parameters used in the word embed-
dings, the skip-thought model (Kiros et al., 2015)
contains 40 million parameters, while our mean-
max AAE has approximately 39 million parame-
ters. It took nearly 50.4 and 25.4 minutes to train
the skip-thought model (Kiros et al., 2015) and the
skip-thoughts+LN (Ba et al., 2016) per 1000 mini-
batches respectively. Both the skip-thought and
skip-thought+LN are implemented in Theano. A
recent implementation of the skip-thoughts model
was released by Google 3, which took nearly 25.9
minutes to train 1000 mini-batches on a GTX 1080
GPU. In our experiment, it took 3.3 minutes to
train the mean-max AAE model every 1000 mini-
batches.

3https://github.com/tensorflow/models/
tree/master/research/skip_thoughts

mean max mean max

Figure 2: Two examples illustrate that our mean-max
attention layer could attend to the two different repre-
sentations dynamically.

4.5 Attention Visualization

The above experimental results have proven the ef-
fectiveness of the mean-max attention mechanism
in the decoding. We further inspect the attention
distributions captured by the mean-max attention
layer, as shown in Figure 2. The side-by-side heat
illustrates how much the decoder pay attention to
the mean representation and max representation
respectively at each decoding step. We can see that
the attention layer learns to selectively retrieve the
mean or max representations dynamically, which
relieve the decoder from the burden of generating
words solely conditioning on the previous ground-
truth words. Also, the two different representa-
tions can complement each other, and the mean
representation plays a greater role.
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5 Conclusion

In this paper, we present a mean-max AAE to
learn universal sentence representations from un-
labelled data. Our model applies the MultiHead
self-attention mechanism both in the encoder and
decoder, and employs a mean-max pooling strat-
egy to capture more diverse information of the
input. To avoid the impact of “teacher forcing
training”, our decoder performs attention over the
encoding representations dynamically. To eval-
uate the effectiveness of sentence representation-
s, we conduct extensive experiments on 10 trans-
fer tasks. The experimental results show that our
model obtains state-of-the-art performance among
the unsupervised single models. Furthermore, it
is fast to train a high-quality generic encoder due
to the paralleling operation. In the future, we will
adapt our mean-max AAE to other low-resource
languages for learning universal sentence repre-
sentations.
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Abstract

While the celebrated Word2Vec technique
yields semantically rich representations for in-
dividual words, there has been relatively less
success in extending to generate unsupervised
sentences or documents embeddings. Recent
work has demonstrated that a distance mea-
sure between documents called Word Mover’s
Distance (WMD) that aligns semantically sim-
ilar words, yields unprecedented KNN clas-
sification accuracy. However, WMD is ex-
pensive to compute, and it is hard to extend
its use beyond a KNN classifier. In this pa-
per, we propose the Word Mover’s Embed-
ding (WME), a novel approach to building an
unsupervised document (sentence) embedding
from pre-trained word embeddings. In our ex-
periments on 9 benchmark text classification
datasets and 22 textual similarity tasks, the
proposed technique consistently matches or
outperforms state-of-the-art techniques, with
significantly higher accuracy on problems of
short length.

1 Introduction

Text representation plays an important role in many
NLP-based tasks such as document classification
and clustering (Zhang et al., 2018; Gui et al.,
2016, 2014), sense disambiguation (Gong et al.,
2017, 2018a), machine translation (Mikolov et al.,
2013b), document matching (Pham et al., 2015),
and sequential alignment (Peng et al., 2016, 2015).
Since there are no explicit features in text, much
work has aimed to develop effective text represen-
tations. Among them, the simplest bag of words
(BOW) approach (Salton and Buckley, 1988) and

its term frequency variants (e.g. TF-IDF) (Robert-
son and Walker, 1994) are most widely used due to
simplicity, efficiency and often surprisingly high ac-
curacy (Wang and Manning, 2012). However, sim-
ply treating words and phrases as discrete symbols
fails to take into account word order and the seman-
tics of the words, and suffers from frequent near-
orthogonality due to its high dimensional sparse
representation. To overcome these limitations, La-
tent Semantic Indexing (Deerwester et al., 1990)
and Latent Dirichlet Allocation (Blei et al., 2003)
were developed to extract more meaningful repre-
sentations through singular value decomposition
(Wu and Stathopoulos, 2015) and learning a proba-
bilistic BOW representation.

A recent empirically successful body of research
makes use of distributional or contextual informa-
tion together with simple neural-network models
to obtain vector-space representations of words
and phrases (Bengio et al., 2003; Mikolov et al.,
2013a,c; Pennington et al., 2014). A number of
researchers have proposed extensions of these to-
wards learning semantic vector-space representa-
tions of sentences or documents. A simple but often
effective approach is to use a weighted average over
some or all of the embeddings of words in the doc-
ument. While this is simple, important information
could easily be lost in such a document representa-
tion, in part since it does not consider word order.
A more sophisticated approach (Le and Mikolov,
2014; Chen, 2017) has focused on jointly learning
embeddings for both words and paragraphs using
models similar to Word2Vec. However, these only
use word order within a small context window;
moreover, the quality of word embeddings learned

4524



in such a model may be limited by the size of the
training corpus, which cannot scale to the large
sizes used in the simpler word embedding models,
and which may consequently weaken the quality
of the document embeddings.

Recently, Kusner et al. (Kusner et al., 2015)
presented a novel document distance metric, Word
Mover’s Distance (WMD), that measures the dis-
similarity between two text documents in the
Word2Vec embedding space. Despite its state-
of-the-art KNN-based classification accuracy over
other methods, combining KNN and WMD incurs
very high computational cost. More importantly,
WMD is simply a distance that can be only com-
bined with KNN or K-means, whereas many ma-
chine learning algorithms require a fixed-length
feature representation as input.

A recent work in building kernels from distance
measures, D2KE (distances to kernels and em-
beddings) (Wu et al., 2018a) proposes a general
methodology of the derivation of a positive-definite
kernel from a given distance function, which enjoys
better theoretical guarantees than other distance-
based methods, such as k-nearest neighbor and dis-
tance substitution kernel (Haasdonk and Bahlmann,
2004), and has also been demonstrated to have
strong empirical performance in the time-series
domain (Wu et al., 2018b).

In this paper, we build on this recent innova-
tion D2KE (Wu et al., 2018a), and present the
Word Mover’s Embedding (WME), an unsupervised
generic framework that learns continuous vector
representations for text of variable lengths such
as a sentence, paragraph, or document. In par-
ticular, we propose a new approach to first con-
struct a positive-definite Word Mover’s Kernel via
an infinite-dimensional feature map given by the
Word Mover’s distance (WMD) to random docu-
ments from a given distribution. Due to its use of
the WMD, the feature map takes into account align-
ments of individual words between the documents
in the semantic space given by the pre-trained word
embeddings. Based on this kernel, we can then de-
rive a document embedding via a Random Features
approximation of the kernel, whose inner products
approximate exact kernel computations. Our tech-
nique extends the theory of Random Features to
show convergence of the inner product between
WMEs to a positive-definite kernel that can be in-
terpreted as a soft version of (inverse) WMD.

The proposed embedding is more efficient and

flexible than WMD in many situations. As an
example, WME with a simple linear classifier
reduces the computational cost of WMD-based
KNN from cubic to linear in document length and
from quadratic to linear in number of samples,
while simultaneously improving accuracy. WME
is extremely easy to implement, fully paralleliz-
able, and highly extensible, since its two build-
ing blocks, Word2Vec and WMD, can be replaced
by other techniques such as GloVe (Pennington
et al., 2014; Wieting et al., 2015b) or S-WMD
(Huang et al., 2016). We evaluate WME on 9
real-world text classification tasks and 22 textual
similarity tasks, and demonstrate that it consis-
tently matches or outperforms other state-of-the-
art techniques. Moreover, WME often achieves
orders of magnitude speed-up compared to KNN-
WMD while obtaining the same testing accuracy.
Our code and data is available at https://github.
com/IBM/WordMoversEmbeddings.

2 Word2Vec and Word Mover’s Distance

We briefly introduce Word2Vec and WMD, which
are the key building blocks of our proposed method.
Here are some notations we will use throughout the
paper. Given a total number of documents N with
a vocabulary W of size |W| = n, the Word2vec
embedding gives us a d-dimensional vector space
V ✓ Rd such that any word in the vocabulary set
w 2 W is associated with a semantically rich vec-
tor representation vw 2 Rd. Then in this work, we
consider each document as a collection of word
vectors x := (vj)L

j=1 and denote X :=
SLmax

L=1 VL

as the space of documents.

Word2Vec. In the celebrated Word2Vec approach
(Mikolov et al., 2013a,c), two shallow yet effective
models are used to learn vector-space representa-
tions of words (and phrases), by mapping those
that co-occur frequently, and consequently with
plausibly similar meaning, to nearby vectors in the
embedding vector space. Due to the model’s sim-
plicity and scalability, high-quality word embed-
dings can be generated to capture a large number of
precise syntactic and semantic word relationships
by training over hundreds of billions of words and
millions of named entities. The advantage of docu-
ment representations building on top of word-level
embeddings is that one can make full use of high-
quality pre-trained word embeddings. Throughout
this paper we use Word2Vec as our first building
block but other (unsupervised or supervised) word
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(a) WMD (b) WME

Figure 1: An illustration of the WMD and WME. All non-stop words are marked as bold face. WMD
measures the distance between two documents. WME approximates a kernel derived from WMD with a
set of random documents.

embeddings (Pennington et al., 2014; Wieting et al.,
2015b) could also be utilized.

Word Mover’s Distance. Word Mover’s Distance
was introduced by (Kusner et al., 2015) as a special
case of the Earth Mover’s Distance (Rubner et al.,
2000), which can be computed as a solution of
the well-known transportation problem (Hitchcock,
1941; Altschuler et al., 2017). WMD is a distance
between two text documents x, y 2 X that takes
into account the alignments between words. Let
|x|, |y| be the number of distinct words in x and
y. Let fx 2 R|x|, fy 2 R|y| denote the normalized
frequency vectors of each word in the documents
x and y respectively (so that f

T
x1 = f

T
y 1 = 1).

Then the WMD distance between documents x and
y is defined as:

WMD(x, y) := min
F2R|x|⇥|y|

+

hC, F i,

s.t., F1 = fx, FT1 = fy.
(1)

where F is the transportation flow matrix with
Fij denoting the amount of flow traveling from
i-th word xi in x to j-th word yj in y, and C is
the transportation cost with Cij := dist(vxi , vyj )
being the distance between two words measured
in the Word2Vec embedding space. A popular
choice is the Euclidean distance dist(vxi , vyj ) =
kvxi � vyjk2. When dist(vxi , vyj ) is a metric,
the WMD distance in Eq. (1) also qualifies as
a metric, and in particular, satisfies the triangle in-
equality (Rubner et al., 2000). Building on top
of Word2Vec, WMD is a particularly useful and
accurate for measure of the distance between doc-
uments with semantically close but syntactically
different words as illustrated in Figure 1(a).

The WMD distance when coupled with KNN

has been observed to have strong performance in
classification tasks (Kusner et al., 2015). However,
WMD is expensive to compute with computational
complexity of O(L3 log(L)), especially for long
documents where L is large. Additionally, since
WMD is just a document distance, rather than a doc-
ument representation, using it within KNN incurs
even higher computational costs O(N2L3 log(L)).

3 Document Embedding via Word
Mover’s Kernel

In this section, we extend the framework in (Wu
et al., 2018a), to derive a positive-definite kernel
from an alignment-aware document distance met-
ric, which then gives us an unsupervised semantic
embeddings of texts of variable length as a by-
product through the theory of Random Feature Ap-
proximation (Rahimi and Recht, 2007).

3.1 Word Mover’s Kernel

We start by defining the Word Mover’s Kernel:

k(x, y) :=

Z
p(!)�!(x)�!(y)d!,

where �!(x) := exp(��WMD(x, !)).
(2)

where ! can be interpreted as a random docu-
ment {vj}D

j=1 that contains a collection of ran-
dom word vectors in V , and p(!) is a distribution
over the space of all possible random documents
⌦ :=

SDmax
D=1 VD. �!(x) is an possibly infinite-

dimensional feature map derived from the WMD
between x and all possible documents ! 2 ⌦.

An insightful interpretation of this kernel (2):

k(x, y) := exp(��softminp(!)f(!))
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where

softminp(!) f(!) := �1

�
log

Z
p(!)e��f(!)d!,

and f(!) = {WMD(x, !) + WMD(!, y)}, is
a version of soft minimum function parameter-
ized by p(!) and �. Comparing this with the
usual definition of soft minimum softminifi :=
�softmax (�fi) = � log

P
i e

�fi , it can be seen
that the soft-min-variant in the above Equations
uses a weighting of the objects ! via the probabil-
ity density p(!), and moreover has the additional
parameter � to control the degree of smoothness.
When � is large and f(!) is Lipschitz-continuous,
the value of the soft-min-variant is mostly deter-
mined by the minimum of f(!).

Note that since WMD is a metric, by the triangu-
lar inequality we have

WMD(x, y)  min
!2⌦

(WMD(x, !) + WMD(!, y))

and the equality holds if we allow the length of
random document Dmax to be not smaller than L.
Therefore, the kernel (2) serves as a good approx-
imation to the WMD between any pair of docu-
ments x, y as illustrated in Figure 1(b), while it is
positive-definite by the definition.

3.2 Word Mover’s Embedding
Given the Word-Mover’s Kernel in Eq. (2), we can
then use the Monte-Carlo approximation:

k(x, y) ⇡ hZ(x), Z(y)i =
1

R

RX

i=1

�!i(x)�!i(y)

(3)
where {!i}R

i=1 are i.i.d. random documents drawn
from p(!) and Z(x) := ( 1p

R
�!i(x))R

i=1 gives a
vector representation of document x. We call this
random approximation Word Mover’s Embedding.
Later, we show that this Random Features approxi-
mation in Eq. (3) converges to the exact kernel (2)
uniformly over all pairs of documents (x, y) .

Distribution p(!). A key ingredient in the Word
Mover’s Kernel and Embedding is the distribution
p(!) over random documents. Note that ! 2 X
consists of sets of words, each of which lies in
the Word2Vec embedding space; the characteris-
tics of which need to be captured by p(!) in order
to generate (sets of) “meaningful” random words.
Several studies have found that the word vectors
v are roughly uniformly dispersed in the word em-
bedding space (Arora et al., 2016, 2017). This is

also consistent with our empirical findings, that the
uniform distribution centered by the mean of all
word vectors in the documents is generally appli-
cable for various text corpora. Thus, if d is the
dimensionality of the pre-trained word embedding
space, we can draw a random word u 2 Rd as
uj ⇠ Uniform[vmin, vmax], for j = 1, . . . , d, and
where vmin and vmax are some constants.

Given a distribution over random words, the re-
maining ingredient is the length D of random doc-
uments. It is desirable to set these to a small num-
ber, in part because this length is indicative of the
number of hidden global topics, and we expect the
number of such global topics to be small. In par-
ticular, these global topics will allow short random
documents to align with the documents to obtain
“topic-based” discriminatory features. Since there
is no prior information for global topics, we choose
to uniformly sample the length of random docu-
ments as D ⇠ Uniform[1, Dmax], for some con-
stant Dmax. Stitching the distributions over words,
and over the number of words, we then get a distri-
bution over random documents. We note that our
WME embedding allows potentially other random
distributions, and other types of word embeddings,
making it a flexible and powerful feature learning
framework to utilize state-of-the-art techniques.

Algorithm 1 Word Mover’s Embedding: An Unsu-
pervised Feature Representation for Documents

Input: Texts {xi}N
i=1, Dmax, R.

Output: Matrix ZN⇥R, with rows correspond-
ing to text embeddings.

1: Compute vmax and vmin as the maximum and
minimum values, over all coordinates of the
word vectors v of {xi}N

i=1, from any pre-
trained word embeddings (e.g. Word2Vec,
GloVe or PSL999).

2: for j = 1, . . . , R do
3: Draw Dj ⇠ Uniform[1, Dmax].
4: Generate a random document !j consist-

ing of Dj number of random words drawn as
!j` ⇠ Uniform[vmin, vmax]

d, ` = 1, . . . , Dj .
5: Compute fxi

and f!j
using a popular

weighting scheme (e.g. NBOW or TF-IDF).
6: Compute the WME feature vector Zj =

�!j ({xi}N
i=1) using WMD in Equation (2).

7: end for
8: Return Z({xi}N

i=1) = 1p
R

[Z1 Z2 . . . ZR]

Algorithm 1 summarizes the overall procedure
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to generate feature vectors for text of any length
such as sentences, paragraphs, and documents.

KNN-WMD, which uses the WMD distance
together with KNN based classification, requires
O(N2) evaluations of the WMD distance, which in
turn has O(L3 log(L)) complexity, assuming that
documents have lengths bounded by L, leading
to an overall complexity of O(N2 L3 log(L). In
contrast, our WME approximation only requires
super-linear complexity of O(NRLlog(L)) when
D is constant. This is because in our case each
evaluation of WMD only requires O(D2 L log(L))
(Bourgeois and Lassalle, 1971), due to the short
length D of our random documents. This dramatic
reduction in computation significantly accelerates
training and testing when combined with empiri-
cal risk minimization classifiers such as SVMs. A
simple yet useful trick is to pre-compute the word
distances to avoid redundant computations since a
pair of words may appear multiple times in differ-
ent pairs of documents. Note that the computation
of the ground distance between each pair of word
vectors in documents has a O(L2 d) complexity,
which could be close to one WMD evaluation if
document length L is short and word vector di-
mension d is large. This simple scheme leads to
additional improvement in runtime performance of
our WME method that we show in our experiments.

3.3 Convergence of WME

In this section, we study the convergence of our
embedding (3) to the exact kernel (2) under the
framework of Random Features (RF) approxima-
tion (Rahimi and Recht, 2007). Note that the
standard RF convergence theory applies only to
the shift-invariant kernel operated on two vectors,
while our kernel (2) operates on two documents
x, y 2 X that are sets of word vectors. In (Wu
et al., 2018a), a general RF convergence theory is
provided for any distance-based kernel as long as
a finite covering number is given w.r.t. the given
distance. In the following lemma, we provide the
covering number for all documents of bounded
length under the Word Mover’s Distance. Without
loss of generality, we will assume that the word
embeddings {v} are normalized s.t. kvk  1.

Lemma 1. There exists an ✏-covering E of X under
the WMD metric with Euclidean ground distance,
so that:

8x 2 X , 9xi 2 E , WMD(x, xi)  ✏,

that has size bounded as |E|  (2
✏ )

d L, where L is
a bound on the length of document x 2 X .

Equipped with Lemma 1, we can derive the fol-
lowing convergence result as a simple corollary of
the theoretical results in (Wu et al., 2018a). We
defer the proof to the appendix A.

Theorem 1. Let �R(x, y) be the difference be-
tween the exact kernel (2) and the random approxi-
mation (3) with R samples, we have uniform con-
vergence

P

⇢
max
x,y2X

|�R(x, y)| > 2t

�
 2

✓
12�

t

◆2dL

e�Rt2/2.

where d is the dimension of word embedding and L
is a bound on the document length. In other words,
to guarantee |�R(x, y)|  ✏ with probability at
least 1 � �, it suffices to have

R = ⌦

✓
dL

✏2
log(

�

✏
) +

1

✏2
log(

1

�
)

◆
.

4 Experiments

We conduct an extensive set of experiments to
demonstrate the effectiveness and efficiency of the
proposed method. We first compare its perfor-
mance against 7 unsupervised document embed-
ding approaches over a wide range of text classi-
fication tasks, including sentiment analysis, news
categorization, amazon review, and recipe identifi-
cation. We use 9 different document corpora, with
8 of these drawn from (Kusner et al., 2015; Huang
et al., 2016); Table 1 provides statistics of the dif-
ferent datasets. We further compare our method
against 10 unsupervised, semi-supervised, and su-
pervised document embedding approaches on the
22 datasets from SemEval semantic textual similar-
ity tasks. Our code is implemented in Matlab, and
we use C Mex for the computationally intensive
components of WMD (Rubner et al., 2000).

4.1 Effects of R and D on WME
Setup. We first perform experiments to investigate
the behavior of the WME method by varying the
number of Random Features R and the length D of
random documents. The hyper-parameter � is set
via cross validation on training set over the range
[0.01, 10]. We simply fix the Dmin = 1, and vary
Dmax over the range [3, 21]. Due to limited space,
we only show selected subsets of our results, with
the rest listed in the Appendix B.2.
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Table 1: Properties of the datasets

Dataset C:Classes N :Train M :Test BOW Dim L:Length Application
BBCSPORT 5 517 220 13243 117 BBC sports article labeled by sport
TWITTER 3 2176 932 6344 9.9 tweets categorized by sentiment
RECIPE 15 3059 1311 5708 48.5 recipe procedures labeled by origin

OHSUMED 10 3999 5153 31789 59.2 medical abstracts (class subsampled)
CLASSIC 4 4965 2128 24277 38.6 academic papers labeled by publisher
REUTERS 8 5485 2189 22425 37.1 news dataset (train/test split)
AMAZON 4 5600 2400 42063 45.0 amazon reviews labeled by product
20NEWS 20 11293 7528 29671 72 canonical user-written posts dataset

RECIPE_L 20 27841 11933 3590 18.5 recipe procedures labeled by origin
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Figure 2: Train (Blue) and Test (Red) accuracy
when varying R with fixed D.
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Figure 3: Train (Blue) and Test (Red) accuracy
when varying D with fixed R.

Effects of R. We investigate how the performance
changes when varying the number of Random Fea-
tures R from 4 to 4096 with fixed D. Fig. 2 shows
that both training and testing accuracies gener-
ally converge very fast when increasing R from
a small number (R = 4) to a relatively large num-
ber (R = 1024), and then gradually reach to the
optimal performance. This confirms our analysis
in Theory 1 that the proposed WME can guarantee
the fast convergence to the exact kernel.

Effects of D. We further evaluate the training and
testing accuracies when varying the length of ran-
dom document D with fixed R. As shown in Fig. 3,
we can see that near-peak performance can usually
be achieved when D is small (typically D  6).
This behavior illustrates two important aspects: (1)
using very few random words (e.g. D = 1) is
not enough to generate useful Random Features

when R becomes large; (2) using too many random
words (e.g. D � 10) tends to generate similar and
redundant Random Features when increasing R.
Conceptually, the number of random words in a
random document can be thought of as the number
of the global topics in documents, which is gen-
erally small. This is an important desired feature
that confers both a performance boost as well as
computational efficiency to the WME method.

4.2 Comparison with KNN-WMD

Baselines. We now compare two WMD-based
methods in terms of testing accuracy and total train-
ing and testing runtime. We consider two variants
of WME with different sizes of R. WME(LR)
stands for WME with large rank that achieves the
best accuracy (using R up to 4096) with more com-
putational time, while WME(SR) stands for WME
with small rank that obtains comparable accuracy
in less time. We also consider two variants of both
methods where +P denotes that we precompute
the ground distance between each pair of words to
avoid redundant computations.

Setup. Following (Kusner et al., 2015; Huang et al.,
2016), for datasets that do not have a predefined
train/test split, we report average and standard devi-
ation of the testing accuracy and average run-time
of the methods over five 70/30 train/test splits. For
WMD, we provide the results (with respect to ac-
curacy) from (Kusner et al., 2015); we also reran
the experiments of KNN-WMD and found them
to be consistent with the reported results. For all
methods, we perform 10-fold cross validation to
search for the best parameters on the training docu-
ments. We employ a linear SVM implemented us-
ing LIBLINEAR (Fan et al., 2008) on WME since
it can isolate the effectiveness of the feature repre-
sentation from the power of the nonlinear learning
solvers. For additional results on all KNN-based
methods, please refer to Appendix B.3.

Results. Table 2 corroborates the significant advan-
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Table 2: Test accuracy, and total training and testing time (in seconds) of WME against KNN-WMD.
Speedups are computed between the best numbers of KNN-WMD+P and these of WME(SR)+P when
achieving similar testing accuracy. Bold face highlights the best number for each dataset.

Classifier KNN-WMD KNN-WMD+P WME(SR) WME(SR)+P WME(LR) WME(LR)+P
Dataset Accu Time Time Accu Time Time Accu Time Time Speedup

BBCSPORT 95.4 ± 1.2 147 122 95.5 ± 0.7 3 1 98.2 ± 0.6 92 34 122
TWITTER 71.3 ± 0.6 25 4 72.5 ± 0.5 10 2 74.5 ± 0.5 162 34 2
RECIPE 57.4 ± 0.3 448 326 57.4 ± 0.5 18 4 61.8 ± 0.8 277 61 82

OHSUMED 55.5 3530 2807 55.8 24 7 64.5 757 240 401
CLASSIC 97.2 ± 0.1 777 520 96.6 ± 0.2 49 10 97.1 ± 0.4 388 70 52
REUTERS 96.5 814 557 96.0 50 24 97.2 823 396 23
AMAZON 92.6 ± 0.3 2190 1319 92.7 ± 0.3 31 8 94.3 ± 0.4 495 123 165
20NEWS 73.2 37988 32610 72.9 205 69 78.3 1620 547 472

RECIPE_L 71.4 ± 0.5 5942 2060 72.5 ± 0.4 113 20 79.2 ± 0.3 1838 330 103

Table 3: Testing accuracy of WME against Word2Vec and Doc2Vec-based methods.

Dataset SIF(GloVe) Word2Vec+nbow Word2Vec+tf-idf PV-DBOW PV-DM Doc2VecC WME
BBCSPORT 97.3 ± 1.2 97.3 ± 0.9 96.9 ± 1.1 97.2 ± 0.7 97.9 ± 1.3 90.5 ± 1.7 98.2 ± 0.6
TWITTER 57.8 ± 2.5 72.0 ± 1.5 71.9 ± 0.7 67.8 ± 0.4 67.3 ± 0.3 71.0 ± 0.4 74.5 ± 0.5

OHSUMED 67.1 63.0 60.6 55.9 59.8 63.4 64.5
CLASSIC 92.7 ± 0.9 95.2 ± 0.4 93.9± 0.4 97.0 ± 0.3 96.5 ± 0.7 96.6 ± 0.4 97.1 ± 0.4
REUTERS 87.6 96.9 95.9 96.3 94.9 96.5 97.2
AMAZON 94.1 ± 0.2 94.0 ± 0.5 92.2 ± 0.4 89.2 ± 0.3 88.6 ± 0.4 91.2 ± 0.5 94.3 ± 0.4
20NEWS 72.3 71.7 70.2 71.0 74.0 78.2 78.3

RECIPE_L 71.1 ± 0.5 74.9 ± 0.5 73.1 ± 0.6 73.1 ± 0.5 71.1 ± 0.4 76.1 ± 0.4 79.2 ± 0.3

tages of WME compared to KNN-WMD in terms
of both accuracy and runtime. First, WME(SR)
can consistently achieve better or similar accuracy
compared to KNN-WMD while requiring order-of-
magnitude less computational time on all datasets.
Second, both methods can benefit from precom-
putation of the ground distance between a pair of
words but WME gains much more from prefetch
(typically 3-5x speedup). This is because the typ-
ical length D of random documents is very short
where computing ground distance between word
vectors may be even more expensive than the corre-
sponding WMD distance. Finally, WME(LR) can
achieve much higher accuracy compared to KNN-
WMD while still often requiring less computational
time, especially on large datasets like 20NEWS and
relatively long documents like OHSUMED.

4.3 Comparisons with Word2Vec & Doc2Vec

Baselines. We compare against 6 document repre-
sentations methods: 1) Smooth Inverse Frequency
(SIF) (Arora et al., 2017): a recently proposed sim-
ple but tough to beat baseline for sentence embed-
dings, combining a new weighted scheme of word
embeddings with dominant component removal;
2) Word2Vec+nbow: a weighted average of word
vectors using NBOW weights; 3) Word2Vec+tf-
idf : a weighted average of word vectors using
TF-IDF weights; 4) PV-DBOW (Le and Mikolov,
2014): distributed bag of words model of Para-

graph Vectors; 5) PV-DM (Le and Mikolov, 2014):
distributed memory model of Paragraph Vectors;
6) Doc2VecC (Chen, 2017): a recently proposed
document-embedding via corruptions, achieving
state-of-the-art performance in text classification.

Setup. Word2Vec+nbow, Word2Vec+tf-idf and
WME use pre-trained Word2Vec embeddings while
SIF uses its default pre-trained GloVe embeddings.
Following (Chen, 2017), to enhance the perfor-
mance of PV-DBOW, PV-DM, and Doc2VecC these
methods are trained transductively on both train
and test, which is indeed beneficial for generating
a better document representation (see Appendix
B.4). In contrast, the hyperparameters of WME are
obtained through a 10-fold cross validation only on
training set. For a fair comparison, we run a linear
SVM using LIBLINEAR on all methods.

Results. Table 3 shows that WME consistently out-
performs or matches existing state-of-the-art doc-
ument representation methods in terms of testing
accuracy on all datasets except one (OHSUMED).
The first highlight is that simple average of word
embeddings often achieves better performance than
SIF(Glove), indicating that removing the first prin-
ciple component could hurt the expressive power
of the resulting representation for some of clas-
sification tasks. Surprisingly, these two methods
often achieve similar or better performance than
PV-DBOW and PV-DM, which may be because of
the high-quality pre-trained word embeddings. On
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Table 4: Pearson’s scores of WME against other unsupervised, semi-supervised, and supervised methods
on 22 textual similarity tasks. Results are collected from (Arora et al., 2017) except our approach.

Approaches Supervised Unsupervised Semi-supervised
WordEmbeddings PSL GloVe PSL

Tasks PP Dan RNN iRNN LSTM(no) LSTM(o.g.) ST nbow tf-idf SIF WME SIF WME
STS’12 58.7 56.0 48.1 58.4 51.0 46.4 30.8 52.5 58.7 56.2 60.6 59.5 62.8
STS’13 55.8 54.2 44.7 56.7 45.2 41.5 24.8 42.3 52.1 56.6 54.5 61.8 56.3
STS’14 70.9 69.5 57.7 70.9 59.8 51.5 31.4 54.2 63.8 68.5 65.5 73.5 68.0
STS’15 75.8 72.7 57.2 75.6 63.9 56.0 31.0 52.7 60.6 71.7 61.8 76.3 64.2

SICK’14 71.6 70.7 61.2 71.2 63.9 59.0 49.8 65.9 69.4 72.2 68.0 72.9 68.1
Twitter’15 52.9 53.7 45.1 52.9 47.6 36.1 24.7 30.3 33.8 48.0 41.6 49.0 47.4

the other hand, Doc2VecC achieves much better
testing accuracy than these previous methods on
two datasets (20NEWS, and RECIPE_L). This is
mainly because that it benefits significantly from
transductive training (See Appendix B.4). Finally,
the better performance of WME over these strong
baselines stems from fact that WME is empow-
ered by two important building blocks, WMD and
Word2Vec, to yield a more informative representa-
tion of the documents by considering both the word
alignments and the semantics of words.

We refer the readers to additional results on the
Imdb dataset in Appendix B.4, which also demon-
strate the clear advantage of WME even compared
to the supervised RNN method as well as the afore-
mentioned baselines.

4.4 Comparisons on textual similarity tasks

Baselines. We compare WME against 10 super-
vised, simi-sepervised, and unsupervised methods
for performing textual similarity tasks. Six su-
pervised methods are initialized with Paragram-
SL999(PSL) word vectors (Wieting et al., 2015b)
and then trained on the PPDB dataset, includ-
ing: 1) PARAGRAM-PHRASE (PP) (Wieting et al.,
2015a): simple average of refined PSL word vec-
tors; 2) Deep Averaging Network (DAN) (Iyyer
et al., 2015); 3) RNN: classical recurrent neural
network; 4) iRNN: a variant of RNN with the acti-
vation being the identify; 5) LSTM(no) (Gers et al.,
2002): LSTM with no output gates; 6) LSTM(o.g.)
(Gers et al., 2002): LSTM with output gates. Four
unsupervised methods are: 1) Skip-Thought Vectors
(ST) (Kiros et al., 2015): an encoder-decoder RNN
model for generalizing Skip-gram to the sentence
level; 2) nbow: simple averaging of pre-trained
GloVe word vectors; 3) tf-idf : a weighted average
of GloVe word vecors using TF-IDF weights; 4)
SIF (Arora et al., 2017): a simple yet strong method
on textual similarity tasks using GloVe word vecors.
Two semi-supervised methods use PSL word vec-

tors, which are trained using labeled data (Wieting
et al., 2015b).

Setup. There are total 22 textual similarity datasets
from STS tasks (2012-2015) (Agirre et al., 2012,
2013, 2014, 2015), SemEval 2014 Semantic Relat-
edness task (Xu et al., 2015), and SemEval 2015
Twitter task (Marelli et al., 2014). The goal of these
tasks is to predict the similarity between two input
sentences. Each year STS usually has 4 to 6 differ-
ent tasks and we only report the averaged Pearson’s
scores for clarity. Detailed results on each dataset
are listed in Appendix B.5.

Results. Table 4 shows that WME consistently
matches or outperforms other unsupervised and su-
pervised methods except the SIF method. Indeed,
compared with ST and nbow, WME improves Pear-
son’s scores substantially by 10% to 33% as a re-
sult of the consideration of word alignments and
the use of TF-IDF weighting scheme. tf-idf also
improves over these two methods but is slightly
worse than our method, indicating the importance
of taking into account the alignments between the
words. SIF method is a strong baseline for tex-
tual similarity tasks but WME still can beat it on
STS’12 and achieve close performance in other
cases. Interestingly, WME is on a par with three su-
pervised methods RNN, LSTM(no), and LSTM(o.g.)
in most cases. The final remarks stem from the fact
that, WME can gain significantly benefit from the
supervised word embeddings similar to SIF, both
showing strong performance on PSL.

5 Related Work

Two broad classes of unsupervised and supervised
methods have been proposed to generate sentence
and document representations. The former primar-
ily generate general purpose and domain indepen-
dent embeddings of word sequences (Socher et al.,
2011; Kiros et al., 2015; Arora et al., 2017); many
unsupervised training research efforts have focused
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on either training an auto-encoder to learn the la-
tent structure of a sentence (Socher et al., 2013), a
paragraph, or document (Li et al., 2015); or gen-
eralizing Word2Vec models to predict words in a
paragraph (Le and Mikolov, 2014; Chen, 2017) or
in neighboring sentences (Kiros et al., 2015). How-
ever, some important information could be lost in
the resulting document representation without con-
sidering the word order. Our proposed WME over-
comes this difficulty by considering the alignments
between each pair of words.

The other line of work has focused on developing
compositional supervised models to create a vector
representation of sentences (Kim et al., 2016; Gong
et al., 2018b). Most of this work proposed com-
position using recursive neural networks based on
parse structure (Socher et al., 2012, 2013), deep av-
eraging networks over bag-of-words models (Iyyer
et al., 2015; Wieting et al., 2015a), convolutional
neural networks (Kim, 2014; Kalchbrenner et al.,
2014; Xu et al., 2018), and recurrent neural net-
works using long short-term memory (Tai et al.,
2015; Liu et al., 2015). However, these methods
are less well suited for domain adaptation settings.

6 Conclusion

In this paper, we have proposed an alignment-aware
text kernel using WMD for texts of variable lengths,
which takes into account both word alignments
and pre-trained high quality word embeddings in
learning an effective semantics-preserving feature
representation. The proposed WME is simple, ef-
ficient, flexible, and unsupervised. Extensive ex-
periments show that WME consistently matches or
outperforms state-of-the-art models on various text
classification and textual similarity tasks. WME
embeddings can be easily used for a wide range of
downstream supervised and unsupervised tasks.
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Abstract
Clustering news across languages enables
efficient media monitoring by aggregating ar-
ticles from multilingual sources into coherent
stories. Doing so in an online setting allows
scalable processing of massive news streams.
To this end, we describe a novel method for
clustering an incoming stream of multilingual
documents into monolingual and crosslingual
story clusters. Unlike typical clustering
approaches that consider a small and known
number of labels, we tackle the problem of
discovering an ever growing number of cluster
labels in an online fashion, using real news
datasets in multiple languages. Our method
is simple to implement, computationally
efficient and produces state-of-the-art results
on datasets in German, English and Spanish.

1 Introduction
Following developing news stories is imperative to
making real-time decisions on important political
and public safety matters. Given the abundance of
media providers and languages, this endeavor is an
extremely difficult task. As such, there is a strong
demand for automatic clustering of news streams,
so that they can be organized into stories or themes
for further processing. Performing this task in an
online and efficient manner is a challenging prob-
lem, not only for newswire, but also for scientific
articles, online reviews, forum posts, blogs, and
microblogs.

A key challenge in handling document streams
is that the story clusters must be generated on the
fly in an online fashion: this requires handling doc-
uments one-by-one as they appear in the document
stream. In this paper, we provide a treatment to the
problem of online document clustering, i.e. the task
of clustering a stream of documents into themes.
For example, for news articles, we would want to
cluster them into related news stories.

To this end, we introduce a system which aggre-
gates news articles into fine-grained story clusters
across different languages in a completely online
and scalable fashion from a continuous stream. Our
clustering approach is part of a larger media mon-
itoring project to solve the problem of monitor-
ing massive text and TV/Radio streams (speech-
to-text). In particular, media monitors write intelli-
gence reports about the most relevant events, and
being able to search, visualize and explore news
clusters assists in gathering more insight about
a particular story. Since relevant events may be
spawned from any part of the world (and from
many multilingual sources), it becomes imperative
to cluster news across different languages.

In terms of granularity, the type of story clusters
we are interested in are the group of articles which,
for example : (i) Narrate recent air-strikes in East-
ern Ghouta (Syria); (ii) Describe the recent launch
of Space X’s Falcon Heavy rocket.

Main Contributions While most existing news
clustering approaches assume a monolingual docu-
ment stream – a non-realistic scenario given the di-
versity of languages on the Web – we assume a gen-
eral, multilingual, document stream. This means
that in our problem-formulation story documents
appear in multiple languages and we need to cluster
them to crosslingual clusters. Our main contribu-
tions are as follows:

• We develop a system that aggregates news arti-
cles into fine-grained story clusters across differ-
ent languages in a completely online and scalable
fashion from a continuous stream. As discussed
in the introduction, this is a highly relevant task
for the use-case of media monitoring.

• We formulate the problem of online multilingual
document clustering and the representation that
such clustering takes by interlacing the problem
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of monolingual clustering with crosslingual clus-
tering. The representation of our clusters is inter-
pretable, and similarly to topic models, consists
of a set of keywords and weights associated with
the relevant cluster. In our formulation, a mono-
lingual cluster is a group of documents, and a
crosslingual cluster is a group of monolingual
clusters in different languages.

• We compare our approach to our own imple-
mentation of a state-of-the-art streaming method,
and show much superior results for a dataset in
English, Spanish and German.

2 Problem Formulation
We focus on clustering of a stream of documents,
where the number of clusters is not fixed and
learned automatically. We denote by D a (poten-
tially infinite) space of multilingual documents.
Each document d is associated with a language in
which it is written through a function L : D ! L
where L is a set of languages. For example, L(d)
could return English, Spanish or German. (In the
rest of the paper, for an integer n, we denote by [n]
the set {1, . . . , n}.)

We are interested in associating each document
with a monolingual cluster via the function C(d) 2
N, which returns the cluster label given a document.
This is done independently for each language, such
that the space of indices we use for each language
is separate. Furthermore, we interlace the prob-
lem of monolingual clustering with crosslingual
clustering. This means that as part of our problem
formulation we are also interested in a function
E : N ⇥ L ! N that associates each monolin-
gual cluster with a crosslingual cluster, such that
each crosslingual cluster only groups one mono-
lingual cluster per different language, at a given
time. The crosslingual cluster for a document d
is E(C(d), L(d)). As such, a crosslingual cluster
groups together monolingual clusters, at most one
for each different language.

Intuitively, building both monolingual and
crosslingual clusters allows the system to leverage
high-precision monolingual features (e.g., words,
named entities) to cluster documents of the same
language, while simplifying the task of crosslingual
clustering to the computation of similarity scores
across monolingual clusters - which is a smaller
problem space, since there are (by definition) less
clusters than articles. We validate this choice in §5.

3 The Clustering Algorithm

Each document d is represented by two vectors in
R

k1 and R
k2 . The first vector exists in a “mono-

lingual space” (of dimensionality k1) and is based
on a bag-of-words representation of the document.
The second vector exists in a “crosslingual space”
(of dimensionality k2) which is common to all lan-
guages. More details about these representations
are discussed in §4.

Online Clustering With our clustering algo-
rithm, we maintain two types of centroid functions
for each monolingual cluster. The first is a cen-
troid function H : N ⇥ L ! R

k1 [ {?} that as-
sists in associating each document with a mono-
lingual cluster. The second is a centroid function
G : N ! R

k2 [{?} that assists in associating each
monolingual cluster with a crosslingual cluster. The
? symbol is reserved to denote documents which
are not associated with any cluster yet.

In our algorithm, we need to incrementally con-
struct the functions H , G (the two centroid func-
tions), C (the monolingual clustering function) and
E (the crosslingual clustering function). Informally,
we do so by first identifying a monolingual cluster
for an incoming document by finding the closest
centroid with the function H , and then associate
that monolingual cluster with the crosslingual clus-
ter that is closest based on the function G. The first
update changes C and the second update changes
E. Once we do that, we also update H and G to
reflect the new information that exists in the new
incoming document.

Example Figure 1 depicts the algorithm and the
state it maintains. A document in some language
(d9) appears in the stream, and is clustered into
one of the monolingual clusters (circles) that group
together documents about the same story (for ex-
ample, hc2, DEi could be a German cluster about a
recent political event). Then, following this mono-
lingual update, the online clustering algorithm up-
dates the crosslingual clusters (round rectangles),
each grouping together a set of monolingual clus-
ters, one per language at the most. The centroids
for the monolingual clusters are maintained by the
function H . For example, H(2, English) gives the
centroid of the upper left English monolingual clus-
ter. The function G maintains the crosslingual clus-
ters. Considering the upper-left most crosslingual
cluster, a1, then G(1) returns its centroid.
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Figure 1: A pictorial description of the algorithm and
the state it maintains. The algorithm maintains a mono-
lingual cluster space, in which each cluster is a set
of documents in a specific language. The algorithm
also maintains a crosslingual cluster space, in which
a cluster is a set of monolingual clusters in different
languages. Documents are denoted by di, monolingual
clusters by ci (circles) and crosslingual clusters by ai.

Algorithm To be more precise, the online clus-
tering process works as follows. H and G start with
just returning ? for any cluster number, both mono-
lingual and crosslingual. With a new incoming doc-
ument d, represented as a vector, we compute a
similarity metric �0 : R

k1 ⇥ R
k1 ! R between the

document vector and each of the existing centroids
{i | H(i, L(d)) 6= ?}. If the largest similarity ex-
ceeds a threshold ⌧ for cluster index j, then we set
C(d) = j. In that case, we also update the value of
H(i, L(d)) to include new information from doc-
ument d, as detailed below under “H update.” If
none of the similarity values exceed a threshold
⌧ , we find the first i such that H(i, L(d)) = ?
(the first cluster id which is still unassigned), and
set C(d) = i, therefore creating a new cluster. We
again follow an “H update” – this time for starting
a new cluster.

In both cases, we also update the function G,
by selecting the best crosslingual cluster for the
recently updated (or created) monolingual clus-
ter. To this end, we use another similarity metric
�1 : R

k2 ⇥ R
k2 ! R. Accordingly, we compute

the similarity (using �1) between the updated (or
created) monolingual cluster and all monolingual
clusters in each candidate crosslingual cluster, in
the crosslingual feature space. The crosslingual
cluster with highest sum of similarity scores is then
selected. We also experimented computing this sim-
ilarity by considering just the monolingual cluster
of a particular “pivot language”. The pivot language
is a language that serves as the main indicator for a

given crosslingual cluster. In our experiments, we
mostly use English as the pivot language.

H Update To update H , we maintain a centroid
for each cluster that is created as the average of
all monolingual representations of documents that
belong to that cluster. This is done for each lan-
guage separately. This update can be done in O(k1)
time in each step. Similarly, the update of G can be
done in O(k2) time. In principle, we consider an
“infinite” stream of documents, which means the
number of documents in each cluster can be large.
As such, for efficiency purposes, updates to H are
immutable, which means that when a document is
assigned to a monolingual cluster, that assignment
is never changed.

G Update As described, updates to function G
result in associating a monolingual cluster with a
crosslingual cluster (and consequently, other mono-
lingual clusters). Therefore, errors committed in
updating G are of a higher magnitude than those
committed in H , since they involve groups of doc-
uments. We also note that the best crosslingual
cluster for a particular monolingual cluster might
not be found right at the beginning of the process.
We experiment with two types of updates to G.
One which is immutable, in which changes to G
are not reversed (and are described above), and
one in which we introduce a novel technique to
make a sequence of changes to G if necessary, as a
mechanism to self-correct past clustering decisions.
When a past decision is modified, it may result in a
chaining of consequent modifications (“toppling of
dominoes”) which need to be evaluated. We coin
this method “domino-toppling”.

The motivation behind this technique is the
change in news stories over time. The technique
allows the method to modify past crosslingual clus-
tering decisions and enables higher quality clus-
tering results. When a past decision is modified, it
may result in a chain of consequent modifications
which need to be evaluated.

Our method of “domino-toppling” works by
making (potentially sequences) of changes to pre-
vious clustering decisions for the crosslingual clus-
ters, at each step placing a residual monolingual
cluster in a crosslingual cluster that is most similar
to it. Figure 2 gives the pseudocode for domino
toppling.

This “domino-toppling” technique could have
in principle a quadratic complexity in the number
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Inputs: A monolingual cluster c and a list of pairs
haj , �1(c, aj)i, j 2 [N ].

Algorithm:
• For all pairs haj , �1(c, aj)i, j 2 [N ], ordered by the

second coordinate:
• If L(c) is not in aj , add c to aj and break.
• Otherwise, let y  M(aj , L(c)). If �1(c, aj) >

�1(y, aj) then:
• Add c to aj , remove y from aj and call

domino toppling with y playing the role of c
and break.

• If c is left unassigned, create aN+1 and add c to it.

Figure 2: Crosslingual “domino-toppling”. aj is the jth
crosslingual cluster (out of total N clusters) and �1 is
the similarity between them as in §4. L(c) is the lan-
guage for cluster c. M(a, `) returns the monolingual
cluster for language ` 2 L in crosslingual cluster a.
See text for details.

of crosslingual clusters. However, we have veri-
fied that in practice it converges very fast, and in
our evaluation dataset only 1% of the crosslingual
updates result in topples. We apply this technique
only to update G (and not H) because reversing
cluster assignments in G can be done much more
efficiently than in H – the total number of mono-
lingual clusters (the clustered elements in G) is
significantly smaller than the number of documents
(the clustered elements in H). Crosslingual cluster-
ing is also a harder problem, which motivated the
additional effort of developing this algorithm.

4 Document Representation

In this section, we give more details about the way
we construct the document representations in the
monolingual and crosslingual spaces. In particu-
lar, we introduce the definition of the similarity
functions �0 and �1 that were referred in §3.

Monolingual Representation The monolingual
representation for each document d in language
L(d) is a vector in R

k1 constructed from several
TF-IDF subvectors with words, word lemmas and
named entities. Each subvector is repeated for dif-
ferent sections of the document, the title, the body
and both of them together. Besides these text fields
and document timestamps, no other metadata was
used. To detect named entities, we used Priberam’s
Text Analysis (Amaral et al., 2008) for English and
Spanish, and Turbo Parser (Martins et al., 2013) for
German. The extracted entities consist of people,
organizations, places and other types.

Crosslingual Representation In the crosslin-
gual space, a document representation is a vec-
tor in R

k2 . Let e(d, i) be a crosslingual embed-
ding of word i in the document d, which is a vec-
tor of length m . Then the document representa-
tion v(d) of d consists of subvectors of the form
v(d) =

Pn
i=1 tie(d, i), where ti is the TF-IDF

score of the ith word in the relevant section of the
document (title, body or both). As detailed further
in §5 we compute IDF values from a large pre-
training dataset. Furthermore, for both the mono-
lingual and crosslingual cases, we also experiment
with using document timestamp features, as ex-
plained in §4.1. We use a new set of diverse times-
tamp features in addition to the simple absolute
difference (in hours) between timestamps used by
Rupnik et al. (2016).

4.1 Similarity Metrics
Our similarity metric computes weighted cosine
similarity on the different subvectors, both in the
case of monolingual clustering and crosslingual
clustering. Formally, for the monolingual case, the
similarity is given by a function defined as:

�0(dj , cl) =
KX

i=1

�i(dj , cl) ·q0
i +

3X

i=1

�i(dj , cl) ·q1
i .

(1)
and is computed on the TF-IDF subvectors where
K is the number of subvectors for the relevant
document representation. For the crosslingual case,
we discuss below the function �1, which has a
similar structure.

Here, dj is the jth document in the stream and
cl is a monolingual cluster. The function �i(dj , cl)
returns the cosine similarity between the document
representation of the jth document and the centroid
for cluster cl. The vector q0 denotes the weights
through which each of the cosine similarity values
for each subvectors are weighted, whereas q1 de-
notes the weights for the timestamp features, as
detailed further. Details on learning the weights q0

and q1 are discussed in §4.2.
The function �(d, c) that maps a pair of docu-

ment and cluster to R
3 is defined as follows. Let

f(t) = exp

✓
�(t � µ)2

2�2

◆
(2)

for a given µ and � > 0. For each document
d and cluster c, we generate the following three-
dimensional vector �(d, c) = (s1, s2, s3):
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• s1 = f(t(d) � n1(c)) where t(dj) is the times-
tamp for document d and n1(c) is the timestamp
for the newest document in cluster c.

• s2 = f(t(d)�n2(c)) where n2(c) is the average
timestamp for all documents in cluster c.

• s3 = f(t(d) � n3(c)) where n3(c) is the times-
tamp for the oldest document in cluster c.

These three timestamp1 features model the time
aspect of the online stream of news data and help
disambiguate clustering decisions, since time is a
valuable indicator that a news story has changed,
even if a cluster representation has a reasonable
match in the textual features with the incoming
document. The same way a news story becomes
popular and fades over time (Lerman and Hogg,
2010), we model the probability of a document
belonging to a cluster (in terms of timestamp dif-
ference) with a probability distribution.

For the case of crosslingual clustering, we in-
troduce �1, which has a similar definition to �0,
only instead of passing document/cluster similarity
feature vectors, we pass cluster/cluster similarities,
across all language pairs. Furthermore, the features
are the crosslingual embedding vectors of the sec-
tions title, body and both combined (similarly to the
monolingual case) and the timestamp features. For
denoting the cluster timestamp, we use the average
timestamps of all articles in it.

4.2 Learning to Rank Candidates
In §4.1 we introduced q0 and q1 as the weight
vectors for the several document representation
features. We experiment with both setting these
weights to just 1 (q0

i = 1 8i and q1
j = 1 8j 2 [3])

and also learning these weights using support vec-
tor machines (SVMs). To generate the SVM train-
ing data, we simulate the execution of the algorithm
on a training data partition (which we do not get
evaluated on) and in which the gold standard labels
are given. We run the algorithm using only the first
subvector �1(dj , cl), which is the TF-IDF vector
with the words of the document in the body and
title. For each incoming document, we create a col-
lection of positive examples, for the document and
the clusters which share at least one document in
the gold labeling. We then generate 20 negative ex-
amples for the document from the 20 best-matching
clusters which are not correct. To find out the best-
matching clusters, we rank them according to their

1Timestamps are given in hours since 1970.

similarity to the input document using only the first
subvector �1(dj , cl).

Using this scheme we generate a collection
of ranking examples (one for each document in
the dataset, with the ranking of the best cluster
matches), which are then trained using the SVM-
Rank algorithm (Joachims, 2002). We run 5-fold
cross-validation on this data to select the best
model, and train both a separate model for each
language according to �0 and a crosslingual model
according to �1.

5 Experiments

Our system was designed to cluster documents
from a (potentially infinite) real-word data stream.
The datasets typically used in the literature (TDT,
Reuters) have a small number of clusters (⇡ 20)
with coarse topics (economy, society, etc.), and
therefore are not relevant to the use case of me-
dia monitoring we treat - as it requires much more
fine-grained story clusters about particular events.
To evaluate our approach, we adapted a dataset
constructed for the different purpose of binary clas-
sification of joining cluster pairs.2 We processed it
to become a collection of articles annotated with
monolingual and crosslingual cluster labels.3

Statistics about this dataset are given in Ta-
ble 1. As described further, we tune the hyper-
parameter ⌧ on the development set. As for the
hyper-parameters related to the timestamp features,
we fixed µ = 0 and tuned � on the development set,
yielding � = 72 hours (3 days).4 To compute IDF
scores (which are global numbers computed across
a corpus), we used a different and much larger
dataset that we collected from Deutsche Welle’s
news website (http://www.dw.com/). The
dataset consists of 77,268, 118,045 and 134,243
documents for Spanish, English and German, re-
spectively.

The conclusions from our experiments are: (a)
the weighting of the similarity metric features using
SVM significantly outperforms unsupervised base-
lines such as CluStream (Table 2); (b) the SVM
approach significantly helps to learn when to cre-
ate a new cluster, compared to simple grid search

2https://github.com/rupnikj/jair_paper
3The code and data we used is available at https://

github.com/priberam/news-clustering.
4This shows a relative robustness to reordering of the arti-

cles – articles within 3 days of each other could appear any-
where in that window, and the algorithm would still perform
well.
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Dataset Size Avg. L. C Avg. S.

tra
in English 12,233 434 593 21

German 4,043 282 377 11
Spanish 4,527 355 416 11

te
st

English 8,726 521 222 39
German 2,101 440 118 18
Spanish 2,177 392 149 15

Table 1: Statistics for the development and evaluation
datasets, constructed from the dataset in Rupnik et al.
(2016), as explained in §5. “Size” denotes the number
of documents in the collection, “Avg. L.” is the aver-
age number of words in a document, “C” denotes the
number of clusters in the collection and “Avg. S.” is the
average number of documents in each cluster.

for the optimal ⌧ (Table 4); (c) separating the fea-
ture space into one for monolingual clusters in the
form of keywords and the other for crosslingual
clusters based on crosslingual embeddings signifi-
cantly helps performance.

Evaluation Method We evaluate clustering in
the following manner: let tp be the number of cor-
rectly clustered-together document pairs, let fp be
the number of incorrectly clustered-together docu-
ment pairs and let fn be the number of incorrectly
not-clustered-together document pairs. Then we
report precision as tp

tp+fp , recall as tp
tp+fn and F1

as the harmonic mean of the precision and recall
measures. We do the same to evaluate crosslingual
clustering, but on a higher level: we count tp, fn
and fp for the decisions of clustering clusters, as
crosslingual clusters are groups of monolingual
gold clusters.

5.1 Monolingual Results

In our first set of experiments, we report results
on monolingual clustering for each language sepa-
rately. Monolingual clustering of a stream of doc-
uments is an important problem that has been in-
spected by others, such as by Ahmed et al. (2011)
and by Aggarwal and Yu (2006). We compare our
results to our own implementation of the online
micro-clustering routine presented by Aggarwal
and Yu (2006), which shall be referred to as CluS-
tream. We note that CluStream of Aggarwal and
Yu (2006) has been a widely used state-of-the-art
system in media monitoring companies as well as
academia, and serves as a strong baseline to this
day.

In our preliminary experiments, we also evalu-
ated an online latent semantic analysis method, in
which the centroids we keep for the function H (see

algorithm F1 P R

En
gl

is
h CluStream 79.0 98.6 65.9

TOKENS+LEMMAS+ENTS 92.7 92.9 92.5
+TS 94.1 98.2 90.3

G
er

m
an CluStream 89.7 99.9 81.3

TOKENS+LEMMAS+ENTS 90.7 99.7 83.2
+TS 97.1 99.9 94.5

Sp
an

is
h CluStream 78.1 73.4 83.5

TOKENS+LEMMAS+ENTS 88.8 95.9 82.7
+TS 94.2 97.0 91.6

Table 2: Clustering results on the labeled dataset. We
compare our algorithm (with and without timestamps)
with the online micro-clustering routine of Aggarwal
and Yu (2006) (denoted by CluStream). The F1 values
are for the precision (P) and recall (R) in the follow-
ing columns. See Table 3 for a legend of the different
models. Best result for each language is in bold.

§3) are the average of reduced dimensional vectors
of the incoming documents as generated by an in-
cremental singular value decomposition (SVD) of
a document-term matrix that is updated after each
incoming document. However, we discovered that
online LSA performs significantly worse than rep-
resenting the documents the way is described in §4.
Furthermore, it was also significantly slower than
our algorithm due to the time it took to perform
singular value decomposition.5

Clustering experiments Table 2 gives the final
monolingual results on the three datasets. For En-
glish, we see that the significant improvement we
get using our algorithm over the algorithm of Ag-
garwal and Yu (2006) is due to an increased recall
score. We also note that the trained models surpass
the baseline for all languages, and that the times-
tamp feature (denoted by TS), while not required
to beat the baseline, has a very relevant contribu-
tion in all cases. Although the results for both the
baseline and our models seem to differ across lan-
guages, one can verify a consistent improvement
from the latter to the former, suggesting that the
score differences should be mostly tied to the differ-
ent difficulty found across the datasets for each lan-
guage. The presented scores show that our learning
framework generalizes well to different languages
and enables high quality clustering results.

To investigate the impact of the timestamp fea-
5More specifically, we used an object of type lsimodel

from the GenSim package that implements algorithms from
Řehůřek (2010). The GenSim package can be found at
https://pypi.python.org/pypi/gensim.
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feature accuracy
TOKENS 85.5
TOKENS+LEMMAS 85.9
TOKENS+LEMMAS+ENTS 86.5
TOKENS+LEMMAS+ENTS+TS 96.9

Table 3: Accuracy of the SVM ranker on the English
training set. TOKENS are the word token features, LEM-
MAS are the lemma features for title and body, ENTS
are named entity features and TS are timestamp fea-
tures. All features are described in detail in §4, and are
listed for both the title and the body.

tures, we ran an additional experiment using only
the same three timestamp features as used in the
best model on the English dataset. This experi-
ment yielded scores of F1 = 61.1, P = 44.5 and
R = 97.6, which lead us to conclude that while
these features are not competitive when used alone
(hence temporal information by itself is not suffi-
cient to predict the clusters), they contribute signif-
icantly to recall with the final feature ensemble.

We note that as described in §3, the optimiza-
tion of the ⌧ parameter is part of the development
process. The parameter ⌧ is a similarity thresh-
old used to decide when an incoming document
should merge to the best cluster or create a new
one. We tune ⌧ on the development set for each
language, and the sensitivity to it is demonstrated
in Figure 3 (this process is further referred to as
⌧search). Although applying grid-search on this pa-
rameter is the most immediate approach to this
problem, we experimented with a different method
which yielded superior results: as described further,
we discuss how to do this process with an additional
classifier (denoted SVM-merge), which captures
more information about the incoming documents
and the existing clusters.

Additionally, we also experimented with comput-
ing the monolingual clusters with the same embed-
dings as used in the crosslingual clustering phase,
which yielded poor results. In particular, this sys-
tem achieved F1 score of 74.8 for English, which
is below the bag-of-words baseline presented in
Table 2. This result supports the approach we then
followed of having two separate feature spaces for
the monolingual and crosslingual clustering sys-
tems, where the monolingual space is discrete and
the crosslingual space is based on embeddings.

SVM ranker experiments To investigate the im-
portance of each feature, we now consider in Ta-

2 4 6 8 10 12 14

0.
0
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0.
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0.
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0

τ
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English
Spanish
German

Figure 3: The F1 score of the different language de-
velopment sets as a function of the threshold ⌧ . The
first point for each language is identified using binary
search.

model F1 P R
⌧search 82.8 96.5 72.4
SVM-merge 94.1 98.2 90.3

Table 4: Comparison of two different cluster decision
techniques for the English SVM model with all fea-
tures (see Table 2). The first method, ⌧search, corre-
sponds to executing grid-search to find the optimal clus-
tering ⌧ parameter (see §3). SVM-merge is an alterna-
tive method in which we train an SVM binary classi-
fier to decide if a new cluster should be created or not,
where we use as features the maximal value of each
coordinate for each document in a cluster.

ble 3 the accuracy of the SVM ranker for English
as described in §4.1. We note that adding features
increases the accuracy of the SVM ranker, espe-
cially the timestamp features. However, the times-
tamp feature actually interferes with our optimiza-
tion of ⌧ to identify when new clusters are needed,
although they improve the SVM reranking accu-
racy. We speculate this is true because high accu-
racy in the reranking problem does not necessarily
help with identifying when new clusters need to be
opened. To investigate this issue, we experimented
with a different technique to learn when to create a
new cluster. To this end, we trained another SVM
classifier just to learn this decision, this time a bi-
nary classifier using LIBLINEAR (Fan et al., 2008),
by passing the max of the similarity of each feature
between the incoming document and the current
clustering pool as the input feature vector. This
way, the classifier learns when the current clusters,
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crosslingual model F1 P R
⌧search (global) 72.7 89.8 61.0
⌧search (pivot) 84.0 83.0 85.0

Table 5: Crosslingual clustering results when consid-
ering two different approaches to compute distances
across crosslingual clusters on the test set for Spanish,
German and English. See text for details.

as a whole, are of a different news story than the
incoming document. As presented in Table 4, this
method, which we refer to as SVM-merge, solved
the issue of searching for the optimal ⌧ parame-
ter for the SVM-rank model with timestamps, by
greatly improving the F1 score in respect to the
original grid-search approach (⌧search).

5.2 Crosslingual Results

As mentioned in §3, crosslingual embeddings are
used for crosslingual clustering. We experimented
with the crosslingual embeddings of Gardner et al.
(2015) and Ammar et al. (2016). In our preliminary
experiments we found that the former worked better
for our use-case than the latter.

We test two different scenarios for optimizing
the similarity threshold ⌧ for the crosslingual case.
Table 5 shows the results for these experiments.
First, we consider the simpler case of adjusting a
global ⌧ parameter for the crosslingual distances, as
also described for the monolingual case. As shown,
this method works poorly, since the ⌧ grid-search
could not find a reasonable ⌧ which worked well
for every possible language pair.

Subsequently, we also consider the case of using
English as a pivot language (see §3), where dis-
tances for every other language are only compared
to English, and crosslingual clustering decisions
are made only based on this distance.6 This yielded
our best crosslingual score of F1=84.0, confirm-
ing that crosslingual similarity is of higher quality
between each language and English, for the em-
beddings we used. This score represents only a
small degradation in respect to the monolingual
results, since clustering across different languages
is a harder problem.

6In this case, all crosslingual clusters will have at least one
pivot monolingual cluster, except for clusters which might
stay unmerged as single-language degenerated crosslingual
clusters.

6 Related Work

Early research efforts, such as the TDT pro-
gram (Allan et al., 1998), have studied news clus-
tering for some time. The problem of online mono-
lingual clustering algorithms (for English) has also
received a fair amount of attention in the litera-
ture. One of the earlier papers by Aggarwal and
Yu (2006) introduced a two-step clustering system
with both offline and online components, where the
online model is based on a streaming implemen-
tation of k-means and a bag-of-words document
representation. Other authors have experimented
with distributed representations, such as Ahmed
et al. (2011), who cluster news into storylines us-
ing Markov chain Monte Carlo methods, Řehůřek
and Sojka (2010) who used incremental Singular
Value Decomposition (SVD) to find relevant topics
from streaming data, and Sato et al. (2017) who
used the paragraph vector model (Le and Mikolov,
2014) in an offline clustering setting.

More recently, crosslingual linking of clusters
has been discussed by Rupnik et al. (2016) in the
context of linking existing clusters from the Event
Registry (Leban et al., 2014) in a batch fashion,
and by Steinberger (2016) who also present a batch
clustering linking system. However, these are not
“truly” online crosslingual clustering systems since
they only decide on the linking of already-built
monolingual clusters. In particular, Rupnik et al.
(2016) compute distances of document pairs across
clusters using nearest neighbors, which might not
scale well in an online setting. As detailed before,
we adapted the cluster-linking dataset from Rup-
nik et al. (2016) to evaluate our online crosslingual
clustering approach. Preliminary work makes use
of deep learning techniques (Xie et al., 2016; Guo
et al., 2017) to cluster documents while learning
their representations, but not in an online or mul-
tilingual fashion, and with a very small number of
cluster labels (4, in the case of the text benchmark).

In our work, we studied the problem of mono-
lingual and crosslingual clustering, having exper-
imented several directions and methods and the
impact they have on the final clustering quality. We
described the first system which aggregates news
articles into fine-grained story clusters across differ-
ent languages in a completely online and scalable
fashion from a continuous stream.
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7 Conclusion

We described a method for monolingual and
crosslingual clustering of an incoming stream of
documents. The method works by maintaining cen-
troids for the monolingual and crosslingual clus-
ters, where a monolingual cluster groups a set of
documents and a crosslingual cluster groups a set
of monolingual clusters. We presented an online
crosslingual clustering method which auto-corrects
past decisions in an efficient way. We showed that
our method gives state-of-the-art results on a mul-
tilingual news article dataset for English, Spanish
and German. Finally, we discussed how to leverage
different SVM training procedures for ranking and
classification to improve monolingual and crosslin-
gual clustering decisions. Our system is integrated
in a larger media monitoring project (Liepins et al.,
2017; Germann et al., 2018) and solving the use-
cases of monitors and journalists, having been vali-
dated with qualitative user testing.
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Abstract

Multi-task learning in text classification lever-
ages implicit correlations among related tasks
to extract common features and yield perfor-
mance gains. However, a large body of pre-
vious work treats labels of each task as in-
dependent and meaningless one-hot vectors,
which cause a loss of potential label informa-
tion. In this paper, we propose Multi-Task
Label Embedding to convert labels in text
classification into semantic vectors, thereby
turning the original tasks into vector match-
ing tasks. Our model utilizes semantic corre-
lations among tasks and makes it convenient
to scale or transfer when new tasks are in-
volved. Extensive experiments on five bench-
mark datasets for text classification show that
our model can effectively improve the perfor-
mances of related tasks with semantic repre-
sentations of labels and additional information
from each other.

1 Introduction

Text classification is a common Natural Language
Processing (NLP) issue that tries to infer the most
appropriate label for a given sentence or docu-
ment, for example, sentiment analysis, topic clas-
sification and so on. With the developments
and prosperities of Deep Learning (Bengio et al.,
2013), many neural network based models have
been exploited by a large body of literature and
achieved inspiring performance gains on various
text classification tasks. These models are robust
at feature engineering and can represent word se-
quences as fixed-length vectors with rich seman-
tic information, which are notably ideal for subse-
quent NLP tasks.

Due to numerous parameters to train, neu-
ral network based models rely heavily on ade-
quate amounts of annotated corpora, which can-
not always be met as constructions of large-scale

high-quality labeled datasets are extremely time-
consuming and labor-intensive. Multi-Task Learn-
ing (MTL) solves this problem by jointly train-
ing multiple related tasks and leveraging poten-
tial correlations among them to increase corpora
size implicitly, extract common features and yield
performance gains. Inspired by (Caruana, 1997),
there is a large body of research dedicated to MTL
with neural network based models (Collobert and
Weston, 2008; Liu et al., 2015b, 2016a,b; Zhang
et al., 2017). These models usually contain a pre-
trained lookup layer that map words into dense,
low-dimension and real-value vectors with seman-
tic implications, namely known as Word Embed-
ding (Mikolov et al., 2013b), and utilize some
lower layers to capture common features that are
further fed to follow-up task-specific layers. How-
ever, many existing models may have at least one
of the following three disadvantages:

• Lack of Label Information. Labels of
each task are represented by independent and
meaningless one-hot vectors, for example,
positive and negative in sentiment analysis
encoded as [1, 0] and [0, 1], which may cause
a loss of potential label information.

• Inability to Scale. Network structures are
elaborately designed to model various corre-
lations for MTL, but many of them are struc-
turally fixed and some can only deal with in-
teractions between two tasks, namely pair-
wise interactions. When new tasks are in-
volved, the network structures have to be
modified and all networks have to be trained
again.

• Inability to Transfer. Human beings can
handle a completely new task without any-
more efforts after learning with several re-
lated tasks, which can be called the ability
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of Transfer Learning (Ling et al., 2008). As
discussed above, the network structures of
many previous models are fixed and there are
no layers specially designed for unannotated
new tasks.

In this paper, we proposed Multi-Task Label
Embedding (MTLE) to map labels of each task
into semantic vectors, similar to how Word Em-
bedding deals with word sequences, thereby turn-
ing the original tasks into vector matching tasks.
The idea of embedding label is not new and is
primarily designed to improve general neural text
classification models (Bengio et al., 2010; Norouzi
et al., 2013; Ma et al., 2016), but here we mainly
focus on integrating label embedding to enhance
MTL. MTLE utilizes semantic correlations among
tasks and effectively solves the problems of scal-
ing and transferring when new tasks are involved.

We conduct extensive experiments on five
benchmark datasets for text classification. Com-
pared to learning separately, jointly learning mul-
tiple related tasks based on MTLE demonstrates
significant performance gains for each task.

Our contributions are four-fold:

• Our model efficiently leverages label infor-
mation of each task by mapping labels into
dense, low-dimension and real-value vectors
with semantic implications.

• It is particularly convenient for our model to
scale for new tasks. The network structures
need no modifications and only samples from
the new tasks require training.

• After training on several related tasks, our
model can also naturally transfer to deal with
new tasks without anymore training, while
still achieving appreciable performances.

• We consider different scenarios of MTL and
demonstrate strong results on several bench-
mark datasets for text classification. Our
model outperforms most of the state-of-the-
art baselines.

2 Problem Statements

2.1 Single-Task Learning
For a text classification task, the Input is a word
sequence x = {x1, x2, ..., xT }, where T is the
sequence length and we need to output the most
appropriate Label from the set {y1, y2, ..., yC},

or their one-hot representation {y1,y2, ...,yC},
where C is the number of classes. In the super-
vised case, we have the Annotation, that is, the
corresponding ground truth label ỹ for each input,
while in the unsupervised case, we only know the
label set but lack the specific annotations.

A pre-trained lookup layer is used to get the
embedding vector xt 2 R

d for each word xt.
A text classification model f is trained to pro-
duce the predicted distribution ŷ for each x =
{x1,x2, ...,xT }.

f(x1,x2, ...,xT ) = ŷ (1)

and the learning objective is to minimize the over-
all cross-entropy on the training set.

l = �
NX

i=1

CX

j=1

ỹij log ŷij (2)

where N denotes the number of training samples.

2.2 Multi-Task Learning
Given K supervised text classification tasks,
T1, T2, ..., TK , a multi-task learning model F is
trained to transform each x(k) from Tk into mul-
tiple predicted distributions {ŷ(1), ..., ŷ(K)}.

F (x(k)
1 , ...,x(k)

T ) = {ŷ(1), ..., ŷ(K)} (3)

where only ŷ(k) is used for loss computation. The
overall training loss is a weighted combination of
costs for each task.

L = �
KX

k=1

�k

NkX

i=1

CkX

j=1

ỹ(k)
ij log ŷ(k)

ij (4)

where �k, Nk and Ck denote the weight, the num-
ber of training samples and the number of classes
for each task Tk.

2.3 Ability to Scale
When new tasks are involved, for ex-
ample, given K 0 more supervised tasks
TK+1, TK+2, ..., TK+K0 , the MTL model F ,
which has been trained on the old K tasks, should
be able to scale with few structural modifications.

F (x(k)
1 , ...,x(k)

T ) = {ŷ(1), ..., ŷ(K+K0)} (5)

where x(k) denotes samples from not only the old
tasks but also the new ones.
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There are mainly two scaling methods for F to
deal with the new tasks. We can continue training
F and further tune the model parameters based on
samples from the new tasks, which we define as
Hot Update, or re-train F again based on training
samples from all tasks, which is defined as Cold
Update.

2.4 Ability to Transfer
Given K 00 more completely unannotated new tasks
T �

K+1, T
�
K+2, ..., T

�
K+K00 , F should be able to

transfer what it learned from the old tasks, which
is defined as Zero Update, as no more training
samples are available and the model parameters
are not updated anymore.

For each x(k) from the K 00 tasks, F should pro-
duce the corresponding predicted distributions for
the new tasks, even if the annotations of these new
tasks are not provided at all.

F (x(k)
1 , ...,x(k)

T ) = {ŷ(K+1), ..., ŷ(K+K00)} (6)

which requires that F should be able to understand
the meanings of each label from the new tasks and
infer the most appropriate one.

3 Methodology

In text classification tasks, labels can be single-
word or double-word, for example, positive and
negative in binary sentiment classification, very
positive, positive, neutral, negative and very neg-
ative in 5-category sentiment classification, but
there are few labels that contain three words or
more. Inspired by Word Embedding, we pro-
pose Multi-Task Label Embedding (MTLE) to
convert labels of each task of MTL into dense,
low-dimension and real-value vectors with seman-
tic implications, thereby disclosing potential intra-
task and inter-task correlations from both texts and
labels.

3.1 Architecture
Figure 1 illustrates the general idea of MTLE,
which mainly consists of three parts, the Input
Encoder, the Label Encoder and the Matcher.

In the Input Encoder, each input sequence x(k)

from Tk is transformed into embedding represen-
tation x(k) = {x(k)

1 ,x(k)
2 , ...,x(k)

T } by the Embed-
ding Layer (EI ). The Learning Layer (LI ) is ap-
plied to recurrently comprehend x(k) and generate
a fixed-length vector X(k), which can be regarded

Label Encoder

T1

x1
(1), x2

(1),..., xT
(1)

T2

x1
(2), x2

(2),..., xT
(2)

TK

x1
(K ), x2

(K ),..., xT
(K )

Input Sequences

T1
YC1
(1)

T2

TK
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Y1
(1)

YC2
(2)

Y1
(2)

YCK
(K )

Y1
(K )

Matcher
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Embedding 
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Learning 
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Embedding 
Layer

Learning 
Layer

Figure 1: General Architecture of MTLE

as an overall representation of the original input
sequence x(k).

In the Label Encoder, there are Ck labels in Tk,
where each y(k)

j (1  j  Ck) consists of one
word or two words, and is mapped into the vector
representation y(k)

j by the Embedding Layer (EL).

The Learning Layer (LL) absorbs y(k)
j to generate

a fixed-length vector Y(k)
j , which can be utilized

as an overall semantic representation of the origi-
nal label y(k)

j .
In order to classify a sample x(k) from Tk, the

Matcher obtains the corresponding X(k) from the
Input Encoder, all Y(k)

j (1  j  Ck) from the
Label Encoder, and conducts vector matching to
select the most appropriate class label.

In MTLE, EI and EL obtain understandings of
words from texts and labels respectively, while LI

and LL achieve representation abilities of vector
sequences. All these four modules are learned
within and shared among tasks.

3.2 Implementation Details
We can explore different embedding methods and
neural networks to achieve EI , EL and LI , LL re-
spectively, but here we choose to implement them
in an easier way and spend more efforts to investi-
gate the effectiveness of MTLE.

The implementation details of MTLE are illus-
trated in Figure 2. LI and LL are both fully-
connection layers with the weights WI and WL

of |V |⇥ d, where |V | denotes the vocabulary size
and d is the embedding size. We can get a pre-
trained lookup table based on open domain cor-
pora to initialize WI ,WL and further tune them
during training.
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Figure 2: Implementation Details of MTLE

LI and LL should be trainable models that can
transform a vector sequence of arbitrary length
into a fixed-length vector, which can be im-
plemented by a Bi-directional Long Short-Term
Memory Network (BiLSTM) that can recurrently
process vector sequences and learn long-term de-
pendencies.

While there are numerous variants of the stan-
dard LSTM (Hochreiter and Schmidhuber, 1997),
here we follow the implementation of (Graves,
2013). At each time step t, states of the LSTM
can be fully described by five vectors in R

m, an
input gate it, a forget gate ft, an output gate ot,
the hidden state ht and the memory cell ct, which
adhere to the following transition equations.

it = �(Wixt + Uiht�1 + Vict�1 + bi) (7)
ft = �(Wfxt + Ufht�1 + Vfct�1 + bf ) (8)
ot = �(Woxt + Uoht�1 + Voct�1 + bo) (9)
c̃t = tanh(Wcxt + Ucht�1) (10)
ct = ft � ct�1 + it � c̃t (11)
ht = ot � tanh(ct) (12)

where xt is the current input, � denotes logis-
tic sigmoid function and � denotes element-wise
multiplication.

A BiLSTM consists of two LSTM layers that
process the input sequences in original and re-
versed orders, and its output is the concatenation
of hidden states from the forward and backward
LSTM at each time step.

ht =
�!
h t �

 �
h t (13)

where � denotes vector concatenation.
We apply the above equations to implement LI

with hidden size m. However, it is inappropriate
to apply a BiLSTM for LL, as most labels contain
only one or two words. Instead, LL accepts the
embedding vectors of each word from a label and
calculate the average.

For an input sample x(k) and all Ck labels y(k)
j

from Tk, the corresponding X(k) 2 R
2m and

Y(k)
j 2 R

d are calculated as follows.

X(k) = LI(WI(x
(k))) (14)

Y(k)
j = LL(WL(y(k)

j )) (15)

In this paper, we mainly focus on the idea and
effects of MTLE, so rather than exploring some
useful mechanisms like gating, external mem-
ory or attention for stronger abilities of sequence
learning, we choose the vanilla BiLSTM for quick
implementations and spend most of our efforts on
investigating the effectiveness of MTLE.

We concatenate X(k),Y(k)
j and apply another

fully-connection layer with only one neuron, de-
noted by M , to implement the Matcher, which ac-
cepts outputs from LI and LL to produce a score
of matching. Given the matching scores of each
label, we refer to the idea of cross-entropy and cal-
culate the loss function for a sample x(k) from Tk

as follows.

s(k)
j = �(M(X(k) �Y(k)

j )) (16)

ŷ(k)
j =

exp(s(k)
j )

PCk
c=1 exp(s(k)

c )
(17)

l(k) = �
CkX

j=1

ỹ(k)
j log ŷ(k)

j (18)

The overall training objective is to minimize the
weighted linear combination of costs for each task.

L = �
KX

k=1

�k

NkX

i=1

l(k)
i (19)

MTLE provides an easy and intuitive way to re-
alize MTL, where input texts and class labels from
different tasks are jointly learned and compactly
fused. During training, EI and EL learn better un-
derstanding of word semantics for different tasks,
LI and LL obtain stronger abilities of sequence
representation, while M produces more accurate
scores for vector matching.

3.3 Scaling and Transferring
When new tasks are involved, it is particularly
convenient for MTLE to scale or transfer as the
network structure needs no modifications. For in-
put samples x(k) and class labels y(k)

j from the
new tasks, we can apply EI , EL, LI , LL to get
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their vector representations X(k) and Y(k)
j , calcu-

late the matching scores and find the most appro-
priate label.

MTLE

Task A

Task B

Task C Task D

Before Update

Hot Update Cold Update Zero Update

LabelInput Annotation

Figure 3: Three different updating methods

If the new tasks are annotated, we can apply Hot
Update or Cold Update for scaling and better tune
the parameters. If the new tasks are completely
unannotated, we can use Zero Update for transfer-
ring and produce reasonable predictions.

The differences among Hot Update, Cold Up-
date and Zero Update are illustrated in Figure 3,
where Before Update denotes the state of MTLE
trained on the old tasks before the new tasks are in-
troduced. We will further compare these updating
methods in the Experiment Section.

4 Experiment

In this section, we design extensive experiments
with multi-task learning based on five benchmark
datasets for text classification. We investigate the
empirical performances of MTLE and compare
them with existing state-of-the-art baselines.

4.1 Datasets
As Table 1 shows, we select five benchmark
datasets for text classification, which are com-
monly used in a large body of research on MTL.
We design three experiment scenarios to evaluate
the performances of MTLE. Larger text classifica-
tion datasets (Zhang et al., 2015) are not chosen
as there are already enough samples to train and
MTL may increase computation workloads. We
use the accuracy for evaluations as samples from
these datasets are mostly well balanced.

• Multi-Cardinality Movie review datasets
with different average lengths and class num-

bers, including SST-1 (Socher et al., 2013),
SST-2, IMDB (Maas et al., 2011).

• Multi-Domain Product review datasets on
different domains from Multi-Domain Senti-
ment Dataset (Blitzer et al., 2007).

• Multi-Objective Text classification datasets
with different objectives, including IMDB,
RN (Apté et al., 1994), QC (Li and Roth,
2002).

4.2 Hyperparameters and Training
Training of MTLE is conducted through back
propagation with batch gradient descent (Amari,
1993). We obtain a pre-trained lookup table by
applying Word2Vec (Mikolov et al., 2013a) on the
Google News corpus, which contains more than
100B words with a vocabulary size of about 3M.
During each epoch, we randomly divide training
samples from different tasks into batches of fixed
size. For each iteration, we randomly select one
task and choose an untrained batch, calculate the
gradient and update the parameters accordingly.

Parameters of the neural layers are randomly
initialized with the Xavier initializer (Glorot and
Bengio, 2010). We apply 10-fold cross-validation
and different combinations of hyperparameters are
investigated, of which the best one is described in
Table 2.

4.3 Results of MTLE vs. Single Task
In Table 3, we compare the performances of
MTLE with single-task learning, where only a
BiLSTM layer is applied.

MTLE achieves significant performance gains
with label information and additional correla-
tions from related tasks. Multi-Domain, Multi-
Cardinality and Multi-Objective benefit from
MTLE with average improvements of 5.5%, 2.7%
and 1.2%, as they contain increasingly weaker rel-
evance among tasks. The result of IMDB in Multi-
Cardinality is slightly better than that in Multi-
Objective (91.3 against 90.9), as SST-1 and SST-2
share more semantically useful information with
IMDB than RN and QC.

4.4 Abilities to Scale and Transfer
In order to investigate the abilities of MTLE to
scale and transfer, we use A + B ! C to de-
note the case where MTLE is trained on task A
and B, while C is the newly involved one. We de-
sign three cases based on different scenarios and
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Table 1: Five benchmark text classification datasets

Dataset Description Type Average Length Class Objective

SST
Movie reviews in Stan-
ford Sentiment Treebank
including SST-1 and SST-2

Sentence 19 / 19 5 / 2 Sentiment

IMDB Internet Movie Database Document 279 2 Sentiment

MDSD
Product reviews on books,
DVDs, electronics and
kitchen (BDEK)

Document 176 / 189 / 115 / 97 2 Sentiment

RN Reuters Newswire topics
classification Document 146 46 Topics

QC Question Classification Sentence 10 6 Question Types

Table 2: Hyperparameter settings

Embedding size d = 300
Hidden layer size of LSTM m = 100

Batch size � = 32
Initial learning rate ⌘ = 0.1

Regularization weight � = 10�5

compare the influences of Hot Update, Cold Up-
date, Zero Update on each task.

• Case 1 SST-1 + SST-2! IMDB.

• Case 2 B + D + E! K.

• Case 3 RN + QC! IMDB.

where in Zero Update, we ignore the training set
of C and just evaluate our model on the testing set.

As Table 4 shows, Before Update denotes the
model trained on the old tasks before the new tasks
are involved, so only evaluations on the old tasks
are conducted.

Cold Update re-trains the model of Before Up-
date with both the old tasks and the new tasks, thus
achieving similar performances with the last line
in Table 3. Different from Cold Update, Hot Up-
date resumes training only on the new tasks, re-
quires much less training time, while still obtains
competitive results for all tasks. The new tasks
like IMDB and Kitchen benefit more from Hot
Update than the old tasks, as the parameters are
further tuned according to annotations from these
new tasks.

Zero Update provides inspiring possibilities for
completely unannotated tasks. There are no more
annotations for additional training from the new
tasks, so we just apply the model of Before Update

for evaluations on the testing sets of the new tasks.
Zero Update achieves competitive performances
in Case 1 (90.9 for IMDB) and Case 2 (86.7 for
Kitchen), as tasks from these two cases all be-
long to sentiment datasets of different cardinalities
or domains that contain rich semantic correlations
with each other. However, the result for IMDB in
Case 3 is only 74.2, as sentiment shares less rel-
evance with topic and question type, thus leading
to poor transferring performances.

4.5 Multi-Task or Label Embedding

MTLE mainly employs two mechanisms, label
embedding and multi-task learning, so both im-
plicit information from labels and potential cor-
relations from other tasks make differences. In
this section, we conduct experiments to explore
the contributions of label embedding and multi-
task learning respectively.

We choose the four tasks from Multi-Domain
scenario and train MTLE on each task separately,
so their performances are only influenced by label
embedding. Then we re-train MTLE from scratch
for every two tasks, every three tasks from them
and record the performances of each task in differ-
ent cases, where both label embedding and multi-
task learning matter.

The results are illustrated in Figure 4. The first
three graphs show the results of MTLE trained on
every one, every two and every three tasks. In the
first graph, the four tasks are trained separately
and achieve improvements of 3.0%, 3.1%, 3.3%,
2.3% compared to the single task in Table 3. As
more tasks are added step by step, MTLE produces
increasing performance gains for each task and
achieves an average improvement of 5.5% when
all the four tasks are trained together. So it can
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Table 3: Results of MTLE on different scenarios

Model Multi-Cardinality Multi-Domain Multi-Objective Avg�SST-1 SST-2 IMDB B D E K IMDB RN QC
Single Task 46.2 86.1 88.9 78.3 79.8 81.5 82.3 89.0 84.2 92.7 -

MTLE 49.8 88.4 91.3 84.5 85.2 87.3 86.9 90.9 85.5 93.2 +3.4

Table 4: Results of Hot Update, Cold Update and Zero Update in different cases

Model Case 1 Case 2 Case 3
SST-1 SST-2 IMDB B D E K RN QC IMDB

Before Update 48.6 87.6 - 83.7 84.5 85.9 - 84.8 93.4 -
Cold Update 49.8 88.5 91.2 84.4 85.2 87.2 86.9 85.5 93.2 91.0
Hot Update 49.6 88.1 91.4 84.2 84.9 87.0 87.1 85.2 92.9 91.1
Zero Update - - 90.9 - - - 86.7 - - 74.2

be concluded that both information from labels as
well as correlations from other tasks account for
considerable parts of contributions.

In the last graph, diagonal cells denote improve-
ments of every one task, while off-diagonal cells
denote average improvements of every two tasks,
so an off-diagonal cell of darker color indicates
stronger correlation between the two tasks. An
interesting finding is that Books is more related
with DVDs and Electronics is more relevant to
Kitchen. A possible reason may be that Books and
DVDs are products targeted for reading or watch-
ing, while customers care more about appearances
and functionalities when talking about Electronics
and Kitchen.

Figure 4: Performance gains of each task in differ-
ent cases

4.6 Comparisons with State-of-the-art
Models

We compare MTLE against the following models.

• NBOW Neural Bag-of-Words that sums up
embedding vectors of all words and applies a
non-linearity followed by a softmax layer.

• PV Paragraph Vectors followed by logistic
regression (Le and Mikolov, 2014).

• CNN Convolutional Neural Networks for
Sentence Classification (Kim, 2014).

• MT-CNN Multi-Task learning with Convo-
lutional Neural Networks (Collobert and We-
ston, 2008) where lookup tables are partially
shared.

• MT-DNN Multi-Task learning with Deep
Neural Networks (Liu et al., 2015b) that uti-
lizes bag-of-word representations and a hid-
den shared layer.

• MT-RNN Multi-Task learning with Re-
current Neural Networks with a shared-
layer (Liu et al., 2016b).

• DSM Deep multi-task learning with Shared
Memory (Liu et al., 2016a) where a exter-
nal memory and a reading/writing mecha-
nism are introduced.

• GRNN Gated Recursive Neural Network
for sentence modeling and text classifica-
tion (Chen et al., 2015).

• Tree-LSTM A generalization of LSTMs to
tree-structured network topologies (Tai et al.,
2015).

As Table 5 shows, MTLE achieves competi-
tive or better performances on most tasks except
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Table 5: Comparisons of MTLE against state-of-the-art models

Model SST-1 SST-2 IMDB Books DVDs Electronics Kitchen QC
NBOW 42.4 80.5 83.6 - - - - 88.2

PV 44.6 82.7 91.7 - - - - 91.8
CNN 48.0 88.1 - - - - - 93.6

MT-CNN - - - 80.2 81.0 83.4 83.0 -
MT-DNN - - - 79.7 80.5 82.5 82.8 -
MT-RNN 49.6 87.9 91.3 - - - - -

DSM 49.5 87.8 91.2 82.8 83.0 85.5 84.0 -
GRNN 47.5 85.5 - - - - - 93.8

Tree-LSTM 50.6 86.9 - - - - - -
MTLE 49.8 88.4 91.3 84.5 85.2 87.3 86.9 93.2

for QC, as it contains less correlations with other
tasks. Tree-LSTM outperforms our model on SST-
1 (50.6 against 49.8), but it requires an exter-
nal parser to get the sentence topological struc-
ture and utilizes treebank annotations. PV slightly
surpasses MTLE on IMDB (91.7 against 91.3),
as sentences from IMDB are much longer than
SST and MDSD, which require stronger abilities
of long-term dependency learning.

In this paper, we mainly focus the idea and ef-
fects of integrating label embedding to enhance
multi-task learning, so we apply the BiLSTM to
realize LI , which can be further implemented
by other more powerful sequence learning mod-
els (Liu et al., 2015a; Chen et al., 2015; Tai et al.,
2015) and produce better performances. Explo-
rations of other embedding layers and learning
layers may be appreciated, but due to limited
pages we choose to research these contents in fu-
ture work.

5 Related Work

There is a large body of literature related to multi-
task learning with neural networks in NLP (Col-
lobert and Weston, 2008; Liu et al., 2015b,
2016a,b; Zhang et al., 2017).

(Collobert and Weston, 2008) use a shared
lookup layer for common features, followed by
task-specific layers for several traditional NLP
tasks including part-of-speech tagging and seman-
tic parsing. They use a fix-size window to solve
the problem of variable-length input sequences,
which can be better addressed by RNN.

(Liu et al., 2015b, 2016a,b; Zhang et al., 2017)
all investigate MTL for text classification. (Liu
et al., 2015b) apply bag-of-word representation,
but information on word order is lost. (Liu et al.,

2016a) introduce an external memory for informa-
tion sharing with a reading/writing mechanism for
communications. (Liu et al., 2016b) propose three
different models for MTL with RNN and (Zhang
et al., 2017) constructs a generalized architecture
for RNN based MTL. However, models of these
papers ignore essential information of labels and
mostly can only address pairwise interactions be-
tween two tasks. Their network structures are also
fixed, thereby failing to scale or transfer when new
tasks are involved.

Different from the above work, MTLE maps la-
bels of text classification tasks into semantic vec-
tors and provide a more intuitive way to realize
MTL with the abilities to scale and transfer. In-
put sequences from three or more tasks are jointly
learned together with their labels, benefitting from
each other and obtaining better sequence represen-
tations.

6 Conclusion and Future Work

In this paper, we propose Multi-Task Label Em-
bedding to map labels of text classification tasks
into semantic vectors. MTLE utilizes semantic
correlations among tasks and effectively solves the
problems of scaling and transferring when new
tasks are involved. We explore three different
scenarios of MTL and MTLE can improve per-
formances of most tasks with semantic represen-
tations of labels and additional information from
others in all scenarios.

In future work, we would like to explore other
learning layers and generalize MTLE to address
other NLP tasks, for example, sequence labeling
and sequence-to-sequence learning.
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Abstract

We propose a novel model for multi-label text
classification, which is based on sequence-
to-sequence learning. The model gener-
ates higher-level semantic unit representations
with multi-level dilated convolution as well
as a corresponding hybrid attention mecha-
nism that extracts both the information at the
word-level and the level of the semantic unit.
Our designed dilated convolution effectively
reduces dimension and supports an exponen-
tial expansion of receptive fields without loss
of local information, and the attention-over-
attention mechanism is able to capture more
summary relevant information from the source
context. Results of our experiments show that
the proposed model has significant advantages
over the baseline models on the dataset RCV1-
V2 and Ren-CECps, and our analysis demon-
strates that our model is competitive to the de-
terministic hierarchical models and it is more
robust to classifying low-frequency labels1.

1 Introduction

Multi-label text classification refers to assigning
multiple labels for a given text, which can be ap-
plied to a number of important real-world appli-
cations. One typical example is that news on the
website often requires labels with the purpose of
the improved quality of search and recommenda-
tion so that the users can find the preferred infor-
mation with high efficiency with less disturbance
of the irrelevant information. As a significant task
of natural language processing, a number of meth-
ods have been applied and have gradually achieved
satisfactory performance. For instance, a series
of methods based on machine learning have been
extensively utilized in the industries, such as Bi-
nary Relevance (Boutell et al., 2004). BR treats

1The code is available at https://github.com/
lancopku/SU4MLC

the task as multiple single-label classifications and
can achieve satisfactory performance. With the de-
velopment of Deep Learning, neural methods are
applied to this task and achieved improvements
(Zhang and Zhou, 2006; Nam et al., 2013; Benites
and Sapozhnikova, 2015).

However, these methods cannot model the in-
ternal correlations among labels. To capture such
correlations, the following work, including ML-
DT (Clare and King, 2001), Rank-SVM (Elisseeff
and Weston, 2002), LP (Tsoumakas and Katakis,
2006), ML-KNN (Zhang and Zhou, 2007), CC
(Read et al., 2011), attempt to capture the re-
lationship, which though demonstrated improve-
ments yet simply captured low-order correlations.
A milestone in this field is the application of
sequence-to-sequence learning to multi-label text
classification (Nam et al., 2017). Sequence-
to-sequence learning is about the transformation
from one type of sequence to another type of se-
quence, whose most common architecture is the
attention-based sequence-to-sequence (Seq2Seq)
model. The attention-based Seq2Seq (Sutskever
et al., 2014) model is initially designed for neu-
ral machine translation (NMT) (Bahdanau et al.,
2014; Luong et al., 2015). Seq2Seq is able to en-
code a given source text and decode the represen-
tation for a new sequence to approximate the tar-
get text, and with the attention mechanism, the
decoder is competent in extracting vital source-
side information to improve the quality of de-
coding. Multi-label text classification can be re-
garded as the prediction of the target label se-
quence given a source text, which can be modeled
by the Seq2Seq. Moreover, it is able to model the
high-order correlations among the source text as
well as those among the label sequence with deep
recurrent neural networks (RNN).

Nevertheless, we study the attention-based
Seq2Seq model for multi-label text classification
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(Nam et al., 2017) and find that the attention mech-
anism does not play a significant role in this task
as it does in other NLP tasks, such as NMT and ab-
stractive summarization. In Section 3, we demon-
strate the results of our ablation study, which show
that the attention mechanism cannot improve the
performance of the Seq2Seq model. We hypoth-
esize that compared with neural machine transla-
tion, the requirements for neural multi-label text
classification are different. The conventional at-
tention mechanism extracts the word-level infor-
mation from the source context, which makes lit-
tle contribution to a classification task. For text
classification, human does not assign texts labels
simply based on the word-level information but
usually based on their understanding of the salient
meanings in the source text.

For example, regarding the text “The young
boys are playing basketball with great excitement
and apparently they enjoy the fun of competition”,
it can be found that there are two salient ideas,
which are “game of the young” and “happiness of
basketball game”, which we call “semantic units”
of the text. The semantic units, instead of word-
level information, mainly determine that the text
can be classified into the target categories “youth”
and “sports”.

Semantic units construct the semantic meaning
of the whole text. To assign proper labels for
text, the model should capture the core semantic
units of the source text, the higher-level informa-
tion compared with word-level information, and
then assign the text labels based on its understand-
ing of the semantic units. However, it is diffi-
cult to extract information from semantic units as
the conventional attention mechanism focuses on
extracting word-level information, which contains
redundancy and irrelevant details.

In order to capture semantic units in the source
text, we analyze the texts and find that the seman-
tic units are often wrapped in phrases or sentences,
connecting with other units with the help of con-
texts. Inspired by the idea of global encoding for
summarization (Lin et al., 2018), we utilize the
power of convolutional neural networks (CNN) to
capture local interaction among words and gener-
ate representations of information of higher levels
than the word, such as phrase or sentence. More-
over, to tackle the problem of long-term depen-
dency, we design a multi-level dilated convolu-
tion for text to capture local correlation and long-

term dependency without loss of coverage as we
do not apply any form of pooling or strided con-
volution. Based on the annotations generated by
our designed module and those by the original re-
current neural networks, we implement our hy-
brid attention mechanism with the purpose of cap-
turing information at different levels, and further-
more, it can extract word-level information from
the source context based on its attention on the se-
mantic units.

In brief, our contributions are illustrated below:

• We analyze that the conventional attention
mechanism is not useful for multi-label text
classification, and we propose a novel model
with multi-level dilated convolution to cap-
ture semantic units in the source text.

• Experimental results demonstrate that our
model outperforms the baseline models and
achieves the state-of-the-art performance on
the dataset RCV1-v2 and Ren-CECps, and
our model is competitive with the hierarchi-
cal models with the deterministic setting of
sentence or phrase.

• Our analysis shows that compared with the
conventional Seq2Seq model, our model
with effective information extracted from the
source context can better predict the labels of
low frequency, and it is less influenced by the
prior distribution of the label sequence.

2 Attention-based Seq2Seq for
Multi-label Text Classification

As illustrated below, multi-label text classification
has the potential to be regarded as a task of se-
quence prediction, as long as there are certain cor-
relation patterns in the label data. Owing to the
correlations among labels, it is possible to improve
the performance of the model in this task by as-
signing certain label permutations for the label se-
quence and maximizing subset accuracy, which
means that the label permutation and the cor-
responding attention-based Seq2Seq method are
competent in learning the label classification and
the label correlations. By maximizing the sub-
set accuracy, the model can improve the perfor-
mance of classification with the assistance of the
information about the label correlations. Regard-
ing label permutation, a straightforward method is
to reorder the label data in accordance with the de-
scending order by frequency, which shows satis-
factory effects (Chen et al., 2017).
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Multi-label text classification can be regarded
as a Seq2Seq learning task, which is formu-
lated as below. Given a source text x =
{x1, ..., xi, ..., xn} and a target label sequence
y = {y1, ..., yi, ..., ym}, the Seq2Seq model
learns to approximate the probability P (y|x) =Qm

t=1 P (yt|y<t, x), where P (yt|y<t, x) is com-
puted by the Seq2Seq model, which is commonly
based on recurrent neural network (RNN).

The encoder, which is bidirectional Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1996), encodes the source text x from both
directions and generates the source annotations h,
where the annotations from both directions at each
time step are concatenated (hi = [

�!
hi ;
 �
hi ]). To be

specific, the computations of
�!
hi and

 �
hi are illus-

trated below:
�!
hi = LSTM(xi,

��!
hi�1, Ci�1) (1)

 �
hi = LSTM(xi,

 ��
hi�1, Ci�1) (2)

We implement a unidirectional LSTM decoder
to generate labels sequentially. At each time step
t, the decoder generates a label yt by sampling
from a distribution of the target label set Pvocab

until sampling the token representing the end of
sentence, where:

Pvocab = g(yt�1, ct, st�1) (3)

where g(·) refers to non-linear functions includ-
ing the LSTM decoder, the attention mechanism
as well as the softmax function for prediction. The
attention mechanism generates ct as shown in the
following:

ct =
nX

i=1

↵t,ihi (4)

↵t,i =
exp(et,i)Pn

j=1 exp(et,j)
(5)

et,i = s>
t�1Wahi (6)

3 Problem
As we analyze the effects of the attention mech-
anism in multi-label text classification, we find
that it contributes little to the improvement of the
model’s performance. To verify the effects of the
attention mechanism, we conduct an ablation test
to compare the performance of the Seq2Seq model
without the attention mechanism and the attention-
based SeqSeq model on the multi-label text classi-
fication dataset RCV1-v2, which is introduced in
detail in Section 5.

Models HL(-) P(+) R(+) F1(+)
w/o attention 0.0082 0.883 0.849 0.866
+attention 0.0081 0.889 0.848 0.868

Table 1: Performances of the Seq2Seq models with and
without attention on the RCV1-v2 test set, where HL,
P, R, and F1 refer to hamming loss, micro-precision,
micro-recall and micro-F1. The symbol “+” indi-
cates that the higher the better, while the symbol“-”
indicates that the lower the better.

As is shown in Table 1, the Seq2Seq models
with and without the attention mechanism demon-
strate similar performances on the RCV1-v2 ac-
cording to their scores of micro-F1, a significant
evaluation metric for multi-label text classifica-
tion. This can be a proof that the conventional at-
tention mechanism does not play a significant role
in the improvement of the Seq2Seq model’s per-
formance. We hypothesize that the conventional
attention mechanism does not meet the require-
ments of multi-label text classification. A com-
mon sense for such a classification task is that
the classification should be based on the salient
ideas of the source text. The semantic units, in-
stead of word-level information, mainly determine
that the text can be classified into the target cate-
gories “youth” and “sports”. For each of a variety
of texts, there are always semantic units that con-
struct the semantic meaning of the whole text. Re-
garding an automatic system for multi-label text
classification, the system should be able to extract
the semantic units in the source text for better per-
formance in classification. Therefore, we propose
our model to tackle this problem.

4 Proposed Method

In the following, we introduce our proposed mod-
ules to improve the conventional Seq2Seq model
for multi-label text classification. In general, it
contains two components: multi-level dilated con-
volution (MDC) as well as hybrid attention mech-
anism.

4.1 Multi-level Dilated Convolution
On top of the representations generated by the
original encoder, which is an LSTM in our model,
we apply the multi-layer convolutional neural net-
works to generate representations of semantic
units by capturing local correlations and long-term
dependencies among words. To be specific, our
CNN is a three-layer one-dimensional CNN. Fol-
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Figure 1: Structure of Multi-level Dilated Convo-
lution (MDC). A example of MDC with kernel size
k = 2 and dilation rates [1, 2, 3]. To avoid gridding ef-
fects, the dilation rates do not share a common factor
other than 1.

lowing the previous work (Kalchbrenner et al.,
2014) on CNN for NLP, we use one-dimensional
convolution with the number of channels equal to
the number of units of the hidden layer, so that the
information at each dimension of a representation
vector will not be disconnected as 2-dimension
convolution does. Besides, as we are to capture
semantic units in the source text instead of higher-
level word representations, there is no need to use
padding for the convolution.

A special design for the CNN is the implemen-
tation of dilated convolution. Dilation has be-
come popular in semantic segmentation in com-
puter vision in recent years (Yu and Koltun, 2015;
Wang et al., 2018), and it has been introduced
to the fields of NLP (Kalchbrenner et al., 2016)
and speech processing (van den Oord et al., 2016).
Dilated convolution refers to convolution inserted
with “holes” so that it is able to remove the neg-
ative effects such as information loss caused by
common down-sampling methods, such as max-
pooling and strided convolution. Besides, it is able
to expand the receptive fields at the exponential
level without increasing the number of parame-
ters. Thus, it becomes possible for dilated con-
volution to capture longer-term dependency. Fur-
thermore, with the purpose of avoiding gridding
effects caused by dilation (e.g., the dilated seg-
ments of the convolutional kernel can cause miss-
ing of vital local correlation and break the continu-
ity between word representations), we implement
a multi-level dilated convolution with different di-
lation rates at different levels, where the dilation
rates are hyperparameters in our model.

Instead of using the same dilation rate or di-
lation rates with the common factor, which can
cause gridding effects, we apply multi-level di-
lated convolution with different dilation rates,

� �

�

濠濗濖澳瀂瀈瀇瀃瀈瀇瀆 濟濦濧濠澳瀂瀈瀇瀃瀈瀇瀆

濷濸濶瀂濷濸瀅

Figure 2: Structure of Hybrid Attention. The blue
circles at the left bottom represent the source annota-
tions generated by the LSTM encoder, the yellow cir-
cles at the right bottom represent the semantic unit rep-
resentations generated by MDC, and the blue circles at
the top represent the LSTM decoder outputs. At each
decoding time step, the output of the LSTM attends
to the semantic unit representations first, and then the
new representation incorporated with high-level infor-
mation attends to the source annotations.

such as [1,2,3]. Following Wang et al. (2018), for
N layers of 1-dimension convolution with kernel
size K with dilation rates [r1, ..., rN ], the max-
imum distance between two nonzero values is
max(Mi+1 � 2ri, Mi+1 � 2(Mi+1 � ri), ri) with
MN = rN , and the goal is M2  K. In our ex-
periments, we set the dilation rates to [1, 2, 3] and
K to 3, and we have M2 = 2. The implemen-
tations can avoid the gridding effects and allows
the top layer to access information between longer
distance without loss of coverage. Moreover, as
there may be irrelevant information to the seman-
tic units at a long distance, we carefully design the
dilation rates to [1, 2, 3] based on the performance
in validation, instead of others such as [2, 5, 9],
so that the top layer will not process the informa-
tion among overlong distance and reduce the in-
fluence of unrelated information. Therefore, our
model can generate semantic unit representations
from the information at phrase level with small di-
lation rates and those at sentence level with large
dilation rates.

4.2 Hybrid Attention
As we have annotations from the RNN encoder
and semantic unit representations from the MDC,
we design two types of attention mechanism to
evaluate the effects of information of different lev-
els. One is the common attention mechanism,
which attends to the semantic unit representations
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instead of the source word annotations as the con-
ventional does, the other is our designed hybrid
attention mechanism to incorporate information of
the two levels.

The idea of hybrid attention is motivated by
memory networks (Sukhbaatar et al., 2015) and
multi-step attention (Gehring et al., 2017). It
can be regarded as the attention mechanism with
multiple “hops”, with the first hop attending to
the higher-level semantic unit information and the
second hop attending to the lower-level word unit
information based on the decoding and the first at-
tention to the semantic units. Details are presented
below.

For the output of the decoder at each time step,
it not only attends to the source annotations from
the RNN encoder as it usually does but also at-
tends to the semantic unit representations from the
MDC. In our model, the decoder output first pays
attention to the semantic unit representations from
the MDC to figure out the most relevant semantic
units and generates a new representation based on
the attention. Next, the new representation with
both the information from the decoding process
as well as the attention to the semantic units at-
tends to the source annotations from the LSTM
encoder, so it can extract word-level information
from the source text with the guidance of the se-
mantic units, mitigating the problem of irrelevance
and redundancy.

To be specific, for the source annotations
from the LSTM encoder h = {h1, ..., hi, ..., hn}
and the semantic unit representations g =
{g1, ..., gi, ..., gm}, the decoder output st first at-
tends to the semantic unit representations g and
generates a new representation s0

t. Then the new
representation s0

t attends to the source annota-
tions h and generates another representation s̃t fol-
lowing the identical attention mechanism as men-
tioned above. In the final step, the model generates
ot for the prediction of yt, where:

ot = s0
t � s̃t (7)

For comparison, we also propose another type
of attention called “additive attention”, whose ex-
perimental results are in the ablation test. In this
mechanism, instead of paying attention to the two
types of representations step by step as mentioned
above, the output of the LSTM decoder st at-
tends to the semantic unit representations g and
the source annotations h respectively to generate

s0
t and s̃t, which are finally added element-wisely

for the final output ot.

5 Experiment Setup

In the following, we introduce the datasets and our
experiment settings as well as the baseline models
that we compare with.

5.1 Datasets and Preprocessing
Reuters Corpus Volume I (RCV1-v2)2: The
dataset (Lewis et al., 2004) consists of more than
800k manually categorized newswire stories by
Reuters Ltd. for research purpose, where each
story is assigned with multiple topics. The total
number of topics is 103. To be specific, the train-
ing set contains around 802414 samples, while the
development set and test set contain 1000 sam-
ples respectively. We filter the samples whose
lengths are over 500 words in the dataset, which
removes about 0.5% of the samples in the train-
ing, development and test sets. The vocabulary
size is set to 50k words. Numbers as well as out-
of-vocabulary words are masked by special tokens
“#” and “UNK”. For label permutation, we apply
the descending order by frequency following Kim
(2014).
Ren-CECps: The dataset is a sentence corpus col-
lected from Chinese blogs, annotated with 8 emo-
tion tags anger, anxiety, expect, hate, joy, love,
sorrow and surprise as well as 3 polarity tags pos-
itive, negative and neutral. The dataset contains
35096 sentences for multi-label text classification.
We apply preprocessing for the data similar to that
for the RCV1-v2, which are filtering samples of
over 500 words, setting the vocabulary size to 50k
and applying the descending order by frequency
for label permutation.

5.2 Experiment Settings
We implement our experiments in PyTorch on an
NVIDIA 1080Ti GPU. In the experiments, the
batch size is set to 64, and the embedding size
and the number of units of hidden layers are 512.
We use Adam optimizer (Kingma and Ba, 2014)
with the default setting �1 = 0.9, �2 = 0.999
and ✏ = 1 ⇥ 10�8. The learning rate is initial-
ized to 0.0003 based on the performance on the
development set, and it is halved after every epoch

2http://www.ai.mit.edu/projects/jmlr/
papers/volume5/lewis04a/lyrl2004_rcv1v2_
README.htm
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Models HL(-) P(+) R(+) F1(+)
BR 0.0086 0.904 0.816 0.858
CC 0.0087 0.887 0.828 0.857
LP 0.0087 0.896 0.824 0.858
CNN 0.0089 0.922 0.798 0.855
CNN-RNN 0.0085 0.889 0.825 0.856
S2S 0.0082 0.883 0.849 0.866
S2S+Attn 0.0081 0.889 0.848 0.868
Our Model 0.0072 0.891 0.873 0.882

Table 2: Performance on the RCV1-V2 test set. HL,
P, R, and F1 denote hamming loss, micro-precision,
micro-recall and micro-F1, respectively (p < 0.05).

of training. Gradient clipping is applied with the
range [-10, 10].

Following the previous studies (Zhang and
Zhou, 2007; Chen et al., 2017), we choose ham-
ming loss and micro-F1 score to evaluate the per-
formance of our model. Hamming loss refers to
the fraction of incorrect prediction (Schapire and
Singer, 1999), and micro-F1 score refers to the
weighted average F1 score. For reference, the
micro-precision as well as micro-recall scores are
also reported. To be specific, the computations
of Hamming Loss (HL) micro-F1 score are illus-
trated below:

HL =
1

L

X
I(y 6= ŷ) (8)

microF1 =

PL
j=1 2tpj

PL
j=1 2tpj + fpj + fnj

(9)

where tpj , fpj and fnj refer to the number of
true positive examples, false positive examples
and false negative examples respectively.

5.3 Baseline Models
In the following, we introduce the baseline models
for comparison for both datasets.

• Binary Relevance (BR) (Boutell et al.,
2004) transforms the MLC task into multiple
single-label classification problems.

• Classifier Chains (CC) (Read et al., 2011)
transforms the MLC task into a chain of bi-
nary classification problems to model the cor-
relations between labels.

• Label Powerset (LP) (Tsoumakas and
Katakis, 2006) creates one binary classifier
for every label combination attested in the
training set.

Models HL(-) P(+) R(+) F1(+)
BR 0.1663 0.649 0.472 0.546
CC 0.1828 0.572 0.551 0.561
LP 0.1902 0.556 0.517 0.536
CNN 0.1726 0.628 0.512 0.565
CNN-RNN 0.1876 0.576 0.538 0.556
S2S 0.1814 0.587 0.571 0.579
S2S+Attn 0.1793 0.589 0.573 0.581
Our Model 0.1782 0.593 0.585 0.590

Table 3: Performance of the models on the Ren-CECps
test set. HL, P, R, and F1 denote hamming loss,
micro-precision, micro-recall and micro-F1, respec-
tively (p < 0.05).

• CNN (Kim, 2014) uses multiple convolution
kernels to extract text feature, which is then
input to the linear transformation layer fol-
lowed by a sigmoid function to output the
probability distribution over the label space.

• CNN-RNN (Chen et al., 2017) utilizes CNN
and RNN to capture both global and local tex-
tual semantics and model label correlations.

• S2S and S2S+Attn (Sutskever et al., 2014;
Bahdanau et al., 2014) are our implementa-
tion of the RNN-based sequence-to-sequence
models without and with the attention mech-
anism respectively.

6 Results and Discussion

In the following sections, we report the results of
our experiments on the RCV1-v2 and Ren-CECps.
Moreover, we conduct an ablation test and the
comparison with models with hierarchical mod-
els with the deterministic setting of sentence or
phrase, to illustrate that our model with learnable
semantic units possesses a clear advantage over
the baseline models. Furthermore, we demonstrate
that the higher-level representations are useful for
the prediction of labels of low frequency in the
dataset so that it can ensure that the model is not
strictly learning the prior distribution of the label
sequence.

6.1 Results
We present the results of our implementations
of our model as well as the baselines on the
RCV1-v2 on Table 2. From the results of the
conventional baselines, it can be found that the
classical methods for multi-label text classifica-
tion still own competitiveness compared with the

4559



machine-learning-based and even deep-learning-
based methods, instead of the Seq2Seq-based
models. Regarding the Seq2Seq model, both the
S2S and the S2S+Attn achieve improvements on
the dataset, compared with the baselines above.
However, as mentioned previously, the attention
mechanism does not play a significant role in the
Seq2Seq model for multi-label text classification.
By contrast, our proposed mechanism, which is
label-classification-oriented, can take both the in-
formation of semantic units and that of word units
into consideration. Our proposed model achieves
the best performance in the evaluation of Ham-
ming loss and micro-F1 score, which reduces
9.8% of Hamming loss and improves 1.3% of
micro-F1 score, in comparison with the S2S+Attn.

We also present the results of our experiments
on Ren-CECps. Similar to the models’ perfor-
mance on the RCV1-v2, the conventional base-
lines except for Seq2Seq models achieve lower
performance on the evaluation of micro-F1 score
compared with the Seq2Seq models. Moreover,
the S2S and the S2S+Attn still achieve similar per-
formance on micro-F1 on this dataset, and our pro-
posed model achieves the best performance with
the improvement of 0.009 micro-F1 score. An in-
teresting finding is that the Seq2Seq models do not
possess an advantage over the conventional base-
lines on the evaluation of Hamming Loss. We
observe that there are fewer labels in the Ren-
CECps than in the RCV1-v2 (11 and 103). As
our label data are reordered according to the de-
scending order of label frequency, the Seq2Seq
model is inclined to learn the frequency distri-
bution, which is similar to a long-tailed distribu-
tion. However, regarding the low-frequency labels
with only a few samples, their amounts are similar,
whose distributions are much more uniform than
that of the whole label data. It is more difficult
for the Seq2Seq model to classify them correctly
while the model is approximating the long-tailed
distribution compared with the conventional base-
lines. As Hamming loss reflects the average incor-
rect prediction, the errors in classifying into low-
frequency labels will lead to a sharper increase
in Hamming Loss, in comparison with micro-F1

score.

6.2 Ablation Test

To evaluate the effects of our proposed modules,
we present an ablation test for our model. We re-

Models HL(-) P(+) R(+) F1(+)
w/o attention 0.0086 0.904 0.816 0.871
attention 0.0087 0.887 0.828 0.869
MDC 0.0074 0.889 0.871 0.880
additive 0.0073 0.888 0.871 0.879
hybrid 0.0072 0.891 0.873 0.882

Table 4: Performance of the models with different at-
tention mechanisms on the RCV1-V2 test set. HL, P, R,
and F1 denote hamming loss, micro-precision, micro-
recall and micro-F1, respectively (p < 0.05).

move certain modules to control variables so that
their effects can be fairly compared. To be spe-
cific, besides the evaluation of the conventional
attention mechanism mentioned in Section 3, we
evaluate the effects of hybrid attention and its
modules. We demonstrate the performance of five
models with different attention implementation for
comparison, which are model without attention,
one with only attention to the source annotations
from LSTM, one with only attention to the seman-
tic unit representations from the MDC, one with
the attention to both the source annotations and
semantic unit representations (additive) and hy-
brid attention, respectively. Therefore, the effects
of each of our proposed modules, including MDC
and hybrid attention, can be evaluated individually
without the influence of the other modules.

Results in Table 4 reflect that our model still
performs the best in comparison with models with
the other types of attention mechanism. Except
for the insignificant effect of the conventional at-
tention mechanism mentioned above, it can be
found that the high-level representations gener-
ated by the MDC contribute much to the perfor-
mance of the Seq2Seq model for multi-label text
classification, which improves about 0.9 micro-F1

score. Moreover, simple additive attention mecha-
nism, which is equivalent to the element-wise ad-
dition of the representations of MDC and those of
the conventional mechanism, achieves similar per-
formance to the single MDC, which also demon-
strates that conventional attention mechanism in
this task makes little contribution. As to our pro-
posed hybrid attention, which is a relatively com-
plex combination of the two mechanisms, can im-
prove the performance of MDC. This shows that
although conventional attention mechanism for
word-level information does not influence the per-
formance of the SeqSeq model significantly, the
hybrid attention which extracts word-level infor-
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Models HL(-) P(+) R(+) F1(+)
Hier-5 0.0075 0.887 0.869 0.878
Hier-10 0.0077 0.883 0.873 0.878
Hier-15 0.0076 0.879 0.879 0.879
Hier-20 0.0076 0.876 0.881 0.878
Our model 0.0072 0.891 0.873 0.882

Table 5: Performance of the hierarchical model and our
model on the RCV1-V2 test set. Hier refers to hierar-
chical model, and the subsequent number refers to the
length of sentence (word) for sentence-level represen-
tations (p < 0.05).

mation based on the generated high-level semantic
information can provide some information about
important details that are relevant to the most con-
tributing semantic units.

6.3 Comparison with the Hierarchical
Models

Another method that can extract high-level rep-
resentations is a heuristic method that manually
annotates sentences or phrases first and applies a
hierarchical model for high-level representations.
To be specific, the method does not only apply an
RNN encoder to the word representations but also
to sentence representations. In our reimplementa-
tion, we regard the representation from the LSTM
encoder at the time step of the end of each sentence
as the sentence representation, and we implement
another LSTM on top of the original encoder that
receives sentence representations as input so that
the whole encoder can be hierarchical. We imple-
ment the experiment on the dataset RCV1-v2. As
there is no sentence marker in the dataset RCV1-
v2, we set a sentence boundary for the source text
and we apply a hierarchical model to generate sen-
tence representations.

Compared with our proposed MDC, the hier-
archical model for the high-level representations
is relatively deterministic since the sentences or
phrases are predefined manually. However, our
proposed MDC learns the high-level representa-
tions through dilated convolution, which is not
restricted by the manually-annotated boundaries.
Through the evaluation, we expect to see if our
model with multi-level dilated convolution as well
as hybrid attention can achieve similar or better
performance than the hierarchical model. More-
over, we note that the number of parameters of
the hierarchical model is more than that of our
model, which are 47.24M and 45.13M respec-
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Figure 3: Micro-F1 scores of our model and the
baseline on the evaluation of labels of different fre-
quency. The x-axis refers to the ranking of the most
frequent label in the labels for classification, and the
y-axis refers to the micro-F1 score performance.

tively. Therefore, it is obvious that our model does
not possess the advantage of parameter number in
the comparison.

We present the results of the evaluation on Ta-
ble 5, where it can be found that our model with
fewer parameters still outperforms the hierarchical
model with the deterministic setting of sentence or
phrase. Moreover, in order to alleviate the influ-
ence of the deterministic sentence boundary, we
compare the performance of different hierarchical
models with different boundaries, which sets the
boundaries at the end of every 5, 10, 15 and 20
words respectively. The results in Table 5 show
that the hierarchical models achieve similar per-
formances, which are all higher than the perfor-
mances of the baselines. This shows that high-
level representations can contribute to the perfor-
mance of the Seq2Seq model on the multi-label
text classification task. Furthermore, as these per-
formances are no better than that of our proposed
model, it can reflect that the learnable high-level
representations can contribute more than deter-
ministic sentence-level representations, as it can
be more flexible to represent information of di-
verse levels, instead of fixed phrase or sentence
level.

6.4 Error Analysis
Another finding in our experiments is that the
model’s performance on low-frequency label clas-
sification is lower than that on high-frequency la-
bel classification. This problem is also reflected
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in our report of the experimental results on the
Ren-CECps. The decrease in performance is rea-
sonable since the model is sensitive to the amount
of data, especially on small datasets such as Ren-
CECps. We also hypothesize that this error comes
from the essence of the Seq2Seq model. As the
frequency of our label data is similar to a long-
tailed distribution and the data are organized by
descending order of label frequency, the Seq2Seq
model is inclined to model the distribution. As the
frequency distribution of the low-frequency labels
is relatively uniform, it is much harder for it to
model the distribution.

In contrast, as our model is capable of cap-
turing deeper semantic information for the label
classification, we believe that it is more robust
to the classification of low-frequency labels with
the help of the information from multiple levels.
We remove the top 10, 20, 30, 40, 50 and 60
most frequent labels subsequently, and we eval-
uate the performance of our model and the base-
line Seq2Seq model on the classification of these
labels. Figure 3 shows the results of the models
on label data of different frequency. It is obvious
that although the performances of both models de-
crease with the decrease of the label frequency, our
model continues to perform better than the base-
line on all levels of label frequency. In addition,
the gap between the performances of the two mod-
els continues to increase with the decrease of label
frequency, demonstrating our model’s advantage
over the baseline on classifying low-frequency la-
bels.

7 Related Work

The current models for the multi-label classifica-
tion task can be classified into three categories:
problem transformation methods, algorithm adap-
tation methods, and neural network models.

Problem transformation methods decompose
the multi-label classification task into multiple
single-label learning tasks. The BR algorithm
(Boutell et al., 2004) builds a separate classifier
for each label, causing the label correlations to be
ignored. In order to model label correlations, La-
bel Powerset (LP) (Tsoumakas and Katakis, 2006)
creates one binary classifier for every label com-
bination attested in the training set and Classifier
Chains (CC) (Read et al., 2011) connects all clas-
sifiers in a chain through feature space.

Algorithm adaptation methods adopt specific

learning algorithms to the multi-label classifica-
tion task without requiring problem transforma-
tions. Clare and King (2001) constructed decision
tree based on multi-label entropy to perform clas-
sification. Elisseeff and Weston (2002) adopted a
Support Vector Machine (SVM) like learning sys-
tem to handle multi-label problem. Zhang and
Zhou (2007) utilized the k-nearest neighbor algo-
rithm and maximum a posteriori principle to de-
termine the label set of each sample. Fürnkranz
et al. (2008) made ranking among labels by uti-
lizing pairwise comparison. Li et al. (2015) used
joint learning predictions as features.

Recent studies of multi-label text classification
have turned to the application of neural networks,
which have achieved great success in natural lan-
guage processing. Zhang and Zhou (2006) imple-
mented the fully-connected neural networks with
pairwise ranking loss function. Nam et al. (2013)
changed the ranking loss function to the cross-
entropy loss to better the training. Kurata et al.
(2016) proposed a novel neural network initializa-
tion method to treat some neurons as dedicated
neurons to model label correlations. Chen et al.
(2017) incorporated CNN and RNN so as to cap-
ture both global and local semantic information
and model high-order label correlations. (Nam
et al., 2017) proposed to generate labels sequen-
tially, and Yang et al. (2018); Li et al. (2018) both
adopted the Seq2Seq, one with a novel decoder
and one with a soft loss function respectively.

8 Conclusion

In this study, we propose our model based on the
multi-level dilated convolution and the hybrid at-
tention mechanism, which can extract both the
semantic-unit-level information and word-level in-
formation. Experimental results demonstrate that
our proposed model can significantly outperform
the baseline models. Moreover, the analyses re-
flect that our model is competitive with the de-
terministic hierarchical models and it is more ro-
bust to classifying the low-frequency labels than
the baseline.
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Abstract

Multi-task learning has an ability to share the
knowledge among related tasks and implic-
itly increase the training data. However, it
has long been frustrated by the interference
among tasks. This paper investigates the per-
formance of capsule network for text, and pro-
poses a capsule-based multi-task learning ar-
chitecture, which is unified, simple and ef-
fective. With the advantages of capsules for
feature clustering, proposed task routing algo-
rithm can cluster the features for each task in
the network, which helps reduce the interfer-
ence among tasks. Experiments on six text
classification datasets demonstrate the effec-
tiveness of our models and their characteristics
for feature clustering.

1 Introduction

Multi-task learning (MTL) has achieved a great
success in the field of natural language processing,
which can share the knowledge among multiple
tasks, implicitly increasing the volume of training
data. The combination of multi-task learning and
deep neural networks (DNNs) generates a further
synergy via the regularization effect on the DNNs
(Collobert and Weston, 2008), which helps allevi-
ate the overfitting and learn a more universal pre-
sentation.

Inspired by this, more DNN-based multi-task
learning models are proposed to improve the per-
formance. As depicted in Figure 1, they can be
categorized into three groups by structure: tree
scheme (Collobert and Weston, 2008; Liu et al.,
2015), parallel scheme (Liu et al., 2016) and me-
diate scheme (Zhang et al., 2017). Tree scheme
reuses some shallow layers of network and sepa-
rates the higher layers for different tasks, which is
the most common architecture for MTL but can
only share the low-level knowledge. To share
deeper level knowledge among the tasks, more
layers are linked in parallel and mediate schemes.

Tree Scheme Parallel Scheme Mediate Scheme

y n ym

X

y n ym

XX X X

y n ym

layers layers

layers

layers layers layers layers

layers layers layers layers

layers

Figure 1: Three schemes of multi-task learning

But this would severely suffer from the interfer-
ence among tasks. Useless features following the
helpful ones are fully shared among tasks, which
may contaminate the feature spaces of tasks by
useless ones. Besides, models under these two
schemes usually employ multiple subnets in the
structures, which would contain more parameters
and are hard to train.

Apparently, there is a contradiction between
knowledge sharing and interference. Sharing too
much between tasks would inevitably bring about
the interference that feature space for each task
may be contaminated by others. Shared useless
features may mislead the prediction of network.
This dilemma is caused by the lack of manage-
ment for sharing process, in which the network
can not discriminate the features and collect the
appropriate features for each task.

Capsule network (Hinton et al., 2011; Mousa
et al., 2017; Hinton et al., 2018) embeds the fea-
tures into capsules and connects the neighbor lay-
ers via “routing-by-agreement”. The dynamic
routing algorithm has an ability to decide the
routes of capsules, namely, to cluster the features
for each category. So, intuitively this property of
capsule network can be employed in MTL to dis-
criminate the features for tasks.

In this paper, we explore the performance of
capsule network for text (CapsNet-1, CapsNet-
1) and show the benefits and potential of cap-
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sule network for NLP. Then we mainly propose
a capsule-based architecture for multi-task learn-
ing (McapsNet), which is unified, simple, effec-
tive and can cluster the feature for tasks. We
designed a Task Routing algorithm to route the
feature flows to tasks and vote for the classes,
which can reduce the interference. In extensive ex-
periences, our approach achieves competitive re-
sults in single-task scenario and shows obvious
improvement in multi-task scenario, which proves
our approach effective and its ability to reduce the
interference among multiple tasks. Also, our visu-
alization experiments intuitively show the feature
clustering mechanism and how it helps make right
predictions.

The contribution of this paper are three-folds:

• This paper investigates the performance of
capsule network on text and designs two ef-
fective capsule-based models for text classifi-
cation, which give clear improvement to sev-
eral benchmarks.

• We novelly combine the capsule and multi-
task learning, which can help reduce the in-
terference among tasks.

• Proposed task routing algorithm can route the
capsules to multiple tasks, by which the fea-
tures is clustered into groups for tasks.

2 Convolutional Neural Network and
Multi-Task Learning

Capsule network is based on the convolutional
neural network (CNN) and uses a lot of convo-
lution operations. The main differences between
them are that capsule network uses vectors to rep-
resent the features and discards the pooling oper-
ation. CNN is good at feature extraction and can
capture short and long range relations through the
feature graph over text sequence (Kalchbrenner
et al., 2014; Kim, 2014). In this section, we pro-
vide some formulations for CNN and some back-
ground knowledge for multi-task learning.

2.1 Single-Task CNN for Text Classification
Given a text sequence x1:l = x1x2 · · · xl of length
l, the target of CNN is to predict the category ŷ of
x1:l from a set {y1, y2, · · · , yC}, or a one-hot form
of ŷ, where C is the class number. Using f(·)
denote the network, the prediction process can be
formalized as f(x1, x2, · · · , xl) = ŷ.

For details, convolutional neural network f(·)
first uses a lookup table to embed the word se-
quence x1:l into vectors x. Then CNN produces
the representation of the input sequence by stack-
ing the layers of convolution, pooling and fully-
connected in order.

F = K ⇤ x (1)

F̂ = p(F) (2)

ŷ = wF̂ + b, (3)

where K is the kernel of convolution operation ⇤;
p(·) denotes the pooling operation; F and F̂ repre-
sent the feature maps; w and b denote the weight
and bias respectively in fully connected layer.

The parameters of the network are optimized
via all kinds of SGD (stochastic gradient decent)
algorithms to minimize the loss between predic-
tion ŷ and ground truth label ỹ

l(ŷ, ỹ) = �
NX

i=1

CX

j=1

ỹi
j log(ŷi

j), (4)

where i, j enumerate the training samples and
classes respectively.

2.2 Multi-Task Learning
Multi-task learning model is usually the vari-
ant or combination of single-task ones (CNNs,
RNNs or DNNs) like the architectures illustrated
in Figure 1. Given K text classification tasks
{T1, T2, · · · , TK}, a multi-task learning model
f(·) shall have the ability to make prediction for
samples x(k)

i from each task Tk.

ŷ(k)
i = f(x(k)

i ) (5)

And the overall loss for all the tasks is usually a
linear combination of the costs for each.

L = �
KX

k=1

�k

NkX

i=1

CkX

j=1

ỹ(k)
i,j log ŷ(k)

i,j (6)

where �k,Nk and Ck denote the weight, number
of training samples and class number of task Tk.

3 Capsule Networks for Text
Capsule network (CapsNet) is first proposed by
Sabour et al. (2017) for image classification,
which is position sensitive and shows strong per-
formance on some classification tasks. As de-
picted in Figure 2, we propose several capsule net-
works for text, which are suitable for text rep-
resentation and multi-task learning. They are
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comprised of convolutional layer, primary capsule
layer and class capsule layer. In the rest of this sec-
tion, we will first give the formulation of single-
task capsule networks (CapsNet-1 and CapsNet-
2) for text classification, and then transfer it into a
multi-task version (McapsNet).

3.1 Primary Capsule Layer
Given an embedded sample of x 2 R

l⇥d with
length of l and word vectors of d-dimension, cap-
sule network first employs a plain convolution
layer to extract the local features from N-grams.
Each kernel Ki with a bias b emits a feature maps
Fi by convolution.

Fi = x ⇤Ki + b (7)

By assembling I feature maps together, we have a
I-channel layer

F = [F1,F2, · · · ,FI ] (8)

The generated feature maps are then fed into
the primary capsule layer, piecing the instantiated
parts together via another convolution. Primary
capsules use vectors instead of scales to preserve
the instantiated parameters for each feature, which
can not only represent the intensity of activation
but also record some details of the instantiated
parts in input. In this way, capsule can be regarded
as a short representation of instantiated parts that
are detected by kernel.

Sliding over the feature map F, each kernel Kj

would output a series of capsules pj 2 R
d of d-

dimension. These capsules comprise a channel Pj

of primary capsule layer.

Pj = g(Kj ⇤ F + b) (9)

where g is the nonlinear squash function and b is
the capsule bias term. All the J channels can be
arranged as

P = [P1,P2, · · · ,PJ ] (10)

3.2 Connection Between Capsule Layers
Capsule network generates the capsules in next
layer using “routing-by-agreement”. This pro-
cess takes the place of pooling operation that usu-
ally discards the location information, which helps
augment the robust of the network and also helps
cluster features for prediction.

Between two neighbor layers l and l + 1, a
“prediction vectors” ûj|i is first computed from

the capsule ui in lower layer l, by multiplying a
weight matrix Wij

ûj|i = Wijui (11)

Then, in the higher layer l+1 a capsule sj is gener-
ated by the linear combination of all the prediction
vectors with weights cij

sj =
X

i

cijuj|i (12)

where cij are coupling coefficients decided by the
iterative dynamic routing process.

Coupling coefficients are calculated by a “rout-
ing softmax” function on original logits bij , which
are the log prior probability that capsule i should
be coupled to capsule j.

cij =
exp(bij)P
j exp(bij)

(13)

This process of “routing softmax” guarantee the
sum of all the coefficients for capsule j is 1.

The length of capsule represents the probability
that the input sample has the object capsule de-
scribes, that is the activation of capsule. So the
length of capsule is limited in range [0, 1] with a
non-linear squashing function.

vj =
ksjk2

1 + ksjk
sj

ksjk2
(14)

By that, the short vectors are pushed to shrink to
zero length, and long ones are pushed to one.

3.3 Dynamic Routing
Suppose capsule layer l has been generated. We
have to decide the intensity of the connections be-
tween capsule i and j from l-th layer to (l + 1)-th
layer, that is the coupling coefficient cij . The ini-
tial digit of coupling coefficient bij is updated with
routing by agreement aij , which is calculated by a
scale product between capsules in two layers.

aij = ûj|i · vj (15)

Value of agreement aij is added to the digit to
calculated the capsules in the next layer.

bij  bij + aij (16)

And the whole process for update (Eq.(13)!(12)
!(14)!(15)!(16)) is conducted iteratively to
optimize the coupling coefficients and the capsules
in the next layer.
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Figure 2: Architectures of capsule networks for text

3.4 Class Capsule Layer and Loss
Class capsule layer, as the top-level layer, is com-
prised of C class capsules, in which each one cor-
responds to a category. The length of instantiated
parameters in each capsule represents the proba-
bility that the input sample belongs to this cate-
gory, and the direction of each set of instantiated
parameters preserves the characteristics of the fea-
tures, which could be regarded as an encoded vec-
tor for the input sample.

Margin Loss To increase the difference between
the lengths of classes, CapsNet utilizes a separated
margin loss:

Lj =Gj max(0, m+ � kvjk)2+
�(1�Gj) max(0, m� � kvjk)2

(17)

where vj is the capsule for class j; m+ and m�

is the top and bottom margins respectively, which
help push the length to shrink beyond two mar-
gins; Gj = 1 if and only if class j is the ground
truth:

Gj =

⇢
1 ỹj = 1
0 ỹj = 0

(18)

� is the weight for the absent classes, which
reduces the weight of absent classes, avoiding

shrinking the lengths of all the capsules too much
at prophase training. In this paper, � is set to 0.5.

Orphan Category A drawback of CapsNet is
that it tends to account for everything in the input
sampling, including some “background” informa-
tion such as stop word and punctuations that would
interfere the prediction. So an orphan category is
added in class capsules in the output layer, which
belongs to none of the categories of the task. The
orphan category would help collect the less con-
tributive capsules that contain too much “back-
ground” information, which reduces the interfer-
ence for normal categories.

3.5 Substitutional Modules for Multi-Task
Task Routing
Dynamic routing algorithm is first proposed by
Sabour et al. (2017), which displaces the pooling
operation used in conventional convolution neural
network. It maintains the position information for
features, which is beneficial to both image and text
representation. More importantly, this routing-by-
agreement method has an ability to cluster the fea-
tures into each class.

Inspirited by this, we employ this thought to
cluster the features for different tasks and propose
the Task Routing algorithm, which gives a simple
and efficient solution to the problem that existing
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Algorithm 1 Task Routing Algorithm

1: function ROUTING(û(k)
j|i , a(k)

ij , r, l )
2: for i = 0! r do
3: for all capsule i in layer l and capsule
4: j in task k:
5: c(k)

i = softmax(b(k)
i )

6: for all capsule j in layer l + 1:
7: v(k)

j = g(
P

i c
(k)
j|i û

(k)
j|i )

8: for all capsule i in layer l and capsule
9: j in task k:

10: b(k)
ij = b(k)

ij +a(k)
ij , a(k)

ij = û(k)
j|i ·v(k)

j
11: end for
12: return v(k)

j
13: end function

MTL models (Liu et al., 2017; Ruder et al., 2017;
Fang et al., 2017) want to address: “What fea-
ture should be shared and what should not among
tasks?” By that, network can decide the contri-
bution of the features for each tasks and set the
appropriate coupling coefficients between features
and tasks.

More concretely, we introduce a coupling coef-
ficient c(k)

ij between capsule i in l-th layer and cap-
sule j in class capsule (l + 1)-th layer for task k,
which is the result of a softmax function on b(k)

ij .

c(k)
ij = softmax(b(k)

ij ) (19)

Then, instantiated parameter v(k)
j of capsule j in

task k is calculated by

v(k)
j =

X

i

c(k)
ij · û(k)

j|i (20)

where û(k)
j|i = Wk,j,iui

Coupling coefficient c(k)
ij is restricted in range

[0, 1], which represents the probability that cap-
sule i belongs to class capsule j in task k. And
it is update by the algorithm is described in Algo-
rithm 3.5.

Multi-Task Loss
The loss for each task is the sum of margin losses
for all the classes

PC
j=1 L(k)

j . By linearly combin-
ing the loss for every task, we get multi-task loss

L =
KX

k=1

�(k)
CX

j=1

L(k)
j . (21)

where �(k) is the weight for each loss andPK
k=1 �(k) = 1. In this paper, all the �(k) are set

to be 1/K to make a balance among K tasks.

Multi-Task Training
In order to juggle several tasks in a unified net-

work, following (Collobert and Weston, 2008),
each task is trained alternatively in a stochastic
manner. The steps can be described as follows:
1. Pick up a task k randomly; 2. Select an arbi-
trary sample s from the task k; 3. Feed the sample
s into the McapsNet and update the parameters; 4.
Go back to 1.

3.6 Architectures of CapsNets for Text
As illustrated in Figure 2, we propose a capsule-
based multi-task learning architecture Mcap-
sNet, which is base on the single-task structures
CapsNet-1 and CapsNet-2. Architectures for them
are detailed as following.

CapsNet-1 As depicted in Figure 2, CapsNet-1
is a fundamental framework with three layers. The
first layer is a plain convolution operation with 256
kernels with window size of 3 and stride of 1. For
activation function, we use ReLU to augment non-
linearity. This layer helps extract local features
from the input sequences, which is the base to con-
struct primary capsules.

Primary capsule layer employs 32 kernels with
window size of 3 and stride of 1. The emitted pri-
mary capsules are 8-dimensional, which have big-
ger respective field, helping reassemble the piece
features into wholes.

Last one is the class capsule layer, which is
comprised of 16-dimensional capsules for the
classes. They are connected to PrimaryCaps
with routing-by-agreement and the coupling coef-
ficients are updated by dynamic routing algorithm.

CapsNet-2 On this basis of CapsNet-1,
CapsNet-2 upgrades the convolutional layer and
uses multiple kernel sizes, which enriches the
features. And concatenating1 them up allows
primary capsule see the features with different
kernel sizes in the same time.

MCapsNet McapsNet is a unified multi-task
structure based on CapsNet-2. It replaces the dy-
namic routing with task routing (Algorithm 3.5),
which enables the network to route the features to

1We use padding to ensure the sizes of feature maps are
equal.
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Dataset Train Dev Test Classes Type
MR 9500 - 1100 2 review
SST-1 8544 1101 2210 5 sentiment
SST-2 6920 872 1821 2 sentiment
Subj 9000 - 1000 2 subjectivity
TREC 5900 - 500 6 question
AG’s 120k - 7600 4 news

Table 1: Statistics for six datasets

each tasks. And the whole network is optimized in
a stochastic way with multi-task training (Section
3.5).

Implement Details For word embedding, we
use the word vectors in Word2Vec (Mikolov et al.,
2013), which is 300-dimensional and has 3M vo-
cabularies. And all the routing logits b(k)

ij is ini-
tialized to zero, so that all the capsules in adjacent
layers (ûj|i,vj) are connected with equal possi-
bility cij . The coupling coefficients are updated
by routing with 3 iterations, which performs best
for our approach. For training, we use Adam opti-
mizer (Kingma and Ba, 2014) with exponentially
decaying learning rate. Moreover, we use mini-
batch with size of 8 for all the datasets.

4 Experiment

We test our capsule-based models on six datasets
in both single-task and multi-task scenarios to
demonstrate the effectiveness of our approaches.
We also in this section conduct some investiga-
tions like ablation study and visualization to give
a comprehensive understanding to the characteris-
tics of our models.

4.1 Datasets
For both single-task and multi-task scenarios, we
conduct extensive experiments on six benchmarks:
movie reviews (MR) (Bo and Lee, 2005), Stanford
Sentiment Treebank (SST-1 and SST-2) (Socher
et al., 2013), subjectivity classification (Subj)
(Pang et al., 2004), question dataset (TREC) (Li
and Roth, 2002), AG’s news corpus (Mousa et al.,
2017). These datasets cover a wide range of text
classification tasks, which can fully test a model
and the details are listed in Table 1.

4.2 Competitors
To demonstrate the effectiveness of our capsule
network, we compare the single-task architec-
tures with several state-of-the-art models, involv-
ing LSTM/BiLSTM (Cho et al., 2014), LSTM

Dataset MR SST-1 SST-2 Subj TREC AG’s
LSTM 75.9 45.9 80.6 89.3 86.8 86.1

BiLSTM 79.3 46.2 83.2 90.5 89.6 88.2
LR-LSTM 81.5 48.2 87.5 89.9 - -
VD-CNN - - - - - 91.3

DCNN - 48.5 86.8 - 93.0 -
CNN-MC 81.1 47.4 88.1 93.2 92.2 -
CapsNet-1 81.5 48.1 86.4 93.3 91.8 91.1
CapsNet-2 82.4 48.7 87.8 93.6 92.9 92.3
- Orphan 81.9 48.3 87.2 93.4 92.6 91.7

Table 2: Single-task results. Row “- Orphan category”
denotes a variant of CapsNet-2 without orphan cate-
gory

regularized by linguistic knowledge (LR-LSTM)
(Qian et al., 2016), very deep network (VD-CNN)
(Conneau et al., 2016), dynamic CNN (DCNN)
(Kalchbrenner et al., 2014), CNN with multiple
channels (CNN-MC) (Kim, 2014). Also, we com-
pare the multi-task architecture (Figure 2) with
several strong baselines of multi-task learning, in-
cluding a general architecture for multi-task learn-
ing (MT-GRNN) (Zhang et al., 2017), recurrent
neural network based multi-task learning (MT-
RNN) (Liu et al., 2016), convolutional neural net-
work with multi-task learning (MT-DNN) (Col-
lobert and Weston, 2008), deep neural network
with multi-task learning (MT-CNN) (Liu et al.,
2015).

4.3 Single-Task Learning Results
We first test our approach on six datasets for text
classification under the scheme of single-task. As
Table 2 shows, our single-task network enhanced
by capsules is already a strong model. CapsNet-
1 that has one kernel size obtains the best accu-
racy on 2 out of 6 datasets, and gets competitive
results on the others. And CapsNet-2 with multi-
ple kernel sizes further improves the performance
and get best accuracy on 4 datasets. This proves
our capsule networks are effective for text. Partic-
ularly, our capsule network outperforms conven-
tional CNNs like DCNN, CNN-MC and VD-CNN
with a large margin (by average 1.1%, 0.7% and
1.0% respectively), which shows the advantages
of capsule network over conventional CNNs for
clustering features and leveraging the position in-
formation.

Routing Iteration The coupling coefficients cij

are updated by dynamic routing algorithm, which
determines the connections between the capsules.
To find the best updating iteration for coupling co-
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mr_iter3_loss

step 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 7 iteration

0 0.31990772 0.32777038 0.35708323 0.30876166 0.33376288 0.43252164

100 0.2165044 0.22952877 0.19316821 0.22000548 0.21656269 0.22370228

200 0.21138513 0.22009197 0.23139681 0.2095856 0.22682545 0.21267971

300 0.22478297 0.2110215 0.24012111 0.21540533 0.21765772 0.21499902

400 0.21555959 0.22160663 0.21874493 0.2191698 0.23053917 0.21699865

500 0.20600384 0.21363162 0.18633538 0.21734108 0.21815333 0.21746612

600 0.2130103 0.20203112 0.17911553 0.21643545 0.21735527 0.21233499

700 0.19938451 0.23581365 0.17411417 0.21574022 0.21573226 0.21654496

800 0.19907556 0.227563 0.14065415 0.21677263 0.21779424 0.21902196

900 0.19709052 0.1909296 0.22373466 0.21057303 0.21403673 0.22480017

1000 0.18997657 0.19407482 0.24778445 0.21447049 0.2167942 0.21594681

1100 0.20069836 0.22341812 0.17452972 0.21565828 0.21165203 0.21713184

1200 0.1358376 0.19161437 0.12416928 0.22827208 0.21767393 0.1865164

1300 0.24192365 0.2502587 0.14073405 0.21395075 0.1956843 0.2076964

1400 0.24594069 0.17846859 0.15433379 0.21534327 0.19485447 0.19316548

1500 0.14343393 0.23199289 0.058949206 0.21565448 0.20615155 0.2027618

1600 0.13204841 0.07546147 0.13606499 0.21872896 0.1940549 0.18980762

1700 0.078342795 0.1006265 0.1095981 0.21600798 0.24048766 0.21178418

1800 0.19616298 0.084692195 0.13713281 0.21660198 0.20626166 0.2086841

1900 0.18376194 0.1457739 0.108214475 0.21599032 0.17014022 0.18203387

2000 0.2505575 0.15862198 0.13291651 0.22306885 0.20859854 0.16577458

2100 0.20313756 0.150289 0.16300716 0.21577688 0.21566515 0.21336424

2200 0.113498576 0.17007406 0.12576085 0.21669921 0.19889027 0.21370491

2300 0.08823628 0.18244454 0.09739958 0.21900685 0.19862902 0.13970172

2400 0.18449302 0.13019164 0.059194855 0.2158218 0.21441466 0.24924363

2500 0.14137962 0.027922168 0.06349837 0.21553266 0.18297584 0.15660347

2600 0.06318494 0.0083872555 0.13506271 0.22020619 0.049219918 0.06674059

2700 0.12604533 0.057891004 0.0863096 0.21330038 0.09685729 0.075393796

2800 0.06678611 0.056647964 0.11831023 0.211519 0.034514483 0.11877781

2900 0.013979337 0.055679005 0.043369725 0.21656843 0.11880093 0.139684

3000 0.09075422 0.01834401 0.069736615 0.20968968 0.06694293 0.11415998

3100 0.071527496 0.071867496 0.04040062 0.21676293 0.062198877 0.13664688

3200 0.053069513 0.011909003 0.074893095 0.21546358 0.2097177 0.09671463

3300 0.13160191 0.05359852 0.105486326 0.21507561 0.0346353 0.103552915

3400 0.05588995 0.041564412 0.066810705 0.21444169 0.11614575 0.13282628

3500 0.049774844 0.023115948 0.07867427 0.21574582 0.24141549 0.015245671

3600 0.00533909 0.07540489 0.070457004 0.21627496 0.111639 0.09389045

3700 0.06328302 0.0769447 0.03755875 0.21654026 0.13476305 0.08049823

3800 0.037597798 0.015297024 0.024833435 0.21532282 0.019858109 0.07756405

3900 0.017376851 0.03153728 0.028519789 0.21998401 0.19239725 0.0706502

4000 0.015832186 0.06606675 0.019566512 0.22106846 0.081912905 0.07202703

4100 0.024164455 0.015849056 0.025040613 0.21752763 0.10874183 0.021766221

4200 0.05139856 0.013023706 0.011992501 0.20341182 0.04201607 0.1068824

4300 0.03430857 0.059574388 0.019949485 0.21218589 0.10918676 0.047409087

4400 0.06850299 0.05789706 0.03192132 0.1934472 0.060641877 0.017321965

4500 0.028439771 0.04577714 0.06652445 0.18472269 0.031587753 0.02464495

4600 0.00997417 0.005764379 0.01647066 0.17637597 0.028014591 0.01935349

4700 0.04940702 0.032073725 0.07881074 0.1750345 0.13018186 0.023507616

4800 0.020413583 0.07540906 0.029650116 0.2195204 0.038481377 0.045384612

4900 0.019826425 0.031753153 0.021980677 0.1424555 0.03871046 0.019794926

5000 0.028047139 0.009816681 0.01173399 0.14830378 0.034620147 0.060023524

5100 0.03570168 0.022174701 0.013476413 0.18717153 0.010447311 0.014840336

5200 0.050749723 0.005398215 0.033909425 0.2046503 0.011018614 0.024433482

5300 0.099622525 0.004649097 0.047538925 0.2092239 0.03152306 0.0054741725

5400 0.0053426665 0.008371854 0.006597732 0.15079452 0.006303721 0.0047035264

5500 0.05191873 0.016815454 0.016768238 0.07482985 0.0057420097 0.040190328

5600 0.049730867 0.02349401 0.008496291 0.13487497 0.033842973 0.006400237

5700 0.031844895 0.03890676 0.042231962 0.16211028 0.035531938 0.017351853

5800 0.011545923 0.012152319 0.007615051 0.09252592 0.09976231 0.014460339

5900 0.018437417 0.021393463 0.03422167 0.1987526 0.013888625 0.011644581

6000 0.018853988 0.005956734 0.07615088 0.091175675 0.005306372 0.0042689797

6100 0.018992342 0.010288426 0.053335432 0.16724806 0.0107863145 0.010407194

6200 0.0056506954 0.00776174 0.020618532 0.08833132 0.034110814 0.012261426

6300 0.011831854 0.009550323 0.009947613 0.09596658 0.01110738 0.020155292

6400 0.006566655 0.013650014 0.012848858 0.11858772 0.021222282 0.014613601

6500 0.024205782 0.012546196 0.0048239767 0.16028889 0.00926006 0.0149123315

6600 0.014806292 0.0058124983 0.041874792 0.039060276 0.021106286 0.011592761

6700 0.012256767 0.00361195 0.008751678 0.2021615 0.026892414 0.008640145

6800 0.004717383 0.017772006 0.007069681 0.09619468 0.0032965664 0.004729362

6900 0.014133487 0.031820357 0.01449428 0.037848447 0.020252377 0.01289978

7000 0.019541442 0.06382499 0.023019891 0.050981153 0.017323725 0.0105407955

7100 0.021704191 0.01138805 0.023877008 0.051143013 0.03438755 0.054347344

7200 0.012751048 0.012124202 0.0038398597 0.043297127 0.018402876 0.029276593

7300 0.006295314 0.021420598 0.029609926 0.041524984 0.02546952 0.0075945454

7400 0.0075894385 0.006048003 0.0075462335 0.067313015 0.0053267237 0.0069935857

7500 0.006741333 0.0040838285 0.0066743465 0.059338994 0.03350287 0.006115186

7600 0.014603565 0.029511223 0.015551431 0.0480805 0.0073549934 0.0062353685

7700 0.015592159 0.016174346 0.014908929 0.03194722 0.006968726 0.009626625

7800 0.013729516 0.01248635 0.011632278 0.045669746 0.019316316 0.004811878

7900 0.017690767 0.006325948 0.020566542 0.06595372 0.01010148 0.007357938

8000 0.011015004 0.010788693 0.00907688 0.009306814 0.01526524 0.008390946

8100 0.03067701 0.006466888 0.036440548 0.091463834 0.0040217703 0.0048725065

8200 0.0068208063 0.021921193 0.030572822 0.031231066 0.013773766 0.025552973

8300 0.07634035 0.013739873 0.008865972 0.043190647 0.033992216 0.005076555

8400 0.02858127 0.004716243 0.02021956 0.02758816 0.013960054 0.0045451336

8500 0.008293323 0.004557795 0.007140737 0.0143441325 0.019154403 0.018727811

8600 0.06278364 0.016065609 0.005512653 0.010879653 0.006276448 0.008771067

8700 0.0069642887 0.0069935825 0.018281303 0.0067787454 0.008038342 0.0049465247

8800 0.015416967 0.025033943 0.011917496 0.038743842 0.0135429185 0.0123538375

8900 0.011273504 0.011572633 0.014581191 0.015278485 0.0037106564 0.0046575256

9000 0.036496855 0.0129312975 0.017274378 0.01666871 0.0052732183 0.0149699785

9100 0.0076952637 0.0111958925 0.012719973 0.0069943983 0.011427318 0.004719188

9200 0.011958325 0.0049098213 0.008090422 0.0062036156 0.030276377 0.053471938

9300 0.007843321 0.026734378 0.012808654 0.02021877 0.0037612547 0.009854263

9400 0.014780243 0.007878659 0.0062521882 0.014980534 0.0062496727 0.017763212

9500 0.021542635 0.0539474 0.0089662215 0.019601598 0.00997231 0.011595588

9600 0.020767815 0.0036838378 0.025650078 0.03254368 0.040382072 0.0051811123
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Figure 3: Influence of routing iteration

efficients, we test the CapsNet-2 with a series of
iterations (1, 3 and 5) on MR dataset. As shown in
Figure 3, network with 3 iterations convergences
fast and performs best, which stays in line with the
conclusion in (Sabour et al., 2017). So we utilize
3 iterations in all our experiments.

Ablation Study on Orphan Category Orphan
category in class capsule layer helps collect the
noise capsules that contain the ‘background’ infor-
mation like stop words, punctuations or any unre-
lated words. We conduct the ablation experiment
on orphan category, and result (Table 2) shows that
network with orphan category perform better than
the without one by 0.4%. This demonstrates the
effectiveness of orphan category.

4.4 Multi-Task Learning Results

Up to now, we have obtained an optimized single-
task architecture. In this section, we equip
CapsNet-2 with the task routing and multi-task
training procedure, namely the model MCapsNet,
so that this capsule based architecture can learn
several datasets in a unified network. Exten-
sive experiments are conducted in this section to
demonstrate the effectiveness of our multi-task
learning architecture, as well as its ability for fea-
ture clustering.

Multi-Task Performance
We simultaneously train our model McapsNet on
six tasks in Table 1 and compare it with single-
task scenario (Table 3). We can see that our multi-
task architecture clearly improves the performance
over the single task models, which demonstrates
the benefits of our multi-task architecture.

Dataset MR SST-1 SST-2 Subj TREC AG’s Avg.4
BiLSTM 79.3 46.2 83.2 90.5 89.6 88.2 +0
MT-GRNN - 49.2 87.7 89.3 93.8 - +2.6
MT-RNN - 49.6 87.9 94.1 91.8 - +3.5
MT-DNN 82.1 48.1 87.3 93.9 92.2 91.8 +2.9
MT-CNN 81.6 49.0 86.9 93.6 91.8 91.9 +3.0
CapsNet-1 81.5 48.1 86.4 93.3 91.8 91.1 +2.5
CapsNet-2 82.4 48.7 87.8 93.6 92.9 92.3 +3.3
MCapsNet 83.5 49.7 88.6 94.5 94.2 93.8 +4.6

Table 3: Multi-task results of MCapsNet. In column
Avg.4, we use BiLSTM as baseline and calculate the
average improvements over it.

As Table 3 shows, MCapsNet also outperforms
the state-of-the-art multi-task learning models by
at least 1.1%. This shows the advantages of our
task routing algorithm, which can cluster the fea-
tures for each task, instead of freely sharing the
features among tasks.

4.5 Routing Visualization

To show the mechanism how capsule benefits the
multi-task learning, we visualize the coupling co-
efficient c(k)

ij 2 [0, 1] between primary and class
capsules. We use kernel with size 1 for primary
capsule layer so that every capsule represents only
one 3-gram phrase. The strength of these connec-
tions indicates the importance of these 3-grams to
their corresponding task and class.

We feed a random sample from the dataset MR
into MCapsNet. In the first row of Table 4, we
show the most important 3-gram phrases for two
tasks MR and Subj (two classes for each) with
word cloud. The sizes of the grams represent the
weights of coupling coefficients. We can see that
task routing algorithm helps lead the grams into
the most related tasks, which allows each task only
consider the helpful features for them. In another
word, task routing builds a feature space for each
task and avoids they contaminate each other. This
demonstrates that MCapsNet has the ability of fea-
ture clustering, which can benefit MTL by reduc-
ing the interference.

We also illustrate the coupling coefficients se-
quentially for each task. The height of the blue
and gray lines represents the polarity of positiv-
ity and subjectivity respectively. It is clear that
MCapsNet can focus on the appropriate positions
for each task, which helps make the final correct
predication for every task.

4571



MR Subj
positive negative subjective objective

0.49

0.495

0.5

0.505

0.51

it 


's
 

no
t 

so
 

m
uc

h 


en
jo

ya
bl

e 


to
 

w
at

ch
 

as
  it 


is
 

en
lig

ht
en

in
g 


to
 

lis
te

n 


to
 

ne
w

 

si
de

s 


of
  a 


pr
ev

io
us

 

re
al

ity
  ,

an
d 


to
 

vi
si

t 

w
ith

 

so
m

e 


of
 

th
e 


pe
op

le
 

w
ho

 

w
er

e 


ab
le

 

to
 

m
ak

e 


an
 

im
pa

ct
 

in
 

th
e 


th
ea

te
r 

w
or

ld
 

MR
Subj

pos/sub

Table 4: Visualization of the task routing for a positive sample from MR, “it 's not so much enjoyable to watch as
it is enlightening to listen to new sides of a previous reality , and to visit with some of the people who were able to
make an impact in the theater world”

5 Related Work

Related work can be divided into two threads. The
first thread is capsule network, which has been
proven effective on many classification tasks.

Concept of capsule is first proposed by Hin-
ton et al. (2011), which first use vector to de-
scribe the pose of object. This work improves
the representation ability of the neural networks
against the vanilla CNNs and also enhances the
robust of network for transformation. Then dy-
namic routing algorithm is proposed in (Sabour
et al., 2017), which is aimed to displace the pool-
ing operation, building a part-whole relationship
for object recognition. Dynamic routing can main-
tain the position information of features for objects
that pooling operations generally discard. And the
result shows the proposed method improves the
state-of-the-art performance for MNIST dataset.
Next, Hinton et al. (2018) employs the matrix to
depict the pose and, based on EM algorithm de-
signs a new routing procedure between capsule
layers. This work shows strong ability for address-
ing transformation problem and gains significant
improvement on smallNORB dataset.

All these methods are proposed for computer vi-
sion, while in this paper we investigate the benefits
of capsules for text.

The other thread is about multi-task learning.
The earliest idea can be traced back to (Caruana,
1997) and there have been some work completed

in this field to augment the performance. Collobert
and Weston (2008) develop a multi-task learning
model based on CNN. It shares only one lookup
table to train a better word embedding. And Liu
et al. (2015) propose a DNN-based model for
multi-task learning, which shares some low lay-
ers but separate the high-level layers to complete
several different tasks.

Some models are proposed to share deeper lay-
ers of networks, which can exchange high-level
knowledge among tasks and gain better perfor-
mance. (Zhang et al., 2017) and (Liu et al., 2016)
introduce some RNN architectures and design dif-
ferent schemes for knowledge sharing. These tri-
als promote the performance of models, but they
give no consideration to the interference in multi-
task learning. Liu et al. (2017) add the adversar-
ial losses in multi-task RNNs, which can allevi-
ate the interference among tasks by finding a com-
mon feature space for tasks. However, the model
has multiple subnets and various losses, which re-
quires more computation and training skills.

Different from these methods, we use the
thought of capsule in natural language processing
(NLP) field. And proposed a capsule based multi-
task learning architecture with task routing algo-
rithm. This approach can cluster the features for
each task, reducing the interference among them.
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6 Conclusion and Future Work

This paper investigates the performance of capsule
network for text representation, and proposes sev-
eral effective architectures. By means of the char-
acteristics of capsule network, we design a unified,
sample yet effective architecture with task routing
for multi-task learning, which has the ability to
clustering the features, building a private feature
space for every task.

In future work, we would like to investigate the
relations of various tasks in multi-task learning by
exploiting the potential of capsule network.
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Abstract

Prevalence estimation is the task of inferring
the relative frequency of classes of unlabeled
examples in a group—for example, the pro-
portion of a document collection with posi-
tive sentiment. Previous work has focused on
aggregating and adjusting discriminative in-
dividual classifiers to obtain prevalence point
estimates. But imperfect classifier accuracy
ought to be reflected in uncertainty over the
predicted prevalence for scientifically valid in-
ference. In this work, we present (1) a genera-
tive probabilistic modeling approach to preva-
lence estimation, and (2) the construction and
evaluation of prevalence confidence intervals;
in particular, we demonstrate that an off-the-
shelf discriminative classifier can be given a
generative re-interpretation, by backing out an
implicit individual-level likelihood function,
which can be used to conduct fast and simple
group-level Bayesian inference. Empirically,
we demonstrate our approach provides better
confidence interval coverage than an alterna-
tive, and is dramatically more robust to shifts
in the class prior between training and testing.1

1 Introduction

The goal of prevalence estimation is to infer the
relative frequency of classes yi associated with un-
labeled examples (e.g. documents) from a group,
xi 2 D. For example, one might want to es-
timate the proportion of blogs with a positive
sentiment towards a political candidate (Hopkins
and King, 2010), sentiment of responses to nat-
ural disasters on social media (Mandel et al.,
2012), or prevalence of car types in street pho-
tos to infer neighborhood demographics (Gebru
et al., 2017). Often, an analyst wants to com-
pare prevalence between multiple groups, such

1Code available at http://slanglab.cs.umass.
edu/doc_prevalence and https://github.com/
slanglab/doc_prevalence.

as inferring prevalence variation over time (e.g.,
changes to online abuse content (Bissias et al.,
2016)), or across other covariates (e.g., changes
in police officers’ “respect” when speaking to mi-
norities (Voigt et al., 2017)). This problem has
been re-introduced in many different fields: as
“quantification” in data mining (Forman, 2005,
2008), “prevalence estimation” in statistics and
epidemiology (Gart and Buck, 1966), and “class
prior estimation” in machine learning (Vucetic and
Obradovic, 2001; Saerens et al., 2002). In NLP,
SemEval 2016 and 2017 included Twitter senti-
ment class prevalence tasks (Nakov et al., 2016;
Rosenthal et al., 2017).

Prevalence estimation assumes access to a (po-
tentially small) set of labeled examples to train a
classifier; but unlike the task of individual classi-
fication, the goal is to estimate the proportion of
a class among examples in a group. If a perfectly
accurate classifier is available, it is trivial to con-
struct a perfect prevalence estimate by counting
the classification decisions (§3.1). In fact, most
application papers in the previous paragraph use
this or a similar aggregation rule to conduct their
prevalence estimates. However, classifiers often
exhibit errors from different sources, including:

• Shifts in the class distribution from training
to testing (Ptrain(y) 6= Ptest(y)). A classifier
may be biased toward predicting Ptrain(y).

• Difficult classification tasks (such as predict-
ing sentiment or sarcasm) that result in low
accuracy classifiers; this can be exacerbated
by limited training data, as is common in so-
cial science or industry settings that require
manual human annotation for labels.

It is typically assumed (and sometimes confirmed)
that when an individual classifier has less than
100% accuracy, it can still give reasonable preva-
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lence estimates.2 However, there is relatively lit-
tle understanding to what extent the quality of
the document-level model impacts prevalence es-
timates. Imperfect classifier accuracy ought to be
reflected in uncertainty over the predicted preva-
lence.

In this work, we tackle both of these challenges
simultaneously, using a generative probabilistic
modeling approach to prevalence estimation. This
model directly parameterizes and conducts infer-
ence for the unknown prevalence, naturally ac-
commodating shifts between training and testing,
and also allows us to infer confidence intervals
for the prevalence. We show that our best model
can be seen as an implicit likelihood generative
re-interpretation of an off-the-shelf discriminative
classifier (§4.2); this unifies it with previous work,
and also is easy for a practitioner to apply.

We additionally review several types of class
prevalence estimators from the literature (§3), and
conduct a robust empirical evaluation on senti-
ment analysis over hundreds of document groups,
illustrating the methods’ biases and robustness to
class prior shift between training and testing. Our
method provides better confidence interval cover-
age and is more robust to class prior shift than pre-
vious methods, and is substantially more accurate
than an algorithm in widespread use in political
science.

2 Problem definition

We consider two prevalence estimation problems:
(1) point prediction and (2) confidence interval
prediction. In this work, we are most interested in
supervised learning for discrete-valued document
labels, with access to a small to moderate number
(e.g. around 1000) of labeled documents with text
x and label y: (xi, yi) 2 Dtrain. We restrict at-
tention to binary-valued labels y 2 {0, 1}. At test
time, there are one or more groups of unlabeled
test documents, D(1), · · · , D(G); for example, one
group might be a set of tweets sent during a cer-
tain month, or a set of online reviews associated
with a particular product. For each group D, let
✓⇤ ⌘ (1/n)

Pn
i yi be the true proportion of posi-

tive labels (where n = |D|).
The prevalence point prediction problem is to

take an unlabeled document group D as input and

2For example, Bissias et al. find a relative mean absolute
error of less than 0.01 when the individual classifier has ROC
AUC of 0.91.

Figure 1: Example posterior distributions with
MAP prevalence estimates, ✓̂ (solid line) and the
true prevalence, ✓⇤ (dashed line). A desirable
property is that confidence intervals, technically
Bayesian credible intervals, (shaded regions) will
be wider for more uncertain models. For exam-
ple, the wider CI on the right (green) contains ✓⇤

whereas the narrower CI interval on the left (red)
does not.

infer an estimated ✓̂ 2 [0, 1]. Ideally, this point
estimate should be close to the true prevalence ✓⇤;
we evaluate this by mean absolute error.

In this work, we are the first (that we know of)
to introduce the question of uncertainty in preva-
lence estimation. Since document classifiers are
typically far from perfectly accurate, we should
expect substantial error in prevalence prediction,
and inference methods should quantify such un-
certainty. We formalize this as a prevalence con-
fidence interval (CI) inference, which takes as in-
put a desired nominal coverage level (1 � ↵), and
predicts a real-valued interval [✓̂lo, ✓̂hi] ✓ [0, 1].
Ideally, a CI prediction algorithm should have fre-
quentist coverage semantics: over a large number
of test groups,3 (1�↵)% of the predicted intervals
ought to contain the true value ✓⇤. If the problem is
hard—for example, the relationship between doc-
ument features and the label is not captured well
by the model—the CI should be wide. We em-
pirically evaluate coverage of CI-aware prevalence
inference models. See Fig. 1 for an intuitive exam-
ple.

3 Review and baselines: Discriminative
individual classification aggregation

The most straightforward baseline approach to
prevalence estimation is to build on discrimina-
tive, supervised learning for individual-level la-
bels, such as binary logistic regression with bag-
of-words features, randomized feature hashing

3Or in fact, across many experiments in which the model
or algorithm is applied (Wasserman, 2011).
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(Weinberger et al., 2009), or neural networks
(Goldberg, 2016). Such a model defines an indi-
vidual document’s label probability pi ⌘ p�(yi =
1 | xi) where parameters � are fit by maximizing
regularized likelihood on the labeled training data.

3.1 Classify and Count (CC)
For prevalence point estimation, Forman (2005)
defines the “classify and count” (CC) method as
simply averaging the most-likely individual label
predictions,

✓̂CC =
1

n

X

i

1{pi > 0.5}. (1)

This is the most obvious approach for practition-
ers, but it has at least two weaknesses, which
have been addressed in different groups of prior
work. First, the class proportions may change be-
tween training and test groups, which the Adjusted
CC and ReadMe algorithms attempt to fix (§3.2–
3.3). Second, it discards probabilistic informa-
tion, which is remedied by the Probabilistic CC
method, and an extension we propose (§3.4–3.5).

3.2 Adjusted Classify and Count (ACC)
CC may encounter problems if the test class dis-
tribution is different than the training’s. The
“adjusted classify-and-count” method (Gart and
Buck, 1966; Forman, 2005) treats the classifier
output as a proxy variable, and estimates a sep-
arate confusion model of classifier output ŷi ⌘
1{pi > 0.5} conditional on the true label, p(ŷ | y),
from cross-validation within the training set. As-
suming the confusion model extends to the test
data, a moment-matching approach is then used to
infer the true label proportions, by first observing
ptest(ŷ) =

P
y p(ŷ | y)ptest(y) and solving the

linear system for ptest(y), the test-time expected
class prevalence. Using empirical estimates for the
true positive rate TPR = p(ŷ = 1 | y = 1), and
false positive rate FPR = p(ŷ = 1 | y = 0), and
✓̂CC = p(ŷ = 1), it has the closed form

✓̂ACC =
✓̂CC � FPR
TPR � FPR

. (2)

By design, ACC is more robust to a new test-time
prevalence, but it relies on the accuracy of its TPR
and FPR estimates, and its lack of probabilistic se-
mantics makes it unclear how to infer confidence
intervals.

3.3 ReadMe algorithm
An interesting extension to ACC is to remove the
need for a discriminative classifier, by directly
modeling text conditional on the latent document
class. The ReadMe algorithm, developed in po-
litical science (Hopkins and King, 2010), extends
ACC’s linear system for every term type in a
(subsampled and augmented) term vocabulary V ,
and calculates their class-conditional probabilities
from the training data. Assuming these condi-
tional models also hold in the test data, that im-
plies ptest(w) =

P
y p̂(w | y)ptest(y); the algo-

rithm infers ptest(y) by minimizing the squared
error of predicted versus empirical term frequen-
cies in the test set. The open-source ReadMe soft-
ware package4 has been used in numerous politi-
cal science studies, including inferring proportions
of types of censored Chinese news (King et al.,
2013), credit claiming in Congressional press re-
leases (Grimmer et al., 2012), and voter intentions
among Twitter messages (Ceron et al., 2015).

ReadMe is theoretically appealing in that it
infers latent class prevalences to explain the
test group’s textual evidence; but as a non-
probabilistic model, it does not directly imply
a method for confidence intervals (Hopkins and
King use the bootstrap). Furthermore, our experi-
ments (§5), contra the original paper, show its im-
plementation exhibits poor performance.

3.4 Probabilistic Classify and Count (PCC)
Both the CC and ACC methods discard uncer-
tainty information from the classification model.
In a difficult classification setting, for example, we
might expect many probabilities to be near, say,
0.6, in which case the CC method may undercount
the negative class. This suggests an alternative
method, “probabilistic classify and count” (PCC):

✓̂PCC =
1

n

X

i

pi (3)

which is the expected prevalence, (1/n)
P

i yi, as-
suming each yi is distributed according to the orig-
inal probabilistic classifier.

3.5 PCC Poisson-Binomial distribution
(PB-PCC)

If we assume each yi is conditionally indepen-
dent given text xi and model parameters �, this

4https://gking.harvard.edu/readme
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defines a fully probabilistic model for the class
prevalence. Let the latent variable S =

P
i yi; its

distribution is thus Poisson-Binomial (Chen and
Liu, 1997). The modeled prevalence distribution
p(S

n | D) can be exactly inferred by Monte Carlo
inference: each iteration samples every yi and
sums for an S sample. The S/n distribution over
many iterations can be used to construct a Monte
Carlo CDF F̂ , from which any [F̂ (t), F̂ (t+1�↵)]
is an (1 � ↵)-sized credible interval (where 0 
t  t + 1 � ↵  1). This model has prevalence
expectation E[S

n ] = ✓̂PCC , and variance

Var

S

n

�
=

1

n2

X

i

pi(1 � pi). (4)

To a certain degree, this model captures uncer-
tainty in the classifier since per-document vari-
ance, pi(1 � pi), is high when pi = 0.5 and low
when near 0 or 1. However, it also has a major
weakness—the variance concentrates with a large
test group size n, which is the wrong behavior
when a classifier is truly noisy, for example, when
a classifier is genuinely uncertain and predicts the
same constant pi = q for each document. In this
case, the correct behavior would be to maintain a
flat, wide posterior belief about ✓, which is better
accomplished by the generative model we intro-
duce in the subsequent section.

4 Our approach: generative probabilistic
modeling

We turn to generative modeling, that seeks to to
jointly model the probability of labels and text
in both the training and test groups, by assum-
ing a document’s text is generated conditional
on the document label. Language models have
widespread use in natural language processing,
and class-conditional models have been used for
document classification (e.g. multinomial Naive
Bayes; McCallum and Nigam (1998)). We use a
similar generative setup to explicitly model a class
prevalence for test group g, with a generative story
for each (bag-of-words) document i in the group:

✓g ⇠ Dist(↵) (5)
yi,g ⇠ Bernoulli(✓g) (6)
xi,g ⇠ Multinomial(�yi,g) (7)

The test group is assumed to have a latent class
prior ✓g, which itself has a prior distribution (we
assume Dist(↵) = Unif(0, 1) in this work). For

✓ y x �

g 2 {1..G} i 2 D(g)

✓ y x �

�

i 2 Dtrain

↵

Training Testing

Figure 2: Our generative model for prevalence esti-
mation. Left: Class-conditional language models
(�) are learned at training time. Right: Test-time
inference for multiple groups’ latent prevalences
(✓).

each class k, �k is a class-conditional unigram lan-
guage model, which is learned from the training
data but fixed at test time. We then perform infer-
ence to find ✓g that gives a high probability to text
data {xi 2 D(g)}. Figure 2 shows the probabilistic
graphical model.

4.1 MNB and Loglin language models
We experiment with two explicit language mod-
els in this generative framework: (1) multinomial
Naive Bayes (MNB), using a training-time sym-
metric Dirichlet prior �y ⇠ Dir(�/V ) for vo-
cabulary size V and “pseudocount” �, and (2) an
additive log linear model (Loglin, a.k.a. SAGE
(Eisenstein et al., 2011)). Loglin estimates words’
probabilities as deviations from a background log-
probability m,

⌘y,w ⇠ Laplace(�) (8)

�y,w = exp(mw + ⌘y,w)/
X

j

exp(mj + ⌘y,j)

where mw is the empirical log probability of
a word w among all training documents, and
⌘y,w denotes class-specific deviations of the log-
probability of a word w, MAP estimated under
a sparsity-inducing L1 penalty. Such sparse ad-
ditive models have been used in both supervised
and unsupervised document modeling; for exam-
ple, as a document-level posterior classifier it out-
performs MNB (Eisenstein et al., 2011), or even
discriminative models (Taddy, 2013), and its spar-
sity helps interpretability for analyzing political,
literary, and legal texts (Monroe et al., 2008; Sim
et al., 2013; Bamman et al., 2014; Wang et al.,
2012).

4.2 Implicit likelihoods from discriminative
classifiers (LR-Implicit)

This generative formulation has a major advan-
tage over the discriminative, CC-style aggregation
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models because it sets up a likelihood and pos-
terior distribution over ✓. But in terms of docu-
ment modeling for classification purposes, the in-
dependence assumptions of the generative model
are typically too strong, and for document-level
classification, discriminative models tend to out-
perform similarly parameterized generative ones,
especially when the training set is sufficiently
large (Ng and Jordan, 2002). Thus, discrimina-
tive models may have information better suited to
class prevalence inference. Also, since the most
common practice for document classification is
to use discriminative models, it would be helpful
to more effectively use discriminative posteriors
within our generative context.

In Naive Bayes-style generative document clas-
sification, the model defines pgen(x | y) and class
prior p(y), which are combined to calculate the
posterior pgen(y | x) / pgen(x | y)p(y). Dis-
criminative models, by contrast, directly define a
pdisc(y | x). We can, however, expand this quan-
tity via Bayes Rule:

pdisc(y | x) = pimplicit0(x | y)ptrain(y)/p(x). (9)

The “implicit document likelihood” pimplicit0(x |
y) is a likelihood function that, combined with a
particular class prior p(y), would have resulted
in the same posterior predicted by the discrim-
inative model. Given the discriminative poste-
rior predictions and the training-time class prior
ptrain(y) = ✓̂train, an implicit likelihood function
can be backed out for any particular document x;
we define the “simple implicit” likelihood for doc-
ument x to be:

pimplicit(x | y) = pdisc(y | x)/✓̂train. (10)

This takes the form of a correction of the discrim-
inative posterior, by dividing out the training-time
class prevalence.5

Our LR-Implicit generative model uses the
same class prevalence and document label genera-
tion setup as before, but to calculate the individual
documents’ p(x | y) probabilities, it uses pimplicit
based on a logistic regression pdisc.6

5Technically, pimplicit0 is retrievable only up to a constant,
and pimplicit is one particular compatible implicit likelihood,
since it can be multiplied by any constant and is still consis-
tent with Eq. 9, and would give rise to the same document-
and group-level posteriors.

6The implicit likelihood still has the form of a logis-
tic regression, adjusting its bias term: if pdisc(y | x) =
�(�0x + �0), then pimplicit(x | y) = �(�0x + �0 �

log (✓train/(1 � ✓train))).

This model is inspired by Saerens et al. (2002)’s
EM algorithm for adjusting a classifier for a test
set’s class prior; they derive it differently by ap-
plying the assumption ptrain(x | y) = ptest(x | y),
expanding each side with Bayes’ Rule, solving for
ptest(y | x), then estimating ptest(y) via EM. This
in fact optimizes the same marginal likelihood
function in the next section under the implicit-
discriminative generative model; our formulation
broadens it as a fully Bayesian or likelihood-based
model.

4.3 Inference
To estimate class prevalence, we use the marginal
log likelihood over ✓ to obtain a posterior over ✓.
For each each test group g, we have the marginal
log probability of all document texts,

MLLg(✓) ⌘ log p(D(g) | ✓) (11)

=
X

i2D(g)

log
X

y2{0,1}
p(xi, yi = y | ✓)

=
X

i2D(g)

log

✓
✓L+

i + (1 � ✓)L�
i

◆
,

where we denote the class-conditional document
text likelihoods L+

i ⌘ p(xi | yi = 1) and
L�

i ⌘ p(xi | yi = 0). The gradient for an individ-
ual document is (L+

i � L�
i )/(✓L+

i + (1 � ✓)L�
i );

intuitively, the sign of the numerator says that
documents that are more likely under the positive
than negative class encourage higher likelihood
for larger values of ✓. When the model is uncertain
about a document—that is, when L+

i ⇡ L�
i —that

document contributes a relatively flat likelihood
curve, expressing little preference for likely val-
ues of ✓. If a model is more heavily regularized—
for example, when the log-linear additive model
is more dominated by the background language
model—this condition tends to hold for the doc-
uments, leading to a flat, highly uncertain likeli-
hood curve.

The marginal log likelihood is unimodal over
✓ 2 [0, 1], since it is concave, being a sum of con-
cave log-linear functions, and having negative cur-
vature:

@2MLLg

@✓2
= �

X

i2D(g)

✓
L+

i � L�
i

✓L+
i + (1 � ✓)L�

i

◆2

.

(12)

Since it is concave and there is only one param-
eter, a very wide variety of techniques could be
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used to reliably find a mode, including EM or first-
or second-order methods. At least two approaches
to inferring confidence intervals are possible. One
is to use a central limit theorem-style approxima-
tion, assuming the sampling distribution is approx-
imated by a normal with mean ✓MLE and variance
�[@2MLLg/@✓2]�1. The second, which we focus
on, is Bayesian estimation for log p(✓g | D(g)) /
log p(✓g) + MLLg(✓g) by simply using a grid
search over values ✓ 2 {0.001, 0.002, ...0.999} to
infer both the posterior mode ✓MAP as well as a
90% highest posterior density interval.7 In small-
scale experiments, this model had very similar re-
sults to the central limit theorem (with EM for
✓MLE).

5 Experiments

5.1 Data

In order to compare document class prevalence
estimators, we desire datasets that (1) have natu-
ral document groups that correspond to realistic,
real-world applications, (2) have a large number of
test groups (hundreds or more), and (3) are freely
available for academic research. It has been a
challenge to fulfill these criteria in previous work.
Nakov et al. (2016) conduct large-scale manual
annotation of Twitter sentiment for SemEval 2016
Task 4, with topic-based test groups; unfortu-
nately, redistribution is restricted to message IDs,
making the original dataset difficult to reconstruct
under Twitter’s terms of service if messages have
since been deleted. Bella et al. (2010) and Esuli
and Sebastiani (2015) use large, pre-existing la-
beled document corpora, but they do not contain
natural groups; evaluations utilize randomly sam-
pled synthetic groups.

To better fulfill these criteria, we select the task
of business review sentiment prevalence, where
the goal is to estimate the proportion of reviews
that are positive for one particular business; specif-
ically, we use labeled data from the Yelp Dataset
Challenge Round Nine8 corpus, which consists of
4.1M reviews by 1M users for 144K businesses.
We sample 500 businesses with at least 200 re-
views each as the test groups. We treat the task as
binary classification, and assign yi = 1 to reviews

7Since we use a uniform prior, this is just the MLE. Tech-
nically, we used a prior of Beta(1.0001, 1.0001) to avoid cer-
tain issues with tie-breaking, but it was not necessary.

8Downloaded June 2017 from https://www.yelp.
com/dataset_challenge.

with 3 or more stars. This task seems reason-
ably representative of real-world sentiment anal-
ysis problems, and this type of dataset can easily
be collected and reproduced from Yelp or other
widely available review data.

For training, we simulate a small-scale annota-
tion project by sampling 2000 labeled documents
from the rest of the corpus. This is a natural
prevalence that on average is about the same as
the test groups, though individual test groups may
have a much different prevalence (ranging from
0.096 to 0.997, mean (stdev) 0.823 (0.136)). We
also construct a synthetic training setting with a
highly skewed class prior, selecting 2000 docu-
ments with a 0.1 class prevalence (i.e. 200 posi-
tive documents in the group). In each case, for ev-
ery model, we re-run and average results over 10
different samples of the training set. For prepro-
cessing, we tokenize with NLTK9 and lowercase.

5.2 Model training
We use L1 regularization for logistic regression
based on the vector of a documents’ word counts,
to be most directly comparable to the generative
models; for each model, we select its hyperparam-
eter (LR and Loglin’s �, or MNB’s pseudocount)
by minimizing cross-validated cross-entropy of in-
dividual document posteriors (within the labeled
training set), over a grid search of powers of 2. The
log-linear additive model is trained with OWL-QN
(Andrew and Gao, 2007)10 and the logistic regres-
sion model is trained with the default implementa-
tion in scikit-learn (Pedregosa et al., 2011).11 We
used ReadMe with its default parameters.12

5.3 Results
For each of the 500 test groups, we calculate a
prevalence point estimate ✓̂ with each method, and
evaluate by averaging across groups for mean ab-
solute error

P
g |✓̂g � ✓⇤

g | and bias
P

g(✓̂g � ✓⇤
g).13

For the models that allow for confidence interval
9http://www.nltk.org/

10Via github.com/larsmans/pylbfgs
11Version 0.18.2
12 Version 0.99837 from https://gking.harvard.

edu/readme, with default parameters features=15,
n.subset=300, prob.wt=1. We bypass the ReadMe software’s
text preprocessing pipeline, and instead have it use nearly
the same document-term matrices as the other models.
Since it only handles binary document-term matrices, we
transformed counts to indicators; with other models this
change only made a minor difference in results.

13For the generative (MLL) models, ✓̂ is the MAP estimate;
the posterior mean gives similar results.
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Natural training prevalence ⇡ 0.8 Synthetic training prevalence = 0.1

Point est. CIs Point est. CIs
MAE Bias Cover. Width MAE Bias Cover. Width

Const. Pred. train mean 0.114 -0.045 — — 0.723 -0.723 — —
Pred. 100% 0.177 0.177 — — 0.177 0.177 — —

ReadMe 0.233 -0.222 — — 0.383 -0.382 — —

Disc.
(LR)

CC 0.048 0.042 — — 0.503 -0.503 — —
ACC 0.048 -0.001 — — 0.132 -0.015 — —
PB-PCC 0.049 -0.017 0.283 0.044 0.464 -0.464 0.001 0.054

Gen.
(MLL)

MNB 0.078 0.058 0.120 0.046 0.199 -0.199 0.022 0.073
Loglin 0.089 -0.070 0.410 0.100 0.140 -0.036 0.510 0.273
LR-Implicit 0.050 0.001 0.454 0.074 0.069 -0.051 0.439 0.082

Table 1: Mean absolute error (MAE), bias, nominal 90% confidence interval coverage, and average CI
width for the 500 Yelp data test groups, averaged over 10 simulations of resampled training (2000 doc-
ument) sets. We examine both the natural positive class training prevalence (E[✓train] = 0.7783), and a
synthetic fixed prevalence of 0.1. Dashes indicate the methods that are not able to calculate confidence
intervals.

Figure 3: Gold prevalence ✓⇤ (x-axis) versus predicted prevalence ✓̂ (y-axis) for each of the 500 test
groups with natural (nat) training prevalence (top row) and synthetic (syn) 0.1 training prevalence
(bottom row). A black y = x line is plotted for visualization. For the models that allow for confidence
intervals, 90% CIs for each group are given by the faint grey lines. Blue dots indicate the CI does not
contain ✓⇤ and red dots indicate the CI does contain ✓⇤. For each setting, we show the the model with
median MAE across training resamplings.

prediction, we infer 90% intervals and calculate
coverage, which is best if it is 0.90. We also re-
port average CI width; a narrower interval indi-
cates more confidence (even if misplaced). Re-
sults are in Table 1; every result is averaged over
10 resamplings of the training set.

The ReadMe software did not have competitive
performance; we hope in follow-up work to under-
stand why Hopkins and King found it had consid-
erably stronger performance than SVM-based CC.

For the natural training class prevalence setting
(first column, Table 1), the discriminative-based
models (CC, PCC and the adjusted variants ACC
and LR-Implicit) all have very similar point esti-
mate performance, outperforming the purely gen-

erative models (MNB and Loglin). For CI cov-
erage, the log-linear and LR-Implicit generative
models have significantly better coverage than the
discriminative model (PB-PCC) or MNB. Future
work is required to improve coverage to be closer
to the nominal ideal of 90%.

By contrast, when the class prevalences are
mismatched (second column, Table 1), the non-
adjusted CC and PCC methods give extremely
poor and biased point estimates, and PB-PCC has
incredibly poor CI coverage. ACC and the gener-
ative models do much better, presumably because
their models directly allow for variability in the
test class prior. While Loglin has somewhat higher
coverage in this setting, overall, LR-Implicit has
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Figure 4: CI coverage rate (left two graphs) and average CI width (right two graphs) for three bins of the
test groups, binned by number of documents.

(a) Varying training prevalence

(b) Varying training size

Figure 5: MAE and 90% CI coverage for PB-PCC
while varying (a) training prevalence (the propor-
tion of the 2000 training documents with positive
reviews) and (b) training size (number of doc-
uments in the training data) with natural preva-
lence. Lines are the averages over 10 resamplings
of training sets and points represent one resam-
pling.

consistently strong performance in both training
settings, and for both point estimation and (rela-
tively, at leas) confidence intervals.

Figure 3 shows ✓⇤ versus ✓̂ for each of the 500
test groups for each of the models, including pre-
dicted CIs. CC’s and PCC’s erroneous assump-
tions are directly viewable: in the natural preva-
lence setting, the slope shallower than 1, indicat-
ing a persistent under-sensitivity to the true class
prevalence—unlike ACC and the generative mod-
els. In the synthetic training case, CC and PCC
wildly underpredict, presumably because they are
biased by the low training-time prevalence ✓train =

0.1.

5.4 Comparison of PB-PCC and LR-Implicit
Since PB-PCC and LR-Implicit represent the
strongest members of non-adjusted classification
aggregation and generative modeling, respec-
tively, we further compare their results. When
varying synthetic training prevalence across 0.1 to
0.9 (Figure 5a), LR-Implicit has much better MAE
in all settings except near the natural prevalence
(the test groups have, on average, 0.82 positive
prevalence), and consistently stronger CI cover-
age.

Figure 5b shows results for natural class preva-
lence when varying the training set size. Unfortu-
nately, LR-Implicit is disadvantaged at very small
test sizes—its MAE is higher when there are only
a few hundred training documents ( 28 = 256),
though performance converges after that. We sus-
pect this may occur because, when textual evi-
dence is weak, the classifier learns to more heavily
rely on its bias term, which can be a useful form
of bias when the training class prevalence matches
the test groups (on average). However, at all lev-
els, LR-Implicit’s coverage is better.

Since we hypothesized that PB-PCC may be
overconfident for large test groups (§3.5), we test
this by binning test groups by the number of doc-
uments per group. Figure 4 confirms that PB-PCC
exhibits overconfidence for larger groups (smaller
CI width alongside lower CI coverage), but LR-
Implicit suffers from the same problem as well.

6 Additional Related Work

González et al. (2017a) reviews the class preva-
lence estimation literature, and we note a few
threads of work here. Bella et al. (2010) propose
a probabilistic variant of ACC, and Esuli and Se-
bastiani (2015) compare many methods on news
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article topics (RCV1) and medical record subject
heading (OHSUMED-S) class prevalence tasks,
finding varying results among CC, ACC, and PCC.
A number of other empirical evaluations were con-
ducted in two SemEval Twitter sentiment preva-
lence shared tasks, with varying results among
these and other methods with a range of classifiers
(Nakov et al., 2016; Rosenthal et al., 2017); Nakov
et al. note that CC was often one of the strongest
methods. Esuli and Sebastiani as well as Xue
and Weiss (2009) present semi-supervised loss-
augmented classifier training methods to improve
prevalence estimation. Tasche (2017) presents the-
oretical results for ACC and Saerens et al.’s EM
method (what we call the LR-Implicit MLE), ar-
guing they correctly predict ✓⇤ under class prior
shift; we confirm that those two methods are in-
deed better than many alternatives in our empir-
ical evaluation. While we focus on inference of
the test-time class prior as a class prevalence esti-
mate, Saerens et al. (2002) also show their method
can improve individual-level classification accu-
racy, which Sulc and Matas (2018) use for im-
age classification. (From the viewpoint of indi-
vidual classification, this phenomenon is known
as prior probability shift (Moreno-Torres et al.,
2012).) González et al. (2017b) and Card and
Smith (2018), similarly to our results, find that
CC is much poorer than ACC under class shift.
Card and Smith also show that PCC can be sensi-
tive to properties of the classifier, finding that well-
calibrated classifiers can give strong performance.
They argue that discriminative aggregation models
are appropriate for tasks where humans respond to
text. Jerzak et al. (2018) analyze issues in class
prevalence estimation and propose the ReadMe2
algorithm, which adds external word embeddings,
optimization-based dimension reduction, and sim-
ilarity matching to ReadMe’s moment-matching
framework.

7 Conclusion

Document class prevalence estimation is a
widespread and much understudied task. We
show that simple and obvious classifier aggrega-
tion methods display consistent biases, especially
under class prior shift. Given how widely some
of the less effective methods are used, machine
learning and natural language processing research
could have real impact in this space.

We also call attention to the need for uncer-

tainty aware inference—methods that give con-
fidence intervals to summarize their uncertainty.
While our method is a first step, future work is
necessary to better understand the problem and
develop methods with improved coverage. Also,
our framework can accommodate a wide array
of document and language models—while we fo-
cus on bag-of-words models, recent advances in
sequence, neural, and attention-based document
models could be added directly to our generative
model, or used as a discriminative-implicit com-
ponent. The overall framework could also be ex-
tended to multiclass, and potentially, structured
prediction settings.
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Abstract

Causal understanding is essential for many
kinds of decision-making, but causal inference
from observational data has typically only
been applied to structured, low-dimensional
datasets. While text classifiers produce
low-dimensional outputs, their use in causal
inference has not previously been studied.
To facilitate causal analyses based on
language data, we consider the role that text
classifiers can play in causal inference through
established modeling mechanisms from the
causality literature on missing data and
measurement error. We demonstrate how to
conduct causal analyses using text classifiers
on simulated and Yelp data, and discuss the
opportunities and challenges of future work
that uses text data in causal inference.

1 Introduction

Most scientific analyses, in domains from
economics to medicine, focus on low-dimensional
structured data. Many such domains also
have unstructured text data; advances in natural
language processing (NLP) have led to an
increased interest in incorporating language data
into scientific analyses. While language is
inherently unstructured and high dimensional,
NLP systems can be used to process raw text
to produce structured variables. For example,
work on identifying undiagnosed side effects
from electronic health records (EHR) uses text
classifiers to produce clinical variables from the
raw text (Hazlehurst et al., 2009).

NLP tools may also benefit the study of
causal inference, which seeks to identify causal
relations from observational data. Causal
analyses traditionally use low-dimensional
structured variables, such as clinical markers and
binary health outcomes. Such analyses require
assumptions about the data-generating process,

which are often simpler with low-dimensional
data. Unlike prediction tasks which are validated
by held-out test sets, causal inference involves
modeling counterfactual random variables
(Neyman, 1923; Rubin, 1976) that represent
the outcome of some hypothetical intervention.
To rigorously reason about hypotheticals, we
use causal models to link our counterfactuals to
observed data (Pearl, 2009).

NLP provides a natural way to incorporate text
data into causal inference models. We can produce
low-dimensional variables using, for example,
text classifiers, and then run our causal analysis.
However, this straightforward integration belies
several potential issues. Text classification is not
perfect, and errors in a NLP algorithm may bias
subsequent analyses. Causal inference requires
understanding how variables influence one another
and how correlations are confounded by common
causes. Classic methods such as stratification
provide a means for handling confounding of
categorical or continuous variables, but it is not
immediately obvious how such work can be
extended to high-dimensional data.

Recent work has approached high-dimensional
domains by using random forests (Wager and
Athey, 2017) and other methods borrowed from
machine learning (Chernozhukov et al., 2016).
But even compared to an analysis that requires
hundreds of confounders (Belloni et al., 2014),
NLP models with millions of variables are
very high-dimensional. While physiological
symptoms reflect complex biological realities,
many symptoms such as blood pressure are
one-dimensional variables. While doctors can
easily quantify the effect of high blood pressure
on some outcome, can we use the “positivity” of a
restaurant review to estimate a causal effect? More
broadly, is it possible to employ text classification
methods in a causal analysis?
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We explore methods for the integration of
text classifiers into causal inference analyses that
consider confounds introduced by imperfect NLP.
We show what assumptions are necessary for
causal analyses using text, and discuss when
those assumptions may or may not be reasonable.
We draw on the causal inference literature to
consider two modeling aspects: missing data
and measurement error. In the missing data
formulation, a variable of interest is sometimes
unobserved, and text data gives us a means
to model the missingness process. In the
measurement error formulation, we use a text
classifier to generate a noisy proxy of the
underlying variable.

We highlight practical considerations of a
causal analysis with text data by conducting
analyses with simulated and Yelp data. We
examine the results of both formulations and show
how a causal analysis which properly accounts for
possible sources of bias produces better estimates
than naı̈ve methods which make unjustified
assumptions. We conclude by examining how our
approach may enable new research avenues for
inferring causality with text data.

2 Causal Inference, Briefly

While randomized control trials (RCT) are the
gold standard of determining causal effects of
treatments on outcomes, they can be expensive or
impossible in many settings. In contrast, the world
is filled with observational data collected without
randomization. While most studies simply report
correlations from observational data, the field of
causal inference examines what assumptions and
analyses make it possible to identify causal effects.

We formalize a causal statement like “smoking
causes cancer” as “if we were to conduct a RCT
and assign smoking as a treatment, we would
see a higher incidence of cancer among those
assigned smoking than among the control group.”
In the framework of Pearl (1995), we consider
a counterfactual variable of interest: what would
have been the cancer incidence among smokers
if smoking had been randomized? Specifically,
we consider a causal effect as the counterfactual
outcome of a hypothetical intervention on some
treatment variable. If we denote smoking as
our treatment variable A and cancer as our
outcome variable Y , then we are interested in the
counterfactual distribution, denoted p(Y (a)) or

p(Y | do(a)). We interpret this as “the distribution
over Y had A been set, possibly contrary to fact,
to value a.” For a binary treatment A, the causal
effect of A on Y is denoted ⌧ = E[Y (1)] �
E[Y (0)]; the average difference between if you
had received the treatment and if you had not.
Throughout, we use causal directed acyclic graphs
(DAG), which assumes that an intervention on
A is well-defined and results in a counterfactual
variable Y (a) (Pearl, 1995; Dawid, 2010).

Figure 1a shows an example of simple
confounding. This is the simplest DAG in
which counterfactual distribution p(Y (a)) is not
simply p(Y | A), as C influences both
the treatment A and the outcome Y . To
recover the counterfactual distribution p(Y (a))
that would follow an intervention upon A, we must
“adjust” for C, applying the so-called “back-door
criterion” (Pearl, 1995). We can then derive the
counterfactual distribution p(Y (a)) and desired
causal effect, ⌧S as a function of the observed
data, (Fig. 4 Eq. 1.) This derivation is shown
in Appendix A.

Note that p(Y (a)) and ⌧S require data on
C, and if C is not in fact observed, it is
impossible to recover the causal effect. Formally,
we say that p(Y (a)) is not identified in the
model, meaning there is no function f such that
p(Y (a))=f(p(A, Y )). Identifiability is a primary
concern of causal inference (Shpitser and Pearl,
2008).

Throughout, we assume for simplicity that A,
C, and Y are binary variables. While text
classifiers can convert high-dimensional data into
binary variables for such analyses, we need to
make further assumptions about how classification
errors affect causal inferences. We cannot assume
that the output of a text classifier can be treated as
if it were ground truth. To conceptualize the ways
in which a text classifier may be biased, we will
consider them as a way to recover from missing
data or measurement error.

3 Causal Models

Real-world observational data is messy and often
imperfectly collected. Work in causal inference
has studied how analyses can be made robust
to missing data or data recorded with systematic
measurement errors.
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C
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(a) Simple Confounding

A(1)A

RA C

Y

(b) Missing Data

A

C

Y

A⇤

(c) Measurement Error

Figure 1: DAGs for causal inference without text data. Red variables are unobserved.
A is a treatment, Y is an outcome, and C is a confounder.

A C Y
1 1 0
0 1 1
0 0 1
1 0 1

(a) Simple Confounding

RA A C Y
1 1 1 0
0 ? 1 1
1 0 0 1
0 ? 0 1

(b) Missing Data

A⇤ C Y
0 1 0
0 1 1
0 0 1
1 0 1

(c) Measurement Error

A⇤ A
1 1
0 1
0 0
1 1

(d) Mismeasurement

Figure 2: Example data rows for causal inference without text data.

3.1 Missing Data

Our dataset has “missing data” if it contains
individuals (instances) for which some variables
are unobserved, even though these variables are
typically available. This may occur if some
survey respondents choose not to answer certain
questions, or if certain variables are difficult to
collect and thus infrequently recorded. Missing
data is closely related to causal inference – both
are interested in hypothetical distributions that
we cannot directly observe (Robins et al., 2000;
Shpitser et al., 2015).

Consider a causal model where A is sometimes
missing (Figure 1b). The variable RA is a binary
indicator for whether A is observed (RA = 1)
or missing. The variable A(RA = 1), written
as A(1), represents the counterfactual value of A
were it never missing. Finally, A is the observed
proxy for A(1): it has the same value as A(1) if
RA = 1, and the special value “?” if RA = 0.

Solving missingness can seen as intervening to
set RA to 1. Given p(A, RA, C, Y ), we want to
recover p(A(1), C, Y ). We may need to make a
“Missing at Random” (MAR) assumption, which
says that the missingness process is independent of
the true missing values, conditional on observed
values. Figure 1b reflects the MAR assumption;
RA is independent of A(1) given fully-observed
C and Y . If an edge existed from A(1) to RA,
we have “Missing Not at Random” (MNAR) and
would not be identified except in special cases
(Shpitser et al., 2015).

3.2 Measurement Error

Sometimes a necessary variable is never observed,
but is instead proxied by a variable which differs
from the truth by some error. Consider the
example of body mass index (BMI) as a proxy for
obesity in a clinical study. Obesity is a known
risk factor for many health outcomes, but has a
complex clinical definition and is nontrivial to
measure. BMI is a simple deterministic function
of height and weight. To conduct a causal analysis
of obesity on cancer when only BMI and cancer
are measured, we can proceed as if we had
measured obesity and then correct our analysis
for the known error that comes from using BMI
as a proxy for obesity (Hernán and Cole, 2009;
Michels et al., 1998).

To generalize this concept, we can replace
obesity with our ground truth variable A
and replace BMI with a noisy proxy A⇤.
Figure 1c gives the DAG for this model.
Unlike missing data problems, there is no
hypothetical intervention which recovers the
true data distribution p(A, C, Y ). Instead, we
manipulate the observed distribution p(A⇤, C, Y )
with the known relationship p(A⇤, A) to recover
the desired p(A, C, Y ).

Unlike missing data, measurement error
conceptualization can be used even when we
never observe A (e.g. the table in Figure 2c)
as long as we have knowledge about the error
mechanism p(A⇤, A). Using this knowledge,
we can correct for the error using ‘matrix
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V

(a) Simple Confounding with Text

A(1)A

RA C

Y

Ti

V

(b) Missing Data with Text

A

C

Y

A⇤ Ti

V

(c) Measurement Error with Text

Figure 3: DAGs for causal inference with text data. In the Yelp experiments we discuss, Ti influences Y
and not the other way around.
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Define ✏c,y = p(A = 0 | A⇤ = 1, C = c, Y = y), �c, y = p(A = 1 | A⇤ = 0, C = c, Y = y),
qc,y(0) = p(C = c, Y = y, A⇤ = 0), and qc,y(1) = p(C = c, Y = y, A⇤ = 1).

Figure 4: Functionals for the Causal Effects for Simple Confounding (⌧SC), Missing Data (⌧MD) and
Measurement Error (⌧ME). Derivations are in Appendices A, B, and C.

adjustment’ (Pearl, 2010). In practice we might
learn p(A⇤, A) from data such as that found in
Figure 2d. Recent work has also considered
how multiple independent proxies of A could
allow identification without any data on p(A⇤, A)
(Kuroki and Pearl, 2014).

4 Causal Models for Text Data

We can use conceptualizations for missing data
and measurement error to support causal analyses
with text data. The choice of model depends on the
assumptions we make about the data-generation
process.

We add new variables to our models (Figure
1a) to represent text, which produces the
data-generating distribution shown in Figure 3a.
This model assumes that the underlying A, C, and
Y variables are generated before the text variables;
we use text to recover the true relationship
between A and Y .

We represent text as an arbitrary set of V
variables, which are independent of one another

given the non-text variables. In our implemented
analyses we will represent text as a bag-of-words,
wherein each Ti is simply the binary indicator of
the presence of the i-th word in our vocabulary of
V words, and T = [iTi. The restriction to simple
text models allows us to explore connections to
causal inference applications, though future work
could relax assumptions of the text models to be
inclusive of more sophisticated text models (e.g.
neural sequence models (Lai et al., 2015; Zhang
et al., 2015)), or consider causal relationships
between two text variables.

To motivate our explanations, consider the task
of predicting an individuals’ smoking status from
free-text hospital discharge notes (Uzuner et al.,
2008; Wicentowski and Sydes, 2008). Some
hospitals do not explicitly record patient smoking
status as structured data, making it difficult to use
such data in a study on the outcomes of smoking.
We will suppose that we are given a dataset with
patient data on lung cancer outcome (Y ) and age
(C), that our data on smoking status (A) is affected
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by either missing data or measurement error, but
that we have text data (T) from discharge records
that will allow us to infer smoking status with
reasonable accuracy.

4.1 Missing Data

To show how we might use text data to recover
from missing data, we introduce missingness for
A from Figure 3a to get the model in Figure 3b.
The missing arrow from A(1) to RA encodes the
MAR assumption, which is sufficient to make it
possible to identify the full data distribution from
the observed data.

Suppose our motivation is to estimate the causal
effect of smoking status (A) on lung cancer (Y )
adjusting for age (C). Imagine that missing
data arises because hospitals sometimes – but not
always – delete explicit data on smoking status
from patient records. If we have access to patients’
discharge notes (T) and know whether a given
patient had smoking status recorded (RA), then the
DAG in Figure 3b may be a reasonable model for
our setting. Note that we must again assume that
A does not directly affect RA.

The causal effect of A on Y in Figure 3b is
identified as ⌧MD, given in Eq. 2 in Figure 4. The
derivation is given in Appendix B.

4.2 Measurement Error

We model text data with measurement error by
introducing a proxy A⇤ to the model in Figure
3c. We assume that the proxied value of A⇤ can
depend upon all other variables, and that we will
be able to estimate p(A⇤, A) given an external
dataset, e.g. text classifier accuracy on held-out
data.

Suppose we again want to estimate the causal
effect from §4.1, but this time none of our hospital
records contain explicit data on smoking status.
However, imagine that we have a separate training
dataset of medical discharge records annotated
by expert pulmonologists for patients’ smoking
status. We could then train a classifier to predict
smoking status using discharge record text1.

Working from the derivation for matrix
adjustment in binary models given by Pearl
(2010), we identify the causal effect of A on
Y (Figure 3c) as ⌧ME (Eq 3 in Figure 4.) The
derivation is in Appendix C.

1This is the precise setting of Uzuner et al. (2008).

5 Experiments

We now empirically evaluate the effectiveness
of our two conceptualizations (missing data and
measurement error) for including text data in
causal analyses. We induce missingness or
mismeasurement of the treatment variable and use
text data to recover the true causal relationship
of that treatment on the outcome. We begin
with a simulation study with synthetic text data,
and then conduct an analysis using reviews from
yelp.com.

5.1 Synthetic Data
We select synthetic data so that we can control
the entire data-generation process. For each
data row, we first sample data on three binary
variables (A, C, Y ) and then sample V different
binary variables Ti representing a V -vocabulary
bag-of-words. A graphical model for this
distribution appears in Figure 3a. We augment
this distribution to introduce either missing
data (Figure 3b) or measurement error (Figure
3c.) For measurement error, we sample two
datasets. A small training set which gives data on
p(A, C, Y,T) and a large test set which gives data
on p(C, Y,T).

The full data generating process appears in
Appendix D, and the implementation (along with
all our code) is provided online2.

5.2 Yelp Data
We utilize the 2015 Yelp Dataset Challenge3

which provides 4.7M reviews of local businesses.
Each review contains a one- to five-star rating, up
to 5,000 characters of text. Yelp users can flag
reviews as “Useful” as a mark of quality.

We extract treatment, outcome, and confounder
variables from the structured data. The treatment
is a binarized user rating that takes value 1 if
the review has four or five stars and value 0
if the review has one or two stars. Three-star
reviews are discarded from our analysis. The
outcome is whether the review received at least
one “Useful” flag. The confounder is whether
the review’s author has received at least two
“Useful” flags across all reviews, according to
their user object. In our data, 74.2% of reviews
were positive, 42.6% of reviews were flagged as
“Useful,” and 56.7% users had received at least

2github.com/zachwooddoughty/emnlp2018-causal
3yelp.com/dataset/challenge
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two such flags. We preprocess the text of each
review by lowercasing, stemming, and removing
stopwords, before converting to a bag-of-words
representation with the 4,334 word vocabulary of
all words which appeared at least 1000 times in a
sample of 1M reviews.

Based on this p(A, C, Y,T) distribution,
we assume the data-generating process that
matches Figure 3a and introduce missingness
and mismeasurement as before, giving us
data-generating processes matching Figures 3b
and 3c.

Our intention is not to argue about a true
real-world causal effect of Yelp reviews on peer
behavior: we do not believe that our confounder
is the only common cause of the author’s rating
and the platform’s response. We leave for future
work a case study that jointly addresses questions
of identifiability and estimation of a real-world
causal effect. In this work, our experiments
focus on a simpler task: can a correctly-specified
model that uses text data effectively estimate a
causal effect in the presence of missing data or
measurement error.

5.3 Models
We now introduce several baseline methods
which, unlike our correctly specified models ⌧MD

and ⌧ME , are not consistent estimators of our
desired causal effect. We would expect that the
theoretical bias in these estimators would result in
poor performance in our experiments.

5.3.1 Baseline: Naı̈ve Model
In both the missing data and measurement error
settings, our models use some rows that are full
observed. In missing data, these are rows where
RA = 1; in measurement error, the training set is
sampled from the true distribution. The simplest
approach to handling imperfect data is to throw
away all rows without full data, and calculate Eq
1 from that data. In Figure 5, these are labeled as
*.naive.

5.3.2 Baseline: Textless Model
In Figure 3b, if we do not condition on Ti to
d-separate A(1) from its missingness indicator,
that influence may bias our estimate. While we
know that ignoring text may introduce asymptotic
bias into our estimates of the causal effect, we
empirically evaluate how much bias is produced
by this “Textless” model compared to a correct

model. This is labeled as *.no text in Figure
5 (a).

In principle, we could conduct a measurement
error analysis using a model that does not include
text. In practice, we found we could not impute A⇤

from C and Y alone. The non-textual classifier
had such high error that the adjustment matrix
was singular and we could not compute the
effect. Thus, we have no such baseline in our
measurement error results.

5.3.3 Baseline: no y and unadjusted
Models

In Figure 3b, we must also condition on C and Y
to d-separate A(1) from its missingness indicator.
In our misspecified model for missing data, we do
not condition on Y , leaving open a path for A(1)
to influence its missingness. In Figure 5 (a), this
model is labeled as *.no y.

When correcting for measurement error, a
crucial piece of the estimation is the matrix
adjustment using the known error between
the proxy and the truth. A straightforward
misspecified model for measurement error is to
impute a proxy for each row in our dataset and
then calculate the causal effect assuming no error
between the proxy and truth. This approach,
while simplistic, can be thought of as using a text
classifier as a proxy without regard for the text
classifier’s biases. In Figure 5 (b), this approach
is labeled as *.unadjusted.

5.3.4 Correct Models
Finally, we consider the estimation approaches
presented in §4.1 and §4.2. For the missing data
causal effect (⌧MD from Eq 2) we use a multiple
imputation estimator which calculates the average
effect across 20 samples from p(A|T, C, Y ) for
each row where RA = 0. For the measurement
error causal effect (⌧ME from Eq 3), we use the
training set of p(A, C, Y,T) data to estimate ✏c,y

and �c, y and the larger set of p(C, Y,T) data to
estimate qc,y and p(C).

These models are displayed in Figure 5 (a) as
*.full and in Figure 5 (b) *.adjusted.

5.4 Evaluation
Each model takes in a data sample with
missingness or mismeasurement, and outputs an
estimate of the causal effect of A on Y in the
underlying data. Rather than comparing models’
estimates against a population-level estimate,

4591



we compare against an estimate of the effect
computed on the same data sample, but without
any missing data or measurement error. This
‘perfect data estimator’ may still make errors
given the finite data sample. We compare against
this estimator to avoid a small-sample case where
an estimator gets lucky. In Figure 5, we plot data
sample size against the squared distance of each
model’s estimate from a perfect data estimator’s
estimate, averaged over ten runs. Figure 6 in
Appendix E contains a second set of experiments
using a larger vocabulary.

6 Results

Given that our correctly-specified models are
proven to be asymptotically consistent, we would
expect them to outperform misspecified models.
However, for any given dataset, asymptotic
consistency provides no guarantees.

6.1 Missing Data
The missing data (MD) experiments suggest that
the correct full model does perform best. The
no ymodel performs approximately as well as the
correct model on the synthetic data, but not on the
Yelp data. The difference between the no y and
full missing data models is simply a function
of the effect of Y on RA. We could tweak our
synthetic data distribution to increase the influence
of Y to make the no y model perform worse.

When we initially considered other
data-generating distributions for missing data,
we found that when we reduced the influence
of the text variables on RA, the no text and
naive models approached the performance of
the correctly-specified model. While intuitive,
this reinforces that the underlying distribution
matters a great deal in how modeling choices may
introduce biases if incorrectly specified.

6.2 Measurement error
The measurement error results tell a more
interesting story. We see enormous fluctuations
of the adjusted model, and in the synthetic
data, the unadjusted model appears to be quite
superior.

In the synthetic dataset, this is likely because
our text classifier had near-perfect accuracy, and
so simple approach of assuming its predictions
were ground-truth introduced less bias. A broader
issue with the adjusted model is that the

matrix adjustment approach requires dividing
by (potentially very small) probabilities, this
sometimes resulted in huge over-corrections. In
addition, since those probabilities are estimated
from a relatively small training dataset, small
changes to the error-estimate can propagate to
huge changes in the final casual estimate.

This instability of the matrix adjustment
approach may be a bigger problem for text and
other high-dimensional data: unlike in our earlier
example of BMI and obesity, there are likely
no simple relationships between text and clinical
variables. However, instead of using matrix
adjustment as a way to recover the true effect, we
may instead use it to bound the error our proxy
may introduce. As mentioned by Pearl (2010),
when p(A | A⇤) is not known exactly, we can
use a Bayesian analysis to bound estimates of a
causal effect. In a downstream task, this would let
us explore the stability of our adjusted results.

7 Related Work

A few recent papers have considered the
possibilities for combining text data with
approaches from the causal inference literature.
Landeiro and Culotta (2016) and Landeiro and
Culotta (2017) explored text classification when
the relationship between text data and class labels
are confounded. Other work has used propensity
scores as a way to extract features from text
data (Paul, 2017) or to match social media users
based on what words they write (De Choudhury
et al., 2016). The only work we know of which
seeks to estimate causal effects using text data
focuses on effects of text or effects on text (Egami
et al., 2018; Roberts et al., 2018). In our work,
our causal effects do not include text variables:
we use text variables to recover an underlying
distribution and then estimate a causal effect
within that distribution.

There is a conceptually related line of work
in the NLP community on inferring causal
relationships expressed in text (Girju, 2003;
Kaplan and Berry-Rogghe, 1991). However, our
work is fundamentally different. Rather than
identify casual relations expressed via language,
we are using text data in a causal model to identify
the strength of an underlying causal effect.
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Figure 5: Experimental results. Squared distance (y-axis, lower is better) of the estimated causal effect
from ⌧SC calculated from the full data with no missing data or measurement error. Error bars (negligible
for larger datasets) are 1.96 times standard error across 10 experiments. Additional experiments with a
larger vocabulary are shown in Appendix E.

8 Future Directions

While this paper addresses some initial issues
arising from using text classifiers in causal
analyses, many challenges remain. We highlight
some of these issues as directions for future
research.

We provided several proof-of-concept models
for estimating effects, but our approach is
flexible to more sophisticated models. For
example, a semi-parametric estimator would
make no assumptions about the text data
distribution by wrapping the text classifier into
an infinite-dimensional nuisance model (Tsiatis,
2007). This would enable estimators robust to
partial model misspecification (Bang and Robins,
2005).

Choices in the design of statistical models of
text consider issues like accuracy and tractability.
Yet if these models are to be used in a causal
framework, we need to understand how modeling
assumptions introduce biases and other issues that
can interfere with a downstream causal analysis.
To take an example from the medical domain, we

know that doctors write clinical notes throughout
the healthcare process, but it is not obvious how
to model this data-generating process. We could
assume that the doctor’s notes passively record
a patient’s progression, but in reality it may be
that the content of the notes themselves actively
change the patient’s care; causality could work in
either direction.

New lines of work in causality may be
especially helpful for NLP. In this work, we used
simple logistic regression on a bag-of-words
representation of text; using state-of-the-art
text models will likely require more causal
assumptions. Nabi and Shpitser (2017) develops
causality-preserving dimensionality reduction,
which could help develop text representations that
preserve causality.

Finally, we are interested in case studies on
incorporating text classifiers into real-world causal
analyses. Many health studies have used text
classifiers to extract clinical variables from EHR
data (Meystre et al., 2008). These works could
be extended to study causal effects involving
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those extracted variables, but such extensions
would require an understanding of the underlying
assumptions. In any given study, the necessity
and appropriateness of assumptions will hinge
on domain expertise. The conceptualizations
outlined in this paper, while far from solving all
issues of causality and text, will help those using
text classifiers to more easily consider research
questions of cause and effect.
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A Simple Confounding

p(Y (a)) =
X

C

p(Y (a) | C)p(C) (4)

=
X

C

p(Y (a) | A, C)p(C) (5)

=
X

C

p(Y | A, C)p(C) (6)

Eq 5 holds because Y (a) ? A | C, as seen in
Figure 1a. Plugging this distribution into ⌧S =
E[Y (1)] � E[Y (0)] gives us the causal effect
presented in Figure 4, Eq 1.

This assumes that an intervention on A is
well-defined; if we did conduct a randomized
control trial, we could assign A = a and break
A’s dependence on C.

In general, this step requires that we condition
on all “back-door” paths between the treatment
and the outcome. In Figure 1(a), if we did not have
data on C, we could not block the back-door path
between A and Y .

Eq 6 holds due to consistency. We assume that,
given we intervened to set A = a, if that individual
would have been assigned A = a in nature, then
the distribution over Y is the same.

B Missing Data

Denote p(Y (A(1) = a)) = p(Y (a)).
First, we identify the causal effect in terms of

the true A(1).

p(Y (a))

=
X

C

p(Y (a) | C)p(C) (7)

=
X

C

p(Y (a) | A(1), C)p(C) (8)

=
X

C

p(Y | A(1), C)p(C) (9)

Where 7 holds by chain rule, 8 holds by A(1) ?
Y (a) | C, and 9 by consistency.

Now, we identify A(1) in terms of observed
data.

p(A(1), C, Y )

= p(A(1) | C, Y )p(C, Y ) (10)
= p(A(1) | C, Y, RA = 1)p(C, Y ) (11)
= p(A | C, Y, RA = 1)p(C, Y ) (12)

Where 10 holds by chain rule, 11 by A(1) ?
RA | C, Y , and 12 by consistency.

Now, use Eq 12 to identify p(Y | A(1), C) from
Eq 9 in terms of observed data.

p(Y | A(1), C)

=
p(Y, A(1), C)

p(A(1), C)
(13)

=
p(Y, A(1), C)P
Y p(Y, A(1), C)

(14)

=
p(A | C, Y, RA = 1)p(C, Y )P
Y p(A | C, Y, RA = 1)p(C, Y )

(15)

=
p(A | C, Y, RA = 1)p(Y | C)P
Y p(A | C, Y, RA = 1)p(Y | C)

(16)

Where 13 holds by definition, 14 holds by
marginalization, 15 holds by an application of 12
twice, and 16 holds by canceling out p(C).

If we include text in this derivation, we simply
replace p(A | C, Y, RA = 1) with p(A |
T, C, Y, RA = 1), where T is all our text
variables.

Finally, combine Eq 9 and Eq 16 to get:

p(Y (A(1) = a))

=
X

C

p(A | C, Y, RA = 1)p(Y | C)P
Y p(A | C, Y, RA = 1)p(Y | C)

p(C) (17)

Plugging this distribution into ⌧MD =
E[Y (1)] � E[Y (0)] gives us the causal effect
presented in Figure 4, Eq 2.

C Measurement Error

Define the following terms for convenience:

✏c,y = p(A = 0 | A⇤ = 1, C = c, Y = y) (18)
�c, y = p(A = 1 | A⇤ = 0, C = c, Y = y) (19)

qc,y(0) = p(C = c, Y = y, A⇤ = 0) (20)
qc,y(1) = p(C = c, Y = y, A⇤ = 1) (21)

Eq (5) and (7) from Pearl 2010 gives us:

p(A = 1, C = c, Y = y)

=
��c,yqc,y(0) + (1 � �c,y)qc,y(1)

(1 � ✏c,y � �c,y)
(22)

p(A = 0, C = c, Y = y)

=
(1 � ✏c,y)qc,y(0) � ✏c,yqc,y(1)

(1 � ✏c,y � �c,y)
(23)
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Now,

p(Y | A = 1, C)

=
p(Y, A = 1, C)

p(A = 1, C)
(24)

=
p(Y, A = 1, C)P
Y p(Y, A = 1, C)

(25)

=

��c,yqc,y(0) + (1 � �c,y)qc,y(1)

(1 � ✏c,y � �c,y)
P

y0

��c,y0qc,y0(0) + (1 � �c,y0)qc,y0(1)

(1 � ✏c,y0 � �c,y0)
(26)

and then,

p(Y | A = 0, C)

=
p(Y, A = 0, C)

p(A = 0, C)
(27)

=
p(Y, A = 0, C)P
Y p(Y, A = 0, C)

(28)

=

(1 � ✏c,y)qc,y(0) � ✏c,yqc,y(1)

(1 � ✏c,y � �c,y)
P

y0

(1 � ✏c,y0)qc,y0(0) � ✏c,y0qc,y0(1)

(1 � ✏c,y0 � �c,y0)
(29)

Plugging this distribution into ⌧ME =
E[Y (1)] � E[Y (0)] gives us the causal effect
presented in Figure 4, Eq 3.

D Synthetic Data Distribution

In the distributions below, Ber(p) is used as
the abbreviation a Bernoulli distribution with
probability p.

Below, si, ui and vi are the effect of C, A,
and Y on the probability of word Ti; each is
drawn from N (0, ⇣), a parameter which controls
how correlated words are with the underlying
variables. When ⇣ is close to 0, the words
are essentially random. When ⇣ is large, the
words are essentially deterministic functions of
the underlying variables. Similarly wi is the effect
of word Ti on RA, and is drawn from N (0, ⌘).

For both settings, we set vocabulary size to
4,334 (to match Yelp experiments) and ⇣ = 0.5.
For the missing data setting, we set ⌘ = 0.1. We
picked these constants by empirically finding a
reasonable middle ground between the text data
providing only noise and being a deterministic
function of their parents. We picked all other
constants such that the naı̈ve correlation p(Y | A)
was a poor estimate of the counterfactual p(Y (a))
in the full-data setting.

D.1 Missing data data-generation

C ⇠ Ber(0.4)

A(1) ⇠ Ber(�0.3C + 0.4)

Y ⇠ Ber(0.2C + 0.1A + 0.5)

Ti ⇠ Ber(0.5 + uiA + viC)

RA ⇠ Ber

 
0.7 + 0.2C � 0.4Y +

X

i

wiTi

!

D.2 Measurement error data-generation

C ⇠ Ber(0.4)

A ⇠ Ber(�0.3C + 0.4)

Y ⇠ Ber(0.2C + 0.1A + 0.5)

Ti ⇠ Ber(0.5 + siC + uiA + viY )
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Figure 6: Experimental results with a vocabulary of size 53,197. Squared distance (y-axis, lower is better)
of the estimated causal effect from ⌧SC calculated from the full data with no missing data or measurement
error. Error bars (negligible for larger datasets) are 1.96 times standard error across 10 experiments.

E Additional Experiments

Figure 6 shows the results of a second set
of experiments, which are identical to those
described in §5 except the vocabulary size is now
53,197 instead of 4,334. For the Yelp data, the
larger vocabulary consists of all words which
appear at least ten times in a sample of 1M
reviews. As the larger vocabulary introduced
greater memory requirements, we did not run
these experiments with as large of datasets.

The results of these experiments show roughly
the same patterns as those seen in Figure 5.
The adjusted measurement error models again
appear erratic, generally performing worse than
the unadjusted models though better than the
naive models.

The full missing data model appeared to
slightly outperform the no y model on Yelp
data but only perform as well on the synthetic
data. Both these models appeared better than the
naive and no text models on both datasets.
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Abstract

This paper proposes a state-of-the-art recur-
rent neural network (RNN) language model
that combines probability distributions com-
puted not only from a final RNN layer but
also from middle layers. Our proposed method
raises the expressive power of a language
model based on the matrix factorization in-
terpretation of language modeling introduced
by Yang et al. (2018). The proposed method
improves the current state-of-the-art language
model and achieves the best score on the
Penn Treebank and WikiText-2, which are
the standard benchmark datasets. Moreover,
we indicate our proposed method contributes
to two application tasks: machine translation
and headline generation. Our code is pub-
licly available at: https://github.com/nttcslab-
nlp/doc lm.

1 Introduction

Neural network language models have played a
central role in recent natural language processing
(NLP) advances. For example, neural encoder-
decoder models, which were successfully ap-
plied to various natural language generation tasks
including machine translation (Sutskever et al.,
2014), summarization (Rush et al., 2015), and dia-
logue (Wen et al., 2015), can be interpreted as con-
ditional neural language models. Neural language
models also positively influence syntactic pars-
ing (Dyer et al., 2016; Choe and Charniak, 2016).
Moreover, such word embedding methods as Skip-
gram (Mikolov et al., 2013) and vLBL (Mnih and
Kavukcuoglu, 2013) originated from neural lan-
guage models designed to handle much larger vo-
cabulary and data sizes. Neural language models
can also be used as contextualized word representa-
tions (Peters et al., 2018). Thus, language modeling
is a good benchmark task for investigating the gen-
eral frameworks of neural methods in NLP field.

In language modeling, we compute joint prob-
ability using the product of conditional probabili-
ties. Let w1:T be a word sequence with length T :
w1, ..., wT . We obtain the joint probability of word
sequence w1:T as follows:

p(w1:T ) = p(w1)
T�1Y

t=1

p(wt+1|w1:t). (1)

p(w1) is generally assumed to be 1 in this literature,
that is, p(w1) = 1, and thus we can ignore its cal-
culation. See the implementation of Zaremba et al.
(2014)1, for an example. RNN language models
obtain conditional probability p(wt+1|w1:t) from
the probability distribution of each word. To com-
pute the probability distribution, RNN language
models encode sequence w1:t into a fixed-length
vector and apply a transformation matrix and the
softmax function.

Previous researches demonstrated that RNN lan-
guage models achieve high performance by using
several regularizations and selecting appropriate
hyperparameters (Melis et al., 2018; Merity et al.,
2018). However, Yang et al. (2018) proved that
existing RNN language models have low expres-
sive power due to the Softmax bottleneck, which
means the output matrix of RNN language mod-
els is low rank when we interpret the training of
RNN language models as a matrix factorization
problem. To solve the Softmax bottleneck, Yang
et al. (2018) proposed Mixture of Softmaxes (MoS),
which increases the rank of the matrix by com-
bining multiple probability distributions computed
from the encoded fixed-length vector.

In this study, we propose Direct Output Con-
nection (DOC) as a generalization of MoS. For
stacked RNNs, DOC computes the probability dis-
tributions from the middle layers including input
embeddings. In addition to raising the rank, the

1https://github.com/wojzaremba/lstm
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proposed method helps weaken the vanishing gra-
dient problem in backpropagation because DOC
provides a shortcut connection to the output.

We conduct experiments on standard benchmark
datasets for language modeling: the Penn Treebank
and WikiText-2. Our experiments demonstrate that
DOC outperforms MoS and achieves state-of-the-
art perplexities on each dataset. Moreover, we in-
vestigate the effect of DOC on two applications:
machine translation and headline generation. We
indicate that DOC can improve the performance of
an encoder-decoder with an attention mechanism,
which is a strong baseline for such applications. In
addition, we conduct an experiment on the Penn
Treebank constituency parsing task to investigate
the effectiveness of DOC.

2 RNN Language Model

In this section, we briefly overview RNN language
models. Let V be the vocabulary size and let
Pt 2 R

V be the probability distribution of the vo-
cabulary at timestep t. Moreover, let Dhn be the
dimension of the hidden state of the n-th RNN, and
let De be the dimensions of the embedding vectors.
Then the RNN language models predict probability
distribution Pt+1 by the following equation:

Pt+1 = softmax(WhN
t ), (2)

hn
t = f(hn�1

t , hn
t�1), (3)

h0
t = Ext, (4)

where W 2 R
V ⇥DhN is a weight matrix2, E 2

R
De⇥V is a word embedding matrix, xt 2 {0, 1}V

is a one-hot vector of input word wt at timestep t,
and hn

t 2 R
Dhn is the hidden state of the n-th RNN

at timestep t. We define hn
t at timestep t = 0 as a

zero vector: hn
0 = 0. Let f(·) represent an abstract

function of an RNN, which might be the Elman net-
work (Elman, 1990), the Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), the
Recurrent Highway Network (RHN) (Zilly et al.,
2017), or any other RNN variant. In this research,
we stack three LSTM layers based on Merity et al.
(2018) because they achieved high performance.

3 Language Modeling as Matrix
Factorization

Yang et al. (2018) indicated that the training of
language models can be interpreted as a matrix

2Actually, we apply a bias term in addition to the weight
matrix but we omit it to simplify the following discussion.

factorization problem. In this section, we briefly
introduce their description. Let word sequence
w1:t be context ct. Then we can regard a nat-
ural language as a finite set of the pairs of a
context and its conditional probability distribu-
tion: L = {(c1, P ⇤(X|c1)), ..., (cU , P ⇤(X|cU ))},
where U is the number of possible contexts and
X 2 {0, 1}V is a variable representing a one-
hot vector of a word. Here, we consider matrix
A 2 R

U⇥V that represents the true log probability
distributions and matrix H 2 R

U⇥DhN that con-
tains the hidden states of the final RNN layer for
each context ct:

A =

2

664

logP ⇤(X|c1)
logP ⇤(X|c2)

...
logP ⇤(X|cU )

3

775 ; H =

2

664

hN
c1

hN
c2
...

hN
cU

3

775 . (5)

Then we obtain set of matrices F (A) = {A +
⇤S}, where S 2 R

U⇥V is an all-ones matrix, and
⇤ 2 R

U⇥U is a diagonal matrix. F (A) contains
matrices that shifted each row of A by an arbitrary
real number. In other words, if we take a matrix
from F (A) and apply the softmax function to each
of its rows, we obtain a matrix that consists of true
probability distributions. Therefore, for some A0 2
F (A), training RNN language models is to find the
parameters satisfying the following equation:

HW> = A0. (6)

Equation 6 indicates that training RNN language
models can also be interpreted as a matrix factor-
ization problem. In most cases, the rank of matrix
HW> is DhN because DhN is smaller than V and
U in common RNN language models. Thus, an
RNN language model cannot express true distribu-
tions if DhN is much smaller than rank(A0).

Yang et al. (2018) also argued that rank(A0) is
as high as vocabulary size V based on the following
two assumptions:

1. Natural language is highly context-dependent.
In addition, since we can imagine many kinds
of contexts, it is difficult to assume a basis
that represents a conditional probability dis-
tribution for any contexts. In other words,
compressing U is difficult.

2. Since we also have many kinds of semantic
meanings, it is difficult to assume basic mean-
ings that can create all other semantic mean-
ings by such simple operations as addition and
subtraction; compressing V is difficult.
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Figure 1: Overview of the proposed method: DOC.
This figure represents the example of N = 2 and
i0 = i1 = i2 = 3.

In summary, Yang et al. (2018) indicated that DhN

is much smaller than rank(A) because its scale is
usually 102 and vocabulary size V is at least 104.

4 Proposed Method: Direct Output
Connection

To construct a high-rank matrix, Yang et al. (2018)
proposed Mixture of Softmaxes (MoS). MoS com-
putes multiple probability distributions from the
hidden state of final RNN layer hN and regards
the weighted average of the probability distribu-
tions as the final distribution. In this study, we
propose Direct Output Connection (DOC), which
is a generalization method of MoS. DOC computes
probability distributions from the middle layers in
addition to the final layer. In other words, DOC
directly connects the middle layers to the output.

Figure 1 shows an overview of DOC, that uses
the middle layers (including word embeddings) to
compute the probability distributions. Figure 1
computes three probability distributions from all
the layers, but we can vary the number of proba-
bility distributions for each layer and select some
layers to avoid. In our experiments, we search for
the appropriate number of probability distributions
for each layer.

Formally, instead of Equation 2, DOC computes
the output probability distribution at timestep t + 1
by the following equation:

Pt+1 =
JX

j=1

⇡j,ct softmax(W̃kj,ct), (7)

s.t.
JX

j=1

⇡j,ct = 1, (8)

where ⇡j,ct is a weight for each probability distri-
bution, kj,ct 2 R

d is a vector computed from each
hidden state hn, and W̃ 2 R

V ⇥d is a weight matrix.
Thus, Pt+1 is the weighted average of J probability
distributions. We define the U ⇥U diagonal matrix
whose elements are weight ⇡j,c for each context c
as �. Then we obtain matrix Ã 2 R

U⇥V :

Ã = log
JX

j=1

� softmax(KjW̃
>), (9)

where Kj 2 R
U⇥d is a matrix whose rows are vec-

tor kj,c. Ã can be an arbitrary high rank because the
righthand side of Equation 9 computes not only the
matrix multiplication but also a nonlinear function.
Therefore, an RNN language model with DOC can
output a distribution matrix whose rank is identical
to one of the true distributions. In other words, Ã
is a better approximation of A0 than the output of a
standard RNN language model.

Next we describe how to acquire weight ⇡j,ct

and vector kj,ct . Let ⇡ct 2 R
J be a vector whose

elements are weight ⇡j,ct . Then we compute ⇡ct

from the hidden state of the final RNN layer:

⇡ct = softmax(W⇡hN
t ), (10)

where W⇡ 2 R
J⇥DhN is a weight matrix. We next

compute kj,ct from the hidden state of the n-th
RNN layer:

kj,ct = Wjh
n
t , (11)

where Wj 2 R
d⇥Dhn is a weight matrix. In addi-

tion, let in be the number of kj,ct from hn
t . Then

we define the sum of in for all n as J ; that is,PN
n=0 in = J . In short, DOC computes J proba-

bility distributions from all the layers, including the
input embedding (h0). For iN = J , DOC becomes
identical to MoS. In addition to increasing the rank,
we expect that DOC weakens the vanishing gra-
dient problem during backpropagation because a
middle layer is directly connected to the output,
such as with the auxiliary classifiers described in
Szegedy et al. (2015).

For a network that computes the weights for sev-
eral vectors, such as Equation 10, Shazeer et al.
(2017) indicated that it often converges to a state
where it always produces large weights for few
vectors. In fact, we observed that DOC tends to
assign large weights to shallow layers. To prevent
this phenomenon, we compute the coefficient of
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variation of Equation 10 in each mini-batch as a reg-
ularization term following Shazeer et al. (2017). In
other words, we try to adjust the sum of the weights
for each probability distribution with identical val-
ues in each mini-batch. Formally, we compute the
following equation for a mini-batch consisting of
wb, wb+1, ..., wb̃:

B =
b̃X

t=b

⇡ct (12)

� =

✓
std(B)

avg(B)

◆2

, (13)

where functions std(·) and avg(·) are functions
that respectively return an input’s standard devia-
tion and its average. In the training step, we add
�� multiplied by weight coefficient � to the loss
function.

5 Experiments on Language Modeling

We investigate the effect of DOC on the language
modeling task. In detail, we conduct word-level
prediction experiments and show that DOC im-
proves the performance of MoS, which only uses
the final layer to compute the probability distribu-
tions. Moreover, we evaluate various combinations
of layers to explore which combination achieves
the best score.

5.1 Datasets
We used the Penn Treebank (PTB) (Marcus et al.,
1993) and WikiText-2 (Merity et al., 2017) datasets,
which are the standard benchmark datasets for
the word-level language modeling task. Mikolov
et al. (2010) and Merity et al. (2017) respectively
published preprocessed PTB3 and WikiText-24

datasets. Table 1 describes their statistics. We used
these preprocessed datasets for fair comparisons
with previous studies.

5.2 Hyperparameters
Our implementation is based on the averaged
stochastic gradient descent Weight-Dropped LSTM
(AWD-LSTM)5 proposed by Merity et al. (2018).
AWD-LSTM consists of three LSTMs with various
regularizations. For the hyperparameters, we used
the same values as Yang et al. (2018) except for the

3http://www.fit.vutbr.cz/ imikolov/rnnlm/
4https://einstein.ai/research/the-wikitext-long-term-

dependency-language-modeling-dataset
5https://github.com/salesforce/awd-lstm-lm

PTB WikiText-2
Vocab 10,000 33,278

Train 929,590 2,088,628
#Token Valid 73,761 217,646

Test 82,431 245,569

Table 1: Statistics of PTB and WikiText-2.

Hyperparameter PTB WikiText-2
Learning rate 20 15
Batch size 12 15
Non-monotone interval 60 60
De 280 300
Dh1 960 1150
Dh2 960 1150
Dh3 620 650
Dropout rate for xt 0.1 0.1
Dropout rate for h0

t 0.4 0.65
Dropout rate for h1

t , h
2
t 0.225 0.2

Dropout rate for h3
t 0.4 0.4

Dropout rate for kj,ct
0.6 0.6

Recurrent weight dropout 0.50 0.50

Table 2: Hyperparameters used for training DOC.

#DOC
i3 i2 i1 i0 �� Valid Test
15 0 0 0 0 56.54† 54.44†

20 0 0 0 0 56.88‡ 54.79‡

15 0 0 5 0 56.21 54.28
15 0 5 0 0 55.26 53.52
15 5 0 0 0 54.87 53.15
15 5 0 0 0.0001 54.95 53.16
15 5 0 0 0.001 54.62 52.87
15 5 0 0 0.01 55.13 53.39
10 5 0 5 0 56.46 54.18
10 5 5 0 0 56.00 54.37

Table 3: Perplexities of AWD-LSTM with DOC on the
PTB dataset. We varied the number of probability dis-
tributions from each layer in situation J = 20 except
for the top row. The top row (†) represents MoS scores
reported in Yang et al. (2018) as a baseline. ‡ represents
the perplexity obtained by the implementation of Yang
et al. (2018)6 with identical hyperparameters except for
i3.

dropout rate for vector kj,ct and the non-monotone
interval. Since we found that the dropout rate for
vector kj,ct greatly influences � in Equation 13, we
varied it from 0.3 to 0.6 with 0.1 intervals. We
selected 0.6 because this value achieved the best
score on the PTB validation dataset. For the non-
monotone interval, we adopted the same value as
Zolna et al. (2018). Table 2 summarizes the hyper-
parameters of our experiments.

5.3 Results

Table 3 shows the perplexities of AWD-LSTM with
DOC on the PTB dataset. Each value of columns in

6https://github.com/zihangdai/mos
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�� Valid Test
0 0.276 0.279

0.0001 0.254 0.252
0.001 0.217 0.213

0.01 0.092 0.086

Table 4: Coefficient of variation of Equation 10:
p

� in
validation and test sets of PTB.

Model Valid Test
AWD-LSTM 401 401
AWD-LSTM-MoS 10000 10000
AWD-LSTM-DOC 10000 10000

Table 5: Rank of output matrix (Ã in Equation 9) on
the PTB dataset. D3 of AWD-LSTM is 400.

Figure 2: Perplexities of each method on the PTB vali-
dation set.

represents the number of probability distributions
from hidden state hn

t . To find the best combination,
we varied the number of probability distributions
from each layer by fixing their total to 20: J = 20.
Moreover, the top row of Table 3 shows the per-
plexity of AWD-LSTM with MoS reported in Yang
et al. (2018) for comparison. Table 3 indicates that
language models using middle layers outperformed
one using only the final layer. In addition, Table
3 shows that increasing the distributions from the
final layer (i3 = 20) degraded the score from the
language model with i3 = 15 (the top row of Ta-
ble 3). Thus, to obtain a superior language model,
we should not increase the number of distributions
from the final layer; we should instead use the mid-
dle layers, as with our proposed DOC.

Table 3 shows that the i3 = 15, i2 = 5 setting
achieved the best performance and the other set-
tings with shallow layers have a little effect. This
result implies that we need some layers to output ac-
curate distributions. In fact, most previous studies
adopted two LSTM layers for language modeling.
This suggests that we need at least two layers to
obtain high-quality distributions.

Model Valid Test
AWD-LSTM† 58.88 56.36
AWD-LSTM-MoS† 56.36 54.26
AWD-LSTM-MoS‡ 55.67 53.75
AWD-LSTM-DOC 54.62 52.87
AWD-LSTM-DOC (fin) 54.12 52.38

Table 6: Perplexities of our implementations and re-
runs on the PTB dataset. We set the non-monotone
interval to 60. † represents results obtained by original
implementations with identical hyperparameters except
for non-monotone interval. ‡ indicates the result ob-
tained by our AWD-LSTM-MoS implementation with
identical dropout rates as AWD-LSTM-DOC. For (fin),
we repeated fine-tuning until convergence.

For the i3 = 15, i2 = 5 setting, we explored
the effect of �� in {0, 0.01, 0.001, 0.0001}. Al-
though Table 3 shows that �� = 0.001 achieved
the best perplexity, the effect is not consistent. Ta-
ble 4 shows the coefficient of variation of Equa-
tion 10, i.e.,

p
� in the PTB dataset. This table

demonstrates that the coefficient of variation de-
creases with growth in �� . In other words, the
model trained with a large �� assigns balanced
weights to each probability distribution. These
results indicate that it is not always necessary to
equally use each probability distribution, but we
can acquire a better model in some �� . Hereafter,
we refer to the setting that achieved the best score
(i3 = 15, i2 = 5, �� = 0.001) as AWD-LSTM-
DOC.

Table 5 shows the ranks of matrices containing
log probability distributions from each method. In
other words, Table 5 describes Ã in Equation 9 for
each method. As shown by this table, the output
of AWD-LSTM is restricted to D3

7. In contrast,
AWD-LSTM-MoS (Yang et al., 2018) and AWD-
LSTM-DOC outputted matrices whose ranks equal
the vocabulary size. This fact indicates that DOC
(including MoS) can output the same matrix as the
true distributions in view of a rank.

Figure 2 illustrates the learning curves of each
method on PTB. This figure contains the valida-
tion scores of AWD-LSTM, AWD-LSTM-MoS,
and AWD-LSTM-DOC at each training epoch. We
trained AWD-LSTM and AWD-LSTM-MoS by
setting the non-monotone interval to 60, as with
AWD-LSTM-DOC. In other words, we used hyper-
parameters identical to the original ones to train
AWD-LSTM and AWD-LSTM-MoS, except for
the non-monotone interval. We note that the opti-

7Actually, the maximum rank size of an ordinary RNN
language model is DN + 1 when we use a bias term.
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Model #Param Valid Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
LSTM (large) (Zaremba et al., 2014) 66M 82.2 78.4
Variational LSTM (medium) (Gal and Ghahramani, 2016) 20M 81.9 ± 0.2 79.7 ± 0.1
Variational LSTM (large) (Gal and Ghahramani, 2016) 66M 77.9 ± 0.3 75.2 ± 0.2
Variational RHN (Zilly et al., 2017) 32M 71.2 68.5
Variational RHN + WT (Zilly et al., 2017) 23M 67.9 65.4
Variational RHN + WT + IOG (Takase et al., 2017) 29M 67.0 64.4
Neural Architecture Search (Zoph and Le, 2017) 54M - 62.4
LSTM with skip connections (Melis et al., 2018) 24M 60.9 58.3
AWD-LSTM (Merity et al., 2018) 24M 60.0 57.3
AWD-LSTM + Fraternal Dropout (Zolna et al., 2018) 24M 58.9 56.8
AWD-LSTM-MoS (Yang et al., 2018) 22M 56.54 54.44
Proposed method: AWD-LSTM-DOC 23M 54.62 52.87
Proposed method: AWD-LSTM-DOC (fin) 23M 54.12 52.38
Proposed method (ensemble): AWD-LSTM-DOC ⇥ 5 114M 49.99 48.44
Proposed method (ensemble): AWD-LSTM-DOC (fin) ⇥ 5 114M 48.63 47.17

Table 7: Perplexities of each method on the PTB dataset.

Model #Param Valid Test
Variational LSTM + IOG (Takase et al., 2017) 70M 95.9 91.0
Variational LSTM + WT + AL (Inan et al., 2017) 28M 91.5 87.0
LSTM with skip connections (Melis et al., 2018) 24M 69.1 65.9
AWD-LSTM (Merity et al., 2018) 33M 68.6 65.8
AWD-LSTM + Fraternal Dropout (Zolna et al., 2018) 34M 66.8 64.1
AWD-LSTM-MoS (Yang et al., 2018) 35M 63.88 61.45
Proposed method: AWD-LSTM-DOC 37M 60.97 58.55
Proposed method: AWD-LSTM-DOC (fin) 37M 60.29 58.03
Proposed method (ensemble): AWD-LSTM-DOC ⇥ 5 185M 56.14 54.23
Proposed method (ensemble): AWD-LSTM-DOC (fin) ⇥ 5 185M 54.91 53.09

Table 8: Perplexities of each method on the WikiText-2 dataset.

mization method converts the ordinary stochastic
gradient descent (SGD) into the averaged SGD at
the point where convergence almost occurs. In Fig-
ure 2, the turning point is the epoch when each
method drastically decreases the perplexity. Figure
2 shows that each method similarly reduces the per-
plexity at the beginning. AWD-LSTM and AWD-
LSTM-MoS were slow to decrease the perplexity
from 50 epochs. In contrast, AWD-LSTM-DOC
constantly decreased the perplexity and achieved a
lower value than the other methods with ordinary
SGD. Therefore, we conclude that DOC positively
affects the training of language modeling.

Table 6 shows the AWD-LSTM, AWD-LSTM-
MoS, and AWD-LSTM-DOC results in our con-
figurations. For AWD-LSTM-MoS, we trained
our implementation with the same dropout rates
as AWD-LSTM-DOC for a fair comparison. AWD-
LSTM-DOC outperformed both the original AWD-
LSTM-MoS and our implementation. In other
words, DOC outperformed MoS.

Since the averaged SGD uses the averaged pa-
rameters from each update step, the parameters
of the early steps are harmful to the final parame-
ters. Therefore, when the model converges, recent

studies and ours eliminate the history of and then
retrains the model. Merity et al. (2018) referred
to this retraining process as fine-tuning. Although
most previous studies only conducted fine-tuning
once, Zolna et al. (2018) argued that two fine-
tunings provided additional improvement. Thus,
we repeated fine-tuning until we achieved no more
improvements in the validation data. We refer to
the model as AWD-LSTM-DOC (fin) in Table 6,
which shows that repeated fine-tunings improved
the perplexity by about 0.5.

Tables 7 and 8 respectively show the perplex-
ities of AWD-LSTM-DOC and previous studies
on PTB and WikiText-28. These tables show that
AWD-LSTM-DOC achieved the best perplexity.
AWD-LSTM-DOC improved the perplexity by al-
most 2.0 on PTB and 3.5 on WikiText-2 from the
state-of-the-art scores. The ensemble technique
provided further improvement, as described in pre-

8We exclude models that use the statistics of the test
data (Grave et al., 2017; Krause et al., 2017) from these tables
because we regard neural language models as the basis of NLP
applications and consider it unreasonable to know correct out-
puts during applications, e.g., machine translation. In other
words, we focus on neural language models as the foundation
of applications although we can combine the method using
the statistics of test data with our AWD-LSTM-DOC.
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vious studies (Zaremba et al., 2014; Takase et al.,
2017), and improved the perplexity by at least 4
points on both datasets. Finally, the ensemble of
the repeated finetuning models achieved 47.17 on
the PTB test and 53.09 on the WikiText-2 test.

6 Experiments on Application Tasks

As described in Section 1, a neural encoder-decoder
model can be interpreted as a conditional language
model. To investigate the effect of DOC on an
encoder-decoder model, we incorporate DOC into
the decoder and examine its performance.

6.1 Dataset
We conducted experiments on machine translation
and headline generation tasks. For machine transla-
tion, we used two kinds of sentence pairs (English-
German and English-French) in the IWSLT 2016
dataset9. The training set respectively contains
about 189K and 208K sentence pairs of English-
German and English-French. We experimented in
four settings: from English to German (En-De), its
reverse (De-En), from English to French (En-Fr),
and its reverse (Fr-En).

Headline generation is a task that creates a short
summarization of an input sentence(Rush et al.,
2015). Rush et al. (2015) constructed a headline
generation dataset by extracting pairs of first sen-
tences of news articles and their headlines from the
annotated English Gigaword corpus (Napoles et al.,
2012). They also divided the extracted sentence-
headline pairs into three parts: training, validation,
and test sets. The training set contains about 3.8M
sentence-headline pairs. For our evaluation, we
used the test set constructed by Zhou et al. (2017)
because the one constructed by Rush et al. (2015)
contains some invalid instances, as reported in
Zhou et al. (2017).

6.2 Encoder-Decoder Model
For the base model, we adopted an encoder-decoder
with an attention mechanism described in Kiyono
et al. (2017). The encoder consists of a 2-layer
bidirectional LSTM, and the decoder consists of a
2-layer LSTM with attention proposed by Luong
et al. (2015). We interpreted the layer after com-
puting the attention as the 3rd layer of the decoder.
We refer to this encoder-decoder as EncDec. For
the hyperparameters, we followed the setting of
Kiyono et al. (2017) except for the sizes of hidden

9https://wit3.fbk.eu/

Model En-De De-En En-Fr Fr-En
EncDec 23.05 28.18 34.37 34.07
EncDec+DOC (i3 = 2) 23.62 29.12 36.09 34.41
EncDec+DOC (i3 = i2 = 2) 23.97 29.33 36.11 34.72

Table 9: BLEU scores on test sets in the IWSLT 2016
dataset. We report averages of three runs.

Model RG-1 RG-2 RG-L
EncDec 46.77 24.87 43.58
EncDec+DOC (i3 = 2) 46.91 24.91 43.73
EncDec+DOC (i3 = i2 = 2) 46.99 25.29 43.83
ABS (Rush et al., 2015) 37.41 15.87 34.70
SEASS (Zhou et al., 2017) 46.86 24.58 43.53
Kiyono et al. (2017) 46.34 24.85 43.49

Table 10: ROUGE F1 scores in headline generation
test data provided by Zhou et al. (2017). RG in table
denotes ROUGE. For our implementations (the upper
part), we report averages of three runs.

states and embeddings. We used 500 for machine
translation and 400 for headline generation. We
constructed a vocabulary set by using Byte-Pair-
Encoding10 (BPE) (Sennrich et al., 2016). We set
the number of BPE merge operations at 16K for
the machine translation and 5K for the headline
generation.

In this experiment, we compare DOC to the base
EncDec. We prepared two DOC settings: using
only the final layer, that is, a setting that is identical
to MoS, and using both the final and middle layers.
We used the 2nd and 3rd layers in the latter setting
because this case achieved the best performance on
the language modeling task in Section 5.3. We set
i3 = 2 and i2 = 2, i3 = 2. For this experiment,
we modified a publicly available encode-decoder
implementation11.

6.3 Results

Table 9 shows the BLEU scores of each method.
Since an initial value often drastically varies the
result of a neural encoder-decoder, we reported
the average of three models trained from different
initial values and random seeds. Table 9 indicates
that EncDec+DOC outperformed EncDec.

Table 10 shows the ROUGE F1 scores of each
method. In addition to the results of our imple-
mentations (the upper part), the lower part repre-
sents the published scores reported in previous stud-
ies. For the upper part, we reported the average of
three models (as in Table 9). EncDec+DOC outper-
formed EncDec on all scores. Moreover, EncDec

10https://github.com/rsennrich/subword-nmt
11https://github.com/mlpnlp/mlpnlp-nmt/
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outperformed the state-of-the-art method (Zhou
et al., 2017) on the ROUGE-2 and ROUGE-L F1
scores. In other words, our baseline is already very
strong. We believe that this is because we adopted
a larger embedding size than Zhou et al. (2017). It
is noteworthy that DOC improved the performance
of EncDec even though EncDec is very strong.

These results indicate that DOC positively influ-
ences a neural encoder-decoder model. Using the
middle layer also yields further improvement be-
cause EncDec+DOC (i3 = i2 = 2) outperformed
EncDec+DOC (i3 = 2).

7 Experiments on Constituency Parsing

Choe and Charniak (2016) achieved high F1 scores
on the Penn Treebank constituency parsing task
by transforming candidate trees into a symbol se-
quence (S-expression) and reranking them based
on the perplexity obtained by a neural language
model. To investigate the effectiveness of DOC,
we evaluate our language models following their
configurations.

7.1 Dataset
We used the Wall Street Journal of the Penn Tree-
bank dataset. We used the section 2-21 for train-
ing, 22 for validation, and 23 for testing. We ap-
plied the preprocessing codes of Choe and Char-
niak (2016)12 to the dataset and converted a token
that appears fewer than ten times in the training
dataset into a special token unk. For reranking, we
prepared 500 candidates obtained by the Charniak
parser (Charniak, 2000).

7.2 Models
We compare AWD-LSTM-DOC with AWD-
LSTM (Merity et al., 2018) and AWD-LSTM-
MoS (Yang et al., 2018). We trained each model
with the same hyperparameters from our language
modeling experiments (Section 5). We selected
the model that achieved the best perplexity on the
validation set during the training.

7.3 Results
Table 11 shows the bracketing F1 scores on the
PTB test set. This table is divided into three
parts by horizontal lines; the upper part describes
the scores by single language modeling based
rerankers, the middle part shows the results by en-
sembling five rerankers, and the lower part repre-

12https://github.com/cdg720/emnlp2016

F1
Model Base Rerank

Reranking with single model
Choe and Charniak (2016) 89.7 92.6
AWD-LSTM 89.7 93.2
AWD-LSTM-MoS 89.7 93.2
AWD-LSTM-DOC 89.7 93.3

Reranking with model ensemble
AWD-LSTM ⇥ 5 (ensemble) 89.7 93.4
AWD-LSTM-MoS ⇥ 5 (ensemble) 89.7 93.4
AWD-LSTM-DOC ⇥ 5 (ensemble) 89.7 93.5
AWD-LSTM-DOC ⇥ 5 (ensemble) 91.2 94.29
AWD-LSTM-DOC ⇥ 5 (ensemble) 93.12 94.47

State-of-the-art results
Dyer et al. (2016) 91.7 93.3
Fried et al. (2017) (ensemble) 92.72 94.25
Suzuki et al. (2018) (ensemble) 92.74 94.32
Kitaev and Klein (2018) 95.13 -

Table 11: Bracketing F1 scores on the PTB test set (Sec-
tion 23). This table includes reranking models trained
on the PTB without external data.

sents the current state-of-the-art scores in the set-
ting without external data. The upper part also
contains the score reported in Choe and Char-
niak (2016) that reranked candidates by the simple
LSTM language model. This part indicates that
our implemented rerankers outperformed the sim-
ple LSTM language model based reranker, which
achieved 92.6 F1 score (Choe and Charniak, 2016).
Moreover, AWD-LSTM-DOC outperformed AWD-
LSTM and AWD-LSTM-MoS. These results corre-
spond to the language modeling task.

The middle part shows that AWD-LSTM-DOC
also outperformed AWD-LSTM and AWD-LSTM-
MoS in the ensemble setting. In addition, we can
improve the performance by exchanging the base
parser with a stronger one. In fact, we achieved
94.29 F1 score by reranking the candidates from
retrained Recurrent Neural Network Grammars
(RNNG) (Dyer et al., 2016)13, that achieved 91.2
F1 score in our configuration. Moreover, the low-
est row of the middle part indicates the result by
reranking the candidates from the retrained neural
encoder-decoder based parser (Suzuki et al., 2018).
Our base parser has two different parts from Suzuki
et al. (2018). First, we used the sum of the hidden
states of the forward and backward RNNs as the
hidden layer for each RNN14. Second, we tied the
embedding matrix to the weight matrix to compute

13The output of RNNG is not in descending order because
it samples candidates based on their scores. Thus, we pre-
pared more candidates (i.e., 700) to be able to obtain correct
instances as candidates.

14We used the deep bidirectional encoder described at
http://opennmt.net/OpenNMT/training/models/ instead of a
basic bidirectional encoder.
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the probability distributions in the decoder. The
retrained parser achieved 93.12 F1 score. Finally,
we achieved 94.47 F1 score by reranking its candi-
dates with AWD-LSTM-DOC. We expect that we
can achieve even better score by replacing the base
parser with the current state-of-the-art one (Kitaev
and Klein, 2018).

8 Related Work

Bengio et al. (2003) are pioneers of neural language
models. To address the curse of dimensionality
in language modeling, they proposed a method
using word embeddings and a feed-forward neu-
ral network (FFNN). They demonstrated that their
approach outperformed n-gram language models,
but FFNN can only handle fixed-length contexts.
Instead of FFNN, Mikolov et al. (2010) applied
RNN (Elman, 1990) to language modeling to ad-
dress the entire given sequence as a context. Their
method outperformed the Kneser-Ney smoothed
5-gram language model (Kneser and Ney, 1995;
Chen and Goodman, 1996).

Researchers continue to try to improve the per-
formance of RNN language models. Zaremba et al.
(2014) used LSTM (Hochreiter and Schmidhuber,
1997) instead of a simple RNN for language mod-
eling and significantly improved an RNN language
model by applying dropout (Srivastava et al., 2014)
to all the connections except for the recurrent con-
nections. To regularize the recurrent connections,
Gal and Ghahramani (2016) proposed variational
inference-based dropout. Their method uses the
same dropout mask at each timestep. Zolna et al.
(2018) proposed fraternal dropout, which mini-
mizes the differences between outputs from dif-
ferent dropout masks to be invariant to the dropout
mask. Melis et al. (2018) used black-box opti-
mization to find appropriate hyperparameters for
RNN language models and demonstrated that the
standard LSTM with proper regularizations can
outperform other architectures.

Apart from dropout techniques, Inan et al. (2017)
and Press and Wolf (2017) proposed the word tying
method (WT), which unifies word embeddings (E
in Equation 4) with the weight matrix to compute
probability distributions (W in Equation 2). In ad-
dition to quantitative evaluation, Inan et al. (2017)
provided a theoretical justification for WT and pro-
posed the augmented loss technique (AL), which
computes an objective probability based on word
embeddings. In addition to these regularization

techniques, Merity et al. (2018) used DropCon-
nect (Wan et al., 2013) and averaged SGD (Polyak
and Juditsky, 1992) for an LSTM language model.
Their AWD-LSTM achieved lower perplexity than
Melis et al. (2018) on PTB and WikiText-2.

Previous studies also explored superior archi-
tecture for language modeling. Zilly et al. (2017)
proposed recurrent highway networks that use high-
way layers (Srivastava et al., 2015) to deepen re-
current connections. Zoph and Le (2017) adopted
reinforcement learning to construct the best RNN
structure. However, as mentioned, Melis et al.
(2018) established that the standard LSTM is supe-
rior to these architectures. Apart from RNN archi-
tecture, Takase et al. (2017) proposed the input-to-
output gate (IOG), which boosts the performance
of trained language models.

As described in Section 3, Yang et al. (2018) in-
terpreted training language modeling as matrix fac-
torization and improved performance by computing
multiple probability distributions. In this study, we
generalized their approach to use the middle lay-
ers of RNNs. Finally, our proposed method, DOC,
achieved the state-of-the-art score on the standard
benchmark datasets.

Some studies provided methods that boost per-
formance by using statistics obtained from test data.
Grave et al. (2017) extended a cache model (Kuhn
and De Mori, 1990) for RNN language models.
Krause et al. (2017) proposed dynamic evaluation
that updates parameters based on a recent sequence
during testing. Although these methods might also
improve the performance of DOC, we omitted such
investigation to focus on comparisons among meth-
ods trained only on the training set.

9 Conclusion

We proposed Direct Output Connection (DOC), a
generalization method of MoS introduced by Yang
et al. (2018). DOC raises the expressive power
of RNN language models and improves quality of
the model. DOC outperformed MoS and achieved
the best perplexities on the standard benchmark
datasets of language modeling: PTB and WikiText-
2. Moreover, we investigated its effectiveness on
machine translation and headline generation. Our
results show that DOC also improved the perfor-
mance of EncDec and using a middle layer posi-
tively affected such application tasks.

4607



References
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Abstract

In recent years, the natural language process-
ing community has moved away from task-
specific feature engineering, i.e., researchers
discovering ad-hoc feature representations for
various tasks, in favor of general-purpose
methods that learn the input representation
by themselves. However, state-of-the-art ap-
proaches to disfluency detection in sponta-
neous speech transcripts currently still de-
pend on an array of hand-crafted features, and
other representations derived from the output
of pre-existing systems such as language mod-
els or dependency parsers. As an alterna-
tive, this paper proposes a simple yet effec-
tive model for automatic disfluency detection,
called an auto-correlational neural network
(ACNN). The model uses a convolutional neu-
ral network (CNN) and augments it with a new
auto-correlation operator at the lowest layer
that can capture the kinds of “rough copy”
dependencies that are characteristic of repair
disfluencies in speech. In experiments, the
ACNN model outperforms the baseline CNN
on a disfluency detection task with a 5% in-
crease in f-score, which is close to the previous
best result on this task.

1 Introduction

Disfluency informally refers to any interruptions
in the normal flow of speech, including false starts,
corrections, repetitions and filled pauses. Shriberg
(1994) defines three distinct parts of a speech dis-
fluency, referred to as the reparandum, interreg-
num and repair. As illustrated in Example 1, the
reparandum to Boston is the part of the utterance
that is replaced, the interregnum uh, I mean (which
consists of a filled pause uh and a discouse marker
I mean) is an optional part of a disfluent struc-
ture, and the repair to Denver replaces the reparan-
dum. The fluent version is obtained by removing
reparandum and interregnum words although dis-

fluency detection models mainly deal with identi-
fying and removing reparanda. The reason is that
filled pauses and discourse markers belong to a
closed set of words and phrases and are trivial to
detect (Johnson and Charniak, 2004).

I want a flight

reparandumz }| {
to Boston,

uh, I mean
| {z }

interregnum

to Denver
| {z }

repair

on Friday (1)

In disfluent structures, the repair (e.g., to Den-
ver) frequently seems to be a “rough copy” of
the reparandum (e.g., to Boston). In other words,
they incorporate the same or very similar words
in roughly the same word order. In the Switch-
board training set (Godfrey and Holliman, 1993),
over 60% of the words in the reparandum are exact
copies of words in the repair. Thus, this similarity
is strong evidence of a disfluency that can help the
model detect reparanda (Charniak and Johnson,
2001; Johnson and Charniak, 2004). As a result,
models which are able to detect “rough copies” are
likely to perform well on this task.

Currently, state-of-the-art approaches to disflu-
ency detection depend heavily on hand-crafted
pattern match features, specifically designed to
find such “rough copies” (Zayats et al., 2016;
Jamshid Lou and Johnson, 2017). In contrast
to many other sequence tagging tasks (Plank
et al., 2016; Yu et al., 2017), “vanilla” convo-
lutional neural networks (CNNs) and long short-
term memory (LSTM) models operating only on
words or characters are surprisingly poor at disflu-
ency detection (Zayats et al., 2016). As such, the
task of disfluency detection sits in opposition to
the ongoing trend in NLP away from task-specific
feature engineering — i.e., researchers discov-
ering ad-hoc feature representations for various
tasks — in favor of general-purpose methods that
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learn the input representation by themselves (Col-
lobert and Weston, 2008).

In this paper, we hypothesize that LSTMs and
CNNs cannot not easily learn “rough copy” depen-
dencies. We address this problem in the context
of a CNN by introducing a novel auto-correlation
operator. The resulting model, called an auto-
correlational neural network (ACNN), is a gener-
alization of a CNN with an auto-correlation oper-
ator at the lowest layer. Evaluating the ACNN in
the context of disfluency detection, we show that
introducing the auto-correlation operator increases
f-score by 5% over a baseline CNN. Furthermore,
the ACNN — operating only on word inputs —
achieves results which are competitive with much
more complex approaches relying on hand-crafted
features and outputs from pre-existing systems
such as language models or dependency parsers.
In summary, the main contributions of this paper
are:

• We introduce the auto-correlational neural
network (ACNN), a generalization of a CNN
incorporating auto-correlation operations,

• In the context of disfluency detection, we
show that the ACNN captures important
properties of speech repairs including “rough
copy” dependencies, and

• Using the ACNN, we achieve competitive re-
sults for disfluency detection without rely-
ing on any hand-crafted features or other rep-
resentations derived from the output of pre-
existing systems.

2 Related Work

Approaches to disfluency detection task fall into
three main categories: noisy channel mod-
els, parsing-based approaches and sequence
tagging approaches. Noisy channel models
(NCMs) (Johnson and Charniak, 2004; Johnson
et al., 2004) use complex tree adjoining grammar
(TAG) (Shieber and Schabes, 1990) based chan-
nel models to find the “rough copy” dependencies
between words. The channel model uses the sim-
ilarity between the reparandum and the repair to
allocate higher probabilities to exact copy reparan-
dum words. Using the probabilities of TAG chan-
nel model and a bigram language model (LM)
derived from training data, the NCM generates
n-best disfluency analyses for each sentence at

test time. The analyses are then reranked us-
ing a language model which is sensitive to the
global properties of the sentence, such as a syn-
tactic parser based LM (Johnson and Charniak,
2004; Johnson et al., 2004). Some works have
shown that rescoring the n-best analyses with ex-
ternal n-gram (Zwarts and Johnson, 2011) and
deep learning LMs (Jamshid Lou and Johnson,
2017) trained on large speech and non-speech cor-
pora, and using the LM scores along with other
features (i.e. pattern match and NCM ones) into a
MaxEnt reranker (Johnson et al., 2004) improves
the performance of the baseline NCM, although
this creates complex runtime dependencies.

Parsing-based approaches detect disfluencies
while simultaneously identifying the syntactic
structure of the sentence. Typically, this is
achieved by augmenting a transition-based de-
pendency parser with a new action to detect and
remove the disfluent parts of the sentence and
their dependencies from the stack (Rasooli and
Tetreault, 2013; Honnibal and Johnson, 2014;
Yoshikawa et al., 2016). Joint parsing and disflu-
ency detection can compare favorably to pipelined
approaches, but requires large annotated tree-
banks containing both disfluent and syntatic struc-
tures for training.

Our proposed approach, based on an auto-
correlational neural network (ACNN), belongs to
the class of sequence tagging approaches. These
approaches use classification techniques such as
conditional random fields (Liu et al., 2006; Os-
tendorf and Hahn, 2013; Zayats et al., 2014; Fer-
guson et al., 2015), hidden Markov models (Liu
et al., 2006; Schuler et al., 2010) and deep learn-
ing based models (Hough and Schlangen, 2015;
Zayats et al., 2016) to label individual words as
fluent or disfluent. In much of the previous work
on sequence tagging approaches, improved per-
formance has been gained by proposing increas-
ingly complicated labeling schemes. In this case, a
model with begin-inside-outside (BIO) style states
which labels words as being inside or outside of
edit region1 is usually used as the baseline se-
quence tagging model. Then in order to come
up with different pattern matching lexical cues
for repetition and correction disfluencies, they ex-
tend the baseline state space with new explicit re-
pair states to consider the words at repair region,
in addition to edit region (Ostendorf and Hahn,

1For state labels, edit corresponds to reparandum.
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2013; Zayats et al., 2014, 2016). A model which
uses such labeling scheme may generate illegal la-
bel sequences at test time. As a solution, integer
linear programming (ILP) constraints are applied
to the output of classifier to avoid inconsisten-
cies between neighboring labels (Georgila, 2009;
Georgila et al., 2010; Zayats et al., 2016). This
contrasts with our more straightforward approach,
which directly labels words as being fluent or dis-
fluent, and does not require any post-processing or
annotation modifications.

The most similar work to ours is recent work
by Zayats et al. (2016) that investigated the per-
formance of a bidirectional long-short term mem-
ory network (BLSTM) for disfluency detection.
Zayats et al. (2016) reported that a BLSTM op-
erating only on words underperformed the same
model augmented with hand-crafted pattern match
features and POS tags by 7% in terms of f-score.
In addition to lexically grounded features, some
works incorporate prosodic information extracted
from speech (Kahn et al., 2005; Ferguson et al.,
2015; Tran et al., 2018). In this work, our primary
motivation is to rectify the architectural limitations
that prevent deep neural networks from automat-
ically learning appropriate features from words
alone. Therefore, our proposed model eschews
manually engineered features and other represen-
tations derived from dependency parsers, language
models or tree adjoining grammar transducers that
are used to find “rough copy” dependencies. In-
stead, we aim to capture these kinds of dependen-
cies automatically.

3 Convolutional and Auto-Correlational
Networks

In this section, we introduce our proposed
auto-correlation operator and the resulting auto-
correlational neural network (ACNN) which is the
focus of this work.

A convolutional or auto-correlational network
computes a series of h feature representations
X(0), X(1), . . . , X(h), where X(0) is the input
data, X(h) is the final (output) representation, and
each non-input representation X(k) for k > 0,
is computed from the preceding representation
X(k�1) using a convolution or auto-correlation op-
eration followed by an element-wise non-linear
function.

Restricting our focus to convolutions in one
dimension, as used in the context of language

processing, each representation X(k) is a ma-
trix of size (n, mk), where n is the number of
words in the input and mk is the feature dimen-
sion of representation k, or equivalently it can be
viewed as a sequence of n row vectors X(k) =

(x(k)
1 , . . . , x(k)

n ), where x
(k)
t is the row vector of

length mk that represents the tth word at level k.
Consistent with the second interpretation, the

input representation X(0) = (x(0)
1 , . . . , x(0)

n ) is a
sequence of word embeddings, where m0 is the
length of the embedding vector and x

(0)
t is the

word embedding for the tth word.
Each non-input representation X(k), k > 0 is

formed by column-wise stacking the output of
one or more convolution or auto-correlation oper-
ations applied to the preceding representation, and
then applying an element-wise non-linear func-
tion. Formally, we define:

Y (k) =
⇣
F (k,1)(X(k�1)); . . . ; F (k,mk)(X(k�1))

⌘

X(k) =N (k)(Y (k)) (2)

where F (k,u) is the uth operator applied at layer
k, and N (k) is the non-linear operation applied at
layer k. Each operator F (k,u) (either convolution
or auto-correlation) is a function from X(k�1),
which is a matrix of size (n, mk�1), to a vector
of length n. A network that employs only con-
volution operators is a convolutional neural net-
work (CNN). We call a network that utilizes a mix-
ture of convolution and auto-correlation operators
an auto-correlational neural network (ACNN). In
our networks, the non-linear operation N (k) is
always element-wise ReLU , except for the last
layer, which uses a softmax non-linearity.

3.1 Convolution Operator
A one-dimensional convolution operation maps an
input matrix X = (x1, . . . , xn), where each xt is
a row vector of length m, to an output vector y

of length n. The convolution operation is defined
by a convolutional kernel A, which is applied to
a window of words to produce a new output rep-
resentation, and kernel width parameters ` and r,
which define the number of words to the left and
right of the target word included in the convolu-
tional window. For example, assuming appropri-
ate input padding where necessary, element yt in
the output vector y is computed as:

yt = A · Xi:j + b (3)
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Figure 1: Cosine similarity between word embedding
vectors learned by the ACNN model for the sentence “I
know they use that I mean they sell those” (with disflu-
ent words highlighted). In the figure, darker shades de-
note higher cosine values. “Rough copies” are clearly
indicated by darkly shaded diagonals, which can be de-
tected by our proposed auto-correlation operator.

where

A is a learned convolutional kernel of dimension
(` + r, m),

Xi:j is the sub-matrix formed by selecting rows i
to j from matrix X ,

· is the dot product (a sum over elementwise mul-
tiplications),

i, j are given by i = t � ` and j = t + r, in-
dicating the left and right extremities of the
convolutional window effecting element yt,

` > 0 is the left kernel width, and

r > 0 is right kernel width.

b is a learned bias vector of dimension n,

3.2 Auto-Correlation Operator
The auto-correlational operator is a generalisation
of the convolution operator:

yt = A · Xi:j + B · X̂i:j,i:j + b (4)

where yt, A, X , b, i and j are as in the convolution
operator, and

X̂ is a tensor of size (n, n, m) such that each vec-
tor X̂i,j,: is given by f(xi, xj),

f(u, v) is a binary operation on vectors, such as
the Hadamard or element-wise product (i.e.,
f(u, v) = u � v), and

X̂i:j,i:j is the sub-tensor formed by selecting in-
dices i to j from the first two dimensions of
tensor X̂ ,

B is a learned convolutional kernel of dimension
(` + r, ` + r, m).

Unlike convolution operations, which are linear,
the auto-correlation operator introduces second-
order interaction terms through the tensor X̂
(since it multiplies the vector representations for
each pair of input words). This naturally encodes
the similarity between input words when applied
at level k = 1 (or the co-activations of multiple
CNN features, if applied at higher levels). As il-
lustrated in Figure 1, blocks of similar words are
indicative of “rough copies”. We provide an il-
lustration of the auto-correlation operation in Fig-
ure 2.

4 Experiments

4.1 Switchboard Dataset
We evaluate the proposed ACNN model for disflu-
ency detection on the Switchboard corpus of con-
versational speech (Godfrey and Holliman, 1993).
Switchboard is the largest available corpus (1.2 ⇥
106 tokens) where disfluencies are annotated ac-
cording to Shriberg’s (1994) scheme:

[ reparandum + {interregnum} repair ]
where (+) is the interruption point marking the end
of reparandum and {} indicate optional interreg-
num. We collapse this annotation to a binary clas-
sification scheme in which reparanda are labeled
as disfluent and all other words as fluent. We dis-
regard interregnum words as they are trivial to de-
tect as discussed in Section 1.

Following Charniak and Johnson (2001), we
split the Switchboard corpus into training, dev
and test set as follows: training data consists of
all sw[23]⇤.dff files, dev training consists of all
sw4[5-9]⇤.dff files and test data consists of all
sw4[0-1]⇤.dff files. We lower-case all text and re-
move all partial words and punctuations from the
training data to make our evaluation both harder
and more realistic (Johnson and Charniak, 2004).
Partial words are strong indicators of disfluency;
however, speech recognition models never gener-
ate them in their outputs.
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Figure 2: ACNN overview for labeling the target word “boston”. A patch of words is fed into an auto-correlational
layer. At inset bottom, the given patch of words is convolved with 2D kernels A of different sizes. At inset top,
an auto-correlated tensor of size (n, n, m0) is constructed by comparing each input vector u = xt with the input
vector v = xt0 using a binary function f(u, v). The auto-correlated tensor is convolved with 3D kernels B of
different sizes. Each kernel group A and B outputs a matrix of size (n, m1) (here, we depict only the row vector
relating to the target word “boston”). These outputs are added element-wise to produce the feature representation
that is passed to further convolutional layers, followed by a softmax layer. “E” = disfluent, “ ” = fluent and m0 =
embedding size.

4.2 ACNN and CNN Baseline Models

We investigate two neural network models for dis-
fluency detection; our proposed auto-correlational
neural network (ACNN) and a convolutional neu-
ral network (CNN) baseline. The CNN base-
line contains three convolutional operators (lay-
ers), followed by a width-1 convolution and a soft-
max output layer (to label each input word as ei-
ther fluent or disfluent). The ACNN has the same
general architecture as the baseline, except that we
have replaced the first convolutional operator with
an auto-correlation operator, as illustrated in Fig-
ure 2.

To ensure that equal effort was applied to
the hyperparameter optimization of both models,
we use randomized search (Bergstra and Ben-
gio, 2012) to tune the optimization and architec-
ture parameters separately for each model on the
dev set, and to find an optimal stopping point for
training. This results in different dimensions for
each model. As indicated by Table 1, the result-
ing ACNN configuration has far fewer kernels at
each layer than the CNN. However, as the auto-
correlation kernels contain an additional dimen-
sion, both models have a similar number of param-
eters overall. Therefore, both models should have
similar learning capacity except for their architec-
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tural differences (which is what we wish to investi-
gate). Finally, we note that the resulting maximum
right kernel width r1 in the auto-correlational layer
is 6. As illustrated in Figure 3, this is sufficient
to capture almost all the “rough copies” in the
Switchboard dataset (but could be increased for
other datasets).

Configuration CNN ACNN
embedding dim 290 290
dropout rate 0.51 0.53
L2 regularizer weight 0.13 0.23
#kernels at each layer 570 120
#kernel sizes at each layer 3 2
#words at left context `1 [0,1,4] [5,3]
#words at left context `2 [1,2,3] [4,2]
#words at left context `3 [0,1,2] [3,2]
#words at right context r1 [1,1,4] [6,3]
#words at right context r2 [1,2,4] [5,3]
#words at right context r3 [1,2,3] [4,2]
#parameters 4.9M 4.9M

Table 1: Configuration of the CNN and ACNN mod-
els, where `k refers to the left kernel width at layer k,
and rk refers to the right kernel width at layer k. Both
models have a similar total number of parameters.

For the ACNN, we considered a range of possi-
ble binary functions f(u, v) to compare the input
vector u = xt with the input vector v = xt0 in the
auto-correlational layer. However, in initial exper-
iments we found that the Hadamard or element-
wise product (i.e. f(u, v) = u � v) achieved
the best results. We also considered concatenat-
ing the outputs of kernels A and B in Equation 4,
but we found that element-wise addition produced
slightly better results on the dev set.

4.2.1 Implementation Details

In both models, we use ReLU for the non-linear
operation, all stride sizes are one word and there
are no pooling operations. We randomly initial-
ize the word embeddings and all weights of the
model from a uniform distribution. The bias terms
are initialized to be 1. To reduce overfitting, we
apply dropout (Srivastava et al., 2014) to the in-
put word embeddings and L2 regularization to the
weights of the width-1 convolutional layer. For
parameter optimization, we use the Adam opti-
mizer (Kingma and Ba, 2014) with a mini-batch
size of 25 and an initial learning rate of 0.001.

Figure 3: Distribution over the number of words in
between the reparandum and the interregnum in the
Switchboard training set (indicating the distance be-
tween “rough copies”).

5 Results

As in previous work (Johnson and Charniak,
2004), we evaluate our model using precision, re-
call and f-score, where true positives are the words
in the edit region (i.e., the reparandum words).
As Charniak and Johnson (2001) observed, only
6% of words in the Switchboard corpus are disflu-
ent, so accuracy is not a good measure of system
performance. F-score, on the other hand, focuses
more on detecting “edited” words, so it is more
appropriate for highly skewed data.

Table 2 compares the dev set performance of
the ACNN model against our baseline CNN, as
well as the LSTM and BLSTM models proposed
by Zayats et al. (2016) operating only on word
inputs (i.e., without any disfluency pattern-match
features). Our baseline CNN outperforms both the
LSTM and the BLSTM, while the ACNN model
clearly outperforms the baseline CNN, with a fur-
ther 5% increase in f-score. In particular, the
ACNN noticably improves recall without degrad-
ing precision.

model P R F
BLSTM (words)⇤ 87.8 71.1 78.6
LSTM (words)⇤ 87.6 71.4 78.7
CNN 89.4 74.6 81.3
ACNN 90.0 82.8 86.2

Table 2: Precision (P), recall (R) and f-score (F) on the
dev set for the BLSTM and LSTM models using words
alone from ⇤Zayats et al. (2016), as well as our baseline
CNN and ACNN model.
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To further investigate the differences between
the two CNN-based models, we randomly select
100 sentences containing disfluencies from the
Switchboard dev set and categorize them accord-
ing to Shriberg’s (1994) typology of speech re-
pair disfluencies. Repetitions are repairs where
the reparandum and repair portions of the disflu-
ency are identical, while corrections are where the
reparandum and repairs differ (so corrections are
much harder to detect). Restarts are where the
speaker abandons a sentence prefix, and starts a
fresh sentence. As Table 3 shows, the ACNN
model is better at detecting repetition and cor-
rection disfluencies than the CNN, especially for
the more challenging correction disfluencies. On
the other hand, the ACNN is no better than the
baseline at detecting restarts, probably because the
restart typically does not involve a rough copy de-
pendency. Luckily restarts are much rarer than
repetition and correction disfluencies.

model Rep. Cor. Res. All
CNN 93.3 66.0 57.1 80.4
ACNN 97.5 80.0 57.1 88.9

Table 3: F-scores for different types of disfluencies on
a subset of the Switchboard dev set containing 140 dis-
fluent structures — including 85 repetitions (Rep.), 51
corrections (Cor.) and 4 restarts (Res.).

We also repeated the analysis of (Zayats et al.,
2014) on the dev data, so we can compare our
models to their extended BLSTM model with a
17-state CRF output and hand-crafted features, in-
cluding partial-word and POS tag features that en-
able it to capture some “rough copy” dependen-
cies. As expected, the ACNN outperforms both
the CNN and the extended BLSTM model, espe-
cially in the “Other” category that involve the non-
repetition dependencies.

model Rep. Other Either
CNN 92.2 66.7 81.3
BLSTM (17 states)⇤ 94.1 66.7 85.8
ACNN 96.6 73.3 86.2

Table 4: F-scores for different types of disfluencies
for the CNN, ACNN and BLSTM (17 states) ⇤(Zayats
et al., 2016) using the Switchboard dev set.

Finally, we compare the ACNN model to state-
of-the-art methods from the literature, evaluated
on the Switchboard test set. Table 5 shows that the

ACNN model is competitive with recent models
from the literature. The three models that score
more highly than the ACNN all rely on hand-
crafted features, additional information sources
such as partial-word features (which would not be
available in a realistic ASR application), or ex-
ternal resources such as dependency parsers and
language models. The ACNN, on the other hand,
only uses whole-word inputs and learns the “rough
copy” dependencies between words without re-
quiring any manual feature engineering.

model P R F
Yoshikawa et al.(2016) ⇧ 67.9 57.9 62.5
Georgila et al. (2010) † 77.4 64.6 70.4
Tran et al. (2018) ⌦ ? - - 77.5
Kahn et al. (2005) ? - - 78.2
Johnson et al. (2004) o 82.0 77.8 79.7
Georgila (2009) † - - 80.1
Johnson et al. (2004) †o - - 81.0
Rasooli et al. (2013) ⇧ 85.1 77.9 81.4
Zwarts et al. (2011) 1 o - - 83.8
Qian et al. (2013) 1 - - 84.1
Honnibal et al. (2014) ⇧ - - 84.1
ACNN 89.5 80.0 84.5
Ferguson et al. (2015) ? 90.0 81.2 85.4
Zayats et al. (2016) ⌦† 91.8 80.6 85.9
Jamshid Lou et al. (2017) 1 o - - 86.8

Table 5: Comparison of the ACNN model to the state-
of-the-art methods on the Switchboard test set. The
other models listed have used richer inputs and/or
rely on the output of other systems, as well as pat-
tern match features, as indicated by the following
symbols: ⇧ dependency parser, † hand-crafted con-
straints/rules, ? prosodic cues, o tree adjoining gram-
mar transducer, 1 refined/external language models
and ⌦ partial words. P = precision, R = recall and F
= f-score.

5.1 Qualitative Analysis

We conduct an error analysis on the Switchboard
dev set to characterize the disfluencies that the
ACNN model can capture and those which are dif-
ficult for the model to detect. In the following
examples, the highlighted words indicate ground
truth disfluency labels and the underlined ones are
the ACNN predictions.

1. But if you let them yeah if you let them in a
million at a time it wouldn’t make that you
know it wouldn’t make that big a bulge in the
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population

2. They’re handy uh they they come in handy at
the most unusual times

3. My mechanics loved it because it was an old
it was a sixty-five buick

4. Well I I I think we did I think we did learn
some lessons that we weren’t uh we weren’t
prepared for

5. Uh I have never even I have never even
looked at one closely

6. But uh when I was when my kids were
young I was teaching at a university

7. She said she’ll never put her child
in a in a in a in a in a preschool

8. Well I think they’re at they’re they’ve come a
long way

9. I I like a I saw the the the the tapes that were
that were run of marion berry’s drug bust

10. But I know that in some I know in a lot of
rural areas they’re not that good

According to examples 1-10, the ACNN detects
repetition (e.g. 1, 5) and correction disfluencies
(e.g. 3, 6, 10). It also captures complex struc-
tures where there are multiple or nested disfluen-
cies (e.g. 2, 8) or stutter-like repetitions (e.g. 4, 7,
9).

11. My point was that there is for people who
don’t want to do the military service it would
be neat if there were an alternative . . .

12. I believe from what I remember of the
literature they gave uh if you fail I believe
they give you one more chance

13. Kind of a coarse kind of test

14. So we could pour concrete and support it
with a a nice firm four by four posts

15. But uh I’m afraid I’m I’m probably in the
minority

16. Same thing same thing that the her kids had

17. Did you you framed it in uh on on you
framed in new square footage

18. And and and there needs to be a line drawn
somewhere at reasonable and proper

19. . . . I think there’s a couple of levels of tests
in terms of of drugs

20. See they have uh we have two the both c
spans here

In some cases where repetitions are fluent, the
model has incorrectly detected the first occurence
of the word as disfluency (e.g. 13, 14, 15, 19).
Moreover, when there is a long distance between
reparandum and repair words (e.g. 11, 12), the
model usually fails to detect the reparanda. In
some sentences, the model is also unable to detect
the disfluent words which result in ungrammatical
sentences (e.g. 16, 17, 18, 20). In these exam-
ples, the undetected disfluencies “the”, “did”, “at”
and “two the” cause the residual sentence to be un-
grammatical.

We also discuss the types of disfluency captured
by the ACNN model, but not by the baseline CNN.
In the following examples, the ACNN predictions
(underlined words) are the same as the ground
truth disfluency labels (highlighted words). The
bolded words indicate the CNN prediction of dis-
fluencies.

21. Uh well I actually my dad’s my dad’s almost
ninety

22. Not a man not a repair man but just a friend

23. we’re from a county we’re from the county
they marched in

24. Now let’s now we’re done

25. And they’ve most of them have been pretty
good

26. I do as far as uh as far as uh as far as immi-
gration as a whole goes

27. No need to use this to play around with this
space stuff anymore

28. We couldn’t survive in a in a juror in a trial
system without a jury

29. You stay within your uh within your means

30. So we’re we’re part we’re actually part of
MIT
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The ACNN model has a generally better perfor-
mance in detecting “rough copies” which are im-
portant indicator of repetition (e.g. 21, 29), cor-
rection (e.g. 22, 23, 24, 25, 27), and stutter-like
(e.g. 26, 28, 30) disfluencies.

6 Conclusion

This paper presents a simple new model for disflu-
ency detection in spontaneous speech transcripts.
It relies on a new auto-correlational kernel that is
designed to detect the “rough copy” dependencies
that are characteristic of speech disfluencies, and
combines it with conventional convolutional ker-
nels to form an auto-correlational neural network
(ACNN). We show experimentally that using the
ACNN model improves over a CNN baseline on
disfluency detection task, indicating that the auto-
correlational kernel can in fact detect the rough
copy dependencies between words in disfluencies.
The addition of the auto-correlational kernel per-
mits a fairly conventional architecture to achieve
near state-of-the-art results without complex hand-
crafted features or external information sources.

We expect that the performance of the ACNN
model can be further improved in future by us-
ing more complex similarity functions and by in-
corporating similar kinds of external information
(e.g. prosody) used in other disfluency models.
In future work, we also intend to investigate other
applications of the auto-correlational kernel. The
auto-correlational layer is a generic neural net-
work layer, so it can be used as a component of
other architectures, such as RNNs. It might also
be useful in very different applications such as im-
age processing.
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Abstract

LSTMs are powerful tools for modeling con-
textual information, as evidenced by their suc-
cess at the task of language modeling. How-
ever, modeling contexts in very high dimen-
sional space can lead to poor generalizability.
We introduce the Pyramidal Recurrent Unit
(PRU), which enables learning representations
in high dimensional space with more gener-
alization power and fewer parameters. PRUs
replace the linear transformation in LSTMs
with more sophisticated interactions including
pyramidal and grouped linear transformations.
This architecture gives strong results on word-
level language modeling while reducing the
number of parameters significantly. In partic-
ular, PRU improves the perplexity of a recent
state-of-the-art language model Merity et al.
(2018) by up to 1.3 points while learning 15-
20% fewer parameters. For similar number of
model parameters, PRU outperforms all previ-
ous RNN models that exploit different gating
mechanisms and transformations. We provide
a detailed examination of the PRU and its be-
havior on the language modeling tasks. Our
code is open-source and available at https:
//sacmehta.github.io/PRU/.

1 Introduction

Long short term memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997) are popular for many
sequence modeling tasks and are used extensively
in language modeling. A key to their success
is their articulated gating structure, which al-
lows for more control over the information passed
along the recurrence. However, despite the so-
phistication of the gating mechanisms employed
in LSTMs and similar recurrent units, the input
and context vectors are treated with simple linear
transformations prior to gating. Non-linear trans-
formations such as convolutions (Kim et al., 2016)
have been used, but these have not achieved the

Figure 1: Comparison of training (solid lines) and
validation (dashed lines) perplexities on the Penn
Treebank with standard dropout for pyramidal re-
current units (PRU) and LSTM. PRUs learn latent
representations in very high-dimensional space
with good generalizability and fewer parameters.
See Section 3 for more details about PRUs. Best
viewed in color.

performance of well regularized LSTMs for lan-
guage modeling (Melis et al., 2018).

A natural way to improve the expressiveness
of linear transformations is to increase the num-
ber of dimensions of the input and context vec-
tors, but this comes with a significant increase in
the number of parameters which may limit gen-
eralizability. An example is shown in Figure 1,
where LSTMs performance decreases with the in-
crease in dimensions of the input and context vec-
tors. Moreover, the semantics of the input and con-
text vectors are different, suggesting that each may
benefit from specialized treatment.

Guided by these insights, we introduce a new
recurrent unit, the Pyramidal Recurrent Unit
(PRU), which is based on the LSTM gating struc-
ture. Figure 2 provides an overview of the PRU. At
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Figure 2: Block diagram visualizing the transformations in pyramidal recurrent unit (left) and the LSTM
(bottom right) along with the LSTM gating architecture (top right). Blue, red, green (or orange), and
purple signify the current input xt, output of the previous cell ht�1, the output of transformations,
and the fused output, respectively. The color intensity is used to represent sub-sampling and grouping
operations.

the heart of the PRU is the pyramidal transforma-
tion (PT), which uses subsampling to effect multi-
ple views of the input vector. The subsampled rep-
resentations are combined in a pyramidal fusion
structure, resulting in richer interactions between
the individual dimensions of the input vector than
is possible with a linear transformation. Context
vectors, which have already undergone this trans-
formation in the previous cell, are modified with
a grouped linear transformation (GLT) which al-
lows the network to learn latent representations in
high dimensional space with fewer parameters and
better generalizability (see Figure 1).

We show that PRUs can better model contextual
information and demonstrate performance gains
on the task of language modeling. The PRU im-
proves the perplexity of the current state-of-the-art
language model (Merity et al., 2018) by up to 1.3
points, reaching perplexities of 56.56 and 64.53 on
the Penn Treebank and WikiText2 datasets while
learning 15-20% fewer parameters. Replacing an
LSTM with a PRU results in improvements in per-
plexity across a variety of experimental settings.
We provide detailed ablations which motivate the
design of the PRU architecture, as well as detailed
analysis of the effect of the PRU on other compo-
nents of the language model.

2 Related work

Multiple methods, including a variety of gating
structures and transformations, have been pro-

posed to improve the performance of recurrent
neural networks (RNNs). We first describe these
approaches and then provide an overview of recent
work in language modeling.

Gating-based mechanisms: The performance
of RNNs have been greatly improved by gat-
ing mechanisms such as LSTMs (Hochreiter and
Schmidhuber, 1997), GRUs (Chung et al., 2014),
peep-hole connections (Gers and Schmidhuber,
2000), SRUs (Lei et al., 2018), and RANs (Lee
et al., 2017). In this paper, we extend the gating
architecture of LSTMs (Hochreiter and Schmid-
huber, 1997), a widely used recurrent unit across
different domains.

Transformations: Apart from the widely used
linear transformation for modeling the tempo-
ral data, another transformation that has gained
popularity is convolution (LeCun et al., 1995).
Convolution-based methods have gained attention
in computer vision tasks (Krizhevsky et al., 2012)
as well as some of the natural language process-
ing tasks including machine translation (Gehring
et al., 2017). Convolution-based methods for lan-
guage modeling, such as CharCNN (Kim et al.,
2016), have not yet achieved the performance of
well regularized LSTMs (Melis et al., 2018). We
inherit ideas from convolution-based approaches,
such as sub-sampling, to learn richer representa-
tions (Krizhevsky et al., 2012; Han et al., 2017).
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Regularization: Methods such as dropout (Sri-
vastava et al., 2014), variational dropout (Kingma
et al., 2015), and weight dropout (Merity et al.,
2018) have been proposed to regularize RNNs.
These methods can be easily applied to PRUs.

Other efficient RNN networks: Recently, there
has been an effort to improve the efficiency of
RNNs. These approaches include quantization
(Xu et al., 2018), skimming (Seo et al., 2018;
Yu et al., 2017), skipping (Campos et al., 2018),
and query reduction (Seo et al., 2017). These
approaches extend standard RNNs and therefore,
these approaches are complementary to our work.

Language modeling: Language modeling is a
fundamental task for NLP and has garnered sig-
nificant attention in recent years (see Table 1 for
comparison with state-of-the-art methods). Merity
et al. (2018) introduce regularization techniques
such as weight dropping which, coupled with a
non-monotonically triggered ASGD optimization,
achieves strong performance improvements. Yang
et al. (2018) extend Merity et al. (2018) with the
mixture of softmaxes (MoS) technique, which in-
creases the rank of the matrix used to compute
next-token probabilities. Further, Merity et al.
(2017) and Krause et al. (2018) propose methods
to improve inference by adapting models to recent
sequence history. Our work is complementary to
these recent softmax layer and inference proce-
dure improvements.

We extend state-of-the-art language model in
Merity et al. (2018) by replacing the LSTM with
the PRU. We show by experiments that the PRU
improves the performance of Merity et al. (2018)
while learning fewer parameters.

3 Pyramidal Recurrent Units

We introduce Pyramidal Recurrent Units (PRUs),
a new RNN architecture which improves modeling
of context by allowing for higher dimensional vec-
tor representations while learning fewer parame-
ters. Figure 2 provides an overview of PRU. We
first elaborate on the details of the pyramidal trans-
formation and the grouped linear transformation.
We then describe our recurrent unit, PRU.

3.1 Pyramidal transformation for input
The basic transformation in many recurrent units
is a linear transformation FL defined as:

y = FL(x) = W · x, (1)

where W 2 R
N⇥M are learned weights that lin-

early map x 2 R
N to y 2 R

M . To simplify nota-
tion, we omit the biases.

Motivated by successful applications of sub-
sampling in computer vision (e.g., (Burt and Adel-
son, 1987; Lowe, 1999; Krizhevsky et al., 2012;
Mehta et al., 2018)), we subsample input vec-
tor x into K pyramidal levels to achieve repre-
sentation of the input vector at multiple scales.
This sub-sampling operation produces K vectors,
represented as xk 2 R

N
2k�1 , where 2k�1 is the

sampling rate and k = {1, · · · , K}. We learn
scale-specific transformations Wk 2 R

N
2k�1 ⇥ M

K

for each k = {1, · · · K}. The transformed sub-
samples are concatenated to produce the pyrami-
dal analog to y, here denoted as ȳ 2 R

M :

ȳ = FP (x) =
⇥
W1 · x1, · · · ,WK · xK

⇤
, (2)

where [·, ·] indicates concatenation. We note that
pyramidal transformation with K = 1 is the same
as the linear transformation.

To improve gradient flow inside the recurrent
unit, we combine the input and output using an
element-wise sum (when dimension matches) to
produce residual analog of pyramidal transforma-
tion, as shown in Figure 2 (He et al., 2016).

Sub-sampling: We sub-sample the input vector
x into K pyramidal levels using the kernel-based
approach (LeCun et al., 1995; Krizhevsky et al.,
2012). Let us assume that we have a kernel  with
2e + 1 elements. Then, the input vector x can be
sub-sampled as:

xk =

N/sX

i=1

eX

j=�e

xk�1[si][j], (3)

where s represents the stride and k = {2, · · · , K}.

Reduction in parameters: The number of pa-
rameters learned by the linear transformation and
the pyramidal transformation with K pyramidal
levels to map x 2 R

N to ȳ 2 R
M are NM

and NM
K

KP
k=1

2(1�k) respectively. Thus, pyramidal

transformation reduces the parameters of a linear
transformation by a factor of K(

PK
k=1 2(1�k))�1.

For example, the pyramidal transformation (with
K = 4 and N = M = 600) learns 53% fewer
parameters than the linear transformation.
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3.2 Grouped linear transformation for
context

Many RNN architectures apply linear transforma-
tions to both the input and context vector. How-
ever, this may not be ideal due to the differing se-
mantics of each vector. In many NLP applications
including language modeling, the input vector is
a dense word embedding which is shared across
all contexts for a given word in a dataset. In con-
trast, the context vector is highly contextualized
by the current sequence. The differences between
the input and context vector motivate their sepa-
rate treatment in the PRU architecture.

The weights learned using the linear transfor-
mation (Eq. 1) are reused over multiple time steps,
which makes them prone to over-fitting (Gal and
Ghahramani, 2016). To combat over-fitting, var-
ious methods, such as variational dropout (Gal
and Ghahramani, 2016) and weight dropout (Mer-
ity et al., 2018), have been proposed to regularize
these recurrent connections. To further improve
generalization abilities while simultaneously en-
abling the recurrent unit to learn representations at
very high dimensional space, we propose to use
grouped linear transformation (GLT) instead of
standard linear transformation for recurrent con-
nections (Kuchaiev and Ginsburg, 2017). While
pyramidal and linear transformations can be ap-
plied to transform context vectors, our experimen-
tal results in Section 4.4 suggests that GLTs are
more effective.

The linear transformation FL : R
N ! R

M

maps h 2 R
N linearly to z 2 R

M . Grouped
linear transformations break the linear interac-
tions by factoring the linear transformation into
two steps. First, a GLT splits the input vector
h 2 R

N into g smaller groups such that h =

{h1, · · · ,hg}, 8 hi 2 R
N
g . Second, a linear trans-

formation FL : R
N
g ! R

M
g is applied to map hi

linearly to zi 2 R
M
g , for each i = {1, · · · , g}.

The g resultant output vectors zi are concatenated
to produce the final output vector z̄ 2 R

M .

z̄ = FG(h) =
⇥
W1 · h1, · · · ,Wg · hg

⇤
(4)

GLTs learn representations at low dimensional-
ity. Therefore, a GLT requires g fewer parame-
ters than the linear transformation. We note that
GLTs are subset of linear transformations. In a lin-
ear transformation, each neuron receives an input
from each element in the input vector while in a

GLT, each neuron receives an input from a subset
of the input vector. Therefore, GLT is the same as
a linear transformation when g = 1.

3.3 Pyramidal Recurrent Unit
We extend the basic gating architecture of LSTM
with the pyramidal and grouped linear transfor-
mations outlined above to produce the Pyramidal
Recurrent Unit (PRU), whose improved sequence
modeling capacity is evidenced in Section 4.

At time t, the PRU combines the input vector xt

and the previous context vector (or previous hid-
den state vector) ht�1 using the following trans-
formation function as:

Ĝv(xt,ht�1) = F̂P (xt) + FG(ht�1), (5)

where v 2 {f, i, c, o} indexes the various gates in
the LSTM model, and F̂P (·) and FG(·) represents
the pyramidal and grouped linear transformations
defined in Eqns. 2 and 4, respectively.

We will now incorporate Ĝv(·, ·) into LSTM
gating architecture to produce PRU. At time t,
a PRU cell takes xt 2 R

N , ht�1 2 R
M , and

ct�1 2 R
M as inputs to produce forget ft, input it,

output ot, and content ĉt gate signals. The inputs
are combined with these gate signals to produce
context vector ht 2 R

M and cell state ct 2 R
M .

Mathematically, the PRU with the LSTM gating
architecture can be defined as:

ft = �
⇣
Ĝf (xt,ht�1)

⌘

it = �
⇣
Ĝi(xt,ht�1)

⌘

ĉt = tanh
⇣
Ĝc(xt,ht�1)

⌘

ot = �
⇣
Ĝo(xt,ht�1)

⌘

ct = ft ⌦ ct�1 + it ⌦ ĉt

ht = ot ⌦ tanh(ct)

(6)

where ⌦ represents the element-wise multiplica-
tion operation, and � and tanh are the sigmoid and
hyperbolic tangent activation functions. We note
that LSTM is a special case of PRU when g=K=1.

4 Experiments

To showcase the effectiveness of the PRU, we
evaluate the performance on two standard datasets
for word-level language modeling and compare
with state-of-the-art methods. Additionally, we
provide a detailed examination of the PRU and its
behavior on the language modeling tasks.
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4.1 Set-up
Dataset: Following recent works, we compare
on two widely used datasets, the Penn Tree-
bank (PTB) (Marcus et al., 1993) as prepared
by Mikolov et al. (2010) and WikiText2 (WT-2)
(Merity et al., 2017). For both datasets, we follow
the same training, validation, and test splits as in
Merity et al. (2018).

Language Model: We extend the language
model, AWD-LSTM (Merity et al., 2018), by re-
placing LSTM layers with PRU. Our model uses
3-layers of PRU with an embedding size of 400.
The number of parameters learned by state-of-the-
art methods vary from 18M to 66M with major-
ity of the methods learning about 22M to 24M
parameters on the PTB dataset. For a fair com-
parison with state-of-the-art methods, we fix the
model size to 19M and vary the value of g and
hidden layer sizes so that total number of learned
parameters is similar across different configura-
tions. We use 1000, 1200, and 1400 as hidden
layer sizes for values of g=1,2, and 4, respectively.
We use the same settings for the WT-2 dataset. We
set the number of pyramidal levels K to two in
our experiments and use average pooling for sub-
sampling. These values are selected based on our
ablation experiments on the validation set (Section
4.4). We measure the performance of our models
in terms of word-level perplexity. We follow the
same training strategy as in Merity et al. (2018).

To understand the effect of regularization meth-
ods on the performance of PRUs, we perform ex-
periments under two different settings: (1) Stan-
dard dropout: We use a standard dropout (Srivas-
tava et al., 2014) with probability of 0.5 after em-
bedding layer, the output between LSTM layers,
and the output of final LSTM layer. (2) Advanced
dropout: We use the same dropout techniques with
the same dropout values as in Merity et al. (2018).
We call this model as AWD-PRU.

4.2 Results
Table 1 compares the performance of the PRU
with state-of-the-art methods. We can see that the
PRU achieves the best performance with fewer pa-
rameters.

Standard dropout: PRUs achieve either the
same or better performance than LSTMs. In par-
ticular, the performance of PRUs improves with
the increasing value of g. At g = 4, PRUs out-

perform LSTMs by about 4 points on the PTB
dataset and by about 3 points on the WT-2 dataset.
This is explained in part by the regularization ef-
fect of the grouped linear transformation (Figure
1). With grouped linear and pyramidal transfor-
mations, PRUs learn rich representations at very
high dimensional space while learning fewer pa-
rameters. On the other hand, LSTMs overfit to
the training data at such high dimensions and learn
1.4⇥ to 1.8⇥ more parameters than PRUs.

Advanced dropouts: With the advanced
dropouts, the performance of PRUs improves by
about 4 points on the PTB dataset and 7 points
on the WT-2 dataset. This further improves with
finetuning on the PTB (about 2 points) and WT-2
(about 1 point) datasets.

Comparison with state-of-the-art: For similar
number of parameters, the PRU with standard
dropout outperforms most of the state-of-the-art
methods by large margin on the PTB dataset (e.g.
RAN (Lee et al., 2017) by 16 points with 4M less
parameters, QRNN (Bradbury et al., 2017) by 16
points with 1M more parameters, and NAS (Zoph
and Le, 2017) by 1.58 points with 6M less param-
eters). With advanced dropouts, the PRU delivers
the best performance. On both datasets, the PRU
improves the perplexity by about 1 point while
learning 15-20% fewer parameters.

Inference: PRU is a drop-in replacement for
LSTM, therefore, it can improve language mod-
els with modern inference techniques such as dy-
namic evaluation (Krause et al., 2018). When we
evaluate PRU-based language models (only with
standard dropout) with dynamic evaluation on the
PTB test set, the perplexity of PRU (g = 4, k =
2, M = 1400) improves from 62.42 to 55.23 while
the perplexity of an LSTM (M = 1000) with simi-
lar settings improves from 66.29 to 58.79; suggest-
ing that modern inference techniques are equally
applicable to PRU-based language models.

4.3 Analysis

It is shown above that the PRU can learn represen-
tations at higher dimensionality with more gener-
alization power, resulting in performance gains for
language modeling. A closer analysis of the im-
pact of the PRU in a language modeling system
reveals several factors that help explain how the
PRU achieves these gains.
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WT-2 PTB

Model Params Val Test Params Val Test

Variational LSTM (Gal and Ghahramani, 2016) – – – 20 M – 78.6
CharCNN (Kim et al., 2016) – – – 19 M – 78.9
Pointer Sentinel-LSTM (Merity et al., 2017) – – – 19 M 72.4 70.9
RHN (Zilly et al., 2016) – – – 23 M 67.9 65.4
NAS Cell (Zoph and Le, 2017) – – – 25 M – 64.0
Variational LSTM - (Inan et al., 2017) 28 M 91.5 87 24 M 75.7 73.2
SRU - 6 layers (Lei et al., 2018) – – – 24 M 63.4 60.3
QRNN (Bradbury et al., 2017) – – – 18 M 82.1 78.3
RAN (Lee et al., 2017) – – – 22 M – 78.5
4-layer skip-connection LSTM (Melis et al., 2018) – – – 24 M 60.9 58.3
AWD-LSTM - (Merity et al., 2018) 33 M 69.1 66 24 M 60.7 58.8
AWD-LSTM - (Merity et al., 2018)-finetuned 33 M 68.6 65.8 24 M 60 57.3

Variational LSTM (Gal and Ghahramani, 2016) – – – 66 M – 73.4
NAS Cell (Zoph and Le, 2017) – – – 54 M – 62.4
Quantized LSTM - Full precision (Xu et al., 2018) – – 100.1 – – 89.8
Quantized LSTM - 2 bit (Xu et al., 2018) – – 106.1 – – 95.8

With standard dropout

LSTM (M = 1000) 29 M 78.93 75.08 20 M 68.57 66.29
LSTM (M = 1200) 35 M 77.93 74.48 26 M 69.17 67.16
LSTM (M = 1400) 42 M 77.55 74.44 33 M 70.88 68.55
Ours -PRU (g = 1, K = 2, M = 1000) 28 M 79.15 76.59 19 M 69.8 67.78
Ours -PRU (g = 2, K = 2, M = 1200) 28 M 76.62 73.79 19 M 67.17 64.92
Ours -PRU (g = 4, K = 2, M = 1400) 28 M 75.46 72.77 19 M 64.76 62.42

With advanced dropouts

Ours - AWD-PRU (g = 1, K = 2, M = 1000) 28 M 71.84 68.6 19 M 61.72 59.54
Ours - AWD-PRU (g = 2, K = 2, M = 1200) 28 M 68.57 65.7 19 M 60.81 58.65
Ours - AWD-PRU (g = 4, K = 2, M = 1400) 28 M 68.17 65.3 19 M 60.62 58.33
Ours - AWD-PRU (g = 4, K = 2, M = 1400)-finetuned 28 M 67.19 64.53 19 M 58.46 56.56

Table 1: Comparison of single model word-level perplexity of our model with state-of-the-art on vali-
dation and test sets of Penn Treebank and Wikitext-2 dataset. For evaluation, we select the model with
minimum validation loss. Lower perplexity value represents better performance.

Confidence: As exemplified in Table 2a, the
PRU tends toward more confident decisions, plac-
ing more of the probability mass on the top next-
word prediction than the LSTM. To quantify this
effect, we calculate the entropy of the next-token
distribution for both the PRU and the LSTM using
3687 contexts from the PTB validation set. Fig-
ure 3 shows a histogram of the entropies of the dis-
tribution, where bins of size 0.23 are used to effect
categories. We see that the PRU more often pro-
duces lower entropy distributions corresponding to
higher confidences for next-token choices. This is
evidenced by the mass of the red PRU curve lying
in the lower entropy ranges compared to the blue
LSTM’s curve. The PRU can produce confident
decisions in part because more information is en-
coded in the higher dimensional context vectors.

Variance in word embeddings: The PRU has
the ability to model individual words at differ-
ent resolutions through the pyramidal transform;
which provides multiple paths for the gradient to
the embedding layer (similar to multi-task learn-
ing) and improves the flow of information. When
considering the embeddings by part of speech, we
find that the pyramid level 1 embeddings exhibit
higher variance than the LSTM across all POS cat-
egories (Figure 4), and that pyramid level 2 em-
beddings show extremely low variance1. We hy-
pothesize that the LSTM must encode both coarse
group similarities and individual word differences
into the same vector space, reducing the space be-
tween individual words of the same category. The
PRU can rely on the subsampled embeddings to

1POS categories are computed using NLTK toolkit.
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Figure 3: Histogram of the entropies of next-token
distributions predicted by the PRU (mean 3.80)
and the LSTM (mean 3.93) on the PTB validation
set. Lower entropy values indicate higher confi-
dence decisions, which is desirable if decisions are
often correct.

Figure 4: Variance of learned word embeddings for
different categories of words on the PTB valida-
tion set. We compute the variance of a group of
embeddings as the average squared euclidean dis-
tance to their mean. Higher variance may allow for
better intra-category distinctions. The PRU with
pyramid levels 1 and 2 is shown.

account for coarse-grained group similarities, al-
lowing for finer individual word distinctions in the
embedding layer. This hypothesis is strengthened
by the entropy results described above: a model
which can make finer distinctions between indi-
vidual words can more confidently assign proba-
bility mass. A model that cannot make these dis-
tinctions, such as the LSTM, must spread its prob-
ability mass across a larger class of similar words.

Gradient-based analysis: Saliency analysis us-
ing gradients help identify relevant words in a
test sequence that contribute to the prediction
(Gevrey et al., 2003; Li et al., 2016; Arras et al.,
2017). These approaches compute the relevance
as the squared norm of the gradients obtained
through back-propagation. Table 2a visualizes the
heatmaps for different sequences. PRUs, in gen-
eral, give more relevance to contextual words than

LSTMs, such as southeast (sample 1), cost (sam-
ple 2), face (sample 4), and introduced (sample
5), which help in making more confident deci-
sions. Furthermore, when gradients during back-
propagation are visualized (Selvaraju et al., 2017)
(Table 2b), we find that PRUs have better gradient
coverage than LSTMs, suggesting PRUs use more
features than LSTMs that contributes to the deci-
sion. This also suggests that PRUs update more
parameters at each iteration which results in faster
training. Language model in (Merity et al., 2018)
takes 500 and 750 epochs to converge with PRU
and LSTM as a recurrent unit, respectively.

4.4 Ablation studies
In this section, we provide a systematic analysis
of our design choices. Our training methodology
is the same as described in Section 4.1 with the
standard dropouts. For a thorough understanding
of our design choices, we use a language model
with a single layer of PRU and fix the size of em-
bedding and hidden layers to 600. The word-level
perplexities are reported on the validation sets of
the PTB and the WT-2 datasets.

Pyramidal levels K and groups g: The two
hyper-parameters that control the trade-off be-
tween performance and number of parameters in
PRUs are the number of pyramidal levels K and
groups g. Figure 5 provides a trade-off between
perplexity and recurrent unit (RU) parameters2.

Variable K and fixed g: When we increase the
number of pyramidal levels K at a fixed value of
g, the performance of the PRU drops by about 1 to
4 points while reducing the total number of recur-
rent unit parameters by up to 15%. We note that
the PRU with K = 4 at g = 1 delivers similar per-
formance as the LSTM while learning about 15%
fewer recurrent unit parameters.

Fixed K and variable g: When we vary the
value of g at fixed number of pyramidal levels K,
the total number of recurrent unit parameters de-
creases significantly with a minimal impact on the
perplexity. For example, PRUs with K = 2 and
g = 4 learns 77% fewer recurrent unit parameters
while its perplexity (lower is better) increases by
about 12% in comparison to LSTMs. Moreover,
the decrease in number of parameters at higher
value of g enables PRUs to learn the representa-
tions in high dimensional space with better gener-
alizability (Table 1).

2# total params = # embedding params + # RU params
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Gradient-based sensitivity analysis heatmaps LSTM top-5 PRU top-5

Reference: the tremor was centered near <unk> southeast of san francisco

Reference: the massages last N minutes and typically cost about $ N.

Reference: he visits the same department every two or three weeks.

Reference: but pipeline companies estimate they still face $ N billion in liabilities from <unk> disputes including $ N billion.

Reference: chicken chains also are feeling more pressure from mcdonald’s corp. which introduced its <unk> <unk> this year.

(a) Gradient-based saliency analysis. Salience score is proportional to cell coverage in red.

LS
TM

PR
U

l

(b) Gradients during back-propagation for a test sequence (x-axis: dimensions of word vector, y-axis: test sequence)

Table 2: Qualitative comparison between the LSTM and the PRU: (a) Gradient-based saliency analysis
along with top-5 predicted words. (b) Gradients during back-propagation. For computing the gradients
for a given test sequence, the top-1 predicted word was used as the true predicted word. Best viewed in
color.

(a) PTB (b) WT-2

Figure 5: Impact of number of groups g and pyramidal levels K on the perplexity. Reduction in recur-
rent unit (RU) parameters is computed with respect to LSTM. Lower perplexity value represents better
performance.
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Transformations: Table 3 shows the impact of
different transformations of the input vector xt and
the context vector ht�1. We make following ob-
servations: (1) Using the pyramidal transforma-
tion for the input vectors improves the perplex-
ity by about 1 point on both the PTB and WT-
2 datasets while reducing the number of recur-
rent unit parameters by about 14% (see R1 and
R4). We note that the performance of the PRU
drops by up to 1 point when residual connections
are not used (R4 and R6). (2) Using the grouped
linear transformation for context vectors reduces
the total number of recurrent unit parameters by
about 75% while the performance drops by about
11% (see R3 and R4). When we use the pyrami-
dal transformation instead of the linear transfor-
mation, the performance drops by up to 2% while
there is no significant drop in the number of pa-
rameters (R4 and R5).

Subsampling: We set sub-sampling kernel 
(Eq. 3) with stride s = 2 and size of 3 (e = 1)
in four different ways: (1) Skip: We skip every
other element in the input vector. (2) Convolution:
We initialize the elements of  randomly from nor-
mal distribution and learn them during training the
model. We limit the output values between -1 and
1 using tanh activation function to make training
stable. (3) Avg. pool: We initialize the elements
of  to 1

3 . (4) Max pool: We select the maximum
value in the kernel window .

Table 4 compares the performance of the PRU
with different sampling methods. Average pooling
performs the best while skipping give comparable

PTB WT-2
Transformations PPL # Params PPL # Params
Context Input (total/RU) (total/RU)

R1 LT LT 74.80 8.8/2.9 89.30 22.8/2.9
R2 GLT GLT 84.38 6.5/0.5 104.13 20.46/0.5
R3 GLT PT 82.67 6.6/0.64 99.57 20.6/0.64
R4 LT PT 74.18 8.5/2.5 88.31 22.5/2.5
R5 PT PT 75.80 8.1/2.1 90.56 22.1/2.1

R6 LT PT† 75.61 8.5/2.5 89.27 22.5/2.5

Table 3: Impact of different transformations used
for processing input and context vectors (LT - lin-
ear transformation, PT - pyramidal transformation,
and GLT - grouped linear transformation). Here,
† represents that PT was used without residual
connection, PPL represents word-level perplexity
(lower is better), and the number of parameters are
in million. We used K=g=4 in our experiments.

Dataset Skip Max pool Avg. Pool Convolution

PTB 75.12 87.6 73.86 81.56
WT-2 89.24 107.63 88.88 93.16

Table 4: Impact of different sub-sampling methods
on the word-level perplexity (lower is better). We
used g=1 and K=4 in our experiments.

performance. Both of these methods enable the
network to learn richer word representations while
representing the input vector in different forms,
thus delivering higher performance. Surprisingly,
a convolution-based sub-sampling method does
not perform as well as the averaging method. The
tanh function used after convolution limits the
range of output values which are further limited
by the LSTM gating structure, thereby impeding
in the flow of information inside the cell. Max
pooling forces the network to learn representations
from high magnitude elements, thus distinguish-
ing features between elements vanishes, resulting
in poor performance.

5 Conclusion

We introduce the Pyramidal Recurrent Unit, which
better model contextual information by admitting
higher dimensional representations with good gen-
eralizability. When applied to the task of language
modeling, PRUs improve perplexity across several
settings, including recent state-of-the-art systems.
Our analysis shows that the PRU improves the
flow of gradient and expand the word embedding
subspace, resulting in more confident decisions.
Here we have shown improvements for language
modeling. In future, we plan to study the perfor-
mance of PRUs on different tasks, including ma-
chine translation and question answering. In ad-
dition, we will study the performance of the PRU
on language modeling with more recent inference
techniques, such as dynamic evaluation and mix-
ture of softmax.
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Abstract

Neural networks with tree-based sentence en-
coders have shown better results on many
downstream tasks. Most of existing tree-based
encoders adopt syntactic parsing trees as the
explicit structure prior. To study the effec-
tiveness of different tree structures, we re-
place the parsing trees with trivial trees (i.e.,
binary balanced tree, left-branching tree and
right-branching tree) in the encoders. Though
trivial trees contain no syntactic information,
those encoders get competitive or even better
results on all of the ten downstream tasks we
investigated. This surprising result indicates
that explicit syntax guidance may not be the
main contributor to the superior performances
of tree-based neural sentence modeling. Fur-
ther analysis show that tree modeling gives
better results when crucial words are closer
to the final representation. Additional experi-
ments give more clues on how to design an ef-
fective tree-based encoder. Our code is open-
source and available at https://github.
com/ExplorerFreda/TreeEnc.

1 Introduction

Sentence modeling is a crucial problem in natural
language processing (NLP). Recurrent neural net-
works with long short term memory (Hochreiter
and Schmidhuber, 1997) or gated recurrent units
(Cho et al., 2014) are commonly used sentence
modeling approaches. These models embed sen-
tences into a vector space and the resulting vectors
can be used for classification or sequence genera-
tion in the downstream tasks.

In addition to the plain sequence of hidden
units, recent work on sequence modeling proposes
to impose tree structure in the encoder (Socher
et al., 2013; Tai et al., 2015; Zhu et al., 2015).

⇤ Now at Toyota Technological Institute at Chicago,
freda@ttic.edu. This work was done when HS was an
intern researcher at ByteDance AI Lab.

These tree-based LSTMs introduce syntax tree as
an intuitive structure prior for sentence modeling.
They have already obtained promising results in
many NLP tasks, such as natural language infer-
ence (Bowman et al., 2016; Chen et al., 2017c) and
machine translation (Eriguchi et al., 2016; Chen
et al., 2017a,b; Zhou et al., 2017). Li et al. (2015)
empirically concludes that syntax tree-based sen-
tence modeling are effective for tasks requiring
relative long-term context features.

On the other hand, some works propose to
abandon the syntax tree but to adopt the latent
tree for sentence modeling (Choi et al., 2018;
Yogatama et al., 2017; Maillard et al., 2017;
Williams et al., 2018). Such latent trees are di-
rectly learned from the downstream task with re-
inforcement learning (Williams, 1992) or Gum-
bel Softmax (Jang et al., 2017; Maddison et al.,
2017). However, Williams et al. (2018) empiri-
cally show that, Gumbel softmax produces unsta-
ble latent trees with the same hyper-parameters
but different initializations, while reinforcement
learning (Williams et al., 2018) even tends to gen-
erate left-branching trees. Neither gives meaning-
ful latent trees in syntax, but each method still ob-
tains considerable improvements in performance.
This indicates that syntax may not be the main
contributor to the performance gains.

With the above observation, we bring up the fol-
lowing questions: What does matter in tree-based
sentence modeling? If tree structures are neces-
sary in encoding the sentences, what mostly con-
tributes to the improvement in downstream tasks?
We attempt to investigate the driving force of the
improvement by latent trees without syntax.

In this paper, we empirically study the effec-
tiveness of tree structures in sentence modeling.
We compare the performance of bi-LSTM and five
tree LSTM encoders with different tree layouts,
including the syntax tree, latent tree (from Gum-
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bel softmax) and three kinds of designed trivial
trees (binary balance tree, left-branching tree and
right-branching tree). Experiments are conducted
on 10 different tasks, which are grouped into three
categories, namely the single sentence classifica-
tion (5 tasks), sentence relation classification (2
tasks), and sentence generation (3 tasks). These
tasks depend on different granularities of features,
and the comparison among them can help us learn
more about the results. We repeat all the exper-
iments 5 times and take the average to avoid the
instability caused by random initialization of deep
learning models.

We get the following conclusions:
• Tree structures are helpful to sentence mod-

eling on classification tasks, especially for
tasks which need global (long-term) context
features, which is consistent with previous
findings (Li et al., 2015).

• Trivial trees outperform syntactic trees, indi-
cating that syntax may not be the main con-
tributor to the gains of tree encoding, at least
on the ten tasks we investigate.

• Further experiments shows that, given strong
priors, tree based methods give better results
when crucial words are closer to the final rep-
resentation. If structure priors are unavail-
able, balanced tree is a good choice, as it
makes the path distances between word and
sentence encoding to be roughly equal, and
in such case, tree encoding can learn the cru-
cial words itself more easily.

2 Experimental Framework

We show the applied encoder-classifier/decoder
framework for each group of tasks in Figure 1.
Our framework has two main components: the en-
coder part and the classifier/decoder part. In gen-
eral, models encode a sentence to a length-fixed
vector, and then applies the vector as the feature
for classification and generation.

We fix the structure of the classifier/decoder,
and propose to use five different types of tree
structures for the encoder part including:

• Parsing tree. We apply binary constituency
tree as the representative, which is widely
used in natural language inference (Bow-
man et al., 2016) and machine translation
(Eriguchi et al., 2016; Chen et al., 2017a).
Dependency parsing trees (Zhou et al., 2015,
2016a) are not considered in this paper.

LSTM/Tree LSTM

I  love my pet cat  .

<S>  I  love cats .

I  love cats .  </S>
(a) Encoder-decoder
framework for sentence
generation.

LSTM/Tree LSTM

I  love my pet cat   .

Softmax

Multi-Layer
Perceptron

(b) Encoder-classifier
framework for sentence
classification.

LSTM/Tree LSTM

I love my pet cat  .

LSTM/Tree LSTM

I love my pet dog  .

Multi-Layer
Perceptron

Softmax

(c) Siamese encoder-classifier framework for
sentence relation classification.

Figure 1: The encoder-classifier/decoder frame-
work for three different groups of tasks. We ap-
ply multi-layer perceptron (MLP) for classifica-
tion, and left-to-right decoders for generation in
all experiments.

• Binary balanced tree. To construct a binary
balanced tree, we recursively divide a group
of n leafs into two contiguous groups with
the size of dn

2 e and bn
2 c, until each group has

only one leaf node left.
• Gumbel trees, which are produced by

straight-forward Gumbel softmax models
(Choi et al., 2018). Note that Gumbel trees
are not stable to sentences (Williams et al.,
2018), and we only draw a sample among all
of them.

• Left-branching trees. We combine two
nodes from left to right, to construct a left-
branching tree, which is similar to those
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I  love  my  pet  cat  .

(a) Parsing tree.

I  love  my  pet  cat  .

(b) Balanced tree.

I  love  my  pet  cat  .

(c) Gumbel tree.

I  love  my  pet  cat  .

(d) Left-branching tree.

I  love  my  pet  cat  .

(e) Right-branching tree.

Figure 2: Examples of different tree structures for the encoder part.

generated by the reinforce based RL-SPINN
model (Williams et al., 2018).

• Right-branching trees. In contrast to left-
branching ones, nodes are combined from
right to left to form a right-branching tree.

We show an intuitive view of the five types of tree
structures in Figure 2. In addition, existing works
(Choi et al., 2018; Williams et al., 2018) show
that using hidden states of bidirectional RNNs as
leaf node representations (bi-leaf-RNN) instead of
word embeddings may improve the performance
of tree LSTMs, as leaf RNNs help encode context
information more completely. Our framework also
support leaf RNNs for tree LSTMs.

3 Description of Investigated Tasks

We conduct experiments on 10 different tasks,
which are grouped into 3 categories, namely the
single sentence classification (5 tasks), sentence
relation classification (2 tasks), and sentence gen-
eration (3 tasks). Each of the tasks is compat-
ible to the encoder-classifier/decoder framework
shown in Figure 1. These tasks cover a wide range
of NLP applications, and depend on different gran-
ularities of features.

Note that the datasets may use articles or para-
graphs as instances, some of which consist of only
one sentence. For each dataset, we only pick the
subset of single-sentence instances for our experi-
ments, and the detailed meta-data is in Table 1.

3.1 Sentence Classification
First, we introduce four text classification datasets
from Zhang et al. (2015), including AG’s News,
Amazon Review Polarity , Amazon Review Full
and DBpedia. Additionally, noticing that parsing
tree was shown to be effective (Li et al., 2015) on
the task of word-level semantic relation classifi-
cation (Hendrickx et al., 2009), we also add this
dataset to our selections.

AG’s News (AGN). Each sample in this dataset
is an article, associated with a label indicating its
topic: world, sports, business or sci/tech.

Amazon Review Polarity (ARP). The Ama-
zon Review dataset is obtained from the Stanford
Network Analysis Project (SNAP; McAuley and
Leskovec, 2013). It collects a large amount of
product reviews as paragraphs, associated with a
star rate from 1 (most negative) to 5 (most posi-
tive). In this dataset, 3-star reviews are dropped,
while others are classified into two groups: posi-
tive (4 or 5 stars) and negative (1 or 2 stars).

Amazon Review Full (ARF). Similar to the
ARP dataset, the ARF dataset is also collected
from Amazon product reviews. Labels in this
dataset are integers from 1 to 5.

DBpedia. DBpedia is a crowd-sourced commu-
nity effort to extract structured information from
Wikipedia (Lehmann et al., 2015). Zhang et al.
(2015) select 14 non-overlapping classes from
DBpedia 2014 to construct this dataset. Each
sample is given by the title and abstract of the
Wikipedia article, associated with the class label.

Word-Level Semantic Relation (WSR)
SemEval-2010 Task 8 (Hendrickx et al., 2009) is
to find semantic relationships between pairs of
nominals. Each sample is given by a sentence,
of which two nominals are explicitly indicated,
associated with manually labeled semantic rela-
tion between the two nominals. For example, the
sentence “My [apartment]e1 has a pretty large
[kitchen]e2 .” has the label component-whole(e2,
e1). Different from retrieving the path between
two labels (Li et al., 2015; Socher et al., 2013), we
feed the entire sentence together with the nominal
indicators (i.e., tags of e1 and e2) as words to the
framework. We also ignore the order of e1 and e2

in the labels given by the dataset. Thus, this task
turns to be a 10-way classification one.

3.2 Sentence Relation Classification
To evaluate how well a model can capture seman-
tic relation between sentences, we introduce the
second group of tasks: sentence relation classifi-
cation.

4633



Natural Language Inference (NLI). The Stan-
ford Natural Language Inference (SNLI) Corpus
(Bowman et al., 2015) is a challenging dataset
for sentence-level textual entailment. It has 550K
training sentence pairs, as well as 10K for devel-
opment and 10K for test. Each pair consists of two
relative sentences, associated with a label which is
one of entailment, contradiction and neutral.

Conjunction Prediction (Conj). Information
about the coherence relation between two sen-
tences is sometimes apparent in the text explicitly
(Miltsakaki et al., 2004): this is the case when-
ever the second sentence starts with a conjunction
phrase. Jernite et al. (2017) propose a method to
create conjunction prediction dataset from unla-
beled corpus. They create a list of phrases, which
can be classified into nine types, as conjunction in-
dicators. The object of this task is to recover the
conjunction type of given two sentences, which
can be used to evaluate how well a model captures
the semantic meaning of sentences. We apply the
method proposed by Jernite et al. (2017) on the
Wikipedia corpus to create our conj dataset.

3.3 Sentence Generation

We also include the sentence generation tasks in
our experiments, to investigate the representation
ability of different encoders over global (long-
term) context features. Note that our framework is
based on encoding, which is different from those
attention based approaches.

Paraphrasing (Para). Quora Question Pair
Dataset is a widely applied dataset to evaluate
paraphrasing models (Wang et al., 2017; Li et al.,
2017b). 1 In this work, we treat the paraphrasing
task as a sequence-to-sequence one, and evaluate
on it with our sentence generation framework.

Machine Translation (MT). Machine transla-
tion, especially cross-language-family machine
translation, is a complex task, which requires
models to capture the semantic meanings of sen-
tences well. We apply a large challenging English-
Chinese sentence translation task for this inves-
tigation, which is adopted by a variety of neural
translation work (Tu et al., 2016; Li et al., 2017a;
Chen et al., 2017a). We extract the parallel data

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

Dataset #Sentence #Cls Avg.
Train Dev Test Len

Sentence Classification

News 60K 6.7K 4.3K 4 31.5
ARP 128K 14K 16K 2 33.7
ARF 110K 12K 27K 5 33.8
DBpedia 106K 11K 15K 14 20.1
WSR 7.1K 891 2.7K 10 23.1

Sentence Relation

SNLI 550K 10K 10K 3 11.2
Conj 552K 10K 10K 9 23.3

Sentence Generation

Para 98K 2K 3K N/A 10.2
MT 1.2M 20K 80K N/A 34.1
AE 1.2M 20K 80K N/A 34.1

Table 1: Meta-data of the downstream tasks we
investigated. For each task, we list the quantity of
instances in train/dev/test set, the average length
(by words) of sentences (source sentence only for
generation task), as well as the number of classes
if applicable.

from the LDC corpora,2 selecting 1.2M from them
as our training set, 20K and 80K of them as our
development set and test set, respectively.

Auto-Encoding (AE). We extract the English
part of the machine translation dataset to form a
auto-encoding task, which is also compatible with
our encoder-decoder framework.

4 Experiments

In this section, we present our experimental re-
sults and analysis. Section 4.1 introduces our set-
up for all the experiments. Section 4.2 shows
the main results and analysis on ten downstream
tasks grouped into three classes, which can cover
a wide range of NLP applications. Regarding that
trivial tree based LSTMs perform the best among
all models, we draw two hypotheses, which are
i) right-branching tree benefits a lot from strong
structural priors; ii) balanced tree wins because
it fairly treats all words so that crucial informa-
tion could be more easily learned by the LSTM
gates automatically. We test the hypotheses in

2The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06
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Sentence Classification Sentence Relation Sentence Generation
Model AGN ARP ARF DBpedia WSR NLI Conj Para MT AE

Latent Trees

Gumbel 91.8 87.1 48.4 98.6 66.7 80.4 51.2 20.4 17.4 39.5
+bi-leaf-RNN 91.8 88.1 49.7 98.7 69.2 82.9 53.7 20.5 22.3 75.3

(Constituency) Parsing Trees

Parsing 91.9 87.5 49.4 98.8 66.6 81.3 52.4 19.9 19.1 44.3
+bi-leaf-RNN 92.0 88.0 49.6 98.8 68.6 82.8 53.4 20.4 22.2 72.9

Trivial Trees

Balanced 92.0 87.7 49.1 98.7 66.2 81.1 52.1 19.7 19.0 49.4
+bi-leaf-RNN 92.1 87.8 49.7 98.8 69.6 82.6 54.0 20.5 22.3 76.0

Left-branching 91.9 87.6 48.5 98.7 67.8 81.3 50.9 19.9 19.2 48.0
+bi-leaf-RNN 91.2 87.6 48.9 98.6 67.7 82.8 53.3 20.6 21.6 72.9

Right-branching 91.9 87.7 49.0 98.8 68.6 81.0 51.3 20.4 19.7 54.7
+bi-leaf-RNN 91.9 87.9 49.4 98.7 68.7 82.8 53.5 20.9 23.1 80.4

Linear Structures

LSTM 91.7 87.8 48.8 98.6 66.1 82.6 52.8 20.3 19.1 46.9
+bidirectional 91.7 87.8 49.2 98.7 67.4 82.8 53.3 20.2 21.3 67.0

Avg. Length 31.5 33.7 33.8 20.1 23.1 11.2 23.3 10.2 34.1 34.1

Table 2: Test results for different encoder architectures trained by a unified encoder-classifier/decoder
framework. We report accuracy (⇥100) for classification tasks, and BLEU score (Papineni et al., 2002;
word-level for English targets and char-level for Chinese targets) for generation tasks. Large is better for
both of the metrics. The best number(s) for each task are in bold. In addition, average sentence length
(in words) of each dataset is attached in the last row with underline.

Section 4.3. Finally, we compare the performance
of linear and tree LSTMs with three widely ap-
plied pooling mechanisms in Section 4.4.

4.1 Set-up

In experiments, we fix the structure of the clas-
sifier as a two-layer MLP with ReLU activation,
and the structure of decoder as GRU-based recur-
rent neural networks (Cho et al., 2014). 3 The
hidden-layer size of MLP is fixed to 1024, while
that of GRU is adapted from the size of sentence
encoding. We initialize the word embeddings with
300-dimensional GloVe (Pennington et al., 2014)
vectors.4 We apply 300-dimensional bidirectional
(600-dimensional in total) LSTM as leaf RNN
when necessary. We use Adam (Kingma and Ba,
2015) optimizer to train all the models, with the
learning rate of 1e-3 and batch size of 64. In the

3We observe that ReLU can significantly boost the perfor-
mance of Bi-LSTM on SNLI.

4http://nlp.stanford.edu/data/glove.
840B.300d.zip

training stage, we drop the samples with the length
of either source sentence or target sentence larger
than 64. We do not apply any regularization or
dropout term in all experiments except the task of
WSR, on which we tune dropout term with respect
to the development set. We generate the binary
parsing tree for the datasets without parsing trees
using ZPar (Zhang and Clark, 2011).5 More de-
tails are summarized in supplementary materials.

4.2 Main Results
In this subsection, we aim to compare the results
from different encoders. We do not include any
attention (Wang et al., 2016; Lin et al., 2017)
or pooling (Collobert and Weston, 2008; Socher
et al., 2011; Zhou et al., 2016b) mechanism here,
in order to avoid distractions and make the encoder
structure affects the most. We will further analyze
pooling mechanisms in Section 4.4.

Table 2 presents the performances of different
5https://www.sutd.edu.sg/cmsresource/

faculty/yuezhang/zpar.html
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encoders on a variety of downstream tasks, which
lead to the following observations:

Tree encoders are useful on some tasks. We
get the same conclusion with Li et al. (2015)
that tree-based encoders perform better on tasks
requiring long-term context features. Despit-
ing the linear structured left-branching and right-
branching tree encoders, we find that, tree-based
encoders generally perform better than Bi-LSTMs
on tasks of sentence relation and sentence genera-
tion, which may require relatively more long term
context features for obtaining better performances.
However, the improvements of tree encoders on
NLI and Para are relatively small, which may
be caused by that sentences of the two tasks are
shorter than others, and the tree encoder does not
get enough advantages to capture long-term con-
text in short sentences.

Trivial tree encoders outperform other en-
coders. Surprisingly, binary balanced tree en-
coder gets the best results on most tasks of clas-
sification and right-branching tree encoder tends
to be the best on sentence generation. Note that
binary balanced tree and right-branching tree are
only trivial tree structures, but outperform syntac-
tic tree and latent tree encoders. The latent tree
is really competitive on some tasks, as its struc-
ture is directly tuned by the corresponding tasks.
However, it only beats the binary balanced tree by
very small margins on NLI and ARP. We will give
analysis about this in Section 4.3.

Larger quantity of parameters is not the only
reason of the improvements. Table 2 shows
that tree encoders benefit a lot from adding leaf-
LSTM, which brings not only sentence level in-
formation to leaf nodes, but also more parame-
ters than the bi-LSTM encoder. However, left-
branching tree LSTM has a quite similar struc-
ture with linear LSTM, and it can be viewed as
a linear LSTM-on-LSTM structure. It has the
same amounts of parameters as other tree-based
encoders, but still falls behind the balance tree en-
coder on most of the tasks. This indicates that
larger quantity of parameters is at least not the
only reason for binary balance tree LSTM en-
coders to gain improvements against bi-LSTMs.

4.3 Why Trivial Trees Work Better?
Binary balanced tree and right-branching are triv-
ial ones, hardly containing syntax information. In

this section, we analyze why these trees achieve
high scores in deep.

4.3.1 Right Branching Tree Benefits from
Strong Structural Prior

We argue that right-branching trees benefit from
its strong structural prior. In sentence generation
tasks, models generate sentences from left to right,
which makes words in the left of the source sen-
tence more important (Sutskever et al., 2014). If
the encoder fails to memorize the left words, the
information about right words would not help due
to the error propagation. In right-branching trees,
left words of the sentence are closer to the final
representation, which makes the left words are
more easy to be memorized, and we call this struc-
ture prior. Oppositely, in the case of left-branching
trees, right words of the sentence are closer to the
representation.

To validate our hypothesis, we propose to vi-
sualize the Jacobian as word-level saliency (Shi
et al., 2018), which can be viewed as the contri-
bution of each word to the sentence encoding:

J(s,w) = krs(w)k1 =
X

i,j

| @si

@wj
|

where s = (s1, s2, · · · , sp)T denotes the embed-
ding of a sentence, and w = (w1, w2, · · · , wq)T

denotes embedding of a word. We can compute
the saliency score using backward propagation.
For a word in a sentence, higher saliency score
means more contribution to sentence encoding.

We present the visualization in Figure 3 using
the visualization tool from Lin et al. (2017). It
shows that right-branching tree LSTM encoders
tend to look at the left part of the sentence, which
is very helpful to the final generation performance,
as left words are more crucial. Balanced trees also
have this feature and we think it is because balance
tree treats these words fairly, and crucial informa-
tion could be more easily learned by the LSTM
gates automatically.

However, bi-LSTM and left-branching tree
LSTM also pay much attention to words in the
right (especially the last two words), which maybe
caused by the short path from the right words to
the root representation, in the two corresponding
tree structures.

Additionally, Table 3 shows that models trained
with the same hyper-parameters but different ini-
tializations have strong agreement with each other.
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Figure 3: Saliency visualization of words in learned MT and AE models. Darker means more important
to the sentence encoding.

Model MT AE

Balanced (BiLRNN) 93.1 96.9
Left-Branching (BiLRNN) 94.2 95.4
Right-Branching (BiLRNN) 92.3 95.1
Bi-LSTM 96.4 96.1

Table 3: Mean average Pearson correlation
(⇥100) across five models trained with same
hyper-parameters. For each testing sentence, we
compute the saliency scores of words. Cross-
model Pearson correlation can show the agreement
of two models on one sentence, and average Pear-
son correlation is computed through all sentences.
We report mean average Pearson correlation of the
5 ⇥ 4 model pairs.

Thus, “looking at the first words” is a stable be-
havior of balanced and right-branching tree LSTM
encoders in sentence generation tasks. So is “look-
ing at the first and the last words” for Bi-LSTMs
and left-branching tree LSTMs.

4.3.2 Binary Balanced Tree Benefits from
Shallowness

Compared to syntactic and latent trees, the only
advantage of balanced tree we can hypothesize is
that, it is shallower and more balanced than others.
Shallowness may lead to shorter path for informa-
tion propagation from leafs to the root representa-
tion, and makes the representation learning more
easy due to the reduction of errors in the propaga-
tion process. Balance makes the tree fairly treats
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Figure 4: ⇢-depth and ⇢-performance lines for
three tasks. There is a trend that the depth drops
and the performance raises with the growth of ⇢.

all leaf nodes, which makes it more easily to au-
tomatically select the crucial information over all
words in a sentence.

To test our hypothesis, we conduct the follow-
ing experiments. We select three tasks, on which
binary balanced tree encoder wins Bi-LSTMs with
a large margin (WSR, MT and AE). We gener-
ate random binary trees for sentences, while con-
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Figure 5: Length-performance lines for the further investigated tasks. We divide test instances into
several groups by length, and report the performance on each group respectively. Sentences with length
in [1, 8] are put to the first group, and the group i(i � 2) covers the range of [4i + 1, 4i + 4] in length. ]

trolling the depth using a hyper-parameter ⇢. We
start by a group with all words (nodes) in the sen-
tence. At each time, we separate n nodes to two
continuous groups sized (dn

2 e, bn
2 c) with proba-

bility ⇢, while those sized (n � 1, 1) with prob-
ability 1 � ⇢. Trees generated with ⇢ = 0 are
exactly left-branching trees, and those generated
with ⇢ = 1 are binary balanced trees. The ex-
pected node depth of the tree turns smaller with ⇢
varies from 0 to 1.

Figure 4 shows that, in general, trees with shal-
lower node depth have better performance on all
of the three tasks (for binary tree, shallower also
means more balanced), which validates our above
hypothesis that binary balanced tree gains the re-
ward from its shallow and balanced structures.

Additionally, Figure 5 demonstrates that bi-
nary balanced trees work especially better with
relative long sentences. As desired, on short-
sentence groups, the performance gap between
Bi-LSTM and binary balanced tree LSTM is not
obvious, while it grows with the test sentences
turning longer. This explains why tree-based en-
coder gives small improvements on NLI and Para,
because sentences on these two tasks are much
shorter than others.

4.4 Can Pooling Replace Tree Encoder?
Max pooling (Collobert and Weston, 2008; Zhao
et al., 2015), mean pooling (Conneau et al., 2017)
and self-attentive pooling (also known as self-
attention; Santos et al., 2016; Liu et al., 2016; Lin
et al., 2017) are three popular and efficient choices
to improve sentence encoding. In this part, we will
compare the performance of tree LSTMs and bi-
LSTM on the tasks of WSR, MT and AE, with
each pooling mechanism respectively, aiming to
demonstrate the role that pooling plays in sentence

I          love        cats            .
leaf states

hidden states

final encoding
𝑎1
𝑎2

𝑎3 𝑎6
𝑎5𝑎4 𝑎7

(a) Balanced tree.

I    love    cats      .

word embeddings

hidden states

final encoding
𝑎2

𝑎1 𝑎4𝑎3

(b) Bi-LSTM.

Figure 6: An illustration of the investigated self-
attentive pooling mechanism.

modeling, and validate whether tree encoders can
be replaced by pooling.

As shown in Figure 6, for linear LSTMs, we
apply pooling mechanism to all hidden states; as
for tree LSTMs, pooling is applied to all hidden
states and leaf states of tree LSTMs. Implementa-
tion details are summarized in the supplementary
materials.

Table 4 shows that max and attentive pooling
improve all the structures on the task of WSR, but
all the pooling mechanisms fail on MT and AE
that require the encoding to capture complete in-
formation of sentences, while pooling mechanism
may cause the loss of information through the pro-
cedure. The result indicates that, though pooling
mechanism is efficient on some tasks, it cannot
totally gain the advantages brought by tree struc-
tures. Additionally, we think the attention mech-
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Model WSR MT AE

Bi-LSTM 67.4 21.3 67.0
+max-pooling 71.8 " 21.6 " 48.0 #

+mean-pooling 64.3 # 21.8 " 47.8 #
+self-attention 72.5 " 21.2 # 60.4 #

Parsing (BiLRNN) 68.6 22.2 72.9
+max-pooling 69.7 " 21.8 # 48.3 #

+mean-pooling 58.0 # 21.2 # 50.7 #
+self-attention 72.2 " 21.5 # 69.1#

Balanced (BiLRNN) 69.6 22.3 76.0
+max-pooling 70.6 " 21.6 # 48.5 #

+mean-pooling 54.1 # 21.3 # 52.7 #
+self-attention 72.5 " 21.6 # 69.5 #

Left (BiLRNN) 67.7 21.6 72.9
+max-pooling 71.2 " 20.5 # 47.6 #

+mean-pooling 67.3 # 21.4 # 51.8 #
+self-attention 72.1 " 21.6 – 70.2 #

Right (BiLRNN) 68.7 23.1 80.4
+max-pooling 71.6 " 21.6 # 48.4 #

+mean-pooling 67.2 # 22.1 # 53.9 #
+self-attention 72.4 " 21.6 # 68.9 #

Table 4: Performance of tree and linear-structured
encoders with or without pooling, on the selected
three tasks. We report accuracy (⇥100), char-level
BLEU for MT and word-level BLEU for AE. All
of the tree models have bidirectional leaf RNNs
(BiLRNN). The best number(s) for each task are
in bold. The top and down arrows indicate the
increment or decrement of each pooling mecha-
nism, against the baseline of pure tree based en-
coder with the same structure.

anism has the benefits of the balanced tree mod-
eling, which also fairly treat all words and learn
the crucial parts automatically. The path from rep-
resentation to words in attention are even shorter
than the balanced tree. Thus the fact that attentive
pooling outperforms balanced trees on WSR is not
surprising to us.

5 Discussions

Balanced tree for sentence modeling has been
explored by Munkhdalai and Yu (2017) and
Williams et al. (2018) in natural language infer-
ence (NLI). However, Munkhdalai and Yu (2017)
focus on designing inter-attention on trees, instead
of comparing balanced tree with other linguistic
trees in the same setting. Williams et al. (2018) do

compare balanced trees with latent trees, but bal-
anced tree does not outperform the latent one in
their experiments, which is consistent with ours.
We analyze it in Section 4.2 that sentences in NLI
are too short for the balanced tree to show the ad-
vantage.

Levy et al. (2018) argue that LSTM works
for the gates ability to compute an element-wise
weighted sum. In such case, tree LSTM can also
be regarded as a special case of attention, espe-
cially for the balanced-tree modeling, which also
automatically select the crucial information from
all word representation. Kim et al. (2017) pro-
pose a tree structured attention networks, which
combine the benefits of tree modeling and atten-
tion, and the tree structures in their model are also
learned instead of the syntax trees.

Although binary parsing trees do not produce
better numbers than trivial trees on many down-
stream tasks, it is still worth noting that we are
not claiming the useless of parsing trees, which
are intuitively reasonable for human language
understanding. A recent work (Blevins et al.,
2018) shows that RNN sentence encodings di-
rectly learned from downstream tasks can capture
implicit syntax information. Their interesting re-
sult may explain why explicit syntactic guidance
does not work for tree LSTMs. In summary, we
still believe in the potential of linguistic features to
improve neural sentence modeling, and we hope
our investigation could give some sense to after-
wards hypothetical exploring of designing more
effective tree-based encoders.

6 Conclusions

In this work, we propose to empirically investigate
what contributes mostly in the tree-based neural
sentence encoding. We find that trivial trees with-
out syntax surprisingly give better results, com-
pared to the syntax tree and the latent tree. Fur-
ther analysis indicates that the balanced tree gains
from its shallow and balance properties compared
to other trees, and right-branching tree benefits
from its strong structural prior under the setting
of left-to-right decoder.
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Abstract

Most language modeling methods rely on
large-scale data to statistically learn the se-
quential patterns of words. In this pa-
per, we argue that words are atomic lan-
guage units but not necessarily atomic seman-
tic units. Inspired by HowNet, we use se-
memes, the minimum semantic units in hu-
man languages, to represent the implicit se-
mantics behind words for language model-
ing, named Sememe-Driven Language Model
(SDLM). More specifically, to predict the next
word, SDLM first estimates the sememe dis-
tribution given textual context. Afterwards, it
regards each sememe as a distinct semantic ex-
pert, and these experts jointly identify the most
probable senses and the corresponding word.
In this way, SDLM enables language mod-
els to work beyond word-level manipulation to
fine-grained sememe-level semantics, and of-
fers us more powerful tools to fine-tune lan-
guage models and improve the interpretabil-
ity as well as the robustness of language mod-
els. Experiments on language modeling and
the downstream application of headline gener-
ation demonstrate the significant effectiveness
of SDLM. Source code and data used in the
experiments can be accessed at https://
github.com/thunlp/SDLM-pytorch.

1 Introduction

Language Modeling (LM) aims to measure the
probability of a word sequence, reflecting its flu-
ency and likelihood as a feasible sentence in a
human language. Language Modeling is an es-
sential component in a wide range of natural lan-
guage processing (NLP) tasks, such as Machine
Translation (Brown et al., 1990; Brants et al.,
2007), Speech Recognition (Katz, 1987), Informa-
tion Retrieval (Berger and Lafferty, 1999; Ponte

⇤ Equal contribution.
† Correspondence author.
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Figure 1: Decoder of (a) Conventional Language
Model, (b) Sememe-Driven Language Model.

and Croft, 1998; Miller et al., 1999; Hiemstra,
1998) and Document Summarization (Rush et al.,
2015; Banko et al., 2000).

A probabilistic language model calculates the
conditional probability of the next word given
their contextual words, which are typically learned
from large-scale text corpora. Taking the sim-
plest language model for example, N-Gram es-
timates the conditional probabilities according to
maximum likelihood over text corpora (Jurafsky,
2000). Recent years have also witnessed the ad-
vances of Recurrent Neural Networks (RNNs) as
the state-of-the-art approach for language model-
ing (Mikolov et al., 2010), in which the context is
represented as a low-dimensional hidden state to
predict the next word.

Those conventional language models including
neural models typically assume words as atomic
symbols and model sequential patterns at word
level. However, this assumption does not neces-
sarily hold to some extent. Let us consider the fol-
lowing example sentence for which people want to
predict the next word in the blank,

The U.S. trade deficit last year is initially
estimated to be 40 billion .

People may first realize a unit should be filled in,
then realize it should be a currency unit. Based on
the country this sentence is talking about, the U.S.,
one may confirm it should be an American cur-
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rency unit and predict the word dollars. Here, the
unit, currency, and American can be regarded as
basic semantic units of the word dollars. This pro-
cess, however, has not been explicitly taken into
consideration by conventional language models.
That is, although in most cases words are atomic
language units, words are not necessarily atomic
semantic units for language modeling. We ar-
gue that explicitly modeling these atomic semantic
units could improve both the performance and the
interpretability of language models.

Linguists assume that there is a limited close
set of atomic semantic units composing the se-
mantic meanings of an open set of concepts (i.e.
word senses). These atomic semantic units are
named sememes (Dong and Dong, 2006).i Since
sememes are naturally implicit in human lan-
guages, linguists have devoted much effort to ex-
plicitly annotate lexical sememes for words and
build linguistic common-sense knowledge bases.
HowNet (Dong and Dong, 2006) is one of the
representative sememe knowledge bases, which
annotates each Chinese word sense with its se-
memes. The philosophy of HowNet regards the
parts and attributes of a concept can be well rep-
resented by sememes. HowNet has been widely
utilized in many NLP tasks such as word similar-
ity computation (Liu, 2002) and sentiment analy-
sis (Fu et al., 2013). However, less effort has been
devoted to exploring its effectiveness in language
models, especially neural language models.

It is non-trivial for neural language models to
incorporate discrete sememe knowledge, as it is
not compatible with continuous representations
in neural models. In this paper, we propose
a Sememe-Driven Language Model (SDLM) to
leverage lexical sememe knowledge. In order to
predict the next word, we design a novel sememe-
sense-word generation process: (1) We first esti-
mate sememes’ distribution according to the con-
text. (2) Regarding these sememes as experts, we
propose a sparse product of experts method to se-
lect the most probable senses. (3) Finally, the dis-
tribution of words could be easily calculated by
marginalizing out the distribution of senses.

We evaluate the performance of SDLM on the
language modeling task using a Chinese news-

i Note that although sememes are defined as the mini-
mum semantic units, there still exist several sememes for
capturing syntactic information. For example, the word
å “with” corresponds to one specific sememe �˝�
“FunctWord”.

paper corpus People’s Daily ii (Renmin Ribao),
and also on the headline generation task using the
Large Scale Chinese Short Text Summarization
(LCSTS) dataset (Hu et al., 2015). Experimen-
tal results show that SDLM outperforms all those
data-driven baseline models. We also conduct case
studies to show that our model can effectively pre-
dict relevant sememes given context, which can
improve the interpretability and robustness of lan-
guage models.

2 Background

Language models target at learning the
joint probability of a sequence of words
P (w1, w2, · · · , wn), which is usually factor-
ized as P (w1, w2, · · · , wn) =

Qn
t=1 P (wt|w<t).

Bengio et al. (2003) propose the first Neural Lan-
guage Model as a feed-forward neural network.
Mikolov et al. (2010) use RNN and a softmax
layer to model the conditional probability. To be
specific, it can be divided into two parts in series.
First, a context vector gt is derived from a deep
recurrent neural network. Then, the probability
P (wt+1|wt) = P (wt+1;gt) is derived from a
linear layer followed by a softmax layer based
on gt. Let RNN(·, ·; ✓NN) denote the deep
recurrent neural network, where ✓NN denotes the
parameters. The first part can be formulated as

gt = RNN(xwt , {ht�1
l }L

l=1; ✓NN). (1)

Here we use subscripts to denote layers and su-
perscripts to denote timesteps. Thus ht

l represents
the hidden state of the L-th layer at timestep t.
xwt 2 R

H0 is the input embedding of word wt

where H0 is the input embedding size. We also
have gt 2 R

H1 , where H1 is the dimension of the
context vector.

Supposing that there are N words in the lan-
guage we want to model, the second part can be
written as

P (wt+1;gt) =
exp(gtTwwt+1)

P
w0 exp(gtTww0)

, (2)

where ww is the output embedding of word w and
w1,w2, · · ·wN 2 R

H2 . Here H2 is the output
embedding size. For a conventional neural lan-
guage model, H2 always equals to H1.

ii http://paper.people.com.cn/rmrb/
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Figure 2: An example of the architecture of our model.

Given the corpus {wt}n
t=1, the loss function is

defined by the negative log-likelihood:

L(✓) = � 1

n

nX

t=1

log P (wt|w<t; ✓), (3)

where ✓ = {{xi}N
i=1, {wi}N

i=1, ✓NN} is the set of
parameters that are needed to be trained.

3 Methodology

In this section, we present our SDLM which uti-
lizes sememe information to predict the probabil-
ity of the next word. SDLM is composed of three
modules in series: Sememe Predictor, Sense Pre-
dictor and Word Predictor. The Sememe Predictor
first takes the context vector as input and assigns a
weight to each sememe. Then each sememe is re-
garded as an expert and makes predictions about
the probability distribution over a set of senses
in the Sense Predictor. Finally, the probability of
each word is obtained in the Word Predictor.

Here we use an example shown in Figure 2 to
illustrate our architecture. Given context ⌘(�
�� “In the orchard, I pick”, the actual next word
could be �� “apples”. From the context, espe-
cially the word�� “orchard” and� “pick”, we
can infer that the next word probably represents
a kind of fruit. So the Sememe Predictor assigns
a higher weight to the sememe 4� “fruit” (0.9)
and lower weights to irrelevant sememes like 5
� “computer” (0.1). Therefore in the Sense Pre-
dictor, the sense�� (4�) “apple (fruit)” is as-
signed a much higher probability than the sense�
� (5�) “apple (computer)”. Finally, the prob-
ability of the word �� “apple” is calculated as
the sum of the probabilities of its senses�� (4

�� 
“apple”

�
� 
“PatternVal”

�� 
“computer”

� 
“able”

�� 
“bring”

	�� 
“SpeBrand”

�� 
“fruit”

modifier modifier

Sense #1:  
��(��) 

“apple(computer)”

Sense #2:  
��(��) 

“apple(fruit)”

word

Figure 3: An example of the word-sense-sememe hier-
archy.

�) “apple(fruit)” and �� (5�) “apple (com-
puter)”.

In the following subsections, we first introduce
the word-sense-sememe hierarchy in HowNet, and
then give details about our SDLM.

3.1 Word-Sense-Sememe Hierarchy
We also use the example of “apple” to illustrate
the word-sense-sememe hierarchy. As shown in
Figure 3, the word �� “apple” has two senses,
one is the Apple brand, the other is a kind of fruit.
Each sense is annotated with several sememes or-
ganized in a hierarchical structure. More specifi-
cally, in HowNet, sememes “PatternVal”, “bring”,
“SpeBrand”, “computer” and “able” are annotated
with the word “apple” and organized in a tree
structure. In this paper, we ignore the structural
relationship between sememes. For each word, we
group all its sememes as an unordered set.

We present the notations that we use in the fol-
lowing subsections as follows. We define the over-
all sememe, sense, and word set as E , S and W .
And we suppose the corpus contains K = |E| se-
memes, M = |S| senses and N = |W| words.
For word w 2 W , we denote its corresponding
sense set as S(w). For sense s 2 S(w), we de-
note its corresponding sememes as an unordered
set E(s) = {en1 , en2 , · · · , enk} ⇢ E = {ek}K

k=1.

3.2 Sememe Predictor
The Sememe Predictor takes the context vec-
tor g 2 R

H1 as input and assigns a weight to
each sememe. We assume that given the context
w1, w2, · · · , wt�1, the events that word wt con-
tains sememe ek (k 2 {1, 2, · · · , K}) are indepen-
dent, since the sememe is the minimum semantic
unit and there is no semantic overlap between any
two different sememes. For simplicity, we ignore
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the superscript t. We design the Sememe Predic-
tor as a linear decoder with the sigmoid activation
function. Therefore, qk, the probability that the
next word contains sememe ek, is formulated as

qk = P (ek|g) = �(gT
vk + bk), (4)

where vk 2 R
H1 , bk 2 R are trainable parameters,

and �(·) denotes the sigmoid activation function.

3.3 Sense Predictor and Word Predictor
The architecture of the Sense Predictor is moti-
vated by Product of Experts (PoE) (Hinton, 1999).
We regard each sememe as an expert that only
makes predictions on the senses connected with it.
Let D(ek) denote the set of senses that contain se-
meme ek, the k-th expert. Different from conven-
tional neural language models, which directly use
the inner product of the context vector g 2 R

H1

and the output embedding ww 2 R
H2 for word

w to generate the score for each word, we use
�(k)(g,w) to calculate the score given by expert
ek. And we choose a bilinear function parame-
terized with a matrix Uk 2 R

H1⇥H2 as a straight
implementation of �(k)(·, ·):

�(k)(g,w) = g
T
Ukw. (5)

Let ws denote the output embedding of sense
s. The score of sense s provided by sememe ex-
pert ek can be written as �(k)(g,ws). Therefore,
P (ek)(s|g), the probability of sense s given by ex-
pert ek, is formulated as

P (ek)(s|g) =
exp(qkCk,s�

(k)(g,ws))P
s02D

(e
k
) exp(qkCk,s0�(k)(g,ws0))

, (6)

where Ck,s is a normalization constant because
sense s is not connected to all experts (the
connections are sparse with approximately �N
edges, � < 5). Here we can choose either
Ck,s = 1/|E(s)| (left normalization) or Ck,s =

1/
p

|E(s)||D(ek)| (symmetric normalization).
In the Sense Predictor, qk can be viewed as

a gate which controls the magnitude of the term
Ck,s�(k)(g,wws), thus control the flatness of the
sense distribution provided by sememe expert ek.
Consider the extreme case when qk ! 0, the pre-
diction will converge to the discrete uniform dis-
tribution. Intuitively, it means that the sememe ex-
pert will refuse to provide any useful information
when it is not likely to be related to the next word.

Finally, we summarize the predictions on sense
s by taking the product of the probabilities given

by relevant experts and then normalize the result;
that is to say, P (s|g), the probability of sense s,
satisfies

P (s|g) /

Y

ek2E(s)

P (ek)(s|g). (7)

Using Equation 5 and 6, we can formulate
P (s|g) as

P (s|g) =
exp(

P
ek2E(s) qkCk,sg

T
Ukws)P

s0 exp(
P

ek2E(s0) qkCk,s0gTUkws0)
. (8)

It should be emphasized that all the supervision
information provided by HowNet is embodied in
the connections between the sememe experts and
the senses. If the model wants to assign a high
probability to sense s, it must assign a high prob-
ability to some of its relevant sememes. If the
model wants to assign a low probability to sense
s, it can assign a low probability to its relevant
sememes. Moreover, the prediction made by se-
meme expert ek has its own tendency because of
its own �(k)(·, ·). Besides, the sparsity of con-
nections between experts and senses is also de-
termined by HowNet itself. For our dataset, on
average, a word is connected with 3.4 sememe ex-
perts and each sememe expert will make predic-
tions about 22 senses.

As illustrated in Figure 2, in the Word Predic-
tor, we get P (w|g), the probability of word w,
by summing up probabilities of corresponding s
given by the Sense Predictor, that is

P (w|g) =
X

s2S(w)

P (s|g). (9)

3.4 Implementation Details
Basis Matrix Actually, HowNet contains K ⇡
2000 sememes. In practice, we cannot directly in-
troduce K ⇥ H1 ⇥ H2 parameters, which might
be computationally infeasible and lead to overfit-
ting. To address this problem, we apply a weight-
sharing trick called the basis matrix. We use R
basis matrices and their weighted sum to estimate
Uk:

Uk =
RX

r=1

↵k,rQr, (10)

where Qr 2 R
H1⇥H2 , ↵k,r > 0 are trainable pa-

rameters, and
PR

r=1 ↵k,r = 1.
Weight Tying To incorporate the weight tying
strategy (Inan et al., 2017; Press and Wolf, 2017),
we use the same output embedding for multiple
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senses of a word. To be specific, the sense output
embedding ws for each s 2 S(w) is the same as
the word input embedding xw.

4 Experiments

We evaluate our SDLM on a Chinese language
modeling dataset, namely People’s Daily based on
perplexity.iii Furthermore, to show that our SDLM
structure can be a generic Chinese word-level de-
coder for sequence-to-sequence learning, we con-
duct a Chinese headline generation experiment on
the LCSTS dataset. Finally, we explore the inter-
pretability of our model with cases, showing the
effectiveness of utilizing sememe knowledge.

4.1 Language Modeling
Dataset
We choose the People’s Daily Corpus, which is
widely used for Chinese NLP tasks, as the re-
source. It contains one month’s news text from
People’s Daily (Renmin Ribao). Taking Penn
Treebank (PTB) (Marcus et al., 1993) as a ref-
erence, we build a dataset for Chinese language
modeling based on the People’s Daily Corpus with
734k, 10k and 19k words in the training, valida-
tion and test set. After the preprocessing similar
to (Mikolov et al., 2010) (see Appendix A), we get
our dataset and the final vocabulary size is 13,476.

Baseline
As for baselines, we consider three kinds of neural
language modeling architectures with LSTM cells:
simple LSTM, Tied LSTM and AWD-LSTM.
LSTM and Tied LSTM Zaremba et al. (2014)
use the dropout strategy to prevent overfitting for
neural language models and adopt it to two-layer
LSTMs with different embedding and hidden size:
650 for medium LSTM, and 1500 for large LSTM.
Employing the weight tying strategy, we get Tied
LSTM with better performance. We set LSTM and
Tied LSTM of medium and large size as our base-
line models and use the code from PyTorch exam-
plesiv as their implementations.
AWD-LSTM Based on several strategies for reg-
ularizing and optimizing LSTM-based language
models, Merity et al. (2018) propose AWD-LSTM

iii Although we only conduct experiments on Chinese cor-
pora, we argue that this model has the potential to be ap-
plied to other languages in the light of works on construc-
tion sememe knowledge bases for other languages, such
as (Qi et al., 2018).

iv https://github.com/pytorch/examples/
tree/master/word_language_model

as a three-layer neural network, which serves as a
very strong baseline for word-level language mod-
eling. We build it with the code released by the
authorsv.
Variants of Softmax Meanwhile, to compare our
SDLM with other language modeling decoders,
we set cHSM (Class-based Hierarchical Softmax)
(Goodman, 2001), tHSM (Tree-based Hierarchi-
cal Softmax) (Mikolov et al., 2013) and MoS
(Mixture of Softmaxes) (Yang et al., 2018) as
the baseline add-on structures to the architectures
above.

Experimental Settings
We apply our SDLM and other variants of softmax
structures to the architectures mentioned above:
LSTM (medium / large), Tied LSTM (medium /
large) and AWD-LSTM. MoS and SDLM are only
applied on the models that incorporate weight ty-
ing, while tHSM is only applied on the models
without weight tying, since it is not compatible
with this strategy.

For a fair comparison, we train these mod-
els with same experimental settings and conduct
a hyper-parameter search for baselines as well
as our models (the search setting and the opti-
mal hyper-parameters can be found in Appendix
C.1). We keep using these hyper-parameters in our
SDLM for all architectures. It should be empha-
sized that we use the SGD optimizer for all archi-
tectures, and we decrease the learning rate by a
factor of 2 if no improvement is observed on the
validation set. We uniformly initialize the word
embeddings, the class embeddings for cHSM and
the non-leaf embeddings for tHSM in [�0.1, 0.1].
In addition, we set R, the number of basis matri-
ces, to 5 in Tied LSTM architecture and to 10 in
AWD-LSTM architecture. We choose the left nor-
malization strategy because it performs better.

Experimental Results
Table 1 shows the perplexity on the validation and
test set of our models and the baseline models.
From Table 1, 2, and 3, we can observe that:
1. Our models outperform the corresponding base-
line models of all structures, which indicates the
effectiveness of our SDLM. Moreover, our SDLM
not only consistently outperforms state-of-the-art
MoS model, but also offers much better inter-
pretability (as described in Sect. 4.3), which

v https://github.com/salesforce/
awd-lstm-lm
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makes it possible to interpret the prediction pro-
cess of the language model. Note that under a fair
comparison, we do not see MoS’s improvement
over AWD-LSTM while our SDLM outperforms
it by 1.20 with respect to perplexity on the test set.
2. To further locate the performance improve-
ment of our SDLM, we study the perplexity of
the single-sense words and multi-sense words sep-
arately on Tied LSTM (medium) and Tied LSTM
(medium) + SDLM. Improvements with respect to
perplexity are presented in Table 2. The perfor-
mance on both single-sense words and multi-sense
words gets improved while multi-sense words
benefit more from SDLM structure because they
have richer sememe information.
3. In Table 3 we study the perplexity of words
with different mean number of sememes. We can
see that our model outperforms baselines in all
cases and is expected to benefit more as the mean
number of sememes increases.

Model #Paras Validation Test
LSTM (medium) 24M 116.46 115.51

+ cHSM 24M 129.12 128.12
+ tHSM 24M 151.00 150.87

Tied LSTM (medium) 15M 105.35 104.67
+ cHSM 15M 116.78 115.66
+ MoS 17M 98.47 98.12
+ SDLM 17M 97.75 97.32

LSTM (large) 76M 112.39 111.66
+ cHSM 76M 120.07 119.45
+ tHSM 76M 140.41 139.61

Tied LSTM (large) 56M 101.46 100.71
+ cHSM 56M 108.28 107.52
+ MoS 67M 94.91 94.40
+ SDLM 67M 94.24 93.60

AWD-LSTMiv 26M 89.35 88.86
+ MoS 26M 92.98 92.76
+ SDLM 27M 88.16 87.66

Table 1: Single model perplexity on validation and test
sets on the People’s Daily dataset.

#senses = 1 #senses > 1
Baseline ppl 93.21 121.18
SDLM ppl 87.22 111.88
�ppl 5.99 9.29
�ppl/Baseline ppl 6.4% 7.8%

Table 2: Perplexity of words with different number of
senses on the test set.

We also test the robustness of our model by ran-
domly removing 10% sememe-sense connections
in HowNet. The test perplexity for Tied LSTM

iv We find that multi-layer AWD-LSTM has problems con-
verging when adopting cHSM, so we skip that result.

[1, 2) [2, 4) [4, 7) [7, 14)
Baseline ppl 71.56 161.32 557.26 623.71
SDLM ppl 68.47 114.95 465.29 476.45
�ppl 3.09 16.36 91.98 147.25
�ppl/Baseline ppl 4.3% 10.1% 16.5% 23.61%

Table 3: Perplexity of words with different mean num-
ber of sememes on the test set.

(medium) + SDLM slightly goes up to 97.67, com-
pared to 97.32 with a complete HowNet, which
shows that our model is robust to tiny incomplete-
ness of annotations. However, the performance
of out model is still largely dependent upon the
accuracy of sememe annotations. As HowNet
is continuously updated, we expect our model to
perform better with sememe knowledge of higher
quality.

4.2 Headline Generation
Dataset
We use the LCSTS dataset to evaluate our SDLM
structure as the decoder of the sequence-to-
sequence model. As its author suggests, we di-
vide the dataset into the training set, the validation
set and the test set, whose sizes are 2.4M, 8.7k
and 725 respectively. Details can be found in Ap-
pendix B.

Models
For this task, we consider two models for compar-
ison.

RNN-context As described in (Bahdanau et al.,
2015), RNN-context is a basic sequence-to-
sequence model with a bi-LSTM encoder, an
LSTM decoder and attention mechanism adopted.
The context vector is concatenated with the word
embedding at each timestep when decoding. It’s
widely used for sequence-to-sequence learning, so
we set it as the baseline model.

RNN-context-SDLM Based on RNN-context,
we substitute the decoder with our proposed
SDLM and name it RNN-context-SDLM.

Experimental Settings
We implement our models with PyTorch, on top of
the OpenNMT librariesv. For both models, we set
the word embedding size to 250, the hidden unit
size to 250, the vocabulary size to 40000, and the
beam size of the decoder to 5. For RNN-context-
SDLM, we set the number of basis matrices to
3. We conduct a hyper-parameter search for both

v http://opennmt.net
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models (see Appendix C.2 for settings and optimal
hyper-parameters).

Experimental Results
Following previous works, we report the F1-score
of ROUGE-1, ROUGE-2, and ROUGE-L on the
test set. Table 4 shows that our model outperforms
the baseline model on all metrics. We attribute the
improvement to the use of SDLM structure.

Words in headlines do not always appear in the
corresponding articles. However, words with the
same sememes have a high probability to appear in
the articles intuitively. Therefore, a probable rea-
son for the improvement is that our model could
predict sememes highly relevant to the article, thus
generate more accurate headlines. This could be
corroborated by our case study.

Model Rouge-1 Rouge-2 Rouge-L
RNN-context 37.5 25.0 34.9
RNN-context-SDLM 38.9 26.2 36.2

Table 4: ROUGE scores of both models on the LCSTS
test set.

4.3 Case Study
The above experiments demonstrate the effective-
ness of our SDLM. Here we present some samples
from the test set of the People’s Daily Corpus in
Table 5 as well as the LCSTS dataset in Table 6
and conduct further analysis.

For each example of language modeling, given
the context of previous words, we list the Top
5 words and Top 5 sememes predicted by our
SDLM. The target words and the sememes anno-
tated with them in HowNet are blackened. Note
that if the target word is an out-of-vocabulary

Example (1)
ªté˝�����e�°: <N> ⇥
The U.S. trade deficit last year is initially estimated to be <N> .

Top 5 word prediction
ééé��� “dollar” � “,” ⇥ “.”
Â� “yen” å “and”

Top 5 sememe prediction
���⇢⇢⇢ “commerce” ������ “finance” UUUMMM “unit”
⇢� “amount” ◆ “proper name”

Example (2)
� �⌃ Ú��Ü�y��⇥
Albanian Prime Minister has signed an order.

Top 5 word prediction
Ö “inside” <unk> ( “at”
� “tower” å “and”

Top 5 sememe prediction
��� “politics” ∫∫∫ “person” �� “flowers”
������ “undertake” 4� “waters”

Table 5: Some examples of word and sememe predic-
tions on the test set of the People’s Daily Corpus.

(OOV) word, helpful sememes that are related to
the target meaning are blackened.

Sememes annotated with the corresponding
sense of the target word é� “dollar” are UM
“unit”, �⇢ “commerce”, �� “finance”, '�
“money” andé˝ “US”. In Example (1), the tar-
get word “dollar” is predicted correctly and most
of its sememes are activated in the predicting pro-
cess. It indicates that our SDLM has learned the
word-sense-sememe hierarchy and used sememe
knowledge to improve language modeling.

Example (2) shows that our SDLM can provide
interpretable results on OOV word prediction with
sememe information associated with it. The tar-
get word here should be the name of the Albanian
prime minister, which is out of vocabulary. But
with our model, one can still conclude that this
word is probably relevant to the sememe “poli-
tics”, “person”, “flowers”, “undertake” and “wa-
ters”, most of which characterize the meaning of
this OOV word – the name of a politician. This
feature can be helpful when the vocabulary size is
limited or there are many terminologies and names
in the corpus.

For the example of headline generation, given
the article and previous words, when generating
the word � “student”, except the sememe ��
“predict”, all other Top 5 predicted sememes have
high relevance to either the predicted word or the
context. To be specific, the sememef` “study”
is annotated with � “student” in HowNet. �
� “exam” indicates “college entrance exam”. �
ö�P “brand” indicates “BMW”. And ÿI
“higher” indicates “higher education”, which is
the next step after this exam. We can conclude that
with sememe knowledge, our SDLM structure can
extract critical information from both the given ar-
ticle and generated words explicitly and produce
better summarization based on it.

5 Related Work

Neural Language Modeling. RNNs have
achieved state-of-the-art performance in the
language modeling task since Mikolov et al.
(2010) first apply RNNs for language modeling.
Much work has been done to improve RNN-based
language modeling. For example, a variety of
work (Zaremba et al., 2014; Gal and Ghahramani,
2016; Merity et al., 2017, 2018) introduces many
regularization and optimization methods for
RNNs. Based on the observation that the word
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Article
8Â��∞�����f¬†ÿ�Ñ���
�: \�´���������°6\�K
:������⌃s����������
0��⇥�„���� “`ÂS⌘�/�J
�`1�⌘� ”ÓM��∫��Ú´��⇥
On the 8th in Fuxin, a male student drove a BMW to
take the college entrance exam and was caught cheating.
Because the teacher confiscated his mobile phone, he
kicked the teacher from the last row to the podium and
shouted: ”Do you know who my dad is? How dare you
catch me!” Currently, this student has been detained.

Gold
��ÿ�\�˝������`ÂS⌘�/
��
In the college entrance exam, a male student caught
cheating hit the teacher: Do you know who my dad is?

RNN-context-SDLM
ÿ��\�´��`ÂS⌘�/�J�
In the college entrance exam, a student was caught
cheating: Do you know who my dad is?

Top 5 sememe prediction
������ “exam” fff`̀̀ “study” ���ööö���PPP “brand”
�� “predict” ÿÿÿIII “higher”

Table 6: An example of generated headlines on the LC-
STS test set.

appearing in the previous context is more likely to
appear again, some work (Grave et al., 2017a,b)
proposes to use cache for improvements. In this
paper, we mainly focus on the output decoder,
the module between the context vector and the
predicted probability distribution. Similar to our
SDLM, Yang et al. (2018) propose a high-rank
model which adopts a Mixture of Softmaxes
structure for the output decoder. However,
our model is sememe-driven with each expert
corresponding to an interpretable sememe.

Hierarchical Decoder Since softmax computa-
tion on large vocabulary is time-consuming, there-
fore being a dominant part of the model’s com-
plexity, various hierarchical softmax models have
been proposed to address this issue. These mod-
els can be categorized to class-based models and
tree-based models according to their hierarchi-
cal structure. Goodman (2001) first proposes the
class-based model which divides the whole vocab-
ulary into different classes and uses a hierarchi-
cal softmax decoder to model the probability as
P(word) = P(word|class)P(class), which is sim-
ilar to our model. For the tree-based models, all
words are organized in a tree structure and the
word probability is calculated as the probability of
always choosing the correct child along the path
from the root node to the word node. While Morin
and Bengio (2005) utilize knowledge from Word-

Net to build the tree, Mnih and Hinton (2008)
build it in a bootstrapping way and Mikolov et al.
(2013) construct a Huffman Tree based on word
frequencies. Recently, Jiang et al. (2017) reform
the tree-based structure to make it more efficient
on GPUs. The major differences between our
model and theirs are the purpose and the moti-
vation. Our model targets at improving the per-
formance and interpretability of language model-
ing using external knowledge in HowNet. There-
fore, we take its philosophy of the word-sense-
sememe hierarchy to design our hierarchical de-
coder. Meanwhile, the class-based and tree-based
models are mainly designed to speed up the soft-
max computation in the training process.

Sememe. Recently, there are a lot of works con-
centrating on utilizing sememe knowledge in tra-
ditional natural language processing tasks. For ex-
ample, Niu et al. (2017) use sememe knowledge
to improve the quality of word embeddings and
cope with the problem of word sense disambigua-
tion. Xie et al. (2017) apply matrix factorization to
predict sememes for words. Jin et al. (2018) im-
prove their work by incorporating character-level
information. Our work extends the previous works
and tries to combine word-sense-sememe hierar-
chy with the sequential model. To be specific,
this is the first work to improve the performance
and interpretability of Neural Language Modeling
with sememe knowledge.

Product of Experts. As Hinton (1999, 2002)
propose, the final probability can be calculated as
the product of probabilities given by experts.Gales
and Airey (2006) apply PoE to the speech recog-
nition where each expert is a Gaussian mixture
model. Unlike their work, in our SDLM, each
expert is mapped to a sememe with better inter-
pretability. Moreover, as the final distribution is
a categorical distribution, each expert is only re-
sponsible for making predictions on a subset of
the categories (usually less than 10), so we call it
Sparse Product of Experts.

Headline Generation. Headline generation is
a kind of text summarization tasks. In recent
years, with the advances of RNNs, a lot of works
have been done in this domain. The encoder-
decoder models (Sutskever et al., 2014; Cho et al.,
2014) have achieved great success in sequence-
to-sequence learning. Rush et al. (2015) pro-
pose a local attention-based model for abstractive
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sentence summarization. Gu et al. (2016) intro-
duce the copying mechanism which is close to the
rote memorization of the human being. Ayana
et al. (2016) employ the minimum risk training
strategy to optimize model parameters. Different
from these works, we focus on the decoder of the
sequence-to-sequence model, and adopt SDLM to
utilize sememe knowledge for sentence genera-
tion.

6 Conclusion and Further Work

In this paper, we propose an interpretable
Sememe-Driven Language Model with a hier-
archical sememe-sense-word decoder. Besides
interpretability, our model also achieves state-
of-the-art performance in the Chinese Language
Modeling task and shows improvement in the
Headline Generation task. These results indicate
that SDLM can successfully take advantages of se-
meme knowledge.

As for future work, we plan the following re-
search directions: (1) In language modeling, given
a sequence of words, a sequence of correspond-
ing sememes can also be obtained. We will uti-
lize the context sememe information for better se-
meme and word prediction. (2) Structural infor-
mation about sememes in HowNet is ignored in
our work. We will extend our model with the hi-
erarchical sememe tree for more accurate relations
between words and their sememes. (3) It is imag-
inable that the performance of SDLM will be sig-
nificantly influenced by the annotation quality of
sememe knowledge. We will also devote to fur-
ther enrich the sememe knowledge for new words
and phrases, and investigate its effect on SDLM.
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Abstract
Label-specific topics can be widely used for
supporting personality psychology, aspect-
level sentiment analysis, and cross-domain
sentiment classification. To generate label-
specific topics, several supervised topic mod-
els which adopt likelihood-driven objective
functions have been proposed. However, it is
hard for them to get a precise estimation on
both topic discovery and supervised learning.
In this study, we propose a supervised topic
model based on the Siamese network, which
can trade off label-specific word distributions
with document-specific label distributions in
a uniform framework. Experiments on real-
world datasets validate that our model per-
forms competitive in topic discovery quantita-
tively and qualitatively. Furthermore, the pro-
posed model can effectively predict categor-
ical or real-valued labels for new documents
by generating word embeddings from a label-
specific topical space.

1 Introduction

As one of the most widely used text mining tech-
niques, topic modeling can extract meaningful de-
scriptions (i.e., topics) from a corpus (Blei, 2012).
Most previous topic models, such as probabilis-
tic Latent Semantic Analysis (pLSA) (Hofmann,
1999) and Latent Dirichlet Allocation (LDA) (Blei
et al., 2001) are unsupervised. In unsupervised
topic models, each document is defined as a mix-
ture distribution over topics and each topic is
represented as a mixture distribution over words.
Unsupervised topic models only exploit words
in documents and do not incorporate the guid-
ance of labels into learning processes. There-
fore, these models fail to discover label-specific
topics, which are important to support personality

⇤ This work was finished when the first author was an
undergraduate student of her final year.

†The corresponding author.

psychology (Weiner and Graham, 1990), aspect-
level sentiment analysis (Liu, 2012), and cross-
domain sentiment classification (He et al., 2011).
For example, label-specific topics generated from
sentimental texts can help to find attributions and
causes for different sentiments by associating sen-
timents with real-world topics/events.

In light of this consideration, several super-
vised topic models are proposed to generate label-
specific topics. One of the most representative
models is the supervised Latent Dirichlet Alloca-
tion (sLDA) (Blei and McAuliffe, 2007), which re-
stricts a document being associated with one real-
valued response variable. To deal with categori-
cal labels, multi-class sLDA (sLDAc) (Wang et al.,
2009) and Labeled Latent Dirichlet Allocation (L-
LDA) (Ramage et al., 2009) are proposed, but they
are only applicable to classification. Recently,
a supervised Neural Topic Model (sNTM) (Cao
et al., 2015) is developed to tackle supervised tasks
of both classification and regression. As a hybrid
method, sNTM is in essence a neural network by
following the document-topic distribution in topic
models. Unfortunately, the label information has a
little effect on topic generation since sNTM mod-
els documents and labels separately.

The above limitation motivates us to develop a
supervised topic model which can jointly model
documents and labels. Particularly, we propose a
Siamese Labeled Topic Model (SLTM) to exploit
the information of documents and labels based
on the Siamese network (Bromley et al., 1993;
Hu et al., 2014; Wang and Zhang, 2017), where
weight matrices in SLTM represent conditional
distributions. Therefore, by constraining weight
matrices during the learning procedure, SLTM can
follow probabilistic characteristics of topic models
strictly. Compared to previous supervised topic
models, the main advantages of our SLTM are
summarized as follows. First, SLTM can gener-
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ate more coherent label-specific topics than oth-
ers. This is because the supervision of labels is
incorporated into topic modeling for SLTM. On
the other hand, the mapping of topics to labels is
unconstrained for most existing supervised topic
models, which renders many coherent topics be-
ing generated outside labels. Second, strengths
of neural networks are incorporated into SLTM to
bootstrap its inference power on label prediction.
Third, each word can be mapped to a topical em-
bedding space and represented by a word embed-
ding after generating label-specific topics.

To validate the effectiveness of the proposed
model, we evaluate it on two real-world datasets
in text mining. Experimental results indicate that
our method is able to discover more coherent and
label-specific topics than baseline models. More-
over, word embeddings learned by the proposed
model can be used to predict labels for new docu-
ments effectively.

The remainder of this paper is organized as fol-
lows. We summarize related studies on supervised
topic modeling in Section 2. For convenience of
describing our model, we present the neural net-
work view of topic models in Section 3. Then, we
detail the proposed SLTM in Section 4. Experi-
mental design and analysis of results are shown in
Section 5. Finally, we present conclusions and fu-
ture work in Section 6.

2 Related Work

Topic models, which focus on discovering unob-
served class variables named “topics” statistically,
have been widely used in text mining. One of
the early topic models is pLSA (Hofmann, 1999).
In pLSA, a document’s word vector was decom-
posed into a mixture of topics, and a topic was rep-
resented as a probability distribution over words.
LDA (Blei et al., 2001) extended pLSA by adding
Dirichlet priors for a document’s multinomial dis-
tribution over topics and a topic’s multinomial dis-
tribution over words, which makes it suitable to
generate topics for unseen documents.

The aforementioned models are unsupervised,
which may be computationally costly to do some
task-specific transformation when there is extra
labeling information (Cao et al., 2015). To ad-
dress this issue, several supervised topic models
have been proposed to introduce the label guid-
ance in learning processes. One of the most widely
used supervised topic models is sLDA (Blei and

McAuliffe, 2007). In sLDA, each document was
paired with a response variable which obeys the
Gaussian distribution. By extending the sLDA,
BP-sLDA (Chen et al., 2015) applied back propa-
gation over a deep architecture in conjunction with
stochastic gradient/mirror descent for model pa-
rameter estimation, leading to scalable and end-to-
end discriminative learning characteristics. Based
on sLDA, multi-class sLDA (sLDAc) (Wang et al.,
2009) was proposed to model documents with
categorical labels by adding a softmax classifier
rather than a linear regression in sLDA to a stan-
dard LDA. Another method of tackling corpora
with discrete labels is L-LDA (Ramage et al.,
2009), which associated each label with only one
topic. To improve the performance of L-LDA
in the classification task, Dependency-LDA (Dep-
LDA) (Rubin et al., 2012) incorporated an extra
topic model to capture the dependencies between
labels and took the label dependencies into con-
sideration when estimating topic distributions. Re-
cently, a nonparametric supervised topic model (Li
et al., 2018) was proposed to predict the response
of interest (e.g., product ratings and sales). The
limitation of above models is that they are only
applicable to either discrete or continuous data.

In this paper, we propose a Siamese network-
based supervised topic model named SLTM. The
most relevant work to SLTM is the supervised
Neural Topic Model (sNTM) for both classifica-
tion and regression tasks (Cao et al., 2015), which
constructed two hidden layers to generate the n-
gram topic and document-topic representations.
However, different from our SLTM using bag-
of-words methods, sNTM adopted fixed embed-
dings trained on external resources (Mikolov et al.,
2013). Thus, sNTM can not learn data-specific
topics. Furthermore, sNTM is hard to follow prob-
abilistic characteristics of the topic-word distribu-
tion in topic models, because a topic generated by
sNTM is composed of an infinite number of n-
grams. Finally, sNTM modeled documents and la-
bels separately rather than uniformly in our SLTM.

3 Preliminaries

For convenience of describing the proposed
model, we use hollow uppercase letters (e.g., D) to
represent collections, bold uppercase letters (e.g.,
W1) to represent matrices, bold lowercase let-
ters (e.g., yi) to represent vectors, regular upper-
case letters (e.g., M ) to represent scalar constants,
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Table 1: Frequently used notations.

Notation Description

M Number of documents
K Number of topics
N Size of the vocabulary
L Size of the label set
D Document collection

di 2 D The i-th document
V Vocabulary

vj 2 V The j-th word
Z Topic collection

zk 2 Z The k-th topic
Y Label collection

yi 2 R
L Labels for document di

p(vj |di) The probability of vj given di

and regular lowercase letters (e.g., vj) to represent
scalar variables. Based on the above convention,
frequently used notations are shown in Table 1.
Given a document di with labels yi, our goal is
to discover topics with a neural network frame-
work. Therefore, we first describe the neural net-
work view of topic models briefly.

Topic modeling is a popular latent variable in-
ference method for co-occurrence data which as-
sociates unobserved classes with observations di

and vj , where vj is a word in di. The conditional
probability p(vj |di) is defined as:

p(vj |di) =
KX

k=1

p(vj |zk)p(zk|di). (1)

Let �(vj) = [p(vj |z1), . . . , p(vj |zK)] and
✓(di) = [p(z1|di), . . . , p(zK |di)], then p(vj |di)
in Equation 1 can be represented as the following
vector form:

p(vj |di) = �(vj) · ✓(di). (2)

We represent horizontal stack by commas
and vertical stack by semicolons, thus W1 =
[✓(d1)T , . . . , ✓(dM )T ] 2 R

K⇥M and W2 =
[�(v1); . . . ; �(vN ] 2 R

N⇥K , which are con-
strained by: W1[k, m] � 0, W2[n, k] � 0,PK

k=1 W1[k, m] = 1, and
PN

j=1 W2[j, k] = 1,
where k 2 [1, K], m 2 [1, M ], and n 2 [1, N ].
Then, the vector form in Equation 2 can be ex-
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Figure 1: SLTM’s word generation framework.
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Figure 2: SLTM’s architecture from the perspective of
neural networks.

tended to:

p(V|D) =

2

64
p(v1|d1) · · · p(v1|dM )

...
. . .

...
p(vN |d1) · · · p(vN |dM )

3

75

=

2

64
(�(v1) · ✓(d1)) · · · (�(v1) · ✓(dM ))

...
. . .

...
(�(vN ) · ✓(d1)) · · · (�(vN ) · ✓(dM ))

3

75

= W2W1. (3)

With Equation 3, topic models can be viewed
as neural networks, where D and V are input sets,
p(V|D) is the output set, and W1 and W2 are pa-
rameter matrices of the neural network.

4 Siamese Labeled Topic Model

Similar to generative models such as pLSA, we
propose a Siamese Labeled Topic Model (SLTM)
based on the aforementioned neural network per-
spective of topic models. Figure 1 illustrates the
framework of generating each word in SLTM, and
the process is as follows. For a document di in D,
the topic distribution p(Z|di) is estimated by:

p(Z|di) = W1di, (4)
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where di is the indicator vector (Yang et al., 2013)
of di, which means that the i-th entry of di is 1 and
other entries are 0. Labels of di are yi, which are
generated from the topic distribution of di as: yi =
W3p(Z|di). The above equation is constrained by
W3[l, k] � 0, where l 2 [1, L], k 2 [1, K], andPL

l=1 W3[l, k] = 1 if L > 1. A topic zk in Z has
its word distribution p(V|zk), which is computed
by:

p(V|zk) = W2zk, (5)

where zk is the indicator vector of zk. Therefore,
words can be generated from di as:

p(V|di) = W2W1di. (6)

The architecture of SLTM from the perspec-
tive of neural networks is shown in Figure 2.
With respect to the model optimization, we adopt
the contrastive objective function used in previ-
ous works (Socher et al., 2014; Cui et al., 2014;
Cao et al., 2015; He et al., 2017). For document
di and every word vj in di, we randomly sam-
ple a document from the document set D which
does not contain vj , as a negative sample doc-
ument. The negative sample document is repre-
sented as d

(vj�)
i and has labels y

(vj�)
i . As shown

in Figure 1, the lower sub-network, which takes
d

(vj�)
i as input, has the same architecture as the

the upper sub-network, which takes di as input.
Because the document-topic distribution and the
topic-word distribution of a corpus are fixed, W1,
W2 and W3 are shared among two sub-networks
of our model. These two sub-networks are twin
networks and thus the proposed model is essen-
tially the Siamese network. Our objective is to
make word vj be learned by topics in document
di, while not be learned by topics in the nega-
tive sampled document d

(vj�)
i . Therefore, we only

take word vj in V into consideration during the
learning procedure, which can be implemented as
dot-multiplying p(V|di) with the indicator vector
of vj (i.e., vj) as: p̂(vj |di) = p(V|di) · vj . Par-
ticularly, the objective is to make the predicted
conditional probability p̂(vj |di) approach the ob-
served conditional probability p(vj |di) (i.e., term
frequency of word vj in document di), while make
the conditional probability p̂(vj |d

(vj�)
i ) approach

zero. Thus, the loss function of predicted condi-
tional probabilities and the observed conditional

Algorithm 1 Training Algorithm for SLTM
Input: S = {D, Y};

1: repeat
2: for all (di,yi) 2 S do
3: for each word vj in document di do
4: Sample a document d

(vj�)
i which

does not contain vj ;
5: Calculate loss(SLTM);
6: if loss(SLTM) is reducing then
7: Update W1, W2 and W3;
8: end if
9: end for

10: end for
11: until convergence

probability can be defined as:

loss(di, d
(vj�)
i )

= |p(vj |di) � p̂(vj |di) + p̂(vj |d
(vj�)
i )|. (7)

We use another loss function loss(yi,y
(vj�)
i )

to capture labels of di and d
(vj�)
i , where

loss(yi,y
(vj�)
i ) = loss(yi)+loss(y

(vj�)
i ). In the

above, equations of loss(yi) and loss(y
(vj�)
i ) de-

pend on the property of labels. For categorical and
real-valued labels, the cross-entropy (Tang et al.,
2014) and the mean absolute error (Willmott and
Matsuura, 2005) are adopted, respectively.

The maximization of the weighted sum of con-
ditional likelihoods is equivalent to minimize the
losses of the weighted sum of loss functions, and
these two loss functions are weighted by a hyper-
parameter ↵ as in (Tang et al., 2014). Thus, the
loss function of SLTM is:

loss(SLTM) = ↵ ⇥ loss(di, d
(vj�)
i )

+ (1 � ↵) ⇥ loss(yi,y
(vj�)
i ). (8)

The effect of ↵ on predicting labels and discov-
ering topics will be investigated in Section 5.6.
Based on loss(SLTM), three kinds of weights,
i.e., W1, W2, and W3 can be updated together by
a vanilla back propagation (BP) algorithm with the
early stopping criteria (Bengio, 2012). The train-
ing algorithm is shown in Algorithm 1.

After training, we obtain both document-topic
and topic-word distributions. Then, each word can
be mapped to a topic-level embedding space and
represented as a word embedding. For instance,
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the word embedding of vj is generated from the
topic-word distribution W2 as:

e(vj) = W2[j, :]. (9)

The generated word embeddings can be used for
specific applications, such as label prediction. Par-
ticularly, we firstly represent a new document dn

by its document embeddings e(dn), where e(dn)
is the sum of word embeddings of all words in dn.
Then, the predicted labels ŷn of document dn can
be estimated by:

ŷn = f(W4e(dn)), (10)

where W4 denotes weights of each topic con-
tributing to labels, and f(.) is the activation func-
tion which depends on the type of labels. For cat-
egorical and normalized real-valued labels, we re-
spectively adopt softmax and sigmoid as activa-
tion functions. Note that we do not predict labels
for new documents based on W3 directly, because
topic distributions of these documents can only
be learned without the supervision of labels, i.e.,
new documents’ topic distributions may be incon-
sistent to W3. Finally, we update W4 and word
embeddings by RMSprop (Tieleman and Hinton,
2012) for label prediction.

5 Experiments

In this section, we firstly describe datasets and the
setting of experiments. Secondly, we investigate
the quality of generated topics by the topic coher-
ence score and qualitative analysis. Thirdly, the
quality of generated word embeddings is evaluated
by label prediction and word similarity. Finally,
the effect of the hyper-parameter ↵ is evaluated on
coherence of topics and label prediction.

5.1 Datasets and Setting
To evaluate the effectiveness of our method com-
prehensively, we conduct experiments on two real-
world datasets with categorical and real-valued la-
bels, respectively. The first corpus named ISEAR
contains a collection of 7,666 sentences and each
item is manually tagged with a categorical label
over 7 emotions (Scherer and Wallbott, 1994). The
second dataset YouTube1 is often used for sen-
timent strength detection, which contains 3,407
comments on videos and each item is labeled

1http://sentistrength.wlv.ac.uk/

with a real value between 0.1 (i.e., very nega-
tive sentiment) and 0.9 (i.e., very positive senti-
ment). These two datasets are selected for their
similar word numbers in average. After remov-
ing stop words, the mean numbers of words in
each document are 8.53 and 8.56 for ISEAR and
YouTube. Besides, it is appropriate to evaluate the
model performance on predicting emotions and
sentiment strengths, because topics play an impor-
tant role in understanding sentences or user com-
ments (Liu, 2012). Since the proposed SLTM
is suitable to both topic discovery and classifi-
cation/regression tasks, we employ five kinds of
baselines for comparison.

The first kind are the support vector machine
(SVM), an efficient deep learning model for clas-
sification (i.e., fastText) (Grave et al., 2017), and
the following supervised topic models which are
confined to categorical labels:

• sLDAc (Wang et al., 2009): it models doc-
uments with categorical labels by adding a
softmax classifier to a standard LDA.

• L-LDA (Ramage et al., 2009): it is a super-
vised model which associates labels with top-
ics by one-to-one correspondence. Accord-
ingly, the number of topics in L-LDA must
equal the size of the label set.

• Dep-LDA (Rubin et al., 2012): it extends L-
LDA by introducing a multinomial distribu-
tion over labels and capturing the dependen-
cies between labels. Then, the label depen-
dencies are used to sample topic distributions
in supervised learning.

The second kind are the support vector re-
gression (SVR), a state-of-the-art deep learn-
ing model for sentiment strength detection (i.e.,
HCNN) (Chen et al., 2017), and the following
supervised topic models which are developed for
predicting real-valued labels only:

• sLDA (Blei and McAuliffe, 2007): it is a
classical supervised topic model, in which,
each document is paired with a response vari-
able, and the variable is defined as a Gaussian
distribution with a mean value that is com-
puted by a linear regression of topics.

• BP-sLDA (Chen et al., 2015): it applies back
propagation over a deep architecture together
with stochastic gradient/mirror descent for
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Table 2: Topic coherence scores on ISEAR using dif-
ferent numbers of top words T .

5 10 15

pLSA 0.0051 0.0024 -0.0013
LDA 0.0954 0.0492 0.0014

sLDAc 0.0014 0.0031 -0.0035
sNTM -0.9267 -0.9508 -0.9667
SLTM 0.1142 0.0680 0.0025

Table 3: Topic coherence scores on YouTube using dif-
ferent numbers of top words T .

5 10 15

pLSA -0.0535 -0.2435 -0.3829
LDA -0.0154 -0.2142 -0.3618
sLDA -0.0627 -0.2502 -0.3962

BP-sLDA -0.7021 -0.7670 -0.7900
sNTM -0.9138 -0.9253 -0.9376
SLTM -0.0993 -0.1967 -0.3268

parameter estimation of sLDA. The number
of hidden layers is set to 3.

The third kind is a supervised n-gram model
named sNTM, which is applicable to predict both
categorical and real-valued labels for new docu-
ments (Cao et al., 2015). In sNTM, each n-gram is
represented by a 300-dimensional embedding vec-
tor using the available tool word2vec2. By follow-
ing (Cao et al., 2015), a large-scale Google News
dataset with around 100 billion words is adopted
for training. For topic discovery, two unsuper-
vised topic models, pLSA (Hofmann, 1999) and
LDA (Blei et al., 2001), are used as the fourth kind
of baselines. Finally, we adopt two hybrid meth-
ods by combining LDA and supervised learning
algorithms as baselines. In particular, a softmax
classifier and a liner regression (LR) are used to
predict categorical and real-valued labels for doc-
uments, respectively. Unless otherwise specified,
we set ↵ to 0.5 and adopt the stochastic gradient
descent with batch size of 100 for training SLTM.

5.2 Coherence Score of Topics
To investigate the quality of topics discovered by
SLTM quantitatively, we use the topic coherence
score based on the normalised pointwise mutual
information (Lau et al., 2014) as the evaluation
metric. Intuitively, a topic coherence score that

2https://code.google.com/p/word2vec/

Table 4: Each label’s top 5 words on ISEAR.
Labels Models Top 5 words of label-specific topics

fear
sLDAc home night car afraid fear

L-LDA/Dep-LDA night afraid car home fear felt
SLTM night afraid fear car home dark

joy
sLDAc year passed heard exam university

L-LDA/Dep-LDA friend got time passed felt
SLTM happy joy passed got university

guilt
sLDAc did didn’t asked guilty said

L-LDA/Dep-LDA felt guilty friend did mother
SLTM guilty felt mother did friend

disgust
sLDAc saw man disgusted disgust woman

L-LDA/Dep-LDA disgusted saw felt people friend
SLTM disgusted saw people man disgust

shame
sLDAc know ashamed teacher happened lot

L-LDA/Dep-LDA ashamed felt friend time did
SLTM ashamed felt shame class teacher

anger
sLDAc angry called new anger expected

L-LDA/Dep-LDA friend angry did time told
SLTM angry friend anger brother told

sadness
sLDAc father close died away years

L-LDA/Dep-LDA died friend sad felt time
SLTM died sad death away friend

is larger indicates that the quality of topics is bet-
ter. All unsupervised topic models (i.e., pLSA and
LDA) and supervised methods which associate
one label with multiple topics (i.e., sLDAc, sLDA,
BP-sLDA, and sNTM) are adopted for compari-
son. Although L-LDA and Dep-LDA can iden-
tify label-specific topics on ISEAR, these models’
one-to-one mapping of labels and topics makes
them unsuitable in this evaluation. Particularly, L-
LDA and Dep-LDA constraint each topic to words
in certain documents with the same label, which
renders their coherence scores being estimated by
a subset of the corpus only. On the other hand, the
quality of topics is evaluated on the whole corpus
for SLTM and other baseline models.

The average coherence scores of topics gener-
ated by different models on ISEAR and YouTube
are respectively shown in Table 2 and Table 3,
where the number of topics is 20, the number of
top words T is set to 5, 10, and 15, and the best
scores are highlighted in boldface. The results in-
dicate that SLTM can discover more coherent top-
ics than both unsupervised topic models and su-
pervised methods, except for T = 5 on YouTube.
It is also interesting to observe that supervised
baseline models (i.e., sLDAc, sLDA, BP-sLDA,
and sNTM) perform worse than pLSA and LDA
for most cases, which validates that it is challeng-
ing to trade off label-specific word distributions
with document-specific label distributions (Ram-
age et al., 2009).

5.3 Qualitative Analysis on Topics

In this part, we conduct qualitative inspection of
20 topics generated by SLTM. The ISEAR dataset
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Figure 3: Scatter plot of topics identified by SLTM on
ISEAR, where each point indicates a topic.

which contains multiple labels is used for illus-
tration, since it is inappropriate to present the re-
sults on YouTube with a single real-valued label.
For each model that is applicable to ISEAR, we
show top 5 words of the generated label-specific
topics in Table 4. It is worth to note that L-LDA
and Dep-LDA achieve the same top words, since
their difference only exists in the process of label
prediction. The results indicate that although all
models can learn meaningful topics, SLTM per-
forms better than baseline models in label-specific
topic discovery. For example, two words “happy”
and “joy” which are strongly related to the label of
“joy” are identified by SLTM with large probabil-
ities. Similar results can be observed in other la-
bels, thus topics discovered by our model are more
convenient to be understood than others. Such a
kind of performance enhancement is valuable to
many real-world applications, e.g., personality ed-
ucation and psychotherapy, by producing human
interpretable topics/events that evoke users’ par-
ticular emotions.

For completeness, we also examine all topics
generated by the baseline of sNTM. As mentioned
earlier, sNTM is based on n-grams, instead of
single words for SLTM and other baseline mod-
els. In the practical implementation, only uni-
grams and bigrams are considered since the em-
bedding representation becomes less precise as n
increases (Cao et al., 2015). The results indicate
that sNTM can generate some topic bigrams such
as “smelled disgusting” and “graduation exams”,
which are more appropriate to expressing a topic.
However, only three topics are manually examined

Table 5: Classification performance on ISEAR.

Accuracy Cohen’s kappa

SVM 0.5063 0.4240
fastText 0.5104 0.4298

LDA+softmax 0.1506 0.0089
sLDAc 0.1875 0.0540
L-LDA 0.4650 0.3758

Dep-LDA 0.4888 0.4036
sNTM 0.2478 0.1212
SLTM 0.5213 0.4415

to be correlated with the seven emotions. This val-
idates that sNTM is hard to introduce the guidance
of labels in topic generation, because it models
documents and labels separately.

To further evaluate the interpretability of topics
extracted from SLTM, we firstly get topic embed-
dings by: emb(zk) = W1[k, :]. Then, we map
emb(zk) to a two-dimensional space via Princi-
pal Component Analysis (PCA). Figure 3 presents
distributions of topics generated by SLTM over the
ISEAR dataset. The scatter plot indicates that top-
ics corresponding to the same label are closer than
those of different labels. Furthermore, the distance
between topics on correlated labels such as “fear”
and “anger”, is closer than that of topics on “joy”
and other labels.

5.4 Evaluation on Label Prediction
We here evaluate the quality of word embeddings
generated by SLTM on predicting categorical and
real-valued labels based on ISEAR and YouTube,
respectively. Since there are varied parameters for
different models, we randomly select 60% of in-
stances as the training set, 20% as the validation
set, and the remaining 20% as the testing set. The
values of parameters (e.g., the number of topics)
for each model are all determined by the valida-
tion set. In label prediction, the main difference
between SLTM and other supervised topic mod-
els is as follows. On one hand, a label-specific
word embedding is introduced for predicting la-
bels in SLTM according to Equation 10. On the
other hand, other supervised topic models for both
categorical and real-valued label prediction tasks
infer labels for unlabeled documents by topic dis-
tributions directly, in which, topic distributions of
unlabeled documents are learned without the su-
pervision of labels.

For the task of categorical label prediction, the
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Table 6: Regression performance on YouTube.

MAE pR2

SVR 0.1424 -0.0591
HCNN 0.1112 0.3462

LDA+LR 0.1408 -0.0069
sLDA 0.1583 -0.2836

BP-sLDA 0.1394 -0.0208
sNTM 0.1342 0.0807
SLTM 0.1005 0.4112

accuracy and the Cohen’s kappa score (Artstein
and Poesio, 2008) are used as the evaluation met-
rics. Table 5 shows the classification performance
of different models on ISEAR, where the best re-
sults are highlighted in boldface. For the predic-
tion of real-valued labels on YouTube, we com-
pare different models’ regression performance by
the mean absolute error (MAE) and the predictive
R2 (pR2) (Blei and McAuliffe, 2007), as shown in
Table 6. From the above results we can observe
that SLTM achieves substantial performance im-
provement over baselines in predicting both cate-
gorical and real-valued labels, which indicates that
word embeddings generated from labeled docu-
ments are more suitable for label prediction tasks
than topic distributions generated from unlabeled
documents without the guidance of labels.

5.5 Similarity of Word Embeddings
Word embeddings can reflect relations between
words, and most methods of generating word em-
beddings are based on the local context informa-
tion. This is because words with similar contexts
may have similar semantics. However, a large-
scale corpus is required to learn high quality word
embeddings from the local context. Different from
the previous word embedding generation meth-
ods, SLTM generates word embeddings based on
the global label-specific topic information (i.e.,
the topical embedding space). Therefore, we
further compare the quality of word embeddings
learned by SLTM and three widely used meth-
ods: Word2Vec (W2V) (Mikolov et al., 2013),
subword information Word2Vec (siW2V) (Joulin
et al., 2017), and SSPMI (Levy and Goldberg,
2014). Among these baseline word embedding
models, W2V and siW2V use the neural network
framework, and SSPMI implicitly factorizes the
pointwise mutual information (PMI) matrix of the
local word co-occurrence patterns.

Table 7: Word similarity results on ISEAR.

MEN SimLex Rare

W2V 0.002 -0.008 -0.119
siW2V 0.002 0.017 0.062
SSPMI 0.023 0.028 -0.004
SLTM 0.169 0.037 0.089

Table 8: Word similarity results on YouTube.

MEN SimLex Rare

W2V -0.018 0.004 -0.036
siW2V -0.002 0.019 -0.051
SSPMI -0.031 0.038 -0.026
SLTM 0.048 0.040 0.068

As our evaluation metric, the word similar-
ity is estimated as follows. Firstly, we calcu-
late cosine similarity scores for word pairs which
occur in both the training set and the testing
set. Secondly, word pairs are ranked accord-
ing to their cosine similarities in the embedding
space and human-assigned similarity scores, re-
spectively. Finally, rankings of word similarity
scores are evaluated by measuring the Spearman’s
rank correlation with rankings of human-assigned
similarity scores. A higher correlation value in-
dicates that it is more consistent to human judge-
ments in word similarity. The following standard
corpora which contain word pairs associated with
human-assigned similarity scores are used for this
evaluation: MEN (Bruni et al., 2014), SimLex-
999 (SimLex) (Hill et al., 2015), and Rare (Luong
et al., 2013).

We train W2V, siW2V, and SSPMI over each
corpus by setting the number of context window
size to 5. Furthermore, the dimension of word
embeddings generated from all models is set to
50 according to (Lai et al., 2016). The values of
word similarity on ISEAR and YouTube are re-
spectively shown in Table 7 and Table 8, where the
best results are highlighted in boldface. We can
observe that SLTM outperforms baselines for all
cases. The results indicate that word embeddings
learned from the global label-specific topic infor-
mation are better than those from the local context
information without any external corpora.
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Figure 4: Topic coherence scores on ISEAR using dif-
ferent ↵ values.

5.6 Effect of the Hyper-parameter

After validating the effectiveness of SLTM on
discovering topics and learning word embed-
dings, we now investigate the effect of the hyper-
parameter in SLTM on these two aspects. Accord-
ing to Equation 8, the hyper-parameter ↵ is used
to weight two kinds of loss functions. Since W2

can be updated subject to ↵ > 0, we evaluate the
performance of SLTM by varying ↵ from 0.1 to 1
over the ISEAR dataset, as follows.

First, we evaluate the influence of hyper-
parameter ↵ on topic discovery by the coherence
score of topics. To clearly illustrate the perfor-
mance trend with different values of ↵, we set
the number of top words T to 5, 10, and 15, and
present topic coherence scores in Figure 4. The
results indicate that SLTM performs stably un-
der these ↵ values on topic discovery, except for
↵ = 1 which ignores the label information totally.
This validates the importance of label information
in generating coherent topics.

Second, we use the learned word embeddings
to predict document labels under different val-
ues of ↵. As shown in Figure 5, we can ob-
serve that when ↵ = 0.5, i.e., loss(di, d

(vj�)
i )

and loss(yi,y
(vj�)
i ) are weighted equally, SLTM

achieves the best performance in label prediction.
The results indicate that the co-occurrence of doc-
uments and words as well as the label information
are both important to generate good word embed-
dings. Furthermore, the label prediction perfor-
mance of SLTM using any of these ↵ values is
better than that of most baselines (ref. Table 5).
This validates the robustness of SLTM with differ-
ent hyper-parameter values in supervised learning.

Figure 5: Label prediction performance on ISEAR us-
ing different ↵ values.

We also conduct experiments on YouTube using
varied ↵ values, which indicates that the hyper-
parameter has a similar effect on both datasets.

6 Conclusion

In this paper, we proposed a supervised topic
model named SLTM to discover label-specific
topics by jointly modeling documents and la-
bels. For the SLTM, weight matrices which repre-
sent document-topic and topic-word distributions
can strictly follow probabilistic characteristics of
topic models. Experiments were conducted on
datasets with both categorical and real-valued la-
bels, which validated that SLTM can not only dis-
cover more coherent topics, but also boost the per-
formance of supervised learning tasks by learning
high quality word embeddings. For future work,
we plan to speed-up the training process of SLTM
by GPUs and distributed algorithms. With the de-
velopment of deep learning techniques, we also
plan to de-emphasize irrelevant words with an at-
tention mechanism.
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Abstract
Discovering the latent topics within texts has
been a fundamental task for many applica-
tions. However, conventional topic models
suffer different problems in different settings.
The Latent Dirichlet Allocation (LDA) may
not work well for short texts due to the data
sparsity (i.e., the sparse word co-occurrence
patterns in short documents). The Biterm
Topic Model (BTM) learns topics by mod-
eling the word-pairs named biterms in the
whole corpus. This assumption is very strong
when documents are long with rich topic in-
formation and do not exhibit the transitivity
of biterms. In this paper, we propose a novel
way called GraphBTM to represent biterms as
graphs and design Graph Convolutional Net-
works (GCNs) with residual connections to
extract transitive features from biterms. To
overcome the data sparsity of LDA and the
strong assumption of BTM, we sample a fixed
number of documents to form a mini-corpus as
a training instance. We also propose a dataset
called All News extracted from (Thompson,
2017), in which documents are much longer
than 20 Newsgroups. We present an amortized
variational inference method for GraphBTM.
Our method generates more coherent topics
compared with previous approaches. Exper-
iments show that the sampling strategy im-
proves performance by a large margin.

1 Introduction

Topic model (Blei et al., 2003) is one of the most
popular approaches to learn hidden representa-
tions of text. The broad applications of topic
model range from recommender systems (Wang
and Blei, 2011), computer vision (Fei-Fei and
Perona, 2005), to bioinformatics (Rogers et al.,
2005). Conventional topic models learning ap-
proaches are based on Gibbs Sampling (Grif-
fiths and Steyvers, 2004) or Variational Expecta-
tion Maximization (VEM) algorithm (Blei et al.,

2003). Both Gibbs Sampling and VEM are not
directly applicable to new variations of the topic
model. Specifically, the inference algorithm re-
quires re-deriving for any minor changes to the
model.

Recently, a neural network based topic model
inference approach, the Autoencoded Variational
Inference for Topic Model (AVITM), was pro-
posed by (Srivastava and Sutton, 2017). This ap-
proach uses an inference network to directly map
a document to its posterior distribution without
any variational update steps. The proposed in-
ference network is based on the Autoencoding
Variational Bayes (AEVB) (Kingma and Welling,
2013), a stochastic variational inference algorithm
over neural networks. Compared with the sam-
pling based approaches, AVITM can scale to large
datasets. Although it improves the model’s robust-
ness and reduces the computational cost, it still
suffers from the data sparsity in short texts.

Biterm Topic Model (BTM) proposed by
(Cheng et al., 2014) and (Yan et al., 2013) ad-
dresses the shortcoming of data sparsity for mod-
eling the corpus of short texts. It explicitly mod-
els the patterns on top of word co-occurrence fea-
ture (Biterm, the unordered word-pair occurs in
texts) from the corpus. It holds one topic distri-
bution for the whole corpus rather than one doc-
ument. BTM, therefore, is suitable for modeling
short documents like tweets, and online QA texts.
It also achieves better results than LDA in specific
scenarios of the normal texts (Yan et al., 2013).
However, using one topic distribution for all docu-
ments limits the model’s expressiveness when the
documents contain diverse topics.

To address the issue of data sparsity of LDA
when modeling the short texts and the insufficient
corpus-wise topic representation in BTM for nor-
mal texts, we strike a balance between these two
approaches. Instead of modeling biterms in the
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whole corpus, we extract biterms inside a fixed-
length text window for every document and sam-
ple n documents to form an instance each time.
As a result, we enhance the input feature with
biterms that capture more word co-occurrence pat-
terns than BOW and also avoid the insufficient
corpus-wised topic representation in BTM. An-
other advantage of biterms is the transitivity. For
example, we have two biterms (A, B) and (A, C).
It is natural to think that B and C may share some
similarities. This transitivity is similar to the graph
structure data. So we model the biterms in a graph
where the words are taken as nodes and the counts
of biterms are the weight of edges. We extract the
information from biterms explicitly by the graph
convolutional network (Kipf and Welling, 2016).

In this paper, we propose a novel Graph-based
inference network for the biterm topic model
(GraphBTM). To the best of our knowledge,
GraphBTM is the first AEVB inference approach
for the biterm topic model with graph enhanced
feature. Our model also strikes a good balance be-
tween LDA and BTM, leverages both advantages,
and achieves better topics coherence scores than
AVITM in two datasets. The main contributions
of our work include:

• We are the first to apply the neural network
based inference approach for the Biterm
Topic Model, and achieve better results in
topic coherence score than previous AEVB
based inference method (AVITM) and online
Variational Inference LDA.

• We propose a data argumentation method to
enhance the input feature with word corre-
lation from biterms in normal text and over-
come the shortcoming of the data sparsity in
LDA and the insufficient corpus-wise topic
representation in BTM.

• We model the biterms as an undirected graph
and adopt a novel graph convolutional net-
work to encode word co-relationship in our
inference network.

• We introduce a new dataset All News
dataset containing 20,000 documents ex-
tracted from 15 news publishers (Thompson,
2017) for topic modeling. TThe documents
are much longer compared with the 20 News-
groups.

2 Background

2.1 Biterm Topic Model
BTM (Cheng et al., 2014) is proposed to solve the
data sparsity problem in the scenario of short texts.
Instead of modeling a single document, BTM con-
siders the whole corpus as a mixture of topics.
BTM collects all unordered word-pairs (biterms)
from each short text or a fixed-length text window
of normal texts. The generative progress of BTM
can be described as follows, where ↵ and � are
two parameters of Dirichlet priors.

1. For each topic z

(a) draw a topic-specific word distribution
�z ⇠ Dir(�)

2. Draw a topic distribution ✓ ⇠ Dir(↵) for the
whole corpus

3. For each biterm b in the biterm set

(a) draw a topic assignment z ⇠ Multi(✓)

(b) draw two words: wi, wj ⇠ Multi(�z)

With the procedure above, the joint probability
of a biterm b = (wi, wj) can be written as:

P (b) =
X

z

P (z)P (wi|z)P (wj |z) (1)

=
X

z

✓z�i|z�j|z (2)

So the likelihood of the whole corpus B is:

P (B|↵, �) =
Y

i,j

X

z

✓z�i|z�j|z (3)

2.2 Laplace Approximation of Dirichlet
Both LDA and BTM use the Dirichlet prior over
the topic and word proportions. Wallach et al.
(2009) showed that the Dirichlet prior is important
to producing interpretable topics. However, it is
hard to apply the Dirichlet prior to AEVB directly.
AEVB uses the reparameterization trick (RT) to
obtain a differentiable Monte Carlo estimator for
the variational lower bound (details can be found
in next section), and it is difficult to propose an
effective RT for the Dirichlet prior.

Fortunately, we can approximate Dirichlet dis-
tribution with a logistic normal in the softmax
basis by Laplace approximation (Hennig et al.,
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Figure 1: The overall structure of our proposed model GraphBTM. In this example, we sample 4 documents at a
time and embed the aggregated biterm graph by GCNs. The graph embedding is sent to inference network E to
produce the parameters for our variational distribution. We then use RT to generate the Monte Carlo samples. At
last, we use the decoder network � to get the word probabilities and reconstruct the aggregated graph.

2012). MacKay (1998) gives the Dirichlet prob-
ability density function in the softmax basis over
the variable x:

P (⇡|↵) =
�(

PK
k (↵k))QK

k �(↵k)

Y

k

⇡↵k
k g(1T x) (4)

where ⇡ = �(x) (softmax) and g(1T x) is an arbi-
trary density for integrability. Hennig et al. (2012)
argued that the Eq. 4 could be approximately in-
dependent for large K (number of topics). So the
covariance matrix of the Dirichlet prior becomes
a diagonal matrix for large K. By this way, we
can approximate the Dirichlet distribution with a
multivariate normal with mean µk and covariance
matrix ⌃kk:

µk = log↵k � 1

K

KX

i

log↵i (5)

⌃kk =
1

↵k
(1 � 2

K
) +

1

K2

KX

i

1

↵i
(6)

with this approximation in hand, we can easily ap-
ply RT by sampling from ✏ ⇠ N (0, I) and com-
pute probability ⇡k = �(µk + ⌃1/2

kk ✏).

3 Graph Biterm Topic Model

Before getting into details of GraphBTM, we give
an overall structure of GraphBTM, as shown in
Fig. 1. We extract the biterms from a mini-corpus
(aggregated sampled documents) and embed the
whole biterm graph into a fixed length vector with
the dimension of vocabulary size. Then we use

this graph embedding as the input of our inference
network and get the topic proportion. At last, we
use the decoder network to get the word probabil-
ities and reconstruct the biterm graph.

3.1 Model Biterms as Graphs
Commonly used input feature of topic models is
bag-of-words (BOW) which implicitly capture the
word co-occurrence patterns. BTM models the
word co-occurrence explicitly by directly counting
the word-pairs in a text window. However, using
one-hot encoding for biterms may lose the transi-
tive co-relations. We model collected biterms as
a graph G = (V, E), where V (words as nodes
and |V | is the vocabulary size) and E (counts of
corresponding biterms in the sample) are sets of
nodes and edges, respectively. In this way, the ad-
jacency matrix A (A 2 R

V ⇥V ) denotes the counts
of biterms in the sample. We also leverage the ma-
trix A as the node feature matrix (Ai is the node
feature for the word wi).

We use GCNs proposed by (Kipf and Welling,
2016), which is a framework used for learning
the graph structure data. Gilmer et al. (2017)
presented a comprehensive overview. Consider
an undirected graph G = (V, E) and a matrix
X 2 R

n⇥m in where each row is a node feature
xv 2 R

m (v 2 V). One layer GCN encodes in-
formation of a node with its immediate neighbors,
defined as

hl+1 = f
⇣
D̃�0.5ÃD̃�0.5(hlW l + b)

⌘
(7)

where h0 is the input features X , Ã = A + IN
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is the adjacency matrix of the graph with self-
connections, IN is the identity matrix, D̃ is the
degree matrix of Ã, W l is a trainable weight ma-
trix in the layer and b is the bias. f denotes a
non-linear activation function, such as ReLU. By
stacking GCN layers, we can incorporate higher
order neighborhoods. To represent the whole
graph, we reduce the dimension of each node to
one by using GCNs and concatenate them as the
final representation of the biterm graph.

From another point of view, we can treat GCNs
as a Laplacian smoothing. Repeatedly applying
Laplacian smoothing may mix the features of ver-
tices and make them indistinguishable (Li et al.,
2018). On the other hand, the transitivity of words
may not be meaningful when the number of hops
(layers) of GCN increases. We solve this prob-
lem by adding shortcut connections between dif-
ferent layers inspired by Residual Networks (He
et al., 2016). What’s more, a recent study showed
that adding the residual connection can help con-
vergence (Li and Yuan, 2017).

3.2 AEVB for Biterm Graphs

Eq. 3 gives us the likelihood of the whole corpus
based on Multi(�z). Here we rewrite the Eq. 3
with latent variables as

p(B|↵, �) =

Z

✓

0

@
Y

(i,j)

kX

z=1

⇡i⇡jp(zn|✓)

1

A p(✓|↵)d✓

(8)

where ⇡i = p(wi|zn, �). The inference of poste-
rior p(✓, z|B, ↵,�) over the hidden variables ✓ and
z is intractable (Dickey, 1983). Many methods are
proposed to solve this inference problem includ-
ing Gibbs Sampling (Griffiths and Steyvers, 2004)
and variational inference methods. Gibbs Sam-
pling based approaches are computationally inef-
ficient and varitional inference methods like mean
field (Blei et al., 2003) scarify the topic quality
for computational efficiency. Moreover, the ma-
jor problem of these approximate inference algo-
rithms is the inflexibility. Slight changes in model
assumption may require designing a new infer-
ence algorithm. To alleviate this problem, we de-
sign an amortized approximate inference method
similar to AVITM (Srivastava and Sutton, 2017).
It is more flexible compared with other approxi-
mate inference methods and can be applied to any
biterm graphs.

In Eq. 8, there are two latent variables ✓ and
z, we introduce two free variational parameters �
over ✓ and � over z. Our goal is to approximate
the true posterior p(✓, z|B, ↵,�) with variational
distribution q(✓, z|�, �) = q�(✓)

Q
k q�(zk). Then

we can transfer the inference problem as an opti-
mization problem (Blei et al., 2003), which is to
maximize

L(�, �|↵, �) = logp(B|↵, �) (9)
� DKL[q(✓, z|�, �)||p(✓, z|B, ↵,�)]

L is a lower bound to the marginal log likelihood
(ELBO). Following AEVB (Kingma and Welling,
2013), we rewrite the ELBO as

L(�, �|↵, �) = �DKL + R (10)

where R = Eq[logp(B|z, ✓, ↵, �)]. This form is
intuitive. The first term is the KL divergence be-
tweent the variational distribution and the prior on
the latent variables, and the second term ensures
that the latent variables are good at explaining and
reconstructing the input data.

We use a neural network named inference
network to compute the variational parameters. It
takes the embedding of the biterm graph (sec. 3.1)
as the input and outputs the parameters of the vari-
ational distribution. So the inference network can
be defined as (µb, ⌃b) = f(b, �), where µb and ⌃b

are vectors of length k (topic numbers) and � are
the network parameters. In our setting, we use the
logistic normal distribution which is an approxi-
mation of the Dirichlet prior to the variational dis-
tribution. We can choose the corresponding vari-
ational distribution q�(✓) = LN (✓|µb, diag(⌃b)),
where diag(·) converts a column vector to a di-
agonal matrix. One important advantage of using
AEVB is that we couple the variational parame-
ters for different inputs, unlike mean field varia-
tional inference, because they are computed from
the same network.

Next is how to compute the expectations respect
to q in R (Eq. 10). Kingma and Welling (2013)
use a differential Monte Carlo estimator with the
reparameterization trick. With RT, instead of sam-
pling from the variational distribution directly, we
sample from a simple distribution that is indepen-
dent of all variational parameters. In this way, the
gradient can be backpropagated through the vari-
ational parameters. For the logistic normal distri-
bution, we can sample from a standard normal dis-
tribution ✏ 2 N (0, I).
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Although the reparameterization trick helps us
deal with ✓, it is hard to deal with the discrete
variable z. Fortunately, we can collapse the dis-
crete variables z and only infer ✓ with collapsed
inference method (Kurihara et al.) as

p(B|↵, �) =

Z

✓

0

@
Y

(i,j)

⇡i⇡j

1

A p(✓|↵)d✓ (11)

where ⇡i = p(wi|�, ✓), which is the probability
of one word in the biterm. Now we only need to
sampling from ✓.

We can now get our final variational objective
function as (to minimize the negative ELBO)

L = DKL � E✏[
X

Gb � log(P T P )] (12)

where Gb is the input biterm graph, P =
�(�)�(µ + ⌃1/2✏) is probabilities for all the
words based on the input graph and � denotes the
element-wise production. The KL divergence be-
tween two logistic normal distritbutions are

DKL =
1

2
{tr(⌃�1

1 ⌃0) + (µ1 � µ0)
T ⌃�1

1 (µ1 � µ0)

� K + log
|⌃1|
|⌃0|

} (13)

3.3 Sample Mini-corpus
To alleviate the data sparsity problem of LDA
(Zhu and Xing, 2012; Lin et al., 2014), BTM
learns topics from the aggregated patterns in the
whole corpus. In our observation, this assumption
is too strong for normal texts. Other than BTM,
some approaches in the literature addressed this
problem by aggregating documents into a mini-
corpus before training the topic model. For ex-
ample, in tweets analysis, Weng et al. (2010) ag-
gregated the tweets from one user into a docu-
ment. Hong and Davison (2010) combined the
tweets containing the same word. Inspired by
these strategies, we make the same assumption for
normal text. We first extract all the biterms in each
document and randomly select n documents in the
dataset as a mini-corpus. The biterms of the mini-
corpus simply merge all the biterms from the n
documents. Experiments show that a proper sam-
pling number achieves the best performance.

3.4 Unnormalize the �

The topic-word distribution � is a mixture of
multinomials. One drawback of this formula-
tion is that it cannot predict something that is

sharper than the distributions being mixed (Hin-
ton and Salakhutdinov, 2009). This problem may
result in some poor quality topics. Previous re-
search (Srivastava and Sutton, 2017) shows that
unnormalizing the parameters � and changing
the conditional distribution of wn as wn|�, ✓ ⇠
Multinomial(1, �(�✓)) can solve this problem.

With the unnormalized �, we can model it as
a decoder network whose weight matrix M =
(m1, . . . , mK) denotes the weight for all words
under K topics. Applying softmax to row mi will
give us the probabilities under topic i.

4 Experiments

4.1 Datasets and Settings
We demonstrate our model on two datasets: 20
Newsgroups and All News. For All News, we use
the data from kaggle collection (Thompson, 2017)
1, which collects documents from 15 main news
publishers between 2016 and July 2017. Among
these, we randomly select 20,000 documents. In
our preprocessing of the texts, we follow the steps
of tokenization, filtering out stop words, and non-
UTF-8 characters in (Srivastava and Sutton, 2017).
From the statistics summarized in Table 1. We can
know that the 20 Newsgroups dataset is relatively
sparse and the All News has rich information. The
ratio of text lengths less or equal to 30 of the 20
Newsgroups dataset is 28%, which only 2% in the
All News dataset. The average size differs a lot
between these two datasets: 302 for the All News
and 88 for the 20 Newsgroups.

For the generation of the matrix Wg, the selec-
tion of the window size of words is critical, a small
size of window leads to very sparse Wg. Here, we
choose an experience value 30 for the window size
follows the (Yan et al., 2013). For the logistic nor-
mal approximation, we use the Dirichlet distribu-
tion with parameter ↵ as 0.02. Our GraphBTM
approach, including the GCN layers and the in-
ference network are implemented with Pytorch-
v0.4.0 (Paszke et al.). Parameters in our imple-
mented model are optimized by the stochastic op-
timizer Adadelta (Zeiler, 2012) with learning rate
1. To embed the biterm graph, we use a 3-layer
GCNs with size 1995-100, 100-100 and 100-1 for
20 Newsgroups and 5000-1000, 1000-100, 100-1
for ALL News. We use the edge dropout in GCN:
when computing hl, we ignore each node with a
probability of 0.6. We use batch normalization

1https://www.kaggle.com/snapcrack/all-the-news
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Datasets Training instances Ratio of <= 30 Avg size Vocabulary Avg Biterms #
20 News 11,259 28% 88 1995 1249
All News 20,000 2% 302 5000 5535

Table 1: Datasets statistics.

Dataset # topics GraphBTM AVITM LDA Online VI

20 News 50 0.28 0.25 0.10
100 0.26 0.23 0.08

All news 50 0.27 0.24 0.14
100 0.26 0.23 0.13

Table 2: Average topic coherence.

Datasets(# Topics) # Samples Score

20 News (k=50)
1 0.24
3 0.28
10 0.25

20 News (k=100)
1 0.21
3 0.26
10 0.25

All news (k=50)
1 0.27
3 0.22
5 0.20

All news (k=100)
1 0.26
3 0.20
5 0.17

Table 3: Results for different sampling numbers in
different setting for the two datasets. Score denotes the
topic coherence score.

(Ioffe and Szegedy, 2015) in inference network
with batch size 100 as same in (Srivastava and Sut-
ton, 2017). We run each model 10 times and take
the average results. Code is available at https:
//github.com/valdersoul/GraphBTM.

The perplexity has been used in the past works
to measure the quality of the generated topics.
However, the perplexity is not shown to be a good
evaluation metric for the topics (Newman et al.,
2010). What’s more, our method models a mini-
corpus instead of a real one and infer the top-
ics through the pattern of biterms, so the perplex-
ity is not suitable to measure the performance of
our approach. To get a more objective measure-
ment of the topics, we adopt ”topic coherence”
as our metric, proposed by (Mimno et al., 2011)
to evaluate the quality of the topics. For a vec-
tor V (z) = (vz

1 , ..., v
z
T ) as the top T words of the

topic z, which ordered by the probability p(w|z),

the topic coherence is defined as:

C(z; V (z)) =
TX

t=2

tX

l=1

log
D(v(z)

m , v(z)
l ) + 1

D(v(z)
l )

.

(14)

where D(v) is the number of the documents that
word v occurred, and D(v, v0) is the number of
the documents that both the words v and v0 oc-
curred. The assumption of the topic coherence is
the words with high frequency in a topic tend to
appear in the same document. This measurement
has been demonstrated to be highly consistent with
the human evaluated quality of the topics.

4.2 Results and Discussions

Comparison with other approaches. We com-
pare our GraphBTM approach with the AVITM
(Srivastava and Sutton, 2017) and the LDA model
(Blei et al., 2003). For AVITM, we use their
results for 20 Newsgroups directly and run the
model using the provided code2. We use the on-
line variational inference for LDA (Hoffman et al.,
2010) implementation by gensim library (Řehůřek
and Sojka, 2010) as our LDA baseline. For both
GraphBTM and AVITM, we run 200 iterations.
Table 2 shows the average topic coherence for
three models on the two datasets. The online VI
LDA works worst in the three models and we
find that on both datasets, the GraphBTM consis-
tently outperforms other two models. We can ver-
ify the quality of the learned topics by displaying
the topic examples in Table 4. The topics from
GraphBTM are more coherent than the topics from
both AVITM and LDA model.

2https://github.com/akashgit/
autoencoding vi for topic models
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Effect of the mini-corpus. To study the ef-
fect of our sampling strategy which has been dis-
cussed in section 3.3. Table 3 shows the perfor-
mance of our model with different sample size for
a mini-corpus. For the 20 Newsgroups dataset,
the best performance is achieved when the sam-
ple size is 3. When we do not use our sample
strategy (mini-corpus is 1), the performance drops
by a large margin. From Table 1, we see that the
average size of documents size in 20 Newsgroups
is relatively short (88 compared with 302 in All
News). Therefore, the 20 Newsgroups dataset may
suffer from the sparsity problem. The experiment
shows that our sampling strategy can help to over-
come this problem. When sample size increases,
the performance drops again. The biterm graph
with large sample size may bring the same prob-
lem of the original BTM (insufficient topic repre-
sentation). Compared to 20 Newsgroups dataset,
documents in the All News dataset is longer and
carried more topic information, so the best perfor-
mance is achieved without sampling. We find that
when the sample size is larger than an optimized
value, the topic coherence starts to drop.

Effect of modeling biterms as graphs. To ver-
ify the effect of the graph modeling of biterms.
We also do experiments on AVITM with the
same sampling strategy. We use the sampling
size 3 which achieves the best performance by
GraphBTM in 20 Newsgroups to train AVITM
model. The performance does not change a lot,
with an average score of 0.25 which is the same
as the score without sampling. It is not surprising
to us because AVITM models the topic directly on
the individual document with BOW feature. The
BOW feature captures the word co-occurrence im-
plicitly. So aggregating documents in AVITM can
not enhance the input feature. However, our model
uses GCN to capture the transitivity of biterms and
can benefit from the sampling strategy a lot.

Residual connection. We add the residual con-
nection between the first and second layer of GCN.
On the other hand, it can also help convergence by
adding residual connection (Li and Yuan, 2017).
The residual can also help the network capture
hierarchical information of the biterms. We re-
move the residual connection with the same set-
ting which achieves the best performance in these
two datasets and results in a 0.1 drop in perfor-
mance.

5 Related Work

In this section, we briefly summarize the related
work of the topic model into two categories: nor-
mal texts and short texts.

5.1 Normal Texts

The effort of uncovering the latent semantic repre-
sentation of documents can be dated from the La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990), which used the singular value decomposi-
tion of the document matrix to get the word pat-
terns. The probabilistic latent semantic analy-
sis (PLSA) (Hofmann, 1999) improved the LSA
model by adding a probabilistic model based on
a mixture decomposition. It assumed that a docu-
ment could be presented as a mixture of topics and
a topic is a distribution over words. LDA added
the Dirichlet priors on topic and word distributions
and proposed a complete generative model.

With the rising of deep learning (LeCun et al.,
2015), researchers achieve significant improve-
ment in many areas including image classifica-
tion (He et al., 2016), speech recognition (Hin-
ton et al., 2012) and named entity recognition (Ma
and Hovy, 2016; Zhu et al., 2018). Many at-
tempts have been made for topic models based
on neural networks (Hinton and Salakhutdinov,
2009; Cao et al., 2015; Miao et al., 2016; Srivas-
tava and Sutton, 2017). Cao et al. (2015) em-
bedded multinomial relationships between docu-
ments, topics, and words in differentiable func-
tions. However, they lost the stochasticity and
Bayesian inference of prior functions. Miao et al.
(2016) introduced the Neural Variational Docu-
ment Model (NVDM), which used Gaussian dis-
tribution over topics and averaged over topic-word
distribution in the logit space. Although they used
the black-box variational inference (VAE), they
did not approximate the Dirichlet prior. Srivas-
tava and Sutton (2017) approximated the Dirich-
let prior with logistic Gaussian using the Laplace
approximation of Hennig et al. (2012) and col-
lapsed the hidden topic value z with a mixture of
experts (Hinton, 2002). This model (AVITM) sig-
nificantly improved the topic coherence compared
with the NVDM model. However, same as the
LDA, AVITM suffers from the data sparsity prob-
lem.
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Model Topics

GraphBTM

attack ripem rsa encrypt cipher random key cryptography distribution encryption
turkish turks greek greece armenian genocide turkey armenia armenians island
season score player league game puck pitch win pitcher team
israel lebanese israeli lebanon village attack zone arab territory civilian
oname printf entry buf char contest stream output int remark

AVITM

ripem anonymous pgp rsa posting cipher atheism encrypt usenet atheist
armenian genocide turks turkish muslim massacre turkey armenians armenia greek
season nhl team hockey playoff puck league flyers defensive player
israel israeli lebanese arab lebanon arabs civilian territory palestinian militia
oname printf buf entry os char contest cpu stream remark

LDA

drug food health research medical test used development product
computer system data software business personal ibm information technology
offering common convertible proceeds co due used public filed
agreement agreed acquisition acquire purchase sell subject subsidiary completed
quarter earnings reported income expects fiscal loss per second

Table 4: Five selected topics from all models.

5.2 Short Texts

Early studies on short text topic model mainly fo-
cused on adding external knowledge to enrich the
information of short texts. Phan et al. (2008) firstly
learned hidden topics from substantial external re-
sources to enrich the features in short text. Jin
et al. (2011) leveraged the power of transfer learn-
ing to learn topics on short texts from auxiliary
long text data. However, external knowledge in
some domain may not be available.

Instead of adding external knowledge, one po-
tential way is to add a sparse prior on the topic
distribution. Chien and Chang (2014) used a spike
model to control the sparsity of selected topics.
Lin et al. (2014) used the same idea to add the
sparsity on both topic and word distribution. Dif-
ferent from these approaches, some researchers
tried to enhance data without external knowledge.
Weng et al. (2010) aggregated the tweets from one
user into a document. Hong and Davison (2010)
combined the tweets containing the same words.
Some other used non-probability topic model to
solve this problem. Zhu and Xing (2012) pro-
posed sparse topical coding, which relaxed the
normalization constraint of admixture proportions
and learned hierarchical latent representations.

6 Conclusion and Future Work

We proposed a Graph Enhanced Autoencoding
Variational inference for Biterm Topic Model
(GraphBTM). Our model used a black-box ap-

proximation inference approach to learn topics
through the word co-occurrences (biterms). We
modeled the biterms in the form of a graph where
the nodes are the words and weighted edges are
the counts of the corresponding biterms. On top
of this graph representation, we designed a model
by GCN layers with a residual connection to ef-
fectively extract node representations that preserve
the missing connectivity. To overcome the prob-
lems of data sparsity in LDA and insufficient topic
representation in BTM, we introduced a data ar-
gumentation approach by producing a mini-corpus
with sampled documents. By setting a proper hy-
perparameter of sample size k, we achieved bet-
ter topic coherence scores compared with previous
works.

Our GCN model is based on spectral graph
convolutions, which requires computing the graph
Laplace for each sample. Compared to tasks with
one graph input, we need to compute the graph
Laplace for every input sample, causing substan-
tial computational cost. It is critical to developing
a memory efficient processing and storage strategy
to handle the large-scale graph data when we gen-
eralize GraphBTM to complex tasks. Recently,
fastGCN (Zhang et al., 2018) interpreted graph
convolutions as integral transforms of functions
under probability measures. Our following work
will consider adopting fastGCN to speed up the
process.
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Abstract

In this paper, we propose a deep, globally nor-
malized topic model that incorporates struc-
tural relationships connecting documents in so-
cially generated corpora, such as online fo-
rums. Our model (1) captures discursive in-
teractions along observed reply links in addi-
tion to traditional topic information, and (2)
incorporates latent distributed representations
arranged in a deep architecture, which enables
a GPU-based mean-field inference procedure
that scales efficiently to large data. We ap-
ply our model to a new social media dataset
consisting of 13M comments mined from the
popular internet forum Reddit, a domain that
poses significant challenges to models that do
not account for relationships connecting user
comments. We evaluate against existing meth-
ods across multiple metrics including perplex-
ity and metadata prediction, and qualitatively
analyze the learned interaction patterns.

1 Introduction

Topic models have become one of the most com-
mon unsupervised methods for uncovering latent
semantic information in natural language data, and
have found a wide variety of applications across
the sciences. However, many common models -
such as Latent Dirichlet Allocation (Ng and Jordan,
2003) - make an explicit exchangeability assump-
tion that treats documents as independent samples
from a generative prior, thereby ignoring important
aspects of text corpora which are generated by non-
ergodic, interconnected social systems. While the
direct application of such models to datasets such
as transcripts of The French Revolution (Barron
et al., 2017) and discussions on Twitter (Zhao et al.,
2011) have yielded sensible topics and exciting in-
sights, their exclusion of document-to-document
interactions imposes limitations on the scope of
their applicability and the analyses they support.

For instance, on many social media platforms, com-
ments are short (the average Reddit comment is 10
words long), making them difficult to treat as full
documents, yet they do cohere as a collection, sug-
gesting that contextual relationships should be con-
sidered. Moreover, analysis of social data is often
principally concerned with understanding relation-
ships between documents (such as question-asking
and -answering), so a model able to capture such
features is of direct scientific relevance.

To address these issues, we propose a design that
models representations of comments jointly along
observed reply links. Specifically, we attach a vec-
tor of latent binary variables to each comment in
a collection of social data, which in turn connect
to each other according to the observed reply-link
structure of the dataset. The inferred representa-
tions can provide information about the rhetorical
moves and linguistic elements that characterize an
evolving discourse. An added benefit is that while
previous work such as Sequential LDA (Du et al.,
2012) has focused on modeling a linear progres-
sion, the model we present applies to a more gen-
eral class of acyclic graphs such as tree-structured
comment threads ubiquitous on the web.

Online data can be massive, which presents a
scalability issue for traditional methods. Our ap-
proach uses latent binary variables similar to a Re-
stricted Boltzmann Machine (RBM); related mod-
els such as Replicated Softmax (RS) (Salakhutdi-
nov and Hinton, 2009) have previously seen suc-
cess in capturing latent properties of language, and
found substantial speedups over previous methods
due to their GPU amenable training procedure. RS
was also shown to deal well with documents of
significantly different length, another key charac-
teristic of online data. While RBMs permit exact in-
ference, the additional coupling potentials present
in our model make inference intractable. How-
ever, the choice of bilinear potentials and latent
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Figure 1: DDTM factor graph
for an example thread. Each
comment is modeled as an ob-
served bag-of-words x with top-
ics represented by a latent bi-
nary vector h. Log-bilinear fac-
tors connect the latent and ob-
served variables of each com-
ment, and the latent variables
of parent-child comment pairs
along observed reply links. Bi-
ases are omitted for clarity.

features admits a mean-field inference procedure
which takes the form of a series of dense matrix
multiplications followed by nonlinearities, which
is particularly amenable to GPU computation and
lets us scale efficiently to large data.

Our model outperforms LDA and RS baselines
on perplexity and downstream tasks including meta-
data prediction and document retrieval when evalu-
ated on a new dataset mined from Reddit. We also
qualitatively analyze the learned topics and discuss
the social phenomena uncovered.

2 Model
We now present an overview of our model. Specifi-
cally, it will take the probabilistic form of an undi-
rected graphical model whose architecture mirrors
the tree structure of the threads in our data.

2.1 Motivating Dataset
We evaluate on a corpus mined from Reddit, an
internet forum which ranks as the fourth most traf-
ficked site in the US (Alexa, 2018) and sees mil-
lions of daily comments (Reddit, 2015). Discourse
on Reddit follows a branching pattern, shown in
Figure 1. The largest unit of discourse is a thread,
beginning with a link to external content or a natu-
ral language prompt, posted to a relevant subreddit
based on its subject matter. Users comment in re-
sponse to the original post (OP), or to any other
comment. The result is a structure which splits
at many points into more specific or tangential
discussions that while locally coherent may dif-
fer substantially from each other. The data reflect
features of the underlying memory and network

structure of the generating process; comments are
serially correlated and highly cross-referential. We
treat individual comments as “documents” under
the standard topic modeling paradigm, but use ob-
served reply structure to induce a tree of documents
for every thread.

2.2 Description of Discursive Distributed
Topic Model

We now introduce the Discursive Distributed Topic
Model (DDTM) (illustrated in Figure 1). For each
comment in the thread, DDTM assigns a latent
vector of binary random variables (or bits) that col-
lectively form a distributed embedding of the topi-
cal content of that comment; for instance, one bit
might represent sarcastic language while another
might track usage of specific acronyms - a given
comment could have any combination of those fea-
tures. These representations are tied to those of
parent and child comments via coupling potentials
(see Section 2.3), which allow them to learn dis-
cursive properties by inducing a deep undirected
network over the thread. In order to encourage
the model to use these comment-level representa-
tions to learn discursive and stylistic patterns as
opposed to simply topics of discussion, we incor-
porate a single additional latent vector for the entire
thread that interacts with each comment, explain-
ing word choices that are mainly topical rather than
discursive or stylistic. As we demonstrate in our
experiments (see Section 6) the thread-level embed-
ding learns distributions more reminiscent of what
a traditional topic model would uncover, while the
comment-level embeddings model styles of speak-
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ing and mannerisms that do not directly indicate
specific subjects of conversation. The joint proba-
bility is defined in terms of an energy function that
scores latent embeddings and observed word counts
across the tree of comments within a thread using
log-bilinear potentials, and is globally normalized
over all word count and embedding combinations.

2.3 Probability Model

More formally, consider a thread containing N
comments each of size Dn with a vocabulary of
size K. As depicted in Figure 1, each comment
is viewed as a bag-of-words, densely connected
via a log-bilinear potential to a latent embedding
of size F . Let each comment be represented as as
an integer vector xn 2 Z

K where xnk is number
of times word k was observed in comment n, and
let hn = {0, 1}F be the topic embedding for each
comment, and let h0 = {0, 1}F be the embedding
for the entire thread. To model topic transitions,
we score the embeddings of parent-child pairs with
a separate coupling potential as shown in Figure 1
(comments with no parents or children receive ad-
ditional start/stop biases respectively). Let replies
be represented with sets R, PN , and CN where
(n, m) 2 R and n 2 Pm and m 2 Cn if comment
m is a reply to comment n. DDTM assigns prob-
ability to a specific configuration of x, h with an
energy function scored by the emission (⇡e) and
coupling (⇡c) potentials.

E(x, h; ✓) =
NX

n=1

⇡e(h, x, n)

| {z }
Emission Potentials

+
X

(n,m)2R

⇡c(h, n, m)

| {z }
Coupling Potentials

⇡e(h, x, n) = h|

nUxn + x|

na + Dnh|

nb

+ h|

0V xn + Dnh|

0c

⇡c(h, n, m) = h|

nWhm

(1)

Note that the bias on embeddings is scaled by the
number of words in the comment, which controls
for their highly variable length. The joint probabil-
ity is computed by exponentiating the energy and
dividing by a normalizing constant.

p(x, h; ✓) =
exp(E(x, h; ✓))

Z(✓)

Z(✓) =
X

x0,h0

exp(E(x0, h0; ✓))
(2)

This architecture encourages the model to learn
discursive maneuvers via the coupling potentials
while separating within-thread variance and across-
thread variance through the comment-level and
thread-level embeddings respectively. The cou-
pling of latent variables makes factored inference
impossible, meaning that even the exact computa-
tion of the partition function is no longer tractable.
This necessitates approximating the gradients for
learning which we will now address.

3 Learning and Inference

Inference in this model class in intractable, so as
has been done in previous work on topic modeling
(Ng and Jordan, 2003) we rely on variational meth-
ods to approximate the gradients needed during
training as well as the posteriors over the topic bit
vectors. Specifically, we will need the gradients of
the normalizer and the sum of the energy function
over the hidden variables

E(x; ✓) = log
X

h

exp(E(x, h; ✓)) (3)

which we refer to as the marginal energy. Follow-
ing the approach described for undirected models
by Eisner (2011), we approximate these quantities
and their gradients with respect to the model pa-
rameters ✓ as we will now describe (thread-level
embeddings are omitted in this section for clarity).

3.1 Normalizer Approximation
We aim to train our model to maximize the
marginal likelihood of the observed comment word
counts, conditioned on the reply links. To do this
we must compute the gradient of the normalizer
Z(✓). However, this quantity is computationally
intractable, as it contains a summation over all
exponential choices for every word in the thread.
Therefore, we must approximate Z(✓). Observe
that under Jensen’s Inequality, we can form the
following lower bound on the normalizer using an
approximate joint distribution q(Z).

log Z(✓) = log
X

x,h

exp(E(x, h; ✓))

� Eq(Z) [E(x, h; ✓)]� Eq(Z) [log q(Z)(x, h;�, �)]

(4)

We now define q(Z) as depicted in Figure 2
as a mean-field approximation that treats all vari-
ables as independent. We parameterize q(Z) with
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�nf 2 [0, 1], independent Bernoulli parameters
representing the probability of hnf being equal to
1, and �nk replicated softmaxes representing the
probability of a word in xn taking the value k. Note
that all words in xn are modeled as samples from
this single distribution. The approximation then
factors as follows:

q(Z)(x, h;�, �) = q(Z)(x; �) · q(Z)(h;�)

q(Z)(x; �) =
NY

n=1

KY

k=1

(�nk)
xnk

q(Z)(h;�) =
NY

n=1

FY

f=1

⇣
(�nf )hnf (1� �nf )(1�hnf )

⌘

(5)

We optimize the parameters of q(Z) to maximize
its variational lower bound, via iterative mean-field
updates, which allow us to perform coordinate as-
cent over the parameters of q(Z). Maximizing the
lower bound with respect to particular �nf and �nk

while holding all other parameters frozen, yields
the following mean-field update equations (biases
omitted for clarity):

�n· = �

 
U�n +

X

m2Cn

W�m + �|

Pn
W

!

�n· = � (�|

nU)

(6)

We iterate over the parameters of q(Z) in an
“upward-downward” manner; first updating � for
all comments with no children, then all comments
whose children have been updated, and so on up to
the root of the thread. Then we perform the same
updates in reverse order. After updating all �, we
then update � simultaneously (the components of
� are independent conditioned on �). We iterate
these upward-downward passes until convergence.

3.2 Marginal Energy Approximation
We can now approximate the normalizer, but still
need the marginal data likelihood in order to take
gradient steps on it and train our model. In order
to recover the marginal likelihood, we must next
approximate the marginal energy E(x; ✓) as it too
is intractable. This is due to the coupling potentials,
which make the topics across comments dependent
even when conditioned on the word counts. To do
this, we form an additional variational approxima-
tion (see Figure 2) to the marginal energy, which
we optimize similarly.

E(x; ✓) = log
X

h

exp(E(x, h; ✓))

� Eq(E) [E(x, h; ✓)]� Eq(E) [log q(E)(h; )]

(7)

Since q(E)(h; ) need only model the hidden
units h, we can parameterize it in the same man-
ner as q(Z)(h;�). Note that while these distribu-
tions factor similarly, they do not share parame-
ters, although we find that in practice, initializing
�  improves our approximation. We optimize
the lower bound on E(x; ✓) via a similar coordi-
nate ascent strategy, where the mean-field updates
take the following form (biases omitted for clarity):

 n· = �

 
Uhn +

X

m2Cn

W m +  |

Pn
W

!

(8)

We can use q(E) to perform inference at test time
in our model, as its parameters  directly corre-
spond to the expected values of the hidden topic
embeddings under our approximation.

3.3 Learning via Gradient Ascent
We train the parameters of our true model p(x, h; ✓)
via stochastic updates wherein we optimize both ap-
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proximations on a single datum (i.e. thread) to com-
pute the approximate gradient of its log-likelihood,
and take a single gradient step on the model param-
eters (repeating on all training instances until con-
vergence). That gradient is given by the difference
in feature expectations under the approximations
(entropy terms from the lower bounds are dropped
as they do not depend on ✓).

r log p(x; ✓) ⇡ Eq(E)(h; ) [rE(x, h; ✓)]

� Eq(Z)(x0,h; )

⇥
rE(x0, h; ✓)

⇤ (9)

In summary, we use two separate mean-field
approximations to compute lower bounds on the
marginal energy E(x, h; ✓), and its normalizer
Z(✓), which lets us approximate the marginal like-
lihood p(x; ✓). Note that as our estimate on the
marginal likelihood is the difference between two
lower bounds, it is not a lower bound itself, al-
though in practice it works well for training.

3.4 Scalability and GPU Implementation
Given the magnitude of our dataset, it is essen-
tial to be able to train efficiently at scale. Many
commonly used topic models such as LDA (Ng
and Jordan, 2003) have difficulty scaling, partic-
ularly if trained via MCMC methods. Improve-
ments have been shown from online training (Hoff-
man et al., 2010), but extending such techniques
to model comment-to-comment connections and
leverage GPU compute is nontrivial.

In contrast, our proposed model and mean-field
procedure can be scaled efficiently to large data
because they are amenable to GPU implementation.
Specifically, the described inference procedure can
be viewed as the output of a neural network. This is
because DDTM is globally normalized with edges
parameterized as log-bilinear weights, which re-
sults in the mean-field updates taking the form
of matrix operations followed by nonlinearities.
Therefore, a single iteration of mean-field is equiv-
alent to a forward pass through a recursive neu-
ral network, whose architecture is defined by the
tree structure of the thread. Multiple iterations are
equivalent to feeding the output of the network
back into itself in a recurrent manner, and optimiz-
ing for T iterations is achieved by unrolling the
network over T timesteps. This property makes
DDTM highly amenable to efficient training on
a GPU, and allowed us to scale experiments to a
dataset of over 13M total Reddit comments.

4 Experimental Setup

4.1 Data
We mined a corpus of Reddit threads pulled
through the platform’s API. Focusing on the
twenty most popular subreddits (gifs, today-
ilearned, CFB, funny, aww, AskReddit, Black-
PeopleTwitter, videos, pics, politics, The_Donald,
soccer, leagueoflegends, nba, nfl, worldnews,
movies, mildlyinteresting, news, gaming) over a
one month period yielded 200, 000 threads consist-
ing of 13, 276, 455 comments total. The data was
preprocessed by removing special characters, re-
placing URLs with a domain-specific token, stem-
ming English words using a Snowball English
Stemmer (Porter, 2001), removing stopwords, and
truncating the vocabulary to only include the top
10, 000 most common words. OPs are modeled as
a comment at the root of each thread to which all
top-level comments respond. This dataset will be
made available for public use after publication.

4.2 Baselines and Comparisons
We compare to baselines of Replicated Softmax
(RS) (Salakhutdinov and Hinton, 2009) and Latent
Dirichlet Allocation (LDA) (Ng and Jordan, 2003).
RS is a distributed topic model similar to our own,
albeit without any coupling potentials. LDA is a lo-
cally normalized topic model which defines topics
as non-overlapping distributions over words. To en-
sure that DDTM does not gain an unfair advantage
purely by having a larger embedding space, we
divide the dimensions equally between comment-
and thread-level. Unless specified 64 bits/topics
were used. We experiment with RS and LDA treat-
ing either comments or full threads as documents.

4.3 Training and Initialization
SGD was performed using the Adam opti-
mizer (Kingma and Ba, 2015). When running in-
ference, we found convergence was reached in an
average of 2 iterations of updates. Using a sin-
gle NVIDIA Titan X (Pascal) card, we were able
to train our model to convergence on the training
set of 10M comments in less than 30 hours. It is
worth noting that we found DDTM to be fairly sen-
sitive to initialization. We found best results from
Gaussian noise, with comment-level emissions at
variance of 0.01, thread-level emissions at 0.0001,
and transitions at 0. We initialized all biases to 0
except for the bias on word counts, which we set
to the unigram log-probabilities from the train set.
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Perplexity (nats)
Bits 32 64 96 128

RS (thr) 2240 2234 2233 2257
RS (cmt) 1675 1894 2245 2518

DDTM (-cpl) 2027 1704 1766 1953
DDTM 1624 1590 1719 713

Table 1: Perplexity of DDTM with and without
coupling potentials (-cpl) vs. baselines trained at
comment (cmt) or thread (thr) level across vari-
ous numbers of topics and bits. For reference, a
unigram model achieves 2644.

5 Results

5.1 Evaluating Perplexity

We compare models by perplexity on a held-out
test set, a standard evaluation for generative and
latent variables models.
Setup: Due to the use of mean-field approxima-
tions for both the marginal energy and normalizer
we lose any guarantees regarding the accuracy of
our likelihood estimate (both approximations are
lower bounds, and therefore their difference is nei-
ther a strict lower bound nor guaranteed to be unbi-
ased). To evaluate perplexity in a more principled
way, we use Annealed Importance Sampling (AIS)
to estimate the ratio between our model’s normal-
izer and the tractable normalizer of a base model
from which we can draw true independent samples
as described by Salakhutdinov and Murray (2008).
Note that since the marginal energy is intractable
in our model, unlike a standard RBM, we must
sample the joint - and not the marginal - intermedi-
ate distributions. This yields an unbiased estimate
of the normalizer. The marginal energy must still
be approximated via a lower bound, but given that
AIS is unbiased and empirically low in variance,
we can treat the overall estimate as a lower bound
on likelihood for evaluation. Using 2000 interme-
diate distributions, and averaging over 20 runs, we
evaluated per-word perplexity over a set of 50 un-
seen threads. Results are shown in Table 1.
Results: DDTM achieves the lowest perplexity at
all dimensionalities. Note our ablation with the
coupling potentials removed (-cpl), increases per-
plexity noticeably, indicating that modeling replies
helps beyond simply modeling threads and com-
ments jointly, particularly at larger embeddings.
For reference, a unigram model achieves 2644.

Task Upvote Regr. Deletion Pred.
(MSE) (% acc.)

LDA (thr) 1.952 68.35
LDA (cmt) 2.047 59.26

RS (thr) 2.024 69.92
RS (cmt) 2.007 66.45

DDTM 1.933 70.39

Table 2: Performance of DDTM vs. Replicated
Softmax (RS) and Latent Dirichlet Allocation
(LDA) at predicting upvotes and child deletion.

We find that LDA’s approximate perplexity is even
worse, likely due to slackness in its lower bound.

5.2 Upvote Regression
To measure how well embeddings capture
comment-level characteristics, we feed them into a
linear regression model that predicts the number of
upvotes the comment received. Upvotes provide a
loose human-annotated measure of likability. We
expect that context matters in determining how well
received a comment is; the same comment posted
in response to different parents may receive a very
different number of upvotes. Hence, we expect
comment-level embeddings to be more informa-
tive for this task when connected via our model’s
coupling potentials.
Setup: We trained a standard linear regressor for
each model. The regressor was trained using or-
dinary least squares on the entire training set of
comments using the model’s computed topic em-
beddings as input, and the number of upvotes on
the comment as the output to predict. As a pre-
processing step, we took the log of the absolute
number of votes before training. We compared
models by mean squared error (MSE) on our test
set. Results are shown in Table 2.
Results: DDTM achieves lowest MSE. To assess
statistical significance, we performed a 500 sample
bootstrap of our training set. The standard errors
of these replications are small, and a two-sample
t-test rejects the null hypothesis that DDTM has an
average MSE equal to that of the next best method
(p < .001). Note that our model outperforms both
comment- and thread-level embeddings, suggesting
that modeling these jointly, and modeling the ef-
fect of neighboring representations in the comment
graph, more accurately learns information relevant
to a comment’s social impact.
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Figure 3: Precision vs. recall for document retrieval
based on subreddit comparing various models for
1000 randomly selected held-out query comments.

5.3 Deletion Prediction
Comments that are excessively provocative or in
violation of site rules are often deleted, either by
the author or a moderator. We can measure whether
DDTM captures discursive interactions that lead
to such intervention by training a logistic classifier
that predicts whether any of a given comment’s
children have been deleted.
Setup: For each model, a logistic regression classi-
fier was trained stochastically with the Adam opti-
mizer on the entire training set of comments using
the model’s computed topic embeddings as input,
and a binary label for whether the comment had any
deleted children as the output to predict. We com-
pared models by accuracy on our test set. Results
are shown in Table 2.
Results: DDTM gets the highest accuracy. In-
terestingly, thread-level models do better than
comment-level ones, which suggests that certain
topics or even subreddits may correlate with com-
ments being deleted. This makes sense given
that subreddits vary in severity of moderation.
DDTM’s performance also demonstrates that mod-
eling comment-to-comment interaction patterns is
helpful in predicting when a comment will spawn
a deleted future response, which strongly matches
our intuition.

5.4 Document Retrieval
Finally, while DDTM is not designed to better cap-
ture topical structure, we evaluate the extent to
which it can still capture this information by per-
forming document retrieval, a standard evaluation,
for which we treat the subreddit to which a thread

Figure 4: t-SNE visualization of a random sample
of DDTM thread-level embeddings colored by sub-
reddit (not observed in training)

Figure 5: t-SNE visualization of a random sample
of DDTM comment-level embeddings colored by
log of comment length (darker is longer).

was posted as a label for relevance. Note that every
comment within the same thread belongs to the
same subreddit, which gives thread-level models
an inherent advantage at this task. We include this
task purely for the purpose of demonstrating that
by capturing discursive patterns, DDTM does not
lose the ability to model thread-level topics as well.
Setup: Given a query comment from our held-out
test set, we rank the training set by the Dice simi-
larity of the hidden embeddings computed by the
model. We consider a retrieved comment relevant
to the query if they both originate from the same
subreddit, which loosely categorizes the seman-
tic content. Tuning the number of documents we
return allows us to form precision recall curves,
which we show in Figure 3.
Results: DDTM outperforms both comment-level
baselines and is competitive with thread-level mod-
els, even beating LDA at high levels of recall. This
indicates that despite using half of its dimensions to
model comment-to-comment interactions DDTM
can still do almost as good a job of modeling thread-
level semantics as a model using its entire capacity
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Bit # Associated Word Stems by Emission Weight (Higher Score! Lower Score)

Comment-Level
Bit 1 faq tldrs pms 165 til keyword questions feedback chat pm

2 irl riamverysmart legend omfg riski aboard favr madman skillset tunnel
3 lotta brah ouch spici oof bummer buildup viewership hd uncanni
4 funniest mah tfw teleport fav hoo plz bah whyd dumbest
5 handsom hipster texan hottest whore norwegian shittier scandinavian jealousi douch

Thread-Level
Bit 1 btc gameplay tutori cyclist dev currenc kitti bitcoin rpg crypto

2 url_youtu url_leagueoflegends url_businessinsider url_twitter url_redd url_snopes
3 comey pede macron pg13 maga globalist ucf committe cuck distributor
4 maduro venezuelan ballot puerto catalonia rican quak skateboard venezuela quebec
5 nra scotus opioid cheney nevada metallica marijuana vermont colorado xanax

Table 3: Words with the highest emission weight for various comment-level and thread-level bits.

to do so. The gap between comment-level RS and
LDA is also consistent with LDA’s known issues
dealing with sparse data (Sridhar, 2015), and lends
credence to our theory that distributed topic repre-
sentations are better suited to such domains.

6 Qualitative Analysis of Topics

We now offer qualitative analysis of the topic em-
beddings learned by our model. Note that since we
use distributed embeddings, our bits are more akin
to filters than complete distributions over words,
and we typically observe as many as half of them
active for a single comment. In a sense, we have
an exponential number of topics, whose parame-
terization simply factors over the bits. Therefore,
it can be difficult to interpret them as one would
interpret topics learned by a model such as LDA.
Furthermore, we find that in practice this effect
is correlated with the topic embedding size; the
more bits our model has, the less sparse and con-
sequently less individually meaningful the bits be-
come. Therefore for this analysis, we specifically
focus on DDTM trained with 64 bits total.

6.1 Bits in Isolation

Directly inspecting the emission parameters, re-
veals that the comment-level and thread-level
halves of our embeddings capture substantially
different aspects of the data (shown in Table 3)
akin to vertical, within-thread, and horizontal,
across-thread sources of variance respectively. The
comment-level topic bits tend to reflect styles of
speaking, lingo, and memes that are not unique to
a particular subject of discourse or even subreddit.
For example, comment-level Bit 2 captures many
words typical of taunting Reddit comments; reply-
ing with “/r/iamverysmart” (a subreddit dedicated

to mocking people who make grandiose claims
about their intellect) is a common way of jokingly
implying that the author of the parent comment
takes themselves too seriously — and thus corre-
sponds to a certain kind of rhetorical move. Further,
it is grouped with other words that indicate related
rhetorical moves; calling a user “risky” or a “mad-
man” is a common means of suggesting that they
are engaging in a pointless act of rebellion. They
also cluster at the coarsest level by length (see Fig-
ure 5) which we find to correlate with writing style.

By contrast, the thread-level bits are more in-
dicative of specific topics of discussion, and unsur-
prisingly they cluster by subreddit (see Figure 4).
For example, thread-level Bit 3 captures lexicon
used almost exclusively by alt-right Donald Trump
supporters as well as the names of various politi-
cal figures. Bit 4 highlights words related to civil
unrest in Spanish speaking parts of the world.

6.2 Bits in Combination
While these distributions over words (particularly
for comment-level bits) can seem vague, when mul-
tiple bits are active, their effects compound to pro-
duce much more specific topics. One can think of
the bits as defining soft filters over the space of
words, that when stacked together carve out pat-
terns not apparent in any of them individually. We
now analyze a few sample topic embeddings. To
do this, we perform inference as described on a
held-out thread, and pass the comment-level topic
embedding for a single sampled comment through
our emission matrix and inspect the words with the
highest corresponding weight (shown in Table 4).
In generative terminology, these can be thought of
as reconstructions of comments.

These topic embeddings capture more specific
conversational and rhetorical moves. For example,
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Sample # Associated Word Stems by Emission Weight (Higher Score! Lower Score)

Comment-Level
Sample 1 grade grader math age 5th 9th 10th till mayb 7th

2 repost damn dope bamboozl shitload imagin cutest sad legendari awhil
3 heh dawg hmm spooki buddi aye m8 aww fam woah
4 hug merci bless tfw prayer pleas dear bear banana satan
5 chuckl cutest funniest yall bummer oooh mustv coolest ok oop
6 cutest heard coolest funniest havent seen ive craziest stupidest weirdest
7 reev keanu christoph murphi walken vincent chris til wick roger
8 moron douchebag stupid dipshit snitch jackass dickhead idioci hypocrit riddanc
9 technic actual realiz happen escal werent citat practic memo cba

10 reddit shill question background user subreddit answer relev discord guild

Table 4: Words with the highest emission weight for sample held-out comment reconstructions.

Sample 6 displays supportive and interested reac-
tionary language, which one might expect to see
used in response to a post or comment linking to
media or describing something intriguing. This is
of note given that one of the primary aims of includ-
ing coupling potentials was to encourage DDTM
to learn “topics” that correspond to responses and
interactive behavior, something existing methods
are largely not designed for. By contrast, Sample 9
captures a variety of hostile language and insults,
which unlike those discussed previously do not de-
note membership in a particular online community.
As patterns of toxic and hateful behavior on Red-
dit are more well-studied (Chandrasekharan et al.,
2017), it could be useful to have a tool to analyze
precipitous contexts and parent comments, some-
thing which we hope systems based on coupling
of comment embeddings have the capacity to pro-
vide. Sample 10 is of particular interest as it con-
sists largely of Reddit terminology. Conversations
about the meta of the site can manifest for example
in users accusing each other of being “shills” (i.e.
accounts paid to astroturf on behalf of external in-
terests) or requesting/responding to “guilding”, a
feature which lets users purchase premium access
for each other often in response to a particularly
well made comment.

7 Related Work

Many topic models such as LDA (Ng and Jordan,
2003) treat documents as independent mixtures, yet
this approach fails to model how comments inter-
act with one another throughout a larger discourse
if such connections exist in the data. Other work
has considered modeling hierarchy in topics (Grif-
fiths et al., 2004). These models form hierarchical
representations of topics themselves, but still treat
documents as independent. While this approach
can succeed in learning topics of various granulari-

ties, it does not explicitly track how topics interact
in the context of a nested conversation.

Some approaches such as Pairwise-Link-LDA
and Link-PSLA-LDA (Nallapati et al., 2008) at-
tempt to model interactions among documents in
an arbitrary graph, albeit with important drawbacks.
The former models every possible pairwise link
between comments, and the latter models links
as a bipartite graph, limiting its ability to scale
to large tree-structured threads. Similar work on
Topic-Link LDA (Liu et al., 2009) models link
probabilities conditioned on both topic similar-
ity and an authorship model, yet this approach is
poorly suited to high volume, semi-anonymous on-
line domains. Other studies have leveraged reply-
structures on Reddit in the context of predicting
persuasion (Hidey and McKeown), but DDTM dif-
fers in its generative, unsupervised approach.

DDTM’s emission potentials are similar to those
of Replicated Softmax (Salakhutdinov and Hinton,
2009), an undirected model based on a Restricted
Boltzmann Machine. Unlike LDA-style models,
RS does not assign a topic to each word, but instead
builds a distributed representation. In this setting, a
single word can be likely under two different topics,
both of which are present, and lend probability
mass to that word. LDA-style models by contrast
would require the topics to compete for the word.

8 Conclusion

In this paper we introduce a novel way to learn
topic interactions in observed discourse trees, and
describe GPU-amenable learning techniques to
train on large-scale data mined from Reddit. We
demonstrate improvements over previous models
on perplexity and downstream tasks, and offer qual-
itative analysis of learned discursive patterns. The
dichotomy between the two levels of embeddings
hints at applications in style-transfer.
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Abstract

We propose a method for learning disentan-
gled representations of texts that code for dis-
tinct and complementary aspects, with the aim
of affording efficient model transfer and in-
terpretability. To induce disentangled embed-
dings, we propose an adversarial objective
based on the (dis)similarity between triplets
of documents with respect to specific as-
pects. Our motivating application is embed-
ding biomedical abstracts describing clinical
trials in a manner that disentangles the pop-
ulations, interventions, and outcomes in a
given trial. We show that our method learns
representations that encode these clinically
salient aspects, and that these can be effec-
tively used to perform aspect-specific retrieval.
We demonstrate that the approach generalizes
beyond our motivating application in experi-
ments on two multi-aspect review corpora.

1 Introduction
A classic problem that arises in (distributed) rep-
resentation learning is that it is difficult to deter-
mine what information individual dimensions in
an embedding encode. When training a classifier
to distinguish between images of people and land-
scapes, we do not know a priori whether the model
is sensitive to differences in color, contrast, shapes
or textures. Analogously, in the case of natural
language, when we calculate similarities between
document embeddings of user reviews, we cannot
know if this similarity primarily reflects user senti-
ment, the product discussed, or syntactic patterns.
This lack of interpretability makes it difficult to
assess whether a learned representations is likely
to generalize to a new task or domain, hinder-
ing model transferability. Disentangled represen-
tations with known semantics could allow more ef-
ficient training in settings in which supervision is
expensive to obtain (e.g., biomedical NLP).

Thus far in NLP, learned distributed represen-
tations have, with few exceptions (Ruder et al.,
2016; He et al., 2017; Zhang et al., 2017), been en-
tangled: they indiscriminately encode all aspects
of texts. Rather than representing text via a mono-
lithic vector, we propose to estimate multiple em-
beddings that capture complementary aspects of
texts, drawing inspiration from the ML in vision
community (Whitney, 2016; Veit et al., 2017a).

As a motivating example we consider docu-
ments that describe clinical trials. Such publica-
tions constitute the evidence drawn upon to sup-
port evidence-based medicine (EBM), in which
one formulates precise clinical questions with re-
spect to the Populations, Interventions, Compara-
tors and Outcomes (PICO elements) of interest
(Sackett et al., 1996).1 Ideally, learned represen-
tations of such articles would factorize into em-
beddings for the respective PICO elements. This
would enable aspect-specific similarity measures,
in turn facilitating retrieval of evidence concern-
ing a given condition of interest (i.e., in a spe-
cific patient population), regardless of the inter-
ventions and outcomes considered. Better repre-
sentations may reduce the amount of supervision
needed, which is expensive in this domain.

Our work is one of the first efforts to induce dis-
entangled representations of texts,2 which we be-
lieve may be broadly useful in NLP. Concretely,
our contributions in this paper are as follows:

• We formalize the problem of learning disentan-
gled representations of texts, and develop a rela-
tively general approach for learning these from
aspect-specific similarity judgments expressed
as triplets (s, d, o)a, which indicate that docu-
ment d is more similar to document s than to
document o, with respect to aspect a.
1We collapse I and C because the distinction is arbitrary.
2We review the few recent related works that do exist in

Section 5.
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• We perform extensive experiments that provide
evidence that our approach yields disentangled
representations of texts, both for our motivating
task of learning PICO-specific embeddings of
biomedical abstracts, and, more generally, for
multi-aspect sentiment corpora.

2 Framework and Models
Recent approaches in computer vision have
emphasized unsupervised learning of disentan-
gled representations by incorporating information-
theoretic regularizers into the objective (Chen
et al., 2016; Higgins et al., 2017). These ap-
proaches do not require explicit manual annota-
tions, but consequently they require post-hoc man-
ual assignment of meaningful interpretations to
learned representations. We believe it is more nat-
ural to use weak supervision to induce meaningful
aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose exploiting aspect-
specific document triplets (s, d, o)a: this signals
that s and d are more similar than are d and o,
with respect to aspect a (Karaletsos et al., 2015;
Veit et al., 2017b), i.e., sima(d, s) > sima(d, o),
where sima quantifies similarity w.r.t. aspect a.

We associate with each aspect an encoder enca

(encoders share low-level layer parameters; see
Section 2.2 for architecture details). This is used to
obtain text embeddings (ea

s , e
a
d, e

a
o). To estimate

the parameters of these encoders we adopt a sim-
ple objective that seeks to maximize the similarity
between (ea

d, e
a
s) and minimize similarity between

(ea
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a
o), via the following maximum margin loss

L(ea
s , e

a
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a
o) = max{0, 1 � sim(ea
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a
s)

+ sim(ea
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a
o)}

(1)

Where similarity between documents i and j with
respect to a particular aspect a, sima(i, j), is sim-
ply the cosine similarity between the aspect em-
beddings ea

i and ea
j . This allows for the same doc-

uments to be similar with respect to some aspects
while dissimilar in terms of others.

The above setup depends on the correlation be-
tween aspects in the training data. At one ex-
treme, when triplets enforce identical similarities
for all aspects, the model cannot distinguish be-
tween aspects at all. At the other extreme, triplets
are present for only one aspect a, and absent for
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea

o , e
a
s , e

a
d).

To estimate the parameters of these encoders we
adopt a simple objective that seeks to maximize
the similarity between (ea

o , e
a
s) and minimize sim-

ilarity between (ea
o , e

a
d) via following maximum

margin loss for a given triplet

L(ea
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d) = max{0, 1 � sim(ea

o , e
a
s)
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s)}

(2)

Where the similarity between documents i and j
with respect to a particular aspect a is simply the
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L(eo , es , ed ) � max{0, 1 � sima (eo , es ) + sima (eo , ed )}

Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
work, see Figure 2.

Figure 2: The gated convolutional .

cosine similarity between the aspect-specific em-
beddings:

sima(i, j) =
ea

i · ea
j

|ea
i ||ea

j |
(3)

Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea

o , e
a
s , e

a
d).

To estimate the parameters of these encoders we
adopt a simple objective that seeks to maximize
the similarity between (ea

o , e
a
s) and minimize sim-

ilarity between (ea
o , e

a
d) via following maximum

margin loss for a given triplet

L(ea
o , e

a
s , e

a
d) = max{0, 1 � sim(ea

o , e
a
s)

+ sim(ea
d, e

a
s)}

(2)

Where the similarity between documents i and j
with respect to a particular aspect a is simply the

o

s

d

Aspect encoder

es

ed

eo

L(eo , es , ed ) � max{0, 1 � sima (eo , es ) + sima (eo , ed )}

L(eo , es , ed ) � max{0, 1 � sima (eo , es ) + sima (eo , ed )}

Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
work, see Figure 2.
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea
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To estimate the parameters of these encoders we
adopt a simple objective that seeks to maximize
the similarity between (ea
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s) and minimize sim-
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Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
work, see Figure 2.
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning disen-
tangled representations of texts, and develop
a relatively general approach for learning
these from aspect-specific similarity judg-
ments in form of triplets (s, d, o)a where the
triplet encode the information that document
s is closer to document d than document o
under aspect a.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o)a wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect a (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea

o , e
a
s , e
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To estimate the parameters of these encoders we
adopt a simple objective that seeks to maximize
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s) and minimize sim-
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d) via following maximum
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea

o , e
a
s , e

a
d).

To estimate the parameters of these encoders we
adopt a simple objective that seeks to maximize
the similarity between (ea

o , e
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s) and minimize sim-
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d) via following maximum
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Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
work, see Figure 2.
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea
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Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.
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this work are as follows:

• We formalize the problem of learning dis-
entangled representations of texts, and de-
velop a relatively general approach for learn-
ing these from aspect-specific pairwise simi-
larity judgments.

• We provide extensive quantitative and quali-
tative results for our motivating task of learn-
ing PICO-specific embeddings of biomedical
abstracts.

• We show that the strategy generalizes to two
sentiment (review) corpora.

2 Framework and Models

While a purely unsupervised approach for learning
disentangled embeddings of texts would afford the
clear advantage of removing the need for explicit
annotations, it would also require the practitioner
to assign meaningful interpretation to the learned
representations. We believe it is more natural to
use weak supervision to guide the model to induce
meaningful aspect embeddings.

2.1 Learning from Aspect Triplets
As a general strategy for learning disentangled
representations, we propose learning from aspect-
specific document triplets (s, d, o) wherein items
s and d are more similar and items d and o are less
similar, with respect to a particular aspect (Kar-
aletsos et al., 2015; Veit et al., 2016). That is:

sima(d, s) < sima(d, o) (1)

where sima quantifies similarity between two texts
with respect to aspect a.

We associate with each aspect an independent
encoder enca (for details regarding the encoder ar-
chitecture used in this work, see Section 2.2). This
is used to obtain text embeddings (ea
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Figure 1: Proposed training regime based on instance
(document) triplets. For the specific aspect encoder ar-
chitecture we use to instantiate this model in the present
work, see Figure 2.
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Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand, if
certain triplets are satisfied for only one aspect, the
objective will force the model to learn the infor-
mation present only in the given aspect. In gen-
eral, we expect to see a mixture of the two scenar-
ios, where some triplets are satisfied for multiple
aspects and the negative sampling will allow our
model to effectively learn to focus on information
pertaining to given aspect.

To instantiate this model we must specify an
encoder architecture to induce our aspect-specific
distributed representations; we next describe the
model for this used in the present work.

Figure 1: Proposed training regime. Aspects are asso-
ciated with independent encoders, trained over instance
triplets that codify relative similarity.

Similarity between documents i and j with respect
to a particular aspect a is simply the cosine simi-
larity between the aspect-specific embeddings:

sima(i, j) =
ea

i · ea
j

|ea
i ||ea

j |
. (3)

Obviously, this allows for the same documents to
be similar with respect to some aspects while dis-
similar in terms of others.

Note that the above setup depends on the corre-
lation between various aspects in the training data.
At one extreme, if each triplet is satisfied for each
of the aspects, then our model cannot disentangle
information for any aspect. On the other hand,
if certain triplets are satisfied for only one aspect
while remaining neutral with respect to all other
aspects, the objective will force the model to learn
the information present only in the given aspect. In
general, we expect to see a mixture of the two sce-
narios, where some triplets are satisfied for mul-
tiple aspects and the negative sampling will allow
our model to effectively learn to focus on informa-
tion pertaining to given aspect.

2.2 Encoder Architecture

Instantiating this model requires specifying a suit-
able aspect-encoder architecture. One considera-
tion here is interpretability; a desirable property
for aspect-encoders is the ability to identify n-
grams salient for a given aspect. For this we rely
on gated CNNs, which afford introspection via
gate activations. Our model builds upon recent
work on language modeling with gated CNNs by
Dauphin et al. (2016).

We depict our encoder architecture in Figure
2. The input to our encoder is the sequence of
words d = (w1, ..., wN ) which are mapped to m-
dimensional word embeddings E = [e1, ..., eN ].
These are passed through sequential convolutional

Figure 1: We propose associating aspects with en-
coders (low-level parameters are shared across as-
pects; this is not shown) and training these with
triplets codifying aspect-wise relative similarities.

all other aspects a0: In this case the model will
use only the embeddings for aspect a to represent
similarities. In general, we expect a compromise
between these extremes, and propose using nega-
tive sampling to enable the model to learn targeted
aspect-specific encodings.

2.2 Encoder Architecture
Designing an aspect-based model requires speci-
fying an encoder architecture. One consideration
here is interpretability: a desirable property for
aspect encoders is the ability to identify salient
words for a given aspect. With this in mind, we
propose using gated CNNs, which afford intro-
spection via the token-wise gate activations.

Figure 2 schematizes our encoder architecture.
The input is a sequence of word indices d =
(w1, ..., wN ) which are mapped to m-dimensional
word embeddings and stacked into a matrix E =
[e1, ..., eN ]. These are passed through sequential
convolutional layers C1, ..., CL, which induce rep-
resentations Hl 2 R

N⇥k:

Hl = fe(X ⇤ Kl + bl) (2)

where X 2 R
N⇥k is the input to layer Cl (either

a set of n-gram embeddings or Hl�1) and k is the
number of feature maps. Kernel Kl 2 R

F⇥k⇥k

and bl 2 R
k are parameters to be estimated, where

F is the size of kernel window.3 An activation
function fe is applied element-wise to the output
of the convolution operations. We fix the size of
Hl�1 2 R

N⇥k by zero-padding where necessary.
Keeping the size of feature maps constant across
layers allows us to introduce residual connections;
the output of layer l is summed with the outputs of
preceding layers before being passed forward.

We multiply the output of the last convolutional
layer HL 2 R

N⇥k with gates g 2 R
N⇥1 to yield

3The input to C1 is E 2 R
N⇥m, thus K1 2 R

F⇥m⇥k.
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Figure 2: Schematic of our encoder architecture.

our final embedding ed 2 R
1⇥k:

g = �(HL · wg + bg)

ed = gT HL

(3)

where wg 2 R
k⇥1 and bg 2 R are learned param-

eters and � is the sigmoid activation function. We
impose a sparsity-inducing constraint on g via the
`1 norm; this allows the gates to effectively serve
as an attention mechanism over the input. Addi-
tionally, to capture potential cross-aspect correla-
tion, weights in the embedding and first convolu-
tional layers are shared between aspect encoders.
Alternative encoders. To assess the relative im-
portance of the specific encoder model architec-
ture used, we conduct experiments in which we
fine-tune standard document representation mod-
els via triplet-based training. Specifically, we con-
sider a single-layer MLP with BoW inputs, and
a Neural Variational Document Model (NVDM)
(Miao et al., 2016). For the NVDM we take a
weighted sum of the original loss function and the
triplet-loss over the learned embeddings, where
the weight is a model hyperparameter.

3 Varieties of Supervision

Our approach entails learning from triplets that
codify relative similarity judgments with respect
to specific aspects. We consider two approaches
to acquiring such triplets: the first exploits aspect-
specific summaries written for texts, and the sec-
ond assumes a more general scenario in which we
solicit aspect-wise triplet judgments directly.

3.1 Deriving Triplets from Aspect Summaries
In the case of our motivating example – disentan-
gled representations for articles describing clini-
cal trials – we have obtained aspect-specific sum-
maries from the Cochrane Database of System-

atic Reviews (CDSR). Cochrane is an international
organization that creates and curates biomedical
systematic reviews. Briefly, such reviews seek to
formally synthesize all relevant articles to answer
precise clinical questions, i.e., questions that spec-
ify a particular PICO frame. The CDSR consists
of a set of reviews {Ri}. Reviews include mul-
tiple articles (studies) {Sij}. Each study S con-
sists of an abstract A and a set of free text sum-
maries (sP , sI , sO) written by reviewers describ-
ing the respective P, I and O elements in S.

Reviews implicitly specify PICO frames, and
thus two studies in any given review may be
viewed as equivalent with respect to their PICO
aspects. We use this observation to derive docu-
ment triplets. Recall that triplets for a given as-
pect include two comparatively similar texts (s, d)
and one relatively dissimilar (o). Suppose the as-
pect of interest is the trial population. Here we
match a given abstract (d) with its matched popu-
lation summary from the CDSR (s); this encour-
ages the encoder to yield similar embeddings for
the abstract and the population description. The
dissimilar o is constructed to distinguish the given
abstract from (1) other aspect encodings (of inter-
ventions, outcomes), and, (2) abstracts for trials
with different populations.

Concretely, to construct a triplet (s, d, o) for the
PICO data, we draw two reviews R1 and R2 from
the CDSR at random, and sample two studies from
the first (s1, s0

1) and one from the second (s2). In-
tuitively, s2 will (very likely) comprise entirely
different PICO elements than (s1, s0

1), by virtue
of belonging to a different review. To formal-
ize the preceding description, our triplet is then:
(s = [s0P

1 ], d = [sabstract
1 ], o = [sP

2 |s0I
1 |s0O

1 ]), where
sabstract
1 is the abstract for study s1, and aspect sum-

maries for studies are denoted by superscripts. We
include a concrete example of triplet construction
in the Appendix, Section D.

3.2 Learning Directly from Aspect-Wise
Similarity Judgments

The preceding setup assumes a somewhat unique
case in which we have access to aspect-specific
summaries written for texts. As a more general
setting, we also consider learning directly from
triplet-wise supervision concerning relative simi-
larity with respect to particular aspects (Amid and
Ukkonen, 2015; Veit et al., 2017a; Wilber et al.,
2014). The assumption is that such judgments can
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be solicited directly from annotators, and thus the
approach may be applied to arbitrary domains, so
long as meaningful aspects can be defined implic-
itly via pairwise similarities regarding them.

We do not currently have corpora with such
judgments in NLP, so we constructed two datasets
using aspect-specific sentiment ratings. Note that
this highlights the flexibility of exploiting aspect-
wise triplet supervision as a means of learning
disentangled representations: existing annotations
can often be repurposed into such triplets.

4 Datasets and Experiments

We present a series of experiments on three cor-
pora to assess the degree to which the learned rep-
resentations are disentangled, and to evaluate the
utility of these embeddings in simple downstream
retrieval tasks. We are particularly interested in the
ability to identify documents similar w.r.t. a target
aspect. All parameter settings for baselines are re-
ported in the Appendix (along with additional ex-
perimental results). The code is available at
https://github.com/successar/neural-nlp.

4.1 PICO (EBM) Domain
We first evaluate embeddings quantitatively with
respect to retrieval performance. In particular, we
assess whether the induced representations afford
improved retrieval of abstracts relevant to a partic-
ular systematic review (Cohen et al., 2006; Wal-
lace et al., 2010). We then perform two evalua-
tions that explicitly assess the degree of disentan-
glement realized by the learned embeddings.

The PICO dataset comprises 41K abstracts of
articles describing clinical trials extracted from the
CDSR. Each abstract is associated with a review
and three summaries, one per aspect (P/I/O). We
keep all words that occur in � 5 documents, con-
verting all others to unk. We truncate documents
to a fixed length (set to the 95th percentile).

4.1.1 Quantitative Evaluation
Baselines. We compare the proposed P, I and O
embeddings and their concatenation [P|I|O] to the
following. TF-IDF: standard TF-IDF representa-
tion of abstracts. RR-TF: concatenated TF-IDF
vectors of sentences predicted to describe the re-
spective PICO elements, i.e., sentence predictions
made using the pre-trained model from (Wallace
et al., 2016) — this model was trained using dis-
tant supervision derived from the CDSR. doc2vec:
standard (entangled) distributed representations of

abstracts (Le and Mikolov, 2014). LDA: Latent
Dirichlet Allocation. NVDM: A generative model
of text where the representation is a vector of log-
frequencies that encode a topic (Miao et al., 2016).
ABAE: An autoencoder model that discovers la-
tent aspects in sentences (He et al., 2017). We ob-
tain document embeddings by summing over con-
stituent sentence embeddings. DSSM: A CNN
based encoder trained with triplet loss over ab-
stracts (Shen et al., 2014).

Hyperparameters and Settings. We use three
layers for our CNN-based encoder (with 200 filters
in each layer; window size of 5) and the PReLU
activation function (He et al., 2015) as fe. We use
200d word embeddings, initialized via pretraining
over a corpus of PubMed abstracts (Pyysalo et al.,
2013). We used the Adam optimization function
with default parameters (Kingma and Ba, 2014).
We imposed `2 regularization over all parameters,
the value of which was selected from the range
(1e-2, 1e-6) as 1e-5. The `1 regularization pa-
rameter for gates was chosen from the range (1e-2,
1e-8) as 1e-6. All model hyperparameters for our
models and baselines were chosen via line search
over a 10% validation set.

Metric. For this evaluation, we used a held out set
of 15 systematic reviews (comprising 2,223 stud-
ies) compiled by Cohen et al. (2006). The idea is
that good representations should map abstracts in
the same review (which describe studies with the
same PICO frame) relatively near to one another.
To compute AUCs over reviews, we first calculate
all pairwise study similarities (i.e., over all studies
in the Cohen corpus). We can then construct an
ROC for a given abstract a from a particular re-
view to calculate its AUC: this measures the prob-
ability that a study drawn from the same review
will be nearer to a than a study from a different
review. A summary AUC for a review is taken as
the mean of the study AUCs in that review.

Results. Table 1 reports the mean AUCs over in-
dividual reviews in the Cohen et al. (2006) corpus,
and grand means over these (bottom row). In brief:
The proposed PICO embeddings (concatenated)
obtain an equivalent or higher AUC than base-
line strategies on 12/14 reviews, and strictly higher
AUCs in 11/14. It is unsurprising that we outper-
form unsupervised approaches, but we also best
RR-TF, which was trained with the same CDSR
corpus (Wallace et al., 2016), and DSSM (Shen
et al., 2014), which exploits the same triplet loss
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Study TF-IDF Doc2Vec LDA NVDM ABAE RR-TF DSSM P I O [P|I|O]
ACEInhib. 0.81 0.74 0.72 0.85 0.81 0.67 0.85 0.83 0.88 0.84 0.92
ADHD 0.90 0.82 0.83 0.93 0.77 0.85 0.83 0.86 0.75 0.91 0.89
Antihist. 0.81 0.73 0.67 0.79 0.84 0.72 0.91 0.88 0.84 0.89 0.91
Antipsych. 0.75 0.85 0.88 0.89 0.81 0.63 0.96 0.91 0.93 0.97 0.97
BetaBlockers 0.67 0.65 0.61 0.76 0.70 0.56 0.68 0.71 0.75 0.77 0.81
CCBlockers 0.67 0.60 0.67 0.70 0.69 0.58 0.76 0.73 0.69 0.74 0.77
Estrogens 0.87 0.85 0.60 0.94 0.85 0.82 0.96 1.00 0.98 0.83 1.00
NSAIDS 0.85 0.77 0.73 0.9 0.77 0.74 0.89 0.94 0.95 0.8 0.95
Opioids 0.81 0.75 0.80 0.83 0.77 0.76 0.86 0.80 0.83 0.92 0.92
OHG 0.79 0.80 0.70 0.89 0.90 0.72 0.90 0.90 0.95 0.95 0.96
PPI 0.81 0.79 0.74 0.85 0.82 0.68 0.94 0.94 0.87 0.87 0.95
MuscleRelax. 0.60 0.67 0.74 0.75 0.61 0.57 0.77 0.68 0.62 0.78 0.75
Statins 0.79 0.76 0.66 0.87 0.77 0.68 0.87 0.82 0.94 0.87 0.94
Triptans 0.92 0.82 0.83 0.92 0.75 0.81 0.97 0.93 0.79 0.97 0.97
Mean 0.79 0.76 0.73 0.85 0.78 0.70 0.87 0.85 0.84 0.87 0.91

Table 1: AUCs achieved using different representations on the Cohen et al. corpus. Models to the right
of the | are supervised; those to the right of || constitute the proposed disentangled embeddings.

in a clinical trial mainly involving patients over qqq with
coronary heart disease , ramipril reduced mortality while
vitamin e had no preventive effect .
in a clinical trial mainly involving patients over qqq with
coronary heart disease , ramipril reduced mortality while
vitamin e had no preventive effect .
in a clinical trial mainly involving patients over qqq with
coronary heart disease , ramipril reduced mortality while
vitamin e had no preventive effect .

Table 2: Gate activations for each aspect in a PICO
abstract. Note that because gates are calculated at
the final convolution layer, activations are not in
exact 1-1 correspondence with words.

as our model. We outperform the latter by an aver-
age performance gain of 4 points AUC (significant
at 95% level using independent 2-sample t-test).

We now turn to the more important questions:
are the learned representations actually disentan-
gled, and do they encode the target aspects? Ta-
ble 2 shows aspect-wise gate activations for PICO
elements over a single abstract; this qualitatively
suggests disentanglement, but we next investigate
this in greater detail.

4.1.2 Qualitative Evaluation
To assess the degree to which our PICO embed-
dings are disentangled – i.e., capture complemen-
tary information relevant to the targeted aspects –
we performed two qualitative studies.

First, we assembled 87 articles (not seen in
training) describing clinical trials from a review
on the effectiveness of decision aids (Stacey et al.,
2014) for: women with, at risk for, and geneti-
cally at risk for, breast cancer (BCt, BCs and BCg,
respectively); type II diabetes (D); menopausal
women (MW); pregnant women generally (PW)

and those who have undergone a C-section previ-
ously (PWc); people at risk for colon cancer (CC);
men with and at risk of prostate cancer (PCt and
PCs, respectively) and individuals with atrial fib-
rillation (AF). This review is unusual in that it
studies a single intervention (decision aids) across
different populations. Thus, if the model is suc-
cessful in learning disentangled representations,
the corresponding P vectors should roughly clus-
ter, while the I/C should not.

Figure 3 shows a TSNE-reduced plot of the P,
I/C and O embeddings induced by our model for
these studies. Abstracts are color-coded to indi-
cate the populations enumerated above. As hy-
pothesized, P embeddings realize the clearest sep-
aration with respect to the populations, while the
I and O embeddings of studies do not co-localize
to the same degree. This is reflected quantitatively
in the AUC values achieved using each aspect em-
bedding (listed on the Figure). This result implies
disentanglement along the desired axes.

Next we assembled 50 abstracts describing
trials involving hip replacement arthroplasty
(HipRepl). We selected this topic because
HipRepl will either describe the trial population
(i.e., patients who have received hip replacements)
or it will be the intervention, but not both. Thus,
we would expect that abstracts describing trials
in which HipRepl describes the population clus-
ter in the corresponding embedding space, but not
in the intervention space (and vice-versa). To test
this, we first manually annotated the 50 abstracts,
associating HipRepl with either P or I. We used
these labels to calculate pairwise AUCs, reported
in Table 3. The results imply that the popula-
tion embeddings discriminate between studies that
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
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P I O Combined
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Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).
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Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).
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Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
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improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
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LDA 0.70 0.70 0.69 0.69
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Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).
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4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).
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4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
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Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).
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4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,
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TF-IDF Doc2Vec LDA NVDM TF-RR Aspect Conv P I O
ACEInhibitors 0.771 0.738 0.724 0.829 0.671 0.881 0.846 0.831 0.845
ADHD 0.776 0.798 0.833 0.904 0.847 0.896 0.830 0.695 0.900
Antihistamines 0.736 0.681 0.670 0.729 0.717 0.867 0.842 0.725 0.815
AtypicalAntipsychotics 0.746 0.824 0.878 0.879 0.629 0.963 0.912 0.959 0.949
BetaBlockers 0.659 0.666 0.615 0.733 0.565 0.761 0.730 0.771 0.746
CalciumChannelBlockers 0.661 0.562 0.665 0.671 0.575 0.737 0.733 0.667 0.721
Estrogens 0.851 0.823 0.599 0.917 0.824 0.962 0.964 0.879 0.823
NSAIDS 0.826 0.787 0.726 0.888 0.743 0.901 0.920 0.879 0.781
Opiods 0.815 0.748 0.799 0.821 0.759 0.921 0.841 0.845 0.899
OralHypoglycemics 0.829 0.771 0.695 0.876 0.717 0.939 0.907 0.939 0.917
ProtonPumpInhibitors 0.817 0.763 0.735 0.820 0.678 0.923 0.887 0.748 0.897
SkeletalMuscleRelaxants 0.579 0.642 0.742 0.714 0.565 0.685 0.582 0.545 0.723
Statins 0.758 0.692 0.662 0.828 0.676 0.820 0.751 0.760 0.798
Triptans 0.931 0.809 0.827 0.908 0.805 0.977 0.924 0.727 0.954

P I O Combined
0.764 0.582 0.643 0.733

Aspect Words
Population american, area, breast, colorectal, diagno-

sis, inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, interven-

tion, methods, reduced, started, took, writ-
ten

Outcome adults, area, either, eligible, importance,
improve, mortality, pre, reduces, survival

Table 1: Most Activated words as determined by the
gating mechanism

k if they have same sentiment for aspect k. We
compute ROC curve for each review and calculate
its AUC. The AUC values are averaged over test
set to obtain the final AUC metric.

Similarly, We also compute cross AUC
measures where the affinity matrix Akk0

ij =
simk0(ai, aj) for given aspect k is constructed us-
ing embeddings for another aspect k0.

Baseline Look Aroma Palate Taste
TF-IDF 0.60 0.59 0.59 0.58
LSA 0.60 0.59 0.59 0.58
LDA 0.70 0.70 0.69 0.69
Doc2Vec 0.62 0.63 0.63 0.63
NVDM 0.68 0.69 0.69 0.70
Aspect E(TF)
Aspect E(NVDM)
Aspect E(Conv) 0.839 0.808 0.834 0.707

Table 2: AUC results for different representations for
BeerAdvocate Dataset.

Results We report the AUC measures for each

Baseline Look Aroma Palate Taste
Look 0.60 0.59 0.59 0.58
Aroma 0.60 0.59 0.59 0.58
Palate 0.70 0.70 0.69 0.69
Taste 0.62 0.63 0.63 0.63

Table 3: Cross AUC results for different representa-
tions for BeerAdvocate Dataset.

aspect on our test set using various representations
in Table [?]. We can observe that our model con-
sistently performs better than baseline strategies
on all aspects. We also present the cross AUC
evaluations where the rows correspond to the em-
bedding used and columns correspond to the as-
pect evaluated against. We observe that each as-
pect embedding perform better on its correspond-
ing aspect than other aspects. Note that the reduc-
tion in performance on other aspect is not as sig-
nificant since the aspect ratings are highly corre-
lated (i.e in most examples, if aspect k is positive,
so is aspect k’ and vice versa).

Qualitative Analysis
Most Activated Outputs

4.3 TripAdvisor/Yelp Domain
We also use our model to learn embeddings that
disentangle domain and sentiment in a review.
We use the combination of TripAdvisor and Yelp
Ratings data. The tripAdvisor data provides re-
views of hotels with ratings in range 1 to 5. Sim-
ilarly, yelp data provide restaurant reviews on
same rating scale. We convert ratings into pos-
itive/negative labels as above. In this dataset,

(AUC = 0.75) (AUC = 0.57) (AUC = 0.59)

Figure 3: TSNE-reduced scatter of disentangled PICO embeddings of abstracts involving “decision aid”
interventions. Abstracts are colored by known population group (see legend). Population embeddings
for studies in the same group co-localize, more so than in the intervention and outcome space.

HipRepl I HipRepl P Mean
Population 0.62 0.68 0.66

Intervention 0.91 0.46 0.57
Outcome 0.89 0.42 0.54

Table 3: AUCs realized over HipRepl studies us-
ing different embeddings. Column: Study label
(HipRepl as P or I). Row: Aspect embedding used.

Population american, area, breast, colorectal, diagnosis,
inpatients, outpatients, stage, their, uk
Intervention adjunct, alone, an, discussion, intervention,
methods, reduced, started, took, written
Outcome adults, area, either, eligible, importance, im-
prove, mortality, pre, reduces, survival

Table 4: Top ten most activated words, as deter-
mined by the gating mechanism.

enrolled patients with HipRepl and other studies.
Likewise, studies in which HipRepl was the inter-
vention are grouped in the interventions embed-
ding space, but not in the populations space.
Aspect words. In Table 4, we report the most acti-
vated unigrams for each aspect embedding on the
decision aids corpus. To derive these we use the
outputs of the gating mechanism (Eq. 3), which is
applied to all words in the input text. For each
word, we average the activations across all ab-
stracts and find the top ten words for each aspect.
The words align nicely with the PICO aspects,
providing further evidence that our model learns
to focus on aspect-specific information.

4.2 Multi-Aspect Reviews

We now turn from the specialized domain of
biomedical abstracts to more general applications.
In particular, we consider learning disentangled
representations of beer, hotel and restaurant re-

Baseline Look Aroma Palate Taste
TF-IDF 0.63 0.62 0.62 0.61
LDA 0.73 0.73 0.73 0.73
Doc2Vec 0.61 0.61 0.61 0.61
NVDM 0.68 0.69 0.69 0.70
ABAE 0.50 0.50 0.50 0.50
BoW + Triplet 0.85 0.90 0.90 0.92
NVDM + Triplet 0.90 0.91 0.92 0.95
DSSM + Triplet 0.87 0.90 0.90 0.92
CNN + Triplet 0.92 0.93 0.94 0.96

Table 5: AUC results for different representations
on the BeerAdvocate data. Models beneath the
second line are supervised.

Look Aroma Palate Taste
Look 0.92 0.89 0.88 0.87
Aroma 0.90 0.93 0.91 0.92
Palate 0.89 0.92 0.94 0.95
Taste 0.90 0.94 0.95 0.96

Table 6: Cross AUC results for different represen-
tations on the BeerAdvocate data. Row: Embed-
ding used. Column: Aspect evaluated against.

views. Learned embeddings should capture differ-
ent aspects, e.g., taste or look in the case of beer.

4.2.1 Beer Reviews (BeerAdvocate)
We conducted experiments on the BeerAdvocate
dataset (McAuley et al., 2012), which contains
1.5M reviews of beers that address four aspects:
appearance, aroma, palate, and taste. Free-text
reviews are associated with aspect-specific numer-
ical ratings for each of these, ranging from 1 to
5. We consider ratings < 3 as negative, and > 3
as positive, and use these to generate triplets of
reviews. For each aspect a, we construct triplets
(s, d, o)a by first randomly sampling a review d.
We then select s to be a review with the same sen-
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Look Aroma Palate Taste
Look - - 0.42 0.60 0.40 0.63 0.38 0.65
Aroma 0.33 0.69 - - 0.41 0.59 0.41 0.60
Palate 0.32 0.70 0.46 0.54 - - 0.49 0.52
Taste 0.23 0.80 0.35 0.66 0.33 0.67 - -

Table 7: ‘Decorrelated’ cross-AUC results on the
BeerAdvocate data, which attempt to mitigate
confounding due to overall sentiment being cor-
related. Each cell reports metrics over subsets of
reviews in which the sentiment differs between the
row and column aspects. The numbers in each cell
are the AUCs w.r.t. sentiment regarding the col-
umn aspect achieved using the row and column
aspect representations, respectively.

timent with respect to a as d, and o to be a re-
view with the opposite sentiment regarding a. We
selected 90K reviews for experiments, such that
we had an equal number of positive and negative
reviews for each aspect. We only keep words ap-
pearing in at least 5 documents, converting all oth-
ers to unk. We truncated reviews to 95 percentile
length. We split our data into 80/10/10 ratio for
training, validation and testing, respectively.
Baselines. We used the same baselines as for
the PICO domain, save for RR-TF, which was
domain-specific. Here we also evaluate the result
of replacing the CNN-based encoder with NVDM,
BoW and DSSM based encoders, respectively,
each trained using triplet loss.
Hyperparameters and Settings. For the CNN-
based encoder, we used settings and hyperparam-
eters as described for the PICO domain. For the
BoW encoder, we used 800d output embeddings
and a PReLU activation function with `2 regular-
ization set to 1e-5. For the NVDM based encoder,
we used 200d embeddings.
Metrics. We again performed an IR-type evalu-
ation to assess the utility of representations. For
each aspect k, we constructed an affinity matrix
Ak such that Ak

ij = simk(ri, rj) for beer reviews
ri and rj . We consider two reviews similar un-
der a given aspect k if they have the same (di-
chotomized) sentiment value for said aspect. We
compute AUCs for each review and aspect using
the affinity matrix Ak. The AUC values are aver-
aged over reviews in the test set to obtain a final
AUC metric for each aspect. We also report cross
AUC measures in which we use embeddings for
aspect k to distinguish reviews under aspect k0.
Results We report the AUC measures for each

aspect on our test set using different representa-
tions in Table 5. Our model consistently outper-
forms baseline strategies over all aspects. Unsur-
prisingly, the model outperforms unsupervised ap-
proaches.4 We realize consistent though modest
improvement over triplet-supervised approaches
that use alternative encoders.

In Table 6 we present cross AUC evalua-
tions. Rows correspond to the embedding used
and columns to the aspect evaluated against.
As expected, aspect-embeddings perform better
w.r.t. the aspects for which they code, suggesting
some disentanglement. However, the reduction in
performance when using one aspect representation
to discriminate w.r.t. others is not as pronounced
as above. This is because aspect ratings are highly
correlated: if taste is positive, aroma is very likely
to be as well. Effectively, here sentiment entangles
all of these aspects.5

In Table 7, we evaluate cross AUC perfor-
mance for beer by first ‘decorrelating’ the aspects.
Specifically, for each cell (k, k0) in the table, we
first retrieve the subset of reviews in which the sen-
timent w.r.t. k differs from the sentiment w.r.t. k0.
Then we evaluate the AUC similarity of these re-
views on the basis of sentiment concerning k0 us-
ing both k and k0 embeddings, yielding a pair of
AUCs (listed respectively). We observe that the
using k0 embeddings to evaluate aspect k0 similar-
ity yields better results than using k embeddings.

We present the most activated words for each
aspect (as per the gating mechanism) in Table 8.
And we present an illustrative review color-coded
with aspect-wise gate activations in Table 9. For
completeness, we reproduce the top words for as-
pects discovered using He et al. (2017) in the Ap-
pendix; these do not obviously align with the tar-
get aspects, which is unsurprising given that this is
an unsupervised method.

4.2.2 Hotel & Restaurant Reviews
Finally, we attempt to learn embeddings that dis-
entangle domain from sentiment in reviews. For
this we use a combination of TripAdvisor and

4We are not sure why ABAE (He et al., 2017) performs
so poorly on the review corpora. It may simply fail to promi-
nently encode sentiment, which is important for these tasks.
We note that this model performs reasonably well on the
PICO data above, and qualitatively seems to recover reason-
able aspects (though not specifically sentiment).

5Another view is that we are in fact inducing represen-
tations of <aspect, sentiment> pairs, and only the aspect
varies across these; thus representations remain discrimina-
tive (w.r.t. sentiment) across aspects.
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Look attractive, beautiful, fingers, pumpkin, quarter, re-
ceived, retention, sheets, sipper, well-balanced
Aroma beer, cardboard, cheap, down, follows, medium-
light, rice, settled, skunked, skunky
Palate bother, crafted, luscious, mellow, mint, range, rec-
ommended, roasted, tasting, weight
Taste amazingly, down, highly, product, recommended,
tasted, thoroughly, to, truly, wow

Table 8: Most activated words for aspects on the
beer corpus, as per the gating mechanism.

Yelp! ratings data. The former comprises reviews
of hotels, the latter of restaurants; both use a scale
of 1 to 5. We convert ratings into positive/negative
labels as above. Here we consider aspects to be
the domain (hotel or restaurant) and the sentiment
(positive or negative). We aim to generate em-
beddings that capture information about only one
of these aspects. We use 50K reviews from each
dataset for training and 5K for testing.
Baselines. We use the same baselines as for the
BeerAdvocate data, and similarly use different en-
coder models trained under triplet loss.
Evaluation Metrics. We perform AUC and cross-
AUC evaluation as in the preceding section. For
the domain aspect, we consider two reviews simi-
lar if they are from the same domain, irrespective
of sentiment. Similarly, reviews are considered
similar with respect to the sentiment aspect if they
share a sentiment value, regardless of domain.
Results. In Table 10 we report the AUCs for each
aspect on our test set using different representa-
tions. Baselines perform reasonably well on the
domain aspect because reviews from different do-
mains are quite dissimilar. Capturing sentiment in-
formation irrespective of domain is more difficult,
and most unsupervised models fail in this respect.
In Table 11, we observe that cross AUC results are
much more pronounced than for the BeerAdvocate
data, as the domain and sentiment are uncorrelated
(i.e., sentiment is independent of domain).

5 Related Work

Work in representation learning for NLP has
largely focused on improving word embeddings
(Levy and Goldberg, 2014; Faruqui et al., 2015;
Huang et al., 2012). But efforts have also been
made to embed other textual units, e.g. charac-
ters (Kim et al., 2016), and lengthier texts includ-
ing sentences, paragraphs, and documents (Le and
Mikolov, 2014; Kiros et al., 2015).

Triplet-based judgments have been used in mul-
tiple domains, including vision and NLP, to es-

timate similarity information implicitly. For ex-
ample, triplet-based similarity embeddings may be
learned using ‘crowdkernels’ with applications to
multi-view clustering (Amid and Ukkonen, 2015).
Models combining similarity with neural networks
mainly revolve around Siamese networks (Chopra
et al., 2005) which use pairwise distances to learn
embeddings (Schroff et al., 2015), a tactic we have
followed here. Similarity judgments have also
been used to generate document embeddings for
IR tasks (Shen et al., 2014; Das et al., 2016).

Recently, He et al. (2017) introduced a neural
model for aspect extraction that relies on an at-
tention mechanism to identify aspect words. They
proposed an autoencoder variant designed to tease
apart aspects. In contrast to the method we pro-
pose, their approach is unsupervised; discovered
aspects may thus not have a clear interpretation.
Experiments reported here support this hypothe-
sis, and we provide additional results using their
model in the Appendix.

Other recent work has focused on text gen-
eration from factorized representations (Larsson
et al., 2017). And Zhang et al. (2017) proposed a
lightly supervised method for domain adaptation
using aspect-augmented neural networks. They
exploited source document labels to train a clas-
sifier for a target aspect. They leveraged sentence-
level scores codifying sentence relevance w.r.t. in-
dividual aspects, which were derived from terms
a priori associated with aspects. This supervi-
sion is used to construct a composite loss that cap-
tures both classification performance on the source
task and a term that enforces invariance between
source and target representations.

There is also a large body of work that uses
probabilistic generative models to recover latent
structure in texts. Many of these models de-
rive from Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), and some variants have explicitly rep-
resented topics and aspects jointly for sentiment
tasks (Brody and Elhadad, 2010; Sauper et al.,
2010, 2011; Mukherjee and Liu, 2012; Sauper and
Barzilay, 2013; Kim et al., 2013).

A bit more generally, aspects have also been in-
terpreted as properties spanning entire texts, e.g.,
a perspective or theme which may then color the
discussion of topics (Paul and Girju, 2010). This
intuition led to the development of the factorial
LDA family of topic models (Paul and Dredze,
2012; Wallace et al., 2014); these model individ-
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Look : deep amber hue ,
this brew is topped with a
finger of off white head .
smell of dog unk , green unk
, and slightly fruity . taste
of belgian yeast , coriander ,
hard water and bready malt
. light body , with little
carbonation .

Aroma : deep amber hue
, this brew is topped with
a finger of off white head .
smell of dog unk , green unk
, and slightly fruity . taste
of belgian yeast , coriander ,
hard water and bready malt
. light body , with little
carbonation .

Palate : deep amber hue ,
this brew is topped with a
finger of off white head .
smell of dog unk , green unk
, and slightly fruity . taste
of belgian yeast , coriander ,
hard water and bready malt
. light body , with little
carbonation .

Taste :deep amber hue , this
brew is topped with a finger
of off white head . smell
of dog unk , green unk ,
and slightly fruity . taste of
belgian yeast , coriander ,
hard water and bready malt
. light body , with little
carbonation .

Table 9: Gate activations for each aspect in an example beer review.

Baseline Domain Sentiment
TF-IDF 0.59 0.52
Doc2Vec 0.83 0.56
LDA 0.90 0.62
NVDM 0.79 0.63
ABAE 0.50 0.50
BoW + Triplet 0.99 0.91
NVDM + Triplet 0.99 0.91
DSSM + Triplet 0.99 0.90
CNN + Triplet 0.99 0.92

Table 10: AUC results for different representations
on the Yelp!/TripAdvisor Data. Models beneath
the second line are supervised.

Baseline Domain Sentiment
Domain 0.988 0.512
Sentiment 0.510 0.917

Table 11: Cross AUC results for different represen-
tations for Yelp!/TripAdvisor Dataset.

ual word probability as a product of multiple latent
factors characterizing a text. This is similar to the
Sparse Additive Generative (SAGE) model of text
proposed by Eisenstein et al. (2011).

6 Conclusions

We have proposed an approach for inducing disen-
tangled representations of text. To learn such rep-
resentations we have relied on supervision codi-
fied in aspect-wise similarity judgments expressed
as document triplets. This provides a general su-
pervision framework and objective. We evaluated
this approach on three datasets, each with differ-
ent aspects. Our experimental results demonstrate
that this approach indeed induces aspect-specific
embeddings that are qualitatively interpretable and
achieve superior performance on information re-
trieval tasks.

Going forward, disentangled representations
may afford additional advantages in NLP, e.g., by
facilitating transfer (Zhang et al., 2017), or sup-
porting aspect-focused summarization models.
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D Stacey, F Légaré, N F Col, C L Bennett, M J Barry,
K B Eden, H Thomas, A Lyddiatt, R Thomson,
L Trevena, and J H C Wu. 2014. Decision aids
for people facing health treatment or screening de-
cisions. Cochrane Database of Systematic Reviews,
1.

Andreas Veit, Serge Belongie, and Theofanis Karalet-
sos. 2017a. Conditional Similarity Networks. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Andreas Veit, Serge Belongie, and Theofanis Karalet-
sos. 2017b. Conditional Similarity Networks. In
Computer Vision and Pattern Recognition (CVPR).
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Abstract

We propose a mixture-of-experts approach for
unsupervised domain adaptation from multi-
ple sources. The key idea is to explicitly cap-
ture the relationship between a target exam-
ple and different source domains. This re-
lationship, expressed by a point-to-set met-
ric, determines how to combine predictors
trained on various domains. The metric is
learned in an unsupervised fashion using meta-
training. Experimental results on sentiment
analysis and part-of-speech tagging demon-
strate that our approach consistently outper-
forms multiple baselines and can robustly han-
dle negative transfer.1

1 Introduction

Typical domain adaptation methods are designed
to transfer supervision from a single source do-
main. However, in many practical applications,
we have access to multiple sources. For instance,
in sentiment analysis of product reviews, we can
often transfer from a wide range of product do-
mains, rather than one. This can be particularly
promising for target domains which do not match
any one available source well. For example, the
Kitchen product domain may include reviews on
pans, cookbooks or electronic devices, which can-
not be perfectly aligned to a single source such as
Cookware, Books or Electronics. By intelligently
aggregating distinct and complementary informa-
tion from multiple sources, we may be able to bet-
ter fit the target distribution.

A straightforward approach to utilizing data
from multiple sources is to combine them into a
single domain. This strategy, however, does not
account for distinct relations between individual
sources and the target example. Constructing a

1Our code and data are available at https://github.
com/jiangfeng1124/transfer.

common feature space for this heterogeneous col-
lection may wash out informative characteristics
of individual domains and also lead to negative
transfer (Rosenstein et al., 2005).

Therefore, we propose to explicitly model the
relationship between different source domains and
target examples. We hypothesize that different
source domains are aligned to different sub-spaces
of the target domain. Specifically, in this paper,
we model the domain relationship with a mixture-
of-experts (MoE) approach (Jacobs et al., 1991b).
For each target example, the predicted posterior
is a weighted combination of all the experts’ pre-
dictions. The weights reflect the proximity of the
example to each source domain. Our model learns
this point-to-set metric automatically, without ad-
ditional supervision.

We define the point-to-set metric using Maha-
lanobis distance (Weinberger and Saul, 2009) be-
tween individual examples and a set (i.e. domain),
which are computed within the hidden represen-
tation space of our model. The main challenge
is to learn this metric in an unsupervised setting.
We address it through a meta-training procedure,
in which we create multiple meta-tasks of do-
main adaptation from the source domains. In each
meta-task, we pick one of the source domains as
meta-target, and the rest source domains as meta-
sources. By minimizing the loss using the MoE
predictions on meta-target, we are able to learn
both the model and the metric simultaneously. To
further improve transfer quality, we align the en-
coding space of our target and source domains via
adversarial learning.

We evaluate our approach on sentiment anal-
ysis using the benchmark multi-domain Amazon
reviews dataset (Chen et al., 2012; Ziser and Re-
ichart, 2017) as well as on part-of-speech (POS)
tagging using the SANCL dataset (Petrov and Mc-
Donald, 2012). Experiments show that our ap-
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proach consistently improves the adaptation re-
sults over the best single-source model and a uni-
fied multi-source model. On average, we achieve
a 7% relative error reduction on the Amazon re-
views dataset, and a 13% on the SANCL dataset.
Importantly, the POS tagging experiments on the
SANCL dataset demonstrate that our method is
able to robustly handle negative transfer from un-
related sources (e.g., Twitter) and utilize it effec-
tively to consistently improve performance.

2 Related Work

Unsupervised domain adaptation Most exist-
ing domain adaptation methods focus on align-
ing the feature space between source and target
domains to reduce the domain shift (Ben-David
et al., 2007; Blitzer et al., 2007, 2006; Pan et al.,
2010). Our approach is close to the representa-
tion learning approaches, such as the denoising
autoencoder (Glorot et al., 2011), the marginal-
ized stacked denoising autoencoders (Chen et al.,
2012), and domain adversarial networks (Tzeng
et al., 2014; Ganin et al., 2016; Zhang et al., 2017;
Shen et al., 2018).

In contrast to these previous approaches, how-
ever, our approach not only learns a shared repre-
sentation space that generalizes well to the target
domain, but also captures informative characteris-
tics of individual source domains.

Multi-Source domain adaptation The main
challenge in using multiple sources for domain
adaptation is in learning domain relations. Some
approaches assume that all source domains are
equally important to the target domain (Li and
Zong, 2008; Luo et al., 2008; Crammer et al.,
2008). Others learn a global domain similarity
metric using labeled data in a supervised fashion
(Yang et al., 2007; Duan et al., 2009; Yu et al.,
2018). Alternatively, Mansour et al. (2009) and
Bhatt et al. (2016) utilize unlabeled data of the tar-
get domain to find a distribution weighted com-
bination of the source domains or to construct
an auxiliary training set of the source domain in-
stances close to the target domain instances. Re-
cent adversarial methods on multi-source domain
adaptation (Zhao et al., 2018; Chen and Cardie,
2018) align source domains to the target domains
globally, without accounting for the distinct im-
portance of each source with respect to a specific
target example.

The work most related to ours is by Kim et al.
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Figure 1: Architecture of the MoE model. E is the en-
coder which maps an input x to a hidden representation
E(x); FSi is the classifier on the ith source domain; D
is the critic that is only used during adversarial train-
ing. M is the metric learning component, which takes
the encoding of x and source domains (S1:K) as input
and computes ↵.

(2017). They also model the example-to-domain
relations, but use an attention mechanism. The
attention module is learned using limited train-
ing data from the target domain in a supervised
fashion. Our method, however, works in an unsu-
pervised setting without utilizing any labeled data
from the target domain.

3 Methodology

Problem definition We follow the unsupervised
multi-source domain adaptation setup, assuming
access to labeled training data from K source do-
mains: {Si}K

i=1 where Si , {(xSi
t , ySi

t )}|Si|
t=1, and

(optionally) unlabeled data from a target domain:
T , {xT

t }|T |
t=1. The goal is to learn a model us-

ing the source domain data, that generalizes well
to the target domain.

Notations For the rest of the paper, we denote
an individual example as x, and a batch of exam-
ples as x. We use superscript to denote the domain
from which an example is sampled, and use sub-
script to denote the index of an example.
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3.1 Overview of Our Approach
We model the multiple source domains as a mix-
ture of experts, and learn a point-to-set metric ↵
to weight the experts for different target examples.
The metric is learned in an unsupervised manner.

Our model consists of four key components
as shown in Figure 1, namely the encoder (E),
classifier (F ), metric (M ) and adversary (D).
We use a typical neural multi-task learning archi-
tecture (Caruana, 1997), with a shared encoder
across all sources, and domain-specific classifiers
({FSi}K

i=1). Each input is first encoded with
E, and then fed to each classifier to obtain the
domain-specific predictions (i.e. posteriors). The
final predictions are then weighted based on the
metric (see Equation 1).

We start by describing the representation learn-
ing component.

3.2 Representation
Our goal is to design an encoder that sup-
ports transfer, while maintaining source domain-
specific information. Depending on different tasks
and datasets, we select appropriate encoders —
MLP, CNN or LSTM (see Section 4.3 for details).

We further add an adversarial module (D) on
top of the encoder, in order to align the target do-
main with the sources. D is typically designed
as a parameterized classifier in domain adversarial
networks (Ganin et al., 2016; Zhang et al., 2017),
which is trained jointly with the encoder and the
classifiers through a minimax game. Here, we in-
stead use Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012) as our adversary. This dis-
tance metric measures the discrepancy between
two distributions explicitly in a non-parametric
manner, greatly simplifying the training procedure
compared to domain adversarial networks which
use an additional domain classifier module.

3.3 Mixture of Experts
Given an example x from the target domain, we
model its posterior distribution as a mixture of
posteriors produced by models trained on differ-
ent source domain data:

pmoe(y|x) =
KX

i=1

↵(x, Si) · pSi(y|x)

=
KX

i=1

↵(x, Si) · softmax
�
WSiE(x)

�

(1)

pSi is the posterior distribution produced by the
ith source classifier FSi (the ith expert). WSi is
the output layer weights of FSi , ↵ is a parame-
terized metric function that measures how much
confidence we put in the specific source expert for
a given example x.2 To derive ↵, we first define a
point-to-set Mahalanobis distance metric between
an example x and a set S:

d(x, S) =
⇣�

E(x)� µS�>
MS�

E(x)� µS�⌘ 1
2

where µS is the mean encoding of S . In its origi-
nal form, the matrix MS played the role of the in-
verse covariance matrix. However, computing the
inverse of the covariance matrix is both time con-
suming and numerically unstable in practice. Here
we allow M to denote any positive semi-definite
matrix which is to be estimated during training
(Weinberger and Saul, 2009). To guarantee the
positive semi-definiteness of M, we approximate
M with M = UU>, where U 2 R

h⇥r, h is
the dimension of hidden representations and r is
a hyper-parameter controlling the rank of M.

Based on the distance metric, we further de-
rive a confidence score e(x, Si) = f

�
d(x, Si)

�

for each specific expert. The final metric values
↵(x, Si) are then obtained by normalizing these
confidence scores:

↵(x, Si) =
exp

�
e(x, Si)

�
PK

j=1 exp
�
e(x, Sj)

� (2)

Here, we explain our design of e(x, S) on two
tasks, respectively binary classification and se-
quence tagging, which are also used for evaluation
in this paper (Section 4).

Binary classification The point-to-set Maha-
lanobis distance metric measures the distance be-
tween an example x and the mean encoding of S ,
i.e. µS , while taking into account the (pseudo) co-
variance of S . In binary classification, however,
the mean vector µS is likely to be located near the
decision boundary, particularly under a balanced

2In traditional MoE frameworks (Jacobs et al., 1991a,b;
Shazeer et al., 2017), ↵ is commonly realized as a “gating
network”, which produces a normalized weight vector that
determines the combination of experts depending solely on
the input example x. However, simple gating networks do
not yield promising results in our scenario. We hypothesize
that both the input instance and the underlying domain distri-
bution should be captured for determining the credit assign-
ment.
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setting. Therefore, a small d(x, S) actually im-
plies lower confidence of the corresponding clas-
sifier, which is counter-intuitive. To this end, we
instead define the confidence e(x, S) as the differ-
ence between the distances from x to each cate-
gory of S:

e(x, S) =
��d(x, S+)� d(x, S�)

��

Here S+ and S� stand for the positive space and
negative space of S respectively. Consequently, if
x is either far away from S (i.e., x is not in the
manifold of S) or near the classification boundary,
we will get a small e(x, S) indicating a low con-
fidence to the corresponding prediction. On the
contrary, if x is much closer to a specific category
of S than other categories, the classifier will get a
higher confidence.

Sequence tagging For sequence tagging tasks
(e.g., POS tagging), we compute the distance met-
ric at the token level.3 Unlike in binary classifi-
cation, the decision boundary here is more com-
plicated, and the label distribution is typically im-
balanced. The mean vector µS is unlikely to be
located at the decision boundary. So we directly
use the (reverse) distance as the confidence value
for each token x:

e(x, S) = �d(x, S)

3.4 Training
Since we do not have annotated data in the target
domain, we have to learn our model in an unsu-
pervised fashion. Inspired by the recent progress
on few-shot learning with metric-based models
such as matching network (Vinyals et al., 2016; Yu
et al., 2018) and prototypical network (Snell et al.,
2017), we propose the following meta-training ap-
proach. Given K source domains, each source
domain will be considered as a target, referred
to as meta-target, with the rest of the source do-
mains as meta-sources. This way, we obtain K
(meta-sources, meta-target) training pairs for do-
main adaptation. Then, we apply our MoE formu-
lation over these meta-training pairs to learn the
metric. At testing time, the metric will be applied
to all the K source domains for each example in
the target domain.

We optimize two main objectives: the MoE ob-
jective and the multi-task learning (MTL) objec-
tive.

3This actually makes it a multi-class classification prob-
lem with respect to every token of a sequence.

MoE objective For each example in each meta-
target domain, we compute its MoE posterior us-
ing the corresponding meta-sources. Therefore,
we get the following MoE loss over the entire
multi-source training data:

Lmoe = �
KX

i=1

|Si|X

j=1

log pmoe(y
Si
j |xSi

j )

= �
KX

i=1

|Si|X

j=1

log
KX

l=1,l 6=i

↵(x, Sl) · pSl(ySi
j |xSi

j )

(3)

Note that ↵ is normalized over the meta-sources
for each meta-target, rather than over all the K
sources.

MTL objective For each meta-target, we fur-
ther optimize a supervised cross-entropy loss us-
ing the corresponding labels. All supervised ob-
jectives are optimized jointly with the encoder be-
ing shared, resulting in the following multi-task
learning objective:

Lmtl = �
KX

i=1

|Si|X

j=1

log pSi(ySi
j |xSi

j ) (4)

Adversary-augmented MoE We use MMD
(Gretton et al., 2012) as the adversary to minimize
the divergence between the marginal distribution
of target domain and source domains. Specifi-
cally, at each training epoch, given the K batches
{xS1 ,xS2 , ...,xSK } from all the source domains,
we sample a batch (unlabeled) xT from our target
domain, and minimize the MMD:

Ladv = MMD2(xS1 [ ... [ xSK ,xT ) (5)

where

MMD(DS , DT ) =
������

1

|DS |
X

xs2DS

�
�
E(xs)

�
� 1

|DT |
X

xt2DT

�
�
E(xt)

�
������

H

measures the discrepancy between DS and DT

based on Reproducing Kernel Hilbert Space
(RKHS). �(·) is the feature map induced by a uni-
versal kernel. We follow Bousmalis et al. (2016)
and use a linear combination of multiple RBF ker-
nels: (hi, hj) = ⌃n exp(� 1

2�n
khi � hjk2).
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Algorithm 1 Training Procedure
1: Input: multi-source domain data S = {Si}K

i=1, target domain data T
2: Hyper-parameters: mini-batch size m, coefficients for different losses: �, � and ⌘
3: repeat
4: Sample K source mini-batches {(xSi ,ySi)}K

i=1 from S and a target mini-batch xT from T
5: Lmtl, Lmoe, Ladv, Rh  0
6: for t = 1 to K do
7: Set meta-target as T meta

, S̃t , (xSt ,ySt)
8: Set meta-sources as Smeta

, {S̃i}K
i=1,i 6=t, where S̃i , (xSi ,ySi)

9: Compute cross-entropy loss over T meta, and add to Lmtl

10: Compute Mahalanobis metric ↵(x, S 0) for each x 2 T meta and S 0 2 Smeta . Eq. (2)
11: Compute MoE loss over (Smeta, T meta) using ↵, and add to Lmoe

12: Compute entropy of ↵ over S , and add to Rh

13: end for
14: Compute MMD between xT and [K

i=1x
Si , and add to Ladv . Eq. (5)

15: Update parameters via backpropagating gradients of the total loss L . Eq. (7)
16: until converge

Entropy regularization In the meta-training
process, for each example x in meta-target, we
know exactly from which source x is sampled.
This provides additional insight that the ↵ distri-
bution is skewed, which can be utilized as a soft
constraint. Therefore, we propose to regularize the
entropy of the ↵ distribution over all the sources,
rather than meta-sources:4

H
�
↵(x, ·)

�
= �

KX

l=1

↵(x, Sl) · log ↵(x, Sl)

Rh =
KX

i=1

|Si|X

j=1

H
�
↵(xSi

j , ·)
�

(6)

Joint learning Our final objective is the
weighted combination of each individual compo-
nent loss:

L = � · Lmoe + (1� �) · Lmtl

+ � · Ladv

+ ⌘ · Rh

(7)

where � controls the balance of the MoE loss and
MTL loss. � is set to 0 in non-adversarial set-
ting when unlabeled data from the target domain

4Alternatively, we can directly exploit this supervision
and minimize the KL divergence of the ↵ distribution and
its ground truth one-hot distribution. In practice, however,
we found it beneficial to allow examples from one domain
to be attended to different sources. This observation may be
attributed to the fact that each domain indeed consists of mul-
tiple latent sub-domains.

is not provided. Additionally, it would be straight-
forward to add an MoE loss for labeled data in the
target domain if they are available, thus extending
our framework to a setting where we have few-
shot target annotations. The training process is
shown in Algorithm 1.

4 Experimental Setup

4.1 Task and Dataset
Sentiment classification We use the multi-
domain Amazon reviews dataset (Blitzer et al.,
2007), one of the standard benchmark datasets for
domain adaptation. It contains reviews on four do-
mains: Books (B), DVDs (D), Electronics (E), and
Kitchen appliances (K).

We follow the specific experiment settings pro-
posed by Chen et al. (2012) (CHEN12) and Ziser
and Reichart (2017) (ZISER17).

1. In CHEN12, each domain has 2,000 labeled
examples for training (1,000 positive and
1,000 negative), and the target test set has
3,000 to 6,000 examples.5

2. In ZISER17, each domain also has 2,000
labeled examples (1,000 positive and
1,000 negative), sampled differently from
CHEN12.

For each dataset, we conduct experiments by se-
lecting the target domain in a round-robin fash-

5This dataset has been processed by the author to TF-IDF
representations, using the 5,000 most frequent unigram and
bigram features, thus word order information is not available.
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ion. Following the protocol in previous work,
we use cross-validation over source domains for
hyper-parameters selection for each adaptation
task (Zhao et al., 2018). When training with an
adversary, we use the 2,000 examples training set
of the target domain as the unlabeled data in both
the settings. In ZISER17, the same data is also
used for test, resulting in a transductive setting.

Part-of-Speech tagging We further consider a
sequence tagging task, where the metric is com-
puted over the token-level encodings and multi-
class predictions are made at the token (word)
level. We use the SANCL dataset (Petrov and
McDonald, 2012) which contains part-of-speech
(POS) tagging annotations in 5 web domains:
Emails, Weblogs, Answers, Newsgroups, and Re-
views. Among these, Newsgroups, Reviews, and
Answers have both a validation and a test set, and
are used as target domains. The test set from We-
blogs and Emails are used as individual source do-
mains. The tagging is performed using the Univer-
sal POS tagset (Petrov et al., 2012). We also use
Twitter (Liu et al., 2018) as an additional training
source. Since it differs substantially from other
sources and the target domain, we can assess our
model’s ability to handle negative transfer. We
consider 750 sentences from each SANCL source
domain for training, and up to 2,250 sentences
from the Twitter dataset to magnify the negative
transfer. The validation set in the standard split of
each target domain is used for hyper-parameters
selection and early-stopping in our experiments.

4.2 Baselines
We verify the efficacy of our approach (MoE) in
non-adversarial and adversarial settings respec-
tively. In both settings, we compare our approach
against the following two baselines:

• best-SS: the best single-source adaptation
model among all the sources.

• uni-MS: the unified multi-source adaptation
model, which is trained using the combina-
tion of all the source domain data with single-
source transfer methods. uni-MS is a com-
mon and strong baseline for multi-source do-
main adaptation (Zhao et al., 2018).

For the rest of the paper, we name the adversar-
ial counterpart of the models as ⇤-A.

In the adversarial setting on CHEN12, in addi-
tion to best-SS and uni-MS with adversarial loss,

we further compare with the following two sys-
tems that also utilize unlabeled data from target
domain.

• mSDA: the marginalized stacked denoising
autoencoder (Chen et al., 2012). mSDA
outperforms prior deep learning and shallow
learning approaches such as structural corre-
spondence learning (Blitzer et al., 2007) and
denoising autoencoder (Glorot et al., 2011).

• MDAN: the multi-source domain adversarial
network (Zhao et al., 2018). MDAN gives the
state-of-the-art performance for multi-source
domain adaptation on CHEN12. It general-
izes the domain adversarial network to multi-
ple source domain adaptation by selectively
backpropagating the domain discrimination
loss according to domain classification error.

4.3 Implementation Details

For CHEN12, since the dataset is in TF-IDF for-
mat and the word ordering information is not
available, we use a multilayer perceptron (MLP)
with an input layer of 5,000 dimensions and one
hidden layer of 500 dimensions as our encoder.
For ZISER17, we instead use a convolutional neu-
ral network (CNN) encoder with a combination of
kernel widths 3 and 5 (Kim, 2014), each with one
hidden layer of size 150, which are then concate-
nated to a 300 dimension representation.6

For the POS tagging encoder, we use a hier-
archical bidirectional LSTM (BiLSTM) network,
which contains a character-level BiLSTM for gen-
erating individual word representations, followed
by a word-level BiLSTM that generates contextu-
alized word representations.

For MMD, we follow Bousmalis et al. (2016)
and use 19 RBF kernels with the standard devia-
tion parameters ranging from 10�6 to 106.7

All the models were trained using Adam with
weight decay. Learning rate is set to 10�4 for
CHEN12 and 10�3 for ZISER17 and POS tagging.
We use mini-batches of 32 samples from each do-
main. We tune the coefficients �, ⌘ for each adap-
tation task. � is set to 1 for all experiments.

6Note that with a more extensive architecture search, we
are likely to achieve better results. This, however, is not the
main focus of this work.

7Detailed values are presented in the supplementary ma-
terial in Bousmalis et al. (2016).
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SETTING
NON-ADVERSARIAL ADVERSARIAL

best-SS uni-MS MoE mSDA† MDAN best-SS-A uni-MS-A MoE-A

D,E,K–B 75.43 78.43 79.42 76.98 78.63 80.07 80.25 80.87
B,E,K–D 81.23 82.49 83.35 78.61 80.65 82.68 83.30 83.99
B,D,K–E 85.51 84.79⇤ 86.62 81.98 85.34 86.32 85.96⇤ 86.38
B,D,E–K 86.83 87.00 87.96 84.33 86.26 87.05 87.55 88.06

Average 82.25 83.18 84.34 80.48 82.72 84.03 84.27 84.83

Table 1: Multi-Source domain adaptation accuracy on Amazon dataset of CHEN12. ⇤ indicates negative transfer,
i.e., the unified multi-source model underperforms the best single-source model. mSDA† is not an adversarial
approach, but utilizes unlabeled data from target domain.

SETTING
NON-ADVERSARIAL ADVERSARIAL

best-SS uni-MS MoE best-SS-A uni-MS-A MoE-A

D,E,K–B 85.35 87.00 87.55 86.85 87.55 87.85
B,E,K–D 85.25 86.80 87.85 86.00 87.40 87.65
B,D,K–E 86.80 88.30 89.20 88.90 89.35 89.50
B,D,E–K 88.90 89.65 90.45 89.95 90.35 90.45

Average 86.58 87.94 88.76 87.93 88.66 88.86

Table 2: Multi-Source domain adaptation accuracy on Amazon dataset of ZISER17.

5 Results

5.1 Sentiment Analysis on Amazon Reviews
We report our results on the Amazon reviews
datasets in Table 1 (CHEN12) and Table 2
(ZISER17). Our approach (MoE) consistently
achieves the best performance across different set-
tings and tasks.

The results clearly demonstrate the value of us-
ing multiple sources. In most cases, even a uni-
fied model performs better than the oracle best sin-
gle source. By smartly combining all the sources,
our model outperforms the unified model signif-
icantly. One exception is the task of “B,D,K-
E” in CHEN12, where the unified multi-source
model doesn’t improve over the best single source
model, constituting a negative transfer scenario.
However, even in this scenario, our approach still
performs significantly better, demonstrating its ro-
bustness in handling negative transfer.

Impact of adversarial adaptation We achieve
consistent improvements over the baseline sys-
tems with the addition of the adversarial loss.
In most cases, MoE also achieves additional im-
provement (e.g., 79.42% vs. 80.87% in “D,E,K-
B”). We notice that in some cases, e.g., “B,D,K-
E” in CHEN12 and “B,E,K-D” in ZISER17, the

adversarial loss doesn’t help MoE. This might be
attributed to the fact that by aligning the target dis-
tribution with the source domains, the representa-
tion space becomes more compact, thus making
it more difficult to capture source domain-specific
characteristics and increasing the difficulty of met-
ric learning in MoE.

Analysis on the metric (↵) Figure 2 visualizes
the distribution of ↵ values, learned by our model
in different tasks, across the source domains. The
visualization is based on 200 examples for each
domain randomly sampled from the correspond-
ing test set. From the heatmap we can see that for
a specific target domain, different examples may
have different ↵ distributions. Moreover, for most
examples, the ↵ distribution is skewed, indicating
that our model draws on a few most informative
source domains.

Figure 3 exemplifies the above point. For in-
stance, the first review about “charger” and “bat-
tery” is closer to the Electronics source domain.
This relation is successfully captured by the ↵ dis-
tribution produced by our model.

We further investigate the impact of entropy
regularization over ↵. Table 3 summarizes the ab-
lation test results of entropy regularization (⌘ = 0)
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Figure 2: ↵ distributions across source domains for randomly selected 200 examples in each target domain of
CHEN12 (left) and ZISER17 (right). Columns represent target domains and rows represent sources.

• … i did n't keep it on the charger for 24 hours ( not realizing that this is a problem ) 
and now the battery only works for 10 minutes at a time …

B D E

0.958

0.0230.019

B D E
0.0150.078

0.907

B D E
0.070.129

0.801

• best 2 quart pot in the world . … with the glorious one pot meals cookbook . it has 
wonderful recipies , and the pot works wonderful .

• great kit however the book that comes with the kit needs some work . the photos in 
the book are not accurate with the descriptions . …

Figure 3: Examples of Kitchen (K) reviews in ZISER17 and their ↵ distribution over Books (B), DVDs (D) and
Electronics (E). The manually highlighted words indicate the specific Kitchen products described in the reviews.

SETTING
CHEN12 (w/o Rh) ZISER17 (w/o Rh)

MoE MoE-A MoE MoE-A

D,E,K–B -0.70 -0.51 -0.75 -0.60
B,E,K–D -0.67 -0.41 -0.05 -1.20
B,D,K–E -1.93 -0.44 -0.70 -0.60
B,D,E–K -0.49 -0.09 -0.50 +0.30

Table 3: Ablation test of entropy regularizer on
CHEN12 and ZISER17 (decrease in accuracy).

on CHEN12 and ZISER17. It shows that entropy
regularization benefits our model under both non-
adversarial and adversarial settings.

5.2 Part-of-Speech Tagging
Table 4 summarizes our results on POS tagging.
Again, our approach consistently achieves the best
performance across different settings and tasks.
Adding Twitter as a source leads to a drop in per-
formance for the unified model, as a result of neg-
ative transfer. Our method, however, robustly han-
dles negative transfer and manages to even benefit
from this additional source.

Impact of negative transfer Table 5 presents
the ↵ distribution learned by the metric, on aver-
age for all tokens of the target domain. As we can
see, our model (MoE-A) effectively learns to de-

crease the weights on Twitter, demonstrating again
its ability to alleviate negative transfer.

We further study the impact of this outlier
source by varying the amount of Twitter data used
during training. We gradually increase the number
of Twitter instances by 750. As shown in Table 6,
the increase of the Twitter data does not benefit the
unified multi-source model (uni-MS-A), and even
amplifies negative transfer for the Answers and Re-
views domains. However, the performance of our
MoE (MoE-A) model stays stable, consistently in-
creasing with more Twitter, showing robustness in
handling negative transfer.

6 Conclusion

In this paper, we propose a novel mixture-of-
experts (MoE) approach for unsupervised do-
main adaptation from multiple diverse source do-
mains. We model the domain relations through
a point-to-set distance metric, and introduce a
meta-training mechanism to learn this metric. Ex-
perimental results on sentiment classification and
part-of-speech tagging demonstrate that our ap-
proach consistently outperforms various baselines
and can robustly handle negative transfer. The ef-
fectiveness of our approach suggests its potential
application to a broader range of domain adapta-
tion tasks in NLP and other areas.
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TARGET
NON-ADVERSARIAL ADVERSARIAL

best-SS uni-MS uni-MS† MoE best-SS-A uni-MS-A uni-MS-A† MoE-A

Answers 88.16 88.89 89.88 90.26 88.47 89.04 89.99 89.80
Reviews 87.15 87.45 88.91 89.37 87.26 87.90 88.94 89.40
Newsgroup 89.14 89.95 90.70 91.03 89.54 90.20 90.70 91.13

Average 88.15 88.76 89.83 90.22 88.42 89.05 89.88 90.11

Table 4: POS tagging results on SANCL data. Source domains include Web, Emails, Twitter. † indicates the unified
multi-source model trained without Twitter, thus can be considered as the oracle performance (upper-bound) of
uni-MS.

TARGET
SOURCE

Twitter Emails Web

Answers 0.0527 0.5941 0.3531
Reviews 0.0640 0.5250 0.4100
Newsgroup 0.0538 0.4960 0.4490

Table 5: Distribution of the metric values ↵ on average
for all tokens in the SANCL test set.

TARGET
MODEL
(⇤-A)

# Twitter instances

750 1,500 2,250

Answers uni-MS 89.04 89.04 86.93
MoE 89.80 91.22 90.90

Reviews uni-MS 87.90 87.45 87.68
MoE 89.40 90.23 91.14

Newsgroup uni-MS 90.20 90.10 90.21
MoE 91.13 91.32 91.82

Table 6: POS tagging accuracy with varying amounts
of Twitter data in training.
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Abstract

It has been argued that humans rapidly adapt
their lexical and syntactic expectations to
match the statistics of the current linguistic
context. We provide further support to this
claim by showing that the addition of a sim-
ple adaptation mechanism to a neural lan-
guage model improves our predictions of hu-
man reading times compared to a non-adaptive
model. We analyze the performance of the
model on controlled materials from psycholin-
guistic experiments and show that it adapts not
only to lexical items but also to abstract syn-
tactic structures.

1 Introduction

Reading involves the integration of noisy percep-
tual evidence with probabilistic expectations about
the likely contents of the text. Words that are
consistent with these expectations are identified
more quickly (Ehrlich and Rayner, 1981; Smith
and Levy, 2013). For the reader’s expectations
to be maximally effective, they should not only
reflect the reader’s past experience with the lan-
guage (Hale, 2001; MacDonald and Christiansen,
2002), but should also be adapted to the current
context. Optimal adaptation would reflect prop-
erties of the text being read, such as genre, topic
and writer identity, as well as the general tendency
for recently used words and syntactic structures
to be reused with higher probability (Bock, 1986;
Church, 2000; Dubey et al., 2006).

Several studies have suggested that readers do
in fact adapt their lexical and syntactic predictions
to the current context (Otten and Van Berkum,
2008; Fine et al., 2013; Fine and Jaeger, 2016).1

For example, Fine and Jaeger investigated the pro-
cessing of “garden path” sentences such as (1):

1Recently, Harrington Stack et al. (2018) questioned the
robustness of the results of Fine et al. (2013).

(1) The experienced soldiers warned about the
dangers conducted the midnight raid.

The word warned in (1) is initially ambiguous be-
tween a main verb interpretation (the soldiers were
doing the warning) and a reduced relative clause
interpretation (the soldiers were being warned).
When the word conducted is reached, this am-
biguity is resolved in favor of the reduced rela-
tive parse. Reduced relatives are infrequent con-
structions. This makes the disambiguating word
conducted unexpected, causing it to be read more
slowly than it would be in a context such as (2), in
which the words who were indicate early on that
only the relative clause parse is possible:

(2) The experienced soldiers who were warned
about the dangers conducted the midnight raid.

Fine and Jaeger included a large proportion of re-
duced relatives in their experiment. As the ex-
periment progressed, the cost of disambiguation
in favor of the reduced relative interpretation de-
creased, suggesting that readers had come to ex-
pect a construction that is normally infrequent.

Human syntactic expectations have been suc-
cessfully modeled with syntax-based language
models (Hale, 2001; Levy, 2008; Roark et al.,
2009). Recently, language models (LMs) based
on recurrent neural networks (RNNs) have been
shown to make adequate syntactic predictions
(Linzen et al., 2016; Gulordava et al., 2018),
and to make comparable reading time predictions
to syntax-based LMs (van Schijndel and Linzen,
2018). In this paper, we propose a simple way
to continuously adapt a neural LM, and test the
method’s psycholinguistic plausibility. We show
that LM adaptation significantly improves our
ability to predict human reading times using the
LM. Follow-up experiments with controlled mate-
rials show that the LM adapts not only to specific
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vocabulary items but also to abstract syntactic con-
structions, as humans do.

2 Method

We use a simple method to adapt our LM: at the
end of each new test sentence, we update the pa-
rameters of the LM based on its cross-entropy loss
when predicting that sentence; the new weights
are then used to predict the next test sentence.2

Our baseline LM is a long short-term memory
(LSTM; Hochreiter and Schmidhuber, 1997) lan-
guage model trained on 90 million words of En-
glish Wikipedia by Gulordava et al. (2018) (see
Supplementary Materials for details). For adap-
tation, we keep the learning rate of 20 used by
Gulordava et al. (the gradient is multiplied by this
learning rate during weight updates). We examine
the effect of this parameter in Section 5.2.

We tested the model on the Natural Stories Cor-
pus (Futrell et al., 2018), which has 10 narratives
with self-paced reading times from 181 native En-
glish speakers. There are two narrative genres in
the corpus: fairy tales (seven texts) and documen-
tary accounts (three texts).

3 Linguistic accuracy

We first measured how well the adaptive model
predicted upcoming words. We report the model’s
perplexity, a quantity which is lower when the LM
assigns higher probabilities to the words that in
fact occurred. We adapted the model to the first
k sentences of each text, then tested it on sentence
k +1, for all k. Adaptation dramatically improved
test perplexity compared to the non-adaptive ver-
sion of the model (86.99 vs. 141.49).

We next adapted the model to each genre sep-
arately. If the model adapts to stylistic or syn-
tactic patterns, we might expect adaptation to be
more helpful in the fairy tale than the documen-
tary genre: the Wikipedia corpus that the LM was
originally trained on is likely to be more simi-
lar in style to the documentary genre. Consistent
with this hypothesis, the documentary texts bene-
fited less from adaptation (99.33 to 73.20) than the
fairy tales (160.05 to 86.47), though the fact that
both saw improvement from adaptation suggests
that text-specific adaptation is beneficial even if
the genre is similar to the training genre.

2Our code is publicly available at: https://github.
com/vansky/neural-complexity.git

�̂ �̂ t

WITHOUT ADAPTIVE SURPRISAL:
Sentence position 0.55 0.53 1.03
Word length 7.29 1.00 7.26
Non-adaptive surprisal 6.64 0.68 9.79

WITH ADAPTIVE SURPRISAL:
Sentence position 0.29 0.53 0.55
Word length 6.42 1.00 6.40
Non-adaptive surprisal -0.89 0.68 -1.31
Adaptive surprisal 8.45 0.63 13.42

Table 1: Fixed effect regression coefficients from
fitting self-paced reading times. The top model
lacks fixed and random effects of adaptive sur-
prisal. In general, a coefficient is significant when
|t| > 2.

Each genre consists of multiple texts. Does
adaptation to a particular text lead to catastrophic
forgetting (McCloskey and Cohen, 1989), such
that the LM overfits to the text and forgets its more
general knowledge acquired from the Wikipedia
training corpus? This was not the case; in fact,
adapting to the entirety of each genre without re-
verting to the baseline model after each text led to
a very slightly better perplexity (fairytales: 86.47,
documentaries: 73.20) compared with a setting in
which the LM was reverted after each text (fairy-
tales: 86.61, documentaries: 73.63).

4 Modeling human expectations

We next tested whether our adaptive LM matches
human expectations better than a non-adaptive
model. Since each reader saw the texts in a dif-
ferent order, we adapted the LM to each text sep-
arately: after each story, we reverted to the initial
Wikipedia-trained LM and restarted adaptation on
the next text. If anything, this likely resulted in
a conservative estimate of the benefit of adapta-
tion compared to a model that adapts continuously
across multiple stories from the same genre, as hu-
mans might do.3

We used surprisal as a linking function between
the LM’s predictions and human reading times

3We do not distinguish between priming and adaptation
in this paper. While it may be tempting to think of the LSTM
memory cell as a model of priming and of the weight updates
as a model of adaptation, Bock and Griffin (2000) provide
evidence that priming cannot simply be a function of resid-
ual activation and that priming can be driven by longer-term
learning (see Tooley and Traxler (2010) for more discussion
on priming vs. adaptation).
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Figure 1: Mean length- and order-corrected read-
ing times over the disambiguating region of the
critical items in Fine and Jaeger (2016). Figure
adopted from that paper.

(Hale, 2001; Smith and Levy, 2013). Surprisal
quantifies how unpredictable each word (wi) is
given the preceding words:

surprisal(wi) = �log P(wi | w1...wi�1) (1)

We fit the self-paced reading times in the Natu-
ral Stories Corpus with linear mixed effects mod-
els (LMEMs), a generalization of linear regression
(see Supplementary Materials for details).

In line with previous work, non-adaptive sur-
prisal was a significant predictor of reading times
(p < 0.001) when the model only included other
baseline factors (Table 1, Top). Adaptive sur-
prisal was a significant predictor of reading times
(p < 0.001) over non-adaptive surprisal and all
baseline factors (Table 1, Bottom). Crucially, non-
adaptive surprisal was no longer a significant pre-
dictor of reading times once adaptive surprisal was
included. This indicates that the predictions of
the adaptive model subsume the predictions of the
non-adaptive one.

5 Does the model adapt to syntax?

We have shown that LM adaptation improves our
ability to model human expectations as reflected
in a self-paced reading time corpus. How much
of this improvement is due to adaptation of the
model’s syntactic representations (Bacchiani et al.,
2006; Dubey et al., 2006) and how much is simply
due to the model assigning a higher probability to
words that have recently occurred (Kuhn and de
Mori, 1990; Church, 2000)? We address this ques-
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Figure 2: Mean order-corrected model surprisal
over the disambiguating region of the critical items
in Fine and Jaeger (2016).

tion using two syntactic phenomena: reduced rel-
ative clauses and the dative alternation.

5.1 Reduced relative clauses

We adapted the model independently to random
orderings of the critical and filler stimuli used in
Experiment 3 of Fine and Jaeger (2016);4 this
experiment (described in the Introduction) con-
tained a much higher proportion of reduced rela-
tive clauses than their general distribution in En-
glish. We used surprisal as our proxy for read-
ing times. Following Fine and Jaeger, we took
the mean surprisal over three words in each am-
biguous sentence: the disambiguating word and
the following two words (e.g., conducted the mid-
night in example (1)). To estimate the magni-
tude of the syntactic disambiguation penalty while
also controlling for lexical content, we subtracted
this quantity from the mean surprisal over the ex-
act same words in the paired unambiguous sen-
tence (2). Linear regression showed that the dis-
ambiguation penalty decreased as the model was
exposed to more critical items (item order coeffi-
cient: �̂ = �0.0804, p < 0.001), indicating that
the LM was adapting to reduced relatives, a syn-
tactic construction without any lexical content.

In order to compare our findings more directly
with the results given by Fine and Jaeger (2016)
(shown in Figure 1), we mimicked their method of
plotting reading times. First, we fit a linear model
of the mean surprisal of each disambiguating re-
gion with the number of trials the model had seen
in the experiment thus far to account for a gen-
eral trend of subjects speeding up over the course

4See details in the Supplementary Materials.
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of the experiment. Then, we plotted the mean
residual model surprisal that was left in the disam-
biguating region in both the ambiguous and unam-
biguous conditions as the experiment progressed.
The shape of our model’s adaptation to the re-
duced relative construction (upper curve in Fig-
ure 2) matched the human results reported by Fine
and Jaeger. Like humans, the model showed an
initially large adaptation effect, followed by more
gradual adaptation thereafter. Both humans and
our model continued to adapt over all the items
rather than just at the beginning of the experiment.
Also like humans, the model’s response to unam-
biguous items did not change significantly over the
course of the experiment (p = 0.91).

5.2 The dative alternation
Dative events can be expressed using two roughly
equivalent English constructions:

(3) a. Prepositional object (PO):
The boy threw the ball to the dog.

b. Double object (DO):
The boy threw the dog the ball.

Work in psycholinguistics has shown that recent
experience with one of these variants increases the
probability of producing that variant (Bock, 1986;
Kaschak et al., 2006) as well as the likelihood of
predicting it in reading (Tooley and Bock, 2014).
To test whether our adaptation method can repro-
duce this behavior, we generated 200 pairs of da-
tive sentences similar to (3). We shuffled 100 DO
sentences into 1000 filler sentences sampled from
the Wikitext-2 training corpus (Merity et al., 2016)
and adapted the model to these 1100 sentences.
We then froze the weights of the adapted model
and tested its predictions for two types of sen-
tences: the PO counterparts of the DO sentences
in the adaptation set, which shared the vocabulary
of the adaptation set but differed in syntax; and
100 new DO sentences, which shared syntax but
no content words with the adaptation set.5

An additional goal of this experiment was to
examine the effect of learning rate on adaptation.
During adaptation the model performs a single pa-
rameter update after each sentence and does not
train until convergence with gradual reduction of
the learning rate as would normally be the case
during LM training. Consequently, the learning

5For additional details as well as the reverse setting (adap-
tation to PO), see Supplementary Materials.

Figure 3: Learning rate influence over syntactic
and lexical adaptation. The initial non-adaptive
model performance is equivalent to the perfor-
mance when using a learning rate of 0; the learning
rate of 200 resulted in perplexity in the billions.

rate parameter crucially determines the amount of
adaptation the model can undertake after each sen-
tence. If the learning rate is very low, adaptation
will not have any effect; if it is too high, either
the model will overfit after each update and will
not generalize well, or the model will forget its
trained representation as it overshoots the targeted
minima. The optimal rate may differ between lexi-
cal and syntactic adaptation. Our experiments thus
far all used the same learning rate as our original
model (20); here, we varied the learning rate on a
logarithmic scale between 0.002 and 200.

The results of this experiment are shown in Fig-
ure 3. The model successfully adapted to the DO
construction as well as to the vocabulary of the
adaptation sentences. This was the case for all of
the learning rates except for 200, which resulted in
enormous perplexity on both sentence types. Both
lexical and syntactic adaptation were most suc-
cessful when the learning rate was around 2, with
perplexity reductions of 94% for lexical adaptation
and 84% for syntactic adaptation.

Syntactic adaption was penalized at higher
learning rates more than lexical adaptation (com-
pare learning rates of 2 and 20). This fragility of
syntactic adaptation likely stems from the fact that
the model can directly observe the relevant vocab-
ulary but syntax is latent and must be inferred from
multiple similar sentences, a generalization which
is impeded by overfitting at higher learning rates.
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Figure 4: Perplexity on the held-out set of G1 (a)
before adaptation, (b) after adaptation to G1, (c)
after adapting to G1 then adapting to G2.

6 Testing for catastrophic forgetting

Our analysis of the Natural Stories corpus did
not indicate that the model suffered from catas-
trophic forgetting. Yet the Natural Stories cor-
pus contained only two genres; to address the is-
sue of catastrophic forgetting more systematically,
we used the premise sentences from the MultiNLI
corpus (Williams et al., 2018) — a total of 2000
sentences for each of 10 genres.

For each genre pair G1 and G2 (omitting cases
where G1 = G2), we first adapted the baseline
Wikipedia model to 1000 sentences of G1 using
a learning rate of 2 (shown to be optimal in Sec-
tion 5.2). We then adapted the model to 1000
sentences of G2. Finally, we froze the model’s
weights and tested its perplexity on the 1000 held-
out sentences from G1.

The results averaged across all pairs of genres
are plotted in Figure 4. Unsurprisingly, the model
performed best on G1 immediately after adapting
to it (middle bar). Crucially, even after adapting to
1000 sentences of G2 after its last exposure to G1

(right bar), it still modeled G1 much better than the
non-adapted model (left bar). These results sug-
gest that catastrophic forgetting is not a concern
even with a relatively large amount of data.

7 Discussion

Adaptation greatly improved an RNN LM’s word
prediction accuracy, in line with other work on
LM adaptation (Kneser and Steinbiss, 1993). We
showed that the adapted model was psycholin-
guistically plausible, in two senses. First, it im-
proved the correlation between surprisal derived
from the model and human reading times, sug-

gesting that the model generated more human-like
expectations. Second, using materials that teased
apart lexical content from syntax, we showed that
the model adapted both its lexical and its syntac-
tic predictions, in line with findings from human
experiments. Finally, as in other neural-network
based models in psychology (Chang et al., 2006),
our gradient-based updates naturally incorporate
the error-driven nature of syntactic adaptation;
while we did not demonstrate this in the current
paper, we hypothesize that our model will repro-
duce the finding that more surprising words lead
to greater adaptation (Jaeger and Snider, 2013).

The simplicity of our adaptation method makes
it attractive for use in modeling human expecta-
tions. Since adaptive surprisal is strictly supe-
rior to non-adaptive surprisal in modeling reading
times, it would be a stronger baseline in analyses
that aim to demonstrate the contribution of factors
other than predictability.

We used a simple neural adaptation approach,
where we performed continuous gradient updates
based on the prediction error on the adaptation
sentences (see also Krause et al., 2017). An al-
ternative approach to neural LM adaptation uses
recent RNN states in conjunction with the current
state to make word predictions (Grave et al., 2017;
Merity et al., 2017); a comparison of the two meth-
ods using our paradigms may provide insight into
their relative strengths and weaknesses.

Finally, we reverted to the base model after the
end of each text in our experiments, forgetting
any text-specific adaptation. This mimics the ef-
fect of a participant leaving an experiment that
had an unusual distribution of syntactic construc-
tions and reverting to their standard expectations.
In practice, however, humans are able to general-
ize from prior experience when they begin adapt-
ing to a new speaker or text if it is similar in
some way to their previous experiences. For ex-
ample, the model of Jaech and Ostendorf (2018)
adapts to environmental factors, so it could po-
tentially draw on independent experiences with fe-
male speakers and with lawyer speech in order to
initialize a model of adaptation to a new female
lawyer (see also Mikolov and Zweig, 2012; Klein-
schmidt, 2018). The psycholinguistic plausibility
of these models can be tested in future work.
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Abstract

Interpreting the performance of deep learning
models beyond test set accuracy is challenging.
Characteristics of individual data points are of-
ten not considered during evaluation, and each
data point is treated equally. We examine the
impact of a test set question’s difficulty to de-
termine if there is a relationship between diffi-
culty and performance. We model difficulty
using well-studied psychometric methods on
human response patterns. Experiments on Nat-
ural Language Inference (NLI) and Sentiment
Analysis (SA) show that the likelihood of an-
swering a question correctly is impacted by
the question’s difficulty. As DNNs are trained
with more data, easy examples are learned
more quickly than hard examples.

1 Introduction

One method for interpreting deep neural networks
(DNNs) is to examine model predictions for spe-
cific input examples, e.g. testing for shape bias as
in Ritter et al. (2017). In the traditional classifica-
tion task, the difficulty of the test set examples is
not taken into account. The number of correctly-
labeled examples is tallied up and reported. How-
ever, we hypothesize that it may be worthwhile
to use difficulty when evaluating DNNs. For ex-
ample, what does it mean if a trained model an-
swers the more difficult examples correctly, but
cannot correctly classify what are seemingly sim-
ple cases? Recent work has shown that for NLP
tasks such as Natural Language Inference (NLI),
models can achieve strong results by simply using
the hypothesis of a premise-hypothesis pair and
ignoring the premise entirely (Gururangan et al.,
2016; Tsuchiya, 2018; Poliak et al., 2018).

In this work we consider understanding DNNs
by looking at the difficulty of specific test set ex-
amples and comparing DNN performance under
different training scenarios. Do DNN models learn
examples of varying difficulty at different rates? If

a model does well on hard examples and poor on
easy examples, then can we say that it has really
learned anything? In contrast, if a model does well
on easy items, because a dataset is all easy, have
we really “solved” anything?

To model difficulty we use Item Response The-
ory (IRT) from psychometrics (Baker and Kim,
2004). IRT models characteristics such as diffi-
culty and discrimination ability of specific exam-
ples (called “items”1) in order to estimate a la-
tent ability trait of test-takers. Here we use IRT
to model the difficulty of test items to determine
how DNNs learn items of varying difficulty. IRT
provides a well-studied methodology for modeling
item difficulty as opposed to more heuristic-based
difficulty estimates such as sentence length. IRT
was previously used to build a new test set for the
NLI task (Lalor et al., 2016) and show that model
performance is dependent on test set difficulty. In
this work we use IRT to probe specific items to
try to analyze model performance at a more fine-
grained level, and expand the analysis to include
the task of SA.

We train three DNNs models with varying train-
ing set sizes to compare performance on two NLP
tasks: NLI and Sentiment Analysis (SA). Our ex-
periments show that a DNN model’s likelihood of
classifying an item correctly is dependent on the
item’s difficulty. In addition, as the models are
trained with more data, the odds of answering easy
examples correctly increases at a faster rate than
the odds of answering a difficult example correctly.
That is, performance starts to look more human, in
the sense that humans learn easy items faster than
they learn hard items.

That the DNNs are better at easy items than hard
items seems intuitive but is a surprising and inter-
esting result since the item difficulties are modeled
from human data. There is no underlying reason

1For the remainder of the paper we will refer to a single
test set example as an “item” for consistency.
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that the DNNs would find items that are easy for hu-
mans inherently easy. To our knowledge this is the
first work to use a grounded measure of difficulty
learned from human responses to understand DNN
performance. Our contributions are as follows: (i)
we use a well-studied methodology, IRT, to esti-
mate item difficulty in two NLP tasks and show
that this human-estimated difficulty is a useful pre-
dictor of DNN model performance, (ii) we show
that as training size increases DNN performance
trends towards expected human performance.2

2 Methods

2.1 Estimating Item Difficulty
To model item difficulty we use the Three Parame-
ter Logistic (3PL) model from IRT (Baker, 2001;
Baker and Kim, 2004; Lalor et al., 2016). The 3PL
model in IRT models an individual’s latent ability
(✓) on a task as a function of three item character-
istics: discrimination ability (a), difficulty (b), and
guessing (c). For a particular item i, the probability
that an individual j will answer item i correctly is
a function of the individual’s ability and the three
item characteristics:

pij(✓j) = ci +
1 � ci

1 + e�ai(✓j�bi)
(1)

where ai is the discrimination parameter (the
value of the function slope at it’s steepest point),
bi is the difficulty parameter (the value where
pij(✓j) = 0.5), and ci is the guessing parameter
(the lower asymptote of the function). For a set of
items I and a set of individuals J , the likelihood of
each individual in J’s responses to the items in I
is:

L =
JY

j=1

IY

i=1

pij(✓j)
yijqij(✓j)

(1�yij) (2)

where qij(✓j) = 1 � pij(✓j) and yij = 1 if indi-
vidual j answered item i correctly and yij = 0 oth-
erwise. Item parameters and individual ability are
jointly estimated from a set of individuals’ response
patterns using an Expectation-Maximization algo-
rithm (Bock and Aitkin, 1981).

In this work we focus on the difficulty parameter
bi, which represents the latent ability level at which
an individual has a 50% chance of answering item

2Code and data available at
http://jplalor.github.io

i correctly. Low values of bi are associated with
easier items (since an individual with low ability
has a 50% chance of answering correctly), and
higher values of bi represent more difficult items.

2.2 Data

To estimate item difficulties for NLI, we used the
pre-trained IRT models of Lalor et al. (2016) and
extracted the difficulty item parameters. The data
consists of approximately 1000 human annotator
responses from Amazon Mechanical Turk (AMT)
for a selection of 180 premise-hypothesis pairs
from the SNLI data set (Bowman et al., 2015).
Each AMT worker (Turker) was shown the premise-
hypothesis pairs and was asked to indicate whether,
if the premise was taken to be true, the hypothesis
was (a) definitely true (entailment), (b) maybe true
(neutral), or (c) definitely not true (contradiction).

For SA, we collected a new data set of labels for
134 examples randomly selected from the Stanford
Sentiment Treebank (SSTB) (Socher et al., 2013),
using a similar AMT setup as Lalor et al. (2016).
For each randomly selected example, we had 1000
Turkers label the sentence as very negative, neg-
ative, neutral, positive, or very positive. We con-
verted these responses to binary positive/negative
labels and fit a new IRT 3PL model (§2.1) using
the mirt R package (Chalmers et al., 2015). Very
negative and negative labels were binned together,
and neutral, positive, and very positive were binned
together.

Tables 1 and 2 show examples of the items in our
data sets, and the difficulty values estimated from
the IRT models. The first example in Table 1 is a
clear case of entailment, where if we assume that
the premise is true, we can infer that the hypothesis
is also true. The label of the second example in
SNLI is contradiction, but in this case the result is
not as clear. There are sports stadiums that offer
lawn seating, and therefore this could potentially
be a case of entailment (or neutral). Either way,
one could argue that the second example here is
more difficult than the first. Similarly, the first two
examples of Table 2 are interesting. Both of these
items are labeled as negative examples in the data
set. The first example is clear, but the second one
is more ambiguous. It could be considered a mild
complement, since the author still endorses renting
the movie. Therefore you could argue again that the
second example is more difficult than the first. The
learned difficulty parameters reflect this difference
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Premise Hypothesis Label Difficulty
A little girl eating a sucker A child eating candy Entailment -2.74
People were watching the tournament in the
stadium

The people are sitting outside on the grass Contradiction 0.51

Two girls on a bridge dancing with the city
skyline in the background

The girls are sisters. Neutral -1.92

Nine men wearing tuxedos sing Nine women wearing dresses sing Contradiction 0.08

Table 1: Examples of sentence pairs from the SNLI data sets, their corresponding gold-standard label, and
difficulty parameter (bi) as measured by IRT (§2.1).

Phrase Label Difficulty
The stupidest, most insulting movie of 2002’s first quarter. Negative -2.46
Still, it gets the job done - a sleepy afternoon rental. Negative 1.78
An endlessly fascinating, landmark movie that is as bold as anything the cinema has seen in
years.

Positive -2.27

Perhaps no picture ever made has more literally showed that the road to hell is paved with good
intentions.

Positive 2.05

Table 2: Examples of phrases from the SSTB data set, their corresponding gold-standard label, and
difficulty parameter (bi) as measured by IRT (§2.1).

Dataset Fleiss’ 
SNLI 4GS Contradiction 0.37
SNLI 4GS Entailment 0.48
SNLI 4GS Neutral 0.41
SNLI 5GS Contradiction 0.59
SNLI 5GS Entailment 0.63
SNLI 5GS Neutral 0.54
Sentiment Analysis 0.52

Table 3: Fleiss’  scores for the NLI and SA anno-
tations collected from AMT.

in difficulty in both cases.
Inter-rater reliability scores for the collected an-

notations are showin in Table 3. Scores for the
NLI annotations were calculated when the origi-
nal dataset was collected and are reproduced here
(Lalor et al., 2016). Human annotations for the
SA annotations were converted to binary before
calculating the agreement. We see that the agree-
ment scores are in the range of 0.4 to 0.6 which is
considered moderate agreement (Landis and Koch,
1977). With the large number of annotators it is
to be expected that there is some disagreement in
the labels. However this disagreement can be inter-
preted as varying difficulty of the items, which is
what we expect when we fit the IRT models.

2.3 Experiments

Our goal in this work is to understand how DNN
performance on items of varying difficulty changes
under different training scenarios. To test this, we
trained three DNN models using subsets of the
original SNLI and SSTB training data sets: (i)
Long Short Term Memory Network (LSTM) (Bow-

man et al., 2015), (ii) Convolutional Neural Net-
work (CNN) (Kim, 2014), and (iii) Neural Seman-
tic Encoder (NSE), a type of memory-augmented
RNN (Munkhdalai and Yu, 2017).3 For each task
(NLI and SA), we randomly sampled subsets of
training data, from 100 examples up to and includ-
ing the full training data sets.4 We trained each
model on the training data subsets, using the origi-
nal development sets for early stopping to prevent
overfitting. The IRT data with difficulty estimates
were used as test sets for the trained models.

Once the models were trained and had classified
the IRT data sets, we fit logistic regression models
to predict whether a DNN model would label an
item correctly, using the training set size and item
difficulty as the dependent parameters.

3 Results

Figure 1 plots the contour plots of our learned re-
gression models. The top row plots results for the
NLI task, and the bottom row plots results for the
SA task. From left to right in both rows, the plots
show results for the LSTM, CNN, and NSE models.
In each plot, the x-axis is the training set size, the
y-axis is the item difficulty, and the contour lines
represent the log-odds that the DNN model would
classify an item correctly. As the plots show, item
difficulty has a clear effect on classification. Easier
items have higher odds of being classified correctly

3Please refer to the appendix for model details.
4We sampled 100, 1000, 2000, 5000, 10000, 50000,

100000, 200000, and 500000 examples for NLI, and sam-
pled 100, 1000, 5000, 10000, 50000, and 75000 examples for
SA.
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Figure 1: Contour plots showing log-odds of labeling an item correctly for NLI (top row) and SA (bottom
row) as a function of training set size (x-axis) and item difficulty (y-axis). Each line in the plots represents
a single log-odds value for labeling an item correctly. Blue indicates low log-odds of labeling an item
correctly, and pink indicates high log-odds of labeling an item correctly. The contour colors are consistent
across plots and log-odds values are shown in the legend on the right.

across all of the training set sizes. In addition, the
slopes of the contour lines are steeper at lower lev-
els of difficulty. This indicates that, moving left to
right along the x-axis, a model’s odds of answering
an easy item correctly increase more quickly than
the odds of answering a harder item correctly.

The contour plots for the CNN and NSE models
on the SA task (Figure 1, second row middle and
right plots) show that the easier items have higher
likelihood of being classified correctly, but the odds
for the most difficult items decrease as training
size increases. This suggests that these models are
learning in such a way that improves performance
on easy items but has a negative effect on hard
items. This result is important for interpretability,
as it could inform stakeholder decisions if they
need to have difficult examples classified.

The idea that easy items should be easier than
hard items is consistent with learning strategies in
humans. For example, when teaching new con-
cepts to students, easier concepts are presented first
so that the students can learn patterns and core
information before moving to more difficult con-
cepts (Collins et al., 1988; Arroyo et al., 2010). As
students do more examples, all questions get easier,

but easy questions get easier at a faster rate. Our
result is also consistent with the key assumptions
of curriculum learning (Bengio et al., 2009).

4 Related Work

Lalor et al. (2016) introduced the idea of apply-
ing IRT evaluation to NLP tasks. They built a
set of scales using IRT for NLI and evaluated a
single LSTM neural network to demonstrate the
effectiveness of the evaluation, but did not evaluate
other NLP models or tasks. Martı́nez-Plumed et al.
(2016) consider IRT in the context of evaluating
ML models, but they do not use a human popula-
tion to calibrate the models, and obtain results that
are difficult to interpret under IRT assumptions.

There has been work in the NLP commu-
nity around modeling latent characteristics of
data (Bruce and Wiebe, 1999) and annota-
tors (Hovy et al., 2013), but none that apply the
resulting metrics to interpret DNN models. Passon-
neau and Carpenter (2014) model the probability a
label is correct with the probability of an annotator
to label an item correctly according to the Dawid
and Skene (1979) model, but do not consider diffi-
culty or discriminatory ability of the data points.
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One-shot learning is an attempt to build ML mod-
els that can generalize after being trained on one
or a few examples of a class as opposed to a large
training set (Lake et al., 2013). One-shot learning
attempts to mimic human learning behaviors (i.e.,
generalization after being exposed to a small num-
ber of training examples) (Lake et al., 2016). Our
work instead looks at comparisons to human perfor-
mance, where any learning (on the part of models)
has been completed beforehand. Our goal is to
analyze DNN models and training set variations as
they affect ability in the context of IRT.

5 Discussion

In this work we have shown that DNN model per-
formance is affected by item difficulty as well as
training set size. This is the first work that has
used a well-established method for estimating dif-
ficulty to analyze DNN model performance as op-
posed to heuristics. DNN models perform better on
easy items, and as more data is introduced in train-
ing, easy items are learned more quickly than hard
items. Learning easy examples faster than harder
examples is what would be expected when exam-
ining human response patterns as they learn more
about a subject. However this has not previously
been shown to be true in DNN models.

That the results are consistent across NLI and SA
shows that the methods can be applied to a number
of NLP tasks. The SA results do show that the odds
of labeling a difficult item correctly decrease with
more training data 1. It could be the case that these
difficult items in the SA task are more subjective
than the easier items, for example a review that
is fairly neutral and is split between positive and
negative annotations. These cases would be more
difficult for a model to label, and are worth exam-
ining in more detail. By identifying items such as
these as difficult makes it easier to see where the
model is going wrong and allows for research on
better way to represent these cases.

This result has implications for how machine
learning models are evaluated across tasks. The tra-
ditional assumption that the test data is drawn from
the same distribution as the training data, makes it
difficult to understand how a model will perform
in settings where that assumption does not hold.
However, if the difficulty of test set data is known,
we can better understand what kind of examples
a given model performs well on, and specific in-
stances where a model underperforms (e.g. the

most difficult examples). In addition, researhers
can build test sets that consist of a specific type
of data (very easy, very hard, or a mix) to evalu-
ate a trained model under specific assumptions to
test generalization ability in a controlled way. This
could allow for more confidence in model perfor-
mance in more varied deployment settings, since
there would be a set of tests a model would have to
pass before being deployed.

It is important to note that the difficulty param-
eters were estimated from a human population,
meaning that those items that are difficult for hu-
mans are in fact more difficult for the DNN models
as well. This does not need to be the case given
that DNNs learn very different patterns, etc. than
humans. In fact there were exceptions in our results
which shows that these models should be carefully
examined using techniques like those described
here. Future work can investigate why this is the
case and how we can leverage this information to
improve model performance and interpretability.
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Abstract

We investigate neural models’ ability to cap-
ture lexicosyntactic inferences: inferences
triggered by the interaction of lexical and syn-
tactic information. We take the task of event
factuality prediction as a case study and build
a factuality judgment dataset for all English
clause-embedding verbs in various syntactic
contexts. We use this dataset, which we make
publicly available, to probe the behavior of
current state-of-the-art neural systems, show-
ing that these systems make certain systematic
errors that are clearly visible through the lens
of factuality prediction.

1 Introduction
The formal semantics literature has long been con-
cerned with the complex array of inferences that
different open class lexical items trigger (Kiparsky
and Kiparsky, 1970; Karttunen, 1971a,b; Horn,
1972; Karttunen and Peters, 1979; Heim, 1992; Si-
mons, 2001, 2007; Simons et al., 2010; Abusch,
2002, 2010; Gajewski, 2007; Anand and Hac-
quard, 2013, 2014). For example, why does (1a)
give rise to the inference (2a), while the struc-
turally identical (1b) triggers the inference (2b)?
(1) a. Jo doesn’t believe that Bo left.

b. Jo doesn’t know that Bo left.
(2) a. Jo believes that Bo didn’t leave.

b. Bo left.
c. Bo didn’t leave.

A major finding of this literature is that lexically
triggered inferences are conditioned by surprising
aspects of the syntactic context that a word occurs
in. For example, while (3a), (3b), and (4a) trigger
the inference (2b), (4b) triggers the inference (2c).
(3) a. Jo remembered that Bo left.

b. Jo didn’t remember that Bo left.
(4) a. Bo remembered to leave.

b. Bo didn’t remember to leave.

Accurately capturing such interactions – e.g. be-
tween clause-embedding verbs, negation, and em-
bedded clause type – is important for any system
that aims to do general natural language inference
(MacCartney et al. 2008 et seq; cf. Dagan et al.
2006) or event extraction (see Grishman and Sund-
heim 1996 et seq), and it seems unlikely to be
a trivial phenomenon to capture, given the com-
plexity and variability of the inferences involved
(see, e.g., Karttunen, 2012, 2013; Karttunen et al.,
2014; van Leusen, 2012; White, 2014; Baglini and
Francez, 2016; Nadathur, 2016, on implicatives).

In this paper, we investigate how well current
state-of-the-art neural systems for a subtask of
general event extraction – event factuality predic-
tion (EFP; Nairn et al., 2006; Saurı́ and Puste-
jovsky, 2009, 2012; de Marneffe et al., 2012; Lee
et al., 2015; Stanovsky et al., 2017; Rudinger et al.,
2018) – capture inferential interactions between
lexical items and syntactic context – lexicosyntac-
tic inferences – when trained on current event fac-
tuality datasets. Probing these particular systems
is useful for understanding neural systems’ behav-
ior more generally because (i) the best performing
neural models for EFP (Rudinger et al., 2018) are
simple instances of common baseline models; and
(ii) the task itself is relatively constrained.

To do this, we substantially extend the
MegaVeridicality1 dataset (White and Rawlins,
2018) to cover all English clause-embedding verbs
in a variety of the syntactic contexts covered by
recent psycholinguistic work (White and Rawl-
ins, 2016), and we use the resulting dataset –
MegaVeridicality2 – to probe these models’ be-
havior. We focus on clause-embedding verbs be-
cause they show effectively every possible pattern-
ing of lexicosyntactic inference (Karttunen, 2012).

We discuss three findings: (i) Tree biLSTMs (T-
biLSTMs) are better able to correctly predict lexi-
cosyntactic inferences than linear-chain biLSTMs
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(L-biLSTMs); (ii) L-biLSTMs and T-biLSTMs
capture different lexicosyntactic inferences, and
thus ensembling their predictions can reliably im-
prove performance; and (iii) even when ensem-
bled, these models show systematic errors – e.g.
performing well when the polarity of the matrix
clause matches the polarity of the true inference,
but poorly when these polarities mismatch.

We furthermore release MegaVeridicality2 at
MegaAttitude.io as a benchmark for probing the
ability of neural systems – whether for factuality
prediction or for general natural language infer-
ence – to capture lexicosyntactic inference.

2 Data collection
We substantially extend the MegaVeridicality1
dataset (White and Rawlins, 2018), which con-
tains factuality judgments for all English clause-
embedding verbs that take tensed subordinate
clauses. In White and Rawlins’s annotation pro-
tocol, all verbs that are grammatical with such
subordinate clauses – based on the MegaAttitude
dataset (White and Rawlins, 2016) – are slotted
into contexts either like (5a) or (5b), depending on
whether they take a direct object or not.
(5) a. Someone {knew, didn’t know} that a par-

ticular thing happened.
b. Someone {was, wasn’t} told that a particu-

lar thing happened.
For each sentence generated in this way, 10 differ-
ent annotators are asked to answer the question did
that thing happen?: yes, maybe or maybe not, no.

There are two important aspects of these con-
texts to note. First, all lexical items besides the
embedding verbs are semantically bleached to en-
sure that the measured lexicosyntactic inferences
are only due to interactions between the embed-
ding predicate – e.g. know or tell – and the syntac-
tic context. Second, the matrix polarity – i.e. the
presence or absence of not as a direct dependent
of the embedding verb – is manipulated to create
two sentences for each verb-context pair.

Our extension, MegaVeridicality2, includes
judgments for a variety of infinitival subordinate
clause types, exemplified in (6).1 We investigate
infinitival clauses because they can give rise to dif-

1We also explicitly manipulate two aspects of the sub-
ordinate clause in our extension of the MegaVeridicality
dataset: (i) how NP embedded subjects are introduced; and
(ii) whether the embedded clause contains an eventive predi-
cate (do, happen) or a stative predicate (have). See Appendix
A for details on the reasoning behind these manipulations.

Syntactic context # verbs # sents Ex.

NP ed that S 375 750 (5a)
NP was ed that S 169 338 (5b)

NP ed for NP to VP 184 368 (6a)
NP ed NP to VP[+ev] 197 394 (6b)
NP ed NP to VP[-ev] 128 256 (6c)
NP was ed to VP[+ev] 278 556 (6d)
NP was ed to VP[-ev] 256 512 (6e)
NP ed to VP[+ev] 217 434 (6f)
NP ed to VP[-ev] 165 330 (6g)

Total 1,969 3,938

Table 1: Contexts and number of verbs for which annota-
tions were collected: S = something happened, NP = some-
one, VP = happen, VP[+ev] = do something, VP[-ev] = have
something. First two rows: MegaVeridicality1. All rows:
MegaVeridicality2. The number of sentences is always twice
the number of verbs, since matrix polarity is manipulated.

ferent lexicosyntactic inferences than finite subor-
dinate clauses – e.g. compare (3) and (4).
(6) a. Someone {needed, didn’t need} for a par-

ticular thing to happen.
b. Someone {wanted, didn’t want} a particu-

lar person to do, have a particular thing.
c. Someone {wanted, didn’t want} a particu-

lar person to have a particular thing.
d. A particular person {was, wasn’t} over-

joyed to do a particular thing.
e. A particular person {was, wasn’t} over-

joyed to have a particular thing.
f. A particular person {managed, didn’t man-

age} to do a particular thing.
g. A particular person {managed, didn’t man-

age} to have a particular thing.
For each sentence, we also collect judgments from
10 different annotators, using the same question as
White and Rawlins for context (6a) and modified
questions for contexts (6b)-(6g): did that person
do that thing? for (6b), (6d), and (6f); and did that
person have that thing? for for (6c), (6e), and (6g).
Table 1 shows the number of verb types for each
syntactic context. With the polarity manipulation,
this yields a total of 3,938 sentences.

To build a factuality prediction test set from
these sentences, we combine MegaVeridicality1
with our dataset and replace each instance of a
particular person or a particular thing with some-
one or something (respectively). Then, follow-
ing White and Rawlins, we normalize the 10 re-
sponses for each sentence to a single real value us-
ing an ordinal mixed model-based procedure. We
refer to the resulting dataset as MegaVeridicality2.

3 Model and evaluation
We use MegaVeridicality2 to evaluate the perfor-
mance of three state-of-the-art neural models of
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event factuality (Rudinger et al., 2018): a linear-
chain biLSTM (L-biLSTM), a dependency tree
biLSTM (T-biLSTM), and a hybrid biLSTM (H-
biLSTM) that ensembles the two. To predict the
factuality of the event referred to by a particular
predicate, these models pass the output state of the
biLSTM at that predicate through a two-layer re-
gression. In the case of the H-biLSTM, the out-
put state of both the L- and T-biLSTMs are simply
concatenated and passed through the regression.2

Following the multi-task training regime de-
scribed by Rudinger et al. (2018), we train these
models on four standard factuality datasets – Fact-
Bank (Saurı́ and Pustejovsky, 2009, 2012), UW
(Lee et al., 2015), MEANTIME (Minard et al.,
2016), and UDS (White et al., 2016; Rudinger
et al., 2018) – with tied biLSTM weights but re-
gression parameters specific to each dataset. We
then use these trained models to predict the factu-
ality of the embedded predicate in our dataset.

To understand how much of these models’ per-
formance on our dataset is really due to a cor-
rect computation of lexicosyntactic inferences, we
also generate predictions for the sentences in our
dataset with the embedding verbs UNKed. In this
case, the model can rely only on the syntactic con-
text surrounding the predicate to make its infer-
ences. We refer to the models with lexical infor-
mation as the LEX models and the ones without
lexical information as the UNK models.

Each model produces four predictions, corre-
sponding to the four different datasets it was
trained on. We consider three different ways of en-
sembling these predictions using a cross-validated
ridge regression: (i) ensembling the four predic-
tions for each specific model (LEX or UNK); (ii)
ensembling the predictions for the LEX version of
a particular model with the UNK version of that
same model (LEX+UNK); and (iii) ensembling
the predictions across all models (LEX, UNK, or
LEX+UNK). Each ensemble is evaluated in a 10-
fold/10-fold nested cross-validation (see Cawley
and Talbot, 2010). In each iteration of the outer
cross-validation, a 10% test set is split off, and a
10-fold cross-validation to tune the regularization
is conducted on the remaining 90%.

4 Results
Figure 1 shows the mean correlation between
model predictions and true factuality on the outer

2See Appendix B for further details.
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Figure 1: Mean correlation between model predictions and
true factuality in nested cross-validation. Error bars show
bootstrapped (iter=1,000) 95% confidence intervals for mean
correlation across 10 outer folds.

fold test sets of the nested cross-validation de-
scribed in §3. We note three aspects of this plot.

First, among the LEX models, the T-biLSTM
performs best, followed by the L-biLSTM, then
the H-biLSTM. This is somewhat surprising, since
Rudinger et al. find the opposite pattern of per-
formance: the L- and H-biLSTMs vie for dom-
inance, both outperforming the T-biLSTM. This
indicates that T-biLSTMs are better able to repre-
sent the lexicosyntactic inferences relevant to this
dataset, even though they underperform on more
general datasets. This possibility is bolstered by
the fact that, in contrast to the L- and H-biLSTMs,
the LEX version of the T-biLSTMs performs sig-
nificantly better than the UNK version, suggesting
that the T-biLSTM is potentially more reliant on
the lexical information than the other two.

Second, when the LEX and UNK version of
each model is ensembled (LEX+UNK), we find
comparable performance for all three biLSTMs
– each outperforming the LEX version of the T-
biLSTM. This indicates that each model captures
similar amounts of information about lexicosyn-
tactic inference, but this information is captured in
the models’ parameterizations in different ways.

Finally, when all three models are ensem-
bled, we find that both the LEX and UNK ver-
sion perform significantly better than any specific
LEX+UNK model. This may indicate two things:
(i) the models that only have access to syntax can
perform just as well as ones that have access to
both lexical information and syntax; but (ii) these
models appear to capture different aspects of in-
ference, since an ensemble of all models (All-
LEX+UNK) performs significantly better than ei-
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Someone ... True Pred.

faked that something happened -3.15 0.86
was misinformed that something happened -2.62 1.37
neglected to do something -3.07 -0.02
pretended to have something -2.96 0.05
was misjudged to have something -2.46 0.55
forgot to have something -3.18 -0.17
neglected to have something -2.93 0.07
pretended that something happened -2.11 0.86
declined to do something -3.18 -0.22
was refused to do something -3.16 -0.22
refused to do something -3.12 -0.20
pretended to do something -3.02 -0.11
disallowed someone to do something -2.56 0.34
was declined to have something -2.36 0.55
declined to have something -3.12 -0.23
did n’t hesitate to have something 1.84 -0.96
ceased to have something -2.22 0.57
did n’t hesitate to do something 1.86 -0.92
lied that something happened -1.99 0.78
feigned to have something -3.07 -0.31

Table 2: Sentences with the highest prediction errors.

ther the All-LEX or All-UNK ensembles alone.
Interestingly, however, even this ensemble per-

forms more than 10 points worse than each model
alone on FactBank, UW, and UDS. This raises the
question of which lexicosyntactic inferences these
models are missing – investigated below.

5 Analysis
We investigate two questions: (i) which inferences
do all models do poorly on?; and (ii) what drives
the differing strengths of each model?
Where do all models fail? Table 2 shows the 20
sentences with the highest prediction errors under
the All-LEX+UNK ensemble. There are two inter-
esting things to note about these sentences. First,
most of them involve negative lexicosyntactic in-
ferences that the model predicts to be either posi-
tive or near zero. Second, when the true inference
is not positive, the matrix polarity of the original
sentence is negative. This suggests that the models
are not able to capture inferences whose polarity
mismatches the matrix clause polarity.

One question that arises here is whether this in-
ability affects all contexts equally. To answer this,
we regress the absolute error of the predictions
from this same ensemble (logged and standard-
ized) against true factuality, matrix polarity, and
context (as well as all of their two- and three-way
interactions).3 We find that the three-way interac-
tions in this regression are reliable (�2(8)=27.97,
p < 0.001) – suggesting that there are nontriv-
ial differences in these state-of-the-art factuality
systems’ ability to capture inferential interactions
across verbs and syntactic contexts. The differ-
ences can be verified visually in Figure 2, which

3See Appendix C for further details, including a summary
of the regression on which the above discussion is based.
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Figure 2: Factuality by syntactic context and polarity,
each point a verb. Diagonals show perfect prediction.

plots the factuality predicted by this ensemble
against the true factuality from MegaVeridicality2.

To elaborate, the ensemble does best overall on
contexts like (7a) and (7b), and worst overall on
contexts like (7c). The contrast between (7b) and
(7c) is particularly interesting because (i) (7c) is
just the passivized form of (7b); and (ii) we do
not observe similar behavior for contexts (7d) and
(7e), which are analogous to (7b) and (7c), but re-
place the stative have with the eventive do.
(7) Someone...

a. { ed, didn’t } for something to happen.
b. { ed, didn’t } someone to have something.
c. {was ed, wasn’t ed} to have something.
d. { ed, didn’t } someone to do something.
e. {was ed, wasn’t ed} to do something.
f. { ed, didn’t } that something happened.

An additional nuance is that the ensemble does re-
liably better on the negative matrix polarity ver-
sion of (7b) than on the positive, with the oppo-
site true for (7e). This suggests these models do
not capture an important inferential interaction be-
tween passivization and eventivity.

This suggestion is further bolstered by the fact
that the ensemble’s ability to predict cases where
the matrix polarity mismatches the true factuality
are reliably poorer in context (7c) but not in its
minimal pairs (7e) and (7b), where the ensemble
performs reliably poorer when the two match. In-
deed, it is contexts (7c) and (7f) that drive the po-
larity mismatch effect evident in Table 2.
What drives differences between models? In
§4, we noted two ways that the biLSTMs we in-
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Figure 3: Canonical correlations between embedding
verb embeddings and embedded verb hidden states.

vestigate differ: (i) the T-biLSTM appears to be
more reliant on lexical information than L- and H-
biLSTMs; and (ii) each model appears to encode
information about lexicosyntactic inference in its
parameterizations in different ways. We hypothe-
size that these two differences are related – specifi-
cally, that the T-biLSTM’s heavier reliance on lex-
ical information comes about as a consequence of
stronger entanglement between lexical and syntac-
tic information in its hidden states.

To probe this, we ask to what extent the embed-
ding verb’s embedding can be recovered from the
embedded verb’s hidden state using linear func-
tions. If the lexical information is more strongly
entangled with the syntactic information, it should
be more difficult to construct a homomorphic (lin-
ear) function to decode the embedding verb’s em-
bedding from the embedded verb’s hidden state.
To measure this, we conduct a Canonical Corre-
lation Analysis (CCA; Hotelling, 1936) between
these two vector space representations for every
sentence in our dataset. Given two matrices X
(the embedding verb embeddings column stacked)
and Y (the embedded verb hidden states column
stacked), CCA constructs matrices A and B, such
that ai,bi = arg

a0,b0max corr(a0X,b0Y) and
corr(aiX,ajX) = corr(biY,bjY) = 0, 8i < j.
This guarantees that the canonical correlation at
component i, corr(aiX,biY), is nonincreasing
in i, and thus the linearly decodable information
about Y in X can be assessed using this function.

Figure 3 plots the canonical correlations for
the first 50 components for each of the biLSTMs
we investigated. We find that the canonical cor-
relations associated with the T-biLSTM are sub-
stantially lower than those associated with the L-
and H-biLSTMs across these first 50 components.
This suggests that the T-biLSTM more strongly
entangles lexical and syntactic information, per-

haps explaining its apparently heavier reliance on
lexical information, observed in §4.

Of note here is that the pattern seen in Figure 3
is probably at least partly a consequence of the dif-
ferent nonlinearities used for the L-biLSTM (tanh)
and T-biLSTM (ReLU), and not the architectures
themselves. But whether or not this pattern is due
to the architectures, nonlinearities, or both, the en-
tanglement hypothesis may still help explain the
pattern of results discussed in §4.

6 Related work
This work is inspired by recent work in recasting
various semantic annotations into natural language
inference (NLI) datasets (White et al., 2017; Po-
liak et al., 2018a,b; Wang et al., 2018) to gain a
better understanding of which phenomena stan-
dard neural NLI models (Bowman et al., 2015;
Conneau et al., 2017) can capture – a line of work
with deep roots (Cooper et al., 1996). The experi-
mental setup – specifically, the idea of UNKing the
embedding verb – was inspired by recent work that
uses hypothesis-only baselines for a similar pur-
pose (Gururangan et al., 2018; Poliak et al., 2018c;
Tsuchiya, 2018). This work is also related to the
broader investigation of sentence representations
– particularly, tasks aimed at probing these rep-
resentations’ content (Pavlick and Callison-Burch,
2016; Adi et al., 2016; Conneau et al., 2018; Con-
neau and Kiela, 2018; Dasgupta et al., 2018).

7 Conclusion
We investigated neural models’ ability to capture
lexicosyntactic inference, taking the task of event
factuality prediction (EFP) as a case study. We
built a factuality judgment dataset for all English
clause-embedding verbs in various syntactic con-
texts and used this dataset to probe current state-
of-the-art EFP systems. We showed that these
systems make certain systematic errors that are
clearly visible through the lens of factuality.
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Abstract

In this paper, we propose a new approach to
employ the fixed-size ordinally-forgetting en-
coding (FOFE) (Zhang et al., 2015b) in neural
languages modelling, called dual-FOFE. The
main idea behind dual-FOFE is that it allows
to use two different forgetting factors so that it
can avoid the trade-off in choosing either small
or large values for the single forgetting factor
in the original FOFE. In our experiments, we
have compared the dual-FOFE based neural
network language models (NNLM) against the
original FOFE counterparts and various tradi-
tional NNLMs. Our results on the challeng-
ing Google Billion Words corpus show that
both FOFE and dual FOFE yield very strong
performance while significantly reducing the
computational complexity over other NNLMs.
Furthermore, the proposed dual-FOFE method
further gives over 10% relative improvement
in perplexity over the original FOFE model.

1 Introduction

Language modelling is an essential task for many
natural language processing (NLP) applications
including speech recognition, machine translation
and text summarization. The goal of language
modelling is to learn the distribution over a se-
quence of characters or words; this distribution
may be utilized for encoding the language struc-
ture (e.g. the grammatical structure) as well as
extracting information from the corpora (Joze-
fowicz et al., 2016). In the recent years, the
popularity of neural networks (NN) has been a
significant driving force for language modelling
(LM) research; the well-known NN-LM models
includes the feedforward NN-LMs (FNN-LMs)
(Bengio et al., 2001, 2003), recurrent NN-LMs
(RNN-LMs) (Mikolov et al., 2010; Mikolov

⇤Equal contribution.

and Zweig, 2012) and the long short-term mem-
ory (LSTM-LMs) (Hochreiter and Schmidhuber,
1997). Among all, FNN-LMs often have a simpler
and more efficient learning process, but they tend
to underperform the other NN-LMs due to the lim-
ited capability to memorize the long term depen-
dency in natural languages (Zhang et al., 2015b).
However this drawback could be addressed by ap-
plying the fixed-size ordinally-forgetting encoding
(FOFE) to FNN’s inputs. FOFE is an encoding
method, which relies on the ordinally-forgetting
mechanism to encode any word sequence based on
the positions of words; this also allows the FOFE
code to capture the long-term dependency (Zhang
et al., 2015b). As shown in Zhang (2015b), FNN-
LMs with FOFE can easily yield comparable per-
formance as other NN-LMs. The key parameter in
the FOFE method is the forgetting factor, which is
responsible for determining the degree of sensitiv-
ity of the encoding with respect to the past con-
text. However, the choice of a good value for the
forgetting factor could be tricky since both small
and large forgetting factors are offering different
benefits.

In this paper, we propose a simple alteration to
FOFE method, which allows to incorporate two
forgetting factors into the fixed-size encoding of
the variable-length word sequences. We name this
approach as dual-FOFE. Our hypothesis is that
by incorporating both the small and large forget-
ting factors in the FOFE encoding, the dual-FOFE
is able to simultaneously optimize the abilities to
capture the positional information as well as to
model long term dependency. In our experiments,
we have evaluated the proposed dual FOFE mod-
els on two large scale language modeling tasks,
namely enwiki9 and Google Billion Words (GBW)
corpora. Experimental results have shown that
both FOFE models yield very competitive perfor-
mance on these tasks, comparable with the state-
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of-the-art systems but with significantly reduced
learning complexity. Furthermore, the proposed
dual-FOFE method further gives over 10% relative
improvement in perplexity over the original FOFE
model.

2 Related Work

In this section, we will briefly review the NN-LMs
and the original FOFE method. The general idea
behind NN-LM is to project the discrete words
onto a continuous space, then learn to estimate
the conditional probabilities of each known word
within the projected space. The training of NN-
LMs are often incredibly slow due to the ineffi-
ciency of softmax normalization when applied to
the extremely large output layer. The solution cur-
rently used by many NN-LMs (including our mod-
els in this work) is to use noise contrastive estima-
tion (NCE) (Gutmann and Hyvrinen, 2010). The
basic idea of NCE is to reduce the probability esti-
mation problem into a probabilistic binary classi-
fication problem (Mnih and Teh, 2012; Mnih and
Kavukcuoglu, 2013).

2.1 Fixed-Size Ordinally Forgetting
Encoding

Fixed-size ordinally-forgetting Encoding (FOFE)
is an encoding method which generates a fixed-
size representation, namely the FOFE code, for
any variable-length word sequence (Zhang et al.,
2015b). For a given word sequence S =
{w1, w2, ..., wT }, let et denote the one-hot repre-
sentation of the word wt, zt for the FOFE code
of the partial word sequence up to word wt, zt is
computed as follows:

zt = ↵ · zt�1 + et (1  t  T ) (1)

where ↵ (0 < ↵ < 1) denotes the forgetting factor,
a parameter responsible for determining the de-
gree of influence each time step of the past context
has on the FOFE code. Obviously, FOFE can con-
vert any variable-length sequence into a fixed-size
code with length equal to the size of vocabulary.

In regard to uniqueness of FOFE code, the code
is said to be (almost) unique under the two theo-
rems (proven in Zhang (2015a)):
Theorem 1 If 0 < ↵  0.5, then FOFE code is
guarantee uniqueness for any values of vocabu-
lary’s size and sequence’s length.
Theorem 2 If 0.5 < ↵ < 1, then FOFE code is
guarantee almost uniqueness for any finite values

of vocabulary’s size and sequence’s length, except
for a finite set of countable choices of ↵.

Furthermore, the chance of actually having any
collisions for ↵ between 0.5 and 1 is nearly impos-
sible in practice, due to quantization errors in real
computer systems. Hence in practice, it is safe to
argue that FOFE is able to uniquely encodes any
variable-length sequence into a fixed-size repre-
sentation.

2.2 FOFE for FNN-LMs
The idea of FOFE based NN-LMs is to use FOFE
to encode the partial history sequence of past
words in a sentence, then feed this fixed-size
FOFE code to a feedforward neural network as an
input to predict next word. As shown in Figure 1,
the FOFE code could be efficiently computed via
time-delayed recursive structure, where the sym-
bol z�1 in the figure represents a unit time delay
(or equivalently a memory unit) from zt to zt�1.

Figure 1: (Left) 1st-order FOFE FNN-LM; (Center)
2nd-order FOFE FNN-LM; (Right) 3rd-order FOFE
FNN-LM.

The basic architecture for FOFE based FNN-
LMs (called 1st-order) is the standard FNN archi-
tecture with an additional layer for encoding the
input into FOFE code. However, in this work,
we use the 2nd-order and 3rd-order FOFE FNN-
LMs, which are shown to produce slightly better
results (Zhang et al., 2015b). In a 2nd-order FOFE
model, both the current partial sequences FOFE
code (denoted as zt) and the previous partial se-
quences FOFE code (denoted as zt�1) are utilized
to predict next word. In a 3rd-order FOFE model,
all zt, zt�1 and zt�2 are used as inputs to neural
networks.

More recently, the FOFE methods have been
successfully applied to many NLP tasks, including
word embedding (Sanu et al., 2017), named entity
recognition (Xu et al., 2017a), entity discovery and
linking (Xu et al., 2016, 2017b).
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3 Dual-FOFE

The main idea of dual-FOFE is to generate aug-
mented FOFE encoding codes by concatenating
two FOFE codes using two different forgetting
factors. Each of these FOFE codes is still com-
puted in the same way as the mathematical for-
mulation shown in Equation (1). The difference
between them is that we may select to use two dif-
ferent values for the forgetting factor (denoted as
↵) for additional modeling benefits.

3.1 Intuition behind Dual-FOFE
As mentioned in the subsection 2.1, the values in
a FOFE code are used to encode both the content
and the order information in a sequence. This is
achieved by a recursive encoding method where at
each recursive step the code will be multiplied by
the forgetting factor (↵) whose value is bounded
by 0 < ↵ < 1. In a practical computer with fi-
nite precision, this has an impact on the FOFE’s
abilities to precisely memorize the long-term de-
pendency of past context as well as to properly
represent the positional information.

The FOFE’s ability to represent the positional
information would improve with smaller forget-
ting factors. The reason is that that when ↵ is
small, the FOFE code (zt) for each word vastly
differs from its neighbour in magnitude. If ↵ is
too large (close to 1), the contribution of a word
may not change too much no matter where it is.
This may hamper the following neural networks
to model the positional information. Conversely,
the FOFE’s ability to model the long-term depen-
dency of the older context would improve with
larger forgetting factors. This is because when ↵
is small, the contribution of a word from the older
history may quickly underflow to become irrele-
vant (i.e. forgotten) when computing the current
word.

In the original FOFE with just a single forget-
ting factor, we would have to determine the best
trade-off between these two benefits. On the other
hand, the dual-FOFE does not face such issues
since it is composed of two FOFE codes: the half
of the dual-FOFE code using a smaller forgetting
factor is solely optimized and responsible for rep-
resenting the positional information of all words
in the sequence; meanwhile the other half of the
dual-FOFE code using a larger forgetting factor
is optimized and responsible for maintaining the
long-term dependency of past context.

3.2 Dual-FOFE based FNN-LM

Figure 2: (Left) 2nd-order Dual-FOFE FNN-LM;
(Right) 3rd-order Dual-FOFE FNN-LM.

As shown in Figure 2, the architecture of dual-
FOFE based FNN-LMs is very similar to the orig-
inal FOFE FNN-LMs.1 In the Dual-FOFE FNN-
LMs, the input word sequence would have to pass
through two branches of the FOFE layers (using
two different forgetting factors) and each encod-
ing branch will produce a FOFE code represent-
ing the input sequence. These two FOFE codes
are then joined to produce the dual-FOFE code,
which would be fed to FNNs to predict the next
word.

It might also be worth noting that in our imple-
mentation we do not explicitly reset FOFE codes,
i.e. zt value, at sentence boundaries. However, far-
away histories will be gradually forgotten by the
recursive calculation in FOFE due to 0 < ↵ < 1
and finite precision in computers.

3.3 Dual-FOFE vs. Higher Order FOFE
As mentioned previously in the subsection 2.2, the
higer order FOFE codes would utilize both the
current and the previous sequence FOFE codes
for prediction. Hence similar to dual-FOFE, the
higher order FOFE could also maintain the sen-
sitivity to both nearby and faraway context. Ob-
viously a much higher order FOFE code may be
required in order to achieve the same effect as
dual-FOFE in terms of modelling long-term de-
pendency. In this case, the higher order FOFE may
also significantly increase the number of param-
eters in the input layer. At last, the dual FOFE

1The difference in the location of the projection layer
between Figure 1 and 2 simply indicates two equivalent
ways to do word projection. Figure 1 was originally from
Zhang (2015b), but they mentioned in text (without a figure)
that it is more efficient to do projection as in Figure 2 and both
methods are mathematically equivalent since both projection
and FOFE steps are linear.
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and the higher order FOFE are largely comple-
mentary since we have observed consistent per-
formance gains when combining dual FOFE with
either 2nd-order or 3rd-order FOFE in our experi-
ments.

4 Experiments
In this work, we have evaluated the proposed
dual-FOFE based FNN-LMs against various tra-
ditional neural language models on two corpora:
i) enwik9 corpus: it consists of the first 1 billion
bytes of English wikipedia dump, having total size
of 170.8 million words; the corpus was divided
into three parts: the training set (153M words),
the test set (8.9M words), and the validation set
(8.9M words); the vocabulary size is limited to
80k words (Zhang et al., 2015b). ii) Google Bil-
lion Words (GBW) corpus: it contains about 800
million words and the corpus is divided into two
parts: the training set (792M words) and the test
set (8M words); the vocabulary size for this cor-
pus is limited to 800k words (Chelba et al., 2013).

4.1 Results on enwiki9
In the experiments on the enwiki9 corpus, we have
trained three dual-FOFE FNN-LMs with differ-
ent forgetting factor pairs, one FOFE FNN-LM,
and one tri-FOFE FNN-LM. All five models adopt
a 2nd-order FOFE structure, employing a word
embeddings of 256 dimensions, three hidden lay-
ers of 400, 600, 600 neurons and an output layer
of 80k words (reflecting the vocabulary). 2 Note
that the dual-FOFE FNN-LMs have to double the
size of input context windows since dual-FOFE
essentially contain two FOFE codes. But this in-
crease only accounts for a negligible faction of to-
tal model parameters.

As shown in Table 1, all three dual-FOFE FNN-
LMs, using three pairs of forgetting factors as (0.5,
0.7) and (0.7, 0.9) and (0.5, 0.9), can significantly
outperform other traditional models previously re-
ported on this corpus. We also note that it is bene-
ficial to include a relatively large forgetting factor,
such as 0.9, in the dual FOFE models since such
a large alpha may help to memorize much longer
context in the inputs. When compared with the
original FOFE counterpart, the best dual-FOFE
model using forgetting factors (0.5, 0.9) offers a
relative gain of around 8% in test PPL.

2Comparing with Zhang (2015b), our single FOFE FNN-
LM baseline use a slightly larger model, which lead to
slightly better perplexity.

It is worth noting that our dual-FOFE mod-
els can be extended to incorporate more than two
alpha values. In fact after we have obtained a
strong result supporting our dual-FOFE hypoth-
esis, we have performed additional experiments
using three alpha values, the so-called tri-FOFE
model. The result on Table 1 has shown that
the tri-FOFE FNN-LMs still slightly outperforms
the dual-FOFE models. However, the gain is
marginal. This leads us to believing that further
extension of more alpha values in FOFE would be
of limited use.

4.2 Results on Google Billion Words (GBW)

In the experiments on the GBW corpus, we have
trained one dual-FOFE FNN-LM and one FOFE
FNN-LM. Following the best dual-FOFE model
configuration on the previous corpus, this dual-
FOFE FNN-LM uses the same pair of dual for-
getting factors (0.5, 0.9). Both models adopt a
3rd-order structure, employing word embeddings
of 256 dimensions, three hidden layers each of
4096 neurons, a compression layer with 720 neu-
rons, and an output layer of 800k words (reflect-
ing the vocabulary). Although dual-FOFE FNN-
LM has doubled the size of input context windows
of FOFE FNN-LM, the total number of model pa-
rameters in both models are almost equal, roughly
0.82 billion parameters.

As shown in Table 2, the dual-FOFE FNN-LM
is able to produce a very competitive performance,
comparable with the best previously reported re-
sults on this task, such as GCNN-13 (Dauphin
et al., 2016) and LSTM-LM (Jozefowicz et al.,
2016). The dual-FOFE FNN-LM are among the
few single-model systems that are able to achieve
test PPL below 40 on this task. Furthermore,
our proposed dual FOFE model can significantly
reduce the computational complexity, e.g., our
model has a relatively smaller number of param-
eter (0.82B parameters) and it requires much less
hardware resource to train (using only 1 GPU in
our experiments). When compared with the orig-
inal FOFE counterpart, the dual-FOFE FNN-LM
is able to provide approximately 11% relative im-
provement in PPL.

5 Conclusions

In this paper, we have proposed a new approach
of utilizing the fixed-size ordinally-forgetting en-
coding (FOFE) method for neural network lan-
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Table 1: Test PPL of various LMs on enwiki9.
Model Architecture PPL
KN 3-gram (Zhang et al., 2015b) - 156
KN 5-gram (Zhang et al., 2015b) - 132
FNN-LM 2-gram (Zhang et al., 2015b) [2*200]-600-600-80k 150
FNN-LM 3-gram (Zhang et al., 2015b) [3*200]-400-400-80k 131
FNN-LM 4-gram (Zhang et al., 2015b) [4*200]-400-400-80k 125
RNN-LM (Zhang et al., 2015b) [1*600]-80k 112
FOFE[↵=0.7] FNN-LM (Zhang et al., 2015b) [2*200]-600-600-80k 107
FOFE[↵=0.7] FNN-LM [2*256]-400-600-600-80k 104.8
Dual-FOFE[↵=0.5,0.7] FNN-LM [2*2*256]-400-600-600-80k 101.7
Dual-FOFE[↵=0.7,0.9] FNN-LM [2*2*256]-400-600-600-80k 97.0
Dual-FOFE[↵=0.5,0.9] FNN-LM [2*2*256]-400-600-600-80k 96.6
Tri-FOFE[↵=0.5,0.7,0.9] FNN-LM [3*2*256]-400-600-600-80k 95.9

Table 2: Test PPL of various LMs on Google Billion Words.
model PPL #param hardware
Sigmoid-RNN-2048 (Ji et al., 2015) 68.3 4.1B 1 CPU
Interpolated KN 5-gram & 1.1B n-grams (Chelba et al., 2013) 67.6 1.8B 100 CPUs
Sparse Non-Negative Matrix LM (Shazeer et al., 2015) 52.9 33B -
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013) 51.3 20B 24 GPUs
LSTM-1024-512 (Jozefowicz et al., 2016) 48.2 0.82B 40 GPUs
LSTM-2048-512 (Jozefowicz et al., 2016) 43.7 0.83B 40 GPUs
LSTM + CNN input (Jozefowicz et al., 2016) 30.0 1.04B 40 GPUs
GCNN-13 (Dauphin et al., 2016) 38.1 - 1 GPU
FOFE[↵=0.7] FNN-LM [3*256]-4096*3-720-800k 43.6 0.82B 1 GPU
Dual-FOFE[↵=0.5,0.9] FNN-LM [2*3*256]-4096*3-720-800k 39.0 0.82B 1 GPU

guage models (NN-LMs), known as dual-FOFE.
As the name implies, this approach involves to
produce a new fixed-sized representation for any
variable-length sequence from a concatenation of
two FOFE codes. This would have allowed us to
select two values for the forgetting factors. One
FOFE code with a smaller forgetting factor is re-
sponsible for representing the positional informa-
tion of all words in the sequence while the other
using a larger forgetting factor is responsible for
modelling the even longer term dependency in
far away history. Our experiments on both en-
wiki9 and Google Billion Words (GBW) tasks
have both demonstrated the effectiveness of the
dual-FOFE modeling approach. Experimental re-
sults on the challenging GBW corpus have shown
that the dual-FOFE FNN-LM has achieved over
10% improvement in perplexity over the original
FOFE FNN-LM, without any significant drawback
in model and learning complexity. When com-
pared with other traditional neural language mod-
els, the dual-FOFE FNN-LM has achieved com-

petitive performance with significantly lower com-
putational complexity.
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Abstract
Recent work has shown that recurrent neural
networks (RNNs) can implicitly capture and
exploit hierarchical information when trained
to solve common natural language processing
tasks (Blevins et al., 2018) such as language
modeling (Linzen et al., 2016; Gulordava et al.,
2018) and neural machine translation (Shi
et al., 2016). In contrast, the ability to model
structured data with non-recurrent neural net-
works has received little attention despite their
success in many NLP tasks (Gehring et al.,
2017; Vaswani et al., 2017). In this work, we
compare the two architectures—recurrent ver-
sus non-recurrent—with respect to their abil-
ity to model hierarchical structure and find that
recurrency is indeed important for this pur-
pose. The code and data used in our experi-
ments is available at https://github.com/
ketranm/fan_vs_rnn

1 Introduction
Recurrent neural networks (RNNs), in particu-
lar Long Short-Term Memory networks (LSTMs),
have become a dominant tool in natural language
processing. While LSTMs appear to be a natu-
ral choice for modeling sequential data, recently a
class of non-recurrent models (Gehring et al., 2017;
Vaswani et al., 2017) have shown competitive per-
formance on sequence modeling. Gehring et al.
(2017) propose a fully convolutional sequence-to-
sequence model that achieves state-of-the-art per-
formance in machine translation. Vaswani et al.
(2017) introduce Transformer networks that do
not use any convolution or recurrent connections
while obtaining the best translation performance.
These non-recurrent models are appealing due to
their highly parallelizable computations on modern
GPUs. But do they have the same ability to exploit
hierarchical structures implicitly in comparison to
RNNs? In this work, we provide a first answer to
this question.

Our interest here is the ability of capturing hi-
erarchical structure without being equipped with
explicit structural representations (Bowman et al.,
2015b; Tran et al., 2016; Linzen et al., 2016). We
choose Transformer as a non-recurrent model to
study in this paper. We refer to Transformer as
Fully Attentional Network (FAN) to emphasize
this characteristic. Our motivation to favor FANs
over convolutional neural networks (CNNs) is that
FANs always have full access to the sequence
history, making them more suited for modeling
long distance dependencies than CNNs. Addition-
ally, FANs promise to be more interpretable than
LSTMs by visualizing attention weights.

The rest of the paper is organized as follows:
We first highlight the differences between the two
architectures (§2) and introduce the two tasks (§3).
Then we provide setup and results for each task (§4
and §5) and discuss our findings (§6).

2 FAN versus LSTM

Conceptually, FANs differ from LSTMs in the way
they utilize the previous input to predict the next
output. Figure 1 depicts the main difference in
terms of computation when each model is making
predictions. At time step t, a FAN can access infor-
mation from all previous time steps directly with
O(1) computational operations. FANs do so by
employing a self-attention mechanism to compute
the weighted average of all previous input repre-
sentations. In contrast, LSTMs compress at each
time step all previous information into a single vec-
tor recursively based on the current input and the
previous compressed vector. By their definition,
LSTMs require O(d) computational operations to
access the information at time step t � d.

For the details of self-attention mechanics in
FANs, we refer to the work of Vaswani et al. (2017).
We now proceed to measure both models’ ability to
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(a) LSTM (b) FAN

Figure 1: Diagram showing the main difference be-
tween a LSTM and a FAN. Purple boxes indicate
the summarized vector at current time step t which
is used to make prediction. Orange arrows indicate
the information flow from a previous input to that
vector.

learn hierarchical structure with a set of controlled
experiments.

3 Tasks

We choose two tasks to study in this work: (1)
subject-verb agreement, and (2) logical inference.
The first task was proposed by Linzen et al. (2016)
to test the ability of recurrent neural networks to
capture syntactic dependencies in natural language.
The second task was introduced by Bowman et al.
(2015b) to compare tree-based recursive neural net-
works against sequence-based recurrent networks
with respect to their ability to exploit hierarchical
structures to make accurate inferences. The choice
of tasks here is important to ensure that both mod-
els have to exploit hierarchical structural features
(Jia and Liang, 2017).

4 Subject-Verb Agreement

Linzen et al. (2016) propose the task of predict-
ing number agreement between subject and verb in
naturally occurring English sentences as a proxy
for the ability of LSTMs to capture hierarchical
structure in natural language. We use the dataset
provided by Linzen et al. (2016) and follow their
experimental protocol of training each model us-
ing either (a) a general language model, i.e., next
word prediction objective, and (b) an explicit super-
vision objective, i.e., predicting the number of the
verb given its sentence history. Table 1 illustrates
the training and testing conditions of the task.
Data: Following the original setting, we take 10%
of the data for training, 1% for validation, and the
rest for testing. The vocabulary consists of the 10k
most frequent words, while the remaining words
are replaced by their part-of-speech.

Table 1: Examples of training and test conditions
for the two subject-verb agreement subtasks. The
full input sentence is “The keys to the cabinet are
on the table” where verb and subject are bold and
intervening nouns are underlined.

Input Train Test

(a) the keys to the cabinet are p(are) > p(is)?
(b) the keys to the cabinet plural plural/singular?

Hyperparameters: To allow for a fair comparison,
we find the best configuration for each model by
running a grid search over the following hyperpa-
rameters: number of layers in {2, 3, 4}, dropout
rate in {0.2, 0.3, 0.5}, embedding size and num-
ber of hidden units in {128, 256, 512}, number
of heads (for FAN) in {2, 4}, and learning rate
in {0.00001, 0.0001, 0.001}. The weights of the
word embeddings and output layer are shared (Inan
et al., 2017; Press and Wolf, 2017). Models are op-
timized by Adam (Kingma and Ba, 2015).

We first assess whether the LSTM and FAN
models trained with respect to the language model
objective assign higher probabilities to the cor-
rectly inflected verbs. As shown in Figures 2a
and 2b, both models achieve high accuracies for
this task, but LSTMs consistently outperform
FANs. Moreover, LSTMs are clearly more ro-
bust than FANs with respect to task difficulty, mea-
sured both in terms of word distance and num-
ber of agreement attractors1 between subject and
verb. Christiansen and Chater (2016); Cornish et al.
(2017) have argued that human memory limitations
give rise to important characteristics of natural lan-
guage, including its hierarchical structure. Simi-
larly, our experiments suggest that, by compress-
ing the history into a single vector before making
predictions, LSTMs are forced to better learn the
input structure. On the other hand, despite having
direct access to all words in their history, FANs are
less capable of detecting the verb’s subject. We
note that the validation perplexities of the LSTM
and FAN are 67.06 and 69.14, respectively.

Secondly, we evaluate FAN and LSTM models
explicitly trained to predict the verb number (Fig-
ures 2c and 2d). Again, we observe that LSTMs
consistently outperform FANs. This is a partic-
ularly interesting result since the self-attention
mechanism in FANs connects two words in any po-

1Agreement attractors are intervening nouns with the op-
posite number from the subject.
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(a) Language model, breakdown by distance (b) Language model, breakdown by # attractors

(c) Number prediction, breakdown by distance (d) Number prediction, breakdown by # attractors

Figure 2: Results of subject-verb agreement with different training objectives.
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Figure 3: Proportion of times the subject is the most
attended word by different heads at different layers
(`3 is the highest layer). Only cases where the
model made a correct prediction are shown.

sition with a O(1) number of executed operations,
whereas RNNs require more recurrent operations.
Despite this apparent advantage of FANs, the per-
formance gap between FANs and LSTMs increases
with the distance and number of attractors.2

To gain further insights into our results, we ex-
amine the attention weights computed by FANs
during verb-number prediction (supervised objec-
tive). Specifically, for each attention head at each
layer of the FAN, we compute the percentage of

2We note that our LSTM results are better than those in
Linzen et al. (2016). Also surprising is that the language
model objective yields higher accuracies than the number pre-
diction objective. We believe this may be due to better model
optimization and to the embedding-output layer weight shar-
ing, but we leave a thorough investigation to future work.

times the subject is the most attended word among
all words in the history. Figure 3 shows the results
for all cases where the model made the correct pre-
diction. While it is hard to interpret the exact role
of attention for different heads and at different lay-
ers, we find that some of the attention heads at the
higher layers (`2 h1, `3 h0) frequently point to
the subject with an accuracy that decreases linearly
with the distance between subject and verb.

5 Logical inference

In this task, we choose the artificial language in-
troduced by Bowman et al. (2015b). The vocab-
ulary of this language includes six word types {a,
b, c, d, e, f } and three logical operators {or, and,
not}. The task consists of predicting one of seven
mutually exclusive logical relations that describe
the relationship between a pair of sentences: en-
tailment (@, A), equivalence (⌘), exhaustive and
non-exhaustive contradiction (^, |), and two types
of semantic independence (#, `). We generate
60,000 samples3 with the number of logical op-
erations ranging from 1 to 12. The train/dev/test
dataset ratios are set to 0.8/0.1/0.1. Here are some
samples of the training data:

( d ( or f ) ) A ( f ( and a ) )
( d ( and ( c ( or d ) ) ) ) # ( not f )

( not ( d ( or ( f ( or c ) ) ) ) ) @ ( not ( c ( and ( not d ) ) ) )

Why artificial data? Despite the simplicity of the
3https://github.com/sleepinyourhat/

vector-entailment
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language, this task is not trivial. To correctly
classify logical relations, the model must learn
nested structures as well as the scope of logical
operators. We verify the difficulty of the task by
training three bag-of-words models followed by
sum/average/max-pooling. The best of the three
models achieve less than 59% accuracy on the log-
ical inference versus 77% on the Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015a). This shows that the SNLI task can be
largely solved by exploiting shallow features with-
out understanding the underlying linguistic struc-
tures, which has also been pointed out by recent
work (Glockner et al., 2018; Gururangan et al.,
2018).

Concurrently to our work Evans et al. (2018) pro-
posed an alternative data set for logical inference
and also found that a FAN model underperformed
various other architectures including LSTMs.

5.1 Models
We follow the general architecture proposed in
(Bowman et al., 2015b): Premise and hypothesis
sentences are encoded by fixed-size vectors. These
two vectors are then concatenated and fed to a 3-
layer feed-forward neural network with ReLU non-
linearities to perform 7-way classification of the
logical relation.

The LSTM architecture used in this experiment
is similar to that of Bowman et al. (2015b). We
simply take the last hidden state of the top LSTM
layer as a fixed-size vector representation of the
sentence. Here, we use a 2-layer LSTM with skip
connections. The FAN maps a sentence x of length
n to H = [h1, . . . ,hn] 2 R

d⇥n. To obtain a fixed-
size representation z, we use a self-attention layer
with two trainable queries q1,q2 2 R

1⇥d:

zi = softmax
✓

qiHp
d

◆
H> i 2 {1, 2}

z = [z1, z2]

We find the best hyperparameters for each model
by running a grid search as explained in §4.

5.2 Results
Following the experimental protocol of Bowman
et al. (2015b), the data is divided into 13 bins based
on the number of logical operators. Both FANs
and LSTMs are trained on samples with at most n
logical operators and tested on all bins. Figure 4
shows the result of the experiments with n  6 and

(a) n  12

(b) n  6

Figure 4: Results of logical inference when training
on all data (a) or only on samples with at most n
logical operators (b).

n  12. We see that FANs and LSTMs perform
similarly when trained on the whole dataset (Fig-
ure 4a). However when trained on a subset of the
data (Figure 4b), LSTMs obtain better accuracies
on similar examples (n  6) and generalize better
on longer examples (6 < n  12).

6 Discussion and Conclusion

We have compared a recurrent architecture (LSTM)
to a non-recurrent one (FAN) with respect to the
ability of capturing the underlying hierarchical
structure of sequential data. Our experiments show
that LSTMs slightly but consistently outperform
FANs. We found that LSTMs are notably more ro-
bust with respect to the presence of misleading fea-
tures in the agreement task, whether trained with
explicit supervision or with a general language
model objective. Secondly, we found that LSTMs
generalize better than FANs to longer sequences
in a logical inference task. These findings sug-
gest that recurrency is a key model property which
should not be sacrificed for efficiency when hierar-
chical structure matters for the task.

This does not imply that LSTMs should al-
ways be preferred over non-recurrent architectures.
In fact, both FAN- and CNN-based networks
have proved to perform comparably or better than
LSTM-based ones on a very complex task like ma-
chine translation (Gehring et al., 2017; Vaswani
et al., 2017). Nevertheless, we believe that the abil-
ity of capturing hierarchical information in sequen-
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tial data remains a fundamental need for building
intelligent systems that can understand and process
language. Thus we hope that our insights will be
useful towards building the next generation of neu-
ral networks.
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Abstract

Targeted sentiment analysis (TSA) aims at ex-
tracting targets and classifying their sentiment
classes. Previous works only exploit word em-
beddings as features and do not explore more
potentials of neural networks when jointly
learning the two tasks. In this paper, we care-
fully design the hierarchical multi-layer bidi-
rectional gated recurrent units (HMBi-GRU)
model to learn abstract features for both tasks,
and we propose a HMBi-GRU based joint
model which allows the target label of word
to have influence on its sentiment label. Ex-
perimental results on two datasets show that
our joint learning model can outperform other
baselines and demonstrate the effectiveness of
HMBi-GRU in learning abstract features.

1 Introduction

Targeted sentiment analysis (TSA) aims to extract
targets in a text and simultaneously predict their
sentiment classes (Hu and Liu, 2004; Jin et al.,
2009; Li et al., 2010; Yang and Cardie, 2013).
For example, given a sentence “ESPN poll says
Michael Jordan is the greatest basketball athlete”,
the targets are ESPN and Michael Jordan and their
sentiment classes are Neutral and Positive respec-
tively.

Targeted sentiment analysis can be seen as two
tasks: target extraction and sentiment classifica-
tion. Some researchers have tackled two tasks
separately, e.g., target extraction (Liu et al., 2013;
Wang et al., 2016a; Yin et al., 2016) and senti-
ment classification (Tang et al., 2016; Wang et al.,
2016b; Ruder et al., 2016). Recently, some re-
searches have attempted to conduct the two tasks
jointly and generally see them as sequence label-
ing problems, where the B/I/O labels indicate tar-
get boundaries and the Positive/Neutral/Negative
labels denote sentiment classes (Klinger and Cimi-
ano, 2013; Yang and Cardie, 2013). Mitchell et al.

(2013) explore labeling targets and their sentiment
classes simultaneously by using the Conditional
Random Fields (CRF) approach with traditional
manual discrete features, and present three mod-
els: pipeline, joint and collapsed, according to dif-
ferent labeling processes of the two tasks. They
find that the pipeline method outperforms the joint
model on tweet dataset. Further, Zhang et al.
(2015) introduce word embedding representations
into the CRF framework and find that it is bene-
ficial to integrate word embeddings into handcraft
features in TSA regardless of pipeline, joint or col-
lapsed methods.

With the success of deep learning techniques,
neural networks have demonstrated their capabil-
ity of sequence labeling (Collobert et al., 2011; Pei
et al., 2014; Chen et al., 2015). However, Zhang
et al. (2015) only use word embeddings to enrich
features without taking full advantages of neural
networks’ potential in automatically capturing im-
portant sequence labeling features like long dis-
tance dependencies and character-level features.

To make better use of neural networks to
explore appropriate character-level features and
high-level semantic features for the two tasks,
we design a hierarchical multi-layer bidirec-
tional gated recurrent units networks (HMBi-
GRU) which uses a multi-layer Bi-GRU to auto-
matically learn character features (e.g. capital-
ization, noun suffix, etc) on letter sequence and
model long distance dependencies between words
on the concatenation of word embedding and its
character features. The learned character features
can also address out-of-vocabulary word prob-
lems.

In above example, the target label and senti-
ment label for Michael Jordon are “B-Person, I-
Person” and “B-Positive, I-Positive”, we can see
that the boundary information (B, I) of target la-
bel and sentiment label is consistent. From the
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view of human, we should first predict the target
label and give corresponding sentiment label af-
terwards. Therefore, we introduce target label in-
formation into predicting sentiment label. In this
way, our model can know about the target bound-
ary information when predicting the sentiment la-
bel. Meanwhile, we also introduce transition ma-
trix (Collobert et al., 2011) to model the depen-
dencies between labels.

We conduct experiments on two datasets, and
the performances show that our models outper-
form other baselines. This verifies the effective-
ness of neural networks in TSA. In the experi-
ments, we find that the target label information is
important for predicting sentiment label. We also
analyze the performance of multi-layer Bi-GRU
and hierarchical architecture in learning character
features and dependencies between words.

2 Model

We will detailedly introduce our model in this
section, and our model is shown in Figure 1.
Supposing that a sentence is composed of n
words [w1, w2, ..., wn]. For each word wi con-
sists of li characters [c1, c2, ..., cli ] and li is the
length of wi. We embed all words and charac-
ters into low-dimensional real-value vectors which
can be learned by language model (Bengio et al.,
2003; Mikolov et al., 2013). We represent sen-
tence as a matrix of word embeddings W =
[E1, E2, ..., En] 2 Rn⇥dw . Similarly, word wi

is denoted as a matrix of character embeddings
Ci 2 Rli⇥dc , and dw and dc are the size of word
embedding and character embedding respectively.

First, we design a hierarchical two-layer archi-
tecture where each layer includes a multi-layer
bidirectional Gated Recurrent Units (MBi-GRU).
GRU is good at modeling a sequence with the ben-
efits of avoiding the gradient vanishing and ex-
ploding problems. For a MBi-GRU, supposing
that it has M layers of Bi-GRU, the hidden state
on layer m 2 {1, 2, ..., m} at time t 2 {1, 2, ..., n}
is recursively computed by:

hm
t = BiGRU(hm�1

t , hm
t�1). (1)

where the superscript of h denotes the correspond-
ing layer of a MBi-GRU, and h0 means the origi-
nal inputs. BiGRU is bidirectional GRU which is

defined as:

BiGRU(xt, ht�1) =
�!
ht �

 �
ht ; (2)

�!
ht = GRU(xt,

��!
ht�1); (3)

 �
ht = GRU(xt,

 ��
ht�1). (4)

where xt is inputs which can be word embeddings
or the hidden states of other BiGRU. � indicates
the operation of concatenating two vectors.

With the matrix of character embeddings Ci as
inputs, we utilize a MBi-GRU to learn character-
level abstract features for word wi based on its
character embeddings. Through MBi-GRU, we
can obtain the hidden states [hM

1 , hM
2 , ..., hM

li
] on

which a max-pooling operation is applied to out-
put the character-level features ri 2 R2dc for
word wi. The character features of all words
in a sentence form a new matrix C 2 Rn⇥2dc .
Next, We concatenate C with the matrix of word
embeddings W and denote the concatenation as
F 2 Rn⇥(dw+2dc). With F as input, We uti-
lize another MBi-GRU to learn the hidden states
H = [h0M

1 , h0M
2 , ..., h0M

n ] as the final representa-
tions of the sentence. Therefore, the hierarchical
two-layer MBi-GRU architecture can learn high-
level abstract features with consideration of both
character-level and word-level information.

After learning the final representations for sen-
tence, we first project the features: tfi = h0M

i of
each word into target label space by:

yi
t = f(tfi · W t

p + bt
p) (5)

where W t
p and bt

p are weight matrix and bias.
As we know, the boundary of a target should

be the same as that of its sentiment in sequence
label. As the example in Section 1, the target la-
bel and sentiment label of Michael Jordan are “B-
Person, I-Person” and “B-Positive, I-Positive” re-
spectively. To learn this kind of consistency, we
introduce the target label information into predict-
ing sentiment label by:

yi
s = f(sfi · W s

p + bs
p) (6)

where sfi = h0M
i � yi

t, W t
s and bt

s are weight ma-
trix and bias respectively. This makes our model
know the target label information when predicting
their sentiment.

For sequence labeling, there usually exist de-
pendencies between labels. Take the target label-
ing task for example, label I will never follow label
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Figure 1: The overall architecture of our model.

O. To consider the influence of label dependen-
cies, we introduce the transition matrix Ai,j pro-
posed by Collobert et al. (2011) which measures
the probability of jumping from label i to label j.

Given the sentence x = [w1, w2, ..., wn] and
the scores yt = [y1

t , y
2
t , ..., y

n
t ] and ys =

[y1
s , y

2
s , ..., y

n
s ] computed by Eq. 5 and Eq. 6, we

get the target labeling scores by summing up tran-
sition scores and the scores yi

t:

s(yt, x, ✓t) =
Xn

i=1
(At

i�1,i + yi
t); (7)

where At is label transition matrix for target label-
ing. ✓t = ✓ [ {At

i,j}, and ✓ denotes parameters of
HMBi-GRUs.

Next, we normalize the target label scores over
all possible labeling paths of target (i.e., Yt) by a
softmax function:

pt(yt|x) =
es(yt,x,✓t)

P
ŷt2Yt

es(ŷt,x,✓t)
; (8)

We can also use Eq. 7 and Eq. 8 to get the normal-
ized sentiment label scores ps(ys|x). To train our
model, we define the loss function by:

loss = � log(pt(yt|x))� log(ps(ys|x)). (9)

Finally, we obtain targets label sequence y⇤
t and

their sentiment label sequence y⇤
s which have max-

imal score y⇤
t = arg maxŷ2Yt(s(x, ŷ, ✓t)) y⇤

s =
arg maxŷ2Ys(s(x, ŷ, ✓s)). y⇤

t and y⇤
s can be com-

puted by Viterbi algorithm.

3 Experiments

3.1 Setup
To validate the effectiveness of our model, we con-
duct experiments on two datasets, consisting of

Datasets #Sent #Target #Pos #Neg #Neu
English 2350 3288 707 275 2306
Spanish 5145 6658 1555 1007 4096

Table 1: Statistics of Datasets.

English tweets and Spanish tweets, which are con-
structed by Mitchell et al. (2013)1. Table 2 de-
picts the statistics of data, which contains sentence
number, target number and the number of positive
target, negative target and neutral target. To evalu-
ate the system performance, we adopt Precision,
Recall and F-measure. In our experiments, we
evaluate the performance of detecting targets (DT)
and targeted sentiment analysis (TSA) which a tar-
get is taken as correct only when the boundary and
the sentiment are both correctly recognized. We
also adopt Precision, Recall and F-measure used
in Zhang et al. (2015) to evaluate our model. The
reason why we don’t compare with Mitchell et al.
(2013) is that they only evaluate the beginning of
targets along with the sentiment expressed towards
it.

In our experiments, we use embeddings from
Pennington et al. (2014)2 and Cieliebak et al.
(2017)3 for English words and Spanish words re-
spectively. The character embeddings are initial-
ized by Xavier (Glorot and Bengio, 2010) and
their dimension is 50. In our model, all unknown
words, weight matrices and biases are initialized
by Xavier Glorot and Bengio (2010). The dimen-
sions of the character-level and word-level hidden
states in MBi-GRU are set to 300 and 600 respec-
tively. The layer number of multi-layer bidirec-
tional GRU is set to 2. To avoid overfitting, we
adopt dropout on embeddings, sfi and tfi, and
the dropout rate is set to 0.5. The word embed-
dings and character embeddings will be tuned dur-
ing training. Finally, we utilize Adam (Kingma
and Ba, 2014) to optimize all parameters of our
model.

3.2 Baselines

To investigate the performance of our joint model,
we compare it with several baselines as follows:

• Discrete uses traditional discrete features as
1http://www.m-mitchell.com/code/index.

html
2https://nlp.stanford.edu/projects/

glove/
3https://spinningbytes.com/resources/

embeddings/
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Model
English Spanish

DT TSA DT TSA
P R F P R F P R F P R F

Discrete 59.55 34.06 43.30 43.09 24.67 31.35 71.08 47.56 56.96 46.36 31.02 37.15
Neural 54.45 42.12 47.17 37.55 28.95 32.45 65.05 47.79 55.07 40.28 29.58 34.09
Integrate 61.47 49.28 54.59 44.62 35.84 39.67 71.32 61.11 65.74 46.67 39.99 43.02
Bi-GRU 58.13 43.46 49.62 45.76 32.29 37.73 65.24 53.02 58.45 46.33 37.50 41.45
MBi-GRU 58.27 49.01 53.24 45.80 35.21 39.81 66.14 60.07 62.95 45.61 40.04 42.64
HBi-GRU 57.24 53.88 55.41 44.94 38.60 41.52 68.24 61.81 64.82 46.53 42.21 44.18
No-Target 61.24 52.44 56.39 45.90 39.21 42.21 66.72 63.57 65.10 45.06 43.31 44.17
OURS 60.12 53.68 56.98 46.52 39.99 42.87 68.64 63.66 66.01 48.09 43.44 45.61

Table 2: Performance comparison of our models with the baselines.

inputs and multi-label CRF which contains two
separate output clique potentials and two sepa-
rate edge clique potentials for target extraction and
sentiment classification respectively. There also
exist links between target labels and sentiment la-
bels for each word (Zhang et al., 2015).

• Neural uses word embeddings transformed
with non-linear function as inputs, and others are
the same as Discrete model (Zhang et al., 2015).

• Integrated integrates both discrete features
and word embeddings into the same CRF frame-
work and other settings are the same as Dis-
crete (Zhang et al., 2015).

• Bi-GRU only uses word embeddings as in-
puts, and Bi-GRU is employed to learn represen-
tations for sentence.

• MBi-GRU also uses word embeddings as in-
puts, but MBi-GRU is utilized to model sentence.

• HBi-GRU first uses Bi-GRU to learn charac-
ter level features for each word. Then, character
level features and word embeddings are concate-
nated as inputs for another Bi-GRU to learn final
representations for sentence.

• No-Target uses HMBi-GRU to learn repre-
sentations for sentence, but h0M

i (depicted in Sec-
tion 2) are used to predict target label and senti-
ment label separately. No-Target doesn’t let target
label information to affect sentiment label. This
is the biggest difference between No-Target and
ours.

It is noticed that all of Bi-GRU, MBi-GRU and
HBi-GRU use transition matrix to model the de-
pendencies between labels and introduce target la-
bel information into predicting sentiment label.

3.3 Analysis

Table 2 displays the performance comparison of
our models with the baselines. We can see that
Discrete gets the worst results on English dataset,
and Neural gets the worst results on Spanish
dataset. The Integrate greatly improves the perfor-
mances on both datasets because discrete features
and word embeddings can complement each other.

Bi-GRU greatly improves the performance
compared with Discrete and Neural but gets worse
performance than Integrate. This verifies the ef-
fectiveness of neural networks in TAS. However,
simple neural networks are not enough to acquire
better results. MBi-GRU learns high-level features
via multi-layer bidirectional GRU and achieves
comparable results compared with Integrate.

Nevertheless, Bi-GRU and MBi-GRU do not
make full use of character-level features. HBi-
GRU incorporates character-level features by Bi-
GRU on letter sequence of word. We can see
that HBi-GRU improves about 1.85% and 1.16%
in TSA on both datasets compared with Integrate.
The performance of HBi-GRU demonstrates the
importance of character-level features in TSA, and
the hierarchical architecture is good at leaning
multi-level (character-level, word-level) features.

Our model improves 3.20%, 2.59% in TSA and
2.39%, 0.27% in DT on both datasets compared
with the existing best system: Integrate. Com-
pared with No-Target, our model introduces tar-
get label information into predicting sentiment la-
bel and improves about 0.66%, 1.44% in TSA and
0.59%, 0.91% in DT on both datasets. The im-
provements demonstrate that target label informa-
tion plays important roles in predicting sentiment
label. It is noticed that the results of our model in
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DT are also improved compared with No-Target.
The reason may be that the gradients from sen-
timent loss have positive effects on detecting tar-
gets.

In a word, our model achieves state-of-the-art in
DT and TSA on both datasets. Character-level fea-
tures play great roles in DT and TSA, and HMBi-
GRU is good at learning multi-level features. It is
useful to learn boundary consistence by introduc-
ing target label information into predicting senti-
ment label.

3.4 Case Study

Here, we use a tweet from English Dataset as a
case study, and the tweet is “Congratulations to
our Champ Roger Federer ...”. We apply No-
Target and our model on the tweet. No-Target and
our model get the same target labels: [O,O,O,O,B-
Person,I-Person,...], and we can see that both
models correctly extract the target: Roger Fed-
erer, and this results show the effectiveness of
both models in detecting targets. Our model
successfully obtains the correct sentiment labels:
[O,O,O,O,B-Positive,I-Positive,...]. However, No-
Target predicts a wrong sentiment label sequence:
[O,O,O,B-Positive,I-Positive,O,...]. We can see
that No-Target wrongly regard Champ as the be-
ginning position and ignore Federer. The rea-
sons are that the first letter of Champ is capital-
ized, which may mislead No-Target and there is
no correlation between target and sentiment label.
In our model, we incorporate target label infor-
mation into predicting sentiment label. Therefore,
our model tends to force target and sentiment label
to have same boundary information.

This case study shows that the target label in-
formation plays important roles in predicting sen-
timent label because they share the same boundary
information.

4 Related Work

Early works on target sentiment analysis were
based on subjects and features. For example, Yi
et al. (2003) extracted all references to the given
subject and determined the sentiment of each ref-
erence. Hu and Liu (2004) first proposed several
techniques to mine the product features that cus-
tomers have expressed their opinions and deter-
mined their sentiment, and Popescu and Etzioni
(2007) utilized unsupervised methods to identify
opinions with respect to features and determine the

polarity of opinions. Jin et al. (2009) proposed
a novel lexicalized HMMs model to mine cus-
tomer reviews of a product and extract highly spe-
cific product related entities which reviewers ex-
pressed their opinion, and they also identified the
sentiment of opinion entities. The works of (Yang
and Cardie, 2013) and (Li et al., 2010) are similar
to (Jin et al., 2009). However, these works only
take pre-defined features into account and can not
find new features. To automatically extract targets
and predict their sentiment, Mitchell et al. (2013)
first proposed a conditional random fields (CRF)
framework to jointly detect entities and identify
their sentiment. Based on the work of (Mitchell
et al., 2013), Zhang et al. (2015) explored the ef-
fect of word embeddings and automatic feature
combinations by extending a CRF baseline using
neural networks.

We propose a neural networks based joint
model which extracts targets and their sentiments
simultaneously. Our model takes full advan-
tages of neural networks’ potential in capturing se-
quence labeling features such as long distance de-
pendencies and character-level features. Further-
more, Our model allows the target label to have
positive effects on their sentiment label because
target label shares boundary information with sen-
timent label.

5 Conclusion

In this paper, we propose a HMBi-GRU based
joint model for targeted sentiment analysis. Our
model will simultaneously extract targets and pre-
dict their sentiment. Furthermore, our model in-
troduces target information into predicting corre-
sponding sentiment label. Experiments show that
the well-designed neural networks can greatly im-
prove the result for targeted sentiment analysis,
and target label information plays great roles in
predicting sentiment label.
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Abstract

We analyze the performance of different sen-
timent classification models on syntactically-
complex inputs like A-but-B sentences. The
first contribution of this analysis addresses re-
producible research: to meaningfully compare
different models, their accuracies must be av-
eraged over far more random seeds than what
has traditionally been reported. With proper
averaging in place, we notice that the distil-
lation model described in Hu et al. (2016),
which incorporates explicit logic rules for sen-
timent classification, is ineffective. In contrast,
using contextualized ELMo embeddings (Pe-
ters et al., 2018a) instead of logic rules yields
significantly better performance. Additionally,
we provide analysis and visualizations that
demonstrate ELMo’s ability to implicitly learn
logic rules. Finally, a crowdsourced analysis
reveals how ELMo outperforms baseline mod-
els even on sentences with ambiguous senti-
ment labels.

1 Introduction

In this paper, we explore the effectiveness of meth-
ods designed to improve sentiment classification
(positive vs. negative) of sentences that con-
tain complex syntactic structures. While simple
bag-of-words or lexicon-based methods (Pang and
Lee, 2005; Wang and Manning, 2012; Iyyer et al.,
2015) achieve good performance on this task, they
are unequipped to deal with syntactic structures
that affect sentiment, such as contrastive conjunc-
tions (i.e., sentences of the form “A-but-B”) or
negations. Neural models that explicitly encode
word order (Kim, 2014), syntax (Socher et al.,
2013; Tai et al., 2015) and semantic features (Li
et al., 2017) have been proposed with the aim
of improving performance on these more compli-
cated sentences. Recently, Hu et al. (2016) in-
corporate logical rules into a neural model and

show that these rules increase the model’s accu-
racy on sentences containing contrastive conjunc-
tions, while Peters et al. (2018a) demonstrate in-
creased overall accuracy on sentiment analysis by
initializing a model with representations from a
language model trained on millions of sentences.

In this work, we carry out an in-depth study
of the effectiveness of the techniques in Hu et al.
(2016) and Peters et al. (2018a) for sentiment clas-
sification of complex sentences. Part of our con-
tribution is to identify an important gap in the
methodology used in Hu et al. (2016) for perfor-
mance measurement, which is addressed by av-
eraging the experiments over several executions.
With the averaging in place, we obtain three key
findings: (1) the improvements in Hu et al. (2016)
can almost entirely be attributed to just one of
their two proposed mechanisms and are also less
pronounced than previously reported; (2) contex-
tualized word embeddings (Peters et al., 2018a)
incorporate the “A-but-B” rules more effectively
without explicitly programming for them; and (3)
an analysis using crowdsourcing reveals a big-
ger picture where the errors in the automated sys-
tems have a striking correlation with the inherent
sentiment-ambiguity in the data.

2 Logic Rules in Sentiment Classification

Here we briefly review background from Hu et al.
(2016) to provide a foundation for our reanalysis
in the next section. We focus on a logic rule for
sentences containing an “A-but-B” structure (the
only rule for which Hu et al. (2016) provide exper-
imental results). Intuitively, the logic rule for such
sentences is that the sentiment associated with the
whole sentence should be the same as the senti-
ment associated with phrase “B”.1

1The rule is vacuously true if the sentence does not have
this structure.
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More formally, let p✓(y|x) denote the proba-
bility assigned to the label y 2 {+, �} for an
input x by the baseline model using parameters
✓. A logic rule is (softly) encoded as a variable
r✓(x, y) 2 [0, 1] indicating how well labeling x
with y satisfies the rule. For the case of A-but-B
sentences, r✓(x, y) = p✓(y|B) if x has the struc-
ture A-but-B (and 1 otherwise). Next, we discuss
the two techniques from Hu et al. (2016) for in-
corporating rules into models: projection, which
directly alters a trained model, and distillation,
which progressively adjusts the loss function dur-
ing training.

Projection. The first technique is to project a
trained model into a rule-regularized subspace, in
a fashion similar to Ganchev et al. (2010). More
precisely, a given model p✓ is projected to a model
q✓ defined by the optimum value of q in the fol-
lowing optimization problem:2

min
q,⇠�0

KL(q(X, Y )||p✓(X, Y )) + C
X

x2X

⇠x

s.t. (1 � Ey q(·|x)[r✓(x, y)])  ⇠x

Here q(X,Y ) denotes the distribution of (x, y)
when x is drawn uniformly from the set X and
y is drawn according to q(·|x).

Iterative Rule Knowledge Distillation. The
second technique is to transfer the domain knowl-
edge encoded in the logic rules into a neural
network’s parameters. Following Hinton et al.
(2015), a “student” model p✓ can learn from
the “teacher” model q✓, by using a loss function
⇡H(p✓, Ptrue) + (1 � ⇡)H(p✓, q✓) during training,
where Ptrue denotes the distribution implied by
the ground truth, H(·, ·) denotes the cross-entropy
function, and ⇡ is a hyperparameter. Hu et al.
(2016) computes q✓ after every gradient update
by projecting the current p✓, as described above.
Note that both mechanisms can be combined: Af-
ter fully training p✓ using the iterative distillation
process above, the projection step can be applied
one more time to obtain q✓ which is then used as
the trained model.

Dataset. All of our experiments (as well as those
in Hu et al. (2016)) use the SST2 dataset, a

2The formulation in Hu et al. (2016) includes another hy-
perparameter � per rule, to control its relative importance;
when there is only one rule, as in our case, this parameter can
be absorbed into C.

binarized subset of the popular Stanford Senti-
ment Treebank (SST) (Socher et al., 2013). The
dataset includes phrase-level labels in addition
to sentence-level labels (see Table 1 for detailed
statistics); following Hu et al. (2016), we use both
types of labels for the comparisons in Section 3.2.
In all other experiments, we use only sentence-
level labels, and our baseline model for all exper-
iments is the CNN architecture from Kim (2014).

3 A Reanalysis

In this section we reanalyze the effectiveness of
the techniques of Hu et al. (2016) and find that
most of the performance gain is due to projection
and not knowledge distillation. The discrepancy
with the original analysis can be attributed to the
relatively small dataset and the resulting variance
across random initializations. We start by analyz-
ing the baseline CNN by Kim (2014) to point out
the need for an averaged analysis.

0.0

0.2

0.4

0.6

83.47 85.64 86.16 86.49 87.20

Ac
cu

ra
cy

 (%
)

Number of epochs of training

Figure 1: Variation in models trained on SST-2 (sentence-
only). Accuracies of 100 randomly initialized models are
plotted against the number of epochs of training (in gray),
along with their average accuracies (in red, with 95% confi-
dence interval error bars). The inset density plot shows the
distribution of accuracies when trained with early stopping.

3.1 Importance of Averaging
We run the baseline CNN by Kim (2014) across
100 random seeds, training on sentence-level la-

Number of Phrases Train Dev Test

Instances 76961 6920 872 1821
A-but-B 3.5% 11.1% 11.5% 11.5%
Negations 2.0% 17.5% 18.3% 17.2%
Discourse 5.0% 24.6% 26.0% 24.5%

Table 1: Statistics of SST2 dataset. Here “Discourse” in-
cludes both A-but-B and negation sentences. The mean length
of sentences is in terms of the word count.
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Reported Test Accuracy  
(Hu et al., 2016) Averaged Test Accuracy  Averaged A-but-B accuracy  

no-distill distill no-distill distill no-distill distill

no-project 87.2 88.8 87.66 87.97 80.25 82.17

project 87.9 89.3 88.73 88.77 89.56 89.13

+1.6

+1.4

+0.7 +0.5

+0.29

+0.04

+1.07 +0.80

+1.92

-0.43

+9.31 +6.96

Figure 2: Comparison of the accuracy improvements reported in Hu et al. (2016) and those obtained by averaging over 100
random seeds. The last two columns show the (averaged) accuracy improvements for A-but-B style sentences. All models use
the publicly available implementation of Hu et al. (2016) trained on phrase-level SST2 data.

bels. We observe a large amount of variation from
run-to-run, which is unsurprising given the small
dataset size. The inset density plot in Figure 1
shows the range of accuracies (83.47 to 87.20)
along with 25, 50 and 75 percentiles.3 The figure
also shows how the variance persists even after the
average converges: the accuracies of 100 models
trained for 20 epochs each are plotted in gray, and
their average is shown in red.

We conclude that, to be reproducible, only av-
eraged accuracies should be reported in this task
and dataset. This mirrors the conclusion from a
detailed analysis by Reimers and Gurevych (2017)
in the context of named entity recognition.

3.2 Performance of Hu et al. (2016)
We carry out an averaged analysis of the publicly
available implementation4 of Hu et al. (2016).
Our analysis reveals that the reported performance
of their two mechanisms (projection and distil-
lation) is in fact affected by the high variability
across random seeds. Our more robust averaged
analysis yields a somewhat different conclusion of
their effectiveness.

In Figure 2, the first two columns show the re-
ported accuracies in Hu et al. (2016) for models
trained with and without distillation (correspond-
ing to using values ⇡ = 1 and ⇡ = 0.95t in the
tth epoch, respectively). The two rows show the
results for models with and without a final projec-
tion into the rule-regularized space. We keep our
hyper-parameters identical to Hu et al. (2016).5

The baseline system (no-project, no-distill) is
identical to the system of Kim (2014). All the sys-
tems are trained on the phrase-level SST2 dataset

3We use early stopping based on validation performance
for all models in the density plot.

4https://github.com/ZhitingHu/logicnn/
5In particular, C = 6 for projection.

with early stopping on the development set. The
number inside each arrow indicates the improve-
ment in accuracy by adding either the projection
or the distillation component to the training al-
gorithm. Note that the reported figures suggest
that while both components help in improving ac-
curacy, the distillation component is much more
helpful than the projection component.

The next two columns, which show the re-
sults of repeating the above analysis after averag-
ing over 100 random seeds, contradict this claim.
The averaged figures show lower overall accuracy
increases, and, more importantly, they attribute
these improvements almost entirely to the projec-
tion component rather than the distillation com-
ponent. To confirm this result, we repeat our av-
eraged analysis restricted to only “A-but-B” sen-
tences targeted by the rule (shown in the last two
columns). We again observe that the effect of pro-
jection is pronounced, while distillation offers lit-
tle or no advantage in comparison.

4 Contextualized Word Embeddings

Traditional context-independent word embed-
dings like word2vec (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014) are fixed vec-
tors for every word in the vocabulary. In contrast,
contextualized embeddings are dynamic represen-
tations, dependent on the current context of the
word. We hypothesize that contextualized word
embeddings might inherently capture these logic
rules due to increasing the effective context size
for the CNN layer in Kim (2014). Following the
recent success of ELMo (Peters et al., 2018a) in
sentiment analysis, we utilize the TensorFlow Hub
implementation of ELMo6 and feed these contex-
tualized embeddings into our CNN model. We

6https://tfhub.dev/google/elmo/1
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fine-tune the ELMo LSTM weights along with the
CNN weights on the downstream CNN task. As in
Section 3, we check performance with and without
the final projection into the rule-regularized space.
We present our results in Table 2.

Switching to ELMo word embeddings improves
performance by 2.9 percentage points on an aver-
age, corresponding to about 53 test sentences. Of
these, about 32 sentences (60% of the improve-
ment) correspond to A-but-B and negation style
sentences, which is substantial when considering
that only 24.5% of test sentences include these dis-
course relations (Table 1). As further evidence that
ELMo helps on these specific constructions, the
non-ELMo baseline model (no-project, no-distill)
gets 255 sentences wrong in the test corpus on av-
erage, only 89 (34.8%) of which are A-but-B style
or negations.

Statistical Significance: Using a two-sided
Kolmogorov-Smirnov statistic (Massey Jr, 1951)
with ↵ = 0.001 for the results in Table 2, we find
that ELMo and projection each yield statistically
significant improvements, but distillation does not.
Also, with ELMo, projection is not significant.
Specific comparisons have been added in the Ap-
pendix, in Table A3.

KL Divergence Analysis: We observe no sig-
nificant gains by projecting a trained ELMo model
into an A-but-B rule-regularized space, unlike the
other models. We confirm that ELMo’s predic-
tions are much closer to the A-but-B rule’s man-
ifold than those of the other models by computing
KL(q✓||p✓) where p✓ and q✓ are the original and
projected distributions: Averaged across all A-but-
B sentences and 100 seeds, this gives 0.27, 0.26
and 0.13 for the Kim (2014), Hu et al. (2016)
with distillation and ELMo systems respectively.

Intra-sentence Similarity: To understand the
information captured by ELMo embeddings for
A-but-B sentences, we measure the cosine simi-
larity between the word vectors of every pair of
words within the A-but-B sentence (Peters et al.,
2018b). We compare the intra-sentence similar-
ity for fine-tuned word2vec embeddings (base-
line), ELMo embeddings without fine-tuning and
finally fine-tuned ELMo embeddings in Figure 3.
In the fine-tuned ELMo embeddings, we notice
the words within the A and within the B part of
the A-but-B sentence share the same part of the
vector space. This pattern is less visible in the

Model Test but but or neg

no-distill no-project 85.98 78.69 80.13
no-distill project 86.54 83.40 -

distill 7 no-project 86.11 79.04 -
distill project 86.62 83.32 -

ELMo no-project 88.89 86.51 87.24
ELMo project 88.96 87.20 -

Table 2: Average performance (across 100 seeds) of ELMo
on the SST2 task. We show performance on A-but-B sen-
tences (“but”), negations (“neg”).

ELMo embeddings without fine-tuning and absent
in the word2vec embeddings. This observation
is indicative of ELMo’s ability to learn specific
rules for A-but-B sentences in sentiment classifica-
tion. More intra-sentence similarity heatmaps for
A-but-B sentences are in Figure A1.

5 Crowdsourced Experiments

We conduct a crowdsourced analysis that reveals
that SST2 data has significant levels of ambiguity
even for human labelers. We discover that ELMo’s
performance improvements over the baseline are
robust across varying levels of ambiguity, whereas
the advantage of Hu et al. (2016) is reversed in
sentences of low ambiguity (restricting to A-but-B
style sentences).

Our crowdsourced experiment was conducted
on Figure Eight.8 Nine workers scored the senti-
ment of each A-but-B and negation sentence in the
test SST2 split as 0 (negative), 0.5 (neutral) or 1
(positive). (SST originally had three crowdwork-
ers choose a sentiment rating from 1 to 25 for ev-
ery phrase.) More details regarding the crowd ex-
periment’s parameters have been provided in Ap-
pendix A.

We average the scores across all users for each
sentence. Sentences with a score in the range
(x, 1] are marked as positive (where x 2 [0.5, 1)),
sentences in [0, 1 � x) marked as negative, and
sentences in [1 � x, x] are marked as neutral.
For instance, “flat , but with a revelatory perfor-
mance by michelle williams” (score=0.56) is neu-
tral when x = 0.6.9 We present statistics of
our dataset10 in Table 3. Inter-annotator agree-

7Trained on sentences and not phrase-level labels for a fair
comparison with baseline and ELMo, unlike Section 3.2.

8 https://www.figure-eight.com/
9More examples of neutral sentences have been provided

in the Appendix in Table A1, as well as a few “flipped” sen-
tences receiving an average score opposite to their SST2 label
(Table A2).

10The dataset along with source code can be found in

4746



Figure 3: Heat map showing the cosine similarity between pairs of word vectors within a single sentence. The left figure has
fine-tuned word2vec embeddings. The middle figure contains the original ELMo embeddings without any fine-tuning. The
right figure contains fine-tuned ELMo embeddings. For better visualization, the cosine similarity between identical words has
been set equal to the minimum value in the heat map.

ment was computed using Fleiss’ Kappa (). As
expected, inter-annotator agreement is higher for
higher thresholds (less ambiguous sentences). Ac-
cording to Landis and Koch (1977),  2 (0.2, 0.4]
corresponds to “fair agreement”, whereas  2
(0.4, 0.6] corresponds to “moderate agreement”.

We next compute the accuracy of our model
for each threshold by removing the correspond-
ing neutral sentences. Higher thresholds corre-
spond to sets of less ambiguous sentences. Table 3
shows that ELMo’s performance gains in Table 2
extends across all thresholds. In Figure 4 we com-
pare all the models on the A-but-B sentences in this
set. Across all thresholds, we notice trends similar
to previous sections: 1) ELMo performs the best
among all models on A-but-B style sentences, and
projection results in only a slight improvement; 2)
models in Hu et al. (2016) (with and without distil-
lation) benefit considerably from projection; but 3)
distillation offers little improvement (with or with-
out projection). Also, as the ambiguity threshold
increases, we see decreasing gains from projection
on all models. In fact, beyond the 0.85 threshold,
projection degrades the average performance, in-
dicating that projection is useful for more ambigu-
ous sentences.

6 Conclusion

We present an analysis comparing techniques for
incorporating logic rules into sentiment classifi-
cation systems. Our analysis included a meta-
study highlighting the issue of stochasticity in
performance across runs and the inherent ambi-
guity in the sentiment classification task itself,
which was tackled using an averaged analysis and

https://github.com/martiansideofthemoon/
logic-rules-sentiment.

Threshold 0.50 0.66 0.75 0.90

Neutral Sentiment 10 70 95 234
Flipped Sentiment 15 4 2 0
Fleiss’ Kappa () 0.38 0.42 0.44 0.58

no-distill, no-project 81.32 83.54 84.54 87.55
ELMo, no-project 87.56 90.00 91.31 93.14

Table 3: Number of sentences in the crowdsourced study
(447 sentences) which got marked as neutral and which got
the opposite of their labels in the SST2 dataset, using vari-
ous thresholds. Inter-annotator agreement is computed using
Fleiss’ Kappa. Average accuracies of the baseline and ELMo
(over 100 seeds) on non-neutral sentences are also shown.

Figure 4: Average performance on the A-but-B part of the
crowd-sourced dataset (210 sentences, 100 seeds)). For each
threshold, only non-neutral sentences are used for evaluation.

a crowdsourced experiment identifying ambigu-
ous sentences. We present evidence that a re-
cently proposed contextualized word embedding
model (ELMo) (Peters et al., 2018a) implicitly
learns logic rules for sentiment classification of
complex sentences like A-but-B sentences. Future
work includes a fine-grained quantitative study of
ELMo word vectors for logically complex sen-
tences along the lines of Peters et al. (2018b).

4747



References
Kuzman Ganchev, Jennifer Gillenwater, Ben Taskar,

et al. 2010. Posterior regularization for structured
latent variable models. Journal of Machine Learn-
ing Research, 11(Jul):2001–2049.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. NIPS
Deep Learning and Representation Learning Work-
shop.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neural
networks with logic rules. In Association for Com-
putational Linguistics (ACL).

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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Appendix

A Crowdsourcing Details

Crowd workers residing in five English-speaking
countries (United States, United Kingdom, New
Zealand, Australia and Canada) were hired. Each
crowd worker had a Level 2 or higher rating on
Figure Eight, which corresponds to a “group of
more experienced, higher accuracy contributors”.
Each contributor had to pass a test questionnaire
to be eligible to take part in the experiment. Test
questions were also hidden throughout the task
and untrusted contributions were removed from
the final dataset. For greater quality control, an
upper limit of 75 judgments per contributor was
enforced.
Crowd workers were paid a total of $1 for 50 judg-
ments. An internal unpaid workforce (including
the first and second author of the paper) of 7 con-
tributors was used to speed up data collection.
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# Judgments Average Sentence
Positive Negative Neutral

1 1 7 0.50 the fight scenes are fun , but it grows tedious

3 2 4 0.56 it ’s not exactly a gourmet meal but the fare is fair ,
even coming from the drive thru

2 3 4 0.44 propelled not by characters but by caricatures

4 2 3 0.61 not everything works , but the average is higher than
in mary and most other recent comedies

Table A1: Examples of neutral sentences for a threshold of 0.66

# Judgments Average Original Sentence
Positive Negative Neutral

1 5 3 0.28 Positive
de niro and mcdormand give solid perfor-
mances , but their screen time is sabotaged by
the story ’s inability to create interest

6 0 3 0.83 Negative
son of the bride may be a good half hour too
long but comes replete with a flattering sense
of mystery and quietness

0 5 4 0.22 Positive

wasabi is slight fare indeed , with the entire
project having the feel of something tossed
off quickly ( like one of hubert ’s punches )
, but it should go down smoothly enough with
popcorn

Table A2: Examples of flipped sentiment sentences, for a threshold of 0.66

Model 1 vs Model 2 Significant

distill no-project distill project Yes
no-distill no-project no-distill project Yes

ELMo no-project ELMo project No

no-distill no-project distill no-project No
no-distill project distill project No

no-distill no-project ELMo no-project Yes
distill no-project ELMo no-project Yes

no-distill project ELMo project Yes
distill project ELMo project Yes

Table A3: Statistical significance using a two-sided Kolmogorov-Smirnov statistic (Massey Jr, 1951) with ↵ = 0.001.
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Figure A1: Heat map showing the cosine similarity between pairs of word vectors within a single sentence. The leftmost
column has word2vec (Mikolov et al., 2013) embeddings, fine-tuned on the downstream task (SST2). The middle column
contains the original ELMo embeddings (Peters et al., 2018a) without any fine-tuning. The representations from the three layers
(token layer and two LSTM layers) have been averaged. The rightmost column contains ELMo embeddings fine-tuned on the
downstream task. For better visualization, the cosine similarity between identical words has been set equal to the minimum
value in the map.
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Abstract
Computational detection and understanding of
empathy is an important factor in advancing
human-computer interaction. Yet to date, text-
based empathy prediction has the following
major limitations: It underestimates the psy-
chological complexity of the phenomenon, ad-
heres to a weak notion of ground truth where
empathic states are ascribed by third parties,
and lacks a shared corpus. In contrast, this
contribution presents the first publicly avail-
able gold standard for empathy prediction. It is
constructed using a novel annotation method-
ology which reliably captures empathy assess-
ments by the writer of a statement using multi-
item scales. This is also the first computa-
tional work distinguishing between multiple
forms of empathy, empathic concern, and per-
sonal distress, as recognized throughout psy-
chology. Finally, we present experimental re-
sults for three different predictive models, of
which a CNN performs the best.

1 Introduction
Over two decades after the seminal work by Picard
(1997) the quest of Affective Computing, to ease
the interaction with computers by giving them a
sense of how emotions shape our perception and
behavior, is still far from being fulfilled. Undoubt-
edly, major progress has been made in NLP, with
sentiment analysis being one of the most vivid and
productive areas in recent years (Liu, 2015).

However, the vast majority of contributions has
focused on polarity prediction, typically only dis-
tinguishing between positive and negative feeling

* These authors contributed equally to this work. An-
neke Buffone designed and supervised the crowdsourcing
task and the survey described in Section 2, and provided psy-
chological background knowledge. Sven Buechel was re-
sponsible for corpus creation, data analysis, and modeling.
The technical set-up of the crowdsourcing task and the sur-
vey was done jointly by both first authors.

†Work conducted while being at the University of Penn-
sylvania.

or evaluation, usually in social media postings or
product reviews (Rosenthal et al., 2017; Socher
et al., 2013). Only very recently, researchers
started exploring more sophisticated models of hu-
man emotion on a larger scale (Wang et al., 2016;
Abdul-Mageed and Ungar, 2017; Mohammad and
Bravo-Marquez, 2017a; Buechel and Hahn, 2017,
2018a,b). Yet such approaches, often rooted in
psychological theory, also turned out to be more
challenging in respect to annotation and modeling
(Strapparava and Mihalcea, 2007).

Surprisingly, one of the most valuable affec-
tive phenomena for improving human-machine
interaction has received surprisingly little atten-
tion: Empathy. Prior work focused mostly on
spoken dialogue, commonly addressing conversa-
tional agents, psychological interventions, or call
center applications (McQuiggan and Lester, 2007;
Fung et al., 2016; Pérez-Rosas et al., 2017; Alam
et al., 2017).

In contrast, to the best of our knowledge, only
three contributions (Xiao et al., 2012; Gibson
et al., 2015; Khanpour et al., 2017) previously ad-
dressed text-based empathy prediction1 (see Sec-
tion 4 for details). Yet, all of them are limited in
three ways: (a) neither of their corpora are avail-
able leaving the NLP community without shared
data, (b) empathy ratings were provided by others
than the one actually experiencing it which quali-
fies only as a weak form of ground truth, and (c)
their notion of empathy is quite basic, falling short
of current and past theory.

1 Psychological studies commonly distinguish between
state and trait empathy. While the former construct describes
the amount of empathy a person experiences as a direct result
of encountering a given stimulus, the latter refers to how em-
pathetic one is on average and across situations. This studies
exclusively addresses state empathy. For a contribution ad-
dressing trait empathy from an NLP perspective, see Abdul-
Mageed et al. (2017).
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In this contribution we present the first pub-
licly available gold standard for text-based empa-
thy prediction. It is constructed using a novel an-
notation methodology which reliably captures em-
pathy assessments via multi-item scales. The cor-
pus as well as our work as a whole is also unique
in being—to the best of our knowledge—the first
computational approach differentiating multiple
types of empathy, empathic concern and personal
distress, a distinction well recognized throughout
psychology and other disciplines.2

2 Corpus Design and Methodology

Background. Most psychological theories of
empathic states are focused on reactions to neg-
ative rather than positive events. Empathy for pos-
itive events remains less well understood and is
thought to be regulated differently (Morelli et al.,
2015). Thus we focus on empathetic reactions
to need or suffering. Despite the fact that every-
one has an immediate, implicit understanding of
empathy, research has been vastly inconsistent in
its definition and operationalization (Cuff et al.,
2016). There is agreement, however, that there are
multiple forms of empathy (see below). The by far
most widely cited state empathy scale is Batson’s
Empathic Concern – Personal Distress Scale (Bat-
son et al., 1987), henceforth empathy and distress.

Distress is a self-focused, negative affective
state that occurs when one feels upset due to
witnessing an entity’s suffering or need, poten-
tially via “catching” the suffering target’s nega-
tive emotions. Empathy is a warm, tender, and
compassionate feeling for a suffering target. It is
other-focused, retains self-other separation, and is
marked by relatively more positive affect (Batson
and Shaw, 1991; Goetz et al., 2010; Mikulincer
and Shaver, 2010; Sober and Wilson, 1997).

Selection of News Stories. Two research in-
terns (psychology undergraduates) collected a to-
tal of 418 articles from popular online news plat-
forms, selected to likely evoke empathic reactions,
after being briefed on the goal and background of
this study. These articles were then used to elicit
empathic responses in participants.

Acquiring Text and Ratings. The corpus
acquisition was set up as a crowdsourcing task
on MTurk.com pointing to a Qualtrics.com
questionnaire. The participants completed back-

2Data and code are available at: https://github.
com/wwbp/empathic_reactions

ground measures on demographics and personal-
ity, and then proceeded to the main part of the sur-
vey where they read a random selection of five of
the news articles. After reading each of the ar-
ticles, participants were asked to rate their level
of empathy and distress before describing their
thoughts and feelings about it in writing.

In contrast to previous work, this set-up allowed
us to acquire empathy scores of the actual writer
of a text, instead of having to rely on an external
evaluation by third parties (often student assistants
with background in computer science). Arguably,
our proposed annotation methodology yields more
appropriate gold data, yet also leads to more vari-
ance in the relationship between linguistic features
and empathic state ratings. That is because each
rating reflects a single individual’s feelings rather
than a more stable average assessment by multi-
ple raters. To account for this, we use multi-item
scales as is common practice in psychology. I.e.,
participants give ratings for multiple items mea-
suring the same construct (e.g., empathy) which
are then averaged to obtain more reliable results.
As far as we know, this is the first time that multi-
item scales are used in sentiment analysis.3

In our case, participants used Batson’s Em-
pathic Concern – Personal Distress Scale (see
above), i.e, rating 6 items for empathy (e.g., warm,
tender, moved) and 8 items for distress (e.g., trou-
bled, disturbed, alarmed) using a 7-point scale for
each of those (see Appendix for details). After rat-
ing their empathy, participants were asked to share
their feelings about the article as they would with
a friend in a private message or with a group of
friends as a social media post in 300 to 800 char-
acters. Our final gold standard consists of these
messages combined with the numeric ratings for
empathy and distress.

In sum, 403 participants completed the survey.
Median completion time was 32 minutes and each
participant received 4 USD as compensation.

Post-Processing. Each message was manually
reviewed by the authors. Responses which devi-
ated from the task description (e.g., mere copying
from the articles at display) were removed (31 re-
sponses, 155 messages), leading to a total 1860
messages in our final corpus. Gold ratings for em-
pathy and distress were derived by averaging the
respective items of the two multi-item scales.

3 Here, we use sentiment as an umbrella term subsuming
semantic orientation, emotion, as well as highly related con-
cepts such as empathy.
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E D Message

(1) 4.8 3.1 I’m sorry to hear that about Dakota’s parents. Even when you are adult it must be hard to see your parents
splitting up. No one wants that to happen and it’s unfortunate that her parents couldn’t work it out. I hope
they are able to still remain civil around the kids and family. Just because it didn’t work romantically doesn’t
mean it won’t work at all.

(2) 4.0 5.5 Here’s an article about crazed person who murdered two unfortunate women overseas. Life is crazy. I can’t
imagine what the families are going through. Having to go to or being forced into sex work is bad enough,
but for it to end like this is just sad. It feels like there’s no place safe in this world to be a woman sometimes.

(3) 1.0 1.3 I just read an article about some chowder-head who used a hammer and a pick ax to destroy Donald Trump’s
star on the Hollywood walk of fame. Wow, what a great protest. You sure showed him. Good job. Lol, can
you believe this garbage? Who has such a hollow and pathetic life that they don’t have anything better to
do with their time than commit petty vandalism because they dislike some politician? What a dingus.

Table 1: Illustrative examples from our newly created gold standard with ratings for empathy (E) and distress (D).

Figure 1: Scatter plot of the bivariate distribution of
empathy and distress ratings.

3 Corpus Analysis

For a first impression of the language of our new
gold standard, we provide illustrative examples in
Table 1. The participant in Example (1) displays
higher empathy than distress, (2) displays higher
distress than empathy, and (3) shows neither em-
pathic state, but employs sarcasm, colloquialisms
and social-media-style acronyms to express lack
of emotional response to the article. As can be
seen, the language of our corpus is diverse and au-
thentic, featuring many phenomena of natural lan-
guage which render its computational understand-
ing difficult, thus constituting a sound but chal-
lenging gold standard for empathy prediction.

Token Counts. We tokenized the 1860 mes-
sages using NLTK tools (Bird, 2006). In total,
our corpus amounts to 173, 686 tokens. Individual
message length varies between 52 and 198 tokens,
the median being 84. See Appendix for details.

Rating Distribution. Figure 1 displays the
bivariate distribution of empathy and distress rat-

ings. As can be seen both target variables have a
clear linear dependence, yet show only a moderate
Pearson correlation of r=.451, similar to what was
found in prior research (Batson et al., 1987, 1997).
This finding supports that the two scales capture
distinct affective phenomena and underscores the
importance of our decision to describe empathic
states in terms of multiple target variables, con-
stituting a clear advancement over previous work.
Both kinds of ratings show good coverage over the
full range of the scales.

Reliability of Ratings. Since each message
is annotated by only one rater, its author, typical
measures of inter-rater agreement are not appli-
cable. Instead, we compute split-half reliability
(SHR), a standard approach in psychology (Cron-
bach, 1947) which also becomes increasingly pop-
ular in sentiment analysis (Mohammad and Bravo-
Marquez, 2017a; Buechel and Hahn, 2018a). SHR
is computed by splitting the ratings for the indi-
vidual scale items (e.g., warm, tender, etc. for
empathy) of all participants randomly into two
groups, averaging the individual item ratings for
each group and participant, and then measuring
the correlation between both groups. This process
is repeated 100 times with random splits, before
again averaging the results. Doing so for empa-
thy and distress, we find very high4 SHR values of
r=.875 and .924, respectively.

4 Modeling Empathy and Distress

In this section, we provide experimental results for
modeling empathy and distress ratings based on
the participants’ messages (see Section 2). We ex-
amine three different types of models, varying in

4 For a comparison against previously reported SHR val-
ues for different emotional categories, see Mohammad and
Bravo-Marquez (2017b).
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design complexity. Distinct models were trained
for empathy and distress prediction.

First, ten percent of our newly created gold
standard were randomly sampled to be used in
development experiments. Then, the main ex-
periment was conducted using 10-fold cross-
validation (CV), providing each model with iden-
tical train-test splits to increase reliability. The dev
set was excluded for the CV experiment.

Model performance is measured in terms of
Pearson correlation r between predicted values
and the human gold ratings. Thus, we phrase the
prediction of empathy and distress as regression
problems.

The input to our models is based on word
embeddings, namely the publicly available Fast-
Text embeddings which were trained on Common
Crawl (⇡600B tokens) (Bojanowski et al., 2017;
Mikolov et al., 2018).

Ridge. Our first approach is Ridge regression,
an `2-regularized version of linear regression. The
centroid of the word embeddings of the words in a
message is used as features (embedding centroid).
The regularization coefficient ↵ is automatically
chosen from {1, .5, .1, ..., .0001} during training.

FFN. Our second approach is a Feed-Forward
Net with two hidden layers (256 and 128 units, re-
spectively) with ReLU activation. Again, the em-
bedding centroid is used as features.

CNN. The last approach is a Convolutional
Neural Net.5 We use a single convolutional layer
with filter sizes 1 to 3, each with 100 output chan-
nels, followed by an average pooling layer and a
dense layer of 128 units. ReLUs were used for the
convolutional and again for the dense layer.

Both deep learning models were trained using
the Adam optimizer (Kingma and Ba, 2015) with
a fixed learning rate of 10�3 and a batch size of
32. We trained for a maximum of 200 epochs yet
applied early stopping if the performance on the
validation set did not improve for 20 consecutive
epochs. We applied dropout with probabilities of
.2, .5 and .5 on input, dense and pooling layers,
respectively. Moreover `2 regularization of .001
was applied to the weights of conv and dense lay-
ers. Word embeddings were not updated.

The results are provided in Table 2. As can be
seen, all of our models achieve satisfying perfor-
mance figures ranging between r=.379 and .444,

5 Recurrent models did not perform well during develop-
ment due to high sequence length.

Empathy Distress Mean

Ridge .385 .410 .398
FFN .379 .401 .390
CNN .404* .444* .424*

Table 2: Model performance for predicting empathy
and distress in Pearson’s r; with row-wise mean; best
result per column in bold, significant (p < .05) im-
provement over other models marked with ‘*’.

given the assumed difficulty of the task (see Sec-
tion 3). On average over the two target vari-
ables, the CNN performs best, followed by Ridge
and the FFN. While the CNN significantly outper-
forms the other models in every case, the differ-
ences between Ridge and the FFN are not statis-
tically significant for either empathy or distress.6

The improvements of the CNN over the other two
approaches are much more pronounced for dis-
tress than for empathy. Since only the CNN is
able to capture semantic effects from composi-
tion and word order, our data suggest that these
phenomena are more important for predicting dis-
tress, whereas lexical features alone already per-
form quite well for empathy.

Discussion. In comparison to closely related
tasks such as emotion prediction (Mohammad and
Bravo-Marquez, 2017a) our performance figures
for empathy and distress prediction are generally
lower. However, given the small amount of previ-
ous work for the problem at hand, we argue that
our results are actually quite strong. This becomes
obvious, again, in comparison with emotion anal-
ysis where early work achieved correlation values
around r=.3 at most (Strapparava and Mihalcea,
2007). Yet state-of-the-art performance literally
doubled over the last decade (Beck, 2017), in part
due to much larger training sets.

Comparison to the limited body of previous
work in text-based empathy prediction is diffi-
cult for a number of reasons, e.g., differences in
domain, evaluation metric, as well as methodol-
ogy and linguistic level of annotation. Khanpour
et al. (2017) annotate and model empathy in online
health communities on the sentence-level, whereas
the instances in our corpus are much longer and
comprise multiple sentences. In contrast to our
work, they treat empathy prediction as a classifi-
cation problem. Their best performing model, a
CNN-LSTM, achieves an F-score of .78. Gibson

6We use a two-tailed t-test for paired samples based on
the results of the individual CV runs; p < .05.
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et al. (2015) predict therapists’ empathy in motiva-
tional interviews. Each therapy session transcript
received one numeric score. Thus, each predic-
tion is based on much more language data than our
individual messages comprise. Their best model
achieves a Spearman rank correlation of .61 using
n-gram and psycholinguistic features.

Our contribution goes beyond both of these
studies by, first, enriching empathy prediction with
personal distress and, second, by annotating and
modeling the empathic state actually felt by the
writer, instead of relying on external assessments.

5 Conclusion

This contribution was the first to attempt empa-
thy prediction in terms of multiple target variables,
empathic concern and personal distress. We pro-
posed a novel annotation methodology capturing
empathic states actually felt by the author of a
statement, instead of relying on third-party assess-
ments. To ensure high reliability in this single-
rating setting, we employ multi-item scales in line
with best practices in psychology. Hereby we cre-
ate the first publicly available gold standard for
empathy prediction in written language, our sur-
vey being set-up and supervised by an expert psy-
chologist. Our analysis shows that the data set
excels with high rating reliability and an authen-
tic and diverse language, rich of challenging phe-
nomena such as sarcasm. We provide experimen-
tal results for three different predictive models, our
CNN turning out superior.
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A Supplemental Material

Details on Stimulus and Instructions
Before being used in our survey, the selected news
articles were categorized by the research interns
who gathered them in terms of their intensity of
suffering (major or minor), cause of suffering (po-
litical, human, nature or other), patient of suffer-
ing (humans, animals, environment, or other) and
scale of suffering (individual or mass). Research
interns also provided a short list of key words for
each article. This additional information was gath-
ered to examine the influence of these factors on
empathy elicitation and modeling performance in
later studies.

At the beginning of the survey participants com-
pleted background items covering general demo-
graphics (including age, gender, and ethnicity), the
most commonly used trait empathy scale, the In-
terpersonal Reactivity Index (Davis, 1980), a brief
assessment of the Big 5 personality traits (Gosling
et al., 2003), life satisfaction (Diener et al., 1985),
as well as a brief measure of generalized trust.

After reading each of the articles, participants
rated their level of empathic concern and per-
sonal distress using multi-item scales. Figure 2

shows a cropped screenshot of the survey hosted
on Qualtrics.com. The first six items (warm,
tender, sympathetic, softhearted, moved, and com-
passionate) refer to empathy. The last eight items
(worried, upset, troubled, perturbed, grieved, dis-
turbed, alarmed, and distressed) refer to distress.

Figure 2: Multi-item scales for empathic concern and
personal distress.

After completing the rating items, participants
were instructed to describe their reactions in writ-
ing as follows: Now that you have read this article,
please write a message to a friend or friends about
your feelings and thoughts regarding the article
you just read. This could be a private message to a
friend or something you would post on social me-
dia. Please do not identify your intended friend(s)
— just write your thoughts about the article as if
you were communicating with them. Please use
between 300 and 800 characters.

Further Corpus Analyses

The word clouds in Figure 3 and Figure 4 show 1-
grams of our corpus which correlate significantly
(Benjamini-Hochberg corrected p < .05) with
high empathy and high distress ratings, respec-
tively. In the word clouds, larger size indicates
higher correlation and the color scale, gray-blue-
red, indicates word frequency, dark red being most
prevalent. The Differential Language Analysis
Toolkit (Schwartz et al., 2017) was utilized for this
analysis. As can be seen, the word clouds display
high face-validity, giving further evidence for the
soundness of our acquisition methodology.
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Figure 3: Word cloud of high empathy 1-grams.

Figure 4: Word cloud of high distress 1-grams.

Figure 5 displays the distribution of the mes-
sage length of our corpus in tokens. As can be seen
the majority of messages contain between 60 and
100 tokens. Yet outliers go up to almost 200. The
introduction of a character cap for the writing task
proved successful in comparison to a pilot study
where this measure has not been in place. In the
latter case, the maximum number of tokens was
nearly twice as high due to even stronger outliers.

Figure 5: Histogram of message length in our corpus.
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Abstract

Human language has evolved towards newer
forms of communication such as social me-
dia, where emojis (i.e., ideograms bearing a
visual meaning) play a key role. While there
is an increasing body of work aimed at the
computational modeling of emoji semantics,
there is currently little understanding about
what makes a computational model represent
or predict a given emoji in a certain way. In
this paper we propose a label-wise attention
mechanism with which we attempt to better
understand the nuances underlying emoji pre-
diction. In addition to advantages in terms
of interpretability, we show that our proposed
architecture improves over standard baselines
in emoji prediction, and does particularly well
when predicting infrequent emojis.

1 Introduction

Communication in social media differs from more
standard linguistic interactions across a wide
range of dimensions. Immediacy, short text
length, the use of pseudowords like #hashtags or
@mentions, and even metadata such as user in-
formation or geolocalization are essential compo-
nents of social media messages. In addition, the
use of emojis, small ideograms depicting objects,
people and scenes (Cappallo et al., 2015), are be-
coming increasingly important for fully modeling
the underlying semantics of a social media mes-
sage, be it a product review, a tweet or an Insta-
gram post. Emojis are the evolution of character-
based emoticons (Pavalanathan and Eisenstein,
2015), and are extensively used, not only as senti-
ment carriers or boosters, but more importantly, to
express ideas about a myriad of topics, e.g., mood
( ), food ( ), sports ( ) or scenery ( ).

Emoji modeling and prediction is, therefore,
an important problem towards the end goal of
properly capturing the intended meaning of a so-

cial media message. In fact, emoji prediction,
i.e., given a (usually short) message, predict its
most likely associated emoji(s), may help to im-
prove different NLP tasks (Novak et al., 2015),
such as information retrieval, generation of emoji-
enriched social media content or suggestion of
emojis when writing text messages or sharing pic-
tures online. It has furthermore proven to be useful
for sentiment analysis, emotion recognition and
irony detection (Felbo et al., 2017). The prob-
lem of emoji prediction, albeit recent, has already
seen important developments. For example, Bar-
bieri et al. (2017) describe an LSTM model which
outperforms a logistic regression baseline based
on word vector averaging, and even human judge-
ment in some scenarios.

The above contributions, in addition to emoji
similarity datasets (Barbieri et al., 2016; Wijer-
atne et al., 2017) or emoji sentiment lexicons (No-
vak et al., 2015; Wijeratne et al., 2016; Kimura
and Katsurai, 2017; Rodrigues et al., 2018), have
paved the way for better understanding the seman-
tics of emojis. However, our understanding of
what exactly the neural models for emoji predic-
tion are capturing is currently very limited. What
is a model prioritizing when associating a message
with, for example, positive ( ), negative ( ) or
patriotic ( ) intents? A natural way of assessing
this would be to implement an attention mecha-
nism over the hidden states of LSTM layers. At-
tentive architectures in NLP, in fact, have recently
received substantial interest, mostly for sequence-
to-sequence models (which are useful for machine
translation, summarization or language modeling),
and a myriad of modifications have been proposed,
including additive (Bahdanau et al., 2015), multi-
plicative (Luong et al., 2015) or self (Lin et al.,
2017) attention mechanisms.

However, standard attention mechanisms only
tell us which text fragments are considered impor-
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Figure 1: A classic attention network (top), and our attentive label-wise network (bottom), with a specific
attention module for each label.

tant for the overall prediction distribution. While
emoji prediction has predominantly been treated
as a multi-class classification problem in the lit-
erature, it would be more informative to analyze
which text fragments are considered important for
each individual emoji. With this motivation in
mind, in this paper we put forward a label-wise
mechanism that operates over each label during
training. The resulting architecture intuitively be-
haves like a batch of binary mini-classifiers, which
make decisions over one single emoji at a time, but
without the computational burden and risk of over-
fitting associated with learning separate LSTM-
based classifiers for each emoji.

Our contribution in this paper is twofold. First,
we use the proposed label-wise mechanism to an-
alyze the behavior of neural emoji classifiers, ex-
ploiting the attention weights to uncover and in-
terpret emoji usages. Second, we experimentally
compare the effect of the label-wise mechanism
on the performance of an emoji classifier. We ob-
served a performance improvement over compet-
itive baselines such as FastText (FT) (Joulin
et al., 2017) and Deepmoji (Felbo et al., 2017),
which is most noticeable in the case of infrequent
emojis. This suggests that an attentive mecha-
nism can be leveraged to make neural architec-
tures more sensitive to instances of underrepre-
sented classes.

2 Methodology

Our base architecture is the Deepmoji model
(Felbo et al., 2017), which is based on two stacked
word-based bi-directional LSTM recurrent neural

networks with skip connections between the first
and the second LSTM. The model also includes an
attention module to increase its sensitivity to indi-
vidual words during prediction. In general, atten-
tion mechanisms allow the model to focus on spe-
cific words of the input (Yang et al., 2016), instead
of having to memorize all the important features in
a fixed-length vector. The main architectural dif-
ference with respect to the typical attention is il-
lustrated in Figure 1.

In Felbo et al. (2017), attention is computed as
follows:

zi = wahi + ba

↵i =
ezi

PN
j=1 ezj

s =
NX

j=1

↵jhj

Here hi 2 R
d is the hidden representation of the

LSTM corresponding to the ith word, with N the
total number of words in the sentence. The weight
vector wa 2 R

d and bias term ba 2 R map this
hidden representation to a value that reflects the
importance of this state for the considered clas-
sification problem. The values z1, ..., zn are then
normalized using a softmax function, yielding the
attention weights ↵i. The sentence representation
s is defined as a weighted average of the vectors
hi. The final prediction distribution is then defined
as follows:

�l = wf,ls + bf,l
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pl =
e�l

PL
r=1 e�r

where wf,l 2 R
d and bf,l define a label-specific

linear transformation, with �l reflecting our confi-
dence in the lth label and L is the total number of
labels. The confidence scores �l are then normal-
ized to probabilities using another softmax oper-
ation. However, while the above design has con-
tributed to better emoji prediction, in our case we
are interested in understanding the contribution of
the words of a sentence for each label (i.e., emoji),
and not in the whole distribution of the target la-
bels. To this end, we propose a label-wise atten-
tion mechanism. Specifically, we apply the same
type of attention, but repeating it |L| (number of
labels) times, where each attention module is re-
served for a specific label l:

zi,l = wa,lhi + ba,l

↵i,l =
ezi,l

PN
j=1 ezj,l

sl =
NX

j=1

↵j,lhj

�l = wf,lsl + bf,l

pl =
e�l

PL
r=1 e�r

3 Evaluation

This section describes the main experiment w.r.t
the performance of our proposed attention mech-
anism, in comparison with existing emoji predic-
tion systems. We use the data made available in
the context of the SemEval 2018 Shared Task on
Emoji Prediction (Barbieri et al., 2018). Given a
tweet, the task consists of predicting an associated
emoji from a predefined set of 20 emoji labels.
We evaluate our model on the English split of the
official task dataset. We also show results from
additional experiments in which the label space
ranged from 20 to 200 emojis. These extended
experiments are performed on a corpus of around
100M tweets geolocalized in the United States and
posted between October 2015 and May 2018.

Models. In order to put our proposed label-
wise attention mechanism in context, we com-
pare its performance with a set of baselines: (1)
FastText (Joulin et al., 2017) (FT), which was
the official baseline in the SemEval task; (2) 2

Lab Syst F1 A@1 A@5 CE

20*

FastText 30.97 42.57 72.45 4.56
2-BiLSTM 33.52 45.76 75.54 3.88
2-BiLSTMa 34.11 46.11 75.68 3.86
2-BiLSTMl 33.51 45.94 76.02 3.82

50

FastText 18.04 22.33 48.13 14.27
2-BiLSTM 19.07 25.35 53.38 9.37
2-BiLSTMa 19.83 25.52 53.51 9.35
2-BiLSTMl 20.08 25.64 53.77 9.26

100

FastText 16.25 20.29 42.65 26.04
2-BiLSTM 17.44 23.01 47.46 15.24
2-BiLSTMa 17.56 22.77 46.93 15.51
2-BiLSTMl 17.92 22.80 47.41 15.17

200

FastText 13.31 18.80 38.99 51.06
2-BiLSTM 16.16 21.05 42.64 24.68
2-BiLSTMa 16.30 21.13 42.50 24.60
2-BiLSTMl 16.91 21.39 43.35 23.73

Table 1: Experimental results of the two baselines,
as well as single and label-wise attention modifi-
cations to the “vanilla” 2-BiLSTM model.

stacked Bi-LSTMs (2-BiLSTMs) without atten-
tion; and (3) 2 stacked Bi-LSTMs with standard
attention (2-BiLSTMsa) (Felbo et al., 2017). Fi-
nally, we denote as 2-BiLSTMsl our proposed
label-wise attentive Bi-LSTM architecture.

Results. Table 1 shows the results of our model
and the baselines in the emoji prediction task for
the different evaluation splits. The evaluation met-
rics used are: F1, Accuracy@k (A@k, where k 2
{1, 5}), and Coverage Error (CE1) (Tsoumakas
et al., 2009). We note that the latter metric is not
normally used in emoji prediction settings. How-
ever, with many emojis being “near synonyms” (in
the sense of being often used almost interchange-
ably), it seems natural to evaluate the performance
of an emoji prediction system in terms of how far
we would need to go through the predicted emo-
jis to recover the true label. The results show that
our proposed 2-BiLSTMsl method outperforms
all baselines for F1 in three out of four settings,
and for CE in all of them. In the following section
we shed light on the reasons behind this perfor-
mance, and we try to understand how these pre-
dictions were made.

1CE is computed as the average number of labels that need
to be in the predictions for all true labels to be predicted.
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Figure 2: Difference in rank distributions. The
x-axis represents emoji labels, ranked from most
to least frequent. Lower scores indicate a higher
average rank predicted by our proposed label-wise
attention mechanism.

4 Analysis

By inspecting the predictions of our model, we
found that the label-wise attention mechanism
tends to be less heavily biased towards the most
frequent emojis. This is reflected in the lower
coverage error results in all settings, and becomes
more noticeable as the number of labels grows.
We verified this by computing the average differ-
ence between ranked predictions of the two atten-
tive models in the 200-label setting (Figure 2). We
can observe a sudden switch at more or less the
median emoji, after which the label-wise attention
model becomes increasingly accurate (relative to
the standard attention model). This can be ex-
plained by the fact that infrequent emojis tend to
be more situational (used in specific contexts and
leaving less room for ambiguity or interchange-
ability), which the label-wise attention mechanism
can take advantage of, as it explicitly links emojis
with highly informative words. Let us illustrate
this claim with a case in which the label-wise at-
tention model predicts the correct emoji, unlike its
single-attention counterpart:

a friendship is built over time , but sister-
hood is given automatically. Gold:

For the above example2, the predictions of the sin-
gle attention model were all linked to the general
meaning of the message, that is love and friend-
ship, leading it to predict associated emojis ( ,

and ), failing to capture the most relevant bit
of information. On the other hand, our proposed
model “picks on” the word sisterhood, and with

2The highlights show the ↵l attention weights of .

Single Att. Pred: 0.709, 0.126, 0.017

praying we have a snow day tomorrow
Multi Att. Pred: 0.510, 0.153, 0.027

praying we have a snow day tomorrow ( )
praying we have a snow day tomorrow ( )
praying we have a snow day tomorrow ( )

Figure 3: Attention weights ↵ and ↵l of single and
label-wise attentive models. Gold: .

the added context of the surrounding words, ranks
the gold label3 in 4th position, which would be a
true positive as per A@5.

Let us explore what we argue are interesting
cases of emoji usage (ranging from highly explicit
to figurative or situtational intent). Figure 3 shows
how the word (praying) and emojis such as and

are strongly correlated. In addition, the bond
between the word snow and the emoji is also
indisputable. However, a perhaps more surpris-
ing example is displayed in Figure 4, which is a
negative example. Here, the emoji was pre-
dicted with rank 1, and we see it being strongly
associated with the ordinal second, suggesting that
the model assumed this was some kind of “ticked
enumeration” of completed tasks, which is indeed
regular practice in Twitter. Finally, we found it re-
markable that the ambiguous nature of the word
boarding is also reflected in two different emojis
being predicted with high probability ( and ),
each of them showcasing one of the word’s senses.

As an additional exploratory analysis, we com-
puted statistics on those words with the highest av-
erage attention weights associated with one single
emoji. One interesting example is the emoji,
which shows two clear usage patterns: one lit-
eral (a tree) and one figurative (christmas and hol-
idays). Finally, as a final (and perhaps thought-
provoking) finding, the highest attention weights
associated to the emoji were given to the words
game, boys and football, in that order. In other
words, the model relies more on the word boys
than on the actual description of the emoji. This
is in line with a previous study that showed how
the current usage of emojis in Twitter is in some
cases associated with gender stereotypes (Barbieri
and Camacho-Collados, 2018).

3Which is among the 10% most infrequent emojis in the
dataset.
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Single Att. Pred: 0.565, 0.260, 0.019

second day snowboarding ever and i decided to try night boarding ... what an experience !
Multi Att. Pred: 0.156, 0.131, 0.108

second day snowboarding ever and i decided to try night boarding ... what an experience ! ( )
second day snowboarding ever and i decided to try night boarding ... what an experience ! ( )
second day snowboarding ever and i decided to try night boarding ... what an experience ! ( )

Figure 4: Attention weights ↵ and ↵l of single and label-wise attentive models. Gold: .

5 Conclusion

In this paper we have presented a neural archi-
tecture for emoji prediction based on a label-wise
attention mechanism, which, in addition to im-
proving performance, provides a degree of inter-
pretability about how different features are used
for predictions, a topic of increasing interest in
NLP (Linzen et al., 2016; Palangi et al., 2017). As
we experimented with sets of emoji labels of dif-
ferent sizes, our proposed label-wise attention ar-
chitecture proved especially well-suited for emojis
which were infrequent in the training data, making
the system less biased towards the most frequent.
We see this as a first step to improve the robustness
of recurrent neural networks in datasets with un-
balanced distributions, as they were shown not to
perform better than well-tuned SVMs on the emoji
predicion task (Çöltekin and Rama, 2018).

As for future work, we plan to apply our label-
wise attention mechanism to understand other in-
teresting linguistic properties of human-generated
text in social media, and other multi-class or multi-
label classification problems.

Finally, code to reproduce our experiments
and additional examples of label-wise atten-
tion weights from input tweets can be down-
loaded at https://fvancesco.github.
io/label_wise_attention/.
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Abstract
Recent advances in Neural Machine Transla-
tion (NMT) show that adding syntactic infor-
mation to NMT systems can improve the qual-
ity of their translations. Most existing work
utilizes some specific types of linguistically-
inspired tree structures, like constituency and
dependency parse trees. This is often done via
a standard RNN decoder that operates on a lin-
earized target tree structure. However, it is an
open question of what specific linguistic for-
malism, if any, is the best structural represen-
tation for NMT. In this paper, we (1) propose
an NMT model that can naturally generate the
topology of an arbitrary tree structure on the
target side, and (2) experiment with various
target tree structures. Our experiments show
the surprising result that our model delivers the
best improvements with balanced binary trees
constructed without any linguistic knowledge;
this model outperforms standard seq2seq mod-
els by up to 2.1 BLEU points, and other meth-
ods for incorporating target-side syntax by up
to 0.7 BLEU.1

1 Introduction
Most NMT methods use sequence-to-sequence
(seq2seq) models, taking in a sequence of
source words and generating a sequence of tar-
get words (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2015).
While seq2seq models can implicitly discover syn-
tactic properties of the source language (Shi et al.,
2016), they do not explicitly model and leverage
such information. Motivated by the success of
adding syntactic information to Statistical Machine
Translation (SMT) (Galley et al., 2004; Menezes
and Quirk, 2007; Galley et al., 2006), recent works
have established that explicitly leveraging syn-
tactic information can improve NMT quality, ei-

1Our code is available at https://github.com/
cindyxinyiwang/TrDec_pytorch.

ther through syntactic encoders (Li et al., 2017;
Eriguchi et al., 2016), multi-task learning objec-
tives (Chen et al., 2017; Eriguchi et al., 2017), or
direct addition of syntactic tokens to the target se-
quence (Nadejde et al., 2017; Aharoni and Gold-
berg, 2017). However, these syntax-aware mod-
els only employ the standard decoding process of
seq2seq models, i.e. generating one target word at a
time. One exception is Wu et al. (2017), which uti-
lizes two RNNs for generating target dependency
trees. Nevertheless, Wu et al. (2017) is specifi-
cally designed for dependency tree structures and
is not trivially applicable to other varieties of trees
such as phrase-structure trees, which have been
used more widely in other works on syntax-based
machine translation. One potential reason for the
dearth of work on syntactic decoders is that such
parse tree structures are not friendly to recurrent
neural networks (RNNs).

In this paper, we propose TrDec, a method for
incorporating tree structures in NMT. TrDec simul-
taneously generates a target-side tree topology and
a translation, using the partially-generated tree to
guide the translation process (§ 2). TrDec employs
two RNNs: a rule RNN, which tracks the topology
of the tree based on rules defined by a Context Free
Grammar (CFG), and a word RNN, which tracks
words at the leaves of the tree (§ 3). This model
is similar to neural models of tree-structured data
from syntactic and semantic parsing (Dyer et al.,
2016; Alvarez-Melis and Jaakkola, 2017; Yin and
Neubig, 2017), but with the addition of the word
RNN, which is especially important for MT where
fluency of transitions over the words is critical.

TrDec can generate any tree structure that can
be represented by a CFG. These structures include
linguistically-motivated syntactic tree representa-
tions, e.g. constituent parse trees, as well as syntax-
free tree representations, e.g. balanced binary trees
(§ 4). This flexibility of TrDec allows us to com-
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Figure 1: An example generation process of TrDec. Left: A target parse tree. The green squares represent preterminal
nodes. Right: How our RNNs generate the parse tree on the left. The blue cells represent the activities of the rule RNN, while
the grey cells represent the activities of the word RNN. heopi and heosi are the end-of-phrase and end-of-sentence tokens. Best
viewed in color.

pare and contrast different structural representa-
tions for NMT.

In our experiments (§ 5), we evaluate TrDec us-
ing both syntax-driven and syntax-free tree repre-
sentations. We benchmark TrDec on three tasks:
Japanese-English and German-English translation
with medium-sized datasets, and Oromo-English
translation with an extremely small dataset. Our
findings are surprising – TrDec performs well, but
it performs the best with balanced binary trees con-
structed without any linguistic guidance.

2 Generation Process

TrDec simultaneously generates the target se-
quence and its corresponding tree structure. We
first discuss the high-level generation process using
an example, before describing the prediction model
(§ 3) and the types of trees used by TrDec (§ 4).

Fig. 1 illustrates the generation process of
the sentence “_The _cat _eat s _fi sh _.”,
where the sentence is split into subword units, de-
limited by the underscore “_” (Sennrich et al.,
2016). The example uses a syntactic parse tree
as the intermediate tree representation, but the pro-
cess of generating with other tree representations,
e.g. syntax-free trees, follows the same procedure.

Trees used in TrDec have two types of nodes:
terminal nodes, i.e. the leaf nodes that represent
subword units; and nonterminal nodes, i.e. the non-
leaf nodes that represent a span of subwords. Ad-
ditionally, we define a preterminal node to be a
nonterminal node whose children are all terminal
nodes. In Fig. 1 Left, the green squares represent
preterminal nodes.

TrDec generates a tree in a top-down, left-to-
right order. The generation process is guided by
a CFG over target trees, which is constructed by
taking all production rules extracted from the trees

of all sentences in the training corpus. Specifically,
a rule RNN first generates the top of the tree struc-
ture, and continues until a preterminal is reached.
Then, a word RNN fills out the words under the
preterminal. The model switches back to the rule
RNN after the word RNN finishes. This process is
illustrated in Fig. 1 Right. Details are as follows:
Step 1. The source sentence is encoded by a se-
quential RNN encoder, producing the hidden states.
Step 2. The generation starts with a derivation tree
with only a Root node. A rule RNN, initialized by
the last encoder hidden state computes the prob-
ability distribution over all CFG rules whose left
hand side (LHS) is Root, and selects a rule to apply
to the derivation. In our example, the rule RNN
selects ROOT 7! S.
Step 3. The rule RNN applies production rules to
the derivation in a top-down, left-to-right order, ex-
panding the current opening nonterminal using a
CFG rule whose LHS is the opening nonterminal.
In the next two steps, TrDec applies the rules S 7!
NP VP PUNC and NP 7! pre to the opening nonter-
minals S and NP, respectively. Note that after these
two steps a preterminal node pre is created.
Step 4a. Upon seeing a preterminal node as the
current opening nonterminal, TrDec switches to
using a word RNN, initialized by the last state of
the encoder, to populate this empty preterminal
with phrase tokens, similar to a seq2seq decoder.
For example the subword units _The and _cat are
generated by the word RNN, ending with a special
end-of-phrase token, i.e. heopi.
Step 4b. While the word RNN generates subword
units, the rule RNN also updates its own hidden
states, as illustrated by the blue cells in Fig. 1 Right.
Step 5. After the word RNN generates heopi,
TrDec switches back to the rule RNN to continue
generating the derivation from where the tree left
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off. In our example, this next stage is the opening
nonterminal node VP. From here, TrDec chooses
the rule VP 7! pre NP.

TrDec repeats the process above, intermingling
the rule RNN and the word RNN as described,
and halts when the rule RNN generates the end-of-
sentence token heosi, completing the derivation.

3 Model
We now describe the computations during the gen-
eration process discussed in § 2. At first, a source
sentence x, which is split into subwords, is encoded
using a standard bi-directional Long Short-Term
Memory (LSTM) network (Hochreiter and Schmid-
huber, 1997). This bi-directional LSTM outputs
a set of hidden states, which TrDec will reference
using an attention function (Bahdanau et al., 2015).

As discussed, TrDec uses two RNNs to generate
a target parse tree. In our work, both of these RNNs
use LSTMs, but with different parameters.

Rule RNN. At any time step t in the rule RNN,
there are two possible actions. If at the previous
time step t � 1, TrDec generated a CFG rule, then
the state stree

t is computed by:

stree
t = LSTM([yCFG

t�1 ; ct�1; s
tree
p ; sword

t ], stree
t�1)

where yCFG
t�1 is the embedding of the CFG rule at

time step t�1; ct�1 is the context vector computed
by attention at stree

t�1, i.e. input feeding (Luong et al.,
2015); stree

p is the hidden state at the time step that
generates the parent of the current node in the par-
tial tree; sword

t is the hidden state of the most recent
time step before t that generated a subword (note
that sword

t comes from the word RNN, discussed
below); and [·] denotes a concatenation.

Meanwhile, if at the previous time step t � 1,
TrDec did not generate a CFG rule, then the update
at time step t must come from a subword being
generated by the word RNN. In that case, we also
update the rule RNN similarly by replacing the
embedding of the CFG rule with the embedding of
the subword.

Word RNN. At any time step t, if the word RNN
is invoked, its hidden state sword

t is:

sword
t = LSTM([stree

p ;wt�1; ct�1], s
word
t�1 ),

where stree
p is the hidden state of rule RNN that

generated the CFG rule above the current terminal;
wt�1 is the embedding of the word generated at
time step t � 1; and ct�1 is the attention context
computed at the previous word RNN time step t�1.

Figure 2: An example of four tree structures (Details of preter-
minals and subword units omitted for illustration purpose).

Figure 3: Conversion of a dependency tree for TrDec. Left:
original dependency tree. Right: after conversion.

Softmax. At any step t, our softmax logits are
W · tanh [stree

t , sword
t ], where W varies depending

on whether a rule or a subword unit is needed.

4 Tree Structures

Unlike prior work on syntactic decoders designed
for utilizing a specific type of syntactic informa-
tion (Wu et al., 2017), TrDec is a flexible NMT
model that can utilize any tree structure. Here we
consider two categories of tree structures:

Syntactic Trees are generated using a third-
party parser, such as Berkeley parser (Petrov et al.,
2006; Petrov and Klein, 2007). Fig. 2 Top Left
illustrates an example constituency parse tree. We
also consider a variation of standard constituency
parse trees where all of their nonterminal tags
are replaced by a null tag, which is visualized
in Fig. 2 Top Right.
In addition to constituency parse trees, TrDec can
also utilize dependency parse trees via a simple
procedure that converts a dependency tree into a
constituency tree. Specifically, this procedure cre-
ates a parent node with null tag for each word, and
then attaches each word to the parent node of its
head word while preserving the word order. An
example of this procedure is provided in Fig. 3.
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Balanced Binary Trees are syntax-free trees
constructed without any linguistic guidance. We
use two slightly different versions of binary trees.
Version 1 (Fig. 2 Bottom Left) is constructed by
recursively splitting the target sentence in half and
creating left and right subtrees from the left and
right halves of the sentence respectively. Version
2 (Fig. 2 Bottom Right), is constructed by apply-
ing Version 1 on a list of nodes where consecutive
words are combined together. All tree nodes in both
versions have the null tag. We discuss these con-
struction processes in more detail in Appendix A.1.

In the experiments detailed later, we evaluated
TrDec with four different settings of tree structures:
1) the fully syntactic constituency parse trees; 2)
constituency parse trees with null tags; 3) depen-
dency parse trees; 4) a concatenation of both ver-
sion 1 and version 2 of the binary trees, (which
effectively doubles the amount of the training data
and leads to slight increases in accuracy).

5 Experiments

Datasets. We evaluate TrDec on three datasets:
1) the KFTT (ja-en) dataset (Neubig, 2011),
which consists of Japanese-English Wikipedia arti-
cles; 2) the IWSLT2016 German-English (de-en)
dataset (Cettolo et al., 2016), which consists of
TED Talks transcriptions; and 3) the LORELEI
Oromo-English (or-en) dataset2, which largely con-
sists of texts from the Bible. Details are in Tab. 1.
English sentences are parsed using Ckylark (Oda
et al., 2015) for the constituency parse trees, and
Stanford Parser (de Marneffe et al., 2006; Chen and
Manning, 2014) for the dependency parse trees. We
use byte-pair encoding (Sennrich et al., 2016) with
8K merge operations on ja-en, 4K merge operations
on or-en, and 24K merge operations on de-en.

Dataset Train Dev Test

ja-en 405K 1166 1160
de-en 200K 1024 1333
or-en 6.5K 358 359

Table 1: # sentences in each dataset.

Baselines. We compare TrDec against three base-
lines: 1) seq2seq: the standard seq2seq model
with attention; 2) CCG: a syntax-aware transla-
tion model that interleaves Combinatory Categorial
Grammar (CCG) tags with words on the target side

2LDC2017E29

of a seq2seq model (Nadejde et al., 2017); 3) CCG-
null: the same model with CCG, but all syntactic
tags are replaced by a null tag; and 4) LIN: a stan-
dard seq2seq model that generates linearized parse
trees on the target side (Aharoni and Goldberg,
2017).

Results. Tab. 2 presents the performance of our
model and the three baselines. For our model, we
report the performance of TrDec-con, TrDec-con-
null, TrDec-dep, and TrDec-binary (settings 1,2,3,4
in § 4). On the low-resource or-en dataset, we ob-
serve a large variance with different random seeds,
so we run each model with 6 different seeds, and re-
port the mean and standard deviation of these runs.
TrDec-con-null and TrDec-con achieved compa-
rable results, indicating that the syntactic labels
have neither a large positive nor negative impact on
TrDec. For ja-en and or-en, syntax-free TrDec out-
performs all baselines. On de-en, TrDec loses to
CCG-null, but the difference is not statistically sig-
nificant (p > 0.1).

Model ja-en de-en or-en
(mean ± std)

seq2seq 21.10 32.26 10.90 ± 0.57
CCG 22.44 32.84 12.55 ± 0.60
CCG-null 21.31 33.10 11.96 ± 0.57
LIN 21.55 31.79 12.66 ± 0.61

TrDec-con 21.59 31.93 11.43 ± 0.58
TrDec-con-null 22.72 31.21 11.35 ± 0.55
TrDec-dep 21.41 31.23 8.40 ± 0.5
TrDec-binary 23.14

⇤ 32.65 13.10
⇤⇤

± 0.61

Table 2: BLEU scores of TrDec and other baselines. Sta-
tistical significance is indicated with ⇤ (p < 0.05) and ⇤⇤

(p < 0.001), compared with the best baseline.

Length Analysis. We performed a variety of
analyses to elucidate the differences between the
translations of different models, and the most con-
clusive results were through analysis based on the
length of the translations. First, we categorize the
ja-en test set into buckets by length of the refer-
ence sentences, and compare the models for each
length category. Fig. 4 shows the gains in BLEU
score over seq2seq for the tree-based models. Since
TrDec-con outperforms TrDec-dep for all datasets,
we only focus on TrDec-con for analyzing TrDec’s
performance with syntactic trees. The relative per-
formance of CCG decreases on long sentences.
However, TrDec, with both parse trees and syntax-
free binary trees, delivers more improvement on
longer sentences. This indicates that TrDec is bet-
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ter at capturing long-term dependencies during de-
coding. Surprisingly, TrDec-binary, which does
not utilize any linguistic information, outperforms
TrDec-con for all sentence length categories.

Second, Fig. 5 shows a histogram of translations
by the length difference between the generated out-
put and the reference. This provides an explanation
of the difficulty of using parse trees. Ideally, this
distribution will be focused around zero, indicat-
ing that the MT system is generating translations
about the same length as the reference. However,
the distribution of TrDec-con is more spread out
than TrDec-binary, which indicates that it is more
difficult for TrDec-con to generate sentences with
appropriate target length. This is probably because
constituency parse trees of sentences with similar
number of words can have very different depth, and
thus larger variance in the number of generation
steps, likely making it difficult for the MT model to
plan the sentence structure a-prior before actually
generating the child sentences.
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Figure 4: The gains of BLEU score over seq2seq.
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Figure 5: Distribution of length difference from reference.

6 Conclusion
We propose TrDec, a novel tree-based decoder for
NMT, that generates translations along with the tar-
get side tree topology. We evaluate TrDec on both
linguistically-inspired parse trees and synthetic,
syntax-free binary trees. Our model, when used
with synthetic balanced binary trees, outperforms
CCG, the existing state-of-the-art in incorporating
syntax in NMT models.

The interesting result that syntax-free trees out-
perform their syntax-driven counterparts elicits a

natural question for future work: how do we bet-
ter model syntactic structure in these models? It
would also be interesting to study the effect of us-
ing source-side syntax together with the target-side
syntax supported by TrDec.
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Abstract

Neural machine translation (NMT) models are
usually trained with the word-level loss using
the teacher forcing algorithm, which not only
evaluates the translation improperly but also
suffers from exposure bias. Sequence-level
training under the reinforcement framework
can mitigate the problems of the word-level
loss, but its performance is unstable due to the
high variance of the gradient estimation. On
these grounds, we present a method with a dif-
ferentiable sequence-level training objective
based on probabilistic n-gram matching which
can avoid the reinforcement framework. In ad-
dition, this method performs greedy search in
the training which uses the predicted words
as context just as at inference to alleviate the
problem of exposure bias. Experiment results
on the NIST Chinese-to-English translation
tasks show that our method significantly out-
performs the reinforcement-based algorithms
and achieves an improvement of 1.5 BLEU
points on average over a strong baseline sys-
tem.

1 Introduction

Neural machine translation (NMT) (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2014) has now
achieved impressive performance (Wu et al., 2016;
Gehring et al., 2017; Vaswani et al., 2017; Hassan
et al., 2018; Chen et al., 2018; Lample et al., 2018)
and draws more attention. NMT models are built
on the encoder-decoder framework where the en-
coder network encodes the source sentence to dis-
tributed representations and the decoder network
reconstructs the target sentence form the represen-
tations word by word.

Currently, NMT models are usually trained with
the word-level loss (i.e., cross-entropy) under the
teacher forcing algorithm (Williams and Zipser,

*Corresponding Author

1989), which forces the model to generate trans-
lation strictly matching the ground-truth at the
word level. However, in practice it is impossible
to generate translation totally the same as ground
truth. Once different target words are generated,
the word-level loss cannot evaluate the translation
properly, usually under-estimating the translation.
In addition, the teacher forcing algorithm suffers
from the exposure bias (Ranzato et al., 2015) as it
uses different inputs at training and inference, that
is ground-truth words for the training and previ-
ously predicted words for the inference. Kim and
Rush (2016) proposed a method of sequence-level
knowledge distillation, which use teacher outputs
to direct the training of student model, but the stu-
dent model still have no access to its own pre-
dicted words. Scheduled sampling(SS) (Bengio
et al., 2015; Venkatraman et al., 2015) attempts to
alleviate the exposure bias problem through mix-
ing ground-truth words and previously predicted
words as inputs during training. However, the se-
quence generated by SS may not be aligned with
the target sequence, which is inconsistent with the
word-level loss.

In contrast, sequence-level objectives, such as
BLEU (Papineni et al., 2002), GLEU (Wu et al.,
2016), TER (Snover et al., 2006), and NIST (Dod-
dington, 2002), evaluate translation at the sen-
tence or n-gram level and allow for greater flex-
ibility, and thus can mitigate the above problems
of the word-level loss. However, due to the non-
differentiable of sequence-level objectives, pre-
vious works on sequence-level training (Ranzato
et al., 2015; Shen et al., 2016; Bahdanau et al.,
2016; Wu et al., 2016; He et al., 2016; Wu et al.,
2017; Yang et al., 2017) mainly rely on reinforce-
ment learning algorithms (Williams, 1992; Sutton
et al., 2000) to find an unbiased gradient estima-
tor for the gradient update. Sparse rewards in this
situation often cause the high variance of gradient
estimation, which consequently leads to unstable
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training and limited improvements.
Lamb et al. (2016); Gu et al. (2017); Ma et al.

(2018) respectively use the discriminator, critic
and bag-of-words target as sequence-level train-
ing objectives, all of which are directly connected
to the generation model and hence enable direct
gradient update. However, these methods do not
allow for direct optimization with respect to eval-
uation metrics.

In this paper, we propose a method to com-
bine the strengths of the word-level and sequence-
level training, that is the direct gradient update
without gradient estimation from word-level train-
ing and the greater flexibility from sequence-level
training. Our method introduces probabilistic n-
gram matching which makes sequence-level ob-
jectives (e.g., BLEU, GLEU) differentiable. Dur-
ing training, it abandons teacher forcing and per-
forms greedy search instead to take into consid-
eration the predicted words. Experiment results
show that our method significantly outperforms
word-level training with the cross-entropy loss and
sequence-level training under the reinforcement
framework. The experiments also indicate that
greedy search strategy indeed has superiority over
teacher forcing.

2 Background

NMT is based on an end-to-end framework which
directly models the translation probability from
the source sentence x to the target sentence ŷ:

P (ŷ|x) =
TY

j=1

p(ŷj |ŷ<j , x, ✓), (1)

where T is the target length and ✓ is the model pa-
rameters. Given the training set D = {XM, YM}
with M sentences pairs, the training objective is to
maximize the log-likelihood of the training data as

✓ = arg max
✓

{L(✓)}

L(✓) =
MX

m=1

lmX

j=1

log(p(ŷm
j |ŷm

<j , x
m, ✓)),

(2)

where the superior m indicates the m-th sentence
in the dataset and lm is the length of m-th target
sentence.

In the above model, the probability of each tar-
get word p(ŷm

j |ŷm
<j , x

m, ✓) is conditioned on the
previous target words. The scenario is that in the

training time, the teacher forcing algorithm is em-
ployed and the ground truth words from the tar-
get sentence are fed as context, while during in-
ference, the ground truth words are not available
and the previous predicted words are instead fed as
context. This discrepancy is called exposure bias.

3 Model

3.1 Sequence-Level Objectives
Many automatic evaluation metrics of machine
translation, such as BLEU, GLEU and NIST, are
based on the n-gram matching. Assuming that y

and ŷ are the output sentence and the ground truth
sentence with length T and T 0 respectively, the
count of an n-gram g = (g1, . . . , gn) in sentence
y is calculated as

Cy(g) =
T�nX

t=0

nY

i=1

1{gi = yt+i}, (3)

where 1{·} is the indicator function. The matching
count of the n-gram g between ŷ and y is given by

Cŷ
y(g) = min (Cy(g), Cŷ(g)). (4)

Then the precision pn and the recall rn of the pre-
dicted n-grams are calculated as follows

pn =

P
g2y Cŷ

y(g)
P

g2y Cy(g)
, (5)

rn =

P
g2y Cŷ

y(g)
P

g2ŷ Cŷ(g)
. (6)

BLEU, the most widely used metric for ma-
chine translation evaluation, is defined based on
the n-gram precision as follows

BLEU = BP · exp(
NX

n=1

wn log pn), (7)

where BP stands for the brevity penalty and wn is
the weight for the n-gram. In contrast, GLEU is
the minimum of recall and precision of 1-4 grams
where 1-4 grams are counted together:

GLEU = min(p1-4, r1-4). (8)

3.2 probabilistic Sequence-Level Objectives
In the output sentence y, the prediction probabil-
ity varies among words. Some words are trans-
lated by the model with high confidence while
some words are translated with high uncertainty.
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Figure 1: The overview of our model with greedy search. At each decoding step, the predicted word which has the
highest probability in the probability vector is selected as context and fed into the RNN, and meanwhile this word
and its probability are also used to calculate the probabilistic n-gram count.

However, when calculating the count of n-grams
in Eq.(3), all the words in the output sentence are
treated equally, regardless of their respective pre-
diction probabilities.

To give a more precise description of n-gram
counts which considers the variety of prediction
probabilities, we use the prediction probability
p(yj |y<j , x, ✓) as the count of word yj , and cor-
respondingly the count of an n-gram is the product
of these probabilistic counts of all the words in the
n-gram, not one anymore. Then the probabilistic
count of g = (g1, . . . , gn) is calculated by sum-
ming over the output sentence y as

eCy(g) =

T�nX

t=0

nY

i=1

1{gi = yt+i} · p(yt+i|y<t+i, x, ✓).
(9)

Now the probabilistic sequence-level objective
can be got by replacing Cy(g) with eCy(g) (the
tilde over the head indicates the probabilistic ver-
sion) and keeping the rest unchanged. Here, we
take BLEU as an example and show how the prob-
abilistic BLEU (denoted as P-BLEU) is defined.
From this purpose, the matching count of n-gram
g in Eq.(4) is modified as follows

eCŷ
y(g) = min(eCy(g), Cŷ(g)). (10)

and the predict precision of n-grams changes into

p̃n =

P
g2y

eCŷ
y(g)

P
g2y

eCy(g)
. (11)

Finally, the probabilistic BLEU (P-BLEU) is de-
fined as

P-BLEU = BP · exp(
NX

n=1

wn log p̃n), (12)

Probabilistic GLEU (P-GLEU) can be defined
in a similar way. Specifically, we denote the prob-
abilistic precision of n-grams as P-Pn. The prob-
abilistic precision is more reasonable than recall
since the denominator in Eq.(11) plays a normal-
ization role, so we modify the definition in Eq.(8)
and define P-GLEU as simply the probabilistic
precision of 1-4 grams.

The general probabilistic loss function is:

L(✓) = �
MX

m=1

P(ym, ŷm), (13)

where P represents the probabilistic sequence-
level objectives, and y

m and ŷ
m are the predicted

translation and the ground truth for the m-th sen-
tence respectively. The calculation of the proba-
bilistic objective is illustrated in Figure 1. This
probabilistic loss can work with decoding strate-
gies such as greedy search and teacher forcing. In
this paper we employ greedy search rather than
teacher forcing so as to use the previously pre-
dicted words as context and alleviate the exposure
bias problem.
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System Dev(MT02) MT03 MT04 MT05 MT06 AVG

BaseNMT 36.72 33.95 37.44 33.96 33.09 34.61
MRT 37.17 34.89 37.90 34.62 33.78 35.30
RF 37.13 34.66 37.69 34.55 33.74 35.16

P-BLEU 37.26 34.54 38.05 34.30 34.11 35.25
P-GLEU 37.44 34.67 38.11 34.24 34.58 35.40

P-P2 38.03 35.45 39.30 35.10 34.59 36.11

Table 1: Results on NIST Chinese-to-English Translation Task. AVG = average BLEU scores for test sets. The
bold number indicates the highest score in the column.

4 Experiment

4.1 Settings
We carry out experiments on Chinese-to-English
translation.1 The training data consists of 1.25M
pairs of sentences extracted from LDC corpora2.
Sentence pairs with either side longer than 50 were
dropped. We use NIST 2002 (MT 02) as the vali-
dation set and NIST 2003-2006 (MT 03-08) as the
test sets. We use the case insensitive 4-gram NIST
BLEU score (Papineni et al., 2002) for the transla-
tion task.

We apply our method to an attention-based
NMT system (Bahdanau et al., 2014) implemented
by Pytorch. Both source and target vocabularies
are limited to 30K. All word embedding sizes are
set to 512, and the sizes of hidden units in both
encoder and decoder RNNs are also set to 512.
All parameters are initialized by uniform distri-
bution over [�0.1, 0.1]. The mini-batch stochas-
tic gradient descent (SGD) algorithm is employed
to train the model with batch size of 40. In ad-
dition, the learning rate is adjusted by adadelta
optimizer (Zeiler, 2012) with ⇢ = 0.95 and ✏ =
1e-6. Dropout is applied on the output layer with
dropout rate of 0.5. The beam size is set to 10.

4.2 Performance
Systems We first pretrain the baseline model by
maximum likelihood estimation (MLE) and then
refine the model using probabilistic sequence-
level objectives, including P-BLEU, P-GLEU and
P-P2 (probabilistic 2-gram precision). In addi-
tion, we reproduce previous works which train
the NMT model through minimum risk training
(MRT) (Shen et al., 2016) and REINFORCE algo-

1Experiment code: https://github.com/ictnlp/GS4NMT
2The corpora include LDC2002E18, LDC2003E07,

LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

rithm (RF) (Ranzato et al., 2015). When reproduc-
ing their works, we set BLEU, GLEU and 2-gram
precision as training objectives respectively and
find out that GLEU yields the best performance.
In the following, we only report the results with
training objective GLEU.
Performance Table 1 shows the translation per-
formance on test sets measured in BLEU score.
Simply training NMT model by the probabilistic
2-gram precision achieves an improvement of 1.5
BLEU points, which significantly outperforms the
reinforcement-based algorithms. We also test the
precision of other n-grams and their combinations,
but do not notice significant improvements over
P-P2. Notice that our method only changes the
loss function, without any modification on model
structure and training data.

4.3 Why Pretraining
We use the probabilistic loss to finetune the base-
line model rather than training from scratch. This
is in line with our motivation: to alleviate the ex-
posure bias and make the model exposed to its own
output during training. In the very beginning of
the training, the model’s translation capability is
nearly zero and the generated sentences are often
meaningless and do not contain useful information
for the training, so it is unreasonable to directly ap-
ply the greedy search strategy. Therefore, we first
apply the teacher forcing algorithm to pretrain the
model, and then we let the model generate the sen-
tences itself and learn from its own outputs.

Another reason favoring pretraining is that pre-
training can lower the training cost. The train-
ing cost of the introduced probabilistic loss is
about three times higher than the cost of cross en-
tropy. Without pretraining, the training time will
be much higher than usual. Otherwise, the train-
ing cost is acceptable if the probabilistic loss is
only for finetuning.
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Figure 2: learning curves of different decoding strate-
gies with training objective P-P2.

4.4 Effect of Decoding Strategy

The probabilistic loss, defined in Eq.(13), is com-
puted from the model output y and reference ŷ.
In this section, we apply two different decoding
strategies to generate y: 1. teacher forcing, which
uses the ground truth as decoder input. 2. greedy
search, which feeds the word with maximum prob-
ability. By conducting this experiment, we attempt
to figure out where the improvements come from:
the modification of loss or the mitigation of expo-
sure bias?

Figure 2 shows the learning curves of the two
decoding strategies with training objective P-P2.
Teacher forcing raises about 0.5 BLEU improve-
ments and greedy search outperform the teacher
forcing algorithm by nearly 1 BLEU point. We
conclude that the probabilistic loss has its own ad-
vantage even when trained by the teacher forcing
algorithm, and greedy search is effective in allevi-
ating the exposure bias.

Notice that the greedy search strategy highly
relys on the probabilistic loss and can not be con-
ducted independently. Greedy search together
with the word-level loss is very similar with the
scheduled sampling(SS). However, SS is inconsis-
tent with the word-level loss since the word-level
loss requires strict alignment between hypothesis
and reference, which can only be accomplished by
the teacher forcing algorithm.

4.5 Correlation with Evaluation Metrics

In this section, we explore how the probabilistic
objective correlates with the real evaluation met-
ric. We randomly sample 100 pairs of sentences

Figure 3: P-GLEU and GLEU scores on 100 pairs of
sentences.

from the training set and compute their P-GLEU
and GLEU scores (Wu et al. (2016) indicates that
GLEU have better performance in the sentence-
level evaluation than BLEU).

Directly computing the correlation between
GLEU and P-GLEU gives the correlation coeffi-
cient 0.86, which indicates strong correlation. In
addition, we draw the scatter diagram of the 100
pairs of sentences in Figure 3 with GLEU as x-axis
and P-GLEU as y-axix. Figure 3 shows that P-
GLEU correlates well with GLEU, suggesting that
it is reasonable to directly train the NMT model
with P-GLEU.

5 Conclusion

Word-level loss cannot evaluate the translation
properly and suffers from the exposure bias, and
sequence-level objectives are usually indifferen-
tiable and require gradient estimation. We propose
probabilistic sequence-level objectives based on n-
gram matching, which relieve the dependence on
gradient estimation and can directly train the NMT
model. Experiment results show that our method
significantly outperforms previous sequence-level
training works and successfully alleviates the ex-
posure bias through performing greedy search.
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Abstract

In Neural Machine Translation (NMT), the
decoder can capture the features of the en-
tire prediction history with neural connections
and representations. This means that partial
hypotheses with different prefixes will be re-
garded differently no matter how similar they
are. However, this might be inefficient since
some partial hypotheses can contain only local
differences that will not influence future pre-
dictions. In this work, we introduce recom-
bination in NMT decoding based on the con-
cept of the “equivalence” of partial hypothe-
ses. Heuristically, we use a simple n-gram
suffix based equivalence function and adapt it
into beam search decoding. Through exper-
iments on large-scale Chinese-to-English and
English-to-Germen translation tasks, we show
that the proposed method can obtain similar
translation quality with a smaller beam size,
making NMT decoding more efficient.

1 Introduction

Recently, end-to-end Neural Machine Translation
(NMT) models (Sutskever et al., 2014; Bahdanau
et al., 2015) have achieved notable success. A
remarkable characteristic of NMT is that the de-
coder, which is typically implemented using Re-
current Neural Network (RNN), can capture the
features of the entire decoding history. This model

⇤Zhisong Zhang was a graduate student at SJTU and a re-
search intern at NICT when conducting this work. This work
is partially supported by the program “Promotion of Global
Communications Plan: Research, Development, and Social
Demonstration of Multilingual Speech Translation Technol-
ogy” of MIC, Japan. Hai Zhao was partially supported by
National Key Research and Development Program of China
(No. 2017YFB0304100), National Natural Science Foun-
dation of China (No. 61672343 and No. 61733011), Key
Project of National Society Science Foundation of China (No.
15-ZDA041), The Art and Science Interdisciplinary Funds of
Shanghai Jiao Tong University (No. 14JCRZ04). Thanks a
lot for the helpful discussions with Kehai Chen.

†Co-corresponding authors

Src  ào Ù , Ÿ $ * Œ⇥ Ñ Â∫ Ú
œ ⇣À Ü ÏÀ Â⇢ .

Ref some sources said that the workers in
::::
these

:::
two

::::
cities have established ...

according to some sources , the workers of
::::
these

:::
two

::::
cities have(�0.075) already(�0.331)

set(�0.536) up(�0.001) ...

Output according to some sources , workers of
::::
these

:::
two

::::
cities have(�0.073) already(�0.248)

set(�0.783) up(�0.001) ...

it has been reported that the workers of
::::
these

:::
two

::::
cities have(�0.058) already(�0.414)

set(�0.608) up(�0.001) ...

Table 1: Example of similar partial hypotheses in beam
search. The hidden layers of the partial hypotheses ending
with “cities” correspond to the nodes box ed in Figure 1 (only
three hypotheses are listed for brevity). The negative log
probabilities calculated by the model for the words predicted
after “cities” are given in parentheses.

Figure 1: t-SNE visualization (Maaten and Hinton, 2008) of
the recurrent hidden layer vectors for partial hypotheses for
the example in Table 1. Reference and prediction hypothe-
ses are presented as red and blue nodes, respectively. The
nodes inside the box represent the hidden features of partial
hypotheses ending with “cities”.

does not depend on any independence assump-
tions and treats sequences with different prefixes
as totally different hypotheses. However, many of
the NMT output sequences are quite similar and
they typically contain only local differences that
do not influence future decoding significantly.

Table 1 and Figure 1 present an example of such
pattern of local differences in NMT decoding. As
shown in Table 1, the three partial hypotheses that
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Algorithm 1 Merging for Beam Search.
Require: list of sorted candidates C; beam size k;

equivalence function Eq.
Ensure: list of candidates surviving in the beam: C0.

1: C0 = [ ]
2: # Scan according to the sorted order.
3: for c in C:
4: merge flag = False
5: # Check previous surviving states for merging.
6: for s in C0:
7: # Check with candidate merger states.
8: for s0 in sequence(s):
9: if Eq(c, s0) and score(c)<score(s0):

10: merge flag = True
11: # Pruning by the merger.
12: if not merge flag:
13: C0.append(c)
14: # Pruning by the beam size.
15: if len(C0) >= k:
16: break
17: return C0

end with “cities” share similar patterns. Firstly, as
shown in Figure 1, their hidden layer features are
close in the latent space. Moreover, for future pre-
dictions, the model predicts identical sequences
and gives similar scores for them. Although go-
ing through different paths, these partial hypothe-
ses appear to be similar or likely equivalent.

Intuitively, for efficiency, we do not need to ex-
pand all of these partial hypotheses (states) since
they have similar future predictions. In fact, this
corresponds to the idea of hypothesis recombi-
nation (also known as state merging, which will
be used interchangeably) from traditional Phrase-
Based Statistical Machine Translation (PBSMT)
(Koehn et al., 2003). Given a method to find
mergeable states, we can employ recombination in
NMT decoding as well.

In this paper, we adopt the mechanism of
recombination in NMT decoding based on the
definition of “equivalence” of partial hypothe-
ses. Heuristically, we try a simple n-gram suf-
fix based equivalence function and apply it to
beam search without adding any neural computa-
tion cost. Through experiments on two large-scale
translation tasks, we show that it can help to make
the decoding more efficient.

Most recent NMT studies have focused on
model improvement (Luong et al., 2015; Tu et al.,
2016b; Gehring et al., 2017; Vaswani et al., 2017),
and only a few have studied the search problem di-
rectly. For example, Khayrallah et al. (2017) and
Stahlberg et al. (2016) explored searching on lat-
tices generated by traditional Statistical Machine
Translation (SMT). In addition, Freitag and Al-

Onaizan (2017) investigated different beam search
pruning strategies; however, they primarily fo-
cused on pruning candidates locally. (Niehues
et al., 2017) analyzed the effects of modeling
and searching, but focused on re-ranking analy-
sis. Rather than considering candidates from other
model’s k-best lists, we focus on the own explo-
ration space of a single NMT model and provide a
method for more efficient searching.

2 Method

For state merging, “equivalence” should be de-
fined from the aspect of future predictions: states
with the same predictions in the future decoding
process can be regarded as equivalent. We use an
equivalence function Eq(s1, s2) to denote that the
two states s1 and s2 can be regarded as equivalent.

With the concept of equivalence, we can build
the method of recombination over it. There are
mainly two problems to solve:
1. How to merge states given function Eq? (§2.1)
2. How to obtain this equivalence function? (§2.2)

2.1 Search with Merging
To adopt an equivalence function Eq(s1, s2) to
merge states in a search process, we need to spec-
ify the logic of the merging mechanism. Here,
without loss of generality, we specifically focus on
the typical beam search.

We adopt merging in NMT beam search with
a simple method: retaining the word-level search
process and adding a state merger when pruning
the beam at each time step. Algorithm 1 shows the
proposed merging-enhanced pruning method.

Ordinary beam search only prunes candidates
based on beam size (Lines 15-16), while the pro-
posed method adds a merger to prune extra equiv-
alent states (Lines 6-10). To manage the merging
process, candidate list C are ordered1 by model
score and considered in turn. When checking
equivalence for one candidate state c, we con-
sider all current-step surviving states and their
previous-step antecedences. We include previous-
step states, because equivalent states may have dif-
ferent sequence lengths and thus not be in the same
beam-search step. In Line 8, we define “sequence”
as a function of obtaining the possible states that

1In plain beam search, the candidates may not need to be
sorted. We use a local selector to make the sorting efficient:
a local k-best selector is first applied on each previous-step
candidate states, making the size of the candidate list at most
k ⇤ k rather than k ⇤ |V |, where |V | is the vocabulary size.
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can merge the current candidate c. If a candidate
state c is not merged with any higher-ranked state,
it is added to the surviving list C 0 (Line 13) and
can possibly merge the lower-ranked ones later.

When deciding whether to merge, we also con-
sider a criterion on model scores: we only merge
state c when its score is lower than s0. Since we
also consider previous-step states with different
sequence lengths, a length reward � is added for
this comparison of partial hypotheses: score(s) =P

y2s �+ log p(y). We also attempted length nor-
malization, but found it performed slightly worse.

The merged partial hypotheses can be stored,
and by assuming that their future predictions will
be the same as their mergers, a lattice-like trans-
lation graph can be obtained. We can further ex-
tract k-best list from this structure using another
beam-search on the lattice (also with length re-
ward when comparing partial hypotheses). Note
that this beam search process can be fast, since we
reuse the model scores from previous search and
no extra neural computations will be included.

2.2 Equivalence Function
Finding an exact equivalence function for NMT is
difficult, because future predictions relies on the
features from the entire previous sequence and any
different sequences are not the same according to
the NMT model. Here, we consider a n-gram suf-
fix based heuristic approximation for this problem.

We adopt an approximate equivalence function:

Eq0(s1, s2) ⌘ s1.suffix(n) = s2.suffix(n)

^ |s1.length � s2.length| < r

Here, suffix(n) represents the n-gram suffix of
the sequence of a state, and r is the threshold for
the length different of the two states.

This definition of equivalence only considers a
subset of state features, which are inspired by PB-
SMT. In PBSMT, different sequences could lead
to states with identical features based on n-gram
suffix, and these states are exactly equivalent. Al-
though this is not the case for NMT, the subset
may encodes important and relevant features.

Although this function is simple and brings ex-
tra approximation, it has the merit of efficiency.
In Algorithm 1, we can store the n-gram features
of the surviving states in a hash-map and replace
the for-loop checking (Line 6-10) with hashing,
making the extra time-complexity O(1) for each
state. During experiments, we found the extra cost

brought by feature matching is far less than the
cost of original neural computation.

3 Experiments and Analysis

The proposed method was evaluated on two trans-
lation tasks: NIST Chinese-English (Zh-En) and
WMT English-German (En-De). For Zh-En, the
training set comprised 1.4M sentences pairs from
LDC corpora. NIST 02 was selected as the devel-
opment set and NIST 03 to 06 were used for test-
ing. For En-De, 4.5M WMT training data were
utilized, the concatenation of newstest 2012 and
2013 was adopted as the development set, and
newstest 2014 to 2016 were adopted as the test set.

We implemented2 an attentional RNN-based
NMT model and its decoder in Python with the
DyNet toolkit (Neubig et al., 2017). All the ex-
periments were carried out on one P100 GPU. For
Zh-En, we set the vocabulary size of both sides to
30K, and for En-De, we adopted 50K BPE opera-
tions (Sennrich et al., 2016). The evaluation met-
ric was tokenized BLEU (Papineni et al., 2002)
calculated by multi-bleu.perl. Detailed set-
tings can be found in the supplementary material.

We added a local threshold pruner to exclude
unlikely words whose probabilities were less than
10% of the highest and adopted length normaliza-
tion for final hypotheses ranking. For comparing
partial hypotheses, the length reward � was set to
1.0 and 0.4 for Zh-En and En-De, respectively. For
the equivalence function, we utilized a suffix of 4-
gram and a length difference threshold r of 2.

These hyper-parameters were set by prelim-
inary experiments. For the length difference
threshold r, we found that relatively small r like
1 or 2 was better than larger ones, which is rea-
sonable since if the merged hypotheses differs too
much in length, there are higher chances that they
covered different information. For n-gram suffix,
we found smaller n-grams made more bad merges
and 4-gram is a reasonably good choice, slightly
larger ones gave slightly worse results and also
less chances of recombination.

3.1 Results
Figure 2 show the results of various beam sizes on
the concatenation of all test sets. Separate results
are given in the supplementary material.

As shown by the speed curves, merging adds
little extra cost (less than 10%) to decoding at

2https://github.com/zzsfornlp/znmt-merge
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Figure 2: Translation quality and speed of Zh-En and En-De test sets (5453 sentences by concatenating NIST 03 to 06 and
8171 sentences by concatenating newstest 2014 to 2016, respectively).

the same beam size. Moreover, since bringing no
extra neural computations, the proposed merging
mechanism is transparent to neural architectures
and easy to adopt. In our experiments, we used
batched decoding on GPU and merging did not in-
fluence the efficiency of this implementation.

For translation quality, the results indicate that
the proposed methods can yield improvements at
various beam sizes for Zh-En and small beam sizes
for En-De. Moreover, in some way, merging can
make the search more efficient. For example,
in both datasets, merge-enhanced searchers with
beam-size 6 can obtain comparable or better re-
sults compared to those of ordinary searchers with
beam-size 12 (on BLEU, 37.17 vs. 37.11 for Zh-
En, 24.64 vs. 24.67 for En-De). As for decoding
speed, the one of beam-size 6 can be more than
twice of the one of beam-size 12 (over 200 to-
kens/second vs. around 100 tokens/second). That
is to say, with merging, we can achieve similar
translation quality with a smaller beam size, which
leads to higher decoding speed.

The results show that for large beam sizes, ex-
panding explored search space by increasing beam
size or adopting merging helps more in Zh-En
than En-De. A possible explanation for this is
that in NIST Zh-En dataset, each source sentences
has four references for evaluation, which encour-
ages the diversity brought by expanding reached
search space. In Table 2, we compare the BLEU
scores with multiple and single references on sev-
eral beam sizes, and the single-reference results
does not always increase along the beam size like
the multiple ones. The En-De dataset also has only
one reference and is similar to this case.

The results also show that expanding explored
search space does not always bring improvements.
This concerns more on modeling than searching
and corresponds with previous findings on the re-
lations between NMT searching and modeling (Tu
et al., 2016a; Niehues et al., 2017; Li et al., 2018).

Ref \ Beam 10 16 30 50

Multi-Ref 37.07 37.17 37.19 37.32
Single-Ref 18.23 18.29 18.23 18.26

Table 2: Comparisons of multi- and single-reference BLEU
scores of NIST 03-06 with “w/o merging”. “Multi-Ref” uses
all four references, and “Single-Ref” only uses the second
one, whose evaluations disagree most with “Multi-ref”.

The potential of the proposed method might be
better realized with improved NMT models.

3.2 Analysis
We further analyzed the merge-enhanced search
process. For these analyses, we mainly checked
decoding with a beam size of 10 on Zh-En dataset.
Frequency of Merging First, we investigated
how often recombination occurs and how much it
expands the explored output space. For a beam
size of 10, with influences from the local pruner
and the proposed merger, the average expanding
size is 7.60 for each step, and the average num-
ber of merger-pruned partial hypotheses is 0.61
per step (22.5 per sentence). This indicates that
a partial hypothesis is recombined in every two
steps. The output translation graph can hold much
more output space than the original k-best list, and
we found that on average the possible output se-
quences were averagely 200 times the beam size.
Figure 3 shows an example of the output transla-
tion graph.
Merging and Similarity of Hidden States It is
nearly impossible to explore such a large space
with an exact NMT model; thus, we depend on the
assumption that merged hypotheses have nearly
the same features. To evaluate this assumption,
we calculated the similarity between the hidden
layers of the merged partial hypotheses. Among
the 122772 merge points in 5453 Zh-En sentences,
the average cosine similarity (in range [�1, 1])
was 0.986, which indicates that the recombina-
tions are reasonable. In addition, we tried adding
simple cosine similarity constraints (using another
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according to reports , workers of these two cities have established independent trade unions .

reported

sources

sources

some

has

was

setthe up, independent trade unions .already

already

, workers of these

workers of these two cities have

it

is

workers of these two cities

in these two cities have

in these two cities have

setthe up independent trade unions .alreadyworkers of these two cities have

been that

the workers of

the workers of these

set up

an

independent trade unions .

independent trade union .

an independent trade union .

established independent trade unions

formed independent trade unions .

established independent trade unions .
in these two cities have

reported that the workers of these

reported that the workers

Figure 3: An example output translation graph. The red nodes and dashed arrows indicate merge points.

Beam w/ merge w/o merge

1 1.6% / 90.6% 1.6% / 90.6%
4 8.0% / 51.3% 5.2% / 54.8%
10 29.1% / 15.7% –
16 44.5% / 11.8% 28.2% / 5.6%
30 64.6% / 20.3% 56.4% / 20.2%

Table 3: Comparisons of prediction model scores between
different searching settings and a basic setting, which is
“Beam=10, w/o merge”. The pattern “a% / b%” means that
compared with the basic setting, a% of the sentences get
higher model scores and b% get lower ones. For the rest (1-
a%-b%), they give identical predictions.

threshold) in the equivalence function, however,
we found that this does not bring obvious addi-
tional benefits.

Effects of Merging We further conducted com-
parisons between the predictions of ordinary and
merge-enhanced beam search. First, we investi-
gated the model scores of their predictions. As
shown in Table 3, we selected “Beam=10, no
merge” as the basic setting, and compared the pre-
dictions of other settings with it. Overall, the
merge-enhanced searcher can obtain higher model
score predictions, which suggests its stronger
search ability, because the goal of searching is to
return hypotheses with higher model scores.

Moreover, we tried a re-ranking experiment on
100-best lists with 4-checkpoint-model-ensemble,
and only found similar slight improvements for
plain and merge-enhanced search. Nevertheless,
since merge-enhanced search can obtain a output
translation graph, we expect that the graph can
contain more diverse hypotheses.

To verify this, we compared the oracle BLEU
scores within the reached space. To extract or-

acle hypotheses from the translation graphs, we
simply adopted approximate Partial BLEU Ora-
cle (Dreyer et al., 2007; Sokolov et al., 2012).
Merge-based searcher could obtain an oracle score
of 47.83, while ordinary beam searcher could only
get 42.57. Only by increasing the beam size up
to 100 could the ordinary beam searcher achieve a
better result of 48.74. This indicates that recombi-
nation helps to touch more output space.

4 Conclusion and Discussion
In this work, 1) we show that decoding with
heuristic recombination can obtain similar trans-
lation qualities with smaller beam sizes, thus in-
creasing efficiency, and, 2) we empirically explore
the decoding process and analyze the influences of
recombination from various aspects.

Although the improvements brought by recom-
bination depend on careful refinements of the
model, this concerns more on modeling, since the
goal of decoding is to find hypotheses with higher
model scores. The potential of recombination may
be further realized by improving how the output
sequences are modeled. Another interesting topic
will be the combination with SMT or extra larger
language models (Wang et al., 2013, 2014).

For the equivalence function, there can also be
extensions. For example, a model-based equiva-
lence function can be trained by using the neural
features (hidden layers in RNN). However, model-
based equivalence functions may bring extra neu-
ral computation cost and be harder to efficiently
implemented. In this work, we focus on the merg-
ing mechanism and leave the study of equivalence
function for future work.
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Abstract
Recent research suggests that neural machine
translation achieves parity with professional
human translation on the WMT Chinese–
English news translation task. We empiri-
cally test this claim with alternative evalua-
tion protocols, contrasting the evaluation of
single sentences and entire documents. In a
pairwise ranking experiment, human raters as-
sessing adequacy and fluency show a stronger
preference for human over machine transla-
tion when evaluating documents as compared
to isolated sentences. Our findings emphasise
the need to shift towards document-level eval-
uation as machine translation improves to the
degree that errors which are hard or impossible
to spot at the sentence-level become decisive
in discriminating quality of different transla-
tion outputs.

1 Introduction
Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015) has become the de-facto standard in
machine translation, outperforming earlier phrase-
based approaches in many data settings and shared
translation tasks (Luong and Manning, 2015; Sen-
nrich et al., 2016; Cromieres et al., 2016). Some
recent results suggest that neural machine transla-
tion “approaches the accuracy achieved by average
bilingual human translators [on some test sets]”
(Wu et al., 2016), or even that its “translation qual-
ity is at human parity when compared to profes-
sional human translators” (Hassan et al., 2018).
Claims of human parity in machine translation are
certainly extraordinary, and require extraordinary
evidence.1 Laudably, Hassan et al. (2018) have

1The term “parity” may raise the expectation that there is
evidence for equivalence, but the term is used in the definition
of “there [being] no statistical significance between [two out-
puts] for a test set of candidate translations” by Hassan et al.
(2018). Still, we consider this finding noteworthy given the
strong evaluation setup.

released their data publicly to allow external val-
idation of their claims. Their claims are further
strengthened by the fact that they follow best prac-
tices in human machine translation evaluation, us-
ing evaluation protocols and tools that are also
used at the yearly Conference on Machine Trans-
lation (WMT) (Bojar et al., 2017), and take great
care in guarding against some confounds such as
test set selection and rater inconsistency.

However, the implications of a statistical tie be-
tween two machine translation systems in a shared
translation task are less severe than that of a statis-
tical tie between a machine translation system and
a professional human translator, so we consider
the results worthy of further scrutiny. We per-
form an independent evaluation of the professional
translation and best machine translation system
that were found to be of equal quality by Hassan
et al. (2018). Our main interest lies in the eval-
uation protocol, and we empirically investigate if
the lack of document-level context could explain
the inability of human raters to find a quality dif-
ference between human and machine translations.
We test the following hypothesis:

A professional translator who is asked to
rank the quality of two candidate trans-
lations on the document level will prefer
a professional human translation over a
machine translation.

Note that our hypothesis is slightly different from
that tested by Hassan et al. (2018), which could be
phrased as follows:

A bilingual crowd worker who is asked
to directly assess the quality of candi-
date translations on the sentence level
will prefer a professional human trans-
lation over a machine translation.
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As such, our evaluation is not a direct replication
of that by Hassan et al. (2018), and a failure to re-
produce their findings does not imply an error on
either our or their part. Rather, we hope to indi-
rectly assess the accuracy of different evaluation
protocols. Our underlying assumption is that pro-
fessional human translation is still superior to neu-
ral machine translation, but that the sensitivity of
human raters to these quality differences depends
on the evaluation protocol.

2 Human Evaluation of Machine
Translation

Machine translation is typically evaluated by com-
paring system outputs to source texts, reference
translations, other system outputs, or a combi-
nation thereof (for examples, see Bojar et al.,
2016a). The scientific community concentrates
on two aspects: adequacy, typically assessed by
bilinguals; and target language fluency, typically
assessed by monolinguals. Evaluation protocols
have been subject to controversy for decades (e. g.,
Van Slype, 1979), and we identify three aspects
with particular relevance to assessing human par-
ity: granularity of measurement (ordinal vs. inter-
val scales), raters (experts vs. crowd workers), and
experimental unit (sentence vs. document).

2.1 Related Work

Granularity of Measurement Callison-Burch
et al. (2007) show that ranking (Which of these
translations is better?) leads to better inter-rater
agreement than absolute judgement on 5-point
Likert scales (How good is this translation?) but
gives no insight about how much a candidate trans-
lation differs from a (presumably perfect) refer-
ence. To this end, Graham et al. (2013) suggest
the use of continuous scales for direct assessment
of translation quality. Implemented as a slider
between 0 (Not at all) and 100 (Perfectly), their
method yields scores on a 100-point interval scale
in practice (Bojar et al., 2016b, 2017), with each
raters’ rating being standardised to increase ho-
mogeneity. Hassan et al. (2018) use source-based
direct assessment to avoid bias towards reference
translations. In the shared task evaluation by Cet-
tolo et al. (2017), raters are shown the source and
a candidate text, and asked: How accurately does
the above candidate text convey the semantics of
the source text? In doing so, they have translations
produced by humans and machines rated indepen-

dently, and parity is assumed if the mean score of
the former does not significantly differ from the
mean score of the latter.

Raters To optimise cost, machine translation
quality is typically assessed by means of crowd-
sourcing. Combined ratings of bilingual crowd
workers have been shown to be more reliable than
automatic metrics and “very similar” to ratings
produced by “experts”2 (Callison-Burch, 2009).
Graham et al. (2017) compare crowdsourced to
“expert” ratings on machine translations from
WMT 2012, concluding that, with proper quality
control, “machine translation systems can indeed
be evaluated by the crowd alone.” However, it is
unclear whether this finding carries over to trans-
lations produced by NMT systems where, due to
increased fluency, errors are more difficult to iden-
tify (Castilho et al., 2017a), and concurrent work
by Toral et al. (2018) highlights the importance of
expert translators for MT evaluation.

Experimental Unit Machine translation evalu-
ation is predominantly performed on single sen-
tences, presented to raters in random order (e. g.,
Bojar et al., 2017; Cettolo et al., 2017). There
are two main reasons for this. The first is cost:
if raters assess entire documents, obtaining the
same number of data points in an evaluation cam-
paign multiplies the cost by the average number
of sentences per document. The second is exper-
imental validity. When comparing systems that
produce sentences without considering document-
level context, the perceived suprasentential cohe-
sion of a system output is likely due to random-
ness and thus a confounding factor. While in-
corporating document-level context into machine
translation systems is an active field of research
(Webber et al., 2017), state-of-the-art systems still
operate at the level of single sentences (Sennrich
et al., 2017; Vaswani et al., 2017; Hassan et al.,
2018). In contrast, human translators can and do
take document-level context into account (Krings,
1986). The same holds for raters in evaluation
campaigns. In the discussion of their results,
Wu et al. (2016) note that their raters “[did] not
necessarily fully understand each randomly sam-
pled sentence sufficiently” because it was pro-
vided with no context. In such setups, raters can-
not reward textual cohesion and coherence.

2“Experts” here are computational linguists who develop
MT systems, who may not be expert translators.
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2.2 Our Evaluation Protocol

We conduct a quality evaluation experiment with
a 2 ⇥ 2 mixed factorial design, testing the effect
of source text availability (adequacy, fluency) and
experimental unit (sentence, document) on ratings
by professional translators.

Granularity of Measurement We elicit judge-
ments by means of pairwise ranking. Raters
choose the better (with ties allowed) of two trans-
lations for each item: one produced by a profes-
sional translator (HUMAN), the other by machine
translation (MT). Since our evaluation includes
that of human translation, it is reference-free. We
evaluate in two conditions: adequacy, where raters
see source texts and translations (Which transla-
tion expresses the meaning of the source text more
adequately?); and fluency, where raters only see
translations (Which text is better English?).

Raters We recruit professional translators, only
considering individuals with at least three years
of professional experience and positive client re-
views.

Experimental Unit To test the effect of context
on perceived translation quality, raters evaluate en-
tire documents as well as single sentences in ran-
dom order (i. e., context is a within-subjects fac-
tor). They are shown both translations (HUMAN
and MT) for each unit; the source text is only
shown in the adequacy condition.

Quality Control To hedge against random rat-
ings, we convert 5 documents and 16 sentences per
set into spam items (Kittur et al., 2008): we render
one of the two options nonsensical by shuffling its
words randomly, except for 10 % at the beginning
and end.

Statistical Analysis We test for statistically sig-
nificant preference of HUMAN over MT or vice
versa by means of two-sided Sign Tests. Let a be
the number of ratings in favour of MT, b the num-
ber of ratings in favour of HUMAN, and t the num-
ber of ties. We report the number of successes x
and the number of trials n for each test, such that
x = b and n = a + b.3

3Emerson and Simon (1979) suggest the inclusion of ties
such that x = b + 0.5t and n = a + b + t. This modification
has no effect on the significance levels reported in this paper.

2.3 Data Collection

We use the experimental protocol described in the
previous section for a quality assessment of Chi-
nese to English translations of news articles. To
this end, we randomly sampled 55 documents and
2⇥120 sentences from the WMT 2017 test set.
We only considered the 123 articles (documents)
which are native Chinese,4 containing 8.13 sen-
tences on average. Human and machine transla-
tions (REFERENCE-HT as HUMAN, and COMBO-
6 as MT) were obtained from data released by
Hassan et al. (2018).5

The sampled documents and sentences were
rated by professional translators we recruited from
ProZ:6 4 native in Chinese (2), English (1), or both
(1) to rate adequacy, and 4 native in English to rate
fluency. On average, translators had 13.7 years of
experience and 8.8 positive client reviews on ProZ,
and received US$ 188.75 for rating 55 documents
and 120 sentences.

The averages reported above include an ad-
ditional translator we recruited when one rater
showed poor performance on document-level
spam items in the fluency condition, whose judge-
ments we exclude from analysis. We also ex-
clude sentence-level results from 4 raters because
there was overlap with the documents they anno-
tated, which means that we cannot rule out that the
sentence-level decisions were informed by access
to the full document. To allow for external val-
idation and further experimentation, we make all
experimental data publicly available.7

3 Results

In the adequacy condition, MT and HUMAN are
not statistically significantly different on the sen-
tence level (x=86, n=189, p= .244). This is
consistent with the results Hassan et al. (2018)
obtained with an alternative evaluation protocol
(crowdsourcing and direct assessment; see Sec-
tion 2.1). However, when evaluating entire doc-

4While it is common practice in machine translation to
use the same test set in both translation directions, we con-
sider a direct comparison between human “translation” and
machine translation hard to interpret if one is in fact the orig-
inal English text, and the other an automatic translation into
English of a human translation into Chinese. In concurrent
work, Toral et al. (2018) expand on the confounding effect of
evaluating text where the target side is actually the original
document.

5http://aka.ms/Translator-HumanParityData
6https://www.proz.com
7https://github.com/laeubli/parity
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Figure 1: Raters prefer human translation more strongly in entire documents. When evaluating isolated
sentences in terms of adequacy, there is no statistically significant difference between HUMAN and MT;
in all other settings, raters show a statistically significant preference for HUMAN.

uments, raters show a statistically significant pref-
erence for HUMAN (x=104, n=178, p<.05).
While the number of ties is similar in sentence-
and document-level evaluation, preference for MT
drops from 50 to 37 % in the latter (Figure 1a).

In the fluency condition, raters prefer HU-
MAN on both the sentence (x = 106, n=172,
p<.01) and document level (x=99, n=143, p<
.001). In contrast to adequacy, fluency ratings in
favour of HUMAN are similar in sentence- and
document-level evaluation, but raters find more
ties with document-level context as preference for
MT drops from 32 to 22 % (Figure 1b).

We note that these large effect sizes lead
to statistical significance despite modest sam-
ple size. Inter-annotator agreement (Cohen’s )
ranges from 0.13 to 0.32 (see Appendix for full
results and discussion).

4 Discussion

Our results emphasise the need for suprasentential
context in human evaluation of machine transla-
tion. Starting with Hassan et al.’s (2018) finding
of no statistically significant difference in trans-
lation quality between HUMAN and MT for their
Chinese–English test set, we set out to test this re-
sult with an alternative evaluation protocol which
we expected to strengthen the ability of raters to
judge translation quality. We employed profes-
sional translators instead of crowd workers, and
pairwise ranking instead of direct assessment, but
in a sentence-level evaluation of adequacy, raters
still found it hard to discriminate between HUMAN
and MT: they did not show a statistically signifi-
cant preference for either of them.

Conversely, we observe a tendency to rate HU-
MAN more favourably on the document level than
on the sentence level, even within single raters.
Adequacy raters show a statistically significant
preference for HUMAN when evaluating entire
documents. We hypothesise that document-level
evaluation unveils errors such as mistranslation of
an ambiguous word, or errors related to textual co-
hesion and coherence, which remain hard or im-
possible to spot in a sentence-level evaluation. For
a subset of articles, we elicited both sentence-level
and document-level judgements, and inspected ar-
ticles for which sentence-level judgements were
mixed, but where HUMAN was strongly preferred
in document-level evaluation. In these articles,
we do indeed observe the hypothesised phenom-
ena. We find an example of lexical coherence
in a 6-sentence article about a new app “Æ·*
f”, which HUMAN consistently translates into
“WeChat Move the Car”. In MT, we find three
different translations in the same article: “Twit-
ter Move Car”, “WeChat mobile”, and “WeChat
Move”. Other observations include the use of
more appropriate discourse connectives in HU-
MAN, a more detailed investigation of which we
leave to future work.

To our surprise, fluency raters show a stronger
preference for HUMAN than adequacy raters (Fig-
ure 1). The main strength of neural machine trans-
lation in comparison to previous statistical ap-
proaches was found to be increased fluency, while
adequacy improvements were less clear (Bojar
et al., 2016b; Castilho et al., 2017b), and we ex-
pected a similar pattern in our evaluation. Does
this indicate that adequacy is in fact a strength of
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MT, not fluency? We are wary to jump to this
conclusion. An alternative interpretation is that
MT, which tends to be more literal than HUMAN,
is judged more favourably by raters in the bilin-
gual condition, where the majority of raters are
native speakers of the source language, because of
L1 interference. We note that the availability of
document-level context still has a strong impact in
the fluency condition (Section 3).

5 Conclusions

In response to recent claims of parity between hu-
man and machine translation, we have empirically
tested the impact of sentence and document level
context on human assessment of machine transla-
tion. Raters showed a markedly stronger prefer-
ence for human translations when evaluating at the
level of documents, as compared to an evaluation
of single, isolated sentences.

We believe that our findings have several impli-
cations for machine translation research. Most im-
portantly, if we accept our interpretation that hu-
man translation is indeed of higher quality in the
dataset we tested, this points to a failure of cur-
rent best practices in machine translation evalu-
ation. As machine translation quality improves,
translations will become harder to discriminate
in terms of quality, and it may be time to shift
towards document-level evaluation, which gives
raters more context to understand the original text
and its translation, and also exposes translation er-
rors related to discourse phenomena which remain
invisible in a sentence-level evaluation.

Our evaluation protocol was designed with the
aim of providing maximal validity, which is why
we chose to use professional translators and pair-
wise ranking. For future work, it would be of
high practical relevance to test whether we can
also elicit accurate quality judgements on the
document-level via crowdsourcing and direct as-
sessment, or via alternative evaluation protocols.
The data released by Hassan et al. (2018) could
serve as a test bed to this end.

One reason why document-level evaluation
widens the quality gap between machine trans-
lation and human translation is that the machine
translation system we tested still operates on the
sentence level, ignoring wider context. It will
be interesting to explore to what extent exist-
ing and future techniques for document-level ma-
chine translation can narrow this gap. We ex-

pect that this will require further efforts in cre-
ating document-level training data, designing ap-
propriate models, and supporting research with
discourse-aware automatic metrics.
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Abstract
We compare the performance of the APT
and AutoPRF metrics for pronoun translation
against a manually annotated dataset com-
prising human judgements as to the correct-
ness of translations of the PROTEST test
suite. Although there is some correlation
with the human judgements, a range of issues
limit the performance of the automated met-
rics. Instead, we recommend the use of semi-
automatic metrics and test suites in place of
fully automatic metrics.

1 Introduction
As the general quality of machine translation (MT)
increases, there is a growing interest in improv-
ing the translation of specific linguistic phenomena.
A case in point that has been studied in the con-
text of both statistical (Hardmeier, 2014; Guillou,
2016; Loáiciga, 2017) and neural MT (Bawden
et al., 2017; Voita et al., 2018) is that of pronom-
inal anaphora. In the simplest case, translating
anaphoric pronouns requires the generation of cor-
responding word forms respecting the grammatical
constraints on agreement in the target language, as
in the following English-French example, where
the correct form of the pronoun in the second sen-
tence varies depending on which of the (equally
correct) translations of the word bicycle was used
in the first:

(1) a. I have a bicycle. It is red.
b. J’ai un vélo. Il est rouge. [ref]
c. J’ai une bicyclette. Elle est rouge. [MT]

However, the problem is more complex in prac-
tice because there is often no 1 : 1 correspon-
dence between pronouns in two languages. This
is easily demonstrated at the corpus level by ob-
serving that the number of pronouns varies signif-
icantly across languages in parallel texts (Mitkov

*Both authors contributed equally.

and Barbu, 2003), but it tends to be difficult to
predict in individual cases.

In general MT research, significant progress was
enabled by the invention of automatic evaluation
metrics based on reference translations, such as
BLEU (Papineni et al., 2002). Attempting to cre-
ate a similar framework for efficient research, re-
searchers have proposed automatic reference-based
evaluation metrics specifically targeting pronoun
translation: AutoPRF (Hardmeier and Federico,
2010) and APT (Miculicich Werlen and Popescu-
Belis, 2017). We study the performance of these
metrics on a dataset of English-French translations
and investigate to what extent automatic evaluation
based on reference translations provides insights
into how well an MT system handles pronouns.
Our analysis clarifies the conceptual differences be-
tween AutoPRF and APT, uncovering weaknesses
in both metrics, and investigates the effects of the
alignment correction heuristics used in APT. By
using the fine-grained PROTEST categories of pro-
noun function, we find that the accuracy of the
automatic metrics varies across pronouns of dif-
ferent functions, suggesting that certain linguistic
patterns are captured better in the automatic eval-
uation than others. We argue that fully automatic
wide-coverage evaluation of this phenomenon is
unlikely to drive research forward, as it misses es-
sential parts of the problem despite achieving some
correlation with human judgements. Instead, semi-
automatic evaluation involving automatic identifi-
cation of correct translations with high precision
and low recall appears to be a more achievable
goal. Another more realistic option is a test suite
evaluation with a very limited scope.

2 Pronoun Evaluation Metrics for MT

Two reference-based automatic metrics of pronoun
translation have been proposed in the literature.
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The first (Hardmeier and Federico, 2010) is a vari-
ant of precision, recall and F-score that measures
the overlap of pronouns in the MT output with a
reference translation. It lacks an official name, so
we refer to it as AutoPRF following the terminol-
ogy of the DiscoMT 2015 shared task (Hardmeier
et al., 2015). The scoring process relies on a word
alignment between the source and the MT output,
and between the source and the reference transla-
tion. For each input pronoun, it computes a clipped
count (Papineni et al., 2002) of the overlap between
the aligned tokens in the reference and the MT out-
put. The clipped count of a given word is defined
as the number of times it occurs in the MT output,
limited by the number of times it occurs in the refer-
ence translation. The final metric is then calculated
as the precision, recall and F-score based on these
clipped counts.

Miculicich Werlen and Popescu-Belis (2017)
propose a metric called Accuracy of Pronoun Trans-
lation (APT) that introduces several innovations
over the previous work. It is a variant of accu-
racy, so it counts, for each source pronoun, whether
its translation can be considered correct, without
considering multiple alignments. Since word align-
ment is problematic for pronouns, the authors pro-
pose an heuristic procedure to improve alignment
quality. Finally, it introduces the notion of pronoun
equivalence, assigning partial credit to pronoun
translations that differ from the reference transla-
tion in specific ways deemed to be acceptable. In
particular, it considers six possible cases when com-
paring the translation of a pronoun in MT output
and the reference. The pronouns may be: (1) iden-
tical, (2) equivalent, (3) different/incompatible, or
there may be no translation in: (4) the MT output,
(5) the reference, (6) either the MT output or the
reference. Each of these cases may be assigned a
weight between 0 and 1 to determine the level of
correctness.

3 The PROTEST Dataset

We study the behaviour of the two automatic met-
rics using the PROTEST test suite (Guillou and
Hardmeier, 2016). The test suite comprises 250
hand-selected personal pronoun tokens taken from
the DiscoMT2015.test dataset of TED talk tran-
scriptions and translations (Hardmeier et al., 2016)
and annotated according to the ParCor guidelines
(Guillou et al., 2014). It is structured according to
a linguistic typology motivated by work on func-

tional grammar by Dik (1978) and Halliday (2004).
Pronouns are first categorised according to their
function:

anaphoric: I have a bicycle. It is red.
event: He lost his job. It was a shock.
pleonastic: It is raining.
addressee reference: You’re welcome.
They are then subcategorised according to mor-

phosyntactic criteria, whether the antecedent is a
group noun, whether the ancedent is in the same
or a different sentence, and whether an addressee
reference pronoun refers to one or more specific
people (deictic) or to people in general (generic).

Our dataset contains human judgements on the
performance of nine MT systems on the transla-
tion of the 250 pronouns in the PROTEST test
suite. The systems include five submissions to
the DiscoMT 2015 shared task on pronoun transla-
tion (Hardmeier et al., 2015) – four phrase-based
SMT systems AUTO-POSTEDIT (Guillou, 2015),
UU-HARDMEIER (Hardmeier et al., 2015), IDIAP
(Luong et al., 2015), UU-TIEDEMANN (Tiedemann,
2015), a rule-based system ITS2 (Loáiciga and
Wehrli, 2015), and the shared task baseline (also
phrase-based SMT). Three NMT systems are in-
cluded for comparison: LIMSI (Bawden et al.,
2017), NYU (Jean et al., 2014), and YANDEX (Voita
et al., 2018).

Manual evaluation was conducted using the
PROTEST graphical user interface and accompa-
nying guidelines (Hardmeier and Guillou, 2016).
The annotators were asked to make judgements
(correct/incorrect) on the translations of the pro-
nouns and antecedent heads whilst ignoring the
correctness of other words (except in cases where
it impacted the annotator’s ability to make a judge-
ment). The annotations were carried out by two
bilingual English-French speakers, both of whom
are native speakers of French. Our human judge-
ments differ in important ways from the human
evaluation conducted for the same set of systems
at DiscoMT 2015 (Hardmeier et al., 2015), which
was carried out by non-native speakers over an
unbalanced data sample using a gap-filling method-
ology. In the gap-filling task annotators are asked
to select, from a predefined list (including an unin-
formative catch-all group “other”), those pronouns
that could fill the pronoun translation slot. Unlike
in the PROTEST evaluation, the pronoun trans-
lations were obscured in the MT output. This
avoided priming the annotators with the output of
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the candidate translation, but it occasionally caused
valid translations to be rejected because they were
missed by the annotator.

4 Accuracy versus Precision/Recall

There are three ways in which APT differs from Au-
toPRF: the scoring statistic, the alignment heuristic
in APT, and the definition of pronoun equivalence.

APT is a measure of accuracy: It reflects the pro-
portion of source pronouns for which an acceptable
translation was produced in the target. AutoPRF,
by contrast, is a precision/recall metric on the basis
of clipped counts. Hardmeier and Federico (2010)
motivate the use of precision and recall by pointing
out that word alignments are not 1 : 1, so each
pronoun can be linked to multiple elements in the
target language, both in the reference translation
and in the MT output. Their metric is designed to
account for all linked words in such cases.

To test the validity of this argument, we exam-
ined the subset of examples of 8 systems in our
English-French dataset1 giving rise to a clipped
count greater than one2 and found that these exam-
ples follow very specific patterns. All 143 cases
included exactly one personal pronoun. In 99 cases,
the additional matched word was the complemen-
tiser que ‘that’. In 31 and 4 cases, respectively, it
was a form of the auxiliary verbs avoir ‘to have’
and être ‘to be’. One example matched both que
and a form of être. Two had reflexive pronouns,
and one an imperative verb form. With the possible
exception of the two reflexive pronouns, none of
this seems to be relevant to pronoun correctness.
We conclude that it is more reasonable to restrict
the counts to a single pronominal item per example.
With this additional restriction, however, the recall
score of AutoPRF becomes equivalent to a version
of APT without equivalent pronouns and alignment
correction. We therefore limit the remainder of our
study to APT.

5 Effects of Word Alignment

APT includes an heuristic alignment correction pro-
cedure to mitigate errors in the word alignment
between a source-language text and its translation
(reference or MT output). We ran experiments to

1Excluding the YANDEX system, which was added later.
2A clipped count greater than one for a given pronoun

translation indicates that the MT output and the reference
translation aligned to this pronoun overlap in more than one
token.

Score APT-A APT-B PRO-
Alig. corr. + – + – TEST

Reference 1.000 1.000 1.000 1.000 0.920
BASELINE 0.544 0.536 0.574 0.566 0.660
IDIAP 0.496 0.496 0.528 0.528 0.660
UU-TIED. 0.532 0.532 0.562 0.562 0.680
UU-HARD. 0.528 0.520 0.556 0.548 0.636
POSTEDIT 0.492 0.492 0.532 0.532 0.668
ITS2 0.436 0.428 0.462 0.454 0.472
LIMSI 0.364 0.364 0.388 0.388 0.576
NYU 0.424 0.420 0.456 0.452 0.616
YANDEX 0.544 0.536 0.570 0.562 0.796

Table 1: Comparison of APT scores with human judge-
ments over the PROTEST test suite

assess the correlation of APT with human judge-
ments, with and without the alignment correction
heuristics.

Table 1 displays the APT results in both con-
ditions and the proportion of pronouns in the
PROTEST test suite marked as correctly translated.
For better comparison with the PROTEST test suite
results, we restricted APT to the pronouns in the
test suite. We used two different weight settings:3

APT-A uses weight 1 for identical matches and 0
for all other cases. APT-B uses weight 1 for iden-
tical matches, 0.5 for equivalent matches and 0
otherwise.

There is little difference in the APT scores when
we consider the use of alignment heuristics. This
is due to the small number of pronouns for which
alignment improvements are applied for most sys-
tems (typically 0–12 per system). The exception
is the ITS2 system output for which 18 alignment
improvements are made. For the following systems
we observe a very small increase in APT score for
each of the two weight settings we consider, when
alignment heuristics are applied: UU-HARDMEIER
(+0.8), ITS2 (+0.8), BASELINE (+0.8), YANDEX
(+0.8), and NYU (+0.4). However, these small im-
provements are not sufficient to affect the system
rankings. It seems, therefore, that the alignment
heuristic has only a small impact on the validity of
the score.

To assess differences in correlation with hu-
man judgment for pairs of APT settings, we run
Williams’s significance test (Williams, 1959; Gra-
ham and Baldwin, 2014). The test reveals that
differences in correlation between the various con-
figurations of APT and human judgements are not
statistically significant (p > 0.2 in all cases).

3Personal recommendation by Lesly Miculicich Werlen.
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c1 c2 Pearson Spearman

With alignment 1 0 0.848 0.820
heuristics 1 0.5 0.853 0.815

Without alignment 1 0 0.850 0.820
heuristics 1 0.5 0.855 0.811

Table 2: Correlation of APT and human judgements

APT Human Disagreement
Category Cases Assess.

1 2 3 3 7 Dis. Ex. %

Anaphoric
intra sbj it 130 13 73 156 60 47 / 216 21.8
intra nsbj it 59 1 31 77 14 19 / 91 20.9
inter sbj it 104 21 111 142 94 63 / 236 26.7
inter nsbj it 21 0 7 8 20 13 / 28 46.4
intra they 131 0 95 154 72 37 / 226 16.4
inter they 126 0 108 129 105 47 / 234 20.1
sg they 57 0 66 83 40 58 / 123 47.2
group it/they 47 0 41 64 24 31 / 88 35.2

Event it 145 42 94 185 96 60 / 281 21.4
Pleonastic it 171 54 52 243 34 46 / 277 16.6
Generic you 117 0 70 186 1 69 / 187 36.9
Deictic sg you 95 0 47 140 2 45 / 142 31.7
Deictic pl you 91 0 7 97 1 6 / 98 6.1

Total 1,294 131 802 1,664 563 541 / 2,227 24.3

Table 3: Number of pronouns marked as cor-
rect/incorrect in the PROTEST human judgements, as
identical (1), equivalent (2), and incompatible (3) by
APT, and the percentage of disagreements, per category
(Disagree [Dis.] / Examples [Ex.])

6 Metric Accuracy per Category

Like Miculicich Werlen and Popescu-Belis (2017),
we use Pearson’s and Spearman’s correlation coef-
ficients to assess the correlation between APT and
our human judgements (Table 2). Although APT
does correlate with the human judgements over
the PROTEST test suite, the correlation is weaker
than that with the DiscoMT gap-filling evaluations
reported in Miculicich Werlen and Popescu-Belis
(2017). A Williams significance test reveals that the
difference in correlation (for those systems com-
mon to both studies) is not statistically significant
(p > 0.3). Table 1 also shows that the rankings
induced from the PROTEST and APT scores are
rather different. The differences are due to the
different ways in which the two metrics define pro-
noun correctness, and the different sources against
which correctness is measured (reference transla-
tion vs. human judgement).

We also study how the results of APT (with
alignment correction) interact with the categories
in PROTEST. We consider a pronoun to be mea-
sured as correct by APT if it is assigned case 1

(identical) or 2 (equivalent). Likewise, a pronoun
is considered incorrect if it is assigned case 3 (in-
compatible). We compare the number of pronouns
marked as correct/incorrect by APT and by the hu-
man judges, ignoring APT cases in which no judge-
ment can be made: no translation of the pronoun
in the MT output, reference or both, and pronouns
for which the human judges were unable to make a
judgement due to factors such as poor overall MT
quality, incorrect word alignments, etc. The results
of this comparison are displayed in Table 3.

At first glance, we can see that APT disagrees
with the human judgements for almost a quarter
(24.3%) of the assessed translations. The distribu-
tion of the disagreements over APT cases is very
skewed and ranges from 8% for case 1 to 32% for
case 2 and 49% for case 3. In other words, APT
identifies correct pronoun translations with good
precision, but relatively low recall. We can also
see that APT rarely marks pronouns as equivalent
(case 2).

Performance for anaphoric pronouns is mixed.
In general, there are three main problems affecting
anaphoric pronouns (Table 4). 1) APT, which does
not incorporate knowledge of anaphoric pronoun
antecedents, does not consider pronoun-antecedent
head agreement so many valid alternative transla-
tions involving personal pronouns are marked as
incompatible (i.e. incorrect, case 3), but as correct
by the human judges. Consider the following exam-
ple, in which the pronoun they is deemed correctly
translated by the YANDEX system (according to the
human judges) as it agrees in number and grammat-
ical gender with the translation of the antecedent
extraits (clips). However, the pronoun translation
ils is marked as incorrect by APT as it does not
match the translation in the reference (elles).

SOURCE: so what these two clips show is not
just the devastating consequence of the disease, but
they also tell us something about the shocking pace
of the disease. . .

YANDEX: donc ce que ces deux ex-
traits[masc.,pl.] montrent n’est pas seulement
la conséquence dévastatrice de la maladie, mais
ils[masc. pl.] nous disent aussi quelque chose sur
le rythme choquant de la maladie. . .

REFERENCE: ce que ces deux vidéos[fem.,pl.]
montrent, ce ne sont pas seulement les
conséquences dramatiques de cette maladie,
elles[fem. pl.] nous montrent aussi la vitesse
fulgurante de cette maladie. . .
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2) Substitutions between pronouns are governed
by much more complex rules than the simple pro-
noun equivalence mechanism in APT. For example,
the dictionary of pronouns used in APT lists il
and ce as equivalent. However, while il can often
replace ce as a pleonastic pronoun in French, it
has a much stronger tendency to be interpreted as
anaphoric, rendering pleonastic use unacceptable
if there is a salient masculine antecedent in the
context. 3) APT does not consider the use of imper-
sonal pronouns such as c’ in place of the feminine
personal pronoun elle or the plural forms ils and
elles.

Category V E I O

Anaphoric
intra-sent. subj. it 22 9 8 8
intra-sent. non-subj. it 16 – 1 2
inter-sent. subj. it 35 6 22 –
inter-sent. non-subj. it – – – 13
intra-sent. they 25 – 3 9
inter-sent. they 22 – 3 22
singular they 40 – – 18
group it/they 21 – – 10

Event it – 16 – 44

Pleonastic it – 11 – 35

V: Valid alternative translation I: Impersonal translation
E: Incorrect equivalence O: Other

Table 4: Common cases of disagreement for anaphoric,
pleonastic, and event reference pronouns

As with anaphoric pronouns, APT incorrectly
marks some pleonastic and event translations as
equivalent, in disagreement with the human judges.
Other common errors arise from 1) the use of al-
ternative translations marked as incompatible (i.e.
incorrect) by APT but correct by the human judges,
for example il (personal) in the MT output when
the reference contained the impersonal pronoun
cela or ça (30 cases for pleonastic, 7 for event),
or 2) the presence of il in both the MT output and
reference marked by APT as identical but by the
human judges as incorrect (3 cases for pleonastic,
15 event).

Some of these issues could be addressed by in-
corporating knowledge of pronoun function in the
source language, of pronoun antecedents, and of
the wider context of the translation surrounding
the pronoun. However, whilst we might be able to
derive language-specific rules for some scenarios,
it would be difficult to come up with more general
or language-independent rules. For example, il and
ce can be anaphoric or pleonastic pronouns, but

il has a more referential character. Therefore in
certain constructions that are strongly pleonastic
(e.g. clefts) only ce is acceptable. This rule would
be specific to French, and would not cover other
scenarios for the translation of pleonastic it. Other
issues include the use of pronouns in impersonal
constructions such as il faut [one must/it takes] in
which evaluation of the pronoun requires consider-
ation of the whole expression, or transformations
between active and passive voice, where the per-
spective of the pronouns changes.

7 Conclusions

Our analyses reveal that despite some correlation
between APT and the human judgements, fully au-
tomatic wide-coverage evaluation of pronoun trans-
lation misses essential parts of the problem. Com-
parison with human judgements shows that APT
identifies good translations with relatively high pre-
cision, but fails to reward important patterns that
pronoun-specific systems must strive to generate.
Instead of relying on fully automatic evaluation,
our recommendation is to emphasise high preci-
sion in the automatic metrics and implement semi-
automatic evaluation procedures that refer negative
cases to a human evaluator, using available tools
and methods (Hardmeier and Guillou, 2016). Fully
automatic evaluation of a very restricted scope may
still be feasible using test suites designed for spe-
cific problems (Bawden et al., 2017).
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Ngoc Quang Luong, Lesly Miculicich Werlen, and An-
drei Popescu-Belis. 2015. Pronoun translation and
prediction with or without coreference links. In Pro-
ceedings of the Second Workshop on Discourse in
Machine Translation, pages 94–100, Lisbon, Portu-
gal. Association for Computational Linguistics.

Lesly Miculicich Werlen and Andrei Popescu-Belis.
2017. Validation of an automatic metric for the ac-
curacy of pronoun translation (APT). In Proceed-
ings of the Third Workshop on Discourse in Ma-
chine Translation (DiscoMT). Association for Com-
putational Linguistics (ACL).

Ruslan Mitkov and Catalina Barbu. 2003. Using bilin-
gual corpora to improve pronoun resolution. Lan-
guages in Contrast, 4(2):201–211.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia
(Pennsylvania, USA). ACL.

Jörg Tiedemann. 2015. Baseline models for pronoun
prediction and pronoun-aware translation. In Pro-
ceedings of the Second Workshop on Discourse in
Machine Translation, pages 108–114, Lisbon, Portu-
gal. Association for Computational Linguistics.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Evan J. Williams. 1959. Regression Analysis, vol-
ume 14. Wiley, New York.

4802



Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4803–4809
Brussels, Belgium, October 31 - November 4, 2018. c�2018 Association for Computational Linguistics

FewRel: A Large-Scale Supervised Few-Shot Relation Classification
Dataset with State-of-the-Art Evaluation

Xu Han1,⇤ Hao Zhu1,⇤ Pengfei Yu2,⇤ Ziyun Wang1,††,⇤

Yuan Yao1 Zhiyuan Liu1,‡ Maosong Sun1

http://zhuhao.me/fewrel
Institute for Artificial Intelligence

State Key Laboratory of Intelligent Technology and Systems
1Department of CST, 2Department of EE, Tsinghua University, Beijing, China
{hanxu17,zhuhao15,yupf15,yy18}@mails.tsinghua.edu.cn,

ziyunw@nyu.edu, {lzy,sms}@tsinghua.edu.cn

Abstract
We present a Few-Shot Relation Classifica-
tion Dataset (FewRel), consisting of 70, 000
sentences on 100 relations derived from
Wikipedia and annotated by crowdworkers.
The relation of each sentence is first rec-
ognized by distant supervision methods, and
then filtered by crowdworkers. We adapt the
most recent state-of-the-art few-shot learning
methods for relation classification and conduct
thorough evaluation of these methods. Empir-
ical results show that even the most competi-
tive few-shot learning models struggle on this
task, especially as compared with humans. We
also show that a range of different reasoning
skills are needed to solve our task. These re-
sults indicate that few-shot relation classifica-
tion remains an open problem and still requires
further research. Our detailed analysis points
multiple directions for future research. All de-
tails and resources about the dataset and base-
lines are released on http://zhuhao.me/
fewrel.

1 Introduction
Relation classification (RC) is an important task
in NLP, aiming to determine the correct relation
between two entities in a given sentence. Many
works have been proposed for this task, includ-
ing kernel methods (Zelenko et al., 2002; Mooney
and Bunescu, 2006), embedding methods (Gorm-
ley et al., 2015), and neural methods (Zeng et al.,
2014). The performance of these conventional
models heavily depends on time-consuming and
labor-intensive annotated data, which make them-
selves hard to generalize well. Adopting distant
supervision is a primary approach to alleviate this
problem for RC (Mintz et al.; Riedel et al.; Hoff-
mann et al., 2011; Surdeanu et al., 2012; Zeng

⇤ The first four authors contribute equally. The order is de-
termined by dice rolling.

† Z. Wang is now at New York University.
‡ Correspondence author.

Supporting Set

(A) capital of (1) London is the capital of the U.K.
(2) Washington is the capital of the U.S.A.

(B) member of
(1) Newton served as the president of the
Royal Society.
(2) Leibniz was a member of the Prussian
Academy of Sciences.

(C) birth name

(1) Samuel Langhorne Clemens, better
known by his pen name Mark Twain, was
an American writer.
(2) Alexei Maximovich Peshkov, primarily
known as Maxim Gorky, was a Russian and
Soviet writer.

Test Instance

(A) or (B) or (C) Euler was elected a foreign member of the
Royal Swedish Academy of Sciences.

Table 1: An example for a 3 way 2 shot scenario.
Different colors indicate different entities, blue for
head entity, and red for tail entity.

et al., 2015; Lin et al., 2016), which heuristically
aligns knowledge bases (KBs) and text to automat-
ically annotate adequate amounts of training in-
stances. We evaluate the model proposed by Lin
et al. (2016), which is followed by the recent state-
of-the-art methods (Zeng et al., 2017; Ji et al.,
2017; Huang and Wang, 2017; Wu et al., 2017;
Liu et al., 2017; Feng et al., 2018; Zeng et al.,
2018), on the benchmark dataset NYT-10 (Riedel
et al.). Though it achieves promising results on
common relations, the performance of a relation
drops dramatically when its number of training
instances decrease. About 58% of the relations
in NYT-10 are long-tail with fewer than 100 in-
stances. Furthermore, distant supervision suffers
from the wrong labeling problem, which makes it
harder to classify long-tail relations. Hence, it is
necessary to study training RC models with insuf-
ficient training instances.

We formulate RC as a few-shot learning task in
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this paper, which requires models capable of han-
dling classification task with a handful of training
instances, as shown in Table 1. Many efforts have
devoted to few-shot learning. The early works
(Caruana, 1995; Bengio, 2012; Donahue et al.,
2014) apply transfer learning methods to fine-
tune pre-trained models from the common classes
containing adequate instances to the uncommon
classes with only few instances. Then metric
learning methods (Koch et al., 2015; Vinyals et al.,
2016; Snell et al., 2017) have been proposed to
learn the distance distributions among classes.
Similar classes are adjacent in the distance space.
The metric methods also take advantage of non-
parametric estimation to make models efficient
and general. Recently, the idea of meta-learning
is proposed, which encourages the models to learn
fast-learning abilities from previous experience
and rapidly generalize to new concepts. Many
meta-learning models (Ravi and Larochelle, 2017;
Santoro et al., 2016; Finn et al., 2017; Munkhdalai
and Yu, 2017) achieve the state-of-the-art results
on several few-shot benchmarks.

Though meta-learning methods develop fast,
most of these works evaluate on two popular
datasets, Omniglot (Lake et al., 2015) and mini-
ImageNet (Vinyals et al., 2016). Both the datasets
concentrate on image classification. Many works
in NLP mainly focus on the zero-shot/semi-
supervised scenario (Xie et al., 2016; Ma et al.,
2016; Carlson et al., 2009), which incorporate ex-
tra information to classify objects never appearing
in the training sets. However, the few-shot sce-
nario needs models to classify objects with few in-
stances without any extra information. Recently,
Yu et al. (2018) propose a multi-metric method
for few-shot text classification. However, there
lack systematic researches about adopting few-
shot learning for NLP tasks. We propose FewRel:
a new large-scale supervised Few-shot Relation
Classification dataset. To address the wrong la-
beling problem in most distantly supervised RC
datasets, we apply crowd-sourcing to manually re-
move the noise.i

Besides constructing the dataset, we system-
atically implement the most recent state-of-the-
art few-shot learning methods and adapt them for

i Many previous works, such as (Roth et al., 2013; Luo
et al., 2017; Xin et al., 2018) have worked on automati-
cally removing noise from distantly supervision. Instead,
we use crowd-sourcing methods to achieve a high accu-
racy.

RC. We conduct a detailed evaluation for all these
models on our dataset. Though the state-of-the-
art few-shot learning methods have much lower
results than humans on our challenging dataset,
they significantly outperform the vanilla RC mod-
els, indicating that incorporating few-shot learning
is promising and needs further research. In sum-
mary, our contribution is three-fold:

(1) We formulate RC as a few-shot learning
task, and propose a new large supervised few-shot
RC dataset.

(2) We systematically adapt the most recent
state-of-the-art few-shot learning methods for RC,
which may further benefit other NLP tasks.

(3) We conduct a comprehensive evaluation of
few-shot learning methods on our dataset, which
indicates some promising research directions for
RC.

2 FewRel Dataset

In this section, we describe the process of creat-
ing FewRel in detail. The whole procedure can
be divided into two steps: (1) We create a large
candidate set of sentences aligned to relations via
distant supervision. (2) We ask human annotators
to filter out the wrong labeled sentences for each
relation to finally achieve a clean RC dataset.

2.1 Distant Supervision
For the first step, We use Wikipedia as the cor-
pusii and Wikidata as the KB. Wikidata is a large-
scale KB where many entities are already linked to
Wikipedia articles. The articles in Wikipedia also
contain anchors linking to each other. Thus it is
convenient to align sentences in Wikipedia articles
to KB facts in Wikidata. We also employ entity
linking technique to extract more unanchored enti-
ties in articles. We first adopt named entity recog-
nition via spaCyiii to find possible entity mentions,
then match each mention with the name of an en-
tity in KBs, and link the mention to the entity if
successfully matched.

For each sentence s in Wikipedia articles con-
taining head and tail entities e1 and e2, if there
exists a Wikidata statement (e1, e2, r) meaning
e1 and e2 have the relation r, we denote the
(s, e1, e2, r) tuple as an instance and add it to the
candidate set. Empirically, many instances of a
given relation contain the same entity pair. For

ii We use whole Wikipedia articles as corpus, not just the
first sentence.

iii https://spacy.io/
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such relation, classifiers may prefer memorizing
the entity pairs in the training instances rather than
grasping the sentence semantics. Therefore, in the
candidate set of each relation, we only keep 1 in-
stance for each unique entity pair. Finally, we
remove relations with fewer than 1000 instances,
and randomly keep 1000 instances for the rest of
the relations. As a result, we get a candidate set of
122 relations and 122, 000 instances.

2.2 Human Annotation
Next, we invite some well-educated annotators to
filter the raw data on a platform similar to Ama-
zon MTurk developed by ourselves. The platform
presents each annotator with one instance each
time, by showing the sentence, two entities in the
sentence, and the corresponding relation labeled
by distant supervision. The platform also pro-
vides the name of the entities and relation in Wiki-
data accompanied with the detailed description of
that relation. Then the annotator is asked to judge
whether the relation could be deduced only from
the sentence semantics. We also ask the annotator
to mark an instance as negative if the sentence is
not complete, or the mention is falsely linked with
the entity.

Relations are randomly assigned to annotators
from the candidate set, and each annotator will
consecutively annotate 20 instances of the same
relation before switching to next relation. To en-
sure the labeling quality, each instance is labeled
by at least two annotators. If the two annotators
have disagreements on this instance, it will be as-
signed to a third annotator. As a result, each in-
stance has at least two same annotations, which
will be the final decision. After the annotation,
we remove relations with fewer than 700 positive
instances. For the remaining 105 relations, we
calculate the inter-annotator agreement for each
relation using the free-marginal multirater kappa
(Randolph, 2005), and keep the top 100 relations.

2.3 Dataset Statistics
The final FewRel dataset consists of 100 relations,
each has 700 instances. A full list of relations, in-
cluding their names and descriptions, is provided
in Appendix A.2. The average number of tokens
in each sentence is 24.99, and there are 124, 577
unique tokens in total. Following recent meta-
learning tasks (Vinyals et al., 2016), which use
separate sets of classes for training and testing,
we use 64, 16, and 20 relations for training, val-

Dataset #cls. #inst./cls #insts.

Omniglot 1, 623 20 32, 460
mini-ImageNet 100 600 60, 000
FewRel 100 700 70, 000

Table 2: Comparison of FewRel with Omniglot
and mini-ImageNet.

Dataset #cls. #insts.

SemEval-2010 Task 8 9 6, 674
ACE 2003-2004 24 16, 771
TACRED 42 21, 784
NYT-10 57 143, 391
FewRel 100 70, 000

Table 3: Comparison of FewRel with existing RC
datasets. Note that negative (no relation) instances
in some datasets are ignored.

idation, and testing respectively. Table 2 provides
a comparison of our FewRel dataset to two other
popular few-shot classification datasets, Omniglot
and mini-ImageNet. Table 3 provides a compar-
ison of FewRel to the previous RC datasets, in-
cluding SemEval-2010 Task 8 dataset (Hendrickx
et al., 2009), ACE 2003-2004 dataset (Strassel
et al., 2008), TACRED dataset (Zhang et al.,
2017), and NYT-10 dataset (Riedel et al., 2010).
While some RC datasets contain instances with no
relations (negative), we ignore such instances for
comparison.

3 Experiments

We conduct comprehensive evaluations of vanilla
RC models with simple strategies such as finetune
or kNN on our new dataset. We also evaluate the
recent state-of-the-art few-shot learning methods.

3.1 Task Formulation
In few-shot relation classification, we intend to
obtain a function F : (R, S, x) 7! y. Here
R = {r1, . . . , rm} defines the relations that the
instances are classified into. S is a support set

S = {(x1
1, r1), (x

2
1, r1), . . . , (x

n1
1 , r1),

. . . ,

(x1
m, rm), (x2

m, rm), . . . , (xnm
m , rm)}

(1)

including ni instances for each relation ri 2 R.
For relation classification, a data instance xj

i is a
sentence accompanied with a pair of entities. The
query data x is an unlabeled instance to classify,
and y 2 R is the prediction of x given by F .
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Model 5 Way 1 Shot 5 Way 5 Shot 10 Way 1 Shot 10 Way 5 Shot

Finetune (CNN) 44.21 ± 0.44 68.66 ± 0.41 27.30 ± 0.28 55.04 ± 0.31
Finetune (PCNN) 45.64 ± 0.62 57.86 ± 0.61 29.65 ± 0.40 37.43 ± 0.42
kNN (CNN) 54.67 ± 0.44 68.77 ± 0.41 41.24 ± 0.31 55.87 ± 0.31
kNN (PCNN) 60.28 ± 0.43 72.41 ± 0.39 46.15 ± 0.31 59.11 ± 0.30

Meta Network (CNN) 64.46 ± 0.54 80.57 ± 0.48 53.96 ± 0.56 69.23 ± 0.52
GNN (CNN) 66.23 ± 0.75 81.28 ± 0.62 46.27 ± 0.80 64.02 ± 0.77
SNAIL (CNN) 67.29 ± 0.26 79.40 ± 0.22 53.28 ± 0.27 68.33 ± 0.25
Prototypical Network (CNN) 69.20 ± 0.20 84.79 ± 0.16 56.44 ± 0.22 75.55 ± 0.19

Human performance 92.22 ± 5.53 - 85.88 ± 7.40 -

Table 4: Accuracies (%) of all models on FewRel under four different settings.

In recent research on few-shot learning, N way
K shot setting is widely adopted. We follow
this setting for the few-shot relation classification
problem. To be exact, for N way K shot learning

N = m = |R|, K = n1 = . . . = nm (2)

3.2 Experiment Settings
We consider four types of few-shot tasks in our ex-
periments: 5 way 1 shot, 5 way 5 shot, 10 way 1
shot, 10 way 5 shot. Under this setting, we evalu-
ate different few-shot training strategies and state-
of-the-art few-shot learning methods built upon
two widely used instance encoders, CNN (Zeng
et al., 2014) and PCNN (Zeng et al., 2015).

For both CNN and PCNN, the sentence is first
represented to the input vectors by transforming
each word into concatenation of word embeddings
and position embeddings. In CNN, the input vec-
tors pass a convolution layer, a max-pooling layer,
and a non-linear activation layer to get the final
output sentence embedding. PCNN is a variant of
CNN, which replaces the max-pooling operation
with a piecewise max-pooling operation.

To evaluate this two vanilla models in few-shot
RC task, we first consider two training strate-
gies, namely Finetune and kNN. For the Finetune
baseline, it learns to classify all relations on the
training set with CNN/PCNN, and tune parame-
ters on the support set. We only tune the param-
eters of output layer, and keep other parameters
unchanged. For the kNN baseline, it also jointly
classifies all relations during training, while at the
test time, it uses the neural networks to embed all
the instances and then adopts k-nearest-neighbor
(kNN) to classify the test instances.

By adapting them to relation classification,
we also evaluate four recently proposed few-
shot learning methods, including Meta Network

(Munkhdalai and Yu, 2017), GNN (Satorras and
Estrach, 2018), SNAIL (Mishra et al., 2018), and
Prototypical Network (Snell et al., 2017). We de-
scribe briefly about these baselines in Sec. 3.3.
If you are familiar with these methods, you can
safely skip that subsection. The hyperparameters
of each model are selected via grid search against
the validation set.

Human performance is also evaluated under 5
way 1 shot setting and 10 way 1 shot setting. A
human labeler is given 5/10 instances from differ-
ent relations and one extra test instance. Human
labelers are asked to decide which relation the test
instance belongs to. Note that these labelers are
not provided the name of the relations and any ex-
tra information. Since 5 way 5 shot and 10 way
5 shot settings are easier, we only evaluate perfor-
mance of 5 way 1 shot and 10 way 1 shot.

3.3 Baselines of Few-shot Learning Models
Meta Network Meta Network (Munkhdalai and
Yu, 2017) is a meta learning algorithm utilizing a
high level meta learner on top of the traditional
classification model, or base learner, to supervise
the training process. The weights of base learner
are divided into two groups, fast weights and slow
weights. Fast weights are generated by the meta
learner, whereas slow weights are simply updated
by minimizing classification loss. The fast weights
are expected to help the model generalize to new
tasks with very few training instances.

GNN GNN (Satorras and Estrach, 2018) tackles
the few-shot learning problem by considering each
supporting instance or query instance as a node
in the graph. For those instances in the support
sets, label information is also embedded into the
corresponding node representations. Graph neural
networks are then employed to propagate the in-
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formation between nodes. A query instance is ex-
pected to receive information from support sets in
order to make the classification. In our adaption,
while the instances are encoded by CNNs, labels
are represented by one-hot encoding.

SNAIL SNAIL (Mishra et al., 2018) is a meta
learning model that utilizes temporal convolu-
tional neural networks and attention modules for
fast learning from past experience. SNAIL ar-
ranges all the supporting instance-label pairs into
a sequence and appends the query instance be-
hind them. Such an order agrees with the tem-
poral order of learning process where we learn
information by reading supporting instances be-
fore making predictions for unlabeled instances.
Temporal convolution (a 1-D convolution) is then
performed along the sequence to aggregate infor-
mation across different time steps and a causally
masked attention model is used over the sequence
to aggregate useful information from former in-
stances to latter ones.

Prototypical Networks Prototypical Network
(Snell et al., 2017) is a few-shot classification
model based on the assumption that for each class
there exists a prototype. The model tries to find the
prototypes for classes from supporting instances,
and compares the distance between the query in-
stance and each prototype under certain distance
metric. Prototypical network learns a embedding
function u to embed each class’s instances, and
computes each prototype by averaging over all the
output embeddings of instances in the support set
S that are labeled with the corresponding class.

4 Result Analysis and Future Work

We report evaluation results in Table 4. From
our preliminary experiments, PCNN with few-shot
learning methods perform 3-10 percentages worse
than CNN, therefore only CNN results are shown
in our experimental results. From the results, we
observe that integrating few-shot learning methods
into CNN significantly outperforms CNN/PCNN
with finetune or kNN, which means adapting few-
shot learning methods for RC is promising. How-
ever, there are still huge gaps between their perfor-
mance and humans’, which means our dataset is a
challenging testbed for both relation classification
and few-shot learning.

In this paper, we propose a new large and high
quality dataset, FewRel, for few-shot relation clas-

Sentence Reasoning

Chris Bohjalian graduated from Amherst Col-
lege Summa Cum Laude, where he was a
member of the Phi Beta Kappa Society.

Simple Pat-
tern

James Alty obtained a 1st class honours
(Physics) at Liverpool University.

Common-
sense
Reasoning

He was a professor at Reed College, where
he taught Steve Jobs, and replaced Lloyd J.
Reynolds as the head of the calligraphy pro-
gram.

Logical
Reasoning

He and Cesare Borgia were thought to be
close friends since childhood, going on to ac-
company one another during their studies at
the University of Pisa.

Co-
reference
Reasoning

Table 5: Examples from relation “educated at”.
Different colors indicate different entities, blue for
head entity, and red for tail entity.

sification task. This dataset provides a new point
of view for RC, and also a new benchmark for few-
shot learning. Through the evaluation of differ-
ent few-shot learning methods, we find even the
best model performs much worse than humans,
which suggests there is still large space for few-
shot learning methods to improve.

The most challenging characteristic of our
dataset is the diversity in expressing the same re-
lation. We provide some examples from FewRel
in Table 5, showing different reasoning modes
needed for classifying some instances. Future
researches may consider incorporating common-
sense knowledge or improved causal modules.
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Abstract

The best systems at the SemEval-16 and
SemEval-17 community question answering
shared tasks – a task that amounts to question
relevancy ranking – involve complex pipelines
and manual feature engineering. Despite this,
many of these still fail at beating the IR base-
line, i.e., the rankings provided by Google’s
search engine. We present a strong baseline for
question relevancy ranking by training a sim-
ple multi-task feed forward network on a bag
of 14 distance measures for the input question
pair. This baseline model, which is fast to train
and uses only language-independent features,
outperforms the best shared task systems on
the task of retrieving relevant previously asked
questions.

1 Introduction

Community question-answer fora are great re-
sources, collecting answers to frequently and less-
frequently asked questions on specific topics, but
these are often not moderated and contain many
irrelevant answers. Community Question Answer-
ing (CQA), cast as a question relevancy ranking
problem, was the topic of two shared tasks at Se-
mEval 2016-17. This is a non-trivial retrieval task,
typically evaluated using mean average precision
(MAP). We present a strong baseline for this task,
on par with or surpassing state-of-the-art systems.

The English subtasks of the SemEval CQA
(Nakov et al., 2015, 2017) consist of Question-
Question Similarity, Question-Comment Similar-
ity, and Question-External Comment Similarity.
In this study, we focus on the core subtask of
Question-Question similarity, defined as follows:
Given a question, rank other relevant questions by
their relevancy to that question. This proved to be
a difficult task in both SemEval-16 and SemEval-
17 as it is the one with the least amount of data
available. The baseline was the ranking retrieved

by performing a Google search, which proved to
be a strong baseline beating a large portion of the
systems submitted.

Contribution Our baseline is a simple multi-
task feed-forward neural network taking distance
measures between pairs of questions as input. We
use a question-answer dataset as auxiliary task; but
we also experiment with datasets for pairwise clas-
sification tasks such as natural language inference
and fake news detection. This simple, easy-to-
train model is on par or better than state-of-the-
art systems for question relevancy ranking. We
also show that this simple model outperforms a
more complex model based on recurrent neural
networks.

2 Our Model

We present a simple baseline model for question
relevancy ranking.1 It is a deep feed-forward net-
work with a hidden layer that is shared with an
auxiliary task model. The input to the network
is extremely simple and consists of five distance
measures of the input question-question pair. §2.1
discusses these distance measures, and how they
relate. §2.2 introduces the multi-task learning ar-
chitecture that we propose.

2.1 Features

We use four similarity metrics and three sentence
representations (averaged word embeddings, bi-
nary unigram vectors, and trigram vectors). The
cosine distance between the sentence representa-
tions of query x and query y is

P
i xiyipP

i x
2 +

pP
i y

2

1Code available at http://anavaleriagonzalez/FAQ rank.
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The Manhattan distance is
X

i

|xi � yi|

The Bhattacharya distance is

� ln(
X

i

p
xiyi)

and is a measure of divergence, and the Euclidean
distance is sX

i

(xi � yi)2

Note that the squared Euclidean distance is pro-
portional to cosine distance and Manhattan dis-
tance. The Bhattacharya and Jaccard metrics, on
the other hand, are sensitive to the number of types
in the input (the `1 norm of the vector encodings).
So, for example, only the cosine, Euclidean, and
Manhattan distances will be the same for

x = h1, 1, 0, 0, 1, 0, 1, 1, 0, 1i,y = h0, 0, 1, 0, 1, 0, 0, 0, 1, 1i

and

x = h0, 0, 0, 0, 0, 1, 0, 0, 1, 1i,y = h1, 1, 1, 1, 0, 0, 0, 0, 0, 1i

The Jaccard index is the only metric that can
only be applied to two of our representations,
unigrams and n-grams: It is defined over m-
dimensional binary (indicator) vectors and there-
fore not applicable to averaged embeddings. It is
defined as

x · y
m

We represent each query pair by these 14 numeri-
cal features.

2.2 MTL Architecture

Our architecture is a simple feed-forward, multi-
task learning (MTL) architecture. Our architec-
ture is presented in Figure 1 and is a Multi-Layer
Perceptron (MLP) that takes a pair of sequences
as input. The sequences can be sampled from the
main task or the auxiliary task. The MLP has one
shared hidden layer, a task-specific hidden layer
and, finally, a task-specific classification layer for
each output. The hyper-parameters, after doing
grid search, optimizing performance on the vali-
dation data, are given in Figure 2.

Figure 1: The architecture of the multi task learning
MLP

2.3 LSTM baseline

We compare our MLP ranker to a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
model. It takes two sequences inputs: sequence
1 and sequence 2, and a stack of three bidirec-
tional LSTM layers, which encode sequence 1 and
sequence 2, respectively. The outputs are then
concatenated, to enable representing the differ-
ences between the two sequences. Instead of re-
lying only on this presentation (Bowman et al.,
2015; Augenstein et al., 2016), we also concate-
nate our distance features and feed everything into
our MLP ranker described above.

3 Datasets

For our experiments, we use data from SemEval
shared tasks, but we also take advantage of poten-
tial synergies with other existing datasets for clas-
sification of sentence pairs. Below we present the
datasets used for our main and auxiliary tasks. We
provide some summary statistics for each dataset
in Table 3.

SemEval 2016 and 2017 As our main dataset
we use the queries from SemEval’s subtask B
which consists of an original query and 10 pos-
sibly related queries. As an auxiliary task, we
use the data from subtask A, which is a question-
related comment ranking task.
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Hyperparameter Best Value Tested Values
Num. of Epochs 100 10, 20, 40, 60, 80, 100

Batch Size 100 10, 50, 100
Learning rate 0.001 0.001, 0.01, 0.1, 0.2, 0.3
Momentum 0.9 0.0, 0.2, 0.4, 0.6, 0.8, 0.9

Dropout 0.02 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Figure 2: Hyper-parameters

EN-SEMEVAL-16 EN-SEMEVAL-17

Model MAP MRR AVGREC ACC MAP MRR AVGREC ACC

STL-MLP (our baseline) 76.21 84.17 88.85 77.86 47.12 51.44 81.95 63.30
STL-BiLSTM-SIM 73.42 82.02 87.93 76.35 46.85 51.20 81.00 68.64
IR baseline 74.75 83.79 88.30 - 41.85 46.42 77.59 -
Random baseline 46.98 50.96 67.92 - 29.81 33.02 62.65 -
SemEval-Best 76.70 83.02 90.31 76.57 47.22 50.07 82.60 52.39

MTL - English Only - QA Aux

MTL-MLP 77.61** 84.29** 90.33** 78.99** 47.66** 52.41** 82.37** 71.70**
MTL-BiLSTM-SIM 71.25 79.54 86.52 75.26 43.58 49.16 79.36 50.40

MTL - FNC Aux

MTL-MLP 76.83 84.05 90.29 79.30 47.33** 49.80** 83.63** 73.06**
MTL-BiLSTM-SIM 71.70 80.83 87.35 73.29 48.15* 51.90* 81.59* 64.00*

MTL - NLI Aux

MTL-MLP 77.06** 83.98** 89.97** 78.57** 48.00** 51.56** 82.91** 70.11**
MTL-BiLSTM-SIM 75.22** 83.02** 89.14** 77.71 48.56* 52.05* 82.22* 71.36*

MTL - ALL Aux

MTL-MLP 75.90** 84.17** 89.59** 78.51** 47.45** 51.12** 82.90** 73.10**

Table 1: The results show that learning pairwise classification tasks simultaneously with the main task leads
to improvements over the baselines and the best SemEval systems. We show results for three auxiliary tasks,
Question-Comment relevancy prediction, Fake News detection and Natural Language Inference. The asterisks
for the MTL results represent the significance of the improvements over the STL systems with ** representing a
p-value of < 0.01 and * representing a p-value between 0.01 and 0.05

Natural Language Inference Natural Lan-
guage Inference (NLI), consists in predicting EN-
TAILMENT, CONTRADICTION or NEUTRAL, given
a hypothesis and a premise. We use the MNLI
dataset as opposed to the SNLI data (Bowman
et al., 2015; Nangia et al., 2017), since it contains
different genres. Our model is not built to be a
strong NLI system; we use the similarity between
premise and hypothesis as a weak signal to im-
prove the generalization on our main task.

Fake News Challenge The Fake News Chal-
lenge2 (FNC) was introduced to combat mislead-
ing and false information online. This task has
been used before in a multi-task setting as a way
to utilize general information about pairwise rela-
tions (Augenstein et al., 2018). Formally, the FNC
task consists in, given a headline and the body of

2http://www.fakenewschallenge.org/

text which can be from the same news article or
not, classify the stance of the body of text relative
to what is claimed in the headline. There are four
labels:

• AGREES: The body of the article is in agree-
ment with the headline

• DISAGREES: The body of the article is in dis-
agreement with the headline

• DISCUSSES: The body of the article does not
take a position

• UNRELATED: the body of the article dis-
cusses a different topic

We include fake news detection as a weak aux-
iliary signal that can lead to better generalization
of our question-question ranking model.

3.1 Evaluation
We evaluate our performance on the main task
of question relevancy ranking using the official
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Dataset Train Dev Test

SemEval 16 2000 500 700
SemEval 17 - - 880

FNC 49k - -
MNLI 433k - -

Figure 3: Size of datasets used for the experiments.
Here we present the full size of FNC and MultiNLI
training sets, however for our MTL experiments we
used a random sample of the same size of the train, test
and dev sets of the SemEval data as auxiliary data. The
SemEval 17 shared task uses the same train and dev set
as SemEval 16

SemEval-2017 Task 3 evaluation scripts (Nakov
et al., 2017). The scripts provide a variety of
metrics; however, in accordance with the shared
task, we report Mean Average Precision (MAP)
(the official metric for the SemEval 2016 and 2017
shared tasks); Mean Reciprocal Rank (MRR),
which has being thoroughly used for IR and QA;
Average Recall; and, finally, the accuracy of pre-
dicting relevant documents.

4 Results

The results from our experiments are shown in Ta-
ble 1. We present the official metric from the Se-
mEval task, as well as other common metrics. For
the SemEval-16 data, our multitask MLP archi-
tecture with a question-answer auxiliary task per-
formed best on all metrics, except accuracy, where
the multi-task MLP using all auxiliary tasks per-
formed best. We outperform the winning systems
of both the SemEval 2016 and 2017 campaigns.
In addition, our improvements from single-task to
multi-task are significant (p < 0.01). We also out-
perform the official IR baseline used in the Se-
mEval 2016 and 2017 shared tasks. We discuss
the STL-LSTM-SIM results in §5. Furthermore,
in Table 2, we show the performance of our mod-
els when training on feature combinations, while
in Table 3, we present an ablation test where we
remove one feature at a time.

Learning curve In Figure 4, we also present our
learning curves for the development set when in-
crementally increasing the training set size. We
observe that when using an auxiliary task, the
learning is more stable across training set size.

Figure 4: Learning curves for single- and multi-task
learning. All MTL models outperform the STL model
with very few training samples, and learning curves are
more stable for MTL models than for STL.

STL MTL

FEATURE SET MAP ACC MAP ACC

Unigrams 72.20 74.21 73.37 74.9
MeanEmb 67.00 71.28 65.39 72.29
Trigrams 72.8 77.8 72.00 78.2
Unigrams+Ngrams 73.62 77.00 74.01 78.60
Unigrams+MeanEmb 62.06 72.60 70.68 74.14
Emb+Trigrams 66.00 75.01 72.25 77.48

Table 2: Performance on development set of SemEval-
16 when training only on certain feature combinations.
MTL uses QA as auxiliary data.

5 Discussion

For the SemEval shared tasks on CQA, several
authors used complex recurrent and convolutional
neural network architectures (Severyn and Mos-
chitti, 2015; Barrón-Cedeno et al., 2016). For ex-
ample, Barrón-Cedeno et al. used a convolutional
neural network in combination with feature vec-
tors representing lexical, syntactic, and semantic
similarity as well as tree kernels. Their perfor-
mance was slightly lower than the best system
(SemEval-Best for 2016 in Table 1). The best
system used lexical and semantic similarity mea-
sures in combination with a ranking model based
on support vector machines (SVMs) (Filice et al.,
2016; Franco-Salvador et al., 2016). Both sys-
tems are harder to implement and train than the
model we propose here. For SemEval-17, Franco-
Salvador et al. (2016), the winning team used
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FEATURE REMOVED MAP ACC

COSINE
unigram 69.25 74.99
trigram 69.93 76.28
embedding 69.11 76.40

MANHATTAN
unigram 70.33 76.71
trigram 69.29 76.28
embedding 66.90 75.28

BHATTACHARYA
unigram 70.83 75.85
trigram 71.14 77.50
embedding 71.72 77.28

EUCLIDEAN
unigram 71.43 76.57
trigram 65.55 76.14
embedding 70.60 75.57

JACCARD
unigram 67.41 75.70
trigram 69.27 75.98

Table 3: We perform an ablation test, where we remove
one feature at a time and report performance on devel-
opment data of our single-task baseline. We observe
that our baseline suffers most from removing the Eu-
clidean distance over trigrams and the cosine similarity
over unigrams. Note also that the Jaccard index over
unigrams seems to carry a strong signal, albeit a very
simple feature.

distributed representations of words, knowledge
graphs and frames from FrameNet (Baker et al.,
1998) as some of their features, and used SVMs
for ranking.

For a more direct comparison, we also train
a more expressive model than the simple MTL-
based model we propose. This architecture is
based on bi-directional LSTMs (Hochreiter and
Schmidhuber, 1997). For this model, we input
sequences of embedded words (using pre-trained
word embeddings) from each query into indepen-
dent BiLSTM blocks and output a vector repre-
sentation for each query. We then concatenate
the vector representations with the similarity fea-
tures from our MTL model and feed it into a dense
layer and a classification layer. This way we can
evaluate the usefulness of the flexible, expressive
LSTM network directly (as our MTL model be-
comes an ablation instance of the full, more com-
plex architecture). We use the same dropout regu-
larization and SGD values as for the MLP. Tuning
all parameters on the development data, we do not
manage to outperform our proposed model, how-
ever. See lines MTL-LSTM-SIM in Table 1 for
results.

6 Conclusion

We show that simple feature engineering, com-
bined with an auxiliary task and a simple feedfor-

ward neural architecture is appropriate for a small
dataset and manages to beat the baseline and the
best performing systems for the Semeval task of
question relevancy ranking. We observe that in-
troducing pairwise classification tasks leads to sig-
nificant improvements in performance and a more
stable model. Overall, our simple model intro-
duces a new strong baseline which is particularly
useful when there is a lack of labeled data.
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Abstract

Research on link prediction in knowledge
graphs has mainly focused on static multi-
relational data. In this work we consider tem-
poral knowledge graphs where relations be-
tween entities may only hold for a time in-
terval or a specific point in time. In line with
previous work on static knowledge graphs, we
propose to address this problem by learning
latent entity and relation type representations.
To incorporate temporal information, we uti-
lize recurrent neural networks to learn time-
aware representations of relation types which
can be used in conjunction with existing latent
factorization methods. The proposed approach
is shown to be robust to common challenges
in real-world KGs: the sparsity and hetero-
geneity of temporal expressions. Experiments
show the benefits of our approach on four tem-
poral KGs. The data sets are available under a
permissive BSD-3 license1.

1 Introduction

Knowledge graphs (KGs) are used to organize,
manage, and retrieve structured information. The
incompleteness of most real-world KGs has stim-
ulated research on predicting missing relations be-
tween entities. A KG is of the form G = (E , R),
where E is a set of entities and, R is a set of re-
lation types or predicates. One can represent G
as a set of triples of the form (subject, predicate,
object), denoted as (s, p, o). The link prediction
problem seeks the most probable completion of
a triple (s, p, ?) or (?, p, o) (Nickel et al., 2016).
We focus on temporal KGs where some triples are
augmented with time information and the link pre-
diction problem asks for the most probable com-
pletion given time information. More formally,
a temporal KG G = (E , R, T ) is a KG where

⇤ Work done while interning at NEC Labs Europe
1https://github.com/nle-ml/mmkb

facts can also have the form (subject, predicate,
object, timestamp) or (subject, predicate, object,
time predicate, timestamp), in addition to (s, p, o)
triples. For instance, facts such as (Barack Obama,
born, US, 1961) or (Barack Obama, president,
US, occursSince, 2009-01) express temporal in-
formation about the facts associated with Barack
Obama. While the former expresses that a relation
type occurred at a specific point in time, the latter
expresses an (open) time interval using the time
predicate “occursSince.” The latter example also
illustrates a common challenge posed by the het-
erogeneity of time expressions due to variations in
language and serialization standards.

Most approaches to link prediction are char-
acterized by a scoring function that operates on
the entity and relation type embeddings of a
triple (Bordes et al., 2013; Yang et al., 2014; Guu
et al., 2015). Learning representations that carry
temporal information is challenging due to the
sparsity and irregularities of time expressions. It
is possible, however, to turn time expressions into
sequences of tokens expressing said temporal in-
formation. Moreover, character-level architectures
for language modeling (Zhang et al., 2015; Kim
et al., 2016) operate on characters as atomic units
to derive word embeddings. Inspired by these
models, we propose a method to incorporate time
information into standard embedding approaches
for link prediction. We learn time-aware represen-
tations by training a recursive neural network with
sequences of tokens representing the time predi-
cate and the digits of the timestamp, if they ex-
ist. The last hidden state of the recurrent network
is combined with standard scoring functions from
the KG completion literature.
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2 Related Work

Reasoning with temporal information in knowl-
edge bases has a long history and has resulted in
numerous temporal logics (van Benthem, 1995).
Several recent approaches extend statistical rela-
tional learning frameworks with temporal reason-
ing capabilities (Chekol et al., 2017; Chekol and
Stuckenschmidt, 2018; Dylla et al., 2013).

There is also prior work on incorporating tem-
poral information in knowledge graph completion
methods. Jiang et al. (2016) capture the temporal
ordering that exists between some relation types
as well as additional common-sense constraints
to generate more accurate link predictions. Es-
teban et al. (2016) introduce a prediction model
for link prediction that assumes that changes to
a KG are introduced by incoming events. These
events are modeled as a separate event graph and
used to predict the existence of links in the future.
Trivedi et al. (2017) model the occurrence of a
fact as a point process whose intensity function is
influenced by the score assigned to the fact by an
embedding function. Leblay and Chekol (2018)
develop scoring functions that incorporate time
representations into a TransE-type scoring func-
tion. Prior work has also incorporated numeri-
cal but non-temporal entity information for knowl-
edge base completion (Garcia-Duran and Niepert,
2017).

Contrary to all previous approaches, we encode
sequences of temporal tokens with an RNN. This
facilitates the encoding of relation types with tem-
poral tokens such as “since,” ”until,” and the dig-
its of timestamps. Moreover, the RNN encoding
provides an inductive bias for parameter sharing
among similar timestamps (e.g., those occurring
in the same century). Finally, our method can be
combined with all existing scoring functions.

3 Time-Aware Representations

Embedding approaches for KG completion learn
a scoring function f that operates on the embed-
dings of the subject es, the object eo, and the pred-
icate ep of the triples. The value of this scoring
function on a triple (s, p, o), f(s, p, o), is learned
to be proportional to the likelihood of the triples
being true. Popular examples of scoring functions
are

• TRANSE (Bordes et al., 2013)

f(s, p, o) = ||es + ep � eo||2. (1)

bornIn 1y

epseq

(s, pseq, o) : f(es, epseq, eo)

  9y 8y 6y

Figure 1: Learning time-aware representations.

• DISTMULT (Yang et al., 2014):

f(s, p, o) = (es � eo)e
T
p , (2)

where es, eo 2 R
d are the embeddings of the sub-

ject and object entities, ep 2 R
d is the embedding

of the relation type predicate, and � is the element-
wise product. These scoring functions do not take
temporal information into account.

Given a temporal KG where some triples are
augmented with temporal information, we can de-
compose a given (possibly incomplete) timestamp
into a sequence consisting of some of the follow-
ing temporal tokens

year
z }| {
0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9

monthz }| {
01 · 02 · 03 · 04 · 05 · 06 · 07 · 08 · 09 · 10 · 11 · 12

day
z }| {
0 · 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9

Hence, temporal tokens have a vocabulary size
of 32. Moreover, for each triple we can extract a
sequence of predicate tokens that always consists
of the relation type token and, if available, a tem-
poral modifier token such as “since” or “until.” We
refer to the concatenation of the predicate token
sequence and (if available) the sequence of tem-
poral tokens as the predicate sequence pseq. Now,
a temporal KG can be represented as a collection
of triples of the form (s, pseq, o), wherein the pred-
icate sequence may include temporal information.
Table 1 lists some examples of such facts from a
temporal KG and their corresponding predicate se-
quence. We use the suffix y, m and d to indicate
whether the digit corresponds to year, month or
day information. It is these sequences of tokens
that are used as input to a recurrent neural network.

3.1 LSTMs for Time-Encoding Sequences
A long short-term memory (LSTM) is a neural
network architecture particularly suited for mod-
eling sequential data. The equations defining an
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Fact Predicate Sequence
(Barack Obama, country, US) [country]
(Barack Obama, born, US, 1961) [born, 1y, 9y, 6y, 1y]
(Barack Obama, president, US, since, 2009-01) [president, since, 2y, 0y, 0y, 9y, 01m]

Table 1: Facts and their corresponding predicate sequence.

LSTM are

i = �g(hn�1Ui + xnWi)

f = �g(hn�1Uf + xnWf )

o = �g(hn�1Uo + xnWo)

g = �c(hn�1Ug + xnWg)

cn = f � cn�1 + i � g

hn = o � �h(cn)

(3)

where i, f , o and g are the input, forget, output and
input modulation gates, respectively. c and h are
the cell and hidden state, respectively. All vectors
are in R

h. xn 2 R
d is the representation of the

n-th element of a sequence. In this paper we set
h = d. �g, �c and �h are activation functions.

Each token of the input sequence pseq is first
mapped to its corresponding d-dimensional em-
bedding via a linear layer and the resulting se-
quence of embeddings used as input to the LSTM.
Each predicate sequence of length N is repre-
sented by the last hidden state of the LSTM, that
is, epseq = hN . The predicate sequence repre-
sentation, which carries time information, can now
be used in conjunction with subject and object em-
beddings in standard scoring functions. For in-
stance, temporal-aware versions of TRANSE and
DISTMULT, which we refer to as TA-TRANSE
and TA-DISTMULT, have the following scoring
function for triples (s, pseq, o):

TA-TRANSE: f(s, pseq, o) = ||es + epseq � eo||2
TA-DISTMULT: f(s, pseq, o) = (es � eo)e

T
pseq

.

All parameters of the scoring functions are
learned jointly with the parameters of the LSTMs
using stochastic gradient descent.

The advantages of character level models to en-
code time information for link prediction are: (1)
the usage of digits and modifiers such as “since” as
atomic tokens facilitates the transfer of informa-
tion across similar timestamps, leading to higher
efficiency (e.g. small vocabulary size); (2) at test
time, one can obtain a representation for a times-
tamp even though it is not part of the training set;

(3) the model can use triples with and without tem-
poral information as training data. Figure 1 illus-
trates the generic working of our approach.

4 Experiments

We conducted experiments on four different KG
completion data sets where a subset of the facts
are augmented with time information.

4.1 Datasets
Integrated Crisis Early Warning System (ICEWS)
is a repository that contains political events with
a specific timestamp. These political events relate
entities (e.g. countries, presidents...) to a num-
ber of other entities via logical predicates (e.g.
’Make a visit’ or ’Express intent to meet or ne-
gotiate’). Additional information can be found at
http://www.icews.com/. The repository is
organized in dumps that contain the events that
occurred each year from 1995 to 2015. We cre-
ated two temporal KGs out of this repository, i)
a short-range version that contains all events in
2014, and ii) a long-range version that contains
all events occurring between 2005-2015. We re-
fer to these two data sets as ICEWS 2014 and
ICEWS 2005-15, respectively. Due to the large
number of entities we selected a subset of the
most frequently occurring entities in the graph
and all facts where both the subject and object
are part of this subset of entities. We split the
facts into training, validation and test in a pro-
portion of 80%/10%/10%, respectively. The pro-
tocol for the creation of these data sets is identi-
cal to the onw followed in previous work (Bor-
des et al., 2013). To create YAGO15K, we used
FREEBASE15K (Bordes et al., 2013) (FB15K) as
a blueprint. We aligned entities from FB15K to
YAGO (Hoffart et al., 2013) with SAMEAS rela-
tions contained in a YAGO dump2, and kept all
facts involving those entities. Finally, we aug-
ment this collection of facts with time information
from the “yagoDateFacts”3 dump. Contrary to the

2/yago-naga/yago3.1/yagoDBpediaInstances.ttl.7z
3/yago-naga/yago3.1/yagoDateFacts.ttl.7z
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Data set YAGO15K ICEWS ’14 ICEWS 05-15 WIKIDATA
Entities 15,403 6,869 10,094 11,134
Relationships 34 230 251 95
#Facts 138,056 96,730 461,329 150,079
#Distinct TS 198 365 4,017 328
Time Span 1513-2017 2014 2005-2015 25-2020

Training 110,441 72,826 368,962 121,422
[29,381] [72,826] [368,962] [121,422]

Validation 13,815 8,941 46,275 14,374
[3,635] [8,941] [46,275] [14,374]

Test 13,800 8,963 46,092 14,283
[3,685] [8,963] [46,092] [14,283]

Table 2: Statistics of the data sets. TS stands for timestamps. The number of facts with time information
is in brackets.

YAGO15K WIKIDATA
MRR MR Hits@10 Hits@1 MRR MR Hits@10 Hits@1

TTRANSE 32.1 578 51.0 23.0 48.8 80 80.6 33.9
TRANSE 29.6 614 46.8 22.8 31.6 50 65.9 18.1
DISTMULT 27.5 578 43.8 21.5 31.6 77 66.1 18.1
TA-TRANSE 32.1 564 51.2 23.1 48.4 79 80.7 32.9
TA-DISTMULT 29.1 551 47.6 21.6 70.0 198 78.5 65.2

Table 3: Results (filtered setting) of the temporal knowledge graph completion experiments for the data
sets YAGO15K and WIKIDATA. The best results are written bold.

ICEWS 2014 ICEWS 2005-15
MRR MR Hits@10 Hits@1 MRR MR Hits@10 Hits@1

TTRANSE 25.5 148 60.1 7.4 27.1 181 61.6 8.4
TRANSE 28.0 122 63.7 9.4 29.4 84 66.3 9.0
DISTMULT 43.9 189 67.2 32.3 45.6 90 69.1 33.7
TA-TRANSE 27.5 128 62.5 9.5 29.9 79 66.8 9.6
TA-DISTMULT 47.7 276 68.6 36.3 47.4 98 72.8 34.6

Table 4: Results (filtered setting) of the temporal knowledge graph completion experiments for the data
sets ICEWS 2014 and ICEWS 2005-15. The best results are written bold.

ICEWS data sets, YAGO15K does contain tempo-
ral modifiers; namely, ’occursSince’ and ’occur-
sUntil’. Contrary to previous work (Leblay and
Chekol, 2018), all facts maintain time information
in the same level of granularity as one can find in
the original dumps these data sets come from.

We also experimented with the temporal facts
from the WIKIDATA data set4 extracted in (Leblay
and Chekol, 2018). Only information regarding
the year is available for these facts, since the
authors discarded information of finer granular-
ity. All facts are framed in a time interval (i.e.
they contain the temporal modifiers ’occursSince’
and ’occursUntil’). Facts annotated with a single
point-in-time are associated with that time-point
as start and end time. Due to the large number
of entities of this data set, which hinders the com-
putation of standard KG completion metrics, we
selected a subset of the most frequent entities and

4http://staff.aist.go.jp/julien.leblay/datasets

kept all facts where both the subject and object are
part of this subset of entities. This set of filtered
facts was split into training, validation and test in
the same proportion as before.

Table 2 lists some statistics of the temporal
KGs. All four data sets, with their corresponding
training, validation, and test splits are available at
https://github.com/nle-ml/mmkb.

4.2 General Set-up

We evaluate various methods by their ability to
answer completion queries where i) all the argu-
ments of a fact are known except the subject entity,
and ii) all the arguments of a fact are known except
the object entity. For the former we replace the
subject by each of the KBs entities E in turn, sort
the triples based on the scores returned by the dif-
ferent methods, and computed the rank of the cor-
rect entity. We repeated the same process for the
second completion task and average the results.
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Figure 2: T-SNE visualization of the embed-
dings learned for the predicate sequence pseq =
[playsFor, occursSince, date], where date corre-
sponds to the date token sequence.

This is standard procedure in the KG completion
literature. We also report the filtered setting as de-
scribed in (Bordes et al., 2013). The mean of all
computed ranks is the Mean Rank (lower is bet-
ter) and the fraction of correct entities ranked in
the top n is called hits@n (higher is better). We
also compute the Mean Reciprocal Rank (higher
is better) which is less susceptible to outliers.

Recent work (Leblay and Chekol, 2018) evalu-
ates different approaches for performing link pre-
diction in temporal KGs. The approach that learns
independent representations for each timestamp
and use these representations as translation vec-
tors, similarly to (Bordes et al., 2013), leads to
the best results. This approach is called VECTOR-
BASED TTRANSE, though for the shake of sim-
plicity in the paper we refer to it as TTRANSE. We
compare our approaches TA-TRANSE and TA-
DISTMULT against TTRANSE, and the standard
embedding methods TRANSE and DISTMULT.
For all approaches, we used ADAM (Kingma and
Ba, 2014) for parameter learning in a mini-batch
setting with a learning rate of 0.001, the cate-
gorical cross-entropy (Kadlec et al., 2017) as loss
function and the number of epochs was set to 500.
We validated every 20 epochs and stopped learn-
ing whenever the MRR values on the validation
set decreased. The batch size was set to 512 and
the number of negative samples to 500 for all ex-
periments. The embedding size is d=100. We ap-
ply dropout (Srivastava et al., 2014) for all embed-
dings. We validated the dropout from the values
{0, 0.4} for all experiments. For TA-TRANSE and
TA-DISTMULT, the activation gate �g is the sig-
moid function; �c and �h were chosen to be linear
activation functions.

Figure 3: Training loss in YAGO15K. TA-
TRANSE’s ability to learn from time information
leads to a lower loss.

4.3 Results
Table 3 and 4 list the results for the KG comple-
tion tasks. TA-TRANSE and TA-DISTMULT sys-
tematically improve TRANSE and DISTMULT in
MRR, hits@10 and hits@1 in almost all cases.
Mean rank is a metric that is very susceptible
to outliers and hence these improvements are not
consistent. TTRANSE learns independent repre-
sentations for each timestamp contained in the
training set. At test time, timestamps unseen dur-
ing training are represented by null vectors. This
explains that TTRANSE is only competitive in
YAGO15K, wherein the number of distinct times-
tamps is very small (see #Distinct TS in Table 2)
and thus enough training examples exist to learn
robust timestamp embeddings. TTRANSE’s per-
formance is similar to that of TA-TRANSE, our
time-aware version of TRANSE, in WIKIDATA.
Similarly, TTRANSE can learn robust timestamp
representations because of the small number of
distinct timestamps of this data set.

Figure 3 shows a comparison of the training loss
of TRANSE and TA-TRANSE for YAGO15K.
Under the same set-up, TA-TRANSE’s ability to
learn from time information leads to a training loss
lower than that of TRANSE.

Figure 2 shows a t-SNE (Maaten and Hinton,
2008) visualization of the embeddings learned for
the predicate sequence pseq = [playsFor, occursS-
ince, date], where date corresponds to the date to-
ken sequence. This illustrates that the learned rela-
tion type embeddings carry temporal information.

5 Conclusions

We propose a digit-level LSTM to learn represen-
tations for time-augmented KG facts that can be
used in conjunction with existing scoring func-
tions for link prediction. Experiments in four tem-
poral knowledge graphs show the effectiveness of
the approach.
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Abstract

Event detection (ED) and word sense disam-
biguation (WSD) are two similar tasks in that
they both involve identifying the classes (i.e.
event types or word senses) of some word in a
given sentence. It is thus possible to extract the
knowledge hidden in the data for WSD, and
utilize it to improve the performance on ED. In
this work, we propose a method to transfer the
knowledge learned on WSD to ED by match-
ing the neural representations learned for the
two tasks. Our experiments on two widely
used datasets for ED demonstrate the effec-
tiveness of the proposed method.

1 Introduction

An important aspect of natural language process-
ing involves understanding events mentioned in
text. Towards this end, event detection (ED) is
the task of locating event triggers (usually verbs
or nouns) within a given text, and classifying them
among a given set of event types. This task re-
mains challenging due to the inherent ambiguity
and flexibility of natural languages. The current
state-of-the-art methods for ED have involved ap-
plying deep learning (DL) models to automatically
extract feature representations of the text, and then
treating the task as a classification problem (Chen
et al., 2015; Nguyen and Grishman, 2015b).

The major intuition in this paper is that the task
of ED is closely related to the task of word sense
disambiguation (WSD) whose datasets can help
to improve the performance of the DL models for
ED. This is due to the goal of WSD to determine
the sense of a word within a particular context,
given a set of possible senses that the word can
take on. Our intuition is based on the two follow-
ing aspects:

(i) Similar Context Modeling: Given a word in a
context/sentence, both ED and WSD models need

to select/predict a correct label in a list of candi-
date labels for the word. For WSD, the candi-
date labels are the possible senses (e.g, sense ids
in WordNet) that the word of interest can have,
while for ED, they are the set of predetermined
event types (e.g, the event subtypes in the ACE
2005 dataset1). Consider the word “fired” in the
following sentence as an example:

The boss fired his secretary today.
For WSD, there are 12 possible senses for the

verb “fire” in WordNet in which the correct la-
bel for the word “fired” in this case is the sense
id “fire%2:41:00::” (i.e, “terminate the employ-
ment of ”). The ED task in the ACE 2005 dataset,
on the other hand, involves 33 possible event sub-
types with “End-Position” as the correct event sub-
type/label for the word “fired” in our example.

In order to make such label predictions, both ED
and WSD need to model the word itself and its
context (i.e, the words “fired”, “boss”, and “secre-
tary” in the example). This similar modeling al-
lows the same DL model to be adopted for both
ED and WSD, facilitating the use of WSD data to
improve the feature representations for ED via pa-
rameter/representation tying.

(ii) Close Semantic Consideration: As there are
some overlaps between the semantic differentia-
tion in WSD and ED, the knowledge/information
from WSD about a particular word in a context
can help to make a better prediction for that word
in ED. For instance, in the example above, the
knowledge from WSD that the word “fired” is
referring to a termination of employment would
clearly help ED to identify “End-Position” as the
correct event type (rather than the incorrect event
type “Attack”) for “fired” in this case.

How can we exploit this intuition to improve the
performance of the DL models for ED with WSD

1
https://www.ldc.upenn.edu/collaborations/past-projects/

ace
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data? In this work, we propose a novel method
based on representation matching to transfer the
knowledge learned from the WSD data to the DL
models for ED. In particular, two separate deep
learning models are employed to model the con-
text for WSD and ED. The two models share the
network architecture, but involve different param-
eters that are specific to the tasks. We then trans-
fer the knowledge from the WSD network to the
ED network by ensuring that the feature represen-
tations learned by the two networks on the same
contexts are similar to each other.

We demonstrate the effectiveness of the pro-
posed method on two widely used datasets for ED.
To the best of our knowledge, this is the first work
to study the transfer learning/multi-task learning
methods for WSD and ED with DL.

2 Model

We consider the typical setting where we have two
separate datasets Dwsd = {Wwsd

i , pwsd
i , ywsd

i }
for WSD and Ded = {W ed

i , ped
i , yed

i } for ED.
Here, W ed

i is the i-the sentence of Ded, ped
i is

the index of the word of interest for event type
prediction in W ed

i , and yed
i is the corresponding

event type label. The same conventions apply for
Wwsd

i , pwsd
i , ywsd

i . Also, let Y wsd and Y ed be
the label sets for WSD and ED respectively (i.e,
ywsd

i 2 Y wsd and yed
i 2 Y ed). Our goal is to trans-

fer the knowledge learned from the Dwsd dataset
to improve the performance of the ED models
trained on the Ded dataset (multi-task learning).

In the following, we will first describe the deep
learning architectures to transform the sentences
W in the datasets Dwsd and Ded into representa-
tion vectors. We only focus on the deep learning
architectures proposed for ED in the literature to
achieve compatible comparisons for ED. The pro-
posed multi-task learning method for ED with the
WSD dataset will follow.

2.1 Computing the Feature Representations

Consider a sentence W in the datasets Dwsd or
Ded that is represented as a sequence of tokens
W = [w0, w1, . . . , wt]. Let p be the index of
the word of interest in this sentence. The con-
text for wp in W is constructed by taking the word
itself, the n preceding words, and the n follow-
ing words (padding or truncating when necessary).
The tokens in the context are re-indexed to form
an instance V = [v0, v1, . . . , vn, . . . , v2n�1, v2n],

where vn corresponds to wp in W .
Encoding
The first step to prepare the instance V for the

deep learning models is to map each token vj in V
into two real-valued vectors, which are then con-
catenated to form a vector representation xj for vj

(Nguyen and Grishman, 2015b; Chen et al., 2015):
1. The word embedding of vj obtained by look-

ing up the token vj in the pre-trained word embed-
ding table (Mikolov et al., 2013a).

2. The position embedding vector for vj : ob-
tained by looking up the relative distance j � n of
vj with respect to the token of interest vn in a posi-
tion embedding table (randomly initialized) (Chen
et al., 2015; Nguyen and Grishman, 2015a).

It is important to note that, different from the
prior works (Nguyen and Grishman, 2015b; Liu
et al., 2017), we do not include the entity type la-
bel of each token into its representation. This is
a more realistic setting for our work as the golden
entity mentions do not always exist in practice, es-
pecially for the datasets in WSD.

Once each token vj is converted into
the representation vector xj , the in-
stance V becomes a sequence of vectors
X = [x0, x1, . . . , xn, . . . , x2n�1, x2n] that would
be fed into the one of the following deep learning
models to learn a feature representation R for V .

Typical Deep Learning Models for ED

1. CNN: This is the convolutional neural net-
works in(Nguyen and Grishman, 2015b;
Chen et al., 2015). It features convolution op-
erations that are performed over the k consec-
utive vectors (k-grams) in X and followed by
a max-pooling layer to generate the represen-
tation vector R for V . Multiple window val-
ues k are used to enhance the coverage of the
model over the hidden k-grams in the con-
text.

2. NCNN (Nguyen and Grishman, 2016d): This
model is similar to CNN. The only differ-
ence is instead of running the convolution
over the k consecutive vectors, NCNN con-
volutes over the k arbitrarily non-consecutive
k vectors in V . This helps NCNN to explic-
itly model the non-consecutive words in the
context to improve ED.

3. BiRNN: This is the bidirectional recurrent
neural network (RNN) for event extraction
in (Nguyen et al., 2016a). The model is
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composed of two recurrent neural networks
(RNN), where one runs forward and the other
runs backward through the input sequence V .
The hidden vectors produced by the two net-
works are then concatenated at each position
in the context. The vector at the position of n
for the word of interest is used as the repre-
sentation vector R for V . Due to the property
of RNN, R encodes the information over the
whole input V with a greater focus on vn.

4. CNN+BiRNN: In this model (Feng et al.,
2016), X is passed through both a CNN and
a BiRNN whose results are concatenated to
produce the hidden representation R for ED.
The expectation is to take advantage of the
modeling abilities from both the CNN and
BiRNN architectures for ED.

In practice, the representation vector R (ob-
tained from one of the deep learning models
above) is also concatenated with the word embed-
dings of the tokens surrounding the token of inter-
est wn to improve its expressiveness (Chen et al.,
2015; Nguyen and Grishman, 2016d). We would
use this extended version when we refer to R in
the following.

In the final step, the representation vector R is
fed into a feed-forward neural network followed
by a softmax layer to perform predictions for ED
and WSD.

For convenience, we denote the whole process
that a DL model M is used to compute the repre-
sentation vector R for the input sentence W with
the token index p of interest as: R = M(W, p).

2.2 Multi-task Learning Models
The previous section has described the deep learn-
ing methods that can be employed to train the
models for ED and WSD separately. This sec-
tion presents our proposed method to transfer the
knowledge from the WSD dataset to improve the
performance for ED.

A typical method for transfer learning/multi-
task learning in NLP is to alternate the training
process for the parameter-shared models of the re-
lated tasks (possibly with different datasets) (Guo
et al., 2016; Li et al., 2015; Liu et al., 2016). For
instance, in (Guo et al., 2016), the authors use the
same deep learning model to learn the feature rep-
resentations for the text inputs of two related tasks.
This is then followed by task-specific output lay-
ers to perform the corresponding tasks. Note that

the two tasks in (Guo et al., 2016) are provided
with two different datasets of different text inputs,
thereby being similar to the setting we consider
in this work. In order to learn the parameters for
this model, in each iteration, (Guo et al., 2016) se-
lect one of the tasks with some probabilities, sam-
ple a mini-batch of examples in the dataset of the
chosen task, and update the model parameters us-
ing the objective function specific to the chosen
task. Consequently, the model parameters for fea-
ture representation learning are updated at every
iteration while only the model parameters in the
output layer for the chosen task are updated at the
current iteration.

It has been demonstrated in (Guo et al., 2016)
that the alternating method (called ALT) is more
effective than pre-training the network on a related
task and fine-tuning it on the expected task. We
thereby consider ALT as the baseline for multi-
task learning in our work. However, we argue
that this baseline is not effective enough to trans-
fer the knowledge from the WSD dataset to ED
in our case. This stems from its employment of
a single DL model to induce the representations
for the text inputs in both tasks. In our case of
WSD and ED, although there are some overlap be-
tween the semantic differentiation of the two tasks,
the labels in the WSD datasets (i.e, the sense ids)
tend to be more fine-grained and exhaustive than
those in ED. For instance, for the word “fire”, there
might be 12 WSD labels for it in WordNet while
the number of possible event types for “fire” in the
ACE 2005 dataset is only 2 (i.e, “End-Position”
and “Attack”). Eventually, if a single DL model
is used to compute the representations for the text
inputs in both WSD and ED, the model would suf-
fer from a confusion to distinguish such subtlety
in the semantic differentiation.

In order to overcome this issue, we propose to
employ two versions Mwsd and M ed of the same
DL model (with different model parameters) to
compute the feature representations for WSD and
ED respectively. We then transfer the knowledge
from Mwsd to M ed by encouraging the represen-
tations generated by the two versions Mwsd and
M ed on the same text inputs to be similar. For-
mally, let (W t, pt, yt) be an example in the Dwsd

or Ded dataset (t 2 {wsd, ed}). Also, let Rwsd

and Red be the representations for (W t, pt) in-
duced by Mwsd and M ed respectively:

Rwsd = Mwsd(W t, pt), Red = M ed(W t, pt)
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Such representation vectors are then followed by
a task-specific output layer F t (i.e, feed-forward
neural networks followed by a softmax layer) to
compute the probability distribution over the pos-
sible labels for (W t, pt): P t(Y t|Rt) = F t(Rt)
where Y t is the label set for the t task.

If the two models Mwsd and M ed were trained
separately, the objective function for the t task for
the current example would be the negative log-
likelihood: Ct(W t, pt, yt) = � log P t(yt|Rt). In
this work, instead of just optimizing this objective,
we optimize the joint function:

Ct(W t, pt, yt) = � log P t(yt|Rt)

+ �
1

dR

dRX

i=0

⇣
Rwsd

i � Red
i

⌘2

where � is a trade-off parameter and dR is the di-
mension of the representation vectors.

The second term in the joint objective function
enforces that the feature representations learned
by Mwsd and M ed on the same input context
(W t, pt) are close to each other (t 2 {wsd, ed}).
One the one hand, this representation matching
schema helps the two models to communicate to
each other so the knowledge from one model can
be passed to the other one. On the other hand, the
use of two separate models leaves a flexibility for
the models to induce the task-specific structures.

Presumably, the objective function (2.2) can si-
multaneously improve the performance for both
tasks of consideration. However, in our case of
ED and WSD, it turns out this mechanism actu-
ally worsen the performance of the WSD models
that were trained separately. We attribute this to
the fact that the semantic differentiation in ED is
more coarse-grained that that of WSD, causing the
ineffectiveness of the datasets for ED to improve
WSD performance. Eventually, we will just focus
on the ED performance in the experiments.

3 Experiments

3.1 Parameters and Datasets
We use the Semcor dataset (Miller et al., 1994) as
the dataset for WSD in this work. This dataset was
extracted from the Brown Corpus, and manually
annotated with WordNet senses. We evaluate the
models on two different datasets for ED:

1. ACE 2005: This dataset has 33 event sub-
types. We use the same data split with

the prior work (Chen et al., 2015; Nguyen
and Grishman, 2015b). In particular, 40
newswire documents are used for testing, 30
other documents are reserved for validation,
and the 529 remaining documents form the
training data.

2. TAC 2015: This dataset was released in the
Event Nugget Detection Evaluation of the
2015 Text Analysis Conference (TAC) (Mi-
tamura et al., 2015). It comes with 38 event
subtypes. We follow the data split in the of-
ficial evaluation to achieve compatible com-
parison. As TAC 2015 does not have a devel-
opment set, we use the best parameters tuned
on ACE 2005 for the experiments with TAC
2015.

We use the pre-trained word embeddings pro-
vided by (Nguyen and Grishman, 2016d). For
CNN, NCNN and CNN+BiRNN, we employ filter
sizes of {2, 3, 4, 5} with 300 filters for each size
as in (Nguyen and Grishman, 2015b), while Gated
Recurrent Units (Cho et al., 2014) with 300 hid-
den units are applied in BiRNN and CNN+BiRNN
(as do (Nguyen and Grishman, 2016d)). For
the other parameters, the best values suggested
by the development data include: a dropout rate
of 0.5, a feed-forward neural network with one
hidden layer of 1200 hidden units for the out-
put layers, and the penalty rate � of 0.01 for
both CNN and BiRNN, 0.6 for NCNN, and 0.7
for CNN+BiRNN in the proposed transfer learn-
ing method (called MATCHING). For simplicity,
the same hyper-parameters are used for the two
versions of the same network architecture in the
MATCHING method. We utilize Adadelta (Zeiler,
2012) with back-propagation to train the models
in this work.

3.2 Experiments
In this section, we compare the proposed MATCH-
ING method with the transfer learning baseline
ALT in (Guo et al., 2016) and the separate training
mechanism for ED (called SEPARATE) employed
in the previous work for ED (Chen et al., 2015;
Nguyen and Grishman, 2015b). Note that in the
SEPARATE method, the models are only trained
on the datasets for ED without utilizing any trans-
fer learning techniques with external datasets. We
report the performance when each of the DL meth-
ods in Section 2.1 is used as the network to learn
the feature representations for ED and WSD.
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Tables 1 and 2 present the performance (i.e,
F1 scores) of the models on the ACE 2005 and
TAC 2015 datasets respectively. The first observa-
tion is that the proposed transfer learning method
MATCHING is consistently better than the base-
line method ALT across different deep learning
models and datasets with large performance gap.
This is significantly with p < 0.05 and confirms
our hypothesis in Section 2.2 about the advantage
of the proposed MATCHING over the alternating
training method ALT for ED and WSD. In fact,
the performance of the ALT method is even worse
than the traditional SEPARATE method also over
different network architectures and datasets. Con-
sequently, training a single deep learning model on
a combination of ED and WSD data (as in ALT)
does not automatically enable the model to learn
to exploit the similar structures of the two tasks.
In contrast, it hinders the model’s ability to effec-
tively extract hidden representations for ED.

Comparing MATCHING and SEPARATE, we
see that MATCHING helps to improve SEPARATE
with respect to difference choices of the DL mod-
els. The performance improvement is significant
for CNN and BiRNN on ACE 2005 and for all the
models on TAC 2015. Such results demonstrate
the effectiveness of the WSD dataset for ED and
the ability of the proposed method MATCHING
to promote knowledge transferring between WSD
and ED to improve ED performance.

Regarding the best reported performance, our
best performance on ACE (i.e, 71.2% with CNN)
is comparable with the recent state-of-the-art per-
formance (i.e, Table 1). However, we note that
such work heavily relies on the manual anno-
tation of the entity mentions in the documents.
Our current work do not employ such informa-
tion to better reflect the realistic setting. For the
TAC 2015 dataset, our best performance is 60.7%
with CNN+BiRNN although the performance of
the other models is also very close. This perfor-
mance is better than the best performance that has
been reported on the TAC 2015 (i.e, Table 2).

4 Related Work

Prior works on ED include statistical models with
manual feature engineering(Ahn, 2006; Ji and Gr-
ishman, 2008; Hong et al., 2011; Li et al., 2013;
Venugopal et al., 2014; Li et al., 2015), followed
by neural network models, such as CNNs (Nguyen
and Grishman, 2015b; Chen et al., 2015; Nguyen

Method CNN BiRNN NCNN CNN+BiRNN
SEPARATE 67.6 67.6 69.3 68.1
ALT 65.1 66.4 65.0 65.2
MATCHING 71.2 69.0 69.6 68.3
(Nguyen and Grishman, 2016d) 71.3*
(Liu et al., 2017) 71.9*
(Liu et al., 2018) 72.4*
(Nguyen and Grishman, 2018a) 73.1*

Table 1: Performance on the ACE 2005 dataset. * indi-
cates the use of entity mention annotation.

Method CNN BiRNN NCNN CNN+BiRNN
SEPARATE 57.6 59.4 58.3 58.0
ALT 57.6 54.9 48.5 57.5
MATCHING 60.0 60.4 60.0 60.7
TAC TOP (Mitamura et al., 2015) 58.4*
(Nguyen and Grishman, 2018a) 58.8*

Table 2: Performance on the TAC 2015 dataset. * indi-
cates the use of entity mention annotation.

et al., 2016b,e; Chen et al., 2017), RNNs (Nguyen
et al., 2016a; Jagannatha and Yu, 2016), and
attention-based methods (Liu et al., 2017; Nguyen
and Nguyen, 2018b).

A similar trend exists in methods proposed for
WSD, with feature based methods (Miller et al.,
1994; Zhong and Ng, 2010; Taghipour and Ng,
2015) succeeded recently by deep learning meth-
ods (Yuan et al., 2016; Raganato et al., 2017).

For multi-task learning in NLP, methods have
been proposed for jointly modeling structured
prediction tasks (Hatori et al., 2012; Li et al.,
2011; Bohnet and Nivre, 2012; Henderson et al.,
2013; Lluı́s et al., 2013; Duong et al., 2015), and
for sequence-to-sequence problems (Dong et al.,
2015; Luong et al., 2015; Liu et al., 2016; Klerke
et al., 2016). The prior work to solve multiple NLP
tasks using an unified architecture includes (Col-
lobert and Weston, 2008; Guo et al., 2016).

5 Conclusion

We present a method that improves the perfor-
mance of deep learning models for ED by training
two different versions of the same network archi-
tecture for ED and WSD, while encouraging the
knowledge transfer between the two versions via
representation matching. The proposed method
produces better results across a variety of deep
learning models.
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Abstract
In this work, we present a word embedding
model that learns cross-sentence dependency
for improving end-to-end co-reference reso-
lution (E2E-CR). While the traditional E2E-
CR model generates word representations by
running long short-term memory (LSTM) re-
current neural networks on each sentence of
an input article or conversation separately,
we propose linear sentence linking and atten-
tional sentence linking models to learn cross-
sentence dependency. Both sentence linking
strategies enable the LSTMs to make use of
valuable information from context sentences
while calculating the representation of the cur-
rent input word. With this approach, the
LSTMs learn word embeddings considering
knowledge not only from the current sentence
but also from the entire input document. Ex-
periments show that learning cross-sentence
dependency enriches information contained by
the word representations, and improves the
performance of the co-reference resolution
model compared with our baseline.

1 Introduction

Co-reference resolution requires models to cluster
mentions that refer to the same physical entities.
The models based on neural networks typically re-
quire different levels of semantic representations
of input sentences. The models usually need to
calculate the representations of word spans, or
mentions, given pre-trained character and word-
level embeddings (Turian et al., 2010; Pennington
et al., 2014) before predicting antecedents. The
mention-level embeddings are used to make co-
reference decisions, typically by scoring mention
pairs and making links (Lee et al., 2017; Clark and
Manning, 2016a; Wiseman et al., 2016). Long
short-term memories (LSTMs) are often used to
encode the syntactic and semantic information of
input sentences.

Articles and conversations include more than
one sentences. Considering the accuracy and ef-
ficiency of co-reference resolution models, the en-
coder LSTM usually processes input sentences
separately as a batch (Lee et al., 2017). The dis-
advantage of this method is that the models do not
consider the dependency among words from dif-
ferent sentences, which plays a significant role in
word representation learning and co-reference pre-
dicting. For example, pronouns are often linked
to entities mentioned in other sentences, while
their initial word vectors lack dependency infor-
mation. As a result, a word representation model
cannot learn an informative embedding of a pro-
noun without considering cross-sentence depen-
dency in this case.

It is also problematic if we encode the input
document considering cross-sentence dependency
and treat the entire document as one sentence. An
input article or conversation can be too long for a
single LSTM cell to memorize. If the LSTM up-
dates itself for too many steps, gradients will van-
ish or explode (Pascanu et al., 2013), and the co-
reference resolution model will be very difficult
to optimize. Regarding the entire input corpus as
one sequence instead of a batch also significantly
increases the time complexity of the model.

To solve the problem that traditional LSTM en-
coders, which treat the input sentences as a batch,
lack an ability to capture cross-sentence depen-
dency, and to avoid the time complexity and dif-
ficulties of training the model concatenating all
input sentences, we propose a cross-sentence en-
coder for end-to-end co-reference (E2E-CR). Bor-
rowing the idea of an external memory module
from Sukhbaatar et al. (2015), an external mem-
ory block containing syntactic and semantic in-
formation from context sentences is added to the
standard LSTM model. With this context mem-
ory block, the proposed model is able to encode
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input sentences as a batch, and also calculate the
representations of input words by taking both tar-
get sentences and context sentences into consider-
ation. Experiments showed that this approach im-
proved the performance of co-reference resolution
models.

2 Related Work

2.1 Co-reference Resolution
A popular method of co-reference resolution
is mention ranking (Durrett and Klein, 2013).
Reading each mention, the model calculates co-
reference scores for all antecedent mentions, and
picks the mention with the highest positive score
to be its co-reference. Many recent works are
based on this approach. Durrett and Klein (2013)
designed a set of feature templates to improve the
mention-ranking model. Peng et al. (2015) pro-
posed a mention-ranking model by jointly learn-
ing mention heads and co-references. Clark and
Manning (2016a) proposed a reinforcement learn-
ing framework for the mention ranking approach.
Based on similar ideas but without using parsing
features, the authors of Lee et al. (2017) proposed
the current state-of-the-art model which uses neu-
ral networks to embed mentions and calculate
mention and antecedent scores. Lee et al. (2018)
applied ELMo embeddings (Peters et al., 2018)
to improve within-sentence dependency modeling
and word representation learning. Wiseman et al.
(2016) and Clark and Manning (2016b) proposed
models using global entity-level features.

2.2 Language Representation Learning
Distributed word embeddings has been used as the
basic unit of language representation for over a
decade (Bengio et al., 2003). Pre-trained word em-
beddings, for example GloVe (Pennington et al.,
2014) and Skip-Gram (Mikolov et al., 2013) are
widely used as the input of natural language pro-
cessing models.

Long short-term memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997) are widely
used for sentence modeling. A single-layer LSTM
network was applied in the previous state-of-the-
art co-reference model (Lee et al., 2017) to gen-
erate word and mention representations. To cap-
ture dependency of longer distances, Campos et al.
(2017) proposed a recurrent model that outputs
hidden states by skipping input tokens.

Recently, memory networks (Sukhbaatar et al.,

2015) have been applied in language modeling
(Cheng et al., 2016; Tran et al., 2016). Applying
an attention mechanism on memory cells, memory
networks allow the model to focus on significant
words or segments for classification and genera-
tion tasks. Previous works have shown that apply-
ing memory blocks in LSTMs also improves long-
distance dependency extraction (Yogatama et al.,
2018).

3 Learning Cross-Sentence dependency

To improve the word representation learning
model for better co-reference resolution perfor-
mance, we propose two word representation mod-
els that learn cross-sentence dependency.

3.1 Linear Sentence Linking
Instead of treating the entire input document as
separate sentences and encode the sentences as
a batch with an LSTM, the most direct way to
consider cross-sentence dependency is to initial-
ize LSTM states with the encodings of adjacent
sentences. We name this method linear sentence
linking (LSL).

In LSL, we encode input sentences with a 2-
layer bidirectional LSTM. Give input sentences
[s1, s2 . . . sn], the outputs of the first layer are
[[�!s 1;

 �s 1], [
�!s 2;
 �s 2], . . . [

�!s n; �s n]]. In the sec-
ond LSTM layer, the initial state of the forward
LSTM of si is initialized as

�!
S i = [�!c 2

0; [
�!s i�1;

 �s i�1]]

while the backward state is initialized as

 �
S i = [ �c 2

0; [
�!s i�1;

 �s i�1]]

where ci
0 stands for the initial cell of the i-

th layer, and x stands for the final output of the
LSTMs in first layer. We then concatenate the out-
puts of the forward and backward LSTMs in the
second layer as the word representations for co-
reference prediction.

3.2 Attentional Sentence Linking
It is difficult for LSTMs to embed enough in-
formation about a long sentence into a low-
dimensional distributed vector. To collect richer
knowledge from neighbor sentences, we propose a
long short-term recurrent memory module and an
attention mechanism to improve sentence linking.

To describe the architecture of the proposed
model, we focus on adjacent input sentences si�1
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and si. We present the input embeddings of the
j-th word in the i-th sentence with xi,j .

3.2.1 Long Short-Term Memory RNNs
To solve the traditional recurrent neural networks,
Hochreiter and Schmidhuber (1997) proposed the
LSTM architecture. The detail of recurrent state
updating in LSTMs ht = flstm(xt, ht�1, ct�1) is
shown in following equations.

it = �(Wxixt + Whiht�1 + bi)

ft = �(Wxfxt + Whfht�1 + bf )

ct = ft � ct�1 + it � tanh(Wxcxt + Whcht�1 + bc)

ot = �(Wxoxt + Whoht�1 + bo)

ht = ot � tanh(ct)

where xt is the input embedding and ht is the
output representation of the t-th word.

3.2.2 LSTMs with Cross-Sentence Attention
We design an LSTM module with cross-sentence
attention for capturing cross-sentence dependency.
We name this method attentional sentence link-
ing (ASL). Considering input word xi,t in the i-
th sentence and all words from the previous sen-
tence Xi�1 = [xi�1,1, xi�1,2, . . . , xi�1,m], we re-
gard the matrix Xi�1 as an external memory mod-
ule and calculate an attention on its cells, where
each cell contains a word embedding.

↵j =
ecj

P
k eck

(1)

ck = fc([xi,t; ht�1; xi�1,k]
T ) (2)

With the attention distribution ↵, we can get
a vector summarizing related information from
si�1,

vi�1 =
X

j

↵j · xi�1,j (3)

The model decides if it needs to pay more at-
tention on the current input or cross-sentence in-
formation with a context gate.

gt = �(fg([xi,t; ht�1; vi�1]
T )) (4)

x̂i,t = gt · xi,t + (1� gt) · vi�1 (5)

�(·) stands for the Sigmoid function. The word
representation of the target word is calculated as

hi,t = flstm(x̂i,t, hi,t�1, ci,t�1) (6)

where flstm stands for standard LSTM update
described in section 3.2.1.

3.3 Co-reference Prediction
In this work, we apply the mention-ranking end-
to-end co-reference resolution (E2E-CR) model
proposed by Lee et al. (2017) for co-reference pre-
diction. The word representations applied in E2E-
CR model is formed by concatenating pre-trained
word embeddings and the outputs of LSTMs. In
our work, we represent words by concatenating
pre-trained word embeddings and the outputs of
LSL- and ASL-LSTMs.

4 Experiments

We train and evaluate our model on the English
corpus of the CoNLL-2012 shared task (Pradhan
et al., 2012). We implement our model based on
the published implementation of the baseline E2E-
CR model (Lee et al., 2017) 1. Our implementa-
tion is also available online for reproducing the re-
sults reported in this paper 2. In this section, we
first describe our hyperparameter setup, and then
show the experimental results of previous work
and our proposed models.

4.1 Model and Hyperparameter Setup
In practice, the LSTM modules applied in our
model have 200 output units. In ASL, we cal-
culate cross-sentence dependency using a multi-
layer perceptron with one hidden layer consisting
of 150 hidden units. The initial learning rate is
set as 0.001 and decays 0.001% every 100 steps.
The model is optimized with the Adam algorithm
(Kingma and Ba, 2014). We randomly select up to
40 continuous sentences for training if the input is
too long. In co-reference prediction, we select 250
candidate antecedents as our baseline model.

4.2 Experiment Results and Discussion
We evaluate our model on the test set of the
CoNLL-2012 shared task. The performance of
previous work and our model are shown in Table 1.
We mainly focus on the average F1 score of MUC,
B3, and CEAF metrics. Comparing with the base-
line model that achieved 67.2% F1 score, the
ASL model improved the performance by 0.6%
and achieved 67.8% average F1. Experiments

1https://github.com/kentonl/e2e-coref
2https://github.com/luohongyin/

coatt-coref
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MUC B3 Ceafe Avg.
Models Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

Wiseman et al. (2016) 77.5 69.8 73.4 66.8 57.0 61.5 62.1 53.9 57.7 64.2
Clark and Manning (2016b) 78.9 69.8 74.0 70.1 57.0 62.9 62.5 55.8 59.0 65.3
Clark and Manning (2016a) 79.2 70.4 74.6 69.9 58.0 63.4 63.5 55.5 59.2 65.7
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2

E2E-CR + LSL 81.0 71.5 76.0 72.6 59.4 65.3 65.0 57.5 61.0 67.4
E2E-CR + ASL 79.2 73.7 76.4 69.4 62.1 65.6 64.0 58.9 61.4 67.8

Table 1: Experimental results of previous models and cross-sentence dependency learning models on the CoNLL-
2012 shared task.

- I remember receiving an SMS like this one
last year before it snowed since snowfall would
affect road conditions in Beijing to a large extent.
- Uh-huh . However, it did not give people such
a special feeling as it did this time.

- Reporters are tired of the usual stand ups.
- They want to be riding on a train or walking
in the rain or something to get attention .

- Planned terrorist bombing that ripped a 20 x
40 - foot hole in the Navy destroyer USS Cole
in the Yemeni port of Aden.
- The ship was there for refueling.

- Yemeni authorities claimed they have
detained over 70 people for questioning.
- These include some Afghan - Arab volunteers.

Table 2: Examples predictions of the ASL model and
the baseline model.

show that the models that consider cross-sentence
dependency significantly outperform the baseline
model, which encodes each sentence from the in-
put document separately.

Experiments also indicated that the ASL model
has better performance than the LSL model, since
it summarizes extracts context information with
an attention mechanism instead of simply view-
ing sentence-level embeddings. This gives the
model a better ability to model cross-sentence de-
pendency.

Examples for comparing the performance of the
ASL model and the baseline are shown in Table
2. Each example contains two continuous sen-
tences with co-references distritubed in different
sentences. Underlined spans in bold are target
mentions and annotated co-references. Spans in

green are ASL predictions, and spans in red are
baseline predictions. A prediction on “-” means
that no mention is predicted as a co-reference.

Table 2 shows that the baseline model, which
does not consider cross-sentence dependency, has
difficulty in learning the semantics of pronouns
whose co-references are not in the same sentence.
The pretrained embeddings of pronouns are not in-
formative enough. In the first example, “it” is not
semantically similar with “SMS” in GloVe with-
out any context, and in this case, “it” and “SMS”
are in different sentences. As a result, if read-
ing this two sentences separately, it is hard for
the encoder to represent “it” with the semantics
of “SMS”. This difficulty makes the co-reference
resolution model either prediction a wrong an-
tecedent mention, or cannot find any co-reference.

However, with ASL, the model learns the se-
mantics of pronouns with an attention to words in
other sentences. With the proposed context gate,
ASL takes knowledge from context sentences if
local inputs are not informative enough. Based
on word represents enhanced with cross-sentence
dependency, the co-reference scoring model can
make better predictions.

5 Conclusion and Future Work

We proposed linear and attentional sentence link-
ing models for learning word representations that
captures cross-sentence dependency. Experiments
showed that the embeddings learned by proposed
models successfully improved the performance of
the state-of-the-art co-reference resolution model,
indicating that cross-sentence dependency plays
an important role in semantic learning in articles
and conversations consists of multiple sentences.
It worth exploring if our model can improve the
performance of other natural language processing
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applications whose inputs contain multiple sen-
tences, for example, reading comprehension, di-
alog generation, and sentiment analysis.
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Abstract
Lexicon relation extraction given distribu-
tional representation of words is an important
topic in NLP. We observe that the state-of-the-
art projection-based methods cannot be gener-
alized to handle unseen hypernyms. We pro-
pose to analyze it in the perspective of pol-
lution, that is, the predicted hypernyms are
limited to those appeared in training set. We
propose a word relation autoencoder (WRAE)
model to address the challenge and construct
the corresponding indicator to measure the
pollution. Experiments on several hypernym-
like lexicon datasets show that our model out-
performs the competitors significantly.

1 Introduction

This paper discusses the inference of relations be-
tween words. For the hypernym beer IsA drink, ,
denoted as IsA(x, y), beer is the hyponym x and
drink serves as the hypernym y. Relation lexi-
cons are precious resource for NLP systems, while
constructing the semantic graphs such as Word-
Net (Fellbaum, 1998) and ConceptNet (Speer and
Havasi, 2012) requires expensive human efforts
for labeling.

Recently, researchers have started working on
extracting word relations based on pre-trained
word embedding without the need of an exist-
ing corpus, thanks to the success of distributional
word representation models such as GloVe (Pen-
nington et al., 2014).

Comparing with hypernym classification mod-
els (Lenci and Benotto, 2012; Weeds et al., 2014;
Levy et al., 2015; Vylomova et al., 2016) that take
a pair of entities (x,y) as inputs and output a binary

Query Answer
beef ! meat ⇡ crab ! ? seafood
tiger ! zoo ⇡ dolphin ! ? aquarium
paint ! artist ⇡ book ! ? writer
japan ! asia ⇡ italy ! ? europe

Table 1: Unseen relation extraction examples for IsA,
AtLocation, CreatedBy, and PartOf (top row to bottom
row) in ConceptNet. The answers are not appeared in
training.

decision about the existence of relation, there has
been less work focusing on hypernym extraction
task. It is a challenging task to automatically ex-
tract all possible hypernyms of a given hyponym
query, especially the unlabeled ones, from the vo-
cabularies.

Classification-based models are not applicable
for this task because the complexity of inference
is O(V ), where V is the size of vocabulary that
often scales to billions.

Among the existing solutions, projection-based
methods (Fu et al., 2014; Yamane et al., 2016;
Espinosa-Anke et al., 2016; Ustalov et al., 2017)
emphasize on hypernym extraction which intu-
itively represent a relation as y � x according to
the linear structure of word embedding. By di-
rectly learning a linear mapping � between two
words such that x� = y, the prediction ŷ can be
obtained with nearest neighbor search for x� in
the word embedding space. Moreover, the poten-
tial candidates of y are not required to be seen in
advance so that the method can be used to predict
unseen hypernym directly.

Fu et al. (2014) further observe the existence of
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cluster structures in relation representation y � x
and propose to learn a piecewise linear mapping
such that x�k = y for each cluster Ck. Their ex-
periments show that domain clustering on training
offset is very useful for hypernym identification.

However, we observe that each cluster contains
very few distinct hypernyms. For instance, about
83% of the clusters contain fewer than 5 hyper-
nyms for ConceptNet-IsA in our experiments. Hy-
pernyms can be seen as the collections of related
word pairs, e.g., IsA(dog, animal), IsA(cat, ani-
mal), IsA(horse, animal), ... etc. The piecewise
projection matrices can hardly learn the inference
between hyponyms and hypernyms but only mem-
orize some words which serve as the hypernyms
in the training data. Inevitably, the state-of-the-art
models using piecewise projection learning face
generalization problem and fail to predict unseen
hypernyms correctly.

We design a novel Word Relation Autoen-
coder (WRAE) framework, which adopts the con-
ditional autoencoder structure (x ! r ! x0) that
encodes hyponyms and reconstructs itself by de-
coding from r = y � x. The weights of encoder
are further tied with decoder which is imposed to
learn how to separate the hypernym and the hy-
ponym from the relation vectors and extract the
hyponym x with the intention to optimize recon-
struction loss, thus effectively mitigates the men-
tioned generalization problem.

We summarize our main contributions as fol-
lows: (1) We propose a novel, yet more general
scenario for relation extraction to handle unseen
hypernyms. (2) We propose an intuitive pollu-
tion indicator that allows us to empirically mea-
sure whether the model learns the inference be-
tween a relation pair or not. (3) We propose a
novel Word Relation Autoencoder (WRAE) which
can effectively reduce pollution. We conduct thor-
ough experiments to show that our model outper-
forms the competitors, and can be applied to other
hypernym-like relations.

2 Related Work

Fu et al. (2014) first apply projection learning for
generalized hypernym extraction by learning a lin-
ear transformation from a hyponym word embed-
ding to the corresponding hypernym word vector.
They further conduct piecewise projection learn-
ing, i.e., learning a projection matrix for each clus-
ter and harvest significant improvements by first

applying k-means clustering. They perform train-
ing with stochastic gradient descent methods, im-
plying good potential for attaching different reg-
ularizers for optimization. Several recent works
also follow the schema as the one proposed by
Espinosa-Anke et al. (2016) and operate the sim-
ilar model at the sense level and took advan-
tage of domain clustering to discover hypernyms
through domain adaption between different top-
ics. Yamane et al. (2016) focus on improving the
performance through better cluster assignments
by learning clustering and the projections jointly.
Ustalov et al. (2017) propose several regulariza-
tion terms in addition to the original loss function
(Fu et al., 2014) using extra synonym pairs or the
asymmetric property of hypernym. Nayak (2015)
provides detailed technical studies on piecewise
projection models.

Our work differs from all of them, as we empha-
size on the setting that all hyponyms and hyper-
nyms in testing vocabulary are not seen in train-
ing.

3 Model Formulation

3.1 Piecewise Projection
Piecewise projection learning (Fu et al., 2014)
serves as our baseline. The objective is to learn
a relation transform from x to y on training pairs
(x, y). Piecewise projection matrix �k is learned
separately for each cluster, after applying k-means
clustering on the offset of training using y � x be-
tween each pair.

min
�k

1

|Ck|
X

(x,y)2Ck

kx�k � yk2
2 , (1)

where Ck represents the size of the kth cluster.
In addition, we also examine a simple solution
of L2-penalized projection learning model which
imposes a L2 constraint on � in Equation 1, i.e.,
↵ k�kk2

2.

3.2 Word Relation Autoencoder (WRAE)
Our model takes the form of an autoencoder. As
shown in Equation 2,

min
�k

1

|Ck|
X

(x,y)2Ck

kx � x�k�
⇤
kk

2
2 , (2)

where x�k = y � x. Here we adopt the simplify-
ing trick (Kodirov et al., 2017a) to tie with the con-
straint (Ranzato et al., 2008) �⇤ = �T . Note that

4835



the L2-norm regularization term is not necessary
for WRAE to avoid overfitting since the constraint
of �⇤ = �T guarantees k�k2

2 cannot be large oth-
erwise the reconstruction loss will be bad. Also,
the learning process is more efficient.

To release the constraint of x�k = y � x, the
objective can be further split into two terms:

min
�k

1

|Ck|
X

(x,y)2Ck

(kx�k � (y � x)k2
2

+�
��(y � x)�T

k � x
��2

2
),

(3)

where � is a weighting constant.
We find that learning relation mapping from

x ! (y�x) instead of x ! y effectively mitigates
the pollution problem (Lazaridou et al., 2015).
A prediction is said to be polluted if the nearest
neighbor of predicted ŷ matches a hypernym ap-
peared in training set. The operation fundamen-
tally solves the cause of pollution since each pair
of input and output becomes (x, y � x) instead of
(x, y). Unlike projecting to a small number of tar-
get y, the target y�x obviously differs from pair to
pair thus avoiding simply overfitting the lexicons.

Conceptually, WRAE learns to extract the hy-
ponym x from the relation vectors r = y � x to
optimize on the reconstruction loss. By encourag-
ing the projection to learn the relationship between
a word pair, WRAE effectively mitigates the men-
tioned generalized problem.

Our model is related to Semantic Autoencoder
(SAE) (Kodirov et al., 2017b). With the latent re-
lation directly associates with input x, WRAE can
be regarded as a special conditional SAE where
the condition is the input itself and is incorporated
into the middle layer.

Relation #Pair #Head #Tail
IsA 78073 21714 62455
AtLocation 39916 10100 11311
PartOf 14231 9784 5519
CreatedBy 503 385 414

Table 2: Relations from ConceptNet. For a relation pair
x ! y, x is the head and y is the tail.

4 Experiments
4.1 Setup
Different from the experimental setup in previous
works (Fu et al., 2014; Ustalov et al., 2017; Ya-
mane et al., 2016) that do not assume the candi-
date hypernyms are unseen, in our experiments the

vocabulary sets for training and testing are com-
pletely disjoint, i.e., all vocabularies in testing are
not seen in training at all.

To further examine the generality of our model,
we collect several hypernym-like relations listed
in Table 2 from ConceptNet semantic graph. Con-
sidering the property of these relations, we treat
the head and tail words of a pair as the x and y
for our models similar to hyponym and hypernym,
respectively. Examples are in Table 1.

We split the datasets with ratios 0.7, 0.2, and
0.1 for training, testing, and validation, respec-
tively. For all results, we report the mean of 30
random splits. We test two different settings, one
uses k-means clustering and one does not (k = 1).
We tune the number of cluster k unsupervisedly
with the Silhouette score (Rousseeuw, 1987) on
validation. The projection matrices are optimized
with the Adam method (Kingma and Ba, 2014)
with learning rate = 1e�3. We adopt the GloVe
(Pennington et al., 2014) 300d pre-trained word
embeddings1 which are trained on 6B token cor-
pus (Wikipedia 2014 + Gigaword 5) with 400,000
words.

4.2 Evaluation Metrics

Hit Rate
To evaluate the precision of returned hypernyms,
we follow Ustalov et al. (2017) and Kodirov et al.
(2017a) using the hit rate measure (Frome et al.,
2013). We also adopt area under curve (AUC)
measure which computes the averaged area under
the l � 1 trapezoids of hit@l to take the ranks of
ground truth into consideration:

AUCl =
1

2(l � 1)

l�1X

i=1

(hit@i + hit@(i + 1)),

(4)

Soft Pollution
To evaluate the degree of pollution of the extracted
hypernym, we adopt a metric similar to Lazaridou
et al. (2015). A prediction is said to be polluted
if the nearest neighbor of predicted ŷ matches a
hypernym appears in the training set, noted as a
binary function pol1(ŷ).

However, it is possible that ground truth unseen
hypernyms are be very close to some seen hyper-
nyms in Ytrain in real cases. We take ground truths

1https://nlp.stanford.edu/projects/glove/
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Relation Hit Rate Pollution Hit Rate Pollution
Model hit10 hit30 AUC30 pol1 polsoft

30 hit10 hit30 AUC30 pol1 polsoft
30

IsA* k=1 k=25
Proj. .110 .157 .107 .715 .223 .090 .137 .087 .721 .232
Proj.+L2 .112 .172 .108 .712 .223 .090 .139 .088 .719 .231
WRAE-Y .120 .190 .110 .691 .220 .096 .146 .089 .720 .230
WRAE† .124 .194 .122 .602 .191 .164 .249 .160 .124 .034
AtLocation k=1 k=25
Proj. .075 .149 .103 .707 .115 .131 .220 .149 .782 .094
Proj.+L2 .083 .161 .110 .693 .113 .129 .222 .149 .796 .096
WRAE-Y .086 .166 .127 .699 .112 .129 .236 .153 .782 .094
WRAE† .122 .224 .152 .409 .063 .148 .261 .174 .191 .024
CreatedBy k=1 k=10
Proj. .016 .040 .026 .625 .226 .054 .103 .059 .819 .591
Proj.+L2 .016 .044 .030 .624 .227 .050 .099 .048 .818 .592
WRAE-Y .021 .060 .031 .586 .151 .057 .103 .052 .819 .591
WRAE† .070 .131 .095 .191 .067 .142 .243 .156 .071 .048
PartOf k=1 k=45
Proj. .335 .434 .341 .660 .187 .260 .405 .294 .796 .224
Proj.+L2 .340 .439 .344 .660 .188 .263 .407 .292 .793 .224
WRAE-Y .342 .449 .350 .644 .182 .267 .411 .297 .793 .222
WRAE† .355 .464 .370 .546 .149 .437 .539 .440 .117 .038

Table 3: Performance on ConceptNet relation dataset. †: all results pass the hypothesis test against the other
models with p < 0.01. *: for IsA, we report hit@5 and hit@10. For hit rates, the higher the better. For pollution,
the lower the better.

into consideration:

polsoft
l (ŷ, y) = ⇢ · pol1(ŷ), y 2 Ytest,

⇢ =

(
1, if NNl(y) \ Ytrain = �,

2
n�1
l�1 � 1, otherwise,

(5)

where n is for the top n nearest neighbors (from
1 to l) of y that appears in Ytrain and ⇢ is a
factor term exponentially decreases from 1 to 0
along with the increase of n therefore provides a
smoother estimation. With pollution indications,
one can understand to what degree the model suf-
fers from overfitting on the seen examples. � is the
empty set. Note that it is reasonable to set l equal
for both hit rate and soft pollution.

4.3 Results: Unseen General Hypernym-Like
Relation Extraction

We report two sets of results for all models, one
with clustering and one without (k = 1). As
shown in Table 3, WRAE outperforms the com-
petitors significantly with and without clustering.
The naive application of Equation 2 which set
x�k = y, denoted as WRAE-Y, consistently ranks

second. The y � x operation is crucial to avoid
pollution thus guarantees the generalization power
of the mapping. Apply simple L2-norm regular-
ization Equation 1 for Proj., denoted as Proj.+L2,
only slightly improves the performance. The re-
sults in Table 3 supports our hypothesis that Proj.
models deteriorate significantly for larger k, due
to lack of training examples for hypernyms in each
cluster. We prove that WRAE is effective against
pollution. The role of regularizer is important for
decoders to optimize towards better objective.

The negative effects derived from pollution im-
pact accuracy. We observe severe pollution prob-
lem in simple projection learning. Take IsA as
example, in k = 1 group the pol1 is about 71%
for Proj., which implies about two of out of three
returned predictions are data points from training
data. Our WRAE reduces the pollution pol1 to
60% and 12% after clustering. The improvement
on accuracy supports that pollution indication re-
flects the inherent overfitting problem. In general,
results are consistent with our claims that pollution
can be viewed as valid negative indicators.

Across the board, the performance should ben-
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efit from domain clustering if pollution is handled
properly as the experiments showed.

5 Conclusion

We present an unseen hypernym extraction frame-
work and analyze the pollution problem with this
setup. Consequently we argue that only by us-
ing unseen candidates in evaluation can truly test
whether the model learns the true relation repre-
sentation, instead of being polluted by the seen
training examples. Future work includes relation
discovery, which is to identify new relations be-
sides hypernyms in an unsupervised manner.
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Abstract
In this paper, we propose a simple method
for refining pretrained word embeddings us-
ing layer-wise relevance propagation. Given
a target semantic representation one would
like word vectors to reflect, our method first
trains the mapping between the original word
vectors and the target representation using a
neural network. Estimated target values are
then propagated backward toward word vec-
tors, and a relevance score is computed for
each dimension of word vectors. Finally, the
relevance score vectors are used to refine the
original word vectors so that they are projected
into the subspace that reflects the information
relevant to the target representation. The eval-
uation experiment using binary classification
of word pairs demonstrates that the refined
vectors by our method achieve the higher per-
formance than the original vectors.

1 Introduction
The recent success of neural NLP is partially but
largely due to the development of word embedding
techniques (Goldberg, 2017). Although a consid-
erable number of studies have been made on train-
ing word embeddings from distributional informa-
tion of language (Mikolov et al., 2013; Penning-
ton et al., 2014; Bojanowski et al., 2017; Nickel
and Kiela, 2017), one recent research trend is to
refine or fine-tune pretrained word embeddings.
One promising approach is the use of other in-
formation such as multimodal information (Bruni
et al., 2014; Kiela et al., 2014; Kiela and Clark,
2015; Kiela et al., 2015a; Silberer et al., 2017) and
language resources (Faruqui et al., 2015; Faruqui
and Dyer, 2015; Kiela et al., 2015b; Rothe and
Schütze, 2017; Yu and Dredze, 2014). Other
refinement methods include task-specific embed-
dings (Bolukbasi et al., 2016; Yu et al., 2017) and
the selective use of multiple embeddings (Bolle-
gala et al., 2017; Kiela et al., 2018).

In this paper, we propose a different approach to
refining pretrained word embeddings so that word
vectors reflect the information relevant for a spe-
cific knowledge. Our method utilizes layer-wise
relevance propagation (Bach et al., 2015; Samek
et al., 2017), which has been proposed as a general
framework for decomposing predictions of mod-
ern AI systems, in particular deep learning sys-
tems. The basic idea of layer-wise relevance prop-
agation is to quantitatively measure the contribu-
tion of each fragment of an input vector (e.g., a
single pixel of an image) to the prediction as a rel-
evance score. Using relevance scores, our method
projects word vectors into the subspace that better
reflects the target knowledge. The assumption un-
derlying our approach is that the information for
any given target knowledge is contained in pre-
trained word embeddings. Our method attempts
to make the best use of the information contained
in word vectors by estimating the importance in
reflecting a target knowledge.

To the best of our knowledge, this paper is the
first to employ the technique of layer-wise rele-
vance propagation for refining word embeddings.
Our method can be applied to word vectors x

trained by any word embedding method. This im-
plies that our method does not compete with other
refinement methods, but they are complementary;
it can be used for word vectors refined by other
methods. In addition, our method can refine word
vectors for any target knowledge y, from a single
binary value to a structured representation, as long
as a function y = f(x) can be learned.

2 Method for Refining Word Vectors

Our method comprises the following three steps:
(1) it trains a prediction function from a pretrained
word vector to a target representation; (2) com-
putes a relevance score for each dimension of the
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word vector; and (3) projects word vectors into the
subspace using the relevance scores. In this sec-
tion, these three steps are explained in detail.

2.1 Training the Prediction Function
Given pairs of an input word vector x

(i) to be re-
fined and a target knowledge representation y

(i)

for a word w(i), the proposed method trains a func-
tion y

(i) = f(x(i)). In this paper, we use a neural
network as a learning method, but other learning
methods such as linear transformation and SVM
can also be used. Note that a scalar value or a class
label can be used as a target representation y

(i).

2.2 Computing Relevance Scores
This step derives an explanation of the predic-
tion in terms of input variables, namely the impor-
tance of each dimension of a word vector x

(i) for
the prediction ŷ

(i) = f(x(i)). In layer-wise rele-
vance propagation, the score of the correct predic-
tion ŷ(i)

j is redistributed backward using relevance
propagation rules. By repeatedly applying prop-
agation rules, it assigns a relevance score r(i,j)

k to
each dimension x(i)

k of a word vector x
(i). As a re-

sult, a relevance score vector r
(i,j) is obtained for

each word vector x
(i) and target dimension y(i)

j .
Among a number of propagation rules (Bach

et al., 2015), we use the “alpha-beta” rule for mul-
tilayer neural networks. The relevance score R(l)

i

of the i-th unit u(l)
i in the l-th layer is a function of

upper-layer relevances R(l+1)
j defined by:

R(l,l+1)
i j = R(l+1)

j ·
 

↵
z+
ijP
i z

+
ij

+ �
z�ijP
i z
�
ij

!
(1)

R(l)
i =

X

j

R(l,l+1)
i j (2)

z(l,l+1)
ij = x(l)

i w(l,l+1)
ij (3)

where x(l)
i is an activation of the unit u(l)

i , w(l,l+1)
ij

is a weight connecting u(l)
i to u(l+1)

j , and z+
ij and

z�ij denote the positive and negative part of z(l,l+1)
ij .

As a result, relevance scores r(i,j)
k of the word vec-

tor x
(i) and the target dimension y(i)

j are obtained

as relevance scores R(1)
k of the input layer. The

parameters ↵ and � denote the importance of pos-
itive and negative evidence for predicting a tar-
get representations and should be chosen such that
↵ + � = 1. In this paper, we assume that posi-

tive and negative evidence equally contributes to
the prediction and thus set ↵ = � = 0.5.

2.3 Projecting Word Vectors into a Subspace
The basic idea of projection is that n-dimensional
word vectors are projected into m-dimensional
vectors whose relevance scores are more than or
equal to a threshold ✓R.

First, for a target dimension j of y, relevance
score vectors are averaged over words relevant to
the target dimension as follows:

r
(j) = g2

 P
wi2Vj

g1(r(i,j))

|Vj |

!
(4)

{g1(x)}i =

(
xi (xi � ✓R1)

0 (otherwise)

{g2(x)}i =

(
xi

maxi xi
( xi
maxi xi

� ✓R2)

0 (otherwise)

where Vj is a set of words w(i) such that ŷ(i)
j � ✓T .

The functions g1 and g2 are used for downplay-
ing irrelevant dimensions. For example, the tar-
get knowledge is the property of Visually dark and
Vvisually dark is {chocolate, crow, night}. By aver-
aging relevance score vectors of these words, we
obtain the mean relevance vector r

(visually dark)

that represents the importance of word vector di-
mension in predicting whether a given word has
the property of Visually dark.

Finally, using the mean relevance vector r
(j),

word vectors xi is transformed into vectors z
(j)
i

of a subspace for the target dimension. This
is achieved by weighting xi by component-wise
multiplication of xi and r

(j) and removing the di-
mensions of zero relevance. Formally, the projec-
tion is defined by the n by m projection matrix
T

(j) as follows:

z
(j)
i = xiT

(j) (5)

T (j)
ik =

8
<

:

r(j)
i (r(j)

i > 0 and it is the k-th
nonzero dimension of r

(j))
0 (otherwise)

(6)

3 Evaluation Experiment

In order to justify the effectiveness of the proposed
method, we conducted an evaluation experiment
using binary classification of word pairs.

Corpus: All word vectors were trained on
the Corpus of Contemporary American English
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Domain Properties
Vision Vision, Bright, Dark, Color, Pattern, Large,

Small, Motion, Biomotion, Fast, Slow,
Shape, Complexity, Face, Body

Somatic Touch, Temperature, Texture, Weight, Pain
Audition Audition, Loud, Low, High, Sound, Music,

Speech
Gustation Taste
Olfaction Smell
Motor Head, UpperLimb, LowerLimb, Practice
Spatial Landmark, Path, Scene, Near, Toward, Away,

Number
Temporal Time, Duration, Long, Short
Causal Caused, Consequential
Social Social, Human, Communication, Self
Cognition Cognition
Emotion Benefit, Harm, Pleasant, Unpleasant, Happy,

Sad, Angry, Disgusted, Fearful, Surprised
Drive Drive, Needs
Attention Attention, Arousal

Table 1: 65 properties in Binder et al.’s (2016) dataset

(COCA), which includes 0.56G word tokens.
Words that occurred less than 30 times in the cor-
pus were ignored, resulting in the vocabulary of
108,230 words. Three context windows of size 3,
5, and 10 were used for training.

Word embedding: We used two representative
models, namely skip-gram with negative sampling
(SGNS) (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). We trained 100-, 200- and
300-dimensional word vectors from the corpus.

Target knowledge representation: We used
Binder et al.’s (2016) brain-based semantic vec-
tors of 535 words as a target representation. 1 This
representation comprises 65 properties in Table 1,
which are based entirely on functional divisions in
the human brain. Each word is represented as a
65-dimensional vector and each dimension corre-
sponds to one of these properties. Each value of
the brain-based vectors represents the salience of
the corresponding property, which is calculated as
a mean salience rating on a 7-point scale ranging
from 0 to 6. Because these properties are based on
not only perceptual properties but also a variety of
other properties such as affective, social, and cog-
nitive ones, this dataset is suitable for evaluation.

Refining word vectors: The prediction func-
tion f was trained using a three-layer neural net-
work comprising an input layer for n-dimensional
word vectors, one hidden layer with n/2 sigmoid
units, and a linear output layer. The parameters
✓T , ✓R1 and ✓R2 for projection were estimated us-

1http://www.neuro.mcw.edu/semanticrepresentations.html

Bright, Dark, Color, Pattern, Large, Small, Motion,
Fast, Slow, Shape, Temperature, Texture, Weight, Loud,
Sound, Taste, Smell, Fearful

Table 2: 18 properties in CSLB dataset

ing 10-fold cross-validation and grid search. 2

Task: We used a binary classification task of
judging whether a pair of words is similar or not
with respect to each property of Table 1. For ex-
ample, night and chocolate should be judged as
similar with respect to the property of Dark, while
night and ice should be judged as dissimilar with
respect to that property. For each property, we
chose 10 words with the highest salience and 10
words with the lowest salience from the vocabu-
lary of brain-based vectors, and generated 45 high-
salience word pairs and 100 pairs of high-salience
and low-salience words. Note that we did not
consider low-score word pairs because it does not
make sense to ask whether words (e.g., peace and
wit) that do not have a property (e.g., Dark) are
similar with respect to that property.

To confirm the generality of our method, we
also generated another evaluation dataset for un-
trained words (i.e., words not included in Binder
et al.’s vocabulary) using CSLB concept property
norms of 638 words (Devereux et al., 2014). 3 Af-
ter removing words contained in Binder et al.’s vo-
cabulary, we chose properties that were closely re-
lated to Binder et al.’s properties and possessed by
at least 10 words. As a result, the generated dataset
contained 18 properties listed in Table 2, because
the property norm mainly includes perceptual and
functional properties.

Binary classification was carried out by com-
puting cosine similarity between vectors of paired
words and classifying the n highest pairs into sim-
ilar pairs. Hence, the classification performance
was measured by average precision.

4 Results

Table 3 shows mean average precisions across
65 properties for the original word embeddings
(Orig) and the refined embeddings by our method
(Refn). The asterisk indicates that the mean av-
erage precision of the refined vectors is signifi-

2The range in grid search was [3.0, 4.5] with a step size of
0.1 for ✓T , [0.0, 0.02n] with a step size of 0.001n for ✓R1 of
n hundred word vector dimension, and [0.0, 0.7] with a step
size of 0.05 for ✓R2 .

3https://cslb.psychol.cam.ac.uk/propnorms
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SGNS GloVe
win dim Orig Refn Orig Refn

10 300 75.3 78.6* 67.4 70.4*
10 200 75.9 79.3* 67.8 73.7*
10 100 76.1 77.0* 68.7 71.6*
5 300 75.4 78.8* 67.7 71.8*
5 200 75.6 79.4* 68.0 73.9*
5 100 77.2 78.3 68.9 70.1
3 300 75.5 79.3* 67.6 71.5*
3 200 76.5 77.9* 68.2 70.8*
3 100 77.4 79.0* 68.4 71.2*

Table 3: Mean average precision for Binder et al.’s
(2016) dataset

Figure 1: A scatterplot of average precision of the orig-
inal versus refined vectors for 65 properties in the case
of SGNS with win= 5 and dim= 200. The diagonal
reference line y = x indicates that the original and re-
fined vectors have equal precision.

cantly higher than that of the original vectors by
Wilcoxon signed-rank test (p< .05). For all word
embeddings, the refined vectors achieved higher
mean average precision than the original ones.
Furthermore, in almost all cases, the improvement
is statistically significant. This result demonstrates
that the proposed method is successful in refining
word embeddings so that vector similarity better
reflects the target knowledge.

Figure 1 depicts the difference of average pre-
cision between the original word vectors and the
refined vectors for each target property. Most of
the properties are plotted above the diagonal ref-
erence line, indicating that these properties are
better represented by the refined vectors. Note

SGNS GloVe
win dim Orig Refn Orig Refn

10 300 57.9 60.4* 56.8 58.5
10 200 58.0 59.3 56.3 56.6
10 100 58.8 58.3 55.9 56.0
5 300 58.8 61.1* 56.4 59.3*
5 200 58.5 62.6* 55.6 56.8
5 100 58.9 60.9 56.5 55.5
3 300 58.5 58.8 55.2 55.6
3 200 58.9 59.3 54.5 54.1
3 100 59.3 58.8 53.5 54.4

Table 4: Mean average precision for CSLB property
norm dataset

that properties plotted below the diagonal line, for
which refined word vectors yielded lower preci-
sion than the original vectors, are sensorimotor or
spatiotemporal properties. This result is consis-
tent with Utsumi’s (2018) finding that these kinds
of knowledge are less likely to be encoded in word
vectors.

Table 4 shows the result of binary classification
for CSLB property norm dataset. In most cases,
the refined vectors of untrained words also yielded
better performance than the original vectors. In
some cases, however, refinement did not improve
the performance. One of the reasons for this fail-
ure would be that a small set of vocabulary words
in Binder et al.’s (2016) dataset is not enough for
the subspace to generalize to untrained words.

To confirm whether the projected subspace bet-
ter reflects the target knowledge than the original
space, we visualize both spaces using MDS in Fig-
ure 2. Although all 535 words are embedded into
the two-dimensional space, Figure 2 only shows
words used in binary classification task, namely
words with the 10 highest salience (denoted by
red dots) and 20 lowest salience for a given prop-
erty. As shown in Figure 2, our method refines the
vectors of salient words to be more similar in the
subspace, while preserving the other similarity of
words.

5 Related Work

Prior work on word embedding refinement can
be classified into general purpose refinement and
specific target refinement. Many existing stud-
ies have attempted to refine word vectors to im-
prove the performance of general-purpose simi-
larity computation. These studies generally re-
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(a) Property Dark

(b) Property Time

(c) Property Pleasant

Figure 2: Two-dimensional MDS visualization of the
original space (trained by SGNS with win= 5 and
dim= 200) and the projected subspace (✓T = 3.0,
✓R1 = 0.026 and ✓R2 = 0.10). Left: Original space,
Right: Projected subspace

fine word vectors by solving an optimization prob-
lem whose objective function reflects the simi-
larity obtained by language resources, such as
WordNet (Faruqui et al., 2015; Yu and Dredze,
2014; Rothe and Schütze, 2017), Freebase (Rothe
and Schütze, 2017), Paraphrase Database (Faruqui
et al., 2015; Yu and Dredze, 2014), free associ-
ation norm (Kiela et al., 2015b), and dictionary
(Wang et al., 2015). Our method differs from them
in that it is proposed for specific target refinement.
In other words, the refined vectors by general pur-
pose refinement method can be further refined to
extract a specific knowledge by our method.

Most prior studies for specific purpose refine-
ment propose a method specialized for a specific
task such as sentiment analysis (Labutov and Lip-
son, 2013; Tang et al., 2016; Yu et al., 2017) and
lexical entailment (Mrkšić et al., 2016; Vulić and
Mrkšić, 2018). On the other hand, our method

refines word vectors for a specific knowledge or
task, but it is not specialized for a knowledge or
task.

Rothe et al. (2016) and Rothe and Schütze
(2016) are conceptually similar to our approach;
their method refines word vectors for a specific
knowledge but it is not specialized for a certain
task. The merit of our method is that any types of
representation can be used as a target, while their
method is limited to binary labels. Furthermore,
while their method learns an orthogonal transfor-
mation of pretrained word vectors by directly op-
timizing the objective function, our method can
project word vectors to a subspace independent of
training method for a prediction function.

6 Conclusion

In this paper, we propose a method for refin-
ing pretrained word vectors using layer-wise rele-
vance propagation. We demonstrated that the pro-
posed method can refine word vectors so that they
better reflect the target knowledge. One of our mo-
tivation is to make embeddings more interpretable
and useful. In other studies (Utsumi, 2015, 2018),
we have analyzed the internal knowledge encoded
in text-based word embeddings, while this study is
the first step toward a general method for utilizing
the internal knowledge of word embeddings.

In future work, we have to modify the refine-
ment method by relevance propagation to be more
effective by exploring the mechanism of how the
internal knowledge of word vectors is extracted by
multilayer neural networks and examining the ef-
fectiveness of other relevance propagation meth-
ods. It would also be vital for future work to ex-
plore efficient combinations with other refinement
methods using language resources.
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Abstract

Word embedding models have become a fun-
damental component in a wide range of
Natural Language Processing (NLP) appli-
cations. However, embeddings trained on
human-generated corpora have been demon-
strated to inherit strong gender stereotypes that
reflect social constructs. To address this con-
cern, in this paper, we propose a novel training
procedure for learning gender-neutral word
embeddings. Our approach aims to preserve
gender information in certain dimensions of
word vectors while compelling other dimen-
sions to be free of gender influence. Based on
the proposed method, we generate a Gender-
Neutral variant of GloVe (GN-GloVe). Quanti-
tative and qualitative experiments demonstrate
that GN-GloVe successfully isolates gender
information without sacrificing the functional-
ity of the embedding model.

1 Introduction

Word embedding models have been designed for
representing the meaning of words in a vector
space. These models have become a fundamen-
tal NLP technique and have been widely used
in various applications. However, prior stud-
ies show that such models learned from human-
generated corpora are often prone to exhibit so-
cial biases, such as gender stereotypes (Bolukbasi
et al., 2016; Caliskan et al., 2017). For example,
the word “programmer” is neutral to gender by its
definition, but an embedding model trained on a
news corpus associates “programmer” closer with
“male” than “female”.

Such a bias substantially affects downstream
applications. Zhao et al. (2018) show that a coref-
erence resolution system is sexist due to the word
embedding component used in the system. This
concerns the practitioners who use the embedding
model to build gender-sensitive applications such

as a resume filtering system or a job recommenda-
tion system as the automated system may discrimi-
nate candidates based on their gender, as reflected
by their name. Besides, biased embeddings may
implicitly affect downstream applications used in
our daily lives. For example, when searching for
“computer scientist” using a search engine, as this
phrase is closer to male names than female names
in the embedding space, a search algorithm us-
ing an embedding model in the backbone tends to
rank male scientists higher than females’, hinder-
ing women from being recognized and further ex-
acerbating the gender inequality in the community.

To alleviate gender stereotype in word embed-
dings, Bolukbasi et al. (2016) propose a post-
processing method that projects gender-neutral
words to a subspace which is perpendicular to
the gender dimension defined by a set of gender-
definition words.1 However, their approach has
two limitations. First, the method is essentially a
pipeline approach and requires the gender-neutral
words to be identified by a classifier before em-
ploying the projection. If the classifier makes
a mistake, the error will be propagated and af-
fect the performance of the model. Second, their
method completely removes gender information
from those words which are essential in some do-
mains such as medicine and social science (Back
et al., 2010; McFadden et al., 1992).

To overcome these limitations, we propose a
learning scheme, Gender-Neutral Global Vectors
(GN-GloVe) for training word embedding mod-
els with protected attributes (e.g., gender) based
on GloVe (Pennington et al., 2014).2 GN-GloVe
represents protected attributes in certain dimen-

1Gender-definition words are the words associated with
gender by definition (e,g., mother, waitress); the remainder
are gender-neutral words.

2The code and data are released at https://github.
com/uclanlp/gn_glove
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sions while neutralizing the others during training.
As the information of the protected attribute is re-
stricted in certain dimensions, it can be removed
from the embedding easily. By jointly identifying
gender-neutral words while learning word vectors,
GN-GloVe does not require a separate classifier
to identify gender-neutral words; therefore, the er-
ror propagation issue is eliminated. The proposed
approach is generic and can be incorporated with
other word embedding models and be applied in
reducing other societal stereotypes.

Our contributions are summarized as follows:
1) To our best knowledge, GN-GloVe is the first
method to learn word embeddings with protected
attributes; 2) By capturing protected attributes in
certain dimensions, our approach ameliorates the
interpretability of word representations; 3) Qual-
itative and quantitative experiments demonstrate
that GN-GloVe effectively isolates the protected
attributes and preserves the word proximity.

2 Related Work

Word Embeddings Word embeddings serve as
a fundamental building block for a broad range
of NLP applications (dos Santos and Gatti, 2014;
Bahdanau et al., 2014; Zeng et al., 2015) and
various approaches (Mikolov et al., 2013b; Pen-
nington et al., 2014; Levy et al., 2015) have
been proposed for training the word vectors. Im-
provements have been made by leveraging se-
mantic lexicons and morphology (Luong et al.,
2013; Faruqui et al., 2014), disambiguating mul-
tiple senses (Šuster et al., 2016; Arora et al., 2018;
Upadhyay et al., 2017), and modeling contextual-
ized information by deep neural networks (Peters
et al., 2018). However, none of these works at-
tempts to tackle the problem of stereotypes exhib-
ited in embeddings.

Stereotype Analysis Implicit stereotypes have
been observed in applications such as on-
line advertising systems (Sweeney, 2013), web
search (Kay et al., 2015), and online reviews (Wal-
lace and Paul, 2016). Besides, Zhao et al. (2017)
and Rudinger et al. (2018) show that coreference
resolution systems are gender biased. The sys-
tems can successfully predict the link between
“the president” with male pronoun but fail with
the female one. Rudinger et al. (2017) use point-
wise mutual information to test the SNLI (Bow-
man et al., 2015) corpus and demonstrate gender
stereotypes as well as varying degrees of racial, re-

ligious, and age-based stereotypes in the corpus. A
temporal analysis about word embeddings (Garg
et al., 2018) captures changes in gender and ethnic
stereotypes over time. Researchers attributed such
problem partly to the biases in the datasets (Zhao
et al., 2017; Yao and Huang, 2017) and word em-
beddings (Garg et al., 2017; Caliskan et al., 2017)
but did not provide constructive solutions.

3 Methodology

In this paper, we take GloVe (Pennington et al.,
2014) as the base embedding model and gender
as the protected attribute. It is worth noting that
our approach is general and can be applied to
other embedding models and attributes. Follow-
ing GloVe (Pennington et al., 2014), we construct
a word-to-word co-occurrence matrix X , denoting
the frequency of the j-th word appearing in the
context of the i-th word as Xi,j . w, w̃ 2 R

d stand
for the embeddings of a center and a context word,
respectively, where d is the dimension.

In our embedding model, a word vector w con-
sists of two parts w = [w(a); w(g)]. w(a) 2 R

d�k

and w(g) 2 R
k stand for neutralized and gendered

components respectively, where k is the number
of dimensions reserved for gender information.3

Our proposed gender neutralizing scheme is to
reserve the gender feature, known as “protected
attribute” into w(g). Therefore, the information
encoded in w(a) is independent of gender influ-
ence. We use vg 2 R

d�k to denote the direc-
tion of gender in the embedding space. We cat-
egorize all the vocabulary words into three sub-
sets: male-definition ⌦M , female-definition ⌦F ,
and gender-neutral ⌦N , based on their definition
in WordNet (Miller and Fellbaum, 1998).

Gender Neutral Word Embedding Our mini-
mization objective is designed in accordance with
above insights. It contains three components:

J = JG + �dJD + �eJE , (1)

where �d and �e are hyper-parameters.
The first component JG is originated from

GloVe (Pennington et al., 2014), which captures
the word proximity:

JG =
VX

i,j=1

f(Xi,j)
⇣
wT

i w̃j + bi + b̃j � log Xi,j

⌘2
.

3We set k = 1 in this paper.
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Here f(Xi,j) is a weighting function to reduce
the influence of extremely large co-occurrence fre-
quencies. b and b̃ are the respective linear biases
for w and w̃.

The other two terms are aimed to restrict gen-
der information in w(g), such that w(a) is neutral.
Given male- and female-definition seed words ⌦M

and ⌦F , we consider two distant metrics and form
two types of objective functions.

In JL1
D , we directly minimizing the negative dis-

tances between words in the two groups:

JL1
D = �

������

X

w2⌦M

w(g) �
X

w2⌦F

w(g)

������
1

.

In JL2
D , we restrict the values of word vectors in

[�1, �2] and push w(g) into one of the extremes:

JL2
D =

X

w2⌦M

����1e � w(g)
���

2

2
+

X

w2⌦F

����2e � w(g)
���

2

2
,

where e 2 Rk is a vector of all ones. �1 and �2

can be arbitrary values, and we set them to be 1
and �1, respectively.

Finally, for words in ⌦N , the last term encour-
ages their w(a) to be retained in the null space of
the gender direction vg:

JE =
X

w2⌦N

⇣
vT
g w(a)

⌘2
,

where vg is estimating on the fly by averaging the
differences between female words and their male
counterparts in a predefined set,

vg =
1

|⌦0|
X

(wm,wf )2⌦0

(w(a)
m � w(a)

f ),

where ⌦0 is a set of predefined gender word pairs.
We use stochastic gradient descent to optimize

Eq. (1). To reduce the computational complexity
in training the wording embedding, we assume vg

is a fixed vector (i.e., we do not derive gradient
w.r.t vg in updating w(a), 8w 2 ⌦0) and estimate
vg only at the beginning of each epoch.

4 Experiments

In this section, we conduct the following qualita-
tive and quantitative studies: 1) We visualize the
embedding space and show that GN-GloVe sepa-
rates the protected gender attribute from other la-
tent aspects; 2) We measure the ability of GN-
GloVe to distinguish between gender-definition

words and gender-stereotype words on a newly
annotated dataset; 3) We evaluate GN-GloVe on
standard word embedding benchmark datasets and
show that it performs well in estimating word
proximity; 4) We demonstrate that GN-Glove re-
duces gender bias on a downstream application,
coreference resolution.

We compare GN-GloVe with two embedding
models, GloVe and Hard-GloVe. GloVe is a
widely-used model (Pennington et al., 2014),
and we apply the post-processing step introduced
in (Bolukbasi et al., 2016) to reduce gender bias in
GloVe and name it after Hard-GloVe. All the em-
beddings are trained on 2017 English Wikipedia
dump with the default hyper-parameters decribed
in (Pennington et al., 2014). When training GN-
GloVe, we constrain the value of each dimension
within [�1, 1] to avoid numerical difficulty. We set
�d and �e both to be 0.8. In our preliminary study
on development data, we observe that the model
is not sensitive to these parameters. Unless other
stated, we use JL1

D in the GN-GloVe model.

Separate protected attribute First, we demon-
strate that GN-GloVe preserves the gender asso-
ciation (either definitional or stereotypical asso-
ciations) in w(g)4. To illustrate the distribution
of gender information of different words, we plot
Fig. 1a using w(g) for the x-axis and a random
value for the y-axis to spread out words in the
plot. As shown in the figure, the gender-definition
words, e.g. “waiter” and “waitress”, fall far away
from each other in w(g). In addition, words such
as “housekeeper” and “doctor” are inclined to dif-
ferent genders and their w(g) preserves such infor-
mation.

Next, we demonstrate that GN-GloVe reduces
gender stereotype using a list of profession titles
from (Bolukbasi et al., 2016). All these profes-
sion titles are neutral to gender by definition. In
Fig. 1b and Fig. 1c, we plot the cosine similar-
ity between each word vector w(a) and the gen-
der direction vg (i.e., wT vg

kwkkvgk ). Result shows that
words, such as “doctor” and “nurse”, possess no
gender association by definition, but their GloVe
word vectors exhibit strong gender stereotype. In
contrast, the gender projects of GN-GloVe word
vectors w(a) are closer to zero. This demonstrates

4We follow the original GloVe implementation using the
summation of word vector and context vector to represent a
word. Therefore, the elements of the word vectors are con-
strained in [-2, 2]
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(a) w(g) dimension for all the profes-
sions

(b) Gender-neutral profession words
projected to gender direction in GloVe

(c) Gender-neutral profession words pro-
jected to gender direction in GN-GloVe

Figure 1: Cosine similarity between the gender direction and the embeddings of gender-neutral words. In
each figure, negative values represent a bias towards female, otherwise male.

the gender information has been substantially di-
minished from w(a) in the GN-GloVe embedding.

We further quantify the gender information ex-
hibited in the embedding models. For each model,
we project the word vectors of occupational words
into the gender sub-space defined by “he-she” and
compute their average size. A larger projection in-
dicates an embedding model is more biased. Re-
sults show that the average projection of GloVe
is 0.080, the projection of Hard-GloVe is 0.019,
and the projection of Gn-Glove is 0.052. Com-
paring with GloVe, GN-GloVe reduces the bias by
35%. Although Hard-GloVe contains less gender
information, we will show later GN-GloVe can tell
difference between gender-stereotype and gender-
definition words better.

Gender Relational Analogy To study the qual-
ity of the gender information present in each
model, we follow SemEval 2012 Task2 (Jurgens
et al., 2012) to create an analogy dataset, SemBias,
with the goal to identify the correct analogy of “he
- she” from four pairs of words. Each instance in
the dataset consists of four word pairs: a gender-
definition word pair (Definition; e.g., “waiter -
waitress”), a gender-stereotype word pair (Stereo-
typ; e.g., “doctor - nurse”) and two other pairs
of words that have similar meanings (None; e.g.,
“dog - cat”, “cup - lid”)5. We consider 20 gender-
stereotype word pairs and 22 gender-definition
word pairs and use their Cartesian product to
generate 440 instances. Among the 22 gender-
definition word pairs, there are 2 word pairs that

5The pair is sampled from the list of word pairs with
“SIMILAR: Coordinates” relation annotated in (Jurgens
et al., 2012). The original list has 38 pairs. After removing
gender-definition word pairs, 29 are left.

Dataset Embeddings Definition Stereotype None

SemBias
GloVe 80.2 10.9 8.9
Hard-Glove 84.1 6.4 9.5
GN-GloVe 97.7 1.4 0.9

SemBias
(subset)

GloVe 57.5 20 22.5
Hard-Glove 25 27.5 47.5
GN-GloVe 75 15 10

Table 1: Percentage of predictions for each cate-
gory on gender relational analogy task.

are not used as a seed word during the training.
To test the generalization ability of the model, we
generate a subset of data (SemBias (subset)) of 40
instances associated with these 2 pairs.

Table 1 lists the percentage of times that each
class of pair is on the top based on a word embed-
ding model (Mikolov et al., 2013c). GN-GloVe
achieves 97.7% accuracy in identifying gender-
definition word pairs as an analogy to “he - she”.
In contrast, GloVe and Hard-GloVe makes signif-
icantly more mistakes. On the subset, GN-GloVe
also achieves significantly better performance than
Hard-Glove and GloVe, indicating that it can gen-
eralize the gender pairs on the training set to iden-
tify other gender-definition word pairs.

Word Similarity and Analogy In addition, we
evaluate the word embeddings on the benchmark
tasks to ensure their quality. The word similarity
tasks measure how well a word embedding model
captures the similarity between words comparing
to human annotated rating scores. Embeddings are
tested on multiple datasets: WS353-ALL (Finkel-
stein et al., 2001), RG-65 (Rubenstein and Goode-
nough, 1965), MTurk-287 (Radinsky et al., 2011),
MTurk-771 (Halawi et al., 2012), RW (Luong
et al., 2013), and MEN-TR-3k (Bruni et al., 2012)
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Embeddings Analogy Similarity
Google MSR WS353-ALL RG-65 MTurk-287 MTurk-771 RW MEN-TR-3k

GloVe 70.8 45.8 62.0 75.3 64.8 64.9 37.3 72.2
Hard-GloVe 70.8 45.8 61.2 74.8 64.4 64.8 37.3 72.2
GN-GloVe-L1 68.9 43.7 62.8 74.1 66.2 66.2 40.0 74.5
GN-GloVe-L2 68.8 43.6 62.5 76.4 66.8 65.6 39.3 74.4

Table 2: Results on the benchmark datasets. Performance is measured in accuracy and in Spearman rank
correlation for word analogy and word similarity tasks, respectively.

datasets. The analogy tasks are to answer the ques-
tion “A is to B as C is to ?” by finding a word
vector w that is closest to wA � wB + wC in the
embedding space. Google (Mikolov et al., 2013a)
and MSR (Mikolov et al., 2013c) datasets are uti-
lized for this evaluation. The results are shown
in Table 2, where the suffix “-L1” and “-L2” of
GN-GloVe stand for the GN-GloVe using JL1

D and
JL2

D , respectively. Compared with others, GN-
GloVe achieves a higher accuracy in the similarity
tasks and its analogy score slightly drops indicat-
ing that GN-GloVe is capable of preserving prox-
imity among words.

Coreference Resolution Finally, we investigate
how the gender bias in word embeddings affects a
downstream application, such as coreference res-
olution. Coreference resolution aims at clustering
the denotative noun phrases referring to the same
entity in the given text. We evaluate our models on
the Ontonotes 5.0 (Weischedel et al., 2012) bench-
mark dataset and the WinoBias dataset (Zhao
et al., 2018).6 In particular, the WinoBias dataset
is composed of pro-stereotype (PRO) and anti-
stereotype (ANTI) subsets. The PRO subset con-
sists of sentences where a gender pronoun refers to
a profession, which is dominated by the same gen-
der. Example sentences include “The CEO raised
the salary of the receptionist because he is gen-
erous.” In this sentence, the pronoun “he” refers
to “CEO” and this reference is consistent with so-
cietal stereotype. The ANTI subset contains the
same set of sentences, but the gender pronoun in
each sentence is replaced by the opposite gender.
For instance, the gender pronoun “he” is replaced
by “she” in the aforementioned example. Despite
the sentence is almost identical, the gender pro-
noun now refers to a profession that is less repre-
sented by the gender. Details about the dataset are
in (Zhao et al., 2018).

6Specifically, we conduct experiments on the Type 1 ver-
sion.

Embeddings OntoNotes-test PRO ANTI Avg Diff
GloVe 66.5 76.2 46.0 61.1 30.2
Hard-Glove 66.2 70.6 54.9 62.8 15.7
GN-GloVe 66.2 72.4 51.9 62.2 20.5
GN-GloVe(wa) 65.9 70.0 53.9 62.0 16.1

Table 3: F1 score (%) on the coreference system.

We train the end-to-end coreference resolution
model (Lee et al., 2017) with different word em-
beddings on OntoNote and report their perfor-
mance in Table 3. For the WinoBias dataset, we
also report the average (Avg) and absolute dif-
ference (Diff) of F1 scores on two subsets. A
smaller Diff value indicates less bias in a system.
Results show that GN-GloVe achieves compara-
ble performance as Glove and Hard-GloVe on the
OntoNotes dataset while distinctly reducing the
bias on the WinoBias dataset. When only the w(a)

potion of the embedding is used in representing
words, GN-GloVe(w(a)) further reduces the bias
in coreference resolution.

5 Conclusion and Discussion

In this paper, we introduced an algorithm for train-
ing gender-neutral word embedding. Our method
is general and can be applied in any language as
long as a list of gender definitional words is pro-
vided as seed words (e.g., gender pronouns). Fu-
ture directions include extending the proposed ap-
proach to model other properties of words such
as sentiment and generalizing our analysis beyond
binary gender.
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Abstract

We introduce a weakly supervised approach
for inferring the property of abstractness of
words and expressions in the complete ab-
sence of labeled data. Exploiting only mini-
mal linguistic clues and the contextual usage
of a concept as manifested in textual data, we
train sufficiently powerful classifiers, obtain-
ing high correlation with human labels. The
results imply the applicability of this approach
to additional properties of concepts, additional
languages, and resource-scarce scenarios.

1 Introduction

During the last decades, the influence of psy-
cholinguistic properties of words on cognitive pro-
cesses has become a major topic of scientific in-
quiry. Among the most studied psycholinguistic
attributes are concreteness, familiarity, imagery,
and average age of acquisition. Abstractness (the
opposite of concreteness) quantifies the degree to
which an expression denotes an entity that can be
directly perceived by human senses.

Word abstractness ratings were first collected by
Spreen and Schulz (1966) and Paivio et al. (1968),
and made available in the MRC database (Colt-
heart, 1981) for 4,292 English words. Since its
release, this database has stimulated research in a
wide range of linguistic tasks, as well as artificial
intelligence and cognitive studies. Despite their
evident usefulness, resources providing abstract-
ness ratings are relatively rare and of limited size.
Here, we address the task of automatically infer-
ring the abstractness rating of a concept by ap-
plying a weakly supervised approach that exploits
minimal linguistic clues.

Studies on derivational morphological pro-
cesses indicate that word meaning is often entailed
by its morphology. As an example, word suffixa-
tion by -ant or -ent is used to denote a person, as

⇤*Work done while the author was at IBM Research.

in assistant, while the suffix -hood yields nouns
meaning “condition of being”, as in childhood. A
wide range of word-formation processes was de-
scribed by Huddleston and Pullum (2002); in par-
ticular, the authors detail categories of suffixes that
are used to derive words, broadly perceived as ab-
stract, e.g., -ism as in feminism, or -ness as in
agreeableness.

Concept abstractness indicators are also likely
to be manifested in its contextual usage. Consider
the two sentences below, each embedding abstract
and concrete words – one describing feminism and
the other screwdriver – respectively:

Second- and third-wave feminism in China in-
volved a reexamination of women‘s roles dur-
ing the communist revolution and other reform
movements, and new discussions about whether
women‘s equality has been fully achieved.

Many screwdriver handles are not smooth and
often not round, but have bumps or other irreg-
ularities to improve grip and to prevent the tool
from rolling when on a flat surface.

We hypothesize that the immediate neighbor-
hood of a word as reflected in embedding sen-
tences captures the signal of abstractness. In the
examples above, several potential clues for the de-
gree of word abstractness are underlined.

Correspondingly, we propose a method for in-
ferring the degree of abstractness of concepts in
the complete absence of labeled data, by exploit-
ing (1) a minimal set of morphological word-
formation clues; and (2) a text corpus for learning
the context in which words tend to appear.

We demonstrate that this method allows us to
infer the abstractness ratings of unigram, bigram
and trigram Wikipedia concepts (titles) – the task
that, to the best of our knowledge, was only ad-
dressed through manual labeling so far (Brysbaert
et al., 2014). The main contribution of this work
is, therefore, in the proposal and evaluation of a
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weakly supervised methodology for inferring the
abstractness rating of concepts, potentially appli-
cable to additional languages. The suggested ap-
proach may also be applicable for predicting other
word and concept properties, when those are man-
ifested in both morphology and context. Finally,
we release a dataset of 300K Wikipedia concepts
automatically rated for their degree of abstract-
ness, and additional 1500 unigram, bigram and
trigram concepts annotated with both manual and
predicted scores.1

2 Related work

A large body of research addressed the relations of
word abstractness and cognitive processes (Con-
nell and Lynott, 2012; Gianico-Relyea and Altar-
riba, 2012; Oliveira et al., 2013; Nishiyama, 2013;
Paivio, 2013; Barber et al., 2013). Computational
investigation of word abstractness and concrete-
ness has been a prolific field of recent research,
laying out an empirical foundation for the theoret-
ically motivated hypotheses on the characteristics
of these properties. A ranker trained on psycholin-
guistic features extracted from the MRC database
(in combination with other features) reached first
place in the English Lexical Simplification task at
SemEval 2012 (Jauhar and Specia, 2012). Hill and
Korhonen (2014) achieved state-of-the-art perfor-
mance in Semantic Composition and Semantic
Modification prediction by including concreteness
in the set of features used by the model.

Along the years, several works extended the
seed MRC dataset by employing various super-
vised machine learning techniques, further utiliz-
ing the extended dataset for tasks of lexical sim-
plification (Paetzold and Specia, 2016b,a), cross-
lingual metaphor detection (Tsvetkov et al., 2013),
literal and metaphorical sense identification (Tur-
ney et al., 2011), as well as readability assessment
of Brazilian Portuguese (dos Santos et al., 2017).
Feng et al. (2011) exploited word attributes from
WordNet, properties extracted from the CELEX
database, and Latent Semantic Analysis over a
large text corpus for building a linear regression
model predicting abstractness rate; the model ac-
counted for 64% variance of human annotations.

A comprehensive survey of psycholinguistic
and memory research on word concreteness is pre-

1The datasets are available for download at
https://www.research.ibm.com/haifa/dept/
vst/debating_data.shtml

sented in Brysbaert et al. (2014) (BWK), who con-
ducted a large-scale manual annotation of con-
creteness ratings for over 40K concepts, further
used by Rothe et al. (2016) to infer concreteness
ratings for the whole Google News lexicon. To the
best of our knowledge, our work is the first attempt
to automatically infer the property of concept ab-
stractness in the complete absence of labeled data.

3 Predicting concept abstractness

3.1 Abstractness indicators
Nominalization is a word-formation process that
involves the formation of nouns from bases of
other classes by means of affixation. As an ex-
ample, a derivational suffix can be added to an ad-
jective (capable+ity for capability) or a verb (re-
act+tion for reaction) to create a noun. Various
word-formation processes often enrich words with
meaning associated with certain semantic group-
ing. Huddleston and Pullum (2002) detail nomi-
nalization processes that serve to form nouns de-
noting a “state” or “condition of being”, which in
turn are broadly associated with abstractness. As
such, the suffixes -ety, -ity and -ness carry over the
general meaning of “quality or state of being” and
the suffix -ism is used to form nouns denoting a
range of doctrines, beliefs and movements (Hud-
dleston and Pullum, 2002). Additional suffixes
that tend to form English nouns with high degree
of abstractness include -ance, -ence, -ation, -ution,
-dom, -hood, -ship and -y.

3.2 Dataset
We used the English Wikipedia2 article titles as
a proxy for retrieving frequently used single- and
multi-word expressions, thereby associating over
5M Wikipedia titles with concepts.

Training data We chose two abstractness sig-
nals, manifested by the suffixes -ism and -ness,
representing different types of abstract meanings.
We extracted 1,040 potentially abstract unigram
Wikipedia titles suffixed by either of the two (the
positive class). The – admittedly noisy – concrete
(negative) class was generated by randomly select-
ing the same number of unigram concepts from the
complementary set of titles.In both cases, we set
a threshold3 on the frequency of a concept in the

2We used the Wikipedia May 2017 dump.
3The minimum of 20 occurrences for a concept.
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corpus, and filtered out non-alphabetic unigrams
and unigrams containing special characters. We
assessed the quality of the positive and negative
weakly-labeled training unigrams by manual an-
notation of their level of abstractness, obtaining
abstractness prior of 93% in the set of presumably
abstract concepts, and concreteness prior of 81%
for the opposite class.

Given this set of weakly-labeled positive and
negative concepts, we randomly selected a set of
Wikipedia sentences that include any of these con-
cepts (equally split by positive and negative un-
igrams), to be used in the training phase, while
limiting sentence length to the range of 10 to 70
tokens. This step resulted in about 400K train
sentences in each class, 800K in total. The final
preprocessing phase involved masking a sentence
concept with a generic token, aiming to prevent
the classifier from training on the concept itself,
and instead training on its contextual usage.

Evaluation data A randomly selected set of
1500 Wikpedia concepts (with the minimum of
500 occurrences per concept), split equally be-
tween unigrams, bigrams and trigrams, and dis-
tinct from the training set, was used for testing
prediction. We henceforth refer to this set of con-
cepts as the evaluation set. Each of these con-
cepts was manually annotated for abstractness on
the 1–7 scale by seven in-house labelers, using an
adaptation of the guidelines by Spreen and Schulz
(1966) to the multi-word scenario:

Words or phrases may refer to persons, places
and things that can be seen, heard, felt, smelled
or tasted or to more abstract concepts that can-
not be experienced by our senses. The purpose of
this task is to rate a list of concepts with respect
to ”concreteness” in terms of sense-experience.
Any expression that refers to objects, materials or
persons should receive a high concreteness rat-
ing; any expression that refers to an abstract con-
cept that cannot be experienced by the senses
should receive a low concreteness rating. Con-
crete concepts typically have physical or concrete
existence, while abstract do not. Think of the con-
cepts ”onion” and ”nationalism” – ”onion” can
be experienced by our senses and therefore should
be rated as concrete (1); ”nationalism” cannot be
experienced by the senses as such and therefore
should be rated as abstract (7).

Word polysemy is a common challenge in tasks
related to lexical semantics. As such, our percep-

tion of the concreteness rate of the concept bank
may vary depending on whether a financial institu-
tion or a river bank is concerned. While we could
not avoid this issue altogether (since working with
pre-trained word representations that do not carry
disambiguation information), we ensured that all
in-house labelers annotated the same word sense
by providing them with Wikipedia definition of the
most frequent sense of a concept.

The final abstractness score was computed as
the average over individual annotations. The av-
erage pairwise weighted Kappa agreement4 on the
entire set of 1500 concepts was 0.65.

3.3 Classification models
We hypothesize that words that share similar de-
gree of abstractness tend to share certain similari-
ties in their contextual usage; that, in contrast to
concepts that exhibit opposite abstractness rate.
Indeed, a statistical significance test applied to the
(weak) positive and negative training data (Sec-
tion 3.2) reveals markers such as {parish, move-
ment, century, spiritual, life, doctrine, nature,
regime} sharing excessive frequency in sentences
containing abstract concepts. The very essence of
this phenomenon is captured by distributed word
representations (Mikolov et al., 2013; Penning-
ton et al., 2014), a.k.a. word embeddings, learned
based on the contextual usage of words. We there-
fore trained three classifiers, each exploiting dif-
ferent language properties, as described below.

Naive Bayes (NB) Using solely word counts in
textual data, we used a simple probabilistic Naive
Bayes classifier, with a bag-of-words feature set
extracted from the 800K sentences containing pos-
itive and negative training concepts. Given a sen-
tence containing a test concept, its degree of ab-
stractness was defined as the posterior probability
assigned by the classifier. Aiming at robust clas-
sification, we retrieved 500 sentences containing
each test concept from the corpus. Consequently,
the final abstractness score of a concept was calcu-
lated by averaging the predictions assigned by the
classifier to individual sentences.

Nearest neighbor We used the nearest neigh-
bors algorithm, specifically, its radius-based ver-
sion (NN-RAD), using the pre-trained GloVe em-
beddings (Pennington et al., 2014). This classifier

4We used the implementation in http://
scikit-learn.org, with “quadratic” scheme.
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estimates the degree of concept abstractness given
only its distributional representation.

The abstractness score of a test concept was
computed by the ratio of its abstract neighbors to
the total number of concepts within the predefined
radius, where the entire set of neighbors is lim-
ited to the concepts in the weakly-labeled train-
ing set. The proximity threshold (radius) was set
to 0.25, w.r.t. the cosine similarity between two
embedding vectors.5 Multi-word concepts were
subject to more careful processing, where the clas-
sifier computed a multi-word concept representa-
tion as an average of representations of its individ-
ual words, and further estimated the abstractness
score of the obtained embedding. In case that one
of a concept constituents was not found in embed-
dings, we excluded the concept from computation.

RNN Aiming at exploiting both embeddings and
textual data, we utilized a bidirectional recurrent
neural network (RNN) with one layer of forward
and backward LSTM cells. Each cell has width
of 128, and is wrapped by a dropout wrapper with
keep probability 0.85. An attention layer was cre-
ated in order to weigh words according to their
proximity to the train/test concept. The output
of the LSTM cells is passed to the attention layer
which reduces it to the size of 100. The output of
the attention layer is passed to a fully connected
layer which produces the final prediction of the ab-
stractness level of a concept. GloVe embeddings
with 300 dimensions were used as word represen-
tations. Given a set of sentences containing a test
concept, its final abstractness score was computed
by applying the averaging procedure described for
the Naive Bayes classifier.

4 Results

We demonstrate that trained models discover lin-
guistic patterns associated with abstract meaning
(beyond those known at training), and further-
more yield abstractness scores that correlate sig-
nificantly with human annotations.

4.1 Revealing abstractness markers
We automatically scored 100K unigram Wikipedia
concepts for abstractness with all classifiers and
extracted the set of suffixes that share excessive
frequency in the top-k abstract concepts using
the statistical proportion test. More specifically,

5The radius was tuned on the set of 500 unigrams.

we applied the test to the exhaustive list of all
three-character English suffixes (e.g., -aaa, -aab),
counting their occurrences in the subset of con-
cepts with the highest abstractness scores6 (the
population under test) and in the remainder (the
background). Our hypothesis was that suffixes
associated with abstract meaning in the literature
will be over-represented in the population of con-
cepts ranked as abstract by the classifiers. The
top-10 suffixes, scored by their statistical signif-
icance p-value7 were {-ism, -ity, -ion, -sis, -ics,
-ess, -phy, -nce, -ogy, -ing} – suffixes broadly as-
sociated with abstractness in the literature (where
all suffixes but two are distinct from the training
data). The underlying concept examples included
{illegalism, modernity, antireligion, henosis, poli-
tics, lawlessness, ecosophy, conscience, ideology,
enabling} – words broadly perceived as abstract.

4.2 Abstractness rating
Table 1 presents a few examples of abstract and
concrete concepts, as identified by manual anno-
tation, along with their abstractness score as pre-
dicted by the RNN classifier (Section 3.3).

abstract concrete
concept score concept score
marxism 0.972 plywood 0.000
islamophobia 0.969 Wiltshire 0.000
affirmative action 0.844 moonlight 0.058
absolute monarchy 0.842 convoy 0.112
sincerity 0.836 gadget 0.120

Table 1: Examples of concepts found as abstract/concrete
(above/below the average score of 0.5) via manual annota-
tion, along with their score as predicted by RNN.

Table 2 presents the Pearson correlation be-
tween the abstractness scores as assigned by the
classifiers and the manual annotations over the
evaluation set. We also present the correlation
of scores produced by our classifiers to the set of
Wikipedia concepts from the manually annotated
MRC database (MRC-seed, Section 1), and to the
set of 5883 noun concepts8 from manually anno-
tated BWK dataset (Brysbaert et al., 2014).

Evidently, the best results are obtained by the
RNN classifier, yielding up to 0.740 correlation

6We used the set of 18% highest ranked concepts – the
fraction of abstract concepts in a sample population, as esti-
mated by manual labeling.

7In all cases the obtained p-value was practically zero.
8Only concepts that can be mapped to a corresponding

Wikipedia page were considered.
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test set Naive Bayes NN-RAD RNN
BWK 0.657 0.622 0.634
MRC-seed 0.674 0.576 0.669
1-grams 0.679 0.638 0.740
2-grams 0.565 0.515 0.666
3-grams 0.412 0.467 0.490

Table 2: Correlation of abstractness scores assigned by the
classifiers to manual annotations.

with human annotations. Notably, the simple
Naive Bayes, utilizing only textual data, yields re-
sults of reasonable quality; the broad implication
of this outcome lies in the potential applicabil-
ity of this approach to resource-scarce scenarios
where high quality word embeddings are not avail-
able. Interestingly, while using Google word2vec
embeddings (instead of Glove) yielded similar re-
sults, utilizing fastText pre-trained representations
(Joulin et al., 2016) obtained more accurate rank-
ing, e.g., the NN-RAD classifier yielded correla-
tion of 0.688 for the BWK dataset, compared to
0.622 obtained using Glove (Table 2). We attribute
this improvement to the fact that fastText embed-
dings better capture morphological word proper-
ties and cover more extensive vocabulary.

The relatively low correlation obtained with tri-
gram concepts can be explained by the inherent
complexity introduced by the multi-word scenario,
challenging still further the subjective human per-
ception of abstractness. While inter-labeler agree-
ment for unigrams and bigrams was 0.72 and 0.66,
respectively, it only reached 0.54 for trigrams, sup-
porting the aforementioned hypothesis.

4.3 Varying the size of a test set

How many sentences containing a test concept suf-
fice for a reliable prediction? We address this
question by limiting the number of (randomly cho-
sen) sentences used for rating. While the correla-
tion obtained by RNN with 500 sentences contain-
ing a test concept reached 0.740 (Table 2), as lit-
tle as 10, and even 5 sentences yielded correlation
of 0.706 and 0.675, respectively, implying the effi-
ciency and effectiveness of the presented approach
in the availability of only little data. The plot
in Figure 1 presents the correlation of the RNN
and NB classifiers to label as function of number
of (randomly sampled) sentences used for evalu-
ation. Each such experiment (e.g., using 1, 5, 10
sentences) was averaged over 50 runs; the aver-
age correlation to label, as well as standard devi-

ation, are plotted on the chart. The constant cor-
relation yield by the (text-independent) NN-RAD
algorithm is illustrated by the vertical line.

1 5 10 50 100 500
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0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

num of sentences

RNN (1-grams)
Naive Bayes (1-grams)

NN-RAD (1-grams)

Figure 1: Average correlation (and standard deviation)
to manual annotation as function of number of sen-
tences used for evaluation.

4.4 Comparison to supervised models
Tsvetkov et al. (2013) used supervised learning al-
gorithm to propagate abstractness scores to words
using pre-trained word representations. Utilizing
vector elements as features, they trained a super-
vised classifier, and predicted the degree of ab-
stractness for unseen words. Abstractness rank-
ings from the MRC database were used as a train-
ing set, and the classifier predictions were bina-
rized into abstract-concrete boolean indicators us-
ing predefined thresholds. The authors obtained
94% accuracy when tested on held-out data.

5 Conclusions
We presented a weakly supervised approach for
inferring the degree of concept abstractness. Our
results demonstrate that a minimal morphologi-
cal signal and a textual corpus are sufficient to
train classifiers that yield relatively accurate pre-
dictions, that in turn can be used to unravel ad-
ditional linguistic patterns indicative of the same
property. Our future plans include exploring the
value of the proposed methodology with other lan-
guages and additional properties.
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Abstract

An established method for Word Sense Induc-
tion (WSI) uses a language model to predict
probable substitutes for target words, and in-
duces senses by clustering these resulting sub-
stitute vectors.

We replace the ngram-based language model
(LM) with a recurrent one. Beyond being more
accurate, the use of the recurrent LM allows us
to effectively query it in a creative way, using
what we call dynamic symmetric patterns. The
combination of the RNN-LM and the dynamic
symmetric patterns results in strong substitute
vectors for WSI, allowing to surpass the cur-
rent state-of-the-art on the SemEval 2013 WSI
shared task by a large margin.

1 Introduction

We deal with the problem of word sense induc-
tion (WSI): given a target lemma and a collection
of within-sentence usages it, cluster the usages
(instances) according to the different senses of the
target lemma. For example, for the sentences:

(a) We spotted a large bass in the ocean.

(b) The bass player did not receive the acknowl-
edgment she deserves.

(c) The black sea bass, is a member of the wreck-
fish family.

We would like to cluster (a) and (c) in one group
and (b) in another.1 Note that some mentions are
ambiguous. For example, (d) matches both the
music and the fish senses:

1This example shows homonymy, a case where the same
word form has two distinct meaning. A more subtle case is
polysemy, where the senses share some semantic similarity.
In “She played a low bass note”, the sense of bass is related
to the sense in (b), but distinct from it. The WSI task we
tackle in this work deals with both cases.

(d) Bass scales are the worst.

This calls for a soft clustering, allowing to prob-
abilistically associate a given mention to two
senses.

The problem of WSI has been extensively stud-
ied with a series of shared tasks on the topic
(Agirre and Soroa, 2007; Manandhar et al., 2010;
Jurgens and Klapaftis, 2013), the latest being
SemEval 2013 Task 13 (Jurgens and Klapaftis,
2013). Recent state-of-the-art approaches to WSI
rely on generative graphical models (Lau et al.,
2013; Wang et al., 2015; Komninos and Manand-
har, 2016). In these works, the sense is modeled
as a latent variable that influences the context of
the target word. The later models explicitly differ-
entiate between local (syntactic, close to the dis-
ambiguated word) and global (thematic, semantic)
context features.

Substitute Vectors Baskaya et al. (2013) take a
different approach to the problem, based on sub-
stitute vectors. They represent each instance as a
distribution of possible substitute words, as deter-
mined by a language model (LM). The substitute
vectors are then clustered to obtain senses.

Baskaya et al. (2013) derive their probabilities
from a 4-gram language model. Their system (AI-
KU) was one of the best performing at the time of
SemEval 2013 shared task. Our method is inspired
by the AI-KU use of substitution based sense in-
duction, but deviate from it by moving to a recur-
rent language model. Besides being more accu-
rate, this allows us to further improve the quality
of the derived substitutions by the incorporation of
dynamic symmetric patterns.

BiLM Bidirectional RNNs were shown to be ef-
fective for word-sense disambiguation and lexi-
cal substitution tasks (Melamud et al., 2016; Yuan
et al., 2016; Raganato et al., 2017). We adopt the
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ELMo biLM model of Peters et al. (2018), which
was shown to produce very competitive results for
many NLP tasks. We use the pre-trained ELMo
biLM provided by Peters et al. (2018).2 How-
ever, rather than using the LSTM state vectors
as suggested in the ELMo paper, we opt instead
to use the predicted word probabilities. Moving
from continuous and opaque state vectors to dis-
crete and transparent word distributions allows far
better control of the resulting representations (e.g.
by sampling, re-weighting and lemmatizing the
words) as well as better debugging opportunities.

As expected, the move to the neural biLM
already outperforms the AI-KU system, and
matches the previous state-of-the-art. However,
we observe that the substitute vectors do not take
into account the disambiguated word itself. We
find that this often results in noisy substitutions.
As a motivating example, consider the sentence
“the doctor recommends oranges for your health”.
Here, running is a perfectly good substitution, as
the “fruitness” of the target word itself isn’t rep-
resented in the context. We would like the sub-
stitutes word distribution representing the target
word to take both kinds of information—the con-
text as well as the target word—into account.

Dynamic Symmetric Patterns Our main pro-
posal incorporates such information. It is moti-
vated by Hearst patterns (Hearst, 1992; Widdows
and Dorow, 2002; Schwartz et al., 2015), and
made possible by neural LMs. Neural LMs are
better in capturing long-range dependencies, and
can handle and predict unseen text by generalizing
from similar contexts. Conjunctions, and in partic-
ular the word and, are known to combine expres-
sions of the same kind. Recently, Schwartz et al.
(2015) used conjunctive symmetric patterns to de-
rive word embeddings that excel at capturing word
similarity. Similarly, Kozareva et al. (2008) search
for doubly-anchored patterns including the word
and in a large web-corpus to improve semantic-
class induction. The method of Schwartz et al.
(2015) result in context-independent embeddings,
while that of Kozareva et al. (2008) takes some
context into account but is restricted to exact cor-
pus matches and thus suffers a lot from sparsity.

We make use of the rich sequence represen-
tation capabilities of the neural biLM to de-
rive context-dependent symmetric pattern substi-

2We thank the ELMo team for sharing the pre-trained
models.

tutions. Relying on the generalization properties
of neural language models and the abundance of
the “X and Y” pattern, we present the language
model with a dynamically created incomplete pat-
tern, and ask it to predict probable completion can-
didates. Rather than predicting the word distribu-
tion following the doctor recommends , we in-
stead predict the distribution following the doctor
recommends oranges and . This provides sub-
stantial improvement, resulting in state-of-the-art
performance on the SemEval 2013 shared task.

The code for reproducing the experiments and
our analyses is available at https://github.
com/asafamr/SymPatternWSI.

2 Method

Given a target word (lemma and its part-of-speech
pair), together with several sentences in which the
target word is used (instances), our goal is to clus-
ter the word usages such that each cluster corre-
sponds to a different sense of the target word. Fol-
lowing the SemEval 2013 shared task and motivat-
ing example (d) from the introduction, we seek a
soft (probabilistic) clustering, in which each word
instance is assigned with a probability of belong-
ing to each of the sense-clusters.

Our algorithm works in three stages: (1) We
first associate each instance with a probability dis-
tribution over in-context word-substitutes. This
probability distribution is based on a neural biLM
(section 2.1). (2) We associate each instance with
k representatives, each containing multiple sam-
ples from its associated word distributions (section
2.3). (3) Finally, we cluster the representatives and
use the hard clustering to derive a soft-clustering
over the instances (section 2.4).

We use the pre-trained neural biLM as a black-
box, but use linguistically motivated processing of
both its input and its output: we rely on the gen-
eralization power of the biLM and query it using
dynamic symmetric patterns (section 2.2); and we
lemmatize the resulting word distributions.

Running example In what follows, we demon-
strate the algorithm using a running example of in-
ducing senses from the word sound, focusing on
the instance sentence:
I liked the sound of the harpsichord.

2.1 biLM Derived Substitutions
We follow the ELMo biLM approach (Peters
et al., 2018) and consider two separately trained
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language models, a forward model trained for
predicting p!(wi|w1, ..., wi�1) and a backward
model p (wi|wn, ..., wi+1). Rather than combin-
ing the two models’ predictions into a single dis-
tribution, we simply associate the target word with
two distributions, one from p! and one from p .
For convenience, we use LM!(w1w2...wi�1 )
to denote the distribution p!(wi|w1, ..., wi�1)
and LM ( wi+1wi+2...wn) to denote
p (wi|wn, ..., wi+1).

Context-based substitution In the purely
context-based setup (the one used in the AI-KU
system) we represent the target word sounds by
the two distributions:
LM!(<s> I liked the )
LM ( of the harpsichord </s> )

The resulting top predictions from each distribu-
tion are:
{idea:0.12, fact:0.07, article: 0.05, guy: 0.04,
concept: 0.02} and
{sounds:0.04, version: 0.03, rhythm: 0.03,
strings: 0.03, piece: 0.02} respectively.

2.2 Dynamic Symmetric Patterns

As discussed in the introduction, conditioning
solely on context is ignoring valuable infor-
mation. This is evident in the resulting word
distributions. We use the coordinative sym-
metric pattern X and Y in order to produce a
substitutes vector incorporating both the word
and its context. Concretely, we represent a
target word wi by p!(w0|w1, ..., wi,and) and
p (w0|wn, ..., wi,and). For our running exam-
ple, this translates to:
LM!(<s> I liked the sound and )
LM ( and sound of the harpsichord . </s>)

with resulting top words: {feel: 0.15, felt: 0.11,
thought: 0.07, smell: 0.06, sounds: 0.05} and
{sight: 0.16, sounds: 0.11, rhythm: 0.04, tone:
0.03, noise: 0.03}.

The distributions predicted using the and pat-
tern exhibit a much nicer behavior, and incorpo-
rate global context (resulting in sensing related
substitutes) as well as local and syntactic informa-
tion that resulting from the target word itself. Ta-
ble 1 compares the context-only and symmetric-
pattern substitutes for two senses of the word
sound.

2.3 Representative Generation
To perform fuzzy clustering, we follow AI-KU
and associate each instance with k representatives,
but deviate in the way the representatives are gen-
erated. Specifically, each representative is a set of
size 2` , containing ` samples from the forward
distribution and ` samples from the backward dis-
tribution. In the symmetric pattern case above, a
plausible representative, assuming ` = 2, would
be: {feel, sounds, sight, rhythm} where two words
were predicted by each side LM. In this work, we
use ` = 4 and k = 20.

2.4 Sense Clustering
After obtaining k representatives for each of the
n word instances, we cluster the nk representa-
tives into distinct senses and translate this hard-
clustering of representatives into a probabilistic
clustering of the originating instances.

Hard-clustering of representatives Let V be
the vocabulary obtained from all the representa-
tives. We associate each representative with a
sparse |V | dimensional bag-of-features vector, and
arrange the representatives into a nk ⇥ |V | matrix
M where each row corresponds to a representa-
tive. We now cluster M ’s rows into senses. We
found it is beneficial to transform the matrix us-
ing TF-IDF. Treating each representative as a doc-
ument, TF-IDF reduces the weight of uninforma-
tive words shared by many representatives. We
use agglomerative clustering (cosine distance, av-
erage linkage) and induce a fixed number of clus-
ters.3 We use sklearn (Pedregosa et al., 2011)
for both TF-IDF weighting and clustering.

Inducing soft clustering over instances After
clustering the representatives, we induce a soft-
clustering over the instances by associating each
instance j to sense i based on the proportion of
representatives of j that are assigned to cluster i.

2.5 Additional Processing
Lemmatization The WSI task is defined over
lemmas, and some target words have morpholog-
ical variability within a sense. This is especially
common with verb tenses, e.g., “I booked a flight”
and “I am booking a flight”. As the conjunctive

3In this work, we use 7 clusters, which roughly matches
the number of senses for each target word in the corpus. Dy-
namically selecting the number of clusters is left for future
work. The effect of changing the number of clusters is ex-
plored in the supplementary material.
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Context Only Symmetric Pattern
Forward dist. Backward dist. Forward dist. Backward dist.

This is a sound idea, I like it.
sad 0.02 bad 0.12 welcome 0.09 funny 0.10
great 0.02 good 0.09 practical 0.03 beautiful 0.05
huge 0.02 great 0.06 comprehensive 0.03 fun 0.04
very 0.02 wonderful 0.05 light 0.02 simple 0.04
lesson 0.02 nice 0.04 balanced 0.02 interesting 0.03

I liked the sound of the harpsichord
idea 0.12 sounds 0.04 feel 0.15 sight 0.16
fact 0.07 version 0.03 felt 0.11 sounds 0.11
article 0.05 rhythm 0.03 thought 0.07 rhythm 0.04
guy 0.04 strings 0.03 smell 0.06 tone 0.03
concept 0.02 piece 0.03 sounds 0.05 noise 0.03

Table 1: Predicted substitutes for two senses of sound, for context-only and the symmetric-pattern approaches.

symmetric pattern favors morphologically-similar
words, the resulting substitute vectors for these
two sentences will differ, each of them agreeing
with the tense of its source instance. To deal with
this, we lemmatize the predictions made by the
language model prior to adding them to the rep-
resentatives. Such removal of morphological in-
flection is straightforward when using the word
distributions but much less trivial when using raw
LM state vectors, further motivating our choice of
working with the word distributions. The substan-
tial importance of the lemmatization is explored
in the ablation experiments in the next section, as
well as in the supplementary material.
Distribution cutoff and bias Low ranked LM
prediction tend to become noisier. We thus con-
sider only the top 50 word predicted by each
LM, re-normalizing their probabilities to sum to
one. Additionally, we ignore the final bias vec-
tor during prediction (words are predicted via
softmax(Wx) rather than softmax(Wx + b)).
This removes unconditionally probable (frequent)
words from the top LM predictions.

3 Experiments and Results

We evaluate our method on the SemEval 2013
Task 13 dataset (Jurgens and Klapaftis, 2013),
containing 50 ambiguous words each with roughly
100 in-sentence instances, where each instance is
soft-labeled with one or more WordNet senses.
Experiment Protocol Due to the stochastic na-
ture of the algorithm, we repeat each experiment
30 times and report the mean scores together with
the standard deviation.

Evaluation metrics We follow previous work
(Wang et al., 2015; Komninos and Manandhar,
2016) and evaluate on two measures: Fuzzy Nor-
malized Mutual Information (FNMI) and Fuzzy
B-Cubed (FBC) as well as their geometric mean
(AVG).
Systems We compare against three graphical-
model based systems which, as far as we know,
represent the current state of the art: MCC-S
(Komninos and Manandhar, 2016), Sense-Topic
(Wang et al., 2015) and unimelb (Lau et al.,
2013). We also compare against the AI-KU sys-
tem. Wang et al. also present a method for dataset
enrichment that boosted their model performance.
We didn’t use the suggested methods and compare
ourselves to the vanilla settings, but report the en-
richment numbers as well.

Results Table 2 summarizes the results. Our
system using symmetric patterns outperforms all
other setups with an AVG score of 25.4, establish-
ing a new state-of-the-art on the task.

Ablation and analysis We perform ablations to
explore the contribution of the different compo-
nents (Symmetric Patterns (SP), Lemmatization
(LEM) and TF-IDF re-weighting). Figure (1)
shows the results for the entire dataset (ALL, top),
as well as broken-down by part-of-speech. All
components are beneficial and are needed for ob-
taining the best performance in all cases. How-
ever, their relative importance differs across parts-
of-speech. Adjectives gain the most from the use
of the dynamic symmetric patterns, while nouns
gain the least. For verbs, the lemmatization is
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Model FNMI FBC AVG
Original task dataset

Ours 11.26 ± 0.48 57.49 ± 0.23 25.43 ± 0.48
MCC-S 7.62 55.6 20.58
Sense-Topic (SW) 7.14 55.4 19.89
Sense-Topic 6.96 53.5 19.30
AI-KU 6.5 39.0 15.92
unimelb 6.0 48.3 17.02

With data enrichment
Sense-Topic (AAC) 9.39 59.1 23.56
Sense-Topic (AUC) 9.74 54.5 23.04

Table 2: Evaluation Results on the SemEval 2013 Task 13 Dataset. SW: Embeddings similarity based feature
weighting. AAC: Extending instance sentences from their traced source. AUC: Adding similar sentences from the
dataset originating corpus. We report our mean scores over 30 runs ± standard deviation

Figure 1: Ablation break down by part of speech, each
part of speech was averaged across run. Bars are mean
of means and error bars are standard deviations.

crucial for obtaining good performance, especially
when symmetric patterns are used: using symmet-
ric patterns without lemmatization, the mean score
drops to 17.0. Lemmatization without symmet-

ric patterns achieves a higher mean score of 20.5,
while using both yields 22.8. Finally, for nouns it
is the TF-IDF scoring that plays the biggest role.

4 Conclusions

We describe a simple and effective WSI method
based on a neural biLM and a novel dynamic ap-
plication of the X and Y symmetric pattern. The
method substantially improves on the state-of-the-
art. Our results provide further validation that
RNN-based language models contain valuable se-
mantic information.

The main novelty in our proposal is querying
the neural LM in a creative way, in what we call
dynamic symmetric patterns. We believe that the
use of such dynamic symmetric patterns (or more
generally dynamic Hearst patterns) will be bene-
ficial to NLP tasks beyond WSI.

In contrast to previous work, we used discrete
predicted word distributions rather than the con-
tinuous RNN states. This paid off by allowing us
to inspect and debug the representation, as well to
control it in a meaningful way by injecting linguis-
tic knowledge in the form of lemmatization, and
by distributional cutoff and TF-IDF re-weighing.
We encourage others to consider using explicit,
discrete representations when appropriate.
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Supplementary Material

Statistics of the SemEval 2013 Task 13 Dataset
SemEval 2013 Task 13 consists of 50 targets, each
has a lemma and a part of speech (20 verbs, 20
nouns and 10 adjectives). We use the dataset only
for evaluation. Most targets have around 100 la-
beled instances (sentences containing a usage of
the target in its designated part of speech together
with one or more WordNet senses assigned by hu-
man labeler). Exceptions are the targets of trace.n
and book.v which have 37 and 22 labeled in-
stances accordingly. Leaving out the two anoma-
lous targets mentioned above we are left with 4605
instances from 48 targets: 19 verb, 19 noun and 10
adjective targets. We note that the small size of the
dataset should make one cautious to draw quick
conclusions, yet, our results seem to be consistent.

Effect of the Choice of Number of Clusters
An important statistic of the dataset is the num-
ber of senses per target. The average number of
senses per target in the dataset is 6.94 (stdev:2.71).
Breaking down by part of speech, the means and
standard deviations of target senses are: verbs:
5.90 (±1.37), nouns: 7.32 (±2.21), adjectives:
7.11 (±3.54). In this work we follow this statis-
tic and always look for 7 clusters. Figure 2 shows
the accuracy as a function of the number of clus-
ters. While 7 clusters indeed produces the highest
scores, all numbers in the range 4 to 15 produce
state-of-the-art results. We leave the selection of
per-instance number of clusters to future work.

Figure 2: AVG score by number of clusters.

Figure 2 also tells us our system is better at in-
ducing senses for adjectives, at least according to
task score.

The Importance of Lemmatization
The ablation results in the paper indicate that for
verbs, using symmetric patterns without lemmati-
zation yields poor results. We present the analysis
the motivated our use of lemmatization. Consider
the samples from the biLM with and without sym-
metric patterns, for the instance It was when I was
a high-school student that I became convinced of
this fact for the first time.

fw LM, no SP: didn, write, ’d, learnt, start
bw LM, no SP: seem, be, grow, be, be
fw LM, with SP: went, got, started, wasn,

loved
bw LM, with SP: 1990s, decade, 1980s,

afterwards, changed
Another sentence, in another tense: The issue will
become more pressing as an estimated 40,000 to
50,000 Chinese, mostly unskilled, come to settle
each year.

fw LM, no SP: be, be, remain, likely, be
bw LM, no SP: becoming, grown

becoming, much, becomes
fw LM, with SP: remains, remain, which,

continue, how
bw LM, with SP: rising, overseas, booming,

abroad, expanded
When using the symmetric patterns, the pre-

dicted verbs tend to share the tense of the target
word.

This results in targets of different tenses hav-
ing nearly distinct distributions, even when the tar-
gets share the same sense, splitting the single sense
cluster to two (or more) tense clusters. We quan-
tify this intuition by computing the correlation be-
tween tense and induced clusters (senses), as given
by the Normalized Mutual Information (NMI). We
measure NMI between verb instance tense in sen-
tence and their most probable induced cluster in
the different settings, as well as the NMI of the
verb instances and the gold clusters. Table 3 sum-
marize the results. We see that in the gold clus-
ters there is indeed very little correlation (0.15)
between the the tense and the sense. When us-
ing SP but not lemmatization (w/o LEM), the cor-
relation is substantially higher (0.67). When not
using either lemmatization of SP (w/o LEM and
SP) the correlation is 0.27, much closer to the gold
one. Performing explicit lemmatization naturally
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reduces the correlation with tense, and using the
full model (Final model) results in a correlation to
0.22, close to the gold number of 0.15.

Some Failure Modes of Dynamic Symmetric
Patterns
While the use of dynamic symmetric patterns im-
proves performance and generally produces good
substitutes for contextualized words, we also iden-
tify some failure modes and unexpected behavior.

Common phrases involving conjunctions
Some target words have a strong prior to appear in
common phrases involving a conjunction, causing
the strong local pattern to override context-based
hints. For example, when the LM is asked to
complete ... state and , its prior on church
makes it a very probable completion, regardless of
context and sense. This phenomena motivated our
use TF-IDF for weighing of too common words.
Relatedly, a common completion for symmetric
patterns is the word then, as and then is a very
common phrase. This completion even ignores
the target word and could be troublesome if a
global, cross-lemma, clustering is attempted.

Multi word phrases substitutes Sometime the
LM does interpret the and as a trigger for a sym-
metric relation, but on a chunk extending beyond
the target word. For example, when presented
with the query The human heart not only makes
heart sounds and , the forward LM predicted in
its top twenty suggestions the word muscle, fol-
lowed by a next-word prediction of movements.
That is, the symmetry extends beyond “sounds” to
the phrase “heart sounds” which could be substi-
tutes by “muscle movements”. We didn’t specif-
ically address this in the current work, but note
that restricting the prediction to agree with the tar-
get word on part-of-speech and plurality may help
in mitigating this. Furthermore, this suggests an
exciting direction for moving from single words
towards handling of multi-word units.

Settings NMI (mean ± STD)
Gold labels 0.15 ± 0.07
Final model 0.22 ± 0.12
w/o SP 0.19 ± 0.08
w/o TFIDF 0.18 ± 0.07
w/o LEM 0.67± 0.12
w/o LEM and SP 0.26 ± 0.09
w/o ALL 0.24 ± 0.08

Table 3: Correlation between tense and sense. NMI is
averaged on all verbs, using best matching sense. SP:
Symmetric Patterns, LEM: Lemmatizing predictions,
ALL: LEM, SP, TFIDF. The bold line show symmetric
patterns without lemmatization excessively correlates
tense and sense and provides additional validation to
our hypothesis, suggesting its essential to lemmatizate
when symmetric patterns are used.
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Abstract
Natural language inference has been shown
to be an effective supervised task for learn-
ing generic sentence embeddings. In or-
der to better understand the components that
lead to effective representations, we propose
a lightweight version of InferSent (Conneau
et al., 2017), called InferLite, that does not
use any recurrent layers and operates on a col-
lection of pre-trained word embeddings. We
show that a simple instance of our model that
makes no use of context, word ordering or
position can still obtain competitive perfor-
mance on the majority of downstream predic-
tion tasks, with most performance gaps being
filled by adding local contextual information
through temporal convolutions. Our models
can be trained in under 1 hour on a single GPU
and allows for fast inference of new represen-
tations. Finally we describe a semantic hash-
ing layer that allows our model to learn generic
binary codes for sentences.

1 Introduction
Distributed representations of words have become
immensely successful as the building blocks for
deep neural networks applied to a wide range
of natural language processing tasks (Pennington
et al., 2014). Learning representations of sen-
tences, however, has largely been done in a task-
dependent way. In recent years, a growing body of
research has emerged for learning general purpose
sentence embeddings. These methods aim to learn
a universal encoding function that can map arbi-
trary sentences into vectors which can then be ap-
plied to downstream prediction tasks without fine-
tuning. Much of the motivation behind this work
is to mimic the successful use of feature transfer
in computer vision.

Recently, Conneau et al. (2017) showed that
a bidirectional LSTM with max pooling trained
to perform Natural Language Inference (NLI),
called InferSent, outperforms several other encod-
ing functions on a suite of downstream prediction

tasks. This method could match or outperform ex-
isting models that learns generic embeddings in an
unsupervised setting, often requiring several days
or weeks to train (Kiros et al., 2015). However,
a better understanding of what properties induce a
useful generic embedding remains illusive.

In this work we propose a lightweight version of
InferSent, called InferLite. InferLite deviates from
InferSent in that it does not use any recurrent con-
nections and can generalize to multiple pre-trained
word embeddings. Our method uses a controller
to dynamically weight embeddings for each word
followed by max pooling over components to ob-
tain the final sentence representation. Despite its
simplicity, our method obtains performances on
par with InferSent (Conneau et al., 2017) when
using Glove representations (Pennington et al.,
2014) as the source of pre-trained word vectors.
To our surprise, the majority of evaluations can be
done competitively without any notion of context,
word ordering or position. For tasks where this is
useful, much of the performance gap can be made
up through a stack of convolutional layers to in-
corporate local context. Finally, we describe a se-
mantic hashing layer that allows our model to be
extended to learning generic binary vectors. The
final result is a method that is both fast at train-
ing and inference and offers a strong baseline for
future research on general purpose embeddings.

1.1 Why learn lightweight encoders?
Our proposed model naturally raises a question:
why consider lightweight sentence encoders? If
a generic encoder only needs to be trained once,
why would training times be relevant? We argue
our direction is important for two reasons. One is
inference speed. With a lightweight encoder, we
can encode millions of sentences efficiently with-
out requiring extensive computational resources.
The appendix includes inference speeds of our
models. The second, perhaps more importantly,
is to gain a better understanding of what prop-
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erties lead to high quality generic embeddings.
When models take several days or weeks to train,
an ablation analysis becomes prohibitively costly.
Since our models can be trained quickly, it allows
for a more extensive analysis of architectural and
data necessities. Moreover, we include an ablation
study in the appendix that shows even innocent or
seemingly irrelevant model decisions can have a
drastic effect on performance. Such observations
could not be observed when models take orders of
magnitude longer to train.

2 Related Work
A large body of work on distributional seman-
tics have considered encoding phrase and sen-
tence meaning into vectors e.g. (Mitchell and
Lapata, 2008; Grefenstette et al., 2013; Paperno
et al., 2014). The first attempt at using neural net-
works for learning generic sentence embeddings
was Kiros et al. (2015), who proposed a sequence-
to-sequence extension of the skip-gram model but
applied at the sentence level. This method was
taught to encode a sentence and predict its neigh-
bours, harnessing a large collection of books for
training (Zhu et al., 2015). A similar approach,
FastSent, was proposed by (Hill et al., 2016)
which replaced the RNN encoder of skip-thoughts
with word embedding summation. Methods us-
ing RNN encoders tend to perform poorly on STS
evaluations, as shown by Wieting et al. (2015).
Arora et al. (2017) showed a simple weighted bag
of words with the first principal component sub-
tracted, can be competitive on many sentencing
encoding tasks.

Attempts to learn generic encoders with dis-
criminative objectives were considered by Nie
et al. (2017) and Logeswaran and Lee (2018) who
replaced the decoder of skip-thoughts with classi-
fication tasks based on discourse relations and pre-
diction of target sentences from an encoded candi-
date. All of the above methods relied on a large
corpus of unlabelled data. Conneau et al. (2017)
showed that similar or improved performance can
be obtained using NLI datasets as a source of su-
pervisory information. The state of the art sen-
tence encoders utilize multi-task learning (Subra-
manian et al., 2018) by training an encoder to si-
multaneously do well on a collection of tasks such
as NLI, next sentence prediction and translation.

The use of gating for selecting word representa-
tions has been considered in previous work. Yang
et al. (2017) introduced a method for choosing
between word and character embeddings while
Kiela et al. (2018) describe a contextual gating

Feature dataset dim method

Glove Common Crawl 300
News Google News 500 CBOW
Query Google Search 800 CBOW

Table 1: Comparison of word representations used.

method for word embedding selection. Gating
has also been widely applied to multimodal fusion
(Arevalo et al., 2017; Wang et al., 2018b; Kiros
et al., 2018).

Our work is also related to recent methods that
induce contextualized word representations (Mc-
Cann et al., 2017; Peters et al., 2018) as well as
pre-training language models for task-dependent
fine-tuning (Dai and Le, 2015; Howard and Ruder,
2018; Radford et al., 2018). We differ from these
approaches in that we aim to infer a transferable
sentence vector without any additional fine-tuning.

3 Method

Our method operates on a collection of pre-trained
word representations and is then trained on the
concatenation of SNLI (Bowman et al., 2015) and
MultiNLI (Williams et al., 2018) datasets as in
Conneau et al. (2017). Table 1 summarizes the
properties of the embeddings we consider. At a
high level, our method takes as input a collection
of embeddings for each word and learns a gated
controller to decide how to weight each represen-
tation. After encoding each word in a sentence,
the sentence embedding is obtained by max pool-
ing the transformed word representations. Unlike
Subramanian et al. (2018), which learn a shared
encoder in a multi-task setting, we instead fix the
prediction task to NLI but use embeddings ob-
tained from alternative tasks. Figure 1 illustrates
our model.

We begin by defining notation. Suppose we
are given a sentence of words S = w1, . . . , wT

which we would like to encode into a vector.
Let K be the number of embedding types (e.g.
Glove, News, Query) and let Ek denote the word
embedding matrix for type k. Define Ec =
[E1; . . . ; EK ] to be the concatenation of word em-
bedding matrices of all K types.

We break our model description into four mod-
ules: Encoder, Controller, Fusion and Reduction.
In the appendix we include an ablation study that
analyzes the effect of our design choices.
Encoder. The encoder computes M + 1 layers
Hk

0 , . . . , Hk
M for k = 1, . . . , K embedding types.
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Figure 1: Illustration of the InferLite model. Separate
and Concat refer to the embedding types used.

The first layer is computed as:

Hk
0 = �0,h(W k

0,hEk + bk
0,h) (1)

where W k
0,gE

k is a time distributed matrix mul-
tiply 1 and �0,h is the activation function. Each
subsequent layer is given by:

Hk
i = �i,h(W k

i,h ⇤ Hk
i�1 + bk

i,h) (2)

where ⇤ denotes the 1-D convolution operator that
preserves dimensions. Note that if the convolu-
tional filter length is 1, the model reduces to a bag-
of-words encoder. We use ReLU activation func-
tions for �i,h where i = 0, . . . , M � 1 and a tanh
activation for the last layer �M,h.
Controller. The controller first computes a
shared layer Gc

0 along with M heads Gk
1, . . . , G

k
M

for k = 1, . . . , K embedding types. The first layer
is computed as:

Gc
0 = �0,g(W

c
0,gE

c + bc
0,g) (3)

where W c
0,gE

c is a time distributed matrix mul-
tiply and �0,g is the activation function. Define
Gk

0 = Gc
0, k = 1, . . . , K. Each subsequent layer

is given by:

Gk
i = �i,g(W

k
i,g ⇤ Gk

i�1 + bk
i,g) (4)

We use ReLU activation functions for �i,g where
i = 0, . . . , M � 1 and a sigmoid activation for the
last layer �M,g.

1Sometimes referred to as a ”translation layer” (see
https://github.com/Smerity/keras_snli).

Fusion. The fusion layer combines the encoder
and controller layers as follows:

F 0 =

 
KX

k=1

Hk
M � Gk

M

!
+ Gc

0 (5)

F = �f (WfF 0 + bf ) (6)

where � denotes a component-wise product,
WfF 0 is a time distributed matrix multiply, �f is
a ReLU activation function and Gc

0 is added as a
skip connection. In the appendix we demonstrate
that the added skip connection is crucial to the suc-
cess of the model.
Reduction. The final reduction operation simply
applies max pooling across tokens:

s = maxpool{F}T (7)

resulting in a sentence vector s. This resulting vec-
tor corresponds to the embedding for which we
evaluate all downstream tasks with.

For training on NLI, we follow existing work
and compute the concatenation of the embed-
dings of premise and hypothesis sentences along
with their componentwise and absolute difference
(Conneau et al., 2017). This joint vector is fed into
a 2 hidden layer feedforward network with ReLU
activations, followed by a softmax layer to predict
whether the sentence pairs are neutral, entailed or
contradictory. After training on NLI, the weights
of the model are frozen and used for encoding new
sentences.

3.1 Relationship to other work
Our model shares similarities to two other
works, namely the gated convolutional layers from
Dauphin et al. (2016); Gehring et al. (2017) and
van den Oord et al. (2016). There are three main
differences: 1) we generalize to multiple embed-
ding types 2) we only apply gating at the end of
the last layer as a way of weighting all embedding
types (instead of each layer) and 3) we use a skip
connection from the controller’s transformed in-
put to the fusion layer. We note that our encoder
module can be reduced to the gated convolutional
encoder in van den Oord et al. (2016) if we use
one embedding type, remove the time distributed
layers and only use a single convolutional layer.

3.2 Semantic hashing
We can augment a semantic hashing (Salakhut-
dinov and Hinton, 2009) layer to InferLite as a
way of learning binary codes for sentences. Bi-
nary codes allow for efficient storage and retrieval
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(a) NLI: no context (Conv length 1). (b) NLI: with context (Conv length 3).

Figure 2: NLI accuracy using models that (a) have no context (convolution length of 1) and b) local context
(convolution length of 3). Performance is reported on the concatenation of SNLI and MultiNLI development sets.
G stands for Glove, N stands for News and Q stands for Query embeddings.

over massive corpora. To do this, we append the
following layer:

h(s) = �
⇣

LN(Wxs+bx)
⌧

⌘
(8)

where LN is Layer Normalization (Ba et al.,
2016), � is the sigmoid activation and ⌧ is a tem-
perature hyperparameter. We initialize ⌧ = 1 at
the beginning of training and exponentially decay
⌧ towards 0 over the course of training. At infer-
ence time, we threshold at 0.5 to obtain codes. We
found Layer Normalization was important for ob-
taining good codes as otherwise many dead units
would form. In the appendix we include down-
stream performance results for 256, 1024 and
4096-bit codes. The combination of fast infer-
ence and efficient storage allows InferLite to be an
effective generic encoder for large-scale retrieval
and similarity search.

4 Experiments
We use the SentEval toolkit (Conneau and Kiela,
2018) for evaluating our sentence embeddings. All
of our models are trained to optimize performance
on the concatenation of SNLI and MultiNLI, us-
ing the concatenated development sets for early
stopping. We use 4096-dimensional embeddings
as in Conneau et al. (2017). We consider encoders
that use convolutional filters of length 1 (no con-
text) or length 3 (local context), with a stack of
M = 3 convolutional layers. All word embed-
dings are pre-trained, normalized to unit length
and held fixed during training. Full hyperparam-
eter details are included in the appendix, includ-
ing an ablation study comparing the effect of the
choice of M .

We first analyze performance of our model on
NLI prior to evaluating our models on downstream
tasks. Figure 2 shows development set accuracy
on NLI for models with and without context, using
various feature combinations. Here we observe
that a) using local context improves NLI perfor-
mance and b) adding additional embedding types
leads to improved performance.

Tables 2 and 3 show results on downstream
evaluation tasks. Here several observations can
be made. First note the effectiveness of the basic
(glove,1) model, which is essentially a deep bag-
of-unigram encoder. We also observe our models
outperform all previous bag of words baselines.
Next we observe that adding local context helps
significantly on MR, CR, SST2 and TREC tasks.
Furthermore, fusing embeddings from query and
news models matches or improves performance
over a glove-only model on 12 out of 15 tasks. Our
(glove+news+query,3) model is best on 5 tasks
and is a generally strong performer across all eval-
uations. Finally observe that our models signifi-
cantly improves over previous work on STS tasks.

Next we compare training times of our mod-
els to previous work. All of our models can be
trained in one GPU hour or less. QuickThoughts
and InferSent can be trained on the order of a day
while Multitask requires 1 week of training. This
demonstrates the trade-off of these approaches.

In the appendix we include results from sev-
eral other experiments including COCO image-
sentence retrieval, downstream performance of
InferLite with semantic hashing and results on
10 probing tasks introduced in Conneau et al.
(2018). We also do an extensive ablation study
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Model MR CR SUBJ MPQA SST2 TREC MRPC time (h)

Glove BOW (Conneau et al., 2017) 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0
USE-D (Cer et al., 2018) 74.5 81.0 92.7 85.4 77.6 91.2

ST-LN (Ba et al., 2016) 79.4 83.1 93.7 89.3 82.9 88.4 ⇠ 720
DisSent (Nie et al., 2017) 80.1 84.9 93.6 90.1 84.1 93.6 75.0/
InferSent (Conneau et al., 2017) 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 < 24
USE-T (Cer et al., 2018) 81.4 87.4 93.9 87.0 85.4 92.5
QuickThoughts (Logeswaran and Lee, 2018) 82.4 86.0 94.8 90.2 87.6 92.4 76.9/84.0 ⇠ 24
Multitask (Subramanian et al., 2018) 82.5 87.7 94.0 90.9 83.2 93.0 78.6/84.4 ⇠ 168

glove,1 79.6 82.2 92.0 89.5 83.0 88.2 75.5/82.7 ⇠ 0.3
glove+news,1 79.0 82.7 92.1 89.8 83.7 89.2 76.9/83.7 ⇠ 0.5
glove+query,1 79.0 83.2 92.2 89.6 83.3 89.4 75.8/83.0 ⇠ 0.5
glove+news+query,1 78.8 82.2 92.0 89.6 83.0 89.2 76.7/83.5 ⇠ 0.7

glove,3 80.9 84.1 92.4 89.6 85.8 90.0 76.5/83.4 ⇠ 0.5
glove+news,3 80.4 84.8 91.9 89.7 86.3 89.8 77.0/83.9 ⇠ 0.7
glove+query,3 80.1 85.6 92.2 89.4 84.7 91.0 76.4/83.3 ⇠ 0.7
glove+news+query,3 80.4 85.6 92.2 89.9 85.0 91.2 76.1/83.3 ⇠ 1

Table 2: Comparison of embedding methods on downstream evaluations. Each set of results is a) bag-of-words b)
RNN and Transformer c) ours, filter length 1 and d) ours, filter length 3. Last column is training time in hours.

Model SICK-R SICK-E STSB STS12 STS13 STS14 STS15 STS16

Glove BOW (Conneau et al., 2017) 80.0 78.6 52.5 42.3 54.2 52.7
GloVe + WR (Arora et al., 2017) 86.0 84.6 56.2 56.6 68.5 71.1

ST-LN (Ba et al., 2016) 85.8 79.5 30.8 24.8 31.4 31.0
InferSent (Conneau et al., 2017) 88.4 86.3 75.8/75.5 59.2 58.9 69.6 71.3 71.4
Multitask (Subramanian et al., 2018) 88.8 87.8 78.9/78.6 60.6 54.7 65.8 74.2 66.4

glove,1 88.3 85.9 78.1/78.0 62.4 60.4 71.6 74.6 70.3
glove+news,1 88.5 86.7 78.0/78.1 63.0 58.8 71.2 74.2 70.2
glove+query,1 88.5 86.0 77.1/77.1 63.1 56.8 70.9 74.1 70.3
glove+news+query,1 88.6 85.9 77.7/78.0 63.9 58.1 70.9 73.6 69.8

glove,3 88.1 85.5 78.4/78.3 61.9 61.3 71.7 74.5 71.2
glove+news,3 88.5 86.6 77.5/77.4 61.7 59.5 71.0 73.9 71.6
glove+query,3 88.6 86.5 78.1/78.3 61.8 61.3 71.8 74.3 70.1
glove+news+query,3 88.7 87.2 77.1/77.1 63.1 58.6 71.7 73.8 70.1

Table 3: Comparison of embedding methods on downstream evaluations. Each sets of results are a) bag-of-words
b) RNN encoders c) ours, filter length 1 d) ours, filter length 3. Best results bolded. Our best results underlined.

of model components and illustrate gate activa-
tion values qualitatively for sentences from the
(glove+news+query,3) model.

4.1 Limitations

We also experimented with additional embedding
types, including Picturebook (Kiros et al., 2018),
knowledge graph and neural machine translation
based embeddings. While adding these embed-
dings improved performance on NLI, they did
not lead to any performance gains on downstream
tasks. This is in contrast to Subramanian et al.
(2018) who showed adding additional tasks in a
multi-task objective led to better downstream per-
formance. This demonstrates the limitations of
solely using NLI as an objective, even if we trans-
fer embeddings from additional tasks.

5 Future Work

In future work, we would like to explore using
contextualized word embeddings, such as CoVe
(McCann et al., 2017) and ELMo (Peters et al.,
2018), as input to our models as opposed to non-
contextualized representations. We also intend
to evaluate on additional benchmark tasks such
as GLUE (Wang et al., 2018a), explore using
the learned word representations as contextualized
embeddings and perform downstream fine-tuning.
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Abstract

This paper addresses the problem of represen-
tation learning. Using an autoencoder frame-
work, we propose and evaluate several loss
functions that can be used as an alternative to
the commonly used cross-entropy reconstruc-
tion loss. The proposed loss functions use
similarities between words in the embedding
space, and can be used to train any neural
model for text generation. We show that the
introduced loss functions amplify semantic di-
versity of reconstructed sentences, while pre-
serving the original meaning of the input. We
test the derived autoencoder-generated repre-
sentations on paraphrase detection and lan-
guage inference tasks and demonstrate per-
formance improvement compared to the tradi-
tional cross-entropy loss.

1 Introduction

Natural language processing (NLP) tasks that use
an encoder-decoder architecture tend to rely on
the cross-entropy reconstruction loss to generate
the target output. A great majority of deep learn-
ing models used at present for state-of-the-art ma-
chine translation, question answering, summariza-
tion, and dialogue generation employ this type of
architecture.

The standard cross-entropy loss penalizes the
model whenever it fails to produce the exact word
from the ground truth data used for training. How-
ever, in many NLP tasks that deal with generating
text from semantic representation, recovering the
exact word is not necessarily optimal, and often
generating a near-synonym or just a semantically
close word is nearly as good or even better from
the point of view of model performance. Consider
a situation when a decoder model generates a word
by sampling from a softmax over the vocabulary-
sized final layer to produce an output. Since cross-
entropy loss forces a model to generate the exact

words corresponding to those in the input text, the
model will be penalized when semantically close
but distinct outputs are generated. This is clearly
undesirable in many cases when the exact output
is not required.

In this paper, we introduce and experiment with
a series of distance-based reconstruction losses.
Using an auto-encoder derived representation of
sentence meaning, we test their impact on model
performance in several tasks that require building
a semantic representation, including paraphrase
detection and entailment / inference. We show that
the loss functions that take into account distribu-
tional similarity between the word embeddings of
the generated output and the ground truth tokens
lead to a substantial improvement in performance
on such tasks in an unsupervised setting.

2 Related Work

The encoder-decoder setting was first used in deep
learning by Sutskever et al. (2014) and has been
successfully adapted to a problem of representa-
tion learning since then. To date, numerous ap-
proaches based on the encoder-decoder idea have
been suggested for unsupervised feature extraction
from textual data.

Cer et al. (2018) modify the Transformer ar-
chitecture (Vaswani et al., 2017) originally sug-
gested for machine translation to produce sentence
embeddings that target transfer learning to other
NLP tasks. Arora et al. (2016) claim that sen-
tence representation as simple weighted averaging
of word vectors beats more sophisticated recur-
rent network-based models. McCann et al. (2017)
show that adding machine translation-learned vec-
tors to models designed for other NLP tasks im-
proves their performance. Nangia et al. (2017)
in RepEval-2017 report that in-sentence atten-
tion and biLSTM-based models extract represen-

4875



tation of meaning from text reasonably well. Lo-
geswaran and Lee (2018) and Kiros et al. (2015)
change the problem of learning sentence repre-
sentations to a classification task for predicting
context sentences. Subramanian et al. (2018)
demonstrate that sharing the same sentence en-
coder across different tasks leads to performance
improvements.

All the listed works, however, propose methods
that either develop task-specific architectures, or
use large corpora of labeled data to learn embed-
dings at a sentence level. Unlike the mentioned
papers, the simple modification we propose does
not require data annotation and can be used with
any state-of-the-art neural models for text genera-
tion.

Surprisingly, we have not found other work that
uses the proposed idea despite its simplicity.

3 Experiments

The objective of a classic autoencoder is to mini-
mize the difference between the given input X and
the reconstructed output X̂.

L(X, g(f(X)) (1)

where f is the encoder function and g is the de-
coder function. We propose and compare several
modifications of distance-based losses, that apply
different penalties to the model depending on the
similarity of the produced words to the targets in
the embedding space.

• Weighted similarity loss

L = �
VX

i=1

sim(yt, yi)pi (2)

where pi is the softmax probability over vo-
cabulary size, �1  sim  1 is the similarity
between the tokens embeddings vectors, yt

and yi are the ground-truth token and the pre-
dicted token, respectively, and V is the total
vocabulary size. Intuitively, this loss encour-
ages the model to produce high probabilities
for words that are close to the target word. In
the present experiments, we use cosine as the
similarity measure.

• Weighted cross-entropy loss

L = �
VX

i=1

sim(yt, yi) log pi (3)

Here the optimization function can be seen as
the “weighted” cross-entropy, meaning that
every ground-truth token is represented with
similarities to other words in the vocabu-
lary rather than with a traditional one-hot-
encoding scheme. The schematic illustration
of the true label encoding for the weighted
similarity and weighted cross-entropy loss
functions is shown in Figure 1 (right).

• Soft label loss

L = �
VX

i=1

y⇤
i logpi (4)

This cost function is similar to the previous
one in terms of true label yi representation:
we encode ground-truth tokens as their simi-
larities across the vocabulary, but we consider
only the top N closest words in the vocab-
ulary and normalize the similarities so that
they add up to one

PV
i=1 y⇤

i = 1. Essentially,
the loss function can be interpreted as cross-
entropy with soft targets. We vary N from
3 to 10 in our experiments. We also exclude
common English stop-words from soft target
encoding, i.e. we apply a regular cross en-
tropy loss for reconstructing of these words.
The schematic illustration is given in Figure
1 (center).

y⇤
i =

8
<

:

sim(yt,yi)PN
j=1 sim(yt,yj)

, yi 2 top N

0, yi 62 top N
(5)

We use pre-trained fastText (Bojanowski et al.,
2016) word vectors to compute similarities be-
tween words. Note that the more recently pro-
posed ELMo embeddings (Peters et al., 2018), for
example, can not be used in our case, since they
are context-dependent, which means that similar-
ities between individual words can not be pre-
computed.

To find out how the proposed loss functions af-
fect the quality of the derived representations, we
trained several autoencoder models using the reg-
ular cross-entropy, as well as the three variants of
the similarity-based reconstruction loss described
above. In these experiments, we use the Yelp
restaurant reviews dataset (Shen et al., 2017). This
dataset was originally introduced for a sentiment
classification task and consists of 600K sentences.
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Figure 1: Schematic illustration of true-label encoding using the standard cross-entropy loss (left), soft label loss
for N = 3 (center) and weighted similarity/weighted cross-entropy loss (right). All the three examples ”good”,
”great” and ”bad” are close in the embedding space, since they appear in similar contexts. Note that all the soft
labels add up to 1, while weighted similarity labels for the third loss can vary in the range from -1 to 1.

Model MSRP SNLI SICK-E

F1 Acc Acc Acc
Cross-entropy (vanilla AE) 79.0 66.9 44.8 56.8
Soft label, N = 3 77.6 67.1 57.8 71.8
Soft label, N = 5 79.1 67.3 57.2 71.6
Soft label, N = 10 77.9 66.5 57.9 72.4
Weighted similarity 77.5 65.6 69.1 56.6
Weighted cross-entropy 79.4 68.2 57.2 70.2

Table 1: Results of transfer learning tasks performance of the proposed autoencoder models. All the models are
trained on the Yelp reviews dataset with the use of fastText pre-trained word embeddings.

Our autoencoder model is implemented using
the PyTorch deep learning framework (Paszke
et al., 2017). In our architecture, both the encoder
and the decoder are implemented as single layer
LSTMs, each with the hidden size of 256 units.
We divide our dataset into train/dev/test splits in
70/10/20 ratio. The resulting vocabulary size of
the training dataset is 9.5K tokens. For our train-
ing, we use the Adam optimizer (Kingma and Ba,
2014) with the learning rate that varies depending
on the tested loss between 0.001 and 0.0001.

We test our learned representations using the
SentEval toolkit (Conneau et al., 2017). SentE-
val is an open-source Python library for evaluating
sentence embeddings on a diverse set of language
tasks. This toolkit provides a cluster of down-
stream tasks taken from various competitions such
as SemEval as well as a set of probing tasks. In
current paper, we focus on the paraphrase detec-
tion task using the Microsoft Research Paraphrase
Corpus (MSRP) (Dolan et al., 2004), as well as the
inference/entailment tasks using the Stanford Nat-
ural Language Inference corpus (SNLI) (Bowman

et al., 2015) and the SICK-Entailment dataset from
SemEval-2014 (Marelli et al., 2014). We selected
these tasks because they seem to be likely to ben-
efit from capturing word-level semantic similarity.
Table 1 shows the scores averaged over three (3)
runs.

4 Discussion

We find that almost all of the proposed loss func-
tions outperform the vanilla autoencoder trained
with cross-entropy on all three tasks (see Table 1).
The only exception is the weighted similarity loss
function. Compared to the logarithm-based losses,
this loss applies softer penalties when the ground-
truth tokens are predicted to have lower probabili-
ties. We conclude that the non-linearity introduced
by a logarithm function contributes to more effi-
cient training.

Among the models we tested, the best scores
were achieved by the weighted cross-entropy loss
for MSRP (68.2%), the weighted similarity loss
for SNLI (69.1%) and by the soft label loss for
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Configuration Autoencoder outputs

Input sentence Reconstructed sentence

Cross-entropy you can trust this business you can trust this business
Soft label, N = 3 the taste was so good the flavor was so good

Soft label, N = 5 her tone was incredibly rude
her attitude was
incredibly unprofessional

Soft label, N = 10 a very nice spot for a quiet lunch
a very nice slot for
a tranquil lunchtime

Weighted similarity once again the staff were wonderful that so that service and great
Weighted cross-entropy great breakfast option great food place

Table 2: Sample autoencoder reconstruction outputs for the tested loss configurations.

SICK-E (72.4%). We observe that for the para-
phrase task, all the soft label losses behaved simi-
larly, while for the inference/entailment, increas-
ing the number of neighbors improved perfor-
mance.

In order to better understand how different mod-
ifications of the soft label loss affected model per-
formance on transfer tasks, we conducted some
additional experiments. Specifically, we investi-
gated the effects of (a) varying the number N of
word neighbors used to compute the loss function,
and (b) removing the normalization factor by get-
ting rid of the denominator in Eq. 5 (i.e. soft la-
bel similarities no longer sum up to 1). Note that
when N = 1, the soft label loss becomes identical
to cross-entropy. When the normalization factor is
removed, having N = V makes the soft label loss
identical to the weighted similarity loss.

We found that the normalization factor slightly
reduced the accuracy for all of the three tasks (see
Figure 2). Interestingly, we have not established
a universal tendency for the optimal choice of N :
for the language inference tasks, the best accuracy
was achieved at N close to 10, while for the para-
phrasing task the suitable choice for N was in the
range of 3-5.

The performance figures obtained for each loss
are well illustrated by the quality of the recon-
structed examples in Table 2. The standard cross-
entropy, as expected, aims at the accurate word-
by-word reconstruction of the input sentence. The
autoencoder with our least successful weigthed
similarity loss function manages to learn most fre-
quent corpus-specific words (e.g. “great service”),
but the overall meaning is not conveyed well. he
rest of the models succeed in reconstructing syn-
onyms at the word-level. This results in a slightly
different expression style (e.g. “her tone was in-

credibly rude” becomes “her attitude was incred-
ibly unprofessional”), but the overall meaning is
reconstructed correctly.

Obviously, the quality of the generated repre-
sentations depends to a large extent on the selec-
tion of pre-trained word embeddings. The related
drawback that we observe in our choice of the fast-
Text vectors is that the target ground-truth tokens
can be replaced with word inflections as well as
with antonyms, which in certain cases can change
the meaning of the sentence to the opposite.

For a subset of configurations, we conducted
exploratory testing on additional tasks, including
different subsets of STS and SICK-Relatedness
data. For nearly all tasks tested, we recorded better
performance compared to cross-entropy, with the
minimum relative gain being 1%. The only per-
formance reduction was in plagiarism detection,
which may be expected to favor exact replication.

Although the scores we obtained are below the
state-of-the-art for the considered tasks, our goal
was to demonstrate that in a traditional encoder-
decoder setting, which is extensively used for a
number of NLP problems, the proposed loss func-
tions beat the conventional cross-entropy. The ma-
jor advantage of our proposal is that it is very sim-
ple and highly generalizable, i.e. without a so-
phisticated model architecture, our model is able
to produce diversified outputs and can be easily
integrated in any existing encoder-decoder archi-
tectures.

5 Conclusion

In this paper, we introduced the loss functions
that leverage word-level distributional similarity
between the generated output and the ground truth.
Compared to the representations learned by a
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Figure 2: The effect of the soft label loss modifications on task performance. N is the number of closest words
neighbors used to compute the loss function.

vanilla autoencoder, the proposed reconstruction
loss variants show substantially improved perfor-
mance on several semantic representation tasks.
Further, relative to the conventional cross-entropy,
the tested loss variants produce more diverse out-
put while preserving the underlying semantics.

We focused on the autoencoder architecture
which requires no pre-annotated data to generate
the representations. The major benefit of our pro-
posal is that the proposed loss functions can be
plugged directly into any NLP model that gener-
ates text word-by-word and that may benefit from
more diverse output. The potential applications of
our proposal therefore include any of the common
NLP problems where language diversity is desir-
able, including conversational agents, paraphrase
generation and text summarization.

The next step for this work is to evaluate the per-
formance of the proposed loss functions in state-
of-the-art models for the NLP tasks that lever-
age sentence-level semantic representation, such
as the ones we explored in the present study. Fur-
ther experiments with the proposed loss functions
are also needed to evaluate the effects of different
word embedding models on the quality of derived
representations.
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Abstract
We investigate the effects of multi-task learn-
ing using the recently introduced task of se-
mantic tagging. We employ semantic tagging
as an auxiliary task for three different NLP
tasks: part-of-speech tagging, Universal De-
pendency parsing, and Natural Language In-
ference. We compare full neural network shar-
ing, partial neural network sharing, and what
we term the learning what to share setting
where negative transfer between tasks is less
likely. Our findings show considerable im-
provements for all tasks, particularly in the
learning what to share setting, which shows
consistent gains across all tasks.

1 Introduction
Multi-task learning (MTL) is a recently resurgent
approach to machine learning in which multiple
tasks are simultaneously learned. By optimising
the multiple loss functions of related tasks at once,
multi-task learning models can achieve superior
results compared to models trained on a single
task. The key principle is summarized by Caruana
(1998) as “MTL improves generalization by lever-
aging the domain-specific information contained
in the training signals of related tasks”. Neural
MTL has become an increasingly successful ap-
proach by exploiting similarities between Natural
Language Processing (NLP) tasks (Collobert and
Weston, 2008; Søgaard and Goldberg, 2016; Plank
et al., 2016). Our work builds upon Bjerva et al.
(2016), who demonstrate that employing seman-
tic tagging as an auxiliary task for Universal De-
pendency (McDonald et al., 2013) part-of-speech
tagging can lead to improved performance.

The objective of this paper is to investigate
whether learning to predict lexical semantic cat-
egories can be beneficial to other NLP tasks. To
achieve this we augment single-task models (ST)1

1We replicate models which perform at or close to the

with an additional classifier to predict semantic
tags and jointly optimize for both the original task
and the auxiliary semantic tagging task. Our hy-
pothesis is that learning to predict semantic tags
as an auxiliary task can improve performance of
single-task systems. We believe that this is, among
other factors, due to the following:

• Providing the main task’s model with a useful
inductive bias, encouraging it to prefer repre-
sentations that lead to semantically plausible
hypotheses over those that are not.

• Putting the focus of the main task model’s
attention on features that actually matter by
providing additional evidence for the rele-
vance or irrelevance of those features.

• Reducing the risk of overfitting by mini-
mizing the model’s Rademacher Complexity2

Representations which are learned for multi-
ple tasks have been shown to generalize bet-
ter (Baxter et al., 2000).

We test our hypothesis on three disparate NLP
tasks: (i) Universal Dependency part-of-speech
tagging (UPOS), (ii) Universal Dependency pars-
ing (UD DEP), a complex syntactic task; and (iii)
Natural Language Inference (NLI), a complex task
requiring deep natural language understanding.

2 Background and Related work

2.1 Semantic Tagging

Semantic tagging (Bjerva et al., 2016; Abzianidze
and Bos, 2017) is the task of assigning language-
neutral semantic categories to words. It is de-
signed to overcome a lack of semantic information
syntax-oriented part-of-speech tagsets, such as the

state-of-the-art. Our choice of models is based on replica-
bility.

2The ability to fit random noise.
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Figure 1: Our three multi-task learning settings: (A) fully shared networks, (B) partially shared networks,
and (C) Learning What to Share. Layers are mathematically denoted by vectors and the connections
between them, represented by arrows, are mathematically denoted by matrices of weights. S indicates a
shared layer, P a private layer, and X a layer with shared and private subspaces.

Penn Treebank tagset(Marcus et al., 1993), usu-
ally have. Such tagsets exclude important seman-
tic distinctions, such as negation and modals, types
of quantification, named entity types, and the con-
tribution of verbs to tense, aspect, or event.

The semantic tagset is language-neutral, ab-
stracts over part-of-speech and named-entity
classes, and includes fine-grained semantic in-
formation. The tagset consists of 80 seman-
tic tags grouped in 13 coarse-grained classes.
The tagset originated in the Parallel Meaning
Bank (PMB) project (Abzianidze et al., 2017),
where it contributes to compositional semantics
and cross-lingual projection of semantic represen-
tations. Recent work has highlighted the utility of
the tagset as a conduit for evaluating the seman-
tics captured by vector representations (Belinkov
et al., 2018), or employed it in an auxiliary tagging
task (Bjerva et al., 2016), as we do in this work.

2.2 Learning What to Share
Recently, there has been an increasing interest in
the development of models which are trained to
learn what to (and what not to) share between a
set of tasks, with the general aim of preventing
negative transfer when the tasks are not closely re-
lated (Meyerson and Miikkulainen, 2017; Ruder
et al., 2017; Lu et al., 2017; Misra et al., 2016).
Our Learning What to Share setting is based on
this idea and closely related to Liu et al. (2016)’s
shared layer architecture.

Specifically, a layer ~hX which is shared be-
tween the main task and the auxiliary task is split
into two subspaces: a shared subspace ~hXS and
a private subspace ~hXP . The interaction between

the shared subspaces is modulated via a sigmoidal
gating unit applied to a set of learned weights, as
seen in Equations (1) and (2) where ~hXS(main)

and
~hXS(aux)

are the main and auxiliary tasks’ shared
layers, Wa!m and Wm!a are learned weights,
and � is a sigmoidal function.

~hXS(main)
= ~hXS(main)

�(~hXS(aux)
Wa!m) (1)

~hXS(aux)
= ~hXS(aux)

�(~hXS(main)
Wm!a) (2)

Unlike Liu et al. (2016)’s Shared-Layer Archi-
tecture, in our setup each task has its own shared
subspace rather than one common shared layer.
This enables the sharing of different parameters
in each direction (i.e., from main to auxiliary
task and from auxiliary to main task), allowing
each task to choose what to learn from the other,
rather than having “one shared layer to capture the
shared information for all the tasks” as in Liu et al.
(2016).

3 Multi-Task Learning Settings

We implement three neural MTL settings, shown
in Figure 1. They differ in the way the network’s
parameters are shared between the tasks:

• Fully shared network (FSN): All hidden
layers are entirely shared among the tasks,
each task has a separate output layer. The
transformation of our input vector ~x into a
shared hidden layer ~hS is described by Equa-
tion (3):

~hS = �(~xW ) (3)

• Partially shared network (PSN): A subset
of hidden layers is shared among the tasks;
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each task has at least one private hidden
layer and a separate output layer. The trans-
formation of a shared hidden layer ~hS into
private hidden layers, denoted by ~hP(main)

and ~hP(aux)
is described in Equations (4)

and (5).
~hP(main)

= �( ~hSW(main)) (4)
~hP(aux)

= �( ~hSW(aux)) (5)

• Learning What to Share (LWS): Each task
has a dedicated set of hidden layers. For
sharing, a hidden layer is split into a shared
subspace and a private subspace. A gating
unit modulates the transfer of information
between the shared subspaces as shown in
Equations (1) and (2).

4 Data

In the UPOS tagging experiments, we utilize the
UD 2.0 English corpus (Nivre et al., 2017) for the
POS tagging and the semantically tagged PMB
release 0.1.0 (sem-PMB)3 for the MTL settings.
Note that there is no overlap between the two
datasets. Conversely, for the UD DEP and NLI
experiments there is a complete overlap between
the datasets of main and auxiliary tasks, i.e., each
instance is labeled with both the main task’s labels
and semantic tags. We use the Stanford POS Tag-
ger (Toutanova et al., 2003) trained on sem-PMB
to tag the UD corpus and NLI datasets with seman-
tic tags, and then use those assigned tags for the
MTL settings of our dependency parsing and NLI
models. We find that this approach leads to better
results when the main task is only loosely related
to the auxiliary task. The UD DEP experiments
use the English UD 2.0 corpus, and the NLI ex-
periments use the SNLI (Bowman et al., 2015) and
SICK-E4 datasets (Marelli et al., 2014). The pro-
vided train, development, and test splits are used
for all datasets. For sem-PMB, the silver and gold
parts are used for training and testing respectively.

5 Experiments

We run four experiments for each of the four tasks
(UPOS, UD DEP, SNLI, SICK-E), one using the
ST model and one for each of the three MTL set-
tings. Each experiment is run five times, and the
average of the five runs is reported. We briefly de-
scribe the ST models and refer the reader to the

3http://pmb.let.rug.nl/data.php
4SICK-E refers to the entailment part of the SICK dataset.

original work for further details due to a lack of
space.5 For reproducibility, detailed diagrams of
the MTL models for each task and their hyperpa-
rameters can be found in Appendix A.

5.1 Universal Dependency POS Tagging
Our tagging model uses a basic contextual one-
layer bi-LSTM (Hochreiter and Schmidhuber,
1997) that takes in word embeddings and produces
a sequence of recurrent states which can be viewed
as contextualized representations. The recurrent
rn state from the bi-LSTM corresponding to each
time-step tn is passed through a dense layer with
a softmax activation to predict the token’s tag.

In each of the MTL settings a softmax classifier
is added to predict a token’s semantic tag and the
model is then jointly trained on the concatenation
of the sem-PMB and UPOS tagging data to min-
imize the sum of softmax cross-entropy losses of
both the main (UPOS tagging) and auxiliary (se-
mantic tagging) tasks.

5.2 Universal Dependency Parsing
We employ a parsing model that is based on Dozat
and Manning (2016). The model’s embeddings
layer is a concatenation of randomly initialized
word embeddings6 and character-based word rep-
resentations added to pre-trained word embed-
dings, which are passed through a 4-layer stacked
bi-LSTM. Unlike Dozat and Manning (2016), our
model jointly learns to perform UPOS tagging and
parsing, instead of treating them as separate tasks.
Therefore, instead of tag embeddings, we add a
softmax classifier to predict UPOS tags after the
first bi-LSTM layer. The outputs from that layer
and the UPOS softmax prediction vectors are both
concatenated to the original embedding layer and
passed to the second bi-LSTM layer. The output
of the last bi-LSTM is then used as input for four
dense layers with a ReLU activation, producing
four vector representations: a word as a depen-
dent seeking its head; a word as a head seeking
all its dependents; a word as a dependent decid-
ing on its label; a word as head deciding on the
labels of its dependents. These representations are
then passed to biaffine and affine softmax classi-
fiers to produce a fully-connected labeled prob-
abilistic dependency graph (Dozat and Manning,

5This applies to UD DEP and NLI only, as the POS tagger
is not based on any one particular work.

6This replaces the holistic word embeddings for frequent
words in Dozat and Manning (2016).
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2016). Finally, a non-projective maximum span-
ning tree parsing algorithm (Chu, 1965; Edmonds,
1967) is used to obtain a well-formed dependency
tree.7

Similarly to UPOS tagging, an additional soft-
max classifier is used to predict a token’s seman-
tic tag in each of the MTL settings, as both tasks
are jointly learned. In the FSN setting, the 4-layer
stacked bi-LSTM is entirely shared. In the PSN
setting the semantic tags are predicted from the
second layer’s hidden states, and the final two lay-
ers are devoted to the parsing task. In the LWS
setting, the first two layers of the bi-LSTM are
split into a private bi-LSTMprivate and a shared
bi-LSTMshared for each of the tasks with the inter-
action between the shared subspaces being modu-
lated via a gating unit. Then, two bi-LSTM layers
that are devoted to parsing only are stacked on top.

5.3 Natural Language Inference
We base our NLI model on Chen et al. (2017)’s
Enhanced Sequential Inference Model which uses
a bi-LSTM to encode the premise and hypothe-
sis, computes a soft-alignment between premise
and hypothesis’ representations using an attention
mechanism, and employs an inference composi-
tion bi-LSTM to compose local inference infor-
mation sequentially.8 The MTL settings are im-
plemented by adding a softmax classifier to pre-
dict semantic tags at the level of the encoding bi-
LSTM, with rest of the model unaltered. In the
FSN setting, the hidden states of the encoding bi-
LSTM are directly passed as input to the soft-
max classifier. In the PSN setting an earlier bi-
LSTM layer is used to predict the semantic tags
and the output from that is passed on to the en-
coding bi-LSTM which is stacked on top. This
follows Hashimoto et al. (2016)’s hierarchical ap-
proach. In the LWS setting, a bi-LSTM layer with
private and shared subspaces is used for semantic
tagging and for the ESIM model’s encoding layer.
In all MTL settings, the bi-LSTM used for seman-
tic tagging is pre-trained on the sem-PMB data.

6 Results and Discussion

Results for all tasks are shown in Table 1. In line
with Bjerva et al. (2016)’s findings, the FSN set-

7This is recommended but not implemented by Dozat
et al. (2017).

8We do not implement the additional tree-LSTM model
used in Chen et al. (2017) as we focus on the effect of MTL
with semantic tagging rather than on absolute performance.

ting leads to an improvement for UPOS tagging.
POS tagging, a sequence labeling task, can be seen
as the most closely related to semantic tagging,
therefore negative transfer is minimal and the full
sharing of parameters is beneficial. Surprisingly,
the FSN setting also leads improvements for UD
DEP. Indeed, for UD DEP, all of the MTL models
outperform the ST model by increasing margins.
For the NLI tasks, however, there is a clear degra-
dation in performance.

The PSN setting shows mixed results and does
not show a clear advantage over FSN for UPOS
and UD DEP. This suggests that adding task-
specific layers after fully-shared ones does not al-
ways enable sufficient task specialization. For
the NLI tasks however, PSN is clearly preferable
to FSN, especially for the small-sized SICK-E
dataset where the FSN model fails to adequately
learn.

Model SNLI SICK-E UPOS UD DEP

ST 87.01 81.30 92.12 80.24 / 84.87
FSN 84.96 56.69 92.95 81.03 / 85.54
PSN 87.08 77.92 92.34 80.92 / 85.81
LWS 87.51 84.57 95.54 81.39 / 86.00

Table 1: Results for single-task models (ST), fully-
shared networks (FSN), partially-shared networks
(PSN), and learning what to share (LWS). All
scores are reported as accuracy, except UD DEP
for which we report LAS/UAS F1 score.

As a sentence-level task, NLI is functionally
dissimilar to semantic tagging. However, it is a
task which requires deep understanding of natural
language semantics and can therefore conceivably
benefit from the signal provided by semantic tag-
ging. Our results demonstrate that it is possible to
leverage this signal given a selective sharing setup
where negative transfer can be minimized. In-
deed, for the NLI tasks, only the LWS setting leads
to improvements over the ST models.9 The im-
provement is larger for the SICK-E task which has
a much smaller training set and therefore stands
to learn more from the semantic tagging signal.
For all tasks, it can be observed that the LWS
models outperform the rest of the models. This
is in line with our expectations with the findings
from previous work (Ruder et al., 2017; Liu et al.,

9Demonstrative examples of the SNLI models’ outputs
can be found in Appendix B.
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(a) Single-task network (b) Partially shared network (c) Learning what to share

Figure 2: Normalized semantic tag frequencies for all six sets of sentences. X - Y denotes the set of
sentences correctly classified by model X but misclassified by model Y.

2016) that selective sharing outperforms full net-
work and partial network sharing.

7 Analysis

In addition to evaluating performance directly, we
attempt to qualify how semtags affect performance
with respect to each of the SNLI MTL settings10.

7.1 Qualitative analyses
The fact that NLI is a sentence-level task, while se-
mantic tags are word-level annotations presents a
difficulty in measuring the effect of semantic tags
on the systems’ performance, as there is no one-
to-one correspondence between a correct label and
a particular semantic tag. We therefore employ
the following method in order to assess the con-
tribution of semantic tags. Given the performance
ranking of all our systems — FSN < ST <
PSN < LWS — we make a pairwise compar-
ison between the output of a superior system Ssup

and an inferior system Sinf . This involves tak-
ing the pairs of sentences that every Ssup classi-
fies correctly, but some Sinf does not. Given that
FSN is the worst performing system and, as such,
has no ‘worse’ system for comparison, we are left
with six sets of sentences: ST-FSN, PSN-FSN,
PSN-ST, LWS-PSN, LWS-ST, and LWS-FSN.
To gain insight as to where a given system Ssup

performs better than a given Sinf , we then sort
each comparison sentence set by the frequency of
semtags predicted therein, which are normalized
by dividing by their frequency in the full SNLI test
set.

We notice interesting patterns, visible in Fig-
ure 2. Specifically, PSN appears markedly bet-
ter at sentences with named entities (ART, PER,

10We also provide a per-label report of the standard preci-
sion and recall metrics in Appendix B.

GEO, ORG) and temporal entities (DOM) than both
ST and the FSN. Marginal improvements are also
observed for sentences with negation and reflexive
pronouns. The LWS setting continues this pattern,
with additional improvements observable for sen-
tences with the HAP tag for names of events, SST
for subsective attributes, and the ROL tag for role
nouns.

7.2 Contribution of semantic tagging

To assess the contribution of the semantic tagging
auxiliary task independent of model architecture
and complexity we run three additional SNLI ex-
periments — one for each MTL setting — where
the model architectures are unchanged but the aux-
iliary tasks are assigned no weight (i.e. do not af-
fect the learning). The results confirm our previ-
ous findings that, for NLI, the semantic tagging
auxiliary task only improves performance in a se-
lective sharing setting, and hurts it otherwise: i)
the FSN system which had performed below ST
improves to equal it and ii) the PSN and LWS set-
tings both see a drop to ST-level performance.

8 Conclusions

We present a comprehensive evaluation of MTL
using a recently proposed task of semantic tag-
ging as an auxiliary task. Our experiments span
three types of NLP tasks and three MTL settings.
The results of the experiments show that employ-
ing semantic tagging as an auxiliary task leads to
improvements in performance for UPOS tagging
and UD DEP in all MTL settings. For the SNLI
tasks, requiring understanding of phrasal seman-
tics, the selective sharing setup we term Learning
What to Share holds a clear advantage. Our work
offers a generalizable framework for the evalua-
tion of the utility of an auxiliary task.
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A MTL setting Diagrams, Preprocessing,
and Hyperparameters

UPOS Tagging

Figure 3a shows the three MTL models used for
UPOS. All hyperparameters were tuned with re-
spect to loss on the English UD 2.0 UPOS vali-
dation set. We trained for 20 epochs with a batch
size of 128 and optimized using Adam (Kingma
and Ba, 2014) with a learning rate of 0.0001. We
weight the auxiliary semantic tagging loss with
� = 0.1. The pre-trained word embeddings we
used are GloVe embeddings (Pennington et al.,
2014) of dimension 100 trained on 6 billion tokens
of Wikipedia 2014 and Gigaword 5. We applied
dropout and recurrent dropout with a probability
of 0.3 to all bi-LSTMs.

UD DEP

Figure 3b shows the three MTL models for UD
DEP. We use the gold tokenization. All hyper-
parameters were tuned with respect to loss on the
English UD 2.0 UD validation set. We trained for
15 epochs with a batch size of 50 and optimized
using Adam with a learning rate of 2e � 3. We
weight the auxiliary semantic tagging loss with �
= 0.5. The pre-trained word embeddings we use
are GloVe embeddings of dimension 100 trained
on 6 billion tokens of Wikipedia 2014 and Giga-
word 5. We applied dropout with a probability of
0.33 to all bi-LSTM, embedding layers, and non-
output dense layers.

(a) UPOS

(b) UD DEP

(c) NLI

Figure 3: The three MTL settings for each task. Layers dimensions are displayed in brackets.
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NLI
Figure 3c shows the three MTL models for NLI.
All hyperparameters were tuned with respect to
loss on the SNLI and SICK-E validation datasets
(separately). For the SNLI experiments, we
trained for 37 epochs with a batch size of 128. For
the SICK-E experiments, we trained for 20 epochs
with a batch size of 8. Note that the ESIM model
was designed for the SNLI dataset, therefore per-
formance is non-optimal for SICK-E. For both sets
of experiments: we optimized using Adam with a
learning rate of 0.00005; we weight the auxiliary
semantic tagging loss with � = 0.1; the pre-trained
word embeddings we use are GloVe embeddings
of dimension 300 trained on 840 billion tokens of
Common Crawl; and we applied dropout and re-
current dropout with a probability of 0.3 to all bi-
LSTM, and non-output dense layers.

B SNLI model output analysis

Table 2 shows demonstrative examples from the
SNLI test set on which the Learning What to Share
(LWS) model outperforms the single-task (ST)
model. The examples cover all possible combi-
nations of entailment classes. Table 3 explains the
relevant part of the semantic tagset. Table 4 shows
the per-label precision and recall scores.

Tag category Semantic tag with examples

Anaphoric DEF: definite; the, loIT , derDE

HAS: possessive pronoun; my, her

Attribute COL: colour; red, crimson, light blue, chestnut brown
QUC: concrete quantity; two, six million, twice
IST: intersective; open, vegetarian, quickly
REL: relation; in, on, ’s, of, after

Unnamed entity CON: concept; dog, person

Logical ALT: alternative & repetitions; another, different, again
DIS: disjunction & exist. quantif.; a, some, any, or

Discourse SUB: subordinate relations; that, while, because

Events ENS: present simple; we walk, he walks
EPS: past simple; ate, went
EXG: untensed progessive; is running
EXS: untensed simple; to walk, is eaten, destruction

Tense & aspect NOW: present tense; is skiing, do ski, has skied, now

Table 3: The list of semantic tags found in Table 2.

Model Label
Entailment Contradiction Neutral

FSN 80.64/93.23 91.64/83.63 83.97/77.63
ST 84.86/91.54 90.10/88.04 84.74/79.71

PSN 84.08/92.70 91.17/88.63 85.96/79.15
LWS 84.45/92.87 91.74/88.91 85.95/79.65

Table 4: Per-label precision (left) and recall (right)
for all models.

Premise-hypothesis pairs ST LWS/GOLD

P: TheDEF gentlemanCON isNOW speakingEXS whileSUB theDEF othersALT areNOW listeningEXS
N EH: TheDEF manCON isNOW beingEXS givenEXS respectCON

P: MenCON wearingEXG hatsCON walkEXS onREL theDEF streetCON
C EH: TheDEF menCON havingEXS hatsCON onREL theirHAS headCON

P: ThreeQUC menCON inREL orangeIST suitsCON areNOW doingEXG streetCON repairsCON atREL nightCON
N CH: ThreeQUC menCON inREL orangeIST suitsCON escapedEPS fromREL prisonCON

P: ADIS toddlerCON sitsENS onREL aDIS stoneCON wallCON surroundedEXS byREL fallenEXS leavesCON
E CH: AnDIS childCON isNOW throwingEXG stonesCON atREL aDIS leafCON wallCON

P: AnDIS oldIST shoemakerCON inREL hisHAS factoryCON
C NH: TheDEF shoemakerCON isNOW wealthyIST

P: ADIS kidCON slidesCON downIST aDIS yellowCOL slideCON intoREL aDIS swimmingCON poolCON
E NH: TheDEF kidCON isNOW playingEXS atREL theDEF waterparkCON

Table 2: Examples of the entailment problems from SNLI which are incorrectly classified by the ST model
but correctly classified by the LWS model. Automatically assigned semantic tags are in superscript.
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Abstract
Conventional word embedding models do not
leverage information from document meta-
data, and they do not model uncertainty.
We address these concerns with a model
that incorporates document covariates to es-
timate conditional word embedding distribu-
tions. Our model allows for (a) hypothesis
tests about the meanings of terms, (b) assess-
ments as to whether a word is near or far from
another conditioned on different covariate val-
ues, and (c) assessments as to whether esti-
mated differences are statistically significant.

1 Introduction
Whether a word’s meaning varies across contexts
has become a major focus of NLP, linguistics, and
social science research in recent years. For exam-
ple, since the early 20th century, the word “gay”
has evolved from describing an emotion to be-
ing more aligned with sexual orientation (Hamil-
ton et al., 2016b). Popular word embedding tech-
niques (e.g., Mikolov et al., 2013a; Pennington
et al., 2014) have proven useful for analyzing lan-
guage evolution. But to use these models for such
research, scholars often divide a corpus into dis-
tinct training sets (e.g., train independent language
models on different decades of text) and compare
model output across specifications in an ad hoc
way (Garg et al., 2018). Such splitting inhibits
many within- and across-word comparisons, since
embeddings are only comparable within a given
model. Additionally, most methods ignore the
variance of words, mechanically treating words
equally regardless of the volatility, or uncertainty,
in their meanings. If one inspects semantics with
only point estimates of embeddings, it is hard
to tell whether embeddings represent meaningful
traits or are simply noise in the data.

We address these concerns in three ways. First,
we estimate a vector for each distinct value of the

document covariates, using a multilayer percep-
tron (MLP) with a non-linear activation function.
Second, we parametrize the covariance matrix of
each embedding vector explicitly in the model,
adopting the Bayes-by-Backprop algorithm (Blun-
dell et al., 2015). Third, we utilize Hotelling T 2

statistics (Hotelling, 1931) to assess whether esti-
mated differences in word vectors are statistically
differentiable under a null �2 distribution (Ito,
1956). To our knowledge, no prior work evaluates
word embeddings with this statistical framework.

2 Related Work
Drift Analysis using Word Embeddings There
are several ways to measure drifts in word mean-
ings. Hamilton et al. (2016c) propose the use of
cosine similarities of words in different contexts
to detect changes. Hamilton et al. (2016b) pro-
vide an alternative measure based on the distance
of words from their nearest neighbors. Rudolph
and Blei (2018) analyze absolute drift of words
using Euclidean distance in (two discrete) slices
of data. All of these methods compute the word
distance based only on the point (i.e., mean) esti-
mates of the word embeddings.

Conditional Word Embedding Rudolph and
Blei (2018) estimate dynamic Bernoulli embed-
dings (DBE), extending the exponential family
embedding (Rudolph et al., 2016) generalization
of Mikolov et al. (2013a), to learn conditional
word embeddings over time. Their amortized
approach builds a separate neural network that
transforms a global word vector into a covariate-
specific vector, and is closely related to our ap-
proach in this paper. However, a noticeable omis-
sion in their model is that they do not explicitly
model parameter covariance or uncertainty.

Word Embedding with Uncertainty Vilnis and
McCallum (2017) earlier proposed an energy-
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based learning framework in which each word is
represented as a multivariate Gaussian distribu-
tion with a diagonal covariance. The energy func-
tion is defined by the divergence (e.g., KL) be-
tween two Gaussian embeddings, and the mar-
gin ranking loss (Weston et al., 2011) is mini-
mized. A related model is the Bayesian skip-gram
in Brazinskas et al. (2017), which posits a genera-
tive model where words are associated with multi-
variate Gaussian latent variables that generate con-
text words. The parameters of those prior distri-
butions over the multivariate Gaussian latent vari-
ables are estimated by maximizing the variational
lowerbound, and act as word embeddings.

These works replace mean estimates of embed-
dings with Gaussian distributions, similar to our
proposal here. However, they arrive at this dif-
ferently; Vilnis and McCallum (2017) from the
energy-based learning (LeCun et al., 2006), and
Brazinskas et al. (2017) from generative modeling.
We provide yet another angle: via (approximate)
Bayesian neural networks.

3 Conditional Word Embedding
Adopting Bayes-by-Backprop for Estimation
Given a tuple of a word v, a covariate x and a
context word vc, we define the conditional log-
probability as

log p(vc|v, x) = ✓>
v|x✓

c
vc

� log
X

v0
c2V

exp
⇣
✓>
v|x✓

c
v0

c

⌘
,

where ✓v|x and ✓c
vc

are the conditional word em-
bedding of v given x and the context embedding of
vc, respectively. V is the vocabulary of all unique
words. To avoid the expensive computation of
the partition function, we use negative sampling
(Mikolov et al., 2013b), which stochastically ap-
proximates the log-probability above by:

log p(vc|v, x) ⇡ log �(✓>
v|x✓

c
vc

) (1)

+
1

M

MX

m=1

log(1 � �(✓>
v|x✓

c
vm

c
)),

where vm
c 2 V is the m-th negative sample drawn

from a unigram distribution estimated from D.
We define a prior distribution over each param-

eter ✓ to be a scaled mixture of two Gaussians, as
suggested by Blundell et al. (2015):

log p(✓i) = log
�
uN (✓i|0,�2

1) (2)

+(1 � u)N (✓i|0,�2
2)

�
,

where �1, �2 and u are the hyperparameters.
As exactly marginalizing out the parameters ✓·

and ✓c
· is not scalable, we maximize the vari-

ational lowerbound of the marginal probability.
To do so, we introduce a variational posterior
q(✓|�) parametrized by its own parameter set �.
Then, the variational lowerbound is defined as
�F(✓, D) = Eq [log p(D|✓)] � KL(q(✓)kp(✓)),
where log p(D|✓) =

P
(v,x,vc)2D log p(vc|v, x) in

our case. This is stochastically approximated by

�F(✓, D) ⇡ 1

M

MX

m=1

log p(D|✓(m)) (3)

� log q(✓(m)|�) + log p(✓(m)),

where ✓(m) is the m-th sample from the variational
posterior q (Blundell et al., 2015) via the Gaussian
reparametrization in Kingma and Welling (2013).
We formulate the variational posterior as a multi-
variate Gaussian with diagonal covariance.

We use stochastic gradient descent (SGD) to
minimize F with respect to the variational param-
eters �. At each SGD step, we compute the gra-
dient of the following per-example cost given an
example (v, vc, x) 2 D:

f(✓, (v,vc, x)) ⇡ � log p(vc|v, x) + log q(✓̃v|x|�)

+ log q(✓̃c
vc

) + log q(✓̃c
v0

c
) � log p(✓̃),

where ✓̃ is a single sample from the approximate
posterior, and log p(vc|v, x) and log p(✓̃) are from
Eqs. (1)–(2). We then estimate the (approximate)
posterior distribution of each conditional word
embedding ✓v|x rather than its point estimate, by
minimizing F . See Sec. A of the supplementary
material for the detailed steps for computing the
per-example cost.

Parametrized Conditional Word Embedding
An issue with the approach described so far is the
number of parameters grows linearly in the size of
the vocabulary and in the number of covariate par-
titions, i.e., O(|V |⇥ |C|), where C is the set of all
partitions. This effectively excludes any potential
sharing of structures underlying words across dif-
ferent covariate values and decreases the number
of examples per parameter. To avoid this issue, we
use a single parametrized function to compute the
variational parameters � of each conditional word
embedding ✓v|x.

For each covariate-word v|x, there are two vari-
ational parameters µv|x and �v|x. We use an MLP
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without any hidden layer and tanh output layer,
i.e., the affine transformation followed by point-
wise tanh, that takes as input both a global word
vector µ(v)

v and a covariate vector µ(x)
x and outputs

µv|x, i.e., µv|x = f (
h
µ(v)

v ; µ(x)
x

i
), where  is the

parameters of this mean-transformation network.
The diagonal covariance �v|x is parametrized as
�v|x = log(1 + exp(⇢v)), where ⇢v is a pa-
rameter shared across all covariate configurations.
We then minimize F w.r.t. these parameters  ,n

µ(v)
v , ⇢v

o

v2V
and

n
µ(x)

x

o

x2C
.

This approach of parametrized conditional word
embeddings significantly reduces the number of
parameters from O(|V | ⇥ |C|) to O(|V | + |C|),
while maintaining posterior uncertainty of the es-
timated conditional word embedding ✓v|x.

4 Divergences for Word Embeddings
As we estimate the approximate posterior uncer-
tainty of conditional word vectors, we can estimate
richer relations between vectors (e.g., KL) in addi-
tion to more common comparisons (e.g., cosine or
Euclidean distance). Moreover, we can explicitly
test for whether two vectors are (un)likely to have
the same mean in the population. Below, we intro-
duce how Hotelling’s T 2 may be used for word-
drift or across-word hypothesis testing.

Hotelling’s T 2 Statistic We use the estimated
posterior mean vector µv|x and the diagonal co-
variance vector �v|x of two word-covariate pairs
v|xi and v|xj to compute the T 2 statistic, as if
they were estimates from two sets of samples:
T 2 = (µi � µj)>diag(s)�1(µi � µj). The pooled
(diagonal) covariance s of word pairs is computed
by s =

(ni�1)·�2
i +(nj�1)·�2

j

ni+nj�2 , where ni and nj are
the numbers of occurrences of v|xi and v|xj in D,
respectively.1 Unlike other divergence measures,
this T 2 statistic explicitly takes into account the
frequencies of the word-covariate pairs.

Under general conditions, e.g., D is large, the
sampling distribution of T 2 converges to a �2

d dis-
tribution (Ito, 1956) with d equal to the embedding
dimensionality. This allows us to statistically test
such a null hypothesis as Diff(vi|x, vj |x) = 0 and
Diff(v|xi, v|xj) = 0.

5 Application: Political Speech in UK
Data We use U.K. Parliament speech records
from 1935-2012 as our training data (Rheault

1 T 2 is valid only when ni > 1 and nj > 1.

Figure 1: The ranks of “sterling” (solid line) and
“pound” (dotted line) w.r.t. “currency” across the
decades according to KL divergence.

et al., 2016). Our conditioning variable of interest
is the decade in which a speech occurred. More
details are in Sec. B of the supplementary file.

Model and Learning For each word in the cor-
pus, we consider six surrounding words as its con-
text. The size of embedding is set to 100. We
use six negative samples to compute Eq. (1). We
use Adagrad (Duchi et al., 2011) with the initial
learning rate 0.05 for learning.2 For other hyper-
parameters, see the supplementary material. We
refer to our approach by BBP. For comparison, we
also train analogous DBE embeddings using code
from the authors.

6 Result and Analysis
Impact of Covariates To demonstrate how doc-
ument covariates influence conditional word em-
beddings, we compare the vector for “currency”
against “sterling” and “pound” according to the
KL divergence in each decade, which is shown in
Fig. 1. In each time period we report the ranking of
each w.r.t “currency”. Here, we observe that piv-
otal points for both “sterling” and “pound” occur
in the 1970s, which coincides with the moment the
UK began to abandon the ‘sterling area’ (Part III
in Schenk, 2010). As such, this financial policy
appears to have encouraged semantic drift of the
word “pound” towards “currency”. See Sec. D in
the supplementary material for more details.

We also show a few more examples in Figure 2
and Figure 3 from the Dictionary Induction section
below.

Dictionary Induction As a quantitative com-
parison between the proposed approach and the
DBE, we take a dictionary of (British) political
terms by Laver and Garry (2000) and look at the

2https://github.com/rhan1207/ConditionalEmbeddings
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Figure 2: The ranks between “market” and
“money” across the decades according to KL di-
vergence.

Figure 3: The ranks between “benefit” and “chil-
dren” across the decades according to KL diver-
gence.

average pair-wise, directional rank in each cate-
gory (“pro-state”, “con-state” and “neutral-state”).
We only consider the 2,000 most frequent words in
the vocabulary and embeddings with the covari-
ate (decade) set to 2000s. We observed that the
proposed model using KL divergence has signif-
icantly smaller average pair-wise ranks in “pro-
state” (4052 vs. 5047) and “con-state” (2578 vs.
3758) while performs slightly worse than DBE in
“neutral-state” category (5414 vs. 5031) suggest-
ing that the proposal approach can cluster words
from similar semantic group into closer neighbors
than DBE.

Furthermore, we pick 5 most frequent words
from “pro-state” and “con-state” and show their
average pair-wise rankings and percentile in Table
1. Out of 25K words, our proposed model is able
to rank most chosen words within top 10% per-
centile.

Statistical Word Drift Analysis Our BBP ap-
proach permits meaningful downstream hypothe-
sis tests of word drift, i.e, Diff(v|xi, v|xj) = 0,
and across-word similarity, i.e., Diff(vi, vj) = 0.
Among the 2,000 most frequent words in our sam-

Pro-state Con-state
Words Ranks Pctl Words Ranks Pctl
benefit 1437 5.7 market 1783 7.1

children 2432 9.8 money 1623 6.5
education 716 2.9 own 2852 11.4

health 996 4.0 private 1670 6.7
transport 4247 17.0 value 1693 6.8

Table 1: Average pair-wise rankings of most fre-
quent words in “pro-state” and “con-state” from a
British political dictionary.

DBE No Covariance Covariance
Words Ranks L2 cosine KL T 2

uk 1 1.60 0.81 61.4 99.7
eu 2 1.58 0.84 44.6 89.2

war 6 1.52 0.85 48.4 96.8
council 8 1.66 0.84 71.0 142.0⇤⇤

labour 15 1.63 0.82 62.4 124.8⇤

Table 2: Top word drifts selected based on DBE
model and estimated by BBP. * and ** indicate
p-value  0.05 and 0.01, respectively.

ple, we perform hypothesis tests of word drifts,
comparing vectors from the 1940s against those
from the 2000s. We compare results from BBP
against the top-100 estimated drifts via DBE. We
first observe that most of the top-ranked words by
L2 distance in the DBE model are not statistically
significant. With the p-value threshold of ↵ = 0.1,
only eleven words were deemed to have had sig-
nificant drift, including “council”, “labour”, “eu-
ropean” and “defence”. Sec. E of the supplement
includes entire lists of this drift analysis.

In Table 1, we show results from five illustra-
tive tests, drawn from the top-100 word drifts es-
timated by the DBE model. We report words’
drift ranks in DBE against their corresponding
L2 distance, cosine similarity, KL divergence and
Hotelling T 2 using the embeddings estimated in
our BBP model. Based on the distance metrics that
ignore the covariance matrix, these words do not
appear to change much over time as their cosine
similarities are fairly large and their L2 distances
are relatively small with little variation across the
five words. This suggests their mean vectors
are projected into close space between 1940s and
2000s. However, by taking into account their un-
certainty, we observe greater variation in both KL
divergence and T 2 statistic. For example, “coun-
cil” has the eighth largest drift in DBE by L2, but
shows the largest T 2 statistic among the five words
and is statistically significant at ↵ = 0.01. So too,
the largest DBE drift (“uk”) is insignificant once
you take into account the covariance structure.
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Figure 4: Semantic Graphs with KLD vs. Cosine Similarity

Cosine Similarity vs. KL Divergence In con-
trast to cosine distance, our proposed method al-
lows computation of the KLD between two vec-
tors that takes into account their covariance. Fig-
ure 2 presents semantic graphs estimated in the
spirit of Hamilton et al. (2016a). The set of words
is given by the union set of the 10 nearest neigh-
bors, measured by cosine similarity and KLD,
for the five seed words: “currency”, “british”,
“health”, “trade” and “labour”. This results in
130 unique words including the seed words and
we compute their pair-wise KLD matrix, WKL

and pairwise cosine similarity matrix, Wcos. We
convert WKL to a symmetric matrix as W 0

KL =
(WKL + W T

KL)/2. Both WKL and Wcos have di-
mensions of 130 ⇥ 130.

Edge weights in Figures 2.A and 2.B are
computed by taking a sigmoid transfor-
mation of normalized entries in W 0

KL, i.e.,
�(normalize(w0

KLi,j
)). Edge weights in 2.C and

2.D are computed by arccos(wcosi,j ), following
Hamilton et al. (2016a). Edges with weights
below 90th percentiles are dropped for visual
clarity. Note that with the same number of
edges being eliminated, the KLD charts appear
more clustered around seed words, implying that
incorporating covariance matrix creates useful
segregation of words within local contexts; graphs
constructed via cosine similarity seem to disperse
edge weights in a more diffuse manner.

T 2-based Significance In the context of
uncertainty-aware word embeddings, we can use
the T 2 statistic to filter out additional words from
a nearest neighbor set. For instance, in Figure
2.B and 2.D, we drop edges for word pairs that
fall below the 90th percentile of computed T 2

statistics. Filtering with Hotelling T 2 results in
more sparse semantic graphs.

7 Conclusion
We proposed an uncertainty-aware conditional
word embedding model that combines two ideas;
(1) variational Bayesian learning for estimating
parameter uncertainty, and (2) structured embed-
dings conditioned on covariates. This provides a
principled direction to investigate hypothesis tests
of word vectors in various forms. We evaluated
various aspects of the proposed approach on U.K.
Parliament speech records from 1935-2012. We
believe the proposed approach will serve as a more
rigorous tool in social science and other domains.
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Abstract

When processing a text, humans and machines
must disambiguate between different uses of
the pronoun it, including non-referential, nom-
inal anaphoric or clause anaphoric ones. In
this paper, we use eye-tracking data to learn
how humans perform this disambiguation. We
use this knowledge to improve the automatic
classification of it. We show that by using
gaze data and a POS-tagger we are able to sig-
nificantly outperform a common baseline and
classify between three categories of it with
an accuracy comparable to that of linguistic-
based approaches. In addition, the discrimi-
natory power of specific gaze features informs
the way humans process the pronoun, which,
to the best of our knowledge, has not been ex-
plored using data from a natural reading task.

1 Introduction

Anaphora resolution is both one of the most im-
portant and one of the least developed tasks in Nat-
ural Language Processing (Lee et al., 2016). A
particularly difficult case for anaphora resolution
systems is the pronoun it, as it may refer to a spe-
cific noun phrase or an entire clause, or it may even
refer to nothing at all, as in sentences 1 - 3 below1.

1. “I couldnt say exactly, sir, but it wasnt tea-
time by a long way.” (Pleonastic it (non-
referential)).

2. Now, as to this quarrel. When was the first
time you heard of it? (Nominal anaphoric)

3. You have been with your mistress many years,
is it not so? (Clause anaphoric2.)

1Extracted from the GECO corpus (Cop et al., 2016)
2Some authors also distinguish other, less-common types

of the pronoun it such as proaction, cataphoric, discourse
topic, and idiomatic, among others (Evans, 2001).

This phenomenon is not specific only to En-
glish; pronouns that can be used both referentially
and non-referentially exist in a variety of language
groups such as the pronoun ‘het’ in Dutch, ‘det’ in
Danish, ‘ello’ in Spanish, ‘il’ in French, etc.

In NLP, there has been active research in the
area of automatic classification of it during the
past four decades but the issue is far from being
solved (Section 2). According to corpus statistics,
the pronoun it is by far the most frequently used
pronoun in the English language (Li et al., 2009),
and as recently as 2016, incorrect classification of
different cases of it and their antecedents is high-
lighted as one of the major reasons for the failure
of question-answering systems (Lee et al., 2016).
In the state of the art, the best approaches to clas-
sifying it achieve between 2% and 15% improve-
ment over a majority baseline when assigning ex-
amples of the pronoun to more than two classes.

In contrast with the extensive research in NLP,
very little is known about the way humans ap-
proach the disambiguation of it. To the best of
our knowledge, Foraker and McElree (2007) is the
only study on this subject that uses online mea-
sures of reading. It proves empirically that the
pronoun it is resolved more slowly and less accu-
rately than gendered pronouns due to its ambigu-
ity. So far there have been no studies investigating
the subject using natural reading data as opposed
to artificially created controlled sentences.

In this paper we approach these two problems
as one and hypothesise that obtaining information
on the way humans disambiguate the pronoun can
improve its automatic classification.

We propose a new method for classifying the
pronoun it that does not rely on linguistic pro-
cessing. Instead, the model leverages knowledge
about the way in which humans disambiguate
the pronoun based on eye tracking data. We
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show that by using gaze data and a POS tagger
we are able to achieve classification accuracy
of three types of it that is comparable to the
performance of linguistic-based approaches and
that outperforms a common baseline with a
statistically significant difference. In addition, ex-
amining the discriminatory power of specific gaze
features provides valuable information about the
human processing of the pronoun. We make our
data, code and annotation available at https:
//github.com/victoria-ianeva/
It-Classification. The GECO
eye-tracking corpus is available at http:
//expsy.ugent.be/downloads/geco/.

2 Related Work

Gaze data in NLP While eye-movement data
has been traditionally used to gain understanding
of the cognitive processing of text, it was recently
applied to a number of technical tasks such as
part-of-speech tagging (Barrett et al., 2016), de-
tection of multi-word expressions (Rohanian et al.,
2017; Yaneva et al., 2017), sentence compression
(Klerke et al., 2016), complex-word identification
(Štajner et al., 2017), and sentiment analysis (Rot-
sztejn, 2018). Eye movements were also shown
to carry valuable information about the reader and
were used to detect specific conditions affecting
reading such as autism (Yaneva et al., 2018, 2016)
and dyslexia (Rello and Ballesteros, 2015). The
motivation behind these approaches is two-fold.
First, eye tracking is already making its way into
everyday use with interfaces and devices that fea-
ture eye-tracking navigation (e.g. Windows Eye
Control3). Second, linguistic annotation by gaze
is faster than traditional annotation techniques,
does not require trained annotators, and provides
a language-independent approach that can be ap-
plied to under-resourced languages (Barrett et al.,
2016). This is particularly interesting for the case
of non-referential pronouns, as the phenomenon
exists in different languages.

Classification of it The majority of the machine
learning approaches to classifying the pronoun
it in different languages are based on linguistic
features capturing token, syntactic and semantic
context. Different papers report varying majority
baseline metrics (between 50% and 75%) depend-
ing on the annotated corpora, and an improvement

3https://support.microsoft.com/en-
gb/help/4043921/windows-10-get-started-eye-control

over the majority baselines of between 2% and
15% for classification of more than two classes of
it (Loáiciga et al., 2017; Uryupina et al., 2016; Lee
et al., 2016; Müller, 2006; Boyd et al., 2005; Hoste
et al., 2007; Evans, 2001). For example, Loáiciga
et al. (2017) train a bidirectional recurrent neural
network (RNN) to classify three classes of it in
the ParCor corpus (Guillou et al., 2014) and com-
pare its performance to a feature-based maximum
entropy classifier. The RNN achieves accuracy
of 62% compared to a majority baseline of 54%
and is significantly outperformed by the linguistic-
feature classifier which obtained 68.7% accuracy.
Lee et al. (2016) compare several statistical mod-
els and report 75% accuracy for four-class classi-
fication over a majority baseline of around 62%
using linguistic features and a stochastic adaptive
gradient algorithm. They also report that exper-
imenting with word embeddings did not lead to
more accurate classification. So far, approaches
using linguistic features still represent the state of
the art in the classification of it.

3 Data

Corpus: The eye-tracking data was extracted
from the GECO corpus (see Cop et al. (2016)
for full corpus specifications) which is the largest
and most recent eye-tracking corpus for English
at present. The text of the corpus is a novel by
Agatha Christie entitled “The Mysterious Affair
at Styles”, the English version of which contains
54,364 tokens and 5,012 unique types. The entire
novel was read by 14 native English undergradu-
ates from the University of Southampton using an
eye-tracker with a sampling rate of 1 kHz.

Annotation scheme: A total of 1,052 instances
of it were found in the corpus4. Each of the in-
stances of it was annotated by two annotators and
assigned to one of three categories: Pleonastic,
Nominal anaphoric and Clause anaphoric, fol-
lowing the scheme used by Lee et al. (2016). The
annotators were free to view as much of the pre-
vious text as necessary to decide on a label. The
inter-annotator agreement for the three categories
was  = 0.636, p < 0.0005, indicating substantial
agreement between the annotators. This number
corresponds to a percentage agreement of 77.47%
for the three categories and is comparable to the

4This number does not include the possessive pronoun its.
There are also several tokenisation errors in the GECO corpus
(e.g. “it?..ah,” and “it...the” misidentified as single tokens.).
These cases were excluded.
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Annotat. 1 Annotat. 2 Final
Pleonastic 339 (33%) 406 (38%) 272 (33%)
Nom. anaph. 492 (46%) 527 (50%) 453 (56%)
Clause anaph. 221 (21%) 119 (11%) 89 (11%)

Table 1: Annotation categories

Prev. “It” Next It + Next
Early 61.1 60.3 61.7 61
Medium 60.9 60.5 60.6 61.2
Late 58.9 60.2 61 61.4

Table 2: Weighted F1 scores for an ablation study for
different gaze feature groups over the Previous and
Next word baseline (60.4)

81% agreement reported in Lee et al. (2016). We
perceived adjudication between cases of disagree-
ment (237 instances) to be extremely arbitrary, so
those cases were excluded rather than resolved.
Examples of such arbitrary cases include:

• ”Sit down here on the grass, do. It’s ever so
much nicer.” (nominal vs. clause anaphoric)

• It’s a jolly good life taking it all round...if
it weren’t for that fellow Alfred Inglethorp!”
(pleonastic vs. clause anaphoric)

The distribution of each class of the retained
data by annotator is presented in Table 1. We make
the full annotations of both annotators available.

4 Experiments

Overview In order to test the extent to which
gaze data can help the classification of different
cases of it, we trained and compared three separate
classifiers. The first classifier is based on gaze fea-
tures, the second one is based on linguistic features
and finally, we trained a combined classifier using
both gaze and linguistic features. We compared
the performance of these classifiers to a majority
baseline of 55.7 and to another baseline obtained
by using the tokens surrounding the pronoun (pre-
vious and next word) as features (60.4). We also
experimented with adding word embeddings6 for
the surrounding tokens as features. While the full
exploration of word embeddings for the classifica-
tion of it remains outside of the scope of this work,
it would be interesting to explore whether the em-
beddings add value to the models by encoding in-
formation that was not otherwise captured.

5Except L4 and L3
6300-dimensional vectors from Google

News obtained through word2vec:
https://code.google.com/archive/p/word2vec/

Li
ng

G
az

e

C
om

b

EA
R

LY

First Run Fixation Count *
First Run Fixation % *
First Fixation Duration
First Fixation Visited Count †*
First Fix Progressive †*

M
ED

IU
M

Second Run Fixation Count
Second Run Fixation % *
Second Fixation Duration * †*
Second Fixation Run * *
Gaze Duration †

LA
TE

Third Run Fixation Count
Third Run Fixation % †

Third Fixation Duration †*
Third Fixation Run *
Last Fixation Duration * †*
Last Fixation Run
Go Past Time †

Selective Go Past Time †

Fixation Count †

Fixation % * †

Total Reading Time
Total Reading Time % * *
Trial Fixation Count *
Trial Total Reading Time
Spillover
Skip *

LI
N

G
U

IS
TI

C

Word position + +
# Preceding NPs in sentence
# Preceding NPs in paragraph
# Following NPs in sentence
# NPs in the sentence
# NPs in the paragraph +
# Following adject. in sentence
Previous verb +
Following adjective + +
Following verb + +
POS in posit. L4, L3, L2, L1 + +5 +
POS in posit. R4, R3, R2, R1 + + +
# Following complementisers + +
An adjective before the next NP + +
Words until next complementiser + +
Words until next infinitive + +
Words until next preposition +
Words until next ing verb + +
A compl. before the next NP
Immediately preceding preposit.

BA
SI

C Previous word + + +
Next word + + +
Word length + +
Punctuation +

Table 3: List of features and their inclusion in the dif-
ferent models. + refers to linguistic data, * to added
values for the It + Next region, and †to gaze features
for the previous word region. The features that do not
have marks in the last three columns were not retained
in any of the three best models.

Gaze features We use the gaze features as pro-
vided in GECO and we average the data from all
14 readers per token. We extract gaze data for each
case of it, as well as for the preceding and follow-
ing word. The full list of gaze features used in the
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experiments can be seen in Table 3.
Different eye-tracking measures (usually di-

vided into early and late) are indicative of different
aspects of cognitive processing. Early gaze mea-
sures such as First Fixation Duration give infor-
mation about the early stages of lexical access and
syntactic processing, while late measures such as
Total Reading Time or Number of Fixations give
information about processes such as textual in-
tegration and disambiguation (see Rayner et al.
(2012) for a review). In Table 3, the distinction
between Early, Medium and Late gaze features is
mainly based on the run during which the fixa-
tions were made (i.e. whether the eyes were pass-
ing through the text for the first, second or third
time). For each run we report count measures,
percentage measures (as part of the trial) and du-
ration measures (in milliseconds). Additional late
features reported include Last Fixation Duration
and Last Fixation Run (the run during which
the last fixation in a given region occurred),
Total Reading Time (in msec and %), and
Trial Fixation Count (the overall number of fix-
ations within the trial). Go Past Time refers to
the summation of all fixation durations on the cur-
rent word during the first pass. Spillover refers to
the duration of the first fixation made on the next
word after leaving the current word in the first run.
Finally, a word is considered skipped if no fixa-
tion occurred during the first run (Skip). A com-
plete legend explaining each feature can be found
within the corpus metadata.

An ablation study on the contributions of indi-
vidual groups of gaze features towards the classi-
fication of it is presented in Table 2.

Linguistic features We implemented a set of
features originally proposed by Evans (2001) and
subsequently used extensively in the studies pre-
sented in Section 2. In terms of features and cat-
egories of it, the study by Evans (2001) is the
most fine-grained one we could find, classifying
7 categories of it with 69% accuracy. The set of
features from Evans (2001) is presented in Table
3. These features synthesize information based on
corpus studies of the pronoun it and thus aim to
capture positional, part-of-speech and proximity
information, as well as specific patterns of usage.
For example, Evans (2001) notes that pleonastic
pronouns rarely appear immediately after a prepo-
sitional word and that complementisers or adjec-
tives often follow pleonastic instances. Another

P R F1
Baselines
Majority baseline 55.7
Previous + Next word 62.1 63.9 60.4

Embeddings
Prev. + Next Embed. 63.1 64.4 62.1

Linguistic models
Full feature set 63.4 66 63.2
Best linguistic 66.7 68.8 66.1*
Best linguistic + Embed. 66.9 68.8 67.2*

Gaze-based models
Basic + POS 63.3 64.5 62.2
Select. Gaze + Basic 65.8 66.8 64.2
Select. Gaze + Basic + POS 66.6 67.9 65.6*
S. Gaze + Bas. + POS + Embed. 66.3 68.8 66.7*

Combined model
Best Gaze + Ling 71 71.5 68.8*
Best Gaze + Ling. + Embed. 67.5 69.3 671*

Table 4: Precision, Recall and Weighted F1 for the var-
ious classifiers. The * symbol marks statistical signif-
icance compared to the baseline model of Previous +
Next Word (60.4).

pattern that distinguishes the pleonastic use of it
is associated with certain sequences of elements
such as ‘adjective + noun phrase’ and ‘comple-
mentiser + noun phrase’ (Evans, 2001). Therefore,
the linguistic features proposed by Evans (2001)
and used in our experiments make possible the uti-
lization of corpus-based knowledge for the auto-
matic classification of it.

Classification We use simple logistic regression
as implemented in WEKA (Hall et al., 2009) with
10-fold cross validation and a random seed pa-
rameter 20. Since logistic regression is an inter-
pretable method, we are able to assess the perfor-
mance of individual features and gain insight into
the psycholinguistic processing of the pronoun.

We experimented with gaze features for the in-
dividual words but as gaze data is inherently very
noisy, we found that smoothing the features by
adding the ones that correspond to the pronoun
and the next word stabilized the results. Adding
the gaze features for the previous word signifi-
cantly reduced the performance but using them
separately in a model with the added It + Next fea-
tures maximised our results. For the role of indi-
vidual features in the models see Table 3.

In order to account for class imbalance we com-
pute and report a weighted F1 score, as opposed to
the harmonic mean between precision and recall.
First, the F1 for each class is weighted by multi-
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plying it by the number of instances in the class.
Then the F1 scores for all classes are summed up
and divided by the total number of instances. The
resulting weighted F1 score is lower than the tradi-
tionally reported mean F1 score, but it represents
the effects of class imbalance more accurately.

5 Results and Discussion

The results from the classification experiments
presented in Table 4 have implications for lan-
guage processing by both humans and machines.

From the NLP perspective, the potential of gaze
data to not only improve but also, to a certain ex-
tent, substitute text processing approaches is an
exciting new frontier. Our results show that the
gaze-based classifier performs on par with the one
using linguistic features and both of them perform
significantly better7 than the baseline of 60.4. An
improvement of 13% over the majority baseline is
achieved when combining the two but this differ-
ence is not a significant improvement over the in-
dividual best classifiers. A possible reason for this
is that the gaze data and linguistic features encode
similar information about the disambiguation of it
and adding them together leads to overlap instead
of complementation. In all three classifiers, the
clause-anaphoric class was consistently predicted
with lowest accuracy (Table 5), which is not sur-
prising given that it only accounts for 11% of the
retained data. In line with the observation of Lee
et al. (2016) (Section 2), the embeddings do not
show a stable contribution. In our case, this is
likely related to the small amount of data, to which
we add 300 dimensions per word.

Overall, the improvement achieved by the clas-
sifiers is comparable with the current state-of-the-
art (Section 2). It is important to note that this is
the first study to use text from the domain of liter-
ature and that this may have influenced the extrac-
tion of the linguistic features. At the same time,
literature can be regarded as a more challenging
domain than the declarative texts used in previous
research, owing to the creative use of language.

From a psycholinguistic perspective, we pro-
vide evidence that, indeed, the three classes of it
are processed differently. We observe that medium
and late gaze features related to disambiguation
are more discriminative than the early ones. For

7Gaze + Basic + POS: p = 0.029, 95% CI (0.509; 9.858) ;
Best Linguistic: p = 0.0017, 95% CI (1.01; 10.34); Best Gaze
+ Ling: p = 0.0004, 95% CI (3.75; 12.99). The CI indicate
the difference in %

NomAnaph ClauseAnaph Pleon
395 2 56 NomAnaph
53 11 25 ClauseAnaph
93 3 176 Pleon

Table 5: Confusion matrix for the best combined model
(Weighted F1 = 68.8)

example, measures such as first fixation duration
were not included in any of the models, while re-
visits as late as the third run (the third time the eyes
pass over the region of interest) occurred in these
regions and provided a strong signal. Particularly
useful features were the durations of the second
and last fixations, as well as the information about
the run (pass) during which they occur.

The significance of these features in the best
classifiers somewhat contradicts the ablation study
presented in Table 2. According to that table, early
processing features for the preceding and next
words are expected to outperform the late ones. A
possible explanation for this are predictability and
spillover effects, as the pronoun it is both highly
predictable and easy to skip, because of its high
frequency and shortness. Indeed, the gaze features
from the it-region itself are not as useful as the
ones from the surrounding words.

The results from this study showed that: i) gaze
features encode information about the way hu-
mans disambiguate the pronoun it, ii) that this in-
formation partially overlaps with the information
carried by linguistic features, and that iii) gaze can
be used for automatic classification of the pronoun
with accuracy comparable to that of linguistic-
based approaches. In our future work we will at-
tempt to identify specific patterns of cognitive pro-
cessing for the individual classes, as well as ex-
plore factors related to the readers.

6 Conclusion

We presented the first study on the use of gaze
data for disambiguating categories of it, exploring
a wide range of gaze and linguistic features. The
model based on gaze features and part-of-speech
information achieved accuracy similar to that of
the linguistic-based model and state-of-the-art sys-
tems, without the need for text processing. Late
gaze features emerged as the most discriminative
ones, with disambiguation effort indicators as late
as third pass revisits.
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Abstract

A wide variety of neural-network architec-
tures have been proposed for the task of Chi-
nese word segmentation. Surprisingly, we find
that a bidirectional LSTM model, when com-
bined with standard deep learning techniques
and best practices, can achieve better accuracy
on many of the popular datasets as compared
to models based on more complex neural-
network architectures. Furthermore, our error
analysis shows that out-of-vocabulary words
remain challenging for neural-network mod-
els, and many of the remaining errors are un-
likely to be fixed through architecture changes.
Instead, more effort should be made on explor-
ing resources for further improvement.

1 Introduction

Neural networks have become ubiquitous in natu-
ral language processing. For the word segmenta-
tion task, there has been a growing body of work
exploring novel neural network architectures for
learning useful representation and thus better seg-
mentation prediction (Pei et al., 2014; Ma and
Hinrichs, 2015; Zhang et al., 2016a; Liu et al.,
2016; Cai et al., 2017; Wang and Xu, 2017).

We show that properly training and tuning a rel-
atively simple architecture with a minimal feature
set and greedy search achieves state-of-the-art ac-
curacies and beats more complex neural-network
architectures. Specifically, the model itself is a
straightforward stacked bidirectional LSTM (Fig-
ure 1) with just two input features at each position
(character and bigram). We use three widely rec-
ognized techniques to get the most performance
out of the model: pre-trained embeddings (Yang
et al., 2017; Zhou et al., 2017), dropout (Srivastava
et al., 2014), and hyperparameter tuning (Weiss
et al., 2015; Melis et al., 2018). These results have
important ramifications for further model devel-
opment. Unless best practices are followed, it is

difficult to compare the impact of modeling deci-
sions, as differences between models are masked
by choice of hyperparameters or initialization.

In addition to the simpler model we present,
we also aim to provide useful guidance for future
research by examining the errors that the model
makes. About a third of the errors are due to
annotation inconsistency, and these can only be
eliminated with manual annotation. The other two
thirds are those due to out-of-vocabulary words
and those requiring semantic clues not present in
the training data. Some of these errors will be al-
most impossible to solve with different model ar-
chitectures. For example, while ΩaÇı (ab-
stract concept) appears as one word at test time,
any model trained only on the MSR dataset will
segment it as two words: Ωa (abstract) and Ç
ı (concept), which are seen in the training set
28 and 90 times, respectively, and never together.
Thus, we expect that iterating on model architec-
tures will give diminishing returns, while leverag-
ing external resources such as unlabeled data or
lexicons is a more promising direction.

In sum, this work contributes two significant
pieces of evidence to guide further development in
Chinese word segmentation. First, comparing dif-
ferent model architectures requires careful tuning
and application of best practices in order to obtain
rigorous comparisons. Second, iterating on neu-
ral architectures may be insufficient to solve the
remaining classes of segmentation errors without
further efforts in data collection.

2 Model

Our model is relatively simple. Our approach uses
long short-term memory neural networks architec-
tures (LSTM) since previous work has found suc-
cess with these models (Chen et al., 2015; Zhou
et al., 2017, inter alia). We use two features: uni-
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Figure 1: Bi-LSTM models: (a) non-stacking, (b)
stacking. Blue circles are input (char and char bigram)
embeddings. Red squares are LSTM cells. BIES is a
4-way softmax.

grams and bi-grams of characters at each position.
These features are embedded, concatenated, and
fed into a stacked bidirectional LSTM (see Fig-
ure 1) with two total layers of 256 hidden units
each. The softmax layer of the bi-LSTM predicts
Begin/Inside/End/Single tags encoding the rela-
tionship from characters to segmented words.

In the next sections we describe the best prac-
tices we used to achieve state-of-the-art perfor-
mance from this architecture. Note that all of these
practices and techniques are derived from related
work, which we describe.

Recurrent Dropout. Contrary to the recom-
mendation of Zaremba et al. (2014), we ap-
ply dropout to the recurrent connections of our
LSTMs, and we see similar improvements when
following the recipe of Gal and Ghahramani
(2016) or simply sample a new dropout mask at
every recurrent connection.

Hyperparameters. We use the momentum-
based averaged SGD procedure from (Weiss et al.,
2015) to train the model, with few additions. We
normalized each gradient to be at most unit norm,
and used asynchronous SGD updates to speed up
training time. For each configuration we eval-
uated, we trained different settings of a manu-
ally tuned hyperparameter grid, varying the initial
learning rate, learning rate schedule, and input and
recurrent dropout rates. We fixed the momentum
parameter µ = 0.95. The full list of hyperparam-
eters is given in Table 2. We show the impact of
this tuning procedure in Table 7, which we found
was crucial to measure the best performance of the
simple architecture.

Pretrained Embeddings. Pre-training embed-
ding matrices from automatically gathered data
is a powerful technique that has been applied to
many NLP problems for several years (e.g. Col-
lobert et al. (2011); Mikolov et al. (2013)). We

Train Development Test
AS 4,903,564 546,017 122,610
CTIYU 1,309,208 146,422 40,936
MSR 2,132,480 235,911 106,873
CTB6 641,368 59,954 81,578
CTB7 950,138 59,954 81,578
PKU 994,822 115,125 104,372
UD 98,608 12,663 12,012

Table 1: Statistics of training, development and test set.

pretrain the character embeddings and character-
bigram embeddings using wang2vec1 (Ling et al.,
2015), which modifies word2vec by incorporating
character/bigram order information during train-
ing. Note that this idea has been used in segmen-
tation previously by Zhou et al. (2017), but they
also augment the contexts by adding the predic-
tions of a baseline segmenter as an additional con-
text. We experimented with both treating the pre-
trained embeddings as constants or fine-tuning on
the particular datasets.

Other Related Work. Recently, a number of
different neural network based models have been
proposed for word segmentation task. One com-
mon approach is to learn word representation
through the characters of that word. For example,
Liu et al. (2016) runs bi-directional LSTM over
characters of the word candidate and then con-
catenate bi-directional LSTM outputs at both end
points. Cai et al. (2017) adopts a gating mecha-
nism to control relative importance of each char-
acter in the word candidate.

Besides modeling word representation directly,
sequential labeling is another popular approach.
For instance, Zheng et al. (2013) and Pei et al.
(2014) predict the label of a character based con-
text of a fixed sized local window. Chen et al.
(2015) extends the approach by using LSTMs to
capture potential long distance information. Both
Chen et al. (2015) and Pei et al. (2014) use a transi-
tion matrix to model interaction between adjacent
tags. Zhou et al. (2017) conduct rigorous compar-
ison and show that such transition matrix rarely
improves accuracy. Our model is similar to Zhou
et al. (2017), except that we stack the backward
LSTM on top of the forward one, which improves
accuracy as shown in later section.

Our model is also trained via a simple maxi-
mum likelihood objective. In contrast, other state-

1https://github.com/wlin12/wang2vec
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AS CITYU CTB6 CTB7 MSR PKU UD
Liu et al. (2016) — — 95.9 — 97.3 96.8
Yang et al. (2017) 95.7 96.9 96.2 — 97.5 96.3 —
Zhou et al. (2017) — — 96.2 — 97.8 96.0 —
Cai et al. (2017) — 95.6 — — 97.1 95.8 —
Kurita et al. (2017) — — — 96.2 — — —
Chen et al. (2017) 94.6 95.6 96.2 — 96.0 94.3 —
Qian and Liu (2017) — — — — — — 94.6
Wang and Xu (2017) — — — — 98.0 96.5 —
Ours (fix embedding) 96.2 97.2 96.7 96.6 97.4 96.1 96.9
Ours (update embedding) 96.0 96.8 96.3 96.0 98.1 96.1 96.0

Table 2: The state of the art performance on different datasets. For Kurita et al. (2017) and Chen et al. (2017)
we report their best systems (segpos+dep and Model-I-ADV respectively). †Not directly comparable to the rest of
the table due to the usage of an external dictionary. Our bolded results are significantly better (p < 0.05 bootstrap
resampling) except on MSR.

AS CITYU CTB6 CTB7 MSR PKU UD
Liu et al. (2016) — — 94.6 — 94.8 94.9 —
Zhou et al. (2017) — — 94.9 — 97.2 95.0 —
Cai et al. (2017) 95.2 95.4 — — 97.0 95.4 —
Wang and Xu (2017) — — — — 96.7 94.7 —
Ours 95.5 95.7 95.5 95.6 97.5 95.4 94.6

Table 3: Performance of recent neural network based models without using pretrained embeddings. Our model’s
wins are statsitically significantly better than prior work (p < 0.05 bootstrap resampling), except on PKU.

of-the-art models use a non-greedy approach to
training and inference, e.g. Yang et al. (2017) and
Zhang et al. (2016b).

3 Experiments

Data. We conduct experiments on the following
datasets: Chinese Penn Treebank 6.0 (CTB6) with
data split according the official document; Chinese
Penn Treebank 7.0 (CTB7) with recommended
data split (Wang et al., 2011); Chinese Universal
Treebank (UD) from the Conll2017 shared task
(Zeman et al., 2017) with the official data split;
Dataset from SIGHAN 2005 bake-off task (Emer-
son, 2005). Table 1 shows statistics of each data
set. For each of the SIGHAN 2005 dataset, we
randomly select 10% training data as development
set. We convert all digits, punctuation and Latin
letters to half-width, to handle full/half-width mis-
match between training and test set. We train and
evaluate a model for each of the dataset, rather
than train one model on the union of all dataset.
Following Yang et al. (2017), we convert AS and
CITYU to simplified Chinese.

3.1 Main Results
Table 2 contains the state-of-the-art results from
recent neural network based models, together with

the performance of our model. Table 3 contains
results achieved without using any pretrained em-
beddings.

Our model achieves the best results among NN
models on 6/7 datasets. In addition, while the
majority of datasets work the best if the pre-
trained embedding matrix is treated as constant,
the MSR dataset is an outlier: fine-tuning embed-
dings yields a very large improvement. We ob-
serve that the likely cause is a low OOV rate in the
MSR evaluation set compared to other datasets.

3.2 Ablation Experiments
To see which decisions had the greatest impact on
the result, we performed ablation experiments on
the holdout sets of the different corpora. Starting
with our proposed system2, we remove one deci-
sion, perform hyperparameter tuning, and see the
change in performance. The results are summa-
rized in Table 6. Negative numbers in Table 6 cor-
respond to decreases in performance for the ab-
lated system. Note that although each of the com-
ponents help performance on average, there are
cases where we observe no impact. For example
using recurrent dropout on AS and MSR rarely af-

2Based on development set accuracy, we keep the pre-
trained embedding fixed for all datasets except MSR and AS.
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Parameter Values
Char embedding size [64]
Bigram embedding size [16, 32, 64]
Learning rate [0.04, 0.035, 0.03]
Decay steps [32K, 48K, 64K]
Input dropout rate [0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6]
LSTM dropout rate [0.1, 0.2, 0.3, 0.4]

Table 4: Hyperparameter settings.

AS CITYU CTB6 CTB7 MSR PKU UD
OOV % 4.2 7.5 5.6 5.0 2.7 3.6 12.4
Recall % (random embedding) 65.7 75.1 73.4 74.1 71.0 66.0 81.1
Recall % (pretrain embedding) 70.7 87.5 85.4 85.6 80.0 78.8 89.7

Table 5: Test set OOV rate, together with OOV recall achieved with randomly initialized and pretrained embed-
dings, respectively.

fects accuracy.
We next investigate how important the hyper-

parameter tuning is to this ablation. In the main
result, we tuned each model separately for each
dataset. What if instead, each model used a single
hyperparameter configuration for all datasets? In
Table 7, we compare fully tuned models with those
that share hyperparameter configurations across
dataset for three settings of the model. We can see
that hyperparameter tuning consistently improves
model accuracy across all settings.

3.3 Error Analysis
In order to guide future research on Chinese word
segmentaion, it is important to understand the
types of errors that the system is making. To get
a sense of this, we randomly selected 54 and 50
errors from the CTB-6 and MSR test set, respec-
tively. We then manually analyzed them.

The model learns to remember words it has
seen, especially for high frequency words. It also
learns the notion of prefixes/suffixes, which aids
predicting OOV words, a major source of segmen-
tation errors (Huang and Zhao, 2007). Using pre-
trained embeddings enables the model to expand
the set of prefixes/suffixes through their nearest
neighbors in the embedding spaces, and therefore
further improve OOV recall (on average, using
pretrained embeddings contributes to 10% OOV
recall improvement, also see Table 5 for more de-
tails).

Nevertheless, OOV remains challenging espe-
cially for those that can be divided into words fre-

quently seen in the training data, and most (37
out of 43) of the oversegmentation errors are due
to this. For instance, the model incorrectly seg-
mented the OOV word ΩaÇı (abstract con-
cept) asΩa (abstract) andÇı (concept). Ωa
andÇı are seen in the training set for 28 times
and 90 times, respectively. Unless high coverage
dictionaries are used, it is difficult for any super-
vised model to learn not to follow this trend in the
training data.

In addition, the model sometimes struggles
when a prefix/suffix can also be a word by itself.
For instance,C (right/power) frequently serves as
a suffix, such as °⌃C (right of management),
À’C (right of legislation) and »°C (right
of final judgment). When the model encounters
↵> (delegate/transfer) C(power), it incorrectly
merges them together.

Similarly, the model segments E (in/at) + -
(middle) as E- (in the middle), since the train-
ing data contains words such as Eñ (in the first
place) andE! (in the second place). This exam-
ple also hints at the ambiguity of word delineation
in Chinese, and explains the difficulty in keeping
annotations consistent.

As another example,ø is often attached to an-
other proper noun to become a new word, e.g.,
ÿƒ (Kaohsiung) +ø becomesÿƒø (county
of Kaohsiung), ∞˘(Hsinchu) + ø becomes ∞
˘ø (county of Hsinchu). When seeingˆLø/
L (bank’s county branch), which should beˆL
(bank) +ø/L (county branch), the model out-
puts ˆLø + /L (i.e. a county named bank).
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System AS CITYU CTB6 CTB7 MSR PKU UD Average
This work 98.03 98.22 97.06 97.07 98.48 97.95 97.00 97.69

-LSTM dropout +0.03 -0.33 -0.31 -0.24 +0.04 -0.29 -0.76 -0.35
-stacked bi-LSTM -0.13 -0.20 -0.15 -0.14 -0.17 -0.17 -0.39 -0.27

-pretrain -0.13 -0.23 -0.94 -0.74 -0.45 -0.27 -2.73 -0.78

Table 6: Ablation results on development data. Top row: absolute performance of our system. Other rows:
difference relative to the top row.

System Fully tuned Avg
This work 97.69 97.49
-Stacked 97.41 97.16
-Pretraining 96.90 96.81

Table 7: Hyperparameter ablation experiments. “Fully
tuned” indicates per-system tuning for each dataset.
“Avg” is the best setting when averaging across
datasets.

Fixing the above errors requires semantic level
knowledge such as ‘Bank’ (ˆL) is unlikely to be
the name of a county (ø), and likewise, transfer
power (↵>C) is not a type of right (C).

Previous work (Huang and Zhao, 2007) also
pointed out that OOV is a major obstacle to
achieving high segmentation accuracy. They also
mentioned that machine learning approaches to-
gether with character-based features are more
promising in solving OOV problem than rule
based methods. Our analysis indicate that learning
from the training corpus alone can hardly solve the
above mentioned errors. Exploring other sources
of knowledge is essential for further improvement.
One potential way to acquire such knowledge is
to use a language model that is trained on a large
scale corpus (Peters et al., 2018). We leave this to
future investigation.

Unfortunately, a third (34 out of 104) of the er-
rors we have looked at were due to annotation in-
consistency. For example, ˙Q˚ (Department
of Architecture) is once annotated as˙Q (Archi-
tecture) + ˚ (Department) and once as ˙Q˚
under exactly the same context˙Q˚Yàªá
R (Zhaoqing Yu, professor of Architecture). ÿ
∞Ä/ (advanced technology) is annotated asÿ
(advanced) + ∞ (new) + Ä/ (technology) for
37 times, and is annotated asÿ∞ (advanced and
new) +Ä/ (technology) for 19 times.

In order to augment the manual verification we
performed above, we also wrote a script to auto-
matically find inconsistent annotations in the data.
Since this is an automatic script, it cannot distin-

tokens inconsistency %
corpus

AS 4,903,564 1.31
CITYU 1,309,208 0.62
CTB6 641,368 1.27
CTB7 950,138 1.64
MSR 2,132,480 0.28
PKU 994,822 0.53
UD 98,608 0.46

Table 8: Automatically computed inconsistency in the
corpus training data. See text for methodology.

guish between genuine ambiguity and inconsistent
annotations. The heuristic we use is the follow-
ing: for all word bigrams in the training data, we
see if they also occur as single words or word
trigrams. We ignore the dominant analysis and
count the number of occurrences of the less fre-
quent analyses and report this number as a frac-
tion of the number of tokens in the corpus. Table 8
shows the results of running the script. We see that
the AS corpus is the least consistent (according to
this heuristic) while MSR is the most consistent.
This might explain why both our system and prior
work have relatively low performance on AS even
though this has the largest training set. By con-
trast results are much stronger on MSR, and this
might be in part because it is more consistently an-
notated. The ordering of corpora by inconsistency
roughly mirrors their ordering by accuracy.

4 Conclusion

In this work, we showed that further research
in Chinese segmentation must overcome two key
challenges: (1) rigorous tuning and testing of deep
learning architectures and (2) more effort should
be made on exploring resources for further perfor-
mance gain.
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Abstract

In Sanskrit, small words (morphemes) are
combined to form compound words through
a process known as Sandhi. Sandhi split-
ting is the process of splitting a given com-
pound word into its constituent morphemes.
Although rules governing word splitting ex-
ists in the language, it is highly challenging
to identify the location of the splits in a com-
pound word. Though existing Sandhi splitting
systems incorporate these pre-defined splitting
rules, they have a low accuracy as the same
compound word might be broken down in
multiple ways to provide syntactically correct
splits.

In this research, we propose a novel deep
learning architecture called Double Decoder
RNN (DD-RNN), which (i) predicts the lo-
cation of the split(s) with 95% accuracy, and
(ii) predicts the constituent words (learning the
Sandhi splitting rules) with 79.5% accuracy,
outperforming the state-of-art by 20%. Addi-
tionally, we show the generalization capability
of our deep learning model, by showing com-
petitive results in the problem of Chinese word
segmentation, as well.

1 Introduction

Compound word formation in Sanskrit is gov-
erned by a set of deterministic rules follow-
ing a well-defined structure described in Pān. ini’s
As. t.ādhyāyı̄, a seminal work on Sanskrit grammar.
The process of merging two or more morphemes
to form a word in Sanskrit is called Sandhi and the
process of breaking a compound word into its con-
stituent morphemes is called Sandhi splitting. In
Japanese, Rendaku (‘sequential voicing’) is sim-
ilar to Sandhi. For example, ‘origami’ consists
of ‘ori’ (paper) + ‘kami’ (folding), where ‘kami’
changes to ‘gami’ due to Rendaku.

Figure 1: Different possible splits for the word
paropakārah. and protsāhah. , provided by a standard
Sandhi splitter.

Learning the process of sandhi splitting for San-
skrit could provide linguistic insights into the for-
mation of words in a wide-variety of Dravidian
languages. From an NLP perspective, automated
learning of word formations in Sanskrit could
provide a framework for learning word organiza-
tion in other Indian languages, as well (Bharati
et al., 2006). In literature, past works have ex-
plored sandhi splitting (Gillon, 2009) (Kulkarni
and Shukl, 2009), as a rule based problem by ap-
plying the rules from As. t.ādhyāyı̄ in a brute force
manner. Consider the example in Figure 1 illus-
trating the different possible splits of a compound
word paropakārah. . While the correct split is para
+ upakārah. , other forms of splits such as, para +
apa + kārah. are syntactically possible while se-
mantically incorrect1. Thus, knowing all the rules
of splitting is insufficient and it is essential to iden-
tify the location(s) of split(s) in a given compound
word.

In this research, we propose an approach for au-

1Different syntactic splits given by one of the pop-
ular Sandhi splitters: https://goo.gl/0M5CPS and
https://goo.gl/JHnpJw

4909



tomated generation of split words by first learn-
ing the potential split locations in a compound
word. We use a deep bi-directional character
RNN encoder and two decoders with attention,
seq2(seq)2seq2(seq)2seq2(seq)2. The accuracy of our approach on the
benchmark dataset for split location prediction is
95% and for split words prediction is 79.5% re-
spectively. To the best of our knowledge, this is the
first research work to explore deep learning tech-
niques for the problem of Sanskrit Sandhi split-
ting, along with producing state-of-art results. Ad-
ditionally, we show the performance of our pro-
posed model for Chinese word segmentation to
demonstrate the model’s generalization capability.

2 seq2(seq)2seq2(seq)2seq2(seq)2: Model Description

In this section, we present our double decoder
model to address the Sandhi splitting problem. We
first outline the issues with basic deep learning ar-
chitectures and conceptually highlight the advan-
tages of the double decoder model.

2.1 Issues with standard architectures

Consider an example of splitting a sequence
abcdefg as abcdx + efg. The primary task is to
identify d as the split location. Further, for a given
location d in the character sequence, the algorithm
should take into account (i) the context of char-
acter sequence abc, (ii) the immediate previous
character c, (iii) the immediate succeeding char-
acter e, to make an effective split. For such se-
quence learning problems, RNNs have become the
most popular deep learning model (Pascanu et al.,
2013) (Sak et al., 2014).

A basic RNN encoder-decoder model (Cho
et al., 2014) with LSTM units (Hochreiter and
Schmidhuber, 1997), similar to a machine transla-
tion model, was trained initially. The compound
word’s characters is fed as input to the encoder
and is translated to a sequence of characters repre-
senting the split words (‘+’ symbol acts as a sep-
arator between the generated split words). How-
ever, the model did not yield adequate perfor-
mance as it encoded only the context of the char-
acters that appeared before the potential split lo-
cation(s). Though we tried making the encoder
bi-directional (referred to as B-RNN), the model’s
performance only improved marginally. Adding
global attention (referred to as B-RNN-A) to the
decoder enabled the model to attend to the charac-
ters surrounding the potential split location(s) and

improved the split prediction performance, mak-
ing it comparable with some of the best perform-
ing tools in the literature.

2.2 Double Decoder RNN (DD-RNN) model
The critical part of learning to split compound
words is to correctly identify the location(s) of the
split(s). Therefore, we added a two decoders to
our bi-directional encoder-decoder model: (i) lo-
cation decoder which learns to predict the split lo-
cations and (ii) character decoder which generates
the split words. A compound word is fed into the
encoder character by character. Each character’s
embedding xi is passed to the encoders LSTM
units. There are two LSTM layers which encode
the word, one in forward direction and the other
backward. The encoded context vector ei is then
passed to a global attention layer.

In the first phase of training, only the loca-
tion decoder is trained and the character decoder
is frozen. The character embeddings are learned
from scratch in this phase along with the attention
weights and other parameters. Here, the model
learns to identify the split locations. For example,
if the inputs are the embeddings for the compound
word protsāhah. , the location decoder will gener-
ate a binary vector [0, 0, 1, 0, 0, 0, 0, 0, 0] which in-
dicates that the split occurs between the third and
fourth characters. In the second phase, the loca-
tion decoder is frozen and the character decoder
is trained. The encoder and attention weights are
allowed to be fine-tuned. This decoder learns the
underlying rules of Sandhi splitting. Since the at-
tention layer is already pre-trained to identify po-
tential split locations in the previous phase, the
character decoder can use this context and learn
to split the words more accurately. For example,
for the same input word protsāhah. , the character
decoder will generate [p, r, a, +, u, t, s, ā, h, a, h. ]
as the output. Here the character o is split into two
characters a and u.

In both the training phases, we use negative log
likelihood as the loss function. Let X be the se-
quence of the input compound word’s characters
and Y be the binary vector which indicates the lo-
cation of the split(s) in the first phase and the true
target sequence of characters which form the split
words in the second phase. If Y = y1, y2, ..., yn,
then the loss function is defined as:

loss = �
|Y |X

i=1

log P (yi|yi�1, · · · , y1, X)
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Figure 2: The bi-directional encoder and decoders with attention

We evaluate the DD-RNN and compare it with
other tools and architectures in Section 4.

2.3 Implementation details

The architecture of the DD-RNN is shown in Fig-
ure 2. We used a character embedding size of 128.
The bi-directional encoder and the two decoders
are 2 layers deep with 512 LSTM units in each
layer. A dropout layer with p = 0.3 is applied
after each LSTM layer. The entire network is im-
plemented in Torch 2.

Of the 71, 747 words in our benchmark dataset,
we randomly sampled 80% of the data for training
our models. The remaining 20% was used for test-
ing. We used stochastic gradient descent for opti-
mizing the model parameters with an initial learn-
ing rate of 1.0. The learning rate was decayed by
a factor of 0.5 if the validation perplexity did not
improve after an epoch. We used a batch size of
64 and trained the network for 10 epochs on four
Tesla K80 GPUs. This setup remains the same for
all the experiments we conduct.

3 Existing Datasets and Tools

In this section, we briefly introduce various San-
skirt Sandhi datasets and splitting tools available
in literature. We also discuss the tools’ drawbacks

2http://torch.ch/

and the major challenges faced while creating such
tools.

Datasets: The UoH corpus, created at the Uni-
versity of Hyderabad3 contains 113, 913 words
and their splits. This dataset is noisy with typ-
ing errors and incorrect splits. The recent Sand-
hiKosh corpus (Shubham Bhardwaj, 2018) is a set
of 13, 930 annotated splits. We combine these
datasets and heuristically prune them to finally get
71, 747 words and their splits. The pruning is done
by considering a data point to be valid only if
the compound word and it’s splits are present in
a standard Sanskrit dictionary (Monier-Williams,
1970). We use this as our benchmark dataset and
run all our experiments on it.

Tools: There exist multiple Sandhi splitters in
the open domain such as (i) JNU splitter (Sachin,
2007), (ii) UoH splitter (Kumar et al., 2010)
and (iii) INRIA sanskrit reader companion (Huet,
2003) (Goyal and Huet, 2013). Though each tool
addresses the splitting problem in a specialized
way, the general principle remains constant. For
a given compound word, the set of all rules are
applied to every character in the word and a large
potential candidate list of word splits is obtained.
Then, a morpheme dictionary of Sanskrit words
is used with other heuristics to remove infeasible

3Available at: http://sanskrit.uohyd.ac.in/
Corpus/
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Figure 3: Top-1 split prediction accuracy comparison
of different publicly available tools with DD-RNN

word split combinations. However, none of the
approaches address the fundamental problem of
identifying the location of the split before apply-
ing the rules, which will significantly reduce the
number of rules that can be applied, hence result-
ing in more accurate splits.

4 Evaluation and Results

We evaluate the performance of our DD-RNN
model by: (i) comparing the split prediction ac-
curacy with other publicly available sandhi split-
ting tools, (ii) comparing the split prediction
accuracy with other standard RNN architectures
such as RNN, B-RNN, and B-RNN-A, and (iii)
comparing the location prediction accuracy with
the RNNs used for Chinese word segmentation (as
they only predict the split locations and do not
learn the rules of splitting)

4.1 Comparison with publicly available tools

The tools discussed in Section 3 take a compound
word as input and provide a list of all possible
splits as output (UoH and INRIA splitters pro-
vide weighted lists). Initially, we compared only
the top prediction in each list with the true out-
put. This gave a very low precision for the tools
as shown in Figure 3. Therefore, we relaxed this
constraint and considered an output to be correct
if the true split is present in the top ten predictions
of the list. This increased the precision of the tools
as shown in Figure 4 and Table 1.

Even though DD-RNN generates only one out-
put for every input, it clearly out-performs the
other publicly available tools by a fair margin.

Figure 4: Split prediction accuracy comparison of dif-
ferent publicly available tools (Top-10) with DD-RNN
(Top-1)

Accuracy (%)

Model Location
Prediction

Split
Prediction

JNU (Top 10) - 8.1
UoH (Top 10) - 47.2

INRIA (Top 10) - 59.9
RNN 79.10 56.6

B-RNN 84.62 58.6
B-RNN-A 88.53 69.3
DD-RNN 95.0 79.5
LSTM-4 70.2 -
GRNN-5 67.7 -

Table 1: Location and split prediction accuracy of all
the tools and models under comparison

4.2 Comparison with standard RNN
architectures

To compare the performance of DD-RNN with
other standard RNN architectures, we trained
the following three models to generate the split
predictions on our benchmark dataset: (i) uni-
directional encoder and decoder without attention
(RNN), (ii) bi-directional encoder and decoder
without attention (B-RNN), and (iii) bi-directional
encoder and decoder with attention (B-RNN-A)

As seen from the middle part of Table 1, the
DD-RNN performs much better than the other ar-
chitectures with an accuracy of 79.5%. It is to
be noted that B-RNN-A is the same as DD-RNN
without the location decoder. However, the ac-
curacy of DD-RNN is 14.7% more than that the
B-RNN-A and consistently outperforms B-RNN-
A on almost all word lengths (Figure 5). This in-
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Figure 5: Split prediction accuracy comparison of dif-
ferent variations of RNN on words of different lengths

dicates that the attention mechanism of DD-RNN
has learned to better identify the split location(s)
due to its pre-training with the location decoder.

4.3 Comparison with similar works
(Reddy et al., 2018) propsed a seq2seq model
using RNN with attention to tackle the Sandhi
problem. Their model is similar to B-RNN-A
and is outperformed by our proposed DD-RNN
by 6̃.47%. We also compared our proposed DD-
RNN with a uni-directional LSTM with a depth
of 4 (Chen et al., 2015b) (LSTM-4) and a Gated
Recursive Neural Network with a depth of 5 (Chen
et al., 2015a) (GRNN-5). These models were used
to get state of the art results for Chinese word
segmentation and their source code is made avail-
able online.4 Since these models can only predict
the location(s) of the split(s) and cannot gener-
ate the split words themselves, we used the loca-
tion prediction accuracy as the metric. We trained
these models on our benchmark dataset and the
results are shown in Table 1. DD-RNN’s pre-
cision is 35.3% and 40.3% better than LSTM-4
and GRNN-5 respectively. Conversely, we trained
the DD-RNN for the Chinese word segmenta-
tion task to test the generalizability of the model.
Since there are no morphological changes during
segmentation in Chinese, the character decoder
is redundant and the model collapses to simple
seq2seq. We used the PKU dataset which is also
used in (Chen et al., 2015b) & (Chen et al., 2015a)
and obtained an accuracy of 64.25% which is com-
parable to the results of other standard models.

To summarize, we have used our benchmark
4https://github.com/FudanNLP

dataset to compare the DD-RNN model with ex-
isting publicly available Sandhi splitting tools,
other RNN architectures and models used for Chi-
nese word segmentation task. Among the exist-
ing tools, the INRIA splitter gives the highest split
prediction accuracy of 59.9%. Among the stan-
dard RNN architectures, B-RNN-A performs the
best with a split prediction accuracy of 69.3%.
LSTM-4 performs the best among the Chinese
word segmentation models with a location predic-
tion accuracy of 70.2%. DD-RNN outperforms all
the models both in location and split predictions
with 95% and 79.5% accuracies, respectively.

5 Research Impact

This work can be foundational to other Sanskrit
based NLP tasks. Let us consider translation as an
example. In Sanskrit, arbitrary number of words
can be joined together to form a compound word.
Literary works, especially from the Vedic era of-
ten contain words which are a concatenation of
three or more simpler words. Presence of such
compound words will increase the vocabulary size
exponentially and hinder the translation process.
However, as a pre-processing step, if all the com-
pound words are split before training a translation
model, the number of unique words in the vocabu-
lary reduces which will ease the learning process.

6 Conclusion

In this research, we propose a novel double de-
coder RNN architecture with attention for Sanskrit
Sandhi splitting. Learning such a model would
provide further insights into the fundamental lin-
guistic word formation rules of the language. A
deep bi-directional encoder is used to encode the
character sequence of a Sanskrit word. Using this
encoded context vector, a location decoder is first
used to learn the location(s) of the split(s). Then
the character decoder is used to generate the split
words. We evaluate the performance of the pro-
posed approach on the benchmark dataset in com-
parison with other publicly available tools, stan-
dard RNN architectures and with prior work which
tackle similar problems in other languages. As fu-
ture work, we intend to tackle the harder Samasa
problem which requires semantic information of a
word in addition to the characters’ context.
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Abstract

Previous traditional approaches to unsuper-
vised Chinese word segmentation (CWS) can
be roughly classified into discriminative and
generative models. The former uses the care-
fully designed goodness measures for candi-
date segmentation, while the latter focuses on
finding the optimal segmentation of the high-
est generative probability. However, while
there exists a trivial way to extend the dis-
criminative models into neural version by us-
ing neural language models, those of genera-
tive ones are non-trivial. In this paper, we pro-
pose the segmental language models (SLMs)
for CWS. Our approach explicitly focuses on
the segmental nature of Chinese, as well as
preserves several properties of language mod-
els. In SLMs, a context encoder encodes the
previous context and a segment decoder gen-
erates each segment incrementally. As far as
we know, we are the first to propose a neu-
ral model for unsupervised CWS and achieve
competitive performance to the state-of-the-
art statistical models on four different datasets
from SIGHAN 2005 bakeoff.

1 Introduction

Unlike English and many other languages, Chi-
nese sentences have no explicit word boundaries.
Therefore, Chinese Word Segmentation (CWS) is
a crucial step for many Chinese Natural Language
Processing (NLP) tasks such as syntactic pars-
ing, information retrieval and word representation
learning (Grave et al., 2018).

Recently, neural approaches for supervised
CWS are attracting huge interest. A great quan-
tities of neural models, e.g., tensor neural network
(Pei et al., 2014), recursive neural network (Chen
et al., 2015a), long-short-term-memory (RNN-
LSTM) (Chen et al., 2015b) and convolutional
neural network (CNN) (Wang and Xu, 2017), have
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𝒚𝟐 𝒚𝟑
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𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒𝒚𝟎

Context Encoder

Segment Decoder

Figure 1: A Segmental Language Model (SLM) works
on y = y1y2y3y4 with the candidate segmentation
y1, y2:3 and y4, where y0 is an additional start sym-
bol which is kept same for all sentences.

been proposed and given competitive results to the
best statistical models (Sun, 2010). However, the
neural approaches for unsupervised CWS have not
been investigated.

Previous unsupervised approaches to CWS can
be roughly classified into discriminative and gen-
erative models. The former uses carefully de-
signed goodness measures for candidate segmen-
tation, while the latter focuses on designing sta-
tistical models for Chinese and finds the optimal
segmentation of the highest generative probability.

Popular goodness measures for discriminative
models include Mutual Information (MI) (Chang
and Lin, 2003), normalized Variation of Branch-
ing Entropy (nVBE) (Magistry and Sagot, 2012)
and Minimum Description Length (MDL) (Mag-
istry and Sagot, 2013). There is a trivial way to
extend these statistical discriminative approaches,
because we can simply replace the n-gram lan-
guage models in these approaches by neural lan-
guage models (Bengio et al., 2003). There may
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exists other more sophisticated neural discrimina-
tive approaches, but it is not the focus of this paper.

For generative approaches, typical statistical
models includes Hidden Markov Model (HMM)
(Chen et al., 2014), Hierarchical Dirichlet Pro-
cess (HDP) (Goldwater et al., 2009) and Nested
Pitman-Yor Process (NPY) (Mochihashi et al.,
2009). However, none of them can be easily ex-
tended into a neural model. Therefore, neural gen-
erative models for word segmentation are remain-
ing to be investigated.

In this paper, we proposed the Segmental Lan-
guage Models (SLMs), a neural generative model
that explicitly focuses on the segmental nature of
Chinese: SLMs can directly generate segmented
sentences and give the corresponding generative
probability. We evaluate our methods on four dif-
ferent benchmark datasets from SIGHAN 2005
bakeoff (Emerson, 2005), namely PKU, MSR, AS
and CityU. To our knowledge, we are the first to
propose a neural model for unsupervised Chinese
word segmentation and achieve competitive per-
formance to the state-of-the-art statistical models
on four different datasets.1

2 Segmental Language Models

In this section, we present our segmental language
models (SLMs). Notice that in Chinese NLP, char-
acters are the atom elements. Thus in the context
of CWS, we use “character” instead of “word” for
language modeling.

2.1 Language Models
The goal of language modeling is to learn the joint
probability function of sequences of characters in
a language. However, This is intrinsically diffi-
cult because of the curse of dimensionality. Tradi-
tional approaches obtain generalization based on
n-grams, while neural approaches introduce a dis-
tributed representation for characters to fight the
curse of dimensionality.

A neural Language Model (LM) can give the
conditional probability of the next character given
the previous ones, and is usually implemented by
a Recurrent Neural Network (RNN):

ht = f(yt�1,ht�1) (1)
p(yt|y1:t�1) = g(ht,yt) (2)

1Our implementation can be found at https://
github.com/Edward-Sun/SLM

where yt is the distributed representation for the
tth character and ht represents the information of
the previous characters.

2.2 Segmental Language Models

Similar to neural language modeling, the goal of
segmental language modeling is to learn the joint
probability function of the segmented sequences
of characters. Thus, for each segment, we have:

p̂(y(i)
t |y(i)

1:t�1,y
(1:i�1)) = g(h(i)

t ,y(i)
t ) (3)

where y(i)
t is the distributed representation for

the tth character in the ith segment and y(1:i�1)

is the previous segments. And the concatenation
of all segments y(i)

1:Ti
is exactly the whole sentence

y1:T , where Ti is the length of the ith segment y(i),
T is the length of the sentence y.

Moreover, we introduce a context encoder RNN
to process the character sequence y(1:i�1) in order
to make y(i)

t conditional on y(1:i�1). Specifically,
we initialize h(i)

0 with the context encoder’s output
of y(1:i�1).

Notice that although we have an encoder and
the segment decoder g, SLM is not an encoder-
decoder model. Because the content that the de-
coder generates is not the same as what the en-
coder provides.

Figure 1 illustrates how SLMs work with a can-
didate segmentation.

2.3 Properties of SLMs

However, in unsupervised scheme, the given sen-
tences are not segmented. Therefore, the probabil-
ity for SLMs to generate a given sentence is the
joint probability of all possible segmentation:

p(y1:T ) =
X

T1,T2,...

Y

i

p̂(y(i)
1:Ti

)

=
X

T1,T2,...

Y

i

Ti+1Y

t=1

p̂(y(i)
t |y(i)

0:t�1) (4)

where y(i)
Ti+1 = heosi is the end of segment

symbol at the end of each segment, and y(i)
0 is the

context representation of y(1:i�1).
Moreover, for sentence generation, SLMs are

able to generate arbitrary sentences by generating
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segments one by one and stopping when gener-
ating end of sentence symbol hEOSi. In addi-
tion, the time complexity is linear to the length of
the generated sentence, as we can keep the hid-
den state of the context encoder RNN and update
it when generating new words.

Last but not least, it is easy to verify that SLMs
preserve the probabilistic property of language
models: X

i

P (si) = 1 (5)

where si enumerates all possible sentences.
In summary, the segmental language models

can perfectly substitute vanilla language models.

2.4 Training and Decoding
Similar to language model, the training is achieved
by maximizing the training corpus log-likelihood:

L = � log p(y1:T ) (6)

Luckily, we can compute the loss objective
function in linear time complexity using dynamic
programming, given the initial condition that
p(y1:0) = 1:

p(y1:n) =
KX

k=1

p(y1:n�k)p̂(yn�k+1:n) (7)

where p(·) is the joint probability of all possible
segmentation, p̂(·) is the probability of one seg-
ment and K is the maximal length of the segments.

We can also find the segmentation with maxi-
mal probability (namely, decoding) in linear time
using dynamic programming in the similarly way
with p̄(y1:0) = 1:

p̄(y1:n) =
K

max
k=1

p̄(y1:n�k)p̂(yn�k+1:n) (8)

�(y1:n) = arg
K

max
k=1

p̄(y1:n�k)p̂(yn�k+1:n) (9)

where p̄ is the probability of the best segmenta-
tion and � is used to trace back the decoding.

3 Experiments

3.1 Experimental Settings and Detail
We evaluate our models on SIGHAN 2005 bake-
off (Emerson, 2005) datasets and replace all the
punctuation marks with hpunci, English charac-
ters with hengi and Arabic numbers with hnumi

F1 score PKU MSR AS CityU
HDP 68.7 69.9 - -

HDP + HMM 75.3 76.3 - -
ESA 77.8 80.1 78.5 76.0

NPY-3 - 80.7 - 81.7
NPY-2 - 80.2 - 82.4
nVBE 80.0 81.3 76.6 76.7
Joint 81.1 81.7 - -

SLM-2 80.2 78.5 79.4 78.2
SLM-3 79.8 79.4 80.3 80.5
SLM-4 79.2 79.0 79.8 79.7

Table 1: Main results on SIGHAN 2005 bakeoff
datasets with previous state-of-the-art models (Chen
et al., 2014; Wang et al., 2011; Mochihashi et al., 2009;
Magistry and Sagot, 2012)

for all text and only consider segment the text be-
tween punctuations. Following Chen et al. (2014)
, we use both training data and test data for train-
ing and only test data are used for evaluation. In
order to make a fair comparison with the previous
works, we do not consider using other larger raw
corpus.

We apply word2vec (Mikolov et al., 2013) on
Chinese Gigaword corpus (LDC2011T13) to get
pretrained embedding of characters.

A 2-layer LSTM (Hochreiter and Schmidhuber,
1997) is used as the segment decoder and a 1-layer
LSTM is used as the context encoder.

We use stochastic gradient decent with a mini-
batch size of 256 and a learning rate of 16.0 to op-
timize the model parameters in the first 400 steps,
then we use Adam (Kingma and Ba, 2014) with
a learning rate of 0.005 to further optimize the
models. Model parameters are initialized by nor-
mal distributions as Glorot and Bengio (2010) sug-
gested. We use a gradient clip = 0.1 and apply a
dropout with dropout rate = 0.1 to the character
embedding and RNNs to prevent over-fit.

The standard word precision, recall and F1 mea-
sures (Emerson, 2005) are used to evaluate seg-
mentation performance.

3.2 Results and Analysis
Our final results are shown in Table 1, which
lists the results of several previous state-of-the-
art methods2, where we mark the best results in

2Magistry and Sagot (2012) evaluated their nVBE on the
training data, and the joint model of Chen et al. (2014) com-
bine HDP+HMM and is initialized with nVBE, so in princi-
ple these results can not be compared directly.
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F1 score PKU MSR AS CityU
SLM-4 79.2 79.0 79.8 79.7
SLM-4* 81.9 83.0 81.0 81.4
SLM-4† 87.5 84.3 84.2 86.0
SLM-4†* 87.3 84.8 83.9 85.8

Table 2: Results of SLM-4 incorporating ad hoc guide-
lines, where † represents using additional 1024 seg-
mented setences for training data and * represents using
a rule-based post-processing

boldface. We test the proposed SLMs with differ-
ent maximal segment length K = 2, 3, 4 and use
“SLM-K” to denote the corresponding model. We
do not try K > 4 because there are rare words that
consist more than 4 characters.

As can be seen, it is hard to predict what choice
of K will give the best performance. This is be-
cause the exact definition of what a word remains
hard to reach and different datasets follow differ-
ent guidelines. Zhao and Kit (2008) use cross-
training of a supervised segmentation system in
order to have an estimation of the consistency be-
tween different segmentation guidelines and the
average consistency is found to be as low as 85
(f-score). Therefore, this can be regarded as a top
line for unsupervised CWS.

Table 1 shows that SLMs outperform previous
best discriminative and generative models on PKU
and AS datasets. This might be due to that the
segmentation guideline of our models are closer
to these two datasets.

Moreover, in the experiments, we observe that
Chinese particles often attach other words, for ex-
ample, “Ñ” following adjectives and “Ü” follow-
ing verbs. It is hard for our generative models to
split them apart. Therefore, we propose a rule-
based post-processing module to deal with this
problem, where we explicitly split the attached
particles from other words.3 The post-processing
is applied on the results of “SLM-4”. In addi-
tion, we also evaluate “SLM-4” using the first
1024 sentences of the segmented training datasets
(about 5.4% of PKU, 1.2% of MSR, 0.1% of AS
and 1.9% of CityU) for training, in order to teach
“SLM-4” the corresponding ad hoc segmentation
guidelines. Table 2 shows the results.

We can find from the table that only 1024
guideline sentences can improve the performance
of “SLM-4” significantly. While rule-based

3The rules we use are listed in the appendix at https:
//github.com/Edward-Sun/SLM.

Error SLM-2 SLM-3 SLM-4
Insertion 7866 4803 3519
Deletion 3855 7518 8851

Table 3: Statistics of insertion errors and deletion errors
that SLM-K produces on PKU dataset

post-processing is very effective, “SLM-4†” can
outperform “SLM-4*” on all the four datasets.
Moreover, performance drops when applying the
rule-based post-processing to “SLM-4†” on three
datasets. These indicate that SLMs can learn the
empirical rules for word segmentation given only
a small amount of training data. And these guide-
line data can improve the performance of SLMs
naturally, superior to using explicit rules.

3.3 The Effect of the Maximal Segment
Length

The maximal segment length K represents the
prior knowledge we have for Chinese word seg-
mentation. For example K = 3 represents that
there are only unigrams, bigrams and trigrams in
the text. While there do exist words that con-
tain more than four characters, most of the Chi-
nese words are unigram or bigram. Therefore, K
denotes a trade-off between the accuracy of short
words and long words.

Specifically, we investigate two major segmen-
tation problems that might affect the accuracy of
word segmentation performance, namely, inser-
tion errors and deletion errors. An insertion error
insert a segment in a word, which split a correct
word. And an deletion error delete the segment
between two words, which results in a composi-
tion error (Li and Yuan, 1998). Table 3 shows the
statistics of different errors on PKU of our model
with different K. We can observe that insertion er-
ror rate decrease with the increase of K, while the
deletion error rate increase with the increase of K.

We also provide some examples in Table 4,
which are taken from the results of our models. It
clearly illustrates that different K could result in
different errors. For example, there is an insertion
error on “Õ«e” by SML-2, and a deletion error
on “√€” and “Ü” by SLM-4.

4 Related Work

Generative Models for CWS Goldwater et al.
(2009) are the first to proposed a generative
model for unsupervised word segmentation. They

4918



Model Example
SLM-2 �Ÿõ6¶ÑåÑÕ«e»√€Ü¿fl∫Xg’4sÑ€�e–ÿ
SLM-3 �Ÿõ6¶ÑåÑÕ«e»√€Ü¿fl∫Xg’4sÑ€�e–ÿ
SLM-4 �Ÿõ6¶ÑåÑÕ«e»√€Ü¿fl∫Xg’4sÑ€�e–ÿ
Gold �Ÿõ6¶ÑåÑÕ«e»√€Ü¿fl∫Xg’4sÑ€�e–ÿ

Table 4: Examples of segmentation with different maximal segment length K

built a nonparametric Bayesian bigram language
model based on HDP (Teh et al., 2005). Mochi-
hashi et al. (2009) proposed a Bayesian hier-
archical language model using Pitman-Yor (PY)
process, which can generate sentences hierarchi-
cally. Chen et al. (2014) proposed a Bayesian
HMM model for unsupervised CWS inspired by
the character-based scheme in supervised CWS
task, where the hidden state of charaters are set to
{Single,Begin,End,Middle} to represents their
corresponding positions in the words. The seg-
mental language model is not a neural extension
of the above statistical models, as we model the
segments directly.

Segmental Sequence Models Sequence model-
ing via segmentations has been well investigated
by Wang et al. (2017), where they proposed the
Sleep-AWake Network (SWAN) for speech recog-
nition. SWAN is similar to SLM. However, SLMs
do not have sleep-awake states. And SLMs pre-
dict the following segment given the previous con-
text while SWAN tries to recover the information
in the encoded state. Therefore, the key differ-
ence is that SLMs are unsupervised language mod-
els while SWANs are supervised seq2seq models.
Thereafter, Huang et al. (2017) successfully apply
SWAN in their phrase-based machine translation.
Another related work in machine translation is the
online segment to segment neural transduction (Yu
et al., 2016), where the model is able to capture un-
bounded dependencies in both the input and output
sequences. Kong (2017) also proposed a Segmen-
tal Recurrent Neural Network (SRNN) with CTC
to solve segmental labeling problems.

5 Conclusion

In this paper, we proposed a neural generative
model for fully unsupervised Chinese word seg-
mentation (CWS). To the best of knowledge, this
is the first neural model for CWS. Our segmen-
tal language model is an intuitive generalization
of vanilla neural language models that directly
modeling the segmental nature of Chinese. Ex-

perimental results show that our models achieve
competitive performance to the previous state-of-
the-art statistical models on four datasets from
SIGHAN 2005. We also show the improvement of
incorporating ad hoc guidelines into our segmen-
tal language models. Our future work may include
the following two directions.

• In this work, we only consider the sequential
segmental language modeling. In the future,
we are interested in build a hierarchical neu-
ral language model like the Pitman-Yor pro-
cess.

• Like vanilla language models, the segmental
language models can also provide useful in-
formation for semi-supervised learning tasks.
It would also be interesting to explore our
models in the semi-supervised schemes.
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Abstract
We present LemmaTag, a featureless neu-
ral network architecture that jointly generates
part-of-speech tags and lemmas for sentences
by using bidirectional RNNs with character-
level and word-level embeddings. We demon-
strate that both tasks benefit from sharing the
encoding part of the network, predicting tag
subcategories, and using the tagger output as
an input to the lemmatizer. We evaluate our
model across several languages with complex
morphology, which surpasses state-of-the-art
accuracy in both part-of-speech tagging and
lemmatization in Czech, German, and Arabic.

1 Introduction

Morphologically rich languages are often difficult
to process in many NLP tasks (Tsarfaty et al.,
2010). As opposed to analytical languages like
English, morphologically rich languages encode
diverse sets of grammatical information within
each word using inflections, which convey char-
acteristics such as case, gender, and tense. The
addition of several inflectional variants across
many words dramatically increases the vocabu-
lary size, which results in data sparsity and out-
of-vocabulary (OOV) issues.

Due to these issues, morphological part-of-
speech (POS) tagging and lemmatization are heav-
ily used in NLP tasks such as machine transla-
tion (Fraser et al., 2012) and sentiment analysis
(Abdul-Mageed et al., 2014). In morphologically
rich languages, the POS tags typically consist of
multiple morpho-syntactic subcategories provid-
ing additional information (see Figure 1). Closely
related to POS tagging is lemmatization, which in-
volves transforming each word to its root or dic-
tionary form. Both tasks require context-sensitive
awareness to disambiguate words with the same
form but different syntactic or semantic features
and behavior. Furthermore, lemmatization of a

word form can benefit substantially from the in-
formation present in morphological tags, as gram-
matical attributes often disambiguate word forms
using context (Müller et al., 2015).

We address context-sensitive POS tagging and
lemmatization using a neural network model that
jointly performs both tasks on each input word in
a given sentence.1 We train the model in a super-
vised fashion, requiring training data containing
word forms, lemmas, and POS tags. In addition,
we incorporate the ideas from Inoue et al. (2017)
to optionally allow the network to predict the sub-
categories of each tag to improve accuracy. Our
model is related to the work of Müller et al. (2015),
which use conditional random fields (CRF) to
jointly tag and lemmatize words for morphologi-
cally rich languages. The idea of jointly predict-
ing several dimensions of categories has been ex-
plored prior to this work, for example, joint mor-
phological and syntactic analysis (Bohnet et al.,
2013) or joint parsing and semantic role labeling
(Gesmundo et al., 2009).

Our model consists of three parts: (1) The
shared encoder, which creates an internal repre-
sentation for every word based on its character se-

1The code for this project is available at https://
github.com/hyperparticle/LemmaTag
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Figure 1: The tag components of the PDT Czech tree-
bank with the numbers of valid values. Around 1500
different tags are in use in the PDT.
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quence and the sentence context. We adopt the
encoder architecture of Chakrabarty et al. (2017),
utilizing character-level (Heigold et al., 2017) and
word-level embeddings (Mikolov et al., 2013b;
Santos and Zadrozny, 2014) processed through
several layers of bidirectional recurrent neural
networks (BRNN/BiRNN) (Schuster and Paliwal,
1997; Chakrabarty et al., 2017). (2) The tagger
decoder, which applies a fully-connected layer to
the outputs of the shared encoder to predict the
POS tags. (3) The lemmatizer decoder, which
applies an RNN sequence decoder to the combined
outputs of the shared encoder and tagger decoder,
producing a sequence of characters that predict
each lemma (similar to Bergmanis and Goldwater
(2018)).

The main advantages over other proposed mod-
els are: (i) The model is featureless, requiring
little to no text preprocessing or morphological
analysis postprocessing. (ii) The model shares
the word embeddings, character embeddings, and
RNN encoder weights in the tagger and lemma-
tizer, improving both tagging and lemmatization
accuracy while reducing the number of parameters
required for both tasks. (iii) The model predicts
tag subcategories and provides the output of the
tagger as features for the input of the lemmatizer,
further improving accuracy.

We evaluate the accuracy of our model in POS
tagging and lemmatization across several lan-
guages: Czech, Arabic, German, and English. For
each language, we also compare the performance
of a fully separate tagger and lemmatizer to the
proposed joint model. Our results show that our
joint model is able to improve the accuracy for
both tasks, and achieves state-of-the-art perfor-
mance in both POS tagging and lemmatization in
Czech, German, and Arabic, while closely match-
ing state-of-the-art performance for English.

2 The Joint LemmaTag Model

Given a sequence of words in a sentence
w1, . . . , wk, the task of the model is to produce a
sequence of associated tags t1, . . . , tk and lemmas
`1, . . . , `k. For a word wi at position i, we denote
ci,1, ci,2 . . . ci,mi to be the sequence of characters
that make up wi, where mi indicates the length of
the word string at position i. Analogously, we de-
fine li,1, . . . li,�i to be the sequence of characters
that make up the lemma `i.

Our proposed model (shown in Figures 2 and 3)

is split into three parts: the shared encoder, the
tagger, and the lemmatizer. The initial layers
of the model are shared between the tagger and
lemmatizer, encoding the words, characters, and
context in a given sentence. The encoder then
passes its outputs to two networks, which perform
a classification task to predict tags by the tagger
and a sequence prediction task to output lemmas
(character-by-character) in the lemmatizer.

2.1 Shared Encoder
In the encoder shown in Figure 2, each charac-
ter ci,1, ci,2 . . . ci,mi of a word wi is indexed into
an embedding layer to produce fixed-length em-
bedded vectors representing each character. These
vectors are further passed into a layer of BRNNs
composed of gated recurrent units (GRU) (Cho
et al., 2014) producing outputs ec

1, . . . , ec
m, and

whose final states are concatenated to produce the
character-level embedding sc

i of the word. Sim-
ilarly, we index wi into a word-level embedding
layer to compute vector eb

i . Then we sum these re-
sults to produce the final word embedding ew

i =
sc
i + eb

i .
We repeat this process independently for all

the words in the sentence and feed the resulting
sequence ew

1 . . . ew
k into another two BRNN lay-

ers composed of long short-term memory units
(LSTM) with residual connections. This pro-
duces word-level outputs ow

1 , . . . ow
k that encode

sentence-level context for each word (we ignore
the final hidden states).

2.2 Tagger
The task of the tagger is to predict a tag ti 2 T
given a word wi and its context, where T is a set
of possible tags. As explained the introduction,
morphologically rich languages typically subdi-
vide tags further into several subcategories ti =
(ti,1, . . . , ti,⌧ ), where ti,j 2 Tj , the j-th subcate-
gory. See Figure 1 for an illustration taken from
the Czech PDT tagset where ⌧ = 15.

Having the encoded words of a sentence avail-
able, the tagger consists of a fully-connected layer
with |T | neurons whose input is the output of the
word feature RNN ow

i (see figure 2). This layer
produces the logits ti of the tag values and the pre-
dictions ti as the maximum-likelihood value (i.e.,
softmax).

To obtain the information about categorical na-
ture of each tag, we also predict every category
ti,j of the tag independently (if they exist in the
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ci,1 ci,2 ci,mi

eci,1 eci,mi

c-embed w-embed

wi

ewi

BRNN

WD

+

eci,2

Figure 2: Bottom: Word-level encoder. The characters
of every input word are embedded with a look-up table
(c-embed) and encoded with a BRNN. The outputs ec

i,j

are used in decoder attention, and the final states are
summed with the word-level embedding (w-embed) to
produce ew

i . WD denotes word dropout.
Top: Sentence-level encoder and tag classifier. Two
BRNN layers with residual connections act on the em-
bedded words ew

i of a sentence, providing context. The
output of the tag classification are the logits for both
the whole tags ti and their components ti,j .
Both: Thick slanted lines denote training dropout.

dataset) with ⌧ dense layers similar to Inoue et al.
(2017). The j-th layer has |Tj | neurons and out-
puts the logits ti,j for the category values. While
these values are trained for, their value is not
used in tag prediction. All tag values Ti =
(ti, ti,1 . . . , ti,⌧ ) are concatenated into a flat vec-
tor and fed into the lemmatizer as an additional set
of potentially useful features.

2.3 Lemmatizer

The task of the lemmatizer is to produce a se-
quence of characters li,1, . . . , li,�i and the lemma
length �i for each lemma `i. We use a recurrent se-
quence decoder, a setup typical of many sequence-
to-sequence (seq2seq) tasks such as in neural ma-

BOW EOWli,1 li,2

ow
i

ewi
character attention

eci,1 eci,2 eci,mi

Ti = (ti, ti,1, ti,2, . . . , ti,⌧ )

RNN decoder

li,�i

GradStop

Figure 3: Lemma decoder, consisting of a standard
seq2seq autoregressive decoder with Luong attention
on character encodings, and with additional inputs
of processed tagger features Ti, embeddings ew

i and
sentence-level outputs ow

i . Gradients from the lemma-
tizer are stopped from flowing into the tagger (denoted
GradStop).

chine translation (Sutskever et al., 2014).
The lemmatizer consists of a recurrent LSTM

layer whose initial state is taken from word-level
output ow

i and whose inputs consist of three parts.
The first part is the embedding of the previous out-
put character (initially a beginning-of-word char-
acter BOW).

The second part is a character-level attention
mechanism (Bahdanau et al., 2014) on the out-
puts of the character-level BRNN ec

i,1, . . . , ec
i,mi

.
We employ the multiplicative attention mecha-
nism described in Luong et al. (2015), which al-
lows the LSTM cell to compute an attention vec-
tor that selectively weights character-level infor-
mation in ec

i,j at each time step j based on the input
state of the LSTM cell.

The third and final part of the RNN input allows
the network to receive the information about the
embedding of the word, the surrounding context
of the sentence, and the output of the tagger. This
output is the same for all time steps of a lemma
and is a concatenation of the following: the out-
put of the encoder ow

i , the embedded word ew
i and

processed tag features Tf
i . The tag features are ob-

tained by projecting the concatenated outputs of
the tagger Ti through a fully connected layer with
ReLU activation. During training, we do not pass
the gradients back through Ti to prevent the dis-
tortion of the tagger output.

The decoder performs greedy decoding to pre-
dict the character outputs. It runs until it produces
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the end-of-word character EOW or reaches a char-
acter limit of mi + 10.

2.4 Loss Function
We define the final loss function as the weighted
sum of the losses of the tagger and the lemmatizer:

L(ŷ, y) = ↵L(ŷt, yt) + �L(ŷ`, y`)

where y are the predicted outputs, ŷ the expected
outputs, yt, the tag components and y` are the
lemma characters. The tagger and lemmatizer
losses are separately computed as the softmax
cross entropy of the output logits. The weight hy-
perparameters ↵, � scale the training losses so that
the subtag and lemmatizer losses do not overpower
the unfactored tag predictor gradients. The vector
↵ contains ⌧ + 1 weights: one for the whole tag
and one for every component.2

3 Experiments

In this section, we show the outcomes of evalu-
ation when running our joint tagger and lemma-
tizer and compare with the current state of the art
in Czech, German, Arabic, and English datasets.
Additionally, we evaluate the lemmatizer and tag-
ger separately to compare the relative increase in
tagging and lemmatization accuracy.

3.1 Datasets
Our datasets consist of the Czech Prague De-
pendency Treebank (PDT) (Hajič et al., 2006,
2018), the German TIGER corpus (Brants et al.,
2004), the Universal Dependencies Prague Arabic
Dependency Treebank (UD-PADT) (Hajic et al.,
2004), the Universal Dependencies English Web
Treebank (UD-EWT) (Silveira et al., 2014), and
the WSJ portion of the English Penn Treebank
(tags only) (Marcus et al., 1993). In all datasets,
we use the tags specific to their respective lan-
guage. Of these datasets, only Czech and Ara-
bic provide subcategorical tags, and we use unfac-
tored tags for the rest. See Table 1 for tagger and
lemmatizer accuracies.

Note that the PDT dataset disambiguates lem-
mas with the same textual representation by ap-
pending a number as lemma sense indicator. For
example, the dataset contains disambiguated lem-
mas moc-1 (as power) and moc-2 (as too much).
About 17.5% of the PDT tokens have such sense-
disambiguated lemmas. LemmaTag predicts the

2If no components are available, ⌧ = 0.

lemmas including the senses and the accuracies in
Table 1 take that into account. Ignoring the sense
ambiguity, the lemmatization accuracy of the joint
LemmaTag model is 98.94% for Czech-PDT.

3.2 Hyperparameters
We use loss weights ↵0 = 1.0 for the whole tags,
↵1,...,⌧ = 0.1 for the tag component losses and
� = 0.5 for the lemmatizer loss.3 The RNNs
and word embedding tables have dimensionality
768 except for character-level embeddings and the
character-level RNN, which are of dimension 384.
The fully-connected layer whose inputs are Ti is
of dimension 256.

We train the models for 40 epochs with random
permutations of training sentences and batches of
16 sentences. The starting learning rate is ⌘ =
0.001 and we scale this by 0.25 at epochs 20
and 30 to increase accuracy. We train the net-
work using the lazy variant of the Adam optimizer
(Kingma and Ba, 2014), which only updates ac-
cumulators for variables that appear in the cur-
rent batch (TensorFlow, 2018), with parameters
�1 = 0.9 and �2 = 0.99. We clip the global gra-
dient norm to 3.0 to reduce the risk of exploding
gradients.

To prevent the tagger from overfitting, we de-
vise several strategies for regularization. We apply
dropouts with rate 0.5 as indicated in Figures 2
and 3. The word dropout (WD) replaces 25% of
words by the unknown token <unk> to force the
network to rely more on context, combatting data
sparsity issues. Lastly, we employ label smooth-
ing (Pereyra et al., 2017) which is a way to pre-
vent the network from being too confident in any
one class. The label smoothing parameter is set to
0.1 for the tagger logits (both whole tags and the
tag components).

Note that we did not perform any complex hy-
perparameter search. For additional information
on real-world performance and additional tech-
niques which have not improved evaluation accu-
racy, see Appendix A.

4 Conclusion

The evaluation results show that performing
lemmatization and tagging jointly by sharing en-
coder parameters and utilizing tag features is

3These are reasonable values to prevent gradients from
overpowering one another. The lemmatizer tends to influence
the tagger heavily.
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Approach Czech-PDT⇤ German-TIGER Arabic-PADT⇤ Eng-EWT Eng-WSJ
tag lem tag lem tag lem tag lem tag

LemmaTag (sep) 96.83 98.02 98.96 98.84 95.03 96.07 95.50 97.03 97.59
LemmaTag (joint) 96.90 98.37 98.97 99.05 95.21 96.08 95.37 97.53 N/A
SoTA results 95.89a

+ 97.86b
+ 98.04c

+ 98.24c
+ 91.68d

+ 92.60e 93.90e 96.90e 97.78f
+

Table 1: Final accuracies on the test sets comparing the LemmaTag architecture as described (joint), LemmaTag
neither sharing the encoder nor providing tagger features (sep), and the state-of-the-art results (SoTA). The state-
of-the-art results are taken from the following papers: (a) Hajič et al. (2009), (b) Straková et al. (2014), (c) Eger
et al. (2016), (d) Inoue et al. (2017), (e) Straka et al. (2016), (f) Ling et al. (2015). The results marked with a
plus+ use additional resources apart from the dataset, and datasets marked with a star⇤ indicate the availability of
subcategorical tags.

mutually beneficial in morphologically rich lan-
guages. We have shown that incorporating these
ideas results in excellent performance, surpass-
ing state-of-the-art in Czech, German, and Ara-
bic POS tagging and lemmatization by a substan-
tial margin, while closely matching state-of-the-
art English POS tagging accuracy.

However, in languages with weak morphol-
ogy such as English (and German to a lesser ex-
tent), sharing the encoder parameters may even
hurt the performance of the tagger. We believe
this is a consequence of tags correlating less with
word-level morphology, and more with sentence-
level syntax in morphologically poor languages.
Lemma prediction could benefit from the syntac-
tic information in the tags, but the tag predictions
rely more on syntactic structure (i.e., word or-
der) rather than on root forms of individual words
which could be ambiguous.

There are some possible performance improve-
ments and additional metrics which we leave for
future work. For simplicity, one improvement
we intentionally left out is the use of additional
data. We can incorporate word2vec (Mikolov
et al., 2013a) or ELMo (Peters et al., 2018) word
representations, which have shown to reduce out-
of-domain issues and provide semantic informa-
tion (Eger et al., 2016). A second improvement
is to integrate information from a morphological
dictionary to resolve certain ambiguities (Hajič
et al., 2009; Inoue et al., 2017). A third im-
provement can be to replace the seq2seq lemma-
tizer decoder with a classifier that chooses a cor-
responding edit tree to modify (reduce) the word
form to its lemma (Chakrabarty et al., 2017). A
fourth possible improvement would be to experi-
ment with the Transformer model (Vaswani et al.,
2017), which utilizes non-recurrent multi-headed

self-attention and has been shown to achieve state-
of-the-art performance in several related sequence
tasks (Dehghani et al., 2018). Lastly, we would
like to evaluate LemmaTag on a wider range of
languages, e.g., on the Universal Dependencies
(Nivre et al., 2016) languages and treebanks which
employ lemmatization, and to analyze the use of
different types of POS tags in the model.

The code we used for LemmaTag is available at
https://github.com/hyperparticle/
LemmaTag.
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A Appendix

A.1 GPU Performance
We ran all the tests on an NVIDIA GTX 1080 Ti
GPU. The joint LemmaTag training takes about
3 hours for Arabic PADT, 4.5 hours for English
EWT, 12 hours for German TIGER, and 22 hours
for Czech PDT. The separate models take about
50% more time. After training, the lemma and
tag predictions of 219,000 test tokens of the Czech
PDT take about 100 seconds.

A.2 Other Techniques
We briefly summarize some of the additional tech-
niques we have tried but which do not improve the
results. While some of those techniques do help on
smaller models or earlier in the training, the effect
on the fully trained network seems to be marginal
or even detrimental.

Separate sense prediction. Instead of predict-
ing the sense disambiguation with the lemmatizer
(Czech only), we tried to predict sense as an addi-
tional classification problem with one dense layer
based on ow

i and Ti, but it seems to perform
slightly worse (0.2%).

Beam search decoder. We have implemented a
beam search decoder for the lemmatizer instead of
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the standard greedy one, but the improvement was
marginal (around 0.01%).

Variational dropout. While the dropouts in
the LemmaTag are completely random, variational
dropout erases the same channels across the time
steps of the RNN. While this generally improves
training in convolutional networks and RNNs, we
saw no significant difference.

Layer normalization. Layer normalization ap-
plied to the encoding RNNs did not bring signifi-
cant gain and also slowed down the training.
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Abstract
In contrast to the older writing system of the
19th century, modern Hawaiian orthography
employs characters for long vowels and glottal
stops. These extra characters account for about
one-third of the phonemes in Hawaiian, so in-
cluding them makes a big difference to read-
ing comprehension and pronunciation. How-
ever, transliterating between older and newer
texts is a laborious task when performed man-
ually. We introduce two related methods to
help solve this transliteration problem automat-
ically. One approach is implemented, end-
to-end, using finite state transducers (FSTs).
The other is a hybrid deep learning approach,
which approximately composes an FST with a
recurrent neural network language model.

1 Introduction

From 1834 to 1948, more than 125,000 newspa-
per pages were published in the Hawaiian lan-
guage (Nogelmeier, 2010). Yet by 1981, many
expected this once flourishing language to die
(Benton, 1981). Hawaiian has since defied ex-
pectations and experienced the beginnings of a
remarkable recovery (Warner, 2001; Wilson and
Kamanā, 2001). However much of the literary in-
heritance that is contained in the newspapers has
become difficult for modern Hawaiians to read,
since the newspapers were written in an orthogra-
phy that failed to represent about one-third of the
language’s phonemes. This orthography, which
we will refer to as the missionary orthography, ex-
cluded Hawaiian phonemes that did not have equiv-
alents in American English (see Schütz, 1994), in-
cluding Hawaiian’s long vowels /i: e: a: o: u:/

and glottal stop /P/. By contrast, the modern
Hawaiian orthography, an innovation of Pukui
and Elbert’s Hawaiian dictionary (Pukui and El-
bert, 1957), presents a nearly perfect, one-to-one

⇤Authors contributed equally.

mapping between graphemes and phonemes (see
Appendix A.1). The process of manual translit-
eration from missionary to modern Hawaiian or-
thography is extremely labor intensive. Yet the
cultural benefits are so great that hundreds of pages
of newspaper-serials have already been transliter-
ated by hand, such as Nogelmeier’s new edition of
the epic tale of Hi‘iakaikapoliopele, the volcano
goddess’s sister (Ho‘oulumāhiehie, 2007). Criti-
cally important as such efforts are to the continued
revitalization of this endangered language, they are
still only an introduction to the material that could
be translated for a modern Hawaiian audience.

In this paper, we propose to automate, or semi-
automate, the transliteration of old Hawaiian texts
into the modern orthography. Following a brief
review of related work (Section 2), we begin by de-
scribing a dataset of modern Hawaiian (Section 3).
In Section 4, we present two methods for recover-
ing missing graphemes (and hence phonemes) from
the missionary orthography. The first composes a
series of weighted FSTs; the second approximately
composes a FST with a recurrent neural network
language model (RNNLM) using a beam search
procedure. Both approaches require only modern
Hawaiian texts for training, which are much more
plentiful than parallel corpora. Section 5 reports
the results of our transliteration experiments us-
ing a simulated parallel corpus, as well as two
19th century newspaper articles for which we also
have modern Hawaiian transcriptions. Being based
on FSTs, both approaches are modular and exten-
sible. We observe useful and promising results
for both of our methods, with the best results ob-
tained by the hybrid FST-RNNLM. These results
showcase the strength of combining established
hand-engineering methods with deep learning in a
smaller data regime, with practical applications for
an endangered language.
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2 Related work

Many of the themes that we address relate to ex-
isting literature. For example, Hajič et al. (2000)
and Scannell (2014) have written on machine trans-
lation (MT) for closely related languages and on
multilingual text normalization. Though language-
relatedness makes MT easier (Kolovratnı́k et al.,
2010), state-of-the-art techniques such as neural
machine translation (NMT) have not performed
well for languages with little data (Östling and
Tiedemann, 2017). So while the Hawaiian translit-
eration problem could be cast as an instance of MT
or of NMT, we chose to sidestep the scarcity of
parallel data by not considering such approaches.

Hybrid approaches that combine expert knowl-
edge for well-understood structures with deep
learning for data-plentiful subproblems offer rich
opportunities for data-efficient modelling. Prior
work has combined FSTs with RNNs, although not
using the approximate FST-to-RNN composition
algorithm that we introduce here (in Appendix A.4).
For example, Sproat and Jaitly (2016) used an FST
to restrict the search space when decoding from an
RNN and Rastogi et al. (2016) incorporated RNN
information into an FST.

3 Data

3.1 Missionary & modern orthography

The primary difference between the missionary and
modern Hawaiian orthographies is that the mission-
ary orthography does not encode long vowels or
the glottal stop (see Appendix A.1). For example,
the following Hawaiian phrases were recorded by
a 19th-century German traveller in the missionary
orthography: Ua oia au, E ue ae oe ia Ii, E ao
ae oe ia ia (Chamisso, 1837, p. 7). In the mod-
ern orthography these become: Ua ‘ō ‘ia au ‘I am
speared’, E uē a‘e ‘oe iā ‘Ī‘ı̄ ‘You must weep for
‘Ī‘ı̄ (a person)’, and E a‘o a‘e ‘oe iā ia ‘You teach
him’ (Elbert and Pukui, 1979, p. 3).

We can convert text in the modern Hawaiian or-
thography backward chronologically to an approx-
imate missionary orthography by mapping each
glottal stop h‘i to the empty string ", and each long
vowel, e.g. hā ē ı̄ ō ūi, to its corresponding short
vowel, ha e i o ui. As a first approximation, we may
treat mappings from the modern-to-missionary or-
thographies as unambiguously many-to-one; thus
there is information loss. We will return to sec-
ondary differences between the orthographies in

Source Chars Words

Ulukau(160 texts) 6,518,451 1,334,451
Hi‘iakaikapoliopele 1,272,935 259,947
Wikipedia 577,794 10,221

Total 8,369,180 1,604,619

Figure 1: Modern data sources and their sizes.

Section 6. To illustrate, the following four words
in the modern orthography all map to the same
missionary string aa: a‘a (root), ‘a‘a (brave), ‘a‘ā
(crumbly lava rock), and ‘ā‘ā (stutter).

The forward mapping from missionary-to-
modern orthographies is one-to-many. Thus the
missionary string aa could map to a‘a, ‘a‘a, ‘a‘ā,
or ‘ā‘ā. The transliteration problem we address
here seeks to discover how we can use context to
recover the information not present in the mission-
ary orthography that modern Hawaiian orthography
retains.

3.2 Data sources

We draw on three sources for modern Hawai-
ian text: the main text of Hi‘iakaikapoliopele
(Ho‘oulumāhiehie, 2007), 160 short texts from
Ulukau: The Hawaiian Electronic Library, and
the full Hawaiian Wikipedia (see Figure 1).1

For evaluation, we simulate a missionary-era ver-
sion of the modern texts using the backward map-
ping described above. In addition, we evaluated
our models on a couple of 19th century newspaper
samples for which we have parallel missionary-era
and modern text. Both simulated and real parallel
corpora will be described in Section 5.

4 Models

We can frame the task of transliterating from
missionary-to-modern Hawaiian orthographies as a
sequence transduction problem. Many deep learn-
ing approaches (e.g. Sutskever et al., 2014; Graves,
2012) are not easily applicable to this task since
we do not have a sufficiently large dataset of paral-
lel texts. Instead, we focus on approaches that
mix hand-designed finite state transducers with
trained language models, including deep learning
approaches like RNNLMs (Mikolov et al., 2010).

1Ulukau: The Hawaiian Electronic Library: http:
//ulukau.org/, Hawaiian Wikipedia: https://haw.
wikipedia.org/. Both accessed 19 May 2018.
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4.1 Finite state transducers

Our initial approach represents the mapping from
missionary to modern orthography using a compo-
sition of (weighted) FSTs. For a thorough review
of FSTs, see Mohri (1997).

First, we construct a finite state acceptor, I , from
the input text. Here we construct a trivial chain-
shaped acceptor that accepts only the input text.
Each symbol in the input text is represented by a
state which emits this symbol on a single transition
that moves to the next state. The transition emit-
ting the final symbol in the string leads to the sole
accepting state.

Second, we construct a missionary-to-modern or-
thography conversion FST which we call C, which
models potential orthography changes that can oc-
cur when transliterating from the missionary to
modern Hawaiian orthography. For example, two
non-deterministic transitions introduce an optional
long-vowel map (a : ā) and (a : a). Another transi-
tion inserts glottal stops: (✏ : ‘). By capturing the
orthographic changes we know to occur, the com-
position I � C produces a large set of candidates to
be narrowed using the language model.

Third, we use the modern Hawaiian text from
Section 3.2 to construct and evaluate a number of
character-level n-gram language models, of vari-
ous combinations of order and Katz backoff and
Kneser-Ney (KN) smoothing (Katz, 1987; Kneser
and Ney, 1995); see Appendix A.5 for details.
N-gram language models can be expressed as
weighted FSTs. We denote the n-gram or weighted
FST language model as G. Character-level mod-
els are used as we wanted to generalize to out-
of-vocabulary words, which we expected to occur
frequently in a small corpus like the one we have
for Hawaiian.

Finally, we use this model to infer modern or-
thography given a piece of text in missionary or-
thography as input, then compose the FSTs to form
the search graph FST: S = I�C�G. The minimum
cost path through S gives the predicted modern or-
thography. Of these n-gram-based approached, we
found the Kneser-Ney-based models to perform
best; these approaches are called FST-C-NGRAM-
KN and FST-Cwb-NGRAM-KN.

We circumvent the lack of a large, non-simulated
parallel corpus by training the language model ex-
clusively on text in the modern Hawaiian orthogra-
phy. In turn, the orthographic transliteration FST
C produces candidates which are disambiguated by

the language model. The result is finally evaluated
against the ground-truth modern text.

Although the orthographic transliteration model
is an approximation, and thus not exhaustive, it
embodies an explicit and interpretable represen-
tation that can be easily extended independently
of the rest of the model. To illustrate how the ap-
proach can be extended, we constructed a variant
Cwb (where wb stands for word boundary). Cwb op-
tionally inserts a space after each vowel using an ad-
ditional arc that maps (✏ : space), as diagrammed
in Appendix A.2. This variant is able to model
some changes in Hawaiian’s word-boundary con-
ventions (Wilson, 1976), such as alaila becoming a
laila which demarcates the preposition a ‘until’ and
noun laila ‘then’. We employ this variant to predict
modern equivalents from 19th century newspaper
samples in Section 5. Pseudocode summarizing
this method is shown in Appendix A.3. Example
predictions can be found in Appendix A.6.

4.2 FSTs with LSTM language models

As an alternative approach, we combined the
FST C in the previous section with an RNNLM
(Mikolov et al., 2010). RNNLMs often generalize
better than n-gram models.

An RNN is a neural network that models tem-
poral or sequential data, by iterating a function
mapping a state and input to a new state and out-
put. These can be stacked to form a deep RNN.
For language modelling, each step of the final
RNN layer models a word or character sequence
via p(w1, . . . ,wn) =

Qn
i=1 p(wi|w1:i�1) and can

be trained by maximum likelihood. Recent lan-
guage modeling work has typically used the long
short-term memory (LSTM) unit (Hochreiter and
Schmidhuber, 1997) for its favorable gradient prop-
agation properties. All RNNs in this paper are
LSTMs.

Our goal is to replace the n-gram language model
in the end-to-end FST approach with an RNNLM.
While the minimum cost path through an FST can
be computed exactly as done in the previous sec-
tion, it is not straightforward to compose the re-
lation defined by an FST with an arbitrary one
like that defined by an RNNLM. A minimum cost
path through the composition of the FST and the
RNNLM can be defined as a path (i.e. label se-
quence) that minimizes the sum of the FST path
cost and the RNNLM cost.
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We can approximately find a minimum cost path
of the composition of the two models by a breadth-
first search over the FST graph, or using a beam
search, as follows. At any particular iteration, con-
sider a single beam element. The beam element
holds the current FST and RNN states, and the path
taken through the FST so far. We follow each possi-
ble arc from the current FST state, each producing
a new child beam element, and feed the output
symbol into the RNN (unless it is ✏). There may be
duplicate beam elements due the nondeterminicity
of the FST; in this case, the lower cost edge wins.
We sort by the sum of the FST and RNN costs,
keep the lowest-cost K, and then proceed to the
next iteration. If a beam element is on an accepting
state of the FST, it is kept as-is between iterations.
Detailed pseudocode is provided in Appendix A.4.

In the following we will refer to the hybrid mod-
els as FST-RNNLM—or as FST-RNNLM-C and
FST-RNNLM-Cwb if we want to distinguish be-
tween which FST we used. Similarly, the FST-
only models will be referred to as FST-C and FST-
Cwb, with suffixes denoting what kind of n-gram
and smoothing were used. For example, FST-C-
7GRAM-KN denotes a FST-only model with an
7-gram language model and Kneser-Ney smooth-
ing. Details of the language models trained can be
found in Appendix A.5.

5 Results

Evaluation. Since we were unable to find a suf-
ficiently large corpus of parallel texts in the mis-
sionary and modern Hawaiian orthographies, we
instead used a corpus of modern Hawaiian texts
(ground-truth) as summarized in Section 3.2 and
Figure 1. Note that training the n-gram and RNN
language models required only this modern corpus.

To evaluate the accuracy of our approaches, we
derived a synthetic parallel corpus from these mod-
ern Hawaiian texts. We also used a small but real
parallel corpus, based on two 19th century newspa-
per texts and their hand-edited modern equivalents.

Simulated parallel corpus. To produce a simu-
lated parallel corpus (input-missionary), we sys-
tematically reduced the orthography in the mod-
ern texts using the backward mapping described in
Section 3.1. We then applied the two approaches
described in Section 4, with the aim of recovering
the information lost.

We evaluated the predicted modern text (predic-
tions) by computing

CERR =
d(prediction, ground-truth)

d(input-missionary, ground-truth)
,

where d denotes character-level edit distance. This
is a modification of character error rate, normalized
by the distance of the input and target rather than
by the length of the target. We note that CERR may
be high even when the predictions are very accu-
rate as d(input-missionary, ground-truth) is small
when the text is similar in both orthographies.

Table 1 reports the results of the approaches we
described in Section 4. Out of the Kneser-Ney
n-gram models, we found that the FST-C-9GRAM-
KN and the version modelling word boundaries
(FST-Cwb-9GRAM-KN) to perform best on the
synthetic parallel corpus and newspapers, respec-
tively. Cwb was not applied to the synthetic parallel
corpus as we did not model word splitting. The
hybrid models (FST-RNNLM) outperformed all
FST-only approaches.

Real parallel corpus (newspaper texts). Not
content to evaluate the model on simulated mis-
sionary orthography, we also evaluated it on two
newspaper texts, using selections originally pub-
lished in 1867 and 1894 for which we had 19th
century and manually-edited modern equivalents.
The newspaper selections discuss Kahahana, one
of the last kings of O‘ahu (Kamakau and Perreira,
2002), and Uluhaimalama, a garden party and se-
cret political gathering, held after the deposition of
Hawai‘i’s last queen (Pukui et al., 2006). Unlike
the synthetic missionary corpus evaluation where
we did not model word splitting, we found that
replacing C with Cwb on the newspaper texts sig-
nificantly improved the output, especially on the
FST-RNNLM model. Thus, we found the word-
splitting hybrid model (FST-RNNLM-Cwb) to be
the best performing model overall (Table 1).

6 Conclusions and future work

With this paper we introduced a new translitera-
tion problem to the field, that of mapping between
old and new Hawaiian orthographies—where the
modern Hawaiian orthography represents linguistic
information that is missing from older missionary-
era texts. One difficulty of this problem is that
there is a limited amount of Hawaiian data, making
data-hungry solutions like end-to-end deep learning
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LM perplexity Transliteration performance (%CERR)
Transliteration model Valid. Test Corpus Newspaper 1 Newspaper 2

FST-(C/Cwb)-7GRAM-KN 3.07 3.13 27.3% 50.1% / 38.7% 52.0% / 47.5%
FST-(C/Cwb)-9GRAM-KN 2.95 3.02 26.6% 50.7% / 39.3% 52.5% / 47.2%

FST-(C/Cwb)-11GRAM-KN 2.94 3.02 27.8% 53.9% / 41.3% 54.1% / 48.7%

FST-RNNLM-(C/Cwb) 2.65 2.69 16.3% 47.2% / 34.3% 49.8% / 41.2%

Table 1: Performance (%CERR). Slash-separated pairs denote FSTs incapable/capable of inserting word
boundaries, respectively; see Section 4. The -KN suffix denotes Kneser-Ney smoothing. The data from
Section 3.2 is used for evaluating the modern-orthography language model perplexity, and “Corpus”
evaluates test-set transliteration performance from the synthetic missionary text back to the original
modern text.

Input Ua lawe ola ia o Keawehano imua o Kahekili, a ua hai aku o Kapohu...
Prediction Ua lawe ola ‘ia ‘o Keawehano i mua o Kahekili, a ua ha‘i aku ‘o Kapohu...

Ground-truth Ua lawe ola ‘ia ‘o Keawehano i mua o Kahekili, a ua ha‘i aku ‘o Kapohū...

Figure 2: An example of (missionary input, predicted modern text, ground-truth), from each newspaper.
Note the correctly split word in the second example. Incorrect characters, which are quite rare, are shown
as red and underlined. More sample predictions can be found in Appendix A.6.

unlikely to work. To solve the transliteration prob-
lem, we therefore proposed two models: the first
was implemented end-to-end using weighted FSTs;
the second was a hybrid deep learning approach
that combined an FST and an RNNLM. Both mod-
els gave promising results, but the hybrid approach,
which allowed us to use a more powerful recurrent
neural network-based language model despite our
dataset’s small size, performed best. Factoring a
problem like ours into one part that can be mod-
elled exactly using expert domain knowledge and
into another part that can be learned directly from
data using deep learning is not novel; however it
is a promising research direction for data-efficient
modelling. To our knowledge, this paper is the first
to describe a procedure to compose an FST with an
RNN by approximately performing beam search
over the FST.

While the role of the RNNLM part of the hy-
brid approach may be obvious, the FST compo-
nent plays an important role too. For example, the
hand-designed FST component can be replaced
without needing to retrain the RNNLM. We tried
to showcase this modularity by constructing two
FSTs which we referred to as C and Cwb, where
only the latter allowed the insertion of spaces. Fu-
ture work could extend the FST to model ortho-
graphic changes suggested by an error analysis of
the current model’s predictions (see Appendix A.6).
These errors motivate new mappings for consonant

substitutions like (r : l) and (s : k) observed in
loanword adaptations (e.g. rose ) loke). The error
analysis also motivates mappings to delete spaces
( : ✏) and to handle contractions, like na’lii ) nā
ali‘i. We could further incorporate linguistic knowl-
edge of Hawaiian into the FST, which tells us, for
example, that a consonant is typically followed by
a vowel (Parker Jones, 2010). Additional improve-
ments to the hybrid model might be obtained by in-
creasing the amount of modern Hawaiian text used
to train the RNNLM. One way to do this would
be to accelerate the rate at which missionary-era
Hawaiian texts are modernized. To this end, we
hope that the present models will be used within
the Hawaiian community to semi-automate, and
thereby accelerate, the modernization of old Hawai-
ian texts.
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(Ho‘oulumāhiehie, 2007).

References

Richard A Benton. 1981. The flight of the Amokura:
Oceanic languages and formal education in the
South Pacific. New Zealand Council for Educational
Research, Wellington.

4933



Adelbert von Chamisso. 1837. Über die Hawaiische
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Abstract

Consider two competitive machine learn-
ing models, one of which was considered
state-of-the art, and the other a competi-
tive baseline. Suppose that by just permut-
ing the examples of the training set, say by
reversing the original order, by shuffling,
or by mini-batching, you could report sub-
stantially better/worst performance for the
system of your choice, by multiple per-
centage points. In this paper, we illustrate
this scenario for a trending NLP task: Nat-
ural Language Inference (NLI). We show
that for the two central NLI corpora to-
day, the learning process of neural systems
is far too sensitive to permutations of the
data. In doing so we reopen the question
of how to judge a good neural architecture
for NLI, given the available dataset and
perhaps, further, the soundness of the NLI
task itself in its current state.

1 Introduction

There is increased interest today in the detection of
information quality: whether a statement is true or
false, or equivalently, whether one statement (the
premise) is entailed by, contradicts or has no rela-
tion to another statement (the hypothesis). This is
the Natural Language Inference task. The timely
development of the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015)
and more recently the Multi-Genre NLI (MULTI-
NLI) corpus (Williams et al., 2017) has lead to
a steady increase in contributions to research on
NLI. Recent research, however, indicates these
central datasets to be trivially annotated to a large
degree (Gururangan et al., 2018). In this paper, we
give evidence of an unrelated problem.

Deep neural network approaches provide the

state-of-the-art today for the tasks. We show a
pathological sensitivity of these systems to permu-
tations of the training set. This calls into question
the soundness of the task in its current state and
corresponding development and benchmarking of
NLI neural systems.

Given the approximate iterative optimisation
methods required to induce models, a common
practice for statistical learning is to first randomly
shuffle the training set. This serves to offset
unwanted bias due to accidental ordering of the
examples (for example, with respect to time or
class). Probably because of this, there is very lit-
tle literature or understanding of the effect of order
among the training examples–strict ordering of ex-
amples has simply been known to be undesirable.
However, as neural network approaches increas-
ingly dominate in performance across many NLP
tasks, the notion of random shuffling has become
overshadowed by that of computational efficiency.
This seems to lead back to experiment parameters
from Sutskever et al. (2014)’s work, which demon-
strates that grouping examples of similar sentence
length into batches results in a halved training
time. But what is the effect on accuracy? Indeed,
a curiosity of neural network models induced over
the NLI datasets is the ease in acquiring rather in-
stable results as a result of simple example order
permutations of the training set.

In this paper, we present an investigation into
these questions. In particular, we consider two
simple but competitive neural network topologies
in order to investigate the effect of training ex-
ample order from these datasets on performance.
One of these achieves close to state-of-art results
over SNLI and state-of-the-art for MULTI-NLI (for
simple systems, Cf. Section 4.1), while the other
is a simpler variant of the first, characterised by
fewer parameters. Out of the standard deep learn-
ing, standard machine learning and other plausi-
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ble orderings of the dataset, we show that only the
original ordering of the training examples leads
to state-of-the-art model induction. We also show
that the gap in performance between the two neu-
ral architectures described here generally drops
over all other permutations.

2 NLI task and datasets
The NLI task input is two sentences, a =
(a1, . . . , ala) and b = (b1, . . . , blb) of lengths la
and lb respectively. Each ai (resp. bj) for i 2 [la]
(resp. j 2 [lb]) corresponds to the word em-
bedding with dimension d for the ith (resp. jth)
word. The task dataset consists of labeled pairs
of sentences, {a(n),b(n),y(n)}N

n=1, where y(n) 2
{entailment, contradiction, neutral} is the class.

We use two central datasets for our study here:
SNLI and MULTI-NLI (Bowman et al., 2015;
Williams et al., 2017), containing over 570K and
433K sentence pairs respectively.

3 Our neural network architectures
For the research presented in this paper, we
choose two related and relatively simple neural
network architectures corresponding roughly to
Parikh et al. (2016) and a simplified version of
Chen et al. (2017) consisting of five components.1

Note that we also downloaded Chen et al. (2017)’s
code2 and ran it over the datasets; since it did
not perform with the same accuracy reported in
the paper for our run (87.77% instead of the re-
ported 88%), and since it took several hours longer
than our implementation to run (+7 hours longer),
we concentrated on our own implementation. We
also attempted to run Gong et al. (2017)’s system3;
for our runs, the system halted without comple-
tion after several hours. Moreover, there are re-
ports on the difficulty in getting the architecture
to achieve the accuracy score of 88% reported in
the original paper, Mirakyan et al. (2018) reporting
that their re-implementation could only achieve
86.38%. This is significantly worst-performing
than our best system, which we present now.

(1) Pre-projection. To compensate approxi-
mately for not updating the original embeddings
during learning, we first carry out a preliminary

1We make the systems publicly available
https://github.com/natschluter/
nli-data-permutations.

2https://github.com/lukecq1231/nli
3https://github.com/YichenGong/

Densely-Interactive-Inference-Network

projection of the embeddings, to the same dimen-
sions using a feed-forward network.

(2) Embedding projection. We further project
embeddings via either a simple feed-forward (FF)
with a ReLU activation function or a bidirectional
LSTM (BiLSTM) layer. The result is then sent
to the attention component. This corresponds pre-
cisely therefore to Parikh et al. (2016)’s computa-
tionally efficient approximation of the vector prod-
uct before soft-alignment.

(3) Attention. The attention mechanism, first in-
troduced by Bahdanau et al. (2015), is based on a
matrix of all-pairs scores between the elements of
two sequences ai and bj:4

eij := F 0(ai,bj) := F (ai)
T F (bj)

We follow (Parikh et al., 2016) and later attention-
based models for NLI, by representing the impor-
tance of ai with respect to b as the normalised sum

�i :=
lbX

j=1

exp(eij)Plb
k=1 exp(eik)

bj .

The result is concatenated with ai, to create [ai, �i]
which is then projected down to original embed-
ding dimension. The same is done for bj with re-
spect to a.

(4) Aggregation. Following the attention mech-
anism we aggregate over words for a sentence rep-
resentation. Either we sum over the attended word
vectors Parikh et al. (2016) or use the final state of
a single LSTM layer (Chen et al., 2017)5.

(5) Prediction. Finally we feed a vector con-
catenation of both sentence vectors as input to a
component consisting of three feed-forward lay-
ers with dropout and regularisation, followed by a
linear softmax layer for prediction.

Instantiated architectures. The two topologies
we adopt for this study consist of the above com-
ponents with embedding projection and aggrega-
tion as follows:

• FF/SUM corresponding to the embedding pro-
jection instantiated with a feed-forward network
and the aggregation carried out through vector
summation, and
4Note that we also experimented with eij := F 0(ai,bj)

where F 0 was a component-wise multiplication and F 0 a
feed-forward network with ReLU activations. However, we
observed no benefits to doing so performance-wise, and sub-
stantial loss in computational efficiency.

5For Chen et al. (2017), aggregation consists of several
layers of BiLSTMS as opposed to our single LSTM layer.
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• Bi/LSTM corresponding to the embedding pro-
jection instantiated with a BiLSTM and the ag-
gregation carried out via an LSTM.

Other hyperparameters. We use 300 dimen-
sional GloVe embeddings trained on the Com-
mon Crawl 840B tokens dataset (Pennington et al.,
2014), which remain fixed during training. Out of
vocabulary (OOV) words are represented as zero
vectors.6 We use a 0.2 dropout rate and L2 regular-
isation, applied in all feed-forward layers. We op-
timise the network using categorical cross-entropy
loss and employ the RMSprop optimizer with ⇢
set to 0.9, a 0.001 learning rate, with a batch size
of 512 and use early stopping over the develop-
ment set after no improvement in accuracy after 4
epochs.

State-of-the-art for simple systems. The mod-
els are simple in that no information above word
embeddings is taken as input, for example, no
POS-tags or syntactic relations (See Section 4.1).
Our Bi/LSTM system also currently sets the state-
of-the-art for simple systems on the MULTI-NLI
dataset (See Section 4.1).

Proj- SNLI MULTI-NLI
Agg split accuracy accuracy

FF/ test 85.72 71.58
SUM test-mis - 70.63

dev 85.64 72.29
dev-mis - 72.80

Bi/ test 87.12 75.58
LSTM (+1.4) (+4.0)

test-mis - 74.33
- (+3.7)

dev 87.53 76.43
(+1.89) (+4.14)

dev-mis - 76.04
- (+3.24)

Table 1: Performance in accuracy of networks, by
projection (Proj-) and aggregation (Agg) compo-
nents.

4 Related work
Previous work is related either in terms of the neu-
ral architectures for NLI (Section 4.1), or in terms
of work on training data permutations in learning
(Section 4.2).

4.1 State-of-the-art NLI
There are different types of neural network sys-
tems in the literature with respect to the simplic-

6We experimented with alternative OOV representations,
such as the the mean vector of most frequent words and ran-
dom vectors, with insignificant effects.

ity of input data required for modeling and in-
terdependence of the internal modules. In this
work, we only consider simple system approaches
that use only word embeddings (no character rep-
resentations, POS-tags, word-position, syntactic
tree, external resources, etc.) and consist only
of interdependent modules (not ensembles). We
make no claims regarding linguistic or ensemble-
complex systems, but make the straightforward
hypothesis that the conclusions presented here
can be extended to cover more complex frame-
works as well, especially given that our systems
are strongly competitive or even better perform-
ing than two highly complex state-of-the-art neu-
ral systems (Cf. Section 3).

For simple systems, the state-of-the-art is cur-
rently set by Sha et al. (2016) at 87.5%, on SNLI.
They use a standard BiLSTM to read the premise,
and propose a Bi-rLSTM to read the hypothesis.
Their proposed rLSTM–“re-read” LSTM unit–
takes the attention vector of one sentence as an
inner state while reading the other sentence. The
output of the standard BiLSTM is also taken as the
general input of the bidirectional rLSTM. The cur-
rently published next best performing simple sys-
tem, Parikh et al. (2016) at 86.3% accuracy, intro-
duced use of the attention mechanism for the NLI
task, the way it is generally being used today.7

4.2 Example permutation in learning
Morishita et al. (2017) explored the effect of mini-
batching on the learning of Neural Machine Trans-
lation models, carrying out their experiments on
two datasets (two language-pairs). In particular,
they studied the strategies of (1) sorting by length
of the source sentence, (2) target sentence, or (3)
both, among other things. They empirically com-
pare their efficiency on two translation tasks and
find that some strategies in wide use are not neces-
sarily optimal for accuracy and convergence-wise.
In contrast to the work described here however,
one of the sorting strategies produced best results,
though no comparison was made with the original
ordering of examples. By contrast, we show that
it is by making non-canonical (semi-non-random)
orderings of the data that best results are achieved
in NLI, for the two available datasets.

7Parikh et al. (2016) also have a result with intra-
sentential attention that performs with 86.8% accuracy. How-
ever this attention model is dependent on word positional in-
formation.
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SNLI MULTI-NLI

permutation FF/SUM Bi/LSTM diff FF/SUM Bi/LSTM diff

orig 85.64 87.53 1.89 72.29 76.43 4.14
orig-r 82.48 83.92 1.43 66.71 69.71 3.0

shuffle-once (5 runs) 82.88 84.15 1.27 72.39 75.86 3.47
(� = 0.19) (� = 0.18) (� = 0.08) (� = 0.18)

shuffle-epoch 83.09 84.69 1.60 72.15 75.65 3.50

conf 83.35 83.96 0.61 67.12 69.29 2.17
conf-r 81.4 83.95 2.55 66.93 69.25 2.32
prem 83.0 83.74 0.74 67.56 70.11 2.55
prem-r 82.68 83.49 0.81 66.6 69.7 3.1
hypo 82.61 83.82 1.22 67.71 70.03 2.31
hypo-r 82.42 83.68 1.26 66.97 69.77 2.8
lengths 82.74 83.69 0.96 67.11 70.04 2.92
lengths-r 82.65 83.55 0.9 66.93 69.93 3.01

Table 2: Performance of the FF/SUM and Bi/LSTM neural networks for the training example permuta-
tions, evaluated over the development set, along with the difference (diff) in performance between the
two architectures.

5 Experiments
Data permutations. We consider the following
original and sorted orderings of the training set ex-
amples to learn our models.

orig: The original order in which the dataset is
currently distributed.
prem: Sorting by increasing premise length.
hypo: Sorting by increasing hypothesis length.
lengths: Sorting by increasing premise + hypo-
thesis length.
conf: Sorting by increasing score, where the
scores for each example are generating in training
Bi/LSTM over orig.
shuffle-once: Randomly shuffle once before
training, averaged over 5 runs.
shuffle-epoch: Randomly shuffle on each
epoch during training, for a single run.
In addition to each of these, we consider the rever-
sal of the order (indicated by the suffix -r.)

In order to not exhaust the test set, we generate
the results over data permutations on the develop-
ment set. These are given in Table 2.

Discussion. For both datasets, we observe that
all other training example permutations result in a
substantial drop in performance, by approximately
3-4% on SNLI and 1-6% on MULTI-NLI. Even
a simple reversal of the original order leads to a
substantial drop in performance. Shuffling con-
sistently the data provides the strongest alternative
training conditions to the original ordering.

Moreover, the difference in performance of the
two separate architectures is generally much lower

on all other permutations of the training data, call-
ing into question the significance of the more com-
plex components. These observations apply to
both randomly shuffling (as advised in statistical
learning practise) and ordering the data by length
(as advised in deep learning for NLP practise).

For an analysis of the sorting permutations, we
looked into whether hypothesis sentence lengths
differed by class to such an extent that the dataset
became sorted by class label. We cannot include
the results here due to space constraints. How-
ever, we observed that ordering by class results in
small (and quite interesting) drops in performance,
so long as the original order is preserved. If we
first randomly shuffle the examples before order-
ing them by class, similar drops in performance
result to those in Table 2.

6 Conclusions
We have shown that models induced over the
SNLI and MULTI-NLI datasets are greatly af-
fected by the permutation of the training data in-
stances at hand: recommended statistical learning
or deep learning engineering strategies for order-
ing the training examples result in significantly
and even substantially worse performance over
these datasets. Our models are simple (no infor-
mation over word embedding representations of
sentences and no ensembles), but strongly compet-
itive with (or better performing than) both SOTA
(re-)implementations of much more complex neu-
ral systems. We make the straightforward hypoth-
esise that these observations will extend to more
complex models; we leave this to be verified by
future work.
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Abstract
Most textual entailment models focus on lexi-
cal gaps between the premise text and the hy-
pothesis, but rarely on knowledge gaps. We fo-
cus on filling these knowledge gaps in the Sci-
ence Entailment task, by leveraging an exter-
nal structured knowledge base (KB) of science
facts. Our new architecture combines standard
neural entailment models with a knowledge
lookup module. To facilitate this lookup, we
propose a fact-level decomposition of the hy-
pothesis, and verifying the resulting sub-facts
against both the textual premise and the struc-
tured KB. Our model, NSnet, learns to ag-
gregate predictions from these heterogeneous
data formats. On the SciTail dataset, NSnet
outperforms a simpler combination of the two
predictions by 3% and the base entailment
model by 5%.

1 Introduction
Textual entailment, a key challenge in natural lan-
guage understanding, is a sub-problem in many
end tasks such as question answering and infor-
mation extraction. In one of the earliest works
on entailment, the PASCAL Recognizing Textual
Entailment Challenge, Dagan et al. (2005) define
entailment as follows: text (or premise) P en-
tails a hypothesis H if typically a human reading
P would infer that H is most likely true. They
note that this informal definition is “based on (and
assumes) common human understanding of lan-
guage as well as common background knowledge”.

While current entailment systems have achieved
impressive performance by focusing on the lan-
guage understanding aspect, these systems, es-
pecially recent neural models (e.g. Parikh et al.,
2016; Khot et al., 2018), do not directly address
the need for filling knowledge gaps by leveraging
common background knowledge.

Figure 1 illustrates an example of P and H from
SciTail, a recent science entailment dataset (Khot

P: The aorta is a large blood vessel that moves
blood away from the heart to the rest of the body.

H (entailed): Aorta is the major artery carrying re-
cently oxygenated blood away from the heart.

H’ (not entailed): Aorta is the major vein carrying
recently oxygenated blood away from the heart.

Figure 1: Knowledge gap: Aorta is a major artery
(not a vein). Large blood vessel soft-aligns with
major artery but also with major vein.

et al., 2018), that highlights the challenge of
knowledge gaps—sub-facts of H that aren’t stated
in P but are universally true. In this exam-
ple, an entailment system that is strong at filling
lexical gaps may align large blood vessel with
major artery to help conclude that P entails H.
Such a system, however, would equally well—but
incorrectly—conclude that P entails a hypothetical
variant H’ of H where artery is replaced with vein.
A typical human, on the other hand, could bring to
bear a piece of background knowledge, that aorta
is a major artery (not a vein), to break the tie.

Motivated by this observation, we propose a
new entailment model that combines the strengths
of the latest neural entailment models with a
structured knowledge base (KB) lookup module
to bridge such knowledge gaps. To enable KB
lookup, we use a fact-level decomposition of
the hypothesis, and verify each resulting sub-fact
against both the premise (using a standard entail-
ment model) and against the KB (using a struc-
tured scorer). The predictions from these two
modules are combined using a multi-layer “ag-
gregator” network. Our system, called NSnet,
achieves 77.9% accuracy on SciTail, substantially
improving over the baseline neural entailment
model, and comparable to the structured entail-
ment model proposed by Khot et al. (2018).
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Figure 2: Neural-symbolic learning in NSnet. The bottom layer has QA and their supporting text in
SciTail, and the knowledge base (KB). The middle layer has three modules: Neural Entailment (blue)
and Symbolic Matcher and Symbolic Lookup (red). The top layer takes the outputs (black and yellow)
and intermediate representation from the middle modules, and hierarchically trains with the final labels.
All modules and aggregator are jointly trained in an end-to-end fashion.

2 Neural-Symbolic Learning

A general solution for combining neural and sym-
bolic modules remains a challenging open prob-
lem. As a step towards this, we present a system
in the context of neural entailment that demon-
strates a successful integration of the KB lookup
model and simple overlap measures, opening up a
path to achieve a similar integration in other mod-
els and tasks. The overall system architecture of
our neural-symbolic model for textual entailment
is presented in Figure 2. We describe each layer
of this architecture in more detail in the following
sub-sections.

2.1 Inputs
We decompose the hypothesis and identify rele-
vant KB facts in the bottom “inputs” layer (Fig. 2).

Hypothesis Decomposition: To identify knowl-
edge gaps, we must first identify the facts stated in
the hypothesis h = (h1, h2..). We use ClausIE (Del
et al., 2013) to break h into sub-facts. ClausIE
tuples need not be verb-mediated and generate
multiple tuples derived from conjunctions, lead-
ing to higher recall than alternatives such as Open

IE (Banko et al., 2007). 1

Knowledge Base (KB): To verify these facts,
we use the largest available clean knowledge
base for the science domain (Dalvi et al., 2017),
with 294K simple facts, as input to our system.
The knowledge base contains subject-verb-object
(SVO) tuples with short, one or two word argu-
ments (e.g., hydrogen; is; element). Using these
simple facts ensures that the KB is only used to fill
the basic knowledge gaps and not directly prove
the hypothesis irrespective of the premise.

KB Retrieval: The large number of tuples in
the knowledge base makes it infeasible to evalu-
ate each hypothesis sub-fact against the entire KB.
Hence, we retrieve the top-100 relevant knowledge
tuples, K0, for each sub-fact based on a simple Jac-
card word overlap score.

1While prior work on question answering in the science
domain has successfully used Open IE to extract facts from
sentences (Khot et al., 2017), one of the key reasons for errors
was the lossy nature of Open IE.
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2.2 Modules
We use a Neural Entailment model to compute
the entailment score based on the premise, as well
as two symbolic models, Symbolic Matcher and
Symbolic Lookup, to compute entailment scores
based on the premise and the KB respectively
(middle layer in Fig. 2).

Neural Entailment We use a simple neural en-
tailment model, Decomposable Attention (Parikh
et al., 2016), one of the state-of-the-art models
on the SNLI entailment dataset (Bowman et al.,
2015). However, our architecture can just as easily
use any other neural entailment model. We initial-
ize the model parameters by training it on the Sci-
ence Entailment dataset. Given the sub-facts from
the hypothesis, we use this model to compute an
entailment score n(hi, p) from the premise to each
sub-fact hi.

Symbolic Matcher In our initial experiments,
we noticed that the neural entailment models
would often either get distracted by similar words
in the distributional space (false positives) or com-
pletely miss an exact mention of hi in a long
premise (false negatives). To mitigate these errors,
we define a Symbolic Matcher model that com-
pares exact words in hi and p, via a simple asym-
metric bag-of-words overlap score:

m(hi, p) =
|hi \ p|
|p|

One could instead use more complex symbolic
alignment methods such as integer linear program-
ming (Khashabi et al., 2016; Khot et al., 2017).

Symbolic Lookup This module verifies the
presence of the hypothesis sub-fact hi in the re-
trieved KB tuples K0, by comparing the sub-fact
to each tuple and taking the maximum score. Each
field in the KB tuple kb j is scored against the cor-
responding field in hi (e.g., subject to subject) and
averaged across the fields. To compare a field, we
use a simple word-overlap based Jaccard similar-
ity score, Sim(a, b) = |a\b|

|a[b| . The lookup match
score for the entire sub-fact and kb-fact is:

Sim f (hi, kb j) =

0
BBBBBB@
X

k

Sim(hi[k], kb j[k])

1
CCCCCCA /3

and the final lookup module score for hi is:

l(hi) = max
kb j2K0

Sim f (hi, kb j)

Note that the Symbolic Lookup module assesses
whether a sub-fact of H is universally true. Neural
models, via embeddings, are quite strong at medi-
ating between P and H. The goal of the KB lookup
module is to complement this strength, by verify-
ing universally true sub-facts of H that may not be
stated in P (e.g. “aorta is a major artery” in our
motivating example).

2.3 Aggregator Network
For each sub-fact hi, we now have three scores:
n(hi, p) from the neural model, m(hi, p) from the
symbolic matcher, and l(hi) from the symbolic
lookup model. The task of the Aggregator net-
work is to combine these to produce a single en-
tailment score. However, we found that using
only the final predictions from the three modules
was not e↵ective. Inspired by recent work on
skip/highway connections (He et al., 2016; Sri-
vastava et al., 2015), we supplement these scores
with intermediate, higher-dimensional representa-
tions from two of the modules.

From the Symbolic Lookup model, we use the
representation of each sub-fact henc

i = Enc(hi)
obtained by averaging word embeddings (Pen-
nington et al., 2014) and individual similarity
scores over the top-100 KB tuples embi =

[. . . , Sim f (hi, kb j), . . .]. From the neural entail-
ment model, we use the intermediate representa-
tion of both the sub-fact of hypothesis and premise
text from the final layer (before the softmax com-
putation), nv(hi, p) = [v1; v2].

We define a hybrid layer that takes as input a
simple concatenation of these representation vec-
tors from the di↵erent modules:

in(hi, p) =[henc
i ; l(hi); m(hi, p); n(hi, p);

embi; nv(hi, p)]

The hybrid layer is a single layer MLP for each
sub-fact hi that outputs a sub-representation outi =
MLP(in(hi, p)). A compositional layer then uses a
two-layer MLP over a concatenation of the hybrid
layer outputs from di↵erent sub-facts, {h1, . . . , hI},
to produce the final label,

label = MLP([out1; out2; · · · outI])

Finally, we use the cross-entropy loss to train the
Aggregator network jointly with representations in
the neural entailment and symbolic lookup mod-
els, in an end-to-end fashion. We refer to this en-
tire architecture as the NSnet network.
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Table 1: Entailment accuracies on the SciTail
dataset. NSnet substantially improves upon its
base model and marginally outperforms DGEM.

Entailment Model Valid. Test

Majority classifier 63.3 60.3
DecompAttn (Base model) 73.1 74.3
DecompAttn + HypDecomp 71.8 72.7
DGEM 79.6 77.3
Ensemble (this work) 75.2 74.8
NSnet (this work) 77.4 77.9

To assess the e↵ectiveness of the aggregator net-
work, we also use a simpler baseline model, En-
semble, that works as follows. For each sub-fact hi,
it combines the predictions from each model using
a probabilistic-OR function, assuming the model
score Pm as a probability of entailment. This
function computes the probability of at least one
model predicting that hi is entailed, i.e. P(hi) =
1 � ⇧m(1 � Pm) where m 2 n(hi, p),m(hi, p), l(hi).
We average the probabilities from all the facts to
get the final entailment probability.2

3 Experiments

We use the SciTail dataset3 (Khot et al., 2018) for
our experiments, which contains 27K entailment
examples with a 87.3%/4.8%/7.8% train/dev/test
split. The premise and hypothesis in each example
are natural sentences authored independently as
well as independent of the entailment task, which
makes the dataset particularly challenging. We fo-
cused mainly on the SciTail dataset, since other
crowd-sourced datasets, large enough for training,
contained limited linguistic variation (Gururangan
et al., 2018) leading to limited gains achievable via
external knowledge.

For background knowledge, we use version
v4 of the aforementioned Aristo TupleKB4 (Dalvi
et al., 2017), containing 283K basic science facts.
We compare our proposed models to Decomposed
Graph Entailment Model (DGEM) (Khot et al.,
2018) and Decomposable Attention Model (De-
compAttn) (Parikh et al., 2016).

2While more intuitive, performing an AND aggregation
resulted in worse performance (cf. Appendix ?? for details).

3
http://data.allenai.org/scitail

4
http://data.allenai.org/tuple-kb

3.1 Results
Table 1 summarizes the validation and test accu-
racies of various models on the SciTail dataset.
The DecompAttn model achieves 74.3% on the
test set but drops by 1.6% when the hypotheses
are decomposed. The Ensemble approach uses the
same hypothesis decomposition and is able to re-
cover 2.1% points by using the KB. The end-to-
end NSnet network is able to further improve the
score by 3.1% and is statistically significantly (at
p-value 0.05) better than the baseline neural entail-
ment model. The model is marginally better than
DGEM, a graph-based entailment model proposed
by the authors of the SciTail dataset We show sig-
nificant gains over our base entailment model by
using an external knowledge base, which are com-
parable to the gains achieved by DGEM through
the use of hypothesis structure. These are orthog-
onal approaches and one could replace the base
DecompAttn model with DGEM or more recent
models (Tay et al., 2017; Yin et al., 2018).

Table 2: Ablation: Both Symbolic Lookup
and Symbolic Matcher have significant impact on
NSnet performance.

Valid. Test

NSnet 77.39 77.94
- Symbolic Matcher 76.46 74.73 (-3.21%)
- Symbolic Lookup 75.95 75.80 (-2.14%)
- Both 75.10 73.98 (-3.96%)

In Table 2, we evaluate the impact of the Sym-
bolic Matcher and Symbolic Lookup module on
the best reported model. As we see, removing the
symbolic matcher, despite its simplicity, results in
a 3.2% drop. Also, the KB lookup model is able
to fill some knowledge gaps, contributing 2.1% to
the final score. Together, these symbolic matching
models contribute 4% to the overall score.

3.2 Qualitative Analysis
Figure 3 shows few randomly selected examples
in test set. The first two examples show cases
when the symbolic models help to change the neu-
ral alignment’s prediction (F) to correct prediction
(T) by our proposed Ensemble or NSnet models.
The third question shows a case where the NSnet
architecture learns a better combination of the neu-
ral and symbolic methods to correctly identify the
entailment relation while Ensemble fails to do so.
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Table 3: Few randomly selected examples in the test set between symbolic only, neural only, Ensemble
and NSnet inference. The symbolic only model shows its the most similar knowledge from knowledge
base inside parenthesis. The first two example shows when knowledge helps fill the gap where neural
model can’t. The third example shows when NSnet predicts correctly while Ensemble fails.

Premise: plant cells possess a cell wall , animals never .

Hypothesis: a cell wall is found in a plant cell but not in an animal cell .

Sub-fact of hypothesis neural only symbolic only Ensemble NSnet

a cell wall is found in a plant cell but not in an
animal cell

F(0.47) T(0.07) (cell is located in animal) T(0.50) -

Prediction (true label: T (entail)) F T T T

Premise: the pupil is a hole in the iris that allows light into the eye .

Hypothesis: the pupil of the eye allows light to enter .

Sub-fact of hypothesis neural only symbolic only Ensemble NSnet

the pupil of the eye allows light to enter F(0.43) T(0.12), (light enter eye) T(0.50) -

Prediction (true label: T (entail)) F T T T

Premise: binary fission in various single-celled organisms ( left ) .

Hypothesis: binary fission is a form of cell division in prokaryotic organisms that produces identical o↵spring .

Sub-facts of hypothesis neural only symbolic only Ensemble NSnet

binary fission is a form of cell division in
prokaryotic organisms

F(0.49) T(0.07) (binary fission involve division) T(0.52) -

binary fission is a form F(0.63) T(0.1) (phase undergo binary fission) T(0.66) -

a form of cell division in prokaryotic or-
ganisms produces identical o↵spring

F(0.46) T(0.05) (cell division occur in tissue) T(0.48) -

Prediction (true label: T (entail)) F T F T

4 Related Work

Compared to neural only (Bowman et al., 2015;
Parikh et al., 2016) or symbolic only (Khot et al.,
2017; Khashabi et al., 2016) systems, our model
takes advantage of both systems, often called
neural-symbolic learning (Garcez et al., 2015).
Various neural-symbolic models have been pro-
posed for question answering (Liang et al., 2016)
and causal explanations (Kang et al., 2017).
We focus on end-to-end training of these models
specifically for textual entailment.

Contemporaneous to this work, Chen et al.
(2018) have incorporated knowledge-bases within
the attention and composition functions of a neural
entailment model, while Kang et al. (2018) gen-
erate adversarial examples using symbolic knowl-
edge (e.g., WordNet) to train a robust entailment
model. We focused on integrating knowledge-
bases via a separate symbolic model to fill the
knowledge gaps.

5 Conclusion

We proposed a new entailment model that attempts
to bridge knowledge gaps in textual entailment by
incorporating structured knowledge base lookup
into standard neural entailment models. Our ar-
chitecture, NSnet, can be trained end-to-end, and
achieves a 5% improvement on SciTail over the
baseline neural model used here. The methodol-
ogy can be easily applied to more complex entail-
ment models (e.g., DGEM) as the base neural en-
tailment model. Accurately identifying the sub-
facts from a hypothesis is a challenging task in it-
self, especially when dealing with negation. Im-
provements to the fact decomposition should fur-
ther help improve the model.
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Abstract

This paper introduces the Bank Question (BQ)
corpus, a Chinese corpus for sentence seman-
tic equivalence identification (SSEI). The BQ
corpus contains 120,000 question pairs from
1-year online bank custom service logs. To ef-
ficiently process and annotate questions from
such a large scale of logs, this paper proposes a
clustering based annotation method to achieve
questions with the same intent. First, the de-
duplicated questions with the same answer are
clustered into stacks by the Word Mover’s Dis-
tance (WMD) based Affinity Propagation (AP)
algorithm. Then, the annotators are asked to
assign the clustered questions into different in-
tent categories. Finally, the positive and nega-
tive question pairs for SSEI are selected in the
same intent category and between different in-
tent categories respectively. We also present
six SSEI benchmark performance on our cor-
pus, including state-of-the-art algorithms. As
the largest manually annotated public Chinese
SSEI corpus in the bank domain, the BQ cor-
pus is not only useful for Chinese question
semantic matching research, but also a sig-
nificant resource for cross-lingual and cross-
domain SSEI research. The corpus is available
in public1.

1 Introduction

As the semantic matching task, sentence semantic
equivalence identification (SSEI) is a fundamen-
tal task of natural language processing (NLP) in
question answering (QA), automatic customer ser-
vice and chat-bots. In customer service systems,
two questions are defined as semantically equiva-
lent if they convey the same intent or they could
be answered by the same answer. Because of rich
expressions in natural languages, SSEI is really a
challenging NLP task.

⇤Corresponding author
1http://icrc.hitsz.edu.cn/Article/show/175.html

Compared with other NLP tasks, the lack of
large-scale SSEI corpora is one of the biggest ob-
stacles for SSEI algorithm development. To ad-
dress this issue, several corpora have been pro-
vided in recent years, including the Microsoft Re-
search Paraphrase (MSRP) Corpus (Dolan et al.,
2004; Dolan and Brockett, 2005), the Twitter Para-
phrase Corpus (PIT-2015 corpus) (Xu et al., 2014,
2015), the Twitter URL corpus (Lan et al., 2017)
and the Quora dataset 2.

In the early stage, the MSRP corpus was used
to validate paraphrase identification algorithms
based on a set of linguistic features (Kozareva and
Montoyo, 2006; Mihalcea et al., 2006; Rus et al.,
2008). Then, MSRP was also used to validate the
deep models within a long duration. The deep
convolutional neural networks (DCNNs), recur-
rent neural networks (RNNs), and their variants,
such as Arc-I, Arc-II and BiMPM etc., have been
developed and verified on it, even though it con-
tains only thousands of sentence pairs (Hu et al.,
2014; Yin and Schütze, 2015; Wang et al., 2016,
2017). Until 2015, the SemEval 2015 released a
larger corpus, the PIT-2015 corpus for paraphrase
and semantic similarity identification tasks. On
this corpus, participants adopted SVM classifiers,
logistic regression models, referential translation
machines (RTM) and neural networks (Xu et al.,
2015). In 2017, a large-scale SSEI corpus named
Quora was released, which greatly boost the de-
velopment of deep matching algorithms. Tomar
et al. (2017) proposed a variant of the decom-
posable attention model. Gong et al.(2018) pro-
posed a Densely Interactive Inference Network
(DIIN) by hierarchically extracting semantic fea-
tures from interaction space. However, the Quora
corpus comes from social network sites. Consider-

2https://data.quora.com/First-Quora-Dataset-Release-
Question-Pairs

357,037 pairs out of them are manually labeled.
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Corpus Language Source Scale Sentence Length pos:neg

MSRP English news 5801 sentence pairs 18.9 words 2.05:1
PIT-2015 corpus English tweets 18,762 sentence pairs 11.9 words -
The Twitter URL corpus English tweets 676,050 sentence pairs3 15 words 1:4.93
The Quora dataset English Quora 404,290 question pairs 11.1 words 1:1.71
The Bank Question corpus Chinese bank 120,000 question pairs 11.9 words 1:1

Table 1: The comparison of public corpus related to paraphrase or semantic similarity.

ing the request for specific domains and real con-
text in SSEI, there still lacks corpora from dif-
ferent domains and corpora with features of non-
English languages.

In this paper, we present a large-scale Chi-
nese SSEI corpus constructed from real bank cus-
tomer service logs. The main contributions of
this paper include: 1) we present a large-scale
domain-specific Chinese SSEI corpus, which con-
tains 120,000 manually annotated sentence pairs;
2)we propose the Affinity Propagation (AP) (Frey
and Dueck, 2007) clustering based method for
SSEI corpus construction from a large number of
sentences; 3)we provide the benchmark perfor-
mance of 5 representative algorithms on our cor-
pus. Hopefully, these contributions are useful in
promoting the research on Chinese SSEI methods
and the transferring methods for cross languages
or cross domains.

Figure 1: The examples from clustering to labeling

2 The Bank Question Corpus

2.1 Features of the Bank Corpus
As the first domain-specific large-scale Chinese
SSEI corpus, the Bank Corpus contains 120,000
question pairs. It is split into three parts: 100,000
pairs for training, 10,000 pairs for validation, and
10,000 pairs for test. There is no sentence overlap
among training, validation and test sets. The last
line in Table 1 shows the main features of our cor-
pus. We also highlight features of the most popu-
lar SSEI corpus from line 1 to 4 in Table 1. The

further analysis of the Bank Corpus will be shown
in following sections.

2.2 Construction of the Bank Corpus

The original data came from the 1-year customer
service logs with more than 20 millions of ques-
tions provided by a Chinese bank. To manually
annotate so many questions is unimaginable, so
we conducted three steps to get the SSEI corpus,
including the clustering of questions, the intent-
based annotation and the combination of semantic
equivalent question pairs.

Grouping and Clustering At first, two def-
initions are given: a set of questions replied by the
same answer is called a group; The clusters gen-
erated by an automatic clustering algorithm in a
group is called a stack. Here, a stack is a subset of
a group with questions have the same intent. First,
the users’ questions were divided into groups by
their respective answers. The de-duplication is
then executed on each group. Next, we used the
Word Mover’s Distance (WMD) (Kusner et al.,
2015) based Affinity Propagation (AP) clustering
algorithm to split the questions within each group
into multiple question stacks. After filtering some
emoijs and sentences which are standard answers
from the questions, we finally got 799 distinct
groups and selected total of 55724 questions from
all groups for annotation.

Annotation We adopted two steps to anno-
tate the question stacks. First, we recruited 12
annotators to categorize questions in each clus-
tered stack into different intent classes. Here, if
the questions express the same intent, we think
that they belong to an intent class. For each la-
beled stack, the classes of intent are the same. If
a question is chit-chat or it can not be combined
with other questions into an intent class, it will be
put into a specific class called ”other”. Second,
the experts related to this specific domain were
requested to check and correct the annotated in-
tent classes. After annotation, we got 953 groups
and 18002 questions. Among the questions, 16680
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(a) The overlap distribution of our corpus (b) The overlap distribution of the Quora corpus

Figure 2: The overlap distribution of positive and negative data

Examples

most common: �!'ÿåÔÂÁÌ�⌫ ��>–Mÿ⇧ÿÔÂ�>⌫ 1
Can I continue to borrow money when
I repay the loan at one time

Can I borrow money again when
a loan be pay off ahead of time

low overlap: Ÿ/¿Hl¯Ñß¡ �⇢� 1
What’s the company of the product the enterprise name

most common: ⌘‡˜ÿ>  )Ñÿ>�ÔÂ®flH� 0
When should I repay my loan Can I postpone today’s repayment?

high overlap: ˝�˝÷à3˜ ˝�˝÷à�Õ∞3˜ 0
Can I cancel the application Can I cancel the application and reapply

Table 2: The most common examples, the positive example with low overlap and the negative example with high
overlap. Chinese sentences are original-form examples and English sentences below them are their corresponding
translations.

questions are with meaningful intents and can be
used to create semantic pairs. There are average
9 stacks in each group. The annotation process
from clustering examples to labeled examples is
shown as Figure 1. From the clustering results,
we find the clustering algorithm cluster the word
”�(borrow)” and the word ”ÿ(pay back)” to-
gether. Actually, they convey different intentions
and we need to distinguish them.

Generation Based on the labeled stacks, we
combine the questions in each stack which have
the same intention to create the positive question
pairs, and select questions from different stacks in
each group which have different intentions to cre-
ate the negative question pairs.

2.3 Quality of the Corpus

To verify the quality of the corpus, we analyze the
word overlap (Dolan et al., 2004) distribution and
the PINC (Paraphrase In N-gram Changes) (Kim,
2014) distribution in the positive pairs and the neg-
ative pairs respectively.

The overlap is defined as the number of com-
mon words between two sentences divided by the
average length of them. As shown in Figure 2, the
overlap ratio of positive samples on the intervals

appears a normal distribution on our new corpus,
while the Quora corpus has no examples on over-
laps between 50% and 80%. The positive question
pairs with overlap ratio below 50% account for
58.67% and the negative question pairs with over-
lap ratio above 50% account for 11.36%. Here,
we just give some examples with the largest ratio
among the overlap intervals, some positive exam-
ples with low overlap and some negative examples
with high overlap as shown in Table 2. For exam-
ple, the positive question pair (“Ÿ/¿Hl¯
Ñß¡(What’s the company of the product)” and
“�⇢�(the enterprise name)”) expresses the
same intention while they have low overlap, where
“¿Hl¯(what company)” has the same mean-
ing as “�⇢�(the enterprise name)”. The neg-
ative pair(“˝�˝÷à3˜(Can I cancel the ap-
plication)” and “˝�˝÷à�Õ∞3˜(Can
I cancel the application and reapply)”) is differ-
ent only on the word “Õ∞(again)” while they
nearly convey the contrary meaning. The statistics
and examples indicate that except common exam-
ples we also have some difficult examples espe-
cially the positive pairs with low overlap and our
new corpus is meaningful for research on learning
methods.
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(a) The PINC distribution of our corpus (b) The PINC distribution of the Quora corpus

Figure 3: The PINC score distribution of positive and negative data

PINC (Kim, 2014) is a score of n-gram differ-
ences to measure lexical dissimilarity of sentence
pairs. In essence, it is the inverse of BLEU (Pap-
ineni et al., 2002). As shown in Figure 3, most of
the PINC scores on our corpus are between 0.7 and
1.0 which reveals that our corpus contains more
lexical dissimilar question pairs. It contains rich
expressions for the same user intention and it is
challenging for machine learning methods to iden-
tify the semantic equivalence of the question pairs
automatically.

3 Semantic Equivalence Identification

For this new public corpus, we provide a bench-
mark on the question semantic equivalence identi-
fication task to better understand its characteristic
and provide further evidence for its value.

3.1 Models
Text-CNN (Kim, 2014) is a typical Convo-
lutional Neural Network (CNN) model for sen-
tence classification. We respectively feed each
sentence of the question pair into the model with
300-dimensional word vectors and concatenate the
sentence representation for SSEI. Here, we trained
the word vectors on our new corpus by gensim4.

BiLSTM (Graves and Schmidhuber, 2005)
is an variant of RNN which considers both long
and short dependency in context from forward and
backward. We use the same structure but consti-
tute the CNN with BiLSTM to model the sentence
representation.

BiMPM (Wang et al., 2017) is a bilateral
multi-perspective matching model of well perfor-
mance for natural language sentence matching.
The model uses the BiLSTM to learn the sentence
representation, matches two sentences from two

4https://radimrehurek.com/gensim

directions and multi-perspectives, aggregates the
matching results with BiLSTM and finally pre-
dicts through a fully connected layer.

DIIN (Gong et al., 2018) is a Densely In-
teractive Inference Network (DIIN) for Natural
Language Inference (NLI). It hierarchically ex-
tracts semantic features from interaction space to
achieve the high-level understanding of sentence
pairs. It achieves the state-of-the-art performance
on large-scale NLI copora and Quora corpus.

3.2 Results and Discussion
The benchmark performance on our new corpus is
shown in Table 3. The performace on the Quora
corpus is shown in Table 4. The random method
achieves 50.43% which indicates that our new cor-
pus is balanced and meets the basic requirements
for SSEI model research.

The TF-IDF method just models the surface
features of sentences according to the vocabulary
frequency. It can not learn the dependency fea-
tures in the word sequences and the synonym or
near-synonym according to the word meanings.
Therefore, it performs not so well, which indicates
that the new corpus can not be learned by simple
surface features and the deep semantic relationsn
need to be mined by deep models.

Here, we use four deep neural network mod-
els to verify the new constructed corpus, including
two basic and representative models (Text-CNN
and BiLSTM) and two latest and well-used mod-
els (BiMPM and DIIN) which perform well on the
natural language sentence matching task. The re-
sults show that the BiLSTM model can learn the
dependency features between words in the sen-
tences better than the Text-CNN model. The Ac-
curacy of BiMPM is 81.85% and that of DIIN is
81.41%. Compared with the performance on the
Quora corpus, the performance on the BQ corpus
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Models Precision Recall F1 Accuracy

Random 50.43 50.56 50.49 50.43
TF-IDF 64.68 60.94 62.75 63.83
Text-CNN 67.77 70.64 69.17 68.52
BiLSTM 75.04 70.46 72.68 73.51
BiMPM 82.28 81.18 81.73 81.85
DIIN 81.58 81.14 81.36 81.41

Table 3: The comparison of BQ corpus related to paraphrase or semantic similarity.

Models Precision Recall F1 Accuracy

Random 50.73 51.84 51.29 50.72
TF-IDF 63.66 85.16 72.85 68.24
Text-CNN 82.89 71.58 76.82 78.38
BiLSTM 83.44 73.96 78.41 79.62
BiMPM (Wang et al., 2017) — — — 88.17
DIIN (Gong et al., 2018) — — — 89.06

Table 4: The comparison of Quora corpus related to paraphrase or semantic similarity.

is lower, which reveals that our new corpus is chal-
lenging for semantic matching model research.

4 Conclusion and Future Work
In this paper, we present a large-scale Chinese cor-
pus for question semantic equivalence identifica-
tion in the bank domain. The construction pro-
cedure and benchmark performance are given. To
the best of our knowledge, this corpus is the largest
manually annotated public Chinese SSEI corpus
in the bank domain. Compared with existing cor-
pora, it is of high quality and challenging, and
is hopefully useful for research on SSEI, cross-
lingual and cross-domain learning.
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Abstract

Deep learning models have achieved remark-
able success in natural language inference
(NLI) tasks. While these models are widely
explored, they are hard to interpret and it is of-
ten unclear how and why they actually work.
In this paper, we take a step toward explain-
ing such deep learning based models through a
case study on a popular neural model for NLI.
In particular, we propose to interpret the in-
termediate layers of NLI models by visualiz-
ing the saliency of attention and LSTM gat-
ing signals. We present several examples for
which our methods are able to reveal interest-
ing insights and identify the critical informa-
tion contributing to the model decisions.

1 Introduction

Deep learning has achieved tremendous success
for many NLP tasks. However, unlike traditional
methods that provide optimized weights for hu-
man understandable features, the behavior of deep
learning models is much harder to interpret. Due
to the high dimensionality of word embeddings,
and the complex, typically recurrent architectures
used for textual data, it is often unclear how and
why a deep learning model reaches its decisions.

There are a few attempts toward explain-
ing/interpreting deep learning-based models,
mostly by visualizing the representation of words
and/or hidden states, and their importances (via
saliency or erasure) on shallow tasks like senti-
ment analysis and POS tagging (Bahdanau et al.,
2014; Denil et al., 2014; Li et al., 2016; Arras
et al., 2017; Li et al., 2017; Rei and Søgaard,
2018). In contrast, we focus on interpreting the
gating and attention signals of the intermediate
layers of deep models in the challenging task of
Natural Language Inference. A key concept in
explaining deep models is saliency, which deter-
mines what is critical for the final decision of a

deep model. So far, saliency has only been used to
illustrate the impact of word embeddings. In this
paper, we extend this concept to the intermediate
layer of deep models to examine the saliency of
attention as well as the LSTM gating signals to
understand the behavior of these components and
their impact on the final decision.

We make two main contributions. First, we in-
troduce new strategies for interpreting the behav-
ior of deep models in their intermediate layers,
specifically, by examining the saliency of the at-
tention and the gating signals. Second, we provide
an extensive analysis of the state-of-the-art model
for the NLI task and show that our methods reveal
interesting insights not available from traditional
methods of inspecting attention and word saliency.

In this paper, our focus was on NLI, which is
a fundamental NLP task that requires both under-
standing and reasoning. Furthermore, the state-of-
the-art NLI models employ complex neural archi-
tectures involving key mechanisms, such as atten-
tion and repeated reading, widely seen in success-
ful models for other NLP tasks. As such, we ex-
pect our methods to be potentially useful for other
natural understanding tasks as well.

2 Task and Model

In NLI (Bowman et al., 2015), we are given two
sentences, a premise and a hypothesis, the goal
is to decide the logical relationship (Entailment,
Neutral, or Contradiction) between them.

Many of the top performing NLI models
(Ghaeini et al., 2018b; Tay et al., 2018; Peters
et al., 2018; McCann et al., 2017; Gong et al.,
2017; Wang et al., 2017; Chen et al., 2017), are
variants of the ESIM model (Chen et al., 2017),
which we choose to analyze in this paper. ESIM
reads the sentences independently using LSTM at
first, and then applies attention to align/contrast
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Figure 1: Normalized attention and attention saliency visualization. Each column shows visualization of one sam-
ple. Top plots depict attention visualization and bottom ones represent attention saliency visualization. Predicted
(the same as Gold) label of each sample is shown on top of each column.

the sentences. Another round of LSTM reading
then produces the final representations, which are
compared to make the prediction. Detailed de-
scription of ESIM can be found in the Supplemen-
tary Materials.

Using the SNLI (Bowman et al., 2015) data, we
train two variants of ESIM, with dimensionality 50
and 300 respectively, referred to as ESIM-50 and
ESIM-300 in the remainder of the paper.

3 Visualization of Attention and Gating

In this work, we are primarily interested in the in-
ternal workings of the NLI model. In particular,
we focus on the attention and the gating signals
of LSTM readers, and how they contribute to the
decisions of the model.

3.1 Attention
Attention has been widely used in many NLP tasks
(Ghaeini et al., 2018a; Dhingra et al., 2017; Bah-
danau et al., 2014) and is probably one of the
most critical parts that affects the inference deci-
sions. Several pieces of prior work in NLI have
attempted to visualize the attention layer to pro-
vide some understanding of their models (Ghaeini
et al., 2018b; Parikh et al., 2016). Such visualiza-
tions generate a heatmap representing the similar-
ity between the hidden states of the premise and
the hypothesis (Eq. 3 of the Supplementary Mate-
rials). Unfortunately the similarities are often the
same regardless of the decision.

Let us consider the following example, where
the same premise “A kid is playing in the garden”,

is paired with three different hypotheses:
h1: A kid is taking a nap in the garden
h2: A kid is having fun in the garden with her

family
h3: A kid is having fun in the garden

Note that the ground truth relationships are Con-
tradiction, Neutral, and Entailment, respectively.

The first row of Fig. 1 shows the visualization of
normalized attention for the three cases produced
by ESIM-50, which makes correct predictions for
all of them. As we can see from the figure, the
three attention maps are fairly similar despite the
completely different decisions. The key issue is
that the attention visualization only allows us to
see how the model aligns the premise with the hy-
pothesis, but does not show how such alignment
impacts the decision. This prompts us to consider
the saliency of attention.

3.1.1 Attention Saliency
The concept of saliency was first introduced in vi-
sion for visualizing the spatial support on an im-
age for a particular object class (Simonyan et al.,
2013). In NLP, saliency has been used to study the
importance of words toward a final decision (Li
et al., 2016) .

We propose to examine the saliency of atten-
tion. Specifically, given a premise-hypothesis pair
and the model’s decision y, we consider the sim-
ilarity between a pair of premise and hypothesis
hidden states eij as a variable. The score of the
decision S(y) is thus a function of eij for all i and
j. The saliency of eij is then defined to be |@S(y)

@eij
|.
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Figure 2: Normalized attention and attention saliency visualizations of two examples (p1 and p2) for ESIM-50 (a)
and ESIM-300 (b) models. Each column indicates visualization of a model and each row represents visualization
of one example.

The second row of Fig. 1 presents the atten-
tion saliency map for the three examples acquired
by the same ESIM-50 model. Interestingly, the
saliencies are clearly different across the exam-
ples, each highlighting different parts of the align-
ment. Specifically, for h1, we see the alignment
between “is playing” and “taking a nap” and the
alignment of “in a garden” to have the most promi-
nent saliency toward the decision of Contradiction.
For h2, the alignment of “kid” and “her family”
seems to be the most salient for the decision of
Neutral. Finally, for h3, the alignment between “is
having fun” and “kid is playing” have the strongest
impact toward the decision of Entailment.

From this example, we can see that by inspect-
ing the attention saliency, we effectively pinpoint
which part of the alignments contribute most criti-
cally to the final prediction whereas simply visual-
izing the attention itself reveals little information.

3.1.2 Comparing Models
In the previous examples, we study the behavior of
the same model on different inputs. Now we use
the attention saliency to compare the two different
ESIM models: ESIM-50 and ESIM-300.

Consider two examples with a shared hypothe-
sis of “A man ordered a book” and premise:
p1: John ordered a book from amazon
p2: Mary ordered a book from amazon

Here ESIM-50 fails to capture the gender connec-
tions of the two different names and predicts Neu-

tral for both inputs, whereas ESIM-300 correctly
predicts Entailment for the first case and Contra-
diction for the second.

In the first two columns of Fig. 2 (column a and
b) we visualize the attention of the two examples
for ESIM-50 (left) and ESIM-300 (right) respec-
tively. Although the two models make different
predictions, their attention maps appear qualita-
tively similar.

In contrast, columns 3-4 of Fig. 2 (column
c and d) present the attention saliency for the
two examples by ESIM-50 and ESIM-300 respec-
tively. We see that for both examples, ESIM-50
primarily focused on the alignment of “ordered”,
whereas ESIM-300 focused more on the align-
ment of “John” and “Mary” with “man”. It is
interesting to note that ESIM-300 does not ap-
pear to learn significantly different similarity val-
ues compared to ESIM-50 for the two critical pairs
of words (“John”, “man”) and (“Mary”, “man”)
based on the attention map. The saliency map,
however, reveals that the two models use these
values quite differently, with only ESIM-300 cor-
rectly focusing on them.

3.2 LSTM Gating Signals
LSTM gating signals determine the flow of infor-
mation. In other words, they indicate how LSTM
reads the word sequences and how the informa-
tion from different parts is captured and combined.
LSTM gating signals are rarely analyzed, possibly
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Figure 3: Normalized signal and saliency norms for the input and inference LSTMs (forward) of ESIM-50 for
three examples. The bottom (top) three rows show the signals of the input (inference) LSTM. Each row shows one
of the three gates (input, forget and output).

due to their high dimensionality and complexity.
In this work, we consider both the gating signals
and their saliency, which is computed as the partial
derivative of the score of the final decision with re-
spect to each gating signal.

Instead of considering individual dimensions of
the gating signals, we aggregate them to consider
their norm, both for the signal and for its saliency.
Note that ESIM models have two LSTM layers,
the first (input) LSTM performs the input encod-
ing and the second (inference) LSTM generates
the representation for inference.

In Fig. 3 we plot the normalized signal and
saliency norms for different gates (input, forget,
output)1 of the Forward input (bottom three rows)
and inference (top three rows) LSTMs. These re-
sults are produced by the ESIM-50 model for the
three examples of Section 3.1, one for each col-
umn.

From the figure, we first note that the saliency
tends to be somewhat consistent across different
gates within the same LSTM, suggesting that we
can interpret them jointly to identify parts of the
sentence important for the model’s prediction.

Comparing across examples, we see that the
saliency curves show pronounced differences
across the examples. For instance, the saliency
pattern of the Neutral example is significantly dif-
ferent from the other two examples, and heavily
concentrated toward the end of the sentence (“with

1We also examined the memory cell but it shows very sim-
ilar behavior with the output gate and is hence omitted.

her family”). Note that without this part of the
sentence, the relationship would have been Entail-
ment. The focus (evidenced by its strong saliency
and strong gating signal) on this particular part,
which presents information not available from the
premise, explains the model’s decision of Neutral.

Comparing the behavior of the input LSTM and
the inference LSTM, we observe interesting shifts
of focus. In particular, we see that the infer-
ence LSTM tends to see much more concentrated
saliency over key parts of the sentence, whereas
the input LSTM sees more spread of saliency. For
example, for the Contradiction example, the input
LSTM sees high saliency for both “taking” and
“in”, whereas the inference LSTM primarily fo-
cuses on “nap”, which is the key word suggesting
a Contradiction. Note that ESIM uses attention
between the input and inference LSTM layers to
align/contrast the sentences, hence it makes sense
that the inference LSTM is more focused on the
critical differences between the sentences. This is
also observed for the Neutral example as well.

It is worth noting that, while revealing similar
general trends, the backward LSTM can some-
times focus on different parts of the sentence (e.g.,
see Fig. 8 of the Supplementary Materials), sug-
gesting the forward and backward readings pro-
vide complementary understanding of the sen-
tence.
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4 Conclusion

We propose new visualization and interpretation
strategies for neural models to understand how and
why they work. We demonstrate the effective-
ness of the proposed strategies on a complex task
(NLI). Our strategies are able to provide interest-
ing insights not achievable by previous explana-
tion techniques. Our future work will extend our
study to consider other NLP tasks and models with
the goal of producing useful insights for further
improving these models.
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Abstract
Neural models have shown several state-of-
the-art performances on Semantic Role Label-
ing (SRL). However, the neural models re-
quire an immense amount of semantic-role
corpora and are thus not well suited for low-
resource languages or domains. The paper
proposes a semi-supervised semantic role la-
beling method that outperforms the state-of-
the-art in limited SRL training corpora. The
method is based on explicitly enforcing syn-
tactic constraints by augmenting the train-
ing objective with a syntactic-inconsistency
loss component and uses SRL-unlabeled in-
stances to train a joint-objective LSTM. On
CoNLL-2012 English section, the proposed
semi-supervised training with 1%, 10% SRL-
labeled data and varying amounts of SRL-
unlabeled data achieves +1.58, +0.78 F1, re-
spectively, over the pre-trained models that
were trained on SOTA architecture with ELMo
on the same SRL-labeled data. Additionally,
by using the syntactic-inconsistency loss on
inference time, the proposed model achieves
+3.67, +2.1 F1 over pre-trained model on 1%,
10% SRL-labeled data, respectively.

1 Introduction

Semantic role labeling (SRL), a.k.a shallow se-
mantic parsing, identifies the arguments corre-
sponding to each clause or proposition, i.e. its se-
mantic roles, based on lexical and positional in-
formation. SRL labels non-overlapping text spans
corresponding to typical semantic roles such as
Agent, Patient, Instrument, Beneficiary, etc. This
task finds its use in many downstream applica-
tions such as question-answering (Shen and La-
pata, 2007), information extraction (Bastianelli
et al., 2013), machine translation, etc.

Several SRL systems relying on large annotated
corpora have been proposed (Peters et al., 2018;

⇤ Equal contribution, name order decided by coin flip.

He et al., 2017), and perform relatively well. A
more challenging task is to design an SRL method
for low resource scenarios (e.g. rare languages or
domains) where we have limited annotated data
but where we may leverage annotated data from
related tasks. Therefore, in this paper, we focus
on building effective systems for low resource sce-
narios and illustrate our system’s performance by
simulating low resource scenarios for English.

SRL systems for English are built using large
annotated corpora of verb predicates and their ar-
guments provided as part of the PropBank and
OntoNotes v5.0 projects (Kingsbury and Palmer,
2002; Pradhan et al., 2013). These corpora
are built by adding semantic role annotations to
the constituents of previously-annotated syntactic
parse trees in the Penn Treebank (Marcus et al.,
1993). Traditionally, SRL relies heavily on using
syntactic parse trees either from shallow syntac-
tic parsers (chunkers) or full syntactic parsers and
Punyakanok et al. shows significant improvements
by using syntactic parse trees.

Recent breakthroughs motivated by end-to-end
deep learning techniques (Zhou and Xu, 2015;
He et al., 2017) achieve state-of-the-art perfor-
mance without leveraging any syntactic signals,
relying instead on ample role-label annotations.
We hypothesize that by leveraging syntactic struc-
ture while training neural SRL models, we may
achieve robust performance, especially for low
resource scenarios. Specifically, we propose to
leverage syntactic parse trees as hard constraints
for the SRL task i.e., we explicitly enforce that
the predicted argument spans of the SRL network
must agree with the spans implied by the syn-
tactic parse of the sentence via scoring function
in the training objective. Moreover, we present
a semi-supervised learning (SSL) based formula-
tion, wherein we leverage syntactic parse trees for
SRL-unlabeled data to build effective SRL for low
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resource scenarios.
We build upon the state-of-the-art SRL system

by (Peters et al., 2018; He et al., 2017), where we
formulate SRL as a BIO tagging problem and use
multi-layer highway bi-directional LSTMs. How-
ever, we differ in terms of our training objective.
In addition to the log-likelihood objective, we also
include syntactic inconsistency loss (defined in
Section 2.3) which quantifies the hard constraint
(spans implied by syntactic parse) violations in our
training objective. In other words, while training
our model, we enforce the outputs of our system to
agree with the spans implied by the syntactic parse
of the sentence as much as possible. In summary,
our contributions to low-resource SRL are:

1. A novel formulation which leverages syntac-
tic parse trees for SRL by introducing them
as hard constraints while training the model.

2. Experiments with varying amounts of SRL-
unlabeled data that point towards semi-
supervised learning for low-resource SRL by
leveraging the fact that syntactic inconsis-
tency loss does not require labels.

2 Proposed Approach
We build upon an existing deep-learning approach
to SRL (He et al., 2017). First we revisit defini-
tions introduced by (He et al., 2017) and then dis-
cuss about our formulation.

2.1 Task definition
Given a sentence-predicate pair (x, v), SRL task is
defined as predicting a sequence of tags y, where
each yi belongs to a set of BIO tags (⌦). So,
for an argument span with semantic role ARGi,
B-ARGi tag indicates that the corresponding to-
ken marks the beginning of the argument span and
I-ARGi tag indicates that the corresponding token
is inside of the argument span and O tag indicates
that token is outside of all argument spans. Let
n = |x| = |y| be the length of the sentence. Fur-
ther, let srl-spans(y) denote the set of all argument
spans in the SRL tagging y. Similarly, parse-
spans(x) denotes the set of all unlabeled parse
constituents for the given sentence x. Lastly, SRL-
labeled/unlabeled data refers to sentence-predicate
pairs with/without gold SRL tags.

2.2 State-of-the-Art (SOTA) Model
He et al. proposed a deep bi-directional LSTM
to learn a locally decomposed scoring func-

tion conditioned on the entire input sentence-Pn
i=1 log p(yi|x). To learn the parameters of a

network, the conditional negative log-likelihood
L(w) of a sample of training data T =
{x(t),y(t)}�t is minimized, where L(w) is

L(w) = �
X

(x,y)2T

|y|X

i=1

log p(yi|x;w). (1)

Since Eq.(1) does not model any dependencies
between the output tags, the predicted output tags
tend to be structurally inconsistent. To alleviate
this problem, (He et al., 2017) searches for the best
ŷ over the space of all possibilities (⌦n) using the
scoring function f(x, y), which incorporates log
probability and structural penalty terms. The de-
tails of scoring function is on Appendix Eq.(7).

ŷ = arg max
y02⌦n

f(x,y0) (2)

2.3 Structural Constraints
There are different types of structural constraints:
BIO, SRL and syntactic constraints. BIO con-
straints define valid BIO transitions for sequence
tagging. For example, B-ARG0 cannot be fol-
lowed by I-ARG1. SRL constraints define rules
on the role level and has three particular con-
straints: unique core roles (U), continuation roles
(C) and reference roles (R) (Punyakanok et al.,
2008). Lastly, syntactic constraints state that srl-
spans(y) have to be subset of parse-spans(x).

(He et al., 2017) use BIO and syntactic con-
straints at decoding time by solving Eq.(2) where
f(x, y) incorporates those constraints and report
that SRL constraints do not show significant im-
provements over the ensemble model. In partic-
ular, by using syntactic constraints, (He et al.,
2017) achieves up to +2 F1 score on CoNLL-2005
dataset via A* decoding.

Improvements of SRL system via use of syntac-
tic constraints is consistent with other observations
(Punyakanok et al., 2008). However, all previous
works enforce syntactic consistency only during
decoding step. We propose that enforcing syntac-
tic consistency during training time would also be
beneficial and show the efficacy experimentally on
Section 3.3.

Enforcing Syntactic Consistency To quantify
syntactic inconsistency, we define disagreeing-
spans(x,y) = {spani 2 srl-spans(y) | spani /2
parse-spans(x)}. Further, we define disagreement
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rate, d(x,y) 2 [0, 1], and syntactic inconsistency
score, s(x,y) 2 [�1, 1], as follows:

d(x,y) =
|disagreeing-spans(x,y)|

|srl-spans(y)| (3)

s(x,y) = 2 ⇥ d(x,y) � 1 (4)

Syntactic Inconsistency Loss (SI-Loss) For a
given (x, v), let us consider ŷ(t) to be the best
possible tag sequence (according to Eq.(2) during
epoch t of model training. Ideally, if our model
is syntax-aware, we would have d(x, ŷ(t)) = 0 or
r(x, ŷ(t)) = 1. We define a loss component due to
syntactic inconsistency (SI-Loss) as follows:

SI-Loss = s(x, ŷ(t))

|ŷ(t)|X

i=1

log p(ŷ(t)
i |x;w(t)) (5)

During training, we want to minimize SI-Loss.

2.4 Training with Joint Objective
Based on Eq.(1), a supervised loss, and Eq.(5),
the SI-Loss, we propose a joint training objective.
For a given sentence-predicate pair (x, v) and SRL
tags y, our joint training objective (at epoch t) is
defined as:

Joint loss = �↵1

|y|X

i=1

log p(yi|x;w)

+↵2 r(x, ŷ(t))

|ŷ(t)|X

i=1

log p(ŷ(t)
i |x;w(t)) (6)

Here, ↵1 and ↵2 are weights (hyper-parameters)
for different loss components and are tuned using
a development set. During training, we minimize
joint loss - i.e., negative log-likelihood (or cross-
entropy loss) and syntactic inconsistency loss.

2.5 Semi-supervised learning formulation
In low resource scenarios, we have limited labeled
data and larger amounts of unlabeled data. The
obvious question is how to leverage large amounts
of unlabeled data for training accurate models.
In context of SRL, we propose to leverage SRL-
unlabeled data in terms of parse trees.

Observing Eq.(5), one can notice that our
formulation of SI-Loss is only dependent upon
model’s predicted tag sequence ŷ(t) at a particular
time point t during training and the given sentence
and it does not depend upon gold SRL tags. We
leverage this fact in our SSL formulation to com-
pute SI-loss from SRL-unlabeled sentences.

Model/ Test F1 Average
Legend disagreement rate (%)
B100 84.40 14.69
B10 78.56 17.01

B1 67.28 21.17

J100 84.75 (+0.35) 14.48 (�1.43%)
J10 79.09 (+0.53) 16.25 (�4.47%)
J1 68.02 (+0.74) 20.49 (�3.21%)

Table 1: Comparison of baseline models (B) with the
models trained with joint objective (J).

Let sup-s be a batch of SRL-labeled sentences
and usup-s be a batch SRL-unlabeled sentences
only with parse information. In SSL setup, we
propose to train our model with joint objective
where sup-s only contributes to supervised loss
Eq.(1) and unsup-s contributes in terms of syn-
tactic inconsistency objective Eq.(5) and combine
them according to Eq.(6) to train them with joint
loss.

3 Experiments

3.1 Dataset
We evaluate our model’s performance on span-
based SRL dataset from CoNLL-2012 shared
task (Pradhan et al., 2013). This dataset con-
tains gold predicates as part of the input sen-
tence and also gold parse information correspond-
ing to each sentence which we use for defin-
ing hard constraints for SRL task. We use
standard train/development/test split containing
278K/38.3K/25.6K sentences. Further, there is ap-
prox. 10% disagreement between gold SRL-spans
and gold parse-spans (we term these as noisy syn-
tactic constraints). During training, we do not
preprocess data to handle these noisy constraints
but for the analysis related to enforcing syntactic
constraints during inference, we study both cases:
with and without noisy constraints. 1

3.2 Model configurations
For the SOTA system proposed in (Peters et al.,
2018), we use code from Allen AI2 to implement
our approach. We follow their initialization and
training configurations. Let BX , JX denote
model trained with X% of the SRL-labeled data
with cross-entropy and joint training objective, re-

1We preprocessed data for inference by simply deleting
syntactic parse trees for the sentences where we have dis-
agreement and perform standard Viterbi decoding for those
sentences and note that this preprocessing scheme was never
used during training.

2https://github.com/allenai/allennlp
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Base Model/ Test F1 Average
Legend disagreement rate (%)

B10 78.56 17.01
B10-SI1x 78.84 (+0.28) 16.17 (�4.94%)
B10-SI5x 78.67 (+0.11) 16.47 (�3.17%)

B10-SI10x 78.76 (+0.20) 16.09 (�5.4%)
B1 67.28 21.17

B1-SI1x 67.67 (+0.39) 20.14 (�4.87%)
B1-SI5x 67.74 (+0.46) 19.93 (�5.86%)
B1-SI10x 67.71 (+0.43) 20.16 (�4.77%)

Table 2: Training with SI-loss for varying sizes of
SRL-unlabeled data on top of the pre-trained baseline
models (B1, B10 on Table 1).

spectively. BX-SIUx and BX-JUx denote model
trained with SI-loss and Joint loss, respectively, on
the pre-trained BX model where X⇥U amount of
SRL-unlabeled data were used for further training.
To satisfy BIO constraints, we run Viterbi decod-
ing by default for inference.

3.3 Results
We are interested in answering following ques-
tions. (Q1) how well does the baseline model
produce syntactically consistent outputs, (Q2)
does our approach actually enforce syntactic con-
straints, (Q3) does our approach enforce syntactic
constraints without compromising the quality of
the system, (Q4) how well does our SSL formu-
lation perform, especially in low-resource scenar-
ios, and lastly (Q5) what is the difference in using
the syntactic constraints in training time compared
to using it at decoding time. To answer (Q1-2) fa-
vorably we report average disagreement rate com-
puted over test split. To answer (Q3-5), we report
overall F1-scores on CoNLL-2012 test set (using
standard evaluation script). For experiments us-
ing SRL-unlabeled data, we report average results
after running multiple experiments with different
random samples of it.

Does training with joint objective help? We
trained 3 models with random 1%, 10% and
whole 100% of the training set with joint objec-
tive (↵1 = ↵2 = 0.5). For comparison, we trained
3 SOTA models with the same training sets. All
models were trained for max 150 epochs and with
a patience of 20 epochs. Table 1 reports the results
of this experiment. We see that models trained
with joint objective (JX) improve over baseline
models (BX), both in terms of F1 and average
disagreement rate. These improvements provide
evidence for answering (Q1-3) favorably. Further,
gains are more in low resource scenarios because

Base Model/ Test F1 Average
Legend disagreement rate (%)

B10 78.56 17.01
B10-further 78.86 (+0.3) 16.25 (�2.06%)

B10-J1x 79.23 (+0.67) 16.03 (�5.76%)
B10-J5x 79.25 (+0.69) 16.01 (�5.88%)

B10-J10x 79.34 (+0.78) 15.88 (-6.64%)
B1 67.28 21.17

B1-further 67.76 (+0.48) 20.75 (�1.98%)
B1-J1x 68.45 (+1.17) 19.57 (�7.56%)
B1-J5x 68.86 (+1.58) 19.38 (-8.46%)
B1-J10x 68.61 (+1.33) 19.29 (�8.88%)

Table 3: Training with joint objective (J) on top of the
baseline models (B1, B10 from Table 1), with the same
SRL-labeled data used to train the baseline models and
with varying sizes of SRL-unlabeled data.

Decoding B10 B10-J10x B1 B1-J5x
Viterbi 78.56 79.34 67.28 68.86

Noisy syntactic constraints

A* 72.95 73.57 63.77 64.73
(-5.61) (-5.77) (-3.51) (-4.13)

Gradient- 79.7 80.21 69.85 70.95
based (+1.41) (+0.87) (+2.57) (+2.1)

Noise-free syntactic constraints

A* 78.87 79.51 67.97 68.97
(+0.31) (+0.17) (+0.69) (+0.11)

Gradient- 80.18 80.66 69.97 70.94
based (+1.62) (+1.32) (+2.69) (+2.08)

Table 4: Comparison of different decoding techniques:
Viterbi, A* (He et al., 2017) and gradient based infer-
ence (Lee et al., 2017) with noisy and noise-free syn-
tactic constraints1. Note that the (+/-) F1 are reported
w.r.t Viterbi decoding on the same column.

by training models jointly to satisfy syntactic con-
straints helps in better generalization when trained
with limited SRL corpora.

Does SSL based training work for low-resource
scenarios? To enforce syntactic constraints via
SI-loss on SRL-unlabeled data, we further train
pre-trained model with two objectives in SSL set
up: (a) SI-loss (Table 2) and (b) joint objective
(Table 3)

For experiment (a), we use square loss, �kW �
Wpre-traink2 regularizer to keep the model W close
to the pre-trained model Wpre-train to avoid catas-
trophic forgetting (� set to 0.005). We optimize
with SGD with learning rate of 0.01, ↵2 = 1.0,
patience of 10 epochs. We see that with SI-loss
improvements are significant in terms of average
disagreement rate as compared to F1.

For experiment (b), we train B1 and B10 with
joint objective in SSL set-up (as discussed in Sec-
tion 2.5). We use SGD with learning rate of 0.05,
↵1 = ↵2 = 1.0 and patience of 10 epochs. We
report +1.58 F1 and +0.78 F1 improvement over
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B1 and B10, trained with 5% and 100% SRL-
unlabeled data, respectively. Note that we can-
not achieve these improvements with simply fine-
tunning BX with supervised loss, as seen with
BX-further on Table 3. This provides evidence
to answer (Q4) favorably. In general, the per-
formance gains increase as the size of the SRL-
unlabeled data increases.

Is it better to enforce syntactic consistency on
decoding or on training time? To answer (Q5),
we conducted three experiments: using syntactic
constraints on (a) inference only, i.e. structured
prediction, (b) training only, and (c) both training
and inference steps. For the structured prediction,
we consider A* decoding, as used in (He et al.,
2017) and gradient-based inference (Lee et al.,
2017), which optimizes loss function similar to SI-
loss on Eq.(5) per example basis. If neither A*
decoding nor gradient-based inference is used, we
use Viterbi algorithm to enforce BIO constraints.
The performance is the best (bold on Table 4)
when syntactic consistency is enforced both on
training and inference steps, +3.67, +2.1 F1 score
improvement over B1 and B10 respectively, and
we conclude that the effort of enforcing syntactic
consistency on inference time is complementary
to the same effort on training time. However, note
that the overall performance increases as the bene-
fit from enforcing syntactic consistency with SSL
is far greater compared to marginal decrement on
structured prediction.
While syntactic constraints help both train and in-
ference, injecting constraints on train time is far
more robust compared to enforcing them on de-
coding time. The performance of the structured
prediction drops rapidly when the noise in the
parse information is introduced (x column of Ta-
ble 4). On the other hand, SSL was trained on
CoNLL2012 data where about 10% of the gold
SRL-spans do not match with gold parse-spans
and even when we increase noise level to 20% the
performance drop was only around 0.1 F1 score.

4 Related Work

The traditional approaches for SRL (Pradhan
et al., 2005; Koomen et al., 2005) constituted of
cascaded system with four subtasks: pruning, ar-
gument identification, argument labeling, and in-
ference. Recent approaches (Zhou and Xu,
2015; He et al., 2017) proposed end-to-end system
for SRL using deep recurrent or bi-LSTM-based

architecture with no syntactic inputs and have
achieved SOTA results on English SRL. Lastly,
(Peters et al., 2018) proposed ELMo, a deep con-
textualized word representations, and improved
the SOTA English SRL by 3.2 F1-points.

Even on the end-to-end learning, inference still
remains as a separate subtask and would be for-
malized as a constrained optimization problem. To
solve this problem ILP (Punyakanok et al., 2008),
A* algorithm (He et al., 2017) and gradient-based
inference (Lee et al., 2017) were employed. Fur-
ther, all of these works leveraged syntactic parse
during inference and was never used during train-
ing unless used as a cascaded system.

To the best of our knowledge, this work is the
first attempt towards SSL span-based SRL model.
Nonetheless, there were few efforts in SSL in
dependency-based SRL systems (Fürstenau and
Lapata, 2009; Deschacht and Moens, 2009; Croce
et al., 2010). (Fürstenau and Lapata, 2009) pro-
posed to augment the dataset by finding similar
unlabeled sentences to already labeled set and an-
notate accordingly. While interesting, the similar
augmentation technique is harder to apply to span-
based SRL as one requires to annotate the whole
span. (Deschacht and Moens, 2009; Croce et al.,
2010) proposed to leverage the relation between
words by learning latent word distribution over the
context, i.e. language model. Our paper also in-
corporates this idea by using ELMo as it is trained
via language model objective.

5 Conclusion and Future Work

We presented a SI-loss to enforce SRL systems
to produce syntactically consistent outputs. Fur-
ther, leveraging the fact that SI-loss does not re-
quire labeled data, we proposed a SSL formulation
with joint objective constituting of SI-loss and su-
pervised loss together. We show the efficacy of
the proposed approach on low resource settings,
+1.58, +0.78 F1 on 1%, 10% SRL-labeled data
respectively, via further training on top of pre-
trained SOTA model. We further show the struc-
tured prediction can be used as a complimentary
tool and show performance gain of +3.67, +2.1 F1
over pre-trained model on 1%, 10% SRL-labeled
data, respectively. Semi-supervised training from
the scratch and examination of semi-supervised
setting on large dataset remains as part of the fu-
ture work.
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Abstract

When the semantics of a sentence are not
representable in a semantic parser’s output
schema, parsing will inevitably fail. Detection
of these instances is commonly treated as an
out-of-domain classification problem. How-
ever, there is also a more subtle scenario in
which the test data is drawn from the same
domain. In addition to formalizing this prob-
lem of domain-adjacency, we present a com-
parison of various baselines that could be used
to solve it. We also propose a new simple
sentence representation that emphasizes words
which are unexpected. This approach im-
proves the performance of a downstream se-
mantic parser run on in-domain and domain-
adjacent instances.

1 Introduction

Semantic parsers map text to logical forms, which
can then be used by downstream components to
fulfill an action. Consider, for example, a system
for booking air travel, in which a user provides
natural language input, and a downstream subsys-
tem is able to make or cancel flight reservations.
Users of the system typically have a general under-
standing of its purpose, so the input will revolve
around the correct topic of air travel. However,
they are unlikely to know the limits of the system’s
functionality, and may provide inputs for which
the expected action is beyond its capabilities, such
as asking to change seats on a flight reservation.
Because the logical schema is designed with ful-
fillment in mind, no logical form can capture the
semantics of these sentences, making it impossi-
ble for the parser to generate a correct parse. Any
output the parser generates will cause unintended
actions to be executed downstream. For example,
asking to change seats might be misparsed and
executed as changing flights. Instead, the parser
should identify that this input is beyond its scope

Air Travel Domain
Example In-Domain Predicates

buyT icket Buy ticket LGA to SFO on 3/12
flightStatus What’s the status of my SF flight?
switchF light Change it to the 8am SFO flight
cancelF light Cancel my flight to SFO
awardTravel I want to fly to SFO with miles

Example Domain-Adjacent Predicates
changeSeat Change my seat to 23A

milesUpgrade Upgrade my flight with my miles
arrivalGate Gate that my SFO flight arrives at

mileageStatus What’s my miles status
Example Out-of-Domain Predicates

transferMoney Transfer $200 to checking
addT imer Add a timer for 3 minutes

restaurantSearch Thai restaurants in SF
scheduleMeeting Set up a 9am meeting with Amy

Figure 1: In this example, an air travel semantic parser
is trained on data containing in-domain predicates. A
test instance cannot be parsed correctly if it contains
any domain-adjacent or out-of-domain predicates.

so the condition can be handled.1 In this paper, we
formalize this pervasive problem, which we call
domain-adjacent instance identification.

While this task is similar to that of identifying
out-of-domain input instances (e.g., banking with
respect to air travel), it is much more subtle — the
instances come from roughly the same domain as
the parser’s training examples, and thus use very
similar language. Domain adjacency is a property
with respect to the parser’s output schema, inde-
pendent of the data used to train it.

In this paper, we formalize this task, and pro-
pose a simple approach for representing sen-
tences in which words are weighted by how likely
they are to differentiate between in-domain and
domain-adjacent instances. Note that while this
approach can also be applied to out-of-domain

1In the final page of the paper, we suggest a few imme-
diate downstream system behaviors when a domain-adjacent
instance is identified, but others have investigated the related
problem of teaching the system new behavior (Azaria et al.,
2016).
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instances, in this paper we are interested in its
performance on domain-adjacent instances. We
describe an evaluation framework for this new
task and, finally, evaluate our proposed method
against a set of baselines, comparing performance
on the domain-adjacent classification problem and
a downstream semantic parsing task.

2 Problem Setting

A semantic parser can be seen as a function ' that
maps sentences x in a natural language L to log-
ical forms y 2 Y . Assuming the existence of an
oracle parser '̂, the problem we propose in this pa-
per is that of determining, for a given test instance
x, whether it belongs to the domain � of '̂, i.e., if
its semantics can be encoded in the schema Y .

In real-world usage, the input sentences x will
be generated by a human user, who associates the
capabilities of the parser to a particular topic (e.g.,
air travel). Thus most of the x 2 L \ � will share
topic with the x̂ 2 �. Because of the similarity
between these x and x̂, we call this task identifica-
tion of domain-adjacent instances.

3 Approach

Our goal is to identify input instances whose se-
mantics are not representable in the parser’s out-
put schema, and we assume only an in-domain
dataset is available at training time. Our approach
is based on determining similarity to these training
instances. We split the task in two parts: 1) encode
the sentences to a compact representation that pre-
serves the needed information, and 2) given these
representations, identify which sentences are so
dissimilar that they are unlikely to be parseable
with any schema that covers the training set.

3.1 Sentence Representation

Among recent work in distributional semantics,
averaging the word vectors to represent a sentence
(Wieting et al., 2016; Adi et al., 2017) has proven
to be a simple and robust approach. However, we
have an intuition that words which are unexpected
in their context given the training data may be a
strong signal that an instance is domain-adjacent.
To incorporate this signal, we propose a weighted
average, in which the weight corresponds to how
unexpected the word is in its context. For exam-
ple, given in-domain predicates from Figure 1, in
the domain-adjacent sentence “Upgrade my flight

to SFO with my miles”, upgrade should receive a
much higher weight than flight or SFO.

Our weighting scheme is as follows: We use
the cosine distance between the expected (v̄i) and
the actual (v̂i) domain-specific word embedding at
a given position (i) in a sentence to compute its
weight: wi = 1 � cos(v̄i, v̂i). The expected word
embedding is computed using the context embed-
dings, v̄i =

Pi+c
j=i�c,j 6=i v̂j , where v̂j is a domain-

specific word embedding, in a window of size c
around position i. Intuitively, wi represents how
surprising the word is in the context.

Since our training set is too small to di-
rectly learn domain-specific embeddings, we
learn a mapping from general pre-trained em-
beddings. We train a continuous bag-of-words
model (Mikolov et al., 2013) in which we pass
pre-trained embeddings (vi) instead of 1-hot vec-
tors, as input to the embedding layer. The layer
thus learns a mapping from pre-trained to domain-
specific embeddings (v̂i). We use this mapping to
compute new embeddings for words that are miss-
ing from the training set. Only words that do not
have pre-trained embeddings are ignored.

Finally, for a sentence with n words, we take the
weighted average of the pre-trained embeddings of
the words in the sentence, using the weights from
above: S = (

Pn
i=1 wivi) / (

Pn
i=1 wi).

This approach assigns high weight to words that
differ significantly from what is expected based
on the training data. By combining these weights
with the pre-trained word embeddings, we allow
the model to incorporate external information, im-
proving generalization beyond the training set.

3.2 Domain-Adjacent Model

A number of techniques can be applied to pre-
dict whether a sentence is domain-adjacent from
its continuous representation. Of the methods we
tried, we found k-nearest neighbors (Angiulli and
Pizzuti, 2002) to perform best: to classify a sen-
tence, we calculate the average cosine distance be-
tween its embedding and its k nearest neighbors
in the training data, and label it domain-adjacent
if this value is greater than some threshold. This
simpler model relies more heavily on the external
information brought in by pre-trained word em-
beddings, while more complex models seem to
overfit to the training data.
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Basketball numGamesPlayed
Blocks length

Calendar startTime
Housing size

Publications venue
Recipes preparationTime

Restaurants starRating
Social educationStartDate,

employmentEndDate

Table 1: Predicates excluded from training and consid-
ered domain-adjacent. Domains have 5-20 predicates.

4 Evaluation

In this section, we introduce an evaluation frame-
work for this new task. We consider training and
test sets from a single domain, with only the lat-
ter containing domain-adjacent instances. Test in-
stances are classified individually, and we measure
performance on in-domain/domain-adjacent clas-
sification and semantic parsing.

4.1 Dataset and Semantic Parser
We simulate this setting by adapting the OVER-
NIGHT dataset (Wang et al., 2015). This dataset
is composed of queries drawn from eight do-
mains, each having a set of seven to eighteen
distinct semantic predicates. Queries consist of
a crowd-sourced textual sentence and its corre-
sponding logical form containing one or more of
these domain-specific semantic predicates.

For each domain, we select a set of predicates to
exclude from the logical schema (see Table 1), and
remove all instances containing these predicates
from the training set (since they are now domain-
adjacent). We then train a domain-adjacent model
and semantic parser on the remaining training data
and attempt to identify the domain-adjacent exam-
ples in the test data. We use the train/test splits
from Wang et al. (2015). In all experiments, we
use the SEMPRE parser (Berant et al., 2013).

4.2 Baselines
Because this is a novel task, and results are not
comparable to previous work, we report results
from a variety of baseline systems. The first
baseline, CONFIDENCE, identifies instances as
domain-adjacent if the semantic parser’s confi-
dence in its predictions is below some threshold.

The remaining baselines follow the two-part ap-
proach from Section 3. AUTOENCODER is inspi-
red by Ryu et al. (2017)’s work on identifying
out-of-domain examples. For the sentence repre-

sentation, this method uses a bi-LSTM with self-
attention, trained to predict the semantic predi-
cates, and concatenates the final hidden state from
each direction as the sentence representation. An
autoencoder is used as the domain-adjacent classi-
fier.

The remaining methods use the nearest neigh-
bor model discussed in Section 3.2. For sentence
representations, we include baselines drawn from
different neural approaches. In CBOW, we sim-
ply average the pre-trained word embeddings in
the sentence. In CNN, we train a two-layer CNN
with a final softmax layer to predict the seman-
tic predicates for a sentence. We concatenate the
mean pooling of each layer as the sentence rep-
resentation. In LSTM, we use the same sen-
tence representation as in AUTOENCODER, with
the nearest neighbor domain-adjacent model. Fi-
nally, SURPRISE is the approach presented in Sec-
tion 3.1.

4.3 Direct Evaluation
We first directly evaluate the identification of
domain-adjacent instances: Table 2 reports the
area under a receiver operating characteristic
curve (AUC) for the considered models (Fawcett,
2006). SURPRISE generally performs the best on
this evaluation; and, in general, the simpler models
tend to perform better, suggesting that more com-
plex approaches tune too much to the training data.

Qualitatively, for domains where the SURPRISE
model performs better, it places higher weight on
words we would consider important for distin-
guishing domain-adjacent sentences. For exam-
ple in “show me recipes with longer preparation
times than rice pudding” from Recipes, “longer”
and “preparation” have the highest weights. In
Social, there are two in-domain predicates (em-
ploymentStartDate and educationEndDate) which
use very similar wording to those that are domain-
adjacent, making it difficult to isolate surprising
words. The weights in this domain seem to instead
emphasize unusual wordings such as “soonest” in
“employees with the soonest finish date”.

4.3.1 Ablation Analysis
In order to determine the contribution of each
one of the components of SURPRISE, we per-
formed an ablation analysis comparing the fol-
lowing modifications of the method: CBOW, as
described above, using an unweighted average of
pre-trained embeddings; FREQUENCY, using a

4966



Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
AUTOENCODER 0.801 0.479 0.766 0.781 0.874 0.722 0.581 0.774
CONFIDENCE 0.660 0.738 0.697 0.648 0.631 0.651 0.730 0.573

CBOW 0.743 0.782 0.662 0.910 0.884 0.670 0.911 0.675
CNN 0.916 0.654 0.862 0.792 0.908 0.505 0.840 0.813

LSTM 0.826 0.571 0.741 0.912 0.827 0.487 0.593 0.754
SURPRISE 0.755 0.827 0.817 0.933 0.978 0.758 0.941 0.545

Table 2: AUC for domain-adjacent instance identification, using KNN as the domain-adjacent model.

Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
CBOW 0.743 0.782 0.662 0.910 0.884 0.670 0.911 0.675

FREQUENCY 0.656 0.703 0.771 0.884 0.887 0.667 0.834 0.591
PRETRAINED 0.612 0.636 0.512 0.819 0.842 0.526 0.858 0.538

SURPRISE 0.755 0.827 0.817 0.933 0.978 0.758 0.941 0.545

Table 3: AUC for domain-adjacent instance identification, using ablated versions of SURPRISE with KNN.

weighted average of pre-trained embeddings, with
weights based on inverse document frequency in
the training set; PRETRAINED, using the surprise
schema but with weights determined using pre-
trained embeddings; and the full SUPRISE as pre-
sented above. Each approach adds one component
(weighting, surprise-based weights, and domain-
specific embeddings) with respect to the previous
one.

The results of the experiment are shown in Ta-
ble 3. We can see that FREQUENCY performs
slightly worse than CBOW and PRETRAINED
performs even worse than that. We can conclude
that the combination of the weighting schema and
the tuned vectors is what makes SUPRISE effec-
tive.

4.4 Downstream Task Evaluation

We next evaluate how including the domain-
adjacent predictions affects the performance of a
semantic parser. In a real setting, when the se-
mantic parser is presented with domain-adjacent
input that is beyond its scope, the correct behav-
ior is to label it as such so that it can be han-
dled properly by downstream components. To
simulate this behavior, we set the gold parse for
domain-adjacent instances to be an empty parse,
and automatically assign an empty parse to any
instance that is identified as domain-adjacent. We
report accuracy of the semantic parser with 20%
domain-adjacent test data. We include two addi-
tional models: NOFILTER, in which nothing is la-
beled domain-adjacent, and ORACLE, in which all
the domain-adjacent instances are correctly iden-

tified. For each baseline requiring a threshold, we
set it such that 3% of the instances in the dev set
would be marked as domain-adjacent (intuitively,
this represents the error-tolerance of the system).

Table 4 shows the results for this experiment. In
general, the relative performance is similar to that
in the direct evaluation (e.g. SURPRISE tends to
do well on most domains, but performs poorly on
BASKETBALL and SOCIAL in particular). How-
ever, in this evaluation, misclassifying an instance
as domain-adjacent if the semantic parser would
have accurately parsed it is worse than misclassi-
fying the instance if the semantic parser could not
have accurately parsed it. For example, in SOCIAL
we can thus infer that SURPRISE is marking some
instances as domain-adjacent that would otherwise
be accurately parsed as the performance there is
actually worse than for NOFILTER.

5 Related Work

Domain-adjacency identification is a new task, but
relatively little effort has been devoted to even
the related task of identifying out-of-domain in-
stances (i.e., from completely separate domains)
for semantic parsers. Hakkani-Tur et al. (2015)
approached the problem by clustering sentences
based on shared subgraphs in their general seman-
tic parses; Ryu et al. (2017) classify sentences
with autoencoder reconstruction error.

Prior distributional semantics work to create
compact sentential representations generated spe-
cific embeddings for downstream tasks (Kalch-
brenner et al., 2014; Kim, 2014; Socher et al.,
2013). Recently, work has focused on domain-
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Basketball Blocks Calendar Housing Publications Recipes Restaurants Social
NOFILTER 0.358 0.294 0.617 0.461 0.511 0.570 0.626 0.355
ORACLE 0.558 0.494 0.817 0.661 0.711 0.770 0.826 0.555

AUTOENCODER 0.413 0.268 0.581 0.447 0.463 0.530 0.543 0.417
CONFIDENCE 0.389 0.306 0.644 0.472 0.525 0.568 0.665 0.360

CBOW 0.344 0.295 0.634 0.515 0.621 0.575 0.722 0.358
CNN 0.452 0.324 0.674 0.488 0.573 0.570 0.605 0.446

LSTM 0.385 0.314 0.622 0.495 0.581 0.547 0.612 0.363
SURPRISE 0.356 0.371 0.679 0.570 0.668 0.554 0.764 0.345

Table 4: Accuracy for a semantic parser evaluated on a test set in which 20% is domain adjacent.

independent embeddings, learned without down-
stream task supervision. Kiros et al. (2015), Hill
et al. (2016), and Kenter et al. (2016) learn rep-
resentations by predicting the surrounding sen-
tences. Wieting et al. (2016) use paraphrases as
supervision. Mu et al. (2017) represent sentences
by the low-rank subspace spanned by the embed-
dings of the words in them; Arora et al. (2017)
use a weighted average of word embeddings, with
their projection onto the first principal component
across all sentences in the corpus removed.

Another relatively sparse area of related work is
handling the domain-adjacent instances once they
have been identified. The simplest thing to do is
to return a generic error. For user-facing applica-
tions, one such message might state that the sys-
tem can’t handle that specific query. Azaria et al.
(2016) approach this problem by having the user
break down the domain-adjacent instance into a
sequence of simpler textual instructions and then
attempting to map those to known logical forms.

6 Conclusion

Identifying domain-adjacent instances is a prac-
tical issue that can improve downstream seman-
tic parsing precision, and thus provide a smoother
and more reliable user experience. In this pa-
per, we formalize this task, and introduce a novel
sentence embedding approach which outperforms
baselines. Future work includes exploring alter-
native ways of incorporating information outside
of the given training set and experimenting with
various combinations of semantic parsers and up-
stream domain-adjacency models. Another area
of future research is how the underlying system
should recover when domain-adjacent instances
are detected.
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Abstract

The web provides a rich, open-domain envi-
ronment with textual, structural, and spatial
properties. We propose a new task for ground-
ing language in this environment: given a nat-
ural language command (e.g., “click on the
second article”), choose the correct element on
the web page (e.g., a hyperlink or text box).
We collected a dataset of over 50,000 com-
mands that capture various phenomena such
as functional references (e.g. “find who made
this site”), relational reasoning (e.g. “article
by john”), and visual reasoning (e.g. “top-
most article”). We also implemented and an-
alyzed three baseline models that capture dif-
ferent phenomena present in the dataset.

1 Introduction

Web pages are complex documents containing
both structured properties (e.g., the internal tree
representation) and unstructured properties (e.g.,
text and images). Due to their diversity in content
and design, web pages provide a rich environment
for natural language grounding tasks.

In particular, we consider the task of mapping
natural language commands to web page elements
(e.g., links, buttons, and form inputs), as illus-
trated in Figure 1. While some commands refer
to an element’s text directly, many others require
more complex reasoning with the various aspects
of web pages: the text, attributes, styles, structural
data from the document object model (DOM), and
spatial data from the rendered web page.

Our task is inspired by the semantic parsing lit-
erature, which aims to map natural language utter-
ances into actions such as database queries and ob-
ject manipulation (Zelle and Mooney, 1996; Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Berant et al., 2013; Misra et al., 2015; Andreas and
Klein, 2015). While these actions usually act on
an environment with a fixed and known schema,

1
2 3

4

5

1: click on apple deals 2: send them a tip
3: enter iphone 7 into search 4: follow on facebook
5: open most recent news update

Figure 1: Examples of natural language commands on
the web page appleinsider.com.

web pages contain a larger variety of structures,
making the task more open-ended. At the same
time, our task can be viewed as a reference game
(Golland et al., 2010; Smith et al., 2013; Andreas
and Klein, 2016), where the system has to select
an object given a natural language reference. The
diversity of attributes in web page elements, along
with the need to use context to interpret elements,
makes web pages particularly interesting.

Identifying elements via natural language has
several real-world applications. The main one is
providing a voice interface for interacting with
web pages, which is especially useful as an as-
sistive technology for the visually impaired (Za-
jicek et al., 1998; Ashok et al., 2014). Another
use case is browser automation: natural language
commands are less brittle than CSS or XPath se-
lectors (Hammoudi et al., 2016) and could gener-
alize across different websites.

We collected a dataset of over 50,000 natural
language commands. As seen in Figure 1, the
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Phenomenon Description Example Amount
substring match The command contains only a substring of

the element’s text (after stemming).
“view internships with energy.gov” ! “Ca-
reers & Internship” link

7.0 %

paraphrase The command paraphrases the element’s
text.

“click sign in” ! “Login” link 15.5 %

goal description The command describes an action or asks
a question.

“change language” ! a clickable box with
text “English”

18.0 %

summarization The command summarizes the text in the
element.

“go to the article about the bengals trade”
! the article title link

1.5 %

element description The command describes a property of the
element.

“click blue button” 2.0 %

relational reasoning The command requires reasoning with an-
other element or its surrounding context.

“show cookies info” ! “More Info” in the
cookies warning bar, not in the news section

2.5 %

ordinal reasoning The command uses an ordinal. “click on the first article” 3.5 %
spatial reasoning The command describes the element’s po-

sition.
“click the three slashes at the top left of the
page”

2.0 %

image target The target is an image (no text). “select the favorites button” 11.5 %
form input target The target is an input (text box, check box,

drop-down list, etc.).
“in the search bar, type testing” 6.5 %

Table 1: Phenomena present in the commands in the dataset. Each example can have multiple phenomena.

commands contain many phenomena, such as re-
lational, visual, and functional reasoning, which
we analyze in greater depth in Section 2.2. We
also implemented three models for the task based
on retrieval, element embedding, and text align-
ment. Our experimental analysis shows that func-
tional references, relational references, and visual
reasoning are important for correctly identifying
elements from natural language commands.

2 Task

Given a web page w with elements e1, . . . , ek and
a command c, the task is to select the element e 2
{e1, . . . , ek} described by the command c. The
training and test data contain (w, c, e) triples.

2.1 Dataset
We collected a dataset of 51,663 commands on
1,835 web pages. To collect the data, we first
archived home pages of the top 10,000 websites1

by rendering them in Google Chrome. After load-
ing the dynamic content, we recorded the DOM
trees and the geometry of each element, and stored
the rendered web pages. We filtered for web pages
in English that rendered correctly and did not con-
tain inappropriate content. Then we asked crowd-
workers to brainstorm different actions for each
web page, requiring each action to reference ex-
actly one element (of their choice) from the fil-
tered list of interactive elements (which include
visible links, inputs, and buttons). We encouraged

1https://majestic.com/reports/majestic-million

the workers to avoid using the exact words of the
elements by granting a bonus for each command
that did not contain the exact wording of the se-
lected element. Finally, we split the data into 70%
training, 10% development, and 20% test data.
Web pages in the three sets do not overlap.

The collected web pages have an average of
1,051 elements, while the commands are 4.1 to-
kens long on average.

2.2 Phenomena present in the commands
Apart from referring to the exact text of the el-
ement, commands can refer to elements in a va-
riety of ways. We analyzed 200 examples from
the training data and broke down the phenomena
present in these commands (see Table 1).

Even when the command directly references the
element’s text, many other elements on the page
also have word overlap with the command. On av-
erage, commands have word overlap with 5.9 leaf
elements on the page (not counting stop words).

3 Models

3.1 Retrieval-based model
Many commands refer to the elements by their
text contents. As such, we first consider a simple
retrieval-based model that uses the command as a
search query to retrieve the most relevant element
based on its TF-IDF score.

Specifically, each element is represented as a
bag-of-tokens computed by (1) tokenizing and
stemming its text content, and (2) tokenizing the
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attributes (id, class, placeholder, label, tooltip,
aria-text, name, src, href) at punctuation marks
and camel-case boundaries. When computing
term frequencies, we downweight the attribute to-
kens from (2) by a factor of ↵. We use ↵ = 3
tuned on the development set for our experiments.

The document frequencies are computed over
the web pages in the training dataset. If multi-
ple elements have the same score, we heuristically
pick the most prominent element, i.e., the one that
appears earliest in the pre-order traversal of the
DOM hierarchy.

3.2 Embedding-based model
A common method for matching two pieces of
text is to embed them separately and then com-
pute a score from the two embeddings (Kiros et al.,
2015; Tai et al., 2015). For a command c and el-
ements e1, . . . , ek, we define the following condi-
tional distribution over the elements:

p (ei | c) / exp [s(f(c), g(ei))]

where s is a scoring function, f(c) is the embed-
ding of c, and g(ei) is the embedding of ei, de-
scribed below. The model is trained to maximize
the log-likelihood of the correct element in the
training data.

Command embedding. To compute f(c), we
embed each token of c into a fixed-dimensional
vector and take an average2 over the token embed-
dings. (The token embeddings are initialized with
GloVe vectors.)

Element embedding. To compute g(e), we em-
bed the properties of e, concatenate the results, and
then apply a linear layer to obtain a vector of the
same length as f(c). Figure 2 shows an exam-
ple of the properties that the model receives. The
properties include:

• Text content. We apply the command embed-
der f on the text content of e. As the text of
most elements of interest (links, buttons, and
inputs) are short, we find it sufficient to limit
the text to the first 10 tokens to save memory.

• Text attributes. Several attributes (aria, ti-
tle, tooltip, placeholder, label, name) usually
contain natural language. We concatenate
their values and then apply the command em-
bedder f on the resulting string.

2We tried applying LSTM but found no improvement.

<a class="dd-head" id="tip-link"
href="submit_story/">Tip Us</a>

Text content: tip us
String attributes: tip link dd head
Visual features: location = (0.53, 0.08)

visible = true

Figure 2: Example of properties used to compute the
embedding g(e) of the element e.

• String attributes. We tokenize other string at-
tributes (tag, id, class) at punctuation marks
and camel-case boundaries. Then we embed
them with separate lookup tables and average
the resulting vectors.

• Visual features. We form a vector consisting
of the coordinates of the element’s center (as
fractions of the page width and height) and
visibility (as a boolean).

Scoring function. To compute the score
s(f(c), g(e)), we first let f̂(c) and ĝ(e) be the
results of normalizing the two embeddings to
unit norm. Then we apply a linear layer on
the concatenated vector [f̂(c); ĝ(e); f̂(c) � ĝ(e)]
(where � denotes the element-wise product).

Incorporating spatial context. Context is criti-
cal in certain cases; for example, selecting a text
box relies on knowing the neighboring label text,
and selecting an article based on the author re-
quires locating the author’s name nearby. Identi-
fying which related element should be considered
based on the command is a challenging task.

We experiment with adding spatial context to
the model. For each direction d 2 {top, bottom,
left, right}, we use g to embed a neighboring ele-
ment nd(e) directly adjacent to e in that direction.
(If there are multiple such elements, sample one; if
there is no such element, use a zero vector.) After
normalizing the results to get ĝ(nd(e)), we con-
catenate ĝ(nd(e)) and f̂(c)� ĝ(nd(e)) to the linear
layer input in the scoring function.

3.3 Alignment-based model
One downside of the embedding-based model is
that the text tokens from c and e do not directly in-
teract. Previous works on sentence matching usu-
ally employ either unidirectional or bidirectional
attention to tackle this issue (Seo et al., 2016; Yin
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et al., 2016; Xiong et al., 2017; Yu et al., 2018).
We opt for a simple method based on a single
alignment matrix similar to Hu et al. (2014) as de-
scribed below.

Let t(e) be the concatenation of e’s text con-
tent and text attributes of e, trimmed to 10 tokens.
We construct a matrix A(c, e) where each entry
Aij(c, e) is the dot product between the embed-
dings of the ith token of c and the jth token of
t(e). Then we apply two convolutional layers of
size 3⇥3 on the matrix, apply a max-pooling layer
of size 2 ⇥ 2, concatenate a tag embedding, and
then apply a linear layer on the result to get a 10-
dimensional vector h(c, e).

We apply a final linear layer on h(c, e) to com-
pute a scalar score, and then train on the same
objective function as the encoding-based model.
To incorporate context, we simply concatenate the
four vectors h(c, nd(e)) of the neighbors nd(e) to
the final linear layer input.

4 Experiments

We evaluate the models on accuracy, the fraction
of examples that the model selects the correct el-
ement. We train the neural models using Adam
(Kingma and Ba, 2014) with initial learning rate
10�3, and apply early stopping based on the devel-
opment set. The models can choose any element
that is visible on the page at rendering time.

The experimental results are shown in Table 2.
Both neural models significantly outperform the
retrieval model.

4.1 Ablation analysis

To measure the importance of each type of infor-
mation in web pages, we perform an ablation study
where the model does not observe one of the fol-
lowing aspects of the elements: text contents, at-
tributes, and spatial context.

Unsurprisingly, the results in Table 2 show that
text contents are the most important input signal.
However, attributes also play an important role in
both the embedding and alignment models. Fi-
nally, while spatial context increases alignment
model performance, the gain is very small, sug-
gesting that incorporating appropriate contexts to
the model is a challenging task due to the variety
in the types of context, as well as the sparsity of
the signals.

Model Accuracy (%)
retrieval 36.55
embedding 56.05

no texts 23.62
no attributes 55.43
no spatial context 58.87

alignment 50.74
no texts 15.94
no attributes 48.51
no spatial context 50.66

Table 2: Accuracies of the models and their ablations.

Error Type Embed Align
Fail to match strings 26.8% 11.6%
Incorrectly match strings 3.8% 14.2%
Fail to understand paraphrases 8.9% 7.9%
Fail to understand descriptions 12.1% 17.4%
Fail to perform reasoning 15.9% 13.7 %
Select a less prominent element 19.8% 24.8%
Noisy annotation 12.7% 10.5%

Table 3: Error breakdowns of the embedding and
alignment models on 100 examples. The embedding
model handles implicit descriptions well, while the
alignment model excels at string matching.

4.2 Error analysis

To get a better picture of how the models han-
dle different phenomena, we analyze the pre-
dictions of the embedding-based and alignment-
based models on 100 development examples
where at least one model made an error. The er-
rors, summarized in Table 3, are elaborated below:

Fail to match strings. Many commands simply
specify the text content of the element (e.g., “click
customised garages” ! the link with text “Cus-
tomised Garages, Canopies & Carports”). The en-
coding model, which encodes the whole command
as a single vector, occasionally fails to select the
element with partially matching texts. In contrast,
the alignment model explicitly models text match-
ing, and thus is better at this type of commands.

Incorrectly match strings. Due to its reliance
on text matching, the alignment model struggles
when many elements share substrings with the
command (e.g., “shop for knitwear” when many
elements contain the word “shop”), or when an el-
ement with a matching substring is not the correct
target (e.g., “get the program” ! the “Download”
link, not the “Microsoft developer program” link).

Fail to understand descriptions. As seen in Ta-
ble 1, many commands indirectly describe the el-
ements using paraphrases, goal descriptions, or
properties of the elements. The encoding model,
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which summarizes various properties of the ele-
ments as an embedding vector, is better at han-
dling these commands than the alignment model,
but still makes a few errors on harder examples
(e.g., “please close this notice for me” ! the “X”
button with hidden text “Hide“).

Fail to perform reasoning. For the most part,
the models fail to handle relational, ordinal, or
spatial reasoning. The most frequent error mode
is when the element is a text box, and the com-
mand uses nearby label as the reference. While
a few text boxes have semantic annotations which
the model can use (e.g., tooltip or aria attributes),
many web pages do not provide such annotations.
To handle these cases, a model would have to iden-
tify the label of the text box based on logical or
visual contexts.

Other errors. Apart from the annotation noise,
occasionally multiple elements on the web page
satisfy the given command (e.g., “log in” can
match any “Sign In” button on the web page). In
these cases, the annotation usually gives the most
prominent element among the possible candidates.
To provide a natural interface for users, the model
should arguably learn to predict such prominent
elements instead of more obscure ones.

5 Related work and discussion

Mapping natural language to actions. Previ-
ous work on semantic parsing learns to perform
actions described by natural language utterances
in various environments. Examples of such ac-
tions include API calls (Young et al., 2013; Su
et al., 2017; Bordes and Weston, 2017), database
queries (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2007; Berant et al., 2013; Yih et al.,
2015), navigation (Artzi and Zettlemoyer, 2013;
Janner et al., 2018), and object manipulation
(Tellex et al., 2011; Andreas and Klein, 2015; Guu
et al., 2017; Fried et al., 2018).

For web pages and graphical user interfaces,
there are previous works on using natural language
to perform computations on web tables (Pasupat
and Liang, 2015; Zhong et al., 2017) and submit
web forms (Shi et al., 2017). Our task is similar to
previous works on interpreting instructions on user
interfaces (Branavan et al., 2009, 2010; Liu et al.,
2018). While their works focuses on learning from
distant supervision, we consider shallower interac-
tions but on a much broader domain.

Previous work also explores the reverse prob-
lem of generating natural language description of
objects (Vinyals et al., 2014; Karpathy and Fei-
Fei, 2015; Zarriaiß and Schlangen, 2017). We
hope that our dataset could also be useful for ex-
ploring the reverse task of describing actions on
web pages.

Reference games. In a reference game, the sys-
tem has to select the correct object referenced by
the given utterance (Frank and Goodman, 2012).
Previous work on reference games focuses on a
small number of objects with similar properties,
and applies pragmatics to handle ambiguous utter-
ance (Golland et al., 2010; Smith et al., 2013; Çe-
likyilmaz et al., 2014; Andreas and Klein, 2016;
Yu et al., 2017). Our task can be viewed as a refer-
ence game with several challenges: higher number
of objects, diverse object properties, and the need
to interpret objects based on their contexts.

Interacting with web pages. Automated scripts
are used to interact with web elements. While
most scripts reference elements with logical selec-
tors (e.g., CSS and XPath), there have been several
alternatives such as images (Yeh et al., 2009) and
simple natural language utterances (Soh, 2017).
Some other interfaces for navigating web pages in-
clude keystrokes (Spalteholz et al., 2008), speech
(Ashok et al., 2014), haptics (Yu et al., 2005), and
eye gaze (Kumar et al., 2007).

6 Conclusion

We presented a new task of grounding natural
language commands on open-ended and semi-
structured web pages. With different methods of
referencing elements, mixtures of textual and non-
textual element attributes, and the need to prop-
erly incorporate context, our task offers a chal-
lenging environment for language understanding
with great potential for real-world applications.

Our dataset and code are available at https:

//github.com/stanfordnlp/phrasenode.
Reproducible experiments are available
on the CodaLab platform at https:

//worksheets.codalab.org/worksheets/

0x0097f249cd944284a81af331093c3579/.
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Abstract

Grammatical error correction, like other ma-
chine learning tasks, greatly benefits from
large quantities of high quality training data,
which is typically expensive to produce. While
writing a program to automatically generate
realistic grammatical errors would be difficult,
one could learn the distribution of naturally-
occurring errors and attempt to introduce them
into other datasets. Initial work on induc-
ing errors in this way using statistical machine
translation has shown promise; we investigate
cheaply constructing synthetic samples, given
a small corpus of human-annotated data, using
an off-the-rack attentive sequence-to-sequence
model and a straight-forward post-processing
procedure. Our approach yields error-filled ar-
tificial data that helps a vanilla bi-directional
LSTM to outperform the previous state of the
art at grammatical error detection, and a pre-
viously introduced model to gain further im-
provements of over 5% F0.5 score. When at-
tempting to determine if a given sentence is
synthetic, a human annotator at best achieves
39.39 F1 score, indicating that our model gen-
erates mostly human-like instances.

1 Introduction

There is an ever-growing number of people learn-
ing English as a second language; providing them
with quick feedback to facilitate their learning is
a crucial, labour-intensive endeavour. Part of this
process is identifying and correcting grammati-
cal errors, and several computational techniques
have been developed to automate it (Rozovskaya
and Roth, 2014; Junczys-Dowmunt and Grund-
kiewicz, 2016). For example, given an erroneous
sentence “I wanted to goes to the beach”, the
grammatical error correction task is to output the
valid sentence “I wanted to go to the beach”.
The task can be cast as a two-stage process, de-
tection and correction, which can either be per-

formed sequentially (Yannakoudakis et al., 2017),
or jointly (Napoles and Callison-Burch, 2017).

Automated error correction performance is ar-
guably still too low for practical considera-
tion, perhaps limited by the amount of training
data (Rei et al., 2017). High quality annotations
are expensive to procure, and foreign language
learners and commercial entities may feel uncom-
fortable granting access to their data. Instead, one
could attempt to supplement existing manual an-
notations with synthetic instances. Such artificial
samples are beneficial only when they share struc-
ture with the true distribution from which human
errors are generated. Generative Adversarial Net-
works (Goodfellow et al., 2014) could be used for
this purpose, but they are difficult to train, and re-
quire a large collection of sentences that are incor-
rect. One might attempt self-training (McClosky
et al., 2006), where new instances are generated
by applying a trained model to unannotated data,
using high-confidence predictions as ground truth
labels. However, in such a scheme, the expectation
is that the unlabelled text already contains errors,
which is not usually the case for most freely avail-
able text such as Wikipedia articles as they strive
towards correctness.

In place of using machine translation (MT)
to correct grammatical mistakes (Yuan and Fe-
lice, 2013; Junczys-Dowmunt and Grundkiewicz,
2014; Yuan and Briscoe, 2016), one might con-
sider swapping the input and output streams, and
instead learn to induce errors into error-free text,
for the purpose of creating a synthetic training
dataset (Felice and Yuan, 2014). Recently, Rei
et al. (2017) used a statistical MT (SMT) sys-
tem to induce errors into error-free text. Build-
ing on this work, and leveraging recent advances
in neural MT (NMT), we used an off-the-shelf at-
tentive sequence-to-sequence model (Britz et al.,
2017), eliminating the need of specialised soft-
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ware such as a phrase-table generator, decoder,
and part-of-speech tagger. We created multi-
ple synthetic datasets from in-domain and out-
of-domain sources, and found that stochastic to-
ken sampling, and pruning redundant and low-
likelihood sentences, were helpful in generating
meaningful corruptions. Using the artificial sam-
ples thus generated, we improved upon detec-
tion results with simply a vanilla bi-directional
LSTM (Hochreiter and Schmidhuber, 1997). Us-
ing a more powerful model, we established new
state-of-the-art results, that improve on previously
published F0.5 scores by over 5%. Addition-
ally, we confirm that our generated instances are
human-like, as an annotator identifying generated
sentences achieved a maximum F1 score of 39.39.

2 Related work

In computer vision, images are blurred, rotated, or
otherwise deformed inexpensively to create new
training instances (Wang and Perez, 2017), be-
cause such manipulation does not significantly
alter the image semantics. Similar coarse pro-
cesses do not work in NLP since mutating even
a single letter or a word can change a sentence’s
meaning, or render it nonsensical. Nonetheless,
Vinyals et al. (2015) employed a kind of self-
training where they use noisy predictions for un-
labelled instances output by existing state-of-the-
art parsers as ground-truth labels, and improved
syntactic parsing performance. Sennrich et al.
(2016) synthesised training instances by round-
trip-translating a monolingual corpus with weaker
versions of an NMT learner, and used them to im-
prove the translation. Bouchard et al. (2016) de-
veloped an efficient algorithm to blend generated
and true data for improving generalisation.

Grammar correction is a well-studied task in
NLP, and early systems were rule-based pattern
recognisers (Macdonald, 1983) and dictionary-
based linguistic analysis engines (Richardson and
Braden-Harder, 1988). Later systems used sta-
tistical approaches, addressing specific kinds of
errors such as article insertion (Knight et al.,
1994) and spelling correction (Golding and Roth,
1996). Most recently, architectural innovations in
neural sequence labelling (Rei et al., 2016; Rei,
2017) raised error detection performance through
improved ability to process unknown words and
jointly learning a language model.

Early efforts for artificial error generation in-

cluded generating specific types of errors, such as
mass noun errors (Brockett et al., 2006) and arti-
cle errors (Rozovskaya and Roth, 2010), and lever-
aging linguistic information to identify error pat-
terns and transfer them onto grammatically correct
text (Foster and Andersen, 2009; Yuan and Felice,
2013). Imamura et al. (2012) investigated meth-
ods to generate pseudo-erroneous sentences for er-
ror correction in Japanese. Recently, Rei et al.
(2017) corrupted error-free text using SMT to cre-
ate training instances for error detection.

3 Neural error generation

To learn to introduce errors, we use an off-the-
shelf attentive sequence-to-sequence neural net-
work (Bahdanau et al., 2014). Given an input se-
quence, the encoder generates context vectors for
each token. Then, the attention mechanism and
the decoder work in tandem to emit a distribution
over the target vocabulary. At every decoder time-
step, the encoder context vectors are scored by the
attention mechanism, and a weighted sum is sup-
plied to the decoder, along with its propagated in-
ternal state and last output symbol.

Corruption: Tokens from this distribution are
sampled at every decoder time-step, either by
argmax (AM), which emits the most likely word,
or by a stochastic alternative such as temperature
sampling (TS) as argmax cannot be relied on
to generate rare words. A temperature parameter
⌧ > 0 sharpens or softens the distribution:

p̃i = f⌧ (p)i =
p

1
⌧
i

P
j p

1
⌧
j

where i are the components of the probability dis-
tribution corresponding to words in the vocabu-
lary. As one interpolates ⌧ from 0 to 1, the be-
haviour of p̃ transitions from argmax to p, control-
ling the diversity of the generated tokens.

The sentence generated by TS might be a low
probability sequence from the joint conditional
distribution P (v|u), where u is the input sentence
and v is the output sentence. One way around this
is to use beam search (BS), which checks the like-
lihood of every possible continuation of a sentence
fragment, and maintains a list of the n best trans-
lations generated up to the current time-step. AM,
TS, and BS are indicative of the trade-off between
increasing levels of model flexibility at the cost of
computation; we compare them to assess whether
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Original Corruption

She promised to turn over a new leaf. She promissed to turn over a new leaf.
At the moment I’m in Spain. During the moment I’m in Spain.

Table 1: Example sentences generated by our NMT pipeline.

Data augmentation strategy Model FCE (dev) FCE CoNLL1 CoNLL2

Rei et al. (2017) FCEPAT + EVPPAT SL – 47.8 19.5 28.5
Rei et al. (2017) FCESMT + EVPSMT SL – 48.4 19.7 28.4
Rei et al. (2017) FCESMT+PAT + EVPSMT+PAT SL – 49.1 21.9 30.1

None BiLSTM 47.9 43.6 16.6 24.3
FCETS BiLSTM 51.2 47.1 19.7 28.9
EVPBS BiLSTM 52.1 50.1 20.8 29.0
SWTS BiLSTM 51.5 50.6 24.2 31.7
FCEAM+TS+EVPAM+TS BiLSTM 52.3 50.4 22.1 30.8

None SL 52.5 48.2 17.4 25.5
FCETS SL 54.8 49.9 20.9 29.2
EVPBS SL 55.2 54.6 23.3 31.4
SWTS SL 53.8 52.7 26.8 34.3
FCEAM+TS+EVPAM+TS SL 56.9 54.6 25.1 33.0
FCEAM+TS+EVPAM+TS+SWAM+TS SL 56.5 55.6 28.3 35.5

Table 2: F0.5 scores on various tests contrasted with published results and unaugmented baseline models.

the additional computations were helpful in creat-
ing high-quality synthetic instances.

Post-processing: Original and corrupted sen-
tences are aligned at a word-level using Leven-
shtein distance. Using the minimal alignment,
words in the corrupted sentence are labelled cor-
rect, ‘c’, or incorrect, ‘i’, as follows:

If the word is not aligned with itself, then ‘i’.
Else, if following a gap, then ‘i’, as at this point
a human reader would notice that there is a word
missing in the sentence. Else, if it is the last word,
but it is not aligned to the last word of the source
sentence, then ‘i’, as a human would realise that
this sentence ends abruptly, Else, ‘c’.

These token-labelled corrupted sentences now
form an artificial dataset for training an error de-
tector. Duplicate instances and corrupted sen-
tences with more than 5 errors were dropped to
remove noise from the downstream training.

4 Experiments

We evaluated our approach on the First Certificate
of English (FCE) error detection dataset (Rei and
Yannakoudakis, 2016), as well as on two human-
annotated test sets (CoNLL1, CoNLL2) from the
CoNLL 2014 shared task (Ng et al., 2014). The
CoNLL data sets pose a unique challenge; as they
are different in style and domain from FCE, we

have no matching training data. We compared
the effect of different neural generation proce-
dures (AM, TS, BS) and contrasted the down-
stream performance of a bidirectional LSTM with
an elaborate sequence labeller.

4.1 Implementation details
NMT training and corruption: We minimally
modified the open source implementation1 of Britz
et al. (2017) to implement TS and BS.2 We trained
our NMT with a single-layered encoder and de-
coder with cell size 256, on the parallel cor-
pus version of FCE (Yannakoudakis et al., 2011),
with early stopping after the FCE development
set score dropped consistently for 20 epochs. We
introduced errors into three datasets: FCE it-
self (450K tokens), the English Vocabulary Pro-
file or EVP (270K tokens) and a subset of Simple
Wikipedia or SW (8.4M tokens); of these, FCE
and EVP were both used in artificial error genera-
tion via SMT and pattern extraction (PAT) by Rei
et al. (2017), enabling us to make a fair experi-
mental comparison. Ten corrupted versions using
each of AM, TS (⌧ = 0.05) and BS were sam-
pled for FCE and EVP corruptions, while one suf-
ficed for SW. The theoretical time complexity of
BS is O(bn) for each sentence, where b is num-

1 https://github.com/google/seq2seq
2 https://github.com/skasewa/wronging
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Figure 1: Improvements using three different meth-
ods of generation.

ber of candidates, and n is the maximum length
of a sentence. Empirically, BS with b = 11 took
a factor of 11.3 more time than AM. Examples of
generated errors are provided in Table 1.

Error detection: We compare two error detec-
tion models: a vanilla bi-directional LSTM (BiL-
STM) (Schuster and Paliwal, 1997), and the state-
of-the-art sequence labeller (SL) neural network
used by Rei et al. (2017). These models were
trained on the binary-labelled FCE training set
augmented with the corrupted instances. Wher-
ever no model is explicitly stated, the SL model
was used. During training, we alternate between
the annotated FCE dataset and the synthetic col-
lection. This alternating protocol prevents over-
fitting on FCE; once it shifts back, it reinforces
connections made from the helpful synthetic cor-
ruptions while forgetting about the noisy ones.

4.2 Results
The results for our baselines and data augmenta-
tion strategies can be found in Table 2. Augmented
with our NMT generated data, even our vanilla
downstream BiLSTM outperforms the SMT+PAT
artificial error augmentation approach of Rei et al.
(2017), indicating that our process better gener-
alises the error information in the source dataset.
Using the more powerful SL network bests the
previous state of the art by over 5% on the FCE
test. Most intriguingly, we note a significant im-
provement for the CoNLL tests using corruptions
from out-of-domain SW. Figure 2 illustrates how
we gain performance on these tests with increas-
ing amounts of corrupted SW, which does not hold
true for corrupted FCE. This shows that we were
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Figure 2: Training with increasing amounts of cor-
rupted data from FCE and SW.

able to induce useful errors into a corpus with a
large unseen vocabulary and different syntactic bi-
ases, and this in turn proved valuable for detect-
ing errors in a third domain, suggesting that our
method can transfer learned distributions across
stylistic genres.

Using EVP as a standard source, Figure 1 illus-
trates the variance of the different sampling meth-
ods. All generation methods yield corruptions that
significantly improve test performance, with in-
stances sampled by beam-search consistently out-
performing the alternatives.

5 Discussion

5.1 Error distribution
The original FCE dataset was annotated using the
error taxonomy specified in Nicholls (2003), and
contains 75 unique error codes. We annotated
samples of EVP corrupted by all three sampling
methods, at a reduced resolution, to compare the
distribution of errors across FCE and the synthetic
corpora. These are presented in Table 3.

At a high level, NMT generates errors more of-
ten among more common parts-of-speech, favour-
ing errors in verbs and nouns, rather than in ad-
verbs and conjunctions. It did not make spelling
errors as often as in the source dataset; this
is likely because it only observed the specific
spelling errors present in FCE, and as the vocab-
ulary is restricted to that dataset, it does not en-
counter those words as frequently in EVP, and thus
rarely makes the same spelling mistakes.

Additionally, the differences in these distribu-
tions can partially be attributed to the implicit dif-
ferences between us and the annotators of FCE.
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Spelling FCE AM TS BS

Spelling errors 11 1 1 4

Part-of-speech FCE AM TS BS

Verb 34 16 26 16
Preposition 18 16 10 14
Determiner 16 7 6 10
Noun 13 36 35 43
Pronoun 7 3 3 1
Adverb 5 5 3 5
Adjective 3 15 16 12
Conjunction 2 2 2 1
Quantifier 1 0 0 0

Remedy Type FCE AM TS BS

Replacement 49 35 34 32
Inclusion 23 30 27 35
Removal 14 33 36 32
Word form 9 2 2 1
Word order 5 0 0 0

Table 3: Error distribution across FCE and manu-
ally annotated samples of artificial data. Spelling
errors are a % of all errors, while Part-of-speech,
and Remedy Type are compared within their own
categories to sum to 100%.

5.2 Comparison with human errors

To check if the synthetic instances passed for
human-like, we mixed 50 generated sentences
among an equal number of actual ungrammatical
instances from FCE-dev and tasked a human eval-
uator to identify the artificial statements, in a sim-
ple Turing-style test. We created three such sets,
one for each of our sampling techniques, and the
test subject aimed to identify synthetic samples
with high confidence. Results of this test are pre-
sented in Table 4.

The high precision but low recall scores suggest
that while it is still possible to spot some corrup-
tions that are quite clearly artificial, the bulk of our
samples do not betray their synthetic nature and
are indistinguishable from naturally occurring er-
roneous sentences. In order to fairly compare our
work with earlier results, we intended to conduct
such a test for sentences generated by the SMT
of Rei et al. (2017). Unfortunately, we were only
able to source corruptions of FCE-train via this
method; therefore, we decided not to perform this
test as its results cannot be compared to ours.

AM TS BS

Precision 81.25 63.63 50.00
Recall 26.00 28.00 14.00
F1 39.39 38.89 22.22

Table 4: Results of a Turing-style test, where a sub-
ject was asked to distinguish between real and fake
sentences, sampled from each of the different gen-
erated corpora.

6 Conclusions and future work

We presented a novel data augmentation tech-
nique for grammatical error detection using neu-
ral machine translation to learn the distribution
of language-learner errors, and induce such er-
rors into grammatically correct text. We explored
several different variants of sampling to improve
the quality of our synthetic errors. After creat-
ing artificial training instances with an off-the-
shelf NMT, we bettered previous state-of-the-art
results on the canonical test with even a basic BiL-
STM, and established a new state of the art using
a stronger model. Additionally, we demonstrated
that we were able to leverage corruptions of an
out-of-domain dataset to set new benchmarks on
separate, also out-of-domain tests, without specif-
ically optimising for either.

Our work indicates that neural error genera-
tion warrants further investigation with different
datasets and architectures, both for error detec-
tion and error correction. Among possible fu-
ture work is using generative adversarial networks
as corruption engines, and developing better se-
quence alignment methods. Some preliminary re-
sults with simple corruptions using word substitu-
tion and word dropout (Iyyer et al., 2015) appear
to be promising, and may feature as components of
a future corruption system. Finally, one could use
such artificial error-prone corpora as source text
for self-training an error detection system.
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Abstract
Recently introduced neural network parsers al-
low for new approaches to circumvent data
sparsity issues by modeling character level in-
formation and by exploiting raw data in a
semi-supervised setting. Data sparsity is es-
pecially prevailing when transferring to non-
standard domains. In this setting, lexical nor-
malization has often been used in the past to
circumvent data sparsity. In this paper, we in-
vestigate whether these new neural approaches
provide similar functionality as lexical nor-
malization, or whether they are complemen-
tary.
We provide experimental results which show
that a separate normalization component im-
proves performance of a neural network parser
even if it has access to character level informa-
tion as well as external word embeddings. Fur-
ther improvements are obtained by a straight-
forward but novel approach in which the top-N
best candidates provided by the normalization
component are available to the parser.

1 Introduction
Recently, neural network dependency
parsers (Chen and Manning, 2014; Dyer et al.,
2015; Kiperwasser and Goldberg, 2016) obtained
state-of-the-art performance for dependency
parsing. These parsers incorporate character level
information (de Lhoneux et al., 2017a; Ballesteros
et al., 2015; Nguyen et al., 2017) and can more
easily exploit raw text in a semi-supervised setup.
These new methods are especially beneficial
for words not occurring in the training data. In
practice, such unseen words often are spelling
mistakes, or alternative spellings of known words.
In more classical parsing models, these unseen
words were usually clustered using ad-hoc rules.
For non-standard domains, the number of unseen
words is much larger. To minimize the degra-
dation in performance, lexical normalization is

often used. Lexical normalization is the task of
converting non-standard input to a more standard
format. Previous work has shown that this is
beneficial, in particular for parsing social media
data (Foster, 2010; Zhang et al., 2013; van der
Goot and van Noord, 2017b).

This leads to the question whether normaliza-
tion is indeed no longer required for these mod-
ern character-based neural network parsers, or
whether normalization is capable of solving prob-
lems beyond the scope of this type of neural net-
work parsers.

Our main contributions are:

• We show that using normalization as pre-
processing improves parser performance for
non-standard language, even if pre-trained
embeddings and character level information
are used.

• We propose a novel technique to exploit the
top-N candidates provided by the normaliza-
tion component, and we show that this tech-
nique leads to a further increase in parser per-
formance.

• A treebank containing non-standard language
is created to evaluate the effect of normal-
ization on parser performance. The treebank
consists of 10,005 tokens annotated with lex-
ical normalization and Universal Dependen-
cies (Nivre et al., 2017). The treebank has
been made publicly available.

2 Related Work

Early work on parser adaptation focused on
relatively canonical domains, like biomedical
data (McClosky and Charniak, 2008). More re-
cently, there has been an increasing interest in
parsing of the notoriously noisy domain of social
media. A lot of previous work is orthogonal to our
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Original word new pix comming tomoroe
Cand. 1 (p1) new (0.95) pix (0.79) coming (0.57) tomorrow (0.54)
Cand. 2 (p2) news (0.03) selfies (0.08) comming (0.43) tomoroe (0.39)
Cand. 3 (p3) knew (0.01) pictures (0.06) combing (<0.01) tomorrow’s (0.02)

Table 1: Output of the normalization model for the example sentence “new pix comming tomoroe” including
candidate probabilities. Only the top-3 candidates are shown here.

approach, as it focuses on adaptation of the train-
ing data (Foster et al., 2011; Khan et al., 2013;
Kong et al., 2014; Blodgett et al., 2018). In the
remainder of this section we will shortly review
work which evaluated the effect of normalization
on dependency parsing.

Zhang et al. (2013) tune a normalization model
for the parsing task, and show performance im-
provement on a silver treebank obtained from
manually normalized data. Daiber and van der
Goot (2016) use an existing normalization model
as pre-processing for a graph-based dependency
parser, and show a small but significant perfor-
mance improvement. In the shared task of pars-
ing the web (Petrov and McDonald, 2012) held
at SANCL 2012, some teams used a simple rule-
based normalization, but the effect on final perfor-
mance remained untested.

Baldwin and Li (2015) examined the theoretical
impact of different normalization actions on pars-
ing performance. To this end they use manual nor-
malization. They show that edits beyond the word
level can also be crucial for parsing (e.g. inser-
tion of copulas and subjects). However, these are
difficult to obtain automatically.

Note that all this previous work, except
for Blodgett et al. (2018), is based on traditional
feature-based dependency parsers, whereas we fo-
cus on neural network parsing.

3 Method

In this section we will first shortly review the two
models we will combine: a lexical normalization
model and a neural network parser. Then we de-
scribe how they can be combined.

3.1 Normalization
In this work we use an existing normalization
model: MoNoise (van der Goot and van Noord,
2017a)1. This model is based on the observation
that normalization requires a variety of different

1https://bitbucket.org/robvanderg/
monoise

word1
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~t1 ~c1 ~e1
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LSTM b

word2

~v2
~t2 ~c2 ~e2

LSTM f
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word3

~v3
~t3 ~c3 ~e3

LSTM f

LSTM b

Figure 1: Overview of the conversion of input words to
vectors which are used in the shift-reduce algorithm.

replacement actions. For these different actions,
different modules are used to generate candidates,
including: the Aspell spell checker2, word embed-
dings and a lookup list generated from the training
data. Features from these generation modules are
complemented with N-gram features from canon-
ical data and non-canonical data. A random forest
classifier is used to score and rank the candidates.
In this work, we use the top-N candidates and con-
vert the confidence scores of the classifier to prob-
abilities. An example of this output is shown in
Table 1.

We train MoNoise on 2,577 tweets annotated
with normalization by Li and Liu (2014), which
only contains word-word replacements. In our ini-
tal experiments, we noted that the normalization
model wrongfully normalized some words due to
the different tokenization in the treebank (e.g. “ca
n’t”), because these do not occur in the normal-
ization data. We manually created a list of excep-
tions, which are not considered for normalization
process.

3.2 Neural Network Parser

As a starting point, we use the shift-reduce UU-
Parser 2.0 (de Lhoneux et al., 2017b; Kiper-
wasser and Goldberg, 2016). This parser uses the
Arc-Hybrid Transition system (Kuhlmann et al.,
2011). Words are first converted to continu-

2www.aspell.net
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ous vectors, which are then processed through a
Bidirectional Long-Short Term Memory network
(BiLSTM) (Graves and Schmidhuber, 2005) be-
fore they are passed on to the parsing algorithm.
The decision whether to shift, reduce or swap is
made by a multi-layer perceptron with one hid-
den layer. The BiLSTM is trained jointly with the
parsing objective, so that the vectors are optimized
for the parsing task.

Figure 1 shows an overview of how the input
words are converted to vectors which are used in
the shift-reduce algorithm. We denote the vec-
tor used as input to the BiLSTM for word i by
~vi. This vector is a concatenation of three vec-
tors which are derived from the input word. ~ti
is optimized on the training data, ~ci is the result
of a separate BiLSTM ran over the characters of
word i and ~ei is the external vector; it is obtained
from external embeddings which are trained on
huge amounts of raw texts. In this work we use
the same word embeddings as used by the nor-
malization model (van der Goot and van Noord,
2017a), which are trained on 760,744,676 tweets
using word2vec (Mikolov et al., 2013).

3.3 Adaptation Strategy

Notation We use ~w0...~wn to represent the vec-
tors of the original words of a sentence. The
vectors of the normalization candidates are repre-
sented by ~nij , where i is the index of the original
word in the sentence, and j is the rank of the can-
didate. The corresponding probability as given by
the normalization model is pij . We use ~gi for the
vector of the manual normalization of word i

Our baseline setup is to simply use the vector of
the original word:

ORIG: ~vi = ~wi

The most straightforward use of normalization
is to use the best normalization sequence as input
to the parser. In our setup, this means that we use
the vector of the best normalization candidate for
each position:

NORM: ~vi = ~ni0

To give more information to the parser, we will
exploit the top-n candidates of the normalization
model. The vectors of the top-N candidates are
merged using linear interpolation:

INTEGRATED: ~vi =
nX

j=0

pij ⇤ ~nij

An interesting property of this integration ap-
proach is that it does not influence the size of the
search space, so the effect on complexity of the
parsing algorithm is negligible. The only extra
runtime compared to ORIG originates from run-
ning the normalization model.

Finally, we include a theoretical upperbound of
the effect of normalization, which uses manually
annotated normalization:

GOLD: ~vi = ~gi

4 Data

To test the effect of normalization, we need a tree-
bank containing non-standard language, prefer-
ably with a corresponding training treebank from
a more standard domain. Since the existing tree-
banks are not noisy enough (Foster et al., 2011;
Kaljahi et al., 2015)3 or do not have a correspond-
ing training treebank in the same annotation for-
mat (Kong et al., 2014; Daiber and van der Goot,
2016) we annotate a small treebank for develop-
ment and testing purposes4. We choose to use
the Universal Dependencies 2.1 annotation for-
mat (Nivre et al., 2017), since the annotation ef-
forts on the the English Web Treebank (Silveira
et al., 2014) provide suitable training data. This
treebank already contains web specific phenomena
like URL’s, E-Mail addresses and emoticons, so
we do not have to create special annotation guide-
lines and the parser can learn these phenomena
from the training data.

Our treebank consists of tweets, taken from Li
and Liu (2015). The tweets in this dataset origi-
nate from two sources: the LexNorm corpus (Han
and Baldwin, 2011), which was originally anno-
tated with normalization, and a corpus originally
annotated with POS tags (Owoputi et al., 2013).
Li and Liu (2015) complemented this annotation
for both datasets, so that they both have a normal-
ization layer and a POS layer. To avoid overfit-
ting on a specific filtering or time-frame we use the
data collected by Owoputi et al. (2013) as devel-
opment data and LexNorm as test data. We only
keep the tweets which are still available on Twit-
ter, resulting in a dataset of 305 development and

3Kaljahi et al. (2015) only normalize 3.6%, and we man-
ually normalized the development data from Foster et al.
(2011), were even less words were in need of normalization.

4It should be noted that two other suitable Twitter tree-
banks in the UD format where created in parallel to our tree-
bank (Liu et al., 2018; Blodgett et al., 2018), which were re-
leased after submission of this paper.

4986



327 test tweets (10,005 tokens in total). It should
be noted that these corpora were filtered to contain
domain-specific phenomena and non-standard lan-
guage, and thus provide an ideal testbed for our ex-
periments but are not representative of the whole
Twitter domain.

Tokenization and normalization are first re-
annotated, because the Universal Dependencies
format requires treebank specific tokenization. To
avoid parser bias, dependency relations are anno-
tated from scratch. For more details on annotation
decisions for domain-specific structures, we refer
to the appendix.

MoNoise reaches 90% accuracy on the word
level for the normalization task for our develop-
ment data. In this dataset, 18% of all words are
in need of normalization, so a baseline which sim-
ply copies the original words would reach an ac-
curacy of 82%. The most common mistakes made
by MoNoise are due to treebank specific normal-
izations, like ‘na’ 7! go. However, these also oc-
cur in the training treebank, so normalization is
not crucial.

5 Evaluation

In this section, we first use the development data to
compare the effect of the different normalization
settings with the use of character level information
and external embeddings. Secondly, we confirm
our main results on the test set. Thirdly, we test
if our model is sensitive to over-normalization on
standard data. Finally, we perform some analysis
to examine why normalization is beneficial. All
scores reported in this section are obtained using
the CoNLL 2017 evaluation script (Zeman et al.,
2017). In Section 5.1 the results are the average
over ten runs, using a different seed for the BiL-
STM and the shuffling of the training data. In the
remainder of this section, the best model is used to
simplify interpretation. The parser is trained using
default settings (de Lhoneux et al., 2017b).

In our initial experiments, it became apparent
that the parser often considered a username men-
tion or retweet in the beginning of the tweet as
root, resulting in a propagation of errors. Be-
cause we want to exclude any influences from this
simple construction, we added an heuristic to our
parser which exclude usernames and retweets in
the beginning of a tweet, and connects them to the
root after parsing. We use this heuristic in all ex-
periments.

Figure 2: The effect of normalization on LAS for the
different parsing models on the development data.

5.1 Normalization Strategies

The results of the different parser and normaliza-
tion settings on the development data are plotted
in Figure 2. Using external embeddings (~e) re-
sults in a much bigger performance improvement
compared to using character level information (~c).
Adding character level embeddings on top of ex-
ternal embeddings only leads to a very minor im-
provement. This can partly be explained by the
coverage of 98.4% of the embeddings on the de-
velopment data.

In the settings without external embeddings,
the direct use of normalization (NORM) results in
a improvement of approximately 3 LAS points.
However, when external embeddings are included
the improvement becomes more than twice as
small, indicating that the approaches target some
common issues, but are also complementary to
each other. When external embeddings and nor-
malization are already used, the character level
embeddings slightly harm performance. Integra-
tion of the normalization (INTEGRATED) consis-
tently results in a slightly higher LAS compared
to direct normalization. Interestingly, gold nor-
malization still performs substantially better com-
pared to automatic normalization.

5.2 Test Data

Table 2 shows the results of the parser with exter-
nal embeddings and character embeddings (using
the best seed from the development data), for the
different normalization strategies on the test data.
These results confirm the observations on the de-
velopment data: normalization helps on top of ex-
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Model UAS LAS

ORIG 69.63 59.64
NORM 70.51 61.76*

INTEGRATED 70.62 62.30*

GOLD 70.71 62.33

Table 2: LAS scores for the Twitter test data.
*Statistically significant compared to the previous row
at P < 0.05 using a paired t-test.

ternal embeddings, and integrating normalization
results in an even higher score. In contrast to the
development data, the integrated approach almost
reaches the theoretical upper bound of gold nor-
malization on the test data. However, since this is
only the case on the test data, not too strong con-
clusions can be drawn from this result. The perfor-
mance difference between the datasets is probably
partly due to the differences in filtering5. Interest-
ingly, integrating normalization is especially ben-
eficial for the LAS, meaning that it is most useful
for choosing the type of relation.

5.3 Robustness
As stated in Section 4, our development and test
data is filtered to be very non-standard. However,
it is undesirable to have a parser that performs bad
on more standard texts. Hence, we also tested per-
formance on the English Web Treebank develop-
ment set. This dataset also consists of data from
the web, however, it contains much less words in
need of normalization; MoNoise normalizes less
than 0.5% of all words. We compared the per-
formance using no normalization (ORIG) versus
our INTEGRATED approach, which showed a very
minor performance improvement from 81.42 to
81.43 LAS. This is a direct effect of the normaliza-
tion model giving high probabilities to the original
words on this more canonical data.

5.4 Analysis
To gain insights into which constructions are
parsed better when using normalization, we com-
pared the predictions of the vanilla parser with our
NORM and INTEGRATED methods on the develop-
ment data. Starting with NORM, the first observa-
tion is that the incoming arcs of the words which
are normalized are responsible for 44.1% of all

5Even when using the best seed on the development data,
INTEGRATED results in two-thirds of the performance im-
provement compared to GOLD.

improvements, whereas the outgoing arcs are re-
sponsible for 17.6% of al improvements. So, the
direct context of the normalized words is respon-
sible for only 61.7% of all improvements. Consid-
ering the type of syntactic constructions for which
parsing improved, it is hard to identify trends, be-
cause the improvements are based on the output of
the normalization model, which normalizes a wide
variety of words. One clearly influential effect of
using normalization, was that the parser improved
upon finding the root. When multiple unknown
words occured in the beginning of a sentence, the
vanilla parser often failed at identifying the root,
which improved considerably after normalizing.

For the INTEGRATED method, almost all the im-
provements made by NORM remained. On top
of these, some additional improvements where
made. Manual inspection revealed that these im-
provements often originated from a non-standard
word, for which the correct normalization was
ranked high. This then leads to improvements for
the non-standard word as well as its context. In
some cases, even incorrect normalization candi-
dates lead to performance improvements. For ex-
ample for ‘Gma’, where the normalization model
ranked the original word first, but ‘mom’ sec-
ond. Even though ‘grandma’ is the correct nor-
malization, ‘mom’ occurs in similar contexts, and
is much easier for the parser to process.

6 Conclusion

We showed that normalization can improve perfor-
mance of a neural network parser, even when mak-
ing use of character level information and external
word embeddings. Integrating multiple normal-
ization candidates into the parser leads to an even
larger performance increase. Normalization has
shown to be complementary to external embed-
dings, in contrast to character embeddings, which
add no additional information. Our experiments
revealed that our approach is robust, and it does
not harm performance on more canonical data.
However, when comparing our approach to the
theoretical upperbound of using gold normaliza-
tion, we saw that on different datasets the perfor-
mance gain is of a different magnitude. Further-
more, we release a dataset containing 636 tweets
annotated with both normalization and Universal
Dependencies. The data and all code to reproduce
the results in this paper is available at: https://
bitbucket.org/robvanderg/normpar
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Abstract

Previous work has suggested that parameter
sharing between transition-based neural de-
pendency parsers for related languages can
lead to better performance, but there is no
consensus on what parameters to share. We
present an evaluation of 27 different parame-
ter sharing strategies across 10 languages, rep-
resenting five pairs of related languages, each
pair from a different language family. We find
that sharing transition classifier parameters al-
ways helps, whereas the usefulness of shar-
ing word and/or character LSTM parameters
varies. Based on this result, we propose an
architecture where the transition classifier is
shared, and the sharing of word and charac-
ter parameters is controlled by a parameter that
can be tuned on validation data. This model is
linguistically motivated and obtains significant
improvements over a mono-lingually trained
baseline. We also find that sharing transi-
tion classifier parameters helps when training
a parser on unrelated language pairs, but we
find that, in the case of unrelated languages,
sharing too many parameters does not help.

1 Introduction

The idea of sharing parameters between parsers of
related languages goes back to early work in cross-
lingual adaptation (Zeman and Resnik, 2008), and
the idea has recently received a lot of interest in
the context of neural dependency parsers (Duong
et al., 2015; Ammar et al., 2016; Susanto and Lu,
2017). Modern neural dependency parsers, how-
ever, use different sets of parameters for represen-
tation and scoring, and it is not clear what param-
eters it is best to share.

The Universal Dependencies (UD) project
(Nivre et al., 2016), which is seeking to harmonize
the annotation of dependency treebanks across

⇤ Work carried out during a stay at the University of
Copenhagen.

languages, has seen a steady increase in languages
that have a treebank in a common standard. Many
of these languages are low resource and have small
UD treebanks. It seems interesting to find out
ways to leverage the wealth of information con-
tained in these treebanks, especially for low re-
source languages.

In this paper, we evaluate 27 different pa-
rameter sharing strategies. We focus on a par-
ticular transition-based neural dependency parser
(de Lhoneux et al., 2017a,b), which performs close
to the state of the art. This parser has three sets
of parameters: i) the parameters of a character-
based one-layer, bidirectional LSTM; ii) the pa-
rameters of a word-based two-layer, bidirectional
LSTM; iii) and the parameters of a multi-layered
perceptron (MLP) with a single hidden layer. The
two first sets are for learning to represent configu-
rations; the third for selecting the next transition.
We consider all combinations of sharing these sets
of parameters; and in addition, we consider two
ways of sharing each set of parameters, namely
with and without a prefixed language embedding.
The latter enables partial, soft sharing. In sum, we
consider all 33 combinations of no sharing, hard
sharing and soft sharing of the three sets of pa-
rameters. We evaluate the 27 multilingual parsers
on 10 languages from the UD project, represent-
ing five pairs of related languages, each pair from
a different language family. We repeat the exper-
iment with the same set of languages, but using
pairs of unrelated languages.

Contributions This paper is, to the best of our
knowledge, the first to evaluate different parame-
ter sharing strategies for exploiting synergies be-
tween neural dependency parsers of related lan-
guages. We evaluate the different strategies on
10 languages, representing five different language
families. We find that sharing (MLP) transition
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Lang Tokens Family Word order

ar 208,932 Semitic VSO
he 161,685 Semitic SVO
et 60,393 Finnic SVO
fi 67,258 Finnic SVO
hr 109,965 Slavic SVO
ru 90,170 Slavic SVO
it 113,825 Romance SVO
es 154,844 Romance SVO
nl 75,796 Germanic No dom. order
no 76,622 Germanic SVO

Table 1: Dataset characteristics

classifier parameters always helps, whereas the
usefulness of sharing LSTM parameters depends
on the language pair. This reflects the intuition that
the transition classifier learns hierarchical struc-
tures that are likely to transfer across languages,
based on parser configurations that abstract away
from several linguistic differences. The similarity
of the input to character- and word-level LSTMs,
on the other hand, will vary depending on the
phonological and morphosyntactic similarity of
the languages in question. Motivated by this ob-
servation, we propose an architecture with hard-
wired transition classifier parameter sharing, but in
which sharing of LSTM parameters is tuned. The
novel architecture significantly outperforms our
monolingual baseline on our set of 10 languages.
We additionally investigate parameter sharing of
unrelated languages.

2 The Uppsala dependency parser

The Uppsala parser (de Lhoneux et al., 2017a,b)
consists of three sets of parameters; the param-
eters of the character-based LSTM, those of the
word-based LSTM, and the parameters of the
MLP that predicts transitions. The character-based
LSTM produces representations for the word-
based LSTM, which produces representations for
the MLP. The Uppsala parser is a transition-based
parser (Kiperwasser and Goldberg, 2016), adapted
to the Universal Dependencies (UD) scheme,1

and using the arc-hybrid transition system from
Kuhlmann et al. (2011) extended with a SWAP
transition and a static-dynamic oracle, as de-
scribed in de Lhoneux et al. (2017b). The SWAP

1http://universaldependencies.org/

transition is used to generate non-projective de-
pendency trees (Nivre, 2009).

For an input sentence of length n with words
w1, . . . , wn, the parser creates a sequence of vec-
tors x1:n, where the vector xi representing wi is
the concatenation of a word embedding and the fi-
nal state of the character-based LSTM after pro-
cessing the characters of wi. The character vector
ch(wi) is obtained by running a (bi-directional)
LSTM over the characters chj (1  j  m)
of wi. Each input element is represented by the
word-level, bi-directional LSTM, as a vector vi =
BILSTM(x1:n, i). For each configuration, the fea-
ture extractor concatenates the LSTM representa-
tions of core elements from the stack and buffer.
Both the embeddings and the LSTMs are trained
together with the model.

A configuration c is represented by a feature
function �(·) over a subset of its elements. For
each configuration, transitions are scored by a
classifier, in this case an MLP, and �(·) is a con-
catenation of BiLSTM vectors on top of the stack
and the beginning of the buffer. The MLP scores
transitions together with the arc labels for transi-
tions that involve adding an arc. In practice, we
use two interpolated MLPs, one which only scores
the transitions, and one which scores transitions
together with the arc label. For simplicity, we re-
fer to that interpolated MLP as the MLP.

3 Parameter sharing

Since our parser has three basic sets of model pa-
rameters, we consider sharing all combinations of
those three sets. We also introduce two ways of
sharing, namely, with or without the addition of a
vector representing the language. This language
embedding enables the model, in theory, to learn
what to share between the two languages in ques-
tion. Since for all three model parameter sets, we
now have three options – not sharing, sharing, or
sharing in the context of a language embedding –
we are left with 33 = 27 parameter sharing strate-
gies; see Table 2.

In the setting where we do not share (7) word
parameters (W), we construct a different word
lookup table and a different word-level BiLSTM
for each language. In the setting where we do
hard parameter sharing ( ) of word parameters,
we only construct one lookup table and one word
BiLSTM for the languages involved. In the set-
ting where we do soft sharing (ID) of word pa-
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Model C W S ar he es it et fi nl no hr ru AV

MONO 76.3 80.2 83.7 83.3 70.4 70.8 77.3 80.8 76.8 82.3 78.2

LANGUAGE-BEST 76.6 80.6 84.4 84.8 72.8 72.9 79.6 82.1 78.0 82.9 79.5

BEST 7 ID 76.3 80.3 84.2 84.5 72.1 72.5 78.8 81.4 77.6 82.8 79.1

CHAR 7 7 76.4 80.3 84.3 84.0 72.3 71.0 78.3 81.3 77.0 82.3 78.7
WORD 7 7 76.3 79.9 83.9 84.4 72.4 71.3 77.4 80.7 76.9 82.5 78.6
STATE 7 7 76.6 80.3 84.0 83.7 71.5 72.9 78.3 81.5 77.4 82.8 78.9

...
ALL 76.2 80.1 84.0 84.2 72.1 71.4 78.7 81.1 77.0 82.5 78.7
SOFT ID ID ID 76.3 79.9 84.1 84.4 72.1 71.3 79.6 81.4 77.1 82.5 78.9

Table 2: Performance on development data (LAS; in %) across select sharing strategies. MONO is our single-task baseline;
LANGUAGE-BEST is using the best sharing strategy for each language (as evaluated on development data); BEST is the overall
best sharing strategy, across languages; CHAR shares only the character-based LSTM parameters; WORD shares only the word-
based LSTM parameters; ALL shares all parameters. refers to hard sharing, ID refers to soft sharing, using an embedding
of the language ID and 7 refers to not sharing.

rameters, we share those parameters, and in ad-
dition, concatenate a language embedding li rep-
resenting the language of word wi to the vector
of the word wi at the input of the word BiLSTM:
xi = e(wi) � ch(wi) � li. Similarly for character
parameters (C), we construct a different character
BiLSTM and one character lookup for each lan-
guage (7), create those for all languages and share
them ( ) or share them and concatenate a (ran-
domly initialized) language embedding li repre-
senting the language of word wi at the input of the
character BiLSTM (ID): chj = e(chj) � li. At the
level of configuration or parser states (S), we either
construct a different MLP for each language (7),
share the MLP ( ) or share it and concatenate a
language embedding li representing the language
of word wi to the vector representing the configu-
ration, at the input of the MLP (ID): c = �(·) � li.

4 Experiments

Language pairs We use 10 languages in our ex-
periments, representing five language pairs from
different language families. Our two SEMITIC lan-
guages are Arabic and Hebrew. These two lan-
guages differ in that Arabic tends to favour VSO
word order whereas Hebrew tends to use SVO, but
are similar in their rich transfixing morphology.
Our two FINNO-UGRIC languages are Estonian
and Finnish. These two languages differ in that
Estonian no longer has vowel harmony, but share
a rich agglutinative morphology. Our two SLAVIC
languages are Croatian and Russian. These two

languages differ in that Croatian uses gender in
plural nouns, but otherwise share their rich inflec-
tional morphology. Our two ROMANCE languages
are Italian and Spanish. These two languages dif-
fer in that Italian uses a possessive adjective with
a definite article, but share a fairly strict SVO or-
der. Finally, our two GERMANIC languages are
Dutch and Norwegian. These two languages dif-
fer in morphological complexity, but share word
ordering features to some extent.

Datasets For all 10 languages, we use treebanks
from the Universal Dependencies project. The
dataset characteristics are listed in Table 1. To
keep the results comparable across language pairs,
we down-sample the training set to the size of the
smallest of our languages, Hebrew: we randomly
sample 5000 sentences for each training set. Note
that while this setting makes the experiment some-
what artificial and will probably overestimate the
benefits that can be obtained from sharing param-
eters when using larger treebanks, we find it in-
teresting to see how much low resource languages
can benefit from parameter sharing, as explained
in the introduction.

Baselines and systems This is an evaluation pa-
per, and our results are intended to explore a space
of sharing strategies to find better ways of shar-
ing parameters between dependency parsers of
related languages. Our baseline is the Uppsala
parser trained monolingually. Our systems are
parsers trained bilingually by language pair where
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we share subsets of parameters between the lan-
guages in the pair, and we report on what sharing
strategies seem superior across the 10 languages
that we consider.

Implementation details A flexible implementa-
tion of parameter strategies for the Uppsala parser
was implemented in Dynet.2 We make the code
publicly available.3

5 Results and discussion

Our results on development sets are presented in
Table 2. We use labeled attachment score (LAS)
as our metric for evaluating parsers. Table 2
presents numbers for a select subset of the 27 shar-
ing strategies. The other results can be found in the
supplementary material. Our main observations
are: (i) that, generally, and as observed in previous
work, multi-task learning helps: all different shar-
ing strategies are on average better than the mono-
lingual baselines, with minor (0.16 LAS points) to
major (0.86 LAS points) average improvements;
and (ii) that sharing the MLP seems to be overall
a better strategy than not sharing it: the 10 best
strategies share the MLP. Whereas the usefulness
of sharing the MLP seems to be quite robust across
language pairs, the usefulness of sharing word and
character parameters seems more dependent on
the language pairs. This reflects the linguistic in-
tuition that character- and word-level LSTMs are
highly sensitive to phonological and morphosyn-
tactic differences such as word order, whereas the
MLP learns to predict less idiosyncratic, hierar-
chical relations from relatively abstract represen-
tations of parser configurations.

Based on this result, we propose a model
(OURS) where the MLP is shared and the sharing
of word and character parameters is controlled by
a parameter that can be set on validation data.
Results are given in Table 3. We obtain a 0.6 LAS
improvement on average and our proposed model
is significantly better than the monolingual base-
line with p < 0.01. Significance testing is per-
formed using a randomization test, with the script
from the CoNLL 2017 Shared Task.4

2https://github.com/clab/dynet
3https://github.com/coastalcph/

uuparser
4https://github.com/udapi/

udapi-python/blob/master/udapi/block/
eval/conll17.py

W C OURS MONO �

ar 7 7 77.2 77.1 0.1
es ID 84.3 83.8 0.5
et 7 ID 71.4 70.5 0.8
fi 7 7 71.6 71.6 0.1
he 7 80.0 79.8 0.3
hr 7 77.9 78.0 -0.1
it ID 85.0 84.0 1.0
nl ID 75.5 74.1 1.4
no 7 ID 81.1 80.1 1.0
ru 7 83.5 82.7 0.8

av. 78.8 78.2 0.6

Table 3: LAS on the test sets of the best of 9 sharing strate-
gies and the monolingual baseline. � is the difference be-
tween OURS AND MONO.

6 Unrelated languages

We repeated the same set of experiments with un-
related language pairs. We hypothesise that pa-
rameter sharing between unrelated language pairs
will be less useful in general than with related lan-
guage pairs. However, it can still be useful, it has
been shown previously that unrelated languages
can benefit from being trained jointly. For exam-
ple, Lynn et al. (2014) have shown that Indonesian
was surprisingly particularly useful for Irish.

The results are presented in Table 4. The ta-
ble only presents part of the results, the rest can
be found in the supplementary material. As ex-
pected, there is much less to be gained from shar-
ing parameters between unrelated pairs. However,
it is possible to improve the monolingual baseline
by sharing some of the parameters. In general,
sharing the MLP is still a helpful thing to do. It
is most helpful to share the MLP and optionally
one of the two other sets of parameters. Results are
close to the monolingual baseline when everything
is shared. Sharing word and character parameters
but not the MLP hurts accuracy compared to the
monolingual baseline.

7 Related work

Previous work has shown that sharing parame-
ters between dependency parsers for related lan-
guages can lead to improvements (Duong et al.,
2015; Ammar et al., 2016; Susanto and Lu, 2017).
Smith et al. (2018) recently found that sharing pa-
rameters using the same parser as in this paper
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Model C W S he no fi hr ru es it et nl ar AV

MONO 80.2 80.8 70.8 76.8 82.3 83.7 83.3 70.4 77.3 76.3 78.2
LANGUAGE-BEST 80.5 81.5 71.9 77.6 82.9 84.0 84.3 72.5 78.7 76.5 78.9

BEST 7 7 80.3 81.5 71.9 77.6 82.7 84.0 83.8 72.5 78.7 76.3 78.9
WORST ID ID 7 79.8 80.6 69.2 76.7 81.4 83.8 83.2 69.4 76.6 76.0 77.7
CHAR 7 7 80.1 80.9 71.4 76.8 82.9 83.9 84.3 70.9 78.0 76.5 78.6
WORD 7 7 79.6 80.9 71.9 76.9 82.2 83.7 83.8 70.9 77.0 76.4 78.3
ALL 80.5 80.9 69.8 76.6 82.3 83.7 84.0 70.6 77.4 76.2 78.2
SOFT ID ID ID 79.8 80.5 70.1 76.6 82.1 83.9 83.8 70.6 77.2 76.3 78.1

Table 4: Performance on development data (LAS; in %) across select sharing strategies for unrelated languages. MONO is our
single-task baseline; LANGUAGE-BEST is using the best sharing strategy for each language (as evaluated on development data);
BEST and WORST are the overall best and worst sharing strategy across languages; CHAR shares only the character-based
LSTM parameters; WORD shares only the word-based LSTM parameters; ALL shares all parameters. refers to hard sharing,
ID refers to soft sharing, using an embedding of the language ID and 7 refers to not sharing.

(soft sharing of word parameters, hard sharing of
the rest) improves parsing accuracy when train-
ing on related languages, and is especially use-
ful in the low resource case. Similar effects have
been observed in machine translation (Dong et al.,
2015; Johnson et al., 2017), for example. Most
studies have only explored a small number of pa-
rameter sharing strategies, however. Vilares et al.
(2016) evaluate parsing with hard parameter shar-
ing for 100 language pairs with a statistical parser.
Naseem et al. (2012) proposed to selectively share
subsets of a parser across languages in the context
of a probabilistic parser.

Options we do not explore here are learning the
architecture jointly with optimizing the task ob-
jective (Misra et al., 2016; Ruder et al., 2017), or
learning an architecture search model that predicts
an architecture based on the properties of datasets,
typically with reinforcement learning (Zoph and
Le, 2017; Wong and Gesmundo, 2018; Liang
et al., 2018). We also do not explore the option of
sharing selectively based on more fine-grained ty-
pological information about languages, which re-
lated work has indicated could be useful (Bjerva
and Augenstein, 2018). Rather, we stick to sharing
between languages of the same language families.

The strategies explored here do not exhaust the
space of possible parameter sharing strategies. For
example, we completely ignore soft sharing based
on mean-constrained regularisation (Duong et al.,
2015).

8 Conclusions

We present evaluations of 27 parameter sharing
strategies for the Uppsala parser across 10 lan-

guages, representing five language pairs from five
different language families. We repeated the ex-
periment with pairs of unrelated languages. We
made several observations: (a) Generally, multi-
task learning helps. (b) Sharing the MLP param-
eters always helps. It helps to share MLP param-
eters when training a parser on a pair of related
languages, and it also helps if the languages are
unrelated. (c) Sharing word and character param-
eters is differently helpful depending on the lan-
guage. (d) Sharing too many parameters does not
help, when the languages are unrelated.

In future work, we plan to investigate what hap-
pens when training on more than 2 languages.
Here, we focused on a setting with rather small
amounts of balanced data. It would be interest-
ing to experiment with using datasets that are not
balanced with respect to size. Finally, we have re-
stricted our experiments to a specific architecture,
using fixed hyperparameters including word and
character embedding dimensions. It would be in-
teresting to experiment with different parsing ar-
chitectures as well as varying those hyperparame-
ters.
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Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic Programming Algorithms
for Transition-Based Dependency Parsers. In Pro-
ceedings of ACL, pages 673–682, Portland, Oregon,
USA.

Miryam de Lhoneux, Yan Shao, Ali Basirat, Eliyahu
Kiperwasser, Sara Stymne, Yoav Goldberg, and
Joakim Nivre. 2017a. From raw text to universal
dependencies - look, no tags! In Proceedings of
the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
207–217, Vancouver, Canada.

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre.
2017b. Arc-Hybrid Non-Projective Dependency
Parsing with a Static-Dynamic Oracle. In Proceed-
ings of the 15th International Conference on Parsing
Technologies, pages 99–104, Pisa, Italy.

Jason Liang, Elliot Meyerson, and Risto Miikkulainen.
2018. Evolutionary Architecture Search For Deep
Multitask Networks. In GECCO.

Teresa Lynn, Jennifer Foster, Mark Dras, and Lamia
Tounsi. 2014. Cross-lingual transfer parsing for
low-resourced languages: An irish case study. In
Proceedings of the First Celtic Language Technol-
ogy Workshop, pages 41–49.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-Stitch Networks for
Multi-Task Learning. In Proceedings of CVPR.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629–637. Associa-
tion for Computational Linguistics.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of
ACL, pages 351–359, Suntec, Singapore.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the 10th International Conference on Lan-
guage Resources and Evaluation (LREC 2016).

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein,
and Anders Søgaard. 2017. Sluice networks: Learn-
ing what to share between loosely related tasks. In
CoRR, abs/1705.08142.

Aaron Smith, Bernd Bohnet, Miryam de Lhoneux,
Joakim Nivre, Yan Shao, and Sara Stymne. 2018. 82
Treebanks, 34 Models: Universal Dependency Pars-
ing with Multi-Treebank Models. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies.

Raymond Hendy Susanto and Wei Lu. 2017. Neural
architectures for multilingual semantic parsing. In
ACL.

David Vilares, Carlos Gómez-Rodrı́guez, and
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Abstract

A substantial thread of recent work on latent
tree learning has attempted to develop neural
network models with parse-valued latent vari-
ables and train them on non-parsing tasks, in
the hope of having them discover interpretable
tree structure. In a recent paper, Shen et al.
(2018) introduce such a model and report near-
state-of-the-art results on the target task of lan-
guage modeling, and the first strong latent tree
learning result on constituency parsing. In an
attempt to reproduce these results, we discover
issues that make the original results hard to
trust, including tuning and even training on
what is effectively the test set. Here, we at-
tempt to reproduce these results in a fair exper-
iment and to extend them to two new datasets.
We find that the results of this work are robust:
All variants of the model under study outper-
form all latent tree learning baselines, and per-
form competitively with symbolic grammar
induction systems. We find that this model
represents the first empirical success for la-
tent tree learning, and that neural network lan-
guage modeling warrants further study as a
setting for grammar induction.

1 Introduction and Background

Work on grammar induction attempts to find
methods for syntactic parsing that do not re-
quire expensive and difficult-to-design expert-
labeled treebanks for training (Charniak and Car-
roll, 1992; Klein and Manning, 2002; Smith and
Eisner, 2005). Recent work on latent tree learning
offers a new family of approaches to the problem
(Yogatama et al., 2017; Maillard et al., 2017; Choi
et al., 2018). Latent tree learning models attempt
to induce syntactic structure using the supervision
from a downstream NLP task such as textual en-
tailment. Though these models tend to show good
task performance, they are often not evaluated us-
ing standard parsing metrics, and Williams et al.

(2018a) report that the parses they produce tend to
be no better than random trees in a standard evalu-
ation on the full Wall Street Journal section of the
Penn Treebank (WSJ; Marcus et al., 1993).

This paper addresses the Parsing-Reading-
Predict Network (PRPN; Shen et al., 2018), which
was recently published at ICLR, and which reports
near-state-of-the-art results on language modeling
and strong results on grammar induction, a first
for latent tree models (though they do not use that
term). PRPN is built around a substantially novel
architecture, and uses convolutional networks with
a form of structured attention (Kim et al., 2017)
rather than recursive neural networks (Goller and
Kuchler, 1996; Socher et al., 2011) to evaluate and
learn trees while performing straightforward back-
propagation training on a language modeling ob-
jective. In this work, we aim to understand what
the PRPN model learns that allows it to succeed,
and to identify the conditions under which this
success is possible.

Their experiments on language modeling and
parsing are carried out using different configura-
tions of the PRPN model, which were claimed to
be optimized for the corresponding tasks. PRPN-
LM is tuned for language modeling performance,
and PRPN-UP for (unsupervised) parsing perfor-
mance. In the parsing experiments, we also ob-
serve that the WSJ data is not split, such that
the test data is used without parse information
for training. This approach follows the previ-
ous works on grammar induction using non-neural
models where the entire dataset is used for train-
ing (Klein and Manning, 2002). However, this
implies that the parsing results of PRPN-UP may
not be generalizable in the way usually expected
of machine learning evaluation results. Addition-
ally, it is not obvious that the model should be able
to learn to parse reliably: (1) Since the parser is
trained as part of a language model, it makes pars-
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There ’s nothing worth seeing in the tourist offices . There ’s nothing worth seeing in the tourist offices .

The entire Minoan civilization was destroyed by a volcanic eruption . The entire Minoan civilization was destroyed by a volcanic eruption .

Figure 1: Left Parses from PRPN-LM trained on AllNLI. Right Parses from PRPN-UP trained on AllNLI
(stopping criterion: parsing). We can observe that both sets of parses tend to have roughly reasonable
high-level structure and tend to identify noun phrases correctly.

ing decisions greedily and with no access to any
words to the right of the point where each parsing
decision must be made (Collins and Roark, 2004);
(2) As RNN language models are known to be in-
sufficient for capturing syntax-sensitive dependen-
cies (Linzen et al., 2016), language modeling as
the downstream task may not be well-suited to la-
tent tree learning.

In this replication we train PRPN on two cor-
pora: The full WSJ, a staple in work on gram-
mar induction, and AllNLI, the concatenation of
the Stanford Natural Language Inference Corpus
(SNLI; Bowman et al., 2015) and the Multi-Genre
NLI Corpus (MultiNLI; Williams et al., 2018b),
which is used in other latent tree learning work for
its non-syntactic classification labels for the task
of textual entailment, and which we include for
comparison. We then evaluate the constituency
trees produced by these models on the WSJ test
set, full WSJ10,1 and the MultiNLI development
set.

Our results indicate that PRPN-LM achieves
better parsing performance than PRPN-UP on
both WSJ and WSJ10 even though PRPN-UP was
tuned—at least to some extent—for parsing. Sur-
prisingly, a PRPN-LM model trained on the large
out-of-domain AllNLI dataset achieves the best
parsing performance on WSJ despite not being
tuned for parsing. We also notice that vocabulary
size affects the language modeling significantly—
the perplexity gets higher as the vocabulary size
increases.

Overall, despite the relatively uninformative ex-
perimental design used in Shen et al. (2018), we
find that PRPN is an effective model. It outper-
forms all latent tree learning baselines by large

1A standard processed subset of WSJ used in grammar
induction in which the sentences contain no punctuation and
no more than 10 words.

margins on both WSJ and MultiNLI, and performs
competitively with symbolic grammar induction
systems on WSJ10, suggesting that PRPN in par-
ticular and language modeling in general are a vi-
able setting for latent tree learning.

2 Methods

PRPN consists of three components: (i) a parsing
network that uses a two-layer convolution kernel
to calculate the syntactic distance between suc-
cessive pairs of words, which can form an indi-
rect representation of the constituency structure of
the sentence, (ii) a recurrent reading network that
summarizes the current memory state based on
all previous memory states and the implicit con-
stituent structure, and (iii) a predict network that
uses the memory state to predict the next token.
We refer readers to the appendix and the original
work for details.

We do not re-implement or re-tune PRPN, but
rather attempt to replicate and understand the re-
sults of the work using the author’s publicly avail-
able code.2 The experiments on language model-
ing and parsing are carried out using different con-
figurations of the model, with substantially differ-
ent hyperparameter values including the size of the
word embeddings, the maximum sentence length,
the vocabulary size, and the sizes of hidden layers.
PRPN-LM is larger than PRPN-UP, with embed-
ding layer that is 4 times larger and the number of
units per layer that is 3 times larger. We use both
versions of the model in all our experiments.

We use the 49k-sentence WSJ corpus in two set-
tings. To replicate the original results, we re-run
an experiment with no train/test split, and for a
clearer picture of the model’s performance, we run
it again with the train (Section 0-21 of WSJ), val-
idation (Section 22 of WSJ), and test (Section 23

2https://github.com/yikangshen/PRPN
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Training
Data

Stopping
Criterion

Vocab
Size

Parsing F1 Depth
WSJ

Accuracy on WSJ by TagModel WSJ10 WSJ ADJP NP PP INTJ
µ (�) max µ (�) max

PRPN-UP AllNLI Train UP 76k 67.5 (0.6) 68.6 36.9 (0.6) 38.0 5.8 29.3 62.0 31.6 0.0
PRPN-UP AllNLI Train LM 76k 66.3 (0.8) 68.5 38.3 (0.5) 39.8 5.8 28.7 65.5 32.7 0.0
PRPN-LM AllNLI Train LM 76k 52.4 (4.9) 58.1 35.0 (5.4) 42.8 6.1 37.8 59.7 61.5 100.0

PRPN-UP WSJ Full UP 15.8k 64.7 (3.2) 70.9 26.4 (1.7) 31.1 5.8 22.5 47.2 17.9 0.0
PRPN-UP WSJ Full LM 15.8k 64.3 (3.3) 70.8 26.3 (1.8) 30.8 5.8 22.7 46.6 17.8 0.0
PRPN-UP WSJ Train UP 15.8k 63.5 (3.5) 70.7 26.2 (2.3) 33.0 5.8 24.8 55.2 18.0 0.0
PRPN-UP WSJ Train LM 15.8k 62.2 (3.9) 70.3 26.0 (2.3) 32.8 5.8 24.8 54.4 17.8 0.0
PRPN-LM WSJ Train LM 10k 70.5 (0.4) 71.3 37.4 (0.3) 38.1 5.9 26.2 63.9 24.4 0.0
PRPN-LM WSJ Train UP 10k 66.1 (0.5) 67.2 33.4 (0.8) 35.6 5.9 33.0 57.1 18.3 0.0

300D ST-Gumbel AllNLI Train NLI – – – 19.0 (1.0) 20.1 – 15.6 18.8 9.9 59.4
w/o Leaf GRU AllNLI Train NLI – – – 22.8 (1.6) 25.0 – 18.9 24.1 14.2 51.8

300D RL-SPINN AllNLI Train NLI – – – 13.2 (0.0) 13.2 – 1.7 10.8 4.6 50.6
w/o Leaf GRU AllNLI Train NLI – – – 13.1 (0.1) 13.2 – 1.6 10.9 4.6 50.0

CCM WSJ10 Full – – – 71.9 – – – – – – –
DMV+CCM WSJ10 Full – – – 77.6 – – – – – – –
UML-DOP WSJ10 Full – – – 82.9 – – – – – – –

Random Trees – – – – 34.7 21.3 (0.0) 21.4 5.3 17.4 22.3 16.0 40.4
Balanced Trees – – – – – 21.3 (0.0) 21.3 4.6 22.1 20.2 9.3 55.9
Left Branching – – – 28.7 28.7 13.1 (0.0) 13.1 12.4 – – – –
Right Branching – – – 61.7 61.7 16.5 (0.0) 16.5 12.4 – – – –

Table 1: Unlabeled parsing F1 results evaluated on full WSJ10 and WSJ test set broken down by train-
ing data and by early stopping criterion. The Accuracy columns represent the fraction of ground truth
constituents of a given type that correspond to constituents in the model parses. Italics mark results that
are worse than the random baseline. Underlining marks the best results from our runs. Results with
RL-SPINN and ST-Gumbel are from Williams et al. (2018a), and are evaluated on the full WSJ. We
run the model with 5 different random seeds to calculate the average F1. We use the model with the
best F1 score to report ADJP, NP, PP, and INTJ. WSJ10 baselines are from Klein and Manning (2002,
CCM), Klein and Manning (2005, DMV+CCM), and Bod (2006, UML-DOP). As the WSJ10 baselines
are trained using additional information such as POS tags and dependency parser, they are not strictly
comparable with the latent tree learning results.

of WSJ) splits. To compare PRPN to the models
studied in Williams et al. (2018a), we also retrain
it on AllNLI. As the MultiNLI test set is not pub-
licly available, we follow Williams et al. (2018a)
and use the development set for testing. The pars-
ing evaluation code in the original codebase does
not support PRPN-LM, and we modify it in our
experiments only to add this support.

For early stopping, we remove 10k random sen-
tences from the MultiNLI training set and combine
them with the SNLI development set to create a
validation set. Our AllNLI training set contains
280.5K unique sentences (1.8M sentences in total
including duplicate premise sentences), and cov-
ers six distinct genres of spoken and written En-
glish. We do not remove the duplicate sentences.
We train the model for 100 epochs for WSJ and 15
epochs for AllNLI. We run the model five times
with random initializations and average the results

from the five runs. The generated parses from the
trained models with the best F1 scores and the
pre-trained model that provides the highest F1 are
available online.3

3 Experimental Results

Table 2 shows our results for language modeling.
PRPN-UP, configured as-is with parsing criterion
and language modeling criterion, performs dra-
matically worse than the standard PRPN-LM (a
vs. d and e). However, this is not a fair comparison
as the larger vocabulary gives PRPN-UP a harder
task to solve. Adjusting the vocabulary of PRPN-
UP down to 10k to make a fairer comparison pos-
sible, the PPL of PRPN-UP improves significantly
(c vs. d), but not enough to match PRPN-LM (a
vs. c). We also observe that early stopping on

3https://github.com/nyu-mll/
PRPN-Analysis
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Training Stopping Vocab PPL
Model Data Criterion Size Median

(a) PRPN-LM WSJ Train LM 10k 61.4
(b) PRPN-LM WSJ Train UP 10k 81.6
(c) PRPN-UP WSJ Train LM 10k 92.8
(d) PRPN-UP WSJ Train LM 15.8k 112.1
(e) PRPN-UP WSJ Train UP 15.8k 112.8

(f) PRPN-UP AllNLI Train LM 76k 797.5
(g) PRPN-UP AllNLI Train UP 76k 848.9

Table 2: Language modeling performance (per-
plexity) on the WSJ test set, broken down by train-
ing data used and by whether early stopping is
done using the parsing objective (UP) or the lan-
guage modeling objective (LM).

parsing leads to incomplete training and a substan-
tial decrease in perplexity (a vs. b and d vs. e).
The models stop training at around the 13th epoch
when we early-stop on parsing objective, while
they stop training around the 65th epoch when we
early-stop on language modeling objective. Both
PRPN models trained on AllNLI do even worse
(f and g), though the mismatch in vocabulary and
domain may explain this effect. In addition, since
it takes much longer to train PRPN on the larger
AllNLI dataset, we train PRPN on AllNLI for only
15 epochs while we train the PRPN on WSJ for
100 epochs. Although the parsing objective con-
verges within 15 epochs, we notice that language
modeling perplexity is still improving. We expect
that the perplexity of the PRPN models trained on
AllNLI could be lower if we increase the number
of training epochs.

Turning toward parsing performance, Table 1
shows results with all the models under study, plus
several baselines, on WSJ test set and full WSJ10.
On full WSJ10, we reproduce the main parsing
result of Shen et al. (2018) with their UP model
trained on WSJ without a data split. We also find
the choice of parse quality as an early stopping
criterion does not have a substantial effect and
that training on the (unlabeled) test set does not
give a significant improvement in performance.
In addition and unexpectedly, we observe that
PRPN-LM models achieve higher parsing perfor-
mance than PRPN-UP. This shows that any tuning
done to separate PRPN-UP from PRPN-LM was
not necessary, and more importantly, that the re-
sults described in the paper can be largely repro-
duced by a unified model in a fair setting. More-
over, the PRPN models trained on WSJ achieves

Stopping F1 wrt.
Model Criterion LB RB SP Depth

300D SPINN NLI 19.3 36.9 70.2 6.2
w/o Leaf GRU NLI 21.2 39.0 63.5 6.4

300D SPINN-NC NLI 19.2 36.2 70.5 6.1
w/o Leaf GRU NLI 20.6 38.9 64.1 6.3

300D ST-Gumbel NLI 32.6 37.5 23.7 4.1
w/o Leaf GRU NLI 30.8 35.6 27.5 4.6

300D RL-SPINN NLI 95.0 13.5 18.8 8.6
w/o Leaf GRU NLI 99.1 10.7 18.1 8.6

PRPN-LM LM 25.6 26.9 45.7 4.9
PRPN-UP UP 19.4 41.0 46.3 4.9
PRPN-UP LM 19.9 37.4 48.6 4.9

Random Trees – 27.9 28.0 27.0 4.4
Balanced Trees – 21.7 36.8 21.3 3.9

Table 3: Unlabeled parsing F1 on the MultiNLI
development set for models trained on AllNLI. F1
wrt. shows F1 with respect to strictly right- and
left-branching (LB/RB) trees and with respect to
the Stanford Parser (SP) trees supplied with the
corpus; The evaluations of SPINN, RL-SPINN,
and ST-Gumbel are from Williams et al. (2018a).
SPINN is a supervised parsing model, and the oth-
ers are latent tree models. Median F1 of each
model trained with 5 different random seeds is re-
ported.

comparable results with CCM (Klein and Man-
ning, 2002). The PRPN models are outperformed
by DMV+CCM(Klein and Manning, 2005), and
UML-DOP(Bod, 2006). However, these models
use additional information such as POS and de-
pendency parser so they are not strictly compara-
ble with the PRPN models.

Turning to the WSJ test set, the results look
somewhat different: Although the differences in
WSJ10 performance across models are small, the
same is not true for the WSJ in terms of average
F1. PRPN-LM outperforms all the other mod-
els on WSJ test set, even the potentially-overfit
PRPN-UP model. Moreover, the PRPN models
trained on the larger, out-of-domain AllNLI per-
form better than those trained on WSJ. Surpris-
ingly, PRPN-LM tained on out-of-domain AllNLI
achieves the best F1 score on WSJ test set among
all the models we experimented, even though its
performance on WSJ10 is the lowest of all. This
mean that PRPN-LM trained on AllNLI is strik-
ingly good at parsing longer sentences though its
performance on shorter sentences is worse than
other models. Under all the configurations we
tested, the PRPN model yields much better per-
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formance than the baselines from Yogatama et al.
(2017, called RL-SPINN) and Choi et al. (2018,
called ST-Gumbel), despite the fact that the model
was tuned exclusively for WSJ10 parsing. This
suggests that PRPN is consistently effective at la-
tent tree learning.

We also show detailed results for several spe-
cific constituent types, following Williams et al.
(2018a). We observe that the accuracy for NP
(noun phrases) on the WSJ test set is above 46%
(Table 1) for all PRPN models, much higher than
any of the baseline models. These runs also per-
form substantially better than the random baseline
in the two other categories Williams et al. (2018a)
report: ADJP (adjective phrases) and PP (preposi-
tional phrases). However, as WSJ test set contains
only one INTJ (interjection phrases), the results on
INTJ are either 0.0% or 100%.

In addition, Table 3 shows that the PRPN-UP
models achieve the median parsing F1 scores of
46.3 and 48.6 respectively on the MultiNLI dev
set while PRPN-LM performs the median F1 of
45.7; setting the state of the art in parsing perfor-
mance on this dataset among latent tree models by
a large margin. We conclude that PRPN does ac-
quire some substantial knowledge of syntax, and
that this knowledge agrees with Penn Treebank
(PTB) grammar significantly better than chance.

Qualitatively, the parses produced by most of
the best performing PRPN models are relatively
balanced (F1 score of 36.5 w.r.t balanced trees)
and tend toward right branching (F1 score of 42.0
with respect to balanced trees). They are also shal-
lower than average ground truth PTB parsed trees.
These models can parse short sentences relatively
well, as shown by their high WSJ10 performance.

For a large proportion of long sentences, most
of the best performing models can produce rea-
sonable constituents (Table 1). The best perform-
ing model, PRPN-LM trained on AllNLI, achieves
the best accuracy at identifying ADJP (adjective
phrases), PP (prepositional phrases), and INTJ (in-
terjection phrases) constituents, and a high accu-
racy on NP (noun phrases). In a more informal
inspection, we also observe that our best PRPN-
LM and PRPN-UP runs are fairly good at pairing
determiners with NPs as we can observe in Fig-
ure 1). Although lower level tree constituents ap-
pear random in many cases for both PRPN-LM
and PRPN-UP, the intermediate and higher-level
constituents are generally reasonable. For exam-

ple, in Figure 1, although the parse for lower level
constituents like The entire Minoan seem random,
the higher-level constituents, such as The entire
Minoan civilization and nothing worth seeing in
the tourist offices, are reasonable.

4 Conclusion
In our attempt to replicate the grammar induction
results reported in Shen et al. (2018), we find sev-
eral experimental design problems that make the
results difficult to interpret. However, in exper-
iments and analyses going well beyond the scope
of the original paper, we find that the PRPN model
presented in that work is nonetheless robust. It
represents a viable method for grammar induction
and the first clear success for latent tree learning
with neural networks, and we expect that it her-
alds further work on language modeling as a tool
for grammar induction research.
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Abstract

Neural NLP systems achieve high scores in
the presence of sizable training dataset. Lack
of such datasets leads to poor system perfor-
mances in the case low-resource languages.
We present two simple text augmentation
techniques using dependency trees, inspired
from image processing. We “crop” sentences
by removing dependency links, and we “ro-
tate” sentences by moving the tree fragments
around the root. We apply these techniques to
augment the training sets of low-resource lan-
guages in Universal Dependencies project. We
implement a character-level sequence tagging
model and evaluate the augmented datasets on
part-of-speech tagging task. We show that
crop and rotate provides improvements over
the models trained with non-augmented data
for majority of the languages, especially for
languages with rich case marking systems.

1 Introduction

Most recently, various deep learning methods have
been proposed for many natural language under-
standing tasks including sentiment analysis, ques-
tion answering, dependency parsing and semantic
role labeling. Although these methods have re-
ported state-of-the-art results for languages with
rich resources, no significant improvement has
been announced for low-resource languages. In
other words, feature-engineered statistical mod-
els still perform better than these neural models
for low-resource languages.1 Generally accepted
reason for low scores is the size of the training
data, i.e., training labels being too sparse to extract
meaningful statistics.

Label-preserving data augmentation techniques
are known to help methods generalize better by

1For example, in the case of dependency parsing, recent
best results from CoNLL-18 parsing shared task can be com-
pared to the results of traditional language-specific models.

increasing the variance of the training data. It
has been a common practice among researchers
in computer vision field to apply data augmen-
tation, e.g., flip, crop, scale and rotate images,
for tasks like image classification (Ciresan et al.,
2012; Krizhevsky et al., 2012). Similarly, speech
recognition systems made use of augmentation
techniques like changing the tone and speed of the
audio (Ko et al., 2015; Ragni et al., 2014), noise
addition (Hartmann et al., 2016) and synthetic au-
dio generation (Takahashi et al., 2016). Compara-
ble techniques for data augmentation are less ob-
vious for NLP tasks, due to structural differences
among languages. There are only a small num-
ber of studies that tackle data augmentation tech-
niques for NLP, such as Zhang et al. (2015) for text
classification and Fadaee et al. (2017) for machine
translation.

In this work, we focus on languages with small
training datasets, that are made available by the
Universal Dependency (UD) project. These lan-
guages are dominantly from Uralic, Turkic, Slavic
and Baltic language families, which are known to
have extensive morphological case-marking sys-
tems and relatively free word order. With these
languages in mind, we propose an easily adapt-
able, multilingual text augmentation technique
based on dependency trees, inspired from two
common augmentation methods from image pro-
cessing: cropping and rotating. As images are
cropped to focus on a particular item, we crop the
sentences to form other smaller, meaningful and
focused sentences. As images are rotated around
a center, we rotate the portable tree fragments
around the root of the dependency tree to form a
synthetic sentence. We augment the training sets
of these low-resource languages via crop and ro-
tate operations. In order to measure the impact of
augmentation, we implement a unified character-
level sequence tagging model. We systematically
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train separate parts-of-speech tagging models with
the original and augmented training sets, and eval-
uate on the original test set. We show that crop
and rotate provide improvements over the non-
augmented data for majority of the languages, es-
pecially for languages with rich case marking sys-
tem.

2 Method

We borrow two fundamental label-preserving aug-
mentation ideas from image processing: cropping
and rotation. Image cropping can be defined as
removal of some of the peripheral areas of an im-
age to focus on the subject/object (e.g., focusing
on the flower in a large green field). Following this
basic idea, we aim to identify the parts of the sen-
tence that we want to focus and remove the other
chunks, i.e., form simpler/smaller meaningful sen-
tences 2. In order to do so, we take advantage of
dependency trees which provide us with links to
focuses, such as subjects and objects. The idea is
demonstrated in Fig. 1b on the Turkish sentence
given in Fig. 1a. Here, given a predicate (wrote)
that governs a subject (her father), an indirect ob-
ject (to her) and a direct object (a letter); we form
three smaller sentences with a focus on the sub-
ject (first row in Fig. 1b: her father wrote) and
the objects (second and third row) by removing
all dependency links other than the focus (with its
subtree). Obviously, cropping may cause seman-
tic shifts on a sentence-level. However it preserves
local syntactic tags and even shallow semantic la-
bels.

Images are rotated around a chosen center with
a certain degree to enhance the training data. Sim-
ilarly, we choose the root as the center of the sen-
tence and rotate the flexible tree fragments around
the root for augmentation. Flexible fragments are
usually defined by the morphological typology of
the language (Futrell et al., 2015). For instance,
languages close to analytical typology such as En-
glish, rarely have inflectional morphemes. They
do not mark the objects/subjects, therefore words
have to follow a strict order. For such languages,
sentence rotation would mostly introduce noise.
On the other hand, large number of languages
such as Latin, Greek, Persian, Romanian, Assyr-
ian, Turkish, Finnish and Basque have no strict
word order (though there is a preferred order) due

2Focus should not be confused with the grammatical cat-
egory FOC.

Babası ona bir mektup yazdı

her father to her a letter wrote

det

nsubj

iobj

dobj root

(a) Dependency analysis

(1) Babası        yazdı     (Her father  he-wrote)
(2) Ona            yazdı     (He-wrote        to her)
(3) Bir mektup  yazdı     (He-wrote      a letter)

(b) Sentence Cropping

(1) Babası yazdı bir mektup ona    (SVOIO)
(2) Yazdı babası ona bir mektup    (VSIOO)
(3) Bir mektup yazdı babası ona    (OVSIO)
(4) Ona bir mektup yazdı babası    (IOOVS)
                       

root

yazdı

ona

Babası mektup

bir

(c) Sentence Rotating

Figure 1: Demonstration of augmentation ideas
on the Turkish sentence “Babası ona bir mektup
yazdı” (Her father wrote her a letter). S: Subject,
V: Verb, O:Object, IO: Indirect Object. Arrows
are drawn from dependent to head. Both methods
are applied to the Labels of Interest (LOI).

to their extensive marking system. Hence, flexible
parts are defined as marked fragments which are
again, subjects and objects. Rotation is illustrated
in Fig. 1c on the same sentence.

In order to investigate the impact of the aug-
mentation, we design a simple sequence tagging
model that operates on the character level. Many
low-resource languages we deal with in the Exper-
iments section are morphologically rich. There-
fore, we use a character-level model to address the
rare word problem and to learn morphological reg-
ularities among words.

For each sentence s, we produce a label se-
quence ~l, where lt refers to POS tag for the t-th
token. Given g as gold labels and ✓ as model pa-
rameters we find the values that minimize the neg-
ative log likelihood of the sequence:

✓̂ = arg min
✓

 
�

nX

t=1

log(p(gt|✓, s))
!

(1)

To calculate p(lt|✓, s), we first calculate a word
embedding, ~w, for each word. We consider words
as a sequence of characters c0, c1, .., cn and use a
bi-LSTM unit to compose the character sequence
into ~w, as in Ling et al. (2015):

~hwf , ~hwb = bi-LSTM(c0, c1, .., cn) (2)

~w = Wf · ~hwf + Wb · ~hwb + b (3)
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Later, these embeddings are passed onto another
bi-LSTM unit:

~hf , ~hb = bi-LSTM( ~wt) (4)

Hidden states from both directions are concate-
nated and mapped by a linear layer to the label
space. Then label probabilities are calculated by a
softmax function:

p(~lt|s, p) = softmax(Wl · [ ~hf ; ~hb] + ~bl) (5)

Finally the label with the highest probability is as-
signed to the input.

3 Experiments and Results

We use the data provided by Universal Dependen-
cies v2.1 (Nivre et al., 2017) project. Since our
focus is on languages with low resources, we only
consider the ones that have less than 120K tokens.
The languages without standard splits and sizes
less than 5K tokens, are ignored. We use the uni-
versal POS tags defined by UD v2.1.

To keep our approach as language agnostic and
simple as possible, we use the following univer-
sal dependency labels and their subtypes to extract
the focus and the flexible fragment: NSUBJ (nom-
inal subject), IOBJ (indirect object), OBJ (indirect
object) and OBL (oblique nominal). These depen-
dency labels are referred to as Label of Interest
(LOI). The root/predicate may be a phrase rather
than a single token. We use the following relations
to identify such cases: FIXED, FLAT, COP (copula)
and COMPOUND. Other labels such as ADVMOD
can also be considered flexible, however are ig-
nored for the sake of simplicity. We enumerate all
flexible chunks and calculate all reordering per-
mutations. Keeping the LOI limited is necessary
to reduce the number of permutations. We apply
reordering only to the first level in the tree. Our
method overgeneralizes, to include sequences that
are not grammatical in the language in question.
We regard the ungrammatical sentences as noise.

Number of possible cropping operations are
limited to the number of items that are linked via
an LOI to the root. If we call it n, then the num-
ber of possible rotations would be (n+1)! since n
pieces and the root are flexible and can be placed
anywhere in the sentence. To limit the number
of rotations, we calculate all possible permuta-
tions for reordering the sentence and then ran-
domly pick n of them. Each operation is applied

with a certain probability p to each sentence, (e.g.,
if p = 1, n number of crops; if p = 0.5 an average
of n/2 crops will be done).

We use the model in Sec. 2 to systematically
train part-of-speech taggers on original and aug-
mented training data sets. To be able measure the
impact of the augmentation, all models are trained
with the same hyperparameters. All tokens are
lowercased and surrounded with special start-end
symbols. Weight parameters are uniformly ini-
tialized between �0.1 and +0.1. We used one
layer bi-LSTMs both for character composition
and POS tagging with hidden size of 200. Char-
acter embedding size is chosen as 200. We used
dropout, gradient clipping and early stopping to
prevent overfitting for all experiments. Stochastic
gradient descent with an initial learning rate as 1 is
used as the optimizer. Learning rate is reduced by
half if scores on development set do not improve.

Average of multiple runs for 20 languages are
given in Fig. 1. Here, Org column refers to
our baseline with non-augmented, original train-
ing set, where Imp% is the improvement over the
baseline by the best crop/flip model for that lan-
guage. It is evident that, with some minor excep-
tions, all languages have benefited from a type of
augmentation. We see that the biggest improve-
ments are achieved on Irish and Lithuanian, the
ones with the lowest baseline scores and the small-
est training sets 3. Our result on both languages
show that both operations reduced the generaliza-
tion error surprisingly well in the lack of training
data.

Tagging results depend on many factors such
as the training data size, the source of the tree-
bank (e.g., news may have less objects and sub-
jects compared to a story), and the language typol-
ogy (e.g., number/type of case markers it uses). In
Fig. 2, the relation between the data size and the
improvement by the augmentation is shown. Pear-
son correlation coefficient for two variables is cal-
culated as �0.35.

Indo-European (IE) : Baltic and Slavic lan-
guages are known to have around 7 distinct case
markers, which relaxes the word order. As ex-
pectedly, both augmentation techniques improve
the scores for Baltic (Latvian, Lithuanian) and
Slavic (Belarusian, Slovak, Serbian, Ukranian)

3Although the total size of the Irish dataset is larger than
many, the splits are unbalanced. The training set contains 121
trees while the test has 454 trees.
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crop rotate
#Tokens Lang Type Org p = 0.3 p = 0.7 p = 1 p = 0.3 p = 0.7 p = 1 Imp%

< 20K

Lithuanian IE, Baltic 61.51 62.17 66.28 67.64 65.28 66.56 68.27 10.98
Belarusian IE, Slavic 83.58 83.87 85.50 85.39 84.33 85.96 86.11 3.03
Tamil Dravidian 81.93 81.35 82.78 84.34 83.74 83.86 83.61 2.94
Telugu Dravidian 90.78 90.85 89.88 90.50 90.36 90.29 89.95 0.07
Coptic Egyptian 95.17 94.60 94.74 94.12 95.03 94.65 94.60 -0.15

< 80K

Irish IE, Celtic 62.75 73.72 75.87 75.42 72.51 76.35 76.19 21.68
North Sami Uralic, Sami 86.78 86.04 87.17 87.35 87.85 88.04 86.65 1.45
Hungarian Uralic, Ugric 85.94 86.24 86.56 86.62 86.49 86.37 86.60 0.80
Vietnamese Austro-Asiatic 75.16 75.59 75.32 74.84 75.22 75.15 75.14 0.57
Turkish Turkic 93.49 93.53 93.56 93.89 93.60 93.82 93.98 0.52
Greek IE, Greek 95.18 95.32 95.46 95.54 95.26 95.22 95.35 0.38
Gothic IE, Germanic 94.38 94.42 94.35 94.44 94.62 94.48 94.43 0.25
Old Slavic IE, Slavic 95.36 95.34 95.33 95.44 95.17 95.35 94.93 0.08
Afrikaans IE, Germanic 94.91 94.52 94.86 94.93 94.73 94.70 94.92 0.0

< 120K

Latvian IE, Baltic 91.22 91.38 91.77 91.78 91.69 91.62 91.76 0.61
Danish IE, Germanic 94.25 94.17 93.96 94.78 94.18 94.10 94.21 0.56
Slovak IE, Slavic 91.23 91.17 91.04 91.35 91.53 91.38 91.58 0.38
Serbian IE, Slavic 96.14 96.26 96.12 96.17 96.35 96.16 96.07 0.22
Ukranian IE, Slavic 94.41 94.33 94.56 94.49 94.57 94.38 94.47 0.17

Table 1: POS tagging accuracies on UDv2.1 test sets. Best scores are shown with bold. Org: Original.
p: operation probability. Imp%: Improvement over original (Org) by the best model trained with the
augmented data.

languages, except for Old Church Slavic (OCS).
OCS is solely compiled from bible text which is
known to contain longer and passive sentences.
We observe that rotation performs slightly better
than cropping for Slavic languages. In the pres-
ence of a rich marking system, rotation can be
considered a better augmenter, since it greatly in-
creases the variance of the training data by shuf-
fling. For Germanic (Gothic, Afrikaans, Danish)
languages, we do not observe a repeating gain, due
to lack of necessary markers.

Uralic and Turkic : Both language types have
an extensive marking system. Hence, similar to
Slavic languages, both techniques improve the
score.

Dravidian : Case system of modern Tamil de-
fines 8 distinct markers, which explains the im-
proved accuracies of the augmented models. We
would expect a similar result for Telugu. However
Telugu treebank is entirely composed of sentences
from a grammar book which may not be expres-
sive and diverse.

4 Related Work

Similar to sentence cropping, Vickrey and Koller
(2008) define transformation rules to simplify sen-
tences (e.g., I was not given a chance to eat - I

ate) and shows that enrichening training set with
simplified sentences improves the results of se-
mantic role labeling. One of the first studies in
text augmentation (Zhang et al., 2015), replaces a
randomly chosen word with its randomly chosen
synonym extracted from a thesaurus. They report
improved test scores when a large neural model
is trained with the augmented set. Jia and Liang
(2016) induce grammar from semantic parsing
training data and generate new data points by sam-
pling to feed a sequence to sequence RNN model.
Fadaee et al. (2017) chooses low-frequency words
instead of a random word, and generate synthetic
sentence pairs that contain those rare words.

5 Discussion
Unlike majority of previous NLP augmentation
techniques, the proposed methods are meaning-
preserving, i.e., they preserve the fundamental
meaning of the sentence for most of the tested lan-
guages. Therefore can be used for variety of prob-
lems such as semantic role labeling, sentiment
analysis, text classification. Instead of those prob-
lems, we evaluate the idea on the simplest possible
task (POS) for the following reasons:

• It gets harder to measure the impact of the
idea as the system/task gets complicated due
to large number of parameters.
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zoom

Figure 2: Treebank size versus gain by augmentation

• POS tagging performance is a good indicator
of performances of other structured predic-
tion tasks, since POS tags are crucial features
for higher-level NLP tasks.

Our research interest was to observe which aug-
mentation technique would improve which lan-
guage, rather than finding one good model. There-
fore we have not used development sets to choose
one good augmentation model.

6 Conclusion and Future Work

Neural models have become a standard approach
for many NLP problems due to their ability to
extract high-level features and generalization ca-
pability. Although they have achieved state-of-
the-art results in NLP benchmarks with languages
with large amount of training data, low-resource
languages have not yet benefited from neural mod-
els. In this work, we presented two simple text
augmentation techniques using dependency trees
inspired by image cropping and rotating. We eval-
uated their impact on parts-of-speech tagging in
a number of low-resource languages from various
language families. Our results show that:

• Language families with rich case marking
systems (e.g., Baltic, Slavic, Uralic) bene-
fit both from cropping and rotation. How-
ever, for such languages, rotation increases
the variance of the data relatively more, lead-
ing to slightly better accuracies.

• Both techniques provide substantial improve-
ments over the baseline (non-augmented
data) when only a tiny training dataset is
available.

This work aimed to measure the impact of the
basic techniques, rather than creating the best
text augmentation method. Following these en-
couraging results, method can be improved by
(1) considering the preferred chunk order of the
language during rotation, (2) taking language-
specific flexibilities into account (e.g., Spanish
typically allows free subject inversion (unlike ob-
ject)). Furthermore, we plan to extend this work
by evaluating the augmentation on other NLP
benchmarks such as language modeling, depen-
dency parsing and semantic role labeling. The
code is available at https://github.com/
gozdesahin/crop-rotate-augment.
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Gözde Gül Şahin was a PhD student at Istanbul
Technical University and a visiting research stu-
dent at University of Edinburgh during this study.
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Abstract

Many recent papers address reading compre-
hension, where examples consist of (ques-
tion, passage, answer) tuples. Presumably, a
model must combine information from both
questions and passages to predict correspond-
ing answers. However, despite intense inter-
est in the topic, with hundreds of published
papers vying for leaderboard dominance, ba-
sic questions about the difficulty of many
popular benchmarks remain unanswered. In
this paper, we establish sensible baselines for
the bAbI, SQuAD, CBT, CNN, and Who-
did-What datasets, finding that question- and
passage-only models often perform surpris-
ingly well. On 14 out of 20 bAbI tasks,
passage-only models achieve greater than 50%
accuracy, sometimes matching the full model.
Interestingly, while CBT provides 20-sentence
passages, only the last is needed for com-
parably accurate prediction. By comparison,
SQuAD and CNN appear better-constructed.

1 Introduction

Recently, reading comprehension (RC) has
emerged as a popular task, with researchers
proposing various end-to-end deep learning
algorithms to push the needle on a variety of
benchmarks. As characterized by Hermann et al.
(2015); Onishi et al. (2016), unlike prior work
addressing question answering from general
structured knowledge, RC requires that a model
extract information from a given, unstructured
passage. It’s not hard to imagine how such
systems could be useful. In contrast to generic
text summarization, RC systems could answer
targeted questions about specific documents,
efficiently extracting facts and insights.

While many RC datasets have been proposed
over the years (Hirschman et al., 1999; Breck
et al., 2001; Peñas et al., 2011; Peñas et al., 2012;

Sutcliffe et al., 2013; Richardson et al., 2013; Be-
rant et al., 2014), more recently, larger datasets
have been proposed to accommodate the data-
intensiveness of deep learning. These vary both
in the source and size of their corpora and in
how they cast the prediction problem—as a clas-
sification task (Hill et al., 2016; Hermann et al.,
2015; Onishi et al., 2016; Lai et al., 2017; We-
ston et al., 2016; Miller et al., 2016), span selec-
tion (Rajpurkar et al., 2016; Trischler et al., 2017),
sentence retrieval (Wang et al., 2007; Yang et al.,
2015), or free-form answer generation (Nguyen
et al., 2016).1 Researchers have steadily advanced
on these benchmarks, proposing myriad neural
network architectures aimed at attending to both
questions and passages to produce answers.

In this paper, we argue that amid this rapid
progress on empirical benchmarks, crucial steps
are sometimes skipped. In particular, we demon-
strate that the level of difficulty for several of these
tasks is poorly characterized. For example, for
many RC datasets, it’s not reported, either in the
papers introducing the datasets, or in those propos-
ing models, how well one can perform while ig-
noring either the question or the passage. In other
datasets, although the passage might consist of
many lines of text, it’s not clear how many are
actually required to answer the question, e.g., the
answer may always lie in the first or the last sen-
tence.

We describe several popular RC datasets and
models proposed for these tasks, analyzing their
performance when provided with question-only
(Q-only) or passage-only (P-only) information.
We show that on many tasks, the results obtained
are surprisingly strong, outperforming many base-

1 We note several other QA datasets (Yang et al., 2015;
Miller et al., 2016; Nguyen et al., 2016; Paperno et al., 2016;
Clark and Etzioni, 2016; Lai et al., 2017; Trischler et al.,
2017; Joshi et al., 2017) not addressed in this paper.
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lines, and sometimes even surpassing the same
models, supplied with both questions and pas-
sages.

We note that similar problems were shown for
datasets in visual question answering by Goyal
et al. (2017) and for natural language inference
by Gururangan et al. (2018); Poliak et al. (2018);
Glockner et al. (2018). Several other papers have
discussed the weaknesses of various RC bencham-
rks (Chen et al., 2016; Lee et al., 2016). We dis-
cuss these studies in the paragraphs introducing
the corresponding datasets below.

2 Datasets

In the following section, we provide context on
each dataset that we investigate and then describe
our process for corrupting the data as required by
our question- and passage-only experiments.

CBT Hill et al. (2016) prepared a cloze-style (fill
in the blank) RC dataset by using passages from
children’s books. In their dataset, each passage
consists of 20 consecutive sentences, and each
question is the 21st sentence with one word re-
moved. The missing word then serves as the an-
swer. The dataset is split into four categories of
answers: Named Entities (NE), Common Nouns
(CN), Verbs (V) and Prepositions (P). The training
corpus contains over 37, 000 candidates and each
question is associated with 10 candidates, POS-
matched to the correct answer. The authors estab-
lished LSTM/embedding-based Q-only baselines
but did not present the results obtained by their
best model using Q-only or P-only information.

CNN Hermann et al. (2015) introduced the
CNN/Daily Mail datasets containing more than 1
million news articles, each associated with sev-
eral highlight sentences. Also adopting the cloze-
style dataset preparation, they remove an en-
tity (answer) from a highlight (question). They
anonymize all entities to ensure that models rely
on information contained in the passage, vs mem-
orizing characteristics of given entities across ex-
amples, and thus ignoring passages. On average,
passages contain 26 entities, with over 500 total
possible answer candidates. Chen et al. (2016) an-
alyzed the difficulty of the CNN and Daily Mail
tasks. They hand-engineered a set of eight fea-
tures for each entity e (does e occur in the ques-
tion, in the passage, etc.), showing that this simple
classifier outperformed many earlier deep learning

results.

Who-did-What Onishi et al. (2016) extracted
pairs of news articles, each pair referring to the
same events. Adopting the cloze-style, they re-
move a person’s name (the answer) from the first
sentence of one article (the question). A model
must predict the answer based on the question, to-
gether with the other article in the pair (passage).
Unlike CNN, Who-did-What does not anonymize
entities. On average, each question is associated
with 3.5 candidate answers. The authors removed
several questions from their dataset to thwart sim-
ple strategies such as always predicting the name
that occurs most (or first) in the passage.

bAbI Weston et al. (2016) presented a set of
20 tasks to help researchers identify and rectify
the failings of their reading comprehension sys-
tems. Unlike the datasets discussed so far, the
questions in this task are not cloze-style and are
synthetically generated using templates. This re-
stricts the diversity in clauses appearing in the
passages. Further, this also restricts the dataset
vocabulary to just 150 words, in contrast, CNN
dataset has a vocabulary made of close to 120, 000
words. Memory Networks with adaptive memory,
n-grams and non-linear matching were shown to
obtain 100% accuracy on 12 out of 20 bAbI tasks.
We note that Lee et al. (2016) previously identi-
fied that bAbI tasks might fall short as a measure
of “AI-complete question answering”, proposing
two models based on tensor product representa-
tions that achieve 100% accuracy on many bAbI
tasks.

SQuAD More recently, Rajpurkar et al. (2016)
released the Stanford Question Answering Dataset
(SQuAD) containing over 100, 000 crowd-sourced
questions addressing 536 passages. Each question
is associated with a paragraph (passage) extracted
from an article. These passages are shorter than
those in CNN and Who-did-What datasets. Mod-
els choose answers by selecting (varying-length)
spans from these passages.

Generating Corrupt Data To void any infor-
mation in either the questions or the passages,
while otherwise leaving each architecture intact,
we create corrupted versions of each dataset by
assigning either questions randomly, while pre-
serving the correspondence between passage and
answer, or by randomizing the passage. For
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tasks where question-answering requires selecting
spans or candidates from the passage, we create
passages that contain the candidates in random lo-
cations but otherwise consist of random gibberish.

3 Models

In our investigations of the various RC bench-
marks, we rely upon the following three recently-
proposed models: key-value memory networks,
gated attention readers, and QA nets. Although
space constraints preclude a full discussion of each
architecture, we provide references to the source
papers and briefly discuss any implementation de-
cisions necessary to reproduce our results.

Key-Value Memory Networks We implement
a Key-Value Memory Network (KV-MemNet)
(Miller et al., 2016), applying it to bAbI and CBT.
KV-MemNets are based on Memory Networks
(Sukhbaatar et al., 2015), shown to perform well
on both datasets. For bAbI tasks, the keys and
values both encode the passage as a bag-of-words
(BoW). For CBT, the key is a BoW-encoded 5-
word window surrounding a candidate answer and
the value is the candidate itself. We fixed the num-
ber of hops to 3 and the embedding size to 128.

Gated Attention Reader Introduced by Dhin-
gra et al. (2017), the Gated Attention Reader
(GAR)2 performs multiple hops over a passage,
like MemNets. The word representations are
refined over each hop and are mapped by an
attention-sum module (Kadlec et al., 2016) to a
probability distribution over the candidate answer
set in the last hop. The model nearly matches best-
reported results on many cloze-style RC datasets,
and thus we apply it to Who-did-What, CNN, CBT-
NE and CBT-CN.

QA Net Recently introduced by (Yu et al.,
2018), the QA-Net3 was recently demonstrated to
outperform all previous models on the SQuAD
dataset4. Passages and questions are passed as in-
put to separate encoders consisting of depth-wise
separable convolutions and global self-attention.
This is followed by a passage-question attention
layer, followed by stacked encoders. The outputs

2https://github.com/bdhingra/ga-reader
3We use the implementation available at

https://github.com/NLPLearn/QANet
4At the time of publication, an ensemble of QA-Net mod-

els was at the top of the leader board. A single QA-Net was
ranked 4th.

from these encoders are used to predict an answer
span inside the passage.

4 Experimental Results

bAbI tasks Table 1 shows the results obtained
by a Key-Value Memory Network on bAbI tasks
by nullifying the information present in either
questions or passages. On tasks 2, 7, 13 and 20, P-
only models obtain over 80% accuracy with ques-
tions randomly assigned. Moreover, on tasks 3,
13, 16, and 20, P-only models match performance
of those trained on the full dataset. On task 18, Q-
only models achieve an accuracy of 91%, nearly
matching the best performance of 93% achieved
by the full model. These results show that some of
bAbI tasks are easier than one might think.

Children’s Books Test On the NE and CN CBT
tasks, Q-only KV-MemNets obtain an accuracy
close to the full accuracy and on the Verbs (V)
and Prepositions (P) tasks, Q-only models outper-
form the full model (Table 2). Q-only Gated atten-
tion readers reach accuracy of 50.6% and 54% on
Named Entities (NE) and Common Nouns (CN)
tasks, respectively, while P-only models reach ac-
curacies of 40.8% and 36.7%, respectively. We
note that our models can outperform 16 of the 19
reported results on the NE task in Hill et al. (2016)
using Q-only information. Table 3 shows that if
we make use of just last sentence instead of all
20 sentences in the passage, our sentence memory
based KV-MemNet achieve comparable or better
performance w.r.t the full model on most subtasks.

CNN Table 2, shows the performance of Gated
Attention Reader on the CNN dataset. Q-only
and P-only models obtained 25.6% and 38.3% ac-
curacies respectively, compared to 77.8% on the
true dataset. This drop in accuracy could be due
to the anonymization of entities which prevents
models from building entity-specific information.
Notwithstanding the deficiencies noted by Chen
et al. (2016), we found that out CNN, out all the
cloze-style RC datasets that we evaluated, appears
to be the most carefully designed.

Who-did-What P-only models achieve greater
than 50% accuracy in both the strict and relaxed
setting, reaching within 15% of the accuracy of
the full model in the strict setting. Q-only models
also achieve 50% accuracy on the relaxed setting
while achieving an accuracy of 41.8% on the strict
setting. Our P-only model also outperforms all the
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bAbI Tasks 1-10
Dataset 1 2 3 4 5 6 7 8 9 10
True dataset 100% 100% 39% 100% 99% 100% 94% 97% 99% 98%
Question only 18% 17% 22% 22% 34% 50% 48% 34% 64% 44%

Passage only 53% 86% 60% 59% 31% 48% 85% 79% 63% 47%

�(min) �47 �14 +21 �41 �65 �52 �9 �18 �35 �51

bAbI Tasks 11-20
11 12 13 14 15 16 17 18 19 20

True dataset 94% 100% 94% 96% 100% 48% 57% 93% 30% 100%
Question only 17% 15% 18% 18% 34% 26% 48% 91% 10% 70%

Passage only 71% 74% 94% 50% 64% 47% 48% 53% 21% 100%
�(min) �23 �26 0 �46 �36 �1 �9 �2 �9 0

Table 1: Accuracy on bAbI tasks using our implementation of the Key-Value Memory Networks

Task Full Q-only P-only �(min)

Key-Value Memory Networks

CBT-NE 35.0% 29.1% 24.1% �5.9

CBT-CN 37.6% 32.4% 24.4% �5.2

CBT-V 52.5% 55.7% 36.0% +3.2

CBT-P 55.2% 56.9% 30.1% +1.7

Gated Attention Reader

CBT-NE 74.9% 50.6% 40.8% �17.5

CBT-CN 70.7% 54.0% 36.7% �16.7

CNN 77.8% 25.6% 38.3% �39.5

WdW 67.0% 41.8% 52.2% �14.8

WdW-R 69.1% 50.0% 50.6% �15.6

Table 2: Accuracy on various datasets using KV-
MemNets (window memory) and GARs

Task Complete passage Last sentence
CBT-NE 22.6% 22.8%
CBT-CN 31.6% 24.8%

CBT-V 48.8% 45.0%

CBT-P 34.1% 37.9%

Table 3: Accuracy on CBT tasks using KV-MemNets
(sentence memory) varying passage size.

suppressed baselines and 5 additional baselines re-
ported by Onishi et al. (2016). We suspect that

Metric Full Q-only P-only �(min)

EM 70.7% 0.6% 10.9% �59.8

F1 79.1% 4.0% 14.8% �64.3

Table 4: Performance of QANet on SQuAD

the models memorize attributes of specific entities,
justifying the entity-anonymization used by Her-
mann et al. (2015) to construct the CNN dataset.

SQuAD Our results suggest that SQuAD is an
unusually carefully-designed and challenging RC
task. The span selection mode of answering re-
quires that models consider the passage thus the
abysmal performance of the Q-only QANet (Table
4). Since SQuAD requires answering by span se-
lection, we construct Q-only variants here by plac-
ing answers from all relevant questions in random
order, filling the gaps with random words. More-
over, Q-only and P-only models achieve F1 scores
of only 4% and 14.8% resp. (Table 4), signifi-
cantly lower than 79.1 on the proper task.

5 Discussion

We briefly discuss our findings, offer some guid-
ing principles for evaluating new benchmarks and
algorithms, and speculate on why some of these
problems may have gone under the radar. Our goal
is not to blame the creators of past datasets but in-
stead to support the community by offering practi-
cal guidance for future researchers.
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Provide rigorous RC baselines Published RC
datasets should contain reasonable baselines that
characterize the difficulty of the task, and specif-
ically, the extent to which questions and passages
are essential. Moreover, follow-up papers report-
ing improvements ought to report performance
both on the full task and variations omitting ques-
tions and passages. While many proposed techni-
cal innovations purportedly work by better match-
ing up information in questions and passages, ab-
sent these baselines one cannot tell whether gains
come for the claimed reason or if the models just
do a better job of passage classification (disregard-
ing questions).

Test that full context is essential Even on tasks
where both questions and passages are required,
problems might appear harder than they really are.
On first glance the the length-20 passages in CBT,
might suggest that success requires reasoning over
all 20 sentences to identify the correct answer to
each question. However, it turns out that for some
models, comparable performance can be achieved
by considering only the last sentence. We rec-
ommend that researchers provide reasonable ab-
lations to characterize the amount of context that
each model truly requires.

Caution with cloze-style RC datasets We note
that cloze-style datasets are often created progra-
matically. Thus it’s possible for a dataset to be
produced, published, and incorporated into many
downstream studies, all without many person-
hours spent manually inspecting the data. We
speculate that, as a result, these datasets tend be
subject to less contemplation of what’s involved in
answering these questions and are therefore espe-
cially susceptible to the sorts of overlooked weak-
nesses described in our study.

A note on publishing incentives We express
some concern that the recommended experimen-
tal rigor might cut against current publishing in-
centives. We speculate that papers introducing
datasets may be more likely to be accepted at con-
ferences by omitting unfavorable ablations than by
including them. Moreover, with reviewers often
demanding architectural novelty, methods papers
may find an easier path to acceptance by provid-
ing unsubstantiated stories about the reasons why
a given architecture works than by providing rigor-
ous ablation studies stripping out spurious expla-
nations and unnecessary model components. For

more general discussions of misaligned incentives
and empirical rigor in machine learning research,
we point the interested reader to Lipton and Stein-
hardt (2018) and Sculley et al. (2018).
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Abstract

Even though machine learning has become
the major scene in dialogue research commu-
nity, the real breakthrough has been blocked
by the scale of data available. To address this
fundamental obstacle, we introduce the Multi-
Domain Wizard-of-Oz dataset (MultiWOZ), a
fully-labeled collection of human-human writ-
ten conversations spanning over multiple do-
mains and topics. At a size of 10k dialogues,
it is at least one order of magnitude larger than
all previous annotated task-oriented corpora.
The contribution of this work apart from the
open-sourced dataset labelled with dialogue
belief states and dialogue actions is two-fold:
firstly, a detailed description of the data collec-
tion procedure along with a summary of data
structure and analysis is provided. The pro-
posed data-collection pipeline is entirely based
on crowd-sourcing without the need of hir-
ing professional annotators; secondly, a set of
benchmark results of belief tracking, dialogue
act and response generation is reported, which
shows the usability of the data and sets a base-
line for future studies.

1 Introduction

Conversational Artificial Intelligence (Conversa-
tional AI) is one of the long-standing challenges in
computer science and artificial intelligence since
the Dartmouth Proposal (McCarthy et al., 1955).
As human conversation is inherently complex and
ambiguous, learning an open-domain conversa-
tional AI that can carry on arbitrary tasks is still
very far-off (Vinyals and Le, 2015). As a conse-
quence, instead of focusing on creating ambitious
conversational agents that can reach human-level
intelligence, industrial practice has focused on
building task-oriented dialogue systems (Young
et al., 2013) that can help with specific tasks such
as flight reservation (Seneff and Polifroni, 2000)

⇤The work was done while at the University of Cam-
bridge.

or bus information (Raux et al., 2005). As the need
of hands-free use cases continues to grow, build-
ing a conversational agent that can handle tasks
across different application domains has become
more and more prominent (Ram et al., 2018).

Dialogues systems are inherently hard to build
because there are several layers of complexity: the
noise and uncertainty in speech recognition (Black
et al., 2011); the ambiguity when understand-
ing human language (Williams et al., 2013); the
need to integrate third-party services and dialogue
context in the decision-making (Traum and Lars-
son, 2003; Paek and Pieraccini, 2008); and finally,
the ability to generate natural and engaging re-
sponses (Stent et al., 2005). These difficulties
have led to the same solution of using statistical
framework and machine learning for various sys-
tem components, such as natural language under-
standing (Henderson et al., 2013; Mesnil et al.,
2015; Mrkšić et al., 2017a), dialogue manage-
ment (Gašić and Young, 2014; Tegho et al., 2018),
language generation (Wen et al., 2015; Kiddon
et al., 2016), and even end-to-end dialogue mod-
elling (Zhao and Eskenazi, 2016; Wen et al., 2017;
Eric et al., 2017).

To drive the progress of building dialogue sys-
tems using data-driven approaches, a number of
conversational corpora have been released in the
past. Based on whether a structured annotation
scheme is used to label the semantics, these cor-
pora can be roughly divided into two categories:
corpora with structured semantic labels (Hemphill
et al., 1990; Williams et al., 2013; Asri et al., 2017;
Wen et al., 2017; Eric et al., 2017; Shah et al.,
2018); and corpora without semantic labels but
with an implicit user goal in mind (Ritter et al.,
2010; Lowe et al., 2015). Despite these efforts,
aforementioned datasets are usually constrained in
one or more dimensions such as missing proper
annotations, only available in a limited capacity,
lacking multi-domain use cases, or having a negli-
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Metric DSTC2 SFX WOZ2.0 FRAMES KVRET M2M MultiWOZ

# Dialogues 1,612 1,006 600 1,369 2,425 1,500 8,438
Total # turns 23,354 12,396 4,472 19,986 12,732 14,796 115,424
Total # tokens 199,431 108,975 50,264 251,867 102,077 121,977 1,520,970
Avg. turns per dialogue 14.49 12.32 7.45 14.60 5.25 9.86 13.68
Avg. tokens per turn 8.54 8.79 11.24 12.60 8.02 8.24 13.18
Total unique tokens 986 1,473 2,142 12,043 2,842 1,008 24,071
# Slots 8 14 4 61 13 14 25
# Values 212 1847 99 3871 1363 138 4510

Table 1: Comparison of our corpus to similar data sets. Numbers in bold indicate best value for the
respective metric. The numbers are provided for the training part of data except for FRAMES data-set
were such division was not defined.

gible linguistic variability.
This paper introduces the Multi-Domain

Wizard-of-Oz (MultiWOZ) dataset, a large-scale
multi-turn conversational corpus with dialogues
spanning across several domains and topics. Each
dialogue is annotated with a sequence of dia-
logue states and corresponding system dialogue
acts (Traum, 1999). Hence, MultiWOZ can be
used to develop individual system modules as sep-
arate classification tasks and serve as a benchmark
for existing modular-based approaches. On the
other hand, MultiWOZ has around 10k dialogues,
which is at least one order of magnitude larger
than any structured corpus currently available.
This significant size of the corpus allows re-
searchers to carry on end-to-end based dialogue
modelling experiments, which may facilitate a lot
of exciting ongoing research in the area.

This work presents the data collection approach,
a summary of the data structure, as well as a se-
ries of analyses of the data statistics. To show
the potential and usefulness of the proposed Mul-
tiWOZ corpus, benchmarking baselines of belief
tracking, natural language generation and end-to-
end response generation have been conducted and
reported. The dataset and baseline models will be
freely available online.1

2 Related Work

Existing datasets can be roughly grouped into
three categories: machine-to-machine, human-to-
machine, and human-to-human conversations. A
detailed review of these categories is presented be-
low.

1http://dialogue.mi.eng.cam.ac.uk/
index.php/corpus/

Machine-to-Machine Creating an environment
with a simulated user enables to exhaustively
generate dialogue templates. These templates
can be mapped to a natural language by either
pre-defined rules (Bordes et al., 2017) or crowd
workers (Shah et al., 2018). Such approach
ensures a diversity and full coverage of all possi-
ble dialogue outcomes within a certain domain.
However, the naturalness of the dialogue flows
relies entirely on the engineered set-up of the
user and system bots. This poses a risk of a mis-
match between training data and real interactions
harming the interaction quality. Moreover, these
datasets do not take into account noisy conditions
often experienced in real interactions (Black et al.,
2011).

Human-to-Machine Since collecting dialogue
corpus for a task-specific application from scratch
is difficult, most of the task-oriented dialogue
corpora are fostered based on an existing dia-
logue system. One famous example of this kind
is the Let’s Go Bus Information System which
offers live bus schedule information over the
phone (Raux et al., 2005) leading to the first Di-
alogue State Tracking Challenge (Williams et al.,
2013). Taking the idea of the Let’s Go system
forward, the second and third DSTCs (Hender-
son et al., 2014b,c) have produced bootstrapped
human-machine datasets for a restaurant search
domain in the Cambridge area, UK. Since then,
DSTCs have become one of the central research
topics in the dialogue community (Kim et al.,
2016, 2017).

While human-to-machine data collection is an
obvious solution for dialogue system develop-
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ment, it is only possible with a provision of an
existing working system. Therefore, this chicken
(system)-and-egg (data) problem limits the use
of this type of data collection to existing system
improvement instead of developing systems in a
completely new domain. What is even worse is
that the capability of the initial system introduces
additional biases to the collected data, which
may result in a mismatch between the training
and testing sets (Wen et al., 2016). The limited
understanding capability of the initial system
may prompt the users to adapt to simpler input
examples that the system can understand but are
not necessarily natural in conversations.

Human-to-Human Arguably, the best strategy
to build a natural conversational system may
be to have a system that can directly mimic
human behaviors through learning from a large
amount of real human-human conversations. With
this idea in mind, several large-scale dialogue
corpora have been released in the past, such as
the Twitter (Ritter et al., 2010) dataset, the Reddit
conversations (Schrading et al., 2015), and the
Ubuntu technical support corpus (Lowe et al.,
2015). Although previous work (Vinyals and Le,
2015) has shown that a large learning system can
learn to generate interesting responses from these
corpora, the lack of grounding conversations onto
an existing knowledge base or APIs limits the
usability of developed systems. Due to the lack of
an explicit goal in the conversation, recent studies
have shown that systems trained with this type of
corpus not only struggle in generating consistent
and diverse responses (Li et al., 2016) but are also
extremely hard to evaluate (Liu et al., 2016).

In this paper, we focus on a particular type of
human-to-human data collection. The Wizard-
of-Oz framework (WOZ) (Kelley, 1984) was first
proposed as an iterative approach to improve user
experiences when designing a conversational sys-
tem. The goal of WOZ data collection is to log
down the conversation for future system develop-
ment. One of the earliest dataset collected in this
fashion is the ATIS corpus (Hemphill et al., 1990),
where conversations between a client and an air-
line help-desk operator were recorded.

More recently, Wen et al. (2017) have shown
that the WOZ approach can be applied to collect
high-quality typed conversations where a machine

Figure 1: A sample task template spanning over
three domains - hotels, restaurants and booking.

learning-based system can learn from. By modify-
ing the original WOZ framework to make it suit-
able for crowd-sourcing, a total of 676 dialogues
was collected via Amazon Mechanical Turk. The
corpus was later extended to additional two lan-
guages for cross-lingual research (Mrkšić et al.,
2017b). Subsequently, this approach is followed
by Asri et al. (2017) to collect the Frame corpus in
a more complex travel booking domain, and Eric
et al. (2017) to collect a corpus of conversations
for in-car navigation. Despite the fact that all these
datasets contain highly natural conversations com-
paring to other human-machine collected datasets,
they are usually small in size with only a limited
domain coverage.

3 Data Collection Set-up

Following the Wizard-of-Oz set-up (Kelley,
1984), corpora of annotated dialogues can be gath-
ered at relatively low costs and with a small
time effort. This is in contrast to previous ap-
proaches (Henderson et al., 2014a) and such WOZ
set-up has been successfully validated by Wen
et al. (2017) and Asri et al. (2017).

Therefore, we follow the same process to create
a large-scale corpus of natural human-human con-
versations. Our goal was to collect multi-domain
dialogues. To overcome the need of relying the
data collection to a small set of trusted workers2,
the collection set-up was designed to provide an

2Excluding annotation phase.
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Table 2: Full ontology for all domains in our data-set. The upper script indicates which domains it belongs
to. *: universal, 1: restaurant, 2: hotel, 3: attraction, 4: taxi, 5: train, 6: hospital, 7: police.

act type
inform⇤ / request⇤ / select123 / recommend/123 / not found123

request booking info123 / offer booking1235 / inform booked1235 / decline booking1235

welcome⇤ /greet⇤ / bye⇤ / reqmore⇤

slots

address⇤ / postcode⇤ / phone⇤ / name1234 / no of choices1235 / area123 /
pricerange123 / type123 / internet2 / parking2 / stars2 / open hours3 / departure45

destination45 / leave after45 / arrive by45 / no of people1235 / reference no.1235 /
trainID5 / ticket price5 / travel time5 / department7 / day1235 / no of days123

easy-to-operate system interface for the Wizards
and easy-to-follow goals for the users. This re-
sulted in a bigger diversity and semantical richness
of the collected data (see Section 4.3). Moreover,
having a large set of workers mitigates the prob-
lem of artificial encouragement of a variety of be-
havior from users. A detailed explanation of the
data-gathering process from both sides is provided
below. Subsequently, we show how the crowd-
sourcing scheme can also be employed to annotate
the collected dialogues with dialogue acts.

3.1 Dialogue Task

The domain of a task-oriented dialogue system is
often defined by an ontology, a structured repre-
sentation of the back-end database. The ontology
defines all entity attributes called slots and all pos-
sible values for each slot. In general, the slots may
be divided into informable slots and requestable
slots. Informable slots are attributes that allow
the user to constrain the search (e.g., area or price
range). Requestable slots represent additional in-
formation the users can request about a given en-
tity (e.g., phone number). Based on a given on-
tology spanning several domains, a task template
was created for each task through random sam-
pling. This results in single and multi-domain di-
alogue scenarios and domain specific constraints
were generated. In domains that allowed for that,
an additional booking requirement was sampled
with some probability.

To model more realistic conversations, goal
changes are encouraged. With a certain proba-
bility, the initial constraints of a task may be set
to values so that no matching database entry ex-
ists. Once informed about that situation by the
system, the users only needed to follow the goal
which provided alternative values.

3.2 User Side
To provide information to the users, each task tem-
plate is mapped to natural language. Using heuris-
tic rules, the task is then gradually introduced to
the user to prevent an overflow of information.
The goal description presented to the user is de-
pendent on the number of turns already performed.
Moreover, if the user is required to perform a
sub-task (for example - booking a venue), these
sub-goals are shown straight-away along with the
main goal in the given domain. This makes the
dialogues more similar to spoken conversations.3

Figure 1 shows a sampled task description span-
ning over two domains with booking requirement.
Natural incorporation of co-referencing and lex-
ical entailment into the dialogue was achieved
through implicit mentioning of some slots in the
goal.

3.3 System Side
The wizard is asked to perform a role of a clerk
by providing information required by the user. He
is given an easy-to-operate graphical user inter-
face to the back-end database. The wizard conveys
the information provided by the current user input
through a web form. This information is persis-
tent across turns and is used to query the database.
Thus, the annotation of a belief state is performed
implicitly while the wizard is allowed to fully fo-
cus on providing the required information. Given
the result of the query (a list of entities satisfy-
ing current constraints), the wizard either requests
more details or provides the user with the adequate
information. At each system turn, the wizard starts
with the results of the query from the previous
turn.

To ensure coherence and consistency, the wiz-
ard and the user alike first need to go through the

3However, the length of turns are significantly longer
than with spoken interaction (Section 4.3).

5019



Figure 2: Dialogue length distribution (left) and distribution of number of tokens per turn (right).

dialogue history to establish the respective con-
text. We found that even though multiple workers
contributed to one dialogue, only a small margin
of dialogues were incoherent.

3.4 Annotation of Dialogue Acts

Arguably, the most challenging and time-
consuming part of any dialogue data collection is
the process of annotating dialogue acts. One of
the major challenges of this task is the definition
of a set and structure of dialogue acts (Traum and
Hinkelman, 1992; Bunt, 2006). In general, a dia-
logue act consists of the intent (such as request or
inform) and slot-value pairs. For example, the act
inform(domain=hotel,price=expensive)
has the intent inform, where the user is informing
the system to constrain the search to expensive
hotels.

Expecting a big discrepancy in annotations be-
tween annotators, we initially ran three trial tests
over a subset of dialogues using Amazon Mechan-
ical Turk. Three annotations per dialogue were
gathered resulting in around 750 turns. As this re-
quires a multi-annotator metric over a multi-label
task, we used Fleiss’ kappa metric (Fleiss, 1971)
per single dialogue act. Although the weighted
kappa value averaged over dialogue acts was at
a high level of 0.704, we have observed many
cases of very poor annotations and an unsatisfac-
tory coverage of dialogue acts. Initial errors in
annotations and suggestions from crowd workers
gradually helped us to expand and improve the fi-
nal set of dialogue acts from 8 to 13 - see Table
2.

The variation in annotations made us change the
initial approach. We ran a two-phase trial to first

identify set of workers that perform well. Turk-
ers were asked to annotate an illustrative, long di-
alogue which covered many problematic examples
that we have observed in the initial run described
above. All submissions that were of high quality
were inspected and corrections were reported to
annotators. Workers were asked to re-run a new
trial dialogue. Having passed the second test, they
were allowed to start annotating real dialogues.
This procedure resulted in a restricted set of an-
notators performing high quality annotations. Ap-
pendix A contains a demonstration of a created
system.

3.5 Data Quality
Data collection was performed in a two-step pro-
cess. First, all dialogues were collected and then
the annotation process was launched. This setup
allowed the dialogue act annotators to also report
errors (e.g., not following the task or confusing
utterances) found in the collected dialogues. As
a result, many errors could be corrected. Finally,
additional tests were performed to ensure that the
provided information in the dialogues match the
pre-defined goals.

To estimate the inter-annotator agreement, the
averaged weighted kappa value for all dialogue
acts was computed over 291 turns. With  =
0.884, an improvement in agreement between an-
notators was achieved although the size of action
set was significantly larger.

4 MultiWOZ Dialogue Corpus

The main goal of the data collection was to acquire
highly natural conversations between a tourist and
a clerk from an information center in a touristic
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Figure 3: Dialogue acts frequency (left) and number of dialogue acts per turn (right) in the collected
corpus.

city. We considered various possible dialogue sce-
narios ranging from requesting basic information
about attractions through booking a hotel room or
travelling between cities. In total, the presented
corpus consists of 7 domains - Attraction, Hospi-
tal, Police, Hotel, Restaurant, Taxi, Train. The lat-
ter four are extended domains which include the
sub-task Booking. Through a task sampling pro-
cedure (Section 3.1), the dialogues cover between
1 and 5 domains per dialogue thus greatly varying
in length and complexity. This broad range of do-
mains allows to create scenarios where domains
are naturally connected. For example, a tourist
needs to find a hotel, to get the list of attractions
and to book a taxi to travel between both places.
Table 2 presents the global ontology with the list
of considered dialogue acts.

4.1 Data Statistics

Following data collection process from the previ-
ous section, a total of 10, 438 dialogues were col-
lected. Figure 2 (left) shows the dialogue length
distribution grouped by single and multi domain
dialogues. Around 70% of dialogues have more
than 10 turns which shows the complexity of the
corpus. The average number of turns are 8.93 and
15.39 for single and multi-domain dialogues re-
spectively with 115, 434 turns in total. Figure 2
(right) presents a distribution over the turn lengths.
As expected, the wizard replies are much longer -
the average sentence lengths are 11.75 and 15.12
for users and wizards respectively. The responses
are also more diverse thus enabling the training of
more complex generation models.

Figure 3 (left) shows the distribution of dialogue
acts annotated in the corpus. We present here a
summarized list where different types of actions
like inform are grouped together. The right graph
in the Figure 3 presents the distribution of number
of acts per turn. Almost 60% of dialogues turns
have more than one dialogue act showing again
the richness of system utterances. These create
a new challenge for reinforcement learning-based
models requiring them to operate on concurrent
actions.

In total, 1, 249 workers contributed to the cor-
pus creation with only few instances of intentional
wrongdoing. Additional restrictions were added
to automatically discover instances of very short
utterances, short dialogues or missing single turns
during annotations. All such cases were corrected
or deleted from the corpus.

4.2 Data Structure

There are 3, 406 single-domain dialogues that in-
clude booking if the domain allows for that and
7, 032 multi-domain dialogues consisting of at
least 2 up to 5 domains. To enforce reproducibil-
ity of results, the corpus was randomly split into
a train, test and development set. The test and de-
velopment sets contain 1k examples each. Even
though all dialogues are coherent, some of them
were not finished in terms of task description.
Therefore, the validation and test sets only con-
tain fully successful dialogues thus enabling a fair
comparison of models.

Each dialogue consists of a goal, multiple user
and system utterances as well as a belief state and
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set of dialogue acts with slots per turn. Addition-
ally, the task description in natural language pre-
sented to turkers working from the visitor’s side is
added.

4.3 Comparison to Other Structured
Corpora

To illustrate the contribution of the new corpus,
we compare it on several important statistics with
the DSTC2 corpus (Henderson et al., 2014a), the
SFX corpus (Gašić et al., 2014), the WOZ2.0 cor-
pus (Wen et al., 2017), the FRAMES corpus (Asri
et al., 2017), the KVRET corpus (Eric et al., 2017),
and the M2M corpus (Shah et al., 2018). Figure 1
clearly shows that our corpus compares favorably
to all other data sets on most of the metrics with
the number of total dialogues, the average number
of tokens per turn and the total number of unique
tokens as the most prominent ones. Especially the
latter is important as it is directly linked to linguis-
tic richness.

5 MultiWOZ as a New Benchmark

The complexity and the rich linguistic variation
in the collected MultiWOZ dataset makes it a
great benchmark for a range of dialogue tasks.
To show the potential usefulness of the Multi-
WOZ corpus, we break down the dialogue mod-
elling task into three sub-tasks and report a bench-
mark result for each of them: dialogue state track-
ing, dialogue-act-to-text generation, and dialogue-
context-to-text generation. These results illus-
trate new challenges introduced by the MultiWOZ
dataset for different dialogue modelling problems.

5.1 Dialogue State Tracking
A robust natural language understanding and dia-
logue state tracking is the first step towards build-
ing a good conversational system. Since multi-
domain dialogue state tracking is still in its infancy
and there are not many comparable approaches
available (Rastogi et al., 2017), we instead report
our state-of-the-art result on the restaurant subset
of the MultiWOZ corpus as the reference baseline.
The proposed method (Ramadan et al., 2018) ex-
ploits the semantic similarity between dialogue ut-
terances and the ontology terms which allows the
information to be shared across domains. Further-
more, the model parameters are independent of the
ontology and belief states, therefore the number of
the parameters does not increase with the size of

the domain itself.4

Slot WOZ 2.0 MultiWOZ
(restaurant)

Overall accuracy 96.5 89.7
Joint goals 85.5 80.9

Table 3: The test set accuracies overall and for joint
goals in the restaurant sub-domain.

The same model was trained on both the
WOZ2.0 and the proposed MultiWOZ datasets,
where the WOZ2.0 corpus consists of 1200 sin-
gle domain dialogues in the restaurant domain.
Although not directly comparable, Table 3 shows
that the performance of the model is consecutively
poorer on the new dataset compared to WOZ2.0.
These results demonstrate how demanding is the
new dataset as the conversations are richer and
much longer.

5.2 Dialogue-Context-to-Text Generation
After a robust dialogue state tracking module
is built, the next challenge becomes the dia-
logue management and response generation com-
ponents. These problems can either be addressed
separately (Young et al., 2013), or jointly in an
end-to-end fashion (Bordes et al., 2017; Wen et al.,
2017; Li et al., 2017). In order to establish a clear
benchmark where the performance of the compos-
ite of dialogue management and response genera-
tion is completely independent of the belief track-
ing, we experimented with a baseline neural re-
sponse generation model with an oracle belief-
state obtained from the wizard annotations as dis-
cussed in Section 3.3.5

Following Wen et al. (2017) which frames the
dialogue as a context to response mapping prob-
lem, a sequence-to-sequence model (Sutskever
et al., 2014) is augmented with a belief tracker
and a discrete database accessing component as
additional features to inform the word decisions
in the decoder. Note, in the original paper the
belief tracker was pre-trained while in this work
the annotations of the dialogue state are used as an
oracle tracker. Figure 4 presents the architecture
of the system (Budzianowski et al., 2018).

4The model is publicly available at
https://github.com/osmanio2/
multi-domain-belief-tracking

5The model is publicly available at https://
github.com/budzianowski/multiwoz
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Figure 4: Architecture of the multi-domain response generator. The attention is conditioned on the oracle
belief state and the database pointer.

Training and Evaluation Since often times the
evaluation of a dialogue system without a direct
interaction with the real users can be mislead-
ing (Liu et al., 2016), three different automatic
metrics are included to ensure the result is better
interpreted. Among them, the first two metrics
relate to the dialogue task completion - whether
the system has provided an appropriate entity (In-
form rate) and then answered all the requested at-
tributes (Success rate); while fluency is measured
via BLEU score (Papineni et al., 2002). The best
models for both datasets were found through a grid
search over a set of hyper-parameters such as the
size of embeddings, learning rate and different re-
current architectures.

We trained the same neural architecture (taking
into account different number of domains) on both
MultiWOZ and Cam676 datasets. The best results
on the Cam676 corpus were obtained with bidirec-
tional GRU cell. In the case of MultiWOZ dataset,
the LSTM cell serving as a decoder and an en-
coder achieved the highest score with the global
type of attention (Bahdanau et al., 2014). Table 4
presents the results of a various of model architec-
tures and shows several challenges. As expected,
the model achieves almost perfect score on the In-
form metric on the Cam676 dataset taking the ad-
vantage of an oracle belief state signal. However,
even with the perfect dialogue state tracking of the
user intent, the baseline models obtain almost 30%
lower score on the Inform metric on the new cor-
pus. The addition of the attention improves the
score on the Success metric on the new dataset
by less than 1%. Nevertheless, as expected, the

best model on MultiWOZ is still falling behind
by a large margin in comparison to the results on
the Cam676 corpus taking into account both In-
form and Success metrics. As most of dialogues
span over at least two domains, the model has to
be much more effective in order to execute a suc-
cessful dialogue. Moreover, the BLEU score on
the MultiWOZ is lower than the one reported on
the Cam676 dataset. This is mainly caused by
the much more diverse linguistic expressions ob-
served in the MultiWOZ dataset.

5.3 Dialogue-Act-to-Text Generation

Natural Language Generation from a structured
meaning representation (Oh and Rudnicky, 2000;
Bohus and Rudnicky, 2005) has been a very pop-
ular research topic in the community, and the lack
of data has been a long standing block for the field
to adopt more machine learning methods. Due to
the additional annotation of the system acts, the
MultiWOZ dataset serves as a new benchmark for
studying natural language generation from a struc-
tured meaning representation. In order to verify
the difficulty of the collected dataset for the lan-
guage generation task, we compare it to the SFX
dataset (see Table 1), which consists of around 5k
dialogue act and natural language sentence pairs.
We trained the same Semantically Conditioned
Long Short-term Memory network (SC-LSTM)
proposed by Wen et al. (2015) on both datasets
and used the metrics as a proxy to estimate the dif-
ficulty of the two corpora. To make a fair compari-
son, we constrained our dataset to only the restau-
rant sub-domain which contains around 25k dia-

5023



Cam676 MultiWOZ
w/o attention w/ attention w/o attention w/ attention

Inform (%) 99.17 99.58 71.29 71.33
Success (%) 75.08 73.75 60.29 60.96
BLEU 0.219 0.204 0.188 0.189

Table 4: Performance comparison of two different model architectures using a corpus-based evaluation.

logue turns. To give more statistics about the two
datasets: the SFX corpus has 9 different act types
with 12 slots comparing to 12 acts and 14 slots in
our corpus. The best model for both datasets was
found through a grid search over a set of hyper-
parameters such as the size of embeddings, learn-
ing rate, and number of LSTM layers.6

Table 5 presents the results on two metrics:
BLEU score (Papineni et al., 2002) and slot error
rate (SER) (Wen et al., 2015). The significantly
lower metrics on the MultiWOZ corpus showed
that it is much more challenging than the SFX
restaurant dataset. This is probably due to the fact
that more than 60% of the dialogue turns are com-
posed of at least two system acts, which greatly
harms the performance of the existing model.

Metric SFX MultiWOZ
(restaurant)

SER (%) 0.46 4.378
BLEU 0.731 0.616

Table 5: The test set slot error rate (SER) and
BLEU on the SFX dataset and the MultiWOZ
restaurant subset.

6 Conclusions

As more and more speech oriented applications
are commercially deployed, the necessity of build-
ing an entirely data-driven conversational agent
becomes more apparent. Various corpora were
gathered to enable data-driven approaches to di-
alogue modelling. To date, however, the avail-
able datasets were usually constrained in linguis-
tic variability or lacking multi-domain use cases.
In this paper, we established a data-collection
pipeline entirely based on crowd-sourcing en-
abling to gather a large scale, linguistically rich
corpus of human-human conversations. We hope
that MultiWOZ offers valuable training data and
a new challenging testbed for existing modular-
based approaches ranging from belief tracking to

6The model is publicly available at
https://github.com/andy194673/
nlg-sclstm-multiwoz

dialogue acts generation. Moreover, the scale of
the data should help push forward research in the
end-to-end dialogue modelling.
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Abstract
Current state-of-the-art semantic role labeling
(SRL) uses a deep neural network with no
explicit linguistic features. However, prior
work has shown that gold syntax trees can dra-
matically improve SRL decoding, suggesting
the possibility of increased accuracy from ex-
plicit modeling of syntax. In this work, we
present linguistically-informed self-attention
(LISA): a neural network model that com-
bines multi-head self-attention with multi-task
learning across dependency parsing, part-of-
speech tagging, predicate detection and SRL.
Unlike previous models which require sig-
nificant pre-processing to prepare linguistic
features, LISA can incorporate syntax using
merely raw tokens as input, encoding the se-
quence only once to simultaneously perform
parsing, predicate detection and role label-
ing for all predicates. Syntax is incorpo-
rated by training one attention head to attend
to syntactic parents for each token. More-
over, if a high-quality syntactic parse is al-
ready available, it can be beneficially injected
at test time without re-training our SRL model.
In experiments on CoNLL-2005 SRL, LISA
achieves new state-of-the-art performance for
a model using predicted predicates and stan-
dard word embeddings, attaining 2.5 F1 ab-
solute higher than the previous state-of-the-art
on newswire and more than 3.5 F1 on out-
of-domain data, nearly 10% reduction in er-
ror. On ConLL-2012 English SRL we also
show an improvement of more than 2.5 F1.
LISA also out-performs the state-of-the-art
with contextually-encoded (ELMo) word rep-
resentations, by nearly 1.0 F1 on news and
more than 2.0 F1 on out-of-domain text.

1 Introduction
Semantic role labeling (SRL) extracts a high-level
representation of meaning from a sentence, label-
ing e.g. who did what to whom. Explicit repre-
sentations of such semantic information have been

shown to improve results in challenging down-
stream tasks such as dialog systems (Tur et al.,
2005; Chen et al., 2013), machine reading (Berant
et al., 2014; Wang et al., 2015) and translation (Liu
and Gildea, 2010; Bazrafshan and Gildea, 2013).

Though syntax was long considered an obvious
prerequisite for SRL systems (Levin, 1993; Pun-
yakanok et al., 2008), recently deep neural net-
work architectures have surpassed syntactically-
informed models (Zhou and Xu, 2015; Marcheg-
giani et al., 2017; He et al., 2017; Tan et al., 2018;
He et al., 2018), achieving state-of-the art SRL
performance with no explicit modeling of syntax.
An additional benefit of these end-to-end models
is that they require just raw tokens and (usually)
detected predicates as input, whereas richer lin-
guistic features typically require extraction by an
auxiliary pipeline of models.

Still, recent work (Roth and Lapata, 2016; He
et al., 2017; Marcheggiani and Titov, 2017) indi-
cates that neural network models could see even
higher accuracy gains by leveraging syntactic in-
formation rather than ignoring it. He et al. (2017)
indicate that many of the errors made by a syntax-
free neural network on SRL are tied to certain
syntactic confusions such as prepositional phrase
attachment, and show that while constrained in-
ference using a relatively low-accuracy predicted
parse can provide small improvements in SRL ac-
curacy, providing a gold-quality parse leads to
substantial gains. Marcheggiani and Titov (2017)
incorporate syntax from a high-quality parser
(Kiperwasser and Goldberg, 2016) using graph
convolutional neural networks (Kipf and Welling,
2017), but like He et al. (2017) they attain only
small increases over a model with no syntactic
parse, and even perform worse than a syntax-free
model on out-of-domain data. These works sug-
gest that though syntax has the potential to im-
prove neural network SRL models, we have not
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yet designed an architecture which maximizes the
benefits of auxiliary syntactic information.

In response, we propose linguistically-informed
self-attention (LISA): a model that combines
multi-task learning (Caruana, 1993) with stacked
layers of multi-head self-attention (Vaswani et al.,
2017); the model is trained to: (1) jointly pre-
dict parts of speech and predicates; (2) perform
parsing; and (3) attend to syntactic parse parents,
while (4) assigning semantic role labels. Whereas
prior work typically requires separate models to
provide linguistic analysis, including most syntax-
free neural models which still rely on external
predicate detection, our model is truly end-to-end:
earlier layers are trained to predict prerequisite
parts-of-speech and predicates, the latter of which
are supplied to later layers for scoring. Though
prior work re-encodes each sentence to predict
each desired task and again with respect to each
predicate to perform SRL, we more efficiently en-
code each sentence only once, predict its pred-
icates, part-of-speech tags and labeled syntactic
parse, then predict the semantic roles for all pred-
icates in the sentence in parallel. The model is
trained such that, as syntactic parsing models im-
prove, providing high-quality parses at test time
will improve its performance, allowing the model
to leverage updated parsing models without re-
quiring re-training.

In experiments on the CoNLL-2005 and
CoNLL-2012 datasets we show that our
linguistically-informed models out-perform
the syntax-free state-of-the-art. On CoNLL-2005
with predicted predicates and standard word
embeddings, our single model out-performs the
previous state-of-the-art model on the WSJ test
set by 2.5 F1 points absolute. On the challenging
out-of-domain Brown test set, our model improves
substantially over the previous state-of-the-art by
more than 3.5 F1, a nearly 10% reduction in error.
On CoNLL-2012, our model gains more than 2.5
F1 absolute over the previous state-of-the-art.
Our models also show improvements when
using contextually-encoded word representations
(Peters et al., 2018), obtaining nearly 1.0 F1
higher than the state-of-the-art on CoNLL-2005
news and more than 2.0 F1 improvement on
out-of-domain text.1

1Our implementation in TensorFlow (Abadi et al., 2015)
is available at : http://github.com/strubell/
LISA
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Figure 1: Word embeddings are input to J layers of
multi-head self-attention. In layer p one attention
head is trained to attend to parse parents (Figure
2). Layer r is input for a joint predicate/POS clas-
sifier. Representations from layer r correspond-
ing to predicted predicates are passed to a bilinear
operation scoring distinct predicate and role rep-
resentations to produce per-token SRL predictions
with respect to each predicted predicate.

2 Model

Our goal is to design an efficient neural network
model which makes use of linguistic information
as effectively as possible in order to perform end-
to-end SRL. LISA achieves this by combining: (1)
A new technique of supervising neural attention to
predict syntactic dependencies with (2) multi-task
learning across four related tasks.

Figure 1 depicts the overall architecture of our
model. The basis for our model is the Trans-
former encoder introduced by Vaswani et al.
(2017): we transform word embeddings into
contextually-encoded token representations us-
ing stacked multi-head self-attention and feed-
forward layers (§2.1).

To incorporate syntax, one self-attention head
is trained to attend to each token’s syntactic par-
ent, allowing the model to use this attention head
as an oracle for syntactic dependencies. We in-
troduce this syntactically-informed self-attention
(Figure 2) in more detail in §2.2.

Our model is designed for the more realistic set-
ting in which gold predicates are not provided at
test-time. Our model predicts predicates and inte-
grates part-of-speech (POS) information into ear-
lier layers by re-purposing representations closer
to the input to predict predicate and POS tags us-
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Figure 2: Syntactically-informed self-attention for
the query word sloth. Attention weights Aparse

heavily weight the token’s syntactic governor,
saw, in a weighted average over the token val-
ues Vparse. The other attention heads act as
usual, and the attended representations from all
heads are concatenated and projected through a
feed-forward layer to produce the syntactically-
informed representation for sloth.

ing hard parameter sharing (§2.3). We simplify
optimization and benefit from shared statistical
strength derived from highly correlated POS and
predicates by treating tagging and predicate detec-
tion as a single task, performing multi-class clas-
sification into the joint Cartesian product space of
POS and predicate labels.

Though typical models, which re-encode the
sentence for each predicate, can simplify SRL to
token-wise tagging, our joint model requires a
different approach to classify roles with respect
to each predicate. Contextually encoded tokens
are projected to distinct predicate and role em-
beddings (§2.4), and each predicted predicate is
scored with the sequence’s role representations us-
ing a bilinear model (Eqn. 6), producing per-label
scores for BIO-encoded semantic role labels for
each token and each semantic frame.

The model is trained end-to-end by maximum
likelihood using stochastic gradient descent (§2.5).

2.1 Self-attention token encoder
The basis for our model is a multi-head self-
attention token encoder, recently shown to achieve
state-of-the-art performance on SRL (Tan et al.,
2018), and which provides a natural mechanism

for incorporating syntax, as described in §2.2. Our
implementation replicates Vaswani et al. (2017).

The input to the network is a sequence X of T
token representations xt. In the standard setting
these token representations are initialized to pre-
trained word embeddings, but we also experiment
with supplying pre-trained ELMo representations
combined with task-specific learned parameters,
which have been shown to substantially improve
performance of other SRL models (Peters et al.,
2018). For experiments with gold predicates, we
concatenate a predicate indicator embedding pt

following previous work (He et al., 2017).
We project2 these input embeddings to a rep-

resentation that is the same size as the output of
the self-attention layers. We then add a positional
encoding vector computed as a deterministic sinu-
soidal function of t, since the self-attention has no
innate notion of token position.

We feed this token representation as input to a
series of J residual multi-head self-attention lay-
ers with feed-forward connections. Denoting the
jth self-attention layer as T (j)(·), the output of
that layer s(j)

t , and LN(·) layer normalization, the
following recurrence applied to initial input c(p)

t :

s(j)
t = LN(s(j�1)

t + T (j)(s(j�1)
t )) (1)

gives our final token representations s(j)
t . Each

T (j)(·) consists of: (a) multi-head self-attention
and (b) a feed-forward projection.

The multi-head self attention consists of H at-
tention heads, each of which learns a distinct at-
tention function to attend to all of the tokens in
the sequence. This self-attention is performed for
each token for each head, and the results of the H
self-attentions are concatenated to form the final
self-attended representation for each token.

Specifically, consider the matrix S(j�1) of T to-
ken representations at layer j � 1. For each atten-
tion head h, we project this matrix into distinct
key, value and query representations K(j)

h , V (j)
h

and Q(j)
h of dimensions T ⇥dk, T ⇥dq, and T ⇥dv,

respectively. We can then multiply Q(j)
h by K(j)

h

to obtain a T ⇥ T matrix of attention weights A(j)
h

between each pair of tokens in the sentence. Fol-
lowing Vaswani et al. (2017) we perform scaled
dot-product attention: We scale the weights by the
inverse square root of their embedding dimension

2All linear projections include bias terms, which we omit
in this exposition for the sake of clarity.
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and normalize with the softmax function to pro-
duce a distinct distribution for each token over all
the tokens in the sentence:

A(j)
h = softmax(d�0.5

k Q(j)
h K(j)

h

T
) (2)

These attention weights are then multiplied by
V (j)

h for each token to obtain the self-attended to-
ken representations M (j)

h :

M (j)
h = A(j)

h V (j)
h (3)

Row t of M (j)
h , the self-attended representation for

token t at layer j, is thus the weighted sum with
respect to t (with weights given by A(j)

h ) over the
token representations in V (j)

h .
The outputs of all attention heads for each token

are concatenated, and this representation is passed
to the feed-forward layer, which consists of two
linear projections each followed by leaky ReLU
activations (Maas et al., 2013). We add the out-
put of the feed-forward to the initial representa-
tion and apply layer normalization to give the final
output of self-attention layer j, as in Eqn. 1.

2.2 Syntactically-informed self-attention
Typically, neural attention mechanisms are left on
their own to learn to attend to relevant inputs. In-
stead, we propose training the self-attention to at-
tend to specific tokens corresponding to the syn-
tactic structure of the sentence as a mechanism for
passing linguistic knowledge to later layers.

Specifically, we replace one attention head with
the deep bi-affine model of Dozat and Manning
(2017), trained to predict syntactic dependencies.
Let Aparse be the parse attention weights, at layer
i. Its input is the matrix of token representations
S(i�1). As with the other attention heads, we
project S(i�1) into key, value and query represen-
tations, denoted Kparse, Qparse, Vparse. Here the
key and query projections correspond to parent
and dependent representations of the tokens, and
we allow their dimensions to differ from the rest of
the attention heads to more closely follow the im-
plementation of Dozat and Manning (2017). Un-
like the other attention heads which use a dot prod-
uct to score key-query pairs, we score the compati-
bility between Kparse and Qparse using a bi-affine
operator Uheads to obtain attention weights:

Aparse = softmax(QparseUheadsK
T
parse) (4)

These attention weights are used to compose
a weighted average of the value representations
Vparse as in the other attention heads.

We apply auxiliary supervision at this attention
head to encourage it to attend to each token’s par-
ent in a syntactic dependency tree, and to encode
information about the token’s dependency label.
Denoting the attention weight from token t to a
candidate head q as Aparse[t, q], we model the
probability of token t having parent q as:

P (q = head(t) | X ) = Aparse[t, q] (5)

using the attention weights Aparse[t] as the distri-
bution over possible heads for token t. We define
the root token as having a self-loop. This atten-
tion head thus emits a directed graph3 where each
token’s parent is the token to which the attention
Aparse assigns the highest weight.

We also predict dependency labels using per-
class bi-affine operations between parent and de-
pendent representations Qparse and Kparse to pro-
duce per-label scores, with locally normalized
probabilities over dependency labels ydep

t given by
the softmax function. We refer the reader to Dozat
and Manning (2017) for more details.

This attention head now becomes an oracle for
syntax, denoted P , providing a dependency parse
to downstream layers. This model not only pre-
dicts its own dependency arcs, but allows for the
injection of auxiliary parse information at test time
by simply setting Aparse to the parse parents pro-
duced by e.g. a state-of-the-art parser. In this way,
our model can benefit from improved, external
parsing models without re-training. Unlike typi-
cal multi-task models, ours maintains the ability
to leverage external syntactic information.

2.3 Multi-task learning
We also share the parameters of lower layers in our
model to predict POS tags and predicates. Fol-
lowing He et al. (2017), we focus on the end-to-
end setting, where predicates must be predicted
on-the-fly. Since we also train our model to
predict syntactic dependencies, it is beneficial to
give the model knowledge of POS information.
While much previous work employs a pipelined
approach to both POS tagging for dependency
parsing and predicate detection for SRL, we take
a multi-task learning (MTL) approach (Caruana,

3Usually the head emits a tree, but we do not enforce it
here.
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1993), sharing the parameters of earlier layers in
our SRL model with a joint POS and predicate de-
tection objective. Since POS is a strong predic-
tor of predicates4 and the complexity of training
a multi-task model increases with the number of
tasks, we combine POS tagging and predicate de-
tection into a joint label space: For each POS tag
TAG which is observed co-occurring with a predi-
cate, we add a label of the form TAG:PREDICATE.

Specifically, we feed the representation s(r)
t

from a layer r preceding the syntactically-
informed layer p to a linear classifier to pro-
duce per-class scores rt for token t. We compute
locally-normalized probabilities using the softmax
function: P (yprp

t | X ) / exp(rt), where yprp
t is a

label in the joint space.

2.4 Predicting semantic roles
Our final goal is to predict semantic roles for each
predicate in the sequence. We score each predicate
against each token in the sequence using a bilinear
operation, producing per-label scores for each to-
ken for each predicate, with predicates and syntax
determined by oracles V and P .

First, we project each token representation s(J)
t

to a predicate-specific representation spred
t and a

role-specific representation srole
t . We then provide

these representations to a bilinear transformation
U for scoring. So, the role label scores sft for the
token at index t with respect to the predicate at
index f (i.e. token t and frame f ) are given by:

sft = (spred
f )T Usrole

t (6)

which can be computed in parallel across all se-
mantic frames in an entire minibatch. We calculate
a locally normalized distribution over role labels
for token t in frame f using the softmax function:
P (yrole

ft | P, V, X ) / exp(sft).
At test time, we perform constrained decoding

using the Viterbi algorithm to emit valid sequences
of BIO tags, using unary scores sft and the transi-
tion probabilities given by the training data.

2.5 Training
We maximize the sum of the likelihoods of the in-
dividual tasks. In order to maximize our model’s
ability to leverage syntax, during training we
clamp P to the gold parse (PG) and V to gold
predicates VG when passing parse and predicate

4All predicates in CoNLL-2005 are verbs; CoNLL-2012
includes some nominal predicates.

representations to later layers, whereas syntactic
head prediction and joint predicate/POS prediction
are conditioned only on the input sequence X . The
overall objective is thus:

1

T

TX

t=1

h FX

f=1

log P (yrole
ft | PG, VG, X )

+ log P (yprp
t | X )

+ �1 log P (head(t) | X )

+ �2 log P (ydep
t | PG, X )

i
(7)

where �1 and �2 are penalties on the syntactic at-
tention loss.

We train the model using Nadam (Dozat, 2016)
SGD combined with the learning rate schedule in
Vaswani et al. (2017). In addition to MTL, we reg-
ularize our model using dropout (Srivastava et al.,
2014). We use gradient clipping to avoid explod-
ing gradients (Bengio et al., 1994; Pascanu et al.,
2013). Additional details on optimization and hy-
perparameters are included in Appendix A.

3 Related work

Early approaches to SRL (Pradhan et al., 2005;
Surdeanu et al., 2007; Johansson and Nugues,
2008; Toutanova et al., 2008) focused on devel-
oping rich sets of linguistic features as input to a
linear model, often combined with complex con-
strained inference e.g. with an ILP (Punyakanok
et al., 2008). Täckström et al. (2015) showed that
constraints could be enforced more efficiently us-
ing a clever dynamic program for exact inference.
Sutton and McCallum (2005) modeled syntactic
parsing and SRL jointly, and Lewis et al. (2015)
jointly modeled SRL and CCG parsing.

Collobert et al. (2011) were among the first to
use a neural network model for SRL, a CNN over
word embeddings which failed to out-perform
non-neural models. FitzGerald et al. (2015) suc-
cessfully employed neural networks by embed-
ding lexicalized features and providing them as
factors in the model of Täckström et al. (2015).

More recent neural models are syntax-free.
Zhou and Xu (2015), Marcheggiani et al. (2017)
and He et al. (2017) all use variants of deep
LSTMs with constrained decoding, while Tan
et al. (2018) apply self-attention to obtain state-of-
the-art SRL with gold predicates. Like this work,
He et al. (2017) present end-to-end experiments,
predicting predicates using an LSTM, and He et al.
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(2018) jointly predict SRL spans and predicates in
a model based on that of Lee et al. (2017), obtain-
ing state-of-the-art predicted predicate SRL. Con-
current to this work, Peters et al. (2018) and He
et al. (2018) report significant gains on PropBank
SRL by training a wide LSTM language model
and using a task-specific transformation of its hid-
den representations (ELMo) as a deep, and com-
putationally expensive, alternative to typical word
embeddings. We find that LISA obtains further ac-
curacy increases when provided with ELMo word
representations, especially on out-of-domain data.

Some work has incorporated syntax into neu-
ral models for SRL. Roth and Lapata (2016) in-
corporate syntax by embedding dependency paths,
and similarly Marcheggiani and Titov (2017) en-
code syntax using a graph CNN over a pre-
dicted syntax tree, out-performing models with-
out syntax on CoNLL-2009. These works are
limited to incorporating partial dependency paths
between tokens whereas our technique incorpo-
rates the entire parse. Additionally, Marcheggiani
and Titov (2017) report that their model does not
out-perform syntax-free models on out-of-domain
data, a setting in which our technique excels.

MTL (Caruana, 1993) is popular in NLP, and
others have proposed MTL models which incor-
porate subsets of the tasks we do (Collobert et al.,
2011; Zhang and Weiss, 2016; Hashimoto et al.,
2017; Peng et al., 2017; Swayamdipta et al., 2017),
and we build off work that investigates where and
when to combine different tasks to achieve the
best results (Søgaard and Goldberg, 2016; Bin-
gel and Søgaard, 2017; Alonso and Plank, 2017).
Our specific method of incorporating supervision
into self-attention is most similar to the concur-
rent work of Liu and Lapata (2018), who use edge
marginals produced by the matrix-tree algorithm
as attention weights for document classification
and natural language inference.

The question of training on gold versus pre-
dicted labels is closely related to learning to search
(Daumé III et al., 2009; Ross et al., 2011; Chang
et al., 2015) and scheduled sampling (Bengio
et al., 2015), with applications in NLP to sequence
labeling and transition-based parsing (Choi and
Palmer, 2011; Goldberg and Nivre, 2012; Balles-
teros et al., 2016). Our approach may be inter-
preted as an extension of teacher forcing (Williams
and Zipser, 1989) to MTL. We leave exploration of
more advanced scheduled sampling techniques to

future work.

4 Experimental results

We present results on the CoNLL-2005 shared
task (Carreras and Màrquez, 2005) and the
CoNLL-2012 English subset of OntoNotes 5.0
(Pradhan et al., 2006), achieving state-of-the-art
results for a single model with predicted predicates
on both corpora. We experiment with both stan-
dard pre-trained GloVe word embeddings (Pen-
nington et al., 2014) and pre-trained ELMo rep-
resentations with fine-tuned task-specific parame-
ters (Peters et al., 2018) in order to best compare
to prior work. Hyperparameters that resulted in
the best performance on the validation set were
selected via a small grid search, and models were
trained for a maximum of 4 days on one TitanX
GPU using early stopping on the validation set.
We convert constituencies to dependencies using
the Stanford head rules v3.5 (de Marneffe and
Manning, 2008). A detailed description of hyper-
parameter settings and data pre-processing can be
found in Appendix A.

We compare our LISA models to four strong
baselines: For experiments using predicted predi-
cates, we compare to He et al. (2018) and the en-
semble model (PoE) from He et al. (2017), as well
as a version of our own self-attention model which
does not incorporate syntactic information (SA).
To compare to more prior work, we present addi-
tional results on CoNLL-2005 with models given
gold predicates at test time. In these experiments
we also compare to Tan et al. (2018), the previous
state-of-the art SRL model using gold predicates
and standard embeddings.

We demonstrate that our models benefit from
injecting state-of-the-art predicted parses at test
time (+D&M) by fixing the attention to parses
predicted by Dozat and Manning (2017), the win-
ner of the 2017 CoNLL shared task (Zeman et al.,
2017) which we re-train using ELMo embeddings.
In all cases, using these parses at test time im-
proves performance.

We also evaluate our model using the gold syn-
tactic parse at test time (+Gold), to provide an up-
per bound for the benefit that syntax could have
for SRL using LISA. These experiments show that
despite LISA’s strong performance, there remains
substantial room for improvement. In §4.3 we per-
form further analysis comparing SRL models us-
ing gold and predicted parses.
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Dev WSJ Test Brown Test
GloVe P R F1 P R F1 P R F1
He et al. (2017) PoE 81.8 81.2 81.5 82.0 83.4 82.7 69.7 70.5 70.1
He et al. (2018) 81.3 81.9 81.6 81.2 83.9 82.5 69.7 71.9 70.8
SA 83.52 81.28 82.39 84.17 83.28 83.72 72.98 70.1 71.51
LISA 83.1 81.39 82.24 84.07 83.16 83.61 73.32 70.56 71.91

+D&M 84.59 82.59 83.58 85.53 84.45 84.99 75.8 73.54 74.66
+Gold 87.91 85.73 86.81 — — — — — —

ELMo
He et al. (2018) 84.9 85.7 85.3 84.8 87.2 86.0 73.9 78.4 76.1
SA 85.78 84.74 85.26 86.21 85.98 86.09 77.1 75.61 76.35
LISA 86.07 84.64 85.35 86.69 86.42 86.55 78.95 77.17 78.05

+D&M 85.83 84.51 85.17 87.13 86.67 86.90 79.02 77.49 78.25
+Gold 88.51 86.77 87.63 — — — — — —

Table 1: Precision, recall and F1 on the CoNLL-2005 development and test sets.

WSJ Test P R F1
He et al. (2018) 84.2 83.7 83.9
Tan et al. (2018) 84.5 85.2 84.8
SA 84.7 84.24 84.47
LISA 84.72 84.57 84.64

+D&M 86.02 86.05 86.04

Brown Test P R F1
He et al. (2018) 74.2 73.1 73.7
Tan et al. (2018) 73.5 74.6 74.1
SA 73.89 72.39 73.13
LISA 74.77 74.32 74.55

+D&M 76.65 76.44 76.54

Table 2: Precision, recall and F1 on CoNLL-2005
with gold predicates.

4.1 Semantic role labeling

Table 1 lists precision, recall and F1 on the
CoNLL-2005 development and test sets using pre-
dicted predicates. For models using GloVe embed-
dings, our syntax-free SA model already achieves
a new state-of-the-art by jointly predicting pred-
icates, POS and SRL. LISA with its own parses
performs comparably to SA, but when supplied
with D&M parses LISA out-performs the previous
state-of-the-art by 2.5 F1 points. On the out-of-
domain Brown test set, LISA also performs com-
parably to its syntax-free counterpart with its own
parses, but with D&M parses LISA performs ex-
ceptionally well, more than 3.5 F1 points higher
than He et al. (2018). Incorporating ELMo em-

beddings improves all scores. The gap in SRL
F1 between models using LISA and D&M parses
is smaller due to LISA’s improved parsing ac-
curacy (see §4.2), but LISA with D&M parses
still achieves the highest F1: nearly 1.0 abso-
lute F1 higher than the previous state-of-the art
on WSJ, and more than 2.0 F1 higher on Brown.
In both settings LISA leverages domain-agnostic
syntactic information rather than over-fitting to the
newswire training data which leads to high perfor-
mance even on out-of-domain text.

To compare to more prior work we also evalu-
ate our models in the artificial setting where gold
predicates are provided at test time. For fair com-
parison we use GloVe embeddings, provide pred-
icate indicator embeddings on the input and re-
encode the sequence relative to each gold predi-
cate. Here LISA still excels: with D&M parses,
LISA out-performs the previous state-of-the-art by
more than 2 F1 on both WSJ and Brown.

Table 3 reports precision, recall and F1 on
the CoNLL-2012 test set. We observe perfor-
mance similar to that observed on ConLL-2005:
Using GloVe embeddings our SA baseline al-
ready out-performs He et al. (2018) by nearly
1.5 F1. With its own parses, LISA slightly
under-performs our syntax-free model, but when
provided with stronger D&M parses LISA out-
performs the state-of-the-art by more than 2.5
F1. Like CoNLL-2005, ELMo representations im-
prove all models and close the F1 gap between
models supplied with LISA and D&M parses. On
this dataset ELMo also substantially narrows the
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Dev P R F1
GloVe

He et al. (2018) 79.2 79.7 79.4
SA 82.32 79.76 81.02
LISA 81.77 79.65 80.70

+D&M 82.97 81.14 82.05
+Gold 87.57 85.32 86.43

ELMo
He et al. (2018) 82.1 84.0 83.0
SA 84.35 82.14 83.23
LISA 84.19 82.56 83.37

+D&M 84.09 82.65 83.36
+Gold 88.22 86.53 87.36

Test P R F1
GloVe

He et al. (2018) 79.4 80.1 79.8
SA 82.55 80.02 81.26
LISA 81.86 79.56 80.70

+D&M 83.3 81.38 82.33

ELMo
He et al. (2018) 81.9 84.0 82.9
SA 84.39 82.21 83.28
LISA 83.97 82.29 83.12

+D&M 84.14 82.64 83.38

Table 3: Precision, recall and F1 on the CoNLL-
2012 development and test sets. Italics indicate
a synthetic upper bound obtained by providing a
gold parse at test time.

difference between models with- and without syn-
tactic information. This suggests that for this chal-
lenging dataset, ELMo already encodes much of
the information available in the D&M parses. Yet,
higher accuracy parses could still yield improve-
ments since providing gold parses increases F1 by
4 points even with ELMo embeddings.

4.2 Parsing, POS and predicate detection
We first report the labeled and unlabeled attach-
ment scores (LAS, UAS) of our parsing models on
the CoNLL-2005 and 2012 test sets (Table 4) with
GloVe (G) and ELMo (E) embeddings. D&M
achieves the best scores. Still, LISA’s GloVe
UAS is comparable to popular off-the-shelf de-
pendency parsers such as spaCy,5 and with ELMo

5spaCy reports 94.48 UAS on WSJ using Stan-
ford dependencies v3.3: https://spacy.io/usage/

Data Model POS UAS LAS

WSJ
D&ME — 96.48 94.40
LISAG 96.92 94.92 91.87
LISAE 97.80 96.28 93.65

Brown
D&ME — 92.56 88.52
LISAG 94.26 90.31 85.82
LISAE 95.77 93.36 88.75

CoNLL-12
D&ME — 94.99 92.59
LISAG 96.81 93.35 90.42
LISAE 98.11 94.84 92.23

Table 4: Parsing (labeled and unlabeled attach-
ment) and POS accuracies attained by the models
used in SRL experiments on test datasets. Sub-
script G denotes GloVe and E ELMo embeddings.

Model P R F1

WSJ He et al. (2017) 94.5 98.5 96.4
LISA 98.9 97.9 98.4

Brown He et al. (2017) 89.3 95.7 92.4
LISA 95.5 91.9 93.7

CoNLL-12 LISA 99.8 94.7 97.2

Table 5: Predicate detection precision, recall and
F1 on CoNLL-2005 and CoNLL-2012 test sets.

embeddings comparable to the standalone D&M
parser. The difference in parse accuracy between
LISAG and D&M likely explains the large in-
crease in SRL performance we see from decoding
with D&M parses in that setting.

In Table 5 we present predicate detection pre-
cision, recall and F1 on the CoNLL-2005 and
2012 test sets. SA and LISA with and without
ELMo attain comparable scores so we report only
LISA+GloVe. We compare to He et al. (2017) on
CoNLL-2005, the only cited work reporting com-
parable predicate detection F1. LISA attains high
predicate detection scores, above 97 F1, on both
in-domain datasets, and out-performs He et al.
(2017) by 1.5-2 F1 points even on the out-of-
domain Brown test set, suggesting that multi-task
learning works well for SRL predicate detection.

4.3 Analysis
First we assess SRL F1 on sentences divided by
parse accuracy. Table 6 lists average SRL F1
(across sentences) for the four conditions of LISA
and D&M parses being correct or not (L±, D±).
Both parsers are correct on 26% of sentences.

facts-figures
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L+/D+ L–/D+ L+/D– L–/D–
Proportion 26% 12% 4% 56%
SA 79.29 75.14 75.97 75.08
LISA 79.51 74.33 79.69 75.00

+D&M 79.03 76.96 77.73 76.52
+Gold 79.61 78.38 81.41 80.47

Table 6: Average SRL F1 on CoNLL-2005 for sen-
tences where LISA (L) and D&M (D) parses were
completely correct (+) or incorrect (–).

Orig. Fix
Labels

Move
Core
Arg.

Merge
Spans

Split
Spans

Fix
Span

Boundary

Drop
Arg.

Add
Arg.

85.0

87.5

90.0

92.5

95.0

97.5

100.0

F1 SA
LISA
+D&M
+Gold

Figure 3: Performance of CoNLL-2005 models af-
ter performing corrections from He et al. (2017).

Here there is little difference between any of the
models, with LISA models tending to perform
slightly better than SA. Both parsers make mis-
takes on the majority of sentences (57%), diffi-
cult sentences where SA also performs the worst.
These examples are likely where gold and D&M
parses improve the most over other models in
overall F1: Though both parsers fail to correctly
parse the entire sentence, the D&M parser is less
wrong (87.5 vs. 85.7 average LAS), leading to
higher SRL F1 by about 1.5 average F1.

Following He et al. (2017), we next apply a
series of corrections to model predictions in or-
der to understand which error types the gold
parse resolves: e.g. Fix Labels fixes labels on
spans matching gold boundaries, and Merge Spans
merges adjacent predicted spans into a gold span.6

In Figure 3 we see that much of the performance
gap between the gold and predicted parses is due
to span boundary errors (Merge Spans, Split Spans
and Fix Span Boundary), which supports the hy-
pothesis proposed by He et al. (2017) that incorpo-
rating syntax could be particularly helpful for re-
solving these errors. He et al. (2017) also point out

6Refer to He et al. (2017) for a detailed explanation of the
different error types.
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Figure 4: Percent and count of split/merge correc-
tions performed in Figure 3, by phrase type.

that these errors are due mainly to prepositional
phrase (PP) attachment mistakes. We also find
this to be the case: Figure 4 shows a breakdown
of split/merge corrections by phrase type. Though
the number of corrections decreases substantially
across phrase types, the proportion of corrections
attributed to PPs remains the same (approx. 50%)
even after providing the correct PP attachment to
the model, indicating that PP span boundary mis-
takes are a fundamental difficulty for SRL.

5 Conclusion

We present linguistically-informed self-attention:
a multi-task neural network model that effectively
incorporates rich linguistic information for seman-
tic role labeling. LISA out-performs the state-of-
the-art on two benchmark SRL datasets, includ-
ing out-of-domain. Future work will explore im-
proving LISA’s parsing accuracy, developing bet-
ter training techniques and adapting to more tasks.

Acknowledgments

We are grateful to Luheng He for helpful discus-
sions and code, Timothy Dozat for sharing his
code, and to the NLP reading groups at Google
and UMass and the anonymous reviewers for feed-
back on drafts of this work. This work was sup-
ported in part by an IBM PhD Fellowship Award
to E.S., in part by the Center for Intelligent Infor-
mation Retrieval, and in part by the National Sci-
ence Foundation under Grant Nos. DMR-1534431
and IIS-1514053. Any opinions, findings, conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect those of the sponsor.

5035



References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available
from tensorflow.org.
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Abstract

Machine translation systems achieve near
human-level performance on some languages,
yet their effectiveness strongly relies on the
availability of large amounts of parallel sen-
tences, which hinders their applicability to the
majority of language pairs. This work inves-
tigates how to learn to translate when having
access to only large monolingual corpora in
each language. We propose two model vari-
ants, a neural and a phrase-based model. Both
versions leverage a careful initialization of the
parameters, the denoising effect of language
models and automatic generation of parallel
data by iterative back-translation. These mod-
els are significantly better than methods from
the literature, while being simpler and hav-
ing fewer hyper-parameters. On the widely
used WMT’14 English-French and WMT’16
German-English benchmarks, our models re-
spectively obtain 28.1 and 25.2 BLEU points
without using a single parallel sentence, out-
performing the state of the art by more than
11 BLEU points. On low-resource languages
like English-Urdu and English-Romanian, our
methods achieve even better results than semi-
supervised and supervised approaches leverag-
ing the paucity of available bitexts. Our code
for NMT and PBSMT is publicly available.1

1 Introduction

Machine Translation (MT) is a flagship of the re-
cent successes and advances in the field of natural
language processing. Its practical applications and
use as a testbed for sequence transduction algo-
rithms have spurred renewed interest in this topic.

While recent advances have reported near
human-level performance on several language

†Sorbonne Universités, UPMC Univ Paris 06, CNRS,
UMR 7606, LIP6, F-75005, Paris, France.

1https://github.com/facebookresearch/
UnsupervisedMT

pairs using neural approaches (Wu et al., 2016;
Hassan et al., 2018), other studies have highlighted
several open challenges (Koehn and Knowles,
2017; Isabelle et al., 2017; Sennrich, 2017). A ma-
jor challenge is the reliance of current learning al-
gorithms on large parallel corpora. Unfortunately,
the vast majority of language pairs have very little,
if any, parallel data: learning algorithms need to
better leverage monolingual data in order to make
MT more widely applicable.

While a large body of literature has studied the
use of monolingual data to boost translation per-
formance when limited supervision is available,
two recent approaches have explored the fully un-
supervised setting (Lample et al., 2018; Artetxe
et al., 2018), relying only on monolingual cor-
pora in each language, as in the pioneering work
by Ravi and Knight (2011). While there are sub-
tle technical differences between these two recent
works, we identify several common principles un-
derlying their success.

First, they carefully initialize the MT system
with an inferred bilingual dictionary. Second,
they leverage strong language models, via train-
ing the sequence-to-sequence system (Sutskever
et al., 2014; Bahdanau et al., 2015) as a denois-
ing autoencoder (Vincent et al., 2008). Third, they
turn the unsupervised problem into a supervised
one by automatic generation of sentence pairs via
back-translation (Sennrich et al., 2015a), i.e., the
source-to-target model is applied to source sen-
tences to generate inputs for training the target-
to-source model, and vice versa. Finally, they
constrain the latent representations produced by
the encoder to be shared across the two lan-
guages. Empirically, these methods achieve re-
markable results considering the fully unsuper-
vised setting; for instance, about 15 BLEU points
on the WMT’14 English-French benchmark.

The first contribution of this paper is a model
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observed source sentence

unobserved translation of a target sentence

system translation of a target sentence

observed target sentence

unobserved  translation of a source sentence

system translation of a source sentence

D)

Figure 1: Toy illustration of the three principles of unsupervised MT. A) There are two monolingual datasets. Markers
correspond to sentences (see legend for details). B) First principle: Initialization. The two distributions are roughly aligned,
e.g. by performing word-by-word translation with an inferred bilingual dictionary. C) Second principle: Language modeling.
A language model is learned independently in each domain to infer the structure in the data (underlying continuous curve); it
acts as a data-driven prior to denoise/correct sentences (illustrated by the spring pulling a sentence outside the manifold back
in). D) Third principle: Back-translation. Starting from an observed source sentence (filled red circle) we use the current
source ! target model to translate (dashed arrow), yielding a potentially incorrect translation (blue cross near the empty
circle). Starting from this (back) translation, we use the target ! source model (continuous arrow) to reconstruct the sentence
in the original language. The discrepancy between the reconstruction and the initial sentence provides error signal to train the
target ! source model parameters. The same procedure is applied in the opposite direction to train the source ! target model.

that combines these two previous neural ap-
proaches, simplifying the architecture and loss
function while still following the above men-
tioned principles. The resulting model outper-
forms previous approaches and is both easier to
train and tune. Then, we apply the same ideas and
methodology to a traditional phrase-based statisti-
cal machine translation (PBSMT) system (Koehn
et al., 2003). PBSMT models are well-known
to outperform neural models when labeled data
is scarce because they merely count occurrences,
whereas neural models typically fit hundred of
millions of parameters to learn distributed rep-
resentations, which may generalize better when
data is abundant but is prone to overfit when data
is scarce. Our PBSMT model is simple, easy
to interpret, fast to train and often achieves sim-
ilar or better results than its NMT counterpart.
We report gains of up to +10 BLEU points on
widely used benchmarks when using our NMT
model, and up to +12 points with our PBSMT
model. Furthermore, we apply these methods to
distant and low-resource languages, like English-
Russian, English-Romanian and English-Urdu,
and report competitive performance against both
semi-supervised and supervised baselines.

2 Principles of Unsupervised MT

Learning to translate with only monolingual data
is an ill-posed task, since there are potentially
many ways to associate target with source sen-
tences. Nevertheless, there has been exciting
progress towards this goal in recent years, as dis-
cussed in the related work of Section 5. In this sec-

tion, we abstract away from the specific assump-
tions made by each prior work and instead focus
on identifying the common principles underlying
unsupervised MT.

We claim that unsupervised MT can be accom-
plished by leveraging the three components illus-
trated in Figure 1: (i) suitable initialization of
the translation models, (ii) language modeling and
(iii) iterative back-translation. In the following,
we describe each of these components and later
discuss how they can be better instantiated in both
a neural model and phrase-based model.

Initialization: Given the ill-posed nature of the
task, model initialization expresses a natural prior
over the space of solutions we expect to reach,
jump-starting the process by leveraging approxi-
mate translations of words, short phrases or even
sub-word units (Sennrich et al., 2015b). For in-
stance, Klementiev et al. (2012) used a provided
bilingual dictionary, while Lample et al. (2018)
and Artetxe et al. (2018) used dictionaries inferred
in an unsupervised way (Conneau et al., 2018;
Artetxe et al., 2017). The motivating intuition
is that while such initial “word-by-word” transla-
tion may be poor if languages or corpora are not
closely related, it still preserves some of the origi-
nal semantics.

Language Modeling: Given large amounts of
monolingual data, we can train language mod-
els on both source and target languages. These
models express a data-driven prior about how sen-
tences should read in each language, and they im-
prove the quality of the translation models by per-
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Algorithm 1: Unsupervised MT
1 Language models: Learn language models Ps and Pt

over source and target languages;
2 Initial translation models: Leveraging Ps and Pt,

learn two initial translation models, one in each
direction: P (0)

s!t and P (0)
t!s;

3 for k=1 to N do
4 Back-translation: Generate source and target

sentences using the current translation models,
P (k�1)
t!s and P (k�1)

s!t , factoring in language
models, Ps and Pt;

5 Train new translation models P (k)
s!t and P (k)

t!s
using the generated sentences and leveraging Ps

and Pt;
6 end

forming local substitutions and word reorderings.

Iterative Back-translation: The third principle
is back-translation (Sennrich et al., 2015a), which
is perhaps the most effective way to leverage
monolingual data in a semi-supervised setting. Its
application in the unsupervised setting is to cou-
ple the source-to-target translation system with
a backward model translating from the target to
source language. The goal of this model is to gen-
erate a source sentence for each target sentence in
the monolingual corpus. This turns the daunting
unsupervised problem into a supervised learning
task, albeit with noisy source sentences. As the
original model gets better at translating, we use
the current model to improve the back-translation
model, resulting in a coupled system trained with
an iterative algorithm (He et al., 2016).

3 Unsupervised MT systems

Equipped with the three principles detailed in Sec-
tion 2, we now discuss how to effectively combine
them in the context of a NMT model (Section 3.1)
and PBSMT model (Section 3.2).

In the reminder of the paper, we denote the
space of source and target sentences by S and T ,
respectively, and the language models trained on
source and target monolingual datasets by Ps and
Pt, respectively. Finally, we denote by Ps!t and
Pt!s the translation models from source to target
and vice versa. An overview of our approach is
given in Algorithm 1.

3.1 Unsupervised NMT
We now introduce a new unsupervised NMT
method, which is derived from earlier work
by Artetxe et al. (2018) and Lample et al. (2018).
We first discuss how the previously mentioned

three key principles are instantiated in our work,
and then introduce an additional property of the
system, the sharing of internal representations
across languages, which is specific and critical
to NMT. From now on, we assume that a NMT
model consists of an encoder and a decoder. Sec-
tion 4 gives the specific details of this architecture.

Initialization: While prior work relied on bilin-
gual dictionaries, here we propose a more effec-
tive and simpler approach which is particularly
suitable for related languages.2 First, instead of
considering words, we consider byte-pair encod-
ings (BPE) (Sennrich et al., 2015b), which have
two major advantages: they reduce the vocabulary
size and they eliminate the presence of unknown
words in the output translation. Second, instead of
learning an explicit mapping between BPEs in the
source and target languages, we define BPE tokens
by jointly processing both monolingual corpora. If
languages are related, they will naturally share a
good fraction of BPE tokens, which eliminates the
need to infer a bilingual dictionary. In practice,
we i) join the monolingual corpora, ii) apply BPE
tokenization on the resulting corpus, and iii) learn
token embeddings (Mikolov et al., 2013) on the
same corpus, which are then used to initialize the
lookup tables in the encoder and decoder.

Language Modeling: In NMT, language mod-
eling is accomplished via denoising autoencoding,
by minimizing:

Llm = Ex⇠S [� logPs!s(x|C(x))] +

Ey⇠T [� logPt!t(y|C(y))] (1)

where C is a noise model with some words
dropped and swapped as in Lample et al. (2018).
Ps!s and Pt!t are the composition of encoder and
decoder both operating on the source and target
sides, respectively.

Back-translation: Let us denote by u⇤(y) the
sentence in the source language inferred from
y 2 T such that u⇤(y) = argmaxPt!s(u|y).
Similarly, let us denote by v⇤(x) the sen-
tence in the target language inferred from x 2
S such that v⇤(x) = argmaxPs!t(v|x).
The pairs (u⇤(y), y) and (x, v⇤(x))) constitute
automatically-generated parallel sentences which,
following the back-translation principle, can be

2For unrelated languages, we need to infer a dictionary to
properly initialize the embeddings (Conneau et al., 2018).
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used to train the two MT models by minimizing
the following loss:

Lback = Ey⇠T [� logPs!t(y|u⇤(y))] +
Ex⇠S [� logPt!s(x|v⇤(x))]. (2)

Note that when minimizing this objective function
we do not back-prop through the reverse model
which generated the data, both for the sake of sim-
plicity and because we did not observe improve-
ments when doing so. The objective function min-
imized at every iteration of stochastic gradient de-
scent, is simply the sum of Llm in Eq. 1 and Lback

in Eq. 2. To prevent the model from cheating by
using different subspaces for the language mod-
eling and translation tasks, we add an additional
constraint which we discuss next.

Sharing Latent Representations: A shared en-
coder representation acts like an interlingua,
which is translated in the decoder target language
regardless of the input source language. This
ensures that the benefits of language modeling,
implemented via the denoising autoencoder ob-
jective, nicely transfer to translation from noisy
sources and eventually help the NMT model to
translate more fluently. In order to share the en-
coder representations, we share all encoder pa-
rameters (including the embedding matrices since
we perform joint tokenization) across the two lan-
guages to ensure that the latent representation of
the source sentence is robust to the source lan-
guage. Similarly, we share the decoder parame-
ters across the two languages. While sharing the
encoder is critical to get the model to work, shar-
ing the decoder simply induces useful regulariza-
tion. Unlike prior work (Johnson et al., 2016), the
first token of the decoder specifies the language the
module is operating with, while the encoder does
not have any language identifier.

3.2 Unsupervised PBSMT
In this section, we discuss how to perform un-
supervised machine translation using a Phrase-
Based Statistical Machine Translation (PBSMT)
system (Koehn et al., 2003) as the underlying
backbone model. Note that PBSMT models are
known to perform well on low-resource language
pairs, and are therefore a potentially good alterna-
tive to neural models in the unsupervised setting.

When translating from x to y, a PBSMT sys-
tem scores y according to: argmaxy P (y|x) =
argmaxy P (x|y)P (y), where P (x|y) is derived

from so called “phrase tables”, and P (y) is the
score assigned by a language model.

Given a dataset of bitexts, PBSMT first infers
an alignment between source and target phrases.
It then populates phrase tables, whose entries
store the probability that a certain n-gram in the
source/target language is mapped to another n-
gram in the target/source language.

In the unsupervised setting, we can easily train a
language model on monolingual data, but it is less
clear how to populate the phrase tables, which are
a necessary component for good translation. For-
tunately, similar to the neural case, the principles
of Section 2 are effective to solve this problem.

Initialization: We populate the initial phrase ta-
bles (from source to target and from target to
source) using an inferred bilingual dictionary built
from monolingual corpora using the method pro-
posed by Conneau et al. (2018). In the following,
we will refer to phrases as single words, but the
very same arguments trivially apply to longer n-
grams. Phrase tables are populated with the scores
of the translation of a source word to:

p(tj |si) =
e

1
T cos(e(tj),We(si))

P
k e

1
T cos(e(tk),We(si))

, (3)

where tj is the j-th word in the target vocabulary
and si is the i-th word in the source vocabulary,
T is a hyper-parameter used to tune the peakiness
of the distribution3, W is the rotation matrix map-
ping the source embeddings into the target embed-
dings (Conneau et al., 2018), and e(x) is the em-
bedding of x.

Language Modeling: Both in the source and
target domains we learn smoothed n-gram lan-
guage models using KenLM (Heafield, 2011), al-
though neural models could also be considered.
These remain fixed throughout training iterations.

Iterative Back-Translation: To jump-start the
iterative process, we use the unsupervised phrase
tables and the language model on the target side to
construct a seed PBSMT. We then use this model
to translate the source monolingual corpus into the
target language (back-translation step). Once the
data has been generated, we train a PBSMT in su-
pervised mode to map the generated data back to
the original source sentences. Next, we perform

3We set T = 30 in all our experiments, following the
setting of Smith et al. (2017).
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both generation and training process but in the re-
verse direction. We repeat these steps as many
times as desired (see Algorithm 2 in Section A).

Intuitively, many entries in the phrase tables are
not correct because the input to the PBSMT at any
given point during training is noisy. Despite that,
the language model may be able to fix some of
these mistakes at generation time. As long as that
happens, the translation improves, and with that
also the phrase tables at the next round. There will
be more entries that correspond to correct phrases,
which makes the PBSMT model stronger because
it has bigger tables and it enables phrase swaps
over longer spans.

4 Experiments

We first describe the datasets and experimen-
tal protocol we used. Then, we compare the
two proposed unsupervised approaches to ear-
lier attempts, to semi-supervised methods and to
the very same models but trained with varying
amounts of labeled data. We conclude with an ab-
lation study to understand the relative importance
of the three principles introduced in Section 2.

4.1 Datasets and Methodology

We consider five language pairs: English-French,
English-German, English-Romanian, English-
Russian and English-Urdu. The first two pairs are
used to compare to recent work on unsupervised
MT (Artetxe et al., 2018; Lample et al., 2018).
The last three pairs are instead used to test our PB-
SMT unsupervised method on truly low-resource
pairs (Gu et al., 2018) or unrelated languages that
do not even share the same alphabet.

For English, French, German and Russian, we
use all available sentences from the WMT mono-
lingual News Crawl datasets from years 2007
through 2017. For Romanian, the News Crawl
dataset is only composed of 2.2 million sentences,
so we augment it with the monolingual data from
WMT’16, resulting in 2.9 million sentences. In
Urdu, we use the dataset of Jawaid et al. (2014),
composed of about 5.5 million monolingual sen-
tences. We report results on newstest 2014 for
en� fr, and newstest 2016 for en� de, en� ro
and en� ru. For Urdu, we use the LDC2010T21
and LDC2010T23 corpora each with about 1800
sentences as validation and test sets, respectively.

We use Moses scripts (Koehn et al., 2007) for
tokenization. NMT is trained with 60,000 BPE

Source Target P (s|t) P (t|s)

happy 0.931 0.986
delighted 0.458 0.003

heureux grateful 0.128 0.003
thrilled 0.392 0.002
glad 0.054 0.001

Britain 0.242 0.720
UK 0.816 0.257

Royaume-Uni U.K. 0.697 0.011
United Kingdom 0.770 0.010
British 0.000 0.002

European Union 0.869 0.772
EU 0.335 0.213

Union européenne E.U. 0.539 0.006
member states 0.007 0.006
27-nation bloc 0.410 0.002

Table 1: Unsupervised phrase table. Example of candi-
date French to English phrase translations, along with their
corresponding conditional likelihoods.

codes. PBSMT is trained with true-casing, and by
removing diacritics from Romanian on the source
side to deal with their inconsistent use across the
monolingual dataset (Sennrich et al., 2016).

4.2 Initialization

Both the NMT and PBSMT approaches require ei-
ther cross-lingual BPE embeddings (to initialize
the shared lookup tables) or n-gram embeddings
(to initialize the phrase table). We generate em-
beddings using fastText (Bojanowski et al., 2017)
with an embedding dimension of 512, a context
window of size 5 and 10 negative samples. For
NMT, fastText is applied on the concatenation of
source and target corpora, which results in cross-
lingual BPE embeddings.

For PBSMT, we generate n-gram embeddings
on the source and target corpora independently,
and align them using the MUSE library (Con-
neau et al., 2018). Since learning unique em-
beddings of every possible phrase would be in-
tractable, we consider the most frequent 300,000
source phrases, and align each of them to its 200
nearest neighbors in the target space, resulting in
a phrase table of 60 million phrase pairs which we
score using the formula in Eq. 3.

In practice, we observe a small but significant
difference of about 1 BLEU point using a phrase
table of bigrams compared to a phrase table of un-
igrams, but did not observe any improvement us-
ing longer phrases. Table 1 shows an extract of a
French-English unsupervised phrase table, where
we can see that unigrams are correctly aligned to
bigrams, and vice versa.
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Figure 2: Comparison between supervised and unsupervised
approaches on WMT’14 En-Fr, as we vary the number of par-
allel sentences for the supervised methods.

4.3 Training

The next subsections provide details about the ar-
chitecture and training procedure of our models.

4.3.1 NMT
In this study, we use NMT models built upon
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) cells. For the
LSTM model we use the same architecture as
in Lample et al. (2018). For the Transformer, we
use 4 layers both in the encoder and in the de-
coder. Following Press and Wolf (2016), we share
all lookup tables between the encoder and the de-
coder, and between the source and the target lan-
guages. The dimensionality of the embeddings
and of the hidden layers is set to 512. We used
the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 10�4, �1 = 0.5, and a batch size
of 32. At decoding time, we generate greedily.

4.3.2 PBSMT
The PBSMT uses Moses’ default smoothed n-
gram language model with phrase reordering dis-
abled during the very first generation. PBSMT is
trained in a iterative manner using Algorithm 2.
At each iteration, we translate 5 million sentences
randomly sampled from the monolingual dataset
in the source language. Except for initialization,
we use phrase tables with phrases up to length 4.

4.4 Model selection

Moses’ implementation of PBSMT has 15 hyper-
parameters, such as relative weighting of each
scoring function, word penalty, etc. In this work,
we consider two methods to set these hyper-
parameters. We either set them to their default
values in the toolbox, or we set them using a small
validation set of parallel sentences. It turns out

Model en-fr fr-en en-de de-en

(Artetxe et al., 2018) 15.1 15.6 - -
(Lample et al., 2018) 15.0 14.3 9.6 13.3
(Yang et al., 2018) 17.0 15.6 10.9 14.6

NMT (LSTM) 24.5 23.7 14.7 19.6
NMT (Transformer) 25.1 24.2 17.2 21.0
PBSMT (Iter. 0) 16.2 17.5 11.0 15.6
PBSMT (Iter. n) 28.1 27.2 17.9 22.9

NMT + PBSMT 27.1 26.3 17.5 22.1
PBSMT + NMT 27.6 27.7 20.2 25.2

Table 2: Comparison with previous approaches. BLEU
score for different models on the en � fr and en � de
language pairs. Just using the unsupervised phrase table,
and without back-translation (PBSMT (Iter. 0)), the PBSMT
outperforms previous approaches. Combining PBSMT with
NMT gives the best results.

that with only 100 labeled sentences in the vali-
dation set, PBSMT would overfit to the validation
set. For instance, on en ! fr, PBSMT tuned
on 100 parallel sentences obtains a BLEU score of
26.42 on newstest 2014, compared to 27.09 with
default hyper-parameters, and 28.02 when tuned
on the 3000 parallel sentences of newstest 2013.
Therefore, unless otherwise specified, all PBSMT
models considered in the paper use default hyper-
parameter values, and do not use any parallel re-
source whatsoever.

For the NMT, we also consider two model selec-
tion procedures: an unsupervised criterion based
on the BLEU score of a “round-trip” translation
(source ! target ! source and target ! source
! target) as in Lample et al. (2018), and cross-
validation using a small validation set with 100
parallel sentences. In our experiments, we found
the unsupervised criterion to be highly correlated
with the test metric when using the Transformer
model, but not always for the LSTM. There-
fore, unless otherwise specified, we select the best
LSTM models using a small validation set of 100
parallel sentences, and the best Transformer mod-
els with the unsupervised criterion.

4.5 Results
The results reported in Table 2 show that our un-
supervised NMT and PBSMT systems largely out-
perform previous unsupervised baselines. We re-
port large gains on all language pairs and direc-
tions. For instance, on the en ! fr task, our un-
supervised PBSMT obtains a BLEU score of 28.1,
outperforming the previous best result by more
than 11 BLEU points. Even on a more complex
task like en ! de, both PBSMT and NMT sur-
pass the baseline score by more than 10 BLEU
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en ! fr fr! en en! de de! en en! ro ro! en en! ru ru! en

Unsupervised PBSMT

Unsupervised phrase table - 17.50 - 15.63 - 14.10 - 8.08
Back-translation - Iter. 1 24.79 26.16 15.92 22.43 18.21 21.49 11.04 15.16
Back-translation - Iter. 2 27.32 26.80 17.65 22.85 20.61 22.52 12.87 16.42
Back-translation - Iter. 3 27.77 26.93 17.94 22.87 21.18 22.99 13.13 16.52
Back-translation - Iter. 4 27.84 27.20 17.77 22.68 21.33 23.01 13.37 16.62
Back-translation - Iter. 5 28.11 27.16 - - - - - -

Unsupervised NMT

LSTM 24.48 23.74 14.71 19.60 - - - -
Transformer 25.14 24.18 17.16 21.00 21.18 19.44 7.98 9.09

Phrase-based + Neural network

NMT + PBSMT 27.12 26.29 17.52 22.06 21.95 23.73 10.14 12.62
PBSMT + NMT 27.60 27.68 20.23 25.19 25.13 23.90 13.76 16.62

Table 3: Fully unsupervised results. We report the BLEU score for PBSMT, NMT, and their combinations on 8 directed
language pairs. Results are obtained on newstest 2014 for en� fr and newstest 2016 for every other pair.

points. Even before iterative back-translation, the
PBSMT model significantly outperforms previous
approaches, and can be trained in a few minutes.

Table 3 illustrates the quality of the PBSMT
model during the iterative training process. For
instance, the fr ! en model obtains a BLEU
score of 17.5 at iteration 0 – i.e. after the unsuper-
vised phrase table construction – while it achieves
a score of 27.2 at iteration 4. This highlights the
importance of multiple back-translation iterations.
The last rows of Table 3 also show that we get ad-
ditional gains by further tuning the NMT model on
the data generated by PBSMT (PBSMT + NMT).
We simply add the data generated by the unsuper-
vised PBSMT system to the back-translated data
produced by the NMT model. By combining PB-
SMT and NMT, we achieve BLEU scores of 20.2
and 25.2 on the challenging en ! de and de !
en translation tasks. While we also tried boot-
straping the PBSMT model with back-translated
data generated by a NMT model (NMT + PB-
SMT), this did not improve over PBSMT alone.

Next, we compare to fully supervised models.
Figure 2 shows the performance of the same ar-
chitectures trained in a fully supervised way us-
ing parallel training sets of varying size. The un-
supervised PBSMT model achieves the same per-
formance as its supervised counterpart trained on
more than 100,000 parallel sentences.

This is confirmed on low-resource languages.
In particular, on ro ! en, our unsupervised PB-
SMT model obtains a BLEU score of 23.9, outper-
forming Gu et al. (2018)’s method by 1 point, de-
spite its use of 6,000 parallel sentences, a seed dic-
tionary, and a multi-NMT system combining par-

allel resources from 5 different languages.
On Russian, our unsupervised PBSMT model

obtains a BLEU score of 16.6 on ru ! en, show-
ing that this approach works reasonably well on
distant languages. Finally we train on ur ! en,
which is both low resource and distant. In a su-
pervised mode, PBSMT using the noisy and out-
of-domain 800,000 parallel sentences from Tiede-
mann (2012) achieves a BLEU score of 9.8. In-
stead, our unsupervised PBSMT system achieves
12.3 BLEU using only a validation set of 1800
sentences to tune Moses hyper-parameters.

4.6 Ablation Study

In Figure 3 we report results from an ablation
study, to better understand the importance of the
three principles when training PBSMT. This study
shows that more iterations only partially com-
pensate for lower quality phrase table initializa-
tion (Left), language models trained over less data
(Middle) or less monolingual data (Right). More-
over, the influence of the quality of the language
model becomes more prominent as we iterate.
These findings suggests that better initialization
methods and more powerful language models may
further improve our results.

We perform a similar ablation study for the
NMT system (see Appendix). We find that back-
translation and auto-encoding are critical compo-
nents, without which the system fails to learn. We
also find that initialization of embeddings is very
important, and we gain 7 BLEU points compared
to prior work (Artetxe et al., 2018; Lample et al.,
2018) by learning BPE embeddings over the con-
catenated monolingual corpora.

5045



Figure 3: Results with PBSMT on the fr ! en pair at different iterations. We vary: Left) the quality of the initial alignment
between the source and target embeddings (measured in P@1 on the word translation task), Middle) the number of sentences
used to train the language models, Right) the number of sentences used for back-translation.

5 Related Work

A large body of literature has studied using mono-
lingual data to boost translation performance when
limited supervision is available. This limited su-
pervision is typically provided as a small set of
parallel sentences (Sennrich et al., 2015a; Gul-
cehre et al., 2015; He et al., 2016; Gu et al., 2018;
Wang et al., 2018); large sets of parallel sentences
in related languages (Firat et al., 2016; Johnson
et al., 2016; Chen et al., 2017; Zheng et al., 2017);
cross-lingual dictionaries (Klementiev et al., 2012;
Irvine and Callison-Burch, 2014, 2016); or com-
parable corpora (Munteanu et al., 2004; Irvine and
Callison-Burch, 2013).

Learning to translate without any form of super-
vision has also attracted interest, but is challeng-
ing. In their seminal work, Ravi and Knight (2011)
leverage linguistic prior knowledge to reframe the
unsupervised MT task as deciphering and demon-
strate the feasibility on short sentences with lim-
ited vocabulary. Earlier work by Carbonell et al.
(2006) also aimed at unsupervised MT, but lever-
aged a bilingual dictionary to seed the translation.
Both works rely on a language model on the target
side to correct for translation fluency.

Subsequent work (Klementiev et al., 2012;
Irvine and Callison-Burch, 2014, 2016) relied on
bilingual dictionaries, small parallel corpora of
several thousand sentences, and linguistically mo-
tivated features to prune the search space. Irvine
and Callison-Burch (2014) use monolingual data
to expand phrase tables learned in a supervised set-
ting. In our work we also expand phrase tables,
but we initialize them with an inferred bilingual
n-gram dictionary, following work from the con-
nectionist community aimed at improving PBSMT
with neural models (Schwenk, 2012; Kalchbren-
ner and Blunsom, 2013; Cho et al., 2014).

In recent years back-translation has become a

popular method of augmenting training sets with
monolingual data on the target side (Sennrich
et al., 2015a), and has been integrated in the “dual
learning” framework of He et al. (2016) and sub-
sequent extensions (Wang et al., 2018). Our ap-
proach is similar to the dual learning framework,
except that in their model gradients are backprop-
agated through the reverse model and they pretrain
using a relatively large amount of labeled data,
whereas our approach is fully unsupervised.

Finally, our work can be seen as an extension of
recent studies (Lample et al., 2018; Artetxe et al.,
2018; Yang et al., 2018) on fully unsupervised MT
with two major contributions. First, we propose
a much simpler and more effective initialization
method for related languages. Second, we abstract
away three principles of unsupervised MT and ap-
ply them to a PBSMT, which even outperforms the
original NMT. Moreover, our results show that the
combination of PBSMT and NMT achieves even
better performance.

6 Conclusions and Future Work

In this work, we identify three principles underly-
ing recent successes in fully unsupervised MT and
show how to apply these principles to PBSMT and
NMT systems. We find that PBSMT systems of-
ten outperform NMT systems in the fully unsuper-
vised setting, and that by combining these systems
we can greatly outperform previous approaches
from the literature. We apply our approach to sev-
eral popular benchmark language pairs, obtaining
state of the art results, and to several low-resource
and under-explored language pairs.

It’s an open question whether there are more ef-
fective instantiations of these principles or other
principles altogether, and under what condi-
tions our iterative process is guaranteed to con-
verge. Future work may also extend to the semi-
supervised setting.
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